





MICROKIT HSSEMBLER

B

ok

*

*

*

ES

*

#
geez R
Beal BZCH
Beaad C5CH

*
aeaz LLAMP
aeal RLAMP
aaieg RHEF

#

*

*
@4FF RMTF
pdEg EMRESTL

&
B4p@ FMES
Bdia RAMINT

*

*
Beez EXME
Be@z EXJA

*
aeel LDMS

*
Beel LDJA

*
aue4 DFMS
B84 DFJA

*
BeBo EDMS

*
BBes RNMS
Buasg RNJAH
6e06 ENNC

*
BoOE® SYMS

*
Be20 S56JA
poad S7JA
Bgae SWLTY

*

#
Beeo
boad 31FE@4 MONMP

FAGE

-- YER 2.2
ITT VIDEQ- UND LEHREYSTEME
ZEL ARG, FFURZHEIN

ITT MP-LEHRSYSTOM
BETRIEBSPROGRAMM . "MON MF
FESTISTENT IN MASKENREOM TYF
AM 2288 EXFBL (4 K X 8 BIT?
ODER THTEL €388 EXPE1

FRAKTEW: UL, L 1@ 76

NAMENS-TABELLE:

KOND TANTEN- UND
: #H-5CHALTER

B

BEGt 1 *B-CCHRLTER

Eau 4 *(~SCHALTER
=FUNKTIONSSCHALTER

Equy 2 #LINKE LFD" 5

EGU 1 *RECHTE LED’S

Ealh X718 *BIT 3 UND 4 ALS
FO-ITTONSKENNUNG
DER SCHALTER "RUN"
UND "HLT AT BR"

EGL K @4FF *HOECHSTE RAM-ADER

EGL ¥ 8403 *SPRUNGZIEL IM RANM
BET RZT 1-BEFEHL

EGU = f488° *UNTERSTE RAM-ADR

EGl ¥ adimr *SPRUNGZIEL IM RAM
EEI R5T 7-BEFEKL
ODER BET INTERUPT

Equ = #BIT 1 FUER EXAMIN

Eal 2 *BIT 1=1. WENN
EXAMIN

EGU 1 *BIT @ FUER LOAD-
ADR-SCHALTER

EQU 1 *BIT @=1, WENN
LOAD-ADR

Ecl 4 «BIT 2 FUER DEPOS

Erd 4 *BIT 2=1., MENN
DEPOSIT

Bl 6 #*BIT 1 UND 2 FUER
EXAM OD. DEFOS

EaUu 8§ *BIT 3 FUER RUN

EGU 8 *BIT 3=1, WENN RUN

EQl @ «BIT 3=8., WENN
NICHT RUN

EQU ¥ Ea’ #BITS FUER SYSTEM
SCHALTER

EGU X7 2@’ #BITS, MENN SYS5T. 6

EGv @ *BITS, WENN 5Y5T.7

EQU  ® @544 *STARTADR FUER
SYSTEW 7 (ERWEI-
TERUNG

ORG X 0BA6° *SYSTEMSTARTADR

LX¥I  SP.RMTP-1 #«STRACK-POINTER

[



INITIALISTEREN
*FU. SCH. EINLESEHN
*SPRUNG ZUM HAUPT
TEIL. UM DIE NACH
FOLGENDEN STHRT-
ADRESSEN FUER DIE
RST-BEFEHLE FREI
ZU BEKOMMEN.
*NEUES ZIEL FUER
RST 1-BEFEHL

*STARTADR FUER
"RUN" LROEN

*FUER “RUN" NACH
RUNSUB RUF STRCK
*EINSPRUNG IN MON
*MIT RST 2 FUER
*"RUN" MIT "HLT

AT BF". GESANT-
STATUS FUER DIS-
FLAY AUF DEN STHCK
FPUSH H FOLGT NOCH?
*MASKE FUER "RUN
HLT AT BP" LADEN
(FLANKENERKENNUNG?
*ZUR FORTSETZUNG

DIE "MASKE" FEST-

*GELEGTEN BITS DES INH. DES B-REG. MIT
AHL "YERGL" UEBEREINSTIMMcN

*WENN JA. ERFOLGT EIN SPRUNG ZU “SFRADR"
NEIN, GEHT ES IM PROGR. WEITER

R5T 3., SRCKJP
DC  MASKE
DC  VERGL
DC  B{(SPRADR>

*ZUR FORTS.

MICROKIT HASSEMBLER -- VYER 2.2
*
pae3 DBO4 IN CSCH
@®#8s C33Doa JMF  MAIN
*
*
%
*
*
peBg C26E8m4 RRMGO JMP  RENRSTH
*
@aLe oa NOF
@a@Ec zi1be@d 5YSTE LXI  H.RMBS
*
@88F ES FUSH H
#
aaie FS BREAK PUSH PSH
aaii C5 FUSH B
aa1z DS FUSH D
*
*
*
* ‘\
#B13 B61E M¥1 B, RHBF
*
*
a1 C39983 JMP BR:AKZ
* SUBROUTINE "SRCKJP"
«PRUEFT. OB DIE DURCH
«DER 2
*WENN
* AUFRUF MIT:
*
*
*
Bei18 E3 SECKJP XTHL
6819 F5 PUSH PSH
g81A 78 MOoY H.B
@818 A6 FLIJPRT ANA N
aeic 23 INX H
#81D C36368 JHP  CKJFZ
¥ SUBROUTINE "SCKCK41™"
*PRUEFT, OB DIE DURCH

"MASKE" FESTGE-

*LEGTEN BITS DES IHN. DES B-REG. MWIT DER
"WERGL" UEBEREINSTIMMEN.

JA. WERDEN DIE 3 AUF DIESE SR
*FOLGENDEN BYTES BERRBEITET.

*WENN NEIN UEBERSHRUNGEN.

*ZAHL
*WENN

*
*
*
B@28 E3 SCKCK1
8821 FS
p@zz 738

AUFRUF MIT:

XTHL
PUSH PSH
MOY A.B

RST 4, 5CKCK1
DC  MASKE
DC  VERGL

PRGE



PAGE

MICROKIT ASSEMELER -- VER 2.2

BeB23

Ao

BB24 23

86825

BoB28

Be3e
Be31
Bo32
0633
8834
6835
8038

8838
883C
a3D
BB3E
BB3F
Bo4de
Be41
Bo42
8845

350060

E3
F3
78
Ao
23
358040
C3le04

23
CA6866
C35E66

ANA M
INXK H
JMP  CKSK1 *ZUR FORTS

*AUF DER ZIELRDRESSE DES RST 3-BEFEHLS
*BEGINNT EINE FUER DIE SYSTEM-SIMULATION
*BENGETIGTE 5R

S5IM5rR DS 8

* SUBROUTINE “SRCKSK"

*PRUEFT, OB DIE DURCH "MASKE" FESTGE-
*LEGTEN BITS DES INH. DES B-REG. MIT DER
*ZAHL "YERGL" UEBEREINSTIMMEN.

*WENN JA. WERDEN DIE AUF DIESE 5R FOL-
*GENDEN 9 BYTES BEARBEITET.

*WENN NEIN. WERDEN SIE UEBERSPRUNGEN

* AUFRUF MIT: RST 6. 5RCKSK
* DC  MASKE
* DC  VERGL
SRCKSK XTHL

PUSH PSH

MoY¥ HA.B

ANA M

INX H

JHP  CKSK2 *ZUR FORTS.

INTERU JMP RAMINT *NEUES ZIEL FUER
RST 7-BEFEHL. DER
U. A. AUCH DURCH
EINEN HARDWARE-
INERUPT vUN DER
HARDWARE ERZEUGT
WIRD.

* X O X X W

* SUBROUTINE "SFLANK®

*PRUEFT AUF DIE L > H-FLANKE DES MIT
*"MASKE"® FESTGELEGTEM BITS ZWISCHEN DEMN
*ALTEN ZUSTAND (IM D-REG. > UND NEUEM
*ZUSTAND (IM B-REG.).

*WENN L > H-FLANKE, GEHT ES IM PROGRAMM

*WEITER,
*WHENN K E I N E FLANKE, SPRUNG ZU
* "SPRADR "
* AUFRUF MIT: CALL SFLANK
* DC  MASKE
* DC  B{(SPRADR:
SFLANK XTHL
PUSH PSH
MOY AR.D
CMA
ANA B
NFLEND ANA M
INX H
JZ  CNFUuND
JHP  CKJPND
* SUBROUTINE "NFLANK®

*PRUEFT AUF H > L-FLANKE DER MIT "MASKE"



MICROKIT ASSEMBLER -- YER 2.2

8648 E3
BB45 F3
BodA 78
@a4B 2F
B6a4C A2
6640 Cl4008

#a5@ BE
@851 23
@652 CHoG@O
8855 C35Fea

8658 BE
8859 23
B85 CAoRGD
865D 23
Ba3E 23
BaSF 23
BBcE F1
BB61 E3
Ba6z C3

8863 BE
Ba6d4 23
Bo65 C25E00
BB68 YE
Be63 23
BB6A 66
BB6B 6F
e66C F1
BBeD E3
BBcE C9

B@oF E3
@BB78 FS

#FESTGELEGTEN BITS ZWISCHEN DEM ALTEN
*ZUSTAND (IM D-REG. ) UND NEUEM ZUSTAND
*{IM B-REG. )
*WENN H > L-FLAWNKE, GEHT ES IM PROGRAMM
*WEITER.
*WENN K E I N E FLANKE, SPRUNG ZUR
* "SPRADR ™.
* AUFRUF MIT: CALL NFLANK
* DC  MASKE
* DC  BC(SPRADR
NFLANK XTHL

FUSH PSH

MOiY HA.B

CMA

ANA D

JMP NFLEND

* FORTS. DER SR’S
CK5K1 CHMP H

INX H

JZ CKSEND

JHP  CKSCON

CKSKZ2 CMP M

IN¥ H

JZ  CKSEND

INX H
CKIJPND INX H
CKS5CON INX H
CKSEND POP PSH

XTHL

RET

CKJPZ CHMP M
INX H

JNZ CKJPND

CNFUND MOY AR
INK H
H

L

P

MoV
Mav
CNEND POP
XTHL
RET

* SUBROUTINE "RUNSUB"

#*PRUEFT DIE STELLUNG DER FUNKTIONS-
*SCHALTER. ES ERFOLGT EINE YERZWEIGUNG
*ZU "EXAM" ODER ZU "DEPOS"™ WENN DIESE
*SCHALTER BETRETIGT WURDEN, ODER Ziuwr
*STARTADR "RUN", WENN RUN BETHETIGT.
*0DER ZURUECK IN DEN MONITOR ZU "DISLOP"

J
M
s M
+A
SH

* AUFRUF MIT: CALL RUNSUB
* DC  BCEXAM)
* DC  BC(DEPOS)
* DC  BC(DISLOP)
RUN5SUB XTHL

PUSH P5SH

FAGE



MICROKIT HASSEMBLER -- VER 2.2

Ba7e
aar4
aa7s
Bave
a7 g
aevs
Ba’h
e6avzh
a@vE
BavF
Bag1
aag2
BB83
Bag4
Bagdsd
@885
Bags
B8B83
Ba8A
888k
688D
Besa
68891
6833

8836
6897
6833
6833
6e89A

863D
B03E

Ba3F

6eB8s
86B3
806BH
86BB
688D

CDo6BB
8z

Bz
6gaa
23

23
CDh56es
a4

a4
630@4d
23

23

DF

@ag

aa
6300
DF

18

6a
SEaa
CD3Boo
@z
6800
C35E@a

E3
F5
78
B2
C3iboo

51"
47

DF
Ea
28
oCoa

CALL FLHNKJF

DC  EXMS

OC EXJA

DC  BCCNFUND?
INX H

{NX H

CALL FLNKJP

0C DPMS

DC DPJA

DC  B{(CNFUND>
INX H

INK H

RST 3, 5RCKJP
DC  RNM5

DC FENNO

bC B{CNFUND)
RST 3. 5RCKJP
DC  RHBF

DC ENJA

DC  B(CKJPNDD
CALL SFLANK

DC  ENM5S

DC  BC(CNFUND?
JHP  CKJFND

* SUBROUTINE °"FLNKJP"
*PRUEFT AUF FLANKE DER DURCH "MASKE"
*FESTGELEGTEN BITS ZWISCHEN DEM HLTEN
*ZUSTAND (IM D-REG. > UND DEM NEUEM (IN
*B-REG. ).
*WENN FLANKE. SPRUNG ZU "SPRADR".
*50NST WARTET DIE SR AUF DIE FLANKE.
FLNKJF XTHL

PUSH P5SH

MOY A.B

OrRA b

JHF  FLJPRT

*ALTER ZUSTAND DES
*B-REG. NACH D
UM AUF FLANKEN
PRUEFEN ZU KOENNEN

MAIN  MOY D.B
MovY B.H

*® ¥

HIER WERDEN DIE SYSTEME 1 BIS &
ENTSPRECHEND WIE FOLGT DIE 5¥5-
TEME & UND 7 VON DEM SYSTem-
SCHALTER ABGEFRAGT. ES ERFOLGT
EINE SPRUNGYERZWEIGUNG ZUM ENT-
SPRECHENDEM SIMULATIONSPROGRAMM.
SY4705 DS 25

* ¥ XK X *

*

SY6 R5T 3, SRCKJFP
DC  5¥YMS
DC  56JA
DC  B(SYSTE)
SY? RST 3, SRCKJP

FAGE

3



PAGE
MICROKIT HSSEMBLER -- VER 2.2

BOBE EB DC  SYMS
B@BF 4o DC S7JA
68Ce oees DC  B(SYSTY)
* SONST GEHT DAS PROGRAMM WEITER
* ZU SYSTEM 6.
* NACHFOLGENDER SPEICHERRAUM IST
* MIT DEN SIMULATIONSROUTINEN DER
* SYSTEME @& BIS 5 BELEGT.
Gac2 SIMPR DS 727
#8399 ES BREAKZ FUSH H *FORTS. DER RET-
* TUNG DE5 STATUS
B393R 24100066 LXI H.@ *CLERR HL
639D 39 DAD SF *HL MIT SP LADEN
B39E 22FE84 SHLD RMTF-1 #SP IN RAMTOP-1
* ABSPEICHERN
8381 DBEBZ  DISLOP IN  ASCH *STACK-OFFSET
* EINLESEN
B3A3 5D Mo¥Y E.L *EINGANGS-ADR
# RETTEN
8304 24FE04 L¥I H,RMTP-1 *HL MIT 5P LRDEN
B3A7 86 ADD M *SF ZUM STACK-
* OFFSET ADIEREN.
* =ECHTE ADRESSE
B3AE oF Moy L.H *DIESE NACH L ALS
* LOW-ADR
B83A9 7E Moy A, M *INH. DIESER ADR
* (=REGISTER RUF
* STACKY LADEN
#3AA D362 OUT LLAMP *UND ANZEIGEN
83AC DBei IN  BSCH *GEWAEHLTE LOW-ADR
* EINLESEN
B3AE 6F Moy L.A *LOW-ADR NACH L
B83AF 7E Moy A, M *INH. DER RAM-ADR
* LADEN
63B6 D361 OUT RLAMP *UND ANZEIGEN
B83B2 6B Moy L.E «GERETTETE EIN-
* GANGS-ADR ZURUECK
83B3 DBB4  BRKLOP IN  CSCH *FUNKTIONSSCH.
* EINLESEN
B3B5 56 Moy D.B *ALTEN INHALT DER
* FU.SCH. NACH D
B83B6 47 MOY B.H *NEUEN INH. DER
* FU. SCH. NRCH B
* ZUR ERKENNUNG VON
* AENDERUNGEN
B3B7 DB@2 IN  ASCH *ASCH FUER L-ADR
* ODER DRTEN LESEN
83BS DF RST 3.5RCKJFP *ABFRAGE OB "LOAD
B83BA 81 DC  LDMS *HDRESS "7
83BB 01 DC LDJA *WENN JH.
83BC CC@3 DC  B(LOARDAD> *DANN ZU LOADAD
B83BE CD&FoE CALL RUNSUB *HBFRAGE OB
83C1 D763 DC  B(EXAMIN)> *EXAMIN. JA 22>
83C3 DoB3 DC  B(DEPOS> «DEP0S. JA 22>
83C5 Aie3 DC  BC(DISLOP)> *NICHT-RUN, JR >>>

83C7 E1L CONTIN POF H *WENN "RUN". DANN



MICROKIT ASSEMBLER -- VER 2.2

83C8
83Cs
B3CH
B3CB

B83D7
83D8
83DA
83DB
830D

B83E0
B3E1

B3E3

B3E4

B3E7

8400

C3p7as

CDh3Bo@o
84
D783

(&4

7E

D36l
7D
D382
Ch4gon
06
B363

2C

C3B3@3

LOADAD
*

*
*
DEPOS
*

*
*

EXAMIN
*

*

*

MULTS

* ok ok

POP D
POF B
POP  PSH
RET

MoY L.A

JHMP EXAMIN
CALL SFLANK

DC  DPMS

DC  BIEXAMIND
MOoY M. A

MOvY A, M

OUT RLAMP

MoY A.L

OUT  LLAMF
CALL NFLANK

DC  EDMS

DC  B(BRKLOP?

