

Einleitung

Für zahlreiche Bereiche der Technik wird die Einführung der Mikroprozessoren von enormer

Bedeutungsein. Viele Experten prophezeien, daß der Einsatz von Mikroprozessoren technische

Umwiälzungen mit sich bringen wird, die in ihrem Ausmaß mit der Einführung des Transistors

vergleichbar sind. Das mag hochgegriffen erscheinen, aber es ist ganz sicher, daß die Mikro-

prozessoren, die für wenig Geld und auf kleinem Raum die volle Leistungsfähigkeit und

Flexibilität eines Computers zur Verfügung stellen, in zahllosen Geräten eingesetzt und dar-

über hinaus viele neue Produkte ermöglichen werden. Es dauert sicher nicht mehr lange, bis

uns Mikroprozessoren in allen Bereichen unseres täglichen Lebens begegnen. Angefangen

bei Haushaltsgeräten wie Herde, Waschmaschinen usw. über Heizungsregelungen, Meß-

geräte im Labor, Werkzeugmaschinensteuerungenbis hin zur Automobiltechnik bieten sich

Einsatzmöglichkeiten für den Mikroprozessor. Dies bedeutet aber, daß Techniker und

Ingenieure aus praktisch allen Sparten der Technik mit diesem Bauelement konfrontiert

werden. Die Betroffenen stehen plötzlich vor neuen Problemstellungen, für die sie zum

großen Teil nicht ausgebildet worden sind und auch gar nicht ausgebildet werden konnten.

Kennzeichnend für diesen Trend ist weiterhin, daß in Zukunft ein immer größer werdender

Anteil der Entwicklung eines Gerätes auf die sog. Softwareentwicklung fällt, d.h. die

Entwicklung von Computerprogrammen zur Steuerung des Gerätes. So macht z.B. bei der

Steuerung einer Waschmaschine mit Hilfe eines Mikroprozessors die Entwicklung des Pro-

grammesfür diese spezielle Aufgabe einen wesentlichen Teil der Entwicklungsarbeit aus.

Dieser Lehrgang soll den Technikern und Ingenieuren eine fundierte Einführung in diese

neue Technik geben. Um den LernendenSchritt für Schritt an die neue Technik heranzuführen,

wird zunächst die grundsätzliche Funktion sowie der prinzipielle Aufbau eines Computers

oder Rechners besprochen. Hierzu sind einige Grundlagen der Digitaltechnik erforderlich,

die in den Abschnitten 1. und 2. in knapper Form noch einmal erläutert werden.

Nach diesen grundlegenden Abschnitten wird dann in mehreren Stufen die Struktur eines

einfachen funktionsfähigen Mikrocomputers zusammengestellt. Angefangen mit den ein-

fachen Bausteinen der Digitaltechnik wird in mehreren Stufen ein komplettes Rechenwerk,

also das Kernstück eines Mikrocomputers, entwickelt. Durch Hinzufügen von Speichern und

eines Steuerwerkes entsteht schließlich ein einfacher aber funktionsfähiger Mikrocomputer.

Zu jedem dieser Entwicklungsschritte können mit dem Experimentiersystem zahlreiche

Experimente durchgeführt werden, so daß jeder Entwicklungsschritt nachvollzogen werden

kann.

Nachdem der Teilnehmer mit dem Grundkonzept vertraut ist, wird der Mikrocomputer vom

Standpunkt der Software, also der Programmierung, her behandelt. Die Eigenschaften eines

Mikroprozessors sind festgelegt in Form eines sog. Instruktionssatzes, also der Summe der

Befehle und Adressiermöglichkeiten, die ein Rechner bietet. Es wird nicht mehr erklärt,

durch welche schaltungstechnische Maßnahmenjedereinzelne Befehl realisiert wird. Wichtig

für den Anwender von Mikroprozessorensind nicht die Kenntnisse der schaltungstechnischen

Details, sondern vielmehr die Kenntnisse, die es ihm ermöglichen, anhand der vom Hersteller

mitgelieferten Software Programmefür seine Aufgaben zu entwickeln. Es werden also hier

die Instruktionen oder Befehle sowie die Adressierarten, die in Mikrorechnern zur Verfügung

stehen, behandelt. Über Programmbeispiele werden die Grundlagen der Programmierung

und die Verwendung der Rechnerbefehle erläutert.

Für diese grundsätzlichen Betrachtungen und Programmübungen wird kein bestimmter

Rechnertyp eines bestimmten Herstellers angesprochen. Vielmehr wollen wir Ihnen einen

Überblick geben über die Befehle und Adressiermöglichkeiten, wie man sie heute in Mikro-

prozessoren findet. |

Damit sind Sie befähigt, sich in jeden Rechnertyp einzuarbeiten und dann den für Ihre

Problemstellung geeigneten Typ auszusuchen. |

Aus diesem Grunde haben wir einen hypothetischen Mikrorechner entwickelt, der sich durch

einen möglichst übersichtlichen Befehlssatz auszeichnet. Es werdenhier alle die Tricks und

Ausnahmen vermieden, die die Hersteller praktischer Mikroprozessoren anwenden, um an

dieser und jener „Ecke” noch ein wenig mehr Leistung aus dem Produkt herauszuholen. Das

Hauptaugenmerkliegt hier also auf einem klar strukturierten, leicht überschaubarenInstruk-

tionssatz, in den Sie sich leicht einarbeiten können und an dem die wesentlichen Punkte klar

herausgearbeitet werden können. Dieser zweite Hauptteil des Lehrganges wird ergänzt durch

Abschnitte über allgemeine Fragen der Programmierung und über die für das praktische

Arbeiten unerläßlichen Hilfsprogramme.

Im dritten Hauptteil wird dannein echter Mikrorechner, und zwar der weitverbreitete Typ 8080,

besprochen. Dieser 8080 ist in dem Experimentiergerät enthalten, so daß Sie wieder selbst

Programme schreiben und testen können, um sich somit in diesen populären Rechnertyp

einzuarbeiten. Zu Ihrer Unterstützung ist in dem Experimentiergerät ein einfaches sog.

Monitorprogramm enthalten, das Ihnen einen optischen Zugriff in die Register und Speicher

des 8080 gestattet. Dieser Teil wird ergänzt durch einige ausgewählte Kapitel über Ein- und

Ausgabemethoden, verfügbare Bauelemente usw.

Zum Schluß noch ein Wort über das Experimentiergerät selbst. Hierin ist ein vollständiges

8080-Mikrorechnersystem mit einem 8080-Mikroprozessor, Speicher, Ein- und Ausgabe-

schaltungen enthalten. Dieser Rechner wird dazu verwendet, den Addierer-Subtrahierer,

den Akkumulator usw. und schließlich den vereinfachten Rechner und den hypothetischen

Mikrorechner zu simulieren. Das Experimentiergerät ist also eine praktische Anwendung

eines Mikrorechners. In diesem Zusammenhang könnenSie sich vielleicht vorstellen, welcher

Aufwand erforderlich wäre, wenn all die Funktionen dieses Experimentiersystems mit „nor-

malen” Digitalschaltungen aufgebaut wären. Hier wird alles mit einem entsprechend

programmierten Mikrorechner durchgeführt.

