Macro User’s Guide

This guide describes the macro feature of the EMULEX Performance  Series terminal and printer servers and provides procedures for creating macros. 

This manual contains the following sections: 

� REF _Ref381515525 \* MERGEFORMAT �SECTION 1 - Introduction�- Describes the macro feature and provides a list of features and limits. 

� REF _Ref380415669 \* MERGEFORMAT �SECTION 2 - Installation�- Provides the procedures for installing the macro software on UNIX and VMS netserver hosts. 

� REF _Ref381515541 \* MERGEFORMAT �SECTION 3 - Server Configuration�- Describes the basic steps required to configure a server for macros operation. 

� REF _Ref381515551 \* MERGEFORMAT �SECTION 4 - Creating and Using Macros�- This section begins with a very simple example that demonstrates how to create and execute a macro. It then covers the major macro features in considerable detail, touching on more advanced topics such as caching and macro authorization. 

� REF _Ref381515562 \* MERGEFORMAT �SECTION 5 - Server Commands�- Describes the server commands that have been enhanced to support macros, and several new commands that have been added. 

� REF _Ref381515576 \* MERGEFORMAT �SECTION 6 - Macro Command Reference�- Provides descriptions, syntax, and examples of the micro commands and micro directives supported by the macro feature. 

� REF _Ref381515585 \* MERGEFORMAT �SECTION 7 - Debugging�- Describes the macro debugging feature and provides hints and suggestions for debugging macros. 

� REF _Ref381515593 \* MERGEFORMAT �APPENDIX A - Micro Command Summary�- Provides a quick-reference card of all micro commands and micro directives and lists the applicable subsection where they are discussed. 

� REF _Ref381515603 \* MERGEFORMAT �APPENDIX B - Macro Error and Status Messages�- Provides a list of all error and status messages that may appear on the user terminal. 

� REF _Ref381515386 \* MERGEFORMAT �GLOSSARY�

SECTION 1 - Introduction

1.1 Overview

The Performance Series Terminal Server Macro feature provides a method for creating and executing your own customized commands and user interface. These macro commands may execute a group of server commands, display a menu or display help screens. For example, a macro named default_port could contain a group of DEFINE PORT commands that would set one or more server ports using a customized default configuration. A second macro cared cmenu could display a list of available hosts, request your choice, -and issue the appropriate connect command.

The macro feature provides the following functions:

Full screen menu development environment

Macro execution authorization based on:

Specific server addresses

Specific ports on a server

Server port privilege level

Server port terminal type

Nested macros (calls) up to two levels deep

Unconditional jumps to macros

Up to 16 logical flags (true/false)

Up to 10 integer variables (8 unsigned chars. 2 unsigned words)

Macros may be designed such that they accept command line parameters

Conditional micro/server command execution (if/else)

Loop control mechanism

On-line help may be included in macro text

Users may display a directory of macros that they are authorized to execute

Ports may be configured to execute a predefined macro at login time

Ports may be configured such that they are restricted to macro execution (captive) only and may not enter server local mode

Macros may be used to enhance server security

Macros may be written for protocol and host failover on connect requests

Configurable UDP port numbers

Supports both default and alternate netserver host nodes 

Unlimited size on macros

1.2 Server Models Supported

The macro feature is supported by all current models of Performance Series servers, including the P2500, P3000, P4000, P6000, and P8000. 

This feature is also supported on self-load versions of the server, provided that the server is able to access a macro database located on a network host. In addition, the Emulex application program that supports the macro feature must be running on the same host. 

In order to support the macro feature, the server must have access to a VMS or UNIX host on which the Emulex macro application is instated. Access to this host is accomplished by defining a Netserver node on the server. 

1.3 Supported Hosts

The macro feature is supported on the following host systems: 

DEC VMS 5.0

DEC Ultrix 4.0 targeting VAXstation 3100, DECstation 3100

SCO Unix SYS V/386 release 3.2, version 2.0

SUN OS 4.1 Unix BSD

1.4 Ranges and Limits

The macro feature supports the following limits and ranges: 

Cache: I to 254 records

Nested: If commands: maximum of 8 levels

Netserver nodes: Supported by server: I Default node, I Alternate node.

Subroutine macro: 2 levels of calls

Loop: 2 levels

Variables: 8 byte variables, 2 word variables

Macro name: 16 characters maximum, may be less if host does not support 16-character file names

Macro size: Dependent on the average number of characters in each line. Variables that determine maximum size are:

Line count -maximum of 65535 lines

Record count - maximum of 65535 records

Record size - 512 bytes plus header)

Limiting factors are line count and average number of characters per line. For example: 

If each line contains 132 characters and the macro consists of 65535 lines, the maximum size is (132 * 65535) = 8,650,620 bytes.

If the average line contains 25 characters in a 65535 line macro, the maximum size is (25 * 65535) = 1,638,375 bytes. 

Note	In the unlikely event that the maximum macro size is reached, the macro can be expanded by using jumps and calls to other macros. 

SECTION 2 - Installation

2.1 Overview 

This section provides the procedures for installing the macro utility on UNIX and VMS hosts. Server support for macros is contained within the server's operational software. 

On UNIX hosts, you may manually install the macro feature or you may allow Install to automatically install the macro support software on the host. The Install procedure installs the host software and configures the server. 

On VMS hosts, the VMSINSTAL procedure is required to install the host software Refer to the VMS Software Installation Guide for the correct installation procedures. 

If you wish to manually install the macro software on a UNIX host, use the procedure in this section. 

2.2 Installation on UNIX Hosts 

Use the following procedures for both BSD (sockets) and streams TLI implementations of UNIX. If your system's implementation of UNIX supports both sockets and TLI, Emulex recommends that you use the procedures for socket implementation. 

Install the server software as described in the Performance Series Software Installation Guide for Unix-based Network Load Hosts. Boot the server. 

Log on to your load host as the super user (root). 

Change your current directory to the one that contains the Emulex distribution software (typically, . / emlx). For example, if the distribution software resides in /usr/emlx enter: 

cd /usr/emlx

Edit the file environ . h. This file contains parameters that must be tailored to the specific version of UNIX. Change the lines that begin with:

#define SOCK and #define SYSV as follows: 

For BSD implementations: 

#define SOCK 1

#define SYSV 0 

For System V implementations that support sockets: 

#define SOCK 1

#define SYSV 1

For System V implementations that support TLI only: 

#define SOCK 0

#define SYSV 1

#define UDP_PROVIDER "/dev/.../udp"

#define TCP_PROVIDER "/dev/.../tcp"

Where / . . . / is the intermediate directory path, if any.

Be sure to save the file if you make any changes.

Edit the macro.h header file to include the following lines:

Macro database path, for example: 

#define MACROBASE "usr/emlx/macrodbase/"

#define MACBASE “MACROBASE=usr/emlx/macrodbase/”

Macro UDP path, where nnnn is the UDP port number (e.g., 3000): 

#define DEFAULT_MACRO_PORT nnnn

#define MACPORT “MACPORT=nnnn"

Compile and link the macro host software.

BSD UNIX (SunOS 4.1, ULTRIX), enter:

cc -O -DUNIX macrod.c -o macrod

System V hosts with a socket library:

cc -O -DUNIX macrod.c -o macrod -lsocket

cc -O -DUNIX macrod.c -o macrod (HP-UX, AIX, dgux)

cc -O -DUNIX macrod.c -o macrod -lbsd (Tandem)

cc -O -DUNIX macrod.c -o macrod -linet (BULL B.O.S.)

cc -O -DUNIX macrod.c -o macrod -lsocket -lnsl (System V, 4.0)

cc -O -DUNIX macrod.c -o macrod -lnet -lnsl_s (System V, 3.2)

 System V host with TLI, enter 

cc -O -DUNIX macrod.c -o macrod -lnsl_s

cc -O -DUNIX macrod.c -o macrod -lnsl (System V, 4.0)

cc -O -DUNIX macrod.c -o macrod -lnet -lnsl_s (System V,3.2)

cc -O -DUNIX macrod.c -o macrod -lsocket -lnsl_s (SCO)

Move the compiled, executable program file called macrod to the . /emlx/bin directory. For example: 

mv macrod /usr/emlx/bin

Compile the menu generator program and move it to the . /emlx/bin directory as follows: 

cc makemenu.c -o makemenu

mv makemenu ./emlx/bin 

Skip to step 10 if you are instating a TLI version of the macro daemon. If you are installing a socket version of the macro daemon, use the following procedure: 

Edit the file /etc/services. This file contains an entry for each TCP/IP service. Add the following line to the file to include macro services: 

macro 3000/udp macros # Emulex macro daemon

Edit the file /etc/inetd.conf. This file contains the list of servers that may be started by the internet super-daemon. Add the macro server with the following line: 

macro dgram udp wait root /usr/emlx/bin/macrod macrod 

Restart the inetd daemon. To do this, use the following procedure: 

ps -ax|grep inetd

displays the inetd PID

kill -1 PID 

The macros are now installed on your load host. Configure your server as described in Section 3. 

Start the macro daemon on a host with TLI support by entering: 

/usr/emlx/bin/macrod -s -t 0&

You may also add the above line to system startup file under /etc/rc2.dso that the daemon is started automatically when the system comes up. 

2.3 Installation on a VAX Host

The host-based macro software is automatically instated when you install the Performance Series operational software using VMSINSTAL. This procedure is described in the Performance Series Software Installation Guide for VMS-based Network Load Hosts. 

When you run VMSINSTAL, the following tasks are performed: 

The following directories are created: 

SYS$SYSROOT: [EMLX_NETSERVER] 

SYS$SYSROOT:[EMLX_NETSERVER.MACRODBASE] 

The appropriate files are copied from the release tape to the directories. 

You are prompted for the host's IP address and type of Ethernet controller (e.g., _XDC). The information is then placed in the following file: 

SYS$SPECIFIC: [EMLX_NETSERVER] HOSTS. 

This file may be edited to include additional controllers and IP addresses. Each line of this file is formatted as IP_address device. For example: 

138.239.252.21 _XQA

You are prompted for a UDP port number (default 3000). This information is placed in the SYS$SPECIFIC:[EMLX_NETSERVER] UDPCONF.DAT file. 

You are prompted to insert the following command into your site-specific startup file: @SYS$SYSROOT: [EMLX_NETSERVER] MACRO_STARTUP.COM

This starts the macro software each time the system is booted. You may also enter this command at the system prompt to begin the macro software manually. 

Proceed to Section 3 to configure the macro utility on the server. 

2.4 Example Macros Installed  

During installation, several example macros are installed in the macro database. These macros may be executed as is, or modified to fit your requirements. 

