i " C%&;%W‘ -
L

o L - ?““
- rw DR PR R Sl 4 o : ”ﬁ‘(v i ‘Wr‘ Y Q
gk w o il € i (¢ 4 S %, i Jered \ﬁ«/ 4/;‘”:

Y o ek ol : : .
: ,.,m,, L ,\ / € i o SRR
! . ket i - 7 ey
L : A e ek g
S o
m zy/ V.p- Ry st ;
- @ b e S v
e i e : ,\”,mns 0
5 A f

*\f
. e
é‘ 0 AL ""*‘“7 -:z\ e D R . i

S /,, 7

e o
m.\m ‘:\ e
D 4 f;,\rr w, il

S S o L § i 4 R : ' e i i T b "
,ﬁ “‘\(nw“\ o e e F i e : o i Rl e “« i “}w ”ﬁ‘"““’v o .
3 iy P Ry A e Gl .’* Ri *fi\(r';z \, Sl *;?\a.e:»d'wé;m\ m“’}é”" &

Einleitung

Fir zahlreiche Bereiche der Technik wird die Einfihrung der Mikroprozessoren von enormer
Bedeutung sein. Viele Experten prophezeien, daR der Einsatz von Mikroprozessoren technische
Umwaélzungen mit sich bringen wird, die in ihrem AusmaR mit der Einfiihrung des Transistors
vergleichbar sind. Das mag hochgegriffen erscheinen, aber es ist ganz sicher, daR die Mikro-
prozessoren, die fur wenig Geld und auf kleinem Raum die volle Leistungsfahigkeit und
Flexibilitdt eines Computers zur Verfligung stellen, in zahllosen Geraten eingesetzt und dar-
Gber hinaus viele neue Produkte ermdglichen werden. Es dauert sicher nicht mehr lange, bis
uns Mikroprozessoren in allen Bereichen unseres taglichen Lebens begegnen. Angefangen
bei Haushaltsgeraten wie Herde, Waschmaschinen usw. iiber Heizungsregelungen, MeR-
gerate im Labor, Werkzeugmaschinensteuerungen bis hin zur Automobiltechnik bieten sich
Einsatzmoglichkeiten fir den Mikroprozessor. Dies bedeutet aber, daR Techniker und
Ingenieure aus praktisch allen Sparten der Technik mit diesem Bauelement konfrontiert
werden. Die Betroffenen stehen plétzlich vor neuen Problemstellungen, fiir die sie zum
grofRen Teil nicht ausgebildet worden sind und auch gar nicht ausgebildet werden konnten.

Kennzeichnend fiir diesen Trend ist weiterhin, daB in Zukunft ein immer groRer werdender
Anteil der Entwicklung eines Gerates auf die sog. Softwareentwicklung fallt, d.h. die
Entwicklung von Computerprogrammen zur Steuerung des Gerates. So macht z.B. bei der
Steuerung einer Waschmaschine mit Hilfe eines Mikroprozessors die Entwicklung des Pro-
grammes flr diese spezielle Aufgabe einen wesentlichen Teil der Entwicklungsarbeit aus.

Dieser Lehrgang soll den Technikern und Ingenieuren eine fundierte Einflihrung in diese
neue Technik geben. Um den Lernenden Schritt fir Schritt an die neue Technik heranzufiihren,
wird zundchst die grundséatzliche Funktion sowie der prinzipielle Aufbau eines Computers
oder Rechners besprochen. Hierzu sind einige Grundlagen der Digitaltechnik erforderlich,
die in den Abschnitten 1. und 2. in knapper Form noch einmal erlautert werden.

Nach diesen grundlegenden Abschnitten wird dann in mehreren Stufen die Struktur eines
einfachen funktionsfahigen Mikrocomputers zusammengestellt. Angefangen mit den ein-
fachen Bausteinen der Digitaltechnik wird in mehreren Stufen ein komplettes Rechenwerk,
also das Kernstiick eines Mikrocomputers, entwickelt. Durch Hinzufligen von Speichern und
eines Steuerwerkes entsteht schlieBlich ein einfacher aber funktionsfahiger Mikrocomputer.
Zu jedem dieser Entwicklungsschritte kénnen mit dem Experimentiersystem zahlreiche
Experimente durchgefiihrt werden, so daR jeder Entwicklungsschritt nachvollzogen werden
kann.

Nachdem der Teilnehmer mit dem Grundkonzept vertraut ist, wird der Mikrocomputer vom
Standpunkt der Software, also der Programmierung, her behandelt. Die Eigenschaften eines
Mikroprozessors sind festgelegt in Form eines sog. Instruktionssatzes, also der Summe der
Befehle und Adressiermdglichkeiten, die ein Rechner bietet. Es wird nicht mehr erklart,
durch welche schaltungstechnische MaRnahmen jeder einzelne Befehl realisiert wird. Wichtig
fiir den Anwender von Mikroprozessoren sind nicht die Kenntnisse der schaltungstechnischen
Details, sondern vielmehr die Kenntnisse, die es ihm ermoglichen, anhand der vom Hersteller
mitgelieferten Software Programme fir seine Aufgaben zu entwickeln. Es werden also hier
die Instruktionen oder Befehle sowie die Adressierarten, die in Mikrorechnern zur Verfiigung
stehen, behandelt. Uber Programmbeispiele werden die Grundlagen der Programmierung
und die Verwendung der Rechnerbefehle erlautert.

Fir diese grundsatzlichen Betrachtungen und Programmibungen wird kein bestimmter
Rechnertyp eines bestimmten Herstellers angesprochen. Vielmehr wollen wir lhnen einen
Uberblick geben iiber die Befehle und Adressiermdglichkeiten, wie man sie heute in Mikro-
prozessoren findet.

Damit sind Sie befahigt, sich in jeden Rechnertyp einzuarbeiten und dann den fir lhre
Problemstellung geeigneten Typ auszusuchen.

Aus diesem Grunde haben wir einen hypothetischen Mikrorechner entwickelt, der sich durch
einen moglichst Gbersichtlichen Befehlssatz auszeichnet. Es werden hier alle die Tricks und
Ausnahmen vermieden, die die Hersteller praktischer Mikroprozessoren anwenden, um an
dieser und jener ,Ecke” noch ein wenig mehr Leistung aus dem Produkt herauszuholen. Das
Hauptaugenmerk liegt hier also auf einem klar strukturierten, leicht iberschaubaren Instruk-
tionssatz, in den Sie sich leicht einarbeiten konnen und an dem die wesentlichen Punkte klar
herausgearbeitet werden kénnen. Dieser zweite Hauptteil des Lehrganges wird erganzt durch

Abschnitte Gber allgemeine Fragen der Programmierung und tliber die fiir das praktische
Arbeiten unerlaBlichen Hilfsprogramme.

Im dritten Hauptteil wird dann ein echter Mikrorechner, und zwar der weitverbreitete Typ 8080,
besprochen. Dieser 8080 ist in dem Experimentiergerat enthalten, so daR Sie wieder selbst
Programme schreiben und testen kénnen, um sich somit in diesen populdaren Rechnertyp
einzuarbeiten. Zu lhrer Unterstiitzung ist in dem Experimentiergerat ein einfaches sog.
Monitorprogramm enthalten, das lhnen einen optischen Zugriff in die Register und Speicher
des 8080 gestattet. Dieser Teil wird ergénzt durch einige ausgewahlte Kapitel Gber Ein- und
Ausgabemethoden, verfligbare Bauelemente usw.

