SC34-0443-0

Event Driven Executive
Communications Guide

Version 4.0

Series/1

™ D ™
(Library Guide and (Installation and Operator Commands
Common Index System Generation and
Guide Utilities Reference
. y @ J J
Language Communications Messages and
Reference Guide Codes
& J L J . J
£ 1 (\ (w
Operation Guide Event Driven Reference
Language Cards
Programming Guide
L J & J _)
r N - £)
Problem Customization Internal
Determination Guide Design
Guide
Vi J . J L J

Series/1

SC34-0443-0

Event Driven Executive
Communications Guide

Version 4.0

~)
Communications
Guide

First Edition (May 1983)
Use this publication only for the purpose stated in the Preface.

Changes are periodically made to the information herein; any such changes will be
reported in subsequent revisions or Technical Newsletters.

It is possible that this material may contain reference to, or information about, IBM
products {(machines and programs), programming, or services that are not announced
in your country. Such references or information must not be construed to mean that
IBM intends to announce such IBM products, programming, or services in your
country.

Publications are not stocked at the address given below. Requests for copies of IBM
publications should be made to your IBM representative or the IBM branch office
serving your locality.

This publication could contain technical inaccuracies or typographical errors. A form
for readers’ comments is provided at the back of this publication. If the form has
been removed, address your comments to IBM Corporation, Information
Development, Department 27T, P. O. Box 1328, Boca Raton, Florida 33432. IBM
may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation whatever. You may, of course, continue
to use the information you supply.

© Copyright International Business Machines Corporation 1983

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

Summary of Changes for Version 4.1

The following changes have been made to this document. (Changes are indicated by a vertical
line in the left-hand margin of the affected pages.)

Chapter 1, Binary Synchronous Communications Access Method (BSCAM) has been updated
throughout for X.21 switched network support changes.

“Series/1 Communications Features” now has the numbers for the feature cards 2074,

2075, 2093 /2094, 1310, and the 2080 (for X.21 support), and the RPQ D02349 BSC
attachment.

A new section, “Using X.21 Switched Network Support,” has been added at the end of
Chapter 1 for X.21 users.

Summary of Changes for Version 4.1 ii.l

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

Summary of Changes for Version 4.1

ii.2 SC34-0443

About This Book

Audience

The information in the Communications Guide pertains to the Event Driven Executive

Version 4, modification level 1. The book describes the use of various forms of data
communications that are available with Series/1 and the Event Driven Executive. It covers
several methods of Binary Synchronous Communications (BSC), operation of a host system
with a Series/ 1, communications between two Series/1s, and communications between Series/ 1
and multiple peripheral devices. It tells the reader how to prepare for data communications
operations, how to use Event Driven Language (EDL) instructions to perform communications
functions, and how to use Event Driven Executive communications utilities.

In conjunction with the Communications Guide, the following books provide information to help
perform data communications:

o Language Reference provides syntax and descriptions of EDL instructions.
o Messages and Codes lists the error messages and codes issued for communications.

e Operator Commands and Utilities Reference provides information on the use of
communications utilities.

Readers of the Communications Guide should have the following:
+ Knowledge of data communications concepts in general

o Experience in communications programming for either IBM or non-IBM products

About This Book iii

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

About This Book

Audience (continued)

o Understanding of synchronous and asynchronous line disciplines

¢ Detailed knowledge of the principles of Binary Synchronous Communications (BSC),
including line protocol

« Familiarity with the relationship between a host system and a remote system.

Organization of the Book

The book contains three main parts. Each chapter in a part discusses a different method of
performing data communications under the Event Driven Executive operating system.

¢ Part 1, Binary Synchronous Communications, discusses three methods that use forms of
BSC protocol.

o Part 2, System/370 Channel Attach, discusses the communication of Series/1 and a large
host system over a direct local channel.

o Part 3, Special EDX Communications Methods, discusses two methods unique to Series/ 1
under the Event Driven Executive operating system.

Aids to Using this Book

The index at the back of this book helps you find topics that the book discusses. In addition, a
glossary defines terms and abbreviations that appear in the Event Driven Executive
publications.

The Library Guide and Common Index contains a common index of topics covered throughout
the library. It also contains a bibliography of related Event Driven Executive publications.

Contacting IBM About Problems with Event Driven Executive Services

If you have questions about any information you read in an Event Driven Executive
publication, record them on the Reader’s Comment Form at the back of the book and mail it to
us. If you encounter problems of a technical nature while using the Event Driven Executive
operating system, you can report them in an Authorized Program Analysis Report (APAR).
The procedures and guidelines for submitting an APAR are described in the IBM Series/ 1
Software Service Guide, GC34-0099.

iv SC34-0443

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

Contents

Introduction to Communications Guide CO-1

Part 1. Binary Synchronous Communications CO-3

Chapter 1. Binary Synchronous Communications Access Method (BSCAM) CO-5
Terms Used in this Chapter CO-6

Planning for BSCAM Operations CO-6
Using Data Links CO-7
Selecting BSC Line Connection Types CO-7
Meeting Hardware Requirements CO-8
Including BSCAM Support in the Supervisor CO-11
Selecting Type of Data to Transmit CO-12.2
Selecting Mode of Transmission CO-12.3
Programming for BSCAM Applications CO-13
Basic Programming Functions for BSCAM CO-13
Acquiring Use of a BSC Line CO-14
Coding Control Block for Read and Write Operations CO-14
Sending Data CO-16
Receiving Data CO-23
Providing for Errors During BSCAM Operations CO-25
BSCAM Sample Programs CO-26
WRITE Sample Program CO-26
READ Sample Program CO-27
Interacting with BSCAM (Using BSC Utilities) CO-29
Tracing I/0 Activities on a BSC Line (Using $BSCTRCE) CO-30
Formatting Trace Files for Print or Display (Using $BSCUT1) CO-31
Testing BSCAM Operations (Using $BSCUT2) CO-34
Monitoring BSC Lines with the Communications Indicator Panel CO-41

Contents V

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

Contents

vi

SC34-0443

Using X.21 Switched Network Support CO-44
Attaching and Jumpering the 2080 Card CO-44
System Generation for X.21 Support CO-44
The $$X21DS Connection Record Data Set CO-44.1
Convert BSC Program for X.21 CO-44.3
X.21 Error and Call Progress Signal Logging CO-44.4

Chapter 2. Remote Management Utility (SRMU) CO-45
Planning for the Remote Management Utility Operations CO-47
Types of Line Connections CO-47
Mode of Transmission CO-48
Storage Considerations CO-48
Remote System Requirements CO-48
Host System Requirements CO-49
Remote Management Utility Defaults CO-50
Host Programming for the $RMU Application CO-53
Using Event Driven Language BSC Instructions CO-53
Receiving SRMU’s Responses to Host Requests CO-54
Coding the Required Field for Requests to $RMU CO-57
Managing Disk/Diskette Data Sets CO-57
Controlling Data Transfers between Host and Remote Systems CO-64
Remote System Echoing Host Data (WRAP) CO-70
Controlling Program Execution on the Remote System CO-72
Verifying Identities between Systems (IDCHECK) CO-80
Interacting Between Host and Remote Systems (PASSTHRU) CO-82
Considerations for Using PASSTHRU CO-82
Establishing a PASSTHRU Session CO-85
Conducting a PASSTHRU Session CO-88
PASSTHRU Record Types CO-9Q
PASSTHRU Blocking CO-94
Sample Programs CO-95
Multifunction Program CO-95
RECEIVE Sample Program CO-97
SEND Sample Program CO-101
PASSTHRU Sample Program CO-103
Example of Conducting a PASSTHRU Session CO-111

Chapter 3. Host Communications Facility CO-113
Planning to Use the Host Communications Facility CO-114
Installation Requirements CO-114
Host Data Sets CO-114
Opening Host Data Sets CO-116
System Status Data Set CO-116
Host Storage CO-118
Data Transfer Rates CO-118
Tasks Common to Programming and Using $SHCFUT1 CO-118
Programming for the Host Communications Facility Application CO-118
Event Driven Language Instruction Set CO-118

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

Controlling Data Transfers between Series/1 and Host CO-119

Submitting Background Jobs to the Host CO-120

Performing Status Functions CO-121

Obtaining Time and Date from the Host CO-121

Sample Programs CO-122

Sample Program to Receive a Host Data Set CO-123
Interacting with the Host Communication Facility ($HCFUT1) CO-125

Transferring Host Data to Series/1 CO-125

Performing Status Functions CO-127

Submitting Jobs to the Host Job Stream CO-127

Sending Data to the Host CO-127

Part 2. Channel Attach C0Q-129

Chapter 4. Channel Attach Program CO-131
Planning for the Channel Attach Application CO-131
Channel Attach Program ($CAPGM) CQO-131
Channel Attach Device (4993) CO-132
Software Considerations CO-132
Hardware Considerations CO-132
Tailoring the Channel Attach Program CO-133
Powering On The Channel Attach Device CO-134
Programming for the Channel Attach Application CO-134
Event Driven Executive Instruction Set CO-134
Detecting and Handling Errors CO-135
BTAM Considerations CO-135
Assembiling the Application Program CO-136
Link-Editing the Application Program CO-136
Starting a Channel Attach Device CO-137
Opening a Channel Attach Port CO-138
Coding the Control Block for a Channel Attach Port CO-138
Issuing i/0O CO-138
Closing a Channei Attach Port (CACLOSE) CO-i40
Stopping the Channel Attach Device (CASTOP) CGC-140
Tracing Series/1 I/O during Channel Attach (CATRACE) CO-141
Printing Channel Attach Trace Data (CAPRINT) CO-141
Interacting with Channel Attach (Using SCHANUT]1 Utility) CO-141
$CHANUT1 Commands CO-141
Channel Attach Sample Programs CO-143
Configuration Requirements for Sample Programs CO-143
General Guide for Execution of Sample Programs CO-144
Host Sample Program CO-151

Part 3. Specialized Series/1 Event Driven Executive Communications
Methods CO-159

Chapter 5. Series/1-to-Series/1 Attachment Support CO-161

Contents Vil

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

Contents

SC34-0443

Planning the Series/1-to-Series/1 Application CO-161
Processor Relationships CO-162
Initiating Data Transfers CO-162
Responding to External Events CO-162
Programming for Series/1-to-Series/1 Attachment CO-164
Event Driven Language Instruction Set CO-165
Basic Programming Tasks CO-165
Programming Considerations CO-167
Programming Examples CO-169
Interacting with the Series/1-to-Series/1 Attachment (Using $S1S1UT1) CO-180

Chapter 6. General Purpose Interface Bus - IEEE Standard 488-1975 CO-185
Planning for the GPIB Application CO-185
System Generation for GPIB CO-185
Relationship between Series/1 and GPIB Devices CO-186
Assigning Device Addresses CO-186
Initializing and Configuring the Bus CO-187
Programming for the GPIB Application CO-189
Event Driven Language Instruction Set CO-189
Programming Considerations CO-190
Coding GPIB Functions CO-198
GPIB Sample Program CO-202
Interacting with the GPIB Application (Using $GPIBUT1) CO-206
Debugging Applications with $§GPIBUT1 CO-213
$GPIBUT1 Utility Example CO-214
Detecting Errors During GPIB Operations CO-219
Examining Interrupt Status Byte CO-219
Examining Cycle Steal Status Block CO-220
Retrieving Cycle Steal Status CO-220
Retrieving Residual Status Block CO-221

Glossary of Terms and Abbreviations CQ-223

Index CO-233

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

Figures

. Specifying BSCLINE TYPE= operand CO-12.1

. Event Driven Language BSC instructions CO-13

. Example of coding BSCOPEN and BSCCLOSE instructions CO-14
Example of coding BSCIOCB instruction CO-15

Buffers required for write operations CO-15

. Buffers required for read operations CO-16

. Initial write types CO-17

. Control character flow for initial write instructions CO-18

. Control character flow for initial conversational write instructions CO-18
10. Control character flow for initial transparent write instructions CO-19
11. Control character flow for initial transparent block write instructions CO-19
12. Control character flow for initial conversational transparent write instructions CO-19
13. Continue write types CO-20

14. Control character flow for continue write instructions CO-20

15. Special write types CO-21

16. Control character flow for special write type instructions CO-22

17. Programming sequences for sending data CO-23

18. Read types CO-24

19. Dumping trace file records CO-32

20. Dump of the LAST RECORD of trace file CO-33

21. Trace record fields CO-33

22. Communications indicator panel CO-43

22.1. Mapping procedures for BSC X.21 circuit switched support CO-44.1
22.2. Connection Record Format Fields CO-44.2

22.3. X.21 BSCOPEN coding example CO-44.3

22.4. Example of the X.21 printed log information for a read efror CO-44.4
22.5. Example of the X.21 printed log information for a device error CO-44.6
22.6. Device Error Codes CO-44.7

22.8. Call Progress Signal Counter Usage CO-44.8

23. Communication between host and remote systems CO-47

24. $RMU status failure codes CO-55

25. Required fields for ALLOCATE request CO-58

26. Communications flow for ALLOCATE CO-60

27. Required fields for DELETE request CO-61

28. Communications flow for DELETE CO-62

29. Required fields for DUMP request CO-63

VXA U AW~

Figures iX

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

Figures

30. Communications {low for DUMP CO-64

31. Required fields for RECEIVE request CO-66

32. Communications flow for RECEIVE CO-67

33. Required fields for SEND request CO-69

34. Communications flow for SEND request CO-70

35. Required fields for WRAP request CO-71

36. Communications Flow for WRAP CO-72

37. Required fields for EXEC request CO-74

38. Communications flow for EXEC CO-76

39. Required fields for SHUTDOWN reques t CO-78

40. Communications flow for SHUTDOWN CO-80

41. Required fields for IDCHECK request CO-81

42. Communications flow for IDCHECK CO-81

43. Required fields for PASSTHRU request CO-85

44. Communications flow for PASSTHRU CO-87

45. Example of PASSTHRU records received by host CO-93
46. Multifunction sample program CO-95

46. $RMU muitifunction program CQO-95

47. RECEIVE sample program CQO-97

47. RECEIVE sample program CO-97

48. SEND sample program CO-101

49. PASSTHRU sample program CO-104

50. Example of conducting a PASSTHRU session CO-111
51. EDL TP instructions CO-119

52. System status data set sample program CO-122

53. Sample program to send data set to the host CO-123
54. Sample from to receive a host data set CO-124

55. $HCFUT1 commands CO-125

56. Listing of USERPGM data set CO-137

57. Series/1 sample program CO-145

58. Host sample program CO-151

59. Program for posting an event control block CO-163
60. EDL instructions for communication between Series/1s CO-165
61. TERMCTRL Functions for Series/1-to-Series/1 Communications CO-166
62. Usage of READTEXT/PRINTEXT without direct /O CO-168
63. Primary processor sample program CO-170

64. Secondary processor sample program CO-174

65. Synchronization sample program CO-178

66. Listen and talk addresses for GPIB devices CO-187
67. GPIB sample program CO-202

68. GPIB utility example CO-214

X SC34-0443

Introduction to Communications Guide

The Communications Guide discusses the data communications methods that are available as
part of the Event Driven Executive system, and in conjunction with Installed User Programs
(IUPs).

“Part 1. Binary Synchronous Communications” on page CO-3 covers three methods of
communications that use binary synchronous protocol:

« Binary Synchronous Communications Access Method (BSCAM)
« Remote Management Utility ($SRMU)
e Host Communications Facility (HCF)

“Part 2. Channel Attach” on page CO-129 discusses communications between the Series/1 and
a larger host system.

“Part 3. Specialized Series/1 Event Driven Executive Communications Methods” on page
CO-159 covers two methods of communications unique to Series/1 under the Event Driven
Executive:

o Series/1-to-Series/1 Attachment

« General Purpose Interface Bus (GPIB)

In addition to the methods mentioned above, several licensed programs offer forms of
communications with the Event Driven Executive:

¢ Multiple Terminal Manager

Introduction to Communications Guide = CO-1

» Systems Network Architecture/Synchronous Data Link Control

« Communications Facility

Licensed programs can be purchased separately from the basic system, along with
documentation on their use.

CO-2 5C34-0443

Part 1. Binary Synchronous Communications

This part covers the following forms of binary synchronous communications:
« Binary Synchronous Communications Access Method (BSCAM)
« Remote Management Utility (SRMU)

« Host Communications Facility (HCF)

Part 1. Binary Synchronous Communications ~CO-3

Notes

CO-4 5C34-0443

Chapter 1. Binary Synchronous
Communications Access Method (BSCAM)

The Binary Synchronous Communications Access Method (BSCAM) provides I/0 access at a
read/write level using a BSC protocol similar to that of BTAM. It allows the Series/1 to
communicate with local and remote processors and terminals. The BSCAM access method is
also the basis for the Remote Management Utility ($RMU), which runs on the Series/1 and
allows it to be controlied by a host system. $RMU is discussed in Chapter 2, ‘“Remote
Management Utility ($RMU)” on page CO-45.

BSCAM supports the attachment of multiple BSC lines to the Series/1. Data can be either
transparent or nontransparent. Stations acknowledge transmissions either with standard BSC
control characters or with conversational responses. The transmission code that BSCAM uses is
EBCDIC.

Hardware features and BSC protocol that BSCAM does not support are:
o ASCIil mode

« Leading graphics support

» 'Transparent ITB and ENQ transmission.

BSCAM provides I/0 at the READ/WRITE access level. It does not insert or delete control
character sequences from the data you place in your buffers. When sending data, you must
place the proper start and end-of-transmission control characters (STX, DLE STX, and ETX) in
your output buffer. The only case in which you must not place characters in your output buffer
is when sending the transparent end-of-transmission and end-of-block (DLE ETX and DLE
ETB) sequences. Do not place these control characters in your buffer. When you receive data,
your input buffer will contain all the control characters that it received in the transmission.

Chapter 1. Binary Synchronous Communications Access Method (BSCAM) CO-5

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

Binary Synchronous Communications Access Method
(BSCAM)

For a general introduction to binary synchronous communications and details of line protocol
used by the Event Driven Executive, refer to General Information - Binary Synchronous
Communications, GA27-3004.

Application programs that run under BSCAM consist of special Event Driven Language BSC
instructions. These programs send and receive data from one or more stations. In addition,
several BSC utilities check the way BSCAM is working by monitoring and simulating its
operations.

This chapter tells how to:

« Plan to use BSCAM.

« Write application programs with the special set of BSC instructions.

¢ Use the BSC utilities to check for potential problems.

« Use the X.21 digital communications capabilities.

Terms Used in this Chapter

Below are some definitions of terms used throughout this chapter.
The computers that are communicating are called stations.
The data records sent and received are called messages.
The station sending messages (writing) is called the sending or transmitting station.

The station receiving messages (reading) is called the receiving station.

Planning for BSCAM Operations

Before you can begin to use BSCAM, your system must have certain hardware and software
support. The combination of support on your system determines the type of programs you
should write and the way you can use BSCAM.

CO-6 5C34-0443

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

Planning for BSCAM Operations (continued)

The sections that follow will help you to:

 Select the hardware and software you need to use BSCAM and define the support during
system generation.

e Determine what hardware and software your system already supports, if system generation
has already been done.

e Decide which of the BSCAM features you will use.

Using Data Links

BSCAM supports transmission over switched and nonswitched (leased) data links. The data
link is the line provided by a common carrier over which data is transmitted from your station to
another station. BSCAM supports half-duplex transmission only.

Only remote connections between stations need a data link. (Local connections use
direct-connect.) If you plan to communicate with a remote station, make sure your system is
linked to either a switched or a nonswitched line.

Selecting BSC Line Connection Types

One of the most important things you must decide about a BSC line is the type of station it will
function as. BSCAM supports connection of multiple BSC lines to a Series/1. Think of each
BSC line as a separate physical entity, functioning independently of the others. As far as each
BSC line knows, it has an exclusive connection with the Series/1. One BSC line may function
as a point-to-point station communicating over a switched data link. Another line (installed on
the same processor) may function as a multipoint tributary on a leased link. Still another may
be a multipoint control station.

Every BSC line that you have attached to your Series/1 can form one of several types of
connection with the processor. Select the type of connection you want to establish for each
BSC line on Series/1. Then refer to “Defining a BSC Line to the Supervisor” on page CO-12
for details on defining your selections to the system. If system generation has already been
done, use the $IOTEST utility LS (list supervisor configuration) command to determine the
assignment of each BSC line.

The type of connection each BSC line forms with your Series/1 affects the way you program
that line to send and receive data.

Point-to-Point Connection

If a BSC line forms a point-to-point connection with your Series/ 1, it will handle
communications between your processor and one other station. The connection between the
two stations can be either local or remote. In remote connections, the data link can be either
switched or leased. Local connections use a direct connection. In a point-to-point connection,
each station contends with equal priority for the right to send data across the line.

Chapter 1. Binary Synchronous Communications Access Method (BSCAM) CO-7

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

Binary Synchronous Communications Access Method

(BSCAM)

Planning for BSCAM Operations (continued)

Multipoint Connection

If a BSC line forms a multipoint connection with your Series/1, it handles communications
between your processor and one or more other stations. You can designate your Series/1 to act
either as the control station or as a tributary station in the multipoint connection.

A control station is in charge of which of the multiple stations has the right to transmit at any
given time. It governs the other stations by polling (asking the tributary if it is ready to send
data) and selecting (asking the tributary if it is ready to receive data).

The tributary has direct communication only with the control station, and then only when the
control station polls or selects it. To send data to another tributary that is under the same
control station, the first tributary sends the data directly to the control station, which in turn
sends it to the specified tributary.

For more information on polling and selecting, refer to the section “Sending Poll/Select
Sequences” on page CO-17.

Meeting Hardware Requirements

Before you can actually use BSCAM to communicate with other stations, you must ensure that
the following hardware is installed on your Series/1:

« BSC lines are attached with control provided for each of them.

¢« Modem or modem eliminator is attached to the BSC iine(s) (it applicabie).

The attachment (physical connection) and coiitrol (interface with BSCAM) of a BSC line can
be provided by one of several Series/1 communications features. These feaiures are actually

hardware cards instalied in the processor or 1/0O expansion unit of your Series/1. Some types of
cards attach a single BSC line to the Series/ 1, while other cards can attach muitiple lines.

Determining Existing Hardware Configuration and BSC Line Addresses

CO-8

To determine the hardware address and feature type of each communications card already
instalied on your system, load the $IOTEST utility, and issue the LD (List Devices) command.
To determine the address of each BSC line defined to the supervisor, again use ${OTEST and
issue the LS (List Supervisor Configuration) command.

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

Planning for BSCAM Operations (continued)

Series/1 Communications Features

Here is a list of the communications features that control and attach BSC line to the Series/1.
For details on the functional characteristics and installation of these features, refer to the IBM
Series/1 Communications Features Description, GA34-0028.

IBM 2074 BSC Single-Line Control, Medium Speed: This communications feature card
makes the physical connection of one BSC line to the Series/1. It also provides control of the
line. You can use this feature for BSC lines that you will use to form either point-to-point or
multipoint connections. The point-to-point connections can be either local or remote; for
remote operation, the data link can be either switched or leased. Multipoint connections must
use a leased data link.

The single-line control feature requires an electrical interface compatible with RS-232C (CCITT
V.34). Its maximum data transfer rate is 9600 bits per second. In addition, it supports the
following calling features: manual call, manual answer, and automatic answer (the last feature
applies to switched connections only). The single-line control allows IPL from another system
through use of its BSC line.

IBM 2075 BSC Single-Line Control, High Speed: This communications feature card
attaches and controls one BSC line. Its characteristics are similar to the medium-speed control
described above, but with the following differences:

» Itis for use in remote operations only, since it has no internal clocking and therefore cannot
be used in direct connections.

« It operates in point-to-point leased and multipoint connections.

« It requires a Western Electric 303 modem (or equivalent), or an electrical interface
compatible with CCITT V.35.

o Its maximum data transfer rate is 56K bits per second.

IBM 2080 Synchronous Communications Single-Line Control, High Speed: This
communications feature card attaches and controls one BSC line. It is required if you want
X.21 digital data communications capabilities for your Series/1. It has the following

characteristics:

» It operates in point-to-point connections only for BSC switched mode and point-to-point
and multipoint for BSC leased mode.

e It can be jumpered for switched or leased mode.
e It requires a CCITT V.35 (leased) or an X.21 electrical interface (switched or leased).

o Its maximum data transfer rate is 48K bits per second.

Chapter 1. Binary Synchronous Communications Access Method (BSCAM) CO-9

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

Binary Synchronous Communications Access Method
(BSCAM)

Planning for BSCAM Operations (continued)

IBM 2093/2094 BSC 8-Line Control and BSC 4-Line Adapter(s): These features,
used together, can attach and control up to 8 BSC lines. The 8-line control is for use with one
or two 4-line adapters (which provide only attachment of lines). The characteristics of these
features are similar to those of the BSC Single-Line Control.

IBM 1310 Multifunction Attachment: This feature can attach one BSC line to the
Series/1. The use of this feature requires special system definitions during system generation
for your Series/1. Refer to the section “Including BSCAM Support in the Supervisor” on page
CO-11 for details.

IBM RPQ D02349 Direct BSC Attachment: This feature controls the serial transfer of
data to and from remote terminals or systems using direct-connect cabling. It has the following
characteristics (for more information, refer to IBM Series/1 Direct Binary Synchronous
Communication Attachment RPQ D02349 Custom Feature, GA34-1577):

« Data transmission is serial-by-bit using BSC transmission method.

o Itis used as a primary or secondary station.

o Transparency is the standard.

It can be jumpered for internal clocking.

Its maximum data transfer rate is 38400 bits per second with IBM clocking and 56000 bits
per second with DTE-provided clocking to another system.

Special Considerations for Multipoint Tributary Stations

CO-10

SC34-0443

If you plan to use a BSC line as a multipoint tributary station, you must ensure that its feature
card is jumpered with DTR (data terminal ready) permanently enabled. This means that the
electrical interface or modem always leaves the line open to receiving data from its multipoint
control station.

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

Planning for BSCAM Operations (continued)

Special Considerations for Local (Direct Connect) Operation

If you are using a Multifunction Attachment card to attach a BSC line to your Series/ 1, and you
plan to use that line in a local (direct) connection, then you must use a modem eliminator, to act
as the electrical interface in the direct connection. The modem eliminator must meet the
electrical interface requirements of the feature cards to which it connects.

If you are using a single-line, medium speed control or the 8-line control with 4-line adapter,
then you do not need to use a modem eliminator. The direct connection is made between the
communicating lines. However, ensure that internal clocking is jumpered on the card(s) to
provide direct connection.

As stated previously, the 2075 single-line control, high speed feature card cannot be used for
direct connections.

Optional Hardware

The Communications Indicator Panel (model #2000) is an optional piece of hardware that is
useful in program debugging and hardware troubleshooting.

Refer to the section ‘“Monitoring BSC Lines with the Communications Indicator Panel” on
page CO-41 for information on using the panel.

including BSCAM Support in the Supervisor

You must ensure that your supervisor supports the BSC hardware and operation of the BSCAM
access method. This is done during system generation, when you must include a statement to
define each BSC line to the supervisor. You must also include the supervisor module that
supports BSCAM.

Note: For X.21, you must include the BSCX21 module.
The statement that defines BSC lines is called BSCLINE. The supervisor module that includes
BSCAM support is called BSCAM. For step-by step directions on performing system

generation, refer to the Installation and System Generation Guide.

If system generation is already complete, you can find out what the supervisor supports. Load
the $IOTEST utility and issue the LS (List Supervisor Configuration) command.

Chapter 1. Binary Synchronous Communications Access Method (BSCAM) CO-11

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

Binary Synchronous Communications Access Method
(BSCAM)

Planning for BSCAM Operations (continued)

Defining a BSC Line to the Supervisor

CO-12

SC34-0443

Each BSC line attached to the Series/1 needs a BSCLINE statement to define it to the
supervisor. Code the statements in the SEDXDEFS data set, which defines software support.

For each line, you must define the following:

« Hardware address (in hexadecimal) of the line

e Type of connection (point-to-point, multipoint) it is part of

« Number of retries before a timeout occurs on the line

« Communications feature that attaches the line.

Specifying BSC Line Type (TY PE= Operand of BSCLINE): The TYPE= operand of the
BSCLINE statement is where you tell the system what type of station the line functions as.

Here is a list of the available station types and how to code them in a BSCLINE statement.

Note: For a complete mapping of connection types for X.21, see “Using X.21 Switched
Network Support” on page CO-44.

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

Planning for BSCAM Operations (continued)

Type Connection What to code

PT point-to-point BSCLINE TYPE=PT
local
remote (I d)

SM point-to-point BSCLINE TYPE=SM
remote (switched)
manual call

SA point-to-point BSCLINE TYPE=SA

remote (switched)
automatic answer

MC multipoint BSCLINE TYPE=MC
control station
remote (switched)

MT multipoint BSCLINE TYPE=MT
tributary station
remote (switched)

For X.21 only

AC point-to-point BSCLINE TYPE=AC
switched
auto call

DC point-to-point BSCLINE TYPE=DC
switched
direct call

Figure 1. Specifying BSCLINE TYPE= operand

When a BSC line is attached with a Multifunction Adapter (MFA), you must code the
parameter MFA=YES in the BSCLINE statement for the line. In addition, you must code an
ADAPTER statement, specifying the address of the line in the ADDRESS= parameter.
Important: the address specified in the BSCLINE and ADAPTER statements must be identical.
Refer to the Installation and System Generation Guide for details on the BSCLINE and
ADAPTER statements.

When a BSC line acts as a Multipoint Tributary Station, you must specify the poll/select
addresses (up to 4) that the line should respond to during polling/selection by its control station.

Chapter 1. Binary Synchronous Communications Access Method (BSCAM) CO-12.1

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

Binary Synchronous Communications Access Method

(BSCAM)

Planning for BSCAM Operations (continued)

Defining BSCAM Supervisor Module Support

You must tell the supervisor to support BSCAM operations. During system generation, edit the
data set called SLNKCNTL, which defines software support to the supervisor, to include the
BSCAM module.

Note: For X.21, you must include the BSCX21 module.

Refer to the Installation and System Generation Guide for details on defining BSCAM software
support.

Selecting Type of Data to Transmit

You can transmit data in several forms during BSCAM operations. The type of data affects the
way you write programs to send it.

Standard Data (Nontransparent)

Transparent Data

CO-12.2

When BSCAM transmits nontransparent data, the receiving station interprets the bits according
to the EBCDIC code. If the data contains bit combinations that represent BSC control
characters, the receiving station will recognize and act on the meaning of the characters.
Nontransparent data is commonly used to transmit text. You must be sure that the data you
wish to send does not contain bits that look like BSC control characters. If the data does
contain control characters, the receiving station will not receive the transmission correctly.

Transparency allows you to transmit data with bit combinations that look like BSC control
characters, without the receiving station interpreting them. It allows you to send raw binary
data regardless of what the data looks like. It also allows you to store control character
sequences in a buffer at the receiving station.

The data-link-escape (DLE) is the control character used to transmit transparent data. The
sequence DLE STX tells the station that is going to receive transparent data, and to ignore any
control characters in the data. The sequence DLE ETX or DLE ETB signals the end of a
transmission of transparent data, and tells the station to begin recognizing control characters
again.

While receiving transparent data, a station will only recognize control character sequences
preceded by the DLE.

SC34-0443

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

Planning for BSCAM Operations (continued)

Sending Transparent Data in Blocks

You may want to break up a long transmission of transparent data into blocks and send each
separately. Each block of data is checked for transmission errors, and only those blocks not
properly received must be sent again. This is more efficient than sending all the data in one very
long transmission. In that case, if one error occurred, then the entire body of data would have
to be retransmitted, wasting time and tying up resources.

Selecting Mode of Transmission

Transmissions are possible in two different modes under BSCAM.

Standard Transmission Mode

With standard transmission under BSCAM, acknowledgements and responses between stations
consist of predefined BSC control characters which are not stored at the receiving station.

Limited Conversational Response Transmission Mode

Under BSCAM, you can transmit control characters or text data in response to a message by
using limited conversational mode of transmission. You can send a conversational response only
as a positive acknowledgement to a complete message (one that ended with ETX or DLE ETX).
You cannot send conversational replies when receiving block messages (ending with DLE ETB
or ETB).

You can begin your conversational reply with either SOH or STX, which the other station
interprets as a positive acknowledgement to its last transmission. You can also send transparent
data (beginning with DLE STX) as a conversational response. However, after you send one
transparent conversational response, the next response you send cannot be transparent as well.
Conversational responses are stored in the input buffer of the receiving station. BSCAM checks
buffer contents and reports any transmission errors that the response may indicate. The first
station can send its next message only after it gets the proper conversational response.

Chapter 1. Binary Synchronous Communications Access Method (BSCAM) CO-12.3

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

Binary Synchronous Communications Access Method
(BSCAM)

Planning for BSCAM Operations (continued)

This page intentionally left blank

CO-12.4 SC34-0443

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

Planning for BSCAM Operations (continued)

Programming for BSCAM Applications

To perform BSCAM communications between your Series/1 and any station(s) connected to it,
you write application programs using a set of Event Driven Language (EDL) BSC instructions.
Listed below are the BSC instructions and their basic uses.

Refer to the Language Reference for details on syntax and operands for each of the BSC

instructions.

Instruction Function Comments

BSCCLOSE Frees a BSC line for use by other Code at the end of each task or
tasks program

BSCIOCB Specifies BSC line address and A nonexecutable instruction, referred
buffers for all BSC operations to in every other BSC instruction

BSCOPEN Prepares a BSC line for use by a Code at the beginning of each
task program or task

BSCREAD Reads data from a BSC line. Code to receive data from another
Consists of several variations, station
called “‘types,”’ each used to read
data in a different way.

BSCWRITE Writes data to a BSC line. Code to initiate data transfer to
Consists of several variations, another station
called “‘types,”” each used to write
data in a different way.

Figure 2. Event Driven Language BSC instructions

Each instruction requires certain BSC control character sequences to be transmitted between
stations. The sections that follow, which discuss the use of the BSC instructions, also contain
information on the control characters associated with each instruction.

Basic Programming Functions for BSCAM

The two basic BSCAM functions are:
« Write operations to send data to another station

« Read operations to receive data from another station.

Chapter 1. Binary Synchronous Communications Access Method (BSCAM) CO-13

Binary Synchronous Communications Access Method
(BSCAM)

Programming for BSCAM Applications (continued)

In addition, your program must acquire the use of a BSC line and must provide buffers and
include other control information.

This section shows how to use the BSC instructions to perform BSCAM functions.

Acquiring Use of a BSC Line

You must gain the exclusive use of a BSC line before beginning a read or write operation, and
release it when the operation is over. The BSCOPEN instruction gets the line, and the
BSCCLOSE instruction gives up the line. Both instructions require the label of the BSCIOCB
instruction associated with the particular operation. The BSCIOCB instruction is discussed in
the next section.

OPEN BSCOPEN BSCIOCB, ERROR=END
CLOSE BSCCLOSE BSCIOCB, ERROR=END

Figure 3. Example of coding BSCOPEN and BSCCLOSE instructions

Coding Control Block for Read and Write Operations

BSCIOCB provides control information used by the other BSC instructions to perform read and
write operations. Each BSC instruction must refer to the label of a BSCIOCB instruction.

When you code BSCIOCB, specify the following:

o BSC line address to be used throughout the operation

e Address and length of any buffer(s) to be used

« Polling or selection sequence to be used by a control station.
When you code BSCIOCB, you need to know:

« BSC line type (control, tributary, point-to point) in use

« Write type you are using (determines buffer requirements)

« Read type you are using (determines buffer requirements)

« Length of records (messages) to be sent or received

« Tributary station device type (determines poll/select sequence used by control station).
Consult the tributary device description manual for correct poll and select sequences.

CO-14 SC34-0443

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

Programming for BSCAM Applications (continued)

Below is an example of a BSCIOCB instruction that specifies line 19, and one buffer 80 bytes in
length.

IOCB BSCIOCB 19,BUFFER, 80

Figure 4. Example of coding BSCIOCB instruction
Code the BSCIOCB instruction outside the executable area of your programs.

Note: For an X.21 example, see ‘“Using X.21 Switched Network Support” on page CO-44.
Specifying Buffers

The number of buffers required during a BSCAM operation depends on the read or write type.

Most write types need at least one buffer. However, the conversational writes need two buffers,
and the types D, E, EX, and N, do not need any buffers at all.

Write type Number of Write type

(code) buffers (name)

C 1 Continue

cv 2 Continue Conversational

CVvX 2 Continue Conversational Transparent
CX 1 Continue, Transparent

CXB 1 Continue Transparent Block

D 0 Delay

E 0 End

EX 0 End Transparent

| 1 Initial

v 2 Initial Conversational

VX 2 Initial Conversational Transparent
IX 1 Initial Transparent

IXB 1 Initial Transparent Block

N 0 NAK

Q 1 Inquiry

U 1 User

UXx 2 User Transparent

Figure 5. Buffers required for write operations

Most read types need only one buffer. However, the types D and Q do not require any buffers.

Chapter 1. Binary Synchronous Communications Access Method (BSCAM) CO-15

Binary Synchronous Communications Access Method
(BSCAM)

Programming for BSCAM Applications (continued)

Sending Data

Read type Number of Read type
(code) buffers (name)

Continue
Delay
End
Initial
Poll
Inquiry
Repeat
User

CITOU—mMmQOO
_ ek O e e = O -

Figure 6. Buffers required for read operations

Under BSCAM, the instruction that sends data is BSCWRITE. Control character sequences are
generated when a BSCWRITE instruction executes, and certain acknowledgements are
exchanged between the sending and receiving stations. You must specify which type of write
operation you need to perform, according to the situation. These write types, and the reasons
for using each, are covered in the sections that follow.

In your program to send data, you will:

o Define line address and buffers (BSCIOCB).

e Acquire the BSC line for use by your program (BSCOPEN).

¢ Transmit data with one or more BSCWRITE instructions (one instruction for each
message).

« Give up the use of the BSC line (BSCCLOSE).

Selecting BSCWRITE Types

CO-16

SC34-0443

There are several different types of write operation, each used to transmit data in a different
form or situation, and each coded a different way with the BSCWRITE instruction. The factors
that determine which type to use are:

o Type of data (transparent, nontransparent)

e Mode of transmission (standard, conversational)

e Order of transmission of messages

« Special conditions that occur during transmission.

Programming for BSCAM Applications (continued)

The sections that follow tell how and when to code the various types of BSCWRITE instruction.

Sending the First Message

Code an initial write instruction to send the first message in a transmission. Different types of
initial write instructions exist for each of the modes of transmission, for each of the data types,
and for combinations of the two.

In the following table, find the type of data you are sending and the mode of transmission you’re
using. The table will tell you which type of initial write instruction to code, and how to code it.
Each write type consists of BSCWRITE followed by a suffix.

Data Transmission Write What to code

Type Mode Type

Standard Standard Initial BSCWRITE |

Standard Conversational Initial Conversational BSCWRITE IV

Transparent Standard Initial Transparent BSCWRITE 1X

Transparent Conversational Initial Conversational BSCWRITE IVX
Transparent Transparent

Transparent Block Standard Initial Transparent Block BSCWRITE IXB

Figure 7. Initial write types

Sending Poll/Select Sequences

If your station is acting as the control station on a multipoint line, then it must poll and select its
tributaries. To send each poll/select sequence, code any initial write instruction. The
poll/select sequence consists of the following characters:

EOT (poll or selection address) ENQ--------- >
You must place the ENQ and the poll or selection address in your output buffer, as specified in

your BSCICCB statement. For more information on the poll/select sequence, refer to General
Information - Binary Synchronous Communications.

Control Characters Associated with Initial Write Instructions

When an initial write instruction executes, certain BSC control characters must go across the line
to the receiving station. The tables that follow show the flow of characters that must
accompany each initial write instruction. The access method generates the ENQ and ACK
sequences, but you must supply all other control characters in your output buffer.

Chapter 1. Binary Synchronous Communications Access Method (BSCAM) CO-17

Binary Synchronous Communications Access Method
(BSCAM)

Programming for BSCAM Applications (continued)

Instruction Sending Station Control Character Flow
Type of Connection Sending Receiving
BSCWRITE | point-to-point ENQ----===nuuu- >
L S — ACK
ETX (Text) STX--->
<----(Response character)
BSCWRITE | multipoint EQOT-=-=====ue- >
control station ENQ (Address)--~=-=--- >
Commmmmmeeo ACK
ETX (Text) STX---~-- >
<-=-=- (Response character)
BSCWRITE | multipoint ETX (Text) STX----- >
tributary <mmmm- (Response character)
Figure 8. Control character flow for initial write instructions
Instruction Sending Station Control Character Flow
Type of Connection Sending Receiving
BSCWRITE IV point-to-point ENQ---------omuu- >
D S ACK
ETX (Text) STX----- >
<----(Response Text)
BSCWRITE IV multipoint EOT--=-ommeeao >
control station ENQ (Address)----- >
Commmmmmmm e ACK
ETX (Text) STX---->
<—=---- (Response Text)
BSCWRITE IV multipoint ETX (Text) STX----- >
tributary <emmmm (Response Text)

Figure 9. Control character flow for initial conversational write instructions

CO-18 SC34-0443

Programming for BSCAM Applications (continued)

Instruction Sending Station Control Character Flow
Type of Connection Sending Receiving
BSCWRITE IX point-to-point ENQ-----------~ >
e et ACK
DLE ETX (Text) DLE STX--~-- >
<—=--= (Response Character)
BSCWRITE IX multipoint EOT--=----==---- >
control station ENQ (Address)------ >
Cmmmmmmmm - ACK
DLE ETX (Text) DLE STX----- >
<—mm-- (Response Character)
BSCWRITE IX multipoint DLE ETX (Text) DLE STX----- >
tributary Cmmmmm (Response Character)

Figure 10. Control character flow for initial transparent write instructions

Instruction Sending Station Control Character Flow
Type of Connection Sending Receiving
BSCWRITE IXB point-to-point ENQ------------ >
Koo mmm e ACK
DLE ETB (Text) DLE STX----- >
<----(Response Character)
BSCWRITE IXB multipoint EOT-----mmmeuen >
control station ENQ {Address)----~ >
Cmmmmmmmeeem ACK
DLE ETB (Text) DLE STX----- >
<e=oe- (Response Character)
BSCWRITE IXB multipoint DLE ETB (Text) DLE STX---~-- >
tributary Koo (Response Character)

Figure 11. Control character flow for initial transparent block write instructions

Instruction Sending Station Control Character Fiow
Type of Connection Sending Receiving
BSCWRITE IVX point-to-point ENQ---mmmmmmmmm >
Cmmmmmmm e ACK
DLE ETX (Text) DLE STX---~- >
<mmmm (Response Text)
BSCWRITE IVX multipoint EQT--m-mmmmmmmm >
control station ENQ (Address)----- >
Cmmmmcmmmmeem ACK
DLE ETX (Text) DLE STX----~ >
<----(Response Text)
BSCWRITE IVX multipoint DLE ETX (Text) DLE STX----~ >
tributary <mmmmm (Response Text)

Figure 12. Control character flow for initial conversational transparent write instructions

Chapter 1. Binary Synchronous Communications Access Method (BSCAM) CO-19

Binary Synchronous Communications Access Method
(BSCAM)

Programming for BSCAM Applications (continued)

Sending Subsequent Messages

Code a continue write to send the second message and any further messages in a transmission.
Code a continue write only after coding an initial write. Also, always make sure that the
continue write type matches the initial write type (standard, conversational, transparent,
transparent block, or conversational-transparent type). Refer to the table that follows to see
which continue write type to code.

Data Transmission Write What to Code

Type Mode Type

Standard Standard Continue BSCWRITE C

Standard Conversational Continue Conversational BSCWRITE CV

Transparent Standard Continue Transparent BSCWRITE CX

Transparent Conversational Continue Conversational BSCWRITE CVX
Transparent

Transparent Block Standard Continue Transparent Block BSCWRITE CXB

Figure 13. Continue write types

Control Characters Associated with Continue Write Instructions

When a continue write instruction executes, certain BSC control characters must be sent to the
receiving station. The tables that follow show the control character flow for each continue write

type.
Instruction Sending Station Control Character Flow
Type of Connection Sending Receiving

BSCWRITE C all types ETX (message 1+n text) STX--->

<=---- Response character
BSCWRITE CV all types ETX (message 1+n text) STX--->

<mmmew- Response Text
BSCWRITE CX all types DLE ETX (message 1+n text) DLE STX--->

<mwmem Response character
BSCWRITE CXB all types DLE ETB (Message 1+n Text) DLE STX--->

Cmmmm Response Character
BSCWRITE CVX all types DLE ETX (Message 1+n text) DLE STX--->

Cmmmm- Response Text

Figure 14. Control character flow for continue write instructions

CO-20 SC34-0443

Programming for BSCAM Applications (continued)

Coding Special Write Types

Besides sending messages, you may need to control data transmissions in special ways during a
write operation. The write types listed below cause BSCAM to perform specific functions. You
will need to determine where and when these functions are useful in your program.

Write What to Code Explanation
Type
Delay BSCWRITE D Delays transmission of next

message. You can code multiple
delays before transmission resumes.

Inquiry BSCWRITE Q Requests retransmission of response
(text or acknowledgement sequence)
to a previously sent message.

NAK BSCWRITE N Transmits the Negative
Acknowledgement (NAK) character.
A tributary can write NAK if not
ready during polling/selection

User BSCWRITE U Transmits a character stream.

User Transparent BSCWRITE UX Transmits character stream in
transparent mode.

Figure 15. Special write types

Delaying Transmission

You can inform the receiving station that transmission of the next message will be delayed with
a delay write instruction. You can code multiple delays before resuming transmission.

Sending a Negative Acknowledgement

When you need to transmit a negative acknowledgement (NAK) character, code a NAK write.
This instruction simply sends the NAK character. Tributary stations can send it to signify
"device not ready" in response to polling or selection by the control station.

Sending an ENQ Character

To send an ENQ character, code an inquiry write instruction. This instruction is most commonly
used to request retransmission of the receiving station’s response to the last message sent.

Sending a Data Stream

In special situations you may want to send a data stream, generating no control characters. This
is possible with either a user write (to send standard data) or a user transparent write (to send
transparent data).

Unlike other write instructions, the user and user transparent types do not generate the
transmission of any predefined control characters or require any acknowledgement from the

Chapter 1. Binary Synchronous Communications Access Method (BSCAM) CO-21

Binary Synchronous Communications Access Method
(BSCAM)

Programming for BSCAM Applications (continued)

receiving station. In addition, BSCAM does not perform error recovery for the data stream.
The data stream consists of the contents of the first buffer you specify in a BSCIOCB
instruction. With the user write instruction, once the contents of the buffer are sent, the
operation is over. However, with the user transparent write, you must signal the end of the
operation by transmitting the contents of a second buffer specified in BSCIOCB. The buffer
can contain any of these control character pairs: DLE ETX, DLE ETB, or DLE ENQ.

Control Characters Associated with Special Write Instructions

The following control characters are sent by the special write instructions.

Instruction Sending Station Control Character Flow
Type of Connection Sending Receiving
BSCWRITE D all types TTD---========-- >
Cmmmmmmm— e NAK
BSCWRITE Q all types ENQ--===m=— e >
<----Response Character or Text
BSCWRITE N all types NAK==-mmmmmm e >

Figure 16. Control character flow for special write type instructions

Ending a Write Operation

Once you have written all your data, you need to tell the other station not to expect any more.
Two write types signify the end of a write operation.

The end write instruction (BSCWRITE E) sends an EOT to end write operations in any form of
transmission.

The end transparent write instruction (BSCWRITE EX) sends a DLE EOT character to indicate
the end of a write operation. Use this instruction if you are transmitting over a switched line.

Programming Sequence for Write Operations

Now that you know about the various write types, you’ll want to be sure to code them in the
right order. You’ll also want to make sure that all the write types ''match up' in your program.

Refer to the chart below and find the mode of transmission you plan to use in your program. It
shows the basic sequence of write instructions to use.

CO-22 SC34-0443

Programming for BSCAM Applications (continued)

Receiving Data

Mode of Writing Writing Optional Ending
Transmission, First Next Write
Data Type Message Message Operation
Standard, Standard | C D,QU,N E or EX
data

Conversational v cv D,Q,U,N E or EX
Standard data

Standard, IX CX D,QU,N E or EX
Transparent data

Standard, IXB CXB D,QU,N E or EX
Transparent Block

data

Conversational, VX CVvX D,QU,N E or EX
Transparent data

Figure 17. Programming sequences for sending data

A read operation retrieves data from a BSC line. Each time another station sends data to your
Series/ 1, you must have a read operation programmed to receive it.

In your read program you will do the following:

e Define line address and buffers (BSCIOCB)

Prepare the BSC line for use by your program (BSCOPEN)

Receive data with one or more BSCREAD instructions (one instruction for each message)

« Give up the use of the BSC line (BSCCLOSE)

Selecting BSCREAD Types

Several different types of read operation are available. Each is associated with a different
BSCREAD instruction. Each type is used in certain situations, similar to the way the various
write types are used. However, with read types it doesn’t matter what mode of transmission you
are using. With read types, it is when you issue the instruction that is important. For example,
will the instruction read the first message? Or will it read the second message, or the last
message? These are some of the questions you must ask when preparing to code read types.

The chart on the next page lists all the read types, and how and when to code them. They are in
alphabetical order, not in the order you would code them in a program.

Chapter 1. Binary Synchronous Communications Access Method (BSCAM) CO-23

Binary Synchronous Communications Access Method
(BSCAM)

Programming for BSCAM Applications (continued)

Read What to Code Explanation
Type
Continue BSCREAD C Reads subsequent message after

first mssage read by Read Initial.
Issue until EOT received.

Delay BSCREAD D Acknowledges correct receipt of
message. Requests sender to wait
before sending the next message.
Multiple delays can be issued before
resuming transmission.

End BSCREAD E Requests sender to stop sending
messages. Acknowledges correct
receipt of last message.

Initial BSCREAD | Reads first message in a
transmission.
Poll BSCREAD P Reads the poll/select sequence sent

by a control station to a Series/1 that
is a tributary on a multipoint line.

Inquiry BSCREAD Q Reads the ENQ character

Repeat BSCREAD R Requests retransmission of the last
m ge sent.

User BSCREAD U Reads data stream. Does not perform

error recovery.

Figure 18. Read types

Receiving the First Message

Regardless of its mode of transmission, you will always read the first message with an initial read
instruction, BSCREAD I.

Receiving Subsequent Messages

To read subsequent messages, code a continue read, BSCREAD C. Issue continue read
instructions until the transmitting station sends the end-of-transmission (EOT) sequence.

CO-24 sC34-0443

Programming for BSCAM Applications (continued)

Delaying Transmission of Data

After successfully reading a message you may wish the sender to pause before sending the next
one. A delay read instruction, BSCREAD D, causes this pause. You can issue as many delays as
needed before telling the sender to resume transmission. (After the last delay, transmission
resumes automatically.)

Responding to a Poll/Select Sequence

If your Series/1 is a tributary station on a multipoint line, code a poll read (BSCREAD P)
instruction to receive polling and selection sequences from the control station. Once your
station is polled or selected, it should issue the appropriate read or write initial instruction.

Reading an ENQ Character

To read an ENQ from the sending station, code an inquiry read instruction, BSCREAD Q.

Requesting Repeat of a Message

If you are unsuccessful in reading the last message that was sent, you can ask the sender to
re-transmit it with a repeat read instruction, BSCREAD R.

Reading a Data Stream

The sender can transmit a data stream, which consists of the contents of a buffer. To receive
this data, code a user read instruction, BSCREAD U. BSCAM does not perform error recovery
during this type of read operation.

Ending the Read Operation

To ask the sender to stop sending messages, or to acknowledge correct receipt of the last
message, code an end read instruction, BSCREAD E .

Providing for Errors During BSCAM Operations
All the BSC instructions (except BSCIOCB, which is non-executable) allow you to code
routines to take over during error or end conditions. BSCOPEN and BSCCLOSE have the
ERROR= operand; BSCREAD and BSCWRITE have both ERROR= and END= operands. It
is useful to provide for error recovery in situations such as:
« Errors during opening or closing of the BSC line
« Errors in starting the program
o Errors in doing the initial read or write

o Errors in continuing reads or writes

o Errors in ending the read or write operation

Chapter 1. Binary Synchronous Communications Access Method (BSCAM) CO-25

Binary Synchronous Communications Access Method

(BSCAM)

Programming for BSCAM Applications (continued)

Common routines are to print error messages and BSC return codes in response to errors, or to
restart operations at the previous phase or at the beginning.

BSCAM Sample Programs

The following sample programs perform BSCAM operations. Note that both programs include
routines that take over when an error occurs during any phase of the operation.

WRITE Sample Program

This program performs a write operations in transparent mode of transmission. The program
does the following:

1.

2.

CO-26 SC34-0443

Communicates with the READ sample program
Opens the BSC line
Performs initial write of data

Performs calculations to build the next message to send

"Performs continue writes until all data is sent

Ends the write operation
Prints error messages and return codes if a failure occurs during any phase of the program

Closes the BSC line

BSCAM Sample Programs (continued)

WRITEX PROGRAM START
START BSCOPEN IOCB, ERROR=PRINTERR
RESTART BSCWRITE IX,IOCB

3 ok ok ok sk sk dk ke sk dk ek dk dk ko dk ok k ok kkdkkdkokokokkkkkokkkkkkkkkkkkkkkkkkkok

OPEN THE LINE AND BEGIN INITIAL TRANPARENT WRITE
ke sk sk sk sk 3K 3k ok ok ok o ok ok o ok ok ko ok ok ke ok sk sk sk sk sk ok ok ok ok ok ok ok ok ok sk Sk ok sk sk sk Sk ok ok ok ok sk sk ok ok ok

IF (WRITEX,EQ, 10) ,GOTO,RESTART
IF (WRITEX,NE,-1),GOTO, PRINTERR
DO 29, TIMES

ADD I,1

CONVTB MSG#, 1

sk sk ok ok ok ok ok ok ok sk ok ok ok ok ok sk 3k ok ok ok ok ok ok ok ok 3k ok ok ok ok ok ok 3k sk ok ok ok ok sk ok ok ok 3k ok ok ok ok ok ok ok ok K
CONTINUE THE WRITE OPERATION
e e ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ke ok ok ok ok ok ok ok ok sk ke ok ok ok ok ok ok ok ok Kk ok ok ok ok ok ok ok Kok ok kK
BSCWRITE CX,IOCB, ERROR=PRINTERR
ENDDO
ke ok ok ok ok ok 3k ok ok ok ok o ok ok ok ok ok ok ok ok ok ok ok ok sk ok sk ok ok ok ok o ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok kK
END THE WRITE OPERATION
ke ke ok ok ok ok 3k ok ok ok o ok ok ok 3k ok ok ok ok ok ok ok ok ok ok ok ok o o ok kK
BSCWRITE E, IOCB, ERROR=PRINTERR
GOTO ALLDONE
ak ok ok ok ok ok 3k 3k ok sk ok ok ok ok ok ok ok ok ok ok ok 3k ok ok ok ok ok ok ok ok ok ok ok ok ok 3k ok ok ok ok ok ok ok ok ok ok ok ok ok ok k

ERROR ROUTINE: PRINT ERROR MESSAGE AND BSC RETURN CODE
3k sk ok 3k ok K K K o o 3 3 ok ok ok o o o ok ok ok ok sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok 3k ok ok ok ok sk ok sk ok sk ok k ko

PRINTERR MOVE ERRCODE , WRITEX
PRINTEXT 'WRITE ERROR:',6SKIP=1
PRINTNUM ERRCODE

3% 3k 3k 3k 3%k 3k 3%k 3k 3%k 3k dk 3k 3%k 3k 3k 3k 3%k 3k %k sk 3k sk 3k 3k 3k 3k 3k 3k 3% 3k 5k 3%k % 3%k 3k 3k 3%k 3k %k %k % 3k %k 3% %k %k %k %k %k %k k k

CLOSE THE LINE
ke ke ok ok ok ok 3k ok o ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok Kok ok ok R Kk
ALLDONE BSCCLOSE IOCB

PROGSTOP
ke ok ok ok 3k 3k ok ok ok ok ok ok ok ok ok ok o ok sk 3k ok sk ok o o sk ok ok ok Kk ok
CONTROL INFORMATION: WRITE DATA TO BSC LINE 19

USE A BUFFER LENGTH OF 82 CHARACTERS
sk 3 e 3k ok K o ok ok ok ok sk sk sk ok ok ok ok sk sk sk sk ok ok sk ok ok 3 3 o o ok o 3 oK ok K K K 3k K 3 ok ok 3k ok ok ok ok 3k kK

I0CB BSCIOCB 19,BUFFER, 82
BUFFER DC X'1002'

DC CL74'TEST MESSAGE'
MSG# DC CL6' 1!
I DC F'1
ERRCODE DC F'O"

ENDPROG

END

READ Sample Program

This program reads the transparent data sent in the preceding WRITE program

does the following:

1.

Gains use of the system printer

2. Opens the BSC line

. The program

Chapter 1. Binary Synchronous Communications Access Method (BSCAM) CO-27

Binary Synchronous Communications Access Method
(BSCAM)

BSCAM Sample Programs (continued)

CO-28

SC34-0443

3.

4.