SECTION 3 - Server Configuration

3.1  Overview

This section describes the procedures for configuring your server for macro operation. This is not intended to be an in-depth description. These procedures define the minimum configuration required to enable macros on your server. 

3.2  Basic Server Configuration

If you are already familiar with server operations, you may wish to use the following procedure to quickly configure your server for macro operation.

3.2.1  Minimum Server Configuration

Log on and set privilege mode (SET PRIV). 

Enter the following commands: 

Server>> SET SERVER IP ip address

Server>> CHANGE SERVER MACRO LIMIT 8

INIT DELAY 0

When server reboots, enter: 

Server>> SET PRIV

Server>> CHANGE NODE node_name IP ip address NETSERVER DEFAULT

Server>> CHANGE SERVER NETSERVER 3000

Server>> CHANGE PORT 1-7 MACRO AUTHORIZE ENABLE

Server>> CHANGE PORT 1-7 MACRO EXECUTION ENABLE

Verify configuration settings and ensure the port is enabled for macro execution and macro authorization by entering: 

Server>> SHOW SERVER MACRO

Server>> SHOW PORT NETWORK

Your server is now configured for macros Execute a sample macro by entering: 

Server>> DIAMONDS

3.3 Configure the Server

Before proceeding, verify that the server operational software is installed on the load host and that the server is booted. Verify the macro host software was installed as described in � REF _Ref380415669 \* MERGEFORMAT �SECTION 2 - Installation�. 

Use the following procedure to configure your server for macros: 

If the server has a terminal connected to a local serial port, use step a. If not, use step b or c. 

step a - Press <Return> on the local port a few times until the server log-in banner appears. Enter your user name, and at the server prompt, enter the following commands: 

Server> SET PRIVILEGE

Password> SYSTEM (default password)

SERVER>>

The server prompt followed by two angle brackets (>>) indicates that you are in privileged mode. 

step b - If the server has an IP address, enter the following commands from a TCP/IP supporting host system:

TELNET server_IP_address 2048

# access (default password)

Server> SET PRIVILEGE 

Password> system (default password)

Server>>

The server prompt followed by two angle brackets (>>) indicates that you have privileged status. 

step c - From a LAT host, use the following commands to connect to the server's RCF port 

$ MCR NCP

MCR> CONNECT VIA UNA-0 PHYSICAL ADDRESS-

00-00-C9-00-XX-XX SERVICE PASSWORD password

Console connected (press CTRL/D when finished)

# access (default password)

Server> SET PRIVILEGE

Password> system (default password)

Server>>

Ensure that the server has been assigned an IP address. To do this, enter the following command: 

Server>> SHOW SERVER TCP 

Examine the field labeled IP Address. If an IP address has been defined, proceed to step 3, otherwise define an IP address by entering: 

Server>> CHANGE SERVER IP ip_address 

where ip_ address is the IP address you wish to assign to the server. For example, to assign IP address 138.239.252.12 enter 

Server>> CHANGE SERVER IP 138.239.252.12 

Define the macro cache record limit. One macro record must be defined for each port that uses macros. Two cache records are required for any port that supports TDSMP-multiwindows. In addition, one record must be allocated to the RCF port. The factory default limit is one (RCF only). 

Use the SHOW SERVER LIMIT command to view the current value for the cache record limit. Examine the field labeled Macro Recs under the column Defined Limit. To change the macro record limit, enter the following command: 

Server>> DEFINE SERVER MACRO LIMIT value 

Reboot the server to assign the necessary resources to support macros on the specified ports. To reboot the server, enter: 

Server>> INIT DELAY 0 

After the server boots up, obtain privileged status as described in step 1. 

Set the base UDP (User Datagram Protocol) port number for Emulex host based servers. The default base UDP port number is 3000. Use the SHOW SERVER NETSERVER command to view the current value. To change this value, enter: 

Server>> CHANGE SERVER NETSERVER udp-port-number 

Specify the nodes (maximum of two) where the macro host software was installed. These nodes are referred to as Netserver nodes. 

If the default netserver node is able to find the requested macro, the macro text is resumed to the server, which begins executing the macro. If the default netserver node cannot find the requested macro, the server is notified that the macro does not exist. If an alternate netserver node is configured, the server will try to satisfy the macro request by directing the macro request to that alternate node. 

To define the default netserver node, use the following server command: 

Server>> CHANGE NODE node_name IP ip_address NETSERVER DEFAULT 

To define your alternate netserver node, enter. 

Server>> CHANGE NODE node_name IP ip_address NETSERVER 

Verify the netserver nodes, as well as the base UDP port number, have been properly configured. Enter the following server command: 

Server>> SHOW SERVER MACRO STATUS 

Define the ports that are authorized to use macros. Enter the following command: 

Server>> CHANGE PORT port_list MACRO AUTHORIZED ENABLED 

where port-list contains the ports that are authorized for macro use. For example, to permit macro use on ports 1, 3, 7, 8 and 9, enter: 

Server>> CHANGE PORT 1,3,7-9 MACRO AUTHORIZED ENABLED

Enable macro execution on the desired ports by entering: 

Server>> CHANGE PORT port_list MACRO EXECUTION ENABLED

where port-list is some subset of the ports that have been authorized for macros. 

You should now be able to execute macros. A simple macro cared diamonds is supplied in the distribution kit. To execute this macro, enter diamonds at the server prompt on a port that was configured for macro execution. 

Your server is now configured for macros. Section 4 provides basic information for using macros. Sections 5 and 6 provide the server and micro commands used for creating macros and their syntax. 

Note	The RCF port is always authorized for macro operation. However, each time a connection is established to the RCF port, you must use the SET PORT MACRO EXECUTION ENABLED command to execute macros from the RCF port.   

SECTION 4 - Creating and Using Macros

4.1  Overview

This section describes the basic concepts of macros and provides sample macros that you may generate and use. Refer to Sections 5 and 6 for details on the server macro commands and the micro command syntax respectively.  

4.2  Basic Concepts

A macro command is a word (maximum of 16 characters) that is associated with a server command or group of commands. This group can consist of standard server commands to be executed, special micro commands designed to interact with the user via a display menu, or a combination of both. 

The macro command is actually the name of the macro file (without an extension). 

4.2.1  Requesting a Macro

A macro request is made through a serial port on the server or via the server's RCF port. To request a macro, enter the name of the desired macro with any applicable parameters, followed by <Return>. A macro can only be requested when in local mode. 

When requesting a macro, the user may specify the default or alternate netserver node. If a node is not specified, the default node is used for the first macro request after booting the server. Normally, if the netserver is not specified, the request is set to the netserver that serviced the most recent macro request. 

4.2.2  The Macro Database

All executable macros are stored under a single directory whose name will vary depending on the type of host used as the macro netserver: 

UNIX host: Specified in the macro . h file. For example, . /emlx/macrodbase..

VMS host: SYS$SYSROOT: [EMLX_NETSERVER.MACRODBASE]

Three types of files may reside in the macro database. These are easily distinguishable by a different extension or suffix: 

Macro files consisting of actual executable macro text must have the . m extension. For example, diamonds.m.

where diamonds is the name of the macro requested in a server command. 

Login macro routing files must have the .1 extension. For example, server_name. 1. 

where server_name matches the name of a particular server on the network. Login macros are explained in subsection 4.4. 

Startup macro routing files have the . s extension, and are always named

startupmac.s.

Refer to subsection 4.5 for a complete discussion of startup macros. 

4.2.3  Example Macro

The following steps create a macro which, when executed, prints the word "Hello" on a user's terminal. All macros are stored in a macro database on the netserver host. Macros placed in this database must follow the naming conventions presented in subsection 4.2.2. 

Log on to the default netserver host and change your current directory to the database directory. 

Use the text editor of your choice to create and save a file called hellomac.m. Your file should contain the following lines: 

beginmac

echo “Hello\n”

endmac 

Exit the editor. The macro has now been created. 

Log on to a server port that was enabled for macro execution. At the local server prompt (Server>) issue the SHOW PORT NET command to display your port's current macro settings. Verify that the port is authorized for macros and the execution is enabled. 

At the server prompt, enter hellomac. 

If your configuration was done properly and your network is indeed functioning, the macro will be executed and the word "Hello" will be displayed on the screen. 

4.2.4 Identifying the Macro 

When a command is entered in local server mode, the server attempts to identify the first word (second word if first word is HELP or ?) of the command line to determine which command group the command is in. If the server can not identify the first word of the command line and the user's port is enabled for macro operation, the command is assumed to be a macro command. A macro name therefore must not be any of the following words. 

Double click table icon to view restricted macro names.

 ?�arp�backwards�broadcast�change�clear�� close�cls�connect�crash�city�date�� define�delete�demo�disconnect�display�fg�� finger�forwards�help�history�initialize�kill�� list�lock�logout�loop�man�monitor�� netstat�ping�ps�purge�remove�resume�� rlogin�send�set�show�shutdown�slip�� stay�su�telnet�test�tset�wall�� who�write�zero�����These words are interpreted by the server as standard commands. If the first character on the command line is a "#" character, the server will not look up the word in its command table, but will assume the name to be a macro request. The "#" character is discarded prior to requesting the macro. If a macro name actuary starts with a "#" character (not recommended), enter an additional "#" character when requesting the macro. For example, to can a macro named #test, enter 

Server>>##test

4.2.5  Command Line Parameters 

Macro parameters consist of one or more command line arguments immediately following the macro name. The general formal of a macro command is as follows: 

macro_name [param_1 [param_2 ... [param_n] ] ]

A macro parameter may be any valid server command parameter or micro command parameter. Parameter substitution however, is only allowed for entire words or groups of words. 

The total number of characters in a single macro command within the macro body must not exceed 132 characters after all parameter substitutions have been made. 

Referencing a specific parameter in the macro text is accomplished by placing a parameter token in the text where the parameter should be substituted. A parameter token consists of a percent sign (%) followed by a digit corresponding to the desired parameter number. For example, to substitute parameter number 2 in the macro, the token "%2" should be placed at the location in toe text where that parameter is to be substituted. 

