Maschinencode Hex.- | Mnemonische Flags Bytes | Zykien
Code | Abkiirzung NZHPC
11000101 C5H PUSH B Push reg. pair BC (BC) —Stack - - - - - 1 1
11010101 D5 PUSH D Push reg. pair DE (DE) —Stack - - - - - 1 11
11100101 E5 PUSHH Push reg. pair HL (HL) —Stack - - - - - 1 11
11110101 Fb PUSH PSW Push progr. status word (Accu, Flags)—Stack - - - - - 1 11
11000001 Cc1 POP B Pop reg. pair BC (Stack) —BC - - - - = 1 10
117010001 D1 POP D Pop. reg. pair DE (Stack) —DE - - - - - 1 10
2 11100001 E1 POP H Pop reg. pair HL (Stack —HL - - - - - 1 10
j, 117110001 F1 POP PSW Pop progr. status word (Stack) —Accu, Flags X X X X 1 10
[0]
2 00110001 31 LXI SP Loadimmediate Stack-Pointer| (3. u. 2. Byte)—>SP - - - - - 3 10
3] 11111001 F9 SPHL Stack-Pointer from HL (HL) —-SP - - - - - 1 5
g 00110011 33 INX SP Incr. Stack-Pointer (SP) + 1 —-SP - - - - - 1)
00111011 3B DCX SP Decr. Stack-Pointer (SP) - 1 —SP - - - - - 1 5
00111001 39 DAD SP Double prec. add SP (HL) + (SP) —HL - - - - X 1 10
11100011 E3 XTHL Exchange HL with (HL) mit ((SP)) - - - - - 1 18
top of stack vertauschen :
© 01110110 76 HLT Hait 1 7
Do 00000000 00 NOP No operation keine Operation 1 4
25 00101111 2F CMA Complement accu (A)—A 1 4
5% 00110111 37 STC Set carry 1—C-Flag 1 1 4
»wao 00111111 3F CMC Complement carry (C-Flag)—C-Flag X 1 4
Registercode fiir s s s bzw. d d d: Abkirzungen:
0 0 O = Register B x = Flag wird beeinflu3t
0 0 1 = Register C — = Flag wird nicht beeinflu3t
0 1 0 & Register D (...)=Inhaltvon...
0 1 1 = Register E ((...)) =Inhaltvon ... ist die Adresse, deren Inhalt verarbeitet wird
1 0 O = Register H
1 0 1 = Register L
1 1 0« Memory (nicht als s s s und d d d verwenden!)Set carry
1 1 12 Accumulator

Maschinencode Mnemonische Flags Bytes | Zyklen
. Abkiirzung N ZHPTC

11000011 c3 JMP Jump unconditionally (3. und 2. Byte)—>PC 3 10
11000010 Cc2 JNz Jump if not zero Z=0 3 10
11001010 CA Jz Jump if zero Adresse im Z=1 3 10
2 11010010 D2 JNC Jump if carry not set 3. u. 2. Byte C=0 3 10
S 11011010 DA JC Jump if carry set wird in den c=1 3 10
E) 11100010 E2 JPO Jump if parity odd Programm- P=0 3 10
[5) 11101010 EA JPE Jump if parity even zéahler ge- P=1 3 10
5 11110010 F2 JP Jump if plus bracht, wenn: | N=0 3 10
g 11111010 FA JM Jump if minus N=1 3 10
w 11101001 E9 PCHL Programm-Counter from HL (HL)—PC 1 5
117001101 CcD CALL Call unconditionally (3. und 2. Byte)—>PC 3 17
11000100 Cc4 CNZ Call if not zero Z=0 3 11/17
11001100 cC Ccz Call if zero (3.u.2.Byte) | Z=1 3 11/17
11010100 D4 CNC Call if carry not set in PC cC=0 3 11/17
11011100 DC CcC Call if carry set Ricksprung- cC=1 3 11/17
11100100 E4 CPO Call if parity odd adresse auf P=0 2 3 11/17
11101100 EC CPE Call if parity even den Stack, P=1 2 3 11/17
2 11110100 F4 cp Call if plus wenn: N=0 2y 3 11/17
3 11111100 FC CM Call if minus N=1 “EE’ 3 11/17

