
.

S
S
.

aS
S
:

R

MICRÜKIT AS5EMBLER

666:
0661
084

Bu8:
aaai
Baie

Baua sirEüd

EE%
Eck

*

*

RMTF
RMRSTI
*
FMB5

*

*

EAMS
ERJA
k

LDMS5
*

LDJA
K

DFMS5
DFIHA
k

EDMS
*

RNMS5
RNJA
ENNÜ
*

SYM5
%

S6JH
S7JH
SY5T7
%

+

MÜNMP

RHMINT

-- YER 2.2

ITT YIBEO- UND LEFRSYSTEME
SEL Ab, FFURZHEIM

ITT MP-LEHRSWSTEN
BETRIEESFRÜGRAMM. "NUN ME

RFESISTENT IN MASKENFÜM TYP
HM S2BG ErFül si KK» 8 BIT)
ÜDER INTEL 8368 ExF&1

FFKTEW:UL.1. 1A. FE

KÜNDTHNTEN- UND NAMENS-TABELLE:
Klo «A -SCHRALTERHull £
Bü i *B-TCHRLTER
Bill d *U-SCHALTER

=FÜNETIGNSSCHALTER
Eülo 2 *# LINKE LFRÜn
Eau 1 *RECHTE LED’S

; 19° BIT 3 UND 4 ALS
FÜSITIONSKENNUNG
DER SCHALTER "RUN"
UND HLT AT BF"

El ATu4rF *HÜECHSTE RAM-ADR
Bel 57 gdas *5SFRUNGZIEL IM RAM

FEI REST 1-BEFEHL
Bel aa *UNTERSTE RAM-ADR
Beet *SPRUNGZIEL IM RAM

BEI R5Y 7-BEFEHL
ÜbER BEI INTERUPT

Eau: «BIT 1 FUER EXAMIN
ea 2 «BIT 1=1. WENN

EXAMIN
Eau di «BIT 4 FUER LOAD-

ADR-SCHALTER
Eau Ai «BIT @=1: WENN

LOAD-ADR
Eu 4 «BIT 2 FUER DEPOS
Er 4 «BIT 2=1. WENN

DEPOSIT
Bio 8 *BIT 1 UND 2 FÜER

EXAN OD. DEPOS
EGU «BIT 3 FUER RUN

*+BIT 3=1.: WENN RUN
«BIT 3=8. HENN
NICHT RUN
*BIT5 FUER 5Y5TEM

r
m

E
n

La
un

e

a

SCHALTER
Earl Ha *#BIT5. HENN SY5ST.6
Ei Mu *B1T5; WENN 5Y5T.7
EBül Has *STARTADR FÜER

SYSTEM 7 SERWEI-
TERUNG

URL 3’ du" *SYSTEMSTARTADR

LAI SP. RMTF-1 *5TACK-POINTER

FAGE e
o

MICROKIT ASSEMBLER -- YER 2.2

a S
u

[
I
G

m

aui8
6413
Buif
Ga1B
BBic
Buib

0026
ga21
Bu22

bBu4
E33bu8

s Coestd

aa
ikcaad

Ex

FS
Co
DS

B6iR

c
a

C
u

i
c
u
n
& G
o
.

ES
FS
?8
A6
23
[36300

E3
FS
73

* INITIALISTEREN
IN GSCH *FU. SCH. EINLESEN
JMP MHRIN *5PRUNG ZUM HAUPT

* TEIL: UB DIE NACH
* FOLGENDEN 5THART-
* HBRESSEN FÜUER DIE
* RST-BEFEHLE FREI
* ZU BEKÜMMEN.
FR
*
RMGO JMP RMRSTA *NEUES ZIEL FÜER

RST 1-BEFEHL
NOP

57578 LAI H.RMB5 *STARTADR FUER
* "RUN" LADEN

PUSH H *FÜER "RUN" NACH
* RUNSUB AUF 5TRACK
BRERK PUSH PSW *EINSPRUNG IN MON

FUSH B *MIT RST 2 FÜER
PUSH D *"RUN" MIT "HLT

* AT BF": GESAMT-
* STATUS FÜUER DIS-
* FLAY AUF DEN STACK
* FUSH H FÜLGT NÜCH>

MYI B,RHBP *MASKE FÜER "RUN
* HLT AT BP" LADEN
* SFLANKENERKENNING?

*ZUR FÜRT5SETZUNG

.
.

Da
s

JMP BREAR:

* SUBROUTINE "SRCKJP"
*PRUEFT. OB DIE DURCH DIE "MASKE" FEST-
*GELEGITEN BIT5 DES INH. DES B-REG. MIT
*DER ZAHL "VERGL" UEBEREINSTINMEN.
*WENN JA, ERFOLGT EIN SPRUNG ZU "SFRADR"
xWENN NEIN, GEHT ES IM PRÜGR. WEITER.
* AUFRUF MIT: RST 3. 5RCKJP
* DE MRASKE
* DE VERGL
* DE BÄSPRADR)
SREKJP STHL

PUSH P5W
MüY RB

FLIFRT ANA M
IN H
JMP CKJFZ *ZUR FÜRTS.

* SUBROUTINE "SCKCKI"
*PRÜUEFT. GB DIE DURCH "MASKE" FESTGE-
*LEGTEN BITS DES IHN. DES B-REG. MIT DER
*ZAHL "YVERGL" UEBEREINSTIMMEN.
*WENN JA. WERDEN DIE 3 AUF DIESE 5R
*FÜLGENDEN BYTES BEARBEITET.
*HENN NEIN UEBERSFRUÜNGEN. |

4. SCKCK1* AUFRUF MIT: RST
* DE MASKE
* DE VYERGL
SCKCKi ATHL

PUSH PS5W
MOV A,B

FAGE r
.
.

MICROKIT ASSENELER -- YER 2.2

66823 A&
Bu24 23
4425 35888

0028

8830
6031
Bu32
633
Ba34
8835
038

BuS3B
Bu3C
Au3D
BASE
BESF
Bu4u
audi
B042
845

E3
Fo
78
Ab
23
39888
31004

ES
PS
AR
Zr
AB
A&
23
EA6SHB
C3SEBB

ANA OM
IN H
JMP CKSKi *ZUR FÜRTS.

*AUF DER ZIELADRESSE DES RST 5-BEFEHLS
*BEGINNT EINE FUER DIE SYSTEM-SIMULATION
*BENÜETIGTE 5R
SIMSR DS 8

* SUBROUTINE "SREKSK"
*PRUEFT, OB DIE DURCH "MASKE" FESTGE-
*LEGTEN BIT5 DES INH. DES B-REG. MIT DER
*ZAHL "YERGL" UEBEREINSTIMMEN,
*WENN JA. WERDEN DIE AUF DIESE 5R FÜL-
*GENDEN 9 BYTES BEARBEITET:
*WENN NEIN, WERDEN SIE UEBERSPRÜNGEN.
* HRUFRUF MI: RST 6. 5RCKSK
* DE MASKE
* DE VERGL
SRCKSK STHL

PUSH PSW
MY A.B
ANA M
INH
JMP CKSKZ2 *ZUR FORTS.

*NEUES ZIEL FUER
R5ST 7-BEFEHL, DER
U.R. AUCH DURCH
EINEN HARDURRE-
INERUPT YUN DER
HARDUHRE ERZEUGT
WIRD. |

INTERU JMP RAMINT

”
R
E
E
F
R
T
E
R
O
H

* SUBROUTINE "SFLANK"
*PRUEFT AUF DIE L > H-FLANKE DES MIT
*"MASKE" FESTGELEGTEM BITS ZWISCHEN DEM
*ALTEN ZUSTAND <IM D-REG. > UND NEUEM
*ZUSTAND (IM B-REG.).
*WENN L > H-FLANKE, GEHT ES IM PROGRAMM
*WEITER.
*UENN KE IN E FLANKE, 5PRUNG ZU
* "SPRADR"
* AUFRUF MIT: CALL 5FLANK
* DE MASKE
* DE BÄISPRADR;
SFLANK XTHL

PUSH PSU
MOY A.D
CHA
AHNA 8

NFLEND ANA M
IN HH
JZ CNFUND
JMP_ CKJPND

* SUBROUTINE "NFLANK"
*PRUEFT AUF H > L-FLANKE DER MIT "MASKE"

PAGE J

MICROKIT ASSEMBLER -- YER 2.2

0648
6443
Buan
Bad
Bade
G64n

aasa
851
Aus2
4459

B058
8853
BasA
BBSD
BASE
BasF
Bush
Baci
Bu62

B863
Buod
865
Au68
463
Bu6H
Ba6B
But
Bush
BGE

BuoF
Buru

D
e
r
s

n
e
m

Ka
R
T

E
N

Gn
L
a

[
Z
n

3 u
)

C
O

T
o
o
n

a
II
I
(
5
I
I

[
I
C

n
a

v
n

"
T
T
S
T
E
f
a
C
I
n
l
o
n

F
e
G
a

Gc
ı
G
o
Z
i

G
a
I
T

o
J
o
n

Le
a)

S
Z

h
m

I
n
c
u

BE
23
C25E88
’E
23
66
6F
Fi
ES
[3

E3
FS

*FESTGELEGTEN BITS ZWISCHEN DEM ALTEN
* ZUSTAND KIM D-REG.> UND NEUEM ZUSTAND
(IM B-REG.)
*WENN H > L-FLANKE, GEHT ES IM FRÜGRAMM
*WEITER.
*#U4ENN KEINE FLANKE. SPRUNG ZUR
* "SPRADR".
* RUFRUF MIT: URALL NFLANK
* Dt MASKE
% DC B(SPRADRN
NFLANK XTHL

PUSH PSH
MY R.B
MA
AHNH D
JMP NFLEND

FORTS. DER 5R’S
CHPM
INH
J2 CKSEND
JMP CKSCON

= P
e
7 a >

CKSK2 CHP M
INH
J2 CK5END
INS H

CKJPND INS H
CKSCON INA H
CKSEND FÜF PSW

STHL
RET

CKJFZ CHP M
IN H
JNZ CKJIFND

CNFUND MOY A. M
IN H
MüY HM
MÜY LA

CNEND PÜüP FSU
%THL
RET

* SUBROUTINE "RUNSUB"
*#PRUEFT DIE STELLUNG DER FUNKTIONS-
*SCHALTER. ES ERFOLGT EINE YERZWEIGUNG
*ZzU "EXAM" OBER ZU "DEPGS" WENN DIESE
*SCHALTER BETRETIGT WURDEN, ODER ZUR
*STARTADR "RUN", WENN RUN BETRETIGT:
*üDER ZURUECK IN DEN MONITOR ZU "DISLOP"
* AUFRUF MIT: CALL RUNSUB
* DE BGIERAM)
* DE BiDEPÜSI
* DE B{DISLOP?
RUNSUB #THL

PUSH PSU

FAGE 4

MICRGKIT AS5SENBLER

Bari
aa74
4075
Bur6
Bars
aa73
Burn
aar7D
aa7E
Barr
ansı
1a32
0083
vaad
Ba35
886
Bugs
88833
BasA
BaSB
Ba8b
Bayu
0631
ER

8636
0097
0493
8633
BasH

Bu3D
Bu3E

Baar

BBB8
BaB3
BaBH
B&BB
BaBD

LDI6HH
BE
AZ
BEHH
23

I
c
I e
n

c
e

9 [
z
Z

B
e
I
D
N

c
a co

S
T
I
E
G

C
C
a

48
S>EaM
UD3Bu6
ne
6388
CssEuh

ES
Fo
r8
BZ
C31B68

4
47

DF
E#
u

CHR
DF

-- YER d.2

CALL FLNKJF
DE EXMS
BC EXJA
DC B<CNFUND)
IN HH
iIN£ H
CALL FLNKIFP
BC DPHS
DC DFJIRA
DC B{CNFUND)
IN H
INX H
RST 35RCKlIP
DC RNMS5
DE FNNÜ
DC B£ECNFUND)
PST 3:5RCKJF
DC RHEF
DE RNJRA
DC B{CKJFND)
CALL SFLANK
DC FNMS
DC B{CENFUND?
JMP CKIFND

* SUBRÜUUTINE "FLNKJP"
*PRUEFT AUF FLANKE DER DURCH "MASKE"
*FESTGELEGTEN EITS
*ZUSTAND (IM D-REG.
*B-REG. >.
*UENN FLANKE. SPRUNG
*5SUNST WARTET DIE 5R
FLNKJP ®THL

PUSH
MOY
ÜRR
JMF

MAIN MO’
MüY

n
k

PSW
A: B
h

FLJFRT

ZWISCHEN DEM HLTEN
UND DEM NEUEM (IM

zu "SFRADR",
AUF DIE FLANKE.

*ALTER ZUSTAND DES
*B-REG. NACH D
UM RUF FLANKEN
PRUEFEN ZU KOENNEN

* HIER WERDEN DIE SYSTEME 1 BIS 5
* ENTSPRECHEND WIE FOLGT DIE 5Y5-
* TEME 6 UND 7 VON DEM SYSTEn-
% SCHALTER ABGEFRAGT. E5 ERFÜLGT
* EINE SPRUNGYERZWEIGUNG ZUM ENT-
* SPRECHENDEM SIMULRTIONSPROGRAMM.
571705 DS 295

576 R5T 3; SRCKJP
DE 5YrM5
DE S5öyn
DE BE5Y5T6)

577 RST 3,5RCKJP

PAGE J

MICROKIT ASSEMBLER -- VER 2.2

BEBE
BaBF
BaCH

BEL2

4393

BSR
539D
B39E

BsRi

A3R3

B3RA4
B3R7

B3R8

83R3

BSAn
BsAt

BS3RE
B3RAF

83B8
B3B2

G3B3

B3B6

83B7

83B9
 83BA
B3BB
B3Bt
BS3BE
B3C1
8363

83695
83C7

Eu
au
Baus

ES

218066
39
22FE84

DEBZ

SD

ZiFE84
66

6F

fE

DS82
DBei

6F
fE

D361
6B

DBB4

8

4/

R
H
H

*
SIMPR

BREAKZ
*

*
DISLOP
*

+

*

ERKLÜOF
*

*

*
=

CONTIN POP H

DE SYMS
DE 5Srun
DE BÄSYSTA)
SONST GEHT DAS FROGRENM WEITER
zu SYSTEM 8.
NACHFÜLGENDER SPEICHERRAUM IST
MIT DEN SIMULATIONSROUTINEN DER
SYSTEME a BI5 5 BELEGT.
Ds 727

PUSH H *FÜRTS. DER RET-
TUNG bE5 5TRTUS

LxI H,6 *CLEAR HL
DAD SP *HL MIT 5P LADEN
SHLD RMNTF-1 *5P IN RAMTOP-1

| HBSPEICHERN
IN ARSCH *STACK-UFFSET

EINLESEN
MÜüY EL *EINGANGS-ADR

RETTEN
LAI H,RMTP-1 »&HL MIT 5P LADEN
Abb M *»5SF ZUM 5STACK-

ÜFF5SET ADIEREN,
=ECHTE ADRESSE

MOV LA *DIESE NACH L ALS
LOU-RADR

MOV A,M *INH. DIESER ADR
(=REGISTER AUF
STACK> LADEN

DUT LLAMP *UND ANZEIGEN
IN BSCH *GEWAEHLTE LÜN-ADR

EINLES5EN |
MOY LSA *LOW-ADBR NACH L
MOV A, M *INH. DER RAM-ADR

LADEN
BUT RLAMP *UND ANZEIGEN
MOY L,E *GERETTETE EIN-

GANGS-ADR ZURUECK
IN GCSCH *FURKTIONSSCH.