The following is an example of a macro that uses parameter substitution. The macro, called "default_modem", has four parameters (port list, speed, character length and parity). The command line format for this macro is as follows: 

default_modem port_list speed char_length parity

The body of the macro is shown below: 

beginmac

define port %1 speed 82 autob disa character %3 parity %4

define port %1 flow control xon

define port %1 modem enab dcdlogout enab dsrlogout disa

define port %1 dtrwait disa ring disa signal check disa

logout port %1

endmac 

To execute this macro enter the following command line: 

default_modem 5 2400 7 even

Before executing the macro, the server performs the necessary parameter substitution. The first parameter "5" replaces all occurrences of "% I " found in the body of the macro. Similarly, the second parameter "2400" replaces all occurrences of "%2". Replacement is performed similarly for the third and fourth parameters. The resultant macro is as follows: 

beginmac 

define port 5 speed 2400 autob disa character 7 parity even

define port 5 flow control xon

define port 5 modem enab dcdlogout enab dsrlogout disa

define port 5 dtrwait disa ring disa signal check disa

logout port 5

endmac 

Parameters entered on the macro command line must be separated by spaces. If a single substitution parameter consists of multiple words (for example, autobaud enable), the parameter must be enclosed in either double (") or single (') quotes. The decision to use single or double quotes is, in most cases, up to the individual programmer, unless the parameter itself contains quotes. If the parameter contains double quotes, then the macro must be written such that the parameter token is enclosed within single quotes. 

The following macro uses parameter substitution in the micro command (sleep %1). When requesting this macro, enter the desired delay time in the macro command. In the following example, the word hello will be printed 10 times, with a 1-second delay (10 times 0.1 second): 

;macro name Hello

;sto call macro, enter “hello 10” 

beginmac

loop 10

echo”Hello \n”

sleep %1

endloop

endmac 

4.2.6 Comment Fields 

Macros may contain comments. A semicolon (;) indicates the start of a comment. The comment consists of all text between the semicolon and the newline or end-of-file character. If a semicolon occurs within text enclosed within quotes the following text is not interpreted as a comment. 

Blank lines may also be inserted into the macro text as needed to improve the readability of the macro. 

The macro host strips any comment fields from the macro prior to downloading. Comment fields are stripped by removing the semicolon and all characters to the right, up to, but not including, the newline character. 

Comment-only lines will not be removed entirely. They are replaced with a single newline character. 

4.2.7 Macro Directory 

A directory of all macros in the database that are authorized for the requesting port may be displayed by issuing the SHOW SERVER MACRO DIRECTORY command. The server issues a macro directory request to the netserver, and the host then generates a directory of all macros authorized for the requesting port Each macro is searched for the optional micro command descript which describes the function of the macro. The compiled directory is downloaded to the server in ASCII formal and displayed on the requesting port. 

Note that the macro directory is not cached in the server. 

4.2.8 Macro Help 

Any macro can contain help text. Macro help text is locked between the micro directives beginhelp and endhelp. Help for a specific macro can be requested by entering the word 'help', '?', or 'man' in front of the macro name. Requesting help for a macro does not lead to execution of the macro. If help is requested for a macro, only the help text for that macro is downloaded into the server. 

Note that help text is not cached in the server. 

4.3 Menus

One of the most common uses of macros is generating menus that provide the user with a defined set of operations. For example, if a terminal’s access is limited to only a few nodes, a macro could present those choices in menu form. Double click table icon to view an example of a simple connect menu generated by a macro called "cmenu": 

CONNECT MENU���1. King�5. Knight��2. Queen�6. Word Proc��3. Bishop�7. Exit��4. Jack���Enter Selection:

When this menu is displayed, the terminal user selects the node they wish to connect to. The macro provides the associated connect command. Selection 7 terminates the macro. If the macro that generated this display is not a logic macro and the port was not in captive mode, the user returns to local server mode. Otherwise, the port win be logged out. 

Simple menus may be generated by the makemenu utility described in subsection 4.3.1. More sophisticated features such as active cursor selection and bounding boxes may be added by generating your own menu macros using the commands described in Sections 6. 

Menus require several new server commands, referred to as micro commands. Micro commands are restricted to the body of a macro and are not to be executed as a normal server command. Refer to Section 6 for a description of the micro commands and their syntax. 

4.3.1 Menu Generation Utility

The Emulex MAKEMENU utility provides the ability to generate basic menus similar to the example given above. Use the following procedure to generate the sample menu using MAKEMENU: 

Change your directory to the one containing the macro database:. 

On a UNIX host:

this is ./emlx/macrodbase. 

On a VMS host:

SYS$SYSROOT:[EMLX_NETSERVER.MACRODBASE]

Use the resident text editor to create an input data file containing the information needed by the generator program to create the menu macro. You may name this file anything you wish. Enter one line of information for each menu option using the following format: 

menu_item:item_action

where menu _ item is the text in the menu display and item_action is the server command to be executed. The following file generates the example shown on the previous page: 

King: connect fat king

Queen: connect fat queen

Bishop: connect top bishop

Jack: connect top jack

Knight: connect fat knight

Word Proc: connect top bishop

exit:exit

You may wish to review the sample input files, jones . txt and smith . txt in the macro database and use this as a template to build your own input files. 

Run the generator program by entering: 

On a UNIX host:

../bin/makemenu 

On a VMS host:

RUN MAKEMENU 

At the first prompt enter the input file name of the file created in step 2. For example: 

Enter Input Filename: jones.txt

At the next prompt enter the output file name you wish to assign to the menu macro. The . M extension is added by the generator program. For example: 

Enter output Filename <no eat> :mymenu

output file `mymenu.m` created

End program 

The menu macro is ready to execute. To view your menu, log off of the host and log on to the server. Then enter the macro name, for example mymenu. The menu appears on the screen as shown on the previous page.

SECTION 5 - Server Commands

5.1 Overview

This section describes the commands used to configure the server for macros, enable their execution, and control their access. Many of these commands are a superset of those described in the Command Reference Guide. Only those features of the commands related to macro functionality are discussed in this section. 

5.2 CLEAR MACRO

Syntax:

Server>>clear {server} macro [macro_name| all]

Privilege:

This command requires privilege status

Description:

Clears a specified macro or all macros in the macro cache. Logging out a port that has an active macro causes the macro to become inactive. If a port is logged out while in the process of executing a macro, then the macro record currently executing win not be returned to cache. 

This command is useful during macro debugging. If a macro in the database has been modified to correct a macro programming error, execute the CLEAR MACRO macro_name to clear the earlier version of the macro from the cache. This allows downloading of the revised macro into the cache upon the next request for that macro. 

When debugging a macro Emulex recommends that you insert the cache of f micro directive into the macro to prevent it from being cached. After the macro is debugged, the cache of f directive should be commented out. 

5.3 SET NODE NETSERVER

Syntax:

Server>>[set| define| change] node [name node| IP ip_addr] netserver {default}

Privilege:

This command requires privilege status

Double click table icon for a description of command parameters.

NETSERVER�The SET/DEFINE/CHANGE NODE command has been expanded to include the NETSERVER parameter. This parameter identifies the host to which all application requests, including macros, will be directed. The netserver host is the one containing the macro database��DEFAULT�Up to two netserver nodes are supported; the default node and err alternate (backup) node. The default netserver node is specified using the keyword DEFAULT in the SET/DEFINE/CHANGE NODE command. If DEFAULT is not specified, the node is an alternate.��5.4 SET PORT MACRO

Syntax:

Server>>[set| define| change] port [port_list] macro [authorized| multiwindows| execution| login| captive| showreq| showexp| debug {port} port_num| none] [enabled| disabled]

Privilege:

Refer to the description of each option to determine if privileged status is required.

Double click table icon for a description of command parameters.

Parameter�Description��authorized�This option enables or disables macro authorization on the specified port(s). This option requires privilege status and is used to determine the amount of server memory allocated to the macro cache at server initialization time.��multiwindows�This option enables or disables macro authorization for the second session of a port that is configured for TDSMP-multiwindows (refer to SET PORT MULTIWINDOWS in the Command Reference Guide). This option requires privilege stylus and is used to determine the amount of server memory allocated to the macro cache at server initialization time. 

If the port is configured for multiwindows via a SET PORT MULTIWINDOWS ENABLE command, and you wish to enable both sessions to execute macros simultaneously, MACRO MULTIWINDOWS must be enabled.��execution�This option enables or disables macro execution on the specified port(s). Before a port can be enabled for macro execution, it must first be authorized for macro operation with the SET/DEFINE/CHANGE PORT MACRO AUTHORIZED ENABLE command. ��login�This option enables or disables the macro login feature on the specified port(s). This option is valid only if the port is enabled for macro operation. If macro login is enabled, upon logging into a server port, a login macro request is made using the server's name as the macro name. The login macro associated with the specific port is downloaded to the server. 

If the login macro option is enabled, the captive option can be enabled in order to prevent the port from returning to local server mode when the <Break> key is pressed. Refer to the CAPTIVE option described below. This option is available to all users.��captive�This option enables or disables the macro captive feature for the specified port(s). When enabled, this option disables the <Break> key, preventing the user from entering local server mode. When an endmac, quit, or exit micro command is encountered in a macro that supports the login captive feature, the macro should test the captive flag to see if it is set If the flag is set, the macro should log the port out. For example: 

if (captive == 1) logout endif endmac 

The captive option can be used to restrict a user to macro (menu) operation only. This option is valid only if the port is authorized and enabled for macro operation and macro logic is enabled.��showreq�(SET only) This option is used for debugging purposes and enables or disables display of the macro request to the netserver. The request is displayed on the debug port defined through the SET PORT MACRO DEBUG PORT command.��showexp�(SET only) This option is used for debugging purposes, and enables or disables display of the final, fully expanded micro command line. A fully expanded command line is one for which all the necessary parameter substitution has taken place. The expanded command line is displayed on the debug port defined through the SET PORT MACRO DEBUG PORT command.��debug{PORT} [port_number| NONE]�(SET only) Use this option to specify a port on the server to display macro debugging messages. All debug messages for the user executing this command will be output to the terminal on the specified port To specify a port other than your own requires privileged status. Emulex recommends that you specify a port other than the one executing the macro as the debug port This prevents intermixing debug messages with macro displays. To disable the debug port, use the NONE parameter.��5.5 SET SERVER MACRO

Syntax:

Server>>define server macro [limit value| startup enabled| disabled]

Privilege:

This command required privilege status

Double click table icon for a description of command parameters.

limit value �(DEFINE only)  Limit sets the number of records (I to 254) allocated to the macro cache upon initialization of the server. If the defined limit is less than the number of ports authorized for macro operation (via the DEFINE PORT MACRO AUTHORIZED ENABLED) plus one for the RCF port, the defined limit is replaced with a value equal to the latter. This guarantees that all authorized ports are able to obtain a record from the cache when needed to process a macro request. Increasing the macro cache size improves the execution time of multi-record macros. Increasing the cache size however reduces the available memory for node and service tables. The factory default is 1.��Startup [enabled | disabled]�This parameter enables or disables the startup macro feature. Refer to section 4.5 for a description of startup macros.��5.6 SET SERVER NETSERVER

Syntax:

Server>>[set| define| change] server netserver {base} udp_port_number 

Privilege:

This command requires privilege status

Description:

Specifies the base UDP port number for Emulex host based servers. All host based server applications must communicate with the terminal server via a UDP port. Each host application is assigned a unique identification number by Emulex that is used as an offset from the base UDP port number. 

