Allgemeine Hinweise zu den Experimenten

Das Experimentiersystem enthélt einen vollstdndigen Rechner. Das Kernstiick ist der INTEL
8080 Mikroprozessor. Als Speicher sind ein 1-k-ROM (1024 Wérter & 8 bit) und ein RAM
mit 2566 Wortern & 8 bit vorhanden. In dem ROM sind 7 Programme zur Simulierung von
verschiedenen Systemen fest abgespeichert. Welches Programm ablaufen soll, kann mit dem
SYSTEM-Schalter (BCD-Schalter auf der linken Seite) festgelegt werden. Den 7 Programmen
sind die Nummern O bis 6 zugeordnet. Die Stellung 7 des SYSTEM-Schalters ist fir eine
eventuelle Erweiterung des Systems vorgesehen, die Stellungen 8 und 9 werden nicht
verwendet. Bei jeder Schalterstellung kénnen mehrere Experimente durchgefiihrt werden.
In den Stellungen 4, 5 und 6 stehen sogar 3 unterschiedliche Rechner zur Verfligung, die
fir beliebig viele Experimente benutzt werden kdénnen.

Ein Programm wird mit der RESET-Taste gestartet. Diese Taste entspricht in etwa der
Loschtaste eines Taschenrechners und muR am Anfang jedes Experimentes gedriickt
werden. Mit den restlichen Schiebeschaltern kénnen Daten und Steuerinformationen ein-
gegeben werden.

Die Schaltergruppe C; bis C, wird zur Steuerung des Experimentierablaufes benétigt.

Die Schaltergruppen A; bis Ay und B; bis By werden bis auf einige Spezialfalle fur die
Daten oder Programmeingabe benutzt.

Bei allen Experimenten gelten folgende Festlegungen:

Schalter oben = logisch 1
Schalter unten = logisch O

Die 2 von 8 Leuchtdioden dienen zur Anzeige der Rechenergebnisse sowie zur Anzeige
interner Schaltzusténde. Hier gelten folgende Festlegungen:

Leuchtdiode leuchtet = logisch 1
Leuchtdiode dunkel = logisch O

Alle Schalter, die bei einem bestimmten Experimentiervorgang nicht benétigt werden, miissen
auf log. O geschaltet werden.

Es ist zu empfehlen, daR zu Beginn eines Experimentes alle Schalter auf log. O geschaltet
werden, bevor die RESET-Taste gedriickt wird. Ausnahmen hiervon werden bei den einzelnen
Experimenten angegeben.

Bei falscher Schalterbetatigung kénnen grundsétzlich keine Schaden am Experimentiersystem
entstehen. Allerdings kénnen dadurch die selbst eingegebenen Programme und Daten ver-
andert werden, so daR ein falsches Ergebnis entsteht. Bei umfangreichen und komplizierten
Experimenten kann eine falsche Betédtigung viel Zeit kosten.

Die grundsétzliche Experimentiervorbereitung ist folgende:

1. Die in der Experimentieranweisung angegebene Schablone auflegen
2. SYSTEM-Schalter auf das verlangte Programm einstellen

3. Alle Schiebeschalter auf Null (unten) stellen

4. RESET-Taste dricken

In den Experimentieranleitungen ist zu Beginn jedes Experimentes auch noch einmal die
entsprechende Schablone angegeben. Aus der Schablone kann die Bedeutung bzw. Funktion
der einzelnen Schalter entnommen werden.

Zu jedem Experimentierprogramm werden ein oder auch mehrere Musterexperimente durch-
gefuhrt. Danach sind Aufgabenstellungen gegeben, die Sie selbst 16sen sollen. Die Muster-
I6sungen finden Sie im Experimentieranhang.

E1

Experiment 1: Arbeitsweise eines 8-bit-Ripple-Carry-Addierers

Addierer/Subtrahierer ITT MP-Experimenter
SYSTEM

0

Br..Bo] A7 Ao |B7..Bo
EINJEINJ=A |=B |(+1)
1 1

0 0 0 0
CL' C3 C2 (o] Co Ay Ag As A, A3 Ay Ay A Bs Bg Bs B, Bz B, By Bg

Lo R Re Rs R, R3 R, Ry Ro

, SUMME

Nach der Experimentiervorbereitung Schalter C, und C; auf 1. Damit kénnen die an den
Schaltern A; bis A, und B; bis B, eingestellten Informationen in das System gelangen. Mit
den Schaltern C, = A und C; = B kénnen die eingegebenen Informationen komplementiert
werden (Einerkomplement). Der Schalter C, = INC legt bei 1 eine 1 auf den INC-Eingang.
Die Schalter C, bis Cy sind zunéchst in der Stellung O zu belassen. Das Ergebnis der
Addition erscheint in den rechten 8 LEDs (R; bis R,). Die LED L, in der linken Lampengruppe
zeigt einen Ubertrag (Carry) an. Bei diesen Programmen haben die LEDs L, bis L, keine
Bedeutung.

1. Beispiel:
A-Schalter: 00001010 & 104
+ B-Schalter: 00000011 & 34
Ergebnis: 00001101 & 134
\——'\f——"—/
R7 bis Ro
2. Beispiel: '
A-Schalter: 11111111 & 255,
+ B-Schalter: 00000010 & 210
Ergebnis: 100000001 & 257,
N— ————’
Lo R7 bis RO
3. Beispiel:

Darstellung von negativen Zahlen iiber das Zweierkomplement

a) A-Schalter: 00001010 2 10,,=A
A-Schalter 1: 11110101 2 A
INC-Schalter 1: 11110110 =2 -A=A4+1

;——\f———/
R7biSRO

b) A-Schalter: 11111111 2 256,,=A
A-Schalter 1: 00000000 = A
INC-Schalter 1: 00000001 &2 -A=A+1

R7biSRO

c) A-Schalter: 00000001 & 1,=A4
A-Schalter 1: 111111102 A ‘
INC-Schalter 1: 11111111 2 -A=A+1

——— —
R, bis R,

4. Beispiel:

Subtraktion Gber das Zweierkomplement nach der Beziehung A + (—B)

a)

b)

A-Schalter: 00001010
B-Schalter: 00000101
B-Schalter 1: 100000100

Lo R7 bis Ro
INC-Schalter 1: UO 0000101
AN

Lo R, bis Ry
Ergebnis: 00000101
N————— —

R; bis R,
A-Schalter: 00000101
B-Schalter: 00001010
B-Schalter 1: 11111010
N——— —

R, bis Ry
INC-Schalter 1: 11111011
N—

R, bis Ry
Ergebnis: 11111011
\—“ﬁ/_“—"""/

R7 bis Ro

> > >

II>

>

> > I

510 _
A+B

A+B+1=A—8B

10

510

1040
A+B

A+B+1=A—8B

=540

Kontrollieren Sie dieses Ergebnis entsprechend Beispiel 3.

Lésen Sie experimentell folgende Aufgaben (Angaben in Dezimalzahlen).

1. a) 125, + 40, =

b) 184,, + 100, =

Die Lésungen finden Sie auf Seite E20.

E3

Stellen Sie Uber das Zweierkomplement folgende Zahlen dar:

Lésen Sie folgende Subtraktionsaufgaben liber die Beziehung A + (—B):
a) 12010 - 10010 = Fal
b) 13010 - 14010 =

(5 OO ;:

.

< <

Experiment 2: Arbeitsweise einer codierten ALU

Codierte ALU _ ITT MP-Experimenter
SYSTEM ‘

FUNKTIONS-
SELEKTOR

1 1 1 1

Lo R7 Re Rs R, R3 Rz Ri Ro

‘ VERKNUPFUNG _

0 0 0 0
0 C C G Co A Ag As A, A3 A Ay Ao B Bg Bs B, B3 B, By Bo

Fir dieses Experiment ist eine 8-bit-Version der in Bild 3.3.3 dargesteliten codierten ALU
simuliert worden. Die Funktionen U; bis U, in Tab. 3.3.1 werden mit den Schaltern C; bis C,
festgelegt. Diese Tabelle ist auch auf der Karte ,,Codierte ALU" zu finden.

Nach der Experimentiervorbereitung (alle Schalter O, RESET-Taste drucken) Giberprifen wir
zundchst alle Funktionen nach Tab. 3.3.1.

(& 3 Cz C1 Co

| 1. O O O O - Ein an denA-Schaltern eingestelltes bit-Muster erscheint

in der Anzeige R; bis R,. Die B-Schalter haben keine

Funktion.

2. O O 0 1 — Unabhéngig von der Stellung der A- und B-Schalter er-
scheint in R; bis Ry eine 1 in der Stelle R,.

3. o O 1 0O - InR;bis Ryerscheintdas Einerkomplement des an A, bis A,
eingestellten bit-Musters. B; bis B, haben keine Funktion.

4. 0O O 1 1 — Ein an B; bis B, eingestelltes bit-Muster erscheint in R,
bis R,. A; bis Ay haben keine Auswirkung.

5. 0] 1 0 O - Beide Schalterreihen haben keine Funktion.

6. 0] 1 0 1 - In Ry bis Ry erscheint die an A, bis A eingestellte Zahl plus 1.

7. (0] 1 1 0 - In R; bis R, erscheint die an A; bis A, eingestellte Zahl
minus 1.

- 8. 0 1 1 1 = In R, bis Ry erscheint die Summe der in A; bis Ao und B; bis

B, eingestellten Zahlen. Ein Ubertrag erscheint in L.

9. 1 O O O - InR;bis Ryerscheint die Differenz A — B der an den Schal-

tern A; bis Ay und B; bis B, eingestellten Zahlen (Zweier-
komplement beachten!).

10. 1 0O O 1 - Die in A; bis Ay und B; bis B, stehenden Informationen
werden bit-weise miteinander UND-verknipft.

> 11, 1 0 1 0 - Diein A; bis Ay und B; bis B, stehenden Informationen

werden bit-weise miteinander ODER-verkniipft.

12, 1 O 1 1 - Diein A, bis Ay und B; bis B, stehenden Informationen

werden bit-weise miteinander EXCLUSIV-ODER-verknipft.
13. 1 1 O O — Unabhéngig von A, bis Ay und B; bis B, erscheint in R; bis
Ry —1 (Zweierkomplement beachten!).

Die angesprochenen Funktionen sind alle ausreichend bekannt und bedirfen daher keiner
weiteren Erlauterung. Nachfolgend einige Ubungsbeispiele:

1. Beispiel: —3040 — 6440 =

Diese Aufgabe wird durch eine Addition der Zweierkomplemente geldst

~A+(-B)=-A-B

E4

Funktion C; bis Cy: 0111

A-Schalter: 11100010 = —-30
B-Schalter: 11000000 = -644
110100010
N——ee —
Ly Ry bis R
Ergebnis: 10100010 = -94,
2. Beispiel: 34,0 - 1284 =
Funktion C; bis Cy: 1000
A-Schalter: 00100010 & 344
—B-Schalter: 10000000 & 128,
110100010
. Lo Ry bis Ry
Ergebnis: 10100010 = —-94,,

3. Beispiel:
In A; bis A, ist folgendes bit-Muster eingestellt:

01101001
Dieses bit-Muster ist in ein Muster der Form
00001001
abzuéndern, ohne dabei die Schalterstellung A, bis Ay zu dndern. Diese Aufgabenstellung,

das Ausblenden von bestimmten bit oder bit-Gruppen, 188t sich mit der UND-Funktion leicht
I6sen, indem an den B-Schaltern eine sog. Maske eingestellt wird. In unserem Beispiel wird:

Funktion Cs bis Cy: 1001 ooty
A-Schalter: 01101001
B-Schalter: 000011PD1 - Maske =~ = 000720,

—_—
00001001 0o
R e e ———— A
R, bis Ry
Eine Anderung der Schalterstellung A4, bis A, hat keinen EinfluB auf das Ergebnis in R bis R,.

4. Beispiel:
An den A-Schaltern ist folgendes bit-Muster eingestellt:

01101001
Dieses bit-Muster ist in ein Muster der Form
10011001

abzuandern, ohne dabei die Schalterstellung A; bis A, zu &ndern. Diese Aufgabenstellung
1&aRt sich mit der EXCLUSIV-ODER-Funktion I6sen.

Funktion C; bis Cy: 1011
A-Schalter: 01101001
B-Schalter: 11110000
10011001

R; bis R,

5. Beispiel:
Ein an den A-Schalter eingestelltes bit-Muster der Form

E5

10000100
soll in ein Muster der Form
10110101

geandert werden, ohne dabei die Schalterstellung A; bis A, abzuandern. Diese Aufgabe |aRt
sich lber die ODER-Verknipfung l6sen.

Funktion C; bis Cy: 1010
A-Schalter: 10000100 »
B-Schalter: 00110001 cof. 70A7OAE S

7o A
7 U2 0

10110101
\—w__J
R, bis R,

Losen Sie folgende Aufgaben experimentell. Die Daten sind im Hexadezimalsystem angegeben.

1. a)3416+ 2116= 55‘7‘6
b) 141+ (=481 = CC g =~ Ty

2. a)8116_7516= 064;
b)7 616 - 8415 = MO[‘."'/é’

3. a) Ein bit—Mustef in A; bis A, der Form

11001111

ist in die Form A
11001100

umzuformen, ohne A; bis A, zu &ndern.

b) Ein bit-Muster in A; bis A, der Form
11010110

ist in die Form
00000110

umzuformen, ohne dabei A; bis Ay zu dndern.

Die Losungen dieser Aufgaben finden Sie auf Seite E20.

E6

Experiment 3: Arbeitsweise eines Akkumulators

Akkumulator ITT MP-Experimenter
SYSTEM

FUNKTIONS-
TAKT SELEKTOR

1 1 1 1

Lo R7 Re Rs R, Rz R, Ry Rg

AKKU - INHALT

0 0 0 0
C, GCs G2 G Co 0 0 0 OO0 0 0 O By Bg Bs B, B3 B, By By

Mit diesem Programm wird der in Bild 3.4.1 dargestellte Akkumulator simuliert. Die in
Tab. 3.4.1 gezeigten Funktionen werden mit den Schaltern C; bis C, ausgewahlt. Der
Schalter C, dient jetzt als Taktschalter. Durch einmaliges hin- und herschieben wird ein
Ergebnis in das Register ibernommen und zur Anzeige gebracht. Die A-Schalter werden
in diesem Beispiel nicht gebraucht, weil die A-Eingédnge der im Akkumulator enthaltenen ALU
mit den Ausgéangen des Registers verbunden sind. Das Ergebnis bzw. der momentane Inhalt
des Akkus wird wieder in R, bis R, angezeigt, ein Ubertrag in Lo.

Zu Beginn eines Experimentes ist der Akku-Inhalt beliebig. Er mu® daher zunéchst auf Null
gebracht werden (Vergleich: Loschtaste eines Taschenrechners). Das Léschen erfolgt laut
Tab. 3.4.1 uber die CLA-Funktion U; bis Uy = C3 bis C, = 0 1 0 0. Der Vorgang ist folgender:

1. C; bis Coauf 010 O stellen
2. Schalter C, einmal takten (einmal hin- und herschieben)
3. Kontrollieren, ob alle LEDs R; bis R, einschlieBlich L, ausgehen.

Da die A-Schalter keine Funktion haben, werden die entsprechenden Operationen immer
zwischen dem Akku-Inhalt und den an den B-Schaltern eingestellten Informationen durch-
gefihrt. Hierzu einige Beispiele:

1. Beispiel:
Die Hexadezimalzahlen 1 5,5 und 3 3,5 werden addiert.

Ablauf:

1 5,6 an den B-Schaltern einstellen

. LDA (Lade den Zustand der B-Schalter in den Akku) mit C; bis C, gleich 0 0 1 1 einstellen
. Mit einem Takt (Schalter C,) Inhalt der B-Schalter in den Akku laden

. 3 346 an den B-Schaltern einstellen

. Mit C3bis C,b, = 0111 den Befehl ADD wahlen

. Mit C, Takten

. In R; bis R, steht jetzt das Ergebnis mit 01 001000 & 4 84

NoOOMWN=

2. Beispiel:
Das Zweierkomplement der Bindrzahl 0 1 011 1 0 1 wird gebildet.

Ablauf:

1. DieZahl 01011101 an den B-Schaltern einstellen

2. Mit C; bis C, den Befehl LDA = 00 1 1 einstellen

3. Mit C, einmal takten

4. Mit C; bis Cy den Befehl CMA = 00 1 O einstellen

5. Mit C, takten. In R; bis R, erscheint jetzt 1 01000 10, also das Einerkomplement der
vorher eingestellten Zahl

6. Mit C; bis Cy den Befehl INC = 01 0 1 einstellen

E7

7. Mit C, takten. In R; bis R, erscheint die Zahl 101000 1 1, das Zweierkomplement der
eingegebenen Zahl

3. Beispiel:
Lésen der Aufgabe 5 1,5 — 4 Bys

Ablauf:

1. Mit dem Befehl CLA den Akkumulator I6schen (siehe vorher)

2. 5 1,5 anB; bis B, einstellen und iiber Befehl LDA in den Akku laden

3. 4 B4 an By bis B, einstellen

4. Mit Befehl SUB = 1 0 0 O die an B; bis B, eingestelite Zahl von der im Akku befindlichen
Zahl subtrahieren. Als Ergebnis erscheint in R; bis Ry die Zahl O 6,5 (kontrollieren Sie selbst
das Ergebnis tGiber Dezimalzahlen nach).

4. Beispiel:
Der Akkumulator wird als Aufwartszahler betrieben, der bei O beginnt und mit jedem Takt
um 1 weiterzéhilt.

Ablauf:

1. Mit Befehl CLA den Akkumulator I6schen

2. Den Befehl INC einstellen

3. Mit C, das System takten. In R; bis R, erscheint das jeweilige Zahlergebnis

5. Beispiel:
Zwischen den beiden bit-Kombinationen 10000001 und 11110001 wird die
EXCLUSIV-ODER-Verkniipfung gebildet.

Ablauf:

Mit Befehl CLA Akkumulator I6schen

Kombination 1000000 1 an B; bis B, einstellen

Mit Befehl LDA Information B; bis By in den Akkumulator laden

Kombination 11110001 an B, bis B, einstellen

Befehl XOR = 101 1 einstellen und takten. In Ry bis Ry erscheint das Ergebnis 01110000

opwWON =

Aufgaben:

1. Subtrahieren Sie folgende Aufgaben:
a) F816"CC16=2C/’£
b) 154-22="7T]/1.
c) _4816_3216= 9645

2. Bilden Sie die ODER-Verkniipfung zwischen folgenden bit-Kombinationen:
a) 11000110
b) 01010000

Die Losungen finden Sie auf Seite E21.

E8

Experiment 4: Arbeitsweise eines Akkumulators mit Datenspeicher

Akku mit Speicher ITT MP-Experimenter
SYSTEM
bei Examine : INHALT DER ADRESSE
bei Deposit : NEUER INHALT DER ADR.
sonst AKKU -INHALT
Lo R7 Rs Rs R/, R3 Rz R1 RO
CRY
SIT | MINE OP-CODE ADRESSE DATEN FUR DEPOSIT+INPUT -
1 1 1 1
0 0 0 0
c. 0 C ¢ O A7 As As A, A3 A Ay Ay By Bg Bs B, B3 B, By By

Das System 3 enthalt grundsatzlich die gleichen Funktionen wie das System 2. Der Unterschied
besteht darin, daR entsprechend Bild 3.5.1 die Daten nicht mehr von den B-Schaltern kommen
sondern von einem RAM. Mit dem neuen Befehl STA (Speichere Akku-Inhalt in Adresse
a a a a ab), kénnen die Daten im RAM zuriickgeschrieben werden. Mit dem Befehl INP
(Lade B-Eingange in den Akku) werden jetzt die Daten an B; bis By in den Akkumulator
eingelesen (entspricht Befehl LDA in System 2). Bei allen Befehlen, die den Speicher nutzen,
mul jetzt eine bestimmte Adresse spezifiziert werden. Der hier verwendete Speicher hat eine
Kapazitdt von 16 Wértern a 8 bit. Damit jedes dieser 16 Worter spezifiziert bzw. adressiert
werden kann, werden 4 bit benétigt. Damit besteht ein Befehl jetzt aus insgesamt 8 bit.
Hiervon legen 4 bit die Funktion fest, die ausgefiihrt werden soll. Sie bilden den sog. OP-Code
(Operation-Code). Die anderen 4 bit bestimmen die Speicheradresse. Aus diesem Grunde
werden jetzt die A-Schalter fiir die Befehlseingabe benutzt.

Aus Tab. 3.5.1 geht hervor, daR® es Befehle gibt, die unbedingt die Angabe einer Adresse
bendtigen (a a a a), und andere, die ohne spezielle Adresse auskommen (x x x x).

Bevor Befehle, die Daten aus dem Speicher unter einer bestimmten Adresse benétigen,
benutzt werden kdnnen, miissen die entsprechenden Daten in den Speicher geladen werden.
Das Laden einer bestimmten Speicheradresse erfolgt mit dem Schalter C, DEPOSIT (Laden).
Wird dieser Schalter betétigt, d.h. auf 1 und dann wieder auf O geschaltet, werden die
Daten, die an B; bis B, liegen, im Speicher bei der Adresse abgespeichert, die von den
Schaltern A; bis A, spezifiziert ist.