EiNLESEN
MOV D.B *ALTEN INHALT DER

FU.SCH. NACH D
MOY BA *NEUEN INH. DER

FÜ.SCH. NACH B
ZUR ERKENNUNG YON
ARENDERUNGEN

IN RASCH *ASCH FUER L-ADR
ODER DATEN LESEN

RST 3.5RCKJP »ABFRAGE OB "LORD
DE LDMS *ADRESS"?
DE LDJA *WENN JR.
DE BÄLOADAD> *DANN ZU LORADAD
CALL RUNSUB *ABFRAGE OB
DE BGÄESAMIN? *»EXANIN. JA >23
DE BA£DEPOS? #DEPOS, JA >>>
DE BABISLOP) »NICHT-RUN, JR >>>

*WENN "RUN", DANN

PAGE 6

MICROKIT ASSEMBLER -- VER 2.2

B3C8
4369
BSCH
BSCB

Asct

BSCD

B3D&
B83D3
B3D4

AsD6E

B3D7

83D8
B3DA
B3DEB
B3DbD
B3ER
B3Ei

B3E3

B3E4

B3E?

8480

Di
ci
ri
[9

6F

L
a
n

C3D7%,

Cb3B68
dd
D783

?7

fE

D381
rD
362
CD4808
66
B363

et

C3B363

FPOF D *GESAMTSTATUS ZU-
POP EB *RUECK UND PRUECK-
POF PSWU *KEHR ZUM RUFRU-
RET *FENDEN ANHENDER-

* PROGRAMM {RST 2 1)

LORbDADb MOV LA *ASCH {=L-ADR)
* NACH L

JMF EXAMIN *ZUR ANZEIGE YÜN
* L-ADR UND DEREN
* INHALTS

DEPOS CALL SFLANK *H>L-FLANKE YÜON
DC bPMS *DEPÖS-5CH SUCHEN
DE BEEXAMIND *UENN KEINE FLANKE

* DANN ZU EXRAMIN
MOV MA *INH. ASCH (=DATA)

* IN GEWHEHLTER ADR
* RESPEICHERN
EARMIN MOV A, M *]INH. YON GEHREHL
* TER ADR HOLEN

OUT RLAMP *INH. ANZEIGEN
MOV R-L *L-ADR HOLEN
GUT LLAMF *L-ADR ANZEIGEN
CALL NFLANK *H>L-FLANKE YON
DE EDNS *EXAM. Ob. BEPOS
DE BEBRKLOP> »SUCHEN. WENN

* KEINE FLANKE. DANN
* ZUR BRKLÜP ZURUECK

INR L *L AUF NRECHSTE
* ABRESSE (AUTOIN-
* CREMNENTD

JMF BRKLUP *ZURÜUECK ZUR AB-
* FRAGE WEITERER
* FUNKTIONEN

* IM FOLGENDEM SPEICHERRAUM LIEGT
*DIE MULTIPLIKATIONS-SUBROUTINE DES
#SYSTEMS 5. DIESE WIRD YOoM SYSTEM 5
*IN DIE UNTEREN RAM-ADRESSEN KOPIERT UND
»YOM SYSTEM 5 WIE EIN ROM BENUTZT. D.H.
*5IE 15T DORT VOM ANWENDER NICHT YER-
*AENDERBAR OBER ZERSTÜERBAR.
MULTS DS 25

Ki NÜ ERRÜRS D. ULRICH PR/KTEN
END MONMP

PAGE /

PAGE
MICRÜOKIT AR5SSEMBLER -- YER 2.2

Kirk ITT YIbEU- UND LEHRSTSTEME
Ka 5SEL Ab. PFORZHEIM

* ITT MP-LEHRSYSTEM, E&TENSITON-BOR
* BETRIEBSFRÜGRANM: "MON 7%

—
.I THFRESISTENT IN MASKENRG

2, BIT)RM 3214 EXPFRZ {517 0

* HF/ETEH:UL:17.1. 75

N KONSTANTEN- UND NAMENS-TABELLE:
RASCH EAU 3BuBZ & *R-5LHALTER (MP-52

vaßsil BSCH E&u od *B-5CHRLTER (MF-5:
and Ü5SCH Build +.-5CHALTER (MF-5)

* =FÜNKTIGCNSSCHALTER
Bude HSCH Eau 8 +5CHALTER DER Es-

% Büx + CAS. INFUT
BuBE HLAMF ER 5 *LED”S FÜER H-AbR

* DER En. -Eük +
x .A5. QUTRUT

Hadz LAMF ERU O2 *LINKE LEDTSiMF-5)
Gadi RLAMFOERU 1 *FECHTE LED”S MP)
BUBE USRÜM Eu 5% Aackak *ANF. HDR DES USER

% -REFRÜM <27058)
Baod USCODE EQU "04 tCÜDBE AUF 1. FLATZ

* DES USER-RÜM, KENN
* DIESES AUTOMATISCH
* iN BETRIEB GEHEN
* SÜLL

5618 RHEF El =” 18° *EIT 3 UND 4 ALS
* FÜSITIONSKENNUNG
* DER SCHALTER "RUN!
* UND HLT AT BF"

B4rr RMTPF EÜU MT BArr *RAMTOF DER FRAM-
* PFRGE 8 MIT DEM
* ST5TEM-STACK

aaui LDMS5 tu 1 *ElT 8 FUER LOAD-
* HER-SCHALTER

gaui LEJA E&lU 1 *BEIT 8=1, WENN
* LÜRD-ADR

G61% 5>HM5 Bil le *+EIT 4 FUER SHIFT
sale SHJA Ei 718 *BIT 4=1. WENN

* SHIFT
Made E5M5 Eklat *EIT 6 FUER CAS.
Bade CSyn Bel Mid *EIT 6=1. WENN C#A5
BE6F RUNSUE EU »’uRsr +AbE DER SR IM MF
HAsE SFLANK EGU A’aase +HbR BER SR IM MP
gaud DFMS El d *EIT 2 FUER bEFOS
Mado NFLANK E&U „Bade *AbR BER SR IM MR
Ede EMS Bel 6 *+BE1IT 1 UND 2 FÜER

* bDEPÜS üb. EXAMIN
Bas FGM5 EflÜ 6 *BIT i UND 2 FÜER

* PAGE-SCH. (EX-BOR)
B618 UPMS Bil »’16 *BEIT 3 UND 4 FÜER

* SHIFT-UP SES-BÜR:
Bals UFIA EbU 8°: *BIT 3=1. BIT 4=1,r

*

a
u

MICRÜKIT RS5ENBLER -- VER

| a x a

ash

n
o
)

c
z

a
n

c
z

Bauu

s6il6

MaBz

[
Z
i

a e
t

c

FFF&

FFF3

But

a
c
u
t

[
Z
n

u
|

[
„

[
u

o
z

a
c

a
BE
a

Eu
0

n
n
o
a
c
o

S
o

[
r
n
G
a

D
e

.
5 i

R
O
c
o

[
a
]

o
n

o
a

n
n

I
T
a

z
n

m
e
O
N

Z
r
J
e

c
o

c
e

; ZEBA

ah Cosia o
c
& u

we

Agan

HSBE
BSAF
sid
asıl

B81z

ngıid
4817
1518

asiE

asıh

EOS

FS3
CS
DS

e
y

> r

a
c
a
F
u

r
z
ı
c

p
e

T
I

a
z

Z
i
& z
u
r

> e
n
c
z

"1
1

r
o

r
m
e
s

F
i

SD

*
RDMS5

FRUJR
*

T5H5
*

T>NG
I
E

1
,
7

-
_

—
*

n
e
n
:

m
=

W
i
&

—
—

>
=

a

r
m

-
T

= w
e
g
)

=
U
U

E
I
N

n
n

u
g

b
t

m r
m

=

ZEIT

*
7
”

r

EREAK?

*k

DISLOP
*

Eau Kich

EGU x’ 48

Eau 358

Eau Non

Eau 746

E@U X°B2

Eu K7as

E@U -i16

Eüu -7

Eüu 43

Eau 7

ORG X’ O8aB

LDA USROM
CPI USCODE
2 USRON

MYI L-@

CALL IND

FUSH H

FUSH PSW
FUSH B
FUSH D
FUSH H

MYI BB. RHBP

LXI OH
DAD SP
SHLD RNTF-1

IN ASCH

MOV E:L

WENN SHIFT-UF
*EIT 5 UND 6 FÜER
REAb-CHS
BIT 5=8, BIT 6=1
HENN RERD-CHAS
»BiT 4 UNE © FÜER
ERSRUN UND SHIFT
*EIT d=d, BIT 6=46
WEN HEDER CRSRUN,
NGCH SHIFT
* "SYN"-ZEICHEN BES
ARSCII-CObES
#* "STA"-ZEICHEN DES
ASCII-CODES
* "ETS"-ZEICHEN DES
RSCII-COBES
*HALBEHELLENANZAHL
FÜER BIT=i
*HALBMELLENANZAHL
FÜER BIT=#
*ZAHL FÜER HALE-
HELLENZEIT CA. 208
MICRÜSEL, DH CR.
F= 2 KHZ
#*KUNSTANTE FÜER
BIT-PRUEFZEIT

*1. FLATZ AUS USROM
*LADEN UND AUF INH
zUSRüM YERGL.
HENN IA: DANN ZU
USROM
*L-ADR=A FÜER RUN
IAbEN
#FAGE-5CHALTER
EINLESEN UND H MIT
HIGH-ADFR FUER "RUN
LADEN
#5TART-AbE "RUN"
HUF STACK
*EINSFRUNG IN MON?
MIT RST 1 FUER
= "RUN" MIT "HLT AT
*#AT BF", GESRAMT-
STATUS FÜUER DI5-
FLAT AUF DEN STACK
xMASKE FÜER "RUN
HLT AT BF" LADEN
*CLERR HL

#+HL MIT SP LADEN
SF IN FRAMTÜR-1
RESFEICHERN
=5TACK-ÖFFSET
EINLESEN
+EINGANGS-ADR

PAGE ’

kam

MICRÜKIT ASSENELER -- VER

GSlE du Mo
soir ZirENgd L#I
ug2z &6 ADD

*

#

H523 6F NOW
*

aa24 FE MON
+

+

MBzu DS8Z Gut
gs27 Cb8183 CALL

$

nö2h a7 RLC
gazb Ds OUT

*

432b bBei IN
#

BB2F 6F ON
BS3e PE MüY

+

gs31 bD3Sil DUT
1833 66 MON
us34 61 MüY
4535 DEB4 BEKLÖF IN

*

usyr Su muy
*

1938 47 MÜNY
*
*
%

0839 DEUE IN
*

*

+

Ba3B 4F MON
bS3C DEBZ IN

x

BS3E DF RST
gs3r 61 Dt
baue ui DE
us41 SEBS DC
4843 58 May
ug44 41 MOY

*

6845 DF RST
usb 1 DL
bad’ 18 DL
1348 BRaS DC
as4R DF RST
gs4B 4a DE
Bs4c de DÜ
Bs4b C468 bt
BS4r 48 MOY

LLAMF
IND

3. 5REKJP
LEHNS
LDJH
B{LÜHBRDD
E:B
Bl

3: SRCKJF
SHMS
SHJR
BÖSHIFTN
3: S5RCKJF
C5MS
CSJA
B{CHSRUND
B,E

*FETTEN
xHL MIT SF LADEN
+5F ZUM =THCK-
ÜFFSET AbIEREN.

DIESE NACH L 3L3

LÖW-ADR
#INH. DIESER AbR
e=REGISTER AUF
STACKT LADEN
*UND ANZEIGEN
»PSGE-SCH. EINLE-
SEN UNE HIGH-AbR
DES GENREKRLTEN RAN
NACH H LABEN
*#BITKORREETUR
*HI-AbR AUF EX-BüXN
HNZEIGEN
*GEHREHLTE LON-ADbR
EINLESEN
*LOM-ADR NACH L
“INH. DER FRAN-HABR
LADEN
{IND ANZEIGEN
*5ERETTETE EIN-

*GANGS-ACR ZURUECK
*FUNKTIONSSCH.
EINLESEN
*+ALTEN INHALT DER
Fi.5SCH. NACH D
NEUEN INH. DER

Fi.SCH. NACH B
ZUR ERKENNUNG YÜN
RENDERLNGEN
*H5SCH ZUR ERKENN.
DER FUNKTIONEN
FAGE. SHIFT UND
CASSETTE EINLESEN
NACH C KÖFIEREN
*ASCH FÜER L-ADR
übER BRATEN LESEN
*ABFRAGE üÜB "LOAD
*ADRES5S"?
*WENN JR:
DANN ZU LOADAD
*Fii.5SCH. NACH E
*H5CH NACH B FÜER
KEFFÄGE
*ABFRÄAGE 05
x "SHIFT"?
*HENN IR,
kAbANN Zu SHIFT
*HBFRAGE OB
* "CHSSETTE"?
*HENN JR,

DANN ZU CASRUN
*FU. SCH. NACH B

MICROUKIT ASSEHBLER

*

Beste Chor
1333 6ba3
HE30 6608
agSr7 1688
6553 Ei
ASSRh Ei
BSSE Ci
BasSc Fi
asab C5

*

BSSE SF LÜRADAD
*

BSSF 79
+

asce CE5308
*

B863 C36bas
*

*

8566 CESEBB DEFOS
AS63 ug
BS6Hh 6bHe

y

HS6l 77
*

*

BS6D ’E ARMIN
+

aS6E Del
nar7a Fo
0871 DSB
0873 Fl
0874 87
a875 DSB
0877 CD4888
a87’R 86
a37B 3086

*

*%

087D 23
*

*

BS7’E 133508
*

*

0581 DBBS IND
0393 E6B6 HIRD
1885 BF
6536 Cod4
1888 67
8339 C3

assh DBui S5HIFT
B88C 4F

-- YER

CALL RUNSUE
BıEHAMIND
B{DEFGS?
BiDLISLOF}

DC
DC
DL
PÜF
Für
PÜP
PÜP
RET

MoY

RET

MOV

2.2

H
D
B
FSM

HIRAD

ExHMIN

SFLANK
bDFNS5
BÜEAHMIN?