Zum SchluB noch ein Wort tber das Experimentiergerat selbst. Hierin ist ein vollstandiges
8080-Mikrorechnersystem mit einem 8080-Mikroprozessor, Speicher, Ein- und Ausgabe-
schaltungen enthalten. Dieser Rechner wird dazu verwendet, den Addierer-Subtrahierer,
den Akkumulator usw. und schlieBlich den vereinfachten Rechner und den hypothetischen
Mikrorechner zu simulieren. Das Experimentiergerat ist also eine praktische Anwendung
eines Mikrorechners. In diesem Zusammenhang kénnen Sie sich vielleicht vorstellen, welcher
Aufwand erforderlich wére, wenn all die Funktionen dieses Experimentiersystems mit ,nor-
malen” Digitalschaltungen aufgebaut waren. Hier wird alles mit einem entsprechend
programmierten Mikrorechner durchgefihrt.

Verfasser:

Dr. Jurgen Gerlach

C. D. Nabavi, B. Sc.
Forschungszentrum der
Standard Elektrik Lorenz AG
Stuttgart

Dezimal 3-Exzel3-Code

(@)
o
—

Tab. 2.7.2
3-ExzelRR-Code

_ e e s, 0000

OCoONOOOPWN=O0O
O = =-00-=-=00
O -0 =00 -0 -

Die Verarbeitung von BCD-Zahlen bedeutet, daR zwar Dezimalzahlen eingegeben werden,
intern im Rechner werden jedoch Binarzahlen verarbeitet.

Als Beispiel fur die Arithmetik mit BCD-Zahlen soll hier die Addition im 8421-Code behandelt
werden, da eine Reihe von Mikroprozessoren spezielle Instruktionen dafiir hat.

Die Arbeitsweise soll anhand einiger Beispiele demonstriert werden:

1. 5 0101
+4 0100
9 1001

In diesem Beispiel wurden 2 BCD-Zahlen nach den Regeln der binadren Addition addiert, und
es ergab sich ein richtiges Ergebnis.

2.

o O
-_

01
11
0

+
~N O

1

N

11

o

Bei diesem Beispiel wurden ebenfalls die Regeln der bindren Addition angewandt, dabei
ergab sich aber im Ergebnis ein illegaler Code, namlich 1100.

Dieses Ergebnis kann dadurch korrigiert werden, daR man zu dem Ergebnis der binaren
Addition die Zahl 6, also 0 1 1 O, addiert, d.h., man ,iberspringt” bei der Addition die
6 illegalen Codesvon 1 0 1 Obis 1 1 1 1. Die Korrektur

ergibt das richtige Ergebnis 12 im 8421-Code.
3. Ein weiterer Fall muRR noch betrachtet werden:
8 1000

+9 +1001
17 0001 0001

Die binédre Addition ergibt in diesem Fall das Ergebnis 11 im 8421-Code.

Das ist ein legaler BCD-Code, aber ein falsches Ergebnis. Dieser Fehler entsteht dadurch,
daR bei der Addition die 6 illegalen Codes mitgezahlt wurden, die Korrektur fihrt man also
ebenso wie im vorigen Fall durch Addition von 0 1 1 O aus.

0001 0001
+0000 0110
0001 0111

Man erhélt also 17 in BCD-Darstellung. Dieser Fall ist daran erkennbar, daR das Ergebnis
eine legale BCD-Zahl war, daR aber ein Ubertrag in die nachsthéhere BCD-Stelle erfolgte.

1.35

Eine Addition im 8421-Code erfolgt somit in mehreren Schritten. Dies ist in einem einfachen
FluRdiagramm (Bild 2.7.1) grafisch dargestellt.

Bindre Addition in
der 1. BCD-Stelle
(4 bit rechts)

Ergebniscode
illegal oder Ubertrag in
die nachste Stelle

Addiere 0110
zum Ergebnis

]

Bild 2.7.1 v
FluBdiagramm zur Erlduterung einer Verarbeitung der nachsten BCD - Stellen,
Addition im 8421-Code bis sdmtliche Stellen addiert sind

Bei der Subtraktion miissen die illegalen Codes auf dhnliche Weise beriicksichtigt werden,
ebenso bei Multiplikation und Division, die ja eine wiederholte Anwendung der Addition
bzw. Subtraktion sind.

Zusammenfassend kann man also tber BCD-Codes folgendes sagen:

Die Tatsache, daR illegale Codewdrter vorkommen, bedeutet, daR fir einen gegebenen
Zahlenvorrat in BCD-Codierung eine groRere Wortlange erforderlich ist, als in der binédren
Darstellung. Eine groRere Wortldnge bedeutet groBeren Speicherbedarf und mehr Schaltungs-
aufwand.

Die arithmetischen Operationen in BCD-Codes sind generell komplizierter und somit in der
Praxis auch langsamer und aufwendiger als im Bindrcode. Dagegen stehen die Vorteile der
dezimalen Arbeitsweise, das Wegfallen der Binar-Dezimalumwandlungen bei Ein- und Aus-
gabe, so daBl in jedem Einzelfall gepriift werden muB, ob BCD-Codes zweckmaBig sind.

Fragen zu Abschnitt 2.7

1. Addieren Sie folgende BCD-Zahlen
aj 0001 0101 1001
+0011 0111 0010

0111
0110

3. Arbeitsweise eines Rechners bzw. Computers

Grundsaétzlich 18Rt sich die Arbeitsweise eines Rechners dadurch beschreiben, dal er in der
Lage ist, Daten so zu verarbeiten, wie es durch ein Programm vorgeschrieben ist. Durch
verschiedene Programme kann ein Rechner zur Losung verschiedener Aufgaben eingesetzt
werden. Bis vor einigen Jahren waren Rechner nur als sehr volumindse und teure Einrichtungen
zu haben. Dadurch war ihr Einsatz auf komplexe Aufgaben begrenzt, wie z.B. die Verarbeitung
von Massendaten im kommerziellen Bereich. Erst die rapide Weiterentwicklung der Halb-
leitertechnologie ermdglichte es, auch kleinere und nicht so teure Rechner herzustellen,

1.36

die allerdings auch weniger leistungsfahig und weniger komfortabel vom ganzen Bedienungs-
ablauf her gesehen waren. Diese kleineren Computer wurden und werden allgemein als
Minicomputer bezeichnet.

