dBASE

Assembly-Language
Relational Database Management
System

VOL. [I REFRENCE MANUAL

Ashton Tate

WES JEFFERSON BOULEY. ﬁ
CUL R CITY, CALIFORNIA 90230
(213)20

dBASE II

Assembly Language

Relationali vatavase.management System

REFERENCE MANUAL

1.0

2.0

4.0

5.0
0.0
7.0
8.0
9.0

CONTENTS
USING OBASE.ceesesesoscssosasssspascscsssancal
System RequirementS...cccecvccccccsscccncsssedd
ABASE FLleS.esceasesrrcsassscsccscascposcaaad

Database FileS:.ciccececscccccscscanssh
Memory FileS..ciececesccsccccacccasced
Command FileS.ecseoceccscevecasccnnnsl
Report Form FileS...cccceecvecsncccse?
Text Qutput FileS...ceeceecscccsecses8
Index FileS..cceceaveececcscncccncnssl
Format FileS..eooevesoocsocssccsweesed

CWwWwwWww
ceRETN
NV EWN =

EXpressionsS..cccccscescecoscosrsccsccsnsssscncssd

4.1 FunctionS...eeec.cncecconccaccsscccesll
4.2 OperationS...ceececcsecessccsscacscsesld

Macro SubStitutiONeececseccisceccvscccecsacsely
Interfacing with Non-dBASE Processors......20
Classes of CommMANAS.cececrscccoorssoansneqecll
Full Screen OperationS..ececcessccecescecscse2l
COMMANGSeereeccsasasssssaccconsaatosasssssasdl

9.1 Symbol DefinitionS..ceceecescioscocss?
9.2 Rules of ComMANdS..ccceccocrcccnsnccesl

Appendices
A) Command File EXample...ccocecceescs145
B) List of CommAnds......ccoveeeeesssss153
C) Limitations and Constraints........156
D) Error Messages......c.cecceossccses 57

1.0 USING dBASE

To execute the dBASE program, place the dBASE distribution
diskette (or preferably, 'a copy of that diskette) into any
available disk drive. Set that drive to be the default drive
(e.g. if the disk is placed into the "B" drive, type in L P
followed by a carriage return) and then type in the following
line:

DBASE

The program will then be loaded into memory, and will start
.execution with a date request:

£ENTER DATE AS MM/Du/YY OR RETURN FOR NONE:

This date will be posted-on any database that is altered during
the following run and ‘will also be printed in REPORT headings for
any report generated in that run. The date is checked for
calendar accuracy. WARNING: The calendar check is not vaiid for
February 29 in the years 1900 and 2100. A slash or any speciai
character (except a period; may be used to delimit the numbers.

Examples of valid dates:

1,1,81
0z 02 82
3/11/83

Then the sign-on message is displayed:

‘#u# GBASE 1I VER Z2.Xxxx###

The period on the second i1ine is the dBASE prompt, indicating
that dBASE is ready to accept commands. Comdgpda to dbASE are
generally ‘imperative sentences: a verb possibly tolicwed by
phrases .that give further direction about the action to be taken.
dBASE scans each line completeiy before executing any part of it.
;r dBASE detects an error in the command then the user is
notified via error messages on the console. Generailiy, the user’
may correct the erroneous command and re-issue rather than re-
enter the entire command. When dBASE detects an error that it
can't describe explicitly, it assumes that the error is a syntax
error and displays the erroneous line with a question mark at the
beginning of the phrase that caused the confusion.

Error recovery examples:

. DISPRAY . MEMORY

#88 UNKNOWN .COMMAND
DISPRAY MEMORY

CORRECT AND RETRY? X
CHANGE FROM :PR
CHANGE TO <PL
DISPLAY MEMORY

MORE CORRECTIONS? (cr)

. STORE (2+2 10 X .
%88 SYNTAX ERROR ###
e

STORE (2+2 TO X
CORRECT AND RETRY? Y
CHANGE FROM :42
CHANGE TO :+2)
STORE (2+2) TO X
MORE CORRECTIONS? N

y

. S 10 X :
NO EXPRESSION TO SUM

SUM TO X

CORRECT AND RETRY? N

erroneous command- echoed
Yés, correct

change-the letters PR

to PL

after the change

return = no mord changes

the string (2+2 is indjicated

N(o) more changes
the ‘result

" explanation

no.cnange, abor:¢ this command

The program can also be executed in the foiiowing.nanner:

DBASE <f11ename}'

This will load JdBASE into memory, access a command file
<filename>, and begin immediate execution of that command file.
-This form is especially useful when using dBASE in a SUBMIT file
or ‘when using the chaining option of the dBASE QUIT command.

CONTROL CHARACTERS

ctl-P - Toggles print switch (see also SET PRINT command)
ctli-U - Deletes current. 1ine
ctl-X - Deletes cirrent line (except in full screen edit)

Rubdut - Deletes last character entered

ctI-H (qr}backspaée) - Deietes the 1as§_éharacter entered

- Escapes from certain-possibiy iong-running commands.

I.e. DISPLAY, COUNT, DELETE, 1INPUT, LIST, LUCATE,
RECALL, REPLACE, SKIP, and SUM. ALso ESC serves as an
escape from ACCEPT, 1INPUT, REPORT (dialogue), and
WAIT. In ali cases, ESC returns control to the
interactive monitor and dispiays a dot prompt.

When in a command file execution, dBASE checks tor an
ESC character before starting every command iine.

NOTE: This escape capability can be disabled by the
SET ESCAPE OFF coumand..

2.0 SYSTEM REQUIREMENTS

In order for dBASE to operate properly, a system with the
following attributes should be made available.

a) 50860 or 2-60 based microprocessor system;

b) 48K bytes (or more) of memory including CP/M
(dBASE uses memory up to A400 hex). Note: on some
machines, including Apple, Heath, and Northstar, more
than 48K is required because of an ove -ized CP/M module;

¢) CP/M operating system (version 1.4 or 2.2

d) One or more mass storage devices operating wnder CP/M
(usually floppy or rigid disk drives);

¢) A cursor addressable CRT device (preferabiy a 24 line by
80 column CRT) if full screen operations are to 2 used;

f) Optional text printer (for some commands).

5.0 dBASE FILES

Basically, a file is a collection of information residing on a
mass storage ‘device that contains the user's data. The
information can be stored to or -retrieved from the file. Files
can be grouped into six types, each one either concerned with a
particuiar operation of or created by dBASE.

All dBASE files are standard CP/M files with a name field of
. eight characters and a file type of three characters. Listed
below are the default fiie types used by UBASE. For each command
that accesses a file, the type field may be left off and dBASE
'will assume the default type for that command. For ;instance, if a
database file aiready has DBF as its type, then ‘it need not be
specified in any of the file manipulation commands.

DATABASE FILES - <DBEF
MEMORY FILES - <MEM
COMMAND FILES - (MY

REPORT FORM FILES -~ .FRM
TEXT OUTPUT FILES - ,TXT
INDEX FILES - .NDX
FORMAT FILES - «MT

Any legitimate CP/M filename may be used to rerer to dBASE files.
Remember, if, during an access of any fiie, the type is not
supplied by the user, dBASE wiil assume the above file types.
For further informatior regarding the use of filenames and types
refer to the Digital Research publiication "CP/M User's Guide".

3.1 DATABASE FILES (.DEF)

Databases are what dbASE is all about. dbASE's database n.lea
consist of a structure record and zero to 65535 data records. The
structure record is essentialiy a map of the data record format.
The structure can contain up to thirty-two different entries.
Each entry in the structure refers to a field of data in the data
records. The structure holds the foliowing data:

The name of the data tieids

The type of data within data fields
The size of the data fields

The position of the data within records

DATA FLELD NAME - Tue name may be up.to 10 characters iong. In
all operations during a dBASE run tne dac‘ fieids wilii be
referenced by this name. Field names are aiphanumeric (plus
coions, by nature. However, fielids must begin with a .ietter and,
coions must be embedded in the name. Some - -exampies follow.

The SAVE command will Jrite all current memory variables to a
memory file; and the RESTORE command will read a aaved memory
file back into the memory variables.

3.3 COMMAND FILES (.CMD)

A command file contains a sequence of JdBASE command statements.
This provides the user with a method of saving a set of
frequently used command sequences which then allows - one to more
easily manipulate database files.

Command files may be creaged and modified by text editors and/or
word processors, although dBASE now has the capability to
create/edit command files itself with the MODIFY COMMAND. Command
files are started by the DO command. Command files may contain
any dBASE commands, however, one shouid be careful since some of
the commands (CREATE, INSBRT, APPEND (from the keyboard)) require
user inputs beyond the command file contents.

Command files may be nested, i.e. command files may contain DO
commands which are then executed. Again, care should be
exercised in that, dBASE allows, at most, 16 files to be open at
any given time. Therefore, if there is a file in USE, oniy 15
command files may be nested. Certain commands also use.work files
(e.g. SORT uses 2 additional files; REPORT, INSERT, COPY, SAVE,
RESTORE, and PACK us» one additional file). For instance, if a
SORT command is jissu2d from the lowest command file in a nest,
then only 13 levels of command file could be used (i.e. the USE
file, 2 SORT work files and 13 command files = 16). Whenever a
command file issues ‘the RETURN command or whenever the end-of-
file is encountered on a command file, “he command file is closed
and its resources are available for other commands.

3.4 REPORT FORM FILES (.FRM)

The REPORT command either generates a form file or uses an
existing foru file. The form file contains instructions to the
report generator on titles, headings, totaling, and column
contents. Form files are constructed by dBASE as part of the

REPORT dialog. They can be modified by text editors or word
processors, however, it is usually easier to define a new report
form from the start.

Examples of data field names:

A

A123456769 .

ABC:DEF

AsBiC:D:E

ABCD: invaiid, colon not emvedded
ABC ,DEF invalid, comma is illegal

DATA TYPE - JdBASE allows three types of data to be used to
specify the contents of the data fields. They are: character
strings ('ABCD'), numeric quantities (2 or 5*18), and logica.s
(true/false).

FIELD S]ZE - This is the number of character positions (width)
needed to contain the data that will be placed into this field.
Character string fields and numeric fields may be from 1 to <5h
positions in length. The count for a numeric field shouid include
the decimal point. Logicai fields are aiways.one poaition in
length. Also, for numeric fields, the number of positions to the
right of the decimali point may also be contained in the
structure.

Once the structure has been defined, the user can enter data
values into the fields for as many records as are aesired.
Uaually, there is only one structured data file availabie to the
user at any given time (this is referred to as the USE file or
the file in USE). There is however, a way to use two databases at
one time. See the commands SELECT and JOIN.

3.2 MEMORY FILES (.MEM)

Memory files are static filea of memory which are divided into
variables similar to record variables. These variables are known
as memory variables and are limited to o4 in number.

The values of memory variables are independent of the database in
yse. That is, the record position ef :the~file in USE has no
bonrins on the variables in the memory fiie. Memory variables are
used to contain constants, results of computations, and symboiic
substitution strings (See Section 5), etc. The rules of naming,
typing, and sizing of memory variables are identical to those of
the field variables described above.

3.5 TEXT OUTPUT FILE (.TXT)

The text output files are created when the "SET ALTERNATE TO
<filename>" and "SET ALTERNATE ON" commands have been specified.
See SET command for more details. Also, the COPY and APPEND
commands assume a text (.IXT) file whenever the SDF (System Data
Format) or DELIMITED options are used.

3.6 INDEX FILES (.NDX)

Index files are generated by the INDEX command of dBASE. They
contain keys and pointers to records of a database file. Indexing
is a dBASE technique -that gives rapid location of data in a large
database. See the INDEX command for more information.

8.7 FORMAT FILES (.FMT)

A format file contains ohly "@* statements and "#" comments. It
1s identified by the "SET FORMAT TO <filename command and is
activated by subsequent READ commands. Like command riles (which
format files resemble), format files are created and modified by
any good text processor or the MODIFY COMMAND capability. Format
files are not, however, .necessary. “€%'s and "#"'s statements are
.usually built into the command file that needs them.

4.0 EXPRESSIONS

An expression in dBASE is a group of simple items and operators
that can be evaluated to form a new simple value. For example
"2+2" is an expression that can be evaluated to the value "i=,
Expressions are not necessarily always numeric in nature. The
expression ‘'apc'+'def' can be evaluated to the value ‘abcdef’
(character string concatenation), or the expression 1>2 can be
evaluated to the logical (Boolean) value of ".F." (false).

Expressions in dBASE are formed from the following components:

Database field variables
“Memory variables

Constants within the commands (literals)
Functions

Operations

VARIABLES - A variable in dBASE is any data field whose value may
change. The field names of the currently referenced record in a
dBASE file are variables. Their contents may be changed by moving
the file pointer or by editing the current record. Variablesare
also created and changed by the commands, STORE, RESTORE, COUNT,
SUM, WAIT, ACCEPT, or INPUT. These are called memory variables.

A variable may be one of three types:

#* Character strings
® Numeric quantities
* Logicals

CONSTANTS - A constant (or literal) is a data item which has an-
invariant, self-defined value. For instance, 1, 'abe’, and .T.

are constants which have a constant value regardless of the

position of the database or any memory variable commands. They

are literals since they ARE the value they represent- (as opposed

to variables which are names representing a value). The values

they represent are, respectively: a numeric one, a character

string (containing the letters "a", "b", and “c“), and a logical

(Boolean) value of TRUE (".T.").

Lharacter string constants must be enclosed in single quotes ('),
double quotes ("), or in square brackets (i,j). If a character
string contains one of these "delimiters", then it shouid be
enclosed in a pair of ong of the other ones. For example the
strings 'abc{def]ghi' and [abc'def'ghi] are valid character
strings while 'abc'def'ghi' is not.

Logical constants (true/faise) are represented by "T", "tw, *y",
or "y" for true values (denoting true or yes) and "F", nfn, ®wN®,
or "n" for false values (denoting false or no).

4.1 FUNCTIONS

Funetions are special purpose operations that may be used in
expressions to perform things that are difficult or impossible
using regular expressions. In dBASE, there are three basjic types
of functions: numeric, character, and logical. The function type
is based on the type of value that functions generate.

INTEGER FUNCTION:
INT(<numeric expression>)

This function evaluates a numeric expression and discards the
fractional part (if any) to yield an integer value. The value of
the INT function is the truncated value of the numeric expression
within.

Examples:

. 7 INT(123.1456)
123)
. STORE 123.456 TO X
123.456
. 7 INT(X)
123

RECORD NUMBER FUNCTION:

4

The value of the record number function is the integer
corresponding to the current record number.)

‘Examples:
P A

4 (assuming that a database is in USE and is positioned at
‘record number 4)

10

STRING FUNCTION:

STR(<numeric exprésaion),glength>,[<§ec1ﬁala>])

This function evaluates a numeric expression and yields a
character string. The value of the STR function is a character
atring of length <length>. If <decimals> is specified, it is the
number of digits tc the right of the decimal paint. All
specifiers may be 11tera1=, variables, or expressions.

CAUTION: When this function is used to generate a key for
indexing, the specifiers MUST be literals.

Example:
. 7 STR(123.45649,3)
123.456

SUBSTRING FUNCTION:

$(<char expressiond>,{start>,<length>)

This function forms a character string from the specified part of
another string. The value of the aubstring function is a
character string of length <length> filled with -characters from
the character expression starting with character number <start)
for <length> characters. <start> and <length> may be literals,
variables or expressions.

If <length> is longer than the <char expression> or if between
the <length> and <start> the <char expression> "runs out® of
characters, then the result will be only those characters that
are there. See the following examples.

CAUTION: When the function is used to generate a Ev, for
indexing, the specifiers MUST be literals.
Examples:
+ 7 $(*abedefghit,3,3)
cde
. Sstore 3 tom
3
. Store 3 ton
3
+ 7 $('abcdefghi’ ,m,n)
cde
. 7 $(tabcdefghi®,6,7)
fghi

. DISPLAY FOR '8080'$TITLE

"

STRING TO NUMERIC FUNCTION:
'VAL(<char string>)

This function forms an integer from a character strihg made of
digits, signs, and up to one decimal point. The length of-.the
integer is equal to the number of characters in the string. If
the character string begins with numeric characters but has non
numeric characters, then the value generated by the VAL function
is the leading numeric characters.

Another way to convert character numbers into numerics is the use
the "&" (see 5.0 Macros). The "&" will convert the string into a
numeric (including -the decimal)] when the substitution is
encountered.

Examples:

. 7 VAL('123')

123
. 7 VAL(*123xxx')

123
+ 7 VAL('123.456)

123

. STORE '123.456' TO NUM
123.456
.7 13 4+ &NUM

137.456

LENGTH FUNCTION:

LEN(<char string>,

This function yields an integer whose value is the number of
characters in the named string.

Example:
. STORE ‘abc' TO STRING

. ? LEN(STRING)
3

12

DELETED RECORD FUNCTION:

*
This 1s a logical function which is .TRUE. if the curreat record
has been marked for deletion, and ,FALSE. otherwise.

Example:
.7 0
.T. (assuming that a database is in USE and that its
current recocrd has been deleted using the DELETE
command)

END-OF-FILE FUNCTION:

EOF

This is a logical function which is .TRUE. if the end of file Thas
been reached for the file in USE (the current record will be the
last record in the database).

Sxamples:

. 7 EOF :

.F. (assuming that a database is in USE and is not
positioned at the last record)

. GOTO BOTTOM

. 7 EOF

.F.

. SKIP

. 7 EOF

.Te

SUBSTRING SEARCH FUNCTION:

8(<char strlng 1>,<char string 2>)

This function yieids an integer whose value is the character
number ia <char string 2> which begins a substring identical to
<char astring 1>. If string 1 does not occur in string 2.then the
@ function will be of value zero. Note: the € function i3 similas
to the substring operator "$" except that Lt tells where the
first string is found in the second string, and can well de
pronounced "where is string 1 AT in string 2".

Zxample-

? 8('der','abecdefghi’)
u

UPPER CASE FUNCTION

1{<char string expressiocn>)

This function yields the same a:élng as the character string
expression except that all lower case characters are coaverted to
upper case.

Example:

. 7 1(tabe*)
ABC

NUMBER TO CHARACTER FUNCTION

CHR(<numeric expression>)

-This function yields the ASClI character equivalent of the
ﬁumer;c'e;pression. That is, if the expression were the number
13, then CHR(13) generates a carriage return ASClI character.

This function is useful when the user .needs to send direct
-controls to hardware aevices, most often printers. ’

Example:

.- 7 'abed'+CHR(18)+" !
abed

DATE FUNCTION

DATE()

This function will generate a character string that contaias the

system date 4in the format MM/DD/YY. The character
string always has a length of 8. Nothing goes between
the parenthesis, they only indicate a funccion (to
avoid problems with variables named "QATE“.) ’

The dBASE system date .can be entered at dBASE start-up
time or at anytime using the SET DATE TO command.

Examples:

< ? DATE()

08/15/81 _

. STORE DATE() TO MEMVAR
00/15/781

. SET DATE TO 4 1 82

. ? DATE()

o04/01/82

REV A. 14

FILE FUNCTION
FILE(<string exp>)

‘This is a logical function which is .TRUE. if the <string exp>
exists and is .FALSE. if it 'does not.

Example:
«? FILE('TRACE')

.T.
.USE TRACE

TYPE FUNCTION
TYPE(<exp>)

This function yields a one-character string that contains a 'C',
'N', or 'L' if the <exp> is of type Character, Numeric, or
Logical respectively.

Example:

. STORE 1 TO X
« ? TYPE(X)
N

TRIM FUNCTION
TRIM(<cstring>)

The ‘TRIM function removes trailing blanks from a field. Usually
dBASE carries trailing blanks on all variables to avoid coluamn
alignment problems on displays.

NOTE: This function must NOT be used in the INDEX command as the
-key length must be computable for internal.dBASE usage.

Examples;

. STORE 'ABC ' TO S
. 7 LEN(S)

t
. STORE TRIM(S) TO S
. ? LEN(S)

3

15

4.2 OPERATIONS

There are four basic types of operations, arithmetic, comparison,
logical and string. The specific.operators in each class are
listed below, and examples follow for the less familiar ones.

It is important to know that both "sides" of the operators must
be the same type. That is, one may only add integers to integers
or concatenate characters with characters, adding an integer to a
character results in dBASE seeing a syntax error. ‘

. STORE 3 TO A
3 .
. STORE '3' T0 B

3
. 7 A+B

#%% SYNTAX ERROR ###
?
7 A+B
CORRECT AND RETRY(Y/N)?

This error occurs because numerics and characters are seen
differently at the machine level; a numeric 3 is Just that--3
hex, while a character 3 has the ASCII value of 33 hex. The
program becomes confused, it does not know whether or not an
addition is taking place or a concatenation. Using the same
variables as in the previous example:

. 7 A+VAL(B)
6

The string '3' has been converted to an integer and the addi{ion
perforued.

ARITHMETIC OPERATORS (generate arithmetic results)

+ = addition
- = subtraction
®# = pmultiplication
/ = division
() = parentheses for grouping
Examples:
. 7 (4e2)%3 An example of use of
18 arithmetic parentheses
. 7 W (293) used for grouping
10 in calculations

16

COMPARISON OPERATORS (generate logical results)

< = less than
> = greater than
= = equal
= not equal
<= = less than or equal
>= = greater than or equal
$ = substring operator (e.g. if A and B are
’ character strings, A$B will
be TRUE if and only if ‘
string A is equal to B, or
is contained in B
Examples:
. 7 'abe'$'abedefghi' An example of the $
.T. substring operator
« 7 'abcd'$'ghijlkl’
.F.
. DISPLAY FOR '8080°'$TITLE Results in all records with

'8080' somewhere in the field
TITLE being displayed on the
screen

LOGICAL OPERATORS (generate logical results)

.OR. = boolean or

.AND. = boolean and

.NOT. = boolean not (unary operator)
Examples:

. store t to a

.T.
. store £ to b

.F.
. 7a .0r. b

.T.
. store .not. b to ¢
.T.

. 7a .and. ¢

.T.

17

SYRING OPERATORS (generates string result)

+ = string concatenation
- = string concatenation with blank squash

Examples:
. STORE 'ABCD 'TO A In a string concatenation
ABCD the two strings are just
. STORE 'EFGH* TO B appended to each other.
EFGH
« 7 MB
ABCD EFGH
« STORE 'ABCDE ' TO A In a string concatenation
ABCDE with blank squash, the trail-
-« STORE '1234 67*' 70 B ing blanks are moved to the -
1234 67 . end of the string. Leading and
+«+ 7 A-B embeded blanks are not
. ABCDE1234 67 altered.

ORDER OF EXECUTION -

«

The sets of operators for the arithmetic, string and logical have
an order in which they are satisfied. That is, what operation is
done before what other operations. The following table indicates
the order of pretedence for each of the three major operator

¢lasses. In each of the "levels"” (1, 2, etc.) the order of
execution i1s left-to-right.

Example:
. 7 4203
10
Arithmetic operator | String operator | Logical
precedence | precedence |

| |

1) parenthesis, | . parenthesis, | .NOT.

functions | functions I

|) |

2) unary +,- | relations, $(substring op) | .AND.
I I

3) &/ | +,- (concatenation) | .OR.
| |

5) +,- | |
| I
|]

5) relations

18

5.0 MACRO SUBSTITUTION

Whenever an ampersand (%) followed by the name of a character
string memory variable is encountered in a command, dBASE
replaces the & and memory variable name with the memory
variable's character string. This allows the user to define some
parts of a command once and call it out any number of times in
various commands.

Macros are useful when complex expressions must be frequently
used. They also allow parameter passing within command file
nests. All characters between the ampersand and the next special
character (including space) are taken as the memory variable
name. .

If the user desires to append characters to the symbolic
substitution, then the memory variable name should be terminated
with a period. The period will be removed like the ampersand at
substitution time.
If an ampersand is not followed by a valid memory variable name
then no expansion is attempted and the ampersand remains in the
command line.
Examples:

. ACCEPT "Enter data disk drive letter®™ to DR

‘USE &DR:DATAFILE -(at execution time will be USE B:DATAFILE if
"B" was entered in response to the ACCEPT)

« STORE 'DELETE RECORD ' TO T
&T 5 (at execution time will be DELETE RECORD 5)

See appendix A for further. examples.

h\/\\ 0«\\11 (m \\1 ywﬁmg,& ;{ U\QA \o‘a(/ah(/r\
N NN b oot & chuer Shring .

0.0 INTERFACING WITH NON-dBASE PROCESSURS

dBASE can read data from f;les which were created by processors
other than dBASE (e.g. BASIC, FORTRAN, PASCAL) and can generate
t'iles which can be accepted by other proces:ors.

