
Allgemeine Hinweise zu den Experimenten

Das Experimentiersystem enthält einen vollständigen Rechner. Das Kernstück ist der INTEL

8080 Mikroprozessor. Als Speicher sind ein 1-k-ROM (1024 Wörter a 8 bit) und ein RAM

mit 256 Wörtern ä 8 bit vorhanden. In dem ROM sind 7 Programme zur Simulierung von

verschiedenen Systemen fest abgespeichert. Welches Programm ablaufen soll, kann mit dem

SYSTEM-Schalter (BCD-Schalter auf der linken Seite) festgelegt werden. Den 7 Programmen

sind die Nummern O bis 6 zugeordnet. Die Stellung 7 des SYSTEM-Schalters ist für eine

eventuelle Erweiterung des Systems vorgesehen, die Stellungen 8 und 9 werden nicht

verwendet. Bei jeder Schalterstellung können mehrere Experimente durchgeführt werden.

In den Stellungen 4, 5 und 6 stehen sogar 3 unterschiedliche Rechner zur Verfügung, die

für beliebig viele Experimente benutzt werden können.

Ein Programm wird mit der RESET-Taste gestartet. Diese Taste entspricht in etwa der

Löschtaste eines Taschenrechners und muß am Anfang jedes Experimentes gedrückt

werden. Mit den restlichen Schiebeschaltern können Daten und Steuerinformationen ein-

gegeben werden.

Die Schaltergruppe C, bis C, wird zur Steuerung des Experimentierablaufes benötigt.

Die Schaltergruppen A, bis A, und B, bis B, werden bis auf einige Spezialfälle für die

Daten oder Programmeingabe benutzt.

Bei allen Experimenten gelten folgende Festlegungen:

Schalter oben = logisch 1

Schalter unten & logisch O

Die 2 von 8 Leuchtdioden dienen zur Anzeige der Rechenergebnisse sowie zurAnzeige

interner Schaltzustände. Hier gelten folgende Festlegungen:

Leuchtdiode leuchtet = logisch 1

Leuchtdiode dunkel = logisch O

Alle Schalter, die bei einem bestimmten Experimentiervorgang nicht benötigt werden, müssen

auf log. O geschaltet werden.

Es ist zu empfehlen, daß zu Beginn eines Experimentes alle Schalter auf log. O geschaltet

werden, bevor die RESET-Taste gedrückt wird. Ausnahmenhiervon werdenbeiden einzelnen

Experimenten angegeben.

Bei falscher Schalterbetätigung können grundsätzlich keine Schäden am Experimentiersystem

entstehen. Allerdings können dadurch die selbst eingegebenen Programme und Daten ver-

ändert werden, so daß ein falsches Ergebnis entsteht. Bei umfangreichen und komplizierten

Experimenten kanneine falsche Betätigung viel Zeit kosten.

Die grundsätzliche Experimentiervorbereitung ist folgende:

1. Die in der Experimentieranweisung angegebene Schablone auflegen

2. SYSTEM-Schalter auf das verlangte Programmeinstellen

3. Alle Schiebeschalter auf Null (unten) stellen

4. RESET-Taste drücken

In den Experimentieranleitungen ist zu Beginn jedes Experimentes auch noch einmal die

entsprechende Schablone angegeben. Aus der Schablone kann die Bedeutung bzw. Funktion

der einzelnen Schalter entnommen werden. |

Zu jedem Experimentierprogramm werdenein oder auch mehrere Musterexperimente durch-

geführt. Danach sind Aufgabenstellungen gegeben, die Sie selbst lösen sollen. Die Muster-

lösungenfinden Sie im Experimentieranhang.

E1

Experiment 1: Arbeitsweise eines 8-bit-Ripple-Carry-Addierers

Addierer/Subtrahierer ITT MP-Experimenter

SYSTEM

[0]

EIN TEINI=A I=B (+1)

1 1

a G a ca —& Ar As As Ar Aa A Aı An Br Be Bs B, Bs B2 Bı Bo

RR RRRRR RRo
SUMME

1 | 1

Nach der Experimentiervorbereitung Schalter C, und C; auf 1. Damit können die an den

Schaltern A, bis A, und 3, bis B, eingestellten Informationen in das System gelangen. Mit

den Schaltern C,;, = A und C, = B könnendie eingegebenenInformationen komplementiert

werden (Einerkomplement). Der Schalter C, = INC legt bei 1 eine 1 auf den INC-Eingang.

Die Schalter C, bis C, sind zunächst in der Stellung O zu belassen. Das Ergebnis der

Addition erscheint in den rechten 8 LEDs(A; bis Ro). Die LED /, in der linken Lampengruppe

zeigt einen Übertrag (Carry) an. Bei diesen Programmen haben die LEDs /, bis L, keine

Bedeutung. |

1. Beispiel:

A-Schaltere 0OOOO 1010 & 10;0

+ B-Schalter: 00000011 & 30

Ergebnis: 00001101 = 130

R; bis Ro

2. Beispiel: M

oo. A-Schalter: 11111111 = 255,0

+ B-Schalterce 00000010 & 210

Ergebnis: 100000001 = 25710

Lo R, bis Ro

3. Beispiel:

Darstellung von negativen Zahlen über das Zweierkomplement

a) A-Schalter: 00001010 £ 10, = A

A-Schalter1: 11110101 2A
INC-Schalter 1: 11110110 2 -A=A+1

RAR, bis Ro

b) A-Schalter: 11111111 & 255,., = A

| A-Schalter 1: 00000000 2A

INC-Schalter 1: 00000001 = -A=A+1

R; bis Ao

c) A-Schalter: 00000001 £ 1.=A4
A-Schalter 1: 11111110 2 A

INC-Schalter 1: 1111119 11 2 -A=A+rl

R, bisRo

4. Beispiel: |

Subtraktion über das Zweierkomplement nach der Beziehung A + (-2)

a) A-Schalter: 00001010 = 10;,

B-Schalter: 00000101 2 5,

B-Schalter 1: 100000100 = A+B

lo Rıbis

INC-Schalter 1: 100000101 & AtB+1=A-B

| lo R,bis%ho

Ergebnis: 00000101 = 5.

R; bis Ro

b) A-Schalter: 00000101 2 5,
B-Schalter: 00001010 = 10,

B-Schalter 1: 11111010 = A+B

R, bis Ao

INC-Schalter1: 11111011 = A+B+1=A-B

R; bis Ro

Ergebnis: 117111011 = 510

R- bis Ro

Kontrollieren Sie dieses Ergebnis entsprechendBeispiel 3.

Lösen Sie experimentell folgende Aufgaben (Angaben in Dezimalzahlen).

1. a) 125,0 + 40,0 =

b) 184,0 + 1000 =

2. Stellen Sie über das Zweierkomplementfolgende Zahlen dar:

a) -120;,0 7

b) —1 210

C) =2;0

3. Lösen Sie folgende Subtraktionsaufgaben überdie Beziehung A + (-B):

a) 120,0 — 100,0 = \ z

b) 130;0 —_ 140,0 = TE '

Die Lösungen finden Sie auf Seite E20.

ES

I
»

1.

T 10.

 > 11.

> 12.

13.

SYSTEM

FUNKTIONS-
SELEKTOR-

CG G&

C; 6

0 0

0 0

0 0

0 0

O0 1

O0 1

O0 1

O0 1

1 0

1 0

1 O

1 O

1 1

1. Beispiel:

Cı

“
0

Codierte ALU

Co

Co
0

oO
—
-
0

Experiment 2: Arbeitsweise einer codierten ALU

ITT MP-Experimenter

Lo RrrR Rs RR RR Ro

| VERKNÜUPFUNG |

As As A, Ag Ar Aı Av Br Bs Bs Bı Ba B> Bı Bo

Für dieses Experiment ist eine 8-bit-Version der in Bild 3.3.3 dargestellten codierten ALU

simuliert worden. Die Funktionen U; bis U, in Tab. 3.3.1 werden mit den Schaltern C; bis Co

festgelegt. Diese Tabelle ist auch auf der Karte „Codierte ALU” zu finden.

Nach der Experimentiervorbereitung (alle Schalter O, RESET-Taste drücken) überprüfen wir

zunächst alle Funktionen nach Tab. 3.3.1. |

Ein an denA-Schaltern eingestelltes bit-Muster erscheint

in der Anzeige A, bis Ro. Die B-Schalter haben keine

Funktion. |

Unabhängig von der Stellung der A- und B-Schalter er-

scheint in A; bis A, eine 1 in der Stelle Ro.

In A, bis Ru erscheint das Einerkomplement des an A, bis A,

eingestelltenbit-Musters. 3, bis B, haben keine Funktion.

Ein an 3, bis 5, eingestelltes bit-Muster erscheint in A;

bis Ro. A, bis A, haben keine Auswirkung.

Beide Schalterreihen habenkeine Funktion.

In A; bis A, erscheint die an A, bis A, eingestellte Zahl plus 1.

In A, bis A, erscheint die an A, bis A, eingestellte Zahl

minus 1. |

In A, bis A, erscheint die Summederin A, bis A, und 2, bis

B, eingestellten Zahlen. Ein Übertrag erscheintin /..

In A, bis A, erscheintdie Differenz A—BderandenSchal-
tern A, bis A. und 2, bis 3, eingestellten Zahlen (Zweier-

komplement beachten!).

Die in A, bis A, und 2, bis B. stehenden Informationen

werdenbit-weise miteinander UND-verknüpft.

Die in A, bis A, und 2, bis B, stehenden Informationen

werden bit-weise miteinander ODER-verknüpft.

Die in A, bis A, und 2, bis B, stehenden Informationen

werdenbit-weise miteinander EXCLUSIV-ODER-verknüpft.

Unabhängig von A; bis A, und 2, bis B, erscheint in A, bis

Ro —1 (Zweierkomplement beachten!). |

Die angesprochenen Funktionen sind alleausreichend bekannt und bedürfen daher keiner

weiteren Erläuterung. Nachfolgend einige UÜbungsbeispiele:

-30,0 — 64,0 =

Diese Aufgabe wird durch eine Addition der Zweierkomplemente gelöst

-A+(-B)=-A-B

=

Funktion C3z bis Co: 0111

A-Schalter: 11100010 = -30;0

B-Schalter: 11000000 = -64,.

110100010

lo R;bisAo

Ergebnis: | 10100010 = -94,0

2. Beispiel: 34,0 — 128,0 =

Funktion C; bis Co: 1000

A-Schalter: 00100010 2 34,0

—-B-Schalter: 10000000 = 128;,0

11017100010

, Lo R; bis Ro

Ergebnis: 10100010 = -94,o

3. Beispiel:

In A, bis Ao ist folgendes bit-Muster eingestellt:

01101001

Dieses bit-Muster ist in ein Muster der Form

00001001

abzuändern, ohne dabei die Schalterstellung A, bis A, zu ändern. Diese Aufgabenstellung,

das Ausblenden von bestimmtenbit oder bit-Gruppen,läßt sich mit der UND-Funktionleicht

lösen, indem an den 5-Schaltern eine sog. Maske eingestellt wird. In unserem Beispiel wird:

Funktion C3 bis Co: 1001 wngen \

A-Schalter: 01101001. "

B-Schalter: 000011 D1 > Maske noo-fö204

O 00010 01 Ooeı- 10 0-7
Yv Ale >:

R; bis Ro i .

Eine Änderung der Schalterstellung A- bis A, hat keinen Einfluß auf das Ergebnis in A; bis R..

4. Beispiel: |

An den A-Schalternist folgendes bit-Muster eingestellt:

01101001

Dieses bit-Muster ist in ein Muster der Form

10011001

abzuändern, ohne dabei die Schalterstellung A, bis A, zu ändern. Diese Aufgabenstellung

läßt sich mit der EXCLUSIV-ODER-Funktion lösen.

Funktion C3 bis Co: 1011

A-Schalter: 01101001

B-Schalter: 11110000

10011001

R- bis Ro

5. Beispiel:

Ein an den A-Schalter eingestelltes bit-Muster der Form

E5

10000100

soll in ein Muster der Form

10110101

geändert werden, ohne dabei die Schalterstellung A, bis A, abzuändern. Diese Aufgabe läßt

sich über die ODER-Verknüpfung lösen. -

Funktion C;bis Co: 1010

A-Schalter: 10000100 i
B-Schalter: 00110001 od. 7 0140 104

101120101 0en
R, bis Ro

Lösen Sie folgende Aufgaben experimentell. Die Daten sind im Hexadezimalsystem angegeben.

1. 34, + 216= 5544

2. a) 8 115 - 7 516 = OCyr

b) 7 6ıs — 8 Ars -Ö Erg

3. a) Ein bit-Muster in A, bis A, der Form

11001 w 1

ist in die Form | Er 5

11001100

umzuformen, ohne A, bis Ao zu ändern.

b) Ein bit-Muster in A, bis A, der Form

11010110

ist in die Form

000 0 0110

umzuformen, ohne dabei A; bis Ao zu ändern.

Die Lösungen dieser Aufgaben finden Sie auf Seite E2O.

E6

Experiment 3: Arbeitsweise eines Akkumulators

Akkumulator ITT MP-Experimenter

SYSTEM M

Lo R7 Re Rs R R3 R Rı Ro

AKKU-INHALT |

_FUNKTIONS-

_ SELEKTOR

GG 6%, C Co 00000090900 Br Bs B5s B, Ba B2 Bı Bo

Mit diesem Programm wird der in Bild 3.4.1 dargestellte Akkumulator simuliert. Die in

Tab. 3.4.1 gezeigten Funktionen werden mit den Schaltern C, bis C, ausgewählt. Der

Schalter C, dient jetzt als Taktschalter. Durch einmaliges hin- und herschieben wird ein

Ergebnis in das Register übernommen und zur Anzeige gebracht. Die A-Schalter werden

in diesem Beispiel nicht gebraucht, weil die A-Eingänge der im Akkumulator enthaltenen ALU

mit den Ausgängendes Registers verbunden sind. Das Ergebnis bzw. der momentaneInhalt

des Akkus wird wieder in A, bis A, angezeigt, ein Übertrag in Lo.

Zu Beginn eines Experimentes ist der Akku-Inhalt beliebig. Er muß daher zunächst auf Null

gebracht werden (Vergleich: Löschtaste eines Taschenrechners). Das Löschen erfolgt laut

Tab. 3.4.1 über die CLA-Funktion U; bis U, = C3 bis Co = O0 1 0 0. Der Vorgang ist folgender:

1. C; bis C.auf O0 100 stellen

2. Schalter C, einmal takten (einmal hin- und herschieben)

3. Kontrollieren, ob alle LEDs A, bis A, einschließlich /, ausgehen.

Da die A-Schalter keine Funktion haben, werden die entsprechenden Operationen immer

zwischen dem Akku-Inhalt und den an den 2-Schaltern eingestellten Informationen durch-

geführt. Hierzu einige Beispiele:

1. Beispiel:

Die Hexadezimalzahlen 1 5,, und 3 3,. werden addiert.

Ablauf:

1 5,. an den B-Schaltern einstellen

LDA (Lade den Zustand der B-Schalter in den Akku) mit C; bis C, gleich 0 O0 1 1 einstellen

Mit einem Takt (Schalter C,) Inhalt der B-Schalter in den Akku laden

. 3 316 an den B-Schaltern einstellen

. Mit C3 bis Co = O0 1 1 1 den Befehl ADD wählen

. Mit C, Takten

. In A; bis R, steht jetzt das Ergebnis mit O 1001000 = 48,N
O

P
O
@
O
D
N
D
-
—

2. Beispiel:

Das Zweierkomplement der Binärzahl O 101110 1 wird gebildet.

Ablauf:

1. DieZahl 0 101 1 101 an den -Schaltern einstellen

2. Mit C; bis C, den Befehl LDA = 0011 einstellen

3. Mit C, einmal takten

4. Mit C; bis C, den Befehl CMA = 0010 einstellen

5. Mit C, takten. In A, bis AR. erscheint jetzt 10100010, also das Einerkomplement der

vorher eingestellten Zahl

6. Mit C; bis C, den Befehl INC = 0101 einstellen

E7

7. Mit C, takten. In AR, bis R, erscheint die Zahl 101000 1 1, das Zweierkomplement der

eingegebenenZahl

3. Beispiel:

Lösen der Aufgabe 5 1,8 — 4 Bıs

Ablauf:

1. Mit dem Befehl CLA den Akkumulator löschen(siehe vorher)

2. 5 1ye and} bis B., einstellen und über Befehl LDA in den Akku laden

3. 4 B,. an DB, bis B, einstellen

4. Mit Befehl SUB = 1000 die an 3, bis B, eingestellte Zahl von der im Akku befindlichen

Zahl subtrahieren. Als Ergebnis erscheint in A, bis A, die Zahl O 6,, (kontrollieren Sie selbst

das Ergebnis über Dezimalzahlen nach).

4. Beispiel:

Der Akkumulator wird als Aufwärtszähler betrieben, der bei O beginnt und mit jedem Takt

um 1. weiterzählt.

Ablauf:

1. Mit Befehl CLA den Akkumulator löschen

2. Den Befehl INC einstellen

3. Mit C, das System takten. In A, bis AR, erscheint das jeweilige Zählergebnis

5. Beispiel: |

Zwischen den beiden bit-Kombinationen 10000001 und 11110001 wird die
EXCLUSIV-ODER-Verknüpfung gebildet.

Ablauf: |

1. Mit Befehl CLA Akkumulator löschen
2. Kombination 10000001 an 2; bis B, einstellen
3. Mit Befehl LDA Information 2, bis B, in den Akkumulator laden

4. Kombination 1 1110001 an 2, bis B, einstellen

5. BefehlXOR = 1011 einstellen und takten.In A, bis Aoerscheint das Ergebnis 01110000

Aufgaben:

1. Subtrahieren Sie folgende Aufgaben:

a) Fi; - CC, = 20%

b) 1555-22, = FL;
c) —4 8,5 — 3 246 6,5,

2. Bilden Sie die ODER-Verknüpfung zwischen folgenden bit-Kombinationen:

a 11000110

b»O1010000

Die Lösungenfinden Sie auf Seite E21.

E8

Experiment 4: Arbeitsweise eines Akkumulators mit Datenspeicher

Akku mit Speicher ITT MP-Experimenter

SYSTEM

| bei Examine: INHALT DER ADRESSE

| bei Deposit: NEUER INHALT DER ADR.

sonst: AKKU-INHALT |

Lo RP RR RR RRı Ro

CRY

SIT [MINE OP-CODE ADRESSE DATEN FÜR DEPOSIT+ INPUT

1 1 41 1

O 0 | 0 0

Cu Ö C2 Cı Ö Ay As As A, Az Ar A, Ao B7 Bes Bs B, B3 B> Bi Bo

Das System 3 enthält grundsätzlich die gleichen Funktionen wie das System 2. Der Unterschied

besteht darin, daß entsprechendBild 3.5.1 die Daten nicht mehr von den 5-Schaltern kommen

sondern von einem RAM. Mit dem neuen Befehl STA (Speichere Akku-Inhalt in Adresse

aaa a ab), können die Daten im RAM zurückgeschrieben werden. Mit dem Befehl INP

(Lade B-Eingänge in den Akku) werden jetzt die Daten an 2, bis 3, in den Akkumulator

eingelesen (entspricht Befehl LDA in System 2). Bei allen Befehlen, die den Speicher nutzen,

muß jetzt eine bestimmte Adresse spezifiziert werden. Der hier verwendete Speicher hat eine

Kapazität von 16 Wörtern a 8 bit. Damit jedes dieser 16 Wörter spezifiziert bzw. adressiert

werden kann, werden 4 bit benötigt. Damit besteht ein Befehl jetzt aus insgesamt 8 bit.

Hiervon legen 4 bit die Funktion fest, die ausgeführt werdensoll. Sie bilden den sog. OP-Code

(Operation-Code). Die anderen 4 bit bestimmen die Speicheradresse. Aus diesem Grunde

werdenjetzt die A-Schalter für die Befehlseingabe benutzt.

Aus Tab. 3.5.1 geht hervor, daß es Befehle gibt, die unbedingt die Angabe einer Adresse

benötigen (a a a a), und andere, die ohne spezielle Adresse auskommen(x x x x).

Bevor Befehle, die Daten aus dem Speicher unter einer bestimmten Adresse benötigen,

benutzt werden können, müssen die entsprechendenDaten in den Speicher geladen werden.

Das Laden einer bestimmten Speicheradresse erfolgt mit dem Schalter Cz DEPOSIT (Laden).

Wird dieser Schalter betätigt, d.h. auf 1 und dann wieder auf O geschaltet, werden die

Daten, die an 5, bis B, liegen, im Speicher bei der Adresse abgespeichert, die von den

Schaltern A; bis A, spezifiziert ist. |

1. Beispiel:

Die Zahl 1 5,, wird in Adresse O 1 1 1 abgespeichert.

Ablauf:

1. B, bis BJ, auf 00010101 einstellen

2. A, bis Anauf 00000111 einstellen

3. Mit DEPOSIT-Schalter das System takten

Während DEPOSIT = 1 ist, erscheinen in A, bis A, die abzuspeichernden Daten. Dies ist

als Kontrolle gedacht. Ist DEPOSIT wieder gleich O, erscheinen in AR, bis R, wieder die

zufällig im Akku vorhandenen Daten.

Nachdem C, bzw. DEPOSIT wieder O ist, sind die Daten unter der Adresse 0111 im

Speicher abgespeichert. Die B-Schalter könnenjetzt beliebig verstellt werden.

Möchte man nachträglich die Daten in Adresse O1 1 1 kontrollieren, kann dies über

Schalter C, EXAMINE(Lese) geschehen.

2. Beispiel:

Der Inhalt der Adresse O 1 1 1 wird kontrolliert.

Ablauf:

1. A- bs Ad auf 00000111 einstellen

EI‘

2. Schalter EXAMINE auf 1 stellen

3. In A; bis Ru erscheinen die Daten der Adresse O 1 1 1

Solange EXAMINE = 1 ist, können mit Hilfe der Schalter A; bis Ao alle Adresseninhalte

kontrolliert werden.

3. Beispiel:

Folgene Daten werden unter der angegebenen Adresse abgespeichert:

Adresse Daten

0000 00000000.

0001 00000001

0010 00000010

0011 00000011

0100 00000100

0101 00000101

0110 00000110

0111 00000111

1000 00001000

1001 00001001

1010 00001010

1011 00001011

1100 00001100

1101 00001101

1110 00001110

1111 00001111

Ablauf:

1. B, bis B, auf 00000000 einstellen

2. A, bis An auf 00000000 einstellen
3. Mit DEPOSIT-Schalter System takten
4. B, bis B,auf 00000001 einstellen
5. A, bis „auf 00000001 einstellen

6. Mit DEPOSIT-Schalter System takten usw.

Die so abgespeicherten Datenbleiben beliebig lang enthalten. Sie werden nur zerstört bei:

— Stromausfall oder Abschalten des Gerätes

— Abspeichern neuer Daten mit DEPOSIT unter derselben Adresse (alte Daten werden über-

schrieben)

— Abspeichern neuer Daten mit dem STA-Befehl in derselben Adresse

- Umschalten des SYSTEM-Schalters auf ein neues Experimentierprogramm

4. Beispiel: |

Die in Beispiel 3 abgespeicherten Daten werden über den EXAMINE-Schalter nachkontrolliert.

Ablauf:

1. EXAMINE-Schalter auf 1

2. Mit A; bis A, die verschiedenen Adresseneinstellen

3. In A, bis A, erscheinen die abgespeicherten Daten

5. Beispiel: | | |

Überschreiben des Inhaltes der Adresse O 1 1 1 mit den neuen Daten 11110000.

Ablauf:

1. B; bis BJ, auf 11110000 einstellen

2. A, bis An auf00000111 einstellen
3. Mit DEPOSIT-Schalter System takten

Kontrollieren Sie über EXAMINE nach, ob der neue Inhalt in Adresse O0 1 1 1 tatsächlich

vorhandenist.

E10

6. Beispiel: |

Überschreiben des Inhaltes der Adresse 1010 mit den Daten 1 1 001100 mit

Hilfe des STA-Befehles.

Ablauf:
1. B; bis B,auf 11001100 einstellen

2. A,bisA,auf 11010000 einstellen (dies entspricht dem Befehl INP =Lade 3-Eingänge

in den Akkumulator)

3. Mit Schalter C, System takten(in A, bis A, muß jetzt die Information 2, bis B, erscheinen)

4. A,bis A,.auf 11101010 einstellen (dies entspricht laut Tab. 3.5.1 dem Befehl STA =

Speichere Akku in Adresse aa aa ab) | |
5. Mit Schalter C, System takten

Kontrollieren Sie über EXAMINE, den neuenInhalt der Speicheradresse 1010.

7. Beispiel:

Den Inhalt der Adresse 1 1 1 O0 in den Akkumulator laden.

Ablauf:

1. A,bis Anauf 00 111 110 einstellen (entspricht dem Befehl LDA = Lade Inhalt Adresse
aaaa)

2. Mit Schalter C, System takten.In A, bis R, erscheint 0000111 0

8. Beispiel:

Addition der Hexadezimalzahlen 1 7/,, und 3 245

Ablauf: |

1. B, bis 5, auf 00010111 = 1 7,8 einstellen

2. Daten 5, bis 3, über DEPOSIT in der Adresse 0 000 abspeichern

(A; bis An auf OOOO einstellen!)

3. B, bis BL, auf 00110010 = 3 2,, einstellen

4. ‘Über INP-Befehl die Daten 2, bis B, in den Akku laden

5. A,bis An auf 01110000 einstellen (entspricht dem Befehl ADD = Addiere Inhalt der

Adresse 0000)

6. Mit Schalter C, System takten. In A, bis R, erscheint das Additonsergebnis

01001001 & 49,

Bei den arithmetischen und logischen Funktionen ADD, SUB, AND, IOR und XOR wird also

immer der Inhalt einer Adresse mit dem jeweiligen Inhalt des Akkus verknüpft. Es ist

gleichgültig, wie dabei die Schalter 3, bis B, stehen. Nur über den Befehl INP an A; bis A,

könnendie Daten 2, bis 3, in den Akku gelangen.

Im nächstenBeispiel wollen wir den Inhalt von 2 unterschiedlichen Adressen EXCLUSIV-ODER-

. verknüpfen.

9. Beispiel:

Die Inhalte der Adressen 1010 und 0111 werden EXCLUSIV-ODER-verknüpft.

Anmerkung: Wenn Sie in der Zwischenzeit genau das vorgeschriebene Experimentier-

programmdurchgeführt haben bzw. das Experimentiersystem nicht zwischendurch abge-

schaltet haben, steht in den Adressen folgenderInhalt:

100Adresse 1 O0 1

0000

10 > 1100

Adresse 0111 > 1111

Ist das nicht der Fall, über DEPOSIT die beiden Adressen entsprechend laden.

Ablauf:

1. A, bis Anauf 00111010 einstellen (entspricht Befehl LDA)

2. Mit Schalter C, System takten. In A, bis A, erscheint der Inhalt der Adresse 1010, der

jetzt auch Inhalt des Akkusist

E11

3. A, bis As auf 10110111 einstellen (entspricht Befehl XOR) |

4. Mit Schalter C, System takten. In AR, bis R, erscheint das Ergebnis OO 111100

Der neue Akku-Inhalt ist also 00111100. Wenn Sie jetzt z.B. noch einmal mit C,

takten (A, bis A, bleiben unverändert), erscheint in A, bis Ad 11001100. Bei dem

erneuten Takt wird nämlich die XOR-Verknüpfung des neuen Akku-Inhaltes mit dem nach

wie vor unveränderten Inhalt der Adresse O 1 1 1 gebildet. Es ergibt sich somit:

00111100 Inhalt Akku

11110000 Inhalt Adresse 0111

11001100

Alle anderen Befehle sind Ihnen vom Prinzip her bekannt.

Aufgaben:

1. Subtrahieren Sie folgende Aufgaben:

a) 3A = 2 115 =

b)-2 Ars -5 As =

2. Erhöhen Sie den Inhalt der Adresse O 1 1 1 über Programm um 1

3. Führen Sie folgende Rechenoperationen durch:

35, +1 Ti 2 46 >

Die Lösungenfinden Sie auf Seite E22.

E12

Experiment 5: Vereinfachter Rechner

Vereinfachter Rechner | ITT MP-Experimenter

SYSTEM

beiExamre NN]YA

bei Deposit NEUER INH. DER ADR. DES BZ

sonst | | AKKU-INHALT.

L7 Le Ls5 Ly Lı Lo RP Re Rs RR R3 R Rı Ro

BEFEHLSZÄHLER UNE

‚DATEN FÜR DEPOSIT+INPUT

stepPf "5 sır |MINE.f AoR. ADR.FÜRLD ADR _OP-CODE . ADRESSE
1 | 1 1 1

OÖ 0 0 | 0

Cu, C3 Cr C Co 0000 Az Ar A} ÄAo B7 Bs Bs B, B3 Br Bj Bo

Bei diesem Experiment wird ein vereinfachter, aber kompletter Rechner simuliert. Er hat

denselben Befehlsvorrat wie der Akkumulator mit Datenspeicher in Experiment 4. Zusätzlich

hat er einen HALT-Befehl (HLT), damit der Rechner am Ende eines Programms angehalten

werden kann. Im Gegensatz zum Experiment 4 werden im 16-Wort-Speicher nicht nur

Daten sondern auch das Programm abgespeichert. Das Programm und die Daten werden

mit dem DEPOSIT-Schalter C,; in den Speicher geladen. Damit ein Programm automatisch

ablaufen kann,enthält der simulierte Rechner einen Befehlszähler (BZ). Welche der 16 Adres-

sen gerade selektiert ist, wird durch die LEDs /, bis ZL, angezeigt. Die Funktionsweise des

Befehlszählers können Sie wie folgt kontrollieren:

— Stellen Sie alle Schalter außer C, auf O. Bei C, = 1 arbeitet das System im Single-Step-

Betrieb, d.h., der Befehlszähler kann mit Schalter C; (RUN) in Einzelschritten getaktet werden

— In L; bis L, erscheint jetzt eine beliebige Adresse von 0000 bis 1111.

— Takten Sie das System mit RUN. An /, bis L, können Sie sehen, daß der Befehlszähler

mit jedem Takt um einen Schritt höherspringt.

Mit den Schaltern A, bis A, können Sie den Befehlszähler auf eine bestimmte Adresse

laden.

WennSie z.B. A; bis A, auf O 1 1 O einstellen und den Schalter LOAD-ADRESS(C,) betätigen,

wird der Befehlszähler auf diese Adresse gesetzt (Anzeige durch /, bis /L,). WennSie jetzt

mit dem RUN-Schalter weitertakten, zählt der Zähler von dieser Stellung weiter.

Mit den Schaltern B, bis 3, können OP-Code und Adresse eingegeben werden.Hierbei ist

unbedingt zu berücksichtigen, daß es sich um einen Befehlhandelt, der in einer bestimmten

Adresse abgespeichert wird. Wenn Sie z.B. 3, bis dJ, auf 0 1110010 einstellen und den

Schalter DEPOSIT C, takten, wird dieser Befehl in der Adresse abgespeichert, die gerade

vom Befehlszähler selektiert ist. Der Befehl O 1 110010 besagt laut Tab. 3.5.1: Addiere

den Inhalt der Adresse 00 10 zum Inhalt des Akkus. Dies bedeutet — und dasist unbedingt

zu beachten — daß bei der Befehlszählerstellung, bei der dieser Befehl eingegeben wurde,

diese Rechenoperation durchgeführt wird. Da hier eine neue Denkweise einsetzt, wollen wir

das Prinzip an einem Beispiel ausführlich erläutern:

1. Beispiel:

Folgende Aufgabenstellung ist zu programmieren: Die an 2, bis 5, eingestellten Daten sollen

mit dem Inhalt der Adresse 0 1 00 addiert werden.

Ablauf: |

1. Alle Schalter zunächst in Stellung O bringen

2. Schalter LOAD-ADRESS (C.) takten. Damit wird der Befehlszähler auf Adresse 0000

gesetzt

3. Schalter 3, bis B,auf 0 1000000 stellen. Diesentspricht dem Befehl CLA = Lösche Akku

4. Mit DEPOSIT-Schalter (C,) takten. Damit ist der CLA-Befehl in der Adresse 0000 ge-

speichert. Gleichzeitig springt der Befehlszähler auf Adresse 0001, d.h., jetzt kann eine

Information in dieser Adresse gespeichert werden

5. Schalter B, bis BJ, auf 11010000 einstellen. Dies entspricht dem INP-Befehl

E13

6. Mit DEPOSIT-Schalter takten; der INP-Befehl ist in Adresse 0 00 1 gespeichert, Befehls-

zähler springt auf Adresse 0 010

7. Schalter B, bis Bu, auf 01110100 einstellen. Dies entspricht dem Additionsbefehl

mit der Adresse 0100 |

8. Mit DEPOSIT-Schalter takten, ADD-Befehlist in Adresse O0 O 1 O gespeichert

9. Schalter ZB, bis Bd, auf 11110000 stellen. Dies entspricht dem HALT-Befehl. Wenn am

Ende eines Programmsdieser Befehl nicht erscheint, rechnet das System unkontrolliert weiter

10. Mit DEPOSIT-Schalter takten

11. Damit sich ein kontrollierbares Ergebnis ergibt, speichern wir in Adresse 0100 die

Daten 11110000 ab. Hierzu 2, bis 3, auf 111 10000 einstellen und mit DEPOSIT

takten

Jetzt ist der Programmiervorgang abgeschlossen, undder Rechner kann die jeweils an den

B-Schaltern eingestellten Daten mit dem Inhalt 11110000 der Adress 0100

addieren. Damit wir die einzelnen Schritte genau verfolgen können,schalten wir C, auf 1, d.h.

SINGLE-STEP-Betrieb. Da der Befehlszähler jetzt bei Adresse O0 1 OO steht, setzen wir ihn

durch Takten von C,u = LOAD-ADRESS auf Adresse 0000 zurück (A; bis Au auf O0OOO0).

Als erste Aufgabe rechnen wir 00001111 plus Inhalt Adresse O0 1 00. Hierzu stellen

wir BD, bis BJ, auf 00001111 ein. Jetzt takten wir einmal mit Schalter RUN. Die Anzeige

R; bis RA, muß Null sein, da mit dem 1. Takt der Akkumulator gelöscht wird. Der Befehlszähler

springt auf Adresse O0 00 1. Jetzt mit Schalter RUN wieder takten. Daten 2, bis B, werden

in den Akku geladen und erscheinen in A, bis R,. Mit RUN nochmals takten. Jetzt erfolgt die

Addition. Im Akkumulator und in der Anzeige steht das Ergebnis 11111111.

Mit RUN takten. Der Rechner arbeitet nicht weiter, da im Programm ein HALT-Befehl

gespeichertist. Sie könnenjetzt selbst mit verschiedenen Daten an 2, bis B, das Programm

wiederholen. Wesentlich ist, daß zu Beginn einer Aufgabe immer erst der Befehlszähler auf

0000 zurückzustellen ist. Wenn Sie Beispiele wählen, die einen Übertrag ergeben, leuchtet

‚die Carry-Anzeige Lo, auf. |
Wenn der Schalter SINGLE-STEP auf O steht und dann der RUN-Schalter betätigt wird,

läuft das Programm automatisch mit einer sehr hohen Systemfrequenz ab. Die einzelnen

Zwischenschritte können dann nicht mehr mit dem Auge verfolgt werden. Lediglich ein

kurzes Aufleuchten der Anzeige RUN (Z,) signalisiert, daß der Rechnerarbeitet. |

2. Beispiel:

Die Aufgabenstellung lautet, einen Vorwärtszähler zu simulieren. Hierzu verwenden wir den

INC-Befehl. |

Ablauf:

1. Befehlszähler auf © 000 stellen

2. B,biB, auf O0 1010000 einstellen

3. Mit DEPOSIT das System 16maltakten.Jetzt ist in jeder Adresse der INC-Befehl gespeichert.

Da kein HALT-Befehl eingegeben wurde, läuft das System so lange, wie mit RUN getaktet

wird. Wenn Sie C, = O einstellen und den RUN-Schalter auf 1 stellen, läuft der Vorgang

automatisch ab. Ab R, können Sie ein deutliches Blinken der Lampen erkennen. Die Zähl-

frequenz läßt sich verringern, wenn Sie nur einen INC-Befehl undz.B. 15 NOP-Befehleein-

geben. Wennjetzt der Befehlszähler läuft, wird nur immer bei einer Adresse der Akku-Inhalt

um 1 erhöht, während der übrigen 15 Adressen führt das System keine Operation aus.

3. Beispiel:

Vorwärtszähler mit niedriger Zählfrequenz.

Ablauf:

1. Befehlszähler auf 0000 stellen
2. INC-Befehl laden

3. NOP-Befehl 15mal laden

Sie können die wesentlich niedrigere Zählfrequenz an AR, bis A. deutlich erkennen.

Über den DEC-Befehl läßt sich ein Rückwärtszähler simulieren. Erstellen Sie selbst einmal

ein Programm für einen langsamen Rückwärtszähler. Dies dürfte an dieser Stelle bestimmt

keine Schwierigkeiten mehr bereiten.

E14

Ein wesentliches Merkmal eines Rechners ist, daß er Entscheidungentreffen kann. Wie Sie

später noch sehen werden, gibt es hierfür bestimmte Befehle. Der hier simulierte einfache

Rechner verfügt nicht über diese Befehle. Über eine geschickte Programmierungistes jedoch

möglich, bestimmte Entscheidungen auch von diesem System treffen zu lassen.

4. Beispiel:

Größer/kleiner-Vergleich von 2 Zahlen.

In diesem Beispiel werden 2 Zahlen A und 2 miteinanderverglichen. Die jeweils größere Zahl

wird dabei zur Anzeige gebracht. Als Zahl A wählen wir 20, & 100000,. Die Zahl A

wird im Speicher abgespeichert. Die Zahl 3 kann an den Schaltern 3, bis B, eingestellt

werden. Sie wird dann mit A verglichen. Ist A größerals ZB, wird A angezeigt und umgekehrt.

Der Rechnerbildet die Differenz B — A undtrifft aufgrund des Ergebnisses die Entscheidung,

‚welche Zahl in A, bis A, angezeigt wird. Der Ablauf ist in einem Flußdiagramm dargestellt

(Bild 1).

B einlesen und

abspeichern

 Differenz

positiv ?
nein

B anzeigen A anzeigen

Bild 1

HALT HALT .:
Flußdiagramm zum 4. Beispiel

Wir geben zunächst das Programm für diese Aufgabe an und besprechen anschließend die

einzelnen Schritte (Tab. 1).

Adresse Inhalt Befehl Kommentar

hexadez. binär |hexadez. binär

O 0000 Dx 1101xxxx INP B-Eingänge in den Akku laden

1 0001 EE 11101110 STA Inhalt Akku in Adresse E abspeichern

2 0010 SF 10001111 SUB Subtraktion 3 minus Inhalt Adresse F

3 0011 9D 10011101 AND höchste Stelle ausblenden

4 0100 7C 01111100 ADD Entscheidungsaddition

5 0101 E7 11100111 STA Ergebnis in Adresse 7 abspeichern

6 0110 3F 00111111 LDA Zahl A in Akku laden

7 0111 - - - |- - - - - - - - ADD/HLT| Entscheidungsadresse

8 1000 3E 00111110 LDA Zahl ZB in Akku laden

9 1001 Fx 1111xxxx HLT System HALT

A 1010 xXXXXXXXX nicht belegt

B 1011 xXXXXXXXX nicht belegt

C 1100 01110000 5 Daten für Entscheidungsaddition
D 1101 10000000 < Maske für Ausblendung

E 11101 |=-------- Q Adresse für Zahl B
F 1111 00100000 Zahl A

Tab. 1

Programm zum 4. Beispiel

E15

Entsprechend der Aufgabenstellung soll die im Speicher abgespeicherte Zahl 2 O,, mit einer

an B, bis B, eingestellten Zahl verglichen werden. Die Zahl A ist in Adresse F abgespeichert.

Wird jetzt an B, bis B, eine Zahl B eingestellt, so muß diese zunächst in den Akku geladen

werden (INP-Befehl).

Mit dem STA-Befehl wird dann die Zahl B in der Adresse E abgespeichert. Dabei wird der

Inhalt des Akkus nicht verändert, d.h., Z steht weiterhin auch im Akku.

Durch den SUB-Befehl wird die Differenz 3 — A gebildet. Dabei entsteht bei AB > A ein

positives und bei A< A ein negatives Ergebnis. Nach der Zweierkomplementarithmetik wird

eine positive Zahl durch eine O, eine negative Zahl durch eine 1 in der werthöchsten Stelle

gekennzeichnet. Entscheidungskriterium ist also das werthöchste bit des Ergebnisses der

Subtraktion.

Aus diesem Grunde wird jetzt mit einem AND-Befehl das werthöchste bit ausgeblendet.

Beispiel: |

| OXXXXXxXxXxX beliebige positive Zahl
A 10000000

00000000

Ixxxxxxx beliebige negative Zahl

A\ 10000000 |

10000000

In Adresse D ist 10000000 gespeichert. Der in Adresse 3 gespeicherte AND-Befehl

bildet die UND-Verknüpfung zwischen Inhalt Akku und Inhalt Adresse D. Als Ergebnisse

können nur 00000000 (positives Ergebnis der Subtraktion) bzw. 10000000

(negatives Ergebnis der Subtraktion im Akku) erscheinen.

Im nächsten Programmschritt wird nun eine Entscheidungsaddition durchgeführt. Entspre-

chend dem ADD-Befehl in Adresse 4 wird zu dem ausgeblendeten Ergebnis der Inhalt von

AdreseC = 01110000 addiert.

Ist 3 >A erhalten wir:

00000000
+_01110000

01110000

Ist 2< A erhalten wir:

10000

10000

10000000

+ 011

111

Entsprechend der Befehlsstruktur des einfachen Rechnersstellen die 4 werthöheren bit den

OP-Code, die 4 wertniedrigeren bit die Adresse dar. Entscheidend ist, daß der OP-Code

1111 den HLT-Befehl darstellt. Wenn wir nun das Ergebnis der Addition über den STA-

Befehl in Adresse 7 abspeichern, wird der Rechner beim Abarbeiten des Programmesbei

der Adresse 7 entweder anhalten (bei A < A) oder, wenn B > A ist, eine Addition zwischen

Akku-Inhalt und Inhalt Adresse O durchführen. Wenn der Befehlszähler bei 3 < A gestoppt

wird, muß die größere Zahl A angezeigt werden. Dies geschieht dadurch, daß in Adresse 6

der Akku über den LDA-Befehl mit dem Inhalt der Adresse F = 2 O,, geladen wird. |

Ist dagegen B > A, erfolgt bei Adresse 7 eine Addition von Akku-Inhalt und Inhalt Adresse O,

deren Ergebnis aber keine Bedeutung hat. In diesem Falle muß die in Adresse E gespeicherte

Zahl B über einen LDA-Befehl in den Akku geladen werden, damit sie in A, bis A, angezeigt

werden kann. In Adresse 9 ist für diesen Fall dann der HLT-Befehl programmiert.