1. Beispiel:
Die Zahl 1 5, wird in Adresse O 1 1 1 abgespeichert.

Ablauf:

1. B; bisBoauf 00010101 einstellen
2. A;bis Apauf 00000111 einstellen
3. Mit DEPOSIT-Schalter das System takten

Waéhrend DEPOSIT = 1 ist, erscheinen in R; bis R, die abzuspeichernden Daten. Dies ist
als Kontrolle gedacht. Ist DEPOSIT wieder gleich O, erscheinen in R; bis R, wieder die
zufallig im Akku vorhandenen Daten.’ '

Nachdem C, bzw. DEPOSIT wieder O ist, sind die Daten unter der Adresse 0111 im
Speicher abgespeichert. Die B-Schalter kénnen jetzt beliebig verstellt werden.

Mochte man nachtraglich die Daten in Adresse O 11 1 kontrollieren, kann dies Uber
Schalter C; EXAMINE (Lese) geschehen.

2. Beispiel:
Der Inhalt der Adresse 0 1 1 1 wird kontrolliert.

Ablauf:
1. A, bisA,auf 00000111 einstellen

E9

2. Schalter EXAMINE auf 1 stellen
3. In R; bis R, erscheinen die Daten der Adresse 01 1 1

Solange EXAMINE = 1 ist, kénnen mit Hilfe der Schalter A; bis A, alle Adresseninhalte
kontrolliert werden.

3. Beispiel:
Folgene Daten werden unter der angegebenen Adresse abgespeichert:

Adresse Daten
0000O0 00000000
0001 00000001
0010 00000010
0011 00000011
0100 00000100
0101 00000101
0110 00000110
0111 00000111
1000 00001000
1001 00001001
1010 00001010
1011 00001011
1100 00001100
1101 00001101
1110 00001110
1111 00001111

Ablauf:

1. By bis Boauf 000000 0O einstellen

2. A; bis Ajauf 00000O0O0O0 einstellen

3. Mit DEPOSIT-Schalter System takten

4. B; bis Boauf 00000001 einstellen

5. A; bis Agauf 00000001 einstellen

6. Mit DEPOSIT-Schalter System takten usw.

Die so abgespeicherten Daten bleiben beliebig lang enthalten. Sie werden nur zerstort bei:
— Stromausfall oder Abschalten des Geréates

— Abspeichern neuer Daten mit DEPOSIT unter derselben Adresse (alte Daten werden (iber-
schrieben)

— Abspeichern neuer Daten mit dem STA-Befehl in derselben Adresse

— Umschalten des SYSTEM-Schalters auf ein neues Experimentierprogramm

4. Beispiel: »
Die in Beispiel 3 abgespeicherten Daten werden tiber den EXAMINE-Schalter nachkontrolliert.

Ablauf:

1. EXAMINE-Schalter auf 1

2. Mit A; bis A, die verschiedenen Adressen einstellen
3. In Ry bis R, erscheinen die abgespeicherten Daten

5. Beispiel:
Uberschreiben des Inhaltes der Adresse 0 1 1 1 mit den neuen Daten 1111000 O.

Ablauf:

1. B;bisByauf 11110000 einstellen
2. A; bis A, aufO00000 111 einstellen
3. Mit DEPOSIT-Schalter System takten

Kontrollieren Sie Uber EXAMINE nach, ob der neue Inhalt in Adresse 0 1 1 1 tatsdchlich
vorhanden ist.

E10

6. Beispiel:
Uberschreiben des Inhaltes der Adresse 1 01 0 mitden Daten 11001100 mit
Hilfe des STA-Befehles. ‘

Ablauf:

1. B;bis Boauf 11001100 einstellen

2. A;bisApauf 11010 00 O einstellen (dies entspricht dem Befehl INP = Lade B-Eingénge
in den Akkumulator)

3. Mit Schalter C, System takten (in R; bis R; mul} jetzt die Information B; bis B, erscheinen)
4. A;bisApauf 11101010 einstellen (dies entspricht laut Tab. 3.5.1 dem Befehl STA =
Speichere Akku in Adresse a a a a ab)

5. Mit Schalter C, System takten

Kontrollieren Sie iber EXAMINE, den neuen Inhalt der Speicheradresse 1 0 1 O.

7. Beispiel:
Den Inhalt der Adresse 1 1 1 O in den Akkumulator laden.

Ablauf:

1. A;bisAgauf 00111110 einstellen (entspricht dem Befehl LDA = Lade Inhalt Adresse
aaaa)

2. Mit Schalter C, System takten. In R; bis Ry erscheint 00001110

8. Beispiel:
Addition der Hexadezimalzahlen 1 7,5 und 3 244

Ablauf:

1. B;bis Bpauf 00010111 = 17,ceinstellen

2. Daten B; bis By Giber DEPOSIT in der Adresse O O O O abspeichern

(A3 bis A, auf 0 0 0 O einstellen!)

3. B;bisBoauf 00110010 = 3 2,4 einstellen

4. Uber INP-Befehl die Daten B, bis B, in den Akku laden

5. A, bis A;auf 01110000 einstellen tentspricht dem Befehl ADD = Addiere Inhalt der
Adresse 0 00 0)

6. Mit Schalter C, System takten. In R; bis R, erscheint das Additonsergebnis

01001001 & 49

Bei den arithmetischen und logischen Funktionen ADD, SUB, AND, IOR und XOR wird also
immer der Inhalt einer Adresse mit dem jeweiligen Inhalt des Akkus verknapft. Es ist
gleichgiiltig, wie dabei die Schalter B; bis B, stehen. Nur {ber den Befehl INP an A, bis A,
kénnen die Daten B; bis By in den Akku gelangen.

Im nachsten Beispiel wollen wir den Inhalt von 2 unterschiedlichen Adressen EXCLUSIV-ODER-
verknipfen.

9. Beispiel:
Die Inhalte der Adressen 1010 wund 0111 werden EXCLUSIV-ODER-verknupft.

Anmerkung: Wenn Sie in der Zwischenzeit genau das vorgeschriebene Experimentier-
programm durchgefiihrt haben bzw. das Experimentiersystem nicht zwischendurch abge-
schaltet haben, steht in den Adressen folgender Inhalt:

Adresse 10
1

10 —
Adresse 0111 —

Ist das nicht der Fall, iber DEPOSIT die beiden Adressen entsprechend laden.

Ablauf:

1. A;bis Agauf 001 11010 einstellen (entspricht Befehl LDA)

2. Mit Schalter C, System takten. In R, bis Ry erscheint der Inhalt der Adresse 1 0 1 O, der
jetzt auch Inhalt des Akkus ist

E11

3. A;bisApauf 10110111 einstellen (entspricht Befehl XOR)
4. Mit Schalter C, System takten. In R; bis R, erscheint das Ergebnis 00111100

Der neue Akku-Inhalt ist also 001 11100. Wenn Sie jetzt z.B. noch einmal mit C,
takten (A; bis A, bleiben unverandert), erscheint in B; bis R, 11001 100. Bei dem
erneuten Takt wird nédmlich die XOR-Verknipfung des neuen Akku-Inhaltes mit dem nach
wie vor unveranderten Inhalt der Adresse O 1 1 1 gebildet. Es ergibt sich somit:

100 Inhalt Akku
000 Inhalt Adresse 01 11
100

- - O
- = O
Q= =
Q= =
_ O =

Alle anderen Befehle sind Ihnen vom Prinzip her bekannt.
Aufgaben:
1. Subtrahieren Sie folgende Aufgaben:
a) 3416_2 116:
b)—2 416 - 5 416 =
2. Erhohen Sie den Inhalt der Adresse O 1 1 1 (ber Programm um 1.
3. Fuhren Sie folgende Rechenoperationen durch:

3516+1716_2416=

Die Losungen finden Sie auf Seite E22.

E12

Experiment 5: Vereinfachter Rechner

Vereinfachter Rechner) ITT MP-Experimenter
SYSTEM
bei Examine INHALT DER ADR. DES BZ
bei Deposit NEUER INH. DER ADR. DES BZ
sonst AKKU"NHALT
L7 LG Ls Ly L4 Lg R7 Re Rs R/, R3 Rz Ry Ro
BEFEHLSZAHLER RUN CRY
DATEN FUR DEPOSIT+INPUT
STEP | - SIT JMINE } ADR. ADR.FUR LD. ADR. OP-CODE ADRESSE
1 1 1 1
0 0 0 0
C, G C C Co 0O 0O O 0 A3 Ay Ay Ag By Bg Bs B, B3 B, By By

Bei diesem Experiment wird ein vereinfachter, aber kompletter Rechner simuliert. Er hat
denselben Befehlsvorrat wie der Akkumulator mit Datenspeicher in Experiment 4. Zusétzlich
hat er einen HALT-Befehl (HLT), damit der Rechner am Ende eines Programms angehalten
werden kann. Im Gegensatz zum Experiment 4 werden im 16-Wort-Speicher nicht nur
Daten sondern auch das Programm abgespeichert. Das Programm und die Daten werden
mit dem DEPOSIT-Schalter C, in den Speicher geladen. Damit ein Programm automatisch
ablaufen kann, enthélt der simulierte Rechner einen Befehlszahler (BZ). Welche der 16 Adres-
sen gerade selektiert ist, wird durch die LEDs L; bis L, angezeigt. Die Funktionsweise des
Befehlszahlers kénnen Sie wie folgt kontrollieren:

— Stellen Sie alle Schalter auRer C, auf O. Bei C, = 1 arbeitet das System im Single-Step-
Betrieb, d.h., der Befehlszahler kann mit Schalter C; (RUN) in Einzelschritten getaktet werden
— In L; bis L, erscheint jetzt eine beliebige Adresse von 0000 bis 111 1.

— Takten Sie das System mit RUN. An L; bis L, kénnen Sie sehen, daRR der Befehlszahler
mit jedem Takt um einen Schritt héher springt.

Mit den Schaltern A; bis A, kénnen Sie den Befehlszdhler auf eine bestimmte Adresse
laden.

Wenn Sie z.B. A; bis A, auf 01 1 O einstellen und den Schalter LOAD-ADRESS (C,) betatigen,
wird der Befehlszahler auf diese Adresse gesetzt (Anzeige durch L; bis L,;). Wenn Sie jetzt
mit dem RUN-Schalter weitertakten, zéhit der Zéhler von dieser Stellung weiter.

Mit den Schaltern B; bis B, konnen OP-Code und Adresse eingegeben werden. Hierbei ist
unbedingt zu beriicksichtigen, daf3 es sich um einen Befehl handelt, der in einer bestimmten
Adresse abgespeichert wird. Wenn Sie z.B. B; bis Bpauf 0111001 O einstellen und den
Schalter DEPOSIT C, takten, wird dieser Befehl in der Adresse abgespeichert, die gerade
vom Befehlszahler selektiert ist. Der Befehl 011100 1 O besagt laut Tab. 3.5.1: Addiere
den Inhalt der Adresse 0 O 1 O zum Inhalt des Akkus. Dies bedeutet — und das ist unbedingt
zu beachten — dal® bei der Befehlszédhlerstellung, bei der dieser Befehl eingegeben wurde,
diese Rechenoperation durchgefiihrt wird. Da hier eine neue Denkweise einsetzt, wollen wir
das Prinzip an einem Beispiel ausfiihrlich erlautern:

1. Beispiel:
Folgende Aufgabenstellung ist zu programmieren: Die an B; bis B, eingestellten Daten sollen
mit dem Inhalt der Adresse O 1 O O addiert werden.

Ablauf:

1. Alle Schalter zunachst in Stellung O bringen

2. Schalter LOAD-ADRESS (C,) takten. Damit wird der Befehlszahler auf Adresse 0000
gesetzt

3. Schalter B; bis Boauf 0 1 0 0 0 0 O O stellen. Dies entspricht dem Befehl CLA = Losche Akku
4. Mit DEPOSIT-Schalter (C,) takten. Damit ist der CLA-Befehl in der Adresse 000 O ge-
speichert. Gleichzeitig springt der Befehlszahler auf Adresse 00 0 1, d.h., jetzt kann eine
Information in dieser Adresse gespeichert werden

5. Schalter B; bis Bauf 1101 00 00 einstellen. Dies entspricht dem INP-Befehl

E13

6. Mit DEPOSIT-Schalter takten; der INP-Befehl ist in Adresse O O O 1 gespeichert, Befehls-
zahler springt auf Adresse 001 0O

7. Schalter B; bis Bo auf 01110100 einstellen. Dies entspricht dem Additionsbefehl
mit der Adresse 0100

8. Mit DEPOSIT-Schalter takten, ADD-Befehl ist in Adresse 0 O 1 O gespeichert

9. Schalter B; bisByauf 1111 00 0 O stellen. Dies entspricht dem HALT-Befehl. Wenn am
Ende eines Programms dieser Befehl nicht erscheint, rechnet das System unkontrolliert weiter
10. Mit DEPOSIT-Schalter takten

11. Damit sich ein kontrollierbares Ergebnis ergibt, speichern wir in Adresse 01 0 0 die
Daten 11110000 ab. Hierzu B; bis Boauf 11110000 einstellen und mit DEPOSIT
takten

Jetzt ist der Programmiervorgang abgeschlossen, und der Rechner kann die jeweils an den
B-Schaltern eingestellten Daten mit dem Inhalt 11110000 der Adresse 0100
addieren. Damit wir die einzelnen Schritte genau verfolgen kénnen, schalten wir C, auf 1, d.h.
SINGLE-STEP-Betrieb. Da der Befehlszahler jetzt bei Adresse 0 1 O O steht, setzen wir ihn
durch Takten von C, = LOAD-ADRESS auf Adresse O 0 O O zuriick (A; bis Ag auf 0 0 0 0).
Als erste Aufgabe rechnen wir 0000 1111 plus Inhalt Adresse O 1 0 O. Hierzu stellen
wir B; bis Boauf 00001 111 ein. Jetzt takten wir einmal mit Schalter RUN. Die Anzeige
R; bis Ro muf3 Null sein, da mit dem 1. Takt der Akkumulator geléscht wird. Der Befehlszahler
springt auf Adresse 0 0 0 1. Jetzt mit Schalter RUN wieder takten. Daten B; bis B, werden
in den Akku geladen und erscheinen in R, bis R,. Mit RUN nochmals takten. Jetzt erfolgt die
Addition. Im Akkumulator und in der Anzeige steht das Ergebnis 1111111 1.

Mit RUN takten. Der Rechner arbeitet nicht weiter, da im Programm ein HALT-Befehl
gespeichert ist. Sie konnen jetzt selbst mit verschiedenen Daten an B; bis B, das Programm
wiederholen. Wesentlich ist, daR® zu Beginn einer Aufgabe immer erst der Befehliszahler auf
0 00 0 zuriickzustellen ist. Wenn Sie Beispiele wihlen, die einen Ubertrag ergeben, leuchtet
die Carry-Anzeige L, auf.

Wenn der Schalter SINGLE-STEP auf O steht und dann der RUN-Schalter betatigt wird,
lauft das Programm automatisch mit einer sehr hohen Systemfrequenz ab. Die einzelnen
Zwischenschritte kénnen dann nicht mehr mit dem Auge verfolgt werden. Lediglich ein
kurzes Aufleuchten der Anzeige RUN (L,) signalisiert, da® der Rechner arbeitet.

2. Beispiel:
Die Aufgabenstellung lautet, einen Vorwartszéahler zu simulieren. Hierzu verwenden wir den
INC-Befehl.

Ablauf:

1. Befehlszahler auf 0 0 O O stellen

2. B;biByauf 01010000 einstellen

3. Mit DEPOSIT das System 16mal takten. Jetztistin jeder Adresse der INC-Befehl gespeichert.
Da kein HALT-Befehl eingegeben wurde, lauft das System so lange, wie mit RUN getaktet
wird. Wenn Sie C, = O einstellen und den RUN-Schalter auf 1 stellen, lauft der Vorgang
automatisch ab. Ab R; kénnen Sie ein deutliches Blinken der Lampen erkennen. Die Zahl-
frequenz 1Rt sich verringern, wenn Sie nur einen INC-Befehl und z.B. 15 NOP-Befehle ein-
geben. Wenn jetzt der Befehlszahler lauft, wird nur immer bei einer Adresse der Akku-Inhalt
um 1 erhéht, wahrend der Ubrigen 15 Adressen fiihrt das System keine Operation aus.

3. Beispiel:
Vorwaértszahler mit niedriger Zahlfrequenz.

Ablauf:

1. Befehlszahler auf 0 0 0 O stellen
2. INC-Befehl laden

3. NOP-Befehl 15mal laden

Sie konnen die wesentlich niedrigere Zahlfrequenz an R; bis R, deutlich erkennen.

Uber den DEC-Befehl 1aRt sich ein Riickwartszahler simulieren. Erstellen Sie selbst einmal
ein Programm fir einen langsamen Riickwartszahler. Dies diirfte an dieser Stelle bestimmt
keine Schwierigkeiten mehr bereiten.

E14

Ein wesentliches Merkmal eines Rechners ist, dal3 er Entscheidungen treffen kann. Wie Sie
spater noch sehen werden, gibt es hierfir bestimmte Befehle. Der hier simulierte einfache
Rechner verfiigt nicht Giber diese Befehle. Uber eine geschickte Programmierung ist es jedoch
maoglich, bestimmte Entscheidungen auch von diesem System treffen zu lassen.

4. Beispiel:
GroRer/kleiner-Vergleich von 2 Zahlen.

In diesem Beispiel werden 2 Zahlen A und B miteinander verglichen. Die jeweils groRere Zahl
wird dabei zur Anzeige gebracht. Als Zahl A wahlen wir 20,4 = 1000 0 0,. Die Zahl A
wird im Speicher abgespeichert. Die Zahl B kann an den Schaltern B; bis B, eingestellt
werden. Sie wird dann mit A verglichen. Ist A groRer als B, wird A angezeigt und umgekehrt.
Der Rechner bildet die Differenz 8 — A und trifft aufgrund des Ergebnisses die Entscheidung,
welche Zahl in R; bis Ry angezeigt wird. Der Ablauf ist in einem FluBdiagramm dargestellt
(Bild 1).

B einlesen und
abspeichern

Difterenz
positiv ?

B anzeigen A anzeigen

Bild 1

HALT
FluBdiagramm zum 4. Beispiel

HALT

Wir geben zunéchst das Programm fiir diese Aufgabe an und besprechen anschlieRend die
einzelnen Schritte (Tab. 1).

Adresse Inhalt Befehl Kommentar
hexadez. bindr |hexadez. binar
0 0000 D x 1101 xxxx INP B-Eingange in den Akku laden
1 0001 EE 11101110 STA Inhalt Akku in Adresse E abspeichern
2 0010 8 F 10001111 SuUB Subtraktion B minus Inhalt Adresse F
3 0011 9D 10011101 AND héchste Stelle ausblenden
4 0100 7C 01111100 ADD Entscheidungsaddition
5 0101 E7 11100111 STA Ergebnis in Adresse 7 abspeichern
6 0110 3F o0111111 LDA Zahl A in Akku laden
7 0111 -——— | —_—_————— ADD/HLT | Entscheidungsadresse
8 1000 3E 00111110 LDA Zahl B in Akku laden
9 1001 F x 1111 xxxx HLT System HALT
A 1010 XXXXXXXX nicht belegt
B 1011 XXXXXXXX nicht belegt
C 1100 01110000 é Daten fiir Entscheidungsaddition
D 1101 10000000 < Maske fiir Ausblendung
E 11T10f |=-=-===—==- o Adresse fiir Zahl B
F 1111 00100000 Zahl A
Tab. 1

Programm zum 4.

Beispiel

E15

Entsprechend der Aufgabenstellung soll die im Speicher abgespeicherte Zahl 2 0,5 mit einer
an B; bis B, eingestellten Zahl verglichen werden. Die Zahl A ist in Adresse F abgespeichert.
Wird jetzt an B; bis B, eine Zahl B eingestellt, so muR diese zunachst in den Akku geladen
werden (INP-Befehl).
Mit dem STA-Befehl wird dann die Zahl B in der Adresse E abgespeichert. Dabei wird der
Inhalt des Akkus nicht veréndert, d.h., B steht weiterhin auch im Akku.
Durch den SUB-Befehl wird die Differenz B — A gebildet. Dabei entsteht bei B > A ein
positives und bei B < A ein negatives Ergebnis. Nach der Zweierkomplementarithmetik wird
eine positive Zahl durch eine O, eine negative Zahl durch eine 1 in der werthéchsten Stelle
gekennzeichnet. Entscheidungskriterium ist also das werthochste bit des Ergebnisses der
Subtraktion.
Aus diesem Grunde wird jetzt mit einem AND-Befehl das werthdchste bit ausgeblendet.
Beispiel:

Oxxxxxxx beliebige positive Zahl

A 10000000
00000O0O0O

Txxxxxxx - beliebige negative Zahl
A 10000000
10000000

In Adresse D ist 10000000 gespeichert. Der in Adresse 3 gespeicherte AND-Befehl
bildet die UND-Verkniipfung zwischen Inhalt Akku und Inhalt Adresse D. Als Ergebnisse
kénnen nur 00000000 (positives Ergebnis der Subtraktion) bzw. 10000000
(negatives Ergebnis der Subtraktion im Akku) erscheinen.

Im nachsten Programmschritt wird nun eine Entscheidungsaddition durchgefiihrt. Entspre-
chend dem ADD-Befehl in Adresse 4 wird zu dem ausgeblendeten Ergebnis der Inhalt von
Adresse C= 01110000 addiert.