The APPEND command has the ability to read staidard ASLII text
files -(using the CP/M convention of a iine of text foiLlowed by a
carriage return and line feed) by specifying the SUF (System pata
Format) option. Similarly, tne COFY command generates standard
ASCII format files when the SDF option is used. Uniess explicitly
-overridden, the file types of files created with tne SDF and
DELIMITED options will be .TXT.

Some processors and languages read and write fiies in z deiimited
format. In this form all fields are separated by commas ana
character strings are enclosed in quotes., dbASE can APPEND and
COPY these files when the DELIMITED keyword is included in the
command. If the DELIMITED feature is used, SDF is assumed.

Since some processors use single quotes and somwe. use doubue
quotes to delimit character strings, APPEND wiil accept either.
The COPY command normally generates single quotes but will output
any character as defined by the WITH phrase of the DELIMITLED
clause. It is strongliy recommended that only single and doubie
quotes be used.

A special case occurs when a "," is used in the WITH phrase for a
COPY. All trailing bianks in character strings and leading
blanks in numerics are trimmed. Also, character straings will not
be enclosed with quotes or any‘otheh character.
M

Examples:

.USE <FILENAME>.DBF
.COPY TO <FILENAME>.TXT DELIMITED WITH *

.USE <FILENAME>.DBF
~APPEND FROM <FILENAME)>.DAT SDF

20

7.0 CLASSES OF LOMMANDS

During the normal use of dBASE, various commands are used in
combination to accomplish a particular task. Such groups are
shown below. Some dBASE commands are patterned after the
structured constructs that most "modern" computer languages use.
These commands are in the .COMMAND FILE class of commands. There
are some special rules that control the use of these commands,
which are expounded upon in section Yy.0.

CREATION OF FILES - the tolilowing commands create database files
and associated files:

* CREATE - create new structured database f'iles

* COPY - copy existing databases to create copies
* MODIFY - alters database structures

* REPORT - create a report form file

* SAVE - copy the memory variables to mass storage
® INDEX - creates an index fTile

* REINDEX realigns an old index rile

® JOIN - outputs the JOIN of two databases

* TOTAL - outputs a database of totalled records

ADVITION OF DATA - the foliowing commands add new data records to
databases:

* APPEND ~ add data at end of a file
* CREATE - allows addition of data at creation
* INSERT - insert 4data into a file

EDITING- OF DATA - the following commands edit the data within a
database:

* CHANGE - edit co.umns of fieids

* BHOWSE - fuli screen window viewing and editing

* DELETE - marks records for deietion

® EDIT - alter specific data fields in a database

* PACK - removes records marked for deietion

® RECALL - erases mark for de.etion

® REPLACE - repliaces data fieids with vaiues

* READ - replaces data i'rom user defined full-screen
* UPVATE - ailows batch updates of a database

21

DATA . DISPLAYING COMMANDS - the following commands display
selected data from a database:

POSITIONING

e
BROWSE

COUNT

~ displays user formated data on CRT or printer
- displays up to 19 records with as many fields

as will fit on the screen

- count the number of records that meet some

conditional expression

DISPLAY - displays records, fields, and expressions

READ

REPORT
SuM

?

- displays data and prompting information in
full-screen mode '

- format and display a report of data

- compute and display the sum of an expression
over a group of database records

- displays an expression list

COMMANDS - the following commands position the

current record pointer to records as directed:

® CONTINUE- positions to next record witn conditiorns

FIND

GOTO
LOCATE
SKIP

specified in the LOCATE command
- positions to record corresponding tc a key *on
indexed files

- position to a specific record
- find a record that fits a condition
- position forwards or backwards

FILE MANIPULATING
database files:

APPEND

CoPY

DELETE
Do

RENAME
SELECT
SORT

USE

COMMANDS - the following commands affect entire

append dBASE files or files in

Systeh Data Format (SDF)

copy .databases to other databases or SDF
files

delete files

specifies a command file from which subsequent
commands are to be taken

rename a file

switches between USE file

create a copy of a database which is sorted
on one of the data fields -
specifies the database file to be used for
all operations until another USE is 1issued

22

MEMORY VARIABLE COMMANDS - the following commands manipulate the
memory variables:

COMMAND

ACCEPT
COUNT
DISPLAY
INPUT
RESTORE
SAVE
STORE
SUM

WAIT -

stores a char string into memory variables
stores counts into memory variables

can display memory variables

stores expressions into memory variables
retrieves sets of stored memory variables
save the memory variables to a file

stores expressions into memory variables
stores sums into memory variables

accepts a single keystroke into a memory
variable

FILE COMMANDS - the following commands assist in the

control and usage of command files:

ACCEPT

CANCEL
DO

IF
ELSE

ENDDO
ENDIF
INPUT

LooP
MODIFY
COMMAND
RETURN
SET"
WAIT

allows input of character strings into
memory variables

cancels command file execution

causes command files to be executed and
allows structured loops in command files
allows conditional execution of commands
alternate path of command execution
within IF ’
terminator for DO WHILE command
terminator for IF command

allows input of expressions into memory
variables

skips to beginning of DO WHILE

allows editing of command files

ends a command file
sets dBASE control parameters
suspends command file processing

DEVICE CONTROLLING COMMANDS - the following commands control
peripheral devices like printers.and CRT's:

EJECT
ERASE

ejects a page on the list device
clears the CRT

8.0 FULL SCREEN OPERATION

The following are cursor control keys for full screen operation:

ctl-E,A
ctl-X,F

ctl-S
ctl-D

ctl-Y
ctl-Vv
ctl-G
RUBOUT

ctl-Q

When in EDIT:

ctl-U

ctl-R

ctl-C

ctl-W or
etl-0

Wnen in MODIFY

ctl-N
ctl-T

ctl-C
ctl-R
ctl-W or
et~
etl«Q

Backs up to previous data field.
Advances to next data field.

Backs up one character in data field.
Advances one character in data field.

‘Clears out current field to blanks.

Switches (toggles) between overwrite and insert
modes. '

Deletes character under .cursor.
Deletes character to left of cursor.

Aborts full screen and returns to normal dBASE

control. Changes to database variables are
abandoned.’

Switches (toggles) the current record between

being marked for deletion and unmarked.

Writes current record back to disk and displays
previous record i.e. backs up a record.

Writes current record back to disk and displays
next record i.e. advances to next record.

Writes current record to disk and exits screen
edit mode. (ctl-0 is for Superbrain)

Moves all items down one to make room for an

insertion of a hew field.

Deletes the field where the cursor is and moves
all lower fields up.

Scrolls fields down.

Scrolls fields up.

Writes data to .the disk and resumes normal
operations. (ctl-0 is for Superbrainj..

Exits without saving changes.

When in APPEND, CREATE, or INSERT:

cti-C or

ctl-R - Write current record to disk and proceed to next
record.

Carriage return when no changes have been made and cursor is in
initial position - .terminate operation and

resume normal dBASE operations.

wWnen in BROWSE:

ctl-U - Switches (toggles) the current record between
being marked for deletion and unmarked.

Gtl-R - Writes current record back to disk and displays
previous record i.e. backs up a record.

ctl-C - Writes current record back to disk and displays
next record i.e. advances to next record.

ctl-W or - Writes current record to disk and exits screen

ctl-0 edit mode. (ctl-0 is for Superbrain)

ctl-2 - Pans the window left one field.

ctl-B - Pans the window right one field.

9.0 COMMANDS

The explicit definitions of the dBASE commands-are in this
section. The user should famiiiarize him/herself with these
fundamentals before reading the rest of the command information.

9.1 SYMBOL VEFINITIONS

Understanding what the special symbols in the general formats of
the dBASE commands really mean is vitaily important. Not only
does it help in understanding just what the form of the command
really, it helps to show the potential of each command. Piease
read the following table'throughly.

Symbol

<{commands> or -
<statements>

<char string> or -

<cstring>

<delimiter> -
<exp> -
<exp list> -
{t'ield> -

<field list> or -
<list>

Meaning

means any valid dBASE statements; it also

means whole statements. An IF without an

ENDIF, (or a DU WHILE without an ENDDO), is
only half of a statement, while a REPORT is
a whole statement in itself.

means any character string; character
strings are those characters that are
enclosed in single quotes ('), double quotes
("), or square brackets (i i). :

means any special character; special
characters are those characters from the
keyboard that are punctuation marks, like
any one of the following "()%=,€.

means.an expression; an expression can be
created by tacking together numbers,
functions, field names or char: .er strings

in any meaningful manner. "4+3", and “doc =

'3' .or. doc = '4'™, are both expressions as
well as "$§('abc’'+&somestr,n,3) = ‘abcdefg'™.

means a list of expressions separated by
comma's; usually simple expressions are used.
Two of the examples in the previous
paragraph are rather compiicated, .the first

‘one codld be considered as simple.

means any record field name; in one of the
examples that are in the following commands,
one of the databases has field names like
ITEM, CUST, DATE, etec.

means a list of record field hames separated
by commas.

<file> or - means any filename; these are file names that

{file name>must obey the rules for file names that were stated
in section 3.0.

{form file> -~ means the name of a report form filename; ses
section 3.4 and the REPORT command for the how and
why of this type of file.

<index file> - means the name of the filse where indexing
information 1s placed; see sectiun 3.b and the
INDEX command for the how and why of this type of
file.

<key> - means the field name which will be indexed on;

keys are important. There may be several indexes for any
given database, each on different (or on a combination
of) keys. Keys may be <expressions> or field names. See
the INDEX ccmmand for more information.

{memvar> ~= means any memory variable; memory variables
are those variables that are created by STOREs or by
use of a command that saves some value for later use
(ACCEPT, INPUT, etc.) There is a maximum of £4 memory
variables allowed in dBASE.

<memvar 1ist> - means a list of memory variables separated by

commas.

<n> - means a literal; literals are aumbers which
are not go“ten from memory variadles or calculations."y+3"
is not a literal, while "4" and "9876" are literals.

<scope> - means a specification of the scope of the
command; scope means how much does the command cover.
There are thrse valuss that <scope> may take on.

ALL - -means all the records in thé file. All means
that the file is rewound and whatever the command ALL ‘the
records in the file are searched for compliance. ALL is the
default for some of the commands. For other commands tae
default will be the current record (specially for the more
potentially destructive commands like DELETE). Each command
description tell what is the default scope. In the case of
using a FOR phrase in any of the commands, ALL will be the
default.

NEXT n - means the next n records, including the
current - record; NEXT also begins with the record
currently being pointed at. And n must have a literal
value, that is, it must not be a memory variable or an
expression.

RECORD n - means only record n; again, n must not be a
memory variable or an expressiou--it must be li»eral
before it will work.

FOR <exp> - Any record so long as some logical
- expression has a true value. Unlass
otherwise specified, the presence of a FOR
Cclause causes ALL records to scanned \With a
cewind of the database).
AHILE <exp> - All sequential ricords as long as some

Rev, A

n
-3

logical expression (<exp>) has a true value.
The controlling command stops the first time
the expression is.false. The presence of a
WHILE clause implies NEXT 65534 unless
otherwise specified and does not .rewind the
database.

There are other special symbols used in the command formats.
These are special to the command and will be explained in the
body of the command.

9.2 RULES TO OPERATE 3Y

As with all command "languages" there are a set of rules which
must be followed to successfully operate the program. The
following rules are to use in translictling the general format of
the commands into the more useful specific forms.

1. The verd of any command must oe the first non-blank character
‘of the command line; the phrases may follow in aany order. A
verd is an action word; CREATE, APPEND, REPORT, SET, DISPLAY,
and ERASE are all examples of verbs--they cause a specific
action. Phrases are equivalant to adverbs; they more fully
describe the ac¢tion. FOR, NEXT, and WITH are examples of words
that begin phrases. All of these example words are refered ¢
as "keywords".

2. Any number of blanks may be used to separate words and
phrases. Remember though, blanks are counted in the 254 liamit
described in Ruie #3.

3. All commands must be less than 254 characters in iength (even
after a nacro expansion).

4. Commands and <eywords can be abbreviated to the first four (or
more) characters. E.g. DISPLAY STRUCTURE could be input as
DISP STRU or DISPL. STRUCT or etc. Just remember that the
abbreviation must also be apel;ed correctly up to the point
where it ends.

5. Either upper or lower case letters may be used to enter
commands, Keywords, field names, memory variable names, or
file nanmes. '

6. Parts of the commands are optiocnal, that is, some parts of the
commands zay be left off when the command is used. Square
brackets ((]) are used in the command formats to show which
phrases are the optional constructs that may be left of”.
These .are the phrases which are used to modify tae action of
commands. The upper case words are the keywords and they must
be entersd whenever the phrase that contains them-is nused.

7. A reserved word is a keyword that will 5&nernte an error il is

Rev. A 23

7. A reserved word is a keyword that will generate an error if is

used for something other that waat it is supposed to be. There
are no reserved words in dBASE. However, .certain fieid names
and file names can cause difficulty, e.g., a command file
named WHILE will be incdrrectly interpreted as a DO WHILE
statement by the DU command .processor, ALL as a field name
cannot be used in a number of commands. In general, it is a
good practice to avoid the use of dBASE keywords as field

names or file names.

. dBASE statements in a command file must nest correctly. To

nest something means that one statement must fit inside
another statement. This is especially important to proper

-execution of the IF-ELSE-ENDIF and the DO WHILE-ENDDO groups. "

Indenting a command file ‘will show if the statements are
correctly nested. dBASE does not catch nesting errors, it wiil
however execute the command file in an unknown manner. Below

are examples of how to correctly nest these two statements.

DO WHILE .NOT. EOF
statements

IF A .AND. B

more statements

ELSE

DO WHILE A <= 57

some more statements

ENDDO

even more statements

ENDIF

'1nf1h1tely more statements
ENBDO
DO WHILE .NOT. EOF
;tatements
if something changes values
éNDDO

more statements

ENDIF

“Inis is the correct

way to nest.

The IF-ELSE-ENDIF
statement is totally
within the DO WHIL%-ENDDO
statement. Just as the
second DO WHILE-ENDDO
statement is totally
within the ELSE part of
the IF-ELSE-ENDIF.

It would be just as easy
to show more levels

of nesting, since dBASE
ailows many more levels
to exist.

This is an example of a
NO NO. The ENLDVO crossed
over the boundary of the
IF-ENDIF group, that is,
the two statements do not
nestproperly. The .
command file that holds
these statements wiil not
work as expected AND
dBASE wili not explain
why .

29

?

? [<exp 1ist>]
7?7 (<exp list>]

This command is a specialized form of the DISPLAY command; it is
equivalent to DISPLAY OFF <exp>. It can be used £o' show the value
an expressiqgn or list of expressions. The question mark command
(ﬁoaaibly pronounced "what is" can use memory variables, database
fields, constants, or functions. A "7".with no expression spaces
down a line on the output. This feature is particularly useful in
command files to "open up™ the displays.)

The second form of this command "??" behaves like a single "7"
except that no line feed or carriage return is done before the
expression is printed. This can be used in command files to
output more than one expression to the same output line.

Examples:

. USE EXAMPLE
R

.7 #

y

.7 MAMR
CHANG, LEE

. 759

14

Following is a sample command file that uses the ? to space out
the display. The command file is set up to be executed with the
command: "DBASE H:FILE". The dBASE response to the command file
follows the command file.

-set default to g

use trace index trace:

disp stru

7

accept "Enter today's date." to dte
set date to &dte

release dte

return

30

st CTURE FOR FILE:
NUMBER OF RECORDS:
DATE OF LAST UPDATE:
-PRIMARY USE DATABASE

SLi NAME
001 upP

002 TRFLD
003 boc
004 DESCR
nos NATURE
vub STATUS
go7 TESTED
#% TOTAL %%

TRACE «DBF

02359
10/08/81

TYPE WIDTH

[NeNeoNeNeNe]

024
005
024
080
010
006
004
00154

Enter today's date.:10 14 81

DEC

3

€@ <coordinates> [SAY <exp> [USING <format>]]
[GET <variable> [PICTURE <format>]]

This command works with the SET FORMAT TO, ERASE, EJECT, CLEAR
GETS and. READ commands and is a most powerful way to display

cific, formatted information on the screen or the printer. The
way an "€" is interpreted changes according to how the SET - FORMAT
TO command is used. Also whether or not one of the other commands
has an effect also depends on the SET command. All. combinations
.are discussed below.

The Xcoordinates)> are an "x,y" pair and may take on one of two
meanings, either they are screen coordinates or they are printer
coordinates. The "x,y" denotes line (x) and column (y). On most
CRTs, the screen oriented coordinates have an "x" range of 0-23,
and a "y" range of 0-79, that is 24 lines by 80 columns. dBASE
uses the Oth line for messages to the user and the user . should
avoid using it. The printer oriented coordinates have both an "x"
and a "y* range of 0~254. For either of ‘these two meanings the
. coordinates can be any literal, numeric memory variable, or
numeric expression. The SET FORMAT command is usad to choose
between either of these two meanings.

Hhen a2 SET FORMAT TO SCREEN command has been issued (which is the
default), the "€" command causes data to be displayed on the
screen. A coordfnate pair of. 0, 0 means the first character
location on the upper left. corner of the display. (This
frequently referred to as the home position.) The pair 10,15
means the 11th line and the 16th column of the display. Again the
Oth 1ine on the screen should not be used. "@" commands may be
issued in any order to the screen. That is, one may SAY something

to line 15 before one SAYs sonet.hing to line 10. Likewise columns’

may be filled in any order:

When a SET FORMAT TO PRINT command had been issued, the "é"
command will cause data to be printed on the printer’. The
coordipate pair 0,0 refers to the upper left ‘hand corner of the
paper. "@n comnanda to the printer ‘must be output ih order. Much
paper will be wasted if this is not done. The 'user may like to
pretend that a typewriter is being use (indeed, it is). All
commands to line 5 must preceed commands to line 6, also, all

commanda to column 10 must preceed commands to column 20, etc. If -

this is not dope a page eject will occur before the new line is

- printed.

When the SET FORMAT TO SCREEN has been 1issued, an ERASE will
clear the screen of all information that was previously on it,
will release all the GETs (see below), and .will reset the
coordinates to 0,0. When the SET FORMAT TO PRINT has been issued
an EJECT will do a page feed and reset the coordinates to 0,0.

The SAY phrase is used to display an expression that will not DJe
altered by subsequent editing via the READ command. The USING
subphrase is used to format the expression emitted by the SAY
phrase. Formatting directives are explained below. It is a good
thing to always use the USING subphrase. dBASE will take
‘liberties with the expression if there is no USING.

SAY phrases may be used on either the screen or the printer.
GETs however, will only be recognized when the SET FORMAT TO
SCREEN command has been issued.

The GET phrase displays the current value of a field variable or
memory variable. The variable must exist prior to issuing of the
GET and 1s subject to later editing by the READ command. The
PICTURE phrase may be used with a GET phrase to allow special
formatting and validation of the data as it is entered (see the
READ command for further information). If no PICTURE clause is
given, then the data type (character, numeric or logical) forms
an implicit PICTURE. \

If the data type of the field variable or memory variable in the
GET is logical then the data validation allows only the
characters 'T', 'F', #Y', 'N' and their lower case equivalents to
be entered.

A maximum of 64 GETs can be active at any given time. Either the
ERASE command or the CLEAR.GETS command may be uaed to release
the existing GETs. -

When SET FORMAT TO SCREEN is in effect and if neither a SAY or a
GET phrase is given, then the remainder of the line indicated by
the coordinates is cleared to spaces. Thus & 10,0 will clear the
entire 11th line. :

When the SET FORMAT TO SCREEN is in effect, a READ must be issued
in order to "fill" the GETs. (See the READ command). However when
SET FORMAT TO PRINT is in effect, "€" commands require no
subsequent READ commands to compiete their action;

Not needing a READ to print allows the user to directly format
the output for any pre-printed material (such as checks, purchase
« »ders, etc.) in a most convenient manner. The user need only to
remember that "€" commands must be issued as if one were typing
on a typewriter.

33

In using the SET FORMAT TO PRINT capability, it is often
necessary to print out more than eone item. The ability to
subsitute memory variables for the ‘coordinate values is
important, The following example is from a command file that
generates 3 apeei'al report form for a special task. ’

SET FORMAT TO PRINT
GOTO TOP
STORE 7 TO CNTR
DO WHILE .NOT. EOF
IF CNTR >= 50
EJECT
STORE 7 TO CNTR
ENDIF
€ CNTR,12 SAY P USING *XXXXXXXXXXXXXXXKXX Aa.. XXXXXX'
@ CNTR,48 SAY D USING ‘*XXXXXXXXXX'
€ CNTR,64 SAY P1 USING ’XXXXXXXXXXXXXXXXXX
€ CNTR,88 SAY U USING 'XXXXXXXXXX'
'@ CNTR, 104 SAY P2 USING 'XXXXXXXXXXXXXXXX)
IF RCD <> 0- ’
‘@ CNTR, 130 SAY RCD USING '9999"
ENDIF.
'STORE CNTR +.1 TO CNTR
SKIP
-ENDDO
RETURN

In this command file, a maximum of 57 lines will be printed on

-the printer before a page eject is done. The purpose here was to
print out most’ of the fields.of a database (and selectively print
out one of the fields). Care must be taken to make sure enough
room ‘is given 'to the SAY phrase to emit the variable. If the
USING is shorter than the variable or the field, the variable or
field is truncated. The <format> for the USING (the *XXX...X'
strings ‘are ekplained in the table below.

Also, in the SE‘I" FORMAT TO PRINT mode, if the coordinates of the

.next "@€" allow information to be printed on the same line but."

start it in a column that has already been printed, the printer
may not output the proper information. In fact, the. printer may
,80 to ‘the extreme right and print (in one square) all the
:mtornauon in ‘the rest -of the line. In the SET FORMAT TO SCREEN
lode, the old mformation u111 be written over by the new
.mromtion.

The last form of the SET FORMAT command is: SET.FORMAT TO
{format file>. When this command is in effect.and when a READ

command has been issued, the "€" commands are READ from -the pre- .

-designed <format file>. In this manner the user may design the
screen into a format for more specialized purposes. It is
important to note here that the use of format files is not
nécessary for use of "e"s, since "@"s may reside in command
,tilqa. See READ for more information.

34

Formats:

Both the USING and PICTURE clauses have as their object, a
format. The format is a series of characters that indicate which
characters appear on the screen or page. The following table
defines the characters and their functions:

Format character

.SAY function

GEf function

¢ causes the next allows only a digit
number to be output (1,2504.,8,9,0) and
the characters ".",
et M.m_ and "W (a
space) to be entered
9 same as # same as #
X outputs the next allows any character
character to be entered
A Qutputs the next allows only alpha.
character to be entered
$or outputs either output as is
a digit or a $ or ®
instead of leading
zeroe
no effect converts lowercase
alpha characters
to uppercase
Example:

. € 5,1 SAY 'ENTER PHONE NUMBER' GET PNO PICTURE '(999)999-9999"

The message 'ENTER PHONE NUMBER' would be displayed, followed by
" *(bbb)bbbb-bbbb' (b indicates a blank) assuming that the value of
PNO was all blanks prior to issuance. When (and if) the READ
command is issued, only digits can be entered. The value of PNO
after the READ command might well be '(213)555-5555' after
editing. All of the non-functional characters in the PICTURE
format are inserted into the variable. In this example, the
.parentheses, minus sign and the blank are non-functional.

38

. @ 10,50 SAY HOURS®*RATE USING '$3$3$333$$.99'

"This "€* command could be used with either the screen or the
printer since it has no GET phrase. It might well be used to
print payroll checks. The dollar signs will be printed as long as
there are leading zeros in the item to be printed. If hours=40
and rate = 12.50 then '$$$$500.00' will be displayed. This
feature is known as floating dollar "and is valuable for printing
‘checks that cannot be easily altered in value,

When commas are used in the integer part of a picture, they are
replaced by the picture character in front of them if there are

no significant digits in the item to the left of uhere the comma

would ol:heruise be placed‘
e '10,50 SAY BOURS * RATE USING '$$3$,$3$.99°'

Would output $$$$500.00 and specifically not output $$$,500.00.

Normally, a number of "é" commands are issued then, if any GET

phrases were included, a READ command is'issued to allow editing
or data entry into the GET variables. In the following example
the screen is formatted with several "@"s and a database is
filled with information according to these #'@"s. The last record
-in the database will have a "0" in the field "name", this is the
record that will be deleted, since it is not necessary.