Sicherlich werden Ihnen die hier dargelegten Gedankengänge kompliziert erscheinen. Das

liegt ganz einfach daran, daß der vereinfachte Rechner noch keine direkten Entscheidungs-

befehle enthält. Wir müssen ihn vielmehr so programmieren, daß er bei einem bestimmten

Kriterium selbst einen HALT-Befehl erzeugt. Bevor wir das Programm mit konkreten B-Zahlen

noch einmal durchsprechen, muß das Programm zunächst geladen werden:

1. Alle Schalter auf Null stellen
2. Schalter LOAD-ADD takten

E16

3. Schalter B, bis B, auf 1 101 einstellen und DEPOSIT takten

A. B; bis Bu, auf 11101110 einstellen und DEPOSIT takten

5. B,bis 5, auf 10001111 einstellen und DEPOSIT takten

6. Z, bis J, auf 10011101 einstellen und DEPOSIT takten

7. B, bis B,. auf O0 111 1100 einstellen und DEPOSIT takten

8. B, bis BZ, auf 11100111 einstellen und DEPOSIT takten

9. B, bis B, auf 00111111 einstellen und DEPOSIT takten

10. DEPOSIT takten. Damit springt der Befehlszähler auf Adresse 8

11. B; bis Bo auf 00 111110 einstellen und DEPOSIT takten

12. B; bis Bo auf 1 111 xxx x einstellen und DEPOSIT takten

13. DEPOSIT 2mal takten. Damit springt der Befehlszähler auf Adresse C

14. B, bis Bo auf 0 1110000 einstellen und DEPOSIT takten

15. B, bis Bo auf 10000000 einstellen und DEPOSIT takten

16. DEPOSIT takten, der Befehlszähler springt auf Adresse F

17. B, bis Bo auf 00100000 einstellen und DEPOSIT takten

Damit steht das Programm im Speicher. Der Befehlszähler steht wieder bei Adresse O

(L, bis L,). Als Beispiel 1 wollen wir einen Vergleich zwischen 3 = 7,, und A = 2 O,, durch-

führen. Damit die einzelnen Schritte nachvollzogen werden können, System auf SINGLE-

STEP-Betrieb schalten (C, = 1). An B, bis B, wird 00000111 = 7,, eingestellt. Jetzt

wird das System mit dem RUN-Schalter schrittweise getaktet.

1. Takt: In A, bis AR, erscheinen die Daten 2, bis B,

2. Takt: Daten 3, bis B, werden in Adresse E gespeichert

(Kontrollieren Sie über EXAMINE-Funktion.Vergessen sie nicht Befehlszähler über LOAD-ADR
wieder auf Adresse 2 zurückzustellen) |

3. Takt: A, bis Aoglech 11100111 = -1 9ıs

4. Takt: A, bis RA, gleich 1000000 0. Das werthöchste bit wird ausgeblendet

5. Takt: A, bis A, gleich 11110000. Durch die Addition wird der HLT-Befehl für

Adresse 7 gebildet

6. Takt: A, bis A, bleibt, Akku-Inhalt wird in Adresse 7 abgespeichert

7. Takt: Inhalt Adresse F wird in den Akku geladen underscheint in A, bis Ao

8. Takt: Keine Änderung, da HLT-Befehl. Auch ein weiteres Takten hat keinen Einfluß

Jetzt führen wir den Vergleich mit der Zahl B = 3 F,, durch. Über LOAD-ADRBefehls-

zähler auf Adresse O einstellen, und 5; bis B, auf 00111111 = 3 F,, einstellen.

1. Takt: In A, bis A, erscheinen die Daten 2; bis Bo

2. Takt: Daten werden in Adresse E gespeichert

3. Takt: A, bis Aogleich OOO1 1111 & IF

4. Takt: A, bis A, geich 00000000 (Ausblenden)

5. Takt: A, bis Ro gleich O0 111000 0. Entspricht hier einem Additionsbefehl für Adresse 7

6. Takt: A, bis R. bleibt, Akku-Inhalt wird in Adresse 7 gespeichert

7. Takt: Inhalt Adresse F wird in Akku geladenunderscheint in A, bis Ro

8. Takt: A, bis Au gleich 111 10000. Dieses Resultat ergibt sich aus der Addition von

Akku-Inhalt und Inhalt Adresse O

Inhalt Adresse O: 11010000

Inhalt Akku: + 00100000

11110000

Es kann auchein anderes Ergebnis erscheinen, wenn bei der Programmierung der Adresse O

die bit 5,3 bis 5, einen anderen Wert gehabt haben. Vom Programm ändert sich nichts, da

der INP-Befehl keine bestimmte Adresse spezifiziert (x x x x)

9. Takt: Die Zahl Z (Inhalt Adresse E) wird in den Akku geladen. A,bisAogleich0OO1 11111

10. Takt: Keine Änderung, da HLT-Befehl. Auch ein weiteres Takten hat keinen Einfluß

Entscheidend bei diesem Programm ist der Gedankengang, über eine bestimmte Operation in

einer bestimmten Adresse unter einer bestimmten Voraussetzung einen HALT-Befehl zu

erzeugen.

E17

5. Beispiel:

Das System soll so programmiert werden, daß beim Takten die LEDs A, bis A, nach folgendem

Schema aufleuchten:

Rz RR Rı Ro

1. Takt 006009
2. Takt 000 _4
3. Takt 0 o170
4. Takt o4 0 0
5. Takt 10 0 0
6. Takt o >00
7. Takt oO 010
8. Takt 0 00°
9. Takt 000%

10. Takt 000 _4
11. Takt 0 o10
12. Takt o 0 0
13. Takt 10 0 0
14. Takt 0 100

Für diese Aufgabenstellung ergibt sich z.B. folgende Programmierungsmöglichkeit (Tab. 2).

Adresse Inhalt Befehl Kommentar

hexad. binär hexad. binär |

0.110000 4x O100xxxx CLA Lösche Akku

1 0001 5x O1I10O1xxxx INC Incrementiere Akku

2 0010 5x O1I101Ixxxx INC Incrementiere Akku

3 0011 TF 011111119 ADD Addiere Akku-Inhalt mit 2

4 0100 TE 01111110 ADD Addiere Akku-Inhalt mit 4

5 0101 SE 10001110 SUB Subtrahiere von Akku-Inhalt 4

6 0110 SF 10001111 SUB Subtrahiere von Akku-Inhalt 2

7 0111 6x O11O0Oxxxx DEC Decrementiere Akku

8 1000 6x O110Oxxıxxxı DEC Decrementiere Akku

9 1001 5x O10O1xxxx INC Incrementiere Akku

A 1010 5x O101xxxx INC Incrementiere Akku

BI1011 TF 01111111 ADD Addiere Akku-Inhalt mit 2

C 1100 TE 01111110 ADD Addiere Akku-Inhalt mit 4

D 1101 8E 10001110 SUB Subtrahiere von Akku-Inhalt 4

E 1110 04 00000100

F 1111 02 00000010 DATEN

Tab. 2

Programm zum5. Beispiel

 Dieses Programmist relativ einfach und bedarf daher keiner umfangreichen Erklärung. Für

die Speicherung der Daten werden nur 2 Adressen benötigt, da die Additions- und Subtrak-

tionsbefehle dieselben Daten benötigen. Zu bemerken ist außerdem noch, daß die Aufgaben-

stellung auch noch über andere Programme möglich ist. So kann z.B. der Befehl INC, der

beim 2. Takt das Muster 0001 in A; bis A, erzeugen soll, durch den Befehl SP1

Setze Akkugleich 1, ersetzt werden. .
Störend im Programmablauf ist, daß die Adressen E und F NOP-Befehle darstellen. Dadurch

ändert sich bei 2 Takten der Akku-Inhalt nicht. Umfangreichere Mikrorechnerlassen sich

dagegen so programmieren, daß ein kontinuierlicher Ablauf entsteht.

Vielleicht taucht beiIhnen jetzt die Frage auf, welche praktische Nutzanwendungein solches

Programm haben könnte. Beispielsweise könnte man anstatt der LEDs A, bis A, einen

E18

Digital-Analog-Wandler (D/A-Wandler) an das System anschließen. Ein D/A-Wandler wandelt

ein digitales Signal in ein analoges Signal um. Er könnte z.B. folgendes Verhalten aufweisen

(Bild 2).

Ro

Rz R; Rı Ro A s

D
OÖ OÖ OÖ OÖ OV Rı .

OÖ OÖ OÖ 1 1V A

00 10 2V R, -
OÖ 1 OÖ OÖ AV ”

10 00 8 V A
O9

Bild 2

D/A-Wandler

Liegt an seinen Eingängen das Wort 0000, beträgt die Ausgangsspannung O V, bei

0001 istsie 1 V usw.

Läßt man nun den Befehlszähler mit einer bestimmten Frequenz laufen, so kann man mit

einem Oszilloskop am Ausgang des D/A-Wandlers folgendes messen (Bild 3).

|A V N

64 N

44+

N

2+

mL

1 2 3 7 5 6 7 8 9 on 293 2 9
Takt- —>

Bild 3 impulse

Ausgangsspannungeines D/A-Wandlers

Die so gewonneneTreppenspannung kanndurch entsprechende Formung als eine quadratische

Funktion benutzt werden, die irgendeinen Vorgang steuert.

Aufgaben:

1. Erstellen Sie die Programmefür folgende Aufgaben:

a) 510 :-B=

b) 810 :B=

2. Der 8421-BCD-Code entspricht den Binärzahlen 0000 bis 1001. Mit 4-bit-Wörtern

lassen sich 16 verschiedene Zahlen darstellen. Damit werden für den 8421-BCD-Codedie

Zahlen von 1 O0 1 O bis 1 1 1 1 nicht benötigt und als Pseudotetraden bezeichnet. Entwerfen

Sie ein Programm, das bei Eingabe einer Pseudotetrade mit B3 bis Bo in der Anzeige R7 bis

Ro -1,d.h.1 1111 1 1 1, erscheinenläßt. Handelt es sich bei der Eingabe um keine Pseudo-

tetrade, soll in Aa bis Ro die Eingabe B3 bis Bo erscheinen.

Anmerkung:

Orientieren Sie sich bei dieser Aufgabe an dem 4.Beispiel.

Die Lösungen finden Sie auf Seite E22.

E19

Experimentieranhang

Lösungen zu Experiment 1

1. a) A-Schalter: O1111101 =&

+ B-Schalter: 00101000 &

Ergebnis: 1 010010 US

R- bis Ro

b) A-Schalter: 10111000 &

+ B-Schalter: 01100100 &

100011100 =

lo R,bisk,

2. a) A-Schalter: 01111000 &

A-Schalter1: 10000111 &

INC-Schalter 1: 10001000 =&

R- bis Ro

-b) A-Schalter: 00001100 &
A-Schalter1: 11110011 &

INC-Schalter 1: 1 111010 0 —

R- bis Ro

c) A-Schalter: 00000010 &
A-Schalter 1: 11111101 &

INC-Schalter 1: 1 111111 0 Z

R- bis Ro

3.) A-Schalter: 01111000 &

B-Schalter: 01100100 &

B-Schalter1: 100010011 =

lo R,;bisko

INC-Schalter 1: 1100010100 =&

lo R-ıbisR

Ergebnis: 00010100 =

b) A-Schalter: 10000010 &

B-Schalter: 10001100 =&

B-Schalter 1: 11110101 =&

R- bis Ro

INC-Schalter 1: 11110110 =

| R; bis Ao

Ergebnis: 11110110 =

Lösungen zu Experiment 2

1. a) Funktion C; bis Co: 0111

A-Schalter: 00110100 =&
+ B-Schalter: 00100001 =

01010101 =&

R; bis Ao

E21

12540

184,0
1 00,0

284,0

120,0

100,0

A+B

A+B+1=A-B

2010

130,0

140,0

A+B

A+B+t1=A-B

10,0

3 As

2 The
5 de

b) Funktion C; bis Co: 1000

A-Schalter: 00010100 & 14,
-B-Schalter: 01001000 & 48,

1110011008 -34,

Lo RıbisRo

2.) Funktion Cz bis Co: 1000 |

A-Schalter: 10000001 = 81,

-B-Schalter: 01110101 & 75,

00001100 & 0C,

R; bis Ro

b) Funktion C3z bis Co: 1000 |

A-Schalter: 01110110 2 76,

-B-Schalter: 10000100 & 84,

Lo R; bis Ro

3. a) FunktionCz bis Co: 1011

A-Schalter: 11001111

B-Schalter: 00000011

11001100

R; bis Ro

b) Funktion Cz bis Co: 1001

A-Schalter: 11010110

B-Schalter: 00001111

00000110

R; bis Ro

Lösungen zu Experiment 3

1. a) 00101100. 44,

R; bis Ro

b) 111110011 & -13:0

Lo R} bis Ro

c) | 10000110. -122

R, bis Ro

Anmerkung: Bei der Aufgabec) ist darauf zu achten, daß —4 8, , als Zweier-

komplement zu bearbeiten ist. Der Rechenablaufist also folgender:

1. Über CLA löschen
2. 4 8,. eingeben Ä

3. Vom Akku-Inhalt das Zweierkomplement bilden

4. 3 2,6 hiervon über SUB-Befehl subtrahieren

2. 11010110
Ve

R; bis Ro

E22

Lösungen zu Experiment 4

1. a) 2 1,s an B; bis B, einstellen:

Über DEPOSIT B-Datenin eine Adresseladen,z.B. Adresse 111 1

3 4,., an B, bis B, einstellen

Über INP-Befehl Akku mit B-Daten laden
SUB-Befehl mit Adresse 1 1 1 1 einstellenT

P
U
O
N
-

In A, bis AR, erscheint das Ergebnis 00010011 & 13,

b) 5 A4,., an B, bis B, einstellen

Über DEPOSIT B-Daten in eine Adresse laden, z.B. Adresse 1 11 1

2 4,, an B, bis B, einstellen

Über INP-Befehl Akku mit B-Daten laden
Über CMA-Befehl Akku-Inhalt komplementieren

Über INC-Befehl 1 zum Akku-Inhalt addieren
In A, bis A, steht jetzt das Zweierkomplement von 24,,(11011100)

. SUB-Befehl mit Adresse 1 1 1 1 einstellen und System takten

In A, bis Ru erscheint das Ergebnis 10001000 & -78ıe

D
O
O
P
U
O
N
Z
-

S
J

Inhalt der Adresse O 1 1 1 über EXAMINEfeststellen zB. 01010000

. Über LDA-Befehl Inhalt Adresse O0 1 1 1 in Akkuladen

Über INP-Befehl Akku-Inhalt plus 1 bilden
Neuen Akku-Inhalt über STA-Befehl in Adresse O 1 1 1 ladenB

u
n
-

2 4,, in Speicherladen, z.B. Adresse 0000

1 7,5 in Speicherladen, z.B. Adresse OO0 1

3 5,5 In Akku laden

Über ADD-Befehl mit Adresse 0 0 0 1 die Rechenoperation

35,6 + 1 7,8 durchführen

Über SUB-Befehl mit Adresse 0000 2 4,, vom Zwischenergebnis
subtrahieren . |
In A, bis A, erscheint das Ergebnis 00101000 £ 28,

P
@
O
N
D
-

N

Lösungen zu Experiment 5

1. a) Adresse Inhalt | Befehl Kommentar

OÖ 1101xxxx INP Lade B-Eingängein Akku

1 111011119 STA Speichere Akku-Inhalt in Adresse F

2 011111119 ADD Addiere Akku mit Adresse F

3 O1 111111 ADD Addiere Akku mit Adresse F

4 O11111I111I ADD Addiere Akku mit Adresse F

5 01111111 ADD Addiere Akku mit Adresse F

6 1111xxxx HLT HALT

b) Adresse Inhalt Befehl

0 1101xxxx INP

1 111011119 STA

2 01111111 ADD

3 011111119 ADD

A 01111111 ADD

5 011111119 ADD

6 011111119 ADD

7 011111119 ADD

8 011111119 ADD

9 ı1111xxxx HLT
E23

2. Kriterium für die Aufgabenstellung ist ein größer/kleiner-Vergleich der Eingabe B3 bis Bo = n

mit der Zahl 910 & 1001. Ist n > 9ı0, handelt es sich um eine Pseudotetrade, bei n < 9ı0
handelt es sich um ein Codewort des 8421-Codes. Anhand der Subtraktion n — 9ı0 kann

die entsprechende Entscheidung getroffen werden. Damit ergibt sich folgendes Flußdiagramm

(Bild 4).

neinlesen und

abspeichern

n - 99

Differenz nein

positiv?

 }

-1 211111111 n
anzeigen anzeigen

\ .
Bild 4

HALT HALT Flußdiagramm zu Aufgabe 2

Adresse Inhalt Befehl Kommentar

OÖ ı1101xxxx INP B3 bis Bo in Akku laden

1 11101110 STA Akku in Adresse E speichern

2 10001111 SUB Inhalt Adresse F von Akku subtrahieren

3 10011101 AND höchste Stelle ausblenden

4 01111100 ADD . Entscheidungsaddition

5 11100111 STA Ergebnis in Adresse 7 abspeichern.

6 00111110 LDA B3 bis Bo in Akku laden

7 - -- - - - - — ADD/HLT | Entscheidungsadresse

8 1100xxxx SM1 Akku -1 setzen

9 1111xxxx HLT HALT

A xXXXXXXxXXX nicht belegt

B XXXXXXXX nicht belegt

ocort
D 10000000

E B3 bis Bo DATEN

F 00001001
Da bei diesem Programm als Entscheidungskriterium n — 910 gewählt wurde, entsteht der

Nachteil, daß bei 33 bis Bo gleich 1001 = 9ı0 eine Pseudotetrade angezeigt wird. Das ist

aber falsch. Wenn wir als Kriterium 910 — rn wählen, wird dieser Nachteil aufgehoben. Damit

ergibt sich folgendes Programm:

E24

Adresse Inhalt Befehl Kommentar

0 1101xxxx INP B; bis Bo in Akku laden

1 11101110 STA Akku in Adresse E speichern

2 001111119 LDA Inhalt Adresse F in Akku laden

3 10001110 SUB Inhalt Adresse E von Akku subtrahieren

4 10011101 AND höchste Stelle ausblenden

1) 01111100 ADD Entscheidungsaddition

6 11101000 STA Ergebnis in Adresse 8 abspeichern
7 1100 xxxx SM1 Akku -1 setzen

8 + ------- ADD/HLT Entscheidungsadresse

9 00111110 LDA Inhalt Adresse E in Akku laden

A 1111xxxx HLT HALT

B | XXXXXXXX nicht benutzt

C 01110000

D 10000000

E Bas bis Bo DATEN

F 00001001

E25

Experiment 6: Hypothetischer Mikrorechner

Hypothetischer Rechner ITT MP-Experimenter

SYSTEM beiload Ad: uVaT:TISTT= |
bei Examine.
bei Deposit

bei Flags

I, le 5 LL3 L Li bo RR RRsRRR RRo

._ WIE MIT Bs,B4,B3 GEWÄHLT WIE MIT Bz,Bı , BoGEWÄHLT

x PerTsefr | FÜR Lz>....LofFÜR Rr...Ro
= P:sıt 'IMIne I aoR. DATEN FÜR LD -ADR+DEPO+INP DISPLAY-SELEKTOR

1

sonst:

1

0 0 0)

 G d& G 0 Ar As As A, Aa Ar Ar Av 00 B B, Ba B2 Bı Bo

Der hypothetische Mikrorechner bildet das zentrale Thema dieses Lehrganges. Aus diesem

Grunde ist es besonders wichtig, daß Sie dieses System einwandfrei beherrschen. Die

Versuche in diesem Experimentsollen in erster Linie dazu dienen, Sie mit dem hypothetischen

Mikrorechner vertraut zu machen. Im nächsten Lehrheft werden dann ausführlich die Pro-

grammiertechniken behandelt.

Bedeutung der Schalter:

Die Schaltergruppe C, bis C, hat die gleiche Bedeutung wie in Experiment 5. Wie aus der

aufgelegten Schablone zu erkennenist, wird bei LOAD-ADR.gleich 1 die an den Schaltern A;

bis A, eingestellte Adresse angewählt. Solange Co, = 1 ist, erscheint in den LEDs /, bis /. die

angewählte Adresse, der Inhalt dieser Adresse wird in A, bis A, angezeigt. Das gleiche

gilt für die Betätigung von EXAMINE und DEPOSIT. Bei DEPOSIT = 1 erscheint in A, bis Ro

der mit dem Takt abgespeicherte neue Adresseninhalt. Werden die erwähnten Schalter wieder

in die Stellung O zurückgesetzt, erscheinen in den beiden Anzeigenreihen die Daten, die

über die Schalter A, bis A, abgerufen werden. Hierbei kann mit den Schaltern 5, bis B; die

Anzeige /, bis /, und mit den Schaltern 5, bis 3, die Anzeige A, bis A, angewählt werden.

Die Schalter 3, und B, haben keine Bedeutung. Bei gleicher Einstellung von 2, bis B; und

B,; bis B, erscheinen in A, bis A, und /; bis L. die gleichen Daten. Der Anzeigecode

(Display-Code) in Tab. 1 spezifiziert die einzelnen Anzeigemöglichkeiten.

B; bis B; Anzeige in /, bis /o

bzw. bzw.

B; bis B, R- bis Ro

000 Inhalt von RO

001 Inhalt von R1

010 Inhalt von R2

011 Inhalt von R3

100 Stellung des Befehlszählers PC

101 Zustände der Flags |

110 Speicherwort, dessen Adresse vom Befehlszähler spezifiziert ist

111 Speicherwort, dessen Adresse mit A- bis A, spezifiziert ist

Tab.1
Anzeigecode

Die Codes O0 O0 bis O 1 1 bedürfen keiner weiteren Erklärung.

- Code 1 00 zeigt an, welche Adresse vom Befehlszähler gerade angewählt wird.

- Code 1 O0 1 gibt Auskunft darüber, welche Zustände die 4 Flags gerade einnehmen.

E27

- Code 1 10 gibt den Inhalt der Speicheradresse an, die vom Befehlszähler gerade an-

gewähltist.

- Code 1 1 1 zeigt den Inhalt einer Speicheradresse an, die mit den Schaltern A, bis Ao

frei wählbarist.

Wesentlich ist, daß die Schalter 2, bis B. keinen Einfluß auf den Funktionsablauf haben.

Sie dienen lediglich zur Anzeige bestimmter Daten, wenn ein Programm abläuft.

Damit Sie mit diesen grundsätzlichen Eigenschaften des Rechners vertraut werden, führen

Sie nachfolgendes Übungsprogramm Schritt für Schritt durch:

1. Alle Schalter auf Null stellen

2. A, bis A, auf 4 O,, einstellen

3. LOAD-ADR.auf 1 stellen (nicht takten!) |

In /Z, bis L, erscheint die an A; bis A, eingestellte Adresse, deren momentaner Inhalt

in A, bis AR, angezeigt wird

4. LOAD-ADR. auf O stellen, in L- bis L, und A; bis R, erscheint der zufällige Inhalt von RO,

da mit den Schaltergruppen 2; bis B, und 2; bis B, jeweils der Code 0 OO eingestellt ist

5. Schalter 3, bis B, auf 1 O0 einstellen. In A, bis A, erscheint die Adresse 4 O,,, die über

LOAD-ADR. geladen wurde

6. A, bis An auf 10000100 einstellen und DEPOSIT auf 1 stellen. In /, bis L, erscheint

die Adresse 4 O,,, in A, bis AR. die an A, bis A, eingestellten Daten. Schalter DEPOSIT auf O

zurückstellen. Bei 3, bis Bo = 100 erscheint jetzt in A, bis AR, die nächste Adresse 4 1,5

71. A, bis A, auf F E,, einstellen und DEPOSIT takten

8. A, bis A, auf O 1,. einstellen und DEPOSIT takten

9. A- bis A, auf 1 1,, einstellen und DEPOSIT takten

10. A, bis A, auf O 6,,; einstellen und DEPOSIT takten

11. A, bis A, auf O O,, einstellen und DEPOSIT takten

12. A, bis A, auf 4 O,, stellen und LOAD-ADR.takten

Wenn Sie alle Eingaben genau vorgenommenhaben,ist der Rechner mit einem bestimmten

Programm geladen und über Punkt 12 wieder auf die Anfangsadresse 4 O,, zurückgestellt.

Mit EXAMINE überprüfen wir die Eingaben:

1. Alle Schalter auf O

2. EXAMINEauf 1 stellen. In /- bis Z, erscheint die Adresse 4 0,,,in A,bis A, deren Inhalt 84, ,,

also der erste Befehl des Programms. Hierbei handelt es sich um den Befehl LOAD RO, FEjs

(lade Akkumulator RO mit dem Inhalt der Adresse F E,,). Diese Datenadresseist in der

nächsten Programmadresse abgespeichert

3. EXAMINEüber O wieder auf 1 stellen. In /, bis /. erscheint die Adresse 4 1,., der Inhalt FE,,

erscheint in A; bis AR,

4. Punkt 3. wiederholen. In /, bis /L, erscheint Programmadresse 4 2,.. Der Inhalt dieser

Adresse O 1,& (Anzeige in A, bis R,) entspricht dem Befehl MOVE R1, RO. Dieser Befehl

bewirkt, daß die Daten aus RO in R1 transferiert werden

5. Punkt 4. wiederholen.In /; bis /, erscheint Adresse 4 3,.. Der Inhalt 1 1,,.entspricht dem

Befehl ADDR R1, RO. Hierbei werdendie Daten des Registers RO mit dem Inhalt R1 inR1 addiert

6. Punkt 5. wiederholen. In der Adresse 4 4.,, ist der Befehl O 6,., d.h. MOVE R2, R1, abge-

speichert. Hierbei werden die Daten von R1 in R2 gebracht

7. Punkt 6. wiederholen. In der Adresse 4 5,, istder HALT-Befehlt abgespeichert

Damit dieses Programm mit definierten Daten ablaufen kann, speichern wir in Adresse FE,,

die Zahl 1 O;e: |

1. A, bis A, auf F E,s einstellen

2. Schalter LOAD-ADR.takten

3. A, bis A, auf 1 O,, einstellen

4. DEPOSIT takten

Jetzt stellen wir über LOAD-ADR. das System wieder auf die Prorammadresse 4 O,, zurück

und schalten über C, SINGLE-STEP-Betrieb ein.

Bevor wir das Programm schrittweise ablaufen lassen, stellen wir in Tab. 2 noch einmal die

Befehle zusammen.

E28

Adresse Inhalt Befehl Kommentar

(hexadez.) Maschinencode

40 10000100 LOAD RO, FE

41 11111110 Datenadresse

42 00000001 MOVE R1, RO

43 00010001 ADDR R1, RO

44 00000110 MOVE R2, R1

45 00000000 HLT

FE 00010000 Daten

Tab. 2

Zusammenfassung der bisher eingegebenen Befehle

Zur Beobachtung des Datenflussesstellen wir 3, bis B, auf 1 O0 (Stellung PC) und 2, bis 3, auf

000 (Inhalt RO). Mit Schalter RUN wird jetzt das System einmal getaktet. In /, bis /o

erscheint 1 O,,, also die Daten aus Adresse 4 1,,, da hier (durch MODE O 1 im Maschinen-

code bedingt) kein neuer Befehl, sondern eine Datenadresse abgespeichertist.

Schalter Z,; bis 33; auf 001 einstellen, und RUN erneut takten. Die Daten von RO erscheinen

jetzt auch in Ri. System mit RUN takten.In /, bis Lo erscheint das Additionsergebnis 2 O;..

Schalter 3, bis B; auf 0 1 O stellen und mit RUN takten. Die Daten von R1 erscheinen auch

in R2. Weiteres Takten hat keinen Einfluß mehr auf das System, da in Adresse 4 5,; ein

HALT-Befehl programmiertist.

Bevor wir jetzt weitere Beispiele programmieren, einige Worte über den Speicher. Insgesamt

hat der Speicher (RAM) eine Kapazität von 256 Wörtern ä 8 bit. Hierbeiist zu berücksichtigen,

daß die Adressen von O 1,s bis 1 8,, mit einem Unterprogramm fest belegt sind. Sie dürfen

also bei einem Programm nicht benutzt werden. Eine weitere Besonderheit stellt die

Adresse F F,, dar. Sie wird als INPUT-Adresse der A-Schalter benutzt und darf für ein .

normales Programm ebenfalls nicht benutzt werden. Über Adresse F F,, können die an den

Schaltern A, bis A, eingestellten Daten abgerufen werden. Diese Adresse ersetzt praktisch

den INP-Befehl aus Experiment 5. Wenn Sie z.B. in Adresse 4 1,, des vorherigen Beispieles

anstatt F E,s die Adresse F F,, abspeichern, können Sie das Programm mit den jeweils

an A, bis A, eingestellten Daten ablaufen lassen.

Der für Programmierungszwecke zur Verfügung stehende Datenbereich reicht also von Adresse

1 9,6 bis F Eie- |

E29

Experiment 6a

Nachdem Sie nun grundsätzlich mit der Anwendung des hypothetischen Mikrorechners

vertraut sind, wollen wir nachfolgend einige kleine Programmeerstellen.

1. Beispiel:

Die Register RO bis R3 sollen mit folgenden Daten geladen werden

RO: O 7ıe

Ri: O Fıs

R2: 1 Fıs

R3: 2 As

Dann soll der Inhalt RO mit dem Inhalt R3 in R3 addiert werden. Von dem Ergebnis R3 soll

in R2 mit dessen Inhalt die XOR-Verknüpfung gebildet werden. Das jetzt in R2 stehende

Ergebnis wird dann in R1 mit dessen Inhalt ODER-verknüpft.

Ablauf:

Als erste Programmadresse wählen wir 4 O,s, die Daten werden rückwärts mit der Adresse

F E,s beginnend abgespeichert (Tab. 3).

Adresse Inhalt Befehl

(hexadez) Maschinencode

40 10000100 LOAD RO, FE

41 11111110

42 10000101 LOAD R1, FD

43 11111101

44 10000110 LOAD R2, FC

45 11111100

46 10000111 LOAD R3, FB

47 11111011

48 00010011 ADDRR3, RO

49 01001110 XORR R2, R3

AA 00111001 IORR R1, R2

AB 00000000 HLT

FB | 00101010

FC 00011111 Daten

FD 00001111

FE 00000111

Tab. 3

Programm zum 1. Beispiel

Laden Sie dieses Programm. Wenn Sie beim Programmieren keinen Fehler gemacht haben,

erscheint in R1 als Lösung 2 F}s. Das Laden der Daten in F B,, bis F E,, geschieht

folgendermaßen:

F B,s an A, bis A, einstellen

LOAD-ADR. takten

2 A,s an A, bis A, einstellen

DEPOSIT takten

1 Fıs an A, bis A, einstellen

DEPOSIT takten

O F,,s an A, bis A, einstellenN
D
o
0
P
o
n
N
n
n

E3O

8. DEPOSIT takten

9. Ö 716 an A} bis Ao einstellen

10. DEPOSIT takten

Anschließend wird der Befehlszähler über LOAD-ADR. wiederin die Ausgangsstellung 4 Oje

zurückgebracht. Die Aufgabenstellung hätte auch so gelöst werden können, daß die Register

RO bis R3 zuerst über die Adresse F Fıs mit den A-Schaltern geladen worden wären. Dies

ist natürlich nur im SINGLE-STEP-Betrieb möglich. Der Vorgangist folgender:

1. Über LOAD-ADR. eine Adresse auswählen,z.B. 8 O,;
2. LOAD-Befehl an A, bis A, einstellen, zB. 10000100 (LOADRO, FF,.), DEPOSIT takten.

3. In Programmadresse 8 1,, über DEPOSIT die INP-Adresse F F,, abspeichern

4. LOAD-Befehl für R1 einstellen (1 0000 1 0 1) und DEPOSIT takten usw. bis Befehl

LOAD R3, FFıe

5. Über LOAD-ADR. auf Ausgangsadresse zurückstellen
6. Daten für RO an A, bis A, einstellen

7. C, auf SINGLE-STEP-Betrieb schalten

8. RUN einmal takten

9. Daten für Ri an A, bis A, einstellen

10. RUN einmal takten usw. bis R3

Alle Befehle der 1. Befehlsgruppe fühen bekanntlich Operationen zwischen 2 Registern bzw.

Akkumulatoren durch. In der Befehlsliste sind diese mit einem R am Ende gekennzeichnet,

z.B. ADDR, IORR, XORR usw. Bei Benutzung dieser Befehle ist besonders darauf zu achten,

daß in der mnemonischen Befehlsschreibweise der Datenfluß von rechts nach links, im

Maschinencode die Programmierung aberin Richtung SRC nach DSTerfolgt.

Beispiel:

Der Befehl ADDR RO, R1 besagt, daß in RO als DST-Register eine Addition mit dem Inhalt R1

des SRC-Registers erfolgen soll. Der Maschinencodelautet hierfür:

SRC
Na

00010100

Op-Code DST

Wir weisen an dieser Stelle auf diesen Punkt noch einmal ausdrücklich hin, da hier besonders

häufig Programmfehler gemacht werden.

Die Befehle INCR und DECR erhöhen bzw. erniedrigen den Inhalt eines Registers mit jedem

Takt um 1. Wenn wir z.B. in Adresse 1 9,, einen INCR-Befehl programmieren und die

restlichen Speicherplätze von 1 A,, bis F E,s mit dem NOP-Befehl belegen, haben wir einen

langsam zählenden Vorwärtszähler programmiert.

E31

Experiment 6b

Bei den Befehlen der 2. Befehlsgruppe gibt es grundsätzlich 2 Möglichkeiten:

- Direkte Adressierung, z.B. LOAD R2, 9 3 |
— Immediate Adressierung, z.B. ADDM R2, #75

Bei der direkten Adressierung steht im 2. Byte die Adresse, deren Inhalt als Daten benutzt

werden. Der Befehl LOAD R2, 9 3 besagt, daß die Daten der Adresse 9 3,5 in Register R2 zu

ladensind.

Bei der immediate Adressierung stehen die Daten direkt im 2. Byte. Der Befehl SUBMR2, # 75

besagt, daß %%#’inhalt R2 die Zahl 7 5,5uaen soll. Hierbei steht die Zahl 7 5,,
im zweiten Byte. |

Anmerkung:

Zahlenangaben wie 7 5, AF usw. werdenabjetzt immer hexadezimalverstanden. Ausnahmen

im Dezimalsystem werden durch den Index gekennzeichnet.

Wir wollen auch hierfür wieder ein kleines Programmbeispiel durchsprechen.

2. Beispiel:

Die Befehlsliste (Tab. 4) ist zu ergänzen und dann zu programmieren (Lösung Tab. 5).

Adresse Inhalt Befehl Kommentar

(hexadez) Maschinencode

40 | LOAD RO, 8 O

41

42 IORMRO,#17

43

44 ADDM RO, 8 1

45

46 SUBMRO,#04

47

48 XORM RO, #20

49 |

AA HLT

10

81 11

Tab. 4

Befehlsliste zum 2. Beispiel

E32

Adresse Inhalt Befehl Kommentar

40 10000100 LOAD RO, 8 O direkte Adressierung

41 10000000 Datenadresse

42 10110000 IORMRO, #17 immediate Adressierung

43 00010111 Daten

44 10010100 ADDM RO, 8 1

45 10000001

46 10100000 SUBMRO,#04

47 00000100

48 11000000 XORM RO, #20

49 00100000

AA 00000000 HLT

80 00010000 Daten

81 00010001

Tab. 5

Lösung zum 2 Beispiel

Als Endergebnis muß O0 4 in RO erscheinen. Wenn Sie dieses Programm im SINGLE-STEP-

Betrieb abarbeiten, werden Sie feststellen, daß der Befehlszähler immer eine Programm-

adresse überspringt, da in den Adressen 4 1, 4 3, 45, 4 7 und 4 9 keine Befehle,

sondern Datenadressen oder Daten abgespeichert sind.

E33

Experiment 6c

Ein wesentlicher Unterschied zum einfachen Rechner in Experiment 5 ist der, daß der

hypothetische Mikrorechner Sprungbefehle enthält. Bei den Sprungbefehlen muß grund-

sätzlich nach

— direkter Adressierung (MODE O0) und

- indirekter Adressierung (MODE O 1)

unterschieden werden. | |
Bei direkter Adressierung springt der Befehlszähler auf die im 2. Byte spezifizierte Adresse.

Bei indiekter Adressierung dient das 2. Byte als Adresse mit deren Inhalt der Befehlszähler

geladen wird. Der Befehl JUMP 8 1 bedeutet, daß der Befehlszähler auf die Adresse 8 1

springen soll. Er hat den Maschinencode:

117100000

OP-Code MODEBedingung

1000000711
nf

Sprungadresse

Der Befehl JUMP @ 8 4 bedeutet, daß der Befehlszähler auf eine Adresse springt, die vom

Inhalt der Adresse _8_4, bestimmt wird. Er hat den Maschinencode: \

OP-Code MODEBedingung
nn

11100100

10000100
Ds

Adresse, deren Inhalt die
Sprungadresse angibt

In beiden Fällen handelt es sichum unbedingte Sprungbefehle,festgelegt durch die Bedingung-

bit 0 O0. Um bedingte Sprungbefehle handelt es sich bei den Befehlen JMPZ, JMPN und JMPC.

3. Beispiel

Der Rechnerist mit dem in Tab. 6 angegebenen Programm zu laden.

Überprüfen Sie anhand von EXAMINE, ob Ihnen bei der Programmeingabe kein Fehler unter-

laufen ist. Wenn alles richtig eingegeben wurde, können Sie mit diesem Programm die

Wirkungsweise der Sprungbefehle eindeutig erkennen.

Gehen Sie dabei folgendermaßen vor:

Über LOAD-ADR. Befehlszähler auf Ausgangsadresse 4 O stellen

A-Schalter auf Null

System auf SINGLE-STEP-Betrieb stellen

B; bis B, auf 1 00 stellen (AR, bis A, zeigt Stellung des Befehlszählers an)

B,; bis B;, auf OO0 stellen (Z, bis L, zeigt Inhalt Register RO)

Über RUN System Schritt für Schritt taktenO
U

P
O
@
O
N
Z
A

Daalle A-Schalter auf O sind, entsteht bei dem Befehl SUBM RO, 7 1 in Adresse 4 4

ein negatives Ergebnis. Dies bedeutet, daß jetzt der Befehl JUMPN @ 7 2 ausgelöst wird.

Der Befehlszähler springt auf Adresse 4 E. In 4 E steht der Befehl LOAD RO, # OF, d.h,,

RO wird mit O F geladen. Im nächsten Befehl wird dann die XOR-Verknüpfung gebildet.

Dannfolgt der Befehl JUMP 40, d.h., der Befehlszähler wird auf die Ausgangsadresse 4 O

zurückgestellt, und der Vorgang beginnt von neuem. |

Jetzt wird, wie vorher beschrieben, das Ganze mit einer Zahl an den A-Schaltern größer 2 O

(z.B. 2 2) wiederholt. Da jetzt bei dem Befehl SUBM RO, 7 1 kein negatives Ergebnis

entsteht, erfolgt an dieser Stelle kein Sprung. Über Befehl LOAD RO, FF wird RO mit 22

E34

Adresse Inhalt Befehl Kommentar

40 10000100 ÄB%LOAD RO, 70
41 01110000 I\o
42 10010100 #&@ADDMRO,FF Daten der A-Schalter
43 11111111
44 10100100 ÄYSUBMRO, 71
45 01110001 74
46 11100110 F&EJMPN@72 bedingter Sprung (indirekt)
47 01110010 9%
48 10000100 RBYLOADRO,FF
49 11111111 FF
aa 10100000 AO0SUBMRO,#20
4B 00100000 20
4C 11100101 ZSJMPZ @7 3 bedingter Sprung (indirekt)
4D 01110011 93
4E 10000000 &0LOADRO, #0OF
AF 00001111 Br
50 11000000 EOXORMRO, #18
51 00011000 „8
52 11100000 2EOJUMPAO unbedingter Sprung

53 01000000 Wo

70 00100000 X
71 01000000 %O |
72 01001110 W£ Daten
73 01110101 5

75 01100000 bOINCR RO
76 00001111 DPDZNOP
77 00001111 DFNOP
78 00001111 PFNOP
79 00001111 DZNOP
7A 10010100 #34 ADDMRO,FF Daten der A-Schalter

7B 11111111
1C 11100011 &£3JMPC4O bedingter Sprung
7D 01000000 We
TE 11100000 EOJUMP 75 unbedingter Sprung
TF 01110101 PS

Tab. 6

Programm zum 3. Beispiel

geladen. Davon wird dann 2 O abgezogen. Da der Befehl JMPZ @ 7 3 nur ausgelöst wird,

wennbei dieser Subtraktion das Ergebnis O entsteht, erfolgt hier kein Sprung, das Programm

läuft bis Befehl JUMP 4 O durch und springt dann auf die Ausgangsadresse 4 O zurück.

Im nächstenBeispiel stellen wir die A-Schalter auf 2 O ein. Jetzt wird der Befehl JMPZ @7 3

wirksam. Der Befehlszähler springt auf Adresse 7 5 und führt hier einen INCR-Befehl aus.

Danach folgen 4 NOPs. In Adresse 7 A wird der Inhalt R O über den Befehl ADDM RO,

F F mit den Daten des A-Schalters addiert, in unserem Beispiel mit 2 O. In Register RO steht

danach 2 1. Der bedingte Sprungbefehl wird nicht ausgelöst, da noch kein Übertrag vorhanden

ist. Bei Adresse 7 E erfolgt ein unbedingter Sprung zur Adresse 7 5 zurück. Hier erfolgt

wieder INCR, 4mal NOP usw., bis nach einigen Schleifen ein Übertrag entsteht, der den

Befehl JMPC 4 O auslöst. Jetzt springt der Befehlszähler auf Adresse 4 O zurück, und der

ganze Vorgang läuft von neuem ab.

Der DISPLAY-SELEKTOR gestattet es, alle Einzelschritte genau zu verfolgen. So könnenSie

auch z.B. durch 2, bis 2, gleich 1 O 1 den Zustand derFlags in A, bis AR, anzeigen lassen

und somit feststellen, wann ein bedingter Sprung erfolgen muß.

E35

Experiment 6d

Im nächsten Beispiel befassen wir uns mit der Indexed-Adressierung. Als Indexregister

wird über MODE 1 O Akku R2 betrieben. Ein Additionsbefehl dieser Adressierungsart in

mnemonischer Schreibweise hat die Form:

ADDM RO,@R2

Der Maschinencodehierfür lautet:

100171000

OP-Code DST

Zuerst programmieren wir das im theoretischen Teil behandelte Beispiel.

Ab jetzt geben wir den Inhalt der Adresse nicht mehr in binärer Schreibweise an,

sondern wir verwenden auch hierfür die Hexadezimal-Schreibweise.