INR L

JMP  BRKLOP

*GESAMTSTATUS ZU-
*RUECK UND RUECK-
*KEHR ZUM AUFRU-
*FENDEN ANWENDER-
PROGRAMM (R5T 2 ')
*ASCH (=L-ADR)
NACH L

*ZUR ANZEIGE VON
L-ADR UND DEREN
INHALTS
*H>L-FLANKE YON
*DEPOS-5CH SUCHEN
*WENN KEINE FLANKE
DANN ZU EXAMIN
*INH. ASCH {(=DATA>
IN GEWAEHLTER ADR
ABESPEICHERN

*INH. YON GEWAEHL
TER ADR HOLEN
*INH. ANZEIGEN
*L-ADR HOLEN
*L-ADR ANZEIGEN
*H>L-FLANKE VON
*EXAM. 0D. DEPOS
*SUCHEN, WENN
KEINE FLANKE. DANN
ZUR BRKLOP ZURUECK
*L  AUF NAECHSTE
ADRESSE (AUTOIN-
CREMENT)

*ZURUECK ZUR AB-
FRAGE WEITERER
FUNKTIONEN

IM FOLGENDEM SPEICHERRAUM LIEGT
*DIE MULTIPLIKATIONS-SUBROUTINE DES
#SYSTEMS 5. DIESE WIRD VOM SYSTEM 5

*IN DIE UNTEREN RAM-ADRESSEN KOPIERT UND
*¥YOM SYSTEM 5 WIE EIN ROM BENUTZT. D.H.
*S1E IST DORT VOM ANWENDER NICHT VER-
*AENDERBAR ODER ZERSTOUEREAR

DS 25
NO ERRORS
END MONMP

D. ULRICH PR/KTEMW

PAGE



MICROKIT RSSEMBLER -- VER 2.2

Bold

B4FF

Beol
a8l
aaio
Ba1@
aa4e
Ba4@
BE6F
@83k
a6aaq
“wads
@aee

goaes
Be18
Boig

¥ Kk

C T T
I

LI u N

[Py ]
«
x

F O D R I % 00D ¥
~
X
puc: 3
Tl

LAMF
RLAMF
USROM
*
USCODE

*
EMTF
*

*
LDMS
*

LD JA
*
SHMS
SHJA
*
C5M5
CSJA
RUNSUE
SFLANK
DFMS
NFLANK
EDMS

®
FGHS
*
UPMS
*

UrJh

PRGE

ITT WIDECO- UND LEHRSYSTEME
SEL AG. PFORZHEIM

ITT MP-LEHREYSTEM. EMTENSION-BOH
BETRIEBSFROGRAMM: “MON 7"

RESISTERT IN MASKENROW TYF
AM 5214 EXP@Z (512 X & BITY

RPAETEM: UL:47. 4. 78

KONSTANTEN- UND NAMENS-TREELLE:

3 U #A-SCHALTER (MP-53
EGU 1 #B-SCHALTER (MF-53
EGU 4 #C-SCHALTER (MP-5)

=FUNKTIGNSSCHALTER

EGU 8 +SCHALTER DER EX-
BOX + CAS INFUT
Egl 8 #LED’5 FUER H-ADER
DER EX. -EBO¥ +
CR5. QUTRUT
ERi) 2 #LINKE LED Z{MP-5)
Egu 1 #RECHTE LED"S (MP)

Egl ¥ acee’ *+ANF. ADR DES USER
-REFROM (27882

EQU X764 +CODE RUF 4. FLATZ
DES USER-ROM, KWENN
DIESES AUTOMATISCH
IN BETRIER GEHEN

SOLL
EqU =718 «BIT 3 UND 4 ALS
FOSITIONSKENNUNG

DER SCHALTER "RUN"
LUND "HLT AT BR"
EGU X B4FF *RAMTOF DER RAM-
PAGE @ MIT DEM
SYSTEM-STACK

EGU 1 *BI1T @ FUER LORD-
HDR-SCHALTER

EGU 1 #BIT @=1, WENN
LOAD-ADR

EQl X187 «BIT 4 FUER SHIFT

EGU  ¥7i@” *BIT 4=1, WENN
SHIFT

EGU X487 *BIT & FUER CAHS.

EQL X7 4@° *BIT 6=1. MWENN CHS

EGU K 8BsF’ #HDR DER SR IM MP

EQU X @8@3E" #40R DER SE IH MP
EGU 4 #BIT & FUER DEFOS
EQU k' @@48° «ADR DER SR IM MF
EGU € #BIT 1 UND 2 FUER
DEPOS OD. EXAMIN
EGU € #BIT 1 UND 2 FUER
PRGE-SCH. (EX-BOX?
EGU  x°187 #BIT 3 UND 4 FUER
SHIFT-UP (EX-BOX?
EGU X718 *BIT 3=1. BIT 4=1,



MICROKIT RSSEMBLER -- VER

@zap
@80E
B30F
EEEN
@311
agiz
agl14
8817
#8186
31k
g31D

3AYaBL
FE&4
CABoBC

» ZEoa

i CDEleg

ES
FS
(]
DS
ES

#618
Zieeoa
38
22FEa4

bB@:z

*
RDM5

m
RDJA

*
U
=
[Fy]

[Ea B e IR R
. (5]
=
-

— -
o

N L OV R
—
o

*

® o ¥
-z
L
.

* % %

*
EREALY

*
DISLOP
*

EGU
Equ
E@
EGU

Bl
ECU
E&U
EGU
Edu

EGU

MYl
CALL

FUSH
FUSH
FUSH
FUSH
FPUSH
My 1

LXI

DRD
SHLD
IN

MOY

2.2

=

[y )

#o@can”

USROH
USCODE
UERON

B. RHEF
H, @
SF
RMTF-1

E.L

WENN SHIFT-UFP

«*BIT 5 UND 6 FUER
READ-CAS

*BIT S=0., BIT &=1
WENN RERD-CAS

*BIT 4 UND & FUER
CASRUN UND SHIFT
#BIT 4=@, BIT 6=4
WEMN WEDER CRSPEUN.
NOCH SHIFT

* "SYN-ZEICHEN DES
ASCTII-CODES
#"STH"-ZEICHEN DES
ASCII-CODES

¥ "ETX “-ZEICHEN [ES
RSCIT-CODES
*HALEWELLENANZAHL
FUER BIT=41
*HALBWELLENANZAHL
FUER BIT=@

*ZAHL FUER HALE-
MELLENZEIT CR 25@
MICROSEC, O H CH
F= 2 KHZ
+KONSTANTE FUER
BIT-PRUEFZEIT

#1 PLATZ AUS USROM
#LADEN UND ARUF INH
*USROM YERGL. .

WENN JA. DANN 2U
USROM
«L-ADR=@ FUER RUN
LADEN

*PAGE-SCHALTER
EINLESEN UNRD H WIT
HIGH-ADR FUER "RUN
LADEN

#5TART-ADRE "RUN"
AUF STAHCK
#EINSPRUNG IN MON?
*MIT RST 1 FUER
#"RUN" MIT “HLT AT
*AT BF", GESAMT-
STATUS FUER DIS-
FLAY AUF DEN STACK
«MASKE FUER "RUN
HLT AT BP" LADEN
*CLEAR HL

+HL MIT 5P LADEN
#SF IN RAMTOP-1
RESFEICHERN
*5THCK-OFFSET
EINLESEN
*EINGANGS-ADR

PAGE

-
d



MICROKIYT RSSEMELER -- VER

@#31E 4C May
§51F Z1FEG4 L¥I
agz2z &e ADD
*
Bs23 of MOY
*
g4 TE HoY
*
P
agzd Diez ouT
Bgz7 CDhB1e8 CARLL
*
B52h @7 RLC
6526 Diog ouT
*
ag2l DBed IN
*
Bg2F of Moy
8830 7E Mo
#
8831 D3ad ouT
B833 ob MOy
@834 st Mavy
@535 DE@4  BRKLOP IN
¥
Ba37 @ moy
¥
8538 47 MOY
*
*
"
vg3% Dbasg IH
*
*
*
8838 4f MOY
#g3C DEBE IN
*
@83E DF k5T
@3 3F o1 bC
B84 01 DC
8841 SEBS bC
8843 58 Mov
8844 41 MoY
*
6845 DF R5T
6846 1@ bC
Ba47 1@ bC
#6848 GRHGE 0C
@84R DF R5T
gadB 4@ 0C
B684C 40 be
B84l C4e8 GC
B84F 43 MOY

LLANF
IND

LR
HSCH

3. SRCKJFP
LDNWS
LDJA
BLLOARDARD?
E.B
B.C

3. SROKJF

BCSHIFT)
3: SRCKJF

*+RETTEN

«HL MIT 5F LADEN
&P ZUM STACK-
OFFSET ALIEREN,
=ECHTE ADRESSE

#DIESE WACH L ALs
LOW-RDR
#IMH. DIESER ADE

(=REGISTER AUF
STACKY LADEN

#UND ANZEIGEN
#FAGE-SCH. EINLE-
SEN UND HIGH-RDR
DES GEWREHLTEN RAMN
NACH H LADEN
#*BITKORREKTUR
*HI-ADK AUF EX-BOX
ANZEIGEN
*GEWREHLTE LOW-ADR
EINLESEN

«LOW-ADR NACH L

«INH. DER FAM-ADR
LADEN
*UND ANZETGEN

#GERETTETE EIN-
#GANGS-RADR ZURVECK
*FUNKTIONSSCH.
EINLESEN

+ALTEN INHALT DER
FU.SCH. NACH D
+NEUEN INH. DER
FU.SCH. NACH B

ZUR ERKENNUNG YON
RENDERUNGEN

*HSCH ZUR ERKENN.
DER FUNKTIONEN
FAGE. SHIFT UND
CASSETTE EINLESEN
#NACH C KOFIEREN
*HSCH FUER L-ADE
ODER DATEN LESEN
*ABFRAGE OB "LOAD
*ADRESS"?

*WENN JA.

«DANN ZU LOADAD
#FU. 5CH. NACH E
*HS5CH NACH B FUER
FEFRAGE
*HBFRAGE
® "SHIFT"?
*HENN JA.
*DANN ZU SHIFT
+ABFRAGE OB

* "CHSSETTE"?
*WENN JH.
*DANN ZU
*FU. 5CH.

(&

CASRUN
NACH B



MICROKIT ASSEMBLER

*
Bed5e ChoFpa
#3853 6Dasg
#8355 6608
#8857 1BBE
@559 E1
@885F 1
6858 C1
685C Fi
agsib Lo

*
885E ofF LOADAD

*
B85F 79

*
8368 CLE388

*
6863 C3eDos

*

*®
8866 CD3B@@ DEPOS
#8565 84
B86A 6DEE

¥
@aeC 77

*

*
@360 7E EXAMIN

*
886k D36l
6a7e 7D
6871 D36
8873 7C
8874 @7
8875 D3@s
6877 Ch4&0a
B87H @6
6878 35688

*

*
887D 23

*

*®
BB7E C33508

*

*
8881 DBES IND
8883 E6lo HIAD
8885 6F
6886 Cob4
#6888 67
8889 CS

*
688A DBB1 SHIFT
B88C 4F

-- VER

CALL
DC
DC
DC
POF
FOF
POP
FOP
RET

MoY

Moy

aut
MoY
ouT
MOy
RLC
out
CALL

DC
INR

JHP

IN

ANI
RRC
ADI
Moy
RET

IN
MoV

2.2

RUNSUE
BCEXKAMINY
BC(DEFOS)
BCDISLOF:
H

D

B

FSH

L:A

A. C

HIRD
EXAMIN
SFLANK
DFMS
BLEXAMIND

M. A

A M
RLAMF
H. L
LLAMF
A: H

HLAMP
NFLANK
EDMS
E(ERKLOP?

BRKLOF

PAGE

ZURUECK

+ABFRAGE OB
*EXAMIN, JR 222
*DEPOS, JH 222
#NICHT-RUN., JR 222
*WENN "RUN", DANN

*GESAMTSTATUS 24U-
#RUECK UND RUECK-
*KEHR ZUM RUFRU-
*FENDEN ANWENDER-
FROGRAMM <RST 1 '3
*HSCH {=L-RDR)
NACH L

*HSCH (PRGE?

NACH RC

#*H-ADRE BILDEN UND
NACH H

*ZUR ANZEIGE VYON
L- UND H-RDR UND
DEREN INHALTS
*H>L-FLANKE VON
«DEPOS-5CH SUCHEN
+WENN KEINE FLANKE
DANN ZU EXAMIN
#INH. RSCH {(=DRTAH:
IN GEWAEHLTER ADE
ABSFPEICHERN

#INH. YON GEWREHL
TEF ADR HOLEN
*INH. ANZEIGEN
*L-ADK HOLEN
#L-ADR ANZEIGEN
#H-ADR HOLEM
*BITKORREKTUR
*H-ADR ANZEIGEN
*H>L-FLANKE YON
*EXAM. 0D. DEPOS
*SUCHEN, WENN
KEINE FLANKE, DANN
ZUR BRKLOP ZURUECK
*HL AUF NRECHSTE
ADRESSE (RUTOIN-
CREMENT?