Performs initial read of data

Prints data on printer

Reads subsequent data and prints it

Prints error messages and return codes if failure occurs during any phase of the program
Ends the read operation

Closes the BSC line

BSCAM Sample Programs (continued)

READX PROGRAM START
START ENQT $SYSPRTR
BSCOPEN IOCB, ERROR=PRINTERR

3k 2k 3%k % 3% %k %k %k 3k %k %k %k % %k 5%k 3%k 3k 3k 5%k 3%k 3k 5k 3%k 3k %k 3k 3k %k %k 3%k 3k ok 5%k %k %k % 3k 5%k 3k 3%k %k 3 3 3%k %k %k % %k %k %k

OPEN THE LINE AND BEGIN INITIAL READ
3¢ 3k 3k ok ok 3K 3K K o K A ok ok ok ok ok ok ok o ok ok o o ok ok o ok ok o ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk sk ok K

RESTART BSCREAD I,I0CB
IF (READX,EQ, 10) ,GOTO, RESTART
IF (READX,NE,-1) ,GOTO, PRINTERR
PRINTIT MOVE MSG, INPUT+2, (80,BYTE)
PRINTEXT MSG, SKIP=1

ok ok ok ok s ok ok sk ok 3 ok 3k ok ok ok K ok oK o ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok o ok ok ok ok ok ko ok ok kK

CONTINUE THE READ OPERATION

ok ok ok ok ok 3k o ok ok ok ok ok ok ok ok ok 3k ok ok ok 3k ok ok ok ok o ok o ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok ok Kk
BSCREAD C,IOCB, END=ALLDONE, ERROR=PRINTERR
GOTO PRINTIT

s o ok ok ok ok ok ok ok ok ok ok s ok o oK 3 ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok kK KK ok ok kK

ERROR ROUTINE: PRINT ERROR MESSAGE AND BSC

RETURN CODE, HAVE SENDER REPEAT MESSAGE
s ke ok ok 3k sk ok sk ok ok ok ok sk ok ok ok ok ok ok sk ok o oK 3k ok ok ok ke ok ok ok ok ok ok ok ok ok ok sk ok ok ok koK ok ok Kk

PRINTERR MOVE RETCODE , READX
PRINTEXT ERRMSG, SKIP=1
PRINTNUM RETCODE
BSCREAD R, IOCB, ERROR=ALLDONE, END=ALLDONE
GOTO PRINTIT

ALLDONE DEQT
ke ok ke ko ok ok ok ok sk ok ok ok ok ok sk ok ok sk sk sk ok ok 3k ok sk 3 ok ok ok ok ok ok sk sk ok ok ok kR R kK K K K K K K K

CLOSE THE LINE
e ke ok ok 3k ok ok ok ok K 3K ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok kK ok oK ok ok ok ok ok K oKk ok ok ok ok ok Rk Kk
BSCCLOSE IOCB
PROGSTOP
okok kR okok ok ok ok kK kR R R Rk ok ok ok kR kol ok kR kR Rk kR Rk kR R KRR K K
CONTROL INFORMATION: READ FROM BSC LINE 29,

USE A BUFFER 83 CHARACTERS IN LENGTH
e ok 3k ok ok ok ok ok o ok ok ok sk ok o ok ok ok ok o ok ok ok o oK ok ok sk ok ok ok ok ok ok ok Kok ok ok ok Kok R ok Rk R K

IOCB BSCIOCB 29,INPUT, 83
INPUT DC cLs3' !
MSG TEXT LENGTH=80
ERRMSG TEXT 'READ ERROR:'
RETCODE DC F'0’
ENDPROG
END

interacting with BSCAM (Using BSC Utilities)

The BSCAM utilities ($BSCTRCE, $BSCUT1, $BSCUT?2) help you check out the way
BSCAM is working and point out any problems that may exist. This section shows what the
BSC utilities allow you to do, and what types of information you can gather about BSCAM
operations.

Chapter 1. Binary Synchronous Communications Access Method (BSCAM) CO-29

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

Binary Synchronous Communications Access Method
(BSCAM)

interacting with BSCAM (Using BSC Utilities) (continued)

Tracing 1/0 Activities on a BSC Line (Using $BSCTRCE)

The $BSCTRCE utility traces activity on the BSC line you specify. The trace information goes
into a trace file, which you must allocate before beginning the trace. (The data in the trace file

is unformatted. To format the data for a printout or to display it on a screen, use the $BSCUT1
utility.)

Since I/0O activity on a BSC line is controlled by an application program, you must have one of
your programs loaded and running at the same time you use $BSCTRCE. The program must be
the one controlling the line you specify to be traced.

$BSCTRCE writes trace file records at the completion of a BSC operation. Therefore, when
testing a conversational write, if you specify the same buffer address for both input and output,
the trace file does not show the data that was transmitted; it shows only the conversation
responses received.

Multiple BSC lines may be traced concurrently with multiple loads of $BSCTRCE using
different trace files. Each copy of $BSCTRCE must use a different trace data set. Each trace
data set name should reflect a unique line number.

When $BSCTRCE terminates, it displays the relative record number of the last trace record
written.

Allocating the Trace File Data Set

You must allocate the data set that will contain the trace information before using the
$BSCTRCE utility. It must be a “data” type data set. You can allocate the data set at any size
you wish. Use the $DISKUT1 utility to allocate the data set.

When the end of the output file is reached, it is reused from the beginning, since $BSCTRCE
displays the relative record number of the last trace record written upon termination. The trace
file can then be displayed or listed using the $BSCUT1 utility.

Invoking $BSCTRCE

CO-30

SC34-0443

You must load $BSCTRCE in the same partition as the application program that is controlling
the line you want to trace.

Note: If you want to use the $BSCTRCE utility with X.21, you must load the utility first.
Use the $L. command or option 8.1 of the session manager.
When loaded, $BSCTRCE prompts for the disk or diskette file in which to place the trace

output. $BSCTRCE then prompts for the line number to be traced. The trace action is
terminated by the attention command STOP.

Interacting with BSCAM (Using BSC Utilities) (continued)

> SL $BSCTRCE

LOADING $BSCTRCE 6P,11:03:22, LP=6500, PART=2
DS1(NAME ,VOLUME): TRACE9,MYVOL

ENTER LINE NUMBER (HEX): 9

> STOP

LAST TRACE RECORD EQUALS 19
$BSCTRCE ENDED AT 11:13:31

J

Specifying BSC Line to Trace

In response to the utility’s prompt, enter the number of the BSC line you want to trace. Make
sure it is the same line that the loaded application program is controlling.

Terminating the Trace

To end the trace at any point, press the attention key and enter STOP. The utility displays the
number of the last record it traced.

Tracing Multiple BSC Lines

You can perform traces on multiple lines at the same time. For each trace, do the following:
¢ Load the application program that controls the line.

+ Load $BSCTRCE in the same partition as the program.

« Specify the BSC line number.

« Direct each trace file to a different data set (the volumes can be the same).

Formatting Trace Files for Print or Display (Using $BSCUT1)

Once you have run $BSCTRCE and wish to see what is in the trace file, use the $BSCUT1
utility to format the file and send it to a printer or terminal. You can select the record for the
trace file to dump. You will be prompted, as necessary, for information required by the
functions of $BSCUT1.

Invoking $BSCUT1
$BSCUT1 is invoked using the $L. command or option 8.2 of the session manager.
$BSCUT1 Commands

To display the $BSCUT1 commands at your terminal, enter a question mark in response to the
prompting message COMMAND (?):.

Chapter 1. Binary Synchronous Communications Access Method (BSCAM) CO-31

Binary Synchronous Communications Access Method

(BSCAM)

Interacting with BSCAM (Using BSC Utilities) (continued)

> $L $BSCUTI
LOADING $BSCUT1 21P,00:04:21, LP= 9200, PART=1

COMMAND(?): ?

CV - CHANGE VOLUME

DP - PRINT TRACE FILE ON PRINTER

DU - DUMP TRACE FILE ON TERMINAL
(CA WILL CANCEL)

END PROGRAM

EN

\E?MMAND (7):) AJ}

After $BSCUT1 displays the commands, it prompts you with COMMAND (?):. Then you can
respond with the command of your choice (for example, CV).

Example: Figure 19 shows dumping records in a trace file to the terminal.

COMMAND (?): DU TRACE9
FIRST RECORD: 32

LAST RECORD: 33

DUMP OF TRACE FILE TRACE9 ON EDX002

*XXXX RECORD 32 ***** START OF CHAINED OPERATION

CC = 0002 |ISW = A009 STATUS = 98DA 0001 C080
RESULT: EXCEPTION - WRONG LENGTH RECORD (SHORT)

DCB = 8004 0000 0000 0000 0000 2B1C 0002 2AE4
OPERATION: CHAINED TRANSMIT

DATA LENGTH = 2

CO-32 SC34-0443

6
Q 1061)

Figure 19. Dumping trace file records

The following screen shows the display for the LAST RECORD selected in the previous
example, which was record number 33.

Interacting with BSCAM (Using BSC Utilities) (continued)

DCB

1
17
33
k9
65
81
97
113
129
145
161
177
193
209

Kkkkk

RECORD 33

Xkkx

* CONTINUATION OF CHAINED OPERATION

= 2008 0000 0000 0000 0000 0000 0200 96F6

OPERATION:

0227
Loko
E7C5
Lor7
D6C2
40C5
D640
4oD1
FUF5
D9C9
F3Fk
FOF1
D7D9
4BF3

DATA LENGTH =

6158
F4F2
C3EL4
1E27
Loko
E7C5
LoFy
D6C2
Locs
D640
Lop1
FO4o
c9D6
Flko

485

F1F6
FLko
E3C9
6158
F4F2
C3E4
1E27
Loko
E7C5
4OF5
D6C2
D6D5
Loko
D1D6

LBF5
D7D9
D5C7
F1F6
F340
E3C9
6158
F3FO0
C3EL
1E27
1D43
4opn7
FS1E
C240

F94B
F3FO
Lopk
LBF5
c8p8
D5C7
FIF6
FOLO
E3C9
6158
FLF8
D9C9
2761
LOF3

RECEIVE WITH TIMEOUT

F3F4
FI1F6
Lop7
F94B
FIF2
LoDk
LBF5
C9E2
D5C7
FIF6
4078
D5E3
5BF 1
F2F0

Lop1
F5F6
D9C9
F3Fh
FIF6
4op7
F9LB
FOF3
LOES5
LBF5
C7E2
D9F2
F64B
Locé

D6C2
Locs

../$16.59.34 JoB
424 PR301656 E

D64LO |XECUTING M PRIO

Lop1

7../$16.59.34 J

F5F6 |OB 423 HQ121656

D9C9

EXECUTING M PRI

F3F4 O 7../516.59.34

F1FL

JOB 300 1S0314

Lop7 |45 EXECUTING V P
F94B |RIO 5../$16.59.
D7C5 |34 JOB..48 #GSPE
4040]O10 ON PRINTR2

F5F9 |PRIO 5../$16.59

C7F6

.34 JOB 320 FG6

LAST 4 DA4D5 1E26

DUMP COMPLETE
ANOTHER AREA?

.

MN..

Figure 20. Dump of the LAST RECORD of trace file

Reading Trace File Records

Trace records can be up to 256 bytes long. They consists of several fields, as shown in

Figure 21
Field Size Explanation
(bytes)
CcC 2 Condition code
ISW 2 Interrupt status word
STATUS 6 Cycle status words: 3 words, 2 bytes
each
DCB 16 Device Control Block
LGTH 2 Length of data sent or received
DATA up to 224 Data in main storage.

Figure 21 (Part 1 of 2). Trace record fields

Chapter 1. Binary Synchronous Communications Access Method (BSCAM)

CO-33

Binary Synchronous Communications Access Method
(BSCAM)
Interacting with BSCAM (Using BSC Utilities) (continued)

Field Size Explanation
(bytes)
LAST4 4 Last four bytes of data if total data is

longer than 224 bytes

Figure 21 (Part 2 of 2). Trace record fields

Notes:

1. The CC, ISW, and STATUS fields are zero when the DCB has been chained from the
previous record’s DCB.

2. $BSCTRCE always reports an error on a chained DCB to the first DCB in a chain.
Refer to the IBM Series/1 Communications Features Description, GA34-0028 for descriptions of

the interrupt condition code, interrupt status word, cycle status words, and device control block.

Testing BSCAM Operations (Using $BSCUT2)
With the $BSCUT? utility you can test these BSCAM capabilities:

« Read and write operations
— standard transmission of transparent and standard data
— conversational transmission of transparent and standard data
« Polling and selection by control station on a multipoint line
« Response to polling and selection by tributary station on a multipoint line
The $BSCUT? utility prompts you for information such as:
« BSC line addresses
o Device addresses of communications feature cards
« Record length, also called buffer size, in bytes
o Number of records to be transmitted or received

The utility examines the information you supply in response to its prompts. If you supply
incorrect information, the utility cannot perform its test and issues an error message.

CO-34 SC34-0443

Interacting with BSCAM (Using BSC Utilities) (continued)

By examining the information you supply, $BSCUT?2 also checks the BSCLINE statements
included in the supervisor, and the customized jumper assignments in BSC hardware features.
You can use $BSCTRCE to trace the exercising activities of $BSCUT2. You can format and
print the records with $BSCUT1.

Hardware Considerations When Using $BSCUT2

You can use $BSCUT?2 to test BSCAM on just one Series/1 or between two Series/1’s. When
testing with just one Series/ 1, you must have two BSC lines and wrap a connection between
them. Assign one line to do the "'read" and the other to do the "write".

If you are running a test between two processors (one performing a read, the other a write
operation), load $BSCUT2 on both processors and enter one BSC line address at the "read"
processor and another BSC line address at the "write'' processor. If you specify an invalid
address for one of the processors, the test will fail.

Invoking $BSCUT2

$BSCUT?2 is invoked using the $L. command or option 8.3 of the session manager.

$BSCUT2 Commands

To display the $BSCUT2 commands at your terminal, enter a question mark in response to the
prompting message COMMAND (?):.

> SL $BSCUT2
LOADING $BSCUT2 76P,00:05:31, LP= 9200, PART=1

COMMAND (7): -

RWl ---- READ/WRITE - NONTRANSPARENT

RWIX --- READ/WRITE - TRANSPARENT

RWIXMP - READ/WRITE - MULTIDROP LINE TRANSPARENT

Rl -==—- READ - TRANSPARENT/NONTRANSPARENT
Wl --=--- WRITE - NONTRANSPARENT
WIX ---- WRITE - TRANSPARENT
EN --——-- END THE PROGRAM
CH —=-=~- CHANGE HARDCOPY DEVICE
RWIVX -- READ/WRITE - TRANSPARENT CONVERSATIONAL
RWIV -- READ/WRITE - NONTRANSPARENT CONVERSATIONAL ; ,
U J

After $BSCUT?2 displays the commands, it prompts you with COMMAND: (?):. Then you can
respond with the command of your choice (for example, RI).

Testing Read and Write Capability Simultaneously

With BSCAM you can test read and write operations at the same time. You can run the tests
between two processors, or between two lines on one processor. If you are using one processor,
make sure you specify separate lines, one to read and the other to write. The read/write tests
available are:

« Read/write of standard data, standard transmission: RWI command

Chapter 1. Binary Synchronous Communications Access Method (BSCAM) CO-35

Binary Synchronous Communications Access Method
(BSCAM)
Interacting with BSCAM (Using BSC Utilities) (continued)

« Read/write of standard data, conversational transmission: RWIV command
« Read/write of transparent data, standard transmission: RWIX command

« Read/write of transparent data, conversational transmission: RWIXV

For these read/write tests, the utility prompts for the following information:

READ ADDRESS and WRITE ADDRESS refer to the device address of the BSC hardware
feature. If the test is to be run between two processors (one to read and one to write), load
$BSCUT?2 on both processors and enter the correct address for read on one processor and the
correct address for write on the other processor. One of the addresses can be invalid and the
task for the invalid address on each processor will fail due to an undefined line. However, the
read/write task will function properly. This is true for all $BSCUT2 commands.

The RECL prompts refer to the buffer size to be used-and, therefore, the number of bytes
transferred in one transmission over the BSC line. The maximum buffer size permitted is 512
bytes. READ (RECL) should always be equal to or greater than WRITE (RECL) or errors will
occur.

NUMBER OF RECORDS determines the number of transmissions to be made before the test
ends.

The MONITOR function causes each task to report its progress to the terminal. If the monitor
function is enabled, messages such as TASK ENTERED and TASK EXITED are written to the

terminal.

Example: RWI command

COMMAND (7): Rwi

RW|I ---- READ/WRITE - NONTRANSPARENT
READ ADDRESS? 5a

WRITE ADDRESS? 5B

READ RECL? 8¢

WRITE RECL? 80

NUMBER OF RECORDS? 10

READ MONITOR? y

WRITE MONITOR? vy

CO-36 SC34-0443

Interacting with BSCAM (Using BSC Utilities) (continued)

Example: RWIV command

COMMAND (?7): RWIV

RWIV --- READ/WRITE - NONTRANSPARENT CONVERSAT!ONAL
READ ADDRESS? 5B

WRITE ADDRESS? 5A

BUFFER LENGTH? 80

NUMBER OF RECORDS? 5

READ MONITOR? Y

\!fITE MONITOR? Y

Example: RWIX command

COMMAND (?7): RWiX

RWIX --- READ/WRITE - TRANSPARENT
READ ADDRESS? 5A

WRITE ADDRESS? 58

READ RECL? 80

WRITE RECL? 80

NUMBER OF RECORDS? 10

READ MONITOR? Y

WRITE MONITOR? Y
\ D

Example: RWIVX command

COMMAND (?7): RWIVX

RWIVX -- READ/WRITE - TRANSPARENT CONVERSATIONAL
READ ADDRESS? 5A

WRITE ADDRESS? 5B

BUFFER LENGTH? 5

NUMBER OF RECORDS? 10

READ MONITOR? VY

WRITE MONITOR? Y

_ J

Testing Read and Write on a Multipoint Line (RWIXMP)
This command tests the polling/selection capabilities between stations and also reads and writes
transparent data. One BSC line acts as the control station, and one or more other stations act as
tributary stations.
When you issue the RWIXMP command, you must answer prompts for:
¢ Control station device address

« Number of tributaries

« Tributary station device address and tributary address

Chapter 1. Binary Synchronous Communications Access Method (BSCAM) CO-37

Binary Synchronous Communications Access Method
(BSCAM)

Interacting with BSCAM (Using BSC Utilities) (continued)

CO-38

SC34-0443

MONITOR? Y
_ J

« Loop count for the control station
« Buffer length and number of records to be exchanged

The control station device address refers to the address of the BSC hardware feature. The
tributary station address refers to the jumpered tributary address on each hardware feature card.
You must jumper the adapter in tributary mode for this test to function properly. Loop count
refers to number of times you want to send a block of messages.

To perform this test with $BSCUT2 running on two processors:

« Processor 1 uses a valid control station (MC) address and dummy tributary (MT) addresses.
It acts as the control station.

e Processor 2 uses a dummy control station address and valid tributary (MT) addresses. It
acts as the tributary station.

« Specify the same number of tributaries on both processors.
« Specify the same loop count on both processors.

Example: RWIXMP command

COMMAND (?): RWIXMP

RWIXMP - READ/WRITE - MULTIDROP LINE TRANSPARENT
MC DEVICE ADDRESS? 50

BUFFER LENGTH? 80

NUMBER OF RECORDS? 5

LOOP COUNT? 1

MONITOR? Y

NUMBER OF TRIBUTARIES? 1

PARAMETERS FOR TRIBUTARY? 1
MT DEVICE ADDRESS? 51

MT TRIBUTARY ADDRESS? 02
BUFFER LENGTH?

NUMBER OF RECORDS? 5

DEVICE ADDRESS for this command refers to the device address of the BSC hardware
feature. TRIBUTARY ADDRESS refers to the jumpered tributary address on each hardware
feature card. LOOP COUNT refers to the number of times $BSCUT2 sends the block of
messages that you have specified.

Note: The adapter must be jumpered in tributary mode for this test to function properly.

Interacting with BSCAM (Using BSC Utilities) (continued)

Testing Read Capability

The RI command tests the read capability of both standard and transparent data. You don’t
have to specify the number of records to read since it this test continues to read either type of
data until EOT is received. This test is useful for monitoring any BSC line sending data to the
processor. For example, the RI test can receive data from the $RJE2780 or $SRIE3780 utility
operating in the same Series/1 or in another Series/1.

Example: RI command

COMMAND (7): RI

RI -=--- READ - TRANSPARENT/NONTRANSPARENT
READ ADDRESS? 5A

READ RECL? 80

READ MONITOR? Y

Testing Write Capability

The WI command tests the write of nontransparent data. The utility prompts you for device
address, record length, and number of records.

The WIX command tests the write of transparent data. You specify device address, record
length, and number of records.

Example: WI command

COMMAND (7): WI

Wl —---- WRITE - NONTRANSPARENT
WRITE ADDRESS? 5B

WRITE RECL? 80

NUMBER OF RECORDS? 10

WRITE MONITOR? Y

COMMAND (?7): WiX

WIX ---- WRITE - TRANSPARENT
WRITE ADDRESS? 5B

WRITE RECL? 80

NUMBER OF RECORDS? 5

WRITE MONITOR? Y

Ending $BSCUT2 Utility (EN)
The EN command ends the $BSCUT? utility.

Chapter 1. Binary Synchronous Communications Access Method (BSCAM) CO-39

Binary Synchronous Communications Access Method
(BSCAM)

Interacting with BSCAM (Using BSC Utilities) (continued)

Example: EN command

COMMAND (7): EN
$BSCUT2 ENDED AT 01:14:40

Changing Hard Copy Device (CH)

The CH command reassigns the hard-copy device where the test messages and results are
printed or displayed. If the hard-copy device you enter is not defined to the system, output goes
to the terminal that loaded $BSCUT2.

Example: CH command

COMMAND (?): CH
NEW HARD-COPY DEVICE? S$SYSLOGA

Interpreting Test Results

The results of a test will print out or display at your output terminal. The utility issues a test
pattern message for every record it read or wrote in a test.

The first line of a test pattern message gives the task name, record number, and record length.

The second line shows the alphabet repeated to fill up the number of characters specified for
record length.

TASK READ ENTERED RECORD NUMBER= 1 RECORD LENGTH= 72
ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRST

The meanings of the task names are as follows:

« READ - read of standard or transparent data in standard mode
o RXVI1 - read of transparent data in conversational mode

+« RNV1 - read of standard data in conversational mode

e WRTN - write of standard data in standard mode

o WRIT - write of transparent data in standard mode

e WXVI1 - write of transparent data in conversational mode

CO-40 SC34-0443

Interacting with BSCAM (Using BSC Utilities) (continued)

« WNVI1 - write of standard data in conversational mode

¢ MTXI1 - read of transparent data by a tributary station

« MCX1 - write of transparent data by a control station

The output message in the previous example repeats for the number of records transmitted.

A test can fail if the utility detects an internal error in BSCAM. In that case, the utility issues a
BSC return code that points out the cause of the problem. Refer to the Messages and Codes for
explanations of the BSC return codes. However, a test can also fail because you supplied wrong
information to the utility. It could be that you gave invalid BSC line addresses or specified too
small a buffer for a read test. Retry the test and specify valid information to the utility.

Whenever an error is detected, either in BSCAM or in the information you entered, the test
ends, the utility is cancelled, and a program check message is issued to the logging terminal for
the system.

Monitoring BSC Lines with the Communications Indicator Panel

The communications indicator panel is an aid in program debugging and machine
troubleshooting during BSCAM operations. It lets you select a BSC line and the activity on
function to monitor.

Installing and Attaching the Communications Indicator Panel

The panel can be installed on the frame of full-width processors and I/O expansion units by
screwing it into the upper left part of the unit. It is possible to use the panel on half-width
processors because it is not necessary to install it on the unit itself.

To monitor a BSC line you must attach the panel connector to the card where the line is
assigned. Attach the panel connector to the appropriate set of pins on the card you want to
monitor. Be sure the card itself is properly seated and that the connector and pins fit together
snuggly. Do not force the connector onto the pins.

When using the panel on a 4-line adapter card, you must select which of the BSC lines to
monitor. Using the toggle switches labeled "LINE SELECT", set the last three bits of the line’s
device address, in binary form.

When using the panel on a single-line card, you do not need to set the line select switches. The
panel will monitor the line automatically.

Selecting Function to Monitor

The "DISPLAY/FUNCTION SELECT" switches allow you to select what activity or function
to monitor on the line. The settings are different for the single-line adapter and the 4-line

Chapter 1. Binary Synchronous Communications Access Method (BSCAM) CO-41

Binary Synchronous Communications Access Method
(BSCAM)

Interacting with BSCAM (Using BSC Utilities) (continued)

adapter. The following is an overview of the functions and activities you can monitor with the
panel.

« DCB control word

« DCB chain address

« DCB byte count

« DCB data address

« Storage data register

o Interrupt condition code

« Interrupt status byte

o Cycle-steal status word

e Cyclic redundancy check character
« Modem or modem eliminator states
o Jumper assignments

« Multipoint station address

» Control character transmission

« Errors in block checking

The information supplied with the communications indicator panel can help you isolate problems
or confirm proper functioning of BSCAM and its associated hardware.

CO-42 sSC34-0443

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

Interacting with BSCAM (Using BSC Utilities) (continued)

Example of Using the Communications Indicator Panel

Figure 22 shows the communications indicator panel. Assume that it is being used to test one of
the lines on a 4-line adapter. The “line select” switches are set at “111,” indicating the last
three digits, in binary form, of the line address being tested. The ““display/function select”
switches are set at “10111,” which causes the panel to monitor when the line goes into select or
control mode, and when VRC or BCC errors occur on the line. (For detailed information on
the exact switch settings to test both single and 4-line cards, refer to the IBM Series/ 1
Communications Features Description, GA34-0028. For X.21 display/function select switch
settings, refer to the IBM Series/1 Synchronous Communications Single-Line Control Attachment
Feature, GA34-0241.)

00000000,
VOOVOOOY
Mo - TN

Figure 22. Communications indicator panel

Chapter 1. Binary Synchronous Communications Access Method (BSCAM) CO-43

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

Binary Synchronous Communications Access Method
(BSCAM)

Using X.21 Switched Network Support

The X.21 circuit switched network support is the basis for the BSC link with the digital Public
Data Network used by many countries outside the United States. The information in the
preceeding sections is still valid for the X.21 network; the exceptions are noted in this section.

For X.21 to function on your Series/1, you must:

o Jumper the IBM 2080 synchronous communications single-line control, high speed feature
card for switched operation.

« Perform system generation for X.21 circuit switched support.
— Define the connection type you want.

o Edit the $$X21DS data set on your IPL volume and build a connection record.
— Know the network information codes for your country.

e Convert BSC program for X.21.

» Activate $LOG for tracking X.21 errors and call progress signals.

Note: For general hardware information about IBM implementation of X.21, refer to IBM
Implementation of X.21 Interface General Information Manual, GA27-3287.

Attaching and Jumpering the 2080 Card

You must jumper the 2080 card for switched operation if you want X.21 switched network
support capabilities, and you must jumper BSC if you want to use BSC.

For details on the functional characteristics and installation of this card, refer to IBM Series/ 1
Synchronous Communication Single-Line Control Attachment Feature Description, GA34-0241, or
the Maintenance Logic Diagrams and the Customer Site Preparation Manual, GA34-0050.

System Generation for X.21 Support

During system generation, you must tell the supervisor to support X.21 by defining the
BSCLINE definition statement and connection type, and by including the BSCX21 module.
This is valid for EDX version 4.1 only. (Refer to Installation and System Generation Guide for
sysgen information.)

CO-44 SC34-0443

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

Using X.21 Switched Network Support (continued)

Determining the Connection Type You Need

The following figure shows the four connection types defined for BSC X.21 circuit switched
support, their connection method, and their protocol after connection.

BSC connection type X.21 BSC protocol

supplied by user method after connection
Switched auto (SA) Auto answer Pt-to-pt switched
Switched manual (SM) Auto call Pt-to-pt switched
Auto call (AC) Auto call Pt-to-pt switched
Direct call (DC) Direct call Pt-to-pt switched

Figure 22.1. Mapping procedures for BSC X.21 circuit switched support

Use the connection type when you code the TYPE= operand of the BSCLINE statement. You
must code this parameter because there is no default for TYPE= with X.21 circuit switched
support. Code this operand at system generation time.

The $$X21DS Connection Record Data Set

You have an IBM-supplied one-record data set allocated on your IPL volume with the reserved
name $$X21DS. It contains no information. If you are using TYPE=DC, you can edit this data
set to create your own connection records. With TYPE=AC or SM, you can either create your
own connection records, or you can create and use the default record named X21RECyy, where
“yy” is the hexidecimal address of your attachment card. If you are specifying TYPE=SA (auto
answer), the system requires no connection record, but don’t delete the $$X21DS data set or
X.21 will fail.

Chapter 1. Binary Synchronous Communications Access Method (BSCAM) CO-44.1

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

Binary Synchronous Communications Access Method

(BSCAM)

Using X.21 Switched Network Support (continued)

Building a Connection Record

You can build as many connection records as you need. To format a connection record, use the
$FSEDIT utility or option 1 of the session manager. (For information on the $FSEDIT utility
and the session manager, refer to the Operator Commands and Utilities Reference.)

Every connection record that you build MUST begin in column 1. Figure 22.2 shows the format
for each connection record, followed by an explanation of each field.

Columns:
1 10 72
Name Retry count) Delay value) Network information field
1—8 characters 0—3 characters 0—b5 characters 0—61 characters

Figure 22.2. Connection Record Format Fields

CO-44.2 SC34-0443

Name - a1 to 8 alphanumeric character name. The system uses this record name to
identify the connection record it should use for a particular request. If you are going to use
the default record with auto call (AC or SM) or direct call (DC), one of your record names
must be X21RECyy (where yy is the hex address of the 2080 card).

Retry Count - decimal number from 0 to 255 to indicate the maximum number of times the
system should retry this same request. This field MUST begin in column 10. Use a comma to
separate this field from the delay value field. If you use a comma by itself, the number of
retries defaults to 1.

Delay Value - decimal number from 0 to 65535 to indicate (in milliseconds) the time
between the receipt of an error status from a call and the time when the network should
reissue that call. Use a comma to separate this field from the network information field. If
you use a comma by itself, the delay time defaults to 0 milliseconds.

Network Information Field - up to 61 characters for a total record length of 72. This field
contains your facility requests and the address selections the network should use for a call
request. All information in this field must conform to the requirements of your network,
including all special characters. (Refer to the network information technical report for your
country to find this information.) If you have specified DC (direct call), the network will
not use this field, but it will use the name, retry, and delay fields. Neither the hardware nor
the software verifies that the data in the network information field is valid.

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

Using X.21 Switched Network Support (continued)

The following example shows a sample connection record data set. The fourth sample record,
X21RECOA, illustrates the default record. Its retry count is 2 and its delay value is 1. You have
to fill in the network information field with valid data for your country. The last sample record,
GEORGE, is an example of a connection record for DC (direct call); no network information is
needed for DC.

Example: A connection record data set.

CONNREC1 255,65000,NETWORK INFORMATION GOES INTO THIS FIELD
CONNREC2 156,100,01234567+

CONNREC3 ,,01234567890+

X21RECOA 2,1,0123456789012345+

GEORGE 25,255,

Convert BSC Program for X.21

The only change you need to make for BSC programs to run with X.21 is to code the X21RN
operand on the BSCOPEN instruction in your program if you want the system to use your own
connection records. (Refer to Language Reference for further coding information.)

If you are using auto call (AC or SM) and you don’t code X21RN, X.21 will look for the default
record named X21RECyy, where yy is the hexadecimal address of your attachment card. As
stated earlier, you must insert X21RECyy into the $$X21DS data set. However, if you specify
DC and you don’t code X21RN, the retry and delay values default to 1 and O respectively.

Figure 22.3 shows a coding example for the BSCOPEN statement. For example, if you name
your connection record “CONNRECI1,” the BSCOPEN statement contains the pointer,
X21RN, to that record.

Note: In the DC statement below, if your record name has fewer than 8 characters, it’s a good
idea to pad the name with blanks to equal 8 characters in length.

L label BSCOPEN BSCIOCB,X21RN=recrdptr J
\recrdptr L DC cl8'CONNREC1' member name . -

Figure 22.3. X.21 BSCOPEN coding example

Chapter 1. Binary Synchronous Communications Access Method (BSCAM) CO0-44.3

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

Binary Synchronous Communications Access Method
(BSCAM)

Using X.21 Switched Network Support (continued)

X.21 Error and Call Progress Signal Logging

You should activate $LOG when using X.21 circuit switched support. Then use the LL or LP
command of the $DISKUT?2 utility to list your error log record. The system will tell you when you
have an X.21 switched error. Then you need to check the error log record to determine what
the error is.

Figure 22.4 shows an example of the printed output created by the $SDISKUT?2 utility when you
have X.21 circuit switched support. In this case, the X.21 return code field (word 19) equals -9
(FFF7), indicating a read instruction error. An explanation of the numbered items follows the
example.

(" commanp(?): 1
LOG DS NAME: LOGDS

DEVICE ADDRESS (NULL FOR ALL): 0002
I/0 LOG ERROR COUNTERS (BY DEVICE ADDR):

REQUESTED HEX DUMP OF LOG RECORD:

0000 E!OO 0000 0055 7E00 0000 0222 0000 0000
0010 0000 0000 0000 0000 0002 02DO m 8&0
7 9
0020 FFFF 05!5 FFF7 0000 0000 0000 0000 0000
0030 0000 0000 0000 0000 0000 0000 000G 0000
0040 0000 0000 0000 0000 0000 0000 0000 0000
0050 0000 0000 0000 0000 0000 0000 0000 0000
0060 0000 0000 0000 0000 0000 0000 0000 0000
0070 0000 0000 0000 0000 0000 0000 0000 0000
0080 0000 0000 0000 0000 0000 0000 0000 0000
0090 0000 0000 0000 0000 0000 0000 0000 0000
00AO 0000 0000 0000 0000 0000 0000 0000 0000
00BO 0000 0000 0000 0000 0000 0000 0000 0000
00CO 0000 0000 0000 0000 0000 0000 0000 0000
00DO 0000 0000 0000 0000 0000 0000 0000 0000
OOEO 0000 0000 0000 0000 0000 0000 0000 0000
00FO 0000 0000 0000 0000 0000 0000 0000 0000

\ LOG LISTING ENDED

Figure 22.4. Example of the X.21 printed log information for a read error

CO-44.4 5C34-0443

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

Using X.21 Switched Network Support (continued)

Bl This is the name of the log data set you created with $LOG. In this example, the log data
set is LOGDS.

This is what you will see on the usual log information. The dots (.) replace the list of device
addresses and I/0 error indications that $DISKUT?2 provides. These device addresses range
from X’00’to X’FF’, or 0 to 255.

This is the start of your X.21 log record output. The first 28 bytes contain the log header
information that is reserved for system use.

n This byte contains the X.21 record type, X’04’. It marks the beginning of the X.21
statistical log.

This byte contains your device address, in this case X’02’.

Bl This word contains the X.21 error flags reserved for system use. In this case, it indicates
that there are X.21 log entries.

This word indicates that there is a read instruction error when equivalent to -1 (FFFF hex).
Refer to this byte only when the word indicated by [gf equals -9 (FFF7 hex).

B This word contains the error return code from the read instruction. Refer to this word only
when the word indicated by [BJ equals -9 (FFF7 hex). (Refer to Messages and Codes for the

meanings of these error codes.)

a When this word equals -9 (FFF7 hex), you must consult the two words indicated by
and [f} In this case, the remainder of the log record will contain zeroes.

Chapter 1. Binary Synchronous Communications Access Method (BSCAM) CO-44.5

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

Binary Synchronous Communications Access Method
(BSCAM)

Using X.21 Switched Network Support (continued)

Figure 22.5 shows a second example of the printed output created by $DISKUT2 when you
have X.21 circuit switched support. In this case, the X.21 return code field (word 19) equals
-27 (FFES5) and indicates a device error. An explanation of the numbered items follows the

example.
4 COMMAND (?) : LL

LOG DS NAME: LOGDS
DEVICE ADDRESS (NULL FOR ALL): 0002

I/0 LOG ERROR COUNTERS (BY DEVICE ADDR) :
REQUESTED HEX DUMP OF LOG RECORD:
0000 HOO 0000 0055 7E00 0000 0222 0000 0000
0010 0000 0000 0000 0000 0002 02DO m C&O

7
0020 0000 0000 gES E!FA 0000 0000 0000 0000
0030 0000 0000 0000 0000 0000 0000 00@ 0000
0040 0000 0000 0000 0000 0000 0000 0000 0000
0050 0000 0000 0000 0000 0000 0000 0000 0000
0060 0000 0000 OOH 0000 0000 0000 0000 0000
0070 0000 0000 0000 0000 0000 0000 0000 0000
0080 0000 0000 0000 0000 0000 00% 0000 0000
0090 0000 0000 0000 0000 0000 0000 0000 0000
00AO 0000 0000 0000 0000 0000 0000 0000 0000
0O0BO 0000 0000 0000 0000 0000 0000 0000 0000
00co 0000 0000 0000 0000 0000 0000 0000 0000
00DO0 0000 0000 0000 0000 0000 0000 0000 0000
00EO 0000 0000 0000 0000 0000 0000 0000 0000
OOFO 0000 0000 0000 0000 0000 0000 0000 0000
\ LOG LISTING ENDED

Figure 22.5. Example of the X.21 printed log information for a device error

CO-44.6 SC34-0443

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

Using X.21 Switched Network Support (continued)

Bl This is the name of the log data set you created with $LOG. In this example, the log data
set is LOGDS.

Bl This is what you will see on the usual log information. The dots (.) replace the list of device
addresses and I/0O error indications that $DISKUT2 provides. These device addresses range
from X’00’to X’FF’, or 0 to 255.

This is the start of your X.21 log record output. The first 28 bytes contain the log header
information that is reserved for system use.

s byte contains the X.21 record type, . It marks the beginning of the X.
This b ins the X.21 d X04. 1 ks the beginni f the X.21
statistical log.

This byte contains your device address, in this case X’02’.

B This word contains the X.21 error flags reserved for system use. In this case, it indicates
that there are X.21 log entries, and that a device error has occurred.

This word is the X.21 return code field. When it equals -27 (FFES5 hex), consult the device
error code field (Y.

B} This byte shows you how many times the call was retried before it failed. In this case, the
retry count equals 3.

u This byte will give you the device error code, in this case -6 (FA hex). Use the data in this
byte only when the word indicated by §f] equals -27. The error codes are as follows:

DEVICE ERROR CODES
-1 (FF) Buffer overrun
-2 (FE) Unsuccessful DCE clear
-3 (FD) Interface data check error
-4 (FC) Invalid interrupt code
-5 (FB) Invalid interrupt status byte
-6 (FA) Invalid I/0 condition code
-7 (F9) Start cycle steal status issued
_ -8 (F8) Specification check ‘ ‘/

Figure 22.6. Device Error Codes

Note: Refer to the hardware manual IBM Series/1 Communications Theory Diagrams,
SY34-0059, for the meanings of these messages.

Chapter 1. Binary Synchronous Communications Access Method (BSCAM) CO-44.7

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

3inary Synchronous Communications Access Method

Using X.21 Switched Network Support (continued)

The next 100 bytes (00 to 99) are the call progress signal counters. They record call progress
signals and hardware errors. The following example shows the meaning of the significant bytes.
The number within the byte indicates how many times the error occurred. For example,
shows you a call progress signal of 21 because it’s the 21st. byte after [fJ; the number 02 within
the byte tells you that it occurred twice. shows you a call progress signal 61 because it’s the
61st. byte after [ff; the number 01 within the byte tells you that it occurred once. The byte
number column gives the byte number relative to the beginning of the log (&}).

Call

progress Byte

signal number | Meaning of signal What X.21 does

00 28 Reserved Does not clear. Waits for attempt to

01 29 Terminal called complete.

02 2A Redirected call

03 2B Connect when free

20 3C No connection Clears due to short-term conditions.

21 3D Number busy Tries again up to retry limit.

22 3E Selection signals procedure error

23 3F Selection signal transmission error

41 51 Access barred Clears due to long-term conditions.

42 52 Changed number Call unsuccessfully completed.

43 53 Not obtainable

44 54 Out of order

45 55 Controlled not-ready

46 56 Uncontrolled not-ready

47 57 DCE power off

48 58 Invalid facility request

49 59 Network fault in local loop

51 5B Call information service

52 5C Incompatible user class of service

61 65 Network congestion Clears due to network short-term
conditions. Tries again up to retry
limit.

71 6F Long-term network congestion Clears due to long-term network

72 70 RPOA out of order conditions. Call unsuccessfully
completed.

81 79 Registration/cancellation confirmed Clears due to DTE network

82 7A Redirection activated procedure.

83 78 Redirection deactivated

Figure 22.8. Call Progress Signal Counter Usage

This byte marks the end of the statistical log.

CO-44.8 SC34-0443

Chapter 2. Remote Management Utility (SRMU)

When the Remote Management Utility ($RMU) is loaded on a Series/1, it allows another
system, called the host, to control the Series/1. The Series/1 with $RMU loaded on it is called
the remote system.

The host starts and controls functions that $RMU performs on the remote system. $RMU waits
for an application program running on the host to ask it to perform some function, and then
does the work. No operator action at the remote system is needed. $RMU sends responses to
the host that tell if it completed the function successfully, and to provide other information
about the function.

The $SRMU-controlled (remote) system is always a Series/1. The host system can be a
Series/1, too. This chapter talks about the host system being a Series/1. It tells how to write
host programs to communicate with $RMU. The Binary Synchronous Communications Access
Method (BSCAM) controls I/0 during $RMU operations. Because of this, SRMU operation
requires the use of binary synchronous communication (BSC) lines. In addition, the host
program must consist of Event Driven Language BSC instructions and must follow rules for
BSCAM programs in general.

If your Series/1 is the Host system making requests of another Series/ 1, then you must write
the application programs that send requests to $RMU.

Chapter 2. Remote Management Utility (SRMU) CO-45

Remote Management Utility ($RMU)

CO-46

SC34-0443

Your host program can ask $RMU to perform the following functions:
o Manage data sets on the remote system

— ALLOCATE function

— DELETE function

— DUMP function
« Transfer data between the two systems

— SEND function

— RECEIVE function

— WRAP function
¢ Control the running of programs on the remote system

— EXEC function

— SHUTDOWN function
« Establish interactive sessions between the two systems

— PASSTHRU function
« Verify the IDs of the two systems

— IDCHECK function
If your Series/1 is the remote system, there is no work that you must do to respond to host
requests, since the utility takes care of that automatically. However, before $RMU operations
can begin, you must load the utility into your system with the command $L. $RMU. The only
other work that can be done at the remote system is changing $RMU default values. The
section, ‘“‘Remote Management Utility Defaults” on page CO-50 tells about these values and

how to change them.

Figure 23 on page CO-47 shows how the host and remote systems communicate by means of
the host program and $RMU.

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

Series/1 Host
system
$R MU Host
program

Figure 23. Communication between host and remote systems

Planning for the Remote Management Utility Operations

Types of Line Connections
$RMU operations can take place over several types of BSC line connections.

The host and remote systems can be connected on either point-to point or multipoint lines
during $RMU operations. Point-to-point connections can be over leased or switched lines,
depending on which type of service you have bought from the common carrier. Multipoint
connections require the host system to be the control station and the remote system to be a
tributary station. Remember, SRMU operates in point-to-point only for X.21.

Find out what type of line connection your Series/1 js part of, and whether it is acting as the

host or the remote system. Keep this information in mind since you will use it in other areas of
planning for SRMU operations.

Chapter 2. Remote Management Utility (SRMU) CO-47

Remote Management Utility (SRMU)

Planning for the Remote Management Utility Operations (continued)

Mode of Transmission

Transmissions during $SRMU operations are in transparent mode. Although BSCAM, which
controls I/0 for $RMU, supports other modes of transmission, only the transparent mode is
available with SRMU. This is important when you write host programs to send requests to
$RMU.

Storage Considerations

$RMU needs a maximum of 7.25K bytes of storage, plus buffer space, to perform all its
functions. However, $RMU can perform its data set management functions with only 5.5K
bytes of storage. In that case, $RMU gets any additional storage it needs from the partition in
which it is executing.

The section, “Remote Management Utility Defaults” on page CO-50 tells how to use the
reduced storage size and how to change it.

Remote System Requirements

For $RMU operations the remote Series/1 must meet certain hardware and software
requirements.

Hardware Requirements

Minimum hardware requirements for the remote Series/ 1 are as follows:
o Processor: 4952, 4954, 4955, or 4956.

« Storage: must be sufficient to handle the supervisor, SRMU (maximum of 7.25K bytes), and
the programs that run under $RMU (see notes).

e BSC Hardware Connection Features: must be one of the following:
single-line control, medium speed
single-line control, high speed
8-line control and one or two 4-line adapters
multifunction attachment

e Disk or Diskette: 4962, 4963, or 4967 (disk); 4964, 4965, or 4966 (diskette).

CO-48 SC34-0443

Planning for the Remote Management Operations (continued)

Notes:
1. The section “Storage Considerations” on page CO-48 tells you how $RMU uses storage.

2. For additional information on storage considerations, refer to the Installation and System
Generation Guide.

Software Requirements
Since the Binary Synchronous Communications Access Method (BSCAM) controls the transfer
of data during $RMU operations, the system generation for the remote Series/1 must include
one BSCLINE statement per copy of $RMU you plan to use. You must define each BSC line to
be used by $SRMU as either a point-to-point (BSCLINE TYPE=PT, SM or SA), or multipoint
tributary station (BSCLINE TYPE=MT). You must include enough storage to accomodate
$RMU and the programs that run under it in the partition where you plan to load it.
If you plan to set up PASSTHRU sessions between the remote Series/1 and the host, SRMU
requires two virtual terminals. You must include two TERMINAL statements in your system
generation. On one statement, code the parameter ADDRESS=CDRVTA, and on the other,
code ADDRESS=CDRVTB. These are the only addresses that are valid.
You must also include support for the BSCAM supervisor module.

Refer to the Installation and System Generation Guide for details on performing system
generation.

Host System Requirements
In this discussion, the host system is a Series/1. It too must meet certain requirements to
successfully communicate with $RMU. The following support must be defined during system
generation for the host Series/1:
« BSCLINE TYPE=PT, SM, SA, or MC
« BSCAM supervisor module support
Besides the Series/1, the host can be any system that meets these requirements:
« provides binary synchronous protocol compatible with BSCAM

« transmits in transparent EBCDIC

« supports the form of record exchange that $RMU performs

Chapter 2. Remote Management Utility ((RMU) CO-49

Remote Management Utility (SRMU)

Planning for the Remote Management Operations (continued)

Remote Management Utility Defaults

Certain values associated with $RMU operations have predefined defaults. These default values
are:

e Host system ID is set at HOSTRMUX.

« Remote system ID is set at REMTRMUX.
e BSC line is set at X‘09’.

o $RMU storage size is set at 7.25 Kbytes.

« Buffer size is set at 1024 bytes.

At the remote system, you can modify these default values by using the $DISKUT? utility. This
utility allows you to get at main storage for SRMU and patch your changes.

After you load the $DISKUT?2 utility, respond to its prompts to make changes to the default
values. In general, the utility prompts for the following information:

o a $DISKUT2 command

o the storage address containing the default value
« type of code the default value is in

« new data to replace the default value

The storage addresses listed in this book are subject to change. Consult the PID directory for
the latest storage addresses for SRMU.

The sections that follow tell what information to enter to change each of the defaults.

Changing Host System ID

CO-50

5C34-0443

The default value for the host system ID (used in the IDCHECK function) is HOSTRMUX.
You can change this to another name if you wish. In response to the utility’s prompts, enter the
following information:

¢ Command: PA $RMU

e Address: 84E4 (*)

e Code type: E (for EBCDIC)

¢« Data: the new host system ID (8 characters)

Planning for the Remote Management Operations (continued)

* The address listed for the host system ID is subject to change. Consult the PID directory for
the latest storage addresses for this default value.

Changing the Remote System ID

The default value for the remote system ID (used in IDCHECK function) is REMTRMUX.
You can change this to another name if you wish. In response to the utility’s prompts, enter the
following information:

« Command: PA $RMU

o Address: 8464 (*)

e Code type: E (for EBCDIC)

o Data: the new remote system ID (8 characters)

* The address listed for the remote system ID is subject to change. Consult the PID directory
for the latest storage addresses for this default value.

Changing the BSC Line Address

The default value for the BSC line address is X’09’. You can change this to another line address
if you wish. In response to the utility’s prompts, enter the following information:

« Command: PA $RMU

o Address: 0858 (*)

e Code type: H (for hexadecimal)
« Data: new BSC line address

* The address listed for the BSC line address is subject to change. Consult the PID directory for
the latest storage addresses for this default value.

If you change the BSC line address from its default value, make sure that the BSC line
definitions for the remote system (made during system generation) reflect the change.

Changing Storage Size

The default value for storage required by $RMU is 7.25K bytes. Howver, you can change the
size of storage from 7.25 to 5.5K bytes. In response to the utility’s prompts, enter the following
information:

o Command: PA $RMU

o Address: 1844 (*)

Chapter 2. Remote Management Utility (SRMU) CO-51

Remote Management Utility (SRMU)

Planning for the Remote Management Operations (continued)

« Code type: E (for EBCDIC)
« Data: CDRJP

* The address listed for the storage size is subject to change. Consult the PID directory for the
latest storage addresses for this default value.

IMPORTANT: The value CDRIJP is the only one you can enter as the new storage value.

Changing Buffer Size

CO-52

SC34-0443

The default value for buffer size on the remote system is 1024 bytes. You can change buffer
size within the minimum value of 512 and the maximum value of 32,512 bytes. Buffer size
should be in multiples of 256. In addition, buffer size depends on the size of the blocks SRMU
is storing in the buffer. Two factors determine the size you should change buffer size to:

« data set type to be stored in the buffer

« number of blocks sent in each record, according to data set type

First decide what data set type you will be storing in the buffer.

« Standard data set - meant to contain standard data

« Source data set - meant to contain source data

« PASSTHRU data set - meant to be used in a PASSTHRU session

Now determine the blocking factor for your type of data set. The blocking factor refers to the
number of logical records contained in each block of data. If you want to send a certain number
of records in each block, then your buffer must be able to accomodate those records. The

calculations to determine blocking factor are described in the sections that follow.

Determining Blocking Factor for Standard Data Sets: To determine the blocking
factor for a standard data set, make the following calculation:

(buffer size - 6) / 256 = blocking factor
Discard the remainder.

For example, assume a buffer size of 768 (256 x 3); subtract 6 to get the value 762. Divide 762
by 265; the quotient is 2. Discard the remainder. The blocking factor is 2.

Planning for the Remote Management Operations (continued)

Determining the Blocking Factor for Source Data Sets: To determine the blocking
factor for a source data set, make the following calculation:

(buffer size - 262) / 80 = blocking factor
Discard the remainder.

For example, assume a buffer size of 2048 (256 x 8); subtract 262 to get the value 1786.
Divide 1786 by 80; the quotient is 22. Discard the remainder. The blocking factor is 22.

Determining Blocking Factor for PASSTHRU Data Sets: To determine the blocking
factor for a PASSTHRU data set, make the following calculation:

buffer size - 264 = blocking factor
Discard the remainder.

For example, assume a buffer size of 512 (256 x 2); subtract 264. The result is 248. The
blocking factor is also 248.

To change the buffer size, enter the following information in response to the utility’s prompts:
e« Command: SS $RMU
e Address: 1844

« Data: nnnn, which specifies the new buffer size

Host Programming for the $SRMU Application

If your Series/1 is acting as the host, you must write application programs to communicate with
$RMU on the remote Series/1. Your program sends requests to SRMU and receives responses
from $RMU.

Using Event Driven Language BSC Instructions

Since BSCAM controls transmissions between the host and remote systems, your host program
must contain EDL BSC instructions. To send requests, code BSCWRITE instructions, and to
receive $SRMU’s responses, code BSCREAD instructions.

You may want to review BSCAM programming techniques before going further with
programming for the $RMU application. Chapter 1 contains information on BSCAM
programming using the BSC instructions.

Since $RMU transmissions are in transparent mode, the BSC write instructions in your program
must be of the transparent type. For example, to send a request, code a BSCWRITE IX (initial

Chapter 2. Remote Management Utility (SRMU) CO-53

Remote Management Utility (SRMU)

Host Programming for the $RMIU Application (continued)

transparent write). To signify the end of a request, code a BSCWRITE E instruction. To send
data, code BSCWRITE IX for the first record and BSCWRITE CX (continue transparent write)
for subsequent records.

To review the syntax of the BSC instructions, refer to the Language Reference.

Receiving $RMU’s Responses to Host Requests

Status Message

CO-54

SC34-0443

During the course of performing any function, $RMU sends various types of messages to the
host. These messages provide the following information to the host:

« Status messages that indicate success or failure of a function

« Count messages that show the number of records sent or received by $RMU

« Data messages that $RMU uses to send data

All of these messages start with three fields that make up the header, as shown below:
« RMHBSCC contains the BSC control characters DLE STX.

» RMHID identifies a message from $RMU.

« RMHTYP identifies the type of message: ’S’ for status, ’C’ for count, or D’ for data.

$RMU sends a status message to the host to indicate the success or failure of a requested
function. A status record is 18 bytes in length. Besides the three fields that make up the
header, it contains several fields that provide the following information:

« RMSREQ specifies the request that the status message pertains to. For example, if it is in
response to an allocate request, the RMSREQ field shows the value 2, which represents the
allocate request.

« RMSFN indicates the success or failure of the particular request. This field contains a -1 to
indicate the success of a request. Any other value (a positive value) indicates failure of the
request. The number refers to a specific error condition, as shown in the chart below:

Host Programming for the $RMU Application (continued)

Status Condition

Request expected
Invalid request

Load failed
BSC 1/0 failure

OPEN failed

Code

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16 Virtual terminal busy
21

22

24

25

26

27

31

32

33 SETEQD failed
34
41

IDCHECK Function Failed

Buffer area is too small for the record
Short record (less than 4 bytes)
Header ID is "H’ (invalid)

Invalid header ID (not ‘X’ or 'H’)

Request short (missing information)

Invalid SEND/RECEIVE type

Invalid blocking factor

Invalid message received during request
Invalid PASSTHRU record type

Invalid DUMP partition number

Request received while another was running
EOT expected and not received

READ disk/diskette failed
WRITE disk/diskette

Load of overlay failed

PRINTEXT failed for virtual terminal
ALLOCATE/DELETE failed

Parameters to build LOAD instructions are invalid
Overlay function missing

Figure 24. $SRMU status failure codes

« RMSST appears when the number in RMSFN indicates that an Event Driven Executive
function failed. This field appears in a status message only if one of the following numbers

appears in the RMSFN field:

— 24 or 25: contains LOAD return code

21 or 22: contains disk (READ/WRITE) return code

26: contains BSC (binary synchronous communications) return code

— 27: contains virtual terminal I/O return code

— 31,32 o0r 33: contains $DISKUT3 return code

— 34: contains LOAD return code

For explanations of the return codes, refer to the Messages and Codes.

« RMSRID appears only in the status message of a successful IDCHECK request. It specifies

the ID of the remote Series/1.

Chapter 2. Remote Management Utility (SRMU)

CO-55

Remote Management Utility (SRMU)

Host Programming for the $RMU Application (continued)

Count Message

Data Message

$RMU sends a count message to the host when it detects an end-of-data condition during a data
set transfer (from either a SEND or RECEIVE request). This message shows the number of
records that $RMU sent. The count message also indicates if records were padded (blanks
inserted) during the data set transfer. The host should use the count message to verify whether
a complete data transfer occurred. For example, if the host program sent 30 messages, then the
count message from $RMU should indicate that the utility received 30 messages.

The count message can be up to 12 bytes long. Besides the header, it contains several fields that
provide the following information:

« RMCREQ identifies the request type that the count message pertains to (0 = SEND, 1 =
RECEIVE).

« RMCFLG indicates if record padding occurred during a data set transfer. A value of ’1’ in
this field indicates padding; a value of ’0’ indicates no padding.

« RMCCNT specifies the number of records transmitted. This number reflects the number of
logical records (80-byte or 256-byte) that $RMU transmitted, regardless of how the records
were blocked.

$RMU sends data messages to transmit data to the host in response to a SEND request. This
type of message contains the 80-byte or 256-byte records from the data set specified in the
SEND request.

Besides the header, the data record contains the following field:
« RMDDATA contains the data that $RMU is sending to the host. The length of this field

will be a multiple of 80 or 256, depending on the specifications of the host in its SEND
request.

Error Handling During $RMU Operations

CO-56

SC34-0443

If a communications error occurs while $RMU is executing, the terminal that loaded $RMU (on
the remote system) receives an error message. If a communications error occurs while $RMU is
performing a function, it generally terminates. However, the SEND, RECEIVE, and
PASSTHRU functions may continue executing because these functions require multiple message
exchanges between the host and the Series/1 before the function is complete. If the error is
recoverable, SRMU sends the host a status record followed by a termination (EOT). After this
sequence of messages is over, the host can issue a new request.

Both $RMU and the host program can detect errors while an $RMU function is executing. If
$RMU detects such an error, it sends the host a status record indicating the error condition,
followed by an EOT to terminate the function. After this sequence is complete the host can
issue a new request. If the host program detects an error, it should terminate the function in the

Host Programming for the $RMU Application (continued)

same sequence as $RMU. However, the status record the host sends to the remote system
requires only the 4-byte header of a status record (RMHBSCC, RMHID, and RMHTYP fields).

$RMU detects errors during all phases of operations and sends failure status messages to the
host. Refer to “Status Message” on page CO-54 for details of these failure messages. Status,
count and data messages were discussed previously in “Receiving SRMU’s Responses to Host
Requests on page CO-54. The type and sequence of responses SRMU sends varies according to
the request type. The sections below, which tell how to code each type of request in a host
program, also show the way SRMU responds to each request.

You must code a BSCREAD instruction to receive each of $RMU’s responses to a request. To
receive SRMU’s first response to a request, code a BSCREAD I (initial read) instruction. To
receive the rest of $RMU’s responses, code BSCREAD C (continue read) instructions.

Coding the Required Field for Requests to $RMU
For each request the host sends to $RMU, you must code certain fields of information in your

program. Each set of fields identifies a different type of request, and tells $RMU exactly what
the host wants it to do.

The sections that follow identify the required fields for each type of request and show what
information to enter in each field.

Managing Disk/Diskette Data Sets

The host can ask $RMU to work with disk or diskette data sets on the remote system. The three
such functions that $RMU can perform are:

« ALLOCATE a disk or diskette data set
« DELETE a disk or diskette data set

« DUMP storage to a disk or diskette data set
Allocating Disk/Diskette Data Sets (ALLOCATE)

The host can ask $RMU to allocate a disk or diskette data set on the remote system with the
ALLOCATE request. The data set can contain either standard data or a program.

To send $RMU your ALLOCATE request, code a BSCWRITE IX instruction along with the
required information fields. Then code a BSCWRITE E or EX instruction to signify that you
are finished sending the ALLOCATE request.

