
Series/1

9C34-0443-0

Event Driven Executive

Communications Guide

Version 4.0

2 2 »
Library Guide and é Installation and Operator Commands
Common Index System Generation and

Guide Utilities Reference

| 2 Ss 7 € 9

(os oo r

Language Communications Messages and

Reference Guide Codes

eS 7 \ JS \ J

C > (» -£ ~

Operation Guide Event Driven Reference

Language Cards
Programming Guide

\.. . J \ 29

Cc ‘ (— = & —

Problem Customization Internal

Determination Guide Design

Guide

Ge 2 ee J X ae,

Series/1

$C34-0443-0

Event Driven Executive

Communications Guide

Version 4.0

f

YY

Communications

Guide

First Edition (May 1983)

Usethis publication only for the purposestated in the Preface.

Changesare periodically madeto the information herein; any such changeswill be

reported in subsequentrevisions or Technical Newsletters.

It is possible that this material may contain reference to, or information about, IBM

products (machines and programs), programming, or services that are not announced

in your country. Such referencesor information must not be construed to meanthat

IBM intends to announce such IBM products, programming, or services in your

country.

Publications are not stocked at the address given below. Requests for copies of IBM
publications should be made to your IBM representative or the IBM branch office

serving your locality.

This publication could contain technical inaccuracies or typographical errors. A form

for readers’ commentsis provided at the backof this publication. If the form has

been removed, address your comments to IBM Corporation, Information

Development, Department 27T, P. O. Box 1328, Boca Raton, Florida 33432. IBM
may useor distribute any of the information you supply in any wayit believes

appropriate without incurring any obligation whatever. You may, of course, continue

to use the information you supply.

© Copyright International Business Machines Corporation 1983

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

The following changes have been made to this document. (Changesare indicated by a vertical

line in the left-hand margin of the affected pages.)

Chapter 1, Binary Synchronous Communications Access Method (BSCAM)has been updated

throughout for X.21 switched network support changes.

‘“‘Series/1 Communications Features’”’ now has the numbers for the feature cards 2074,

2075, 2093/2094, 1310, and the 2080 (for X.21 support), and the RPQ D02349 BSC

attachment.

A newsection, ‘“‘Using X.21 Switched Network Support,” has been added at the end of

Chapter 1 for X.21 users.

Summary of Changes for Version4.1 i.1

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

li.2 SC34-0443

The information in the Communications Guide pertains to the Event Driven Executive

Version 4, modification level 1. The book describes the use of various forms of data

communications that are available with Series/1 and the Event Driven Executive. It covers

several methods of Binary Synchronous Communications (BSC), operation of a host system

with a Series/1, communications between two Series/1s, and communications between Series/ 1

and multiple peripheral devices. It tells the reader how to prepare for data communications

operations, how to use Event Driven Language (EDL)instructions to perform communications

functions, and how to use Event Driven Executive communications utilities.

In conjunction with the Communications Guide, the following books provide information to help

perform data communications:

e Language Reference provides syntax and descriptions of EDL instructions.

e Messages and Codes lists the error messages and codesissued for communications.

e Operator Commands and Utilities Reference provides information on the use of

communicationsutilities.

Readers of the Communications Guide should have the following:

2 Knowledge of data communications concepts in general

e Experience in communications programmingfor either IBM or non-IBM products

About This Book iil

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

e Understanding of synchronous and asynchronousline disciplines

e Detailed knowledge of the principles of Binary Synchronous Communications (BSC),

including line protocol

e Familiarity with the relationship between a host system and a remote system.

The book contains three main parts. Each chapterin a part discusses a different method of

performing data communications under the Event Driven Executive operating system.

¢« Part 1, Binary Synchronous Communications, discusses three methods that use forms of

BSCprotocol.

e Part 2, System/370 Channel Attach, discusses the communication of Series/1 and a large

host system overa direct local channel.

e Part 3, Special EDX Communications Methods, discusses two methods uniqueto Series/1

under the Event Driven Executive operating system.

The index at the back of this book helps you find topics that the book discusses. In addition, a

glossary defines terms and abbreviations that appear in the Event Driven Executive

publications.

The Library Guide and Common Index contains a commonindex of topics covered throughout

the library. It also contains a bibliography of related Event Driven Executive publications.

iV S$C34-0443

If you have questions about any information you read in an Event Driven Executive

publication, record them on the Reader’s Comment Form at the back of the book and mail it to

us. If you encounter problemsof a technical nature while using the Event Driven Executive

operating system, you can report them in an Authorized Program Analysis Report (APAR).

The procedures and guidelines for submitting an APAR are described in the JBM Series/1

Software Service Guide, GC34-0099.

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

Introduction to Communications Guide CO-1

Part 1. Binary Synchronous Communications CO-3

Chapter 1. Binary Synchronous Communications Access Method (BSCAM
Terms Usedin this Chapter CO-6

Planning for BSCAM Operations CO-6

Using Data Links CO-7

Selecting BSC Line Connection Types CO-7

Meeting Hardware Requirements CO-8

Including BSCAM Support in the Supervisor CO-11

Selecting Type of Data to Transmit CO-12.2

Selecting Mode of Transmission CO-12.3

Programming for BSCAM Applications CO-13

Basic Programming Functions for BS;CAM CO-13

Acquiring Use of a BSC Line CO-14

Coding Control Block for Read and Write Operations CO-14

Sending Data CO-16

Receiving Data CO-23

Providing for Errors During BSCAM Operations CO-25

BSCAM Sample Programs CO-26

WRITE Sample Program CO-26

READ Sample Program CO-27

Interacting with BSCAM (Using BSC Utilities) CO-29

Tracing I/0 Activities on a BSC Line (Using $BSCTRCE) CO-30

Formatting Trace Files for Print or Display (Using $BSCUT1) CO-31

Testing BSCAM Operations (Using $BSCUT2) CO-34

Monitoring BSC Lines with the Communications Indicator Panel CO-41

Contents V

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

V1 SC34-0443

Using X.21 Switched Network Support CO-44
Attaching and Jumpering the 2080 Card CO-44

System Generation for X.21 Support CO-44

The $$X21DS Connection Record Data Set CO-44.1
Convert BSC Program for X.21 CO-44.3

X.21 Error and Call Progress Signal Logging CO-44.4

Chapter 2. Remote Management Utility (SRMU) CO-45
Planning for the Remote Management Utility Operations CO-47

Types of Line Connections CO-47

Mode of Transmission CO-48

Storage Considerations CO-48

Remote System Requirements CO-48

Host System Requirements CO-49

Remote ManagementUtility Defaults CO-50

Host Programming for the $RMU Application CO-53

Using Event Driven Language BSC Instructions CO-53

_ Receiving $RMU’s Responses to Host Requests CO-54

Coding the Required Field for Requests to $RMU CO-57
Managing Disk/Diskette Data Sets CO-57
Controlling Data Transfers between Host and Remote Systems CO-64

Remote System Echoing Host Data (WRAP) CO-70

Controlling Program Execution on the Remote System CO-72

Verifying Identities between Systems (IDCHECK) CO-80

Interacting Between Host and Remote Systems (PASSTHRU) CO-82

Considerations for Using PASSTHRU CO-82

Establishing a PASSTHRU Session CO-85

Conducting a PASSTHRUSession CO-88

PASSTHRU Record Types CO-90

PASSTHRUBlocking CO-94

Sample Programs CO-95

Multifunction Program CO-95

RECEIVE Sample Program CQO-97

SEND Sample Program CO-101

PASSTHRU Sample Program CO-103

Example of Conducting a PASSTHRUSession CO-111

Chapter 3. Host Communications Facility CO-113

Planning to Use the Host CommunicationsFacility CO-114

Installation Requirements CO-114

Host Data Sets CO-114

Opening Host Data Sets CO-116

System Status Data Set CO-116

Host Storage CO-118

Data Transfer Rates CO-118

Tasks Common to Programming and Using $HCFUT1 CO-118

Programming for the Host Communications Facility Application CO-118

Event Driven Language Instruction Set CO-118

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

Controlling Data Transfers between Series/1 and Host CO-119

Submitting Background Jobs to the Host CO-120

Performing Status Functions CO-121

Obtaining Time and Date from the Host CO-121

Sample Programs CO-122

Sample Program to Receive a Host Data Set CO-123

Interacting with the Host Communication Facility ($HCFUT1) CO-125

Transferring Host Data to Series/1 CO-125
Performing Status Functions CO-127

Submitting Jobs to the Host Job Stream CO-127

Sending Data to the Host CO-127

Part 2. Channel Attach CO-129

Chapter 4. Channel Attach Program CO-131

Planning for the Channel Attach Application CO-131

Channel Attach Program ($CAPGM) CO-131

Channel Attach Device (4993) CO-132

Software Considerations CO-132

Hardware Considerations CO-132

Tailoring the Channel Attach Program CO-133

Powering On The Channel Attach Device CO-134

Programming for the Channel Attach Application CO-134

Event Driven Executive Instruction Set CO-134

Detecting and Handling Errors CO-135

BTAMConsiderations CC-135

Assembiing the Application Program CO-136

Link-Editing the Application Program CO-136

Starting a Channel Attach Device CO-137

Opening a Channel Attach Port CO-138

Coding the Control Block for a Channel Attach Port CO-138

Issuing 1/O CO-138
Closing a Channei Attach Port (CACLOSE) CO-i40

Stopping the Channel Attach Device (CASTOP) CO-140

Tracing Series/1 I/O during Channel Attach (CATRACE) CO-141

Printing Channel Attach Trace Data (CAPRINT) CO-141

Interacting with Channel Attach (Using $;CHANUTI Utility) CO-141

$CHANUTI Commands CO-141
Channel Attach Sample Programs CO-143

Configuration Requirements for Sample Programs CO-143

General Guide for Execution of Sample Programs CO-144

Host Sample Program CO-151

Part 3. Specialized Series/1 Event Driven Executive Communications

Methods CO-159

Chapter 5. Series/i-to-Series/1 Attachment Support CO-161

Contents Vii

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

Vill SC34-0443

Planning the Series/1-to-Series/1 Application CO-161
Processor Relationships CO-162

Initiating Data Transfers CO-162

Responding to External Events CO-162

Programming for Series/1-to-Series/1 Attachment CO-164
Event Driven Language Instruction Set CO-165

Basic Programming Tasks CO-165

Programming Considerations CO-167

Programming Examples CO-169

Interacting with the Series/1-to-Series/1 Attachment (Using $S1S1UT1) CO-180

Chapter 6. General Purpose Interface Bus - IEEE Standard 488-1975 CO-185

Planning for the GPIB Application CO-185

System Generation for GPIB CO-185

Relationship between Series/1 and GPIB Devices CO-186

Assigning Device Addresses CO-186

Initializing and Configuring the Bus CO-187

Programming for the GPIB Application CO-189

Event Driven LanguageInstruction Set CO-189

Programming Considerations CO-190

Coding GPIB Functions CO-198

GPIB Sample Program CO-202

Interacting with the GPIB Application (Using $GPIBUT1) CO-206
Debugging Applications with $GPIBUT1 CO-213
$GPIBUT1 Utility Example CO-214

Detecting Errors During GPIB Operations CO-219

Examining Interrupt Status Byte CO-219

Examining Cycle Steal Status Block CO-220

Retrieving Cycle Steal Status CO-220

Retrieving Residual Status Block CO-221

Glossary of Terms and Abbreviations CO-223

Index CO-233

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

. Specifying BSCLINE TYPE= operand CO-12.1
Event Driven Language BSCinstructions CO-13

. Example of coding BSCOPEN and BSCCLOSEinstructions CO-14
Example of coding BSCIOCBinstruction CO-15

. Buffers required for write operations CO-15

. Buffers required for read operations CO-16

. Initial write types CO-17

. Control character flow forinitial write instructions CO-18

. Control character flow for initial conversational write instructions CO-18

. Control character flow forinitial transparent write instructions CO-19

. Control character flow for initial transparent block write instructions CO-19
Control character flow for initial conversational transparent write instructions CO-19

. Continue write types CO-20

. Control character flow for continue write instructions CO-20

. Special write types CO-21

. Control character flow for special write type instructions CO-22

. Programming sequences for sending data CO-23

. Read types CO-24

. Dumpingtrace file records CO-32

. Dumpof the LAST RECORD oftracefile CO-33

. Trace record fields CO-33

. Communicationsindicator panel CO-43

22.1. Mapping procedures for BSC X.21 circuit switched support CO-44.1

22.2. Connection Record Format Fields CO-44.2

22.3. X.21 BSCOPEN coding example CO-44.3
22.4. Example of the X.21 printed log information for a read error CO-44.4

22.5. Example of the X.21 printed log information for a device error CO-44.6
22.6. Device Error Codes CO-44.7

22.8. Call Progress Signal Counter Usage CO-44.8

23.
24.
25.
26.
27.
28.
29.

Communication between host and remote systems CO-47
$RMUstatus failure codes CO-55
Required fields for ALLOCATErequest CO-58

Communications flow for ALLOCATE CO-60

Required fields for DELETE request CO-61

Communications flow for DELETE CO-62

Required fields for DUMP request CO-63

Figures 1X

TNL SN34-0878 (23 Dec 1983) to SC34-0443-G

x 5C34-0443

30.

. Required fields for RECEIVE request CO-66

32.

33.

34.

35.

36.

. Required fields for EXEC request CO-74

38.

39.

. Communications flow for SHUTDOWN CO-80

41.

42.

43.

44.

45.

46.

46.

47.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

. EDLinstructions for communication between Series/1s CO-165

61.

62.

63.

64.

65.

66.

67.

68.

Communications flow for DUMP CO-64

Communications flow for RECEIVE CO-67

Required fields for SEND request CO-69
Communications flow for SEND request CO-70

Required fields for WRAP request CO-71

Communications Flow for WRAP CO-72

Communications flow for EXEC CO-76

Required fields for SHUTDOWN reques t CO-78

Required fields for IDCHECKrequest CO-81

Communications flow for IDCHECK CO-81

Required fields for PASSTHRU request CO-85

Communications flow for PASSTHRU CO-87

Example of PASSTHRUrecords received by host CO-93

Multifunction sample program CO-95

$RMU multifunction program CO-95
RECEIVE sample program CO-97

RECEIVE sample program CO-97

SEND sample program CO-101

PASSTHRUsample program CO-104

Example of conducting a PASSTHRUsession CO-111

EDL TPinstructions CO-119

System status data set sample program CO-122

Sample program to send dataset to the host CO-123

Sample from to receive a host data set CO-124

$HCFUT1 commands CO-125
Listing of USERPGM data set CO-137

Series/1 sample program CO-i45
Host sample program CO-151

Program for posting an event control block CO-163

TERMCTRLFunctionsfor Series/1-to-Series/1 Communications CO-166
Usage of READTEXT/PRINTEXTwithout direct I/O CO-168

Primary processor sample program CO-170

Secondary processor sample program CO-174

Synchronization sample program CO-178

Listen and talk addresses for GPIB devices CO-187

GPIB sample program CO-202

GPIB utility example CO-214

ntroduction to Communications Guide

The Communications Guide discusses the data communications methodsthat are available as

part of the Event Driven Executive system, and in conjunction with Installed User Programs

(IUPs).

“Part 1. Binary Synchronous Communications” on page CO-3 covers three methodsof

communications that use binary synchronousprotocol:

e Binary Synchronous Communications Access Method (BSCAM)

e Remote Management Utility (SRMU)

e Host Communications Facility (HCF)

‘Part 2. Channel Attach” on page CO-129 discusses communications between the Series/1 and

a larger host system.

“Part 3. Specialized Series/1 Event Driven Executive Communications Methods” on page

CO-159 covers two methods of communications unique to Series/1 under the Event Driven

Executive:

¢ Series/1-to-Series/1 Attachment

e General Purpose Interface Bus (GPIB)

In addition to the methods mentioned above, several licensed programs offer forms of

communications with the Event Driven Executive:

e Multiple Terminal Manager

Introduction to Communications Guide CO-1

« Systems Network Architecture/Synchronous Data Link Control

e Communications Facility

Licensed programs can be purchasedseparately from the basic system, along with

documentation ontheir use.

CO-2 SC34-0443

Part 1. Binary Synchronous Communications

This part covers the following forms of binary synchronous communications:

e Binary Synchronous Communications Access Method (BSCAM)

« Remote ManagementUtility ($RMU)

e Host Communications Facility (HCF)

Part 1. Binary Synchronous Communications CQO-3

Notes

CO-4 sc34-0443

The Binary Synchronous Communications Access Method (BSCAM)provides I/O accessat a

read/write level using a BSC protocolsimilar to that of BTAM.It allows the Series/1 to
communicate with local and remote processors and terminals. The BSCAM access method is

also the basis for the Remote Management Utility ($RMU), which runs on the Series/1 and

allows it to be controlled by a host system. $RMUis discussed in Chapter 2, ‘““Remote

Management Utility (SRMU)”on page CO-45.

BSCAMsupports the attachment of multiple BSC lines to the Series/1. Data can be either

transparent or nontrausparent. Stations acknowledge transmissions either with standard BSC

control characters or with conversational responses. The transmission code that BSCAM usesis

EBCDIC.

Hardware features and BSC protocol that BSCAM does not support are:

e ASCil mode

e [Leading graphics support

e ‘iransparent ITB and ENQ transmission.

BSCAM provides I/O at the READ/WRITEaccesslevel. It does not insert or delete control

character sequences from the data you place in your buffers. When sending data, you must

place the proper start and end-of-transmission control characters (STX, DLE STX, and ETX) in

your output buffer. The only case in which you must not place characters in your output buffer

is when sending the transparent end-of-transmission and end-of-block (DLE ETX and DLE
ETB) sequences. Do not place these control characters in your buffer. When you receive data,

your input buffer will contain all the control characters that it received in the transmission.

Chapter 1. Binary Synchronous Communications Access Method (BSCAM) CO-5

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

For a general introduction to binary synchronous communications and details of line protocol

used by the Event Driven Executive, refer to General Information - Binary Synchronous

Communications, GA27-3004.

Application programs that run under BSCAMconsist of special Event Driven Language BSC

instructions. These programssend and receive data from one or morestations. In addition,

several BSC utilities check the way BSCAM is working by monitoring and simulatingits

operations.

This chaptertells how to:

e Plan to use BSCAM.

e« Write application programs with the special set of BSC instructions.

« Use the BSC utilities to check for potential problems.

e Use the X.21 digital communications capabilities.

Terms Used in this Chapter

Below are somedefinitions of terms used throughout this chapter.

The computers that are communicating are called stations.

The data records sent and received are called messages.

The station sending messages (writing) is called the sending or transmitting station.

The station receiving messages(reading) is called the receiving station.

Planning for BSCAM Operations

Before you can begin to use BSCAM,your system must have certain hardware and software

support. The combination of support on your system determines the type of programs you

should write and the way you can use BSCAM.

CO-6 SC34-0443

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

The sections that follow will help you to:

e Select the hardware and software you need to use BSCAM anddefine the support during

system generation.

e Determine what hardware and software your system already supports, if system generation

has already been done.

e Decide which of the BSCAM features youwill use.

Using Data Links

BSCAM supports transmission over switched and nonswitched (leased) data links. The data

link is the line provided by a commoncarrier over which data is transmitted from yourstation to

another station. BSCAM supports half-duplex transmission only.

Only remote connections betweenstations need a data link. (Local connections use

direct-connect.) If you plan to communicate with a remote station, make sure your system is

linked to either a switched or a nonswitchedline.

Selecting BSC Line Connection Types

One of the most important things you must decide about a BSClineis the type of station it will

function as. BSCAM supports connection of multiple BSC lines to a Series/1. Think of each

BSCline as a separate physical entity, functioning independently of the others. As far as each

BSCline knows,it has an exclusive connection with the Series/1. One BSC line mayfunction

aS a point-to-point station communicating over a switched data link. Anotherline (installed on

the same processor) may function as a multipoint tributary on a leased link. Still another may

be a multipoint control station.

Every BSCline that you have attached to your Series/1 can form one of several types of

connection with the processor. Select the type of connection you wantto establish for each

BSCline on Series/1. Then refer to “Defining a BSC Line to the Supervisor’ on page CO-12

for details on defining yourselections to the system. If system generation has already been

done, use the $IOTESTutility LS (list supervisor configuration) commandto determine the

assignment of each BSCline.

The type of connection each BSCline forms with your Series/1 affects the way you program

that line to send and receive data.

Point-to-Point Connection

If a BSC line forms a point-to-point connection with your Series/1, it will handle

communications between your processor and one otherstation. The connection between the

two stations can be either local or remote. In remote connections, the data link can be either

switched or leased. Local connections use a direct connection. In a point-to-point connection,

each station contends with equal priority for the right to send data acrosstheline.

Chapter 1. Binary Synchronous Communications Access Method (BSCAM) CO-7

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

Vultipoint Connection

If a BSC line forms a multipoint connection with your Series/1, it handles communications

between your processor and one or moreother stations. You can designate your Series/1 to act

either as the control station or as a tributary station in the multipoint connection.

A control station is in charge of which of the multiple stations has the right to transmit at any

given time. It governs the other stations by polling (asking the tributary if it is ready to send

data) and selecting (asking the tributary if it is ready to receive data).

The tributary has direct communication only with the control station, and then only when the

control station polls or selects it. To send data to anothertributary that is under the same

control station, the first tributary sends the data directly to the control station, which in turn

sends it to the specified tributary.

For more information on polling and selecting, refer to the section “Sending Poll/Select

Sequences” on page CO-17.

Vieeting Hardware Requirements

Before you can actually use BSCAM to communicate with other stations, you must ensure that

the following hardwareis installed on your Series/1:

e BSC lines are attached with control provided for each of them.

e Modem or modem eliminatoris attached to the BSC line(s) (if applicable).

The attachment (physical connection) and coiitroi (interface with BSCAM) of a BSCline can

be provided by one of several Series/1 communications features. ‘These features are actually

hardware cards installed in the processor or I/O expansion unit of your Series/1. Some types of

cards attach a single BSC line to the Series/1, while other cards can attach multiple lines.

Determining Existing Hardware Configuration and BSC Line Addresses

CO-8 SC34-0443

To determine the hardware address and feature type of each communications card already

installed on your system, load the $1OTESTutility, and issue the LD (List Devices) command.

To determine the address of each BSC line defined to the supervisor, again use $1OTEST and

issue the LS (List Supervisor Configuration) command.

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

Series/1 Communications Features

Hereis a list of the communications features that control and attach BSC line to the Series/1.

For details on the functional characteristics and installation of these features, refer to the JBM

Series/1 Communications Features Description, GA34-0028.

IBM2074 BSC Single-Line Control,Medium Speed: This communicationsfeature card
makes the physical connection of one BSC line to the Series/1. It also provides control of the

line. You can use this feature for BSC lines that you will use to form either point-to-point or

multipoint connections. The point-to-point connections can be either local or remote; for

remote operation, the data link can be either switched or leased. Multipoint connections must

use a leased data link.

The single-line control feature requires an electrical interface compatible with RS-232C (CCITT

V.34). Its maximum data transfer rate is 9600 bits per second. In addition, it supports the

following calling features: manual call, manual answer, and automatic answer(the last feature

applies to switched connections only). The single-line control allows IPL from another system

through use of its BSC line.

IBM 2075 BSC Single-Line Control, High Speed: This communications feature card
attaches and controls one BSC line. Its characteristics are similar to the medium-speed control

described above, but with the following differences:

e Itis for use in remote operations only, since it has no internal clocking and therefore cannot

be usedin direct connections.

e It operates in point-to-point leased and multipoint connections.

e It requires a Western Electric 303 modem (or equivalent), or an electrical interface

compatible with CCITT V.35.

e Its maximum data transfer rate is 56K bits per second.

(BM2080 Synchronous Communications Single-Line Control, High Speed: This
communications feature card attaches and controls one BSCline. It is required if you want

X.21 digital data communications capabilities for your Series/1. It has the following

characteristics:

e It operates in point-to-point connections only for BSC switched mode and point-to-point

and multipoint for BSC leased mode.

e It can be jumpered for switched or leased mode.

e It requires a CCITT V.35 (leased) or an X.21 electrical interface (switched or leased).

e Its maximum data transfer rate is 48K bits per second.

Chapter 1. Binary Synchronous Communications Access Method (BSCAM) CQO-9

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

CAMOperations (continued)

IBM 2093/2094 BSC 8-Line Control and BSC 4-Line Adapter(s): These features,
used together, can attach and control up to 8 BSC lines. The 8-line control is for use with one

or two 4-line adapters (which provide only attachmentof lines). The characteristics of these

features are similar to those of the BSC Single-Line Control.

(BAA 1310 AAultifunction Attachment: This feature can attach one BSCline to the

Series/1. The use of this feature requires special system definitions during system generation

for your Series/1. Refer to the section “Including BSCAM Support in the Supervisor” on page

CO-11 for details.

IBM RPO D02349 Direct BSC Attachment: This feature controls the serial transfer of

data to and from remote terminals or systems using direct-connect cabling. It has the following

characteristics (for more information, refer to [BM Series/1 Direct Binary Synchronous

Communication Attachment RPQ D02349 Custom Feature, GA34-1577):

e Data transmissionis serial-by-bit using BSC transmission method.

e It is used as a primary or secondary station.

e Transparencyis the standard.

e It can be jumperedfor internal clocking.

e Its maximum data transferrate is 38400 bits per second with IBM clocking and 56000 bits

per second with DTE-provided clocking to another system.

Special Considerations for Multipoint Tributary Stations

CO-10 SC34-0443

If you plan to use a BSCline as a multipoint tributary station, you must ensurethat its feature

card is jumpered with DTR (data terminal ready) permanently enabled. This meansthat the

electrical interface or modem alwaysleavesthe line open to receiving data from its multipoint

control station.

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

CAMOperations (continued

Special Considerations for Local (Direct Connect) Operation

If you are using a Multifunction Attachmentcard to attach a BSC line to your Series/1, and you

plan to use thatline in a local (direct) connection, then you must use a modem eliminator, to act

as the electrical interface in the direct connection. The modem eliminator must meet the

electrical interface requirements of the feature cards to which it connects.

If you are using a single-line, medium speed control or the 8-line control with 4-line adapter,

then you do not need to use a modem eliminator. The direct connection is made between the

communicating lines. However, ensure that internal clocking is jumpered on the card(s) to

provide direct connection.

Asstated previously, the 2075 single-line control, high speed feature card cannot be used for

direct connections.

Optional Hardware

The Communications Indicator Panel (model #2000) is an optional piece of hardwarethatis

useful in program debugging and hardware troubleshooting.

Refer to the section ‘“‘Monitoring BSC Lines with the Communications Indicator Panel” on

page CO-41 for information on using the panel.

weap, ABT

including BSCAM

Support in the Supervisor

You must ensure that your supervisor supports the BSC hardware and operation of the BS;CAM

access method. This is done during system generation, when you mustinclude a statementto

define each BSCline to the supervisor. You must also include the supervisor module that

supports BSCAM.

Note: For X.21, you must include the BSCX21 module.

The statement that defines BSC lines is called BSCLINE. The supervisor module that includes

BSCAM support is called BSCAM. Forstep-by step directions on performing system

generation,refer to the Installation and System Generation Guide.

If system generation is already complete, you can find out what the supervisor supports. Load

the $SIOTESTutility and issue the LS (List Supervisor Configuration) command.

Chapter 1. Binary Synchronous Communications Access Method (BSCAM) CO-11

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

ations (continued

Defining a BSC Line to the Supervisor |

~CO-12 SC34-0443

Each BSCline attached to the Series/1 needs a BSCLINEstatementto defineit to the

supervisor. Code the statements in the $EDXDEFSdata set, which defines software support.

For each line, you must define the following:

e Hardware address (in hexadecimal) of the line

e Type of connection (point-to-point, multipoint) it is part of

e Numberof retries before a timeout occurs on the line

e Communications feature that attaches the line.

Specifying BSC Line Type (TYPE= Operand of BSCLINE): The TYPE= operandof the

BSCLINEstatement is where youtell the system what type of station the line functionsas.

Hereis a list of the available station types and how to code them in a BSCLINEstatement.

Note: For a complete mapping of connection types for X.21, see “Using X.21 Switched

Network Support” on page CO-44.

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

Operations (continued)

Type Connection Whatto code

PT point-to-point BSCLINE TYPE=PT
local

remote (leased)

SM point-to-point BSCLINE TYPE=SM

remote (switched)

manualcall

SA point-to-point BSCLINE TYPE=SA
remote (switched)

automatic answer

MC multipoint BSCLINE TYPE=MC

control station

remote (switched)

MT multipoint BSCLINE TYPE=MT

tributary station

remote (switched)

For X.21 only

AC point-to-point BSCLINE TYPE=AC |
switched

auto call

DC point-to-point BSCLINE TYPE=DC
switched

directcall

Figure 1. Specifying BSCLINE TYPE= operand

WhenaBSC line is attached with a Multifunction Adapter (MFA), you must code the
parameter MFA=YESin the BSCLINEstatementfor the line. In addition, you must code an

ADAPTERstatement, specifying the address of the line in the ADDRESS= parameter.

Important: the address specified in the BSCLINE and ADAPTERstatements mustbeidentical.

Refer to the Installation and System Generation Guide for details on the BSCLINE and

ADAPTERstatements.

When a BSCline acts as a Multipoint Tributary Station, you must specify the poll/select

addresses (up to 4) that the line should respond to during polling/selection by its control station.

Chapter 1. Binary Synchronous Communications Access Method (BSCAM) COQ-12.1

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

 CO-12.2

You musttell the supervisor to support BSCAM operations. During system generation, edit the

data set called $LNKCNTL, which defines software support to the supervisor, to include the

BSCAM module.

Note: For X.21, you must include the BSCX21 module.

Refer to the /nstallation and System Generation Guide for details on defining BSCAM software

support.

Transmit

You can transmit data in several forms during BSCAM operations. The type of data affects the

way you write programsto sendit.

d Data (Nontransparent)

When BSCAMtransmits nontransparent data, the receiving station interprets the bits according

to the EBCDICcode. If the data contains bit combinations that represent BSC control

characters, the receiving station will recognize and act on the meaning of the characters.

Nontransparent data is commonly used to transmit text. You must be sure that the data you

wish to send does not contain bits that look like BSC control characters. If the data does

contain control characters, the receiving station will not receive the transmission correctly.

Transparency allows you to transmit data with bit combinations that look like BSC control

characters, without the receiving station interpreting them. It allows you to send raw binary

data regardless of what the data lookslike. It also allows you to store control character

sequencesin a buffer at the receiving station.

The data-link-escape (DLE)is the control character used to transmit transparent data. The

sequence DLE STX< tells the station that is going to receive transparent data, and to ignore any

control characters in the data. The sequence DLE ETX or DLE ETBsignals the end of a

transmission of transparent data, andtells the station to begin recognizing control characters

again.

While receiving transparent data, a station will only recognize control character sequences

preceded by the DLE.

SC34-0443

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

You may want to break up a long transmission of transparent data into blocks and send each

separately. Each block of data is checked for transmission errors, and only those blocks not

properly received must be sent again. This is more efficient than sendingall the data in one very

long transmission. In that case, if one error occurred, then the entire body of data would have

to be retransmitted, wasting time and tying up resources.

of Transmission

Transmissions are possible in two different modes under BSCAM.

Viode

With standard transmission under BSCAM,acknowledgementsand responses betweenstations

consist of predefined BSC control characters which are not stored at the receiving station.

 ,onversational Response Transmission Mode

Under BSCAM,you can transmit control characters or text data in response to a message by

using limited conversational mode of transmission. You can send a conversational response only

aS a positive acknowledgement to a complete message (one that ended with ETX or DLE ETX).

You cannot send conversational replies when receiving block messages (ending with DLE ETB

or ETB).

You can begin your conversational reply with either SOH or STX, which the otherstation

interprets as a positive acknowledgementtoits last transmission. You can also send transparent

data (beginning with DLE STX)as a conversational response. However, after you send one

transparent conversational response, the next response you send cannot be transparentas well.

Conversational responsesare stored in the input buffer of the receiving station. BSCAM checks

buffer contents and reports any transmissionerrors that the response mayindicate. Thefirst

station can send its next messageonly after it gets the proper conversational response.

Chapter 1. Binary Synchronous Communications Access Method (BSCAM) COQO-12.3

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

This page intentionally left blank

CO-12.4 $C34-0443

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

To perform BSCAM communications between your Series/1 and any station(s) connectedtoit,

you write application programs using a set of Event Driven Language (EDL) BSCinstructions.

Listed below are the BSCinstructions and their basic uses.

Refer to the Language Reference for details on syntax and operands for each of the BSC

instructions.

Instruction Function Comments

BSCCLOSE Frees a BSCline for use by other Codeat the end of each task or

tasks program

BSCIOCB Specifies BSC line address and A nonexecutableinstruction, referred

buffers for all BSC operations to in every other BSCinstruction

BSCOPEN Prepares a BSCline for use by a Codeat the beginning of each
task program ortask

BSCREAD Reads data from a BSCline. Codeto receive data from another

Consists of several variations, station

called “‘types,’’ each used to read

data in a different way.

BSCWRITE Writes data to a BSCline. Codetoinitiate data transfer to

Consists of several variations, anotherstation

called ‘‘types,’’ each used to write

data in a different way.
Figure 2. Event Driven Language BSCinstructions

Eachinstruction requires certain BSC control character sequencesto be transmitted between

stations. The sections that follow, which discuss the use of the BSC instructions, also contain

information on the control characters associated with each instruction.

Basic Programming Functions for BSCAM

The two basic BSCAM functionsare:

e Write operations to send data to anotherstation

e Read operations to receive data from anotherstation.

Chapter 1. Binary Synchronous Communications Access Method (BSCAM) CQO-13

se ofaBsAcquiring U

In addition, your program must acquire the use of a BSC line and must provide buffers and

include other control information.

This section shows how to use the BSC instructions to perform BSCAMfunctions.

SC Line

You must gain the exclusive use of a BSC line before beginning a read or write operation, and

release it when the operation is over. The BSCOPENinstruction gets the line, and the

BSCCLOSEinstruction gives up the line. Both instructions require the label of the BSCIOCB

instruction associated with the particular operation. The BSCIOCBinstruction is discussed in

the next section.

OPEN BSCOPEN BSCIOCB, ERROR=END
CLOSE BSCCLOSE BSCIOCB, ERROR=END

Figure 3. Example of coding BSCOPEN and BSCCLOSEinstructions

| Block for Read and Write Operations

BSCIOCBprovides control information used by the other BSC instructions to perform read and

write operations. Each BSCinstruction must refer to the label of a BSCIOCBinstruction.

When you code BSCIOCEB,specify the following:

e BSCline address to be used throughout the operation

e Address and length of any buffer(s) to be used

e Polling or selection sequence to be used by a controlstation.

When you code BSCIOCB,you need to know:

e BSCline type (control, tributary, point-to point) in use

e Write type you are using (determines buffer requirements)

e Read type youare using (determines buffer requirements)

e Length of records (messages) to be sent or received

¢ Tributary station device type (determines poll/select sequence used by controlstation).

Consult the tributary device description manual for correct poll and select sequences.

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

Below is an example of a BSCIOCBinstruction that specifies line 19, and one buffer 80 bytes in

length.

IOCB BSCIOCB 19, BUFFER, 80

Figure 4. Example of coding BSCIOCBinstruction

Code the BSCIOCBinstruction outside the executable area of your programs.

Note: For an X.21 example, see “Using X.21 Switched Network Support” on page CO-44.

Specifying Buffers

The numberof buffers required during a BSCAM operation depends onthe read or write type.

Most write types need at least one buffer. However, the conversational writes need two buffers,

and the types D, E, EX, and N, do not need any buffers atall.

Write type Numberof Write type
(code) buffers (name)

C 1 Continue _
CV 2 Continue Conversational

CVX 2 Continue Conversational Transparent

CX 1 ContinueTransparent
CXB 1 Continue Transparent Block
D 0 Delay

E 0 End

EX 0 ‘End Transparent

| 1 Initial

IV 2 Initial Conversational

IVX 2 Initial Conversational Transparent

IX 1 Initial Transparent

IXB 1 Initial Transparent Block

N 0 NAN

Q 1 Inquiry

U 1 User

UX 2 User Transparent

Figure 5. Buffers required for write operations

Mostread types need only one buffer. However, the types D and Q do notrequire any buffers.

Chapter 1. Binary Synchronous Communications Access Method (BSCAM) CO-15

Sending Data

Read type Numberof Read type

(code) buffers (name)

Cc 1 Continue

D 0 Delay

E 1 End

| 1 Initial

P 1 Poll

Q 0 Inquiry

R 1 Repeat

U 1 User

Figure 6. Buffers required for read operations

Under BSCAM,theinstruction that sends data is BSCWRITE. Control character sequences are

generated when a BSCWRITEinstruction executes, and certain acknowledgements are

exchanged between the sending and receiving stations. You must specify which type of write

operation you need to perform, according to the situation. These write types, and the reasons

for using each, are coveredin the sections that follow.

In your program to send data, you will:

e Define line address and buffers (BSCIOCB).

e Acquire the BSC line for use by your program (BSCOPEN).

e Transmit data with one or more BSCWRITEinstructions (one instruction for each

message).

e Give up the use of the BSC line (BSCCLOSE).

Selecting BSCWRITE Types

CO-16 SC34-0443

There are several different types of write operation, each used to transmit data in a different

form or situation, and each codeda different way with the BSCWRITEinstruction. The factors

that determine which typeto useare:

e Type of data (transparent, nontransparent)

e Modeof transmission (standard, conversational)

e Order of transmission of messages

e Special conditions that occur during transmission.

Sending the First M

BSCAMApplications (continued)

The sections that follow tell how and whento code the various types of BSCWRITEinstruction.

essage

Codean initial write instruction to send the first message in a transmission. Different types of

initial write instructions exist for each of the modes of transmission, for each of the data types,

and for combinations of the two.

In the following table, find the type of data you are sending and the modeof transmission you’re

using. The table will tell you which type ofinitial write instruction to code, and how to codeit.

Each write type consists of BSCWRITEfollowed bya suffix.

Data Transmission Write Whatto code

Type Mode Type

Standard Standard Initial BSCWRITE|

Standard Conversational Initial Conversational BSCWRITEIV

Transparent Standard Initial Transparent BSCWRITEIX

Transparent Conversational Initial Conversational BSCWRITE IVX

Transparent Transparent

Transparent Block Standard Initial Transparent Block BSCWRITEIXB
Figure 7. Initial write types

Sending Poll/Select Sequences

If your station is acting as the control station on a multipoint line, then it must poll and selectits

tributaries. To send each poll/select sequence, code anyinitial write instruction. The

poll/select sequenceconsists of the following characters:

EOT(poll or selection address) ENQ--------->

You must place the ENQ andthe poll or selection address in your output buffer, as specified in

your BSCICCBstatement. For more information on the poll/select sequence, refer to General

Information - Binary Synchronous Communications.

Control Characters Associated with Initial Write instructions

Whenaninitial write instruction executes, certain BSC control characters must go across the line

to the receiving station. The tables that follow show the flow of characters that must

accompany eachinitial write instruction. The access method generates the ENQ and ACK

sequences, but you must supply all other control characters in your output buffer.

Chapter 1. Binary Synchronous Communications Access Method (BSCAM) CQ-17

Instruction Sending Station Control Character Flow
Type of Connection Sending Receiving

BSCWRITE| point-to-point ENOQ------------ >

Knee cen nnen--ACK
ETX (Text) STX--->

<----(Response character)

BSCWRITE| multipoint EOT------------ >

control station ENO (Address)------- >

<enencn------ACK
ETX (Text) STX------ >

<-----(Response character)

BSCWRITE| multipoint ETX (Text) STX----- >

tributary <-----(Response character)

Figure 8. Control character flow forinitial write instructions

Instruction Sending Station Control Character Flow
Type of Connection Sending Receiving

BSCWRITEIV point-to-point ENQ-------------- >
<------------ACK

ETX (Text) STX----- >
<----(Response Text)

BSCWRITEIV multipoint EOT------------ >

control station ENO (Address)----- >
<------------ACK

ETX (Text) STX---->
<----- (Response Text)

BSCWRITEIV multipoint ETX (Text) STX----- >
tributary <-----(Response Text)

Figure 9. Control character flow for initial conversational write instructions

CO-18 SC34-0443

Programmingfor E Applications (continued)

instruction Sending Station Control Character Flow
Type of Connection Sending Receiving

BSCWRITEIX point-to-point ENQ------------ >

Knee eennnnACK
DLE ETX (Text) DLE STX----- >

<----- (Response Character)

BSCWRITEIX multipoint EOT------------ >

control station ENQ (Address)------ >

Kone een neonACK
DLE ETX (Text) DLE STX----- >

<----- (Response Character)

BSCWRITEIX multipoint DLE ETX (Text) DLE STX----- >
tributary <-----(Response Character)

Figure 10. Control character flow forinitial transparent write instructions

Instruction Sending Station Control Character Flow
Type of Connection Sending Receiving

BSCWRITE IXB point-to-point ENQ------------ >

Knee eencnn H-ACK
DLE ETB (Text) DLE STX----- >

<----(Response Character)

BSCWRITE IXB multipoint EOT------------ >

controi station ENQ (Address)----- >

Keene enn ennACK
“DLE ETB (Text) DLE STX----- >

<-----(Response Character)

BSCWRITE IXB multipoint DLE ETB (Text) DLE STX----- >
tributary <----- (Response Character)

Figure 11. Control character flow for initial transparent block write instructions

instruction Sending Station Control Character Flow
Type of Connection Sending Receiving

BSCWRITE IVX point-to-point ENQ------------ >

Kee eee ene nneACK
DLE ETX (Text) DLE STX----- >

<----- (Response Text)

BSCWRITE IVX multipoint EOT------------ >
control station ENO (Address)----- >

Kee meee ene nnnACK
DLE ETX (Text) DLE STX----- >

<----(Response Text)

BSCWRITEIVX multipoint DLE ETX (Text) DLE STX----- >
tributary <----- (Response Text)

Figure 12. Control character flow forinitial conversational transparent write instructions

Chapter 1. Binary Synchronous Communications Access Method (BSCAM) CO-19

 nications Access M

{i Applications (continued)

Programmingfor|

Sending Subsequent Messages

Code a continue write to send the second message and any further messagesin a transmission.

Code a continue write only after coding an initial write. Also, always make sure that the

continue write type matchesthe initial write type (standard, conversational, transparent,

transparent block, or conversational-transparent type). Refer to the table that follows to see

which continue write type to code.

Data Transmission Write What to Code

Type Mode Type

Standard Standard Continue BSCWRITE C

Standard Conversational Continue Conversational BSCWRITE CV

Transparent Standard Continue Transparent BSCWRITE CX

Transparent Conversational Continue Conversational BSCWRITE CVX

Transparent

Transparent Block Standard Continue Transparent Block BSCWRITE CXB
Figure 13. Continue write types

Control Characters Associated with Continue Write Instructions

Whena continue write instruction executes, certain BSC control characters must be sent to the

receiving station. The tables that follow show the control character flow for each continue write

type.

instruction Sending Station Control Character Flow
Type of Connection Sending Receiving

BSCWRITE C all types ETX (message 1+n text) STX--->

<----- Response character

BSCWRITE CV all types ETX (message 1+n text) STX--->

<----- Response Text

BSCWRITE CX all types DLE ETX (message 1+n text) DLE STX--->

<o---- Response character

BSCWRITE CXB all types DLE ETB (Message 1+n Text) DLE STX--->

<----- Response Character

BSCWRITE CVX all types DLE ETX (Message 1+n text) DLE STX--->
<----- Response Text

Figure 14. Control character flow for continue write instructions

CO-20 SC34-0443

MApplications (continued)

Coding Special Write Types

Besides sending messages, you may needto control data transmissions in special ways during a

write operation. The write types listed below cause BSCAM to perform specific functions. You

will need to determine where and whenthese functionsare useful in your program.

Write Whatto Code Explanation
Type

Delay BSCWRITE D Delays transmission of next

message. You can code multiple

delays before transmission resumes.

Inquiry BSCWRITE OQ Requests retransmission of response

(text or acknowledgement sequence)

to a previously sent message.

NAK BSCWRITE N Transmits the Negative

Acknowledgement (NAK) character.
A tributary can write NAKif not

ready during polling/selection

User BSCWRITE U Transmits a character stream.

User Transparent BSCWRITE UX Transmits character stream in

transparent mode.

Figure 15. Special write types

Delaying Transmission

You can inform the receiving station that transmission of the next message will be delayed with

a delay write instruction. You can code multiple delays before resuming transmission.

Sending a Negative Acknowledgement

Whenyou needto transmit a negative acknowledgement (NAK) character, code a NAKwrite.

This instruction simply sends the NAK character. Tributary stations can sendit to signify

"device not ready" in responseto polling or selection by the controlstation.

Sending an ENQ Character

To send an ENQcharacter, code an inquiry write instruction. This instruction is most commonly

used to request retransmission of the receiving station’s response to the last message sent.

Sending a Data Stream

In special situations you may wantto send a data stream, generating no control characters. This

is possible with either a user write (to send standard data) or a user transparent write (to send

transparentdata).

Unlike otherwrite instructions, the user and user transparent types do not generate the

transmission of any predefined control characters or require any acknowledgement from the

Chapter 1. Binary Synchronous Communications Access Method (BSCAM) CQO-21

ichronous C

BSCAMApplications (continued)

receiving station. In addition, BSCAM doesnot perform error recovery for the data stream.

The data stream consists of the contents of the first buffer you specify ina BSCIOCB

instruction. With the user write instruction, once the contents of the buffer are sent, the

operation is over. However, with the user transparent write, you must signal the end of the

operation by transmitting the contents of a second buffer specified in BSCIOCB. The buffer

can contain any of these control character pairs: DLE ETX, DLE ETB, or DLE ENQ.

Control Characters Associated with Special Write Instructions

The following control characters are sent by the special write instructions.

instruction Sending Station Control Character Flow
Type of Connection Sending Receiving

BSCWRITE D all types TID------------ >

K---nnnn--- NAK

BSCWRITE Q all types ENQ------------ >

<----Response Character or Text

BSCWRITE N all types NAK------------ >

Figure 16. Control character flow for special write type instructions

Ending a Write Operation

Once you have written all your data, you need totell the other station not to expect any more.

Two write types signify the end of a write operation.

The end write instruction (BSCWRITE BE) sends an EOTto end write operations in any form of

transmission.

The end transparent write instruction (BSCWRITE EX) sends a DLE EOTcharacterto indicate

the end of a write operation. Use this instruction if you are transmitting over a switchedline.

Programming Sequence for Write Operations

CO-22 SC34-0443

Nowthat you know aboutthe various write types, you’ll want to be sure to code them in the

right order. You'll also want to makesurethatall the write types ‘match up" in your program.

Refer to the chart below and find the mode of transmission you plan to use in your program. It

showsthe basic sequence of write instructions to use.

Receiving Data

Programming

forBSCAM Applications (continued)

Modeof Writing Writing Optional Ending
Transmission, First Next Write

Data Type Message Message Operation

Standard, Standard | C D,Q,U,N E or EX

data

Conversational IV CV D,Q,U,N E or EX

Standard data

Standard, IX CX D,Q,U,N E or EX

Transparent data

Standard, IXB CXB D,Q,U,N E or EX

Transparent Block

data

Conversational, IVX CVX D,Q,U,N E or EX

Transparent data
Figure 17. Programming sequences for sending data

A read operation retrieves data from a BSC line. Each time anotherstation sends data to your

Series/1, you must have a read operation programmedtoreceiveit.

In your read program you will do the following:

e Define line address and buffers (BSCIOCB)

e Prepare the BSCline for use by your program (BSCOPEN)

e Receive data with one or more BSCREAD instructions (one instruction for each message)

e« Give up the use of the BSC line (BSCCLOSE)

Selecting BSCREAD Types

Several different types of read operation are available. Each is associated with a different

BSCREAD instruction. Each type is used in certain situations, similar to the way the various

write types are used. However, with read types it doesn’t matter what mode of transmission you

are using. With read types,it is when youissue the instruction that is important. For example,

will the instruction read the first message? Or will it read the second message,orthe last

message? These are some of the questions you must ask when preparing to coderead types.

The chart on the next pagelists all the read types, and how and when to code them. Theyare in

alphabetical order, not in the order you would code them in a program.

Chapter 1. Binary Synchronous Communications Access Method (BSCAM) CQO-23

ns fcontini

Read What to Code Explanation
Type

| Continue BSCREAD C Reads subsequent messageafter

first mssage read by ReadInitial.

Issue until EOT received.

Delay BSCREAD D Acknowledgescorrect receipt of

message. Requests senderto wait

before sending the next message.

Multiple delays can be issued before

resuming transmission.

End BSCREAD E Requests sender to stop sending

messages. Acknowledgescorrect

receipt of last message.

Initial BSCREAD| Readsfirst message ina

transmission.

Poll BSCREAD P Readsthe poll/select sequence sent
by a control station to a Series/1 that
is a tributary on a multipointline.

Inquiry BSCREAD Q Reads the ENQ character

Repeat BSCREAD R Requests retransmission of the last

messagesent.

User BSCREAD U Reads data stream. Does not perform

error recovery.

Figure 18. Read types

Receiving the First Message

Regardless of its mode of transmission, you will always read the first message with an initial read

instruction, BSCREAD I.

Receiving Subsequent Messages

To read subsequent messages, code a continue read, BSCREAD C. Issue continue read

instructions until the transmitting station sends the end-of-transmission (EOT) sequence.

CO-24 SC34-0443

Delaying Transmission of Data

After successfully reading a message you may wish the sender to pause before sending the next

one. A delay read instruction, BSCREAD D,causes this pause. You can issue as many delays as

needed beforetelling the sender to resume transmission. (After the last delay, transmission

resumes automatically.)

Responding to a Poll/Select Sequence

If your Series/1 is a tributary station on a multipoint line, code a poll read (BSCREADP)

instruction to receive polling and selection sequences from the control station. Once your

station is polled or selected, it should issue the appropriate read or write initial instruction.

Reading an ENQ Character

To read an ENQfrom the sending station, code an inquiry read instruction, BSCREAD Q.

Requesting Repeat of a Message

If you are unsuccessful in reading the last message that was sent, you can ask the sender to

re-transmit it with a repeat read instruction, BSCREAD R.

Reading a Data Stream

The sender can transmit a data stream, which consists of the contents of a buffer. To receive

this data, code a user read instruction, BSCREAD U. BSCAM doesnot perform error recovery

during this type of read operation.

Ending the Read Operation

To ask the sender to stop sending messages, or to acknowledgecorrectreceipt of the last

message, code an end read instruction, BSCREAD E .

Providing for Errors During BSCAMOperations

All the BSC instructions (except BSCIOCB,whichis non-executable) allow you to code

routines to take over during error or end conditions. BSCOPEN and BSCCLOSEhave the

ERROR= operand; BSCREAD and BSCWRITEhave both ERROR= and END=operands. It

is useful to provide for error recovery in situations such as:

e Errors during opening or closing of the BSC line

e Errors in starting the program

e Errors in doing the initial read or write

¢« Errors in continuing reads or writes

e Errors in ending the read or write operation

Chapter 1. Binary Synchronous Communications Access Method (BSCAM) CQO-25

 unications Access Me

Binary Synchronous Comm
A

Programming forBSCAMApplications (continued)

Commonroutines are to print error messages and BSCreturn codes in responseto errors, or to

restart operations at the previous phaseorat the beginning.

BSCAMSample Programs

The following sample programs perform BSCAMoperations. Note that both programsinclude

routines that take over when an error occurs during any phase of the operation.

WRITE Sample Program

This program performs a write operations in transparent mode of transmission. The program

doesthe following:

1. Communicates with the READ sample program

2. Opens the BSC line

3. Performsinitial write of data

4. Performscalculations to build the next message to send

5. ‘Performs continue writes until all data is sent

6. Ends the write operation

7. Prints error messages and return codesif a failure occurs during any phase of the program

8. Closes the BSCline

CO-26 SC34-0443

Programs(continued)

WRITEX PROGRAM START
START BSCOPEN IOCB, ERROR=PRINTERR
RESTART BSCWRITE IX, TOCB
Eee eee EE ES EEE EEE EEE EEE SESE SESS ESSE SE LESSEE EE SS SS ESSS

OPEN THE LINE AND BEGIN INITIAL TRANPARENT WRITE
2k 2ee 2eeee2RRRRRKKK

IF (WRITEX,EQ,10) ,GOTO, RESTART
IF (WRITEX,NE,-1) ,GOTO, PRINTERR
DO 29,TIMES
ADD I,1
CONVTB MSG#,1

KKKK KKK KKK KK KK KK KKK KK KKK KKK KKK KKK KKK KKK KKK KKK KK KK K

CONTINUE THE WRITE OPERATION
HeAHeHeFHAAORORRRRKKK

BSCWRITE CX, [OCB , ERROR=PRINTERR
ENDDO

ESE ESE LSEEES ESE TEE SSL ES SSE SST SS TST TST EPCS TTS TT ST ST

END THE WRITE OPERATION
2HeAeeHAARRRKORKE

BSCWRITE E, L1OCB, ERROR=PRINTERR
GOTO ALLDONE

2AKRRRoROK

ERROR ROUTINE: PRINT ERROR MESSAGE AND BSC RETURN CODE
OeRRRHRRIRRRRRKk

PRINTERR MOVE ERRCODE , WRITEX
PRINTEXT "WRITE ERROR: ',SKIP=1
PRINTNUM ERRCODE

He Ke 2 eeOK Ke OK OK KK OK OK OK OK OK KK Ke KK KK KOK OK OK KK OK OK KK KK KK KK KK KKK KK

CLOSE THE LINE
oeeAHRRRRRRRKKOK KK

ALLDONE BSCCLOSE IOCB
PROGSTOP

ORHRAARRRROKRKKK

CONTROL INFORMATION: WRITE DATA TO BSC LINE 19
USE A BUFFER LENGTH OF 82 CHARACTERS
2eRARRaKk

ILOCB BSCIOCB 19,BUFFER, 82
BUFFER DC X'1002'

DC CL74'TEST MESSAGE'
MSG# DC CL6! 1!
I DC F'i'
ERRCODE DC F'Q'

ENDPROG
END

mple Program

This program reads the transparent data sent in the preceding WRITE program

does the following:

Gains use of the system printer

2. Opens the BSCline

. The program

Chapter 1. Binary Synchronous Communications Access Method (BSCAM) CO-27

BSCAM Sample Programs (continued)

3. Performsinitial read of data

4. Prints data on printer

5. Reads subsequent data andprintsit

6. Prints error messages and return codesif failure occurs during any phase of the program

7. Ends the read operation

8. Closes the BSC line

CO-28 SC34-0443

READX PROGRAM START
START ENQOT $SYSPRTR

BSCOPEN IOCB, ERROR=PRINTERR
2aaaRaRKK

OPEN THE LINE AND BEGIN INITIAL READ
2 2eSRIROaaR ok oR aR

RESTART BSCREAD I,TIOCB
IF (READX,EQ,10) ,GOTO, RESTART
IF (READX,NE,-1) ,GOTO, PRINTERR

PRINTIT MOVE MSG, INPUT+2, (80,BYTE)
PRINTEXT MSG, SKIP=1

AE Ae OK ie hee a ok oi ok 2 oe oe 2 2 oe te oe KoeoieeKo oo oe Ke KK KK eokKOK

CONTINUE THE READ OPERATION
PES ESLS SESE LES ESSSS SSE SES ESSE SESS TSS SST TE SS TES SS

~BSCREAD C,ITOCB, END=ALLDONE, ERROR=PRINTERR
GOTO PRINTIT

DRRRRRARRRRRK

ERROR ROUTINE: PRINT ERROR MESSAGE AND BSC
RETURN CODE, HAVE SENDER REPEAT MESSAGE
Oe He2RHaaa

PRINTERR MOVE RETCODE , READX
PRINTERXT ERRMSG, SKIP=1
PRINTNUM RETCODE
BSCREAD R, [OCB , ERROR=ALLDONE , END=ALLDONE
GOTO PRINTIT

ALLDONE DEQT
2 9 3K OK ee KK oe ae ke ok ok ok KK KK OK OK KK KK KK KK KK KK KK KK KK HK KK KK KK KK KK KK

CLOSE THE LINE
2RKRRARARRRK

BSCCLOSE TOCB
PROGSTOP

PEELE SLL SLE SESS SEES SEESSESE ESET ETS ET TT TTT STS TTS TS

CONTROL INFORMATION: READ FROM BSC LINE 29,
USE A BUFFER 83 CHARACTERS IN LENGTH
SheRe22IAaIaaIaa oi ok oi oa aa a ak

IOCB BSCIOCB 29, INPUT,83
INPUT DC CL83' '
MSG TEXT LENGTH=80
ERRMSG TEXT "READ ERROR: '
RETCODE DC F'O'

ENDPROG
END
 Interacting w Vi (Using BSCUtilities)

The BSCAM utilities ($BSCTRCE, $BSCUT1, $BSCUT2) help you check out the way
BSCAM is working and point out any problems that may exist. This section shows what the

BSCutilities allow you to do, and what types of information you can gather about BSCAM

operations.