Der nachste Schritt in dieser Entwicklungsrichtung war der, mittels der sog. Large Scale
Integration (LSI), was mit hohem Integrationsgrad Ubersetzt werden kann, durch mehrere
tausend Bauelemente die Zentraleinheit CPU (CPU = Central Processing Unit) eines
Mikrocomputers auf einem Chip herzustellen. Eine solche Zentraleinheit eines Mikro-
computers wird als Mikroprozessor bezeichnet. Interessant in diesem Zusammenhang
dirfte fur Sie sein, daR der in unserem Experimentiersystem verwendete Mikroprozessor
vom Typ 8080 auf einem Chip mit 23 mm? (rund 4,8 mm x 4,8 mm) mehr als 4 500 MOS-
Transistoren enthalt. Mit diesen liber 4 500 Transistoren ist es nun madglich, ein komplettes
Steuer- und Rechenwerk fiir einen Mikrocomputer zu realisieren. Im Rechenwerk werden
dabei die arithmetischen und logischen Operationen ausgefiihrt, wahrend das Steuerwerk
den internen Ablauf im Rechner steuert. Damit aus einem Mikroprozessor ein Mikrocomputer
wird, sind weitere zusatzliche Einrichtungen wie Programmspeicher, Datenspeicher, Ein-
und Ausgabebausteine, zusatzliche Logikschaltungen usw. erforderlich. Wie umfangreich
diese zusatzlichen Einrichtungen werden, hangt dabei vom jeweiligen Anwendungsfall ab.
Wichtig ist jedoch die Erkenntnis, da3 man in der Praxis mit einem Mikroprozessorbaustein
alleine noch keine Aufgabenstellungen l6sen kann, dazu ist immer ein Mikrorechner er-
forderlich. In den nachfolgenden Abschnitten soll die prinzipielle Arbeitsweise eines Mikro-
rechners erldutert werden. Da sich prinzipiell die Arbeitsweise eines Mikrorechners von
einem anderen Rechner nicht unterscheidet, werden Schritt fur Schritt die einzelnen Bau-
stufen behandelt, die fir einen Rechner allgemein notwendig sind. Jeder Schritt wird dabei
durch entsprechende Experimente verdeutlicht.

3.1 Addierwerk
Aus Abschnitt 2. ist bekannt, wie man Binarzahlen addiert. Wenn im einfachsten Falle 2
1-bit-Binarzahlen addiert werden sollen, so gibt es grundsatzlich folgende Mdoglichkeiten:

A+ B Summe Ubertrag
0+0 -0 0
0+1 1 0
1+0 1 0
1+1 0] 1

Eine Schaltung, die in der Lage ist, diese Rechenoperationen durchzufiihren, wird als Halb-
addierer (HA) bezeichnet. In Bild 3.1.1 ist ein HA in Blockschaltbildform dargestellt.

Ubertrag U

) A B |z | U
(0] 0 0 (0]
HA ——Summe X 0 1 1 Y
1 0 1 0
5 1 1 0 1

a) b)

Bild 3.1.1

Halbaddierer
a) Blockschaltbild
b) Funktionstabelle

1.37

Aus der Funktionstabelle kénnen die Funktionsgleichungen abgeleitet werden, die fir die
Summen- und Ubertragsbildung erfiillt sein miissen:

Summe Z=(AAB)V(AANB) =AVB (EXCLUSIV-ODER)
Ubertrag U= AN B (UND)

Aus diesen Gleichungen kann jetzt die logische Schaltung eines Halbaddierers abgeleitet

werden (Bild 3.1.2).
U:A/\B

AO

BO

Bild 3.1.2
Schaltung eines
Halbaddierers

Wenn nun mehrstellige bit-Kombinationen (sog. Woérter) addiert werden sollen, so reicht
ein Halbaddierer hierfiir nicht aus. In diesem Fall muR namlich bei einem Ubertrag dieser
in der nachsthéherwertigen Stelle beriicksichtigt werden. Dies kann nur mit einem Voll-
addierer geldst werden, der auRer den Eingangen A und B noch einen Ubertragseingang C
hat (Bild 3.1.3).

~
)—> S =(AAB)N(ArB)

Ausgangsubertrag

V]
A A B c X U
0 0 0 0 0
Voll - Summe 0 1 0 1 0
addierer = 1 0 0 1 0
1 1 0 (0] 1
o 0 0 1 1 0
(0] 1 1 (0] 1
1 0 1 (0] 1
1 1 1 1 1
c
Eingangsiibertrag
a) b)
Bild 3.1.3
Volladdierer

a) Blockschaltbild
b) Funktionstabelle

Far die Summe gilt jetzt die Funktionsgleichung:
E=(AANBACVAANBVCOVAANBACV(AANBACQ
Diese Gleichung 1Bt sich nach den Regeln der Schaltalgebra umformen in:

Z=(A¥B)V¥C=AVYB¥YC

1.38

Diese Gleichung entspricht der Kaskadierung von 2 EXCLUSIV-ODER-Verknipfungen, wie

schon in Abschnitt 1.3, Bild 1.3.5 gezeigt.

Fir den Ausgangsiibertrag gilt die Beziehung:
U=(ANBANOVAANBANCOVANBACOV(AAB AQ)

Diese Gleichung 1aBt sich vereinfachen zu:

U=(ANB)V(BANCV(ANCQ

Damit ergibt sich fir den Volladierer eine Schaltung entsprechend Bild 3.1.4.

A0 I\
) J
[
Bo

T LT

Bild 3.1.4

! Schaltung eines Volladdierers

Sind nun 2 n-bit-Wérter zu addieren, missen mehrere Volladdierer zusammengeschaltet
werden. Hierzu ein einfaches Beispiel mit 2 3-bit-Wértern:

22 21V 20

A: 0o 1

B: 1T 1 1
U 1

1 1 0 O

Genau genommen werden fiir dieses Beispiel ein HA und 2 VA benétigt, da in der Stelle 2°
noch kein Ubertrag vorhanden sein kann. In der Praxis wird man jedoch auch fiir diese Stelle
einen VA benutzen, und den Eingang Co fir ein solches Beispiel mit O belegen. Damit ergibt
sich fir die Loésung dieser Aufgabe eine Schaltung entsprechend Bild 3.1.5.

22 2! 2°
1 1 0 1 1 1
Azl le A1l B,l Aol Bol
U C; J Cy U Co
} <2 v, < 1 U VA, ! 0 VAg la—0
|
|
|
|
v e ox <o
1 1 0 0
Bild 3.1.5

Addierwerk fur 2 3-bit-Binarzahlen

1.39

Wiirde man bei diesem Addierwerk den Eingang Co statt mit O mit 1 beschalten, so wiirde
das Ergebnis um 1 erhoht. Dies ist in der Praxis fir bestimmte Anwendungsfélle erforderlich.
Aus diesem Grunde erhalt dieser Ubertragseingang die Bezeichnung Incrementiereingang
INC (von Increment = Zuwachs). Ein Addierer mit einem Incrementiereingang wird dann als
Ripple-Carry-Addierer bezeichnet. In Bild 3.1.6 ist ein n-bit-Ripple-Carry-Addierer dar-

gestellt.
Ausgangs-
Ubertrag
AI’\ Un
3hn
o VAn ——>
g
[~} Cn
<2 n
w
Un-1
Zn-1
VAn4 ———»
Cn-1
| ~ Summe
|
Uy
3
VA, —
o C1
2 A
c
[}
mg<
i (_']0
29
VAO —
By
(c,)
a) INC
ran
An
:';‘ An—1
<&9 A |
g 1
woa
0 . zn
n- bit- —» 5,
Summe
5 VA >,
o | = —3,
, .g B
J A
w By
b) INC
Bild 3.1.6

Ripple-Carry-Addierer
a) Funktionsschaltbild
b) Blockschaltbild

1.40

3.2 Addier-Subtrahierwerk

Ein Addierwerk nach Bild 3.1.6 1aRt sich durch Vorschalten von Gattern so erweitern, daf}
viele weitere Funktionen damit verwirklicht werden kénnen. Die in Bild 3.2.1 dargestellte
Schaltung ermaéglicht u.a. auch die Subtraktion von Binédrzahlen und wird deshalb auch als

Addier-Subtrahierwerk bezeichnet.