SET FORMAT TO SCREEN
USE F:EXAMPLE
ERASE
DO WHILE NAME # '0':
APPEND BLANK
€ 5,0 SAY "ENTER NEXT NAME" ;
GET NAME PICTURE 'XXXXXXXXXXXXXXXXXXXX'
€ 6,0 SAY "ENTER TELEPHONE NUMBER";
GET TELE:EXTSN PICTURE 'XXXXX'
€6 »40 SAY "ENTER MAIL STOP" ; : ‘
GET MAIL:STOP PICTURE 'XXXXXXXXXX'
READ
ENDDO .
GOTO BOTTOM
DELETE
PACK
LIST
RETURN

36

The following commands affect the operation of the "@" command:

SET INTENSITY ON/OFF (default is ON) affects the screen
intensity of GET's and SAY's.

& SET BELL ON/OFF (default is ON) affects the bell alarm
when invalid characters are entered or a data boundary is
crossed.

® SET COLON ON/OFF (default is ON) affects whether GET
variables are bounded by colons.

SET DEBUG ON/QFF - (default is OFF) allows easier debugging
of "é" commands by shifting ECHO. and STEP meéssages to the
pr;nter.

SET SCREEN ON/OFF (default is ON) allows use of full
screen operations.

® SET FORMAT TO SCREEN/PRINT/<format file> determimes device
destination of output (SCREEN or PRINTer). SET FORMAT T0
<format file> establishes a format file as the, source of
"@" commands for the READ command. SCREEN.is the default
value.

® READ enters the editing mode 30 that GET variables can be
altered.

ACCEPT

ACCEPT ["<estring>"] TO <memvar)>

This conatruct permits the entry of character strings into memory
variables just as the INPUT command, but without the necessity of
enclosing them in the quote marks required by the INPUT command.
ACCEPT makes a memory variable of the type 'character! out of
whatever is entered; INPUT determines the data type from the
syntax of the entry and makes a memory variable of that type.

The <memvar> is created",if necessary, and the input character
string 1s stored into <memvard. If "™<cstring>" is present, it is
diaplayed on the screen, followed by a colon, &s a prompt message
before the input is accepted. If a carriage return is entered in
response to'an ACCEPT request, <memvaPf> will receive a single
space character. Either single quotes, double quotes, or square
brackets may be used to delimit the prompt string, however, both
the beginning and ending marks must correspond.

Examples:

. ACCEPT "ENTER PERSONS NAME" TO MAM
ENTER PERSONS NAME:John Jones

. ACCEPT "ENTER PERSON'S NAME" TO NAMZ
ENTER PERSON'S NAME:Dave Saith

- DISP MEMO

NAM (C) John Jones

‘NAM2 {C) Dave Smith .
** TOTAL ## 02 VARIABLES USED 00020 BYTES USED

. ACCEPT TO ANY
s ANY CHARACTERS

. pisp MEMo
NAM John Jones
: NAM? Dave Smith
ANy ANY CHARACTERS
TOTAL -## 03 VARIABLES USED 00034 BYTES USED

APPEND

APPEND

a. APPEND FROM <file> [FOR}(exp)] [SDF) {DELIMITED WITH <delimiter>]

b. APPEND BLANK
c. AFPEND

In all three forms, records are appended onto the database in
USE. APPEND, ' CREATE, and INSERT are the only commands that allow
the addition of records to a database. APPEND and CREATE allow
multiple additions at one time, INSERT allows only one.

In the first form, the records to be appended are taken from
another file, i.e. <file>. If the SDF clause is present, the
records are assumed to be in System Data Format (see section
6.0). If the new records are smaller than the old records in the
USE file, then the new record is padded on the right side with
blanks; if ‘the new records are longer then the USE file records,
then the newly appended records are truncated. Records are added
to the USE file until end-of~file is detected upon the FROM file.

I€ the DELIMITED keyword is in the APPEND command, then the
cecords taken from the FROM file are assumed to be delimited and
appanded accordingly. Many compute> languages generate files
wherc character strings are enclosed in single or double quotes
ant Clelds are separated by commas. In the delimited mode, dBASE
removes the quotes and commas from delimited files and stores the
data into a dBASE-structured database, according to the
database's structyre..

If the SDF dnd DELIMITED clauses are not present, then the FROM‘

file is assumed to be a dBASE-structured database files. The
structures of the USE and FROM file are compared. Fields which
occur in the records of both files are taken from the FROM file
and appended onto the USE file. Padding and truncation are
performed as appropriate to force the FROM data items into the
USE file's structure.

It the FOR phrase is used, then dBASE appends the records in the

FROM <file> one by one, each time checking to see if the
condition in the FOR is true. That is, the first record is
appended. If the expression is true then the record is kept and
ABASE will skip on to the next record. If thc expression thaR-bire
record is discarded and dBASE will again skip on to the nexti
record. This procedure will continue until the end-of-file is
reached for the FROM <file>. The implications of this is that the

fie)lds used -in the expression must reside in the file receiving

the new records.

is‘%i&&-‘k&b‘kk

39

s

&

APPEND

If the BLANK clause (form b) is specified, a single, space filled
record is appended to the USE file. This record can then be
filled by the EDIT or REPLACE statements.

If no clauses follow the APPEND command (form c.), the user is
prompted with the field names from the USE file's structure. Any
number of new records may be created from the keyboard. The
append mode is terminated when a carriage return is entered as
the first character of the first field.

1f the database in USE is an indexed database then.the index file
specified in the USE command is automatically updated when the
new records are appended (excgpt for APPEND BLANKsS). Any other

"index file asspciated with that database must .be re-indexed.

When APPENDing in the full-screen mode, the SET CARRY ON command
will cause all of the data from the previous record to be carried
over to the next record. Changes can then be made. This is
especially useful if sucessive records have a lot of common data.

The APPEND command is especially useful when it is necessary to
expand/contract fields or add/delete fields from an existing
database. Using the CREATE coﬁmand, set up a new database
containing the desired structure and then APPEND the old database
to the new. Fields which appear only in the new database will be
blank filled. ’ '

Exa-pléss
« USE EXAMPLE

- DISPLAY STRUCTURE
STRUCTURE FOR FILE: EXAMPLE
NUMBER OF RECORDS: 00005
DATE OF LAST UPDATE: 12/31/80
PRIMARY USE DATABASE

FLD NAME = TYPE WIDTH DEC
001 - NAME ¢ o020
1002 TELE:EXTSN . C 005
003 MAIL:STOP c 010
S8 TOTAL *# 00036

« DISPLAY ALL
00001 NEUMAN, ALFRED E. 1357 1237456

00002 RODGERS, ROY 2468 180/103
00003 CASSIDY, BUTCH 3344 264/401
00004 CHANG, LEE 6743 190/901

00005 POST, WILEY on 8u4/13B

40

. APPEND

RECORD 00006

NAME: - LANCASTER, WILLIAM J
TELE:EXTSN: 6623

MAIL:STOP: 170/430

RECORD 00007

NAME: NORRIS, R. "BOB"
TELE:EXTSN: 8093

MAIL:STOP: 427/396

‘RECORD 00008

NAME: (er)

. DISPLAY ALL OFF KAME,TELE:EXTSN
NEUMAN, 'ALFRED E. 1357

RODGERS, ROY 2468
CAS5IDY, BUTCH 3344
=HANG, LEE 6743
PO3T, WILEY 1011
LAKCASTER, WILLIAM J 6623
MOKwiS, R. "BOB" 8093

APPEND FROM DUPE3
0007 RECORDS ADDED

D1SPLAY ALL
00001 NEUMAN, ALFRED E. 1357 1237456
00002 RODGERS, ROY 2468 180/103-
00003 CASSIDY, BUTCH 3344 264/401
00004 CHANG, LEE 6743 190/901
00005 POST, WILEY 1011 84/13B
00006 LANCASTER, WILLIAM J 6623 170/430
00007 NORRIS, R. "BOB" 8093 427/396
00008 NEUMAN, ALFRED E. 1357
00009 RODGERS, ROY 2468
00010 CASSIDY, BUTCH 3344
00011 CHANG, LEE 6743
00012 POST, WILEY 1011
GU013 LANCASTER, WILLIAM J 6623
00014 NORRLIS, R. “BOB" 8093

APPEND BLANK

DISPLAY
00012

REPLACE NAME WITH *RINEHART, RALPH
9000 REPLACEMENT(S)

. ‘DISPLAY
0001S RINEHART, RALPH

« DISPLAY ALL MAME,' ex =',TELE:EXTSH

00001 NEUMAN, ALFRED E. ax = 1357
00002 HODGERS, ROY ex = 2468
00003 CASSIDY, BUTCH ex = 3344
00004 CHANG, LEE " ex = 6743
0000% POST, WILEY ex = 1011
00005 LANCASTER, WILLIAM J ex = 6623
00007 NORRIS, R. "BOB" ex z.8093
00008 NEUMAN, ALFRED E. ex = 1357
00009 RODGERS, ROY ex = 2468
00010 CASSIDY, BUTCH ex = 3344
00011 CHANG, LEE ex = 6743
V0012 POST, WILEY ex = 1011
00013 LANCASTER, WILLIAM J ex = 6623
00014 NORRIS, R. "BOB" ex = 8093
00015 RINEHART, RALPH ex =

. USE B:SHOPLIST

. DISP STRU

STRUCTURE FOR ‘FILE: B:SHOPLIST.DBF
NUMBER OF RECORDS: 00009

DATE OF LAST UPDATE: 06/22/79
PRIMARY USE DATABASE

FLD NAME TYPE WIDTH DEC
001 ITEM c 020

002 NO N 005 ,
003 COST N 010 o002
%% TOTAL *% 00036

. CREATE.

FILENAME: NEWSHOP

ENTER RECORD STRUCTURE AS FOLLOWS:
FIELD NAME,TYPE,WIDTH,DECIMAL PLACES
001 I1TEM,C,25

00¢ NO,N,5

003 COST, K, 10,2

[o]¢1] NEED:DATE,C,8

005 (er)

INPUT NOW? N

USE NEWSHOP

APPEND

LP

APPEND

. APPEND FROM B:SHOPLIST
00009 RECOf S ADDED

L1ST

00001 ~BEAM 5 0.75

00002 BREAD LOAVES 2 0.97

00003 T<BONE , y 3.94

00004 PAPER PLATES 1 0.86

00005 PLA"TIC FORKS 5 0.42

00006 LETTUCE 2 0.53

00007 BLEU CHEESE 1 1.96

00008 = MILK 2 1.30

00009 CHARCOAL 2 0.75

. REPLACE ALL NEED:DATE VITH * 7/ W/76'

00009 REPLACEMENT(S) :

. LIST :

00001 BEANS 5 0.75 T/ 475

00002 BREAD LOAVES 2 0.97 7/ #/76

00003 T-BONE i 3.9% 1/ 4/76

00004 PAPER PLATES 1 0.86 7/ 4/76

V0005 PLASTIC FORKS 5 0.42 7/ W16

00006 LETTUCE 2 0.53 7/ b/70

00007 BLEU CHEESE 1 1.96 7/ W/76

00008 MILK 2 1.30 7/ 4776
2 0.75 7/ 4/76

N0009 CHARCOAL

(The following example demonstrates the DELIMITED file appenqL
‘hig file cculd have been created by a number of different
versions of BASICY

"BARNETT, WALT®,31%15,6

*NICHOLS, BILL',76767,17

'MURRAY, CAROL',89793,4

'"WARD, CHARLES A.',92653,15

'ANDERSON, JAMES REGINALD III','11528', 16

(Append the file into a dBASE-structured database)
. USE OLDERS

. DISP STRU

STRUCTURE FOR FILE: ORDERS.DBF
HNUMBER OF RECORDS: 00008

DATE OF LAST UPDATE: 00/00/00
PRIMARY USE DATABASE

LD NAME TYPE WIDTH [:Ig
001 CUSTOMER c 020

wo2 PART :NO c 005

003 AMOUNT N 005

8 TOTAL *# 00031

. LIST

00001 SWARTZ, JOE So3mns 13

APPEND

00002 SWARTZ, JOE) 76767 13 .
00003 HARRIS, ARNOLD 11528 4y
00004 ADAMS, JEAN 89793 12
00005 MACK, JAY' 31415 3
00006 TERRY, HANS 76767 5
00007 JUAN, DON 21828 5
00008 SALT, CLARA 70296 9

. APPEND FROM DELTM.DAT DELIMITED
00005 RI.CORDS-ADDED

. LIST

00001 SWARTZ, JOE 31415, 13
00002 SWARTZ, JOE - 76767 13
00003 HARRIS, ARNOLD 11528 4y
00004 ADAMS, 'JEAN 89793 12
00005 . MACK, JAY 31415 3
00006 TERRY, HANS 76767 5
00007 JUAN, DON 21828 5
00008 - SALT, CLARA 70296 9
00009 BARNETT, WALT 31415 6
00010, NICHOLS, BILL 76767 7
00011 MURRAY, CAROL 89793 4
00012 WARD, CHARLES A. 92653 15
000613 ANDERSON, JAMES REGI 11528 16

(The following examples demonstrates an APPEND FROM <filed> "FOR
<exp>. Note that the fields in the FOR are in the USE file also.)

. USE CHECKS

. DISP STRU

STRUCTURE FOR FILE: CHECKS.DBF
NUMBER OF RECORDS: 00013
DATE OF LAST UPDATE: 10/18/81
PRIMARY USE DATABASE

FLD NAME TYPE WIDTH .DEC
001 NUMBER ‘N 005
602 RECIPIENT [020
003 AMOUNT N 010 002
004 HOME L 001
605 CUTGOING L 001

R TOTal, ¥ 00038

APPEND

. LIST. R
00001 1 Phone Company 104,89 .F. .T..
00002 2 Gas Company ’ : M.l”’.;. «Te
00003 3 Electricity 250.31 .F. .T.
00004 4 Grocery Store 1034.45 ,F. .T.
00005 34 Me 561.77 .T. .F.
00006 6 Bank, service charge 4.00 .T. .T.
00007 7 Doctor Doolittle 100.00 .T. -T.
00008 8 Pirates 101.01 .F. .T.
00009 9 Car Repair Man 500.01 .F. &T, °
00010 10 Me . 561,01 .T. F.~
00011 11 Tuperware - 50.02 F. .Ts
00012 12 Me 561.77 .T. .F.
00013 13 Me 750.03 .T. .F.
« USE MONTH

+ DISP STRU

STRUCTURE FOR FILE: MONTH.DBF
NUMBER OF RECORDS: 00003
DATE OF LAST UPDATE: 10/1@/81
PRIMARY USE DATABASE

FLD NAME TYPE WIDTH DEC
001 NUMBER . N 005

002 AMOUNT N 010 002
uu3 HOME L 001

% TOTAL % 00017

> LIST

10004 29 14.89 .T.

00002 16 764.09 .T.

00003 78 97.96 .T.

. APPEND FROM CHECKS FOR HOME
00006 RECORDS ADDED

» APPEND FROM CHECKS FOR OUTGOING
##8 SYNTAX ERROR ###

?
APPEND FROM CHECKS FOK OUTGOING
CORRECT AND RETRY(Y/N)? N

That last append was to show what would happen if the FOR field
was not in the USE, file.

BROWSE

BROWSE

BROWSE

The BROWSEZ command is one of the most powerful dBASE commands for
¢ata aditing and viewing. The data from wup to 19 records is
displayed onto the screen (fewer if fields are greater than 80
characters). As many flelds as will fit are put on each line. Tte
screen snould be considered as a window into a database.” You can
scroll backwards and.forwards through the records and you can pan
lar% and right through the flelds of . the database. Any data can
be edized with the standard full-screen editing method (see
section 4 for additional informacion)

Thiz is a summary of the full-screen ccatrol keys that will work
»a 3ROWSE:

ctl-g,a - backs up to the previous data field;

cti-A,7 - advarices to the next data field;

etl-D - advances to the next character;

cti-3 - backs up to the last character;

2ti-G - deletes the character under the cursor;

aysouT - deletes the cnaracter dYefore the cursor;

221-Q - exits without saving the changes;

cul-w - exitisandsaves thechanges (ctl-J for Superbdrain);
ctl-3 - Pans the window Laft one field;

enl-2 - pans the window right one field;

2:1-C - Writes the current record and advances one record;
cnl-d - ~rites the current record and backs up one record;
ctl-u - switches (toggles) the current record between

being marked for deletion and not being marked.

Rev. A 44

CANCEL

LANCEL

CANCEL

Cancel a command file execution and returm to the normal keyboard
interpretive mode. \

£xample: .

INPUT ‘IS JOB DONE (¥/N)' TO X
IFr X

CANCEL
INDIF

This {3 a fragment from a command file. The INPUT command asks
for a ves/no answer. If* the answer is yes ('Y', 'y!', 'T’, or 's')
then the IF X line of the command fille will be satisfied (since X
will be logically .TRUE.) and the CANCEL command will be
executed. ‘

See Appendix A for zore examples.

47

CHANGE

CHANGE

CHANGE [<scope>] FIELD <list> [FOR <exp>]

CHANGE is a command that allows the user to make a number of
alterations to a database with minimum effort. All database
fields that are referenced in the list are presented to the user
in the order given by <list>. The user has the opportunity of
entering new data, modifing the data or skipping to the next
field. When the <1list> has been exhausted, CHANGE will proceed to
the next record as specified in the <scope>. The. default scope is
the current record. : '

A field can be dele¢ =d in its entirety by typing a control-Y
(followed by a retur. 1in response to the CHANGE? message. The
CHANGE command can be orted by typing an ESCAPE character.
Example:

. USE CARDS
- CHANGE FIELD DATE

RECORD: 00001
DATE: 08/19/81
CHANGE? 81

TO 82

DATE: 08/19/82
CHANGE? (er)

48

CLEAR

CLEAR

CLEAR [GETS]

If the GETS (or GET) keyword is used then all of the GETs that
are pending (i.e. a GET set up by the € command) are cleared and
the screen is left intact. This 1s opposed to the ERASE command
which also clears pending GETs and also erases the screen.

If there is no GETS keyword, then this command resets dBASE II.
All databases in USE are closed and un-used, all memory variables
are released, and the PRIMARY work area is re-selected.

This command gives dBASE II a "clean slate". For instance: if a
command file finished executing and left dBASE in the SECCNDAKY
state, then executing a new command file that assumes that the
PRIMARY state was selected, will cause unknowa things to happén.

CLEAR should be used at the beginning of a command file to give
the command file a known state.

sxambles

CLEAR

49

CONTINUE

CONTINUE

This command is used with the LOCATE command. LOCATE andv

CONTINUE may be separated by other ccmmands, however there are
limitations. See the LOCATE command for more information.

50

coryY

COPY

COPY-TO <rile> [<scope>] [FIELD <1list>] [FOR <exp>]
iSDF) {STRUCTURE] [DELIMITED (WITH <delimiter>]]

This command copies the database in USE to another file. The
<file> may be in dBASE format or in the System Data Format (if
the SDF option is specified).

If the STRUCTURE clause is specified, then orly the structure of
a dBASE file in USE is copied to the "TO" file.

If a 1ist of fields is supplied followinz a FIELD clause, then
only those data fields are copied T0 the file. For the COPY
STRUCTURE FIELD <list>, onXy the structure of the listed fields

is copled TO the file. In either case, the new structure will be.

made up of only those ficlds specified by the FIELD clause. No
FIELD clause specifies that all fields will be copied.

If the SDF clause is specified, then the file in USE is copied to
another'file without the ‘structure. This new file will be in
ASCI1 standard format. This allows the generation of files which
can Lbe input to processors other than dBASE. The STRUCTURE and
SDF clauses are mutually exclusive.

{f the DELIMITED keyword is also in the command, then the output
file will have all of its character string type fields enclosed
in quotes and the fields will be separated by commas. This is the
converse of a delimited APPEND. By default, the DELIMITED type of
COPY uses single quotes as delimiters to mark character string
fields. The WITH sut-phrase of the DELIMITED phrase allows any
character to be the delimiter. If a "," 18 used as the delimiter
then the character fields ugll have ‘trailing blanks trimmed, the
numeric fields will have the leading blanks trimmed, and the
character strings will not' be enclosed in quotes. The APPEND
command will only respond to single and double quotes.

1f either the DELIMITED or SDF option is used then the output
<file> name will default to a .TXT extension, otherwise the
output file will default to a .DBF extension.

The "TO" file is created if it does not exist.

51

copry

Examples:

. DISPLAY ALL OFF NAME,TELE:EXTSN

NEUMAN, ALFRED E. 1357
ROLGERS, ROY 2468
CASSIDY, BUTCH 3344
CHANG, LEE 6743
POST, WILEY 1011
LANCASTER, WILLIAM J 6623
NORRIS, R. "BOB" 8093

. DISPLAY STRUCTURE

STRUCTURE FOR FILE: EXAMPLE
NUMBER OF RECORDS: 00007
DATE OF LAST UPDATE: 00/00/00
PRIMARY USE DATABASE

FLD NAME TYPE WIDTH DEC
001 NAME c o020
00z TELE:EXTSN C 005
003 MAIL:STOP € 010
5% TOTAL *# 00036

. COPY TO DUPE
00007 RECGRDS COPIED

. COPY TO DUPE2 FOR TELE:EXTSN<'8000'
00006 RECORDS COPIED

. USE DUPE2
. DISPLAY ALL : , .
00001 NEUMAN, ALFRED E. 1357 123/456
00002 RODGERS, ROY 2468 180/103
00003 CASSIDY, BUTCH 3344 2647401
00004 CHANG, LEE 6743 - 190/901
00005 POST, WILEY 1011 84/138B

00006 LANCASTER, WILLIAM J 6623 1707430
. USE EXAMPLE

. COPY FIELD NAME,TELE: EXTSH TO DUPB3
00007 RECORDS COP1ED

. USE DUPE3

P PRI

STRUCTURE FOR FILE: DUPE3

NUMBER OF RECORDS: 00007

DATE OF LAST UPDATE: 00/00/00

PRIMARY USE DATABASE

FLD NAME TYPE WIDTH
201 NAME c o020
002 TELEIEXTSK € 005

#8 TOTAL #® 00036

. DISPLAY ALL

00001 NEUMAN, ALFRED E. 1357
00002 RODGERS, ROY 2468
00003 CASSIDY, BUTCH 3344
00004 CHANG, LEE 6743
00005 POST, WILEY 1011
00006 LANCASTER, WILLIAM J 6623
00007 NORRIS, R. "BOB". 8093
. USE KXAMPLE

. COPY NEXT 4 TO DUPES

00004 RECORDS COPIED

. USE DUPES

. DISPLAY ALL

<0501 {ZUMAN, ALFRED E. 1357
10002 'RODGERS, ROY 2468
00003 ASSIDY, BUTCH 3344
00004 CHANG, LEE 6743

(‘the deliimited COPY)
. USE ORDERS

» DISP. STRUCTURE

STRUCTURE FOR FILE: . ORDERS.DBF

NUMBER OF RECORDS: 00012

DATE OF LAST UPDATE: 07/01/80

PRIMARY USE DATABASE

FLD NAME TYPE WIDTH
001 CUSTOMER c 020
002 PART:NO c 005
003 AMOUNT N 005
8 TOTAL ## 00031

DEC

1237456
180/103
264/401
190/901

DEC

COPY

53

« LIST
00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
0co11
00012

SWARTZ, JOE
SWARTZ, JOE
HARRIS, ARNOLD
ADAMS, JEAN
MACK, JAY
TERRY, HANS
JUAN, DON
SALT, CLARA
BARNETT, WALT
NICHOLS, BILL
MURRAY, CAROL
WARD, CHARLES A.

31415
16767
11528
89793
31415
76767
21828
70296
31415
76767
89793
92653

. COPY TO DELIM.DAT DELIMITED
00012 RECORDS COPIED

*SWARTZ, JOE YLr3T415T,
*SWARTZ, JOE ',1T70T76T7Y,
'HARRIS, ARNOLD ','11528",
*ADAMS, JEAN ', 189793,
'MACK, JAY ', 1314150,
'TERRY, HANS L1T676TY,
*JUAN, DON v,121828",
*SALT, CLARA. 1, 170296,
' BARNETT, WALT ', 13141510,
*NICHOLS, BILL ', 176767,
'MURRAY, CAROL ', 189793,
'"WARD, CHARLES A. ', 192653,

13
13
by
12

1

Wt owounmunw

;i

COPY

S4

COUNT [<scope>) [FOR <exp>] iTO <memvar>]

Count the nuaber of records in the USE file.
then only the number of records which satisfy the
expression are counted. If the TO clause is included, the integer
count is places into a memory variable. The memory variable will
‘be created if it did not exist prior to this command.

invoked,

.dBASE responds with the message:
COUNT = xxxxx

Examples:

+ USE INVNTRY

+ DISPLAY STRUCTURE
STRUCTURE FOR FILE:
NUMBER OF RECORDS: -
DATE OF LAST UPDATE:

INVNTRY
00010
10/23/78

PRIMARY USE DATABASE

¢LD
001
a02
003
a0l
0os
0Oub
nny
008
009

NAME
ITEM:NO
CLASS:NO
VENDOR :NO
DESCR
UNIT:COST
LOCATION
ON:HAND
SOLD
PRICE

%% TOTAL *®

. DISPLAY ALL.