Verfasser:

Dr. Jürgen Gerlach

C. D. Nabavi, B. Sc.

Forschungszentrum der

Standard Elektrik Lorenz AG

Stuttgart

Dezimal 3-Exzeß-Code

0 0011
0100

2 0101
3 0110
4 0111
5 1000
6 1001
7 1010
8 1011 Tab. 2.7.2
x 1100 3-Exzeß-Code

Die Verarbeitung von BCD-Zahlen bedeutet, daß zwar Dezimalzahlen eingegeben werden,

intern im Rechner werdenjedoch Binärzahlen verarbeitet.

Als Beispiel für die Arithmetik mit BCD-Zahlen soll hier die Addition im 8421-Code behandelt

werden, da eine Reihe von Mikroprozessoren spezielle Instruktionen dafür hat.

Die Arbeitsweise soll anhand einiger Beispiele demonstriert werden:

1. 5 0101

+4 0100

9 1001

In diesem Beispiel wurden 2 BCD-Zahlen nach den Regeln der binären Addition addiert, und

es ergab sich ein richtiges Ergebnis.

2.

N
0
1

oO
oO 01

11+

1 oO1 ON
D

Bei diesem Beispiel wurden ebenfalls die Regeln der binären Addition angewandt, dabei

ergab sich aber im Ergebnis ein illegaler Code, nämlich 1100.

Dieses Ergebnis kann dadurch korrigiert werden, daß man zu dem Ergebnis der binären

Addition die Zahl 6, also O 1 1 O, addiert, d.h., man „überspringt“ bei der Addition die

6 illegalen Codes von 1 O 1 O bis 1 1 1 1. Die Korrektur

ergibt das richtige Ergebnis 12 im 8421-Code.

3. Ein weiterer Fall muß noch betrachtet werden:

8 1000

+9 +1001

71 0001 0001

Die binäre Addition ergibt in diesem Fall das Ergebnis 11 im 8421-Code.

Das ist ein legaler BCD-Code, aber ein falsches Ergebnis. Dieser Fehler entsteht dadurch,

daß bei der Addition die 6 illegalen Codes mitgezählt wurden, die Korrektur führt man also

ebenso wie im vorigen Fall durch Addition von O 1 1 O aus.

0001 0

+0000 O

0001 0

00

11

11 |
O
—

Man erhält also 17 in BCD-Darstellung. Dieser Fall ist daran erkennbar, daß das Ergebnis

eine legale BCD-Zahl war, daß aber ein Übertrag in die nächsthöhere BCD-Stelle erfolgte.

1.35

Eine Addition im 8421-Code erfolgt somit in mehreren Schritten. Diesist in einem einfachen

Flußdiagramm (Bild 2.7.1) grafisch dargestellt.

Binäre Addition in

der 1. BCD-Stelle

(4 bit rechts)

Ergebniscode

Illegal oder Übertrag in

die nächste Stelle

Addiere 0110
zum Ergebnis

|

Bild 2.7.1 v

Flußdiagramm zur Erläuterung einer | Verarbeitung der nächsten BCD - Stellen,
Addition im 8421-Code bis sämtliche Stellen addiert sind

Bei der Subtraktion müssen die illegalen Codes auf ähnliche Weise berücksichtigt werden,

ebenso bei Multiplikation und Division, die ja eine wiederholte Anwendung der Addition

bzw. Subtraktion sind.

Zusammenfassend kann manalso über BCD-Codesfolgendes sagen:

Die Tatsache, daß illegale Codewörter vorkommen, bedeutet, daß für einen gegebenen

Zahlenvorrat in BCD-Codierung eine größere Wortlänge erforderlich ist, als in der binären

Darstellung. Eine größere Wortlänge bedeutet größeren Speicherbedarf und mehr Schaltungs-

aufwand. |

Die arithmetischen Operationen in BCD-Codessind generell komplizierter und somit in der

Praxis auch langsamer und aufwendiger als im Binärcode. Dagegenstehen die Vorteile der

dezimalen Arbeitsweise, das Wegfallen der Binär-Dezimalumwandlungenbei Ein- und Aus-

gabe, so daß in jedem Einzelfall geprüft werden muß, ob BCD-Codes zweckmäßig sind.

Fragen zu Abschnitt 2.7

1. Addieren Sie folgende BCD-Zahlen
a) 0001 0101 1001
+0011 0111 0010

0111

0110

3. Arbeitsweise eines Rechners bzw. Computers

Grundsätzlich läßt sich die Arbeitsweise eines Rechners dadurch beschreiben, daß er in der

Lage ist, Daten so zu verarbeiten, wie es durch ein Programm vorgeschrieben ist. Durch

verschiedene Programmekannein Rechner zur Lösung verschiedener Aufgaben eingesetzt

werden. Bis vor einigen Jahren waren Rechnernurals sehr voluminöse und teure Einrichtungen

zu haben. Dadurch war ihr Einsatz auf komplexe Aufgaben begrenzt, wie z.B. die Verarbeitung

von Massendaten im kommerziellen Bereich. Erst die rapide Weiterentwicklung der Halb-

leitertechnologie ermöglichte es, auch kleinere und nicht so teure Rechner herzustellen,

1.36

die allerdings auch wenigerleistungsfähig und weniger komfortabel vom ganzen Bedienungs-

ablauf her gesehen waren. Diese kleineren Computer wurden und werden allgemein als

Minicomputerbezeichnet.

Der nächste Schritt in dieser Entwicklungsrichtung war der, mittels der sog. Large Scale

Integration (LSI), was mit hohem Integrationsgrad übersetzt werden kann, durch mehrere

tausend Bauelemente die Zentraleinheit CPU (CPU = Central Processing Unit) eines

Mikrocomputers auf einem Chip herzustellen. Eine solche Zentraleinheit eines Mikro-

computers wird als Mikroprozessor bezeichnet. Interessant in diesem Zusammenhang

dürfte für Sie sein, daß der in unserem Experimentiersystem verwendete Mikroprozessor

vom Typ 8080 auf einem Chip mit 23 mm? (rund 4,8 mm x 4,8 mm) mehr als 4500 MOS-

Transistoren enthält. Mit diesen über 4 500 Transistoren ist es nun möglich, ein komplettes

Steuer- und Rechenwerk für einen Mikrocomputer zu realisieren. Im Rechenwerk werden

dabei die arithmetischen und logischen Operationen ausgeführt, während das Steuerwerk

den internen Ablauf im Rechnersteuert. Damit aus einem Mikroprozessor ein Mikrocomputer

wird, sind weitere zusätzliche Einrichtungen wie Programmspeicher, Datenspeicher, Ein-

und Ausgabebausteine, zusätzliche Logikschaltungen usw. erforderlich. Wie umfangreich

diese zusätzlichen Einrichtungen werden, hängt dabei vom jeweiligen Anwendungsfall ab.