MA

H.M

RLAMF
HL
LLANF
A: H

HLAMP
NFLANK
EMS
B{BRKLOP}

BRELÜF

SCH

PGMS

n
r
c
r

-—
u

z
ı
2
7

ZURUECK

xABFRAGE (OB
*EXANIN, IA >>>
xDEPÜS.:. JA >35

*NICHT-RUN, JA For
*WENN "RUN". DANN
*GESAMTSTRTUS ZU-
*FlIECK UND RUECK-
*KEHR ZUM AUFRU-
*FENDEN ANWENDER-
PRÜGRANMM <RST iD
*#A5CH ©=L-AbR)
NACH L
*H5CH (FRAGE)
NACH RC
*H-AbR BILDEN UND
NACH H
*ZURE ANZEIGE YüN
L- UNE H-AbR UND
DEREN INHALTS
*AH>L-FLANKE YÜüN
*DEFOS-SCH SUCHEN
WENN KEINE FLANKE
DANN ZU EXAMIN
*INH. AS5SCH “=DATA:
IN GEKAREHLTER ADbR
HESFEICHERN
*INH. YON GENREHL
TER AbR HÜLEN
*INH. ANZEIGEN
*L-AbR HÜLEN
*L-AbR ANZEIGEN
*H-AbDR HOLEN
*BEITKÜRREKTUR
*H-AbDR ANZEIGEN
*H>L-FLANKE YON
*EXRM. Ob. DEPOS
SUCHEN, WENN
KEINE FLANKE, DANN
ZUR BRKLOP ZURUECK
*HL AUF NRECHSTE

ADRESSE {AUTOIN-
CREMENT>
*ZURUECK ZUR AB-
FRAGE WEITERER
FUNKTIONEN

*H-5CH FÜER H-ADR
*(PAGE?> EINLESEN,
*FAGE ISOLIEREN,
*ZUR H-ADR KORRI-
*GIEREN UND NACH H
* ZURUECK YON IND
BEZWU. HIRAD

*SCHRITTZAHL EIN-
*LESEN UND NACH C

PAGE

MICROKIT ASSEMELER -- VER

Bast
G
r
Z
r
a

a
A
a

O
i

n
g
r
i

G
u
n

O
S
o
n
O
C
O
2
S
c
O
2

„

4SR3

BSHt
BSAD
Bane
B5B#
BsBi

u5B2 93
B&Bs SQ
BoB4 8

a5B5
48B6
BSB7’
a8B6&
088%
BSBH
usBB
asBbt
BSBD

DEUZ

DF
1°

2;
ud

C
A
S
T
e
e
c

B
a
C
n

C
a
a
R
I
n
d

j

4F

?7
97
12
1B
ZB
uD
CZ2B668

c
m

C
u
m a
c

DF
6H
46

a i
j

RS5H

*

*x

*

FÜRW

FSH

x

*

*

CASRUN

IN

R5T
DE

DC
DE

ürf

Mo’

Mü'Y
Mü'Y

Mo‘

SUB

Mi’

INC

DER

LDR&

MGY
SuB
STAx
IN
IN
DUR
JNZ

JMP

MC
DER
MYI
MO‘
DAD

M Ü M

MOV
DAD

MON
LDAA
MOY
SUB
5TRA%
DER
DEE
DER
JNZ

JMP

NÜP
RST
DE
DE

&.d

RASCH

3, 5REKJF
UPMS
UPIA
B{FÜRW)

r
n
,

r
m

"
N
O
T
I
Z

D
T
G
O
T
D

u
n

I

S5HEND

3; 5RCKUJF
RbMS
RDIA

*BLÜCKLSENGE EIN-

LESEN
*HbEFRÄGE OB
UFODRWRERTST
*UENN JH,
DANN ZU FORH
*SETZE C-FLAG=H
*#BELÜCKZAREHLER LAD

*ALTE ANF. ADR NACH
NACH DE
=SUBTRSKTION DER
*SCHRITTZAHL ER-
*GIET NEUE ANF. AbHR
*WENN ANDERE H-ADHR
+bANN KORREKTUR
#INH. AUS ALTER

AbR LADEN
=IN NEUE BRINGEN
#*AC LOESCHEN (=#)
z"a" IN ALTE ADR
*BEIDE AbDR UN i
*ERHÜEHEN

*BLÜCKZREHLER -i
*ZUR NAECHSTEN ADR

HENN BLÜCK NOCH
HICHT ZU ENDE
*NACH ENDE DES
BLÜCKES ZU SHEND
*BLÜCKLAENGE > E
+KÜRFEKTUÜR
*D LOESCHEN (=#)
BE LOESCHEN |
*RLTE ANF. ADR +

BLÜCKL. = ALTE END
AbR
*ALTE END-ADR NACH
*DE
*#ALTE ENb-ADR +

SCHRITTZAHL =
NEUE END-ADR
*BLÜCKZREHLER LAD.
*INH. AUS ALTER
*ADR IN NEUE
xAC MIT "a" LADEN
x"aA" IN ALTE AbR
*BEIDE ADbR ER-
*NIEDFIGEN
*BELOCKZREHLER -1
*ZUR NAECHSTEN AbR
HENN BLOCK NOCH
NICHT ZU ENDE
WENN ZU ENDE DANN

zU 5HEND

*ABFRAGE ÜB LESEN?
*WENN IR,
*DANN ZU

FAGE >

MICROKIT ASSEMBLER

18C7
BEC9
Gsch
HSCch
AScr
asDbi

H6D3
H6D3
BsbS
a3b5

BEDbE
HSDE
asEl
he?
HgES
B3EB
BsEr
BgER
BSEB

BSELl
GSEF
Böre

Hör3
BGF >
BSFS

8315 3
6917
BSin

D
a
e
d

m
n
t
d

83

m
)
C
a 9

G
cb5283
ZE60
1EFF
1624

HELE
CDFBES
105
CEbsBd

BERZ
CbFBas
4
CFEBZ
4E
23
CDFB&S
4E
23

CbDFBA8
iD
CZERBS

BEUS
CEFEBS
C5E383

47

CbD2E63

ChinB3

CDZER3
26705

D388

>ELK
%
STNLF

SDAT

SErFTE

>CchH“

SEND

-- VER

DC
M u 1

CALL
MYi
MmYyi
MYI

MY
CALL
DER
JN2

Myı
CALL
MOY
CALL
MOV
IN»
CALL
MüV
IN%

CALL
DER
JNZ

MYI
CALL
JMF

2.2

B{LBLKD
A, B
HIRAD
L;&
E, 239
D. 32

Cs 5TN
SEFTE
D

STNLP

C,5T%
SETTE
CH
SETTE
CM
H
SEFTE
C;M
H

SETTE
E
SDAT

C;ET%
SEFTE
5HEND

*LESEN {LBLEK)?

*HSCH HOLEN
*H-AbDR BILDEN > H
*L-AbR= 4
*BELÜCKLRENGE =255
XANZRHL DER STN-
ZEICHEN LABbEN
*SYN-ZEICHEN LAD.
x"5YN" SCHREIEEN
*ANZAHL -i
#NHECHSTES "55,9"
EIS ALLE RAUS
*#5TX-ZEICHEN LAD.
*"57%" SCHREIBEN
*H-AbR LADEN
*H-AbR SCHREIBEN
*1. DAT-EFTE LADEN
*AbR AUF 2. BAT-EFT

*1. DAT-EYTTE SCHR.
*DATA-EYTE LADEN
=ADRE AUF NAECHSTES

DATA-BEFTE
*DATA-BTTE SCHR.
*5LÜCKLAENGE -i
*NRECHSTES BYTE

SCHREIBEN BI5
BLÜCK ZU ENDE

*#ET%2-ZEICHEN LADEN
#"ET#" SCHREIBEN
*FÜECKSFRUNG, HENN
FERTIG

SUBROUTIKES ZUM SCHREIBEN
MOY
STE
RAR
MO%Y
MYI

JC

Myi

MOY

CALL

JZ

CALL
JNZ

UT

MY
JMP

A,C

CR
A, 5LANG

STAKT

A, SKÜRZ

B; A

SZEIT

SEND

SZEIT
STAKT+i

HLAMF

A, SKURZ
SVERZ-i

OUT HLAMP

*BTYTE YON U HÜLEN
*SETZE C-FLAG=i
*L5BE NACH C-FLAG
*RE5ST NACH C RETT.
*CÜüDE FUER BIT=1
LADEN
*WENN LSE=C-FLAG=
1. BANN ZU STAKT
*LüDE FUER BIT=8
LAbEN
*EIT-CüDE NACH B
“HALBWELLENZREHL.
*P05. HALBW. DES
TAKTES SCHREIBEN
*WENN COBE-ZAEHLER
HUF 8, DANN > SEND
*NEG. HALEN. 5CHR.
*WENN CODE-Z. #8;
DANN PÜS. HALBN.
*AUSGABE EINER
HALBHELLE
*BITCODE 8 LADEN
*LCÜDEZHEHLER LAD.
*ENDE EINER HALBN.

PAGE 6

MICRÜKIT

Rail
RSılE
KSır

6 j
r

I“
.

F

r
i

L.
yı

rı
lı
e
n

Ja
r
o
c

T
u
r
s
r
d
T
o

a
D
r

D
e
K
a
l

w
e
i
n

n
m

a
r
d
e

w
o
i
n

f
u
s

fa
lı

r
»
"
n
m

C
a
„
2

a
G
a

i
i
n

D
I
a

a

F
e

(
2 u [
a 2

2

a9S3B :
Bs3Db C
Bau
a341

v
u

we
)

u
Kc

ı
S
n

F
i

c
n

ru
.

a
c
l

1
a
t
t

S
u
I

S
R
n
d

H34B
naah
u358
351
a232

3959

[
a
u
v

<
n
T
r

c
e
)

u
.

a
n
C
H

a
r
a
a

e
t

I
D
A
D
D
i
D

T
I
O
4

O
u
r
c
n
N
n
c
n
c
n

en
p
p

T
e
m
m

3EF&
47
cb31#3

m m m CT ne

ee

CA4ba3

F&6i

C
r
P
e

D
a
T
r
,

[
m
e
m
»

L
A
N
D
O

1
a
s

C
a

1.
2
F
a

e
r

a
e
s

1
2

Li

4803

EA
[24563

Cb7963

61
ZE&&8
i6FF
CD7383
ri
Fa

RSSEMBLER

= m a m
n

2
a
W
i

I n
i
m m
u
l
!

i
f

=
T
e
l

„r
n

c
n

.

LELK

- WER 2.2

ri
)
D
I
I
D

C
r
e
i
n

MON?

L3TN+Z

1

LBLK+2

D,5T%
LEYTTE
A.
E
L5S'TN

*EITCODE Zi LABEN
*CüDEZ. LADEN
*ZEITSCHLEIFE,
SCHREIBE "a" FÜER
DEN REST DER BIT-
gEIT AUS
„BEFEHL üHNE HIR-
KUNG: YERZÜEGERUNG
KVERZOEGERE BIS
LübEz =4
*EFTE-REST HOLEN
*UENN Al=H, DANN
*FETUÜRN
*S0N5T SCHREIBE
DAS NRECHSTE BIT
*CübE NACH RC
*#5CHREIEE HALBEN.
*HHLEWELLENZEIT
LRDEN
*ZHEHLE ZEIT AB
*#ZEITSCHLEIFE
*LÜDENORT -1
*RUECKSFRUNG

+45B=1 SETZEN
#5YN-ZEICHEN LADEN
*1 BIT EINLE35EN
»M5B=1 NACH RC
*VERGL.. OB BISHER
EINGELESENE BITS
"Syn" ERGEBEN
*WENN IR. DANN
ZUM BYTE-LESEN
*L5B=1 AL5 5STOF-
BIT SETZEN
*L5B=1 NACH GC, UM
#NAECHSTES BIT ZU
LESEN
#5T%#-ZEICHEN LADEN
*#BYTE EINLESEN
*BFYTE NACH AC
*AUF "SYN" VERGL.
AWENN NICH "SYN",
DANN WEITER AUF
"STaN HARTEN
*HÜUF "STE" VERGL.
*WENN NICHT Stat,
DANN SYNCHR. VER-
LÜREN, ZU LSTH
*BY TE EINLECEN
‚MUSS H-RDR SEIND
*H-HDF NACH H
*L-AbR= RA SETZEN
*BLiC# AENGE LADEN
*1. DRTA-BYTE LESEN
* ABSPEICHERN
*#ADR AUF NRECHSTEN

|

MICROKIT ASSEMBLER -- YER

u D
i
e

i
g
i
g

I
C
I
0
4

T
a
0

a
r
t

D
E
I
)

(s
s
a

T
I

C
I
D
M
T
u
n

O
o

E
n
L
H

a
n
c
n

e
r

m
n

| c
r

0373
637B
637B
97
381
0354
4387
B33H
u9st
Ion
BS3E
uSöor
9332
0334
49337
9333
B33C
33D
B3AR :

„

D
i
g
g

n
d

—
ı

r
+
m
e
n
.
G
o
d

eo
n
P
S

m
G
a
G
a
a

D
D
m
n
m

D
Z
I
Z
I

c
c

C
r
f
a
n

m
a
c

n
a
c
n
u
o
p
e

er
)

Bu
s

T
i

j
[
a

c
h

T
a

i
g

z
u

n
e

a
7

uc
h

i
n

u
n

E
u
.

=
.

c
n

[
u

r
m

.g
pı

I
n

u
n

GBESH
DBAS
Gr
2A7BB3
CDDDE3
DA’BuS
CbEa8s
3E@1
47
SH
47
DAE?AI
3E85
CDDFB3

DZCHE5
3E88
CDDF#S
3EFF

“
E
H
E
N

2.2

CALL LBFTE
MY MC
INS H
DER D
JNZ LDAT

CRALL LETTE
MY AsC
sul ET

Te

J#P S5HEND

SUBRÜUTINEN
DIESE 5R’5 SIND NICH
ZELN KÜMMENTIEFT.
SCHWER

#SIE LESEN
*5CHWINGUNG EIN.
*BURCH AUSZREHLEN FıUST.
*ENTSCHIEDEN:

"4 u

*ÜDER KURZE ZEIT
*»(BlT=%)

* ZEIT

15T.

ÜE DAS
UnD> KURZE ZEIT

"1" UND LANGE ZEIT "@"
DIE EINZELBITS WERDEN BAHN

RAM-PLATZ
*DATA-BTTE LESEN
*AESPEICHERN
*ADR ERHÜEHEN
*BLOCKZ. -1
*NRECHSTES BTTE.
HENN BLOCK ZU ENDE
*DANN LIES EYTE
*UIND YERGLEICHE.
*ÜB "ETS". WENN JA
WIRB 2 -FiAG=il UND
*SETZE C-FiAßsl,
D.H. BLOCK RICH-
T.G GELESEN
*FERTIG

FÜER LESEN
MEHR EIN-

DA DAS SEHR
YERSTRENDLICH IST.

DIE DEMODULTERTE RECHTECK-
STELLEN DEREN LHENGE

DAMIT WIRDDH.
bELESENE BIT LANGE

"a" <B1T=i1n

*ZU BYTES ZUSAMMENGESETZT UND YoM LESE-
*HAUFTFROGRAMM ENTSPRECHENG VERARBEITET.

LBTTE

LEIT

LERUF

LNAT

MY1
IN
FRC
JC
CAL\L
JE
CALL
MY1
MO
AbD
Mü'
JE
MYiI
CALL
MYıI
JC
NOP
CALL
MY1
JC
MY
ADD
Mo
JNC
MYI
CALL
MY1I

8780
HSCH

LEFTE+Z
LUAR-2
LBEYTE+Z
LSFL
A.1

r
t
O
N
E

O
N

I
T

u
1
.
0
0

STR
A»LZEIT+1
Lin
H,1
LZAUF

LURF-:

f
r

i
I
f

_ 7
1

o Pu

=
“

EIT+i8

= ı
ı
7
7
o
T
I
c

—
»
G
m
”

Z
r
”
7
7
7

o
O
O
N
T
O
0
7
I
D

I
n

FAGE

MICROKIT ASSEMBLER

a53B3
63B6
453B7
GSBEH
GSBt
BSBF
Asch
Bali
HICz
43C3
8305
4367?

BSCH
B3CB
B3ct
B3CD
B3D&
B3D2
B83D3
839D6
8303
B3Dt

89DD
_89DF
BIEU
89E3
89E5
B9E8&

09E7
B9E8

0963
agER
B3ED
G3EE
G3F8

 89F1
BIFZ
B9F3
B9F4
GIF?
B3F8
B9F9
BSFHA
B3FB

- B3FD

BRBB

DZ2A783
a4
CDLDEI
3EFE
D2A783
73
iF
4F
Ds
A602
3E8?
039403

73
iF
af
D28783
DEHE
ur
D2bA59
CDDD83
D2D883
C3

3E83
3D
C2DF63
DB6S
Br
[3

Ar
C3

FS
118688
rE
DB88
47
1B
AH
BJ
C2ED83

C3E389

LNUL

LSFL

LUAR

LSTR

SHEND

SHLOP

>

Er

JNC
NÜOF
CALL
MY
JNC
MOY
FAR
MOY
RC
MYi
MYi
JMP

MOY
RAR
MüYy
JNC
IN
RRC
JNC
CALL
JNC
RET

MYI

JMP

-- VER 2.2

LZRAB

LURR-2
A, -,

LZRAE
A,C

CA

B: 2
R,LZEIT
LNAT

R,C

CA
LBIT
HSCH

LSFL
LURR-
LSFL

P
e

A,LZEIT+Z
A
LUAR
HSCH

PSU
D,8
A, M
HSCH
BA
D
A, D
E
SHLOP
PSM
3, SRUKJF
T5SM5
TSNO
B{BRERK??)

SHEND

NÜ ERRÜRS
END MÜN?