00001
00002-
00003
noool
00005
00006

00007 .

00008
10009
00010

812763
~ 876512

136928 1

231561
556178
723756
T45336

-
ONMRWRWNOOW

915332
973328

. “COUNT

COUNT

= 00010

TYPE WIDTH DEC
006
003
003
013
007 002
005
(\[o1]
004
007 002
00055

zZzzzOoZ0ZzZ2Z

1673 ADJ. WRENCH _
1673 SM. HAND SAW
96 PLASTIC RQD
873 ADJ. PULLEY
27 ELECT.BOX
27 FUSE BLOCK
1673 GLOBE

873 WIRE MESH
1673 FILE

27 CAN COVER

. COUNT FOR ITEM:NO>500000

COUNT

= 00007

T.13
5.17
2.18
22.19
19.56

12.65°

5.88
3.18
1.32
0.73

189
173

17
354
63
12
45
97
21

-
-

-

COBNT

NSNS RW N E e

W

VMWW= OWw=0

If the. FOR clause is

5.98
7.98
B.75
28.50
29.66
15.95
7.49
4.25
1.98
0.99

55

COUNT
« COUNT FOR 'ADJ*$DESCR
COUNT ‘= 00002
. GOTO TOP

. COUNT'FOR PRICE<10 NEXT 6
COUNT = 00003

. GOTO TOP

. COUNT NEXT 6 FOR PRICE<10
COUNT =- 00003

» USE B:SHOPLIST

. LIST

00001 BEANS 5 0.75
00002 BREAD LOAVES 2 0.97
Q0003 T-BONE i 3.94
00004 PAPER PLATES 1 0.86
00005 PLASTIC FORKS 5 0.42
00006 LETTUCE 2 0.53
00007 BLEU CHEESE 1 1.96
00008 MILK 2 1.30
00009 CHARCOAL 2 0.75

. DISPLAY STRUCTURE
STRUCTURE FOR FILE: B:SHOPLIST.DBF
NUMBER OF RECORDS: 00009

DATE OF LAST UPDATE: .12/10/76
PRIMARY USE DATABASE

FLD NAME TYPE WIDTH DEC

001 ITEM c 020
002 NO N 005
003 COST N 010 002
8 TOTAL *# 00036

+ COUNT TO XX FOR COST>1
COUNT = 00003

-7 XX
3

56

CREATE

CREATE

CREATE ‘[<filename>]

A new dBASE structured file is CREATEd. The user provides the
structure, field names, and file name for the database file.

If not supplied in the command, the user is first prompted for
the <filename> to be used by the message:’

FILENAME:

,The user enters a valid filename with the following added
restriction: the filename may contain no special characters other
than those normally used.by CP/M for special purposes (such as
B: to denote disk drive "B").

If the file existed before the create command was given, dBASE
asks the user:

NESTROY EXISTING FILE? To which the user must reply ¥ or N as
the.case may be.

[§3 the‘f%le is new to the system or if the user answered Y to the
destroy question, dBASE is now ready to accept the structure of
i.he data base from the user. The following message is displayed:

¢NTER RECORD STRUCTURE AS FOLLOWS:
FIELD NAME, TYPE,WIDTH,DECIMAL PLACES
001

The user now enters field names and associated structure
information. A field name is a character string up to 10
characters'long which consists of alphabetic letters, numeric
digits, and colons. Field names must begin with an alphabetic
character.'Fields may be any of three types: character string,
aumerie, or logical. The type field is specified by one
character, as:

C ~ character string
N - numeric
I, - logical

57

CREATE

The width refers to the length of the field, for instance, a
character string may be 20 characters long i.e. it's width is 20.
Numeric data may be either integer or decimal. The width of
integers is the maximum number of digits that they may be
expected to contain. For decimal numbers, two widths are
required; the first is the maximum number of digits that the
decimal number is expected to contain (including the decimal
point), the second width is the number of digits which are to by
allowed on the right side of the decimal point. Logical data may
only be of length 1.

Examples:

. CREATE

FILENAME : EXAMPLE

ENTER RECORD STRUCTURE AS FOLLOWS:

FIELD NAME, TYPE,WIDTH,DECIMAL PLACES

001 NAME,C,20

002 TELE:EXTSN,C,5
003 MAIL:STOP,C, 10
004 (er)’

INPUT NOW?Y

RECORD 00001

NAME: - MNEUMAN, ALFRED E.
TELE:EXTSN: 1357
MAIL:STOP: = 1237456

RECORD 00002 .

NAME: ‘RODGERS, ROY
TELE:EXTSN: 2468 .
MAIL:STOP: 180/103

RECORD 00003

NAME: . CASSIDY,. BUTCH
TELE:EXTSN: 3344
MAIL:STOP: = 264/401

RECORD 00004

NAME: CHANG, LEE

TELE:EXTSN: 6743
MAIL:STOP: 190/901

58

CREATE

RECORD 00005

NAME: POST, WILEY
TELE:EXTSN: 1011
MAIL:STOPs 84/13B

RECORD 00006
NAME: (or)

. DISPLAY STRUCTURE

NO FILE IN USE, FILENAME: KEXAMPLE
STRUCTURE FOR FILE: EXAMPLE

NUMBER OF RECORDS: 00005

DATE OF LAST UPDATE: 00/00/00
PRIMARY USE DATABASE

FLD NAME TYPE WIDTH DEC
001 NAME c 020

002 TELE:EXTSN ¢ 005

003 MAIL:STOP c 010

&% TOTAL ®*# 00036

DISPLAY ALL
00001 NFUMAN, ALFRED E. 1357 123/456
00002 RODGERS, ROY 2466 180/103
00003 CASSIDY, BUTCH 3344 2647401
00004 CHANG, LEE 6743 190/901
00005 POSY, WILEY 1011 84/13B -

59

DELETE

DELETE

DELETE [<scop2>] [FOR <exp>]
DELETE F]LE <filename>

All records which are within <scope> (and which satisfy the FOR
expression if present) are marked for deletion.. The default scope
is the current record only. Records.are not physically deleted
until a PACK operation, however records marked for deletion will
not be copied, appended, or sorted. The RECALL operation may be
used to revive records marked as deleted. Records which are
marked for deletion can be displayed. The mark of deletion
appears as an asterisk between the record number and the first
field.

In the second form, the file named <filename> will be removed
from the disk drive where it resides {(if possible) and the space
it was occupying will be released to the operating system for
reassignment. If, however, the <filename> is currently in use,
the file will not be deleted.)

Examples:
>
LIST

00001 136928 13 1673 ADJ. WRENCH 7.13 189 9 o0
00002 221679 9 1673 SM. HAND SAW 5.17 173 b
00003 234561 O 96 PLASTIC ROD 2.18 27 112 53
00004 556178 2 873 ADJ. PULLEY 22.19 117 3 0
00005 723756 73 27 ELECT.BOX 19.56 354 6 1
00006 745336 13 | 27 FUSE BLOCK 12.65 63 7 2
00007 812763 2 1673 GLOBE 5.88 112 5 2
00008 876512 2 873 WIRE MESH 3.18 45 7 3
00009 915332 2 1673 FILE 1.32 97 7 3

. DELETE RECORD 2
' 00001 DELETION(S)

« 5

. DELETE NEXT 3
00003 DELETION(S)

9.98
7.98
4.75
28.50
29.66
15.95
7.49
4.25
1.98

60

. LIST
‘00001

00002

00003

00004 556178
00005. #723756
00006 *745336
00007 #812763
00008 876512
00009 915332

136928
#221679

« RECALL ALL

00004 RECALL(S)

« LIST
00001
00002
00003
00004
00005
00006
00007
00008
00009

136928
221679

556178
723756
745336
812763
876512
915332

234561

234561°

—

- -3
PRNPWWMN OV W

13

. DISP FILES ON B
RCDS
00007
00007

DATABASE FILES

SHOPLIST
SHOPSAVE

1673
1673
96
873
27

1673

873
1673

1673
1673
96
873
27
27
1673
873
1673

ADJ. WRENCH
SM. HAND SAW
PLASTIC ROD
ADJ. PULLEY
ELECT.BOX
FUSE BLOCK
GLOBE

WIRE MESH
FILE

ADJ. WRENCH
SM. HAND SAW
PLASTIC ROD
ADJ. PULLEY
ELECT.BOX
FUSE BLOCK
GLOBE

WIRE MESH
FILE

LAST UPDATE

06/06/76
06/05/76

. DELETE FILE B:SHOPSAVE

FILE DELETED

. DISPLAY FILES ON B

DATABASE FILES

SHOPLIST

RCDS

00007

LAST UPDATE
06/06/76 .

1.13
5.17
2.18
22.19
19.56
12.65
5.88
3.18
1.32

7.13
5.17
2.18
22.19
19.56
12,65
5.86
3.18°
1.32

189
173
27
17
354
63
112
45
97

189
173

17
354
63
12
45
9T,

—

NNV N OWN O

L I GRS B W VAR \ VR g Yo]

DELETE

w

WW NN~ OW—-0

n

WWNhN—=0W-—=0O

9.98
7.98
4.75
28.50
29.66
15.95
7.49
4,25
1.98

9.98
7.98
4.75

23.50

29.66

15.95
7.49
4.25

1.98

61

DISPLAY

DISPLAY

a. DISPLAY [<scope>] [FOR <exp>] [<exp list>} [OFF)
b. DISPLAY STRUCTURE

c. DISPLAY MEMORY

d. DISPLAY FILES [ON <disk drive>) [LIKE <skeleton>]

Display is the foundation of ‘dBASE. The end goal of all database
operation is. to display the data in the database (or cross
sections and abstractions of the data) upon demand. DISPLAY

satisfies that goal by allowing a wide variety of forms that

select the wanted data.

In case a.all or part of the database in USE is displayed. If
<scope> is not specified and the FOR <exp> is not in the command,
only the current récord can contribute information for display.
If <scope> 13 not specified and there is a FOR <exp>, then all

records in the database may contribute to the display. All fields

are displayed unless the <exp 1ist> clause is specified. Valid
expressions may consist of data fields, memory variables, or any
valid litera! number, character or logical. The current record
number is prefixed to each iine displayed unless the OFF option
is selected. If the FOR clause is specified, then only those
records that satisfy the FOR's conditional expression can
contribute information for display.

After groups of 15 records have been displayed, DISPLAY waits for
any keystroke to continue. This allows the user to "page" through
a long display. The LIST command 1s identical to the DISPLAY.
command except that LIST does not wait after record groups and

i‘'s default scope is ALL records: ‘An ESCape character terminates

the DISPLAY or LIST commands.

In case . only the structure of the database in USE is
displayed.

In case c. all currently defined memory variables are diaplayed
as memory variable name and associated value.

Case d. 18 a way to display .DBF files that are residing on the
default unit (or on <disk drive>) along with some: of the
database's statistics. The LIKE phrase allows other types of
files to be displayed. The <skeleton> is usually of the form
¥.type, where type is TXT, FRM, MEM, or any other three letter

string. These files are displayed just as in the CP/M DIR
command .

62

DISPLAY

Examples:
. USE B:INVENTRY

. DISPLAY STRUCTURE

STRUCTURE FOR FILE: B:INVENTRY.DBF
NUMBER OF RECORDS: 00008

DATE OF LAST UPDATE: 00/00/00
PRIMARY USE DATABASE

FLD NAME TYPE WIDTH ~ DEC

no1 ITEM c 020

ou2 COST N 010 002

003 PART:NO c 005 :

004 ON:HAND N 005

*% TOTAL 00041 BYTES (note: total includes

1 overhead byte)

. DISPLAY ALL ITEM, PART:NO, COSTSOM:HAND » $(PART:NO,1,2) FOR ;
COST > 100 .AND. ON:BAND > 2 OFF)

TANK, SHERMAN 89743 404997.00 89
TROMBONES 76767 15076.12 76
RINGS, GOLDEN 70296 ©1000.00 70

. LISPLAY MEMORY
CLTSNT:NAM. (C) DANCLIMEYER, PKENTICE

BupGiEr (N) 123456.70
G sSTATUS (L) .T.
#%COTAL RE 03 VARIABLES USED 00027 BYTES, USED

. DISPLAY FILES ON B: LIKE ®.FRM
TEST FRM ADMIN FRM ORDERS FRM

. DISPLAY. FILES

DATABASE FILES #RCDS LAST UPDATE
TEST DBF 00077 00/00/00
ADRECS DBF 00073 09/23/61
HISTSTR DBF 00000 06/29/81
TMPADMIN. DBF

NOT A& dBASE II DATABASE

‘he last .DBF file in the 1ist above is the file that is not the
.BASE database.

nly representative examples -of DISPLAY are given here, refer to
ther commands for other examples.’*

63

{8

a. DO <file>
b. DO WHILE <exp>
{statements>
ENDDO
¢. DO CASE
CASE. <exp>
<statements>
CASE <exp>
{statements>

{oTHERWISE]
{statements>
ENDCASF :

In case a, <filed> is opened and read. The fils in this case is
known as a COMMAND FILE. It consists entirsly of JBASE commands.
The input is interpreted and executed as keyboard commands are.
DO's can be stacked up to 16 deep (i.s. command files can coataia
D0 commands which invoke other command files). Control is
released by a command file with an end-of-file or by the RETURN .
command. If the current command file was called by a command
file, control will be ziven back to the higher level command
file. Ir,‘dqring the execution of a command file, a CANCEL
command is encountered, all.command files are closed and the
keyboard is made the source for ‘future commands.

- In .case b, if the <exp> evaluates as a logical TRUE, the
statements following the DO are executed until an ENDDO statement
is encountared.' If the <exp> evaluates to a logical FALSE,
control is transferred to the statemeqat following the ENDDO
‘statement.

Note: Cstatements> refers ta eatire statements. The DO WHILE
statement ends with an £NDDO. Statements must nest properly; if
there is an IF "inside” a2 D0 WHILE, then an ENDDO may not occur
defore the ENDIF. See section 9.2 Rule 8 for more inforamation.

cxamples:

D0 ACCNTPAY

20 WHILZ :NOt.EOF
DISPLAY NAME

K2

X plvie]

ev. A" b4

CASE is an extension of the DO command and takes the form shown
above. There is no limit to the number cf CASE phrases that a DO
CASE may contain. The OTHERWISE phrase is optional.

DO CASE is a structured procedure. The individual CASEs in tl»
construct could be viewed as the exceptions to the rule that
defines the OTHERWISE. If some condition needs some special
processing then the condition would be a CASE and all other
conditions would be the OTHERWISE. OTHERWISE may also be viewed
as the default condition. See the first example below.

How dBASE handles the DO CASE construct may best be explained as
a series of IFs. That 1s, dBASE will execute the DO CASE as if it
were a 1ist of IF-ENDIFs.

DO CASE EF ITEM='ORANGES'
CASE . ITEM='ORANGES". any statements
any statements ELSE
CASE ITEM='APPLES' = IF ITEM='APPLES'
any statements any statements
OTHERWISE ELSE
any statements any statements
SNDCASE ' ' ENDIF
ENDIF

Thus, JBASE will examine the <exp>s insthe individual CASEs and
the {irst one that is true will have the statements after it
axecuted. When dBASE reaches the next phrase beginning with a
"CASE" it will exit to the ENDCASE. This means that if more than
one CASE is true, only tae first one will be executed.

If the OTHERWISE clause is present and none of the CASEs are
true, then the <statements> in the OTHERWISE clause will be
exscuted. If there is no OTHERWISE clause and none of the CASEs
aé.'truo, then the DO CASE will be exited with nocne of the
{statements> executed at all.

Any statements that are placed between the "DQ CASE" and the
first "CASE" will not be executed.

Rev. A 64.1

Examples:

DO CASE
CASE ITEM = “BROWN"
{statements> that process BROWN
CASE ITEM = “JONES"
<{statements> that process JONES
. CASE t?EH "SMITH"
<atatements> that process SMITH
OTHERWISE
' <statements)> that process all the other names
ENDCASE)

In the casé above all the exprq&sions Wwere for the same rield
name. This is not necessary. An <exﬁ> may contain anytaing and
the series of CASEs need not. nave a €ight r-laczonship.

DO CASE .
CASE TODAY = "MONDAY"™
{stataments> for MONDAY
'CASE- WEATHER = "RAIN"
{stataments> for RAIN
CASE CITY = "LOS ANGELES" -
.<statements> for LOS ANGELZS
ENDCASE '

Of course, if it is a rainy ﬁonday in Los Angeles cnly theé CASE
{or MONDAY will be executed.

CASEs need not be.all charaeter strings as in these two exanples.
Any expression will work.

DO CASE

CASE 3 = 2 + 1

<{statements> for addition
CASE .NOT. A

{(statemcnts>. for boolean lecgic
CASE "A"$"ABCDLF"

{statements> for string iogic
OTHERWISE

‘{statements>
ENDCASE

ENDCASE is the statement used to.terminate a DO CASE structure.
Wnen a case quTHERHISE has" finished processing, control is
resumed at the line followin® the INDCASE.

Rev. A du.2

EDIT

EDIT

EDIT [n]

The EDIT command allows the user to selectively chaange the
contents of the data fields in a database. Edit's usage and
action varies, depending on whether on not dBASE is in the fulle
screen mode (see the SET SCREEN command). ’

When dBASE is in the full-screen mode, editing:can be done by
either "EDIT" or "EDIT n" (n represents the record to be edited).
If n is not preseat then dBASE will ask for the¢ coordinates of
the record to be-sdited. This is similar to the non-fullsscreen
mode, however, full-screen capabilities will still used after the
record number is supplied. See section 3, full-screen operations,
for a description of control keys and cursor movement.

When the edit command is used in the non-full-screen mode, dBASE
responds with: ’

COORD:

The user then enters the coordinates of the data field to be
changed and (optionally) the new value. The coordinates of the
data field are: the record number, and the field number (or the
fisld name). If a new valué i{s supplied, dBASE will replace the
ceatents of the specified field with the new value. Il a new
value is not supplied, dBASE displays the current vaiue o the
data field and prompts the user for changes. If no changss are
dasircg,'a carriage return will cause dBASE not to alter the
sontents of the field. Whether changes are made or not, d3ASE
will prompt the user for thé next pair of coordinates «wigh
another "COORD:" message. ’

After the first set of coordinates have been entered, the user
may omit either of the coordinate values and ¢BASZ will use the
previous value of that coordinate. The ZDIT mode is exited by
entering a carriage rsturn as the response to the COORD request.

The entire data field can be erased by entering a controi-Y,
RETURN whenever the CHANGE? message is displayed. This permits a
fleld to be completely reentered if desired. The editing of a
data field can be aborted.by entering a CTL-Q character. This
discards any editiag done and restores the data field to i:ts
original contents.

{f an INDEXed file is being EDITed and the fndex clause was USEZd,
then dBASE will adjust the index if the key field is altered: If
more than one index file is associated with the database, then
the un-USEd files will be unaffected by the edit.

Examples:

USE SHOPLIST

é5

. DISPLAY STRUCTURE

STRUCTURE FOR FILE: SHOPLIST
NUMBER OF RECORLS: 00006
DATE OF LAST UPDATE: 07/93/76
PRIMARY USE DATABASE

FLD NAME TYPE WIDTH
001 ITEM ¢ o020
002 NO N 005
003 COST N 010
a% TOTAL ** 00036
. LIST

00001 BEANS #303 CAN
00002 BREAD

00003 T-BONE STEAKS

00004 LETTUCE

00005 MILK (1 GAL BOTTLES)
00006 CHARCOAL

+ EDIT
COORD: 5,ITEM,MILK (1/2 GAL)

"‘COORD: 2,1
ITEM: BREAD

CHANGE? D
-TQ D LOAVES

ITEM: BREAD LOAVES
CHANGE? (cr)
COORD: 6,1

ITEM: CHARCOAL
CHANGE? AL
T0 AL, 5# BAGS

ITEM: CHARCOAL, 5# BAGS
CHANGE? (er)

CQORD: ,2
NO: 1
T0: 2
COORD: &
NO: 1
TO: ‘2
COORD: (er)
. LIST

00001 - BEANS #303 CAN
00002 BREAD LOAVES
00003 T-BONE STEAKS
00004 LETTUCE

00005 MILK (1/2 GAL;

DEC

002

- N =N

NN ENDWD

0.69
0.89
3.59
0.49
1.19
0.69

- O0OWwoo
- U o
\O W WO

66

EDIT

00006 CHARCOAL, 5¢ BAGS - 2 0.69

(The following portion of a command file would also allow one to
edit a database on a selective basis. The "&" is vital to making
these commands work; it will change the string accepted by the
ACCEPT into numbers that EDIT will recognize.) ’

STORE '1' TO X

DO WHILE X <> '0° -
ACCEPT "Enter Record Number" TO X
EDIT &X'

ENDDO

67

EJECT

‘EJECT

EJECT

This command causes the printer to do a form feed (eject the
page) if either PRINT is SET ON or FORMAT is SET TO PRINT. When
using the € command to do direct page formatting, the EJECT
‘command also zeros the line and column registers.

Example:

.« EBJECT

Q

68

The statement used to terminate a DO WHILE loop. When

encountered, control is Lransferred back to the DO statement for

ce-assessment of the logical value of the <exp>.
See the DO command.

See Appendix A for examples.

69

ERASE

ERASE

This command clears the screen and. places the cursor (if any) in
the upper left corner of the screen. When using the € command
with the -SET SCREEN ON in effect, ERASE clears memory of prior €
command gets and pictures.

Example:

ERASE

FIND

FIND

FIND <char string> or '<char string>'

This command causes dBASE to FIND the first record in an indexed
database (in USE) whose key is the same as {char string>. FIND
allows very rapid location of records within an indexed database.
A'typical FIND time is two seconds on a floppy diskette system.

FIND operates only on databases that have previously been inaexed
(see the INDEX command description). If the INDEX command used a
character string expression as the key, tnen FIND will operate
when it is given only the first few characters of the key. The
found record will be the first one whose key has the same order
and number of characters as the <char at=ing>. Fcr exampie: a
record whose key is 'SMITH, JOHN' could be found by the statement
'FIND SMI' provided that there are no other keys starting with
*SMI' proceeding SMITH, JOHN in the index. FIND will always find
only the first record whose key is the same as <{char strlng).
Even if the record pointer is moved down further in the file, a
subsequent FIND on the same key will find the FIRST record.

If the index was created with a numeric key, then the found
yecord will be the [irst record whose key is arithmetically equal
to the objeet of the FIND.

Note: that for indexes keyed on both characters and numbers, the
TIND object is a character string with or without quote
delimiters. Quote marks only become n::cessary fdr character
strrinogs if the original key had leading bianks. In that case, the
exact number of leading blanks should be inside the quotes.

1f a memory variable is desired as a FIND object, it inust be
placed after the FIND command by means of an &-macro peplacement,
e.g. FIND &NAME where NAME is & character String. memory variable.
Numeric memory variables must first be converted to a string by
means of the STR function before they can be "macro-~ized®. See
section § {or a discussion on macros. -

Once a record in a database has been located by means of the FIND
command, it can be processed Just’as‘any other database record.
That is, it can be interrogated, altered, used in calculations,
atc. !3A5C commands that cause movement of the database (e.g.
LLST, REPORT, COPY, etc.) will process the found record first and
proceed to the next record in sequence. based upon the key.

I1f no record exists whose key is identical to the {char string>
then the message: "NO FIND" will be displayed on the screen and
the cecopd number function "# will give the value of zero.