Wichtig ist jedoch die Erkenntnis, daß man in der Praxis mit einem Mikroprozessorbaustein

alleine noch keine Aufgabenstellungen lösen kann, dazu ist immer ein Mlikrorechner er-

forderlich. In den nachfolgenden Abschnitten soll die prinzipielle Arbeitsweise eines Mikro-

rechners erläutert werden. Da sich prinzipiell die Arbeitsweise eines Mikrorechners von

einem anderen Rechner nicht unterscheidet, werden Schritt für Schritt die einzelnen Bau-

stufen behandelt, die für einen Rechner allgemein notwendig sind. Jeder Schritt wird dabei

durch entsprechende Experimente verdeutlicht.

3.1 Addierwerk

Aus Abschnitt 2. ist bekannt, wie man Binärzahlen addiert. Wenn im einfachsten Falle 2

1-bit-Binärzahlen addiert werden sollen, so gibt es grundsätzlich folgende Möglichkeiten:

A+B Summe Übertrag

0O0+O0 OÖ OÖ

O+1 1 OÖ

1+0 1 OÖ

1+1 OÖ 1
Eine Schaltung, die in der Lage ist, diese Rechenoperationen durchzuführen, wird als Halb-

addierer (HA) bezeichnet.In Bild 3.1.1 ist ein HA in Blockschaltbildform dargestellt.

Übertrag Ü

A A B zZ U

0 OÖ OÖ OÖ

HA —Summe I 0 1 1 O
1 0 1 OÖ

8 1 1 0 1

a) b)

Bild 3.1.1

Halbaddierer

a) Blockschaltbild

b) Funktionstabelle

1.37

Aus der Funktionstabelle können die Funktionsgleichungen abgeleitet werden, die für die

Summen- und Übertragsbildung erfüllt sein müssen:

Summe I =(A AB) V(AAB)=AWB (EXCLUSIV-ODER)
Übertrag U=AAB (UND)

Aus diesen Gleichungen kann jetzt die logische Schaltung eines Halbaddierers abgeleitet

werden (Bild 3.1.2).
Ü=A AB

 AO

 BO-

 vr

I=[AnB)V(ArB)

 Bild 3.1.2

Schaltung eines

Halbaddierers

Wenn nun mehrstellige bit-Kombinationen (sog. Wörter) addiert werden sollen, so reicht

ein Halbaddierer hierfür nicht aus. In diesem Fall muß nämlich bei einem Übertrag dieser

in der nächsthöherwertigen Stelle berücksichtigt werden. Dies kann nur mit einem Voll-

addierer gelöst werden, der außer den Eingängen A und B noch einen Übertragseingang C

hat (Bild 3.1.3).

Ausgangsübertrag

Ü

A A B C Z Ü

0 O O O 0

Voll - Summe OÖ 1 OÖ 1 OÖ

addierer & 1 0 0 1 0

1 1 O O 1

B 0 0 1 1 0
OÖ 1 1 OÖ 1

1 OÖ 1 OÖ 1

1 1 1 1 1

C
Eingangsübertrag

a) b)

Bild 3.1.3

Volladdierer

a) Blockschaltbild

b) Funktionstabelle

Für die Summegilt jetzt die Funktionsgleichung:

Z=(AABAC)V(AABVCOAV(AABACOV(IAABAGO)

Diese Gleichung läßt sich nach den Regeln der Schaltalgebra umformenin:

2=(AVYBJ)VC=AVYBVC

1.38

Diese Gleichung entspricht der Kaskadierung von 2 EXCLUSIV-ODER-Verknüpfungen, wie

schon in Abschnitt 1.3, Bild 1.3.5 gezeigt.

Für den Ausgangsübertrag gilt die Beziehung:

Ü=(ANBACV(AABAC)V(ANBACV(AANBAGO)

Diese Gleichung läßt sich vereinfachen zu:

UÜ=S(ANB)V(BAC)VIAAC)

Damit ergibt sich für den Volladierer eine Schaltung entsprechend Bild 3.1.4.

AO I
\ > U
)
7

BO

 T

1
7
T

 Bild 3.1.4

Schaltung eines Volladdierers
Sind nun 2 n-bit-Wörter zu addieren, müssen mehrere Volladdierer zusammengeschaltet

werden.Hierzu ein einfaches Beispiel mit 2 3-bit-Wörtern:

22 21 2°

A: 1 O0 1

B: 1 1 1

Ü: 1 1

1 10 0

Genau genommen werdenfür dieses Beispiel ein HA und 2 VA benötigt, da in der Stelle 2°

noch kein Übertrag vorhanden sein kann. In der Praxis wird man jedoch auchfür diese Stelle

einen VA benutzen, und den Eingang Co für ein solches Beispiel mit O belegen. Damit ergibt

sich für die Lösung dieser Aufgabe eine Schaltung entsprechendBild 3.1.5.

22 y' „0

1 1 0 1 1 1

“ * “ “ " ii

Ü C2 j CH Ü CoI m va —1U va 0
|
|
|

y 27 2 | 20
1 1 0 0

Bild 3.1.5

Addierwerk für 2 3-bit-Binärzahlen

1.39

Würde man bei diesem Addierwerk den Eingang Co statt mit O mit 1 beschalten, so würde

das Ergebnis um 1 erhöht. Dies ist in der Praxis für bestimmte Anwendungsfälle erforderlich.

Aus diesem Grunde erhält dieser Übertragseingang die Bezeichnung Incrementiereingang

INC (von Increment = Zuwachs). Ein Addierer mit einem Incrementiereingang wird dannals

Ripple-Carry-Addierer bezeichnet. In Bild 3.1.6 ist ein r-bit-Ripple-Carry-Addierer dar-

gestellt.

Ausgangs-

Übertrag

Fu An Ü,

In |]
® VAn —
| An
c n

1:0 Cn
< Os

ce A }
u 11

A Un-1

I ZN n-1
VAn-1 —ı

CH-1

| > Summe

|

|

U
Pa 2,
Bn VA; —

© C,

e Bn-1 j
ı O0 t

am |
u B ı Üg

20
VAg —

> (c5.

a) INC

U
Oo
5
<< O A

m

In

S&n_
0-1 Summe

3
Bn

U 20
Oo
5
m DO B,

u

b) INC

Bild 3.1.6

Ripple-Carry-Addierer

a) Funktionsschaltbild

b) Blockschaltbild

1.40

3.2 Addier-Subtrahierwerk

Ein Addierwerk nach Bild 3.1.6 läßt sich durch Vorschalten von Gattern so erweitern, daß

viele weitere Funktionen damit verwirklicht werden können. Die in Bild 3.2.1 dargestellte

Schaltung ermöglicht u.a. auch die Subtraktion von Binärzahlen und wird deshalb auch als

Addier-Subtrahierwerk bezeichnet.

N

 A

-
E
i
n
g
ä
n
g
e

A

A1

 P

r
o

Ag >
L
en

&

3
dm N

‚vo —
DO

2
| ©
> DO

u u5 :

oO > 9
ı >

e bs |<
Q

oa
X

1
= >
DD

1
I

 Y

 N.