After $RMU gets the host’s ALLOCATE request, it sends a status message. Code a

BSCREAD I instruction to receive this message. After performing the requested function, or
after encountering a failure condition, SRMU terminates the function by sending an EOT (end-

Chapter 2. Remote Management Utility (SRMU) CO-57

Remote Management Utility (SRMU)

Host Programming for the $RMU Application (continued)

of-transmission) sequence to the host. Code a BSCREAD C instruction to receive the notice of
termination.

IMPORTANT: The ALLOCATE function uses the $DISKUT3 utility. Do not allocate a data
set named $EDXNUC, $$EDXVOL, or $$SEDXLIB.

Allocating a Program Data Set: 1f yoy are going to allocate a data set that is to contain a
program from the host system, you must have the following information available:

o The load address of the program

« the size (in bytes) of the program

« the entry point of the program

« the RLD (relocation dictionary) count of the program

Obtain the information by opening the host program data set and examining the data set control
block.

Coding the Required Fields for ALLOCATE

The chart that follows shows all the fields to code in your program for an allocate request. The
fields identified with an asterisk (*) contain variable values. You can code any appropriate
value in these fields. However, the other fields can contain only the values shown in the chart.
Code these fields exactly as the chart specifies.

Field Size, Explanation What to Code

Type
RMHBSCC 2 hex Starts transmission of a request RMHBSCC DATA X'1002’
RMHID 1 alpha Identifies message to $SRMU RMHID DATA C'X’
RMHTYP 1 alpha Identifies request to $RMU RMHTYP DATA C'R’
RMREQ 2 num Specifies ALLOCATE request RMREQ DATA F'2’

Figure 25 (Part 1 of 2). Required fields for ALLOCATE request

CO-58 $C34-0443

Host Programming for the $RMU Application (continued)

Field Size, Explanation What to Code
Type
RMADSN (*) 8 alpha Name of the data to be allocated RMADSN DATA CL8' DATASET’
RMAVOL (*) 6 alpha Name of the volume containing RMAVOL DATA CL6'VOLUME’
data set. Default = IPL volume.
RMANREC (*) 4 num Number of 256-byte records RMANREC DATA D’nn’
allocated for data set
RMADST (*) 2 num Type of data set allocated (1 = data; RMADST DATA F'n’
3 = program)
RMALAD (*) 2 num Load address of program data set RMALAD DATA F'nn’
(see note)
RMAPSZ (*) 2 num Program size in bytes (see note) RMAPSZ DATA F'nn’
RMAENT (*) 2 num Program entry point (see note) RMAENT DATA F'nn’
RMARLD (*) 2 num RLD count of program (see note) RMARLD DATA F'nn’

Figure 25 (Part 2 of 2). Required fields for ALLOCATE request

Note: The RMALAD, RMAPSZ, RMAENT and RMARLD fields are required only if the data
set you are allocating is a program. In this case, the RMASDT field must contain the value 3.

Figure 26 shows an example of the ALLOCATE function. The host requests a data set named
"MYDATA" to be allocated on volume "MYVOL'. The data set type is 1 (data) and ten
256-byte records are allocated. $RMU sends a status record with -1 (successful completion) to

the host.

Figure 46 on page CO-95 shows a sample program that can send an ALLOCATE request.

Chapter 2. Remote Management Utility (SRMU)

CO-59

Remote Management Utility (SRMU)

Host Programming for the $RMU Application (continued)

Host Program Host Remote
BSCWARITE IX ENQ ------- >

<----o-- ACK*
RMHBSCC DATA X'1002' TEXT ------- >

RMHID DATA C'X
RMHTYP DATA C'R’
RMREQ DATA F2
RMADSN DATA CL8'MYDATA’
RMAVOL DATA CL6'MYVOL
RMANREC DATA D10
RMADST DATA F1’
RMALAD DATA FO
RMAPSZ DATA FO
RMAENT DATA FO’
RMARLD DATA FO’

BSCWRITE E EOT ------- >

BSCREAD | <emmmmem TEXT
(status)
RMHTYP='S’
RMSREQ=2
RMSFN=-1

BSCREAD C Cmmmmeem EOT
(termination)

Figure 26. Communications flow for ALLOCATE

Deleting a Disk/Diskette Data Set (DELETE)

CO-60

SC34-0443

You can ask $RMU to delete a disk or diskette data set on the remote system with a DELETE
request.

To send $RMU your DELETE request, code a BSCWRITE IX instruction along with the
required information fields. Then code a BSCWRITE E or EX instruction to signify that you
are finished sending the DELETE request.

After SRMU gets the host’s DELETE request, it sends a status message. Code a BSCREAD I
instruction to receive this message. After performing the requested function, or after
encountering a failure condition, SRMU terminates the function by sending an EOT (end-
of-transmission) sequence to the host. Code a BSCREAD C instruction to receive the notice of
termination.

IMPORTANT: The DELETE function uses the $DISKUTS3 utility. Do not delete data sets
$EDXNUC, $$EDXVOL, and $$EDXLIB.

Host Programming for the $RMU Application (continued)

Coding the Required Fields for DELETE

The chart that follows shows all the fields to code in your program for a delete request. The
fields identified with an asterisk (*) contain variable values. You can code any appropriate
value in these fields. However, the other fields can contain only the values shown in the chart.
Code these fields exactly as the chart specifies.

Field Size, Explanation What to Code
Type
RMHBSCC 2 hex Start of message RMHBSCC DATA X'1002'
RMHID 1 alpha Identifies message to $SRMU RMHID DATA C'X’
RMHTYP 1 alpha Identifies request to $RMU RMTYP DATA C'R’
RMREQ 2 num Specifies DELETE function RMREQ DATA F'3"
RMDDSN (*) 8 alpha Data set to be deleted RMDDSN DATA CL8' DATASET’
RMDVOL (*) 6 alpha Volume containing data set to be RMDVOL DATA CL6'VOLUME'
deleted. Default = IPL volume

Figure 27. Required fields for DELETE request

Figure 28 on page CO-62 shows an example of the DELETE function. The host specifies a
data set named "MYDATA' to be deleted from volume "MYVOL'. $RMU sends a status
record with -1 (successful completion) to the host.

Figure 46 on page CO-95 shows a program that can send a DELETE request.

Chapter 2. Remote Management Utility (SRMU) CO-61

Remote Management Utility (SRMU)

Host Programming for the SRMU Application (continued)

Host Program Host Remote
BSCWRITE IX ENQ ------- >

<=mmmm-- ACK*
RMHBSCC DATA X'1002 TEXT ----=-- >

RMHID DATA C'X

RMHTYP DATA C'R’

RMREQ DATA F3’

RMDDSN DATA CL8'MYDATA’
RMDVOL DATA CL6'MYVOL’

<mmmeme- ACK*
BSCWRITE E EOT ----mm- >
Cmmmmmme ENQ
ACK* ------- >
BSCREAD | Commmme TEXT
(status)
RMHTYP='S’
RMSREQ=3
RMSFN=-1
o S — >
BSCREAD C D EOT
(termination)

Figure 28. Communications flow for DELETE

Dumping Storage to a Disk/Diskette Data Set (DUMP)

You can ask $RMU to dump a storage partition to a disk or diskette data set on the remote
system with a DUMP request.

To send $RMU your DUMP request, code a BSCWRITE IX instruction along with the required
information fields. Then code a BSCWRITE E or EX instruction to signify that you are finished
sending the DUMP request.

After $RMU gets the host’s DUMP request, it sends a status message. Code a BSCREAD I
instruction to receive this message. After performing the requested function, or after
encountering a failure condition, $SRMU terminates the function by sending an EOT
(end-of-transmission) sequence to the host. Code a BSCREAD C instruction to receive the
notice of termination.

Coding the Required Fields for DUMP

CO-62

SC34-0443

The chart that follows shows all the fields to code in your program for a dump request. The
fields identified with an asterisk (*) contain variable values. You can code any appropriate
value in these fields. However, the other fields can contain only the values shown in the chart.
Code these fields exactly as the chart specifies.

Host Programming for the $RMU Application (continued)

Field Size, Explanation What to Code
Type
RMHBSCC 2 hex Start of transmission RMHBSCC DATA X'1002
RMHID 1 alpha Identifies message to $RMU RMHID DATA C'X’
RMHTYP 1 alpha Identifies request to $RMU RMHTYP DATA C'R’
RMREQ 2 num Specifies DUMP request RMREQ DATA F'4
RMDPDSN (*) 8 alpha Name of the data set to dump to RMDPDSN DATA CL8'DATASET’
RMDPVOL (*) 6 alpha Volume containing dump data set. RMDPVOL DATA CL6'VOLUMFE’
Default = IPL volume
(filler) 1n/a Reserved field (unused) DATA H'O’
RMDPPTN (*) 1 num Partition to be dumped RMDPPTN DATA H'n’

Figure 29. Required fields for DUMP request

Figure 30 on page CO-64 shows an example of the DUMP request. The host requests that
partition 1 be dumped to the data set "MYDATA" on volume "MYVOL". $RMU sends a
status record with -1 (successful completion) to the host.

Figure 46 on page CO-95 shows a sample program that can send a DUMP request.

Chapter 2. Remote Management Utility ($SRMU)

CO-63

Remote Management Utility (SRMU)

Host Programming for the $RMU Application (continued)

Host Program Host Remote
BSCWRITE IX ENQ ------- >

<emmmme- ACK*
RMHBSCC DATA X' 1002’ 115 ¢ i — >

RMHID DATA C'X

RMHTYP DATA C'R’

RMREQ DATA F4

RMDPDSN DATA CL8'MYDATA’

RMDPVOL DATA CL6'MYVOL’
DATA H'O

RMDPPTN DATA H1’

Cmmmmmm e ACK*
BSCWRITE E EOT ------- >
S ENQ
ACK* ---—--- >
BSCREAD | <ommmmae TEXT
(status)
RMHTYP='S’
RMSREQ=4
RMSFN=-1
ACK* ------- >
BSCREAD C P EOT
(termination)

Figure 30. Communications flow for DUMP

Controlling Data Transfers between Host and Remote Systems
Your host program can ask $RMU to perform functions involving data transfers. You can ask
$RMU to send data to your system or receive data from you. Also, you can send data to the
remote system and have $RMU echo it back to you.
The requests associated with these functions are:
« RECEIVE data from the host
¢« SEND data to the host

« WRAP host data back to the host
Host Sending Data to Remote System (RECEIVE)

You can ask $RMU to receive a host data set, and then put the data into a data set on the
remote system. This is the RECEIVE request.

The RECEIVE function requires a data set on the remote system in which to place the data. If
such a data set does not already exist on the remote system, you can allocate one with an
ALLOCATE request.

Send your RECEIVE request by coding a BSCWRITE IX instruction, along with the required
information fields.

CO-64 SC34-0443

Host Programming for the SRMU Application (continued)

Upon receiving the RECEIVE request, $SRMU checks to see if it can handle the size of the
records to be sent. It then sends a status message to the host. A status message of -1
(successful completion) indicates the RECEIVE function will continue; otherwise it terminates.

After receiving a status message of -1, the host begins to send the data set to SRMU. The
record length of the data set should be a multiple of 256 or 80.

If SRMU receives a data record whose length is not a multiple of the specified length, it pads the
record with null bytes. For example, a record of 156 bytes will contain padding with 100 null
bytes, if 256 bytes is the specified length. ‘

If SRMU receives a data record whose length is greater than the length specified on the request,
the RECEIVE function terminates with a status indicating "BSC I/O Failure'' and BSC return
code 20 (wrong length record - long).

At the completion of the data set transfer, SRMU sends the host a count message to report the
number of host records it received. This message also indicates if any records were padded.

If the host is sending an empty data set, send one data record which contains no data (only the
4-byte header) and then end the transmission.

If an unrecoverable error occurs, such as a disk or diskette error, SRMU interrupts the host
transmission by sending an EOT (end-of-transmission) and a status message containing the
appropriate error code. $RMU terminates the RECEIVE function, and then waits for another
request from the host. The host should use the status record to determine the reason for failure.

The host can terminate the RECEIVE function at any time by sending a status message
followed by a BSCWRITE E instruction.

Specifying Data Set Type

You must specify what type of data set the host is sending. The field RMRTYP is where to
code this information. Enter one of the following values in this field:

o O for a standard data set with 256-byte records
« 1 for a source data set with 80-byte records

Specifying Record Blocking

You must specify whether or not the host will send blocked records to $RMU. If the host is
going to send blocked records, you must specify the number of blocks in each record.

The RMRBLK field is where to code this information. Enter one of the following values in this
field:

« ’0’or’1’ to specify no blocking

< any other number to specify the exact number of blocks the host will send in a record

Chapter 2. Remote Management Utility (SRMU) CO-65

Remote Management Utility (SRMU)

Host Programming for the $RMU Application (continued)

Specifying the Starting Record

You must tell SRMU which record of the host data set will be the first to be received. For
example, you may want to start at the first record, or at any other record within the data set.

The field RMRSTR is where to code this information. If you enter the value ’0’ or ’1’, the host
will start sending at the first record. If you enter any other value, the host will start sending at
that particular record.

Coding the Required Fields for RECEIVE Request

The chart that follows shows all the fields to code in your program for a RECEIVE request.
The fields identified by an asterisk (*) contain variable values. You can code any appropriate
value in these fields. However, the other fields can contian only the values shown in the chart.
Code these fields exactly as the chart specifies.

Field Size Explanation What to Code
Type
RMHBSCC 2 hex Starts the message RMHBSCC DATA X' 1002
RMHID 1 alpha Identifies a message to $RMU RMHID DATA C'X’
RMHTYP 1 alpha Specifies a request to $RMU RMHTYP DATA C'R’
RMREQ 2 num Specifies RECEIVE request RMREQ DATA F'1’
RMRDSN (¥) 8 alpha Name of data set to receive host RMRDSN DATA CL6'DATASET’
data
RMRVOL (*) 7 alpha Volume containing data set to RMRVOL DATA CL6'VOLUME’
receive host data. Default=IPL
volume
RMRSTR (*) 4 num Starting record of host data set RMRSTR DATA D'n’
RMRTYP (¥) 2 num Type of host data set to be received RMRTYP DATA F'n’
RMRBLK (*) 2 num Specifies record blocking RMRBLK DATA F'n

Figure 31. Required fields for RECEIVE request

CO-66 SC34-0443

Here is an example of a RECEIVE request sent by a host program. The host sends a data set

called "MYDATA" to volume "MYVOL'" on the remote system.

Host Programming for the SRMU Application (continued)

Figure 47 on page CO-97 shows a sample program that sends a RECEIVE request.

Host Program Host Remote
BSCWRITE IX ENQ ----m=- >
Cmmmmmm ACK*
RMHBSCC DATA X'1002 TEXT -=====n >
RMHID DATA C'X
RMHTYP DATA C'R’
RMREQ DATA F1°
RMRDSN DATA CL8'MYDATA’
RMRVOL DATA CL6'MYVOL’
RMRSTR DATA DO’
RMRTYP DATA FO'
RMRBLK DATA F1’
<mmmmme- ACK*
BSCWRITE E EQOT ------- >
R ENQ
ACK* ------- >
BSCREAD | R TEXT
(status)
RMHTYP='S’
RMSREQ=1
RMSFN=-1
ACK* ——=—--- >
BSCREAD C Cmmmmmmm EOT
ENQ ------~- >
BSCWRITE IX Cmmmmmmm ACK*
RMHBSCC DATA X'1002' TEXT -=====- >
RMHID DATA C'X
RMHTYP DATA C'D’
RMDDATA DATA C text
Cmmmmme- ACK*
BSCWRITEC
RMHBSCC DATA X'1002 TEXT ------- >
RMHID DATA C'X
RMHTYP DATA C'D’
RMDDATA DATA C text
<mmmmmem ACK*
BSCWRITEE EOT ------- >
Cmmmmme - ENQ
ACK* ------- >
BSCREAD | D SR —— TEXT
(count)
RMHTYP='C’
RMREQ=1
RMCNT=2
ACK* =--=-=- >
BSCREAD C P —— EOT

Figure 32. Communications flow for RECEIVE

Chapter 2. Remote Management Utility ($SRMU)

CO-67

Remote Management Utility (SRMU)

Host Programming for the $RMU Application (continued)

Remote System Sending Data to Host (SEND)

CO-68

SC34-0443

You can ask $RMU to send a remote system data set to the host with the SEND request.

Send this request by coding a BSCWRITE IX instruction, along with the required information
fields. Upon receiving request, SRMU first checks that it can send the requested records. It
then sends a status record to indicate its ability to perform the function. A status record of -1
(successful completion) indicates the SEND function will continue; otherwise it terminates.

If SRMU is sending a program data set to the host, it also sends the program’s RLD count, the
program size in bytes, the program entry point and the program load address.

After transmitting the last data record of the data set to the host, SRMU sends a count message
to indicate the number of records it sent the host. The host should compare this number to the
number of records it received to verify that it got all the records $RMU sent. The RMCFLG
field of the count message is not used for the SEND function.

If an unrecoverable error occurs, such as a disk or diskette read error, $RMU sends the host a
status message with the appropriate error code, and terminates the SEND function. The host can
terminate the SEND function by coding a BSCWRITE E instruction, followed by a status
message and another BSCWRITE E.

Specifying the Starting Record: You must tell SBRMU to start sending data from a
particular record in the data set. For example, you may want it to start at the first record or at
any other record within the data set.

The RMSSTR field is where to code this information. If you enter the value "0’ or ’1’ in this
field, SRMU starts sending the first record in the data set. If you enter any other number,
$RMU starts sending from that particular record.

Specifying Data Set Type: You must tell SBRMU what type of data set to send. The
RMSTYP field is where to code this information. Enter one of the following values in this field:

o 0’ for a standard data set with 256-byte records

« 1’ for a source data set with 80-byte records

Specifying Record Blocking: You must tell SRMU whether or not to block the records it
sends. If you want $RMU to block the records, you must specify the number of blocks in each

record.

The RMSBLK field is where to code this information. Enter one of the following values in this
field:

e 0’ or’1’ to specify no blocking

« any other number to specify the exact number of blocks for $RMU to send in one record

Host Programming for the SRMU Application (continued)

Coding Required Fields for SEND Function

The chart that follows shows all the fields to code in your program for a SEND request. The
fields identified with an asterisk (*) contain variable values. You can code any appropriate
value in these fields. However, the other fields can contain only the values shown in the chart.
Code these fields exactly as the chart specifies.

Field Size Explanation What to Code
Type
RMHBSCC 2 hex Starts the message RMHBSCC DATA X'1002
RMHID 1 alpha Identifies a message to $RMU RMHID DATA C'X’
RMHTYP 1 alpha Identifies a request to $RMU RMHTYP DATA C'R’
RMREQ 2 num Specifies the SEND request RMREQ DATA FO’
RMSDSN (*) 8 alpha Name of data set to send to host RMSDSN DATA CL8 DATASET
RMSVOL (¥) 6 alpha Volume containing the data set to RMSVOL DATA CL6'VOLUME’
be sent. Default=IPL volume
RMSSTR (*) 4 num Starting record of the data set to be RMSSTR DATA DO’
sent

RMSTYP (¥) 2 num Type of data set to be sent to the RMSTYP DATA F'O’
host

RMSBLK (*) 2 num Specifies record blocking of data to RMSBLK DATA F'O
be sent

Figure 33. Required fields for SEND request

Here is an example of SEND request communications flow. The host asks the remote system to
send it a data set called "MYDATA".

Figure 48 on page CO-101 shows a sample program that sends a SEND request.

Chapter 2. Remote Management Utility ($RMU)

CO-69

Remote Management Utility (SRMU)

Host Programming for the $RMU Application (continued)

Host Program Host Remote
BSCWRITE IX ENQ ------- >
ACEL LR ACK*
RMHBSCC DATA X'1002 TEXT ---=---- >
RMHID DATA CX
RMHTYP DATA C'R’
RMREQ DATA FO
RMSDSN DATA CL8'MYDATA’
RMSVOL DATA CL6'MYVOL’
RMSSTR DATA DO
RMSTYP DATA FO
RMSBLK DATA F'1°
Cmmmmee- ACK*
BSCWRITE E EOT ------- >
Cmmmmm e ENQ
ACK* -==---- >
BSCREAD | S TEXT
(status)
RMHTYP='S’
RMSREQ=0
RMSFN=-1
ACK* ----=-- >
BSCREAD C <ommmee- TEXT
(data)
RMHTYP="D
RMDDATA=Text
ACK* ------- >
BSCREAD C <emmmmm TEXT
(data)
RMHTYP='D’
RMDDATA=Text
ACK* ==-=uu- >
BSCREAD C oo - TEXT
(count)
RMHTYP="C
RMCREQ=0
RMCCNT=2
ACK* --==-uu- >
BSCREAD C <o EOT
(termination)

Figure 34. Communications flow for SEND request

Remote System Echoing Host Data (WRAP)

The host can send data to the remote system, and ask $RMU to echo that data back to the host.
This is the WRAP request. WRAP is useful for testing line conditioning.

Send a WRAP request by coding a BSCWRITE IX instruction, along with the required

information fields. The RMWTXT field is where to specify the text you want $RMU to echo
back to the host.

CO-70 SC34-0443

Host Programming for the $RMU Application (continued)

Coding the Required Fields for WRAP Request

Specify the following fields for the WRAP function:

The chart that follows shows all the fields to code in your program for a WRAP request. The

fields identified by as asterisk (*) contain variable values. You can code any appropriate value
in these fields. However, the other fields can contain only the values shown in the chart. Code
these fields exactly as the chart specifies.

Field Size Explanation What to Code
Type
RMHBSCC 2 hex Starts the message RMHBSCC DATA X'1002
RMHID 1 alpha Identifies a message to SRMU RMHID DATA C'X’
RMHTYP 1 alpha Identifies a request to $SRMU RMHTYP DATA C'R’
RMREQ 2 num Specifies the WRAP request RMREQ DATA F'5’
RMWTXT (*) vari- able Text that $RMU is to echo back to RMWTXT DATA C'ANY TEXT'
host.

Figure 35. Required fields for WRAP request

Figure 36 on page CO-72 shows an example of the WRAP function. The host sends the

Series/1 a WRAP request along with the text "WRAP TEXT'. The Series/1 receives the

request and transmits the identical data back to the host, and the operation is completed.

Figure 46 on page CO-95 shows a sample program that can send a WRAP request.

Chapter 2. Remote Management Utility (SRMU)

CO-71

Remote Management Utility (SRMU)

Host Programming for the $RMU Application (continued)

Host Program Host Remote
BSCWRITE IX ENQ -------- >

Semmmwee ACK*
RMHBSCC DATA X'1002 TEXT ======- >

RMHID DATA C'X
RMHTYP DATA C'R’
RMREQ DATA F'&
RMWTXT DATA C'WRAP TEXT

BSCWRITE E (o) — >

BSCREAD | <mcmmee- TEXT
(wrap text)
RMHBSCC=X"1002
RMHID=C’X’
RMHTYP=C'R’
RMREQ=F'5’

BSCREAD C Commmmee EOT
(termination)

RMWTXT=X"WRAP TEXT"

Figure 36. Communications Flow for WRAP

Controlling Program Execution on the Remote System

$RMU can perform functions involving the execution of programs on the remote system. You
can tell SRMU to start a program running on the remote system. You can also tell $SRMU to
load another program and at the same time terminate itself. The requests associated with these

functions are:

« EXEC start a program on the remote system

« SHUTDOWN the operation of $RMU and load another program on the remote system

Host Starting a Program on Remote System (EXEC)

The host can ask $RMU to start execution of a program on the remote system. This is the

EXEC request.

Send the EXEC request by coding a BSCWRITE IX instruction, along with the required data

fields.

$RMU sends a the host a status message to tell if it was able to perform the EXEC function.

$RMU then waits for a new request from the host.

Coding the RMXFLG Field: The RMXFLG is an optional field which activates these

conditions:

CO-72 $C34-0443

Host Programming for the $RMU Application (continued)

« Prints a ""program loaded" message on the remote terminal that loaded SRMU. Enter the
value X’40’.

» Causes $RMU to wait for the program to finish running before sending a status message to
the host. Enter the value X’20’.

These two values correspond to the LOGMSG and WAIT operands of the Event Driven
Language instruction LOAD.

To specify both of these conditions, enter the value X’60’.
To specify neither of these conditions, simply do not code the RMXFLG field.

Specifying Partition: You must tell $RMU the partition in which to run the program. The
field RMXPTN is where to code this information. Enter one of the following values in this field:

« -1 $RMU partition
« 0 Any partition
« 1-8 Specific partition

Allocating Free Space: You can specify the amount of free space (in bytes) to pass to the
program. The RMXLFS field is where to code this information.

Passing Parameters: SOome programs require parameters to be passed from the host in order
to run successfully. You accomplish this with the RMXPRM# and RMXPRM fields.

In RMXPRMH#, specify the length (in words) of the parameters to pass to the program.

In RMXPRM, specify the parameters themselves. The length of RMXPRM must be equal to
the value in RMXPRM4#.

Passing Data Sets: You can pass data seta to the program by coding the RMXDS# and
RMXDS fields.

In RMXDSH#, specify the number of data sets (up to nine) to pass to the program. Do not leave
this field blank; enter zero if you are not passing any data sets.

In RMXDS, specify the name and volume of each data set to pass to the program. The number
of RMXDS fields must be equal to the value of RMXDS#.

Chapter 2. Remote Management Utility (SRMU) CO-73

Remote Management Utility (SRMU)

Host Programming for the $RMU Application (continued)

Coding Required Fields for EXEC Request

The chart that follows shows all the fields to code in your program for an EXEC request. The
fields identified by as asterisk (*) contain variable values. You can code any appropriate value
in these fields. However, the other fields can contain only the values shown in the chart. Code

these fields exactly as the chart specifies.

Field Size Explanation What to Code
Type
RMHBSCC 2 hex Starts the message RMHBSCC DATA X’ 1002
RMHID 1 alpha Identifies a message to $RMU RMHID DATA C'X’
RMHTYP 1 alpha Identifies a request to $SRMU RMHTYP DATA C'R’
RMREQ 2 num Specifies the EXEC request RMREQ DATA F'9’
filler 2 Reserved field (unused) DATA FO
RMXFLG (¥) 1 num Load message prints (X'40’) or RMXFLG DATA X'nn’
status message is delayed (X'20')
This field is optional.
RMXPTN (*) 1 num Partition to run program in RMXPTN DATA H'n’
RMXPGM (*) 8 alpha Name of program to execute RMXPGM DATA CL8'DATASET’
RMXVOL (¥) 6 alpha Volume containing the program to RMXVOL DATA CL6'VOLUME’
execute. Default= IPL volume
RMXLFS (*) 2 num Free space (in bytes) to pass to RMXLFS DATA F'nn’
program

Figure 37 (Part 1 of 2). Required fields for EXEC request

CO-74 SC34-0443

Host Programming for the SRMU Application (continued)

Field Size Explanation What to Code
Type
RMXPRM# (*) 2 num Length of paramters to pass to RMXPRM# DATA Fnn’
program
RMXPRM (*) vari- able Parameters to pass to program RMXPRM EQU *
RMXDS# (¥) 2 num Number of data sets toc pass to RMXDN# DATA F'nn’
program
RMXDS (¥) 14 alpha Name and volume of data set to RMXDS EQU *
pass to program.

Figure 37 (Part 2 of 2). Required fields for EXEC request

Figure 38 on page CO-76 shows an example of the EXEC function. The host specifies that a
program named "MYPROG" on volume "MYVOL'" is to be executed in partition 1, with 256

bytes of free space passed to the program. The RMXFLG field specifies that both the
RMXFLGL and RMXFLGW bits are set on. No parameters or data sets are passed to

"MYPROG". The program ends with a return code of -1. $RMU sends a status record of -1
(successful completion) to the host, along with the return code for MYPROG.

Figure 46 on page CO-95 shows a sample program that can send an EXEC request.

Chapter 2. Remote Management Utility ($SRMU)

CO-75

Remote Management Utility ($RMU)

Host Programming for the $RMU Application (continued)

Host Program Host Remote
BSCWARITE IX ENQ ------- >

<emooe-- ACK*
RMHBSCC DATA X'1002' TEXT -=-==-- >

RMHID DATA C'X
RMHTYP DATA C'R’
RMREQ DATA F9'

DATA FO
RMXFLG DATA X'60°
RMXPTN DATA H'1’
RMXPGM DATA CL8'MYPROG’
RMXVOL DATA CL6'MYVOL
RMXLFS DATA F'256
RMXPRM# DATA FO’
RMXPRM EQU *
RMXDS# DATA FO’
RMXDS EQU *

R ACK*
BSCWRITE E EOT ------- >
<mmmmm-- ENQ
ACK* ----=-- >
BSCREAD | Commmmem TEXT
(status)
RMHTYP='S’
RMSREQ=9
RMSFN=-1
RMSST=__ |
ACK* -==~--- >
BSCREAD C Cmmmmme- EOT

Figure 38. Communications flow for EXEC

Terminate $RMU/Start Another Program on Remote System (SHUTDOWN)

CO-76

SC34-0443

You can ask SRMU to terminate and release any Series/ 1 resources it has allocated. In addition,
you can ask $RMU to start another program on the remote system before terminating. This is
the SHUTDOWN request.

Send your SHUTDOWN request by coding a BSCWRITE IX instruction, along with the
required information fields. The request may also specify the name of a program to be

executed, similar in format to the EXEC function.

Coding the RMSDFLG Field: The RMSDFLG is an optional field which activates these
conditions:

« Specifies that $RMU is to run another program. Enter the value X‘80’.

« Prints a "program loaded" message on the remote terminal that loaded $RMU. Enter the
value X‘60°. This value corresponds to the LOGMSG parameter of the Event Driven
Language instruction LOAD.

To specify both conditions, enter the value X‘CO’

Host Programming for the $SRMU Application (continued)

To specify neither of these conditions, simply do not code the RMSDFLG field.

Specifying Partition: You must tell SRMU the partition in which to run the program. The

field RMSDPTN is where to code this information. Enter one of the following values in this
field:

e -1 $RMU partition

« 0 Any partition

o 1 -8 Specific partition

Allocating Free Space: You can specify the amount of free space (in bytes) to pass to the
program. The RMSDLFS field is where to code this information. This value is expressed in

bytes.

Passing Parameters: Some programs require parameters to be passed from the host system
in order to run successfuily. You accomplish this with the RMSDPRM# and RMSDPRM fields.

In RMSDPRM4, specify the length (in words) of the parameters to pass to the program.

In RMSDPRM, specify the parameters themselves. The length of RMSDPRM must be equal to
the value in RMSDPRMZ.

Passing Data Sets: You can pass data sets to the program by coding the RMSDDS# and
RMSDDS fields.

In RMSDDSH#, specify the number of data sets (up to nine) to pass to the program. Do not
leave this field blank; enter zero if you are not passing any data sets.

In RMSDDS, specify the name and volume of each data set to pass to the program. The number
of RMSDDS fields must be equal to the value of RMSDDS#.

Chapter 2. Remote Management Utility (SRMU) CO-77

Remote Management Utility (SRMU)

Host Programming for the SRMU Application (continued)

Coding the Required Fields for SHUTDOWN Request

The chart that follows shows all the fields to code in your program for a SHUTDOWN request.
The fields identified by an asterisk (*) contain variable values. You can code any appropriate
value in these fields. However, the other fields can contain only the values shown in the chart.

Code these fields exactly as the chart specifies.

Field Size Explanation What to Code
Type
RMHBSCC 2 hex Starts the message RMHBSCC DATA X 1002’
RMHID 1 alpha Identifies a message to $SRMU RMHID DATA C'X’
RMHTYP 1 alpha ldentifies a request to $RMU RMHTYP DATA C'R’
RMREQ 2 num Specifies the SHUTDOWN request RMREQ DATA F7’
filler 2 Reserved field (unused) DATA FO’
RMSDFLG (*) 1 num Execute another program (X'80°) RMSDFLG DATA X'nn’
and/or load message prints (X'40’)
This field is optional.
RMSDPTN (*) 1 num Partition to run program in RMSDPTN DATA H'n’
RMSDPGM (*) 8 alpha Name of program to execute RMSDPGM DATA CL8' DATASET’
RMSDVOL (¥) 6 alpha Volume containing the program to RMSDXVOL DATA CL6'VOLUME’
execute. Default= IPL volume
RMSDLFS (*) 2 num Free space (in bytes) to pass to RMSDLFS DATA F'nn’
program

Figure 39 (Part 1 of 2). Required fields for SHUTDOWN reques t

CO-78 5C34-0443

Host Programming for the $RMU Application (continued)

Field Size Explanation What to Code
Type
RMSDPRM{ (*) 2 num Length of paramters to pass to RMSDPRM# DATA F'nn’
program
RMSDPRM (*) vari- able Parameters to pass to program RMSDPRM EQU *
RMSDDS# (*) 2 num Number of data sets to pass to RMSDDN¢{# DATA F'nn’
program
RMSDDS (¥) 14 alpha Name and volume of data set to RMSDDS EQU *
pass to program.

Figure 39 (Part 2 of 2). Required fields for SHUTDOWN reques t

Figure 40 on page CO-80 shows an example of the SHUTDOWN function. The host sends the
Series/1 a SHUTDOWN request with a program name specified. The program, "MYPROG" on
volume "MYVOL", is to execute in partition 1, has 256 bytes of free space passed to it, and has
no parameters or data sets passed to it. The RMSDFLG field specifies that a program is to be
executed and a "program loaded" message is to be printed following a successful load of the

program. $RMU sends a status record of -1 (successful completion) to the host, loads the

program, and $RMU terminates.

Figure 46 on page CO-95 shows a sample program that can send a SHUTDOWN request.

Chapter 2. Remote Management Utility (SRMU)

CO-79

Remote Management Utility ($RMU)

Host Programming for the SRMU Application (continued)

Host Program Host Remote
Remote
BSCWRITE IX ENQ ==-——-- >

R ACK*
RMHBSCC DATA X 1002’ TEXT -=----- >

RMHID DATA C'X
RMHTYP DATA C'R’

RMREQ DATA F'7
RMSDFLG DATA X'CO’
RMSDPTN DATA H'1’
RMSDPGM DATA CL8'MYPROG’
RMSDVOL DATA CL6'MYVOL’
RMSDFLS DATA F'256'
RMSDPRM{# DATA FO
RMSDPRM EQU *
RMSDDS# DATA FO'
RMSDDS EQU *

BSCWRITE E EOT ------- >

BSCREAD | Cmmmmmmm TEXT
(status)
RMHTYP='S’
RMSREQ=7
RMSFN=-1

BSCREAD C Cmmmmmmm EOT
(termination)

Figure 40. Communications flow for SHUTDOWN

Verifying ldentities between Systems (IDCHECK)

You can ask $RMU to verify the identities of the host and remote systems. This is the
IDCHECK request.

Send your IDCHECK request by coding a BSCWRITE IX instruction along with the required
information fields.

The IDs of both the host and remote systems have predefined default values. These values are
discussed in the section, "Remote Management Utility Defaults". The default IDs are in remote
system storage.

$RMU asks the host to send its ID for verification. Only if the host ID is correct does $RMU
send the remote system ID to the host. If the host sends an incorrect (invalid) ID, $RMU
terminates the function.

Coding the Required Fields for IDCHECK Function

The chart that follows shows all the fields to code in your program for an IDCHECK request.
The fields identified by an asterisk (*) contain variable values. You can code any appropriate

CO-80 SC34-0443

Host Programming for the $RMU Application (continued)

Field Size Explanation What to Code

Type
RMHBSCC 2 hex Starts the message RMHBSCC DATA X'1002
RMHID 1 alpha Identifies a message to $RMU RMHID DATA C'X’
RMHTYP 1 alpha Identifies a request to SRMU RMHTYP DATA C'R’
RMREQ 2 num Specifies the IDCHECK request RMREQ DATA F'9’
RMICHK (¥) 8 alpha Host ID RMICHK DATA C'HOSTID’

Figure 41. Required fields for IDCHECK request

Figure 42 shows an example of the IDCHECK function. The host sends the default ID
"HOSTRMUX". $RMU validates the host ID and sends a status record of -1 (successful
completion) to the host along with its default ID, "REMTRMUX".

Figure 46 on page CO-95 shows a sample program that can send an IDCHECK request.

value in these fields. However, the other fields can contain only the values shown in the chart.
Code these fields exactly as the chart specifies.

Host Program Host Remote

BSCWRITE IX ENQ -----=- >
Cmmmmmm- ACK*

RMHBSCC DATA X'1002 TEXT ------- >

RMHID DATA C'X

RMHTYP DATA C'R’

RMREQ DATA F6

RMICHK DATA C’'HOSTRMUX’
<ommmee- ACK*

BSCWRITE E EOT --===-- >
Cmmmmme- ENQ

ACK* ------- >

BSCREAD | Cmmmmmmm TEXT
(status)
RMHTYP='S’
RMSREQ=6
RMSFN=-1
RMSRID='"REMTRMUX’

ACK* —=----- >
BSCREAD C <ommeee- EOT

Figure 42. Communications flow for IDCHECK

Chapter 2. Remote Management Utility ($SRMU)

CO-81

Remote Management Utility (SRMU)

Interacting Between Host and Remote Systems (PASSTHRU)

You can set up interactive sessions between the host and remote systems with the PASSTHRU
request. During a passthru session, the host can perform the same functions as a station directly
attached to the remote system. The host can interact with the Event Driven Executive
supervisor by issuing operator commands, or with a program or utility on the remote system.

Most programs that do not require full screen terminal support, including most Event Driven
Executive utilities, are available for use during a passthru session. Programs which cannot be
run under the PASSTHRU function are discussed in “Considerations for Using PASSTHRU.”

Considerations for Using PASSTHRU

Certain restrictions apply to programming for the PASSTHRU session. Before establishing a
session, you must know what you can and cannot do with PASSTHRU.

Virtual Terminal Support

PASSTHRU uses the virtual terminal support of the Event Driven Executive. Because of this,
the restrictions inherent in virtual terminal support also apply to PASSTHRU. Virtual terminals
do not support static screens. Therefore, programs that use static screens cannot be run under
the PASSTHRU function. This includes programs such as the full screen editor, $FSEDIT.
Another virtual terminal restriction is that the maximum record length is 254 bytes.

During system generation, you must define two virtual terminals for the remote system:
CDRVTA and CDRVTB. You may want to change the LINSIZE parameter. A LINSIZE of
132 will handle output that uses the full width of a printer. Specifying a smaller value saves
storage, but messages longer than the LINSIZE will be truncated. The maximum value for
LINSIZE is 254.

Because the $RMU PASSTHRU function uses a predefined set of virtual terminals (CDRVTA
and CDRVTB), only one PASSTHRU session can be conducted at a time. While a PASSTHRU
session is being conducted, another copy of $RMU (defined for another communications line)
can be performing any other function except PASSTHRU.

No Attention Interrupt

$RMU allows the host to transmit a Program Function key or an attention key only after SRMU
has sent a request message. Therefore, when the attention key is pressed at a host terminal, the
terminal stops communicating with $RMU (the remote system) and begins communicating with
its own (the host) system. This prevents output from $RMU to the host from being interrupted
by a host terminal attention key, as it could be by a local terminal. For example, a listing
produced by the $DISKUT? utility could not be interrupted by pressing the host terminal
attention key and entering the $C command.

Deadlock and $RMUPA

CO-82

SC34-0443

A program that stops communicating with the terminal which loaded it and waits for operator
commands (using the attention or Program Function key) will not run directly under the
PASSTHRU function. This is because $RMU waits indefinitely on a "READTEXT" to the
virtual channel at the same time the host program is waiting for an Attention or PF key. Since

Interacting Between Host and Remote Systems (PASSTHRU) (continued)

Indefinite Waits

both programs are "listening" and neither is 'talking", both will wait forever. This is called a
deadlock. Programs that may do this include:

$DEBUG

$TRAP

$LOG

$BSCTRCE

$TERMUT3 (attention-entered commands)
$IOTEST (attention-entered commands)
CALCDEMO (sample program)

$RMUPA is a program that can break this deadlock. It must be started under the PASSTHRU
function prior to starting a PASSTHRU session with a program which may have this problem.
$RMUPA causes a "disconnect'', which results in a $RMU sending a Program End PASSTHRU
record to the host whenever the following events occur:

+ No activity has occurred over the virtual channel for 20 seconds.
e $RMU is waiting on completion of a "READTEXT" instruction.
o The host program is not enqueued (ENQT) on its virtual terminal.

$RMUPA uses the STIMER instruction; therefore, timer support must be included in the Event
Driven Executive system.

The sample PASSTHRU host program in ‘“PASSTHRU Sample Program” on page CO-103
shows how to use SRMUPA. First SRMUPA is started. When a Program End PASSTHRU
record is received at the host, the host responds with a Program End PASSTHRU record and the
PASSTHRU session with SRMUPA terminates. Only one copy of SRMUPA should be running
at any time; it can run in any partition. It continues running until an "attention" followed by
"$RMUPA" is entered.

Once $RMUPA is running, another program may be started. The sample PASSTHRU host
program in “Example of Conducting a PASSTHRU Session” on page CO-111shows how
$DEBUG may be used. Note that ""$PFQ" is entered to provide the same function as the
attention key.

If a remote program does not perform any terminal I/O for 20 seconds, SRMUPA causes a
Program End record to be sent even though the program is still running. If this happens, the host
should respond with a Request for Data record until the remote program performs terminal I/0.

If the PASSTHRU function loads a program which issues an ENQT for a terminal other than
the terminal which loaded $RMU and the program terminates, SRMU does not receive a
"disconnect'' over the virtual channel and the host will not receive a Program End record.
$RMU will wait indefinitely. One example of when this occurs is when $SEDXASM is running
with output directed to a printer. This condition can be avoided in two ways:

Chapter 2. Remote Management Utility (SRMU) CO-83

Remote Management Utility (SRMU)

Interacting Between Host and Remote Systems (PASSTHRU) (continued)

o Load the program from another program (such as the $JOBUTIL utility) which will wait for
the program to complete. Programs that require interaction with the terminal operator, such
as $EDXASM, should be handled in this way.

o Load the program through a session with the Event Driven Executive supervisor (using the
$L command) and respond with a Program End when the command terminates.

Abrupt Termination

Timeouts

CO-84

SC34-0443

If a PASSTHRU session is abruptly terminated (status received from host, invalid message
received from host, or an error in the BSCAM), $RMU sends a return code 5 (''disconnected')
to the program for the outstanding terminal request. This code will be received only once by the
PASSTHRU-invoked program. The program should take appropriate action, which would most
likely be to terminate.

If the program does not recognize the error and continues to perform terminal 1/0, it will
interfere with attempts to establish a new PASSTHRU session. If the new session is being
established with a program, $RMU returns the status "virtual terminal busy". The host may
establish a session with the Event Driven Executive supervisor and issue a $C command to
cancel the suspended program. (As noted in the Operator Commands and Utilities Reference, the
$C command should be used with caution).

When a load command ($L) is issued during a PASSTHRU session with the Event Driven
Executive supervisor, a Program End record, resulting from completion of the command, may be
received by the host. Whether it is received depends on how quickly the loaded program begins
performing terminal I/0.

$RMU will not time-out while it is receiving messages during a PASSTHRU session. However, if
the host does not acknowledge receipt of messages sent by $RMU, a time-out will occur and the
PASSTHRU session will terminate. This can be avoided in two ways:

« Avoid any long delays at the host while messages are being received from the Series/1.

« Define a high retry count for the RETRIES parameter of the BSCLINE statement.

Send your PASSTHRU request by coding a BSCWRITE IX instruction, along with the required
information fields. Once the passthru session begins, the host and $RMU exchange a series of
messages in a manner similar to the way messages are written to and read from a terminal. This
record exchange consists of two parts:

o Establishing a PASSTHRU session

o Conducting a PASSTHRU session

Interacting Between Host and Remote Systems (PASSTHRU) (continued)

Establishing a PASSTHRU Session

The host initiates the PASSTHRU function by sending a PASSTHRU request to SRMU. After
the host receives a successful status record and an EOT, a PASSTHRU session is established.
The PASSTHRU request specifies (in the RMPRPGM field) the type of session:

« Communication with the Event Driven Executive supervisor

o Communication with a program or utility which $RMU will load

If a session with the EDX supervisor is established, $RMU issues an "attention" (as if the
attention key on the terminal were pressed). After the terminal on the host receives the caret
symbol (>), the host operator can enter a Series/1 operator command, for example, $L.

If a session with a program is established, the host specifies the name of the program and $RMU

loads the program. The PASSTHRU session will be conducted with the host interacting with the
program.

Coding Required Fields for PASSTHRU Request

The chart that follows shows all the fields to code in your program for a PASSTHRU request.
The fields identified by an asterisk (*) contain variable values. You can code any appropriate
value in these fields. However, the other fields can contain only the values shown in the chart.
Code these fields exactly as the chart specifies.

Field Size Explanation What to Code
Type

RMHBSCC 2 hex Starts a message RMHBSCC DATA X 1002’

RMHID 1 alpha Identifies a message to RMHID DATA C'X’
$RMU

RMHTYP 1 alpha Identifies a request RMHTYP DATA C'R’

RMREQ 2 num Specifies the PASSTHRU RMREQ DATA F12'
request

RMPRBLK* 2 num Specifies record blocking by RMPRBLK DATA F'n’
remote system

RMPRFLG 1 Reserved field (unused) RMPFLG DATA H'O

Figure 43 (Part 1 of 2). Required fields for PASSTHRU request

Chapter 2. Remote Management Utility (SRMU) CO-85

Remote Management Utility (SRMU)

Interacting Between Host and Remote Systems (PASSTHRU) (continued)

Field Size Explanation What to Code
Type
RMPRPTN* 1 num Partition to run program or RMPRPTN DATA H'n’
utility in
RMPRPGM* 8 alpha Name of program or utility to RMPRPGM DATA CL8' PROGNAME’

interact with host

RMPRVOL* 6 alpha Volume containing the RMPRVOL DATA CL6'VOLUME’
program or utility Default=
IPL volume

RMPRLFS* 2 num Free space to pass to RMPRLFS DATA F'n’
program

RMPRPRM# 2 num Length of parameters to pass RMPRPRM¢{# DATA F'n’

(*) to program

RMPRPRM* vari- Parameters to be passed to RMPRPRM EQU *

able the program.

RMPRDS# (*) 2 num Number of data sets to pass RMPRDS# DATA F'n’
to program

RMPRDS 14 alpha Name and volume of data RMPRDS EQU *

sets to pass to program

Figure 43 (Part 2 of 2). Required fields for PASSTHRU request

Here is an example of the communications flow for a PASSTHRU request.

Figure 49 on page CO-104 shows a sample program that sends a PASSTHRU request.

CO-86 SC34-0443

Interacting Between Host and Remote Systems (PASSTHRU) (continued)

Host Program Host Remote
BSCWRITE IX ENQ --=-=== >
<mmmmme- ACK*
RMHBSCC DATA X'1002' TEXT ==moom- >
RMHID DATA C'X
RMHTYP DATA C'R’
RMREQ DATA F12
RMPRFLG DATA H0O’
RMPRPTN DATA HO’
RMPRPGM DATA CL8MYPROG’
RMPRVOL DATA CL6'MYVOL
RMPRLFS DATA F'256°
RMPRBLK DATA FO
RMPRPRM{f DATA F O’
RMPRPRM EQU *
RMPRDS# DATA FO
RMPRDS EQU *
R ACK*
BSCWRITE E EOT ----nm- >
S ENQ
ACK* ===-uu- >
BSCREAD | <mmmmm o TEXT
(status)
RMHTYP ='S’
RMSREQ=12
RMSFN=-1
ACK* —-=--=- >
BSCREAD C P EOT
<mmmmme ENQ
ACK* —-=-—-- >
BSCREAD | DS —— TEXT
(passthru data)
RMHTYP="P’
RMPTYP=1

RMPST=Status from READTEXT
RMPTXTL=Message length
RMPTXT=Message text

Figure 44 (Part 1 of 2). Communications flow for PASSTHRU

Chapter 2. Remote Management Utility ($SRMU)

CO-87

Remote Management Utility (SRMU)

Interacting Between Host and Remote Systems (PASSTHRU) (continued)

BSCREAD C Cmmmmmee o TEXT
(request for data)
RMHTYP="P’
RMPTYP=2
PN o] R —— >
BSCREAD C Cmmmmee EOT
ENQ ------- >
Cmmmmme ACK*
BSCWRITE IX TEXT ----=-- >
RMHTYP="P’
RMPTYP=1
RMPST=0 (Unused)
RMPTXTL=Message length
RMPTXT=Message text
<mmmmmm- ACK*
BSCWRITE E EOT ------- >
Cmmmmeee ENQ
ACK¥* -==---- >
BSCREAD | <mmmmme- TEXT
(PASSTHRU program end)
RMHTYP='P’
RMPTYP=3
ACK* --—=--- >
BSCREAD C Cmmmmmm o EOT
ENQ ------- >
Cmmmmmm- ACK*
BSCWRITE IX
(PASSTHRU program end)
RMHTYP="P’ TEXT =mmmmmmem >
RMPTYP=3
<mmmmo- ACK*
BSCREAD E EOT ------ >

Figure 44 (Part 2 of 2). Communications flow for PASSTHRU

Conducting a PASSTHRU Session

Once the PASSTHRU session is established, the host and the remote systems exchange
PASSTHRU records. These records provide information to and receive information from the
host program, as if the host program were a terminal on the remote system. There are four types
of PASSTHRU records:

« Text or Program Function (PF) Key - passes messages or Program Function keys

« Request for Data - indicates data should be sent

¢ Program End - indicates termination

« No Data - indicates no messages are available

The host "state" can be changed by:

CO-88 SC34-0443

Interacting Between Host and Remote Systems (PASSTHRU) (continued)

« Receiving a PASSTHRU record from $RMU. This is shown as a solid horizontal line with
an arrow pointing to the new state.

« Sending a PASSTHRU record to SRMU. This is shown as a horizontal line of dashes with
an arrow pointing to the new state.

« A change of state with no PASSTHRU record transfer. This is represented by a dotted line
with an arrow pointing to the new state.

The PASSTHRU session begins with the host in the state "READTEXT". The host issues a
read to the communications line and receives either a Text or PF Key, Request for Data, or
Program End record.

If the host receives a Text or PF Key record, the Series/1 is sending data to the host. The
program (or the supervisor) has issued a PRINTEXT or other terminal I/O instruction, and it is
transmitted to the host as if the host were a terminal. The state of the host changes from
"READTEXT" to "READING", the host reads the Text or PF Key record, and the state then
changes back to "READTEXT". The host remains in the "READTEXT'"' state as long as it
receives Text or PF Key records.

If the host receives a Request for Data record, SRMU needs data from the host. The program
(or the supervisor) has issued a READTEXT or other terminal I/0O instruction, and requires
data from the host as if the host were a terminal. The state of the host changes from
"READTEXT" to "PGM NEEDS DATA". Note that an EOT follows the the Request for
Data record. The host must also read the EOT.

When the host is in the state PGM NEEDS DATA", it must send a Text or PF Key record
followed by an EOT. The Text or PF Key record the host sends can contain either text or a PF
key.

If the host sends text, the state of the host changes from '"PGM NEEDS DATA" to
"READTEXT". If the host sends a Program Function key, the host goes to the state ''PFK
SENT". The host issues a read to the communications line and will receive a Request for Data
record followed by an EOT. $RMU sends the Request for Data record to the host because the
original request was not satisfied by the Program Function key. As a result, the host is now in
the state "SEND TEXT". The host must send a Text or PF Key record which contains text,
followed by an EOT. The host then returns to the state "READTEXT".

If the host is in the state "READTEXT" and receives a Program End record followed by an
EOT, this means that the program, the operator command, or an attention exit has completed.
The host changes from the state "READTEXT' to "CONTINUE ?". At this point, the host
must determine whether the PASSTHRU session should continue.

If the PASSTHRU session is with a program and the program ends (while in the "CONTINUE
7" state), the host usually does not continue the session. If the session is with the supervisor and
a $L command is entered, the host usually continues the session and communicates with the
program that was loaded.

Chapter 2. Remote Management Utility (SRMU) CO-89

Remote Management Utility (SRMU)

Interacting Between Host and Remote Systems (PASSTHRU) (continued)

To terminate the PASSTHRU session, the host sends a Program End record, followed by an
EOT. This changes the state of the host from "CONTINUE ?" to "EXIT". The PASSTHRU
session now terminates and the Remote Management Utility waits for a new request from the
host. To continue the session, the host sends a Request for Data record followed by an EOT.
The state of the host then changes from "CONTINUE ?" to "ACTIVITY ?".

At this point, RMU determines if there is any activity on the Series/ 1 for the host. If there is,
$RMU sends one of the three PASSTHRU records (Text or PF Key, Request for Data, or
Program End) which the host can receive in the "READTEXT" state. The state of the host
then changes depending on the type of PASSTHRU record it receives.

If there is no terminal activity, $RMU sends a No Data record followed by an EOT, and the
host state changes from ""ACTIVITY ?" to "CONTINUE ?". The host then determines
whether it should continue. If the program in the Series/1 has delays in performing terminal
I/0 while the host is in the "CONTINUE ?" state, the host may change from "CONTINUE ?"
to "ACTIVITY ?" and back again several times. However, if no activity occurs, the host must
eventually send a Program End record and terminate the PASSTHRU session.

Figure 50 on page CO-111 shows a PASSTHRU session that invokes and runs the $DEBUG
utility from the host terminal.

PASSTHRU Record Types

This section describes the format and content of the four types of PASSTHRU records.

Text or Program Function Key Record

CO-90

SC34-0443

This record consists of two segments. The first six bytes, or the main segment, identifies the
record as a PASSTHRU Text or Program Function (PF) key record. One or more text or PF
key segments follow the main segment.

In the main segment, all values are constants, as shown below. The number 1 for the RMPTYP
field identifies the record as a text or PF key record. The text or Program Function key segment
contains the information to be transferred.

Main segment:

RMHBSCC DATA X'1002
RMHID DATA C'X
RMHTYP DATA C'P’
RMPTYP DATA F'1’

Text or Program Function key segment:
RMPST DATA F'nnnn’

RMPTXTL DATA Fnnnn’
RMPTXT DATA C'xxxx’

The fields in the text or Program Function key segment are:

Interacting Between Host and Remote Systems (PASSTHRU) (continued)

RMPST A 2-byte numeric field containing the return code associated with the text. For
example, the return code might indicate that the text is to appear on a new line.
This field contains a value only on records received by the host.

Some return codes have no text associated with them. For a complete description of
the possible return codes, see the virtual terminal return codes for the READTEXT

instruction in the Language Reference.

The return codes which apply are:

X’8Fnn’ LINE=nn received
X’8Enn’ SKIP=nn received

-2 Line received (no CR)
-1 New line received

RMPTXTL A 2-byte numeric field specifying either the length of the text, or indicating a PF
key is being sent (-1). If there is no text, for example when only a return code is
sent, this field contains a zero.

RMPTXT Either a variable-length alphameric field containing text, or a 2-byte numeric field
containing the PF key value. If the field contains text, the length of the text must
equal RMPTXTL. If RMPTXTL is an odd number, one byte of blanks (X’40’)
follows the text.

If the Text or PF Key record is not blocked, it will contain one of each segment. If the record is
blocked, it will contain one main segment followed by multiple text or PF key segments. The
host must determine the length of the record to process each segment. All records sent by the
host are unblocked. Records sent by $RMU may be blocked if specified on the PASSTHRU
request. Blocking is discussed in “PASSTHRU Blocking” on page CO-94.

All Text or PF Key records sent by $RMU will always contain text; the host will never receive a
Program Function key.

When the host sends a Text or PF Key record, the record may contain either text (the host as a
terminal has entered text), or a PF key (the host as a terminal has entered a PF key). If text is
sent, the length of the text is specified in the RMPTXTL field, and the text is specified in the
RMPTXT field. The RMPST field is not used.

The following example shows a record sent by the host which contains the text "MESSAGE
FROM HOST PROGRAM".

RMHBSCC DATA X'1002

RMHID DATA C'X

RMHTYP DATA C'P

RMPTYP DATA F1’

RMPST DATA FO (IGNORED)

RMPTXTL DATA F'25

RMPTXT DATA C'MESSAGE FROM HOST PROGRAM’

Chapter 2. Remote Management Utility (SRMU) CO-91

Remote Management Utility (SRMU)

Interacting Between Host and Remote Systems (PASSTHRU) (continued)

When the host sends a PF key, the value of the RMPTXTL field is set to -1 and the PF key is
specified as a 2-byte numeric value in the RMPTXT field. A PF key value of 0 is the equivalent
of an "attention"".

The following example shows the host sending a Program Function key 3.

RMHBSCC DATA X'1002'

RMHID DATA C'X

RMHTYP DATA C'P

RMPTYP DATA F1

RMPST DATA FO' (IGNORED)
RMPTXTL DATA F-1° (INDICATES PF KEY)
RMPPF DATA F'3" PFKEY3

Figure 45 on page CO-93 is an example of the records the host receives from a program which
executes a PRINTEXT instruction.