*VERZUEGERUNGS-
*SCHLEIFE FÜER
*3 5EC, FUER
*BESSERE BEUBACH-
*TUNG BER FLAGS
*UND AUF DEUT-
*LICHES
*ERKENNEN DER BE-
*ENDIGUNG VON
*"SHIFT".
*ABFRAGE. OB
*TASTEN "SHIFT"
*0Db. "CA5" NOCH
*GEÖRUECKT SIND,
WENN JA, DANN
WEITERE 3 SEC
VERZÜEGERUNG,
*S0ONST ZUM MONITOR

D. ULRICH RP/KTEN

PAGE G

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

ITT MP-Experimenter

Inhalt

Funktionsbeschreibung . - - > 2 222m nn nn nn

Technische Daten . . . 2: m: nonnn

Bedienungsanleitung - . : 2: 22H nn nn nn

Allgemeine Hinweise zu den Experimenten. 2. 2. 2 2 2 2...

Addierer/Subtrahierer (SYSTEM O) . . : : L L n on nn nn

Codierte ALU (SYSTEM 1) . : 2: HL onnn

Akkumulator (SYSTEM 2) ..: 2: 2 2 non nnn

Akkumulator mit Speicher (SYSTEM 3) . . 2 2 2 2 2 2 2 2 2 2...

Vereinfachter Rechner (SYSTEMA) 2. 2 2... nn m nn

Hypothetischer Mikrorechner (SYSTEM5) . . 2 2 2 2 2 2 2.

Mikrorechner-System 8080 (SYSTEM 6). . . 2 2 2 2 2 2 2 2.

Erweitertes 8080-System (SYSTEM 7) 22: 2 2 nn nn nn.

Stromlaufpläne und Anschlußbelegung . . . » 2 22 2 2 nn ne.

1. Funktionsbeschreibung

Der MP-Experimenter ist ein Mikrocomputer basierend auf dem MP-System 8080.

Er ist ein Lehrsystem zur praktischen Einführung in den Gebrauch und die Arbeitsweise von

Mikrocomputern. Der MP-Experimenter besteht aus der Stromversorgung, der Prozessor-

platine und dem Frontpanel mit diversen Schablonen und Code-Karten.

Die Stromversorgung benötigt zum Betrieb lediglich eine Steckdose des 220-V-Netzes.

Der separat gekapselte Netztransformator gibt zum Zwecke einer Zweiweggleichrichtung

2x 8,5 Ver ab. Die an ihm über eine 3polige Steckverbindung angeschlossene Netzteilplatine

enthält 3 geregelte Stromversorgungenfür die Betriebsspannungen +5 V, +12 V und -5 V

gegen Masse. Je 2 Diodeneines Brückengleichrichters arbeiten als Zweiweggleichrichter für

den +5-V- bzw. -5-V-Regler. Der zweite Brückengleichrichter arbeitet als Zweiweg-Villard-

Gleichrichter für den +1 2-V-Regler. Die Ausgängealler Regler sind kurzschlußfest.

Der Mikrocomputer enthält als CPU den Mikroprozessor 8080 A und die Ergänzungsbau-

steine 8224 (Taktgenerator) und 8228 (System-Controller und Datenbus-Treiber). Ein Quarz

von 8,867 MHz erzeugt eine Taktfrequenz von ca. 1 MHz, so daß der Prozessor mit einer

Zykluszeit von ca. 1 us arbeitet.

Das eingebaute Memory besteht aus einem maskenprogrammierten ROM (8308) von 1kx 8bit,

welches das Systembetriebsprogramm (Monitor) enthält und einem statischen RAM (2x 8111)

von 1/4 k x 8 bit als STACK, Daten- und Programmspeicher für Anwenderprogramme.

Dem ROM ist der Adreßbereich von O0 O O O,, bis O0 3 F F,s und dem RAM der Adreß-

bereich von O 4 O O,5 bis O A F F,g durch den Adreßdecoder(2/6 74 LS 04, 6/6 74 LS 05

und 3/4 74 LS 32) zugeordnet. Der verbleibende Adreßbereich von O 5 O O1e bis FFF Fıe

(also 62 3/4 k = 64 256 Adressen) steht ohne Einschränkung für Erweiterungen zur

Verfügung.

Weiterhin enthält die Computerplatine insgesamt 5 8-bit-Parallel-I/O-Bausteine (5 x 8212),

von denen 3 als Input-Ports und 2 als Output-Ports geschaltet sind. Sie sind in der „isolierten

/O-Adressierung“ mit den Adressen O0 O O 11, 0 O O 245 und O O O 4ıs für die Input-

Ports und O0 O 118 und O0 O0 O 24 für die Output-Ports adressiert.

Da keine vollständige Adreßcodierung angewendet wurde, sondern Adreß-bit-Adressierung,

stehen für weitere I/O-Adressen nur noch O O O 816, 0 O 1 Oı1e, O0 O 2 O16, 0 O0 4 Oı1s usw.

für Inputs und O O0 O 4Aıs, O0 O O 816, O0 O 1 Oı1s usw. für Outputs zur freien Verfügung.

Am System-RESET (RESET-Eingang des 8224) liegt eine RCD-Kombination zum automati-

schen RESET beim Einschalten der Betriebsspannung.

Die System-Steuersignale HOLD, INT und BUS EN sind überInverter geführt, die am Eingang

einen 1-kQ-Pull-up-Widerstand tragen. Als äußere Eingangssignale stehen sie somit als

active-low-Signale (HOLD, INT, BUS EN) zur Verfügung, d.h. ein äußeres Low-Signal an HOLD

steuert den 8080 in den HOLD-Zustand, ein Low-Signal an INT gibt an den 8080 eine

Unterbrechungs-Anforderung (Interrupt-Request) und ein Low-Signal an BUS EN steuert die

Datenbus-Ausgänge sowie die Steuerbus-Ausgänge vom System-Controller (8228) in den

Trı-State-Zustand. Als weitere Eingänge sind noch RES IN und RDY IN vorhanden. Ein

äußeres Low-Signal an RES IN bewirkt einen RESET, ein Low-Signal an RDY IN bringt den

Prozessor in den Warte-Zustand.

An Steuersignal-Ausgängen stehen RESET (pos. Impuls) zum Rücksetzen externer Elemente,

STSTB (neg. Impuls) zum Abfragen der Statusinformation, WAIT (pos. Impuls) zur Anzeige

des Warte-Zustandes, HLDA (pos. Impuls) als Quittierung einer HOLD-Anforderung und INTE,

das anzeigt, ob ein Interrupt ein- (INTE = H) oder ausgeschaltet (INTE = L) ist, zur Verfügung.

Herausgeführt sind weiterhin die 5 Signale des Steuerbusses MEM R (neg. Impuls für

Speicher Lesen), MEM W (dto. für Speicher Schreiben), I/O R (dto. Eingangs-/Ausgangs-

Port Lesen), I/O W (dto. Eingangs-/Ausgangs-Port Schreiben) und INTA (Interrupt-Acknow-

ledge = Interrupt-Bestätigung), der wegen fester Verbindung über 1 kQ an +12 V einen

automatischen RST 7-Befehl erzeugt.

Die Prozessor-Platine ist - von oben verdeckt — unter die Oberplatine (Front-Panel) gesteckt.

Das Front-Panel trägt einmal die Steckleisten zum Anschluß der Stromversorgung, zum

Anschluß anderer Ein-/Ausgaben und für Systemerweiterungen und zum anderendie diversen

Eingabe-Schalter und LED-Anzeigen zur Ausgabe.

Der mit „SYSTEM“ gekennzeichnete Codierschalter mit den Zahlen O bis 9 dient zur Auswahl

der entsprechenden Monitorprogrammteile, die die einzelnen Experimentierschritte simu-

lieren. Die Stellungen O bis 6 sind den Systemen „Addierer/Subtrahierer” (0), „Codierte ALU”

(1), „Akkumulator“ (2), „Akku mit Speicher” (3), „Vereinfachter Rechner“ (4), „Hypothetischer

Rechner” (5) und „Prozessorsystem 8080” (6) zugeordnet. Die Stellung 7 dient für Erweiterun-

gen mit zusätzlichen Betriebsprogrammen, während die Stellungen 8 und 9 unbenutzt

bleiben.

Die binären Schiebeschalter C; bis Co dienen als Funktionsschalter unterschiedlicher Be-

deutung in den verschiedenen Systemen. Auch die mit A; bis Ao bzw. B; bis Bo gekennzeich-

neten binären Schiebeschalter haben in den verschiedenen Systemen unterschiedliche

funktionelle Bedeutung. Sie dienen in erster Linie zur Eingabe von Daten oder Adressen.

Als Ausgabe- bzw. Anzeigeelemente sind 2 x 8 LEDs mit der Bezeichnung L; bis Lo und

Rz bis Ro angeordnet. Sie gestatten das Ablesen von Adressen oder Daten im Maschinencode

(Binärcode, d.h. leuchtende LED = log. 1, nichtleuchtende LED = log. O). Ihre funktionelle

Bedeutungist unterschiedlich und wird von den Schablonenfestgelegt.

Die mit „RESET“ bezeichnete Taste bringt den Prozessor zum Programmstart, d.h. nach deren

Betätigung beginnt der Prozessor das Monitorprogramm ab Adresse O O O O1s abzuarbeiten.

Die RESET-Taste hat keine „Clear-Funktion”, d.h. es werden keine Register- oder Speicher-

inhalte gelöscht! Sie ist jeweils nach der Veränderung des Systemwahlschalters zu betätigen,

damit ein eindeutiges Einlaufen in das gewählte Systemprogramm gewährleistetist.

Die farblich gekennzeichneten und mit der System-Nr. versehenen Schablonen weisen den

Bedienungselementen.er Frontplatte ihre systemspezifische Funktion zu. Die jeweils in der

gleichen Farbe vorhandenen Codekarten (DIN A 6) bzw. Befehlslisten (195 x 175 mm)

dienen zur Kurzinformation über Funktions- bzw. Displaycodes (Anzeigecodes).

2. Technische Daten

MP-System 8080 A |

mit Taktgenerator 8224 7.7 PYLZS GR)
und System-Controller 8228 (Zr Zeus #5
Quarzfrequenz 8,867 MHz

Zykluszeit ca. 1 us

Memory ROM 1 kx 8 bit (Typ 8308)

mit System-Betriebsprogramm

RAM 1/4 kx 8bit (2x Typ 8111)

für Anwenderprogramme

Memory-Erweiterung möglich ab Adresse O 5 O Oıs bis resFrF FFra
Input 3x8 bit parallel mit 3x 1/O-Port 8212277.2 #72.

für C-, B- und A-Schalter,

bit-weise I/O-Adresse mit Adreß-bit O, 1 bzw. 2

Input-Erweiterung möglich mit den Adreß-bits 3, 4, 5, 6 und 7

Output 2 x 8 bit parallel mit 2 x I/O-Port 8212

für L- und R-LEDs,

bit-weise I/O-Adresse mit Adreß-bit O und 1

Output-Erweiterung möglich mit den Adreß-bits 2, 3, 4, 5, 6 und 7

fan-out an der Systemleiste links (1 LE = 1 x TTL = 1,6 mA, 40 uA,)

Adreßbus ABo un ABıs 1 LE

Datenbus DBo ... DB; (bidirektional) 5 LE

Steuerbus MEMR, MEM W, VOR, YO W, INTA 5 LE

HLDA (Halt-Quittung) 1 LE

INTE- (Unterbrechungs-Freigabe) 1 1/4 LE

RESET (Rückstellung) 1 1/4 LE

STSTB (Zustandsübernahme) 1 LE

WAIT (Wartezustandsquittung) 1 1/4 LE

fan-in an der Systemleiste links

Datenbus DBo ... DB; (bidirektional) 1/4 LE

BUS EN (BUS-Freigabe-Steuerung) 3 1/4 LE

HOLD (HALT-Anforderung) 3 1/2 LE

INT (Unterbrechungs-Anforderung) 3 1/2 LE
RDY IN (Bereit-Eingang) 3 1/2 LE

RES IN (Rücksetz-Eingang) 1/4 LE (+ 1 uF)

fan-out an der Systemleiste rechts (in TIL-LE)

L7...Lo (/O-Port mit Adr. 000 2,,) 10 LE

R7...Ro (I/O-Port mit Adr. OO 0 1,,) 10 LE

(Uon = 3,2 V, da LED angeschlossen)

fan-in an der Systemleiste rechts (in TTL-LE)

C7...Co (/O-Port mit Adr. 0 004,8) 1 LE

B7...Bo (I/O-Port mit Adr. 000 1,,) 1 LE

Ar7...Ao (I/O-Port mit Adr. 000 2,8) 1 LE

Als Eingänge nur verwendbar, wenn CaCo, Br... Bo

und Az... Ao in Stellung „1“ und Systemschalter in Stellung

„O” oder „8” stehen (wired OR)!

(UHmax = 5,0 V, Uiımin = —-0,5 V)

Stromversorgung

Kompaktnetztransformator 220 V/2x8,5 V,EI66

Regelnetzteil +5 V,15A

(kurzschlußfest) +12 V, 250 mA

-5 V,100 mA

Strombedarf des MP-Experimenters +5 V,1 A typ.

+12 V, 100 mA typ.

-5 V,2 mA typ.

Stromreserve für Erweiterungen +5 V, 500 mAmax

+12 V, 150 mAmax

-5 V, 100 MAnax

3. Bedienungsanleitung

3.1 Allgemeine Hinweise zu den Experimenten

Das Experimentiersystem enthält einen vollständigen Rechner. Im ROM sind 7 Programme

zur Simulierung von verschiedenen Systemen fest abgespeichert. Welches Programm ablaufen

soll, kann mit dem SYSTEM-Schalter (BCD-Schalter auf der linken Seite) festgelegt werden.

Den 7 Programmen sind die Nummern O bis 6 zugeordnet. Die Stellung 7 des SYSTEM-

Schalters ist für eine eventuelle Erweiterung des Systems vorgesehen,die Stellungen 8 und 9

werden nicht verwendet.

SYSTEM O: 8-bit-Parallel-Addierer/Subtrahierer

SYSTEM 1: Codierte 8-bit-ALU

SYSTEM 2: 8-bit-Akkumulator

SYSTEM 3: 8-bit-Akku mit 16 x 8-bit-Datenspeicher

SYSTEM 4: Vereinfachter 8-bit-Ein-Adreßrechner

SYSTEM 5: Hypothetischer 8-bit-Mikrorechner (didaktischer Modell-Rechner)

SYSTEM 6: 8-bit-Mikrorechner mit 8080-Mikroprozessor

SYSTEM 7: für andere Mikrorechner mit dem 8080 und Erweiterungen

Ein Programm wird mit der RESET-Taste gestartet. Diese Taste entspricht in etwa der

Löschtaste eines Taschenrechners und muß am Anfang jedes Experimentes gedrückt

werden. Mit den restlichen Schiebeschaltern können Daten und Steuerinformationenein-

gegeben werden.

Die Schaltergruppe Ca bis Co wird zur Steuerung des Experimentierablaufes benötigt.

Die Schaltergruppen A, bis Ao und B, bis Bo werden bis auf einige Spezialfälle für die

Daten- oder Programmeingabe benutzt.

Bei allen Experimerien gelten folgende Festlegungen:

Schalter oben = logisch 1

Schalter unten logisch O

Die 2 mal 8 Leuchtdioden dienen zur Anzeige der Rechnerergebnisse sowie zur Anzeige

interner Schaltzustände. Hier gelten folgende Festlegungen:

Leuchtdiode leuchtet = logisch 1

Leuchtdiode dunkel = logisch O

Alle Schalter, die bei einem bestimmten Experimentiervorgang nicht benötigt werden,sollten

auf log. O geschaltet werden.

Es ist zu empfehlen, daß zu Beginn eines Experimentes alle Schalter auf log. O geschaltet

werden, bevor die RESET-Taste gedrückt wird. Ausnahmenhiervon werdenbei den einzelnen

Experimenten angegeben.

Die grundsätzliche Experimentiervorbereitung ist folgende:

1. Die in der Experimentieranweisung angegebene Schablone auflegen

2. SYSTEM-Schalter auf das verlangte Programmeinstellen

3. Alle Schiebeschalter auf Null (unten) stellen

4. RESET-Taste drücken

Bei falscher Schalterbetätigung können grundsätzlich keine Schäden am Experimentiersystem

entstehen. Allerdings können dadurch die selbst eingegebenen Programme und Daten ver-

ändert werden, so daß ein falsches Ergebnis entsteht. Bei umfangreichen und komplizierten

Experimenten kanneine falsche Betätigungviel Zeit kosten.

3.2 Addierer/Subtrahierer (SYSTEM O0)

Im System O läuft auf dem Rechner ein Programm,das ein 8-bit-Parallel-Addier-/Subtrahier-

werk simuliert. Eine solche Schaltung ist schaltungstechnisch ein rein kombinatorisches

Netzwerk mit statischer Betriebsweise (Bild). Es hat zweimal 8 Dateneingänge (A; bis Ao =

Operand A und B; bis Bo = Operand B) und 5 Steuereingänge (Ca bis Co), die die in der

Tabelle aufgeführten Funktionsmöglichkeiten ergeben.

Addierer/Subtrahierer ITT MP-Experimenter

SYSTEM

[]
B,... Bo Ar..Ao Sa) INC

EINTEINE=A]=B I(+1)

1 1

0 0 0 0

Gh cc 0 Ar As As A, A Mr A An Br B Bs B, Ba B2 Bı Bo

Lo RrrRRRRR RRo

SIUVIVI:

Nach der Experimentiervorbereitung Schalter Ca und Cz auf 1. Damit können die an den

Schaltern A, bis Ao und B; bis Bo eingestellten Informationen in das System gelangen. Mit

den Schaltern C2 = A und Cı = B könnendie eingegebenen Informationen komplementiert

werden (Einerkomplement). Der Schalter Co = INC legt bei 1 eine 1 auf den INC-Eingang.

Das Ergebnis der Addition erscheint in den rechten 8 LEDs (R; bis Ro). Die LED Lo in der

linken Lampengruppezeigt einen Übertrag (Carry) an. Bei diesem System haben die LEDs L;

bis Lı keine Bedeutung.

gi ! Carry Cı Ca C> Cı © Ausgangs-
A, N funktion

00000 0ZZ ZEuSEE
| 00010 -1

& | | 00011 0
5 | ! 00100 1
N 0016071 0
ı— N 00110 -2

))- x Liz 0017171 1
|, 01000 B

A N = 010014 B+1
) + O| RR, 01010 -B-1=B

1 < > 010114 -B
>»[%ks 01100 B-1

B sIr25| 0 1 1.6071 B
ZZ ıl2 o1 12120 -B-2

S|®% oı 121714 -B-1=B
E| 10000 A

| I „ be 100014 A+1
e - | [Ro 10010|a-1
e< Io. 0 100171 A
TB 10 100 -A-1=A
2 N 101071 -A

_ y 10110 -A-2
I - 10717171 -A-1=A

or N ı 1000| a+B
>12 110014 A+B+1

U: 5)= 11010 A-B-1
n|ıu .—
3|2 | 110171 A-B
s|s $|$ 117100 B-A-1

m 1171210 -A-B-
ll ® ıı ı 1 1 -A-B-1

Steuereingänge

3.3 Codierte ALU (SYSTEM 1)

Im System 1 wird vom Rechnereine 8-bit-ALU simuliert. Sie ist schaltungstechnisch durch

Erweiterung des Addierwerkes (System O) um log. Funktionen, einen Datenselektor und eine

Umcodierungsschaltung (ROM) entstanden.

SYSTEM

FUNKTIONS-
SELEKTOR

Ö G &

Codierte ALU

Cı 0

ITT MP-Experimenter

Lo R7 Re Rs R, Rz "R Ri Ro

VERKNÜPFUNG

1 1 1

0 Ö 0

Ar As As A, Az A A Av Br Bs Bs B, B3 B2 Bı Bo

Die Funktionen werden mit den Schaltern Cz bis Co festgelegt. Diese Tabelle ist auch auf der

Karte „Codierte ALU” zu finden.

Die Funktionen sind alle ausreichend bekannt und bedürfen daherkeiner weiteren Erläuterung.

Ca Ca Cı Co Funktion

OÖ OÖ OÖ OÖ A

OÖ 0 OÖ 1 1

OÖ OÖ 1 OÖ A

0 OÖ 1 1 B

OÖ 1 OÖ OÖ OÖ

0 1 OÖ 1 A+1

OÖ 1 1 OÖ A-1

OÖ 1 1 1 A+B

1 0 OÖ OÖ A-B

1 OÖ OÖ 1 AAB

1 OÖ 1 Ö AVB

1 OÖ 1 1 AVB

1 1 OÖ OÖ —1

1 1 O0 41 |
1 1 1 OÖ für Ausbau

1 1 1 1

N

78

, 18
A-Eingänge y

—_ 7(8bit) 8| —I

‚\—I [kL
78 Daten - Ausgänge
 selektor| (gpit)

L EEE78 IT- 78 RyRg
— ww‘

B-Eingänge
u L Y%

(8bit) 78 »
| > Carry

L% ’
Schaltung

, SYSTEM O

78

AAAKL | ZZ

ROM

zur Umcodierung der

Steuereingänge

Te. Ic; I I
v-

Steuereingänge

3.4 Akkumulator (SYSTEM 2)

Mit diesem Programm wird ein Akkumulator simuliert. Die in der Tabelle gezeigten Funktionen

werden mit den Schaltern C3 bis Co ausgewählt. Der Schalter C, dient als Taktschalter.

Durch einmaliges Hin- und Herschieben wird ein Ergebnis in das Register übernommen und

zur Anzeige gebracht. Die A-Schalter werden in diesem Beispiel nicht gebraucht, weil die

A-Eingänge der im Akkumulator enthaltenen ALU mit den AusgängendesRegisters verbunden

sind. Das Ergebnis bzw. der momentane Inhalt des Akkus wird wieder in R; bis Ro angezeigt,

ein Übertrag in Lo.

Akkumulator ITT MP-Experimenter

SYSTEM

Eule
Lahn SELEKTOR

1 1 1 1

Lo RR RRRRR RRo

AKKU-INHALT

0 Ö Ö 0

GG 0& Cı Co 0000090009009 Br Bs Bs B, B3 Br Bi Bo

Außer den Funktionen der ALU enthält diese Schaltung als wesentliche Bestandteile noch ein

Register sowie ein Übertrags-Flag. Das Register dient zum Zwischenspeichern der Ergebnisse.

Hierzu wird eine der Eingangsgruppen (im Beispiel die A-Eingänge) mit den Ausgängen des

Registers verbunden, so daß eine Art Rückkopplung entsteht. Jetzt werdendie Informationen

an den B-Eingängen mit dem Inhalt des Registers verknüpft. Durch Taktimpulse wird das

Verknüpfungsergebnis in das Register geladen, wobei der alte Registerinhalt verlorengeht.

Damit ein möglicher Übertrag nicht nur kurzzeitig erscheint, wird er in einem Flag ebenfalls

zwischengespeichert. Ob dieses Flag getaktet wird oder nicht, wird von einem zusätzlichen

bit Ss im ROM bestimmt. Dies ist erforderlich, da ein Übertrag nur bei sinnvollen ALU-Funk-

tionen gespeichert wird.

 A

Übertrags- ary
| Flag (1bit)L,

 [>
78 Ausgänge

X Fa 8-bit-ALU 78 Register (8bit)B-Eingänge

m
(8bit) ww 1 \

Sg

|
5, 575, Ss 5, 5 5,51 S,

ROM

IT] |
Ss, 5,5 5 Takt (C,)

Ausder Spalte Übertrags-Flag kann entnommen werden, ob das Flag getaktet wird odernicht.

In vielen Mikroprozessoren wirddieses Flag auch bei logischen Operationen getaktet. Da

hierbei aber normalerweise kein Übertrag entsteht, wird das Flag gelöscht.

Us U U) Uo Abkürzung Funktion Übertrags-Flag

00 0 0 NOP Keine Operation ja

00071 SP1 Setze Akku = 1 ja

00 1 0 CMA Komplementiere Akku nein

00 171 LDA Lade B in den Akku nein

0 1 00 CLA Lösche Akku nein

01071 INC Incrementiere Akku ja

0 1 71 0 DEC Decrementiere Akku ja

O0 1 7171 ADD Addiere B in den Akku ja

10 0 0 SUB Subtrahiere B von Akku ja

10071 AND Akku UND in den Akku ja

10 10 IOR Akku ODER B in den Akku ja

10 171 XOR Akku EXCLUSIV-ODERin den Akku ja

1 1 00 SM1 Setze Akku = -1 ja

1 1071 — — nein

1 1 1 0 — — nein

11 71071 — _ nein
3.5 Akkumulator mit Speicher (SYSTEM 3)

Akku mit Speicher ITT MP-Experimenter

SYSTEM

bei Examine: INHALT DER ADRESSE

bei Deposit: NEUER INHALT DER ADR.

sonst : AKKU-INHALT

Lo RP RE RB RR RR Ro

Gr

SIT MINE OP-CODE ADRESSE DATEN FÜR DEPOSIT+ INPUT

1 1 1 1

O OÖ 0 0

C, 0 O2 C4 O Ar As As Au Az Ap A} Ao B7 Be Bs B, B3 B> B Bo

Das System 3 enthält grundsätzlich die gleichen Funktionen wie das System 2. Der Unterschied

besteht darin, daß entsprechend demBild die Daten nicht mehr von den B-Schaltern kommen

sondern von einem RAM. Mit dem neuen Befehl STA (Speichere Akku-Inhalt in Adresse

a aaa ab), können die Daten in das RAM zurückgeschrieben werden. Mit dem Befehl INP

(Lade B-Eingänge in den Akku) werdenjetzt die Daten an B- bis Bo in den Akkumulator

eingelesen (entspricht Befehl LDA in System 2). Bei allen Befehlen, die den Speicher nutzen,

muß jetzt eine bestimmte Adresse spezifiziert werden. Der hier verwendete Speicher hat eine

Kapazität von 16 Wörtern a 8 bit. Damit jedes dieser 16 Wörter spezifiziert bzw. adressiert

werden kann, werden 4 bit benötigt. Damit besteht ein Befehl jetzt aus insgesamt 8 bit.

Hiervon legen 4 bit die Funktion fest, die ausgeführt werdensoll. Sie bilden den sog. OP-Code

(Operation-Code). Die anderen 4 bit bestimmen die Speicheradresse. Aus diesem Grunde

werdenjetzt die A-Schalter für die Befehlseingabe benutzt.

Aus der Tabelle geht hervor, daß es Befehle gibt, die unbedingt die Angabe einer Adresse

benötigen (a aaa), und andere, die ohne spezielle Adresse auskommen (xxx x).

Bevor Befehle, die Daten aus dem Speicher unter einer bestimmten Adresse benötigen,

benutzt werden können, müssen die entsprechenden Daten in den Speicher geladen werden.

Das Laden einer bestimmten Speicheradresse erfolgt mit dem Schalter C2 DEPOSIT (Laden).

Wird dieser Schalter betätigt, d.h. auf 1 und dann wieder auf O geschaltet, werden die

Daten, die an B; bis Bo liegen, im Speicher bei der Adresse abgespeichert, die von den

Schaltern As bis Ao spezifiziert ist.

Mit dem Schalter Cı EXAMINE (Abfragen) kann der Speicherinhalt, der mit As bis Ao

spezifizierten Adresse in R; bis Ro abgebildet werden.

zweite Rückkopplung (8bit)

Carry-Flag

Aus änge 0

Zn‘ BRR%
> „> |Schreib- Lese-

Akkumulator Speicher(RAM)
16x38 bit

B-Eingänge Daten- > 3 Dat cher

(8bit) |selektor rs var / __
| H Schreib-

So >09 Takt
- ROM ”

Ä ww‘ AAAA

C, C, Ay Ag As A, AzAyA, Ag C,
DEPO- EXA- OP-CODE Adresse Takt
SIT MINE

Us U2 U Wo a3 a2 aı ao Abkürzung Funktion Übertrags-
Flag

000 0 x XXX NOP Keine Operation ja

00071 x XXX SP1 Setze Akku = 1 ja

00 1 0 XXX X CMA Komplementiere nein

Akku

0071 1 aa a a LDA Lade Inhalt nein

Adreseaaaa

0 1 0 © X XXX CLA Lösche Akku nein

01 071 X XXX INC Incrementiere Akku ja

O0 1 71 0 x XXX DEC Decrementiere Akku ja

O0 171 1 aa a da ADD Addiere Inhalt ja

Adreseaaaa

10 0 0 aa a da SUB Subtrahiere Inhalt ja

Adreseaaaa

10071 aa a da AND Akku UND Inhalt ja

Adreseaaaa

10 1 0 aa a da IOR Akku ODERInhalt ja

Adreseaaaa

1071 1 aa a a XOR Akku EXCLUSIV- ja

ODER Adresseaaaa

171 0 0 x XXX SM1 Setze Akku = -1 ja

11 071 XXX X INP Lade B-Eingänge nein

in den Akku

1 1 1-0 aa a a STA Speichere Akkuin nein

Adreseaaaa

1 1 1 1 X XXX — — —

aaaa = eine Datenspeicheradresse

xxxx = „don't care”-Zustand, d.h. beliebig

3.6 Vereinfachter Rechner (SYSTEM 4)

Vereinfachter Rechner ITT MP-Experimenter

SYSTEM

bei Examine: INHALT DER ADR. DES BZ

bei Deposit: NEUER INH. DER ADR. DES BZ

sonst : AKKU-INHALT

[7 Le L; Ly Li Lo RP, Re Rs RR R3 R Rı Ro

BEFEHLSZÄHLER RUN CRY

=SRRARr DATEN FÜR DEPOSIT+ INPUT

STEP SIT MINE ADR. ADR. FÜR LD. ADR. OP-CODE ADRESSE

1 1 1 1

0 0 0 Ö

Cı C3 C C4 Co 00000 Az Ar A, Ao B7 Bs Bs B, B3 Br B4 Bo

Bei diesem System wird ein vereinfachter, aber kompletter Rechnersimuliert. Er hat denselben

Befehlsvorrat wie der Akkumulator mit Datenspeicher im System 3. Zusätzlich hat er einen

HALT-Befehl (HLT), damit der Rechner am Ende eines Programms angehalten werden kann.

Im Gegensatz zum System 3 werden im 16-Wort-Speicher nicht nur Daten sondern auch

das Programm angespeichert. Das Programm und die Daten werden mit dem DEPOSIT-

Schalter C>2 in den Speicher geladen. Damit ein Programm automatisch ablaufen kann,

enthält der simulierte Rechner einen Befehlszähler (BZ). Welche der 16 Adressen gerade

selektiert ist, wird durch die LEDs L; bis L, angezeigt. Die Funktionsweise des Befehlszählers

könnenSie wie folgt kontrollieren:

—- Stellen Sie alle Schalter außer Ca auf O. Bei C, = 1 arbeitet das System im Single-Step-

Betrieb, d.h., der Befehlszähler kann mit Schalter C; (RUN)in Einzelschritten getaktet werden.

- In L; bis Li erscheint jetzt eine beliebige Adresse von0O00O0bis 1111.

— Takten Sie das System mit RUN. An L; bis Ly können Sie sehen, daß der Befehlszähler

mit jedem Takt um einen Schritt höher springt.

Mit den Schaltern As3 bis Ao können Sie den Befehlszähler auf eine bestimmte Adresse

laden.

WennSie z.B. Az bis Ao auf O 1 1 O einstellen und den Schalter LOAD-ADRESS(Co) betätigen,

wird der Befehlszähler auf diese Adresse gesetzt (Anzeige durch L; bis La). Wenn Sie jetzt

mit dem RUN-Schalter weitertakten, zählt der Zähler von dieser Stellung weiter.