 B
-
E
i
n
g
ä
n
g
e

 Y

I
d

I
I
D
I
D

0
T
D

I
D
I
D

 7
9
7

Bo MR

x ei

| 5
&

| 3 5 5
oO o a E

= S 5 S
® x

'A DI 2
S, 53 52 54 So

\ /

V
Steuereingänge

Bild 3.2.1

A-bit-Addier-Subtrahierwerk

Die so entstandene Schaltung enthält 5 Steuereingänge Sı bis So, die es ermöglichen, die

A- und B-Eingänge auf die unterschiedlichste Art miteinander zu verknüpfen. In Tab. 3.2.1

sind alle möglichen Eingangskombinationen mit den dazugehörigen Ausgangsfunktionen

dargestellt.

1.41

Sı Ss S2 Sı So Ausgangs-

funktion

000 0 0 0

000071 1

000 1090 —1

000 171 OÖ

001 00 —1

0071071 O

00 1 1 0 -2

0071 171 —]1

0 1000 B

010071 B+1

0 10 10 -B-1>

010171 -B

01 71 0 0 B-1

0171071 B

O0 1 7171 0 -B-2

0127127171 -B-1=B
100 009 A

100071 A+1I

1001 0 A-1

100 171 A

10 100 -A-1=A

1071071 -A

10 110 -A-2

101171 -A-1=A
11 0 0 0 A+B

11 0071 A+B+1I

110710 A-B-iI

11 0171 A-B

11 10 0 B-A-1I

Tab. 3.2.1 1171 0071 B-A

Steuerfunktionen für das Addier- 171 71 712-0 -A-B-

Subtrahier-Werk nach Bild 3.2.1 1171171 -A-B-1

Es würde zu weit führen, wollten wir alle 32 möglichen Eingangskombinationen ausführlich

diskutieren, wir beschränken uns deshalb auf einige Beispiele. So liefert z.B. die Steuer-

funktion Sı bis So = 1 1 0 O O die Ausgangsfunktion A + 2, d.h., die Eingangssignale werden

addiert. Wird Ss3 oder Sı auf O gebracht, werden die A- bzw. B-Eingänge abgeschaltet.

Am Ausgang erscheint dann nur B oder A. Die oberen EXCLUSIV-ODER-Gatter verknüpfen

die A-Eingänge mit S2. Bei S2 = O, werden die A-Eingänge unverändert durchgeschaltet

(AWO = A). Bei S2 = 1, werden die A-Eingänge komplementiert (AW 1 = A). Die Steuer-

eingänge Sı und S> dienen also dazu, die A- bzw. B-Eingänge zu komplementieren. Bei der

Steuerfunktion Sı bis So=0 0 O 1 O z.B. ist Sı = 1 während alle anderen Steuereingänge O

sind. Dies bedeutet, daß alle Ausgänge der 4 oberen EXCLUSIV-ODER-Gatter O sind während

die 4 unteren eine 1 liefern. Im Addierwerk wird also folgende Rechenoperation ausgeführt:

A: 0000

B: +1111

Ausgang: 1111

Dieses Ergebnis entspricht in der hier gewählten Zweierkomplementarithmetik -1.

Merke:

Bei allen Ausgangsfunktionenin Tab. 3.2.1 liegt die Zweierkomplementarithmetik zugrunde.

Die Steuerfunktion Sı bis So = 1 1 O 1 1 zeigt die Bedingungenfür die Subtraktion A - 2.

Bei der Zweierkomplementarithmetik muß hierzu die Zahl A komplementiert werden (Einer-

1.42

komplement 2), hierzu wird dann eine 1 addiert (Zweierkomplement 3 + 1), und das

so gewonnene Zwischenergebnis muß zur Zahl A addiert werden. Die Einerkomplement-

bildung von B wird durch S$ı = 1 bewirkt. Durch INC = 1 wird zu B eine 1 addiert (B + 1).

Durch $S2 = O und $S3 = Sa = 1 gelangt A in der anliegenden Form an das Addierwerk, so

daß als Ergebnis die Funktion A+ B+1 = A - Berscheint. Durch Umpolen von Sı und S
wird am Ausgang die Differenz B —- A gebildet. Wir empfehlen Ihnen,selbst nachzuvollziehen,

wie die weiteren Ausgangsfunktionenerklärt werden können.

3.3 Arithmetische logische Einheit (Arithmetic-Logic-Unit ALU)

Da alle Mikroprozessoren nicht nur arithmetische Verknüpfungen sondern auch logische

Verknüpfungen ausführen können, muß die Schaltung nach Bild 3.2.1 erweitert werden. Es

gibt hierzu mehrere Möglichkeiten. Im Rahmen dieses Lehrganges werden wir eine Variante

behandeln, die einfach zu verstehen ist, obwohl die Lösung zu einer unökonomischen

Schaltung führt. Dabei gehen wir davon aus, daß als zusätzliche Funktionen die 3 logischen

Verknüpfungen M S

zu bilden sind (jedes bit von A wird mit dem entsprechendenbit von B verknüpft). In Bild 3.3.1

ist eine Lösung für diese Aufgabenstellung gezeigt.

 n
F

\
/

A-Eingänge

(n bit) —

Daten- Ausgänge
m

selektor [(n bit)

B-Eingänge _—_

(n bit)
;

Schaltung

nach Bild 3.2.1

Ss, S3 52 Sı So Ss 55

\ V / Bild 3.3.1
Steuereingänge Arithmetic-Logic-Unit

1.43

Wenndie Steuereingänge Ss = Se = 0 sind, wird das Addier-Subtrahierwerk durchgeschaltet,

und die Funktion entspricht der nach Tab. 3.2.1. Bei einer anderen Beschaltung von Ss und Se

wird eine der angegebenen Verknüpfungen durchgeschaltet. In diesem Falle beeinflussen

dann die Steuereingänge So bis Sı das Ergebnis nicht.

Mit 7 Steuereingängen könnte man vom Prinzip 2’ = 128 verschiedene Funktionen bilden,

die allerdings von der Schaltung gar nicht alle geliefert werden können. Schon die Schaltung

nach Bild 3.2.1 enthält Redundanzen,d. h., bestimmte Funktionen wiederholensich. Tab. 3.2.1

zeigt, daß z.B. die Funktion O allein 3 mal vorkommt. Insgesamt enthält die Tabelle nur 24

verschiedene Funktionen. Mit den 3 neuen Funktionen gibt es insgesamt 27 Funktionen, von

denenallerdings mehrere keine praktische Bedeutung haben(z.B. -A - B - 2). Wir werden uns

deshalb auf 13 Funktionen beschränken und kommen dadurch nach einer Umcodierung

mit 4 Steuereingängen aus. Die Umcodierung geschieht entsprechend Bild 3.3.2 mit einem

ROM.

Ss, 53 52 5;

Ausgänge

ROM

A
d
r
e
s
s
e

Bild 3.3.2

ROM zur Umcodierung der Steuereingänge

In Tab. 3.3.1 sind die 13 gewünschten Funktionen aufgeschlüsselt.