*ZURUECK ZUR AB-
FRAGE WEITERER
FUNKTIONEN

*H-SCH FUER H-ADR
#(PAGE) EINLESEN,
*PAGE ISOLTEREN,
*ZUR H-ADR KORRI-
*GIEREN UND NACH H
# ZURUECK YON IND
BEZW. HIARD

#SCHRITTZAHL EIN-
*LESEN UND NARCH C



MICROKIT ASSEMELER -- VER
a&30 DEBZ IN
*
aga8F DF RST
B85%@8 1§ DC
8851 18 DC
B85z ACas DC
@834 BY REW ORA
8835 47 may
BgI6 G4 Moy
a337 ol Moy
ac3g 70 Moy
883% 94 SUB
883R &F Moy
@838 Dz%Fesd JNC
B89E 235 DCE
B33F 1A FE5H LDRX
*
Bg8Re 77 Moy
B8AL 97 SUB
@8Az 12 STHX
B8HI 13 INX
BEAd4 23 INX
BBAS @5 DLR
@8A6 Cz9FBsg JNZ
*
*
#8A9 C3E969 JHP
*
88ARAC SF FORNW Moy
agAb 1D DCR
BEAE icoa MY I
B8BeE 42 Moy
B8B1L 19 DRD
*
*
8gB2 54 Moy
B8B3 SO MOY
BcB4 B89 DAD
*
*
@8BS 4F MOy
@8Be 1A F5H LDAX
Be8B? 77 MOY
B8B8 97 SUB
B8BY 1z STARZ
B8BH 1B DCX
88BB 2B DCX
agBC @D DCE
B8BD CzBeBdE JNZ
*
*®
@8Ca C3IES8Y JMP
*
B8C3 ba NOFP
88C4 DF CASRUN RS5T
B8CS 6@ DC
BaCe 4@ DC

2. e
ASCH
3, SRCKJF
UPMs

UFJA
BCFORWY

3

}

o

XA cemmoe o oD
o .
po s ]

MO T OO IZ O
= u) o u ]

U
x

SHEND

3, SRCKJF
KDMS
FDJA

FAGE

*BLOCKLAENGE EIN-
LESEN

*HEFRAGE OB

TP CYORWAERTS) T
#JENN IR,

#«DANN ZU FORK
#SETZE (~FLAG=@
*BLUOCKZAEHLER LAD
«ALTE ANF. ADR NFRCH
*NACH DE
#+SUBTRAKTION DER
*SCHRITTZAHL ER-
*GIET NEUE RNF. ADR
#*WENN ANDERE H-ADFR
*DANN KORREKTUR
*INH. AUS ALTER
ADR LADEN

#IN NEUE BRINGEN
+AC LOESCHEN (=8)
*"@" IN ALTE ADR
«BEIDE ADR UM 1
*ERHOEHEN
#*BLOCKZAEHLER -1
*ZUR NAECHSTEN ADR
WENN BLOCK NOCH
HICHT ZU ENDE
*NACH ENDE DES
BLOCKES ZU SHERD
*BLOCKLHAENGE > E
+KURREKTUR

#D LOESCHEN (=@
#8 LOESCHEN

*fALTE ANF. ADR +
BLOCKL. = ALTE END
RDR

*ALTE END-
*DE

*fLTE END-ADR +
SCHRITTZARHL =

NEUE END-RDFE
*BLOCKZAEHLER LAD
*INH. AUS ALTER
*ADR IN NEUE

*AC WIT "8" LADEN
*"@" IN ALTE ADR
*BEIDE ADR ER-
*NIEDRIGEN
*BLOCKZAEHLER -1
*ZUR NAECHSTEN RDP
WENN BLOCK NOCH
NICHT ZU ENDE
+WENN ZU ENDE DANN
ZU SHEND

*ABFRAGE
*WENN JH.
*DANN ZU

ADR HACH

0B LESEN?



PARGE

MICROKIT ASSEMBLER -- VER 2.2

@8gC7?
Bacy
63CH
aaCh
88CF
@801

@8D3
88D3
agb8g
@gabs

@agbce
88DE
@8E1L
B8E2
B3ES
B8ES
@88E7
B8ER
@8EEB

B8EC
B8EF
BEF@

88F3
BEFS
B8F8

3989
78
chasdaes
Zbea
1EFF
lez@

bElce
tDFB@g
15
Czb3ag

eEaz
ChFE@g
4C
CDFE®S
4E

23
CDFB@G
4E

23

CDFB@S
iD
CZERBE

BE@3
ChFE®BS
C3E9@s

3

-4
JRN <

, 3

{F
4F
3EF@
DREGET
3EF9
47
Ch2EBY
CA1ABI

ChzERY

B Czeras

Dses

3EFS
C31E@9
D3as

SBLK
*
SYHLF

SDAT

SBYTE
S5CMX

SEND

DC  BCLBLKD *LESEN (LBLKD

Movy A, B *H5CH HOLEN

CALL HIAD *H-ADRE BILDEN > H

MYl L.@ *L-ADR= @

MY1 E. 255 *BLOCKLAENGE =285

mv¥l D32 +ANZAHL DER SYN-
ZEICHEN LADEHN

MY1 C.5YN *SYN-ZEICHEN LARD

CALL :B?TE * "5YN" SCHREIBEN

bCR D *ANZAHL -1

JNZ  SYNLF *NAECHSTES "SY¥W "
EIS ALLE ERUS

Myl C,5Tx *STX-ZETCHEN LAD

CALL SBYTE *"5Tx" SCHREEIBEN

MoY C.H *H-ADR LADEN

CALL SEYTE *H~ADR SCHREIBEN

Moy C.H #1. DAT-BYTE LADEN

INX H *ADR AUF 2. DAT-EYT

CALL SBYTE *1. DAT-BYTE SCHR

Mov C,H *DATA-BYTE LADEN

INX H +ADR AUF NAECHSTES
DATA-BYTE

CALL SBYTE *DATA-BYTE SCHR

DCR E *5LOCKLAENGE -1

JNZ  SDAT *NRECHSTES BYTE

SCHEEIBEN BIS
BLOCK ZU ENDE

MYI C,ETX #+ETX-ZEICHEN LADEN

CALL SBYTE #"ETR" SCHREIBEN

JHFP  SHEND *RUECKSFRUNG, HENN
FERTIG

SUBROUTINES ZUM SCHREIBEN

MoY A.C *BYTE YON C HOLEN

STC *SETZE C-FLAG=1

RAR * 5B NACH C-FLAG

Moy C.A *REST NACH C RETT.

MY1 A, SLANG *CODE FUER BIT=1
LADEN

JC STAKT *WENN LSE=C-FLAG=

1, DANN 2U STARKT
M¥I A, SKURZ *CODE FUER BIT=0

LADEN
MoY B.H *BIT-CODE NACH B
(HALBWELLENZAEHL. 2
CALL SZEIT *P0S5. HALBMW. DES
THKTES SCHREIBEN
JZ  SEND *WENN CODE-ZAEHLER
AUF @, DANN > SEND
CALL SZEIT *NEG. HALBW. SCHR

JNZ STRKT+1 *WENN CODE-Z. #@.
DANN POS. HALBM.

OUT  HLAMP *AUSGABE EINER
HALBWELLE

M¥I A,SKURZ  +BITCODE & LADEN

JMF  SVERZ-1 *CODEZAEHLER LAD.

OUT HLAMP *ENDE EINER HALBW.



MICROKIT

gadr
B3iE
asif

o
(¥}
Teor
Foo

Le]
)
Lo
wn

Lo LS D
[ SO SO LR N
QY <o n]

[l s U e )
Lo bt ]

[¥u(]

[t B s B ]
Ul U D
LRI LS (N
i N as]

D 0O
LD L0 LD
LPR R 5 WS P}
o0 =) Ol

3EF&
47
Chala3

eEgn

 1Ele

Che7es

@ 79

BE

CAR4D @5
Feai

4F
C33E09

e 0 RN o )
-] =
LY L
=<
w

Law il o « I N ancll S

4B@3

§ CDhroes
. 61

ZE@@
16FF
Ch79es
71

£3

S
rJ
m
L}
—t

*®
(K]
3
@

LBLK

RISEMELER -- YER 2.2

M¥1 H
MoY¥ B
CALL 2

Moy A, C
ORA A

RZ

JMP  S5CHE
MoyvY  ALE
guUT  HLANF
MY1 A, SHAI
DCR A

JNZ  Z5CH+2
INR B

RET

MY1 C.X¥7 8@’
Y1 E.5YN

CALL LBIT
MOY A, C

CMP E

JZ LaYN+2

ORI 1

Moy  C.A
JHF  LBLE+Z
M¥I D, STX
CALL LBYTE
MOV A.C
CMP E

JZ SYN
CMP D

JNZ LSTH

may  H.C
MYl L.@
M¥1 D, 255
CALL LBYTE
Moy M.
INX H

FARGE

«BITCODE i LADEN
«CODEZ. LADEN
*ZEITSCHLEIFE,
SCH2EIBE "@8" FUER
DEN REST DEF BIT-
ZEIT aUS

#BEFEHL OHNE HIR-
KUNG: YERZOEGERUNG
*YERZGEGERE EBIS
CODEZ =8
*EYTE-REST HOLEN
+WHENN ALC=8. DANN
#*FETURN

«S0NST SCHREIBE
DAS NRECHSTE BIT
*C0ODE NACH AC
*5CHREIRE HALEMW.
*HALBWELLENZEIT
LADEN

*ZAEHLE ZEIT AE
#ZEITSCHLEIFE
«CODEMORT -4
#*RUECKSPRUNG

#+MS5B=1 SETZEN
*SYN-ZEICHEN LADEN
#1 BIT EINLESEN
*M5B=1 MHACH AC
+YERGL. . OB BISHER
ETNGELESENE BITS
“SYN" ERGEBEN
*WENN JA, DANN

ZUM BYTE-LESEN
*L5B=1 ALS STOP-
BIT SETZEN

*L5B=1 NACH C. UM
#+NAECHSTES BIT ZU
LESEN

#STX-ZETCHEN LADEN
*BYTE EINLESEN
*BYTE NACH AC

*AUF "S¥YN" VERGL.
~WENN NOCH "SYN',
DANN WEITER AUF
"STx" WARTEN

*HUF "STX" VERGL
#+WENN NICHT P"5Tx",
DANN SYNCHRE  VER-
LOREN, ZU LSTH
#BYTE EINLECEN
(MUSS H-RDR SEIND
#H-HDF HNACH H
#L-ADRk= @ SETZEN
#BLOTK AENGE LADEN
*1. DRTAR-BYTE LESEN
*ABSPEICHERN

*HDF AUF NRECHSTEN



MICROKIT ASSEMBLER -- VER 2.2

S O O S
[Su RN R ]
O Oy O Ty O
o0 D O

R R
(S YN
-~ ~J O
[

aoa7s
B978B
8570k
@97t
8931
@984
a987
@33A
@98cC
assh
@93E
a95F
8992
8934
B997
8593
@99C
899D
B3Ra
B9A2
BIAS
A9R7?
@3R3
BOH=
@9RC
B3AE
89B1

CU PO =
PG Ll b
ry -~J
o (V]
= [an]
U LY

)
L= NN W R
= =i
a2t LY <]
oS
(¥

LI
=~

(o]
[
m
L]
(>~
(¥ e

BEZDH
DBBS
ar
OR7BBY
cobbas
DA7RBuY
Cbrans
3E@1
47

aa

47
DARE7 @3
3E@85
CDDFB3
3EB81
DR&CGS
aa
cobbas
3E@2
DAREDA@Y
JEFE

FAGE &

* FAM-PLATZ

LDAT CALL LBYTE *DATA-BYTE LESEN
MOY¥Y H.C #ABSPETCHERN
INX H #ADR ERHOEHEN
DCR D *BLOCKZ., -1
JNZ  LDAT *NAECHSTES BYTE.

* WENN BLOCK ZU ENDE
CALL LBYTE *DANN LIES EYTE
MOV  H.C #UND VERGLE [CHE.
SUT ETX #0B "ETH". WENN JAR

* WIRD ©-FLAG=1 UND
5TC *SETZE C-FLAG=1,

# D.H. BLOCK RICH-

* TIG6 GELESEN
JHP  SHEND *FERTIG

* SUBROUTINEN FUER LESEN

* DIESE SR75 SIND NICHY MEHR EIN-

* ZELN KOMMENTIE#T DA DARS SEHR

* SCHWER YERSTHONDLICH IST.

#5]E LESEN DIE DEMODULIERTE RECHTECK-
*SCHWINGUNG EIN. STELLEN DEREN LAENGE
*DURCH AUSZAREHLEN FeoT. D H DAMIT WIRD
#ENTSCHIEDEN, OF DRSS GELESENE BIT LANGE
*ZEIT "1" UND KURZE ZEIT "@" (BIT=1i>
*0DER KURZE ZEIT "1" UND LANGE ZEIT "&"
*(BIT=¢) IST. DIE EINZELBITS WERDEN DANN
*ZU BYTES ZUSHAMMENGESETZT UND YOM LESE-
*HAUPTPROGRAMM ENTSPRECHEND YERARBEITET

C.¥X’ 8@’
HSCH

LBYTE MV¥I
IN
RRC
JC
CRLL

LEYTE+2
LWAR-2
JC LBYTE+2Z
CALL LSFL

My A i

Moy
ADD
Moy
JC
M1
CALL
MY 1
JC
NOF
CALL
My 1

LBIT

= u ]

B
LZAUF B
E.
L5TFR
A LZEIT+1
LhAR
A1
LZAUF

—

LNXT

LHAFR-C
A. 2

JC LZAUF

M¥l A, -2

RDD B

MOoY¥ B.H

JNC  LNUL

MVI A LZEIT+1
CALL LWAR

MYI A, -1



MICROKIT RSSEMBLER -- VER 2.2

8583
B9B6
8587
B3BA
63BC
B9BF
@sce
Bal1
B5C2
B9C3
89C5
Bac?

89CH
89CB
83CcC
83CD
B3Da
89D2
89D3
8906
83D3g
83DC

83DD
BSDF
B9Ew
B3E3
B9ES
B9E6

B9E?
B9ES

B9E9
89ER
B9ED
B3EE
B9F@
89F1
B9Fz
B9F3
09F4
B9F7
B9F8
B9F9
B9FH
B9FB

- B9FD

BRAG

D2A7089
BY
CDDDBY
3EFE
D2A78Y
79

1F

4F

D&
8602
3E87
£394689

79
1F

4F
D28769
DEBE
BF
D2D@aRg
CDDDBY
D2D@BY
c9

3E@3
3D
C2DF@9
DB@sg
8F

()

AF
co

F5
116666
7E
DBo8
47

iB

7H

B3
C2EDBY

C3E9859

LNUL

LSFL

LWAR

LSTR

SHEND
SHLOP

*

* %k

JNC LZAB
NOF

CALL LMWAR-2
MYl H,-2
JNC LZARE
MOY A, C
RAR

Moy C.H

RC

MYl B.Z
MYl R, LZEIT
JHP  LNRT

Mov A, C
RAR

Moy C.HA
JNC LBIT
IN  HSCH
RRC

JNC LSFL
CALL LWARR-2
JNC LSFL
RET

MYl A, LZEIT+2

DCR A
JNZ LWAR
IN  HSCH

=
pe a)
e
X

PUSH PSH

L¥I D.@

Mov A, M

IN  HSCH

MovY B.HA

DCX D

MOY A.D

ORA E

JNZ SHLOP
FOP  PSH

R5T 3, SRCKJP
DC  TSMS

DC  TSNO

DC  B(BRERK?>

JHP  SHEND

NO ERRORS
END  MONY

*YERZOEGERUNGS-
*SCHLEIFE FUER

#3 5EC, FUER
*BESSERE BEOBACH-
*TUNG DER FLAGS
*UND AUF DEUT-

*L ICHES

*ERKENNEN DER BE-
*ENDIGUNG VON
*"SHIFT™.
*ABFRAGE. OB
*TASTEN “SHIFT®
*0D. “CAS" NOCH
*GEORUECKT SIND,
WENN JA, DANN
WEITERE 3 SEC
YERZOEGERUNG.,
*SONST ZUM MWONITOR

D. ULRICKH RP/KTEM

PRGE

Q



3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

ITT MP-Experimenter

Inhalt Seite

Funktionsbeschreibung . . . . . . . . . . . . ..o 1
Technische Daten . . . . . . . . . . . . . . . . . . ... ... 2
Bedienungsanleitung . . . . . . . . . . . . .. Lo 3
Allgemeine Hinweise zu den Experimenten. . . . . . . . . . . . . 3
Addierer/Subtrahierer (SYSTEMO) . . . . . . . . . . . . . . .. 4
Codierte ALU (SYSTEM 1) . . . . . . . . . . . . . . . . ... 5
Akkumulator (SYSTEM 2) . . . . . . . . . . . . ... ... 7
Akkumulator mit Speicher (SYSTEM 3) . . . . . . . . . . . . .. 8
Vereinfachter Rechner (SYSTEM 4) . . . . . . . . . . . . . . .. 10
Hypothetischer Mikrorechner (SYSTEM 5) . . . . . . . . . . . .. 12
Mikrorechner-System 8080 (SYSTEM®6). . . . . . . . . . . . .. 19
Erweitertes 8080-System (SYSTEM 7) . . . . . . . . . . . . .. 24
Stromlaufplane und AnschluBbelegung . . . . . . . . . . . . .. 25






1. Funktionsbeschreibung

Der MP-Experimenter ist ein Mikrocomputer basierend auf dem MP-System 8080.

Er ist ein Lehrsystem zur praktischen Einfiihrung in den Gebrauch und die Arbeitsweise von
Mikrocomputern. Der MP-Experimenter besteht aus der Stromversorgung, der Prozessor-
platine und dem Frontpanel mit diversen Schablonen und Code-Karten.