w ol .
EQ 11001001 (O3°] RET Return unconditionally Rickspr.adr. vom Stac 23 1 10
g'q’:, 11000000 co RNz Return if not zero Z=0, P 1 5/11
£ © 11001000 cs8 RZ Return if zero Ricksprung- Z=1 £ 1 5/11
S 11010000 DO RNC Return if carry not set adresse vom | C=0 g 1 5/11
25 117011000 D8 RC Return if carry set Stack in den cC=1 1 5/11
g s 11100000 EO RPO Return if parity odd r Programm- P=0 1 5/11
52 11101000 ES8 RPE Return if parity even zahler, wenn: P=1 1 5/11
8- 11110000 F O. RP Return if plus N=0 1 5/11
o 11111000 F 8 RM Return if minus N=1 1 5/11
§-g 11111011 FB El Enable interrupt nach El Interrupt méglich 1 4
=5 11110011 F3 DI Disable interrupt nach DI Interrupt nicht moglich 1 4
g“g 11Taaalli RST Restart (PC)—stack; a a a x 8—~PC 1 1

Maschinencode Mnemonische Flags Zyklen
Abkirzung N ZHPC
"01dddsss MOV r1, r2 Move register to register (sss) »ddd 1 5
K 01ddd110 MOV r, M Move from memory (@HL) »ddd 1 7
2 01110sss MOV M, r Move to memory (sss) >~@HL 1 7
'E ® 00ddd 110 MVI r Move immediate to register (2.Byte)>d d d 2 7
_g:'g 00110110 36 MVI M Move immediate to memory (2.Byte)— @ HL 2 10
25 00110010 32 STA adr Store accumulator (A) —(3. u. 2. Byte) o 3 13
55 00111010 3A LDA adr Load accumulator ((3. u. 2. Byte))—>A S 3 13
o5 00000010 02 STAX B } Store accumulator (A) — @BC 2w 1 7
ﬁé 00010010 12 STAX D indexed (A) — @DE é’g 1 7
L ®© 00001010 0OA LDAX B } Load accumulator (@BC) —A = 1 7
wa 00011010 1A LDAX D indexed (@DE) —A §5 1 7
©
' .00000001 01 LXI B . . (2.Byte)—C; (3. Byte)—»B) 3 10
2 2| 00010001 11 | ID } Load register pair (2.Byte)>E; (3. Byte) >D £ 3 10
@ 00100001 21 LXI H (2.Byte)—L; (3. Byte) >H =~ 3 10
g%ﬁ 00100010 22 SHLD Store H and L direct (L) —(3. u. 2. Byte) 3 16
300 (H) —(3. u. 2. Byte + 1)
g0 @ 00101010 2A LHLD Load H and L direct ((3. u. 2. Byte))—L 3 16
8'5 ® ((3. u. 2. Byte + 1))—H
<+ 11101011 EB XCHG Exchange HL with DE (HL)—DE; (DE)—>HL 1 4
z gg b= 11011011 DB IN Input (Eingabekanal im 2. Byte)—>A 2 10
g gep 11010011 D3 ouT Output A—Ausgabekanal im 2. Byte 2 10
10000sss ADD r Add register (A) + (s s s) —A S 1 4
10000110 16 ADD M Add memory (A) + (@ HL) —A @ 1 7
11000110 Cé6 ADI Add immediate (A) + (2. Byte) —-A ‘z 2 7
10001sss ADCr Add register with carry (A) + (sss)+(C) A 2 1 4
10001110 8E ADC M Add memory with carry (A) + (@HL) + (C)—A o 1 7
& 11001110 CE ACI Add immediate with carry (A) + (2. Byte) + (C)—A w 2 7
-‘f,% 10010sss SUBr Subtract register (A) — (s s s) —A S 5 1 4
<0 10010110 96 SUB M Subtract memory (A) — (@ HL) —A - 1 7
R 117010110 D6 Sul Subtract immediate (A) — (2. Byte) —-A gE 2 7
S 10011sss SBBr Sub. reg. with borrow (A) — (sss)—(C) >A o2 1 4
29 10011110 9E SBB M Sub. mem. with borrow (A) — (@HL) - (C)—A 3. 1 7
EE_ 11011110 DE SBI Sub. imm. with borrow (A) — (2.Byte) — (C)—A e E% 2 7
g% 10111sss CMP r Compare register (A) — (s s s) setzt Flags o g 2 1 4
i 10111110 BE CMP M Compare memory (A) — (@ HL) setzt Flags T OO 1 7
11111110 FE CPI Compare immediate (A) — (2. Byte) setzt Flags 2 7

Maschinencode Hex.- | Mnemonische Flags
Code | Abkiirzung NZHPC
el
S5go 00001001 09 DAD B (HL) + (BC) —HL - - - - X 1 10
b2ES 00011001 19 DAD D . (HL) + (DE) —HL - - - - x 1 10
$252 | 00101001 29 | DADH Double precision (HL) + (HL) —HL - - - = x| 1 10
&-g’ﬁ 00111001 39 DAD SP a (HL) + (SP) —HL - - - =X 1 10
S88E 00100111 27 DAA Decimal adjust Accu X X X X X 1 4
10100sss ANA r AND accumulator (A) A(sss) —A X x x x O 1 4
Qo 10110sss ORATr OR accumulator (A)V(sss) —A x x 0 x O 1 4
S 10101sss XRAr EXCLUSIVE-OR accu (A) ¥ (sss) —A x x 0 x O 1 4
D 10100110 A6 ANA M "AND memory to accu (A) A (@HL) —A x x x x O 1 7
'f) 10110110 BC ORA M OR memory to accu (A)V(@HL) —A x x 0 x O 1 7
< 10101110 AE XRA M EXCL.-OR memory to accu (A) ¥ (@HL) —A x x 0 x O 1 7
R 11100110 E6 ANI AND immediate (A) A (2. Byte) —A x x 0 x O 2 7
2 11110110 F6 ORI OR immediate (A) V (2. Byte)—>A x x 0 x O 2 7
~ 11101110 EE XRI EXCL.-OR immediate (A) ¥ (2. Byte) ~A x x 0 x O 2 7
o0 00000111 07 RLC Rotate left (bit 7)—bit O und C - - - - x 1 4
> < 00001111 OF RRC Rotate right (bit 0)—bit 7 und C - - - X 1 4
2y 00010111 17 RAL Rotate left through C (bit 7)—C; (C)—bit O - - - - X 1 4
-8 00011111 1F RAR Rotate right through C (bit 0)—C; (C)—bit 7 - - - - x 1 4
L9
%% 00101001 29 DAD H Double precision add 2 linksschieben des - - - - X 1 10
e Registerpaares H, L
*é 00ddd100 INRr Increment register (ddd) +1—>ddd X X X X 1 5
°E’ 00ddd101 DCRr Decrement register (ddd) —1—-ddd X X X X - 1 5
© 00110100 34 INR M Increment memory (@HL) + 1> @HL X X X X - 1 10
g 00110101 35 DCR M Decrement memory (@HL) — 1> @HL X X X X = 1 10
o 00000011 03 INX B Increment (BC) + 1—-BC - - - - - 1 5
) 00010011 13 INX D }R ister pair (DE) + 1—DE - - - - - 1 5
5 00100011 23 INX H egister pai (HL) + 1—HL - - - - = 1 5
& 00001011 0B DCX'B (BC) = 1—BC - - - - - 1 5
5 o 00011011 1B DCX D } ggc{:t’:f";ir (DE) - 1->DE - - - - - 5
E2 00101011 2B DCX H gister p (HL) -1 HL - - - - -] 1 5
g& 00110011 33 INX SP Incr. Stack-Pointer (SP) + 1->SP - - - - - 1 5
£R 00111011 3B DCX SP Decr. Stack-Pointer (SP) - 1->SP - - - - - 1 5