, 5, S. 5, 5, S, 5 U WU U U Funktion

28 2 u 00 0 0 A
DD. © c u OÖ OÖ O 1 1

oo: a 00710 A
. “ OÖ O 1 1 B

\ O 1 Ö O O
“ . O 1 O 1 A+1I

= OÖ 1 1 0 A-1

= O0 O 1 1 1 A+B
9 31 1 0 00 A-B

/ “ 1 OÖ O 1 ANB

1.0 1 OÖ 1 O AVB

ee 1 O 1 1 AB

Den 1 1 O O —1

Tab. 3.3.1 0 . u
Umcodierte Steuer- 1 1 1 OÖ für späteren Ausbau

1 1 1 1
funktionen

Da mit 4 bit 16 Funktionen möglich sind, bleiben bei der getroffenen Auswahl 3 Funktionen

für den späteren Ausbau des Systems übrig. Das für die Umcodierung verwendete ROM

benötigt 4 Adreßeingänge,d.h. 2* = 16 Wörter zu je 7 bit. Der Inhalt jedes Wortesist leicht

zu bestimmen.Als Beispiel betrachten wir die Steuerfunktion U3 bis U =0 10 1mitA +1.

Die entsprechende Adresse ist O 1 O 1. Aus Tab. 3.2.1 ist zu entnehmen, daß auf die _
Steuereingänge Sı bis So das bit-Muster 1 O0 O0 O 1 gelegt werden muß, um die Funktion -

A + 1 zu erhalten. Die Werte für Ss und Se hängen direkt von der Zuordnung des Datep-

selektors ab. Da, wie bereits erwähnt, für die arithmetischen Funktionen S; = Se = O sein

müssen, ergibt sich ein Gesamt-bit-Muster Se bis So von 0 O 1000 1. Dieses Muster

muß in dem ROM unter der Adresse O 1 O 1 gespeichert sein. Nach ähnlichen Überlegungen

könnenauchdie restlichen 15 Adresseninhalte bestimmt werden.

Steht ein ROM mit mehr als 7 bit Wortlänge zur Verfügung, können auch noch bestimmte

Nebenfunktionen ausgeführt werden. So könnte man z.B. ein zusätzliches bit S7 dazu

1.44

benutzen, den Übertrag der letzten Stelle dann abzuschalten, wenn es das Systemkonzept

erfordert. Dies wäre z.B. angebracht im Falle der logischen Verknüpfungen, da hier ein

arithmetischer Übertrag keine vernünftige Bedeutung hat. In Bild 3.3.3 ist die gesamte

Schaltung der ALU dargestellt.

Unterdückung

des Übertrages

A - Eingänge

(n bit)

ALU

Ausgänge
entsprechen Bild 3.3. 1

(n bit)
B -Eingänge

(n bit) Ss 5% 53 > Sı So

ı 4 h

ROM

zur Umcodierung der

Steuereingänge

I, 1 I. Bild 3.3.3
nln Om Komplette ALU mit Umcodierung

teuereingange der Steuereingänge

3.4 Akkumulator

Der Akkumulator (kurz Akku) ist die nächste Erweiterungsstufe der ALU (Bild 3.4.1).

Über trags- Übertrag

Flag (1 bit)

Ausgänge
ALU Register >

. (n bit)
B-Eingänge

(n bit)

AA AL / h

Sg

Sg 57 55 55 53 > 4 So

ROM

U3 U} U Uo Takt

Bild 3.4.1

Akkumulator mit Übertrags-Flag

1.45

Außer den Funktionen nachBild 3.3.3, enthält diese Schaltung als wesentliche Bestandteile

noch ein Register sowie ein Übertrags-Flag. Das Register dient zum Zwischenspeichern

der Ergebnisse. Hierzu wird eine der Eingangsgruppen (im Beispiel die A-Eingänge) mit den

Ausgängendes Registers verbunden, so daß eine Art Rückkopplung entsteht. Jetzt werden

die Informationen an den B-Eingängen mit dem Inhalt des Registers verknüpft. Durch

Taktimpulse wird das Verknüpfungsergebnis in das Register geladen, wobei deralte Register-

inhalt verloren geht. Damit ein möglicher Übertrag nicht nur kurzzeitig erscheint, wird

er in einem Flag ebenfalls zwischengespeichert. Ob dieses Flag getaktet wird oder nicht, wird

von einem zusätzlichen bit Ss im ROM bestimmt (UND-Funktion in Bild 3.4.1). Dies ist

erforderlich, da ein Übertrag nur bei sinnvollen ALU-Funktionen gespeichert wird.

Die Funktionen, die mit diesem Akkumulator ausgeführt werden können, lassen sich aus

Tab. 3.3.1 ableiten. So führt diese Anordnung z.B. bei einer Steuerkombination U3 bis Uo

von O0 1 0 1 die Funktion A + 1 aus. Da A durch die Rückkopplung dem jeweils vor-

handenen Registerinhalt entspricht, wird in diesem Falle mit jedem Taktimpuls der Akku-

mulatorinhalt um 1 erhöht, d.h., der Akkumulator arbeitet bei dieser Steuerkombination

als Zähler. Soll der Zähler rückwärts zählen, so muß über U3 bis Uo gleich O 1 10 die

Funktion A — 1 ausgelöst werden. In Tab. 3.4.1 sind die Funktionen des Akkumulators

unter Berücksichtigung der Rückkopplung dargestellt. Die dabei in der Spalte Abkürzung

verwendeten Ausdrücke sind allgemein gebräuchlich und von englischen Bezeichnungen

abgeleitet.
Buy

IE

U; U U U Abkürzung Funktion Übertrags-Flag

0000 NOP Keine Operation ja

00071 SP1 Setze Akku = 1 ja

001 0 CMA Komplementiere Akku nein

007171 LDA Lade B in den Akku nein

0100 CLA Lösche Akku nein

01071 INC Incrementiere Akku ja

O0 1 1 0 DEC Decrementiere Akku ja

O0 1 7171 ADD Addiere B in den Akku ja

10 00 SUB Subtrahiere A von Akku ja

10 071 AND Akku UND Bin den Akku ja

10 100 IOR Akku ODER 2 in den Akku ja

10 171 XOR Akku EXCLUSIV-ODERin den Akku ja

ı 1 0 0 SM1 Setze Akku = -1 ja

11 071 — — nein

1 1 71 0 — — nein

17171 1 — =. nein

Tab. 3.4.1

Akkumulatorfunktionen der Schaltung nach Bild 3.4.1

Aus der Spalte Übertrags-Flag kann entnommen werden, ob das Flag getaktet wird oder

nicht. In vielen Mikroprozessoren wird dieses Flag auch bei logischen Operationen getaktet.

Da hierbei aber normalerweise kein Übertrag entsteht, wird das Flag gelöscht.

Sollen mit dem Akkumulator kompliziertere Funktionen ausgeführt werden, müssen diese

zunächst in einfachere zerlegt werden. Für die Durchführung einer solchen Operation sind

dann mehrere Taktzyklen erforderlich. Als Beispiel soll die Aufgabe 3 : B (B = Zahl an den

B-Eingängen) gerechnet werden. Da es keine Multiplizierfunktion gibt, muß diese durch

mehrere einfachere erzeugt werden.