4. Beispiel (Tab. 7):

Adresse Inhalt Befehl Kommentar

40 82 LOAD R2, #90 Adresse der ersten Daten -

41 90 |

42 81 LOAD R1,#4 1 Anzahl der Datenwörter

43 41

44 20 SUBR RO, RO DST löschen

45 98 ADDM RO,@R2 Ä |

46 92 ADDM R2, # 1 erhöhe Datenadresse

47 01

48 Ai SUBM R1,# 1 erniedrige Schleifenzähler

49 01

AA E 1 JMPZAE aufhören bei RI = O

AB AE |

4C EO JUMP 45 sonst wiederholen

AD 45 |

AE 00 HALT

90 04

91 04

92 04

93 04

94 04

95 04

96 04

97 04

98 04

99 04

9A 04

9B 04

9C 04

9D 04

9E 04

9 F 04

AO 03

A1 03

E36

Adresse Inhalt Befehl Kommentar

A2 03

A3 03

A4 03

A5 03

A6 03

A7 03

A8 03

A9 03

AA 03

AB 03

AC 03

AD 03

AE 03

AF 03

BO 02

B 1 02

B2 02

B3 02

B4 02

B5 02

B6 02

B 7 02

B8 02

B9 02

BA 02

BB 02

BC 02

BD 02

BE 02

BF 02

co 05

Cı 05

C2 05

C3 05

C4a 05

C5 05

C6 05

C7 05

Cc8 05

Cc9g9 05

CA 05

CB 05

CC 05

CD 05

CE 05

CF 05

DO 05

Tab. 7/

Programm zum 4. Beispiel

Nachdem Sie Programm und Daten geladen haben, wird zuerst über LOAD-ADR. der

Befehlszähler auf die Anfangsadresse 4 O zurückgestellt. Lassen Sie dann das Programm

über RUN automatisch ablaufen. Der Rechner benötigt ca.2 Sekundenbis das Ergebnis E 5

in RO gebildet ist. Verfolgen Sie auch über SINGLE-STEP-Betrieb die Arbeitsweise von

Indexregister R2 und Schleifenzähler R1. |

Entscheidend ist, daß Sie die Funktion des Befehles ADDM RO, @ R2 genau erkennen. Es

werden jeweils die Daten zum Inhalt von RO addiert, die unter der Adresse des Index-

registers R2 abgespeichert sind. Ri dient als Zähler für die abzuarbeitenden Datenwörter.

E37

Experiment 6e

5. Beispiel: | |

Dieses Beispiel zeigt die Auto-Increment-Indexed-Adressierung. Die Aufgabenstellung

entspricht der im 4. Beispiel. Es werden die gleichen Daten wie im 4. Beispiel verwendet.

Daherist nur der Programmteil neu zu laden (Tab. 8).

Adresse Inhalt Befehl u Kommentar

40 83 LOAD R3,#90 Adresse der ersten Daten

41 90 |

42 81 LOAD R1,#41 Anzahl der Datenwörter

43 41 M | |

44 20 | SUBR RO, RO lösche Inhalt im DST RO

45 9C ADDM RO,@ R3t

46 AA SUBM R1,# 1 erniedrige Schleifenzähler
A 7 O1 | |

48 E 1 JMPZ4C aufhören, falls RI = O

49 4C

AA EO JUMP 45 sonst wiederholen

AB 45

AC 00. HALT

90 04 |

' Daten

DO 05

Tab. 8

Programm zum 5. Beispiel

Lassen Sie das Programm automatisch ablaufen. In RO erscheint als Ergebnis wieder E 5.

Laden Sie wieder Adresse 4 O,und betreiben Sie das System im SINGLE-STEP-Betrieb.

Stellen Sie den DISPLAY-SELEKTORso ein, daß Sie die Zustände von R3 und RO verfolgen

können.

Bei dem Befehl ADDM RO,@ R3? in Adresse 4 5 wird der Inhalt R3 jeweils um 1 erhöht,

gleichzeitig erfolgt in RO eine Addition mit den Daten, die in der von R3 spezifizierten

Adresse abgespeichert sind. Gegenüber dem 4. Beispiel entfällt der Befehl ADDM R2, # 1.

6. Beispiel: M

In diesem Beispiel geht es darum, mit Hilfe der Auto-Increment-Indexed-Adressierung den

Inhalt des Speichers auf ein bestimmtes Datenwort bzw. bit-Muster hin zu untersuchen.

Das bit-Muster wird über die B-Schalter in Adresse F F eingegeben.

Laden Sie das System mit dem in Tab. 9 gezeigten Programm.

Stellen Sie den DISPLAY-SELEKTOR so ein, daß Sie den Zustand von R1 und R3 verfolgen

können. Die Anfangsadresse A O laden. DieASchalter auf F F einstellen, und Programm

automatisch ablaufen lassen. Das System hält spätestens an, wenn R3 den Inhalt 4 4 anzeigt.

Das System hält früher an, wenn zufällig in einer vorherigen Adresse bereits der Inhalt F F

enthalten ist. Wie läßt sich dieses Verhalten erklären?

Mit dem Befehl SUBR R3, R3 wird das Autoindexregister R3 auf die Adresse O0 O gesetzt.

Beim nächsten Befehl LOAD R1,@ R3t wird R1 mit dem Inhalt der Adresse 0 O geladen

und gleichzeitig Ri auf Adresse O 1 gesetzt. Vom Inhalt R1 wird mit dem Befehl SUBM R1, FF

E38

Adresse Inhalt Befehl Kommentar

40 2F SUBR R3, R3 lösche R3

41 8D LOAD R1,@ R3!
42 A5 SUBM R1, FF

43 FF

44 E 1 JMPZ 48

45 48

46 EO JUMPA4 1

47 41

48 00 HALT

Tab. 9

Programm zum 6.Beispiel

der an 3; bis B, stehende Wert subtrahiert. Ist das Ergebnis ungleich O, hat der Befehl JMPZ 48

keine Auswirkung, und über JUMP 4 1 erfolgt ein erneuter Befehl LOAD R1,@ R3t. Hierbei

wird jetzt der Inhalt von Adresse O 1 in R1 geladen und R3 auf O 2 erhöht usw. Dieser

Vorgang wiederholt sich so oft, bis spätestens bei R3 = 4 3 Ri mit F F geladen und

gleichzeitig R3 auf 4 4 erhöht wird. Der nächste Befehl SUBM R1, F F bewirkt, daß der

Inhalt 3, bis B, von R1 subtrahiert wird. Damit entsteht in Ri das Ergebnis O. Der Befehl

JMPZ 4 8 bewirkt, daß ein Sprung in Adresse 4 8 mit dem HALT-Befehl erfolgt.
Stellen Sie selbst beliebige bit-Muster an A} bis A, ein, und lassen Sie dann das Programm

ablaufen.

E39

Experiment 6f

7. Beispiel:

In diesem Beispiel (Tab. 10) sollen die verschiedenen Adressierungsmöglichkeiten der STAC-

Befehle erläutert werden (außer Auto-Decrement-Indexed-Adressierung).

Adresse Inhalt Befehl Kommentar

40 80 LOAD RO, #40

41 4A0

42 74 STAC RO, 9 O0

43 90

44 82 LOAD R2, #91

45 Ä 91 | |

46 80 LOAD RO, #10

47 10

48 78 STACRO,@R2

49 83 LOAD R3,# 92

AA 92 |

AB 82 LOAD R2, #20

AC 20

4D TE STACR2,@R3?t

AE TE STAC R2, @R31

AF 7E STAC R2, @R31!
50 00 HALT

Tab. 10

Programm zum 7. Beispiel

Geben Sie das Programm ein, und takten Sie das Programm manuell durch. Laden Sie dann

Adresse 9 O. Mit EXAMINE ist der Inhalt der Adresse 9 O bis 9 4 zu überprüfen.

Folgender Inhalt muß vorhandensein:

90 > 40

91 > 10

92 > 20

93 > 20

94 > 20

Aus diesem Beispiel geht die Funktion der Indexed- sowie der Auto-Increment-Indexed-

Adressierung hervor.

8. Beispiel:

Mit diesem Beispiel wird die Funktion der Auto-Decrement-Indexed-Adressierung erläutert

(Tab. 11).

Laden Sie über LOAD-ADR. Adresse 8 E, und überprüfen Sie mit EXAMINE denInhalt der

Adressen 8E, SF und 90.

Resultat:

SE > 20

SF > 20

90 > 20

Dieses Beispiel zeigt, daß im Gegensatz zur Auto-Increment-Indexed-Adressierung zuerst

R3 decrementiert wird, bevor der eigentliche Befehl durchgeführt wird. Damit wird der

Inhalt von RO beim ersten STAC-Befehl in Programmadresse 44 in Adresse 90 gespeichert.

Mit den beiden nächsten STAC-Befehlen wird der Inhalt von RO in 8 F und dann in 8E

gespeichert.

EAO

Adresse Inhalt Befehl Kommentar

40 80 LOAD RO, #20

41 20

42 83 LOAD R3, # 91

43 91

44 70 STAC RO, @ +R3

45 70 STAC RO, @ +R3

46 70 STAC RO, @ ıR3

47 00 HALT

Tab. 11

Programm zum 8. Beispiel

E41

Experiment 6g

r

9. Beispiel: | | |

Dieses Beispiel zeigt. die Funktion der Befehle INCR, DECR, RACL und RACR (Tab. 12).

Adresse Inhalt Befehl Kommentar

40 80 LOAD RO, #01

41 01

42 60 INCR RO

43 60 INCR RO

44 60 INCR RO

45 60 INCR RO

46 64 DECR RO

47 64 DECR RO
48 64 DECR RO

49 68 RACL RO

4a“ 68 RACL RO

AB 68 RACL RO

AC 68 RACL RO

AD 68 RACL RO

AE 68 RACL RO | Ä

AF 68 RACL RO Carry-Flag überprüfen

50 68 RACL RO

51 68 RACL RO

52 68 RACL RO

53 6C RACR RO

54 6C RACR RO

55 6C RACR RO Carry-Flag überprüfen
56 6C RACR RO |

57 6C RACR RO

58 6C RACR RO

59 EO JUMP 4 0

BA 40

Tab. 12

Programm zum 9. Beispiel

Laden Sie Adresse 4 O, und takten Sie das Programm manuell durch. Überprüfen Sie bei

den Programmadressen 4 F und 5 5 den Zustand des Carry-Flags.

10. Beispiel:
In diesem Beispiel wird gezeigt, wie mit Hilfe des STAC-Befehles über Auto-Increment-

Indexed-Adressierung ein bestimmter Speicherbereich gelöscht werden kann. In diesem

Beispiel soll der Speicherbereich 8 O bis B F gelöscht werden, d.h., es müssen 4 Oje

Speicheradressen gelöscht werden (Tab. 13).

Überprüfen Sie über EXAMINE, ob die Adressen 8 O bis B F tatsächlich den Inhalt O O

aufweisen. Über das Programm selbst ist nicht sehr viel zu sagen. Bei Adresse 45 wird R 1

auf 0 O gebracht. Dieser Inhalt wird dann über den Befehl STAC R1, @R3? bei Adresse 80

beginnend so lange in die darauffolgenden Speicheradressen geladen, bis R2 auf OO an-

gekommenist. Dann erfolgt der Sprung nach Adresse 4 C mit dem HALT-Befehl.

E42.

Adresse Inhalt Befehl Kommentar

40 83 LOAD R3, #80 Anfang Speicherbereich
41 80

42 82 LOAD R2,#40 Anzahl der Wörter

43 40 |

44 25 SUBR R1, R1 R1 löschen

45 7D STAC R1,@R3!

46 A2 SUBM R2,#01

47 01

48 E 1 JMPZ4C

49 AC.

AA EO JUMP 45

AB 45

4AC 00 HALT

Tab. 13

Programm zum 10. Beispiel

E43

Experiment 6h

11. Beispiel:

Hier soll gezeigt werden, wie man mit einem 8-bit-Mikrorechner Zahlen mit mehrals 8 bit

verarbeiten kann. So sollen z.B. zwei 16-bit-Zahlen miteinander addiert werden oder in

2 Hälften in 2 Registern stehen. Wir arbeiten mit den Registern RO bis R3 und belegendiese,

wie Bild 1 zeigt.

5 | 8 7 0

RO RI erste Zahl

R2 R3 zweiteZahl

Carry linke Ergebnishälfte rechte Ergebnishälfte

Übertrag Übertrag

Bild 1

Addition zweier 16-bit-Zahlen mit einem 8-bit-Mikrorechner

Es gibt 2 Möglichkeiten, diese Addition durchzuführen:

a) Es werden zuerst die beiden linken Zahlenhälften addiert und dann die beiden rechten.

b) Es werden zuerst die beiden rechten Zahlenhälften addiert und danndie linken.

Möglichkeit a:

Laden Sie zuerst die einzelnen Register, wie Tab. 14 zeigt.

Adresse | Inhalt Befehl | Kommentar

38 80 LOAD RO, #10

39 10

3A 81 M LOAD R1,#92

3B 92

3C 82 LOAD R2, #72

3D 72

3E 83 LOADR3, #12

3F 12

Tab. 14

Laden dereinzelnen Register.

Laden Sie nun das Programm für die Addition (Tab. 15).

Laden Sie jetzt Adresse 3 8, und takten Sie das System mit SINGLE-STEP. Wenn Sie die

Daten und Befehle richtig eingegeben haben, erscheint das Ergebnis:

1000001010100 10090
V v

R2 R3

x

Zu diesem Ergebnis kommen Sie auch, wenn Sie die genannten Zahlen von Hand addieren.

Laden Sie die Register wie folgt neu:

E44

Adresse Inhalt Befehl Kommentar

40 12 ADDR R2, RO linke Hälfte addiert

41 17 ADDR R3, R1 rechte Hälfte addiert

42 E3 JMPC 46 Übertrag?

43 46

44 EO JUMP A 7

45 47

46 62 INCR R2

47 00 HALT

Tab. 15

Programm für die Addition nach Möglichkeit a

RO > 10

RI > 92

R2 > 72

R3 > 87

Takten Sie jetzt das System bei Adresse 3 8 beginnend mit SINGLE-STEP. Als Ergebnis

erhalten wir:

100000711
a

0001710071
4 Nm

V

R2 | RI

In diesem Falle entsteht bei der Addition der Inhalte von Ri und R3 ein Übertrag. Dieser

Übertrag wird dadurch berücksichtigt, daß der Inhalt von R2 durch den INCR-Befehl um 1

erhöht wird.

Möglichkeit b:

Laden Sie das in Tab. 16 gezeigte Programm.

Adresse Inhalt Befehl Kommentar

40 17 ADDR R3, R1 rechte Hälfte addiert

41 69 RACL R1 hole Übertrag

42 D 1 ANDM R1, #01 isoliere Übertrag

43 01 .

44 16 ADDRR2, Ri Übertrag plus Inhalt R2

45 12 ADDR R2, RO linke Hälfte addiert

46 00 HALT |

Tab. 16

Programm für die Addition nach Möglichkeit b

Laden Sie jetzt wieder die Register RO bis R3 mit folgenden Daten:

RO >: 10

RI > 92

R2 > 72

RI > 87

Wenn Sie dieses Programm (beginnend bei Adresse 3 8) ablaufen lassen, erhalten Sie

dasselbe Ergebnis wie bei der Methode a. Der Unterschied gegenüber der zuerst genannten

Methode besteht darin, daß ein Übertrag anders verarbeitet wird. Entsteht bei der Addition

der Inhalte von Ri und R3 ein Übertrag, so wird dieser durch den Befehl RACL R1 in die

E45

rechte Stelle von Ri geschoben. Berücksichtigen Sie an dieser Stelle, daß die Befehle RACL

und RACR denInhalt vom Carry-Flag mit verschieben (siehe 9. Beispiel). Durch den Befehl

ANDM R1, #0 1 wird die rechte Stelle von Ri ausgeblendet. Ist, wie in unserem Beispiel,
ein Übertrag vorhanden,erscheint in R1 das Ergebnis O 1. Dieser Übertrag wird nun durch
den Befehl ADDR R2, R1 in die linke Zahlenhälfte addiert und damit bei dem Befehl ADDR R2,

RO berücksichtigt. Als Ergebnis erhalten wir wieder:

1000001100011001
NV V

R2 R3

x

Beide hier aufgezeigten Möglichkeiten könnenein falsches Ergebnisliefern. Dies hängt damit

zusammen, daß beim hypothetischen Mikrorechner kein Befehl vorhandenist, der es er-

möglicht, Überträge aus der rechten und linken Zahlenhälfte gleichzeitig zu addieren. Wir

wollen hierauf an dieser Stelle nicht weiter eingehen. Bei der Besprechung des 8080-Systems

wird diese Problematik behandelt.

12. Beispiel:

In diesem Beispiel wollen wir eine Digitaluhr simulieren. Bedingt dadurch, daß der Mikro-

rechner mit einem Quarztaktgenerator betrieben wird, läuft das Mikrorechnersystem mit einer

praktisch konstanten Geschwindigkeit. Diese Eigenschaft kann zur Zeitmessung herangezogen

werden.

Die verschiedenen Befehle eines Mikroprozessors benötigen eine unterschiedliche Anzahl

Taktperioden. Bei einem realen Mikrorechnersystem ist die Anzahl der erforderlichen Takt-

perioden pro Befehl theoretisch und auch durch Zählen leicht festzustellen. Durch die

Simulation des hypothetischen Mikrorechners werden dagegen so viele Befehle des 8080-

Mikroprozessors ausgeführt, daß ein Abzählen der Takte nicht mehr praktikabel ist. Die

Befehlszeit kann hierbei am besten durch Experimentieren ermittelt werden. |
Zuerst wollen wir eine bestimmte Wartezeit erzeugen. Hierfür kann das in Tab. 17 gezeigte

Programm verwendet werden. Ä

Adresse Inhalt Befehl Kommentar

AO 80 LOAD RO,#6 0

41 60

42 AO SUBMRO, #01

43 01

44 E 1 JMPZ438

45 48

46 EO | JUMP 42

47 42

Tab. 17

Programm zum Erzeugeneiner Wartezeit

Bei diesem Programm wird die Zahl 6 O in RO geladen.In einer Schleife wird davon so oft

1 abgezogen, bis O erreichtist. Ist das der Fall, wird über JMPZ 4 8 das Programm bei

Adresse 4 8 fortgesetzt. Die so erzeugte Zeitverzögerung kann dadurch geändert werden,

daß die Anfangszahl 6 O geändert wird. Durch den Einbau von NOP-Befehlen läßt sich

außerdem der Verzögerungsbereich vergrößern. Über den Befehl LOAD RO, F F kann eine

mit Hilfe der A-Schalter einstellbare Verzögerungszeit eingestellt werden (Tab. 18).

Über die A-Schalter muß die Zeitverzögerung dieser Schleife auf 1 Sekunde eingestellt

werden. Die erste Schleife muß in eine zweite Schleife eingebaut werden, die 60 Sekunden

zählt. Durch eine dritte Schleife können Stunden, durch eine weitere Tage erzeugt werden.
Zusätzlich muß die Möglichkeit bestehen, am Anfang des Experimentes die Tageszeit einzu-

stellen. Tab. 19 zeigt das Gesamtprogramm.

Laden Sie dieses Programm sorgfältig und überprüfen Sie es mit EXAMINE. Die Zeitanzeige

erfolgt in den Registern:

E46

Adresse Inhalt Befehl Kommentar

40 84 LOAD RO, FF

41 FF

42 AO SUBM RO, #0 1

43 O1

44 OF NOP Füllwort

45 OF NOP Füllwort

46 OF NOP Füllwort

47 OF NOP Füllwort

48 OF NOP Füllwort

49 OF NOP Füllwort

AA E 1 JMPZAE

AB AE

4C EO JUMP 42

AD 42

AE 00 HALT

Tab. 18

Programm zum Erzeugeneiner einstellbaren Verzögerungszeit

Ri (Sekunden)

R2 (Minuten)

R3 (Stunden)

Bevor Sie das Programm ablaufen lassen, einige Erläuterungen:

Die Befehle in den Adressen 4 O bis 4 6 ermöglichen, am Anfang des Experimentes die

Tageszeit in Stunden und Minuten einzustellen. Die Befehle in den Adressen 4 7 bis 5 A

erzeugen die Verzögerungszeit von 1 Sekunde. Die so gewonnenen Sekundentakte werden

mit den Befehlen der Adressen 5 5 bis 5 C gezählt. In Adresse 5 5 werdendie Sekunden

gehalten. In Adresse 5 7 wird von der momentan vorhandenen Sekundenzahl 3 C,5. Sekunden 2

60,0. Sekunden = 1 Minute subtrahiert. Solange das Ergebnis nicht O ist, muß diese Schleife

fortgesetzt werden. Damit die tatsächliche Sekundenzahlin R1 erhalten bleibt, wird über den

Befehl ADDM R1, #3 C in Adresse 5 B der vorher abgezogene Wert 3 C wieder zum

Inhalt R1 addiert. Sind 60,. Sekunden abgelaufen, springt der Befehlszähler auf Adresse 5 F.

In dem Programmblock 5 F bis 6 7 werden die Minuten ähnlich aufbereitet wie vorher die

Sekunden. Die Stunden werden dann noch im letzten Programmteil behandelt. Die Uhrist

auf 24,. Stunden (418,, Stunden) ausgelegt. Eine Änderung auf 12,. Stundentaktist möglich,

indem Adresse 6 C auf O C,, & 12,0. geändert wird.

Bevor die Uhr nun in Betrieb genommen werden kann, muß sie zunächst kalibriert werden.

Starten Sie das Programm bei Adresse 4 7. Stellen Sie den DISPLAY-SELEKTOR soein,

daß in R2 die Minuten und in R1 die Sekunden angezeigt werden. Mit den A-Schaltern

muß jetzt über F F eine Zahl eingegeben werden, die ‚bewirkt, daß R2 nach jeder Minute

um 1 weiterzählt (Anmerkung: Bei unserem MP-System ist das die Stellung 1 O0).

Nachdem die Uhr kalibriert ist, wird die momentane Tageszeit eingestellt. Verfahren Sie

dabei wie folgt: |

1. Adresse 4 O laden

2. Stunde an A-Schaltern einstellen

3. System mit RUN automatisch takten. Der Rechnerlädt bei Adresse 4 2.

RUN-Schalter bleibt auf 1

4. Minuten an A-Schaltereinstellen

6. Mit EXAMINE System takten, damit der HALT-Befehl überschritten wird. Die Minuten

erscheinen in R2, und der Rechnerbleibt bei Adresse 4 6 stehen

6. A-Schalter wieder auf die bei der Kalibrierung ermittelte Zahl einstellen

7. Mit EXAMINE den HALT-Befehl überbrücken. Jetzt kann das Hauptprogramm ablaufen

Es ist zweckmäßig, daß Sie bei der Einstellung der Minuten die Zeit um 1 bis 2 Minuten

früher einstellen. Ist die eingestellte Zeit erreicht, kann über kurzes Betätigen von EXAMINE

EA7

Adresse Inhalt Befehl Kommentar

AO 87 LOAD R3, FF Stunden in R3

41 FF

42 00 HALT | A-Schalter einstellen
43 86 LOAD R2, FF Minuten in R2

44 FF |

45 25 SUBR R1,R1 Sekunden löschen

46 00 HALT A-Schalter einstellen

47 84 LOAD RO, FF

48 FF

49 AO SUBMRO, #01

4A 01

4B OF NOP

ac OF NOP

AD OF NOP - Füllwörter

AE OF NOP

AF OF NOP

50 OF NOP

51 E 1 JMPZ 55

52 55

53 EO . JUMP 49

54 49 Ä

55 91 ADDMRI1,#01 Sekunden incrementieren

56 01

57 Ai SUBM R1,#3C 3 C Sekunden = 1 Minute

58 3C

59 E 1 JMPZ5F

BA 5F

5B 91 ADDM R1,#3C Sekundenkorrigieren

5C 3C

5D EO JUMP 47

BE 47 |
SF 92 ADDM R2,# 01 Minuten incrementiren

60 01 |

6 1 A2 SUBM R2,# 3C 3 C Minuten= 1 Stunde
62 3C |

6 3 E 1 JMPZ 6 9

64 69

65 92 ADDMR2, # 3C Minuten korrigieren
66 3C

6 7 EO JUMP A 7

68 47 |

69 93 ADDM R3, #01 Stunden incrementieren
6A 01 |

6B A3 SUBM R3, #18 1 8 Stunden = 1 Tag

6C 18 |

6D E 1 JMPZ47

6E 47
6 F 93 ADDM R3, #18 Stundenkorrigieren

70 18 |

71 EO JUMP 4 7

72 47

Tab. 19

 Gesamtprogramm einer Digitaluhr

das Programm ablaufen. Falls die Uhr über längere Zeit betrachtet vor- oder nachläuft, kann
mit der A-Eingabe eine Korrektur vorgenommenwerden. Läuft die Uhr zu langsam, A-Eingabe

erniedrigen. | .

EA8

Aufgaben:

1.a) Ergänzen Sie nachfolgendes Programm mit dem Inhalt (in hexadezimal)!

Adresse Inhalt Befehl

40 LOAD RO, FF
41 |

42 MOVE RO, R1

43 ADDM RO, #1 0
44

45 INCR RO .

46 STAC RO, 90
47

48 LOAD R2, #5 F
49

AA SUBR RO, RO

4 B DECR RO

4C XORM RO, #8 0
AD

4E JMPZ @R2
Ar JUMP 4 B
50

SF 60

60 ADDM RO, 9 0
61

62 HALT

b) Programmieren Sie dieses Programm, und geben Sie das Ergebnis in RO bei folgenden

Eingaben A, bis A, an: |

2. Bei welcher Programmadresse weist RO bereits das Endergebnis auf, ohne daß das ganze

Programm durchlaufen wird? Begründen Sie Ihre Antwort!

3. Welcher Programmbereich darf bei der Programmierung des RAMsSsnicht benutzt werden?

4. Welche Besonderheit weist die Programmadresse F F auf?

5. Laden Sie zunächst folgendes Programm:

Adresse Inhalt Befehl

Le 84 LOAD RO, FF

41 FF
42 | A4 SUBM RO, FF

43 FF M
44 00 HALT

E49

Betreiben Sie das System im SINGLE-STEP-Betrieb, und führen Sie dann folgende Sub-

traktionen durch:

a 08-10=

b) 43-28=

c 00-FE=

dd 00-7F=

Geben Sie außer den Ergebnissen auch an, welche Flags ansprechen. Begründen Sie auch

hier Ihre Antwort!

6. Laden Sie zunächst folgendes Programm:

Adresse Inhalt Befehl

40 84 — LOAD RO, FF

41 FF

42 94 ADDM RO, FF

43 FF

44 00 HALT

Betreiben Sie das System wie in Aufgabe 5. Führen Sie folgende Additionen durch:

a 10+43=

bB 45 +F1>=

c), 60+3F>=

Bestimmen Sie die Summen, und begründenSie das Verhalten der Flags!

7. Laden Sie folgendes Programm:

Adresse Inhalt Befehl

40 LOAD RO, FF

41

42 INCR RO

43 STACRO, 9 1

44

45 XORM RO, #xx

46

47 | JMPZ 8E

48

49 JUMP 42

AA

SE LOAD RO, 9 1

SF

90 HALT

Wählen Sie die Daten x x für den Befehl XORM RO, #x x so, daß das System unabhängig

von der Eingabe FF hält, wenn in RO die Daten 1 A stehen!

8. Ändern Sie das Programm nach Aufgabe 7 so ab, daß die Schleifendurchläufe vom

Register Ri gezählt werden!

E5O

Experimentieranhang

Lösungen zu Experiment 6

1. a) Adresse Inhalt Befehl

40 84 | LOAD RO, FF
41 FF
42 01 MOVE RT, RO’
43 90 ADDMRO,#10
44 | 10
45 60 INCR RO
46 74 STACRO,90
47 90 |
48 82 | LOAD R2, #5 F
49 5F
AA 20 | SUBR RO, RO
AB 64 DECR RO
ac co XORMRO,#80
AD 80
AE E9 JMPZ@R2
AF EO JUMP 4 B
50 4B

5 F 60
60 94 ADDM RO, 9 O
61 90
62 00 HALT

b) A-bis A, > Fi: RO > 02
A, bis Ad — 08: RO - 19
A; bis Ad — 43: RO > 54

2. Das Endergebnis erscheint erstmalig bei der Programmadresse 4 5 mit dem Befehl

INCR RO. Der nächste Befehl STAC RO, 9 O speichert dieses Ergebnis in Adresse 9 O ab.

Im nachfolgenden Programmteil wird eine Schleife gebildet, die dann verlassen wird, wenn

das Zero-Flag anspricht. Dies ist bei RO = O der Fall. Mit R2 als Indexregister springt dann

der Programmzähler auf die Adresse 6 O. Der hier gespeicherte Befehl addiert zum Register-

inhalt RO = O den Inhalt der Adresse 9 0. Damit muß am Programmschluß in RO das

gleiche Ergebnis erscheinen, wie dies bereits bei der Adresse 4 5 der Fall war.

3. Der Adressenbereich von O0 O bis 1 8 darf nicht benutzt werden, da dieser für ein

Unterprogramm benötigt wird.

4. Über die Adresse F F können die A-Schalter zur Dateneingabe benutzt werden.

5.a 08-10=F3

In diesem Fall sprechen Negativ- und Carry-Flag an. Das Carry-Flag spricht an, da der Subtrahend

größer als der Minuend ist, das Negativ-Flag, da das Ergebnis im negativen Zahlenbereich

liegt.

b 43-283=1B

Hier spricht kein Flag an, da die Subtraktion im positiven Zahlenbereich stattfindet.

E61

c 00-FE=02

Hier spricht nur das Carry-Flag an. Die Begründung läßt sich am einfachsten über die

rechnerische Lösung geben:

00000000

-I1111110

100000010

Es entsteht eine Entlehnung, die als Übertrag gewertet wird. Der negative Zahlenbereich

ist aber bereits überschritten.

dd 00-7F=81

Hier sprechen Carry- und Negativ-Flag an, da einmaleine Entlehnung entsteht und zum anderen

das Ergebnis noch im negativen Zahlenbereich liegt. |

6.a) 10 +43=53 .

Es spricht kein Flag an, da weder ein Übertrag entsteht noch der positive Zahlenbereich

verlassen wird.

b) 45 +F 1 = 3 6 mit Übertrag
Das Carry-Flag spricht an, da die 8-bit-Kapazität des Systems überschritten wird. Dezimal

lautet das Ergebnis 310,., mit 8 bit sind aber nur max. 255,, darstellbar.

c) 60+3F=9F
Hier spricht das Negativ-Flag an, da der positive Zahlenbereich verlassen wird.

1. Adresse Inhalt Befehl

4A0 84 LOAD RO, FF

41 FF

42 60 INCR RO

43 74 STACRO, 91

44 91

45 Co XORM RO, # 1A

46 1A

47 E1 JMPZS8SE

48 SE |

49 EO JUMP 42

AA 42

SE 84 LOAD RO, 9 1

SF | 91
90 00 HALT

Begründung:

Das Zero-Flag spricht an, wenn der Inhalt von RO gleich Null ist. Wenn nun die XOR-

Verknüpfung mit den Daten 1 A gebildet wird, muß beim Inhalt 1 A des Registers RO

das Zero-Flag ansprechen und so den Befehl JMPZ 8 E auslösen.

E52

Adresse Inhalt Befehl

AO 25 SUBR R1, R1

41 84 LOAD RO, FF

42 FF

43 60 INCR RO

44 74 STACRO, 91

45 91

46 6 1 INCR R1

47 Co XORM RO, #1 A

48 1 A |

49 E 1 JMPZ8E

AA SE

AB E O JUMP 4 3

4AC 43

SE 84 LOAD RO, 9 1

SF 91

90 00 HALT

EB3

Experiment 7: Programmschleifen

Dies und auch die nachfolgenden Experimente werden mit dem hypothetischen Rechneraus-

geführt. Somit ist wie bei Experiment 6 das System 5 des MP-Experimenterszu verwenden.

1. Beispiel:

Es ist ein Programm zu erstellen, das die ersten n Glieder der Reihe 1, 2, 3,4,5... addiert.

Die Zahl n, also wie viele Glieder zu addieren sind, soll am Anfang des Experimentes über

Adresse F F eingegeben werden. |

Allgemeine Hinweise:

Zur Lösung dieser Aufgabenstellung wird eine laufende Summe benötigt. Bei einer Addition

von z.B. n = 10 Gliedern ist bei dieser Reihe das höchste Glied der Reihe auch 10, d.h., eine
Lösungsmöglichkeit dieser Aufgabe besteht darin, über einen Schleifenzähler (z.B. R2) den

. Inhalt des Schleifenzählers zum Registerinhalt der laufenden Summe(z.B. R1) zu addieren.

Bei Programmbeginn muß dann der Inhalt des Registers R1 gleich O sein. Wenn n = 10

Schleifen durchlaufensind, ist das Programm beendet.

Bevor das Programm geschrieben wird, erstellen wir zunächst ein Flußdiagramm (Bild 1).

| START)

n in R2 laden

Ri löschen

. Zn
ei

Inhalt R2in

RI addieren

R2 decrementieren

Bild 1

Flußdiagramm zum 1. Beispiel

Dieses Flußdiagramm läßt sich mit dem in Tab. 1 gezeigten Programm realisieren.

Laden Sie dieses Programm und geben Sie für folgende Werte von n das Ergebnis an:

a) n = 510

b) rn = 10h

c) n= 22)

E 55

Adresse Inhalt Befehl | Kommentar

40 86 LOAD R2, FF “nin Schleifenzähler laden
41 FF
42 25 SUBR R1, R1 R1 löschen
43 19 ADDR R1, R2 (R2) in RI addieren
44 66 ı DECRR2 |
45 E 1 JMPZ49
46 49
47 EO JUMP 4 3
48 43 .
49 00 _ HALT

Tab. 1

Programm zum 1. Beispiel

Bei richtiger Programmeingabeerhalten Sie folgende Ergebnisse:

a) O Fıs &1510

b) 3 7/ıe &5510

c) F Dies = 25310>
ı1

>
11
>

Aufgrund der Rechnerkapazität darf hier r nicht größer als 2210 & 1 616 gewählt werden.

2. Beispiel: Ä

Hier soll ein Programm für das Ziehen der Quadratwurzel erstellt werden. Auch dieses

Problem läßt sich über Programmschleifen lösen. |

Allgemeine Hinweise:

Die Summeder Reihe

1+3+5+7+9+.....

ist gleich n?. Hierbei ist n die Anzahl derGlieder. Bei z.B. n = ıst das Ergebnis 5? = 25.

Diese Gesetzmäßigkeit kann zum Ziehen der Quadratwurzel ausgenutzt werden. Soll die

Quadratwurzel einer Zahl Z gezogen werden, so muß von dieser Zahl zunächst 1, dann 3,

dann 5 usw. abgezogen werden, bis O erreicht wird. Die Anzahl der abgezogenenZahlen

(gleich Anzahl der Schleifendurchläufe) ist gleich der Quadratwurzel von Z. Wir beschränken
uns bei diesem Beispiel auf die Fälle, bei denen Z eine Quadratwurzelist, also 1, 4, 9, 16,

25,36.... USW.

Zur Lösung der Aufgabenstellung wird wieder ein Schleifenzähler benötigt, der bei O anfängt.
Die Anzahl der Schleifendurchläufe entspricht dem Ergebnis. Die einzelnen Glieder, die vonZ

subtrahiert werden müssen,lassen sich durch Addition von jeweils 2 zum vorherigen Glied

erzeugen. Außerdem wird ein Register benötigt, in dem zu Anfang Z enthaltenist. Mit jedem

Schleifendurchlauf muß hiervon das jeweilige Glied abgezogen werden. |

Zunächst soll diese Problemstellung wieder in einem Flußdiagramm festgehalten werden.

Hierbei werden R1 als Schleifenzähler, RO als Register zur Erzeugung dereinzelnen Glieder

und R2 als Subtraktionsregister benutzt (Bild 2).

Dieses Flußdiagramm wird jetzt wieder in ein Programm umgesetzt (Tab. 2).

“ Laden Sie dieses Programm und testen Sie es.

E 56

(START)

l

Lade ZinR2

]

LöscheSchleifen-

 zähler RI

 1

Setze erstes Glied

in RO=1
 1

|

Incrementiere

Schleifenzähler R1

|

Subtrahiere (RO) Bilde nächstes

von (R2) Glied (RO)+ 2

nein

Bild 2

Flußdiagramm zum 2. Beispiel

Adresse Inhalt Befehl Kommentar

40 86 LOAD R2, FF Z einlesen

41 FF

42 25 SUBR RI1,RI Schleifenzähler löschen

43 80 LOAD RO, #01 1. Glied gleich 1 setzen

44 O1 | |

45 61 INCR R1 Erhöhe Schleifenzähler

46 22 SUBR R2, RO Ziehe Glied von Rest ab

47 E 1 JMPZ4AD HALT bei Rest = O

48 4D

49 90 ADDM RO, #02 nächstes Glied bilden

aA 02 | |

AB EO - JUMP 45 Schleife

AC 45

aD. 00 HALT

Tab. 2

1. Programm zum Ziehen einer Quadratwurzel

E57

Tab. 3 zeigt ein weiteres Programm,das ebenfalls zum Ziehen der Quadratwurzeldient. Laden

Sie auchdieses Programm in den MP-Experimenter.

Adresse Inhalt Befehl Kommentar

AO 86 LOAD R2, FF

41 FF

42 25 SUBR R1, R1

43 80 LOAD RO, # FF

44 FF

45 90 ADDMRO, #02

46 02 |

47 61 INCR RI

48 22 -SUBR R2,RO

49 Ei JMPZAD

4A 4D
AB EO JUMP 4 5.

4AC 45

AD 00 HALT

Tab. 3

2. Programm zum Ziehen einer Quadratwurzel

Testen Sie auch dieses Programm.

Aufgaben:

1. Geben Sie für das Programm in Tab. 3 das Flußdiagramman!

2. Worin unterscheiden sich die beiden Programme(Tab. 2 und Tab. 3)?

E58

Experiment 8: Computed-JUMP

Diese Befehlsart soll an einem allgemein verständlichen Beispiel erläutert werden.

In einem Produktionsablauf wird das eingehende Material, z.B. Stahlkugeln, auf seine Toleran-

zen untersucht. Aus dem möglichen Toleranzspektrum der Kugeln sollen diejenigen selektiert

werden, die am Ausgang der Meßvorrichtung die Kombinationen O Oje, O 116, O 2168 und O 3ıe

erzeugen. Weiterhin wird verlangt, daß Kugeln mit den Meßdaten O Oıs ein Signal O Oje,

Kugeln mit O 116 ein Signal 8 1,16, Kugeln mit O 216 ein Signal 4 218 und Kugeln mit O 3ıs ein

Signal O 3 erzeugen. Alle anderen Kugeln sollen das Signal F Fıs erzeugen. Über die so

gewonnenen 5 Ausgangssignale kann dann die entsprechende Weiterleitung der Kugeln bis

an bestimmte Fertigungstellen gesteuert werden.

Wir übertragen diese verbale Aufgabenstellung zunächst in ein Flußdiagramm (Bild 1).

(START)

\

Meßdateneinlesen

und abspeichern

a

Daten der nein Signal FF u

Gruppe | >
01 bis 03 erzeugen

?
ja

Signal 00

erzeugen .

Signal 81

erzeugen .

Signal 42 _

erzeugen .

Signal C3 _

erzeugen .

Bild 1

Flußdiagramm zu dem Beispiel

Dieses Flußdiagramm kannz.B. mit nachfolgendem Programm realisiert werden.

E 59

Adresse Inhalt Befehl Kommentar

40 86 LOADR2,FF Meßdaten einlesen
41 FF

42 76 STACR2, FE Daten abspeichern
43 FE
44 3A IORR R2, R2 N-Flag setzen

45 E2 JMPN BO Springe, wenn höchste Stelle 1

46 BO |

47 A2 SUBM R2, #03 Daten größer als O 3?

48 03 | |

49. E11 JMPZ 50 Daten gleich O 3

AA 50 |

AB E2 JMPN 50 Daten OObis0 2

4C 50

4D EO JUMPBO Daten größer als O 3

4E BO

50 86 LOAD R2, FE Meßdaten einlesen

51 FE |

52 92 ADDMR2, #60 Indexregister laden
53 60 | |

54 ES | JUMP@R2 Indirekter Sprung

60 70 Adresse für Daten O O

6 1 80 Adresse für Daten O 1

62 90 Adresse für Daten O 2

63 AO Adresse für Daten O 3

70 80 LOAD RO, #00 Erzeuge O O-Signal
71 00

72 EO JUMP40-

73 40

80 80 LOADRO, #81 Erzeuge 8 1-Signal
81 81

82 EO JUMP 40

83 40

90 80 LOAD RO, # 42 Erzeuge 4 2-Signal

91 42 |

92 EO JUMP 4 0

93 40 |

AO 80 LOAD RO, #C 3 Erzeuge C 3-Signal
A1 C3

A2 EO JUMP 4 0

A3 40 u

BO 80 LOAD RO, #FF Erzeuge F F-Signal
B 1 FF

B2 EO JUMP 40

B 3 40
E 60

Programmerläuterung:

Die an A; bis Ao simulierten Meßdaten werden über Adresse F F eingelesen und in Adresse FE

abgespeichert. Mit A, bis Ao lassen sich 256 verschiedene Meßdaten erzeugen. Der Befehl

JMPN B O wird dann ausgelöst, wenn es sich um Daten der Form 1 x xxx xx x handelt,

also wenn das werthöchste bit gleich 1 ist. Dies kann vom N-Flag geprüft werden, das ja

bekanntlich immer1 ist, wenn das werthöchstebit gleich 1 ist. Da aber die Befehle LOAD R2,

E_F und STAC R2, F E das N-Flag nichtinitialisieren, muß dies über einen anderen Befehl

erfolgen. In diesem Programm wird hierfür der Befehl IORR R2, R2 benutzt. Dieser Befehl
verändert nicht den Registerinhalt, setzt aber das N-Flag, wenn das werthöchstebit gleich 1

ist. Von einer Eingabe, die das N-Flag nicht setzt, wird jetzt durch den Befehl SUBMR2, #03

die Zahl O 3 subtrahiert. Für alle Eingaben, die wertmäßig größer als 3 sind, treffen die

Bedingungen für die Befehle JMPZ und JMPNnicht zu. In diesem Falle wird der unbedingte

Sprung JUMP B O ausgeführt, d.h. das Ausgangssignal FF in Register RO erzeugt. Bei Eingabe-

‘daten von OÖ O1s bis O 316 wird entweder der Befehl JMPZ (Eingabe = O 316) oder der Befehl

JMPN (Eingabe O O0, O 1 oder O 2) ausgelöst, d.h., es erfolgt ein Sprung zur Adresse 5 O0.

Hier werden jetzt die Ursprungsdaten wieder in R2 geladen. Mit dem Befehl ADDM R2, #6 0

wird der Computed-JUMPvorbereitet. Die Ausführung erfolgt über JUMP @ R2.

Bei diesem Programm ist z.B. die Adresse, die bei der Eingabe O O1s das Ausgangssignal O Oıe

erzeugensoll, in Adresse 6 O gespeichert (Adresse 7 O). Wird also an A; bis Ao O O1s eingege-

ben, so ist der Inhalt von R2 nach dem Befehl ADDM R2, # 6 O natürlich 6 O. Damit erfolgt

ein Programmsprung zur Adresse 7 O. Bei einer Eingabe von z.B. O 3ıs, steht im Indexregister

R2 jetzt 6 3, so daß ein Sprung zur Adresse A O erfolgt.

Laden Sie dieses Programm in den MP-Experimenter, und testen Sie es bei verschiedenen

Eingaben.

Aufgaben:

1. Aus welchem Grunde wird bei diesem Frogramm in Adresse 4 5 der Befehl JMPN B O

benötigt?

2. Entwickeln Sie ein Programm, das die Aufgabenstellung ohne Computed-JUMP löst!

E61

Experiment 9: Divisionsprogramm

Nachdem Sie bereits im theoretischen Teil ein Multiplikationsprogramm kennengelernt haben,

soll hier ein Divisionsprogramm behandelt werden. Als Algorithmus liegt diesem Programm

die Divisionsmethode mit Divisorverschiebung und Subtraktion zugrunde (siehe Lehrheft 1,
Seite 1.24). Weiterhin ist dieses Programm so ausgelegt, daß bei einer Division, die nicht

„aufgeht“, in RO der ganzzahlige Quotiententeil und in R2 der gebrochene Quotiententeil

erscheint. | |

Laden Sie das in Tab. 1 gezeigte Programm.