Die Stromversorgung benétigt zum Betrieb lediglich eine Steckdose des 220-V-Netzes.

Der separat gekapselte Netztransformator gibt zum Zwecke einer Zweiweggleichrichtung
2 x 8,6 Vet ab. Die an ihm Uber eine 3polige Steckverbindung angeschlossene Netzteilplatine
enthélt 3 geregelte Stromversorgungen fir die Betriebsspannungen +5 V, +12 V und -5 V
gegen Masse. Je 2 Dioden eines Briickengleichrichters arbeiten als Zweiweggleichrichter fiir
den +5-V- bzw. —5-V-Regler. Der zweite Briickengleichrichter arbeitet als Zweiweg-Villard-
Gleichrichter fur den +12-V-Regler. Die Ausgénge aller Regler sind kurzschluRfest.

Der Mikrocomputer enthélt als CPU den Mikroprozessor 8080 A und die Ergdnzungsbau-
steine 8224 (Taktgenerator) und 8228 (System-Controller und Datenbus-Treiber). Ein Quarz
von 8,867 MHz erzeugt eine Taktfrequenz von ca. 1 MHz, so daR der Prozessor mit einer
Zykluszeit von ca. 1 us arbeitet.

‘Das eingebaute Memory besteht aus einem maskenprogrammierten ROM (8308) von 1 k x 8 bit,
welches das Systembetriebsprogramm (Monitor) enthalt und einem statischen RAM (2 x 8111)
von 1/4 k x 8 bit als STACK, Daten- und Programmspeicher fir Anwenderprogramme.

Dem ROM ist der AdreRbereich von O O O O, bis O 3 F F;5 und dem RAM der Adrel3-
bereich von O 4 O 0,4 bis 0 4 F F,¢ durch den AdreRdecoder (2/6 74 LS 04, 6/6 74 LS 05
und 3/4 74 LS 32) zugeordnet. Der verbleibende AdreRbereich von O 5 O 046 bis F F F Fig
(also 62 3/4 k = 64 256 Adressen) steht ohne Einschréankung fir Erweiterungen zur
Verfligung.

Weiterhin enthélt die Computerplatine insgesamt 5 8-bit-Parallel-I/O-Bausteine (5 x 8212),
von denen 3 als Input-Ports und 2 als Output-Ports geschaltet sind. Sie sind in der ,isolierten
I/0-Adressierung” mit den Adressen O O O 115, O O O 216 und O O O 445 flr die Input-
Ports und 0 0 O 146 und O 0 O 26 fiir die Output-Ports adressiert.

Da keine vollstandige AdreRcodierung angewendet wurde, sondern AdreR3-bit-Adressierung,
stehen fir weitere I/O-Adressen nur noch 0 O 0 815, 0 O 1 O15, 0 O 2 016, 0 O 4 016 usw.
fir Inputs und O O O 446, O O O 816, O O 1 016 usw. fir Qutputs zur freien Verfligung.

Am System-RESET (RESET-Eingang des 8224) liegt eine RCD-Kombination zum automati-
schen RESET beim Einschalten der Betriebsspannung. i
Die System-Steuersignale HOLD, INT und BUS EN sind uber Inverter gefiihrt, die am Eingang
einen 1-kQ-Pull-up-Widerstand tragen. Als aul3ere Eingangssignale stehen sie somit als
active-low-Signale (HOLD, INT, BUS EN) zur Verfiigung, d.h. ein duReres Low-Signal an HOLD
steuert den 8080 in den HOLD-Zustand, ein Low-Signal an INT gibt an den 8080 eine
Unterbrechungs-Anforderung (Interrupt-Request) und ein Low-Signal an BUS EN steuert die
Datenbus-Ausgange sowie die Steuerbus-Ausgange vom System-Controller (8228) in den
Tri-State-Zustand. Als weitere Eingénge sind noch RES IN und RDY IN vorhanden. Ein
4uReres Low-Signal an RES IN bewirkt einen RESET, ein Low-Signal an RDY IN bringt den
Prozessor in den Warte-Zustand.

An Steuersignal-Ausgéangen stehen RESET (pos. Impuls) zum Riicksetzen externer Elemente,
STSTB (neg. Impuls) zum Abfragen der Statusinformation, WAIT (pos. Impuls) zur Anzeige
des Warte-Zustandes, HLDA (pos. Impuls) als Quittierung einer HOLD-Anforderung und INTE,
das anzeigt, ob ein Interrupt ein- (INTE = H) oder ausgeschaltet (INTE = L) ist, zur Verfligung.

Herausgefiihrt sind weiterhin die 5 Signale des Steuerbusses MEM R (neg. Impuls fir
Speicher Lesen), MEM W (dto. fiir Speicher Schreiben), 1/0 R (dto. Eingangs-/Ausgangs-
Port Lesen), /O W (dto. Eingangs-/Ausgangs-Port Schreiben) und INTA (Interrupt-Acknow-
ledge = Interrupt-Bestatigung), der wegen fester Verbindung iber 1 kQ an +12 V einen
automatischen RST 7-Befehl erzeugt.

Die Prozessor-Platine ist — von oben verdeckt — unter die Oberplatine (Front-Panel) gesteckt.

Das Front-Panel trdgt einmal die Steckleisten zum Anschlu® der Stromversorgung, zum
Anschlu anderer Ein-/Ausgaben und fir Systemerweiterungen und zum anderen die diversen
Eingabe-Schalter und LED-Anzeigen zur Ausgabe.




Der mit ,SYSTEM” gekennzeichnete Codierschalter mit den Zahlen O bis 9 dient zur Auswahl
der entsprechenden Monitorprogrammteile, die die einzelnen Experimentierschritte simu-
lieren. Die Stellungen O bis 6 sind den Systemen , Addierer/Subtrahierer” (0), ,Codierte ALU"
(1), ,Akkumulator” (2), ,Akku mit Speicher” (3), ,Vereinfachter Rechner” (4), ,Hypothetischer
Rechner” (5) und , Prozessorsystem 8080" (6) zugeordnet. Die Stellung 7 dient fir Erweiterun-
gen mit zuséatzlichen Betriebsprogrammen, wahrend die Stellungen 8 und 9 unbenutzt
bleiben.

Die binaren Schiebeschalter Cs bis Co dienen als Funktionsschalter unterschiedlicher Be-
deutung in den verschiedenen Systemen. Auch die mit A; bis Ao bzw. B7 bis Bo gekennzeich-
neten binaren Schiebeschalter haben in den verschiedenen Systemen unterschiedliche
funktionelle Bedeutung. Sie dienen in erster Linie zur Eingabe von Daten oder Adressen.

Als Ausgabe- bzw. Anzeigeelemente sind 2 x 8 LEDs mit der Bezeichnung L; bis Lo und
R7 bis Ro angeordnet. Sie gestatten das Ablesen von Adressen oder Daten im Maschinencode
(Binarcode, d.h. leuchtende LED = log. 1, nichtleuchtende LED = log. 0). lhre funktionelle
Bedeutung ist unterschiedlich und wird von den Schablonen festgelegt.

Die mit ,RESET” bezeichnete Taste bringt den Prozessor zum Programmstart, d.h. nach deren
Betatigung beginnt der Prozessor das Monitorprogramm ab Adresse O O O 015 abzuarbeiten.
Die RESET-Taste hat keine ,Clear-Funktion”, d.h. es werden keine Register- oder Speicher-
inhalte geldscht! Sie ist jeweils nach der Veranderung des Systemwabhlschalters zu betétigen,
damit ein eindeutiges Einlaufen in das gewahlte Systemprogramm gewahrleistet ist.

Die farblich gekennzeichneten und mit der System-Nr. versehenen Schablonen weisen den
Bedienungselementen «der Frontplatte ihre systemspezifische Funktion zu. Die jeweils in der
gleichen Farbe vorhandenen Codekarten (DIN A 6) bzw. Befehlslisten (195 x 175 mm)
dienen zur Kurzinformation tiber Funktions- bzw. Displaycodes (Anzeigecodes).

2. Technische Daten

MP-System 8080 A

mit Taktgenerator 8224 1 A7LT
und System-Controller 8228 (< 7. ¢ < s
Quarzfrequenz 8,867 MHz

Zykluszeit ca. 1 ps

Memory ROM 1 k x 8 bit (Typ 8308)

mit System-Betriebsprogramm

RAM 1/4 k x 8 bit (2 x Typ 8111)

fur Anwenderprogramme
Memory-Erweiterung moglich ab Adresse 0 5 0 016 bis Adresse F F F F16 )
Input 3 x 8 bit parallelmit 3x1/0-Port 8212 /7 -2 ’

fir C-, B- und A-Schalter,

bit-weise 1/0-Adresse mit AdreR-bit O, 1 bzw. 2
Input-Erweiterung moglich mit den AdreR-bits 3, 4, 5, 6 und 7
Output 2 x 8 bit parallel mit 2 x 1/0-Port 8212

far L- und R-LEDs,

bit-weise |/0-Adresse mit Adref3-bit O und 1

Output-Erweiterung moglich mit den AdreR-bits 2, 3, 4, 5, 6 und 7
fan-out an der Systemleiste links (1 LE = 1 x TTL £ 1,6 mA,, 40 pAu)
AdreRbus ABo...ABs 1 LE
Datenbus DBy . . . DBy (bidirektional) 5 LE
Steuerbus MEM R, MEM W, I/O R, I/0 W, INTA 5 LE
HLDA (Halt-Quittung) 1 LE
INTE (Unterbrechungs-Freigabe) 11/4LE
RESET (Rickstellung) 11/4 LE
STSTB (Zustandsiibernahme) 1 LE
WAIT (Wartezustandsquittung) 11/4LE



fan-in an der Systemleiste links

Datenbus DBy . . . DBy (bidirektional) 1/4 LE

BUS EN (BUS-Freigabe-Steuerung) 31/4LE

HOLD (HALT-Anforderung) 3 1/2 LE

INT (Unterbrechungs-Anforderung) 31/2LE

RDY IN (Bereit-Eingang) 3 1/2 LE

RES IN (Rucksetz-Eingang) 1/4 LE (+ 1 pF)
fan-out an der Systemleiste rechts (in TTL-LE)

L;...Lo (I/0-Port mit Adr. 0 0 0 2,¢) 10 LE
Rs...Ro (I/O-Port mit Adr. 0 0 0 144) 10 LE

(Uonw = 3,2 V, da LED angeschlossen)

fan-in an der Systemleiste rechts (in TTL-LE)

Cr...GCo (I/O-Port mit Adr. 0 0 O 4¢) 1 LE
Bs...Bo (I/0-Port mit Adr. 0 0 O 1,¢) 1 LE
A7 ...Ao (I/0-Port mit Adr. 0 0 0 2,¢) 1 LE
Als Eingédnge nur verwendbar, wenn Cs ... Co, B7...Bo

und Ay ... Ao in Stellung ,,1” und Systemschalter in Stellung
,0” oder ,,8" stehen (wired OR)!
(leHmax =5,0V, ULmn = —0,5 V)

Stromversorgung

Kompaktnetztransformator 220V/2 x 8,6V, El 66
Regelnetzteil +5 V,15A
(kurzschluRfest) +12 V, 250 mA

-5 V, 100 mA
Strombedarf des MP-Experimenters +5 V, 1 A typ.
+12 V, 100 mA typ.
-5 V, 2 mA typ.
Stromreserve fiir Erweiterungen +5 V, 500 mAmax
+12 V, 150 mAmax
-5 V, 100 mAmax

3. Bedienungsanleitung

3.1 Allgemeine Hinweise zu den Experimenten

Das Experimentiersystem enthalt einen vollstdndigen Rechner. Im ROM sind 7 Programme
zur Simulierung von verschiedenen Systemen fest abgespeichert. Welches Programm ablaufen
soll, kann mit dem SYSTEM-Schalter (BCD-Schalter auf der linken Seite) festgelegt werden.
Den 7 Programmen sind die Nummern O bis 6 zugeordnet. Die Stellung 7 des SYSTEM-
Schalters ist flr eine eventuelle Erweiterung des Systems vorgesehen, die Stellungen 8 und 9
werden nicht verwendet.

SYSTEM 0O: 8-bit-Parallel-Addierer/Subtrahierer

SYSTEM 1: Codierte 8-bit-ALU

SYSTEM 2: 8-bit-Akkumulator

SYSTEM 3: 8-bit-Akku mit 16 x 8-bit-Datenspeicher

SYSTEM 4: Vereinfachter 8-bit-Ein-AdreRrechner

SYSTEM 5: Hypothetischer 8-bit-Mikrorechner (didaktischer Modell-Rechner)
SYSTEM 6: 8-bit-Mikrorechner mit 8080-Mikroprozessor

SYSTEM 7: fur andere Mikrorechner mit dem 8080 und Erweiterungen

Ein Programm wird mit der RESET-Taste gestartet. Diese Taste entspricht in etwa der
Loschtaste eines Taschenrechners und muB am Anfang jedes Experimentes gedriickt
werden. Mit den restlichen Schiebeschaltern konnen Daten und Steuerinformationen ein-
gegeben werden.




Die Schaltergruppe Cs bis Co wird zur Steuerung des Experimentierablaufes bendétigt.
Die Schaltergruppen A; bis Ao und B; bis Bo werden bis auf einige Spezialfalle fur die
Daten- oder Programmeingabe benutzt.

Bei allen Experimenicen gelten folgende Festlegungen:

Schalter oben = logisch 1
Schalter unten = logisch O

Die 2 mal 8 Leuchtdioden dienen zur Anzeige der Rechnerergebnisse sowie zur Anzeige
interner Schaltzustande. Hier gelten folgende Festlegungen:

Leuchtdiode leuchtet = logisch 1
Leuchtdiode dunkel = logisch O

Alle Schalter, die bei einem bestimmten Experimentiervorgang nicht benétigt werden, sollten
auf log. O geschaltet werden.

Es ist zu empfehlen, daR zu Beginn eines Experimentes alle Schalter auf log. O geschaltet
werden, bevor die RESET-Taste gedriickt wird. Ausnahmen hiervon werden bei den einzelnen
Experimenten angegeben.

Die grundsatzliche Experimentiervorbereitung ist folgende:

1. Die in der Experimentieranweisung angegebene Schablone auflegen

2. SYSTEM-Schalter auf das verlangte Programm einstellen

3. Alle Schiebeschalter auf Null (unten) stellen

4. RESET-Taste driicken

Bei falscher Schalterbetatigung kénnen grundsétzlich keine Schaden am Experimentiersystem
entstehen. Allerdings kénnen dadurch die selbst eingegebenen Programme und Daten ver-
andert werden, so daR ein falsches Ergebnis entsteht. Bei umfangreichen und komplizierten
Experimenten kann eine falsche Betatigung viel Zeit kosten.

3.2 Addierer/Subtrahierer (SYSTEM 0)

Im System O lauft auf dem Rechner ein Programm, das ein 8-bit-Parallel-Addier-/Subtrahier-
werk simuliert. Eine solche Schaltung ist schaltungstechnisch ein rein kombinatorisches
Netzwerk mit statischer Betriebsweise (Bild). Es hat zweimal 8 Dateneingéange (A7 bis Ag =
Operand A und By bis Bo = Operand B) und 5 Steuereingdnge (Cs4 bis Co), die die in der
Tabelle aufgefiihrten Funktionsméglichkeiten ergeben.

Addierer/Subtrahierer ITT MP-Experimenter
SYSTEM

0

Br..BoJ Az Ao B7.Bo| INC
EINJEINJ=A |=B |(+1)
1 1

0 0 0 0
CG G G G G A7 As As A, A3 A, A; Ao By Bg Bs B, Bs B2 B Bp

Lo R7 Re Rs R, R3 R, Ry Rp

SUMME

Nach der Experimentiervorbereitung Schalter C4 und C3z auf 1. Damit kdnnen die an den
Schaltern A; bis Ao und B; bis By eingestellten Informationen in das System gelangen. Mit
den Schaltern C, = A und Ci = B kdnnen die eingegebenen Informationen komplementiert
werden (Einerkomplement). Der Schalter Co = INC legt bei 1 eine 1 auf den INC-Eingang.
Das Ergebnis der Addition erscheint in den rechten 8 LEDs (R7 bis Ro). Die LED Lo in der
linken Lampengruppe zeigt einen Ubertrag (Carry) an. Bei diesem System haben die LEDs Ly
bis L1 keine Bedeutung.



L
°T Carry Co C3 C2 Ci Co | Ausgangs-
A, \ funktion
) 0O 0 0 0 O 0
J ¥ 0O 0 0 0 1 1
, 0O 0 0 1 O -1
g ' ' 0O 0 0 1 1 0
c ! !
S | ; 0 01 0 O -1
N 0O 0 1 0 1 0
' 1
< |- M) o0 1 1 0 | -2
) v « % o 0 1 1 1 -1
© 0O 1 0 0 O B
A 3| Re
. \ c = 0O 1 0 0 1 B+1
5 | R 0O 1 0 1 0 -B-1=8B
v, }E"a o1 0 1 1 -B
> Rlg| 0O 1 1 0 0 B -1
B, Sl rps | 01 1 0 1 B
- =z 0o 1 1 10 -B -2
—J V] 3 | R o 1 1 1 1 -B-1=8B
= - 1 0 0 0 O A
o R
i ; L O 1.0 0 0 1 | A+1
2 o o TR 1.0 0 1 0 A-1
2 b . " 1 0 0 1 1 A
w
u g, 1 0 1 0 O -A-1=A
e \ 1 0 1 0 1 -A
‘HJ v 1 0 1 1 0 -A-2
5 — 1 0 1 1 1 -A-1=A
Op \ 1 1 0 0 O A+B
JE = 1 1 0 0 1 A+B+1
/3| g |Y 1 1 0 1 O A-B-1
A §| 5t
.5“ 5| $1| , 1 1 1 0 0 B-A-1
<] o <l 2 1 1 1 0 1 B-A
el _elel & RERREES =

Steuereingdnge

3.3 Codierte ALU (SYSTEM 1)

Im System 1 wird vom Rechner eine 8-bit-ALU simuliert. Sie ist schaltungstechnisch durch
Erweiterung des Addierwerkes (System 0) um log. Funktionen, einen Datenselektor und eine
Umcodierungsschaltung (ROM) entstanden.

Codierte ALU ITT MP-Experimenter
SYSTEM

FUNKTIONS-
SELEKTOR

1 1 1 1

Lo R7 R¢ Rs R, R3 "R, Ry Ry

VERKNUPFUNG

0 0 0 0
0 G & C Co Ay Ag As A, Az Ay Ay Ag By Be Bs B, B; B, By Bg




Die Funktionen werden mit den Schaltern Cs bis Co festgelegt. Diese Tabelle ist auch auf der
Karte , Codierte ALU” zu finden.
Die Funktionen sind alle ausreichend bekannt und bediirfen daher keiner weiteren Erlauterung.

C: C. Ci GCo Funktion
(0] (0] (0] 0 A
0o 0 0 1 1
0 0 1 0 A
0 0 1 1 B
o 1 (0] 0 0
(0] 1 0] 1 A+1
(0] 1 1 0 A-1
0] 1 1 1 A+B
1 0 0] 0 A-B
1 0 (0] 1 ANB
1 0 1 0 AVB
1 0 1 1 AVYB
1 1 0 0] -1
1 1 0 1
1 1 1 0 fur Ausbau
1 1 1 1
78 ::ID~
78
A-Eingéijge 8
(8bit) 78 —5\
5 _7/ 8 Ausdi
Daten - | Ausgange
——
selektor | (8 bit)
78 ] 8 ] Ry "Ry
B-Eingéﬂge — B
(8bit) 78 8
I Carry
7 Lo
8 Schaltung
SYSTEM 0
8
YNy “tf——
ROM

zur Umcodierung der
Steuereingdnge

Tca TCz TCI TCO

Steuereingdnge




3.4 Akkumulator (SYSTEM 2)

Mit diesem Programm wird ein Akkumulator simuliert. Die in der Tabelle gezeigten Funktionen
werden mit den Schaltern Cs bis Co ausgewahlt. Der Schalter Cs dient als Taktschalter.
Durch einmaliges Hin- und Herschieben wird ein Ergebnis in das Register ibernommen und
zur Anzeige gebracht. Die A-Schalter werden in diesem Beispiel nicht gebraucht, weil die
A-Eingange der im Akkumulator enthaltenen ALU mit den Ausgéngen des Registers verbunden
sind. Das Ergebnis bzw. der momentane Inhalt des Akkus wird wieder in R7 bis Ro angezeigt,
ein Ubertrag in Lo.

Akkumulator ITT MP-Experimenter
SYSTEM

FUNKTIONS-
TAKT SELEKTOR

1 1 1 1

Lo Ry Re Rs Ry R3 Ry Ri Ry

AKKU - INHALT

0 0 0 0
C. G & G G 0O 0 0 00 0 0O B Bse Bs B, B3 B2 By By

AuBBer den Funktionen der ALU enthalt diese Schaltung als wesentliche Bestandteile noch ein
Register sowie ein Ubertrags-Flag. Das Register dient zum Zwischenspeichern der Ergebnisse.
Hierzu wird eine der Eingangsgruppen (im Beispiel die A-Eingdnge) mit den Ausgangen des
Registers verbunden, so daf eine Art Riickkopplung entsteht. Jetzt werden die Informationen
an den B-Eingdngen mit dem Inhalt des Registers verknipft. Durch Taktimpulse wird das
Verknupfungsergebnis in das Register geladen, wobei der alte Registerinhalt verlorengeht.
Damit ein méglicher Ubertrag nicht nur kurzzeitig erscheint, wird er in einem Flag ebenfalls
zwischengespeichert. Ob dieses Flag getaktet wird oder nicht, wird von einem zusétzlichen
bit Sg im ROM bestimmt. Dies ist erforderlich, da ein Ubertrag nur bei sinnvollen ALU-Funk-
tionen gespeichert wird.

A

Ubertrags- CG"L
Flag (1bit) Ly
ALU | g-pit- Ausginge
B-Eingdnge 8 Register (8bit)

. R ...R
(bit) YRR ENEYW [ 7o
58

[

S5 5756 555, 535,5; Sp

ROM
BB “
S, S, S S, Takt (C,)

Aus der Spalte Ubertrags-Flag kann entnommen werden, ob das Flag getaktet wird oder nicht.
In vielen Mikroprozessoren wird dieses Flag auch bei logischen Operationen getaktet. Da
hierbei aber normalerweise kein Ubertrag entsteht, wird das Flag geldscht.




Us Uz Ui Uo | Abkiirzung | Funktion Ubertrags-Flag
O 0 0O o NOP Keine Operation ja

0O 0O 0 1 SP1 Setze Akku = 1 ja

O 0 1 O CMA Komplementiere Akku nein
o o0 1 1 LDA Lade B in den Akku nein
o 1 0 O CLA Lésche Akku nein
o 1 0 1 INC Incrementiere Akku ja

o 1 1 O DEC Decrementiere Akku ja

o 1 1 1 ADD Addiere B in den Akku ja

1 0 0 O SuB Subtrahiere B von Akku ja

1 0 0 1 AND Akku UND B in den Akku ja

1 o 1 O IOR Akku ODER B in den Akku ja

1 0 1 1 XOR Akku EXCLUSIV-ODER in den Akku ja

1 1 0 O SM1 Setze Akku = —1 ja

1 1 0 1 - - nein
1 1 1 0 - - nein
1 1 1 1 - - nein

3.5 Akkumulator mit Speicher (SYSTEM 3)

Akku mit Speicher ITT MP-Experimenter
SYSTEM
bei Examine INHALT DER ADRESSE
bei Deposit : NEUER INHALT DER ADR.
sonst AKKU"NHALT
Lo R7 Re Rs R, R3 R, Ry Ry
CRY
TAKT EXA-
SIT | MINE OP-CODE ADRESSE DATEN FUR DEPOSIT+ INPUT
1 1 1 1
0 0 0 0
Cs 0 G G 0 Ay Ag As A, Az Ay Ay Ag By Bg Bs B, By B, By By

Das System 3 enthalt grundsétzlich die gleichen Funktionen wie das System 2. Der Unterschied
besteht darin, dal® entsprechend dem Bild die Daten nicht mehr von den B-Schaltern kommen
sondern von einem RAM. Mit dem neuen Befehl STA (Speichere Akku-Inhalt in Adresse
a a a a ab), kénnen die Daten in das RAM zuriickgeschrieben werden. Mit dem Befehl INP
(Lade B-Eingdnge in den Akku) werden jetzt die Daten an B; bis Bo in den Akkumulator
eingelesen (entspricht Befehl LDA in System 2). Bei allen Befehlen, die den Speicher nutzen,
muR jetzt eine bestimmte Adresse spezifiziert werden. Der hier verwendete Speicher hat eine
Kapazitat von 16 Woértern a 8 bit. Damit jedes dieser 16 Worter spezifiziert bzw. adressiert
werden kann, werden 4 bit bendtigt. Damit besteht ein Befehl jetzt aus insgesamt 8 bit.
Hiervon legen 4 bit die Funktion fest, die ausgefihrt werden soll. Sie bilden den sog. OP-Code
(Operation-Code). Die anderen 4 bit bestimmen die Speicheradresse. Aus diesem Grunde
werden jetzt die A-Schalter fir die Befehlseingabe benutzt.

Aus der Tabelle geht hervor, daR es Befehle gibt, die unbedingt die Angabe einer Adresse
bendtigen (a a a a), und andere, die ohne spezielle Adresse auskommen (x x x x).

Bevor Befehle, die Daten aus dem Speicher unter einer bestimmten Adresse benétigen,
benutzt werden kénnen, miissen die entsprechenden Daten in den Speicher geladen werden.
Das Laden einer bestimmten Speicheradresse erfolgt mit dem Schalter C, DEPOSIT (Laden).
Wird dieser Schalter betatigt, d.h. auf 1 und dann wieder auf O geschaltet, werden die
Daten, die an By bis Bo liegen, im Speicher bei der Adresse abgespeichert, die von den
Schaltern As bis Ao spezifiziert ist.

Mit dem Schalter C;1 EXAMINE (Abfragen) kann der Speicherinhalt, der mit Az bis Ao
spezifizierten Adresse in Ry bis Ro abgebildet werden.



zweite Rickkopplung (8 bit)

Carry-Flag
— |,
Ausgdnge
. ‘ 8 A (8bit) Ry Ry
» 6| Schreib- Lese-
Akkumulator Speicher (RAM)
S 16 = 8 bit
-Eingd - 9
B ‘z:—fﬁﬁi 52?;:?0_, — Ss. So Datenspeicher
| TT T Schreib-
Sio Si05 Takt
|_ ROM '
+ N S S A A 1\ A
C2 Cl A7 AS A5 AL A3A2A1 AO CA
DEPO- EXA- OP-CODE Adresse  Takt
SIT MINE
Us Uz Ui Uo as a; a1 ao | Abkiirzung Funktion Ubertrags-
Flag
0O 0O O O X X X X NOP Keine Operation ja
0O 0 0 1 X X X X SP1 Setze Akku = 1 ja
O 0O 1 O X X X X CMA Komplementiere nein
Akku
O 0 1 1 a a a a LDA Lade Inhalt nein
Adresse aa aa
O 1 0 O X X X X CLA Losche Akku nein
o 1 0 1 X X X X INC Incrementiere Akku ja
o 1 1 O X X X X DEC Decrementiere Akku ja
o 1 1 1 a a a a ADD Addiere Inhalt ja
Adresse aaaa
1 0 0 O a a a a SUB Subtrahiere Inhalt ja
Adresse aaaa
1 0 O 1 a a a a AND Akku UND Inhalt ja
Adresse aaaa
1 0 1 O a a a a IOR Akku ODER Inhalt ja
Adresse aaaa
1 0 1 1 a a a a XOR Akku EXCLUSIV- ja
ODER Adresseaaaa
1 1 0 O X X X X SM1 Setze Akku = —1 ja
1 1 0 1 X X X X INP Lade B-Eingange nein
in den Akku
1 1 1 O a a a a STA Speichere Akku in nein
Adresse aa a a
1 1 1 1 X X X X - - -

a a a a = eine Datenspeicheradresse
x x x x = ,don’t care”-Zustand, d.h. beliebig




3.6 Vereinfachter Rechner (SYSTEM 4)

Vereinfachter Rechner ITT MP-Experimenter
SYSTEM
bei Examine:: INHALT DER ADR. DES BZ
bei Deposit : NEUER INH. DER ADR. DES BZ
sonst AKKU-INHALT
L7 Le Ls Ly, Ly Lo R7 Re Rs R, R3 R, Ry Rg
BEFEHLSZAHLER RUN CRY
SINGLE EXA DATEN FUR DEPOSIT+INPUT
STEP SIT | MINE | ADR ADR FUR LD. ADR. OP-CODE ADRESSE
1 1 1 1
0 0 0 0
C, C & Cy Co O 0 0 0 A3 A AT Ag By Bg Bs B, B3 B, By Bg

Bei diesem System wird ein vereinfachter, aber kompletter Rechner simuliert. Er hat denselben
Befehlsvorrat wie der Akkumulator mit Datenspeicher im System 3. Zuséatzlich hat er einen
HALT-Befehl (HLT), damit der Rechner am Ende eines Programms angehalten werden kann.
Im Gegensatz zum System 3 werden im 16-Wort-Speicher nicht nur Daten sondern auch
das Programm angespeichert. Das Programm und die Daten werden mit dem DEPOSIT-
Schalter C; in den Speicher geladen. Damit ein Programm automatisch ablaufen kann,
enthélt der simulierte Rechner einen Befehlszadhler (BZ). Welche der 16 Adressen gerade
selektiert ist, wird durch die LEDs L; bis Ly angezeigt. Die Funktionsweise des Befehlszahlers
kénnen Sie wie folgt kontrollieren:

— Stellen Sie alle Schalter auBer Cs auf 0. Bei C4 = 1 arbeitet das System im Single-Step-
Betrieb, d.h., der Befehlszahler kann mit Schalter C; (RUN) in Einzelschritten getaktet werden.
— In L7 bis L4 erscheint jetzt eine beliebige Adresse von 0 0 0 O bis 1 1 1 1.

— Takten Sie das System mit RUN. An L; bis Ls kénnen Sie sehen, daR der Befehlszahler
mit jedem Takt um einen Schritt hoher springt.

Mit den Schaltern A3z bis Ao kénnen Sie den Befehlszahler auf eine bestimmte Adresse
laden.

Wenn Sie z.B. A3 bis Ag auf 0 1 1 O einstellen und den Schalter LOAD-ADRESS (Co) betétigen,
wird der Befehlszahler auf diese Adresse gesetzt (Anzeige durch L; bis Ls). Wenn Sie jetzt
mit dem RUN-Schalter weitertakten, zahlt der Zahler von dieser Stellung weiter.

Mit den Schaltern B; bis Bo kdnnen OP-Code und Adresse eingegeben werden. Hierbei ist
unbedingt zu berlicksichtigen, daR es sich um einen Befehl handelt, der in einer bestimmten
Adresse abgespeichert wird. Wenn Sie z.B. B; bis Boauf 0 1 1 1 0 0 1 O einstellen und den
Schalter DEPOSIT C: takten, wird dieser Befehl in der Adresse abgespeichert, die gerade
vom Befehlszahler selektiert ist. Der Befehl 0 1 1 1 0 O 1 O besagt laut Tabelle: Addiere
den Inhalt der Adresse O O 1 O zum Inhalt des Akkus. Dies bedeutet — und das ist unbedingt
zu beachten — dal} bei der Befehlszahlerstellung, bei der dieser Befehl eingegeben wurde,
diese Rechenoperation durchgefiihrt wird.

Die abzuarbeitende Folge von Steuerwoértern oder Befehlen (das Programm) wird zunachst
in den Programmspeicher geladen. Dabei ist natirlich die Reihenfolge der einzelnen Befehle
wichtig. Die Befehle werden deshalb im Programmspeicher mit steigenden aufeinander-
folgenden Adressen gespeichert. Wenn dann lber einen Zahler die Programmspeicher-
adressen automatisch erzeugt werden, erscheinen die Befehle in der richtigen Reihenfolge
und kénnen nacheinander ausgefiihrt werden. Bevor man allerdings ein solches System
benutzen kann, muR das Programm zunachst in den Programmspeicher geladen werden.

Damit der Rechner anhalt, wenn das Programm abgearbeitet worden ist, muR am Ende eines
Programms ein HALT-Befehl den Ablauf stoppen. Ohne diesen Befehl hatte das Programm
kein Ende. Der Rechner wiirde auch die Daten ausfiihren und am Ende des Speichers wieder
von vorne beginnen. Dem HALT-Befehl ist der OP-Code 1 1 1 1 zugeordnet.

10



Carry

Lo

B-Eingdnge
- Ausgdnge
B, B, Daten > Akkumulator |-s—g—%—-
| selektor
R7 R0
A
- 8
£i14
Befehls- v
zdhler
\ 4
\
AdreR3- RAM-
) zwischen- 77 Speicher
speicher 16 < 8 bit
[}
8
Befehls- i -
register @
0
2
@ hel
3 LS
1
ittty
4 Ly
¢ Steuerung T
und v
Taktverteiler - Taktgenerator
LA T r T T T
A3 AN Ag G & G G C,
Adresse fur LOAD- EXA- DEPO- RUN SINGLE-
LOAD-ADR. ADR. MINE SIT STEP

Zur Steuerung des Rechenablaufes wird ein Steuerwerk benétigt. Ein solches Steuerwerk
ist recht kompliziert, und wir werden uns deshalb im Rahmen dieses Lehrganges auf eine
kurze Beschreibung beschréanken. Die Aufgabe des Steuerwerkes ist es, die verschiedenen
Taktimpulse und Steuerwoérter fiir die einzelnen Stufen des Rechners zu erzeugen. Die zu
erzeugenden Steuerimpulse héngen jeweils vom gerade auszufiihrenden Befehl ab.

Der Befehlszahler zeigt an, welcher Befehl des Programms (z.B. Nr. 17 des Programms)
ausgefihrt werden soll. Der Befehlszahlerinhalt wird also zuerst auf die AdreReingange des
Speichers lbertragen. Der auszufiihrende Befehl wird jetzt aus dem Speicher geholt und
im Befehlsregister zwischengespeichert. Da der Befehl im allgemeinen aus dem Operationsteil
(B7 . . . Bs) und dem Adrefteil (B3 . . . Bo) besteht, muR der Inhalt des Befehlsregisters in
Operations- und AdrefRteil aufgespalten werden. Aus dem Operationsteil (Op-Code) des
Befehles erkennt das Steuerwerk durch eine entsprechende Logik, ob dieser Befehl eine
Adresse bendtigt oder nicht. Wenn nicht, veranlaBt das Steuerwerk direkt die entsprechende
Operation (z.B. Op-Code = 0 0 O 1). Wenn ja, wird der AdreRteil (iber den AdreRzwischen-
speicher auf die AdreReingange des Speichers gegeben. Das unter der angesprochenen
Adresse liegende Datenwort gelangt aus dem Speicher zur Ausfiihrung der Operation in den
Akkumulator. Damit ist der Befehl ausgefiihrt, und der Rechner kann nach Erhéhen des
Befehlszahlers den nachsten Befehl der Programmliste durchfihren. War dieser Befehl ein
HALT-Befehl (letzter Befehl jedes Programms), stoppt das Steuerwerk den Rechenablauf.

11




3.7 Hypothetischer Mikrorechner (SYSTEM 5)

Der ebenfalls per Programm simulierte ,Hypothetische Rechner” (HR) ist im Gegensatz zum
vereinfachten Rechner ein Rechner mit Bus-Struktur. Das Bild stellt ein Blockschaltbild dieses
Rechners dar.

Ape v v et A, . Bs - B, B, B,
ERRER REINRY!
8-bit-Input- Port Display- Selektor |—

t
ALU Befehlsregister
Zwischenspeicher ‘
l | J Befehlsdecoder
N yA c

Flag[ |Flag[ [Flag ‘ ’ |

le— LOAD-ADR. Cq
«— EXAMINE  C;

RO Steuerwerk |e— DEPOSIT  C,
«— RUN C3
+— SINGLE-STEP C,
R1
Taktgenerator
R2

auch Indexregister

<+—— 8-bit-Datenbus ——»

R3
auch Ind.-Reg. Adrefregister
u.Stack-Pointer :1
PC -
%)
. ROM E
8-bit- Output-Port | 24 % 8 bit %
<
EREERRE 3
R7 ------ RO ql)
RAM
8-bit-Output - Port 232x 8 bit ]
Prvevree o L ||
7ttt LO

Wie das Blockschaltbild zeigt, besitzt der HR 4 Arbeitsregister (RO bis R3), von denen R2
und R3 als Indexregister fiir besondere Adressierung und R3 zusatzlich als Stack-Pointer
benutzt wird.

Zur Signalisierung der Registerzusténde sind ein Negativ-Flag (N), ein Zero-Flag (Z) und ein
Carry-Flag (C) vorhanden, die als Sprung-Conditionen verwendet werden.

Der 8 bit breite Programmzéhler (PC) kann 28 = 256 Adressen spezifizieren. Im AdreRbereich O
bis 24 (0 046 bis 1 816) ist ein ROM untergebracht mit Betriebsprogramm. Dem Benutzer
steht ein RAM mit 231 Platzen im AdreRbereich von 25 bis 255 (1 916 bis F Fi5) zur
Verfligung.

In diesen RAM-Platzen ist bei Bedarf auch der Stack unterzubringen.

Die Adresse F Fi¢ ist als Speicher-Adresse auch nicht verfiigbar, da sie fir den Input-Port
(A-Schalter) reserviert ist, der damit wie ein Speicherplatz angesprochen werden kann.

Das Befehlsformat des HR besteht aus 8 bit, davon 4 bit (MSD) als Op-Code und 4 bit (LSD)
zur Adressierung. Aufgrund des 4-bit-Op-Codes ergeben sich 16 Grundbefehle, die die

Tabelle zeigt.
Es gibt 1- und 2-Byte-Befehle, wobei das 2. Byte je nach AdreRmode eine Kostante (Daten)

oder eine Adresse sein kann.

12



Befehl Maschinen-Code Byte- Funktion Flags
OP-Code Adressierung Anzahl NZC
HALT 0000 OOO0OO 1 halt Rechner an - - -
NOP 0000 1111 1 keine Operation - - -
MOVE 0000 ssdd 1 (s s)>dd - - -
ADDR 0001 ssdd 1 (ss) +(dd) »dd Y4
SUBR 0010 ssdd 1 (dd)—(ss) —»dd A
IORR 0011 ssdd 1 (ss)V(dd) -dd tYto
XORR 0100 ssdd 1 (ss)V(dd) -dd Yo
ANDR 0101 ssdd 1 (ss) A(dd) -dd Yo
R... 0110 eess 1 (f(ss))—>ss *)
STAC 0111 mms s 1/2 (ss) =(mm) -— =
LOAD 1000 mmdd 1/2 (m m)—dd - - -
ADDM 1001 mmdd 1/2 (mm)+ (dd)—dd 11
SUBM 1010 mmdd 1/2 (dd) = (mm)>dd 11
IORM 1011 mmdd 1/2 (mm)V (dd)—dd tto
XORM 1100 mmdd 1/2 (mm)v (dd)—dd tto
ANDM 1101 mmdd 1/2 (mm)A (dd)—dd 1Yvo
JMP . .. 117170 mmec c 1/2 (m m)—PC Sprung - - -
CAL ... 1111 mmec c 1/2 (PC)—(R3), (m m)—PC - - -
Register-Adresse OP-Code-Erweiterung e e *)
ss/dd Register e e Befehl  Reg.-Funktion NZC
00 RO 00 INCR (ss) +1—>ss VY-
0 1 R1 01 DECR (ss)— 1—ss 1t -
10 R2 10 RACL ROT s s u. C links - -1
11 R3 11 RACR  ROT s s u. C rechts - -1
— = Flag wird nicht beeinflu3t
{ = Flag wird beeinfluRt, wird O oder 1
0 = Flag wird auf O gesetzt
AdreBRmode m m
Befehls- mm = mm = mm = mm =
gruppe 00 01 10 11
LOAD @ R2 @R3 1
ADDM # ABSOLUT AUTO INCRE-
SUBM oder INDEXED MENT INDEXED
IORM IMMEDIATE DIREKT tber R2 Uber R3
XORM 2-Byte-Befehl 2-Byte-Befehl 1-Byte-Befehl 1-Byte-Befehl
ANDM 2. Byte = Daten 2. Byte = Adr. R2 enth. Adr. R3 enth. Adr.
@4 R3 @R2 @R3 1
STAC INDEXED ABSOLUT AUTO INCRE-
AUTO DECREM. oder INDEXED MENT INDEXED
tber R3 DIREKT Uber R2 tber R3
1-Byte-Befehl 2-Byte-Befehl 1-Byte-Befehl 1-Byte-Befehl
R3 enth. Adr. 2. Byte = Adr. R2 enth. Adr. R3 enth. Adr.

Fortsetzung der Tabelle auf Seite 14!

13




@ @R2 @R3 1

JMP . .. ABSOLUT AUTO INCRE-
oder INDIREKT INDEXED MENT INDEXED
DIREKT Gber R2 Gber R3

2-Byte-Befehl 2-Byte-Befehl 1-Byte-Befehl 1-Byte-Befehl
2. Byte = Spr.-Adr. |2. Byte = Adr. d. Spr.-Adr. |R2 enth. Spr.-Adr.|R3 enth. Spr.-Adr.

@ @R2
CAL... ABSOLUT
oder INDIREKT INDEXED
DIREKT tiber R2 verwendet

2-Byte-Befehl 2-Byte-Befehl 1-Byte-Befehl
2.Byte = Spr.-Adr. |2. Byte = Adr. d. Spr.-Adr.|R2 enth. Spr.-Adr.

Sprung-Bedingungen c ¢

cc Befehl Sprung- u. Aufrufbedingung
JUMP, CALL unbedingt

01 4 falls Z-Flag =1

..N falls N-Flag = 1

.C falls C-Flug =1
Der Befehl ,R .. .” (Registermanipulation) hat noch eine 2-bit-Op-Code-Erweiterung mit dem

Code ,e e”. Damit gibt es hier 4 Befehle, wie die Tabelle zeigt.
Auch bei den Befehlen ,JMP .. .” und ,CAL .. .” wird der Op-Code mit den beiden Be-

dingungs-bits ,c c¢“ erweitert, so daR jeweils 4 verschiedene Sprungbefehle entstehen.

Mit der Adressierung ,s s” bzw. ,d d” wird je eins von den 4 vorhandenen Registern zum
Quellregister (source, Code s s) bzw. zum Zielregister (destination, Code d d) ernannt.

Die Codierung ,m m” legt den eigentlichen Adressierungsmode entsprechend der Tabelle
fest. Damit kdnnen alle Befehle, die m m enthalten, je nach Wahl des Modes, 1- oder 2-Byte-
Befehle werden.

Alle uber R2 oder R3 indexierten Adressierungen sind 1-Byte-Befehle, alle immediate,
absoluten (direkten) und indirekten ergeben 2-Byte-Befehle.

Hypothetischer Rechner ITT MP-Experimenter
SYSTEM beiLoad Ade:
bel Examine:
bei Deposit
bel Flags

Ly Lg Ls Ly L3 L Ly Lo R7 Re Rs R, R3 R, Ry Rg

sonst: WIE MIT Bs,B.,Bs GEWAHLT WIE MIT B;,B:, Bo GEWAHLT
FUR Ly....LoJFUR Ry...Ro
STEP SIT | MINE | ADR. DATEN FUR LD. ADR+DEPO+INP DISPLAY-SELEKTOR
1 1 1 1
0 0 0 0

C, GC3 C2 Cq Co Ay Ag As A, Az Ay Ay Ag 0 O Bs B, B3 B, By By

Bedeutung der Schalter:

Die Schaltergruppe C. bis Co hat die gleiche Bedeutung wie im System 4. Wie aus der
aufgelegten Schablone zu erkennen ist, wird bei LOAD-ADR. = 1 die an den Schaltern A;
bis Ao eingestellte Adresse angewahlt. Solange Co = 1 ist, erscheint in den LEDs L7 bis Lo die
angewahlte Adresse, der Inhalt dieser Adresse wird in R; bis Ro angezeigt. Das gleiche
gilt fir die Betatigung von EXAMINE und DEPOSIT. Bei DEPOSIT = 1 erscheint in R7 bis Ro
der mit dem Takt abgespeicherte neue Adresseninhalt. Werden die erwahnten Schalter wieder

14



in die Stellung O zurlickgesetzt, erscheinen in den beiden Anzeigenreihen die Daten, die
tber die Schalter As bis Ag abgerufen werden. Hierbei kann mit den Schaltern Bs bis B3 die
Anzeige L; bis Lo und mit den Schaltern B, bis B, die Anzeige R7 bis Ro angewahlt werden.

Die Schalter B; und Bgs haben keine Bedeutung. Bei gleicher Einstellung von Bs bis Bz und
B> bis Bo erscheinen in R; bis Ro und L; bis Lo die gleichen Daten. Der Anzeigecode
(Display-Code) spezifiziert die einzelnen Anzeigemdglichkeiten:

Bs bis Bs Anzeige in Ly bis Lo

bzw. bzw.

B2 bis Bo R7 bis Ro

000 Inhalt von RO

001 Inhalt von R1

010 Inhalt von R2

011 Inhalt von R3

100 Stellung des Befehlszahlers PC

101 Zustande der Flags

110 Speicherwort, dessen Adresse vom Befehlszahler spezifiziert ist
111 Speicherwort, dessen Adresse mit A; bis Ao spezifiziert ist

Die Codes O O O bis 0 1 1 bedirfen keiner weiteren Erklarung.

— Code 1 0 O zeigt an, welche Adresse vom Befehlszahler gerade angewahlt wird.

— Code 1 O 1 gibt Auskunft dartber, welche Zustande die 4 Flags gerade einnehmen.

— Code 1 1 O gibt den Inhalt der Speicheradresse an, die vom Befehlszahler gerade an-
gewahlt ist.

— Code 1 1 1 zeigt den Inhalt einer Speicheradresse an, die mit den Schaltern A; bis Ag
frei wahlbar ist.

Wesentlich ist, daR die Schalter Bs bis By keinen EinfluR auf den Funktionsablauf haben.
Sie dienen lediglich zur Anzeige bestimmter Daten, wenn ein Programm ablauft.