Hierzu sind folgende 3 Steuerkombinationen an U3 bis Uo erforderlich:

0011

0111

0111

Die erste Kombination bewirkt, daß beim Takten die Zahl B in den Akkumulator geladen wird.

Dann wird die Kombination O 1 1 1 eingestellt und ein zweiter Taktzyklus erzeugt. Jetzt

1.46

wird 3 zum Akku-Inhalt addiert, d.h. 3 + B gebildet. Mit unveränderter Steuerfunktion

wird ein weiterer Taktzyklus benötigt, um zum Zwischenergebnis 3 + B noch einmal B zu

addieren. Als Ergebnis enthält der Akku 3 - B.

Durch die Auswahlgeeigneter Steuerkombinationsfolgen könnensehr komplizierte Ausdrücke

errechnet werden. Eine solche Steuerkombination wird als Rechnerbefehlund eine sinnvolle

Folge davon als Rechnerprogramm bezeichnet.

3.5 Akkumulator mit Datenspeicher

Um den Akkumulator im Rechner einsetzen zu können, muß die Möglichkeit vorhanden

sein, Zwischenergebnisse abzuspeichern und sie später zurückzuholen. Dieses wird mit Hilfe

eines Schreib-Lese-Speichers (RAM)erreicht (Bild 3.5.1).

Zweite Rückkopplung (n bit)

Übertrags-Flag

Ausgänge

h (nbit)

A
Schreib- Lese -

Akkumulator > >- Speicher (RAM)

wie in Bild 3.4.

L Sg Datenspeicher

B-Eingänge| Daten- _ - =

(n bit) selektor . 8 0 l

| ft ' Schreib-

Sıo Sg Takt

510
ROM

u ww‘ Ah O9A

U; U U U 43 @ Takt

Adresse
Bild 3.5.1

Akkumulator mit Datenspeicher

Bei dieser Anordnung werden die 3-Eingänge über einen Datenselektor gesteuert. Mit dem

Datenselektor werden entweder die D-Eingänge oder die Ausgänge des Datenspeichers

durchgeschaltet. Die Akkumulatorausgänge .gehen nicht nur nach außen, sondern auch zu

den Eingängendes Datenspeichers. Dadurch ist es möglich, den Akku-Inhalt in den Daten-

speicher oder auch Daten vom Speicher über den Datenselektor in den Akkumulator zu laden.

Das Umcodierungs-ROM wird um 2 bit erweitert (Sa und Sıo). Die Funktionen dieser An-

ordnungzeigt Tab. 3.5.1.

Der zusätzliche ROM-Ausgang Sıo dient zum Umschalten des Datenselektors. Normalerweise

ist der Selektor so geschaltet, daß der Datenspeicher mit dem Akkumulator verbundenist.

Bei dem bit-Muster U; bis U, gleich 1 1 O 1 schaltet der Datenselektor auf die B-Eingänge

um, die dann direkt mit dem Akkumulator verbunden sind und deren Daten in dessen

Register zwischengespeichert werden. Dabei dürfen die an den Eingängen stehenden Daten

in der ALU nicht verändert werden, d.h., die Steuerfunktion der ALU muß so gewählt werden,

daß die B-Eingänge unverändert durchgeschaltet werden (Se bis So = 0001000

nach Tab. 3.2.1). Das gleiche gilt für die Steuerfunktion U3 bis Uo gleich 0 O 1 1. In

diesem Falle werdenallerdings die Akku-Eingänge über den Datenselektor mit dem Daten-

speicher verbunden.

Das zweite zusätzliche bit im ROM (Ss) dient dazu, dann einen Takt für den Datenspeicher

zu erzeugen, wenn das bit-Muster Us bis Uo gleich 1 1 1 O ist. Bei dieser Steuerfunktion

1.47

ze nf . B

a ? u

A
Fe u]

U U U Wo a3 &2 &ı &0 Abkürzung Funktion Übertrags-
Flag

00 0 0 X X X X NOP Keine Operation ja

00071 X X X X SP1 Setze Akku = 1 ja

00 1 0 X X X X CMA Komplementiere nein

Akku

0071 1 aaa 3a LDA Lade Inhalt nein

Adresse aaaa

0 1 0 0 X X X X CLA Lösche Akku nein

01 071 X XXX INC Incrementiere Akku ja

0 1 10 x X X X DEC Decrementiere Akku ja

O1 7171 aaa a ADD Addiere Inhalt ja

Adresse aaaa

10 0 oo aaa da SUB Subtrahiere Inhalt ja

Adresse aaaa

10071 aaa da AND Akku UND Inhalt ja

Adresse aaaa

10 1 0 aa a a IOR Akku ODERInhalt ja

Adresse aaaa

1071 1 aaa da XOR Akku EXCLUSIV- ja

ODER Adresse aaaa

11 0 0 X X X X SM1 Setze Akku = -1 ja

11 071 X X X X INP Lade B-Eingänge nein

in den Akku

ı 1 1-0 aaa da STA Speichere Akku in nein

Adresse aaaa

1 1 1 1 X X X X _ _ _

aaaa= eine Datenspeicheradresse

xxxx = „don't care”-Zustand, d.h. beliebig

Tab. 3.5.1

Funktionen des Akkumulators mit Datenspeicher

wird nämlich der Akkumulatorinhalt in den Datenspeicher geschrieben. Damit der Akku-

mulatorinhalt durch diese Operation nicht verändert wird, muß an den Steuerausgängen

Se bis So des ROMs das bit-Muster O0 O 1 0 O 1 1 erzeugt werden (siehe auch Tab.

3.3.1), da dann der Akkumulatorinhalt wieder in sich zurückgeschrieben wird.

Anmerkung:

Bei Experiment 4 können Sie feststellen, daß die Steuerfunktion Us bis Vo = 1101

die B-Eingänge durchschaltet, während die Funktionen 1 1 1 O und 1 1 1 1 den Akku-

Inhalt in sich selbst zurückschreiben. Auf das bit-Muster 1 1 1 1 kommen wir noch zu

sprechen.

Aus Tab. 3.5.1 ist zu erkennen, daß nicht alle Rechnerbefehle U3 bis Uo den Datenspeicher

verwenden. In solchen Fällen wie z.B. O 100 = CLA = Lösche Akku, haben die Adres-

sen-bit a3 bis ao keine Bedeutung und können deshalb beliebige Werte annehmen. Dies

wird durch ein x gekennzeichnet.

3.6 Vereinfachter Rechner

Der nächste Schritt zur Entwicklung eines vollständigen Rechnersist, die Steuermusterfolge

ineinem Programmspeicher zwischenzuspeichern. Damit ist dann letztlich ein automatischer

Betrieb möglich (Bild 3.6.1).