Tt a second record with the same key is wanted, then a SKIP or a
LOCATE TOR <exp> should be used. The SKIP will not know when
there is no longer a match, the LOCATE (as long as the key was

T3

FIND

used in the expression) will be able to find additional matches.
SET EXACT ON will cause FIND to get a 'hit' only if there is a
character for character match for the ENTIRE key (except for
trailing blanks). i

Examplea:

. USE SHOPLIST INDEX SHOPINDX

« LIST

00001 Beans 5 0.75
00007 Bleu cheese 1 1.96
00002 Bread loaves 2 1.06
00009 Charcoal. 2. 0.75
00006 Lettuce 2 0.53
00008 Milk 2 1.30
00004 Paper plates 1 0.94
00005 Plastic forks - 5 0.42

00003 T-Bone steak 4 §.33

. FIND Bread

. DISPLAY

00002 Bread loaves 2 1.06
« DISPLAY NEXT 3

00002 Breag loaves 2 1.06
00009 Charcoal 2 0.75
00006 Lettuce 2 0.53
. FIND P

« DISPLAY

00004 Paper plates 1 0.94
. FIND Plas

« DISPLAY

00005 Plastic forks . 5 0.42
. FIND P

~ « DISPLAY

00004 Paper plates . 1 0.94

FIND

FIND will work in a multiple indexed file if the two keys are
placed within quotes.

« list .

10001 Flying High Bird, I. M. IMBOO1 02/29/04
00005 Nesting Procedures Bird, I. M. IMBO02 09/25/06
00002 Diving Fish, U. R. URFOO1 12/30/23
00008 Nursing Knight and Gale KG0O1 08/04/44
00010 Vacationing in Europe Knight and Gale KG002 06/24/42
00004 101 Ways to Tie a Knot Lynch, I. ILO01 Ol/03/00
;0003 How to Survive a Crash Lynch, M. MLOO1 - 01/01/30
00007 Even Primes Sladek, L LS001 12/01/73
00009 Even More Primes Slauek, L LS002 O0W/2U/73
00006 Thinking Big Tim, Tiny TTO01 05/07/742

. find “Bird, I. M. IMBOO2"

60‘0%? Nesting Procedures Bird, I. M. IMBOO2 09/25/06
. find "Lynch, M.™

, disp

00003 How to Survive a Crash Lynch, M. MLOO1 ,01/01/30
, fled "Sladek, L LS002"

> dlisp

00009 syen More Primes Sladek, L 1LS002 Ou/24/73

GOTO

GO or
GOTO

a. GOTO RECORL <n>
b. GOTO TOP

c. GOTO BOTTOM

d. <n>

e. GOTO <memvar>

This command is used to reposition the record pointer of the
database. ’

In either case a or d, the current-record pointer is set to
record number <n>. Case d is a short-hand method for case a.

In cases b and c, the file in USE is rewound/unwound (TOP/BOTTOM)
and the first/last record in the file is pointed to by the
current-record pointer. When the file in USE has been INDEXed,
then first/iast record is not necessaéily the first/last physical

.record in the database but rather is first/last according to the-

key used to index the database.

Case e can be used to position to a record number contained in a
memory variable.

Examples:
. USE SHOPLIST

. GOTO RECORD &
[}

. DISPLAY
00006 LETTUCE 2 0.53

. GOTO TOP

. DISPLAY
0000i BEANS 5 0.75

. GOTO BOTTOM

- DISPLAY
U0y CHARCOAL 2 0.75

7%

. LIST
00001
00002
00003
00004
00005
00006
00007
00008
00009

BEANS

BREAD LOAVES
T-BONE

PAPER PLATES
PLASTIC FORKS
LETTUCE

BLEU CHEESE
MILK
CHARCOAL

. STORE & .TO RECORDNO

y
. GOTO

. DISP
00004

RECORDNO

PAPER PLATES

NN =N

FRE)

. o e
~I W W UL E OW WO
NoowmnmnoNE~WN

O+ —200O0WOO

o . e

GOTO

75

IF

IF <exp>
{commands>
{ELSE
<commands>]
ENDIF

The IF command allows conditional execution of other commands.
This command i3 used in command files. Whén the <exp>ression
evaluates to, TRUE, ‘the commands following the IF are executed.
When. the expression evaluates to FALSE, the commands following
the ELSE are execucted. If no ELSE is specified, all commands are
skipped until an ZNDIF is encountered. IF commands may be nested
to any lavel.

Note: <{commands> refers to whole command statements. The IF
command begins with IF and ends with ENDIF.. Statements aust nest
properly, an IF with a DO WHILE in the true (or false) path must
not end before the DO WHILE. See sectidn 9.3 Rule 8 for more
information.

txamples:

IF STATUS='MARRIED'
DO MCOST

ELSE
DO SCOST

ENDIF
IF X=1

STORE CITY+STATE TO LOCATION
ENDIF

See Appeadix for further examples.

76

RETN DEX

INDEX

INDEX

INDEX ON <expression> TO <index file name>

The INDEX command causes the current file in USZ to be indexed on
the <expression>. <expression> is known as the "key". This means
that a file will be constructed by dBASE (the <index file>) that
sontains pointers to the records in the USE file. The index file
is made in such a way that the USE database appears to be sorted
sa the key for. subsequent operations. The file in use i{s not
physically changed. Sorting will be in an ascending order.
A descending sort may be done on an expression that is a numeric.
See below for an example.

Indexing allows very rapid iocation of database records by
specifing all or part of the «ey by means of the FIND command.
(See FIND). A database need not be indexed unless the applicaticn
being worked would be enhanced by it. An indexed database can be
used later with or without the indexing feature.

Many “i3es, the INDEX command need only be done once for any
given file. For instance, the APPEND command will automatically
‘adjust the index file when new records are added.

If an indexed database is reUSEd (in a later dBASE run or later
ia the same run that did the original INDEX operation), then a
special form of the USE command must be used (i.e. USE <database
tilename> INDEX <index filename>).

Any numoer of index files may de constructed for any database,
however, cnly the USEd index {iles will be automatically updated
by the APPEND, EDIT, REPLACE, READ or BROWSE commands.

An indexed file can be packed with the PACK command and the
dasabase, as well as the index file, will be properly adjustad.
dowever if more that one index file is associated with the PACXed
detabase, then that database must reINDEXed on those keys.

WARNING: The TRIM function must NOT be used as part of an index
key. Also, if the $ or STR functions are used as part or all of a
kev, they amust nave :iteral numbers (not variables or
aKkpressions) as their length parameters (e.g. INDEX ON
S{NAHE,N,5)+STR(AMOUNT,5) TO NDXFILE instead of INDEX ON
S{NAME,N,N+5)+STR(AMOUNT,SIZEVAR) TO NDXFILEj.

Rev. A 77

Examples:

. USE SHOPLIST

. LIST
00001
00002
00003
Q0004
00005
00006
00007
00008
00009

Beans

Bread loaves
T-Bone steak
Paper plates
Plastic forks
Lettuce

Bleu cheese
Milk

Charcoal

. DISPLAY STRUCTURE
STRUCTURE FOR FILE:

NUMBER

OF RECORDS:

DATET OF LAST UPDATE:
PRIMARY USE DATABASE

F1D
001
002
003

NAME TYPE WIDTH DEC

ITEM
NO
COST

¥e TOTAL **

LV VIR VLN (R~ SV A

SHOPLIST.DBF
00009
07/03/76

020
005

010 002

00036

. NOTE CREATE INDEX FILE SHOPINDX

. INDEX ON ITEM TO SHOPINDX

. NOTE NOW LIST IN INDEX ORDER

. LIST
00001
00007
00002
00009
00006
00008
00004
00005
00003

+ NOTE INDEXING ALLOWS FIND COMMAND

. FIND

Beans

Bleéu cheese
Bread loaves
Charcoal
Lettuce

Milk

Paper plates
Plastic forks
T-Bone steak

Milk

- DISPLAY

00008

. FIND

Milk

Be

. DISPLAY

00001
. SKIP

deans

EVN NN 2O

i

0.75
1.06
4.33
0.94
0.42
0.53
1.96
1.30
0.7u

0.75
1.90
1.06

0.75.

0.53
1.30
0.94
0.42
4.33

0.75

INDEX

INDEX

RECORD: 00007

. DISPLAY
00007 Bleu cheese 1.96

SKIP -1
©+ 00001

. DISPLAY
00001 Beans 0.75

. NOTE REGULAR USE COMMAND DOES NO. TNDEX FILE

. USE SHOPLIST

. LIST

00001 Beans 5 9.75
00002 Bread loaves 2 1.06
00003 T-Bone steak 4 4.33
00004 Paper plates 1 0.94
00005 Plastic forks 5 0.42
00006 Lettuce 2 0.53
20007 Sleu cheese 1 1.96
JO0Us Milk 2 1.30
Juuy9 Charcoal 2

0.75
. NOTE ALTERNATE FORM OF USE COMMAND RECALL& INDEX FILE

. USE SBOPLIST INDEX SEOPINDX

. LIST

0¢o0t 3eans 5 0.75
00007 Bleu cheese: 1 1.96
00002 Bread loaves 2 1.06
00009 Charcoal 2 0.75
00006 iettuce 2 0.33
00008 Milk 2 1.30
00004 Paper plates 1 0.94
aN00% Plastic forks 5 0.42
00003 T-Bune steak 4 4.33

. USE BOOKS

. DISP

STRUCTURE FOR FILE:

STRO

NUMBER OF RECORDS: 00010
DATE OF LAST UPDATE: 10/14/81
PRIMARY USE DATABASE

FLD NAME TYPE WIDTH
Q01 'TITLE : C 025
002 AUTHOR c 015
003 CAT:NUM c 006
oou ARR:DTE c 008
** TQTAL ** Q0055

BOOKS .DBF

DEC

. INDEX ON AUTEOR + CAT:NUM TO BOOKS
00010 RECORDS INDEXED

. LIST
00001
00005
00002
00008
00010
00004
00003
00007
00009
00006

Flying High

Nesting Procedures
Diving

Nursing

Vacationing in Europe
101 Ways to Tie 'a Knot
How to. Survive a Crash
Even Primes

Even More Primes
Thinking Big

Bird, I. M.
Bird, I. M.
Fish, U. R.

IMBOQ1
IMB0OO2
URFQQ1

Knight and CGale KGOO1
{night and Gale KGO002

Lynch, I.
Lyneh, M.
Sladek, L
Sladek, L
Tim, Tiny

ILOU1
MLOO1
LS001
L5002
TTOO

Rev. 4

INDEX

02/29/04
09/25/06
12/30/23
Ot/ 04/ bl
06/2u4/42
a4/01/00
01/01/30
12/01/73
04/24/73
05/07/42

80

R

INPUT

INPUT

INPUT ["<cstring>®] TO <memvar)>

‘This coastruct permits the entry of expression values intc memory

variables, and can be used within command files as a means for
the user to enter data at the command file's b.dding. <meavar> is
oreated, if necessary, and the expression is stored into
<memvar>. If <cstring> is present, it is displayed ca the screen
as a prompt message before the input is accepted.

The type of the <memvar> is determined from the type of data that

‘As entered. If a delimited character string is entered, the

<memvar> will be of type character. If 2 numeric exXpression is
entered, <memvar> will be of type numeric. If a T or Y (for True
or Yes) is entered, <memvar> will be a logical variable with the

value TRUE; if an F-or N (for False or No) is entered, <amemvar>

will be a logical variable with the value FALSE. The functicn
TYPE may be used to explicitly determine the type of the eniry.

Either single or double quote marks may be used to delimit the
prompt ‘string, however, both the beginning and ending marks must
be the same.

INPUT should be used to enter numeric and logical data only. The
ACCEPT command is a more convenient way to enter character
strings.

Examples:
INPUT 10 X
3

. DIPUT TO 2
:123/17.000+X
4,352

. INPUT 'TROMPT USER FOR INPUT' IO Q
PROMPT USER FOR INPUT: 12345
12345

- INPUT 'ENTER T IF EVERYTHING IS OKAY' TO LOG_
ENTER T IF EVERYTHING IS OKAY:T
.T.

- INPUT "ENTER A CHAR STRING®™ TO CHAR
EZNTER A CHAR STRING:'CHAR STRING MUST BE QUOTE DELIMITED'
CHAR STRING MUST BE QUOTE DELIMITED

" INPUT

. DISP MEMO

X (N) 3

z (N) 4,352

Q (N) 12345

LOG (L) .T.

CHAR (C) CHAR STRING MUST BE QUOTE DELIMITED
%e TQTAL *¢ 05 VARIABLES USED 00054 BYTES USED

. INPUT 'ENTER ANY LOGICAL ' TO LOG2
ENTER ANY LOGICAL :y
.T.

INSERT

INSFRT

.INSERT [BEFORE] [BLANK)

This command allows records to be INSERTed into the middle of a
database. Only one record at a time may be inserted into the
database with the INSERT command.

-The BEFORE phirase is used to cause insertion before the record
currently pointed at, otherwise the new record will be placed
Just after the current record. Unless the BLANK phrase is used,
the user will be prompted for input values as with the APPEND and
CREATE commands. If the BLANK phrase is specified, then an empty
record is inserted.)

If the CARRY is SET ON then the information in the previous
recbrd_ia carried over to the new record.

INSERTs into a 1argc non-indexed database take a long time to
complete and should be avoided unless necessary. INSERTs into an
indexed file, no matter what size, are identical to APPENDs.
Exanples:

. USE SHOPLIST

> LIST

00001 BEANS #303 CAN 5 0.69
00002 BREAD LOAVES 2 0.89
00003 T-BONE STEAKS 4 3.59
00004. LETTUCE 2 0.49
00005 MILK (1/2 GAL) 2 1.19
00006 - CHANCOAL, 5¢# BAGS 2 0.69

> GOTO RECORD A

. INSERT

RECORL 00005

ITEM: ‘BLEU
NO3 1

GOST: 1.79

83

. LIST

00001 BEANS #303 CAN
00002 BREAD LOAVES
00003 T-BONE STEAKS
00004 LETTUCE

00005 BLEU CHEESE

00006 MILK (1/2 GAL)
00007 CHARCOAL, 5% BAGS

. GOTO RECORD 4
. INSERT BEFORE

RECORD 00004

TTEM: PAPER PLATES
NO: 1

COST: .79

. LIST

00001 BEANS #303 CAN
00002 BREAD LOAVES
00003 T-BONE STEAKS
00004 PAPER PLATES
00005 LETTUCE

00006 BLEU CHEESE

00007 MILK (1/2 GAL}
00008 CHARCOAL, S5# BAGS

.4

. DISPLAY
00004 PAPER PLATES

.. INSERT BLANK

« LIST

00001 BEANS #3073 CAN
00002 BREAD LOAVES
00003 T-BONE STEAKS
00004 PAPER PLATES
00005

00006 LETTUCE

00007 BLEU CHEESE

00008 MILK.(1/2 GAL)
00009 CHARCOAL, 5# BAGS

NN =N DN

NN =N -0

-5 N,

NN - N

0.69
0.89
3.59
0.49
1.79
1.19
0.69

0.69
0.89
3.59
0.79

0.49
1.79
1.19
0.6%

INSERT

&4

INSERT

.5

REPLACE ITEM VWITH ‘'PLASTIC FORKS' AND NO WITH 5 AND COST
WITE .39

00901 REPLACEMENT(S;

. LIST

00001 BEANS #303 CAN 5 0.69
00002 BREAD LOAVES 2 0.89
00003 T-BONE STEAKS 4 3.59
0004 PAPER PLATES 1 0.79
00005 PLASTIC FORKS 5 0.39
00006 LETTUCE 2 0.49
00007 - BLEU CHEESE 1 1.79
00008 MILK (1/2 GAL) . 2 1.19
00009 CHARCOAL, 5# BAGS 2 0.69

JOIN

JOIN

JOIN TO <file> FOR <expression> [FIELDS <field list>]

This is one of the most powerful commands in dBASE. It allows tvo

databases to be JOINed together to form a third database whenever

some criterion is met.

The two databases used are the primary and secondary USE files.
First the SELECT PRIMARY command is issued. Then the JOIN
command is issued. JOIN then positions dBASE to the first record
of the primary USE file and evaluates the ON expression for each
record in the secondary USE file. Each time that the expression
yields a TRUE result, a record as added TO the new database. When
the end of the secondary USE file is reached, the primary USE
file is advanced one record, the secondary USE file is ‘'rewound'
and the process continues until the primary USE file is
exhausted.

If the FI:LDS phrase is omitted then the output database will be
comprised of all the fields in the primary USE file's structure
and as many of the secondary USE file's fields as will fit before
exceeding the 32 field limit of dBASE.

If the FIELDS phrase is supplied, then those .fields, and only
those fields, that are in the field l1ist will be placed in the
output database. '

This command takes a lot of time tc complete if the contributing
databases are large. And if the joining criterion is too loose,
causing many joinings per primary record, then there is the
potential for causing a JOIN that dBASE cannot complete. For
example, suppose that the primary and secondary USE files each
contain a 1000 records, and that the expression is always true, a
million records should be ocutput by the JOIN into a database
whose size would exceed the dBASE maximum of 65,535 records.:

86

JOIN

Example:
.USE INVENTRY

.DISPLAY STRUCTURE

STRUCTURE FOR FILE: INVENTRY.DEBF
NUMBER OF RECORDS: 00008

DATE OF LAST UPDATE: 00/00/00
PRIMARY USE DATABASE

FLD NAME TYPE WIDTH DEC
001 ITEM c 020

002 COST N 010 00z

003 PART:NO c 005

004 ON:HAND N QU5

*8 TOTAL ## 00041

. LIST

00001 TIME STITCH 9.99 24776 1
00002 WIDGET 1.67 31415 18
00003 GADGET, LARGE 16.33 92653 7
00004 TANK, SHERMAN 134999.00 89793 3
00005 SINK, KITCHEN _ 34.72 21828 77
00006 THOMBONES 198.37 76767 76
00007 RINGS, GOLDEN 200.00 70296 5
00008 #9 COAL 22.00 11528 16

. SELECT SECONDARY
. USE ORDERS

. DISPLAY STRUCTURE
STRUCTURE FOR FILE: ORDERS.DBF
NUMBER OF RECORDS: 00008

DATE _OF LAST UPDATE: 00/00/00
PRIMARY USE DATABASE

FLD NAME TYPE WIDTH DEC

001 CUSTOMER c 020

002 PART:NO c 005

003 AMOUNT N 005

#¥ TOTAL #* 00031

+ L2ST

00001 SWARTZ, JOE 31415 13
00002 SWARTZ, JOE 16767 13
06003 HARRIS, ARNOLD 1152¢€ by
00004 ADAMS, JEAN 89793 12
00005 MACK, JAY 31415 3
00006 TERRY, HANS 76767 5
00007 JUAN, DON 21828 5
0N0U8 SALT, CLARA 70296 9

. SELECT PRIMARY

. JOIN TO AMNOTATE FOR PART:NO=S.PART:NO;
FIELD CUSTOMER,ITEM,AMOUNT,COST ‘

. USE ANNOTATE

. DISPLAY STRUCTURE

STRUCTURE FOR FILE: ANNOTATE.DBF
NUMBER OF RECORDS: 00008
DATE OF LAST UPDATE: 00/00/00

PRIMARY USE DATABASE

FLD NAME TYPE WIDTH DEC

001 CUSTOMER C» 020

002 ITEM [020

003 AMOUNT N 005

ook . cOST N 010 002

% ‘TOTAL *® 00056

. LIST ,

00001 SWARTZ, JOE WIDGEYL

00002 MACK, JAY WIDGET

00003 ADAMS, JEAN TANK, SHERMAN
00004 JUAN, DON SINK, KITCHEN
00005 SWARTZ, JOE TROMBONES
00006 TERRY, HANS TROMBONES
00007 'SALT, CLARA RINGS, GOLDEN
00008 HARRIS, ARNOLD #9 COAL

« USE INVENTRY

(join customer names with part numbers

inventory to satisfy orders sos that the
notified, for instance)

JOIN

use the inventory
file to add names
to the orders

13 1.67
3 1.67
12 134999.00
5 34.72
I3 198037
5 198.37
9 200:60
4y 22.00

with insufficent
customers can bhe

« JOIN TO BACKORDR FOR PART:NO=S.PART:NO.AND.ON:HAND<AMOUNT;

FIELD CUSTOMER, ITEM
« USE BACKORDR'

. LIST

00001 ADAMS, JEAN
00002 SALT, CLARA
00003 HAKRRIS, ARNOLD

TANK, SHERMAN
RINGS, GOLDEN
#9 COAL

LIST

LIST is the same as DISPLAY, except the scope defaults to ALL
records and WAIT does not wait for a go-ahead after 15 record
groups. Notice however that LIST STRUCTURE, LIST FILES and LIST
MEMORY commands work 2xactly as the DISPLAY command.

89

LOCATE

LOCATE

LOCATE i<scope>] [FOR <exp>]
{CONTINUE]

This command causes a search of database records in the USE file
for the first record whose data fields allow the expression <exp>
to be TRUE. When the expression is satisfied, the following
message is displayed: ’

RECORD n

The CONTINUE command may be used to continue the search. Other
dBASE commands may be issued between the LOCATE and the CONTINUE.
This does, however, limit the number of the characters in the
FOR <exp> to 128 instead of 254. See CONTINUE.

If the expression cannot be found, the message END OF FILE is
displayed, and the database is left positioned at the last record
in the file. If the NEXT clause (see scope, section 9.1) is used
in this command and the expression cannot be found within the
scope of the NEXT, the message END OF LOCATE is displayed, and
the database is left positioned at the last record scanned.

Note: a LOCATE will work faster on a file that is USEd without
an INDEX rile.

Examples:

. USE SHOPLIST

. LIST

00001 BEANS #303 CAN 5 0.69
00002 BREAD LOAVES 2 0.89
00003 T-BONE STEAKS 4 3.59
‘00004 PAPER PLATES 1 0.79
00005 PLASTIC FORKS 5 0.39
00006. LETTUCE 2 0.49
00007 BLEU CHEESE 1 1.79
00008 MILK (1/2 GAL) 2 1.19
00009 CHARCOAL, S5# BAGS Z 0%69

. LOCATE FOR COST>.70
RECORD:" 00002

. CONTINUE
RECORD; 00003

. DISP ITEM
T~-BONE STEAKS
. CONTINUE
RECORD: 00004

90

. CORTINUE
HECORDs 00007

. CONTINUE
RECORD: 00008

. CONTINUE
END OF FILE

LOCATE

91

Loop

- el

LOOP

This command is used within the body of a DO WHILE to skip the
commands follcwing the LOOP, and still allow the reappraisal and
possible reexecution of the body of the DO WHILE. LOOP is used to
shorten DO WHILE loops which, if large, can be time consuming or
may contain commands which are to be skipped at times. LOOP acts
much as an ENDDO commsand, it will backup to the DO WHILE that
matches It in nesting depth.

Use of loops in a DG WHILE is not a good programming practice and
should be avoided. The following example was done a second time,
the second follows the first, without use of the LOOP capability.

Example:
STORE 1 TO INDEX

DO WHILE INDEX<10
STORE INDEX+1 TO INDEX

IF ITEM=' ' Anytime that ITEM is equal toeblanks
SKIP then skip to the next record
LooP and go back to the DO WHILE
ENDIF
DO PROCESS
ENDDO

Example 2:

STORE 1 TO INDEX
DO WHILE INDEX < 10
STORE INDEX + 1 TO INDEX

IF ITEM = ' '
SKIP
ELSE
DO PROCESS
ENDIF
ENDDO

92

MODIFY

YODIFY

a. MODIFY STRUCTURE
b. MODIFY COMMAND (<command file>]

Form-a. of this command allows the user to modify the structure
of a dBASE file. Any changes are permitted. Fields can be added,
deleted, or have their parameters (e.g. name, type, length,
number of decimals) changed.

MODIFY acts upon the database currently in USE. The existing
structure is displayed.on the screen, chariges are made directly
on the screen in the same way as full-screen editing is done with
two exceptions: CTL-N inserts a blank line wherever the cursor
‘As, CTL=-T deletes the line that the cursor is or. The other
control keys behave as described in seection 9.

NOTE: the MODIFY STRUCTURE command deletes ALL data records that
were in the USE file prior to the MODIFY. In order to modify a
structure and keep its data, first COPY the structure to a work
file, USE the work file, make the modifications, and finally
APPEND the old data to the work file. The original database and
the work file may be RENAME'd if it is necessary to restore their
original names. See the example below.

form b, of this command allows minor full-screen editing of
command files (or &nything else). If the <command file> is
omltted then the user is prompted for it. If the file doesn't
exist, it is created. After a command file has been edited,
MODIFY COMMAND will rename type of the old copy to .BAK and save
the new copy with the type .CMD.)

When in MODIFY COMMAND, the CTL~-N and CTL~T editing functions
work as described in a previous paragraph. CTL-Q will abort all
changes to the command file; CTL-W will write the changes back to
the disk and to the rename that was described above.