Adresse Inhalt Befehl Kommentar

AO 00 HALT

41 8A LOAD RO, FF

42 FF

43 00 HALT

44 85 LOAD R1,FF

45. FF |

46 00 HALT 9

47 4A XORR R2, R2 | Ergebnisregister löschen
48 Ar XORR R3,B2R3 Verschiebezähler löschen

49 69 RACLRI
AA E 3 JMPCAF: |

4B 4F . u
AC 6 3 INCR R3

4D EO JUMP 4 9

AE 49

AF 6D RACR R1

50 24 SUBR RO, R1

51 E3 JMPC 80

52 80 |

53 62 INCR R2

BA |) 67 DECR R3

55 E2 JMPN5B

56 5B '

57 6A RACL R2

58 6 D RACR RI
59 EO JUMP 50

5A 50 |

5B 76 STAC R2,A O

5C AO |

5D AA XORR R2, R2

5E 83 LOAD R3, #0 8
SF 08-

60 6A RACL R2

6 1 68 RACL RO

62 E 3 JMPC 95

63 95

64 24 SUBR RO, R1

65 E 3 JMPC 90

66 90

67 62 INCR R2

68 .. 67 DECR R3

69 E 1 JMPZ 6 D
6A 6D

6 B EO JUMP 6 O

6C 60

6D 84 LOAD RO, AO

6E AO

6F EO JUMP 40

E 62

Adresse Inhalt Befehl Kommentar

70 40

80 14 ADDR RO, R1

81 30 IORR RO, RO

82 EO JUMP54

83 54

90 14 ADDR RO, RI

91 30 IORR RO, RO

92 EO JUMP 8

93 68

95 24 | SUBR RO, RI
96 30 IORR RO, RO

97 EO JUMP 7

98 67

Tab. 1

Divisionsprogramm

Überprüfen Sie mit EXAMINE, ob das Programm fehlerfrei geladen wurde.

Wie bei der Digitaluhr in Lehrheft 2 ermöglicht der Programmvorspann von Adresse 4 O bis

4 6 eine Operandeneingabe mit Hilfe des EXAMINE-Schalters. Der Eingabeablauf ist folgender:

Bei der ersten Inbetriebnahme des Programms Adresse 4 O laden, RUN-Schalter auf 1 und

Single-Step-Schalter auf O stellen. Mit A, bis Aıo ersten Operanden(Dividend) einstellen, und

EXAMINEeinmal takten. Der Dividend wird somit in RO geladen. Jetzt zweiten Operanden

(Divisor) mit A bis Ao einstellen, und EXAMINE einmal takten. Jetzt steht der Divisor in R1.

Ein weiteres Takten von EXAMINE startet das eigentliche Rechenprogramm. Durch den

JUMP-Befehl in Adresse 6 F springt der Programmzähler am Endeeiner Division wieder auf

die Adresse 4 O zurück, so daß sofort neue Operanden eingegeben werden können.

Testen Sie das Programm mit folgenden Beispielen:

1. 6410: 3210 = RO | R2

0/0/10:0/0|0|1|0 0!0/0|0/0!0101|0

2,010

2. 5040 . 4ıo = RO R2

0/00 0111100 10/0000 100

12,510

Die Stellenwertigkeiten in RO können als bekannt vorausgesetzt werden. Die Nachkomma-
stellen in R2 haben folgende Wertigkeiten:

2'122 129 12% 125 12°% 27 |2°

ı 2 71 1 1 1.11
2 4 8 16 32 64 128 256

3. 12710 . 310 =

E 63

RO -R2

010 1/0 |1 [0 |1 |O 0/1/0|11011 [0/1

A

42,332 031 2510

Das korrekte Ergebnis wäre in diesem Fall:

42,33

Die Abweichung vom tatsächlichen Ergebnis ist durch die begrenzte Stellenzahl bedingt.

Die wertniedrigste Stelle bestimmt mit ihrer Wertigkeit von 1/25610 = 0,003 906 2510 die

Rechengenauigkeit. Aufgerundet ergibt sich also eine mögliche Abweichung von 0,00410.

Einige weitere Beispiele sollen das noch verdeutlichen:

4. 110 :12810 =

0/0/010|0 100 [0 01010/010011 |0|

0,007 812 510

5. 110 : 8610 ‚— Ä .

| 0/0/10|0 10|0|00 10!01010|0 10|1|10

0,007 812 510

6. 110: 8510 > Ä Br
0|010|010!010|0 0|010/0|0|011|1

>

0,011 718 75ıo

Beispiel 4liefert ein exaktes Ergebnis, da 1/1 2810 als Stellenwertigkeit vorkommt. Im Beispiel

5 beträgt die Abweichung 0,0038, während Beispiel 6 auf ca.5 ° 10°° genauist.

Programmerläuterung: | |

Das Divisionsprogramm kannin 3 Abschnitte unterteilt werden.

Teil 1:

Verschieben des Divisors in R1, bis seine erste 1 im höchstenbit von R1 steht. Die Anzahl der

notwendigen Verschiebungen wird festgestellt und im Verschieberegister R3 gespeichert

(Adressen ASbis4AF).

Teil 2: |

Durch Subtraktion und Verschiebung den ganzzahligen Anteil des Quotienten errechnen und

abspeichern (Adressen 5 Obis5 Bund 80 bis 8 3).

Teil 3: |

Gebrochenen Quotiententeil errechnen, Ergebnis in R2. Ganzzahligen Anteil zurückholen und

in RObringen (Adressen 5 Dbis 70,90bis93 und 95 bis 98). oo.

Die Adressen 4 O bis 4 5 dienen nur zur Operandeneingabe. |

Nachfolgend sollen diese Programmteile anhand von Flußdiagrammen besprochen werden

(Bilder 1 bis 3).

E 64

Operanden-

eingabe

 l
R2 „ R3

löschen

|

Divisorverschieb. Verschiebe -

nach links zähler +1

 C-Flag nein
? |

ja

Divisorverschieb.

nach rechts

Bild 1

Flußdiagramm zu Teil 1

Zum Löschen der Register R2 und R3 wird der XORR-Befehl verwendet, weil damit auch ein

eventuell vorhandenes C-Flag gelöscht wird (siehe Befehlsliste). Nach jeder Divisorverschie-

bung RACL R1, wird das C-Flag abgefragt. Wenn kein C-Flag vorhandenist, wird der Ver-

schiebezähler um 1 erhöht und anschließend die nächste Verschiebung durchgeführt. C-Flag

= 1 zeigt an, daß bereits eine Verschiebung zuviel durchgeführt wurde. Also wird diese

Verschiebung nicht mehr gezählt, sondern vor dem Übergang zum Programmteil 2 durch

RACR R1 rückgängig gemacht. |

Fragen zu Programmteil 1:

a) Welchen Inhalt haben am Ende des ersten Programmteiles die Register RO bis R3, wenn

als Dividend 710 und als Divisor 310 eingegeben werden?

b) Weshalb muß am Programmanfang das C-Flag gelöscht werden?

E 65

]
Subtaktion Quotient nach links

RO-RI Divisor nach rechts

 Ä |

Quotient Dividend korrigieren

+1 C-Flag löschen

Verschiebe-

zaähler -1. nein

“ganzzahligen An-
teil abspeichern

Bild 2

Flußdiagramm zu Teil 2

Das C-Flag nach der Subtraktion RO - R1 zeigt an, ob der Divisor vom Dividenden abgezogen

werden kann. C-Flag = 1 heißt dabei, daß R1 größer ist als RO. Eine Subtraktion war nicht

möglich, also muß mit ADDR RO, R1 der Dividend wieder auf seinen ursprünglichen Wert

gebracht und außerdem mit IORR RO, RO das C-Flag gelöscht werden. Diese beiden Befehle

finden Sie unter den Adressen 8 O und 8 1. Mit dem anschließenden JUMP-Befehl erfolgt

der Rücksprung in das Hauptprogramm. Wie im Flußdiagramm zu sehenist, wird dabei der

Programmschritt „Quotient + 1” (INCR R2; Adresse 5 3) übersprungen.Falls nach dem Er-

niedrigen des Verschiebezählers keine N-Flag-Anzeige erscheint, werden der Quotient nach

links und der Divisor nachrechts verschoben. Dann erfolgt der nächste Schleifendurchlauf.

Eine Subtraktion RO - R1, die keine C-Flag-Anzeige erzeugt, führt zur Erhöhung des Quotienten.

Ist die Anzahl der Schleifendurchläufe gleich der Anzahl der Divisorverschiebungenim Teil 1,

wird dies durch das N-Flag angezeigt. Damit steht der ganzzahlige Anteil des Quotienten fest

und wird vor dem Übergang zum Teil 3 in A O abgespeichert.

Fragen zu Progyrammteil 2

a) Wie oft wird der zweite Programmteil durchlaufen, wennals Dividend 6810 undals Divisor

910 eingegeben werden?

b) Weshalb muß mit RACL R2 (Adresse 5 7) der Quotient bei jedem Schleifendurchlauf ver-

'schoben werden? | | |

E 66

Quotient = O

Verschiebezähler= 8

 A

|

Quotient und Dividend

nach links

YC-Flag
?

nein

Subtraktion
Subtraktion C-Flag löschen

Quotient Dividend korrigieren

+1 C-Flag löschen

 A

 |
Verschiebezähler

-1

 nein Y

ganzzanhligen Anteil

zurückholen

HALT

Bild 3
 Flußdiagramm zu Teil 3

Vorbemerkungen:

Der Algorithmus für den gebrochenen Anteil des Quotienten unterscheidet sich von dem in

Programmteil 2 dadurch, daß nicht mehr der Divisor nach rechts, sondern der Dividend bzw.

der Dividendenrest nach links verschoben wird. Ein am Ende des zweiten Programmteiles

vorhandener Dividendenrest in RO ist auf jeden Fall kleiner als der Divisor. Wird nun der

Dividendenrest um eine Stelle nach links verschoben, entspricht dies einer Multiplikation des

Restes mit 2. Über eine nachfolgende Subtraktion muß jetzt festgestellt werden, ob der mit

2 multiplizierte (nach links verschobene!) Dividend größer als der Divisorist. Trifft dies zu,

muß im Quotientenregister R2 an der Stelle 2°’ eine 1 erscheinen, im anderenFalle eine O.

Falls auch nach dieser Subtraktion ein Dividendenrest verbleibt, so ist dieser wiederum kleiner

als der Divisor. Eine weitere Verschiebung des Dividendenrestes entspricht einer nochmaligen

Multiplikation mit 2. Ist jetzt der Dividend größer als der Divisor — festgestellt durch die

E67

zweite Subtraktion - muß an der Stelle 2°” eine 1 erscheinen, im anderen Falle eine 0. Nach

dem gleichen Prinzip lassen sich in 6 weiteren Verschiebeschritten die Stellenwertigkeiten

2° bis 2°°® berechnen. Der Algorithmus zeigt, daß zuerst die Nachkommastelle mit der

größten Wertigkeit (2°') berechnet wird. Tritt hierbei das Ergebnis 1 auf, so kann diese 1

durch einen INCR-Befehlin die niedrigste Stelle (2"°) des Quotientenregisters R2 gebracht

werden. Damit diese 1 aber am Ende der Division an der richtigen Stelle (2"') erscheint, muß

sie siebenmal nach links verschoben werden. |

Bei einer 8-bit-Stellenzahl für den Nachkommateil muß der vorher beschriebene Vorgang

achtmal durchgeführt werden.

Nach diesen grundsätzlichen Betrachtungensoll nun das Flußdiagramm diskutiert werden.

Der noch in R2 vorhandene Vorkommateil muß zunächst gelöscht werden (XORR R2). Der

Verschiebezähler muß auf O 8 gesetzt werden (LOAD R3, # 08).
Im nächsten Programmteil erfolgt der erste Verschiebevorgang. Da das Quotientenregister

noch denInhalt O hat, ändert sich in diesem Register nichts. Der Dividend wird eine Stelle

nach links geschoben.Hat der Dividendenrest in der werthöchstenStelle eine 1, so wird diese

1 nach der Verschiebung in das C-Flag übernommen.

Eine 1 im C-Flag nach der Verschiebung bedeutet, daß der Dividendin seiner höchsten Stelle,

nämlich dem C-Flag, die Wertigkeit 2° = 25610 hat. Der Divisor kann aufgrund der 8-bit-

Eingabe aber maximal den Wert 25510 haben, so daß in jedem Falle eine Subtraktion möglich

ist. Der Befehl SUBR RO, R1 in Adresse 9 5 (Inhalt RO = Dividend, Inhalt Ri = Divisor),

berücksichtigt bei der Subtraktion nurdie Inhalte der beiden Register, jedoch nicht das bei der

Verschiebung von RO entstandene C-Flag mit der Wertigkeit 2°. Dadurch wird der Divisor

wieder größer als der Dividend, so daß beim Ausführen der Subtraktion eine Entlehnung,

angezeigt durch das C-Flag, entsteht. Wenn wir gedanklich die Entlehnung vom Dividenden-

C-Flag subtrahierenist das Ergebnis in der Stelle 2° gleich O. Da der Rechner diese Subtraktion

nicht durchführen kann, wird das C-Flag durch den Befehl IORR RO, RO gelöscht. In RO steht

somit die richtige Differenz.

Die hier besprochene Subtraktion unter Berücksichtigung des C-Flags braucht nur dann

durchgeführt werden, wenn der Divisor größer als 12810 ist, also in seinem höchstenbit und

einem weiteren bit eine 1 hat. In allen anderen Fällen wird die Subtraktion durch Befehl

SUBR RO, R1 in Adresse 6 4 durchgeführt (gerader Pfad im Flußdiagramm).

Über den Zustand des C-Flags wird wieder die Entscheidung getroffen, ob als Ergebnis

eine 1 oder eine O an das Quotientenregister R2 gegeben werden muß. Bei C-Flag gleich O

treffen sich die beiden Subtraktionspfade und bewirken, daß das Quotientenregister um 1

erhöht wird. War das C-Flag auf dem geraden Subtraktionspfad gleich 1, so darf keine

Erhöhung des Quotientenregisters erfolgen (Befehl INCR R2 in Adresse 6 7 darf nicht durch-

geführt werden). Stattdessen wird wie in Programmteil 2 der letzte Dividendenwert wieder

errechnet und das C-Flag gelöscht (Adresse 9 O bis 9 3).

Anschließend wird der Verschiebezähler R3 decrementiert. Erst nach 8 Schleifendurchläufen

wird das Z-Flag gleich 1 und löst das Zurückholen des Vorkommateiles aus Adresse A O in RO

und den Rücksprung auf die Anfangsadresse 4 O aus.

Wie Sie sehen, erfordert die Bearbeitung der Nachkommastellen eine recht intensive und

genaue Beschäftigung mit den Auswirkungen der einzelnen Befehle. Darüber hinaus muß

mansich über den Algorithmus genau im Klaren sein. Wir empfehlenIhnen,diesen Programm-

teil mit mehreren Beispielen im SINGLE-STEP-Betrieb durchzuführen. Als Aufgabenbeispiele

empfehlen wir:

a) 12810: 12910 =

b) 110 : 25510

c) 3310: 13610

Fragen zu Programmteil 3

1. Welche Auswirkung würde ein versehentliches Laden der Adresse 9 8 mit 6 8 haben?

2. Geben Sie die Wertigkeit der Ergebnisanzeige von R2 an, wenn der Verschiebezähler im

Programmteil 3 anstatt auf O 8 auf O 4 gesetzt wird!

E68

Experiment 10: Anrufen von Unterprogrammen mit den JUMP-Befehlen

Als Beispiel für den Einsatz von Unterprogrammensoll eine Oberflächenberechnungfür einen

Quader durchgeführt werden.Zu Beginn sollen über A; bis Av Höhe,Breite und Tiefe eingegeben

(in cm) und in den Adressen 9 O0, 9 1 und 9 2 gespeichert werden.

Die erforderlichen Multiplikationen werdenin einem Unterprogramm durchgeführt. Wie später

noch näher erläutert wird, ist ein Multiplikationsprogramm im ROM-Bereich des Speichers

von Adresse O 1 bis einschließlich 1 8 enthalten. Abgesehen von den Sprungadressenist

dieses Programm identisch mit dem im theoretischen Teil behandelten. Der letzte Befehlin

den Adressen 1 7 und 1 8 im ROM-Bereich entspricht dem Befehl in den Adressen 3 6 und
3 7 des theoretisch behandelten Programms. Das bedeutet, daß die Abspeicherung des

Ergebnisses nicht mehr vorgegebenist, sondern beginnend bei Adresse 19 mit geeigneten

Befehlen programmiert werden muß.

Überprüfen Sie dieses Multiplikationsprogramm mit EXAMINE. |

Die verbale Aufgabenstellung wird zunächst in einem Flußdiagramm festgehalten (Bild 1).

START

H,B,Teingeben

H —e 9
B — 9

IT

i

HB — 994

H-T —e 9596 „nierprogramm
B:T— 9798 Multiplikation

— RO,RI

RO und Ri mit

FFladen

 |
| HALT)

Bild 1

Flußdiagramm für die Oberflächenberechnung eines Quaders

E 69

Laden Sie das in Tab. 1 gezeigte Programm.

Adresse Inhalt Befehl Kommentar

19 E4 JUMP @F1 Rücksprunganweisung

1A F1 | .

30 00 | HALT

31 84 LOAD RO, FF

32 FF |

33 74 STAC RO, 90

3A 90 |

35 00 HALT | |

36 84 LOAD RO, FF Höhe, Breite und Tiefe einlesen

37 FF und abspeichern

38 74 STACRO, 91

39 91

3A 00 HALT

3B 84 LOAD RO, FF |

3C FF |

3D 74 STAC RO, 92

3E 92

3F 84 LOAD RO, 90 |* Höhe in RO
40 90 |

41 85 | LOADR1,91 Breite in R1

42 91 |

43 82 LOAD R2, #49 |

44 49 | | Rücksprungadressein F 1

45 76 STACR2,F1 | |

46 Fi | | |

47 EO JUMP 0 1 Sprung ins Unterprogramm
48 01 | |

49 74 STAC RO, 9 3

15 > - | STAC R1.94 Ergebnis Höhe- Breite speichern

4C 94

AD 84 LOAD RO, 9 O Höhein RO.

AE 90

AF 85 | LOADR1,92 Tiefe in R1

50 92 |
51 82 LOAD R2, 57

52 57 Rücksprungadressein F 1

53 76 STACR2,F1

54 Fi / |

b5 EO JUMP 1 Sprung ins Unterprogramm

56 01 | |

57 74 STAC RO, 95

> > > > STACRI. 96 Ergebnis Höhe - Tiefe speichern

BA 96 |

5B 84 LOAD RO, 9 1 Breite in RO

5C 91

5D. 85 LOAD R1,9 2 Tiefe in R1
5E 92 |

E 70

Adresse Inhalt Befehl Kommentar

SF 82 LOAD R2, #65

60 65 Rücksprungadressein F 1

61 76 STACR2, F1

62 Fi

63 EO JUMP © 1 Sprung ins Unterprogramm

64 01 |
65 74 STACRO, 97

66 97 M

67 5 STAC R1,938 Ergebnis Breite - Tiefe speichern

68 98

69 30 IORR RO, RO Flags löschen

6A 85 LOAD R1,9 4

6B 94 rechte Hälfte addieren

6C 95 ADDM R1,96

6D 96

6E 84 LOAD RO, 9 3 linke Hälfte nach RO bringen

6F 93

70 E 3 JMPC AO Übertragsverarbeitung
71 AO

72 94 ADDM RO, 95 linke Hälfte addieren

73 95

74 E 3 JMPC 82 Aussprung aus dem Programm, wenn

75 82 | Ergebnis zu groß

176 95 ADDM R1,98 rechte Hälfte addieren

717 98

78 E 3 JMPCA5 Übertragsverarbeitung
19 A5

IA 94 ADDM RO, 97 linke Hälfte addieren

7B 97

7C E3 JMPC 32 Aussprung

7D 82

/ - > - Sc no \ Multiplikation mit 2 durch Linksschieben

80 EO JUMP 30

81 30 |

82 80 LOAD RO, # FF

83 FF FFnachRO und R1

84 01 MOVE RO, R1

85 EO JUMP 30

86 30

AO 30 IORR RO, RO

A1 60 INCR RO

A2 EO JUMP 72

A3 72

A5 30 IORR RO, RO

A6 60 INCR RO

A7 EO JUMP 7A

A8 IM

Tab. 1 Ä

Programm für die Oberflächenberechnung eines Quaders

E71

Testen Sie das Programm mit nachfolgendenBeispielen:

a) Höhe: 2 cm

Breite: 4 cm

Tiefe: 3 cm

Ergebnis: C-Flag RO R1

b) Höhe: 128 cm

Breite: 60 cm

Tiefe: 25 cm

Ergebnis: C-Flag RO R1

| lol1 1 lolololo!o 10 1 |1 [1 Jolola

A

24 760 cm?

c) Höhe: 255 cm
Breite: 128 cm

Tiefe: 192 cm

Ergebnis: RO und R1 mit FF geladen

Programmerläuterung:

Der erste Programmteil von Adresse 3 O bis 3 E dient zum Laden und Abspeichern der Daten.

Die nächsten 3 Programmteile (3 F bis 4 C,4 Dbis 5 A und 5 B bis 6 8) sind von den

Befehlen her identisch. Hier werden mit Hilfe des Unterprogramms „Multiplikation“ die 3

Produkte gebildet. Die mit doppelter Genauigkeit errechneten Zwischenergebnisse werden

in den Adressen 9 3 bis 9 8 gespeichert.

Im fünften Programmteil (6 9 bis 7 D) werden die 3 Multiplikationsergebnisse wieder mit

doppelter Genauigkeit addiert.
Die beiden JMPC-Befehle in den Adressen 7 4, 7 5 und 7 C, 7 D lassen in RO und R1

jeweils F Fıs erscheinen. C-Flag = 1 nach einer der beiden Additionen bedeutet nämlich, daß die

nachfolgende Multiplikation (7 E und 7 F) mit 2 den zulässigen Zahlenbereich überschreiten

und damit ein falsches Ergebnis entstehen würde. Die Addition mit doppelter Genauigkeit

wurde im Lehrheft 2 bereits beschrieben. Zunächst werden die beiden rechten Hälften

addiert (Adresse 6 3). Entsteht dabei ein Übertrag, erfolgt ein Sprung nach A O0. Dort wird

das C-Flag gelöscht und zur linken Hälfte in RO eine 1 addiert. Bei Adresse 7 2 wird dann

auch die linke Hälfte addiert. Der Vorgang wiederholt sich von 7 6 bis 7 B. M

Bei allen Unterprogrammen muß am Ende noch die richtige Rücksprungadresse gefunden

werden. In unserem Programm werdendie Rücksprungadressenin F 1 gespeichert, also muß

der Rücksprung in das Hauptprogramm mit JUMP @ F 1 erfolgen (Adressen 1 9 und 1 A).

Aufgaben:

1. Welche Auswirkung hat ein falsches Belegen der Adresse 1 9 mit Inhalt E O anstatt E 4?

2. Bei einer entsprechenden Eingabe soll nach der Addition der Zwischenergebnisse (nach

Programmschritt 7 A) in RO und R1 folgendes Ergebnis stehen:

RO R1

E72

a) Wie lautet das richtige Endergebnis?

b) Wie lautet das Endergebnis, wenn die Befehle 7 E und 7 F in ihrer Reihenfolge vertauscht

werden? Ä

E 73

Experiment 11: Anrufen von Unterprogrammen mit den CALL-Befehlen

Die gleiche Aufgabe wie in Experiment 10 soll jetzt unter Verwendung der CALL-Befehle

gelöst werden.

Dadurch ergebensich folgende Programmänderungen:

1. Vor dem ersten CALL-Befehl muß in das als Stack-Pointer arbeitende Register R3 die

Anfangsadresse des Stack-Bereiches geladen werden.

2. Das Abspeichern der Zwischenergebnisse wird im Unterprogramm durchgeführt (Adressen

19bis20).

3. Die Verarbeitung eines Übertrages bei der Addition mit doppelter Genauigkeit wird jetzt

ebenfalls über ein Unterprogramm durchgeführt.

Das Flußdiagramm unterscheidet sich jedoch nicht von Experiment 10.

Laden Sie das Programm (Tab. 1), und testen Sie es mit den Beispielen aus Experiment 10.

Adresse Inhalt Befehl Kommentar

30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F
40
41
42
43
44
45
46
47
48
49
AA

f==4B
AC
4D
4E
AF
50
51
52
53
54
55
56
57
5 8
59
5A

00
8 3
90
82
FF
88
7C
00
88
7C
00
88
7C
77
F2
83
80
84
90
85
91
FO
01
84
90
85
92
FO
01
84
91
85
92
FO

01

30

85

94

95

96

84

93

FS3

HALT

LOAD R3,# 90

LOADR2, # FF

LOAD RO, @ R2

STAC RO, @ RSt

HALT

LOAD RO, @ R2

STACRO, @ RS!

HALT

LOAD RO, @ R2

STAC RO, @ RS!

STACR3,F2

LOAD R3,# 80 .

LOAD RO, 90°

LOAD R1,91

CALLO 1

LOAD RO, 90

LOAD R1,9 2

CALLO 1

LOADRO,9 1

LOAD RG, 9 2

CALLO 1

IORR RO, RO

LOAD R1,94

ADDM R1,96

3er
"LOAD RO, 9 3

ı CALCAO

/nf
act

DEEP

[ade
5

. " BG

S? zZ ca &

läde Ki

; Y F vo‘ F E £ £x / 2 $, ; .
u, > ihn 3we hr pr BE Afat: Par afer ms Nr fieIE ge } ER ,

0 FH Fa: en
Ita ı / HAFar, et ? „”

Ro mit Ache

‚e Höhe
= Hol

F SnF Refir

prere

Teh ; er ”Th : . — n

Yf3 . er: a

te?

$, vu / £ £ f Y = FE

ur Frodfasf aus Hohe u. fie ff

” . an .: £ ;

) > &ee

ee

NA.
23 3ii 2%
I ww

D . ,f Fi Bu

freu BR &

£ sch €

aa
L C ed£ RAPrw, JAH £ En SEEN

hohe u, PedEen » £ a"

Hlf:e,

Ro

IE

u
€ F “, A z FA d

>; \, &

Apr HESE
;

\
F

Bar:
7N Ep Be
De Dee: 1 u

= en z

nee E un
>och ll = F

a
e

=
.

G
r

#
&

e
i
,

"e
n;

ix

L FE
4

. er
f3 fPas ge M m

+ Eee; en Wh IR r

Adresse Inhalt Befehl Kommentar

5B AO J , 22h 2

5C 94 ADDMRO,95 Hufe en, =
5D 95 dual ehrt u Fr rft

5E E3 JMPC6C Wahn, {tr Eco
5 F 6C | “ yrch
60 95 ADDM R1,98 ee en
6 1 98 | | ae, er

62 F3 CALCAO Hs 52
6 3 AO
64 94 ADDM RO, 97 Hfct Sen

65 97 Pi Ei ode £ secd £Im

66 E3 JMPC6C Meat —m JE
67 6C
68 69 RACL R1 ep Be
69 68 RACL RO . .
6A EO JUMP 3 O Ss .
6 B 30 |
6C 80 LOADRO, # FF
6D FF
6E 01 MOVE RO, R1
6F EO JUMP 3 O
70 30 |

A O-Unterprogramm

AO 30 IORR RO, RO
A 60 INCR RO
A2 EC JUMP @R3t

Ergänzung des Multiplikationsprogramms

19 86 LOAD R2, F2 ae
1A F2
1 B 78 STACRO,@R2 | ö
1C 62 INCR R2 2, .

1D 79 STACR1,@R2 |5p«. MN
1E 62 INCR R2 : A’ -
ı F 76 STACR2,F2 os >
20 F2 |

Tab. 1

Programm für die Oberflächenberechnungeines Quaders mit CALL-Befehlen

Programmerläuterung:

Bei einem Vergleich der Programmteile zur Dateneingabe in den Experimenten 10 und 11

werden Sie feststellen, daß jetzt zum Laden der mit A bis Ao eingestellten Daten in einen

bestimmten Speicherplatz nur noch 2 Adressen belegt werden müssen.Diese Eingabemethode

läßt sich jedoch nur dann anwenden, wenn die Daten in aufeinanderfolgenden Speichern

untergebracht werdensollen.

Das Unterprogramm zur Verarbeitung von Überträgen wird über einen bedingten CALL-Befehl.

angerufen, wennein C-Flag erscheint.

E 7/5

Experiment 12: Unterprogramme mit Adreßargumentübergabe

Als Beispiel für eine Adreßargumentübergabe soll der Ausdruck a” + b* berechnet werden.
Zur Berechnungder Quadrate wird dabei das Multiplikationsprogramm in Adresse O 1 bis 1 8

herangezogen. Die Adressen 1 9 bis 2 5 müssen dazu noch mit den Befehlen geladen

werden, die zum Abspeichern der Ergebnisse und zum Rücksprung in das Hauptprogramm

notwendig sind. Die ebenfalls zum Unterprogramm gehörende Argumentübergabewird in

den Adressen 2 6 bis 3 O gespeichert. Das Unterprogramm wurdein dieser Form bereits im

Abschnitt 5.3 besprochen. Die Befehle können aus der Tabelle 5.3.3 entnommen werden.

Für das Hauptprogramm kann jetzt das Flußdiagramm aufgestellt werden, das Bild 1 zeigt.

START
 a und 5b laden

MULTA

bb

\

Addition

(a2) + (b2)

\

HALT

Bild 1
Flußdiagramm zur Multiplikation a? + 5?

Laden Sie jetzt die Unterprogrammergänzung aus Tabelle 5.3.3 und das in Tab. 1 gezeigte

Hauptprogramm.

E 76

Adresse Inhalt Befehl Kommentar

50 00 HALT

51 84 LOAD RO, FF

52 FF ainAO speichern

53 74 STAC RO, AO

54 AO

55 00 HALT

56 84 LOAD RO, FF Ä

57 FF .

58 74 STACRO,A 1 bin A 1 speichern

59 A

5A 83 LOAD R3, # FF Initialisierung Stack-Pointer

5B FF

5C FO CALL MULTA

5 D 26 Unterprogrammanruf und Adreßargumente

SE AO ADR Faktor1 zur Berechnung von a°
5F AO ADRFaktor 2

60 BO ADR Produkt

61 FO CALL MULTA

62 26 Unterprogrammanruf und Adreßargumente

6 3 Ai ADRFaktor1 zur Berechnung von 5?
64 A ADR Faktor 2

65 B2 ADR Produkt

66 30 IORR RO, RO C-Flag löschen

67 95 ADDM R1,BO |
68 BO

> 1 - o JMFC 8 0 | Addition und Rücksprung zum Programm-

6 B 94 ADDMRO,B1 anfang
6C B 1

6 D EO JUMP 50

GE 50 |

80 30 IORR RO, RO C-Flag löschen

81 60 INCR RO Übertragsverarbeitung
82 EO JUMP 6B

83 6 B

Tab. 1

Hauptprogramm zur Multiplikation a? + 5b?

Aufgaben:

1. Weshalb werden in den Adressen 5 E, 5 F und 6 3, 6 4A jeweils dieselben Adressen

für das Unterprogramm angegeben?

2. GebenSie an, in welchen Speicherplätzen die Teilergebnisse a° und 5? (rechte und linke

Hälfte je ein Speicherplatz) zu finden sind!

E77

[Y

Experimentieranhang

Lösungen zu Experiment 7

1. | START)

|

Lade ZinR2

 |
LöscheSchleifen-

zähler RI

 |
Setze erstes Glied

in RO =-1

in,

 |
RO um 2 erhöhen

(bilde nächstes Glied)

 |
Incrementiere

Schleifenzähler R1

 |
Subtrahiere (RO)

von (R2)

2. Daserste Programm entspricht nicht dem in Bild 5.1.1.1 dargestellten Format einer Schleife,

da der Hauptteil der Schleife vor und nach der Entscheidungliegt.

Der Programmteil Bildung des nächsten Gliedes (RO) + 2 wird erstmalig nach der Entschei-

dung ausgeführt. Wird z.B. Z = 1 gewählt, wird dieser Teil nicht durchlaufen.

Bei der zweiten Version wird (RO) + 2 bereits beim ersten Schleifendurchlauf ausgeführt.

Formal entspricht dieses Programm dem Schleifenformat in Bild 5.1.1.1.

Lösungen zu Experiment 8

1. Das N-Flag spricht immer dann an, wenn das werthöchste bit gleich 1 ist. Ohne diesen

Befehl wird dann z.B. bei einer Eingabe 1 x x x xx x x bei Adresse 4 B der JMPN-Befehl

ausgeführt.

E 7/9

Adresse Inhalt Befehl Kommentar

40 86 LOAD R2, FF
41 FF
42 09 MOVE R1,R2
43 c2 XORM R2, #00
44 00
45 E1 JMPZ 70
46 70
47 06 MOVE R2, R1
48 c2 XORMR2, #01
49 01
Aa E 1 JMPZ 80
4B 80
Re 06 MOVE R2, R1
4D c2 XORMR2, #02
4E 02
AF E 1 JMPZ 90
50 90
51 06 MOVE R2, R1
52 c2 XORM R2, #03
53 03
54 E1 JMPZAO
55 AO
56 80 LOAD RO, # FF
57 FF
58 EO JUMP 4 0
59 40

70 80 LOADRO, #00
71 00 |
72 EO JUMP 4 O
73 40 |

80 80 LOAD RO, #81
81 81 |
82 EO JUMP 4 0
83 40

90 80 LOADRO, #42
91 42
92 EO JUMP 4 O
93 A0

AO 80 LOAD RO, #C3
Al c3
A2 EO | JUMPAO
A3 40

E 80

Lösungen zu Experiment 9

Antworten auf die Fragen zu Programmteil 1:

a)

RO: [010/0|0/011|111 Dividend unverändert

R1: }1/1/0|0/0/0/010| - verschobenerDivisor

R2: 1010/0/0/010 [010 gelöschtes Ergebnisregister

R3: [0/0/010/0|1|1|0 Verschiebezähler = 6
b) Das C-Flag würde sonst bei RACL R1 (Adresse 4 6) im niedrigsten bit des Divisors er- |

scheinen.

Antworten auf die Fragen zu Programmteil 2

a) Die 910 muß im ersten Teil 4ı0o-mal verschoben werden, also steht R3 auf 4,0. Da der

Programmteil 2 erst durch ein N-Flag beendet wird, sind 5 Durchläufe notwendig.

b) Da der Divisor durch die Verschiebungen im ersten Teil in seiner Wertigkeit verändert

wurde, muß der Quotient dieser Wertigkeit angepaßt werden. |

Antworten auf die Fragen zu Programmteil 3

1. Eine Subtraktion im parallelen Subtraktionspfad würde nicht im Quotientenregister re-

gistriert. |

2.
y1 272 273 24

nicht belegt

Lösungen zu Experiment 10

1. Nach dem ersten Anruf des Multiplikationsprogramms (Adr. 4 7) würde der Rücksprung

zur Adresse F 1 erfolgen und nicht wie im Programm verlangt zur Adresse 4 9.

2.2) C-Flag

0/0/1/11)0/0/1 11 1/0/1|1|1,0|0|0

b) C-Flag

E 81

Lösungen zu Experiment 12

1. Da das Unterprogramm nicht geändert werdensoll, müssen 2 Faktoradressen angegeben

werden. Im Sonderfall des Quadrierens sind beide Faktoren, also auch beide Adressengleich.

2. a’: linke HälfteinB1
rechte Hälfte in B O

b?: linke Hälfte in B 3

rechte Hälfte inB 2

E 82

Experiment 13: Handhabung des Monitorprogramms

MP-System 8080 ITT MP-Experimenter

SYSTEM

L7 Le Ls Lı La L> L4 Lo R7 Re Rs; R, Rz R, Rj Ro

Inh. der mit ASch. gewählten Adr. Inh. der mitB-Sch. gewählten Adr.

RAM rel. Adr: f. Ld. Adr, Depos.+Exa.HLT run JPEPOT EXA- FLoAD
el]312 SIT | MINE ADR. Stack rel. Adr.(Offset)f. Stack Disp.

1 1 ; 1

sonst:

RAM rel. Adr. für Stack-Display

Ö 0 Ö 0

Cu Cz C2 er Co Ar As As A, Az Ar Aı Av Br Bs B5s Bu, B3 Br Bı Bo

Vorbereitung:

— Schablone 6 auflegen

— SYSTEM-Schalter auf 6 einstellen

— Alle Schalter auf Null stellen

—- RESET drücken

Mit dem Monitorprogramm besteht die Möglichkeit:

— die Registerinhalte im MP 8080 und den Stand des Programmzählers sowie die Inhalte aller

Adressen im RAM sichtbar zu machen.

—- ähnlich wie im System 5 mit den Schaltern C» bis Co Daten zu laden und mit EXAMINE

zu kontrollieren.

Das Monitorprogramm ist im ROM untergebracht und wird durch Betätigung der RESET-Taste

gestartet.

Im Gegensatz zum hypothetischen Rechner, bei dem ein ähnlicher Monitor verwendet wurde,

ist es im System 6 nicht mehr möglich, das Anwenderprogramm und den Monitor gleich-

zeitig zu betreiben. Wenn hier das Anwenderprogramm läuft, ist der Monitor außer Betrieb,

d.h., eine Betätigung der Schalter hat keinen sichtbaren Einfluß mehr auf das System. Beim

hypothetischen Rechner wurde über das Simulationsprogramm nach jedem Befehl das

Monitorprogramm angerufen, so daß jeder Befehl entsprechend sichtbar gemacht werden

konnte. In einem Zeitmultiplex-Verfahren wurden Anwender- und Monitorprogramm ständig

gemeinsam benutzt. Dies hatte natürlich zur Folge, daß die Rechengeschwindigkeit des

hypothetischen Rechners einige hundertmal langsamerwarals die im System 6.

Wennalso über den RUN-Schalter der Rechner in das Anwenderprogramm gelangt, wird das

Monitorprogramm - dieses liegt im ROM, das Anwenderprogramm liegt im RAM - außer

Funktion gesetzt. Es gibt 2 Möglichkeiten, zurück in das Monitorprogramm zu kommen:

- Durch Drücken der RESET-Taste. Dadurch wird der Programmzähler wieder auf die

Ausgangsadresse O O O O gebracht.

-— Durch einen RST 2-Befehl (RESTART) mit dem Code D7.

Hierzu einige Erläuterungen:

Im MP-System sind ein 1-k-ROM und ein 1/4-k-RAM enthalten. Bedingt durch den 16-bit-

Adreßbus muß jeder Speicherplatz mit 2 Byte (16 bit) adressiert werden. Für das ROM sind

dabei die Adressen von O O O Oıs bis O 3 F F festgelegt, für das RAM die Adressen

0 40 015 bis O4 F Fıe. Die Adressen vonO 5 O Oıs bis F F F Fıs werden nicht ausgenutzt.

Wenn die RESET-Taste betätigt wird und somit der Befehlszähler die Anfangsadresse

0 0 0 O0 (ROM) anwählt, gelangt der Rechner in das Monitorprogramm. Er verbleibt so

lange im Monitorprogramm, wie der RUN-Schalter auf Null steht. Jetzt besteht die

Möglichkeit, Daten in das RAM zu laden und entsprechend zu überprüfen.

Mit den Schaltern Ao bis A; kann die Anfangsadresse für ein Programm bestimmt werden,

die dann über LOAD-ADR. geladen werden kann. Hierbei ist zu berücksichtigen, daß bei

einer Einstellung Ao bis A, von z.B. O O in Wirklichkeit die Adresse O 4 O O angesprochen

E83

wird. Dies wird auch durch die Bezeichnung auf der Schablone „RAM rel. Adr. f. Ld. Adr.

Depos. + Exa.” ausgedrückt, was besagt, daß sich die Adreßeingabe immer auf die Anfangs-

adresse 0 A400 des RAMsbezieht.

Beispiel:

absolute Adresse relative Adresse Eingabe A; bis Ao

0000

0001 |

nicht über die Ein- | ROM-Bereich

gabe adressierbar

O3SFF

0400 00 00 |
0401 01 O1

0402 02 02

RAM-Bereich

OAFD FD FD
OAFE FE | FE

OAFF FF FR |

0500 | in diesem System nicht benutzt

bei Systemerweiterung verfügbar

FFFF

Laden Sie folgende Daten:

relative Adresse Inhalt

00 81

O1 C3

02 E7

03 FF

04 7E

05 3C

06 18
Eingabeablauf:

— Stellen Sie alle Schalter auf Null

— RESET-Taste drücken

—- LOAD-ADR. takten

- Mit DEPOSIT die Daten (Inhalt) eingeben.

Während DEPOSIT gleich 1 ist, erscheint an der Lampenreihe /o bis L7 die relative Adresse,

in Ro bis A, die am A-Schalter eingestellten Daten. Die Adresse wird auch hier beim Takten

mit DEPOSIT automatisch um 1 erhöht.

Nach erneutem Laden der Adresse OO könnendie Speicherinhalte mit EXAMINEkontrolliert

werden. Ä

Die eingegebenen Daten können Sie auch mit den B-Schaltern überprüfen. Abgesehen von

den Schaltern Cı bis Ca, die immer noch auf Ostehen, kann bei C; bis Co gleich O mit den

B-Schaltern eine relative Adresse eingestellt werden, deren Inhalt in Ro bis A, angezeigt wird.

Überprüfen Sie auch auf diese Weise die geladenen Daten. Auf die Funktion der A-Schalter

bei C2 bis Co gleich O kommen wir noch zu sprechen.

E84

Das Monitorprogramm wird verlassen, wenn über RUN gleich 1 das Anwenderprogramm

angerufen wird.

Laden Sie noch folgendes Programm. Die Bedeutung dieses Programmsist zunächst neben-

sächlich. |

rel. Adresse Inhalt

00 3A

O1 00

02 00

03 C6

04 48

05 3C

06 76
Überprüfen Sie die Eingabe mit den B-Schaltern. Der Inhalt 7 6 in Adresse O 6 ist ein

HALT-Befehl. Wenn Sie den RUN-Schalter auf 1 stellen, springt der Rechner aus dem

Monitor- in das eingegebene Programm und arbeitet es ab. Er bleibt bei der rel. Adresse

O0 6 stehen. Auch wenn Sie jetzt den RUN-Schalter auf O zurückstellen, sind alle Schalter

außer Funktion, da der Rechner nicht automatisch in das Monitorprogramm zurückspringt.

Durch Drücken der RESET-Taste kann das Monitorprogramm wieder eingeschaltet werden.

Der RUN-Schalter muß dabei auf O stehen, da sonst nach dem Loslassen der RESET-Taste

sofort ein neuer Programmdurchlauf erfolgt.

Bisher haben wir das Monitorprogramm nur zur Eingabe und Kontrolle von Daten benutzt.

Nachfolgend sollen nun Registerinhalte angezeigt werden.