Ist B >A erhalten wir:

000000O0O
+ 01110000
01110000

Ist B < A erhalten wir:

10000
10000

10000000
+ 011

111
Entsprechend der Befehlsstruktur des einfachen Rechners stellen die 4 werthéheren bit den
OP-Code, die 4 wertniedrigeren bit die Adresse dar. Entscheidend ist, daR der OP-Code
1111 den HLT-Befehl darstellt. Wenn wir nun das Ergebnis der Addition iber den STA-
Befehl in Adresse 7 abspeichern, wird der Rechner beim Abarbeiten des Programmes bei
der Adresse 7 entweder anhalten (bei B < A) oder, wenn B > A ist, eine Addition zwischen
Akku-Inhalt und Inhalt Adresse O durchfiihren. Wenn der Befehlszéhler bei B < A gestoppt
wird, muR die groRere Zahl A angezeigt werden. Dies geschieht dadurch, dal in Adresse 6
der Akku Uber den LDA-Befehl mit dem Inhalt der Adresse F = 2 0,4 geladen wird.
Ist dagegen B > A, erfolgt bei Adresse 7 eine Addition von Akku-Inhalt und Inhalt Adresse O,
deren Ergebnis aber keine Bedeutung hat. In diesem Falle muR die in Adresse E gespeicherte
Zahl B iiber einen LDA-Befehl in den Akku geladen werden, damit sie in R; bis R, angezeigt
werden kann. In Adresse 9 ist fiir diesen Fall dann der HLT-Befehl programmiert.
Sicherlich werden lIhnen die hier dargelegten Gedankengange kompliziert erscheinen. Das
liegt ganz einfach daran, daR der vereinfachte Rechner noch keine direkten Entscheidungs-
befehle enthéalt. Wir missen ihn vielmehr so programmieren, da® er bei einem bestimmten
Kriterium selbst einen HALT-Befehl erzeugt. Bevor wir das Programm mit konkreten B-Zahlen
noch einmal durchsprechen, muf3 das Programm zunéchst geladen werden:

1. Alle Schalter auf Null stellen
2. Schalter LOAD-ADD takten

E16

3. Schalter B; bis B, auf 1 1 0 1 einstellen und DEPOSIT takten
4. B;bisByauf 11101110 einstellen und DEPOSIT takten
5. B;bisByauf 10001111 einstellen und DEPOSIT takten
6. B; bisByauf 10011101 einstellen und DEPOSIT takten
7. B;bisByauf 01111100 einstellen und DEPOSIT takten
8. B;bisByauf 111001 11 einstellen und DEPOSIT takten
9. By bisByauf 00111111 einstellen und DEPOSIT takten
10. DEPOSIT takten. Damit springt der Befehlszahler auf Adresse 8

11. By bisByauf 00111110 einstellen und DEPOSIT takten

12. B; bisByauf 1111 x x x x einstellen und DEPOSIT takten

13. DEPOSIT 2mal takten. Damit springt der Befehlszahler auf Adresse C
14. B; bisByauf 01110000 einstellen und DEPOSIT takten

15. B; bis Boauf 10000000 einstellen und DEPOSIT takten

16. DEPOSIT takten, der Befehlszéhler springt auf Adresse F

17. B; bis Boauf 00100000 einstellen und DEPOSIT takten

Damit steht das Programm im Speicher. Der Befehiszahler steht wieder bei Adresse O
(L, bis L,). Als Beispiel 1 wollen wir einen Vergleich zwischen B = 7, und A = 2 0,4 durch-
fihren. Damit die einzelnen Schritte nachvolizogen werden kénnen, System auf SINGLE-
STEP-Betrieb schalten (C, = 1). An B; bis Bowird 00000111 & 7,4 eingestellt. Jetzt
wird das System mit dem RUN-Schalter schrittweise getaktet.

1. Takt: In R, bis R, erscheinen die Daten B bis B,

2. Takt: Daten B, bis By werden in Adresse E gespeichert

(Kontrollieren Sie iber EXAMINE-Funktion.Vergessen sie nicht Befehlszahler iber LOAD-ADR
wieder auf Adresse 2 zuriickzustellen)

3. Takt: R; bis Ry gleich 11100111 =-19

4. Takt: R; bis Ry gleich 1 0 0 0 0 0 0 0. Das werthochste bit wird ausgeblendet

5. Takt: R; bis R, gleich 1111000 O0. Durch die Addition wird der HLT-Befehl fiir
Adresse 7 gebildet

6. Takt: Ry bis R, bleibt, Akku-Inhalt wird in Adresse 7 abgespeichert

7. Takt: Inhalt Adresse F wird in den Akku geladen und erscheint in R; bis R,

8. Takt: Keine Anderung, da HLT-Befehl. Auch ein weiteres Takten hat keinen EinfluR

Jetzt fiihren wir den Vergleich mit der Zahl B = 3 F,5 durch. Uber LOAD-ADR Befehls-
zédhler auf Adresse O einstellen, und B; bis Bo auf 00111111 & 3 Fy einstellen.

1. Takt: In Ry bis R, erscheinen die Daten B; bis B,

2. Takt: Daten werden in Adresse E gespeichert

3. Takt: Ry bis Rogleich 00011111 2 1F

4. Takt: R, bis Ry gleich O 00 0 0 O O O (Ausblenden)

5. Takt: Ry bis Ry gleich 01 1 1 0 O O O. Entspricht hier einem Additionsbefehl fir Adresse 7
6. Takt: R; bis Ry bleibt, Akku-Inhalt wird in Adresse 7 gespeichert

7. Takt: Inhalt Adresse F wird in Akku geladen und erscheint in R; bis Ry

8. Takt: R; bis Ry gleich 111 10000. Dieses Resultat ergibt sich aus der Addition von
Akku-Inhalt und Inhalt Adresse O

Inhalt Adresse O: 11010000
Inhalt Akku: + 00100000
11110000

Es kann auch ein anderes Ergebnis erscheinen, wenn bei der Programmierung der Adresse O
die bit b3 bis by einen anderen Wert gehabt haben. Vom Programm &ndert sich nichts, da
der INP-Befehl keine bestimmte Adresse spezifiziert (x x x x)

9. Takt: Die Zahl B (Inhalt Adresse E) wird in den Akku geladen. R, bis R,gleich 00111111
10. Takt: Keine Anderung, da HLT-Befehl. Auch ein weiteres Takten hat keinen Einflu®

Entscheidend bei diesem Programm ist der Gedankengang, liber eine bestimmte Operation in

einer bestimmten Adresse unter einer bestimmten Voraussetzung einen HALT-Befehl zu
erzeugen.

E17

5. Beispiel:

Das System soll so programmiert werden, daR beim Takten die LEDs R; bis R, nach folgendem
Schema aufleuchten:

Rs R, R; R
1. Takt o o o0 90
2. Takt 0O 0 0 _i
3. Takt 0 0/1/0
4. Takt o_t"0 0
5. Takt 1\0 0 o
6. Takt 0 ™_ 0 0
7. Takt) 0\1\0
8. Takt o 0 0 ™
9. Takt o o o 90
10. Takt 0 o o0 _1
11. Takt) 0/1/0
12. Takt o 10 o0
13. Takt 1« 0 0 0
14. Takt 0O ™ 0 o0

Fir diese Aufgabenstellung ergibt sich z.B. folgende Programmierungsmaéglichkeit (Tab. 2).

Adresse Inhalt Befehl Kommentar

hexad. binar hexad. binar
0 0000 4 x 0100 xxxx CLA Lésche Akku
1 0001 5 x 0101 xxxx INC Incrementiere Akku
2 0010 5 x 0101 xxxx INC Incrementiere Akku
3 0011 7F o1111111 ADD Addiere Akku-Inhalt mit 2

-4 0100 7E o1111110 ADD Addiere Akku-Inhalt mit 4
5 0101 8E 10001110 SuB Subtrahiere von Akku-Inhalt 4
6 0110 8F 10001111 SUB Subtrahiere von Akku-Inhalt 2
7 0111 6 x 0110xxxx DEC Decrementiere Akku
8 1000 6 x 0110xxxx DEC Decrementiere Akku
9 1001 5 x 0101 xxxx INC Incrementiere Akku
A 1010 5x 0101 xxxx INC Incrementiere Akku
B 1011 7F 01111111 ADD Addiere Akku-Inhalt mit 2
C 1100 7E 01111110 ADD Addiere Akku-Inhalt mit 4
D 1101 8E 10001110 SuUB Subtrahiere von Akku-Inhalt 4
E 1110 04 00000100
F |1111| 02 |0o0o000010| PATEN

Tab. 2

Programm zum 5. Beispiel

Dieses Programm ist relativ einfach und bedarf daher keiner umfangreichen Erklarung. Fir
die Speicherung der Daten werden nur 2 Adressen benétigt, da die Additions- und Subtrak-
tionsbefehle dieselben Daten bendétigen. Zu bemerken ist auBerdem noch, daf die Aufgaben-
stellung auch noch iber andere Programme moglich ist. So kann z.B. der Befehl INC, der
beim 2. Takt das Muster 00O 1 in R; bis Ry erzeugen soll, durch den Befehl SP1 =
Setze Akku gleich 1, ersetzt werden. ‘

Stérend im Programmablauf ist, daBB die Adressen E und F NOP-Befehle darstellen. Dadurch
andert sich bei 2 Takten der Akku-Inhalt nicht. Umfangreichere Mikrorechner lassen sich
dagegen so programmieren, dal} ein kontinuierlicher Ablauf entsteht.

Vielleicht taucht bei Ihnen jetzt die Frage auf, welche praktische Nutzanwendung ein solches
Programm haben konnte. Beispielsweise kdénnte man anstatt der LEDs R; bis R, einen

E18

Digital-Analog-Wandler (D/A-Wandler) an das System anschlieRen. Ein D/A-Wandler wandelt
ein digitales Signal in ein analoges Signal um. Er kénnte z.B. folgendes Verhalten aufweisen
(Bild 2).

Ro
Rs R, R, R, A =
0o 0 0 0 oV Ry P
O 0 0 1 1V A
O 0 1 0 2V R, -
O 1 0 o© 4V >
1 0 0 O 8V A
Ry o
Bild 2
D/A-Wandler

Liegt an seinen Eingdngen das Wort 00 0O, betrdgt die Ausgangsspannung OV, bei

000 1 istsie 1V usw.
LaRt man nun den Befehlszahler mit einer bestimmten Frequenz laufen, so kann man mit

einem Oszilloskop am Ausgang des D/A-Wandlers folgendes messen (Bild 3).

j M T
A v /\ /\
6+ / \ / \
44 N\
AN
N /
2+
~
v 2 3 4 5 6 7 8 98 10 1m_ 1 1 1% 15
Takt- g
Bild 3 impulse

Ausgangsspannung eines D/A-Wandlers

Die so gewonnene Treppenspannung kann durch entsprechende Formung als eine quadratische
Funktion benutzt werden, die irgendeinen Vorgang steuert.

Aufgaben:

1. Erstellen Sie die Programme fiir folgende Aufgaben:
a) Bio - B=
b) 810 -B=

2. Der 8421-BCD-Code entspricht den Binarzahlen 0 0 O O bis 1 0 O 1. Mit 4-bit-Wértern
lassen sich 16 verschiedene Zahlen darstellen. Damit werden fiir den 8421-BCD-Code die
Zahlen von 1 0 1 0 bis 1 1 1 1 nicht bendétigt und als Pseudotetraden bezeichnet. Entwerfen
Sie ein Programm, das bei Eingabe einer Pseudotetrade mit B3 bis Bo in der Anzeige R7 bis
Ro—1,d.h.11 11111 1 erscheinen lalt. Handelt es sich bei der Eingabe um keine Pseudo-
tetrade, soll in Rs bis Ry die Eingabe B3 bis By erscheinen.

Anmerkung:
Orientieren Sie sich bei dieser Aufgabe an dem 4. Beispiel.

Die Lésungen finden Sie auf Seite E22.

E19

Experimentieranhang

Losungen zu Experiment 1

1. a) A-Schalter: 01111101
+ B-Schalter: 00101000
Ergebnis: 10100101

R; bis Ry
b) A-Schalter: 10111000
+ B-Schalter: 01100100
100011100
———

Ly R, bis Ry
2. a) A-Schalter: 01111000
A-Schalter 1: 10000111
INC-Schalter 1: 10001000

R7 bis Ro
b) A-Schalter: 00001100
A-Schalter 1: 11110011
INC-Schalter 1: 11110100
—_—

R; bis Ry
c) A-Schalter: 00000010
A-Schalter 1: 11111101
INC-Schalter 1: 11111110
——— ————

R; bis Ry
3. a) A-Schalter: 01111000
B-Schalter: 01100100
B-Schalter 1: 10001001 1
—_—

l_o R7 bis Ro
INC-Schalter 1: 1100010100

Lo R, bis Ry
Ergebnis: 00010100
b) A-Schalter: 10000010
B-Schalter: 10001100
B-Schalter 1: 117110101
—_—_

R; bis Ry
INC-Schalter 1: 11110110

R; bis Ry
Ergebnis: 11110110

Losungen zu Experiment 2

1. a) Funktion C; bis Cy: 0111
A-Schalter: 00110100
+ B-Schalter: 00100001
01010101

E21

> > L 2 [2 [¢ > >

L 4

II>

b > I

12544
40,
16510

184,
100,40

12040
10040
A+B

A+B+1=A—-8B

20,0

13010
140,
A+B

= A+B+1=A-B

> > I

=104

3 416
2 14
5516

b) Funktion C; bis Cy: 1000
A-Schalter: 00010100
—B-Schalter: 01001000
1111001100

Ly, R;bis Ry

14,
4 816
"'"3 415

> >

© 2. a) Funktion C; bis Cy: 1000
A-Schalter: 10000001
—B-Schalter: 01110101
00001100

R, bis R,

8 145
7 546
0Cis

> 1>

b) Funktion C; bis Cy: 1000
A-Schalter: 01110110
—B-Schalter: 10000100
111110010

Lo R7 bis Ro

7 646
8 446
-0 Es

(o 4

3. a) Funktion C; bis Cy: 1011
A-Schalter: 11001111
B-Schalter: 00000011

11001100

R-] bis Ro

b) Funktion C; bis Co: 1001
A-Schalter: 11010110
B-Schalter: 00001111

00000110
R7 bis Ro

Losungen zu Experiment 3

44,

I>

1. a) 00101100
——
R, bis R,

>

b) 111110011
N—— —_—
Lo R7biSRo

_1310

c) ' 10000110 2« -122,,
R, bis R,

Anmerkung: Bei der Aufgabe c) ist darauf zu achten, daR —4 8,4 als Zweier-
komplement zu bearbeiten ist. Der Rechenablauf ist also folgender:

1. Uber CLA I8schen

2. 4 8,4 eingeben

3. Vom Akku-Inhalt das Zweierkomplement bilden
4. 3 2,4 hiervon Uber SUB-Befehl subtrahieren

2. 11010110
R, bis R,

E22

Losungen zu Experiment 4
1. a) 2 1,6 an B; bis B, einstellen

Uber DEPOSIT B-Daten in eine Adresse laden, z.B. Adresse 1 1 1 1
3 4,5 an B; bis B, einstellen

Uber INP-Befehl Akku mit B-Daten laden

SUB-Befehl mit Adresse 1 1 1 1 einstellen

oRrwN =

In Ry bis R, erscheint das Ergebnis 00010011 2 1 3,4

b) . b 4,5 an B; bis B, einstellen
. Uber DEPOSIT B-Daten in eine Adresse laden, z.B. Adresse 1 1 1 1
. 2 4,5 an By bis B, einstellen
. Uber INP-Befehl Akku mit B-Daten laden
. Uber CMA-Befehl Akku-Inhalt komplementieren
. Uber INC-Befehl 1 zum Akku-Inhalt addieren

In R; bis Ry steht jetzt das Zweierkomplementvon24,5(11011100)
. SUB-Befehl mit Adresse 1 1 1 1 einstellen und System takten

In R; bis Ry erscheint das Ergebnis 10001000 & -7816

OO WN =

~N

. Inhaltder Adresse 0 11 1 (iber EXAMINE feststellenz.B. 01010000
. Uber LDA-Befehl Inhalt Adresse 0 1 1 1 in Akku laden

. Uber INP-Befehl Akku-Inhalt plus 1 bilden

Neuen Akku-Inhalt iber STA-Befehl in Adresse O 1 1 1 laden

rwN =

2 4,5 in Speicher laden, z.B. Adresse 0 00 0

1 7,6 in Speicher laden, z.B. Adresse 0 0 0 1

3 5,6 in Akku laden

Uber ADD-Befehl mit Adresse 0 0 0 1 die Rechenoperation

3 546 + 1 7,6 durchfiihren

Uber SUB-Befehl mit Adresse 00 00 2 4,5 vom Zwischenergebnis
subtrahieren

In R; bis Ry erscheint das Ergebnis 00101000 & 28,4

Pwn =

o

Losungen zu Experiment 5

1. a) Adresse Inhalt Befehl Kommentar

0 1101 xxxx INP Lade B-Eingange in Akku
1 11101111 STA Speichere Akku-Inhalt in Adresse F
2 o1111111 ADD Addiere Akku mit Adresse F
3 o1111111 ADD Addiere Akku mit Adresse F
4 o1111111 ADD Addiere Akku mit Adresse F
5 o1111111 ADD Addiere Akku mit Adresse F
6 1111 xxxx HLT HALT

b) Adresse Inhalt Befehl
0 1101 xx xx INP
1 11101111 STA
2 01111111 ADD
3 o1111111 ADD
4 01111111 ADD
5 01111111 ADD
6 01111111 ADD
7 01111111 ADD
8 01111111 ADD
9 1111 xxxx HLT

E23

2. Kriterium fiir die Aufgabenstellung ist ein gréRer/kleiner-Vergleich der Eingabe Bz bis Bo = n
mit der Zahl 910 = 1 00 1. Ist n > 910, handelt es sich um eine Pseudotetrade, bei n < 919
handelt es sich um ein Codewort des 8421-Codes. Anhand der Subtraktion n — 910 kann
die entsprechende Entscheidung getroffen werden. Damit ergibt sich folgendes FluRdiagramm
(Bild 4). :

n einlesen und
abspeichern

n -9

Differenz
positiv?

-r2unnm n
anzeigen anzeigen
Bild 4
HALT HALT FluBdiagramm zu Aufgabe 2
Adresse Inhalt Befehl Kommentar
0 1101 xxxx INP B3 bis Bo in Akku laden
1 11101110 STA Akku in Adresse E speichern
2 10001111 SUB Inhalt Adresse F von Akku subtrahieren
3 10011101 AND hochste Stelle ausblenden
4 01111100 ADD Entscheidungsaddition
5 11100111 STA Ergebnis in Adresse 7 abspeichern
6 00111110 LDA B3 bis Bo in Akku laden ‘
7 | —=—====-- ADD/HLT Entscheidungsadresse
8 1100 xxxx SM1 Akku —1 setzen
9 1111 xxxx HLT HALT
A XXXXXXXX nicht belegt
B X XXXX XXX nicht belegt
¢ | o1110000 | Y
D 10000000
E B3 bis Bo DATEN
F 00001001

Da bei diesem Programm als Entscheidungskriterium n — 910 gewahlt wurde, entsteht der
Nachteil, daB bei B3 bis By gleich 1 0 0 1 & 940 eine Pseudotetrade angezeigt wird. Das ist
aber falsch. Wenn wir als Kriterium 919 — n wahlen, wird dieser Nachteil aufgehoben. Damit
ergibt sich folgendes Programm:

E24

Adresse Inhalt Befehl Kommentar
0 1101 xxxx INP B3 bis By in Akku laden
1 11101110 STA Akku in Adresse E speichern
2 o0111111 LDA Inhalt Adresse F in Akku laden
3 10001110 SuB Inhalt Adresse E von Akku subtrahieren
4 10011101 AND hochste Stelle ausblenden
5 01111100 ADD Entscheidungsaddition
6 11101000 STA Ergebnis in Adresse 8 abspeichern
7 1100 xxxx SM1 Akku —1 setzen
8 | -=-—-=-—=-=-=- ADD/HLT Entscheidungsadresse
9 00111110 LDA Inhalt Adresse E in Akku laden
A 1111 xxxx HLT HALT
B X X ; X XXX nicht benutzt -
C 01110000
D 10000000
E B3 bis By DATEN
F 00001001

E25

Experiment 6: Hypothetischer Mikrorechner

Hypothetischer Rechner ITT MP-Experimenter

SYSTEM amoosho

Ly Lg Ls L, L3 L, Ly Lo R7 Rg Rs R, Rs3 R, Ry Rg

sonst: WIE MIT Bs,B.,Bs GEWAHLT WIE MIT Bz,B:, Bo GEWAHLT

LOAD FUR Ly...Lo]FUR Rs..Ro
STEP | -~ -] ST JMINE | ADR DATEN FUR LD -ADR+DEPO+INP DISPLAY-SELEKTOR
1 1 1 1
0 0 0 0

C, G C G Co A7 As As A, A3 Ay A Ag 0 O Bs B, B3 B, By By

Der hypothetische Mikrorechner bildet das zentrale Thema dieses Lehrganges. Aus diesem
Grunde ist es besonders wichtig, da Sie dieses System einwandfrei beherrschen. Die
Versuche in diesem Experiment sollen in erster Linie dazu dienen, Sie mit dem hypothetischen
Mikrorechner vertraut zu machen. Im nachsten Lehrheft werden dann ausfiihrlich die Pro-
grammiertechniken behandelt.