There are some significant restrictions to this form of the
command: 1) lines can only be 77 or fewer characters long
(including the carriage return/line feed pair); 2) TAB characters
are converted to single spaces; 3) the cursor can only be backed
up in a file about 4000 by:es; 4) there is no search or block
move sapability as are in Some text editors.

93

MODIFY

Full-screen cursor controls are the same for MODIFY COMMAND
EXCEPT for the following commands:

cti-N
ctl-T

ctl-w

ctl-Q
ctl-R
ctl-C
1984

Example:

-

inserts a blank line wherever the cursor is;
deletes the line the cursor is on and moves up the
lower lines;) ,
writes the cmdnges made to the file back on the disk
and exits MODIFY COMMAND (ctl-o for SuperBrain);
aborts any changes made to the command file;

scrolls one line down; and

scrolls one page up.

Insek o

. NOTE -- AN EXAMPLE OF HOW TO MODIFY A STRUCTURE WITHOUT

. NOTE LOSING THE INFORMATION IN THE FILE-

USE WORK

" USE INVNTRY -

COPY TO WORK

MODIFY STRUCTURE

APPEND FROM INVNTRY

DELETE FILE INVNTRY

USE

RENAME WORK TO INVNTRY

94

NOTE

NOTE

4. NOTE any characters
b. * any characters

This command allows comments to be placed into a command file.
Unlike the REMARK command, the content of this command is not
echoed onto the output device.

Example:

NOTE - last modification : 4 Jjuly 1976

oo last modification spelled doom's day

95

PACK

PACK

-————

PACK

This command purgea.all records marked for deletion by the DELETE
command. Once the PACK command has been iuued, nothing can bring’
- back deleted records.

If the file being PACKed is indexed, and the indexed file is in
use, then the PACK will adjust the index file at the same time it
acjusts the USE file. For large indexed files, doing a PACK on
the file without the index and then reindexing is faster.

If the database is indexed by more that one index file, then the
other index files must be-reINDEXed on those keys since the PACK
will (in all nrobabiuty) have moved records around.

An alternate method -to the PACK is to COPY the old file to~a new

file. DELETEd records will not be copled.: 'rhen the old file may
be deleted -(or saved as a back-up) and the new file renamed.

Examples:

USE *B3SHOPSAVE

. ‘LIST
00001 BEANS 5 0.75
00002 BREAD LOAVES 2 0.97
00003 T-BONE. § 3.94
00004 PAPER PLATES 1 0.86
00005 PLASTIC. FORKS 5 0.42
00006 LETTUCE 2 0.53
00007 BLEU CHEESE 1 1.96
‘00008 MILK _ 2 1.30
00009 CHARCOMs 2 ~0.75
. DELETE RECORD 8
00001 DELETION(S) .
. LIST
00001 BEANS 5 0.75-
00002 BREAD LOAVES 2 0.97
00003 T-BONE b 3.94
00004 PAPER PLATES 1 0.86
00005 PLASTIC FORKS 5 0.42
00006 LETTUCE 2 0.53
00007 BLEU CHEESE 1 1.96
00008 *MILK " 2 1.30
00009 CHARCOAL 2 0.75

. PACK
PACK COMPLETE, 00008 RECORDS COPIED

PACK

. LIST

00001 BEANS 5 0.75
00002 BREAD LOAVES 2 0.97
. 00003 T-BONE y 3.94
00004 . PAPER PLATES 1 0.86 .
00005 -PLASTIC FORKS s Q;‘,lﬁ
00006 LETTUCE 2 053,
00007 BLEU CHEESE 1 1.96
00008 CHARCOAL 2

. 0.75

A PACK need not always be done, for example, suppose some records
must be deleted dbut it is necessary for them to remain in the
database. =These records will not be COPY'd, ‘APPENDed, or SORTed;
they will however be COUNTed. It becomes important to know
wether or not the record being processed is deleted or not. The
following example is a partial command file that would skip over
a record that has been deleted -and continue processing with ‘the.
riext record. ' T

DO WHILE .NOT. EOF
LOCATE FOR NATURE = “TLM*
IF .NOT. *

Ccommandsg
ENDTT -

CONTINUE
ENDDO

QUIT

QUIT

QUIT [TO <com file 11st>]

This command closes all database files, command rues, and
alternate files and returns control to the pperat;ps systen. The
message *#% END RUN dBASE ®#*% is displayed.

If the TO phrase is included, then all the programs in the <com
file 1ist> will be executed in sequence by CP/M. This fegt.ure
lets you to go out of dBASE and chain to other pieces of
software. ,

There is no limit to the number of programs or CP/M commands
which can be executed as long as the 254 character limit for any
command is not broken. dBASE be reentered an the end of the
string of commands. However, it is not required; CP/M will be
given control when the string of commands are all finished
oxecuuns. o

sxamples

.. QUIT T0 'DIR B:','PIP PRN:=ALTERNAT.TXT', 'DBASE QDFILE'
In this example, dBASE is exited, a directory of the B-drive is
done, PIP is then called to copy a file to the print-device, and

dBASE is reentered with a command file (CMLFILE.CMD) taking
control immediately.

READ

HEAD

READ

This command enters the full-screen mode for editing and/or data
entry of variables identified for and displayed by an "€" command
with ‘a GET phrase. The cursor .can be moved to any of the GET
variables. Changes made to those variabies on the screen are
~otered into the appropiate database fields or .memory variabdles.

If the SET FORMAT TO <format file> command has been issued,’ then
READ will cause all of the "@" commands in the format file to be
executed, thus formatting the screen, allowing editing of all GET
variables. Nof.Xce that this technicue is a ‘tailorable substitute
for the EDIT command when in the interactive mode.

When in the SET FORMAT TO SCREEN mode, an ERASE command §s used
to clear the screes. A series of "é" commands may then be issued
to format the screen. Then a READ command would be given which
would nllow editins. -

LU a second or later series of "é" commands is issued after a
kiAD command, then READ will place the cursor on the first GET
varjable following the last READ. In this way, the scrqen format
and the specific variables edited can be based on decisions made
by the user in response to prior KEAD commands.

Variables to be used with the "@" commands and edited using the
READ command must be either in the USE file as field names or
must bs characfer string memory variables. Memory wariables must
be predefined dbefore the "€" command is issued. If necessary,
store as many blanks as you want the maximum length of the memory
variable to be in order to initialize the memory variable (e.g.
STORE ' ' to MEMVAR).

.See section 8 for cursor control and data entry instructions.
The SET SCREEN ON command must be in effect (this {s the aefault

condition if full-screen operations were enabled when dBASE 11
vas installed).

59

READ

Example:

STORE ' ' TO PTYPE

STORE, ' ' TO ACCT

ERASE

€ 5,0 SAY 'Enter a C for cash payment'

€ 6,0 SAY °* or a D for deferred payment'

e 8,10 GET PTYPE

READ

IF PTYPE='D')
€ 10,10 SAY 'Enter acct no.' CET ACCT PICTURE '999—99-99'99'
READ

ENDIF

In this command file fragment, the screen is cleared and the
first two "@" commands are put up. The cursor will be between :two
colons that mark the screen location of the variable PTYPE. Since
the first STCRE set the size of PTYPE at 1 character, any entry
by the user will fill PTYPE and exit the first READ command.

_If a "D" was entered by the dBASE operator, then the "€" command
that asks for an account number will be done. Notice that ACCT
was defined long enough in the STORE to include the two dashes
that the PICTURE phrase in the "€" will enter

USE CHECKS
SET FORMAT TO SCREEN
ACCEPT "Option™ TO CHOICE
IF CHOICE$'Aa'
ERASE)
DO WHILE NUMBER # 0
APPEND BLANK
€ 5,0 SAY "Enter next Number" ;
GET NUMBER PICTURE '99999"
@ 6,0 SAY "Enter Recipient”;
GET RECIPIENT PICTURE 'XXXXXXXXXXXXXXXXXXXXXXXXX*
~ @ 7,0 SAY "Enter Amount";
GET AMOUNT PICTURE '9999999999'
‘@ 8,5 SAY "Is it back yet?" ;
GET HOME
€ 8,30 SAY "Are you paying oubd?";
GET OUTGOING
-READ
ENDDO
ENDIF

In the last example, a file was used and altered directly, the

choice being left up to the operator on whether or not to add new
records to the database in question.

100

Refer to the "@" command for more details.

101

RECALL

RECALL

RECALL t<scope>] {FOR <exp>]

This command removes the mark-for-deletion from the records that
were marked by the DELETE command.

Examples:

. USE DUPE3

. LIST

0001 NEUMAN, ALFRED E. 1357
00002 RODGERS, ROY 2468
00003 CASSIDY, BUTCH 3344
00004 CHANG, LEE 6743
00005 POST, WILEY 1011

00006 LANCASTER, WILLIAM J 6623
« 3

. DELETE NEXT 3
00003 DELETION(S)

. LIST
00001- NEUMAN, ALFRED E. 1357
00002 RODGERS, ROY 2468
00003 ®CASSIDY, BUTCH 3344
00004 *CHANG, LEE 6743
00005 *POST, WILEY 1011

00006 LANCASTER, WILLIAM J 6623

. RECALL RECORD 4
00001 RECALL(S)

. LIST
000017 NEUMAN, ALFRED E. 1357
00002 RODGERS, ROY 2468
00003 ®CASSIDY, BUTCH 3344
00004 CHANG, LEE 6743
00005 *POST, WILEY 1011

00006 LANCASTER, WILLIAM J 6623

‘RECALL ALL
00002 RECALL(S)

00001
00002
00003
00004
00005
00006

NEUMAN, ALFRED E.
RODGERS, ROY
CASSIDY, BUTCH
CHANG, LEE

POST, WILEY

1357
2468
3344
6743
1011

LANCASTER, WILLIAM J 6623

RECALL

103

(This page is left intencibnally.blaak)

ev. A 104

(This page is left intentionally -blank)

RELEASE

RELEASE

RELEASE (<memvar 1list>]
{ALL]
This command releases all or selected memory variables and makes

the space that they consumed available for new memory variables.
If ALL {is 'specified, then all ‘men_ox-y variables will be deleted.

106

REMARK

REMARK

REMARK any characters.

This command allows the display of any characters. The contents

of this command are Hisplayed on the output device when this

command is encountered,

Examples:

REMARK ##8088 REMARK szf ssensaes
#EN8R® REMARK TEST W#teessss

07

RENAME

RENAME <original file name> TO <new rile'name?

This command allows the changeing of the name of a file in the
CP/M directory. If no file type (the up to 3 characters following
a file name) is given then dBASE assumes that a database's name

is being used and assigns the type .DBF to the named files. See
section 4 for more detail -concerning dBASE use of file types.

Example:
. RENAME INVENMAC TO -INVENOLD
. RENAME D:REPORT.FRM TO REPORT.BAK

. RENAME TYPELESS. TO TYPED.TYP

" 108

REPLACE

REPLACE [<scope>] <field> WITH <exp> [,<f1eld2> WITH <exp2>] ,etc
: [FOR <exp>]

This command is used to replace the contents of specified adata
fields of the file in USE with some riew data. This command is
contrasted with the STORE command in that REPLACE changes only
field variables, while the STORE command changes only memory
variables.

If <scope> is not supplied in the command then REPLACE acts only
on the current record.

If a REPLACE is done.on an index key and the index is in USE,
then the index file will be adjusted by deleting the old fndex
entry and re-entering the new entry in fts proper place. Un-USEd
index files will not be affected. When a REPLACE is done on an
index key, the altered record will "shift places" in the file,
the new "next record" wili not be the same as the old "next
record". The key should not be REPLACEd with a NEXT n as the
<acoped.

mxamples:
USE SHOPLIST

NOTE INFLATION CAUSES 10§ PRICE INCREASE

. LIST

00001 - BEANS #303 CAN 5 . 0.69
00002 BREAD LOAVES 2 0.89
00003 T-BONE STEAKS 4 3.59
00004 PAPER PLATES 1 0.79
00005 PLASTIC FORKS 5- 0.39
00006 LETTUCE 2 0.49
00007 Bi.EU CHEESE 1 1.79
00008 MILK (1/2 GAL) 2 1.19
00009 CHARCOAL, 5# BAGS 2 0.69

. REPLACE ALL COST WITH COST®1.1
00009 REPLACEMENT(S)

109

REPLACE

. LIST

00001 BEANS #303 CAN 5 0.75
-00002 BREAD LOAVES 2 0.97
00003 T-BONE STEAKS Yy 3.94
00004 PAPER PLATES 1 0.86
00005 PLASTIC FORKS 5 0.42
00006 LETTUCE 2 0.53
00007 BLEU CHEESE 1 1.96
00008 MILK (1/2 GAL) 2 1.30
00009 CHARCOAL, 5# BAGS 4 9.75
. USE B:SHOPLIST

. COPY TO B:SHOPWORK

00009 RECORDS COPIED

+ LIST:

00001 = BEANS 5 0.75
00002 BREAD LOAVES 2 0.97
00003 T-BONE 4 3.94
00004 PAPER PLATES 1 0.86
0000% PLASTIC FORKS 5 0.42
00006 LETTUCE 2 0.53
Q0007 BLEU CHEESE 1 1.96
00008 MILK 2 1.30
00009 CHARCOAL 4 0.75

. GOTO TOP

. REPLACE NEXT 5 COST WITH COST®1.1 FOR COST>.75
00003 REPLACEMENT(S)

« LIST

00001 BEANS

00002 BREAD LOAVES
00003 T-BONE
00004 PAPER PLATES
00005 PLASTIC FORKS
00006 LETTUCE

QC007 BLEU CHEESE
00008 MILK

00009 CHARCOAL

MRSV B
O = 2000 &E~—-0
DI g
NWOWVMEFEOWO=
MO wWN EFWoWwm

. USE CHECKS

. DISP STRU

STRUCTURE FOR FILE: CHECKS.DBF
NUMBER OF RECORDS: Q0016
DATE OF LAST UPCATE: 10/18/81
PRIMARY USE DATABASE

FLD NAME TYPE WIDTH
001 NUMEER N 005
002 RECIPIENT c 020
003. AMOUNT N 010
ooy ‘HOME L 001
005 OUTGOING L 001
&8 TOTAL ¢ 00038
+ LISY

00001 1 Phone Company
00002 2 Gas Company
00003 -3 Electricity
00004 4 Grocery Store
00005 134 Me, salary
00006 6 Bank (sc)

00007 7 Doctor Doolittle
00008 8 Pirates

00009 9 Car Repair Man
00010 10 Me

00011 11 Tuperware

0no12 12 Me

Jou ity 13 Me

00014 234 Peter Rabbit
00015 237 Golden Goose
MN016 30 Me

s 11

» REPLACE HOME WITH F
00001 REPLACEMENT(S)

» DISPLAY
00011 11 Tuperware

DEC

002

104. 89
415
250.30
1034.45
561.77
4.00
100.00
100.00
500.01
561.77
50.02
561.77
750.03
14.00
650.00
561.77

50.02

.F.
+Fe
-F.
'F.
‘T.
«T.
.T.

.F.

.F.
.T.
.F.
.T.
.t
.F.
-F.
.T.

«F.

.T.
.T.
.T.
.T.
.F.
.T.
WT.
.T.
.T.
.F.
.T.
.F.
.F.
.T.
.T.
.F.

.T.

REPLACE

REPORT

REPORT
REPORT {FORM <form file>] [<scope>] [TO PRINT] ({PLAIN]

REPORT is used to prepare reports (either on the screen »r on
paper) by displaying data from the file in USE in a defined
manner. Reports may have titled columns, totaled numeric fields,
and displayed expressions involving data fields, memory
variables, and constants.

The FOR phrase allows only that information which meets the
conditions of the <exp> to be reported; the TO PRINT phrase sends
the report to the printer as well as the screen; and the <scope>
of the report defaults to ALL unlass otherwise specified.

The first time the REPORT command is used (for a new report) a
FORM file is built. dBASE prompts the user for specifications of
the report format and automatically generates the FORM file.
Subsequent reports can use the FORM file to avoid respecification
of the report format. If the FORM phrase of the command is
omitted the user will be prompted for the name of the form file.

The: following examplé of a form file has almost 3ll the options
specified. The user may contirel the number of spacas to indent
the lines in the body of the report with the 'M' option (default
is 8 spaces); the number of lines per page is changed with the
'L' option (default is 57 lingb); and the location of the page
heading 1s controlled with the 'W' option (the page width,
default is 80 characters) since it i3 only used for centering the
page neading.)

. REPORT -FORM SHOPFORM)

ENTER OPTIONS, M=LEFT MARGIN, L=LINES/PAGE, W=PAGE WIDTH M=5,W=65
PAGE HEADING? (Y/N) Y

ENTER PAGE HEADING: Shopping Lisc for Picmic

DOUBLE SPACE REPORT? (Y/N) N

ARE TOTALS REQUIRED? (Y/N) Y

SUBTOTALS IN REPORT? (Y/N) M

coL WIDTH,CONTENTS

001 23,ITEM+'..."'

ENTZR HEADING: Item;zn===

002 10,NO

ENTER HEADING: >Number;==z====z=
ARE TOTALS REQUIRED? (Y/N) Y-
003 10,C0ST '

ENTER HEADING: >Cost/Item;==z=azaz=
ARE TOTALS REQUIRED? (Y/N) N

Qo4 10,NO®COST

ENTER HEADING: >COST;====

ARE TOTALS REQUIRED? (I/N) Y

005 (er)

Rev. A]12

REPORT

REPORT asks for the width of the field to be printed and the
‘contents of. the field. The width asked for here has no
relationship to the actual width of the field to be printed out,
for instance, in the first column above, ITEM is in a column that
is 23 characters wide, in the data base ITEM is actually only 20
characters wide. One should also note that the string "...' is
being concatenated to the contents of the fisld ITEM. This
accounts for the extra 3 characters in the report. This also
aeans that if the report colunmn is less in length than thé field
that 'should go into it, dBASE will wrap the field to fit. An 30
character field would generate 2 lines if it wers put into a 50
character column.

The contents of the columns may be fields from 2 database, a
memory variable, literals, or expressions. Note that in column 1
in the form on the previous page, there is a concatenated siring.
Zach record in the database in use will have only as far as the
report is concerned (the database will remain unchanged) tnree
periods concatenated to the end of the string. Coiuamn 4 contaias
the product of NO and COST. Column 4 nas no field equivaient to
it in the database. (Thé fields are, left to right, named iTZIM,
NO, and COST)

1.IST
30001 3EANS 5 0.75
00002 BREAD LOAVES . 2 1.Co
n0003 T-BONE ' iy 4.33
5000N PAPER PLATZES 1 0.94
00005 ©PLASTIC FORKS 35 0.42
100006 " LETTUCE 2 0.53
00007 SLEU CHEESE 1 1.96
© 00008 . MILX 2 1.30
00009 CHARCOAL 2 0.75

Returning to the FORM file- (the questions on what siaould go into
the report), note that there are some special characters used in
the headings. For page headings, column headings, and caaracter
strings, a semicolon (;) will break the heading or string at tne
semiasnlon and resume the display on the next line. If a heading
or string is too long to fit within the numbder of spaces aliowed
for it, it will be broken at the last bdblank (if possidle) and
resumed on the next line. The other signifigant characters are
#¢w, and ">, In column headings, if the title is pruceeded with
a <" then the title will de left-justified in the column.
Llkewise a "' will right-justify the title.

Other options in REPORT include totalling, subtotallingy and
anamary rveports. In summary reports, detail records are not
- displaved, just totais and subtotals. Tdtalling and subtotalling
is done unly on {ields that are numeric in nature. See the report
_examples’.’)

Finally a carriage return*will end the report form and deg:
_ displaying the report. A copy wiii de priated on the printer {
the TO PRINT phrase was included in the initial command. -

a

REPORT

Other dSASE commands that effect the operation of report are the
"SET EJECT OFF", "SET HEADING TO" and "SET DATE TO" commands.
Before REPORT priats out its informatioa, it does a page aject.
This capability may oe suppressed with the SET EJECT OFF command.
The SET HEADING TO command allows an additional heading to be
added to the report at run time. This command hasg an effect for
the duration of one session. (The heading must be set each time a
new dBASE run is initiated.) The saame is fqr the SET DATE TO
command. The date of the report may be changed or omitted by use
of this command. See the SET command for more information.

There comes a time, when this capability is no longer adequate,
special forms must be used, more flexability is desired with the
report format, retrieving the data from the database requires
@ore complex methods than REPORT will handle, etc. The "8" and
the SET FORMAT TO PRINT commands will give the user more power
.over the form of the report. See the "9" command for amore
information and examples. s

Examples:
. USE SHOPLIST

. REPORT FORM SHOPFORM

PAGE NO. 00001

saopping List for Picnic

Item Number- Cost/Item COST
s=ss sSsS==== =2=I==3==3 ===
BEANS cee 5 0.75 3.75
BREAD LOAVES vee 2 1.06 2.12
T-BONE . 4 4.33 17.32
PAPER PLATES vee 1 0.94 0.94
PLASTIC FORKS cee 5 0.42 2.10
LETTUCE ces 2 0.53 1.06
BLEU CHEESE cee 1 1.96 1.96
MILK eee 2 1.30 2.80
CHARCOAL ces 2 0.75 1.50
e TOTAL t 2]
24 33.35

dev. A Fiu

REPORT

. SET HEADING TO ¥ July 1976
. REPORT, PORM SBOPFORM

PAGE NO. 00001 4 July 1976

Shopping List for Picnic

Item Number Cost/Item COST
2322 sz ===:===:= ITS=
BEANS 5 0.75 - 3.75
BREAD LOAVES e 2 11.06 2.12
T-BONE 5 4.33 17.32
PAPER PLATES .. 1 0.94 0.9%
PLASTIC FORKS: 5 0.42 2.10
LETTUCE 2 0.53 1.6
BLEU CHEESE 1 1.96 1.96
MILK 2 1.30 2.00
CHARCOAL e 2 0.75 1.50
a*n ‘ro‘rn‘ a*
24 33.35

sxamole 2:

This example shows use of the subtotalling capabilities of dBASE.
when the report form is created the subtotalling is done on the
field PART:NO. This could be done if it was necessary :t2 know
avt only who the part was ordered by but also now many of 2ach
part must be made (or bought).

USE ORDERS INDEX ORDERS

LIST i
00003 'HARRIS, ARNOLD 11528 4y
00013 ANDERSON, JAMES REGI 11528 16
00007 JUAN, DON 21828 5
00001 SWARTZ, JOE 31415 13
00095 MACK, JAY 31415 3
00009 BARNETT, WALT 31415 o
00008 SALT, CLARA 70296 3
00002 SWARTZ, JOE 70767 13
00006 TERRY, HANS 76767 S
NO0I0 NICHOLS, BILL 76767 17
00004 ADAMS, JEAN 89793 12
00011 MURRAY, CAROL 89793 4
0012 WARD, CHARLES A. 92553 135

REPORT

.. REPORT
ENTER REPORT FORM NAME: ORDERS .

ENTER OPTIONS, M=LEFT MARGIN, L=LINES/PAGE, W=PAGE WIDTH Wx65
PAGE HEADING? (Y¥/N) Y ’)

ENTZR PAGE HEADING: ORDERS LISTED BY PART NUMBER

DOUBLE SPACE REPORT? (Y/N) N

ARE TOTALS REQUIRED? (Y/N) Y

SUBTOTALS IN REPORT? (Y/N) Y

ENTER SUBTOTALS FIELD: PART:NO

SUMMARY REPORT ONLY? (Y/N) N

EJECT PAGE AFTER SUBTOTALS? (Y/N) N

ENTER SUBTOTAL HEADING: Orders for part number

coL WIDTd,CONTENTS

‘001 20,CUSTOMER .