A3 - \
V) V
ar)
o o \
Is)
S5
o 08 ¥
c
i | L/)
<
Al ™
L/ v ’*
AQ o \
> rd
@
2
) hI I
°
B
! >
2 b— | c
E = :g)
© 0
B] 3
3 \ L +—» <
> . a
2
J v é —
o)
‘ R
82 \
[-
o
c
S
w
Q
By o
) -
BO -
L—
5 g ¥
") v J £ E
5 2 2 =
o o a E
HEE: sl ¢
1
qﬂ mﬂ éll mﬂ z
S, S3 Sz 54 Sp

Vv
Steuereingange

Bild 3.2.1
4 -bit-Addier-Subtrahierwerk

Die so entstandene Schaltung enthélt 5 Steuereingdnge Ss bis So, die es ermdglichen, die
A- und B-Eingange auf die unterschiedlichste Art miteinander zu verknipfen. In Tab. 3.2.1
sind alle moéglichen Eingangskombinationen mit den dazugehérigen Ausgangsfunktionen
dargestellit.

1.41

S: S3 S22 S1 So Ausgangs-
funktion

0O 0 0 0 O 0

0O 0 0 0 1 1

0O 0 0 1 O -1

0O 0 0 1 1 0

0O 01 0 O -1

0O 0 1 0 1 0

0O 01 1 0 -2

o 0 1 1 1 -1

0 1 0 0 O B

0O 1 0 0 1 B+ 1

O 1 0 1 O -B-1=8

0O 1 0 1 1 -B

0O 1 1 0 O B -1

o1 1 0 1 B

o1 1 1 0 -B -2

o 1 1 1 1 -B-1=8

1.0 0 0 O A

1. 0 0 0 1 A+1

1. 0 0 1 O A-1

1. 0 0 1 1 A

1. 0 1 0 O —A-1=A4

1. 0 1 0 1 -A

1. 0 1 1 0 -A-2

1 0 1 1 1 -A-1=A

1.1 0 0 O A+B

11 0 0 1 A+B+1

11 0 1 0 A-B-1

1 1 0 1 1 A-B

11 1 0 O B-A-1
Tab. 3.2.1 1 1 0 1 B-A
Steuerfunktionen fiir das Addier- 1110 “A-B-2
Subtrahier-Werk nach Bild 3.2.1 T “A-B-1

Es wiirde zu weit fahren, wollten wir alle 32 mdglichen Eingangskombinationen ausfiihrlich
diskutieren, wir beschranken uns deshalb auf einige Beispiele. So liefert z.B. die Steuer-
funktion S4 bis So =1 1 0 O O die Ausgangsfunktion A + B, d. h., die Eingangssignale werden
addiert. Wird S; oder Si auf O gebracht, werden die A- bzw. B-Eingédnge abgeschaltet.
Am Ausgang erscheint dann nur B oder A. Die oberen EXCLUSIV-ODER-Gatter verkniipfen
die A-Eingdnge mit S».. Bei S = 0, werden die A-Eingédnge unveréndert durchgeschaltet
(A¥ 0 = A). Bei S2 = 1, werden die A-Eingange komplementiert (A % 1 = A). Die Steuer-
eingange S1 und S dienen also dazu, die A- bzw. B-Eingédnge zu komplementieren. Bei der
Steuerfunktion S4 bis So =0 0 0 1 0 z.B.ist S1 = 1 wéhrend alle anderen Steuereingédnge O
sind. Dies bedeutet, daB alle Ausgange der 4 oberen EXCLUSIV-ODER-Gatter O sind wahrend
die 4 unteren eine 1 liefern. Im Addierwerk wird also folgende Rechenoperation ausgefiihrt:

A: 0000
B +1111
Ausgang: 1111

Dieses Ergebnis entspricht in der hier gewahlten Zweierkomplementarithmetik —1.

Merke:
Bei allen Ausgangsfunktionen in Tab. 3.2.1 liegt die Zweierkomplementarithmetik zugrunde.

Die Steuerfunktion Ss bis So =1 1 0 1 1 zeigt die Bedingungen fiir die Subtraktion A — B.
Bei der Zweierkomplementarithmetik muR hierzu die Zahl B komplementiert werden (Einer-

1.42

komplement B), hierzu wird dann eine 1 addiert (Zweierkomplement B + 1), und das
so gewonnene Zwischenergebnis mul zur Zahl A addiert werden. Die Einerkomplement-
bildung von B wird durch S1 = 1 bewirkt. Durch INC = 1 wird zu B eine 1 addiert (B + 1).
Durch S; = O und S3 = Ss4 = 1 gelangt A in der anliegenden Form an das Addierwerk, so
daR als Ergebnis die Funktion A + B+ 1 = A — B erscheint. Durch Umpolen von S; und S;
wird am Ausgang die Differenz B — A gebildet. Wir empfehlen Ihnen, selbst nachzuvollziehen,
wie die weiteren Ausgangsfunktionen erklart werden kénnen.

3.3 Arithmetische logische Einheit (Arithmetic-Logic-Unit ALU)

Da alle Mikroprozessoren nicht nur arithmetische Verknipfungen sondern auch logische
Verknipfungen ausfiihren konnen, mufd die Schaltung nach Bild 3.2.1 erweitert werden. Es
gibt hierzu mehrere Moglichkeiten. Im Rahmen dieses Lehrganges werden wir eine Variante
behandeln, die einfach zu verstehen ist, obwohl die Loésung zu einer undkonomischen
Schaltung fiihrt. Dabei gehen wir davon aus, da als zusatzliche Funktionen die 3 logischen
Verknipfungen :

zu bilden sind (jedes bit von A wird mit dem entsprechenden bit von B verkniipft). In Bild 3.3.1
ist eine Losung fiir diese Aufgabenstellung gezeigt.

N

A-Eingdnge
(n bit)]
Daten- | Ausgdnge
_-P
selektor [(n bit)
B-Eingange p—
(n bit)
]
Schaltung
nach Bild 3.2.1
S, S3 S2 S1 5o Se Ss
v Bild 3.3.1
Steuereingdnge Arithmetic-Logic-Unit

1.43

| Exp. 1]

Wenn die Steuereingange Ss = Sg = 0 sind, wird das Addier-Subtrahierwerk durchgeschaltet,
und die Funktion entspricht der nach Tab. 3.2.1. Bei einer anderen Beschaltung von Ss und Sg
wird eine der angegebenen Verknipfungen durchgeschaltet. In diesem Falle beeinflussen
dann die Steuereingange So bis Si das Ergebnis nicht.

Mit 7 Steuereingéngen kénnte man vom Prinzip 2’ = 128 verschiedene Funktionen bilden,
die allerdings von der Schaltung gar nicht alle geliefert werden kénnen. Schon die Schaltung
nach Bild 3.2.1 enthélt Redundanzen, d. h., bestimmte Funktionen wiederholen sich. Tab. 3.2.1
zeigt, daR z.B. die Funktion O allein 3 mal vorkommt. Insgesamt enthélt die Tabelle nur 24
verschiedene Funktionen. Mit den 3 neuen Funktionen gibt es insgesamt 27 Funktionen, von
denen allerdings mehrere keine praktische Bedeutung haben (z.B. —A4 — B — 2). Wir werden uns
deshalb auf 13 Funktionen beschranken und kommen dadurch nach einer Umcodierung
mit 4 Steuereingadngen aus. Die Umcodierung geschieht entsprechend Bild 3.3.2 mit einem
ROM.