Mit den Schaltern B; bis Bo können OP-Code und Adresse eingegeben werden.Hierbeiist

unbedingt zu berücksichtigen, daß es sich um einen Befehl handelt, der in einer bestimmten

Adresse abgespeichert wird. Wenn Sie z.B. B; bis Bo auf O 1 1 100 1 O einstellen und den

Schalter DEPOSIT Ca takten, wird dieser Befehl in der Adresse abgespeichert, die gerade

vom Befehlszähler selektiert ist. Der Befehl O 1 1 1 0 O 1 O besagt laut Tabelle: Addiere

den Inhalt der Adresse O O 1 O zum Inhalt des Akkus. Dies bedeutet — und das ist unbedingt

zu beachten — daß bei der Befehlszählerstellung, bei der dieser Befehl eingegeben wurde,

diese Rechenoperation durchgeführt wird.

Die abzuarbeitende Folge von Steuerwörtern oder Befehlen (das Programm) wird zunächst

in den Programmspeicher geladen. Dabei ist natürlich die Reihenfolge der einzelnen Befehle

wichtig. Die Befehle werden deshalb im Programmspeicher mit steigenden aufeinander-

folgenden Adressen gespeichert. Wenn dann über einen Zähler die Programmspeicher-

adressen automatisch erzeugt werden, erscheinen die Befehle in der richtigen Reihenfolge

und können nacheinander ausgeführt werden. Bevor man allerdings ein solches System

benutzen kann, muß das Programm zunächst in den Programmspeicher geladen werden.

Damit der Rechner anhält, wenn das Programm abgearbeitet wordenist, muß am Endeeines

Programms ein HALT-Befehl den Ablauf stoppen. Ohne diesen Befehl hätte das Programm

kein Ende. Der Rechner würde auch die Daten ausführen und am Ende des Speichers wieder

von vorne beginnen. Dem HALT-Befehl ist der OP-Code 1 1 1 1 zugeordnet.

10

Carry

_ Lo

B-Eingänge
Ausgänge8 Daten-

BB > Akkumulator ee =
” 0 | selektor 8

RR)

A |
Be L

L, i ‘ L,

Befehls- y

y zähler N

y

Adreß- RAM-

7% zwischen- > Speicher

speicher 16x 8bit

A
8

Befehls- A >
register ®

u
@

® DO

8 =
1

so drtttt7 L,
‘ Steuerung !

“und nr

Taktverteiler — Taktgenerator

AAAA | ' | | '

A,AJA, A, C C C, C, C,

Adresse für LOAD- EXA- DEPO- RUN SINGLE-

LOAD-ADR. ADR. MINE SIT STEP

Zur Steuerung des Rechenablaufes wird ein Steuerwerk benötigt. Ein solches Steuerwerk

ist recht kompliziert, und wir werden uns deshalb im Rahmen dieses Lehrganges auf eine

kurze Beschreibung beschränken. Die Aufgabe des Steuerwerkesist es, die verschiedenen

Taktimpulse und Steuerwörter für die einzelnen Stufen des Rechners zu erzeugen. Die zu

erzeugenden Steuerimpulse hängen jeweils vom gerade auszuführendenBefehlab.

Der Befehlszähler zeigt an, welcher Befehl des Programms (z.B. Nr. 17 des Programms)

ausgeführt werden soll. Der Befehlszählerinhalt wird also zuerst auf die Adreßeingänge des

_ Speichers übertragen. Der auszuführende Befehl wird jetzt aus dem Speicher geholt und

im Befehlsregister zwischengespeichert. Da der Befehl im allgemeinen aus dem Operationsteil

(Br... Ba) und dem Adreßteil (Ba... Bo) besteht, muß der Inhalt des Befehlsregisters in

Operations- und Adreßteil aufgespalten werden. Aus dem Operationsteil (Op-Code) des

Befehles erkennt das Steuerwerk durch eine entsprechende Logik, ob dieser Befehl eine

Adresse benötigt oder nicht. Wenn nicht, veranlaßt das Steuerwerk direkt die entsprechende

Operation (z.B. Op-Code = O0 0 O 1). Wenn ja, wird der Adreßteil über den Adreßzwischen-

speicher auf die Adreßeingänge des Speichers gegeben. Das unter der angesprochenen

Adresse liegende Datenwort gelangt aus dem Speicher zur Ausführung der Operation in den

Akkumulator. Damit ist der Befehl ausgeführt, und der Rechner kann nach Erhöhen des

Befehlszählers den nächsten Befehl der Programmliste durchführen. War dieser Befehl ein

HALT-Befehl (letzter Befehl jedes Programms), stoppt das Steuerwerk den Rechenablauf.

11

3.7 Hypothetischer Mikrorechner (SYSTEM 5)

Der ebenfalls per Programm simulierte „Hypothetische Rechner” (HR) ist im Gegensatz zum

vereinfachten Rechnerein Rechner mit Bus-Struktur. Das Bild stellt ein Blockschaltbild dieses

Rechners dar.

ua
8-bit-Input - Port Display-Selektor D—

t

ALU .— Befehlsregister

Zwischenspeicher j

| | | Befehlsdecoder

NL ZI | C
Flag| |Flag| |Flag y Y

e— LOAD-ADR. Co

=— EXAMINE Ch
RO -— Steuerwerk fe— DEPOSIT C2

=— RUN C3

«— SINGLE-STEP C,
R1 >

Taktgenerator

R2

auch Indexregister |

 #
—
—
—

8
-
b
i
t
-
D
a
t
e
n
b
u
s
—
—
e

R3

auch Ind.-Reg. > ” Adreßregister
u.Stack-Pointer |

PC -
w

ROM „la
8-bit- Output - Port 24x 8bit S

<

tn 5
ti 0 ©

_ RAM

8-bit-Output - Port 232x8bit nu

rt |
Lr . 8 2. 0... Lo

Wie das Blockschaltbild zeigt, besitzt der HR 4 Arbeitsregister (RO bis R3), von denen R2

und R3 als Indexregister für besondere Adressierung und R3 zusätzlich als Stack-Pointer

benutzt wird.

Zur Signalisierung der Registerzustände sind ein Negativ-Flag (N), ein Zero-Flag (Z) und ein

Carry-Flag (C) vorhanden, die als Sprung-Conditionen verwendet werden.

Der 8 bit breite Programmzähler (PC) kann 2° = 256 Adressenspezifizieren. Im Adreßbereich O

bis 24 (O Oıs bis 1 816) ist ein ROM untergebracht mit Betriebsprogramm. Dem Benutzer

steht ein RAM mit 231 Plätzen im Adreßbereich von 25 bis 255 (1 9ıs bis F Fıe) zur

Verfügung.

In diesen RAM-Plätzenist bei Bedarf auch der Stack unterzubringen.

Die Adresse F Fıe ist als Speicher-Adresse auch nicht verfügbar, da sie für den Input-Port

(A-Schalter) reserviert ist, der damit wie ein Speicherplatz angesprochen werden kann.

Das Befehlsformat des HR besteht aus 8 bit, davon 4 bit (MSD) als Op-Code und 4 bit (LSD)

zur Adressierung. Aufgrund des 4-bit-Op-Codes ergeben sich 16 Grundbefehle, die die

Tabelle zeigt.

Es gibt 1- und 2-Byte-Befehle, wobei das 2. Byte je nach Adreßmodeeine Kostante (Daten)

oder eine Adressesein kann.

12

Befehl Maschinen-Code Byte- Funktion Flags

OP-Code Adressierung Anzahl NZC

HALT 0000 0000 1 hält Rechner an - - -

NOP 0000 1111 1 keine Operation - - -

MOVE 0000 ssdd 1 (s s)>d d - - -

ADDR 0001 ss dd 1 (ss) +(dd) >dd +8

SUBR 0010 ssdd 1 (dd)-(ss) >dd vr

IORR 0011 ssdd 1 (ss) V(dd) >dd +0

XORR 0100 ssdd 1 (ss) V(dd) >dd +0

ANDR 0101 ss dd 1 (ss) A(ldd) >dd +0

R... 0110 eess 1 (f (ss))>ss *)

STAC O111 mmss 1/2 (ss) (m m) - - -

LOAD 1000 mmdd 1/2 (m m)>dd - - -

ADDM 1001 mmdd 1/2 (mm)+ (dd)>dd u ze

SUBM 1010 mmdd 1/2 (dd) - (mm)>dd vr
IORM 1011 mmdd 1/2 (m m)V (dd)>dd +0

XORM 1100 mmdd 1/2 (m m)Y (dd)>dd +0

ANDM 1101 mmdd 1/2 (m m)A (dd)>dd +0

JMP... 1110 mmcc 1/2 (m m)—>PC Sprung - - -

CAL... 1111 mmcc 1/2 (PC)>(R3), (m m)>PC - - -

Register-Adresse OP-Code-Erweiterung e e *)

ss/d d Register ee Befehl Reg.-Funktion NZC

0 0 RO 00 INCR (ss) + 1>ss + -
oO 1 R1 O1 DECR (ss) - 1>ss + -
10 R2 10 RACL ROTssu.C links - -,$
1 1 R3 11 RACR ROTssu.C rechts - -,

— = Flag wird nicht beeinflußt

t = Flag wird beeinflußt, wird O oder1
O = Flag wird auf O gesetzt

Adreßmode m m

Befehls- mm >= mm = mm >= mm =

gruppe 00 01 10 11

LOAD @R2 @R3 1

ADDM # ABSOLUT AUTO INCRE-

SUBM oder INDEXED MENT INDEXED

IORM IMMEDIATE DIREKT über R2 über R3

XORM 2-Byte-Befehl 2-Byte-Befehl 1-Byte-Befehl 1-Byte-Befehl

ANDM 2. Byte = Daten 2. Byte = Adr. R2 enth. Adr. R3 enth. Adr.

@y R3 @R2 @R31t

STAC INDEXED ABSOLUT Ä AUTO INCRE-

AUTO DECREM. oder INDEXED MENT INDEXED

über R3 DIREKT über R2 über R3

1-Byte-Befehl 2-Byte-Befehl 1-Byte-Befehl 1-Byte-Befehl

R3 enth. Adr. 2. Byte = Adr. R2 enth. Adr. R3 enth. Adr.

13

Fortsetzung der Tabelle auf Seite 14!

@ @R2 @R3!

JMP... ABSOLUT AUTO INCRE-

oder INDIREKT INDEXED MENT INDEXED

DIREKT über R2 über R3

2-Byte-Befehl 2-Byte-Befehl 1-Byte-Befehl 1-Byte-Befehl

2. Byte = Spr.-Adr.|2. Byte = Adr.d. Spr.-Adr.|R2 enth. Spr.-Adr. |R3 enth. Spr.-Adr.

@® @R2

CAL... ABSOLUT

oder INDIREKT INDEXED IC

DIREKT über R2 verwendet

2-Byte-Befehl 2-Byte-Befehl 1-Byte-Befehl

2. Byte = Spr.-Adr.|2. Byte = Adr. d. Spr.-Adr.|R2 enth. Spr.-Adr.

Sprung-Bedingungen c c

cc Befehl Sprung- u. Aufrufbedingung

00 JUMP, CALL unbedingt

01 ..Z falls Z-Flag = 1

10 ..N falls N-Flag = 1

11 .c falls C-Flug = 1

Der Befehl „R.. .” (Registermanipulation) hat noch eine 2-bit-Op-Code-Erweiterung mit dem

Code „e e”. Damit gibt es hier 4 Befehle, wie die Tabelle zeigt.

Auch bei den Befehlen „JMP ...” und „CAL.. .” wird der Op-Code mit den beiden Be-

dingungs-bits „c c“ erweitert, so daß jeweils 4 verschiedene Sprungbefehle entstehen.

Mit der Adressierung „s s“ bzw. „d d“ wird je eins von den 4 vorhandenen Registern zum

Quellregister (source, Code s s) bzw. zum Zielregister (destination, Code d d) ernannt.

Die Codierung „m m“ legt den eigentlichen Adressierungsmode entsprechend der Tabelle

fest. Damit könnenalle Befehle, die m m enthalten, je nach Wahl des Modes, 1- oder 2-Byte-

Befehle werden.

Alle über R2 oder R3 indexierten Adressierungen sind 1-Byte-Befehle, alle immediate,

absoluten (direkten) und indirekten ergeben 2-Byte-Befehle.

Hypothetischer Rechner ITT MP-Experimenter

SYSTEM beiLoad Adr: ADRESSE INHALT

bei Examine: ADRESSE INHALT

bei Deposit: ADRESSE NEUER INHALT

bei Flags: N p a 6 N ya Ri e

[, Le L5 L, L3 L2 L4 bo R7 Rs Rs R R3 Rp Rı Ro

sonst: WIE MIT Bs,Bı,B3 GEWÄHLT WIE MIT B>,,Bı, Bo GEWÄHLT

FÜR L>....LoIFÜR Rr..Ro

STEP SIT MINE ADR. DATEN FÜR LD. ADR+DEPO+INP DISPLAY-SELEKTOR

1 1 1 1

0 0 0 0

GG cdG Ar As A; A, A; A A Av 00 BB, B3 B Bı Bo

Bedeutung der Schalter:

Die Schaltergruppe C, bis Co hat die gleiche Bedeutung wie im System 4. Wie aus der

aufgelegten Schablone zu erkennenist, wird bei LOAD-ADR. = 1 die an den Schaltern A,

bis Av eingestellte Adresse angewählt. Solange Co = 1 ist, erscheint in den LEDs L; bis Lo die

angewählte Adresse, der Inhalt dieser Adresse wird in R, bis Ro angezeigt. Das gleiche

gilt für die Betätigung von EXAMINE und DEPOSIT. Bei DEPOSIT = 1 erscheint in R; bis Ro

der mit dem Takt abgespeicherte neue Adresseninhalt. Werden die erwähnten Schalter wieder

14

in die Stellung O zurückgesetzt, erscheinen in den beiden Anzeigenreihen die Daten, die

über die Schalter A; bis Av abgerufen werden. Hierbei kann mit den Schaltern B;s bis Bz3 die

Anzeige L; bis Lo und mit den Schaltern Bz bis Bo die Anzeige R; bis Ro angewählt werden.

Die Schalter B, und Bs haben keine Bedeutung. Bei gleicher Einstellung von Bs bis Bz und

B>2 bis Bo erscheinen in R; bis Ro und L; bis Lo die gleichen Daten. Der Anzeigecode

(Display-Code) spezifiziert die einzelnen Anzeigemöglichkeiten:

Bs bis Ba Anzeige in L; bis Lo

bzw. bzw.

B> bis Bo R; bis Ro

000 Inhalt von RO

001 Inhalt von Ri

010 Inhalt von R2

011 Inhalt von R3

100 Stellung des Befehlszählers PC

101 Zustände der Flags

110 Speicherwort, dessen Adresse vom Befehlszähler spezifiziert ist

111 Speicherwort, dessen Adresse mit A, bis Ao spezifiziert ist

Die Codes O O O bis O 1 1 bedürfen keiner weiteren Erklärung.

- Code 1 O0 O zeigt an, welche Adresse vom Befehlszähler gerade angewählt wird.

- Code 1 O 1 gibt Auskunft darüber, welche Zustände die 4 Flags gerade einnehmen.

- Code 1 1 O gibt den Inhalt der Speicheradresse an, die vom Befehlszähler gerade an-

gewähltist.

- Code 1 1 1 zeigt den Inhalt einer Speicheradresse an, die mit den Schaltern A, bis A,

frei wählbar ist.

Wesentlich ist, daß die Schalter B; bis Bo keinen Einfluß auf den Funktionsablauf haben.

Sie dienenlediglich zur Anzeige bestimmter Daten, wenn ein Programm abläuft.

Damit Sie mit diesen grundsätzlichen Eigenschaften des Rechners vertraut werden, führen

Sie nachfolgendes Übungsprogramm Schritt für Schritt durch:

1. Alle Schalter auf Null stellen

2. Ar bis Ao auf 4 O1s einstellen

3. LOAD-ADR. auf 1 stellen (nicht takten!)

In L; bis Lo erscheint die an A; bis Ao eingestellte Adresse, deren momentaner Inhalt

in R; bis Ro angezeigt wird

4. LOAD-ADR. auf O stellen, in L- bis Lo und R; bis Ro erscheint der zufällige Inhalt von RO,

da mit den Schaltergruppen Bs bis B3 und B; bis Bo jeweils der Code O0 O O eingestellt ist

5. Schalter B> bis Bo auf 1 O O einstellen. In R- bis Ro erscheint die Adresse 4 Oıe, die über

LOAD-ADR. geladen wurde

6. A, bis Ao auf 10000 10 0 einstellen und DEPOSIT auf 1 stellen. In L, bis Lo erscheint

die Adresse 4 Oıje, in R- bis Ro die an A; bis Av eingestellten Daten. Schalter DEPOSIT auf O

zurückstellen. Bei B> bis Bo = 1 O O erscheint jetzt in R- bis Ro die nächste Adresse 4 T1ıs

7. Ar bis Ao auf F Eıe einstellen und DEPOSIT takten

8. Ar bis Ao auf O 116 einstellen und DEPOSIT takten

9. Ar bis Ao auf 1 1ıs einstellen und DEPOSIT takten

10. A, bis Ao auf O 6ıs einstellen und DEPOSIT takten

11. A, bis Ao auf O Oıs einstellen und DEPOSIT takten

12. A, bis Ao auf 4 O1 Stellen und LOAD-ADR.takten

WennSie alle Eingaben genau vorgenommen haben,ist der Rechner mit einem bestimmten

Programm geladen und über Punkt 12 wieder auf die Anfangsadresse 4 Oıs zurückgestellt.

Mit EXAMINE überprüfen Sie die Eingaben:

1. Alle Schalter auf O

2. EXAMINEauf 1 stellen. In L- bis Lo erscheint die Adresse 4 Oıse, in Rz bis Ro derenInhalt 8 Aıe,

also der erste Befehl des Programms.Hierbei handelt es sich um den Befehl LOAD RO, F Eıs

(lade Akkumulator RO mit dem Inhalt der Adresse F Eıs). Diese Datenadresse ist in der

nächsten Programmadresse abgespeichert

15

3. EXAMINEüber O wiederauf 1 stellen. In L; bis Lo erscheint die Adresse 4 116, der Inhalt F Eıs

erscheint in R; bis Ro

4. Punkt 3. wiederholen. In L, bis Lo erscheint Programmadresse 4 21ıs. Der Inhalt dieser

Adresse O 116 (Anzeige in R; bis Ro) entspricht dem Befehl MOVE R1, RO. Dieser Befehl
bewirkt, daß die Daten aus RO in R1 transferiert werden

5. Punkt 4. wiederholen. In L; bis Lo erscheint Adresse 4 3ıs. Der Inhalt 1 116 entspricht dem

Befehl ADDR R1, RO. Hierbei werdendie Daten des Registers RO mit dem Inhalt R1 in R1 addiert

6. Punkt 5. wiederholen. In der Adresse 4 41s ist der Befehl O 616, d.h. MOVE R2, R1, abge-

speichert. Hierbei werden die Daten von R1 in R2 gebracht

7. Punkt 6. wiederholen. In der Adresse 4 516 ist der HALT-Befehl abgespeichert

Damit dieses Programm mit definierten Daten ablaufen kann, speichern Sie in Adresse F Eıs

die Zahl 1 Oıe:

1. Ar bis Ao auf F Eıs einstellen

2. Schalter LOAD-ADR. takten

3. Ar bis Ao auf 1 Oıs einstellen

4. DEPOSIT takten

Jetzt stellen Sie über LOAD-ADR. das System wieder auf die Programmadresse 4 Oıs zurück

und schalten über C; SINGLE-STEP-Betrieb ein.

Adresse Inhalt Befehl Kommentar

(hexadez.) Maschinencode

A0 10000100 LOAD RO, FE

41 11111110 Datenadresse

42 00000001 MOVE R1, RO

43 00010001 ADDR R1, RO

44 00000110 MOVE R2, R1

45 00000000 HLT

FE 00010000 Daten
Zur Beobachtung des Datenflussesstellen Sie B> bis Bo auf 1 00 (Stellung PC) und B; bis Ba auf

0 0.0 (Inhalt RO). Mit Schalter RUN wird jetzt das System einmal getaktet. In L; bis Lo

erscheint 1 Oıs, also die Daten aus Adresse 4 116, da hier (durch MODE O 1 im Maschinen-

code bedingt) kein neuer Befehl, sondern eine Datenadresse abgespeichertist.

Schalter Bs; bis Bs auf O O 1 einstellen, und RUN erneut takten. Die Daten von RO erscheinen

jetzt auch in R1. System mit RUN takten. In L; bis Lo erscheint das Additionsergebnis 2 Oıe.

Schalter B; bis B3 auf O 1 O stellen und mit RUN takten. Die Daten von R1 erscheinen auch

in R2. Weiteres Takten hat keinen Einfluß mehr auf das System, da in Adresse 4 5ıs ein

HALT-Befehl programmiertist.

Wie bereits erwähnt, ist im Adreßbereich O Oıs bis 1 816 des ROMsein Betriebsprogramm

untergebracht. Dieses Betriebsprogramm ist ein Multiplikationsprogramm, das als Unter-

programm benutzt werden kann:

16

Adresse Inhalt Befehl Kommentar

O1 75 STACR1,FO speichere Multiplikand 1)

02 FO ‚

03 45 XORR R1, R1 lösche Zwischensumme

04 82 LOAD R2, #08 setze Schleifenzähler

05 08

06 69 RACL RI verschiebe rechte Hälfte Zwischensumme 2)

07 68 RACL RO verschiebe linke Hälfte Zwischensumme

08 E 3 JMPCOC prüfe Carry-Flag 3)

09 oOC

OA EO JUMP 1 4

OB 14

OC 95 ADDM R1, FO C-Flag war 1, addiere

OD FO

OE E 3 JMPC 1 2 4)

OF 12

10 EO JUMP 1 4

11 14

12 90 ADDMRO, #0 1| C-Flag war 1, addiere 5)
13 O1

14 66 DECR R2 erniedrige Schleifenzähler

15 E 1 JMPZ 19 Schleifenende?

16 1 9

17 EO JUMP 0 6

18 06

1. Der Multiplikand steht in R1. Dieses Register wird später für die rechte Hälfte der Zwischen-

summe benötigt. Aus diesem Grunde muß der Multiplikand abgespeichert werden. Dies

geschieht in unserem Beispiel unter der Adresse F O.

2. Die Verschiebung der Zwischensummeerfolgt in 2 Schritten. Zuerst wird die rechte

Hälfte (R1) verschoben. Das herausgeschobenebit kommtin das Carry-Flag. Danach wird die

linke Hälfte (RO) verschoben.Der Inhalt des Carry-Flags wird dabei von rechts in RO hinein-

geschoben, so daß insgesamt eine Verschiebung mit doppelter Wortlänge durchgeführt wird:

® aD © ©

OCCcorrN DO TerreDO

Dabei ist noch zu beachten, daß durch den Befehl RACL 2 1 der Inhalt des Carry-Flags von

rechts in R1 hineingeschoben wird. Über das Programm muß deshalb sichergestellt werden,

daß vordieser Instruktion das Carry-Flag O enthält. Dies wird beim ersten Programmdurchlauf

durch die Instruktion XORR R1, R1 garantiert. Dieser Befehl bewirkt nämlich ein Löschen des

Carry-Flags. Auch in der Schleife muß diese Bedingungerfüllt sein.

3. und 4. Die folgenden Programmschritte (Addition) müssen übersprungen werden, wenn

dasCarry-Flag Null ist. Ein solcherBefehl ist im hypothetischen Rechnernicht vorhanden.Er

muß daher durch einen bedingten und unbedingten Sprung realisiert werden, was natürlich

zu einem längeren Programm führt. \

5. Dieser Befehl addiert 1 zur linken Hälfte der Zwischensummeund löscht gleichzeitig das

Carry-Flag, da sich bei dieser Addition kein Übertrag ergeben kann. Damit ist sichergestellt,

daß im nächsten Schleifendurchlauf mit dem Befehl RACL R1 eine Null von rechts in die

Zwischensumme geschoben wird. Zum Erhöhen von RO könnte auf den ersten Blick auch

der Befehl INCR RO verwendet werden.Dies ist nicht möglich, da dieser Befehl das Carry-Flag

nicht beeinflußt.

17

Dieses Unterprogramm kann, wie das folgende Beispiel zeigt, in ein Gesamtprogramm für

Multiplikationen eingebaut werden:

Adresse Inhalt Befehl Kommentar

40 83 LOAD R3, # FF Initialisiere Stack-Pointer

A 1 FF

42 FO CALL MULTA

43 26

44 50 ADRF1 Adresse von Faktor 1

45 5 1 ADRF2 Adresse von Faktor 2

46 52 ADR P Produktadresse

A)OOHAT

26 OE MOVE R2, R3

27 8A LOAD R2, @ R2

28 8A LOAD R2, @R2

29 88 LOAD RO, @ R2

2A OE MOVE R2, R3

2B 8A LOAD R2, @ R2

2C 62 INCR R2

2D 8A LOAD R2, @ R2

2E 89 LOAD R1,@ R2

2F EO JUMP © 1

»0O |O1 |sumpo1___
O1

02

Multiplikations-

- programm ' Unterprogramm

im ROM-Bereich

17

18

19 OE MOVE R2, R3

1A 8a LOAD R2, @ R2

1 B 92 ADDMR2,@02

1C 02

1D 8A LOAD R2, @ R2

1E 79 STAC R1,@R2

ıF 62 INCR R2

20 78 STACRO, @R2

21 SE LOAD R2,@ R3 !

22 92 ADDMR2, #03

23 03

24 72 STACR2, @ ı R3

25 EC JUMP @R3 t
18

3.8 Mikrorechner-System 8080 (SYSTEM 6)

Das nachstehende Blockschaltbild zeigt den Aufbau des Mikrorechners mit der CPU 8080.

nn
m

[a

<ı 5
o
m o
< OD

“N N a

a 2 2223c3
a

io hE 3.7 222

yo _ -

Jsypyss-y—e ZI Fe
FE EN.
> ?

0g...tg - > 07...
© _ ES © 1...°7

JONDUIS - ee = > ID eHPU>S -& mo _ Iso | 5 usdwp7-7

09...79
in

J31Dy9S-) > © Oy...Ly
z N n_ - ”

m =— © oo oo \ wedwp-N
W31LSAS >——- >

A A

Y

te
7

oo

= x Q NE
Iy: >

x So
oO Do

Ne

Ss T

IL

oOX : HT N 53.» z
2 :2o 2 vu = Q 0

oO © a X N
S \< 28 {Ist” i &

<I
-> OÖ

Ne \o N 7

N N N \om

N I„DO
un
u

un

ce le52
> 9 oN x =
1 oo KEN

+ -—02

| | | -

zZ ul
oO — N

r R

Die CPU 8080 mit dem Taktgenerator 8224 und dem System-Controller 8228 liefert alle

Adreß-, Daten- und Steuersignale, die auf der linken Anschlußleiste verfügbarsind.

Im 1-k-ROM mit dem Adreßbereich O0 O O Oıs bis O 3 F Fıe ist das Monitorprogramm

dieses Systems (und der niederen Systeme) untergebracht. Zur Verfügung des Anwenders

steht das 1/4-k-RAM im absoluten Adreßbereich O A O Oıs bis O 4 F Fıe, seine Adressen

werden vom Monitor in die relativen Adressen O Oıs bis F Fıs umgesetzt. Am Datenbus

liegen 3 8-bit-Input-Ports und 2 8-bit-Output-Ports, die mit isolierter I/O-Adressierung

betrieben werden. Sie werden mit einzelnen Adreßbits adressiert, so daß maximalje 8 Input-

bzw. Output-Ports adressiert werden können (Adressen O 1,0 2,04,08,10,20,40,80

davon O 1,0 2, O 4 bzw. O 1, O0 2 verwendet).

Dem Benutzer stehen die im nachstehendenBild dargestellten Register der CPU zur Verfügung.

Im Flag-Register (F) sind die Flags „N” (Negativ), „Z" (Zero), „H“ (Half-Carry für Überträge

vom 3. ins 4. bit, Verwendung für BCD-Operationen), „P” (Parität, d.h. bei einer geraden

19

Anzahl von 1 in einem Register wird P = 1) und „C” (Carry) vorhanden. Die übrigbleibenden

3 bits sind fest mit O bzw. 1 belegt. Das 8-bit-A-Register ist das Haupt-Arbeitsregister

(Akkumulator), das gegenüber den übrigen Registern mit einigen besonderen Befehlen

arbeiten kann.

 Half-Carry-Flag H immer 0

immer O0

Zero-Flag Z

Negativ-Flag N

P Paritäts-Flag

immer]

C Carry-Flag

P N) C| F Flag-Register

Registerpaar PSW

A Akkumulator

B

B Register

Registerpaar

C Register

D Register

Registerpaar D <<

E Register

H Indexregister

Registerpaar H <

L Indexregister

15 7 0

SP Stack-Pointer

PC Befehlszähler

Die je 8 bit breiten Register B, C, D, E, H und L sind gleichwertige Arbeitsregister.

Bei einigen Befehlen werden die Register als Registerpaare benutzt, so bilden F und A das

Registerpaar PSW (Program Status Word), B und C das Paar B, D und E das Paar D sowie

H und L das Paar H. Die Registerpaare B, D und H erlauben dann 16-bit-Operationen.

Das Paar H dient bei einigen Befehlen als Indexregister, d.h. es erlaubt auf einfache Weise

eine Indexadressierung.

Weiterhin steht ein 16-bit-Stack-Pointer (Stapelzeiger) zur Verfügung, der bei Programm-

sprüngen usw. die Adresse des Speicherplatzes anzeigt, in dem die Rücksprungadressesteht.

Ein 16-bit-Programm-Zähler (PC) dient zur Adressierung von insgesamt 64 k (65 536)

möglichen Speicherplätzen.

Das 8080-System hat ein 8-bit-Befehlsformat. Dabei ist insgesamt nicht zwischen Op-Code

und Adressierung zu unterscheiden, d.h. man mußalle 8 bits als Op-Code verstehen. Damit

ergäben sich theoretisch 2° = 256 Befehle, von denen jedoch 12 Möglichkeiten nicht

verwendet werden, so daß 244 Befehle übrigbleiben.

Durch Zusammenfassen zu Befehlsgruppen mit zusätzlicher Codierung (innerhalb der 8 bits)

ergibt sich eine übersichtliche Form des Befehlsvorrates.

Aufgrund unterschiedlicher Adressierung könnendie Befehle 1-Byte-, 2-Byte- oder 3-Byte-

Befehle sein. Die folgende Tabelle zeigt alle Befehle in der komprimierten Form der Befehlsliste

unter Verwendung zusätzlicher Codierungen.

20

Befehl Maschinen-Code Byte Funktion Flags

NZHPC

NOP 0000 0000 1 keine Operation - .-.-.- -

MOVd, s Oldd dsss 1 (sss) >ddd - 2... 0. -

MVId, #k. OOdd d110 2 konst. >d dd - -.-.0- -

LDA adr. 0011 1010 3 (adr.) >A - --0- -

STA adr. 0011 0010 3 (A) —adr. - .-.-- -

LDAX rp* OOrr 1010 1 (@rp) >A 2... -—

STAX rp* O0O0Orr 0010 1 (A) > @rp - --- -

LHLD adr. 0010 1010 3 (adr.) —HL - - -- -

SHLDadr. 0010 0010 3 (HL) —adr. - -.-0.- -

LXIrp, #k O0Orr 0001 3 konst. —rp - -.-- -

XCHG 1110 10119 1 (HL) +-(DE) - --- -

INA, adr. 1101 1011 2 (adr.) >A =... -

OUTadr, A| 1101 00191 2 (A) —>adr. - --.- -

ADDA, s 1000 Osss 1 (sss)+ (A) >AÄ vr rt

ADCA, s 1000 1sss 1 (sss)+(A)+(C) AA| I I I +
ADIA, #k 1100 0110 2 (A) + konst. >AÄ vr

ACIA, #k 1100 1110 2 (A) +konst.+(C)>A| I Ir +

SUB A, s 1001 Osss 1 (A) -(sss) AA tr + +
SBBA,s 1001 1sss 1 (A) -(sss)-(C)>A| It I I
SUIA, #k 1101 0110 2 (A) - konst. >A vr rt

SBIA, #k 1101 1110 2 (A) -konst.-(C)>A| I I I I
CMPA, s 1011 1sss 1 (A) -(sss) vr
CPIA, #k 1111 1110 2 (A) - konst. vr
DADH,rp OOrr 1001 1 (HL) + (rp)>HL - ---,3
DAA A 0010 0111 1 (A) +korr.>A ze vw .,+

ANAA, s 1010 Osss 1 (A) A(sss)>A vr r0
ANIA,#k 1110 0110 2 (A) Akonst.>A ++, 0

ORAA, s 1011 Osss 1 (A) V (sss)>A _+r0%+r 0
ORIA, #k 1111 0110 2 (A) V konst.>A r0+0

XRAA, s 1010 1sss 1 (A)V (iss s)>A _t0+r0
XRIA, #kK 1110 1110 2 (A) V konst.>A 0% 0

CMAA,A O010 1111 1 (A) A - - -- -

INR d OOdd d100 1 (ddd) +1>ddd irrt -
DCR d 00Odd d101 1 (ddd) - 1>ddd tr + -
INX rp OOrr 0011 1 (rp) + 1>rp - .-.-- -

DCX rp OOrr 1011 1 (rp) - 1>rp - - -- -

R...A 00On n111 1 (An) >A - ---%

PCHL 1110 1001 1 (HL) >PC - ----

JMPadır. 1100 0011 3 (adr.) >PC - -.-- -

J...adr. ı11bb bO1O 3 (adr.) >PC, wenn - - - - -

CALL adr. 1100 1101 3 (adr.) >PC, (PC)>SP - - - - -

C...adr. ı1bb b1O0O0 3 (adr.)>PC,wenn(PC)>SP| - - - — -

RET 1100 1001 1 ((SP))>PC = .--- -

R... ı1bb bOOOoO 1 ((SP))>PC, wenn - .-.-- -

RSTa I1laa aııı 1 8SxaPC - .-.-- -

POP** I11rr 0001 1 ((SP))>rp (+ $)
PUSW** Iıirr 0101 1 (rp) —(SP) - - - - -

SPHL 1111 1001 1 (HL) >SP - -.-- -

XTHL 1110 0011 1 ((SP))»>(HL) - - - - -

EI 1111 1011 1 Interrupt ermöglicht - - ---

DI 1111 0011 1 Interrupt gesperrt - --- -

STC 0011 0111 1 1 >C - - - - 1

CMC 0011 1111 1 (C) >C - ---Y

HLT 0111 0110 1 Prozessor hält an - .-.-- -

21

Die verwendeten zusätzlichen Codierungen haben dabei folgende Bedeutungen:

Register-Code sss = Quellregister

sssod.ddd Register rr Reg.-Paar rp ddd = Zielregister

000 B BC =B M = Speicherplatz

001 C 01 DE _ D + = Flag wird beein-
010 D HL =H Außt

011 E SP

100 H — = Flag wird nicht

101 L * nurO Ound O 1 beeinflußt

111 A dann bei POP

Flags }

Rotate-Code (R...)nn

nn Befehl Funktion

RLC (Ar)>Ao, (Ar)>C

O1 RRC (Ao)>Ar, (Ao)>C

RAL (Ar)>C, (C)>Ao

RAR (Ao)>C, (C)>Ar

Sprung-Bedingungs-Code b b b

bbb Befehlszusatz Bedingung

000 ...NZ wenn Z =, d.h. Inhalt # O

001 ...d wenn Z = 1, d.h. Inhalt = O

010 ...NC wenn C = 0, d.h. kein Übertrag
011 ..c wenn C = 1, d.h. Übertrag
100 .. PO wenn P = 0, d.h. Parität ungerade

101 .. PE wenn P = 1, d.h. Parität gerade

110 ..P wenn N = 0, d.h. Inhalt positiv

111 .M wenn N = 1, d.h. Inhalt negativ
Für die genaue Kenntnis der Wirkungsweise der einzelnen Befehle sollte man die Datenunter-

lagen der Hersteller des 8080 oder das schriftliche Lehrmaterial des ITT MP-Lehrsystems

zu Rate ziehen.

Um nun mit dem Mikrorechner 8080arbeiten zu können,ist ein Monitorprogramm erforderlich,

über das man Einblick in den Zustand bzw. die Arbeitsweise nehmen kann. Das Monitor-

programm für das 8080-System beim ITT MP-Experimenterist ein für den Lernzweck mit

diesem Gerät speziell zugeschnittenes Programm und nicht identisch mit den Monitorpro-

grammen der 8080-Hersteller.

Im einzelnen erlaubt dieses Programm:

— die Registerinhalte des 8080, den Stand des Befehlszählers und die Inhalte aller RAM-

Adressen sichtbar zu machen

— das RAM zu laden (Funktion DEPOSIT) und den RAM-Inhalt automatisch zu kontrollieren

(Funktion EXAMINE)

Das Monitorprogramm ist im ROM untergebracht und kann durch Betätigung der RESET-Taste

gestartet werden.

Es wird außer Betrieb gesetzt, d.h. das Anwenderprogramm im RAM wird vom 8080 be-

arbeitet, wenn der RUN-Schalter (C3) auf 1 gestellt wird.

Wenn RUN = 1 ist, ist der Monitor außer Betrieb und alle übrigen Schalter haben keinen

sichtbaren Einfluß mehr. Auch nach dem Rückschalten von RUN auf O bleibt das Anwender-

programm in Betrieb, d.h. das Monitorprogramm läuft nicht. Das Monitorprogramm ist nur

bei RUN = O durch Betätigung der RESET-Taste wiederin Betrieb zu setzen.

22

MP-System 8080 ITT MP-Experimenter

SYSTEM
7 bei Load Adr.: /NBJ°1:2533 2 INHALT

bei Examine ADRESSE DEZE

ADRESSE NEUER INHALT

kb Lb,bGLz Li bo RP RR RR R Rı Ro

Inh. der mit A-Sch. gewählten Adr. Inh. der mit BSch. gewählten Adr.

HLT Fo] [oEPo] exa- [Load RAM rel. Adr. f Ld. Adr,Depos.+Exa.

Alz1a SIT |MINE |ADR. Stack rel. Adr(Offset)f Stack Disp. RAM rel. Adr für Stack-

1
|
1 1

bei Deposit

sonst:

Ö Ö Ö 0

GG 2 Cı Co Ar As As A, Ag Ar Aı Av Br Bs B5 Bi B3 Br B4 Bo

Solange der Monitor in Betriebist, könnendie Inhalte der Register und der Stand des Befehls-

zählers zur Anzeige gebracht werden. Der Monitor setzt die echten (absoluten) Adressen des

RAM-Bereiches O 4 O O16 bis O4 F Fıs in relative Adressen - RAM-selektive Adressen — um,

die dann O Oıs bis F Fıs lauten. Die Registerinhalte werden vom Monitor in den STACK-Teil des

RAMsgebracht, der die RAM-rel. Adressen F 41 bis F Dis belegt. Wählt man diese Adressen

mit den B-Schaltern, so werden die Register angezeigt. Dadurch, daß die Adressen des

STACK festgelegt sind, kann mandie Inhalte der Register mit Hilfe der A-Schalter auch über

die STACK-relativen Adressen (STACK-Offset) von O Oıs bis O 9ıs (entspricht F 4ıs bis F Dis)

zur Anzeige bringen. Die nachstehende Tabelle gibt die Codierung an:

abs. Adresse RAM-rel. Adresse - STACK-rel. Adresse Inhalt
B-Schalter A-Schalter

Anz. in R-LEDs „Anz. in L-LEDs

OAFA FA 00 Reg.L
O4AF5 F5 01 Reg. H
OAF6 F6 02 Reg. E

O4F7 F7 03 Reg. D
OAFS F8 04 Reg. C
O4F9 F9 05 Reg. B
OAFA FA 06 Flags

OAFB FB 07 Akku
OAFC FC 08 PC (bit 7bis 0)

OAFD FD 09 PC (bit 15 bis 8)

In dieser Form ist der Monitorin erster Linie zum Programmladen zu verwenden. Um Ergebnisse

(Registerinhalte, Speicherinhalte) nach oder während des Laufes eines Anwenderprogramms

sichtbar zu machen, gibt es eine andere Möglichkeit. Das Monitorprogramm wird auch dann

aufgerufen, wenn der Prozessor innerhalb des Anwenderprogramms einen RST-2-Befehl

(D 716) vorfindet. Mit dem RST-2-Befehl wird ähnlich eines Interrupts der Monitorals Interrupt-

Routine aufgerufen, d.h. alle Registerinhalte auf den STACK gebracht. Der STACK-Inhalt ist

dann bei entsprechender Adreßwahl anzeigbar, allerdings nur, wenn „HLT am BP“ (C,) auf 1

steht, da damit der Prozessor im Monitor bleibt, d.h. die Anzeige „steht“. Dadurch ist dann

eine Art von „Single-Step-Betrieb“ möglich:

Steht C, auf 1, läuft der Prozessor mit jeder RUN-Betätigung bis zum nächsten RST 2 und

bleibt stehen. Will man ein Programm austesten, ersetzt man einfach den auf den letzten

Befehl des auszutestenden Programmteilers folgenden Befehl durch RST 2. Ist der Programm-

teil in Ordnung, wird wieder der Originalbefehl eingesetzt und RST 2 an der nächst

interessanten Stelle eingebaut usw.

Der Monitoranruf über RST 2 erlaubt die Anzeige der Registerinhalte, aber nicht das Neuladen

von Programmen; dies ist nur möglich, wenn der Monitor über RESET angerufen wird.

23

3.9 Erweitertes 8080-System (SYSTEM 7)

Im Rahmen derin den technischen Daten genannten Möglichkeiten kann das Rechnersystem

des ITT MP-Experimenters durch den Benutzer erweitert werden. Eine Speichererweiterungist

auf der Adresse O 8 O O,1s anzubringen, da diese durch das vorhandene Betriebsprogramm

angesprungen wird, wenn der SYSTEM-Schalter auf 7 gestellt wird.

Ab der Speicheradresse O0 8 O Oıs kann dann ein vom Benutzer entwickeltes anderes Be-

triebsprogramm (ROM) oder aber auch RAM untergebracht werden. Das Monitorprogramm ist

dann außer Betrieb.

24

4. Stromlaufpläne und Anschlußbelegung

o +5 V,

Io.ı

_ +
“TOpF > 78M 12

V ın+
Bu wa ER 3x

„| N 4700 uF 10 uF
+ 16.V> T LM 309 k I

IN —=10 ur tu &
220 V I] 25V I

7. I+ +
Y = 220 uFI6Y T

DI 79 M05 :

N
N „gr

sv >
2x B4O C 1500

Bild 1

Stromversorgung

RESET= (80)

+5 V

47k

M Co (36)

Ar bis Ag (35 bis 28)
B, bis By, (11 bis 4)

5
7

45 Ro bis R, [12 bis 19)
Lo bis Ly (20 bis 27)

50

01 pF cavY 26
X

L

Bild 2

Frontplatte (Schaltungsauszüge)

—
_
—

SYSTEM h h

L_

o
O

+(/|)

.-——e

.——e

25

 74 LS 03

(90) ——4.

(89) ——

(88)—
(87)—

—0 +12 V, 0,25 A 20 mVss (100 Hz)

10 mV,, (100 Hz)

© -5V DIA

C, (40)
C3 (39)
C, (38)
Cı (37)

(1u.2)
———

5 mVss (100 Hz)

—Z
ir -5V

Bild 3

Lo 19% Anschlußbelegung

+5V |oO |89

+12V OÖ 88

-5V|I0|389

L|o|s ılol-L

(+5V)| oO

|

85 2Ilo|lL

(+12V)

|

©

|

84 31 oO |+5V

(-svV)| o

|

83 «| oO

|

8

STSTB|I O

|

82 ;sI0o|«

RDYINI o 8ı 6I|0O |

RESIN| oO 80 ı10|*®-

RESET

|

oO

|

79 e|o|«

INT| Oo

|

78 o|0|-

HoLD| oO

|

77 0100|»

BUSEN| O

|

76 1110| 8,

WAIT

|

O

|

75 21o|R

INTE

|

© 7b 13 oO .

HLDA © 73 | 0 |

vw|o|z ıslo|-

MEMw

|

o

|

71 s|o|-

vorRlo|m lo|»-

MEMR| O

|

69 slo|-

ınTta

|

o

|

68 I9| O|R,

ABıs

|

O

|

67 20|0|%

. OÖ 66 21 OÖ .

. OÖ 65 22 oO .

° oO 64 23 Ö .

. ‘oO 63 24 oO .

° OÖ 62 25 Ö .

. OÖ 61 26 Ö .

. oO

|

60 27) oO |L,

. oO

|

59 28| O

|

Ay

. O

|

58 29 Ö .

® O 57 30 OÖ .

° OÖ 56 31 Ö °

° O 55 32 OÖ .

. oO |54 3|0|»-

. oO

|

53 ,|o0o|»

AB,

|

©

|

52 35| o |A,

DB7

|

© |51 | Oo

|

cc

. OÖ 50
37 OÖ .

. oO |49 |o|-

. oO

|

48 3310|»

° OÖ 47 40 OÖ .

. oO

|

46 1110|»

. oO |4 von oben 2|o|»

DBo O_] 44 auf die Frontplatte 3] 0|%

linke Leiste gesehen rechte Leiste

26

u
un

c
Kai

c
Q

u
n

>
o
O

o
O

L
U

u
l

N
w
w

u
n

|
Z
r

5
1

5
|

-
I

—
MD

2
=
.
<

E
o

o
O

oO
X

n
u

r
u

\
r

\
r
n

N
r
—

N
N
v
n
s
m
n
a
r
-
o

N
D
o
n
s
m
a
u
n
o

N
o
n
w
m
n
-
o

n
N
o
w
n
w
s
m
n
u
n
m
o

n
o
n
s
m
n
u
m
o

 +5
S
o
m
a

m

ZIzB
vıad-I

5
—
5

e
r

i
n

w
u
&

D
D
+

w
w

o
r

o
n

12 18 21

cl
8
V

ıILOaV
01
g
V

6
V

8
a
v

L
8
V

9
8
V

g
8
V

8
V

£
08V

t
d
v

ı
g
V

0
8
V

C

n
o
s

v
o
n

%
©

22

23

M
NaN

a
n
a
n

M
o
r

g0/1
VLNI

e
n
m
n

1
U
0
9
-
1
s
Ä
g

oe
O
N

T
E
S
e
c
n

[
u

19

N
3
S
N
8

VOTIH

7L LS 04
74 LS 05
74 LS 32

aLsıSs
13538

A
B
C

-
I
.

—
uni

u

”
HrTZB

"
U
9
O
-
3
2
0
]
)
)
o

“
ı

m

+5

a
n
n

az

MP- EX (CPU-Platine)

Stromlaufplan

L
I

_

L
au
0

INT

INTE

+12 ©

+5

-5

Stromlaufplan

7

RDY IN
RES IN

HOLD

WAIT

Bild 4

27