ENTER HEADING: <CUSTOMER NAME
002 10, AMOUNT

ENTER HEADING: >QUANTITY ORDERED
ARE TOTALS REQUIRED? (Y/N) Y
003

PAGE NO. 00001

ORDERS LISTED. BY PART NUMBER

CUSTOMER NAME QUANTITY

ORDERED
% Qrders for part numoer 11528
EAR_RIS, ARNOLD 44
ANDERSON, JAMES REGI 16

** SUBTOTAL **
: 60

+ Orders for part number 21828
JUAN, DON 5
#% SUBTOTAL *#

5

* QOrders for part number 31415

SWARTZ, JOE . 13
MACK, JAaY 3
BARNETT, WALT 5

SUBTOTAL *#
22

Orders for part number 70296
SALT, CLARA 9
#% SUBTOTAL ##

9
% Orders for part -number 76767
SWARTZ, JOE 13
TERRY, HANS 5
NICHOLS, BILL 17

SUBTOTAL **
35

* Orders for part number 89793
ADAMS, JEAN 12
MURRAY, CAROL 4
*% SUBTOTAL *#

16

% Orders for part. number 92553
WARD, CHARLES A. 15
*% SUBTOTAL **

15

8 TOTAL **
162

Sxample 3:

REPORT

Suppose some of your coilegues and yourself started playing cards
for points to see who would buy lunch for everyone on the next
holiday. In the interest of Fair Play, you decide to keep a
running total on the score. All sorts of information could be dug
out of the database (like who could logse his shirt if he didn’t
be, careful). The following database could be an example of such a

game, -

. DISP STRU

STRUCTYRE FOR FILE: CARDS.DBF
NUMBER OF RECORDS: 00016
DATE OF LAST UPDATE: 09/17/81
PRIMARY USE DATABASE

FLD NAME TYPE WIDTH DEC.
001 DATE c oo8
002 LISA ¥ 003
003 ANNA N 003
004 WAYNE N 003
*5 TOTAL *¢ 00015

Rev.,

Y

n7

REPORT

. REPORT

ENTER REPORT FORM NAME: CARDS

ENTER OPTIONS, M=LEFT MARGIN, L=LINES/PAGE, W=PAGE HIDTH Wad0
PAGE HEADING? (Y/N) Y

ENTER PAGE HEADING: Hearts Scores

DOUBLE SPACE REPORT? (Y/N) N

ARE TOTALS REQUIRED? (Y/N) Y

SUBTOTALS IN REPORT? (YI/N) N

coL WIDTH,CONTENTS

001 10,DATE

ENTER HEADING: Date of;Game
002 6,LIsA

ENTER HEADING: Score;Lisa
ARE TOTALS REQUIRED? (Y/N) Y
003 6,ANNA

ENTER HEADING: Score;Anna
ARE TOTALS REQUIRED? (Y/N) Y
Q04 6,WAYNE

ENTSER HEADING: Score;Wayne
ARE TOTALS REQUIRED? (Y/N) Y
005 . 5, LISA+ANNA+WAYNE
ENTER HEADING: Game;Total
ARE TOTALS REQUIRED? (Y/N) Y
006 (cr)

(Noté--the last coiLumn in the report form is a totalling of the
3corss in each of the records, that is, the sum of Lisa's,
Wayne's and Anna's scores. It is not necessary for the column in*
the report to exist in thé database defore it may be used, the
field "LISA+ANNA+WAYNE™ does not exist in the databzse "CARDS".

This woulid be an example of low an axpression aay be plncod in
a report.)

Rev. A 118

REPORT

PAGE NO. 00001
Hearts Scores

Date of Score Score Score Game

Game Lisa Anna Wayne Total
05/26/81 29 15 53 157
05/27/81 4s 48 63 156
05/28/81 50 56 T4 160
05/2y/81 - 86 24 72 182
06/05/81 43 12 75 130
056/12/81 §2 9 27T 78
06/26/81 64 35 63 182
07/06/81 33 71 26 130
03719781 37 55 38 130
09715/81 19 57 54 130
09/16/81 15 7 108 130
09/17/81 59 13 58 130
E L] 'ro'ru &4

715 698 875 2288

A cepori may also cover just a few of the records i3 a {ile.
fLiko:s
GOTO RECORD 7

REPORT NEXT & FORM CARDS.

PAGE NO. 00001
Hearts Scores

Date of Score Score Score Game
Game Lisa Anma Wayne Total

07/07/81 %0 63 27 130
07/09/81 55 41 50 156
07713781 ag 63 54 157
07/23/81 38 69 23 130
"Be TOTAL o

173 236 164 573

Rev. A 119

REPORT
A report may also ask for inrormation which would meet certain
criteria. Like:

REPORT FORM CARDS FOR WAYNE < 50

PAGE NO. 00001
Hearts Scores

Date of Score Score Score Game
Game Lisa Anna Wayne Total

06/12/81 42 9 27 78
07/06/81 33 7T 26 130
07/07/81 40 - 63 27 130
07/23/81 38 69, 23 130
06719781 37 55 38 130
%% TOTAL *&

190 267 141 598

REPORT FORM NEXT WHILE CUSTOMER >="M"

‘BAGE NO. 00001

12/13/81

CUSTOMER PART AMOUNT.
MACK, JAY 31415 3
MURRAY, CAROL 89793 4
NICHOLS, BILL 76767 17
SALT, CLARA 70296 9
SWARTZ, JOE 31415 13
SWARTZ, JOE 16767 13
TERRY, HANS 76767 5
“WARD, CHARLES A. 92653 15

fev. A 129

REPORT

PLAIN i3 an extension of the command REPORT.Thxs allows for a
dBASE report to be created in such a manner that it may bde
inserted into a report generated by a wordprocessor.

The clause PLAIN causes page numbers and the date at the top of
each page in the report to be .suppressed. Page headings are
inserted into the dBASE report only at tine beginning of the
~eport. If it is desired to suppress the page ejects betuween
.eports then the SET EJECT OFF must still be used.

Examples:
. USE TRACE IMNDEX DOC

. NOTE POSITION THE DATABASE AT THE FIRST RECORD FOR THE REPORT
. 308

. REPORT PORM TABLES PLAII WHILE DOC = "3-280-T" .
ENTER OPTIONS, MsLEFT MARGIN, L:LINES/PAGE, WzPAGE WIDTH
_PAGE HEADING? (Y/N) Y

“NTER PAGE.HEADING: TABLES
UBLE SPACE REPORT? (Y/N) ¥
ARE TOTALS REQUIRED?—(Y/N) N
COL WIDTH,CONTENTS

001 20,4$(DOC,7,17)

ANTER HEADING: TABLE

002 40,DESCR .

ZWTER HEADING: REQUIREMENT
003 (er)

Rev. A 120.1

Table
Table

Table
Table
Table
Table
Table
Table
Table
Table

Table

Table
Table

EPENOMEWR

‘“TABLE

N =

W
.
N

a2.2.4
a2.2.C

REPORT

TABLES
REQUIREMENT

GLL Telemetry Modes

Allowable combinations of R/T and Record
Formats

Bus User Codes

GLL Bit rate allocation

Header Format

Format Identification

Commutation Map Identifier Assignment
S/C.Clock Progression

Eng data layout

Fixed-Area Structure/Position
Identifiers

Variable Area Pocket Structure/Position
Identifier

CDS Fixed area Measurement Sampling Time
£ngr Measursments)

Rev. A 120.2

RECET

RESET

RESET

The RESET command is used to reset the CP/M bit map after a
diskette has been swapped. Normally, if a diskette is swapped,
CP/M will not allow writes to take place until after a warm or
‘soft boot has taken place. RESET attempts to re-open all files
which were open prior to the swap. If a file that was open is no
longer mounted on an active disk drive, RESET closes the file
internally.

WARNING: If a diSk is swapped that contains a file with the same
name as a file that was previously open, the RESET operation will
érroneously not close that file. This condition can be avoided by
closing all non-essential files prior to the swap and subsequent
RESET command. A USE command with no filename will close the file
in USE, a CANCEL command will close ady command files tuat may be
open.

Issuing a RESET command when no disk swap has takeén place has no
effect. ' ’

121

RESTORE

RESTORE

RESTORE FROM <file> .

This command reads a file of memory variables. The file must De
built using the SAVE MEMORY TO <file> command. All memory
variables which were defined preyious to the RESTORE command are
deleted by this command.

Examples:

. DISPLAY MEMORY

ONE (N) 1.0000

ALFABET (C) - ABCDEFGHIJKL

CHARS (C). ABCDEFGHIJKL NEW STUFF

#% TOTAL 03 VARIABLES USED 00042 BYTES. USED

. SAVE TO MEMFILR
. RELEASE ALL

. DISPLAY MEMORY .
#8 TOTAL *# 00 VARIABLES USED 00000 BYTES USED-

. RESTORE FROM MEMFILE .

. DISPLAY MEMORY

ONE (N) 1.0000

ALFABET (C) ABCDEFGHIJKL

CHARS (C) ABCDEFGHIJKL NEW STUFF

% TOTAL ## 03 VARIABLES USED 00042.BYTES USED

122

RETURN

RETURN

RETURN

This command is used inside a ecncznd file to return control to
the command file which- calied it (or to the keyboard if the user
called the command file directly). Enccuntering irn ‘end of file on
a command file is equivalent to a KETURN scmaard. N

cowmand files usuglly have a RETURN comzand as their last
executable line, .

See Appenavx A for examples.:

SAVE

SavE 10 <file>

This command stores all currently defined memory variables to a
file. These memory variables may be restored by the RESTORE
command .

Examples:

+ DISPLAY MEMORY

ONE (N) .1.0000

ALFABET (C) ABCDEFGHIJKL .

CHARS (C) ABCDEFGHIJKL NEW STUFF

##é TOTAL *# 03 VARIABLES USED 00042 BYTES USED

. SAVE TO MEMFILE
. RELEASE ALL

. DISPLAY MEMORY
% TQTAL *# 00 VARIABLES USED 00000 BYTE USED

- RESTORE FROM MEMFILE

. DISPLAY MEMORY

ONE (N) 1.0000

ALFABET (C) ABCDEFGHIJKL ,

CHARS (C) ABCDEFGHIJKL-NEW STUFF

#& TOTAL ** 03 VARIABLES USED 00042 BYTES USED

124

SELECT

SELECT

SELECT [PRIMARY)
[SEGONDARY 1

This command causes dBASE to select one of the two possible
database areas for future operaticns. This permits the dBASE user
to do operations on two databases at a time, such as using the
data from one database to update.the data in another database ,or
comparing the data in two databases. or any of a number of other
multi-database operations.

When dBASE 1is initiated, the PRIMARY area is active. PRIMARY
will stay active until a .SELECT SECONDARY instruction is gaiven.
The secondary area will then be active until a SELECT PRIMARY
command is encountered. A different database may.be USE'ed in
each of the areas. This permits the (nearly) concurrent usage of
two databases at once. There is no effect if a SELECT SECONDARY
is entered when the secondary area is already sclected or vice
versd with the primary area.

When both database areas have databases in USE, field variables
can be extracted from either area..That is to say, any expression
can use variables from either database region. If the field names:
it both regions are the same for a desired variable, thcn the
variable can be prefixed with a "P." or "S." to denote which
database it is to come from.

uBASE commands that cause movement of the database (i.e. GOTO,
SKIP, REPORT, SORT, COPY, LIST, DISPLAY (for a scope of more than
one record), and others) affect only the cu:rently selected
database. The SET LINKAGE ON command will allow all sequential
commands (those that have a <scope> parameter) perform
positioning on both the secondary and the primary databases. (See
the SET command). The REPLACE command-will only affect variables
in the currently selected database. The DISPLAY STRUCTURE command
w1ilt display the structure of the currently selected database
only.

Examples:

USE SBOPLIST

SELECT

« LIST

00001 Beans 5 0.75
00002 Bread loaves < 1.06 °
00003 T-Bone steak 4 4.33
00004 Paper plates 1 0.94
00005 Plastic forks 5 0.42
00006 [:ttuce 2 0.53
00007 - Bleu cheese 1 1.96
00008 Milk 2 1.30
00009 Charcoal 2 0.75

« ‘MOTE NOW OPEN ANOTHER DATABASE IN Tﬂg SECOMDARY AREA
« SELECT SECONDARY

. USE SHOPCOST

« LIST

00001 800104 3.3
00002 800111 45,69
00003 800118 51.18
00004 800124 48.19
00005 800201 55.82
00006 800209 12.04
00007 800229 12.04

« SELECT PRIMARY

. SUM COST
12.04

. SELECT SECONDARY
. APPEND
RECORD 00008

DATE : 800303
AMOUNT : 12.04

RECORD 00009

DATE : (er)
. SUM' AMOUNT
268.38

+ NOTE EITHER DATABASE'S VARIABLES CAN BE ACCESSED

. DISP OFF COST,AMOUNT,ITEM,DATE
0.7% 12.0% Charcoal .. 800303

.. NOTE THE SAME DATABASE CAN BE USED IN BOTH AREAS

. USE’ SHOPLIST

126

Bo

SELECT

NE MUST BE CAREFUL SINCE THE VARIABLE NAMES ARE IDENTICAL
TH DATAEAES '

SET

SET

a. SET <parml> [ON]
(OFF}
b. SET <parm2> TO <opt>

This command changes the configuration of dBASE. SET has two
forms. Form a allows those parameters that are "toggles" to be
set on or off; form b allows those parameters that need one of
the different strings described below to have its default reset.
Fqrm a parameters and defaults:

<parm1> action meaning

1. ECHO ON all commands which come from a command
file are echoed on the screen.

OFF There is no echo.
2. STEP ON dBASE, halts after the completion of

each command and waits for the user to
decide either to go to the next

command, quit (escape) from the command

file, or enter a command from the
keyboard. (STEP is used for debugging
command' files).

OFF Normal operations are resumed.
3. TALK ON The results from commands are digplayed
on the screen.
OFF There is no display shown.
4, PRINT ON Output is echoed to printer.
OFF The echo is turned off.
5. CONSOLE OoN Output is echoe@ to the screen.
OFF OQutput to the screen is turned off.

Note: the default values are underlined.

6. ALTERNATE ON Output is echoed to.a disk file.
OFF The echo to the file is turhed off.

128

7. SCREEN
8. LINKAGE
9. COLON
[V T
Uiy IBSCAPE
12. EXACT

OFF

ON

OFF
oN
OFF

ON

OFF -

* SET

Full-scregn operations’ are turned on
for APPEND, INSERT, EDIT, and CREATE

Full-screen operations are turned off.

Makes all sequential commands (LIST,
REPORT, SUM, i.. e. commands that have a
<scope> parameter) perform positioning
on both the PRIMARY and SECONDARY
databases.

Makes PRIMARY and SECONDARY databases
independant.
Bounds GET data items with colons in
€ commands.
Removes colons.
pell rings whenever illegal data is
entered or data boundaries are crossed.
Bell is turned off.
An escape character (1B Hex) aborts
execution of command files.
There is no escape.
Requires that character strings match

completely (except for trailing blanks)
in expressions and the FIND command.

. Matches will be made on the basis of

the length of the second string, e.g.
“ABCDEF" = "ABC" is true.

129

Ler OFF stk Wk ¥o 27 4 (N APTNSTAL)
beo GN st hiks ke 27 yo Ser

13. INTENSITY

14. DEBUG

15. CARRY

16.. CONFIRM

17. - EJECT

18 RAW

19.. SCREEN

ON

OFF

ON

OFF

ON -

ON

OFF

ON

oFF

OFF

Full-screen operations will use dual
intensity screen characters (normal and
inverse video on some terminals)

Dual intensity will not be used.

Qutput from the ECHO and STEP commands
will be sent to the printer so that
full-screen commands may be checked out

without the screén becoming cluttered.

No eitra output on the printer.

bata from the previous record will be

carried-over when APPENDing records in
the full-screen mode.

No carrying will be done.

dBASE ‘Will not skip to next field in.

full-séreen editing until a control key

‘(Like return) ‘is typed.

ﬁﬂASE will skip to next field anytiﬁe_

too many characters are entered.
REPORT command will eject a page before
beginning a new report.

The page eject-will be suppressed.
Places spaces between fields when the
DISPLAY and LIST commands are used
without the fields list. -)
Spaces are left off.

Uses full-screen for EDIT, APPEND,
INSERT and CREATE commands.)

Turns full-screen capabilities off.

130

Form b parameters and their formats:

1. SET HEADING TO <string>

This form of the SET command saves the <string> internally and

prints the string as part of the report header line. The <string)>

can be up to 60 characters long. (See REPORT for an example.)

? SET FORMAT TO [SCREEN]
{PRINT] 2
[<format file>]

The first two forms of this SET parameter determine where tne

output of "€" commands will-go. The last fcrz determines where #
commands are READ from. (See the "€" and READ commands.).

3. SET DEFAULT 'TO <drive>

This SET commands makes the specified disk drive into the default
drive. dBASE will assume .that inexplicit file names are on this

disk drive. This allows command files to be written in such a way"

fcciveniently) that referenced files may be on any drive in the
system. This -can also be done with &-macros for further
generality in disk ‘drive assignment. In the interactive mode of
dBASK, this SET command permits implicit file names.

woen a default drive has been set, ALL inexplicit _t‘i.‘lemnos‘ are:

sel Lo the JdBASE default. This includes form files, command
files, memory files, format rilea. index files, text files as

well as database files.

The parameter <drive> may or may not have the colon (:) attached,
that is, both "B" and "B:" are acceptable forms of specifing
which drive is wanted,

NOTE: This SET command does not affect the CP/M default drive in
any way. The dBASE initial default drive is the same as the CP/M
default drive, the SET DEFAULT redefines dBASE's internal default
only while within dBASE. '

Eiample:‘
SET DEFAULT TO Bs

USE DATEVSYIR (dBASE will access the 'B' drive for
this database)

131

SET

4. SET ALTERNATE TO L<file>]

This form of the SET ALTERNATE comaand is part of a two step
process to write everything that is normaliy written onto the
screen, onto a disk file as well. This includes output that dBASE
generates as well as all inputs typed onto the console. This form
identifies and opens the receiving disk file. If the <file>
existed on the disk prior to this command, it will bde
overwritten. A subsequent SZT ALTERNATE ON Degins the echo
process. :

Example:

SET ALTERNATE TO B:PRINTFLE
SET ALTERNATE ON

SET ALTERANATE TO anyfile

wverything which appears on the screen or printer will be copied
onto (in this example) B:PRINTFLE.TXT, which can be word
processed, printed, or saved.

5. SET JATE TO mm/dd/yy

The system date can be set or reset at any time with tnis
command. It however does not perform date/calendar validation

~like the date request when dBASE is first started.

SET DATE TO 12,10,76

SET

6. SET INDEX TO <index file> {, <index file>, ... <index fi1é>]

SET INDEX TO identifies and sets up as many as seven index files
to be used for future operations. If an index file is currently
in YSE when this command is issued then the old index file is
closed and the new one established.

Note: when the new index is set up, the database is left
‘positioned where it was, but, the index does not point anywhere.
A FIND command or GOTO must be issued to set the index pointer,
before any commands that have a next clause are issued.

The first index 'file named is considerea as the Master Index. All
FINDs use only this index and the database wWill be in the Master
Index order (when skipping).

A "SET INDEX TO" command (with no {ndex files) will release all
indexes and the database will be a sequential file.
7. SET MARGIN TO n
‘his form of the SET command allows the user to control the ieft
aargin when a report is printed. All lines to be printed will be

c;xet by n spaces. The n parameter must'be a literal number in
:he range 1 to 254.

Rev. A 133

SKIP

SKIP

SKIP [+]i<exp>]
-1

This command causes the current record pointer to be-advanced or
backed up relative to its current location.

Example:

USE INVNTRY?

« LIST ' ,

00001 136928 13 1673 ADJ. WRENCH 7.13 189 9 0 9.98
00002 221679 9 1673 SM. HAND SAW 5.17 173 4 1 7.98
00003 234561 © 96 PLASTIC ROD 2.18 27 112 53 4.715
00004 556178 2 873 ADJ. PULLEY 22.19 117 3 0 28.50
00005 723756 73 27 ELECT.BOX 19.56 354 6 1 29.66
00006 745336 13 27 FUSE BLOCK 12.65 63 - 7 2 15.95
00007 812763 2 1673 GLOBE 5.88 112 5 2 7.49
00008 876512 2 873 WIRE MESH 3.18 U5 7 3 4.25
00009 915332 2 1673 FILE. - 1.32 97 7 3 1.98
00010 973328 © 27 CAN COVER 0.73 21 17 5 0.99
.5

. SKIP -2

" RECORD: 00003

. SKIP
RECORD: Q0004

. SKIP 3
RECORD: 00007

.
.

134

SORT

SURT

SORT ON <field> TO <file> {ASCENDING)
[DESCENDING)

This command allows the user to sort data files to another fils
which is different from the original file. The file in USE is
sorted on one of the data fields and may be sorted iato asceénding
or ‘lescending order. Notice that the USE file remains in USE and
is unaltered.

While the SORT command*ellows only one key, a database may be
sorted on several keys by cascading sorts: sort on the most miror
key first and progress toward the major key. dBASE will only
disturb. the order of records when necessary. The collating
sequence for character fields is the ASCII code. ASCENDING is
assumed if neither ASCENDING or DESCENDING is specified.

The sort uses the ASCII collating sequence. This means that the
string __'SM_ITH' is "smaller" than 'Smith' (the expression "'SMITH
< 'Smith'™ would be TRUE).

The *NDEX command is contrasted with the SORT command in this
wiy: [NDEX, when done, performs nearly all of SORTs dutys. AlSso,
INDEX generally allows greater freedom and greater speed than
SORT.

USR SHOPLIST

LLST
00001 BEANS #303 CAN 5 0.75
00002 BREAD LOAVES 2 0.97
00003 ~ T-BONE STBAKS y 3.94
00004 PAPER PLATES 1 0.86
00005 PLASTIC FORKS 5 0.42
00006 LETTUCE 2 0.53
00007 - BLEU CHEESE 1 1.96
00008 MILK (1/2 GAL) 2 J1.30
00009 CHARCOAL, 5¢# BAGS 2 0.75

SORT ON ITEM TO SORTFILE
SORT COMPLETE

USE SORTFILE:

135

SORT

. LIST

00001 ‘BEANS #303 CAN 5 0.75
00002 BLEU CHEESE 1 1.96
00003 BREAD LOAVES 2 0.97
00004 CHARCOAL, 5# BAGS 2 0.75
00005 LETTUCE 2 0.53
00006 MILK (1/2 GAL) 2 1.30
00007 PAPER PLATES 1 0.86
00008 PLASTIC FORKS 5 0.42
00009 - T-BONE STEAKS 4 3.94

STORE

STORE

STORE <exp> TO <memvar>

This command computes the value of an expression and stores the

value into a memory variable. If the memory variable did not.

exist before this command was issued then dBASE will create the
memory variable automatically. ’ :

Note that STORE will alter only memory variables. Use the REPLACE
command to change database field variables.

. RELEASE ALL

. STORE 1 TO ONE
hi

. -STORE 'ABCDEFGHIJKL' TO ALFABET
ABCDEFGHIJKL

. STORE ALFABET+' NEW STUFF' TO CHARS
ABCDEFGHIJKL NEW STYFF

STORE ONE®1.0000 TQ ONE

1,0000
+ DISPLAY MEMORY
EOF (L) .T.
ONE (N) 1.0000
ALFABET (C) ABCDEFGHIJKL
CHARS (C) ABCDEFGHIJKL NEW STUFF
#& TOTAL ®¢ O4 VARIABLES USED 00042 BYTES USED

137

SUM -

SUM <field> [,<field>] [TO <memvar listd]
i{<scope>] [FOR <exp>})’

The SUM .command adds numeric expressions involving the USE file
according to the <scope> and FOR clauses. Up to 5 expressions may
‘be simultanequsly summed. If the TO clause is presént, the sums
are ‘also stored into memory variables (memory variables will be
created’ if they didn't exist prior to the issuance of the sum
command). The default scope of SUM is all non-deleted records.

. USE SHOPLIST

. LIST | o
00001 BEANS #303 CAN
00002 BREAD LOAVES
00003 T-BONE STEAKS
00004 PAPER PLATES
00005 PLASTIC FORKS
00006 LETTUCE

00007 BLEU CHEESE
.00008 MILK (1/2 GAL)
00009 CHARCOAL, S# BAGS

L)

.

NN =NV
O==000WOO
.

N
WU & OWO~

. SUM COST.
11.48

. SUM COST FOR NO=1
2.82

. St COST,NO
11.48 24

« SUM COST TO MSUM
11.48

- 7 MSM
11.48

- DISPLAY MEMORY
MSUM (¢)) 11.48
#8 TOTAL ** 01 VARIABLES USED 00006 BYTES USED

. 7 MSOM®1.10
12.6280

.. SUM NO®COST,NO,COST,COST/NO
31.53 24 11.48 5.8

138

TOTAL

TOTAL ON <key> TO <database> [FIELDS <list>] [FOR <expressiond}

The TOTAL command is similar to the subtotal capability in the
REPORT command except that the subtotals are placed into a
database instead of printed. This allows condensation of data by
eliminating detail and summarizing.

Note: the USE database must be either presorted by the key or
indexed on the key.

If the TO database was defined (if it existed and had 1
structure), then it's structure will be left intact and used to
decide which fields will be totalled arithmetically.

If the TO database did not exist prior to.this TOTAL command,
then the structure will be constructed using the field nanmes
given by the FIELDS phrase. If there is.no FIELD phrase then the
structure from the USE database will be copied to the TO file.

This command is most selective when the TO database exists and
the FiiLD) phrase is included inh the command. In this case, only
the numeric fields in the FIELDS are totallied. In any other
confipguration of this command, all numeric fields are totalled.

TOTAL can also be used to remove duplicate records from a
database since a non-numeric field in the FIELDS list is not
totalled (naturally) and is not flagged as an error.

Example:

. USE ORDERS INDEX ORDERS

. DISPLAY STRU _
STRUCTURE FOR FILE: ORDERS.DBF
NUMBER OF RECORDS: 00008

DATE OF LAST UPDATE: 00/00/00
PRIMARY USE DATABASE

FLD NAME TYPE WIDTH LEC
001 CUSTOMER c 020
002 PART:NO c 005
003 AMOUNT N 005
% TOTAL #% 00031

139

TOTAL

. LIST
00003 HARRIS, ARNOLD 11528 4y
00007 JUAN, DON 21828 5
00001 SWARTZ, JOE 31415 13
00005 MACK, JAY 31415 3
00008 SALT, CLARA 70296 9
00002 SWARTZ, JOE 76767 .13
00006 TERRY, HANS 76767 5
00004 ADAMS, JEAN 89793 12

(Imagine that the warehouse needs to know how many of eatr item
to bring out. By totaling on the quantity as long as the part
numbers are the same, a database is generated that contains
part numbers and the number needed)

(The database CALLS has already been defined)

. TOTAL ON PART:NO TO CALLS
00006 RECORDS COPIED

. USE CALLS

. DISP STRU

STRUCTURE FOR FILE: CALLS.DBF
NUMBER OF RECORDS: 00006

DATE OF LAST UPDATE: 00/00/00
PRIMARY USE DATABASE

FLD NAME TYPE WIDTH DEC

001 PART:NO (o} 005

002 AMOUNT N 005

B8 TOTAL ** 00011

. LIST

00001 11528 4y

ooocz2 21828 5

00003 31415 16 (Note: two orders totaled)

00004 70296 9

00005 76767 18 (Note: two other orders totaled)
00006 89793 12 .

140

UPDATE

UPDATE

UPDATE FROM <database> ON <key> [ADD <field 1ist>]
{REPLACE <field list>]

The UPDATE command revises the USE file by using data from a
second database to modify the USE database. Updated items can be
summed or replaced in entirety. A record is updated when the
criterion is met by the comparison of a field in the USE database
with one from the FROM database. These fields are known as the
key and are supplied with the ON phrase.

Note: the USE database must be either pre-sorted by the key or
indexed pn the key, The FROM database must be pre-sorted by the
key.

Both databases are 'rewound' and a record is read. I the Keys
match, the add or replace action takes place as directed. If the
key in the USE file is smaller (in sort sequence) than the key in
the FROM database, then no action takes place, and the reccrd is
skipped and left unchanged. S.milarly, if the FROM key 1l=
smzller, no updates happen and that record is .sxipped.

tx=mple:
JSE INVUPDAT

DISPLAY STRUCTURE }
STRUCTURE FOR FILE: INVUPDAT.DBF
NUMBER OF RECORDS: G0003
DATE OF LAST UPDATE: 00/00/00
PRIMARY USE DATABASE

FLD NAME TYPE WIDTH DEC
001 ‘PART:NO c 005

00z ON:HAND N 005

007 COST N *010 . 002
% TOTAL ** 00021

> LIST

00001 21828 17 35.88

00002 70296 0 250.00

00003 89793 2 134999.00

{Nntice that the datab®se is sorted on ‘the "key" PART:NO.)

141

. USE INVENTRY INDEX

. DISPLAY STRUCTURE
STRUCTURE FOR FILE:
NUMBER QF RECORDS:
DATE OF LAST UPDATE:
ZJIMARY USE DATABASE

INVENTRY

INVENTRY
00008
00/00/00

.DBF

FLD NAME TYPE WIDTH DEC
001 ITEM Cc 020

002 COST N 010 002
003 PART:NO c Q05

ool ON:HAND N 00s

*4 TQTAL ** 00041

. DISP ALL

00008 #9 COAL 22.00
000C5 SINK, KITCHEN 34.72
00001 TIME STITCH 9.99
00002 WIDGET 1.67
00007 RINGS, GOLDEN 200.00
00006 TROMBONES 198.37
00004 TANK, SHERMAN 134999.00
00003 GADGET, LARGE 16.33

11528
213828
24776
31415
70296
76767
89793
92653

UPDATE

16
77

18

78

(Again notice that the database is indexed on the "key" PART:NO.)

. UPDATE ON PART:NO FROM INVUPDAT

« LIST
00008
00005
00001
00002
00007
00006
00004
00003

#9 COAL

SINK, KITCHEN
TIME STITCH
WIDGET

RINGS, GOLDEN
TROMBONES
TANK, SHERMAN
GADGET, LARGE

22.00

35.88

9.99

1.67
250.00
198.37
134999.00
16.33

11528
21828
24776
31415
70296
76767
89793
92653

“N:HAND RERLACE COST

15«

1

18
5

76 o
7

(Note-~the two new Sherman tanks were added to the database and
the cost of the golden rings and the «xitchen sinks were replaced

with the new prices.)

142

USE

USE

USE (<database file>]
USE <databasefile> INDEX <index file> [, <index file>, ... <index file>)

Sxample:

. USE DATABASE INDEX NAME,CITY,PART:NO,SALESMAN

The USE command specifies which (pre-existing) database [lile is
to be the file in USE. If there was.a USE file prior to this
comzand, the old file is closed. If a2 filename is not specilied
in the command, then the previous USE file is closed.

The second form of USE is to specify a database :.‘qr operation and
an associated index fiie (which was previously created by the
INDEX command or the SET INDEX TO <iandex {ile> cozmaznd) and
perzits subsequent index opera:zions such as FIND and ‘indexsd
sequential file access. ’

U: tc seven index [lles may be USEd with any one database a:'t.he
same time. The Tirst index file named is considered as Iac Master
Incex. All FINDs use only this index and the database will bde in
the Master Index order ('.yhen skipping). ALll of ¢ne naaed Ladex
fiies wWwill bde automatically updated anytime iheir keys are
nodilled (oy APPEND, EDIT, REPLACZ, READ, or 3ROWSE c¢ommands).
Zxamples:

. USE EXAMPLE

. USE TRACE INDEX TRACE

Rev. A 43

WAIT

WAIT

WAIT [TO <memvar>]

This command causes dBASE to cease operations until any character
is entered from the keyboard, the message WAITING is displayed on
the screen. If the TO clause is specified, then the single
keystroke that releases dBASE from the wait-state will be entered
into the memory variable.

The TO option is most useful when only a single character is
required to direct the action of a command file process e.g. menu
selections. Notice that a carriage return is not necessary to
"send" the character as in the ACCEPT and INPUT commands.
If any non-printable character (i.e. RETURN, LINE FEED, or any
other control character) is typed as the response tc a WAIT TO
command, the value of the memory variable is set to a blank.
Example:

« RELEASE ALL

. WAIT TO ACTION

WAITING 1

. DISP MEMO

ACTION - (N) 1 ‘

&% TOTAL ## 01 VARIABLES USED 00006 BYTES USED

APPENDIX A COMMAND FILE EXAMPLE

The following is one example of how command files may be used in
a practical environment. In this example, the command files are
used like a program written in a more classical lénguage. Command
files can é&ontain groups of commands which perform some smaller
function e.g. a series of SORT's.

This example is a simple checkbook balancing and check register
maintenance system. It consists of 4 command files: the
controlling file, MENU, and-three subordinate files, NEWENTR,
CANCELS, and BALANCE. This problem solution could be structured
in many different ways; here, this example has been structured to
show the JdBASE commands that deal especially with command) files.

The command files were created by a text editor using the type
".CMD" in order to facilitate their usage. The sample run is an
actual output of dBASE using the SET ALTERNATE technique. Refer
to the SET command for this technique..

In solving any database problem, one should first.consider what
data fields will be required. For this example, the following
fields were selected:

NO -~ the check number

TO - the recipient of the check

AMT ~ the dollar amount of the check

CAN - the cancelled/not-cancelled status of.a check
DATE - the date on which the check was written

dBASE is then entered to CREATE the database structure.

. CREATE

FILENAME : CHECKREG

ENTER RECORD STRUCTURE AS FOLLOWS:
FIELD NkME,TYPE,WIDTH,DECIMAL PLACES

001 NO,N, 4

002 10,C, 30
003 AMT,N, 10,2
004 CAN,L

005 DATE,C, 10
006 (er)

INPUT NOW?N

145

A text editor is then executed and the following command file
sources are entered:

First the MENU command file;

NOTE -~ "Example dBASE Command file progra=m
[

SET TALK off
USE CHECKREG

DO WHILE T
?
?
7
7! Checkbook Balancer Menu'
?
?
7! 0 - EXIT®
7! 1 - Enter New Checks'
7?1 2 ~ Enter Cancelled Checks'
? ! 3 - Balance'
5
? ' enter desired action’

WAIT TO ACTION
;& ACTION='0Q!
SET TALK on
CANCEL
ENDIF
IF ACTION=*1'
DQ NEWENTR
ENDIF
IF ACTION='2'
DO CANCELS
ENDIF
IF ACTION='3'
DO BALANCE
ENDIF
£NDDO
RETURN

146

Second the NEWENTR command file

NOTE - NEWENTR Command File to Enter New Checks
"
REMARK Enter Check Number of 0 to Exit
DO WHILE T
?
? N
INPUT "Enter Check Number . ® to C:NO
IF C:NO=0
RETURN
ENDIF
?

ACCEPT "Paid to Order of " to C:TO
INPUT "Amount of Check " to C:AMT
ACCEPT "“Date of Check " to C:DAT
2)
INPUT "Are all fields correct ? " to GO:NOGO
IF .NOT.GO:NOGO
. LOOP
ENDIF
APPEND BLANK
REPLACE NO with C:NO, TO with C:TO, AMT with C:AMT,
with C:DAT, CAN with F
ENDDO '

DATE

7

Third the CANCELS command file

NOTE - CANCELS Command file to enter cancelled checks
.
REMARK Enter Check Number of 0 to Exit
DO WHILE T
?
INPUT "Enter Cancelled Check no " to C:CAN
IF C:CAN=0
RETURN
ENDIF
GC TOP
LOCATE for C:CAN=NO
REPLACE CAN with T
ENDDO

Last the BALANCE command file

NOTE - BALANCE Commarid File to Balance Checkbook .
»

SUM AMT to OUTSTAND for .NOT.CAN
?
? ,
DISPLAY off 'Total Outstanding Checks = $',OUTSTAND
?
REMARK Enter Outstanding Deposits, Enter 0 to Proceed
'STORE T to ACTIVE
STORE 1 to COUNT
STORE 0 to T:0UT
DO WHILE ACTIVE
STORE STR(COUNT,3) to I
INPUT 'Enter Amount of Qutstanding Deposit &I ' to D:OUT
IF D:0UT=0 -
STORE F to ACTIVE
ELSE
STQRE D:OUT+T:0UT to T:0UT
STORE COUNT+1 to COUNT
ENDIF ’
ENDDO ‘
DISPLAY OFF COUNT-1,' Total Qutstanding Deposits Total = $',T:0U1

?

INPUT "Enter Ending Balance" to BEGIN

DISPLAY OFF 'Current Balance = $',BEGIN+T:0UT—OUTSTAND
WAIT '

RETURN

149

‘A sample run of these command files follows:

. DO MENU

Checkbook Balancer Menu

0 - EXIT

1 - Enter New Checks

2 - Enter Cancelled Checks
3 - Balance

enter desired action
WAITING 1
“Enter Check Number of 0 to Exit

Enter Check Number : 1000

Paid to Order of :ACME Rentals
Amount of Check :1123.45°

Date of Check ¢10 Jun 79

Are all fields correct 7 :y

Enter Check Number 1001
Paid to Order of :Mag Publishing Co.
Amount of Check : 79,88

Date of Check 212 Jun 79

Are all fields correct ? :y

Enter Check Number $1002

Paid to Order of :Radon Inert Gases
Amount of Check :86.86

Date of Check $13 Jun 75

Are all fields correct ? :¥

150

Enter Check Number :1003

Paid to: Order of :Neuron Comm. Inc.
Amount - of Check $723.31
Date of Check 114 Jun 79

Are all fields correct ? :y

Enter Check Number : 1004

Paid to Ordeér of :Crankshaft Auto
Amount of Check $2753.47

Date of Check 19 Jun 79

Are all fields correct ? :y

Enter Check Number :0

Checkbook ‘Balancer Menu

- EXIT

- Enter New Checks

- Enter Cancelled Checks
- ‘Balarice :

wn =0

enter desired action
WAITING 2
Enter Check Number of 0 to Exit-
Enter Cancelled Check no :1001
" Enter Cancelled Check no :1003

Enter Cancelled Check no :0

Checkbook Balancer Menu

0 - EXIT

1 - Enter New Checks

2 - Enter Cancelled Checks
3 - Balance

enter desired action
WAITING 3
Total Outstanding Checks = § 2983.78

Enter OQutstanding Deposits, Enter 0 to Proceed

151

Enter Amount of Outstanding Deposit 1 +1234.56
Enter Amount of Qutstanding Deposit 2 .
Enter Amount of OQutstanding Deposit 3 :333.44
Enter Amount of Outstanding Deposit 4 :

3 Total Outstanding Deposits ' Total = $ 1568.03
Enter Ending Balance; 1445.89

Current Balance = $ 50.14
WAITING

Checkbook Balancer- Menu

0 - EXIT
1 - Enter New Checks
2 - Enter Cancelled Checks
3 - Balance
enter desired action
WAITING O
DO CANCELLED

At this point, the user could easily do direct dBASE commands to
interrogate, modify, or report on the database file. For instance
the commands:’

~ DISPLAY DATE,AMOUNT for- NO=1003

or

SUM AMT for DATE>'01 Jun!

or any other dBASE coamands could be issued to provide

information as needed to accommodate unforeseen eircumstancea in

the course of manasing a checkbook.

APPENDIX B LIST OF COMMANDS

? <exp> (,<exp>]

@ <coordinates> (SAY <exp> (USING '<picture>'jj {GET
<variable> _(PICTURE '<pictured>']]’

ACCEPT {"<cstring>"] TO <memvar>

APPEND {FROM <file> [SDF] {DELIMITED] {FOR <exp>]]
or (BLANK]

BROWSE -

CANCEL

CHANGE FIELD <list> {<scope>] {FOR <exp>]

CLEAR [GETS]

CONTINUE .

COPY TO <file> (<scope>] [FIELD <list>] {FOR <exp>]
(SDF] [(DELIMITED {(WITH <delimiter>]] or {STRUCTURE]"

COUNT (<scope>] (FOR <exp>] LTO <memvar>]

CREATE (<filename>]

DELETE (<scope>] {FOR <exp>]

DELETE FILE <file>

DISPLAY {<scope>] (FOR <exp>] (<exp list>] {OFF]

DISPLAY STRUCTURE

DISPLAY MEMORY)

DISPLAY FILES LON <disk drive>] (LIKE <skeleton)>])

DO <filel '

DO WHILE <exp>

EDIT

EJECT

ELSE

ENDDO

SNDIF

ERASE

FIND <key>

GO or GOTO {RECORDj, or _TOP], or [BOTTOMi, <n>

IF <exp>

INDEX ON <char string expression> TO <index file name>

INPUT ("<estring»"] TO <memvar>

INSERT (BEFORE], or {BLANK]

JOIN TO <fiXe> FOR <expression)> (FIELDS <field list)]_

LIST .

LGCATF i{<scope>] (rFOR <exp>j

LOOP)

MODIFY STRUCTURE

MODIFY COMMAND <command file>

NOTE cor *

PACK

QUIT {TO <list of CP/M level commands or .COM fiies>].

READ

RECALL {<scope>] (FOR <exp>]

RELZASE (<memvar list>], or (ALL]

REMARK

RENAME <current file name> TQ <new {ile name>

_REPLACE [<scope>] <field> WITH <exp> [AND <{ield> WiTh <exp>}
REPORT (<scope>) (FORM <form fiie>] {TO PRINT, LFOR <exp>] '
RESET

RESTQRE

RETURN

SAVE TO <file>

SELECT {PRIMARY or SECONDARY)

SET <parm> {ON], or {OFF]

SET ALTERNATE TO <file>

SET DEFAULT T0 <drive>

SET DATE TO <string>

SET FORMAT TO <format file name>

SET HEADING TO <string>

SET INDEX TO <index file>

~SET MARGIN TO <n>

SKIP <e/=> (<0}

SORT ON <field> TO <fiie> { ASCENDING], or (DESCENDING]

STORE <exp> TO <memvar>

SUM <field> [<scope>] {TO <memvar 1ist>] {FOR <exp>]

TOTAL TO <file> ON <key variable> {FIELDS <field list>)

UPDATE non <file> ON <key variable> LADD <field list>]
{REPLACE <field list>]

USE- <file> {INDEX <index file nme);

WAIT {TO <memvar>]

154

FUNCTIONS:

@(<string1>,<string2>) AT function

. deleted record func
L] . record number func
t(<ehar string>) upper case function
$(<char string>,<start>,<length>) substring function
<stringi1>$<string2> substring search
CHR{<numeric expression>) " numeric to ASCII
DATE() system date func
EOF end-of-file func
FILE(<file>) existance func
INT(<numeric expression>) integer function
LEN(<char string>) length function
STR(<numeric expression>,<width>{,<decimals>]) . string func
VAL(<char string>) value function
TRIM(<char string>) . trims strings
TYPE(<exp>) supplies data type

155

APPENDIX C LIMITATIONS AND CONSTRAINTS

number of fields per record . « « « .« « « . . .+ 32 max
number of characters per record + . . . « .-. 1000 max
number of records per database. 065535 max
number of characters per character string . . 254 max
accuracy of numeric fields « ¢« « « . . 10 digits

largest number « » « . o« 1.8 x 70%%63 approx
smallest number . . . + + « » « « « 1.0 x 10¥%.63 approx
number of memory variables 64 max
number of characters per command line 254 max
number of expressions in SUM command 5 max

number of characters in REPORT header 254 max
number of characters in index key 100 max
number of pending GETS .« « o« + o o &+ o « + + o Od max
number of files open at one time 16 max

156

APPENDIX D ERROR MESSAGES

BAD DECIMAL WIDTH FIELD

BAD FILE NAME
Syntax error in filename.

BAD NAME FIELD

BAD TYPE FIELD
Must be C, N, or L.

BAD WIDTH FIELD

CANNOT INSERT -- THERE ARE NO RECORDS IN DATABASE FILE
Use the APPEND command instead.

CANNOT OPEN FILE)
Internal error, contact dealer for support.

COMMAND FILE CANNOT BE FOUND
Check spelling.

DATA ITEM NOT FOUND

DATABASE IN USE IS NOT INDEXED
FIND is only permitted on indexed databases.

DIRECTORY IS FULL
The CP/M disk directory cannot hold anymore files.

DISK IS FULL

END OF FILE FOUND UpEXPECTEDLY
The database in USE is not in the correct format. If ail
records are correct and present, then PACK and re-INDEX the
' database.

"FIELD" PHRASE NOT FOUND

FILE ALREADY EXISTS

FILE DOES NOT EXIST

.FILE IS CURRENTLY OPEN
Type a USE or CLEAR command to close the file.

FORMAT FILE CANNOT BE OPENED
FORMAT FILE HAS NOT BEEN sét
ILLEGAL DATA TYPE
ILLEGAL GOTO VALUE

157

ILLEGAL VARIABLE NAME
Only alphanumerics and colons are allowed in variable and
field names.

INDEX LOES NOT MATCH DATABASE
dBASE cannot- match the key with the database. Try another
index file. '

INDEX FILE CANNOT BE OPENED
Check spelling or INDEX the database..

JOIN ATTEMPTED TO GENERATE MORE THAN 65,534 -RECORDS
The FOR clause allows too many jcined output. records, make it
more stringent.

KEYS ARE NOT THE SAME LENGTH

MACRO IS NOT A CHARACTER STRING
¯os must be character strings.

MORE THAN 5 FIELDS TO SUM -

NESTING LIMIT VIOLATION EXCEEDED

NO EXPRESSION TO SUM

NO. "FOR" PHRASE

NO "FROM" PHRASE

NO Finp ‘ _ ‘
More a diagnostic type message than an error message. dBASE
couldn't find the key. : '

NON~-NUMERIC EXPRESSION

NONEXISTENT FILE

"ON" PHRASE NOT FOUND

‘OUT OF MEMORY FOR MEMORY.VARIABLES
Reduce the number or size of memory variables.

RECORD LENGTH EXCEEDS MAXIMUM SIZE (OF 1000)°

RECORD NOT IN INDEX
Index file was not updated after a record was added. Reindex.

158

RECORD OUT OF RANGE
Record number greater than number of records in database. The
Record doesn't exist.

SORTER INTERNAL ERROR, NOTIFY SCDP
internal error, contact dealer for support.

SOURCE AND DESTINATION DATA TYPES ARE DIFFERENT
##% SYNTAX ERROR *##

SYNTAX ERROR IN FoauAr_spscrslcaxiou

SYNTAX ERROR, RE-ENTER

“TO" PHRASE NOT FOUND

TOO MANY CHARACTERS

TOO MANY FILES ARE OPEN)
There is a maximum of 16 files allowed to be open at one time.

TOO MANY MEMORY VARIABLES
There is a maximum of 64 memory variables

TOO MANY RETURNS ENCOUNTERED
Probably an error in the structure o(a command file.

“WITA" PHRASE NOT FQUND

UNASSIGNED FILE NUMBER
Internal error, contact dealer for support.

2% UNKNOWN COMMAND

- VARIABLE CANNOT BE FOUND
Need to create the variable, or check the spelling.

159

Keyword Page Keyword Page
? 30 RECALL 102
8, command 32
function 13 RELEASE 106
. 13 REMARK 107
10 RENAME 108
! 14 REPLACE 109
$, function 1 REPORT 112
operator 17 RESET 121
ACCEPT 38 RESTORE 122
APPEND 39 RETURN 123
BROWSE 46 SAVE 124
CANCEL 47 SELECT 125
CHANGE- u3 SET 128
CHR 14 - ALTERNATE 132
CLEAR ug DATE 132
CONTINUE 50 DEFAULT 131
CORY 51 FORMAT 131
COUNT 5% HEADING 131
CREATE 57 INDEX 132
DATE) 14 MARGIN 133
DELETE 60 SKIP 134
DISPLAY b2 SORT 135
PO 64 STOHE 137
EDIT 65 STR 1
EJECT 086 SuM 138
ELSE 76 TOTAL 139
ENDDO 69 TRIM L]
ENDIF 76 TYPE 15
EOF 13 UPDATE 141
ERASE 70 Use 4y
FILE 15 VAL 12
FIND T WAIT 14y
GO (GQTO) T4
IF 76
INDEX 77
INPUT 31
INSERT 83
INT 10
JOIN 80
LEN 12
LIST 89
LOGCATE 90
LOOP 92
MODIFY 93
NOTE 95
PACK 90
QUIT 93
READ 99

lel

NOTES

Additional user data about dBASE‘ II operation not yet

included i{a the Manual.

1.

3.
u.

The Oth line on the screen is now reserved for special purposes.
Therefore, do not issue a format obmmand like '@ 0,<y> SAY <exp>'

The REPORT command has:a limit of 24 data fields.
Under MP/M the QUIT TO <filename> will not operate.

PACK will not reduce amount of disk space reserved for that

file by CP/M. To recover the space, use a COPY TO <filename>

and then deléte the source file. This is a limitation of the CP/M
operating system not of dBASE II.

DO NOT HENAME a file in USE. Generally it .is not even a good
practice to RENAME a file while under command program control.

The proper syntax for the COPY STRUCTURE command is:
USE <file>
COPY STRUCTURE TO <newfile> .
the 'STRUCTURE' option should immediately follow the verd 'COPY'.

When ¢alling a dBASE data file into USE, do not use the '.DBF'’
extension. dBASE adis this extension automatically.

163

	dBaseII_RefrenceManual_00_cover
	dBaseII_RefrenceManual_ch1_8
	dBaseII_RefrenceManual_ch9_AtoE
	dBaseII_RefrenceManual_ch9_FtoR
	dBaseII_RefrenceManual_ch9_StoNotes