Chapter 1. Binary Synchronous Communications Access Method (BSCAM) CQO-29

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

ilities) (continue

Tracing |/OActivities on a BSCLine (Using $BSCTRCE)

The $BSCTRCEutility traces activity on the BSC line you specify. The trace information goes

into a trace file, which you must allocate before beginning the trace. (The datain thetracefile

is unformatted. To format the data for a printout or to display it on a screen, use the $BSCUT1

utility.)

Since I/O activity on a BSCline is controlled by an application program, you must have oneof

your programsloaded and running at the same time you use $BSCTRCE. The program must be

the one controlling the line you specify to be traced.

$BSCTRCEwrites trace file records at the completion of a BSC operation. Therefore, when

testing a conversational write, if you specify the same buffer address for both input and output,

the trace file does not show the data that was transmitted; it shows only the conversation

responsesreceived.

Multiple BSC lines may be traced concurrently with multiple loads of $BSCTRCEusing

different trace files. Each copy of $BSCTRCE must use a different trace data set. Each trace

data set name should reflect a unique line number.

When $BSCTRCEterminates, it displays the relative record numberof the last trace record

written.

Allocating the Trace File Data Set

You mustallocate the data set that will contain the trace information before using the

$BSCTRCEutility. It must be a ‘‘data” type data set. You can allocate the data set at any size

you wish. Use the $DISKUT1 utility to allocate the data set.

Whenthe end of the outputfile is reached,it is reused from the beginning, since $BSCTRCE

displays the relative record numberofthe last trace record written upon termination. The trace

file can then be displayed or listed using the $BSCUT1utility.

invoking $SBSCTRCE

CO-30 SC34-0443

You must load $BSCTRCEin the samepartition as the application program that is controlling

the line you wantto trace.

Note: If you want to use the $BSCTRCEutility with X.21, you must load theutility first.

Use the $L commandor option 8.1 of the session manager.

Whenloaded, $BSCTRCEprompts for the disk or diskette file in which to place the trace

output. $BSCTRCEthen promptsfor the line numberto be traced. Thetrace actionis

terminated by the attention command STOP.

ith B

SCAM interacting w (Using BSC Utilities) (continued)

> $L $BSCTRCE ,
LOADING $BSCTRCE 6P,11:03:22, LP=6500, PART=2
DS1(NAME ,VOLUME): TRACE9,MYVOL
ENTER LINE NUMBER (HEX): 9

> STOP _

LAST TRACE RECORD EQUALS 19
-$BSCTRCE ENDED AT 11:13:31

Specifying BSC Line to Trace

In responseto the utility’s prompt, enter the number of the BSC line you wantto trace. Make

sure it is the same line that the loaded application program is controlling.

Terminating the Trace

To endthetrace at any point, press the attention key and enter STOP. Theutility displays the

numberofthe last recordit traced.

Tracing Multiple BSC Lines

You can perform traces on multiple lines at the same time. For each trace, do the following:

e Loadthe application program that controls theline.

¢ Load $BSCTRCEin the same partition as the program.

e« Specify the BSC line number.

e Direct each trace file to a different data set (the volumes can be the same).

Formatting Trace Files for Print or Display (Using $BSCUT1)

Once you have run $BSCTRCEandwishto see whatis in the trace file, use the $BSCUT1

utility to format the file and send it to a printer or terminal. You can select the record for the

trace file to dump. You will be prompted, as necessary, for information required by the

functions of $BSCUT1.

Invoking $BSCUT1

$BSCUT1is invoked using the $L commandoroption 8.2 of the session manager.

SBSCUT1 Commands

To display the $BSCUT1 commandsat your terminal, enter a question mark in response to the

prompting message COMMAND(7?):.

Chapter 1. Binary Synchronous Communications Access Method (BSCAM) CO-31

CO-32 SC34-0443

 COMMAND (7):
Ne , S

 OO 1061 Y

> $L SBSCUTI
LOADING SBSCUT1 21P,00:04:21, LP= 9200, PART=1

COMMAND(?): ?

CV - CHANGE VOLUME
DP - PRINT TRACE FILE ON PRINTER
DU - DUMP TRACE FILE ON TERMINAL

(CA WILL CANCEL)
EN - END PROGRAM
After $BSCUT1 displays the commands, it prompts you with COMMAND(?):. Then you can

respond with the command of your choice (for example, CV).

Example: Figure 19 shows dumping recordsin a tracefile to the terminal.

COMMAND (7): DU TRACES
FIRST RECORD: 32
LAST RECORD: 33

DUMP OF TRACE FILE TRACES ON EDX002

AAKKKKEE RECORD 32 START OF CHAINED OPERATION

CC = 0002 ISW = A009 STATUS = 98DA 0001 C080
RESULT: EXCEPTION - WRONG LENGTH RECORD (SHORT)

DCB = 8004 0000 0000 0000 0000 2B1C 0002 2AE4
OPERATION: CHAINED TRANSMIT

DATA LENGTH = 2
Figure 19. Dumping trace file records

The following screen showsthe display for the LAST RECORDselectedin the previous

example, which was record number33.

ilities)

K*k*X RECORD 33 ***** CONTINUATION OF CHAI

DCB = 2008
OPERATION:

DATA LENGTH
1 0227 615B F1F6 4BF5 F94B F3F4 40D1 D6C2
17. 4040 F4F2 F440 D709 F3FO FIF6 FSF6 40C5
33 +€E7C5 C3E4 £3C9 D5C7 40D4 40D7D9C9 D640
4Q 4OF7 1E27 615B FIF6 4SBF5 F94B F3F4 40D1
65 D6C2 4040 F4F2 F340 C8D8 FIF2 FIF6 FSF6
81 40C5 E7C5 C3E4 E3C9 D5C7 40D4 4007 D9C9
97 D640 4OF7 1627 615B F1F6 4BF5 F94B F3F4
113 40D1 D6C2 4040 F3FO FO4O C9E2 FOF3 FIF4
129 F4F5 40C5 E7C5 C3E4 E3C9 D5C7 4OE5 40D7
145 D9C9 D640 4OF5 1£27 615B F1F6 4BF5 F94B
161 F3F4 40D1 D6C2 1D43 F4F8 407B C7E2 D7C5
177 FOF1 FO40 D6D5 40D7 D9C9 D5E3 D9F2 4040
193 D7D9 C9D6 4040 FS5IE 2761 5SBF1 F64B F5F9
209 4BF3 F440 D1D6 C240 40F3 F2FO 40C6 C7F6
LAST 4 D4DS5

(continued)

NED OPERATION

0000 0000 0000 0000 0000 0200 96F6
RECEIVE WITH TIMEOUT

485it

1E26
DUMP COMPLETE
ANOTHER AREA?

Figure 20. Dump of the LAST RECORD oftracefile

Reading Trace File Records

Trace records can be up to 256 bytes long. They consists of several fields, as shown in

../$16.59.34 JOB
424 PR301656 E

XECUTING M PRIO-
7../$16.59.34 J

OB 423 HQ121656
EXECUTING M PRI

0 7../$16.59.34
JOB 300 1$0314

145 EXECUTING V P
RIO 5../$16.59.
34 JOB..48 #GSPE
010 ON PRINTR2 |
PRIO 5../$16.59
.34 JOB 320 FG6
MN.. |

Figure 21

Field Size Explanation

(bytes)
CC 2 Condition code

ISW 2 Interrupt status word

STATUS 6 Cycle status words: 3 words, 2 bytes

each

DCB 16 Device Control Block

LGTH 2 Length of data sent or received

DATA up to 224 Data in main storage.

Figure 21 (Part 1 of 2). Trace record fields

Chapter 1. Binary Synchronous Communications Access Method (BSCAM)

CO-33

Binary Synchronous Communications Access M
(BSCAM)

Interacting with BSCAM (Using BSCUtilities) (continued)

Field Size Explanation

(bytes)
LAST4 4 Last four bytes of data if total data is

longer than 224 bytes

Figure 21 (Part 2 of 2). Trace record fields

Notes:

1. The CC, ISW, and STATUSfields are zero when the DCB has been chained from the

previous record’s DCB.

2. $BSCTRCEalwaysreports an error on a chained DCBtothefirst DCBin a chain.

Refer to the JBM Series/1 Communications Features Description, GA34-0028 for descriptions of

the interrupt condition code, interrupt status word, cycle status words, and device control block.

Testing BSCAM Operations (Using $BSCUT2)

CO-34 SC34-0443

With the $BSCUT2utility you can test these BSCAM capabilities:

e Read and write operations

— standard transmission of transparent and standard data

— conversational transmission of transparent and standard data

e Polling and selection by control station on a multipoint line

e Response to polling and selection by tributary station on a multipointline

The $BSCUT2utility prompts you for information suchas:

e BSC line addresses

e Device addresses of communications feature cards

e Record length, also called buffer size, in bytes

e Numberof records to be transmitted or received

The utility examines the information you supply in responseto its prompts. If you supply

incorrect information,the utility cannot perform its test and issues an error message.

Interacting with BSCAM (Using BSC Utilities) (continued)

By examining the information you supply, $BSCUT2 also checks the BSCLINEstatements

included in the supervisor, and the customized jumper assignments in BSC hardwarefeatures.

You can use $8SCTRCEto trace the exercising activities of $BSCUT2. You can format and

print the records with $BSCUT1.

Hardware Considerations When Using $BSCUT2

You can use $BSCUT2 to test BSCAM onjust one Series/1 or between two Series/1’s. When
testing with just one Series/1, you must have two BSClines and wrap a connection between

them. Assign oneline to do the "read" and the otherto do the ''write"’.

If you are running a test between two processors (one performing a read, the other a write

operation), load $BSCUT2 on both processors and enter one BSC line addressat the ''read"’
processor and another BSC line addressat the ''write'' processor. If you specify an invalid
address for one of the processors, the test will fail.

Invoking $BSCUT2

$BSCUT72is invoked using the $L commandoroption 8.3 of the session manager.

S$BSCUT2 Commands

To display the $BSCUT2 commandsatyour terminal, enter a question mark in response to the

prompting message COMMAND(?):.

> $L $BSCUT2
LOADING S$BSCUT2 EOes

COMMAND (7):
RWI ---- READ/WRITE. - NONTRANSPARENT |
RWIX --- READ/WRITE - TRANSPARENT
RWIXMP - READ/WRITE - MULTIDROP LINE TRANSPARENT

Ril ----- READ - TRANSPARENT/NONTRANSPARENT
WI ----- WRITE - NONTRANSPARENT | :
WIX ---- WRITE - TRANSPARENT
EN ----- END THE PROGRAM
CH ----- CHANGEHARDCOPY DEVICE

RWIVX -- READ/WRITE - TRANSPARENT CONVERSAT ONAL
RWIV -- READ/WRITE - NONTRANSPARENTCONVERSATIONAL
NO .
After $BSCUT2 displays the commands,it prompts you with COMMAND:(?):. Then you can

respond with the commandof your choice (for example, RI).

Testing Read and Write Capability Simultaneously

With BSCAM youcan test read and write operations at the same time. You can runthetests

between two processors, or between two lines on one processor. If you are using one processor,

make sure you specify separate lines, one to read and the other to write. The read/write tests

available are:

e Read/write of standard data, standard transmission: RWI command

Chapter 1. Binary Synchronous Communications Access Method (BSCAM) CO-35

e Read/write of standard data, conversational transmission: RWIV command

¢ Read/write of transparent data, standard transmission: RWLX command

¢ Read/write of transparent data, conversational transmission: RWIXV

For these read/write tests, the utility prompts for the following information:

READ ADDRESS and WRITE ADDRESSrefer to the device address of the BSC hardware

feature. If the test is to be run between two processors (one to read and oneto write), load

$BSCUT2 on both processors and enter the correct address for read on one processor and the

correct address for write on the other processor. One of the addresses can be invalid and the

task for the invalid address on each processorwill fail due to an undefined line. However, the

read/write task will function properly. This is true for all $BSCUT2 commands.

The RECL promptsrefer to the buffer size to be used-and, therefore, the number of bytes

transferred in one transmission over the BSC line. The maximum buffer size permitted is 512

bytes. READ (RECL) should always be equal to or greater than WRITE (RECL)orerrorswill

occur.

NUMBER OF RECORDSdetermines the number of transmissions to be made before the test

ends.

The MONITORfunction causes each task to report its progress to the terminal. If the monitor

function is enabled, messages such as TASK ENTEREDand TASK EXITEDare written to the

terminal.

Example: RWI command

COMMAND (7): Rw! |
RWI ---- READ/WRITE - NONTRANSPARENT
READ ADDRESS? 5a
WRITE ADDRESS? sp
READ RECL? 80
WRITE RECL? 80
NUMBER OF RECORDS? j9
READ MONITOR? y
WRITE MONITOR? y

Example: RWIV command

COMMAND (?): RWIV
RWIV --- READ/WRITE - NONTRANSPARENT CONVERSATIONAL
READ ADDRESS? 5B
WRITE ADDRESS? 5A
BUFFER LENGTH? 80
NUMBER OF RECORDS? 5
READ MONITOR? Y
WRITE MONITOR? Y

Example: RWIX command

COMMAND (7): RWIX
RWIX --- READ/WRITE - TRANSPARENT
READ ADDRESS? 5A |
WRITE ADDRESS? 58
READ RECL? 80
WRITE RECL? 80
NUMBER OF RECORDS? 10 |
READ MONITOR? Y | | | :
WRITE MONITOR? Y y
XQ
Example: RWIVX command

COMMAND (7): RWIVX |
RWIVX -- READ/WRITE - TRANSPARENT CONVERSATIONAL
READ ADDRESS? 5A | ,
WRITE ADDRESS? 5B
BUFFER LENGTH? 5
NUMBER OF RECORDS?10
READ MONITOR? Y
WRITE MONITOR? Y
\

Testing Read and Write on a Multipoint Line (RWIXMP)

This commandtests the polling/selection capabilities between stations and also reads and writes

transparent data. One BSC line acts as the control station, and one or more other stations act as

tributary stations.

Whenyou issue the RWIXMP command, you must answer promptsfor:

e« Control station device address

e Numberoftributaries

e Tributary station device address and tributary address

Chapter 1. Binary Synchronous Communications Access Method (BSCAM) CO-37

CO-38

5C34-0443

MONITOR? Y |
NK S/S

e Loop count for the control station

¢ Buffer length and numberof records to be exchanged

The control station device address refers to the address of the BSC hardware feature. The

tributary station address refers to the jumperedtributary address on each hardwarefeature card.

You must jumperthe adapterin tributary modefor this test to function properly. Loop count

refers to numberof times you want to send a block of messages.

To perform this test with $BSCUT2 running on two processors:

e« Processor 1 uses a valid control station (MC) address and dummytributary (MT) addresses.

It acts as the control station.

e Processor 2 uses a dummycontrol station address and valid tributary (MT) addresses. It

acts as the tributary station.

e Specify the same numberof tributaries on both processors.

e Specify the same loop count on both processors.

Example: RWIXMP command

COMMAND (7): RWIXMP
RWIXMP - READ/WRITE - MULTIDROP LINE TRANSPARENT
MC DEVICE ADDRESS? 50
BUFFER LENGTH? 80
NUMBER OF RECORDS? 5
LOOP COUNT? 1
MONITOR? Y
NUMBER OF TRIBUTARIES? 1

PARAMETERS FOR TRIBUTARY? 1
MT DEVICE ADDRESS? 51
MT TRIBUTARY ADDRESS? 02
BUFFER LENGTH?
NUMBER OF RECORDS? 5
DEVICE ADDRESSfor this commandrefers to the device address of the BSC hardware

feature. TRIBUTARY ADDRESSrefers to the jumpered tributary address on each hardware

feature card. LOOP COUNTrefers to the numberof times $BSCUT2 sends the block of

messages that you havespecified.

Note: The adapter must be jumperedin tributary modeforthis test to function properly.

(continued)

Testing Read Capability

The RI commandtests the read capability of both standard and transparent data. You don’t

have to specify the numberof recordsto read sinceit this test continues to read either type of

data until EOTis received. This test is useful for monitoring any BSC line sending data to the

processor. For example, the RI test can receive data from the $RJE2780 or $RJE3780 utility

operating in the same Series/1 or in another Series/1.

Example: Rl command

| COMMAND (2):RI
| Rl ----- READ - TRANSPARENT/NONTRANSPARENT
| READ ADDRESS? 5A.
| READ RECL? 80
\ READ MONITOR? Y

Testing Write Capability

The WI commandtests the write of nontransparent data. The utility prompts you for device

address, record length, and numberofrecords.

The WIX commandtests the write of transparent data. You specify device address, record

length, and numberof records.

Example: WI command

COMMAND (7): WI
Wil ----- WRITE - NONTRANSPARENT
WRITE ADDRESS? 58
WRITE RECL? 80
NUMBER OF RECORDS? 10 : |
WRITE MONITOR? Y ae : | 2 | | 5
NS

COMMAND (7): WIX |
WIX ---- WRITE - TRANSPARENT
WRITE ADDRESS? 5B
WRITE RECL? 80 |
NUMBER OF RECORDS? 5 . | 5 oe

KCURLTEMONT TOR? Y ee — ee _S

Ending $SBSCUT2 Utility (EN)

The EN commandends the $BSCUT2utility.

Chapter 1. Binary Synchronous Communications Access Method (BSCAM) CQ-39

Example: EN command

| COMMAND (7): EN
| SBSCUT2 ENDED AT 01:14:40

The CH command reassigns the hard-copy device where the test messages and results are

printed or displayed. If the hard-copy device you enteris not defined to the system, output goes

to the terminal that loaded $BSCUTZ2.

Example: CH command

| COMMAND (7): CH
| NEW HARD-COPY DEVICE? SSYSLOGA

Interpreting Test Results

The results of a test will print out or display at your output terminal. The utility issues a test

pattern message for every recordit read or wrote in test.

The first line of a test pattern message gives the task name, record number, and record length.

The second line showsthe alphabet repeated to fill up the numberof characters specified for

record length.

TASK READ ENTERED RECORD NUMBER= 1 RECORD LENGTH= 72
ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPORSTUVWXYZABCDEFGHIJKLMNOPORST

The meanings of the task namesare as follows:

¢ READ read of standard or transparent data in standard mode

e RXVI1- read of transparent data in conversational mode

e RNVI- read of standard data in conversational mode

e WRIN- write of standard data in standard mode

e WRIT - write of transparent data in standard mode

e WXVI1- write of transparent data in conversational mode

CO-40 SC34-0443

e WNVI- write of standard data in conversational mode

¢ MTX1- read of transparent data by a tributary station

« MCX!- write of transparent data by a control station

The output message in the previous example repeats for the numberof records transmitted.

A test can fail if the utility detects an internal error in BSCAM.Inthatcase, the utility issues a

BSC return code that points out the cause of the problem. Refer to the Messages and Codes for

explanations of the BSC return codes. However, a test can also fail because you supplied wrong

informationto the utility. It could be that you gave invalid BSC line addressesor specified too

small a buffer for a read test. Retry the test and specify valid information to the utility.

Wheneveranerroris detected, either in BSCAMorin the information you entered, the test

ends, the utility is cancelled, and a program check messageis issued to the logging terminal for

the system.

3SC Lines with the Communications Indicator Panel Monitoring B

The communicationsindicator panel is an aid in program debugging and machine

troubleshooting during BSCAM operations. It lets you select a BSC line and theactivity on

function to monitor.

installing and Attaching the Communications Indicator Panel

The panel can beinstalled on the frame offull-width processors and I/O expansion units by

screwing it into the upperleft part of the unit. It is possible to use the panel on half-width

processors becauseit is not necessary to install it on the unit itself.

To monitor a BSC line you must attach the panel connector to the card where thelineis

assigned. Attach the panel connector to the appropriate set of pins on the card you wantto

monitor. Be sure the card itself is properly seated and that the connectorandpinsfit together

snuggly. Do not force the connector onto the pins.

Whenusing the panel on a 4-line adapter card, you must select which of the BSC lines to

monitor. Using the toggle switches labeled ''LINE SELECT’, set the last three bits of the line’s
device address,in binary form.

Whenusing the panel on a single-line card, you do not needto set the line select switches. The

panel will monitor the line automatically.

Selecting Function to Monitor

The 'DISPLAY/FUNCTION SELECT"switchesallow you to select what activity or function
to monitor on the line. The settings are different for the single-line adapter and the 4-line

Chapter 1. Binary Synchronous Communications Access Method (BSCAM) CO-41

nunications Access Method

Using BSC Utilities) (continued)

adapter. The following is an overview of the functions and activities you can monitor with the

panel.

e DCB control word

e DCBchain address

e DCB byte count

e DCB data address

e Storage data register

e Interrupt condition code

e Interrupt status byte

e Cycle-steal status word

e Cyclic redundancy check character

e Modem or modem eliminatorstates

e Jumper assignments

e Miultipoint station address

e Control character transmission

e Errors in block checking

The information supplied with the communications indicator panel can help youisolate problems

or confirm proper functioning of BSCAM andits associated hardware.

CO-42 SC34-0443

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

munications incicator Panel

Figure 22 shows the communications indicator panel. Assumethat it is being used to test one of

the lines on a 4-line adapter. The “‘line select’’ switchesare set at “‘111,’’ indicating the last

three digits, in binary form, of the line address being tested. The ‘“display/function select”

switches are set at “10111,” which causes the panel to monitor when the line goesinto select or

control mode, and when VRC or BCCerrors occur on the line. (For detailed information on

the exact switch settings to test both single and 4-line cards, refer to the JBM Series/1

Communications Features Description, GA34-0028. For X.21 display/function select switch

settings, refer to the JBM Series/1 Synchronous Communications Single-Line Control Attachment

Feature, GA34-0241.)

16dpdd00ge
DISPLAY/FUNCTION LINE

| SELECT _ |serect__

00000009,

Figure 22. Communications indicator panel

Chapter 1. Binary Synchronous Communications Access Method (BSCAM) CO-43

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

Using X.21 Swi

The X.21 circuit switched network support is the basis for the BSC link with the digital Public

Data Network used by many countries outside the United States. The information in the

preceeding sectionsis still valid for the X.21 network; the exceptions are noted in this section.

For X.21 to function on yourSeries/1, you must:

e Jumper the IBM 2080 synchronous communicationssingle-line control, high speed feature

card for switched operation.

e Perform system generation for X.21 circuit switched support.

— Define the connection type you want.

e Edit the $$X21DS data set on your IPL volume and build a connection record.

— Know the network information codes for your country.

e Convert BSC program for X.21.

e Activate $LOG for tracking X.21 errors and call progress signals.

Note: For general hardware information about IBM implementation of X.21, refer to JBM

Implementation ofX.21 Interface General Information Manual, GA27-3287.

Attaching and Jumpering the 2080 Card

You must jumper the 2080 card for switched operation if you want X.21 switched network

support capabilities, and you must jumper BSC if you wantto use BSC.

For details on the functional characteristics and installation of this card, refer to [BM Series/1

Synchronous Communication Single-Line Control Attachment Feature Description, GA34-0241, or

the Maintenance Logic Diagrams and the Customer Site Preparation Manual, GA34-0050.

System Generation for X.21 Support

CO-44 SC34-0443

During system generation, you musttell the supervisor to support X.21 by defining the

BSCLINEdefinition statement and connection type, and by including the BSCX21 module.

This is valid for EDX version 4.1 only. (Refer to Installation and System Generation Guide for

sysgen information.)

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

g X.21 Switched Network Support (continued)

Determining the Connection Type You Need

The following figure shows the four connection types defined for BSC X.21 circuit switched

support, their connection method,and their protocol after connection.

BSC connection type X.21 BSC protocol
supplied by user method after connection

Switched auto (SA) Auto answer Pt-to-pt switched

Switched manual (SM) Auto call Pt-to-pt switched

Auto call (AC) Auto call Pt-to-pt switched

Direct call (DC) Direct call Pt-to-pt switched

Figure 22.1. Mapping procedures for BSC X.21 circuit switched support

Use the connection type when you code the TYPE= operand of the BSCLINE statement. You

must code this parameter because there is no default for TYPE= with X.21circuit switched

support. Code this operand at system generation time.

The $$X21DS Connection Record Data Set

You have an IBM-supplied one-record data set allocated on your IPL volume with the reserved

name $$X21DS. It contains no information. If you are using TYPE=DC,you canedit this data

set to create your own connection records. With TYPE=ACor SM,you can either create your

own connection records, or you can create and use the default record named X21RECyy, where

‘vy’? is the hexidecimal address of your attachmentcard. If you are specifying TYPE=SA (auto

answer), the system requires no connection record, but don’t delete the $$X21DS data set or

X.21 will fail.

Chapter 1. Binary Synchronous Communications Access Method (BSCAM) CQO-44.1

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

Building a Connection Record

You can build as many connection records as you need. To format a connection record, use the

$FSEDIT utility or option 1 of the session manager. (For information on the $FSEDITutility
and the session manager, refer to the Operator Commands andUtilities Reference.)

Every connection record that you build MUST begin in column 1. Figure 22.2 shows the format

for each connection record, followed by an explanation of eachfield.

Columns:

1 10 72

Name Retry count) Delay value) Network information field

1—8 characters O—3 characters O—5 characters O—61 characters

Figure 22.2. Connection Record FormatFields

CO-44.2 SC34-0443

Name - a1 to 8 alphanumeric character name. The system uses this record name to

identify the connection record it should use for a particular request. If you are going to use

the default record with auto call (AC or SM)ordirect call (DC), one of your record names

must be X21RECyy (where yy is the hex address of the 2080 card).

Retry Count - decimal number from 0 to 255 to indicate the maximum numberof times the

system should retry this same request. This field MUST begin in column 10. Use a comma to

separate this field from the delay value field. If you use a commabyitself, the numberof

retries defaults to 1.

Delay Value - decimal number from 0 to 65535 to indicate (in milliseconds) the time

between the receipt of an error status from a call and the time when the network should

reissue that call. Use a commato separate this field from the network information field. If

you use a commabyitself, the delay time defaults to 0 milliseconds.

Network Information Field - up to 61 characters for a total record length of 72. This field

contains your facility requests and the address selections the network should usefor a call

request. All informationin this field must conform to the requirements of your network,

including all special characters. (Refer to the network information technical report for your

country to find this information.) If you have specified DC (direct call), the network will

not use this field, but it will use the name,retry, and delay fields. Neither the hardware nor

the software verifies that the data in the network informationfield is valid.

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

The following example shows a sample connection record data set. The fourth sample record,

X21RECOA,illustrates the default record. Its retry count is 2 and its delay value is 1. You have

to fill in the network information field with valid data for your country. The last sample record,

GEORGE,is an example of a connection record for DC (direct call); no network information is

needed for DC.

Example: A connection record dataset.

 conmREC)255, 65000,NETWORKINFORMATION.GOESINTO.‘THIS FIELD
|CONNREC2 156,100, 01234567+_ -
| CONNREC3 ,,01234567890+ _
|X21RECOA 2,1,0123456789012345+
| GEORGE25,255, .

Convert BSC Program for X.21

The only change you need to make for BSC programsto run with X.21 is to code the X21RN

operand on the BSCOPENinstruction in your program if you want the system to use your own

connection records. (Refer to Language Reference for further coding information.)

If you are using auto call (AC or SM) and you don’t code X21RN, X.21 will look for the default

record named X21RECyy, where yy is the hexadecimal address of your attachment card. As

stated earlier, you must insert X21RECyy into the $$X21DS data set. However, if you specify

DC and you don’t code X21RN,the retry and delay values default to 1 and O respectively.

Figure 22.3 shows a coding example for the BSCOPENstatement. For example, if you name

your connection record ““CONNREC1,” the BSCOPENstatement contains the pointer,

X21RN,to that record.

Note: In the DC statement below,if your record name has fewer than 8 characters,it’s a good

idea to pad the name with blanks to equal8 characters in length.

|label— |BSCOPEN“BSCIOCB,.X21RN=recrdptr_
\recrdptr DC© 6 ola!CONNREC1"membernamea.

Figure 22.3. X.21 BSCOPENcoding example

Chapter 1. Binary Synchronous Communications Access Method (BSCAM) CO-44.3

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

Using X.21 Sv yitched Network Support(continued)

X.21 Error and Call Progress Signal Logging

You should activate $LOG whenusing X.21 circuit switched support. Then use the LL or LP

command of the $DISKUT2 utility to list your error log record. The system will tell you when you

have an X.21 switched error. Then you need to checkthe error log record to determine what

the erroris.

Figure 22.4 shows an example of the printed output created by the $DISKUT2utility when you

have X.21 circuit switched support. In this case, the X.21 return code field (word 19) equals -9

(FFF7), indicating a read instruction error. An explanation of the numbered items follows the

example.

(COMMAND (?) : LL
Go L0G DS NAME: [LocpDs

DEVICE ADDRESS (NULL FOR ALL): 0002
Ra 1/0 LOG ERROR COUNTERS (BY DEVICE ADDR):

REQUESTED HEX DUMP OF LOG RECORD:

O000 A 0000 0055. 7EOO 0000 0222 0000 0000

0010 0000 0000 0000 0000 0002 O02D0 ee A,

rf

0020 FFFF A. FFF7 0000 0000 0000 0000 OO000
0030 0000 0000 0000 0000 0000 0000 0000 0000
0040 0000 0000 0000 0000 0000 0000 0000 90000
0050 0000 0000 0000 0000 0000 0000 0000 0000
0060 0000 0000 0000 0000 0000 0000 0000 0000
0070 0000 0000 0000 0000 0000 0000 0000 0000
0080 0000 0000 0000 0000 0000 0000 0000 0000
0090 0000 0000 0000 0000 0000 0000 0000 0000
OOAO 0000 0000 0000 0000 0000 0000 0000 0000
OOBO 90000 0000 0000 0000 0000 0000 0000 0000
00CO 0000 0000 0000 0000 0000 0000 0000 0000

~0O0DO 0000 0000 0000 0000 0000 0000 0000 0000
OOEO 0000 0000 0000 0000 0000 0000 0000 0000

~OQOFO 0000 0000 0000 0000 0000 0000 0000 0000 LS LOG LISTING ENDED

Figure 22.4. Example of the X.21 printed log information for a read error

CO-44.4 §C34-0443

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

R
a
s

os ey .

EE This is the nameof the log data set you created with $LOG. In this example, the log data

set is LOGDS.

@% This is what you will see on the usual log information. The dots (.) replace the list of device

addresses and I/O errorindications that $DISKUT2 provides. These device addresses range

from X’00’to X’FF’, or 0 to 255.

ey ‘This is the start of your X.21 log record output. The first 28 bytes contain the log header

information that is reserved for system use.

RZ This byte contains the X.21 record type, X’04’. It marks the beginning of the X.21

statistical log.

This byte contains your device address, in this case X’02’.

ex This word contains the X.21 error flags reserved for system use. In this case,it indicates

that there are X.21 log entries.

@a This word indicates that there is a read instruction error when equivalent to -1 (FFFF hex).

Referto this byte only when the word indicated by [Ej equals -9 (FFF7 hex).

[A This word contains the error return code from the read instruction. Refer to this word only

whenthe word indicated by fg equals -9 (FFF7 hex). (Refer to Messages and Codes for the
meanings of these error codes.)

When this word equals -9 (FFF7 hex), you must consult the two wordsindicated by

fy. In this case, the remainder of the log record will contain zeroes.

Chapter 1. Binary Synchronous Communications Access Method (BSCAM) CO-44.5

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

Figure 22.5 shows a second example of the printed output created by $DISKUT2 when you

have X.21 circuit switched support. In this case, the X.21 return code field (word 19) equals

-27 (FFES) and indicates a device error. An explanation of the numbered items follows the

example.

- COMMAND (?): LL
BR L0G DS NAME: LOGDS

DEVICE ADDRESS (NULL FOR ALL): 0002
El (1/0 LOG ERROR COUNTERS (BY DEVICE ADDR):

REQUESTED HEX DUMP OF LOG RECORD:

0000 A 0000 0055 7EOO 0000 0222 0000 0000

0010 0000 0000 0000 0000 0002 02D0 ny C000
7

0020 0000 0000 FFES5 sas) 0000 0000 0000 0000

0030 0000 0000 0000 0000 0000 0000 oo 0000
0040 0000 0000 0000 0000 0000 0000 0000 0000
0050 0000 0000 0000 0000 0000 0000 0000 0000

0060 0000 0000 _O 0000 0000 0000 0000 0000
0070 0000 0000 0000 0000 0000 0000 0000 0000

0080 0000 0000 0000 0000 0000 oo 0000 0000
0090 0000 0000 0000 0000 0000 0000 0000 0000
OOAO 0000 0000 0000 0000 0000 0000 0000 0000
OOBO 0000 0000 0000 0000 0000 0000 0000 0000
00CcO 0000 0000 0000 0000 0000 0000 0000 0000
OODO 0000 0000 0000 0000 0000 0000 0000 0000
OOEO 0000 0000 0000 0000 0000 0000 0000 0000
OOFO 0000 0000 0000 0000 0000 0000 0000 0000

LOG LISTING ENDED

Figure 22.5. Example of the X.21 printed log information for a device error

CO-44.6 SC34-0443

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

Using X.21 Switched Network Support (continued)

EE This is the nameof the log data set you created with $LOG. In this example,the log data

set is LOGDS.

2 This is what you will see on the usual log information. The dots (.) replacethe list of device

addresses and I/Oerrorindications that $DISKUT2 provides. These device addresses range

from X’00’to X’FF’, or 0 to 255.

This is the start of your X.21 log record output. The first 28 bytes contain the log header

information that is reserved for system use.

E§ This byte contains the X.21 record type, X’04’. It marks the beginning of the X.21

Statistical log.

This byte contains your device address, in this case X’02’.

f§ This word contains the X.21 error flags reserved for system use. In this case,it indicates

that there are X.21 log entries, and that a device error has occurred.

This word is the X.21 return code field. When it equals -27 (FFES hex), consult the device

error codefield ().

Ey This byte shows you how many timesthe call was retried beforeit failed. In this case, the

retry count equals 3.

This byte will give you the device error code, in this case -6 (FA hex). Use the data in this

byte only when the wordindicated by equals -27. The error codesare asfollows:

“DEVICE ERRORCODESoe —
-=1(FF) ‘Buffer overrun.

-2 (FE) / Unsuccecstul DCE.‘clear
+3:@) Interface data checkerror.
-4 (FC) ‘Invalid interruptcode
 -5(FB)Invalidinterrupt status byte_
-6(FA) ~— ‘InvalidI/O condition code Oe
+7(F9) ~~ Start cyclesteal statusissued ae
78 (F8) Specification check— ee

Figure 22.6. Device Error Codes

Note: Refer to the hardware manual [BM Series/1 Communications Theory Diagrams,

SY34-0059, for the meanings of these messages.

Chapter 1. Binary Synchronous Communications Access Method (BSCAM) COQO-44.7

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

 CO-44.8

The next 100 bytes (00 to 99) are the call progress signal counters. They record call progress

signals and hardware errors. The following example shows the meaning of the significant bytes.

The numberwithin the byte indicates how many times the error occurred. For example, [@

shows youa Call progress signal of 21 becauseit’s the 21st. byte after acy; the number 02 within

the byte tells you that it occurred twice. ff] shows youa call progress signal 61 because it’s the

6ist. byte after Rg; the number 01 within the byte tells you that it occurred once. The byte

numbercolumn gives the byte numberrelative to the beginning of the log ([Rg).

Call

progress Byte

signal number Meaning of signal What X.21 does

00 28 Reserved Does not clear. Waits for attempt to

01 29 Terminal called complete.

02 2A Redirected call

03 2B Connect whenfree

20 3C No connection Clears due to short-term conditions.

21 3D Number busy Tries again upto retry limit.
22 3E Selection signals procedure error

23 3F Selection signal transmission error

41 51 Access barred Clears due to long-term conditions.

42 52 Changed number Call unsuccessfully completed.

43 53 Not obtainable

44 54 Out of order

45 55 Controlled not-ready

46 56 Uncontrolled not-ready

47 57 DCE poweroff

48 58 Invalid facility request

49 59 Networkfault in local loop

51 5B Call information service

52 5C incompatible user class of service

61 65 Network congestion Clears due to network short-term

conditions. Tries again up toretry

limit.

71 6F Long-term network congestion Clears due to long-term network

72 70 RPOAout of order conditions. Call unsuccessfully

completed.

81 79 Registration / cancellation confirmed Clears due to DTE network

82 7A Redirection activated procedure.

83 7B Redirection deactivated

Figure 22.8. Call Progress Signal Counter Usage

fi] This byte marks the endofthe statisticallog.

SC34-0443

When the Remote Management Utility ($RMU)is loaded on a Series/1, it allows another

system, called the host, to control the Series/1. The Series/1 with $RMU loadedonitis called

the remote system.

The host starts and controls functions that $RMUperforms on the remote system. $RMUwaits
for an application program running on the hostto ask it to perform some function, and then

does the work. No operator action at the remote system is needed. $RMUsendsresponses to

the host thattell if it completed the function successfully, and to provide other information

about the function.

The $RMU-controlled (remote) system is always a Series/1. The host system can be a
Series/1, too. This chapter talks about the host system being a Series/1. It tells how to write

host programs to communicate with $RMU. The Binary Synchronous Communications Access

Method (BSCAM)controls I/O during $RMUoperations. Because of this, $RMUoperation

requires the use of binary synchronous communication (BSC) lines. In addition, the host

program must consist of Event Driven Language BSCinstructions and mustfollow rules for

BSCAM programsin general.

If your Series/1 is the Host system making requests of another Series/1, then you mustwrite

the application programs that send requests to $RMU.

Chapter 2. Remote ManagementUtility ($RMU) CO-45

CO-46 $C34-0443

Your host program can ask $RMUto perform the following functions:

e Manage data sets on the remote system

— ALLOCATEfunction

— DELETEfunction

— DUMPfunction

e« Transfer data between the two systems

— SENDfunction

— RECEIVE function

— WRAP function

e Control the running of programs on the remote system

— EXEC function

— SHUTDOWN function

e Establish interactive sessions between the two systems

— PASSTHRUfunction

e Verify the IDs of the two systems

— IDCHECKfunction

If your Series/1 is the remote system, there is no work that you must do to respond to host

requests, since the utility takes care of that automatically. However, before $RMU operations

can begin, you mustload the utility into your system with the command $L $RMU.Theonly

other work that can be done at the remote system is changing $RMUdefault values. The

section, ““Remote Management Utility Defaults” on page CO-50tells about these values and

how to change them.

Figure 23 on page CO-47 showshowthe host and remote systems communicate by means of

the host program and $RMU.

TNL SN34-0878 (23 Dec 1983) to SC34-0443-0

Series/1 Host

system

_ program

Figure 23. Communication between host and remote systems

Utilit

Types of Line Connections

$RMUoperations can take place over several types of BSC line connections.

The host and remote systems can be connected on either point-to point or multipoint lines

during $RMUoperations. Point-to-point connections can be overleased or switchedlines,

depending on which type of service you have bought from the commoncarrier. Multipoint

connections require the host system to be the control station and the remote system to be a

tributary station. Remember, $RMUoperatesin point-to-point only for X.21.

Find out whattype of line connection your Series/1 is part of, and whetherit is acting as the

host or the remote system. Keep this information in mindsince you will use it in other areas of

planning for $RMUoperations.

Chapter 2. Remote ManagementUtility ($RMU) CO-47

Planning for the R

emote Management Utility Operations (continued)

Mode of Transmission

Transmissions during $RMUoperationsare in transparent mode. Although BSCAM,which

controls I/O for $RMU,supports other modes of transmission, only the transparent modeis

available with $RMU. This is important when you write host programsto send requests to

$RMU.

Storage Considerations

$RMU needs a maximum of 7.25K bytes of storage, plus buffer space, to perform all its

functions. However, $RMU can perform its data set management functions with only 5.5K

bytes of storage. In that case, $RMUgets any additional storage it needs from the partition in

whichit is executing.

The section, ““Remote Management Utility Defaults” on page CO-50tells how to use the

reduced storage size and how to changeit.

Remote System Requirements

For $RMUoperations the remote Series/1 must meet certain hardware and software

requirements.

Hardware Requirements

CO-48

Minimum hardware requirements for the remote Series/1 are as follows:

e Processor: 4952, 4954, 4955, or 4956.

¢« Storage: must be sufficient to handle the supervisor, $RMU (maximum of 7.25K bytes), and

the programs that run under $RMU(see notes).

e BSC Hardware Connection Features: must be one of the following:

single-line control, medium speed

single-line control, high speed

8-line control and one or two 4-line adapters

multifunction attachment

e Disk or Diskette: 4962, 4963, or 4967 (disk); 4964, 4965, or 4966 (diskette).

 Operations (continued

Notes:

1. The section ‘Storage Considerations’”’ on page CO-48tells you how $RMUusesstorage.

2. For additional information on storage considerations, refer to the Installation and System

Generation Guide.

4ware aegu frements

Since the Binary Synchronous Communications Access Method (BSCAM)controls the transfer

of data during $RMU operations, the system generation for the remote Series/1 must include

one BSCLINEstatement per copy of $RMU youplan to use. You must define each BSCline to

be used by $RMUaseither a point-to-point (BSCLINE TYPE=PT, SM or SA), or multipoint

tributary station (BSCLINE TYPE=MT). You must include enoughstorage to accomodate

$RMUandthe programsthat run underit in the partition where you plan to loadit.

If you plan to set up PASSTHRUsessions between the remote Series/1 and the host, $RMU

requires two virtual terminals. You must include two TERMINALstatements in your system

generation. On one statement, code the parameter ADDRESS=CDRVTA,and onthe other,

code ADDRESS=CDRVTB. Theseare the only addresses that are valid.

You must also include support for the BSCAM supervisor module.

Refer to the Installation and System Generation Guide for details on performing system

generation.

In this discussion, the host system is a Series/1. It too must meet certain requirements to

successfully communicate with $RMU. The following support must be defined during system

generation for the host Series/1:

e BSCLINE TYPE=PT, SM, SA, or MC

e BSCAM supervisor module support

Besides the Series/1, the host can be any system that meets these requirements:

e provides binary synchronous protocol compatible with BSCAM

e transmits in transparent EBCDIC

e supports the form of record exchange that $RMU performs

Chapter 2. Remote ManagementUtility ($RMU) CO-49

Remote ManagementUtility Defaults

Certain values associated with $RMUoperations have predefined defaults. These default values

are:

¢ Host system ID is set at HOSTRMUX.

e Remote system ID is set at REMTRMUX.

¢ BSClineis set at X‘09’.

e $RMUstoragesize is set at 7.25 Kbytes.

e Buffer size is set at 1024 bytes.

At the remote system, you can modify these default values by using the $DISKUT2 utility. This

utility allows you to get at main storage for $RMUandpatch your changes.

After you load the $DISKUT2utility, respond to its prompts to make changesto the default

values. In general, the utility prompts for the following information:

e a$DISKUT2 command

e the storage address containing the default value

e type of code the default value is in

e new data to replace the default value

The storage addresseslisted in this book are subject to change. Consult the PID directory for

the latest storage addresses for $RMU.

The sections that follow tell what information to enter to change each of the defaults.

Changing Host System ID

The default value for the host system ID (used in the IDCHECKfunction) is HOSTRMUX.

You can change this to another nameif you wish. In responseto the utility’s prompts, enter the

following information:

e Command: PA $RMU

e Address: 84E4 (*)

e Code type: E (for EBCDIC)

e Data: the new host system ID (8 characters)

CO-50 §C34-0443

1 for the Remote M gem Operations (continued)

* The addresslisted for the host system ID is subject to change. Consult the PID directory for

the latest storage addresses for this default value.

Changing the Remote System ID

The default value for the remote system ID (used in IDCHECKfunction) is REMTRMUX.

You can changethis to another nameif you wish. In responseto theutility’s prompts, enter the

following information:

e Command: PA $RMU

e Address: 8464 (*)

e Code type: E (for EBCDIC)

e Data: the new remote system ID (8 characters)

* The addresslisted for the remote system ID is subject to change. Consult the PID directory

for the latest storage addresses for this default value.

Changing the BSC Line Address

The default value for the BSC line address is X’09’. You can changethis to anotherline address

if you wish. In responseto the utility’s prompts, enter the following information:

e Command: PA $RMU

e Address: 0858 (*)

e Code type: H (for hexadecimal)

e Data: new BSCline address

* The address listed for the BSC line addressis subject to change. Consult the PID directory for

the latest storage addresses for this default value.

If you change the BSC line address from its default value, make sure that the BSC line

definitions for the remote system (made during system generation) reflect the change.

g Storage Size

The default value for storage required by $RMUis 7.25K bytes. Howver, you can changethe

size of storage from 7.25 to 5.5K bytes. In response to the utility’s prompts, enter the following

information:

e Command: PA $RMU

e Address: 1844 (*)

Chapter 2. Remote Management Utility ($RMU) CO-57

erations (continued)

« Code type: E (for EBCDIC)

e Data: CDRJP

* The addresslisted for the storage size is subject to change. Consult the PID directory for the

latest storage addressesfor this default value.

IMPORTANT: The value CDRJPis the only one you can enter as the new storage value.

Changing Buffer Size

CO-52 SC34-0443

The default value for buffer size on the remote system is 1024 bytes. You can change buffer

size within the minimum value of 512 and the maximum value of 32,512 bytes. Buffer size

should be in multiples of 256. In addition, buffer size depends onthe size of the blocks $RMU

is storing in the buffer. Two factors determine the size you should change buffersize to:

e data set type to be stored in the buffer

e numberof blocks sentin each record, according to data set type

First decide what data set type you will be storing in the buffer.

e Standard data set - meant to contain standard data

e Source data set - meant to contain source data

e PASSTHRUdata set - meant to be used in a PASSTHRUsession

Now determine the blocking factor for your type of data set. The blocking factor refers to the

numberof logical records contained in each block of data. If you want to send a certain number

of records in each block, then your buffer must be able to accomodate those records. The

calculations to determine blocking factor are described in the sectionsthat follow.

Determining Blocking Factor for Standard Data Sets: To determine the blocking

factor for a standard data set, make the following calculation:

(buffer size - 6) / 256 = blocking factor

Discard the remainder.

For example, assume a buffer size of 768 (256 x 3); subtract 6 to get the value 762. Divide 762

by 265; the quotient is 2. Discard the remainder. The blocking factoris 2.

 Determining the Blocking Factor for Source Data Sets: To determine the blocking
factor for a source data set, make the following calculation:

(buffer size - 262) / 80 = blocking factor

Discard the remainder.

For example, assume a buffer size of 2048 (256 x 8); subtract 262 to get the value 1786.

Divide 1786 by 80; the quotient is 22. Discard the remainder. The blockingfactoris 22.

Determining Blocking Factor for PASSTHRU Data Sets: To determine the blocking
factor fora PASSTHRUdata set, make the following calculation:

buffer size - 264 = blocking factor

Discard the remainder.

For example, assume a buffer size of 512 (256 x 2); subtract 264. The result is 248. The

blocking factor is also 248.

To change the buffer size, enter the following information in response to the utility’s prompts:

e Command: SS $RMU

e Address: 1844

e Data: nnnn, which specifies the new buffer size

If your Series/1 is acting as the host, you must write application programs to communicate with

$RMUonthe remote Series/1. Your programsends requests to $RMU andreceives responses

from $RMU.

Using Event Driven Language BSC Instructions

Since BSCAMcontrols transmissions between the host and remote systems, your host program

must contain EDL BSCinstructions. To send requests, code BSCWRITEinstructions, and to

receive $RMU’s responses, code BSCREADinstructions.

You may want to review BSCAM programming techniques before going further with

programming for the $RMUapplication. Chapter 1 contains information on BS;CAM

programming using the BSCinstructions.

Since $RMUtransmissions are in transparent mode, the BSC write instructions in your program

must be of the transparent type. For example, to send a request, code a BSCWRITEIX(initial

Chapter 2. Remote ManagementUtility ($RMU) CO-53

transparent write). To signify the end of a request, code a BSCWRITEE instruction. To send

data, code BSCWRITEIX forthe first record and BSCWRITE CX (continue transparent write)

for subsequentrecords.

To review the syntax of the BSC instructions, refer to the Language Reference.

Receiving $RMU’s Responses to Host Requests

Status Message

CO-54 SC34-0443

During the course of performing any function, $RMU sends various types of messages to the

host. These messages provide the following information to the host:

e Status messages that indicate success or failure of a function

¢ Count messages that show the numberof records sent or received by $RMU

¢ Data messages that $RMU usesto send data

All of these messagesstart with three fields that make up the header, as shown below:

e RMHBSCCcontains the BSC control characters DLE STX.

¢ RMHIDidentifies a message from $RMU.

° RMHTYP identifies the type of message: ’S’ for status, ’C’ for count, or ’D’ for data.

$RMUsendsa status messageto the host to indicate the success or failure of a requested

function. A status record is 18 bytes in length. Besides the three fields that make up the

header,it contains several fields that provide the following information:

e RMSREQspecifies the request that the status message pertains to. For example,ifit is in

response to an allocate request, the RMSREQfield showsthe value 2, which represents the

allocate request.

e RMSEFNindicates the success or failure of the particular request. This field contains a -1 to

indicate the success of a request. Any other value (a positive value) indicates failure of the

request. The numberrefers to a specific error condition, as shownin the chart below:

Host Programming for the $RMU Application (continued)

Status

Code

O
W
O
D
I
D
M
W
I
A
W
N
=

11

Condition

IDCHECK Function Failed
Buffer area is too small for the record

Short record (less than 4 bytes)

HeaderID is ’H’ (invalid)
Invalid header ID (not ’X’ or ‘H’)
Request expected

Invalid request

Request short (missing information)
Invalid SEND/RECEIVE type
Invalid blocking factor
Invalid message received during request

invalid PASSTHRU record type

Invalid DUMP partition number

Request received while another was running
EOT expected and not received
Virtual terminal busy

READdisk/diskette failed
WRITEdisk/diskette
Load failed

Load of overlay failed

BSC I/O failure
PRINTEXTfailed for virtual terminal
ALLOCATE/DELETEfailed
OPENfailed
SETEODfailed

Parameters to build LOADinstructions areinvalid

Overlay function missing

Figure 24. $RMUstatus failure codes

e RMSST appears when the number in RMSFNindicates that an Event Driven Executive

function failed. This field appears in a status message only if one of the following numbers

appears in the RMSFENfield:

— 21 or 22: contains disk (READ/WRITE)return code

— 24or 25: contains LOAD return code

— 26: contains BSC (binary synchronous communications) return code

— 27: contains virtual terminal I/O return code

— 31,32 or 33: contains $DISKUT3 return code

— 34: contains LOAD return code

For explanations of the return codes, refer to the Messages and Codes.

e RMSRIDappears only in the status message of a successful IDCHECKrequest. It specifies

the ID of the remote Series/1.

Chapter 2. Remote ManagementUtility ($RMU)

Remote M

Host Programmingfor the $RMU 4

Count Message

Data Message

\pplication (continued)

$RMUsends a count message to the host whenit detects an end-of-data condition during a data

set transfer (from either a SEND or RECEIVErequest). This message shows the numberof

records that $RMU sent. The count messagealso indicates if records were padded (blanks

inserted) during the data set transfer. The host should use the count message to verify whether

a complete data transfer occurred. For example, if the host program sent 30 messages, then the

count message from $RMUshould indicate that the utility received 30 messages.

The count message can be up to 12 bytes long. Besides the header, it contains severalfields that

provide the following information:

« RMCREQidentifies the request type that the count message pertains to (0 = SEND,1 =

RECEIVE).

e RMCFLGindicates if record padding occurred during a data set transfer. A value of ’1’ in

this field indicates padding; a value of ’0’ indicates no padding.

¢« RMCCNTspecifies the number of records transmitted. This numberreflects the number of

logical records (80-byte or 256-byte) that $RMU transmitted, regardless of how the records

were blocked.

$RMUsends data messagesto transmit data to the host in response to a SEND request. This

type of message contains the 80-byte or 256-byte records from the data set specified in the

SENDrequest.

Besides the header, the data record contains the followingfield:

« RMDDATAcontains the data that $RMUis sending to the host. The length of this field

will be a multiple of 80 or 256, depending on the specifications of the host in its SEND

request.

Error Handling During $RMU Operations

CO-56 SC34-0443

If a communications error occurs while $RMUis executing, the terminal that loaded $RMU (on

the remote system) receives an error message. If a communications error occurs while $RMUis

performing a function, it generally terminates. However, the SEND, RECEIVE, and

PASSTHRU functions may continue executing because these functions require multiple message

exchanges between the host and the Series/1 before the function is complete. If the erroris

recoverable, $RMUsendsthe host a status record followed by a termination (EOT). After this

sequence of messagesis over, the host can issue a new request.

Both $RMUandthe host program can detect errors while an $RMUfunctionis executing. If

$RMUdetects such an error, it sends the host a status record indicating the error condition,

followed by an EOTto terminate the function. After this sequence is complete the host can

issue a new request. If the host program detectsanerror, it should terminate the function in the

 Host Programming for the SRMU Application (continued)

same sequence as $RMU. However, the status record the host sends to the remote system

requires only the 4-byte header of a status record (RMHBSCC, RMHID, and RMHTYPfields).

$RMU detects errors during all phases of operations and sendsfailure status messagesto the
host. Refer to “Status Message” on page CO-54 for details of these failure messages. Status,
count and data messages werediscussed previously in “Receiving $RMU’s Responses to Host
Requests on page CO-54. The type and sequence of responses $RMU sends varies according to
the request type. The sections below, whichtell how to code each type of request in a host
program, also show the way $RMU respondsto each request.

You must code a BSCREADinstruction to receive each of $RMU’s responsesto a request. To

receive $RMU’sfirst response to a request, code a BSCREADI (initial read) instruction. To

receive the rest of $RMU’s responses, code BSCREADC (continue read) instructions.

Coding the Required Field for Requests to $RMU

For each request the host sends to $RMU, you mustcodecertain fields of information in your

program. Eachsetof fields identifies a different type of request, and tells $RMU exactly what

the host wantsit to do.

The sections that follow identify the required fields for each type of request and show what

information to enter in eachfield.

Managing Disk/Diskette Data Sets

The host can ask $RMUto work with disk or diskette data sets on the remote system. The three

such functions that $RMU can perform are:

« ALLOCATEa disk or diskette data set

e DELETEa disk or diskette data set

e DUMPstorage to a disk or diskette data set

Allocating Disk/Diskette Data Sets (ALLOCATE)

The host can ask $RMUto allocate a disk or diskette data set on the remote system with the

ALLOCATErequest. The data set can contain either standard data or a program.

To send $RMU your ALLOCATErequest, code a BSCWRITEIXinstruction along with the

required information fields. Then code a BSCWRITEE or EXinstruction to signify that you

are finished sending the ALLOCATErequest.

After $RMU gets the host’s ALLOCATErequest, it sends a status message. Code a

BSCREAD instruction to receive this message. After performing the requested function, or

after encountering a failure condition, $RMU terminates the function by sending an EOT(end-

Chapter 2. Remote ManagementUtility ($RMU) CO-57

of-transmission) sequence to the host. Code a BSCREADC instruction to receive the notice of

termination.

IMPORTANT: The ALLOCATEfunction uses the $DISKUT3 utility. Do not allocate a data

set named $EDXNUC, $$EDXVOL,or $$EDXLIB.

Allocating a Program Data Set: jg you are going to allocate a dataset that is to contain a
program from the host system, you must have the following information available:

e« The load address of the program

e the size (in bytes) of the program

e the entry point of the program

e the RLD (relocation dictionary) count of the program

Obtain the information by opening the host program data set and examining the data set control

block.

Coding the Required Fields for ALLOCATE

The chart that follows showsall the fields to code in your program for an allocate request. The

fields identified with an asterisk (*) contain variable values. You can code any appropriate

value in these fields. However, the other fields can contain only the values shown in the chart.

Codethese fields exactly as the chart specifies.

Field Size, Explanation Whatto Code
Type

RMHBSCC 2 hex Starts transmission of a request RMHBSCC DATA X’1002’

RMHID 1 alpha Identifies message to $RMU RMHID DATA C’X’

RMHTYP 1 alpha Identifies request to $RMU RMHTYP DATA C’R’

RMREQ 2 num Specifies ALLOCATE request RMREQ DATAF'2’

Figure 25 (Part 1 of 2). Required fields for ALLOCATE request

CO-58 SC34-0443

mming for the $RMU Application (continued)

Field Size, Explanation What to Code
Type

-RMADSN(*) 8 alpha Nameof the data to be allocated RMADSN DATA CL8'DATASET’

RMAVOL(*) 6 alpha Nameof the volume containing RMAVOL DATA CL6’VOLUME’
data set. Default = IPL volume.

RMANREC(*) 4 num Numberof 256-byte records RMANREC DATAD'‘nn’
allocated for data set

RMADST(*) 2 num Type of data set allocated (1 = data; RMADSTDATAF'n’
3 = program)

RMALAD(*) 2 num Load address of program data set RMALAD DATAF'nn’
(see note)

RMAPSZ(*) 2 num Program size in bytes (see note) RMAPSZ DATAF'nn’

RMAENT(*) 2 num Program entry point (see note) RMAENTDATAF'nn’

RMARLD(*) 2 num RLD count of program (see note) RMARLD DATAF'nn’
Figure 25 (Part 2 of 2). Required fields for ALLOCATErequest

Note: The RMALAD, RMAPSZ, RMAENT and RMARLDfields are required only if the data

set you are allocating is a program. In this case, the RMASDTfield must contain the value 3.

Figure 26 shows an example of the ALLOCATEfunction. The host requests a data set named

"MYDATA"to be allocated on volume ''MYVOL". Thedata set type is 1 (data) and ten
256-byte records are allocated. $RMUsendsa status record with -1 (successful completion) to

the host.

Figure 46 on page CO-95 shows a sample program that can send an ALLOCATErequest.

Chapter 2. Remote ManagementUtility ($RMU) CO-59

Remote ManagementUtility (SRN

Host Programming for the $RMU Application (continued)

Host Program Host Remote

BSCWRITEIX ENQ ------- >

<mereee- ACK*

RMHBSCC DATA X’1002' TEXT ------- >

RMHID DATA C’X’
RMHTYP DATA C’'R’
RMREQ_ DATA F'2’
RMADSN DATA CL8’MYDATA‘’
RMAVOL DATA CL6’MYVOL’
RMANREC DATA D‘10°
RMADST DATA F'1’
RMALAD DATA F’0’
RMAPSZ DATA FO’
RMAENT DATA F'O’
RMARLD DATA F'O’

<+-+----- ACK*

BSCWRITE E EOT ------- >

<------- ENQ

ACK* ------- >

BSCREAD| <------- TEXT

(status)

RMHTYP=’S

RMSREQ=2

RMSFN=-1

ACK* ------- >

BSCREAD C <------- EOT

(termination)
Figure 26. Communications flow for ALLOCATE

Deleting a Disk/Diskette Data Set (DELETE)

CO-60 SC34-0443

You can ask $RMUto delete a disk or diskette data set on the remote system with a DELETE

request.

To send $RMU your DELETErequest, code a BSCWRITEIX instruction along with the

required information fields. Then code a BSCWRITEE or EXinstruction to signify that you

are finished sending the DELETErequest.

After $RMUgets the host’s DELETE request, it sends a status message. Code a BSCREADI

instruction to receive this message. After performing the requested function,or after

encountering a failure condition, $RMU terminates the function by sending an EOT (end-

of-transmission) sequence to the host. Code a BSCREADC instruction to receive the notice of

termination.

IMPORTANT: The DELETEfunction uses the $DISKUT3utility. Do not delete data sets

$EDXNUC, $$EDXVOL, and $$EDXLIB.

Host Programming for the $RMU Application (continued)

Coding the Required Fields for DELETE

The chart that follows showsall the fields to code in your program for a delete request. The

fields identified with an asterisk (*) contain variable values. You can code any appropriate

value in these fields. However,the other fields can contain only the values shownin the chart.

Code these fields exactly as the chart specifies.

Field Size, Explanation What to Code
Type

RMHBSCC 2 hex Start of message RMHBSCC DATA X’1002’

RMHID 1 alpha identifies message to $RMU RMHID DATA C’X’

RMHTYP 1 alpha Identifies request to $RMU RMTYP DATA C’'R’

RMREQ 2 num Specifies DELETE function RMREOQDATAF’3’

RMDDSN(*) 8 alpha Data set to be deleted RMDDSN DATA CL8’DATASET’

RMDVOL(*) 6 alpha Volume containing data set to be RMDVOLDATA CL6’VOLUME’
deleted. Default = IPL volume

Figure 27. Required fields for DELETE request

Figure 28 on page CO-62 shows an example of the DELETEfunction. The hostspecifies a

data set named "MYDATA"to be deleted from volume '"MYVOL". $RMUsendsa status
record with -1 (successful completion) to the host.

Figure 46 on page CO-95 showsa program that can send a DELETErequest.

Chapter 2. Remote ManagementUtility ($RMU) CO-61

Remote ManagementUtility (GSRMU)
Host Programming for the $RMU Application (continued)

HostProgram Host Remote

BSCWRITEIX ENQ ------- >

<------- ACK*

RMHBSCC DATA X’1002’ TEXT ------- >

RMHID DATA C’X’
RMHTYP DATA C’'R’
RMREQ_ DATA F’3’
RMDDSN DATA CL8’MYDATA’
RMDVOL DATA CL6’MYVOL’

<------- ACK*

BSCWRITE E FOT ------- >

<------- ENO

ACK* ------- >
BSCREAD| <------- TEXT

(status)

RMHTYP=’S’

RMSREQ=3

RMSFN=-1

ACK* ------- >

BSCREAD C <------- EOT

(termination)

Figure 28. Communications flow for DELETE

Dumping Storage to a Disk/Diskette Data Set (DUMP)

You can ask $RMUto dumpa storage partition to a disk or diskette data set on the remote

system with a DUMPrequest.

To send $RMU your DUMPrequest, code a BSCWRITE [IXinstruction along with the required

information fields. Then code a BSCWRITEE or EX instruction to signify that you are finished

sending the DUMPrequest.

After $RMUgets the host’s DUMPrequest, it sends a status message. Code a BSCREADI

instruction to receive this message. After performing the requested function, or after

encountering a failure condition, $RMU terminates the function by sending an EOT

(end-of-transmission) sequence to the host. Code a BSCREADC instruction to receive the

notice of termination.

Coding the Required Fields for DUMP

The chart that follows showsall the fields to code in your program for a dump request. The

fields identified with an asterisk (*) contain variable values. You can code any appropriate

value in these fields. However, the other fields can contain only the values shown in the chart.

Codethese fields exactly as the chart specifies.

CO-62 SC34-0443

Host Programmingfor the $RMU Application (continued)

Field Size, Explanation What to Code
Type

RMHBSCC 2 hex Start of transmission RMHBSCC DATA X’ 1002’

RMHID 1 alpha Identifies message to $RMU RMHID DATA C’X’

RMHTYP 1 alpha Identifies request to $RMU RMHTYP DATAC’R’

RMREQ 2num Specifies DUMPrequest RMREQ DATAF’4’

RMDPDSN(*) 8 alpha Nameof the data set to dump to RMDPDSNDATA CL8’ DATASET’

RMDPVOL(*) 6 alpha Volume containing dumpdata set. RMDPVOLDATA CL6’VOLUME’
Default = IPL volume

(filler) 1 n/a Reservedfield (unused) DATA H’0’

RMDPPTN(*) 1 num Partition to be dumped RMDPPTN DATAH'n’
Figure 29. Required fields for DUMP request

Figure 30 on page CO-64 shows an example of the DUMPrequest. The host requests that

partition 1 be dumped to the data set '"MYDATA"on volume "MYVOL". $RMUsends a
status record with -1 (successful completion) to the host.

Figure 46 on page CO-95 showsa sample program that can send a DUMPrequest.

Chapter 2. Remote Management Utility (SRMU) CO-63

Remote ManagementUtility (SRMU)

Host Programmingfor the $RMU Application (continued)

Controlling Data Transfers between Host and Remote Systems

Host Sending Data to Remote System (RECEIVE)

CO-64 SC34-0443

Host Program Host Remote

BSCWRITE IX ENQ ------- >

<e------ ACK*
RMHBSCC DATA X‘'1002’ TEXT ------- >

RMHID DATA C’X’

RMHTYP DATA C’'R’

RMREQ DATA F’4’

RMDPDSN DATA CL8’MYDATA’

RMDPVOL DATA CL6’MYVOL’

DATA H’0’

RMDPPTN DATA H’'1'

<------- ACK*

BSCWRITE E EOT ------- >

<------- ENO

ACK* ------- >
BSCREAD| <------- TEXT

(status)
RMHTYP=’S’

RMSREQ=4

RMSFN=-1

ACK* ------- >
BSCREAD C <------- EOT

(termination)

Figure 30. Communications flow for DUMP

Your host program can ask $RMUto perform functions involving data transfers. You can ask

$RMUto send data to your system or receive data from you. Also, you can send datato the

remote system and have $RMUechoit backto you.

The requests associated with these functionsare:

e RECEIVEdata from the host

e SENDdata to the host

e WRAP host data back to the host

You can ask $RMUto receive a host data set, and then put the data into a data set on the

remote system. This is the RECEIVErequest.

The RECEIVE function requires a data set on the remote system in whichto place the data. If

such a data set doesnotalready exist on the remote system, you can allocate one with an

ALLOCATErequest.

Send your RECEIVE request by coding a BSCWRITEIX instruction, along with the required

informationfields.

Programming for the $RMU Application (continued)

Uponreceiving the RECEIVE request, $RMU checksto see if it can handle the size of the

records to be sent. It then sends a status message to the host. A status messageof -1

(successful completion) indicates the RECEIVE function will continue; otherwise it terminates.

After receiving a status message of -1, the host begins to send the data set to $RMU. The

record length of the data set should be a multiple of 256 or 80.

If $RMUreceives a data record whose length is not a multiple of the specified length, it pads the

record with null bytes. For example, a record of 156 bytes will contain padding with 100 nuil

bytes, if 256 bytes is the specified length. |

If $RMUreceives a data record whoselength is greater than the length specified on the request,

the RECEIVE function terminates with a status indicating ''BSC I/O Failure'' and BSC return
code 20 (wronglength record - long).

At the completion of the data set transfer, $RMUsendsthe host a count message to report the

numberof host records it received. This message also indicates if any records were padded.

If the host is sending an emptydata set, send one data record which contains no data (only the

4-byte header) and then end the transmission.

If an unrecoverable error occurs, such as a disk or diskette error, $RMUinterrupts the host

transmission by sending an EOT (end-of-transmission) and a status message containing the

appropriate error code. $RMUterminates the RECEIVEfunction, and then waits for another

request from the host. The host should use the status record to determine the reason forfailure.

The host can terminate the RECEIVEfunction at any time by sending a status message

followed by a BSCWRITEE instruction.

Specifying Data Set Type

You must specify what type of data set the host is sending. The field RMRTYPis where to

codethis information. Enter one of the following valuesin this field:

e for a standard data set with 256-byte records

e 1 for a source data set with 80-byte records

Specifying Record Blocking

You must specify whether or not the host will send blocked records to $RMU. If the hostis

going to send blocked records, you must specify the numberof blocks in each record.

The RMRBLKfield is where to code this information. Enter one of the following valuesin this

field:

e ’0’ or’!1’ to specify no blocking

e any other numberto specify the exact numberof blocksthe host will send in a record

Chapter 2. Remote ManagementUtility ($RMU) CO-65

Remote ManagementUtility (SRMU)

Host Programmingfor the $RMU Application (continued)

Specifying the Starting Record

You must tell $RMU which record of the host data set will be the first to be received. For

example, you may wantto start at the first record, or at any other record within the data set.

The field RMRSTRis where to code this information. If you enter the value ’0’ or ’1’, the host

will start sending at the first record. If you enter any other value, the host will start sending at

that particular record.

Coding the Required Fields for RECEIVE Request

The chart that follows showsall the fields to code in your program for a RECEIVErequest.

The fields identified by an asterisk (*) contain variable values. You can code any appropriate

value in these fields. However, the other fields can contian only the values shown in the chart.

Codethese fields exactly as the chart specifies.

Field Size Explanation What to Code

Type

RMHBSCC 2 hex Starts the message RMHBSCC DATAX’1002’

RMHID 1 alpha Identifies a message to $RMU RMHID DATA C’X’

RMHTYP 1 alpha Specifies a request to $RMU RMHTYP DATA C’'R’

RMREQ 2 num Specifies RECEIVE request RMREQ DATAF’1’

RMRDSN(*) 8 alpha Nameof data set to receive host RMRDSN DATA CL6’ DATASET’
data

RMRVOL(*) 7 alpha Volume containing data set to RMRVOL DATA CL6’VOLUME’
receive host data. Default=IPL

volume

RMRSTR(*) 4 num Starting record of host data set RMRSTR DATA D'n’

RMRTYP(*) 2 num Type of host data set to be received RMRTYP DATAF'n’

RMRBLK(*) 2 num Specifies record blocking RMRBLK DATA F'n

Figure 31. Required fields for RECEIVE request

CO-66 SC34-0443

Here is an example of a RECEIVE request sent by a host program. The host sends a data set

called "MYDATA"to volume 'MYVOL"on the remote system.

Host Programming for the $RMU Application (continued)

Figure 47 on page CO-97 showsa sample program that sends a RECEIVErequest.

Host Program Host Remote

BSCWRITEIX ENQ ------- >

<moce een ACK*

RMHBSCC DATA X’1002' TEXT ------- >

RMHID DATA C’X’

RMHTYP DATA C’'R’

RMREQ_ DATA F'1'

RMRDSN DATA CL8’MYDATA‘'

RMRVOL DATA CL6’MYVOL’

RMRSTR DATA D'0’

RMRTYP DATA F'0O’

RMRBLK DATA F'1’

<ncc ene - ACK*

BSCWRITE E EOT ------- >

<------- ENQ

ACK* ------- >
BSCREAD| <------- TEXT

(status)

RMHTYP=’S’

RMSREOQ=1

RMSFN=-1

ACK* ------- >
BSCREAD C <------- EOT

ENQ ------- >

BSCWRITEIX <------- ACK*

RMHBSCC DATA X’1002' TEXT ------- >

RMHID DATA C’X’

RMHTYP DATA C’'D’

RMDDATA DATA text

<ene---- ACK*

BSCWRITE C

RMHBSCC DATA X’‘1002’ TEXT ------- >

RMHID DATA C’X’

RMHTYP DATA C’D’

RMDDATA DATA text

<Kn--e en ACK*

BSCWRITE E EOT ------- >

<--ne--- ENQ

ACK* ------- >

BSCREAD| <------- TEXT

(count)

RMHTYP='C’

RMREQ=1

RMCNT=2

ACK* ------- >
BSCREAD C <------- EOT

Figure 32. Communications flow for RECEIVE

Chapter 2. Remote ManagementUtility ($RMU) CQO-67

Remote ManagementUtility (SRM

Host Programming for the $RMU Application (continued)

Remote System Sending Data to Host (SEND)

CO-68 SC34-0443

You can ask $RMUto send a remote system data set to the host with the SEND request.

Send this request by coding a BSCWRITEIXinstruction, along with the required information

fields. Upon receiving request, $RMUfirst checks that it can send the requested records. It

then sendsa status recordto indicate its ability to perform the function. A status record of -1

(successful completion) indicates the SEND function will continue; otherwise it terminates.

If $RMUis sending a program datasetto the host, it also sends the program’s RLD count, the

program size in bytes, the program entry point and the program load address.

After transmitting the last data record of the data set to the host, $RMU sends a count message

to indicate the numberof records it sent the host. The host should compare this number to the

numberof recordsit received to verify that it got all the records $RMU sent. The RMCFLG

field of the count messageis not used for the SEND function.

If an unrecoverable error occurs, such as a disk or diskette read error, $RMU sendsthe host a

status message with the appropriate error code, and terminates the SEND function. The host can

terminate the SEND function by coding a BSCWRITEE instruction, followed by a status

message and another BSCWRITEE.

Specifying the Starting Record; YOu musttell $RMUtostart sending data from a
particular record in the data set. For example, you may wantit to start at the first record or at

any other record within the dataset.

The RMSSTRfield is where to code this information. If you enter the value ’0’ or ’1’ in this

field, $RMUstarts sending the first record in the data set. If you enter any other number,

$RMUstarts sending from that particular record.

Specifying Data Set Type: YOu must tell $RMU what type of data set to send. The
RMSTYPfield is where to code this information. Enter one of the following valuesin this field:

¢« ’0’ for a standard data set with 256-byte records

e« ’1’ for a source data set with 80-byte records

Specifying Record Blocking: You musttell $RMU whetheror notto block the recordsit
sends. If you want $RMUto block the records, you must specify the numberof blocks in each

record.

The RMSBLKfield is where to code this information. Enter one of the following values in this

field:

e ’0’ or’!’ to specify no blocking

e any other numberto specify the exact number of blocks for $RMUto send in one record

Host Programming for the $RMU Application (continued)

Coding Required Fields for SEND Function

The chart that follows showsall the fields to code in your program for a SEND request. The

fields identified with an asterisk (*) contain variable values. You can code any appropriate

value in these fields. However, the other fields can contain only the values shownin the chart.

Codethese fields exactly as the chart specifies.

Field Size Explanation Whatto Code
Type

RMHBSCC 2 hex Starts the message RMHBSCC DATA X’1002

RMHID 1 alpha Identifies a message to $RMU RMHID DATA C’X’

RMHTYP 1 alpha Identifies a request to $RMU RMHTYP DATAC’'R’

RMREQ 2 num Specifies the SEND request RMREQ DATA F'0’

RMSDSN(*) 8 alpha Nameof data set to send to host RMSDSN DATA CL8’ DATASET’

RMSVOL(*) 6 alpha Volumecontaining the data set to RMSVOL DATA CL6’VOLUME’
be sent. Default=IPL volume

RMSSTR(*) 4 num Starting record of the data set to be RMSSTR DATA D’'0’
sent

RMSTYP(*) 2 num Type of data set to be sent to the RMSTYP DATA F’0'
host

RMSBLK(*) 2 num Specifies record blocking of data to RMSBLK DATA F'0'
be sent

Figure 33. Required fields for SEND request

Here is an example of SEND request communications flow. The host asks the remote system to

send it a data set called '"MYDATA".

Figure 48 on page CO-101 shows a sample program that sends a SEND request.

Chapter 2. Remote ManagementUtility ($RMU) CO-69

Remote ManagementUtility (SRMU)

Host Programming for the $RMU Application (continued)

Host Program Host Remote

BSCWRITE IX ENQ ------- >

<------- ACK*

RMHBSCC DATA X‘1002’ TEXT ------- >

RMHID DATA C’'X’

RMHTYP DATA C’'R’

RMREQ DATA F’O’

RMSDSN DATA CL8'MYDATA’

RMSVOL DATA CL6’MYVOL’

RMSSTR DATA D’O'

RMSTYP DATA F’0O’

RMSBLK DATA F’'1’

<neeee-- ACK*

BSCWRITE E EOT ------- >

<ee----- ENQ

ACK* ------- >

BSCREAD| <------- TEXT

(status)

RMHTYP=’S’

RMSREQ=0

RMSFN=-1

ACK* ------- >

BSCREAD C <------- TEXT

(data)

RMHTYP=’ D’

RMDDATA=Text

ACK* ------- >

BSCREAD C <o---- ee TEXT

(data)

RMHTYP='D’

RMDDATA=Text

ACK* ------- >

BSCREAD C <------- TEXT

(count)

RMHTYP='C’

RMCREQ=0

RMCCNT=2

ACK* ------- >

BSCREAD C <------- EOT

(termination)

Figure 34. Communications flow for SEND request

Remote System Echoing Host Data (WRAP)

The host can send data to the remote system, and ask $RMUto echo that data backto the host.

This is the WRAP request. WRAPis useful for testing line conditioning.

Send a WRAPrequest by coding a BSCWRITEIX instruction, along with the required

information fields. The RMWTXTfield is where to specify the text you want $RMUto echo

backto the host.

CO-70 SC34-0443

plication (continued)

Coding the Required Fields for WRAP Request

Specify the following fields for the WRAPfunction:

The chart that follows showsall the fields to code in your program for a WRAPrequest. The

fields identified by as asterisk (*) contain variable values. You can code any appropriate value

in these fields. However, the other fields can contain only the values shownin the chart. Code

these fields exactly as the chart specifies.

Field Size Explanation What to Code
Type

RMHBSCC 2 hex Starts the message RMHBSCC DATA X’ 1002

RMHID 1 alpha Identifies a message to SRMU RMHID DATA C’X’

RMHTYP 1 alpha Identifies a request to $RMU ~RMHTYPDATA C’'R’

| RMREQO 2num Specifies the WRAP request RMREO DATAF’S’

RMWTIXT(*) vari- able Text that $RMUis to echo backto RMWTXT DATA C’ANY TEXT’
host.

Figure 35. Required fields for WRAP request

Figure 36 on page CO-72 shows an example of the WRAPfunction. The host sends the

Series/1 a WRAPrequest along with the text 'WRAP TEXT". The Series/1 receives the
request and transmits the identical data back to the host, and the operation is completed.

Figure 46 on page CO-95 shows a sample program that can send a WRAPrequest.

Chapter 2. Remote Management Utility ($RMU) CO-71

Host Programming for the $RMU Application (continued)

Host Program Host Remote

BSCWRITEIX ENO -------- >

Keone -- ACK*
RMHBSCC DATA X’‘1002’ TEXT ------- >

RMHID DATA CX’
RMHTYP DATA C'R’
RMREQ_ DATA F'5’
RMWTXT DATA C’WRAP TEXT’

BSCWRITE E EOT ------- >
K---~--- ENO

BSCREAD| <------- TEXT

(wrap text)
RMHBSCC=X’1002’

RMHID=C’X’

RMHTYP=C’'R’

RMREQ=F’5’

RMWTXT=X’WRAPTEXT’

ACK* ------- >

BSCREAD C <------- EOT

(termination)
Figure 36. Communications Flow for WRAP

Controlling Program Execution on the Remote System

$RMUcan perform functions involving the execution of programs on the remote system. You

can tell $RMUto start a program running on the remote system. You canalso tell $RMU to

load another program and at the same time terminateitself. The requests associated with these

functionsare:

e EXECstart a program on the remote system

¢« SHUTDOWNthe operation of $RMU and load another program on the remote system

Host Starting a Program on Remote System (EXEC)

CO-72 SC34-0443

The host can ask $RMUtostart execution of a program on the remote system. This is the

EXECrequest.

Send the EXEC request by coding a BSCWRITEIXinstruction, along with the required data

fields.

$RMUsendsa the host a status messagetotell if it was able to perform the EXEC function.

$RMU then waits for a new request from the host.

Coding the RMXFLG Field: The RMXFLGis an optional field which activates these

conditions:

 Host Programming for the $RMU Application (continued)

¢ Prints a ''program loaded" message on the remote terminal that loaded $RMU. Enter the

value X’40’.

¢ Causes $RMUto wait for the program to finish running before sending a status message to

the host. Enter the value X’20’.

These two values correspond to the LOGMSGand WAIT operands of the Event Driven

Languageinstruction LOAD.

To specify both of these conditions, enter the value X’60’.

To specify neither of these conditions, simply do not code the RMXFLGfield.

Specifying Partition: You musttell $RMUthepartition in which to run the program. The

field RMXPTNis where to code this information. Enter one of the following valuesin this field:

e -1 $RMUpartition

e QQ Anypartition

e 1-8 Specific partition

Allocating Free Space; You can specify the amountof free space (in bytes) to pass to the
program. The RMXLFSfield is where to code this information.

Passing Parameters: Some programs require parameters to be passed from the host in order

to run successfully. You accomplish this with the RMXPRM# and RMXPRMfields.

In RMXPRM3,specify the length (in words) of the parameters to pass to the program.

In RMXPRM,specify the parameters themselves. The length of RMXPRM must be equalto

the value in RMXPRM#.

Passing Data Sets: You can pass data seta to the program by coding the RMXDS# and
RMXDSfields.

In RMXDS3,specify the numberof data sets (up to nine) to pass to the program. Donotleave

this field blank; enter zero if you are not passing any data sets.

In RMXDS,specify the name and volumeof each data set to pass to the program. The number

of RMXDSfields must be equal to the value of RMXDS#.

Chapter 2. Remote ManagementUtility ($RMU) CO-73

Host Programming for the $RMU Application (continued)

Coding Required Fields for EXEC Request

The chart that follows showsall the fields to code in your program for an EXEC request. The

fields identified by as asterisk (*) contain variable values. You can code any appropriate value

in these fields. However, the other fields can contain only the values shown in the chart. Code

these fields exactly as the chart specifies.

status messageis delayed (X’20’)
This field is optional.

Field Size Explanation What to Code
Type

RMHBSCC 2 hex Starts the message RMHBSCC DATA X’ 1002

RMHID 1 alpha Identifies a message to $RMU RMHID DATA C’X’

RMHTYP 1 alpha identifies a request to $RMU RMHTYP DATA C’'R’

RMREQ 2 num Specifies the EXEC request RMREQ DATA F'S’

filler 2 Reserved field (unused) DATA F’0’

RMXFLG (*) 1 num Load messageprints (X’40’) or RMXFLG DATAX‘nn’

execute. Default= IPL volume

RMXPTN(*) 1 num Partition to run program in RMXPTN DATA H'n’

RMXPGM(*) 8 alpha Name of program to execute RMXPGM DATA CL8’DATASET’

RMXVOL(*) 6alpha Volumecontaining the program to RMXVOL DATA CL6’VOLUME'

RMXLES(*) 2 num Free space (in bytes) to pass to

program RMXLFS DATAF'nn’

Figure 37 (Part 1 of 2). Required fields for EXEC request

CO-74 SC34-0443

Host Programming for the $RMU Application (continued)

Field Size Explanation What to Code
Type

RMXPRM#(*) 2 num Length of paramters to pass to RMXPRM# DATAF'nn’
program

RMXPRM (*) vari- able Parameters to pass to program RMXPRM EQU *

RMXDS# (*) 2 num Numberof data sets to pass to RMXDN# DATA F’nn’

program

RMXDS(*) 14 alpha Name and volumeof data set to RMXDS EQU *
pass to program.

Figure 37 (Part 2 of 2). Required fields for EXEC request

Figure 38 on page CO-76 shows an example of the EXEC function. The host specifies that a

program named '"MYPROG'on volume 'MYVOL'is to be executed in partition 1, with 256
bytes of free space passed to the program. The RMXFLGfield specifies that both the

RMXFLGL and RMXFLGWbits are set on. No parameters or data sets are passed to

"MYPROG". The program endswith a return code of -1. $RMUsendsa status record of -1
(successful completion) to the host, along with the return code for MYPROG.

Figure 46 on page CO-95 shows a sample program that can send an EXEC request.

Chapter 2. Remote ManagementUtility ($5RMU) CO-75

lanagement Uti ity ($RMIU

Host Programming for the $RMU Application (continued)

Host Program Host Remote

BSCWRITEIX ENO ------- >

<------- ACK*
RMHBSCC DATA X'‘1002' TEXT ------- >

RMHID DATA CX’
RMHTYP DATA C’'R’
RMREQ_ DATA F'9’

DATA F'0’
RMXFLG DATA X’60°
RMXPTN DATA H'T’
RMXPGM DATA CL8’MYPROG’
RMXVOL DATA CL6'MYVOL'
RMXLFS DATA F’256’
RMXPRM# DATA F'0’
RMXPRM EQU *
RMXDS# DATA F’0’
RMXDS EQU *

<------- ACK*
BSCWRITE E EOT ------- >

<------- ENO

ACK* ------- >

BSCREAD| <------- TEXT

(status)
RMHTYP='S’

RMSREQ=9

RMSFN=-1

RMSST=__|

ACK* ------- >
BSCREAD C <------- EOT

Figure 38. Communications flow for EXEC

Terminate $RMU/Start Another Program on Remote System (SHUTDOWN)

You can ask $RMUto terminate and release any Series/1 resourcesit has allocated. In addition,

you can ask $RMUtostart another program on the remote system before terminating. This is

the SHUTDOWNrequest.

Send your SHUTDOWNrequest by coding a BSCWRITEIXinstruction, along with the

required information fields. The request may also specify the name of a program to be

executed, similar in format to the EXEC function.

Coding the RMSDFELGField: the RMSDFLGis an optionalfield which activates these
conditions:

¢ Specifies that $RMUis to run another program. Enter the value X‘80’.

e Prints a program loaded" message on the remote terminal that loaded $RMU. Enter the
value X‘60’. This value corresponds to the LOGMSGparameter of the Event Driven

Language instruction LOAD.

To specify both conditions, enter the value X*‘CO’

CO-76 SC34-0443

Host Programmingfor the SRMU Application (continued)

To specify neither of these conditions, simply do not code the RMSDFLGfield.

Specifying Partition: You must tell $RMUthepartition in which to run the program. The
field RMSDPTNis where to code this information. Enter one of the following valuesin this

field:

e -1 $RMUpartition

e« QO Any partition

e 1-8 Specific partition

Allocating Free Space: You can specify the amountof free space (in bytes) to pass to the

program. The RMSDLFSfield is where to code this information. This value is expressed in

bytes.

Passing Parameters: Some programs require parameters to be passed from the host system

in order to run successfully. You accomplish this with the RMSDPRM# and RMSDPRMfields.

In RMSDPRM43#,specify the length (in words) of the parameters to pass to the program.

In RMSDPRM,specify the parameters themselves. The length of RMSDPRM must be equalto

the value in RMSDPRM#.

Passing Data Sets: You can pass data sets to the program by coding the RMSDDS# and
RMSDDSfields.

In RMSDDS3#,specify the numberof data sets (up to nine) to pass to the program. Do not

leave this field blank; enter zero if you are not passing any datasets.

In RMSDDS,specify the name and volumeofeach data set to pass to the program. The number

of RMSDDSfields must be equal to the value of RMSDDS#.

Chapter 2. Remote ManagementUtility ($RMU) CO-77

Host Programming for the $RMU Application (continued)

Coding the Required Fields for SHUTDOWN Reauest

The chart that follows showsall the fields to code in your program for a SHUTDOWNrequest.

Thefields identified by an asterisk (*) contain variable values. You can code any appropriate

value in these fields. However, the other fields can contain only the values shownin the chart.

Codethese fields exactly as the chartspecifies.

Field Size Explanation Whatto Code
Type

RMHBSCC 2 hex Starts the message RMHBSCC DATA X’1002'

RMHID 1 alpha Identifies a message to $RMU RMHID DATA C’X’

RMHTYP 1 alpha Identifies a request to $RMU RMHTYP DATAC'R’

RMREQ 2num Specifies the SHUTDOWNrequest RMREQ DATAF'7’

filler 2 Reservedfield (unused) DATA F’0’

RMSDELG(*) 1 num Execute another program (X’80’) RMSDFLG DATAX’nn’
and/or load messageprints (X’40’)
This field is optional.

RMSDPTN(*) 1 num Partition to run program in RMSDPTN DATA H'n’

RMSDPGM(*) 8 alpha Nameof program to execute RMSDPGM DATA CL8’ DATASET’

RMSDVOL(*) 6 alpha Volumecontaining the program to RMSDXVOLDATA CL6’VOLUME’
execute. Default= IPL volume

RMSDLFS(*) 2 num Free space(in bytes) to pass to RMSDLFS DATAF'nn’
program

CO-78 SC34-0443

Figure 39 (Part 1 of 2). Required fields for SHUTDOWN request

{MU Application (continued)

Field Size Explanation Whatto Code
Type

RMSDPRM#(*) 2 num Length of paramters to pass to RMSDPRM# DATAF'nn’
program

RMSDPRM(*) vari- able Parameters to pass to program RMSDPRM EQU *

RMSDDS}#(*) 2 num Numberof data sets to pass to RMSDDN¢#DATAF'nn’
program

RMSDDS(*) 14 alpha Name and volumeof data set to RMSDDS EQU *
pass to program.

Figure 39 (Part 2 of 2). Required fields for SHUTDOWN request

Figure 40 on page CO-80 shows an example of the SHUTDOWNfunction. The host sends the

Series/1 a SHUTDOWNrequest with a program namespecified. The program, ''MYPROG"on
volume ''MYVOL",is to execute in partition 1, has 256 bytes of free space passedto it, and has
no parameters or data sets passed to it. The RMSDFLGfield specifies that a program is to be

executed and a "program loaded" messageis to be printed following a successful load of the

program. $RMUsendsa status record of -1 (successful completion) to the host, loads the

program, and $RMUterminates.

Figure 46 on page CO-95 shows a sample program that can send a SHUTDOWNrequest.

Chapter 2. Remote ManagementUtility ($SRMU) CO-79

 Remote ManagementUtility (SRMU

Host Programming for the $RMU Application (continued)

Host Program Host Remote

Remote

BSCWRITEIX ENO ------- >
<------- ACK*

RMHBSCC DATA X‘1002’ TEXT ------- >
RMHID DATA CX’
RMHTYP DATA C’'R’
RMREQ_ DATA F'7’
RMSDFLG DATA X’CO’
RMSDPTN DATA H'1’
RMSDPGM DATA CL8'’MYPROG’
RMSDVOL DATA CL6’MYVOL’
RMSDFLS DATA F’256’
RMSDPRM# DATA F’0’
RMSDPRM EQU *
RMSDDS# DATA F'0’
RMSDDS EQU *

<------- ACK*
BSCWRITE E EOT ------- >

<------- ENO

ACK* ------- >

BSCREAD| <------- TEXT

(status)

RMHTYP='S’

RMSREQ=7

RMSFN=-1

ACK* ------- >
BSCREAD C <------- EOT

(termination)
Figure 40. Communications flow for SHUTDOWN

Verifying Identities between Systems (IDCHECK)

You can ask $RMUto verify the identities of the host and remote systems. This is the

IDCHECKrequest.

Send your IDCHECKrequest by coding a BSCWRITEIX instruction along with the required

information fields.

The IDs of both the host and remote systems have predefined default values. These values are

discussed in the section, Remote ManagementUtility Defaults''. The default IDs are in remote
system storage.

$RMUasksthe host to sendits ID for verification. Only if the host ID is correct does $RMU

send the remote system ID to the host. If the host sends an incorrect (invalid) ID, $RMU

terminates the function.

Coding the Required Fields for IDCHECK Function

The chart that follows showsall the fields to code in your program for an IDCHECKrequest.

Thefields identified by an asterisk (*) contain variable values. You can code any appropriate

CO-80 SC34-0443

g for the $RMU Application (continued)

value in these fields. However, the other fields can contain only the values shownin the chart.

Code these fields exactly as the chart specifies.

Field Size Explanation Whatto Code
Type

RMHBSCC 2 hex Starts the message RMHBSCC DATA X‘1002

RMHID 1 alpha Identifies a message to $RMU RMHID DATA C’X’

RMHTYP 1 alpha Identifies a request to $RMU RMHTYP DATA C’'R’

RMREQ 2 num Specifies the IDCHECK request RMREQ DATAF’9’

RMICHK (*) 8 alpha Host ID RMICHK DATA C’HOSTID’
Figure 41. Required fields for IDCHECK request

Figure 42 shows an example of the IDCHECK

“HOSTRMUX". $RMUvalidates the host ID

function. The host sends the default ID

and sendsa status record of -1 (successful

completion) to the host along with its default ID, "REMTRMUX".

Figure 46 on page CO-95 shows a sample program that can send an IDCHECKrequest.

Host Program Host Remote

BSCWRITE IX ENQ ------- >

<enecen- ACK*
RMHBSCC DATA X’1002’ TEXT ------- >

RMHID DATA C’X’

RMHTYP DATA C’R’

RMREQ_ DATA F’6’

RMICHK DATA C’HOSTRMUX’

<enneen- ACK*

BSCWRITE E EOT ------- >

fnameen ENQ

ACK* ------- >
BSCREAD| <------- TEXT

(status)
RMHTYP=’S’

RMSREQ=6

RMSFN=-1

RMSRID=’REMTRMUX’

ACK* ------- >

BSCREAD C <------- EOT
Figure 42. Communications flow for IDCHECK

Chapter 2. Remote ManagementUtility ($RMU) CO-81

etween Host and Remote systems (PAS Interacting

You can set up interactive sessions between the host and remote systems with the PASSTHRU

request. During a passthru session, the host can perform the same functionsas a station directly

attached to the remote system. The host can interact with the Event Driven Executive

supervisor by issuing operator commands,or with a program orutility on the remote system.

Most programsthat do not require full screen terminal support, including most Event Driven

Executive utilities, are available for use during a passthru session. Programs which cannot be

run under the PASSTHRU function are discussed in “‘Considerations for Using PASSTHRU.”’

Considerations for Using PASSTHRU

Certain restrictions apply to programming for the PASSTHRUsession. Before establishing a

session, you must know what you can and cannot do with PASSTHRU.

Virtual Terminal Support

PASSTHRUusesthe virtual terminal support of the Event Driven Executive. Because of this,

the restrictions inherent in virtual terminal support also apply to PASSTHRU. Virtual terminals —

do not supportstatic screens. Therefore, programs that use static screens cannot be run under

the PASSTHRUfunction. This includes programssuch. as the full screen editor, $FSEDIT.

Anothervirtual terminal restriction is that the maximum recordlength is 254 bytes.

During system generation, you must define two virtual terminals for the remote system:

CDRVTA and CDRVTB. You may want to change the LINSIZE parameter. A LINSIZEof

132 will handle output that uses the full width of a printer. Specifying a smaller value saves

storage, but messages longer than the LINSIZE will be truncated. The maximum value for

LINSIZEis 254.

Because the $RMU PASSTHRUfunction uses a predefined set of virtual terminals (CDRVTA

and CDRVTB), only one PASSTHRUsession can be conducted at a time. While a PASSTHRU

session is being conducted, another copy of $RMU (defined for another communicationsline)

can be performing any other function except PASSTHRU.

No Attention Interrupt

$RMUallowsthe host to transmit a Program Function keyor an attention key only after $RMU

has sent a request message. Therefore, when the attention key is pressed at a host terminal, the

terminal stops communicating with $RMU (the remote system) and begins communicating with

its own (the host) system. This prevents output from $RMUto the host from being interrupted

by a host terminal attention key, as it could be by a local terminal. For example,a listing

produced by the $DISKUT2utility could not be interrupted by pressing the host terminal

attention key and entering the $C command.

Deadiock and §

A program that stops communicating with the terminal which loaded it and waits for operator

commands(using the attention or Program Function key) will not run directly under the

PASSTHRUfunction. This is because $RMU waits indefinitely on a ''READTEXT"to the
virtual channel at the same time the host program is waiting for an Attention or PF key. Since

CO-82 SC34-0443

Indefinite Wai

Interacting B

e Systems (PASSTHRU) (continued)

both programsare "listening" and neitheris "talking", both will wait forever. This is called a
deadlock. Programs that may do this include:

$DEBUG

$TRAP
$LOG

$BSCTRCE

$TERMUT3 (attention-entered commands)

SIOTEST (attention-entered commands)

CALCDEMO (sample program)

$RMUPAis a program that can break this deadlock. It must be started under the PASSTHRU

function prior to starting a PASSTHRUsession with a program which may havethis problem.

$RMUPAcausesa ''disconnect"', which results in a $RMUsending a Program End PASSTHRU
record to the host whenever the following events occur:

e No activity has occurred over the virtual channel for 20 seconds.

e $RMUis waiting on completion of a 'READTEXT"instruction.

e The host program is not enqueued (ENQT)onits virtual terminal.

$RMUPAuses the STIMERinstruction; therefore, timer support must be included in the Event

Driven Executive system.

The sample PASSTHRUhost program in ““PASSTHRU Sample Program”on page CO-103

shows how to use $RMUPA. First $RMUPAis started. When a Program End PASSTHRU
record is received at the host, the host responds with a Program End PASSTHRUrecord and the

PASSTHRUsession with $RMUPAterminates. Only one copy of $RMUPAshould be running

at any time; it can run in anypartition. It continues running until an ‘attention’ followed by
"$RMUPA'"is entered.

Once $RMUPAis running, another program maybe started. The sample PASSTHRUhost

program in ““Example of Conducting a PASSTHRUSession” on page CO-111shows how

$DEBUG maybeused. Note that ''$PFO" is entered to provide the same function as the
attention key.

If a remote program does not perform any terminal I/O for 20 seconds, $RMUPAcauses a

Program Endrecord to be sent even though the program isstill running. If this happens, the host

should respond with a Request for Data record until the remote program performsterminal I/O.

If the PASSTHRUfunction loads a program which issues an ENQTfor a terminal other than

the terminal which loaded $RMUand the program terminates, $RMU doesnotreceive a

"disconnect" over the virtual channel and the host will not receive a Program Endrecord.
$RMUwill wait indefinitely. One example of when this occurs is when $EDXASMis running

with output directed to a printer. This condition can be avoided in two ways:

Chapter 2. Remote ManagementUtility ($RMU) CO-83

Interacting Between Host and |

e Load the program from another program (such as the $JOBUTILutility) which will wait for

the program to complete. Programs that require interaction with the terminal operator, such

as $EDXASM,should be handledin this way.

e Load the program through a session with the Event Driven Executive supervisor (using the

$L command) and respond with a Program End when the commandterminates.

Abrupt Termination

Timeouts

CO-84 SC34-0443

If a PASSTHRUsession is abruptly terminated (status received from host, invalid message

received from host, or an error in the BSCAM), $RMUsendsa return code 5 (‘'disconnected"’)
to the program for the outstanding terminal request. This code will be received only once by the

PASSTHRU-invoked program. The program should take appropriate action, which would most

likely be to terminate.

If the program does not recognize the error and continues to perform terminal I/O,it will

interfere with attempts to establish a new PASSTHRUsession.If the new session is being

established with a program, $RMUreturnsthe status "virtual terminal busy". The host may
establish a session with the Event Driven Executive supervisor and issue a $C command to

cancel the suspended program. (As noted in the Operator Commands and Utilities Reference, the

$C commandshould be used with caution). |

Whena load command($L)is issued during a PASSTHRUsession with the Event Driven

Executive supervisor, a Program Endrecord, resulting from completion of the command, may be

received by the host. Whetherit is received depends on how quickly the loaded program begins

performing terminal I/O.

$RMU will not time-out while it is receiving messages during a PASSTHRUsession. However,if

the host does not acknowledgereceipt of messages sent by $RMU,a time-out will occur and the

PASSTHRUsession will terminate. This can be avoided in two ways:

e« Avoid any long delays at the host while messages are being received from the Series/1.

e Define a high retry count for the RETRIES parameter of the BSCLINE statement.

Send your PASSTHRUrequest by coding a BSCWRITEIXinstruction, along with the required

information fields. Once the passthru session begins, the host and $RMUexchangea series of

messages in a mannersimilar to the way messagesare written to and read from a terminal. This

record exchange consists of two parts:

e Establishing a PASSTHRUsession

e Conducting a PASSTHRUsession

Interacting B

 etween Host and Remote Systems (PASSTHRU) (continued)

Establishing a PASSTHRU Session

The host initiates the PASSTHRUfunction by sending a PASSTHRUrequest to $RMU. After

the host receives a successful status record and an EOT, a PASSTHRU session is established.

The PASSTHRUrequest specifies (in the RMPRPGMfield) the type of session:

e Communication with the Event Driven Executive supervisor

e Communication with a program or utility which $RMU will load

If a session with the EDX supervisor is established, $RMUissues an ''attention"' (as if the
attention key on the terminal were pressed). After the terminal on the host receives the caret

symbol (>), the host operator can enter a Series/1 operator command,for example, $L.

If a session with a program is established, the host specifies the name of the program and $RMU

loads the program. The PASSTHRUsession will be conducted with the host interacting with the

program.

Coding Required Fields for PASSTHRU Request

The chart that follows showsall the fields to code in your program for a PASSTHRUrequest.

The fields identified by an asterisk (*) contain variable values. You can code any appropriate

value in these fields. However, the otherfields can contain only the values shownin the chart.

Code these fields exactly as the chart specifies.

Field Size Explanation What to Code

Type

RMHBSCC 2 hex Starts a message RMHBSCC DATA X’ 1002’

RMHID 1 alpha Identifies a message to RMHID DATA C’'X’
$RMU

RMHTYP 1 alpha Identifies a request RMHTYP DATA C’R’

RMREQ 2 num Specifies the PASSTHRU RMREQ DATAF'12’

request

RMPRBLK* 2 num Specifies record blocking by RMPRBLK DATAF'n’

remote system

RMPRFLG 1 Reservedfield (unused) RMPFLG DATA H’0’

Figure 43 (Part 1 of 2). Required fields for PASSTHRU request

Chapter 2. Remote Management Utility ($RMU) CO-85

HRU) (continued)

Field Size Explanation What to Code
Type

RMPRPTN* 1 num Partition to run program or RMPRPTN DATA H'n’

utility in

RMPRPGM* 8 alpha Name of program orutility to RMPRPGM DATA CL8’PROGNAME’

interact with host

RMPRVOL* 6 alpha Volumecontaining the RMPRVOL DATA CL6’VOLUME’

program orutility Default=

IPL volume

RMPRLFS* 2 num Free space to pass to RMPRLES DATAF'n’

program

RMPRPRM# 2 num Length of parameters to pass RMPRPRM# DATAF'n’

(*) to program

RMPRPRM* vari- Parameters to be passed to RMPRPRM EQU *

able the program.

RMPRDS#(*) 2 num Number of data sets to pass RMPRDS# DATAF'n’

to program

RMPRDS 14 alpha Nameand volumeof data RMPRDS EQU *

sets to pass to program
Figure 43 (Part 2 of 2). Required fields for PASSTHRU request

Here is an example of the communications flow for a PASSTHRUrequest.

Figure 49 on page CO-104 shows a sample program that sends a PASSTHRUrequest.

CO-86 SC34-0443

nd R J) (continued) interacting Between Hosta

Host Program Host Remote

BSCWRITE IX ENQ ------- >

<------- ACK*
RMHBSCC DATA X‘1002’ TEXT ------- >

RMHID DATA C’X’
RMHTYP DATA C'R’
RMREQ_ DATA F'12’
RMPRFLG DATA H’0'
RMPRPTN DATA H’0’
RMPRPGM DATA CL8’MYPROG’
RMPRVOL DATA CL6’'MYVOL’
RMPRLFS DATA F'256'
RMPRBLK DATA F’0'
RMPRPRM# DATA F’0’
RMPRPRM EQU *
RMPRDS# DATA F'0’
RMPRDS EQU *

<cemene- ACK*
BSCWRITE E EOT ------- >

<eccen--- ENQ
ACK* ------- >

BSCREAD| <------- TEXT

(status)
RMHTYP='S’
RMSREQ=12
RMSFN=-1

ACK* ------- >
BSCREAD C <------- EOT

<o------ ENO
ACK* ------- >

BSCREAD| <------- TEXT

(passthru data)
RMHTYP=’P’
RMPTYP=1
RMPST=Status from READTEXT
RMPTXTL=Messagelength
RMPTXT=Messagetext

ACK* ------- >

Figure 44 (Part 1 of 2). Communications flow for PASSTHRU

Chapter 2. Remote ManagementUtility ($RMU) CO-87

)) (continued)

BSCREAD C <~------- TEXT

(request for data)
RMHTYP=’P’

RMPTYP=2
ACK* ------- >

BSCREAD C <~------ FOT

ENQ ------- >
<------- ACK*

BSCWRITE IX TEXT ------- >

RMHTYP=’P’
RMPTYP=1
RMPST=0 (Unused)
RMPTXTL=Messagelength

RMPTXT=Messagetext

<men---- ACK*
BSCWRITE E EOT ------- >

<------- ENO
ACK* ------- >

BSCREAD |! <------- TEXT
(PASSTHRU program end)
RMHTYP='P’
RMPTYP=3
ACK* ------- >

BSCREAD C <------- EOT
ENQ ------- >

<mencn-- ACK*
BSCWRITEIX
(PASSTHRU program end)
RMHTYP=’P’ TEXT -------- >

RMPTYP=3
<--e---- ACK*

BSCREADE EOT ------ >
Figure 44 (Part 2 of 2). Communications flow for PASSTHRU

Conducting a PASSTHRUSession

Once the PASSTHRUsessionis established, the host and the remote systems exchange

PASSTHRUrecords. These records provide information to and receive information from the

host program,as if the host program were a terminal on the remote system. There are four types

of PASSTHRUrecords:

e Text or Program Function (PF) Key - passes messages or Program Function keys

e Request for Data - indicates data should be sent

e Program End- indicates termination

e No Data - indicates no messagesare available

The host ''state" can be changedby:

CO-88 SC34-0443

Intera

 ndF) (continued)

n Hosta

e Receiving a PASSTHRU record from $RMU. This is shown as a solid horizontal line with

an arrow pointing to the newstate.

e Sending a PASSTHRUrecord to $RMU. This is shown as a horizontal line of dashes with

an arrow pointing to the newstate.

e Achangeof state with no PASSTHRUrecord transfer. This is represented by a dottedline

with an arrow pointing to the newstate.

The PASSTHRUsession begins with the host in the state 'READTEXT". The hostissues a
read to the communicationsline and receives either a Text or PF Key, Request for Data, or

Program Endrecord.

If the host receives a Text or PF Key record,the Series/1 is sending data to the host. The

program (or the supervisor) has issued a PRINTEXTorother terminal I/O instruction, andit is

transmitted to the host as if the host were a terminal. The state of the host changes from

"READTEXT"to "READING", the host reads the Text or PF Key record, and the state then
changes back to '"READTEXT". The host remains in the ''READTEXT"state as long asit
receives Text or PF Keyrecords.

If the host receives a Request for Data record, $RMU needsdata from the host. The program

(or the supervisor) has issued a READTEXTorother terminal I/O instruction, and requires

data from thehost as if the host were a terminal. The state of the host changes from

"“READTEXT"to '"PGM NEEDS DATA". Note that an EOT follows the the Request for
Data record. The host must also read the EOT.

Whenthe hostis in the state PG@M NEEDS DATA",it must send a Text or PF Key record
followed by an EOT. The Text or PF Keyrecord the host sends can contain either text or a PF

key.

If the host sends text, the state of the host changes from ''PGM NEEDS DATA"to
"READTEXT". If the host sends a Program Function key, the host goesto the state ''PFK
SENT". The host issues a read to the communicationsline and will receive a Request for Data
record followed by an EOT. $RMUsendsthe Request for Data record to the host because the

Original request was notsatisfied by the Program Function key. As a result, the host is now in

the state "SEND TEXT". The host must send a Text or PF Key record which containstext,
followed by an EOT. The host then returnsto the state "READTEXT".

If the host is in the state 'READTEXT"and receives a Program End record followed by an

EOT,this means that the program, the operator command,or an attention exit has completed.

The host changes from the state '"READTEXT"to ''CONTINUE ?". At this point, the host
must determine whether the PASSTHRUsession should continue.

If the PASSTHRUsession is with a program and the program ends (while in the "CONTINUE

2" state), the host usually does not continue the session. If the session is with the supervisor and

a $L commandis entered, the host usually continues the session and communicates with the

program that was loaded.

Chapter 2. Remote ManagementUtility ($RMU) CO-89

Remote Management Utility (SRMU)

Interacting Between Host and Remote Systems (PASSTHRU)(continued)

To terminate the PASSTHRUsession, the host sends a Program Endrecord, followed by an

EOT. This changesthe state of the host from ''CONTINUE?" to "EXIT". The PASSTHRU
session now terminates and the Remote ManagementUtility waits for a new request from the

host. To continue the session, the host sends a Request for Data record followed by an EOT.

The state of the host then changes from ''CONTINUE ?" to "ACTIVITY ?".

At this point, $RMUdeterminesif there is any activity on the Series/1 for the host. If there is,

$RMUsends one of the three PASSTHRUrecords (Text or PF Key, Request for Data, or

Program End) which the host can receive in the 'READTEXT"state. The state of the host
then changes depending on the type of PASSTHRUrecordit receives.

If there is no terminal activity, $RMU sends a No Data record followed by an EOT,and the

host state changes from "ACTIVITY ?" to ‘CONTINUE ?". The host then determines
whetherit should continue. If the program in the Series/1 has delays in performing terminal

I/O while the host is in the "CONTINUE ?"' state, the host may change from ''CONTINUE?"
to "ACTIVITY ?"' and back again several times. However,if no activity occurs, the host must

eventually send a Program Endrecord and terminate the PASSTHRUsession.

Figure 50 on page CO-111 shows a PASSTHRUsession that invokes and runs the $DEBUG

utility from the host terminal.

PASSTHRU Record Types

This section describes the format and content of the four types of PASSTHRUrecords.

Text or Program Function Key Record

This record consists of two segments. The first six bytes, or the main segment, identifies the

record as a PASSTHRUText or Program Function (PF) key record. One or more text or PF

key segments follow the main segment.

In the main segment,all values are constants, as shown below. The number 1 for the RMPTYP

field identifies the record as a text or PF key record. The text or Program Function key segment

contains the information to be transferred.

Main segment:

RMHBSCC DATA X‘1002’
RMHID DATA C’X’
RMHTYP DATA C’'P’
RMPTYP DATA F'1’

Text or Program Function key segment:

RMPST DATA F'nnnn’
RMPTXTL DATA F'nnnn’
RMPTXT DATA C'xxxx’

The fields in the text or Program Function key segmentare:

CO-90 SC34-0443

Interacting B

Between Host and Remote Systems (PASSTHRU)(continued)

RMPST A 2-byte numeric field containing the return code associated with the text. For

example, the return code mightindicate that the text is to appear on a newline.

This field contains a value only on records received by the host.

Somereturn codes have no text associated with them. For a complete description of

the possible return codes, see the virtual terminal return codes for the READTEXT

instruction in the Language Reference.

The return codes which applyare:

X’8Fnn’ LINE=nnreceived

X’8Enn’ SKIP=nn received

-2 Line received (no CR)

-1 New line received

RMPTXTL A 2-byte numericfield specifying either the length of the text, or indicating a PF

key is being sent (-1). If there is no text, for example when only a return codeis

sent, this field contains a zero.

RMPTXT Either a variable-length alphameric field containing text, or a 2-byte numeric field

containing the PF key value. If the field contains text, the length of the text must

equal RMPTXTL. If RMPTXTLis an odd number, one byte of blanks (X’40’)

follows the text.

If the Text or PF Keyrecord is not blocked,it will contain one of each segment. If the record is

blocked, it will contain one main segment followed by multiple text or PF key segments. The

host must determine the length of the record to process each segment. All records sent by the

host are unblocked. Records sent by $RMU maybeblocked if specified on the PASSTHRU

request. Blocking is discussed in ““PASSTHRUBlocking” on page CO-94.

All Text or PF Key records sent by $RMU will always contain text; the host will never receive a

Program Function key.

Whenthe host sends a Text or PF Key record, the record may contain either text (the host as a

terminal has entered text), or a PF key (the host as a terminal has entered a PF key). If text is

sent, the length of the text is specified in the RMPTXTLfield, and the text is specified in the

RMPTXTfield. The RMPSTfield is not used.

The following example showsa record sent by the host which contains the text ''MESSAGE

FROM HOST PROGRAM".

RMHBSCC DATA X‘1002'
RMHID DATA C’X’
RMHTYP DATA C’'P’
RMPTYP DATA F'1’
RMPST DATA F'O’ (IGNORED)
RMPTXTL DATA F'25’
RMPTXT DATA C’MESSAGE FROM HOST PROGRAM’

Chapter 2. Remote ManagementUtility ($RMU) CO-91

Remote ManagementUtility ($

Interacting Between Host and Remote Systems (PASSTHRU)(continued)

Whenthe host sends a PF key, the value of the RMPTXTLfield is set to -1 and the PF keyis

specified as a 2-byte numeric value in the RMPTXTfield. A PF key value of 0 is the equivalent

of an ''attention”’.

The following example showsthe host sending a Program Function key 3.

RMHBSCC DATA X’‘1002'
RMHID DATA C’X’
RMHTYP DATA C’'P’
RMPTYP DATA F'1’
RMPST DATA F'O' (IGNORED)
-RMPTXTL DATA F'-1'° (INDICATES PF KEY)
RMPPF DATA F’3’ PF KEY 3

Figure 45 on page CO-93 is an example of the records the host receives from a program which

executes a PRINTEXTinstruction.

CO-92 SC34-0443

2U) (continued)

issued by program on Series/1:

PRINTEXT ‘ENTER COMMAND’,SKIP=1

PASSTHRUrecord received by host

with no blocking:

RMHBSCC DATA X’‘1002’
RMHID DATA CX’
RMHTYP DATA C’P’
RMPTYP DATA F'1’
RMPST DATA X’8E01' (SKIP=1)
RMPTXTL DATA F'O’ (NO TEXT)

RMHBSCC DATA X’1002’
RMHID DATA CX’
RMHTYP DATA C’P’
RMPTYP DATA F’'1’
RMPST DATA F’-2’
RMPTXTL DATA F'13'
RMPTXT DATA C’ENTER COMMAND’

DATA C’’ (PAD)

PASSTHRUrecord received by host

with blocking:

RMHBSCC DATA X’1002’
RMHID DATA C’X’
RMHTYP DATA C’P’
RMPTYP DATA F'1'

DATA X’8E01° (SKIP=1)
DATA F‘O’ (NO TEXT)
DATA F’-2' (NEXT SEGMENT)
DATA F'13’
DATA C’ENTER COMMAND’
DATA C’’ (PAD)

Figure 45. Example of PASSTHRUrecords received by host

Request for Data Record

The Request for Data record is a 6-byte record that contains constant values. A Request for

Data record is always followed by an EOT. The format of the Request for Data recordis:

RMHBSCC DATA X’1002’
RMHID DATA C’X’
RMHTYP DATA C’P’
RMPTYP DATA F'2’

Chapter 2. Remote ManagementUtility ($RMU) © CO-93

Remote ManagementUtility (SRMU)

interacting Between Host and Remote Systems (PASSTHRU)(continued)

Program End Record

No Data Record

The Program Endrecordis a 6-byte record that contains constant values. A Program End record

is always followed by an EOT. The format of the Program Endrecordis:

RMHBSCC DATA X‘1002'
RMHID DATA C’X’
RMHTYP DATA C'P’
RMPTYP DATA F’3’

The No Data record is a 6-byte record that contains constant values. A No Data record is

always followed by an EOT. The format of the No Data recordis:

RMHBSCC DATA X‘1002’
RMHID DATA C’X’
RMHTYP DATA C’P’
RMPTYP DATA F'4’

PASSTHRUBlocking

CO-94 SC34-0443

When PASSTHRUrecordsare not blocked, each Text or PF Key record contains only one text

segment. With blocking, each record may contain multiple text segments. For PASSTHRU

sessions in which the host receives many consecutive lines of output, such as a result of a ‘list’
commandto a utility, blocking allows more efficient usage of the communicationsline.

The host specifies blocking in the RMPRBLKfield of the PASSTHRUrequest. If this field is

zero, blocking is not performed. A value greater than zero indicates the maximumsize, in bytes,

of the text segments which the host can process.

To determine the value for the RMPRBLKfield, start with the size of the buffer at the host.

Subtract 6 from the size of the host buffer for the 6-byte main segment of each record. Then

subtract 2 more to allow space for the ETX plus one byte for word alignment. The resulting

numberis the maximum blocksize.

$RMUwill use this value if it can. However, if $RMU does not have a buffer as large as the

value of RMPRBLK, $RMUwill use the largest block size it can.

The host must determine the length of the Text or PF Key record and process each text segment

until the end of the record is reached. If a text record exceeds the block size specified in

RMPRBLK, $RMUstill sends that record to the host. This mayresult in a "wrong length
record’ condition. The host should ensure that it can handle the longest length record expected
from theutility. For example, if the longest text record is 132 bytes, a block size of 136 would

be sufficient for all records.

Sample Programs

The following sample Series/1 programs communicate with and perform functions of the

Remote ManagementUtility.

Multifunction Program

This program executes on a host Series/1 and communicates with $RMUon a remote Series/1.

The program performsall the functions of $RMU except SEND, RECEIVE, and PASSTHRU.

The program sends an ALLOCATErequest andprints a status message, but can be used for the

other functions by simply defining the fields of the desired request at label "RM".

UT
START

TERM

BSCERR

PROGRAM START
EQU *
BSCOPEN IOCB,ERROR=BSCERR OPEN BSC LINE
MOVE IOCB3, +REQLEN LENGTH OF REQUEST

| IN IOCB
BSCWRITE IX,1IOCB,ERROR=BSCERR WRITE REQUEST
BSCWRITE E,IOCB, ERROR=BSCERR WRITE EOT
MOVEA IOCB2,ST ADDRESS OF STATUS
MOVE IOCB3, 20 LENGTH OF STATUS

IN IOCB
BSCREAD I,IOCB,ERROR=BSCERR,TIMEOUT=NO READ STATUS
SUB IOCB, IOCB2,RESULT=PN2 LENGTH INTO PRINTNUM
ADD PN2,+1
SHIFTR PN2,1 CONVERT LENGTH TO WORDS
PRINTEXT 'dSTATUS MESSAGE: 9'
PRINTNUM ST,0,MODE=HEX,P2=PN2 PRINT STATUS MSG
BSCREAD C,IOCB,ERROR=BSCERR , TIMEOUT=NO READ EOT
IF (ST+6,EQ,-1) IF SUCCESSFUL STATUS

THEN
PRINTEXT 'dQFUNCTION SUCCESSFUL'

ELSE ELSE
PRINTEXT '@FUNCTION FAILED'

ENDIF ENDIF
EQU * TERMINATION POINT
BSCCLOSE IOCB CLOSE BSC LINE
PROGSTOP

EQU * BSC ERROR ROUTINE
MOVE ST,UT MOVE RETURN CODE
PRINTEXT ‘BSC ERROR: '
PRINTNUM ST PRINT RETURN CODE
GOTO TERM GO TO TERMINATION

Figure 46 (Part 1 of 2). Multifunction sample program

Chapter 2. Remote ManagementUtility ($RMU) CO-95

Remote ManagementUtility (SRMU

Sample Programs(continued)

IOCB BSCIOCB 9,RM,0O,P2=IOCB2,P3=IO0CB3 ITOCB
P2=IOCB2 IS MESSAGE ADDRESS
P3=IOCB3 IS MESSAGE LENGTHx

%

*

ST DATA 10F'O' AREA FOR STATUS RECORD

* 10 BYTES NORMAL STATUS RECORD

* 8 BYTES IDCHECK STATUS EXT.

* 1 BYTE BTX
eneeeee

* 19 BYTES TOTAL, ROUNDED UP TO

* 10 WORDS

-- THE FOLLOWING MAY BE CHANGED FOR OTHER REQUESTS --
*

RM EQU * REQUEST
RMHBSCC DATA X'1002' BSC CTRL CHARS (DLE STX)
RMHID DATA crx! HEADER ID
RMHTYP DATA C'R' HEADER TYPE: REQUEST
RMREQ DATA F'2' REQUEST TYPE: ALLOCATE
RMADSN DATA CL8 'MYDATA' DATA SET NAME: MYDATA
RMAVOL DATA CL6'MYVOL' VOLUME NAME: MYVOL
RMANREC DATA D'10' NUMBER RECORDS: 10
RMADST DATA F'i' DATA SET TYPE: DATA
REQLEN EQU *—-RM LENGTH OF REQUEST
*

ENDPROG
END

Figure 46 (Part 2 of 2). $RMU multifunction program

CO-96 SC34-0443

Sample Programs(continued)

RECEIVE Sample Program

This sample program, which runs on the host, sends a RECEIVErequest tranferring a data set

to the remote Series/1. The blocking factor for the data is 2, andit is transferred in 80-byte

records.

EXRECV
START

*

DATA

RDEND

PROGRAM START, DS=((RECVDS,??))
EQU *
BSCOPEN IOCB,ERROR=BSCOPEN

MOVE IOCB3 , +REQLEN
BSCWRITE IX, IOCB, ERROR=BSCERR
BSCWRITE E, IOCB, ERROR=BSCERR

MOVEA IOCB2,ST
MOVE IOCB3,+STL
BSCREAD I,IOCB,ERROR=BSCERR
BSCREAD C,IOCB,ERROR=BSCERR
IF (STSFN,NE,-1)

OPEN BSC LINE

LENGTH OF REQUEST IN IOCB
WRITE REQUEST
WRITE EOT

ADDRESS OF STATUS
LENGTH OF STATUS IN IOCB
READ STATUS
READ EOT
IF STATUS INDICATES ERROR

PRINTEXT '@STATUS INDICATES ERROR' THEN PRINT IT
PRINTNUM ST,5,MODE=HEX |
GOTO TERM1 TERMINATE

ENDIF ENDIF

MOVEA IOCB2,DT ADDRESS OF DATA
MOVE IOCB3,+DTL SET LENGTH
EQU * |
READ DS1,DISKREC, ERROR=RDERR,END=RDEND READ RECORD
MOVE DTDATA , DISKREC, (80, BYTE) FIRST RECORD
MOVE DTDATA+80 , DISKREC+128, (80,BYTE) SECOND RECORD
IF (COUNT, EQ, 0) IF FIRST TIME THEN
BSCWRITE IX, IOCB,ERROR=BSCERR,END=BSCAB WRITE INITIAL

ELSE ELSE
BSCWRITE CX, IOCB,ERROR=BSCERR,END=BSCAB WRITE CONTINUE

ENDIF ENDIF
ADD COUNT, 2 ADD 2 TO COUNT
GOTO DATA CONTINUE TRANSFERRING DATA
EQU * TO HERE WHEN AT ENDFILE
BSCWRITE E,IOCB,ERROR=BSCERR WRITE EOT
BSCREAD 1I,IOCB,ERROR=BSCERR READ COUNT
BSCREAD C,IOCB,ERROR=BSCERR READ EOT
IF (DTCCNT, EQ, COUNT) IF COUNT OK THEN
PRINTEXT 'COUNT OK:' PRINT IT
PRINTNUM COUNT

ELSE ELSE
PRINTEXT '@COUNT FAILED. COUNTED: '
PRINTNUM COUNT PRINT COUNTS
PRINTEXT ' COUNT RECORD:'
PRINTNUM DTCCNT

ENDIF ENDIF

Figure 47 (Part 1 of 4). RECEIVE sample program

Chapter 2. Remote ManagementUtility ($RMU)

CO-97

Remote ManagementUtility (SRMU)

Sample Programs(continued)

CO-98 SC34-0443

TERM1 EQU
BSCCLOSE
EQU
PROGSTOP
EQU
BSCREAD
BSCREAD
PRINTEXT
PRINTNUM
GOTO

TERM2

BSCAB

*

BSCERR EQU- ¥*
MOVE
PRINTEXT
PRINTNUM
GOTO

*

BSCOPEN EQU *
MOVE
PRINTEXT
PRINTNUM
GOTO

* EXIT POINT FOR NORMAL TERM
TOCB CLOSE BSC LINE
* EXIT POINT FOR OPEN FAILED

* ABORT RECEIVED ON WRITE
I, IOCB, ERROR=BSCERR READ STATUS
C,ITOCB,ERROR=BSCERR READ EOT
'@ABORT RECEIVED. STATUS:'
DT,5,MODE=HEX
TERM1 TERMINATE

BSC ERROR ROUTINE
ST, EXRECV MOVE RETURN CODE
'@BSC ERROR: '
ST PRINT RETURN CODE
TERM1 GO TO TERMINATION

OPEN ERROR
ST, EXRECV MOVE RETURN CODE
'@BSC OPEN ERROR:'
ST PRINT RETURN CODE
TERM2 GO TO TERMINATION

Figure 47 (Part 2 of 4). RECEIVE sample program

Sample Programs (continued)

*

RDERR EQU * DISK READ ERROR
MOVE ST, EXRECV MOVE RETURN CODE
PRINTEXT '@DISK READ ERROR: '
PRINTNUM ST PRINT RETURN CODE
MOVEA IOCB2,ST POINT IOCB TO

* STATUS MESSAGE
MOVE IOCB3,4 SET LENGTH TO 4
MOVE ST,X'1002' SET UP STATUS MESSAGE
MOVE ST+2,C'Xs'
BSCWRITE IX,1IOCB,ERROR=BSCERR SEND STATUS MESSAGE
BSCWRITE E,IOCB,ERROR=BSCERR SEND EOT
GOTO TERM2 GO TO TERMINATION

*

IOCB BSCIOCB 9,RM,0,P2=IOCB2,P3=I0CB3 IOCB
* P2= IS RECORD ADDRESS
* P3= IS RECORD LENGTH
*

RLEN DATA F'Q' RECORD LENGTH
*

COUNT DATA F'Q' RECORD COUNT
*#-— REQUEST FOR $RMU TO RECEIVE A DATA SET
*

RM EQU * REQUEST
RMHBSCC DATA xX'1002' BSC CNTRL CHARS (DLE STX)
RMHID DATA C'xX'! HEADER ID
RMHTYP DATA C'R' HEADER TYPE: REQUEST
RMREQ DATA F'1' REQUEST TYPE: RECEIVE
RMRDSN DATA CL8'MYDATA' DATA SET NAME: MYDATA
RMRVOL DATA CL6' VOLUME NAME: (IPL VOL)
RMRSTR DATA D'O! STARTING RECORD: NONE
RMRTYP DATA F'1' RECEIVE TYPE: SOURCE
RMRBLK DATA F'2' BLOCKING FACTOR: 2
REQLEN EQU ¥*-RM LENGTH OF REQUEST

Figure 47 (Part 3 of 4). RECEIVE sample program

Chapter 2. Remote ManagementUtility ($SRMU) CO-99

 Remote ManagementUtility (SRMU)

Sample Programs(continued)

*-- STATUS RECORD
*

ST DATA 10F'O' AREA FOR STATUS RECORD
*

*

*

STSFN EQU ST+6 STATUS FUNCTION
STL EQU ¥*-ST STATUS RECORD LENGTH
*

*-- DATA AND COUNT RECORD
*

DT DATA xX'1002' DATA RECORD: DLE STX
DATA C'XD' HEADER ID, TYPE (DATA)

DTCCNT EQU DT+10 LOCATION OF COUNT
DTDATA DATA 160C' '
DTL EQU *-DT LENGTH
*

DISKREC DATA 128F'O' DISK RECORD AREA
ENDPROG
END

Figure 47 (Part 4 of 4). RECEIVE sample program

CO-100 SC34-0443

Sample Programs (continued)

SEND Sample Program

This program, which runs on the host, contains a SEND request. It asks the remote system to

transfer a data set to the host. Data is blocked with a factor of 3, and transferred in 256-byte

records.

EXSEND PROGRAM START,DS=((SENDDS,??))

START EQU *
BSCOPEN IOCB, ERROR=BSCOPEN OPEN BSC LINE

MOVE IOCB3 , +REQLEN LENGTH OF REQUEST IN IOCB

BSCWRITE IX, ITOCB, ERROR=BSCERR WRITE REQUEST

BSCWRITE E,IOCB, ERROR=BSCERR WRITE EOT

MOVEA IOCB2,ST ADDRESS OF STATUS

MOVE IOCB3 ,+STL LENGTH OF STATUS IN IOCB

BSCREAD I,IOCB,ERROR=BSCERR READ STATUS

IF (STSFN,NE,-1) IF STATUS INDICATES ERROR

BSCREAD C,IOCB,ERROR=BSCERR READ EOT

PRINTEXT 'dSTATUS INDICATES ERROR' THEN PRINT IT

PRINTNUM ST,5,MODE=HEX

GOTO TERM1 TERMINATE

ENDIF ENDIF

MOVEA IOCB2 ,DT ADDRESS OF DATA

DATA EQU *
MOVE IOCB3 ,+DTL SET LENGTH TO MAX

BSCREAD C,IOCB,ERROR=BSCERR READ DATA OR COUNT

SUB IOCB, IOCB2,RESULT=RLEN COMPUTE LENGTH

IF (DTHTYPR,EQ,C'D',BYTE) IF DATA THEN

SUB RLEN,+4 -4 FROM LENGTH

* FOR HEADER

SHIFTR RLEN, 8 RLEN = NUMBER RECORDS

* WRITE RECORDS NEXT

WRITE DS1,DTDATA, RLEN, ERROR=WRERR, END=WRERR

ADD COUNT, RLEN ADD NUMBER WRITTEN

* TO COUNT

GOTO DATA GO READ NEXT RECORD

ELSE ELSE

IF (DTHTYPR,EQ,C'C' , BYTE) ITF COUNT THEN

IF (DTCCNT , EQ, COUNT) IF COUNT OK THEN

PRINTEXT ‘COUNT OK:' PRINT IT

PRINTNUM COUNT

ELSE ELSE

PRINTEXT 'COUNT FAILED. COUNTED: '

PRINTNUM COUNT PRINT COUNTS

PRINTEXT ' COUNT RECORD: '

PRINTNUM DTCCNT

ENDIF ENDIF

ELSE ELSE MUST BE STATUS

PRINTEXT 'ERROR MSG RECEIVED: '

PRINTNUM DT,5,MODE=HEX PRINT IT

ENDIF ENDIF

ENDIF ENDIF

BSCREAD C,IOCB,ERROR=BSCERR READ EOT

Figure 48 (Part 1 of 3). SEND sample program

Chapter 2. Remote ManagementUtility ($RMU) CO-101

Remote Management Utility (SRMU)

Sample Programs(continued)

TERM1 EQU
BSCCLOSE
EQU
PROGSTOP
EQU *
MOVE
PRINTEXT
PRINTNUM
GOTO

TERM2

BSCERR

*

BSCOPEN EQU- *
MOVE
PRINTEXT
PRINTNUM
GOTO

WRERR EQU *
MOVE
PRINTEXT
PRINTNUM
BSCWRITE
MOVEA
MOVE
MOVE
MOVE
BSCWRITE
BSCWRITE
GOTO

* EXIT POINT FOR NORMAL TERM
ITOCB CLOSE BSC LINE
* EXIT POINT FOR OPEN FAILED

BSC ERROR ROUTINE
ST, EXSEND MOVE RETURN CODE
'@BSC ERROR: '
ST PRINT RETURN CODE
TERM 1 GO TO TERMINATION

OPEN ERROR
oT, EXSEND MOVE RETURN CODE
'@BSC OPEN ERROR: '
oT PRINT RETURN CODE
TERM2 GO TO TERMINATION

WRITE ERROR
oT, EXSEND MOVE RETURN CODE
'@DISK WRITE ERROR: '
ST PRINT RETURN CODE
E,1OCB,ERROR=BSCERR WRITE EOT (ABORT)
IOCB2,ST POINT IOCB TO STATUS
ITOCB3,4 SET LENGTH TO 4
ST,X'1002' SET UP STATUS MESSAGE
ST+2,C'XS'
IX, [OCB , ERROR=BSCERR
E, LOCB, ERROR=BSCERR
TERM 1

WRITE STATUS
WRITE EOT
GO TO TERMINATION

Figure 48 (Part 2 of 3). SEND sample program

CO-102 SC34-0443

Sample Programs (continued)

IOCB BSCIOCB 9,RM,0,P2=I0CB2,P3=I0CB3 IOCB
*

* P2=IOCB2 IDENTIFIES MSG ADDRESS
* P3=I10CB3 IDENTIFIES MSG LENGTH
RLEN DATA F'O! RECORD LENGTH
*

COUNT DATA F'O! RECORD COUNT
*

*-- REQUEST FOR $RMU TO SEND DATA SET
*

RM EQU * REQUEST
RMHBSCC DATA X'1002' BSC CNTRL CHARS (DLE STX)
RMHID DATA C'!Xx'! HEADER ID
RMHTYP DATA C'!R' HEADER TYPE: REQUEST
RMREQ DATA F'O' REQUEST TYPE: SEND
RMSDSN DATA CL8'MYDATA' DATA SET NAME: MYDATA
RMSVOL DATA CL6' VOLUME NAME: (IPL VOL)
RMSSTR DATA D'O! STARTING RECORD: NONE
RMSTYP DATA F'O' SEND TYPE: NORMAL
RMSBLK DATA F'3' BLOCKING FACTOR: 3
REQLEN EQU *-RM LENGTH OF REQUEST
*-- STATUS RECORD
*

ST DATA 10F'O' AREA FOR STATUS RECORD
*

*

*

STSFN EQU ST+6 STATUS FUNCTION
STL EQU *-ST STATUS RECORD LENGTH
*

*-- DATA AND COUNT RECORD
*x

DT DATA 387F'0O' AREA FOR DATA RECORD
4 BYTES MESSAGE HEADER

* 768 BYTES 3 256-BYTE RECS
x 1 BYTE ETX
eeeeeee

* 773 BYTES TOTAL, ROUNDED UP
x TO 387 WORDS
DTHTYPR EQU DT+3 RECORD TYPE
DTDATA EQU- DT+4 DATA
DTCCNT EQU DT+10 COUNT
DTL EQU *-DT LENGTH

ENDPROG
END

Figure 48 (Part 3 of 3). SEND sample program

PASSTHRU Sample Program

This sample program executes a PASSTHRUsession. The host Series/1 establishes a session

with the supervisor of a remote Series/1. The program uses blocking. The host terminal looks

as if it were connected to the remote system.

Chapter 2. Remote Management Utility ($RMU) CO-103

Remote
M

Sample Programs(continued)

CO-104

EXPASST
*
*

8
k
H
e
H
K
H
K
e
E
H
H
E
H
K
H

START

*

PROGRAM START, TERMERR=TERM1

THIS EXAMPLE HOST PROGRAM USES THE PASSTHRU FUNCTION
OF THE REMOTE MANAGEMENT UTILITY. THE OPERATOR IS
ASKED WHETHER TO START THE PASSTHRU ASSIST PROGRAM.
IF SO, THE PROGRAM $RMUPA IS INVOKED. AFTER THIS, A
SESSION IS ESTABLISHED WITH THE EDX SUPERVISOR.

WHENEVER A "PROGRAM END" PASSTHRU RECORD IS RECEIVED,
A "REQUEST DATA" RECORD IS SENT. WHEN A "NO DATA"
RECORD IS RECEIVED, THE OPERATOR IS ASKED WHETHER TO
"ATTN" (END THE SESSION AND START ANOTHER), "READ"
(TRY TO ACQUIRE DATA FROM THE HOST), OR "QUIT" (END
THE PASSTHRU SESSION AND THEN TERMINATE.

EQU *
BSCOPEN IOCB,ERROR=BSCOPEN OPEN BSC LINE

*-- START UP PASSTHRU ASSIST PROGRAM ($RMUPA) IF NEEDED
*

*

QUESTION 'START PASSTHRU ASSIST PROGRAM?' ,NO=START2

MOVEA ITOCB2 ,REQPTAS ADDRESS OF REQUEST IN IOCB
MOVE TOCB3 , +REQPTASL LENGTH OF REQUEST IN IOCB
BSCWRITE IX, IOCB, ERROR=BSCERR WRITE REQUEST
BSCWRITE E,IOCB, ERROR=BSCERR WRITE EOT

MOVEA IOCB2,ST ADDRESS OF STATUS
MOVE TOCB3,+STL LENGTH OF STATUS IN IOCB
BSCREAD I,1I0OCB,ERROR=BSCERR READ STATUS
BSCREAD C,IOCB,ERROR=BSCERR READ EOT
IF (STSFN,NE,-1) IF STATUS INDICATES ERROR
PRINTEXT 'dSTATUS INDICATES ERROR' PRINT IT
PRINTNUM ST,5,MODE=HEX
GOTO TERM1 TERMINATE

ENDIF ENDIF
MOVEA ITOCB2,DT ADDRESS OF DATA
MOVE TOCB3 ,+DTL SET LENGTH
BSCREAD- I, 1I0OCB, ERROR=BSCERR, TIMEOUT=NO

READ, EXPECT PROGRAM END
BSCREAD C,IOCB, ERROR=BSCERR , TIMEOUT=NO READ EOT
IF (EXPASST, EQ,+1),AND, (DT+RMPTYP,EQ,+RMPTYPPE)

IF PGM END AND EOT THEN
MOVE DT,X'1002! SET UP PTHRU PGM END
MOVE DT+RMPTYP,+RMPTYPPE PTHRU TYPE IS PGM END
MOVE IOCB3 , +RMPX SET UP LENGTH IN IOCB
BSCWRITE IX, ITOCB, ERROR=BSCERR, END=BSCAB WRITE TO RMU
BSCWRITE E, IOCB, ERROR=BSCERR WRITE EOT

Figure 49 (Part 1 of 7). PASSTHRU sample program

SC34-0443

Sample Programs(continued)

ELSE ELSE
MOVE ST,EXPASST SAVE RETURN CODE
PRINTEXT 'dUNSUCCESSFUL LOAD OF PASSTHRU ASSIST PGM.'
PRINTEXT 'dLAST MESSAGE READ:'
PRINTNUM DT, 10,MODE=HEX PRINT MESSAGE

PRINTEXT 'dOLAST RETURN CODE FROM READ: '

PRINTNUM ST,MODE=HEX PRINT RETURN CODE

GOTO TERM1 TERMINATE

ENDIF ENDIF
*

*--— MAIN PASSTHRU PROCESSING. SEND REQUEST
*

START2 MOVEA IOCB2 , REQPT ADDRESS OF REQUEST IN IOCB

MOVE IOCB3 , +REQLEN LENGTH OF REQUEST IN IOCB

BSCWRITE IX,IOCB,ERROR=BSCERR WRITE REQUEST
BSCWRITE E,IOCB,ERROR=BSCERR WRITE EOT

MOVEA IOCB2,ST ADDRESS OF STATUS
MOVE IOCB3,+STL LENGTH OF STATUS IN IOCB
BSCREAD I,IOCB,ERROR=BSCERR READ STATUS
BSCREAD C,IOCB,ERROR=BSCERR READ EOT
IF (STSFN,NE,-1) IF STATUS INDICATES ERROR

PRINTEXT '@STATUS INDICATES ERROR' PRINT IT
PRINTNUM ST,5,MODE=HEX
GOTO TERM1 TERMINATE

ENDIF ENDIF

Figure 49 (Part 2 of 7). PASSTHRUsample program

Chapter 2. Remote ManagementUtility ($RMU) CO-105

Remote ManagementUtility (SRMU)

Sample Programs(continued)

READ EQU *
MOVEA ITOCB2 ,DT ADDRESS OF DATA

MOVE TOCB3,+DTL SET LENGTH

IF (BSCST,NE,+BSCSTRD) IF BSC STATE IS NOT READ

BSCREAD I1,1IOCB,ERROR=BSCERR, TIMEOUT=NO READ INIT

MOVE BSCST,+BSCSTRD BSC STATE = READ

ELSE ELSE
BSCREAD C,1IOCB, ERROR=BSCERR, TIMEOUT=NO READ CONT

ENDIF ENDIF
*

IF (DT+RMHTYP,NE,C'P', BYTE) IF NOT PASSTHRU THEN

PRINTEXT 'd@NON-PASSTHRU MESSAGE RECEIVED: '

PRINTNUM DT,5,MODE=HEX PRINT WHAT WAS RECEIVED

* (WILL BE STATUS)

BSCREAD C,IOCB, ERROR=BSCERR, TIMEOUT=NO READ EOT

GOTO TERM1 TERMINATE
ENDIF ENDIF

*-~ CASE: PASSTHRU TYPE

GOTO (ERRPT, TEXT, REQD, PGME,NODA) , DT+RMPTYP
*

TEXT EQU * PASSTHRU TYPE: DATA

MOVEA #1,DT+RMPST SET #1 TO BEGINNING OF TXT

DO UNTIL, (#1,EQ,IOCB) DO UNTIL AT END OF TEXT

* (IOCB CONTAINS ADDRESS

* OF BYTE PAST LAST BYTE

* OF DATA)

IF ((0,#1),EQ,-1),OR, ((0,#1) ,EQ,-2) IF TEXT

PRINTEXT (4,#1) ,MODE=LINE PRINT TO TERMINAL

IF ((0,#1),EQ,-1) IF NEWLINE
PRINTEXT SKIP=1 THEN DO NEWLINE

ENDIF ENDIF

ADD #1,(2,#1) POINT #1 TO NEXT TEXT

ADD #1,5 ADD HEADER LENGTH + 1

AND #1,X'FFFE' POINT TO EVEN BOUNDARY

ELSE ELSE

IF ((0,#1),EQ,X'8F',BYTE) IF LINE= THEN
AND (O,#1),X'OOFF',RESULT=N1 DO IT

PRINTEXT LINE=N1 ON TERMINAL

ELSE ELSE

IF ((0,#1),EQ,X'8E',BYTE) IF SKIP= THEN

AND (0O,#1),X'OOFF',RESULT=N1 DO IT

PRINTEXT SKIP=N1 ON TERMINAL

ENDIF ENDIF

ENDIF ENDIF

ADD #1,4 POINT #1 TO NEXT
* TEXT BLOCK

ENDIF ENDIF

ENDDO ENDDO

GOTO READ END TEXT PROCESSING

Figure 49 (Part 3 of 7). PASSTHRU sample program

CO-106 SC34-0443

Sample Programs (continued)

REQD

PGME

NODA

NODAQ

EQU * PASSTHRU TYPE: REQ DATA
BSCREAD C,IOCB,ERROR=BSCERR READ EOT
MOVE DT+RMPTXTL,X'FEOO' SET UP "TEXT" STATEMENT
READTEXT DT+RMPTXT,MODE=LINE GET TEXT FROM TERMINAL
MOVE DT,X'1002' SET UP PTHRU TEXT RECORD
MOVE DT+RMPTYP,+RMPTYPTX PTHRU TYPE IS TEXT OR PFK
MOVE DT+RMPTXTL,O,BYTE ZERO HI-ORDER LENGTH BYTE
IF (DT+RMPTXTL,GE,4) , AND, (DT+RMPTXT,EQ,C'$P'),

AND, (DT+TXT2,EQ,C'F',BYTE) IF "$PFN" ENTERED
MOVE DT+RMPTXTL, -1 INDICATE PF KEY
MOVE DT+RMPTXT , DT+TXT2 PLACE NUMBER IN MSG
AND DT+RMPTXT,X'OOOF' PURIFY NUMBER
MOVE IOCB3 ,2+RMPTXT LENGTH IN IOCB

ELSE ELSE
MOVE IOCB3 , DT+RMPTXTL SET UP LENGTH IN IOCB
ADD TOCB3 ,+RMPTXT INCLUDING HEADER

ENDIF ENDIF
BSCWRITE IX,IOCB, ERROR=BSCERR,END=BSCAB WRITE TO RMU
BSCWRITE E,IOCB,ERROR=BSCERR WRITE EOT
MOVE BSCST,+BSCSTO BSC STATE = RESET
GOTO READ END REQ TEXT PROCESSING

EQU * PASSTHRU TYPE: PROGRAM END
(DISCONNECT)

BSCREAD C,IOCB,ERROR=BSCERR READ EOT
GOTO SNDROD GO AND REQUEST DATA

EQU * PASSTHRU TYPE: NO DATA
BSCREAD C,IOCB,ERROR=BSCERR READ EOT
PRINTEXT 'dO"NO DATA" RECEIVED. ENTER ONE:'
READTEXT INMSG,'d A(TTN), R(EAD), Q(UIT) '
IF (INMSG,EQ,C'A', BYTE) ,OR, (INMSG,EQ,C'Q' , BYTE)

IF "ATTN" OR "QUIT" THEN
SEND PROGRAM END

MOVE DT,X'1002' SET UP PTHRU PGM END
MOVE DT+RMPTYP,+RMPTYPPE PTHRU TYPE IS PGM END
MOVE TOCB3 , +RMPX SET UP LENGTH IN IOCB
BSCWRITE IX, IOCB, ERROR=BSCERR, END=BSCAB WRITE TO RMU
BSCWRITE E,IOCB,ERROR=BSCERR WRITE EOT
MOVE BSCST,+BSCSTO BSC STATE = RESET

Figure 49 (Part 4 of 7). PASSTHRUsample program

Chapter 2. Remote ManagementUtility ($RMU) CO-107

Remote ManagementUtility (SRMU)

Sample Programs(continued)

PRINTNUM DT, 20,MODE=HEX
GOTO TERM1

*

*—— END OF CASES
*

SNDRQD EQU *
MOVE DT,X'1002'
MOVE DT+RMPTYP , +RMPTYPRD
MOVE IOCB3 , +RMPX

BSCWRITE E, IOCB, ERROR=BSCERR

BSCREAD C,IOCB, ERROR=BSCERR

PRINTNUM DT, 20,MODE=HEX
GOTO TERM1 BSCREAD I,IOCB,ERROR=BSCERR |

IF (INMSG,EQ,C'A', BYTE) ,GOTO, START2
IF "A" THEN START NEW
SESSION

GOTO TERM1 OTHERWISE TERMINATE
ELSE ELSE (NOT "ATTN"

* OR "QUIT")
IF (INMSG,EQ,C'R'),GOTO,SNDRQD IF "R" THEN

* REQUEST DATA
GOTO NODAQ ELSE ASK AGAIN

ENDIF ENDIF
ERRPT EQU * PASSTHRU TYPE: UNKNOWN

PRINTEXT ‘d@INVALID PASSTHRU RECORD RECEIVED: '

TERMINATE

SEND REQUEST DATA
SET UP PTHRU REQUEST DATA
PTHRU TYPE IS REQEST DATA
SET UP LENGTH IN IOCB

BSCWRITE IX, IOCB, ERROR=BSCERR, END=BSCAB WRITE TO RMU
WRITE EOT

MOVE BSCST,+BSCSTO BSC STATE = RESET
GOTO READ END REQ TEXT PROCESSING

*

*

TERM1 EQU * EXIT POINT FOR NORMAL TERM
BSCCLOSE IOCB CLOSE BSC LINE

TERM2 EQU * EXIT POINT FOR OPEN FAILED
PROGSTOP

*

BSCAB EQU * ABORT RECEIVED ON WRITE
READ STATUS
READ EOT

PRINTEXT '@ABORT RECEIVED. STATUS:'

TERMINATE

Figure 49 (Part 5 of 7). PASSTHRU sample program

CO-108 SC34-0443

Sample Programs (continued)

*

BSCERR EQU- * BSC ERROR ROUTINE
MOVE ST,EXPASST MOVE RETURN CODE
PRINTEXT '@BSC ERROR:'
PRINTNUM ST PRINT RETURN CODE
GOTO TERM1 GO TO TERMINATION

*

BSCOPEN EQU- * OPEN ERROR
MOVE ST,EXPASST MOVE RETURN CODE
PRINTEXT '@BSC OPEN ERROR:'
PRINTNUM ST PRINT RETURN CODE
GOTO TERM2 GO TO TERMINATION

*-- DATA AREA
*

INMSG TEXT LENGTH=4 INPUT MSG FROM OPERATOR
*

IOCB BSCIOCB 9,0,0,P2=IOCB2,P3=IOCB3 IOCB
* P2= IS RECORD ADDRESS
* P3= IS RECORD LENGTH
*

*-- REQUEST FOR PASSTHRU
*

REQPT EQU * REQUEST
DATA xX'1002' BSC CONTROL CHARS (DLE STX)
DATA C'X' HEADER ID
DATA C'R' HEADER TYPE: REQUEST
DATA A(RMREQPST) REQUEST TYPE: PASSTHRU (12)
DATA A(PBL) PASSTHRU BLKING
DATA H'O' FLAG (UNUSED)
DATA H'O! PARTITION (UNUSED)
DATA CL8' ' PROGRAM: EDX SUPERVISOR
DATA CL6' ' VOLUME (UNUSED)
DATA 3F'0O' (REMAINDER UNUSED)

REQLEN EQU ¥*-REQPT LENGTH OF REQUEST

Figure 49 (Part 6 of 7). PASSTHRUsample program

Chapter 2. Remote ManagementUtility (SRMU) CO-109

Sample Programs(continued)

*

*—

*

REOPTAS

PASSTHRU

EQU
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA

REOPTASL EQU
*

*

*

REQUEST:

*

X'1002'
c'x!
C'R!
A (RMREQPST)
A(0)
H'O'
H'O'
CL8'$RMUPA'
CL6E' !
F'Q!'
F'Q!'
F'Q!'
*-REQOPTAS

STATUS RECORD

REQUEST
BSC CONTROL CHARS
HEADER ID
HEADER TYPE:
REQUEST TYPE:
PASSTHRU BLKING
FLAG (UNUSED)
PARTITION
PROGRAM :
VOLUME:
FREE SPACE:
PARAMETERS:
DATA SETS:

LENGTH OF REQUEST

START PASSTHRU ASSIST PROGRAM

(DLE STX)

REQUEST
PASSTHRU (12)
(NONE)

(ANY)
$RMUPA
IPL
NONE
NONE
NONE

ST DATA 10F'O' AREA FOR STATUS RECORD
*

*

*

STSFN EQU ST+6 STATUS FUNCTION
STL EQU ¥*-ST STATUS RECORD LENGTH
*

*-- PASSTHRU SESSION AREA
*

DT DATA 256F'0' RECORD
DTL EQU ¥*-DT LENGTH
PBL EQU DTL-8 PASSTHRU BLOCK LENGTH
* LENGTH OF DATA AREA -
¥ 6 BYTES FOR HEADER AND 2
* FOR ETX AND WORD ROUND UP
*

*-- MISCELLANEOUS VARIABLES
*

BSCST DATA F'O' BSC STATE:
BSCSTO EQU 0 RESET
BSCSTRD EQU_ 1 READING
N1 DATA F'O! WORK WORD
*

COPY CDRRM INCLUDE DEFINITION OF RMU MSGS
TXT2 EQU RMPTXT+2 BYTE 2 OF PASSTHRU TEXT
*

ENDPROG
END

Figure 49 (Part 7 of 7). PASSTHRUsample program

$C34-0443

Programs (continued)

Example of Conducting a PASSTHRU Session

In this example of conducting a PASSTHRUsession, the host invokes and runs the $DEBUG

utility.

(SL EXPASST=
| EXPASST9P LP=“cg00

| START §PASSTHRU ASSIST PROGRAM?,

|. 6h. SDEBUG oe oS
| SDEBUG 27P,,09: hy:08|“LPsBFOO

raeNAME:$DISKUTI
| SDISKUTI +30P,09:4:1hLeea

|Request.CaeLetToGETList.OFDeBus COMMANDSoo
|TASK STOPPED AT 0064 =
| ''NODATA"RECEIVED. “ENTER ONE:
| A(TTN),R(EAD), acu)A
| > WHERE | oe
| TASK ‘STOPPED AT0064
| SATTASKAT2600
| "NO DATA’! RECEIVED. ENTER ONE:

ACTIN),Eeon A :

Figure 50 (Part 1 of 4). Example of conducting a PASSTHRUsession

| > go
OPTION(+JARDRUTASCA: ALL |

| 1 BREAKPOINT(S) ACTIVATED—
| USING VOLUME EDX002

| COMMAND(Ds La‘2222A
| USING VOLUME EDX002.
| NAME — FREC SIZE

12845. FREE RECORDS IN L1BRARY.
ee():a
| XX
| > WHERE oe
F INVALID COMMAND
, TASK — AT 0274
VekAT2600

Figure 50 (Part 2 of 4). Example of conducting a PASSTHRUsession

Chapter 2. Remote ManagementUtility (SRMU) CO-111

CO-112

| COMMAN: D (2): $PFO
E XX a
> AT.

grams (continued)

 INVALID COMMAND
OPTION(*/ADDR/TASK/ALL):
BREAKPOINT ADDR: 274 |
LIST/NOLIST: N
STOP/NOSTOP: S :

1 BREAKPOINT(S) SET
COMMAND: XX
TASK STOPPED AT 0274
"NO DATA'' RECEIVED. ENTER ONE:

A(TTN), R(EAD), Q(UIT) A
> LIST A 274 5 x
0274 X' 8OAF 1010 C9D5 ES5C1 D3C9'
"'NO DATA'' RECEIVED. ENTER ONE:
A(TTN), R(EAD), Q(UIT) A

> END
1 BREAKPOINT(S) REMOVED

INVALID COMMAND

‘S
ee

p? H
o

Figure 50 (Part 3 of 4). Example of conducting a PASSTHRUsession

COMMAND (?): EN
"NO DATA'' RECEIVED. ENTER ONE:

A(TTN), R(EAD), Q(UIT) R
"NO DATA'' RECEIVED. ENTER ONE:

A(TTN), R(EAD), Q(UIT) A
> SRMUPA
"NO DATA'' RECEIVED. ENTER ONE:
A(TTN), R(EAD), Q(UIT) A

> SA

PROGRAMS AT 09:50:26
IN PARTITION #1 NONE
''NO DATA'' RECEIVED. ENTER ONE:
A(TTN), R(EAD), Q(UIT) Q ee ENDED

Figure 50 (Part 4 of 4). Example of conducting a PASSTHRUsession

SC34-0443

WhenSeries/1 has the Host Communication Facility (HCF) loaded onit, it can communicate

with a host system to perform various functions. The host system has the Host Communication

Facility Installed User Program (IUP 5796-PGH) executing on it. The Host Communications

Facility allows the Series/1 to perform file transfers and to submit job streamsto the host.

You must write the application program that communicates with the host system. It must

contain Event Driven Language TPinstructions. These instructions perform various

communications functions between the Series/1 and the host. Your program can perform the

following functions:

e« Write to a host data set

¢ Read from a host data set

e Submit a backgroundjob to the host system

¢« Obtain the time and date from the host system

e Set the occurrence of a Series/1 event so that it can be tested by a program running on the

host system

e Test for the occurrence of an event that is set by the host system

e Erase the record, on the host system, of an event that occurred oneither the Series/1 or the

host system

You can also perform HCFfunctions with the $HCFUT1utility, which provides interactive

capability between the Series/1 and the host.

Chapter 3. Host Communications Facility CO-113

Planning to Use the HostCommunications Facility

Certain requirements andrestrictions apply to the operation of the Host Communications

Facility.

Installation Requirements

Both the host and Series/1 must meet certain installation requirements for successful

communications through HCF. The host must have the HCF IUP 5796-PGH executing onit.

The BSCline connecting the Series/1 to the System/370 must be point-to-point leased. Only
the BSC Single Line Control (feature #2074) can be usedto attach the line to the Series/1.

System generation for the Series/1 must support the Host Communications Facility. The

appropriate supervisor modules and the TPCOMM system configuration statement provide this

support. Refer to the /nstallation and System Generation Guide for information.

Host Data Sets

Host data sets in your HCF programs must be namedaccording to a naming convention. Also,

your program can open only one host dataset at a time.

Host Data Set Naming Conventions

Whenyourefer to a host data set in a TP instruction, its name must consist of an alphanumeric

character string immediately preceded by one word specifying the length of the namefield. You

can do this most easily by coding a labeled TEXT instruction to define the name; for example:

DSN1 TEXT 'XYZ.EXP1.DATA '

Data set names follow standard host system naming conventions and must not exceed 44

characters in length (including delimiting periods). Pad the namefield with blanks on theright.

In the case of a partitioned data set and member name,specify a string of the form

dsname(membername); for example:

PDSDSN TEXT 'XYZ.EXP1.DATA(RUN1)

The maximumlength of such string is 54 characters.

To read a data set name from a terminal into a text field, issue a READTEXTinstruction.

Host Data Set Characteristics

You can access host data sets with the following characteristics:

e they must be cataloged

CO-114 SC34-0443

Record Sizes

Planningto 1unications Facility (continued)

e they must be single volume

e they must be direct-access

e they must contain fixed or variable-length records

e they can be either sequential data sets or membersof partitioned datasets.

e they can be either blocked or unblocked

Fixed-length logical records must contain an even numberof words. In fixed blocked format the

block size must be an integer multiple of the logical record length (LRECL), not exceeding

13030.

You can use either sequential data sets or members of partitioned data sets to submit jobs to the

host. Logical records must be 80 bytes long and can be blocked or unblocked. The size of

blocked records must be a multiple of 80.

You can use a large range of logical and physical record sizes when writing your program. In

selecting a record size, there is no absolute best choice, but you should consider the following:

¢ The basic disk or diskette record size on the Series/1 is 256 bytes. Therefore,this is a

natural unit of measure for transfer to and from disk and a natural choice for a logical

record size on the host. This is the default for the TP READ and TP WRITEinstructions.

e« A host physical record (block) size of 1536 bytes yields 80 percentutilization of host direct

access storage on an IBM 3330 disk. This size also provides enough record space so that

there will be moderate requirements for buffer storage.

« The larger the physical record being transferred between the host and the Series/1 (a host

logical record), the higher the effective data transfer rate that will be achieved. Also, the

larger the physical record (block) being transferred between host processorstorage and

direct access, the higher will be the effective data rate. The maximum data rate is achieved

whenusing track size records (13030 bytes for the IBM 3330 disk) for both operations.

e The large physical records naturally require correspondingly large buffers in your program.

In order to achieve overlapped I/O, multiple buffers are required.

Variable-Length Records

A variable-length record is always prefixed by four bytes of control information. This is called a

Record Descriptor Word or RDW. The RDW consists of twofields.

The length (LL)field (bytes 1 and 2) describes the total length of the record in bytes andis

therefore always four greater than the length of the data field. The 00 field (bytes 3 and 4)is

reserved for use by the host system.

Chapter 3. Host Communications Facility CO-115

Planning to Use the Host CommunicationsFacility (continued)

The rest of the record is taken up by the DATAfield.

Whena variable-length record is transferred from the host to the Series/1, the total record,

including the LL field, is transferred. When a variable-length record is to be transferred from

the Series/1 to the host, you must set the RDW to the propervalue.

Opening Host Data Sets

You may open only one host data set openat a time. If a second task attempts to open a data

set, HCF will place it in a queue of tasks waiting to usethefacility.

If the task currently using HCF attempts to open a second dataset, then the currently open data

set automatically closes, and the second one opens.

System Status Data Set

Synchronization of programsin the host system and the Series/1 is accomplished with a status

data set on the host system. Both systems share this data set. You can directly access this

system status data set with the TP SET, TP FETCH, and TP RELEASEinstructions. With

these instuctions you set the occurrence of events on the Series/1 which the host monitors, tests

for and then erases. These are called status functions. You can also perform the status

functions with the $HCFUT1utility.

For example, one program (Program A) makesan entry in the system status data set by

invoking a SETinstruction specifying an index and a key. Another program (Program B)tests

for the existence of such an entry with a FETCH or RELEASEreferring to the same index and

key names, and receives a positive return code if the entry exists. After performing a SET, the

first program (Program A) could periodically issue a FETCH. A companion program (Program

B) on the other system might also be issuing a periodic FETCH for the agreed-upon index and

key. At the appropriate time, this program (Program B) could issue a RELEASE which would

result in the first program (Program A)receiving a ''not found" return codefrom its next
FETCH. This could beinterpreted as a notification by the companion program (Program B)

that the message had beenreceived.

System Status Data Set Organization

CO-116

The system status data set has direct organization. You write records into this data set using TP

SET, test for the existence of a record using TP FETCH,or test and delete a record using TP

RELEASE.

A record sent to or retrieved from the status data set consists of three part, two of which are

mandatory:

e Index entry (mandatory)

e Keyfield (mandatory)

SC34-0443

ity (continued

¢« Data (optional 256-byte field)

Index entries and keyfields can each be up to eight EBCDIC characters1in length and have

significance for the using programs.

The system status data set has one 268-byte index record capable of containing 22 separate

index entries. An index entry has twoparts: :

e Index name- eight EBCDIC characters

e Key pointer - a 4-byte relative record pointer to the first associated key field record

A key entry is a 268-byte record with the following format:

¢« Forward pointer - a 4-byte relative record numberof the next Key entryorzeroif this is the

last one

e Key name - eight EBCDIC characters

e Data - 256 bytes of optional data

The next record pointer allows more than one keyto be associated with a given index. The next

record pointer of the last key field will be set to zero to indicate the end of the chain.

Logically, an unlimited number of key records may be associated with a single index. In practice,

the limiting factor is the physical size of the data set. The distributed data set allows fora total

of 94 key entries.

The system status data set format is defined and allocated during theinstallation of the Host

Communications Facility Installed User Program.

Appendix B of the Host Communications Facility Installed User Programcontains more details on

the use of the system status dataset.

Chapter 3. Host Communications Facility CO-117

o Use the HostCommunications Facility (continued)

Host Storage

To ensure economical utilization of host processor storage, while also providing large record

capability, host processor storage is shared byall Series/1 systems. The Host Communications

Facility [UP region allocation determines how much buffer space is available; therefore,it

determines the upperlimit for the host BLKSIZE. Despite this determination of buffer size,it is

still possible for error code 222 (sufficient I/O buffer space unavailable) to occur because of

multiple and simultaneous requests for access to data sets with very large block sizes. Although

this is not likely to occur, you should minimize the amountof realtime control you require with

the Host Communications Facility in order to minimize the probability of interference.

You should also specifically test for error code 222 in response to a TP OPENinstruction and,if

it is received, retry your requestlater.

Data Transfer Rates

Data transfer rates between a Series/1 and the host vary depending on the activity on the host

and the type of physical connection used between the systems. In general, you should avoid

implementing any functions in a manner which dependson specific data rates between the host

and Series/1.

Tasks Commonto Programming and Using $HCFUT1

You can perform almostall tasks both by writing TP instruction programs and using the

$HCFUT1utility. These include transfer of data sets between the host and Series/1, submitting

jobs to the host, and performing status functions.

mming for the Host Communications Facility Application

Your application programs for the Host Communications Facility can control data transfers,

submit backround jobsto the host, and perform status functions.

Event Driven Language Instruction Set

You write HCF programs with a set of EDL instructions called TP instructions. The chart that

follows showsthese instructions and the functions they perform. Theyare listed in alphabetical

order.

CO-118 $C34-0443

ation(continued

instruction Function

TP CLOSE Endsa data transfer operation (any operation begun by a TP OPENIN or TP
OPENOUTintruction)

TP FETCH Tests the existence of a record in the system status data set and/orreadsit

TP OPENIN Prepares Series/1 to read data from the host

TP OPENOUT Prepares the Series/1 to send data to the host

TP READ Reads data sent from the host to Series/1

TP RELEASE Deletes a record from system status data set and/orreadsit

TP SET Writes a record to the system status data set

TP SUBMIT Submits a job stream from the Series/1 to host

TP TIMEDATE Obtains time of day and date from the host

TP WRITE Sendsdata to the host
Figure 51. EDL TP instructions

For the syntax of the TP instructions, refer to the Language Reference.

Controlling Data Transfers between Series/1 and Host

You can send data to the host and receive data from the host through your program.

Sending Data to the Host

Series/1 can write data to a host data set. Code this sequence of TP instructions to perform this

function:

1. TP OPENOUT (to specify an output operation)

2. TP WRITE (to send the data to the host system)

Chapter 3. Host Communications Facility CO-119

ion (continued)

 ac

3. TP CLOSE (to end the output operation)

In the TP OPENOUT instruction, specify the name of the host data set where you are sending

the data. Follow naming conventions.

In the TP WRITEinstruction, you must specify the label of the buffer that contains the data to

be sent. In the program, specify this buffer with a BUFFER statement that contains the

operand TPBSC.

You should also code error routines into the TP WRITEinstruction to take overif an error or

end condition occurs.

Receiving Data from the Host

Series/1 can ask the host to send it data. Code this sequence of TP instructions to perform this

function:

1. TP OPENIN (to specify an input operation)

2. TP READ (to receive the host data)

3. TP CLOSE (to end the receive operation)

In the TP OPENINinstruction, specify the name of the host data set that contains the data you

want to receive. Follow naming conventions.

In the TP READ instruction, specify the label of the buffer where the host data is to be stored.

In the program, specify this buffer with a BUFFERistruction that contains the operand TPBSC.

You should also code error routines in TP READ to take overif an error or end condition

occurs.

mitting Background Jobs to the Host

Your program can allow the Series/1 to submit a host data set to the host batch job stream. To

perform this function, code a TP SUBMITinstruction. The host data set can be either

sequential or a memberofa partitioned data set. In the TP instruction, specify the label of the

TEXTinstruction that contains the nameof the host data set. In the program, code the TEXT

instruction with the naming conventions for host data sets. The Language Reference contains

the syntax and description of the TEXT instruction.

CO-120 SC34-0443

plication (continued)

Performing Status Functions

Your program can perform the status functions associated with the system status data set that

resides on the host system.

Writing Data to the System Status Data Set

You can set the occurrence of an event on the Series/1 by writing a record to the system status

data set. To perform this function, code a TP SET instruction. In the TP SETinstruction, refer

to the label of the STATUSinstruction, which references a record in the system status dataset.

In the program, code the STATUSinstruction with its index entry and key fields, along with the

optional 256-byte data field. The Language Reference contains the syntax and description of the

STATUSinstruction. .

Retrieving a Record from the System Status Data Set

You can retrieve a specific record from the host data set and (optionally) read the record. To

perform this function, code a TP FETCHinstruction. In the TP FETCHinstruction, refer to

the label of the STATUSinstruction that references the specific record of data in the system

status data set. If you intend to read the record, code the "length" operand of TP FETCH with
the numberof bytes in the record to be read. If you do not want to read the record, you must

still code the "length" operand, but enter the value zero.

Deleting a Record in the System Status Data Set

ObtainingTin

You can delete a record from the system status data set after you (optionally) read it. To

perform this function, code a TP RELEASEinstruction. This erases a Series/1 event that was

set by a TP SETinstruction. In the TP RELEASEinstruction, refer to the label of the STATUS

instruction which in turn refers to the specific record in the system status data set. If you intend

to read the record before deleting it, you must code the "length" operand in TP RELEASE,
specifying the record length. If you do not wantto read it, you muststill code the operand,

specifying the value zero. In the program, code the STATUSinstruction with the required index

entry and keyfield.

1e and Date from the Host

You can obtain the current time (hours, minutes, seconds) and date (day, month, year) from the

host system. To perform this function, code a TP TIMEDATEinstruction. You mustspecify

the six-word data area where the time and date informationis to be stored in the Series/1.

Chapter 3. Host Communications Facility CO-121

Programming for the Host Comn

Sample Programs

1unications Facility Application (continued)

The following sample programs show how to accomplish some of the HCF functions with the

TP instructions.

Status Functions Sample Program

This program performs the SET, FETCH, and RELEASEfunction. It communicates with the

system status data set on the host system.

PROGA PROGRAM A PROGRAM A
STATA STATUS PROGID,KEYA DEFINE STATUS ID & KEY
*

A TP SET, STATA SEND MESSAGE TO PROGB
* VIA HOST
Al TP FETCH, STATA, ERRORA CHECK IF PROGB RECEIVED
* MESSAGE
* FALL THRU IF KEY & ID STILL ON HOST
*

GOTO Al CONTINUE INTERROGATION
ERRORA EQU * DELETE THE MESSAGE ON HOST

PROGSTOP
ENDPROG
END

PROGB PROGRAM B PROGRAM B
STATB STATUS PROGID,KEYA DEFINE SAME STATUS ID & KEY
*

B TP FETCH, STATB,ERROR=ERRORB FETCH MESSAGE
*

* MESSAGE WAS FOUND AND IS DELETED, THUS SIGNALING PROGA
*

TP RELEASE, STATB
GOTO END

ERRORB GOTO B CONTINUE LOOKING FOR MESSAGE
END PROGSTOP

ENDPROG
END

Figure 52. System status data set sample program

CO-122 SC34-0443

mmunications Facility Application (continued)

Sample Program to Send Data to the Host

This same program sends a 256-byte Series/1 data set to a data set on the host. It prompts the

user to specify the host data set to receive the data.

WRITASK PROGRAM TPOPEN,DS=((SOURCE, ??))
x OPEN TP LINE
TPOPEN READTEXT DSNAME,'HOST DATASET: ',PROMPT=COND

TP OPENOUT, DSNAME
IF (WRITASK,EQ,-1) ,GOTO, DSREAD OPEN OK?
MOVE SWITCH, 3 ..TPOPEN ERROR
GOTO ERRSW

* READ A RECORD FROM DATA SET
DSREAD READ DS1,BUFFER,ERROR=ERR2,END=TPCLOSE
* WRITE A RECORD TO HOST
TPWRITE TP WRITE, BUFFER, 256

IF (WRITASK,EQ,-1) ,GOTO, DSREAD . .OK?
ERR1 MOVE SWITCH, 1 . .WRITE ERROR

GOTO TPCLOSE
ERR2 MOVE SWITCH,2 ..READ ERROR
* CLOSE DATA SET AND PRINT MESSAGE AS APPROPRIATE
TPCLOSE TP CLOSE |
ERRSW GOTO (RETO,RET1,RET2,RET3) , SWITCH
RETO PRINTEXT '*****#READ/WRITE SUCCESSFUL##*#***Q'

PROGSTOP
RET 1 PRINTEXT '*****WRITE UNSUCCESSFUL¥*#***Q'

PROGSTOP
RET2 PRINTEXT '*#***#READ UNSUCCESSFUL*****Q'

PROGSTOP
RET3 PRINTEXT '*****TP OPEN UNSUCCESSFUL*****9'

PROGSTOP
SWITCH DATA F'O!
DSNAME TEXT LENGTH=40
BUFFER BUFFER 256,TPBSC

ENDPROG
END

Figure 53. Sample program to send data set to the host

Sample Program to Receive a Host Data Set

In this example, the Series/1 specifies that the host send it a data set. It reads the host data into

a pre-allocated data set on a Series/1 volume. During program load, the user is prompted for the

Series/1 data set where the host data will be placed.

Chapter 3. Host Communications Facility CO-123

Host Communications Facility

Programmingfor the Host Communications Facility Application (continued)

READTASK PROGRAM TPOPEN,DS=((TARGET, ??))
* OPEN TP LINE
TPOPEN READTEXT DSNAME,'HOST DATASET: ',PROMPT=COND

TP OPENIN, DSNAME
IF (READTASK,EQ,-1) ,GOTO, TPREAD OPEN OK?
MOVE SWITCH, 3 TP OPEN ERROR
GOTO ERRSW

* READ A RECORD FROM HOST
TPREAD TP READ,BUFFER

IF (READTASK,EQ,-1) ,GOTO, DSWRITE OK?
IF (READTASK, EQ, 300) , GOTO, TPCLOSE END?
GOTO ERR2

* WRITE RECORD ON DISK
DSWRITE WRITE DS1,BUFFER,ERROR=ERR1

IF (READTASK,EQ,-1) ,GOTO, TPREAD OK?
ERR1 MOVE SWITCH,1 WRITE ERROR

GOTO ERRSW
ERR2 MOVE SWITCH,2
* CLOSE TP LINE AND PRINT MESSAGE AS APPROPRIATE
TPCLOSE TP CLOSE
ERRSW GOTO (RETO,RET1,RET2,RET3) , SWITCH
RETO PRINTEXT '*****#READ/WRITE SUCCESSFUL#*#*#**Q'

PROGSTOP
RET1 PRINTEXT '*****WRITE UNSUCCESSFUL#**#**Q'

PROGSTOP
RET2 PRINTEXT '*****READ UNSUCCESSFUL*®****Q'

PROGSTOP
RET3 PRINTEXT '*****TP OPEN UNSUCCESSFUL*****Q'

PROGSTOP
SWITCH DATA F'O!
DSNAME TEXT LENGTH=40
BUFFER BUFFER 256,TPBSC

ENDPROG
END

Figure 54. Sample from to receive a host data set

CO-124 SC34-0443

The $HCFUT1utility allows the Host Communications Facility on the Series/1 to interact with

the Host CommunicationsFacility Installed User Program on the System/370. $HCFUT1 can

perform four functions:

e Read a data set from the host

e Write a data set to the host

e Submit a job to the host

e Perform status functions in the system status data set

Figure 55 lists the $HCFUT1 commands.

END ~ END
FE = FETCH STATUS)
REL =—s--_ RELEASE STATUS
READDATA - READ HOST | a
READ80 —-- READ 80BYTE RECORDS - STORE 2/D1SKRECORD
READOBJ - READ 80 BYTE RECORDS - STORE 3/D1SK RECORD
SE - SET STATUS .
SU - SUBMIT A JOB
a = WRITE TO HOST

Figure 55. $HCFUT1 commands

Notes:

1. See “Host Data Set Naming Conventions” on page CO-114 and‘‘Host Data Set

Characteristics” on page CO-114.

2. See “System Status Data Set” on page CO-116. Appendix B of the Host Communications

Facility Installed User Program contains more details onits use.

3. The Host Communications Facility IUP, program number 5796-PGH,is required on the

host System/370.

4. Host Communications Facility must be installed and configured on the Series/1.

Manyof the functions that $HCFUT1 performsare the same as those you can program with the

TP instructions.

Transferring Host Data to Series/1

You can tranfer data with two commands, depending on the type of data being sent.

Chapter 3. Host Communications Facility CQO-125

Host CommunicationsFacility

vith the Host Communication Facility (GHCFUT1) (continued)

Interacting v

Using READDATA Command

The READDATAcommandtransfers a data set from the host to the Series/1. The host logical

record size is assumed to be 256 bytes.

The utility prompts for the following information:

e DS1. This refers to the 1-8 character name of the Series/1 data set where the host data will

be transferred, including the volume name.

e Record Count. This refers to the numberof records to be transferred, beginning with the

first. Use this if, for example, only the first 10 records of a 50-record data set are to be

transferred.

Enter zero to indicate that the entire data set is to be transferred.

e DSNAME.This refers to the name of the host data set to be transferred.

The following is a terminal printout of a typical run. In this example, all records (length = 256

bytes each) of the host data set ''S1.EDX.TESTIN.DATA"(which contains 40 records) are
transferred to the Series/1 data set 'DATAFIL2".

> $L
SHCFUT1 8P 08.15.30, LP=4B00
PGM(NAME ,VOLUME): SHCFUT1
DS1(NAME, VOLUME): DATAFIL2,EDX001

COMMAND (7): READDATA
NO. OF RECORDS TO READ(O=ALL): o
DSNAME: S1.EDX.TESTIN.DATA
END AFTER 40 COMMAND (7):

/

Using READ80 and READOBJ Commands

The READ80 and READOBJ commandstransfer 80-byte records froma host data set and store

them in 256-byte Series/1 disk or diskette data set records.

READ80stores two 80-byte records per 256-byte disk record. Thefirst 80-byte record is

stored in the first 80 bytes of the disk record. The second 80-byte recordis stored starting at

byte 129 of the disk record. This format is compatible with the saved results of using $EDIT1N

or $FSEDITandis also the format required for input to a language compiler or $EDXASM

program preparation. READ80is normally used to transfer source program modules from the

System/370 to Series/1 disk.

READOBJstores three 80-byte recordsin the first 240 bytes of each disk record. This formatis

compatible with object modules produced by any of the assembler programs.It is also the

format required for input to $LINK andis one of the formats accepted by $UPDATE.

CO-126 SC34-0443

 mmunication Facility (SHCFUT1) (continued)

READOBJis normally used to transfer the output object module of a host assembly to the

Series/1 for processing by $LINK or $UPDATE.

For both these commands,the utility prompts for the name of the Series/1 data set where the

data is to go, the numberof host records to be transferred, and the nameof the host data set

wherethe records comefrom.

Performing Status Functions

The status commandsallow you to perform, from a terminal, the SET, FETCH, and RELEASE

functions on the system status data set. The functions are identical to those you can perform

with TP SET, TP FETCH and TP RELEASE.

For the SE and FE commands,theutility prompts for the index entry and key field. For the RE

command,it prompts for the index entry. After performing one of the status functions, the

utility sends a return code indicating the status of the dataset.

mitting Jobs to the Host Job Stream

The SU commandallows you to submit a job to the host job stream. This function is identical to

the one that TP SUBMITperforms. Theutility prompts you for the name of the host data set

you want to submit. Follow host data set naming conventions when you specify the name.

Sending Data to the Host

The WR commandsends data from the Series/1 to the host. The host logical record size is

assumedto be 256 bytes.

Theutility prompts you for the following information:

« DS1. This refers to the 1-8 character name of the Series/1 data set to be transferred, andits

volume name,if not the IPL volume.

e Record Count. This refers to the numberof records to be transferred, beginning with the

first. This would be usedif, for example, only the first 10 records of a 50-record data set

are to be transferred.

A count of zero is used to indicate that the entire data set is to be transferred.

e DSNAME.This refers to the name of the host data set to which the data is to be

transferred. The name consists of up to 44 characters, or 54 characters if a memberof a

partitioned dataset.

Chapter 3. Host Communications Facility CO-127

Host CommunicationsFacility

Interacting with the Host Communication Facility (GHCFUT1) (continued)

COQ-128

SC34-0443

> $L SHCEUTI

The following is a terminal printout of a typical run. In this example, 28 records of the Series/1

data set ''DATAFIL1"are transferred to the host data set ''S1.EDX.TESTOUT.DATA".

DS1(NAME VOLUME): DATAFIL1
SHCFUT1 —- 8P, 08.15.20, LP=4B00

COMMAND (7): WR |
NO. OF RECORDS TO WRITE(O=ALL): 28
DSNAME: S1.EDX.TESTOUT.DATA
END AFTER28

COMMAND (2):

Part 2. Channel Attach

This part discusses the Channel Attach Program, which allows Series/1 to communicate with

large host systems.

Part 2. Channel Attach CO-129

Notes

CO-130 SC34-0443

4. Channel Attach Program

The channel attach program allows the Series/1 to communicate with a larger host processor.

This discussion refers to the System/370 as the host processor. However,it can be any

processor that uses the Basic Telecommunications Access Method (BTAM) form of data

communications.

Series/1 is physically connected to the host by a channel attach device.

You must write the application programs that communicate with the System/370 host. The

program must contain special Event Driven Language instructions used for the channelattach

_ application: CA instructions. In addition, you can communicate with the host by using the

$CHANUT1utility.

Planning for the Channel Attach Application

Before you begin to write your application program to communicate with the host system, you

should be familiar with the way channel attach works, and what requirements andrestrictions

apply to its use.

Channel Attach Program ($CAPGM)

The channel attach program,as it executes on the Series/1, transfers data from the Series/1

application program to the channel attach device. At the same time, an application program on

the System/370 is executing to transfer data between the channel attach device and the

System/370.

Chapter 4. Channel Attach Program CO-131

Channel Attach Program

Planning for the Channel Attach Application (continued)

$CAPGMallows you to perform the following functions through your application program

running on the Series/1:

Establishing, controlling, and terminating access between Series/1 and System/370

Transferring data between Series/1 and System/370

Communicating with System/370 application programs by 32 data ports (System/370

device addresses)

Handling interrupts from the channel attach device

Managing data ports to avoid conflict or contention

Performing error recovery and retry

Performing error logging

Tracing Series/1 I/O commandsandattention interrupts from the channel attach device

Channel Attach Device (4993)

The channel attach device provides an interface between a Series/1 and a System/370.It

responds to commandsfrom the System/370 and directs the information to the Series/1.

Likewise, the device responds to commandsfrom the Series/1 and directs the information to the

host.

The connection between the channel attach device and the 370 consists of 32 device address

(data port) connections. The channel attach device allows activity over only one port at a time.

Software Considerations

During system generation for the Series/1, you must define each channelattach device as an

EXIO device. The instructions for this procedure is described in the Installation and System

Generation Guide.

Hardware Considerations

CO-132

You should consider the following wheninstalling your channel attach device.

SC34-0443

Byinstalling the channel attach device in the I/O expansion unit rather than the processor,

you will be able to temporarily turn off the processor power without havingto first turn off

the channel attach device. If the channel attach device is in the processor, you must always

follow the power-off sequence described in ‘‘Powering On The Channel Attach Device” on

page CO-134 to poweroff.

h Application (continued)

e Whenyouinstall your channel attach device, it must be jumpered correctly to specify the

lowest System/370 device address you will be using. For example, if your channel attach

device is connected to the host on channel 5, subchannel 8 (with 32 device addresses X’580’

to X’59F’), then the setting of the jumpers on the channelattach feature card should be for

X’80’. You must be able to provide this information to the person whoinstalls your channel

attach device.

¢ On the System/370, your channel attach device must be defined to use a shared unit control

word (UCW).Failure to specify a shared UCW can cause unpredictable results when you

are using more than one port.

Tailoring the Channel Attach Program

During system generation for the Series/1, you can tailor the channel attach program to fit your

specific needs by editing the program’s control module, $CACBS. The section of $CACBSthat

you should edit consists of channel attach control block statements, CACB1 and CACB2. Two

channelattach control block statements are required for each channel attach feature installed

(physically and logically) on the Series/1 processor. CACB1 and CACB2are configuration

statements that create control blocks. These statements describe to the channel attach program

the characteristics of a particular channel attach device. The CACB1 and CACB2statements

for a device must be contiguous and must both specify the same device address, trace size, and

numberof ports. In these statements, you can specify the following information:

e device address of the channel attach device

e amountof storage for the channel attach trace area

e numberof host ports the device will connect with

e numberof retries during errors

After you modify the CACB1 and CACB2statements, assemble the $CACBS module, and use

$EDXLINK or $LINK/$UPDATEto link-edit it to the channel attach support modules. If you
followed the standard installation procedures, the link-edit control statements to do this are in

data set $CALNK on EDX002.

$CALNKprovidesfull support for a channel attach system,including trace, log, and OLTEP

support. You should use the full support system for initial debugging efforts.

To modify the provided support, you may want to include XCAXDIAGinstead of $;CAXDIAG

to eliminate OLTEP support, XCAXLOGinstead of $CAXLOGto eliminate error logging,

XCAXTRCEinstead of $CAXTRCEto eliminate tracing, and XCAXERRinstead of

$CAXERR to eliminate the task error exit facility. |

Chapter 4. Channel Attach Program CO-133

h Application (continued)

Powering On The Channel Attach Device

Before any communication can occur, you must poweron the channel attach device at the

Series/1. Follow this procedure:

1. Turn off the channel attach device, and ensure thatit is offline. Set the Enable/Disable

switch on the 4993 Termination Enclosure to the Disable position and the On/Off switch to

the Off position.

Turn on the other devices. Set the On/Off switch for each Series/1 unit (except for the

4993 Termination Enclosure and the Series/1 processor) to the On position.

Turn on the processorbysetting the On/Off switch on the Series/1 processor to the On

position.

Turn on the Termination Enclosure unit by setting the On/Off switch on the 4993

Termination Enclosure to the On position and makesure that the Power Onindicatoris on.

After you complete the abovesteps, place the channel attach device online to the

System/370 by setting the Enable/Disable switch on the 4993 Termination Enclosure to

the Enable position. Makesure that the Disable indicator is off (indicating that the unit is

online), and notify the System/370 operator that the channel attach deviceis online. If an

attempt is made to vary a System/370 device address online when the channel attach device

is not powered on and enabled, the System/370 receives a NO PHYSICAL PATH message.

To poweroff the channel attach device, use the reverse sequence of the poweron instructions.

You mustdisable the channel attach device, turn off the device, and turn off the I/O expansion

unit and the other devices. Never turn the channel attach device off when the device is enabled.

Programming for the Channel AttachAppili

This section tells how to write programs that communicate between the Series/1 and the host by

meansof the channel attach.

Event Driven Executive Instruction Set

CO-134

Your program must contain these channel attach instructions, which provide you with the

interface to the System/370 channel attach program. Theyare:

SC34-0443

CACLOSE- Close a channel attach port

CAIOCB - Create a channelattach port I/O control block
CAOPEN - Open a channel attach port

CAPRINT- Print channel attach trace data

CAREAD - Read from a channel attach port

CASTART- Start channel attach device

on (continued)

e CASTOP - Stop a channel attach device

e CATRACE- Control channel attach trace

e CAWRITE- Write to a channel attach port

For the syntax of each instruction, refer to the Language Reference.

 Detecting and Handling Errors

Eachinstruction sets the task code wordto indicate success or failure of the operation it

performs. You should use the ERRORoperandof the instruction or check the task code word

after each instruction.

To ensure that the instructions are successful, your program should wait on an event control

block (ECB) for completion of the I/O associated with the instruction. CATRACEhas no I/O

associated with it so no wait is required. CASTOP, CASTART, and CAPRINTuse the ECB

supplied with the instruction. CAQOPEN, CAREAD, CAWRITE, and CACLOSEusethefirst

three words of the CAIOCBas the ECB to wait on. After you do a WAIT on the ECB,check

the completion code for I/O errors. Do not issue a WAITif the return code in the task code

word indicates an unsuccessful operation. The second word of the TCB contains the address of

the instruction that received the error.

The Basic Telecommunications Access Method (BTAM)interfaces with System/370 channel

attach; you should consider the following:

¢ BTAM issues an ERASE/WRITEof 1 byte (X’C3’) or (X’7B’) when you openor close a

channel attach port. Respond with a read of this ERASE/WRITE when opening a port.

Whenclosing a port, you can either read the (X’C3’) or ignoreit. If you ignore the (X’C3’)

then you may get a return code from the close operation to show data pending from the

host.

e If BTAM requests an I/O operation to the device and the device is in a not ready’ condition

(the System/370 device address has not been enabled by Series/1), BTAM posts an

intervention required (X’41’).

e Onanasynchronous device end from the Series/1 (caused by a Series/1 ENABLE

System/370 DEVICE ADDRESS), the System/370 application may elect to be notified by
BTAM (OS/VSonly). This is done by specifying the READYQ option on the DCB macro,

which causes the user to be posted when a device end occurs for the specified device

address. The device endis ignored if the READYQoptionis not selected orif using

DOS/VS BTAM.

e BTAM issuesretries for read errors and all busy conditions.

e You must not issue any BTAM macro which might cause BTAM to generate a channel

program that contains both read and write channel command words (CCWs), such as Read

Chapter 4. Channel Attach Program CQO-135

Application (continued)

Modify Position or Read Buffer Position. Extraneous I/O operationsthat result from

chained read and write CCWscan invalidate protocol understanding at the Series/1.

¢ Do not issue a commandthat requires an attention interrupt to begin on the System/370 as

the first command after OPEN. If you do, you must have some method of ensuring that the

System/370 opening process is done before you issue the (Series/1) attention interrupt.

¢ Thefirst three bytes of data sent by a Series/1 write request can have explicit meaning to

the System/370 support program. Therefore, be careful whensetting the first three bytes of

data, because unpredictable results can occur. To avoid problems,set the first three bytes of

the data to X’7D4040’. This correspondsto an attention identification descriptor (AID) and

two bytes of null buffer address. The X’7D’ corresponds to an Enter key response from an

IBM 3272 Control Unit.

Assembling the Application Program

If you are going to assemble your program with either the host or native macro assemblers, you

don’t have any special steps to perform. If you are using $EDXASMto assemble, you must

code the following statements in your program for proper assembly.

COPY CMDEQU
COPY PROGEQU

These statements generate several pages of equates. To suppress printing these equates, code

the following statements:

PRINT OFF
COPY CMDEQU
COPY PROGEQU
PRINT ON

Link-Editing the Application Program

CO-136

After assembling your program, you must use $EDXLINK or $LINK/$UPDATEto link-editit.
If your channel attach support has been installed as shown in the Program Directory, the link

editing control statements required to link your application program are in the data set

USERPGM on EDX002. A listing of the data set USERPGM follows.

5C34-0443

Programming

starting a
Ge
o nia E

for the Channel Attach Application (continued)

LIST OF DATA SET USERPGM ON EDXO002
*

* EVENT DRIVEN EXECUTIVE SYSTEM/370 CHANNEL ATTACH VER. 1
OK 2K 2 KK OK OK OK KK OK OK OK OK KK OK OK KK KK KK KK KK KK KK KOK KKK KK KKK KKK KK KKK KK KK KK

* COMMENTS MAY BE INCLUDED BY AN '*' IN COLUMN 1 *
* USE THIS TECHNIQUE TO OMIT UNNEEDED SUPPORT *
a 3K ok ke ak a Kk ok ok ok ok ok OK OK kK OK Ke Kk OK OK OK Ke KK OK OK OK OK OK OK OK OK OK Ok OK KK OK OK OK OK OK KK KK KKK KK KK KK KK OK KKK

OUTPUT <---- YOUR OUTPUT MODULE NAME AND VOLUME IT RESIDES
ON, GOES HERE

*

INCLUDE <---- YOUR INPUT MODULE NAME AND VOLUME IT RESIDES
ON, GOES HERE

INCLUDE $CAPRCES,EDX002 *MAKE A COMMENT AND INCLUDE
*INCLUDE XCAPRCES,EDX002 *THIS IF TRACE PRINT OMITTED
INCLUDE $CABEGIN, EDX002
INCLUDE $CAPARM, EDX002
INCLUDE $CALOGCO,EDX002

*INCLUDE XCALOGCO,EDX002
INCLUDE $CALOGIC,EDX002
INCLUDE $CAFILL,EDX002
INCLUDE $CAPRNT,EDX002

*MAKE A COMMENT AND INCLUDE
*THIS IF INPUT ERR. OK OMITTED

*MAKE THIS A COMMENT IF TRACE
*PRINTING OMITTED

INCLUDE $$SVC,ASMLIB
INCLUDE $$RETURN,ASMLIB
INCLUDE $EDXATSR,ASMLIB
END

LIST COMPLETE
Figure 56. Listing of USERPGM data set

The name of your output module and input module refer to your object output and input data

sets respectively.

This link editing control data set provides you with the full support link modules. You should

use the full support system during initial debugging activities.

nei Attacn Device

Code a CASTARTinstruction to load the channel attach device support program and prepare

the channel attach device to accept interrupts from the host. You muststart the channel attach

device before you can open any of its ports and before you can issue any I/O instructions.

After your program issues a CASTARTinstruction, check the return code in the first word of

the task control block (TCB). If the return code indicates a successful request, issue a WAIT for

the I/O to complete. Use the event control block (ECB) operand of the CASTARTinstruction

to wait on I/O completion. If the return code indicates that the device wasalready started or an

error occurred, do not issue a WAIT instruction.

Chapter 4. Channel Attach Program CO-137

Channel Attach P

Programmingfor the Channel Attach Application (continued)

Opening a Channel Attach Port

Code a CAOPENinstruction to open a specific port on the channel attach device. This logically

assigns the port to your application program, and enablesit to accept interrupts from the host.

You must open a port before using it for data transfer.

You must code a control block instruction (CAIOCB) for each port you open in your program.

The CAIOCBstores the device address, port number, control block addresses associated with

the port, and the ECB usedto wait for I/O completion on the port. Its use it discussed in the

next section.

Coding the Control Block for a Channel Attach Port

issuing 1/O

The CAIOCBstatementcreates a channel attach port I/O control block which contains the

information required to access a port. It is a non-executable instruction which allocates storage.

You supply the device address, port number, and the addressof the first buffer control area.

Other information in the System/370 channelattach I/O control block is supplied by the
System/370 channelattach link module when the device is opened. In every other CA

instruction you code to perform operations on a port, you mustrefer to the label of the

CAIOCBfor that port, which you code in the non-executable section of your program.

Asfor all EDX channel attach instructions, check the return code in the TCB beforeissuing a

WAIT.

Your application program requests I/O processing by issuing CAREAD and CAWRITE

instructions.

For both CAREAD and CAWRITE,checkthe return code in the TCB before issuing a WAIT

instruction for the I/O to complete.

Series/1 Receiving Data from the Host (CAREAD)

The CAREAD instruction reads data from a host device address. Specify the CAIOCB

statementthat refers to the port in the CAREADinstruction. Each CAREADinstruction must

supply the addresses of two buffer control blocks.

Whenyouissue a Series/1 read request, one of two conditions are true: either the System/370

has already issued the write to match your CAREAD,or your CAREADwasissued before the

matching write request was received. If the System/370 has already issued its write request,

your CAREAD is posted immediately and the address of the buffer that the System/370 wrote

to is returned to you. If the System/370 has not issued a write to match your CAREAD,the

channel attach program holds your CAREAD until the System/370 issues its write request.

Because the System/370 canissue a write request at any time, a buffer must be available to

receive data from the System/370. This is accomplished as follows:

CO-138 SC34-0443

g for the Channel Attach Application (continued)

e When you open a channelattach port, you must point to a buffer control block defining the

address, size, and partition of the buffer to receive data for the first System/370 write. This

information is stored by the channel attach program andis returned to you when yourfirst

CAREAD is complete.

e Whenyou issue a CAREAD instruction it must identify two buffer control blocks:

— Thefirst buffer control block receives (from the channel attach program the address,

size, and partition of the data buffer written by the System/370 to satisfy that

CAREAD. ,

— The second buffer control block must contain three words defining the address, size and

partition of the buffer to be used for the next System/370 write. These values are stored

by the channelattach program, and are returned to you when the next Series/1

CAREAD is complete.

On every Series/1 CAREAD instruction, you are told where the data for the read wasstored,

and you supply the information required to set up for the next System/370 write operation.

Series/1 Sending Data to the Host

The CAWRITEinstruction sends data from your application program buffer to a channel attach

device port. On the CAWRITEinstruction, you must specify the CAIOCB used to open the

port.

Whena Series/ 1 CAWRITEis issued to a port and the System/370 application program is not

actively reading from the corresponding device address, the channel attach program issues an

attention interrupt to the System/370. This attention interrupt notifies the System/370

application program that the data from the Series/1 is available for the associated device

address.

The System/370 should then select the port and issue a READ. The channelattach program

recognizes the READ commandandissuesa start I/O (write) commandto the channelattach

device to start transfer of the contents of the Series/1 data buffer to the System/370.

Whendata transfer is complete, the write operation is not posted until the System/370

application program acknowledgesthe data transfer or indicates negative acknowledgement.

This acknowledgementcan bein one of two forms. If the System/370 program issues an Erase

All Unprotected (EAU) commandafter data has been sentto the host, then the EAU is

considered to be a positive acknowledgementof the data transfer. The CAWRITEwhich caused

the data to be sent to the hostis then posted.

A second way the System/370 acknowledges a CAWRITEisbyissuing a write command.

When a System/370 Write or Erase/Write is received as an acknowledgement of a CAWRITE,

bit 6 of the first data byte from the System/370 is examined to determine whetherit is a positive

acknowledgement(bit 6 on) or a negative acknowledgement (bit 6 off), and the Series/1

program is posted appropriately.

Chapter 4. Channel Attach Program CO-139

Channel Attach Program

Programming for the Channel Attach Application (continued)

If the System/370issues additional read requests before it acknowledges the Series/1

CAWRITE,the read requests connect to the same CAWRITE,causing retransmission of the

data.

If the System/370 tries to read when no corresponding Series/1 CAWRITEhas beenissued,
the channel attach program generates a write operation and sends X’604040’ to the host; this

indicates that a CAWRITEis not pending on the Series/1. If the channel attach program has

sent X’604040’ to the host one or more times before the Series/1 user issues a CAWRITE,then

when the CAWRITEis issued the channel attach program sets the appropriate flags to allow the

next System/370 read to the Series/1 user data buffer. No attention interrupt is issued to the

System/370 in this case.

Thefirst three bytes of data sent by a Series/1 CAWRITEcan have explicit meaning to the

System/370 support program. Therefore, be careful whensetting the first three bytes of data,

because unpredictable results can occur. To avoid problems,set the first three bytes of the data

to X’7D4040’. This corresponds to an attention identification descriptor (AID) and two bytes of

null buffer address. The X’7D’ correspondsto an Enter key response from an IBM 3272

Control Unit.

Closing a Channel Attach Port (CACLOSE)

When your program no longer requires a port it should issue a CACLOSEinstruction to free the

port. A CACLOSEfora port causes the channel attach program to:

e Reinitialize the control blocks for the port so the port can be opened by another application

program

e Disable the port except for port 0 which is kept open for potential use by the Online Test

Executive Program (OLTEP)

Stopping the Channel Attach Device (CASTOP)

CO-140 SC34-0443

The CASTOPinstruction frees the channel attach device. A CASTOPcauses the channel attach

program to:

e Disable port 0

¢« Disable the channel attach device for interrupts

¢« Reinitialize the control block for the channel attach device so it can be started by another

application program

e Unload the channel attach program (only if all channel attach devices are stopped)

Attach Application (continued)

Tracing Series/1 I/O during Channel Attach (CATRACE)

The CATRACEinstruction enable or disables the collection of I/O trace data for a channel

attach device. Channel attach trace data is collected in processor storage and, for performance

reasons, should only be used during debugging.

Printing Channel Attach Trace Data (CAPRINT)

To print the entire area of trace data obtained through CATRACE,code a CAPRINT

instruction. The data prints out on a printer or displays at your terminal. Tracing is disabled

while printing is in progress.

Interacting with Channel Attach (Using $CHANUT1 Utility)

The channelattach utility, $;CHANUT1, allows you to perform several functions associated with

channel attach operations:

e start or stop channel attach device

e enable or disable I/Otracing

e print trace data

Invoke $CHANUT1 by the $L commandor by the session manager. You can loadtheutility
into any partition. As soon asit is loaded, the utility asks for the address of the channelattach

device you want to work with. All commands you enter during a session with $CHANUT1 will

apply to the first device you specify, unless you change the address(this procedure is discussed

below). The $CHANUT1 commandsinterface with the channel attach program in the same

manneras the channel attach instructions. The error codes for the $CHANUT1 commandsare

the same as those for the corresponding instructions.

SCHANUT1 Commands

The $CHANUT1 commandsare shown below. To obtain this list at your terminal, enter a

question mark in response to the prompting message, COMMAND(?):

Chapter 4. Channel Attach Program CO-141

Utility) (continued)

COMMAND(72): ?

i CA -- CHANGE DEVICE ADDRESS
EN -- TERMINATE THE UTILITY
PR -- PRINT THE TRACE AREA
ST == START A CHANNEL ATTACH DEVICE
Sp -- STOP A CHANNEL ATTACH DEVICE
TR -- ENABLE/DISABLE TRACING

COMMAND(?): |
\ S

Changing Channel Attach Device Address (CA)

The CA command changesthe address of the channel attach device you wantto use during the

$CHANUTIsession.

Starting a Channel Attach Device (ST)

The ST commandstarts the channel attach device you haveselected.

| COMMAND(7): ST
| START DEVICE SUCCESSFUL
\, COMMAND (?):

Stopping a Channel Attach Device (SP)

The SP commandstops the channel attach device you have specified.

COMMAND(?): SP
STOP DEVICE SUCCESSFUL
COMMAND(7?):

Performing Trace Function (TR)

The TR commandallows you to enable (E) or disable (D) the trace function.

| COMMAND(7): [TR
| ENABLE OR DISABLE:
| ENABLE/DISABLE SUCCESSFUL
| COMMAND(?):

Printing the Trace Data (PR)

The PR commandprints the trace buffer, with the title you enter, on a terminal.

CO-142 SC34-0443

| COMMAND(?): pp
PF TITLE: TRACE PRINTOUT 07/26/80
, CONSOLE: SsyspRTR
| PRINT TRACE BUFFER SUCCESSFUL

[COMMAND(7):
Terminating the Utility (EN)

The EN command ends the $CHANUT1utility.

| COMMAND(?): EN

This section contains two sample programs.Thefirst, executes on a Series/1 using the EDX

channelattach support. It communicates with an OS/VS2 application program whichis

executing at the same time on the host System/370.

The second sample program executes on a System/370 using BTAM or BTAM-ESfacilities. It

communicates with the first sample program, which is running on the Series/1.

Configuration Requirements for Sample Programs

e Hardware

— System/370

Block multiplexer or selector channel

Onecontrol unit position on channel

Other peripherals to support OS/VS2

— Series/1

IBM Series/1 hardware required to operate EDX

IBM 4993-1 Series/1-System/370 termination enclosure

IBM Series/1-System/370 Channel Attachment Feature #1200

e Software

Chapter 4. Channel Attach Program CO-143

— System/370 software:

OS/VS2 (MVS)

Basic Telecommunications Access Method (BTAM)

Channelattach device defined to OS/VS2 via I/O generation

User application program

— Series/1 software:

EDX operating system (any version)

EDX Channel Attach Program

User application program

General Guide for Execution of Sample Programs

Install channel attach support.

Modify the sample program if your channel attach device is not at address 10. Assemble,

link, and update Series/1 program.

Assemble host program and link-edit for S/370 execution.

Poweron the channel attach device and set the enable/disable switch to enable.

Start sample program on the Series/1.

Whenprompted, start the sample program on the System/370.

Series/1 Sample Program

The Series/1 sample program (SAMPLEA)performsthe following functions:

CO-144 §C34-0443

Starts the channel attach device (the CASTARTinstruction)

Enables and disables I/O tracing (the CATRACEinstruction)

Opens channelattach device port #1 (the CAOPENinstruction)

Reads from the System/370 over port #1 (the CAREADinstruction)

Writes to the System/370 over port #1 (the CAWRITEinstruction)

Closes channel attach device port #1 (the CLOSEinstruction)

Programs (continued)

e Prints the I/O trace area (the CAPRINTinstruction)

e Stops the channel attach device (the CASTOPinstruction)

SAMPLEA PROGRAM BEGIN
PRINT OFF
COPY PROGEQU ===> REMOVE FOR MACRO ASSEMBLER
COPY CMDEQU ===> REMOVE FOR MACRO ASSEMBLER
PRINT ON

BEGIN PRINTEXT 'dTHIS IS A TEST OF THE CHANNEL ATTACH SUPPORT. '
PRINTEXT 'dTHE CHANNEL ATTACH DEVICE MUST BE ON AND'
PRINTEXT 'dENABLED BEFORE YOU PRESS ENTER TO CONTINUE. '
READTEXT SYNC

OK 2K 2 eoKeoe iKKKo OK KK KK OK KK KKKK KK KK KK KKK KK KK KKK KKK KK KK KK KKK KK KK KK

* START CHANNEL ATTACH DEVICE 10 *
2 2 EKeKOK2 eK oeKeKKOKKKK ok KOK KK KK KK KK KKK KK KK KK KK KK K

CASTART 10,STREVNT, ERROR=STRTERR
WAIT STREVNT
IF (STREVNT,NE,+MINUS1)
GOTO STRTERR

ENDIF
PRINTEXT '@DEVICE 10 STARTED'

PEE SLES ELSES ESE SES ESSE SESE SESSSS TTC ES STS SETS TST TST SETS TS TSS TSS TSSS

* TURN ON I/O TRACING *
2AREIIRRIIRORRRRKOK

CATRACE 10,ENABLE=YES , ERROR=TRCERR
PRINTEXT 'dTRACE ENABLED'

PEPESLESSESESESE SESS EE EE SSESESE SESE SEES EET ESSE SET SST ETT TESS TT SS SS

* OPEN PORT ONE
OOK 2 2 eo 2 KK OK OK ok OK OK OK KK OK OK KK OK KK OK KK KKK KK KK KKK KK KK KKK KK KKK KK KKK KK KKK KKK KK KK

CAOPEN PORTONE, ERROR=OPNERR
WAIT PORTONE
IF (PORTONE, NE, +MINUS1)
GOTO OPNERR

ENDIF
PRINTEXT '@PORT ONE OPENED'
PRINTEXT '@PLEASE START SAMPLEC ON THE SYSTEM/370.'
PRINTEXT '@PRESS ENTER WHEN RDACK APPEARS ON THE '
PRINTEXT '0S/370 DISPLAY, INDICATING THAT THE S$/370'
PRINTEXT '@dHAS COMPLETED OPEN PROCESSING. '
READTEXT SYNC

*

Figure 57 (Part 1 of 6). Series/1 sample program

Chapter 4. Channel Attach Program CO-145

CO-146 SC34-0443

He Ke5OKok i eK KKKKeoOKKKRK OK oO 2 eK KK OK OK Oe eK KOK OK OK OK Ok Ok Oe Ok KK KK OK

* READ C3 WRITTEN BY SYSTEM/370 DURING OPEN PROCESSING *
2 2 OK ok ok oe ok 2 OK Fe 9K OK OK 9 ok OK 9K OK ok 2K 9K OK ok OK OK 3K ok OK 2K ok oe ok ok 9K ok 3 ok OK OK 2 2 oe ok ok Ke 2 2 oe a OK OK Ok Ke oi KK ok ok OK Kk Ok OK OOK KK KK

CAREAD PORTONE,WHATREAD, INAREA, ERROR=C3ERR
WAIT PORTONE
IF (PORTONE , NE, +MINUS1)
GOTO C3ERR

ENDIF
PRINTEXT '@READ OF C3 SUCCESSFUL'

9K se ok Ke oe ke Ke ok Kk OK Ke a 3 Ke ok eo ke OK OK OK OK KK Ke eK OK Ke OK oe KK KK KK ok OK OK OK OK OK OK OK OK OK KK OK OK OK OK OK OK ke OK OK OK OK OK OK OK KOK KK

* WRITE MESSAGE TO SYSTEM/370 TO ACKNOWLEDGE RECEIPT OF C3 *
2K 2K OK Ke KK ke OK 2 OK OK Ke KK KK OK OK KK KK KK KK Kk OK KK KK KK KK KK KK OK OK KK OK OK OK OK OK OK OK OK OK OK OK OK KK OK OK OK KK KOK HK KK

CAWRITE PORTONE, OUTACK, ERROR=ACKERR
WAIT PORTONE
IF (PORTONE, NE, +MINUS1)
GOTO ACKERR

ENDIF
PRINTEXT 'dACK OF C3 WRITTEN TO SYSTEM/370'

Re RRREERRAAA ARRRIIRRRRRE

* I/O LOOP x
9K 3K ok 9k ok KK ok KK ok 3 Ke ok Ke ok OK ok KK KO 9K OK KK 3K Ok OK OK OK OK KK KK OK OK OK OK OK KK OK KK OK OK OK OK KOK OK OK OK OK OK OK OK OK OK KOK HK HK OK KK

DO WHILE, (COUNT, LT, +LIMIT)
ADD COUNT, 1

eH He a ae ok aK ate ok a fe ake a ak Ke 9K OK kK KK ok OK ok 3K ok OK KK Ke OK OK Ko OK OK OK KK KK ok KK OK OK KK OK KK OK KK OK OK OK OK OK OK OK OK KOK OK OK KK

* WRITE MESSAGE TO SYSTEM/370 *
OeARAIIRRRIRRRRRRRRRRK

CAWRITE PORTONE , OUTAREA , ERROR=WRITERR
WAIT PORTONE
IF (PORTONE, NE,+MINUS1)
GOTO WRITERR

ENDIF
PRINTEXT 'ODATA WRITTEN TO SYSTEM/370'

Figure 57 (Part 2 of 6). Series/1 sample program

Ae Ae 2 oe Ko 2 KK OK 2 2 2 ok eK KK OK OK OK ok KOK OK KK OK KOK KKKKeKOK KOK KK KK KK OK OK OK KK KOK OK OK KK KK K

* READ MESSAGE FROM SYSTEM/370 *
2K 2 eeA a2aAAIIRRKK

CAREAD PORTONE,WHATREAD , INAREA, ERROR=READERR
WAIT PORTONE
IF (PORTONE, NE,+MINUS1)
GOTO READERR

ENDIF
PRINTEXT 'QDATA READ FROM SYSTEM/370'

2 6AEAAAHokoaokKK

* WRITE ACK TO SYSTEM/370 *
oe 3 Ko OK ok Ke Kk OK OK KOK OK OK OK OK OK OK KK KK OK OK OK KK OK OK OK OK OK OK OK OK OK OK OK OK KK KK OK KK KK KKK KK KK KKK KK KKK KK K

CAWRITE PORTONE, OUTACK , ERROR=RDACKERR
WAIT PORTONE
IF (PORTONE,NE,+MINUS1)
GOTO RDACKERR

ENDIF
PRINTEXT 'dACK WRITTEN TO SYSTEM/370'

ENDDO
PSEC SESSSLESEE ESE SS ESET SEESSE SES ESE SET EST TTT TT TS ET TTTTT EST TS EE SF

* CLOSE PORT ONE *
OAAAAAIIoook ok ok aok

EXIT CACLOSE PORTONE, ERROR=CLOSERR
WAIT PORTONE
IF (PORTONE, NE,+MINUS1)
GOTO CLOSERR

ENDIF
PRINTEXT '@PORT ONE CLOSED'

Figure 57 (Part 3 of 6). Series/1 sample program

Chapter 4. Channel Attach Program CO-147

CO-148

HE 2 oe ie oe eKOKKKKKeK oe KK KK Ok Ko KK KOK OK 2 KOK Oe OK OK OK OK OK Ok KOK OK KOK OK KKK KK KK KE KK KK KEK

* TURN OFF TRACE *
2ARORRRRoKKOK

TRCDIS CATRACE 10,ENABLE=NO, ERROR=TDISERR
PRINTEXT 'dTRACE DISABLED'
HeRRRoRRRRaOk

* PRINT THE TRACE AREA ON THE SYSTEM PRINTER *
IaaRRKKOK

PRNTRCE CAPRINT 10,STREVNT, TITLE=TITLDATA, ERROR=PRNTERR
WAIT STREVNT
IF (STREVNT,NE,+MINUS1)
GOTO PRNTERR

ENDIF
PRINTEXT 'dTRACE AREA PRINTED'

2IIIRRRRRKRRoRkK

* STOP THE CHANNEL ATTACH DEVICE *
2K 2K 2K 2K oo OK ok KK ok KK KK ok ok ok 2k ok ke ok ok ok ok ok Kk ok ok 3k ok ok ok ok Ke 2k KK OK OK OK OK OK OK 2k ok OK Kk 2K OK OK OK OK ok ok OK ok OK OK Ok Ok Kk OK OK Ok Kk KK

STOPDEV CASTOP 10,STREVNT,ERROR=STOPERR
WAIT STREVNT
IF (STREVNT, NE,+MINUS1) , AND, (STREVNT, NE, +ENDED)
GOTO STOPERR

ENDIF
PRINTEXT '@DEVICE 10 STOPPED'
PROGSTOP -1

Figure 57 (Part 4 of 6). Series/1 sample program

SC34-0443

KKKKKKKKK KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK KKKKKKKHKKKKKK SE

* DATA AREAS AND I/O BUFFERS *
2AKeAAAARIAIRRRKKKK

CAIOCB 10,PORT=1,BUFFER=C3AREA CAIOCB FOR PORT ONEPORTONE
STREVNT
C3AREA

INAREA

OUTAREA

OUTACK

WHATREAD
INBUFF
OUTBUFF

COUNT
LIMIT
MINUS 1
SYNC
TITLDATA

MYTITLE
ENDED

ECB
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
DATA
EQU
EQU
TEXT
DATA
DATA
DATA
EQU

0 EVENT FOR START, STOP, PRINT
A(INBUFF) BUFFER CONTROL AREA FOR
F'1! * READ OF C3
F'Q!' * FROM S/370 OPEN
A(INBUFF) BUFFER CONTROL AREA FOR
F'128' * DATA INPUT
F'Q' * FROM S/370 WRITE
A (OUTBUFF) BUFFER CONTROL AREA FOR
F'128' * WRITE OF DATA
F'OQ' * TO SYSTEM/370
A(OUTBUFF) BUFFER CONTROL AREA FOR
F'4' * WRITE OF ACK
F'O' * TO SYSTEM/370
3F'O!' RECEIVE CONTROL INFO FOR READ
128C'O'
X'7D4040AA'
C'BB CC DD EE FF GG HH'
C'11 22 33 44 55 66 77'
C'ZZZZZYYYYYXXXXXWWWWW'
C'THIS IS TO BE WRITTE'
C'N TO THE SYSTEM/370.'
C' THE END'
F'O'
2
—1
LENGTH=4
A(MYTITLE)
F'25'
C'SAMPLE PROGRAM TRACE AREA'
599

Figure 57 (Part 5 of 6). Series/1 sample program

Chapter 4. Channel Attach Program CO-149

CO-150

s (continued)

Pe SEE EEEERE SESE SE EEE EES SEE ESE SESE SEE EEE ESSE SESE ES EES ESE EEE EE SSS EEE ES |

* ERROR MESSAGES *
2AKeAAHEAAaROK

STRTERR PRINTEXT 'dERROR DURING START PROCESSING'
GOTO EXIT

OPNERR PRINTEXT 'dERROR DURING OPEN PROCESSING'
GOTO EXIT

C3ERR PRINTEXT 'dERROR DURING C3 PROCESSING'
GOTO EXIT

ACKERR PRINTEXT 'OERROR DURING C3/ACK PROCESSING'
GOTO EXIT

WRITERR PRINTEXT 'QERROR DURING S/1 WRITE PROCESSING'
GOTO EXIT

READERR PRINTEXT 'dERROR DURING S/1 READ PROCESSING'
GOTO EXIT

RDACKERR PRINTEXT 'ERROR DURING READ/ACK PROCESSING'
GOTO EXIT

TRCERR PRINTEXT 'dERROR DURING TRACE ENABLE'
GOTO EXIT

TDISERR PRINTEXT 'dERROR DURING TRACE DISABLE'
GOTO PRNTRCE

PRNTERR PRINTEXT 'OERROR DURING PRINT OF TRACE AREA'
GOTO STOPDEV

CLOSERR PRINTEXT 'd®ERROR DURING CLOSE PROCESSING'
GOTO TRCDIS

STOPERR PRINTEXT 'dERROR DURING STOP PROCESSING'
PROGSTOP -1
ENDPROG
END

Figure 57 (Part 6 of 6). Series/1 sample program

SC34-0443

This program executes on a System/370 using OS/VS Basic Telecommunications Access

Method (BTAM)facilities, to communicate the application program executing at the same time

on the Series/1. Refer to the previous program, which is the companionto this host program.

(EeEEEeee EEE EE EE EERE SSR SSE SEE EEE SEER ES EE EEE SS ESE ESS SSS SEES EE SS SSS SS

INVOKE SAMPLEC VIA TSO COMMANDS OR JCL.
EXAMPLE: INVOKE SAMPLEC VIA TSO COMMANDS:
FREE FI (PRINTER, SNAP,S1GROUP)
ALLOC FI(SYSABEND) DA(DUMP.LIST) NEW SPACE(5,1) CYLINDERS +

CATALOG
ALLOC FI(SNAP) DA(SNAP.LIST) NEW SPACE(5,1) CYLINDERS CATALOG
ALLOC FI(S1GROUP) UNIT(581) NEW
ALLOC FI(PRINTER) DA(*)
CALL 'PROJECT.LIB.LOAD(SAMPLEC)'
FREE FI (PRINTER, SNAP,S1GROUP)
EXAMPLE: INVOKE SAMPLEC VIA OS/VS JCL:

// JOB (ACCOUNTING INFO) ,'NAME',
//SAMPLEC EXEC PGM=SAMPLEC
//STEPLIB DD DISP=SHR,DSN=PROJECT.LIB.LOAD
//S1GROUP DD UNIT=581,DISP=NEW
//PRINTER DD SYSOUT=A
//SNAP DD SYSOUT=A
//SYSIN DD *
/*

OK 9K KK oe oe oe ke Ko oe oe ok ok OK ok 2 OK OK OK OK KK eK OK ok OK ok ok Ke 9 Ke OK Ke KK OK KK Ok 2k OK ok OK 2K OK OK OK KOK OK OK OK OK Ok OK OK OK Ok Ke OK OK OK OK OK K

* EQUATES x
OK KK eK Ke 9 ok OK OK ok ok ok Ke OK fe OK Ke KK ok oe ok ok OK ok Ok OK 2K ok OK Ke OK OK Ok OK Ok OK Ok OK Ok 3K OK OK Ok Ok kK ke KK OK KK OK KK OK KK OK OK OK KK KOK KK

H
H

K
R
H
K
H
H
H
K
H

H
E
H
H
H
H
H
H
H
H
H

xR
H
K

E
H
H
H
H
H
H
H

KE
Y
H
H
K

RO EQU 0 TEMPORARY STORAGE
R1 EQU 1 TEMPORARY STORAGE
RLN EQU 1 RELATIVE LINE NUMBER
R2 EQU 2 MESSAGE ADDRESS
R3 EQU 3 LOOP COUNTER
R4 EQU 4 BAL
R5 EQU 5 BAL
DCBREG EQU. 6 DCB USING REGISTER
DECBREG EQU 7 DECB USING REGISTER
R8 EQU 8 BAL
RQ EQU 9 NOT USED
R10 EQU ‘10 NOT USED
BASEREG EQU- 11 BASE USING REGISTER
R12 EQU 12 NOT USED
SAVEREG EQU- 13 SAVE AREA ADDRESS REGISTER
R14 EQU 14 LINKAGE
R15 EQU 15 LINKAGE

Figure 58 (Part 1 of 8). Host sample program

Chapter 4. Channel Attach Program CO-151

Channel Attach Program

Channel Attach Sample Programs(continued)

* START SAMPLEC

SAMPLEC CSECT
SAVE (14,12)
BALR BASEREG,0
USING *,BASEREG
USING IHADCB,DCBREG
USING IECTDECB ,DECBREG
ST SAVEREG , SAVEAREA+4
LA SAVEREG , SAVEAREA
LA DECBREG , CADECB

* OPEN PRINTER DATASET

LA DCBREG, PRINTDCB
OPEN (PRINTDCB, (OUTPUT))
TM DCBOFLGS,X'10'
BO CAOPEN1
ABEND 1,DUMP

CAOPEN1 LA DCBREG, SNAPDCB
OPEN (SNAPDCB, (OUTPUT))
TM DCBOFLGS,X'10'
BO CAOPEN2
ABEND 2,DUMP

* OPEN CHANNEL ATTACH DEVICE DCB

CAOPEN2 LA DCBREG , CADCB
MVC COP(8) ,OPEN
OPEN (CADCB)
TM DCBOFLGS,X'10'
BO CAINIT
LA R2,MSGO9
BAL R5,PRINTIO
ABEND 3,DUMP

CAINIT EQU- #*
LA R2,MSGOO
BAL R5,PRINTIO
LA R2,MSGO1
BAL R5,PRINTIO

SAMPLEC PROGRAM
SAVE REGISTERS
ESTABLISH ADDRESSABILITY

FOR CSECT.
ESTABLISH ADDRESSABILITY

FOR DCBS AND DECBS
STORE ADDRESS OF SAVE AREA
LOAD THIS PROG SAVE AREA ADDR
LOAD DECB USING REG

LOAD DCB DSECT REG
OPEN PRINTER DCB
IF OPEN OK

BRANCH
ELSE ABEND

LOAD DCB DSECT REG
OPEN SNAP DCB
IF OPEN OK

BRANCH
ELSE ABEND

LOAD DCB DSECT REG
CURRENT OP = OPEN
OPEN SERIES/1 LINE GROUP DCB
IF OPEN OK

BRANCH
ELSE

PRINT MESSAGE
ELSE ABEND

PRINT BEGIN
TEST MESSAGE.
PRINT CHANNEL ATTACH
DEVICE OPEN MESSAGE.

PEE EEE EES EEE SEE EEE EEE ESE SESS EE SEES ESSEES SESE SEES EEE SESE RSE SE EEE SE ES ES

*

2K 2 2K 2 2 2 oe eo oe eo eo KKKK OK KK OK KK OK OK OK OK OK OK OK OK KK OK OK OK eK KK OK OK OK KK KK KK KK KKK KK KK KK KK K

AE 2 Ke eeKKKKKK KKK KKK OK KK KK KK KKK KKK KKK KKK KE KKK KK KK KK KK KKK KK KKK KKK KKK KK

*

3 2 KK i KR KK OK KK KK KOK OK KK OK OK KK KK KKK KKK KK KK KK KK KKK KK KK KKKK KOK KK KK KK KK KKK K

3 2K 2 2 i 2 eK 2 ee KK OK OK OK KKKK KK KK KK OK KK KKK KK OK KKK KK KK KK KK KK KKK KK KK KK KK KKK KKK

* ISSUE OPEN MACRO FOR SNAP DATASET * * * *
OR A ARAIRRAHKRKRRRIRIRORRRRK

Ae ok ee oe ok KK Ke ie ok KK OK OK KO OK OK OK KK KK KK OK KKK KKK KK KK KKK KKK KKK KK KK KK KK KK KK KK KKK KKK K

*

Me 2 2 oe a eKeKKK KK 2 KK OK KK OK OK KK OK KK KK KK OK KK OK KK KK KK OK KK OK KOK OK KK KK KK KKK KKK K

Figure 58 (Part 2 of 8). Host sample program

CO-152 SC34-0443

Programs (continued)

3EKKeEKKKKK OK KOK KK OK KK KK KOK OK KK KK KK OK OK OK KOK KK KK KK KK KK KK KK KK KK KK

* READ ACKNOWLEDGE MESSAGE FROM SERIES/1 FOR BTAM OPEN'S WRITE.
2eKeRARKKRRRKRARRORKK

BAL R8,RDACK READ S/1 ACK MSG
BAL R4,CHKRTN CHECK RETURN CODE

ae 9K ake aK ok A OK OK OK OK Ok KK Ke KK OK kK KK KK KK KK KK KK KK KKK KK KKK KK KK KK KK KK KK KK KK KKK KK KKK KKK

* DO UNTIL COUNT = LIMIT
Me Ae a aK AK OK ok KK Ke OK KK KK KK KK Kk KK KK KK OK OK OK KK KK KOK KOK KK KK KK KOK KOK KOK KK KK KK KK KK KK KK KK KK KK

LA R3,NLIMIT SET R3 = LIMIT
LOOP EQU *
HE KKKKKKKK KK KK KK KKKKKKK KOK KKK KE KK OK OK KK KK KK KK KOK OK KK OK KK KK KK KK KK KK KK KK

* READ A MESSAGE
PEPER EE SE SEES ESE ESSEESESET ESE SSE ESSE SEES ESSE EES ST TSE TSTTT TST TT SSS SS SF

BAL R8,RDINIT READ FROM SERIES/1
BAL R4,CHKRTN CHECK RETURN CODE

2HeRAKKHKAKKIIRKRKRK

* WRITE A MESSAGE
eHKRRRRKKKIRROKOK EE

WRIT BAL R8,WRINIT WRITE TO SERIES/1
BAL R4,CHKRTN CHECK RETURN CODE
BAL R8,RDACK READ SERIES/1 ACKNOWLEDGEMENT
BAL R4,CHKRTN CHECK RETURN CODE

KKKKK KKK KKK KK KK KKK KK KK KK KK KK KK KK KK KK KK KK KK KK KK KK KK KKK KKK KKK KK KKK KK KK

* ENDDO
Me oe ok Ke OK ok ok OK Ko ok KK Kk KK KK OK KK OK OK KOK KK OK KK KK KK KK KK KK KK OK KK KK OK KK KK KKK KK KK KKK KK KK KK

BCT R3,LOOP IF R3 NE ZERO CONTINUE
3 9 3k ok aK aK a aK a ok kK KK Ke OK aK KK KK Ko A KK ok KK OK KK KK OK OK OK KK OK KK OK OK OK OK KK Ok OK OK KK OK KK KOK KK OK OK KKK KK K

* OUTPUT 'SAMPLEC TEST ENDED'
9K 2k 3K ok a ke ok ok a ae ok ok ok ok ok Kk KK ok ok OK 2K KK KK KK KK OK OK OK KK KK KK KK KK KK KK KK KK OK KK KK OK OK KK OK OK OK KK KK KK

LA R2,MSGO04 PRINT END OF
BAL R5,PRINTIO TEST MESSAGE.

oe KK aK Ke KK KK KK KK OK kK KK OK KK KK KK KK OK KK KK KK KK KK KK KKK KK KK KKK KK KE KK KKK KK KK KK KK KKK K

* ISSUE CLOSE MACRO CHANNEL ATTACH DCB
2A KK OK AK ke OK KK OK KK KK KK OK KK OK KK OK KK KK KK KK KK KK KK KKK KK KK KKK KK KKK KK KK KK KK KKK KK KK

MVC COP(8),CLOSE CURRENT OP = CLOSE
CLOSE CADCB CLOSE LINE DCB

eK Ke KK ie i Ke ak oe KK OK OK KK KK KK KK KK OK OK OK KK

* ISSUE CLOSE MACRO FOR PRINTER DATASET
2 KK eK KK Ke KK OK OK KK KK KK KKKK KK KK OK KK KK OK OK KK KK KK KK KKK KK KK KKK KK KKK KKK KK KK KK K

CLOSE PRINTDCB CLOSE PRINTER DCB
EXIT EQU *

L SAVEREG , SAVEAREA+4 RESTORE SAVEREG
RETURN (14,12) ,RC=0 EXIT

Figure 58 (Part 3 of 8). Host sample program

Chapter 4. Channel Attach Program CO-153

Channel Attach

Program

Channel Attach Sample Programs (continued)

CO-154

22A2Reooaok oe oe ok ke ek

* INTERNAL SUBROUTINE CHKRTN: CHECK I/O RETURN CODES
* CALLING SEQUENCE: BAL R4,CHKRTN
AK Ke KK oe eKeoiKK2i2 2 eK2 Ko OkOKOK eKeKeKOKKKOK OK KOK OK KOK KOK OK KK

CHKRTN EQU
CLI
BNE
CLI
BNE
BR
CLI
BNE
MVI

CHKFL2 BR
CHKCC41 CLI

BE
MVC
UNPK
MVI
TR
LA
BAL
ABEND
EQU
TM
BNO
TM
BNO
TM
BNO
LA
BAL
B
MVC
UNPK
MVI
TR
LA
BAL
ABEND

CHKFL1

ITOERROR

IOERR

*

DECSDECB, X'7F'!
CHKCC41
DECFLAGS,X'00'
CHKFL1
R4
DECFLAGS , X'FO'
CHKFL2
READY ,X'FF!
R4
DECSDECB,X'41'
IOERROR
WORK (1) , DECSDECB
MSGO2+28 (3) , WORK (2)
MSGO2+30,C' '
MSGO2+28(2) , TABL-240
R2,MSGO2
R5,PRINTIO
4 ,DUMP
x

DECERRST,X'80'
IOERR
DECCSWST, X'02'
IOERR
DECSENSO,X'40!
IOERR
R2,MSG10
R5,PRINTIO
EXIT
WORK (1) , DECFLAGS
MSGO3+33 (3) ,WORK(2)
MSGO3+35,C' ''!
MSG03+33 (2) , TABL-240
R2,MSGO03
R5,PRINTIO
5 , DUMP

IF ECB POST CODE IS BAD
BRANCH

ELSE IF FLAGS NOT ZERO
BRANCH

ELSE RETURN
IF DEVICE HAS NOT BECOME READY

BRANCH
ELSE SET READY FLAG
RETURN
IF ECB POST CODE IS I/O ERROR

BRANCH
ELSE LOAD POST CODE INTO WORK

LOAD CHAR INTO MSG
INSERT BLANK
TRANSLATE
PRINT

MESSAGE
ABEND

IF NOT SIO ERROR
BRANCH |

ELSE IF NOT UNIT CHECK
BRANCH

ELSE IF NOT INTERVENTION REQ'D
BRANCH

ELSE
PRINT INTERVENTION REQ'D

EXIT
LOAD FLAGS INTO WORK
LOAD CHAR INTO MSG

INSERT BLANK
TRANSLATE
PRINT

MESSAGE.
ABEND

Figure 58 (Part 4 of 8). Host sample program

SC34-0443

Channel Attach Sample Programs(continued)

OK AK Oo oe 2 ie ie ie 2 ie 2 2K OK KK 2 ie ie ie te ie oie 2k ie 2 ote 2 ok ok OK oR ok 2 ke ie 2K OK ok oe 2K OK ok KK Ke 2 2 Ok OK OK oe kK OK OK OK ok KOK OK

* INTERNAL SUBROUTINE PRINTIO: PRINT MESSAGE
* CALLING SEQUENCE: LA R2,MSGXX ADDR OF MSG IN R2 (NOTE)
* BAL PRINTIO,R5 PRINT MESSAGE
* NOTE: FIRST BYTE PRECEDING THE MESSAGE HAS LENGTH OF MESSAGE.
2AAAIRORORaoRRK OK

PRINTIO LR R1,R2 GET ADDR OF MSG
BCTR R1,0 GET ADDR OF MSG LENGTH
CLI O(R1),128 IF MSG NOT TOO LONG
BNH PRINT BRANCH
LA R1,127 ELSE
B PRINT1 TRUNCATE TO MAX LENGTH

PRINT Ic R1,0(R1) GET MSG LENGTH
BCTR R1,0 SUBTRACT ONE FOR MVC INSTR

PRINT1 EX R1,MOVE EXECUTE MOVE INSTRUCTION
PUT PRINTDCB, PRTBUF PRINT IT
SNAP DCB=SNAPDCB,ID=10,

STORAGE= (PRTBUF , EPRTBUF)
MVI PRTBUF,C' ' SET PRINT
MVC PRTBUF+1(127) ,PRTBUF BUFFER TO BLANKS.
BR R5 RETURN

oe 3 ok oe ok KK Ke ok eK KK Kk KK KK KK OK OK OK OK KK KK OK KK OK OK OK KK OK OK KK OK OK OK OK OK OK OK KOK OK KOK KK KE KK KK KK KK KKK

* INTERNAL SUBROUTINE EMSG: PRINT BTAM MACRO ERROR MESSAGE
* CALLING SEQUENCE: B EMSG (OR EQUIVALENT)
* ERROR CODE IN R15
o% KK KK KK OK KK KK OK KK HK KK HK KK KK KK KK KK KK OK KOK OK OK OK OK OK KK KK OK OK KK OK KK KK OK KK OK OK OK KK KOK Ok OK OK KOK KK

EMSG STC R15,WORK SAVE RC INTO WORK
UNPK MSG05+46(3) ,WORK(2) CONVERT TO ZONED FORMAT
MVI MSGO5+48,C' ' INSERT BLANK FOR SIGN POSITION
TR MSG05+46 (2) , TABL-240 TRANSLATE TO EBCDIC FOR PRINTI
MVC WORK(1) ,DECSDECB MOVE DECSDECB INTO WORK
UNPK MSG05+59(3) ,WORK(2) CONVERT TO ZONED FORMAT
MVI MSGO5+61,C' '' INSERT BLANK FOR SIGN POSITION
TR MSG05+59(2) , TABL-240 TRANSLATE TO EBCDIC FOR PRINTING
MVC MSG05+26(8) ,COP INSERT CURRENT BTAM OPERATION
LA R2,MSGO5 PRINT
BAL R5,PRINTIO ERROR MESSAGE
B EXIT EXIT

Figure 58 (Part 5 of 8). Host sample program

Chapter 4. Channel Attach Program CO-155

Channel Attach Program

Channel Attach Sample Programs(continued)

CO-156

OK KK KK KKK KK KK KK KK KK KK KKK KK KK KK KK KKK KK KK KK KK KK KKK KKK KKK KKK KKK KKK KK KK KK

* BTAM I/O REQUESTS
FESS SELLE LEST SE SESE LE SES ESE SSS ESTEE SES ESSE EE SE SES SSS ST CSS ST TT SST SS SS FS

* READ ACKNOWLEDGE MESSAGE
RDACK LA R2,MSG11 RDACK MESSAGE

B RDALL PRINT MESSAGE
* READ INITIAL
RDINIT LA R2,MSG06 RDINIT MESSAGE
RDALL BAL R5,PRINTIO PRINT MESSAGE

MVC COP(8),READ CURRENT OP = READ
READ (DECBREG) ,TI,CADCB,AREAIN,LIN,,RLN,MF=E
B WAIT

* WRITE INITIAL
WRINIT LA R2,MSGO7 WRINIT MESSAGE

BAL R5,PRINTIO PRINT MESSAGE
MVC COP(8),WRITE CURRENT OP = WRITE
WRITE (DECBREG) , TI,CADCB,AREAOUT, LOUT, ,RLN,MF=E
B WAIT

* WRITE UNPROTECTED ERASE
WRUNER LA R2,MSGO08 WRUNER MESSAGE

BAL R5,PRINTIO PRINT MESSAGE
MVC COP(8),WRITE CURRENT OP = WRITE
WRITE (DECBREG) , TUS, CADCB, AREAOUT,1,,RLN,MF=E
B WAIT

HK KK KK KK KK KK KK KK KK KK KK HK HK KK HK OK HK KK KK HK KK KK HK KK OK KK 2K KK KK KK Ke ok KK Ke KK OK ok Kk OK OK Kk OK KK K

* WAIT FOR I/O COMPLETION
RKKK KK KKK KK KK KK KK KK KK KK KKK KK HK KK KK KK KK KK KK KK OK KK KK KK KKK KK KK KK KK KK KK KKK

WAIT LTR R15,R15 IF I/O RETURN CODE IS NONZERO
BNZ EMSG BRANCH
WAIT 1,ECB=(DECBREG) ELSE WAIT FOR I/O TO COMPLETE
SNAP DCB=SNAPDCB, ID=20,PDATA=(PSW,REGS) ,

STORAGE= (SAVEAREA, PRINTDCB)
CLC COP (8) , READ IF COP EQ READ
BE WRUNER BRANCH TO WRITE ACK
BR R8 RETURN

Figure 58 (Part 6 of 8). Host sample program

5C34-0443

Channel Attach Sample Programs (continued)

AeReKKROKKKOKKKOKKe OKKK KK KK KK OK OK OK KK OK OK KK OK OK OK KK KK KK *

* DATA DECLARATIONS
ORAKAIIRRKK

DS OF WORD ALIGNMENT
LTORG

SAVEAREA DS 18F SAVE AREA
LIMIT DC F'O' LIMIT COUNTER VALUE
MOVE MVC PRTBUF (1) ,0(2) MOVE INSTR IS EXECUTED BY EX
WORK DC X'OOOF' WORK SPACE

DC AL1 (L'MSGOO)
MSGOO DC C'SAMPLEC TEST STARTED'

DC AL1 (L'MSGO1)
MSGO1 DC C'CHANNEL ATTACH DEVICE OPENED. '

DC AL1 (L'MSGO2)
MSGO2 DC C'SAMPLEC: COMPLETION CODE = XX '

DC AL1 (L'MSGO3)
MSGO3 DC C'SAMPLEC: I/O ERROR . DECFLAGS = XX '

DC AL1 (L'MSGO4)
MSGO4 DC C'SAMPLEC TEST ENDED'

DC AL1 (L'MSGO5)
MSGO5 DC C'BTAM OPERATION ERROR FROM XXXXXXXX MACRO.

RC= YY DECSDX ECB= ZZ '
DC AL1 (L'MSGO6)

MSGO6 DC C'RDINIT '
DC AL1 (L'MSGO7)

MSGO7 DC C'WRINIT '
DC AL1(L'MSGO8)

MSGO8 DC C'WRUNER '
DC AL1 (L'MSGO9)

MSGO9 DC C'CHANNEL ATTACH DEVICE COULD NOT BE OPENED. '
DC AL1 (L'MSG10)

MSG10 DC C'INTERVENTION REQUIRED ON CHANNEL ATTACH DEVICE.
ISSUE X SERIES/1 OPERATOR COMMAND: "STDV CA1" !

DC AL1 (L'MSG11)
MSG1 1 DC C'RDACK '
COP DC CL8' ' CURRENT BTAM OPERATION
READ DC CL8'READ' READ
WRITE DC CL8'WRITE' WRITE
CLOSE DC CL8'CLOSE' CLOSE

Figure 58 (Part 7 of 8). Host sample program

Chapter 4. Channel Attach Program CO-157

Programs(continued)

OPEN DC CL8'OPEN' OPEN
DS OF FULLWORD ALIGNMENT

PRTBUF DC 128c' ' PRINT BUFFER
EPRTBUF EQU *-4 ADDR OF LAST WORD IN PRTBUF
READY DC X'00! READY FLAG
TABL DC C'0123456789ABCDEF' TRANSLATE TABLE
AREAIN DC 256c' ' INPUT AREA
EAREAIN EQU- ¥*-4 ADDR OF LAST WORD IN INPUT
AREAOUT DC C'THE QUICK BROWN FOX ' AREA

DC C'JUMPED OVER THE LAZY'
DC C' DOG AND THE DISH RA'
DC C'N AWAY WITH THE SPOO'
DC C'N * $RIGXOOO4$ * () '
DC C'SYSTEM/370 -> SERIES'
DC C'/1 '

ENDOUT EQU- #*
NLIMIT EQU- 2 LOOP COUNT
LIN EQU AREAOUT-AREAIN LENGTH OF INPUT AREA
LOUT EQU ENDOUT-AREAOUT LENGTH OF INPUT AREA
9K HK 3k a ke OK 3K ake a Ke OK ke ok ok OK 2K ok OK OK 3K OK ok KK OK Ok oe Ke ke ok OK OK OK 9K OK OK OK OK OK 2 KOK OK OK OK Ok KK OK OK KK OK OK OK OK HK HK HK HK OK OK OK HK OK OK Kk

* CONTROL BLOCKS
MK WH He ae He ae He MK ke he KE ke ae 2 oe ke aie eK OK OK ok OK a OK ok ok OK OK OK OK ok OK aK OK 2K aK aK OK 2K OK OK OK OK OK 2K 9k OK OK KK OK OK ok ok 2K OK ok ke OK OK ok Ok OK oe oe ok OK

READ CADECB,TI,AREAIN, LIN, ,RLN,MF=L
CADCB DCB DSORG=CX,MACRF=(R,W) ,DDNAME=S1GROUP, EROPT=E
PRINTDCB DCB BLKSIZE=128,DDNAME=PRINTER,DSORG=PS,

LRECL=128,MACRF= (PM) , RECFM=FB
SNAPDCB DCB DSORG=PS,RECFM=VBA,MACRF=(W) , BLKSIZE=1632,LRECL=125,

DDNAME=SNAP
DCBD DSORG=BS,DEVD=DA
IECTDECB
END

Figure 58 (Part 8 of 8). Host sample program

CO-158 SC34-0443

This part discusses the two methods of communications that can be used on Series/1 only with

the Event Driven Executive operating system:

e Series/1-to-Series/1 Attachment

e General Purpose Interface Bus (GPIB) Adapter

Part 3. Specialized Series/1 Event Driven Executive Communications Methods CQO-159

Notes

CO-160 SC34-0443

Chapter5. Series/1-to-Series/1 Attachment

Support

Your Series/1 can communicate directly with the processor of another Series/1 ina

configuration called a Series/1-to-Series/1 attachment. The two processors communicate over
a connection established by RPQ D02241 and RPQ D02242 attachmentcards plugged into each

processor’s I/O channel and connected by a cable. (One processor uses RPQ D02241 and the

other RPQ D02242.) Each RPQ card connected to a given Series/1 must have its own cable.

For hardwareinstallation and configuration details, refer to the Series/1-to-Series/1 Attachment

(RPQs D02241 and D02242) Custom Feature.

Application programs running on both processors control the transfer of data between the two

Series/1s. A separate synchronization program,also running simultaneously on the two

processors, synchronizes the execution of the application programs.

To communicate with the processor that your Series/1 is attached to, you must write application

programsto perform data transfers, and syncronization programsto control the application

programs.

Planning the Series/1-to-Series/1 Application

Certain requirements andrestrictions apply to the Series/1 to Series/1 application.

Chapter5. Series/1-to-Series/1 Attachment Support CO-161

Series/1-to-Series/1 Attachment Support

Planning the Series/1-to-Series/1 Application (continued)

Processor Relationships

Normally, the attached Series/1 systems communicate in a peer-to-peerrelationship. Both

processors contend with equal priority to initiate data transfers. However, the Series/1 to

Series/1 attachment allows one processor to IPL the other (remote IPL). This establishes a

primary-and-secondary processor relationship between the two Series/1s. Only the processor

connected with RPQ D02241 can perform the remote IPL. When remote IPL is complete, the

processor with RPQ D02241 functions as the primary and the processor with RPQ D02242 as

the secondary. The primary processor controls the data transfers, thus eliminating contention

between the two.

Initiating Data Transfers

Either Series/1 can initiate a data transfer to the other, regardless of the relationship between

the processors. A data transfer can write data to the other processor, read data from it, or issue

a control instuction. The receiving processor must always respondto a data transfer by sending

back the opposite instruction to the initiating processor. For example, if the initiating processor

performs a write operation, the receiving processor must answer with a read operation.

Responding to External Events

CO-162 SC34-0443

A processorthat receives an external interrupt while attached to another Series/1 can record the

external event by posting an event control block (ECB). For example, one processor may need

to receive data from a device attachedto it while it is in the middle of talking to the other

processor.

However,it is possible to post an event control block even if the processor is not communicating

with the other Series/1. This enables other terminal I/O tasks to execute on the posting

processor while it waits for communications from the other processor.

Figure 59 on page CO-163 illustrates setup and usage of posting a user ECB. The program

should execute on both processors.

The program hasthree tasks:

e Task 1 performs a write (PRINTEXT)andis driven by an external event, in this case task 3,

whichis a timer task. It could be sensor I/O or BSCas well.

e Task 2 performs a read (READTEXT). It responds only to an attention interrupt on the

Series/1-to-Series/1 link, or to a post from task 1.

e Task 3 is a timer task, intended to simulate external stimuli.

Planning the Series/1-to-Series/1 Application (continued)

T1

GO

*

WAITT 1

*

*

T2
T2GO

PROGRAM GO, 30
PRINT OFF
COPY CCBEQU
PRINT ON
EJECT
RESET ECB RESET ECB FOR S181
RESET TECB RESET ECB FOR TIMER TASK
MOVE BUF-2,256 SET TO READ/WRITE 256 BYTES
MOVE BUF-4 , BUF-2
ENQT S181 GET S1S1
TCBGET #1,$TCBCCB GET CCB ADDRESS OF S181
MOVEA #2,ECB SET ECB ADDR IN CCB
MOVE ($CCBS1EI+2,#1),#2,TKEY=0 DO IT
TCBGET #2,$TCBAKR GET AKR
AND #2,X'0030' AND TO GET OP2
SHIFTR #2,4 MOVE IT OVER TO BITS 13-15
MOVE ($¢CCBS1EI,#1) ,#2,TKEY=0 SET INTO CCB
DEQT S181 GIVE UP S181
ATTACH T2 START TIMER TASK
ATTACH T3 START READ TASK
TASK 2 ALWAYS DOES A WRITE (PRINTEXT)
WAIT TECB WAIT FOR TIMER TASK
RESET TECB CLEAR TIMER ECB
ENQT S1S1
PRINTEXT BUF, XLATE=NO WRITE DATA
MOVE TISTAT,T1 CHECK STATUS
IF (TISTAT,EQ,-1) IF OK
ADD NUMT1,1,PREC=DS BUMP COUNT

ELSE
ADD NUMT1E,1,PREC=DS ITF ERROR, BUMP COUNT

DUE TO THE ASYNCHRONOUS NATURE OF THE S1/S1
WE MUST POST THE ECB WHEN WE GET AN ERROR HERE - ASSUMING
IT IS AN INVALID SEQUENCE ERROR (PRINTEXT FACING PRINTEXT)
POST ECB,-1 POST THE ECB JUST IN CASE

ENDIF
DEQT
GOTO WAITT1 LOOP
TASK 2 ALWAYS DOES A READ
TASK T2GO,25
EQU *

Figure 59 (Part 1 of 2). Program for posting an event control block

Chapter 5. Series/1-to-Series/1 Attachment Support

CO-163

Series/1-to-Series/1 Attachment Support

Planning the Series/1-to-Series/1 Application (continued)

SLEEP WAIT ECB WAIT ON ECB POSTED BY S181
RESET ECB RESET ECB
ENOQT S181
MOVE BUF,0,DWORD CLEAR HEADER AREA
TERMCTRL STATUS, BUF,WAIT=NO SEE IF A READ
IF (BUF, EQ, ZERO,4) IF NO OPERATION READY
DEQT
GOTO SLEEP GO BACK TO SLEEP

ENDIF
AND BUF,X'2000' IF OPERATION READY
IF (BUF, EQ, ZERO) SEE IF REQUIRES A READTEXT
DEQT
GOTO SLEEP IF NOT, GO BACK TO SLEEP

ENDIF
READTEXT BUF, XLATE=NO IF REQUIRES A READ, DO IT
MOVE T2STAT,T2 CHECK STATUS
IF (T2STAT, EQ, -1)
ADD NUMT2,1,PREC=DS BUMP COUNT

ELSE
ADD NUMT2E, 1,PREC=DS BUMP ERROR COUNT

ENDIF
DEQT
GOTO SLEEP LOOP

* TASK 3 MERELY WAKES UP TASK 1 PERIODICALLY
T3 TASK T3GO0,510
T3GO EQU *

STIMER 50,WAIT
POST TECB
GOTO T3GO
EJECT

ECB ECB -1
TECB ECB ~1
TISTAT DATA F'Q!
T2STAT DATA F'Q!
NUMT1 DATA D'O'
NUMT1E DATA D'0'
NUMT2 DATA D'0O'
NUMT2E DATA D'0'
TYPE DATA F'Q!'
ZERO DATA D'0O'

DATA Xx'0808'
S1S1 IOCB S1S1,BUFFER=BUF
BUF BUFFER 1024,BYTES

ENDPROG
END

Figure 59 (Part 2 of 2). Program for posting an event control block

Programmingfor Series/1-to-Series/1 Attachment

You must write application programs using a set of Event Driven Languageinstructions that

implement Series/1-to-Series/1 communication. Your program can perform anytype of data

CO-164 SC34-0443

Programmingfor Series/1-to-Series/1 Attachment(continued)

transfer (read, write or control operation). You can also write a program to synchronize the

execution of the application program on both processors.

Event Driven Language Instruction Set

The following Event Driven Language instructions allow communication betweenthe Series/1s.

For descriptions and syntax of the instructions, refer to the Language Reference

Instruction Explanation

DEQT Releases the Series/1 previously enqueued with the
ENOTinstruction

ENQT Acquires exclusive right to communicate with the
enqueued Series/1

1IOCB Identifies the Series/1 as the enqueued processor

PRINTEXT Writes a message to the enqueued Series /1

READTEXT Reads a message from the enqueued Series1

TERMCTRL Performs control functions on the enqueued

Series /1

Figure 60. EDL instructions for communication between Series/1s

Basic Programming Tasks

To communicate with the other Series/1 processor, your program must perform the following

tasks:

e Gain exclusive ability to communicate with the other processor (enqueue with ENQT

instruction)

« Identify the other processor (IOCBinstruction)

e Write data to or read data from the other processor (PRINTEXT or READTEXT

instruction)

¢ Perform control functions on the other processor (TERMCTRLinstruction)

In addition, your program should provide for error detection and handling, and keep a count of

the data transfers.

Enqueuing the Other Processor

Before your Series/1 can make data transfers to the other Series/1, you must gain exclusive

right to communicate with that processor. The instruction that performs this function is ENOT.

The other processoris treated as a terminal that your Series/1 enqueues. No other device or

Chapter 5. Series/1-to-Series/1 Attachment Support CO-165

nment (continued)

processoris able to send data to the other Series/1 while you have it enqueued. Because ENQT

treats the other processor as a terminal, you must specify its symbolic identity. You must refer

to the label of the IOCB instruction, which identifies the enqueued Series/1 in your program.

The IOCBinstruction is covered in the section that follows.

identifying the Enqueued Processor

You must specify the identity of the processor that your Series/1 is going to communicate with.

The IOCBinstruction provides this information.

Give the IOCBinstruction a label when you code it. You mustrefer to this label in the ENOT

and DEQTinstructions for the program.

A typical wayto identify the Series/1 in IOCB is ''S1S1".

Writing Data to the Enqueued Processor

To write data to the other Series/1, code a PRINTEXTinstruction. Besides using PRINTEXT

to simply initiate a write operation, code it in response to a READTEXTinstruction issued by

the other processor.

Reading Data from the Enqueued Processor

To read data from the other processor, code a READTEXTinstruction. Besides using

READTEXTto simply initiate a read operation, code it in response to a PRINTEXTissued by

the other processor.

Performing Control Functions on the Enqueued Processor

You can perform certain control functions on the other processor by coding TERMCTRL

instructions. The functions that apply to the Series/1-to-Series/1 Attachmentare listed in the

chart below.

Function Explanation What to Code

ABORT Enqueued processor sends TERMCTRL ABORT

back a message to your

Series /1 telling it to terminate
the last function

IPL Performs remote IPL of the TERMCTRLIPL

enqueued processor

RESET Resets to the last ENOQT TERMCTRL RESET
issued

Figure 61 (Part 1 of 2). TERMCTRL Functions for Series/1-to-Series/1 Communications

CO-166 SC34-0443

Function Explanation What to Code

STATUS Obtains status of enqueued TERMCTRL STATUS

processor

Figure 61 (Part 2 of 2). TERMCTRL Functions for Series/1-to-Series/1 Communications

Do not attempt to use any TERMCTRLfunctions other than thosespecifically for

Series/1-to-Series/1 attachment.

ing Considerations

Certain requirements andrestrictions apply to programming for the Series/1-to-Series/1

attachment.

e Ifa program that has issued an ENQTloads a program (via LOAD), the new program will

have the Series/1-to-Series/1 as its default terminal. Therefore, a DEQTinstruction should

always beissued to the attachment before issuing the LOAD.

e Data to be transferred must start at an even address.

e Byte counts (data length) must be even.

e Return codes must be examined bythe application. The return code is placed in thefirst

word of the task control block (TCB). The return codes for the operations performed by the

attachmentare described in the Messages and Codes with the PRINTEXT/READTEXT

instructions.

« Synchronization between the two processors is possible only by checking and responding to

the return codes and by using TERMCTRL STATUS. A listing of the return codes can be

obtained by including the copy code "COPY ERRORDEF'"in your program.

« Do not use the CT command of the $TERMUT1utility to reconfigure the

Series/1-to-Series/1. The CT command parametersare not valid for the
Series/1-to-Series/1 Attachment. Using $TERMUT1to change attributes wili cause
unpredictable results.

e Byte counts must be equal on each processor. For example, if processor A issues a

READTEXTfor 50 bytes, then processor B must respond with a PRINTEXTfor 50 bytes.

However, if Event Driven Executive terminal I/O buffer managementis utilized, this may

be very difficult to achieve unless direct I/O is used. Direct I/O meansthata bufferis
specified in the application program by an IOCB statement and the IOCBis enqueued

(ENQT)prior to issuing a PRINTEXT/READTEXTinstruction. Data is transferred

directly from the buffer instead of the buffer generated by the TERMINAL configuration

statement. Refer to the Event Driven Language Programming Guide for a description of the

IOCBstatement and for further information on direct I/O.

Chapter5. Series/1-to-Series/1 Attachment Support CO-167

Series/1-to-Series/1 Attachment Support

Programming for Series/1-to-Series/1 Attachment(continued)

Your program should use direct I/O, with XLATE=NO,and should always transmit

fixed-length records. Terminal I/O buffer managementallows the numberof bytes to vary

for a PRINTEXT,but not fora READTEXT. READTEXTalways reads the numberof

bytes specified by the TERMINAL statement LINSIZE parameter. PRINTEXTwrites the

numberof bytes specified by the LENGTHparameter or the numberof bytes in the

messageitself.

You may not beable to synchronize the byte counts unless direct I/O is used. If, however,

direct I/O is not used and buffering of data with PRINTEXT/READTEXTinstructionsis

performed, the results of using these instructions are shown in Figure 62. The ‘'error"’ in
the figure meansthat an invalid data length status is returned to the application.

Initiating Responding Status Returned to

Processor Processor Responding Processor

READTEXTof x bytes PRINTEXTof x bytes OK

of less than x bytes OK

of more than x bytes error

PRINTEXTof x bytes READTEXTof x bytes OK

of less than x bytes error

of more than x bytes OK

Figure 62. Usage of READTEXT/PRINTEXTwithout direct I/O

e Except for the device address, use identical TERMINAL statements for each processor. The

results will be unpredictable if the TERMINALstatements differ.

¢« The IPL function of the $S1S1UT1 utility reads a specified nucleus from a disk and sends

this nucleus to the other processor. The IPL function does not merely trigger the other

processor to IPL from a disk or diskette. Therefore, the other processor does not require a

disk or diskette. If the other processor does not havea disk or diskette, then the nucleus

being sent must contain the supervisor and your application program. One processor cannot

load a program on another processor.

e The Series/1-to-Series/1 Attachment supports only a subset of the terminal I/O
instructions. Using instructions other than those described in the Language Reference for

Series/1-to-Series/1 can cause unpredictable results. In addition, only the RESET,

ABORT, STATUS,and IPL functions of the TERMCTRL instruction should be used.

e When a processor issues a PRINTEXT or READTEXTinstruction (with or without direct

I/O), control is not returned to the issuing program until the data transfer is complete (the

other processor issues the opposite operation). Therefore,it is not necessary to perform

request/acknowledge operations.

e TERMCTRL RESETis used for error recovery. This operation causes the attachment to

reset. The two applications must be synchronized to avoid an error/reset loop.

For example, an error/reset loop can occurif program A issues a PRINTEXT and

encounters an error, issues a TERMCTRL RESET,andreissues the PRINTEXT. Program

CO-168 SC34-0443

Programming for Series/1-to-Series/1 Attachment(continued)

B, on the other hand, issues a READTEXT(at approximately the same time as program A’s

initial PRINTEXT) and receives an error. However, because of heavy processoror I/O

activity, program is unable to issue its TERMCTRL RESETuntil after program A has

already performed its reset and reissued a PRINTEXT. Hence, program B’s reset will cause

program A to receive an error while program is issuing its second PRINTEXT(retry).

Both programsenterthe loop as a result of trying to read or write while the programsare no

longer synchronized and the attachments are beingreset. Issuing an STIMERinstruction

(with WAIT) in the error recovery routine in program A can help avoid entering an

error/reset loop.

e Only two of the possible errors can occur concurrently on both processors. These errors

should be taken into consideration in your error recovery routine:

— 1004 — Checksum error

— 1008 — Time-out error

Programming Examples

The following programs perform data transfers controlled by a synchronization program. The |

processors are assumedto be operating in a primary-to-secondary relationship. The PRIMARY

program runs onthe Series/1 using RPQ D02241; the SECONDprogram runsonthe Series/ 1

using RPQ D02242. Both of these programs run simultaneously on the two processors. The

SYNCprogram controls their execution.

Primary Processor Sample Program

The PRIMARYprogram controls the SECONDprogram. The processor running PRIMARY

can abort the SECONDprogram. The operator presses the attention key and enters ''AB''at
the terminal that loaded PRIMARY. The command''MS"sends a message, a count of the
transfers, and their length. Note the code for error recovery. .

Chapter5. Series/1-to-Series/1 Attachment Support CQO-169

Series/1-to-S

eries/1 Attachment Support

Programming for Series/1-to-Series/1 Attachment (continued)

PRIMARY
*
*

ABT

MSG

GO

GETSIZE

GO1

GO2

PROGRAM

ATTNLIST
EQU
MOVE
ENDATTN
EQU
MOVE
ENDATTN
PRINTEXT
PRINTEXT
PRINTEXT
EQU
GETVALUE
IF
AND
IF
PRINTEXT
GOTO
ENDIF
QUESTION
ENQT
TERMCTRL
DEQT
EQU
QUESTION
QUESTION
EQU

MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
ENQT

GO

(AB, ABT,MS,MSG)
*

ABSW,1

*

MSW, 1

SET ABORT FLAG

SET MESSAGE FLAG

"dI AM THE PRIMARY SERIES/10'
'a"> AB" TO ABORT SECOND@'
'a"> MS" TO SEND MESSAGE FLASH2@'
x

BUFI,'@dENTER DATA LENGTH(6 ==> 4096) a'
(BUFI,LT,6) ,OR, (BUFI,GT,4096) ,GOTO,GETSIZE
BUFI,X'0001' ,RESULT=TEMP
TEMP , NE, 0
'@DATA LENGTH CANNOT BE ODD9d'
GETSIZE

"@RESET S1S1? ‘,NO=GO1
S1S1
RESET

*

"@READY? ',YES=GO2
"@TERMINATE? ',YES=STOP1,NO=GO
*

BUFI+2,BUFI
STAT ,O
ABSW, 0
MSW, 0
TYPE, -1
COUNT, 0, DWORD
HBUF,0O, (6,BYTES)
CSS,0, (24, BYTES)
S1S1

SET UP CONSTANTS
FOR RESTART
SET DATA LENGTH
CLEAR STATUS
CLEAR ABORT SWITCH
CLEAR MESSAGE SWITCH
SET TYPE
CLEAR COUNTER
CLEAR S1S1 HEADER
CLEAR S1S1 CSS

Figure 63 (Part 1 of 4). Primary processor sample program

CO-170 SC34-0443

gq for Series/1-to-Series/1 Attachment (continued)

CONT EQU
MOVE
ADD
MOVE
MOVE

MOVE
PRINTEXT
MOVE
IF
CALL
GOTO
ENDIF
MOVE
MOVE
IF

ADD
READTEXT
MOVE
IF
CALL
GOTO
ENDIF
IF

PRINTEXT
CALL
GOTO
ENDIF
IF

*

TYPE, 1
COUNT, 1, PREC=D
BUF, COUNT, DWORD
BUF+4,MSW

MSW, 0
BUF , XLATE=NO
STAT, PRIMARY
STAT,NE,-1
S1ERR
ERROR

BUF ,0O, (6,BYTES)
TYPE,0O
(ABSW,NE,0) ,GOTO, ABORT

COUNT, 1, PREC=D
BUF , XLATE=NO
STAT, PRIMARY
STAT, NE,-1
S1ERR
ERROR

(BUF ,NE, COUNT, DWORD)

SET TYPE = WRITE
INCREMENT COUNTER

MOVE COUNTER TO BUFFER
MOVE MESSAGE SWITCH
TO BUFFER
CLEAR MESSAGE SWITCH

GET STATUS
CHECK FOR BAD STATUS

CALL ERROR SUBROUTINE
ERROR EXIT

CLEAR BUFFER
SET TYPE = READ
CHECK OPERATOR
ABORT REQUEST
INCREMENT COUNTER

ACKNOWLEDGE
GET STATUS
IF ERROR -

CALL ERROR SUBROUTINE

IF COUNT BAD -
OUT OF SYNC

"Q9OUT OF SYNC - COUNT FAILURE®'
S1ERR
ERROR

BUF+4,NE,0 CHECK MESSAGE
FLAG REQUEST

Figure 63 (Part 2 of 4). Primary processor sample program

Chapter5. Series/1-to-Series/1 Attachment Support CO-171

Series/1-to-Series/1 Attachment Support

Programmingfor Series/1-to-Series/1 Attachment(continued)

*
*%

&
&

ERROR

STOP

STOP 1

*

*

*

ABORT

ABORT 1

DEQT
PRINTEXT
PRINTEXT
PRINTNUM
PRINTEXT
PRINTNUM
PRINTEXT
ENQT
ENDIF
GOTO

ERROR EXIT
IF GET AN ERROR - RESET THE OTHER
DEVICE, WAIT, THEN RETRY.

EQU
DEQT
ENQT
TERMCTRL
STIMER
DEQT
PRINTEXT
GOTO

EQU
DEQT
QUESTION
EQU
PROGSTOP

ABORT ROUTINE

EQU
DEQT
PRINTEXT
EQU
ENQT
STIMER
TERMCTRL
IF
TERMCTRL
DEQT
PRINTEXT
GOTO
ENDIF
DEQT
PRINTEXT
GOTO

'@MESSAGE RECEIVED FROM SECOND@'
'COUNT= ''
COUNT, FORMAT=(12,0,1) , TYPE=D
'Q9DATA LENGTH = '
BUFI , FORMAT=(6,0,1I)
‘a!

S1S1

CONT

*

S1S1
RESET RESET S181
200,WAIT WAIT 200 MS

"@AUTO RESTARTO'
GO2 RESTART

AUTOMATICALLY
*

"@RESTART? ',YES=GO
*

*

'QOPERATOR REQUESTED ABORT®@'
*

S1S1
1000,WAIT
STATUS , HBUF
(HBUF ,NE,DO,DWORD)
ABORT

WAIT 1 SECOND
SECONDARY TALKING TO ME?

IF YES - ABORT SECOND

"@ABORT ISSUED AS PER REQUEST9d'
STOP END IT

"@SECOND DID NOT REQUEST DATA IN 1 SECOND@'
STOP END IT

Figure 63 (Part 3 of 4). Primary processor sample program

Programming for Series/1-to-Series/1 Attachment (continued)

- STATUS = '

S1S1 HEADER
JUMPER + CYCLE
STEAL STATUS
STATUS RETURN
READ/WRITE TYPE
SYNC COUNTER
MESSAGE SWITCH
ABORT SWITCH

DWORD CONSTANT
TEMP STORAGE

* S1S1 ERROR SUBROUTINE
*

SUBROUT S1ERR
TERMCTRL STATUS,HBUF,CSS
DEQT
ENQT
PRINTEXT 'QBUF: '
PRINTNUM BUF
PRINTEXT '@TYPE: '
PRINTNUM TYPE
PRINTEXT '@COUNT: '
PRINTNUM COUNT, FORMAT=(12,0,1),TYPE=D
PRINTEXT '@I/O ERROR ON S/1-S/1
PRINTNUM STAT,MODE=HEX
PRINTEXT ' HEX; '
PRINTNUM STAT
PRINTEXT ' DECA'
PRINTEXT '@HEADER: '
PRINTNUM HBUF,2,MODE=HEX
PRINTEXT ‘9!
PRINTEXT 'DIAGNOSTIC JUMPER WORD:
PRINTNUM CSS,1,MODE=HEX
PRINTEXT '@'
PRINTEXT 'CYCLE STEAL STATUS:
PRINTNUM CSS+2,11,MODE=HEX
PRINTEXT 'Q'
DEOT
RETURN

HBUF DATA 2F'0!'
css DATA 12F'0'
*

STAT DATA F'Q!'
TYPE DATA F'-1!
COUNT DATA D'O'
MSW DATA F'Q!
ABSW DATA F'Q!
S181 IOCB S1S1,BUFFER=BUF
BUF BUFFER 4096, BYTES , INDEX=BUFI
DO DATA D'O'
TEMP DATA F'Q!

ENDPROG
END "

Figure 63 (Part 4 of 4). Primary processor sample program

Chapter5. Series/1-to-Series/1 Attachment Support CO-173

Secondary Processor Sample Program

The SECONDprogramis controlled by the PRIMARYprogram. The attention command "MS"

sends a message, transfer count, and data length to PRIMARY.

SECOND
*

*

MSG

GO

GO1

GO2

*%
*
#

%
&

PROGRAM

ATTNLIST
EQU
MOVE
ENDATTN
PRINTEXT
PRINTEXT
QUESTION
ENQT
TERMCTRL
DEQT
EQU
QUESTION
QUESTION
EQU

STIMER
ENQT
TERMCTRL
DEQT
IF
DEQT
PRINTEXT
GOTO

ENDIF
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
MOVE
ENQT

GO

(MS,MSG)
2

MSW, 1 SET MESSAGE SWITCH

"aI AM THE SECOND®'
"a"> MS" TO SEND MESSAGE FLASH®@'
'@RESET S1S1? ',NO=GO1
S131
RESET RESET DEVICE

*

'@READY? ',YES=GO2
"@TERMINATE? ',YES=STOP1,NO=GO
*

HERE WE WAIT FOR THE MASTER TO INITIATE A DATA
TRANSFER. WHEN IT DOES, WE USE ITS DATA LENGTH
AND PROCEED.

1000,WAIT WAIT 1 SECOND
S1S1
STATUS , HBUF GET STATUS

(HBUF,EQ,DO,DWORD) IF NO DATA HERE YET

"@NO DATA FROM MASTER IN 1 SECOND@'
GO2 SHOULD HAVE HAD

DATA BY NOW

GET DATA LENGTH
INTO BUFFER

BUFI , HBUF+2
BUFI+2,HBUF+2
STAT,0O CLEAR STATUS
COUNT, 0,DWORD CLEAR COUNTER
TYPE,-1 INIT TYPE
HBUF,O, (6,BYTES) CLEAR S1S1 HEADER
CSS,0, (24,BYTES) CLEAR CSS
S1S1

Figure 64 (Part 1 of 4). Secondary processor sample program

CO-174 SC34-0443

CONT EQU
MOVE
ADD
MOVE
READTEXT
MOVE
LF
CALL

GOTO
ENDIF
IF
DEOT
PRINTEXT
CALL
GOTO
ENDIF
IF

DEQT
PRINTEXT
PRINTEXT
PRINTNUM
PRINTEXT
PRINTNUM
PRINTEXT
ENOT
ENDIF

*

TYPE,O
COUNT, 1, PREC=D
BUF,0, (6, BYTES)
BUF, XLATE=NO

SET TYPE = READ
INCREMENT COUNTER
CLEAR BUFFER

STAT, SECOND GET STATUS
STAT,NE,-1
S1ERR ERROR - CALL

ERROR SUBROUT
ERROR

(BUF ,NE, COUNT, DWORD) CHECK COUNT FOR SYNC

"Q@OUT OF SYNC - COUNT FAILUREQ@'
STERR
ERROR

CHECK FOR MESSAGE
REQUEST

(BUF+4,NE,0)

"@MESSAGE RECEIVED FROM MASTER@'
"COUNT = !'
COUNT, FORMAT=(12,0,1) ,TYPE=D
"@DATA LENGTH = '
BUFI,FORMAT=(6,0,1)
‘9!

S1S1

Figure 64 (Part 2 of 4). Secondary processor sample program

Chapter 5. Series/1-to-Series/1 Attachment Support CO-175

Series/1-to-Series/1 Attachment Support

Programmingfor Series/1-to-Series/1 Attachment(continued)

INCREMENT COUNTER
MOVE COUNT TO BUFFER
MOVE MESSAGE SWITCH
TO BUFFER
CLEAR MESSAGE SWITCH
SET TYPE = WRITE

GET STATUS
IF EBRROR - CALL
S1S1 ERROR

GO TO ERROR ROUTINE

CONTINUE

SEE IF ABORT

RESET DEVICE

ADD COUNT, 1, PREC=D
MOVE BUF , COUNT , DWORD
MOVE BUF+4 ,MSW

*

MOVE MSW, 0
MOVE TYPE, 1
PRINTEXT BUF , XLATE=NO
MOVE STAT, SECOND
IF STAT,NE,-1

*

CALL S1ERR
GOTO ERROR
ENDIF
GOTO CONT

STOP EQU *
DEQT
QUESTION 'QRESTART? ',YES=GO

STOP1 EQU *
PROGSTOP

*

* IF THE ERROR IS AN ABORT REQUEST, TERMINATE THE
* EXERCISE. IF IT IS ANY OTHER ERROR, RESET THE
* DEVICE, AND START OVER.
*

ERROR EQU *
DEQT
IF (STAT, EQ, 1010)
PRINTEXT 'QMASTER ISSUED ABORTA@'
GOTO STOP
ENDIF
ENQT S1S1
TERMCTRL RESET
DEQT
GOTO Go2

Figure 64 (Part 3 of 4). Secondary processor sample program

CO-176 SC34-0443

Series/1-to-Series/1 Attachment (continued)

%

S181
HBUF
CSS

STAT
TYPE
COUNT
MSW
ABSW
BUF
DO

S1S1

SUBROUT
TERMCTRL
DEQT
ENOT
PRINTEXT
PRINTNUM
PRINTEXT
PRINTNUM
PRINTEXT
PRINTNUM
PRINTEXT
PRINTNUM
PRINTEXT
PRINTNUM
PRINTEXT
PRINTEXT
PRINTNUM
PRINTEXT
PRINTEXT
PRINTNUM
PRINTEXT
PRINTEXT
PRINTNUM
PRINTEXT
DEQT
RETURN
IOCB
DATA
DATA

DATA
DATA
DATA
DATA
DATA
BUFFER
DATA
ENDPROG
END

ERROR SUBROUTINE

S1ERR
STATUS , HBUF,CSS

"@BUF: '
BUF
"@TYPE: '
TYPE
"@COUNT: '
COUNT, FORMAT=(12,0,1) , TYPE=D
"@I/O ERROR ON S/1-S/1
STAT , MODE=HEX
' HEX; '
STAT
' DECa'
'QHEADER: '
HBUF, 2,MODE=HEX
'9'

"DIAGNOSTIC JUMPER WORD:
CSS, 1,MODE=HEX
'9'

"CYCLE STEAL STATUS:
CSS+2,11,MODE=HEX
'o!

S1S1,BUFFER=BUF
2F'0!
12F'0!

F'o!
FI'-4!
D'o'
F'Q!
F'OQ!
4096, BYTES , INDEX=BUFI
D'O!

- STATUS = '

S1S1 HEADER BUFFER
JUMPER + CYCLE
STEAL STATUS
S1S1 STATUS
READ/WRITE TYPE
SYNC COUNTER
MESSAGE SWITCH
ABORT SWITCH

DWORD CONSTANT

Figure 64 (Part 4 of 4). Secondary processor sample program

Chapter 5. Series/1-to-Series/1 Attachment Support CO-177

Synchronization Program (SYNC)

CO-178 $C34-0443

The synchronization program shows a way to synchronize operations between two processors.

Neither processor begins communicating until some external event sets FLAG. When FLAGis

set, the program respondsasfollows:

e FLAG = 0 indicates no external event.

e FLAG 1 indicates write to other processor.

e FLAG = 2 indicates read from other processor.

e FLAG = 3 is the termination indicator.

This program runs on both processors.

SYNC PROGRAM A
*

ATTNLIST (WR,F1,RD,F2,EN,END)
F1 MOVE FLAG, 1 EXTERNAL EVENT= WRITE

ENDATTN
F2 MOVE FLAG, 2 EXTERNAL EVENT=READ

ENDATTN
END MOVE FLAG, 3 EXTERNAL EVENT=STOP PGM

ENDATTN
A MOVE BUFX, 1024 SET BUFFER FOR WRITES
Al ENQT S1S1 GET THE S181

TERMCTRL STATUS , HBUF, WAIT=NO OBTAIN S1S1 STATUS
DEQT
IF (HBUF+2,EQ,0) IF NO ACTION YET

STIMER 5000,WAIT WAIT 5 SECONDS
IF (FLAG, EQ,0) EXTERNAL EVENT NOT

x OCCURRED YET
DEQT
PRINTEXT '@NOTHING HAS OCCURRED YET IN 5 SECONDS@'
GOTO Al

ENDIF
IF (FLAG, EQ, 3) ,GOTO, STOP EXTERNAL EVENT = TERMINATE
IF FLAG, EQ, 1 EXTERNAL EVENT = WRITE
DEQT
PRINTEXT 'QWRITING TO OTHER CPUa'
ENOT S1S1 GET S181
PRINTEXT BUF, XLATE=NO WRITE TO OTHER CPU
DEQT
MOVE FLAG, 0 CLEAR FLAG TO IDLE
GOTO Al CONTINUE

ENDIF

Figure 65 (Part 1 of 2). Synchronization sample program

STOP
S1S1
BUF
FLAG
TEMP
HBUF

IF FLAG, EQ, 2 EXTERNAL EVENT = READ
DEQT
PRINTEXT '@READING FROM OTHER CPUA'
ENQT S1S1 GET $181
READTEXT BUF, XLATE=NO READ FROM OTHER CPU
DEQT
MOVE FLAG, 0 CLEAR FLAG TO IDLE
GOTO Al CONTINUE

ENDIF
ELSE
SHIFTL HBUF, 2,1,RESULT=TEMP SEE IF READ OR

WRITE REQUEST
IF TEMP, LT, 0 IT DID A WRITE
DEQT
PRINTEXT '@READING WHAT IT SAIDA'
ENQT S1S1
READTEXT BUF, XLATE=NO READ WHAT IT WROTE
DEQT
GOTO Al CONTINUE

ELSE
DEQT
PRINTEXT 'QWRITING WHAT IT SAIDA'
ENQT S1S1
PRINTEXT BUF, XLATE=NO WRITE WHAT IT WROTE
DEQT |
GOTO Al CONTINUE

ENDIF
ENDIF
GOTO Al CONTINUE
PROGSTOP END THE PROGRAM
IOCB S1S1,BUFFER=BUF
BUFFER 1024,BYTE, INDEX=BUFX DATA BUFFER
DATA F'Q! EXTERNAL EVENT FLAG
DATA F'Q!
DATA 2F'0' S1S1 HEADER
ENDPROG
END

Figure 65 (Part 2 of 2). Synchronization sample program

Chapter 5. Series/1-to-Series/1 Attachment Support CO-179

 Series/1-to-Series/1 Attachment Support

Programming for Series/1-to-Series/1 Attachment (continued)

Interacting with the Series/1-to-Series/1 Attachment (Using $S1S1UT1)

The $S1S1UT1utility allows you to perform several functions on the other processor. These

include remote IPL, data transfers and status operations. Theutility also verifies that the

attachmentis installed correctly, and checks out an application program. You must always

specify the identity of the other Series/1 the $S1S1UT1 commands:

e AB - Abort

e DD - Define device name

e IP - IPL the other processor

e RE - Read data

e RS - Reset device

e WR - Write data

e EN - Endthe program

e EC - Verify the Series/1 - Series/1 attachment

e ST - Obtain status

You must have both attached processors active communication with the RE (read), WR (write),

and AB (abort) commands. For example, if a WR commandis issued on one processor, then a

corresponding RE command mustbeissued on the other processor.

When $S1S1UT1is loaded, it immediately issues a DD commandto obtain the ID of the

Series/1 that loadedit.

Invoking $S1S1UT1

The $S1S1UT1utility is invoked by the $L operator commandoroption 4.8 of the session

manager. $S1S1UT1 must be active on two connected processors for processor-to-processor

communication via the RE (read), WR (write), and AB (abort) commands. For example,if a WR

commandis issued on one processor, then a corresponding RE command mustbe issued on the

other processor.

Aborting an Operation (AB)

The AB commandcausesthe other processor to abort a pending operation on the initiating

processor. The AB commandis sent to the Series/1 specified in the most recent DD command.

This command abnormally ends a data transfer operation.

CO-180 SC34-0443

Interacting w

ith the Series/1-to-Series/1 Attachment (Using
$S1S1UT1) (continued)

Example: AB command

|COMMAND(?7): AB
| ABORT OPERATION? Y-

{ cowmano(7):

Specifying the Other Processor (DD)

For every function you perform with $S1S1UT1, you mustidentify the other Series/1. The

specified processorreceivesall the issued subsequentutility commandsuntil another DDis

issued. The Series/1 name is the name specified on the TERMINALconfiguration statement at

system generation.

Example: DD command

caNMANDCE): oo
| S1S1 DEVICE. NAME:$1810

[comMaND(?):

Verifying the Series/1-to-Series/1 Attachment (EC)

The EC commandverify that the attachmentis installed correctly. It results in a continuous

exchange of 1024-byte records between the attached processors. To terminate EC press the

attention key and enter “EC.” ; .

Example: EC command

COMMAND(?): EC |
ECHO EXERCISE |
ATTN ‘'EC'' TO STOP ECHO TEST
ATTEMPTING TO SYNCH UP
1K DATA TRANSMITTED |
1K DATA RECEIVED ©

‘DATA CHECKS OUT!

a
COMMAND(7): oe aS|eeoo)

Chapter 5. Series/1-to-Series/1 Attachment Support CO-181

vith the
(continued

IPL the Other Processor(IP)

You can issue the IP commandonly if your Series/1 is the primary. It issues an IPL (initial

program load) commandto the secondary processor. You must supply the member name and

volume that contains the nucleus to be transferred to the secondary.

The nucleus being transferred must begin with the characters $EDXNUC.The IPL bootstrap

program, IPLS1S1, must be located in the IPL volume; you are promptedto verify that the

volume namespecified is correct. You are also asked if the secondary hasa disk or diskette

device and for the address of that device. The specified disk or diskette becomesthe default

direct access device for disk I/O operations on the processorbeinginitialized. The bootstrap

program is sent to the secondary andit reads the specified nucleus, 1024 bytes at a time, across

the attachment. Control is passed to the nucleus upon completion of the transfer.

Example: [P command

COMMAND(?): [IP

ENTER NUCLEUS DSN: SEDXNUC

ENTER NULCEUS VOLUME: EDX002
[S THERE A DEFAULT DISK DEVICE FOR THE NUCLEUS? Y
SUPPLY DISK/DISKETTE DEVICE ADDRESS(HEX): 48
IPL PROGRAM NAME: !PLS1S1 ON VOLUME: EDX002
OK?
READY FOR IPL? Y
Y SS

Reading Data from the Other Processor (RE)

The RE commandissues an ENQTinstruction for the terminal name specified by the most

recent DD command. $S1S1UT1 then issues a READTEXTinstruction for that terminal to read

data from the other processor. If $S1S1UT1is active on the other processor, a WR command

must be issued to complete an RE command.

Example: RE command

COMMAND(?): RE

MESSAGE RECEIVED!

THIS IS TEST DATA RECEIVED

COMMAND(7):

CO-182 $C34-0443

Resetting Device (RS)

The RS commandresets the to the Series/1 attachmentspecified by the most recent DD

command. This commandclears any pendinginterrupt or busy condition.

Example: RS command

| COMMAND(?): RS)”
| RESET ATTACHMENT? Y

| COMMAND (7):

Obtaining Status of an Operation (ST)

The ST commandobtainsstatus information on an operation. The status returned bythis

commandis the sameas the information returned when a TERMCTRL STATUSinstructionis

issued.

Example: ST command

COMMAND(?): ST
OBTAIN CYCLE STEAL STATUS ALSO? Y
WAIT FOR HEADER? N
HEADER WORDS: 1100 0400
READ(READTEXT) ISSUED BY OTHER CPU
NO. BYTES = 0400
DIAGNOSTIC JUMPER WORD: O2E6 ©
CYCLE STEAL STATUS:

COMMAND(?):

Chapter 5. Series/1-to-Series/1 Attachment Support

CO-183

Writing Data to the Other Processor (WR)

The WR commandissues an ENQTinstruction to the Series/1 specified by the most recent DD

command. A PRINTEXTinstructionis then issued for that terminal to write data to the other

processor. If $S1S1UT1 is active on the other processor, an RE command must beissued to

complete a WR command.

Example: WR command

COMMAND(?): WR
ENTER TEXT:
TEST DATA TO WRITE

MESSAGE SENT!

 | COMMAND(7):
\

Ending the Utility (EN)

The EN commandendsthe $S1S1UT1 utility.

Example: En command

COMMAND(?): EN

$S1S1UT1 ENDED AT 00:00:00

CO-184 SC34-0443

Chapter 6. General Purpose Interface Bus - IEEE

Standard 488-1975

The General Purpose Interface Bus (GPIB) Adapter, when connected to the Series/1, allowsit

to communicate with up to 14 peripheral devices. The devices that GPIB can connectto the

Series/1 include printers, plotters, graphics display units, and programmable laboratory

equipment suchas digital voltmeters, frequency analyzers, and signal generators.

The connection between the Series/1 and the GPIB devices is muchlike a multi-point

connection. The Series/1 acts as the control station, and the GPIB devicesasits tributaries.

You must write application programs to control communications between the Series/1 and the

GPIB devices. Your program must perform polling and selection, and initiate all data transfer

operations.

Planning for the GPIB Application

System Generation for GPIB

During system generation for the Series/1, you must include a TERMINAL statementin the

configuration module ($EDXDEF) for each GPIB adapter. Also, you must include the GPIB

device handler (IOSGPIB)in the supervisor link control data set (SLNKCNTL). Refer to the

Installation and System Generation Guide for additional information on system generation.

You may want to connect GPIB to a particular partition so that SRQ interrupts adapter can be

properly handled. Thepartition to which the GPIB adapteris initially connected is defined by

Chapter 6. General Purpose Interface Bus - IEEE Standard 488-1975 CQO-185

the PART parameter of the TERMINAL statement. To modify the size of the system buffer

generated for the GPIB adapter, use the LINSIZE parameter.

The following TERMINAL statement connects a GPIB adapter named GPIBto partition 2 and

defines the system buffer to be 200 bytesin length.

GPIB TERMINAL DEVICE=GPIB, ADDRESS=32,LINSIZE=200, PART=2

Relationship between Series/1 and GPIB Devices

The Series/1 always acts as the control station and the GPIB devices act as its tributary stations.

A GPIB device can function in two roles:

e Asa lfalker, a device is sending data to the Series/1 or to another device.

e Asa listener, a device is receiving data from the Series/1 or another device.

The Series/1 controls communications so that only one deviceis talking at a time. However,

any numberof devices can belistening at the same time. The devices can function in eitherrole.

A device can act as talker during one data transfer, and as listener during another transfer. The

Series/1 tells the devices which role to assume during each transfer operation.

The Series/1 must make the assignments of talker and listener(s) before a data transfer

operation occurs. For example, to send data to a device, the Series/1 designates itself as the

talker and the receiving device as the listener. The Series/1 then sends the data. To read the

response from the device, the Series/1 designates the device as talker, and itself as listener. The

Series/1 then reads the data.

Assigning Device Addresses

CO-186

Each device on a GPIB bus has two addresses: one identifies the device as a listener and the

other identifies it as a talker. Each listen address has a corresponding talk address, and vice

versa. For example,if a device listens at address C’3’,it talks at address C’S’.

The chart below showsthesets of listen and talk addresses; they are ASCII characters.

Although GPIB device addresses are usually expressed as ASCII characters, they can also be

coded in hexadecimal.

The Series/1 listen and talk addresses are C’5’ and C’U’ respectively; they cannot be changed.

$C34-0443

pplication (continued)

Listen Talk

Address Address

(space) @
I A

&sad. B

C

$ D
% E

& F

‘ G

(H
) |
* J

+ K

L

__ M

. N

/ O
0 P

1 0

2 R

3 S

4 T

5 U

6 V

7 WwW

8 XxX

9 Y

: Z

[
< \

=]
> (caret)

Figure 66. Listen and talk addresses for GPIB devices

Initializing and Configuring the Bus

You must initalize and configure the bus before the Series/1 and the GPIB device can

communicate. These functions are performed by the TERMCTRLinstruction, as described in

the Programming section. Theinitialization consists of these operations:

1. Reset the adapter.

2. Clear the interface between Series/1 and GPIB; this makesthe entire bus inactive.

3. Perform remote enable of GPIB; this enables all the devices attached to the bus.

Code these operations at the beginning of your application program. Unless an error occurs,

you do not haveto repeat the initialization.

Chapter 6. General Purpose Interface Bus - IEEE Standard 488-1975 CQO-187

General Purpose Inter

us - IEEE Standard 488-1975

face B

Pianning for the GPIB

Application (continued)

Configuring the bus consists of assigning the roles of talker and listener(s) for the tasks in a

program. It also allows the Series/1 to send data to listening devices.

Interrupt Handling

CO-188

A service request (SRQ)is a device-generated signal that informs the controller (Series/1) that

the device needs service. A program can be notified of the occurrence of an SRQ by coding a

$PF255 reference in an attention list (ATTNLIST), with SCOPE=GLOBALspecified. Since

the attention list receives control enqueuedto the terminal, the main task (which is enqueued to

GPIB) must issue a DEQT to GPIB. The following example shows an event control block

(ECB) being posted when an SRQ occurs.

ATTNLIST ($PF255,GOTSRQ) , SCOPE=GLOBAL

* ATTENTION LIST TASK THAT RECEIVES CONTROL
* WHEN AN SRQ IS RECEIVED.
*

GOTSRQ EQU *
POST SROQECB POST. SRQ OCCURRENCE
ENDATTN END ATTENTION PROCESSING

* MAIN TASK
* AT THIS POINT, INSTRUCTIONS HAVE BEEN ISSUED THAT
* CAUSE A GPIB DEVICE TO ISSUE AN SRQ.
*

DEQT DISCONNECT FROM GPIB
WAIT SRQECB PROGRAM WAITS FOR EVENT

* INDICATING SRQ OCCURRENCE

SRQECB ECB SRQ EVENT CONTROL BLOCK
Note: A program that uses anattention list to receive SRQ interrupts in this manner must run in

the partition to which the GPIB terminal is connected. This is initially defined at system

generation time, but can be changed using the change partition (CP) command of $GPIBUT1.

A program can also handle an SRQinterrupt via the WAIT KEYinstruction. The program

remainsin a wait state until an SRQ interrupt is received by the Series/1. However,as forall

WAIT KEYinstructions, an interrupt that occurs before the WAIT KEYis executed will be lost.

An SRQ doesnotidentify the interrupting device. To determinethis, the application program

must poll all devices connected to the bus; see “‘Polling the Devices” on page CO-195.

5C34-0443

Programming for the GPIB

Application

You must write programs that allow communication between Series/1 and the GPIB devices.

Your program must perform the following tasks:

e Initialize and configure the bus

e Control data transfer operations

e Poll and select devices

e Send data to devices

e Receive data from devices

e Perform control functions on devices

Your programs must consist of Event Driven Languageinstructions. The instructions that apply

specifically to the GPIB application are discussed in the next section.

Event Driven LanguageInstruction Set

Your program must contain the following EDL instructions, which perform the task of

communicating between the Series/1 and the GPIB devices.

Instruction Function

DEQT Releases the device that Series/1 is

communicating with

ENOT Gives Series/1 exclusive right to
communicate with a device

1OCB Identifies the particular GPIB adapter

that connects the device Series /1

wants to communicate with

PRINTEXT Sendsdata to a device

READTEXT Receives data from a device

TERMCTRL Performs control functions on a

device

For description and syntax of the instructions refer to the Language Reference.

Chapter 6. General Purpose Interface Bus - IEEE Standard 488-1975 CO-189

 Purpose

Programmingfor the GPIB Application (continued)

Programming Considerations

Certain requirements and restrictions apply to programming for the GPIB application.

Performing Control Function (Using TERMCTRL)

Use only the TERMCTRLoperandsspecific to GPIB. These are described in the Language

Reference

Forcing Output of Data

You must "force" the output of data to a GPIB device. If the Series/1 issues a PRINTEXT
instruction to send data to a device, the program must force the output by one of several

methods:

e Include the new line character (@) in the output. Do not use this method when coding

MODE=LINE or XLATE=NOparameters.

e Code the XLATE=NOparameter.

e Specify SKIP=1 on a PRINTEXTinstruction.

e Issue a TERMCTRL DISPLAYinstruction

Specifying Translation of Data

If you want to send or receive hexadecimal data (when issuing the PRINTEXT or READTEXT

instructions) you must suppress translation of the data. The Series/1 uses EBCDIC, the GPIB

Adaptor uses ASCII, and the GPIB devices use the code specific to each device type. To

suppress translation of data, code the XLATE=NOparameter for PRINTEXT or READTEXT.

If you want to send or receive data in EBCDICfor Series/1, ASCII for GPIB,or the code

appropriate to a device, code XLATE=YES. Use of XLATE=NOwith PRINTEXTforces

output of data.

Specifying a User Buffer

If an application is to transfer more data than will fit in the system buffer (defined at system

generation), the IOCB through which the application is enqueued must specify a user buffer. A

user buffer is necessary if you want to specify the exact numberof characters for a read.

In the following example, the IOCB (GPIBIOCB)specifies a BUFFER operand; the buffer

length is 500 bytes. If a buffer is used, you are responsible for setting the buffer length

(GPIBLENin this example) to the numberof bytes to be written via PRINTEXT. The buffer

length is set to the numberof bytes actually read by a READTEXTinstruction. The example

below shows how the buffer can beinitialized for a PRINTEXTof 100 bytes.

CO-190 SC34-0443

on(continued

ENOT GPIBIOCB CONNECT TO GPIB

DEQT DISCONNECT FROM GPIB

GPIBIOCB IOCB GPIB, BUFFER=GPIBUFF GPIB TERMINAL NAME
GPIBBUFF BUFFER 500,BYTES , INDEX=GPIBLEN BUFFER FOR GPIB USE

MOVE GPIBLEN, 100
If a user buffer is not desired, do not include the BUFFER parameterin the IOCB statement.

Initializing and Configuring the Bus

The TERMCTRL instruction provides operations that are used to initialize the bus: adapter

reset (RSET), interface clear (IFC), and remote enable (REN). Normally these three

operations are performed when a GPIB programstarts, and need not be executed again unless

an error occurs. Whenusedatthe start of a GPIB program,these control operations should be

executed in the order discussed.

The RSET operation resets the adapter.

TERMCTRL GPIB,RSET RESET ADAPTER

The IFC operation clears the GPIB interface, thus causing the entire bus to be made inactive.

TERMCTRL GPIB, IFC INTERFACE CLEAR

The remote enable (REN) operation enablesall the devices on the bus. Not all devices need to

be enabled in this manner; someare initialized to an enabled state. Check the manufacturer’s

device description to see whether a remote enable is needed.

Chapter 6. General Purpose Interface Bus - IEEE Standard 488-1975 CO-191

General Purpose Interface Bus- |

Programming for the GPIB Application (continued)

TERMCTRL GPIB,REN REMOTE ENABLE
PRINTEXT LISTADDR SEND LISTENER ADDRESS
TERMCTRL DISPLAY FORCE OUTPUT

LISTADDR TEXT "%! LISTEN ADDRESS FOR ONE DEVICE
Configuring the Bus

The configure bus (CON) operation of the TERMCTRLinstruction does two things: it assigns

the roles of talker and listener, and it can be used to write data to listeners.

In the following examples, the universal unlisten command (a question mark) is transmittedfirst,

followed by a talker address, and then bythelist of listener addresses. The unlisten commandis

a special message thatresets all devices that were listeners to a non-listening state.

Series/1 talks, and some device(s) listens:

TERMCTRL GPIB,CON CONFIGURE BUS
PRINTEXT '?' UNIVERSAL UNLISTEN COMMAND
PRINTEXT 'U' SERIES/1 TALK ADDRESS
PRINTEXT LISTADDR DEVICE LISTENER ADDRESS (ES)
PRINTEXT ‘'":' DATA BLOCK TERMINATOR
TERMCTRL DISPLAY FORCE OUTPUT

LISTADDR TEXT '&' LISTEN ADDRESS

Series/1 sends data via CON:

TERMCTRL GPIB, CON CONFIGURE BUS
PRINTEXT '?U' (AS ABOVE)
PRINTEXT LISTADDR DEVICE LISTENER ADDRESS (ES)
PRINTEXT ‘'",' DATA SEPARATOR
PRINTEXT DATA SEND DEVICE DATA
PRINTEXT '":' DATA BLOCK TERMINATOR
TERMCTRL DISPLAY FORCE OUTPUT

LISTADDR TEXT '&%' LISTEN ADDRESS
CO-192 SC34-0443

Some device talks, and Series/1 listens:

TERMCTRL GPIB,CON CONFIGURE BUS
PRINTEXT '?' UNIVERSAL UNLISTEN COMMAND
PRINTEXT TALKADDR DEVICE TALK ADDRESS
PRINTEXT '5' SERIES/1 LISTENER ADDRESS
PRINTEXT '":' DATA BLOCK TERMINATOR
TERMCTRL DISPLAY FORCE OUTPUT

TALKADDR TEXT 'E' TALK ADDRESS

One device talks, and other device(s) listens:

TERMCTRL GPIB,CON CONFIGURE BUS
PRINTEXT '?' UNIVERSAL UNLISTEN COMMAND
PRINTEXT TALKADDR DEVICE TALK ADDRESS
PRINTEXT LISTADDR OTHER LISTENER ADDRESS(ES)
PRINTEXT '":' DATA BLOCK TERMINATOR
TERMCTRL DISPLAY FORCE OUTPUT

LISTADDR TEXT '&' LISTEN ADDRESS
TALKADDR TEXT 'E' TALK ADDRESS

Enqueuing and Dequeuing GPIB

The ENQTinstruction connects Series/1 to a GPIB adapter and excludes other sources from

accessing the adapter at the same time. You must specify the GPIB adapter that the Series/1

wants to communicate with. To do this, refer to the label of the IOCB instruction thatidentifies

the GPIB adapter.

The DEQTinstruction releases the GPIB adapter previously enqueued.

If your program is connected to a GPIB adapter and issues a a LOADinstruction, the task

issuing the LOAD will be disconnected from the GPIB adapter, and the task being loaded will

be connected to the GPIB adapter. If this is not desirable, the program issuing the LOAD must

first issue a DEQT, followed by the LOAD,andthen issue an ENQTto reconnect to the GPIB

adapter.

In the following example, the IOCB (GPIBIOCB)is initially enqueued. Next, the program issues

a DEQTto disconnect itself from the GPIB adapter. The program then issues a LOAD

instruction for the program NEWPROG,which now has the GPIB adapter connectedtoit.

After NEWPROGcompletes, the program reconnects to the GPIB adapter byissuing another

ENOQT.

Chapter 6. General Purpose Interface Bus - IEEE Standard 488-1975 CQO-193

GPIBIOCB IOCB

GPIBIOCB

NEWPROG
GPIBIOCB

GPIB

CONNECT TO GPIB

DISCONNECT FROM GPIB
LOAD NEW PROGRAM
RECONNECT TO GPIB

Series/1 Sending Data to a Device

The Series/1 acts as talker and transmits data to the listener(s) with a PRINTEXTinstruction.

The data actually goes to the GPIB adapter which in turn directs it to the designated device(s).

The following example shows whatto code for Series/1 to send data to a device.

e e

DATA TEXT

Example of writing character data:

TERMCTRL GPIB,WRIT
PRINTEXT DATA
TERMCTRL DISPLAY

"IN; '

WRITE TO GPIB
SEND DATA
FORCE OUTPUT

DEVICE DEPENDENT DATA

DATA
HEXDATA DATA
Example of writing hex data:
(note the simulated TEXT statement)

TERMCTRL GPIB,WRIT
PRINTEXT HEXDATA, XLATE=NO
TERMCTRL DISPLAY

X'0O101'
X'03'

WRITE TO GPIB
SEND HEX DATA
FORCE OUTPUT

TEXT LENGTH/COUNT
DEVICE DEPENDENT DATA

Series/1 Receiving Data from a Device

Series/1 receives data transfers from GPIB devices with a READTEXTinstruction.

This example shows howthe Series/1 receives data being sent by a device. It is assumed that

the device appends an end-of-string character to the data to be sent. Since the device can send a

CO-194 SC34-0443

variable numberof characters, the SE option is used in the READTEXTinstruction to suppress

incorrect length record exceptions.

TERMCTRL GPIB, READ, (SE,EOS) ,X'OD' READ GPIB
READTEXT DATA READ INPUT DATA

ita Between Devices

One device can send data to one or more other devices while the Series/1 merely monitors the

data transfer. This is done with the READTEXTinstruction. The following example shows

how Series/1 allows the data transfer betweenthe devices.

TERMCTRL GPIB,MON, (SE,EOS) ,X'OD' READ MONITOR
READTEXT DATA DUMMY READ

Devices

Your program can perform eithera serial or parallel polling operation to determine the source of

a device interrupt. The TERMCTRLinstruction performspolling.

Serial Polling Code these TERMCTRLinstructions to perform serial polling (polling devices

in sequence):

e 'TERMCTRLSPE(enable serial poll)

¢ TERMCTRLSPL (readserial poll)

« TERMCTRL SPD (disable serial poll)

The SPE commandpolls each device whose talker address has been specified. The SPL

commandreadsthe poll status of each device. The poll status returned for each device consists

of two bytes: the talker address of the polled device (first byte) and the device status (second

byte). The status byte is device-dependent, and is usually expressed in hex. If it is, use

XLATE=NOonthe appropriate READTEXT. The SPD commanddisablesthe serial poll

status reporting ability of the devices previously enabled through an SPE command.

TERMCTRL GPIB,SPE SERIAL POLL ENABLE
PRINTEXT TALKADDR TALK ADDRESS OF DEVICE
TERMCTRL DISPLAY FORCE OUTPUT
TERMCTRL GPIB,SPL READ SERIAL POLL
READTEXT STATUS , XLATE=NO GET SERIAL POLL STATUS
TERMCTRL GPIB,SPD SERIAL POLL DISABLE

Chapter 6. General Purpose Interface Bus - IEEE Standard 488-1975 CO-195

CO-196

Parallel Polling A parallel poll polls all enabled devices in parallel, with the poll status encoded

as a single byte. Device responseto parallel polling is highly device-dependent; many devices do

not even acknowledgeparallel polling.

Code the following TERMCTRLinstructions to perform parallel polling:

« TERMCTRL PPE(enable parallel poll)

¢ TERMCTRL WPPL(write parallel poll command)

¢ TERMCTRL RPPL (read parallel poll status)

e ‘TERMCTRL PPD(disable parallel poll)

¢ TERMCTRL PPU (unconfigureparailel poll)

The PPE command enablesthe devices to respondto a parallel poll. You must supply two bytes

of information for each device to be polled. Thefirst byte specifies the listener address. The

first four bits of the second byte have, by definition, the value of six. The fifth bit is the line

level (one or zero) which is the active level for the addressed device. The final three bits indicate

which GPIB dataline is used to request service. Bit values zero through seven are used to

specify GPIB data lines one through eight.

Note: Some devices that respond to parallel polling may respond to a poll only in predefined

ways. Consult your device manual.

Since a parallel poll word is most conveniently expressed in numeric form, PRINTEXTwith

XLATE=NOshould be used. A TEXT statement must be simulated so that hex data can be

used. In the following example, the TEXT statementis simulated by the first DATA statement

containing the value X’0202’. This value correspondsto the length and count bytes of a TEXT

statement followed by another DATAstatementthat contains the two bytes ofpolling

information. In the example, a single device at listener address X’25’ is enabled to respond at

line level one on GPIB dataline one.

TERMCTRL GPIB,PPE PARALLEL POLL ENABLE
PRINTEXT PPEMSG, XLATE=NO SEND DATA

DATA X'0202' TEXT PARAMETERS
PPEMSG DATA X'2568'

The actual polling of the devices is accomplished bya write parallel poll command (WPPL). The

resulting poll status byte is stored in the adapter until a read parallel poll status (RPPL)is

performed. The RPPL operation movesthe status byte into the byte specified on the

TERMCTRL GPIB,RPPL statement.

SC34-0443

TERMCTRL GPIB,WPPL
TERMCTRL GPIB,RPPL,,RPPLDATA
oe

RPPLDATA DATA X'OO'

WRITE PARALLEL POLL STATUS
READ PARALLEL POLL STATUS

PARALLEL POLL STATUS BYTE

Onedevice or all devices configured to respond to parallel polling can be unconfigured using the

parallel poll disable (PPD)or parallel poll unconfigure (PPU) command.

TERMCTRL GPIB,PPD
PRINTEXT LISTADDR
TERMCTRL DISPLAY

TERMCTRL GPIB, PPU

or

PARALLEL POLL DISABLE
LISTENER ADDRESS (ES)
FORCE OUTPUT

PARALLEL POLL UNCONFIGURE

Viode of Operation

Local Viede Operation: Some GPIB devices can be operated by an attached panel as well as

viaa GPIB bus commands: this is called local mode operation. A device with this capability can be

enabled to operate in local mode by the go to local mode TERMCTRL GTL command.

Similarly, local mode can be disabled by the local lock out TERMCTRL LLO command. Both

of these commands must specify the listener addresses of the devices to be operated in this

TERMCTRL
PRINTEXT
TERMCTRL

TERMCTRL
PRINTEXT
TERMCTRL

GPIB,GTL
LISTADDR
DISPLAY

GPIB, LLO
LISTADDR
DISPLAY

GO TO LOCAL
LISTENER ADDRESS(ES)
FORCE OUTPUT

LOCAL LOCK OUT
LISTENER ADDRESS(ES)
FORCE OUTPUT

Chapter 6. General Purpose Interface Bus - IEEE Standard 488-1975

Device Group Cperation: Some devices can have predefined operations which are executed

by a trigger command. These operations can beinitiated by a group executetrigger

TERMCTRL GET command which mustspecify a list of listener addresses for the devices.

CO-197

TERMCTRL GPIB,GET GROUP EXECUTE TRIGGER
PRINTEXT LISTADDR LISTENER ADDRESS (ES)
TERMCTRL DISPLAY FORCE OUTPUT

These coding examples demonstrate the steps necessary to communicate with a device

connected to the GPIB bus. In this sample case, the GPIB device is a plotter. Therefore, some

operations uniqueto the plotter are covered.

Following this section is a sample program that contains the coding segments shown below. In

the coding segments, the following plotter commandsare used:

IN Initialize plotter

PA x,y Movepento absolute position at x,y coordinates

OC Output current pen position

IM Initialize masks

pter

The program mustfirst connect to the GPIB adapter with an ENQTinstruction.

ENOT GPIBIOCB CONNECT TO GPIB

GPIBIOCB IOCB GPIB IOCB FOR GPIB ADAPTER
cy a

Initializing the Adapter

The program initializes the adapter and bus by means of the RSET and IFC operations.

TERMCTRL GPIB,RSET RESET ADAPTER
TERMCTRL GPIB,IFC CLEAR BUS

Enabling the GPIB Device

The plotter is remotely enabled with a REN commandfollowedbyits listener address.

TERMCTRL GPIB,REN REMOTE ENABLE
PRINTEXT '&a' THE PLOTTER

CO-198 SC34-0443

Clearing All Devices

All devices are cleared by a device clear command.

TERMCTRL

GPIB,DCL CLEAR ALL DEVICES

Preparing to Send Data

Atthis point, the bus is configured so that the Series/1 can send datato the plotter, that is, the

Series/1 is enabled to talk, and the plotter is enabledto listen. The coding for this consists of the

universal unlisten command (question mark), followed by the talker and listener addresses, the

data block terminator, and a new line character (@)to force output.

TERMCTRL
PRINTEXT

SENDCON TEXT

GPIB, CON CONFIGURE BUS
SENDCON S/1 TALKS, PLOTTER LISTENS

'2UK": a
Writing Data to the Device

The Series/1 writes data to the plotter by issuing a GPIB write command. Thena series of

plotter commandsaresent. PRINTNUM is used to convert numeric data to character form.

TERMCTRL
PRINTEXT
PRINTEXT
PRINTNUM
PRINTEXT
PRINTNUM
PRINTEXT
PRINTEXT
TERMCTRL

F5000 DATA
CURRPOS TEXT

GPIB,WRIT, TO WRITE, TIMER OVERRIDE
"IN; ' INITIALIZE PLOTTER
"PA' MOVE PEN ABSOLUTE
F5000 X=5000
‘,! SEPARATOR
F5000 Y=5000
‘;' TERMINATOR
"OC; ' OUTPUT CURRENT PEN POSITION
DISPLAY FORCE OUTPUT

F'5000'
LENGTH=14

Preparing to Receive Data

Since the Series/1 requested data from the plotter, it must reconfigure the bus so that the plotter

talks and the Series/1 listens.

Chapter 6. General Purpose Interface Bus - IEEE Standard 488-1975 CO-199

 3 Application (continued)

TERMCTRL GPIB,CON CONFIGURE BUS
PRINTEXT RECVCON PLOTTER TALKS, S/1 LISTENS

RECVCON TEXT "?E5":a'

Receiving Data From the GPIB Device

The actual read is performed by a GPIB READoperation. Since a variable number of characters

can be sent, incorrect length record (ILR) exceptions are suppressed with the SE option. The

end of data is indicated by an end-of-string (EOS) character. At this point, the input data can be

tested or displayed.

TERMCTRL GPIB,READ, (SE,EOS,TO) ,X'OD'
READTEXT CURRPOS READ CURRENT POSITION

Preparing Device to Issue Service Request (SRQ)Interrupts

To show the use of service request (SRQ)interrupts, the plotter will issue an SRQ uponreceipt

of an invalid plotter command.First, the bus must be configured again.

ENOT GPIBIOCB CONNECT TO GPIB
TERMCTRL GPIB,CON CONFIGURE THE BUS
PRINTEXT SENDCON S/1 TALKS, PLOTTER LISTENS

Then plotter commandscan be transmitted whichinitialize the plotter to issue the SRQ when an

error occurs, and to causean error.

TERMCTRL GPIB,WRIT,TO WRITE, TIMER OVERRIDE
PRINTEXT 'IN;' INITIALIZE PLOTTER
PRINTEXT '1IM223,32,0;' TO SEND SRQ UPON ERROR
PRINTEXT 'XX;' SEND INVALID COMMAND
PRINTEXT SKIP=1 FORCE OUTPUT
DEQT DISCONNECT FROM GPIB

Receiving Device’s SRQ Interrupt

At this point the plotter issues an SRQ interrupt. The following code receives the interrupt and

posts the event. The preceding DEQT wasnecessary, since the attention list task would wait

until the GPIB adapter was dequeued. Note that the ECBisinitialized to the "event not

occurred" condition. (This code appears elsewhere in the actual program sequence.)

CO-200 SC34-0443

on (continued)

ATTNLIST

POSTSRQ EQU
POST
ENDATTN

SPACE
SROQECB ECB

SPACE

($PF255,POSTSRQ) , SCOPE=GLOBAL

*

SRQECB POST EVENT

The program waits for the SRQ event to occur, and then continues operation.

WAIT
RESET

SROECB
SROECB

WAIT FOR SRQ
RESET ECB

Retrieving Device Status

To retrieve the plotter status, the program serially polls the plotter with the serial poll enable

(SPE) and readserial poll (SPL) commands. The talker address for the plotter must be specified

with the SPE. The SPL is accompanied by a READTEXTwith XLATE=NO,becausethe

plotter status is most easily handled in numeric form.Finally, a serial poll disable is issued to

prevent the plotter from talking with status information.

ENQT
TERMCTRL
PRINTEXT
TERMCTRL
READTEXT
TERMCTRL

STATUS TEXT

GPIBIOCB
GPIB, SPE
'Ro'

GPIB, SPL
STATUS , XLATE=NO
GPIB,SPD

LENGTH=2

CONNECT TO GPIB
SERIAL POLL ENABLE
PLOTTER TALKER ADDRESS
READ SERIAL POLL
READ STATUS
SERIAL POLL DISABLE

Chapter 6. General Purpose Interface Bus - IEEE Standard 488-1975 CO-201

Program

Figure 67 showsthe preceding coding segments as a complete sample program. Anerror testing

routine is called after each I/O operation.

GPIBEG PROGRAM START
*

START EQU *
*

ENQT GPIBIOCB CONNECT TO GPIB
TERMCTRL GPIB,RSET RESET ADAPTER
CALL ERRTEST CHECK FOR ERRORS
TERMCTRL GPIB,IFC CLEAR BUS
CALL ERRTEST CHECK FOR ERRORS
TERMCTRL GPIB,REN REMOTE ENABLE
PRINTEXT '&a' THE PLOTTER
CALL ERRTEST CHECK FOR ERRORS
TERMCTRL GPIB,DCL CLEAR ALL DEVICES
CALL ERRTEST CHECK FOR ERRORS

* CONFIGURE BUS SO THAT S/1 TALKS AND THE PLOTTER LISTENS.

TERMCTRL GPIB,CON CONFIGURE BUS
PRINTEXT SENDCON S/1 TALKS, PLOTTER LISTENS
CALL ERRTEST CHECK FOR ERRORS

* INITIALIZE THE PLOTTER.

TERMCTRL GPIB,WRIT,TO WRITE, TIMER OVERRIDE
PRINTEXT 'IN;' INITIALIZE PLOTTER

* MOVE THE PEN TO (5000,5000).

PRINTEXT 'PA' MOVE PEN ABSOLUTE
PRINTNUM F5000 X=5000
PRINTEXT ',' SEPARATOR
PRINTNUM F5000 Y=5000
PRINTEXT ';' TERMINATOR

Figure 67 (Part 1 of 4). GPIB sample program

CO-202 SC34-0443

%
*¥

xe
*

&
*

*
*%

COMMAND THE PLOTTER TO SEND ITS CURRENT POSITION.

PRINTEXT '‘'OC;' OUTPUT CURRENT POSITION
TERMCTRL DISPLAY FORCE OUTPUT
CALL ERRTEST CHECK FOR ERRORS

CONFIGURE THE BUS SO THE PLOTTER TALKS, AND S/1 LISTENS.

TERMCTRL GPIB,CON CONFIGURE BUS
PRINTEXT RECVCON PLOTTER TALKS, S/1 LISTENS
CALL ERRTEST CHECK FOR ERRORS

READ THE CURRENT POSITION OF THE PLOTTER.
(SPECIFY SUPPRESS EXCEPTION, TIMER OVERRIDE,
END OF STRING CHAR = X'OD'

TERMCTRL GPIB,READ, (SE,EOS,TO) ,X'OD'
READTEXT CURRPOS READ CURRENT POSITION
CALL ERRTEST CHECK FOR ERRORS

DISPLAY CURRENT POSITION OF PLOTTER.

DEQT DISCONNECT FROM GPIB
PRINTEXT ‘'dCURRENT PLOTTER POSITION = '
PRINTEXT CURRPOS DISPLAY CURRENT POSITION
PRINTEXT SKIP=1
EJECT
ENQT GPIBIOCB CONNECT TO GPIB

CONFIGURE THE BUS SO THAT S/1 TALKS AND PLOTTER LISTENS.

TERMCTRL GPIB,CON CONFIGURE THE BUS
PRINTEXT SENDCON S/1 TALKS, PLOTTER LISTENS
CALL ERRTEST CHECK FOR ERRORS

Figure 67 (Part 2 of 4). GPIB sample program

Chapter 6. General Purpose Interface Bus - IEEE Standard 488-1975 CO-203

on(continued)

*

* INITIALIZE THE PLOTTER TO SEND AN SRO UPON AN ERROR.

TERMCTRL GPIB,WRIT,TO WRITE, TIMER OVERRIDE
PRINTEXT 'IN;' INITIALIZE PLOTTER
PRINTEXT '1IM223,32,0;' TO SEND SRQ UPON ERROR

* CAUSE A PLOTTER ERROR.

PRINTEXT '!XX;' SEND INVALID COMMAND
PRINTEXT SKIP=1 FORCE OUTPUT
CALL ERRTEST CHECK FOR ERRORS

*

DEQT DISCONNECT FROM GPIB
*

* WAIT FOR THE SRQ, AND POLL THE PLOTTER TO GET ITS STATUS.
*

WAIT SRQECB WAIT FOR SRO
RESET SROECB RESET EVENT
ENQT GPIBIOCB CONNECT TO GPIB
TERMCTRL GPIB,SPE SERIAL POLL ENABLE
PRINTEXT 'Ea' PLOTTER TALKER ADDRESS
CALL ERRTEST CHECK FOR ERRORS
TERMCTRL GPIB,SPL READ SERIAL POLL
READTEXT STATUS,XLATE=NO READ STATUS
CALL ERRTEST CHECK FOR ERRORS
TERMCTRL GPIB,SPD SERIAL POLL DISABLE
CALL ERRTEST CHECK FOR ERRORS

x

DEQT GPIBIOCB DISCONNECT FROM GPIB

* DISPLAY PLOTTER STATUS.

PRINTEXT '@PLOTTER STATUS = '
PRINTNUM STATUS ,MODE=HEX DISPLAY STATUS
PRINTEXT SKIP=1

PROGSTOP
Figure 67 (Part 3 of 4). GPIB sample program

CO-204 SC34-0443

B Application(continued

*

* THIS ATTENTION LIST TASK RECEIVES CONTROL WHEN
* AN SRQ INTERRUPT IS POSTED.
*

ATTNLIST ($PF255,POSTSRQ) , SCOPE=GLOBAL
*

POSTSRQ EQU *
POST SROECB POST EVENT
ENDATTN

* SUBROUTINE TO CHECK FOR AND DISPLAY GPIB TERMINAL ERRORS.

SUBROUT ERRTEST

MOVE TASKRC,GPIBEG GET TASK RETURN CODE
IF (TASKRC,NE,-1) ERROR?
DEQT DISCONNECT FROM GPIB
PRINTEXT 'd@GPIB TERMINAL I/O ERROR ='
PRINTNUM TASKRC,MODE=HEX
PRINTEXT SKIP=1
PROGSTOP

ENDIF
*

RETURN
*

TASKRC DATA F'O'

GPIBIOCB IOCB GPIB IOCB FOR GPIB ADAPTER

SRQOECB ECB O SRQ EVENT

F5000 DATA F'5000'

CURRPOS TEXT LENGTH=14

STATUS TEXT LENGTH=2
*

* CONFIGURATION INFORMATION.
*

SENDCON TEXT "?UR":0' S/1 TALKS, PLOTTER LISTENS
RECVCON TEXT "?E5":a' PLOTTER TALKS, S/1 LISTENS
*

ENDPROG
END

Figure 67 (Part 4 of 4). GPIB sample program

Chapter 6. General Purpose Interface Bus - IEEE Standard 488-1975 CO-205

The $GPIBUT1utility enables you to interactively control and transfer data to and from GPIB

devices. This utility can also be used as a diagnostic tool to check out the application program

interface and the attached devices.

The $GPIBUT1 commandsare listed below. To obtain this list at your terminal, enter a

question mark in response to the prompting message, COMMAND(?):

COMMAND(?): ?

CH - DEFINE END CHARACTER
CP - CHANGE GPIB PARTITION
DD - DEFINE DEVICE
EN - END THE PROGRAM
GP - GPIB CONTROL
LDCB - LIST DEVICE CONTROL BLOCK
RE - READ DATA
RS - RESET 1/0 ADAPTER
ST - READ ERROR STATUS
SU - SUSPEND PROGRAM
WR - WRITE DATA
‘ATTN - PGPIB' TO POST
‘ATTN - GPRESUME' TO RESUME PROGRAM COMMAND (?):
\ S

If a $GPIBUT1 commandfails, use the attention list command PGPIBto terminatethefailing

operation. If the PGPIB commandis used, you must issue an RS command (or RSET if GP

subcommandsare used) to reset the adapter.

Defining End Character (CH)

The CH commanddefines or changes the ending character that is added to outputdata.

COMMAND(?): CH

CHARACTER TO BE APPENDED TO OUTPUT DATA -- NOW IS NONE

CARRIAGE RETURN
LINE FEED
END OF TEXT
USER SPECIFIED HEX BYTE
NONEW

T
E
T
A

D
D

m
t

t
i

fo
o
n

SELECT CODE: 3

END CHARACTER IS NOW ETX COMMAND(?):

CO-206 SC34-0443

The CP command changesthe partition to which the GPIB adapteris connected. The partition

is initially defined at system generation.

COMMAND(?): cP 2

PARTITION CHANGED TO 2

COMMAND(?): CP

PARTITION NUMBER (NOW 1S 2):

PARTITION NUMBER NOT CHANGED -COMMAND(7):

))g Device (DD

The DD command prompts for the name of the GPIB adapter. This nameis specified in the

TERMINALconfiguration statement. The namespecified is used for all enqueues of the

adapter until another DD commandis issued.

COMMAND(?): pp

| NEW GPIB TERMINAL NAME = GPIB

| COMMAND (7):

Ending The Program (EN

The EN command ends the $GPIBUT1utility.

 | COMMAND(?): EN

The GP command enables you to enter the GPIB bus commandoptionsthat can be specified on

the TERMCTRLinstruction, as described in the Language Reference.

When GPis entered and followed by a bus command, $GPIBUT1 prompts for additional data,

depending uponthe specific command. For example, the CON (configure) command requires

both configuration and programming data. For the REN (remote enable) command,a list of

GPIB device addresses mustbe included.

Chapter 6. General Purpose Interface Bus - IEEE Standard 488-1975 CO-207

1) (continue

Where appropriate, $}GPIBUT1 performs PRINTEXT/READTEXToperationsas part of the

execution of a GP command,inserting delimiters as needed. In somecases, one delimiteris a

user-defined end character. The end character can be defined by the CH command.

COMMAND(?): GP

GPIB COMMAND(?): CON

OPTION(SE,E0S,TO,EOI): TO
OPTION(SE,E0S,T0,EOI):

CONFIGURATION DATA: ?U%
PROGRAMMING DATA (OR NONE): IN;
PROGRAMMING DATA (OR NONE): OE;
PROGRAMMING DATA (OR NONE):

CONFIGURATION DATA: 7&5
PROGRAMMING DATA (OR NONE): NONE
PROGRAMMING DATA (OR NONE):
CONFIGURATION DATA:

GPIB COMMAND(?): READ
OPTION(SE,EOS,TO,EOI): SE

WARNING - EOS OR EO! REQUIRED ..
OPTION(SE,EOS,TO,EO!I): EOS

WARNING - SE MAY BE NEEDED .
EOS BYTE (HEX): OD (x'OoD')

OPTION(SE,E0S,TO,EO!):
TRANSLATE INPUT? Y

HOW MANY CHARACTERS (MAX=DEFAULT=80):
VALUE DEFAULTED TO 80

0 COMMAND (?):

a /

1 Device Contro!] Block (LDCB)

CO-208

The LDCB commandlists the contents of the current GPIB device control block (DCB). The

DCBdescribes the last GPIB operation performed. However, the information provided may

require that you use the GPIB Adapter manual. Theitemslisted include:

e Address of the GPIB terminal control block (CCB)

e Address of the GPIB device control block (DCB)

e Status of the DCB control word, specifically:

SC34-0443

— Cycle steal status key (that is, the address space of the data buffer)

— GPIB operation mnemonic (for an undefined operation, ’****’)

— Status of the chaining, input, suppress exception (SE), end of string (EOS), timer

override (TO), and end ofidentify (EOI) bits, if they are set

e End of string character

e Address of the residual status block (RSB)

e Chain address

e Byte count for the data transfer

e Address of the data buffer

e Contents of the data buffer, expessed as:

— A string of hexadecimal words

— EBCDIC characters

— ASCII characters

The DCBis checked for certain error conditions, including:

e DCB wordstwoor three not equal to zero

e RSB address not equal to zero, and suppress exception set

e Chain address non-zero and chainingbit set

If the byte countis odd, the last byte in the string of hex wordsis not part of the buffer and

should be disregarded. Because the buffer data can be either EBCDIC or ASCII, depending on

the application,it is displayed in both character codes. In most cases, the ASCII data displayed

will be accurate. An inappropriate translation is displayed as a blankline.

The following example illustrates a DCB usedin the execution of:

TERMCTRL GPIB,CON,TO
PRINTEXT '?U%":a'

Chapter 6. General Purpose Interface Bus - IEEE Standard 488-1975 CQO-209

COMMAND (?): LDCB

DISPLAY OF DCB FOR GPIB TERMINAL GPIB

GPIB CCB AT ADDRESS 1058
GP1B DCB AT ADDRESS OFFE

CONTROL WORD
CYCLE STEAL KEY IS 0
TIMER OVERRIDE SET
DEVICE OPERATION IS CON

BYTE COUNT IS 5
DATA ADDRESS IS 1102

DATA IN HEX FORMAT IS:

3F55 2522 2C00

DATA INTERPRETED AS EBCDIC IS:

2U%':

COMMAND (7):

Reading Data (RE)

The RE commandreads data from the GPIB adapter. You can also specify GPIB options

(TERMCTRLfunctions), translation, and the number of characters to be read.

COMMAND(?): READ
OPTION(SE,EOS,TO,EOI): SE

WARNING - EOS OR EOI REQUIRED .
OPTION(SE,EOS,TO,EOI): FOS

WARNING - SE MAY BE NEEDED ...
EOS BYTE (HEX): oD (x'oD')

OPTION(SE,E0S,TO,E0!):
TRANSLATE INPUT? Y

HOW MANY CHARACTERS (MAX=DEFAULT=80):
VALUE DEFAULTED TO 80

0

COMMAND (7):

RS - Resetting the GPIB

Adapter(RS)

The RS commandissuesa device reset to the adapter. Any pending interrupt or busy condition

is cleared when this commandis executed.

CO-210 SC34-0443

BUT1) (continued)

| COMMAND(7): RS_

RESET ADAPTER? Y

| COMMAND (?):

Reading Error Status (ST)

The ST commanddisplays the status information contained in the adapter cycle steal status

words and the residual status block (RSB).

 ‘COMMAND(2): ST

READ STATUS? Y

CYCLE STEAL STATUS BLOCK (HEX)

RESIDUAL ADDRESS = B4ASA
RESIDUAL BYTE COUNT = 0050
(RESERVED) = : 0000
(RESERVED) = 0000
ERROR STATUS = 8000
BUS STATUS (AFTER POWER ON) = 0008
BUS STATUS (CURRENT) = 000A
SPE DEVICE ADDRESS = | 0000
DCB SPECIFICATION CHECK = 0000

(RESERVED) = | 0000
DCB ADDRESS = 1238

RESIDUAL STATUS BLOCK (HEX)

RESIDUAL BYTE COUNT = 0000

 RSB FLAGS = 0000
(RESERVED) = 0000
(RESERVED) = 0000
(RESERVED) = 0000

RESET ADAPTER? Y

NO DATA RECEIVED COMMAND (?):
Ne

Suspending $GPIBUT1 (SU)

The SU commandsuspendsthe operation of $GPIBUT1 until youtell it to resume using

GPRESUME.This enables you to run $GPIBUT1 concurrently with a GPIB application from

the same terminal.

Chapter 6. General Purpose Interface Bus - IEEE Standard 488-1975 CO-211

Interacting w

| CoMMAND(?): SU

| ScPiBUT1 SUSPENDED

The WR commandwrites data to the GPIB adapter. You can specify GPIB options

(TERMCTRLfunctions) andtranslation.

COMMAND(?): WR

OPTION(SE,E0S,TO,E0I):

WRITE HEX DATA? N

ENTER TEXT: IN;

|S THE DATA 0K? Y

COMMAND(?): WR

OPTION(SE,E0S,TO,E0!):

WRITE HEX DATA? Y

ENTER HEX WORDS: OAOD 0102

IS THE DATA OK? Y COMMAND (?):

Sometimes a GPIB operation waits indefinitely, such as if a device fails to respond to an

operation in which timer override (TO)is specified. The PGPIB attention command can be

used to complete the operation; it cancels the operation by simulating its completion. However,

after a PGPIB, the GPIB adapterisstill in a busy state, so it mustbereset.

CO-212 SC34-0443

GP1B COMMAND (72): READ

OPTION (SE,EOS,TO,E0!): TO

TRANSLATE INPUT? Y

HOW MANY CHARACTERS (MAX=DEFAULT=80) :

VALUE DEFAULTED TO 80

> PGPIB

DATA RECEIVED:

GPIB COMMAND (7): RSET RESET ADAPTER? Y

If $GPIBUT1 has been suspended using the SU command, the GPRESUMEattention command

can be used to resumeit.

Along with tools such as $DEBUG, $GPIBUT1 can be used to debug an executing GPIB

application. This can be done from one terminal by using the suspend and resume commands.

Using $L, load both $GPIBUT1 andthe application program from a terminal. (The
appplication program can also be loaded using $DEBUG.) First load $GPIBUT1 and then

suspend it with the SU command. Application debugging can then proceed until you need to use

a $GPIBUT1 function. At that point, use GPRESUMEtoreactivate $GPIBUT1.

The list DCB (LDCB)anddisplay status (ST) commandsare helpful in this context because

they interpret the effects of GPIB operations. In addition, PGPIB can be used to complete a

GPIB operation whichis in an indefinite wait state.

Chapter 6. General Purpose Interface Bus - IEEE Standard 488-1975 CO-213

$GPIBUT1 Utility Example

Figure 68 shows many of the $GPIBUT1 utility operations. The attached deviceis a plotter.

\

> SCP 2

> $L S$GPIBUTI

SGP 1BUTI 4SP, LP= 0000

SGPIBUT] - GPIB UTILITY

USING GPIB TERMINAL GP1B1

COMMAND(?): DD

NEW GPIB TERMINAL NAME = GP1B3

GP1B3 1S NOT A GPIB TERMINAL

RETRY? Y

Figure 68 (Part 1 of 9). GPIB utility example

NEW GPIB TERMINAL NAME = GPIB

COMMAND (7): CP 2)

PARTITION CHANGED TO 2

COMMAND (7): CH

CHARACTER TO BE APPENDED TO OUTPUT DATA -- NOW IS NONE

1 = CARRIAGE RETURN
2 = LINE FEED
3 = END OF TEXT
4 = USER SPECIFIED HEX BYTE
5 = NONE

SELECT CODE: 3

a END CHARACTER NOW IS ETX Y

Figure 68 (Part 2 of 9). GPIB utility example

CO-214 SC34-0443

IB Application (Using $GPIBUT1) (continued)

(_
COMMAND (7): CH

CHARACTER TO BE APPENDED TO OUTPUT DATA -- NOW IS ETX

1 = CARRIAGE RETURN
2 = LINE FEED
3 = END OF TEXT |
4 = USER SPECIFIED HEX BYTE
5 = NONE |

SELECT CODE: 5

END CHARACTER NOW |S NONE
COMMAND (?): GP

GPIB COMMAND (?): CON

OPTION(SE,E0S,TO,EO!): 10
OPTION(SE,E0S,TO,EOI):

CONFIGURATION DATA: ?U%
PROGRAMMING DATA (OR NONE): IN;
PROGRAMMING DATA (OR NONE): OE;
PROGRAMMING DATA (OR NONE):

CONFIGURATION DATA: ?E5
PROGRAMMING DATA (OR NONE): NONE
PROGRAMMING DATA (OR NONE):
CONFIGURATION DATA:
Figure 68 (Part 3 of 9). GPIB utility example

Chapter 6. General Purpose Interface Bus - IEEE Standard 488-1975

CO-215

General Pu

Interacting wi BUT1) (continued)

(~
GP 1B COMMAND (7): READ
OPTION(SE,EOS,TO,EO!): SE

WARNING - EOS OR EO! REQUIRED ...
OPTION(SE,E0S,TO,EOI): FOS

WARNING - SE MAY BE NEEDED ...
EOS BYTE (HEX): OD (x'oDd')

OPTION(SE,E0S,TO,EO!I):
TRANSLATE INPUT? Y

HOW MANY CHARACTERS (MAX=DEFAULT=80) :
VALUE DEFAULTED TO 80

0

GP 1B COMMAND(?): CON

OPTION(SE,E0S,T0,E0I):

CONFIGURATION DATA: ?U%
PROGRAMMING DATA (OR NONE): IN;
PROGRAMMING DATA (OR NONE): [M223,32,0;
PROGRAMMING DATA (OR NONE): Xx;

KkekkAX
SAL aS INAS BNKXAKAK SRO RECEIVED

Figure 68 (Part 4 of 9). GPIB utility example

PROGRAMMING DATA (OR NONE):

CONFIGURATION DATA:
GPIB COMMAND (7): SPE

OPTION(SE,E0S,10,E0!):

TALKER ADDRESS LIST: £

IS THE DATA 0K? Y

GPIB COMMAND (7): SPL

WARNING - SPE MUST HAVE JUST BEEN EXECUTED

TRANSLATE INPUT? N

DATA RECEIVED:
4578

WARNING - AN SPD MAY NOW BE REQUIRED

Figure 68 (Part 5 of 9). GPIB utility example

CO-216 SC34-0443

(GPIB COMMAND (7): SPD

OPTION(SE,EOS,TO,EOI): |

GPIB COMMAND (7): READ

OPTION(SE,£0S,70,E0!): 1 : , ao a :

TRANSLATE INPUT? Yo

HOW MANY CHARACTERS (MAX=DEFAULT=80):

VALUE DEFAULTED TO 80
Figure 68 (Part 6 of 9). GPIB utility example

> PGPIB

DATA RECEIVED:

GPIB COMMAND (7): READ

OPTION(SE,£0S,T0,E0!):
TRANSLATE INPUT? Y

HOW MANY CHARACTERS (MAX=DEFAULT=80)

VALUE DEFAULTED TO 80 :

ERROR CODE = 0002

GPIB BUSY
READ STATUS? N

 RESET ADAPTER? Y
.

Figure 68 (Part 7 of 9). GPIB utility example

Chapter 6. General Purpose Interface Bus- IEFE Standard 488-1975 CO-217

 General Purpose Interface Bus - IEEE Standard 488-1£

Interacting with the GPIB Application (Using $GPIBUT1) (continued)

NO DATA RECEIVED
GP1B COMMAND (7): READ

OPTION(SE,E0S,TO,EOI):
TRANSLATE INPUT? Y

HOW MANY CHARACTERS (MAX=DEFAULT=80)

VALUE DEFAULTED TO 80

ERROR CODE = 0180

EXCEPTION ON INPUT
DEVICE DEPENDENT STATUS AVAILABLE

READ STATUS? Y
Figure 68 (Part 8 of 9). GPIB utility example

CYCLE STEAL STATUS BLOCK (HEX)

RESIDUAL ADDRESS = B4SA
RESIDUAL BYTE COUNT = 0050
(RESERVED) = 0000
(RESERVED) = 0000
ERROR STATUS = 8000
BUS STATUS (AFTER POWER ON) = 0008
BUS STATUS (CURRENT) = 000A
SPE DEVICE ADDRESS = 0000
DCB SPECIFICATION CHECK = 0000
(RESERVED) = 0000
DCB ADDRESS = 1238

RESIDUAL STATUS BLOCK (HEX)

RESIDUAL BYTE COUNT = 0000
RSB FLAGS = 0000
(RESERVED) = 0000
(RESERVED) = 0000
(RESERVED) = 0000

RESET ADAPTER? Y

NO DATA RECEIVED GP 1B COMMAND (7): END
LC" S

Figure 68 (Part 9 of 9). GPIB utility example

CO-218 SC34-0443

Interacting with the GPIB Application (Using $GPIBUT1) (continued)

Detecting Errors During GPIB Operations

To control the GPIB bus and the attached devices, you should check the return code after each

operation. In general, the application program performserror recovery by retrieving and

analyzing the adapter cycle steal status block or residual status block. The manual General

Purpose Interface Bus (GPIB) Adapter - RPQ D02118 Custom Feature contains detailed

information on cycle steal status and the residual status block. The methods available to the

application program for detecting possible errors and retrieving the return codes returned are

described below.

GPIB errors can be detected in the same manner as other EDX terminal errors: by testing the -

first word of the task control block after an I/O instruction, or by coding an error routine

(identified by TERMERR= in the PROGRAMstatement). Except for return code 3 (busy

after reset), the application program should handle GPIB return codes like other terminal errors.

An application program can initialize a GPIB bus by means of the TERMCTRL GPIB,RSET

statement. This generates an interface clear (IFC) bus command. All GPIB devices on the bus

mustinitialize themselves in response to this command. If the application program issues

another commandbefore a device can completeinitialization, the busy after reset condition will

occur. Onesolution is to cause the program to wait long enough for the reset operation to

complete (this takes about 350 milliseconds). Anotheris to code the TERMCTRL GPIB

command (which follows the reset) with the timer override (TO) option.

For exception conditions, the first byte of the error code indicates whether a read or write

operation was requested. A value of 1 in the first byte indicates a read exception, while a 2

indicates a write exception. The second byte of the error code is the interrupt status byte (ISB)

which contains further information on the exception.

Examining Interrupt Status Byte

The ISB can be examined to determine whether the exception condition resulted from an

application program, hardware, or system error. Unless otherwise noted, the ISB bits below

describe the condition whenthebitis on.

Bit 0 Unless bit 2 is on, indicates that cycle steal status should be retrieved via the

TERMCTRL GPIB,STATstatement.

Bit 1 Indicates a delayed commandrejection which suggests a system error or an

inappropriate/ unusual TERMCTRL GPIBstatement.

Bit 2 Indicates an incorrect length record, which means that the numberof characters

read from GPIB wasless than specified in the input buffer. If the system buffer

(contained in the terminal control block) was used, then the associated

TERMCTRL GPIB,READ statement should contain the suppress exceptions (SE)

option.

Chapter 6. General Purpose Interface Bus - IEEE Standard 488-1975 CO-219

General Purpose Interface Bsus - IEEE Standard 488-1975

Detecting Errors During GPIB Operations (continued)

Bit 3

Bit 4

Bit 5

Bit 6

Bit 7

Indicates a device control block specification error, which may be a system error.

Word8 of the cycle steal status block indicates the cause.

Indicates a storage data check, which meansthat thereis a parity problem with

main storage.

Indicates an invalid storage address was passed to the GPIB adapter. This can be a

system problem or a problem with the application program buffer.

Indicates that the GPIB adaptertried to use an invalid storage key. This can be a

system problem or a problem with the application program buffer.

Indicates that an interface data parity error was detected.

Examining Cycle Steal Status Block

If bit zero of the ISB is on, word 4 of the cycle steal status block can be examined to determine

the source of the error. The bits in word 4 given below describe the condition whenthebit is

on.

Bit O

Bit 2

Bit 4

Bit 5

The GPIB adapter timed out while waiting to receive data from the bus. To

preventthis, specify timer override (TO) on the TERMCTRL GPIB,READ

statement.

The GPIB adapter timed out while waiting to send data to the bus. To preventthis,

specify timer override (TO) on the TERMCTRL GPIB,WRIT statement.

End of string (EOS) was specified on a TERMCTRL GPIB,READstatement, but

the buffer was filled before the EOS character wasreceived.

End of information (EOI) was specified on a TERMCTRL GPIB,READstatement,

but the buffer was filled before EOI wasreceived.

Retrieving Cycle Steal Status

CO-220

Whena GPIB operation terminates with an exception, an 11-word cycle steal status block is

available. To retrieve it, the application should issue a TERMCTRL GPIB,STATinstruction

specifying an area in storage to contain the status block.

 STATDATA DATA 11F'O' BLOCK FOR STATUS

TERMCTRL GPIB,STAT,,STATDATA RETRIEVE STATUS
*
*

*

SC34-0443

 Detecting Errors During GPIB Operations (continued)

Retrieving Residual Status Block

If a GPIB READor read monitor (MON)operation specifies the suppress exception (SE)

option, the 5-word residual status block is available. To retrieve it the application should issue a

TERMCTRL GPIB,RSBinstruction specifying an area in storage to contain the status block.

TERMCTRL GPIB,RSB,,RSBDATA RETRIEVE STATUS
*

*
*

RSBDATA DATA 5F'O' BLOCK FOR STATUS

Chapter 6. General Purpose Interface Bus - IEEE Standard 488-1975 CO-221

Notes

CO-222 SC34-0443

Glossary of Terms and Abbreviations

This glossary defines terms and abbreviations used in the Series/1 Event Driven Executive software publications. All software and

hardware terms pertain to EDX. This glossary also serves as a supplement to the /BM Data Processing Glossary, GC20- 1699.

$SYSLOGA, $SYSLOGB. The nameofthe alternate system
logging device. This device is optional but, if defined, should be

a terminal with keyboard capability, not just a printer.

$SYSLOG. The nameof the system logging device or operator
station; must be defined for every system. It should be a terminal

with keyboard capability, not just a printer.

$SYSPRTR. The nameof the system printer.

abend. Abnormal end-of-task. Termination of a task priorto its

completion because of an error condition that cannot be resolved

by recovery facilities while the task is executing.

ACCA. See asynchronous communications control adapter.

address key. Identifies a set of Series/1 segmentation registers

and represents an address space. It is one less than the partition

number. |

address space. Thelogical storage identified by an addresskey.
An address spaceis the storagefor a partition.

application program manager. The component of the Multiple

Terminal Managerthat provides the program management
facilities required to process user requests. It controls the

contents of a program area and the execution of programs within

the area.

application program stub. A collection of subroutines that are

appended to a program bythelinkage editor to providethelink

from the application program to the Multiple Terminal Manager

facilities.

asynchronous communications control adapter. An ASCII

terminal attached via #1610, #2091 with #2092, or #2095 with
#2096 adapters.

attention key. The key on the display terminal keyboard that,if

pressed,tells the operating system that you are entering a

command.

attention list. A series of pairs of 1 to 8 byte EBCDICstrings

and addressespointing to EDL instructions. Whenthe attention

key is pressed on the terminal, the operator can enter one of the

strings to cause the associated EDLinstructions to be executed.

backup. A copy of data to be used in the event the original data

is lost or damaged.

base record slots. Spacein an indexedfile that is reserved for

based recordsto be placed.

CO-223Glossary of Terms and Abbreviations

pbreviations

base records. Recordsare placedinto an indexedfile while in

load modeorinserted in process mode with a new high key.

basic exchange format. A standard format for exchanging data
on diskettes between systemsor devices.

binary synchronous device data block (BSCDDB). A control
block that provides the information to control one Series /1

Binary Synchronous Adapter. it determinestheline

characteristics and provides dedicated storageforthat line.

block. (1) See data block or index block. (2) In the Indexed

Method, the unit of space used by the access method to contain

indexes and data.

block mode. The transmission modein which the 3101 Display
Station transmits a data data stream, which has been edited and

stored, when the SEND keyis pressed.

BSCAM.Seebinary synchronous communications access

method.

binary synchronous communications access method. A form

of binary synchronous |/O control used by the Series/1 to
perform data communications betweenlocal or remote stations.

BSCDDB. Seebinary synchronous device data block.

buffer. An area of storage that is temporarily reserved for usein
performing an input/output operation, into which data is read or

from which data is written. See input buffer and output buffer.

bypass label processing. Access of a tape without anylabel

processing support.

CCB. See terminal control block.

central buffer. The buffer used by the Indexed Access Method

for all transfers of information between main storage and indexed

files.

character image. An alphabetic, numeric, or special character

defined for an IBM 4978 Display Station. Each character image

is defined by a dot matrix that is codedinto eight bytes.

character image table. An area containing the 256 character
images that can be defined for an IBM 4978 Display Station.
Each character imageis codedinto eight bytes, the entire table of
codes requiring 2048 bytes of storage.

character mode. Thetransmission modein which the 3101

Display Station immediately sends a character when a keyboard

key is pressed.

cluster. In an indexedfile, a group of data blocks that is pointed

to from the same primary-level index block, and includes the

primary-level index block. The data records and blocks

containedin a cluster are logically contiguous, but are not

necessarily physically contiguous.

CO-224 SC34-0443

COD(changeof direction). A character used with ACCA
terminal to indicate a reverse in the direction of data movement.

cold start. Starting the spool facility by erasing any spooled jobs
remaining in the spool data set from any previous spoolsession.

command. A character string from a source external to the

system that represents a request for action by the system.

commonarea. A user-defined data area that is mappedinto the

partitions specified on the SYSTEMdefinition statement. It can

be used to contain control blocks or data that will be accessed by

more than one program.

completion code. Anindicator that reflects the status of the

execution of a program. The completion codeis displayed or

printed on the program's output device.

constant. A value or address that remains unchanged thoughout

program execution.

controller. A device that has the capability of configuring the
GPIB bus by designating which devicesare active, which devices

are listeners, and which deviceis the talker. In Series/1 GPIB
implementation, the Series/1 is always the controller.

conversion. See update.

control station. In BSCAM communications, the station that

supervises a multipoint connection, and performspolling and

selection of its tributary stations. The status of contro! station is

assigned to a BSCline during system generation.

cross-partition service. A function that accesses data in two

partitions.

cross-partition supervisor. A supervisor in which one or more

supervisor modules reside outside of partition 1 (address space

0).

data block. In an indexedfile, an area that contains control

information and data records. These blocks are a multiple of 256

bytes.

data record. In an indexedfile, the records containing customer

data.

data set. A group of records within a volume pointed to by a

directory memberentry in the directory for the volume.

data set control block (DSCB). A control block that provides
the information required to access a data set, volumeor directory

using READ and WRITE.

data set shut down. An indexed data set that has been marked

(in main storage only) as unusable dueto an error.

DCE. See directory control entry.

device data block (DDB). A control block that describes a disk

or diskette volume.

direct access. (1) The access method used to READ or WRITE
records on a disk or diskette device by specifying their location

relative the beginning of the data set or volume. (2) In the
Indexed Access Method,locating any recordvia its key without
respect to the previous operation. (3) A condition in terminal |/O
where a READTEXTor a PRINTEXTis directed to a buffer which

waspreviously enqueued upon by an IOCB.

directory. (1) A series of contiguous recordsin a volumethat
describe the contents in terms of allocated data sets and free

space. (2) A series of contiguous records on a device that
describe the contents in terms of allocated volumes and free

space. (3) For the Indexed Access Method Version 2, a data set

that defines the relationship between primary and secondary

indexed files (secondary index support).

directory control entry (DCE). Thefirst 32 bytes of thefirst
record of a directory in which a description of the directory is
stored.

directory memberentry (DME). A 32-byte directory entry
describing an allocated data set or volume.

display station. An IBM 4978, 4979, or 3101 display terminal or

similar terminal with a keyboard anda video display.

DME. See directory memberentry.

DSCB. See data set control block.

dynamic storage. An incrementof storage that is appended to a

program whenit is loaded.

end-of-data indicator. A code that signals that the last record of
a data set has been read or written. End-of-data is determined

by an end-of-data pointer in the DMEorby the physical end of

the data set.

ECB. See event control block.

EDL. See Event Driven Language.

emulator. The portion of the Event Driven Executive supervisor

that interprets EDL instructions and performsthe function

specified by each EDL statement.

end-of-tape (EOT). A reflective marker placed near the end of a
tape and sensed during output. The markersignals that the tape

is nearly full.

enter key. The key on the display terminal keyboard that,if

pressed,tells the operating system to read the information you

entered.

event control block (ECB). A control block used to record the

status (occurred or not occurred) of an event; often used to

synchronize the execution of tasks. ECBs are used in conjunction

with the WAIT and POSTinstructions.

Event Driven Language (EDL). The languagefor input to the
Event Driven Executive compiler (SEDXASM), or the Macro and

Host assemblers in conjunction with the Event Driven Executive

macrolibraries. The output is interpreted by the Event Driven

Executive emulator.

EXIO (execute input or output). An EDL facility that provides
user controlled access to Series/1 input/output devices.

external label. A label attached to the outside of a tape that

identifies the tape visually. It usually contains items of

identification such as file name and number, creation data,

number of volumes, department number, and so on.

external name (EXTRN). The 1- to 8-character symbolic
EBCDIC namefor an entry pointor datafield that is not defined

within the module that references the name.

FCA. Seefile control area.

FCB. Seefile control block.

file. A set of related records treated as a logical unit. Although
file is often used interchangeably with dataset, it usually refers to

an indexed or a sequential data set.

file control area (FCA). A Multiple Terminal Manager data area
that describesa file access request.

file control block (FCB). The first block of an indexedfile. It
contains descriptive information about the data containedin the

file.

file control block extension. The second block of an indexed

file. It contains the file definition parameters used to define the

file.

file manager. A collection of subroutines contained within the

program managerof the Multiple Terminal Managerthat provides

commonsupport forall disk data transfer operations as needed

for transaction-oriented application programs. It supports

indexed anddirect files under the control of a single cailabie

function.

floating point. A positive or negative numberthat can have a

decimalpoint.

formatted screen image. A collection of display elements or

display groups (such as operator prompts and field input names

and areas) that are presented together at one time on a display

device.

free pool. In an indexed data set, a group of blocks that can be

used for either data blocks or index blocks. These differ from
other free blocksin that these are notinitially assigned to specific

logical positionsin thefile.

CO-225Glossary of Terms and Abbreviations

Glossary of Term d Abbreviations

free space. In an indexedfile, records blocks that do not

currently contain data, and are available for use.

free spaceentry (FSE). An 8-byte directory entry defining an
area of free space within a volume or a device.

FSE. See free space entry.

general purpose interface bus. The IEEE Standard 488-1975

that allows various interconnected devices to be attached to the

GPIB adapter (RPQ D02118).

GPIB. See general purposeinterface bus.

group. A unit of 100 recordsin the spool data set allocated to a

spooljob.

H exchange format. A standard format for exchanging data on

diskettes between systemsor devices.

host assembler. The assembler licensed program that executes

in a 370 (host) system and producesobject output for the
Series/1. The source input to the host assembler is coded in

Event Driven Language or Series/1 assembler language. The

host assemblerrefers to the System /370 Program Preparation

Facility (5798-NNQ).

host system. Any system whose resourcesare used to perform

services such as program preparation for a Series/1. It can be

connected to a Series/1 by a communicationslink.

IACB. See indexed access control block.

IAR. See instruction addressregister.

ICB. See indexed access control block.

IIB. See interrupt information byte.

image store. The area in a 4978 that contains the character

imagetable.

immediate data. A self-defining term used as the operand of an

instruction. It consists of numbers, messagesor values which

are processeddirectly by the computer and which do not serve as

addressesor pointers to other data in storage.

index. In an indexedfile, an ordered collection of pairs of keys

and pointers, used to sequence and locate records.

index block. In an indexed file, an area that contains control

information and index entries. These blocks are a multiple of 256

bytes.

indexed access control block (IACB/ICB). The control block

that relates an application program to an indexedfile.

indexed access method. An access methodfor direct or

sequential processing of fixed-length records by use of a

record's key.

CO-226 SC34-0443

indexed data set. Synonymfor indexedfile.

indexed file. A file specifically created, formatted and used by

the Indexed Access Method. An indexedfile is sometimes called

an indexed data set.

index entry. In an indexed file, a key-pointer pair, where the

pointer is used to locate a lower-level index block or a data block.

index register (#1, #2). Two words defined in EDL and
contained in the task control block for each task. They are used

to contain data or for address computation.

input buffer. (1) See buffer. (2) In the Multiple Terminal
Manager, an area for terminal input and output.

input output control block (IOCB). A control block containing
information about a terminal such as the symbolic name, size and

shape of screen, the size of the formsin a printer, or an optional

reference to a user provided buffer.

instruction address register (IAR). The pointer that identifies
the machine instruction currently being executed. The Series/1

maintains a hardware IAR to determine the Series/1 assembler

instruction being executed. It is located in the level status block

(LSB).

integer. A positive or negative numberthat has no decimal

point.

interactive. The modein which a program conducts a

continuous dialogue betweenthe user and the system.

internal label. An area on tape usedto record identifying

information (similar to the identifying information placed on an
external label). Internal labels are checked by the system to

ensure that the correct volume is mounted.

interrupt information byte(IIB). In the Multiple Terminal

Manager, a word containing the status of a previous input/output

request to or from a terminal.

invoke. To load and activate a program,utility, procedure, or

subroutine into storage so it can run.

job. A collection of related program execution requests

presented in the form of job control statements, identified to the

jobstream processor by a JOB statement.

job control statement. A statement in a job that specifies

requests for program execution, program parameters, data set

definitions, sequence of execution, and, in general, describes the

environment required to execute the program.

job stream processor. The job processingfacility that reads job

control statements and processes the requests made by these

statements. The Event Driven Executive job stream processoris

$JOBUTIL.

jumper. (1) A wire or pair of wires which are used for the
arbitrary connection between twocircuits or pins in an

attachment card. (2) To connect wire(s) to an attachment card or
to connect twocircuits.

key. In the Indexed Access Method, one or more consecutive

characters usedto identify a record and establish its order with

respect to other records. Seealso keyfield.

key field. A field, located in the same position in each record of

an indexedfile, whose content is used for the key of a record.

level status block (LSB). A Series/1 hardware data area that
contains processorstatus. This area is eleven wordsin length.

library. A set of contiguous records within a volume. It contains

a directory, data sets and/or available space.

line. A string of characters accepted by the system as a singie

input from a terminal; for example, all characters entered before

the carriage return on the teletypewriter or the ENTER key on the

display station is pressed.

link edit. The process of resolving external symbols in one or
more object modules. A link edit is performed with $EDXLINK

whoseoutputis a loadable program.

listener. A controller or active device on a GPIB busthatis
configured to accept information from the bus.

load mode. in the Indexed Access Method, the modein which

records are loaded into base record slots in an indexedfile.

load module. A single module having cross references resolved
and preparedfor loading into storage for execution. The module
is the output of the $UPDATE or $UPDATEHutility.

load point. (1) Address in the partition where a program is
loaded. (2) A reflective marker placed near the beginning of a
tape to indicate where thefirst record is written.

lock. In the Indexed Access Method, a method of indicating that
a record orblockis in use and is not available for another request.

logical screen. A screen defined by margin settings, such as the
TOPM, BOTM, LEFTM and RIGHTM parameters of the

TERMINALor IOCB statement.

LSB. See level status block.

mapped storage. The processor storage that you defined on the

SYSTEM statement during system generation.

member. A term usedto identify a named portion of a

partitioned data set (PDS). Sometimes memberis also used as a
synonym for a data set. See data set.

menu. A formatted screen image containinga list of options.

The user selects an option to invoke a program.

menu-driven. The modeof processing in which input consists of

the responses to prompting from an option menu.

message. !|n datacommunications, the data sent from one

station to anotherin a single transmission. Stations
communication with a series of exchanged messages.

multifile volume. A unit of recording media, such as tapereel or

disk pack, that contains more than onedatafile.

multiple terminal manager. An Event Driven Executive licensed

program that provides support for transaction-oriented

applications on a Series/1. It provides the capability to define

transactions and manage the programsthat support those

transactions. It also manages multiple terminals as needed to

support these transactions.

multivolumefile. A data file that, due to its size, requires more

than one unit of recording media (such astape reel or disk pack)

to contain the entire file.

new high key. A key higher than any other key in an indexed

file.

noniabeledtapes. Tapes that do not contain identifying labels

(as in standard labeled tapes) and contain only files separated by
tapemarks.

null character. A user-defined character used to define the

unprotected fields of a formatted screen.

option selection menu. A full screen display used by the

Session Managerto point to other menus or system functions,

one of which is to be selected by the operator. (See primary
option menu and secondary option menu.)

output buffer. (1) See buffer. (2) In the Multiple Terminal
Manager, an area used for screen output and to pass data to

subsequenttransaction programs.

overlay. The technique of reusing a single storage area allocated

to a program during execution. The storage area can be reused

by loading it with overlay programsthat have been specified in

the PROGRAMstatementof the program orby calling overlay

segments that have been specified in the OVERLAY statement of

$SEDXLINK.

overlay area. A storage area within a program reserved for

overlay programsspecified in the PROGRAM statementor

overlay segments specified in the OVERLAY statementin

SEDXLINK.

overlay program. A program in which certain control sections

can use the samestoragelocation at different times during

execution. An overlay program can execute concurrently as an

asynchronoustask with other programsandis specified in the

EDL PROGRAMstatement in the main program.

overlay segment. A self-contained portion of a program thatis

called and sequentially executes as a synchronous task. The

CO-227Glossary of Terms and Abbreviations

viations

entire program that calls the overlay segment need not be

maintained in storage while the overlay segmentis executing. An
overlay segmentis specified in the OVERLAY statementof

$EDXLINK or $XPSLINK (forinitialization modules).

overlay segment area. A storage area within a program or

supervisor reserved for overlay segments. An overlay segment

area is specified with the OVLAREAstatement of $EDXLINK.

parameterselection menu. A full screen display used by the

Session Managerto indicate the parameters to be passed to a

program.

partition. A contiguous fixed-sized area of storage. Each

partition is a separate address space.

performance volume. A volume whose nameis specified on

the DISK definition statement so that its address is found during

IPL, increasing system performance when a program accesses

the volume.

physical timer. Synonym for timer (hardware).

polling. In data communications, the process by which a

multipoint control station asks a tributary if it can receive

messages.

precision. The number of words in storage needed to contain a

value in an operation.

prefind. To locate the data sets or overlay programs to be used

by a program andto store the necessary information so that the

time required to load the prefound itemsis reduced.

primary file. An indexed file containing the data records and

primary index.

primary file entry. For the Indexed Access Method Version 2,

an entry in the directory describing a primary file.

primary index. The index portion of a primary file. This is used

to access data records whentheprimary keyis specified.

primary key. In an indexedfile, the key used to uniquely identify

a data record.

primary-level index block. in an indexedfile, the lowest level

index block. It contains the relative block numbers (RBNs) and

high keys of several data blocks. See cluster.

primary menu. The program selection screen displayed by the

Multiple Terminal Manager.

primary option menu. Thefirst full screen display provided by

the Session Manager.

primary station. In a Series/1 to Series/1 attachment, the
processor that control communication between the two

computers. Contrast with secondary station.

CO-228 SC34-0443

primary task. Thefirst task executed by the supervisor when a

program is loadedinto storage. It is identified by the PROGRAM
statement.

priority. A combination of hardware interrupt level priority and a

software ranking within a level. Both primary and secondary

tasks will execute asynchronously within the system according to

the priority assigned to them.

process mode. In the Indexed Access Method, the modein

which records can be retrieved, updated, inserted or deleted.

processor status word (PSW). A 16-bit register used to (1)
record error or exception conditions that may prevent further

processing and (2) hold certain flags that aid in error recovery.

program. A disk- or diskette-resident collection of one or more

tasks defined by a PROGRAMstatement; the unit that is loaded

into storage. (See primary task and secondary task.)

program header. The control block found at the beginning of a

program that identifies the primary task, data sets, storage

requirements and other resources required by a program.

program/storage manager. A componentof the Multiple
Terminal Manager that controls the execution and flow of

application programs within a single program area and contains

the support needed to allow multiple operations and sharing of

the program area.

protectedfield. A field in which the operator cannot use the

keyboard to enter, modify, or erase data.

PSW. See processor status word.

QCB. See queue control block.

QD. See queue descriptor.

QE. See queue element.

queuecontrol block (QCB). A data area usedto serialize access
to resources that cannot be shared. Seeserially reusable

resource.

queue descriptor (QD). A control block describing a queuebuilt
by the DEFINEQinstruction.

queue element (QE). An entry in the queue defined by the
queue descriptor.

quiesce. Tobring a device or a system to a halt by rejection of

new requests for work.

quiesce protocol. A method of communication in one direction

at a time. When sending node wantsto receive, it releases the

other node from its quiescedstate.

record. (1) The smallest unit of direct access storage that can be

accessed by an application program on a disk or diskette using

READ and write. Records are 256 bytesin length. (2) In the
Indexed Access Method,the logical unit that is transferred
between $IAM and the user's buffer. The length of the bufferis
defined by the user. (3) In BSCAM communications, the portions
of data transmitted in a message. Record length (and, therefore,
message length) can be variable.

recovery. The use of backup data to recreate data that has been

lost or damaged.

reflective marker. A small adhesive marker attached to the
reverse (nonrecording) surface of a reel of magnetic tape.

Normally, two reflective markers are used on eachreel of tape.

Oneindicates the beginning of the recording area on the tape

(load point), and the other indicates the proximity to the end of
the recording area (EOT) on thereel.

relative block address (RBA). The location of a block of data on

a 4967 disk relative to the start of the device.

relative record number. Aninteger value identifying the
position of a record in a data set relative to the beginning of the
data set. Thefirst record of a data set is record one, the second
is record two,thethird is record three.

relocation dictionary (RLD). The part of an object module or
load module that is used to identify address and name constants

that must be adjusted by the relocating loader.

remote managementutility control block (RCB). A control
block that provides information for the execution of remote

managementutility functions.

reorganize. The process of copying the data in an indexedfile to

anotherindexedfile in a manner that rearranges the data for more

optimum processing and free spacedistribution.

restart. Starting the spool facility w the spool data set contains

jobs from a previous session. The jobs in the spool data set can

be either deleted or printed when the spoolfacility is restarted.

return code. An indicator that reflects the results of the

execution of an instruction or subroutine. The return codeis

usually placed in the task code word(at the beginning of the task
control block).

roll screen. A display screen whichis logically segmented into

an optional history area and a work area. Output directed to the

screen Starts display at the beginning of the work area and

continues on downin a line-by-line sequence. When the work

area getsfull, the operator presses ENTER/SEND andits contents

are shifted into the optional history area and the workareaitself

is erased. Output now starts again at the beginning of the work
area.

SBIOCB. See sensor based |/O control block.

second-level index block. In an indexed data set, the

second-lowestlevel index block. It contains the addresses and

high keys of several primary-level index blocks.

secondary file. See secondary index.

secondary index. For the Indexed Access Method Version 2, an

indexedfile used to access data records by their secondary keys.

Sometimescalled a secondary file.

secondary index entry. For the Indexed Access Method

Version 2, this an an entry in the directory describing a secondary

index.

secondary key. For the Indexed Access MethodVersion 2, the

key used to uniquely identify a data record.

secondary option menu. In the Session Manager, the secondin

a series of predefined procedures grouped togetherin a

hierarchical structure of menus. Secondary option menusprovide

a breakdownof the functions available under the session

manageras specified on the primary option menu.

secondary task. Any task other than the primary task. A

secondary task must be attached by a primary task or another

secondary task.

secondary station. In a Series/1 to Series/1 attachment, the

processorthat is under the control of the primary station.

sector. The smallest addressable unit of storage on a disk or

diskette. A sector on a 4962 or 4963 disk is equivalent to an

Event Driven Executive record. On a 4964 or 4966 diskette, two
sectors are equivalent to an Event Driven Executive record.

selection. In data communications, the process by which the

multipoint control station asks a tributary stationif it is ready to

send messages.

self-defining term. A decimal, integer, or character that the

computertreats as a decimal, integer, or character and not as an

addressor pointer to data in storage.

sensor based 1/0 control block (SBIOCB). A control block
containing information related to sensor |/O operations.

sequential access. The processing of a data set in order of

occurrence of the records in the data set. (1) In the Indexed
Access Method, the processing of records in ascending collating

sequenceorder of the keys. (2) When using READ/writE, the

processing of records in ascendingrelative record number

sequence.

serially reusable resource (SRR). A resource that can only be

accessed by onetask at a time. Serially reusable resources are

usually managedvia (1) a acB and ENQ/DEQ statementsor(2) an
ECB and WAIT/POST statements.

service request. A device generated signal used to inform the
GPIB controller that service is required by the issuing device.

CO-229Glossary of Terms and Abbreviations

Glossary of Terms and

\bbreviations

session manager. A series of predefined procedures grouped

togetheras a hierarchical structure of menus from which you
select the utility functions, program preparationfacilities, and

language processors needed to prepare and execute application

programs. The menus consist of a primary option menuthat

displays functional groupings and secondary option menusthat

display a breakdownof these functional groupings.

shared resource. A resource that can be used by more than one

task at the sametime.

shut down. See data set shut down.

source module/program. A collection of instructions and

statements that constitute the input to a compiler or assembler.

Statements may be created or modified using one of the text

editing facilities.

spool job. The set of print records generated by a program

(including any overlays) while engueuedto a printer designated as

a spool device.

spool session. An invocation and termination of the spool

facility.

spooling. The reading of input data streams and the writing of

Output data streams on storage devices, concurrently with job

execution, in a format convenient for later processing or output

operations.

SRQ. See service request.

stand-alone dump. An image of processorstorage written to a

diskette.

stand-alone dumpdiskette. A diskette supplied by IBM or

created by the $DASDI utility.

standard labels. Fixed length 80-character records on tape

containing specific fields of information (a volumelabel

identifying the tape volume, a headerlabel preceding the data

records, and trailer label following the data records).

static screen. A display screen formatted with predetermined

protected and unprotected areas. Areas defined as operator

promptsor input field names are protected to prevent accidental

overlay by input data. Areas defined as input areas are not

protected and are usually filled in by an operator. The entire

screen is treated as a page of information.

station. In BSCAM communications, a BSC line attached to the

Series/1 and functioning in a point-to-point or multipoint
connection. Also, any other terminal or processor with which the

Series/1 communicates.

subroutine. A sequenceof instructions that may be accessed

from one or more points in a program.

CO-230 SC34-0443

supervisor. The componentof the Event Driven Executive

capable of controlling execution of both system and application

programs.

system configuration. The process of defining devices and

features attached to the Series/1.

SYSGEN. See system generation.

system generation. The processing of defining |/O devices and

selecting software options to create a supervisortailored to the

needs of a specific Series/1 hardware configuration and

application.

system partition. The partition that contains the root segment

of the supervisor(partition number 1, address space OQ).

talker. A controller or active device on a GPIB busthat is

configured to be the source of information (the sender) on the

bus.

tape device data block (TDB). A resident supervisor control
block which describes a tape volume.

tapemark. A control character recorded on tape used to

separatefiles.

task. The basic executable unit of work for the supervisor. Each

task is assigned its own priority and processortimeis allocated

according to this priority. Tasks run independently of each other

and compete for the system resources. Thefirst task of a

program is the primary task. All tasks attached by the primary

task are secondary tasks.

task code word. Thefirst two words(32 bits) of a task’s TCB;
used by the emulator to pass information from system to task

regarding the outcomeof various operations, such as event

completion or arithmetic operations.

task control block (TCB). A control block that contains
information for a task. The information consists of pointers, save

areas, work areas, and indicators required by the supervisorfor

controlling execution of a task.

task supervisor. The portion of the Event Driven Executive that

managesthe dispatching and switching of tasks.

TCB. See task control block.

terminal. A physical device defined to the EDX system using the

TERMINALconfiguration statement. EDX terminals include

directly attached IBM displays, printers and devicesthat

communicate with the Series/1 in an asynchronous manner.

terminal control biock (CCB). A control block that defines the
device characteristics, provides temporary storage, and contains

links to other system control blocks for a particular terminal.

terminal environment block (TEB). A control block that
contains information on a terminal's attributes and the program

manageroperating under the Multiple Terminal Manager. It is
used for processing requests betweenthe terminal servers and

the program manager.

terminal screen manager. The component of the Multiple

Terminal Managerthat controls the presentation of screens and

communications between terminals and transaction programs.

terminal server. A group of programsthat perform ail the

input/output andinterrupt handling functions for terminal devices

under control of the Multiple Terminal Manager.

terminal support. The support provided by EDX to manage and
control terminals. See terminal.

timer. The timer features available with the Series/1 processors.

Specifically, the 7840 Timer Feature card (4955 only) or the native

timer (4952, 4954, and 4956). Only oneorthe other is supported
by the Event Driven Executive.

trace range. A specified numberof instruction addresses within

which the flow of execution can betraced.

transaction oriented applications. Program execution driven by

operator actions, such as responsesto prompts from the system.

Specifically, applications executed under control of the Multiple

Terminal Manager.

transaction program. See transaction-oriented applications.

transaction selection menu. A Multiple Terminal Manager

display screen (menu) offering the user a choice of functions,

such as reading from a datafile, displaying data on a terminal, or

waiting for a response. Based uponthe choice of option, the

application program performs the requested processing

operation.

tributary station. In BSCAM communications, the stations

under the supervision of a control station in a multipoint

connection. They respondto the control station’s polling and

selection.

unmappedstorage. The processorstorage in your processor

that you did not define on the SYSTEM statement during system

generation.

unprotected field. A field in which the operator can use the

keyboard to enter, modify or erase data. Also called

non-protectedfield.

update. (1) To alter the contents of storage or a data set. (2) To
convert object modules, produced as the output of an assembly

or compilation, or the output of the linkage editor, into a form that

can be loadedinto storage for program execution and to update

the directory of the volume on which the loadable program is

stored.

user exit. (1) Assembly languageinstructions included aspart of
an EDL program andinvoked via the USERinstruction. (2) A
point in an IBM-supplied program where a user written routine

can be given control.

variable. An area in storage, referred to by a label, that can

contain any value during program execution.

vary offline. (1) To change the status of a device from online to

offline. When a device is offline, no data set can be accessed on

that device. (2) To place a disk or diskette in a state whereit is

unknownby the system.

vary online. To place a device in a state whereit is available for

use by the system.

vector. An ordered set or string of numbers.

volume. A disk, diskette, or tape subdivision defined using

$SINITDSK or $STAPEUT1.

volume descriptor entry (VDE). A resident supervisor control
block that describes a volume ona disk or diskette.

volumelabel. A label that uniquely identifies a single unit of

storage media.

CO-231Glossary of Terms and Abbreviations

CO-232 SC34-0443

The following index contains entries for this book only. See the Library Guide and Common Index for a Common

Index to all Event Driven Executive books.

Special Characters

$$X21DS data set
description CO-44.1

$BSCTRCE utility
description CO-30

$BSCUT1utility
commands COQ-31
invoking CO-31

$BSCUT2 utility
change hard-copy device CO-40
commands CO-35 |
description CO-34

invoking CQ-35
$CAPGM,channel attach program CO-131
$GPIBUT/1utility

description CO-206

example COQ-214

use in debugging applications CO-213
$HCFUT1 utility CO-125
$RMU

See Remote ManagementUtility (BRMU)
$RMUPA CO-83

A

abort

Series /1-to-Series/1 write CO-180
acquire use of BSC line CO-14

ADAPTERstatement CO-12.1

allocate

trace file data set CO-30

ALLOCATEfunction, $RMU
control character flow CO-59

for program data set CO-58
receive status message CO-57
required fields CO-58
send request CO-57

terminate function CO-57
application programs, BSCAM CO-13

attach

BSC lines CO-8

B

binary synchronous communications (BSC)
communications features CO-9
line connections CO-7
Remote ManagementUtility (SRMU) CO-45
sample programs CO-95
test BSCAM CO-34
trace printing utility, $BSCUT1 CO-31
trace utility, $BSCTRCE CO-30

binary synchronous communications access method (BSCAM)

$BSCTRCE, invoking CO-30

Index CO-233

acquire use of BSCline CO-14

allocate trace file data set CO-30

basic programming functions CO-13
BSCWRITE| instruction CO-17
buffers, use of COQ-15

communicationsindicator panel, installing CO-41
continue write operations CO-20

control block, coding CO-14

control characters

for continue write CO-20

for initial write CO-17

for special writes CO-22

control station CO-8

conversation modeof transmission CO-12.3

data links, use of CO-7

define

BSC line type CO-12

BSC lines to supervisor CO-12

delay

receiving messages CO-25

write operation CO-21

DLE character, use of CO-12.2

EDL instruction set CO-13

end

read operation CQ-25

write operation CO-22

error recovery CO-25

format trace’‘files for output CO-31

hardware

configuration, determining CO-8
requirements CO-8

initial write operations CO-17

interacting with CO-29

line connections, use of CO-7

nontransparent data transmission COQ-12.2

overview CO-5

planning for CO-6
point-to-point connection CO-7

poll/select
address CO-12.1

sequences CO-17

programming for CO-13
read

data stream CO-25

ENQ character CO-25

operation CO-13, CO-23

transparent /nontransparent data CO-34
types, selecting CO-23

READ sample program CO-27

receiving

data CO-23

first message CO-24
subsequent messages CO-24

requesting repeat of message CO-25
responding to poll/select CO-25
sample programs CO-26

sending

data CO-16

tranparent data in blocks CO-12.3
special considerationsfor local operations CO-11

CO-234 SC34-0443

special write operations COQ-21
standard data transmission, uses of CO-12.2

standard mode of transmission CO-12.3

supervisor

module CO-12.2

support, including CO-11
supervisor module CO-12.2

terminology CO-6
test read and write capability CO-35

trace I/O activity CO-30
transmission, modes of CO-12.3

transparent data transmission CO-12.2

types of data transmitted CO-12.2

utilities CO-29
write

continue CQ-20

end operation CO-22

initial CO-17
operation CO-13, CO-16, CO-22

programming sequence COQ-22

types, selecting CO-16

WRITE sample program CO-26

blocking factor

$RMU PASSTHRU data set CO-53
$RMU source data set CO-53
$RMU standard data set CO-52

BSC communications features

communicationsindicator panel, use with CO-11

jumpering for direct-connect operations CO-11

jumpering for multipoint tributary operation CO-10

modem eliminators, use with CO-11

modems, use with CO-11

multifunction attachment CO-10

single-line control, high speed (2075 feature card) CO-9
single-line control, high speed (2080 feature card) CO-9
single-line control, medium speed (2074 feature card) CO-9
4-line adapter CO-10

8-line control CO-10

BSC control characters

use with continue writes CO-20

use with initial writes CO-17

use with special writes CO-22

BSC 1/0 exerciser (SBSCUT2) CO-34
BSC line address default, (GSRMU) CO-51
BSC lines

acquiring use of CO-14
addresses, determining CO-8

attaching and controlling CO-8
defining line type CO-12

defining to supervisor CO-12
in multipoint connection CO-8
in point-to-point connection CO-7
trace |/O activity on CO-30

BSC read types

BSCREAD C CO-24
BSCREAD D CO-25
BSCREAD E CO-25
BSCREAD | CO-24
BSCREAD P CO-25
BSCREAD Q CO-25

BSCREAD R CO-25
BSCREAD U CO-25

BSC single-line control

high speed, 2075 feature card CO-9
high speed, 2080 feature card CO-9
medium speed, 2074 feature card CO-9

BSC trace records, dump CO-31

BSC 4-line adapter CO-10
BSC 8-line control CO-10
BSCAM

See binary synchronous communications access method

(BSCAM)
BSCCLOSEinstruction

use of CO-14

BSCIOCB statement

for X.21 CO-14
using CO-14

BSCLINE statement

address default for $RMU CO-51
MFA= operand CO-12.1

TYPE= operand CO-12

TYPE= operand for X.21 use CO-12

use with $RMU CO-47
BSCOPENinstruction

for X.21 CO-14
use of CO-14

BSCREADinstruction

C-type COQ-24
D-type CO-25

E-type CO-25
I-type CO-24
P-type CO-25

Q-type CO-25
R-type CO-25
U-type CO-25

BSCWRITEinstruction

C-type COQ-20
D-type CO-21

E-type COQ-22

EX-type CO-22

l-type CO-17

N-type COQ-21

Q-type CO-21

U-type CO-21

UX-type CO-21

BTAM/BTAM-ES,channel attach considerations CO-135
buffer :

use in BSCAM CO-15
buffer size default, (GSRMU) CO-52

t

Cc

CA instructions CO-134

call progress signals for X.21 CO-44.8
CH command ($GPIBUT1) CO-206
change

BSC line address default, $RMU CO-51
buffer size default, SRMU CO-52
GPIB partition COQ-207

host system ID, SRMU CO-50
remote system ID, SRMU CO-51
storage size default, $RMU CO-51

channel attach

$CAPGM CO-131
$CHANUT1utility CO-141
assembling application program CO-136
BTAMconsiderations CO-135

change device address CO-142
close port CO-140

code control block for port CO-138

commands COQ-141

device (4993) CO-132
EDLinstruction set CO-134

enable/disable trace CO-142
error handling CO-135
functions supported CO-132

hardware consdierations CO-132

invoking CO-141
issue 1/0 CO-138
link-edit application program CO-136
opening port CO-138

overview CQ-131

perform trace CO-142

plan to use. CO-131

poweron device CO-134

print trace data CO-141, CO-142

programsfor CO-134
receive data from host CO-138

sample programs CO-143

send data to host CO-139

software considerations CO-132

start device CO-137, CO-142

stop device CO-140, CO-142

tailor channel attach program CO-133
terminate utility CO-142

trace Series/11/O0 CO-141
communications applications, writing

for $RMU CO-53
for BSCAM CO-13
for channel attach CO-134

for Host Communication Facility CO-118

for Series/1-to-Series/1 attachment CO-164
communications features, jumpering CO-10
communications indicator panel

for X.21 display/function select switch settings CO-43
functions monitored CO-41

selecting line to monitor CO-41

communicationsutilities

$BSCTRCE CO-30
$BSCUT1 CO-31
$BSCUT2 CO-34
$CHANUT1 CO-141
$GPIBUT1 CO-206
$HCFUT1 CO-125
$S1S1UT1 CO-180

connect host and remote systems, $RMU CO-47
connection record for X.21 CO-44.1

continue write operations, BSCAM CQO-20

control block, use with BSCAM COQ-14

Index CO-235

Index

control characters, BSC CO-17
control data transfers, SRMU

echo host data CO-70

perform echo test CO-70

receive data from host CO-64
receive data from remote system CO-68

send data to host CO-68
send data to remote system CO-64

control data transfers, Host Communication Facility

receive data from host CO-120

send data to host CO-119

control program execution, $RMU
execute program CO-72

terminate $RMU CO-76
controlling BSC lines CO-8
conversation response mode, BSCAM COQ-12.3

count message, Remote ManagementUtility CO-56

CP command ($GPIBUT1) CO-207

D

data links, selecting CO-7

datalinks, types of CO-7

data message, Remote ManagementUtility CO-56

data types transmitted by BSCAM CO-12.2

data-link=escape (DLE) character CO-12.2

DD command ($GPIBUT1) CO-207
define

BSC line to supervisor CO-12

BSCline types CO-12

end character (GPIB) CO-206

GPIB device CO-207

remote system

defaults CO-50

requirements CO-48

responses to host CO-54

delay receiving messages with BSCAM CO-25
delay transmission write operation CO-21

delete

data set (SRMU) CO-60
DELETEfunction, $RMU

control character flow CO-61

receive status message CO-60
required fields CO-61
send request CO-60

terminate function CO-60

determine

BSC hardware configuration CO-8
device error codes for X.21 CO-44.7

direct-connect operations, BSCAM CO-11

DLE character, use of CO-12.2

dump

storage partition (BRMU) CO-62
DUMP function, $RMU

BSC trace records CO-31

control character flow CO-63

receive status message CO-62
required fields CO-62

send request CO-62

CO-236 SC34-0443

terminate function CO-62

E

echo test, (BRMU) CO-70
EN command ($GPIBUT1) CO-207

end

BSCAMwrite operation CO-22

read operation with BSCAM CO-25

error handling

$RMU CO-56

BSCAMerror recovery CO-25

error log for x.21 CO-44.4
EXEC function, $RMU

allocate free space CO-73

control character flow CO-75

data set passing CO-73

parameter passing CO-73

required fields CO-74

send request CO-72

specify partition CO-73

execute

program

with $RMU CO-72

exerciser, BSC line (SBSCUT2) CO-34

F

FE command (SHCFUT1) CO-127

format

BSCtrace files CO-31

G

General Purpose Interface Bus

configuration CO-187, CO-192
cycle steal status CO-220

data transfers CO-194

device addresses CO-186

device group operation CO-197

device modes CO-186
error handling CO-219

initialization CO-187, CO-191

interrupt handling CO-188
interrupt status byte CO-219

loading programs CO-193
overview CO-185

parallel polling CO-196

planning to use COQ-185

sample program CO-202

serial polling CO-195

service requests (SRQ) CO-188

system generation CO-185
terminal |/O considerations CO-190
translated data (KLATE=NO) CO-190
universal unlisten CO-192

user buffer CO-190

GP command ($GPIBUT1) CO-207

GPIB control CO-207

GPRESUME command ($GPIBUT1) CO-213

H

hardware

requirements

$RMU remote system CO-48
for BSCAM CO-8

Host CommunicationsFacility

$HCFUT1 utility CO-125
control data transfers CO-119

data set characteristics CO-114

data transfer rate CO-118

host data sets CO-114

host storage CO-118
installation requirements CO-114

obtain time and date CO-121

open host data set CO-116

overview CO-113

perform status functions CO-121

plan for CO-114
programming for CO-118
submit job to host CO-120

system status data set CO-116

TP instructions CO-118

host data set, HCF

characteristics CO-114

naming conventions CO-114
open CO-116

record sizes CO-115

variable-length records CO-115
host programming for $RMU CO-53
host system ID, change (SRMU) CO-50
host system requirements, $RMU CO-49

I

|/O, exerciser (SBSCUT2) CO-34
IDCHECK function, $RMU

control character flow CO-81

required fields CO-80

send request CO-80

initial write operations, BSCAM CO-17

initialize

GPIB CO-187
install communications indicator panel CO-41

installation requirements, HCF CO-114

internal clocking, jumpering for CO-11

J

jumper

for direct-connect operations, BSCAM CO-11

for multipoint tributary stations CO-10

L

LDCB command ($GPIBUT1) CO-208
leased lines CO-7

limited conversational transmission mode, use by

BSCAM CO-12.3
list

device control block (GPIB) CO-208
local operations, BSCAM COQ-11

M

managedata sets, $RMU
allocate COQ-57

delete CO-60

dumpstorage to data set CO-62
messages

$RMU

count CO-56

data CO-56

header CO-54

status CO-54

MFA= operand, BSCLINE statement CO-12.1
mode of transmission, $RMU CO-48
modem eliminators CO-11

modems CO-11

monitor

BSC lines CO-41

multifunction attachment

use in BSC CO-10

multipoint

connections CO-8

control station CO-8

special considerations CO-10
tributary station CO-8

N

no data record, PASSTHRU function of $RMU CO-94
nonswitched lines CO-7

nontransparent (standard) data CO-12.2

O

output BSCtrace files CO-31

Index CO-237

PASSTHRUfunction, $RMU
abrupt termination CO-84

SRMUPA program CO-82
attention interrupt, use of CO-82

conduct a session CO-88

control character flow CO-86

deadlock CO-82

indefinite waits CO-83
no data record CO-94
overview CQ-82

program end record CO-94

programming considerations CO-82
programsnot to be run under CO-82

programsthat run under CO-82
record blocking CO-94

record types CO-88, CO-90

request for data record CO-93

required fields CO-85

sample program CO-103

send request CO-85

system generation for CO-82
text /PF key record CO-90
timeouts CO-84

virtual terminal support CO-82

with $DEBUG CO-111
perform status functions, Host Communication Facility

delete record from system status data set COQ-121

retrieve record from system status data set CO-121

write to system status data set CO-121

PGPIB command ($GPIBUT1) CO-212
plan for $RMU operations CO-47
point-to-point station CO-7

poll/select address CO-12.1
poll/select sequences, sending CO-17
post

GPIB operation complete CO-212

print

trace file on printer/terminal CO-32
program end record, PASSTHRUfunction of $RMU CO-94
Program Function key record, PASSTHRUfunction of

$RMU CO-90
programming sequence, BSCAMwrite operations CO-22

RK

RE command

$GPIBUT1 CO-210
$HCFUT1 CO-127

read

data

data stream with BSCAM CO-25

ENQ character with BSCAM COQ-25

error handling CO-25
records from host (SHCFUT1) CO-126
using $GPIBUT1 CO-210
with BSCAM CO-24, CQ-25

READDATA command ($HCFUT1) CO-125

CO-238 SC34-0443

READOBJ command ($HCFUT1) COQ-126

READ80 command ($HCFUT1) CO-126
receive

first message with BSCAM CO-24

subsequent message with BSCAM CO-24

RECEIVEfunction, $RMU
control character flow CO-66

overview COQ-64

receive count message CO-65
receive status message CO-65

record length overrun COQ-65

record padding CO-65
required fields CO-66

sample program COQ-97

send empty data set CO-65

send request CO-64

specify data set type CO-65

specify record blocking CO-65

specify starting record CO-66

terminate function CO-65

records

sizes, host data sets (HCF) COQ-115

Remote ManagementUtility (SRMU)
allocate data sets CO-57

blocking factor

PASSTHRU data set CO-53

source data set CO-53

standard data set CO-52

BSC line address default CO-51

BSC line connections CO-47

BSCWRITECXinstruction CO-53

BSCWRITEIX instruction CO-53

buffer size default CO-52

conduct PASSTHRUsession CO-88

control data transfers CO-64

control program execution CO-72
count message CO-56
data message CO-56
data transfers CO-64

delete data sets CO-60

dumpstorage to data set CO-62
echo host data CO-70

EDL BSCinstructions, use of CO-53

error handling CO-56
establish PASSTHRU session COQ-85

execute program CO-72
hardware for remote system CO-48

host programming for CO-53
host system ID COQ-50

host system requirements CO-49

invoke on remote system COQ-46

manage data sets CO-57
mode of transmission CO-48

overview COQO-45

PASSTHRUfunction CO-82

perform echo test CO-70

plan for operations CO-47

receive data from host CO-64

receive data from remote system CO-68

remote system ID CQ-51

requests, fields required CO-57

sample programs CO-95

send data

to host CO-68

to remote system CO-64

sending messages to host CO-54
software for remote system CO-49

status error conditions CO-54

status message CO-54
storage considerations CO-48
storage size default CO-51
terminate $RMU CO-76
verify identities between systems CO-80
virtual terminals, use of CO-49

remote system
$RMU defaults CO-50
$RMU requirements CO-48
ID, change (SRMU) CO-51

request

for data record, PASSTHRUfunction of $RMU CO-93
repeat of message with BSCAM CO-25
to $RMU,required fields CO-57

reset
GPIB adapter CO-210

respondto poll/select with BSCAM CO-25
RS command ($GPIBUT1) CO-210

eS
a

sample programs

$RMU multifunction CO-95
$RMU PASSTHRUfunction CO-103
$RMU RECEIVE function CO-97
$RMU SEND function CO-101
for BSCAM CO-26
for channel attach CO-143

for Host Communication Facility CO-122

for Series/1-to-Series/1 attachment CO-169
SE command ($HCFUT1) CO-127
send

data in standard mode with BSCAM CO-12.3

first message with BSCAM CO-17
poll/select sequences CO-17
subsequent messages with BSCAM CO-20
transparent data in blocks CO-12.3

SEND function, $RMU
send request CO-68

communications flow CO-69

control character flow CO-69

overview COQ-68

receive status message CO-68
required fields CO-69

sample program CO-101
specify data set type CO-68

specify record biocking CO-68

specify starting record CO-68

terminate function CO-68

Series/1-to-Series/1 attachment
$S1S1UT1 utility CO-180

abort write operation CO-180

application programs CO-164
data transfers CO-162
define attached processor CO-181

echo test CO-181
enqueue other processor CO-165

error recovery CO-168
identify enqueued processor CO-166
IPL function CO-168

IPL other processor CO-182

obtain status of operation CO-183

overview CO-161

perform control functions CO-166

posting an event control block (ECB) CO-162
processorrelationships CO-162
program synchronization CO-167
programming considerations CO-167
read data from other processor CO-182

receive data CO-166
reconfiguring CO-167
reset device CO-183
sample programs CO-169

send data CO-166

using direct |/O CO-167
write data to other processor CO-184

service request (SRQ) CO-188

SHUTDOWNfunction, $RMU
allocate free space CO-77

control character flow CO-79

data set passing CO-77

parameter passing CO-77

required fields CO-78
run another program CO-76
send request CO-76

specify partition CO-77

signal special conditions with BSCAM CO-21
software requirements, $RMU remote system CO-49
special write operations, BSCAM CO-21

specify

buffers for use with BSCAM CO-15

ST command ($GPIBUT1) CO-211
standard data, transmission by BSCAM CO-12.2
standard modeof transmission, BSCAM COQ-12.3

status commands ($HCFUT1) CO-127
status data set, Host Communications Facility CO-116

status message, Remote ManagementUtility CO-54
STIMERinstruction CO-83

in Series/1-to-Series/1 error recovery CO-169
with PASSTHRU function COQ-83

storage
considerations, $RMU CO-48
size default, (GBRMU) CO-51

SU command ($GPIBUT1) CO-211
SU command ($HCFUT1) CO-127
submit

job to host (GSHCFUT1) CO-127
job to host, Host Communication Facility CO-120

suspend

$GPIBUT1 CO-211
switched lines CO-7

Index CO-239

index

system generation

for BSCAM CO-11
for BSCX21 CO-11
for channel attach CO-132

for GPIB CO-185
for Host Communications Facility CO-114

for host system, $RMU CO-49
for remote system, $RMU CO-49
for X.21 support CO-44

system status data set, HCF

data entry CO-116

index entry CO-116

key entry CO-116

organization CO-116

T

terminate Remote ManagementUtility CO-76

terminating GPIB operation CO-206
terminology, BSCAM CO-6
test

BSC definitions CO-34

text record, PASSTHRUfunction of $RMU CO-90
TP instruction

functions CO-118

trace
BSC activities CO-30

1/0 on BSC line CO-30
utility for BSC CO-30

trace printing utility for BSC CO-31

transfer

data set from host (GSHCFUT1) CO-125
transfer rates for data, Host Communications Facility CO-118

transmission modes, BSCAM CO-12.3

transmit

binary data with BSCAM CO-12.2
text data with BSCAM CO-12.2

transparent data transmission, use by BSCAM CO-12.2

tributary station addresses CO-12.1

TYPE= operand, BSCLINE statement CO-12

Vv

verify

BSC communications CO-34

verify identities of systems, $RMU CO-80
virtual terminals

use with $RMU CO-49

CO-240 SC34-0443

Ww

WR command ($GPIBUT1) CO-212

WR command ($HCFUT1) CO-127
WRAPfunction, $RMU

control character flow CO-71

overview CQ-70

required fields CO-71

send request CO-70

write

data to the GPIB adapter CO-212

D4

X.21 circuit switched network

$$X21DS data set CO-44, CO-44.1
attaching and jumpering the 2080 card CO-44
BSCIOCB statement CO-44.3

BSCLINE TYPE= parameter CO-12.1

BSCOPENstatement CO-44.3

call progress signals CO-44.8

coding example for BSCLINE TYPE= parameter CO-44.1

connection record data set

building a connection record CO-44.2
delay value field CO-44.2

example records CO-44.3

network information field CO-44.2

record namefield CO-44.2

retry count field CO-44.2

determining the connection type you need CO-44.1

device error codes CO-44.7

network requirements CO-44

system generation CO-44
X.21 error logging CO-44.4
X21RECYY default record CO-44.1

X21RN operand CO-44.3

2080 high speed feature card description CO-9

X21RECYY default record for X.21 CO-44.1

X21RN operand CO-44.3

2

2074 feature card CO-9
2075 feature card CO-9
2080 synchronous communications feature card

attaching and jumpering CO-44

description CO-9

4

4993 channel attach device CO-132

255252 Technical Newsletter This Newsletter No. SN34-0878
Date 23 December 1983

Base Publication No. SC34-0443-0

File No. S1-30

Previous Newsletters None

IBM Series/1

Event Driven Executive

Communications Guide

Program Numbers: 5719-XS4, 5719-XX5, 5719-LM5,

5719-CX1, and 5799-PGH

© IBM Corp. 1983

This Technical Newsletter, a part of Version 4 Modification Level 1 of the Event Driven Executive,

provides replacement pages for the subject publication. These replacement pages remain in effect

for subsequent levels unless specifically altered. Pages to be inserted and/or removed are:

ii.1, ii.2 (added) CO-13 through CO-16 CO-44.1 through CO-44.8 (added)
iii through x CO-29, CO-30 CO-47, CO-48
CO-5 through CO-12 CO-43, CO-44 CO-233 through CO-240
CO-12.1 through CO-12.4 (added)

Technical changes to the text or to illustrations are indicated by a vertical line to the left of the

change. |

Summary of Amendments

This Technical Newsletter contains the following additions or modifications to the text:

e Chapter 1. Binary Synchronous Communications Access Method (BSCAM)has been updated

throughoutto reflect the X.21 switched support changes.

e “Using X.21 Switched Network Support” has been added to Chapter 1.

Note: Please file this cover letter at the back of the manual to provide a record of changes.

IBM Corporation, Information Development, Department 28B, P.O. Box 1328, Boca Raton, Florida 33432

© IBM Corp. 1983 Printed in U.S.A,

St
ap

le
s
c
a
n
c
a
u
s
e
p
r
o
b
l
e
m
s
w
i
t
h
a
u
t
o
m
a
t
e
d

ma
il

so
rt

in
g
e
q
u
i
p
m
e
n
t
.

N
o
t
e
:

Pl
ea

se
us

e
pr
es
su
re

se
ns
it
iv
e
or

o
t
h
e
r
g
u
m
m
e
d
t
a
p
e
t
o

se
al

th
is

f
o
r
m
.

IBM Series/1 Event Driven. Executive READER’S
Communications Guide COMMENT

SC34-0443-0 FORM

This manualis part of a library that serves as a reference source for systems analysts, programmers, and

operators of IBM systems. You mayuse this form to communicate your comments about this publication,

its organization, or subject matter, with the understanding that IBM mayuseor distribute whatever

information you supply in any wayit believes appropriate without incurring any obligation to you.

Your commentswill be sent to the author’s department for whatever review and action, if any, are deemed

appropriate.

Note: Copies ofIBM publications are not stocked at the location to which this form is addressed.

Please direct any requests for copies ofpublications, or for assistance in using your IBMsystem, to

vour IBMrepresentative or to the IBMbranchoffice serving vourlocality.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM

office or representative will be happy to forward your comments or you may mail directly to the address

in the Edition Notice on the back ofthe title page.)

SC34-0443-0

Printed in U.S.A.

Reader’s Comment Form

Fold and tape Please Do Not Staple

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK,N.Y.
POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation

Information Development, Department 27T

P.O. Box 1328

Boca Raton, Florida 33432

Fold and tape Please Do Not Staple

Fold and tape

NO POSTAGE

NECESSARY

IF MAILED

IN THE

UNITED STATES

Fold and tape
—
e
e
e
S
I
]

H
U
O
I
YY

P
L
O
Y

1
0
1
N
}
—
—
e
o
—

S
e
r
i
e
s
/
1

iis =

= Binder Labels
©

4s Tear this page along the perforations

o) to separate the twolabels.
ce W .
a)

aenO Insert the labels into the clear plastic
= 5 sleeves.

a ?

”
¢

© =

9 .
=

3 SsEg We
Eo |]
Oo 3 SY UL
OO

L J

To stand the easel binder up, openit
f 7) and fold it as shown.

NEN
| Mm

E
v
e
n
t
D
r
i
v
e
n
E
x
e
c
u
t
i
v
e

L
a
n
g
u
a
g
e

R
e
f
e
r
e
n
c
e

C
o
m
m
u
n
i
c
a
t
i
o
n
s
G
u
i
d
e

 S NNS
C
3
4
-
0
4
4
3
-
0

|
V
e
r
s
i
o
n
4
.
0

Communications Guide

Event Driven Executive ©

S
e
r
i
e
s
/
1

International Business Machines Corporation

$C34-0443-0

Program Numbers: 5719-XS4, 5719-XX5,

5719-LM5, 5719-CX1, and 5799-PGH

File No.: S1-30

Printed in U.S.A.