1.48

Akkumulator

mit Datenspeicher

B-Eingänge Ausgänge
>>

(n bit) entsprechend Bild (n bit)

3.5.1

U} U) U Un a3 m GG 0@p

AA AA KA Taktı

Speicherausgänge
Befehls-| (n bit) P u °
zähler Programmspeicher

Bild 3.6.1

Ladeeinrichtung Anwendung von Befehlszähler

und Programmspeicher
Takt 2

Die abzuarbeitende Folge von Steuerwörtern oder Befehlen (das Programm) wird zunächst

in den Programmspeichergeladen. Dabeiist natürlich die Reihenfolge der einzelnen Befehle

wichtig. Die Befehle werden deshalb im Programmspeicher mit steigenden aufeinander-

folgenden Adressen gespeichert. Wenn dann über einen Zähler die Programmspeicher-

adressen automatisch erzeugt werden, erscheinen die Befehle in der richtigen Reihenfolge

und können nacheinander ausgeführt werden. Bevor man allerdings ein solches System

benutzen kann, muß das Programm zunächst in den Programmspeicher geladen werden.

Dabei sind 2 Möglichkeiten zu unterscheiden:

Wenn das System eine feste Aufgabe hat, z.B. Steuerung eines Aufzuges, wird im allgemeinen

während des ganzen Betriebes ein festes Programm benötigt. In solchen Fällen wird ein

Festwertspeicher (ROM) benutzt und das Programm beim Herstellungsprozeß des ROMs

eingespeichert.

Wenn dagegen das Programm häufig geändert werden muß, z.B. bei der Entwicklung und

beim Testen des Programmsoderin den Experimenten dieses Lehrganges, wird als Programm-

speicher ein Schreib-Lese-Speicher (RAM) benutzt. In diesem Falle muß übereine zusätzliche

Logik das Programm in den Programmspeicher geladen werden. Außerdem muß eine

Kontrolle des Programms möglich sein.

Obwohl einige Mikroprozessoren getrennte Daten- und Programmspeicher enthalten, wird

normalerweise nur ein gemeinsamer Speicher für beide Zwecke benutzt, d.h., der Mikro-

prozessor hat einen gemeinsamen Adreß- und Datenraum. Der Speicher selbst kann intern

als gemischtes ROM und RAM verwirklicht werden. Ein gemeinsamer Speicher hat mehrere

Vorteile:

—- Größere Flexibilität. Je nach Aufgabenstellung kann die Grenze zwischen Programm- und

Datenkapazität vom Anwender festgelegt werden, da manche Aufgaben viel Programm und

wenig Daten oder umgekehrt benötigen.

— Es werden weniger Anschlüsse benötigt (bei Mikroprozessoren besonders wichtig).

— Es können auch die Programmschritte als Daten verarbeitet werden (dieser Punkt wird in

einem späteren Abschnitt näher behandelt).

Als Nachteil der Einspeicherversion kann der größere Schaltungsaufwand im Mikroprozessor

genannt werden. Die Adresse muß hierbei ja entweder vom Befehlszähler oder aber vom

Adressenteil des Befehles kommen können. Dafür wird ein Datenselektor benötigt. Auch die

Speichereingänge benötigen einen Datenselektor. Zusätzlich wird noch ein Zwischenspeicher

(Befehlsregister) für das Befehlswort benötigt, damit der Befehl so> lange festgehalten wird,

wie der Speicher die Daten aus- odereinliest.

Eine mögliche Realisierung zeigt Bild 3.6.2.

Damit der Rechner anhält, wenn das Programm abgearbeitet wordenist, muß am Endeeines

Programms ein HALT-Befehl den Ablauf stoppen. Ohne diesen Befehl hätte das Programm

1.49

Eingänge
>

Daten- Ausgange
een Akkumulator =. Er Y

selektor

Befehls-

zahler

 Adreß -

zwischen-—-» Speicher
| speicher

Befehls-

register

 A

| trttt

Bild 3.6.2 Steuerung 4 Bedienteil

Einfacher Rechner mit — und |

gemeinsamem Daten- Taktverteiler — Taktgenerator

und Programmspeicher

kein Ende. Der Rechner würde auch die Daten ausführen und am Endedes Speichers wieder

von vorne beginnen. Dem HALT-Befehl ist das Steuermuster U3 bis Uo gleich 1 1 1 1 zu-

geordnet.

Zur Steuerung des Rechenablaufes wird ein Steuerwerk benötigt. Ein solches Steuerwerk

ist recht kompliziert, und wir werden uns deshalb im Rahmen dieses Lehrganges auf eine

kurze Beschreibung beschränken. Die Aufgabe des Steuerwerkesist es, die verschiedenen

Taktimpulse und Steuerwörter für die einzelnen Stufen des Rechners zu erzeugen. Die zu

erzeugenden Steuerimpulse hängen jeweils vom gerade auszuführenden Befehl ab. Anhand

eines vereinfachten Ablaufdiagrammseines Rechnerbefehles soll das Ganze nähererläutert

werden (Bild 3.6.3).

Der Befehlszähler zeigt an, welcher Befehl des Programms (z.B. Nr. 17 des Programms)

ausgeführt werden soll. Der Befehlszählerinhalt wird also zuerst auf die Adreßeingänge des

Speichers übertragen. Der auszuführende Befehl wird jetzt aus dem Speicher geholt und

im Befehlsregister zwischengespeichert. Da der Befehl im allgemeinen aus dem Operationsteil

(Uz3 bis Uo) und dem Adreßteil (a3 bis a0) besteht, muß der Inhalt des Befehlsregisters in

Operations- und Adreßteil aufgespalten werden. Aus dem Operationsteil (Op-Code) des

Befehles erkennt das Steuerwerk durch eine entsprechende Logik, ob dieser Befehl eine

Adresse benötigt oder nicht. Wennnicht, veranlaßt das Steuerwerk direkt die entsprechende

Operation (z.B. Us bis Uno = 0001 in Tab. 3.5.1). Wenn ja, wird der Adreßteil über |

den Adreßzwischenspeicher auf die Adreßeingänge des Speichers gegeben). Das unter

der angesprochenen Adresse liegende Datenwort gelangt aus dem Speicher zur Ausführung

der Operation in den Akkumulator. Damit ist der Befehl ausgeführt, und der Rechner kann

nach Erhöhen des Befehlszählers den nächsten Befehl der Programmliste durchführen. War

dieser Befehl ein HALT-Befehl (letzter Befehl jedes Programms), stoppt das Steuerwerk den

Rechenablauf.

Die Durchführung eines Befehles erfordert eine bestimmte Anzahl von Taktimpulsen bzw.

Taktzyklen. Die Anzahl der Taktzyklen für die verschiedenen Befehle kann verschieden groß

sein.

Um bei Mikroprozessoren die vielen Befehle zu ermöglichen, ist eine große Anzahl von

Verbindungen zwischen den einzelnen Baustufen erforderlich. Dieses erfordert eine große

1.50

 |
Befehlszähler —>

Speicheradreßregister

Befehl —e Befehlsregister

werden

 Daten vom Speicher

benötigt? Y
Adresse der Daten —»
Adreßzwischenspeicher

nein y

Daten aus Speicher

— AU

|

Y

Ausführung des Befehles

| |

Erhöhen des Befehlszählers Bild 3.6.3

Ablaufdiagramm eines

Rechnerbefehles

Anzahl von Datenselektoren. Um dies zu vermeiden, wird häufig eine andere Struktur

benutzt (Bild 3.6.4).

Diese Struktur basiert auf dem Konzept einer bi-direktionalen Datenbus. Unter Bus versteht

man eine Datenleitung, an der mehrere Einheiten gleichzeitig angeschlossensind. Bi-direktional

ALU mit Br > Befehls -

Zwischen- register

speicher > f

DU

Registerblock --
mit = Steuerwerk —{»)

Y Akkumulator .—

Befehlszanhler RR —

USW. \

> Flags

Adreffregister —

Y

4 -

2 > Speicher —-Datenbus

ıY u

5°| —- Do
52 Eingangs - _ _

|

Ausgang- ff» 5

E>— multiplexer . demultiplexer MH" 4 Bild 3.6.4

u —»< Busstrukturierter Rechner

1.51

bedeutet in diesem Zusammenhang, daß die Daten in beiden Richtungen übertragen werden

können. Je nach System gibt es zwischen 1 und 3 Daten- und Adreßbusse, die nach einem

Zeitmultiplexbetrieb gesteuert werden. Die verschiedenen Baustufen des Rechners oder

Mikroprozessors können Daten auf eine Bus geben und Daten davonabrufen. Das Steuerwerk

sorgt dafür, daß zum selben Zeitpunkt nur von einer Baustufe Daten auf die Bus gelangen.

Nach diesem System können Daten beliebig innerhalb des Mikroprozessors übertragen

werden. Da dieses Verfahren etwas langsamerist als das Verfahren mit Einzelleitungen, wird

in der Praxis häufig eine Mischung zwischen den beiden Systemen benutzt.

3.7 Vollständiger Rechner

Bei jedem Mikroprozessor gibt es eine ganze Reihe zusätzlicher Befehle, um den Programm-

ablauf zu steuern. Der wichtigste Befehl ist der Sprungbefehl. Mit einem Sprungbefehl

wird der Programmzähler mit einem im Programm gegebenen Wert geladen. Normalerweise

zählt der Programmzähler bei jedem Befehl um einen Schritt weiter, um die Befehle der Reihe

nach abzuarbeiten. Mit Hilfe eines Sprungbefehles dagegen kannein Teil des Programms

(oder auch ein Datenteil) übersprungen werden. Auch ist es möglich rückwärts zu springen

und einen Teil des Programms zu wiederholen. Dadurch werden Programmschleifen ermög-

licht, die sehr häufig gebraucht werden.Beispiele davon werdenin den nächsten Abschnitten

gebracht. Damit eine Schleife nicht fortlaufend ausgeführt wird, muß es auch noch sog.

bedingte Sprünge geben. Hier wird der Sprung zu einer gegebenen Adresse nur dann

ausgeführt, wenneine im Befehl spezifizierte Bedingung erfüllt wird, z.B. wenn das Übertrags-

Flag gleich 1 ist. Andere Bedingungen werden durch zusätzliche Flags ermöglicht. Typische

Flags in einem Mikroprozessorsystem sind:

- Übertrags-Flag oder C-Flag (C = Carry)
Dieses Flag zeigt das Verlassen des Zahlenbereiches bei der Integer Arithmetic an.

- Arithmetischer-Übertrag-Flag oder V-Flag (V = Overflow)
Dient zur Anzeige beim Verlassen des Zahlenbereiches bei Zweierkomplementarithmetik.

- Null-Flag oder Z-Flag (Z = Zero)

Zeigt den Nullzustand eines Ergebnisses an.

— Negativ-Flag oder N-Flag

Zeigt ein negatives Ergebnis an.

- Paritäts-Flag oder P-Flag

Zeigt die Parität des Ergebnisses an. Darunter versteht man hier, ob das Ergebnis eine gerade

oder ungerade Anzahl von Einsen enthält. |

Die aufgeführten Flags sind nicht immeralle vorhanden.

Die meisten Mikroprozessoren haben auch Befehle, um die Flags künstlich zu beeinflussen,

z.B. um diese zu setzen oderzu löschen.

Ein weiterer wichtiger Befehl ist auch der Sprung-zum-Unterprogramm-Befehl. Hierbei

handelt es sich um einen Befehl, nicht nur zu einer bestimmten Adresse zu springen, sondern

zusätzlich die momentane Adresse abzuspeichern. Damit besteht die Möglichkeit, später auf

die sog. Rücksprungadresse zurückzuspringen. Der Begriff Unterprogramm wird in den

folgenden Abschnitten ebenfalls noch näher erläutert.

Fragen zu den Abschnitten 3.2 bis 3.6

1. Welche Funktion realisiert das Addier-Subtrahierwerk nach Bild 3.2.1, wenn die Steuer-

eingänge Sı bis So gleich 1 0 O 1 1 sind? Wie unterscheidet sich diese Funktion von

der Funktion, die durch Sı bis So gleich 1 O0 0 O0 O gebildet wird? (Überlegen Sie sich,

was die einzelnen UND- und EXCLUSIV-ODER-Gatter im Bild 3.2.1 tatsächlich erzeugen).

2. Welches Steuermuster $7 bis So wird bei der in Bild 3.3.3 dargestellten ALU für die

Funktion A — B benötigt, bzw. welchen Inhalt muß das ROM in der Adresse 1000

aufweisen?

1.52

3. Mit dem Akkumulator nach Bild 3.4.1 soll die Funktion 1 - 2 - B erzeugt werden.

Welche Befehle sind hierfür nach Tab. 3.4.1 erforderlich, damit für diese Aufgabe ein

Programm geschrieben werden kann?

4. Mit dem Akkumulator nach Bild 3.5.1 soll die EXCLUSIV-ODER-Verknüpfung der unter

den Adressen 4ıs und 516 im Datenspeicher gespeicherten Informationen gebildet werden.

Geben Sie hierfür das Programm an, wobei der Maschinencode hexadezimal zu schreibenist.

5. Die Aufgabe nach 4. soll gelöst werden, ohne dafür den XOR-Befehl zu benützen.

Schreiben Sie auch hierfür ein Programm.

Hinweise:

AYB=(AAB)V(BAA)

Die 2 UND-Verknüpfungen sind zuerst zu bilden. Hierbei muß eine UND-Verknüpfung

zwischengespeichert werden, während die andere gebildet wird. Benutzen Sie hierfür irgend-

eine Adresse, z.B. Fıe.

6. Schreiben Sie ein Programm für den vereinfachten Rechner nach Bild 3.6.2, um den

Ausdruck (1 + P - O) VW R zu berechnen.Hierbei sind Pf, Q und AR im Speicher unter den

Adressen Die, Eis und Fıs zu finden.

Überprüfen Sie das Programm mit dem Experimentiersystem und benutzen Sie für P, O

und A irgendwelcheZahlen.

1.53

Adresse Maschinencode Befehl Kommentar

00 10 SP1 setze Akku = 1

01 7D ADD D bilde 1 + P

02 SE SUBE bild I + P - 0Q

03 BF XOR F bilde (1 +P-O)VR

04 FO HLT halte an

1.61