Currently the only host based application supported by the server is the Emulex Macro application. Its identification number (offset) is 0. The Macro application's UDP port number is therefore equal to the base UDP port number. The factory default for the server's UDP port number is 3000. 

If an application had an identification number of 50, and the base UDP port number were 3100, the application's UDP port number would be 3150. To configure the server's base UDP port number, use the command: 

change server netserver 3000

5.7 SHOW PORT CHARACTERISTICS NETWORK

This command has been expanded as shown in Figure 5-1.

� INCLUDEPICTURE "E:\\TECHDOC\\MACRO\\GRAPHICS\\fig5-1.tif" \* MERGEFORMAT \d ���

Figure 5-1

The following information is supplied under the Macros heading in addition to that described in the Command Reference Guide.

Authorized - whether the port is authorized for macro operation.

Multiwindows - whether the port is authorized for TDSMP-multiwindow macro operation.

Execution - whether the port is enabled for macros execution.

Login - whether the port is enabled for logic macros.

Captive - whether the port is enabled for the macro captive option.

Debug port - port to be used as the debug port. Macro debug messages will be directed to the indicated debug port. 

5.8 SHOW SERVER LIMITS MACRO

Syntax:

Server>>[show| monitor| list] server limits [macro limit]

Privilege:

This command is available to all users

Description:

This command has been expanded to include the MACRO option. Refer to the Command Reference Guide for a complete description of this and other table limits. 

The screen displayed in Figure 5-2 will also be shown if you issue the command SHOW SERVER NETWORK. 

� INCLUDEPICTURE "E:\\TECHDOC\\MACRO\\GRAPHICS\\fig5-2.tif" \* MERGEFORMAT \d ���

Figure 5-2.

5.9 SHOW SERVER MACRO

Syntax:

Server>>[show| monitor] server macro [characteristics| status| cache| directory]

Privilege:

Available to all users.

Description:

The SHOW/MONITOR SERVER MACRO command options are described in the following subsections. 

5.9.1 SHOW SERVER MACRO CHARACTERISTICS

This command displays the global macro characteristics as shown in Figure 5-3. 

� INCLUDEPICTURE "E:\\TECHDOC\\MACRO\\GRAPHICS\\fig5-3.tif" \* MERGEFORMAT \d ���

Figure 5-3. 

This screen displays the following information: 

UDP port - The UDP port number used to communicate with the netserver host. 

Startup Macro - The startup macro, if enabled, is executed upon server initialization This field shows the current status of that feature. Startup macros are explained in section 4.5. 

5.9.2 SHOW SERVER MACRO STATUS

This command displays the macro status as shown in Figure 5 4. 

� INCLUDEPICTURE "E:\\TECHDOC\\MACRO\\GRAPHICS\\fig5-4.tif" \* MERGEFORMAT \d ���

Figure 5 4. 

This display includes the following information: 

Name - the TCP/IP node name of a netserver host node.

IP - the IP address of the netserver host node.

Rev - the revision level of the macro host software. A macro request must be made in order for this field to be valid.

UDP Port - the UDP port number used to communicate with the netserver host.

Authorization - the number of ports authorized for macros. If the macro port option multiwindows is enabled, the port counts as two authorized ports.

Cache - the number of cache records currently allocated. 

5.9.3 SHOW SERVER MACRO CACHE

This command displays a summary of the macros currently in the macro cache. 

Macros currently in the server cache are displayed ranked by age (i.e. the length of time that macro has been in cache). A port requesting a macro currently being executed by another port causes a new copy of the macro to be downloaded. When a port exits the macro, that macro is resumed to the cache, making it available to other ports. If a copy of the macro already exists in cache when a port attempts to return it, that copy is discarded. 

Figure 5-5 shows an example of the resulting display including the following fields:

� INCLUDEPICTURE "E:\\TECHDOC\\MACRO\\GRAPHICS\\fig5-5.tif" \* MERGEFORMAT \d ���

Figure 5-5. 

Record - The record number of the macro (range 1 thru 65535). Some macros are larger than a single 512 byte record. A large macro may not have all of its records in the macro cache for the following reasons: 

The record was overwritten by a new macro coming into the cache.

A user may have entered a break during the execution of a macro and therefore the record was not returned to the cache.

Reads - Displays the number of times the cache record has been used.

Port - The port number, if any, that is currently executing the macro record. 

5.9.4 SHOW SERVER MACRO DIRECTORY

This command (SHOW only) displays a list of macros authorized for execution by the specified port. A privileged port may display a directory of all macros authorized for the server. If the macro contains a description preceded by the micro directive descript, that information is displayed. 

The macro directory is generated on the macro host and downloaded. The macro directory is placed in cache and is only authorized for the port that requested the directory. 

The following is an example of the resulting display: 

Macro Name: Description:

diamonds demo, display d amend patterns

secure demo, example of password macro

box demo, draws a box using input variables

SECTION 6 - Macro Command Reference

6.1 Overview

This section describes the components of a macro including micro directives, micro commands, and strings, and provides sample templates as well as syntax and usage rules. Examples of working macros are provided in Appendix C. 

6.2 Components of the Macro

A macro, consisting of one or more macro records, may contain micro commands, micro directives, and standard server/port commands. 

6.2.1 Micro Directives

Micro directives are used to designate the start and end of the macro text and, if applicable, the type of macro. In addition, optional micro directives identify help text or may be used to pass authorization information between the host and the server. 

When used in a macro, micro directives must appear in the following order. Refer to subsection 6.4 for a complete description of each micro directive and its syntax. 

Normal macros:

descript: Identifies a string that describes the macro's function. 

authip: Identifies servers and ports on the server that are authorized to execute the macro. If this micro directive is not present, all IP addresses and all port are authorized.

authpriv: Identifies the minimum privilege required to execute the macro.

authdev: Identifies the minimum device type required to execute the macro.

beginhelp: Identifies the start of the macro help text.

endhelp: Identifies the end of the macro help text.

beginmac: Identifies the start of the body of the macro (required).

endmac: Identifies the end of the macro (required).

Login macro routing file:

beginlogin: Identifies the start of the routing information in a login macro.

endlogin: Identifies the end of the routing information in a login macro. 

Startup macro routing file: 

beginstartup: Identifies the start of the routing information in the startup macro routing file. 

endstartup: Identifies the end of the routing information in the startup macro routing file. 

6.2.2 Macro File Templates

The following may be used as templates for creating your own macros. Examples are given for a regular macro, a login macro and a startup macro. Lines in italic are optional. 

Regular macro file template (extension .m)

descript "strings 

authip ddd.ddd.ddd.ddd ports port_list authpriv privilege_level authdev device 

beginhelp

Help text goes here.

endhelp 

beginmac 

;cacheoff 

;debugon 

 echo "This is an example of a macro\n" 

endmac 

Login macro routing file template (extension .1) 

beginlogin

     port 1 jd_login

     port 2 mm_login

endlogin 

Startup macro routing file template (extension .s) 

beginstartup

    server_01 serv_Ol_strup

    server_02 serv_02_strup

endstartup

6.2.3 Connect Type Server Commands

The following server commands are considered connect type commands: 

CONNECT

RLOGIN

SET HOST

TELNET

When connect-type commands are issued, the macro is re-entered immediately if the connection fails. Upon successful host logic, the macro is suspended until the user logs off or presses <Break>. At this point the macro resumes execution from the point it was suspended. 

A connect status flag indicates the status of the most recent connect attempt. This connect flag is set to 1 if the connection was successful and 0 if unsuccessful. The flag can be tested by the macro. For example:

if (connect == 1). 

The following macro may be used to provide connection protocol failover: 

beginmac

    connect LAT King 

    if (connect==) ; connection failed 

        connect TCP King 

    endif 

endmac 

6.3 Command Syntax and Rules

This subsection describes the general syntax rules for writing macros. Subsection 6.4 provides a complete description of each command. 

6.3.1 Micro Text Strings

Some of the micro commands require a text string, delirnited by quotation marks, as a parameter. The following table lists character sequence codes that have special meanings when located in a macro text string (for example, echo “\nMacros are fun.”). These codes require a VTlO0 or ANSI type terminal.  Double click table icon to view table.

Code�Description��\n�Insert a new line (carriage return - line feed)��\t�Horizontal tab��\g�Bell��\\�Display a single backslash O��\”�Display quotation marks ('?��%%�Display single percent-sign (%)��%Pnc�Repeat Char. - displays the character c, n times; where n is 1 to 132��%Pbnc�Repeat Char. - displays the character c, bn times; where bn is the variable b1 through b8. If b3=27, then %Pb3x displays x 27 times. ��%Pwnc�Repeat Char. - displays the character c, wn times; where wn is the numeric variable w1 or w2. ��%B�Bold - displays the characters following this code in bold type��%bn�Display the signed byte (b1 through b8) in decimal format��%wn�Display the signed word (w1:w2) in decimal format��%Ht�Double Height - displays top half of a line in double height mode*��%Hb�Double Height - displays bottom half of a line in double height mode}��%K�Blinking *��%N�Normal - turns off bold, blink, underscore, double, and reverse video modes*��%R�Reverse video mode*��%S�Single height, single width*��%U�Underscore *��%W�Double-width mode*��6.3.2 Micro Command Syntax

Double click table icon to view an example of a macro utilizing many of these character sequences: 

Example of macro utilizing character sequences��beginmac

cls

curry 3 5

echo "%HtThis is in double height mode%N"

curry 4 5

echo "%HbThis is in double height mode%N"

curry 6 6

echo "%WDouble width %KBlinking%N %Wmode%N"

curry 8 21

echo >%S% UUnderlined%N, %RReverse%N and %R%UBoth%N

curry 10 17

echo “This line demonstrates %BBOLD%N printings”

loop 4

curry 12 12

echo "Bells are ringing”

curry 12 29

clrendl

sleep 10

echo "%p35.\g”

endloop

endmac 

��6.3.2 Micro Command Syntax

The general command syntax is: 

micro_command parameters

When creating macros the following rules of syntax should be followed: 

Only a single micro command or directive is allowed on a line.

Commands that make up the macro are case insensitive.

Regular brackets ‘{}’ are used to enclose options.  

Square brackets '[]' are used to enclose a necessary choice.  You must enter one of the choices.

The space or tab character is used to separate micro commands from micro parameters and to separate multiple parameters within a parameter list.