S¢ Ss Sf Sf Sf S1 So
Ausgdange
U3—>—
(7]
U—— &
z o ROM
U1—’_' 3
Bild 3.3.2 U=
ROM zur Umcodierung der Steuereingénge

In Tab. 3.3.1 sind die 13 gewiinschten Funktionen aufgeschliisselt.

y S.S- 8,5, ¢ Us U U W Funktion
- 0 0 (0] 0 A
' 0 0 0] 1 1
! O o0 1 0 A
0 0] 1 1 B
0] 1 0] 0 (6]
0 1 0 1 A+1
- o 0 1 1 0 A-1
o C 0 1 1 1 A+ B
o o A 1 0] 0 0 A-B
1 0 0 1 ANB
o 1 0 1 0 AV B
! 1 0 1 1 ANMB
SIRe RN 1 1 0] 0 -1
1 1 0 1
Lﬁéjj&:’ce Steuer- 1 1 1 0 } fur spateren Ausbau
. 1 1 1 1
funktionen

Da mit 4 bit 16 Funktionen moglich sind, bleiben bei der getroffenen Auswahl 3 Funktionen
fur den spateren Ausbau des Systems (brig. Das fir die Umcodierung verwendete ROM
benétigt 4 AdreReingange, d.h. 2* = 16 Waérter zu je 7 bit. Der Inhalt jedes Wortes ist leicht
zu bestimmen. Als Beispiel betrachten wir die Steuerfunktion Us bis Up =0 1 0 1 mit A+ 1.
Die entsprechende Adresse ist 0 1 O 1. Aus Tab. 3.2.1 ist zu entnehmen, da auf die
Steuereingdnge S. bis So das bit-Muster 1 O O O 1 gelegt werden muf3, um die Funktion
A + 1 zu erhalten. Die Werte fir Ss und Se hangen direkt von der Zuordnung des Datep-
selektors ab. Da, wie bereits erwéhnt, fiir die arithmetischen Funktionen Ss = S¢ = O sein
miissen, ergibt sich ein Gesamt-bit-Muster Sg bis So von 0 0 1 0 O O 1. Dieses Muster
muB in dem ROM unter der Adresse O 1 O 1 gespeichert sein. Nach ahnlichen Uberlegungen
kénnen auch die restlichen 15 Adresseninhalte bestimmt werden.

Steht ein ROM mit mehr als 7 bit Wortlange zur Verfiigung, kénnen auch noch bestimmte
Nebenfunktionen ausgefiihrt werden. So kénnte man z.B. ein zuséatzliches bit S; dazu

1.44

benutzen, den Ubertrag der letzten Stelle dann abzuschalten, wenn es das Systemkonzept
erfordert. Dies wére z.B. angebracht im Falle der logischen Verknipfungen, da hier ein
arithmetischer Ubertrag keine verniinftige Bedeutung hat. In Bild 3.3.3 ist die gesamte
Schaltung der ALU dargestelit.

Unterdlickung
des Ubertrages

A - Eingdnge
—
(n bit)

B-Eingdnge
(n bit)

ALU

entsprechen Bild 3. 3.1

Se Ss S, S3 S2 51 So

Sy

]

A [I

ROM
zur Umcodierung der

Steuereingdnge

3.4 Akkumulator

b b b L

Steuereingange

Ausgdnge
(n bit)

Bild 3.3.3

Komplette ALU mit Umcodierung

der Steuereingange

Der Akkumulator (kurz Akku) ist die nachste Erweiterungsstufe der ALU (Bild 3.4.1).

-
-

Uber trags-

Flag

Ubertrag

B-Eingange
(n bit)

Bild 3.4.1

(1 bit)

Ausgadnge

ALU Register
b A | |
Sg
Sg S7 S Ss S, S3 Sz S S
ROM
Us Uy Uy V) Takt

Akkumulator mit Ubertrags-Flag

1.45

(n bit)

AuBer den Funktionen nach Bild 3.3.3, enthélt diese Schaltung als wesentliche Bestandteile
noch ein Register sowie ein Ubertrags-Flag. Das Register dient zum Zwischenspeichern
der Ergebnisse. Hierzu wird eine der Eingangsgruppen (im Beispiel die A-Eingédnge) mit den
Ausgéangen des Registers verbunden, so daR eine Art Riickkopplung entsteht. Jetzt werden
die Informationen an den B-Eingdngen mit dem Inhalt des Registers verkniipft. Durch
Taktimpulse wird das Verknlpfungsergebnis in das Register geladen, wobei der alte Register-
inhalt verloren geht. Damit ein méglicher Ubertrag nicht nur kurzzeitig erscheint, wird
er in einem Flag ebenfalls zwischengespeichert. Ob dieses Flag getaktet wird oder nicht, wird
von einem zuséatzlichen bit Ss im ROM bestimmt (UND-Funktion in Bild 3.4.1). Dies ist
erforderlich, da ein Ubertrag nur bei sinnvollen ALU-Funktionen gespeichert wird.

Die Funktionen, die mit diesem Akkumulator ausgefiihrt werden koénnen, lassen sich aus
Tab. 3.3.1 ableiten. So fiihrt diese Anordnung z.B. bei einer Steuerkombination Us bis Uo
von 0 1 0 1 die Funktion A + 1 aus. Da A durch die Rickkopplung dem jeweils vor-
handenen Registerinhalt entspricht, wird in diesem Falle mit jedem Taktimpuls der Akku-
mulatorinhalt um 1 erhoht, d.h., der Akkumulator arbeitet bei dieser Steuerkombination
als Zahler. Soll der Zahler rickwarts zahlen, so mufy iber Us bis Uo gleich O 1 1 O die
Funktion A — 1 ausgelést werden. In Tab. 3.4.1 sind die Funktionen des Akkumulators
unter Bericksichtigung der Riickkopplung dargestellt. Die dabei in der Spalte Abkirzung
verwendeten Ausdricke sind allgemein gebrauchlich und von englischen Bezeichnungen
abgeleitet.

-~
o

1

Us U Ui U, | Abkiirzung Funktion Ubertrags-Flag
0O 0 0O O NOP Keine Operation ja

O O o0 1 SP1 Setze Akku = 1 ja

0O 0 1 O CMA Komplementiere Akku nein
o 0 1 1 LDA Lade B in den Akku nein
o 1 0 O CLA Losche Akku nein
o 1 0 1 INC Incrementiere Akku ja

o 1 1 O DEC Decrementiere Akku ja

0 1 1T 1 ADD Addiere B in den Akku ja

1 0 0 O SUB Subtrahiere B von Akku ja

1 0 0 1 AND Akku UND B in den Akku ja

1 0 1 O IOR Akku ODER B in den Akku ja

1 0 1 1 XOR Akku EXCLUSIV-ODER in den Akku ja

1 1 0 O SM1 Setze Akku = —1 ja

1 1 0 1 - - nein
1 1 1 0 - - nein
1T 1 1 1 - - nein

Tab. 3.4.1

Akkumulatorfunktionen der Schaltung nach Bild 3.4.1

Aus der Spalte Ubertrags-Flag kann entnommen werden, ob das Flag getaktet wird oder
nicht. In vielen Mikroprozessoren wird dieses Flag auch bei logischen Operationen getaktet.
Da hierbei aber normalerweise kein Ubertrag entsteht, wird das Flag geléscht.