Laden Sie folgendes Programm:

(RESET drücken undrel. Adresse O O mit LOAD-ADR.zuerst eingeben)

rel. Adresse Inhalt Befehl Kommentar

00 3E MVIA,AAA Lade Akku mit AA

01 AA

02 06 MVIB,81 Lade Reg. Bmit 8 1

03 81 |

04 OE MVIC,C3 Lade Reg. C mit C 3

05 C3 |

06 16 MVIDE7 Lade Reg. DmitE 7

07 E7

08 1E MVIE,FF Lade Reg. Emit FF

09 FF

OA 26 _MVIH, 7E Lade Reg. H mit 7E

OB TE

oc 2E MVIL, 3C Lade Reg. Lmit 3C

OD 3C

OE D7 RST 2 Restart 2

OF 76 HLT Halt

Mad de Erz monen Weich gedh
X It ir SHAHA f| ftBa R Kal5 Lese£ f “

Anmerkungen:

Die Abkürzung MVI heißt Move Immediate. Mit diesem Befehl erfolgt ein Datenfluß in das

jeweils angegebene Register. Durch die Immediate-Adressierung sind dies die Daten des

zweiten Befehlsbytes.

In Adresse O E ist der Befehl RST 2 gespeichert. Dieser Befehl ruft das Monitorprogramm

an (auf Einzelheiten wird später eingegangen), das in diesem Zusammenhang als Unter-

programm angesehen werden kann. Bei Adresse O F ist das Anwenderprogramm zu Ende.

Überprüfen Sie das Programm über EXAMINE. Wenn Sie jetzt bei C4 = O den RUN-

Schalter auf 1 stellen, wird das Programm bis zur rel. Adresse O F abgearbeitet, und das

Monitorprogramm ist wieder außer Betrieb. Stellen Sie jetzt den RUN-Schalter wieder auf O

E 85

und den Schalter Cı (HLT an BP) auf 1. Drücken Sie jetzt RESET (Monitor in Betrieb).

Starten Sie das Programm erneut mit RUN. Bedingt durch Ca = 1 wird jetzt bei Adresse O E

durch den Befehl RST 2 das Anwenderprogramm unterbrochen und das Monitorprogramm

aufgerufen. Dies wird auch durch die Schalterbezeichnung von C, mit HLT an BP (Halt am

Unterbrechungspunkt) ausgedrückt.

Mit den B-Schaltern können, wie vorher beschrieben, die Inhalte aller relativen Adressen

aufgerufen werden (Anzeige in Ro bis A;).

Wenndurch den Befehl RST 2 das Monitorprogramm angerufen wird, was einer Programm-

unterbrechung entspricht, müssendie Inhalte aller Register incl. Flag-Register sowie die

Stellung des Programmzählers abgespeichert werden. Nur so ist sichergestellt, daß bei einer

Fortführung des Anwenderprogramms wieder auf die ursprünglichen Daten zurückgegriffen

werden kann. Das Monitorprogramm speichert diese Daten in einem Stack (RAM), dessen

höchste Adresse F D (relativ) ist. Die Reihenfolge des Abspeichernsliegt durch den Monitor

fest und wird in der nachfolgenden Tabelle dargestellt:

absolute Adresse relative Adresse Inhalt

O4AFA4 F4 Inhalt Register L

OAF5 F5 | Inhalt Register H

OAF6 F6 Inhalt Register E

OAF7 F7 Inhalt Register D

OAF3 F8 Inhalt Register C

OAFY F9 Inhalt Register B

OAFA FA Inhalt Register F (Flag-Register)

OAFB FB Inhalt Register A (Akkumulator)

OAFC FC Programmzähler (rechte Hälfte)

OAFD FD | Programmzäähler(linke Hälfte)

Sie können denInhalt der Register und des Programmzählers dadurch überprüfen, daß Sie

die B-Schalter auf die relative Adresse einstellen. Da der Programmzähler 16 bit aufweist,

werden zur Abspeicherung 2 Bytes benötigt. Bei dem vorgegebenen Programm muß, da

über RST 2 das Programm bei Adresse O E unterbrochen und bei O F wieder fortgesetzt

werden muß, der Programmzähler auf Adresse O F (relativ) bzw. O 4 O F (absolut) stehen.

Der Inhalt des Stacks läßt sich auch mit den A-Schaltern überprüfen. Durch die feste

Anzahl der Register wird für das Abspeichern immer ein Stack mit 10 Plätzen benötigt.

Nach dem Abspeichervorgang steht der Stack-Pointer immer auf rel. F 4. Damit kann die

rel. Adresse F 4 als Bezugspunkt für den Stack herangezogen werden. Während die

Adressierung mit dem B-Schalter immer auf die rel. Adresse O O bezogenist, ist bei den

A-Schaltern der Bezugspunkt der Stack-Pointer und damit die rel. Adresse F 4. Aus diesem

Grunde auch die Bezeichnung „Stack rel. Adr. (Offset) f. Stack Disp.“. Um z.B. mit den

B-Schaltern den Inhalt vom L-Register anzuzeigen, muß die Adresse F 4 eingestellt werden.

Die gleiche Anzeige (in Lo bis L) ergibt sich bei der A-Schalterstellung O O, da F 4 ja die

Bezugsadresse ist. Der Akku-Inhalt wird angezeigt, wenn Stack-relative Adresse O 7 an

Ar bis Ao eingestellt wird.

absolute Adresse relative Adresse Stack-relative Inhalt

(B-Schalter) Adresse

(A-Schalter)

O4FA4 FA 00 Inhalt Register L

OAF5 F5 O1 Inhalt Register H

OAF6 F6 02 Inhalt Register E

OAF7 F7 03 Inhalt Register D

OAFS F8 04 Inhalt Register C
04F9 r9 05 Inhalt Register B

OAFA FA 06 Inhalt Register F (Flags)

O4AFB FB 07 Inhalt Register A (Akku)

OAFC FC 08 Programmzähler (rechte Hälfte)

O4FD FD 09 Programmzähler(linke Hälfte)
E 86

Die Stack-relative Adresse wird auch als Stack-Offset bezeichnet.

Überprüfen Sie mit dem A-Schalter die Registerinhalte und den Programmzähler.

Während der hier beschriebenen Vorgänge lief ständig das Monitorprogramm. Wenn der

A-Schalter HLT am BP auf O zurückgestellt wird, wird das Anwenderprogramm bei der

rel. Adresse O F fortgesetzt, das Monitorprogramm ist nicht mehr wirksam (keine Aus-

wirkung der Schalter). Um den Monitor wieder in Betrieb zu setzen, muß RUN auf O und

RESET gedrückt werden.

Im nachfolgenden Programm werden mehrere Monitoranrufe durch RST 2 durchgeführt:

relative Adresse Inhalt Befehl Kommentar

00 3E MVIA,OO Lade Akku mit 0 O

O1 00

02 D 7 RST 2 ‘| Restart

03 3C INR A Incrementiere Akku

04 D 7 RST 2 Restart

05 6 F MOVL,A (A)>L

06 D 7 RST 2

07 3C INR A

08 D7 RST 2

09 67 MOVH,A (A)>H

OA D 7 RST 2

OB 3C INR A

oc D 7 RST 2

OD SF MOVE,A (A)>E

OE D7 RST 2

OF C3 JMPO0400 Rücksprung absolute Adresse
10 00 M

11 04

Überprüfen Sie das eingegebene Programm mit EXAMINE.
Schalten Sie bei Ca = O RUN auf 1. Am Ende des Anwenderprogrammserfolgt ein unbedingter

Sprung zum Programmanfang (JMP O0 4 O0 O). Da der Schalter HLT am BP auf O steht, wird

dieses Programm ständig durchlaufen. Jedesmal, wenn der Befehl RST 2 angerufen wird,

erfolgt ein Sprung ins Monitorprogramm mit anschließendem Rücksprung ins Anwender-

programm. Wie beim hypothetischen Rechner ist es jetzt möglich, den Programmablauf

sichtbar zu machen.

Wird im laufenden Programm der Schalter HLT am BP auf 1 geschaltet, wird das Anwender-

programm an einem der RST 2-Befehle angehalten. Analog zum SINGLE-STEP-Betrieb im

hypothetischen Rechner kann jetzt durch Takten des RUN-Schalters das Programm jeweils

bis zum nächsten RST 2-Befehl „weitergeschaltet” werden.

Takten Sie mit RUN bei Ca = 1 das Programm durch. Der Programmzähler muß dabei

der Reihe nach die relativen Adressen O 3, 0 5,0 7,0 9,0B, OD und O F zeigen

(rechte Hälfte des Programmzählers PC low). |
Ändern Sie denInhalt derrel. Adresse O F in 7 6 (HLT) um.

Anmerkung: |

Beim Monitoranruf über RST 2 wird nur der Programmteil im ROM durchlaufen, der eine

Anzeige der verschiedenen Register- und Speicherinhalte ermöglicht. Zum Laden neuer

Daten muß der Monitor mit RESET auf die Anfangsadresse O0 O0 O O gebracht werden.

Der RUN-Schalter muß hierbei unbedingt auf O stehen, da sonst das Programm sofort

neu abgearbeitet wird.

WennSie jetzt bei Cı = O RUN betätigen, durchläuft der Rechner das Anwenderprogramm

und bleibt bei Adresse O F stehen. Obschon im Anwenderprogramm das Monitorprogramm

7mal angerufen wird, ist aufgrund der hohen Arbeitsgeschwindigkeit in der Anzeige keine

Änderung zu erkennen.
Bei Adresse O F erfolgt kein Rücksprung ins Monitorprogramm. Stellen Sie Ca = 1 und

RUN = O ein und betätigen Sie RESET. Der Programmzähler mußjetzt auf rel. O O stehen und

E87

*

das Monitorprogramm in Funktion sein. Jetzt können Sie mit RUN das Programm wieder

von RST- zu RST-Befehl durchtakten. Nach dem letzten RST-Befehl wird das Programm

mit dem HLT-Befehl in Adresse O F fortgesetzt, der Monitor ist außer Betrieb und kann

nur über RESET wieder gestartet werden.

Das hier besprochene Monitorprogramm wurde nach didaktischen Gesichtspunktenerstellt,

damit der Lernende den Arbeitsablauf des MP möglichst genau verfolgen kann.

Zum Schluß sei noch bemerkt, daß die Handhabung des Monitors absolute Voraussetzung

für die Durchführung von Experimenten im System ist.

E88

Experiment 14: Einzelgenauigkeits-Datentransferbefehle

Im nachfolgenden Experiment sollen die Befehle der ersten Gruppe zur Anwendung ge-

bracht werden.

Um die einzelnen Vorgänge besser verfolgen zu können, ist nach jedem Befehl ein Monitor-

anruf (RST 2) eingebaut.

Laden Sie zunächst das Programm:

relative Adresse Inhalt Befehl Kommentar

00 06 MVIB,04

01 04

02 D7 RST 2 Registerpaar B mit0 4 80 laden

03 OE MVIC,80

04 80 | |

05 D7 RST 2

Q > - - MUIAGS | Akku mit C 3 laden
08 D7 RST2

09 02 STAXB (Akku) nach @ BC

OA D 7 RST 2 |

OB oc INR C Increment (C-Register)

OC D7 RST 2

OD 60 MOV H, B (B)>H

OE D7 RST 2

OF 69 MOVL,C (C)>L

10 D7 RST 2

, on MIAFF Akku mit F F laden

13 D7 RST 2

14 717 MOV M, A (Akku)> @HL

15 D7 RST 2

16 2D DCRL Decrement (L-Register)

17 D7 RST 2

18 54 MOVD,H (H)>D

19 D7 RST 2

1A 5D MOVE,L (L)>E

1B D7 RST 2

1C 1ıA LDAX D (@ DE)>A

1D D7 RST 2

1E 3A LDAO482 (048 2)>A

1 F 82

20 04

21 D7 RST 2

22 76 HLT

82 TE

Überprüfen Sie das Programm mit EXAMINE. Stellen Sie den HLT am BP-Schalter auf 1,

und takten Sie das Programm mit dem RUN-Schalter durch.

Aufgaben:

1. Bei welchem Programmschritt kann der Endzustand der Register mit dem Monitor-

programm geprüft werden?

2. Geben Sie die Register- und Speicherinhalte am Programmendean!

E 89

Experiment 15: Doppelgenauigkeits-Datentransferbefehle

Die gleichen Datenbewegungen wie in Experiment 14 sollen mit Hilfe von Befehlen aus der

zweiten Gruppe durchgeführt werden.

Laden Sie dazu das folgende Programm:

relative Adresse Inhalt Befehl Kommentar

00 01 LXI B

01 80 lade Registerpaar Bmit0 480

02 04 | |

03 D7 RST 2

04 3E MVIA,C3
05 c3 | | Akku mit C 3 laden

06 D7 RST 2

07 02 STAX@B (Akku) indirekt über B abspeichern

08 D 7 RST 2

09 2A LHLD |

oA 01 Registerpaar H mit 0401 laden

OB 04

oc D 7 RST 2 |

0D 2C INRL (Register L) incrementieren
OE D7 RST 2

' . > = MVIAFF Akku mit FF laden
11 D7 RST 2 |

12 717 MOVM, A (Akku)>(@ Registerpaar HL)

13 D7 RST 2

14 2D DCRL (Register L) decrementieren

15 D7 RST 2

16 EB XCHG vertausche die Inhalte der

Registerpaare H und D

17 D7 RST 2

18 1A LDAX D Akku mit (@ Registerpaar DE) laden

19 D7 RST2

1A 3A LDAO482 |

Akku mit Inhalt der relativen

1 B 82 Adresse 8 2 laden

1C 04

1D D7 RST 2

1E 76 HLT

82 TE

Aufgabe: | .
GebenSie die Inhalte aller Register und des Akkumulators an. [Vab auct oe: R Opaein -

a g /tt /: In

£
vo

At £ FrN

E 90

Experiment 16: IN- und OUT-Befehle

Laden Sie nachfolgendes Programm:

relative Adresse Inhalt Befehl Kommentar

00 DB IN ASHALT (A-Schalter)>Akku

01 02

02 D3 OUT LLAMPE (Akku)>Lampen/7;bis [lo

03 02

04 DB IN BSHALT (B-Schalter)>Akku

05 01

06 D 3 OUT RLAMPE (Akku)>LampenA};bis Ao

07 01

08 DB IN CSHALT (C-Schalter und System-

schalter>Akku

09 04

OA D3 OUT RLAMPE (Akku)>Lampen AR; bis Ro

OB 01

oC C3 JMPO400 Sprung zur absoluten Adresse

OD 00 0400 2 relative Adresse O O

OE 04

Mit diesem Schleifenprogramm ist es möglich, alle Schalter des MP-Experimentiersystems

zur Anzeige zu bringen. Da kein RST 2-Befehl vorhanden ist, wird das Monitorprogramm

nicht durchlaufen, d.h., alle Schalter (bis auf RESET) könnenbeliebig verstellt werden. Über

den Befehl IN CSHALT wird in A, bis Ro der jeweilige Zustand der C-Schalter sowie des

Systemschalters angezeigt (bei 37 bis Bo gleich O).

Aufgaben:

1. Ermitteln Sie die bit-Zuordnung der C-Schalter und des Systemschalters:

b7 be bs ba ba ba bı bo

2. Wie werden die am Systemschalter eingestellten Zahlen wiedergegeben?

3. Wie kann diese Programmschleife wieder verlassen werden?

E91

Experiment 17: Einzelgenauigkeitsadditionsbefehle

Laden Sie nachfolgendes Programm:

relative Adresse Inhalt Befehl Kommentar

00 06 MVI B _ Reg. B mit 1 O0 laden

01 10

02 D7 RST 2 | |

03 DB IN BSHALT (B-Schalter)>Akku

04 O1

05 D7 RST 2 | |

06 80 ADD B (Reg. B) + (Akku)

07 D 7 RST 2

08 C6 ADI (Akku) +O F

09 OF

oA D7 RST 2

OB AF MOV C,A (Akku)> Reg. C
oc D7 RST 2 |

OD DB IN ASHALT (A-Schalter)>Akku

OE 02 |
OF D 7 RST 2

10 89 ADC C (Akku) + (Reg. C) + (C-Flag)

11 D7 RST 2 |

12 CE ACI 1 1 (Akku) + 1 1 + (C-Flag)

13 11

14 D7 RST 2

15 C3 JMPO400 Sprung zur Anfangsadresse

16 00 |

17 04
Durch die RST 2-Befehle kann das Programm im SINGLE-STEP-Betrieb gefahren werden,

so daß Sie jeden Befehl verfolgen können.

Aufgaben:

1. Geben Sie den Zustand des C-Flags bei der relativen Adresse O A an, wenn die B-Schalter

auf E F stehen. Geben Sie außerdem den Akku-Inhalt an!

2. Geben Sie den Zustand des C-Flags und des Akkus bei der relativen Adresse 1 1 an,

wenn die A-Schalter auf O 7 stehen (3-Schalter auf E F}!

3. Wie lautet das Endergebnis beider relativen Adresse 1 4?

Führen Sie selbst noch weitere Beispiele durch. Berücksichtigen Sie, daß bei dem Befehl ADD

zwar ein Übertrag entstehen kann, dieser aber bei dem Befehl ADI nicht mehr berücksichtigt

wird.

E92

Experiment 18: Einzelgenauigkeitssubtraktionsbefehle

Laden Sie nachfolgendes Programm:

relative Adresse Inhalt Befehl Kommentar

00 06 MVI B Reg. B mit #0 laden
O1 40

02 D7 RST 2

03 DB IN BSHALT (B-Schalter)>Akku

04 01

05 D7 RST 2

06 90 SUB B (Akku)> (Reg. B)

07 D7 RST 2

08 D6 SUI 10 (Akku)>1 O

09 10

OA D7 RST 2

OB Aa F MOV C,A (Akku)>Reg. C
oc D7 RST 2 |

OD DB IN ASHALT (A-Schalter)—>Akku

OE 02

OF D7 RST 2

10 99 SBB C (Akku) — (Reg. C) - (C-Flag)

11 D7 RST 2

12 DE SBI 20 (Akku) - 20 — (C-Flag)

13 20

14 D7 RST 2

15 C3 JMP 0400 Rücksprung zur relativen

16 00 Adresse O0 O

17 04
Überprüfen Sie mit EXAMINE, ob Sie das Programm richtig eingegeben haben. Stellen Sie

den Schalter Cı „HLT am BP“ auf 1, und takten Sie das Programm mit dem RUN-Schalter

(vorher RESET drücken). Wählen Sie als Daten für den Befehl IN BSHALT 8 Oıs und für

den Befehl IN ASHALT C Oıs. Überprüfen Sie den Zustand des Akkumulators und des

C- sowie N-Flags entsprechend nachfolgender Tabelle bei den jeweiligen relativen Adressen.

relative Inhalt Akku Flags

Adresse binär hex. C-Flag N-Flag

07 01000000 40 0 0

OA 00110000 30 O 0

11 1001 0000 90 O 1

14 01110000 70 O O
Die angegebenenrelativen Adressen entsprechen den RST 2-Befehlen, die einem Subtrak-

tionsbefehl folgen. Bei den hier gewählten Daten für die Befehle IN BSHALT mit 8 Oıs

und IN ASHALT mit C Oıs ergibt sich nachfolgender Rechengang:

10000000
- 01000000
1000000- Entlehnung
01000000 --(Akku) bei rel. Adr.0 7

- 00010000
0110000- Entlehnung

00110000 (Akku) bei rel. Adr. OA

E 93

Aufgaben:

Entlehnung

—(Akku) bei rel. Adr. 1 1

Entlehnung

—(Akku) bei rel. Adr. 1 4

1. Warum ist das N-Flag bei der relativen Adresse 1 1 gleich 1?

2. Führen Sie das Programm mit folgenden Daten durch:

Tragen Sie die Daten in nachfolgende Tabelle ein.
-

IN BSHALT: 3 Ois
IN ASHALT: O 9ıs

relative

Adresse binär

Inhalt Akku
hex. C-Flag

Flags

N-Flag

07

OA

11

14
3. BegründenSie, warum bei dem vorherigen Beispiel in derrelativen Adresse 1 1 der Akku-

Inhalt 2 9ıe ist!

E 94

Experiment 19: CMP- und CPI-Befehle

Laden Sie nachfolgendes Programm:

relative Adresse Inhalt Befehl Kommentar

00 3E MVIA Akku mit 7 4 laden

01 4

02 06 MVIB Reg. B mit 9 5 laden

03 95

04 B8 CMP B Vergleich (Akku) mit (Reg. B)

05 D7 RST 2

06 FE CPI6 8 Vergleich (Akku) mit 6 8

07 68

08 D7 RST 2

09 FE CPI74 Vergleich (Akku) mit 7 4

oA 74 |
OB D7 RST 2

oc FE CPI 75 Vergleich (Akku) mit 7 5

OD 75

OE D7 RST 2
OF C3 _JMPO400

10 00 | |

11 04

ln nachfolgender Tabelle ist der Zustand der Flags nach den jeweiligen Compare-Befehlen

angegeben.

relative Adresse N-Flag Z-Flag O H-Flag O P-Flag 1 C-Flag

05 1 Ö O O 1
08 0 OÖ O 1 Ö
OB O 1 1 1 O
OE 1 0 O 1 1

Wie Sie der Tabelle entnehmen können, werden mit diesem Programm alle Flags beeinflußt.

Relative Adresse O0 5:

Hier ist durch den Befehl CMP B die Subtraktion 7 4ıe - 9 5ıes erfolgt. Da der Subtrahend

größer als der Minuend ist, entsteht C-Flag = 1. Da ein negatives Ergebnis vorliegt, ist auch

das N-Flag = 1, das Z-Flag muß O sein, da das Ergebnis nicht Null ist.

Das Half-Carry-Flag, auch Hilfs-Carry-Flag genannt, hat den Zustand O. Dies wird deutlich,

wenn wir die Subtraktion durch Zweierkomplementaddition durchführen:

01110100

+011I101011 Zweierkomplement von 9 5ıs

1100 000- Übertrag
1101 111 2 — 2 16

Aus dieser Rechnung ist zu erkennen, daß zwischen der 4. und 5. Stelle kein Übertrag

entsteht. Damit spricht auch das H-Flag nicht an.

Das P-Flag spricht dann an, wenn im Ergebnis die Anzahl der mit 1 belegten Stellen gerade

ist. Dies ist bei diesem Ergebnis nicht derFall, also ist P = O0.

Relative Adresse 0 8: Ä

Der Befehl CPI 6 8 bewirkt die Subtraktion 7 Aıe - 6 816. Da das Ergebnis weder O noch

negativ ist, sind Z-Flag, N-Flag und C-Flag O. Die Subtraktion über Zweierkomplement-

addition ergibt:

E 95

01110100

+1001 1000 _Zweierkomplement von 6 816

1110 000- Übertrag
10000 1100

Es entsteht ebenfalls kein Übertrag zwischender 4. und 5. Stelle. Damit ist das H-Flag gleich

O0. Das Ergebnis weist eine gerade Anzahl von Einsen auf. Damit ist das P-Flag gleich 1.

Relative Adresse O B:

Mit dem Befehl CPI 7 4 wird die Subtraktion. 7 4ıs -— 7 4ıs ausgelöst. Da das Ergebnis

jetzt Null sein muß, ist das Z-Flag gleich 1, während das C-Flag und das N-Flag gleich O

sind. Der Zustand von H- und P-Flag läßt sich wieder durch eine Addition in Zweierkomple-

mentarithmetik erklären:

0111 |

1000 1100 Zweierkomplement von 7 4ıs

1111] 100- Übertrag |
000

_ Relative Adresse O E:
Der Befehl CPI 7 5 bewirkt die Subtraktion 7 4ıs — 7 5ıe.-

Das negative Ergebnis bringt das N- und C-Flag auf 1, das Z-Flag muß O sein. Die Sub-

traktion über das Zweierkomplementergibt: |

0111 0100

+ 1000 101 1 Zweierkomplement von 7 5ıs

00001 000- Übertrag
0111111119

Das H-Flag ist O, das P-Flag 1, da 8 Stellen mit 1 belegt sind.

E 96

Experiment 20: DAD-Befehle

Laden Sie nachfolgendes Programm:

relative Adresse Inhalt Befehl Kommentar

00 0 1 LXIB, 1234 lade Registerpaar BC
01 34 |

02 12

03 11 LXID,56 78 lade Registerpaar DE

04 78

05 56

06 21 LXIH,9ABC lade Registerpaar HL

07 BC |

08 9A

09 19 DAD D 5678+9ABC

OA D7 RST 2

OB EB XCHG tausche Ergebnis gegen

5678 aus

oOC D7 RST2

OD 09 DAD B 1234+5678

OE D7 RST2

Aufgabe:

Geben Sie das Ergebnis nach der Addition DAD D sowie das Ergebnis nach DAD B an!

E97

Experiment 21: DAA-Befehl

Laden Sie nachfolgendes Programm:

relative Adresse . Inhalt Befehl Kommentar

00 DB IN ASHALT (A-Schalter)>Akku

01 02
02 47 'MOVB,A (Akku)>Reg. B

03 D7 RST 2 |
04 DB IN ASHALT (A-Schalter)>Akku

05 02 |

06 80 ADDB (Akku) + (Reg. B)

07 |. D7 RST2
08 27 DAA M Dezimalkorrektur

09 D 7 RST 2

Überprüfen Sie die in Abschnitt 6.3.6 gebrachten Beispiele, indem Sie die Operanden über

die IN ASHALT-Befehle eingeben.

Aufgaben:

1. Bei welchem Summanden wird nach dem ADD B-Befehl das H-Flag gleich 1?

2. Addieren Sie 0910 + 0910. Geben Sie an, welchen Zustand das H-Flag vor und nach dem

DAA-Befehl hat!

3. Addieren Sie O7/ıo + 0810. Geben Sie auch hier den Zustand des H-Flags vor und nach

dem DAA-Befehlanl

E 98

Experiment 22: Logische Befehle

Laden Sie nachfolgendes Programm:

relative Adresse Inhalt Befehl Kommentar

00 DB IN ASHALT (A-Schalter)>Akku
O1 02
02 47 MOVB,A (Akku)—>(Reg.B)
03 80 ADD B (Akku) + (Reg. B)
04 D7 RST 2
05 E 6 ANIOO (Akku) AO O
06 00
07 D7 RST 2
08 78 MOV A, B
09 80 ADD B
OA D7 RST 2
0oB AO ANA B (Akku) A (Reg. B)
0oC D7 RST 2
oD 78 MOV A, B
OE 80 ADD B
OF D7 RST 2
10 F6 ORIOF (Akku) VOF
11. OF
12 D7 RST 2
1 3 78 MOV A, B
14 80 ADD B
15 D7 RST 2
16 BO ORA B (Akku) V (Reg. B)
17 D7 RST 2
1 8 78 MOV A, B
19 80 ADD B
1A D7 RST 2
1 B EE XRIFO (Akku) Y FO
1C FO
1 D D7 RST 2
1 E 78 MOV A, B
1 F 80 ADDB-
20 D7 RST 2
21 A8 XRAB (Akku) (Reg. B)
22 D7 RST 2 |
23 76 HLT

Aufgabe:

Geben Sie mit dem Befehl IN ASHALT 8 9ıs ein, und geben Sie in der nachfolgenden

Tabelle den Zustand der Flags sowie den Akku-Inhalt nach Durchführung der angegebenen

Befehle an!

relative Befehl Akku-Inhalt Flags

Adresse N Z H P C

05 ANI

OB ANA

10 ORI

16 ORA

1 B XRI

21 XRA

E 99

Experiment 23: Rotier- und Verschiebebefehle

Laden Sie nachfolgendes Programm:

relative Adresse Inhalt Befehl Kommentar

00 DB IN ASHALT (A-Schalter)>Akku

01 02 |

02 6 7 MOVH, A (Akku)>H

03 | DB IN BSHALT (B-Schalter)>Akku

04 01

05 6F MOVL,A : (Akku)>L

06 D7 RST 2

07 29 | DAD H (HL) + (HL)>HL

08 D7 RST 2 |
09 17 RAL (Akku) über C-Flag linksschieben

OA D7 RST 2 |

OB | 07 RLC (Akku) nachlinks und in C-Flag
schieben

oOC D 7 RST 2

OD 1F RAR (Akku) über C-Flag rechtsschieben

OE D7 RST 2

OF ıF RAR

10 D 7 RST 2

11 ıF RAR

12 D7 RST 2

13 OF RRC (Akku) nach rechts und in C-Flag

schieben

14 D7 RST 2

15 76 HLT

Aufgabe:

Stellen Sie an den A-Schaltern 3 Cıs und an den B-Schaltern E 7ıs ein, und starten Sie das

Programm. In die nachfolgende Tabelle sollen die Inhalte von Registern und C-Flag nach

dem Abarbeiten der entsprechenden Befehle eingetragen werden!

relative Adresse O 7 Befehl DAD H

C-Flag H-Register L-Register

relative Adresse Befehl C-Flag Akku-Inhalt

09 RAL

OB RLC

OD RAR

OF RAR

11 RAR

13 RRC

E 100

Experiment 24: Increment- und Decrement-Befehle

Laden Sie nachfolgendes Programm:

relative Adresse Inhalt Befehl Kommentar

00 97 SUBAA Akku löschen

01 11 LXID,0000 Registerpaar DE löschen

02 00

03 00

04 3C INRA (Akku) incrementieren

05 | D7 RST 2

06 3D. DCRA (Akku) decrementieren
07 D 7 RST 2

08 3D DCRA (Akku) decrementieren

09 D 7 RST 2

OA 13 INX D (Registerpaar DE) incrementieren

OB D/ RST 2

0OC 1B DCXD (Registerpaar DE) decrementieren

OD D 7 RST 2

OE 1 B DCX D (Registerpaar DE) decrementieren

OF D 7 RST 2

10 21 LXIH,0420 Registerpaar HL mit 04 2 O laden

11 20

12 04

13 D 7 RST 2

14 36 MVIM,O00 relative Adresse 2 O mit O0 O laden

15 00

16 D7 RST 2

17 34 INRM (@ Registerpaar HL) incrementieren

18 D 7 RST 2

19 35 DCRM (@Registerpaar HL) decrementieren

ı A D 7 RST 2

1B 35 DCR M (@ Registerpaar HL) decrementieren

1C D 7 RST 2

1 D C3 JMPO0404 Rücksprung zur relativen Adresse

1E 04 04

ıF 04
Anmerkung: |

Der Kommentar „(@ Registerpaar HL) incerementieren“ bedeutet, daß der Inhalt des Speicher-

platzes, dessen Adresse im Registerpaar HL steht, incrementiert wird.

Testen Sie das Programm mit Schalter „HLT am BP“ gleich 1.

Aufgaben:

1. Aus welchem Grunde wird nach Durchführung des Befehles DCR A in der relativen

Adresse O 6 das H-Flag gleich 1?

2. Welche Auswirkung hat der Befehl MVI M, 0 O in den relativen Adressen 1 4 und 1 5?

E 101

Experiment 25: Sprungbefehle

Laden Sie nachfolgendes Programm:

relative Adresse Inhalt Befehl Kommentar

00 D7 RST 2 | '

01 21 LXIH,0400 lade Registerpaar HL mit 0400

02 00.

03 04

04 DB IN BSHALT (B-Schalter)>Akku

05 01

06 D7 RST2

07 47 MOVB,A (Akku)>Reg. B

08 D7 RST 2

09 DB IN BSHALT (B-Schalter)>Akku

oA 01 |

OB D7 RST 2

oc 80 ADD B (Akku) + (Reg. B)

OD D7 RST 2

OE DA JC0400 springe, wenn C-Flag = 1

OF 00

10 04

11 D7 RST 2

12 cA JZO440 springe, wenn Z-Flag = 1

13 40

14 04

15 .D7 RST 2

16 C6 ADIOF (Akku) OF

17 OF

18 D7 RST 2

19 FA JMO460 springe, wenn N-Flag = 1

1A 60

1B 04

1C D7 RST 2 oo. Ä

ıD EA— JPEO48O0 springe, wenn P-Flag = 1

1E 80

ı F 04

20 D7 RST 2

21 E 9 PCHL springe (@HL)

40 04 INR B incrementiere (Reg. B)

41 D7 RST 2 |

42 80 ADD B (Akku) + (Reg. B)

43 D7 RST 2

44 E2 JPOO0460 springe, wenn P-Flag = O

45 60

46 04

47 D7 RST 2

48 E 9 PCHL springe (@HL)

60 05 DCR B decrementiere (Reg. B)

61 07 RST 2

62 80 ADDB (Akku) + (Reg. B)

63 D7 RST 2

E 102

relative Adresse Inhalt Befehl Kommentar

64 D2 JNCO0480 springe, wenn C-Flag = O
65 80

66 04

67 D7 RST2

68 | E9 PCHL springe (@ HL)

80 E6 ANIOE

81 OE

82 D 7 RST 2 ® 8

83 F2 JP0O48&8 springe, wenn N-Flag = O

84 08

85 04

86 D 7 RST2

87 E 9 PCHL springe (@ HL)

Überprüfen Sie die Programmeingabe mit EXAMINE.

Aufgaben:

1. Geben Sie die Sprünge an, wenn bei der relativen Adresse O 4 die Daten FB und bei 0 9

die Daten O 2 eingegeben werden!

2. Mit welchem Befehl erfolgt der Rücksprung zur relativen Adresse O O, wennals Daten mit

den B-Schaltern zuerst F O und dann O O eingegeben werden?

E 103

Experiment 26: Unterprogrammanrufe und Rücksprungbefehle

Laden Sie nachfolgendes Programm:

relative Adresse Inhalt Befehl Kommentar

00 DB IN BSHALT (B-Schalter)>Akku

01 01 |

02 D7 RST 2 |

03 A7 ANAHA setze bzw. lösche Flags
04 D7 RST 2

05 | FA CPO430 rufe Unterprogramm an,

wenn (Akku) plus

06 30

07 04

08 D7 RST 2

09 FA CPO43O0 rufe Unterprogramm an,

wenn (Akku) plus

OA 30

OB 04

OC D7 RST 2

OD C3 JMPO0400 springe nach Adresse 0400

OE | 00 |

OF 04

30 07 RLC verschiebe (Akku) nach links

31 A7 ANAA |

32 F8 RM return, wenn negativ

33 | 07 RLC verschiebe (Akku) nachlinks

34 A7 ANAA

35 C9 RET zurück zum Hauptprogramm
Bei diesem Programm werden zuerst die an den B-Schaltern eingestellten Daten in den
Akku geladen und mit dem ANA-Befehl die Flags entsprechend gesetzt bzw. gelöscht.

Liegt eine positive Zahl vor, wird bei der relativen Adresse O 5 durch den CP-Befehl das

Unterprogramm angerufen. Hier wird der Akku-Inhalt um eine Stelle nach links geschoben.

Dann werden die Flags wieder entsprechend gesetzt. Liegt jetzt eine negative Zahl vor,

erfolgt durch den RM-Befehl ein Rücksprung zum Hauptprogramm.Bei einer positiven Zahl

erfolgt nochmals eine Verschiebung nach links sowie ein Setzen der entsprechendenFlags.

Der RET-Befehl bewirkt in diesem Falle einen Rücksprung zum Hauptprogramm.Hier erfolgt

dann ein zweiter Unterprogrammanruf, wenn bei der relativen Adresse O 9 eine positive Zahl

vorliegt. |

Aufgaben:

1. Mit den B-Schaltern wird die Zahl O 116 eingegeben. Um wie viele Stellen wird diese Zahl

bei einem vollen Programmdurchlauf nach links verschoben?

2. Welche Auswirkung hat ein Austauschen des ANA-Befehles in der relativen Adresse 3 4

gegen einen NOP-Befehl mit dem Code O 015? |

E104

Experiment 27: RST-Befehle

Da beim MP-Experimenter keine peripheren Geräte vorhanden sind, die ein INT-Signal

erzeugen können,lassen sich Interrupts nicht in einem Beispiel durchführen. Die Wirkung

der RST-Befehle soll im nachfolgenden Experiment gezeigt werden. In diesem Programm

werden auch Adressen im ROM-Bereich verwendet, so daß die RAM-Adressenjetzt mit ihren

absoluten Werten angegeben werden. Laden Sie folgendes Programm:

absolute Adresse Inhalt Befehl Kommentar

0400 FF RST7 rufe Unterprogramm 0 4 1 O an
0401 D7 RST 2 Monitoranruf

0402 C7 RST O rufe Monitor bei Adresse 0000.an
(2 RESET)

0410 21 LXIH,0O420 Registerpaar HL mit 0 4 2 0 laden

0411 I. 20

0412 04

0413 34 INR M incrementiere Inhalt Adresse 0420

0414 C9g9 RET Rücksprung
Mit dem RST 7-Befehl wird ein Unterprogramm bei Adresse O0 O 3 8 angerufen. Hier ist ein

JMP-Befehl zur Adresse O 4 1 O fest im ROM gespeichert. Bei der Adresse O 4.1 O wird

Registerpaar HL mit O 4 2 O geladen. Der INR M-Befehl incrementiert den Inhalt der

Speicheradresse, die vom Registerpaar HL adressiert wird. Mit dem RET-Befehl erfolgt ein

Rücksprung zur Adresse O 4 O 1, in der ein RST 2-Befehl steht. Damit erfolgt der bekannte

Monitoranruf. Der nach dem Monitoranruf folgende Befehl RST O bewirkt einen Sprung zur

Adresse 0 O0 O O, was einem Drücken der RESET-Taste entspricht. Das Betriebsprogramm

ist so ausgelegt, daß nicht die nächstfolgende RAM-Adresse O0 4 O 3 als Rücksprung-

' adresse übernommen wird, sondern stattdessen die Adresse O 4 O0 O, also die Anfangs-

adresse des RAM-Bereiches.

Testen Sie das Programm mit HLT am BP = 1, und sehen Sie sich dabei den Speicherplatz

0420 an. Die B-Schalter sind hierfür auf die relative Adresse 2 O einzustellen.

Aufgaben:

1. Warum erfolgt ein Incrementieren desInhaltes der Adresse O 4 2 O nur mit jedem zweiten

Takten des RUN-Schalters?

2. Ändern Sie das Programm so ab, daß der Inhalt der Adresse O 4 2 O durch den RST 1-

Befehl incrementiert wird! |

E 105

Experiment 28: PUSH- und POP-Befehle

Laden Sie nachfolgendes Programm:

absolute Adresse Inhalt Befehl Kommentar

0400 3E MVIA,9 7 Akku mit 9 7 laden

0401 97

0402 A7 ANAA Flags setzen

0403 F5 PUSH PSW Flags und (Akku) auf Stack

0404 97 SUBA Akku löschen

0405 F1 POP PSW Flags und (Akku) aus dem Stack

0486 | N? RSTZ zurückholen |

0407 C3 JMPO0400

0408 00

0409 04
Dieses Programm lädt zunächst den Akku mit 9 7. Der Befehl ANA A verändert den Akku-

Inhalt nicht, er bewirkt lediglich, daß die Flags entsprechend gesetzt werden. Mit dem Befehl

PUSH PSW werden der Akku-Inhalt und der Zustand der Flags in den Stack gebracht. Wie

bereits erwähnt, ist die höchste Stack-Adresse die Adresse O0 4 F D. In dieser Adresse

wird durch den Befehl PUSH PSW der Inhalt des Akkus abgespeichert. Der Zustand der

Flags wird in der nächstniedrigeren Adresse O 4 FC gespeichert.

Mit dem Befehl SUB A wird der Inhalt des Akkus gelöscht sowie die Flags entsprechend

neu gesetzt. Der Befehl POP PSW lädt den Akku wieder mit dem Inhalt 9 7 und setzt

außerdem die Flags wieder so, wie sie nach dem Befehl ANA A waren. Der Stack-Pointer

wird dabei wieder auf O 4 F E gesetzt. Der Monitoranruf mit RST 2 bedingt wieder eine

Stack-Operation, wobei die Inhalte der Speicherplätzee O0 4 F D und O0 4 FC, in denen

vorher Akku und Flags gespeichert waren, jetzt mit dem Stand des Programmzählers über-

schrieben werden. Die restlichen Stack-Plätze O 4 F B bis O 4 F 4 werden in bekannter

Weise belegt. Da bei diesem Programm der RST 2-Befehl nach dem POP-Befehl ausgeführt

wird, kann das Monitorprogramm in gewohnter Weise benutzt werden. Dieses ist bei dem

nachfolgenden Programm, das die gleichen Befehle erhält, nicht mehr derFall.

Laden Sie das nachfolgende Programm: |

absolute Adresse | Inhalt Befehl Kommentar

0400 3E MVIA,97

0401 97

0402 A7 ANAA

0403 -*F5 PUSH PSW

0404 97 -SUBA

0405 D7 RST 2

0406 Fi POP PSW

0407 C3 JMPO400

04083 00

0409 04
Der Unterschied gegenüber dem vorhergehenden Programm besteht darin, daß der Befehl

RST 2 vor dem POP-Befehl ausgeführt wird. Durch den PUSH-Befehl wird der Stack-Pointer
um 2 erniedrigt, so daß beim RST 2-Befehl der Stack-Pointer auf Adresse O0 4 F C steht.

Damit verschiebt sich der Stack-Bereich für den Monitor um 2 Adressen. Es ergibt sich

somit folgende Zuordnung:

E 106

RAM-relative Stack- Register
Adresse Offset

F2 O L

F3 1 H

F4 2 E

F5 3 D

F6 4 C

F7 5 B

F8 6 Flags

F9 7 Akku

FA 8 PC low

FB 9 PC high

- n n A durch PUSH PSW belegt

Hieraus ist zu entnehmen, daß Akku und Flags je zweimal im Stack erscheinen. Die Inhalte

der relativen Adressen F C und F D geben dabei die Zustände vor dem PUSH PSW-Befehl

wieder, während in den relativen Adressen F 8 und F 9 der Zustand von Akku und Flags vor

dem RST 2-Befehl wiedergegebenwird.
Weiterhin ist aus der Aufstellung zu entnehmen, daß die Stack-relative Adressierung (Stack-

Offset) für den Monitor gleich geblieben ist. Die Inhalte der neu hinzugekommenenStack-

Adressen können mit O A und O B zur Anzeige gebracht werden. Sollen die gleichen Inhalte

mit RAM-relativer Adressierung angezeigt werden, so muß die Adresse gegenüber dem ersten

Beispiel um 2 erniedrigt werden.

Aufgabe:

Geben Sie für das nachfolgende Programm den Aufbau des Stacks entsprechend vorher-

gehendem Beispielan:

absolute Adresse Inhalt Befehl Kommentar

0400 SE MVIA,97

0401 97 |

0402 A7 ANAA

0403 01 LXIB,0 709

0404 09 |

0405 07

0406 F5 PUSH PSW

0407 C5= PUSH B

0403 97 SUBA

0409 01 LXIB,O000

OAOA 00

0A4O0B 00

0O40C D7 RST 2

040D cı POP B
OA4O0E Fi POP PSW

OAOF C3 | JMPO400

0410 00

0411 04

E 107

Experiment 29: Initialisierung des Stack-Pointers

Mit dem nachfolgenden Programm soll ein Stack aufgebaut werden, das nicht vom Monitor

initialisiert wird.

Laden Sie das Programm:

absolute Adresse Inhalt Befehl Kommentar

0400 31 LXISP,0438| LadeSP mit0438

0401 38
0402 04

0403 01 LXIB, 1234 Lade Registerpaar BC

0404 34

0405 12

0406 C5 PUSH B

0407 D7 RST 2

0408 Cı POP B

0409 cC3 JMPO0400

OAOA O0

04A4O0B 04
Mit dem Befehl LXI SP, O4 3 8 wird der Stack-Pointer mit der Adresse O0 4 3 8 geladen.

Der LXI B-Befehl lädt das Registerpaar BC mit 1 2 3 A. Mit dem Befehl PUSH B wird der

Inhalt von Register B in Adresse O 4 3 7, der Inhalt von Register C in Adresse O0 4 3 6

geladen. |
Der RST-Befehl bringt die Registerinhalte und Flags wieder in der vom Monitor bestimmten

Reihenfolge auf dem Stack unter. Die höchste Adresse ist dabei O 4 3 5. Bei der Adresse

042C ist der Stack-Bereich zu Ende. Nachfolgende Aufstellung verdeutlicht den Sachverhalt:

RAM-relative Stack- Register

Adresse Offset

2C 0 L

2D 1 H

2E 2 E

2 F 3 D

30 4 C

31 5 B

32 6 Flags

33 7 Akku

34 8 PC low

35 9 PC high

36 A Inhalt Register C

37 B Inhalt Register B

Aufgaben:

1. Geben Sie den Inhalt des Stack-Pointers vor dem POP-Befehl in Adresse O 4 O0 8 anl

2. Geben Sie den Aufbau des Stacks entsprechend vorhergehendem Beispiel an, wenn die

Reihenfolge der Befehle RST 2 und POP B vertauscht wird!

3. In welchen Adressen werdendie Inhalte des Registerpaares BC im geänderten Programm

nach Aufgabe 2 durch den PUSH B-Befehl abgespeichert? Ä

E 108

Experiment 30: XTHL-Befehl

Laden Sie folgendes Programm:

Adresse Inhalt Befehl Kommentar

0AO00 21 LXIH, 1234

0401 34

0402 12

0403 CD CALLO42O0

0404 20

0405 04

0406 D7 RST 2

0407 76 | HLT

0420 E3 XTHL

0421 | D7 RST 2

0422 E3 XTHL

0423 C9 RET

Mit dem Befehl LXI H, 1 2 3 4 wird das Registerpaar HL und anschließend mit CALLO 420

ein Unterprogramm angerufen. Die Rücksprungadresse ins Unterprogramm wird durch den

CALL-Befehl im Stack gespeichert (Adressen O0 4 F D und O 4 F C). Im Unterprogramm

wird mit dem Befehl XTHL in Adresse O0 4 2 O der „Stack-Kopf“”, das ist die durch den

CALL-Befehl abgespeicherte Rücksprungadresse, mit dem Inhalt des Registerpaares HL

(1 2 3 4) ausgetauscht. Um diesen Austausch kontrollieren zu können,ist in Adresse 04 2 1

ein RST 2-Befehl eingefügt. Der zweite XTHL-Befehl stellt wieder die ursprünglichen Ver-

hältnisse her. Damit kann der Rücksprung ins Hauptprogramm mit dem RET-Befehl zur

richtigen Adresse erfolgen (0 406).

E 109

Experiment 31: Setzen und Löschen der Flags

In einem Programm sollen die Flags in folgende Zustände gebracht werden:

N-Flag = 1

ü Z-Flag = O0

H-Flag = 1

P-Flag = O

C-Flag = 1

Beim Beeinflussen der Flags sollen jedoch die Inhalte der Register nicht verändert werden.

Laden Sie nachfolgendes Programm:

Adresse Inhalt Befehl Kommentar

0400 E5 PUSH H

0401 67 MOV H,A

0402 2E MVIL, 93

0403 93

0404 E5 PUSH H
0405 F1 ı POP PSW

0406 E 1 POP H

0407 D7 RST 2

0408 76 HLT

Programmerläuterung:

Die Flags sollen in diesem Programm durch POP PSW gezielt beeinflußt werden, d.h., sie

müssen zuvor auf den richtigen Platz im Stack gebracht werden. Da dies über das Register-

paar HL geschehen soll, wird zunächst mit PUSH H der „alte“ Inhalt dieses Registerpaares

in den Stack gebracht. Nun wirdim Registerpaar HL das gewünschte Programm-Status-Word

erzeugt. Der Akku-Inhalt soll nicht geändert werden, er wird daher mit dem Befehl MOV H, A

in das H-Register geladen. Das Format des Flag-Wortesist:

Mit den anfangs aufgeführten Flag-Zuständen ergibt sich das folgende Wort:

110/0/1/|0/)0/|1|1| =93ıe

Mit dem Befehl MVI L, 9 3 wird dieses Wort in das L-Register geladen und mit dem zweiten

PUSH H-Befehl (in Adresse O 4 O 4) auf den Stack gebracht. Mit dem Befehl POP PSW

wird nun das zuvor erzeugte neue Program Status Word übernommen und mit dem folgenden

POP H der „alte“ Zustand des Registerpaares H, L wieder hergestellt.

Aufgaben:

1. Wie lautet das Flag-Wort, wenn das Z-Flag = 1 und alle anderen Flags = O sein sollen?

2. Geben Sie mit RAM-relativerAdresse und Inhalt den Aufbau des Stacks nach dem zweiten

PUSH H-Befehl (Adresse O0 4 O0 A) anl

3. Ändern Siedas vorgegebene Programm so ab, daß je ein PUSH- und POP-Befehl durch

XTHL ersetzt werden!

E 110

Experiment 32: Experimentierprogramm im ROM

Im Abschnitt 6.3.3 wurde bereits erwähnt, daß das Monitorprogramm nicht geeignetist, um

die Inhalte von Speicherplätzen außerhalb des RAM-Bereiches in die Anzeige zu bringen.

Das nachfolgende Programmliest die A- und B-Schalter als 16-bit-Adresse ein und ermöglicht

somit den Zugriff zu allen Speicherplätzen.

Laden Sie nun das Programm ANSCHAU:

Adresse Inhalt Befehl Kommentar

0400 DB IN ASHALT

0401 02. | 8-Schalter--Register H

0402 67 MOVH, A

0403 DB IN BSHALT |

0404 01 A-Schalter>Register L

0405 6F MOVL,A |

0406 TE MOV A,M

0407 D 3 OUT RLAMPE (@ H, L)>Anzeige

04038 O1 |

0409 C3 JMPO0400 Rücksprung zum Anfang

OAOA 00

0OA4O0B 04

Wenn Sie jetzt an den A- und 2-Schaltern die Adressen O0 40 O bis 0 4 O B einstellen,

werden die einzelnen Befehle des ANSCHAU-Programms in den rechten Lampen angezeigt.

Aufgabe:

1. „Lesen“ Sie die ROM-Adressen O0 O0 O O bis O0 O O 7, undinterpretieren Sie die Inhalte!

Zweites Beispiel aus dem ROM-Bereichsoll ein Unterprogrammsein, das bei Adresse 0 020

beginnt. Dieses Unterprogramm kann mit einem RST 4-Befehl angerufen werden. Aufgabe

dieses Programmsist es, den Inhalt des B-Registers zu maskieren und mit einer Vergleichszahl

zu vergleichen.

Die Maske wird im 1. Byte, die Vergleichszahl im 2. Byte nach dem RST4-Befehl gespeichert.

Der darauf folgende Befehl (im nachfolgenden Beispiel CMA) wird je nach Ergebnis des

Vergleiches bearbeitet oder übersprungen.

Das Programmbeispielliest die C-Schalter ein und isoliert durch die Maske O 8 den Schalter

C3. Abhängig von der Stellung dieses Schalters wird dann der von den A-Schaltern ein-

gelesene Wert negiert oder nicht negiert an den linken Lampen ausgegeben.

Laden Sie nachfolgendes Programm:

Adresse Inhalt Befehl Kommentar

0400 DB IN CSHALT

0401 1.04 C-Schalter>Register B.

0402 47 MOVB,A

0403 DB IN ASHALT
0404 02 A-Schalter> Akku

0405 E7 RST 4 Unterprogrammanruf

0406 08 | Maske

0407 08 Vergleichszahl

0408 2F CMA

0409 D3 OUT LLAMPE
OAOA 02 Akku>Anzeige

0O4A4O0B C3 JMPO40O0

040C 00 | Rücksprung zum Anfang

0O40D 04

E 111

Aufgabe:

2. Ändern Sie Maske und Vergleichszahl so ab, daß an den Schaltern Co bis C2 die Kombi-
nation 1 O 1 eingestellt werden muß, um den CMA-Befehl zur Ausführung zu bringen!

Ein ähnlich aufgebautes Unterprogramm beginnt bei Adresse O O 3 O, kann also mit RST 6

angerufen werden. Im Gegensatz zum vorhergehenden Programm werdenjetzt 3 Bytes

übersprungen, die auf Maske und Vergleichszahl folgen.

Laden Sie folgendes Programm:

Adresse Inhalt Befehl Kommentar

0A00 DB IN BSHALT |

0AO01 01 B-Schalter>Register B

0402 47 MOVB,A |

0403 . DB IN ASHALT |
0404 02 | A-Schatte Akku

0405 F7 RST 6 Unterprogrammanruf
0406 07 Maske

0407 02 | Vergleichszahl

0408 3C INRA | u
0409 17 RAL M “eeS1186, die übersprungen

OAO0A 18 RAL

04O0B D 3 OUT LLAMPE
040C 02 Akku Anzeige

040D | C3 JMPO0400

OAOE 00

OAOF 04

Programmerläuterung:

In diesem Beispiel soll, wenn die Schalter 50, Bı und A} auf O 1 O eingestellt sind, der

Akku-Inhalt incrementiert und zweimal nach links verschoben werden. Dazu wird, nachdem

die B-Schalter eingelesen wurden, der Akku mit den A-Schaltern geladen. Der OUT-Befehl

in Adresse O0 4 O B bringt dann entweder den ursprünglichen oder (wenn die Schalter

B> bis Bo auf O 1 O eingestellt sind) den geänderten Akku-Inhalt in den linken Lampen zur

Anzeige.

E112

Experiment 33: Mehr-Byte-Addition

Sollen in einem Programm größere Zahlen verarbeitet werden, so erfolgt deren Uhnter-

bringung in mehreren hintereinanderliegenden Speicherplätzen. Das nachfolgende Programm

soll zwei 3-Byte-Zahlen addieren und das Ergebnis in die Speicherplätze der ersten Zahl

zurückschreiben.

Laden Sie das nachfolgende Programm:

Adresse Inhalt Befehl Kommentar

0400 D7 RST 2

0401 OE MVI C, 3 Anzahl der Bytes>C

0402 03

0403 1 LXID,0420 Anfangsadresse Zahl1

0404 20 und Ergebnis>DE
0405 04

0406 21 LXIH,0O430

0407 30 |Antangsaese Zahl 2>HL.

0408 04

0409 AF XRAA C-Flag = O

OAOA 1A LDAX D

040B SE ADCM (@D) +(@H)> @D

040C 12 | STAXD

040D | oD DCR C
O4O0E CA JZO4O0O0

OAOF 00 Aussprung, wenn Byte-Zähler C = O

0410 04

0 j , > > NK . Erhöhen der Byte-Adressen

0413 C3 JMPOA0A

0414 OA nächstes Byte bearbeiten

0415 04

Programmerläuterung:

Der eigentliche Rechenteil des Programms beginnt mit dem Löschen des C-Flags durch den

XRA A-Befehl in Adresse O 4 O 9. Um diesenTeil allgemein verwendbarzu halten, muß im

Vorspann mit dem Befehl MVI C (Adresse O 4 O 1) die Zahl der zu addierendenBytes geladen

werden. Ebenso müssten mit den beiden folgenden LXI-Befehlen die Adressen der ersten

Bytes beider Zahlen geladen werden. Nach der eigentlichen Addition mit dem Befehl ADC M

(Adresse O0 A O0 B) muß ein eventuell entstehender Übertrag bis zur nächsten Addition

bestehen bleiben. Überprüfen Sie anhand der Befehlsliste, ob das C-Flag in der Programm-

schleife nicht verändert wird.

Aufgabe:

Ändern Sie das Programm so ab, daß es mit dem Befehl CALL O0 4 6 O als Unterprogramm

angerufen werden kann. Der Vorspann soll mit einem RST 2-Befehl beginnen und die

Addition von zwei A-Byte-Zahlen veranlassen, deren Anfangsadressen wieder O 4 2 O bzw.

0 4 3 0 lauten sollen. Nach dem Abarbeiten des Unterprogramms Rücksprung nach Adresse

0400. |

E 113

Experiment 34: Multiplikation

In diesem Programm werden die Inhalte der Register C und D miteinander multipliziert.

Das Ergebnis erscheint im Registerpaar BC.

Der verwendete Algorithmusfragt alle 8 bit des Multiplikators im Register C auf ihren Inhalt

ab. Ist der Inhalt 1, so muß der Multiplikand stellenwertrichtig addiert werden. Begonnen

wird mit der wertniedrigsten Stelle des Multiplikators.

(| START)

Operanden

einlesen

Ergebnisregister

und Stellenzähler

vorbereiten
 |

Multiplikator eine

Stelle nach rechts

Stellenzähler -1

 |

linke Ergebnishälfte
nach Akku ‚Ergebnisausgabe

| HALT

Akku +

Multiplikand | A it ;
 \

linke Ergebnishälfte

nach rechts und zu-

rück ins B-Register

\

Bild 1

Flußdiagramm des Multiplikationsprogramms

Programmerläuterung (Bild 1):
Im ersten Programmteil bis zur Adresse O0 4 O A werden Multiplikand und Multiplikator

eingelesen, der Stellenzähler (Register E) wird gesetzt und die linke Hälfte des Ergebnis-

registers gelöscht.

Die 3 Befehle in den Adressen O0 4 O B bis 0 4 O C verschieben den Inhalt des Registers C

um eine Stelle nach rechts. Das wertniedrigste bit des Multiplikators befindet sich jetzt

im C-Flipflop. Wenn der Stellenzähler noch nicht Null ist, wird mit dem Befehl MOV A, B

(Adresse O 4 1 2) dielinke Hälfte des Ergebnisregisters in den Akkumulator geholt. Der

E 114

Befehl ADD D (Adresse O 4 1 6) wird nur dann ausgeführt, wenn das C-Flag = 1 ist.

Das bedeutet, daß jede 1 im Multiplikator die Addition des Multiplikandenzurlinken Ergebnis-

hälfte veranlaßt. Die linke Ergebnishälfte, die jetzt noch im Akkumulator steht, wird mit RAR

(Adresse O 4 1 7) um eine Stelle nach rechts verschoben und dann mit MOV B, A wiederin

das B-Register gebracht. Bei dem Schiebevorgang gelangt das wertniedrigste Ergebnis-bit

in das Carry-Flipflop. Der Sprungbefehl zur Adresse O 4 O B beeinflußt das C-Flag nicht, so

daß mit dem Schiebebefehl für das Register C (MOV A, C; RAR; MOV C, A) das wert-

niedrigste Ergebnis-bit in der werthöchsten Stelle des Registers C erscheint. Gleichzeitig

wird das zweite bit des Multiplikators in das C-Flipflop geschoben. Von hier ab wiederholt

sich der Vorgang,bis alle 8 Multiplikatorstellen bearbeitet sind. |

Der Stellenzähler muß auf 9 gesetzt werden, da der Aussprung aus der Programmschleife

vor dem Verschiebenderlinken Ergebnishälfte erfolgt, diese also nur 8mal durchgeführt wird.

Am Endeder Multiplikation wird das Registerpaar BC in der rechten und linken Lampenreihe

zur Anzeige gebracht.

Nach dem Laden können an den A- und B-Schaltern die Operanden eingestellt werden. Mit

dem RUN-Schalter wird dann das Programm gestartet. Weitere Programmdurchläufe mit

geänderten Operanden können durch Drücken der RESET-Tasteveranlaßt werden.

Laden Sie nun das Programm und probieren Sie es mit einigen Beispielen aus.

AlleangegebenenZahlen sind Hexadezimal zu verstehen.

1.07: 07=-0031 3.F7-.68=6453

2.0A:21=014A 4.FF-FF=FEOI

Adresse Inhalt Befehl Kommentar

0400 00 NOP

0401 DB IN BSHALT

0402 O1

0403 Aa F MOVC,A * einlesen von Multiplikand und
0404 DB IN ASHALT Multiplikator

0405 02

0406 57 MOVD,A

0407 06 MVIB,00 linke Hälfte des Ergebnisregisters

0408 00 löschen

Q 1 Q 1 , - MM ü 09 Stellenzähler setzen

040B 79 MOVA,C

040C ıF RAR |Register C um eine Stelle nach rechts

040D ar MOVC,A

OA4AO0E 1 D DCRE Stellenzähler verringern

oaor ea szoalc Aussprung, wennalle Stellen bearbeitet
0410 1C | sind

0411 04

0412 78 MOVA,B linke Hälfte Ergebnisregister>Akku

0413 D2 JNCO417

0414 17 Addition non ausführen, wenn

0415 04 | C-Flag =

0416 82 ADD D

0417 IF RAR Ergebnis eine Stelle nach rechts und

0418 4 7 MOVB,A)Ergebniin Register B abspeichern

0419 C3 JMPO4O0B

OA1A OB

0O41B 04

O4A1C 78 MOV A,B

041D D3 OUT LLAMPE

O41E 02 "Inhalt des Ergebnisses in die
OA1F 79 MOV A,C Anzeige bringen

0420 D 3 OUT RLAMPE

0421 01

0422 76 HLT

E 115

Experiment 35: Zählerals Zufallsgenerator

In der Rechentechnik werden häufig Zufallszahlen benötigt, um z.B. externe Zufallsprozesse

zu simulieren oder Algorithmen mit willkürlichen Zahlenwerten zu testen. Das folgende

“ Programm soll einen einfachen Weg zur Erzeugung sogenannter Pseudozufallszahlen zeigen. .

Es handelt sich hier nicht um „echte” Zufallszahlen, da nur die verhältnismäßig lange

Reaktionszeit des Menschen eine gewollte Beeinflussung des Ergebnisses unmöglich macht.

Der Schalter Ca soll bei jedem Takten eine neue Zufallszahl entstehen lassen. Als Zähler wird

das Register C verwendet.

Laden Sie nun das folgende Programm:

Adresse Inhalt Befehl Kommentar

0400 DB IN CSHALT C-Schalter einlesen

0401 04 |

0402 oc INR C Zufallszähler erhöhen

0403 E 6 ANI 08 Schalter C3 isolieren

0404 08 |

0405 C2 JNZO400 Rücksprung, wenn C3 = 1

0406 00 | | |

0407 04

0408 DB IN CSHALT

0409 04
OAO0OA oC INR C

0AOB E6 ANI 08

040C 08

0O4A0D CA JZO4038 Rücksprung, wenn C3 = O

OAO0E 08

OAO0OF 04 |

0410 D 7 RST 2 Monitoranruf

0411 C3 JMPO4O0O0

0412 00

0413 04
Programmerläuterung:

Das Programm besteht aus 2 gleich aufgebauten Schleifen. Die erste Schleife von Adresse

0400O0bis 040 7 wird durchlaufen, solange der Schalter C3 auf 1 steht. Die Isolierung

des C3-Schalters wird mit dem Befehl ANI O 8 durchgeführt. (0 820000 1000,

die 1 steht an der dem Schalter C3 zugeordneten Stelle, siehe auch Experiment 16). Wird

der Schalter Cz3 auf O zurückgenommen,erfolgt der Übergang in die zweite Schleife von

Adresse 0 40 8 bis O0 4 © F. In beiden Schleifen wird das C-Register erhöht. Wird der

Schalter C3 jetzt wieder auf 1 gebracht, erfolgt ein Monitordurchlauf und anschließend der

Rücksprungin die erste Schleife. Der Monitoranruf soll die Anzeige des Inhaltes des C-Registers

ermöglichen. Dazu können z.B. die A-Schalter auf O 4 (Stack-relative Adresse) eingestellt

werden.

Anmerkung:

Da der Schalter C3 im Monitorprogramm als RUN-Schalter verwendet wird, braucht das

Programm nicht gesondert gestartet zu werden.

E 116

Experiment 36: Reaktionszeitmessung

Mit diesem Programm könnenReaktionszeiten bis zu 300 ms gemessen werden.

Um die einzelnen Programmteile in ihrer Bedeutung besserverstehen zu können,soll zunächst

die Funktion des Programms erklärt werden. Wenn hier von „Anzeige“ gesprochen wird,

so sind damit alle 16 LEDs der rechten und linken Lampenreihe gemeint. Es lassen sich

also Astellige Hexadezimalzahlen zur Anzeige bringen.

Funktionsbeschreibung:

Nach dem Laden und Starten des Programms wird zunächst mit Hilfe eines Zählers (siehe

auch vorhergehendes Experiment) eine Zufallszahl erzeugt. Mit dem Zurücknehmendes C3-

Schalters von 1 auf O wird FF F Fıs angezeigt, und damit der Beginn der zufälligen Wartezeit. |

Die Wartezeit ist beendet, wenn durch wiederholtes decrementieren die Zufallszahl zu Null

gewordenist. In diesem Augenblick erlöschen sämtliche Anzeigelampen unddie eigentliche

Meßzeit beginnt. Jetzt erscheint in der Lampe Ro eine „1”, die alle 20 ms um eine Stelle nach

links verschoben wird. Die Meßzeit wird gestoppt, wenn der Schalter C3 wieder von O auf 1

gebracht wurde. Aus der Anzahl der Verschiebungenläßt sich die Reaktionszeit errechnen.

Wurde die „1” über die Lampe /; hinaus in das C-Flipflop verschoben, so heißt das, daß die

Reaktionszeit größer als 300 ms war. In diesem Fall wird F F O Oıs angezeigt, und das

Programm kann nur durch Drücken der RESET-Taste wieder gestartet werden.

Programmerläuterung (Bild 1): |

Teil 1 des Programmsdient zur Erzeugung einer Zufallszahl. Register B wird incrementiert,

solange der Schalter C3 auf 1 bleibt. C3 wird wie im vorhergehenden Experiment durch den

Befehl ANI O0 8 isoliert. Wird C3 auf O zurückgenommen, findet kein Rücksprung zum

Programmanfang statt, sondern der Übergang zum Teil 2 des Programms.

Teil 2 beginnt bei Adresse O 4 O 8 und bringt zunächst mit den beiden OUT-Befehlen

FFF Fin die Anzeige. Die zufällige Wartezeit wird durch das Rückwärtszählen des Registers

B (Befehl DCX B) in Adresse O 4 1 4 bestimmt. Die größtmögliche Zufallszahl ist F Fıs,

so daß diese sogenannte äußere Schleife bis zu 12710 Durchläufe benötigt, um bei B = O

zum 3. Teil des Programms überzugehen. Um die Schleifendurchläufe zu verlangsamen, wurde

zusätzlich die innere Schleife (Adresse O 4 1 O bis O0 A 1 3) eingebaut. Da der Akkumulator

in Adresse O0 4 O E und O 4 O F mit 4 Oıs geladen wird, muß diese innere Schleife

4 Oıs (& 6410) mal durchlaufen werden, bis die äußere Schleife wieder bearbeitet wird.

Damit ergäbe sich für die äußere Schleife eine Durchlaufzeit von ca. 1 ms. Da diese Zeit

immernoch zu kurz ist, wird nicht die Zufallszahl im Register B decrementiert, sondern mit

dem Befehl DCX B (Adresse O 4 1 4A) das Registerpaar BC. Das Register C stellt die wert-

. niedrigste Hälfte des Inhaltes vom Registerpaar BC dar. Daher muß der Befehl DCXB 25610-mal

ausgeführt werden, bevor der Inhalt des Registers B um 1 verringert wird. Register C wird

gewissermaßen als Vorteiler mit dem Teilverhältnis 25610 : 1 verwendet. Die Wartezeiten

können somit ca. 0,25 bis 255 - 0,25 s betragen. Das Decrementieren eines Registerpaares

mit dem Befehl DCX beeinflußt keines der Flags. Um also das Kriterium [{B) = 0] zum Übergang

in den Prograammteil 3 zu erhalten, müssen die Flags mit dem Befehl CMP B (Adresse

O 4 1 5) wieder gesetzt werden. Z-Flag = 1 löst dann den eigentlichen Meßvorgang aus.

Teil 3 des Programmssignalisiert zunächst den Beginn der Meßzeit durch O O O Oıs in der

Anzeige. Da am Ende von Teil 2 der Akkumulator immer den Inhalt O O haben muß, können

am Anfang von Teil 3 sofort 2 OUT-Befehle (Adressen O 4 1 9 und 0 4 1 B) stehen. Das
Registerpaar HL wird mit O0 0 O 1,, geladen.

Auch in diesem Programmteil kann man wieder zwischen einer inneren und einer äußeren

Schleife unterscheiden. |

Mit dem Befehl LXI D (Adresse O 4 2 O0) wird das Registerpaar DE mit dem Wert O 1 8 Oıs

(& 38410) geladen. Die innere Schleife wird verlassen, wenn entweder das Registerpaar DE

bis zu O decrementiert wurde oder der Schalter C3 auf 1 gebracht wurde. Die Abfrage des

C3-Schalters wird in bekannter Weise in den Adressen O 4 2 3 bis O0 4 2 9 durchgeführt.

Um das Registerpaar DE auf den Inhalt O0 O O O zu untersuchen, wird die eine Hälfte mit

dem Befehl MOV A, D (Adresse O0 4 2 B) in den Akkumulator gebracht. Die anschließende

ODER-Verknüpfung von Akkumulator und Register E (Register E stellt die zweite Hälfte dar)

E117

| START)

| 4 4 —— | —

C-Schalter einlesen 0000 -»Anzeige

Zufallszähler er -
.. 0001 — HL

höhen

äußere

‚Schleife

(37 Schalter 0180 — DE

Teil 1 -

C-Schalter einlesen
FFFF O—» Anzeige

__ _außere

‘Schleife

4 — Akku

|

(A)-— A | (DE) -1— DE

 innere
Schleife

| innere
Schleife

(H.L) —e Anzeige
(BC) -1 — BC Hl) - 2

 Meßbereich

überschrit-

FFOO —» Anzeige

V.

(HALT)

Bild 1

Flußdiagramm des Programmszur Reaktionszeitmessung

‘kann nur dann Null als Ergebnis liefern, wenn beide Hälften für sich bereits Null sind. Da

in diesem Fall das Z-Flag = 1 ist, wird jetzt die äußere Schleife weiter bearbeitet.

Mit den MOV- und OUT-Befehlen in den Adressen O0 4 3 O bis O0 4 3 5 wird der Inhalt

des Registerpaares HL in die Anzeige gebracht. Mit dem Befehl DAD H wird dannderInhalt

dieses Registerpaares verdoppelt, so daß scheinbar die mit LXIH, 000 1 (Adresse 04 1 D)

geladene 1 bei jedem Schleifendurchlauf um eine Stelle nach links geschobenwird.

Ein Überschreiten des Meßbereiches, das nach 15 Durchläufen der äußeren Schleife statt-

findet, läßt nach dem DADH-Befehl (Adresse O 43 6) einen Übertrag entstehen (C-Flag = 1).

Der bedingte Sprung JNC in Adresse O0 4 3 7 wird dann nicht mehr ausgeführt. Mit den

anschließenden Befehlen wird dann F FO 01s zur Anzeige gebracht und das Programm gestoppt.

E 118

Adresse Inhalt Befehl Kommentar

Zuz Q 1 0 " on | IN CSHALT C-Schalter einlesen

0402 04 INR B Zufallszähler erhöhen

0403 E6 ANIO8 Ic isolieren
0404 08 |

0405 C2 JNZO400

0406 00 |Rücksprung wenn (3 = 1

0407 04 |

Ts! 2| 0408 3E MVIA,FF

0409 FF

OAOA D3 OUT LLAMPE FFF Fin die Anzeige bringen

0O04O0B 02

040C D 3 OUT RLAMPE

040D 01

O40E 3E MVIA,AO

OAOF AO

0410. 3D DCRA

0411 C2 JNZO0410 innere Schleife

0 2 > o 2 in Teil 2 | Aueonlee

0414 OB DCX B

0415 B 8 CMPB

0416 C2 JNZO4AOE

0417 OE

0418 04

7. /270419 D 3 OUT LLAMPE |

nn q 1 n 2 - our Lampe [9 90 0 in die Anzeige bringen

041C 01

0O41D 21 LXIH,0O001

O4A1E 01

OA1F 00 -
0420 11 LXI D, 0180 Rücksprungziel für die äußere

0421 80 Schleife in Teil 3

0422 01

0423 DB IN CSHALT

0424 04

0425 E 6 ANI 08

0426 08

0427 C2 JNZ0400 Aussprung nach
0428 00 erfolgter
0429 04 Reaktion | Tai zenteife
0O42A 1 B DCX D

042B TA MOV A,D (DE) auf Null

042C B 3 ORAE abfragen

042D C2 JNZ0423

042E 23

oOA2F 04

0430 7C MOV A,H

0431 D3' OUT LLAMPE

o 2 - > - r MOVA,L (HL) in die Anzeige bringen

0434 D 3 OUT RLAMPE

0435 O1

0436 29 DAD H „1” in HL eine Stelle nach links

0437 D2 JNC0420 Rücksprungbefehl für die äußere

0438 2.0 Schleife in Teil 3
0439 04

E 119

Inhalt

Adresse Befehl Kommentar

0A3A 3E MVIA,FF |
043B FF |

043C D3 OUT LLAMPE

043D (0 FF OO in die Anzeige bringen

OA3E 97 SUBA

OASF D3 OUT RLAMPE

0440 01

0441 76 HLT

E 120

Experiment 37: Überwachung von 8 Grenzwertmeldern

Mit Hilfe dieses Programms sollen 8 Grenzwertmelder (z.B. Druckgeber) überwacht werden.

Dabei sind folgende Bedingungenzu erfüllen:

1. Ordnungsgemäße Funktion soll durch 8 8168 in den rechten Lampen angezeigt werden.

2. Die einzelnen Melder sind von O bis 7 numeriert (entsprechend den B-Schaltern, die als

Melder dienen sollen). Wird eine Grenzwertüberschreitung gemeldet, soll die Nummer des

entsprechenden Melders als Zahl im 8421-Code in die rechten Lampen gebracht werden.

Es könnenalso 2 Überschreitungen signalisiert werden. |

3. Wenn mehrals 2 Überschreitungen gemeldet werden,soll dies durch F F in den rechten

Lampen angezeigt werden.

4. Funktion der Melder:

1 & zulässiger Wert

O = Grenzwert überschritten

Programmerläuterung (Bild 1):

Im Register D werden die anzuzeigenden Daten gespeichert (8 8 oder die Nummern der

Melder). Wenn nur ein Melder eine Grenzwertüberschreitung anzeigt, wird dessen Nummer '

in den linken 4 bit der rechten Lampenreihe angezeigt (A, bis A,), die rechten 4 bit zeigen

nochdie Zahl8.

1. Beispiel: | |

Schalter 5; auf O, alle anderen 3-Schalter auf 1 muß folgende Anzeige ergeben:

Sprechen 2 Melder an, steht die höhere Nummerin den linken 4 bit.

2. Beispiel:

Wenn nach Melder 5 der Melder 7 (Schalter 37) anspricht, erscheint die folgende Anzeige:

oO @) OÖ m

Um jeden einzelnen Melder isolieren zu können, wird ein Zeiger benötigt, d.h. ein Register,

in dem eine 1 enthalten ist, die über alle Stellen verschoben wird. Durch eine AND-Ver-

knüpfung dieser 1 mit den Melderzuständen kann jeder einzelne Melder auf seinen Zustand

geprüft werden.

Teil 1 des Programms prüft, ob alle Melder = 1 sind. Dazu werden die eingelesenen

Zustände negiert (CMA in Adresse O 4 O 4). Um die Flags zu erzeugen, wird anschließend

eine AND-Verknüpfung des Akkumulators mit sich selbst durchgeführt. Wenn jetzt das

Z-Flag = 1 ist, bedeutet das, daß alle Melder = 1 waren. In diesem Fall erfolgt ein Sprung zur

Adresse O0 4 3 3 und derInhalt des Registers D (8 8) wird in den rechten Lampen angezeigt.

Z-Flag = O bedeutet, daß mindestens eine O in den eingelesenen Daten enthalten war.

Vor dem Übergang zum Teil 2 des Programms wird durch einen zweiten CMA-Befehl

(Adresse OÖ 4 O0 9) der ursprüngliche Meldezustand wieder erzeugt und in Register B abge-

speichert.

E121

| START)

 A

A A

einlesen

8 —D

|

Melderzustände

(D) —»Anzeige |

Melderzustände

nach B-Register

C-Flag=]

u. rg

 —
Zeiger —E

| Zeiger verschieben,

(D) -1ı—D

 | Melder isolieren

Zeiger— Akku

ı

Bild 1

A

(D) +8 ——Anzeige

uen

Zeiger verschieben,

Zeiger——E

 alle Melder
abgefragt

(D) -1—D

Melder

 | isolieren

Zeiger — Akku

Y
gm GUNESEHRERIEENER GERRENERERNNEUHGNGNEER GEESSESNERGSSEENERERREE

tl.
1

Zeiger verschieben

 alleMelder

FF —®Anzeige

abgefragt
? nein

Melderisolieren

Flußdiagramm des Programms zur Überwachung von 8 Grenzwertmeldern

Der Zeiger wird erzeugt, indem zunächst der Akku gelöscht wird. Mit demBefehl STC wird
das C-Flag = 1 gesetzt. Diese 1 wird mit dem RAR-Befehl (Aaresse O 4 O D) in die höchste

Stelle des Akkumulators geschoben. |

Teil 2 beginnt mit diesem RAR-Befehl. Der Zeiger wird dann in Register E gespeichert.

Die Befehle in den Adressen O 4 O F bis O 4 1 2 verringern den Inhalt der Register D

bei jedem Schleifendurchlauf um 1 116, so daß nacheinanderdie Zahlen 7 7; 6 6; 5 5; usw.

in diesem Register stehen. Da der RAR-Befehl in Adresse O0 4 O D ebenfalls in dieser

Schleife liegt, wird parallel zum Verringern des D-Registers auch der „Zeiger“ auf die ent-

sprechendeStelle verschoben. Wird ein Melder mit dem Zustand O gefunden, dann wird der

%

E 122

Sprungbefehl in Adresse O 4 1 5 nicht mehr ausgeführt. Stattdessen wird der Zeiger wieder

in den Akkumulator geholt.

Teil 3 beginnt, wie auch der zweite Teil, mit dem Verschieben und Abspeichern desZeigers.

Der Ablauf im Teil 3 soll unter verschiedenen Voraussetzungen betrachtet werden:

a) nur ein Melder hat angesprochen (Schalter 35 auf O)

Dieser Melder wurde in Teil 2 festgestellt, so daß das Register D den Inhalt 5 5 hat. In der

Schleife in Teil 3 wird das Register D nur noch decrementiert (DCR-Befeh! in Adresse O4 1 E).

Die Inhalte dieses Registers sind daher 5 4; 5 3; 5 2; 5 1; 5 O. Beim letzten Schleifen-

durchlauf wird der Melder O (Schalter Bo) isolierend abgefragt. Da er sich auf 1 befindet,

wird der Sprungbefehl in Adresse 0 4 2 9 ausgeführt. Die 1 im Zeiger wird, da sie jetzt in

der niedrigsten Stelle steht, in das C-Flipflop geschoben. Somit erfolgt durch den JC-Befehl

in Adresse O 4 1 B der Aussprung aus diesem Programmteil. Zum Inhalt des Registers D

wird O0 8 addiert, so daß nach dem OUT-Befehl in Adresse O0 4 3 9 die Zahlen 5 8 in

der Anzeige zu sehensind.

b) mindestens 2 Melder haben angesprochen

In diesem Fall wird, nachdem der zweite Melder mit dem Zustand O festgestellt wurde, im

Teil 4 geprüft, ob ein weiterer Melder angesprochenhat.Ist das der Fall, wird der Sprungbefehl

in Adresse O 4 2 9 nicht ausgeführt und F F angezeigt.

Wenn nur 2 Melder angesprochen haben, wird nach der Abfrage des Melders O der Sprung-

befehl in Adresse O 4 2 5 ausgeführt.

Um ein dauerndes Abfragen der Melder zu ermöglichen, wird nach der Anzeige ein Rücksprung

zum Programmanfang durchgeführt.

Adresse Inhalt Kommentar

0400 DB IN BSHALT Melderzuständeeinlesen

0401 01

0402 16 MVID, 88 Anzeigeregister laden

0403 88 |

0404. 2 F CMA

0405 A7 ANAA

0406 CA JZO431
0407 31 Sprung, wenn Melder = 1

0408 04

Q 1 Q n , " N BA Melderzustände>Register B

0O4O0B 97 SUBA Akku löschen

040C 37 STC Zeiger vorbereiten

0O40D | 1 F RAR Zeiger verschieben und in

OAOE 5F MOVE,A Register E abspeichern

OAOF IA MOV A,D

0410 D6 SUI 1 1

0411 11 (DI -119D
0412 57 MOVD,A

0413 7B MOVA,E “ Zeiger>Akku

0414 AO ANAB Melderisolieren

0415 C2 JNZO40D

0416 OD | | Sprung, wenn Melder = 1
0417 04

0413 7B MOVA,E Zeiger>Akku

0419 1F RAR Zeiger verschieben undin

OA1A SF MOVE,A Register E abspeichern

O41B DA JC0435 |
O4A1C 35 Sprung, wenn nur ein Melder = O

O41D 04

O41E 15 DCRD (D) - 1>D

OA1IF AO ANAB Melder isolieren

E 123

Adresse Inhalt Befehl Kommentar

0420 C2 JNZ0419

0421 1 9 | Sprung, wenn Melder = 1

0422 04 |
0423 7B MOVA,E Zeiger>Akku

0424 1 F RAR Zeiger verschieben

0425 DA JC0431 |

0426 31 | Sprung, wenn nur zwei Melder = O
0427 04 | |

0428 AO ANAB Melder isolieren

0429 C2 JNZ0424

OA2A 24 Sprung, wenn Melder = 1.

042B 04
042C 3E MVIA,FF FF>Akku

042D FF . |

OA2E Cc3 JMP0438

OA2F 38

0430 04

0431 IA MOV A,D (D)>Akku

0432 C3 JMP04338

0433 38

0434 04

0435 IA MOV A,D (D)>Akku 9

0436 C6 ADI 038 Korrektur der rechten Hälfte

0437 08

0433 D3 OUT RLAMPE

0439 01

043a 08 mmoaoo | [HanneAnton
043B 00

043C 04

E 124

Experimentieranhang

Lösungen zu Experiment 14

1. Bei Programmschritt 2 1, da bei 2 2 (HLT-Befehl) der Monitor nicht in Betrieb ist.

2. | Register B =04

| Register C =81
Register D =04

Register E =80

Register H =04

Register L =80

Akku | =7E

Speicher O 4 80=C3

Speicher 0481=FF

Speicher 0482=7E

Lösung zu Experiment 15

oo, , ER Bl
(B -0481 Dı EL— jr d “ & ,

(D) —_ 0 A 8 0 $ An 2 ci Er w "2

14 (HJ) =0480 au / len Eu: er, £rrangf

u A)= TE bu Prscs du

Lösungen zu Experiment 16

1. Es besteht folgende Zuordnung:

b7 De bs ba b3 ba b: bo

jun

Systemschalter Ca Ca Ca Ch Co

2. Die an den C-Schaltern eingegebenen Zahlen werden komplementiert wiedergegeben,

d.h. 7ıo 00 0:>oder 0410 &1 1 1a.

3. Durch Betätigen der RESET-Taste, da hierdurch das Monitorprogramm angerufen wird.

Lösungen zu Experiment 17

1. Das C-Flag ist 1, und im Akku steht OE.

2. Im Akku steht jetzt das Zwischenergebnis 1 6. Das C-Flag ist zu diesem Zeitpunkt O.

Addiert man manuell das Zwischenergebnis bei der relativen Adresse O A (0 E) mit dem

eingegebenen Wert O 7, so lautet das neue Zwischenergebnis:

100001110
+ 00000111
100010101 1 51s mit Übertrag

E125

Im Akku steht aber als Ergebnis 0001011041 6 ohne Übertrag. Der Übertrag
wird also durch den Befehl ADC mit in den Akku addiert.

3. Das Endergebnis beträgt bei diesem Beispiel 2 7. Dies könnenSie z.B. feststellen, wenn

Sie an dem B-Schalter F E einstellen. Manuell gerechnet müßte dann bei der rel. Adr. OA

folgendes Ergebnis vorliegen:

00010000

+ ‘1111 1110

10000 1110

+ 0000 1111

10001 1101 =1iD

Im Akku steht zwar 1 D, aber das C-Flag ist jetzt gleich 0.

Lösungen zu Experiment 18

1. Da auch der MP 8080 in Zweierkomplementarithmetik arbeitet, wird bei einer 1 im höchsten

bit dieses Byte als negativ gewertet.

2. relative Inhalt Akku Flags
Adresse binär hex. C-Flag N-Flag

07 11110000 FO 1 1

OA 11100000 EO OÖ 1

11 00101001 29 1 OÖ

14 0000 1000 08 OÖ OÖ

3. Der Befehl SBB C bewirkt, daß vom Akku-Inhalt O 9ı6 (IN ASHALT) der Inhalt des

Registers C mit E O subtrahiert wird. E O entspricht einer negativen Zahl von -2 Oıe.

Damit ergibt sich:

O 916 - (-2 O16) = O 9ı6 + 2 Oı6 = 2 9ı6

Lösung zu Experiment 20

Ergebnis nach DADD:

Reg. H Reg.L
unum)

1111000100110100

Ergebnis nach DADB:

Reg. H Reg. L

0110100010101100
A

6 8A Cıs

E 126

Lösungen zu Experiment21

1. Das H-Flag wird immer dann 1. wenn die rechte Hälfte der Summe größer als 1510 wird.

2. Da die Summe größer als 1510 ist, ist das H-Flag vor der Korrektur gleich 1, nach der

Korrektur gleich O0. Begründung:

09,0 € 0000 1001

09.08 +0000 1001

000M001- Übertrag
0001 0010_unkorrigiertes Ergebnis

+00000110 Korrekturaddition durch DAA

0000 110-
1810 ° 0001 1000 _korrigiertes Ergebnis

3. Vor dem DAA-Befehlist das H-Flag gleich O, danach 1.

Begründung:

To = 00000111

Sıo= +0000 1000

00001 000- Übertrag
0000 11111 unkorrigiertes Ergebnis (> 09)

+0000 0110 Korrekturaddition

0001] 110-
1510 & 00010101 korrigiertes Ergebnis

Lösung zu Experiment 22

relative Befehl Akku-Inhalt Flags

Adresse N Z H P C

05 ANI 00 O 1 O 1 O

OB ANA 00 O 1 1 1 O

10 ORI ıF 0 O O O O

16 ORA 9B 1 O O O OÖ

1 B XRI E2 1 O O 1 0

21 XRA 9B 1 0 O O O

Aus dieser Tabelle ist zu erkennen, daß das C-Flag mit allen logischen Befehlen auf O gesetzt

wird. Mit Ausnahmedes Befehles ANA trifft dies auch für das H-Flag zu.Bei ANA wird

das H-Flagnicht beeinflußt. Die Flags N, Zund P werdendem Ergebnis entsprechendgesetzt.

-—; 2 E Fu
. IL .E "nn \ £ Ä £ 2 & Ü an det “ wos Ya £ rn

Lösung zu Experiment 23

relative Adresse O 7 Befehl DAD H

C-Flag H-Register L-Register

0] 0/|1|1)1|11/I0|0|11 1!110|0/11|1|1|0

24J Dr

E 127

relative Adresse Befehl C-Flag Akku-Inhalt

09 RAL 1 11001110 |C E£
oB RLC 1 10011101 4»
oD RAR 1 11001110 | 2
OF RAR) 11100111 EFF
11 RAR 1 01110011 |z7
13 RRC 1 10111001 |®?

Lösungen zu Experiment 24

1. Bei diesem Befehl wird vom Inhalt O 1 des Akkus 1 subtrahiert. In Zweierkomplement-

arithmetik bedeutetdies:

Inhalt des Akkus

Damit entsteht zwischen dem 4. und 5. bit eine 1, die vom H-Flag angezeigt wird.

2. Dieser Befehl bewirkt, daß der Inhalt der Speicheradresse, die im HL-Registerpaar steht,

00 wird. In diesem Falle ist es die relative Adresse 2 O.

Lösungen zu Experiment 25

1. Bei der relativen Adresse 1 D ist das P-Flag = 1, da der Akku einegerade Anzahl Einsen

aufweist (0 C 20000 1 1 0 0). Damit erfolgt ein Sprung zur relativen Adresse 8 O.

Die UND-Verknüpfung mit O E verändert den Inhalt des Akkus nicht. Da das N-Flag = O ist,

erfolgt ein Sprung zur relativen Adresse O 8. Hier können über die B-Schalter neue Daten

eingegeben werden.

2. Der Rücksprung erfolgt mit dem Befehl PCHLin der relativen Adresse 6 8.

Lösungen zu Experiment 26

1. Es erfolgt insgesamt eine Verschiebung um 4 Stellen, d.h., im Akku steht dann die Zahl

1 O1e. | |

2. In diesem Falle werden die Flags nach der zweiten Linksverschiebung nicht mehr ent-

sprechend dem neuen Akku-Inhalt gesetzt. Damit kann das N-Flag noch O sein, obschon im

werthöchsten bit des Akkuseine 1 steht, so daß eine positive Zahl vorgetäuschtwird, die einen

weiteren Unterprogrammanruf auslöst. |

Lösungen zu Experiment 27

1. Mit HLT am BP = 1 wird die Bearbeitung eines Programms wie bekannt mit einem RST

2-Befehl unterbrochen. Eine Unterbrechung findet ebenfalls statt, wenn der Programmzähler

über RESET oder den RST O-Befehl auf die Adresse O O O O gesetzt wird.

E128

absolute Adresse Inhalt Befehl Kommentar

0400 CF RST 1 rufe Unterprogramm 0 408

0401 D7 RST 2

0402 C7 RST OÖ

0408 21 LXIH,0O420

0409 20

OAO0OA 04

O4AOB 34 INR M

0OAOC C9 RET
Lösung zu Experiment 28

RAM-relative Stack- Register

Adresse Offset

FO 0 L

F1 1 H

F2 2 E

F3 3 D

F4 4 C

F5 5 B

F6 6 Flags

F7 7 Akku

F8 8 PC low

F9 9 PC high

FA A Register C

FB B Register B

FC C Flags

FD D Akku

Wird also der Monitor nach mehreren PUSH-Befehlen durch den RST 2-Befehl angerufen,

verschiebt sich der Stack-Offset pro PUSH-Befehl um 2 Adressen nach unten.

Lösungen zu Experiment 29

1. Der Stack-Pointer muß den Inhalt O0 4 3 6 haben, da durch den PUSH-Befehl die ini-
tialisierte Adresse O 4 3 8 um 2 verringert wurde.

2. RAM-relative Stack- Register

Adresse Offset

2E O L

2 F 1 H

30 2 E

31 3 D

32 4 C

33 5 B

34 6 Flags

35 7 Akku

36 8 PC low

37 9 PC high

3. Der Inhalt wird in den Adressen O 4 3 7 (Reg. B) und 0 4 3 6 (Reg. C) zwischenge-

speichert. Da anschließend sofort ein POP-Befehl folgt, wird der Stack-Pointer wieder zur

initialisierten Adresse O0 4 3 8 zurückgesetzt, so daß mit dem RST 2-Befehl die beiden

Speicherplätze mit PC low und PC high überschrieben werden.

Lösungen zu Experiment 31

1. Das Flag-Wort lautet:

01000010442

2. RAM-relative Inhalt
Adresse

FD (H-Register) u
FC (L-Register) „alter Registerinhalt

FB (Akku) u

FA (Flag-Wort) „neues“ FSW

3.

‚Adresse Inhalt Befehl Kommentar

0400 E5 PUSHH

0401 6 7 MOVH,A

0402 2E MVIL, 93

0403 93 |

0404 E3 XTHL

0405 F1 POP PSW

0406 D7 RST

0407 76 HLT
Lösungen zu Experiment 32

1.

Adresse Inhalt Befehl Kommentar.

0000 31. LXISP,OAFEN
0001 FE Stackpointer mit O A FE laden

0002 04

0003 DB IN CSHALT
0004 04 C-Schalter einlesen

0005 C3 JMPOO09D |

0006 9D unbedingter Sprung nach 009D

0007 00
2. Mit der Maske O 7 und der Vergleichszahl O 5 wird die gestellte Forderung erfüllt.

O 7 isoliert die Schalter Co, Cı und C,. Die Vergleichszahl O 5 entspricht der Schalter-

stellung 1 0 1.

E 130

Systemschalter Ca C3 Ca Cı Co

z—

11011

u

maskierte Schalter

Lösung zu Experiment 33

Adresse Inhalt Befehl Kommentar

0400 D 7 RST 2

0401 OE MVIC,4

0402 04 =

0403 11 ILXID,0420

0404 20 |

0405 04

0406 21 IXIH,0430

0407 30

0408 04

0409 CD CALLO460

OAOA 60

0O4O0B 04 |

0A40C C3 JMPO4A4O0O0

0A40D 00

OAOE 04

0460 AF XRAA

0461 1A LDAX D

0462 SE ADC M

0463 12 STAX D

0464 OD DCR C

0465 Cc8 RZ

0466 13 INX D

0467 23 INX H

0468 C3 | JMPO461

0469 6 1

OA6A 04

Anmerkung: |

Wenn nach der Addition ADCM mit dem Befehl DAA eine Dezimalkorrektur durchgeführt

wird, können auch Dezimalzahlen im 8421-Code verarbeitet werden. |

E 131

gG
\

=
-

n
n
.

-
d
S
+
i

-
(dS)

43JU104-Y9EIS
1990

d
S
x
d
a

g
e

Ä
I
L
O
L
L
L
O
O

D
2

g
l
u

dS“
il
+

 (dS)
4
8
U1O4-N9LIS

'19U]
d
S
XNI

g
e

L
L
O
O
L
L
O
O

o
g

G
|

I
.
.
.

-
IH

I
-

 (0H)
ned

107S1Bay
H
X
I
G

7
L
L
O
L
O
L
O
O

>
3

g
ı

=
=
n
n

-
3
0
-
1

-
(30)

u
e
w
a
s
n
a
g

|
a
x
a
a

u
l

Ä
\
L
O
L
L
O
O
O

S
g

\
=
.

-
9
9
-
1

9
8
1

|
g

xIUu
g
o

L
L
O
L
O
O
O
O

“
g

ı
=
=
.

-
I
H

1L+
O
H

H
XNI

E
Z

A
\
L
O
O
O
L
O
O

S
g

I
|-
-
-

-
-

30+
1
+

(30)
B
e
n

|
axnı

El
L
L
1
0
0
1
0
0
0

a
g

\
u

99:
1
+

(98)
8
X
N
I

u
)

L
1
0
0
0
0
0
0

O
O
l

l
=

X
X
X
X

I
H
®
+
1
-

(
I
H
R
)

Arowıaui
J
U
E
W
E
I
I
9
T

N
H
I
Q

>
L
O
L
O
L
L
O
O

O
O
l

L
-
X
X
X

X
I
H
9
+
1

+
(
H
R
)

A
r
o
w
a
w

Juawa1au]
N

HNI
v
e

0
0
L
0
1
L
1
0
0

oO
gG

ı
-
X
X
I

P
P
P
+
1
L

-
(ppPp)

18151531
JuaWSIIag

I
4
9
Q

L
O
L
P
P
P
O
O

3
g

ı
X
X
X

X
P
P
P
+
«
ı
L
+
(
P
P
P
)

18751534
Juawasdu]

I
UNI

O
O
L
P
P
P
O
O

>

1
'H

se1eed1aJsıBay
o
2

Ol
\

X
-
-
-
-

sep
uaqalydssyul

5
ppe

uoısı9ald
aıqnog

H
Q
v
a

627
L
O
0
O
L
O
L
O
O

=.
=.

o
O

Y
ı

X
-
-
-
-

L
Y14+

(9)
’I+

(O0
Hq)

9
yBnouy}

yBıı
9YeJ0Y

H
V
H

4
I
L
L
L
L
O
O
O

S
c

v
l

X
-
-
-
-

0
1
9

-{I)
’I+-{Z

ng)
9
y
B
n
o
y
r
3

SYeJoy
I
V
H

L
i

L
L
L
O
L
O
O
O

2
2
3

1%
I

I
X
.
-
-

-
9
pun

7
}1q+-(O

Yg)
4
b

ajejoy
J
U
H

4
0

I
\
L
L
L
O
O
O
O

>
<

v
\
A

9
pun

0
H4«

(2.
Yq)

138]
SJEJOy

IJIH
L
O

W
L
L
O
0
O
0
0
0
O
0

3

L
T

o
x
o
x
x

V+-
(
e
g

ZI
A
V
)

s
e
ı
p
a
u
w
ı
HO-"JIX3

IHX
3
3

O
L
L
L
O
L
I
L

c
L

Z
O
X
O
X
X

V
«
(
e
Y
l
g
Z
I
A

lv)
syeıpawuwı

Y
O

IHO
9
4

O
L
L
O
L
L
I
L
L

&
L

ce
O
X
x
O
X
X

V+«-(a14g
zZ)

v
(v)

S
e
r
p
a
w
w
i
O
N
Y

INV
9
3

O
L
L
O
O
L
L
L

5
L

\
O
X
O
X
x
x
X

V+-
(
I
H
B
)
A
(
V
)

n9Je
0}

Arowıawı
YO-"1IX3

N
V
H
X

3
V

O
L
L
L
O
L
O
L

2
L

ı
o
x
o
x
x

V+-
(
I
H
B
)
A
(
W
)

n99e
0}

A
l
o
w
a
w
H
O

N
W
H
O

J
g

0
O
L
L
O
L
L
O
L

oO
L

|
O
X
X
X

X
V<-

(
H
D
)
V
v
(
v
)

n9Je
0}

A
l
o
w
a
w
O
N
V

N
V
N
V

g9Y
0
L
L
0
0
1
L
0
1

©
v

\
0
o
X
x
O
o
x
x

V«-
(
s
s
s
)
A
(
v
)

n99e
Y
O
-
I
A
I
S
N
I
I
X
3

4
V
H
X

S
S
S
L
O
L
O
L

oO
v

L
o
x
o
x
x

V+-
(
s
s
s
)
A
(
V
)

Jo}einwnase
Y
O

I
V
Y
O

S
S
S
O
L
L
O
L

©
v

ı
O
X
X
X

X
V+-

(
s
s
s
)
V

(v)
Jo}eINnWwnI9e

Q
N
V

I
Y
N
V

S
S
S
O
O
L
O
L

v
I
X
X
X

X
n99\y

ısn{pe
jewidag

v
v
a

L
?

L
L
L
O
O
L
O
O

3
9
3
9

O
l

\
X
K
-
-
-

-
I
H
+
-

(ds)
+
T
H
)

p
p
e

d
S
a
v
a

6E€
L
O
O
L
L
L
O
O

3
8
3

Ol
ı

X
-
-
-
-

IH*+-
(IH)

+
(IH

H
A
v
a

627
L
O
O
L
O
L
O
O

B
a
s
e

ol
|

IX
-
-
-

-
I
H

(
3
q
)

+
OH)

vorsjoaud
aıqnoq

a
a
v
a

61
1
0
0
1
1
0
0
0

3
8
5
°

Ol
ı

X
K
-
-
-

-
IH+-

(
I
)
+

(IH)
ga
a
v
a

6
0

L
O
O
L
O
O
O
O

°
7
5

I
d
H
Z
N

Bunzinygqy
8poJ

u
U
9
I
4
A
Z

s
o
j
A
g

s
ß
e
l

B
y
d
s
ı
L
o
W
w
a
u
N
]

-
X
3
H

9
p
o
9
u
a
u
ı
y
a
s
e
y
y

sBei4
12195

(vJAgq
zZ)

-
(V)

L
z

gJeıpawulı
B31edulo)

Id9
3
4

O
l
i
t
i
t
t
ı
l

L
\

s
o
»

sbel4
3388

I
H
»
)

-
(W)

Arowaul
3
l
e
d
w
o
)

N
d
W
I

J
g

O
L
L
L
L
L
O
L

2
m

v
L

2
©

sBej4
727395

(
S
S

S)
-

(W)
19)51591

s
ı
e
d
w
o
y

I
d
W
D

S
S
S
L
L
L
O
L

E
n

L
Z

N
a
m

vv.
()-(orig

zZ)
-

(v)
M
O
L
O
Q

yyIm
w
u

'qnS
I9S

3
q

o
L
L
L
L
O
N
N

3
8

L
L

0
v-

(I)
-
O
H
»
)

-
(v)

molnog
yyIm

"waul
'qng

N
a
8
S

3
6

O
L
L
L
L
O
O
L

2
%

v
ı

8
;

v
-

(0)
-(
s
s
s
)

-
(W)

M
O
1
O
Q

yyım
"Bi

'qng
ı
9
8
8

S
S
S
L
L
O
O
L

.
1.

T
R
i

V«
(
A
g

zZ)
-

(W)
s}eıpawu

JJeNAqNS
INS

9
a

O
L
L
O
L
O
L
L

©
=

L
ı

a
a

v
e

(IH
»)

-
(VW)

Ayowew
P
e
n
g
n
s

In
a
n
s

9
6

O
0
L
L
O
L
O
O
L

o
r

Y
ı

5
Y
«

(SS
Ss)

-
(y)

18751631
P
e
J
q
n
S

I
a
n
s

S
S
S
O
L
O
O
L

2
.

L
z

m
+

(9)
+
(eHg

zZ)
+

(V)
Aue9

yJIm
SJeıpawum

P
p
Y

IIV
3
9

O
L
L
L
O
O
L
L

”
L

ı
1)

v-.
(I)

+
H
P
)
+
W
)

A
u
e

yyıIm
A
l
o
w
a
w
p
p
Y

N
IJaV

3
8

0
L
1
L
L
0
0
0
1

v
ı

er
V+-

(
+
(
s
s
s
)
+

(VW)
Auıes

yJıMm
19151691

P
P
Y

4
JQAV

s
S
S
S
s
L
O
O
O
L

L
z

2.
Y
«

(
A
g

zZ)
+

(W)
grelpawuı

P
P
Y

a
v

9
9

0
L
L
O
O
O
L
L

L
L

o
V--

(IH
@
)
+

(v)
A
l
o
w
a
w
P
p
Y

N
QaYV

g
L

O
L
L
O
O
O
O
L

Y
|

5
V«-

(ss
s)
+

(v)
1851891

PPY
ı
Q
a
v

s
s
s
o
o
o
o
l

Ol
Z

ayÄg
'Z
u
jeueyageBsny«-W

IndIno
I
N
O

e
g

Ä
L
L
O
O
L
O
L
I

|
S
o
®
8
P
m

01
Z

+
(e14g

'Zz
wı

jeueyageßuıg)
ınduj

N
8
q

I
L
0
L
L
I
O
L
L

|5°7882
v

ı
1H«-(3Q0)

:3Q+
(IH)

3Q
U
M

IH
aBueyax3

OHIX
a
3

I
L
O
L
O
L
I
L
L

2
x

H
i

+
a1da

z
n

e))
|

|
2
.
6

91
E

1+-((e14g
z
n

'g))
P
S
P

I
Pue

H
peo]

aıHı
v
z

0
1
0
1
0
1
0
0

a
9
g

ı
+
a
4
a
z
n

eg)
(H)

9
5

gL
E

(eig
z
n
e
e

(1)
pWeAIp

7
Pue

H
81015

Q
I
H
S

ce?
0
L
0
0
0
L
0
0

5
2

Ol
€

x
H«+-

(214g
°E)

1«-(a14g
zZ)

e
ı
p
a
w
u
n

H
IxX1

L
7

M
\
0
0
0
0
1
0
0

S
o
?

Ol
€

=.
Qa+(

a
r
g

'E)
'3«-(a1ig

Z)
n
e
d

10sıßaı
peo]

Q
1x1

1
L
O
0
0
1
L
0
0
0

2
&

Ol
€

„
®

g+-(e14q
'E)

:I+
(
e
i
g
)

8
I
X

L
O

L
0
O
0
0
0
0
0
0
°

w
o

L
ı

S
o

V+-
(
3
0
0
)

pexapuı
|

a
x
v
a
ı

v
i

0
L
O
L
L
O
O
O

o
m
.

L
\

2
5

v
+
-
(
I
9
8
)

40}ejNWNIIe
peo}

8
xvaıl

v
o

0
L
0
L
0
0
0
0

2
5

L
ı

o
c

3109%+-
(W)

paxapuı
|

A
X
V
L
S

z
l

0
L
O
O
L
O
O
O

o
o

L
|

o
9
0
+

(W)
40}eINWNIIE

81015
g
X
V
I
S

2
0

0
1
0
0
0
0
0
0

2
0

el
€

S
v+-((aMg

z
n

'e))
40}e|NnWnI99e

peo]
ıpe

v
q
1

v
e

0
L
O
L
L
L
O
O

2
2

el
€

a
(
a
g
z
n
e
)

(W)
Joyejnwn9se

81075
ıpe
I
S

z
e

0
L
O
O
L
L
O
O

R
C

Ol
z

I
H
D

+(
H
Ä
g
7
)

A
r
c
w
a
w

0}
aJeıpawuı

anoyy
N

IAN
g
E

O
L
L
O
L
L
O
O

2
L

Z
P
P

P-«-(aAg’z)
19151891

0}
sYeıpawuı

anoyy
I
A
N

O
L
L
P
P
P
O
O

8
0
.

L
L

I
H
O
«
-

(
S
s
s
)

A
ı
o
w
a
u
w

0}
a
n
o

I
W
W
A
O
W
N

S
S
S
O
L
L
L
O

R
T

L
ı

P
P

P+«(
H
D
)

A
l
o
w
a
w
WOJ}

3
A
O
W

N
“I
A
O
N

O
L
L
P
P
P
I
L
O

©
G

L
P
P
P
p
+

(
s
s
s
)

1
8
1
s
1
B
8
4

0
}
1
9
7
5
1
8
3
1
a
n
o
y
y

c
ı
1
1
A
O
W

S
S
S
P
P
P
L
O
.

I
d
H
Z
N

Bunzinyqy
2PoJ

u
U
9
j
4
A
Z

s
a
j
A
g

s
B
e
|
J

a
y
d
s
ı
u
o
w
a
u
N
]

-
"
X
9
H

9
p
o
D
u
a
u
m
y
>
s
e
y
N

J
o
y
e
i
n
w
n
a
a
y
V
=

|
ILL

A
u
e

7
8
S
(
j
u
e
p
P
U
a
m
I
e
n
p
p

p
p
u
n
s
s
s

sie
Jysıu)

A
o
w
a
y
y
O
L

|

1149S81Bayr
L
O
L

H
Jasıboy

#
0
0
1

P
A
I
M
J
9
}
1
3
Q
1
E
1
9
A
J
E
Y
U
|
U
9
1
9
P
'
B
S
S
a
l
p
Y
B
l
p

JSı
'

"
"
u
o
A
e
y
u
l

=
((

°
"
'
)
)

3
1
9
S
1
d
5
3
y
=

L
L
O

n
u
w
o
a
y
e
y
u
ı
=
(
'
'
'
)

aıasıBbay
O
L

Oo‘
JJnyulaag

Iysıu
P
a
m

Bejj
=
—

J
4
a
s
ı
d
a
y
7
L
0
0

JyNyuIaaq
PıIMm

B
e
y
=

X
g
ı
a
s
ı
b
a
y
#
0
0
0

:
u
U
9
B
U
N
Z
I
N
Y
Q
Y

:
P
P
P

'
M
Z
q
S
S
S

ıny
9
p
o
9
1
a
J
s
ı
B
a
y

v
ı

Be14-9+-(Bei4-9)
Auıe9

yuawıaıdulo)
I
N
I

J
E

I
L
L
L
L
L
O
O

o
W

v
\

Bei4-I=1
Auıea

795
I
1
S

L
E

Ä
\
L
L
O
L
L
O
O

2
9

Y
ı

V
W
)
.

n99e
Juawaıdwon)

v
w
d

4
7

Ä
I
L
L
L
O
L
O
O

5
8

v
L

uoNeladg
B
u
y

uoneıado
O
N

d
O
N

0
0

0
0
0
0
0
0
0
0

o
a

L
ı

1IeH
L
I
H

9
1

0
O
L
L
O
L
L
I
O

U
A
Y
I
S
N
E
U
A
A

49e}s
‚o

d
o
y

gl
ı

-
-
-

((4S))
H
u

(IH)
y
ı
m
I
H
9buey9x3

I
H
L
X

e
3

L
L
O
O
O
L

L
I

Ol
L

-
-

-
1H+-

(dS)
+

(IH)
d
S
ppe

'9a1d
aıqnog

d
s
a
v
a

6
€

L
O
O
L
L
L
O
O

g
ı

-
-

-
dS+-

I
-

(dS)
48UI0IJ-49EIS

'199Q
d
S

xI9aG
gE€

I
L
O
L
L
L
O
O

on
g

ı
-

-
-

dS+-
L
+

(dS)
43J4U104-N9Ee4S

'19UJ
d
S
XNI

>
Ä
\
L
O
O
L
L
O
O

er
g

ı
-
-
-

dS«-
(IH)

I
H
W
O
}

49}UI04-NIEIS
I
H
d
S

6
ÄAOooL

L
i
l

2.
O
l

>
-
-
-

d
S
+
-
(
a
1
4
g
Z
n

'E)
|1eulog4-49E4S

s
j
e
ı
p
a
w
u
w
ı
p
e
o
]

d
S
I
X

L
E

L
O
O
O
L
L
O
O

X&D

ol
ı

X
X
X

sBej4
'n99y«-

(N9e1S)
PJOM

snyejs
'ıBo1d

dog
M
S
d
d
O
d

L
4

Ä
R
o
o
o
L
ı
ı
ı

®
ol

\
u

I
H
+

2
8
5
)

ı
H

Ated
'Baı

dog
H
d
O
d

1
3

Ä
L
O
O
O
O
L
I
M
L

©
ol

ı
-
-
-

3
Q
+

(NPerS)
3
a
„ed

'Baı
"dog

Q
d
O
d

LıQ
L
O
O
0
O
O
L
O
L
L

Ol
L

-
-
-

I
9
-

(MDEIS)
J
g

Jıed
'Baı

dog
8
d
O
d

L
I

Ä
L
0
O
0
0
0
0
1
1

Lı
L

-
-
-

y984S«
(sbei4

'n39Yy)
P4OoM

snyeys
UBoJd

ysng
M
S
d
H
S
N
d

gG4
Ä
R
o
L
o
L
ı

i
l

Lı
\

-
-
-

Y981S«-
(IH)

I
H

Jıed
'Baı

y
s
n
g

H
H
S
N
A

g
3

Ä
L
O
L
O
O
L
L
L

Il
ı

-
-

-
Y9RJS«-

(3q)
3
a
e
d

'Baı
ysng

A
H
S
N
A

g
a

L
O
L
O
L
O
L
A
L

Lı
ı

-
-

-
Y9E1S«-

(
8
)

J
g
red

Bas
ysng

g
H
S
N
A

9
9

L
O
L
O
O
O
L
L

d
H

2Zz
B
u
n
z
i
n
y
a
y

9
0
9

U
9
I
Y
A
Z

s
a
l
A
g

s
B
e
1
4

I
U
I
S
I
U
O
W
I
U
N

-
"
X
9
H

B
P
O
Y
U
A
U
I
U
I
S
E
N

o
_

Il
I

I
d
r
e
r

'yorisı
(94)

YeIsay
1SUY

I
ı
r
e
e
e
j
L

0
5

v
L

y
9
y
ß
a
w

J
y
a
r
u
g
d
n
u
o
y
u
p

gd
y
9
e
u

y
d
n
n
a
y
u
ı

orgqesıq
T
e

E
q

L
L
O
O
L
I
L
I
A
L

2
.
2

v
L

y
>
1
B
o
w
m
J
d
n
s
o
y
u
|

(3
y
D
e
u

y
d
n
s
ı
o
y
u
ı

s
f
g
q
e
u
g

1J
g
J

R
L
L
O
L
L
L
I
L

5

L
1
/
G

L
L
=
N

s
n
u
t
u
J

UINJ3y4
W
H

8
4

o
o
0
o
l
!
t
ı
ı
l
ı

D
C

Lı/g
L

O
=
N

snyd
jı

uunyoy
d
u

O
4

0
0
0
0
1
1

ı
ı

5
2

ı1/S
L

\
=
d

:
u
u
a
m

“olyez
uana

Aylued
ji

uunyay
3
4
H

8
3

0
0
0
1
.
0
1

1ıı
o
n

L
L
/
g

L
O
=
d

-
W
W
E
I
B
O
I
G

L
p
p
o
A
y
u
e
d

jı
u
a
n
J
a
y

O
d
H

0
3

0
0
0
0
0
L
1
l

oO
S

L1/g
L

I
=
9

f
u
a
p

ur
yoeıs

395
Alıe)

gl
uinjoy

O
U

8
Q

0
0
0
L
1
L
0
1
1
L

5
a

ıL1/g
L

x
0
=
)

W
O
A

8SSZIpPR
195

JoU
Alıe9

JI
u
u
n
J
a
y

I
N
H

0
q

0
0
0
0
L
0
1

1
a
v

L1L/G
|

=
\
=
Z

-Bunidsyony
0182

}1
uunyoy

Zu
8
9

0
0
0
1
0
0
1
1

2,3
L1/g

l
a
®

0
=
7
J

019Z
JOU

J1
uinJaY

Z
N
Y

0
)

0
0
0
0
0
0
1
1

2
5

O
l

ı
o
o

I
d
+
-
W
E
I
S
w
o
n
u
p
e
s
d
s
y
a
n
y

Ayjeuonıpuodun
u1nJay

1
3
4

6
9

L
O
O
L
O
O
I
A
L

o
3

n
®
.

n
L
i
l

€
2
3

L
=
N

|)
snuu

yı
(je)

W
I

9
4

o
0
l
ı
ı
t
ı
ı

.
L
ı
/
ı
ı

E
5

O
=
N

:uUU9M
snıd

yı
j
e
)

d
)

v
4

o
0
0
L
0
L
1
ı
ı

2
L
i
/
ı
ı

E
c

L
=
d

"
9
E
I
S

uUap
uaaa

Ayued
}ı
j
e
)

3
4
)

9
3

0
0
L
L
O
L
I
A
L

Li/tt
€

a
O
=
d

|
n
e

ossaıpe
ppo

Ayuied
yı
11)

049
+
3

0
0
L
0
0
L
1
ı

Li/ıı
E

\
=
)

-Bunidsyony
|

}9S
Alıe9

yı
|je)

0%)
9
q

0
0
L
L
L
O
L
L

L
ı
/
ı
l

E
0
=
)

I
d

ul
795

Jou
Alle}

1
|je)

I
N
D

r
a

o
0
0
L
0
1
L
0
1
\

L
ı
/
ı
ı

E
ı
=
z
Z

(
M
g
z
n

eg)
0132

}I
|je)

Z
I

9
9

0
0
L
L
O
0
O
0
1
I
L

L
ı
/
ı
ı

E
0
=
2
|
J

0132
JOU

}!
|je9

Z
N
D

v
r
)

o
0
0
L
0
O
0
O
1
L
1
L

L
i

E
Id+-(a}4g

zZ
p
u
n

'E)
A
t
e
u
o
i
m
p
u
o
9
u
n

|je)
T
1
V
9

a
ı

Ä
O
L
L
O
O
L
L

g
L

Id+-{IH)
I
H

W
O
A
}
48}UNOJ-UmWmeıßoid

I
H
I
d

6
3

L
O
o
o
L
O
o
L

I
L

on
O
l

E
L
=
N

|)
snumwu

4
d
u
n
f

n
r

v
4

o
L
O
o
L
L
ı
ı
ı

O
O
l

E
O
=
N

:
u
u
s
m
„yveig

snıd
jı
d
u
n
p

d
r

4
o
L
0
O
L
1
L
ı
ı

c
ol

€
ı
=
d

-8B
Jayyez

usna
Ayuued

5:
duunr

Jdr
v
3

0
L
0
L
O
1
L
L
ı

a
Ol

€
O
=
d

-WWEIBOIG
ppo

Ayuued
jı
dwunr

O
d
r

2
3

0
L
0
0
0
1
L
1
ı

©
O
l

E
\
=
9

[
w
o
p

ur
p
u
m

|
795

A
u
e

ji
dwunf

a
r

v
a

O
0
L
O
L
L
O
L
G

2
O
l

E
0
=
)

a
g
z
n

’E
+95

Jou
Auıe9

ji
d
w
n
f

O
N
F

z
a

0
L
0
O
0
L
0
1
L

ö
O
l

E
ı
=
2
Z

wı
9Ssalpy

0182
jt
d
w
n
f

z
r

v
9

O
L
O
L
O
O
I
L
L

O
l

E
0
=
2
7
\

0
1
9
z
40u

}I
d
w
n
f

Z
N
F

©
)

O
0
L
0
0
0
0
1
L
L

O
l

E
Id4+-(a}Ag

'Zz
p
u
n

'g)
A
y
e
u
o
m
ı
p
u
o
s
u
n
d
w
n
f

d
r

e
9

L
L
O
O
O
O
I
L
L

OO
d
H
Z
N

B
u
n
z
i
n
y
q
y

@
p
o
J

u
9
4
A
7

s
o
y
A
g

s
B
e
l

a
y
d
s
ı
u
o
w
W
a
u
y
)
]

-
X
9
H

g
p
o
d
u
a
u
ı
y
d
s
e
y
y

Half-Carry-Flag H immer OÖ

immer (— P Paritäts-Flag

Zero-Flag Z—— — immer !

Negativ-Flag N — u C Carry-Flag

_ BR ZA i
NIZIO)IHIOIPI|ı IC) F Flag-Register

Registerpaar pw <

A Akkumulator

B Register

Registerpaar B Ss

C Register

D Register

Registerpaar D

E Register

H Indexregister

Registerpaar H <

L Indexregister
.

15 7 0

SP Stack - Pointer

PC Befehlszähler

Bild 6.2.1

D:.: Register und Flags des MP 8080

manfassen. Diese Betriebsmöglichkeit ist notwendig, da der MP 8080 zwar mit 8 bit

Datenwortlänge, jedoch mit 16 bit Adreßwortlängearbeitet.

Das Re:xisterpaar HL kann (ähnlich wie R3 im hypothetischen Rechner) als Indexregister

eingese*zt werden.

Der Stzck-Pointer SP und der Prsgrammzähier PC sind im MP 8080 mit 16 bit Länge

ausgetuhrt.

Da ne;n MP 8080 normalerweise keine Möglichkeit besteht, sich durch Anzeigen überdie

Inha2te der einzelnen Register zu inform:eren -— es könnenja nicht direkt Anzeigen ange-

scnlossar werden — ist für Lern- und Prüfzwecke ein Monitorerforderlich. Hierbei handelt

es sich um ein Programm, das dem Anwender die Möglichkeit bietet, bestimmte „innere“

Daten zır Anzeige zu bringen. Damit Sie in der Lage sind, die nachfolgenden Abhandlungen

experimentell nachzuvollziehen, ist es notwendig, die Möglichkeiten und die Handhabung

des Monitorprogrammszu kennen. Aus diesem Grundeist jetzt zunächst das Experiment 13

durchzuführen.

„-3 Befehlsvorrat des MP 8080

Der MP 8080 hat Befehle, die 1, 2 oder 3 Bytes benötigen. Nachfolgend werdendie einzelnen

Pxfehle besprochen. Eine Zusammenstellung aller Befehle finden Sie am Ende dieses Lehr-

heftes. in dieser Tabellen ist die Anzahl der Bytes sowie die Anzahl der Taktzyklen für

4.7

 Exp. 13 }

jeden Befehl angegeben. Da die Taktfrequenz des MP-Experimenters bei 8,867 238 MHzliegt

(Quarzfrequenz) dauert eine Taktperiode 1,015 us (Teilerverhältnis 1 : 9!). Mit der Angabe

der benötigten Taktzyklen läßt sich somit die Ausführungszeit eines Befehles und somit

eines Programms berechnen. Hierbei ist zu berücksichtigen, daß bei einigen Befehlen die

Anzahl der Taktzyklen unterschiedlich sein kann. So benötigen z.B. die bedingten CALL-

Befehle 11 oder 17 Taktzyklen, ‚je nachdem ob die Bedingung erfüllt wurde oder nicht.

Wennein Befehl aus mehrals einem Byte besteht, so bedeutet dies, daß nach dem eigentlichen

Maschinencode(1. Byte) nachfolgende Daten oder Adressen angegebensind.

Adressen werden immer mit 16 bit angegeben und benötigen deshalb dafür 2 Byte (sog.

3-Byte-Befehle). Die rechte Adressenhälfte steht im zweiten Byte, die linke Hälfte im dritten

Byte. Bei Doppelgenauigkeitsarithmetik wird ebenfalls zuerst die rechte Hälfte und dann die

linke Hälfte angegeben. Wie bereits anhand von Bild 6.2.1 angedeutet wurde, können

bestimmte Register zu Registerpaaren rr zusammengefaßt werden. So ergibt z.B. die Zu-

sammenfassung der 8-bit-Register H und L das Registerpaar H mit einer Kapazität von 16 bit.

Damit ist es möglich, 16-bit-Operationen durchzuführen. Für Stack-Operationen werden

der Akku A und das Flag-Register F zum Registerpaar PSW (Programm Status Word)

zusammengefaßt. Das Registerpaar PSW kann nicht für arithmetische Operationen benutzt

werden. Eine Zusammensetzung anderer Register wie z.B. B und H ist nicht möglich.

Nachfo!gend werden aus Übersichtlichkeitsgründen Befehle und ähnliche Funktionen zusam-

men in Gruppen erklärt. Jede Gruppe wird durch ein kleines Experiment verdeutlicht. Diese

Experimente sind nicht sehr praxisnah, da sie nur die Wirkungsweise der Befehle zeigensollen.

6.3.1 Einzelgenauigkeits-Datentransferbefehle

In dieser Gruppe gibt es 6 unterschiedliche Befehle, die Daten zwischen 2 Registern oder

zwischen einem Register und dem Speicher bewegen. Die Flags werden durch diese Befehle

nicht beeinflußt. Der erste Befehl (MOV) hat folgendes Format:

Olıiıd|d|dıs|s|s MOV

OP-Code DST SRC

Der MOV-Befehl bewegt (kopiert) den Inhalt des SRC-Registers in das DST-Register. Als SRC-

bzw. DST-Register können der Akku A und die Register B, C, D, E, H und L verwendet werden.

Für die Adressierung des SRC- und DST-Registers stehen 3 bit zur Verfügung. Damit können

8 Register spezifiziert werden. Da aber nur 7 Register angesprochen werden können, wird ein

Codewort nicht benötigt. In Tabelle 6 3.1.1 ist die Zuordnung zwischen Code und Registern

gezeigt.

sss,ddd Register

000 B
001 C
010 D

011 E

100 H
101 L

110 MEMORY

Tab. 6.3.1.1 |

Registercode 1m AlAkku) |

Der Code 1 1 O ist mit MEMORY gekennzeichnet. Wenn bei einem Befehl für s s s der Tode

1 1 0 steht, dann wird das mit d d d gekennzeichnete Register mit dem Speicherinhalt

geladen, dessen Adresse im Registerpaar H steht. Es handelt sich also um Indexed-Adres-

sierung über Registerpaar H. Wird umgekehrt d d d durch Code 1 1 O gebildet und in

s s sein bestimmtes Register festgelegt, wird der Registerinhalt in der Adresse gespeichert,

die im Indexregisterpaar H steht. Werden s s s und d d d mit 1 1 O belegt, so liegt als

4.8

£
..

‘\

Maschinencode O 1 1 101 10 7 6ıs vor. In Experiment 13 haben Sie diesen Befehl

bereits als HLT-Befehl kennengelernt. Es ist nicht möglich, einen bestimmten Speicherplatz

gleichzeitig als Datenquelle und Datenziel zu verwenden. Nachfolgend sind einige MOV-

Befehle in der mnemonischen Schreibweise mit dem entsprechenden Maschinencode und

Kommentar aufgeführt:

mnemonische Schreibweise Maschinencode Hex.-Code Kommentar

MOV A,H 01111100 7C (H)>A

MOVH,A 01100111 67 (A)>H

MOVM,L 01110101 75 (L)>@HL

MOVL,M 01101110 6E (SHL)>L

Da es für s s s und d d d 8 verschiedene Möglichkeiten gibt, sind theorethisch 6410 MOV-

Befehle möglich.

Anmerkung:

Die mnemonische Schreibweise ist dem Datenbuch der Firma INTEL entnommen. Gegenüber

der Mnemonik beim hypothetischen Rechner bestehen Unterschiede.

Der zweite Befehl dieser Gruppe MVIist ein 2-Byte-Befehl. MVI steht für Move Immediate.

Er t:at das Format:

DST
—n

1. Byte 010|d|d id |1|110

MVI

2. Byte Daten
Da die Daten im 2. Byte angegebensind, muß hier nur das Datenziel (DST) definiert werden.

Dabeigilt wieder der Code nach Tab. 6.3.1.1.

Beispiele:

mnemonische Schreibweise Maschinencode Hex.-Code Kommentar

MVIL 00101110 2E (2. Byte)-L

MVIB 00000110 06 (2. Byte)>B

MVIM 00110110 36 (2. Byte)> @HL

Bei dem Befehl! MVI M wird der Inhalt des 2. Bytes in den durch Registerpaar H angegebenen

Speicherplatz gebracht.

Alle weiteren Befehle dieser Gruppe arbeiten mit dem Akkumulator und einem Speicherplatz

als Datenquelle oder Datenziel. Die Angabe von SRC oder DSTentfällt also. Stattdessen muß

die Speicheradresse angegeben werden. Die Befehle STA (Store Accumulator) und LDA

(Load Accumulator) sind 3-Byte-Befehle. Ihr Formatist:

1. Byte

OP-Code

2. Byte Adresse rechte Hälfte LDA bzw. STA

3. Byte Adresse linke Hälfte
Mit dem Befehl STA wird der Inhalt des Akumulators unter der im 2. und 3. Byte angegebenen

4.9

Adresse abgespeichert. Bei LDA wird derInhalt der angegebenen Adresse in den Akkumulator

gebracht: en

mnemonische Schreibweise Maschinencode Hex.-Code Kommentar —

STA 00110010 32 (A)-Adresse

xXXxXxXxXxXX } Adresse

xXXxXxXxXxXX

LDA 00111010 3A (Adresse)>A

xXXxXxXxxX | Adresse

xXxXxXxXxxxX

Die letzten 4 Befehle dieser Gruppe benutzen wieder den Akkumulator als Datenquelle oder

Datenziel. Sie bestehen aus einem Byte, da die Adressierung mit den Registerpaaren B

oder D als Indexregister erfolgt. Folgende 4 Befehle sind möglich:

mnemonische Schreibweise Maschinencode Hex.-Code Kommentar

STAX B 00000010 02 (A)-&B,C

STAX D 00010010 12 (AA-@DE

LDAX B 00001010 OA (@B,C)>A

LDAX D 00011010 ı A (@D, E)>A

Dabei ist zu beachten, daß in den Registern B bzw. D jeweils die linke Hälfte und in C bzw.

E die rechte Hälfte der Adresse steht.

Exp. 14 Die Anwendung dieser Befehlsgruppe soll Exp. 14 anzeigen.

6.3.2 Doppelgenauigkeits-Datentransferbefehle

Diese Befehlsgruppeist für den Betrieb des MP 8080 sehr nützlich, da Datenübertragungen

von 2-Byte-Wörtern (z.B. Adressen) mit nur einem Befehl durchgeführt werden können

(In Experiment 14 waren 2 Befehle nötig, um ein Registerpaar zu laden).

Die ersten 4 Befehle haben das folgende Format:

1. Byte 0/0|r|r|0|0/0|1
nten

OP- Regi- OP-Code

Code ster-

paar

2. Byte Daten 2 CE sfd

3. Byte Daten BD od

Der Codefür die Registerpaare wird in Tabelle 6.3.2.1 gezeigt.

rr Bezeichnung

O0 Registerpaar BC B

01 Registerpaar DE D

10 Registerpaar HL H

Tab. 6.3.2.1 11 Stack-Pointer sp
Registerpaarcode

RER

Das 2. Byte wird dabei jeweils in die Speicher C, E und L bzw. in die rechte Hälfte des Ü
4.10

e
e

aan

Stack-Pointers gebracht. Das 3. Byte geht in die Register B, D, H bzw. in die linke _

Hälfte des Stack-Pointers.

Beispiele:

mnemonische Maschinencode Hex.-Code Kommentar

Schreibweise

LXI B 00000001 01 lade Registerpaar B immediate

AA (C) = AA ı willkürlich

BB (B) = BB | gewählte Daten

LXI D 00010001 11 lade Registerpaar D immediate

77 (E) = 7 7 , willkürlich

88 (DJ) =88 J gewählte Daten

LXIH 00100001 21 lade Registerpaar H immediate

EE (L)=FF willkürlich

FF (HJ) =EE gewählte Daten

LXI SP 00110001 31 lade Stack-Pointer immediate

07
09 | (SPA =0907

Die nächsten beiden 3-Byte-Befehle werden zum direkten Laden bzw. Abspeichern des

Registerpaares H verwendet. Mit dem Befehl SHLD (Store HL Direct) wird der Inhalt des

L-Registers in der durch das zweite und dritte Byte spezifizierten Adresse abgelegt, während

der Inhalt des H-Registers in die nächsthöhere Adresse kommt.

Beispiel:

(H=12 |

(L\)=34 angenommener Registerinhalt

SHLDO47O0 Befehl

(0470)=34

(0471)=12 Speicherinhalte nach Ausführung des Befehles

Auch :ar Befehl LHLD (Load HL Direct) soll durch ein Beispiel erläutert werden.

Beisp: - :
'0450)=AB | angenommeneSpeicherinhalte
(0C451)=CD

IHLDO450 Befehl

H) = . .(IN)=CD Registerinhalte nach Ausführung des Befehles(\)=AB

Der letzte Befehl dieser Gruppe ist wieder ein 1-Byte-Befehl, der den Austausch der Inhalte

der Registerpaare H und D auslöst:

mremonische Schreibweise Maschinencode Hex.-Code Kommentar

XCHG 11101011 EB (H)>D

(DJ)>H
(L)>E
(E)>L

{imExperiment 15 sollen auch diese Befehle zum Einsatz gebracht werden.

4.11

Exp. 15

Exp. 16 |

6.3.3 Ein- und Ausgabebefehle

Damit das MP-System Daten ein- und auslesen kann, werden der IN- und der OUT-Befehl

benötigt. Bei beiden Befehlen wird der Akkumulator grundsätzlich als Datenziel oder Daten-

quelle benutzt. Nachfolgend ist das Format des IN-Befehles dargestellt:

1. Byte 111)0/1)1!0|111

IN-Befehl

2. Byte Adresse des Eingabegerätes

Im zweiten Byte steht eine Adresse, die angibt, welches Eingabegerät Daten eingeben muß.

Mit einem Takt wird dieses zweite Byte auf den Adreßbus gelegt. Das angesprochene

Eingabegerät erkennt diesen Code undliefert jetzt Daten auf den Datenbus, die dann vom

Akkumulator übernommenwerden.

Bedingt durch die 8 bit können 2561. Eingabegeräte mit dem MP 8080 verbunden werden.

Welche Adresse welchem Gerät zugeordnet ist, bleibt dem Systementwickler überlassen.

Der OUT-Befehl hat ein ähnliches Format:

1. Byte 1/1/0)1/0/0|1|1

OUT-Befehl

2. Byte Adresse des Ausgabegerätes

Bei der Ausführung dieses Befehles gibt der MP 8080 Daten auf den Datenbus und die

Adresse des Ausgabegerätes auf den Adreßbus. Das angesprochene Ausgabegerät übernimmt

die Daten vom Datenbus.

Beide Befehle haben keinen Einfluß auf die Flags.

Auch die Anzeigen und Schalter des MP-Experimenters sind in diesem Sinne Ein- und Aus-

gabegeräte. Bei der Auslegung des Systems wurden folgende Adressen festgelegt:

Peripheriegerät mnemonische Abkürzung Adresse

A-Schalter ASHALT OÖ 216

B-Schalter BSHALT O 1ıs | für IN

C- und Systemschalter CSHALT O 4ıs

rechte Anzeige (R; bis Ao) RLAMPE O 11 | für OUt
linke Anzeige (Zbis Lo) LLAMPE O 2ıs

Wenn man diese Zuordnung kennt, kann man über ein einfaches Programm den gesamten

ROM- und RAM-Bereich zur Anzeige bringen. Mit dem beschriebenen Monitorprogramm

läßt sich ja nur der RAM-Bereich kontrollieren. |
Nachfolgendes Programm kannhierfür verwendet werden:

relative Adresse Inhalt Befehl Kommentar

00 DB IN ASHALT (A-Schalter)>Akku

01 02

02 67 MOVH,A (Akku)—=H-Register

03 DB IN BSHALT (B-Schalter!Akku

04 O1

05 6F MOVL A (Akku)>L-Register

06 7E MOV A,M (@ HL)>Akku

07 D 3 OUT RLAMPE (Akku)=rechte Anzeige A; bis Ro

08 01

09 C3 JMPO0400 Sprung zur absoluten Adresse 0400

& relative Adresse O OÖ

OA 00

OB 04

4.12

en,

\.
Aeypene

en,
. E

Kay

Die Funktion dieses Programmsist leicht überschaubar. Die Daten der A- und 3-Schalter

werden über 2 IN-Befehle in den Akku geladen. Durch die MOV-Befehle MOV H, A und MOVL,

A gelangen diese Daten in das Registerpaar H (Register H und L). Der Befehl MOV A, M

bewirkt, daß die Daten in den Akku geladen werden, deren Adresse im Registerpaar H steht.

Der Befehl OUT RLAMPEbringt dann den Akku-Inhalt in der rechten Lampenreihe A; bis Ro

zur Anzeige. In einem späteren Versuch werden wir auf dieses Programm noch zurückkommen.

6.3.4 Einzelgenauigkeitsarithmetikbefehle

In dieser Gruppe gibt es 4 Additionsbefehle, 4 Subtraktionsbefehle und 2 Vergleichsbefehle.

Alle Befehle dieser Gruppe beeinflussen die Flags entsprechend dem Ergebnis. Die Vergleichs-

befehle sind den Subtraktionsbefehlen ähnlich und beeinflussen nur die Flags. Das Ergebnis

der Subtraktion wird nicht in den Akku zurückgeschrieben. Die einzelnen Befehle werden

nachfolgend beschrieben.

Der ADD-Befehl addiert den Inhalt des SRC-Registers zum Akku-Inhalt. Er hat folgendes

Format:

1/!0!0/I0| 0| s|is|s ADD

Mit ss s kanneines der in Tab. 6.3.1.1 genannten Register spezifiziert werden. So bedeutet

z.B. der Maschinencode

10000011

daß der Inhalt des E-Registers in den Akku addiert wird. Die mnemonische Schreibweise

lautet daher ADD E.

Der Befehl ADD M mit dem Maschinencode

10000110

addiert den Inhalt der Speicheradresse, die im Registerpaar HL steht, in den Akku.

Der Befehl ADD A mit dem Maschinencode

10000111

addiert den Akku-Inhalt mit sich selbst, d.h., der Akku-Inhalt wird verdoppelt.

Der Befehl ADI (Add Immediate) addiert den Inhalt des 2. Bytes zum Akku-Inhalt. Er hat

das Format:

ADI

 DATEN

Die bisher besprochenen Additionsbefehle sind mehr oder weniger identisch mit den Addi-

tionsbefehlen des hypothetischen Rechners. Dagegen sind die beiden nachfolgenden Addi-

tionsbefehle neu.

Der Befehl ADC (Add with Carry) bewirkt, daß zusätzlich zum ADD-Befehl noch derInhalt

des C-Flags in den Akku addiert wird. Er hat das Format:

1/!0|0|j0| 1|s|s!s ADC

Würde z.B. eine Addition mit dem ADD-Befehl im Akku ein Ergebnis von 6 8 erzeugen, so

würde das Ergebnis mit dem Befehl ADC 6 9 betragen, wenn das C-Flag 1 ist. Im anderen

Falle, also bei C = O, würde auch dieses Ergebnis 6 8 lauten. Dieser Befehl wird für Arithmetik

mit mehrfacher Genauigkeit benutzt.

4.13

| Exp. 17

| Exp. 18 |

Der Befehl ACI (Add with Carry Immediate) ist ähnlich. Er addiert den inhalt des zweiten

Bytes und denInhalt des C-Flags in den Akku. Er hat das Format:

1/1/)0)0/1/1[/1|0

ACI

DATEN

Entsprechend den 4 Additionsbefehlen gibt es auch 4 Subtraktionsbefehle. Der SUB-Befehl

subtrahiert den Inhalt des SRC-Registers vom Inhalt des Akkus und schreibt das Ergebnis

in den Akku zurück. Er hat das Format:

110!0|1|0|s|s|s SUB

So subtrahiert z.B. der Befehl SUB L den Inhalt des L-Registers vom Inhalt des Akkus.

Ein Sonderfall ist der Befehl SUB A. Dieser Befehl subtrahiert den Akku-Inhalt vom Akku-

Inhalt, d.h., er löscht den Akku.

Der Befehl SUI (Subtrakt Immediate) subtrahiert den Inhalt des zweiten Bytes vom Inhalt

des Akkus. Er hat folgendes Format:

1/1/)0/1j0)1|1)0

Sul

 DATEN

Der Befehl SBB (Subtract with Borrow = Subtrahiere mit Borge bzw. Übertrag) subtrahiert

den Inhalt des SRC-Registers und denInhalt des C-Flags vom Inhalt des Akkumulators. Er hat

das Format: |

1/0/10|1|1|s|s|s SBB

Der Befehl SBI (Subtract with Borrow Immediate) subtrahiert den Inhalt des zweiten Bytes

sowie den Inhalt des C-Flags vom Inhalt des Akkumulators. Er hat das Format:

1/1|0)1|1/)1/1)0

SBI

DATEN

Die Befehle SBB und SBil werdenin ähnlicher Art wie die ADC- und ACI-Befehle für Arithmetik

mit mehrfacher Genauigkeit benutzt.

Der CMP-Befehl (Compare oder Vergleich) subtrahiert wie der SUB-Befehl den Inhalt des

SRC-Registers vom Inhalt des Akkus. Er schreibt aber das Ergebnis nicht in den Akku zurück,

d.h., der Inhalt des Akkusbleibt erhalten. Die Flags werden wie bei den Subtraktionsbefehlen

beeinflußt. Damit ist es möglich, 2 Zahlenin ihrer Größe zu vergleichen, ohne diese dabei zu

verändern. Der CMP-Befehl hat das Format:

110|I1ı1|1|s|s|s CMP

Der Befehl CPI (Compare Immediate) subtrahiert den Inhalt des zweiten Bytes vom Inhalt

des Akkus undsetzt die Flags entsprechend. Auch hier wird der Inhalt des Akkus nicht verändert.

Sein Formatist:

CPI

 DATEN

4.14

Be

Die Funktion läßt sich anhand von Experiment 19 erkennen.

6.3.5 Doppelgenauigkeitsarithmetikbefehle

Mit den Befehlen DAD B und DAD D (Double precision Add) könnendie Inhalte der Register-

paare BC bzw. DE in das Registerpaar HL addiert werden. Dies entspricht einer Addition mit

16 bit Wortlänge. Beide Befehle beeinflussen das C-Flag. Sie haben das Format:

00/0/0/j1/0/0/1 DADB

0/0,0/1/1/0/0|1 DADD

6.3.6 Dezimalarithmetik

In Lehrheft 1, Abschnitt 2.7 wurde gezeigt, wie Dezimalzahlen in BCD-Zahlen umgewandelt

werden können. Dies wirdbeim MP 8080 durch den Befehl DAA (Decimal Adjust Accumulator)

erreicht. Er hat das Format: |

0/0/1/10)0/1|1/1 DAA

Grundsätzlich kann der MP 8080 arithmetische Operationen nur in Binärarithmetik durch-

führen. Erfolgt die Eingabe zweier Operanden im BCD-Code, so kann beispielsweise bei einer

Addition nach folgenden Fällen unterschieden werden:

1. Die Summeder BCD-Zahlenist in jeder Stelle kleiner als 10ıo.

2. Die Summeder BCD-Zahlenist in einer oderin beiden Stellen größer als 9.

Im ersten Falle kann das Binärergebnis als Dezimalergebnis im BCD-Code gelesen werden.

Beispiel:

Dezimal BCD-Eingabe

3240 & 00110010

2710 Da +00100111

0100 110- Übertrag
5910 nn 00101 1001 binäres Ergebnis

Das tinäre Ergebnis entspricht bei BCD-Betrachtung dem richtigen Ergebnis. Würden bei

diesem Beispiel die Eingaben und das Ergebnis binär betrachtet, ergäbe sich folgende Addition:

00110010 = 50

+00100111 3910

0100110-

01011001 = 89

Im zweiten Falle kann das Binärergebnis erst nach einer Korrekturaddition mit O 1 1 O als

BCD-Ergebnis gelesen werden.

Beispiele:

a) Dezimal BCD-Eingabe

3710 u 00110111

4410 din +01000100

0000 100- Übertrag
0111 1011 _binäres Ergebnis
L uf

7 keine

BCD-Zahl

4.15

| Exp. 19

—

| Exp. 20

Damit dieses Ergebnis als richtige BCD-Zahl erscheint, muß die Korrekturaddition mit

O0 1 10 erfolgen: --
01111011 |

+0000 0110 Korrekturzahl

1111 .110- Übertrag
10000001

810 110

Damit liegt das richtige BCD-Ergebnisvor.

b) Dezimal BCD-Eingabe

6910 di 0110 11001

7810 ze +0111 1000

1111 000- Übertrag
11100001
N BA

keine BCD- 110 —> falsch

Zahl

In diesem Beispielist zwar die rechte Ergebnishälfte eine BCD-Zahl, jedoch vom Ergebnis her Pa

falsch. Dies wird durch einen Übertrag von der 4. zur 5. Stelle angezeigt (H-Flag gleich 1). ur

In diesem Falle muß also in beiden Ergebnishälften die Korrekturzahl O 1 1 O addiert werden:

11100001

+0110 0110 Korrekturzahl

1100 000- Übertrag

101000111

4ıo 7ıo

Der entstandene Übertrag hat die Wertigkeit 10? = 10010, so daß als Ergebnis die richtige

Zahl 147,0 entsteht.

c) Dezimal BCD-Eingabe

9810 a 1001 1000

9810 di +1001 1000

0011 000- Übertrag
1100110000

de Zu er

310” O0 ————

>

falsch Kr
|

in diesem Falle bedingen C- und H-Flag, daß beide Ergebnishälften korrigiert werden.

1100110000
+0110 0110 Korrekturzahl

1100 000- Übertrag
111001 0110

910 610

Das richtige Ergebnis lautet durch diese Korrektur 19610.

Anhand der Beispiele zeigt sich, daß eine Korrektur immer dann erforderlich ist, wenn

— eine Ergebnishälfte größer als 9ıo0 ist,

— das H-Flag gleich 1 ist oder/und wenn

—- das C-Flag gleich 1 ist.

Der DAA-Befehl bewirkt entsprechend den vorgenanntenKriterien, daß eine Korrektur auto- rn

matisch durchgeführt wird. Dadurch ist es möglich, im zugelassenen BCD-Bereich BCD- Sr?

4.16

RLC-Befehl (Rotate Left into Carry)

Die Wirkung dieses Befehles läßt sich am besten anhandeiner Skizze erläutern:

C-Flag Akkumulator

Das links stehende bit des Akkumulators wird in das C-Flag und gleichzeitig in das rechte

bit des Akkumulators geschoben. Dieser Befehl hat folgendes Format:

 Y

 Y

0/0/0/)0/0/1|111 RLC

RAL-Befehl (Rotate Accu Left)

Das Funktionsprinzip dieses Befehlesist:

—tH
Zn.
»

Hier wird das links stehende bit ebenfalls in das C-Flag geschoben. In das rechte bit des

Akkumulators wird jedoch das C-Flag geschoben, so daß hier insgesamt 9 bit verschoben

werden. Das Format dieses Befehlesist:

0/0/0/1/0/)1,1|1 RAL

RRC-Befehl (Rotate Right into Carry)

Bei diesem Befehl erfolgt die Verschiebung nach folgendem Schema:

+ Yy

Die Verschiebung ist bei diesem Befehl entgegengesetzt zum RLC-Befehl. Sein Formatist:

010!0/)0/)1,1/1|1 RRC

RAR-Befehl (Rotate Accu Right)

Das Funktionsprinzip zeigt, daß dieser Befehl das Gegenstück zum RAL-Befehlist.

a |
Y

Format:

0/0/|0/1|1/1,1/1 RAR

DAD H-Befehl (Double precision Add)

Dieser Befehl kann mit DAD B und DAD D im Abschnitt 6.3.5 verglichen werden. Er addiert

den Inhalt des Registerpaares HL in das Registerpaar HL, d.h., er verdoppelt den Inhalt von

HL. Eine Verdoppelung einer Binärzahl entspricht jedoch aucheiner Verschiebung dieser Zahl

um eine Stelle nach links. Aus diesem Grunde haben wir diesen Befehl in die Gruppe Rotter-

und Verschiebebefehle eingeordnet.

Dieser Befehl hat keine Rückkopplung zu einem Ring.

Sein Funktionsprinzip ist:

4.18

x
Br

C-Flag H-Register L-Register

Sein Formatist:

A O

0/0/j1/1011/0/0|1 DAD H

6.3.9 Increment- und Decrement-Befehle

Mit den Befehlen dieser Gruppe ist es möglich, die vorhandenen Register oder die Register-

paare BC, DE und HL zu in- und decrementieren.

INR-Befehl (Increment Register)

Dieser Befehl incrementiert das durch d d d spezifizierte Register. Bei dd d = 1 10 wird

der Speicherplatz incrementiert, dessen Adresse im Registerpaar HL steht. Das Format dieses

Befehlesıst:

0/0|d|d|d/|1,0|/0 INR

DCR-Befehl {Decrement Register)

Mit diesem Befehl können wie mit INR alle Register oder Speicherplätze decrementiert

werden. Format:

00O|d|ıd/d/1/0|1 DCR

Mit dem INR- und dem DCR-Befehl werden alle Flags außer dem C-Flag beeinflußt.

Die weiteren Befehle beziehensich jeweils auf Registerpaare und beeinflussen die Flags nicht.

INX-Befehl (Increment Register Pair)

Mit diesem Befehi können die eingangs erwähnten Registerpaare incrementiert werden.

Format:

0/|0O|r!r| 07 0/11 INX

Es ergeben sich folgende Möglichkeiten:

rr=00 INX B Registerpaar BC wird incrementiert

rr=01 INX D Registerpaar DE wird incrementiert

rr=10 INX H Registerpaar HL wird incrementiert

rr=11 INX SP der Stack-Pointer wird incrementiert

Auf den Befehl INX SP werden wir bei der Behandlung der Stack-Befehle noch zurückkommen.

DCX-Befehl (Decrement Register Pair)

Dieser Befehl ist das Gegenstück zum INX-Befehl. Sein Formatist:

0O|O|r!|r} 1/0171 DCX

Für rr gilt die gleiche Zuordnung wie beim INX-Befehl.

Beide Befehle werden häufig zur Listenverarbeitung benutzt.

Exp. 23 |

ee}

6.3.10 Sprungbefehle

Der MP 8080 hat insgesamt 10 unterschiedliche Sprungbefehle. Bis auf eine Ausnahme

handelt es sich um 3-Byte-Befehle, da der MP 8080 ja mit 16-bit-Adressen arbeitet. Alle

Sprungbefehle beeinflussen die Flags nicht. Jedoch ist es so, daß 8 Befehle durch den

Zustand der Flags gesteuert werden.

JMP-Befehl

Diesen Befehl haben wir in den vorhergehenden Programmen schon mehrfach benutzt. Es

handelt sich um einen unbedingten Sprungbefehl mit folgendem Format:

1/1/0/0/0/0'1/|1

rechte Hälfte der Adresse JMP

 linke Hälfte der Adresse

So bedeutet z.B. der Sprungbefehl JMP O 4 3 O0, daß der Befehlszähler auf die absolute

Adresse O0 4 3 O bzw. auf die relative Adresse 3 O springt.

Die meisten der 8 Sprungbefehle werden durch bestimmte Zustände der Flags initialisiert.

JC-Befehl (Jumpif Carry)

Dieser Befehl führt dann einen Sprung aus, wenn das C-Flag gleich 1 ist.

Format:

rechte Hälfte der Adresse JC
 linke Hälfte der Adresse

JNC-Befehl (Jump if No Carry)

Dieser Befehl löst dann einen Sprung aus, wenn das C-Flag nicht 1 sondern ist. Er hat

das Format:

1/110!}1/0/01|1|0

el

rechte Hälfte der Adresse JNC .

linke Hälfte der Adresse

Die weiteren 6 bedingten Sprungbefehle haben alle das gleiche Format (3-Byte-Befehle).

Wir werden deshalb nur noch die verschiedenen Codes angeben.

JZ-Befehl (Jump if Zero)

Ein Sprung wird ausgelöst, wenn das Z-Flag gleich 1 ist.

1/11/0)0/)1/0|1]|0 JZ

JNZ-Befehl (Jump if Not Zero)

Ein Sprung wird ausgelöst, wenn das Z-Flag gleich ist.

-
1/1/0/0/0)0,1|0 JNZ

4.20

JM-Befehl (Jump if Minus)

Ein Sprung wird ausgelöst, wenn das N-Flag gleich 1 ist.

1/1/1/1)1/0/1|0 JM

JP-Befehl (Jump if Plus)

Ein Sprung wird ausgelöst, wenn das N-Flag gleich O ist.

1/1)1/1)0/0/1|0 JP

JPE-Befehl (Jumpif Parity Even)

Ein Sprung wird ausgelöst, wenn das P-Flag gleich 1 ist.

1/11/1/0/1/0/1|0 JPE

JPO-Befehl (Jumpif Parity Odd)

Ein Sprung wird ausgelöst, wenn das P-Flag gleich O ist.

1/1/1/0/0/0/|1|0 JPO

Alle bisher arıgesprochenen Sprungbefehle benutzen direkte Adressierung. Diese Befehle

sind daher für Computed-JUMPnicht geeignet. Hierfür eignet sich der PCHL-Befehl (Program

Counter from Hand L). Es handelt sich um einen 1-Byte-Befehl mit dem Format:

1/1/)1/0)1/0/0|1 PCHL

Dieser Befehl lädt den Programmzähler mit dem Inhalt des Registerpaares HL, d.h., es

erfolgt ein Sprung zu der Adresse,die in HL steht.

6.3.11 Unterprogrammanrufe und Rücksprungbefehle

Beim MP 8089 werden Unterprogrammrücksprungadressen wie beim hypothetischen Rechner

in einem Push-Down-Stack aufbewahrt. Aus diesem Grunde enthält der MP 8080 einen

Stack-Pointer SP, der automatisch immer in Auto-Increment- bzw. Auto-Decrement-Mode

betrieben wird. Der Stack-Pointer SP muß am Anfang zuerst initialisiert werden, bevor

Unterprogramme angerufen werden können. Da Adressen immer 16 bit benötigen, müssen

sie in 2 Hälften auf dem Stack abgespeichert werden. Der Stack arbeitet also immer mit

16-bit-Wörtern, so daß der Stack-Pointer SP immer in 2 Schritten incrementiert bzw.

decrementiert werden muß.

Wie beim hypothetischen Rechnererfolgt der Unterprogrammanruf mit CALL-Befehien. Alle

CALL-Befehle sind grundsätzlich 3-Byte-Befehle, da ja 2 Bytes für die Adresse benötigt

werden. Der unbedingte Unterprogrammanruf geschieht mit dem CALL-Befehl. Er hat

das Format:

1. Byte 11110/0/1/1[/0|1

2. Byte rechte Hälfte der Adresse CALL

3. Byte linke Hälfte der Adresse

Bei diesem Befehl wird zunächst die Rücksprungadresse im Stack abgespeichert, und dann

4.21

erfolgt ein Sprung zu der Adresse, die im 2. und 3. Byte definiert ist. Der Stack-Pointer

wird dabei um 2 erniedrigt.

Entsprechend den bedingten Sprungbefehlen gibt es auch bedingte CALL-Befehle. Diese

habenalle das gleiche Format wie der CALL-Befehl.

CC-Befehl(Call if Carry)

Es erfolgt dann ein Unterprogrammanruf, wenn das Carry-Flag gleich 1 ist. Maschinencode:

1101 1100

CNC-Befehl(Call if No Carry)

Es erfolgt dann ein Unterprogrammanruf, wenn das Carry-Flag gleich O ist. Maschinencode:

11010100

CZ-Befehl(Call if Zero)

Es erfolgt dann ein Unterprogrammanruf, wenn das Zero-Flag gleich 1 ist. Maschinencode:

1100 1100

CNZ-Befehl (Call if Not Zero)

Es erfolgt dann ein Unterprogrammanruf, wenn das Zero-Flag gleich O ist. Maschinencode:

11000100

CM-Befehl (Call if Minus)

Es erfolgt dann ein Unterprogrammanruf, wenn das Negativ-Flag gleich 1 ist. Maschinencode:

1111 1100

CP-Befehl (Call if Plus)

Es erfolgt dann ein Unterprogrammanruf, wenn das Negativ-Flag gleich O ist. Maschinencode:

11110100

CPE-Befehl(Call if Parity Even)

Es erfolgt dann ein Unterprogrammanruf, wenndas Paritäts-Flag gleich 1 ist. Maschinencode:

1110 1100

CPO-Befehl(Call if Parity Odd)

Es erfolgt dann ein Unterprogrammanruf, wenn das Paritäts-Flag gleich O ist. Maschinencode:

11100100

Alle CALL-Befehle beeinflussen die Flags nicht.

Der Rücksprung von einem Unterprogramm erfolgt mit dem sogenannten RET-Befeh! (RET

von Return = zurück). Es handelt sich dabei um eine besondere Art eines Sprungbefehles, da

die normalen Sprungbefehle den Stack-Pointer nicht als Autoindexregister verwenden können.

Er hat das Format:

1/1/0/0|1/0/011 RET

Bei diesem Befehl wird die zuletzt abgespeicherte Rücksprungadresse vom Stack in den

Programmzähler PC geladen. Der Stack-Pointer SP wird dabei um 2 erhöht.

Außer dem unbedingten Rücksprungbefehl RET hat der MP 8080 auch noch 8 bedingte

Rücksprungbefehle. Diese sind

RC (Return if Carry); Code: 1101 1000

4.22

%

re

RNC (Return if No Carry); Code: 11010000

RZ (Returnif Zero); Code: 1100 1000

RNZ (Return if Not Zero); Code: 1100 0000

RM (Return if Minus); Code: 1111 1000

RP (Returnif Plus); Code: 11110000

RPE (Return if Parity Even); Code: 1110 1000

RPO (Return if Parity Odd); Code: 1110 0000

Auch die Return-Befehle beeinflussen die Flags nicht.

6.3.12 Interrupts

Unter Interrupt versteht man eine Programmunterbrechung, die von einem peripheren Gerät

ausgelöst wird bzw. ausgelöst werden kann. Im Gegensatz zu einem Unterprogrammanruf mit

einem CALL-Befehl wird bei einem Interrupt unter noch näherzu definierenden Bedingungen

das Hauptprogramm durch ein externes Steuersignal unterbrochen und dannein bestimmtes

Interruptprogramm ausgeführt. Anschließend wird das Hauptprogramm fortgesetzt. Außerdem

kann die CPU an jeder beliebigen Stelle durch ein Interruptsignal bei der Ausführung eines

Programms unterbrochen werden, d.h., die externen Steuersignale können völlig asynchron

zum CPU-Takt anfallen. Die CPU prüft vor jedem Befehl, ob eine Interruptanforderung vorliegt.

Ist dies der Fall, so wird die Interruptbehandlung durchgeführt. Liegt keine Interrupt-

anforderung vor, so wird der Befehl vollständig abgearbeitet, so daß ein Interrupt frühestens

vor dem nächsten Befehl erfolgen kann..

Beim MP 8080erfolgt eine Interruptanforderung durch ein 1-Signal am INT-Eingang (Interrupt

request). Die CPU akzeptiert einen Interrupt nur dann, wenn dasInterruptflipflop in der CPU

auf 1 gesetzt ist, d.h. der INTE-Ausgang (INTE = Interrupt Enable = Interruptfreigabe) gleich

1 ist. Damit der Rechner bei der Bearbeitung eines Programmseinen Interrupt aktzeptieren

kann, muß das INTE-Flipflop durch einen EI-Befehl (Enable Interrupt) gesetzt werden. Dieser

Befehl hat das Format:

1/1/|1/)1/1/0/171 EI

Soll dagegen die Bearbeitung wichtiger Programmteile nicht durch Interrupts unterbrochen

werden, so kann dies durch den DI-Befehl (Disable Interrupt) mit Format

111)1/1/0/0/1|1 DI

verhindert werden.

Hierbei ist noch zu berücksichtigen, daß bei Betätigung von RESET das INTE-Flipflop auf O

gesetzt wird, so daß danachkein Interrupt akzeptiert wird.

In Abschnitt 6.1 wurde auch noch ein INTA-Signal (Interrupt Acknowledge) angesprochen.

Dieses Steuersignal zeigt an, ob der Rechner eine Programmunterbrechung akzeptiert hat.

Es quittiert also einen Interrupt und wird dazu benutzt, der Schaltung, von derdie Interrupt-

anforderung kam, die Anschaltung an das Bussystem zu ermöglichen.

Erfolgt nun von einem Peripheriegerät bei INTE = 1 eine Interruptanforderung, so ergibt sich

folgenderprinzipieller Ablauf:

- Der gerade ausgeführte Befehl wird beendet

- Das INTE-Flipflop wird zurückgesetzt (INTE = O)

— Das unterbrechendePeripheriegerät erhält über INTA eine Quittung für den Interruptzustand

des Rechners und liefert einen entsprechendenBefehl, der das vorgeseheneInterruptprogramm

anwähit. Dieses Interruptprogramm kann grundsätzlich irgendwo im Speicher stehen.

Bei dem hier beschriebenen Ablauf wird vor der Ausführung dieses Befehles der Programm-

zähler PC nicht erhöht. Soll dieser Befehl allerdings den Programmzähler mit einer bestimmten

Speicheradresse laden (1. Adresse des entsprechenden Interruptprogramms), so ist hierfür

ein 3-Byte-Befehl erforderlich. Ein solcher Befehl ist natürlich von dem Peripheriegerät nur

4.23

| Exp. 26

umständlich zu erzeugen, so daß normalerweise von der Gerätesteuerung ein RST-Befehl

(Restart) geliefert wird. Dieser Befehl ist ein 1-Byte-Befehl, der sich für Interruptbetrieb

besonders gut eignet. Den Befehl RST 2 haben wir bisher schon sehr häufig für das Monitor-

programm benutzt. An einem Programmbeispiel soll der Ablauf eines Interrupts noch näher

erläutert werden (Tab. 6.3.12.1).

Adresse Inhalt | Befehl Kommentar

0420 DB IN BSHALT

0421 01

0422 A7 ANAA Interruptanforderung von Gerät x

> 0423 07 RLC

Gerät x sendet RST-Befehl (z.B. RST O)

Der RST-Befehl bewirkt, daß der Inhalt des

Programmzählers (0 4 2 3) im Stack abge-

speichert wird. Damit ist die Rücksprung-

adressefixiert

Bei RST O wird dann der Programmzähler auf

Adresse 0 0 O Dgesetzt

0000 xx 1. Befehl
0001 xx 2. Befehl

Für den Fall, daß beim RST O-Befehl die 8 zur Vefügung stehenden

Bytes nicht zur Abarbeitung desInterrupts ausreichen, kann über

CALL- oder JMP-Befehle ein anderer Speicherbereich angesprochen

werden

0007 c9 “7 Rücksprung zum Hauptprogramm

Der RET-Befehl bewirkt, daß der Programm-

zähler mit der Rücksprungadresse (0 4 2 3)

geladen wird

0008 Zieladresse

für den Be-

fehl RST 1
Tab. 6.3.12.1

Ablauf eines Interrupts anhand eines Programmbeispieles

Bei diesem Beispiel trifft während des Befehles ANA A von einem Peripheriegerät x eine

Interruptanforderung ein. Dieser Befehl wird auf jeden Fall noch ausgeführt, und PC springt

auf die nächste Befehlsadresse. Unter der Voraussetzung, daß INTE = 1 ist, wird der

Interrupt akzeptiert. Das Gerät x sendet einen RST-Befehl (hier RST O), der einmal den Inhalt

von PC im Stack abspeichert und zum anderen einen Sprung zur Programmadresse 0000

auslöst. Wie nachfolgend noch nähererläutert wird, gibt es insgesamt 8 verschiedene RST-

Befehle, die jeweils 8 verschiedene Zieladressen ansprechen. Der Befehl RST O hat die

Zieladresse Oı1o, der Befehl RST 1 die Adresse 810, RST 2 Adresse 16:10 usw. RST 7 die

Adresse 5610. Bis auf den Befehl RST 7 stehen somit pro RST-Befehl 8 Byte für ein Programm

zur Verfügung. Reicht diese Speicherkapazität für eine Interruptbehandlung nicht aus, können

über JMP- oder CALL-Befehle auch andere Speicherbereiche angewählt werden.

Nachdem das entsprechende Interruptprogramm abgeschlossenist, erfolgt mit einem RET-

Befehl der Rücksprung zum Hauptprogramm.

Nachdem ein peripheres Gerät eine Interruptanforderung gestellt hat und diese akzeptiert

wurde, wird der Rechnerselbst für die Abarbeitung des entsprechenden Interruptprogramms

benutzt. Da sich hierbei die aus dem Hauptprogramm stammenden Registerinhalte und

4.24

Flag-Zustände ändern können, müssen diese durch entsprechende Befehle im Stack abge-

speichert werden. Diese Befehle werden im nächsten Abschnitt eingehend behandelt. Ebenso

müssen zum SchlußeinesInterruptprogrammsdie im Stack abgespeicherten Daten wiederin

die CPU gebracht werden, damit der Rechner mit dem abschließenden RET-Befehl das Haupt-

programm fortsetzen kann. Damit hat ein Interruptprogramm normalerweise die in Tab.

6.3.12.2 gezeigte Form.

Adresse Inhalt Befehl Kommentar

xxXxX F5 PUSH PSW Flags, Akku- und Registerinhalt im Stack

xxXXxXXxX C5 PUSH B abspeichern

xXXxX D5 PUSH D

xxXxX E5 PUSH H

eigentliches Interruptprogramm

xxXxX Ei POP H

xxXxX D 1 POP D Ausgangszustand auch von Flags

xxXxX C 1 POPB Akku- und Registerinhalt wieder herstellen

xxXxXX F1 POP PSW

xxxX C9 RET Rücksprung zum Hauptprogramm

Tab. 6.3.12.2

Interruptprogramm

Wie bereits erwähnt, wird bei akzeptierten Interrupts das INTE-Flipflop auf O zurückgesetzt.

Damit ist zunächst kein weiterer Interrupt möglich. Ein neuerInterrupt kann erst wieder nach

einem EI-Befehl zugelassen werden. Wenndieser Befehl zu Beginn deseigentlichen Interrupt-

programms (im Beispiel nach dem PUSH H-Befehl) angeordnet ist, kann während des

laufenden Interruptprogramms ein neuer Interrupt erfolgen. Wird dagegen dieser Befehl

am EndedesInterruptprogramms(im Beispiel vor dem RET-Befehl) angeordnet, so kann das

laufende Interruptprogramm nicht unterbrochen werden. Im nachfolgenden Hauptprogramm

ist dann jedoch wiederein Interrupt möglich.

Eine Besonderheit beim MP 8080 ist, daß bei einem Peripheriegerät, das nicht in der Lageist,

ein entsprechendes RST-Signal zu erzeugen, aber ein INT-Signal gesendet hat, das akzeptiert

wurde, der Datenbus auf 1 1 1 1 1 1 1 1 geschaltet wird. Dieser Code entspricht dem

RST 7-Befehl, der somit in der vorher beschriebenen Art die Adresse 561. anwählt. Damitıst

es möglich, ohne zusätzliche Hardware einfachen Interruptbetrieb zuzulassen.

Nun noch einige Worte zu den 8 RST-Befehlen. Es handelt sich um 1-Byte-Befehle mit dem

Format:

1!11jajaja|1/1)1 RST

Mit a a a wird angegeben, welcher der RST-Befehle gemeint ist. So handelt es sich z.B bei

aaa=000 um den RST O-Befehl und beiaa a = 1 1 1 um den RST 7-Befehl.

Folgende Adressen werdendurch die einzelnen RST-Befehle angewählt

RST O-Befehl: Adresse O1o 000 0ıs

RST 1-Befehl: Adresse 8ıo=000 8ıe

RST 2-Befehl: Adresse 1610 = 00 1 Oıs

RST 3-Befehl: Adresse 24,0 & 001 8ıe

RST 4-Befehl: Adresse 32,0 =0 0 2 Oje

RST 5-Befehl: Adresse 4010 = 0 O0 2 8ıe

RST 6-Befehl: Adresse 48,0 =&0 03 Oıe

RST 7-Befehl: Adresse 5610 = 0 03 8ıe

4.25

Exp. 27

Damit ist es möglich, 8 verschiedene Interrupts ohne zusätzliche Hardware durchzuführen.

Bei den Befehlen RST O bis RST 6 stehen jeweils nur 8 Byte für ein Interruptprogramm

unmittelbar zur Verfügung. Der RST 7-Befehl ermöglicht aber darüber hinaus auch längere

Interruptprogramme. Wesentlich ist noch, daß alle RST-Befehle den Inhalt des Programm-

zählers PC im Stack abspeichern und somit in Verbindung mit dem RET-Befehl nach einer

Programmunterbrechung die Rücksprungadresse automatisch wieder in den Programmzähler

geladen wird.

Beim ITT MP-Experimenter sind für das Betriebsprogramm die meisten RST-Befehle bereits

benutzt. Für Anwenderprogrammestehen noch die Befehle RST 1 und RST 7 zur Verfügung.

Ein RST 1-Befehl bewirkt einen Sprung zur ROM-Adresse 0 O O 8. Hier ist ein unbedingter

Sprungbefehl (JMP 0 4 O0 8) zur relativen RAM-Adresse O 8 gespeichert. Der RST 7-Befehl

bewirkt einen Sprung zur relativen RAM-Adresse 10.

6.3.13 Stack-Befehle

Der Stack, der in erster Linie für die Abspeicherung von Unterprogramm-Rücksprungadressen

gedacht ist, kann auch als Zwischenspeicher für Daten benutzt werden. Ermöglicht wird dies

durch je 4 sog. PUSH- und POP-Befehle, mit denen die Daten abgespeichert bzw. zurück-

geholt werden können. Die 4 PUSH-Befehle, die Daten im Stack abspeichern, haben das Format:

1/11|r/r|0,1/j0/|1 PUSH

Mit einem entsprechenden Code für r r können folgende Registerpaare zwischengespeichert

werden:

Coderr Registerpaar Bezeichnung Hex.-Code

00 BC PUSH B C5
01 DE PUSH D D5
10 HL PUSH H E5

11 Akku + Flags PUSH PSW F5

Eine Besonderheit stellt der Befehl PUSH PSW dar, bei dem derInhalt des Akkus sowie der

Zustand der Flags abgespeichert werden (PSW = Program Status Word).

An welcher Stelle im Stack die Daten abgelegt werden, bestimmt der Stack-Pointer SP.

Zeigt z.B. der Stack-Pointer auf die Adresse O0 4 8 8, so bewirkt der Befehl PUSH B, daß der

Inhalt des B-Registers in Adresse O 4 8 7 und derInhalt des C-Registers in Adresse 0486

abgespeichert werden. Beim Befehl PUSH PSW würde der Inhalt des Akkus in Adresse

0487 der Zustand der Flags in Adresse O 4 8 6 zwischengespeichert. Allgemein läßt sich

sagen, daß die Inhalte der erstgenannten Register (B, D, H und Akku) in der Adresse SP

minus 1 und die Inhalte der zweitgenannten Register (C, E, L und Flags) in Adresse SP

minus 2 gespeichert werden.

Das Zurückholen der abgespeicherten Daten kann mit den POP-Befehlen erfolgen. Sie haben

das Format:

1}1Ir!r|O0o!0O0o|Jo|1i POP

Der Codefür r r entspricht dem der PUSH-Befehle.

Bedingt durch die Arbeitsweise des Stacks ist unbedingt zu berücksichtigen, daß abge-

speicherte Daten in der entgegengesetzten Reihenfolge wieder aus dem Stack herausgelesen

werden, wie sie hineingegeben werden. Beispiel:

PUSH D oo
PUSH H „rensfolge für die

PUSH PSW 9

4.26

En

G = \

Befehlsfolge für das

POP H Zurückholen

POP PSW

POP D

Dabei ist die Reihenfolge der PUSH-Befehle beliebig, während die Reihenfolge der POP-

Befehle an die gewählte Eingabefolge angepaßt sein muß.

Soll in einem Programm ein Stack verwendet werden, so muß über den Stack-Pointer ein

freier Speicherbereich mit genügender Anzahl Bytes reserviert werden. Der Anfang des Stacks

(höchste Stack-Adresse) kann mit dem Befehl LXI SP (Load SP Immediate) festgelegt werden.

Dieser hat das Format:

0/0/1/j1/0/|0|0|1

rechte Hälfte der Adresse LXI SP

linke Hälfte der Adresse
Soll beispielsweise der Stack-Bereich bei der Adresse O 4 A O beginnen, so muß mit dem

Befehl LXI SP der Stack-Pointer O 4 A 1 gesetzt werden. Ein im Programm nachfolgender

PUSH D-Befehl würde dann denInhalt des D-Registers nach Adresse O 4 A O und denInhalt

des E-Registers in Adresse O 4 9 F bringen.

Nach einem PUSH-Befehl wird der Inhalt von SP um 2 erniedrigt, nach einem POP-Befehl

um 2 erhöht.

Beim MP-Experimenter wird über das Monitorprogramm der Stack-Pointer grundsätzlich mit

der Adresse O 4 F E geladen. Damit beginnt der eigentliche Stack-Bereich (höchste Adresse)

bei O4FD.

Der Stack-Pointer kann auch mit dem Befehl SPHL (Stack-Pointer from H and L) geladen

werden. Dieser Befehl bringt den Inhalt des Registerpaares HL in den Stack-Pointer. Er hat

das Format:

1/1|1/)1/1[/0/0|1 SPHL

Zur Gruppe der Stack-Befehle gehören auch nochdie beiden Befehle:

INX SP und

DCX SP

Der INX SP-Befehl incrementiert den Inhalt des Stack-Pointers um 1. Er hat das Format:

010/1/1/0)0|1|1 INX SP

Der DCX SP-Befehl decrementiert den Inhalt des Stack-Pointers. Sein Formatist:

0/0/1/11/|1)j0/1 11 DCX SP

Ein Befehl, mit dem derInhalt des Stack-Pointers in das Registerpaar HL addiert werden kann,

ist der DAD SP-Befehl (Double precision Add Stack-Pointer). Hierbei wird der Inhalt des

Stack-Pointers zum Inhalt des HL-Registers addiert. Entsteht ein Überlauf, wird das Carry-Flag

gesetzt. Die anderen Flags werdennicht beeinflußt.

Die 4 Befehle SPHL, INX SP, DCX SP und DAD SP werdenin normalen Programmennur selten

benutzt, da sie sehr leicht zu Programmfehlern führen können. Ihre Anwendung bleibt auf

Spezialprogrammebegrenzt.

4.27

Exp. 29

| Exp. 31

Ein weiterer Befehl, der mit dem Stack arbeitet und bei Argumentübergabe von Unter-

programmensehr nützlich ist, ist der XTHL-Befehl (Exchange Top of Stack with H and L =

tausche den „Stack-Kopf” gegen den Inhalt von H und L). Dieser Befehl tauscht die letzten

2 Bytes, die auf dem Stack geschrieben wurden, mit dem Inhalt des Registerpaares HL aus.

Er hat das Format:

1/1!)1/0)0/0|)1/1 XTHL

Der Inhalt des durch den Stack-Pointer adressierten Bytes wird mit dem Inhalt des L-Registers

ausgetauscht, der Inhalt der Adresse SP + 1 mit dem Inhalt des H-Registers.

6.3.14 Weitere Befehle des MP 8080

Die folgenden 5 Befehle sind die letzten aus dem Befehlsvorrat des MP 8080.

Der Befehl NOP (No Operation = keine Operation) beeinflußt den Prozessor nicht. NOP-Befehle

können z.B. eingesetzt werden, um Programmteile voneinander zu trennen, oder bestimmte

Wartezeiten zwischen 2 Befehlen zu erzeugen, die dann durch die systemtypische Lesezeit für

den NOP-Befehl bestimmt sind. Das Format dieses Befehles ist:

010/10/0/0/0/0|0 NOP

Der HLT-Befehl (Halt) stoppt den Prozessor. Das Erhöhendes Befehlszählers wird dabei noch

ausgeführt. Der Prozessor kann diesen Zustand entweder durch RESET odereinen Interrupt

verlassen. Der Wiederstart mit einem Interrupt kann durch einen DI-Befehl (Disable Interrupt)

im Programm verhindert werden. Format des HLT-Befehles:

0/1/11)1/0|/111|0 HLT

Der CMA-Befehl (Complement Accumulator) bildet das Einerkomplement des Akkumulators,

d.h., er invertiert jedes einzelne bit des Akkumulatorinhaltes und schreibt das Ergebnis in den

Akku zurück. Die Zustände der Flags werden nicht beeinflußt. Das Format des CMA-Befehles

ist:

010/}1/0/1,1/1|11 CMA

Die beiden letzten Befehle beeinflussen nur das Carry-Flag. Mit dem Befehl STC (Set Carry)

wird das C-Flag auf 1 gesetzt und mit dem Befehl CMC (Complement Carry) invertiert.

Formate der beiden Befehle:

010/)1/1/0,1/1/1 STC

010/|1/)1/|1,j1/1/1 CMC

Die restlichen Flags können nur durch geeignete Operationen oder über den Stack beeinflußt

werden. |

4.28

ee