Any text on a line to the right of the semicolon (;) character is considered a comment field unless the semicolon character occurs within a string. 

Multiple space or tab characters are ignored unless they are in a string. 

6.4 Micro Commands

Following are detailed descriptions of all micro commands and directives in alphabetical order. Appendix A provides you with a quick-reference command chart. 

6.4.1 Align

Format:

align 

This micro directive is used to force the macro host to terminate the current macro record and place the next line to be downloaded into a new macro record. The align command is used to improve macro performance. It is typically placed before a loop command so that the body of the loop lies entirely within a single record (512 bytes). 

6.4.2 Atoi

Format:

atoi [bn | Wn] kb 

This micro command converts an ASCII numeric string to an integer value. The ASCII string is input from the keyboard buffer (kb) via the read command. The string must be positive and may contain only the integers 0-9. The ASCII string value must be within the range of the numeric variable type:

bn - ASCII string value must be 0 to 127

wn - ASCII string value must be 0 to 32767. 

If the input value is negative or if the input value is not an ASCII decimal character, the result is set to -1. Double click table icon to view an example using the atoi micro command: 

Example using the atoi micro command��beginmac 

cacheoff 

cls 

1oop 

echo “Input a value from 1 to 12: " 

read 

atoi bl kb 

if (bl < 1) 

echo “%RInput error%N\n" 

continue 

elif (bl > 12) 

echo “%RInput error%N\n” 

continue 

else echo "The value input was %bl\n” 

break 

endif

endloop

endmac

��6.4.3 Authdev 

Format:

authdev [vtlO0| ansi| soft copy| hardcopy] 

This micro directive authorizes use of a macro based on the device type. Authdev is useful when a particular macro contains terminal display features not supported by all device types. 

Device types are assigned a ranking that is based on their level of support for display features. The higher the ranking, the higher the level of support that device has for display features. The current rankings, from highest to lowest, are as follows: 

vtl00

ansi

softcopy

hardcopy 

To use this directive, specify the lowest level device that is authorized for use of the macro. If the requesting device level is greater than or equal to that in the macro specification, then the macro will be authorized. Otherwise, the request is rejected. 

If this micro command is not present, then all device types are authorized to use the macro. 

6.4.4 Authip 

Format: 

authip ip[ip_address]port[port_list][all][none]

This micro directive specifies the IP address of a server that is authorized to use themacro. To authorize multiple IP addresses, a separate authip directive must be used for each. Use the ad 1 option to authorize all servers and none to disable access to a macro. 

The optional port list contains those ports on the server that are authorized for use of the macro. Double click table icon to view example: 

Example��1�Port I��1,2,3,4�Ports I thru 4��1-4�Ports 1 thru 4��1-4,10,12�Ports 1 thru 4, 10 and 1��rcf �Remote console port��all�All ports��If a port list is not given, all ports on the specified server are authorized for the macro. 

If the authip directive is not present, all IP addresses, and ports at those addresses are authorized for the macro. Double click table icon for sample authip directives: 

Sample authip directives��; Authorize all posts on server 201.202.203.1

authip 201.202.203.1

; Authorize server 201.202.203.2 sorts 1,2,3 and 6 

authip 201.202.203.2  ports 1-3,'

; Authorize RCF port on server 2^1.202.203.78

authip 201.202.203.78 ports RCF 

��6.4.5. Authpriv 

Format: 

authpriv

[privileged  ] [nonprivileged] [secur ]

This micro directive specifies the minimum privilege level required to use the macro Privileges are ranked in the following order: 

privileged

nonprivileged

secure

When a macro is requested, the privilege of the requester is compared to the privilege level specified in the authpriv micro directive. If the requested privilege is greater than or equal to the authorization privilege, then the macro will be authorized for use by the requester. Otherwise, the macro request will be denied. 

If the authpriv directive is not present, all privilege levels are authorized to use the macro. 

6.4.6 Begin help 

Format: 

beginhelp 

This directive identifies the start of the macro help text. Help text is terminated using the endhelp micro directive. The help text is displayed when a user enters one of the following: 

HELP macro_name

MAN macro_name

? macro_name

There is no limit on the size of macro help text. Double click table icon to view an example of macro help text: 

Example of macro help text��beginhelp

This is the help text. It describes the function of this macro.

endhelp 

��6.4.7 Beginlogin 

Format: 

beginlogin

This micro directive identifies the start of the login macro routing file. The login macro routing file must be terminated with the endlogin micro directive. Refer to section 4.4 for details on the format of a login macro routing file. 

6.4.8 Beginmac 

Format: 

beginmac

This micro directive identifies the start of the macro body. The macro body contains the server commands and micro commands that carry out the functions of the particular macro. The macro is terminated with an endmac micro directive. 

Double click table icon to view micro directives that are not allowed within the body of a macro: 

These directives are not allowed within the body of a macro.��Authdev�beginmac��authip�Rescript��authpriv�endhelp��beginhelo�endlogin��beginlogin�endmac��beginstartup�endstartup��6.4.9 Beginstartup 

Forms: 

beginstartup

This micro directive identifies the start of text for a startup macro routing file. The text is terminated with the endstartup micro directive. The body of the startup macro routing file consists of a series of lines with the following format: 

server_name 	 macro name

where server name is a server on the network and macro_name is the macro to be executed when the corresponding server is initialized. Refer to subsection 6.2.2 for  the file template of a startup macro routing file. 

6.4.10 Bn=n

Format: 

bn = nnn

The numeric assignment operations are used to assign a value to a specific numeric byte variable. The variable bn is a signed byte value with a valid range of >127. Up to 8 bn-type variables are supported. These are named bl, b2, ..., b8. 

6.4.11 Bn++; bn--

Format:

bn++

bn--

Numeric increment and decrement operations are supported by macros. The expression bn++ will increment the value currently in the numeric variable bn by one. Similarly, the expression bn- will decrement the value currently in the numeric variable bn by one. The value that results from the operation must be within the allowable range O127. If the value resulting from the decrement or increment operation is outside this allowable range, that variable is set to -1. 

Double click table icon to view an example of the use of the increment/decrement operators: 

Example of Command��beginmac

bl = 100

loop 100

bl--

echo "bl = %bl\n"

endloop

loop 100

bl++

echo “bl = %bl\n”

endloop

endmac 

��6.4.12 Bn + m; bn - m 

Format:

bn + m

bn - m

bn + bm 

Numeric addition and subtraction operations are supported by macros. The expression bn + m adds the value of numeric variable bn to the value m and stores the result in bn. M may be a hard-coded value or a variable. Similarly, the expression bn - m subtracts the value of m from the value of numeric variable bn. The resulting value must be within the allowable range of 0-127. If the resulting value is outside of the allowable range, the variable is set to -1. 

Double click table icon to view an example which  initializes the variable b3 to 10, then increments it by 5. 

Example of Command��beginmac

b3 = 10

echo “b3 = %b3 initially\n”

b3 + 5

echo "b3 is now equal to %b3\n"

endmac 

��6.4.13 Break 

Format:

break

This micro command is only valid when it occurs within the body of a loop. The break micro command causes the current loop to terminal immediately. Control is passed to the command following the end loop command associated with the current loop. An error message will be produced if a break command is encountered outside the body of a loop. 

The following example demonstrates the use of the break micro command. The macro loops indefinitely, waiting for the correct password MACRO to be entered. Only when this password is entered will the break command be executed, at which point the macro exits the loop.   Double click table icon to view example.

Example ��beginmac

loop

echo “enter password:”

echoof

read

if (kb == "MACRO”)

break;

end if

echoon

end loop

echo “Access granted\n”

endmac 

��6.4.14 Cacheoff 

Format:

cacheoff

This micro directive is used to disable the macro cache feature, forcing the server to download the macro each time it is requested. The cacheoff command is useful for debugging although some degradation in performance may result. 

Use of the cacheoff command is recommended when you are editing or developing a macro and want to ensure the latest version is always used. 

6.4.15 Call 

Format:

call macro_name

This micro command transfers macro execution to the sub macro macro _ name. After exiting the sub-macro, the calling macro resumes execution at the command immediately following the call. Calls may be nested to a maximum of two levels. This means that a top-level macro may call a sub-macro, and that submacro may call another macro, but this third macro may not make a call. 

Double click table icon to view an example that shows a section of a macro in which a submacro is called: 

Example ��beginmac

echo “Calling box_ansi_sm...\n”

Call box_ansi_sm

echo “We have returned from the submacro\n”

endmac

��6.4.16 Clr 

Format:

clr

This micro command clears the screen on the user's terminal. 

6.4.17 Clrendl 

Format:

clrendl

This micro command clears the screen display from the current cursor position to the end of the line (ANSI and VT100 devices only). 

6.4.18 Clrends 

Format:

clrends

This micro command clears the screen display from the current cursor position to the end of the screen (ANSI and VT100 devices only). 

6.4.19 Continue 

Format:

continue

The continue command is only valid when it occurs within the body of a loop. If a continue command is encountered, control is immediately transferred to the top of the current loop. 

Double click table icon to view example. The example prompts the user for a password. If the correct password is not entered, the continue command begins another iteration through the loop. The prompt is repeated until the correct password is entered or until 10 incorrect passwords are entered. 

Example Command��beginmac

bl = 0

loop 10

echo “Enter- password:” 

echoof

read

if ( kb ! = “MACRO”)

continue

echoon

endif

echo “Access granted\n”

b1 = 1

break

endloop

if(b1 == 0)

echo “Access denied\n”

endif

endmac

��6.4.20 Curoff 

Format:

curoff 

The curoff micro command disables display of the cursor on the terminal screen. 

6.4.21 Curon 

Format:

curon 

The curon micro command enables display of the cursor. 

6.4.22 Currc 

Format:

currc [bn| wn| row] [bn| wn| column] 

This micro command positions the cursor at the specified location on the screen (ANSI or VT100 only). Two arguments are required: the row and the column at which to position the cursor. The currc command accepts arguments either as hard coded numeric values or numeric variables (i.e. bn or wn). 

The following example displays "Hello" with the H positioned at row 5, column 30 on the screen: 

beginmac

currc 5 30

echo “Hello\n"

endmac 

Double click table icon to view example which utilizes numeric variable arguments: 

beginmac

cls

bl = 7

b2 = 30

loop 20

b2++

currc bl b2

echo “*”

endloop 

loop 4

bl++

curry bl b2

echo "*"

endloop

loop 20

b2--

currc bl b2

echo "*"

endloop

loop 4

bl--

currc bl b2

echo “*” 

endloop

curry 9-33

echo “ feel boxed in"

curry 15 1

endmac ��This results in the following display: 

I feel boxed in

6.4.23 Debug off

Format:

debugoff

The debugoff micro command disables the macro debugging facility. The debugging facility is discussed with the debugon command in subsection 6.4.24. 