CO-92 SC34-0443

Interacting Between Host and Remote Sys

tems (PASSTHRU) (continued)

Issued by program on Series/1:

PRINTEXT "ENTER COMMAND’,SKIP=1

PASSTHRU record received by host
with no blocking:

RMHBSCC DATA X'1002

RMHID DATA C'X

RMHTYP DATA C'P

RMPTYP DATA F1’

RMPST DATA X'8E01" (SKIP=1)
RMPTXTL DATA FO° (NO TEXT)

RMHBSCC DATA X'1002

RMHID DATA C'X

RMHTYP DATA C'P

RMPTYP DATA F'1’

RMPST DATA F-2

RMPTXTL DATA F13'

RMPTXT DATA C'ENTER COMMAND’
DATA C'* (PAD)

PASSTHRU record received by host
with blocking:

RMHBSCC DATA X'1002
RMHID DATA C'X
RMHTYP DATA C'P
RMPTYP DATA F1’
DATA X'8E01" (SKIP=1)
DATA FO' (NO TEXT)
DATA F-2° (NEXT SEGMENT)

DATA F13'
DATA C'ENTER COMMAND’
DATA C'* (PAD)

Figure 45. Example of PASSTHRU records received by host
Request for Data Record

The Request for Data record is a 6-byte record

that contains constant values. A Request for

Data record is always followed by an EOT. The format of the Request for Data record is:

RMHBSCC DATA X'1002
RMHID DATA C'X
RMHTYP DATA C'P
RMPTYP DATA F2

Chapter 2. Remote Management Utility (SRMU) =~ CO-93

Remote Management Utility (SRMU)
Interacting Between Host and Remote Systems (PASSTHRU) (continued)

Program End Record

The Program End record is a 6-byte record that contains constant values. A Program End record
is always followed by an EOT. The format of the Program End record is:

RMHBSCC DATA X'1002
RMHID DATA C'X
RMHTYP DATA C'P’
RMPTYP DATA F'3’

No Data Record

The No Data record is a 6-byte record that contains constant values. A No Data record is
always followed by an EOT. The format of the No Data record is:

RMHBSCC DATA X'1002'
RMHID DATA C'X
RMHTYP DATA C'P
RMPTYP DATA F4&

PASSTHRU Blocking

When PASSTHRU records are not blocked, each Text or PF Key record contains only one text
segment. With blocking, each record may contain multiple text segments. For PASSTHRU
sessions in which the host receives many consecutive lines of output, such as a result of a "list"
command to a utility, blocking allows more efficient usage of the communications line.

The host specifies blocking in the RMPRBLK field of the PASSTHRU request. If this field is
zero, blocking is not performed. A value greater than zero indicates the maximum size, in bytes,
of the text segments which the host can process.

To determine the value for the RMPRBLK field, start with the size of the buffer at the host.
Subtract 6 from the size of the host buffer for the 6-byte main segment of each record. Then
subtract 2 more to allow space for the ETX plus one byte for word alignment. The resulting
number is the maximum block size.

$RMU will use this value if it can. However, if $RMU does not have a buffer as large as the
value of RMPRBLK, $RMU will use the largest block size it can.

The host must determine the length of the Text or PF Key record and process each text segment
until the end of the record is reached. If a text record exceeds the block size specified in
RMPRBLK, $RMU still sends that record to the host. This may result in a "'wrong length
record" condition. The host should ensure that it can handle the longest length record expected
from the utility. For example, if the longest text record is 132 bytes, a block size of 136 would
be sufficient for all records.

CO-94 sC34-0443

Sample Programs

The following sample Series/1 programs communicate with and perform functions of the

Remote Management Utility.

Muitifunction Program

This program executes on a host Series/1 and communicates with SRMU on a remote Series/ 1.
The program performs all the functions of $RMU except SEND, RECEIVE, and PASSTHRU.

The program sends an ALLOCATE request and prints a status message, but can be used for the
other functions by simply defining the fields of the desired request at label "RM"".

uT PROGRAM START
START EQU *
BSCOPEN IOCB,ERROR=BSCERR OPEN BSC LINE
MOVE IOCB3, +REQLEN LENGTH OF REQUEST
* IN IOCB
BSCWRITE IX,IOCB,ERROR=BSCERR WRITE REQUEST
BSCWRITE E,IOCB,ERROR=BSCERR WRITE EOT
MOVEA IOCB2, ST ADDRESS OF STATUS
MOVE IOCB3, 20 LENGTH OF STATUS
* IN IOCB
BSCREAD I,IOCB,ERROR=BSCERR,TIMEOUT=NO READ STATUS
SUB IOCB, IOCB2,RESULT=PN2 LENGTH INTO PRINTNUM
ADD PN2,+1
SHIFTR PN2,1 CONVERT LENGTH TO WORDS
PRINTEXT '®STATUS MESSAGE:d'
PRINTNUM ST,0,MODE=HEX,P2=PN2 PRINT STATUS MSG
BSCREAD C,IOCB,ERROR=BSCERR,TIMEOUT=NO READ EOT
IF (ST+6,EQ,-1) IF SUCCESSFUL STATUS
* THEN
PRINTEXT 'aFUNCTION SUCCESSFUL'
ELSE ELSE
PRINTEXT 'aFUNCTION FAILED'
ENDIF ENDIF
TERM EQU * TERMINATION POINT
BSCCLOSE IOCB CLOSE BSC LINE
PROGSTOP
*
BSCERR EQU * BSC ERROR ROUTINE
MOVE ST, UT MOVE RETURN CODE
PRINTEXT 'aBSC ERROR:'
PRINTNUM ST PRINT RETURN CODE
GOTO TERM GO TO TERMINATION

Figure 46 (Part 1 of 2). Multifunction sample program

Chapter 2. Remote Management Utility ($SRMU)

CO-95

Remote Management Utility (SRMU)

Sample Programs (continued)

CO-96

SC34-0443

IOCB

* *

=]

* X ¥ X X ¥ 1N *

*

RM
RMHBSCC
RMHID
RMHTYP
RMREQ
RMADSN
RMAVOL
RMANREC
RMADST
REQLEN
*

BSCIOCB

DATA

EQU
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
EQU

ENDPROG
END

9,RM,0,P2=I0CB2,P3=I0CB3 I0CB
P2=I0CB2 IS MESSAGE ADDRESS
P3=I0CB3 IS MESSAGE LENGTH

10F'0’ AREA FOR STATUS RECORD
10 BYTES NORMAL STATUS RECORD
8 BYTES IDCHECK STATUS EXT.
1 BYTE ETX

19 BYTES TOTAL, ROUNDED UP TO

10 WORDS

—- THE FOLLOWING MAY BE CHANGED FOR OTHER REQUESTS --
* REQUEST
X'1002" BSC CTRL CHARS (DLE STX)
c'x! HEADER ID
C'R' HEADER TYPE: REQUEST
F'2' REQUEST TYPE: ALLOCATE
CL8 'MYDATA' DATA SET NAME: MYDATA
CL6 'MYVOL' VOLUME NAME: MYVOL
D'10' NUMBER RECORDS: 10
F'1' DATA SET TYPE: DATA
*-RM LENGTH OF REQUEST

Figure 46 (Part 2 of 2). $RMU multifunction program

Sample Programs (continued)

RECEIVE Sample Program

This sample program, which runs on the host, sends a RECEIVE request tranferring a data set
to the remote Series/1. The blocking factor for the data is 2, and it is transferred in 80-byte

records.

EXRECV
START

*

DATA

RDEND

PROGRAM START,DS=((RECVDS,??))

EQU *
BSCOPEN IOCB,ERROR=BSCOPEN OPEN BSC LINE
MOVE IOCB3, +REQLEN LENGTH OF REQUEST IN IOCB
BSCWRITE IX,IOCB,ERROR=BSCERR WRITE REQUEST
BSCWRITE E,IOCB,ERROR=BSCERR WRITE EOT
MOVEA IOCB2,ST ADDRESS OF STATUS
MOVE I0CB3,+STL LENGTH OF STATUS IN IOCB
BSCREAD I,IOCB,ERROR=BSCERR READ STATUS
BSCREAD C,IOCB,ERROR=BSCERR READ EOT
IF (STSFN,NE,-1) IF STATUS INDICATES ERROR
PRINTEXT 'aSTATUS INDICATES ERROR' THEN PRINT IT
PRINTNUM ST, 5,MODE=HEX
GOTO TERM1 TERMINATE
ENDIF ENDIF
MOVEA I0CB2,DT ADDRESS OF DATA
MOVE IOCB3,+DTL SET LENGTH
EQU *
READ DS1,DISKREC, ERROR=RDERR, END=RDEND READ RECORD
MOVE DTDATA,DISKREC, (80,BYTE) FIRST RECORD
MOVE DTDATA+80,DISKREC+128, (80,BYTE) SECOND RECORD
IF (COUNT, EQ, 0) IF FIRST TIME THEN
BSCWRITE IX,IOCB,ERROR=BSCERR,END=BSCAB WRITE INITIAL
ELSE ELSE
BSCWRITE CX,IOCB,ERROR=BSCERR,END=BSCAB WRITE CONTINUE
ENDIF ENDIF
ADD COUNT, 2 ADD 2 TO COUNT
GOTO DATA CONTINUE TRANSFERRING DATA
EQU * TO HERE WHEN AT ENDFILE
BSCWRITE E,IOCB,ERROR=BSCERR WRITE EOT
BSCREAD I,IOCB,ERROR=BSCERR READ COUNT
BSCREAD C,IOCB,ERROR=BSCERR READ EOT
iF (DTCCNT, EQ, COUNT) IF COUNT OK THEN
PRINTEXT 'COUNT OK:' PRINT IT
PRINTNUM COUNT
ELSE ELSE
PRINTEXT 'aCOUNT FAILED. COUNTED:'
PRINTNUM COUNT PRINT COUNTS
PRINTEXT ' COUNT RECORD:'
PRINTNUM DTCCNT
ENDIF ENDIF

Figure 47 (Part 1 of 4). RECEIVE sample program

Chapter 2. Remote Management Utility (SRMU) CO-97

Remote Management Utility (SRMU)

Sample Programs (continued)

CO-98

SC34-0443

TERM1 EQU
BSCCLOSE
EQU
PROGSTOP
EQU
BSCREAD
BSCREAD
PRINTEXT
PRINTNUM
GOTO

TERM2

BSCAB

%*

BSCERR EQU *
MOVE
PRINTEXT
PRINTNUM
GOTO

*

BSCOPEN EQU *
MOVE
PRINTEXT
PRINTNUM

GOTO

* EXIT POINT FOR NORMAL TERM
IOCB CLOSE BSC LINE

* EXIT POINT FOR OPEN FAILED
* ABORT RECEIVED ON WRITE

I,I0CB,ERROR=BSCERR READ STATUS
C,IOCB,ERROR=BSCERR READ EOT

'9ABORT RECEIVED. STATUS:'
DT, 5,MODE=HEX
TERM1 TERMINATE
BSC ERROR ROUTINE
ST, EXRECV MOVE RETURN CODE
'aBSC ERROR:'
ST PRINT RETURN CODE
TERM1 GO TO TERMINATION
OPEN ERROR
ST, EXRECV MOVE RETURN CODE
'aBSC OPEN ERROR:'
ST PRINT RETURN CODE
TERM2 GO TO TERMINATION

Figure 47 (Part 2 of 4). RECEIVE sample program

Sample Programs (continued)

*
RDERR EQU * DISK READ ERROR
MOVE ST, EXRECV MOVE RETURN CODE
PRINTEXT 'aDISK READ ERROR:'
PRINTNUM ST PRINT RETURN CODE
MOVEA IOCB2,ST POINT IOCB TO
* STATUS MESSAGE
MOVE IOCB3, 4 SET LENGTH TO 4
MOVE ST,X'1002" SET UP STATUS MESSAGE
MOVE ST+2,C'XS'
BSCWRITE IX,IOCB,ERROR=BSCERR SEND STATUS MESSAGE
BSCWRITE E,IOCB,ERROR=BSCERR SEND EOT
GOTO TERM2 GO TO TERMINATION
*
IOCB BSCIOCB 9,RM,0,P2=I0CB2,P3=I0CB3 IOCB
* P2= IS RECORD ADDRESS
* P3= IS RECORD LENGTH
*
RLEN DATA F'O' RECORD LENGTH
*
COUNT DATA F'O' RECORD COUNT
*¥-—- REQUEST FOR $RMU TO RECEIVE A DATA SET
*
RM EQU * REQUEST
RMHBSCC DATA X'1002' BSC CNTRL CHARS (DLE STX)
RMHID DATA C'X' HEADER ID
RMHTYP DATA C'R' HEADER TYPE: REQUEST
RMREQ DATA F'?1! REQUEST TYPE: RECEIVE
RMRDSN DATA CL8'MYDATA' DATA SET NAME: MYDATA
RMRVOL DATA CL6' ! VOLUME NAME: (IPL VOL)
RMRSTR DATA D'O' STARTING RECORD: NONE
RMRTYP DATA F'1' RECEIVE TYPE: SOURCE
RMRBLK DATA F'2' BLOCKING FACTOR: 2
REQLEN EQU *-RM LENGTH OF REQUEST

Figure 47 (Part 3 of 4). RECEIVE sample program

Chapter 2. Remote Management Utility ($SRMU)

CO-99

Remote Management Utility ($RMU)

Sample Programs (continued)

CO-100

SC34-0443

*-—- STATUS RECORD
*

ST DATA 10F'0’
*
*
*

STSFN EQU ST+6

STL EQU *-ST

*

*-—- DATA AND COUNT RECORD

*

DT DATA X'1002'
DATA C'XD'

DTCCNT EQU DT+10
DTDATA DATA 160C' '

DTL EQU *-DT

*

DISKREC DATA 128F'0’
ENDPROG
END

AREA FOR STATUS RECORD

STATUS FUNCTION
STATUS RECORD LENGTH

DATA RECORD: DLE STX
HEADER ID, TYPE (DATA)
LOCATION OF COUNT
LENGTH

DISK RECORD AREA

Figure 47 (Part 4 of 4). RECEIVE sample program

Sample Programs (continued)

SEND Sample Program

This program, which runs on the host, contains a SEND request. It asks the remote system to
transfer a data set to the host. Data is blocked with a factor of 3, and transferred in 256-byte

records.

EXSEND
START

DATA

PROGRAM START,DS=((SENDDS,??))

EQU *
BSCOPEN IOCB,ERROR=BSCOPEN OPEN BSC LINE
MOVE I0CB3,+REQLEN LENGTH OF REQUEST IN IOCB

BSCWRITE IX,IOCB,ERROR=BSCERR WRITE REQUEST
BSCWRITE E,IOCB,ERROR=BSCERR WRITE EOT

MOVEA IOCB2,ST ADDRESS OF STATUS

MOVE IOCB3,+STL LENGTH OF STATUS IN IOCB
BSCREAD 1I,IOCB,ERROR=BSCERR READ STATUS

IF (STSFN,NE,-1) IF STATUS INDICATES ERROR

BSCREAD C,IOCB,ERROR=BSCERR READ EOT
PRINTEXT 'aSTATUS INDICATES ERROR' THEN PRINT IT
PRINTNUM ST,5,MODE=HEX

GOTO TERM1 TERMINATE
ENDIF ENDIF
MOVEA I0CB2,DT ADDRESS OF DATA
EQU *
MOVE I0CB3,+DTL SET LENGTH TO MAX
BSCREAD C,IOCB,ERROR=BSCERR READ DATA OR COUNT
SUB I0CB, IOCB2,RESULT=RLEN COMPUTE LENGTH
IF (DTHTYPR,EQ,C'D',BYTE) IF DATA THEN

SUB RLEN, +4 -4 FROM LENGTH

FOR HEADER
SHIFTR RLEN, 8 RLEN = NUMBER RECORDS

WRITE RECORDS NEXT
WRITE DS1,DTDATA, RLEN, ERROR=WRERR, END=WRERR

ADD COUNT , RLEN ADD NUMBER WRITTEN
TO COUNT
GOTO DATA GO READ NEXT RECORD
ELSE ELSE
IF (DTHTYPR,EQ,C'C',BYTE) IF COUNT THEN
IF (DTCCNT, EQ, COUNT) IF COUNT OK THEN
PRINTEXT 'COUNT OK:' PRINT IT
PRINTNUM COUNT
ELSE ELSE
PRINTEXT 'COUNT FAILED. COUNTED:'
PRINTNUM COUNT PRINT COUNTS
PRINTEXT ' COUNT RECORD:'
PRINTNUM DTCCNT
ENDIF ENDIF
ELSE ELSE MUST BE STATUS
PRINTEXT 'ERROR MSG RECEIVED:'
PRINTNUM DT, 5,MODE=HEX PRINT IT
ENDIF ENDIF
ENDIF ENDIF

BSCREAD C,IOCB,ERROR=BSCERR READ EOT

Figure 48 (Part 1 of 3). SEND sample program

Chapter 2. Remote Management Utility (SRMU) CO-101

Remote Management Utility (SRMU)

Sample Programs (continued)

TERM1 EQU
BSCCLOSE
EQU
PROGSTOP
EQU *
MOVE
PRINTEXT
PRINTNUM
GOTO

TERM2

BSCERR

*

BSCOPEN EQU *
MOVE
PRINTEXT
PRINTNUM
GOTO
WRERR EQU *
MOVE
PRINTEXT
PRINTNUM
BSCWRITE
MOVEA
MOVE
MOVE
MOVE
BSCWRITE
BSCWRITE
GOTO

* EXIT POINT FOR NORMAL TERM

IO0CB

CLOSE BSC LINE

* EXIT POINT FOR OPEN FAILED

BSC ERROR ROUTINE

ST, EXSEND
'9BSC ERROR:'
ST

TERM1

MOVE RETURN CODE

PRINT RETURN CODE
GO TO TERMINATION

OPEN ERROR

ST, EXSEND
'9BSC OPEN ERROR:'
ST

TERM2

MOVE RETURN CODE

PRINT RETURN CODE
GO TO TERMINATION

WRITE ERROR

ST, EXSEND
'9DISK WRITE ERROR:'
ST

E, IOCB, ERROR=BSCERR
I0CB2,ST

IOCB3,4

ST,X'1002"
ST+2,C'XS"'

IX,IOCB, ERROR=BSCERR
E,IOCB, ERROR=BSCERR
TERM1

MOVE RETURN CODE

PRINT RETURN CODE
WRITE EOT (ABORT)
POINT IOCB TO STATUS
SET LENGTH TO 4

SET UP STATUS MESSAGE

WRITE STATUS
WRITE EOT
GO TO TERMINATION

Figure 48 (Part 2 of 3). SEND sample program

CO-102 sC34-0443

Sample Programs (continued)

*
10CB BSCIOCB 9,RM,0,P2=I0CB2,P3=I0CB3 10CB
%
* P2=I0CB2 IDENTIFIES MSG ADDRESS
* P3=I0CB3 IDENTIFIES MSG LENGTH
RLEN DATA F'0' RECORD LENGTH
%*
COUNT DATA F'0' RECORD COUNT
*®
*—— REQUEST FOR $RMU TO SEND DATA SET
*
RM EQU * REQUEST
RMHBSCC DATA X'1002° BSC CNTRL CHARS (DLE STX)
RMHID DATA C'X' HEADER ID
RMHTYP DATA C'R' HEADER TYPE: REQUEST
RMREQ DATA F'O' REQUEST TYPE: SEND
RMSDSN DATA CL8'MYDATA' DATA SET NAME: MYDATA
RMSVOL DATA CL6' ' VOLUME NAME: (IPL VOL)
RMSSTR DATA D'0’ STARTING RECORD: NONE
RMSTYP DATA F'0’ SEND TYPE: NORMAL
RMSBLK DATA F'3’ BLOCKING FACTOR: 3
REQLEN EQU *-RM LENGTH OF REQUEST
*-— STATUS RECORD
*
ST DATA 10F'O’ AREA FOR STATUS RECORD
*
*
£ 3
STSFN EQU ST+6 STATUS FUNCTION
STL EQU *-ST STATUS RECORD LENGTH
%*
*-— DATA AND COUNT RECORD
*
DT DATA 387F'0’ AREA FOR DATA RECORD
* 4 BYTES MESSAGE HEADER
* 768 BYTES 3 256-BYTE RECS
* 1 BYTE ETX
x e
* 773 BYTES TOTAL, ROUNDED UP
* TO 387 WORDS
DTHTYPR EQU DT+3 RECORD TYPE
DTDATA EQU DT+4 DATA
DTCCNT EQU DT+10 COUNT
DTL EQU *-DT LENGTH
ENDPROG
END

Figure 48 (Part 3 of 3). SEND sample program

PASSTHRU Sample Program

This sampie program executes a PASSTHRU session. The host Series/1 establishes a session
with the supervisor of a remote Series/1. The program uses blocking. The host terminal looks
as if it were connected to the remote system.

Chapter 2. Remote Management Utility ($SRMU)

CO-103

Remote Management Utility (SRMU)

Sample Programs (continued)

CO-104

EXPASST

LK I CBE K CBE CEE IR K BE BE BE B B

START
*

*——

*

*

PROGRAM START, TERMERR=TERM1

THIS EXAMPLE HOST PROGRAM USES THE PASSTHRU FUNCTION
OF THE REMOTE MANAGEMENT UTILITY. THE OPERATOR IS
ASKED WHETHER TO START THE PASSTHRU ASSIST PROGRAM.
IF SO, THE PROGRAM $RMUPA IS INVOKED. AFTER THIS, A
SESSION IS ESTABLISHED WITH THE EDX SUPERVISOR.

WHENEVER A "PROGRAM END"

PASSTHRU RECORD IS RECEIVED,

A "REQUEST DATA" RECORD IS SENT. WHEN A "NO DATA"
RECORD IS RECEIVED, THE OPERATOR IS ASKED WHETHER TO

"ATTN"
(TRY TO ACQUIRE DATA FROM THE

THE PASSTHRU SESSION AND THEN
EQU *
BSCOPEN IOCB,ERROR=BSCOPEN

(END THE SESSION AND START ANOTHER),

n READII
HOST), OR "QUIT" (END

TERMINATE.

OPEN BSC LINE

START UP PASSTHRU ASSIST PROGRAM ($RMUPA) IF NEEDED

QUESTION 'START PASSTHRU ASSIST PROGRAM?',NO=START2
MOVEA I0CB2,REQPTAS ADDRESS OF REQUEST IN IOCB
MOVE IOCB3,+REQPTASL LENGTH OF REQUEST IN IOCB
BSCWRITE IX,IOCB,ERROR=BSCERR WRITE REQUEST
BSCWRITE E,IOCB,ERROR=BSCERR WRITE EOT
MOVEA I0CB2,ST ADDRESS OF STATUS
MOVE TOCB3,+STL LENGTH OF STATUS IN IOCB
BSCREAD 1I,IOCB,ERROR=BSCERR READ STATUS
BSCREAD C,IOCB,ERROR=BSCERR READ EOT
IF (STSFN,NE,-1) IF STATUS INDICATES ERROR
PRINTEXT 'aSTATUS INDICATES ERROR' PRINT IT
PRINTNUM ST,5,MODE=HEX
GOTO TERM1 TERMINATE
ENDIF ENDIF
MOVEA I0CB2,DT ADDRESS OF DATA
MOVE I0CB3,+DTL SET LENGTH
BSCREAD I,IOCB,ERROR=BSCERR,TIMEOUT=NO
READ, EXPECT PROGRAM END
BSCREAD C,IOCB, ERROR=BSCERR, TIMEOUT=NO READ EOT
IF (EXPASST,EQ,+1) ,AND, (DT+RMPTYP, EQ, +RMPTYPPE)
IF PGM END AND EOT THEN
MOVE DT,X'1002" SET UP PTHRU PGM END
MOVE DT+RMPTYP,+RMPTYPPE PTHRU TYPE IS PGM END
MOVE TIOCB3, +RMPX SET UP LENGTH IN IOCB

BSCWRITE IX,IOCB,ERROR=BSCERR,END=BSCAB WRITE TO RMU
BSCWRITE E,IOCB,ERROR=BSCERR WRITE EOT

Figure 49 (Part 1 of 7). PASSTHRU sample program

SC34-0443

Sample Programs (continued)

ELSE ELSE
MOVE ST, EXPASST SAVE RETURN CODE
PRINTEXT '®UNSUCCESSFUL LOAD OF PASSTHRU ASSIST PGM.'
PRINTEXT '@LAST MESSAGE READ:'

PRINTNUM DT, 10, MODE=HEX PRINT MESSAGE
PRINTEXT 'aLAST RETURN CODE FROM READ:'
PRINTNUM ST,MODE=HEX PRINT RETURN CODE
GOTO TERM1 TERMINATE

ENDIF ENDIF

*

*¥-- MAIN PASSTHRU PROCESSING. SEND REQUEST

*

START2 MOVEA IOCB2,REQPT ADDRESS OF REQUEST IN IOCB
MOVE IOCB3,+REQLEN LENGTH OF REQUEST IN IOCB
BSCWRITE IX,IOCB,ERROR=BSCERR WRITE REQUEST
BSCWRITE E,IOCB,ERROR=BSCERR WRITE EOT

MOVEA IOCB2,ST ADDRESS OF STATUS
MOVE IOCB3,+STL LENGTH OF STATUS IN IOCB
BSCREAD I,IOCB,ERROR=BSCERR READ STATUS
BSCREAD C,IOCB,ERROR=BSCERR READ EOT
IF (STSFN,NE,-1) IF STATUS INDICATES ERROR
PRINTEXT '@STATUS INDICATES ERROR' PRINT IT
PRINTNUM ST,5,MODE=HEX
GOTO TERM1 TERMINATE
ENDIF ENDIF

Figure 49 (Part 2 of 7). PASSTHRU sample program

Chapter 2. Remote Management Utility (SRMU) CO-105

Remote Management Utility (SRMU)

Sample Programs (continued)

READ EQU *
MOVEA I0CB2,DT ADDRESS OF DATA
MOVE IOCB3,+DTL SET LENGTH
IF (BSCST,NE,+BSCSTRD) IF BSC STATE IS NOT READ
BSCREAD 1I,IOCB,ERROR=BSCERR,TIMEOUT=NO READ INIT
MOVE BSCST, +BSCSTRD BSC STATE = READ
ELSE ELSE
BSCREAD C,IOCB, ERROR=BSCERR, TIMEOUT=NO READ CONT
ENDIF ENDIF
*
IF (DT+RMHTYP,NE,C'P',BYTE) IF NOT PASSTHRU THEN
PRINTEXT 'aNON-PASSTHRU MESSAGE RECEIVED:'
PRINTNUM DT, 5, MODE=HEX PRINT WHAT WAS RECEIVED
* (WILL BE STATUS)
BSCREAD C,IOCB,ERROR=BSCERR,TIMEOUT=NO READ EOT
GOTO TERM1 TERMINATE
ENDIF ENDIF
*—— CASE: PASSTHRU TYPE
GOTO (ERRPT, TEXT, REQD, PGME , NODA) , DT+RMPTYP
*
TEXT EQU * PASSTHRU TYPE: DATA
MOVEA #1,DT+RMPST SET #1 TO BEGINNING OF TXT
DO UNTIL, (#1,EQ,IOCB) DO UNTIL AT END OF TEXT
* (IOCB CONTAINS ADDRESS
* OF BYTE PAST LAST BYTE
* OF DATA)
IF ((0,#1),EQ,-1),0R, ((O,#1) ,EQ,-2) IF TEXT
PRINTEXT (4,#1),MODE=LINE PRINT TO TERMINAL
IF ((0,#1),EQ,-1) IF NEWLINE
PRINTEXT SKIP=1 THEN DO NEWLINE
ENDIF ENDIF
ADD #1,(2,4#1) POINT #1 TO NEXT TEXT
ADD #1,5 ADD HEADER LENGTH + 1
AND #1,X'FFFE' POINT TO EVEN BOUNDARY
ELSE ELSE
IF ((0,#1) ,EQ,X'8F',BYTE) IF LINE= THEN
AND (0,#1) ,X'00FF' ,RESULT=N1 DO IT
PRINTEXT LINE=N1 ON TERMINAL
ELSE ELSE
IF ((0,#1) ,EQ,X'8E',BYTE) IF SKIP= THEN
AND (0,#1),X'00FF' ,RESULT=N1 DO IT
PRINTEXT SKIP=N1 ON TERMINAL
ENDIF ENDIF
ENDIF ENDIF
ADD #1,4 POINT #1 TO NEXT
* TEXT BLOCK
ENDIF ENDIF
ENDDO ENDDO
GOTO READ END TEXT PROCESSING

Figure 49 (Part 3 of 7). PASSTHRU sample program

CO-106 sC34-0443

Sample Programs (continued)

REQD EQU * PASSTHRU TYPE: REQ DATA
BSCREAD C,IOCB,ERROR=BSCERR READ EOT
MOVE DT+RMPTXTL,X'FE0O" SET UP "TEXT" STATEMENT
READTEXT DT+RMPTXT,MODE=LINE GET TEXT FROM TERMINAL
MOVE DT,X'1002"' SET UP PTHRU TEXT RECORD
MOVE DT+RMPTYP,+RMPTYPTX PTHRU TYPE IS TEXT OR PFK
MOVE DT+RMPTXTL, 0, BYTE ZERO HI-ORDER LENGTH BYTE
IF (DT+RMPTXTL,GE, 4) ,AND, (DT+RMPTXT,EQ,C'$P"'),
AND, (DT+TXT2,EQ,C'F',BYTE) IF "$PFN" ENTERED
MOVE DT+RMPTXTL, -1 INDICATE PF KEY
MOVE DT+RMPTXT,DT+TXT2 PLACE NUMBER IN MSG
AND DT+RMPTXT, X' 000F' PURIFY NUMBER
MOVE IOCB3, 2+RMPTXT LENGTH IN IOCB
ELSE ELSE
MOVE IOCB3,DT+RMPTXTL SET UP LENGTH IN IOCB
ADD IOCB3,+RMPTXT INCLUDING HEADER
ENDIF ENDIF
BSCWRITE IX,IOCB,ERROR=BSCERR,END=BSCAB WRITE TO RMU
BSCWRITE E,IOCB,ERROR=BSCERR WRITE EOT
MOVE BSCST, +BSCSTO BSC STATE = RESET
GOTO READ END REQ TEXT PROCESSING
*
PGME EQU * PASSTHRU TYPE: PROGRAM END
* (DISCONNECT)
BSCREAD C,IOCB,ERROR=BSCERR READ EOT
GOTO SNDRQD GO AND REQUEST DATA
*
NODA EQU * PASSTHRU TYPE: NO DATA
BSCREAD C,IOCB,ERROR=BSCERR READ EOT
NODAQ PRINTEXT '@"NO DATA" RECEIVED. ENTER ONE:'
READTEXT INMSG,'® A(TTN), R(EAD), Q(UIT) '
IF (INMSG,EQ,C'A' ,BYTE) ,OR, (INMSG,EQ,C'Q',BYTE)
* IF "ATTN" OR "QUIT" THEN
* SEND PROGRAM END
MOVE DT,X'1002"' SET UP PTHRU PGM END
MOVE DT+RMPTYP,+RMPTYPPE PTHRU TYPE IS PGM END
MOVE IOCB3, +RMPX SET UP LENGTH IN IOCB
BSCWRITE IX,IOCB,ERROR=BSCERR,END=BSCAB WRITE TO RMU
BSCWRITE E,IOCB,ERROR=BSCERR WRITE EOT
MOVE BSCST, +BSCSTO BSC STATE = RESET

Figure 49 (Part 4 of 7). PASSTHRU sample program

Chapter 2. Remote Management Utility ($SRMU)

CO-107

Remote Management Utility (SRMU)

Sample Programs (continued)

PRINTNUM DT, 20, MODE=HEX

GOTO TERM1
*
*-— END OF CASES
*
SNDRQD EQU *
MOVE DT, X'1002"
MOVE DT+RMPTYP , +RMPTYPRD
MOVE I0CB3, +RMPX

BSCREAD C,IOCB,ERROR=BSCERR

PRINTNUM DT, 20,MODE=HEX
GOTO TERM1

BSCREAD I,IOCB,ERROR=BSCERR

IF (INMSG,EQ,C'A',BYTE) ,GOTO, START2

IF "A" THEN START NEW
SESSION

GOTO TERM1 OTHERWISE TERMINATE
ELSE ELSE (NOT "ATTN"
* OR "QUIT")
IF (INMSG,EQ,C'R') ,GOTO,SNDRQD IF "R" THEN
* REQUEST DATA
GOTO NODAQ ELSE ASK AGAIN
ENDIF ENDIF
ERRPT EQU * PASSTHRU TYPE: UNKNOWN

PRINTEXT '@INVALID PASSTHRU RECORD RECEIVED:'

TERMINATE

SEND REQUEST DATA

SET UP PTHRU REQUEST DATA
PTHRU TYPE IS REQEST DATA
SET UP LENGTH IN IOCB

BSCWRITE IX,IOCB,ERROR=BSCERR,END=BSCAB WRITE TO RMU

BSCWRITE E,IOCB,ERROR=BSCERR WRITE EOT
MOVE BSCST, +BSCSTO BSC STATE = RESET
GOTO READ END REQ TEXT PROCESSING

E 3

*

TERM1 EQU * EXIT POINT FOR NORMAL TERM
BSCCLOSE IOCB CLOSE BSC LINE

TERM2 EQU * EXIT POINT FOR OPEN FAILED
PROGSTOP

*

BSCAB EQU * ABORT RECEIVED ON WRITE

READ STATUS
READ EOT

PRINTEXT '@ABORT RECEIVED. STATUS:'

TERMINATE

Figure 49 (Part 5 of 7). PASSTHRU sample program

CO-108 SC34-0443

Sample Programs (continued)

*

BSCERR EQU *
MOVE
PRINTEXT
PRINTNUM
GOTO

*

BSCOPEN EQU *
MOVE
PRINTEXT
PRINTNUM
GOTO

*-—- DATA AREA

*

INMSG
*

IOCB
*

TEXT

BSCIOCB

%*
*
L TS,
*

BSC ERROR ROUTINE

ST, EXPASST MOVE RETURN CODE

'aBSC ERROR:'

ST PRINT RETURN CODE

TERM1 GO TO TERMINATION
OPEN ERROR

ST, EXPASST MOVE RETURN CODE

'aBSC OPEN ERROR:'

ST PRINT RETURN CODE

TERM2 GO TO TERMINATION

LENGTH=4 INPUT MSG FROM OPERATOR

9,0,0,P2=I0CB2,P3=I0CB3 IOCB
P2= IS RECORD ADDRESS
P3= IS RECORD LENGTH

REQUEST FOR PASSTHRU

REQPT EQU * REQUEST
DATA X'1002' BSC CONTROL CHARS (DLE STX)
DATA C'X' HEADER ID
DATA C'R' HEADER TYPE: REQUEST
DATA A (RMREQPST) REQUEST TYPE: PASSTHRU (12)
DATA A(PBL) PASSTHRU BLKING
DATA H'O' FLAG (UNUSED)
DATA H'O' PARTITION (UNUSED)
DATA CL8' ' PROGRAM: EDX SUPERVISOR
DATA CL6' ' VOLUME (UNUSED)
DATA 3F'0' (REMAINDER UNUSED)

REQLEN EQU *-REQPT LENGTH OF REQUEST

Figure 49 (Part 6 of 7). PASSTHRU sample program

Chapter 2. Remote Management Utility ($SRMU)

CO-109

Remote Management Utility (SRMU)

Sample Programs (continued)

CO-110

%*
. J——
%*

PASSTHRU REQUEST:

REQUEST

BSC CONTROL CHARS

HEADER ID
HEADER TYPE:
REQUEST TYPE:
PASSTHRU BLKING

START PASSTHRU ASSIST PROGRAM

(DLE STX)

REQUEST
PASSTHRU (12)
(NONE)

REQPTAS EQU *
DATA X'1002'
DATA C'X'
DATA C'R'
DATA A (RMREQPST)
DATA A(0)
DATA H'O'
DATA H'O'
DATA CL8'$RMUPA'
DATA CL6' '
DATA F'O'
DATA F'O'
DATA F'0'
REQPTASL EQU *-REQPTAS
*
*-- STATUS RECORD
*
ST DATA 10F'0"
%*
*
*
STSFN EQU ST+6
STL EQU *-ST
%*
*-— PASSTHRU SESSION AREA
*
DT DATA 256F'0"
DTL EQU *-DT
PBL EQU DTL-8
*
*
*
*
*-— MISCELLANEOUS VARIABLES
*
BSCST DATA F'O'
BSCSTO EQU O
BSCSTRD EQU 1
N1 DATA F'O'
*
COPY CDRRM
TXT2 EQU RMPTXT+2
*
ENDPROG
END

FLAG (UNUSED)

PARTITION (ANY)
PROGRAM: $RMUPA
VOLUME: IPL
FREE SPACE: NONE
PARAMETERS: NONE
DATA SETS: NONE

LENGTH OF REQUEST

AREA FOR STATUS RECORD

STATUS FUNCTION
STATUS RECORD LENGTH

RECORD

LENGTH

PASSTHRU BLOCK LENGTH
LENGTH OF DATA AREA -
6 BYTES FOR HEADER AND 2
FOR ETX AND WORD ROUND UP

BSC STATE:
RESET
READING

WORK WORD

INCLUDE DEFINITION OF RMU MSGS

BYTE 2 OF PASSTHRU TEXT

Figure 49 (Part 7 of 7). PASSTHRU sample program

SC34-0443

Sample Programs (continued)

Example of Conducting a PASSTHRU Session

In this example of conducting a PASSTHRU session, the host invokes and runs the $DEBUG

utility.

> SL EXPASST
EXPASST 9P LP=C900

START PASSTHRU ASSIST PROGRAM? v

> $L $DEBUG
SDEBUG 27P,09:44:08 LP BFOO

PROGRAM NAME: $DISKUTI ~
SDISKUTT 30P,09:44: 14 LP= DAOO

REQUEST "HELP' TO GET LIST OF DEBUG COMMANDS
TASK STOPPED AT 0064
'INO DATA'' RECEIVED. ENTER ONE:
A(TTN), R(EAD), Q(UIT) A
> WHERE ~
TASK STOPPED AT 0064
SATTASK AT 2600
''"NO DATA'' RECEIVED. ENTER ONE:
A(TTN), R(EAD), Q(UIT) A

Figure 50 (Part 1 of 4). Example of conducting a PASSTHRU session

> GO
OPTION(*/ADDR/TASK/ALL): ALL

1 BREAKPOINT(S) ACTIVATED
USING VOLUME EDXO002

COMMAND (?): LA 72277
USING VOLUME EDX002
NAME FREC SIZE
12845 FREE RECORDS IN LIBRARY
COMMAND (7): $pro
XX
> WHERE
INVALID COMMAND
TASK AT 0274
SATTASK AT 2600

_

\

Figure 50 (Part 2 of 4). Example of conducting a PASSTHRU session

Chapter 2. Remote Management Utility (SRMU)

CO-111

Remote Management Utility (SRMU)

Sample Programs (continued)

CO-112

COMMAND (?): S$PFO
XX
S AT
INVALID COMMAND
OPTION(*/ADDR/TASK/ALL): A
BREAKPOINT ADDR: 274
LIST/NOLIST: N
STOP/NOSTOP: S
1 BREAKPOINT(S) SET
COMMAND: XX
TASK STOPPED AT 0274
'"'NO DATA' RECEIVED. ENTER ONE:
A(TTN), R(EAD), Q(UIT) A
> LIST A 274 5 X
0274 X' 80AF 1010 C9D5 E5C1 D3C9'
'""NO DATA'' RECEIVED. ENTER ONE:
A(TTN), R(EAD), Q(UIT) A
> END
1 BREAKPOINT(S) REMOVED
INVALID COMMAND

Figure 50 (Part 3 of 4). Example of conducting a PASSTHRU session

COMMAND (?): EN

'"'NO DATA'' RECEIVED. ENTER ONE:
A(TTN), R(EAD), Q(UIT) R

''NO DATA'' RECEIVED. ENTER ONE:
A(TTN), R(EAD), Q(UIT) A

> $RMUPA

'""NO DATA' RECEIVED. ENTER ONE:
A(TTN), R(EAD), Q(UIT) A

>$A

PROGRAMS AT 09:50:26

IN PARTITION #1 NONE

'""NO DATA'' RECEIVED. ENTER ONE:
A(TTN), R(EAD), Q(UIT) Q

E(PASST ENDED

Figure 50 (Part 4 of 4). Example of conducting a PASSTHRU session

SC34-0443

Chapter 3. Host Communications Facility

When Series/1 has the Host Communication Facility (HCF) loaded on it, it can communicate
with a host system to perform various functions. The host system has the Host Communication
Facility Installed User Program (IUP 5796-PGH) executing on it. The Host Communications
Facility allows the Series/1 to perform file transfers and to submit job streams to the host.
You must write the application program that communicates with the host system. It must
contain Event Driven Language TP instructions. These instructions perform various
communications functions between the Series/1 and the host. Your program can perform the
following functions:

« Write to a host data set

« Read from a host data set

« Submit a background job to the host system

« Obtain the time and date from the host system

« Set the occurrence of a Series/1 event so that it can be tested by a program running on the
host system

o Test for the occurrence of an event that is set by the host system

« Erase the record, on the host system, of an event that occurred on either the Series/1 or the
host system

You can also perform HCF functions with the SHCFUT1 utility, which provides interactive
capability between the Series/1 and the host.

Chapter 3. Host Communications Facility CO-113

Host Communications Facility

Planning to Use the Host Communications Facility

Certain requirements and restrictions apply to the operation of the Host Communications
Facility.

Instaliation Requirements

Both the host and Series/1 must meet certain installation requirements for successful
communications through HCF. The host must have the HCF IUP 5796-PGH executing on'it.
The BSC line connecting the Series/1 to the System/370 must be point-to-point leased. Only
the BSC Single Line Control (feature #2074) can be used to attach the line to the Series/1.

System generation for the Series/ 1 must support the Host Communications Facility. The
appropriate supervisor modules and the TPCOMM system configuration statement provide this
support. Refer to the Installation and System Generation Guide for information.

Host Data Sets

Host data sets in your HCF programs must be named according to a naming convention. Also,
your program can open only one host data set at a time.

Host Data Set Naming Conventions

When you refer to a host data set in a TP instruction, its name must consist of an alphanumeric
character string immediately preceded by one word specifying the length of the name field. You
can do this most easily by coding a labeled TEXT instruction to define the name; for example:

DSN1 TEXT 'XYZ.EXP1.DATA !

Data set names follow standard host system naming conventions and must not exceed 44
characters in length (including delimiting periods). Pad the name field with blanks on the right.

In the case of a partitioned data set and member name, specify a string of the form
dsname(membername); for example:

PDSDSN TEXT 'XYZ.EXP1.DATA(RUN1) !

The maximum Iength of such a string is 54 characters.

To read a data set name from a terminal into a text field, issue a READTEXT instruction.

Host Data Set Characteristics

You can access host data sets with the following characteristics:

« they must be cataloged

CO-114 sC34-0443

Planning to Use the Host Communications Facility (continued)

o they must be single volume

« they must be direct-access

« they must contain fixed or variable-length records

« they can be either sequential data sets or members of partitioned data sets.
« they can be either blocked or unblocked

Fixed-length logical records must contain an even number of words. In fixed blocked format the
block size must be an integer multiple of the logical record length (LRECL), not exceeding
13030.

You can use either sequential data sets or members of partitioned data sets to submit jobs to the
host. Logical records must be 80 bytes long and can be blocked or unblocked. The size of
blocked records must be a multiple of 80.

Record Sizes

You can use a large range of logical and physical record sizes when writing your program. In
selecting a record size, there is no absolute best choice, but you should consider the following:

« The basic disk or diskette record size on the Series/ 1 is 256 bytes. Therefore, this is a
natural unit of measure for transfer to and from disk and a natural choice for a logical
record size on the host. This is the default for the TP READ and TP WRITE instructions.

« A host physical record (block) size of 1536 bytes yields 80 percent utilization of host direct
access storage on an IBM 3330 disk. This size also provides enough record space so that
there will be moderate requirements for buffer storage.

« The larger the physical record being transferred between the host and the Series/1 (a host
logical record), the higher the effective data transfer rate that will be achieved. Also, the
larger the physical record (block) being transferred between host processor storage and
direct access, the higher will be the effective data rate. The maximum data rate is achieved
when using track size records (13030 bytes for the IBM 3330 disk) for both operations.

« The large physical records naturally require correspondingly large buffers in your program.
In order to achieve overlapped 1/0, multiple buffers are required.

Variable-Length Records

A variable-length record is always prefixed by four bytes of control information. This is called a
Record Descriptor Word or RDW. The RDW consists of two fields.

The length (LL) field (bytes 1 and 2) describes the total length of the record in bytes and is

therefore always four greater than the length of the data field. The 00 field (bytes 3 and 4) is
reserved for use by the host system.

Chapter 3. Host Communications Facility =~ CO-115

Host Communications Facility

Planning to Use the Host Communications Facility (continued)

The rest of the record is taken up by the DATA field.

When a variable-length record is transferred from the host to the Series/ 1, the total record,
including the LL field, is transferred. When a variable-length record is to be transferred from
the Series/1 to the host, you must set the RDW to the proper value.

Opening Host Data Sets

You may open only one host data set open at a time. If a second task attempts to open a data
set, HCF will place it in a queue of tasks waiting to use the facility.

If the task currently using HCF attempts to open a second data set, then the currently open data
set automatically closes, and the second one opens.

System Status Data Set

Synchronization of programs in the host system and the Series/1 is accomplished with a status
data set on the host system. Both systems share this data set. You can directly access this
system status data set with the TP SET, TP FETCH, and TP RELEASE instructions. With
these instuctions you set the occurrence of events on the Series/1 which the host monitors, tests
for and then erases. These are called status functions. You can also perform the status
functions with the SHCFUT]1 utility.

For example, one program (Program A) makes an entry in the system status data set by
invoking a SET instruction specifying an index and a key. Another program (Program B) tests
for the existence of such an entry with a FETCH or RELEASE referring to the same index and
key names, and receives a positive return code if the entry exists. After performing a SET, the
first program (Program A) could periodically issue a FETCH. A companion program (Program
B) on the other system might also be issuing a periodic FETCH for the agreed-upon index and
key. At the appropriate time, this program (Program B) could issue a RELEASE which would
result in the first program (Program A) receiving a ''not found'' return code from its next
FETCH. This could be interpreted as a notification by the companion program (Program B)
that the message had been received.

System Status Data Set Organization

CO-116

The system status data set has direct organization. You write records into this data set using TP
SET, test for the existence of a record using TP FETCH, or test and delete a record using TP
RELEASE.

A record sent to or retrieved from the status data set consists of three part, two of which are
mandatory:

¢ Index entry (mandatory)

« Key field (mandatory)

SC34-0443

Planning to Use the Host Communications Facility (continued)

« Data (optional 256-byte field)

Index entries and key fields can each be up to eight EBCDIC characters in length and have
significance for the using programs.

The system status data set has one 268-byte index record capable of containing 22 separate
index entries. An index entry has two parts: '

o Index name - eight EBCDIC characters
« Key pointer - a 4-byte relative record pointer to the first associated key field record
A key entry is a 268-byte record with the following format:

« Forward pointer - a 4-byte relative record number of the next key entry or zero if this is the
last one

« Key name - eight EBCDIC characters
« Data - 256 bytes of optional data

The next record pointer allows more than one key to be associated with a given index. The next
record pointer of the last key field will be set to zero to indicate the end of the chain.

Logically, an unlimited number of key records may be associated with a single index. In practice,
the limiting factor is the physical size of the data set. The distributed data set allows for a total
of 94 key entries.

The system status data set format is defined and allocated during the installation of the Host
Communications Facility Installed User Program.

Appendix B of the Host Communications Facility Installed User Programcontains more details on
the use of the system status data set.

Chapter 3. Host Communications Facility = CO-117

Host Communications Facility

Planning to Use the Host Communications Facility (continued)

Host Storage

To ensure economical utilization of host processor storage, while also providing large record
capability, host processor storage is shared by all Series/1 systems. The Host Communications
Facility IUP region allocation determines how much buffer space is available; therefore, it
determines the upper limit for the host BLKSIZE. Despite this determination of buffer size, it is
still possible for error code 222 (sufficient I/O buffer space unavailable) to occur because of
multiple and simultaneous requests for access to data sets with very large block sizes. Although
this is not likely to occur, you should minimize the amount of realtime control you require with
the Host Communications Facility in order to minimize the probability of interference.

You should also specifically test for error code 222 in response to a TP OPEN instruction and, if
it is received, retry your request later.

Data Transfer Rates

Data transfer rates between a Series/ 1 and the host vary depending on the activity on the host
and the type of physical connection used between the systems. In general, you should avoid
implementing any functions in a manner which depends on specific data rates between the host
and Series/ 1.

Tasks Common to Programming and Using $SHCFUT1

You can perform almost all tasks both by writing TP instruction programs and using the
$HCFUTT1 utility. These include transfer of data sets between the host and Series/ 1, submitting
jobs to the host, and performing status functions.

Programming for the Host Communications Facility Application

Your application programs for the Host Communications Facility can control data transfers,
submit backround jobs to the host, and perform status functions.

Event Driven Language Instruction Set

You write HCF programs with a set of EDL instructions called TP instructions. The chart that
follows shows these instructions and the functions they perform. They are listed in alphabetical
order.

CO-118 sC34-0443

Programming for the Host Communications Facility Application (continued)

Instruction Function

TP CLOSE Ends a data transfer operation (any operation begun by a TP OPENIN or TP
OPENOUT intruction)

TP FETCH Tests the existence of a record in the system status data set and/or reads it

TP OPENIN Prepares Series/ 1 to read data from the host

TP OPENOUT Prepares the Series/1 to send data to the host

TP READ Reads data sent from the host to Series/1

TP RELEASE Deletes a record from system status data set and/or reads it
TP SET Writes a record to the system status data set

TP SUBMIT Submits a job stream from the Series/1 to host

TP TIMEDATE Obtains time of day and date from the host

TP WRITE Sends data to the host

Figure 51. EDL TP instructions

For the syntax of the TP instructions, refer to the Language Reference.

Controlling Data Transfers between Series/1 and Host

You can send data to the host and receive data from the host through your program.

Sending Data to the Host

Series/1 can write data to a host data set. Code this sequence of TP instructions to perform this
function:

1. TP OPENOUT (to specify an output operation)

2. TP WRITE (to send the data to the host system)

Chapter 3. Host Communications Facility CO-119

Host Communications Facility

Programming for the Host Communications Facility Application (continued)

3. TP CLOSE (to end the output operation)

In the TP OPENOUT instruction, specify the name of the host data set where you are sending
the data. Follow naming conventions.

In the TP WRITE instruction, you must specify the label of the buffer that contains the data to
be sent. In the program, specify this buffer with a BUFFER statement that contains the
operand TPBSC.

You should also code error routines into the TP WRITE instruction to take over if an error or
end condition occurs.

Receiving Data from the Host

Series/1 can ask the host to send it data. Code this sequence of TP instructions to perform this
function:

1. TP OPENIN (to specify an input operation)
2. TP READ (to receive the host data)
3. TP CLOSE (to end the receive operation)

In the TP OPENIN instruction, specify the name of the host data set that contains the data you
want to receive. Follow naming conventions.

In the TP READ instruction, specify the label of the buffer where the host data is to be stored.
In the program, specify this buffer with a BUFFER istruction that contains the operand TPBSC.

You should also code error routines in TP READ to take over if an error or end condition
occurs.

Submitting Background Jobs to the Host

CO-120

Your program can allow the Series/ 1 to submit a host data set to the host batch job stream. To
perform this function, code a TP SUBMIT instruction. The host data set can be either
sequential or a member of a partitioned data set. In the TP instruction, specify the label of the
TEXT instruction that contains the name of the host data set. In the program, code the TEXT
instruction with the naming conventions for host data sets. The Language Reference contains
the syntax and description of the TEXT instruction.

SC34-0443

Programming for the Host Commmunications Facility Application (continued)

Performing Status Functions

Your program can perform the status functions associated with the system status data set that
resides on the host system.

Writing Data to the System Status Data Set

You can set the occurrence of an event on the Series/1 by writing a record to the system status
data set. To perform this function, code a TP SET instruction. In the TP SET instruction, refer
to the label of the STATUS instruction, which references a record in the system status data set.
In the program, code the STATUS instruction with its index entry and key fields, along with the
optional 256-byte data field. The Language Reference contains the syntax and description of the
STATUS instruction.

Retrieving a Record from the System Status Data Set

You can retrieve a specific record from the host data set and (optionally) read the record. To
perform this function, code a TP FETCH instruction. In the TP FETCH instruction, refer to
the label of the STATUS instruction that references the specific record of data in the system
status data set. If you intend to read the record, code the "length" operand of TP FETCH with
the number of bytes in the record to be read. If you do not want to read the record, you must
still code the "length" operand, but enter the value zero.

Deleting a Record in the System Status Data Set

You can delete a record from the system status data set after you (optionally) read it. To
perform this function, code a TP RELEASE instruction. This erases a Series/1 event that was
set by a TP SET instruction. In the TP RELEASE instruction, refer to the label of the STATUS
instruction which in turn refers to the specific record in the system status data set. If you intend
to read the record before deleting it, you must code the "length" operand in TP RELEASE,
specifying the record length. If you do not want to read it, you must still code the operand,
specifying the value zero. In the program, code the STATUS instruction with the required index
entry and key field.

Obtaining Time and Date from the Host

You can obtain the current time (hours, minutes, seconds) and date (day, month, year) from the
host system. To perform this function, code a TP TIMEDATE instruction. You must specify
the six-word data area where the time and date information is to be stored in the Series/1.

Chapter 3. Host Communications Facility CO-121

Host Communications Facility

Programming for the Host Communications Facility Application (continued)

Sample Programs

The following sample programs show how to accomplish some of the HCF functions with the
TP instructions.
Status Functions Sample Program

This program performs the SET, FETCH, and RELEASE function. It communicates with the
system status data set on the host system.

PROGA PROGRAM A PROGRAM A
STATA STATUS PROGID,KEYA DEFINE STATUS ID & KEY
*
A TP SET, STATA SEND MESSAGE TO PROGB
* VIA HOST
an TP FETCH, STATA, ERRORA CHECK IF PROGB RECEIVED
* MESSAGE
* FALL THRU IF KEY & ID STILL ON HOST
*
GOTO Al CONTINUE INTERROGATION
ERRORA EQU * DELETE THE MESSAGE ON HOST
PROGSTOP
ENDPROG
END
PROGB PROGRAM B PROGRAM B
STATB STATUS PROGID,KEYA DEFINE SAME STATUS ID & KEY
*
B TP FETCH, STATB, ERROR=ERRORB ~ FETCH MESSAGE
*
* MESSAGE WAS FOUND AND IS DELETED, THUS SIGNALING PROGA
%*
TP RELEASE, STATB
GOTO END
ERRORB GOTO B CONTINUE LOOKING FOR MESSAGE
END PROGSTOP
ENDPROG
END

Figure 52. System status data set sample program

CO-122 5C34-0443

Programming for the Host Communications Facility Application (continued)

Sample Program to Send Data to the Host

This same program sends a 256-byte Series/1 data set to a data set on the host. It prompts the
user to specify the host data set to receive the data.

WRITASK PROGRAM TPOPEN,DS=((SOURCE,??))

* OPEN TP LINE
TPOPEN READTEXT DSNAME, 'HOST DATASET: ', PROMPT=COND
TP OPENOUT , DSNAME
IF (WRITASK,EQ,-1) ,GOTO, DSREAD OPEN OK?
MOVE SWITCH, 3 . .TPOPEN ERROR
GOTO ERRSW
* READ A RECORD FROM DATA SET

DSREAD READ DS1,BUFFER,ERROR=ERR2, END=TPCLOSE
* WRITE A RECORD TO HOST
TPWRITE TP WRITE,BUFFER, 256

IF (WRITASK,EQ,-1) ,GOTO,DSREAD . .OK?
ERR1 MOVE SWITCH, 1 . .WRITE ERROR
GOTO TPCLOSE
ERR2 MOVE SWITCH, 2 . .READ ERROR
* CLOSE DATA SET AND PRINT MESSAGE AS APPROPRIATE
TPCLOSE TP CLOSE
ERRSW GOTO (RETO,RET1,RET2,RET3) ,SWITCH
RETO PRINTEXT '*****READ/WRITE SUCCESSFUL***%%3'
PROGSTOP
RET1 PRINTEXT '*****WRITE UNSUCCESSFUL****%'
PROGSTOP
RET2 PRINTEXT '*****READ UNSUCCESSFUL*****3'
PROGSTOP
RET3 PRINTEXT '***%*TP OPEN UNSUCCESSFUL***%%3'
PROGSTOP

SWITCH DATA F'0O'
DSNAME TEXT LENGTH=40
BUFFER BUFFER 256, TPBSC
ENDPROG
END

Figure 53. Sample program to send data set to the host

Sample Program to Receive a Host Data Set

In this example, the Series/1 specifies that the host send it a data set. It reads the host data into
a pre-allocated data set on a Series/1 volume. During program load, the user is prompted for the
Series/ 1 data set where the host data will be placed.

Chapter 3. Host Communications Facility = CO-123

Host Communications Facility

Programming for the Host Communications Facility Application (continued)

READTASK PROGRAM TPOPEN,DS=((TARGET,??))

* OPEN TP LINE
TPOPEN READTEXT DSNAME, 'HOST DATASET: ',PROMPT=COND
TP OPENIN,DSNAME
IF (READTASK,EQ,-1) ,GOTO, TPREAD OPEN OK?
MOVE SWITCH, 3 TP OPEN ERROR
GOTO ERRSW
* READ A RECORD FROM HOST
TPREAD TP READ,BUFFER
IF (READTASK,EQ,-1),GOTO,DSWRITE OK?
IF (READTASK,EQ,300),GOTO, TPCLOSE END?
GOTO ERR2
* WRITE RECORD ON DISK
DSWRITE WRITE DS1,BUFFER, ERROR=ERR1
IF (READTASK,EQ,-1) ,GOTO, TPREAD OK?
ERR1 MOVE SWITCH, 1 WRITE ERROR
GOTO ERRSW
ERR2 MOVE SWITCH, 2
* CLOSE TP LINE AND PRINT MESSAGE AS APPROPRIATE

TPCLOSE TP CLOSE
ERRSW GOTO (RETO,RET1,RET2,RET3) ,SWITCH

RETO PRINTEXT '*****READ/WRITE SUCCESSFUL****%3"
PROGSTOP

RET1 PRINTEXT '*****WRITE UNSUCCESSFUL****%3'
PROGSTOP

RET2 PRINTEXT '*****READ UNSUCCESSFUL****%p'
PROGSTOP

RET3 PRINTEXT '*****TP OPEN UNSUCCESSFUL*****3'
PROGSTOP

SWITCH DATA F'O'
DSNAME TEXT LENGTH=40
BUFFER BUFFER 256, TPBSC
ENDPROG
END

Figure 54. Sample from to receive a host data set

CO-124 sC34-0443

Interacting with the Host Communication Facility (SHCFUT1)

The $SHCFUT1 utility allows the Host Communications Facility on the Series/1 to interact with
the Host Communications Facility Installed User Program on the System/370. $HCFUT1 can
perform four functions:

« Read a data set from the host

e Write a data set to the host

Submit a job to the host
« Perform status functions in the system status data set

Figure 55 lists the SHCFUT1 commands.

END - END
FE - FETCH STATUS
REL - RELEASE STATUS
READDATA - READ HOST
READ8O - READ 80 BYTE RECORDS - STORE 2/DI1SK RECORD
READOBJ - READ 80 BYTE RECORDS - STORE 3/DISK RECORD
SE - SET STATUS
Su - SUBMIT A JOB
\!&, - WRITE TO HOST ,/

Figure 55. SHCFUT1 commands
Notes:

1. See “Host Data Set Naming Conventions” on page CO-114 and“Host Data Set
Characteristics” on page CO-114.

2. See “System Status Data Set” on page CO-116. Appendix B of the Host Communications
Facility Installed User Program contains more details on its use.

3. The Host Communications Facility IUP, program number 5796-PGH, is required on the
host System/370.

4. Host Communications Facility must be installed and configured on the Series/1.

Many of the functions that $HCFUT1 performs are the same as those you can program with the
TP instructions.

Transferring Host Data to Series/1

You can tranfer data with two commands, depending on the type of data being sent.

Chapter 3. Host Communications Facility =~ CO-125

Host Communications Facility

Interacting with the Host Communication Facility (SHCFUT1) (continued)

Using READDATA Command

The READDATA command transfers a data set from the host to the Series/1. The host logical
record size is assumed to be 256 bytes.

The utility prompts for the following information:

« DS1. This refers to the 1-8 character name of the Series/1 data set where the host data will
be transferred, including the volume name.

« Record Count. This refers to the number of records to be transferred, beginning with the
first. Use this if, for example, only the first 10 records of a 50-record data set are to be
transferred. ’

Enter zero to indicate that the entire data set is to be transferred.
« DSNAME. This refers to the name of the host data set to be transferred.

The following is a terminal printout of a typical run. In this example, all records (length = 256
bytes each) of the host data set 'S1.EDX. TESTIN.DATA" (which contains 40 records) are
transferred to the Series/1 data set "DATAFIL2".

> SL

SHCFUT1 8P,08.15.30, LP=4B00O
PGM(NAME ,VOLUME) : SHCFUT1
DS1(NAME,VOLUME): DATAFIL2,EDX001

COMMAND (?): READDATA

NO. OF RECORDS TO READ(0=ALL): ¢

DSNAME: S1.EDX.TESTIN.DATA
END AFTER 40

COMMAND (7):
K W,

Using READ80 and READOBJ Commands

The READ80 and READOBIJ commands transfer 80-byte records froma host data set and store
them in 256-byte Series/ 1 disk or diskette data set records.

READSO stores two 80-byte records per 256-byte disk record. The first 80-byte record is
stored in the first 80 bytes of the disk record. The second 80-byte record is stored starting at
byte 129 of the disk record. This format is compatible with the saved results of using SEDITIN
or $FSEDIT and is also the format required for input to a language compiler or $EDXASM
program preparation. READS8O0 is normally used to transfer source program modules from the
System/370 to Series/1 disk.

READOBI stores three 80-byte records in the first 240 bytes of each disk record. This format is

compatible with object modules produced by any of the assembler programs. It is also the
format required for input to $LINK and is one of the formats accepted by $UPDATE.

CO-126 SC34-0443

Interacting with the Host Communication Facility (SHCFUT1) (continued)

READOBI is normally used to transfer the output object module of a host assembly to the
Series/ 1 for processing by $LINK or SUPDATE.

For both these commands, the utility prompts for the name of the Series/1 data set where the

data is to go, the number of host records to be transferred, and the name of the host data set
where the records come from.

Performing Status Functions
The status commands allow you to perform, from a terminal, the SET, FETCH, and RELEASE
functions on the system status data set. The functions are identical to those you can perform
with TP SET, TP FETCH and TP RELEASE.
For the SE and FE commands, the utility prompts for the index entry and key field . For the RE

command, it prompts for the index entry. After performing one of the status functions, the
utility sends a return code indicating the status of the data set.

Submitting Jobs to the Host Job Stream
The SU command allows you to submit a job to the host job stream. This function is identical to

the one that TP SUBMIT performs. The utility prompts you for the name of the host data set
you want to submit. Follow host data set naming conventions when you specify the name.

Sending Data to the Host

The WR command sends data from the Series/1 to the host. The host logical record size is
assumed to be 256 bytes.

The utility prompts you for the following information:

« DS1. This refers to the 1-8 character name of the Series/1 data set to be transferred, and its
volume name, if not the IPL volume.

« Record Count. This refers to the number of records to be transferred, beginning with the
first. This would be used if, for example, only the first 10 records of a 50-record data set
are to be transferred.

A count of zero is used to indicate that the entire data set is to be transferred.
« DSNAME. This refers to the name of the host data set to which the data is to be

transferred. The name consists of up to 44 characters, or 54 characters if a member of a
partitioned data set.

Chapter 3. Host Communications Facility =~ CQO-127

Host Communications Facility

Interacting with the Host Communication Facility (SHCFUT1) (continued)

CO-128

SC34-0443

The following is a terminal printout of a typical run. In this example, 28 records of the Series/ 1
data set "DATAFIL1" are transferred to the host data set "'S1.EDX.TESTOUT.DATA".

> $L SHCFUT1
DS 1{(NAME ,VOLUME): DATAFIL1
SHCFUT1 8P,08.15.20, LP=4B0O

COMMAND (?7): WR

NO. OF RECORDS TO WRITE(O=ALL): 28
DSNAME: S1.EDX.TESTOUT.DATA

END AFTER 28

COMMAND (7):

Part 2. Channel Attach

This part discusses the Channel Attach Program, which allows Series/1 to communicate with
large host systems.

Part 2. Channel Attach CO-129

Notes

CO-130 SC34-0443

Chapter 4. Channel Attach Program

The channel attach program allows the Series/1 to communicate with a larger host processor.
This discussion refers to the System/370 as the host processor. However, it can be any
processor that uses the Basic Telecommunications Access Method (BTAM) form of data
communications.

Series/1 is physically connected to the host by a channel attach device.

You must write the application programs that communicate with the System/370 host. The
program must contain special Event Driven Language instructions used for the channel attach
application: CA instructions. In addition, you can communicate with the host by using the
$CHANUT1 utility.

Planning for the Channel Attach Application

Before you begin to write your application program to communicate with the host system, you
should be familiar with the way channel attach works, and what requirements and restrictions
apply to its use.

Channel Attach Program ($SCAPGM)

The channel attach program, as it executes on the Series/1, transfers data from the Series/1
application program to the channel attach device. At the same time, an application program on
the System/370 is executing to transfer data between the channel attach device and the
System/370.

Chapter 4. Channel Attach Program CO-131

Channel Attach Program

Planning for the Channel Attach Application (continued)

$CAPGM allows you to perform the following functions through your application program
running on the Series/1:

Establishing, controlling, and terminating access between Series/1 and System/370
Transferring data between Series/1 and System/370

Communicating with System/370 application programs by 32 data ports (System/370
device addresses)

Handling interrupts from the channel attach device
Managing data ports to avoid conflict or contention
Performing error recovery and retry

Performing error logging

Tracing Series/1 1/O commands and attention interrupts from the channel attach device

Channel Attach Device (4993)

The channel attach device provides an interface between a Series/1 and a System/370. It
responds to commands from the System/370 and directs the information to the Series/1.
Likewise, the device responds to commands from the Series/1 and directs the information to the
host.

The connection between the channel attach device and the 370 consists of 32 device address
(data port) connections. The channel attach device allows activity over only one port at a time.

Software Considerations

During system generation for the Series/ 1, you must define each channel attach device as an
EXIO device. The instructions for this procedure is described in the Installation and System
Generation Guide.

Hardware Considerations

CO-132

You should consider the following when installing your channel attach device.

SC34-0443

o

By installing the channel attach device in the 1/O expansion unit rather than the processor,

you will be able to temporarily turn off the processor power without having to first turn off
the channel attach device. If the channel attach device is in the processor, you must always

follow the power-off sequence described in ‘“Powering On The Channel Attach Device” on
page CO-134 to power off.

Planning for the Channel Attach Application (continued)

« When you install your channel attach device, it must be jumpered correctly to specify the
lowest System/370 device address you will be using. For example, if your channel attach
device is connected to the host on channel 5, subchannel 8 (with 32 device addresses X’580’
to X’59F’), then the setting of the jumpers on the channel attach feature card should be for
X’80’. You must be able to provide this information to the person who installs your channel
attach device.

« On the System/370, your channel attach device must be defined to use a shared unit control
word (UCW). Failure to specify a shared UCW can cause unpredictable results when you
are using more than one port.

Tailoring the Channel Attach Program

During system generation for the Series/1, you can tailor the channel attach program to fit your
specific needs by editing the program’s control module, SCACBS. The section of $CACBS that
you should edit consists of channel attach control block statements, CACB1 and CACB2. Two
channel attach control block statements are required for each channel attach feature installed
(physically and logically) on the Series/1 processor. CACB1 and CACB2 are configuration
statements that create control blocks. These statements describe to the channel attach program
the characteristics of a particular channel attach device. The CACB1 and CACB2 statements
for a device must be contiguous and must both specify the same device address, trace size, and
number of ports. In these statements, you can specify the following information:

« device address of the channel attach device

« amount of storage for the channel attach trace area

number of host ports the device will connect with
« number of retries during errors

After you modify the CACB1 and CACB2 statements, assemble the SCACBS module, and use
$EDXLINK or $LINK/$UPDATE to link-edit it to the channel attach support modules. If you
followed the standard installation procedures, the link-edit control statements to do this are in
data set $CALNK on EDX002.

$CALNK provides full support for a channel attach system, including trace, log, and OLTEP
support. You should use the full support system for initial debugging efforts.

To modify the provided support, you may want to include XCAXDIAG instead of $SCAXDIAG
to eliminate OLTEP support, XCAXLOG instead of $CAXLOG to eliminate error logging,
XCAXTRCE instead of $CAXTRCE to eliminate tracing, and XCAXERR instead of
$CAXERR to eliminate the task error exit facility.

Chapter 4. Channel Attach Program CO-133

Channel Attach Program

Planning for the Channel Attach Application (continued)

Powering On The Channel Attach Device

Before any communication can occur, you must power on the channel attach device at the
Series/1. Follow this procedure:

1.

Turn off the channel attach device, qnd ensure that it is offline. Set the Enable/Disable
switch on the 4993 Termination Enclosure to the Disable position and the On/Off switch to
the Off position.

Turn on the other devices. Set the On/Off switch for each Series/1 unit (except for the
4993 Termination Enclosure and the Series/1 processor) to the On position.

Turn on the processor by setting the On/Off switch on the Series/1 processor to the On
position.

Turn on the Termination Enclosure unit by setting the On/Off switch on the 4993
Termination Enclosure to the On position and make sure that the Power On indicator is on.

After you complete the above steps, place the channel attach device online to the
System/370 by setting the Enable/Disable switch on the 4993 Termination Enclosure to
the Enable position. Make sure that the Disable indicator is off (indicating that the unit is
online), and notify the System/370 operator that the channel attach device is online. If an
attempt is made to vary a System/370 device address online when the channel attach device
is not powered on and enabled, the System/370 receives a NO PHYSICAL PATH message.

To power off the channel attach device, use the reverse sequence of the power on instructions.
You must disable the channel attach device, turn off the device, and turn off the I/O expansion
unit and the other devices. Never turn the channel attach device off when the device is enabled.

Programming for the Channel Attach Application

This section tells how to write programs that communicate between the Series/1 and the host by
means of the channel attach.

Event Driven Executive Instruction Set

CO-134

Your program must contain these channel attach instructions, which provide you with the
interface to the System/370 channel attach program. They are:

[] L[] L] L]

SC34-0443

CACLOSE - Close a channel attach port

CAIOCB - Create a channel attach port I/O control block
CAOPEN - Open a channel attach port

CAPRINT - Print channel attach trace data

CAREAD - Read from a channel attach port

CASTART - ’Start channel attach device

Programming for the Channel Attach Application (continued)

« CASTOP - Stop a channel attach device
« CATRACE - Control channel attach trace
« CAWRITE - Write to a channel attach port

For the syntax of each instruction, refer to the Language Reference.

Detecting and Handling Errors

Each instruction sets the task code word to indicate success or failure of the operation it
performs. You should use the ERROR operand of the instruction or check the task code word
after each instruction.

To ensure that the instructions are successful, your program should wait on an event control
block (ECB) for completion of the I/0 associated with the instruction. CATRACE has no I/0O
associated with it so no wait is required. CASTOP, CASTART, and CAPRINT use the ECB
supplied with the instruction. CAOPEN, CAREAD, CAWRITE, and CACLOSE use the first
three words of the CAIOCB as the ECB to wait on. After you do a WAIT on the ECB, check
the completion code for I/O errors. Do not issue a WAIT if the return code in the task code
word indicates an unsuccessful operation. The second word of the TCB contains the address of
the instruction that received the error.

BTAM Considerations

The Basic Telecommunications Access Method (BTAM) interfaces with System/370 channel
attach; you should consider the following:

» BTAM issues an ERASE/WRITE of 1 byte (X’C3’) or (X’7B’) when you open or close a
channel attach port. Respond with a read of this ERASE/WRITE when opening a port.
When closing a port, you can either read the (X’C3’) or ignore it. If you ignore the (X’C3’)
then you may get a return code from the close operation to show data pending from the
host.

« If BTAM requests an I/O operation to the device and the device is in a 'not ready’ condition
(the System/370 device address has not been enabled by Series/1), BTAM posts an
intervention required (X°41°).

« On an asynchronous device end from the Series/1 (caused by a Series/1 ENABLE
System/370 DEVICE ADDRESS), the System/370 application may elect to be notified by
BTAM (OS/VS only). This is done by specifying the READYQ option on the DCB macro,
which causes the user to be posted when a device end occurs for the specified device
address. The device end is ignored if the READYQ option is not selected or if using
DOS/VS BTAM.

« BTAM issues retries for read errors and all busy conditions.

e You must not issue any BTAM macro which might cause BTAM to generate a channel
program that contains both read and write channel command words (CCWs), such as Read

Chapter 4. Channel Attach Program CO-135

Channel Attach Program

Programming for the Channel Attach Application (continued)

Modify Position or Read Buffer Position. Extraneous I/O operations that result from
chained read and write CCWs can invalidate protocol understanding at the Series/1.

« Do not issue a command that requires an attention interrupt to begin on the System/370 as
the first command after OPEN. If you do, you must have some method of ensuring that the
System/370 opening process is done before you issue the (Series/1) attention interrupt.

» The first three bytes of data sent by a Series/1 write request can have explicit meaning to
the System/370 support program. Therefore, be careful when setting the first three bytes of
data, because unpredictable results can occur. To avoid problems, set the first three bytes of
the data to X’7D4040’. This corresponds to an attention identification descriptor (AID) and
two bytes of null buffer address. The X’7D’ corresponds to an Enter key response from an
IBM 3272 Control Unit.

Assembling the Application Program

If you are going to assemble your program with either the host or native macro assemblers, you
don’t have any special steps to perform. If you are using $EDXASM to assemble, you must
code the following statements in your program for proper assembly.

COPY CMDEQU
COPY PROGEQU

These statements generate several pages of equates. To suppress printing these equates, code
the following statements:

PRINT OFF
COPY CMDEQU
COPY PROGEQU
PRINT ON

Link-Editing the Application Program

CO-136

After assembling your program, you must use $EDXLINK or $LINK/$UPDATE to link-edit it.
If your channel attach support has been installed as shown in the Program Directory, the link
editing control statements required to link your application program are in the data set
USERPGM on EDX002. A listing of the data set USERPGM follows.

SC34-0443

Programming for the Channel Attach Application (continued)

LIST OF DATA SET USERPGM ON EDX002
*

* EVENT DRIVEN EXECUTIVE SYSTEM/370 CHANNEL ATTACH VER. 1

3k 3k 2k %k 3k 3k %k 3k 3%k %k 3k %k 3%k %k 3% %k 3% 3k 3% 3k 3k 3k 3k %k 3k %k 3k %k 3k 3k 3%k 3k 3%k 3%k % 3k %k 3%k %k 3k %k 3k %k 3k %k %k 3k %k 3%k 3k % 3% %k %k 3% %k 3k %k 3% % %k k k

* COMMENTS MAY BE INCLUDED BY AN '*' IN COLUMN 1 *

* USE THIS TECHNIQUE TO OMIT UNNEEDED SUPPORT *

3k 3k 3k 3k Kk 3k 3k 3k %k sk 3k Kk 3k 3k %k 3k %k 3%k 3k %k 3k 3k %k 3%k 3k %k %k %k 3%k 3k %k 3%k %k 3%k %k 5%k 3k 3%k 3k %k %k %k %k 3% 3%k 5%k %k 3%k %k 5%k % % 3%k 5k %k % %k %k %k 5k %k %k %k

OUTPUT <---- YOUR OUTPUT MODULE NAME AND VOLUME IT RESIDES
ON, GOES HERE

E 3

INCLUDE <---- YOUR INPUT MODULE NAME AND VOLUME IT RESIDES
ON, GOES HERE

INCLUDE $CAPRCES,EDX002 *MAKE A COMMENT AND INCLUDE

*INCLUDE XCAPRCES,EDX002 *THIS IF TRACE PRINT OMITTED

INCLUDE $CABEGIN,EDX002

INCLUDE $CAPARM, EDX002

INCLUDE $CALOGCO,EDX002 *MAKE A COMMENT AND INCLUDE

*INCLUDE XCALOGCO,EDX002 *THIS IF INPUT ERR. OK OMITTED

INCLUDE $CALOGIC,EDX002

INCLUDE $CAFILL,EDX002

INCLUDE $CAPRNT,EDX002
*MAKE THIS A COMMENT IF TRACE
*PRINTING OMITTED

INCLUDE $$SVC,ASMLIB

INCLUDE 3RETURN,ASMLIB

INCLUDE $EDXATSR,ASMLIB

END

LIST COMPLETE

Figure 56. Listing of USERPGM data set

The name of your output module and input module refer to your object output and input data
sets respectively.

This link editing control data set provides you with the full support link modules. You should
use the full support system during initial debugging activities.

Starting a Channel Attach Device

Code a CASTART instruction to load the channel attach device support program and prepare
the channel attach device to accept interrupts from the host. You must start the channel attach
device before you can open any of its ports and before you can issue any I/O instructions.

After your program issues a CASTART instruction, check the return code in the first word of
the task control block (TCB). If the return code indicates a successful request, issue a WAIT for
the I/0 to complete. Use the event control block (ECB) operand of the CASTART instruction
to wait on I/O completion. If the return code indicates that the device was already started or an
error occurred, do not issue a WAIT instruction.

Chapter 4. Channel Attach Program CO-137

Channel Attach Program

Programming for the Channel Attach Application (continued)

Opening a Channel Attach Port

Code a CAOPEN instruction to open a specific port on the channel attach device. This logically
assigns the port to your application program, and enables it to accept interrupts from the host.
You must open a port before using it for data transfer.

You must code a control block instruction (CAIOCB) for each port you open in your program.
The CAIOCB stores the device address, port number, control block addresses associated with
the port, and the ECB used to wait for I/O completion on the port. Its use it discussed in the
next section.

Coding the Control Block for a Channel Attach Port

Issuing 1/0

The CAIOCB statement creates a channel attach port I/0 control block which contains the
information required to access a port. It is a non-executable instruction which allocates storage.
You supply the device address, port number, and the address of the first buffer control area.
Other information in the System/370 channel attach 1/0 control block is supplied by the
System/370 channel attach link module when the device is opened. In every other CA
instruction you code to perform operations on a port, you must refer to the label of the
CAIOCSB for that port, which you code in the non-executable section of your program.

As for all EDX channel attach instructions, check the return code in the TCB before issuing a
WAIT.

Your application program requests I/O processing by issuing CAREAD and CAWRITE
instructions.

For both CAREAD and CAWRITE, check the return code in the TCB before issuing a WAIT
instruction for the I/O to complete.

Series/1 Receiving Data from the Host (CAREAD)

The CAREAD instruction reads data from a host device address. Specify the CAIOCB
statement that refers to the port in the CAREAD instruction. Each CAREAD instruction must
supply the addresses of two buffer control blocks.

When you issue a Series/ 1 read request, one of two conditions are true: either the System/370
has already issued the write to match your CAREAD, or your CAREAD was issued before the
matching write request was received. If the System/370 has already issued its write request,
your CAREAD is posted immediately and the address of the buffer that the System/370 wrote
to is returned to you. If the System/370 has not issued a write to match your CAREAD, the
channel attach program holds your CAREAD until the System/370 issues its write request.

Because the System/370 can issue a write request at any time, a buffer must be available to
receive data from the System/370. This is accomplished as follows:

CO-138 SC34-0443

Programming for the Channel Attach Application (continued)

« When you open a channel attach port, you must point to a buffer control block defining the
address, size, and partition of the buffer to receive data for the first System/370 write. This
information is stored by the channel attach program and is returned to you when your first
CAREAD is complete.

« When you issue a CAREAD instruction it must identify two buffer control blocks:

— The first buffer control block receives (from the channel attach program the address,
size, and partition of the data buffer written by the System/370 to satisfy that
CAREAD.

— The second buffer control block must contain three words defining the address, size and
partition of the buffer to be used for the next System/370 write. These values are stored
by the channel attach program, and are returned to you when the next Series/1
CAREAD is complete.

On every Series/1 CAREAD instruction, you are told where the data for the read was stored,
and you supply the information required to set up for the next System/370 write operation.

Series/1 Sending Data to the Host

The CAWRITE instruction sends data from your application program buffer to a channel attach
device port. On the CAWRITE instruction, you must specify the CAIOCB used to open the
port.

When a Series/1 CAWRITE is issued to a port and the System/370 application program is not
actively reading from the corresponding device address, the channel attach program issues an
attention interrupt to the System/370. This attention interrupt notifies the System/370
application program that the data from the Series/ 1 is available for the associated device
address.

The System/370 should then select the port and issue a READ. The channel attach program
recognizes the READ command and issues a start I/O (write) command to the channel attach
device to start transfer of the contents of the Series/1 data buffer to the System/370.

When data transfer is complete, the write operation is not posted until the System/370
application program acknowledges the data transfer or indicates negative acknowiedgement.

This acknowledgement can be in one of two forms. If the System/370 program issues an Erase
All Unprotected (EAU) command after data has been sent to the host, then the EAU is
considered to be a positive acknowledgement of the data transfer. The CAWRITE which caused
the data to be sent to the host is then posted.

A second way the System/370 acknowledges a CAWRITE is by issuing a write command.
When a System/370 Write or Erase/Write is received as an acknowledgement of a CAWRITE,
bit 6 of the first data byte from the System/370 is examined to determine whether it is a positive
acknowledgement (bit 6 on) or a negative acknowledgement (bit 6 off), and the Series/1
program is posted appropriately.

Chapter 4. Channel Attach Program CO-139

Channel Attach Program

Programming for the Channel Attach Application (continued)

If the System/370 issues additional read requests before it acknowledges the Series/1
CAWRITE, the read requests connect to the same CAWRITE, causing retransmission of the
data.

If the System/370 tries to read when no corresponding Series/1 CAWRITE has been issued,
the channel attach program generates a write operation and sends X’604040’ to the host; this
indicates that a CAWRITE is not pending on the Series/1. If the channel attach program has
sent X’604040’ to the host one or more times before the Series/1 user issues a CAWRITE, then
when the CAWRITE is issued the channel attach program sets the appropriate flags to allow the
next System/370 read to the Series/1 user data buffer. No attention interrupt is issued to the
System/370 in this case.

The first three bytes of data sent by a Series/1 CAWRITE can have explicit meaning to the
System/370 support program. Therefore, be careful when setting the first three bytes of data,
because unpredictable results can occur. To avoid problems, set the first three bytes of the data
to X’7D4040’. This corresponds to an attention identification descriptor (AID) and two bytes of
null buffer address. The X’7D’ corresponds to an Enter key response from an IBM 3272
Control Unit.

Closing a Channel Attach Port (CACLOSE)

When your program no longer requires a port it should issue a CACLOSE instruction to free the
port. A CACLOSE for a port causes the channel attach program to:

« Reinitialize the control blocks for the port so the port can be opened by another application
program

« Disable the port except for port O which is kept open for potential use by the Online Test
Executive Program (OLTEP)

Stopping the Channel Attach Device (CASTOP)

CO-140

SC34-0443

The CASTOP instruction frees the channel attach device. A CASTOP causes the channel attach
program to:

« Disable port 0
o Disable the channel attach device for interrupts

o Reinitialize the control block for the channel attach device so it can be started by another
application program

e Unload the channel attach program (only if all channel attach devices are stopped)

Programming for the Channel Attach Application (continued)

Tracing Series/1 1/0 during Channel Attach (CATRACE)

The CATRACE instruction enable or disables the collection of 1/0 trace data for a channel
attach device. Channel attach trace data is collected in processor storage and, for performance
reasons, should only be used durirg debugging.

Printing Channel Attach Trace Data (CAPRINT)

To print the entire area of trace data obtained through CATRACE, code a CAPRINT
instruction. The data prints out on a printer or displays at your terminal. Tracing is disabled
while printing is in progress.

Interacting with Channel Attach (Using $SCHANUT1 Utility)

The channel attach utility, SCHANUT1, allows you to perform several functions associated with
channel attach operations:

o start or stop channel attach device
« enable or disable 1/0 tracing
e print trace data

Invoke $CHANUT1 by the $L. command or by the session manager. You can load the utility
into any partition. As soon as it is loaded, the utility asks for the address of the channel attach
device you want to work with. All commands you enter during a session with §CHANUT1 will
apply to the first device you specify, unless you change the address (this procedure is discussed
below). The SCHANUT1 commands interface with the channel attach program in the same
manner as the channel attach instructions. The error codes for the SCHANUT1 commands are
the same as those for the corresponding instructions.

$CHANUT1 Commands

The $SCHANUT1 commands are shown below. To obtain this list at your terminal, enter a
question mark in response to the prompting message, COMMAND(?):

Chapter 4. Channel Attach Program CO-141

Channel Attach Program

Interacting with Channel Attach (Using SCHANUT1 Utility) (continued)

COMMAND(?7): ?
CA -- CHANGE DEVICE ADDRESS
EN -- TERMINATE THE UTILITY
PR -- PRINT THE TRACE AREA
ST -- START A CHANNEL ATTACH DEVICE
P -- STOP A CHANNEL ATTACH DEVICE
TR -- ENABLE/DISABLE TRACING

COMMAND(?):

_ Y,

Changing Channel Attach Device Address (CA)

The CA command changes the address of the channel attach device you want to use during the
$CHANUT1 session.

Starting a Channel Attach Device (ST)

The ST command starts the channel attach device you have selected.

COMMAND(?7): ST
START DEVICE SUCCESSFUL
COMMAND(?):

Stopping a Channel Attach Device (SP)

The SP command stops the channel attach device you have specified.

COMMAND(?): SP
STOP DEVICE SUCCESSFUL
COMMAND(7):

Performing Trace Function (TR)

The TR command allows you to enable (E) or disable (D) the trace function.

COMMAND(?): TR

ENABLE OR DISABLE: D
ENABLE/D | SABLE SUCCESSFUL
COMMAND(?):

Printing the Trace Data (PR}

The PR command prints the trace buffer, with the title you enter, on a terminal.

CO-142 sC34-0443

Interacting with Channel Attach (Using SCHANUT1 Utility) (continued)

COMMAND(?): pRr

TITLE: TRACE PRINTOUT 07/26/80
CONSOLE: $sysprTR

PRINT TRACE BUFFER SUCCESSFUL
COMMAND(?) :

Terminating the Utility (EN}
The EN command ends the $CHANUT]1 utility.

tOMMAND(?): EN J

Channel Attach Sample Programs

This section contains two sample programs. The first, executes on a Series/1 using the EDX
channel attach support. It communicates with an OS/VS2 application program which is
executing at the same time on the host System/370.

The second sample program executes on a System/370 using BTAM or BTAM-ES facilities. It
communicates with the first sample program, which is running on the Series/ 1.

Configuration Requirements for Sample Programs

o Hardware

— System/370
Block multiplexer or selector channel
One control unit position on channel
Other peripherals to support OS/VS2

— Series/1
IBM Series/1 hardware required to operate EDX
IBM 4993-1 Series/ 1-System/370 termination enclosure
IBM Series/ 1-System/370 Channel Attachment Feature #1200

« Software

Chapter 4. Channel Attach Program CO-143

Channel Attach Program

Channel Attach Sample Programs (continued)

— System/370 software:
0S/VS2 (MVS)
Basic Telecommunications Access Method (BTAM)
Channel attach device defined to OS/VS2 via I/0O generation
User application program
— Series/1 software:
EDX operating system (any version)
EDX Channel Attach Program

User application program

General Guide for Execution of Sample Programs

Install channel attach support.

Modify the sample program if your channel attach device is not at address 10. Assemble,
link, and update Series/1 program.

Assemble host program and link-edit for S/370 execution.
Power on the channel attach device and set the enable/disable switch to enable.
Start sample program on the Series/1.

When prompted, start the sample program on the System/370.

Series/1 Sample Program

CO-144

The Series/ 1 sample program (SAMPLEA) performs the following functions:

SC34-0443

Starts the channel attach device (the CASTART instruction)
Enables and disables 1/0 tracing (the CATRACE instruction)
Opens channel attach device port #1 (the CAOPEN instruction)
Reads from the System/370 over port #1 (the CAREAD instruction)
Writes to the System/370 over port #1 (the CAWRITE instruction)

Closes channel attach device port #1 (the CLOSE instruction)

Channel Attach Sample Programs (continued)

o Prints the I/O trace area (the CAPRINT instruction)

« Stops the channel attach device (the CASTOP instruction)

SAMPLEA PROGRAM BEGIN

PRINT OFF
COPY PROGEQU ===> REMOVE FOR MACRO ASSEMBLER
COPY CMDEQU ===> REMOVE FOR MACRO ASSEMBLER
PRINT ON

BEGIN PRINTEXT 'ATHIS IS A TEST OF THE CHANNEL ATTACH SUPPORT.'
PRINTEXT 'aTHE CHANNEL ATTACH DEVICE MUST BE ON AND'
PRINTEXT 'aENABLED BEFORE YOU PRESS ENTER TO CONTINUE.'
READTEXT SYNC
3k 2k 3% 3%k 3k ok 3k 3%k sk 3k 3k 3k 3k 3%k 3k 3%k 3k 3k %k ok 3k 3k 3k %k 3k 3k 3%k 3k 3k sk 5k 3%k 3k ok 3k %k 3%k %k 3%k 3k 3%k %k %k %k %k 3%k 3k 5%k %k 3%k 3k 5k 5k 3%k >k 3%k %k %k %k 5%k %k 5k 3%k %k %k %k k %k
* START CHANNEL ATTACH DEVICE 10 *
3k 3k 3%k %k ok 3k %k %k 3k %k 3%k K %k 3k %k 3%k dk 3k 3k 3k 3%k 3k %k %k dk 3k 3k 3k %k 3k 3k 3%k 5k 3k 3k 3%k 3k %k 5%k %k 5%k 3k 3%k 5k %k 3k %k sk %k %k %k 3%k %k 3%k %k %k %k 3%k %k %k %k 5k %k %k %k %k %k k
CASTART 10, STREVNT, ERROR=STRTERR
WAIT STREVNT
IF (STREVNT, NE, +MINUS 1)
GOTO STRTERR
ENDIF
PRINTEXT 'aDEVICE 10 STARTED'
3% ok 3k 3k 3%k %k 3k %k 3%k 3k %k 3k 3k 3%k 3k %k 3%k 3k 3%k 3k %k 3%k 3k %k 3%k 3k %k 3%k 3k %k dk %k 3%k %k 3k %k 3%k %k 5%k 3k %k 3k %k 3%k %k 5%k %k 5%k ok 5%k 3k %k 3k %k 3k 5k 3k 5%k %k %k %k 5%k 3k 5%k %k %k %k k

* TURN ON I/O TRACING *
3k 3k 3k % %k ok ok 3%k 3k sk %k kK %k sk %k %k %k Ak 3k %k 3k 3k %k %k %k %k %k %k %k %k %k %k % %k %k %k 3k %k sk 3%k sk 3k 3k 3k 3k 5k 5k 5k 5k 5k %k >k 5k 3%k 3k 3k 3k 3k %k %k %k *k %k %k %k %k %k %k

CATRACE 10,ENABLE=YES, ERROR=TRCERR

PRINTEXT 'QTRACE ENABLED'
3k 2k ok ok 3%k 3k 3k 3k 3k 3k 3%k %k %k sk 3k 3k 3k 3k 3k 3k 3k 3k %k sk 5k 3k %k %k 3%k 3%k %k %k 3%k %k % 3k %k %k 3k 3k 3k 3k 3k 3k 3k %k %k %k %k %k 5%k 5%k %k % 3k 3k 3k %k %k %k %k %k %k % % % %k %k
* OPEN PORT ONE *
3k 3k 3k %k 3%k ok 3k 3k 3k 3k 5k k k 3k 5k 3k 3%k 3k 3k 5k 5k 3k 3k %k %k 5%k %k %k %k %k 3%k 3k 5%k %k %k %k 3%k 3k 3k 3k 5k 3k ok 3k 5k %k %k %k %k 3%k 5%k %k 3%k 3k 3k %k %k %k %k %k % % % % % % % %k

CAOPEN PORTONE, ERROR=OPNERR

WAIT PORTONE

IF (PORTONE, NE , +MINUS 1)

GOTO OPNERR

ENDIF

PRINTEXT 'dPORT ONE OPENED'

PRINTEXT 'QPLEASE START SAMPLEC ON THE SYSTEM/370.'

PRINTEXT '@PRESS ENTER WHEN RDACK APPEARS ON THE '

PRINTEXT 'aS/370 DISPLAY, INDICATING THAT THE S/370'

PRINTEXT 'dHAS COMPLETED OPEN PROCESSING.'

READTEXT SYNC

Figure 57 (Part 1 of 6). Series/1 sample program

Chapter 4. Channel Attach Program CO-145

Channel Attach Program

Channel Attach Sample Programs (continued)

CO-146

3k 3k % 3k 3 %k 3k %k 3k %k %k ok %k 3k s %k %k %k %k 3k 3k 3k %k %k dk 3%k 3k %k %k %k 3%k 3k %k 3%k 3k %k %k 5%k %k %k %k 5k 3k sk sk 3k %k %k 5%k 3% %k >k 3%k %k %k sk 3k 3k %k %k % %k %k 3k %k %k %k %

* READ C3 WRITTEN BY SYSTEM/370 DURING OPEN PROCESSING *
% 3k 3%k 3%k %k %k %k %k %k ¥k 3k 3k %k sk %k 3k dk %k sk %k 3%k % %k %k %k %k 3k 5k %k 3%k 5%k 5k %k 3%k o 5%k 3k %k 5%k %k %k ok 3%k %k %k %k %k 3%k 3k %k %k 5k %k 3k % 5%k %k %k 3% %k % %k %k %k %k % k k
CAREAD PORTONE, WHATREAD, INAREA , ERROR=C3ERR
WAIT PORTONE
IF (PORTONE, NE, +MINUS1)
GOTO C3ERR
ENDIF
PRINTEXT 'aREAD OF C3 SUCCESSFUL'
3k 3 3k 3k 3k 3k 3k 3k ok ok 3k %k ok k 3k 3k %k ok 3k sk 3k %k %k 3k %k 3%k sk %k 3k ok 3k 3k 5k %k 5k %k %k sk %k 3k 3k 3%k 3k %k sk %k 3k %k %k 3%k 3k %k 5%k %k 3k sk %k %k %k %k 5k %k %k %k 5k %k %k %k
* WRITE MESSAGE TO SYSTEM/370 TO ACKNOWLEDGE RECEIPT OF C3 *
3% ok 3k %k dk %k kK ok Gk %k %k 3k 3k 3k 5k 3%k 3k %k sk %k 3%k sk %k sk 3k %k 3%k 3k %k 5k 3k %k 3%k 3k %k 3k %k %k % %k % %k %k 5k 5%k 3%k %k 3%k %k 2%k %k %k %k ok %k 3%k %k %k %k %k %k %k %k %k %k %k %k %k
CAWRITE PORTONE, OUTACK, ERROR=ACKERR
WAIT PORTONE
IF (PORTONE, NE, +MINUS1)
GOTO ACKERR
ENDIF
PRINTEXT 'dACK OF C3 WRITTEN TO SYSTEM/370'
%k 3k %k ok 3k 3%k 5k 3k 3k 3k 3k %k 3k 3k %k 5k 3k 5k 3k 3%k 3k %k 5%k 3k %k 3%k 3k 3k 3k 3k 3k 3%k 5k 3k 3%k 3k %k 3k %k 3%k dk 3%k dk %k 5k 3k 3%k 5k 3k 3%k 5k 3%k 3k %k 3%k 3k %k %k %k 3k %k %k %k %k %k %k %k k

* I/0 LOOP *
% 2k %k 3%k %k %k 3%k %k %k %k %k dk %k sk %k ok 3k 3%k ok % 3%k % %k 3k 3k %k %k %k %k 3%k 5k %k %k 5k %k 3%k %k % dk %k 3%k 3k 5%k 5k 5%k %k %k 3%k %k %k 3%k %k 3%k ok 3%k 3%k %k sk %k 3% 5k %k 5k %k %k ¥k %k %k
DO WHILE, (COUNT,LT,+LIMIT)
ADD COUNT, 1
%k 3k 3k % 3k %k %k K 3k %k %k 3k %k 3%k 3k 3%k 3k %k 3k 3k 3k 3k %k sk 3k %k 3%k 3k %k 3k 3k %k 3%k 3k %k 3%k %k %k 3k 3k 3k %k %k 5k 34 5k %k 5k 5k %k sk %k 5k 3k %k 5%k %k %k %k %k % 5%k %k %k % %k %k %k

* WRITE MESSAGE TO SYSTEM/370 *
sk ok sk ok 3k ok ok ok o ok ok ok ok ok ks sk ok ok ok ok sk sk sk 3k ok ok o ok o ok sk sk ok sk sk ok ok ok sk ok ok sk sk sk sk sk ok ok Sk ok K K K K K K K ok oK ok ok ok ok kK K

CAWRITE PORTONE, OUTAREA,ERROR=WRITERR

WAIT PORTONE

IF (PORTONE, NE, +MINUS1)

GOTO WRITERR
ENDIF
PRINTEXT 'aDATA WRITTEN TO SYSTEM/370'

Figure 57 (Part 2 of 6). Series/1 sample program

SC34-0443

Channel Attach Sample Programs (continued)

EXIT

3k 3k 3k 2k ok 3k ok 3k 3k 3k 3k 3k 3k 5k 3k 3k 3k 3k 5k 3k 3k 3k 3k 3k 3k 5k 3k 3k 3k %k %k 3k 3%k 3k 3%k 3%k 3k 3k 3%k 3k 3k 3k 3k 3k %k 3k %k % 3k %k %k %k %k %k %k 3%k % % 3k %k % %k %k %k %k *k *k %

¥ READ MESSAGE FROM SYSTEM/370 *
sk ok ok sk ok ok ok sk ok ok sk sk ok 3k oK sk sk ok Sk 3k 3k 3K 3k ok ok ok o ok sk ok sk sk sk sk ok ok ok sk ok sk skok sk sk sk skok sk sk sk ok sk sk sk sk ko kR R R K R R R Kk K XK

3k 3k 3k 3 3k sk sk 3k 3k 3k 3k 3k ok 3k 3k 3k dk sk 3k ok 3k ok 3k sk 3k ok 3k ok ok sk 3k ok sk dk 3k 3k 3k sk 3k sk ok 3k sk 3k e 3k sk sk 3k Kk %k K %k 3k %k %k 3k %k %k %k %k 3k %k k %k k %k k

* WRITE ACK TO SYSTEM/370 *
ke ok ke o ok ok ok ok ok o ok ok ok ok sk ok ok ok ok sk ok ok ok sk 3k 3k 3k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok K 3k ok ok ok ok ok ok ok ok ok ok

ENDDO
s ok sk sk sk ok ok ok ok ok ok ok sk sk ok ok oK ok sk ok ok ok ok 3k ok ok ok ok 3k ok sk ok ok 3K ok 3k ok 3k ok ok 3k ok K K ok ok
* CLOSE PORT ONE *

3k 3k 3k 3k ok 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k ok 3k ok 3k 3k 3k ok 3k ok 3k ok ok ok 3k 3k 3k 3k 3k 3k 5k 3k %k 3k sk 3k sk k dk sk 3k K %k 3k %k 3k k %k 5k %k %k 3k %k %k %k %k % %k k *k

CAREAD PORTONE,WHATREAD, INAREA, ERROR=READERR
WAIT PORTONE
IF (PORTONE, NE, +MINUS 1)
GOTO READERR
ENDIF
PRINTEXT 'aDATA READ FROM SYSTEM/370'

CAWRITE PORTONE,OUTACK, ERROR=RDACKERR
WAIT PORTONE
IF (PORTONE, NE, +MINUS1)
GOTO RDACKERR
ENDIF
PRINTEXT '®dACK WRITTEN TO SYSTEM/370'

CACLOSE PORTONE, ERROR=CLOSERR

WAIT PORTONE

IF (PORTONE, NE, +MINUS1)
GOTO CLOSERR

ENDIF

PRINTEXT 'aPORT ONE CLOSED'

Figure 57 (Part 3 of 6). Series/1 sample program

Chapter 4. Channel Attach Program CO-147

Channel Attach Program

Channel Attach Sample Programs (continued)

3k 3k %k 3k %k %k 3k %k 3k %k %k %k %k 3k %k %k %k 3k %k %k 3%k %k %k %k 5k 3k 3k %k %k 3%k 3%k 3k %k %k 3%k %k %k 3%k 3k %k %k 5%k %k %k %k %k % %k %k 5k % %k 5%k %k %k %k 5%k % %k % 3% %k %k %k %k %k %k %k

* TURN OFF TRACE *
ok ok ok 3k ok ok ok ok ok ok ok 3 oK ok ok ok ok sk 3 ok ok 3k ok ok sk sk sk ok 3k ok ok ok 3k ok ok ok ok ok ok ok ok ok sk ok K oK 3k ok ok ok ok K oK 3K ok ok ok ok ok ok Sk ok ok ok K K K
TRCDIS CATRACE 10,ENABLE=NO, ERROR=TDISERR

PRINTEXT '@TRACE DISABLED'
e ok o ok 3k ok ok ok 3k ok ok ok ok ok ok ok sk ok ok ok ok ok 3k sk ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok 3k ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok Sk ok ok ok R K K

* PRINT THE TRACE AREA ON THE SYSTEM PRINTER *
ok ke ok ok ok ok ok ok ok sk sk ok ok ok ok ok ok sk ok ok ok ok ok ok 3K sk sk ok ok ok ok o ok ok 3k ok ok ok ok ok ok 3k sk ok ok ok ok ok sk sk ok ok ok ok ok sk ok ok ok ok ok sk ok ok ok ok ok
PRNTRCE CAPRINT 10,STREVNT, TITLE=TITLDATA, ERROR=PRNTERR

WAIT STREVNT

IF (STREVNT,NE, +MINUS1)

GOTO PRNTERR

ENDIF

PRINTEXT 'ATRACE AREA PRINTED'
sk ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok sk ok ok ok ok ok ok sk ok sk ok ok sk ok ok ok ok ok ok ok 3k ok ok 3k ok ok ok o ok 3k 3k ok ok ok 3k ok ok sk ok ok ok ok ok ok ok ok ok kK K

* STOP THE CHANNEL ATTACH DEVICE *
3k 3k %k 3%k 3 %k %k %k %k %k ok 3k %k 3k %k 5k %k %k 5k %k 3%k 3k %k 3k 3k %k 5k 3k %k %k 3k %k 3%k 3k %k %k %k 3%k 3k %k 3k %k %k 3k 3%k %k %k %k 3k 3%k %k %k %k %k %k %k %k %k %k %k %k % %k %k %k *k %k %k
STOPDEV CASTOP 10,STREVNT, ERROR=STOPERR

WAIT STREVNT

IF (STREVNT, NE, +MINUS1) ,AND, (STREVNT, NE, +ENDED)

GOTO STOPERR

ENDIF

PRINTEXT 'aDEVICE 10 STOPPED'

PROGSTOP -1

Figure 57 (Part 4 of 6). Series/1 sample program

CO-148 sC34-0443

Channel Attach Sample Programs (continued)

PORTONE
STREVNT ECB
C3AREA DATA
DATA
DATA
INAREA DATA
DATA
DATA
OUTAREA DATA
DATA
DATA
OUTACK DATA
DATA
DATA
WHATREAD DATA
INBUFF DATA
OUTBUFF DATA
DATA
DATA
DATA
DATA
DATA
DATA
COUNT DATA
LIMIT EQU
MINUS1 EQU
SYNC TEXT
TITLDATA DATA
DATA
MYTITLE DATA
ENDED EQU

% 3% 3% 3% % %k 3%k 3k %k %k 5k 3%k %k %k 3%k 3k %k %k 3k %k 3%k 3k 3%k 3k %k 3%k 5%k 5%k 3k %k 3%k 3%k %k %k 5%k % %k %k 3k 3k 3%k 3k %k 5%k 3%k 3k sk 3%k 3% %k 5k %k %k 3k %k %k %k %k %k 3k %k % % %k %k %k k *

* DATA AREAS AND I/O BUFFERS *
ok ok ok ok ok ok ok ok ok ok ok ok sk sk 3K sk 3 3K sk ok ok 3k ok o ok ok ok sk sk ok ok sk ok ok sk ok ok ok ok sk sk ok ok ok ok ok ok ok sk 3k 3k ok o ok ok ok ok o ok K K K Kk Kk K K K

CAIOCB 10,PORT=1,BUFFER=C3AREA

CAIOCB FOR PORT ONE

0 EVENT FOR START, STOP, PRINT
A (INBUFF) BUFFER CONTROL AREA FOR

F'1' * READ OF C3

F'0’ * FROM S/370 OPEN

A (INBUFF) BUFFER CONTROL AREA FOR
F'128°' * DATA INPUT

F'0’ * FROM S/370 WRITE

A (OUTBUFF) BUFFER CONTROL AREA FOR
F'128" * WRITE OF DATA

F'0’ * TO SYSTEM/370

A (OUTBUFF) BUFFER CONTROL AREA FOR

F'4' * WRITE OF ACK

F'0’ * TO SYSTEM/370

3F'0’ RECEIVE CONTROL INFO FOR READ
128C'0"

X'7D4040AA"

C'BB CC DD EE FF GG HH'
C'11 22 33 44 55 66 77'
C'ZZZZZYYYYYXXXXXWWWWW '
C'THIS IS TO BE WRITTE'
C'N TO THE SYSTEM/370.'
C' THE END'

F'0'

2

-1

LENGTH=4

A (MYTITLE)

F'25"

C'SAMPLE PROGRAM TRACE AREA'
599

Figure 57 (Part 5 of 6). Series/1 sample program

Chapter 4. Channel Attach Program CO-149

Channel Attach Program

Channel Attach Sample Programs (continued)

CO-150

3k 3k 3 3% 3k %k dk 3k sk 3k ok sk 3k 3k ok ok 3k 3k %k 3k 3%k 3k 3k %k 3k 3k 3k 3k %k 3k 3k 3%k %k 3k 3k 3k %k %k 3k 3k %k 5%k 3k 3k sk 5%k 5k 3% %k 3%k 3% 5k 3%k sk %k %k 5%k 3k % %k 5% % %k 3%k %k %k k

* ERROR MESSAGES *
ok ok ok sk ok ok ok ok 3k 3k ok ok ok ok sk ok ok ok sk ok sk ok ok ok K ok ok ok sk sk sk sk sk ok ok ok ok 3k 3K K K ok o o o ok o ok ok ok ok ok ok ok ok ok ok ok kok ook okok ok ok

STRTERR PRINTEXT '@ERROR DURING START PROCESSING'

GOTO EXIT

OPNERR PRINTEXT '@ERROR DURING OPEN PROCESSING'
GOTO EXIT

C3ERR PRINTEXT '@ERROR DURING C3 PROCESSING'
GOTO EXIT

ACKERR PRINTEXT '@ERROR DURING C3/ACK PROCESSING'
GOTO EXIT

WRITERR PRINTEXT 'aERROR DURING S/1 WRITE PROCESSING'
GOTO EXIT

READERR PRINTEXT '@aERROR DURING S/1 READ PROCESSING'
GOTO EXIT

RDACKERR PRINTEXT 'ERROR DURING READ/ACK PROCESSING'
GOTO EXIT

TRCERR PRINTEXT '@ERROR DURING TRACE ENABLE'
GOTO EXIT

TDISERR PRINTEXT 'aERROR DURING TRACE DISABLE'
GOTO PRNTRCE

PRNTERR PRINTEXT '@ERROR DURING PRINT OF TRACE AREA'
GOTO STOPDEV

CLOSERR PRINTEXT '@ERROR DURING CLOSE PROCESSING'
GOTO TRCDIS

STOPERR PRINTEXT '®ERROR DURING STOP PROCESSING'
PROGSTOP -1
ENDPROG
END

Figure 57 (Part 6 of 6). Series/1 sample program

SC34-0443

Channel Attach Sample Programs (continued)

Host Sample Program

This program executes on a System/370 using OS/VS Basic Telecommunications Access
Method (BTAM) facilities, to communicate the application program executing at the same time
on the Series/1. Refer to the previous program, which is the companion to this host program.

3k 3k 3k 3k 3k 3k 3k 3k 3k sk 3k %k sk ok 3k ok %k ok %k 3k ok sk ok 3k ok 3k ok sk ok 3k sk 3k 3k sk 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k ok sk 3k 3k 3k 3k sk ok 3k K ok 3k 3k %k ok %k %k Kk k k

* INVOKE SAMPLEC VIA TSO COMMANDS OR JCL. *
* EXAMPLE: INVOKE SAMPLEC VIA TSO COMMANDS: *
* FREE FI (PRINTER,SNAP,S1GROUP) *
* ALLOC FI(SYSABEND) DA (DUMP.LIST) NEW SPACE(5,1) CYLINDERS + *
* CATALOG *
* ALLOC FI(SNAP) DA(SNAP.LIST) NEW SPACE(5,1) CYLINDERS CATALOG *
* ALLOC FI(S1GROUP) UNIT(581) NEW *
* ALLOC FI(PRINTER) DA (*) *
* CALL 'PROJECT.LIB.LOAD (SAMPLEC)' *
* FREE FI(PRINTER,SNAP,S1GROUP) *
* EXAMPLE: INVOKE SAMPLEC VIA 0S/VS JCL: *
x /) JOB (ACCOUNTING INFO),'NAME', *
* //SAMPLEC EXEC PGM=SAMPLEC *
* //STEPLIB DD DISP=SHR,DSN=PROJECT.LIB.LOAD *
* //S1GROUP DD UNIT=581,DISP=NEW *
* //PRINTER DD SYSOUT=A *
* //SNAP DD SYSOUT=A *
* //SYSIN DD * *
* /* *
% % 3% %k 3%k 3k K 3k % ok 3k 5k 3k %k %k %K %k %k %k 5k %k ke 3k 3 K %k %k %k %k %k %k 3k %k % %k %k % %k %k 3k %k %k %k 3k 3k %k 3%k 5% %k %k %k %k %k %k 3%k %k 5k %k %k 3%k % % %k %k ¥k XK %k % %k
* EQUATES *
sk 3k 3 ok %k 3 3k ok 3k 3%k sk ok %k %k 3k 3k 3k sk 3k sk %k %k 3k %k 3%k 3k %k %k 3k 3k 5k 3k 3%k 3k %k %k %k 3%k %k %k 5k %k 3k 3%k 3k 3%k 3k 3%k %k 3%k 3k %k %k 3%k 5k %k 5k %k %k %k %k %k 3k %k %k %k %k %k %k
RO EQU O TEMPORARY STORAGE

R1 EQU 1 TEMPORARY STORAGE

RLN EQU 1 RELATIVE LINE NUMBER

R2 EQU 2 MESSAGE ADDRESS

R3 EQU 3 LOOP COUNTER

R4 EQU 4 BAL

R5 EQU 5 BAL

DCBREG EQU 6 DCB USING REGISTER

DECBREG EQU 7 DECB USING REGISTER

R8 EQU 8 BAL

RO EQU 9 NOT USED

R10 EQU 10 NOT USED

BASEREG EQU 11 BASE USING REGISTER

R12 EQU 12 NOT USED

SAVEREG EQU 13 SAVE AREA ADDRESS REGISTER

R14 EQU 14 LINKAGE

R15 EQU 15 LINKAGE

Figure 58 (Part 1 of 8). Host sample program

Chapter 4. Channel Attach Program CQO-151

Channel Attach Program

Channel Attach Sample Programs (continued)

* START SAMPLEC

CSECT
SAVE (14,12)

BALR BASEREG, 0

USING *,BASEREG

USING IHADCB,DCBREG
USING IECTDECB,DECBREG
ST SAVEREG, SAVEAREA+4
LA SAVEREG, SAVEAREA
LA DECBREG , CADECB

SAMPLEC

3k 3k 3k %k 3%k 3k %k 3%k 3%k 3%k %k 3k 3%k %k %k 3%k 3%k %k %k 3%k %k 3k %k 3%k 5k 3%k 3k %k 3%k 3%k %k %k 3%k 5%k 3k %k 5%k 3k %k %k 3%k 3%k %k 5%k 3%k %k %k 3%k %k %k %k 5%k 3k %k 5%k %k %k 3%k 5%k 3k %k % % %k %k % % % *k

*

3k 3k 3k % 3k %k %k %k %k 3k %k 3k 3%k 3k %k 3k 3k %k %k 5%k 3k %k %k %k 3k 3k %k %k %k 5k 3%k %k %k %k 3k %k 5%k 3k %k %k %k 3%k %k 5%k 3%k 3k %k 5%k 3k %k %k 3k 3k %k 3k % %k %k %k %k %k % % %k %k %k %k k ¥

SAMPLEC PROGRAM
SAVE REGISTERS
ESTABLISH ADDRESSABILITY
FOR CSECT.
ESTABLISH ADDRESSABILITY
FOR DCBS AND DECBS
STORE ADDRESS OF SAVE AREA
LOAD THIS PROG SAVE AREA ADDR
LOAD DECB USING REG

sk 3k ok ok 3k 3k ok ok ok ok ok ok ok ok ok ko ok ok ok ok sk sk sk 3k 3k ok 3k ok ok ok ok ok ok sk sk sk sk ok ok ok ok ok ok 3K 3k 3k 3K ok 3K 3k ok 3k ok K K K % K K K K K K K K ok
* OPEN PRINTER DATASET *
sk ok 3k 3k 3k 3k 3K K ok o ok ok ok ok ok ok ok ko ok sk ok sk sk 3K ok 3k ok ok ok ok ok ok ok ko sk ok ok sk ok ok sk ok sk sk sk ok K ok K Kk Rk R R R K K K K K K K KKK K K
LA DCBREG, PRINTDCB LOAD DCB DSECT REG
OPEN (PRINTDCB, (OUTPUT)) OPEN PRINTER DCB

T™ DCBOFLGS,X'10" IF OPEN OK
BO CAOPEN1 BRANCH
ABEND 1,DUMP ELSE ABEND

3k 3k %k %k 3% %k %k %k k 3% %k %k %k 3k %k %k 3% %k %k 5%k 3%k 3k %k %k 5%k 3%k 3k %k 3%k %k 3%k %k %k 3%k 3k %k %k %k 3k %k %k 3%k %k %k %k 3k %k %k % %k %k %k 3k %k %k % %k %k % %k % %k %k %k %k %k k ¥k %k

* ISSUE OPEN MACRO FOR SNAP DATASET * * * *
s 3K ok o ok ok 3 ok ok ok 3 3 ok ok 3k 3 % ok ok 3 ok ok ok K 3 ok oK % 3 ok ok K 3 ok ok ok oK 3 ok ok ok ok 3 3k ok ok 5k % 3 ok ok ok % 3 % % ok ok 3K % % % ok % K % %k k X

CAOPEN1 LA DCBREG, SNAPDCB
OPEN (SNAPDCB, (OUTPUT))
™ DCBOFLGS, X'10"
BO CAOPEN2
ABEND 2,DUMP

* OPEN CHANNEL ATTACH DEVICE DCB

CAOPEN2 LA DCBREG, CADCB
MVC COP(8),OPEN
OPEN (CADCB)
T™ DCBOFLGS, X' 10"
BO CAINIT
LA R2,MSG09
BAL R5,PRINTIO
ABEND 3,DUMP

CAINIT EQU *
LA R2,MSGOO
BAL R5,PRINTIO
LA R2,MSGO1
BAL RS5,PRINTIO

LOAD DCB DSECT REG
OPEN SNAP DCB
IF OPEN OK
BRANCH
ELSE ABEND

% 3% %k 3% 3k 3k %k %k 3%k 3k %k %k 3%k 5k %k 3%k 3k %k % %k 3k 5k %k %k 3%k 3k %k %k 5k 3%k 3k %k 3%k 3k %k %k 5%k 3k %k % 3%k 3k %k 5%k 3% %k 3%k 5%k 3k %k 5% 3k %k 5%k 3%k %k % % %k %k %k %k %k % %k %k %k % %k

%*

3k 2k 3k 2k 3k 3k %k %k 5%k %k %k % 3% %k % %k %k %k %k %k %k %k %k %k %k 3k 3k 3k 3k 3k 3k 3k 5%k 5%k 3k 3%k 5k 3k 3k 3k 3k 3k 3k 3k 2k 3k 5k 3k >k 3k 3k 3k %k %k %k %k %k %k %k % %k %k %k % %k %k %k %k %k

LOAD DCB DSECT REG
CURRENT OP = OPEN
OPEN SERIES/1 LINE GROUP DCB
IF OPEN OK
BRANCH
ELSE
PRINT MESSAGE
ELSE ABEND

PRINT BEGIN

TEST MESSAGE.

PRINT CHANNEL ATTACH
DEVICE OPEN MESSAGE.

Figure 58 (Part 2 of 8). Host sample program

CO-152 SC34-0443

Channel Attach Sample Programs (continued)

3% 3k 3%k % % 3k 3k %k %k ok 5%k 3k %k dk % %k ok 5k 3k 3k ok 3%k %k 3%k %k 3%k sk 3k 3%k 3k 5k %k 3%k 3k %k %k 3% 5k ok 3% %k %k % sk 5%k %k %k 5%k 5%k %k 5%k % % %k % %k %k 3% %k 3k % %k % %k %k %k k k k

* READ ACKNOWLEDGE MESSAGE FROM SERIES/1 FOR BTAM OPEN'S WRITE.
sk ok ok oK oK ok ok ok ok ok ok ok sk ok ok ok sk ok ok ok ok sk ok ok ok ok o ok ok ok ok o ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok kK K

BAL R8,RDACK READ S/1 ACK MSG
BAL R4,CHKRTN CHECK RETURN CODE
% 3k 3%k 3%k 3k % 3k %k 3k %k 3k sk 3k 3k %k %k 3k 3%k 3k %k 3%k %k 3%k dk 3 3%k 3k 3%k 3k %k 3%k 3k %k 3%k %k 3%k 3k 3k 3%k 3 %k %k %k 3k 5%k 3%k 3%k 3%k 3%k 5k %k 3k %k 3k %k 5%k %k 3%k %k %k %k %k %k %k %k %k %k k %k
* DO UNTIL COUNT = LIMIT
3% 3k 3% 3k 3k %k ok 3k 3k 3k ok ok %k 3%k 3k %k 3k %k 3k %k 3k 3k %k 3k 3k 3%k %k 3%k 3k %k 3k 3k %k sk 3k 3k 3k %k 3k %k 3%k %k 3%k 3%k 3%k %k 3%k %k 3%k 3k %k 3k 5%k 3k %k 5k %k 3k %k 5k %k %k 5%k %k %k %k %k %k k
LA R3,NLIMIT SET R3 = LIMIT
LOOP EQU *

3k 3k 3k 3k %k ok 3 ok 3k 5k 3k 3k 3k 3k 3k 3k 3 ok 3k 3k 3k ok 5k 3k %k ok 5k ok %k 3k ok K ok ok sk 3k %k 3k dk 3k 3k 3k 3k 3k 3k sk 3k 3k 3k 3k ok 3k sk 3k 3k % 3k 3k 3k %k %k % 3k %k % %k %k k

* READ A MESSAGE

ok ok o o ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok 3k ok ok ok ok ok ok 3k ok ok ok K e ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok Kok ok
BAL R8,RDINIT READ FROM SERIES/1
BAL R4, CHKRTN CHECK RETURN CODE

ke ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok 3k ok ok ok ok ok ok ok 3k ok ok ok ok ok ok sk ok ok 3k oK 3k ok ok ok ok ok ok ok ok ok ok ok ok ok oK ok ok ok ok ok ok ok ok ok ok sk ok ok

* WRITE A MESSAGE
3k ok ok o ok ok ok ok ok ok ok ok ok sk ok ok ok o ok ok ok ok ok o ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok sk ok ok ok ok ook ok sk sk ok ko ok kR ok ok ok Rk ok ok ok

WRIT BAL R8,WRINIT WRITE TO SERIES/1
BAL R4,CHKRTN CHECK RETURN CODE
BAL R8,RDACK READ SERIES/1 ACKNOWLEDGEMENT
BAL R4,CHKRTN CHECK RETURN CODE
% 3% % 3k %k %k %k 3k 3 ok k 3 3k 3k %k 3k 3k 3k 3k ok dk ok 5k 5k 3k 3k 3k 5k 3k 3k 3k 3k 3k k ok ok 3k ok dk 3k 3k 5k %k %k %k 3k kK 3% 3k 3%k 3k 3k 3k %k 5k 5k %k %k 3% % % % 3k 3k %k %k %k k k
* ENDDO
% 2k 3k ok ok 3k 3%k 3k 3k 3k 3k 3k ok 3k 3k ok 3k 5k 3k 3k %k %k %k %k %k 5k 3k %k 3k 3k 5k 3k 3k 3k 3k 3k 2k 3k 3k 3k %k %k 5%k 5%k %k %k 3k 3k 3k 3k 3%k 5k %k %k %k %k %k % % % %k % %k %k %k %k %k %k %k
BCT R3,LOOP IF R3 NE ZERO CONTINUE
% % 3k 3k ok 3k 3%k 3k 3k 3%k 3k 3k %k 3k 3k 3k %k 3k 3k ok %k %k 3k 3%k %k 3k 3%k %k 3k 3k %k ok 3k %k %k 3k 5k 3%k 5k 3k 3k 3k 3k %k 3k 3k sk %k 3k 3k 3k sk %k 3k 3k 3%k %k %k %k 3%k 3k %k %k %k 3k %k %k *k %k
* OUTPUT 'SAMPLEC TEST ENDED'
3k ok 3k 3k 3k dk ok 3k %k %k 3k 3k 3k ok 3k ok 3k 3k %k %k %k %k %k %k %k %k 5k %k %k 5k 5k 3k 5k 5k 5k 3k 3k 5k %k %k % % 3%k 3k %k 3k 3k 3k 3k 5k 5k %k %k %k 5%k %k %k % % % %k %k %k %k %k *k *k k *k
LA R2,MSGO4 PRINT END OF
BAL R5,PRINTIO TEST MESSAGE.
3k 3k 3k 3k 3k 3k 3k ok % %k %k %k %k 3k %k %k %k %k %k %k %k %k %k 3k %k %k %k %k %k %k %k %k %k %k %k 3 %k %k %k % % 3k 3k 3k 3k 5k %k %k %k %k % %k %k %k % 3k 3k 3k 5k %k %k % %k % % %k %k % %k
* ISSUE CLOSE MACRO CHANNEL ATTACH DCB
3k 3k 3k 3k 3k 3k ok ak ok %k %k %k 3k 3k %k %k %k %k %k %k %k %k % %k %k sk 3%k %k %k %k %k %k %k %k %k %k %k %k 3%k %k %k 3%k 3k 3k 3k %k %k %k %k %k %k % %k % %k 3k %k %k %k %k %k 5% % % % % %k %k %k
MVC COP(8),CLOSE CURRENT OP = CLOSE
CLOSE CADCB CLOSE LINE DCB
3% 3%k 3k ok dk ok 3k 3k %k ok 3k 3k 3k ok 3k 3k 3k ok 3k 3k 3k 5k 3k 5k ok 3k 3k 3k 3k 3k 3k ok 3k ok dk ok 3k 3k 3k %k %k %k % 5%k ok 3k 3k 3%k 3k 3k 3k %k %k %k %k %k %k %k % 3k %k 3k %k %k %k %k %k %k %k
* ISSUE CLOSE MACRO FOR PRINTER DATASET
3k 3k 3k 3 3% 3k %k 3% % 3k 3k %k %k sk 3k 3k sk 3k 3k ok 3k 3k ok ok 3k 5k %k 3k 3k 3k ok 3k 3k 3k sk % 5k >k %k %k &k 3k %k % 3k %k 3k 3k %k %k 3k 5%k 3k %k %k %k %k %k %k sk %k %k % %k %k %k %k k %k
CLOSE PRINTDCB CLOSE PRINTER DCB
EXIT EQU *
L SAVEREG, SAVEAREA+4 RESTORE SAVEREG
RETURN (14,12),RC=0 EXIT

Figure 58 (Part 3 of 8). Host sample program

Chapter 4. Channel Attach Program CO-153

Channel Attach Program

Channel Attach Sample Programs (continued)

CO-154

sk sk sk ok ok sk ok oK K ok ok ok ok ok ok ok ok sk sk ok sk ok ok sk sk K ok ok ok o o ok ok ok ok ko ok sk sk ok ok sk sk ok sk sk sk sk sk sk ok ok ok sk ok ok sk ok K ok %ok K ok o K
* INTERNAL SUBROUTINE CHKRTN: CHECK I/O RETURN CODES

* CALLING SEQUENCE:

BAL R4 ,CHKRTN

% 3k 3k %k 3%k 3k %k % ok 3k %k %k 3%k %k A 3k % 3k %k 3k 3% %k %k 3k 3k 3k 3k %k 3%k 3%k 3k %k %k 3% %k %k %k 3k %k %k %k %k %k % 3% %k 3%k 3k %k %k 3% %k %k %k %k %k 3%k %k %k %k %k %k %k %k %k %k %k k *k

CHKRTN EQU
CLI
BNE
CLI
BNE
BR
CLI
BNE
MVI
CHKFL2 BR
CHKCC41 CLI
BE
MVC
UNPK
MVI
TR
LA
BAL
ABEND
EQU
™
BNO
™
BNO
™
BNO
LA
BAL
B
MVC
UNPK
MVI
TR
LA
BAL
ABEND

CHKFL1

JOERROR

IOERR

*

DECSDECB, X' 7F"'
CHKCCZ41

DECFLAGS, X'00"'
CHKFL1

R4

DECFLAGS, X 'FO'
CHKFL2

READY, X'FF'

R4

DECSDECB,X'41"
IOERROR

WORK (1) ,DECSDECB
MSGO02+28 (3) ,WORK (2)
MSGO02+30,C' '
MSG02+28(2) , TABL-240
R2,MSGO2

RS, PRINTIO

4 ,DUMP

*

DECERRST, X'80"
IOERR
DECCSWST,X'02"
IOERR
DECSENSO,X'40"
IOERR

R2,MSG10

RS, PRINTIO

EXIT

WORK (1) , DECFLAGS
MSGO03+33(3) , WORK (2)
MSGO3+35,C' '
MSG03+33(2) , TABL-240
R2,MSGO3
R5,PRINTIO

5,DUMP

IF ECB POST CODE IS BAD
BRANCH
ELSE IF FLAGS NOT ZERO
BRANCH
ELSE RETURN
IF DEVICE HAS NOT BECOME READY
BRANCH
ELSE SET READY FLAG
RETURN
IF ECB POST CODE IS I/O ERROR
BRANCH
ELSE LOAD POST CODE INTO WORK
LOAD CHAR INTO MSG
INSERT BLANK
TRANSLATE
PRINT
MESSAGE
ABEND

IF NOT SIO ERROR
BRANCH
ELSE IF NOT UNIT CHECK
BRANCH
ELSE IF NOT INTERVENTION REQ'D
BRANCH
ELSE
PRINT INTERVENTION REQ'D
EXIT
LOAD FLAGS INTO WORK
LOAD CHAR INTO MSG
INSERT BLANK
TRANSLATE
PRINT
MESSAGE.
ABEND

Figure 58 (Part 4 of 8). Host sample program

SC34-0443

Channel Attach Sample Programs (continued)

sk ok 3k ok ok ok ok 3k ok ok ok ok ok ok ok o ok ok ok ok Sk sk ok ok ok sk ok sk ok ok ok sk ok K ok s K sk koK ok 3 ok ok 3 3k sk ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok K sk ok
* INTERNAL SUBROUTINE PRINTIO: PRINT MESSAGE

* CALLING SEQUENCE: LA R2,MSGXX ADDR OF MSG IN R2(NOTE)
* BAL PRINTIO,R5 PRINT MESSAGE

* NOTE: FIRST BYTE PRECEDING THE MESSAGE HAS LENGTH OF MESSAGE.
sk ok ok ok ok ok ok K ok ok 3k ok ok ok ok ok ok sk ok ok ok ok ok 3k sk ok ok ok ok ok ok ok ok ok ok ok ok sk sk ok ok ok o ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok sk ok ok ok K sk ok ok K

PRINTIO LR R1,R2 GET ADDR OF MSG

BCTR R1,0 GET ADDR OF MSG LENGTH

CLI O0(R1),128 IF MSG NOT TOO LONG

BNH PRINT BRANCH

LA R1,127 ELSE

B PRINT1 TRUNCATE TO MAX LENGTH
PRINT IC R1,0(R1) GET MSG LENGTH

BCTR R1,0 SUBTRACT ONE FOR MVC INSTR
PRINTI1 EX R1,MOVE EXECUTE MOVE INSTRUCTION

PUT PRINTDCB, PRTBUF PRINT IT

SNAP DCB=SNAPDCB, ID=10,
STORAGE= (PRTBUF , EPRTBUF)

MVI ~ PRTBUF,C' ' SET PRINT
MVC PRTBUF+1(127) , PRTBUF BUFFER TO BLANKS.
BR R5 RETURN
3k 3k 2k 3k ke sk 3k sk ok ok ok ok ok ok K 3k ok 3k ok ok dk sk 3k 3k K sk 3k ok sk k Ak dk 3k dk sk sk kK k 3k 3k 3k 5k 5k %k k 3k sk 3k sk kK 3k 3k 3k 3k 3k 3k %k %k %k %k 3%k %k % % % %k %
* INTERNAL SUBROUTINE EMSG: PRINT BTAM MACRO ERROR MESSAGE
* CALLING SEQUENCE: B EMSG (OR EQUIVALENT)
* ERROR CODE IN R15
3k 3k 2k 3k %k %k %k %k 3k %k ok 3k 3k dk 3k 3k 3k ok 3k 3k sk 3k sk ok 3k 3k 3k 3k 3k 3k 3k 3k kK 3k %k 3k 3k 3k 3k 3k 3k %k %k %k 3k 3k 3k 3%k %k %k %k 3%k %k 3k %k 3k %k %k %k %k % % % % % %k %k %k
EMSG STC R15,WORK SAVE RC INTO WORK
UNPK MSGO5+46 (3) ,WORK (2) CONVERT TO ZONED FORMAT
MVI ~ MSGO5+48,C' ' INSERT BLANK FOR SIGN POSITION
TR MSGOS5+46 (2) , TABL-240 TRANSLATE TO EBCDIC FOR PRINTING
MVC WORK(1) ,DECSDECB MOVE DECSDECB INTO WORK
UNPK MSGO05+59(3) , WORK (2) CONVERT TO ZONED FORMAT
MVI ~ MSGO5+61,C' ' INSERT BLANK FOR SIGN POSITION
TR MSG05+59 (2) , TABL-240 TRANSLATE TO EBCDIC FOR PRINTING
MVC ~ MSGO5+26 (8) ,COP INSERT CURRENT BTAM OPERATION
LA R2,MSGO5 PRINT
BAL R5,PRINTIO ERROR MESSAGE
B EXIT EXIT

Figure 58 (Part 5 of 8). Host sample program

Chapter 4. Channel Attach Program CO-155

Channel Attach Program

Channel Attach Sample Programs (continued)

CO-156

3 %k % 3k %k %k ok %k 3%k 3k %k 3k % %k %k 3k 3%k %k 3% %k 3k %k %k % 3k 3% %k %k 3%k 3% 3k %k %k % %k %k 3%k 3%k %k 5%k %k 3k %k 5%k %k %k %k 5%k 3k % >k %k 3k 3k 5%k 3%k %k 5%k % %k %k % %k %k %k %k %k k *k

* BTAM I/O REQUESTS
3k ok ok ok ok o 3k oK K 3K K K ok K ok ok ok ok ok ok ok sk sk sk ok 3k ok K K K % ok 3 ok ok ok ok ok ok sk sk sk sk sk sk ok sk ok ok sk ok sk sk ok ok ok ok ok sk ok ok 3k ok K K K K K

* READ ACKNOWLEDGE MESSAGE

RDACK LA R2,MSG11 RDACK MESSAGE
B RDALL PRINT MESSAGE
* READ INITIAL
RDINIT LA R2,MSG06 RDINIT MESSAGE
RDALL BAL R5,PRINTIO PRINT MESSAGE
MVC COP(8) ,READ CURRENT OP = READ
READ (DECBREG),TI,CADCB,AREAIN,LIN,,RLN,MF=E
B WAIT
* WRITE INITIAL
WRINIT LA R2,MSGO7 WRINIT MESSAGE
BAL R5,PRINTIO PRINT MESSAGE
MVC COP(8) ,WRITE CURRENT OP = WRITE
WRITE (DECBREG),TI,CADCB,AREAOUT,LOUT, ,RLN,MF=E
B WAIT
* WRITE UNPROTECTED ERASE
WRUNER LA R2,MSGO8 WRUNER MESSAGE
BAL RS5,PRINTIO PRINT MESSAGE
MVC COP(8),WRITE CURRENT OP = WRITE
WRITE (DECBREG),TUS,CADCB,AREAOUT, 1,,RLN,MF=E
B WAIT
% %k %k % %k %k %k %k %k %k K %k %k %k %k 3k %k 3%k 3k %k ok %k %k ok 3k %k 3k 3k %k 3k ¥k 3k dk ¥k %k 3k % 3k %k ok 3k %k 3k 3k 3k 3k %k 3% 3k %k 3k %k dk %k 3%k %k %k %k %k 3k %k 3%k % %k %k ¥k %k k
* WAIT FOR I/0 COMPLETION
3k 3%k % 3%k %k 3% 3k %k 3k 3k %k 3k 3k %k 3k ¥k ok %k %k 3k %k %k 3k %k 3%k 3k %k 3k 3k %k 3k 5k %k 3k %k 3%k 3k %k sk %k 3%k 3k %k 3%k 5k 3%k 3k % 3k %k %k 5k %k 5k %k %k %k %k %k %k %k %k % %k %k %k 5k %k
WAIT LTR R15,R15 IF I/0 RETURN CODE IS NONZERO
BNZ EMSG BRANCH
WAIT 1,ECB=(DECBREG) ELSE WAIT FOR I/O TO COMPLETE

SNAP DCB=SNAPDCB,ID=20,PDATA=(PSW,REGS),
STORAGE= (SAVEAREA, PRINTDCB)

CLC COP (8) ,READ IF COP EQ READ
BE WRUNER BRANCH TO WRITE ACK
BR R8 RETURN

Figure 58 (Part 6 of 8). Host sample program

SC34-0443

Channel Attach Sample Programs (continued)

SAVEAREA
LIMIT
MOVE
WORK
MSGO0O
MSGO1
MSGO2
MSGO3
MSGO4

MSGO5

MSGO6
MSGO7
MSGO8
MSGO9
MSG10
MSG11
COP
READ

WRITE
CLOSE

DS
LTORG
DS

DC
MvC

3k 3k 3k 3k 3k 3k sk 3k ok e ok 3k ok 3k ok 3k 3k %k sk ok 3k ok 3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k 3k 3k 3k 3k %k 3k ok 3k 3k %k 3k 3k 3k sk 3k sk ok 3k ok 3k ok 5k 3k % 3k 3k %k 3k %k %k 5k Xk %k k

* DATA DECLARATIONS
sk ok ok K ok K ok 3 ok ok sk ok ok ok ok 3k ok sk ok ok o ok ok ok sk ok ok ok o ok ok ok sk sk ok o ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok kR sk ok ok ok Rk ok kK K

OF WORD ALIGNMENT

18F SAVE AREA

F'0’ LIMIT COUNTER VALUE

PRTBUF (1) ,0(2) MOVE INSTR IS EXECUTED BY EX
X'00O0F' WORK SPACE

AL1(L'MSGO0O)

C'SAMPLEC TEST STARTED'

AL1(L'MSGO1)

C'CHANNEL ATTACH DEVICE OPENED.'
AL1(L'MSGO02)

C'SAMPLEC: COMPLETION CODE = XX !
AL1T(L'MSGO03)

C'SAMPLEC: I/0 ERROR . DECFLAGS = XX '
AL1 (L'MSGO04)

C'SAMPLEC TEST ENDED'

AL1(L'MSGO05)

C'BTAM OPERATION ERROR FROM XXXXXXXX MACRO.
RC= YY DECSDX ECB= ZzZ '

AL1 (L'MSGO06)

C'RDINIT '

AL1(L'MSGO07)

C'WRINIT '

AL1(L'MSG08)

C'WRUNER '

AL1(L'MSG09)

C'CHANNEL ATTACH DEVICE COULD NOT BE OPENED.'
AL1(L'MSG10)

C'INTERVENTION REQUIRED ON CHANNEL ATTACH DEVICE.

ISSUE X SERIES/1 OPERATOR COMMAND: "STDV CA1" '
AL1(L'MSG11)

C'RDACK !

cLg' ! CURRENT BTAM OPERATION
CL8'READ' READ
CL8'WRITE' WRITE
CL8'CLOSE' CLOSE

Figure 58 (Part 7 of 8). Host sample program

Chapter 4. Channel Attach Program

CO-157

Channel Attach Program

Channel Attach Sample Programs (continued)

CO-158

OPEN

PRTBUF
EPRTBUF
READY
TABL
AREAIN
EAREAIN
AREAOUT

ENDOUT
NLIMIT
LIN
LouT

DC
DS
DC
EQU
DC
DC
DC
EQU
DC
DC
DC
DC
DC
DC
DC
EQU
EQU
EQU
EQU

CL8'OPEN' OPEN

OF FULLWORD ALIGNMENT

128c' ! PRINT BUFFER

*-4 ADDR OF LAST WORD IN PRTBUF
X'00' READY FLAG
C'0123456789ABCDEF' TRANSLATE TABLE

256C' ! INPUT AREA

*¥-4 ADDR OF LAST WORD IN INPUT

C'THE QUICK BROWN FOX ' AREA
C'JUMPED OVER THE LAZY'
C' DOG AND THE DISH RA'
C'N AWAY WITH THE SPOO'
C'N * $RIGX0004$ * () '
C'SYSTEM/370 -> SERIES'

c'/1 !

*

2 LOOP COUNT
AREAOUT-AREAIN LENGTH OF INPUT AREA
ENDOUT-AREAOUT LENGTH OF INPUT AREA

3k 2k 2k 3 3k 3k %k 3k %k %k %k %k %k %k %k %k %k %k %k % %k %k %k 3k 5 3k 3k 3%k 3%k 3%k %k %k 3%k %k 3k 3%k 3% %k 3k 3% 3k 3k 3k 5%k 5%k 3%k %k %k %k % 3%k % %k 3k 3% 3k %k 3k %k *k %k %k %k %k %k ¥k kK

* CONTROL BLOCKS
sk ok o o o ok ok ok ok ok ok ok kb ok ok sk ok ok ok 3K ok 3k ok ok 3k o ok ok s ok ok ok ok sk ok ok ok ok sk ok sk sk sk sk 3k sk sk 3k 3k 3k 3k ok ok sk ok ok sk ok sk ok sk e ok K

CADCB
PRINTDCB

SNAPDCB

READ

CADECB, TI,AREAIN,LIN, ,RLN,MF=L

DCB DSORG=CX,MACRF=(R,W) ,DDNAME=S1GROUP, EROPT=E

DCB BLKSIZE=128,DDNAME=PRINTER, DSORG=PS,
LRECL=128,MACRF= (PM) , RECFM=FB

DCB DSORG=PS,RECFM=VBA,MACRF= (W) ,BLKSIZE=1632,LRECL=125,
DDNAME=SNAP

DCBD DSORG=BS,DEVD=DA

IECTDECB

END

Figure 58 (Part 8 of 8). Host sample program

SC34-0443

Part 3. Specialized Series/1 Event Driven
Executive Communications Methods

This part discusses the two methods of communications that can be used on Series/1 only with
the Event Driven Executive operating system:

o Series/1-to-Series/1 Attachment

« General Purpose Interface Bus (GPIB) Adapter

Part 3. Specialized Series/1 Event Driven Executive Communications Methods CO-159

Notes

CO-160 sC34-0443

Chapter 5. Series/1-to-Series/1 Attachment
Support

Your Series/1 can communicate directly with the processor of another Series/1 in a
configuration called a Series/1-to-Series/1 attachment. The two processors communicate over
a connection established by RPQ D02241 and RPQ D02242 attachment cards plugged into each
processor’s I/O channel and connected by a cable. (One processor uses RPQ D02241 and the
other RPQ D02242.) Each RPQ card connected to a given Series/1 must have its own cable.

For hardware installation and configuration details, refer to the Series/ I-to-Series/1 Attachment
(RPQs D02241 and D02242) Custom Feature.

Application programs running on both processors control the transfer of data between the two
Series/1s. A separate synchronization program, also running simultaneously on the two
processors, synchronizes the execution of the application programs.

To communicate with the processor that your Series/1 is attached to, you must write application

programs to perform data transfers, and syncronization programs to control the application
programs.

Planning the Series/1-to-Series/1 Application

Certain requirements and restrictions apply to the Series/1 to Series/ 1 application.

Chapter 5. Series/1-to-Series/1 Attachment Support CO-161

Series/1-to-Series/1 Attachment Support

Planning the Series/1-to-Series/1 Application (continued)

Processor Relationships

Normally, the attached Series/1 systems communicate in a peer-to-peer relationship. Both
processors contend with equal priority to initiate data transfers. However, the Series/1 to
Series/1 attachment allows one processor to IPL the other (remote IPL). This establishes a
primary-and-secondary processor relationship between the two Series/1s. Only the processor
connected with RPQ D02241 can perform the remote IPL.. When remote IPL is complete, the
processor with RPQ D02241 functions as the primary and the processor with RPQ D02242 as
the secondary. The primary processor controls the data transfers, thus eliminating contention
between the two.

Initiating Data Transfers

Either Series/1 can initiate a data transfer to the other, regardless of the relationship between
the processors. A data transfer can write data to the other processor, read data from it, or issue
a control instuction. The receiving processor must always respond to a data transfer by sending
back the opposite instruction to the initiating processor. For example, if the initiating processor
performs a write operation, the receiving processor must answer with a read operation.

Responding to External Events

CO-162

SC34-0443

A processor that receives an external interrupt while attached to another Series/1 can record the
external event by posting an event control block (ECB). For example, one processor may need
to receive data from a device attached to it while it is in the middle of talking to the other
processor.

However, it is possible to post an event control block even if the processor is not communicating
with the other Series/1. This enables other terminal I/0 tasks to execute on the posting

processor while it waits for communications from the other processor.

Figure 59 on page CO-163 illustrates setup and usage of posting a user ECB. The program
should execute on both processors.

The program has three tasks:

o Task 1 performs a write (PRINTEXT) and is driven by an external event, in this case task 3,
which is a timer task. It could be sensor I/0 or BSC as well.

« Task 2 performs a read (READTEXT). It responds only to an attention interrupt on the
Series/ 1-to-Series/ 1 link, or to a post from task 1.

« Task 3 is a timer task, intended to simulate external stimuli.

Planning the Series/1-to-Series/1 Application (continued)

T1

GO

*
WAITTI

*

*

T2
T2GO

PROGRAM GO, 30
PRINT OFF
COPY CCBEQU
PRINT ON
EJECT
RESET ECB RESET ECB FOR S1S1
RESET TECB RESET ECB FOR TIMER TASK
MOVE BUF-2,256 SET TO READ/WRITE 256 BYTES
MOVE BUF-4,BUF-2
ENQT S1s1 GET S1S1
TCBGET #1,$TCBCCB GET CCB ADDRESS OF S1S1
MOVEA 42 ,ECB SET ECB ADDR IN CCB
MOVE ($CCBSTEI+2,#41) ,#2,TKEY=0 DO IT
TCBGET #2, $TCBAKR GET AKR
AND #2,X'0030" AND TO GET OP2
SHIFTR #2,4 MOVE IT OVER TO BITS 13-15
MOVE ($CCBS1EI, #1) ,42, TKEY=0 SET INTO CCB
DEQT S1s1 GIVE UP S1S1
ATTACH T2 START TIMER TASK
ATTACH T3 START READ TASK
TASK 2 ALWAYS DOES A WRITE (PRINTEXT)
WAIT TECB WAIT FOR TIMER TASK
RESET TECB CLEAR TIMER ECB
ENQT S181
PRINTEXT BUF,XLATE=NO WRITE DATA
MOVE T1STAT, T1 CHECK STATUS
IF (T1STAT,EQ,-1) IF OK
ADD NUMT1, 1, PREC=DS BUMP COUNT
ELSE
ADD NUMT1E, 1, PREC=DS IF ERROR, BUMP COUNT
DUE TO THE ASYNCHRONOUS NATURE OF THE S1/S1
WE MUST POST THE ECB WHEN WE GET AN ERROR HERE - ASSUMING
IT IS AN INVALID SEQUENCE ERROR (PRINTEXT FACING PRINTEXT)
POST ECB,-1 POST THE ECB JUST IN CASE
ENDIF
DEQT
GOTO WAITT1 LOOP
TASK 2 ALWAYS DOES A READ
TASK T2GO, 25
EQU *

Figure 59 (Part 1 of 2). Program for posting an event control block

Chapter 5. Series/1-to-Series/1 Attachment Support CO-163

Series/1-to-Series/1 Attachment Support

Planning the Series/1-to-Series/1 Application (continued)

SLEEP WAIT ECB WAIT ON ECB POSTED BY S1S1
RESET ECB RESET ECB
ENQT S1s1
MOVE BUF, 0, DWORD CLEAR HEADER AREA
TERMCTRL STATUS,BUF,WAIT=NO SEE IF A READ
IF (BUF,EQ, ZERO, 4) IF NO OPERATION READY
DEQT
GOTO SLEEP GO BACK TO SLEEP
ENDIF
AND BUF,X'2000" IF OPERATION READY
IF (BUF, EQ, ZERO) SEE IF REQUIRES A READTEXT
DEQT
GOTO SLEEP IF NOT, GO BACK TO SLEEP
ENDIF
READTEXT BUF,XLATE=NO IF REQUIRES A READ, DO IT
MOVE T2STAT, T2 CHECK STATUS
IF (T2STAT,EQ,-1)
ADD NUMT2, 1, PREC=DS BUMP COUNT
ELSE
ADD NUMT2E, 1, PREC=DS BUMP ERROR COUNT
ENDIF
DEQT
GOTO SLEEP LOOP
* TASK 3 MERELY WAKES UP TASK 1 PERIODICALLY
T3 TASK T3GO,510
T3GO EQU *
STIMER 50,WAIT
POST TECB
GOTO T3GO
EJECT
ECB ECB -1
TECB ECB -1
T1STAT DATA F'0'
T2STAT DATA F'0'
NUMT1 DATA D'O'
NUMT1E DATA D'O'
NUMT2 DATA D'o’
NUMT2E DATA D'O"
TYPE DATA F'0'
ZERO DATA D'O’
DATA X'0808"'
S1s1 I0CB S1S1, BUFFER=BUF
BUF BUFFER 1024,BYTES
ENDPROG
END

Figure 59 (Part 2 of 2). Program for posting an event control block

Programming for Series/1-to-Series/1 Attachment

You must write application programs using a set of Event Driven Language instructions that
implement Series/ 1-to-Series/ 1 communication. Your program can perform any type of data

CO-164 SC34-0443

Programming for Series/1-to-Series/1 Attachment (continued)

transfer (read, write or control operation). You can also write a program to synchronize the
execution of the application program on both processors.

Event Driven Language Instruction Set

The following Event Driven Language instructions allow communication between the Series/1s.
For descriptions and syntax of the instructions, refer to the Language Reference

Instruction

Explanation

DEQT

Releases the Series/ 1 previously enqueued with the
ENQT instruction

ENQT

Acquires exclusive right to communicate with the
enqueued Series/ 1

I0CB

Identifies the Series/1 as the enqueued processor

PRINTEXT

Writes a message to the enqueued Series/ 1

READTEXT

Reads a message from the enqueued Series/1

TERMCTRL

Performs control functions on the enqueued
Series/ 1

Figure 60. EDL instructions for communication between Series/1s

Basic Programming Tasks

To communicate with the other Series/ 1 processor, your program must perform the following

tasks:

o Gain exclusive ability to communicate with the other processor (enqueue with ENQT

instruction)

« Identify the other processor (IOCB instruction)

o Write data to or read data from the other processor (PRINTEXT or READTEXT
instruction)

« Perform control functions on the other processor (TERMCTRL instruction)

In addition, your program should provide for error detection and handling, and keep a count of

the data transfers.

Enqueuing the Other Processor

Before your Series/1 can make data transfers to the other Series/1, you must gain exclusive
right to communicate with that processor. The instruction that performs this function is ENQT.
The other processor is treated as a terminal that your Series/1 enqueues. No other device or

Chapter 5. Series/ 1-to-Series/1 Attachment Support

CO-165

Series/1-to-Series/1 Attachment Support

Programming for Series/1-to-Series/1 Attachment (continued)

processor is able to send data to the other Series/1 while you have it enqueued. Because ENQT
treats the other processor as a terminal, you must specify its symbolic identity. You must refer
to the label of the IOCB instruction, which identifies the enqueued Series/1 in your program.
The IOCB instruction is covered in the section that follows.

Identifying the Enqueued Processor
You must specify the identity of the processor that your Series/1 is going to communicate with.
The IOCB instruction provides this information.

Give the IOCB instruction a label when you code it. You must refer to this label in the ENQT
and DEQT instructions for the program.

A typical way to identify the Series/1 in IOCB is 'S1S1".

Writing Data to the Enqueued Processor

To write data to the other Series/ 1, code a PRINTEXT instruction. Besides using PRINTEXT
to simply initiate a write operation, code it in response to a READTEXT instruction issued by
the other processor.

Reading Data from the Enqueued Processor

To read data from the other processor, code a READTEXT instruction. Besides using
READTEXT to simply initiate a read operation, code it in response to a PRINTEXT issued by
the other processor.

Performing Control Functions on the Enqueued Processor

You can perform certain control functions on the other processor by coding TERMCTRL
instructions. The functions that apply to the Series/1-to-Series/1 Attachment are listed in the

chart below.

Function Explanation What to Code

ABORT Enqueued processor sends TERMCTRL ABORT
back a message to your
Series/1 telling it to terminate
the last function

IPL Performs remote IPL of the TERMCTRL IPL
enqueued processor

RESET Resets to the last ENQT TERMCTRL RESET
issued

Figure 61 (Part 1 of 2). TERMCTRL Functions for Series/1-to-Series/1 Communications

CO-166 sC34-0443

Programming for Series/1-to-Series/1 Attachment (continued)

Function Explanation What to Code
STATUS Obtains status of enqueued TERMCTRL STATUS
processor

Figure 61 (Part 2 of 2). TERMCTRL Functions for Series/1-to-Series/1 Communications

Do not attempt to use any TERMCTRL functions other than those specifically for
Series/1-to-Series/ 1 attachment.

Programming Considerations

Certain requirements and restrictions apply to programming for the Series/ 1-to-Series/ 1
attachment.

o If a program that has issued an ENQT loads a program (via LOAD), the new program will
have the Series/1-to-Series/1 as its default terminal. Therefore, a DEQT instruction should
always be issued to the attachment before issuing the LOAD.

« Data to be transferred must start at an even address.
o Byte counts (data length) must be even.

¢ Return codes must be examined by the application. The return code is placed in the first
word of the task control block (TCB). The return codes for the operations performed by the
attachment are described in the Messages and Codes with the PRINTEXT/READTEXT
instructions.

« Synchronization between the two processors is possible only by checking and responding to
the return codes and by using TERMCTRL STATUS. A listing of the return codes can be
obtained by including the copy code ""COPY ERRORDEF" in your program.

o Do not use the CT command of the $TERMUT]1 utility to reconfigure the
Series/1-to-Series/1. The CT command parameters are not valid for the
Series/1-to-Series/1 Attachment. Using STERMUT1 to change attributes wili cause
unpredictable results.

« Byte counts must be equal on each processor. For example, if processor A issues a
READTEXT for 50 bytes, then processor B must respond with a PRINTEXT for 50 bytes.
However, if Event Driven Executive terminal I/O buffer management is utilized, this may
be very difficult to achieve unless direct I/O is used. Direct I/O means that a buffer is
specified in the application program by an IOCB statement and the IOCB is enqueued
(ENQT) prior to issuing a PRINTEXT/READTEXT instruction. Data is transferred
directly from the buffer instead of the buffer generated by the TERMINAL configuration
statement. Refer to the Event Driven Language Programming Guide for a description of the
IOCB statement and for further information on direct 1/0.

Chapter 5. Series/1-to-Series/1 Attachment Support C(-167

Series/1-to-Series/1 Attachment Support

Programming for Series/1-to-Series/1 Attachment (continued)

CO-168

Your program should use direct I/O, with XLATE=NO, and should always transmit
fixed-length records. Terminal I/O buffer management allows the number of bytes to vary
for a PRINTEXT, but not for a READTEXT. READTEXT always reads the number of
bytes specified by the TERMINAL statement LINSIZE parameter. PRINTEXT writes the
number of bytes specified by the LENGTH parameter or the number of bytes in the
message itself.

You may not be able to synchronize the byte counts unless direct I/O is used. If, however,
direct I/0 is not used and buffering of data with PRINTEXT/READTEXT instructions is
performed, the results of using these instructions are shown in Figure 62. The "error'' in
the figure means that an invalid data length status is returned to the application.

Initiating Responding Status Returned to
Processor Processor Responding Processor
READTEXT of x bytes PRINTEXT of x bytes OK

of less than x bytes OK

of more than x bytes error
PRINTEXT of x bytes READTEXT of x bytes OK

of less than x bytes error

of more than x bytes OK

Figure 62. Usage of READTEXT/PRINTEXT without direct I/O

SC34-0443

Except for the device address, use identical TERMINAL statements for each processor. The
results will be unpredictable if the TERMINAL statements differ.

The IPL function of the $S1S1UT1 utility reads a specified nucleus from a disk and sends
this nucleus to the other processor. The IPL function does not merely trigger the other
processor to IPL from a disk or diskette. Therefore, the other processor does not require a
disk or diskette. If the other processor does not have a disk or diskette, then the nucleus
being sent must contain the supervisor and your application program. One processor cannot
load a program on another processor.

The Series/ 1-to-Series/1 Attachment supports only a subset of the terminal I/O
instructions. Using instructions other than those described in the Language Reference for
Series/ 1-to-Series/ 1 can cause unpredictable results. In addition, only the RESET,
ABORT, STATUS, and IPL functions of the TERMCTRL instruction should be used.

When a processor issues a PRINTEXT or READTEXT instruction (with or without direct
1/0), control is not returned to the issuing program until the data transfer is complete (the
other processor issues the opposite operation). Therefore, it is not necessary to perform
request/acknowledge operations.

TERMCTRL RESET is used for error recovery. This operation causes the attachment to
reset. The two applications must be synchronized to avoid an error/reset loop.

For example, an error/reset loop can occur if program A issues a PRINTEXT and
encounters an error, issues a TERMCTRL RESET, and reissues the PRINTEXT. Program

Programming for Series/1-to-Series/1 Attachment (continued)

B, on the other hand, issues a READTEXT (at approximately the same time as program A’s
initial PRINTEXT) and receives an error. However, because of heavy processor or I/0O
activity, program B is unable to issue its TERMCTRL RESET until after program A has
already performed its reset and reissued a PRINTEXT. Hence, program B’s reset will cause
program A to receive an error while program A is issuing its second PRINTEXT (retry).
Both programs enter the loop as a result of trying to read or write while the programs are no
longer synchronized and the attachments are being reset. Issuing an STIMER instruction
(with WAIT) in the error recovery routine in program A can help avoid entering an
error/reset loop.

¢ Only two of the possible errors can occur concurrently on both processors. These errors
should be taken into consideration in your error recovery routine:

— 1004 — Checksum error

— 1008 — Time-out error

Programming Examples

The following programs perform data transfers controlled by a synchronization program. The
processors are assumed to be operating in a primary-to-secondary relationship. The PRIMARY
program runs on the Series/1 using RPQ D02241; the SECOND program runs on the Series/ 1
using RPQ D02242. Both of these programs run simultaneously on the two processors. The
SYNC program controls their execution.

Primary Processor Sample Program

The PRIMARY program controls the SECOND program. The processor running PRIMARY
can abort the SECOND program. The operator presses the attention key and enters "'AB" at
the terminal that loaded PRIMARY. The command "MS'" sends a message, a count of the
transfers, and their length. Note the code for error recovery.

Chapter 5. Series/1-to-Series/1 Attachment Support CO-169

Series/1-to-Series/1 Attachment Support

Programming for Series/1-to-Series/1 Attachment (continued)

PRIMARY

ABT

MSG

GO

GETSIZE

GO1

GO2

PROGRAM

ATTNLIST
EQU

MOVE
ENDATTN
EQU

MOVE
ENDATTN
PRINTEXT
PRINTEXT
PRINTEXT
EQU
GETVALUE
IF

AND

IF
PRINTEXT
GOTO
ENDIF
QUESTION
ENQT
TERMCTRL
DEQT

EQU
QUESTION
QUESTION
EQU

MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
ENQT

GO

(AB,ABT,MS,MSG)
*
ABSW, 1 SET ABORT FLAG

*
MSW, 1 SET MESSAGE FLAG

'aI AM THE PRIMARY SERIES/1a'

'a"> AB" TO ABORT SECONDa'

'a"> MS" TO SEND MESSAGE FLASHQ'

*

BUFI, '®ENTER DATA LENGTH(6 ==> 4096)2'
(BUFI,LT,6),0R, (BUFI,GT,4096) ,GOTO,GETSIZE
BUFI,X'0001',RESULT=TEMP

TEMP,NE, O
'aDATA LENGTH CANNOT BE ODDa'
GETSIZE
"@RESET S1S1? ',NO=GO1
S1s1
RESET

*
'9READY? ',YES=GO2
'9TERMINATE? ',YES=STOP1,NO=GO

* SET UP CONSTANTS
FOR RESTART

BUFI+2,BUFI SET DATA LENGTH

STAT, 0 CLEAR STATUS

ABSW, 0 CLEAR ABORT SWITCH

MSW, 0 CLEAR MESSAGE SWITCH

TYPE, -1 SET TYPE

COUNT, O, DWORD CLEAR COUNTER

HBUF, 0, (6,BYTES) CLEAR S1S1 HEADER

css,0, (24,BYTES) CLEAR S1S1 CSS

S1s1

Figure 63 (Part 1 of 4). Primary processor sample program

CO-170

SC34-0443

Programming for Series/1-to-Series/1 Attachment (continued)

CONT EQU
MOVE
ADD
MOVE
MOVE

MOVE
PRINTEXT
MOVE

IF

CALL
GOTO
ENDIF
MOVE
MOVE

IF

ADD
READTEXT
MOVE

IF

CALL
GOTO
ENDIF

IF

PRINTEXT
CALL
GOTO
ENDIF

IF

*
TYPE, 1

COUNT, 1,PREC=D
BUF, COUNT , DWORD
BUF+4 , MSW

MSW, 0

BUF, XLATE=NO
STAT, PRIMARY
STAT,NE, -1
S1ERR

ERROR

BUF, 0, (6,BYTES)
TYPE, O
(ABSW,NE, 0) ,GOTO, ABORT

COUNT, 1, PREC=D
BUF, XLATE=NO
STAT, PRIMARY
STAT,NE, -1
S1ERR

ERROR

(BUF,NE, COUNT , DWORD)

SET TYPE = WRITE

INCREMENT COUNTER
MOVE COUNTER TO BUFFER

MOVE MESSAGE SWITCH

TO BUFFER

CLEAR MESSAGE SWITCH

GET STATUS

CHECK FOR BAD STATUS
CALL ERROR SUBROUTINE
ERROR EXIT

CLEAR BUFFER
SET TYPE = READ
'CHECK OPERATOR
ABORT REQUEST
INCREMENT COUNTER
ACKNOWLEDGE
GET STATUS
IF ERROR -
CALL ERROR SUBROUTINE

IF COUNT BAD -
OUT OF SYNC

'a0UT OF SYNC - COUNT FAILUREQ2'

S1ERR
ERROR

BUF+4,NE, 0

CHECK MESSAGE
FLAG REQUEST

Figure 63 (Part 2 of 4). Primary processor sample program

Chapter 5. Series/ 1-to-Series/1 Attachment Support

CO-171

Series/1-to-Series/1 Attachment Support

Programming for Series/1-to-Series/1 Attachment (continued)

* O N X ®

ERROR

STOP

STOP1

%*
*
*

ABORT

ABORT1

DEQT
PRINTEXT
PRINTEXT
PRINTNUM
PRINTEXT
PRINTNUM
PRINTEXT
ENQT
ENDIF
GOTO

ERROR EXIT

' aMESSAGE RECEIVED FROM SECOND@'
'COUNT=

COUNT, FORMAT=(12,0,I),TYPE=D
'9DATA LENGTH = '
BUFI,FORMAT=(6,0,I)

lal

S1S81

CONT

IF GET AN ERROR - RESET THE OTHER
DEVICE, WAIT, THEN RETRY.

EQU

DEQT
ENQT
TERMCTRL
STIMER
DEQT
PRINTEXT
GOTO

EQU
DEQT
QUESTION
EQU
PROGSTOP

ABORT ROUTINE

EQU
DEQT
PRINTEXT
EQU

ENQT
STIMER
TERMCTRL
IF
TERMCTRL
DEQT
PRINTEXT
GOTO
ENDIF
DEQT
PRINTEXT
GOTO

*

S181

RESET RESET S1S1

200,WAIT WAIT 200 MS

'?9AUTO RESTARTQ'

GO2 RESTART
AUTOMATICALLY

%*

'9RESTART? ',YES=GO
*

*

' 90PERATOR REQUESTED ABORT?Q'
*

S1s1

1000, WAIT WAIT 1 SECOND

STATUS , HBUF SECONDARY TALKING TO ME?
(HBUF, NE, DO, DWORD)

ABORT IF YES - ABORT SECOND

'9ABORT ISSUED AS PER REQUESTa'
STOP END IT

'9SECOND DID NOT REQUEST DATA IN 1 SECOND?'
STOP END IT

Figure 63 (Part 3 of 4). Primary processor sample program

Programming for Series/1-to-Series/1 Attachment (continued)

PRINTEXT '®aI/0 ERROR ON S/1-S/1

PRINTNUM STAT, MODE=HEX
PRINTEXT ' HEX; °
PRINTNUM STAT
PRINTEXT ' DECa'
PRINTEXT 'AQHEADER: '
PRINTNUM HBUF,2,MODE=HEX
PRINTEXT 'a'
PRINTEXT 'DIAGNOSTIC JUMPER WORD:
PRINTNUM CSS,1,MODE=HEX
PRINTEXT 'a'
PRINTEXT 'CYCLE STEAL STATUS:
PRINTNUM CSS+2,11,MODE=HEX
PRINTEXT 'a'
DEQT
RETURN

HBUF DATA 2F'0’

css DATA 12F'0"

*

STAT DATA F'O'

TYPE DATA F'-1"

COUNT DATA D'O'

MSW DATA F'0'

ABSW DATA F'0'

S1s1 I0CB S1S1,BUFFER=BUF

BUF BUFFER 4096 ,BYTES, INDEX=BUFI

DO DATA D'O’

TEMP DATA F'0'
ENDPROG
END :

* S1S1 ERROR SUBROUTINE
*

SUBROUT S1ERR

TERMCTRL STATUS, HBUF,CSS

DEQT

ENQT

PRINTEXT '&BUF: '

PRINTNUM BUF

PRINTEXT 'QTYPE: '

PRINTNUM TYPE

PRINTEXT '&@COUNT: '

PRINTNUM COUNT,FORMAT=(12,0,I),TYPE=D

- STATUS = '

S1S1 HEADER
JUMPER + CYCLE
STEAL STATUS
STATUS RETURN
READ/WRITE TYPE
SYNC COUNTER
MESSAGE SWITCH
ABORT SWITCH

DWORD CONSTANT
TEMP STORAGE

Figure 63 (Part 4 of 4). Primary processor sample program

Chapter 5. Series/ 1-to-Series/1 Attachment Support

CO-173

Series/1-to-Series/1 Attachment Support

Programming for Series/1-to-Series/1 Attachment (continued)

Secondary Processor Sample Program

The SECOND program is controlled by the PRIMARY program. The attention command "MS"
sends a message, transfer count, and data length to PRIMARY.

SECOND PROGRAM GO
*
%
ATTNLIST (MS, MSG)
MSG EQU *
MOVE MSW, 1 SET MESSAGE SWITCH
ENDATTN
GO PRINTEXT "I AM THE SECOND@'
PRINTEXT 'a"> MS" TO SEND MESSAGE FLASH@Q'
QUESTION '"ARESET S1S1? ',NO=GO1
ENQT S181
TERMCTRL RESET RESET DEVICE
DEQT
GO1 EQU *
QUESTION 'dREADY? ',YES=GO2
QUESTION 'aTERMINATE? ',YES=STOP1,NO=GO
GO2 EQU *
*
* HERE WE WAIT FOR THE MASTER TO INITIATE A DATA
* TRANSFER. WHEN IT DOES, WE USE ITS DATA LENGTH
* AND PROCEED.
%
STIMER 1000, WAIT WAIT 1 SECOND
ENQT S1s1
TERMCTRL STATUS , HBUF GET STATUS
DEQT
IF (HBUF, EQ, DO, DWORD) IF NO DATA HERE YET
DEQT
PRINTEXT '&NO DATA FROM MASTER IN 1 SECONDa'
GOTO GO2 SHOULD HAVE HAD
* DATA BY NOW
ENDIF
MOVE BUFI,HBUF+2 GET DATA LENGTH
MOVE BUFI+2,HBUF+2 INTO BUFFER
MOVE STAT, 0 CLEAR STATUS
MOVE COUNT, O, DWORD CLEAR COUNTER
MOVE TYPE, -1 INIT TYPE
MOVE HBUF, O, (6,BYTES) CLEAR S1S1 HEADER
MOVE css,0, (24,BYTES) CLEAR CSS
ENQT S181

Figure 64 (Part 1 of 4). Secondary processor sample program

CO-174 SC34-0443

Programming for Series/1-to-Series/1 Attachment (continued)

CONT

EQU
MOVE

ADD

MOVE
READTEXT
MOVE

IF

CALL

GOTO
ENDIF

IF

DEQT
PRINTEXT
CALL
GOTO
ENDIF

IF

DEQT
PRINTEXT
PRINTEXT
PRINTNUM
PRINTEXT
PRINTNUM
PRINTEXT
ENQT
ENDIF

*

TYPE, O SET TYPE = READ
COUNT, 1, PREC=D INCREMENT COUNTER
BUF, 0, (6,BYTES) CLEAR BUFFER

BUF, XLATE=NO

STAT, SECOND GET STATUS
STAT,NE, -1

S1ERR ERROR - CALL

ERROR SUBROUT
ERROR
(BUF,NE, COUNT , DWORD) CHECK COUNT FOR SYNC
'90UT OF SYNC - COUNT FAILUREQ'

S1ERR
ERROR

(BUF+4,NE, 0) CHECK FOR MESSAGE
REQUEST

' 9OMESSAGE RECEIVED FROM MASTERQ'
'COUNT = '

COUNT, FORMAT=(12,0,1I),TYPE=D
'9DATA LENGTH = '
BUFI,FORMAT=(6,0,I)

v a 1

S1s1

Figure 64 (Part 2 of 4). Secondary processor sample program

Chapter 5. Series/1-to-Series/1 Attachment Support

CO-175

Series/1-to-Series/1 Attachment Support

Programming for Series/1-to-Series/1 Attachment (continued)

INCREMENT COUNTER

MOVE COUNT TO BUFFER

MOVE MESSAGE SWITCH

TO BUFFER

CLEAR MESSAGE SWITCH
SET TYPE = WRITE

GET STATUS
IF ERROR - CALL
S1S1 ERROR

GO TO ERROR ROUTINE

CONTINUE

SEE IF ABORT

RESET DEVICE

ADD COUNT, 1, PREC=D
MOVE BUF , COUNT , DWORD
MOVE BUF+4 ,MSW
*
MOVE MSW, 0
MOVE TYPE, 1
PRINTEXT BUF , XLATE=NO
MOVE STAT, SECOND
IF STAT,NE, -1
%*
CALL S1ERR
GOTO ERROR
ENDIF
GOTO CONT
STOP EQU *
DEQT
QUESTION 'QRESTART? ',YES=GO
STOP1 EQU *
PROGSTOP
*
* IF THE ERROR IS AN ABORT REQUEST, TERMINATE THE
* EXERCISE. IF IT IS ANY OTHER ERROR, RESET THE
* DEVICE, AND START OVER.
*
ERROR EQU *
DEQT
IF (STAT,EQ, 1010)
PRINTEXT 'AMASTER ISSUED ABORTA'
GOTO STOP
ENDIF
ENQT S1S1
TERMCTRL RESET
DEQT
GOTO GO2

Figure 64 (Part 3 of 4). Secondary processor sample program

CO-176 $C34-0443

Programming for Series/1-to-Series/1 Attachment (continued)

- STATUS = '

S1S1 HEADER BUFFER
JUMPER + CYCLE
STEAL STATUS

S1S1 STATUS
READ/WRITE TYPE
SYNC COUNTER
MESSAGE SWITCH
ABORT SWITCH

DWORD CONSTANT

* S1s1 ERROR SUBROUTINE
*
SUBROUT S1ERR
TERMCTRL STATUS , HBUF, CSS
DEQT
ENQT
PRINTEXT 'aBUF: '
PRINTNUM BUF
PRINTEXT 'aTYPE: '
PRINTNUM TYPE
PRINTEXT 'aCOUNT: '
PRINTNUM COUNT, FORMAT=(12,0,I) , TYPE=D
PRINTEXT 'dI/0 ERROR ON S/1-S/1
PRINTNUM STAT , MODE=HEX
PRINTEXT ' HEX; '
PRINTNUM STAT
PRINTEXT ' DECa'
PRINTEXT ' JHEADER: '
PRINTNUM HBUF, 2, MODE=HEX
PRINTEXT '3’
PRINTEXT 'DIAGNOSTIC JUMPER WORD:
PRINTNUM CSS, 1, MODE=HEX
PRINTEXT '’
PRINTEXT '"CYCLE STEAL STATUS:
PRINTNUM CSS+2, 11, MODE=HEX
PRINTEXT 'a'
DEQT
RETURN
S181 I0CB S1S1, BUFFER=BUF
HBUF DATA 2F'0’
CSsS DATA 12F'0"
*
STAT DATA F'0"
TYPE DATA F'-1"'
COUNT DATA D'0"
MSW DATA F'0'
ABSW DATA F'0'
BUF BUFFER 4096 ,BYTES , INDEX=BUFI
DO DATA D'0’
ENDPROG
END

Figure 64 (Part 4 of 4). Secondary processor sample program

Chapter 5. Series/ 1-to-Series/1 Attachment Support

CO-177

Series/1-to-Series/1 Attachment Support

Programming for Series/1-to-Series/1 Attachment (continued)

Synchronization Program {SYNC)

CO-178

The synchronization program shows a way to synchronize operations between two processors.
Neither processor begins communicating until some external event sets FLAG. When FLAG is
set, the program responds as follows:

« FLAG = 0 indicates no external event.

« FLAG = 1 indicates write to other processor.

o FLAG = 2 indicates read from other processor.
e FLAG = 3 is the termination indicator.

This program runs on both processors.

SYNC PROGRAM
ATTNLIST
F1 MOVE
ENDATTN
MOVE
ENDATTN
MOVE
ENDATTN
A MOVE
Al ENQT
TERMCTRL
DEQT
IF
STIMER
IF

F2

END

DEQT
PRINTEXT
GOTO

ENDIF

IF

IF
DEQT
PRINTEXT
ENQT

DEQT
MOVE
GOTO

ENDIF

PRINTEXT BUF,XLATE=NO

A

(WR,F1,RD,F2,EN,END)
FLAG, 1

FLAG, 2

FLAG, 3

BUFX, 1024

S1s1
STATUS , HBUF , WAIT=NO
(HBUF+2,EQ,0)

5000, WAIT
(FLAG,EQ,0)

EXTERNAL EVENT= WRITE

EXTERNAL EVENT=READ

EXTERNAL EVENT=STOP PGM

SET BUFFER FOR WRITES
GET THE S1S1
OBTAIN S1S1 STATUS

IF NO ACTION YET
WAIT 5 SECONDS
EXTERNAL EVENT NOT
OCCURRED YET

'aNOTHING HAS OCCURRED YET IN 5 SECONDSa'

Al

(FLAG,EQ, 3) ,GOTO, STOP
FLAG,EQ, 1

'9WRITING TO OTHER CPUQ'
S1s1

FLAG, O
Al

EXTERNAL EVENT
EXTERNAL EVENT

TERMINATE
WRITE

GET S1s1

WRITE TO OTHER CPU

CLEAR FLAG TO IDLE
CONTINUE

Figure 65 (Part 1 of 2). Synchronization sample program

SC34-0443

Programming for Series/1-to-Series/1 Attachment (continued)

STOP
S181
BUF

FLAG
TEMP
HBUF

IF FLAG,EQ, 2 EXTERNAL EVENT =
DEQT
PRINTEXT 'aREADING FROM OTHER CPU3'
ENQT S181 GET S1S1
READTEXT BUF,XLATE=NO READ FROM OTHER CPU
DEQT
MOVE FLAG, O CLEAR FLAG TO IDLE
GOTO Al CONTINUE
ENDIF
ELSE
SHIFTL HBUF, 2, 1, RESULT=TEMP SEE IF READ OR
WRITE REQUEST
IF TEMP, LT, O IT DID A WRITE
DEQT
PRINTEXT 'aREADING WHAT IT SAIDa'
ENQT S1s1
READTEXT BUF,XLATE=NO READ WHAT IT WROTE
DEQT
GOTO Al CONTINUE
ELSE
DEQT
PRINTEXT 'aWRITING WHAT IT SAIDa'
ENQT S181
PRINTEXT BUF,XLATE=NO WRITE WHAT IT WROTE
DEQT ‘
GOTO Al CONTINUE
ENDIF
ENDIF
GOTO Al CONTINUE
PROGSTOP END THE PROGRAM
I0CB S1S1,BUFFER=BUF
BUFFER 1024 ,BYTE, INDEX=BUFX DATA BUFFER
DATA F'0’ EXTERNAL EVENT FLAG
DATA F'0'
DATA 2F'0’ S1S1 HEADER
ENDPROG
END

READ

Figure 65 (Part 2 of 2). Synchronization sample program

Chapter 5. Series/1-to-Series/1 Attachment Support

CO-179

Series/1-to-Series/1 Attachment Support

Programming for Series/1-to-Series/1 Attachment (continued)

Interacting with the Series/1-to-Series/1 Attachment (Using $S1S1UT1)

The $S1S1UTT1 utility allows you to perform several functions on the other processor. These
include remote IPL, data transfers and status operations. The utility also verifies that the
attachment is installed correctly, and checks out an application program. You must always
specify the identity of the other Series/1 the $S1S1UT1 commands:

« AB - Abort

« DD - Define device name

o IP - IPL the other processor

+ RE - Read data

* RS - Reset device

« WR - Write data

e EN - End the program

« EC - Verify the Series/1 - Series/1 attachment
o ST - Obtain status

You must have both attached processors active communication with the RE (read), WR (write),
and AB (abort) commands. For example, if a WR command is issued on one processor, then a
corresponding RE command must be issued on the other processor.

When $S1S1UT1 is loaded, it immediately issues a DD command to obtain the ID of the
Series/1 that loaded it.

Invoking $S1S1UT1

The $S1S1UT1 utility is invoked by the $L operator command or option 4.8 of the session
manager. $S1S1UT1 must be active on two connected processors for processor-to-processor
communication via the RE (read), WR (write), and AB (abort) commands. For example, if a WR
command is issued on one processor, then a corresponding RE command must be issued on the
other processor.

Aborting an Operation (AB)

The AB command causes the other processor to abort a pending operation on the initiating
processor. The AB command is sent to the Series/1 specified in the most recent DD command.
This command abnormally ends a data transfer operation.

CO-180 SC34-0443

Interacting with the Series/1-to-Series/1 Attachment (Using
$S1S1UT1) (continued) :

Example: AB command

COMMAND(?): AB
ABORT OPERATION? Y

COMMAND(?) :

Specifying the Other Processor (DD)

For every function you perform with $S1S1UT1, you must identify the other Series/1. The
specified processor receives all the issued subsequent utility commands until another DD is
issued. The Series/1 name is the name specified on the TERMINAL configuration statement at
system generation.

Example: DD command

COMMAND(?): DD
S1S1 DEVICE NAME: S15100

COMMAND(?) :

Verifying the Series/1-to-Series/1 Attachment (EC)

The EC command verify that the attachment is installed correctly. It results in a continuous
exchange of 1024-byte records between the attached processors. To terminate EC press the
attention key and enter “EC.”

Example: EC command

COMMAND(?): EC

ECHO EXERCISE

ATTN "EC'' TO STOP ECHO TEST
ATTEMPTING TO SYNCH UP

1K DATA TRANSMITTED

1K DATA RECEIVED

DATA CHECKS OUT!

> EC

COMMAND(?):

Chapter 5. Series/1-to-Series/1 Attachment Support CO-181

Series/1-to-Series/1 Attachment Support

Interacting with the Series/1-to-Series/1 Attachment (Using
$S1S1UT1) (continued)

IPL the Other Processor {IP}

READY FOR IPL? Y
- J

You can issue the IP command only if your Series/1 is the primary. It issues an IPL (initial
program load) command to the secondary processor. You must supply the member name and
volume that contains the nucleus to be transferred to the secondary.

The nucleus being transferred must begin with the characters SEDXNUC. The IPL bootstrap
program, IPLS1S1, must be located in the IPL volume; you are prompted to verify that the
volume name specified is correct. You are also asked if the secondary has a disk or diskette
device and for the address of that device. The specified disk or diskette becomes the default
direct access device for disk I/O operations on the processor being initialized. The bootstrap
program is sent to the secondary and it reads the specified nucleus, 1024 bytes at a time, across
the attachment. Control is passed to the nucleus upon completion of the transfer.

Example: IP command

COMMAND(?): IP
ENTER NUCLEUS DSN: S$SEDXNUC

ENTER NULCEUS VOLUME: EDX002

IS THERE A DEFAULT DISK DEVICE FOR THE NUCLEUS? Y
SUPPLY DISK/DISKETTE DEVICE ADDRESS(HEX): 48

IPL ﬂgOGRAM NAME: IPLSIST ON VOLUME: EDX002

0K?

Reading Data from the Other Processor (RE)

CO-182

SC34-0443

The RE command issues an ENQT instruction for the terminal name specified by the most
recent DD command. $S1S1UT1 then issues a READTEXT instruction for that terminal to read
data from the other processor. If $S1S1UT1 is active on the other processor, a WR command
must be issued to complete an RE command.

Example: RE command

COMMAND(?): RE
MESSAGE RECE!VED!
THIS IS TEST DATA RECEIVED

COMMAND(?) :

Interacting with the Series/1-to-Series/1 Attachment (Using
$S1S1UT1) (continued)

Resetting Device (RS)

The RS command resets the to the Series/1 attachment specified by the most recent DD
command. This command clears any pending interrupt or busy condition.

Example: RS command

COMMAND(?): RS
RESET ATTACHMENT? Y

COMMAND(?):

Obtaining Status of an Operation {ST)

The ST command obtains status information on an operation. The status returned by this
command is the same as the information returned when a TERMCTRL STATUS instruction is
issued.

Example: ST command

COMMAND(?): ST

OBTAIN CYCLE STEAL STATUS ALSO? Y
WAIT FOR HEADER? N

HEADER WORDS: 1100 0400
READ(READTEXT) ISSUED BY OTHER CPU
NO. BYTES = 0400

DIAGNOSTIC JUMPER WORD: O02E6
CYCLE STEAL STATUS:

COMMAND(?) :

Chapter 5. Series/1-to-Series/1 Attachment Support CO-183

Series/1-to-Series/1 Attachment Support

Interacting with the Series/1-to-Series/1 Attachment (Using
$S1S1UT1) (continued)

Writing Data to the Other Processor (WR)

The WR command issues an ENQT instruction to the Series/1 specified by the most recent DD
command. A PRINTEXT instruction is then issued for that terminal to write data to the other
processor. If $S1S1UT1 is active on the other processor, an RE command must be issued to
complete a WR command.

Example: WR command

COMMAND(?): WR
ENTER TEXT:
TEST DATA TO WRITE

MESSAGE SENT!

COMMAND(?):
_ J

Ending the Utility (EN)

The EN command ends the $S1S1UTT1 utility.

Example: En command

COMMAND(?): EN

$S1S1UT1 ENDED AT 00:00:00

CO-184 sC34-0443

Chapter 6. General Purpose Interface Bus - IEEE
Standard 488-1975

The General Purpose Interface Bus (GPIB) Adapter, when connected to the Series/1, allows it
to communicate with up to 14 peripheral devices. The devices that GPIB can connect to the
Series/1 include printers, plotters, graphics display units, and programmable laboratory
equipment such as digital voltmeters, frequency analyzers, and signal generators.

The connection between the Series/1 and the GPIB devices is much like a multi-point
connection. The Series/1 acts as the control station, and the GPIB devices as its tributaries.

You must write application programs to control communications between the Series/1 and the
GPIB devices. Your program must perform polling and selection, and initiate all data transfer
operations.

Planning for the GPIB Application

System Generation for GPIB

During system generation for the Series/1, you must include a TERMINAL statement in the
configuration module ($SEDXDEF) for each GPIB adapter. Also, you must include the GPIB
device handler (IOSGPIB) in the supervisor link control data set (SLNKCNTL). Refer to the
Installation and System Generation Guide for additional information on system generation.

You may want to connect GPIB to a particular partition so that SRQ interrupts adapter can be
properly handled. The partition to which the GPIB adapter is initially connected is defined by

Chapter 6. General Purpose Interface Bus - IEEE Standard 488-1975 CO-185

General Purpose Interface Bus - IEEE Standard 488-1975

Planning for the GPIB Application (continued)

the PART parameter of the TERMINAL statement. To modify the size of the system buffer
generated for the GPIB adapter, use the LINSIZE parameter.

The following TERMINAL statement connects a GPIB adapter named GPIB to partition 2 and
defines the system buffer to be 200 bytes in length.

GPIB TERMINAL DEVICE=GPIB,ADDRESS=32,LINSIZE=200,PART=2

Relationship between Series/1 and GPIB Devices

The Series/ 1 always acts as the control station and the GPIB devices act as its tributary stations.
A GPIB device can function in two roles:

o As atalker, a device is sending data to the Series/1 or to another device.
o As a listener, a device is receiving data from the Series/1 or another device.

The Series/ 1 controls communications so that only one device is talking at a time. However,
any number of devices can be listening at the same time. The devices can function in either role.
A device can act as talker during one data transfer, and as listener during another transfer. The
Series/1 tells the devices which role to assume during each transfer operation.

The Series/1 must make the assignments of talker and listener(s) before a data transfer
operation occurs. For example, to send data to a device, the Series/1 designates itself as the
talker and the receiving device as the listener. The Series/1 then sends the data. To read the
response from the device, the Series/1 designates the device as talker, and itself as listener. The
Series/1 then reads the data.

Assigning Device Addresses

CO-186

Each device on a GPIB bus has two addresses: one identifies the device as a listener and the
other identifies it as a talker. Each listen address has a corresponding talk address, and vice
versa. For example, if a device listens at address C’3’, it talks at address C’S’.

The chart below shows the sets of listen and talk addresses; they are ASCII characters.
Although GPIB device addresses are usually expressed as ASCII characters, they can also be

coded in hexadecimal.

The Series/1 listen and talk addresses are C’5’ and C’U’ respectively; they cannot be changed.

SC34-0443

Planning for the GPIB Application (continued)

Listen Talk
Address Address
(space) @
! A
&sqd. B
Cc
$ D
% E
& F
: G
(H
) |
* J
+ K
L
. M
. N
/ 0
0 P
1 Q
2 R
3 S
4 T
5 U
6 \)
7 W
8 X
9 Y
: z
; [
< \
=]
> (caret)

Figure 66. Listen and talk addresses for GPIB devices

Initializing and Configuring the Bus
You must initalize and configure the bus before the Series/1 and the GPIB device can
communicate. These functions are performed by the TERMCTRL instruction, as described in
the Programming section. The initialization consists of these operations:
1. Reset the adapter.
2. Clear the interface between Series/1 and GPIB; this makes the entire bus inactive.

3. Perform remote enable of GPIB; this enables all the devices attached to the bus.

Code these operations at the beginning of your application program. Unless an error occurs,
you do not have to repeat the initialization.

Chapter 6. General Purpose Interface Bus - IEEE Standard 488-1975 CO-187

General Purpose Interface Bus - IEEE Standard 488-1975

Pianning for the GPIB Application (continued)

Configuring the bus consists of assigning the roles of talker and listener(s) for the tasks in a
program. It also allows the Series/1 to send data to listening devices.

Interrupt Handling

CO-188

A service request (SRQ) is a device-generated signal that informs the controller (Series/1) that
the device needs service. A program can be notified of the occurrence of an SRQ by coding a
$PF255 reference in an attention list (ATTNLIST), with SCOPE=GLOBAL specified. Since
the attention list receives control enqueued to the terminal, the main task (which is enqueued to
GPIB) must issue a DEQT to GPIB. The following example shows an event control block
(ECB) being posted when an SRQ occurs.

ATTNLIST ($PF255,GOTSRQ) ,SCOPE=GLOBAL

¥ ATTENTION LIST TASK THAT RECEIVES CONTROL

* WHEN AN SRQ IS RECEIVED.
*

GOTSRQ EQU *
POST SRQECB POST. SRQ OCCURRENCE
ENDATTN END ATTENTION PROCESSING
* MAIN TASK
* AT THIS POINT, INSTRUCTIONS HAVE BEEN ISSUED THAT
* CAUSE A GPIB DEVICE TO ISSUE AN SRQ.
*
DEQT DISCONNECT FROM GPIB
WAIT SRQECB PROGRAM WAITS FOR EVENT
* INDICATING SRQ OCCURRENCE
SRQECB ECB SRQ EVENT CONTROL BLOCK

Note: A program that uses an attention list to receive SRQ interrupts in this manner must run in
the partition to which the GPIB terminal is connected. This is initially defined at system
generation time, but can be changed using the change partition (CP) command of $GPIBUT1.

A program can also handle an SRQ interrupt via the WAIT KEY instruction. The program
remains in a wait state until an SRQ interrupt is received by the Series/1. However, as for all
WAIT KEY instructions, an interrupt that occurs before the WAIT KEY is executed will be lost.

An SRQ does not identify the interrupting device. To determine this, the application program
must poll all devices connected to the bus; see ‘“Polling the Devices” on page CO-195.

SC34-0443

Programming for the GPIB Application

You must write programs that allow communication between Series/1 and the GPIB devices.
Your program must perform the following tasks:

« Initialize and configure the bus

« Control data transfer operations

« Poll and select devices

« Send data to devices

« Receive data from devices

« Perform control functions on devices

Your programs must consist of Event Driven Language instructions. The instructions that apply

specifically to the GPIB application are discussed in the next section.

Event Driven Language Instruction Set

Your program must contain the following EDL instructions, which perform the task of
communicating between the Series/1 and the GPIB devices.

Instruction

Function

DEQT

Releases the device that Series/1 is
communicating with

ENQT

Gives Series/ 1 exclusive right to
communicate with a device

10CB

Identifies the particular GPIB adapter
that connects the device Series/ 1
wants to communicate with

PRINTEXT

Sends data to a device

READTEXT

Receives data from a device

TERMCTRL

Performs control functions on a
device

For description and syntax of the instructions refer to the Language Reference.

Chapter 6. General Purpose Interface Bus - IEEE Standard 488-1975

CO-189

General Purpose Interface Bus - IEEE Standard 488-1975

Programming for the GPIB Application (continued)

Programming Considerations

Certain requirements and restrictions apply to programming for the GPIB application.

Performing Control Function {Using TERMCTRL)

Use only the TERMCTRL operands specific to GPIB. These are described in the Language
Reference

Forcing Output of Data

You must "force" the output of data to a GPIB device. If the Series/1 issues a PRINTEXT
instruction to send data to a device, the program must force the output by one of several
methods:

o Include the new line character (@) in the output. Do not use this method when coding
MODE=LINE or XLATE=NO parameters.

¢ Code the XLATE=NO parameter.
e Specify SKIP=1 on a PRINTEXT instruction.

+ Issue a TERMCTRL DISPLAY instruction

Specifying Translation of Data

If you want to send or receive hexadecimal data (when issuing the PRINTEXT or READTEXT
instructions) you must suppress translation of the data. The Series/1 uses EBCDIC, the GPIB
Adaptor uses ASCII, and the GPIB devices use the code specific to each device type. To
suppress translation of data, code the XLATE=NO parameter for PRINTEXT or READTEXT.
If you want to send or receive data in EBCDIC for Series/1, ASCII for GPIB, or the code
appropriate to a device, code XLATE=YES. Use of XLATE=NO with PRINTEXT forces
output of data.

Specifying a User Buffer

CO-190

If an application is to transfer more data than will fit in the system buffer (defined at system
generation), the IOCB through which the application is enqueued must specify a user buffer. A
user buffer is necessary if you want to specify the exact number of characters for a read.

In the following example, the IOCB (GPIBIOCB) specifies a BUFFER operand; the buffer
length is 500 bytes. If a buffer is used, you are responsible for setting the buffer length
(GPIBLEN in this example) to the number of bytes to be written via PRINTEXT. The buffer
length is set to the number of bytes actually read by a READTEXT instruction. The example
below shows how the buffer can be initialized for a PRINTEXT of 100 bytes.

SC34-0443

Programming for the GPIB Application (continued)

ENQT GPIBIOCB CONNECT TO GPIB
DEQT DISCONNECT FROM GPIB
GPIBIOCB IOCB GPIB, BUFFER=GPIBUFF GPIB TERMINAL NAME

GPIBBUFF BUFFER 500,BYTES, INDEX=GPIBLEN BUFFER FOR GPIB USE

..

MOVE GPIBLEN, 100

If a user buffer is not desired, do not include the BUFFER parameter in the IOCB statement.

Initializing and Configuring the Bus

The TERMCTRL instruction provides operations that are used to initialize the bus: adapter
reset (RSET), interface clear (IFC), and remote enable (REN). Normally these three
operations are performed when a GPIB program starts, and need not be executed again unless
an error occurs. When used at the start of a GPIB program, these control operations should be
executed in the order discussed.

The RSET operation resets the adapter.

TERMCTRL GPIB,RSET RESET ADAPTER

The IFC operation clears the GPIB interface, thus causing the entire bus to be made inactive.

TERMCTRL GPIB,IFC INTERFACE CLEAR

The remote enable (REN) operation enables all the devices on the bus. Not all devices need to
be enabled in this manner; some are initialized to an enabled state. Check the manufacturer’s
device description to see whether a remote enable is needed.

Chapter 6. General Purpose Interface Bus - IEEE Standard 488-1975 CO-191

General Purpose Interface Bus - IEEE Standard 488-1975

Programming for the GPIB Application (continued)

TERMCTRL GPIB,REN REMOTE ENABLE
PRINTEXT LISTADDR SEND LISTENER ADDRESS
TERMCTRL DISPLAY FORCE OUTPUT

LISTADDR TEXT ‘%! LISTEN ADDRESS FOR ONE DEVICE

Configuring the Bus

The configure bus (CON) operation of the TERMCTRL instruction does two things: it assigns
the roles of talker and listener, and it can be used to write data to listeners.

In the following examples, the universal unlisten command (a question mark) is transmitted first,
followed by a talker address, and then by the list of listener addresses. The unlisten command is
a special message that resets all devices that were listeners to a non-listening state.

Series/1 talks, and some device(s) listens:

TERMCTRL GPIB,CON CONFIGURE BUS

PRINTEXT '?' UNIVERSAL UNLISTEN COMMAND
PRINTEXT 'U' SERIES/1 TALK ADDRESS
PRINTEXT LISTADDR DEVICE LISTENER ADDRESS (ES)
PRINTEXT '":' DATA BLOCK TERMINATOR
TERMCTRL DISPLAY FORCE OUTPUT

LISTADDR TEXT '%' LISTEN ADDRESS

Series/1 sends data via CON:

TERMCTRL GPIB,CON CONFIGURE BUS

PRINTEXT '?U' (AS ABOVE)

PRINTEXT LISTADDR DEVICE LISTENER ADDRESS (ES)
PRINTEXT '",' DATA SEPARATOR

PRINTEXT DATA SEND DEVICE DATA

PRINTEXT '":' DATA BLOCK TERMINATOR
TERMCTRL DISPLAY FORCE OUTPUT

LISTADDR TEXT 'g%' LISTEN ADDRESS

CO-192 SC34-0443

Programming for the GPIB Application (continued)

Some device talks, and Series/1 listens:

TERMCTRL GPIB,CON CONFIGURE BUS

PRINTEXT '?' UNIVERSAL UNLISTEN COMMAND
PRINTEXT TALKADDR DEVICE TALK ADDRESS
PRINTEXT '5' SERIES/1 LISTENER ADDRESS
PRINTEXT '":' DATA BLOCK TERMINATOR
TERMCTRL DISPLAY FORCE OUTPUT

TALKADDR TEXT 'E' TALK ADDRESS

One device talks, and other device(s) listens:

TERMCTRL GPIB,CON CONFIGURE BUS

PRINTEXT '?' UNIVERSAL UNLISTEN COMMAND
PRINTEXT TALKADDR DEVICE TALK ADDRESS
PRINTEXT LISTADDR OTHER LISTENER ADDRESS (ES)
PRINTEXT '":' DATA BLOCK TERMINATOR
TERMCTRL DISPLAY FORCE OUTPUT

LISTADDR TEXT '¥%' LISTEN ADDRESS

TALKADDR TEXT 'E' TALK ADDRESS

Enqueuing and Dequeuing GPIB

The ENQT instruction connects Series/ 1 to a GPIB adapter and excludes other sources from
accessing the adapter at the same time. You must specify the GPIB adapter that the Series/1
wants to communicate with. To do this, refer to the label of the IOCB instruction that identifies
the GPIB adapter.

The DEQT instruction releases the GPIB adapter previously enqueued.

If your program is connected to a GPIB adapter and issues a a LOAD instruction, the task
issuing the LOAD will be disconnected from the GPIB adapter, and the task being loaded will
be connected to the GPIB adapter. If this is not desirable, the program issuing the LOAD must
first issue a DEQT, followed by the LOAD, and then issue an ENQT to reconnect to the GPIB
adapter.

In the following example, the IOCB (GPIBIOCB) is initially enqueued. Next, the program issues
a DEQT to disconnect itself from the GPIB adapter. The program then issues a LOAD
instruction for the program NEWPROG, which now has the GPIB adapter connected to it.
After NEWPROG completes, the program reconnects to the GPIB adapter by issuing another
ENQT.

Chapter 6. General Purpose Interface Bus - IEEE Standard 488-1975 CO-193

General Purpose Interface Bus - IEEE Standard 488-1975
Programming for the GPIB Application (continued)

ENQT GPIBIOCB CONNECT TO GPIB

DEQT DISCONNECT FROM GPIB

LOAD NEWPROG LOAD NEW PROGRAM

ENQT GPIBIOCB RECONNECT TO GPIB
GPIBIOCB IOCB GPIB

Series/1 Sending Data to a Device

The Series/ 1 acts as talker and transmits data to the listener(s) with a PRINTEXT instruction.
The data actually goes to the GPIB adapter which in turn directs it to the designated device(s).

The following example shows what to code for Series/1 to send data to a device.

Example of writing character data:

TERMCTRL GPIB,WRIT WRITE TO GPIB
PRINTEXT DATA SEND DATA
TERMCTRL DISPLAY FORCE OUTPUT

DATA TEXT 'IN; ' DEVICE DEPENDENT DATA

Example of writing hex data:
(note the simulated TEXT statement)

TERMCTRL GPIB,WRIT WRITE TO GPIB

PRINTEXT HEXDATA,XLATE=NO SEND HEX DATA

TERMCTRL DISPLAY FORCE OUTPUT

DATA X'0101" TEXT LENGTH/COUNT
HEXDATA DATA X'03"' DEVICE DEPENDENT DATA

Series/1 Receiving Data from a Device

Series/ 1 receives data transfers from GPIB devices with a READTEXT instruction.

This example shows how the Series/1 receives data being sent by a device. It is assumed that
the device appends an end-of-string character to the data to be sent. Since the device can send a

CO-194 sC34-0443

Programming for the GPIB Application (continued)

variable number of characters, the SE option is used in the READTEXT instruction to suppress
incorrect length record exceptions.

TERMCTRL GPIB,READ, (SE,EO0S),X'0D' READ GPIB
READTEXT DATA READ INPUT DATA

Sending Data Between Devices

One device can send data to one or more other devices while the Series/1 merely monitors the
data transfer. This is done with the READTEXT instruction. The following example shows
how Series/ 1 allows the data transfer between the devices.

TERMCTRL GPIB,MON, (SE,EOS),X'0D' READ MONITOR
READTEXT DATA DUMMY READ

Polling the Devices

Your program can perform either a serial or parallel polling operation to determine the source of
a device interrupt. The TERMCTRL instruction performs polling.

Serial Polling Code these TERMCTRL instructions to perform serial polling (polling devices
in sequence):

« TERMCTRL SPE (enable serial poll)
« TERMCTRL SPL (read serial poll)
« TERMCTRL SPD (disable serial poll)

The SPE command polls each device whose talker address has been specified. The SPL
command reads the poll status of each device. The poll status returned for each device consists
of two bytes: the talker address of the polled device (first byte) and the device status (second
byte). The status byte is device-dependent, and is usually expressed in hex. If it is, use
XLATE=NO on the appropriate READTEXT. The SPD command disables the serial poll
status reporting ability of the devices previously enabled through an SPE command.

TERMCTRL GPIB, SPE SERIAL POLL ENABLE
PRINTEXT TALKADDR TALK ADDRESS OF DEVICE
TERMCTRL DISPLAY FORCE OUTPUT

TERMCTRL GPIB,SPL READ SERIAL POLL
READTEXT STATUS, XLATE=NO GET SERIAL POLL STATUS
TERMCTRL GPIB,SPD SERIAL POLL DISABLE

Chapter 6. General Purpose Interface Bus - IEEE Standard 488-1975 CO-195

General Purpose Interface Bus - I[EEE Standard 488-1975

Programming for the GPIB Application (continued)

CO-196

Paralflel Polling A parallel poll polls all enabled devices in parallel, with the poll status encoded
as a single byte. Device response to parallel polling is highly device-dependent; many devices do
not even acknowledge parallel polling.

Code the following TERMCTRL instructions to perform parallel polling:
« TERMCTRL PPE (enable parallel poll)

« TERMCTRL WPPL (write parallel poll command)

« TERMCTRL RPPL (read parallel poll status)

« TERMCTRL PPD (disable parallel poll)

« TERMCTRL PPU (unconfigure parallel poll)

The PPE command enables the devices to respond to a parallel poll. You must supply two bytes
of information for each device to be polled. The first byte specifies the listener address. The
first four bits of the second byte have, by definition, the value of six. The fifth bit is the line
level (one or zero) which is the active level for the addressed device. The final three bits indicate
which GPIB data line is used to request service. Bit values zero through seven are used to
specify GPIB data lines one through eight.

Note: Some devices that respond to parallel polling may respond to a poll only in predefined
ways. Consult your device manual.

Since a parallel poll word is most conveniently expressed in numeric form, PRINTEXT with
XLATE=NO should be used. A TEXT statement must be simulated so that hex data can be
used. In the following example, the TEXT statement is simulated by the first DATA statement
containing the value X’0202’. This value corresponds to the length and count bytes of a TEXT
statement followed by another DATA statement that contains the two bytes of polling
information. In the example, a single device at listener address X’25’ is enabled to respond at
line level one on GPIB data line one.

TERMCTRL GPIB,PPE PARALLEL POLL ENABLE

PRINTEXT PPEMSG, XLATE=NO SEND DATA

DATA X'0202"' TEXT PARAMETERS
PPEMSG DATA X'2568'

The actual polling of the devices is accomplished by a write parallel poll command (WPPL). The
resulting poll status byte is stored in the adapter until a read parallel poll status (RPPL) is
performed. The RPPL operation moves the status byte into the byte specified on the
TERMCTRL GPIB,RPPL statement.

SC34-0443

Programming for the GPIB Application fcontinued)

RPPLDATA DATA

TERMCTRL GPIB,WPPL
TERMCTRL GPIB,RPPL, ,RPPLDATA READ PARALLEL POLL STATUS

X'00'

WRITE PARALLEL POLL STATUS

PARALLEL POLL STATUS BYTE

One device or all devices configured to respond to parallel polling can be unconfigured using the

parallel poll disable (PPD) or parallel poll unconfigure (PPU) command.

TERMCTRL GPIB,PPD
PRINTEXT LISTADDR
TERMCTRL DISPLAY

TERMCTRL GPIB, PPU

or

PARALLEL POLL DISABLE
LISTENER ADDRESS (ES)
FORCE OUTPUT

PARALLEL POLL UNCONFIGURE

Assigning Device Mode of Operation

Local Mode Operation: Some GPIB devices can be operated by an attached panel as well as
via GPIB bus commands; this is called local mode operation. A device with this capability can be

enabled to operate in local mode by the go to local mode TERMCTRL GTL command.

Similarly, local mode can be disabled by the local lock out TERMCTRL LLO command. Both

of these commands must specify the listener addresses of the devices to be operated in this

mode.

TERMCTRL
PRINTEXT
TERMCTRL

..

TERMCTRL
PRINTEXT
TERMCTRL

GPIB,GTL
LISTADDR
DISPLAY

GPIB,LLO
LISTADDR
DISPLAY

GO TO LOCAL
LISTENER ADDRESS (ES)
FORCE OUTPUT

LOCAL LOCK OUT
LISTENER ADDRESS (ES)
FORCE OUTPUT

Devica Group Gperation: Some devices can have predefined operations which are executed

by a trigger command. These operations can be initiated by a group execute trigger
TERMCTRL GET command which must specify a list of listener addresses for the devices.

Chapter 6. General Purpose Interface Bus - IEEE Standard 488-1975

CO-197

General Purpose Interface Bus - IEEE Standard 488-1975

Programming for the GPIB Application {continued)

TERMCTRL GPIB,GET GROUP EXECUTE TRIGGER
PRINTEXT LISTADDR LISTENER ADDRESS (ES)
TERMCTRL DISPLAY FORCE OUTPUT

Coding GPIB Functions

These coding examples demonstrate the steps necessary to communicate with a device
connected to the GPIB bus. In this sample case, the GPIB device is a plotter. Therefore, some
operations unique to the plotter are covered.

Following this section is a sample program that contains the coding segments shown below. In
the coding segments, the following plotter commands are used:

IN Initialize plotter

PA x,y Move pen to absolute position at x,y coordinates
oC Output current pen position

M Initialize masks

Connecting to the GPIB Adapter

The program must first connect to the GPIB adapter with an ENQT instruction.

ENQT GPIBIOCB CONNECT TO GPIB

GPIBIOCB IOCB GPIB IOCB FOR GPIB ADAPTER

Initializing the Adapter

The program initializes the adapter and bus by means of the RSET and IFC operations.

TERMCTRL GPIB,RSET RESET ADAPTER
TERMCTRL GPIB,IFC CLEAR BUS

Enabling the GPIB Device

The plotter is remotely enabled with a REN command followed by its listener address.

TERMCTRL GPIB,REN REMOTE ENABLE
PRINTEXT '%a' THE PLOTTER

CO-198 sC34-0443

Programming for the GPIB Application (continued)

Clearing All Devices

All devices are cleared by a device clear command.

TERMCTRL GPIB,DCL CLEAR ALL DEVICES

Preparing to Send Data

At this point, the bus is configured so that the Series/1 can send data to the plotter, that is, the
Series/1 is enabled to talk, and the plotter is enabled to listen. The coding for this consists of the
universal unlisten command (question mark), followed by the talker and listener addresses, the
data block terminator, and a new line character (@) to force output.

TERMCTRL GPIB,CON CONFIGURE BUS
PRINTEXT SENDCON S/1 TALKS, PLOTTER LISTENS
SENDCON TEXT '20%":2"'

Writing Data to the Device

The Series/1 writes data to the plotter by issuing a GPIB write command. Then a series of
plotter commands are sent. PRINTNUM is used to convert numeric data to character form.

TERMCTRL GPIB,WRIT,TO WRITE, TIMER OVERRIDE
PRINTEXT 'IN;' INITIALIZE PLOTTER
PRINTEXT 'PA' MOVE PEN ABSOLUTE
PRINTNUM F5000 X=5000
PRINTEXT ',' SEPARATOR
PRINTNUM F5000 Y=5000
PRINTEXT ';' TERMINATOR
PRINTEXT 'OC;' OUTPUT CURRENT PEN POSITION
TERMCTRL DISPLAY FORCE OUTPUT

F5000 DATA F'5000'

CURRPOS TEXT LENGTH=14

Preparing to Receive Data

Since the Series/ 1 requested data from the plotter, it must reconfigure the bus so that the plotter
talks and the Series/1 listens.

Chapter 6. General Purpose Interface Bus - IEEE Standard 488-1975 CO-199

General Purpose Interface Bus - |[EEE Standard 488-1975

Programming for the GPIB Application (continued)

TERMCTRL GPIB,CON
PRINTEXT RECVCON

RECVCON TEXT '?E5": '

CONFIGURE BUS
PLOTTER TALKS, S/1 LISTENS

Receiving Data From the GPIB Device

The actual read is performed by a GPIB READ operation. Since a variable number of characters
can be sent, incorrect length record (ILR) exceptions are suppressed with the SE option. The
end of data is indicated by an end-of-string (EOS) character. At this point, the input data can be

tested or displayed.

READTEXT CURRPOS

TERMCTRL GPIB,READ, (SE,EOS,TO),X'0D"

READ CURRENT POSITION

Preparing Device to Issue Service Request (SRQ) Interrupts

To show the use of service request (SRQ) interrupts, the plotter will issue an SRQ upon receipt
of an invalid plotter command. First, the bus must be configured again.

ENQT GPIBIOCB
TERMCTRL GPIB,CON
PRINTEXT SENDCON

CONNECT TO GPIB
CONFIGURE THE BUS
S/1 TALKS, PLOTTER LISTENS

Then plotter commands can be transmitted which initialize the plotter to issue the SRQ when an

€ITor occurs, and to cause an error.

TERMCTRL GPIB,WRIT,TO
PRINTEXT 'IN;'
PRINTEXT 'IM223,32,0;'
PRINTEXT 'XX;'
PRINTEXT SKIP=1

DEQT

WRITE, TIMER OVERRIDE
INITIALIZE PLOTTER

TO SEND SRQ UPON ERROR
SEND INVALID COMMAND
FORCE OUTPUT
DISCONNECT FROM GPIB

Receiving Device’s SRQ Interrupt

At this point the plotter issues an SRQ interrupt. The following code receives the interrupt and
posts the event. The preceding DEQT was necessary, since the attention list task would wait
until the GPIB adapter was dequeued. Note that the ECB is initialized to the "event not
occurred" condition. (This code appears elsewhere in the actual program sequence.)

CO-200 SC34-0443

Programming for the GPIB Application (continued)

EQU
POST
ENDATTN

POSTSRQ

SRQECB

ATTNLIST

($PF255,POSTSRQ) , SCOPE=GLOBAL

%

SRQECB POST EVENT

The program waits for the SRQ event to occur, and then continues operation.

WAIT
RESET

WAIT FOR SRQ
RESET ECB

SRQECB
SRQECB

Retrieving Device Status

To retrieve the plotter status, the program serially polls the plotter with the serial poll enable
(SPE) and read serial poll (SPL) commands. The talker address for the plotter must be specified
with the SPE. The SPL is accompanied by a READTEXT with XLATE=NO, because the
plotter status is most easily handled in numeric form. Finally, a serial poll disable is issued to
prevent the plotter from talking with status information.

ENQT
TERMCTRL
PRINTEXT
TERMCTRL
READTEXT
TERMCTRL

.

Y

STATUS TEXT

GPIBIOCB CONNECT TO GPIB

GPIB, SPE SERIAL POLL ENABLE
'Ed’ PLOTTER TALKER ADDRESS
GPIB, SPL READ SERIAL POLL
STATUS, XLATE=NO READ STATUS

GPIB, SPD SERIAL POLL DISABLE
LENGTH=2

Chapter 6. General Purpose Interface Bus - IEEE Standard 488-1975

CO-201

General Purpose Interface Bus - |[EEE Standard 488-1975

Programming for the GPIB Application (continued)

GPIB Sample Program

Figure 67 shows the preceding coding segments as a complete sample program. An error testing
routine is called after each I/O operation.

GPIBEG PROGRAM START
*

START EQU *

*
ENQT GPIBIOCB CONNECT TO GPIB
TERMCTRL GPIB,RSET RESET ADAPTER
CALL ERRTEST CHECK FOR ERRORS
TERMCTRL GPIB,IFC CLEAR BUS
CALL ERRTEST CHECK FOR ERRORS
TERMCTRL GPIB,REN REMOTE ENABLE
PRINTEXT 'g%a' THE PLOTTER
CALL ERRTEST CHECK FOR ERRORS
TERMCTRL GPIB,DCL CLEAR ALL DEVICES
CALL ERRTEST CHECK FOR ERRORS

*

* CONFIGURE BUS SO THAT S/1 TALKS AND THE PLOTTER LISTENS.
*

TERMCTRL. GPIB,CON CONFIGURE BUS
PRINTEXT SENDCON S/1 TALKS, PLOTTER LISTENS
CALL ERRTEST CHECK FOR ERRORS

* INITIALIZE THE PLOTTER.

TERMCTRL GPIB,WRIT,TO WRITE, TIMER OVERRIDE
PRINTEXT 'IN;' INITIALIZE PLOTTER

* MOVE THE PEN TO (5000,5000).

PRINTEXT 'PA' MOVE PEN ABSOLUTE
PRINTNUM F5000 X=5000

PRINTEXT ',' SEPARATOR
PRINTNUM F5000 Y=5000

PRINTEXT ';' TERMINATOR

Figure 67 (Part 1 of 4). GPIB sample program

CO-202 SC34-0443

Programming for the GPIB Application (continued)

*

* K X X ¥ *

*

*

COMMAND THE PLOTTER TO SEND ITS CURRENT POSITION.

PRINTEXT 'OC;' OUTPUT CURRENT POSITION
TERMCTRL DISPLAY FORCE OUTPUT
CALL ERRTEST CHECK FOR ERRORS

CONFIGURE THE BUS SO THE PLOTTER TALKS, AND S/1 LISTENS.

TERMCTRL GPIB,CON CONFIGURE BUS
PRINTEXT RECVCON PLOTTER TALKS, S/1 LISTENS
CALL ERRTEST CHECK FOR ERRORS

READ THE CURRENT POSITION OF THE PLOTTER.
(SPECIFY SUPPRESS EXCEPTION, TIMER OVERRIDE,
END OF STRING CHAR = X'OD'

TERMCTRL GPIB,READ, (SE,EOS,TO),X'0D’
READTEXT CURRPOS READ CURRENT POSITION
CALL ERRTEST CHECK FOR ERRORS

DISPLAY CURRENT POSITION OF PLOTTER.

DEQT DISCONNECT FROM GPIB
PRINTEXT '@CURRENT PLOTTER POSITION = '

PRINTEXT CURRPOS DISPLAY CURRENT POSITION
PRINTEXT SKIP=1

EJECT

ENQT GPIBIOCB CONNECT TO GPIB

CONFIGURE THE BUS SO THAT S/1 TALKS AND PLOTTER LISTENS.

TERMCTRL GPIB,CON CONFIGURE THE BUS
PRINTEXT SENDCON S/1 TALKS, PLOTTER LISTENS
CALL ERRTEST CHECK FOR ERRORS

Figure 67 (Part 2 of 4). GPIB sample program

Chapter 6. General Purpose Interface Bus - IEEE Standard 488-1975

CO-203

General Purpose Interface Bus - IEEE Standard 488-1975

Programming for the GPIB Application (continued)

CO-204

%*

*

PRINTEXT 'IN;'

%

* CAUSE A PLOTTER ERROR.
*
PRINTEXT 'XX;'
PRINTEXT SKIP=1
CALL ERRTEST
*
DEQT
*

*

WAIT SRQECB
RESET SRQECB
ENQT GPIBIOCB

TERMCTRL GPIB,SPE
PRINTEXT 'Ea'

CALL ERRTEST
TERMCTRL GPIB,SPL

CALL ERRTEST

TERMCTRL GPIB,SPD

CALL ERRTEST
*

DEQT GPIBIOCB

* DISPLAY PLOTTER STATUS.

PRINTEXT SKIP=1

PROGSTOP

TERMCTRL GPIB,WRIT,TO

PRINTEXT 'IM223,32,0;'

READTEXT STATUS,XLATE=NO

* INITIALIZE THE PLOTTER TO SEND AN SRQ UPON AN ERROR.

WRITE, TIMER OVERRIDE
INITIALIZE PLOTTER
TO SEND SRQ UPON ERROR

SEND INVALID COMMAND
FORCE OUTPUT
CHECK FOR ERRORS

DISCONNECT FROM GPIB

* WAIT FOR THE SRQ, AND POLL THE PLOTTER TO GET ITS STATUS.

WAIT FOR SRQ

RESET EVENT

CONNECT TO GPIB
SERIAL POLL ENABLE
PLOTTER TALKER ADDRESS
CHECK FOR ERRORS
READ SERIAL POLL
READ STATUS

CHECK FOR ERRORS
SERIAL POLL DISABLE
CHECK FOR ERRORS

DISCONNECT FROM GPIB

PRINTEXT '@PLOTTER STATUS = '
PRINTNUM STATUS,MODE=HEX

DISPLAY STATUS

Figure 67 (Part 3 of 4). GPIB sample program

SC34-0443

Programming for the GPIB Application (continued)

*

* AN SRQ
*

*
POSTSRQ
*

*

* THIS ATTENTION LIST TASK RECEIVES CONTROL WHEN

INTERRUPT IS POSTED.
ATTNLIST ($PF255,POSTSRQ) , SCOPE=GLOBAL
EQU *

POST SRQECB POST EVENT
ENDATTN

* SUBROUTINE TO CHECK FOR AND DISPLAY GPIB TERMINAL ERRORS.

SUBROUT ERRTEST
MOVE TASKRC,GPIBEG GET TASK RETURN CODE
IF (TASKRC,NE, -1) ERROR?
DEQT DISCONNECT FROM GPIB
PRINTEXT 'aGPIB TERMINAL I/O ERROR ='

PRINTNUM TASKRC,MODE=HEX
PRINTEXT SKIP=1

PROGSTOP
ENDIF
*
RETURN
*
TASKRC DATA F'0'
GPIBIOCB IOCB GPIB IOCB FOR GPIB ADAPTER
SRQECB ECB 0 SRQ EVENT
F5000 DATA F'5000'
CURRPOS TEXT LENGTH=14
STATUS TEXT LENGTH=2
*
* CONFIGURATION INFORMATION.
*
SENDCON TEXT "2U%":2" S/1 TALKS, PLOTTER LISTENS
RECVCON TEXT "?2E5":3" PLOTTER TALKS, S/1 LISTENS
*
ENDPROG
END

Figure 67 (Part 4 of 4). GPIB sample program

Chapter 6. General Purpose Interface Bus - IEEE Standard 488-1975

CO-205

General Purpose Interface Bus - IEEE Standard 488-1975

Interacting with the GPIB Application (Using $GPIBUT1)

The $GPIBUT]1 utility enables you to interactively control and transfer data to and from GPIB
devices. This utility can also be used as a diagnostic tool to check out the application program

interface and the attached devices.

The $GPIBUT1 commands are listed below. To obtain this list at your terminal, enter a
question mark in response to the prompting message, COMMAND(?):

COMMAND(?): 7

- DEFINE END CHARACTER
- CHANGE GPIB PARTITION
DD - DEFINE DEVICE
- END THE PROGRAM
- GPIB CONTROL
LDCB - LIST DEVICE CONTROL BLOCK
- READ DATA
- RESET 1/0 ADAPTER
ST - READ ERROR STATUS
- SUSPEND PROGRAM
WR - WRITE DATA
"ATTN - PGPIB' TO POST
"ATTN - GPRESUME' TO RESUME PROGRAM

COMMAND(?):

-

J

If a $GPIBUT1 command fails, use the attention list command PGPIB to terminate the failing
operation. If the PGPIB command is used, you must issue an RS command (or RSET if GP

subcommands are used) to reset the adapter.

Defining End Character (CH)

The CH command defines or changes the ending character that is added to output data.

COMMAND(?): CH
CHARACTER TO BE APPENDED TO OUTPUT DATA -- NOW IS NONE

CARRIAGE RETURN

LINE FEED

END OF TEXT

USER SPECIFIED HEX BYTE
NONE

VT EWN -
Bonononou

SELECT CODE: 3

END CHARACTER S NOW ETX

COMMAND(?):

CO-206 SC34-0443

Interacting with the GPIB Application (Using $GPIBUT1) (continued)

Changing GPIB Partition (CP)

The CP command changes the partition to which the GPIB adapter is connected. The partition
is initially defined at system generation.
COMMAND(?): cP 2

PARTITION CHANGED TO 2
COMMAND(?): cp

PARTITION NUMBER (NOW 1S 2):

PARTITION NUMBER NOT CHANGED

COMMAND(?):

Defining Device (DD)

The DD command prompts for the name of the GPIB adapter. This name is specified in the
TERMINAL configuration statement. The name specified is used for all enqueues of the
adapter until another DD command is issued.

' COMMAND(?): DD
NEW GPIB TERMINAL NAME = GPIB

COMMAND(?):

Ending The Program (EN)
The EN command ends the $§GPIBUT1 utility.

i COMMAND(?): EN l
ANG 4

Controlling GPIB (GP)

The GP command enables you to enter the GPIB bus command options that can be specified on
the TERMCTRL instruction, as described in the Language Reference.

When GP is entered and followed by a bus command, $GPIBUT1 prompts for additional data,
depending upon the specific command. For example, the CON (configure) command requires
both configuration and programming data. For the REN (remote enable) command, a list of
GPIB device addresses must be included.

Chapter 6. General Purpose Interface Bus - IEEE Standard 488-1975 CQO-207

General Purpose Interface Bus - |[EEE Standard 488-1975

Interacting with the GPIB Application (Using $GPIBUT1) (continued)

Where appropriate, $§GPIBUT1 performs PRINTEXT/READTEXT operations as part of the
execution of a GP command, inserting delimiters as needed. In some cases, one delimiter is a
user-defined end character. The end character can be defined by the CH command.

COMMAND(?): GP
GP1B COMMAND(?): CON

OPTION(SE,E0S,TO,EOI): TO
OPTION(SE,E0S,TO,EQI):

CONF IGURATION DATA: ?U%
PROGRAMMING DATA (OR NONE): IN;
PROGRAMMING DATA (OR NONE): OE;
PROGRAMMING DATA (OR NONE):

CONF IGURATION DATA: 7?E5
PROGRAMMING DATA (OR NONE): NONE
PROGRAMMING DATA (OR NONE):

CONF I GURATION DATA:

GPIB COMMAND(?): READ
OPTION(SE,E0S,TO,EO1): SE

WARNING - EOS OR EO! REQUIRED ...
OPTION(SE,E0S,TO,EQI): EOS

WARNING - SE MAY BE NEEDED ...

EOS BYTE (HEX): 0D (x'on')

OPTION(SE,E0S,TO,EOI):
TRANSLATE INPUT? Y

HOW MANY CHARACTERS (MAX=DEFAULT=80):
VALUE DEFAULTED TO 80

0

COMMAND(?):

e Y

Listing Device Control Block (LDCB)

CO-208

The LDCB command lists the contents of the current GPIB device control block (DCB). The
DCB describes the last GPIB operation performed. However, the information provided may
require that you use the GPIB Adapter manual. The items listed include:

o Address of the GPIB terminal control block (CCB)

e« Address of the GPIB device control block (DCB)

« Status of the DCB control word, specifically:

SC34-0443

Interacting with the GPIB Application (Using $GPIBUT1) (continued)

— Cycle steal status key (that is, the address space of the data buffer)
— GPIB operation mnemonic (for an undefined operation, *****’)

— Status of the chaining, input, suppress exception (SE), end of string (EOS), timer
override (TO), and end of identify (EOI) bits, if they are set

o End of string character
e Address of the residual status block (RSB)
o Chain address
« Byte count for the data transfer
o Address of the data buffer
« Contents of the data buffer, expessed as:
— A string of hexadecimal words
— EBCDIC characters
— ASCII characters
The DCB is checked for certain error conditions, including:
« DCB words two or three not equal to zero
« RSB address not equal to zero, and suppress exception set
o Chain address non-zero and chaining bit set
If the byte count is odd, the last byte in the string of hex words is not part of the buffer and
should be disregarded. Because the buffer data can be either EBCDIC or ASCII, depending on
the application, it is displayed in both character codes. In most cases, the ASCII data displayed

will be accurate. An inappropriate translation is displayed as a blank line.

The following example illustrates a DCB used in the execution of:

TERMCTRL GPIB,CON,TO
PRINTEXT '?2U%":°

Chapter 6. General Purpose Interface Bus - IEEE Standard 488-1975 CO-209

General Purpose Interface Bus - |[EEE Standard 488-1975

Interacting with the GPIB Application (Using $GPIBUT1) (continued)

COMMAND (?): LDCB
DISPLAY OF DCB FOR GPIB TERMINAL GPIB

GPIB CCB AT ADDRESS 1058
GPIB DCB AT ADDRESS OFFE

CONTROL WORD
CYCLE STEAL KEY IS O
TIMER OVERRIDE SET
DEVICE OPERATION IS CON

BYTE COUNT IS 5
DATA ADDRESS IS 1102

DATA IN HEX FORMAT IS:
3F55 2522 2C00
DATA INTERPRETED AS EBCDIC IS:

U

COMMAND (7):

N J

Reading Data (RE)

The RE command reads data from the GPIB adapter. You can also specify GPIB options
(TERMCTRL functions), translation, and the number of characters to be read.

COMMAND(?): READ
OPTION(SE,E0S,TO,EOI): SE

WARNING - EOS OR EOI REQUIRED ...
OPTION(SE,E0S,TO,EOI): EOS

WARNING - SE MAY BE NEEDED ...

EOS BYTE (HEX): oD (x'on")

OPTION(SE,E0S,TO,EOI):
TRANSLATE INPUT? Y

HOW MANY CHARACTERS (MAX=DEFAULT=80):
VALUE DEFAULTED TO 80

0

COMMAND(?):

J

RS - Resetting the GPiB Adapter (RS)

The RS command issues a device reset to the adapter. Any pending interrupt or busy condition
is cleared when this command is executed.

CO-210 SC34-0443

Interacting with the GPIB Application (Using $GPIBUT1) (continued)

COMMAND(?): RS
RESET ADAPTER? Y

COMMAND(?) :

Reading Error Status (ST)

The ST command displays the status information contained in the adapter cycle steal status

words and the residual status block (RSB).

(

COMMAND(?): ST
READ STATUS? Y
CYCLE STEAL STATUS BLOCK (HEX)

RESIDUAL ADDRESS =
RESIDUAL BYTE COUNT =
(RESERVED) =

(RESERVED) =

ERROR STATUS =

BUS STATUS (AFTER POWER ON) =
BUS STATUS (CURRENT) =
SPE DEVICE ADDRESS =

DCB SPECIFICATION CHECK =
(RESERVED) =

DCB ADDRESS =

RESIDUAL STATUS BLOCK (HEX)

RESIDUAL BYTE COUNT = 0000

RSB FLAGS = 0000
(RESERVED) = 0000
(RESERVED) = 0000
(RESERVED) = 0000

RESET ADAPTER? Y

NO DATA RECEIVED

COMMAND(?) :

_

B4SA
0050
0000
0000
8000
0008
000A
0000
0000
0000
1238

‘\

J

Suspending $GPIBUT1 (SU)

The SU command suspends the operation of $§GPIBUT1 until you tell it to resume using

GPRESUME. This enables you to run $GPIBUT1 concurrently with a GPIB application from

the same terminal.

Chapter 6. General Purpose Interface Bus - IEEE Standard 488-1975

CO-211

General Purpose Interface Bus - IEEE Standard 488-1975

Interacting with the GPIB Application (Using $GPIBUT1) (continued)

COMMAND(?): SU

$GPIBUT1 SUSPENDED

Writing Data (WR)

The WR command writes data to the GPIB adapter. You can specify GPIB options
(TERMCTRL functions) and translation.

COMMAND(?7) : WR
OPTION(SE,E0S,TO,EOI):

WRITE HEX DATA? N

ENTER TEXT: IN;

IS THE DATA OK? Y
COMMAND(?): WR
OPTION(SE,EOS,TO,EOQI):

WRITE HEX DATA? VY

ENTER HEX WORDS: 0AQD 0102

IS THE DATA OK? Y

COMMAND(?):

Posting GPIB Operation Completion (PGPIB)

Sometimes a GPIB operation waits indefinitely, such as if a device fails to respond to an
operation in which timer override (TO) is specified. The PGPIB attention command can be
used to complete the operation; it cancels the operation by simulating its completion. However,
after a PGPIB, the GPIB adapter is still in a busy state, so it must be reset.

CO-212 5C34-0443

Interacting with the GPIB Application (Using $GPIBUT1) (continued)

(=]
e

e

S

GP1B COMMAND (?): READ

OPTION (SE,E0S,TO,EO0I): TO

TRANSLATE INPUT? Y

HOW MANY CHARACTERS (MAX=DEFAULT=80):
VALUE DEFAULTED TO 80

> PGPIB

DATA RECEIVED:

GPIB COMMAND (7): RSET

uming $GP

RESET ADAPTER? Y Ad}

iBUT1T Operation (GPRESUME)

If $GPIBUT1 has been suspended using the SU command, the GPRESUME attention command
can be used to resume it.

> GPRESUME

SGPIBUT1 RESUMED

COMMAND (7):

Debugging Applications with $GPIBUT1

Along with tools such as $DEBUG, $GPIBUT1 can be used to debug an executing GPIB
application. This can be done from one terminal by using the suspend and resume commands.

Using $L, load both $GPIBUT1 and the application program from a terminal. (The
appplication program can also be loaded using $DEBUG.) First load $GPIBUT1 and then
suspend it with the SU command. Application debugging can then proceed until you need to use
a $GPIBUT1 function. At that point, use GPRESUME to reactivate $§GPIBUT]1.

The list DCB (LDCB) and display status (ST) commands are helpful in this context because

they interpret the effects of GPIB operations. In addition, PGPIB can be used to complete a
GPIB operation which is in an indefinite wait state.

Chapter 6. General Purpose Interface Bus - IEEE Standard 488-1975 CQO-213

General Purpose Interface Bus - IEEE Standard 488-1975

Interacting with the GPIB Application (Using $GPIBUT1) (continued)

$GPIBUT1 Utility Example

Figure 68 shows many of the $GPIBUT1 utility operations. The attached device is a plotter.

> $CP 2

> $L $GPIBUTI

$GPIBUTI 45P, LP= 0000

SGPIBUTI - GPIB UTILITY

USING GPIB TERMINAL GPIB1

COMMAND(?): DD

NEW GPIB TERMINAL NAME = GPIB3
GPIB3 IS NOT A GPIB TERMINAL

RETRY? Y

Figure 68 (Part 1 of 9). GPIB utility example

NEW GPIB TERMINAL NAME =GPIB
COMMAND (?): CP 2
PARTITION CHANGED TO 2
COMMAND (7): CH
CHARACTER TO BE APPENDED TO OUTPUT DATA -- NOW IS NONE
CARRIAGE RETURN
LINE FEED
END OF TEXT

USER SPECIFIED HEX BYTE
NONE

VT EWN —
mwononn

SELECT CODE: 3

_ END CHARACTER NOW IS ETX

Figure 68 (Part 2 of 9). GPIB utility example

CO-214 sC34-0443

\

Interacting with the GPIB Application (Using $GPIBUT1) (continued)

KEQMMAND (2): CH “W

CHARACTER TO BE APPENDED TO OUTPUT DATA -- NOW IS ETX

1 = CARRIAGE RETURN

2 = LINE FEED

3 = END OF TEXT

4 = USER SPECIFIED HEX BYTE
5 = NONE

SELECT CODE: 5

END CHARACTER NOW IS NONE
COMMAND (?): GP

GPIB COMMAND (?): CON

OPTION(SE,E0S,TO,EQI): TO
OPTION(SE,EO0S,TO,EOI):

CONF I GURATION DATA: ?U%
PROGRAMMING DATA (OR NONE): IN;
PROGRAMMING DATA (OR NONE): OF;
PROGRAMMING DATA (OR NONE):

CONF IGURATION DATA: ?E5
PROGRAMMING DATA (OR NONE): NONE
PROGRAMMING DATA (OR NONE):

CONF IGURATION DATA: 3

\

Figure 68 (Part 3 of 9). GPIB utility example

Chapter 6. General Purpose Interface Bus - IEEE Standard 488-1975 CO-215

General Purpose Interface Bus - IEEE Standard 488-1975

Interacting with the GPIB Application (Using $GPIBUT1) (continued)

()\
GPIB COMMAND (?): READ
OPTION(SE,E0S,TO,EOI): SE
WARNING - EOS OR EO! REQUIRED ...
OPTION(SE ,E0S,TO,EOI): EQS
WARNING - SE MAY BE NEEDED ...
EOS BYTE (HEX): 0D (x'op")
OPTION(SE,E0S,TO,EOI):
TRANSLATE INPUT? Y

HOW MANY CHARACTERS (MAX=DEFAULT=80):
VALUE DEFAULTED TO 80

0
GPIB COMMAND(?): CON
OPTION(SE,E0S,TO,EOI):

CONF IGURATION DATA: 7U%

PROGRAMMING DATA (OR NONE): IN;
PROGRAMMING DATA (OR NONE): 1M223,32,0;
PROGRAMMING DATA (OR NONE): XX;

Khkhkhk SRQ RECE IVED b33 33 3

Figure 68 (Part 4 of 9). GPIB utility example

PROGRAMMING DATA (OR NONE):

CONF I GURATION DATA:
GPIB COMMAND (7): SPE

OPTlON(Sé,EOS,TO,EOI):
TALKER ADDRESS LIST: E
IS THE DATA 0K? Y
GPIB COMMAND (7): SPL
WARNING - SPE MUST HAVE JUST BEEN EXECUTED
TRANSLATE INPUT? N

DATA RECEIVED:
4578

(ARMNG - AN SPD MAY NOW BE REQUIRED

Figure 68 (Part 5 of 9). GPIB utility example

CO-216 SC34-0443

Interacting with the GPIB Application (Using $GPIBUT1) (continued)

GPIB COMMAND (7): SPD ~ A‘W
OPTION(SE,EO0S,T0,EO!):

GPIB COMMAND (7): READ
OPTION(SE,E0S,TO,EQI): TO

TRANSLATE INPUT? Y

HOW MANY CHARACTERS (MAX=DEFAULT=80):

VALUE DEFAULTED TO 80

Figure 68 (Part 6 of 9). GPIB utility example

> PGPIB

DATA RECEIVED:

GPIB COMMAND (?): READ

OPTION(SE ,E0S,TO,EDI):
TRANSLATE INPUT? Y

HOW MANY CHARACTERS (MAX=DEFAULT=80)
VALUE DEFAULTED TO 80

ERROR CODE = 0002

GP1B BUSY
READ STATUS? N

RESET ADAPTER? Y

_ -

Figure 68 (Part 7 of 9). GPIB utility example

Chapter 6. General Purpose Interface Bus - IEEE Standard 488-1975 CO-217

General Purpose Interface Bus - IEEE Standard 488-1975

Interacting with the GPIB Application (Using $GPIBUT1) (continued)

NO DATA RECEIVED
GPIB COMMAND (?): READ

OPTION(SE,E0S,TO,EOI):
TRANSLATE INPUT? Y

HOW MANY CHARACTERS (MAX=DEFAULT=80)
VALUE DEFAULTED TO 80
ERROR CODE = 0180

EXCEPTION ON INPUT
DEVICE DEPENDENT STATUS AVAILABLE

READ STATUS? Y

Figure 68 (Part 8 of 9). GPIB utility example

CYCLE STEAL STATUS BLOCK (HEX)

RESIDUAL ADDRESS = B4SA
RESIDUAL BYTE COUNT = 0050
(RESERVED) = 0000
(RESERVED) = 0000
ERROR STATUS = 8000
BUS STATUS (AFTER POWER ON) = 0008
BUS STATUS (CURRENT) = 000A
SPE DEVICE ADDRESS = 0000
DCB SPECIFICATION CHECK = 0000
(RESERVED) = 0000
DCB ADDRESS = 1238

RESIDUAL STATUS BLOCK (HEX)

RESIDUAL BYTE COUNT = 0000

RSB FLAGS = 0000
(RESERVED) = 0000
(RESERVED) = 0000
(RESERVED) = 0000

RESET ADAPTER? Y
NO DATA RECEIVED

GPIB COMMAND (?): END

~

Figure 68 (Part 9 of 9). GPIB utility example

CO-218 sC34-0443

Interacting with the GPIB Application (Using $GPIBUT1) (continued)

Detecting Errors During GPIB Operations

To control the GPIB bus and the attached devices, you should check the return code after each
operation. In general, the application program performs error recovery by retrieving and
analyzing the adapter cycle steal status block or residual status block. The manual General
Purpose Interface Bus (GPIB) Adapter - RPQ D02118 Custom Feature contains detailed
information on cycle steal status and the residual status block. The methods available to the
application program for detecting possible errors and retrieving the return codes returned are
described below.

GPIB errors can be detected in the same manner as other EDX terminal errors: by testing the
first word of the task control block after an I/O instruction, or by coding an error routine
(identified by TERMERR = in the PROGRAM statement). Except for return code 3 (busy
after reset), the application program should handle GPIB return codes like other terminal errors.

An application program can initialize a GPIB bus by means of the TERMCTRL GPIB,RSET
statement. This generates an interface clear (IFC) bus command. All GPIB devices on the bus
must initialize themselves in response to this command. If the application program issues
another command before a device can complete initialization, the busy after reset condition will
occur. One solution is to cause the program to wait long enough for the reset operation to
complete (this takes about 350 milliseconds). Another is to code the TERMCTRL GPIB
command (which follows the reset) with the timer override (TO) option.

For exception conditions, the first byte of the error code indicates whether a read or write
operation was requested. A value of 1 in the first byte indicates a read exception, while a 2
indicates a write exception. The second byte of the error code is the interrupt status byte (ISB)
which contains further information on the exception.

Examining Interrupt Status Byte

The ISB can be examined to determine whether the exception condition resulted from an
application program, hardware, or system error. Unless otherwise noted, the ISB bits below
describe the condition when the bit is on.

Bit 0 Unless bit 2 is on, indicates that cycle steal status should be retrieved via the
TERMCTRL GPIB,STAT statement.

Bit 1 Indicates a delayed command rejection which suggests a system error or an
inappropriate/ unusual TERMCTRL GPIB statement.

Bit 2 Indicates an incorrect length record, which means that the number of characters
read from GPIB was less than specified in the input buffer. If the system buffer
(contained in the terminal control block) was used, then the associated
TERMCTRL GPIB,READ statement should contain the suppress exceptions (SE)
option.

Chapter 6. General Purpose Interface Bus - IEEE Standard 488-1975 CO-219

General Purpose Interface Bus - IEEE Standard 488-1975

Detecting Errors During GPIB Operations (continued)

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Indicates a device control block specification error, which may be a system error.
Word 8 of the cycle steal status block indicates the cause.

Indicates a storage data check, which means that there is a parity problem with
main storage.

Indicates an invalid storage address was passed to the GPIB adapter. This can be a
system problem or a problem with the application program buffer.

Indicates that the GPIB adapter tried to use an invalid storage key. This can be a
system problem or a problem with the application program buffer.

Indicates that an interface data parity error was detected.

Examining Cycle Steal Status Block

If bit zero of the ISB is on, word 4 of the cycle steal status block can be examined to determine
the source of the error. The bits in word 4 given below describe the condition when the bit is

on.

Bit 0

Bit 2

Bit 4

Bit 5

The GPIB adapter timed out while waiting to receive data from the bus. To
prevent this, specify timer override (TO) on the TERMCTRL GPIB,READ
statement.

The GPIB adapter timed out while waiting to send data to the bus. To prevent this,
specify timer override (TO) on the TERMCTRL GPIB,WRIT statement.

End of string (EOS) was specified on a TERMCTRL GPIB,READ statement, but
the buffer was filled before the EOS character was received.

End of information (EOI) was specified on a TERMCTRL GPIB,READ statement,
but the buffer was filled before EOI was received.

Retrieving Cycle Steal Status

When a GPIB operation terminates with an exception, an 11-word cycle steal status block is
available. To retrieve it, the application should issue a TERMCTRL GPIB,STAT instruction
specifying an area in storage to contain the status block.

STATDATA DATA 11F'0’ BLOCK FOR STATUS

TERMCTRL GPIB, STAT,,STATDATA RETRIEVE STATUS
*

*
*

C0O-220 SC34-0443

Detecting Errors During GPIB Operations (continued)

Retrieving Residual Status Block

If a GPIB READ or read monitor (MON) operation specifies the suppress exception (SE)
option, the 5-word residual status block is available. To retrieve it the application should issue a
TERMCTRL GPIB,RSB instruction specifying an area in storage to contain the status block.

TERMCTRL GPIB,RSB, ,RSBDATA RETRIEVE STATUS
*

*
*

RSBDATA DATA 5Fr'0' BLOCK FOR STATUS

Chapter 6. General Purpose Interface Bus - IEEE Standard 488-1975 CO-221

Notes

CO-222 SC34-0443

Glossary of Terms and Abbreviations

This glossary defines terms and abbre\}iations used in the Series/1 Event Driven Executive software publications. All software and
hardware terms pertain to EDX. This glossary also serves as a supplement to the /BM Data Processing Glossary, GC20-1699.

$SYSLOGA, $SYSLOGB. The name of the alternate system
logging device. This device is optional but, if defined, should be
a terminal with keyboard capability, not just a printer.

$SYSLOG. The name of the system logging device or operator
station; must be defined for every system. It should be a terminal
with keyboard capability, not just a printer.

$SYSPRTR. The name of the system printer.

abend. Abnormal end-of-task. Termination of a task prior to its
completion because of an error condition that cannot be resolved
by recovery facilities while the task is executing.

ACCA. See asynchronous communications control adapter.

address key. Identifies a set of Series/1 segmentation registers
and represents an address space. It is one less than the partition
number.

address space. The logical storage identified by an address key.
An address space is the storage for a partition.

application program manager. The component of the Multiple
Terminal Manager that provides the program management
facilities required to process user requests. It controls the

contents of a program area and the execution of programs within
the area.

application program stub. A collection of subroutines that are
appended to a program by the linkage editor to provide the link
from the application program to the Multiple Terminal Manager
facilities.

asynchronous communications control adapter. An ASCII
terminai attached via #1610, #2091 with #2092, or #2095 with
#2096 adapters.

attention key. The key on the display terminal keyboard that, if
pressed, tells the operating system that you are entering a
command.

attention list. A series of pairs of 1 to 8 byte EBCDIC strings

and addresses pointing to EDL instructions. When the attention
key is pressed on the terminal, the operator can enter one of the
strings to cause the associated EDL instructions to be executed.

backup. A copy of data to be used in the event the original data
is lost or damaged.

base record slots. Space in an indexed file that is reserved for
based records to be placed.

Glossary of Terms and Abbreviations ~ CO-223

Glossary of Terms and Abbreviations

base records. Records are placed into an indexed file while in
load mode or inserted in process mode with a new high key.

basic exchange format. A standard format for exchanging data
on diskettes between systems or devices.

binary synchronous device data block (BSCDDB). A control
block that provides the information to control one Series/ 1
Binary Synchronous Adapter. It determines the line
characteristics and provides dedicated storage for that line.

block. (1) See data block or index block. (2) In the Indexed
Method, the unit of space used by the access method to contain
indexes and data.

block mode. The transmission mode in which the 3101 Display
Station transmits a data data stream, which has been edited and
stored, when the SEND key is pressed.

BSCAM. See binary synchronous communications access
method.

binary synchronous communications access method. A form
of binary synchronous 1/0 control used by the Series/1 to
perform data communications between local or remote stations.

BSCDDB. See binary synchronous device data block.

buffer. An area of storage that is temporarily reserved for use in
performing an input/output operation, into which data is read or
from which data is written. See input buffer and output buffer.

bypass label processing. Access of a tape without any label
processing support.

CCB. See terminal control block.

central buffer. The buffer used by the Indexed Access Method
for all transfers of information between main storage and indexed
files.

character image. An alphabetic, numeric, or special character
defined for an IBM 4978 Display Station. Each character image
is defined by a dot matrix that is coded into eight bytes.

character image table. An area containing the 256 character
images that can be defined for an IBM 4978 Display Station.
Each character image is coded into eight bytes, the entire table of
codes requiring 2048 bytes of storage.

character mode. The transmission mode in which the 3101
Display Station immediately sends a character when a keyboard
key is pressed.

cluster. In an indexed file, a group of data blocks that is pointed
to from the same primary-level index block, and includes the
primary-level index block. The data records and blocks
contained in a cluster are logically contiguous, but are not
necessarily physically contiguous.

CO-224 s5C34-0443

COD (change of direction). A character used with ACCA
terminal to indicate a reverse in the direction of data movement.

cold start. Starting the spool facility by erasing any spooled jobs
remaining in the spool data set from any previous spool session.

command. A character string from a source external to the
system that represents a request for action by the system.

common area. A user-defined data area that is mapped into the
partitions specified on the SYSTEM definition statement. It can
be used to contain control blocks or data that will be accessed by
more than one program.

completion code. An indicator that reflects the status of the
execution of a program. The completion code is displayed or
printed on the program’s output device.

constant. A value or address that remains unchanged thoughout
program execution.

controller. A device that has the capability of configuring the
GPIB bus by designating which devices are active, which devices
are listeners, and which device is the talker. In Series/1 GPIB
implementation, the Series/1 is always the controller.

conversion. See update.

control station. In BSCAM communications, the station that
supervises a multipoint connection, and performs polling and
selection of its tributary stations. The status of control station is
assigned to a BSC line during system generation.

cross-partition service. A function that accesses data in two
partitions.

cross-partition supervisor. A supervisor in which one or more
supervisor modules reside outside of partition 1 (address space
0).

data block. In an indexed file, an area that contains control
information and data records. These blocks are a multiple of 256
bytes.

data record. In an indexed file, the records containing customer
data.

data set. A group of records within a volume pointed to by a
directory member entry in the directory for the volume.

data set control block (DSCB). A control block that provides
the information required to access a data set, volume or directory
using READ and WRITE.

data set shut down. An indexed data set that has been marked
(in main storage only) as unusable due to an error.

DCE. See directory control entry.

device data block (DDB). A control block that describes a disk
or diskette volume.

direct access. (1) The access method used to READ or WRITE
records on a disk or diskette device by specifying their location
relative the beginning of the data set or volume. (2) In the
Indexed Access Method, locating any record via its key without
respect to the previous operation. (3) A condition in terminal 1/0
where a READTEXT or a PRINTEXT is directed to a buffer which
was previously enqueued upon by an I0CB.

directory. (1) A series of contiguous records in a volume that
describe the contents in terms of allocated data sets and free
space. (2) A series of contiguous records on a device that
describe the contents in terms of allocated volumes and free
space. (3) For the Indexed Access Method Version 2, a data set
that defines the relationship between primary and secondary
indexed files (secondary index support).

directory control entry (DCE). The first 32 bytes of the first
record of a directory in which a description of the directory is
stored.

directory member entry (DME). A 32-byte directory entry
describing an allocated data set or volume.

display station. An IBM 4978, 4979, or 3101 display terminal or
similar terminal with a keyboard and a video display.

DME. See directory member entry.
DSCB. See data set control block.

dynamic storage. An increment of storage that is appended to a
program when it is loaded.

end-of-data indicator. A code that signals that the last record of
a data set has been read or written. End-of-data is determined
by an end-of-data pointer in the DME or by the physical end of
the data set.

ECB. See event control block.
EDL. See Event Driven Language.

emulator. The portion of the Event Driven Executive supervisor
that interprets EDL instructions and performs the function
specified by each EDL statement.

end-of-tape (EOT). A reflective marker placed near the end of a
tape and sensed during output. The marker signals that the tape
is nearly full.

enter key. The key on the display terminal keyboard that, if
pressed, tells the operating system to read the information you
entered.

event control block (ECB). A control block used to record the
status (occurred or not occurred) of an event; often used to

synchronize the execution of tasks. ECBs are used in conjunction
with the WAIT and POST instructions.

Event Driven Language (EDL). The language for input to the
Event Driven Executive compiler (SEDXASM), or the Macro and
Host assemblers in conjunction with the Event Driven Executive
macro libraries. The output is interpreted by the Event Driven
Executive emulator.

EXIO (execute input or output). An EDL facility that provides
user controlled access to Series/1 input/output devices.

external label. A label attached to the outside of a tape that
identifies the tape visually. It usually contains items of
identification such as file name and number, creation data,
number of volumes, department number, and so on.

external name (EXTRN). The 1- to 8-character symbolic
EBCDIC name for an entry point or data field that is not defined
within the module that references the name.

FCA. See file control area.
FCB. Sce file control block.

file. A set of related records treated as a logical unit. Although
file is often used interchangeably with data set, it usually refers to
an indexed or a sequential data set.

file control area (FCA). A Multiple Terminal Manager data area
that describes a file access request.

file control block (FCB). The first block of an indexed file. It
contains descriptive information about the data contained in the
file.

file control block extension. The second block of an indexed
file. It contains the file definition parameters used to define the
file.

file manager. A collection of subroutines contained within the
program manager of the Multiple Terminal Manager that provides
common support for all disk data transfer operations as needed
for transaction-oriented application programs. It supports
indexed and direct files under the control of a single callabie
function.

floating point. A positive or negative number that can have a
decimal point.

formatted screen image. A collection of display elements or
display groups (such as operator prompts and field input names
and areas) that are presented together at one time on a display
device.

free pool. In an indexed data set, a group of blocks that can be
used for either data blocks or index blocks. These differ from
other free blocks in that these are not initially assigned to specific
logical positions in the file.

CO-225

Glossary of Terms and Abbreviations

Glossary of Terms and Abbreviations

free space. In an indexed file, records blocks that do not
currently contain data, and are available for use.

free space-entry (FSE). An 8-byte directory entry defining an
area of free space within a volume or a device.

FSE. See free space entry.

general purpose interface bus. The |IEEE Standard 488-1975
that allows various interconnected devices to be attached to the
GPIB adapter (RPQ D02118).

GPIB. See general purpose interface bus.

group. A unit of 100 records in the spool data set allocated to a
spool job.

H exchange format. A standard format for exchanging data on
diskettes between systems or devices.

host assembler. The assembler licensed program that executes
in a 370 (host) system and produces object output for the
Series/1. The source input to the host assembler is coded in
Event Driven Language or Series/1 assembler language. The
host assembler refers to the System /370 Program Preparation
Facility (5798-NNQ).

host system. Any system whose resources are used to perform
services such as program preparation for a Series/1. It can be
connected to a Series/1 by a communications link.

IACB. See indexed access control block.
IAR. See instruction address register.
ICB. See indexed access control block.
1IB. See interrupt information byte.

image store. The area in a 4978 that contains the character
image table.

immediate data. A self-defining term used as the operand of an
instruction. It consists of numbers, messages or values which
are processed directly by the computer and which do not serve as
addresses or pointers to other data in storage.

index. In an indexed file, an ordered collection of pairs of keys
and pointers, used to sequence and locate records.

index block. In an indexed file, an area that contains control
information and index entries. These blocks are a multiple of 256
bytes.

indexed access control block (IACB/ICB). The control block
that relates an application program to an indexed file.

indexed access method. An access method for direct or
sequential processing of fixed-length records by use of a
record’s key.

CO-226 5C34-0443

indexed data set. Synonym for indexed file.

indexed file. A file specifically created, formatted and used by
the Indexed Access Method. An indexed file is sometimes called
an indexed data set.

index entry. In an indexed file, a key-pointer pair, where the
pointer is used to locate a lower-level index block or a data block.

index register (#1, #2). Two words defined in EDL and
contained in the task control block for each task. They are used
to contain data or for address computation.

input buffer. (1) See buffer. (2) In the Multiple Terminal
Manager, an area for terminal input and output.

input output control block (I0CB). A control block containing
information about a terminal such as the symbolic name, size and
shape of screen, the size of the forms in a printer, or an optional
reference to a user provided buffer.

instruction address register (IAR). The pointer that identifies
the machine instruction currently being executed. The Series/1
maintains a hardware |AR to determine the Series/1 assembler
instruction being executed. It is located in the level status block
(LSB).

integer. A positive or negative number that has no decimal
point.

interactive. The mode in which a program conducts a
continuous dialogue between the user and the system.

internal label. An area on tape used to record identifying
information (similar to the identifying information placed on an
external label). Internal labels are checked by the system to
ensure that the correct volume is mounted.

interrupt information byte (1IB). In the Multiple Terminal
Manager, a word containing the status of a previous input/output
request to or from a terminal.

invoke. To load and activate a program, utility, procedure, or
subroutine into storage so it can run.

job. A collection of related program execution requests
presented in the form of job control statements, identified to the
jobstream processor by a JOB statement.

job control statement. A statement in a job that specifies
requests for program execution, program parameters, data set
definitions, sequence of execution, and, in general, describes the
environment required to execute the program.

job stream processor. The job processing facility that reads job
control statements and processes the requests made by these
statements. The Event Driven Executive job stream processor is
$JOBUTIL.

jumper. (1) A wire or pair of wires which are used for the
arbitrary connection between two circuits or pins in an
attachment card. (2) To connect wire(s) to an attachment card or
to connect two circuits.

key. In the Indexed Access Method, one or more consecutive
characters used to identify a record and establish its order with
respect to other records. See also key field.

key field. A field, located in the same position in each record of
an indexed file, whose content is used for the key of a record.

level status block (LSB). A Series/1 hardware data area that
contains processor status. This area is eleven words in length.

library. A set of contiguous records within a volume. It contains
a directory, data sets and/or available space.

line. A string of characters accepted by the system as a single
input from a terminal; for example, all characters entered before
the carriage return on the teletypewriter or the ENTER key on the
display station is pressed.

link edit. The process of resolving external symbols in one or
more object modules. A link edit is performed with SEDXLINK
whose output is a loadable program.

listener. A controller or active device on a GPIB bus that is
configured to accept information from the bus.

load mode. In the Indexed Access Method, the mode in which
records are loaded into base record slots in an indexed file.

load module. A single module having cross references resolved
and prepared for loading into storage for execution. The module
is the output of the SUPDATE or $UPDATEH utility.

load point. (1) Address in the partition where a program is
loaded. (2) A reflective marker placed near the beginning of a
tape to indicate where the first record is written.

lock. In the Indexed Access Method, a method of indicating that

a record or block is in use and is not available for another request.

logical screen. A screen defined by margin settings, such as the
TOPM, BOTM, LEFTM and RIGHTM parameters of the
TERMINAL or IOCB statement.

LSB. See level status block.

mapped storage. The processor storage that you defined on the
SYSTEM statement during system generation.

member. A term used to identify a named portion of a
partitioned data set (PDS). Sometimes member is also used as a
synonym for a data set. See data set.

menu. A formatted screen image containing a list of options.
The user selects an option to invoke a program.

menu-driven. The mode of processing in which input consists of
the responses to prompting from an option menu.

message. In data communications, the data sent from one
station to another in a single transmission. Stations
communication with a series of exchanged messages.

multifile volume. A unit of recording media, such as tape reel or
disk pack, that contains more than one data file.

multiple terminal manager. An Event Driven Executive licensed
program that provides support for transaction-oriented
applications on a Series/1. It provides the capability to define
transactions and manage the programs that support those
transactions. It also manages multiple terminals as needed to
support these transactions.

multivolume file. A data file that, due to its size, requires more
than one unit of recording media (such as tape reel or disk pack)
to contain the entire file.

new high key. A key higher than any other key in an indexed
file.

nonlabeled tapes. Tapes that do not contain identifying labels
(as in standard labeled tapes) and contain only files separated by
tapemarks.

null character. A user-defined character used to define the
unprotected fields of a formatted screen.

option selection menu. A full screen display used by the
Session Manager to point to other menus or system functions,
one of which is to be selected by the operator. (See primary
option menu and secondary option menu.)

output buffer. (1) See buffer. {2) In the Multiple Terminal
Manager, an area used for screen output and to pass data to
subsequent transaction programs.

overlay. The technique of reusing a single storage area allocated
to a program during execution. The storage area can be reused
by loading it with overlay programs that have been specified in
the PROGRAM statement of the program or by calling overlay
segments that have been specified in the OVERLAY statement of
$EDXLINK.

overlay area. A storage area within a program reserved for
overlay programs specified in the PROGRAM statement or
overlay segments specified in the OVERLAY statement in
$EDXLINK.

overlay program. A program in which certain control sections
can use the same storage location at different times during
execution. An overlay program can execute concurrently as an
asynchronous task with other programs and is specified in the
EDL PROGRAM statement in the main program.

overlay segment. A self-contained portion of a program that is
called and sequentially executes as a synchronous task. The

CO-227

Glossary of Terms and Abbreviations

Glossary of Terms and Abbreviations

entire program that calls the overlay segment need not be
maintained in storage while the overlay segment is executing. An
overlay segment is specified in the OVERLAY statement of
SEDXLINK or $XPSLINK (for initialization modules).

overlay segment area. A storage area within a program or
supervisor reserved for overlay segments. An overlay segment
area is specified with the OVLAREA statement of SEDXLINK.

parameter selection menu. A full screen display used by the
Session Manager to indicate the parameters to be passed to a
program.

partition. A contiguous fixed-sized area of storage. Each
partition is a separate address space.

performance volume. A volume whose name is specified on
the DISK definition statement so that its address is found during
IPL, increasing system performance when a program accesses
the volume.

physical timer. Synonym for timer (hardware).

polling. In data communications, the process by which a
multipoint control station asks a tributary if it can receive
messages.

precision. The number of words in storage needed to contain a
value in an operation.

prefind. To locate the data sets or overlay programs to be used
by a program and to store the necessary information so that the
time required to load the prefound items is reduced.

primary file. An indexed file containing the data records and
primary index.

primary file entry. For the Indexed Access Method Version 2,
an entry in the directory describing a primary file.

primary index. The index portion of a primary file. This is used
to access data records when the primary key is specified.

primary key. In an indexed file, the key used to uniquely identify
a data record.

primary-level index block. in an indexed file, the lowest level
index block. It contains the relative block numbers (RBNs) and
high keys of several data blocks. See cluster.

primary menu. The program selection screen displayed by the
Multiple Terminal Manager.

primary option menu. The first full screen display provided by
the Session Manager.

primary station. In a Series/1 to Series/1 attachment, the
processor that control communication between the two
computers. Contrast with secondary station.

CO-228 SC34-0443

primary task. The first task executed by the supervisor when a
program is loaded into storage. It is identified by the PROGRAM
statement.

priority. A combination of hardware interrupt level priority and a
software ranking within a level. Both primary and secondary
tasks will execute asynchronously within the system according to
the priority assigned to them.

process mode. In the Indexed Access Method, the mode in
which records can be retrieved, updated, inserted or deleted.

processor status word (PSW). A 16-bit register used to (1)
record error or exception conditions that may prevent further
processing and (2) hold certain flags that aid in error recovery.

program. A disk- or diskette-resident collection of one or more
tasks defined by a PROGRAM statement; the unit that is loaded
into storage. (See primary task and secondary task.)

program header. The control block found at the beginning of a
program that identifies the primary task, data sets, storage
requirements and other resources required by a program.

program/storage manager. A component of the Multiple
Terminal Manager that controls the execution and flow of
application programs within a single program area and contains
the support needed to allow multiple operations and sharing of
the program area.

protected field. A field in which the operator cannot use the
keyboard to enter, modify, or erase data.

PSW. See processor status word.

QCB. See queue control block.

QD. See queue descriptor.

QE. See queue element.

queue control block (QCB). A data area used to serialize access
to resources that cannot be shared. See serially reusable

resource.

queue descriptor (QD). A control block describing a queue built
by the DEFINEQ instruction.

queue element (QE). An entry in the queue defined by the
queue descriptor.

quiesce. To bring a device or a system to a halt by rejection of
new requests for work.

quiesce protocol. A method of communication in one direction
at a time. When sending node wants to receive, it releases the
other node from its quiesced state.

record. (1) The smallest unit of direct access storage that can be
accessed by an application program on a disk or diskette using

READ and WRITE. Records are 256 bytes in length. (2) In the
Indexed Access Method, the logical unit that is transferred
between $IAM and the user’s buffer. The length of the buffer is
defined by the user. (3) In BSCAM communications, the portions
of data transmitted in a message. Record length (and, therefore,
message length) can be variable.

recovery. The use of backup data to recreate data that has been
lost or damaged.

reflective marker. A small adhesive marker attached to the
reverse (nonrecording) surface of a reel of magnetic tape.
Normally, two reflective markers are used on each reel of tape.
One indicates the beginning of the recording area on the tape
(load point), and the other indicates the proximity to the end of
the recording area (EOT) on the reel.

relative block address (RBA). The location of a block of data on
a 4967 disk relative to the start of the device.

relative record number. An integer value identifying the
position of a record in a data set relative to the beginning of the
data set. The first record of a data set is record one, the second
is record two, the third is record three.

relocation dictionary (RLD). The part of an object module or
load module that is used to identify address and name constants
that must be adjusted by the relocating loader.

remote management utility control block (RCB). A control
block that provides information for the execution of remote
management utility functions.

reorganize. The process of copying the data in an indexed file to
another indexed file in a manner that rearranges the data for more
optimum processing and free space distribution.

restart. Starting the spool facility w the spool data set contains
jobs from a previous session. The jobs in the spool data set can
be either deleted or printed when the spool facility is restarted.

return code. An indicator that reflects the results of the
execution of an instruction or subroutine. The return code is
usually placed in the task code word (at the beginning of the task
control block).

roll screen. A display screen which is logically segmented into
an optional history area and a work area. Output directed to the
screen starts display at the beginning of the work area and
continues on down in a line-by-line sequence. When the work
area gets full, the operator presses ENTER/SEND and its contents
are shifted into the optional history area and the work area itself
is erased. Output now starts again at the beginning of the work
area.

SBIOCB. See sensor based |/0 control block.
second-level index block. In an indexed data set, the

second-lowest level index block. It contains the addresses and
high keys of several primary-level index blocks.

secondary file. See secondary index.

secondary index. For the Indexed Access Method Version 2, an
indexed file used to access data records by their secondary keys.
Sometimes called a secondary file.

secondary index entry. For the Indexed Access Method
Version 2, this an an entry in the directory describing a secondary
index.

secondary key. For the Indexed Access Method Version 2, the
key used to uniquely identify a data record.

secondary option menu. In the Session Manager, the second in
a series of predefined procedures grouped together in a
hierarchical structure of menus. Secondary option menus provide
a breakdown of the functions available under the session
manager as specified on the primary option menu.

secondary task. Any task other than the primary task. A
secondary task must be attached by a primary task or another
secondary task.

secondary station. In a Series/1 to Series/1 attachment, the
processor that is under the control of the primary station.

sector. The smallest addressable unit of storage on a disk or
diskette. A sector on a 4962 or 4963 disk is equivalent to an
Event Driven Executive record. On a 4964 or 4966 diskette, two
sectors are equivalent to an Event Driven Executive record.

selection. In data communications, the process by which the
multipoint control station asks a tributary station if it is ready to
send messages.

self-defining term. A decimal, integer, or character that the
computer treats as a decimal, integer, or character and not as an
address or pointer to data in storage.

sensor based 1/0 control block (SBIOCB). A control block
containing information related to sensor | /O operations.

sequential access. The processing of a data set in order of
occurrence of the records in the data set. (1) In the Indexed
Access Method, the processing of records in ascending collating
sequence order of the keys. (2) When using READ/WRITE, the
processing of records in ascending relative record number
sequence.

serially reusable resource (SRR). A resource that can only be
accessed by one task at a time. Serially reusable resources are
usually managed via (1) a acB and ENQ/DEQ statements or (2) an
ECB and WAIT/POST statements.

service request. A device generated signal used to inform the
GPIB controller that service is required by the issuing device.

CO-229

Glossary of Terms and Abbreviations

Glossary of Terms and Abbreviations

session manager. A series of predefined procedures grouped
together as a hierarchical structure of menus from which you
select the utility functions, program preparation facilities, and
language processors needed to prepare and execute application
programs. The menus consist of a primary option menu that
displays functional groupings and secondary option menus that
display a breakdown of these functional groupings.

shared resource. A resource that can be used by more than one
task at the same time.

shut down. See data set shut down.

source module/program. A collection of instructions and
statements that constitute the input to a compiler or assembler.
Statements may be created or modified using one of the text
editing facilities.

spool job. The set of print records generated by a program
(including any overlays) while engueued to a printer designated as
a spool device.

spool session. An invocation and termination of the spool
facility.

spooling. The reading of input data streams and the writing of
output data streams on storage devices, concurrently with job
execution, in a format convenient for later processing or output
operations.

SRAQ. See service request.

stand-alone dump. An image of processor storage written to a
diskette.

stand-alone dump diskette. A diskette supplied by IBM or
created by the $DASDI utility.

standard labels. Fixed length 80-character records on tape
containing specific fields of information (a volume label
identifying the tape volume, a header label preceding the data
records, and a trailer label following the data records).

static screen. A display screen formatted with predetermined
protected and unprotected areas. Areas defined as operator
prompts or input field names are protected to prevent accidental
overlay by input data. Areas defined as input areas are not
protected and are usually filled in by an operator. The entire
screen is treated as a page of information.

station. In BSCAM communications, a BSC line attached to the
Series/1 and functioning in a point-to-point or multipoint
connection. Also, any other terminal or processor with which the
Series/1 communicates.

subroutine. A sequence of instructions that may be accessed
from one or more points in a program.

CO-230 sC34-0443

supervisor. The component of the Event Driven Executive
capable of controlling execution of both system and application
programs.

system configuration. The process of defining devices and
features attached to the Series/ 1.

SYSGEN. See system generation.

system generation. The processing of defining 1/0 devices and
selecting software options to create a supervisor tailored to the
needs of a specific Series/1 hardware configuration and
application.

system partition. The partition that contains the root segment
of the supervisor (partition number 1, address space 0).

talker. A controller or active device on a GPIB bus that is
configured to be the source of information (the sender) on the
bus.

tape device data block (TDB). A resident supervisor control
block which describes a tape volume.

tapemark. A control character recorded on tape used to
separate files.

task. The basic executable unit of work for the supervisor. Each
task is assigned its own priority and processor time is allocated
according to this priority. Tasks run independently of each other
and compete for the system resources. The first task of a
program is the primary task. All tasks attached by the primary
task are secondary tasks.

task code word. The first two words (32 bits) of a task’s TCB;
used by the emulator to pass information from system to task
regarding the outcome of various operations, such as event
completion or arithmetic operations.

task control block (TCB). A control block that contains
information for a task. The information consists of pointers, save
areas, work areas, and indicators required by the supervisor for
controlling execution of a task.

task supervisor. The portion of the Event Driven Executive that
manages the dispatching and switching of tasks.

TCB. See task control block.

terminal. A physical device defined to the EDX system using the
TERMINAL configuration statement. EDX terminals include
directly attached IBM displays, printers and devices that
communicate with the Series/ 1 in an asynchronous manner.

terminal control block (CCB). A control block that defines the
device characteristics, provides temporary storage, and contains
links to other system control blocks for a particular terminal.

terminal environment block (TEB). A control block that
contains information on a terminal’s attributes and the program

manager operating under the Multiple Terminal Manager. Itis
used for processing requests between the terminal servers and
the program manager.

terminal screen manager. The component of the Multiple
Terminal Manager that controls the presentation of screens and
communications between terminals and transaction programs.

terminal server. A group of programs that perform all the
input/output and interrupt handling functions for terminal devices
under control of the Multiple Terminal Manager.

terminal support. The support provided by EDX to manage and
control terminals. See terminal.

timer. The timer features available with the Series/1 processors.
Specifically, the 7840 Timer Feature card (4955 only) or the native
timer (4952, 4954, and 4956). Only one or the other is supported
by the Event Driven Executive.

trace range. A specified number of instruction addresses within
which the flow of execution can be traced.

transaction oriented applications. Program execution driven by
operator actions, such as responses to prompts from the system.
Specifically, applications executed under control of the Multiple
Terminal Manager.

transaction program. See transaction-oriented applications.

transaction selection menu. A Multiple Terminal Manager
display screen (menu) offering the user a choice of functions,
such as reading from a data file, displaying data on a terminal, or
waiting for a response. Based upon the choice of option, the
application program performs the requested processing
operation.

tributary station. In BSCAM communications, the stations
under the supervision of a control station in a multipoint
connection. They respond to the control station’s polling and
selection.

unmapped storage. The processor storage in your processor
that you did not define on the SYSTEM statement during system
generation.

unprotected field. A field in which the operator can use the
keyboard to enter, modify or erase data. Also called
non-protected field.

update. (1) To alter the contents of storage or a data set. (2) To
convert object modules, produced as the output of an assembly
or compilation, or the output of the linkage editor, into a form that
can be loaded into storage for program execution and to update
the directory of the volume on which the loadable program is
stored.

user exit. (1) Assembly language instructions included as part of
an EDL program and invoked via the USER instruction. (2) A
point in an IBM-supplied program where a user written routine
can be given control.

variable. An area in storage, referred to by a label, that can
contain any value during program execution.

vary offline. (1) To change the status of a device from online to
offline. When a device is offline, no data set can be accessed on
that device. (2) To place a disk or diskette in a state where it is
unknown by the system.

vary online. To place a device in a state where it is available for
use by the system.

vector. An ordered set or string of numbers.

volume. A disk, diskette, or tape subdivision defined using
$INITDSK or $TAPEUT1.

volume descriptor entry (VDE). A resident supervisor control
block that describes a volume on a disk or diskette.

volume label. A label that uniquely identifies a single unit of
storage media.

CO-231

Glossary of Terms and Abbreviations

CO-232 SC34-0443

Index

The following index contains entries for this book only
Index to all Event Driven Executive books.

Special Characters

$$X21DS data set
description CO-44.1
$BSCTRCE utility
description CO-30
$BSCUT1 utility
commands CO-31
invoking CO-31
$BSCUT?2 utility
change hard-copy device CO-40
commands CO-35
description CO-34
invoking CO-35
$CAPGM, channel attach program CO-131
$GPIBUT1 utility
description CO-206
example CO-214
use in debugging applications CO-213
$HCFUT1 utility CO-125
$RMU
See Remote Management Utility (BRMU)
$RMUPA CO-83

. See the Library Guide and Common Index for a Common

A

abort

Series/1-to-Series/1 write CO-180
acquire use of BSC line CO-14
ADAPTER statement C0O-12.1
allocate

trace file data set CO-30
ALLOCATE function, $RMU

control character flow CO-59

for program data set CO-58

receive status message CO-57

required fields CO-58

send request CO-57

terminate function CO-57
appilication programs, BSCAM CO-13
attach

BSC lines CO-8

B

binary synchronous communications (BSC)
communications features CO-9
line connections CO-7
Remote Management Utility (BRMU) CO-45
sample programs CO-95
test BSCAM CO-34
trace printing utility, $BSCUT1 CO-31
trace utility, $BSCTRCE CO-30
binary synchronous communications access method (BSCAM)
$BSCTRCE, invoking CO-30

Index CO-233

Index

acquire use of BSC line CO-14 special write operations CO-21
allocate trace file data set CO-30 standard data transmission, uses of CO-12.2
basic programming functions CO-13 standard mode of transmission CO-12.3
BSCWRITE | instruction CO-17 supervisor
buffers, use of CO-15 module CO-12.2
communications indicator panel, installing CO-41 support, including CO-11
continue write operations CO-20 supervisor module CO-12.2
control block, coding CO-14 terminology CO-6
control characters test read and write capability CO-35
for continue write CO-20 trace 1/0 activity CO-30
for initial write CO-17 transmission, modes of CO-12.3
for special writes CO-22 transparent data transmission CO-12.2
control station CO-8 types of data transmitted CO-12.2
conversation mode of transmission CO-12.3 utilities CO-29
data links, use of CO-7 write
define continue CO-20
BSC line type CO-12 end operation CO-22
BSC lines to supervisor CO-12 initial CO-17
delay operation CO-13, CO-16, CO-22
receiving messages CO-25 programming sequence CO-22
write operation CO-21 types, selecting CO-16
DLE character, use of CO-12.2 WRITE sample program CO-26
EDL instruction set CO-13 blocking factor
end $RMU PASSTHRU data set CO-53
read operation CO-25 $RMU source data set CO-53
write operation CO-22 $RMU standard data set CO-52
error recovery CO-25 BSC communications features
format trace‘files for output CO-31 communications indicator panel, use with CO-11
hardware jumpering for direct-connect operations CO-11
configuration, determining CO-8 jumpering for multipoint tributary operation CO-10
requirements CO-8 modem eliminators, use with CO-11
initial write operations CO-17 modems, use with CO-11
interacting with CO-29 multifunction attachment CO-10
line connections, use of CO-7 single-line control, high speed (2075 feature card) CO-9
nontransparent data transmission C0-12.2 single-line control, high speed (2080 feature card) CO-9
overview CO-5 single-line control, medium speed (2074 feature card) CO-9
planning for CO-6 4-line adapter CO-10
point-to-point connection CO-7 8-line control CO-10
poll/select BSC control characters
address CO-12.1 use with continue writes CO-20
sequences CO-17 use with initial writes CO-17
programming for CO-13 use with special writes CO-22
read BSC 1/0 exerciser ($BSCUT2) CO-34
data stream CO-25 BSC line address default, (SRMU) CO-51
ENQ character CO-25 BSC lines
operation CO-13, CO-23 acquiring use of CO-14
transparent/nontransparent data CO-34 addresses, determining CO-8
types, selecting CO-23 attaching and controlling CO-8
READ sample program CO-27 defining line type CO-12
receiving defining to supervisor CO-12
data CO-23 in multipoint connection CO-8
first message CO-24 in point-to-point connection CO-7
subsequent messages CO-24 trace 1/0 activity on CO-30
requesting repeat of message CO-25 BSC read types
responding to poll/select CO-25 BSCREAD C CO-24
sample programs CO-26 BSCREAD D CO-25
sending BSCREAD E CO-25
data CO-16 BSCREAD | CO-24
tranparent data in blocks CO-12.3 BSCREAD P CO-25
special considerations for local operations CO-11 BSCREAD Q CO0-25

CO-234 SC34-0443

BSCREAD R CO-25
BSCREAD U CO-25
BSC single-line control
high speed, 2075 feature card CO-9
high speed, 2080 feature card CO-9

medium speed, 2074 feature card CO-9

BSC trace records, dump CO-31
BSC 4-line adapter CO-10

BSC 8-line control CO-10
BSCAM

See binary synchronous communications access method

(BSCAM)

BSCCLOSE instruction

use of CO-14
BSCIOCB statement

for X.21 CO-14

using CO-14
BSCLINE statement

address defauit for SRMU CO-51

MFA= operand CO-12.1

TYPE= operand CO-12

TYPE= operand for X.21 use CO-12

use with $RMU CO-47
BSCOPEN instruction

for X.21 CO-14

use of CO-14
BSCREAD instruction

C-type CO-24

D-type CO-25

E-type CO-25

I-type CO-24

P-type CO-25

Q-type CO-25

R-type CO-25

U-type CO-25
BSCWRITE instruction

C-type CO-20

D-type CO-21

E-type CO-22

EX-type CO-22

I-type CO-17

N-type CO-21

Q-type CO-21

U-type CO-21

UX-type CO-21

BTAM/BTAM-ES, channel attach considerations CO-135

buffer
use in BSCAM CO-15
buffer size default, (SRMU) CO-52

C

CA instructions CO-134

call progress signals for X.21 CO-44.8
CH command ($GPIBUT1) CO-206
change

BSC line address default, SRMU CO-51

buffer size default, SRMU CO-52
GPIB partition CO-207

host system ID, $RMU CO-50

remote system ID, $RMU CO-51

storage size default, SRMU CO-51
channel attach

$CAPGM CO-131

$CHANUT1 utility CO-141

assembling application program CO-136

BTAM considerations CO-135

change device address CO-142

close port CO-140

code control block for port CO-138

commands CO-141

device (4993) C0O-132

EDL instruction set CO-134

enable/disable trace CO-142

error handling CO-135

functions supported C0O-132

hardware consdierations CO-132

invoking CO-141

issue /0 CO-138

link-edit application program CO-136

opening port CO-138

overview CO-131

perform trace CO-142

plan to use. CO-131

power on device CO-134

print trace data CO-141, CO-142

programs for CO-134

receive data from host CO-138

sample programs CO-143

send data to host CO-139

software considerations CO-132

start device CO-137, CO-142

stop device C0O-140, CO-142

tailor channel attach program CO-133

terminate utility CO-142

trace Series/11/0 CO-141
communications applications, writing

for SRMU CO-53

for BSCAM CO-13

for channel attach CO-134

for Host Communication Facility CO-118
for Series/1-to-Series/ 1 attachment CO-164
communications features, jumpering CO-10

communications indicator panel

for X.21 display/function select switch settings CO-43

functions monitored CO-41

selecting line to monitor CO-41
communications utilities

$BSCTRCE CO-30

$BSCUT1 CO-31

$BSCUT2 CO-34

$CHANUT1 CO-141

$GPIBUT1 CO-206

$HCFUT1 CO-125

$S1S1UT1 CO-180

connect host and remote systems, $RMU CO-47

connection record for X.21 CO-44.1
continue write operations, BSCAM C0-20
control block, use with BSCAM CO-14

Index

CO-235

Index

control characters, BSC CO-17
control data transfers, $SRMU
echo host data CO-70
perform echo test CO-70
receive data from host CO-64
receive data from remote system CO-68
send data to host CO-68
send data to remote system CO-64
control data transfers, Host Communication Facility
receive data from host CO-120
send data to host CO-119
control program execution, $RMU
execute program CO-72
terminate $RMU CO-76
controlling BSC lines CO-8
conversation response mode, BSCAM CO-12.3
count message, Remote Management Utility CO-56
CP command ($GPIBUT1) CO-207

D

data links, selecting CO-7
data links, types of CO-7
data message, Remote Management Utility CO-56
data types transmitted by BSCAM C0-12.2
data-link=escape (DLE) character CO-12.2
DD command ($GPIBUT1) CO-207
define
BSC line to supervisor CO-12
BSC line types CO-12
end character (GPIB) CO-206
GPIB device CO-207
remote system
defaults CO-50
requirements CO-48
responses to host CO-54
delay receiving messages with BSCAM CO-25
delay transmission write operation CO-21
delete
data set (JRMU) CO-60
DELETE function, $RMU
control character flow CO-61
receive status message CO-60
required fields CO-61
send request CO-60
terminate function CO-60
determine
BSC hardware configuration CO-8
device error codes for X.21 C0O-44.7
direct-connect operations, BSCAM CO-11
DLE character, use of CO-12.2
dump
storage partition (fRMU) CO-62
DUMP function, $RMU
BSC trace records CO-31
control character flow CO-63
receive status message CO-62
required fields CO-62
send request CO-62

CO-236 sC34-0443

terminate function CO-62

E

echo test, (BRMU) CO-70
EN command ($GPIBUT1) CO-207
end
BSCAM write operation CO-22
read operation with BSCAM CO-25
error handling
$RMU CO-56
BSCAM error recovery CO-25
error log for x.21 CO-44.4
EXEC function, $RMU
allocate free space CO-73
control character flow CO-75
data set passing CO-73
parameter passing CO-73
required fields CO-74
send request CO-72
specify partition CO-73
execute
program
with $RMU CO-72
exerciser, BSC line ($BSCUT2) CO-34

F

FE command ($HCFUT1) CO-127
format
BSC trace files CO-31

G

General Purpose Interface Bus
configuration CO-187, CO-192
cycle steal status CO-220
data transfers CO-194
device addresses CO-186
device group operation CO-197
device modes CO-186
error handling CO-219
initialization CO-187, CO-191
interrupt handling CO-188
interrupt status byte CO-219
loading programs CO-193
overview C0O-185
parallel polling CO-196
planning to use CO-185
sample program CO-202
serial polling CO-195
service requests (SRQ) CO-188
system generation CO-185
terminal 1/0 considerations CO-190
translated data (XLATE=NO) CO-190
universal unlisten CO-192

user buffer CO-190
GP command ($GPIBUT1) CO-207
GPIB control CO-207
GPRESUME command ($GPIBUT1) CO-213

H

hardware
requirements
$RMU remote system CO-48
for BSCAM CO-8
Host Communications Facility
$HCFUT1 utility CO-125
control data transfers CO-119
data set characteristics CO-114
data transfer rate CO-118
host data sets CO-114
host storage CO-118
installation requirements CO-114
obtain time and date CO-121
open host data set CO-116
overview CO-113
perform status functions CO-121
plan for CO-114
programming for CO-118
submit job to host CO-120
system status data set CO-116
TP instructions CO-118
host data set, HCF
characteristics CO-114
naming conventions CO-114
open CO-116
record sizes CO-115
variable-length records CO-115
host programming for SRMU CO-53
host system ID, change ($RMU) CO-50
host system requirements, SRMU CO-49

I

1/0, exerciser ($BSCUT2) CO-34
IDCHECK function, $RMU

control character flow CO-81

required fields CO-80

send request CO-80
initial write operations, BSCAM CO-17
initialize

GPIB CO-187
install communications indicator panel CO-41
installation requirements, HCF CO-114
internal clocking, jumpering for CO-11

J

jumper

for direct-connect operations, BSCAM CO-11
for multipoint tributary stations CO-10

L

LDCB command ($GPIBUT1) CO-208

leased lines CO-7

limited conversational transmission mode, use by
BSCAM CO-12.3

list

device control block (GPIB) CO-208

local operations, BSCAM CO-11

M

manage data sets, SRMU

allocate CO-57
delete CO-60
dump storage to data set CO-62

messages

$RMU
count CO-56
data CO-56
header CO-54
status CO-54

MFA= operand, BSCLINE statement CO-12.1
mode of transmission, RMU CO-48

modem eliminators CO-11

modems CO-11

monitor

BSC lines CO-41

multifunction attachment

use in BSC CO-10

multipoint

no data record, PASSTHRU function of $RMU CO-94

connections CO-8

control station CO-8

special considerations CO-10
tributary station CO-8

N

nonswitched lines CO-7
nontransparent (standard) data CO-12.2

0]

output BSC trace files CO-31

Index

CO-237

Index

P

PASSTHRU function, $SRMU
abrupt termination CO-84
$RMUPA program CO-82
attention interrupt, use of CO-82
conduct a session CO-88
control character flow CO-86
deadlock CO-82
indefinite waits CO-83
no data record CO-94
overview CO-82
program end record CO-94
programming considerations CO-82
programs not to be run under CO-82
programs that run under CO-82
record blocking CO-94
record types CO-88, CO-90
request for data record CO-93
required fields CO-85
sample program CO-103
send request CO-85
system generation for CO-82
text/PF key record CO-90
timeouts CO-84
virtual terminal support CO-82
with $DEBUG CO-111
perform status functions, Host Communication Facility
delete record from system status data set CO-121
retrieve record from system status data set CO-121
write to system status data set CO-121
PGPIB command ($GPIBUT1) CO-212
plan for $RMU operations CO-47
point-to-point station CO-7
poll/select address CO-12.1
poll/select sequences, sending CO-17
post
GPIB operation complete CO-212
print
trace file on printer/terminal CO-32
program end record, PASSTHRU function of SRMU CO-94
Program Function key record, PASSTHRU function of
$RMU CO-90
programming sequence, BSCAM write operations CO-22

R

RE command
$GPIBUT1 CO-210
$HCFUT1 CO-127
read
data
data stream with BSCAM CO0-25
ENQ character with BSCAM CO-25
error handling CO-25
records from host (FBHCFUT1) CO-126
using $GPIBUT1 CG-210
with BSCAM CO-24, CO-25
READDATA command (BHCFUT1) CO-125

CO-238 sC34-0443

READOBJ command (BHCFUT1) CO-126
READS80 command (JHCFUT1) CO-126
receive
first message with BSCAM CO-24
subsequent message with BSCAM CO-24
RECEIVE function, $RMU
control character flow CO-66
overview CO-64
receive count message CO-65
receive status message CO-65
record length overrun CO-65
record padding CO-65
required fields CO-66
sample program CO-97
send empty data set CO-65
send request CO-64
specify data set type CO-65
specify record blocking CO-65
specify starting record CO-66
terminate function CO-65
records
sizes, host data sets (HCF) CO-115
Remote Management Utility (FRMU)
allocate data sets CO-57
blocking factor
PASSTHRU data set CO-53
source data set CO-53
standard data set CO-52
BSC line address default CO-51
BSC line connections CO-47
BSCWRITE CX instruction CO-53
BSCWRITE IX instruction CO-53
buffer size default CO-52
conduct PASSTHRU session CO-88
control data transfers CO-64
control program execution CO-72
count message CO-56
data message CO-56
data transfers CO-64
delete data sets CO-60
dump storage to data set CO-62
echo host data CO-70
EDL BSC instructions, use of CO-53
error handling CO-56
establish PASSTHRU session CO-85
execute program CO-72
hardware for remote system CO-48
host programming for CO-53
host system ID CO-50
host system requirements CO-49
invoke on remote system CO-46
manage data sets CO-57
mode of transmission CO-48
overview CO-45
PASSTHRU function CO-82
perform echo test CO-70
plan for operations CO-47
receive data from host CO-64
receive data from remote system CO-68
remote system |ID CO-51

requests, fields required CO-57
sample programs CO-95
send data
to host CO-68
to remote system CO-64
sending messages to host CO-54
software for remote system CO-49
status error conditions CO-54
status message CO-54
storage considerations CO-48
storage size default CO-51
terminate $RMU CO-76
verify identities between systems CO-80
virtual terminals, use of CO-49
remote system
$RMU defaults CO-50
$RMU requirements CO-48
ID, change ($RMU) CO-51
request
for data record, PASSTHRU function of SRMU C0-93
repeat of message with BSCAM CO-25
to $RMU, required fields CO-57
reset
GPIB adapter CO-210
respond to poll/select with BSCAM CO-25
RS command ($GPIBUT1) CO-210

&
IS

sample programs
$RMU multifunction CO-95
$RMU PASSTHRU function CO-103
$RMU RECEIVE function CO-97
$RMU SEND function CO-101
for BSCAM CO-26
for channel attach CO-143
for Host Communication Facility CO-122
for Series/1-to-Series/1 attachment CO-169
SE command ($HCFUT1) CO-127
send
data in standard mode with BSCAM CO-12.3
first message with BSCAM CO-17
poll/select sequences CO-17
subsequent messages with BSCAM CO-20
transparent data in blocks CO-12.3
SEND function, $RMU
send request CO-68
communications flow CO-69
control character flow CO-69
overview CO-68
receive status message CO-68
required fields CO-69
sample program CO-101
specify data set type CO-68
specify record biocking CO-68
specify starting record CO-68
terminate function CO-68
Series/ 1-to-Series /1 attachment
$S1S1UT1 utility CO-180

abort write operation CO-180

application programs CO-164

data transfers CO-162

define attached processor CO-181

echo test CO-181

enqueue other processor CO-165

error recovery CO-168

identify enqueued processor CO-166

IPL function CO-168

IPL other processor CO-182

obtain status of operation CO-183

overview CO-161

perform control functions CO-166

posting an event control block (ECB) CO-162

processor relationships CO-162

program synchronization CO-167

programming considerations CO-167

read data from other processor CO-182

receive data CO-166

reconfiguring CO-167

reset device CO-183

sample programs CO-169

send data CO-166

using direct 1/0 CO-167

write data to other processor CO-184
service request (SRQ) CO-188
SHUTDOWN function, $RMU

allocate free space CO-77

control character flow CO-79

data set passing CO-77

parameter passing CO-77

required fields CO-78

run another program CO-76

send request CO-76

specify partition CO-77
signal special conditions with BSCAM CO-21
software requirements, $SRMU remote system CO-49
special write operations, BSCAM CO-21
specify

buffers for use with BSCAM CO-15
ST command ($GPIBUT1) CO-211
standard data, transmission by BSCAM C0-12.2
standard mode of transmission, BSCAM CO-12.3
status commands (SHCFUT1) CO-127
status data set, Host Communications Facility CO-116
status message, Remote Management Utility CO-54
STIMER instruction CO-83

in Series/1-to-Series/ 1 error recovery CO-169

with PASSTHRU function CO-83
storage

considerations, $RMU CO-48

size default, (SRMU) CO-51
SU command ($GPIBUT1) CO-211
SU command ($HCFUT1) CO-127
submit

job to host (SHCFUT1) CO-127

job to host, Host Communication Facility CO-120
suspend

$GPIBUT1 CO-211
switched lines CO-7

Index CO-239

Index

system generation
for BSCAM CO-11
for BSCX21 CO-11
for channel attach CO-132
for GPIB CO-185
for Host Communications Facility CO-114
for host system, $RMU CO-49
for remote system, $RMU CO-49
for X.21 support CO-44
system status data set, HCF
data entry CO-116
index entry CO-116
key entry CO-116
organization CO-116

T

terminate Remote Management Utility CO-76
terminating GPIB operation CO-206
terminology, BSCAM CO-6
test

BSC definitions CO-34
text record, PASSTHRU function of $RMU CO-90
TP instruction

functions CO-118
trace

BSC activities CO-30

1/0 on BSC line CO-30

utility for BSC CO-30
trace printing utility for BSC CO-31
transfer

data set from host (HCFUT1) CO-125
transfer rates for data, Host Communications Facility CO-118
transmission modes, BSCAM CO-12.3
transmit

binary data with BSCAM C0O-12.2

text data with BSCAM C0-12.2
transparent data transmission, use by BSCAM CO-12.2
tributary station addresses CO-12.1
TYPE= operand, BSCLINE statement CO-12

\4
verify

BSC communications CO-34

verify identities of systems, $SRMU CO-80
virtual terminals

use with SRMU CO-49

CO-240 SC34-0443

w

WR command ($GPIBUT1) C0O-212
WR command (JHCFUT1) CO-127
WRAP function, $RMU
control character flow CO-71
overview CO-70
required fields CO-71
send request CO-70
write
data to the GPIB adapter CO-212

X

X.21 circuit switched network
$$X21DS data set CO-44, CO-44.1
attaching and jumpering the 2080 card CO-44
BSCIOCB statement CO-44.3
BSCLINE TYPE= parameter CO-12.1
BSCOPEN statement CO-44.3
call progress signals C0O-44.8
coding example for BSCLINE TYPE= parameter CO-44.1
connection record data set
building a connection record CO-44.2
delay value field CO-44.2
example records C0-44.3
network information field CO-44.2
record name field CO-44.2
retry count field CO-44.2
determining the connection type you need CO-44.1
device error codes CO-44.7
network requirements C0O-44
system generation CO-44
X.21 error logging CO-44.4
X21RECYY default record CO-44.1
X21RN operand CO-44.3
2080 high speed feature card description CO-9
X21RECYY default record for X.21 C0-44.1
X21RN operand C0-44.3

2
2074 feature card CO-9
2075 feature card CO-9
2080 synchronous communications feature card
attaching and jumpering CO-44
description CO-9
4

4993 channel attach device CO-132

Technical Newsletter This Newsletter No. SN34-0878
Date 23 December 1983

Base Publication No. SC34-0443-0
File No. S1-30

Previous Newsletters None

IBM Series/1
Event Driven Executive
Communications Guide
Program Numbers: 5719-X84, 5719-XX5, 5719-LM5,
5719-CX1, and 5799-PGH

© IBM Corp. 1983
This Technical Newsletter, a part of Version 4 Modification Level 1 of the Event Driven Executive,

provides replacement pages for the subject publication. These replacement pages remain in effect
for subsequent levels unless specifically altered. Pages to be inserted and/or removed are:

ii.1,1i.2 (added) CO-13 through CO-16 C0-44.1 through C0-44.8 (added)
iii through x C0-29, CO-30 C0-47,C0-48
CO-5 through CO-12 C0-43,C0-44 C0O-233 through C0O-240

CO-12.1 through CO-12.4 (added)

Technical changes to the text or to illustrations are indicated by a vertical line to the left of the
change.

Summary of Amendments
This Technical Newsletter contains the following additions or modifications to the text:

e Chapter 1. Binary Synchronous Communications Access Method (BSCAM) has been updated
throughout to reflect the X.21 switched support changes.

e “Using X.21 Switched Network Support” has been added to Chapter 1.

Note: Please file this cover letter at the back of the manual to provide a record of changes.

IBM Corporation, Information Development, Department 28B, P.O. Box 1328, Boca Raton, Florida 33432

© IBM Corp. 1983 Printed in U.S.A.

Staples can cause problems with automated mail sorting equipment.

Note:

Please use pressure sensitive or other gummed tape to seal this form.

IBM Series/1 Event Driven Executive READER’S
Communications Guide COMMENT
SC34-0443-0 FORM

This manual is part of a library that serves as a reference source for systems analysts, programmers, and
operators of IBM systems. You may use this form to communicate your comments about this publication,
its organization, or subject matter, with the understanding that IBM may use or distribute whatever
information you supply in any way it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author’s department for whatever review and action, if any, are deemed
appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system, to
vour IBM representative or to the IBM branch office serving vour locality.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments or you may mail directly to the address
in the Edition Notice on the back of the title page.)

SC34-0443-0
Printed in U.S.A.

Reader’s Comment Form

Fold and tape

sesssennsa esresssesssassassessasssncsannsnanrunnnnans aesnanas sevnun

Please Do Not Staple

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

Fold and tape

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Information Development, Department 27T
P.O. Box 1328

Boca Raton, Florida 33432

Please Do Not Staple

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

/1

0
S
3 G
'E Binder Labels
©
g Tear this page along the perforations
§; to separate the two labels.
7])
g -8 Insert the labels into the clear plastic
(=} sleeves.
S0
- J
r)
7]
c
©
-
(1]
2
c
3
0 o Es
29 S 'S
- o= 00
30 — J
Q
(eh] (7)) To stand the easel binder up, open it
- .
Y (and fold it as shown.
-
w o
c 'E;
(<))
2.0
= o @
O s o2
o S0
™ - E o =
< = E < 28
< = -
=S () = s 2
g Wwo S . /
||||n|l
||I|!:ii
IHH]
[ln]]
%
Q Event Driven Executive

Communications Guide

CO

Ser

International Business Machines Corporation

SC34-0443-0

Program Numbers: 5719-XS4, 5719-X X5,
5719-LM5, 5719-CX1, and 5799-PGH
File No.: S1-30

Printed in U.S.A.