Sollen mit dem Akkumulator kompliziertere Funktionen ausgefiihrt werden, miissen diese
zundchst in einfachere zerlegt werden. Fiur die Durchfiihrung einer solchen Operation sind
dann mehrere Taktzyklen erforderlich. Als Beispiel soll die Aufgabe 3 - B (B = Zahl an den
B-Eingangen) gerechnet werden. Da es keine Multiplizierfunktion gibt, muR diese durch
mehrere einfachere erzeugt werden.

Hierzu sind folgende 3 Steuerkombinationen an Uz bis Uy erforderlich:

0011
0111
0111

Die erste Kombination bewirkt, daR beim Takten die Zahl B in den Akkumulator geladen wird.
Dann wird die Kombination O 1 1 1 eingestelit und ein zweiter Taktzyklus erzeugt. Jetzt

1.46

wird B zum Akku-Inhalt addiert, d.h. B + B gebildet. Mit unverédnderter Steuerfunktion
wird ein weiterer Taktzyklus bendtigt, um zum Zwischenergebnis B + B noch einmal 8 zu
addieren. Als Ergebnis enthalt der Akku 3 - B.

Durch die Auswahl geeigneter Steuerkombinationsfolgen kénnen sehr komplizierte Ausdriicke
errechnet werden. Eine solche Steuerkombination wird als Rechnerbefehl und eine sinnvolle
Folge davon als Rechnerprogramm bezeichnet.

3.5 Akkumulator mit Datenspeicher

Um den Akkumulator im Rechner einsetzen zu konnen, muR die Moglichkeit vorhanden
sein, Zwischenergebnisse abzuspeichern und sie spater zuriickzuholen. Dieses wird mit Hilfe
eines Schreib-Lese-Speichers (RAM) erreicht (Bild 3.5.1).

Zweite Riickkopplung (n bit)

Ubertrags-Flag

Ausgdnge
A (n bit)
) A
Schreib- Lese~
Akkumulator > > Speicher (RAM)
wie in Bild3.41
N S Datenspeicher
B-Eingange | Daten- o s S'
(n bit) selektor o ’ 0 /
—| T---T T Schreib-
S0 56 Takt
S10
ROM
W N R | A 4 4 3
Us Uz U UYg az a; a4 qg Takt

Adresse

Bild 3.5.1
Akkumulator mit Datenspeicher

Bei dieser Anordnung werden die B-Eingdnge Uber einen Datenselektor gesteuert. Mit dem
Datenselektor werden entweder die B-Eingdnge oder die Ausgidnge des Datenspeichers
durchgeschaltet. Die Akkumulatorausgange gehen nicht nur nach auRen, sondern auch zu
den Eingéngen des Datenspeichers. Dadurch ist es moglich, den Akku-Inhalt in den Daten-
speicher oder auch Daten vom Speicher tUber den Datenselektor in den Akkumulator zu laden.
Das Umcodierungs-ROM wird um 2 bit erweitert (Se und Sio). Die Funktionen dieser An-
ordnung zeigt Tab. 3.5.1.

Der zusatzliche ROM-Ausgang S1o dient zum Umschalten des Datenselektors. Normalerweise
ist der Selektor so geschaltet, daR der Datenspeicher mit dem Akkumulator verbunden ist.
Bei dem bit-Muster U; bis U, gleich 1 1 O 1 schaltet der Datenselektor auf die B-Eingange
um, die dann direkt mit dem Akkumulator verbunden sind und deren Daten in dessen
Register zwischengespeichert werden. Dabei dirfen die an den Eingdngen stehenden Daten
in der ALU nicht verandert werden, d. h., die Steuerfunktion der ALU muR so gewahlt werden,
daR die B-Eingange unverandert durchgeschaltet werden (Se bis So = 0001000
nach Tab. 3.2.1). Das gleiche gilt fur die Steuerfunktion Us bis U, gleich 0 O 1 1. In
diesem Falle werden allerdings die Akku-Eingédnge uber den Datenselektor mit dem Daten-
speicher verbunden.

Das zweite zusatzliche bit im ROM (Ss) dient dazu, dann einen Takt fir den Datenspeicher
zu erzeugen, wenn das bit-Muster Us bis Up gleich 1 1 1 O ist. Bei dieser Steuerfunktion

1.47

[Exp.3 |

o

Us U Ui U as a» a1 ao | Abkirzung | Funktion Ubertrags-
: Flag
O 0 0 o X X X X NOP Keine Operation ja
O 0 o0 1 X X X X SP1 Setze Akku = 1 ja
O 0O 1 O X X X X CMA Komplementiere nein
Akku
o o0 1 1 a a a a LDA Lade Inhalt nein
Adresse aaaa
O 1 0 O X X X X CLA Lésche Akku nein
o 1 0 1 X X X X INC Incrementiere Akku ja
o 1 1 O X X X X DEC Decrementiere Akku ja
o 1 1 1 a a a a ADD Addiere Inhalt ja
Adresse aaaa
1 0 O O a a a a SuUB Subtrahiere Inhalt ja
Adresse aaaa
1 0 O 1 a a a a AND Akku UND Inhalt ja
Adresse aaaa
1 0 1 O a a a a IOR Akku ODER Inhalt ja
Adresse aaaa
1 0 1 1 a a a a XOR Akku EXCLUSIV- ja
ODER Adresse aa a a
1 1 0 O X X X X SM1 Setze Akku = —1 ja
1 0 1 X X X X INP Lade B-Eingédnge nein
in den Akku
1 1 1 O a a a a STA Speichere Akku in nein
Adresse aaaa
1 1 1 1 X X Xx X - - -

a a a a = eine Datenspeicheradresse
x x x x = ,don’t care”-Zustand, d.h. beliebig

Tab. 3.5.1
Funktionen des Akkumulators mit Datenspeicher

wird nédmlich der Akkumulatorinhalt in den Datenspeicher geschrieben. Damit der Akku-
mulatorinhalt durch diese Operation nicht verandert wird, mu an den Steuerausgangen
Se bis So des ROMs das bit-Muster 0 0 1 0 O 1 1 erzeugt werden (siehe auch Tab.
3.3.1), da dann der Akkumulatorinhalt wieder in sich zurtickgeschrieben wird.

Anmerkung:

Bei Experiment 4 koénnen Sie feststellen, daR die Steuerfunktion Us bis Up = 11 0 1
die B-Eingange durchschaltet, wahrend die Funktionen 1 1 1 O und 1 1 1 1 den Akku-
Inhalt in sich selbst zuriickschreiben. Auf das bit-Muster 1 1 1 1 kommen wir noch zu
sprechen.

Aus Tab. 3.5.1 ist zu erkennen, dal3 nicht alle Rechnerbefehle Us bis Uy den Datenspeicher
verwenden. In solchen Fallen wie z.B. 0 1 0 O = CLA = Ldsche Akku, haben die Adres-
sen-bit az bis ao keine Bedeutung und kénnen deshalb beliebige Werte annehmen. Dies
wird durch ein x gekennzeichnet.

3.6 Vereinfachter Rechner

Der nachste Schritt zur Entwicklung eines vollstandigen Rechners ist, die Steuermusterfolge
in einem Programmspeicher zwischenzuspeichern. Damit ist dann letztlich ein automatischer
Betrieb moglich (Bild 3.6.1).

1.48

Akkumulator

mit Datenspeicher

B-Eingange Ausgdnge
—— . —————
(n bit) entsprechend Bild (n bit)
351
Us g Uy Uy a3 a3 a4 ag
T N N N N N Takt 1
Speicherausgdnge
Befehls-| (n bit) P 9 g
zahler Programmspeicher
Bild 3.6.1
Ladeeinrichtung Anwendung von Befehlszahler
und Programmspeicher
Takt 2

Die abzuarbeitende Folge von Steuerwortern oder Befehlen (das Programm) wird zunachst
in den Programmspeicher geladen. Dabei ist natirlich die Reihenfolge der einzelnen Befehle
wichtig. Die Befehle werden deshalb im Programmspeicher mit steigenden aufeinander-
folgenden Adressen gespeichert. Wenn dann iliber einen Zéhler die Programmspeicher-
adressen automatisch erzeugt werden, erscheinen die Befehle in der richtigen Reihenfolge
und kénnen nacheinander ausgefiihrt werden. Bevor man allerdings ein solches System
benutzen kann, muld das Programm zunachst in den Programmspeicher geladen werden.
Dabei sind 2 Mdglichkeiten zu unterscheiden:

Wenn das System eine feste Aufgabe hat, z. B. Steuerung eines Aufzuges, wird im allgemeinen
wahrend des ganzen Betriebes ein festes Programm benétigt. In solchen Fallen wird ein
Festwertspeicher (ROM) benutzt und das Programm beim Herstellungsproze3 des ROMs
eingespeichert.

Wenn dagegen das Programm haufig geandert werden muf3, z. B. bei der Entwicklung und
beim Testen des Programms oder in den Experimenten dieses Lehrganges, wird als Programm-
speicher ein Schreib-Lese-Speicher (RAM) benutzt. In diesem Falle muR tber eine zuséatzliche
Logik das Programm in den Programmspeicher geladen werden. Auf3erdem muf} eine
Kontrolle des Programms mdéglich sein.

Obwohl einige Mikroprozessoren getrennte Daten- und Programmspeicher enthalten, wird
normalerweise nur ein gemeinsamer Speicher fir beide Zwecke benutzt, d.h., der Mikro-
prozessor hat einen gemeinsamen AdreR- und Datenraum. Der Speicher selbst kann intern
als gemischtes ROM und RAM verwirklicht werden. Ein gemeinsamer Speicher hat mehrere
Vorteile:

— GroRere Flexibilitat. Je nach Aufgabenstellung kann die Grenze zwischen Programm- und
Datenkapazitdt vom Anwender festgelegt werden, da manche Aufgaben viel Programm und
wenig Daten oder umgekehrt benétigen.

— Es werden weniger Anschliisse bendétigt (bei Mikroprozessoren besonders wichtig).

— Es kénnen auch die Programmschritte als Daten verarbeitet werden (dieser Punkt wird in
einem spateren Abschnitt naher behandelt).

Als Nachteil der Einspeicherversion kann der groRRere Schaltungsaufwand im Mikroprozessor
genannt werden. Die Adresse mul® hierbei ja entweder vom Befehlszahler oder aber vom
Adressenteil des Befehles kommen kénnen. Dafiir wird ein Datenselektor bendtigt. Auch die
Speichereingéange bendtigen einen Datenselektor. Zusatzlich wird noch ein Zwischenspeicher
(Befehlsregister) fur das Befehiswort bendtigt, damit der Befehl so lange festgehalten wird,
wie der Speicher die Daten aus- oder einliest.

Eine mogliche Realisierung zeigt Bild 3.6.2.

Damit der Rechner anhalt, wenn das Programm abgearbeitet worden ist, muf am Ende eines
Programms ein HALT-Befehl den Ablauf stoppen. Ohne diesen Befehl hatte das Programm

1.49

Eingdnge
gang

Daten- Ausgange
Akkumulator —» >

Y

selektor

Befehls-

zadhler

Adrel3 -
zwischen- |- Speicher

l speicher

Befehls-

register

4

[ttttte

Bild 3.6.2 Steuerung
Einfacher Rechner mit — und
gemeinsamem Daten- Taktverteiler
und Programmspeicher

A

Bedienteil

)

Taktgenerator

kein Ende. Der Rechner wiirde auch die Daten ausfiihren und am Ende des Speichers wieder
von vorne beginnen. Dem HALT-Befehl ist das Steuermuster Us bis Uo gleich 1 1 1 1 zu-
geordnet.

Zur Steuerung des Rechenablaufes wird ein Steuerwerk benétigt. Ein solches Steuerwerk
ist recht kompliziert, und wir werden uns deshalb im Rahmen dieses Lehrganges auf eine
kurze Beschreibung beschréanken. Die Aufgabe des Steuerwerkes ist es, die verschiedenen
Taktimpulse und Steuerworter fur die einzelnen Stufen des Rechners zu erzeugen. Die zu
erzeugenden Steuerimpulse hangen jeweils vom gerade auszufiihrenden Befehl ab. Anhand
eines vereinfachten Ablaufdiagramms eines Rechnerbefehles soll das Ganze naher erlautert
werden (Bild 3.6.3).

Der Befehlszahler zeigt an, welcher Befehl des Programms (z.B. Nr. 17 des Programms)
ausgefihrt werden soll. Der Befehlszahlerinhalt wird also zuerst auf die AdreReingdnge des
Speichers {bertragen. Der auszufiihrende Befehl wird jetzt aus dem Speicher geholt und
im Befehlsregister zwischengespeichert. Da der Befehl im allgemeinen aus dem Operationsteil
(Us bis Up) und dem AdreBteil (asz bis ao) besteht, mufd der Inhalt des Befehlsregisters in
Operations- und AdreBteil aufgespalten werden. Aus dem Operationsteil (Op-Code) des
Befehles erkennt das Steuerwerk durch eine entsprechende Logik, ob dieser Befehl eine
Adresse benétigt oder nicht. Wenn nicht, veranlat das Steuerwerk direkt die entsprechende
Operation (z.B. Us bis Uo = 0 0 0 1 in Tab. 3.5.1). Wenn ja, wird der AdreRteil Gber
den AdreBzwischenspeicher auf die AdreReingdnge des Speichers gegeben). Das unter
der angesprochenen Adresse liegende Datenwort gelangt aus dem Speicher zur Ausfiihrung
der Operation in den Akkumulator. Damit ist der Befehl ausgefiihrt, und der Rechner kann
nach Erhéhen des Befehlszéhlers den nachsten Befehi der Programmliste durchfiihren. War
dieser Befehl ein HALT-Befehl (letzter Befehl jedes Programms), stoppt das Steuerwerk den
Rechenablauf.

Die Durchfiihrung eines Befehles erfordert eine bestimmte Anzahl von Taktimpulsen bzw.
Taktzyklen. Die Anzahl der Taktzyklen fir die verschiedenen Befehle kann verschieden groR®
sein.

Um bei Mikroprozessoren die vielen Befehle zu ermdglichen, ist eine groRe Anzahl von
Verbindungen zwischen den einzelnen Baustufen erforderlich. Dieses erfordert eine groRRe

1.60

 J
Befehlszahler —
Speicheradrefiregister

Befehl —s= Befehlsregister

werden

D aten vom Speicher
benotigt?

Adresse der Daten —»
AdreBzwischenspeicher

nein ‘
Daten aus Speicher
— ALU
\
Ausfiihrung des Befehles
y
Erhohen des Befehlszdhlers Bild 3.6.3
Ablaufdiagramm eines
Rechnerbefehles

Anzahl von Datenselektoren. Um dies zu vermeiden, wird haufig eine andere Struktur
benutzt (Bild 3.6.4).

Diese Struktur basiert auf dem Konzept einer bi-direktionalen Datenbus. Unter Bus versteht
man eine Datenleitung, an der mehrere Einheiten gleichzeitig angeschlossen sind. Bi-direktional

ALU mit - > Befehls -
Zwischen- register
speicher > i
-
Registerblock -
mit - Steuerwerk '—<—®
Y Akkumulator prum
Befehlszahler o -
usw. +
> Flags
Adrefregister -¢
Y
Y <
% - Speicher —Datenbus
Y o
57— g
5 Eingangs - - Ausgangs- [® S)
E’>— multiplexer demultiplexer |—e 9 Bild 3.6.4
W > — < Busstrukturierter Rechner

1.51

Exp. 5

bedeutet in diesem Zusammenhang, daR die Daten in beiden Richtungen tibertragen werden
konnen. Je nach System gibt es zwischen 1 und 3 Daten- und AdreRbusse, die nach einem
Zeitmultiplexbetrieb gesteuert werden. Die verschiedenen Baustufen des Rechners oder
Mikroprozessors konnen Daten auf eine Bus geben und Daten davon abrufen. Das Steuerwerk’
sorgt dafuir, daR zum selben Zeitpunkt nur von einer Baustufe Daten auf die Bus gelangen.
Nach diesem System koénnen Daten beliebig innerhalb des Mikroprozessors libertragen
werden. Da dieses Verfahren etwas langsamer ist als das Verfahren mit Einzelleitungen, wird
in der Praxis haufig eine Mischung zwischen den beiden Systemen benutzt.

3.7 Volistandiger Rechner

Bei jedem Mikroprozessor gibt es eine ganze Reihe zuséatzlicher Befehle, um den Programm-
ablauf zu steuern. Der wichtigste Befehl ist der Sprungbefehl. Mit einem Sprungbefehl
wird der Programmzahler mit einem im Programm gegebenen Wert geladen. Normalerweise
zahlt der Programmzahler bei jedem Befehl um einen Schritt weiter, um die Befehle der Reihe
nach abzuarbeiten. Mit Hilfe eines Sprungbefehles dagegen kann ein Teil des Programms
(oder auch ein Datenteil) Gbersprungen werden. Auch ist es moglich rickwarts zu springen
und einen Teil des Programms zu wiederholen. Dadurch werden Programmschleifen ermég-
licht, die sehr haufig gebraucht werden. Beispiele davon werden in den nachsten Abschnitten
gebracht. Damit eine Schleife nicht fortlaufend ausgefiihrt wird, mu3 es auch noch sog.
bedingte Spriinge geben. Hier wird der Sprung zu einer gegebenen Adresse nur dann
ausgefiihrt, wenn eine im Befehl spezifizierte Bedingung erfiillt wird, z. B. wenn das Ubertrags-
Flag gleich 1 ist. Andere Bedingungen werden durch zuséatzliche Flags erméglicht. Typische
Flags in einem Mikroprozessorsystem sind:

— Ubertrags-Flag oder C-Flag (C = Carry)

Dieses Flag zeigt das Verlassen des Zahlenbereiches bei der Integer Arithmetic an.

— Arithmetischer-Ubertrag-Flag oder V-Flag (V = Overflow)

Dient zur Anzeige beim Verlassen des Zahlenbereiches bei Zweierkomplementarithmetik.
— Null-Flag oder Z-Flag (Z = Zero)

Zeigt den Nullzustand eines Ergebnisses an.

— Negativ-Flag oder N-Flag

Zeigt ein negatives Ergebnis an.

— Paritédts-Flag oder P-Flag

Zeigt die Paritat des Ergebnisses an. Darunter versteht man hier, ob das Ergebnis eine gerade
oder ungerade Anzahl von Einsen enthalt.

Die aufgefuhrten Flags sind nicht immer alle vorhanden.

Die meisten Mikroprozessoren haben auch Befehle, um die Flags kiinstlich zu beeinflussen,
z.B. um diese zu setzen oder zu l6schen.

Ein weiterer wichtiger Befehl ist auch der Sprung-zum-Unterprogramm-Befehl. Hierbei
handelt es sich um einen Befehl, nicht nur zu einer bestimmten Adresse zu springen, sondern
zuséatzlich die momentane Adresse abzuspeichern. Damit besteht die Moéglichkeit, spater auf
die sog. Riicksprungadresse zuriickzuspringen. Der Begriff Unterprogramm wird in den
folgenden Abschnitten ebenfalls noch naher erldutert.

Fragen zu den Abschnitten 3.2 bis 3.6

1. Welche Funktion realisiert das Addier-Subtrahierwerk nach Bild 3.2.1, wenn die Steuer-
eingdnge S4 bis So gleich 1 0 0 1 1 sind? Wie unterscheidet sich diese Funktion von
der Funktion, die durch Ss bis So gleich 1 0 0 O O gebildet wird? (Uberlegen Sie sich,
was die einzelnen UND- und EXCLUSIV-ODER-Gatter im Bild 3.2.1 tatsachlich erzeugen).

2. Welches Steuermuster S; bis So wird bei der in Bild 3.3.3 dargestellten ALUV fir die

Funktion A — B bendétigt, bzw. welchen Inhalt muR das ROM in der Adresse 1 0 0 O
aufweisen?

1.62

3. Mit dem Akkumulator nach Bild 3.4.1 soll die Funktion 1 — 2 - B erzeugt werden.
Welche Befehle sind hierfiir nach Tab. 3.4.1 erforderlich, damit fiur diese Aufgabe ein
Programm geschrieben werden kann?

4. Mit dem Akkumulator nach Bild 3.5.1 soll die EXCLUSIV-ODER-Verkniipfung der unter
den Adressen 415 und 515 im Datenspeicher gespeicherten Informationen gebildet werden.
Geben Sie hierfir das Programm an, wobei der Maschinencode hexadezimal zu schreiben ist.

5. Die Aufgabe nach 4. soll gelést werden, ohne dafiir den XOR-Befehl zu beniitzen.
Schreiben Sie auch hierflir ein Programm.

Hinweise:
ANMB=(ANANB)V (BAA)

Die 2 UND-Verkniipfungen sind zuerst zu bilden. Hierbei mul3 eine UND-Verkniipfung
zwischengespeichert werden, wahrend die andere gebildet wird. Benutzen Sie hierfir irgend-
eine Adresse, z.B. Fis.

6. Schreiben Sie ein Programm fir den vereinfachten Rechner nach Bild 3.6.2, um den
Ausdruck (1 + P — Q) ¥ R zu berechnen. Hierbei sind P, Q und R im Speicher unter den

Adressen D1, E16 und F15 zu finden.
Uberpriifen Sie das Programm mit dem Experimentiersystem und benutzen Sie fur P, Q
und R irgendwelche Zahlen.

1.63

Adresse Maschinencode Befehl Kommentar
00 10 SP1 setze Akku = 1
01 7D ADD D bilde 1 + P
02 8 E SUB E bilde 1 + P - Q
03 BF XOR F bilde (1 + P - Q) ¥R
04 FO HLT halte an

1.61