6.4.24 Debugon

Format:

debugon

The debugon micro command enables the macro debugging facility. When debugging is on, a debugging information line is displayed on the currently selected user debug port (see SET PORT MACRO DEBUG) each time a micro command is executed. Refer to Section 7 for the format of the debugging information. Debug messages continue to be displayed until the end of the macro has been reached or a debugoff micro command is encountered. 

Note	The port selected to display debug information must be set with macro execution disabled (SET PORT MACRO EXECUTION DISABLE). Emulex does not recommend using the port that is executing the macro as the debug port. 

6.4.25 Descript 

Format:

descript "string" 

This micro directive specifies a character string containing a brief description of the macro. This description string is displayed with the macro name when you request a macro directory listing (SHOW SERVER MACRO DIRECTORY). The description string must be enclosed in quotes and may be up to 60 characters in length.  

6.4.26 Echo 

Format:

echo ("string" ; 1st line| "string" ; 2nd line| "string" ; 3rd line)

This command displays the specified ASCII string. The literal string to be displayed must be enclosed within double quotes and may contain any printable characters, hex character, and any of the format control sequences shown in section 6.3. For example: 

echo "\nHave a good day"

If the string to be echoed contains a double quote character ("), then that character must be preceded by a backslash (\"). If a new line is desired, the special character sequence " on" must be contained within the string delimiters. Hex characters must be preceded by a slash. For example: 

echo \nHave \"\61 good \64\61\79\””

A single echo micro command can display multiple lines of text by positioning the additional quoted strings on separate lines following the echo command. These literal strings are valid only when the last micro command was an echo. For example: 

echo “\nHave a good day"

“\nThis is a new line to be echoed”

6.4.27 Echo off 

Format:

echooff 

The echooff micro command disables echoing of keyboard input. For example, text entered while the macro is executing a read micro command is not displayed on the screen. This is useful when a macro is prompting for a password or some other sensitive information that a user might not want others to see. Keyboard input echoing may be re-enabled through the echo on micro command. 

The echooff command is also used to disable echoing of server commands that occur within a macro. This is accomplished by placing an echo of f command before the server command. 

For an example of how this micro command is used, refer to the sample macro called default-port.m in the macro database. 

6.4.28 Echoon 

Format:

echoon

The echoon micro command enables the echoing of keyboard input and server command lines. Refer to subsection 6.4.27, echooff for more details. 

6.4.29 Elif 

Format:

elif

Part of the if, elif and if, elif, else micro command set discussed in subsection 6.4.37. The elif command must be preceded by the if or another e lit f command and uses the same syntax as the if command. In order to reach an elif command, a preceding if or elif commands must have tested false. 

6.4.30 Else 

Format:

else

Part of the if, else and if, elif, else body discussed in subsection 6.4.37. If both the preceding if and elif (a) command test conditions were false, then the else command group is unconditionally executed. 

6.4.31 Endhelp 

Format:

endhelp

This directive identifies the end of the macro help text. 

6.4.32 Endif 

Format:

endif

This command identifies the end of an if, elif, else body. Refer to subsection 6.4.37 for more information on the use of this command. 

6.4.33 End loop 

Format:

endloop

The endloop micro command identifies the end of a loop. Every loop command must have a matching endloop command. When endloop is encountered, control is transferred to the top of the loop, unless the optional loop count has been satisfied. In this case, control will be transferred to the micro command following the endloop. 

6.4.34 Endmac 

Format:

endmac

Identifies the end of a macro. If encountered in a submacro, the calling macro resumes execution a the micro command following the call. If encountered in the top level macro, the macro is exited. Refer to subsection 5.4 for a discussion on using endmac with the captive logic feature (SET PORT MACRO CAPTIVE) 

6.4.35 Exit 

Format:

exit

This micro command is used to exit a macro prematurely, i.e. before the endrnac micro has been reached. Refer to subsection 5.4 for a discussion on using exit with the captive logic feature (SET PORT MACRO CAPTIVE) 

6.4.36 Fn = n 

Forms:

fn = n

This numeric assignment operation is used to set a flag to ON (0) or OFF (1). Sixteen flags are supported. These are named fl, f2, f3, ..., fly. 

6.4.37 If 

Format:

if (expression)

The if command marks the beginning of an if body. The if body must end with endif. The if body may contain various combinations of if, elif, and else commands. Relational operators may also be used within the test condition. Double click table icon to view rational operators: 

==�Left operand is equal to right operand��>�Left operand is greater than right operand��<�Left operand is less than right operand��>=�Left operand is greater than or equal to right��<=�Left operand is less than or equal to right operand��! =�Left operand is not equal to right operand ��The following types of conditions may be tested using the if, elif and else micro commands. Any applicable relational operators are denoted by RO. 

if (connect RO) 

The global variable connect contains the results of the most recent connection attempt. It's value will be 1 if the connection was successful and O if it was not. The only valid relational operators for this test condition are == and ! =.For example;

if (connect==l).

if (captive RO) 

This test condition checks the setting of the port captive option. In order for this condition to test true, both the logic port option and the captive option must be enabled. This test condition may be used by a macro prior to executing an exit, quit, or enema c, to check if a port is captive. If true, the macro can then logout the port. The only valid relational operators for this test condition are == and !=. 

if (device RO {hardcopy | softcopy | ansi | vtlOO } ) 

This test condition checks the port device type. All relational operators are permitted. For example. if (device > softcopy) . 

if (kb RO “string”)

This test condition compares the current contents of the keyboard input buffer (kb) with a literal string The literal string may be composed of any combination of ASCII and hex characters. Hex characters are represented as a pair of hexadecimal characters preceded by a backslash ('\xx'). For example, the following condition statements have identical meaning: 

if (kb == “12345”)

if (kb == “1\323\345”) 

In the second statement the ASCII characters 2 and 4 have been replaced by their hex equivalents \ 32 and \ 34 . Valid relational operators for this conditional are == and ' =. 

if (bn RO number )

if (wn RO number)

if (bn RO bn)

if (wn RO wn)

if (bn RO wn)

if (wn RO bn) 

Signed numeric values, bytes (bn) or words (wn), may be used with all relational operators. 

Note that bn RO wn and wn RO bn compare different variable types. To be valid, wn variables must be in the range O127.

if priv RO [secure | nonprivileged | privileged] 

This tests the current privilege level. All valid relational operators are allowed. Privilege values are ranked in increasing order (low to high) as follows: 

secure; nonprivileged; privileged

if (fn RO b) 

This checks the on/off status of Internal flags fl through fl6. The value b must be O or 1. Valid relational operators are == and ! =. 

A nested if command is one which occurs in between an if or elif command and an endif command. A maximum of 10 levels of nested if commands is supported. 

The following examples demonstrate the use of if, elif and else micro commands. The first set examines the privilege level of the port requesting the macro. 

Double click to view example 1: if

Example 1: if ��beginmac

if (priv == privileged)

echo “\nThis port's privilege level is privileged"

endif endmac ��Double click to view example 2: if, else 

Example 2: if, else��beginmac

if (priv == privileged)

echo "\nThis port's privilege level is privileged”

else

echo "\nThis port's privilege level is not privileged”

endif

endmac 

��Double click to view example 3: if, elif 

Example 3: if, elif��beginmac

if (priv == privileged)

echo "\nThis port's privilege level is privileged"

elif (priv == nonprivileged)

echo "\nThis port's privilege level is nonprivileged"

endif

endmac��Double click to view example 4: if, elif, elif 

Example 4: if, elif, elif��beginmac

if (priv == privileged)

echo “\nThis port's privilege level is privileged"

elif (priv == nonprivileged)

echo “\nThis port's privilege level is nonprivileged"

elif (priv == secure)

echo “\nThis port's privilege level is secure”

endif

endmac ��Double click to view example 5: if, elif, elif, elif, else 

Example 5: if, elif, elif, elif, else��beginmac

if

(priv == privileged)

echo “\nThis port's privilege level is privileged" 

elif (priv == nonprivileged)

echo “\nThis port's privilege level is nonprivileged"

elif (priv == secure)

echo “\nThis port's privilege level is secure"

else

echo “\nThis port's privilege level is unknown”

endif

endmac ��In examples 1 through 5 each if, elif, else command group executed a single line if the test condition was true. Examples 6 and 7 below demonstrate macros having more then one command in the body of the if, elif command group. An if, else command group may also have multiple commands. 

Double click to view example 6: Multiple Commands in an “if” Body 

Example 6: Multiple Commands in an “if” Body��beginmac

if (priv== privileged)

echo “\nThis port's "

echo “privilege level "

echo “is privileged”

else

echo “\nThis port's privilege level is not privileged"

endif

endmac ��Double click to view example 7: Multiple Commands in an "else" Body 

Example 7: Multiple Commands in an "else" Body��beginmac

if (priv == privileged)

echo “\nThis port's privilege level is privileged"

else

echo “\nThis port's“

echo “privilege level”

echo “is not privileged"

endif

endmac ��When executing an if, or a set of if, elif, else commands only the commands associated with the first condition that tested TRUE will be executed. Once a TRUE condition has been found and its associated commands have been executed, the next command to be executed is the one that follows the endif command. 

6.4.38 Jump

Format:

jump macro_ name 

This micro command causes the currently executing macro to terminate and forces the specified macro to begin executing. Unlike the call micro command, there is no return to the original macro. A macro may jump to itself or to any other macro. There is no limit to the number of jumps that may be taken during the execution of a macro. 

Double click table icon to view example which demonstrates the use of the jump micro command. 

Example which demonstrates the use of the jump micro command��beginmac

echo "Ready to jump to macro 'nextmac'\n” 

jump nextmac

;The following micro commands will never be executed, since owe have jumped to another macro, and thus cannot return to this macro

echo

"NEVER EXECUTED\n"

echo "NOT HERE\n”

endmac ��6.4.39 Loop

Format:

loop [be| wn| count] 

The loop micro command allows you to repeatedly execute a block of code. You may execute this loop indefinitely, or specify the number of times the block should execute (loop count). The block of code to be executed is defined between a loop and endloop command. The following example executes the loop until a break is encountered because the correct password was entered:  double click to view example.

beginmac

bl = 0

loop

echo “enter password:”

echooff

read

if (kb != “MACRO")

continue

echoon

endif

echo "Access granted\n”

bl = 1

break

endloop

if (bl == 0)

echo “Access denied\n”

endif

endmac��In the following example, the echo command is executed 5 times: double click table icon to view.

beginmac

LOOP 5

echo “Hello\n"

endloop

endmac ��Loop counts may be expressed either as hard coded numeric values or as numeric variables (bn or wn). Thus the example shown above may alternately be written using numeric variables as follows: ��beginmac

bl = 5

loop bl

echo "Hello\n"

endloop

endmac ��Macro loops allow one level of nesting. This means that a block of text within a loop may contain yet another execution loop. The following is an example of a nested loop: double click to view.

beginmac

loop 3

echo “outer loop\n"

loop 2

echo " Inner loop\n”

endloop

endloop

endmac ��The following display results from this macro: ��Outer loop

Inner loop

Inner loop

Outer loop

Inner loop

Inner loop

Outer loop

Inner loop

Inner loop

��Two other micro commands, break and continue, provide additional control mechanisms within loops. Refer to subsections 6.4.13 and 6.4.19 respectively for more details. 