Bedeutung der Schalter:

Die Schaltergruppe C, bis C, hat die gleiche Bedeutung wie in Experiment 5. Wie aus der
aufgelegten Schablone zu erkennen ist, wird bei LOAD-ADR. gleich 1 die an den Schaltern A4,
bis A, eingestellte Adresse angewahlt. Solange C, = 1 ist, erscheint in den LEDs L; bis L, die
angewahlte Adresse, der Inhalt dieser Adresse wird in R; bis R, angezeigt. Das gleiche
gilt fur die Betatigung von EXAMINE und DEPOSIT. Bei DEPOSIT = 1 erscheint in R; bis R,
der mit dem Takt abgespeicherte neue Adresseninhalt. Werden die erwahnten Schalter wieder
in die Stellung O zurlickgesetzt, erscheinen in den beiden Anzeigenreihen die Daten, die
Uber die Schalter Ag bis A, abgerufen werden. Hierbei kann mit den Schaltern B; bis B; die
Anzeige L; bis Ly und mit den Schaltern B, bis B, die Anzeige R; bis R, angewahlt werden.
Die Schalter B; und Bg haben keine Bedeutung. Bei gleicher Einstellung von Bs bis B; und
B, bis B, erscheinen in R; bis Ry und L; bis L, die gleichen Daten. Der Anzeigecode
(Display-Code) in Tab. 1 spezifiziert die einzelnen Anzeigeméglichkeiten.

Bs bis B; Anzeige in L; bis L,

bzw. bzw.

Bz bis Bo Ry bis Ro

000 Inhalt von RO

001 Inhalt von R1

010 Inhalt von R2

011 Inhalt von R3

100 Stellung des Befehlszahlers PC

101 Zustande der Flags

110 Speicherwort, dessen Adresse vom Befehlszahler spezifiziert ist
111 Speicherwort, dessen Adresse mit A; bis A, spezifiziert ist

Tab. 1
Anzeigecode

Die Codes O 0 O bis O 1 1 bedirfen keiner weiteren Erklarung.
— Code 1 0 O zeigt an, welche Adresse vom Befehlszahler gerade angewahlt wird.
— Code 1 O 1 gibt Auskunft dariiber, welche Zustande die 4 Flags gerade einnehmen.

E27

~ Code 1 1 O gibt den Inhalt der Speicheradresse an, die vom Befehlszahler gerade an-
‘gewahlt ist.

— Code 1 1 1 zeigt den Inhalt einer Speicheradresse an, die mit den Schaltern A; bis A,
frei wahlbar ist. ‘ ‘
Wesentlich ist, daR die Schalter Bs bis B, keinen EinfluR auf den Funktionsablauf haben.
Sie dienen lediglich zur Anzeige bestimmter Daten, wenn ein Programm ablauft.

Damit Sie mit diesen grundsétzlichen Eigenschaften des Rechners vertraut werden, fiihren
Sie nachfolgendes Ubungsprogramm Schritt fiir Schritt durch:

1. Alle Schalter auf Null stellen

2. A, bis A, auf 4 0,4 einstellen

3. LOAD-ADR. auf 1 stellen (nicht takten!)

In L; bis L, erscheint die an A; bis A, eingestellte Adresse, deren momentaner Inhalt
in R; bis Ry angezeigt wird

4. LOAD-ADR. auf O stellen, in L; bis L, und R; bis R, erscheint der zuféllige Inhalt von RO,
da mit den Schaltergruppen Bs bis B3 und B, bis B, jeweils der Code 0 O O eingestellt ist
5. Schalter B, bis By auf 1 0 O einstellen. In R; bis Ry erscheint die Adresse 4 0,4, die Uber
LOAD-ADR. geladen wurde

6. A; bis Ajauf 10000 100 einstellen und DEPOSIT auf 1 stellen. In L, bis Ly erscheint
die Adresse 4 O, in R; bis Ry die an A; bis A, eingestellten Daten. Schalter DEPOSIT auf O
zurickstellen. Bei B, bis B, = 1 0 O erscheint jetzt in R; bis Ry die nachste Adresse 4 144
7. A, bis A, auf F Eq einstellen und DEPOSIT takten

8. A, bis A, auf 0 1,4 einstellen und DEPOSIT takten

9. A, bis A, auf 1 1,4 einstellen und DEPOSIT takten

10. A; bis A, auf O 6,5 einstellen und DEPOSIT takten

11. A, bis Ay auf 0 044 einstellen und DEPOSIT takten

12. A; bis Ay auf 4 0,4 stellen und LOAD-ADR. takten

Wenn Sie alle Eingaben genau vorgenommen haben, ist der Rechner mit einem bestimmten
Programm geladen und Gber Punkt 12 wieder auf die Anfangsadresse 4 O, zuriickgestellt.
Mit EXAMINE uberprifen wir die Eingaben:

1. Alle Schalter auf O

2. EXAMINE auf 1 stellen. In L; bis Ly erscheint die Adresse 4 0., in R; bis Ry derenInhalt 844,
also der erste Befehl des Programms. Hierbei handelt es sich um den Befehl LOAD RO, F Eqq
(lade Akkumulator RO mit dem Inhalt der Adresse F E,s). Diese Datenadresse ist in der
nachsten Programmadresse abgespeichert

3. EXAMINE Uber O wieder auf 1 stellen. In L; bis Ly erscheint die Adresse 4 1,4, derInhalt F Eq
erscheint in R; bis Ry

4. Punkt 3. wiederholen. In L; bis L, erscheint Programmadresse 4 2,¢. Der Inhalt dieser
Adresse O 1:¢ (Anzeige in R; bis Ry) entspricht dem Befehl MOVE R1, RO. Dieser Befehl
bewirkt, dal3 die Daten aus RO in R1 transferiert werden

5. Punkt 4. wiederholen. In L; bis L, erscheint Adresse 4 3. Der Inhalt 1 1,5 entspricht dem
Befehl ADDR R1, RO. Hierbei werden die Daten des Registers RO mit dem Inhalt R1 in R1 addiert
6. Punkt 5. wiederholen. In der Adresse 4 4,5 ist der Befehl O 6,4, d.h. MOVE R2, R1, abge-
speichert. Hierbei werden die Daten von R1 in R2 gebracht

7. Punkt 6. wiederholen. In der Adresse 4 5,¢ist der HALT-Befehlt abgespeichert

Damitdieses Programm mit definierten Daten ablaufen kann, speichern wir in Adresse F E;¢
die Zahl 1 016:

1. A; bis Ap auf F E;¢ einstellen
2. Schalter LOAD-ADR. takten
3. A; bis A, auf 1 0,4 einstellen
4. DEPOSIT takten

Jetzt stellen wir Gber LOAD-ADR. das System wieder auf die Prorammadresse 4 0, zurlick
und schalten Gber C, SINGLE-STEP-Betrieb ein.

Bevor wir das Programm schrittweise ablaufen lassen, stellen wir in Tab. 2 noch einmal die
Befehle zusammen.

E28

Adresse Inhalt Befehl Kommentar
(hexadez.) Maschinencode
40 10000100 LOAD RO, FE
41 11111110 Datenadresse
42 00000001 MOVE R1, RO
43 00010001 ADDR R1, RO
44 00000110 MOVE R2, R1
45 00000000 HLT
FE 00010000 Daten
Tab. 2

Zusammenfassung der bisher eingegebenen Befehle

Zur Beobachtung des Datenflusses stellen wir B, bis B, auf 1 0 0 (Stellung PC) und Bs bis B; auf
O O O (Inhalt RO). Mit Schalter RUN wird jetzt das System einmal getaktet. In L, bis L,
erscheint 1 0,4, also die Daten aus Adresse 4 1,4, da hier (durch MODE O 1 im Maschinen-
code bedingt) kein neuer Befehl, sondern eine Datenadresse abgespeichert ist.

Schalter B; bis B; auf 0 0 1 einstellen, und RUN erneut takten. Die Daten von RO erscheinen
jetzt auch in R1. System mit RUN takten. In L; bis L, erscheint das Additionsergebnis 2 0.

Schalter Bs bis B; auf 0 1 O stellen und mit RUN takten. Die Daten von R1 erscheinen auch
in R2. Weiteres Takten hat keinen EinfluR mehr auf das System, da in Adresse 4 5,5 ein
HALT-Befehl programmiert ist.

Bevor wir jetzt weitere Beispiele programmieren, einige Worte tber den Speicher. Insgesamt
hat der Speicher (RAM) eine Kapazitat von 256 Wértern a 8 bit. Hierbei ist zu beriicksichtigen,
daR die Adressen von O 1,4 bis 1 8,5 mit einem Unterprogramm fest belegt sind. Sie diirfen
also bei einem Programm nicht benutzt werden. Eine weitere Besonderheit stellt die
Adresse F F;s dar. Sie wird als INPUT-Adresse der A-Schalter benutzt und darf fiir ein -
normales Programm ebenfalls nicht benutzt werden. Uber Adresse F F,5 konnen die an den
Schaltern A; bis A, eingestellten Daten abgerufen werden. Diese Adresse ersetzt praktisch
den INP-Befehl aus Experiment 5. Wenn Sie z.B. in Adresse 4 1,5 des vorherigen Beispieles
anstatt F E;s die Adresse F F,¢ abspeichern, kénnen Sie das Programm mit den jeweils
an A, bis A, eingestellten Daten ablaufen lassen.

Der fiir Programmierungszwecke zur Verfiigung stehende Datenbereich reicht also von Adresse
1 9,6 bis F Eq6.

E29

Experiment 6a

Nachdem Sie nun grundséatzlich mit der Anwehdung des hypothetischen
vertraut sind, wollen wir nachfolgend einige kleine Programme erstellen.

1. Beispiel:
Die Register RO bis R3 sollen mit folgenden Daten geladen werden

RO: O 74
R1: O F16
R2: 1 Fi¢
R3: 2 As

Mikrorechners

Dann soll der Inhalt RO mit dem Inhalt R3 in R3 addiert werden. Von dem Ergebnis R3 soll
in R2 mit dessen Inhalt die XOR-Verknipfung gebildet werden. Das jetzt in R2 stehende

Ergebnis wird dann in R1 mit dessen Inhalt ODER-verkniipft.

Ablauf:

Als erste Programmadresse wéahlen wir 4 0,4, die Daten werden riickwéarts mit der Adresse

F E,s beginnend abgespeichert (Tab. 3).

Adresse Inhalt Befehl
(hexadez) Maschinencode
40 10000100 LOAD RO, FE
41 11111110
42 10000101 LOAD R1,FD
43 11111101
4 4 10000110 LOAD R2,FC
45 11111100
46 10000111 LOAD R3,FB
47 11111011
48 00010011 ADDR R3, RO
49 01001110 XORR R2, R3
4 A 00111001 IORR R1, R2
4B 00000000 HLT
FB 00101010
FC 00011111 Daten
FD 00001111
FE 00000111

Tab. 3

Programm zum 1. Beispiel

Laden Sie dieses Programm. Wenn Sie beim Programmieren keinen Fehler gemacht haben,
erscheint in R1 als Lésung 2 F,s. Das Laden der Daten in F Bys bis F E;¢ geschieht

folgendermalf3en:

F B1g an A; bis A, einstellen
LOAD-ADR. takten

2 Ajs an A, bis A, einstellen
DEPOSIT takten

1 F,5 an A; bis A, einstellen
DEPOSIT takten

0 F,5 an A bis A einstellen

Noogp,rwN =

E30

8. DEPOSIT takten
9. 0 7,5 an A, bis A, einstellen
10. DEPOSIT takten

AnschlieRend wird der Befehlszéhler Gber LOAD-ADR. wieder in die Ausgangsstellung 4 Og
zurtickgebracht. Die Aufgabenstellung hatte auch so gelést werden kénnen, daR die Register
RO bis R3 zuerst liber die Adresse F F,g mit den A-Schaltern geladen worden waren. Dies
ist nattirlich nur im SINGLE-STEP-Betrieb méglich. Der Vorgang ist folgender:

1. Uber LOAD-ADR. eine Adresse auswahlen, z.B. 8 0;4

2. LOAD-Befehl an A, bis Ay einstellen,z.B. 10000100 (LOAD RO, FF,), DEPOSIT takten
3. In Programmadresse 8 1,4 iber DEPOSIT die INP-Adresse F F,¢ abspeichern

4. LOAD-Befehl fir R1 einstellen (1 0 0 0 0 1 0 1) und DEPOSIT takten usw. bis Befehl
LOAD R3, FFqg

5. Uber LOAD-ADR. auf Ausgangsadresse zuriickstellen

6. Daten fiir RO an A; bis A, einstellen

7. C, auf SINGLE-STEP-Betrieb schalten

8. RUN einmal takten

9. Daten fiir R1 an A; bis A, einstellen

10. RUN einmal takten usw. bis R3

Alle Befehle der 1. Befehlsgruppe fiilhen bekanntlich Operationen zwischen 2 Registern bzw.
Akkumulatoren durch. In der Befehlsliste sind diese mit einem R am Ende gekennzeichnet,
z.B. ADDR, IORR, XORR usw. Bei Benutzung dieser Befehle ist besonders darauf zu achten,
daR in der mnemonischen Befehlsschreibweise der DatenfluR von rechts nach links, im
Maschinencode die Programmierung aber in Richtung SRC nach DST erfoigt.

Beispiel:
Der Befehl ADDR RO, R1 besagt, da in RO als DST-Register eine Addition mit dem Inhalt R1
des SRC-Registers erfolgen soll. Der Maschinencode lautet hierfiir:

SRC

et

00010100

Op-Code DST

Wir weisen an dieser Stelle auf diesen Punkt noch einmal ausdriicklich hin, da hier besonders
haufig Programmfehler gemacht werden.

Die Befehle INCR und DECR erhéhen bzw. erniedrigen den Inhalt eines Registers mit jedem
Takt um 1. Wenn wir z.B. in Adresse 1 9,¢ einen INCR-Befehl programmieren und die
restlichen Speicherplatze von 1 A5 bis F E;s mit dem NOP-Befehl belegen, haben wir einen
langsam zéhlenden Vorwartszahler programmiert.

E31

Experiment 6b

Bei den Befehlen der 2. Befehlsgruppe gibt es grundsétzlich 2 Mdglichkeiten:

- Direkte Adressierung, z.B. LOAD R2, 9 3

— Immediate Adressierung, z.B. ADDM R2, #7 5

Bei der direkten Adressierung steht im 2. Byte die Adresse, deren Inhalt als Daten benutzt
werden. Der Befehl LOAD R2, 9 3 besagt, da die Daten der Adresse 9 3¢ in Register R2 zu
laden sind.

Bei der immediate Adressierung stehen die Dategn dizekt/im 2.Byte. Der Befehl SUBMR2, # 7 5
besagt, daR ¥X&%Inhalt R2 die Zahl 7 5, faé%%ﬁ ‘Werden soll. Hierbei steht die Zahl 7 5.
im zweiten Byte. ‘

Anmerkung: .
Zahlenangaben wie 7 5, AF usw. werden ab jetzt immer hexadezimal verstanden. Ausnahmen
im Dezimalsystem werden durch den Index gekennzeichnet.

Wir wollen auch hierfiir wieder ein kleines Programmbeispiel durchsprechen.

2. Beispiel:
Die Befehlsliste (Tab. 4) ist zu ergédnzen und dann zu programmieren (Lésung Tab. 5).

Adresse Inhalt Befehl Kommentar
(hexadez) Maschinencode

40 LOAD RO, 8 0
41
42 IORM RO, # 1 7
43
44 ADDM RO, 8 1
45
46 SUBM RO, # 0 4
47
48 XORM RO, #2 0
49
4 A HLT

80
81

- -
- O

Tab. 4
Befehlsliste zum 2. Beispiel

E32

Adresse Inhalt Befehl Kommentar
40 10000100 LOAD RO, 8 O direkte Adressierung
41 10000000 Datenadresse
42 10110000 IORM RO, #1 7 immediate Adressierung
43 00010111 Daten
44 10010100 ADDM RO, 8 1
45 10000001
46 170100000 SUBMRO, # 0 4
47 00000100
48 11000000 XORM RO, #20
49 00100000
4 A 00000000 HLT
80 00010000 Daten
81 00010001
Tab. 5

Lésung zum 2 Beispiel

Als Endergebnis muR O 4 in RO erscheinen. Wenn Sie dieses Programm im SINGLE-STEP-
Betrieb abarbeiten, werden Sie feststellen, daRR der Befehlszahler immer eine Programm-
adresse liberspringt, da in den Adressen 4 1, 4 3, 4 5, 4 7 und 4 9 keine Befehle,

sondern Datenadressen oder Daten abgespeichert sind.

E33

Experiment 6¢c

Ein wesentlicher Unterschied zum einfachen Rechner in Experiment 5 ist der, daR der
hypothetische Mikrorechner Sprungbefehle enthélt. Bei den Sprungbefehlen muf3 grund-
satzlich nach

— direkter Adressierung (MODE O O) und

- indirekter Adressierung (MODE O 1)

unterschieden werden.

Bei direkter Adressierung springt der Befehlszédhler auf die im 2. Byte spezifizierte Adresse.

Bei indiekter Adressierung dient das 2. Byte als Adresse mit deren Inhalt der Befehlszahler
geladen wird. Der Befehl JUMP 8 1 bedeutet, dal® der Befehlszéhler auf die Adresse 8 1
springen soll. Er hat den Maschinencode: .

111 0 0 0 0O

| S N N

OP-Code = MODE Bedingung

1 0 0 00 O 0 1

Sprungadresse

Der Befehl JUMP @ 8 4 bedeutet, daR der Befehlszahler auf eine Adresse springt, die vom
Inhalt der Adresse 8 4, bestimmt wird. Er hat den Maschinencode:

OP-Code = MODE Bedingung

e e,

111 0 01 0 O

1.0 0 001 0O

Adresse, deren Inhalt die
Sprungadresse angibt

In beiden Fallen handelt es sich um unbedingte Sprungbefehle, festgelegt durch die Bedingung-
bit 0 0. Um bedingte Sprungbefehle handelt es sich bei den Befehlen JMPZ, JMPN und JMPC.

3. Beispiel
Der Rechner ist mit dem in Tab. 6 angegebenen Programm zu laden.

Uberpriifen Sie anhand von EXAMINE, ob Ihnen bei der Programmeingabe kein Fehler unter-
laufen ist. Wenn alles richtig eingegeben wurde, kénnen Sie mit diesem Programm die
Wirkungsweise der Sprungbefehle eindeutig erkennen.

Gehen Sie dabei folgendermaRen vor:

Uber LOAD-ADR. Befehlszahler auf Ausgangsadresse 4 O stellen
A-Schalter auf Null

System auf SINGLE-STEP-Betrieb stellen

B, bis B, auf 1 0 O stellen (Ry bis R, zeigt Stellung des Befehlszéhlers an)
Bs bis B; auf 0 0 O stellen (L, bis L, zeigt Inhalt Register RO)

Uber RUN System Schritt fiir Schritt takten

copwN =

Da alle A-Schalter auf O sind, entsteht bei dem Befehl SUBM RO, 7 1 in Adresse 4 4
ein negatives Ergebnis. Dies bedeutet, da® jetzt der Befehl JUMPN @ 7 2 ausgeldst wird.
Der Befehlszahler springt auf Adresse 4 E. In 4 E steht der Befehl LOAD RO, # O F, d.h,,
RO wird mit O F geladen. Im nachsten Befehl wird dann die XOR-Verkniipfung gebildet.
Dann folgt der Befehl JUMP 4 O, d.h., der Befehlszahler wird auf die Ausgangsadresse 4 O
zurlickgestellt, und der Vorgang beginnt von neuem.

Jetzt wird, wie vorher beschrieben, das Ganze mit einer Zahl an den A-Schaltern gréRBer 2 O
(z.B. 2 2) wiederholt. Da jetzt bei dem Befehl SUBM RO, 7 1 kein negatives Ergebnis
entsteht, erfolgt an dieser Stelle kein Sprung. Uber Befehl LOAD RO, F F wird R0 mit 2 2

E34

Adresse Inhalt Befehl Kommentar

40 10000100 B4LOADRO,70

41 01110000 [o

42 10010100 ?&ADDM RO, FF Daten der A-Schalter
43 11111111

44 10100100

45 01110001

46 11100110 bedingter Sprung (indirekt)
47 01110010

48 10000100

49 11111111

4 A 10100000

4B 00100000

4 C 11100101 bedingter Sprung (indirekt)
4D 01110011

4 E 10000000

4 F 00001111

50 11000000

51 00011000

52 117100000 unbedingter Sprung
53 01000000

70 00100000

71 01000000 Daten

72 01001110

73 01110101

75 01100000

76 00001111

77 00001111

78 00001111

79 00001111

7A 10010100 Daten der A-Schalter
7B 11111111

7C 11100011 bedingter Sprung
7D 01000000

7E 11100000 unbedingter Sprung
7F 01110101
Tab. 6

Programm zum 3. Beispiel

geladen. Davon wird dann 2 O abgezogen. Da der Befehl JMPZ @ 7 3 nur ausgel6st wird,
wenn bei dieser Subtraktion das Ergebnis O entsteht, erfolgt hier kein Sprung, das Programm
lauft bis Befehl JUMP 4 O durch und springt dann auf die Ausgangsadresse 4 O zuriick.
Im néchsten Beispiel stellen wir die A-Schalter auf 2 O ein. Jetzt wird der Befehl IMPZ @7 3
wirksam. Der Befehlszéhler springt auf Adresse 7 5 und fiihrt hier einen INCR-Befehl aus.
Danach folgen 4 NOPs. In Adresse 7 A wird der Inhalt R O (iber den Befehl ADDM RO,
F F mit den Daten des A-Schalters addiert, in unserem Beispiel mit 2 O. In Register RO steht
danach 2 1. Der bedingte Sprungbefehl wird nicht ausgelést, da noch kein Ubertrag vorhanden
ist. Bei Adresse 7 E erfolgt ein unbedingter Sprung zur Adresse 7 5 zurick. Hier erfoigt
wieder INCR, 4mal NOP usw., bis nach einigen Schleifen ein Ubertrag entsteht, der den
Befehl JMPC 4 O ausldst. Jetzt springt der Befehlszahler auf Adresse 4 O zuriick, und der
ganze Vorgang lauft von neuem ab.

Der DISPLAY-SELEKTOR gestattet es, alle Einzelschritte genau zu verfolgen. So kénnen Sie
auch z.B. durch B, bis B, gleich 1 O 1 den Zustand der Flags in R; bis Ry, anzeigen lassen
und somit feststellen, wann ein bedingter Sprung erfolgen muR.

E35

Experiment 6d

Im néchsten Beispiel befassen wir uns mit der Indexed-Adressierung. Als Indexregister
wird Uber MODE 1 O Akku R2 betrieben. Ein Additionsbefehl dieser Adressierungsart in
mnemonischer Schreibweise hat die Form: ‘

ADDM RO, @ R2

Der Maschinencode hierfiir lautet:

1 001 1 00O
OP-Code DST

Zuerst programmieren wir das im theoretischen Teil behandelte Beispiel.
Ab jetzt geben wir den Inhalt der Adresse nicht mehr in binadrer Schreibweise an,
sondern wir verwenden auch hierfiir die Hexadezimal-Schreibweise.

4. Beispiel (Tab. 7):

Adresse Inhalt Befehl Kommentar

40 82 LOADR2,#9 0 Adresse der ersten Daten
41 90

42 81 LOAD R1, #4 1 Anzahl der Datenworter
43 41

4 4 20 SUBR RO, RO DST léschen

45 98 ADDM RO, @ R2

46 92 ADDM R2, # 1 erhéhe Datenadresse
47 01

48 A1 SUBM R1, # 1 erniedrige Schleifenzahler
49 01

4 A E1 JMPZ 4 E aufhoren bei R1 =0
4B 4 E

4 C EO JUMP 4 5 sonst wiederholen
4D 45

4 E 00 HALT

90 04

91 04

92 04

93 04

94 04

95 04

96 04

97 04

98 04

99 04

9A 04

9B 04

9C 04

9D 04

9E 04

9F 04

AO 03

A1 03

E36

Adresse Inhalt Befehl Kommentar
A2 03
A3 03
A4 03
Ab 03
A6 03
A7 03
A8 03
A9 03
AA 03
AB 03
AC 03
AD 03
AE 03
AF 03
BO 02
B 1 02
B2 02
B3 02
B 4 02
B5 02
B 6 02
B7 02
B8 02
B9 02
B A 02
BB 02
BC 02
BD 02
BE 02
BF 02
coO 05
Cci1 05
c2 05
Cc3 05
c4 05
C5 05
C6 05
c7 05
Cc8 05
c9 05
CA 05
CB 05
ccC 05
CD 05
CE 05
CF 05
DO 05
Tab. 7

Programm zum 4. Beispiel

Nachdem Sie Programm und Daten geladen haben, wird zuerst Gber LOAD-ADR. der
Befehlszahler auf die Anfangsadresse 4 O zurlickgestellt. Lassen Sie dann das Programm
tber RUN automatisch ablaufen. Der Rechner bendtigt ca. 2 Sekunden bis das Ergebnis E 5
in RO gebildet ist. Verfolgen Sie auch Uber SINGLE-STEP-Betrieb die Arbeitsweise von
Indexregister R2 und Schleifenzéhler R1.

Entscheidend ist, da Sie die Funktion des Befehles ADDM RO, @ R2 genau erkennen. Es
werden jeweils die Daten zum Inhalt von RO addiert, die unter der Adresse des Index-
registers R2 abgespeichert sind. R1 dient als Zéhler fiir die abzuarbeitenden Datenworter.

E37

Experiment 6e

5. Beispiel: .

Dieses Beispiel zeigt die Auto-Increment-Indexed-Adressierung. Die Aufgabenstellung
entspricht der im 4. Beispiel. Es werden die gleichen Daten wie im 4. Beispiel verwendet.
Daher ist nur der Programmteil neu zu laden (Tab. 8).

Adresse Inhalt Befehl Kommentar
40 83 LOAD R3,#9 0 Adresse der ersten Daten
41 90
42 81 LOAD R1, #4 1 Anzahl der Datenworter
43 41
44 20 SUBR RO, RO I6sche Inhalt im DST RO
45 9C ADDM RO, @ R31
46 A1l SUBM R1, # 1 erniedrige Schleifenzéahler
47 01
48 E1 JMPZ 4 C aufhoéren, falls R1 = 0
49 4C
4 A EO JUMP 4 5 sonst wiederholen
4B 45
4 C 00 HALT
90 04
Daten
DO 05
Tab. 8

Programm zum 5. Beispiel

Lassen Sie das Programm automatisch ablaufen. In RO erscheint als Ergebnis wieder E 5.
Laden Sie wieder Adresse 4 O, und betreiben Sie das System im SINGLE-STEP-Betrieb.
Stellen Sie den DISPLAY-SELEKTOR so ein, dal3 Sie die Zustdnde von R3 und RO verfolgen
kénnen.

Bei dem Befehl ADDM RO, @ R3% in Adresse 4 5 wird der Inhalt R3 jeweils um 1 erhéht,
gleichzeitig erfolgt in RO eine Addition mit den Daten, die in der von R3 spezifizierten
Adresse abgespeichert sind. Gegenlber dem 4. Beispiel entfallt der Befehl ADDM R2, # 1.

6. Beispiel:

In diesem Beispiel geht es darum, mit Hilfe der Auto-Increment-Indexed-Adressierung den
Inhalt des Speichers auf ein bestimmtes Datenwort bzw. bit-Muster hin zu untersuchen.
Das bit-Muster wird Gber die B-Schalter in Adresse F F eingegeben.

Laden Sie das System mit dem in Tab. 9 gezeigten Programm.

Stellen Sie den DISPLAY-SELEKTOR so ein, daR Sie den Zustand von R1 und R3 verfolgen
koénnen. Die Anfangsadresse 4 O laden. Dieﬁ‘-SchaHer auf F F einstellen, und Programm
automatisch ablaufen lassen. Das System hélt spatestens an, wenn R3 den Inhalt 4 4 anzeigt.
Das System hilt friiher an, wenn zufallig in einer vorherigen Adresse bereits der Inhalt F F
enthalten ist. Wie 148t sich dieses Verhalten erkléaren?

Mit dem Befehl SUBR R3, R3 wird das Autoindexregister R3 auf die Adresse 0 O gesetzt.
Beim nachsten Befehl LOAD R1, @ R31 wird R1 mit dem Inhalt der Adresse O O geladen
und gleichzeitig R1 auf Adresse O 1 gesetzt. Vom Inhalt R1 wird mit dem Befehl SUBM R1, F F

E38

Adresse Inhalt Befehl Kommentar
40 2F SUBR R3, R3 I6sche R3
41 8D LOAD R1,@ R3%
42 Ab5 SUBM R1,FF
43 FF
44 E1 JMPZ 4 8
45 48
46 EO JUMP 4 1
47 41
48 00 HALT
Tab. 9

Programm zum 6. Beispiel

der an B; bis B, stehende Wert subtrahiert. Ist das Ergebnis ungleich O, hat der Befehl JMPZ 4 8
keine Auswirkung, und iiber JUMP 4 1 erfolgt ein erneuter Befehl LOAD R1, @ R3*. Hierbei
wird jetzt der Inhalt von Adresse O 1 in R1 geladen und R3 auf O 2 erhdht usw. Dieser
Vorgang wiederholt sich so oft, bis spatestens bei R3 = 4 3 R1 mit F F geladen und
gleichzeitig R3 auf 4 4 erhoht wird. Der néchste Befehl SUBM R1, F F bewirkt, daR® der
Inhalt B; bis B, von R1 subtrahiert wird. Damit entsteht in R1 das Ergebnis O. Der Befehl
JMPZ 4 8 bewirkt, daB ein Sprung in Adresse 4 8 mit dem HALT-Befehl erfolgt.

Stellen Sie selbst beliebige bit-Muster an A} bis/ﬁQ ein, und lassen Sie dann das Programm

ablaufen.

E39

Experiment 6f

7. Beispiel:
In diesem Beispiel (Tab. 10) sollen die verschiedenen Adressierungsmdoglichkeiten der STAC-
Befehle eriautert werden (aul3er Auto-Decrement-Indexed-Adressierung).

Adresse Inhalt Befehl Kommentar
40 80 LOAD RO, #4 0
41 40
42 74 STACRO,90
43 90 :
44 82 LOAD R2, #9 1
45 . 91
46 80 LOAD RO, #10
47 10
48 78 STAC RO, @ R2
49 83 LOAD R3,# 9 2
4 A 92
4B 82 LOAD R2, #20
4C 20
4D 7E STAC R2, @ R3t
4 E 7E STAC R2, @ R3?
4 F 7E STAC R2, @ R3*
50 00 HALT

Tab. 10

Programm zum 7. Beispiel

Geben Sie das Programm ein, und takten Sie das Programm manuell durch. Laden Sie dann
Adresse 9 0. Mit EXAMINE ist der Inhalt der Adresse 9 O bis 9 4 =zu Uberprifen.
Folgender Inhalt muf3 vorhanden sein:

90 — 40
91 - 10
92 - 20
93 - 20
94 — 20

Aus diesem Beispiel geht die Funktion der Indexed- sowie der Auto-Increment-Indexed-
Adressierung hervor.

8. Beispiel:
Mit diesem Beispiel wird die Funktion der Auto-Decrement-Indexed-Adressierung erlautert
(Tab. 11).
Laden Sie uber LOAD-ADR. Adresse 8 E, und uberprifen Sie mit EXAMINE den Inhalt der
Adressen 8 E, 8 F und 9 0.
Resultat:

8E — 20

8F - 20

90 —» 20

Dieses Beispiel zeigt, da® im Gegensatz zur Auto-Increment-Indexed-Adressierung zuerst
R3 decrementiert wird, bevor der eigentliche Befehl durchgefihrt wird. Damit wird der
Inhalt von RO beim ersten STAC-Befehl in Programmadresse 4 4 in Adresse 9 O gespeichert.
Mit den beiden nachsten STAC-Befehlen wird der Inhalt von RO in 8 F und dann in 8 E
gespeichert.

E40

Adresse Inhalt Befehl Kommentar
40 80 LOAD RO, #2 0
41 20
42 83 LOAD R3, # 91
43 91 '
44 70 STAC RO, @ ‘R3
45 70 STAC RO, @ ‘R3
46 70 STAC RO, @ {R3
47 00 HALT
Tab. 11

Programm zum 8. Beispiel

E41

Experiment 6g

9. Beispiel:
Dieses Beispiel zeigt die Funktion der Befehle INCR, DECR, RACL und RACR (Tab. 12).

Adresse Inhalt Befehl Kommentar
40 80 LOAD RO, #0 1
41 01
42 60 INCR RO
43 60 INCR RO
44 60 INCR RO
45 60 INCR RO
46 64 DECR RO
47 64 DECR RO
48 64 DECR RO
49 68 RACL RO
4 A 68 RACL RO
4B 68 RACL RO
4 C 68 RACL RO
4D 68 RACL RO
4 E 68 RACL RO
4 F 68 RACL RO Carry-Flag uberprifen
50 68 RACL RO
51 68 RACL RO
52 68 RACL RO
53 6C RACR RO
54 6C RACR RO
55 6C RACR RO Carry-Flag uberprufen
56 6C RACR RO
57 6C RACR RO
58 6C RACR RO
59 EO JUMP 4 0
5A 40
Tab. 12

Programm zum 9. Beispiel

Laden Sie Adresse 4 O, und takten Sie das Programm manuell durch. Uberpr(]fen Sie bei
den Programmadressen 4 F und 5 5 den Zustand des Carry-Flags.

10. Beispiel:

In diesem Beispiel wird gezeigt, wie mit Hiife des STAC-Befehles tber Auto-Increment-
Indexed-Adressierung ein bestimmter Speicherbereich geléscht werden kann. In diesem
Beispiel soll der Speicherbereich 8 O bis B F geloscht werden, d.h., es miissen 4 0,4
Speicheradressen geléscht werden (Tab. 13).

Uberpriifen Sie iber EXAMINE, ob die Adressen 8 O bis B F tatsachlich den Inhalt 0 O
aufweisen. Uber das Programm selbst ist nicht sehr viel zu sagen. Bei Adresse 4 5 wird R 1
auf 0 O gebracht. Dieser Inhalt wird dann tber den Befehl STAC R1, @ R3* bei Adresse 8 0 -
beginnend so lange in die darauffolgenden Speicheradressen geladen, bis R2 auf O O an-
gekommen ist. Dann erfolgt der Sprung nach Adresse 4 C mit dem HALT-Befehl.

E42

Adresse Inhalt Befehl Kommentar
40 83 LOAD R3, #8 0 Anfang Speicherbereich
41 80
42 82 LOADR2, #4 0 Anzahl der Wérter
43 40
44 25 SUBR R1, R1 R1 l6schen
45 7D STAC R1, @ R31
46 A2 SUBMR2,#0 1
47 01
48 E1 JMPZ 4 C
49 4C .
4 A EO JUMP 4 5
4B 45
4C 00 HALT
Tab. 13

Programm zum 10. Beispiel

E43

Experiment 6h

11. Beispiel:

Hier soll gezeigt werden, wie man mit einem 8-bit-Mikrorechner Zahlen mit mehr als 8 bit
verarbeiten kann. So sollen z.B. zwei 16-bit-Zahlen miteinander addiert werden oder in
2 Halften in 2 Registern stehen. Wir arbeiten mit den Registern RO bis R3 und belegen diese,
wie Bild 1 zeigt.

15 8 7 0
RO R1 erste Zahl
R2 R3 zweite Zahl
Carry linke Ergebnishalfte rechte Ergebnishalfte
Ubertrag Ubertrag

Bild 1
Addition zweier 16-bit-Zahlen mit einem 8-bit-Mikrorechner

Es gibt 2 Méglichkeiten, diese Addition durchzufiihren:
a) Es werden zuerst die beiden linken Zahlenhélften addiert und dann die beiden rechten.
b) Es werden zuerst die beiden rechten Zahlenhalften addiert und dann die linken.

Moglichkeit a:
Laden Sie zuerst die einzelnen Register, wie Tab. 14 zeigt.

Adresse | Inhalt Befehl Kommentar
38 80 LOAD RO, #10

39 10

3A 81 LOAD R1, #9 2

3B 92

3C 82 LOAD R2, #7 2

3D 72

3E 83 LOADR3, #1 2

3F 12

Tab. 14

Laden der einzelnen Register

Laden Sie nun das Programm fiir die Addition (Tab. 15).
Laden Sie jetzt Adresse 3 8, und takten Sie das System mit SINGLE-STEP. Wenn Sie die
Daten und Befehle richtig eingegeben haben, erscheint das Ergebnis:

1 000001T01T01T1001O00O0

R2 R3

Zu diesem Ergebnis kommen Sie auch, wenn Sie die genannten Zahlen von Hand addieren.
Laden Sie die Register wie folgt neu:

E44

Adresse Inhalt Befehl Kommentar
40 12 ADDR R2, RO linke Halfte addiert
41 17 ADDR R3, R1 rechte Halfte addiert
42 E3 JMPC 4 6 Ubertrag?
43 46
44 EO JUMP 4 7
45 47
46 62 INCR R2
47 00 HALT
Tab. 15

Programm fur die Addition nach Moglichkeit a

RO — 10
R1 —- 92
R2 — 72
R3 — 87

Takten Sie jetzt das System bei Adresse 3 8 beginnend mit SINGLE-STEP. Als Ergebnis
erhalten wir:

1 0000011 00O01T1T0O01
R2 R3

In diesem Falle entsteht bei der Addition der Inhalte von R1 und R3 ein Ubertrag. Dieser
Ubertrag wird dadurch bericksichtigt, daf® der Inhalt von R2 durch den INCR-Befehl um 1
erhoht wird.

Moglichkeit b:
Laden Sie das in Tab. 16 gezeigte Programm.

Adresse Inhalt Befehl Kommentar
40 17 ADDR R3, R1 rechte Halfte addiert
41 69 RACL R1 hole Ubertrag
42 D1 ANDM R1, #0 1 isoliere Ubertrag
43 01 _
44 16 ADDR R2, R1 Ubertrag plus Inhalt R2
45 12 ADDR R2, RO linke Halfte addiert
46 00 HALT
Tab. 16

Programm fiir die Addition nach Mdoglichkeit b

Laden Sie jetzt wieder die Register RO bis R3 mit folgenden Daten:

RO - 10
R1T — 92
R2 - 72
R3S — 87

Wenn Sie dieses Programm (beginnend bei Adresse 3 8) ablaufen lassen, erhalten Sie
dasselbe Ergebnis wie bei der Methode a. Der Unterschied gegentiber der zuerst genannten
Methode besteht darin, daR ein Ubertrag anders verarbeitet wird. Entsteht bei der Addition
der Inhalte von R1 und R3 ein Ubertrag, so wird dieser durch den Befehl RACL R1 in die

E45

rechte Stelle von R1 geschoben. Berlicksichtigen Sie an dieser Stelle, daR die Befehle RACL
und RACR den Inhalt vom Carry-Flag mit verschieben (siehe 9. Beispiel). Durch den Befehl
ANDM R1, # 0 1 wird die rechte Stelle von R1 ausgeblendet. Ist, wie in unserem Beispiel,
ein Ubertrag vorhanden, erscheint in R1 das Ergebnis O 1. Dieser Ubertrag wird nun durch
den Befehl ADDR R2, R1 in die linke Zahlenhalfte addiert und damit bei dem Befehl ADDR R2,
RO beriicksichtigt. Als Ergebnis erhalten wir wieder:

100000117 0001T100O01
R2 R3

Beide hier aufgezeigten Moglichkeiten konnen ein falsches Ergebnis liefern. Dies hangt damit
zusammen, daRR beim hypothetischen Mikrorechner kein Befehl vorhanden ist, der es er-
méglicht, Ubertrage aus der rechten und linken Zahlenhilfte gleichzeitig zu addieren. Wir
wollen hierauf an dieser Stelle nicht weiter eingehen. Bei der Besprechung des 8080-Systems
wird diese Problematik behandelt.

12. Beispiel:

In diesem Beispiel wollen wir eine Digitaluhr simulieren. Bedingt dadurch, dal der Mikro-
rechner mit einem Quarztaktgenerator betrieben wird, lauft das Mikrorechnersystem mit einer
praktisch konstanten Geschwindigkeit. Diese Eigenschaft kann zur Zeitmessung herangezogen
werden.

Die verschiedenen Befehle eines Mikroprozessors benétigen eine unterschiedliche Anzahl
Taktperioden. Bei einem realen Mikrorechnersystem ist die Anzahl der erforderlichen Takt-
perioden pro Befehl theoretisch und auch durch Zahlen leicht festzustellen. Durch die
Simulation des hypothetischen Mikrorechners werden dagegen so viele Befehle des 8080-
Mikroprozessors ausgefiihrt, dal® ein Abzadhlen der Takte nicht mehr praktikabel ist. Die
Befehlszeit kann hierbei am besten durch Experimentieren ermittelt werden.

Zuerst wollen wir eine bestimmte Wartezeit erzeugen. Hierfiir kann das in Tab. 17 gezeigte
Programm verwendet werden.

Adresse Inhalt Befehl Kommentar
40 80 LOAD RO, # 6 0
41 60
42 AO SUBM RO, #0 1
43 01
44 E1 JMPZ 4 8
45 48
46 EO , JUMP 4 2
47 42
Tab. 17

Programm zum Erzeugen einer Wartezeit

Bei diesem Programm wird die Zahl 6 O in RO geladen. In einer Schleife wird davon so oft
1 abgezogen, bis O erreicht ist. Ist das der Fall, wird iiber JMPZ 4 8 das Programm bei
Adresse 4 8 fortgesetzt. Die so erzeugte Zeitverz6gerung kann dadurch geéndert werden,
daR die Anfangszahl 6 O geandert wird. Durch den Einbau von NOP-Befehlen 1aRt sich
auRBerdem der Verzogerungsbereich vergroBern. Uber den Befehl LOAD RO, F F kann eine
mit Hilfe der A-Schalter einstellbare Verzogerungszeit eingestellt werden (Tab. 18).

Uber die A-Schalter muB die Zeitverzogerung dieser Schleife auf 1 Sekunde eingestellt
werden. Die erste Schleife mu3 in eine zweite Schleife eingebaut werden, die 60 Sekunden
zahlt. Durch eine dritte Schleife konnen Stunden, durch eine weitere Tage erzeugt werden.
Zusétzlich muf3 die Mdglichkeit bestehen, am Anfang des Experimentes die Tageszeit einzu-
stellen. Tab. 19 zeigt das Gesamtprogramm.

Laden Sie dieses Programm -sorgfaltig und tberprifen Sie es mit EXAMINE. Die Zeitanzeige
erfolgt in den Registern:

E46

Adresse Inhalt Befehl Kommentar
40 84 LOAD RO, FF
41 FF
42 AO SUBM RO, #0 1
43 01
44 OF NOP Fillwort
45 OF NOP Fallwort
46 OF NOP Fallwort
47 OF NOP Fallwort
48 OF NOP Fallwort
49 OF NOP Fallwort
4 A E1 JMPZ 4 E
4B 4 E
4C EO JUMP 4 2
4D 42
4 E 00 HALT

Tab. 18

Programm zum Erzeugen einer einstellbaren Verzégerungszeit

R1 (Sekunden)
R2 (Minuten)
R3 (Stunden)

Bevor Sie das Programm ablaufen lassen, einige Erlauterungen:

Die Befehle in den Adressen 4 O bis 4 6 ermdglichen, am Anfang des Experimentes die
Tageszeit in Stunden und Minuten einzustellen. Die Befehle in den Adressen 4 7 bis 5 4
erzeugen die Verzogerungszeit von 1 Sekunde. Die so gewonnenen Sekundentakte werden
mit den Befehlen der Adressen 5 5 bis 5 C gezéahlt. In Adresse 5 5 werden die Sekunden
gehalten. In Adresse 5 7 wird von der momentan vorhandenen Sekundenzahl 3 C,¢ Sekunden 2
60,, Sekunden = 1 Minute subtrahiert. Solange das Ergebnis nicht O ist, muf3 diese Schleife
fortgesetzt werden. Damit die tatsachliche Sekundenzahl in R1 erhalten bleibt, wird Giber den
Befehl ADDM R1, # 3 C in Adresse 5 B der vorher abgezogene Wert 3 C wieder zum
Inhalt R1 addiert. Sind 60,, Sekunden abgelaufen, springt der Befehlszéhler auf Adresse 5 F.
In dem Programmblock 5 F bis 6 7 werden die Minuten ahnlich aufbereitet wie vorher die
Sekunden. Die Stunden werden dann noch im letzten Programmteil behandelt. Die Uhr ist
auf 24,, Stunden (218, Stunden) ausgelegt. Eine Anderung auf 12,, Stundentakt ist méglich,
indem Adresse 6 C auf O C,5 £ 12,, geandert wird.

Bevor die Uhr nun in Betrieb genommen werden kann, mulR sie zunachst kalibriert werden.
Starten Sie das Programm bei Adresse 4 7. Stellen Sie den DISPLAY-SELEKTOR so ein,
daR in R2 die Minuten und in R1 die Sekunden angezeigt werden. Mit den A-Schaltern
muR jetzt Gber F F eine Zahl eingegeben werden, die .bewirkt, daR R2 nach jeder Minute
um 1 weiterzahlt (Anmerkung: Bei unserem MP-System ist das die Stellung 1 0).

Nachdem die Uhr kalibriert ist, wird die momentane Tageszeit eingestellt. Verfahren Sie
dabei wie folgt: ‘

1. Adresse 4 O laden

2. Stunde an A-Schaltern einstellen

3. System mit RUN automatisch takten. Der Rechner ladt bei Adresse 4 2.

RUN-Schalter bleibt auf 1

4. Minuten an A-Schalter einstellen

5. Mit EXAMINE System takten, damit der HALT-Befehl (iberschritten wird. Die Minuten
erscheinen in R2, und der Rechner bleibt bei Adresse 4 6 stehen

6. A-Schalter wieder auf die bei der Kalibrierung ermittelte Zahl einstellen

7. Mit EXAMINE den HALT-Befehl tiberbriicken. Jetzt kann das Hauptprogramm ablaufen

Es ist zweckmaRig, dal® Sie bei der Einstellung der Minuten die Zeit um 1 bis 2 Minuten
friher einstellen. Ist die eingestellte Zeit erreicht, kann lber kurzes Betatigen von EXAMINE

E47

Adresse Inhalt Befehl Kommentar
40 87 LOAD R3,FF Stunden in R3
41 FF
42 00 HALT A-Schalter einstellen
43 86 LOAD R2, FF Minuten in R2
44 FF :
45 25 SUBR R1, R1 Sekunden l6schen
46 00 HALT A-Schalter einstellen
47 84 LOAD RO, FF
48 FF
49 AO SUBM RO, # 0 1
4 A 01
4B OF NOP
4C OF NOP
4D OF NOP Fallworter
4 E OF NOP
4 F OF NOP
50 OF NOP
51 E1 JMPZ5 5
52 55
53 EO JUMP 4 9
54 49
55 91 ADDMR1,# 0 1 Sekunden incrementieren
56 01
57 A1 SUBMR1,#3C 3 C Sekunden = 1 Minute
58 3C
59 E1 JMPZ 5 F
5A 5F .
5B 91 ADDM R1,# 3 C Sekunden korrigieren
5C 3C
5D EO JUMP 4 7
5E 47 ‘
5F 92 ADDM R2,# 0 1 Minuten incrementiren
60 01 ,
61 A2 SUBMR2,# 3C 3 C Minuten = 1 Stunde
62 3C
63 E1 JMPZ 6 9
64 69
65 92 ADDMR2, # 3C Minuten korrigieren
66 3C
67 EO JUMP 4 7
68 47
69 93 ADDM R3,# 0 1 Stunden incrementieren
6 A 01
6B A3 SUBMR3,# 18 1 8 Stunden = 1 Tag
6C 18
6D E1 JMPZ 47
6 E 47
6 F 93 ADDMR3, #1 8 Stunden korrigieren
70 18
71 EO JUMP 4 7
72 47
Tab. 19

Gesamtprogramm einer Digitaluhr

das Programm ablaufen. Falls die Uhr (iber langere Zeit betrachtet vor- oder nachlauft, kann
mit der A-Eingabe eine Korrektur vorgenommen werden. Lauft die Uhr zu langsam, A-Eingabe
erniedrigen. v

E48

Aufgaben:

1.a) Ergénzen Sie nachfolgendes Programm mit dem Inhalt (in hexadezimal)!

Adresse Inhalt Befehl

40 LOAD RO, FF
41

42 MOVE RO, R1
43 ADDM RO, #1 0
44

45 INCR RO

46 STAC RO, 90
47

48 LOAD R2, #5 F
49

4 A SUBR RO, RO
4B DECR RO

4C XORM RO, #8 0
4D

4 E JMPZ @ R2

4 F JUMP 4 B

50

5F 60

60 ADDM RO, 9 0
61

62 HALT

b) Programmieren Sie dieses Programm, und geben Sie das Ergebnis in RO bei folgenden
Eingaben A, bis A, an:

1. F1
2. 08
3. 43

2. Bei welcher Programmadresse weist RO bereits das Endergebnis auf, ohne daR das ganze
Programm durchlaufen wird? Begriinden Sie lhre Antwort!

3. Welcher Programmbereich darf bei der Programmierung des RAMs nicht benutzt werden?

4. Welche Besonderheit weist die Programmadresse F F auf?

5. Laden Sie zunachst folgendes Programm:

Adresse Inhalt Befehl

40 84 LOAD RO, FF
41 FF

42 A4 SUBM RO, F F
43 FF ,

44 00 HALT

E49

Betreiben Sie das System im SINGLE-STEP-Betrieb, und fiihren Sie dann folgende Sub-
traktionen durch: :

a) 08-10=
b) 43-28=
c) O0O-FE=
d 00-7F=

Geben Sie auBer den Ergebnissen auch an, welche Flags ansprechen. Begriinden Sie auch
hier Ihre Antwort!

6. Laden Sie zunachst folgendes Programm:

Adresse Inhalt Befehl

40 84 LOAD RO, FF
41 FF

42 94 ADDM RO, FF
43 FF

44 00 HALT

Betreiben Sie das System wie in Aufgabe 5. Fiihren Sie folgende Additionen durch:
a) 10+43=
b) 45+F1=
¢) 60+3F=

Bestimmen Sie die Summen, und begriinden Sie das Verhalten der Flags!

7. Laden Sie folgendes Programm:

Adresse Inhalt Befehl

40 LOAD RO, FF
41

42 INCR RO

43 STACRO,9 1
4 4

45 XORM RO, # x x
46

47 JMPZ 8 E
48

49 JUMP 4 2

4 A

8E LOAD RO, 9 1
8F

90 HALT

Wahlen Sie die Daten x x fir den Befehl XORM RO, # x x so, daB das System unabhangig
von der Eingabe F F halt, wenn in RO die Daten 1 A stehen!

8. Andern Sie das Programm nach Aufgabe 7 so ab, daB die Schleifendurchliufe vom
Register R1 gezahlt werden!

E50

Experimentieranhang

Losungen zu Experiment 6

1. a) Adresse Inhalt Befehl
40 84 LOAD RO, F F
41 FF ‘
42 01 MOVE R1, RO’
4 3 90 ADDM RO, # 10
44 10
45 60 INCR RO
46 74 STACRO,90
47 90
48 82 LOAD R2,# 5 F
49 5F
4 A 20 SUBR RO, RO
4 B 6 4 DECR RO
4 C co XORM RO, # 80
4D 80
4 E E9 JMPZ @ R2
4 F EO JUMP 4 B
50 4B
5F 60
60 94 ADDM RO, 9 O
61 90
62 00 HALT

b) A, bis Ay — F1: RO — 02
A;bisA, — 08: RO - 19
A, bis A, — 43: RO - 54

2. Das Endergebnis erscheint erstmalig bei der Programmadresse 4 5 mit dem Befehl
INCR RO. Der nachste Befehl STAC RO, 9 O speichert dieses Ergebnis in Adresse 9 O ab.
Im nachfolgenden Programmteil wird eine Schleife gebildet, die dann verlassen wird, wenn
das Zero-Flag anspricht. Dies ist bei RO = O der Fall. Mit R2 als Indexregister springt dann
der Programmzahler auf die Adresse 6 0. Der hier gespeicherte Befehl addiert zum Register-
inhalt RO = O den Inhalt der Adresse 9 0. Damit muR am ProgrammschluR in RO das
gleiche Ergebnis erscheinen, wie dies bereits bei der Adresse 4 5 der Fall war.

3. Der Adressenbereich von O O bis 1 8 darf nicht benutzt werden, da dieser fiir ein
Unterprogramm benétigt wird.

4. Uber die Adresse F F konnen die A-Schalter zur Dateneingabe benutzt werden.

5.a) 08-10=F8 :

In diesem Fall sprechen Negativ- und Carry-Flag an. Das Carry-Flag spricht an, da der Subtrahend
groBer als der Minuend ist, das Negativ-Flag, da das Ergebnis im negativen Zahlenbereich
liegt.

b) 43-28=18B
Hier spricht kein Flag an, da die Subtraktion im positiven Zahlenbereich stattfindet.

E51

c) O0O-FE=02
Hier spricht nur das Carry-Flag an. Die Begriindung lat sich am einfachsten Uber die
rechnerische L6sung geben:

00000000
-11111110

100000010

Es entsteht eine Entlehnung, die als Ubertrag gewertet wird. Der negative Zahlenbereich
ist aber bereits tberschritten.

d 00-7F=81
Hier sprechen Carry- und Negativ-Flag an, da einmal eine Entlehnung entsteht und zum anderen
das Ergebnis noch im negativen Zahlenbereich liegt.

6.a) 10+43=53)
Es spricht kein Flag an, da weder ein Ubertrag entsteht noch der positive Zahlenbereich
verlassen wird.

b) 45 +F 1 =36 mit Ubertrag
Das Carry-Flag spricht an, da die 8-bit-Kapazitdt des Systems Uberschritten wird. Dezimal
lautet das Ergebnis 310,,, mit 8 bit sind aber nur max. 255, darstellbar.

c) 60+3F=9F
Hier spricht das Negativ-Flag an, da der positive Zahlenbereich verlassen wird.

7. Adresse Inhalt Befehl
40 84 LOAD RO, FF
41 FF
42 60 INCR RO
43 74 STACRO, 9 1
44 91
45 co XORM RO, # 1A
46 1A
47 E1 JMPZ 8 E
48 8E
49 EO JUMP 4 2
4 A 42
8E 84 LOAD RO, 9 1
8F 91
90 00 HALT
Begriindung:

Das Zero-Flag spricht an, wenn der Inhalt von RO gleich Null ist. Wenn nun die XOR-
Verknipfung mit den Daten 1 A gebildet wird, muB beim Inhalt 1 A des Registers RO
das Zero-Flag ansprechen und so den Befehl JMPZ 8 E auslsen.

E52

Adresse Inhalt Befehl

40 25 SUBR R1, R1
41 84 LOAD RO, FF
42 FF

43 60 INCR RO

44 74 STACRO, 9 1
45 91

46 61 INCR R1

47 co XORM RO, #1 A
48 1A

49 E 1 JMPZ 8 E

4 A 8 E

4B EO JUMP 4 3
4C 43

8E 84 LOAD RO, 9 1
8F 91

90 00 HALT

E63

Experiment 7: Programmschleifen

Dies und auch die nachfolgenden Experimente werden mit dem hypothetischen Rechner aus-
gefiihrt. Somit ist wie bei Experiment 6 das System 5 des MP-Experimenters zu verwenden.

1. Beispiel:

Es ist ein Programm zu erstellen, das die ersten n Glieder der Reihe 1, 2, 3, 4, 5 . . . addiert.
Die Zahl n, also wie viele Glieder zu addieren sind, soll am Anfang des Experimentes Gber
Adresse F F eingegeben werden.

Allgemeine Hinweise:

Zur Losung dieser Aufgabenstellung wird eine laufende Summe bendétigt. Bei einer Addition
von z.B. n = 10 Gliedern ist bei dieser Reihe das hiochste Glied der Reihe auch 10, d.h., eine
Lésungsmaoglichkeit dieser Aufgabe besteht darin, iber einen Schleifenzahler (z.B. R2) den
Inhalt des Schleifenzéhlers zum Registerinhalt der laufenden Summe (z.B. R1) zu addieren.
Bei Programmbeginn muR dann der Inhalt des Registers R1 gleich O sein. Wenn n = 10
Schleifen durchlaufen sind, ist das Programm beendet.

Bevor das Programm geschrieben wird, erstellen wir zunachst ein FluBdiagramm (Bild 1).

‘ START >

n in R2 laden

y

R1 l6schen

-
L

Inhalt R2in
R1 addieren

R2 decrementieren

nein

ja

HALT

Bild 1
FluBdiagramm zum 1. Beispiel

Dieses FluBdiagramm 4Rt sich mit dem in Tab. 1 gezeigten Programm realisieren.

Laden Sie dieses Programm und geben Sie fir folgende Werte von n das Ergebnis an:

a) n= 5o
b) n= 1010
c) n= 2210

E 55

Adresse Inhalt Befehl Kommentar
40 86 LOAD R2, F F " n in Schleifenzéhler laden
41 FF
42 25 SUBR R1, R1 R1 loschen
43 19 ADDR R1, R2 (R2) in R1 addieren
44 6 6 DECR R2
45 E1 JMPZ 4 9
46 49
47 EO JUMP 4 3
48 43
49 00 HALT
Tab. 1

Programm zum 1. Beispiel

Bei richtiger Programmeingabe erhalten Sie folgende Ergebnisse:

a) 0 Fis 2 1510
b) 3 716 £ 5510
C) FD16£ 25310

A

“Aufgrund der Rechnerkapazitat darf hier n nicht groRer als 2210 2 1 616 gewahlt werden.

2. Beispiel:
Hier soll ein Programm fir das Ziehen der Quadratwurzel erstellt werden. Auch dieses
Problem |aRt sich Gber Programmschleifen |6sen.

Allgemeine Hinweise:
Die Summe der Reihe

1+3+5+7+9+.....

ist gleich n% Hierbei ist n die Anzahl der Glieder. Bei z.B. n = 5 ist das Ergebnis 52 = 25.
Diese GesetzméaRigkeit kann zum Ziehen der Quadratwurzel ausgenutzt werden. Soll die
Quadratwurzel einer Zahl Z gezogen werden, so muR von dieser Zahl zunachst 1, dann 3,
dann 5 usw. abgezogen werden, bis O erreicht wird. Die Anzahl der abgezogenén Zahlen
(gleich Anzahl der Schleifendurchlaufe) ist gleich der Quadratwurzel von Z. Wir beschréanken
uns bei diesem Beispiel auf die Falle, bei denen Z eine Quadratwurzel ist, also 1, 4, 9, 16,
25,36usw.
Zur Lésung der Aufgabenstellung wird wieder ein Schleifenzéhler bendétigt, der bei O anféngt.
Die Anzahl der Schleifendurchldufe entspricht dem Ergebnis. Die einzelnen Glieder, die von Z
subtrahiert werden miissen, lassen sich durch Addition von jeweils 2 zum vorherigen Glied
" erzeugen. AuBerdem wird ein Register benétigt, in dem zu Anfang Z enthalten ist. Mit jedem
Schleifendurchlauf muB hiervon das jeweilige Glied abgezogen werden.

Zunachst soll diese Problemstellung wieder in einem FluRdiagramm festgehalten werden.
Hierbei werden R1 als Schleifenzahler, RO als Register zur Erzeugung der einzelnen Glieder
und R2 als Subtraktionsregister benutzt (Bild 2).

Dieses FluBdiagramm wird jetzt wieder in ein Programm umgesetzt (Tab. 2).

" Laden Sie dieses Programm und testen Sie es.

E 56

Bild 2

‘ START ’

|

Lade Z in R2

i

zdhler R1

Losche Schleifen-

)

in RO=1

Setze erstes Glied

-

)

Incrementiere
Schleifenzahler R1

i

von (R2)

Subtrahiere (R0) Bilde nachstes

Glied (R0)+ 2

ja

FluBdiagramm zum 2. Beispiel

Ist Rest
gleich 0
?

Adresse Inhalt Befehl Kommentar
40 86 LOAD R2,FF Z einlesen
41 FF
42 25 SUBR R1, R1 Schleifenzéhler 16schen
43 80 LOAD RO, #0 1 1. Glied gleich 1 setzen
44 01
45 61 INCR R1 Erh6éhe Schleifenzahler
46 22 SUBR R2, RO Ziehe Glied von Rest ab
47 E1 JMPZ 4 D HALT bei Rest = 0
48 4D
49 90 ADDM RO, # 0 2 nachstes Glied bilden
4 A 02
4B EO JUMP 4 5 Schleife
4 C 45
4D 00 HALT

Tab. 2

1. Programm zum Ziehen einer Quadratwurzel

Eb57

Tab. 3 zeigt ein weiteres Programm, das ebenfalls zum Ziehen der Quadratwurzel dient. Laden
Sie auch dieses Programm in den MP-Experimenter.

Adresse Inhalt Befehl Kommentar
40 86 LOAD R2, F F
41 FF
42 25 SUBR R1, R1
43 80 LOAD RO, # F F
4 4 FF
45 90 ADDM RO, # 02
46 02 '
47 61 INCR R1
48 22 SUBR R2, RO
49 E1 JMPZ 4 D
4 A 4D
4 B EO JUMP 4 5.
4C 45
4D 00 HALT

Tab. 3

2. Programm zum Ziehen einer Quadratwurzel

Testen Sie auch dieses Programm.
Aufgaben:
1. Geben Sie fir das Programm in Tab. 3 das FluRdiagramm an!

2. Worin unterscheiden sich die beiden Programme (Tab. 2 und Tab. 3)?

E 58

Experiment 8: Computed-JUMP

Diese Befehlsart soll an einem allgemein verstandlichen Beispiel erlautert werden.

In einem Produktionsablauf wird das eingehende Material, z.B. Stahlkugeln, auf seine Toleran-
zen untersucht. Aus dem maoglichen Toleranzspektrum der Kugeln sollen diejenigen selektiert
werden, die am Ausgang der MeRvorrichtung die Kombinationen O 016, O 116, 0 216 und O 316
erzeugen. Weiterhin wird verlangt, daR Kugeln mit den MeRdaten O 016 ein Signal O Ojs,
Kugeln mit O 116 ein Signal 8 116, Kugeln mit O 216 ein Signal 4 216 und Kugeln mit O 316 €in
Signal 0 3 erzeugen. Alle anderen Kugeln sollen das Signal F Fis erzeugen. Uber die so
gewonnenen 5 Ausgangssignale kann dann die entsprechende Weiterleitung der Kugeln bis
an bestimmte Fertigungstellen gesteuert werden.

Wir ibertragen diese verbale Aufgabenstellung zunachst in ein FluRdiagramm (Bild 1).

‘ START ’

\
Mef3daten einlesen
und abspeichern
[
Daten der nein Signal FF
Gruppe -
01 bis 03 erzeugen
2
ja
Daten Signal 00
9,0 erzeugen o
Daten Signal 81 o
9,1 erzeugen o
Daten Signal 42 o
9,2 erzeugen o
Signal C3 -
erzeugen o

Bild 1
FluBdiagramm zu dem Beispiel

Dieses FluRdiagramm kann z.B. mit nachfolgendem Programm realisiert werden.

E 59

Adresse Inhalt Befehl Kommentar
40 86 LOAD R2, FF MeRdaten einlesen
41 FF
42 76 STACR2,FE Daten abspeichern
43 FE
44 3A IORR R2, R2 N-Flag setzen
45 E2 JMPN B O Springe, wenn héchste Stelle 1
46 BO
47 A2 SUBMR2, #03 Daten groBer als O 3?
48 03 .
49 E1 JMPZ5 0O Daten gleich 0 3
4 A 50
4B E2 JMPN 5 0 Daten O O bis 0 2
4 C 50
4D EO JUMP B O Daten groRer als O 3
4 E BO
50 86 LOAD R2, FE MeRdaten einlesen
51 FE
52 92 ADDMR2, # 60 Indexregister laden
53 60
b4 E8 JUMP @ R2 Indirekter Sprung
60 70 Adresse fiir Daten 0 O
61 80 Adresse fiir Daten O 1
62 90 Adresse fiir Daten 0 2
63 AO Adresse fiir Daten 0 3
70 80 LOAD RO, #00 Erzeuge O 0-Signal
71 00
72 EO JUMP 4 0
73 40
80 80 LOAD RO, # 8 1 Erzeuge 8 1-Signal
81 81
82 EO JUMP 4 0
83 40
90 80 LOAD RO, # 4 2 Erzeuge 4 2-Signal
91 42
92 EO JUMP 4 0
93 40
AO 80 LOAD RO, # C 3 Erzeuge C 3-Signal
A1l c3
A2 EO JUMP 4 0
A3 40
BO 80 LOAD RO, # FF Erzeuge F F-Signal
B 1 FF
B2 EO JUMP 4 0O
B3 40

E 60

Programmerldauterung:

Die an A7 bis Ao simulierten MeRRdaten werden tber Adresse F F eingelesen und in Adresse F E
abgespeichert. Mit A; bis Ao lassen sich 256 verschiedene MeBdaten erzeugen. Der Befehl
JMPN B O wird dann ausgeldst, wenn es sich um Daten der Form 1 x x x x x x x handelt,
also wenn das werthdchste bit gleich 1 ist. Dies kann vom N-Flag gepriift werden, das ja
bekanntlich immer 1 ist, wenn das werthdchste bit gleich 1 ist. Da aber die Befehle LOAD R2,
F F und STAC R2, F E das N-Flag nicht initialisieren, muRR dies Uber einen anderen Befehl
erfolgen. In diesem Programm wird hierfir der Befehl IORR R2, R2 benutzt. Dieser Befehl
verandert nicht den Registerinhalt, setzt aber das N-Flag, wenn das werthoéchste bit gleich 1
ist. Von einer Eingabe, die das N-Flag nicht setzt, wird jetzt durch den Befehl SUBM R2, #0 3
die Zahl O 3 subtrahiert. Fur alle Eingaben, die wertméaRig gréRer als 3 sind, treffen die
Bedingungen fiir die Befehle JMPZ und JMPN nicht zu. In diesem Falle wird der unbedingte
Sprung JUMP B 0 ausgefiihrt, d.h. das Ausgangssignal F F in Register RO erzeugt. Bei Eingabe-
-daten von O 016 bis O 316 wird entweder der Befehl JMPZ (Eingabe = O 3:5) oder der Befehl
JMPN (Eingabe O 0, O 1 oder O 2) ausgelést, d.h., es erfolgt ein Sprung zur Adresse 5 0.
Hier werden jetzt die Ursprungsdaten wieder in R2 geladen. Mit dem Befehl ADDM R2, #6 0
wird der Computed-JUMP vorbereitet. Die Ausfihrung erfolgt iber JUMP @ R2.

Bei diesem Programm ist z.B. die Adresse, die bei der Eingabe 0 016 das Ausgangssignal O O1s
erzeugen soll, in Adresse 6 O gespeichert (Adresse 7 0). Wird also an Ay bis Ao 0 016 eingege-
ben, so ist der Inhalt von R2 nach dem Befehi ADDM R2, # 6 O nattrlich 6 0. Damit erfolgt
ein Programmsprung zur Adresse 7 0. Bei einer Eingabe von z.B. O 315, steht im Indexregister
R2 jetzt 6 3, so dal ein Sprung zur Adresse A O erfolgt.

Laden Sie dieses Programm in den MP-Experimenter, und testen Sie es bei verschiedenen
Eingaben.

Aufgaben:

1. Aus welchem Grunde wird bei diesem Programm in Adresse 4 5 der Befehl JMPN B O
bendtigt?

2. Entwickeln Sie ein Programm, das die Aufgabenstellung ohne Computed-JUMP Iost!

E 61

Experiment 9: Divisionsprogramm

Nachdem Sie bereits im theoretischen Teil ein Multiplikationsprogramm kennengelernt haben,
soll hier ein Divisionsprogramm behandelt werden. Als Algorithmus liegt diesem Programm
die Divisionsmethode mit Divisorverschiebung und Subtraktion zugrunde (siehe Lehrheft 1,
Seite 1.24). Weiterhin ist dieses Programm so ausgelegt, daR bei einer Division, die nicht
»~aufgeht”, in RO der ganzzahlige Quotiententeil und in R2 der gebrochene Quotiententeil
erscheint.

Laden Sie das in Tab. 1 gezeigte Programm.

Adresse Inhalt Befehl Kommentar
40 00 HALT
41 84 LOADRO, FF
42 FF
43 00 HALT
44 85 LOAD R1,FF
45 FF
46 00 HALT .
47 4 A XORR R2, R2 Ergebnisregister 16schen
48 4F XORR R3,B82R3 | Verschiebezahler I6schen
49 69 RACL R1
4 A E3 JMPC 4 F-
4B 4F -
4 C 63 INCR R3
4D EO JUMP 4 9
4 E 49
4 F 6D RACR R1
50 24 SUBR RO, R1
51 E3 JMPC 8 0
52 80
53 62 INCR R2
54 67 DECR R3
55 - E2 JMPN 5 B
56 5B :
57 6 A RACL R2
58 6D RACR R1
59 EO JUMP 5 0O
5A 50
5B 76 STACR2,A0
5C AO
5D 4 A XORR R2, R2
5E 83 LOAD R3, #0 8
5F 08
60 6 A RACL R2
61 68 RACL RO
62 E3 JMPC 9 5
63 95
6 4 24 SUBR RO, R1
65 E3 JMPC 9 O
66 90
67 62 INCR R2
68 . 67 DECR R3
69 E1 JMPZ 6 D
6 A 6D
6 B EO JUMP 6 O
6 C 60
6D 84 LOAD RO, A0
6 E AO
6 F EO JUMP 4 0O

E 62

Adresse Inhalt Befehl Kommentar

70 40

80 14 ADDR RO, R1
81 30 IORR RO, RO
82 EO JUMP 5 4
83 54

90 14 ADDR RO, R1
91 30 I0ORR RO, RO
92 EO JUMP 6 8
93 68

95 24 SUBR RO, R1
96 30 I0ORR RO, RO
97 EO JUMP 6 7
98 67

Tab. 1

Divisionsprogramm

Uberpriifen Sie mit EXAMINE, ob das Programm fehlerfrei geladen wurde.

Wie bei der Digitaluhr in Lehrheft 2 ermoglicht der Programmvorspann von Adresse 4 O bis
4 6 eine Operandeneingabe mit Hilfe des EXAMINE-Schalters. Der Eingabeablauf ist folgender:
Bei der ersten Inbetriebnahme des Programms Adresse 4 O laden, RUN-Schalter auf 1 und
Single-Step-Schalter auf O stellen. Mit A7 bis Ao ersten Operanden (Dividend) einstellen, und
EXAMINE einmal takten. Der Dividend wird somit in RO geladen. Jetzt zweiten Operanden
(Divisor) mit A7 bis Ao einstellen, und EXAMINE einmal takten. Jetzt steht der Divisor in R1.
Ein weiteres Takten von EXAMINE startet das eigentliche Rechenprogramm. Durch den
JUMP-Befehl in Adresse 6 F springt der Programmzahler am Ende einer Division wieder auf
die Adresse 4 O zurick, so daR sofort neue Operanden eingegeben werden kdnnen.
Testen Sie das Programm mit folgenden Beispielen:

1. 6410: 3210 = RO ' R2
o|o|o|0|O|O|1|O o|jojojojojojo|o
2
2,010
2. 5010:41o= RO R2
oj0o|0[O|1|1 0|0 1/0/0]0|0(0|0|O
12,510

Die Stellenwertigkeiten in RO kdnnen als bekannt vorausgesetzt werden. Die Nachkomma-
stellen in R2 haben folgende Wertigkeiten:

27" |27 |27 |274 |28 | 278 | 277 | 278
5 2 2 2 2 2 & 2
11 11 1 11
2 4 8 16 32 64 128 256

3. 12710 : 310 =

E 63

RO R2

ojo|1jo(1|0|1]|0 0{1|0[1(0]|1]0]1

A

42,332 031 25610

Das korrekte Ergebnis ware in diesem Fall:

42,33

Die Abweichung vom tatsachlichen Ergebnis ist durch die begrenzte Stellenzahl bedingt.
Die wertniedrigste Stelle bestimmt mit ihrer Wertigkeit von 1/25610 = 0,003 906 251, die
Rechengenauigkeit. Aufgerundet ergibt sich also eine mdgliche Abweichung von 0,004,.
Einige weitere Beispiele sollen das noch verdeutlichen:

4. 11021281o= .
0|0|0|0|0|0|O|O oj0|jo(o|0(0 |10
2
0,007 812 510
5. 110: 8610 = i
ojo|jojo|jojojojo ojojofjo|joioi1|0
2
0,007 812 519
6. 110:8510 =
ojoj0|0|O0|0|O|O 0(0|0|0|0|O]|1]1

>

0,011 718 7510

Beispiel 4 liefert ein exaktes Ergebnis, da 1/1281¢ als Stellenwertigkeit vorkommt. Im Beispiel
5 betragt die Abweichung 0,0038, wihrend Beispiel 6 auf ca. 5 - 107° genau ist.

Programmerlduterung:
Das Divisionsprogramm kann in 3 Abschnitte unterteilt werden.

Teil 1:

Verschieben des Divisors in R1, bis seine erste 1 im hdéchsten bit von R1 steht. Die Anzahl der
notwendigen Verschiebungen wird festgestellt und im Verschieberegister R3 gespeichert
(Adressen 4 9 bis 4 F).

Teil 2: .
Durch Subtraktion und Verschiebung den ganzzahligen Anteil des Quotienten errechnen und
abspeichern (Adressen 5 O bis 5 B und 8 O bis 8 3).

Teil 3:
Gebrochenen Quotiententeil errechnen, Ergebnis in R2. Ganzzahligen Anteil zuriickholen und
in RO bringen (Adressen 5 D bis 7 0, 9 0 bis 9 3 und 9 5 bis 9 8).

Die Adressen 4 O bis 4 5 dienen nur zur Operandeneingabe.
Nachfolgend sollen diese Programmteile anhand von FluBdiagrammen besprochen werden
(Bilder 1 bis 3).

E 64

ol

peranden-
eingabe

R2 , R3
l6schen

Divisorverschieb. Verschiebe -
nach links zdhler +1

C-Flag nein
?

ja

Divisorverschieb.
nach rechts

'

Bild 1
FluRdiagramm zu Teil 1

Zum Loéschen der Register R2 und R3 wird der XORR-Befehl verwendet, weil damit auch ein
eventuell vorhandenes C-Flag geldscht wird (siehe Befehlsliste). Nach jeder Divisorverschie-
bung RACL R1, wird das C-Flag abgefragt. Wenn kein C-Flag vorhanden ist, wird der Ver-
schiebezahler um 1 erh6ht und anschlieRend die néchste Verschiebung durchgefiihrt. C-Flag
= 1 zeigt an, dal® bereits eine Verschiebung zuviel durchgefiihrt wurde. Also wird diese
Verschiebung nicht mehr gezahlt, sondern vor dem Ubergang zum Programmteil 2 durch
RACR R1 rickgéngig gemacht.

Fragen zu Programmteil 1:

a) Welchen Inhalt haben am Ende des ersten Programmteiles die Register RO bis R3, wenn
als Dividend 710 und als Divisor 310 eingegeben werden?

b) Weshalb muRR am Programmanfang das C-Flag geléscht werden?

E 65

)
Subtaktion Quotient nach links
RO - R1 Divisor nach rechts

ja_
/
Quotient Dividend korrigieren
+1 C-Flag loschen
i
Verschiebe-
zdhler -1
N-Flag nein
?

ja

ganzzahligen An-
teil abspeichern

'

Bild 2
FluBdiagramm zu Teil 2

Das C-Flag nach der Subtraktion RO — R1 zeigt an, ob der Divisor vom Dividenden abgezogen
werden kann. C-Flag = 1 heil3t dabei, daR R1 groRer ist als RO. Eine Subtraktion war nicht
moglich, also muR mit ADDR RO, R1 der Dividend wieder auf seinen urspringlichen Wert
gebracht und auBerdem mit IORR RO, RO das C-Flag geléscht werden. Diese beiden Befehle
finden Sie unter den Adressen 8 O und 8 1. Mit dem anschlieRenden JUMP-Befehl erfolgt
der Ricksprung in das Hauptprogramm. Wie im FluRdiagramm zu sehen ist, wird dabei der
Programmschritt ,, Quotient + 1“ (INCR R2; Adresse 5 3) ubersprungen. Falls nach dem Er-
niedrigen des Verschiebezahlers keine N-Flag-Anzeige erscheint, werden der Quotient nach
links und der Divisor nach rechts verschoben. Dann erfolgt der nachste Schleifendurchlauf.
Eine Subtraktion RO — R1, die keine C-Flag-Anzeige erzeugt, fiihrt zur Erh6hung des Quotienten.
Ist die Anzahl der Schleifendurchlaufe gleich der Anzahl der Divisorverschiebungen im Teil 1,
wird dies durch das N-Flag angezeigt. Damit steht der ganzzahlige Anteil des Quotienten fest
und wird vor dem Ubergang zum Teil 3 in A O abgespeichert.

Fragen zu Programmteil 2

a) Wie oft wird der zweite Programmteil durchlaufen, wenn als Dividend 6810 und als Divisor
910 eingegeben werden?

b) Weshalb muR mit RACL R2 (Adresse 5 7) der Quotient bei jedem Schleifendurchlauf ver-
schoben werden?

E 66

l

Quotient = 0
Verschiebezahler=8

A

y
Quotient und Dividend

nach links
C-Flag ja
?
nein
Subtraktion Subtrakiion
C-Flag l6schen

Quotient Dividend korrigieren
+1 C-Flag l6schen

|

4

nein

Y

ganzzahligen Anteil
zuriickholen

‘ HALT }

Bild 3
FluBdiagramm zu Teil 3

Vorbemerkungen:

Der Algorithmus fir den gebrochenen Anteil des Quotienten unterscheidet sich von dem in
Programmteil 2 dadurch, da nicht mehr der Divisor nach rechts, sondern der Dividend bzw.
der Dividendenrest nach links verschoben wird. Ein am Ende des zweiten Programmteiles
vorhandener Dividendenrest in RO ist auf jeden Fall kleiner als der Divisor. Wird nun der
Dividendenrest um eine Stelle nach links verschoben, entspricht dies einer Multiplikation des
Restes mit 2. Uber eine nachfolgende Subtraktion muR jetzt festgestellt werden, ob der mit
2 multiplizierte (nach links verschobene!) Dividend gréBer als der Divisor ist. Trifft dies zu,
muB im Quotientenregister R2 an der Stelle 2" eine 1 erscheinen, im anderen Falle eine 0.
Falls auch nach dieser Subtraktion ein Dividendenrest verbleibt, so ist dieser wiederum kleiner
als der Divisor. Eine weitere Verschiebung des Dividendenrestes entspricht einer nochmaligen
Multiplikation mit 2. Ist jetzt der Dividend gréBer als der Divisor — festgestellt durch die

E 67

zweite Subtraktion — muR an der Stelle 272 eine 1 erscheinen, im anderen Falle eine 0. Nach
dem gleichen Prinzip lassen sich in 6 weiteren Verschiebeschritten die Stellenwertigkeiten
273 bis 278 berechnen. Der Algorithmus zeigt, daR zuerst die Nachkommastelle mit der
groBten Wertigkeit (27') berechnet wird. Tritt hierbei das Ergebnis 1 auf, so kann diese 1
durch einen INCR-Befehl in die niedrigste Stelle (2°8) des Quotientenregisters R2 gebracht
werden. Damit diese 1 aber am Ende der Division an der richtigen Stelle (27") erscheint, muR
sie siebenmal nach links verschoben werden.

Bei einer 8-bit-Stellenzahl fir den Nachkommateil mu® der vorher beschriebene Vorgang
achtmal durchgefihrt werden.

Nach diesen grundsatzlichen Betrachtungen soll nun das FluRdiagramm diskutiert werden.
Der noch in R2 vorhandene Vorkommateil muf® zunachst geléscht werden (XORR R2). Der
Verschiebezahler muR auf O 8 gesetzt werden (LOAD R3, # 08).

Im nachsten Programmteil erfolgt der erste Verschiebevorgang. Da das Quotientenregister
noch den Inhalt O hat, andert sich in diesem Register nichts. Der Dividend wird eine Stelle
nach links geschoben. Hat der Dividendenrest in der werthéchsten Stelle eine 1, so wird diese
1 nach der Verschiebung in das C-Flag iibernommen.

Eine 1 im C-Flag nach der Verschiebung bedeutet, daR der Dividend in seiner hochsten Stelle,
namlich dem C-Flag, die Wertigkeit 28 = 25610 hat. Der Divisor kann aufgrund der 8-bit-
Eingabe aber maximal den Wert 255, haben, so daB in jedem Falle eine Subtraktion moglich
ist. Der Befehl SUBR RO, R1 in Adresse 9 5 (Inhalt RO = Dividend, Inhalt R1 = Divisor),
beriicksichtigt bei der Subtraktion nur die Inhalte der beiden Register, jedoch nicht das bei der
Verschiebung von RO entstandene C-Flag mit der Wertigkeit 28 Dadurch wird der Divisor
wieder groRer als der Dividend, so daR beim Ausfiihren der Subtraktion eine Entlehnung,
angezeigt durch das C-Flag, entsteht. Wenn wir gedanklich die Entlehnung vom Dividenden-
C-Flag subtrahieren ist das Ergebnis in der Stelle 28 gleich 0. Da der Rechner diese Subtraktion
nicht durchfiihren kann, wird das C-Flag durch den Befehl IORR RO, RO geldscht. In RO steht
somit die richtige Differenz. .

Die hier besprochene Subtraktion unter Berilicksichtigung des C-Flags braucht nur dann
durchgefiihrt werden, wenn der Divisor grofRer als 128+ ist, also in seinem hdochsten bit und
einem weiteren bit eine 1 hat. In allen anderen Fallen wird die Subtraktion durch Befehl
SUBR RO, R1 in Adresse 6 4 durchgefiihrt (gerader Pfad im FluRdiagramm).

Uber den Zustand des C-Flags wird wieder die Entscheidung getroffen, ob als Ergebnis
eine 1 oder eine O an das Quotientenregister R2 gegeben werden muB. Bei C-Flag gleich O
treffen sich die beiden Subtraktionspfade und bewirken, daR das Quotientenregister um 1
erhoht wird. War das C-Flag auf dem geraden Subtraktionspfad gleich 1, so darf keine
Erhohung des Quotientenregisters erfolgen (Befehl INCR R2 in Adresse 6 7 darf nicht durch-
gefiihrt werden). Stattdessen wird wie in Programmteil 2 der letzte Dividendenwert wieder
errechnet und das C-Flag geléscht (Adresse 9 O bis 9 3).

AnschlieRBend wird der Verschiebezahler R3 decrementiert. Erst nach 8 Schleifendurchlaufen
wird das Z-Flag gleich 1 und l6st das Zuriickholen des Vorkommateiles aus Adresse A O in RO
und den Ricksprung auf die Anfangsadresse 4 O aus.

Wie Sie sehen, erfordert die Bearbeitung der Nachkommastellen eine recht intensive und
genaue Beschaftigung mit den Auswirkungen der einzelnen Befehle. Darlber hinaus muf
man sich tiber den Algorithmus genau im Klaren sein. Wir empfehlen lhnen, diesen Programm-
teil mit mehreren Beispielen im SINGLE-STEP-Betrieb durchzufiihren. Als Aufgabenbeispiele
empfehlen wir:

a) 12810: 12910
b) 110 : 265610
c) 3310 : 13610

Fragen zu Programmteil 3
1. Welche Auswirkung wiirde ein versehentliches Laden der Adresse 9 8 mit 6 8 haben?

2. Geben Sie die Wertigkeit der Ergebnisanzeige von R2 an, wenn der Verschiebezéhler im
Programmteil 3 anstatt auf O 8 auf O 4 gesetzt wird!

E 68

Experiment 10: Anrufen von Unterprogrammen mit den JUMP-Befehlen

Als Beispiel fir den Einsatz von Unterprogrammen soll eine Oberflachenberechnung fiir einen
Quader durchgefiihrt werden. Zu Beginn sollen liber A; bis Ao Hohe, Breite und Tiefe eingegeben
(in cm) und in den Adressen 9 0, 9 1 und 9 2 gespeichert werden.

Die erforderlichen Multiplikationen werden in einem Unterprogramm durchgefiihrt. Wie spéater
noch naher erlautert wird, ist ein Multiplikationsprogramm im ROM-Bereich des Speichers
von Adresse O 1 bis einschlieRlich 1 8 enthalten. Abgesehen von den Sprungadressen ist
dieses Programm identisch mit dem im theoretischen Teil behandelten. Der letzte Befehl in
den Adressen 1 7 und 1 8 im ROM-Bereich entspricht dem Befehl in den Adressen 3 6 und
3 7 des theoretisch behandelten Programms. Das bedeutet, daR die Abspeicherung des
Ergebnisses nicht mehr vorgegeben ist, sondern beginnend bei Adresse 19 mit geeigneten
Befehlen programmiert werden muf3.

Uberpriifen Sie dieses Multiplikationsprogramm mit EXAMINE.

Die verbale Aufgabenstellung wird zunachst in einem FluRdiagramm festgehalten (Bild 1).

START

H,B,T eingeben

/
—= 90
— 91
—_—

92

—oI

A

— 9394

— 9596 Unterprogramm
—

97.98 Multiplikation

(03 1 alie
—“—o

H-B + H'T
— RO,R1

Y

RO,R1+B-T v
—= RO,RI

y

|

RO und R1 mit
FF laden

?V
HALT
Bild 1

FluRdiagramm fiir die Oberflachenberechnung eines Quaders

E 69

Laden Sie das in Tab. 1 gezeigte Programm.

Adresse Inhalt Befehl Kommentar
19 E4 JUMP @ F 1 Ricksprunganweisung
1A F1
30 00 | HALT
31 84 LOAD RO, F F
32 FF
33 74 STACRO,90
34 90 '
35 00 HALT
36 84 LOAD RO, F F Hohe, Breite und Tiefe einlesen
37 FF und abspeichern
38 74 STAC RO, 9 1
39 91
3A 00 HALT
3B 84 LOAD RO, F F
3C FF
3D 74 STAC RO, 9 2
3E 92
3F 84 LOAD RO, 9 0 * Hohe in RO
40 90
41 85 LOAD R1,9 1 Breite in R1
42 91
43 82 LOAD R2, #4 9
44 49 Ricksprungadresse in F 1
45 76 STAC R2, F 1
46 F1
47 EO JUMP O 1 Sprung ins Unterprogramm
48 01
49 74 STACRO, 9 3
ig‘ 3 g STACR1, 9 4 Ergebnis Héhe - Breite speichern
4 C 94
4D 84 LOAD RO, 90 Hohe in RO
4 E 90
4 F 85 LOAD R1,9 2 Tiefe in R1
50 92
51 82 LOAD R2, 57
52 57 Ricksprungadresse in F 1
53 76 STACR2,F 1
54 F1
55 EO JUMP 0 1 Sprung ins Unterprogramm
56 01
57 74 STACRO, 9 5
g g 3 g STACR1. 9 6 Ergebnis Hohe - Tiefe speichern
5A 96
5B 84 LOAD RO, 9 1 Breite in RO
5C 91)
5D 85 LOAD R1,9 2 Tiefe in R1
5E 92

E70

Adresse Inhalt Befehl Kommentar
5F 82 LOADR2, #65
60 65 Ricksprungadresse in F 1
61 76 STACR2, F 1
62 F1
63 EO JUMP 0 1 Sprung ins Unterprogramm
64 01
65 74 STAC RO, 9 7
66 97
67 75 STACR1,98 Ergebnis Breite - Tiefe speichern
68 98
69 30 IORR RO, RO Flags l16schen
6 A 85 LOAD R1,9 4
6B 94 rechte Halfte addieren
6C 95 ADDM R1, 9 6
6D 96
6 E 84 LOAD RO, 9 3 linke Halfte nach RO bringen
6 F 93
70 E3 JMPC A 0O Ubertragsverarbeitung
71 AO
72 94 ADDM RO, 9 5 linke Halfte addieren
73 95
74 E3 JMPC 8 2 Aussprung aus dem Programm, wenn
75 82 Ergebnis zu groR
76 95 ADDM R1, 9 8 rechte Halfte addieren
77 98
78 E3 JMPC A5 Ubertragsverarbeitung
79 A5
7A 94 ADDM RO, 9 7 linke Halfte addieren
7B 97
7C E3 JMPC 8 2 Aussprung
7D 82
4 : g 2 :ﬁgt 2(1) } Muttiplikation mit 2 durch Linksschieben
80 EO JUMP 30
81 30
82 80 LOAD RO, # FF
83 FF F F nach RO und R1
84 01 MOVE RO, R1
85 EO JUMP 30
86 30
AO 30 IORR RO, RO
A1 60 INCR RO
A2 EO JUMP 7 2
A3 72
A5 30 IORR RO, RO
A6 60 INCR RO
A7 EO JUMP 7A
A8 7A
Tab. 1

Programm fiir die Oberflachenberechnung eines Quaders

E 71

Testen Sie das Programm mit nachfolgenden Beispielen:
a) Héhe: 2 cm

Breite: 4 cm

Tiefe: 3 cm

Ergebnis: C-Flag RO R1

b) Hohe: 128 cm
Breite: 60 cm
Tiefe: 25 cm

Ergebnis: C-Flag RO R1

A

24 760 cm?

¢) Hohe: 255 cm
Breite: 128 cm
Tiefe: 192 cm

Ergebnis: RO und R1 mit FF geladen

Programmerlauterung:

Der erste Programmteil von Adresse 3 O bis 3 E dient zum Laden und Abspeichern der Daten.
Die nachsten 3 Programmteile (3 F bis 4 C, 4 D bis 5 A und 5 B bis 6 8) sind von den
Befehlen her identisch. Hier werden mit Hilfe des Unterprogramms ,Multiplikation” die 3
Produkte gebildet. Die mit doppelter Genauigkeit errechneten Zwischenergebnisse werden
in den Adressen 9 3 bis 9 8 gespeichert.

Im funften Programmteil (6 9 bis 7 D) werden die 3 Multiplikationsergebnisse wieder mit
doppelter Genauigkeit addiert.

Die beiden JMPC-Befehle in den Adressen 7 4, 7 5 und 7 C, 7 D lassen in RO und R1
jeweils F F16 erscheinen. C-Flag = 1 nach einer der beiden Additionen bedeutet ndmlich, daf3 die
nachfolgende Multiplikation (7 E und 7 F) mit 2 den zuldssigen Zahlenbereich tberschreiten
und damit ein falsches Ergebnis entstehen wiirde. Die Addition mit doppelter Genauigkeit
wurde im Lehrheft 2 bereits beschrieben. Zunachst werden die beiden rechten Halften
addiert (Adresse 6 3). Entsteht dabei ein Ubertrag, erfolgt ein Sprung nach A 0. Dort wird
das C-Flag geldscht und zur linken Halfte in RO eine 1 addiert. Bei Adresse 7 2 wird dann
auch die linke Halfte addiert. Der Vorgang wiederholt sich von 7 6 bis 7 B.

Bei allen Unterprogrammen muB am Ende noch die richtige Riicksprungadresse gefunden
werden. In unserem Programm werden die Riicksprungadressen in F 1 gespeichert, also mu3
der Ricksprung in das Hauptprogramm mit JUMP @ F 1 erfolgen (Adressen 1 9 und 1 A).

Aufgaben:
1. Welche Auswirkung hat ein falsches Belegen der Adresse 1 9 mit Inhalt E O anstatt E 4?

2. Bei einer entsprechenden Eingabe soll nach der Addition der Zwischenergebnisse (nach -
Programmschritt 7 A) in RO und R1 folgendes Ergebnis stehen:

RO R1

E72

a) Wie lautet das richtige Endergebnis?

b) Wie lautet das Endergebnis, wenn die Befehle 7 E und 7 F in ihrer Reihenfolge vertauscht
werden?

E73

Experiment 11: Anrufen von Unterprogrammen mit den CALL-Befehlen

Die gleiche Aufgabe wie in Experiment 10 soll jetzt unter Verwendung der CALL-Befehle
gelost werden. ;

Dadurch ergeben sich folgende Programmanderungen:

1. Vor dem ersten CALL-Befehl muR in das als Stack-Pointer arbeitende Register R3 die
Anfangsadresse des Stack-Bereiches geladen werden.

2. Das Abspeichern der Zwischenergebnisse wird im Unterprogramm durchgefihrt (Adressen
1 9 bis 2 0).

3. Die Verarbeitung eines Ubertrages bei der Addition mit doppelter Genauigkeit wird jetzt
ebenfalls tber ein Unterprogramm durchgefiihrt.

Das FluRdiagramm unterscheidet sich jedoch nicht von Experiment 10.
Laden Sie das Programm (Tab. 1), und testen Sie es mit den Beispielen aus Experiment 10.

Adresse Inhalt Befehl Kommentar
30 00 HALT o o)
31 83 LOADRS3, # 90 | Jac/c jeee b ol o i
32 90 Hovoo
33 82 LOADR2, #FF | [aofe N wiil olel KAty i 7
34 FF _) .
35 88 | LOADRO, @ R2 |Zacle Ao 1w/t Hohe
36 7¢C STACRO, @ R3¢t |sve. ol ., Hohe)« Hols 97
37 00 HALT - .,
38 88 | LOADRO,@R2 | Jude 75 it Breri
g 4 / /rf" s
39 7¢C STACRO, @R3t | . /. . Ryejpre Folh /o
3A 00 HALT ,
3B 88 | LOADRO,@R2 |/, .. 7~ wmit T ¢ fe
3C 7C | STACRO, @R3*t | <, .../ Tek . " - 2
3D 77 | STACR3,F2 R N AT
3E F2 7 / o2 e A -
3F 83 LOAD R3,# 80 |_crofc A==
40 80 ; L .
41 84 LOAD RO, 9 0 Lo S TR AR
42 90) .
43 85 LOAD R1, 9 1 Lade N wre =
44 91 o Y, - >/
45 FO | CALLO1 B iole Poodsid s Holioy Prete
46 01 ') - L) ,"»i"‘;)
47 84 | LOADRO,90 [l - o st (7 E0
48 90 L e - et
49 85 LOADR1,92 |Lere
4‘ A 9 2 , vy / o b S o y
f=48 FO CALLO 1 R e Foodesi aws Hohe an.dfiefe
4C 01 L B
4D 84 LOAD RO, 9 1 Lodlc Ry e Ween
4E 91 N e e
4F 85 | LoaprLo2 Lo . -
50 92 - ;o
51 “FoO CALLO 1 3. ‘a/ﬁ /Drw/» dF Ll s fre, s e /,',yf(
52 01 .
53 30 | IORRRO,RO |losed e RO
54 85 LOAD R1, 9 4 Loede RA var. Sbecdiis L0) 000 ot 2 0
55 94 (A /‘T/C‘i/f ¢, /?» «v,.«",i'
56 95 ~ADD'V' RUOG \Jcs e o yitir Lis i e o wece oo ke
57 96 | e Sel e 7
58 84 LOADRO,93 |/, o)
59 93 .) - T Qs Aoyt s P
5A F3 | CALCAO Diedyo &~ ir
lv;gm ¢ ! i A,Q/x;/," \,5 P
:(/») ’ v ’ E74~‘/’ y ,’ L i€ & »&
7 s /f"(' R < Clea SF ' . \';i,%" * ¢
r / ¢ - 4 /7 e /{\

Adresse Inhalt Befehl Kommentar
5B AO) :
5C 94 ADDM RO, 9 5 gl
5D 95 .
5E E3 JMPC 6 C L
5F 6 C
60 95 ADDM R1, 9 8 CAs £ -
61 98 i
62 F3 CALCAO Wi A s,
63 AO
64 94 | ADDMRO,97 |/././ « « Jeeeoio
65 97 /:); Ced e ;/\ﬂ::l(‘{/e.{ / o
66 E3 JMPC 6 C Ubwho ¢ —> ¢
67 6 C ‘
68 69 RACL R1 L PR
69 68 RACL RO J "
6 A EO JUMP 3 0 S g5 .
6B 30
6C 80 LOADRO, # FF
6 D FF
6 E 01 MOVE RO, R1
6 F EO JUMP 3 0
70 30
A O-Unterprogramm
AO 30 IORR RO, RO
A1l 60 INCR RO
A2 EC JUMP @ R31t
Ergédnzung des Multiplikationsprogramms
/, o . 4
19 86 LOAD R2, F 2 Lode e o .
1A F2
1B 78 STACRO, @ R2 |/ -
1C 62 INCR R2 oy
1D 79 STAC R1, @ R2 |50/ -~
1E 62 INCR R2 A - .
1F 76 STAC R2, F 2 s
20 F2
21 EC JUMP @ R31 Sprcovele Jees s
Tab. 1

Programm fir die Oberflachenberechnung eines Quaders mit CALL-Befehlen

Programmerléduterung:

Bei einem Vergleich der Programmteile zur Dateneingabe in den Experimenten 10 und 11
werden Sie feststellen, daB jetzt zum Laden der mit A; bis Ao eingestellten Daten in einen
bestimmten Speicherplatz nur noch 2 Adressen belegt werden miissen. Diese Eingabemethode
4Rt sich jedoch nur dann anwenden, wenn die Daten in aufeinanderfolgenden Speichern

untergebracht werden sollen.

Das Unterprogramm zur Verarbeitung von Ubertragen wird tiber einen bedingten CALL-Befehl

angerufen, wenn ein C-Flag erscheint.

E 75

Experiment 12: Unterprogramme hit AdreBargumentiibergabe

Als Beispiel fiir eine AdreBargumentiibergabe soll der Ausdruck a® + b* berechnet werden.
Zur Berechnung der Quadrate wird dabei das Multiplikationsprogramm in Adresse O 1 bis 1 8
herangezogen. Die Adressen 1 9 bis 2 5 missen dazu noch mit den Befehlen geladen
werden, die zum Abspeichern der Ergebnisse und zum Ricksprung in das Hauptprogramm
notwendig sind. Die ebenfalls zum Unterprogramm gehdérende Argumentibergabe wird in
den Adressen 2 6 bis 3 O gespeichert. Das Unterprogramm wurde in dieser Form bereits im
Abschnitt 5.3 besprochen. Die Befehle kdnnen aus der Tabelle 5.3.3 entnommen werden.
Fir das Hauptprogramm kann jetzt das FluBdiagramm aufgestellt werden, das Bild 1 zeigt.

START

a und b laden

Addition
(@) +®?)

i
HALT
Bild 1

FluRdiagramm zur Multiplikation a* + b?

Laden Sie jetzt die Unterprogrammerganzung aus Tabelle 5.3.3 und das in Tab. 1 gezeigte
Hauptprogramm.

E 76

Adresse Inhalt Befehl Kommentar
50 00 HALT
51 84 LOAD RO, FF
52 FF ra in A O speichern
53 74 STAC RO, A0
54 AO
55 00 HALT
56 84 LOAD RO, FF
57 FF
58 74 STAC RO, A1 s bin A 1 speichern
59 A1
5A 83 LOAD R3, # FF Initialisierung Stack-Pointer
5B FF
5C FO CALL MULTA
5D 26 Unterprogrammanruf und AdreBargumente
SE A0 ADR Faktor 1 zur Berechnung von a?
5F AO ADR Faktor 2
60 BO ADR Produkt
61 FO CALL MULTA
6 2 26 Unterprogrammanruf und AdreRargumente
63 A1 ADR Faktor 1 zur Berechnung von b?
6 4 A1 _ADR Faktor 2
65 B2 ADR Produkt
66 30 IORR RO, RO C-Flag loschen
67 95 ADDM R1,B 0
6 8 BO
2 i gg JMPC8 0 Addition und Riicksprung zum Programm-
6B 94 | ADDMRO,B 1 anfang
6C B 1
6D EO JUMP 5 0
6 E 50
80 30 IORR RO, RO C-Flag léschen
81 60 INCR RO Ubertragsverarbeitung
82 EO JUMP 6 B
83 6B
Tab. 1

Hauptprogramm zur Multiplikation a* + b2

Aufgaben:

1. Weshalb werden in den Adressen 5 E, 5 F und 6 3, 6 4 jeweils dieselben Adressen
fur das Unterprogramm angegeben?

2. Geben Sie an, in welchen Speicherplatzen die Teilergebnisse a*> und b? (rechte und linke

Halfte je ein Speicherplatz) zu finden sind!

E77

Experimentieranhang

Losungen zu Experiment 7

1. ‘ START ,

Y
Lade Z inR2

!
Losche Schleifen-
zdhler R1

)
Setze erstes Glied
in RO =-1

i
RO um 2 erhchen
(bilde ndchstes Glied)

Y
Incrementiere
Schleifenzdhler R1

i

Subtrahiere (R0)
von (R2)

2. Das erste Programm entspricht nicht demin Bild 5.1.1.1 dargestellten Format einer Schieife,
da der Hauptteil der Schleife vor und nach der Entscheidung liegt.

Der Programmteil Bildung des néchsten Gliedes (RO) + 2 wird erstmalig nach der Entschei-
dung ausgefihrt. Wird z.B. Z = 1 gewahlt, wird dieser Teil nicht durchlaufen.

Bei der zweiten Version wird (RO) + 2 bereits beim ersten Schleifendurchlauf ausgefiihrt.
Formal entspricht dieses Programm dem Schleifenformat in Bild 5.1.1.1.

Losungen zu Experiment 8

1. Das N-Flag spricht immer dann an, wenn das werthéchste bit gleich 1 ist. Ohne diesen

Befehl wird dann z.B. bei einer Eingabe 1 x x x x x x x bei Adresse 4 B der JMPN-Befehl
ausgefuhrt.

E79

Adresse Inhalt Befehl Kommentar
40 86 LOAD R2, FF
41 FF
42 09 MOVE R1, R2
43 CcC2 XORM R2, # 00
4 4 00
45 E1 JMPZ 70
46 70
47 06 MOVE R2, R1
48 c2 XORMR2, #0 1
49 01
4 A E1 JMPZ 8 O
4B 80
4C 06 MOVE R2, R1
4D c2 XORMR2, #0 2
4 E 02
4 F E1 JMPZ9 0
50 90
51 06 MOVE R2, R1
52 c2 XORM R2, #0 3
53 03
54 E1 JMPZ A O
55 AO
56 80 LOAD RO, # FF
57 FF
58 EO JUMP 4 0O
59 40
70 80 LOAD RO, #0 0
71 00
72 EO JUMP 4 0
73 40
80 80 LOAD RO, # 8 1
81 81
82 EO JUMP 4 0O
83 40
90 80 LOAD RO, # 4 2
91 42
92 EO JUMP 4 0
93 40
AO 80 LOAD RO, # C 3
A1 c3
A2 EO JUMP 4 0
A3 40

E 80

Losungen zu Experiment 9

Antworten auf die Fragen zu Programmteil 1:

a)

RO: [o|o|0jO(O11 |11 Dividend unveréndert

R1: |1]|1]|0|0(O|0|O|O]| - verschobener Divisor

R2: |0|0(0|0|O|0|0O|O geloschtes Ergebnisregister
R3: |0j0|O|0|O|1|1]0 Verschiebezahler = 6

b) Das C-Flag wirde sonst bei RACL R1 (Adresse 4 6) im niedrigsten bit des Divisors er- v
scheinen.

Antworten auf die Fragen zu Programmteil 2

a) Die 910 muRl im ersten Teil 410-mal verschoben werden, also steht R3 auf 440. Da der
Programmteil 2 erst durch ein N-Flag beendet wird, sind 5 Durchlaufe notwendig.

b) Da der Divisor durch die Verschiebungen im ersten Teil in seiner Wertlgkelt verandert
wurde, muf der Quotient dieser Wertigkeit angepalt werden.
Antworten auf die Fragen zu Programmteil 3

1. Eine Subtraktion im parallelen Subtraktionspfad wiirde nicht im Quotientenregister re-
gistriert.

2.

nicht belegt

Losungen zu Experiment 10

1. Nach dem ersten Anruf des Multiplikationsprogramms (Adr. 4 7) wiirde der Riicksprung
zur Adresse F 1 erfolgen und nicht wie im Programm verlangt zur Adresse 4 9.

2. a) C-Flag
0|0(1{1[0|0]|11 11011]1|1|0|0|0
b) C-Flag

E 81

Léosungen zu Experiment 12

1. Da das Unterprogramm nicht geéndert werden soll, missen 2 Faktoradressen angegeben
werden. Im Sonderfall des Quadrierens sind beide Faktoren, also auch beide Adressen gleich.
2. a’:linke Halfte in B 1

rechte Halfte in B O

b?: linke Halfte in B 3
rechte Halfte in B 2

E 82

Experiment 13: Handhabung des Monitorprogramms

MP-System 8080 ITT MP-Experimenter
SYSTEM
bei Examine
E ber Deposit

L Le Ls Ly L3 Lo Ly Lo R7 Re Rs R, R3 R, Ry Rop

NSRN Inh. der mit A-Sch.gewdhlten Adr Inh.der mit B-Sch.gewdhlten Adr.

HLT | con | 0EPO] XA [LoaD RAM rel Adr f Ld. Adr,Depos+Exa.] A
amBP SIT | MINE | ADR. Stack rel. Adr (Offset)f Stack Disp. RAM rel. Adr fir Stack-Display
1 1 1 1

0 0 0 0
C. G C2 Cy Co Ay Ag As A, Az Ay A Ag By Bg Bs B, B3 B, By By

Vorbereitung:

— Schablone 6 auflegen

— SYSTEM-Schalter auf 6 einstellen
— Alle Schalter auf Null stellen

— RESET driicken

Mit dem Monitorprogramm besteht die Mdglichkeit:

- die Registerinhalte im MP 8080 und den Stand des Programmzéhlers sowie die Inhalte aller
Adressen im RAM sichtbar zu machen.

— dhnlich wie im System 5 mit den Schaltern C; bis Co Daten zu laden und mit EXAMINE

zu kontrollieren.

Das Monitorprogramm ist im ROM untergebracht und wird durch Betédtigung der RESET-Taste
gestartet.

Im Gegensatz zum hypothetischen Rechner, bei dem ein dhnlicher Monitor verwendet wurde,
ist es im System 6 nicht mehr méglich, das Anwenderprogramm und den Monitor gleich-
zeitig zu betreiben. Wenn hier das Anwenderprogramm lauft, ist der Monitor auer Betrieb,
d.h., eine Betatigung der Schalter hat keinen sichtbaren EinfluR mehr auf das System. Beim
hypothetischen Rechner wurde (ber das Simulationsprogramm nach jedem Befehl das
Monitorprogramm angerufen, so daR jeder Befehl entsprechend sichtbar gemacht werden
konnte. In einem Zeitmultiplex-Verfahren wurden Anwender- und Monitorprogramm sténdig
gemeinsam benutzt. Dies hatte natiirlich zur Folge, daR die Rechengeschwin