Damit Sie mit diesen grundsatzlichen Eigenschaften des Rechners vertraut werden, fiihren
Sie nachfolgendes Ubungsprogramm Schritt fiir Schritt durch:

1. Alle Schalter auf Null stellen

2. A7 bis Ao auf 4 046 einstellen

3. LOAD-ADR. auf 1 stellen (nicht takten!)

In Ly bis Lo erscheint die an A; bis A, eingestellte Adresse, deren momentaner Inhalt
in Ry bis Ro angezeigt wird

4. LOAD-ADR. auf O stellen, in Ly bis Lo und R; bis Ro erscheint der zuféllige Inhalt von RO,
da mit den Schaltergruppen Bs bis B; und B bis By jeweils der Code O O O eingestellt ist
5. Schalter B2 bis Bo auf 1 0 O einstellen. In Ry bis Ro erscheint die Adresse 4 016, die Uber
LOAD-ADR. geladen wurde

6. A; bis Acauf 1 00 00 1 0 O einstellen und DEPOSIT auf 1 stellen. In L7 bis Lo erscheint
die Adresse 4 016, in R7 bis Ro die an A7 bis Ao eingestellten Daten. Schalter DEPOSIT auf O
zuriickstellen. Bei B, bis Bo = 1 0 0 erscheint jetzt in Ry bis Ro die nachste Adresse 4 116
7. A7 bis Ao auf F Eq6 einstellen und DEPOSIT takten

8. A7 bis Ao auf O 116 einstellen und DEPOSIT takten

9. A7 bis Ao auf 1 116 einstellen und DEPOSIT takten

10. A7 bis Ao auf O 616 einstellen und DEPOSIT takten

11. A7 bis Ao auf O 015 einstellen und DEPOSIT takten

12. A7 bis Ag auf 4 046 stellen und LOAD-ADR. takten

Wenn Sie alle Eingaben genau vorgenommen haben, ist der Rechner mit einem bestimmten
Programm geladen und lber Punkt 12 wieder auf die Anfangsadresse 4 O1s zurlickgestellt.
Mit EXAMINE Uberpriifen Sie die Eingaben:

1. Alle Schalter auf O

2. EXAMINE auf 1 stellen. In Ly bis Lo erscheint die Adresse 4 O1¢, in R7 bis Ro deren Inhalt 8 46,
also der erste Befehl des Programms. Hierbei handelt es sich um den Befehl LOAD RO, F Eis
(lade Akkumulator RO mit dem Inhalt der Adresse F Eis). Diese Datenadresse ist in der
nachsten Programmadresse abgespeichert

15




3. EXAMINE iiber O wieder auf 1 stellen. In L7 bis Lo erscheint die Adresse 4 116, derInhalt F Ess
erscheint in R; bis Ro

4. Punkt 3. wiederholen. In Ly bis Lo erscheint Programmadresse 4 216. Der Inhalt dieser
Adresse O 116 (Anzeige in R; bis Ro) entspricht dem Befehl MOVE R1, RO. Dieser Befehl
bewirkt, daR die Daten aus RO in R1 transferiert werden

" 5. Punkt 4. wiederholen. In L7 bis Lo erscheint Adresse 4 316. Der Inhalt 1 116 entspricht dem
Befehl ADDR R1, RO. Hierbei werden die Daten des Registers RO mit dem InhaltR1 in R1 addiert
6. Punkt 5. wiederholen. In der Adresse 4 446 ist der Befehl O 616, d.h. MOVE R2, R1, abge-
speichert. Hierbei werden die Daten von R1 in R2 gebracht

7. Punkt 6. wiederholen. In der Adresse 4 516 ist der HALT-Befehl abgespeichert

Damit dieses Programm mit definierten Daten ablaufen kann, speichern Sie in Adresse F E1s
die Zahl 1 O16:

1. As bis Ao auf F Es6 einstellen

2. Schalter LOAD-ADR. takten

3. A; bis Ap auf 1 016 einstellen

4. DEPOSIT takten

Jetzt stellen Sie (iber LOAD-ADR. das System wieder auf die Programmadresse 4 016 zurlck
und schalten tber C4 SINGLE-STEP-Betrieb ein.

Adresse Inhalt Befehl Kommentar
(hexadez.) Maschinencode

40 10000100 LOAD RO, FE

41 11111110 Datenadresse
42 00000001 MOVE R1, RO

43 00010001 ADDR R1, RO

4 4 00000110 MOVE R2, R1

45 000000O0O0 HLT

FE 00010000 Daten

Zur Beobachtung des Datenflusses stellen Sie B, bis Bo auf 1 0 O (Stellung PC) und Bs bis B3 auf
0 0 O (Inhalt RO). Mit Schalter RUN wird jetzt das System einmal getaktet. In L; bis Lo
erscheint 1 046, also die Daten aus Adresse 4 116, da hier (durch MODE O 1 im Maschinen-
code bedingt) kein neuer Befehl, sondern eine Datenadresse abgespeichert ist.

Schalter Bs bis Bs auf O O 1 einstellen, und RUN erneut takten. Die Daten von RO erscheinen
jetzt auch in R1. System mit RUN takten. In Ly bis Lo erscheint das Additionsergebnis 2 O1s.

Schalter Bs bis Bz auf 0 1 O stellen und mit RUN takten. Die Daten von R1 erscheinen auch
in R2. Weiteres Takten hat keinen EinfluR mehr auf das System, da in Adresse 4 516 ein
HALT-Befehl programmiert ist.

Wie bereits erwahnt, ist im AdreRbereich O 016 bis 1 816 des ROMs ein Betriebsprogramm
untergebracht. Dieses Betriebsprogramm ist ein Multiplikationsprogramm, das als Unter-
programm benutzt werden kann:

16



Adresse Inhalt Befehl Kommentar

01 75 STACR1,FO speichere Multiplikand 1)
02 FO -

03 45 XORR R1, R1 I6sche Zwischensumme

04 82 LOAD R2, #0 8 setze Schieifenzahler

05 08

06 69 RACL R1 verschiebe rechte Halfte Zwischensumme 2)
07 68 RACL RO verschiebe linke Halfte Zwischensumme

08 E3 JMPCOC prife Carry-Flag 3)
09 ocC

OA EO JUMP 1 4

0B 14

ocC 95 ADDM R1,F O C-Flag war 1, addiere

oD FO

OE E3 JMPC 1 2 4)
OF 12

10 EO JUMP 1 4

11 14

12 90 ADDM RO, # 0 1| C-Flag war 1, addiere 5)
13 01

14 66 DECR R2 erniedrige Schleifenzéhler

15 E1 JMPZ 19 Schleifenende?

16 19

17 EO JUMP 0 6

18 06

1. Der Multiplikand steht in R1. Dieses Register wird spater fir die rechte Halfte der Zwischen-
summe bendtigt. Aus diesem Grunde mufl der Multiplikand abgespeichert werden. Dies
geschieht in unserem Beispiel unter der Adresse F O.

2. Die Verschiebung der Zwischensumme erfolgt in 2 Schritten. Zuerst wird die rechte
Halfte (R1) verschoben. Das herausgeschobene bit kommt in das Carry-Flag. Danach wird die
linke Halfte (RO) verschoben. Der Inhalt des Carry-Flags wird dabei von rechts in RO hinein-
geschoben, so daR insgesamt eine Verschiebung mit doppelter Wortlange durchgefiihrt wird:

@ @ O O
C@JILRIOLII@HIR[IIII/E

Dabei ist noch zu beachten, daR durch den Befehl RACL 2 1 der Inhalt des Carry-Flags von
rechts in R1 hineingeschoben wird. Uber das Programm muR deshalb sichergestelit werden,
daR vor dieser Instruktion das Carry-Flag O enthélt. Dies wird beim ersten Programmdurchlauf
durch die Instruktion XORR R1, R1 garantiert. Dieser Befehl bewirkt ndmlich ein Loschen des
Carry-Flags. Auch in der Schleife muR diese Bedingung erfillt sein.

3. und 4. Die folgenden Programmschritte (Addition) missen Ubersprungen werden, wenn
das Carry-Flag Null ist. Ein solcher Befehl ist im hypothetischen Rechner nicht vorhanden. Er
muf daher durch einen bedingten und unbedingten Sprung realisiert werden, was natirlich
zu einem langeren Programm fihrt. ‘

5. Dieser Befehl addiert 1 zur linken Halfte der Zwischensumme und I8scht gleichzeitig das
Carry-Flag, da sich bei dieser Addition kein Ubertrag ergeben kann. Damit ist sichergestellt,
daR im nachsten Schleifendurchlauf mit dem Befehl RACL R1 eine Null von rechts in die
Zwischensumme geschoben wird. Zum Erhéhen von RO kénnte auf den ersten Blick auch
der Befehl INCR RO verwendet werden. Dies ist nicht mdglich, da dieser Befehl das Carry-Flag
nicht beeinfluf3t.

17




Dieses Unterprogramm kann, wie das folgende Beispiel zeigt, in ein Gesamtprogramm fiir
Multiplikationen eingebaut werden:

Adresse Inhalt Befehl Kommentar
40 83 LOAD R3, # FF Initialisiere Stack-Pointer
41 FF
42 FO CALL MULTA
43 26
44 50 ADR F 1 Adresse von Faktor 1
45 51 ADR F 2 Adresse von Faktor 2
46 52 ADR P Produktadresse
47 | 00 | HALT _ _ _ |\ _ _ _ _ _ _ _ _ _ _ _ ____
26 OE MOVE R2, R3
27 8A LOAD R2, @ R2
28 8 A LOAD R2, @ R2
29 88 LOAD RO, @ R2
2A OE MOVE R2, R3
2B 8 A LOAD R2, @ R2
2C 62 INCR R2
2D 8 A LOAD R2, @ R2
2 E 89 LOAD R1, @ R2
2F EO JUMP O 1
(80 J°r _luumpor_
01
02

Multiplikations-
programm Unterprogramm
im ROM-Bereich

17

18

19 OE MOVE R2, R3
1A 8A LOAD R2, @ R2
1B 92 ADDMR2, @ 0 2
1C 02

1D 8 A LOAD R2, @ R2
1E 79 STAC R1, @ R2
1F 62 INCR R2

20 78 STAC RO, @ R2
21 8E LOAD R2, @ R3 *
22 92 ADDMR2, # 0 3
23 03

24 72 STAC R2, @ ¥ R3
25 EC JUMP @ R3 1

18



3.8 Mikrorechner-System 8080 (SYSTEM 6)
Das nachstehende Blockschaltbild zeigt den Aufbau des Mikrorechners mit der CPU 8080.

v
o
o~
<5
4 :
< 8
w " g
8 3 fLxza3
2 5 $ZZoosm:
© © o wuw
I &8 Hss—==Zzz
Oy..Ly - -
PYPYIS-v = Z S
Gl
A
0g...Ltg - 0 L
BRoyYIs-g > Z 5 = 3o <™ uadwo -]
0:)“.73 -
$2NPRS -0 < | = © Oy Ly
z < 23 2.
™ - © © o @ uadwn -y
W3ILSAS -
A
w o~
g
~
@
= x O o ©
<_\( .
X Jo5
~g ©
g
o
t
© 3 A Y
Sx e, 3 £
®xg el 3 EQ
-5 >~ &5 o
S) - o 8
= A
© o Va
™

o RO =z
DCD D~
a X~
UO éco
@© —_
l-—————— z

RESET RDY STSTB HLDA BUS EN

r

Die CPU 8080 mit dem Taktgenerator 8224 und dem System-Controller 8228 liefert alle
AdreR-, Daten- und Steuersignale, die auf der linken AnschluB3leiste verfiigbar sind.

Im 1-k-ROM mit dem AdreRbereich O O O 016 bis O 3 F Fis ist das Monitorprogramm
dieses Systems (und der niederen Systeme) untergebracht. Zur Verfiigung des Anwenders
steht das 1/4-k-RAM im absoluten AdreRbereich O 4 O 016 bis O 4 F Fi6, seine Adressen
werden vom Monitor in die relativen Adressen O Ois bis F Fis umgesetzt. Am Datenbus
liegen 3 8-bit-Input-Ports und 2 8-bit-Output-Ports, die mit isolierter 1/O-Adressierung
betrieben werden. Sie werden mit einzelnen AdreRbits adressiert, so dal maximal je 8 Input-
bzw. Output-Ports adressiert werden kénnen (Adressen 01,02,04,08,10,20,40,80
davon 0 1,02, 0 4 bzw. 0 1, 0 2 verwendet).

Dem Benutzer stehen die im nachstehenden Bild dargestellten Register der CPU zur Verfigung.

INT —
T |

HOLD —»
RESET -—¢

Im Flag-Register (F) sind die Flags ,N” (Negativ), ,,Z* (Zero), ,H"” (Half-Carry fir Ubertrége
vom 3. ins 4. bit, Verwendung fur BCD-Operationen), ,P“ (Paritdt, d.h. bei einer geraden

19




Anzahl von 1 in einem Register wird P = 1) und ,,C” (Carry) vorhanden. Die iibrigbleibenden
3 bits sind fest mit O bzw. 1 belegt. Das 8-bit-A-Register ist das Haupt-Arbeitsregister
(Akkumulator), das gegeniiber den ibrigen Registern mit einigen besonderen Befehlen
arbeiten kann.

Half-Carry-Flag H

immer 0

immer 0 P Paritdts-Flag
Zero-Flag Z immer 1
Negativ-Flag N C Carry-Flag
| | A
P C| F Flag-Register
Registerpaar PSW <
A Akkumulator
B Register
Registerpaar B <
C Register
D Register

Registerpaar D
1 E Register

H Indexregister

Registerpaar H

L Indexregister

SP Stack-Pointer

PC Befehlszdhler

Die je 8 bit breiten Register B, C, D, E, H und L sind gleichwertige Arbeitsregister.

Bei einigen Befehlen werden die Register als Registerpaare benutzt, so bilden F und A das
Registerpaar PSW (Program Status Word), B und C das Paar B, D und E das Paar D sowie
H und L das Paar H. Die Registerpaare B, D und H erlauben dann 16-bit-Operationen.
Das Paar H dient bei einigen Befehlen als Indexregister, d.h. es erlaubt auf einfache Weise
eine Indexadressierung.

Weiterhin steht ein 16-bit-Stack-Pointer (Stapelzeiger) zur Verfliigung, der bei Programm-
spriingen usw. die Adresse des Speicherplatzes anzeigt, in dem die Riicksprungadresse steht.

Ein 16-bit-Programm-Zahler (PC) dient zur Adressierung von insgesamt 64 k (65 536)
moglichen Speicherplatzen.

Das 8080-System hat ein 8-bit-Befehlsformat. Dabei ist insgesamt nicht zwischen Op-Code
und Adressierung zu unterscheiden, d.h. man muf3 alle 8 bits als Op-Code verstehen. Damit
ergében sich theoretisch 28 = 256 Befehle, von denen jedoch 12 Méglichkeiten nicht
verwendet werden, so dal} 244 Befehle ubrigbleiben.

Durch Zusammenfassen zu Befehlsgruppen mit zusatzlicher Codierung (innerhalb der 8 bits)
ergibt sich eine Ubersichtliche Form des Befehlsvorrates.

Aufgrund unterschiedlicher Adressierung kénnen die Befehle 1-Byte-, 2-Byte- oder 3-Byte-
Befehle sein. Die folgende Tabelle zeigt alle Befehle in der komprimierten Form der Befehlsliste
unter Verwendung zusétzlicher Codierungen.

20



Befehl Maschinen-Code Byte Funktion Flags

N ZHPC
NOP 0000 0O0OO0O 1 keine Operation - - - - -
MOV d, s O01dd dsss 1 (sss) >ddd - - - - =
MVI d, #k. 00dd d110 2 konst. -d d d - - - - =
LDA adr. 0011 1010 3 (adr.) —A - - - - -
STA adr. 0011 0010 3 (A) —adr. - - - - =
LDAX rp* OO0Orr 1010 1 (@rp) ~A - - - - =
STAX rp* 0O0rr 0010 1 (A) —@rp - - - - -
LHLD adr. 0010 1010 3 (adr.) —HL - - - - =
SHLD adr. 0010 0010 3 (HL) —adr. O
LXI rp, # k OO0Orr 0001 3 konst. —rp - - - - =
XCHG 1110 1011 1 (HL) -<-(DE) - - - - =
IN A, adr. 11701 1011 2 (adr.) —A - - - - -
OUTadr, Al 1101 0011 2 (A) —adr. - - - - =
ADD A, s 1000 Osss 1 (sss)+ (A) Al ¥ ¢ 14
ADC A, s 1000 1sss 1 (sss)+(A)+(C) »A| ¢+ ¢+ ¢+ ¢ ¢
ADIA #k | 1100 0110 2 (A) +konst. —A|l ¥ § 4 1 ¢
ACI A #k 1100 1110 2 (A) +konst.+(C)>A| ¥ ¢+ ¢ ¢ ¢
SUB A, s 1001 Osss 1 (A) —(sss) Al $+ $ ¢ ¢4
SBB A, s 1001 1sss 1 (A) —(sss)—-(C)—A| ¢+ ¢+ ¢ ¢ ¢
SUIA #k 1101 0110 2 (A) — konst. Al ¢+ ¢+ 4 4 ¢
SBI A, #k 17101 1110 2 (A) —konst.—(C)>A| ¢ § ¢ ¢+ 4
CMPA, s 1011 1sss 1 (A) - (sss) PPt
CPIA, #k 11711 1110 2 (A) - konst. 14 et
DAD H, rp 0O0rr 1001 1 (HL) + (rp)—HL - - - -1
DAA A 0010 0111 1 (A)  + korr.—~A VPP
ANA A, s 1010 Osss 1 (A) A (s s s)—A {4t 4o
ANIA,#k | 1110 0110 2 (A) A konst.—A 14 vt Yo
ORA A, s 1011 Osss 1 (A) V (s s s)—>A {toto
ORI A, # k 1111 0110 2 (A) V konst.—A 1t oto
XRA A, s 1010 1sss 1 (A) ¥ (s s s)—>A ttoto
XRI A, # k 1110 1110 2 (A) ¥ konst.—>A Yot o
CMAA, A 0010 1111 1 (A) —A - - - - =
INR d 00dd d100 1 (ddd) +1>ddd A
DCR d 00dd d101 1 (ddd) -=1—-ddd R A R
INX rp OO0rr 0011 1 (rp) + 1->rp - - - - =
DCX rp OO0Orr 1011 1 (rp) - 1-rp - - - - =
R...A 0O0O0On n111 1 (An) —A - - - -4
PCHL 1110 1001 1 (HL) —PC - - - - -
JMP adr. 1100 0011 3 (adr.) =PC - - - - -
J...adr. 11Tbb b0O010 3 (adr.) >PC, wenn - - - - -
CALL adr. 1100 1101 3 (adr.) =PC, (PC)—>SP - - - - -
C...adr. 11bb b100 3 (adr.)>PCwenn(PC)—»SP| - - - — -
RET 11700 1001 1 ((SP))—PC - - - - -
R... 11bb b0O0OO 1 ((SP))—PC, wenn - - - - -
RST a 1T1aa a111 1 8 x a—PC - - - - =
POP** 1T1rr 0001 1 ((SP))—rp 2 A T
PUSW** 1T1rr 0101 1 (rp) —(SP) - - - - -
SPHL 1111 1001 1 (HL) —SP - - - - =
XTHL 1110 0011 1 ((SP))«=(HL) - - = - =
El 1111 1011 1 Interrupt erméglicht - - - - -
DI 11711 0011 1 Interrupt gesperrt - - - - -
STC 0011 0111 1 1 —-C - - - -1
CMC 0011 1111 1 (C) —»C - - - -4
HLT 0111 0110 1 Prozessor halt an - - - - =

21




Die verwendeten zusatzlichen Codierungen haben dabei folgende Bedeutungen:

Register-Code s s s = Quellregister
sssod.ddd Register rr Reg.-Paar rp d d d = Zielregister
000 B 00 BC =B M = Speicherplatz
001 c 01 DE =D 4 = Flag wird beein-
011 E SP
100 H - = Flag wird nicht
101 L . nur 0 0 und O 1 beeinflulst
110 M = ((HL)) b 1 1 far PSW 1,0 = Flag wird 1,0
111 A dann bei POP
Flags
Rotate-Code (R...)nn
nn Befehl Funktion
0] RLC (A7)—>Ao, (A7)—C
01 RRC (Ao)—>A7, (Ao)—C
RAL (A7)—C, (C)—>Ao
RAR (Ao)—C, (C)—Ay
Sprung-Bedingungs-Code b b b
bbb Befehlszusatz Bedingung
000 .. Nz wenn Z = 0, d.h. Inhalt # O
001 L2 wenn Z = 1, d.h. Inhalt = 0
010 ..NC wenn C = 0, d.h. kein Ubertrag
011 ..C wenn C = 1, d.h. Ubertrag
100 .. PO wenn P = 0, d.h. Paritat ungerade
101 .. PE wenn P = 1, d.h. Paritat gerade
110 ..P wenn N = 0O, d.h. Inhalt positiv
111 .M wenn N = 1, d.h. Inhalt negativ

Fir die genaue Kenntnis der Wirkungsweise der einzelnen Befehle sollte man die Datenunter-
lagen der Hersteller des 8080 oder das schriftliche Lehrmaterial des ITT MP-Lehrsystems
zu Rate ziehen.

Um nun mit dem Mikrorechner 8080 arbeiten zu kénnen, ist ein Monitorprogramm erforderlich,
Uber das man Einblick in den Zustand bzw. die Arbeitsweise nehmen kann. Das Monitor-
programm fiir das 8080-System beim ITT MP-Experimenter ist ein fiir den Lernzweck mit
diesem Gerat speziell zugeschnittenes Programm und nicht identisch mit den Monitorpro-
grammen der 8080-Hersteller.

Im einzelnen erlaubt dieses Programm:

— die Registerinhalte des 8080, den Stand des Befehlszahlers und die Inhalte aller RAM-
Adressen sichtbar zu machen

— das RAM zu laden (Funktion DEPOSIT) und den RAM-Inhalt automatisch zu kontrollieren
(Funktion EXAMINE)

Das Monitorprogramm ist im ROM untergebracht und kann durch Betédtigung der RESET-Taste
gestartet werden.

Es wird auRer Betrieb gesetzt, d.h. das Anwenderprogramm im RAM wird vom 8080 be-
arbeitet, wenn der RUN-Schalter (C3) auf 1 gestellt wird.

Wenn RUN = 1 ist, ist der Monitor auRBer Betrieb und alle tibrigen Schalter haben keinen
sichtbaren EinfluR mehr. Auch nach dem Riickschalten von RUN auf O bleibt das Anwender-
programm in Betrieb, d.h. das Monitorprogramm l&uft nicht. Das Monitorprogramm ist nur
bei RUN = 0 durch Betatigung der RESET-Taste wieder in Betrieb zu setzen.

22



MP-System 8080 ITT MP-Experimenter

SYSTEM

Ly Le Ls Ly L3 Ly Ly Lg Rz Re Rs R, R3 R, Ry Rp

BEHN Inh. der mit A-Sch.gewdahlten Adr Inh.der mit B-Sch.gewdhlten Adr.
HT [ oo [0EPO] XA [ LoaD RAM rel Adr f Ld. Adr,Depos+Exa.
amBP S Y Stack rel Adr (Offset)f Stack Disp. RAM rel. Adr. fir Stack-Display
1 1 1 1

0 0 0 0
C, GCs C2 Cy Co Az Ag As A, Az A Ay Ag By Bs Bs B, B3 B, By By

Solange der Monitor in Betrieb ist, konnen die Inhalte der Register und der Stand des Befehls-
zahlers zur Anzeige gebracht werden. Der Monitor setzt die echten (absoluten) Adressen des
RAM-Bereiches O 4 0 016 bis O 4 F Fq6 in relative Adressen — RAM-selektive Adressen — um,
die dann O 045 bis F Fis lauten. Die Registerinhalte werden vom Monitor in den STACK-Teil des
RAMs gebracht, der die RAM-rel. Adressen F 445 bis F D¢ belegt. Wahlt man diese Adressen
mit den B-Schaltern, so werden die Register angezeigt. Dadurch, daR die Adressen des
STACK festgelegt sind, kann man die Inhalte der Register mit Hilfe der A-Schalter auch tber
die STACK-relativen Adressen (STACK-Offset) von O 016 bis O 916 (entspricht F 446 bis F D1g)
zur Anzeige bringen. Die nachstehende Tabelle gibt die Codierung an:

abs. Adresse RAM-rel. Adresse " STACK-rel. Adresse Inhalt
B-Schalter A-Schalter
Anz. in R-LEDs .Anz. in L-LEDs
04F4 F 4 00 Reg. L
04F5 F5 01 Reg. H
04F6 F6 02 Reg. E
04F7 F7 03 Reg. D
04F8 F8 04 Reg. C
04F9 Fo 05 Reg. B
O04FA FA 06 Flags
0O4FB FB 07 Akku
O04FC FC 08 PC (bit 7 bis 0)
O4FD FD 09 PC (bit 15 bis 8)

In dieser Form ist der Monitor in erster Linie zum Programmladen zu verwenden. Um Ergebnisse
(Registerinhalte, Speicherinhalte) nach oder wahrend des Laufes eines Anwenderprogramms
sichtbar zu machen, gibt es eine andere Moglichkeit. Das Monitorprogramm wird auch dann
aufgerufen, wenn der Prozessor innerhalb des Anwenderprogramms einen RST-2-Befehl
(D 716) vorfindet. Mit dem RST-2-Befehl wird dhnlich eines Interrupts der Monitor als Interrupt-
Routine aufgerufen, d.h. alle Registerinhalte auf den STACK gebracht. Der STACK-Inhalt ist
dann bei entsprechender AdreRwahl anzeigbar, allerdings nur, wenn ,HLT am BP*” (C,4) auf 1
steht, da damit der Prozessor im Monitor bleibt, d.h. die Anzeige ,steht”. Dadurch ist dann
eine Art von ,,Single-Step-Betrieb” méglich:

Steht C4 auf 1, lauft der Prozessor mit jeder RUN-Betatigung bis zum nachsten RST 2 und
bleibt stehen. Will man ein Programm austesten, ersetzt man einfach den auf den letzten
Befehl des auszutestenden Programmteilers folgenden Befehl durch RST 2. Ist der Programm-
teil in Ordnung, wird wieder der Originalbefehl eingesetzt und RST 2 an der néchst
interessanten Stelle eingebaut usw.

Der Monitoranruf Gber RST 2 erlaubt die Anzeige der Registerinhalte, aber nicht das Neuladen
von Programmen; dies ist nur moglich, wenn der Monitor tiber RESET angerufen wird.

23




3.9 Erweitertes 8080-System (SYSTEM 7)

Im Rahmen der in den technischen Daten genannten Méglichkeiten kann das Rechnersystem
des ITT MP-Experimenters durch den Benutzer erweitert werden. Eine Speichererweiterung ist
auf der Adresse 0 8 0 046 anzubringen, da diese durch das vorhandene Betriebsprogramm
angesprungen wird, wenn der SYSTEM-Schalter auf 7 gestellt wird.

Ab der Speicheradresse O 8 0 016 kann dann ein vom Benutzer entwickeltes anderes Be-
triebsprogramm (ROM) oder aber auch RAM untergebracht werden. Das Monitorprogramm ist
dann auBer Betrieb.

24



4. Stromlaufpldne und AnschluBBbelegung

- +
AZSCF l‘>= 78 M 12 0 +12V, 0,25 A 20 mVgg (100 Hz)
+
’_m_‘ LA L*_ 3Ix
SN 4700 pF 10 uF
+ [ 16V 50V
B =L LM 309 k J__. 0 +5V, 1,5 A 10 mVg (100 Hz)
N = E=470 pF = £=
220V 25V 11 1
50 Hz = ‘L °
gz £=220pF =
g 16 V S
£l 79 M 05 -5V, 0,) A 5 mVsg (100 Hz)
I |
ST
470 pF
6y P
2x B 40 C 1500
Bild 1
Stromversorgung

RESET

(80)

+5V
47k
i A7 bis Ag (35 bis 28)

Cy (36)
B, bis By (11 bis 4)

150

‘1:5
_‘;on pF

Bild 2
Frontplatte (Schaltungsausziige)

CQy 26
N

C, (40)

C3 (39)
C, (38)
Cy (37)

Rg bis Ry (12 bis19)
Lo bis Ly (20 bis 27)

- (L4)
~——= (45)

(86)

-

25

(1u.2)
-

74 LS 03

(89) *— ¢ w45V

(88) ¢—ud—a—+12 V
(87) +——V -5V

+5V (intern)




1l [ o |90
+5v | O | 89
a2v | O | 88
-sv | o | 87

1 [ o ss
(+sV) | O | 85

(+12V) | O | 84

(-sv)| o | 83
sTsTB | O | 82
ROYIN| O | 81
RESIN| O | 80
RESET | O | 79

INT| O | 78

Hoto | o | 77

BUSEN| O | 76
WAIT | O | 75
INTE| O | 74
HWDA | O | 73
mow| o | 72
MEMW | O | 71
MWR| o |70
MEMR | O | 69
INTA | O | 68
ABis | O | 67

. o | 66

. o | 65

. o | 64

. o |63

. o | 62

. o | 61

. o | 60

. o | 59

. O | 58

. o |57

. o | 56

. o | 55

. o |54

. o |53
AB, | O |52
DBy (o} 51

. o | s0

. o | 49

. O | 48

. o | 47

. o |

. o | 45
DBy | O | 44

linke Leiste

von oben
auf die Frontplatte
gesehen

26

Bild 3
AnschluBbelegung

—_

O W M N O O & W N

O T T T e
- O O ® N oo g s w NN -

NN W W W W W W W WW W N RNNNDNDNDN
—O(OCD\IO’U'IBMN—‘OLDGD\)O’U'!FOJ

&~ N
N N
OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

43

Cq

rechte Leiste



5 =z
—'m x 3 14,24
3)-'; g 3 3415322 O—NMUEIMONoO 2N 3 WY O — NM T O~ 13 H“‘l—
W — -4 D Cooww O0OnomOmOO@OOOO @O0 M OOOOOOMmMO —z: 22 —0
X wn T IZE222S3 AL LCILILLCI < ooo0ooaonon - m 0
7 e oy 18 —O
s o2 99 wsow 99 s 79099 009000000000 0000 © 0990000 IR —
10 0" © . C
1k 8 — 7 .
— 1o 1k 6 5 C
1 a2 — 1+ Col -0
4 ,
QZ l
2 l+5
114,24
c 7 21 2 o)
1k ZSD E[—u. @ g 19 15 5 21 20 g W 5
560k N 23 4 19 18 17— o 18 5
RDY IN o4 '3“§col 12 3 6 w 5 15 5w 6 —C
RESIN oO—¢ 2.5 7 10 < 9 uz‘}-oo 3 o
9 17 1~ 6 6 5 0
1}1:[ < . 19 10 15 + o0 13 4 3 o
Tk - | 22 > 23 INTA 12,2
— @ 1 . 25 I/OR _L
HOLD o——— 1 mJ————Z' 27f L/OW +5
3 4 18 3 2| MR
17 A 26 MW
WAIT o 24 14 14,24
13 1|
— |21 nl— o
INT o- . SDG 14 36 19 o wf—o0
;-‘; 17 + o~ [ ] e |
INTE o 16 37 :(S; fg 15_____.0
ol 5
= S 4o B — ] SE—.
o 1 o
e 1r1r- s 5 P S—
1 T T 3 Oy % 122
5 3 +5
A S S i g | |
31
& 8 211424
I I I 13x 0'1}1 30 11 4 13 S 1_‘
5 29 1 12 3 p— 9 10 —0
-5 o— —~ 27 13 2 7 8 O
L _L 26 . 5 = 6 o)
T T 2 x 0 : “xg ;o
? F 2 1 i ¢—9 <I; 17 OO_N ¢ —0
+5 o 22 '~ ® 2 0
1L o— _L B 12\ +5 +12 16 5 0 o 18 o
1k 1k c ! 15 6 18 1 0
—h- 13 10 57 6, 5
24 19
22 17— +5 —l— —J— +5
23 16 I I
St l f l 1 15 1118 4 3 2,“,1&,2/.‘
——‘
romtaufplan oM\ 8 2 % 2 3 . 10 o
4 6 3 28 12 7 @ 8 o
MP—'EX (CPU"P[atlnE) 4 o o 14 — 1 - —0
5 5 10 == 3 oo 4 —0
6 9 ¢ é; 17 2z L@ 0
; 6 5 20 © g o)
; 10 6 18 17 0
1™ 20 16 5 —O0
A= 74 LS 04 L1l PNY QE B 12 18 21 5o, 7 " 3
- B= 74 LS 05 : T
Stromlaufplan C= 74 LS 32 -5 1 1

27

oO—_rpwdbUn o O—=MNwW>Toou O—=rnwdHhoo o= NWHhOOY

oO—=MNwWwdhHho o g

J

—

-
5

-

In
[ B - Sch

A -Sch

. In
C -Sch

Out
L-LEDs

L Out

R-LEDs