6.4.40 Quit

Format:

quit

The quit micro command causes a macro to terminate. If encountered in a submacro (i.e. a macro that was called by another macro), both the submacro and the calling macro are terminated immediately. 

This command differs from the micro commands endmac and exit. Those commands force a return to the caning macro if they occur in a submacro. The quit command causes an unconditional termination of all macro execution activity. 

If the macro containing a quit micro command is to be executed on a captive port, the captive flag must be tested prior to the quit command. 

6.4.41 Read

Format:

read

This micro command suspends the currently executing macro and waits for keyboard input from the user. A carriage return (<Return>) or arrow key is required to terminate keyboard input. When <Return> is pressed, the macro resumes execution. Input data is stored in the keyboard buffer kb. The buffer has a capacity of 132 characters. The read command is not case sensitive. Therefore, if a lower case letter is entered, it is immediately converted to upper case. If you require case sensitive input, use the readcs command described in subsection 6.4.42. 

When testing keyboard input (kb), the string must be uppercase. For example, if (kb=="ABC"). 

6.4.42 Readcs 

Format:

readcs

This micro command is identical to the read command except that it is case sensitive. Both upper and lower case letters are permitted as input. 

When testing keyboard input with this micro command, the string must match the case of each character. For example:  if ( kb== “ String") . 

6.4.43 Sleep 

Format:

sleep [bn| wn| count]

The s keep micro command suspends execution of the macro for the specified period of time expressed in tenths of a second (.1 second). For example, if you wish to suspend execution for 1.5 seconds, use the command:

sleep 15 

The sleep command may also use numeric variables as arguments. The maximum time avowed is: 

count = 32767

time = 3276.7 seconds = 54.6 minutes 

6.4.44 Step off 

Format:

stepoff

The step off micro command disables interactive macro debugging. 

6.4.45 Stepon 

Format:

step on

The step on micro command enables interactive macro debugging. For this command to be effective, macro debugging must also have been enabled using the debugon micro command and a debug port must be enabled. 

In interactive debugging mode, after each micro command in the macro is executed, a line of debugging information is displayed on the selected debug port (see SET PORT MACRO DEBUG). This line is followed by the prompt:

<CR> to continue.

To continue to the next command of the macro, press <Return> on the debug terminal. Execution will stop at each micro command until either the end of the macro has been reached or a step of f micro command is encountered. 

6.4.46 Turbo

Format:

turbo n

The turbo micro command may be used to increase or decrease performance of a macro by controlling the number of micro commands executed each time control is passed to the server's macro logic. Turbo values may be from 5 to 50 with a default of 10. For example, if a macro is used to generate an active cursor, the turbo value may be increased to ensure smooth, continuous motion of the cursor. 

Care should be exercised when using turbo on large macro loops because this may degrade the overall performance of other ports on the server. 

6.4.47 Wn = n

Format:

wn = nnnnn

This numeric assignment operation assigns a value to a specific numeric word variable. The variable wn is a signed word value with a valid range of 0-32767. Macros support a maximum of two wn-type variables. These are named w1 and w2. 

6.4.48 Wn++; wn--

Format:

wn++

wn--

Numeric increment and decrement operations are supported by macros. The expression Wn++ will increment the value currently in the numeric variable wn by one. Similarly, the expression 'wn-' will decrement the value currently in the numeric variable wn by one. The value that results from the operation must be within the allowable range 0-32767. If the value resulting from the decrement or increment operation is outside this range, that variable is set to -1. 

Double click table icon to view example which demonstrates the use of the increment/decrement operators: 

beginmac

wl = 100

loop 100

wl--

echo “w1 = %w1\n”

endloop

loop 100

w; ++

echo "w1 = %wl\n"

endloop

endmac ��6.4.49 Wn + m; wn - m

Format:

wn + m

wn - m

wn + wm 

Numeric addition and subtraction operations are supported by macros. The expression wn + m adds the value of numeric variable wn to the value m and stores the result in wn. M may be a hard-coded value or a variable. Similarly, the expression wn - m subtracts the value of m from the value of numeric variable wn. The resulting value must be within the allowable range of 0-32767. If the resulting value is outside of the allowable range for the respective variable type, the variable is set to -1. 

This macro initializes the variable w4 to 75, then decrements it by 25.  Double click to view macro.

beginmac

w4 = 75

echo “w4 = %w4 initially\n”

w4 - 25

echo "w4 is now equal to %w4\n”

endmac��

SECTION 7 - Debugging

7.1 Overview

The Emulex Macro software includes a macro debugging feature which allows you to troubleshoot your macros. The macro debugger includes the following features: 

Display each micro command as it is executed

Display an expanded command line

Display parameter substitutions

Display of critical counters and values as each micro command is executed

Control macro execution by stepping through the macro one micro command at a time

Enable and disable debugging at any point within a macro 

7.2 Enabling Macro Debugging

The macro debugger relies on the ability to send debug information to a terminal attached to a server port. The following server command is used to enable the debugger and to define a debug output port: 

SET PORT [port_num] MACRO DEBUG PORT port_num_out

Where port_num is the port that will be running the macros to be debugged and port_num_out is the port number to display all macro debugging information. If port_num is not specified, then the current port is assumed The output port (port_num_out) may be any physical port on the server. 

To enable debugging in the macro, edit the macro and place a debugon directive at the point where you would like debugging to commence. Insert a debugoff directive at the point where you want debugging to cease. During macro execution, if a debugon directive is encountered then debug information is displayed on the debug port for all subsequent micro commands. This continues until a debugof f directive is encountered or the macro exits. 

If the macro calls or jumps to another macro that you wish to display debugging information for, that macro must also contain a debugon command. 

7.3 Displaying Debug Information

While in debug mode a single line of information is displayed for each executed micro command.  This consists of the following: 

SML,LO,REC,CAC,SK,SI,SD,TC,L,LL,LC0,LCl,REC 

Double click table icon to view descriptions of micro commands

SML�Submacro level. This is the level of nesting of submacros. A '-' character will be displayed for each call level beyond the main macro.��LO�Line offset. This is the current line number within the macro file.��REC�Current macro record.��CAC�Cache record status; C = the current record was obtained from cache, H = the record was obtained from the host.��SK�Skip or Execute; sk = the current command is being skipped, ox = the command is being executed.��SI�Current macro if and loop state index.��SD�Current macro state description. This may display the following codes:

base - not in an if body or loop body

if, elif, else - in a test body

self - searching for endif

sees - searching for elif, else, or endif

loop - in a loop body

selp - searching for endloop ��TC�Test condition status (True or False)��L�Delimiter character separating loop information��LL�Current loop level:

O = not executing a loop

1 = top loop

2 = nested loop��LCO�Current loop count for top loop.��LC 1�Current loop count for nested loop.��REC�Micro command line currently executing.��The following example lists a macro followed by the debug information display: double click to view.

;Main macro:

beginmac

echo "This is the startof the macro\n"

debugon echo "Debugging is enabled\n”

set port type ansi

bl=0

loop 4

echo "In loop\n"

if (bl==2)

break

endif

bl++

endloop

call submac 

debugoff

endmac

;Submacro:

beginmac

debugon

echo "In submac\n”

debugoff

endmac��In the following debug display, the line numbers are given only for reference and are not part of the actual display: double click to view.

1. 4,1,H,ex,0,base,F,L,0,0,0, echo “Debugging is enabled\n"

2. 5,1,H,ex,0,base,F,L,0,0 0, set port type ansi

3. 6,1,H,ex,0,base,F,L,0,0 0, bl=l

4. 7,1,H,ex,0,base,F,L,0,0,0, loop 4

5. 8,1,H,ex,l,loop,F,L,1,4,0, echo "In loop\n”

6. 9,l,H,ex,l,loop,F,L,1,4,0, if (bl==2)

7. 10,1,H,sk,2,seee,F,L,1,4,0, break

8. ll,l,H,ex,2,seee,F,L,1,4,0, endif

9. 12,1,H,ex,l,loop,F,L,1,4,0, bl++

10. 13,1,H,ex,l,loop,F,L,1,4,0, endloop

11. 7,1,H,sk,l,loop,F,L,1,3,0, loop 4

12. 8,1,H,ex,l,loop,F,L,1,3,0, echo “In loop\n"

13. 9,l,H,ex,l,loop,F,L,1,3,0, if (bl==2)

14. 10,1,H,ex,2, if,T,L,1,3,0, break

15. ll,l,H,ex,2,selp,T,L,1,3,0, endif

16. 12,1,H,sk,l,selp,F,L,1,3,0, bl++

17. 13,1,H,ex,l,selp,F,L,1,3,0, endloop

18. 14,1,H,ex,0,base,F,L,0,2,0, call submac

19. _3,1,H,ex,0,base,F,L,0,0,0, echo “In submac\n"

20. _4,1,H,ex,0,base,F,L,0,0,0, debugoff

21. 15,1,C,ex,0,base,F,L,0,2,0, debugoff��In the debug display, line 1 contains the first command following the debugon command. At this point, the current macro state is base, indicating there is no active looping or nesting. Lines 2 through 4 show the same condition. 

In line 5, the macro has entered the loop and the loop fields are now active. The loop level is 1, indicating no nesting, and the loop count is 4. The count decrements on each loop iteration. 

In line 6, the if command is executed. On the first pass, the value of bl is not 2 and the if condition is false. The macro skips lines until it encounters an endif, else, or elif. In line 7, the state is seee (search for endif, else, or elif) and the skip/execute field is sk (skip). 

In line 11 the macro resumed execution at the top of the loop. Here, the value of bl is 2 and the if condition is true, causing the macro to execute the break command as shown in line 14. The macro state is now if and the sk/ex field is ex meaning the test body is being executed. Execution of the break command forces the state to change to selp (search for endloop). All commands are skipped until the endloop is found as shown in line 17. 

In line 18, the macro serums to the base state and is ready to execute a submacro call. Line 19 indicates entry into the submacro by the leading _ in the macro line number. The line offset field reflects the current line number within the submacro. 

Line 21 indicates an exit from the submacro and return to the main macro. 

7.4 Step Control

The macro step control allows you to execute a macro one micro command at a time. To enable this feature enter the directive step on in the macro text at the point where you would like macro step control to begin. From this point on, after each command executes you will be prompted at the debug terminal to enter a carriage return. Only after a carriage return is entered will the server proceed to the next command in the macro. Use the stepoff directive to disable macro step control. 

7.5 Expanded Command Display

If the macro you are debugging is one which supports command line parameter substitution, you may want to display the fully expanded command line as part of the debug display. To enable expanded command display, enter the following command: 

set port {port_num} macro showexp enabled

Each command line that is executed is now displayed, with any substitution parameters (%n) that occur in the line fully expanded. 

7.6 Macro Request Display

To display request packet information while debugging a macro, enter the following command: 

set port {port_num} macro showreq enabled

When this feature is enabled, a line of request packet information is displayed on the debug terminal every time a macro request packet is sent out. The format of this display line is as follows: 

Port port_num req macro "mac_name” cmd N record M IP_addr UDP port_num

The information contained in this line consists of the following: 

The port number making the request

The macro name being requested

The macro command type:

1: a macro request packet

3: a macro help request

5: a macro logic request

7: a macro directory request

8: a startup macro request

The macro record number being requested

The IP address of the intended netserver host

The UDP port number

APPENDIX A - Micro Command Summary

A.1 Overview

Double click table icon to view a summary of the micro commands and micro directives used to create macros. The column labeled Ref. identifies the subsection describing that command.  In the table, C = command; D = directive.

Command�Type*�Required Parameters�Ref.��Align�D��6.4.1��atoi�C�[ bn| wn ] kb�6.4.2��authdev�D�device_type�6.4.3��authip�D�ddd . ddd . ddd . ddd port_list�6.4.4��authpriv�D�priv_level�6.4.5��beginhelp�D��6.4.6��beginlogin �D��6.4.7��beginmac�D��6.4.8��beginstartup�D��6.4.9��bn++�C��6.4.11��bn--�C��6.4.11��bn + m�C��6.4. 1 2��bn = nnn�C��6.4.10��break�C��6.4.13��cacheoff�D��6.4.14��call�C�macro_name�6.4 .15��clr�C��6.4.16��clrendl�C��6.4.17��clrends�C��6.4.18��continue�C��6.4.19��curoff�C��6.4.20��curon�C��6.4.21��currc�C�[bn| wn| row][bn| wn| column]�6.4.22��debugoff�C��6.4.23��debugon�C��6.4.24��descript�D�“string”�6.4.25��echo�C�“string”�6.4.26��echooff�C��6.4.27��echoon�C��6.4.28��elif�C�test condition�6.4.29��else�C��6.4.30��endhelp�D��6.4.31��endif�C��6.4.32��endlogin�D��6.4.7��endloop�C��6.4.33��endmac�D��6.4.34��exit�C��6.4.35��fn = n�C��6.4.36��if�C�test condition�6.4.37��jump�C�macro_name�6.4.38��loop�C�[bn| wn| count]�6.4.39��quit�C��6.4.40��read�C��6.4.41��readcs�C��6.4.42��sleep�C��6.4.43��stepoff�C��6.4.44��stepon�C��6.4.45��turbo�C�count�6.4.46��wn++�C��6.4.48��wn--�C��6.4.48��wn + m�C��6.4.49��wn = nnnnn�C��6.4.47��

APPENDIX B - Macro Error and Status Messages

B.1 Overview

This section lists the error and status messages that you may encounter when creating or running a macro. 

If an error occurs, the appropriate error message is displayed on your terminal unless the port is configured for captive login. Ports configured for captive login will not display these messages. 

Server-300-Macro 'macro_name' aborted, macro record not attached

Server-300-Macro 'macro_name' aborted, macro insufficient resources

Server-300-Macro 'macro_name' aborted, macro request timeout

Server-300-Macro 'macro_name' atoned, macro bad pkt rec'd

Server-300-Macro 'macro_name' aborted, macro not found

Server-300-Macro 'macro_name' aborted, macro help not available

Server-300-Macro 'macro_name' aborted, macro server login not found

Server-300-Macro 'macro_name' aborted, macro port login not found

Server-300-Macro 'macro_name' aborted, macro server not authorized

Server-300-Macro 'macro_name' aborted, macro port not authorized

Server-300-Macro 'macro_name' aborted, macro port privilege not authorized

Server-300-Macro 'macro_name' aborted, macro host detected protocol

Server-300-Macro 'macro_name' aborted, macro unk rec'd pkt error code

Server-300-Macro 'macro_name' aborted, macro switching host

Server-300-Macro 'macro_name' aborted, macro netserver node not configured

Server-300-Macro 'macro_name' aborted, macro has no 'endmac' command

Server-300-Macro 'macro_name' aborted, macro has no 'endlogin' command

Server-300-Macro 'macro_name' aborted, macro local server IP not configured

Server-300-Macro 'macro_name' aborted, macro cache record failed to release

Server-300-Macro 'macro_name' aborted, macro has no 'beginmac' command

Server-300-Macro 'macro_name' aborted, macro has no 'beginlogin' command

Server-301-Macro 'macro_name' aborted <L#n>, keyword error

Server-301-Macro 'macro_name' aborted <L#n>, macro aborted

Server-301-Macro 'macro_name' aborted <L#n>, stack high limit

Server-301-Macro 'macro_name' aborted <L#n>, stack low limit

Server-301-Macro 'macro_name' aborted <L#n>, clear

Server-301-Macro 'macro_name' aborted <L#n>, unknown style

Server-301-Macro 'macro name' aborted <L#n>, unexpected continue cmd

Server-301-Macro ‘macro name’ aborted <L#n>,unexpected endloop cmd

Server-301-Macro 'macro name' aborted <L#n>, nested if high limit

Server-301-Macro 'macro_name' aborted <L#n>, call high limit

Server-301-Macro 'macro_name' aborted <L#n>, loop high limit

Server-301-Macro 'macro_name' aborted <L#n>, missing open/close string quotes

Server-301-Macro 'macro name' aborted <L#n>, flag # out of range

Server-301-Macro 'macro_name' aborted <L#n>, repeat count out of range

Server-301-Macro 'macro_name' aborted <L#n>, expected opening parenthesis

Server-301-Macro 'macro_name' aborted <L#n>, illegal rational operator

Server-301-Macro 'macro_name' aborted <L#n>, unexpected elif command -

Server-301-Macro 'macro_name' aborted <L#n>, unexpected else command

Server-301-Macro 'macro name' aborted <L#n>, expected closing parenthesis

Server-301-Macro 'macro_name' aborted <L#n>, flag value can only be 0 or 1

Server-301-Macro 'macro_name' aborted <L#n>, display device not authorized

Server-301- Macro 'macro_name' aborted <L#n>, missing keyword or value

Server-301-Macro 'macro_name' aborted <L#n>, unexpected break command

Server-301-Macro 'macro_name' aborted <L#n>, rec'd pkt data missing terminator

Server-301-Macro 'macro_name' aborted <L#n>, command buffer size limit exceeded 

Server-301-Macro 'macro_name' aborted <L#n>, invalid substitution parameter

Server-301-Macro 'macro_name' aborted <L#n>, numeric value out of legal range

Server-301-Macro 'macro_name' aborted <L#n>, invalid numeric argument

Server-302-Macro 'macro_name' aborted <L#n>, keyword error 'keyword'

Server-303-Help 'macro' request failed, macro has no 'beginhelp' command

Server-303-Help 'macro' request failed, macro has no 'endhelp' command

Server-303-Help 'macro' request failed, macro has no help text

Server-310-Macro authorization change requires server initialization

Server-311-Macro execution must be disabled on the debug port

Server-312-Port not authorized for macro execution

Server-313-Port N being used by port M for debugging. Execution disabled

GLOSSARY

Byte variable �A numeric variable consisting of a single byte (8 bits). The macro feature supports 8 byte variables, named bl, b2, b3, b4, b5, b6, b7, and b8. ��Cache record �An area of server memory that contains all or part of the macro text. A macro may consist of one or more cache records. When a macro is requested from a terminal, the netserver downloads the macro one cache record at-a-time. If caching is enabled, a macro record will first be perched for in cache. Only if it is not found in cache will the server request it from the netserver host. ��Ethernet address �The unique address assigned to all terminal and printer servers. The Ethernet address is assigned by the manufacturer and consists of 12 hexadecimal characters. Performance servers have Ethernet addresses of 00-00-c9-00-xx-xx ��If body �Set of micro commands that test for a condition and branch to different parts of the macro, based on the results of the test. An if body begins with the command if and ends with the command endif. ��IP address �A unique address that is assigned to all hosts and servers on a network. The IP address is used by the network operating software to identify each node and is assigned by the network administrator during installation. IP addresses consist of four bytes, separated by a dot. A typical IP address is 138.239.254.100. ��LAT �Local area transport. The LAT protocol is defined by DEC. All Performance servers are compatible with the LAT protocol. ��Micro command �Commands that make up the macro and which cannot be used alone to control server functions. Examples of micro commands are atoi, if, endif, car, read, sleep, etc. ��Micro directive �Micro directives identify portions of a macro or pass information between the netserver and the server port executing the macro. Micro directives include authip, beginmac, beginhelp, etc. ��Multiwindows �A display protocol used by VT-420 compatible terminals to display multiple user screens on the same terminal screen. ��Netserver �One of two hosts on the network that contain the macro software. The primary host is referred to as the default netserver. The second host, if present, is called the alternate netserver. ��RCF�Remote console facility. The RCF allows a user to log in to a server or a port on a server that is not connected directly to the terminal they are using. The RCF port is used to configure print servers that do not have a console port. ��Relational operator �Any conditional operator that compares a value or parameter to another value of parameter. Relational operators are: equal (=), not equal (!=), greater than (>), less then (<), etc. ��Server command �Commands that control server functions in a macro and which may be used alone, outside of the macro body. ��TCP/IP �Transmission control protocol/internet protocol. The TCP/IP protocol is used by most local area networks connected to PC and UNIX-based systems. ��TDSMP-multiwindows �see multiwindows��UDP �User datagram protocol. ��Word variable �A numeric variable consisting of a single word (16 bits). The macro feature supports 2 word variables, named wl and w2. ��


