VOL. | USER MANUAL

Ashton-Tate -

9929 WEST JEFFERSON BOULEVARD
CULV Encrrvcm_monnmms
. (213)204-5570

dBASE II
o Assembly Language]
Relational Database Management System

WRITTEN BY
WAYNE RATLIFF -

Software, Consultation, Design, and Production (SCDP)

'USER MANUAL

dBASE I1
USER MANUAL

IMPORTANT NOTICE REGARDING USE OF dBASE II

Copyright (C) 1981 Ashton-Tate
- 9929 West Jefferson Boulevard
Culver City, California 90230
-(213) 204-5570

. Hillful v1olatlon-of the Copyright Law of the United
States- can result: in statutory damages of up to $50,000 in
addition to actual damages, plus criminal penalties of 1mprls-
onment up to one year and/or a $10,000 fine.

The dBase II Computer Program is copyrighted and all
rights are resérved by Ashton-Tate. Only you, as original
purchaser,- may use the dBase II Computer Program and only on
a single computer system Use of the dBase II- Computer Pro-
gram purchased hereby by any other entity or on a computer
other than the one for which it is being purchased is an un-
authorized use. ‘As an original purchaser of dBase II, you
are hereby licensed only to read the Program from its medium
imto the memory of a computer solely for‘the purpose of execu-
ting the Program. Except for the limited purpose of system.’
back-up as specified in Section IV of the License Agreement,
copying, duplicating, selling, or otherwise distributing the
dBase II Computer Program is a violation of the law.

‘The dBase' II User Manual“is copyrighted and all rights -
are reserved by Ashton-Tate. The dBase II User Manual may
not, in whole-or in part, be copied, photocopied, reproduced,
ttans ated, or reduced to any electronic medium or machine
readable form without the express written permission of

_Ashton-Tate.

The User Manual has been written by Software Consulta-
tion, Design, and Production (SCDP) in conjunction with
Ashton-Tate. While reasonable efforts have been taken in the
preparatlon of this manval to assure its accuracy, Ashton-
Tate or SCDP. assumes no'liability resulting from any inaccura-
cies or omissions in this manual, or from the use of the in-
formation coritained herein.

dBASE II IS LICENSED ON AN "AS IS" BASIS. THERE ARE NO
WARRANTIES EXPRESSED OR IMPLIED, INCLUDING.BUT NOT LIMITED TO’

IMPLIED WARRANTIES OF MERCHANTABILITY OF FITNESS FOR A PARTIC-
ULAR PURPOSE AND ALL SUCH WARRANTIES ARE EXPRESSLY AND SPECIF-
ICALLY DISCLAIMED.

. Ashton-Tate or SCDP shall have no liability or responsi-
bility to you or any other person or entity with respect to
any liability, loss or damage caused or alleged to be caused
directly or indirectly by dBASE II, the User Manual, or other
computer programs sold by Ashton-Tnte,‘includinq'but not lim-
ited to any interruption of service, loss of business or an-
ticipatory profits or consequential damages resulting from
the use or operation of such computer programs.

NOTE-+ Good data processing procedure dictates that
the user test the program, run and test sample sets of data,
and run the system in parallel with the system previously in
use for a sufficient period of time to insure that results of
operation of the programs are satisfactory.

dBase II is a trademark owned by Ashton-Tate.

Introduction and installation: 6

INtrodUCtion..eereeccoscoevcnenanocanegaoocasssros
Typographic conventions used in this manual........
System Requirements.....coecetesveoncesascscocscnss
dBASE II SpecificationS.ccccceecsccogeesccssasonns
Making a backup e eeessaneeceevecsssencsasasasreas
Installing dBASE II on your SysteM..ceeccscssccccee

O~ ~II NN

INSTALL
Section I:) 13

How to CREATE 2 database.....ccccesecseccccccoccnns 14 CREATE
Entering data into your new database............... 16
Modifying data in a database......cceecccctscccnee. 18 EDIT
Full Screen Editing Features.....ceeeceecesccsecsa. 19
An introduction tc dBASE II to commands and the
error correction dialog..ccecesceccocacsnccsanes 20 USE, DISPLAY, LIST
. Expanding commands with expressions...c.ceuecesceces 21 LIST
" Looking at your data records.....ceccccessssvecaceas 23 DISPLAY :
Positioning yourself in the database............... 24 GO, GOTO, SKIP
The interactive ? cOMMANd..ccesecrccscasancasarasees 25 2
Adding more records to a database.................. 26 APPEND, INSERT
Cleaning up a database...c.iescececsacssrcsoscsoees 28 DELETE, RECALL, PACK
Section I SUMMAFY.cceeocsscsncscccccsasssscsssncescs 29

Section II: 31

Using expressions for selection and control..c...... 32
Constants and variableS.....cceeeecesasccsaccscaass 33 STORE
dBASE II operatorS..ccccccecsccesccccscscasanscscces 37

Logical Operators......eescecccccccccccnsssacucccns 38
Substring logical OPerator....c.ceecsscectocaccanes 40

String OpPeratorS...sssccecscecccsssscsvascscsscoenne 41

Changing an empty database Structur@.ecc..cceceeecns 42 MODIFY
Duplicating databases and structureS....cc.cceeve.. 43 COPY
Adding and, deleting fields:

‘with data in the databasei.ccececacioonnnans 45 COPY, USE, MODIFY
‘Dealing with CP/M and other "foreign flles™..eees-s 47 COPY, APPEND
Renaming database fieldS.....cceescvcccccercncences 49 COPY, APPEND
Modifying data rapidly..eccceccccccdecanncsscsrecnes 50 REPLACE, CHANGE
Organizing your databases......ccceccedreviiciccaaes 52 . SORT, INDEX
Finding the information you want....c....... eeevse.s .54 FIND, LOCATE
Cetting information out of all that data........... 56 REPORT
Automatic counting and SUMMiNg...eeeececseesacesss. 58 COUNT, SUM
Summarizing data and eliminating details........... 59 TOTAL
Section IT SURMALY....e.cecessesescassacsaassoscsess 60

Section III: 61

Setting up a command file’

(writing your first program)i..cccccsesscesss
Making choices and decisfems......deccecevecncacace
Repeating & ProceSS....cceceeccecrsscceosscsoneanns
Procedures (subsidiary command files).......ceeec..
Entering data interactively Juring a run...........
Placing data and prompts exactly where

‘You want thei.................................
A command file that summarizes what we've learned..
Working with multiple databases.....cecreeresenasns
Generally useful system commands and functions.....
A few words about programaming and planning

your command fileS.....ececeseccccscnssnsnans
Section IV: 19
Expanding your control with functionS..............
Changing dBASE II parameters and defaultS..........
Merging records from two databases.........ccneevee
JOINING entire databases.....cceeeecosssscscscascns
Full screen editing and formatting....cocceceeeiass

Formatting the printed page.....ccecvevvccccannnaas

Setting up and printing a fOrM.cecscccoscossceacses
Time LO Mre@roUpP.cccceececccnscaccnssccccsssssnsnses

‘Section V: 95

Database BasicS...cceceenctcttecrcscantenctanrrnanes
A brief introduction to database organization......

dBASE II Records, Files and Data TypeS..cc.cesccecs .

dBASE II OPERATION SUMMARY...ccncecccscoccsosnsesnas
dBASE II FUNCTION SUMMARY...ccccccresccncaconscanss
dBASE IT COMMAND SUMMARY.....c.ccutivecciaccnconcases
Commands grouped by what you want done.....eeeeeess

109 File structure
110 File operations
110 Organizing database
110 Combining databases
111 Editing, updating, changing data
111 Using variables
112 Interactive input
112 Searching i
112 Output
113 Programming
Section VI: 115

A working accounting ayate-..x.......v.....n......;....

62
64
66
67
68

69

"2

75

76

77

80
84
86
87
88

90

91
93

96
98
99
102
103
104
100

115

MODIFY COMMAND <file>
IF..ELSE. .ENDIF

DO WHILE..

DO <file>

WAIT, INPUT, ACCEPT

€..SAY..GET

SELECT PRIMARY/SECONDARY

SET..

UPDATE

JOIN

SET FORMAT TO SCREEN
@..SAY..GET..PICTURE..
SET FORMAT TO PRINT
€..SAY..USING..

dBASE II...6
Introduction

dBASE II is a database management tool that allows- easy
-anipulatiop of small and medium sized databases using
English-like commands. With dBASE II you can::

& Create complete database systems.

* Fasily add, -delete, edit, display and print data from
your database, with a minimum of data duplication
on file.

#'Gain a. large measure of program/datd independence, so
that when you change your data your don't have to
change your programs, and vice-versa

Generate reports from one or more databases, automat-
ically do multiplication, division, sub-totals,
totals and other data manipulation everv ‘time you
use them.

® Use the full-screen editing capability to set up a
screen format, so.that you see exactly what you're
" going to get, and enter data by simply "filling:
in the blanks." '

dBASE II is an extremely powerful system. To get the
most out of it, please take the time to read the instruc-
tions before you start usins it. The time will be well
spent.

Typographic conventions used in this sanual:

Lowercase in the screen representations indicates material
that you type in.

gggreaae in the screen representations indicates the dBASE
11 prompts and responses. In text, uppercase 'is used for
dBASE TI commands.-

“ees” will be used in the text of this manual tq set off
dBASE II commands and materials you type. Occaslonally,

they may are used in the screen representations if needed
for clarity. DO NOT TYPE THE SYMBOLS.

[...]) square brackets will be uged to indicate parts of a-
dBASE II command. that are optional.

€. <e> bracket portions of a dBASE II command that are to be
filled in with real information. E.g:: <filename> means the
name of a file is to be inserted. They are also used in
‘text to bracket field names and file names.

<enter)> me3ns press the carriage return or "enter™ key on
your keyboard. DO NOT TYPE THI.; ¥RD, NOR THF SYMBOLS.

dBASE II...7

Systea Requirements

dBASE II requires the following hardware and
software environment:

* 8080, 8085 or Z-80 based microprocessor system (Like the
TRS-80/11, Northstar, Apple IT with the Z-80 card, etc.)

38K bytes minimum of memory.(dBASE II uses locations
from 5CH to AUOOH) for most micros, 56k for -Apple, Heath,
North Star and a few others.

* CP/M (version 1.4 or 2.x), CDOS OR CROMIX operating

systems.]

% One or more mass storage devices
(usually floppy disk drives)

% A cursor-addressable CRT if full screen operations
are to be used.

® optional text printer (for some commands).

dBASE II Specifications

Records per aatabase file ‘65535 max

Characters per record - 1000 max

Fields per record . 32 max

.Characters per field 254 max

Largest number +1.8 x 106 approx -

Smallest number +1 x 10° 3 approx

Kumeric accuracy ' 10 digits

Character string length ‘254 characters max
Command 1ine length 258 characters max
Repori -header length 254 dharacters max
Index key dength. 100 characters max
Expressions in SUM command 5 max’

BEFORE YOU DO ANYTHING ELSE, EAKE A COPY OF THE dBASE
II DISC.. STORE THE ORIGINAL A SAFE PLACE AND USE
THE COPY. '

Install a system disk.in drive A and thé dBASE II disk in
drive R.: Now type:

“PIP A:=B:®.%[QV]

The letter "™O" is necessary to make certain that your
operating system will copy all of the data from the
distribution disk.

If you are working with a single drive use the COPY or
BACKUP commands, and follow the screen prompts.

Backuna are essential, and should be gone frequently.
If you have a: short.session on your-comouter, once a session
may be gnough, otherwise do it much more frequently thaa.
that. . You can balance the cost af aoing the backups’ versus
the cést of your data-better than we <an,, out 'stdce you can
rewrite iisks, tha cost of the dackups is .owi What's your
entii'c accounting deiadasc worth?

Thi% cdan*t. be over-cmphasized!

dBASE II...8

INSTALLING dBASE II ON YOUR SISTEM.

‘Load’ the copy (you did make a copy, right?) of dBASZ 1I
1nto your logged-on drive and do any initialization that has
‘to be done (control-C , reset, ‘etc:) .

Now -type “INSTALL" to customize dBASE II to your
system. (DO NOT TYPE THE """ SYMBOLS.)

Ir your terminal does not have cursor X-Y positionirg
(see -your nanual), type “N” in answer to the prompt .
Otherwise, type “Y°. This provides you with the abllity to
do full-screen editing, a convenient way to enter data and
‘work with your databases. Rather than ending up typirg on
the last line of the screen, with everything else scrolling
up, you can position the cursor wherever you want it using

dBASE II commands.

dBASE II ther lists terminal types. 1If yours is
listed, type the appropriate letter. If your terminal is
not listed, type “Z°.

A s istail

dBASE | INSTALLATION PROGRAM VER 2 ¢

ARE FUULL SCREEN OPERATIONS WANTED Y'N)?y

SELECT TERMINAL TYPE
HAZELTINE 1500 8- SCROC 120 140 TELEVIDEQ.
HEATH 89 O - PEAKIN ELMER FOX 1100
ADM-3A -ADM-33
voP 80 -INTECOLOR
GNAT SYSTEM 10 TRS-80 FICKLES TROUT
APPLE VECTOR GRAPHICS
SUPERBRAIN VISUAL 100
Y- CHANGE MOOIFY PHEVIOUSLY INSTALLED TERMINAL
Z-USER SUPPLIED TERMINAL CHARACTERISTICS

If you selected one of the listed terminals, dBASE II
~ then asks you which character you want to use for macro
substitution (described in Section IV, used in Section VI
and defimed in Part II of this manual). If the ampersand
will not conflict with your word processor, type <enter>.
Qtheiwise, type in the symbol you want to use.

Initially, you will uantAto_uSk the error correction
dialogue, so type <enter>. This will allow you to correct
-an-error.without having to re-enter the entire eo-and'(pagq/
20). (You ean disable this feature later by using the
"Y-~CHANGE/MODITY" option above).

ENTER A CHARACTER TO BE USED FOR INDICATING MACROS
OR A RETURN FOR DEFAULYT CHARACTER OF AMPERSAND . 8;
retum -

TYPE A RETURN (F THE ERROR CORRECTIONDIALOGUE 15
TO BE USEDCR ANY OTHER KEY tF %O DIALOGUE 1S WANTED
rotum -

VYP.(: Y TO SAVYE. ANY OTHER CHAR T3 A3ORT NS TALL
—n

SAVING INSTALLATION PARAMETERS

dBASE II...9

At the end of the 1nsta11ation procedure. you can
complete the installation by typing “Y", or you can abort
the installation and return the terminal to whatever:
condition it was in before you started the procedure.

If your terminal is not listed and you typed “2°,
dBASE II lists the terminal cotmands that you will require
to complete the installafion procedure for your terminal.
You may also want to usé, this customization procedure to
change the normal defaults that. have been selected for your
terminal (reverse video with certain commands, for example).

USER SUPPUED SPECS ROUTINE

FCR THIS METHOD, YOU WILL NEF D THE HEX
CR DEC/™MAL CODES THAT CAN BE SENT FROM
YOQUR COMPUTER TO THE VIDEQ TERMINAL 1O
CONTROLIT

THE CODES OR SEQUENCES THAT YOU WitL
NEED ARLT:

OELETE A CHAR SEQUENCE
DIRECT CURSOR POSITIONING SEQUENCE
CLEAR SCREEN COMMAND
HOME CURSOR COMMAND

{(CLEAR AND HOME CAN BE COMBINED)
OPTIONAL: BRIGHT/0'M COMMANDS OR

TYPE 'Y IF YOU WISH TO CONTINUE
Y

If iou know your terminal codes for the above
procedures, type “Y~ to continue. dBASE II then prompts
you throughtﬁhe entry of the codes. The example shown below
is for an IBM 3101/12 terminal. This terminal does not
allow highlighting or’ reverse video, so <enter)> was typed
for these questions.

dBASE II shows the previous valuesd of the control
bytes, so we have indicated the new values we typed in
between two """ symbols. DO NOT TYPE THESE SYMBOLS.

WILL YCU BE ENYEHINdCOMMMDS AS HEXOR
DECIMAL? TYPE "D" FOR DECIMAL OR

‘W’ FOR HEXADECIMAL

h

COMMANDS ARE ENTERED AS A SEQUENCE OF
NUMBERS TYPE A CARRIAGE RETUAN TO END
A SEQUENCE

NOW ENTER THE CODES FOR

DELETION THIS IS THE SEQUENCE "BACKSPACE,
SPACE. BACKSPACE ON MOST TERMINALS IF
THIS IS TRUE FOR YOUR TERMINAL, THEN

TYPE Y

v

~BIRECT CURSOR POSITIONING -

THE CURSOR CONTROL SEQUENCE 1S
USUALLY A3 TO 4 BYTE SEQUENCE THE
FIRST ONE OR TWO BYTES ARE USUALLY
FIXFD AND THE REMAINING BYTES CONTAIN
THE LINE AND COLUMN NUMBERS

FIRST, ENTER THE POSITION iN THE
SEQUENCE THAT HOLDS mscou_umu
NUMBER -

4 .
NEXY. ENTER THE POSITION IN THE
SEQUENCE THAT HOLDS THE LINE.NUMBER

MANY, TERMINALS ADO A CONSTANT TO THE
UNE ANO COLUMN NUMBERS. ENTER THE
CONSTANT BIAS FOR YOUR TERMINAL

g
‘NOW ENTER THE SKELETON FOR THE DIRECT
.. CUBSOR COMMAND. ENTER & ZERC IN
“TIHE PLACES WHERECOLUMN AND LINE
NUMBERS GO
- (13.BYTE MAX)

[3 R CONTROL CODE BYTE 1: 0318~
ENTER CONTROL CODE BYTE 2:00 59~ |
ENTER CONYROL CODEBYTE 3: 00 '0°
ENTER CONTROLCODE BYTE 4:00 G~
ENTER CONTROL CODE BYTE 5: 00 <returm >

C&RRE&T (VN)? y

1 oDlM!ﬂRQGHfVl_@EOIHEVERSE VIDEO-—

£RTER THE COMMAND THAT WILL SWITCH TO™

HIGH INTENSITY OR NORMAL VIDEO
(5 BYTE MAX])

(NYYR CONTROL CODE BYTE 1: 10 <retum >

IS THIS CORRECT (Y/N)?7y

* ~CLEAR AND HOME COMMAND(S) —

ENTER THE COMMANDIS) THAT WILL CLEAR
THE SCREEN AND PLACE THE CURSOR IN
THE UPPER LEFT CORNER OF THE TERMINAL
(1t BYTS MAX;

ENTFR CONTROLCODE BYTE 1: 0C “t8"
ENTER CONTROL CODE BYTE 2: 00 “4C~
ENTER CONTROL CODE BYTE 3: 00 < retum >

15 THIS CORRECT (Y/N)?y

£ NTEA THE COMMANDS TO BE ISSUED WHEN
ENTERING THE FULL-SCREEN EDITING MODE
IFANY

11 BYTE MAK)

ENTER CONTROL CODE 8YTE 1: 00 < raturn >

1S THIS CORRECT (Y/N)?2y

dBASE II...10

ENTER THE) THAT Will 5& 7
STANDARD NTEN BRNTAMaL &=
TO RESET THE S

(3BYTE MAX:
tENTER CONTROL CODE BYTE 1

1S THIS CORRECT (YiN)7 y

ENTER THE COMMANDS (O BEISSUED WHEN
LEAVING THE FULL-SCREEN CDITING M2DE

SUGGESTION: USE DIRECT CURSOR POS!
TIONING TO PUT CURSOR ON THE BOTTOM
LINE OF THE SCREEN

{11 BYTE MAX]

ENTER CONTROL CODE BYTE 1- 1D 18
ENTER CONTROL CODE BYTE 2: 17 '59
ENTER CONTRQL CODE BYTE 3° 03 "3t
ENTER CONTROL CODE BYTE 4: 06 "20°
ENTER CONTROL CODE BYTE S 2E ~refum >

1S THIS CORRECT{V/N|? v

ENTER A CHARACTER TO BE USED FOR ‘NDICATING
MACROS OR A RETURN FOR DEFAULT CHARACTER OF
AMPERSAND (&) -< roturn >

TYPE A RETURN IF THE ERROR CORRECT!ON DIALOGUE IS
TO BE USED QR ANY OTHER KEY IF NO DIALOGUE IS
WANTED: ~retum >

TYPE Y* TO SAVE. AND OTHER CHAR O ABORT INSTALL

Yy .
SAVINGINSTALLATION PARAMETERS

MQODIFY EXISTING SPECS ROUTNF

FOR THIS METHOD. YOU WILL NEED ™5 HEX OR DECIMAL
CODES THAT CAN BE SENTFROM YY" " COMOUTER TO THE
VIDEO TERMINAL TOCONTROL T

TYPE Y IF YOU WISH TO CONTINUE
A\

WILL YOU BE ENTERING COMMANDS A4S HEX OR DECIMAL?
TYPE 'O FOR DECIMAL OR "H FOR -~EXADTCIMAL
h

COUMMANDS ARE ENTERED AS A SEQUENCE OF NUMBERS
TYPE A CARRIAGE RETURN TQ END A SEQUENCE .

1-DELETEA CHAR SEQUENCE .+

2 - DIRECT CURSOR POSITIONING SEQUENCE
3-CLEAR ANG HOME SCREEN COMMAND
4-BRIGHT/STD VIDEC COMMANCS

5 - OIM/REVERSE VIDEC COMMANDS

6 - INITIALIZATION SEQUENCE

7- EXIT SEQUENCE

8- RESET TO STANDARD VIDEG MODE

SELECY ITEM TO CHANGE
ANY CHAR OTHER THAN 1-8 TERMINATES SEBSION

dBASE II...11

To modify an instilled dBASE II syateam, type “INSTALL",
then “Y~ or “N™ in response to the full-screen editing
guery, then select the “Y" option from the terminal
.1isting. dBASE II responds with the following sequence of
comiands. In this example, we wanted to change the "EXIT®
secuenne to position the cursor on the 23rd line rather than
the 17th line when leaving the full screen editing mode.
(You'll find out about this as we go through dBASE
jnstructions later in this manual.).

Notice that the numbers are entered in hexadecimal and,
the lines are numbered from 0 to 23, columns from 0 to 79. -

SSMMAKRDS TO BE ISSUL D WHEN LEAVING THE FULL
T NG MODE

GO ST ON USE DIRECT CUHSGR POSITIONING TO PUT
R QN THE BOTTOM UNE OF THE SCREEN
OrTe MY
St GUENCE

N ¢ OCRAECT C NUTR
Lv o LTNTRGE CUDEBNE Y. 18 1187
LTe 4 CONTROL CODF BYTE 2 59 5,
E*» T* R CONTROL CODt BYTED 31 '3
. N B R CONTRO! CONT BYTE 4 26 207 .
s . s = INTROL CODE BYTL S 00 retum >

* “FORRECT ' Ny
: A CHAR ,t QUENCE
CURSOR POSITICNING SEQUENCE
~ AND-HOME SCREEN COMMAND
- 1 S0 VIDFO COMMANDS
v & VERSE VID{O COMMANDS
5 1ZAT'CN SEQUENCE
¢« DUENCL
TAKTAY D It A MGDE

TMTO ZPANGY
© o QTHER inENTY 8 TLRMINATES SESSION

& (HARACTER 10 BE USED FOR tNDICATING MACROL
¢ TURN FOR CEFAULT CHARACTE R OF AMPERSAND '8

. -

TYPE A RETURN :F THT ERROR CORRECTION DIALOGUE IS

YO BE USED CR ANY OTHER REY IF NO DIALOGUE 1S WANTED
cefurn . L

“YPF ¥ YO SAVE. ANY OTHER CHAR TQ_FABORT INSTAL}

" L AVING INSTALLATION PARAMETERS ™~

%

dBASE II...12

dBASE II is now installed, 'and you can begin using it
immediately.)

Bring up dBASE II by typing “dBASE“.

A prompt line asks for the date. If you enter a date,
this will be recorded in your files as the last access every
time you add to or delete from the file, and can be useful
for keeping track of updhtes. If you want to ignore it,
Just hit <enter>.

dBASE II loads into memory, displays a sign-on message
and shows the prompt dot (.) to indicate that it is ready
to accept commands.

To show you how powerful and easy to use dBASE II
actually i{s, the first thing we'll do is create a database
and enter data into it.

It will only take a few minutes.

P

dBASE II...13
Section I: . 13

How to CREATE a databasSe...cscescecescassccccocscse 14
CREATE ’
Entering data into your new database......cccecccee 16
Modifying data in a database..cccesccoccceccccances -18
EDIT, .
Full Screen Editing FeaturesS....ceesccecccccccccces 19
An introduction to dBASE II to commands and the

error correction dialogecececsccccccscacionccces ~20
USE, DISPLAY, LIST
Expanding commands with expressionS....cceeceeeeesce 21
LIST
Looking at your data records...cccecccecscccscscces 23
DISPLAY))
Positioning yourself in the database........eiccee. 24
GO, GOTO, SKIP)
The interactive ? command.csccecedecscasce covssnce 25
Adding more records to a database....evececcccccccens 26
APPEND, INSERT
Cleaning up a database....eceecvessceccacancncanacs 28
DELETE, RECALL, PACK
Section I SUMMArY..cessocessssseasnscansassssssanss 29

In this section, we create a database and enter data.
We also irtroduce you to some dBASE II commands that will be
developed and added to throughout.the rest of this manual.
For a complete definition of a command, check Part II.

dBASE II...%

How tb CREATE a datnb;ae

We'll start by creating a database of names for a
mailing . list system. Each record in the database will
contain the following informatioh:

NAME: up to 20 characters long
ADDRESS: up. to .25 characters long
CITY; up to 20 characters long
STATE: 2 characters long

ZIP CODE: 5 characters

First, type “CREATE".

dBASE II responds with: ENTER FILENAME:.

Enter a filename starting with a letter and up to 8
characters long (limited by CP/M), no colons, no spaces,
Since this is a file of names, let's call it something that
makes sense to a human being: type "Names”.

When you hit return, dBASE II creates a file called
<NAMES.DBF>. The part of the name after the period is the
CP/M file name extension, and is short for database file
(Section V, File Types).

In a database management system, .each-one of the items
that we want to enter into a single related grouping is
called a field and the grouping is called a record (Section
V; Database Basies). 1In our example, each record will have
5 fields. dBASE needs to know the name of each field, whac
type of data it will contain, how long it is and how many
decdima) ‘places if the data is numeric.

* craate
FNTSFRE'LENAME names
ENTFR PFCCRD =, STRE

AS FIHLOWS
FLELR ~ W vpe wiQT™ DECIM ™1
01 e L .

Field names can be up to 10 characters long, and may be
entered in upper and/er lowercase. The name must start with
a letter and cannot contain spaces, but can contain digits
and embedded colons. Don't abbreviate any more:than you
have to: the computer will understand what you mean, but
people might not.

The type of data is zcpecified by a single letter:

C for Character, N for Numeric and L for Legical. 1In this
case, all fields contain character data.

Field width can be any length up to 254 characters. If
the field is numeric and decimal places are specified,
remember that the decimal point slso takes one ctraracter
position.

>

R —I——IN———

dBASE II;;,15

we know what names we want to give our- fieYds, the type
of data' that they will-contain, and their lengths so type
the in{ormation in now. Here's whag the screen looks like
when you're finished: :

« create
ENTER FILENAME: names
ENTER RECORD STRUCTURE
AS FOLLOWS:
. NAMETYPEWIDTH.OECIMAL
FLACES
namec2Q

addressc25
cityc 20
statec2
ox z.p codec S
BADNAME FIELD
00S zigrcoder.S
006 <returm>

Notice what happened at field 5: we made an error by
entering a space in the field name, so dBASE, II told us what
the error was and gave us a chance to 'correct it.

Notice also that the data tvpe for the ZIP code was
specified as ncharacter', even though we normally think of
the digits here as numbers.

This was done because a dBASE II command such as
~TOTAL" can total all the humeric fields in a record
(without you specifically listing them all). Doing so with
the ZIP code field would simply be a waste of time. We can
still use the relational,dperatorsf("greater than', "less-
than", "equal or not equal to") with the character data, so
this will not interfere with any 7IP code soriing we may
want to do later. .

When dBASE II asked us for the specifications for a
sixth field, we hit <enter> to end the data definition.
dBASE II saved the data structure, then asked if we wahted
to enter data in it. ’

The <Names.DBF> database is ‘immediately ready for data
entry, so type "y~. On the next page we tell you how tc
enter the data.

dBASE II...16

Bnteri@;,data into your new database

. If you do not have full screen editing on your
terminal, the record number and the field names will appear
one at a time below whatever has been typed on the screen up
until now. The length of each field is shown by two colons,
with the cursor positioned for you to start writing. When
‘you fill the field or press <enter>, the next field will
appear. After the last field in a record has been filled
(or ignored), you start on a new record.

To stop entering data, hit <enter> when the cursor is
at the first character position of the first field in a new
1record.

_ If you insvalled dBASE II with full screen editing, the
" screen will be erased, then the record number and all the
fields will be displayed starting in the upper left-hand
-corner of the screen, with the cursor at the first character.
position of the first field.

(If you chose one of the standard terminals on the
installation list, the field names may be in reverse video
or at half-intensity. If you want to change this later, you
can dlsable it by using the "Y - CHANGE/MODIFY" option in
the installation procedure).

RECORD 00001

NAME :
ADDRESS: |

NOTE:: If this doesn't look like your screen, there is a
prablem with INSTALL. Please re-do the installation.

Field lengths are indicated by two colons. When a
field is filled or you hit <enter), the cursor jumps down to
the next field. The cursor can be moved back up td a
previous field by holding the control key down and pressing
the letter E once: “control-E”, abbreviated as “ctl-E~.

When you are finished with the last field, dBASE II presents
another empty record.

Enter 'the following names and addresses. We'll be
using them soon to show you some of the powerful features of
dBASE II.

ALAZAR, PAT 123 Crater Rd., Everett, WA 98206
BROWN, JOHN 456 Mipnow P1l., Burlington, MA 01730
CLINKER, DUANE. 789 Charles Dr., Los Angeles, CA 90036
DESTRY, RALPH 234 Mahogany St., Deerfield, FL 33441
‘EMBRY, ALBERT 345 Sage Ave., Palo Alto, CA 94303
FORMAN, ED 456 Boston St., Dallas, TX 75220
GREEN, TERRY 567 Doheny Dr., Hollywood, CA 90046
HOWSER, PETER 678 Dusty Rd., Chicago, IL 60631

dBASE II...17

If you make.any mistakes that can't be corrected by
backspacing and writing over them, read the next two pages
on editing before moving on to the next record. If you
accidentally get back to the dBASE dot prompt, type:

“USE Names”
“APPEND"

and continue with your entries. (This will be -explained
later in the manual).

- To stop entering data, after you've entered the last

. ZIP code and while you are on the first character of the

first field of the next record, hit <enter>. If you have
typed in some data or moved the cursor, hold the control key
down and press the letter "Q: (“control-Q~).

dBASE leaves the data entry mode -and presents its dot
prompt (.) to.show you that it's ready for your commands.

If you want to stop now, simply type “QUIT".

“QUIT" must be typed every time you terminate a dBASE
II session. This automatically closes all files
properly. Unless you do so, you may destroy your
database. '

dBASE II...18

Ilodif!ing datajwith EDIT

If you made any errors in the entries, you can corégct
them quickly and easily in the Full Screen Edit mode. Type:

“USE Names”)
“EDIT <number>”

where "number" is the number of one of the records in the
database.

dBASE brings up the entire record and you can use the
Full Screen Editing commands to modify any or all of the
data in the record. To move to the next record, use
~etl1-C*. To move to the previous record. use “etl-R". To
try it, type "EDIT 3°.

RECORD 00003 DELEVED

NAME :CLINKER, DUANE
AODRESS:789 Charles Or

cry ‘Los Angeles
STATE ‘CA
ZiP:CODE 190038

If you mark a record for deletion by using “ct1-07,
"DELETED" appears at the top of the screen. Pressing _
“ctl1-U" again removes the word and "un-deletes" the record.
If you “LIST" (pp.20 and 21) or "DISPLAY" (pp. 20 and 23)
your database, you will see an asterisk next to all-records
marked for deletion.

To abort full-screen editing, use “ctl1-Q". This does
not makesthe changes that were on the screen when you
exited.)

To exit gracefully and save the changes made so far,
use “ctl-W" (“ctl-0"--the letter "O"--with Superbrain).

dBASE II...19.
FULL SCREEN. EDITING FEATURES:

etl-X moves -cursor down to the next field (or ctl-F).

_ctl-E moves cursor back to the previous field (or ctl-A).

ctl-D moves cursor ahead one character.

ctl-S moves cursor ‘back one character. .

etl-V toggles between overwrite and insert modes.

et1-G deletes the character under.the cursor.

<Rubout) deletes the character to the left of the cursor.

ctl-P toggles your printer ON and OFF.

c¢tl-Q quits and returns to normal dBASE II operation without making
changes, even in the MODIFY mode.

“MODIFY” functions: _

ctl-T deletes the field where the cursor is and.moves all the lower
fields up.

ctl-Y clears the current field to blanks, but leaves all fields where
they were.

ctl-N moves fields.down one position to make room for ‘insertion of a
new field at the cursor position.

“APPEND” functions:

ctl-R writes the record to disk and moves to the next record.

<Enter> when cursor is at the initial position of a new record
resumés normal dBASE II operation.]

ctl-Q erases. the record and resumes normal dBASE II operation

“EDIT" functions: (Do not use in “APPEND" mode)

ctl-C writes the record to disk and advanées to the next record.

ctl-R writes the record to disk and backs up to.the previous record.

ctl-¥ toggles the record deletion mark on and eff.

ctl-W saves any changes made and resumes normal dBASE II operation.
With Superbrain, use “ct1-0" (the letter ngn),

ctl-Q aborts any changes in the record’ you're working on and prints
the coordinate prompt. Hit <enter> tc resume normal dBASE II
operation.. .

PRFVIOUS RECORD
EXIT—SAVE l DELETE FiELD
EXI'—NO SAVE ‘ \ OFIETEDATA

\6 ¥ - DELETE RECORD _

ot ‘ T T ’ L'—onm CHARACTER

N—-IUSEHI'Fﬁlﬂ

' ' -~ OVERWRITE

NEX! ELCRD

dBASE II...20

An introduction to dBASE II commands and the error
correction dialog (USE, LIST, DISPLAY)

dBASE II commands are generally verbs. You type them
in when you see the dBASE II dot (.) prompt.

When you want to tell dBASE II which database file you
want to work with, you type “USE <filename>"'

To look at the record you are on, type “DISPLAY".

To see all the records in the database, type “LIST".
(To stop and start the scrolling, use “control-s”.)

dBASE II commands can be abbreviated to four letters,
but if you use more letters they must all be correct
(“DISPLAY", “DISP" and “DISPLA” are valid commands;
DISPRAY is not.)

If you chose_the error correction dialog when you
installed dBASE II, the command line is scanned and you are
prompted with error messagéa when mistakes are detected.
You get a second chance to make correctious without having
to retype the entire line. '

Type “EDUT 3°.

Edut3

S UNKNOWN COMMAND

Edut 3

CORRECT AND RETRY (Y/N]?y

CHANGE FROM :u

CHANGE TO K

Edit3

MORE CORRECTIONS (Y/N)? v

dBASE II repeats a command it does not know. If you
decide to change it, you do not have to retype the entire
command.

In response to "CHANGE FROM:" type in enough of the
wrong part of the command so that it is unambiguous, then
hit <enter>.

In response to "CHANGE TO:" type in the replacement
for the material you want changed.

In this example, we changed only a single letter, but
you'll find this feature useful when you are testing and
debugging long command lines.

Tip: The "ERASE” command erases the screen and positions.
the prompt dot at the upper left-hand corner of the
screen so that.you can start new commands with a clean
slate.

dBASE II...21

Expanding commands with expressions and relational

operators (LIST)

One of the most powerful features of dBASE II 4s the
ability to expand and "tailor™ the commands.

You can add "phrases™ and expressions to most commangds
to further define what the commands will do. Commands can
be entered in upper and lowercase letters, and command lines
can be up to 254 characters long. To extend the line beyond
the width of your display, type in a semicolon (;) as the
last character on the line (no space after it). dBASE II
will use the next line as part of the command.

Since dBASE II is a relational DBMS, you'll find ‘the

relational operators useful:

less than

‘greater than

equal to

less than or equal to
greater than or equal to

VANLVA

un
e ss oo o0 an

These commands mean exactly what the explanation on the
right says. They generate a logical valué as a result (True
or False). If the expression is True, the command is-
performed. If the expression is false, the command is not
performed.

. Earlier, we mentioned that the LIST command will show
all the records in the database (to stop and start the
scrolling, use “ctl-S"). The full form of the command is:

“LIST [OFF] [FOR <expression>]®

If the optional OFF is used, the record numbers will
not be displayed. -

If the optional FOR clause is used, dBASE II will list
only the records for which the expression is true. Type the
following, using single ‘quotes around the character data
(more on data types in Section II):

“USE Names”

“LIST"

“LIST OFF" -~

“LIST FOR Zip:Code = '9'"
“LIST OFF FOR Zip:Code < *8'"
“LIST FOR Name='GREEN'"

Notice that when you enter only part of the contents of
the field, that is all that is compared by dBASE. We did
not need Mr. Green's full name, for example, although we
might have used it if our database contained several
GREEN's.

o usr nam
LRI

00001 ALAZAR. PAT
00002 BRCWN. JOHN
GOOCT CLINKER. DUAMN
00004 DESTRY RALPH
000C»> EMBRY ALBI ™
COOCFk FORMAN FD
0000 GREEN TERRY
OONOA +HOWSFR BFTE T

e Ly ot

ALAJAR PAT
BROWN JCHN
CLINKER DUANF
DESYRY RALPH
EMBRY ALBFRY
FORMAN FD
GREEN TERRY
HOWSFR PLCTFR

e hgi o ipcode 3
000Q" ALAZAR. PAY
0000 CUNKER DUANE
000C EMBRY ALBI R/
00007 GREFN TFRAY

e st ‘ar ipicode 8
0000~ BROWN JOWN
00004 DESTRY RAL ¢
00006 FORMAN ED
0000R HOWSFR PP YT Q

elsiforname CF'Et
O00L GREEN T3 RY

+23 Crate: Ra
456 Minrow PP
789 Crare Dr
234 Marog ity

3455 CABsrmpe

456 Bovon St
467 Dorery Uir

LT Carery Mo
orr °on

T30 er®d
3 raras O
* Sage Avente

SEo W omm P
Z3aMarogany L°
455 Boston S
@it Dusty Rg

& . voheny

Cvere (T
Burtington
Los Anigetes
Deertcid
va0 Alt
0o
HOywond

! cago

€ revett

e rhngton
.03 Angeles
Dewrtialc
Palc Alta
Uallas
“Hatlywood
Chicago

4dBASE II...22

WAQB20R
MAO170G
CA9003¢
FL3344a:
ca943c
TH7E220
€£3004¢
L6063

WAQB820t
Maos =3
CAS003¢+
FLI344:

CA94303
TX7522¢0
CA90046
160631

WA98206
CAS0026
CA34303
CA30046

MAO1710
FL33441
TX75270
L6063y

CA90036

In addition to precisely selecting datayrrom your.
database, the LIST comnand -can ‘be used. to providc you with

system information.

“LIST STRUCTURE" shows .you the structure of the

database in USE.
“LIST FILES”

files on the 1ogged in drive,

showd the names of the database (.DBF)
“LIST FILES ON <drive>"

shows the database files on another drive (do NOT use the

usual CP/M colon).

"003

- USS g

= Tist struetirn N
STRUCTUHE FUR.FILE NAMLS. 08~
NUMBER OF Rf CCRDS 00010

DATE OF LASY /PDaTt 00:0C, On
PRIMARY USE OalaBASE

FLD NAMI TYPE

001 NAMI
ADDHE: S
cIrty

c
C
<
[

NAMES oBr
MIND o8BF
KEYFRILE oB¢
CHECKS oBF
TEMP o121
MONEYOUT Dot
ORDERS D&F

dBASE II...23

‘Looking at data with DISPLAY

The “DISPLAY" command is similar to “LIST". Its full
“form is:

[A11 :
DISPLAY [Record n] [OFF]LFOR <expression>]
[Next n 1

This gives you the option of specifying the scope for
the “PISPLAY" command (also “LIST").)

Specifying "Record n" displays only that record;
"Next n" displays the next "n" records, including the
current record.. “DISPLAY ALL” is the same as "LIST",
except that “LIST" will ‘scroll all the records in the
database up the screen, while "DISPLAY ALL" shows you the
database in groups of 15 records at a time (pressing any key
displays the next 15 records). Type the following:

“DISPLAY All”
“DISPLAY Record 3"
“DISPLAY Next 4°

= display ail . .
0000t ALAZAR. PAT 123 Crater Rd. Everett WA98206
BROWN. JOHN 456 Minnow PL. Burtington MAO1740
CLINKER, DUANE 789 Chartes Dr. Los Angeles CA90036
DESTRY. RALPH 234 Mahogany St. Deerfield FL33a41
. EMBRY.ALBERT _345 Sage Avenue Palo Alto___ CAS4303
FORMAN, ED. 2S6Boston St Dallas ™rs5220
GREEN.TERRY 567 DohenyOr Hollywood CAS0046
HOWSER. PETER 678 Dusty Rd. Chicago 1L60631

-cisnhvmemé:' :
00003 CLINKER,DUANE 789 Charies Or Los Angeles CAS0036

edisplay next 4

00003 CUNKER.DUANE 789 Chartes Dr * Los Angeles CAS0036
00004 DESTRY RALPH 234 Mahogany St. Deerfieid FL33441

00005 EMBAY,ALBERT 345Sagé Avenue PalcAlto . CAS4303
00006 FORMAN, EDX #56 BostonSt. Oaffay TX75220

As with "LIST”, the optional FOR clause can be used to
select specific data by using logical expressions.

The DISPLAY command can also be used like the LIST
command for system functions:

DISPLAY STRUCTURE = LIST STRUCTURE. .
DISPLAY FILES = LIST FILES.

Both “LIST".and "DISPLAY" can show you specific types
of files on a drive using the CP/M "wild cards”. “DISPLAY
FILES LIKE *.COM ON B”, for example, would display all
the ".COM" files on drive R. If uncertain, check your CP/M
manual, then use this form:

“DISPLAY FILES LIKE <wild card>”

dBASE II...24

Positioning commands (GO or GOTO and SKIP)

Once you have your database set up, you can also move
from record to record quickly and easily with dBASE II.
Type the following:

“USE Names"”
“co TOP”
“DISPLAY"
“GO BOTTOM™
“DISPLAY"
*cotTo 5°
“DISPLAY”
8~ .
“DISPLAY" «usenames
*gotop

«display
00001 ALAZAR, PAT 123 Crater Ra. Everett WA98206

*go bottom 3 .
o display -
00008 HOWSER,PETER 678 Dusty Ra Chicago ILG0631

., egoto 5 - =

~display

00005 EMBRY,ALBERT 345SageAvenue PaloAlto CAS4303
(3 3

« disptay .
00008 HOWSER, PETER mmu Cnicagoe IL60631

~“GO TOP~ (or “GOTO TOP™) moves you to the first

record in the database. “GO BOTTOM™ moves you to the last
record. You can go to a specific record by using “GoTO"
<number> (or GO <number>). And you can even eliminate the
GO and just specify the record number.

~SKIP™ moves you to the next record. “SKIP + n”
moves you forward or backward "n" records. You can also use
~“SKIP +<var1ab1e/expression>, with the number of records
skipped determined by the value of the variable or
expression (both defined later). 'Type the following:

“DISPLAY"
~SKIP-3"
~DISPLAY"
~SKIP”
“DISPLAY" w Gispiay .
00008 HOWSER, PETER 678 Dusty Ra. Chicago ILE0E3Y
oskip3

RECORD: 00005

displey .
00005 EMBRY,ALBERY 34SSsgeAvenus PstoAln CAS4303

> ship
RECORD: 00008

wdispley .
00008 FORMAN. ED 4568oson 5t . Duiles. TXTS220

dBASE II...25

The interactive ? command

The “7~ command allows you to use dBASE II in the
calculator mode. Simply type in the question mark and a
space followed by the quantity or mathematical function you
want evaluated and dBASE II will provide the answer on the
next line. Using ?? puts.the answer on the same line.

Type the following:

~? 73/3.0000"
*? 73.00/3"
*? 13/3°

The "7~ command shows the answers to a mathematical
operation to the same number of decimal places as the
maximum in the numbers entered.

You can also think of ~?" as meaning: "What is ...",
with the dots replaced by'an expression, a variable (a field
name or a memory variable), a dBASE II function or a list of
these separated by commas. * Type the following:

“USE Names®
-6

*? Zip:Cole”
“? Name”™
“SKIP”.

“7 Name®
“GO BOTTOM™
“? city”

GREEN, TERRY

* go bottom
- 2aty
Neow '(ork.

Tn the section on functions ané commands, we'll show
you how the “?° can be used to access ‘other dBASE II
functions, and to display CRY prompts to the operator from a
command file.)

dBASE II...26

Adding more data with the APPEND and INSERT commanas

You can add data to any database quickly and easily
with a one-word command. - First choose the database file
into which you want to enter data by typing “USE
<filename>", then typing in the command “APPEND :

“USE Names”
“APPEND"

s use names

* append

RECORD # 00009

NAME
ADDRESS
city
STATE
2P CODE

dBASE II responds by displaying the record number that
follows the last record in the file and the fields for that
database. If you fill in the record, it is added onto the
end of the file (appended).

The display includes the names of the fields, with
colons showing field lengths. The. cursor is at the. rirst
position where you can start to enter data. If you fill up
the entire field with data, the cursor automatically moves
down to the next field. If not, hit <enter>.

If there is no data to be entered in a field, use
<enter> to move the cursor to the next field. Character
fields will automatically be filled-with blanks, numeric
fields will show a zero. When entering numeric data, if
there are no digits after the decimal, there is no need to
type the decimal. dBASE II automatically puts in the
decimal point and the necessary number of following zeros.

Records can be inserted into. a specific location in a’
database (to keep them alphabetical, for example) by typing.

“INSERT [BEFORE] [BLANK]"

Using the word "INSERT" alone inserts the recard just
after the current record. Specifying BEFORE will insert
the record just before the. current record. In either case,
you are prompted the same way as with the “APPEND” and
hCREA‘!‘B" commands. If BLANK is spécified, an empty record
is inserted and there are no prompts.

ABASE II...27

Add the following names alphabetically ta the
(Names .DBF> database:

EDMUNDS, JIM 392 Vicarious Way, Atlanta, GA 30328
INDERS, PER 321 Sawtelle Blvd., Tuoson, AZ 85702
JENKINS, TED 210 Park Avenue, New York, NY 10016
The sequence of commands is:

“G5s Rames”

g .
~INSERT BEFORE" (enter the data for the first name)
“APPEND" (enter the data for the last names)

~In the ~INSERT" mode, when you fill the last field,
dBASE II will return to. the command mode (dot prompt).

To.exit the ~APPEND” mode, position the cursor at the
start of a new field, then hit <enter> or “control-Q°.

In either mode, you can ex{t from inside a record by
using “otl-W" (“ct1-0" with Superbrain). This will save
what has beer entered up to that point and return you to the
command mode.

dBASE II...28

“Cleaning up a database (DELETE, RECALL, PACK)

Deletions can be made .directly from dBASE II as well as
in the "EDIT” mode.

To delete the current record, type “DELETE".

To delete more than one record, use the form “DELETE
{scope>”, where the scope is the same as for other dBASE II
commands: All, Record'n, or Next n.

To make the deletions conditional, expaand the command

to:
“DELETE [scope] [FOR <exrression>]*

where "expression" is a condition or set of conditions that
must be met. (This is developed in more detail in Section
I1).

Type “DELETE FILE <drive>:<{filename>” to deletk a

file. But -once you've done this, the data is goﬁe forever,

30 be careful.
Unlike files, records marked for deletion-can bé:

recovered. Rather than erasing the data, “DELETE" marks
each record with an asterisk. You will see the asterisks
when you “LIST" or “DISPLAY" the records. dBASE II. then
ignores ‘these records, and does not use them in any
processing.

To restore the records, use the following icommand:

“RECALLk[acope] [FOR <expression>]”

This operates the same way “DELETE" does, with the.
scope and condition being optional. If a conditional
expression is used, it does not have to be the same as was
used to mark the records for deletion.

At some point, however, you will want to clean up your
files to clarify displays or to make more room for storage.
To do this, type:.

“PACK".
This erases all records marked for delﬁtlon, and tells

you how many records are in the database.

Note: ' once you use this command, the records are lost
forever.

dBASE II...29
To see how these commands work, type the following:

“USE Names”
“LIsT”

“DELETE RECORD 2°
“DELETE RECORD A"
“LIST"

“RECALL RECORD &“
“LIST"

“pPACK”

‘LIST®

The screen below shows the first few records in our
<Names.DBF> as we perform these commands.

ALAZAR. PAT 123 Crater Rd. Everett was8206
BROWN. JOHN 456 Minnow Pl. Burtingtor MAO1730
CLINKER DUANE 789 Chartes Or. Los Angsies CAS0036
DESTRY RALPH 234 Mahogany St. Deert:eid FL33441
00005 EDMUNDS. JIM 392 Vicarious Way Aiants GA30328

* delete record 2

00001 DELETION(S)

* deiete recora 4

00001 DELETION(S)

. hst

00001 ALAZAR. PAT 123 Cratec Act Everett WA98206
00002 *BROWN.JOHN 456 Minnow P1. Burhington MA017J8
00003 CUNKER. DUANE 789 Charies Dr. Los Angeles CA90036
00004 *DESTRYT RALPH 234 Mahogany St Deerheid FL33441

00005 EDMUNDS. JIM 332 Vicancus Way Allanta GA30328

* recall recorg 4

00001 RECALLIS). on o i vl it e e m e e
* fst

00001 ALAZAR FAT 123 Crater Rd Everen WAS8206
00002 *BROWN J N 456 Minrow Pt Budington MAO1730
00003 CUNKER ANE 783 Charles De Los Angeles CA90036
00004 DESTRY RALPHM 234 Mahogany St Deerheld F13344%
00005 EDMUNDS. JIM 392 Vicanous Way Attanta GA30328

* pach

PACKX COMPLETE. 00004 RECORDS COPIED

- fist

0000t ALAZAR. PAT 123 Crater Ra Everett WA98206
00002 CUNKER. DUANE 789 Ctares Dr. Los Angeiss’ CASB036
00003 DESTRY RALPH 234 Mahbogany St. Deerhetd FL33441

00004 EDMUNDS JIM 392 Vicanous Way Atlants GA30328

dBASE II...30
Section I Summary

At this point, you have learned about the power owver
data that a relational database management system like dBASEK
II can give you.

You can now “CREATE".a new database and start entering
data in minutes.

If you want to change the data, this 1is easily done
with “EDIT", “DELETE", "RECALL" and “PACK".

You can “APPEND” or "INSERT" more data as required,
and “LIST” and “DISPLAY" entire files or precisely
selected records. You can also “GOTO" and “SKIP" around
within a database quickly and easily.

Additionally, dBASE II can be used ' 1nteractively as a |
powerful calculator (and more) with the “?° command.

' We have introduced,you to expressions and how they can
be used to expand the power of dBASE II commands.. In ‘the
next section, we will go into this in more. detail and show
you how to get useful information out. of your databdses
quickly and easily.

Before that, please “CREATE" these two.files, as we
will need them for other examples.

. create
ENTER FILENAME MoneyO
ENTER RECORO STAUC
AS FOLLOWS
MNAME TYPE ADTH
FIELD DECIMAL PLACES
00
002
oo <7
004
205
006
o7
ocs 8t Daie C7
003 Bl NmorC.7
oo Hous N.62
avs EmpNmarN3
Qiz

» creaiq
+ ENTER FILENAME. orders
ENTER RECORU STRUCTURE
AS FOLLOWS
NAME TYPE WIDTH
FIELD ODECIMAL PLACES
oat CusINmbr.C.9
item C.20
QiyN 2
PrceNT2
AmountN92
BackQrdrL 1
OrrDate €6

4‘j-lII---IIIlIIllIIIIIIII-IlIlI!!!!l!!!!!IlIlIII.....................!

a dBASE II...31
Section II: 31

Using expressions for selection and control........ 32
Constants and variablesS...eccececcccccccccscocneeaes 33
STORE

dBASE II.0perators..ccccececvencecssesacssssccossee 37
LOGLCAL OPeratorS...cceesveccccscssseosscasscsscacs 38
Substring logical operator..c.escececcscescscsscses HO
String OperatorS....cccesccsccsesoscncnsssrcnsnsces U1
Changing an empty database structure............... U2
MODIFY

Duplicating databases and structures.......c.cee..0 U3
COoPY

Adding and deleting fields

with data in the database.........cceveveees U5

COPY, USE, MODIFY

Dealing with CP/M and other "foreign files"........ 47
COPY, APPEND

Renaming databas> fieldS:..ccccecescsecsccacccscanns U9
COPY, APPEND

Modifying data rapidly.cccecececocssccosccssescsces 50
REPLACE, CHANGE

Organizing your databaseS...esesscecasessorsasesnes . 52
"SORT, INDEX ' ‘
-Finding the information you want.....ecccceoesveses S5l
"FIND, LOCATE

Getting information out of all that data........... 56

'REPORT

Automatic counting and summing....ccscccesveeasiass 58
COUNT, SUM o

Summarizing data_ and eliminating details........... 59
TOTAL ‘

. ¥
Section II SummMary..csssessssccsscscsssssascecsssss 60

In this section,’ue.deve;op the use of expressions to
modify dBASE II commands. This is may be the most important
part of learning how to use JdBASE II effectively.

The dBASE II commands can be learned fairly easily
because they are English-like, and learning another command
is a matter of increasing your vocabulary (and your
repertoire) by another word.

Expressions, combined with the commands, give you the
fine control you need to manipulate your data to perform
specific tasks. Once you have learned how.to handle
expressions, you will only have to learn two more things
about programming to be able to write effective applications
¢ommand files. (These are how to make decisions and how to
repeat a sequence of commands, covered in.Section III).

dBASE II...32

Using expressions for selection and control

- We gave you a brief introduction to expressions that -
can be used with dBASE II commandg in Section I.’

As you saw, they are a powerful way to extend the
commands and manipulate your data quickly and easily, If
you check the index of -commands in Section VI, you'll see
that many dBASE I commands can be modified in the form:

“<COMMAND> [FOR <expression>]”

This extended power gives you a flexibility that you
simply do not get with other database management systenms.
We've been told by experienced programmers that they can
write a program (a2 dBASE II command file) for an application
in as little as one-tenth the time it would take them using
BASIC or even higher level. languages such as COBOL, FORTRAN
and PL/1. .

But to ‘take advantage of this power, you need to
understand how to work with expressions and operators, then
how to combine the modified commands into command files that
will perform the same tasks again and -again. o

The next few pages will get you started. Ultimately,
experience is going to be the best teacher.

Reminger: as we introduce commands through the text, we
try to explain a particular aspect of the command that
will allow you to a few more things with your. C
database. This means that we do not cover the entire
command at one time., To find out all that a command
can do, use the summary at the end of Part I and the
definitions of Part II. ’ ’

Note: If, after you've finished this Section, you are
still uncertain about how to write expressions that
make the dBASE II commands do exactly what you want
done, you may want to look at some beginning
programming -texts at your local library. Most of them
discuss expressions within the first two chapters or
s0.

dBASE II...33

Constants and variables (STORE)

Expressions in dBASE II are used to help select and
manipulate the data in your database (see “DISPLAY"). The
quantity that you manipulate may be either a constant or a
variable.

Constants are data items that do not change, no matter
where they appear in a database or within the computer.
They are 1literal values because they are exactly what they
represent. Examples are numerals such as 3 and the logical
values T and F.

Characters and character strings (all the printable
characters plus :paces) can also be constants, but must be
handled a bit differently.

"Strings" are simply a collection of characters
-(including spaces; digits and symbols) handled, modified,
manipulated and otherwise used as data. 'A "substring" is a
portion of any specific string.

If a character or collection of characters is to be
treated as a string constant, it must be enclosed in single
or double quotes or in square brackets so the computer
‘understands that it is to deal with the characters as
characters, To see what we mean, get dBASE II up on your
.computer and USE <Names>. Type: '

“dBASE”"
“USE Names”
“? 'Name'"
*? Name”

In response to:/the first "What is..."” (the “?°
command), the computer responded with NAME because that was
the value of the constant. When you eliminated the single
quotes, the computer first checked to see- if the word was a
command. It wasn't, so it then checked to see if it was the
name of a variable. v ’

Vafi;bles are data items that can change. Frequently

- they are the names of database fields whose contents can
change. In this case, the computer found that our database
had a field called <Name> so it gave us the data that was in
that field at that time. Type the following:

“sKip 3"
“? Name”

* use names
N « 7 Name
Name
* ?Name
ALAZAR, PAT

»skip3
RECORQW
e ?Name
OESTRY, RALPH

dBASE II...34

Now type "USE". Since we do not specify a file nc.
the computer simply closes all files.

‘If we type ~? Name” again, the computer tells us that
we made an error. In this case, we tried to use a variable
that did not exist because we were no longer USing a file
with a matching field name.

The variables can also be memory variables rather
than field names. dBASE II reserves an areg of memory for -
storing up to 64 variables, each with a maximum length of
254 characters, but with a maximum total of 1536 characters
for all the variables.

You might want to think of this as a series of 64
pigeon-holes available for you to tuck data into temporarily
while working out a problem.

Variable names can be any legal dBASE II identifier
(start! with a letter, up to ten characters long, optional
embedded colon and numbers, no spaces).

You can use a memory variable for storing temporary
data or for keeping input data separate from field
variables. In one session, for example, we might "tuck" the
date into a pigeon-hole (variable) called <Dated. During
the session, we could get it by asking for <Date>, then
place it into any date field in any database without having
to re-enter it (see GetDate,CMD in Section VI).

To get data (character, numeric or logical) into a
memory variable, you can use the “STORE™ command. The full
form is- o

“STORE . <expression> TO <memory variable>”

Type the following:

~STORE "How's it going so far?" TO Message "
‘“~PORE 10 TO Hours”

~8ToRE 17.35 TO Pay:Rate”

*? Pay:Rate®Hours”

~? Hessage‘~

«» STORE “How s it going so 1ar” TO Message

Hows it gomg so far?
« STORE 10 TO Hours
10
« STORE 1735 YO Pay Rate
1738
« ? Pay.Rate’Hours
173.50
= 7 Message
How's it gong so far?

Notice that we used double

dBASE 11...35

quotes around the character

string (a constant) in the first line because we wanted to
use the single quote as an apostrophé inside the string.

Ir this isn't clear yet try experimenting with and
without the quotes to get the distinction between constants

and variables.

“STORE 99 TO Variable®
“STORE 33 TO Another”

To start you off, type the following: -

“STORE Variable/Another TO Third

“STORE '99' TO Constant”
“? Variable/Another”

“? Variable/3"

“? Constant/3" .
“DISPLAY MEMORY

‘= STORE 99 to Vanable
99
« STORE 33 TO Another
33

- SYORE Varnable/Another TG Third

- SYORE 99'1Q Consmnl
39
=’ Vanabta/Anather

3

7 Vanable/3
33
= ? Constant/3
**SYNTAX ERROR™™
»

7 CONSTANT/Z

« DISFLAY MEMORY
MESSAGE

HOURS. e —-
PAY RATE
VARIABLE
ANQTHER
THIRD
CONSTANT
TOTAL™

Q7 VARIABLES USED

(1 Hows it going so tar?
NL —— tQ .
(N) 1738
(N) 93
(N] 33
(N} 3
[{ot} 99
00054 BYTES USED

Entering a value into a variable automatically tells

dBASE II what the data type is.

From then on, you cannot

mix data types (by trying to divide a character string by a

number, for instance.)

RULES:

Character strings that

appear in expressions must

be ericlosed in matching single or double quote marks

or square brackets.

Character strings may contain any

of' the printable characters (ineludin;vthe space) .

If you want to use the ampersand

(&) as a character,

it must be between two spaces‘because‘it is also used
for the dBASE II macro function (described later).

dBASE ‘II...36

The- last command in the previous screen representation
is another form of “DISPLAY" that you'll find useful. (You
can also "LIST MEMORY".)

Yca can eliminate a memory variable by typing “RELEASE
<name>~, or you can get rid of’ all the memory variables by
typing "RELEASE ALL".

Type the following (you may want to “ERASE™ the screen

first):

“DISPLAY MEMORY"
“RELEASE Another”
“DISPLAY MEMORY"
“RELEASE ALL"

“DISPLAY MEMORY"

Tip: When naming .any variables, try to use as many
characters as necessary to make the name meaningful to
humans.

Another ‘tip: If you use only nine characters for database
field names, when you want to use the name as a memory
variable, you can do so by putting an "M" in"front of .
1t. What it stands for will be clearer when you come
back to clean up your programs later than if you
invented a completely new and gifferent name.

dBASE II...37

dBASE II operators

Operators are manipulations that dBAsé 11 performs on
your data. Some of them will be familiar; others may take a
bit of practice.

Arithmetic operators should be tne most familiar.
They generate arithmetic -results.
) : parentheses for grouping-
¢ multiplication '
¢ division
¢ addition
: subtraction

N~

The arithmetic operators are evaluated .in a
sequencé of precedence. .The order is: parentheses; multiply
and divide; add and subtract. When the operators have equal
precedence, they are evaluated from left to right. . Here are -
_some examples:

17/33%T2 + 8 = 45.09 (divide, multiply then add)
17/(33#72 +8) =-0.00644 (multiply,add then divide)
17/33%(72 +8) = 41.21 (divide, add then multiply)

.~ Relational operators make comparisons, then generate
logical results. They take action based on whether the
comparison is True or False.

: less than
: greater than
: equal to
<>’: not equal to
¢ less than or equal‘to
H ;real:er than or equal to

Type the following:

“USE Names”)
“LIST POR Zip:Code <= '70000°'"
“LIST FOR Address <> '123*"
" "LIST FOR Name = 'HOWSER'"

= LISTFOR 2ig Coce- 70000

OO0C3 DESTRY RALPH 234 Mahogany St Deertiold FLI3441
00004 EDMUNDS Jim 392 Vicarous Way Atlanta GA30328
CO008 HCWSER. PETER 678 Dusty Rd Chicago 1L60631

00C10 JENKINS TED 210 Park Avenue New Yark NY10016

* LIST FOR Acdress - 123
CLINKER. DUANE 789 Chartes D¢ Los Angeles CA90036
DESTRY RALPH 234 Mahogany St Deertfield Fl33a4a1
EDMUNDS. JIM 392 Vicanous Way Attanta GA30128
S EMBRY ALBERT 345 Sage Avenue Palo Alta CA94303
FORMAN ED © 456 Boston St Dsllas TX75220
T GREEN.TERRY 567 Doheny Or. Haollywood CA900346
HOWSER PETER 678 Dusty Rd Chicago 1LB0631
INDERS PER 321 Sawtelie Blvd Tucson . A28S702
00010 JENKINS TED 210 Park Avenue New York NY10018
* LIST FOR Name = HOWSER [
00008 HOWSER.PETER 678 Dusty Rd Cricigo | 1W60631

dBASE II...38

The logical operators greatly expand the ability .o
refine data and manipulate records and databases.
Explaining them in depth is beyond the scope of this manual,
but if you are not familiar with them, most computer texts
have a chapter very near the bdeginning that explains their
use. They generate logical results (True or False). They
are listed-below in the crder of precedence within an
expression (.NOT. is applied before .AND., ete.):

O : parentheses for grouping
.NOT. : boolean not (unary operator)
-AND. : boolean and
.OR. : boolean or

$ ¢ substring logical operator

(substring search)

“LIST FOR (JobNumber=730 .OR. JobNumber=T731);
AND. (Bill:Date >= *791001* .AND.;
Bill:Date <= '791031')"

displays all the October, 1979 records for costs billed
against job numbers 730 and 731 (notice how the command line
was extended with the semi-colons).

If you're not familiar with logical operators, start
with the basic fact that these operators will give results
that are True or False. In our example, dBASE II asks the
following questions about each record:

1) Is JobNumber equal to 730 (T or F)?

2) Is JobNumber equal to 731 (T or F)?

'3) Is Bill:Date greater than or equal to '791001' (T or F)?

4) Is Bill:Date less than or equal ‘to *791031' (T.or F)?

dBASE II then performs three logical tests (.OR.,
.AND., .AND.) before deciding whether the record should be
displayed or not.

Parentheses are used as they would be in an arithmetic
expression to clarify operatioms and relations. Because of
the first .AND., dBASE II will display records only when
the conditions in both' parenthetical statements are true.

Evaluating the first expression, it first checks the
<Job:Number> field. If the value in the field is 730 or
731, this sub-expression is set to True. If the field
contains some other value, this sup-expreséion is False and
the record will not be displayed.

If the first sub-expression is true, dBASE II must
still check the contents of the <Bill:Date> field to
evaluate the second sub-expression. " If the contents of the
field are between .'791001' and '791031, inclusive, this
‘expression is true, too, and the record will be ‘displayed.
Otherwise, the complete expression is false and dBASE I1I
will skip to the next record, where it proceeds through the
-same evaluation.

dBASE II...39

Let's try some of this with <Names.DBF>. Type the
following:))

“USE Names")

“DISPLAY all FOR Zip:Code > 'S* _AND. Zip:Cbde < 9~
“DISPLAY all FOR Name < 'Ft”-)

“DISPLAY all FOR Address > '400' .AND. Address < '700'"
“DISPLAY all FOR Address > '400' .OR. Address < '700'"

*USE Naines
«DISPLAY alf FOR ZipCoxie > + AND. Zip-Code <. N
00066 FORMAN.ED 456 Boston Sk Datias. TX75220
00008 HOWSER. PEIER 678 Uusty Ro. Ctucago 1L6063T
00009 INDERS. PER 321 Sawteile Bivg. Tucson AZB5702
*DISPLAY sl FORNamo < F .
0000T ALAZAR. PAT 123 Crater Ra. Everett WAQ8206
00002 CLINKER. DUANE 739 Chatles Or Los Angeies CAS0036
Q0003 DESTRY, RALPM 234 Mahogsany St Deertiaid FL33441
- 00004 EDMUNDS Jim 392 Vicarous Wy Atfanta GA30328
00005 EMBRY ALBERF 345 Sage Avenue Paio Alto CA34303
« DISPLAY ali FOR Address. > 400" AND. Address << 700 . .
00006 FOAMAN ED 456 Baston St Dallas TX75220
0000T ' GREEN. TERRY 567 Ooteny Dr. Hollywood CA30046
00008 HOWSER.PETER 678 Dusty Ra. Chicago 1L60631
« DISPLAY ail FOR Addrass > 400° OR. Address. <. 700
ALAZAR. FAT 123 Crater RA . Evorett WA98206
CLINKER, DUANE 789 Chartes Dv. Los Angeles - €AS0Q36
DESTRY RALPH 234 Mahogsny St Deerholct FL33447
EDMUNDS. JIm 292 Vicanous Way. . Atlanta GA30328
EMBRY, ALBERT. 345 Snge Avenus Palo Alte, CA94303
FORMAN.ED. 456 Boston St Dailas TX75220
GREEN. TERRY 567 Doheny Or Hdllywood . CA%Q046
HMOWSER. PETER 678 Dusty Ra. > 3 ' IL60637
INDERS PER 321 Sawtelip Blvd . AZB5702
JENKING, TED 210 Park Avenue " NY10016

Notice what happened with the last command: ‘all the
records wer€ displayed, If you're not familiar with logical
operators, this kind or non-selective "selection" will have
to guarded against.

dBASE II..,.%O

! substring logical operator is extrenely useful

because of its powerful search capabilities. The format is:
“¢substring> $ <stp1ng>“

This operator searches for the substring on the left within

the string on the right. Either or both terms may be string

-variables as well as string constants. To see how this
works, type the following: - a

“USE Names"”

“LIST FOR ‘'EE' $ lh.lu
“LIST FOR °T' $ Address”
“LIST FOR 'CA' $ State”
“2 'oo' $ 'Hollywood'”

. G0 5"

s DISPLAY" .

~27 State $ "CALIFORNIA""

| 2

~USE Names
. = LIST FOR EE S Name - L
700007 ' GREEN. TERRY ° 567 Doheny Dt
S'LISTFOR 7' S Address
‘00003 " TUINKER; DUANE 789 Charles Onve
00007 ‘GREEN. TERRY 567 Doheny Ot
DOOOS - HOWSER. PETER 678 Dusty Rd.
_sUSTFOR CA'$State . ’
© 00003 CLINKER,DUANE = 789 Charlas Dnve
00005 EMBRY ALBERYT. = 345 Sage Avenue
- 00007 GREEN.TERRY - 567 Doheny Dc

.= 7°00' S "Hollywood"

duptay B -
00005 EMBRY.ALBERT ..
‘&7 State $ "CALIFORNIA™ " -
x! RN

With this function we could have, for example,
simplified the structure of our mailing list names file.’
The states could have been entered as part of the address.
To call out names within a specific state, we could have
simply typed the following, where XX is the abbreviation for
the state we want:

“<COMMAED> FOR "xx' $ Address”

Ay

dBASE II...Nt

String og!rators generate string results.

+ =z string concatenation (exact)
- = string concatenatien (moves blanks)

Concatenation is just another one of those fancy
computer buzzwords. All it really means is that one
character string is stuck on to the end of another one.
Type the following:

“USE Names”
“? Name + Address”
“? Name - Address”
“?.'The name in this record is ' + Na-e;
-~ ' and the address is '+ Address”

~ USE Names

s ?Name - Address

ALAZAR. PAT 123 Crater R
~? Name - Address .

ALAZAR. PAT123 Crater Rd :
e 7 The namen thrs record s ~ Nama. and the address s+ Address
The name in this record 1s ALAZAR. PAT and the address is 123 Crator Rd

The "+~ and "“-" both join two strings. The "plus"
sign joins the string exactly as they are found. The
"minus" sign moves the trailing blanks in a string to the
end of the string. They are not «{iminated but for many
purposes this is. enough, as they jo-not show up between the
strings being joined.

If you want to eliminate the trailing blanks, -you can
use the "TRIM" furiction. This is used by typing “STORE
TRIH((variab1e>) TO <variable>”. As an example we’

- could have typed: STGRE TRIH(Na-e) T0 (Name)” .
eliminate the blanks following the characters of the name.

To eliminate all of the trailing blanks in our:example;
we could have typed: “STORE TRIM(Name - Address) TO
Example”.

Now that we've introduced you to expressions and dBASE
II operators, we™ll continue Wwith other dBASE II commands.
We'll be giving you some practice ln using expressions and
operators as we work our way up to develppxng command files.

dBASE 1I...%2
Changing an empty database structure (MODIFY)

WARNING: = the "MODIFY" command will destroy your
database. Please follow instructions carefully.

When- there is no data in your database, the “MODIFY”
command is the fastest and easiest way to add, delete,
rename, resize or otherwise change the database structure.
This destroys any data in the database so don't use it after
you've entered data. (Later we'll show you a way to do so,
safely.) R

<MoneyOut .DBF> has no data in it yet, so we'll work
with it. A useful change:would be to rename <(JobNumber> to
<Job:Nmbr> so.that the abbreviation is consistent with
<Emp:Nmbr> and <Bill:Nmbr>. Type the following:

-

‘USE'HQneyOutiif

"LIST STRUCTURE™ ' (page 22)
“MODIFY STRUCTUGRE™ - =~
“y” : : (in response .to the question)

- use Moneytiu
» jrst strugture N ,
STHUCTURE FOR FILE: MONEYOUY.OBF
NUMBER OF RECOROS: QU000

QATE OF LAST UPDATE: 00/Q8/00
PRIMARY USE DATABASE
FLD NAME

oot CLIENT

o002 JOBNUMEBESR
003 BILL DATE
SUPPLIER

Ov‘?ﬂ-ﬁg
m
§
Q
8

5%
GEEE:

¢

EMPNMBA
AMOUNT
BILL NMBR
CHECKNMBR
CHECK DATE
“TOTAL™

88

§
BRERE

005 e BESCRIR et Goooonenreo. ~ 01 Gt e
N
c
L3
c
c
c

g
- Q
o
&

§

u
MODIFY ERASES ALL DATA RECOROS . PROCEEDTNUN) ¢

dBASE II erases the screen and lists the first 16 (or
fewer) fields in the database. Use “Ctl-X" to move down one
field. Just type in the new field name over the old one
(use a space to blank out the extra letter).

You can exit “MODIFY” in either of two ways: ctl-W
changes the structure on disk, ther resumes normal dBASE II
operation ("¢ct1-0% for Superbrain). ctl-Q quits and
returns to normal dBASE II operation without making ghe
changes. This actually gets you back without destroying the
database, but play it safe and have a backup file (see next
page).

dBASE II...h3

puplicating databases and structures (coPY)

Duplicating a file without going back to your computer
Type the following:

operating system is straightforward.

“USE Names”

“COPY TO Temp”

“USE Temp~

“DISPLAY STRUCTURE"
“LIST®)

ALAZAR PAS
BROWN LGHN

3 CUINKER DUANE
OESTHY RALFH
EMBRY ALBERT
FORMAN. ED
GREEN TEHHY
HOWSFR. FETER
INCERS. PER
JENK.NS TED

Warning: When you ‘“COPY” to an existing filename, the file is
Narnling

123 Craier Rg
45€ Minnow P
789 Crare, D
234 Mahogoay Su
345 Sage Avenue
456 Baston St
567 (oheny Tr.
€78 Dusty Ra

321 Sawtenie Bivd
210 Park Avenue

WIOTH
00
Q25
026
002
oGy

20073

Cverett = WASB20t
Burtinglon MAO1730
Los Angmas CA900I6
(OearfiohY

T Palo A

Uetias
Hoily wexns
Crnicago
Tueson
New Yore

written over and the old .data is destroyed.

~00PY TO TEMI'" created a new database called <Temp.DBF>.

It

is identical to the Gme;.pBF’),‘with the same structure and the
same data. The command can be expanded even further:

~“COPY TO <filename> [STRUCTURE] [FIELD 1list}

With this command, you can copy only the structure or
some of the structure to another file. Type the following:

“USE Names”

“COPY TO Temp STRUCTURE"

“USE Temp~

“DISPLAY STRUCTURE"

use mame
CORY ST AL e
use tem,

drsplay structur
<TRUCTURE FOR Fh s TEMP DBY
NUMBER OF RECORDS 00000
«afe QF LAST UPDAT.

dBASE II...u%4

'He can copy a portion of the structure by listing oniy
the fields we want in the new database. Type:

“USE Names”

“COPY TO Temp STRUCTURE FIELDS Name, State”
“USE Temp”

“DISPLAY STRUCTURE"

- use names
* Copy structure to temp tields name, state
= uyse temp

« disptay structure
STRUCTURE FOR FILE TEMP DBF
NUMBER OF RECORDS. 00GOQ

DATE OF LAST UPDATE. 00/ 00,00

PHIMARY USE DATABASE

RO NAME TYPE WIOTH DEC -

oot NAME < 020

002 STATE - C 002

“*TOTAL " 00023 -

FOR ADVANCED PROGRAMMERS: COPY can also be used to give
your program access to a'database structure. Type:.

“USE Rames”
“COPY TO New STRUCTURE. EXTENDED"
“USE New”
“LIST"

- Jse &Jm%
* copy to New structure extended
00006 RECORDS COPIED
- use nuw B
— s displaystructure.. ...
STRAUCTURE FOR FILE: NEW. D
NUMBER OF RECORDS: 00006
DATE OF LAST UPDATE: 00/00/00
PRIMARY USE DATABASE
FLD NAME TYPE wIDTH
FIELO:NAME [+4
FIELD:TYPE c
RELDLEN N
FIELD:DEC N
*YOTAL™
*list

NAME
ADDRESS
Ty

STATE
ZiP-CODE
CUSTCODE

(~X-N-R-X-N-]

The <New.DBF> database reccrds describe the <Names> database
structure, and an application program has direct access to
this information (see Review.CMD, Section.VI).

Alternatively, a file with the same structure as
<New.DBF> could be embedded in a program so that. the
ooperator could enter the structure for a file without
learning dBASE.II. The pragram would then create the
database for him with the following command: :

“CREATE <datafile> FROM {stﬁucturefile)‘

5

44*_l----IIlIIIllllllllllllllllllllllllllIlll.||.........................l

ABASE II...45

Adding and deleting fields with data in the database

As you expand the applications for dBASE II, you'll
probably want to add or delete fields in your databases.

“MODIFY STRUCTURE" alone would destroy all the data
in your database, but used with “COPY” and “APPEND®, it
lets you add and delete fields at will.

The strategy consists of copying the structure of the:
database you want to change to a temporary file, then making
your modifications on that file. After that is done, you
bring in the data from the old file into the new modified
structure.

As an example, we'll use our <{Names> file and our
<Orders> file. At some point, it would be useful to list
the orders placed by a given customer. This'could be done
easily by adding a customer number field to <Names> file to
match the field in the <Orders> file. To do so without
destroying the records we already have, type the. following:

“USE Names”

“COPY TO Temp STRUCTURE"
“USE Temp”™’
“MODIFY STRUCTURE"
“y*° (n answer to the prompt.

Use the Full Scréen Editing features to move down to
the first blank field and type in the changes in the
appropriate columns (name is "CustNmbr"™, data type is "C",
length is 9). Now type “ctl-W" (“ctl1-0" with Superbrain)
to save the changes and exit to the dBASE 1I dot prompt.

“DISPLAY STRUCTORE" to make sure that it's right. If
it is we can add the data from <{Names> by typing:

“APPEND FROM Names”

We could also have changed field sizes: the “APPEND”
command transfers data to fields with matching names. '

« display structure

STRUCTURE ©OR FILE: TEMP.DRF
NUMBER OF RECORDS: 00010 E
DATE OF LAST UPDATE: 00/00/0Q

dBASE I1...46

Our mew file <Temp> should now have the new field we
wanted to add and all of the old dsta. “DISPLAY
STRUCTURE™ then “LIST" to make sure that a power line
glitch or a bad spot on the floppy hasn't messed anything
up.

If the data got transferred correctly, we can finish up
by typing:)

“COPY TO Names
“USE Names"

The TCOPY" command writes over the old structure and
data. After displaying and listing ‘the new <(Names)> file,
'You can “DELETE FILE Temp™.

To summarize, the procedure can be used to add or
delete fields in a database in the following sequence:

“USE <oldfiled>*

“COPY TO <newfile> STRUCTURE"
“USE <newfile>"

“MODIFY STRUCTURE" ,

“APPEND FROM {oldfile>"

“COPY TO <oldfile>"

s use hamey
< *Opy 10 temp structuer
s use lemp
& modity structure
MODt Y TRASES ALE DATA HECORDS PROCEED
"
o v mm————— e
T easnend trom vames
OC("0 HECORI,5 ADDED

* copy 10 names
COL:0 RECORDS COP!E D

* uie names

* display strugture

STRUCTURE FOR FILE: NAMES LgF

NUWwBER OF RECO~D® 60010

CATE OF LAST UPDATE. 0000 00

PRIMARY USE DATABASE

L0 NAME E WIDTH ocC
NAME [o740) '
ADDRESS Q25

CITY

STATE

ZIP-CODE

CUSTNMBR

«TOTAL""

44__llI-IIIlIllIIIllIlIlIlllllIll!lII!!!!!!!!!!!lIl!!!!!I!!!!!!lllllllllllllll

dBASE II...A7

Dealing with CP/M and other 'toroign' data files (lore
on COPY and APPEND)

dBASE II information can be changed into a form that is
compatible with other processors and systems (BASIC, PASCAL,
FORTRAN, PL/1, etc.). dBASE II can also read data files
that have been created by these processors.

With CP/M, the standard data format (abbreviated as
SDF in dBASE II) includes a carriage return and line feed
after every line of text. To create a compatidle data file
(for wordprocessing, flor example) from one of your
databases, you use another form of the "COPY" command.
Type:

“USE Names”
“COPY TO SysbData SDF”

This command creates a file called <{SysData.TXT>. Now
“QUIT" dBASE II and use your word processor to look at the
file. You'll find that you can work with it exactly as if
you had created it under CP/M.

The Standard Data Format also allows dBASE II to work
with data from CP/M files. However, the data must match the
structure of the database that will be using it.

If we had used a wordprocessor to create a file called
{NewData.TXT>, we could add it to the <Names.DBF> file with
this command. NOTE: the spacing of the data must match the
structure of the database. If the <NewData,TXT> file
contained the following inforuation:

FREITAG, JEAN 854 Munchkin Ave. Houstcn TXTT7006
GOULD, NICOLE 73 Radnor ¥Way Radnér PA19089
PETERS, ALICE 676 Wacker Dr. Chicago . 1L60606
GREEN, FRANK 431 Spicer Ave. Tampa FL33622

(20) (25) (20) (2) (5)

we would add it to the <Names> file by typing thevrollowingn

“USE Names”
“APPEND. FROM NewData.TXT SDFP”

Adding data to an existing file from a system file
takes only seconds.

dBASE II...u8

The procedure is similar if your "foreign" files use
different delimiters. A common data file format uses commas
between fields and single quotes around strings to delimit
the data. To create or use these types of data.files, use
the word DELIMITED instead of SDF. To see how this works,
type:

“COPY TO Temp DELIMITED"

then go back to your operating system to look at your data.

If your system has a differe.t delimiter, you can :
specify it in the command: “DELIMITED [VITH <delimiter>]~
(do NOT type the "<" and "y 'symbols). If your system uses
only commas and nothing around strings, use: “DELIMITED
WITH ,".

The full forms of “COPY" and “APPEND" for working
with system data files are:

[spr]
COPY [scope] TO <filename> [FIELD list] [STROUCTURE] [FoOR {expression>]
[DELIMITED [WITH <delimiter>]]

APPEND FROM <filename.TXT> [SI_] [FOR <expression>]
[DELIMITED [WITH <delimiter>]]

Both commands can be made selective by using a
conditional expression, and the scope of “COPY" can be
specified as for other dBASE II commands.

NOTE: While dBASE II automatically generates extensions for
files it creates, you must specify the ".TXT" filename
extension ‘when APPENDing from a system data file.

NOTE: With the APPEND command, any fields used in‘the
<expression> must exist in the database to which the
data is being transferred.

dBASE II...H49
Renaming database fields with COPY and APPEND

As we sad earlier, "APPEND" transfers data rrom one
file to another for matching fields. If a field name in the
FROM file is not in the file in USE, the data in that t'ield
will not be transferred. :

However, the full form does allow you to.transfer only
data, and we can use this feature to rename the fields in a
database. If we wanted to rename <CustNmbr> to <CustCode>:
in <Names.DBF>, we would type:

“USE Names".)

“COPY TO Temp SDF”™ (data only to Temp.TXT)
“MODIFY STRUCTURE"

“APPEND FROM Temp.TXT SDF~ - (after changing field name)

Now when you “DISPLAY STRUCTURE®, the last field will
be called <CustCode>. Don't forget to change the name of
the <CustNmbr> field in our <Orders> database so that the
fields match.

' eusenames
4 copy to temp sdt
00015 RECORDS COPIED
* modify structure
MODIFY ERASES ALL DATA RECORDS...PROCEED?

(YIN) Y

« appond {rom temp TXT sdt
00015 RECORDS ADDED

Data in a <.TXT> file created by using the SDF (or
DELIMITED) option is kept in columns that are spaced like
the fields were in the original file. While you can edit a
<.TXT>. file with your word processor, this can-be dangercus:

Warning: Do not change field positions or s;zes: the~
data you saved is saved by position, not ‘byv name! If
you. change the field sizes when you modify the
structure, you will destroy your database when you
bring the saved data back into it.

When you "COPY" data to a <.TXT> file, you can use the
full command tq specify the scope,l fields and conditions
(see earlier explanation). ~3

dBASE II...50

Modifying data rapidly (REPLACE, CHANGE)

Changes can be made rapialy to any or all of the
records using the following command:

“REPLACE [scope] <field> WITH <data> [, <field> WITH
<datad,...]
' [FOR <expression>]”

This is an extremely powerful command because it
REPLACES a "<field-that-you-name> WITH <whatever-you-write-
in-here>". You can REPLACE more than one field by using a
comma after the first combination, then listing the new
ffelds and data as shown in the center braciets.

The "data" can be specific new information (includins
blanks), or it could be an operation, such as deducting
state sales tax from all your bills because you have a
resale number (REPLACE all Amount WITH Amount/1.06).

You can also make this replacement conditional by using
the FOR and specifying your condition® as an expression.

To show you how this works, we need to add. some data to
both the <Names> and <Orders> database files. .

First, "USE Name” then type "EDIT 1°. Now enter a
*1001" in the <CustCode> field, using the full screen
editing features to get into position. Use “etl-C" to move
on to the next record when you are finished customer codes
should be entered as four-digit numbers, with the record
number as the last two digits (1001, 1002, 1003, etc.)

Now “USE Orders” and “APPEND” the following order
information (do not type the column headings):

(Cust) (Item) (Qty) (Price)”

1012 38567 5 .83"
~“1003 83899 34 .12°
1009 12829 7 .17
1012 73833 23 1.47°

“USE Orders”
“REPLACE All Amount WITH Qty®*Price
“LIST"

suseOrders -

« replace ail amount witly gly*price
00004 REPLACEMENT(S)

« kst

You'll also find “REPLACE” useful in command files to
fi1l in a blank record that you have appended to a file.
Data from memory variables in your program is frequently
used to fill in the blank fields.

dBASE II...51

Changes to a few fields in a large number &f records can
also be made rapidly by using:,

“CHANGE [scope] FIELD <1ist> [FOR. <expressien>]”

The 'séope! is the same as for other dBASE II commanas.
At least one field must be named, but several field names
can be listed if separated by commas., This command finds
the first record that meets the conditions in the
"expression", then displays the record name and contents
with a prompt. To change the data in the field, type in the
new iriformation. To leave it the way it was, hit <enter>.
If the field is blank and you want to add data, type a
space. .

Once you have looked at all the listed fields within a
record, you are presented with the first field of the next
record that meets the conditions you set. - To return to
dBASE II, hit the “ESCAPE" key.

RO

> crange feld cuntcoce
RECOID 0CONt

cusTcAoE)

CHANGE? = (ENTER A SPACF YO CHANGE AN EMPTY FIELD)
T3 ' 100t -

CUSTCODE 1001 |

CHANGE ™ - enter

RECORD 00002

" CUSTCODE.
CHANGE?

dBASE II...52

Organizing your databases (SORT, INDEX)

Data is frequently entered randomly, as it was in our
{Names> database. This not necessarily the way you want it.
so dBASE II includes tools to help you organize ydur
databases by SORTING and INDEXING it.

INDEXED files allow you locate records quickly
(typically within two seconds even with floppy disks).

Files can be sorted in ascending or descending order.
The full command is:

“SORT ON <fieldname> TO <filename> [DESCENDING]

The <fieldname> specifies the key on which the file is
sorted and may be character or numeric (not logical). The
sort defaults to ascending order, but you can over-ride this
by specifying the descending option.

To sort on several keys, start with the least important
key, then use a series of sorts leading up to the major key.
During sorting, dBASE II will move only as many. records as

it must.
To sort our <Names> file so that the customers are in

alphabetical order, type:

“USE Names”

“SORT ON Name TO Temp"
“USE Temp”

“LIST®

“COPY TO Names”

0000 AR, P < "
00002 BRO 0 6 Niinng Burfingio O17301002
00003 Ct RO 89 Chu D o g 900361(

D000 D RY, A p 234 Mahogsny S D

0000 BRY, ALBER 5 Sege
00006 ORMA ED 158 Bosto Dals

0000 REITAG, JES
00008 OULD 0

00009 R : g

DOO ED HO Pad

WARNING: Do not SORT a database to itself. A
povwer line "glitech"™ could destroy your entire database
if it came along at the wrong moment. ’

Instead, sort to a temporary file, then “COPY" it back
to the original file name after you've confirmed the data.

dBASE II...53

A database can also be INDEXED so that it appears to be
sorted. The form of the “INDEX" command is:

“INDEX ON <key (variabdble/expreasion)> TO <index filename>"

This creates a file with the new name and the extension
<.NDX>. Only the data within the "key"” is sorted, although
it appears that the entire database has been sorted. The
key may be a variable name or a complex expression up to 100
characters long. It cannot be a logical field. To organize
our customer database by ZIP code, type:

“USE Names”)

“INDEX ON Zip:Code TO Zips”
“USE Names INDEX Zips”
“L1sTr”

We could also index our database on three keys by typing:
“INDEX ON Name + CustCode + State TO Compound”

Numeric fields used in this manner must be converted to
character typs. If CustCode were a numeric field with 5
positions and 2 decimal places, “STR” function (described
later) performs the conversion like this:

“INDEX ON Name + 3TR(CustCode,5,2) + State TO Compound”

To take advantage of the speed built into an INDEX
file, you have to specify it as part of the "USE" command:

“USE <Batabase name> INDEX <index filenamed>"

_Positioning commands (GO, GO BOTTOM, etc.) given with
an INDEX file in use move 'you to positions on the index,
rather than the database. "GO BOTTOM", for example, will
position you at the last record in the index rather than the
last record in the database.

Changes made to key fields when you “APPEND", “EDIT",
“REPLACE” or “PACK” the database, are reflected in the
index file in USE.

Other index files for your database can be
updated by typing: “SET INDEX TO <index File
1>, <index File 2>, :;..<index File a>". Then
perform your “APPEND”, "EDPIT", etc. All named
index files will now be current.

A major benefit of an INDEXED file is that it allows
‘you to use the “FIND” command (described next) to locate
records in seconds, even with large databases.

dB‘sE u"'su
Pinding the info tion you want (FIND, LOCA

If you know what data you are looking for, you can use
the FIND command (but only when your datatase is indexed,
and the index file is in USE). A typical FIND time is two
seconds with a floppy disk system.

Simply type FIND <character string> (without quote
marks), vhere the "character string” is all or part of the
contente of a field.

This string can be as short as you like, but should be
long emough to make it unique. "th", for example, occurs in
a large number of words; "theatr® is much more limited.
Type the following:

“USE Names INDEX Zips”

“DISPLAY Next 3°

* US © nanTes ITdex iy

- i 10
-aspfay .
U013 JENKINS TED NYtCO'GIgIC

et 9
e doptay |
COCO3 CLINKER, IUANE

ocnsptaywexs3 . o ol U
00003 CLINRER. DUANF:

001G GHEEN. TERRY

00005 EMERY, ALWNERT

If the Kkey is not unique, dBASE II finds the first
record that meets your specifications. This may or may not
be the one you're looking for. If no record exists with ‘the
identical key that you are looking for, dBASE II displays
BO FIND.

. “FIND“ can also be used with files that have been
INDEXED on multiple keys. The disadvantage of a compound

key (which may not be a disadvantage in your application) is
that it must bde used from the left when you access the data.
That is, you can access the data by using the FIND command
and just the Name, or the Name and CtistCode, or all three
fields, but could not access it using the State or CustCode
alone. To do {hat, you would either-tidve to use the LOCATE
command (next), or have another file indexsd on the State
field as the primary key.

dBASE II...55
When looking for specific kinds of data, use.
“LOCATE [scope] [FOR <expression>]”

This command is used when you are. looking for specific
data in a file that is not indexed on the key you are
interested in (file is indexad on zip codes, but you're
interested in states, etc.)

If you want to search the entire database, you do not
have to specify the scope, as "LOCATE” starts on the first
record. To search part of a file, use “LOCATE Next
<aumber>”. The search will start at the record the pointer
is on and look at the next "number" of records. If this
would move the pointer past the end of the file, LOCATE
examines every record from the pointer position to the end
of the file.

If you are looking for data in a character field, the
data should be enclosed-in single quotes. Type the
following:

“USE Names”

“LOCATE FOR Name='GOU'"

“DISPLAY"

“LOCATE FOR Zip:Code>'8' .AND. Name < 'G'"
“DISPLAY Name, Zip:Code”

If a record is found that meets the conditions in your
expression, dBASE II signals you with: RECORD.n. You can
display or edit the record once it is located.

If there may be more'than one record that meets your
conditions, type CONTINUE .to get the next record number.

“CORTINUE"
“CONTINUE"
“CONTINUE"

If dBASE II cannot find your record within the "scope®
that you defined, it will display: END OF LOCATE or END OF
FILE ENCOUNTERED.

® use names

» locate for Name = GOU

RECORD 00008

= aispiay

Q0008 S0QULD.NICOL € 73 Ragnor Way -

® locate tor ZipCode >8 and Name - G

RECORD 00001 :

~ display Name. Zip.Code

000Gt~ ALAZAR, PAT 38206
® continue

RECORD- 00003

ecantinue

RECORO: 000GS

* continrue

END OF FiLE ENCOUNTERED

dBASE II...56

Getting information out of all that data (the REPORT
command)

FIND and LOCATE are fine for locating individual
records and data items, but in most applications you will
want data summaries that include many records that meet
certain specifications. The “REPORT" command lets you do
this quickly and easily.

If you are using single sheets of paper in your
printer, first type "SET EJECT OFF" to turn the initial
formfeed off. Now select the database you want the report
from and create your custom report format by typing:

"SET EJECT OFF"
“USE <database>” .
“REPORT"

dBASE II then leads you through a series of prompts to
create a custom format for the report. You specify which
fields from the database you want, report and column.’
headings, which columns should be totalled, etc. The
standard defaults are 8 columns from the left edge of the
paper for the page offseh,,56 lines per page, and a page
width of 80 characters.

You can try this with the files you've created on the
demonstration disk, bdut the <Names> and <QOrders> databases
that we've used as examples so far don't have enough data in
them to really show you how powerful dBASE II can be. For
our examples from here on we will be using <MoneyOut.DBF>
and other databases that are part of an existing business
system. (The entire system is in Section VI, including
databaseé structures and the command files that run it.)

This would be a good time for you to create a database
structure that you would actually -use in your business.
Enter data in it, then substitute it for <MoneyOut> in our
examples.

*use MoneyOul

* report

ENTER REPORT FORM NAME: JobCosts

ENTER OPTIONS. M =" LEFT MARGIN, L = LINES/PAGE. W = PAGE WIOTH
" PAGE HEADING? (V/N) ¥.*

ENTER PAGE HEADING: COST SUMMARY

DOUBLE SPACE REPORT?(Y/N)n -

ARE TOTALS REOUIHEQ?(Y/N) y

SUBTOTALS IN REPORTZ (Y/NI n

COL WIDTH CONTENTS

oat 10CheckDate -

ENTER HEADING SUPP\.IER

003 = 22Descrip
" ENTER HEADING: DEscmtmon L]
- 004 12 Amount

ENTER HEADING: AMOUNT
ARETOMALS REOU!RED?{VINI ¥
.08 - <We:>

-----.-.--.""""""""""""""""'-lIIlI!l!!l----!!!!!..-!!.!!!..!!

dBASE II...57

When you have defined all the contents of the report,
hit <enter> when prompted with the next field number. dBASE
11 immediately starts the report to show you what you have
specified, and will go through the entire database if you
let it. To stop the report, @it the <escape> key.

At the same time, dBASE 1I saves the format in a fille
with the extension .FRM, so that you can use it without
having to go through the dialog again. The full form of the
command is:

“REPORT FORM <formname> (scope] [FOR <exprc§siqn>]‘t10 PRINTY
By typing '
“REPORT FORM JobCosts. FOR Job:Nmbr='770'"

we can get a listing of all the job costs for Jjob number 770
without having to redefine the format.

« REPOAT FORM JobCosts FOR Jab:Nmbr =770

PAGE NO.00001 : :) i

. H— _ 7.0 -COSTSUMMARY o LT
OATE ¢ SUPPUIER DESCRIFTION' L . BMOUNT
210113 LETTER FONT TYPE . So1TTo0 .
810113 ABLE PRINTER MAILER 60500
810113 MARSHALL, HALPH TYPE - - 3rie
810113 . MARSHALL RALPH LaYout
810113 . 'SHUTTERBUGS,INC PHOTOGRAPHY
810113 . MAGIC TOUCH © " AETOUCHING -~
~YoTAL™~ . !

You cah change the information in the heading by typing
“SET HEADING TO character string” (up to 60 characters and .
spaces, no quote marks). The "scope" defaults to ™all® when
not specified.

The expression could have been expanded with other
conditions, and the entire report could have been prepared as a
hardcopy by adding TO PRINT at the end of the command.

This -report capability can be used for just about any
business report, from accounts payable (FOR Check:Nmbr=' '),
to auto expenses (FOR Job:Nmbr='4 ') to anything else you need.

dBASE II...58

Automatic counting and summing (COUNT, SUM)

In some applications, you won't neea tc see the actual
records, but will want to know how many meet certain
conditions, or what the total is for some specified
condition (How many widgets do we have in stock? How many
are on back order? What is the total of our accounts:
payable?)

For ccunting use:

“COUNT [scope] [FOR conditions] [TO memory variabdle]”

This command can be used with none; some or all of the
modifiers.

Unqualified, it counts all the records in the database.
The "scope" can be limited tc one or a specified number of
records, and the "condition" car be any complex logical
expression (see earlier section on expressions). The result
of the count can be stored in a memory variable, which is
created when the command is executed if it did not exist.

To get totals, use: -

“SuM field(s)[scope][FOR conditionl[TO memory variable(s)]”

You can list up to 5 numeric fields to total in the
database in USE. If more than one field is to be totaled,
‘the field names are separated by commas. The records
totaled can be limited by using the "scope™ and/or
conditional expressions after the FOR (Client <> "SEM' .AND.
Amount > 10...).

If mefory variables are used (separated by commas),
remember that totals are stored based on position. If you
don't want to store the last fields in memory variables but
do want to see what the amounts are, there's no problem:
simply name the first few variables that you want. If
there's a gap (you want to save the first, third and fourth
field totals out of six), name memory variables for the
first four fields then RELEASE the asecond one after the SUM
is done.

‘= USE MoneyQut

« CQUNT FOR Amourit - 100 TO Smait
COUNT= '0qu67

* SUM Amount FOR Job. Nmbr =770 TO Cuast

1640.10
* display memary
SMALL (W) 67
COST {N) 164010
“*TOTAL"™™ 02 VARIABLES USEO 00012 BYTES USED

--------------l------I--I-II-IllIIIIIIIIIIIIIIIIIIIIIIIII

N dBASE II...59

Susmarizing data and eliminating details (TOTAL)

“TOTAL” works similarly to the sub-total capability in
the REPORT command except that the results are placed in a
database rather than being printed out:

TOTAL ON <key> TO <database> [FIELDS list] [FOR conditionsa]

NOTE: The database that the information is coming from
must be presorted or indexed on the key that is used in this
command . ‘

This command is particularly useful for eliminating
detail and providing summaries. The screen shows what
happens with our <MoneyOut> database:

“USE MoneyOut”

“IMDEX OM Job:Nmbr TO Jobs”

“USE MoneyOut INDEX Jobs”

“TOTAL ON Job:Nmbr TO Temp FIELDS Amount FOR Job:Nmbr >699;
.AND. Job:KMbr < 800"

“USE Temp” ’

“LIST"

The new database has one entry for each job number, and
a total for all the costs against that job number in our
<MoneyQut> database. One problem with the new database,
however, is that only two of the fields contain useful
information.

This can be handled with one more.command line.
“TOTAL" transfers all the fields if the database named did
not exist, but uses the structure of an existing database.
In the commands above, we could have limited the fields in
the new database by creating it first, before we used the
“TOTAL" command:

“COPY TO Temp FIELDS Job:Nmdbr, Amount”

Now when we “TOTAL" to <Temp>, the new database will
contain only the job numbers and cotals. Try it with your
database.

This same technique can be used to summarize
quantities of parts, accounts receivable or any other
ordered (SORTed or INDEXed) information.

* USE MoneyQut

= INDEX ON Job Nmbr TO Jabs

00033 RECORDS INDEXED

= USE MoneyOQut INDEX Johs

= TOYAL ON Job.Nmbr TQ Yemp PlELDS AMOUNT FOR Job:Nmbr >699;
AND. JolkNmbes <800

00025 AECORDS COMED
- USE Temp
- uST)
©00011 810129 3148 sm. 3 TYPE
810123 2633) .
00012 810123 3152 SML BACKGROUND
TONE 810129 429 . i
00013 810129 3148 SMM
810129 3003 000
00014 810124 3148 0OC
810129 2764 [T

dBASE II...60
Section II Summary

This section has broadened the scope of what you can
now do with dBASE II.

We have shown you how different operltors (arithmetic,
relational and string) can be used to modify dBASE II
commands to give you a greater degree of control over your
data than is possible with other database management
systems.

Since data structures are the basis of database
systems, we have covered a number of different ways in which
you can alter the these structures, with or without data in
the database.,

We have also shown you how to enter, alter and find the
specific information you may be looking for. We have also’
introduced new global commands that make it possible for you
to turn all that data into 1nromaeion with a single command
(cOUNT, SUM, REPORT, TOTAL).

-In- the next section, we will show you how to set up
dBASE II command files (programs), so that you can automate
your information processes.

------IIIIIIIIIIII-IIIIIlIIIII-IIIIIIl-III.lIIlIIII...............................

dBASE II...61
Section IXI:

Setting up a command file

(writing your first program).....c..ccc...... 62 MODIFY COMMAND <file>
Making choices and decisionS....ccceeseesseseeasss.. 64 IF,.ELSE..ENDIF
Repeating a ProCesS...ceecseeccrsccecscccascassssse 066 DO WHILE..
Procedures (subsidiary command files)...ciee.ev.e.. 67 DO <filed
Entering data interactively during a run........... 68 WAIT, INPUT, ACCEPT
Placing data and prompts exactly where

you want theMicesececcsscossescsvsnsesscsocsss 69 €..SAY..GET
A command file that summarizes what we've learned.. 72
Working with multiple databaseS.c.cccceccccccsacens T5 SELECT PRIMARY/SECONDARY
Generally useful system commands and functions..... 76
A few words about programming and planning

your command fileS..ccccececcescvscccscocosse T

If you understand how to write expressions, you are
very close to being able to write programs.

‘There are four basic programming structures that
you can use to get a computer to do what you want to do:

Sequence
Choice/Decision
Repetition
Procedures

You've already seen that dBASE II processes your
commands sequentially in the order in which you give' them.
In this section we'll explain how you make choices
(IF...ELSE), how you can make the computer repeat a
sequence of -commands (DO WHILE..), and how to use sub-files
of commands: (procedures).

Then we'll show you how to use these simple tools to
write command files (programs) that will solve your
applications problems. -

.

m} n.v..&
Setting up a command file (writing your first program)

The commands we've introduced so far are powerrul ang
can accomplish a great deal, yet' only scratch the surfaes of
the capatilities of dBASE: II. The full power comes into ‘
play vwhen you set up command files so that the commands you
enter onde can be repeated over and over.

When you create a command file you are programaing the
computer, but since dBASE II uses English-like oommands,
i{t's a lot ‘simpler than it sounds. Also, because dBASE II
ds a relational database management system, you work. with
increments of data and information, rather :.than bits and
bytes.

To set up. a command file, you list the commands you
want performed in a CP/M file with a <.CMD> extension to
its name, using a text editor or word processor.

dBASE II starts at the top of the list and processes
the commands one at a time until it is done with the list.

Other. computer larguages operate exactly the same way.
In BASIC the sequence is very.visible because each program
line is numbered. In other languages (dBASE II among them),
the sequence is implied and the computer will process the
first line on the page, then the second line,.etc. Some
languages use separators (such as colons) between command
statements; dBASE II simply uses‘'the carriage return to
terminate the command line.

The only time the sequence. is not ‘followed is when the
computer is specifically told to go and do something else.
Usually, this is based on some other conditions and the
computer must make a decision based on expressions or
conditions that you have set up .in the command file. We'll
tell you more about this later.

For -now, let's create a command file called <Test>,:
You can do this using a text editor or wordprocessor,
but there's an easier way with dBASE II. Type:

“MCDIFY COMMARD Test”

dBASE II now presents you with a blank screen that you can
write into using the full screen editing features described
earlier. Use them now to enter the short program at the top
of the next page (do not type the "“" symbols)..

The end of a line indicates the end of a command
(unless you use a semicolon), so keep the list of commands
as shown on the next page.

dBASE II...63

“USE Names”

~COPY Structure TO Temp FIELDS Name, ZipCode

“USE Temp”

~“APPEND FROM Names®

“COUNT FOR Name = 'G' TO G

“DISPLAY MEMORY"

~? 'WYe have just successfully completed our first command file.'

When you're finished, use clt-W (ct1-0 with Superbrain) to
get back to the dBASE II prompt. Now type:

A> “dBASE Test”

If you typed the program in exactly the way it was
printed, it crashed. Now type “MODIFY COMMAND Test”
again and insert a semi-colon to correct the <(Zip:Code>
field name.

Once you get to writing larger command files of your
own, you'll find that this built-in editor is one of the
most convenient features of dBASE II, since you can write,
correct and change programs without ever having to go back
to the system level of the computer. Currently, this
built-in editor can back up only about 5,000 lines, so
editing should be planned in one direction for larger files.

The command file itself is trivial but does show you
how you can perform a sequence of commands from a file
with a single system command. This is similar to the way
you use .COM files in your operating system,

If you are already in dBASE II (with the dot prompt),
you type:

. “DO <filename>”

where' <filename> has the <.CMD> extension.

TIP: You may want to rename the main dBASE file to
<D0.COM>, so that you can type “DO <filename>" whether
you're in your system or in dBASE II. To do this with
CP/M, type: A> “REN DO.COM=dBASE.COM"

dBASE II...64

Making choices and decisions (IF..ELSE)

Choices and decisions are made in dBASE II with
“IF..ELSE..ENDIF~. This is used much as it is used in
ordinary English: IF I'm hungry, I‘1l eat, (OR) ELSE I
won't. With a computer, you use the identical construction,
but do have to use exactly the words that it understands.

Simple decision: If only a single decision is to be
made, you can drop the ELSE and use this form:

IF condition [.AND. cond2 .OR. ocond3]
do this command
(emd2)
|

"ENDIF

The "condition" can je a series of expressions (up to a
maximum of 254 characters) that can be logically evaluated
“to being true or false. Use the logical operators to tie
them together. Using our <MoneyOut> file, we might set up
the following deecision:

IP Job:Nmbr = f730' .AND. Amount. > 99.99;
.OR.” Supplier = 'MAGIC TOUCH'; :
<OR. Bill:Date > '791231' .-

do this command
(emd 2]
...

ENDIF. .

If all the conditions are met, the computer will
perform the commands listed between the IF and the ENDIF
(in sequence), then go on to the next statement ‘following
the ENDIF. If the conditions are not met, the computer
skips to the first command ‘following the ENDIF.

Two choices: If there are twq alternate courses of
action that depend on the condition(s), use the IF..ELSE
statement this wav:

IF condition(s)

do command(s) 1
ELSE :

do command(s) 2
ENDIF

The computer does either the first set of commands or the.
second set of commands, then skips to the command following;
the ENDIF.

dBASE II...65

Multiple choice: Frequently, you have to make a
choice from a list of alternatives. An example might be a
the use of a screen menu to select one of Several different
procedures that you want to perform. In that case, you use
the IF..ELSE..IF construction.

This is the same IF..ELSE that we've described, but
you use it in several levels (called "nesting"), as shown
below.

IF conditions 1
do commands 1
ELSE
IF conditions 2
do commands 2

IF conditions 3
do commands 3

ENDIF 3
ENDIF 2
ENDIF 1

This structure can be nested as shown as far as it has
to be to choose the one set of commsnds required from the
list of alternatives. It is used frequently in. the working
accounting system at the end of Part I.

Notice that each IF must have a corresponding ENDIF or
your program will bomb.

TIP: dBASE II does not read the rest of the 1ine after an
ENDIF, So you can add in any identification you want
to, as we did above. It helps keep things straight.

dBASE II...66

Repeating a process (DO WHILE..)

Repetition is one of the major advantages of a
computer. It can continue with the same task over and over
without getting bored or making mistakes because of the
‘monotony. This is handled in most computer .languages with
the DO WHILE construction:

DO WHILE conditions
do command(s)
ENDDO

While the conditions you specify are logically true,
the commands listed will be performed.

Tip: Remember that these commands must change the
conditions eventually, or the loop will continue
forever.

‘When' you know how many times you want the process
repeated, .you use the structure like this:

STORE 1. TO Index # Start counter at 1
DO WHILE Index < 11 # Process 10 records
TF Item = ' ' * If there is no data,
SKIP ® skip the record and
“LOOP - # go. back to the DO WHILE,
'ENDIF blank- * without doing ProcessA
DO ProcessA * Do file ProcessA.CMD
]

STORE Index+1 TO Index
ENDDO ten times

Increase counter by 1

In this example, if there is data in the <Item> field,
the computer performs whatever instructions are in another
command.file called ProcessA.CMD, then returns to where it
was in this command file. It increases the value of the
variable Index by 1, then tests to.see if this value is less
than 11. If it is, the computer proceeds throqgh the DO
WHILE instructions again. When the counter passes 10, the.
computer skips the loop and performs the next ihstruction
after the ENDDO.

The LOOP instruction is used to stop a sequence and
cause the computer to go back to the start of a DO WHILE
that contains the instruction.

In this case, if the Item field is blank, the record is
not processed because the LOOP command moves the computer
back to the DO WHRILE Index < i1. The record with the blank
is not’counted, since we bypass the command line where we
add 1 to the counter.

The problem with LOOP is that it short-circuits
program flow, so that it's extremely difficult to follow
program logic. The best solution is to avoid the LOOP
instruetion entirely.

dBASE II...67

Procedures (subsidiary command files)

The ability to create standard procedures in a
language greatly simplifies programming of computers.

In BASIC, these procedures are called sub-routines. In
Pascal and PL/I, they are called procedures. In dBASE II
they are command files that can be called by a program that
you write. -,

In our previous example, we called for a procedure when
we said DO _ProcessA. - "ProcessA"™ is another command file
(with a .CMD extension to its name). The contents of this
command file might be:

IF Status = M
DO PayMar
ELSE
IP Status = S
DO PaySingle

ELSE)
IF Status = d
DO PayHouse
ENDIF
ENDIF
ENDIF
RETURN

Once again, we can call out further procedures which
can themselves call other files. Up to 16 command files may
be open at a time, so if a file is in USE, up to 15 other
files can be open. Some commands use additional files
(REPORT, INSERT, (QPY, SAVE, RESTORE and \PACK use one
additional file; SORT uses two additional files).

This is seldom a limitation, however, since any number
of files can be used if they are closed and no more than 16
are open ag any time.

A file is closed when the end ‘of the file is reached,
or when the “RETHRE" command is issued by a command file.
The RETURN command returns control to the command file that
called it (or to the keyboard if the file was run directly).

The RETURN command is not. always strictly necessary,
as control returns to the calling file when the end of a
file is encountered, but it is good programming practice to
insert it at the end of all your command’ files.

#Big tip¥*: Notice that the command lines are indented in
our examples. This is not necessary, but it increases
command file clarity tremendously, espeécially when you
have nested structures within other structures. Using
all uppercase for the commands, and both upper- and
lowercase for the variablés helps, too.

dBASE II...68

Entering data interactively during a run (HAIT INPOT,

ACCEPT)

For many applications, the command files will have to
get additional -data from the operator, rather than just
using what is in the databases.

You command files ‘can be set up so that they prompt the
operator with messages that indicate the kind of information
that is fieeded. One good example is a menu of functions:
from which one is selected. Another use might be to help
ensure that accounting data is entered correctly. The
following commands can do this.

“WAIT {TO memory variablel]”

halts command file processing and waits for a
single character input from the keyboard with a
WAITING prompt. Processing contlinues after any key is
pressed (as with the. dBASE II DISPLAY command).

If a variable is also specified, the input
character is stored in it. If the input is a
non-printable character (<enter>, control character,
etc.), a blank is entered into the variable.

“INPUT ['prompt'] TO memory variable”

accepts any data type from the CRT terminal to a
named memory variable, creating that variable if it did
not exist.

If the optional prompting message (in single or
double quotes, but both delimiters the same) is used,
it appears on the user terminal followed by a colon
showing where the data is to be typed in. The data
type of the variable (character, numeric or logical) is
determined by the type of data that is entered.
Character strings must be entered in quotes or square
brackets.

“ACCEPT ['prompt'] TO memory variable”

. accepts character data without the need for
-delimjters. Very useful for long input strings.

Tips on which to use when:

"WAIT can be used for rapid entry (reacts instantly to
an input), but should not be used when a wrong
entry can do serioqus damage to your database.

ACCEPT is useful for long strings of characters as it

‘does not require quote marks. It should also
be used for single character entry when the
need to hit <enter> can improve data integrity.

"INPUT accepts numeric and logical data as well as

characters, can be used like ACCEPT.

-lIIlIIlIIlIlIIIIII-IlllIlllIIlIIlIIlllIllIlIIIllIlIllIIIllIIIIIlIIlIllllllllllllll.llll.ll..

dBASE II...69

Placing data and prompts exactly where you want them
(@..31Y..GET)

The “?°, “ACCEPT” and “INPUT" commands can all be
useu to place prompts to the operator on the screen.

Their common drawback for this purpose is that the
prompts will appear just below the last line already on the
screen. This works, but there's a better way.

If your terminal supports X-Y cursor positioning,
another dBASE II command lets you position your prompts and
get your data from any position you select on the 3creen:

“@ <Ccoordinates> [SAY <'prompt'>]}"

This will position the prompt (entered in quotes or
square brackets) at the screen coordinates you specify. The
coordinates are the row,and 'column on the CRT, with 0,0
being the upper left-hand "home" position. If we specified
*g,34" as the coordinates, our prompt would start on the
10th row in the 35th column.

Note: If you installed half intensity or reverse
video, the prompt will be at half intensity or in reverse
video. To disable this, re-do the installation procedure
and use the "Modify/Change" option.

The SAY.. is optional because this command can also be
used to erase any line (or portion of a line) on the screen.
Bring dBASE TI up and type:

“ERASE"

“@ 20,30 SAY ‘*What?'”

“e@ 5,67 SAY ‘Here...'"

“€ 11,11 SAY "That's all.*”
“e 20, 0

e 5, 0"

e 11.16°

Instead of just showing a prompt, the command can be
used to show the value of an expression with one or more
variables. Tre form is:

“@ <coordinates>[SAY <expression>]
Type the following in dBASE II:

“USE Names”

“@ 13,9 SAY Zip:Code

“€¢ 13,6 SAY State

“sxip 3°

“@ 23, 5 SAY Name ¢+ ', ' + Address

dBASE II...T70

The command can be expanded further to show you the
values of variables being used (memory variables or field
names in a database) at whatever screen position you
specify. (The variables used by both GET and SAY must
exist before you call them out or you will get an error.) .

~@ <coordinates>[SAY <expression>][GET <variable>]

To see how this works, type the following (do NOT QUIT dBAS!
when you're done--there's more to come):

“ERASE"

“USE Names”.

“@ 15, 5 SAY 'State' GET State

“@ 10,17 GET Zip:Code

“@ 5, 0 SAY 'Name' GET Name
(Stay in dBASE)

This sequence has positioned the values of the
variables (with and without prompts) at various places on
the screen., With this facility, you can design your own
input forms so that the screens that your operator sees will
look just like the old paper forms that were used before.

To get data into the variables on the screen at your
chosen locations, type:

“READ”

The cursor positions itself on the first field you
entered. - You can now type in new data, or leave it the way
it was by hitting <enter>. When you leave this field, it
goes to the second variable you entered.

Change the data in the remaining two fields. When you
finish with the last one, you are back in dBASE II. Now
type "DISPLAY". The record now has the new data you
entered.

As you can see, GET works somewhat like the INPUT and
ACCEPT commands. It is much more powerful than either
because it allows yocu to enter many variables.

A database may have a dozen or two fields (up to 32),
but for any given data entry procedure, you may be entering
data in only half a dozen of those. . Rather than using
APPEND, which would list all the fields in the’ database on
the screen, you can use "APPEND BLANK" to create a record
with empty fields, then GET only the data you want.

Our <Names> file is not a good example (the accounting
.system at the end of this section is better), but we can us
it fo show how to selectively get data into a datatase with
a large structure.

]

dBASE II...T1

To give you more practice with command files, create a
file called <Trial.CMD> with the following commands in it:

“ERASE”"

“? 'This procedure allows you to add new records to
the'”

“? 'NAMES.DBF database selectively. We will be
adding'”

“? 'only the Name and the Zip:Code now.'”

npe .

“? 'Type 3 to stop the procedure,'”

“? t<enter> to continue.'”

“WAIT TO Continue”

“USE Names"”

“DO WEILE Continue <> *S' .AND. Continue <> 's!
APPEND BLANK"

ERASE”

@€ 10, O SAY "NAME®" GET Name”

€ 10,30 SAY "ZIP CODE™ GET Zip:Code”

READ”

2 > >

® 72 ' S to stop the procedure,'”
“ 7 '<enter> to.,continue.'”

WAIT TO Continue”

“ENDDO"

“RETURN"

When you're back to CP/M, type “dBASE Trial” (or “DO’
Trial® if you renamed the dBASE.COM file as we suggested),
Now enter data into several records. After you've finished,
LIST the file to see what you've added.

As you can see, data entry is simple and uncluttered.

The screen can be customized by placing prompts and-
variable ipput fields wherever you wani them.

HOTE: You must use the "ERASE” or “CLEAR GETS" command
after every 64 “GET's”. Use the latter command if you
do not want to change the screen.

dBASE II...72

A command file that summarizes what we've learned

Before you read on, you can run-the following file to-
see what it does. Type “dBASE Sample” if you're in CP/M
or “DO Sample” if you're in dBASE II. Respond to the
prompts. After you've run it, you can come back and go
through the documentation. It summarizes most of what
we!ve covered so far and includes copious commentary.

SRIBNNSNIRERNNNNNNE SAMPLE.CME FRRISSARSSSBHSNNARNINAS

® This command ‘file prompts the user with screen

messages and accepts data into a memory variadble, then

® performs the procedure selected, by the user. This is only
% a program fragment, but it does work.

L] We haven't written the procedures that are called

% by the menu yet, so instead, we can have the computer

2 perform some actions that show us what it does

® and ‘which paths it takes (stubbing).

R Normally, dBASE II shows the results of the commands
® on the CRT. This can be confusing, so we SET TALK OFF.

SET TALK OFF
USE MoneyOut
ERASE

It*s good housekeeping to erase the screen before you
® display any new data on it.

® Our substitute display function can be used to put

information on the CRT screen like this:

?

?

?

?

?° OUTGOING CASH MENU®'

?

?

?7° 0 = Bxit*

?° 1 = Accounts Payable Summary’
?° 2 = Enter New Invoices®
7 3 = Enter Payments Made'
? '
?° Your Choice is Number'
WAIT YO Choice

ERASE

¥ Since we haven't.developed the procedurss to do these
® three items yet we'll have the computer display

® different comments, depending on which alternative is
selected from the menu,

dBASE II...73

IF Choice = *1°

€ 0,20 SAY *'One’

ELSE

IF Choice = *'2°
€ 1,20 SAY '"Two'
ELSE
IF Choice = *3*
€ 2,20 SAY 'Three'

ELSE
e 7,20 ,
€ 8,20 SAY ' ANY OTHER CHARACTER INPUT EXCEPT 1, 2, OR 3
€ 9,20 SAY ' CAUSES THIS COMMAND FILE TO TERMINATE AFYER
€ 10,20 SAY ' PRINTING OUT THIS MESSAGE. NOTICE THAT THE
€ 11,20 SAY ' DIGITS HAD TO BE IN QUOTE MARKS IN THE *IF*
€ 12,20 SAY ' STATEMENTS ABOVE BECAUSE THE VWAIT COMMAND
@ 13,20 SAY * ACCEPTS ONLY CHARACTER INPUTS '
€ 14,20 sAY *

ENDIF 3

ENDIF 2
ENDIF 1

RO

Each IF must have a corresponding ENDIF. We've also
put a label after the ENDIF to indicate with IF it
belongs with, to make certain that we have closed all
the loops.

INPUT *Do you want to continue (Yes or Ko)?' TO Decisioén
ERASE ’
IF Decision

INPUT "Okay, let's have a number, quickly.™ TO Number

ELSE

€ 10,20 SAY * WHY NOT? *
WAIT

ENDIF
ERASE
@ 10,20 SAY ™ I'M NOT READY FOR THAT. GOOD-BYE. *

"% N B

This next DO WHILE loop provides a delay of a few seconds
to keep the last message on the CRT long enocugh to be read
before the program terminates. You may find this useful .
in command files that you write. To change the delay time, .
either change the limit (100) or the step (+ 1).

STORE 1 TO X
DO WHILE X < 100

STORE X + 1 TO ¥

ENDDO
ERASE
RETURN

@ 0gemeoon

dBASE II...TH

You may want to run the program again. Try all the
alternatives, then try entering inputs that are definitely -
wrong. You'll see how the program works and how dBASE II
handles errors.

While it's only a program fragment and doesn't do any
useful work, <Sample.CMD> does point up quite a few things:

1. Using ERASE frequently is good housekeeping that's easy
to do.

2. Using indentation helps make the operation of the
program clearer. That's also why we used upper- and
lowercase letters. The computer sees them all as
uppercase, but this way is much easier for us humans.

3. The "2" can be used to space lines on the display and to
show character strings (in quotes or brackets).

. The WAIT command waits for a single character before
letting the program move on. The input then must be
treated as a character, the way we did in the nested
IF's by putting quotes around the values we were looking
for.

5. The INPUT command waits for and accepts any data type,
but characters and strings must bé in single or double
quotes or square brackets. When you have an apostrophe
in your message, use the double quote or square brackets
to define the string or the computer gets confused.

6. You don't have to predefine variables. Just make up
another name whenever you need one (upy to a maximum of -
64 active at any one time).

7. Logical values can be treated in shorthand. "IF
Decision" 4in the program worked as if we had said: "IF
Decision = T".

8. The RETORN at the end of the program isn't necessary,
but was tacked on because you would need it if this were
a sub-procedure in another command file. That's how the
computer knows that it should go back where it came
from, rather than just quitting.

—

--------------l--l-ll-lll

dBASE II...T5

Working with multiple databases (PRIMARY, SECONDARY,
SELECT)

As we've seen, when you first start working with DBASE
II, you type “USE <filename>" to tell dBASE II which file
you're interested in, then proceed to enter data, edit, etg.

To work on a different database, you type “USE
<NewFile>". dBASE II closes the first file and opens the
second one, with no concern on yoyur part. You can use any
number of files this way, both from your terminal and in
command files. You can also close a file without opening a
new one by. typing “USE~. ’

When you USE a file, dBASE II "rewinds" it to the
beginning and positions you on the first record in the file.
In most cases, this is exactly what you want. In some
applications, however, you will want to access another file
or files without "losing your place" in the first file.

dBASE II has an exceptionally advanced feature that
pérmits you to work in two separate active areas at the same
time: PRIMARY and SECONDARY. You switch between them
with the “SELECT"~ command

You are automatically placed in the PRIMARY area when
you first start. To work on another database without losing
your position in the first one, type in “SELECT
SECONDARY", then “USE <newfile>”, To get back to the
original work area, type “SELECT PRIMARY", then continue
with that database.

The two work areas can be used independently. Any
commands that move data and records operate only in -the area
in USE.

Information, however, can be transterred from one area
to the other using P. and S. as prefixes for variables, If
you are in the PRIMARY area, use the S. prefix for
‘variables you need from the SECONDARY area; if you are in
the SECONDARY area, use the P. prefix for variables you
need from the PRIMARY area.

As an example, this command is used in the
<NameTest.CMD> file in the accounting system at the end of
this Part of the manual. Individual records in a file in
the PRIMARY area are checked against all the records in
apother file in the SECONDARY area.

The same command is also used in the <TimeCalc.CMD>,
<{DepTrans.CMD> and <Payroll.CMD> files.

While you may nof think of an application now,. keep the
command in mind: you'll find it useful.

dBASE II...76

Generally useful system commands éggﬁfunctiona

MODIFY COMMAND <filename> lets you modify the named
command file directly from dBASE 1I using the normal
full screen editing features.

BROWSE displays up to 19 records and as many fields as will
fit on the screen. To see fields off the right edge of
the screen, use ctl<B to scroll right. Use ctl-z to
seroll left.

CLEAR resets dBASE II, clearing all variables and closing
all files.

RFSET is used after a disk swap to reset the operating
system bit map. Please read the detailed description
in the command dictionary (Part II) before-using it.

® allows comments in a command file, but the comments are
not displayed when the command file is executed. This
allows notes to the programmer without confusing the
operator. There must be at least one space between the
word or symbol and the comment, and the note cannot be
on the same line as a command. REPEAT: commands and
comments must be on separate lines.

REMARK allows comments to be stored in a command file, then
displayed as prompts td the operator when the file is
used. There must be at least one space between the
word and the remark, and the remark cannot be on a
command line.

RENAME <oldfile> TO <newfile> changes file names in the
CP/ﬂ directory. Do NOT try to rename files in USE.

QUIT TO *<system .COM file 1list>' allows you to
terminate dBASE II and automatically start execution of
CP/M and other ..COM files. Each .COM file named must
be in single quotes, and separated from other file
names (in single quotes) by commas.

You can also use the “?" command to call out the
following functions: :

is the record number function. When ealled,'it
provides the value of the current record number.,

® is the deleted record function, and returns a True
value if the record is deleted, False if not deleted.

EOF is the end of file functions It is True if the end of
the file in USE has been reached, False if it has not
been reached.

T E—EEEEEEEEE T —""———

dBASE II...77

A few words about programming and planning your
command files)

The first thing to do when you want to set;gg‘a
command file is to turn the computer off.’

That's right: ‘that's where many programmers go wrong.
They immediately start "coding" a solution, before they even
have a clear idea of what they're trying to do.

A much better approach is covered in a number of texts
on structured programming and some of the structured
languages. One reference you might check is Chapter 2 in
"An Introduction to Programming and Problem Solving ir
Pascal" by Schneider, Weingart and Perlman. Another is
Chapters 1, U4 and the first few pages of 7 in "Pascal
Programming Structures" by Cherry. Then.if you really want
to get into programming, there's an excellent text on PL/I
called "PL/I. Structured Programning" by Joan Hughes.

Briefly, here's the approacn:

Start by defining the problem in ordinary Englisi.
Make it a general statement.

Now defime it further. What inputs will you have? What
form do you want the outputs and reports in?

Next, take a look at the exceptions. What are the
starting conditions? What happens if a record is missing?

Once you've defined what you want to do, describe the
details in modified English. The texts call it
"pseudocode”. Alll this means is that you use English terms
that are somewhat similar to the instructions that the
computer understands. '

You might write your program outline like this:

Use the cost database
Print out last month's unpaid invoices
Write a check for each unpaid invoice.

Adding a bit more detail, it looks 1like this:

USE CostBase

Print out last month's unpaid invoicea using
the SUMMARY.FRM file

-~ Start at the beginning of the database

And go through to thé end:

If the invoice has not been paid

-~ Pay the invoice
And enter it in the database

Do this for every record

dBASE II...78

In perhaps two more steps, this could be translated into a
command file like this:

USE CostBase
& Print a hardcopy summary for December, 1980.
REPORT FORM Summary FOR Bill:Date >= '801201' .AND.
Bill:Date <= '801231*' TO PRINT
GOTO TOP ® Go to the first record
DO WHILE .NOT. EOF ® Repeat for the entire file
IF Check:Nmbr=' ' # If the invoice isn't paid,
DO WriteCheck ® write a check, then
DO Update *# update the records
ENDIF

SXI1P- #*Go to the next record
ENDDO

The term tcp-down, step-wise refinement can Le
applied to this procedure, but that's forty-three dollars
worth of words to say: "Start at the top, then divide and
conquer",

Actually, it's just a sensible approach to solving most
kinds of problems. First state the-overall problem, trying
to define what it is and what it isn't. Then gradually get
into more and more detail, solving the details that are easy
to solve, putting the more complicated details aside for
later solution (again, perhaps in parts).

At this stage in our example, we haven't done the
{Summary.FRM> file nor the <WriteCheck CMD> and <Update CMD)
files, but it doesn't matter.

And in fact, we're probably ‘better off not worrying
about these details becauSe we can concentrate on the

_overall problem solution. We can come back after we've

tested our overall solution and’ clean ‘up these procedures
then.

Tip: You can still test a partial nrogram like this by -
using what programmers call stubs. Set up the command
files that you've named in the program and enter three
items: a message that let's you know the program reached
it, WAIT and RETURN. dBASE II will go to these
procedure files, give you the message, then return and

continue with the rest of the program after you hit any
key.

S R

dBASE II...79
Section IV:

Expanding your control with functionS....ccccecene. 80

Changing dBASE II parameters and defaultS...eceees. 84 SET..

Merging records from -two databaseS.scesecccccenenne 86 UPDATE

JOINING entire databaseS.ieccscescececesesctocacnns 87 JOIN

.Full screen editing and formatting..secceeasccecses 88 SET FORMAT TO SCREEN
@..SAY..GET,..PICTUFE..

Formatting the printed page..cccecseacsscracacannne 90 SET FORMAT TO PRINT

@..SAY..USING..
Setting up ana printing a forM.sceeecvecanacccccnee 91

Time tO I'EgrOUP.ccsccccsscsssssscsesossssssasconancs 93

By now you should be writing command files that can
perform useful work for you.

To help you further, in this section we will introduce
more functions, a few more .commands and go into quite a bit

of detail on how you can print out your data in exactly the
format you want it.

dBASE II.,.80

Expanding your control with functions

Functions are special purpose operations that may be
used in expressions to perform things that are difficult or
impossible using regular arithmetic, logical and string
operations. dBASE II functions fall into the same three
categories, based on the results they generate.

Functions are called up by typing in “?" then a space
and the function. They can be called from the terminal or
within command files.

NOTE: the parentheses shown below must be used.

(Remember that "strings" are simply a collection of
characters (including spaces, digits and symbols) handled,
manipulate and otherwise used as data. A "substring" is a
portion of any specific string.)

Don't worry about memorizing them now, but do scan the
descriptions so that you know where to look when you need
one of them in a command file.

t(<variable/string>)
is the lower- to uppercase function. It changes all
the characters from 'a'..'z' in a string or string
variable to uppercase. Any other characters in the
string are unaffected. You'll see this used frequently
in the accounting system (Section VI) to convert inputs
from the keyboard into a standard form in the files.
This makes it simpler when searching.for data later,
since you will know that all of the data is stored in
uppercase, regardless of how it was entered.

TYPE(<expression>)
is the data type function and yields a C, Nor L,
depending ocn whether the expression data type is
Character, Numeric or Logical.

INT(<variable/expression>)
is the irteger function. It "rounds off" a number
with a decimal, but does it by throwing away everything
to the right of the decimal. The term inside the
parentheses (you must use the parentheses) can be a
number, the name of a variable or a complex expression.
In the latter case, the expression is first evaluated,
then an integer is formed from the results.

Note that INT(123.86) yields 123, while
INT(-~123.86) yields -123. A call to a variable yields
a truncated integer formed from the current value of
that variable. . If we were on record 7 of MoneyOut.DBF,
a call to INT(Amount) would produce 2333, the integer
part of $2,333.75.

e

dBASE II...81

To rounded to the nearest whole number (rather
than chop), use this form: INT(value + 0.5). The value
within parentheses is first determined, then the
integer function of that is taken.

The integer function can also be used to round a
value to any number of decimal places. INT(value®*10 +
0.5)/10 rounds a value to the nearest decimal place
because of the order of precedence of operations
(parentheses, then integer, then divide). To round
to two places, use "100" in place of the "10"s. For 3
places, use "1000", etc.) :

VAL(<variable/string/substring>)
is the string to integer function. ' It converts a
character string or substring made up of digits, a sign
and up to one decimal point into the equivalent numeric
quantity. VAL('123') yields the number 123.
VAL(Job:Nmbr) yields the numeric value of the contents
of the job number field in our MoneyOut database, since
we stored all Job Numbers as characters. You ~an also
use it with the substring operator: VAL($(<string>)).

STR(<expression/variable/number>, <length>,
<decimals>)
is the integer to string runction. It converts a
number or the contents of a numeric variable into a
string with the specified length and the specified
number of digits to the right of the decimal point.
The specified length must be large enough to encompass
at least all the digits plus the decimal point. 1If the
numeric value is shorter than the specified field, the
remaining portion is filled with blanks. TIf the
decimal precision is not specified, "O" is assumed.

This function is used quite often in the

accounting system to simplify displays. Numbers are
converted to strings then concatenated with (joined to)
other strings of characters for displays.

LEN(<variable/string>)
is the atring,leAggh function. ‘It tekls you how
many characters there are in the string you name. This
can be useful when the program has to decide how much
storage to allocate for information with no operator
intervention. However, if a character field variable
name is used, this function returns the size of the
field, not the length of the -.contents (since any unused
positions are filled with blanks by dBASE II).

L3

dBASE II...82

$(<expression/variable/string>, <start>, <length>)
is the substring function. It selects characters
from a string or character variable, starting at the
specified position and continuing for the specified
length.

. As an example, if we had a variable called <Date>
whose value was '810823', the function “$(Date,5,2)"
would give us '23'. To convert these numerals to a
number, we could use “VAL($(Date,5,2)).

You'll find an example of this in the
<DateTest .CMD> file in Section VI, where groups of two -
characters are taken from a 6-character date field,
converted to integers (using the VAL(...) function),
then evaluated to see if they are in the correct range.
Don't confuse this with the substring logical®
operator described in Section II.

@(<variablel/string1>, <variable2/string2>)
is the substring search function. You might think
of this as "Where is stringl AT in string2?" When
you use this function, it produces the character
position at which the first string or character
variable starts in the second string or character
variable. If the first string does not occur, a value
of "O" is returned.

. One use for this is to find out where a specifie
string starts so that you can use the preceding
substring function. Another use is to find out if-a
specific string occurs at all.

" (If you only need to know whether one string is-in
another one, you can use the relational string
operator: Stringl$String2, Section II.)

You'll find these useful in a command rile when
the computer is searching without operator
intervention, and you can't simply step in and look to
see where the data is.

CHR(<number>)
yields the ASCII character equivalent of tiue number.
Depending on how your terminal uses the standard ASCII
code, ? CHR(12) may clear your screen, CHR(13) might
produce reverse video while ? CHR(15) would cancel it.
Other functions can be used to control hardware
devices, such as a printer. Check your manual--you'll
probably find a few interesting features.

To get underlining on your printer, try joining a
character string, the carriage return and the underline
like this: ? ‘*string®' + CHR(13) + ' '. You could
even set up a command file that uses the LEN function
to find out how long the string is, then produces that .
many underline,strokes.

i
|
1]
i
|

dBASE 1I...82

is the macro substitution function. When the symbol
is used in front of a memory variable name, dBASE II
replaces the name with the value of the memnry variable
(must be character data). This can be used when a
complex expression must be used frequently, to pass
parameters between command files, or in a command file
when the value of the parameter will be supplied wher
the program is run.

In the <Reportmenu.CMD> file in Section VI, it is
used to get the name of the required databasa:

? 'Which file do you want Lo review?'
ACCEPT TO Database
USE &Databdbase

It could also be used as an abbreviation of a
command: “STORE 'Delete Record' TO D”. The command:
“&D 5” would then delete recofd 5 when the program
runs.

If the macro command is not followed by a valid
string variable, it is skipped. This means that you
can use the symbol itself as part of a string without
getting an error indication.

FILE({"filename"/variable/expression>)
yields a True value if the file exists on the disk,
False if it does not. If you use a specific file name,
use the quote marks. The name of a string variable
does not require the quote marks. You can also use any
valid string expression: “FILE("B:"+Database)” would
tell you whether the file name stored in the memory’
variable <Database> is on drive B (see ReportMenu.CMD
in Section VI). '

TRIM
eliminates the trailing blanks in the contents of a
string variable. This is done by typing:
“STORE ‘TRIM (<variable>) TO <newvariable>

dBASE II...8%

Changing dBASE II characteristics and defaults

dBASE II has a number of commands that control how it
interacts with your system setup. You:can change these
parameters back and forth "on the fly", or set them up once
at the beginning of your command file and leave them. In
many applications, the defaults will be just what you need.

Parameters are changed in your command files (or
interactively) by using the SET command. In the list
telow, normal default values are underlined.

Once again, there's no need to memorize these. As you
work with the established defaults, ‘you can decide if you
want to change any of the parameters on the list.

SET TALK ON Displays results from commands on console.
OFF No ¢isp1ay.

SET PRINT ON Echoes all output to your 'list' device.
OPF No listing.

SET CONSOLE ON Echoes all output to your console.
OFF Console off.’

SET SCREEN ON Turns on full screen operation for APPEND,
' EDIT, INSERT and CREATE commands.
OFF Turns full screen operation off.

SET FORMAT TO SCREEN sends output of € commands to the
screen

SET FORMAT TO PRINT sends output of € commands to the
printer

SET MARGIN TO <nnn> sets the left-hand margin on your
printer ("nnn"<=254)

SET RAW ON DISPLAYs and LISTs records. without spaces
between the fields
OFF DISPLAYs and LISTs records with an extra space
between fields

SET HEADING TO <string> changes the heading in the REPORT
command)

SET ECHO ON All commands in a command file are displayed
on your console as they are executed.
OFF No echo

SET EJECT ON enables page feed with REPORT command
OFF disables page feed

dBASE II...85

SET STEP ON Halts after completing each command, for
debugging command files.
OFF Normal continuous operation,

SET DEBUG ON sends output from the‘ECﬂo and STEP commands

to the printer only
OFF sends ECHO and STEP output to the screen

SET BELL ON enables bell when field is full
OFF disables bdell) -

SET COLON ON uses colons to delimit input variables on
the screen
OFF disables the colons

SET CONFIRM ON waits for <enter> before leaving a
} ’ variable during full screen editing
OFF leaves the variable when the field is full

SET CARRY ON carries data from the previous record
forward to the new record when in APPEND
OFF shows a blank record in APPEND mode

SET INTENSITY ON enables dual intensity for full screen
operations
OFF disables dual intensity

SET LINKAGE ON permits databases to be linked for display
with up to 6li fields and up to 2000 bytes per
displayed record. The P. or S. prefix must
be used when field names are similar in both
databases))

OFF disables linkage

I SET EXACT ON requires that all characters in a comparison
between two strings match exactly
OFF allows different length strings. E.g.,
'ABCD'='AB' would be True (Also affects
FIND command)

SET ESCAPE ON allows the <escape> key to abort command
\ file execution
‘ OFR disables the <escape> key

“SET ALTERNATE TO <filename>" creates a file with a
.TXT extension for saving everything that goes .to your CRT
screen. To start saving, type “SET ALTERNATE ON".

.You can change the file that you are-saving to by
typing "SET ALTERNATE TO <newfile>".

To stop, type “SET ALTERNATE OFF~. This also
terminates when your Q[T dBASE II.

dBASE II...86

Merging records from two databases (UPDATR)

Data ¢an be transferred rrom one datadase file to
another with the following commrand:

UPDATE FROM <database> ON <key> [ADD <field 1list>]
[REPLACE <field list>]

Note: Both databases must be presorted on the "key"
field before this command is used.

Both files are "rewound" to the beginning, then key
fields are compared. If they are identical, then data from
the FROM data base is either added numerically to data in
the USE file, or is used to replace data in the use file for
the fields specified in the field list. When fields do not
match, those records are skipped. This command can be used
to keep inventory updated, for example.

In the accounting systen in Section VI, it is u.2d in
{Payroll.CMD> and <CheckStub.CMD>. 1It's useful and worih
experimenting with.

dBASE II...87

: JOINing entire databases

| JOIN is one of the most powerful commands in JdBASE II.
| It can combine two databases {the USE files in.the PRIMARY

| and SECONDARY work areas) to create a third database. The

i form of the ¢ommand is: .

JOIN TO <newfile> ON <exoression> [FIELD <list>]

) In operaticn, the command positions dBASE II on the
first record of the primary USE file and evaluates each of
the recourds in the secondary USE file. Each time the
"expression® yields a true result, a record is added to
fnewfile". If you are in the primary area when you issue
the JOIN command, prefix variable namecs from the secondary
USE file with S.. If you are in the secondary area, prefix
variables from the primary USE file with P.. (See example
below-)

when each rezord in the secoridary USE file has been

. evaluated against the first record of the primary USE file,

3 dBASFE II advances to. the second record of the primary USE
file, then evaluates all of the records from the secondary
USE file again. This is repeated until all records from the
files have been compared against each other.

\ Note: This can take a great deal of time to complete if

[the two databases are very large. 1t may also not be

| possible to complete at all if the constraints are too
loose. Two files with 1,000 records each would: create a
JOIN database with 1,000,000 records if the JOIN expression
was always truz, while dBASE II is limited to.65,535 records

| in any single database.

| To use the command, use this sequence of instructions:

‘ USE Inventory
‘ SELECT SECONDARY
USE Orders
JOIN TC NewFile FOR P.Part:NumberzPart:Number;
FIELD Customer,Item,Amount,Cost

This creates a new database called .<NewFile.DBF> with
four fields: qutoder, Item, Amount and Cost. The structure
of these fields (data type, size) are the same as in the two
joined databases. (Notice that the "P." prefix is used to.
call a variable from the work area not in USE.)

dBASE II.,.SB

Full screen editing and formatting
(@, .SAY,.SET..PICTURE)

dBASE II has a powerful series of formatting commands
that allow you to position information precisely where you
want it. You saw this in action in our <Sample.CMD>
program, where we used:

€@ <coordinates> SAY ['prompt'] GET <variable>

This command was able to position prompts and
variables (and their values) at any location we specified on
the screen. When we listed a series of commands, then
followed them with READ, we were able to control the format
of the entire screen. You might want to create and run the
following command file fragment to refresh your memory:

STORE " " TO MDate 4
STORE " " TO MBalance)
STORE " " TO MDraw
@ 5,5 SAY "Set date MM/DD/YY "™ GET MDate
€ 10,5 SAY "What is the balance? ™ GET MBalance
€ 15,5 SAY "How much is requested™ GET MDraw
READ
ERASE |
8 5,5 SAY "Should we do an evaluation?® GET MEvaluate
READ)]
) The command can also be used without the SAY phrase as
@ <coordinates> GET <variabled (with a later READ in the
command file). This displays only the colons delimiting the R
field length for the variable. :
Tip: In the SCREEN mode the line numbers do not have to be ‘
in order, but it's good practice to write them this way
since they must be in order for PRINT formatting.

This command can also be expanded for special
formatting like this:

€ <coordinates> SAY [expression] GET <variable> [PICTURE <format>]

The optional PICTURE phrase is filled in using the
format symbols listed below. The command:

@ 5,1 SAY "Today's date ia™ GET Date PICTURE '99/99/99¢
would display:

Today's date is? / / :

assuming that the Date variable was blank. 1In this example, !
only digits can be entered.

d"ASE II...89

The GET function symbols are:

9 or # accepts only digits as entries.

A accepts only alphabetic characters.

1 converts character input to uppercase.
X accepts any characters.

4 shows '$' on screen.

® shows '#' on screen.

With this command, you can format your menu and input
screens any way you want them, quickly and easily.

Tip: The Osborne series of accounting books, besides
describing some fairly .sophisticated systems, also includes
CRT Mask Layouts for menus and entry formats with
coordinates clearly marked. Well worth their price for this
alone.

dBASE II...90

Formatting the printed page (SRT FORMAT TO PRIRNT,
€..SAY..USING)

When you SET FORMAT TO PRINT, the €-command sends 1:3

information to the printer instead of the screen.
The GET and PICTHRE phrases are ignored, and the READ
commanc cannot be used.)
Data to be printed on checks, purchase orders, invoices
or other standard forms can first be organized on the screen
with this command, then printad exactly as you see it:

@ coordinates SLY variable/expression/'string' [USIRG format)

For printing, the coordinates must be in order. The
lines must be in increasing order (print line 7 before line:
9, etc.). On any given, line the ¢columns must be in order
(print column 15 before column 63, etec.).

This cormand can output the current value of a variable
that you name, the result of an expression, or a iiteral

"string prompt message.

If the USING phrase -is included, this command
specifies which characters are printed as well as where they
appear on the page. the symbols used are:

9 or # prints a digit only.

A prints alphabetic characters only.

X prints any printable character.

$ prints a digit or a '$' in place
of a leading zero.

a digit or a '®' in place

of a leading zero. ‘

-
0
3
5
r
7]

The command 10,50 SAY Bours®Rate USING '$$$$3$$3.99°
could be used in both the screen and the printer modes since
it has no GET phrase. For Hours = 8 and Rate =12.73, it
‘would print or display $$$$101.84, useful for printing
checks that'are more difficult to alter.

dBASE II...9

Setting up and printing a form

To set up a form, use measurements based on your
printer spacing (ours prints 10 characters per inch
horizontally, with 6 lines per inch vertically).

The "Outgoing Cash Menu" that we used in our earlier
command file could very well have had another selection item
called "4 = Write checks", so we're going to do part of the
WriteCheck command file.

To start with, we'll have to input the date. The
following command lines accept the date to a variable called
MDate, and checks to see whether it is (probably) right:

ERASE

SET TALK OFF

STORE " " TO MDate
STORE T TO NoDate
DO WHILE NoDate

@ 5,5 SAY "Set date MM/DD/YI" GET MDate PICTURE "99/99/99"

READ
IF VAL(3$(MDate,1,2)) < 1;
.OR. VAL(3(MDate,1,2)) > 1
.OR. VAL($(Mpate,’,2)) < 1
.OR. VAL($(Mpate,l,2)) > 3
.OR. VAL(3§(Mpate,7,2)) <
STORE " " TO MDate
@ 7,5 SAY nw##s® BAD DATE, PLEASE RE-ENTER. ®##%an
STORE T TO NoDate
ELSE)
STORE F TO NoDate
ENDIF
ENDDO ‘because we now have a valid date
ERASE

23
H

13
81

In English, the above first sets the value of Mpate to 8
blanks, then the €..SAY command displays:

Set date MM/DD/YY: / / :

When the date is entered, it is checked by the IF to see
whether the month is in the range 1-12, day is in the range
1-31, and year=81. This is done in three steps:

- the substring function $ takes the two characters
representing the month, day or year (e.g., for month
it starts in the U4th position and takes 2 characters)

- the VAL function converts this to an integer

- this integer is then compared against the allowed
values '

If the value is out of range, MDate is set to blanks again
and an error message comes up. When a date within the
allowed range is entered, the program continues.

The printout for the check jtself could be the next

porgion of the program. Using the neasurements of our

dBASE II...92
checks, this is the list of commands:

@ 8,3 SAY Script ® A character variable that prints the
* amount in script. This is filled in
* by another procedure called Chng2Scrpt.
* We stubbed this for now like this:
® STORE 'Seript Stub' TO Seript
® RETURN .

11,38 SAY Vendr:Nmbr

11,50 SAY Mpate

11,65 SAY Amount

13,10 SAY Vendor

14,10 SAY Address

15,10 SAY City:State

15,35 SAY z2IP

17,10 SAY Who

LL LYY Y

You can check this out on your screen before you print it,
then switch from SCREEN to PRINT modes with the SET command.
The values for the variables are provided elsewhere in your
command file.

Longer forms are no problem: a printer page can be up -
to 255 lines long. To reset the line counter, issue and
‘EJECT” command with the printer selected.

rIIlllIIIIIIIIIIIIIIIIIIIIIllIllIlIIlIlIlIlllIIlIIIIIIIIIIIlllIIIIIIIIIIIIIlllIlllllllllllllllllllllllll

dBASE II...93

Time to regroup

Because dBASE II is such a powerful system, it has a
large number of commands and techniques for dealing with
your -database needs and allowing you to get more information
more easily -than any other database system or file handler
currently running on micros. ’

The easiest way to learn the: techniques is to go
through the examples and key them into your computer,
changing names as you go to reflect your needs rather than
our examples.

You start by using the CREATE command to create your
databases. Besides MoneyOut.DBF, we've created a number of
other database structures that you might find useful.
They're listed at the beginning of Section VI.

The <Costbase.DBF> file started life as <{MoneyOut.DBF>.
We've modified it a great deal,.changing field names and
sizes (with and without data in the database).

We've also added our ‘own spacing between the fields
(see fields S, .7 and 10), rather than using the dBASE IJ
"RAW" default of a space between each field. NOTE: you can
NOT enter the hyphen as a field name when you CREATE a file.
To enter it, you have to MODIFY STRUCTURE, use ctl-N to
insert a blank line, then type in the hyphen and the field
size. Ctl-W saves the change (ctl-O0 with Superbrain).

You may want to check some of the other. database
structures, then see how they are used in the programs. We
tried to keep the field names and their individual
structures the same for all our databases to allow for file
merges and other uses. -Data from one database will fit into
corresponding fields in another, and with common names the
transfer is straightforward.

You might want to check through the command files. in
Section VI now. Most of the dBASE II commands have been
used, and the files work the way they are set up.

The first command file is the main menu for the system,
with sub-files selected by pressing a number. Some of the
files get a bit complicated (<Payroll> for example), so you
might go to some of the utility programs at the end of
Section VI before you try to unravel the rest of the
programs.

Writing these command files, we used exactly the
procedures that we recommended earlier: first define the
problem in a general sense. Gradually keep dropping down .in
levels of detail, using ordinary English at first, then
pseudocode, putting terms that dBASE II would understand in
capitals when we finally got to that level.

When we came up with something that had to be done, !
we weren't sure how to do it, we simply made up a procedure
name for it, then went back to it later.

The indentation and mixture of upper- and lowercase

dBASE II...94

letters was not done Just for this manual: it's the way we
work all the time. It makes writing the command files a lot
easier because you can see groupings of the structures that
you are using.

The identifiers were pulled out of our semi-English
pseudocode, modified a bit to fit within the 10 characters
allowed, but not enough to destroy the meaning.

Comments are sprinkled throughout the files for
documentation, although in many cases the programs are
almost self-documenting because 80 many of the dBASE II
commands are similar to English equivalents.

dBASE II...95

Section V:

Database BasSiCS..sesececsssenscscssnscssssosasnsscs. 96
A brief introduction to database organization...,.. 98
dBASE II Records, Files and Data TypeS.ccceecsceses 99
dBASE II OPERATION SUMMARY:ecceeoocceescocssnasonns 102
dBASE II FUNCTION SUMMARY:cccoveccaccscsoccscassons 103
ABASE IT COMMAND SUMMARY:eeevoonsecnstossasssnsssess 0l
Commands grouped by what you want done.............109

109 File structure

110 File operations

110 Organizing database

110 Combining databases

111 Editing, updating, changing data

111 Using variables

112 Interactive input

112 Searching

112 Output

113 Programming

dBASE II...96
Database Basics

A _database management system (DBMS) like dBASE II is
considerably different from a file handling systea.

A file handling system is usually configured like
this:

PAYROLL PAYROLL] PAYROLL
FILES ?| PROGRAMS OUTPUT
ACCOUNTING ACCOUNTING JACCOUNTING
FILES PROGRAMS QUTPUT
INVENTORY INVENTORY |y INVENTORY
FILES PROGRAMS {*] QUTPUT

_ The payroll programs.process the payroll files.. The
accounting programs process the accounting files. And the
inventory programs process the inventory files. To get
reports that combine data from different files, a new
program would have to be written and it wouldn't necessarily
work: the data may be incompatible from file to file, or
may be buried so deeply within the other programs that
getting it out is more trouble than it's worth.

A database management system integrates the data and
makes it much easier to get useful information from your
records, rather than just reams of data. Conceptually, a
DBMS looks something like this:

PAYROLL PAYROLL >
DATA PROGRAMS
T DATABASE
e i
: SYSTEM v

INV., : INV. —>
DAYA 1 PROGRAMS
OATABASE

Data . is monitored and manipulated by the DBMS, not the
individual applications programs. All of the applications
_systems have access to all of the data. In a file handling
system, this would require a great deal of duplicated da‘a.
Aside from the potential for entry errors, data integrity is:
extremely hard to maintain when the same data is supposed to

be duplicated in different files: it never is.

To ‘generate a new processing system in a file handling
system, 2 new program and new files must be set up. Using-a
DBMS, a new access program is written, but the data does not

dBASE II...97

have to be restructured: the DBMS takes -care of it.

If a new kind of data is added to a record (salary
history in a personnel file, for example), file handling
programs have to be modified. With a DBMS, additions and
changes have no effect on the programs that don'b need to
use the new information: they don't see it and don't know
that it's there.

Database management systems come in two flavors:

" hierarchal and relational. These terms refer to how the
DBMS keeps track of data.

A hierarchal system tends to get extremely complex
and difficult to maintain because the relationships between
the data elements are maintained with sets, linked lists,
and pointers telling the system where to go next. Very
quickly, you can end up with lists of lists of lists and
pointers to pointers to pointers.)

A relational database management system like dBASE
II is a great deal simpler. Data is represented as it is,
and the relation between data elements can be considered a
two-dimensional table like this one:

Col.1 Col.2 © Col.3 Col.4 Co1.§
Invoice)
Nurber Supplier Description " Amount Nurber
2386 {1 Graphic Process Prints 23.00 88Q-747
78622 Brown Engraving Litho plates .397.42 TF$-901
M1883 Air Feeight Inc. | Shipping 97.00 | SPT-233

Each row going across the table is called a record.
Each column is called a field of the record. Each entry in
‘the table, must be a single value (no arrays, no sets, etc.)
All the entries in a column must be of the same type. Each
record (row) is unique, and the order of records (rows)
doesn't matter.

When we show you more realistic examples later, you'll
see that records don't get any more complicated, just
larger.) .

dBASE II...98

A brief introduction to database organization

Once you've got your database set up, you'll want to
access your data in an orderly, ordered manner.

With some databases, the order in which you enter the
data will be the order in which you want to get your
information out. In most cases, however, you'll want it
organized differently.

With dBASE II you can organize data using the SORT
command or the INDEX command. (Both of these are described
in more detail in Section II: Orgapizing your databases.)

The SORT command moves entire records around to set up
your database in ascending or descending order on any field
that you spevify (name, ZIP code, etc.). This field is
called the key.

One drawback of sorting is that you may want to access
the database on one field for one application, on another
‘field for a different application. Another drawback is that
,any new records added are not in order, and would require a
sort every time you entered data if you wanted to maintain
the order.

Finding data is also relatively slow, since’the sorted
database must be searched sequentially.

INDEXING is a way around these problems.

Indexing is a method of setting up a file using only
the keys that you are interested in, rather than the entire
databases. A key is a database field (or combination of
fields) that make up the "subject" of the record. 1In an
inventory system, the part number might be the subjedt, and
the amount-on-hand, cost, location, etc. the descriptive
fields. In a personnel database, names or employee numbers
would probably make the best keys.

With an indexed database, the keys alone are organized
with pointers to the record to which they belong. dBASE II
uses a structure called B¥-trees for indexes. This is
similar to a binary tree, but uses storage much more
efficiently and is a great deal faster. A FIND command
(described in Section II) typically takes 2 seconds with a
medium. to large database.

If you need your data organized on several different
fields for different applications, you can set up several
index files (oné for each of the fields) and use the
appropriate index file whenever required. You could have
index files ordered by supplier name, by customer number, by
ZIP code or any other key, all for a single database.

New entries to a database are automatically added to
the index file being used.

Another advantage of indexed databases is the rapid
location of data that you are interested in.

dBASE II...99 -

dBASE 1I Records, Files and Data Types

dBASE II was designed to run on your micro so its scope
stops short of infinity, but you'll find that you'll have to
work at figuring out how to get to its maximums.

dBASE II limits you to 65,535 records per file, but
with the memory and even "mass storage" limitations of-a
micro, this is really no limitation at all.

A dBASE II record can be as Jarge as 32 fields and 1000
characters long (whichever comes first):

12 43 48 ...etc.... 1000

i

You might want to think of this as a 1000 character
long strip that you can segment any way you want to up to
the maximums, or shorten if you don't need to use it all.
You can have four fields that use the full 1000 characters
(254 characters per field maximum). Or a record one
character (and field) long. Or anything in between.

In our previous example, each record had five f;elds
and the total record length was 58 characters:

Invoice Job
Number Supplier Description Amount Number

1 9 10 28 29 43 44 51 52 58
Data Types

As we said earlier, each field must contain a single
type of data, and in dBASE II these are:

Character: all the printable ASCII characters, including
the integers, symbols and spaces..

Numeric: positive and negative numbers as large as 1.8 x
10<63> down to numbers as small as 1.0 x 10<-63>.
Accuracy is to ten digits, or down to the penny for
dollar amounts as high as $99,999,999.99.

Logical: these are true/false (yes/no) values that occupy
a field one character long. dBASE II recognizes T,
t, Y and y as TRUE, while F, f, N and n are
recognized as FALSE.

dBASE II.{.100
Field Names

Each field has a name so that dBASE II can recognize it
when you want to find it. Field names can be up to 10
characters (no spaces) long, and must start with a letter,
but-can include digits and an embedded colon:

A (valid)

A123456789 (valid)

Job:Number (valid: upper and lowercase okay)
A123,BU56 (illegal comma)

Reading: (illegal: colon not embedded)

Tip: Use as many characters as it takes to make -
the name meaningful. 'Job:Nmbr' is a lot better
than 'No.' and infinitely better than 'J'. Using
a maximum of nine characters will make handling
memory variables much easier (discussed later).

Another tip: Once you, get into setting up
Command files, you'll find it useful to use
capital letters for words that dBASE II
understands and upper -and lowercase for fields,
.variables and other items that you control.
You'll appreciate this the first time you go back
into a command file to make changes.

dBASE II...101

dBASE II File Types

File names are limited to 8 characters and a 3
character extension after a period. You can use the colon
in the file name, but then you'll only be able to manipulate
the files through dBASE II: CP/M will store the files and
get the names right, but won't recognize them if you ask it
to perform a function like PIP. Ten character long
filenames aren't a problem: CP/M simply chops them down te
eight. If you use upper and lower case letters to name
your files, CP/M will change them to capitals, sbut they'll
still show up better in your command files.

A dBASE II file is simply a collection of information
of a similar type under a single name, something like a
giant file folder. dBASE II operates with the six different
file types described below.

DBF Database files: This is where all your data is kept
and the extension is automatically assigned by dBASE II
when you CREATE a new file. Each .DBF file can store
up to 65,535 records. Do not use a word processor on
these files.

-FRM Report form files: These files are automatically
created by dBASE II when you go through the REPORT
dialog. They contain headings, totals, column
contents, etec. They can be modified using a word
processor or text editor, but we definitely recommend
against this practice: make your changes using dBASE
II.

.CMD Command files: These files contain a sequence of
dBASE II statements to perform functions that you use
frequently, and can be a complex as a ccmplete payroll
system. These are created using a text editor or word
progessor.

<NDX Index files: These are automatically created by the
INDEX command. Indexing provides very rapid location
of data in larger databases.

+MEM Memory files: These are automatically created when
you SAVE the results of computations, constants or
variables that you will want later. You can SAVE up
to 64 items, each up to 254 characters long, then
RESTORE them the next time you need .them.

<TXT Text output files: This file is created when you
use the SET ALTERNATE command to store everything
that goes to the CRT on your disk, too. This feature
can be used as a system logging function, and the
infarmation can later be edited, printed, and/or saved.
They are also created when you COPY...SDF.

dBASE II...102

dBASE II OPERATIONS SUMMARY

Arithmetic operators (generate arithmetic results: p.37)

(

[B g
e o0 oo oo oo

Relational

parentheses for grouping
multiplication

division

addition

subtraction

Operators (generate logical résults: p. '37)

" vA

e oo o0 o o0 o0

less than

greater than

equal

not equal

less than or equal
greater than or equal

Logical Operators (generate T/F logical results: p. 38)

()
«HOT. :
+AND. ¢
-OR. ¢
$

parentheses for grouping

Boolean not (unary operator)

boolean and

boolean or

substring logical operator (p. 40)
(is stringt in string2?)

String operators (generate string results: p. A1)

+

string concatenation (joining)
string concatenation with blank squash

dBASE 1I...103
dBASE II FUNCTION SUMMARY

L] record number (p. 76)

L deleted record (p. 76)

BOF end of rile (p.76)

1 (<variable/string>)) éonvert to uppercase (p. 80)
TYPE(<expression>) data type (p. 80)
INT(<variable/expression>) integer function (p. 80)

VAL(<variable/string/substring>) string to integer (p.81)

STR(<expression/variable/number>, <length), <decimals>)
integer to string (p.81)

LER(<variable/string>) string length (p. 81)

${<expression/variable/string>, <{start>, <length>)
substring select (p. 82)

Q((Qariablellstring1>, <variable2/string2>)
substring search (p. 82)

CHR{<number>) number to ASCII (p. 82)
& macro substitution (p. 83)
FILR(<"filename"/var/exp>) file exists? (p. 83)

TRIM .railing blanks (p. 83)

dBASE II...104

dBASE II COMMAND SUMMARY

The following abbreviations are used in this summary:

<exp> = expression

<var> = variable

<str> = string
<eoord> = coordinates

The symbols <..> bracket items that are to de
specified. by the user. Square brackets [..] enclose
optional items. In some cases, options are nested
(themselves have other options).

? <exp [,11st]>
DPisplay an expression (or list separated by commas) (p. 25)

@ <coord> [SAY <exp> [""ING *picture']] [GET <var> [PICTURE 'picture']]
Format -console screen or printer output (p. 88)

_ACCEPT [*prompt'] TO <var>
Input a character string from the console, no quotes (p. 68)

APPEND [BLANK] _

APPEND FROM <filename> [SDF] [FOR <exp>)

' tDELIMITED [WITH delimiter]]
Add data to a database (pp. 26, 47, 70)

CANCEL
Abort. a.command file execution

CHANGE [scope] FIELD <list> [FOR <exp>]
Make multiple changes to a database (p. 5%)

CLEAR
Reset dBASE file and memory variable environment (p. 76)

CONTINUE
Continue a LOCATE command (p. 55)

[sDP)
COPY [scopel] TO <filename> [STRUCTURER] [FIELD <1ist>] [FOR <exp>]

«DELIMITED [WITH delimiter]]
Copy data from a database to another file (pp. 43, 47, 49)

COPY TO <filename> STRUCTURE EXTENDED
Creates a new file whose records define the structure of
the old file. (see also CREATE <newfile> FROM <oldfile>)

COUNT [scopel] [FOR <exp>) [TO <var>]
Counts records that sztisfy some conditien (p. 58)

dBASE II...105

CREATE '
Make a new database (p. 14)

CREATE <newfile> FROM <oldfile>
Creates <newfile> with structure determined by the data in the
records of <oldfile>. (see also COPY STRUCTURE EXTENDED)

DELETE [scope] [FOR <exp>]
Mark specified records for deletion (p. 28)

DELETE FILE <gi1ent-e))
Erase a file from the system (p. 28’

DISPLAY [scopel [FQR <exp>] [OFF]
Show data based upon request (pp. 20, 23)

DISPLAY [scope] [<field> [,1ist]]
Shows only the selected field(s)

DISPLAY STRUCTURE
Show structure of the database in USE (p. 23)

DISPLAY MEMORY
Show the contents .of the memory variables (p. 35)

DISPLAY FILES [ON disk drivel
Show a disk directory (p. 23)

DO <filename)>
Execute a command file (p. 63)

DO WHILE <exp>
Perform a.group of commands repeatedly (p. 66)

EDIT
Alter the data in a database (p. 18)

EDIT [number]
Presents a specific-record for editing (p. 18)

EJECT
Do a form feed on the printer

ELSE .
Alternate execution path in an IF command (p. 64)

ENDDO
Terminator for DO WHILE command

ENDIF
Terminator for an IF command

dBASE II...106

ERASE
Clear console screen

FIND <key>
Locate a record in an indexed database based upon key
value (no quotes needed for character keys) (p. S54)

GO or GOTO [RECORD], or [TOP], or [BOTTOM], n
Position to a given place in a database (p. 28)

IF <exp>
Conditional execution command (p. 6&)

INDEX ON <key> TO <filename>
Create an index file for the database in USE (p. 52)

INPUT ['prompt'] TO <vard> .
Accept user 1lnputs into memory variables. User prompt
string is optional {(p. 68)

INSERT [BE?ORE]
[BLANK]
Add a new record to.a database among other records (p. 26)

JOIN TO <filename> ON <exp> [FIELDS <list>]
Create a database composed of matching records from two
other databases (p. 87)

LIST.
Show data records (pp. 20, 21)

LOCATE [scope] [FOR <exp>]
Find the record that matches a condition (p. 54)

LOOP
Escape mechanism for DO WHILE groups (p. 66)

NOTE or ¥
A command file comment that is not displayed when the
command file is run

MODIFY COMMAND <filename>
Permits modification of a file directly from dBASE II (p. 76)

MODIFY STRUCTURE

Alter the structure of a database. Destroys all data in ;
the database (p. U42)

Eliminates records marked for deletion (p. 28)

t
]

dBASE II...107

QUIT [TO 1ist of CP/M level commands or .COM files]
Terminate dBASE and execute a program chain. Each
command must be in quote marks, and commands must be
separated by commas (p. 76)

READ
Enter full screen editing of a formatted screen.
Accepts data into GET commands (p. 70)

RECALL ([scope] [FOR <exp>]
Unmark records that have been marked for deletion (p. 28)

RELEASE [<var> [,1ist]] or [ALL]
Eliminate unwanted memory variables (p. 36)

REMARK)
A comment that is shown on the screen when the command
file is run

RENAME <oldfile> TO <newfile>
Give a file a new name (p. 76)

REPLACE [scope] <field> WITH <exp> [,<field> WITH <exp>...]
Alter data in a database. Make sure that you have a backup,
because dBASE II will do precisely what you ask it to do,
even if it's not. exactly what you had in mind (p. 50)

REPORT [scope] [FORM <filename>] [TO PRINT] [FOR <exp>]
Generate a report (p. 56)

RESET
Tell CP/M that a diskette swap may have occurred

RESTORE FROM <{filename>
Remember SAVEd memory variableés. Destroys all existing
memory variables

RETURN
Terminate a command file and return to calling file

SAYE TO <filevame>
Write memory variables to a file for future use

SELECT [PRIMARY] or [SECONDARY]
Switch working areas (p. 75)

SET parameter [ON],. or [OFF]
Dynamically reconfigure dBASE operation (p. 84)

SKIP +<exp/number>
Move forward or backwards in the database (p. 24)

dBASE II...108

SORT ON <key> TO <filename> [ASCENDING]
DESCENDING]
Generate a database that is sorted on a field (p. 52)

STORE <exp> TO <var>
Place a value into a memory variable (p.33)

SUM [scope] <field [,1ist)> [TO <var {,1ist]> [FOR <exp>]
Total fields in a database (p. 58)

TOTAL TO <filename> ON <key> [FIELDS <field [,1ist]>
Generate a database with sub-totals for records (p. 59)

UPDATE FROM <filename> ON <key> [ADD <field [,1ist]>]
{REPLACE <field [,1ist]>]
Modify a database with data from another database (p. 86)

USE Xfilename> [INDEX <filename>]
Open a database file for future operations (p. 20)

USE
Close a previocusly opened database file

WAIT [TO <var>]
Pause in program operation [for input] (p. 68)

dBASE II...109:

dBASE II cdnnands grouped functionaliz

FILE STRUCTURE:

A AL A

CREATE defines an entirely new file structure

CREATE <newfile> FROM <oldfile> creates a new file whose
structure is desci ‘bed in the records of the old file.

USE <oldfile>

COPY TO <newfile> STRUCTURE
These two commands combined create a new file with
the same structure as an old file’

USE <oldfile>

COPY TO <newfile> STRUCTURE EXTENDED
Create a new file that contains the structure of
the old file as data

CREATE <newfile> FROM <oldfile>
Creates a new file whose structure is defined by the
records in the old file.

DISPLAY STRUCTURE
LIST STRUCTURE
Both show the structure of the file in USE

MODIFY STRUCTURE changes file names, sizes, and oversl)
structure, but destroys data in the database

To change structure with data in the database:

USE <oldfiled>

COPY TO <newfile>

USE <newfile>

MODIFY STRUCTURE
APPEND FROM <oldfile>
COPY TO <oldfile>

USE <oldfile>

DELETE FILE <newfile>

To rename fields with data in the database:

USE <oldfile>

COPY TO <newfile> SDF

MODIFY STRUCTURE

APPEND FROM <newfile>.TXT SDF
DELETE FILE <newfile>

dBASE II...110
FILE OPERATIONS:
USE <{filename> opens a file
USE <newfile> closes the old file
USE closes all files

RENAME <oldname> TO <newname>
Must NOT rename an open file

COPY TO <filename) creates a backup copy
CLEAR closes all files and erase all memory wvariables
SELECT [PRIMARY] [SECONDARY]

allows two files to be independently open at the same

time. Data can be transferred with P. and S. prefixes

DISPLAY FILES [ON <d>] 1lists databases on logged-in drive
(or drive specified), can use LIST instead

DISPLAY FILES LIKE <wildcard) [gN <d>] shows other types
of files on drives ’

QUIT closes both.active areas, all files, terminates
dBASE II operation

ORGANIZING DATABASES:
SORT ON <key> TO <mewfile>

INDEX ON <key> TO <newfile)
Can use multiple keys for both commands

COMBINING DATABASES

COPY TO <newfiled> creates a duplicate of the file in USE

APPEND FROM <otherfile> adds records to the file in USE

UPDATE FROM <otherfile> ON <key> adds to totals or
replaces data in the file in USE. Both files must be
sorted on the <keyd. o

JOIN creates a third file from two other files

dBASE II...111

EDITING, UPDATING, CHANGING DATA:

DISPLAY, LIST, BROWSE let you examine the records

DELETE marks record so it is not used

RECALL unmarks record

PACK erases deleted recdrds

EDIT lets you make changes to specific records

REPLACE <field WITH datad> glbbal replacement'bf data
in fields, can be conditional as with most dBASE II
commands ’

CHANGE. .FIELD edit based on field, rather than record

@ <coord> GET (var> R
READ displays the variable, lets you change-it

INSERT [BEFORE][BLANK] inserts a record in a database

UPDATE FROM <otherfile> ON <key> adds to totals or
replaces data in file in USE from another file

MODIFY COMMAND ¢filename> allows changes to your command
files without having to g0 through your text editor

USING VARIABLES:

(Allowed up to 64 memory variables plus any number of
field names.)

LIST MEMORY, DISPLAY MEMORY both.show the variables,
their .
data types and their contents

& returns the contents of a éharac;er'memory variable
(1. e., provides a literal character string)

STORE <value> TO ¢var)> sets up or changes variables
RELEASE. <var> cancels the named variable

SAVE MEMORY TO <(filename> stores memory variables to
the named file (with .MEM extension)

RESTORE EROM <filename> reads memory variables back into
memory’ {destroys any other existing memory variables)

dBASE II.. 112
INTERACTIVE INPUT:

WAIT stops screen scrolling, continues with any key
WAIT TO <var> accepts character to memory variable

INPUT ['prq-pt'] TO <var> accepts any data type to a
memory variable (creates it if it did not exist),
character input must be in quotes

ACCEPT ['prompt'] TO <var> same as INPUT, but no quotes
around character input

@ <cecord> SAY ['prompt'] GET <var> [PICTURE]
READ

displays memory variable, replaces it with new input

SEARCHING:

SKIP [tﬂexp>] moves forward or backward a specific
number of records

Go{T0] <number>, GO TOP, GO BOTTOM
move you to a specific record, the first record, or
the last record in the database

FIND <str)> works with indexed file in USE, very fast

LOCATE FOR <exp>
CONTINUE
Searches entire database

OUTPUT:

?, DISPLAY, LIST show expressions, racords, variables,
Structures

REPORT [FORM <formname>] creates a custom format for

for output, then presents data in that form when
called

€ <coord> SAY <var/exp/str)> formats output to screen
or to printer ([USING <formatd>] can be added to
provide PICTURE format for the printer)

dBASE II...113
PROGRAMMING:
(Programs. stored in COMMAND FILES with .CMD extension.)

-DO <filename> starts the program

IF <conditions> Makes choices, single or
perfora commands imultiple (when nested) -

ELSE
perfora other commands

ENDIFP

DO WHILE <conditions> <Conditions> must be
perform commands changed by something

ENDDO in the loop eventually

dBASE II...114

(This page intentionally left blank.)

dBASE II...115

Section VI

A working accounting system

.The following pages are command files written by a
customer using almost all of the dBASE II commands,
following the instructions in this manual.

The system may be fairly elementary from an
accountant's viewpoint, but includes some programming
techniques that you might find useful.

Besides illustrating individual commands, it shows.you
how to set up menus, how to find data and merge files,
different ways of setting up the inputs to the system, and a
number of interesting solutions to some of the problenms
involved in keeping a cash journal, doing payrolls, and
managing databases so that information is available and data
integrity is not compromised.

) The programs are self-documented, with nnmments
Sprinkled liberally throughout.

dBASE II....116
CONTENTS
Page
STRUCTURES...ccvteeevcncssacsnes 117
REPORT FILES...cceeeeecacenaess 122
SYSTEM CONSTANTS...coevseeesoss 12U
ACCOUNTS . veeerececncassnsaccsss 125

COSTMENU..covevenneccasascscsaes 127
USETAX . coveeavocnaccavenscessnss 130
COSTBILLS.ceecevoscoencoscsseses 133
COSTTIME:.:coceecevrssesacscascass 135
COSTUPDATE..ccecseecsensasnncsss 138

PAYMENU. ..ovveueecncacnnsonacss 139
PAYBILLS.cecvetecnnronaaccanssss 180
PAYFIND...... R £ 11
PAYEMPS..... R 1. 1
PAYROLL.:¢oveesuraoaanoannneaans 148

DEPMENU..ccvvvererrsocacassaraes 155
DEPOSITS.cceoverocesnccvacsesess 156
DEPPRINT..c.-covteconanansaanses 158
DEPTRANS...cvveeecseasocanssense 159

TOMEND . oteerenecnnesaneannansss 160
TOPOST.eetoesnnsannsncaneannnsss 162
JOREVIEW..eeeveceeeeacennasseess 165

INVMENU..coveveecceacesosoncanas 167
INVOICES.:veeanvsocaacsssasncass 169

REPORTMENT...veveenneernneancene 172
JOBCOSTS eeneenancansnnannnnass 174
JOBSINDX.eeueeeosevannnnansnnaes 178
FINDBILLS.cveeeeeereneneeansanes 179
REVIEW..eveaenueoeeenoannsanoess 182
REVHDR..evuveuvans Ceeeeeceneea.. 188
REVMRGN..vvevevoeenncenoneannass 189
SALESTAXe.vsereseseancennannanes 190

TIMECALC. . euvererenancaconneesns. 193
PRINTOUT . evveeceanecaconsannass 195
GETDATE..vreerecrsanencncsnsnsas 196
DATETEST . ceveecnsearncacnanvenas 197
NAMETEST . ecverereeanaranananeess 198
CHECKSTUB.ccotsacocccesasacacsss 199

dBASE II...117

STRUCTURE FOR FILE: B:COSTBASE.DBF

FLD NAME TYPE WIDTH DEC
001 CHECK:DATE C 007
002 CHECK:NMBR C 005
003 CLIENT c 003
oo4 JOB:NMBR N 003
005 AMOUNT N 009 002
006 - C J01
007 NAME C 320
008 - c 001
009 DESCRIP c 020
010 - c 001
011 BILL:DATE C 007
012 BILL:NMBR c 007
013 HOURS N 006 002
01h EMP:NMBR N 003
#8 TOTAL ** 00094

(Indexed on NAME to B:$SUPP.NDX)

STRUCTURE FOR FILE: B:POSTFILE.DBF

FLD NAME TYPE WIDTH DEC
001 CHECK:DATE € 007
002 CHECK:NMBR C 005
003 CLIENT c 003
004 JOB:NMBR N 003
005 - [+ 001
006 NAME C 020
0p7 - c 001
008 DESCRIP c 020
009 AMOUNT N 009 002
010 - c 003
011 BILL:DAT. C 007
012 BILL:NMBR c 007
013 HOURS N 006 002
014 EMP : NMBR N 003

®% TOTAL ## 00096

dBASE II...118

STRUCTURE FOR FILE: B:BILLINGS.DBF

FLD NAME TYPE WIDTH DEC
001 INV:NMBR c 006
002 CLIENT c 003
003 JOB:NMBR N 003
004 - c o001
005 INV:DATE < 006
006 TAXABLE N 009 002
007 SALES:TAX N 009 002
008 TAXFREE N 009 002
009 - [of 001
010 PO:NMBR ¢ o008
o1 DESCRIP c 027
012 MORE L 001
28 TOTAL ** 00084

(Indexed on INV:NMBR to B:BILLINGS.NDX)

STRUCTURE FOR FILE: B:INVOICES.DBF

FLD NAME TYPE WIDTH DEC
001 INV:NMBR [006
002 . CLIENT c 004
003 INV:DATE c 007
ool TAXABLE N 009 002
005 SALES:TAX N 009 002
006 TAXFREE N 009 002
007 - c 001
008 AMOUNT N 009 002
009 AMT:RCD N 009 002
010 - c 001
o1 DATE:RCD c 007
5% TOTAL ## 00072

(Indexed on INV:NMBR to B:INVOICES.NDX)

STRUCTURE FOR FILE: B:DEPOSITS.DBF

FLD NAME TYPE WIDTH DEC
001 DEP:DATE c 007
002 PAYER c 020
003 - c 001
004 PAY:NMBR c 007
005 DEPOSIT N 009 002
006 - [001
007 INV:NMBR c 006
008 COMMENTS c 021
88 TOTAL *# 00073

dBASE II...119

STRUCTURE FOR PILE: B:CHECKFIL.DBF
FLD NAME TYPE WIDTH DEC

001 CHECK:DATE C 007
002 CHECK:NMBR C 005
003 AMOUNT N 009 002
ool - c 001
005 " BILL:NMBR c 007
‘006 NAME ¢ 02
007 EMP:NMBR N 003
008 - c 001
009 CLIENT c 003
1010 JOB:NMBR N 003
o1 DESCRIP c 020
012 BALANCE N 009 002
#8 TOTAL ** 00089

STRUCTURE FOR FILE: B:INSERTS.DBF

FLD NAME TYPE WIDTH DEC
001 10:NMBR c 005
002 MAGAZINE c 014
003 - c 001
ooy ISSUE c 006
005 - c 001
006 CLIENT c 003
007 JOB:NMBR N 003
008 - c 001
009. AD c 015
010 SPACE c 013
on GROSS:COST N 009 002
012 NET: COST N 009 002
013 - c 001 .
‘014 TIMES c 003
015 I0:DATE c 006
% TOTAL *® 00091

(Indexed on IO:NMBR to B:INSERTS.NDX)

STRUCTURE FOR FILR:

FLD NAME
001 CHECK:DATE
002 -

003 MARKER
ool PAYROLL
005 FICA

006 FICASAL
007 FIT

008 Sp1r

%9 SDISAL
010 SIT

011 UISAL

% TOTAL @&

STRUCTURE FOR FILE:

FLD NAME
001 EMP :NMBR
002 NAME
003 ADDRESS
004 CITY:STATE
005 ZIP

006 PH:NMBR
007 SS:NMBR
008 M:S:H
009 DEDUCTS
01p PAY:RATE
c1 FICA

012 YTDFICA
013 FIT

014 YTDFIT
015 SpI

016 YTDSDI
017 SIT

018 YTDSIT
019 NET:PAY
020 QTDSAL
021 YTDSAL
022 PAID

023 START:DATE
o024 RATIO

% TOTAL *#

B:EOLD81.DBF
TYPE WIDTH DEC
c 004
c 001
c 001
N 009 00z
N 008 002
N 009 002
N 009 002
N 007 002
N 009 002
N 009 002
N 009 002
00076
B:PERSONNE.DBF
TYPE WIDTH DEC
N 003
c 020
[y 02y
c 020
C 005
c 013
c 009
C 001
N 002
N 007 002
N 008 002
N 008 002
N 009 002
N 009 002
N 007 002
N 007 002
N 009 002
N 009’ 002
N 009 002
N 009 002
N 009 002
L 001
c 006
N 005 003
00209

dBASE II...120

T+—

dBASE II...121

STRUCTURE FOR FILE: B:SUPPLIER.DBF

FLD NAME TYPE WIDTH DEC
001 SUPPLIER c 030
002 ADDRESS c o24
003 CITY C 016
004 STATE c 002
005 1P c 005
006 PHONE:NMBR C 008
007 AREA:CODE c 003
%% TOTAL ®* 00089

(Indexed on SUPPLIER to B:SUPPLIER.NDX)

dBASE II...122

The agency accounting system uses three standard report
forms. The first one is for media and is filled out
completely. The remaining two are skeletons, showing only
the answers to the questions asked by dBASE II.!

ENTER REPORT FORM NAME: Media)

ENTER OPTIONS, M=LEFT MARGIN, =LINES/PAGE, W=PAGE WIDTH
M=50 <enter>

PAGE HEADING? (Y/N) u

DOUBLE SPACE REPORT? (Y/N) n

ARE TOTALS REQUIRED? (Y/N) y

SUBTOTALS IN REPORT? (Y/N) n

coL WIDTH,CONTENTS

001 6,I0:NMBR
ENTER HEADING: IO #
002 15,MAGAZINE

ENTER HEADING: MAGAZINE

003 T,ISSUE

ENTER HEADING: ISSUE

004 6,CLIENT+STR(JOB:NHBR,3)
ENTER HEADING: JOB #

005 15,AD
ENTER HEADING: AD
066 9,GROSS: COST

ENTER HEADING: $GROSS
ARE TOTALS REQUIRED? (Y/N) Y
007 <enter>

The above dialog generate this report form:

PAGE NO. 00001

10 # MAGAZINE ISSUE JOB # AD $GROSS
2787 Ebn JAN 7 SPI6T78 FLAT MAN 3225.00
2788 MICROWAVES JAN POM772 FISHERMAN GUNNS 2500.00
2789 MICROWAVES MAR POM639 COP: GUNNS 2500.00
2790 ELECTRONICS JAN ‘PSS754 NICE LITTLE BK 5900.00
2791 BYTE FEB SFT789 BILGE PUMP 2932.00

eso(etel)...

ﬁ'——

dBASE II...123
The other two report forms are:
JOBCOSTS.FRM
n
n
y

n
9,BILL:DATE
DATE
22 ,NAME
SUPPLIER.cccocccenscne
17,DESCRIP’
DESCRIPTION......
12, AMOUNT

AMOUNT
] Y

BILLED.FRM

n

n

3

n
8,INV:DATE

DATE
8,INV:NMBR
INVOICE
17,DESCRIP
DESCRIPTION
10, TAXABLE

TAXABLE

Y
10,SALES: TAX
SALES TAX
Y

10, TAXFREE
TAX-FREE

Y

dBASE II...124

SYSTEM CONSTANTS

System constants are kept in a file called B:Constant ;:MEM.
These are called out, used and updated where
appropriate from within a number of programs within this
Constants are kept in a single file go
that when any of them change (new tax rates, new year,
etc.), they need only be changed in one location to update

accounting system.

the entire system.

NEXTCHECK
MBALANCE

THISYEAR
MINYEAR

NEXT:IO
NEXT:INV

FICACUT
FICAEND
MAXFICA
SDICOT
SDIEND
MAISDI
UIEND
COMPLETED
PREVDATE
MAXEMPL

(c)
(N)

(N)
(Nn)

(©)
(c)

(N)
(N)
(N
(N)
(N)
(N)
Ny
)
)
N

3565
23921.18

81
79

- 2885

10623

G.0665
29700.00
1975.05

0.006
14900.00
89.40

6000

810814
14

Keep checkbook durrent in PAYBILLS, PAYROLL
and DEPOSITS command files.

Used by GETDATE, DATECHECK and PAYROLL files.

Next insertion order number (IOPOST.CMD).
Next invoice number (INVOICES.CMD).
Entire grouping is used in the PAYROLL file.

Easy to update every year because the values
are not sprinkled throughout the programs.

Highest employee number. Also used in
POSTTIME and TIMECALC programs.

1___""""""‘——llllllllll...........l....

dBASE II...125

BEEREERRERE ACCOUNTS COMMAND FILE [T232 2222 4]
THIS IS THE CONTROL MODULE FOR ALL THE PROCEDURES USED IN THE.ACCOUNTING
FUNCTIONS. (MENU DRIVEN). The operator is given a choice of major
functions. The menu selection here calls up menus of sub-functions

to as many levels as necessary. A package of utility functions is

also provided as part of the overall system for file maintenance, etc.
iililllll!!ll!illllllllliilllllll!i'i!!lli!‘llll!!lil

R N

SELECT PRIMARY
CLEAR

SET TALK OFF
SET EJECT OFF
SET MARGIN TO 38
SET RAW ON

I!lllllll'!!l‘ill!II!Iilll!!l’!!‘i!il!“lllll!!l!!lllil*!!llllllll

This group of commands is hardware-dependent, may be eliminated

down to the next row of asterisks.

SET PRINT ON . .
% Sets (8-1)=7 lines/inch and 89 lines page, Diablo 1650/sheet feeder
22 CHR(27)+CHR(30)+CHR(8)
27 CHR(27)+CHR(12)+CHR(89)

SET PRINT OFF

End printer setup commands.
EERRAREEERE RN AR RN RN RRR RN ER R RUERRER

STORE T TO Accounting
DO WHILE Accounting

ERASE

?

? .

? *1> ENTER BILLS & TIME SHEETS 6> .REPORTS & PRINTOUTS'

? Job cost & billing summaries'
7 '2> PAY BILLS & SALARIES Find & Edit bills by name’
2?2 Review/print databases’

? '3> DEPOSITS & CHECKBOOK Quarterly Sales Tax'

? .

? '4> MEDIA INSERTION ORDERS'

?

2 15> CLIENT BILLINGS & INVOICES'

?.

? -

2! Pick a number (Q to QUIT)'

WAIT TO Action

IF 1(Action) = 'Q'
* This sequence homes the cursor and erases the screen on the IBM 3101
STORE chr(27) + chr(76) + chr(27) + chr(89) + chr(0) TO'q
QUIT TO '&q'"
ELSE
IF Action = '1'
DO CostMenu
ELSE
IF Action = '2'
DO PayMenu
ELSE
IF Action = '3!

IF Action = '4'
DO I0Menu
ELSE
IF Action = '5'
DO TnvMenu

dBASE II...126

ELSE
IF Action = '6!
DO ReportMe
ELSE

If Action = '7*
ERASE
€ 5,10 SAY ! HELP file not ready yet.'
? ' <Return> to continue.' '
WAIT
ENDIF 7
ENDIF 6
ENDIF 5
ENDIF 4§
ENDIF 3
ENDIF 2
ENDIF 1
ENDIF Q
STORE- T TO Accountin-
ENDDO Accounting

I -

dBASE II...127

SRARRABRER wsTmNU wmun FILE Illllllll_l
* This is one level down from the Accounts.Cmd control module.
® Sele cions are refinements that relate to costs for client-related
* jobs or agency overhead.
® The main database is called CostBase.Dbf and is kept on disk B.
® Costs are not entered directly into the CostBase, however, because this leads
® to data contamination and all sorts of problems fixing the errors. Instead,
®* supplier bills and agency time sheets are posted into an interim file called
® PostFile.Dbf. 1In here, they can be reviewed and edited as necessary.
* When all the cost entries are confirmed as being correct, they are
»
*

transferred to the Cos*Pase by using the update procedure (selection S).
AR R RN RN RN R R R R PR RN RN R RN R RN R RN RN RN RN RN ERRR

STORE T TO Posting
DO WHILE Posting

ERASE

@ 2,20 SAY ¢ 1> UNTAXED ITEMS USED BY AGENCY'
€ 4,20 Say 2> ENTER SUPPLIER BILLS'

@ 6,20 SAY ! 3> ENTER EMPLOYEE TIME SHEETS'

@ 8,20 SAY ? 4> EDIT the POSTFILE'

€ 10,20 SAY 5> REVIEW/PRINT the POSTFILE'

8 12,20 SAY ! 6> UPDATE THE COSTBASE'

@ 14,20 SAY 7> WIPE OUT DELETED RECORDS IN POSTFILE'
@ 16,20 SAY ' <RETURN>'

WAIT TO Action

ERASE

IF Action = '1*

ERASE

@ 14,10 SAY 'This program accepts bills for items that the agency bought®'
without paying sales tax, but will use internally, rather'
than for a job that will be billed to a client. This would'
include equipment bought out of state and locally bought'
materials NOT used in client jobs and NOT taxed.'

- - -

”
»
?
?
2! DO NOT ENTER ANY OTHER BILLS!'
rd

? 'Do you want to continue (Y or N)?'

WAIT TO GoAhead .

IF 1(GoAhead) = 'Y’

DO UseTax

LSE
RELEASE All

ENDIF

ELSE

IF Action = '2'
ERASE
€ U4,10.8AY CHECK ALL THE BILLS BEFORE ENTERING THEM.'
7 If any of the bills are for items used by the agency'
2! but .sales tax was not paid, select OPTION 1 from the!'
2 entry menu. <Return> to continue.’'
b d

WAIT
DG CostBills
ELSE i
IF Action = '3¢
DO CostTime
ELSE
IF Action = 'Wv
STORE "Y" TO Changing
DO WHILE !(Changing)='Y"'
USE B:PostFile
IF EOF
? 'There are no entries in the POSTING file.'

dPASE II...128

? '<Return> to c¢ontinue.'
WAIT
STORE "N" TO Changing
ELSE
GO BOTTOM
ERASE
€ 3,10 SAY 'EDITING BILLS ENTERED.'
€ 5,10 SAY 'There are '+STR(#,5)+' file entries.'
€ 6,10 SAY 'Which entry do you want to EDIT?'
ACCEPT TO Number
IF VAL(Number) <= O .OR. VAL(Number) > #
2
?
? 'Out of range: do you want to continue (Y or N)?'
WAIT TO Changing
ELSE
Edit &Number .
REPLACE Name WITH !(Name), Descrip WITH 1(Descrip),;
Client WITH 1(Client), Bill:Nmbr WITH !(Bill:Nmbr)
? .
? 'Do you want to edit any other entries (Y or N)?'
WAIT TO Changing
ENDIF
ENDIF
ENDDO Changing
RELEASE All
ELSE
IF Action ='5!
STORE 'Y' TO Reviewing
DO WHILE |(Reviewing)='Y'
USE B:Postfile X
COUNT FOR .NOT. ®* TO Any
IF Any = 0
? 'No unposted entries in the POSTING file.
? '<Return> to continue.'
WAIT
STORE "N" TO Reviewing
ELSE
ERASE
? 'There are '-STR(Any,;5)+' unposted entries.’
? 'Do you want to print them, too (Y or N)?'
WAIT TO Output

IF 1(Output)='Y"

'SET PRINT ON
ENDIF ’
71 JOB NAME DESCRIP';

+'TION AMOUNT DATE ~ NUMBER'
2

STORE YOFF' TO Condition
STORE. '0' TO Number
DO Printout

? "That's all the unposted entries.”
? 'Want to see them again (Y or N)?!
? '(To see deleted records, choose "Edit®.)!
WAIT TO Reviewing
ENDIF ’
ENDDO Reviewing
RELEASE all
ELSE _
IF Action = 16!
DO CostUpdate
ELSE

dBASE II...129

IF Action = '7¢
? 'This destroys all records in the PostFile.'
? 'Do you want to do this (Y or N)7'
WAIT TO WipeOut
IF t(WipeOut) = 'Y

USE B:PostFile
 PACK

ENDIF
RELEASE ALL

ELSE
RELEASE All
RETURN

ENDIF 7

ENDIF 6
ENDIF 5
ENDIF 4
ENDIF 3
ENDIF 2
ENDIF 1,
STORE T TO Posting
ENDDO Posting

dBASE II...130

RRRRRRERNNE USETAX COMMAND FILE HeRsuxsisss
This file accepts inputs for supplier bills when the agency has bought
an item without paying a use tax on it.) .
The item or items are added to the Invoices file (not Billings),
then are used by the SalesTax program so that thé Quarterly Sales Tax
report can be prepared by the computer.

can decide to quit on an incomplete entry, which is marked for deletion.

When the data is APPENDed to the PostFile, these entries are eliminated (the
APPEND command does not transfer records marked for deletion). An entry must
include at least the name of a supplier and the amount of the bill. If these

are not both supplied, the entry is flagged for correction or deletion.

[}
.
[
»
'
L} .
: A temporary file called GetBills is used for data entry because the operator
]
.
]
]
SO RN R RN RN RN RN NN AR RN E R RN R R A RN R AR R AR AR RNRRRERER

ERASE
€ 5,20 SAY 'AGENCY USE TAX PROCEDURE'
?

USE B:PostFile
COPY STRUCTURE TO GetBills

USE GetBills

STORE 'Y! TO Bills

po WHILE !(Bills) <>
APPEND BLANK
STORE STR(#,5) to Number -
REPLACE Client' WITH ‘'QFC’
STORE T TO Entertng
DO WHILE Entering.

ERASE , :

@ 1,0 SAY 'ENTER ONLY UNTAXED ITEMS NOT USED FOR CLIENT JOBS.'
@ 3,0 SAY ' RECORD NUMBER:' + Number '

@ U4,0 SAY CLIENT:' + Client + ':°'

@ 5,0 SAY ' JOB NUMBER' GET Job:Nmbr

@ 6,0 SAY ! AMOUNT* GET Amount

€ 7,0 SAY ! BILL NUMBER' GET Bill:Nmbr

@ 8,0 SAY ! BILL DATE' GET Bill:Date

@ 9,0 SAY ' SUPPLIER NAME' GET Name

READ

REPLACE Name WITH !(Name),Descrip WITH 'USE TAX ENTRY';

'B1113iNmbr .WITH ..!'(gs_nllzumbr)
7,17 SAY Bill:Nmbr v

9,17 SAY Name ’

10,17 SAY Descrip

w

TORE ' ' TQ Getting

1IF Job:Nmbr <= 0 .OR. Job:Nmbr > 99
e 12,0
? ! The JOB NUMBER entry is wrong.'.
?! Agency jobs are from 1 through. 99.!
2! F if FINISHED,'

ACCEPT ! <Returnd to change.' TO Getting

173

?

2! AMOUNT or NAME missing.'

? "F if FINISHED,'

Accept <Return> to change.' TO Getting
ELSE

& 12,5 SAY ! C to CHANGE.'

€ 13,5 SAY ' F if FINISHED,' 3

ACCEPT <Return> to contirue." TV Bills

dBASE II...131

IF t1(Bills)='C'
STORE T TO Entering
ELSE
STORE F TO Entering
ENDIF
ENDIF amount or name
ENDIF client or job number

IF 1(Getting)= 'F'
DELETE RECORD &Number
STORE F TO Entering
STORE 'F' TO Bills

ENDIF
ENDDO Entering
ENDDO Bills
COUNT FOR .NOT. * TO Any
Ir gny 20
2! No valid entries to add to ‘the files.'
7 <Return> to ‘the menu.'
WAIT

RESTORE FROM B:Constant
STORE 'Bill:Date' TO Date
DO ‘DateTest

Checks names against a list of suppliers to catch spelling and
® abbreviation inconsistencies.
DO NameTest

ERASE

€ 3,25 SAY ' s#s pg NOT INTERRUPT ###:
@ 5,25 SAY ' UPDATING THE POSTING FILE'
USE B:PostFile

APPEND FROM GetBills

* The following loop transfers the bills just entered into the Invoices
® file. The amount of the bill is entered in the "Taxable" column. The
* job number is entered into the Invoice Number column. Since invoice
® have 5 digits, while Job numbers are under 1000, we use this to sepa-~
*# rate the two types of entries later in the SalesTax.CMD file.
* PRIMARY and SECONDARY work areas are used to step through the GetBills
® file one entry at a time. ’
USE GetBills
SELECT SECONDARY
USE B:Invoices
SELECT PRIMARY
DO WHILE .NOT. EOF
IF *
SKIP
ELSE
SELECT SECONDARY
APPEND BLANK
REPLACE Inv:Nmbr WITH STR(Job:Nmbr,3), Inv:Date WITH Bill:Date,;
. Taxable WITH P.Amount, Date:Red WITH 'USE TAX!'
SELECT PRIMARY
SKIP
ENDIF
ENDDO

ENDIF

dBASE II...132

USE .

DELETE FILE GetBllls
RELEASE All

RETURN

dBASE II...133

RESRRERARNER COSTBILLS COMMAND FILE RERABRRRRRR
® This file accepts inputs for supplier bills.
® p temporary file called GetBills is used for data entry because the operator
% can decide to quit on an incomplete entry, which is marked for deletion.
yhen the data is APPENDed to the PostFile, these entries are eliminated (the
¥ APPEND command does not transfer records marked for deletion). An entry must
: include at least the name of a supplier and the amount of the bill. If these

are not both supplied, the entry is flagged for correction or deletion.
AR RN RE RS RN AR R B AN R R AR RN RN RN RN RN R R R R RN RN RRARARRCERRERRARRERRNS

ERASE

€@ 5,20 SAY 'SUPPLIER BILLS'
USE B:PostFile

COPY STRUCTURE TO GetBills

USE GetBills

STORE 'Y' TO Bills

DO WHILE !(Bills) <> 'F!
APPEND BLANK
STORE STR(#,5) to Number

STORE T TO Entering
DO WHILE Entering

ERASE

€ 1,0 SAY * RECORD NUMBER: !'-Number

@ 3,0 SAY ! CLIENT'~6GET Client

@ 4,0 SAY * JOB NUMBER' GET Job:Nmbr

@ 5,0 SAY * AMOUNT' GET Amount

@ 6,0 SAY ! BILL NUMBER' GET Bill:Nmbr

€ 7,0 SAY ' BILL DATE' GET Bill:Date

€@ 8,0 SAY ¢ SUPPLIER NAME' GET Name

€ 9,0 SAY ' DESCRIPTION' GET Descrio

READ

REPLACE Client WITH !(Client),Name WITH !(Name),Descrip;
WITH !(Descrip), Bill:Nmbr WITH !(Bill:Nmbr)

€ 3,17 SAY Client

@ 8,17 SAY Kame
€ 9,17 SAY Descrip

STORE ! ' TO Getting
IF $(Client,1,1) = ' ' .OR. $(Client,2,1) = ' ' .OR. $(Client,3,1) = ' ';
.OR. Job:Nmbr <= 0
e 12,0
?° CLIENT or JOB NUMBER wrong.'
2 F if FINISHED,'
ACCEPT * <Return> to change.' TO Getting
ELSE .
IF Amount = O .OR. Name <= '

' AMOUNT or NAME missing.'

ERCECE

?° F if FINISHED,'

ACCEPT <Return> to change.' TO Getting
ELSE :
é 12,5 SAY C to CHANGE,'

8 13,5 SAY ! F if FINISHED,'
ACCEPT ' <Return> to continue.' TO Bills

IF 1(Bills)='C*

STORE T TO Entering
ELSE

STORE F TO Entering
ENDIF

dBASE II...134

ENDIF amount or name
ENDIF client or job number

IF 1(Getting)= 'F!'
DELETE RECORD &Number
STORE F TO Entering
STORE 'F' TO Bills
- ENDIF
ENDDO Entering
ENDDO Bills

COUNT FOR .NOT. * TO Any
IF Any =
-7 'No entries to add to t.he Cost Base.'
?. '<Return> to the menu.'
USE .
WAIT

_ RESTORE FROM B:Constant
STORE 'Bill:Date' TO Date
DO DateTest

Checks names against a list of suppliers to catch spelling and
& abbreviation inconsistencies.
DO NameTest

ERASE
€ 3,25 SAY ' #*#%& DO NOT INTERRUPT #8#r
@ 9,25 SAY ' UPDATING THE POSTING FILE®
USE B:PostFile
APPEND FROM GetBills

ENDIF

nn.m FILE GetBills
RELEASE A1l
RETURN

#
L]
»
®
*
L]
*
#
]
L
4
*
®
]
»
*

e
R

dBASE II...135

HENRENEEES COSTTIME COMMAND FILE #euussseps
Accepts time sheet entries for employees using a temporary
file called GetTime. For data entry.
GetTime is used because the operator can decide to quit on an incomplete
entry. In that case, the entry is marked for deletion, and when the data is
APPENDed to the PostFile, these entries are eliminated (the APPEND command
does not transfer records marked for deletion).
After all entries are made, entries are checked for the
correct range of employee numbers and to see that hours have
been entered. Using GetTime, we can check the entries without
having to go through the entire PostFile.
After verifying that the dates are in the right format and
checking the names against our Suppliers file, the billing amounts
are computed.
The records are then transferred to the CostFile and the

temporary file GetTime is deleted.
T T T L e T T LTI Y™

0,25 SAY ' TIME SHEETS °*
ESTORE FROM B:Constant

USE B:PostFile
COPY STRUCTURE TO GetTime

U

SE GetTime

STORE 'Y' TO Time
DO WHILE !(Time) <>'F'

APPEND BLANK
STORE STR(#,5) TO Number

STORE T TO Entering
DO WHILE Entering

STORE F TO Entering

1,0 SAY ' RECORD NUMBER: '-Number

0 SAY ! DATE WORKED' GET Bill:Date
0 SAY ! CLIENT' GET Client

0 SAY °* JOB NUMBER' GET Job:Nmbr
0O SAY * HOURS WORKED' GET Hours

0 SAY ' EMPLOYEE NUMBER' GET Emp:Nmbr
0 SAY! EMPLOYEE NAME' GET Name

REPLACE Check:Nmbr WITH '----', Check:Date WITH Bill:Date,;
Client WITH !(Client), Name WITH !(Name)

4,17 SAY Client

8 17 SAY Name

The following sequence of IF statments flags all entry errors, ther
gives the .operator the choice ofvfixing them or ending the procedurs.

® % OO

? . .

IF $(Client,1,1) ='-',.OR. S(Client,z;f)“=' ' .,OR. $(Client,3,1) ="' '
? CLIENT must have three letters.'
STORE T TO Entering

ENDIF

IF Job:Nmbr ¢ 100
?°! JOB # is not for a client job.'
? * Is this right (Y or N)?'
WAIT TO Ask
IF 1(Ask) < 'Y*
STORE T T0 Entering
ENDIF

dBASE II...136

ENDIF.

IF .NOT. (Hours > 0)
?° HOURS must be entered.
STORE T TO Entering-

ENDIF

IF .NOT (Emp:Nmbr>0 .AND. Emp:Nmbr<= MaxEmpl)
EMPLOYEE # out of range.
STOEE T TO Entering

ENDIF
IF S(Name,\ 1) '
? NAME must not start with a blank.'
STOQRE T TO Entering
ENDIF
IF Entering
?
?
?! F Af FINISHED,'

ACCEPT ' CReturnd to change' TO Time

® If the operator decides to quit on an incomplete entry, it is
® marked for deletion so that it is not transferred to the PostFile.
IF 1(Time) = 'F'
DELETE RECORD &Number
* STORE F TO Entering

ENDIF
ELSE
? .
?° C to CHANGE,'
?r F 4f FINISHED,'

ACCEPT ' Qeturnd> to continue' TO Time
IF !(Time) = 'C*
STORE T TO Entering
ENDIF
ENDIF
ENDDO Entering
ENDDO Time

COUNT FOR .NOT. ® TO Any
IF Any = 0
ERASE)
@ 370 SAY ! No entries to add to the CostFile. '
? ' {Return> to the menu. '
USE '
WAIT
ELSE

The-test for the date needs the name of the date field to to be tested.
STORE 'Bill:Date' TO Date
DO ‘DateTest

® Checks names against 2 list of suppliers to catch -spelling and
® abdreviation'inconsistencies.
DO ' NameTest

® Verifies match between employee name and number, then computes the a-ount
to be billed for the employee's time based on his salary.
DO TimeCalc i

ERASE

dBASE II...137

@ 3,25 SAY " %% DO NOT INTERRUPT #¥#n
@ 5,25 SAY " UPDATING THE POSTING FILE"
USE B:PostFile
APPEND FROM GetTime

ENDIF

DELETE FILE GetTime
RELEASE All
RETURN

dBASE II...138

SRERRNRARN COSTUPDATE COMMAND FILE #esnnssnsy

4 Records from the COSTFILE are added to the COSTBASE.

% This step is so critical to data integrity that we: use a password

to prevent accidental access; verify dates; check the names of suppliers;
® and compute time charges if necessary. Notice that thsese are done by

® simply calling the utility command files.

: The PostFile has all its records marked for deletion after they

»

have been posted (can still be recovered).
L G L L T L T T T P T P P T YT T

SET TALK OFF

8 U, 12 SAY 'RERNEREERRNNENREERERERRRRRRR RN RN RN
€ 6,12 SAY 'MAKE CERTAIN EVERYTHING IN THE POSTFILE -IS CORRECT'

@ 8,12 SAY ! BEFORE ENTERING THE CODE TO CONTINUE'
€ 10,12 SAY 'SEERRSARRRARIRESNRERRNARRARNNNRRRIRANNTERINRRRRARY

SET CONSOLE OFF
ACCEPT TO Lock
SET CONSCLE ON

IF 1(Lock) <> 'H’

@ 12,12 SAY ! UNAUTHORIZED ACCESS ATTEMPTED.'
€ 14,12 SAY 'YOU HAVE 6 SECONDS BEFORE THE EXPLOSION.'®
STORE 1 TO X

DO WHILE X < 150
STORE X + 1 TO X
ENDDOQ
RELEASE Lock
RETURN
ELSE
ERASE
8 5,20 SAY 'Checking bills in the POSTING File"
USE B:PostFile
COUNT FOR .NOT. * TO None
IF None = 0
€ 6,20 SAY 'No new entries in the POSTING file.'
@ 7,20 SAY '<Return> to continue.'
WAIT
ELSE
GO TOP
RESTORE FROM B:Constant
STORE 'Bill:Date' TO Date
DO DateTest
DO NameTest
DO TimeCale
ERASE
€ 5,20 SAY ' *#* DO NOT INTERRUPT #&#¢
@ 6,20 SAY 'Posting COSTS to the Costbase.’
* Save the number of the last record-in Costbase
USE B:CostBase
GO BOTTOM
STORE # TO LastReco

USE B:Costbase INDEX B:$Supp
APPEND FROM B:PostFile

USE B:PostFile
DELETE ALL
ENDIF
ENDIF

RELEASE All
RETURN

dBASE II...139.

FNARRRWRES PAYMENU COMMAND FILE ¥eassannsd
® This is a sub-module of the Accounts.CMD file and provides’ choices
% as to which checks are to be prepared for posting and printing.
b Paying salaries has another menu level to allow partial payments
® to selected employees (e.g., leave of absence, when an employee does not
® work a full two week stretch, etc.)
: The checkbook balance and next check number must be confirmed before
]

either of the procedures can be performed.
AR RN RN R AR NN RN NN R RN RN R RN RN SRR R R RN AR RN AR R AN RNIRERRNRARRN

RESTORE FROM B:Tonstant

ERASE -
6 3, 0 SAY 'CHECK NUMBER: '+NextCheck+' BALANCE: .'+STR(MBalzn:e,9,z)
? ! Do these match the checkbook"

2 C to CONTINUE,*

2?2 <Return> to change."'

?

WAIT TO Continue

IF t(Continue) <> 'C*
RELEASE All
RETURN

ENDIF

STORE T TO Paying

DO WHILE Paying
ERASE
@ 5,20 SAY ! 1> PAY BILLS
& 7,20 SAY ! 2> PAY SALARIES
@ 10,20 SAY <RETURN>*
WAIT TO Action

IF Action = *1!
USE B:PostFile

Can abort if any entries in the Postfile.
COUNT FOR .NOT. ®* TO Any

IF Any = 0
. DO PayBills
ELSE

i d
? 'The POSTING file has '-STR(Any,5)+' .bills in it.'
? 'Do you still want to pay bills now (Y or N)?'
WAIT TO Continue
IF 1(Continue) = 'Y*
DO PayBills
ELSE - .
RELEASE All
ENDIF
ENDIF
ELSE
IF Action = '2°
DO PayEmps .
ELSE
RELEASE All
RETURN
ENDIF 2
ENDIF 1
STORE T TO Paying
ENDDO Paying

dBASE II...140

SERBRENERRN DAYBILLS COMMAND FILE #enssnusasa
% Before this procedure can be accessed, the check number and balance must

® be verified in the PAYMENU command file.

L4 This is one of the longer files, but the individual portions of it are
® not too complicated. Repetitive procedures in the main loop (controlled

by the variable "Finished") could have been put in seéparate command files
® to make this file easier to understand and maintain, but this way it

* minimizes disk accesses and increases speed.

L4 This file finds bills to be paid in the CostBase, generates the next
¥ check number, writes a check in the CheckFil and maintains the checkbook

® balance.

. The next check number and checkbook balance are recalled from a file
® called Constant.MEM. The final values for both of these are stored in the
same file after all the bills have been paid.

L4 The date is entered once at the start of the procedure, then

{s automatically inserted into each entry. The date is checked to

see that it is in the YYMMDD format, and that the values are within

% possible limits (month from 1 to 12, day from 1 to 31, year=ThisYear).

L Entries must include at least the name of the party being paid.

. Balances are automatically computed and shown to the operator.

* Check numbers are automatically assigned by the computer.

. If several entries are made against a single check number (the

operator has this option), these are added and shown as a single

1)

»

item in the printout.
AERRANABRNARREAZARARARZARARAARARRABRRRAAAANASRERARANRAARNAASARRRERRS

RESTORE FROM B:Constant
DO GetDate

SELECT PRIMARY
USE B:CostBase INDEX B:$Supp

Tnitialize. "New" is used to determine whether the program should generate
3 new check number or use the old one (where several bills to a single
gupplier are being paid). "Finished" is the control variable that determines
yhether we should run through the procedure again, or are done paying bills.
STORE 'N' TO New.
STORE 'N’' TO Finished
DO WHILE !(Finished) <> 'F'
STORE "C" TO Entering
DO WHILE !(Entering) = .'C'

ERASE .

€ 3, O SAY 'CHECK NUMBER: '+NextCheck+' BALANCE: '+STR(MBalance,9,2)
? CHR(T7)

e 4,0

ACCEPT ' MAKE CHECK TO -* TO MName

ACCEPT ' INVOICE -NUMBER ' TO MBill:Nmbr

ACCEPT ' ENTER AMOUNT ' TO Temp

STORE !{(MName) TO MName
STORE !(MBill:Nmbr) TO MBill:Nmbr
STORE VAL(Temp) TO MAmount
STORE MAmount#*#1.00 TO MAmount
@ 6,19 SAY MName
é 7,19 SAY MBill:Nmbr
@ 8,19 SAY MAmount
é 11, 0 sAY ! C to CHANGE,
? <Return> to continue.'’
WAIT TO Entering
ENDDO Entering

IF LEN(MName) > 10
STORE $(MName, 1,10} TO Key

ST
STORE MName TO Key

dBASE II..f1N1

ENDIF

IF Key > ' !
STORE T TO Looking)
€ 11, 0 SAY "I'M LOOKING, I'M LOOKING! ™

é 12,0
e 13,0
STORE O TO Start
FIND &Key
IF # =0
?
72 ne GEE, I CAN'T FIND THE NAME. Please check the spelling.”
2" Or maybe it hasn't been posted to the COSTBASE yet."
? '<Return> to continue.’'
WAIT
ERASE
ELSE
DO PayFind

ENDIF there is an unpaid bill for the supplier

% nStart" is brougnt in from PayFind.CMD. ' If we started at the first
entry for a name (had only the name), Start-O0. If we had more than
* the name, Start contains the record numerber we started on. Since this
% could be in the middle of the listing, we use "Counter"” so that' we can
come back to the top of the listing for the name -once.
IF Start > 0

STORE O TO Counter

ELSE
STORE 1 TO Counter
ENDIF
STORE ' ' TO Confirm
DO gHILE t(Confirm) <> 'P' .AND. .NOT. Looking
9,0
? 'RECORD NAME AMQUNT BILL #';
+! DATE'
?
DISPLAY ' t4+Name, Amount, Bill:Nmbr, Bill:Date
ed
? CHR(T)
2! P to PAY this bill,’'
2?0 Q to QUIT without paying,’'
2! <Return> to continue.'
ACCERT ' ' TO Confirm

IF t(Confirm) = 'Q'
IF t(New) = 'S’
STORE STR(VAL(NextCheck)+1,4) TO NextCheck

ENDIF

STORE ' ' TO New

STORE T TO Looking
ELSE

IF t(Confirm) = 'P'
STORE STR(#,5) TO Found
REPLACE Check:Date WITH Date, Check:Nmbr WITH NextCheck
STORE (MBalance-Amount) TO MBalance

SELECT SECONDARY

USE B:Checkfil

APPEND BLANK

REPLACE Check:Date WITH P.Check:Date, Name WITH P.Name,;
Check:Nmbr WITH P.Check:Nmor, Balance WITH MBalance,;
Apount WITH P.Amount, Bill:Nmbr WITH P.Bill:Nmbr

SELECT PRIMARY

dBASE II...182

ERASE
€@ 3, O SAY 'CHECK WRITTEN: '+NextCheck+;
v NEW BALANCE: '+STR(MBa1ance,9,2)

2
DISPLAY 'PAYMENT MADE: '+Check:Date, Name, Amount, Bill:Nmbdbr,;
Bill:Date OFF .

?

? ! S for SAME SUPPLIER (Repeats check #)!
? CHR(T)

ACCEPT ' <Return> to continue.' TO New

IF ! (New) <> 'S
STORE STR(VAL(NextCheck)+1,4) TO NextCheck

STORE ' ' TO Confirm

IF i(New) 'St .OR. 1(Confirm) <> 'P!

* If Confirm <O P!, we rejected the first unpaid bill that was
shown. Rather than going back to the beginning, the loop
below SKIPs to the next INDEXed name until we find an unpaid
bill, or go beyond the records for -the name we are paying.

The same applies if we want to pay another bill to the
same supplier (New='S'). Since we are in the file on the name
we want we SKIP to the next record:until we find an unpaid
bill or run out of records for that name. -

If we had only the name and started with the first unpaid
bill we stop now since we have iooked at all the unpaid bills
for that supplier.

If we could have entered the list of records for this
supplier in the middle (more than the name provided), we look
at the unpaid bills between where we are and the end of the
1ist, then go up to the first entry for that name and check
all of the unpaid bills that we had previously skipped past.
This is controlled by Counter. .

After the second FIND in the command file (below), we
stop looking when the record number we are on is. greater than
or equal to the number of the record we start on (Start).

-.-..‘.‘.'-..‘-“.

SKIP

DO WHILE Check Nmbr <> ' ' .AND. Name=Key .AND.',NOT. EGF
SKIP :

ENDDO

® We enter this loop when we reach the end of the records with
* names that match the one we are looking for. If we started
% with the first unpaid bill, the record number is greater than
Start (because Start=0) and Counter=1 (because we set it to
® that value). The second IF below is True and we terminate the
* search.
* If Start>0, Counter=0 the first time we run out of
pecords with a matching name, so the program does the ELSE
commands below.
* Start is still >0 and Count is now 1, so the last term in
the first IF applies. On this second pass when we get to a
¥ record number >=Start, we drop into the loop and do the IF to
® terminate the search because we have now looked at 111 the
unpaid bills for the name we entered.
IF EOF .OR. Name <> Key .OR. (# >= Start .AND. Start <.0;
: .AND. Councer >0)
IF (# >= Start .AND. Counter > 0)
ST%RE T TO Looking
e
? chr(27l+chr(7~)

dBASE II...143

21 We have now looked at all the entries for '+ MName
2 ' <Return> to continue.'
? CHR(T)

IF t(New)='S'
STORE STR(VRL(NExtCheck)+1,u) TO NextCheck
STORE 'N' to New

ENDIF
WAIT
ELSE
STORE Counter + 1 TO Counter
e 13, 0
6 16, 0 SAY "I'M WORKING AS FAST AS I CAN —- HANG ON!
FIND &Key)
DO WHILE Check:Nmbr <> L
SKIP
ENDDO
ENDIF
_ ENDIF
ENDIF is it- the right record
ENDIF
ENDDO Confirm the record
ENDIF
IF t{New) < 'S’
e u, o0
‘2 chr(27)+chr(74)
2! F if FINISHED,
2 CHR(T)
ACCEPT ! (Return> to continue.' TO Finished
ENDIF

ENDDO Finished

RELEASE MName, MBill:Nmbr, Key, MAmount, Start, Found, Looking, New,
Entering, Counter, TemwpD, Abort, Continue, Finished, Confirm,
SAVE TO B:Constant

USE B:Checkfil

COUNT FOR .NOT. * TO Any

ERASE

e 3,0

IF Any=0
2 No new checks in the checkfile."'
2! ¢(Return> to continue.'’ .

ELSE
? 'There are ' .STR(Any,S)+' new checks in the CheckFile.'
7 'Do you want to print the checkstubs now (Y-or N)?'

?
WAIT TO Hardcopy
IF !(Hardeopy) = 'Y’
DO NameTest
DO CheckStub
ENDIF '
ENDIF

RELEASE All
RETURN

Change, ;

Date

dBASE II...1u4

SESERASREE DAYFIND COMMAND FILE «##nszssus

This file is called by the PAYBILLS command file after we have found at least
® one cost entry for the supplier that we are looking for.

L] This file now looks for either the first unpaid bill for the supplier

® (if only the name was specified) or looks for a complete match (if more than
#® the name was specified.

L If an an unpaid bill meeting the criteria is found, Looking is

get to False. Other wise it remains True.

L If only the name was used, at this point we are at the first

#® unpaid bill for the supplier name.

* If more than the name was specified for the search, we could be anywhere
% in the indexed l1ist of records for this supplier. If we do not want to pay

® this particular bill, or we want. to pay more bills for this supplier, we use
® a short cut in the PAYBILLS command file so that we do not have to start at

% the first record for the name every time. To do this, we store the record

® number that we start at to a variable called Start if we have more than the

% name to look for: Otherwise, Start =0
Illl!i!IIIlllillllillllllllIi'Ilillll!llll!l‘lllllllll!l!!llllilll!llililllIlll

STORE T TO Looking

IF MBill Nmbr > * ' .OR. MAmount > 0

® 1f we have more than the name, we first check for the bill number.
If this is not found or if the bill has already been paid,

the confirming procedure is skipped (Looking set TRUE).

In this case, we may have entered the list of supplier bills in
middle of the indexed list. In a later procedure, we may need to go
back to the top and look at the names we skipped. To do this, if we
find a record here, we store its number to "Start".

IF MBill:Nmbr > !
DO WHILE Name=Key . AND. .NOT. EOF .AND. Looking
I¥ Bill:Nmbr <> MBill:Nmbr
SKIP
ELSE
-STORE F TO Looking
ENDIF
ENDDO

* If we're on a new name or the end of the file, Looking is TRUE
® because we have not found the supplier we were looking for.
® Otherwise, we have a matching bill number to confirm.

IF Looking
? ! This BILL NUMBER is not in the costbase.'
? '<Return> to continue.'
WAIT

ELSE

IF Check:Nmbr <> ' !
STORE T TO Looking
? ! This bill paid on '+Check:Date+*, check '+Check Nmobr
? '<Return> to continue.'
WAIT

ENDIF

ENDIF
ELSE

If no bill numoer, look for the amount and an unpaid bill.
* If not found, skip the confirmation procedure.
DO WHILE Name=Key .AND. .NOT. EOF .AND. Looking
IF Amount <> MAmount .OR. Check:Nmbr <> ' !
SKIP
ELSE
STORE F TO Looking
ENDIF
ENDDO

dBASE II...1lU45

® If we're on a new name or the end of the file, Looking is TRUE
% Otherwise, we have an unpaid bill to confirm.
IF Looking)
2 No unpaid bill for this amount and this supplier.
? '<Return> to continue.'
WAIT
ENDIF
ENDIF

* If we found a matching record, store its number to Start
IF .NOT. Looking '

STORE # TO Start
ENDIF

ELSE
® If we have only the name, find the next unpaid bill
DO WHILE Name=Key .AND. .NOT. EOF .AND. Looking
IF Check:Nmbr <> ¢ ! :
SKIP
ELSE
STORE F TO Looking'
ENDIF
ENDDO

* If we're on a new name or._the end of the file, Looking is TRUE
* because we did not find the supplier we were looking for.
* Otherwise, we have an unpaid bill to confirm.
IF Looking
2 There are no unpaid bills for this supplier.!'
? '<Return> to continue.'
WAIT
ENDIF
ENDIF

RETURN

dBASE II...146

ANERRNEFNERRRESURENIRN DAYEMPS COMMAND FILE RARSSZRRRRRRRRUNERNRRS

Does necrmal payroll processing or exceptions.
llllllllllllllllllllill!!iilli'imll!ll!!!Illlll!l!!llll!llll‘lll

SET TALK OFF
STORE T TO Salaries
DO WHILE Salaries

ERASE

@ 3,20 SAY ' PAYROLL FUNCTIONS 1
@ 6,20 SAY ' 1> NORMAL PAYROLL '
@ 7,20 SAY ' 2> PARTIAL PAYMENT(S) '
@ 8,20 SAY * 3> SKIP EMPLOYEE(S) '
@ 10,20 SAY ' <RETURN>'

WAIT TO, Action

IF Action = 'V
DO Payroll

ELSE

IF Action = '2'
ERASE

-~

'This procedure allows-you to pay less than 2 full salary if!
'for some reason an employee skipped days of work that are !
1not to be paid for. Do you want to continue (Y or N)?'

IT TO Continue

IF {(Continue) = 'Y'

RESTORE FROM B:Constant
USE B:Personne
7 1Select the employee number for partial payment:'
2! (Type 0 to quit.)'
”
?'NO. NAME % OF PAY'
LIST Name, Ratio®*100 FOR .NOT. *
2
INPUT 'Which number(0 to quit)? ' TO Wipe
STORE INT(Wipe) TO Wipe
DO WHILE Wipe <> O
GO Wipe
2. 'How many days were worked'
? 'since the last regular payday?'
2 'Use decimals if needed (1 hour = 0.1333.)'
”
INPUT TO Worked
STORE Worked/11.0000 TO NewRatio
REPLACE Ratio WITH NewRatio
il

grsp Name, Ratio#*100
INPUT 'Next (0 to quit)? ' TO Wipe

STORE INT(Wipe) TO Wipe
ENDDO

ENDIF
RELEASE All

?
?

Do you want to SKIP any employees (Y or N)?'

WAIT TO Skip
IF 1(Skip) < 'Y

DO Payroll

ENDIF
RELEASE Skip

ELSE

T

dBASE II...147
\ IF Action = '3?
ERASE

?
?

?
? 'This procedure allows you to skip a . paycheck in the payroll!
?. 'procedure. Do ‘you want to continue (Y or N)?!
WAIT TO Continue
IF 1(Continue) = tY*
) RESTORE FROM B:Constant
USE B:Personne
? 'Select the number of the employee to skip:'
7?0 (Type 0 to quit.)'
?'NO. NAME SKIP!
?

LIST Name, Paid FOR .NOT. #
?

_INPUT 'Which number (0 to quit)? ' TO Wipe
STORE INT(Wipe) TO Wipe
DO WHILE Wipe < 0
" GO Wipe
REPLACE Paid WITH T
?

?'NO. NAME SKIP'
?

DISP Name, Paid

?

INPUT 'Next? ("0"to quit) ' TO Wipe
. STORE INT(Wipe) TO Wipe
[ENDDO
ENDIF .
RELEASE All

?
? 'Do you want to pay a partial salary'
? 'to any employees (Y or N)?'
WAIT TO Part
IF I(Part) < 'Y!
DO Payroll
ENDIF
RELEASE Part
ELSE
IF Action = '4
? 'Something U4
WAIT

ELSE
RELEASE Al)
RETURN
ENDIF 4
ENDIF 3
ENDIF 2
ENDIF 1
STORE T TO Salaries
ENDDO" Salaries

*
»
L]
*
#
L]
L]
»
L]
L]
»
L]
*
L]
»
L]
L]
»
*
»
»
L]
*
»
%

R

dBASE II...148

SESNRRSERENERN PAYROLL COMMAND FILE HHRRESRESEXNERERNR

This command file generates payroll check stubs showing all deductions, gets
the next check number and writes a check in the CheckFile, showing the new
balance; and stores the salaries and deductions in a database called Hold81.
This file is used to store the monthly, quarterly and annual FIT, FICA, SDI
and SIT deductions. The deductions are not picked up from tax tables because
there are so few employees. Instead, they are obtained from the individual
employee records in the Personnel database.

Constants.MEM keeps track of the FICA and SDI percentages and their
maximums, as well as the the constant for ThisYear. Changes can be thus
made in a single spot and will be correct in all the programs in the
accounting system.

The file is quite long, but breaks down into simpler modules:
I: Get the date and End of Month, Quarter and Year flags.
II: Compute all deductions and net pay for an individual employee, then
place this in the employee record in Personne.DBF
I1I: Operator verifies deductions and payroll stub is printed.
IV: Paycheck is written to the Checkfil and all amounts are placed into
the Hold81 summary file.
V: When all individuals have been paid, the Hold81 summary file is
updated if it is the end of month, quarter or year.
VI: Print out the summary file and data 'so that the physical checkbook
can be updated (computer does not print our checks).
VII: Delete transient constants, save others back to Constant.MEM for

system use.
ARRAR RN RN R RN R R RN NN TR RN RN NN R AR AR AR ARNRRARRARRRAD

SRR RSN R RN RN RN AR RN RN ARARNARRRRNRRD
sxapeand 7. Get date and pay period flags ##¥Rixias

ESTORE FROM B:Constant

DO GetDate

STORE 'Y' TO GetWhen
DO WHILE !(GetWhen) = nyYn

ERASE
@ 1,18 SAY "PAYROLL PROCESSING"
STORE " " TO EOY
@ 4,8 SAY 'Want to change the date?' GET Date
€ 5,8 SAY '(Press <Return> if okay.)'
READ
@ 7, 6 SAY "Is it the end of the YEAR?" GET EOY
€ 7,35 SAY "(Y or N)®
? CHR(T)
READ
STORE ! (EOY) TO EOY
IF EOY = "Y"
STORE "Y" TO EOQ
STORE "Y" TO EOM
ELSE
STORE "N" TO EOY
STORE " " TO EOQ
@ 8, 3 SAY "Is it the end of the QUARTER’" GET EOQ
e 8,35 SAY "(Y or N)"
? CHR(T)
READ
STORE !(EOQ) TO EOQ
IF EOQ = "Y"
STORE "Y"™ TO EOM
ELSE
STORE "N" TO EOQ
STORE " " TO EOM
@ 9, 5 SAY "Is it the end of the MONTH?" GET EOM
€ .9,35 SAY "(Y or N)"

dBASE II...149

STORE ! (EOM) TO EOM
IF EOM < mynm
STORE "N" TO EOM

ENDIF
ENDIF quarter
ENDIF year
ERASE
@ 4,25 SAY $(Date,1 12)+'/'+$(Date,3,2)+'/'+$(Date,5,2)
e 6 0 SAY "End of YEAR' MLEOY+" End of QUARTER- "4+E0Q+;
n End of MONTH: "+EOM

STORE " " TO GetWhen
?

LI
@ 8,6 say 'The above information MUST be correct.

2 CHR(T)
* 2nd chance at date and flags
ACCEPT ' Any CHANGES. (Y or N)?' TO GetWhen

STORE 'B:Hold'+STR(ThisYear,2) TO Header
® Computer now does a date and flag check
IF 1(GetWhen) <> 'Y!
IF $(pDate,5,2)<'26' .AND. EOM = 'Y*
?

?
? "CHECK THE INFO AGAIN. 1It's the end of the month, but the"
? 'date is '+Date-'. Do you want to make changes (Y or N)?'
? CHR(T) ’
WAIT TO GetWhen
ENDIF
IF EOY ='Y'
SELECT SECONDARY
USE &Header
GO BOTTOM
IF Marker = 'Y’
? CHR(T)
? 'You blew it--the end of the year has been done!’
WAIT
RELEASE All
STORE T TO Paying
RETURN
ENDIF
ENDIF
ENDIF

ENDDO GetWhen
RELEASE GetWhen

ARRE AR RN RN R RE R RN R RN NN RN AR R RRENN
ERERRINNERE TT: Calculate deductions and net pay for each individual ##%xsas

L3 B I I N

Compute deductions. Deductions for FICA, FIT, SDI and SIT are kept in the
individual employee's Personnel record, rather than getting them from tax
tables, because there are so few employees. (You have to decide what should
and should not be computerized.) The "YTDxxx" variables are the year-to-date
totals for these items. Limits and percentages for FICA and SDI are obtained
from a file called Constant.MEM. These are the variables FICACut, FICAMax, -
FICAEnd, SDICut, SDIMax and SDIErd.

SELECT PRIMARY

USE B:Personne
REPLACE All FICA WITH (Pay: Rate'FICACUT+O 005),

dBASE II...150
SDI WITH (Pay:Rate®SDICUT+0.005)

STORE 0 TO Count
GO TOP
DO WHILE .NOT. EOF
IF Paid .OR. ¥
SKIP
ELSE
STORE Count + 1 TO Count

#%% Save the employee record in case the procedure is ended *##
STORE STR(#,5) TO Payee .
COPY Record &Payee TO Bak

®8% peductions for partial salary based on number of days worked *##%
%8 Ratio is computed in PayMenu.CMD ;
IF Ratio < 1.0000
REPLACE Pay:Rate WITH Pay:Rate®Ratio, FICA WITH FICA®*Ratio, FIT;
WITH FIT®*Ratio, SDI WITH SDI*Ratio, SIT WITH _IT®Ratio
ENDIF .

* Deductions and totals are computed then stored in the employee record
* FedTemp, Statemp and EmpTemp are used to carry forward values for

®* salarijes. subiect to FICA, SDI and state uenemployment insurance to

* Hold81, the summary file.

IF YTDSAL > FICAEnd
STORE 0 TO FedTemp
REPLACE FICA WITH O
ELSE
IF (YTDSal + Pay:Rate) <= FICAEnd
REPLACE YTDFICA WITH (YTDFICA + FICA)
STORE Pay:Rate TO FedTemp
ELSE
REPLACE FICA WITH (MAXFICA - YTDFICA), YTDFICA WITH MAXFICA
STORE (FICAEnd - YTDSal) TO FedTemp
ENDIF
ENDIF

IF YTDSal > SDIEnd
STORE 0 TO StaTemp
REPLACE SDI WITH 0
ELSE
JF (YTDSAL + Pay:Rate) <= SDIEnd
REPLACE YTDSDI WITH (YTDSDI + SDI)
STORE Pay:Rate TO StaTemp
ELSE :
REPLACE SDI WITH (MAXSDI - YTDSDI), YTDSDI WITH MAXSDI
STORE (SDIEnd-YTDSal) TO StaTemp
ENDIF
ENDIF

®* In California, the employer pays an Unemployment Insurance contribution
% on employee salary up to the amount of UIEnd. There is nothing

® deducted from the employee salary for this, so we keep track only of

® the employer obligation as UIsal.

IF YTDSal > UIEnd
STORE 0 TO EmpTemp
ELSE
IF (YTDSal '+ Pay:Rate) <= UIEnd
STORE Pay:Rate TO EmpTemp
ELSE :
STORE (UIEnd - YTDSal) TO EmpTemp

j:i__________________________________‘_‘_‘_"_‘_""""—————————————f—————————————————————1!!:

dBASE II...151

R

ENDIF
ENDIF

REPLACE Net:Pay WITH (Pay:Rate-FICA-FIT-SDI-SIT)
REPLACE YTDFIT WITH (YTDFIT + FIT)

REPLACE YTDSIT WITH (YTDSIT + SIT)

REPLACE QTDSal WITH (QTDSal + Pay:Rate)

*REPLACE YTDSal WITH (YTDSal + Pay:Rate)

AN R R RN R RN AR RN R RN AN E R R R AR NI RN R RN IR AR AR NRO R
ERARINBEIUNERE TIT: Print employee stub H#ENEE¥FEREEEE

ERASE
SET PRINT ON
2 t+$(Date,3,2)+'/'+8(Date,5,2)+'/ ' +$(Date,1,2)+"': '+Name,
+ ' 14$(SS:Nmbr,1,3)e" - +8(S5: Nmbr,4,2)+' -* +$(3S:Nmbr, 6,4)
7! GROSS PAY: $'-STR(Pay Rate, 7, 2)4t NET PAY: $';
-STE(Net:Pay,?,Z
3 ' FICA FIT SDI SIT'
' THIS CHECK. *4+STR(FICA,6,2)+' *+STR(FIT,7,2);
'+STR(SDI,5,2)~' ' +STR(SIT,7, 2y
' THIS YEAR' ’+STR(YTDFICA Ty2)+! +STR(YTDFIT 8,2);
+! '+STR(YTDSDI,6,2) +! ‘+STR(YTDSIT,7,2)
' TOTAL SALARY THIS QUARTER: $'-STR(QTDSal,9,2)

TOTAL SALARY THIS YEAR: $'-~STR(YTDSal,9,2)

Pagefeed after every six employee stubs
F Count >z 6
? CHR(12)
STORE 0 TO Count
ENDIF
SET PRINT OFF

H BRI =~

IF EOQ = 'Y’ .AND. Paid
REPLACE QTDSal WITH 0
. ENDIF

RN RR AR RN RN R RN R RN AR RN RN RN R R AR ARAR
wERRER® TV: Recard paycheck in Checkfil and Hold81 *¥axzsszax

Now a check is "written" in the CheckFil.
SELECT SECONDARY
USE B:Checkfil
APPEND BLANK
REPLACE Check:Nmbr WITH NextCheck, Check:Date WITH Date,;
Name WITH P.Name, Amount WITH Net:Pay, Emp:Nmbr;
WITH P.Emp:Nmbr, Client WITH 'OFC', Job:Nmbr WITH 31,;
Descrip WITH 'SALARY', Balance WITH (MBalance - Amount)
STORE (MBalance - Amount) TO MBalance
STORE STR(VAL(NextCheck)+1,4) TO NextCheck

ERASE
@ 3,25 SAY "#% DO NOT INTERRUPT ##»
5,25 SAY "UPDATING MASTER RECORD"
CHRET)
We keep an aggregate record #f payroll and deductions. Tne amounts
for each employee are added to the amounts already in the last-
record in the file represented by "Header". (This was set up at the
start oft t. e "GetWhen" loop earlier, arid ‘has the name "B:Hold81" or
"B:Hold82" or whatever "ThisYear" is.)

This last record is either a blank (if this is the first

PR B IR IR I RSN

dBASE II...152

* payroll of the month), or has data from previous salary payments

* made during the current month. At the end of ‘the month, quarter ana
* year, totals and a new blank record (except at the end of the year)
* are added. This is done in the next loop.

USE &Header

® If this is a new year, there are no records in the file so we add a

% blank record. Otherwise, we go to the last record in the file.

IF EOF .
APPEND BLANK

ELSE
GO BOTTOM

ENDIF

REPLACE Check:Date WITH Date, 'Payroll WITH (Payroll+Pay:Rate),;
FICA WITH (FICA+P.FICA), FICASal WITH (FICASal + FedTemp),;
FIT WITH (FIT + P.FIT), SDI WITH (SDI+P.SDI),;
SDISal WITH (SDISal + Statemp), SIT WITH (SIT + P.SIT),;
UISal WITH (UISal + EmpTemp)
SELECT PRIMARY '

®#8 Reset the employee record if he was paid for part time. ###
#3% The Bak file is not deleted here, as each copy command #%%
###% above wipes out tne previous contents. bk
IF Ratio <> 1.0000
REPLACE Ratio WITH 1.0000
UPDA FROM Bak ON Emp:Nmbr REPL Pay:Rate,FICA,FIT,SDI,ﬁIT,Net:Pay
ENDIF
ENDIF k

SKIP
eNDDO personnel file

RN R R R R R R R R R R R RN R AN NN RN NN RN R RN RN RSN TR RN RN RN RARS

REEERER V. Personnel records are reset and Holdxx is updated ¥tesssss
STORE ' ' TO Completed
REPLACE All Paid WITH F

USE &Header
GO BOTTOM
IF EOM ='Y'
REPLACE Marker WITH 'M!

® If it's the end of the quarter, we total the amounts for the
* previous three months to a new record and mark it with a 'Q'.
IF EOQ = 'Y!' :

STORE STR{#,5) TO Number

TOTAL ON Marker TO Quarter FOR # >= (VAL(Number)-2)

APPEND FROM Quarter

DELETE FILE Quarter

IF $(Date,3,2) = '03')
REPLACE Check:Date WITH '1ST'
ELSE
IF $(Date,3,2) = '06'
REPLACE Check:Date WITH '2ND*
ELSE
IF $(Date,3,2) = '09'
REPLACE Check:Date WITH '3RD*
ELSE
IF $(Dpate,3,2) = '12¢
REPLACE Check:Date WITH 'UTH'

o

dBASE II...153

1 ENDIF
ENDIF
ENDIF
ENDIF

REPLACE Marker WITH 'Q!,

If it's the end of the year, we total all the. quarterly amounts to
a new record and mark it with a 'Y'.
IF EOY = 'Y’
TOTAL ON Marker TO Annual FOR Marker = 'Q'
APPEND FROM Annual
REPLACE Marker WITH 'Y', Check:Date WITH 'END*
DELETE FILE Annual
ENDIF
ENDIF

; # If it's the end of a month but not, the end of the year, we add a new
' ® blank record for next month's payroll records.
IF EOY < 'Y
APPEND BLANK
ENDIF
ENDIF

aq:nnl;-!annl'nn-u-;;a‘-|¢i|-6¢|||nuunnu|nu|n||¢|||-n-;-unnuuncyuuuaoug
) asnasase yI: Print payroll summary, transfer checks to costbase aNNAREE
USE B:CheckFil
COUNT FOR .NOT. ® TO Any
IF Any=0
?° No new checks written.’
2! <(Return> to continue.'
WAIT ’
ELSE
’ USE &Header
ERASE ,
@ 12,25 SAY "CHECK THE PRINTER, THEN PRESS <RETURN>."
| ? CHR(T)
WAIT
ERASE
SET PRINT ON
'SET MARGIN TO 45
2 MASTER PAYROLL FILE SUMMARY: 1+$(Date,3,2) +'/';
+$(Date,5,2)+'/'+$(Date,1,2)
?

?

?'DATE PAYROLL FICA FICASAL FIT SDI SDISAL Y4}
'SIT UIsal'

?

LIST OFF

SET MARGIN TO 38

? CHR(12)

SET PRINT OFF

ERASE

€ 3,25 SAY "#*% DO NOT INTERRUPT ###n
@ 5,25 SAY " UPDATING THE COSTBASE"

2 CHR(T)

USE B:CostBase INDEX B:$Supp
APPEND FROM B:Checkfil

DO CheckStub

dBASE II...154
ENDIF

bbbttt LA L LA II DL R LTI TS DL EE T TP LY T PO T PP E PP Ty
#REEES YIT: Dump transient variables, save necessary ones W#etisnss
RELEASE Payee,Number,Date,Ratio,Aborted,?rinted,EOY,EoQ,EOM,Any,Header;;

Count, FedTemp, StaTemp, EmpTemp, Marker, Paying, Salaries
SAVE TO B:Constant

USE

RELEASE All
DELETE FILE Bak
RETURN

dBASE II...155

ssassassas DEPMENU COMMAND FILE S#RERsNuss

& Select deposi

ts or perform houskeeping on the checkbook.

Ill!lIl..llIl!l’llll!lllill“!!lll'lll!!lil!llll‘ll

STORE T TO Incoming
DO WHILE -Incoming

ERASE

@ 5,20 SAY ' 1> ENTER MONEY COMING IN !
@ 7,20 SAY ' 2> CHANGE OUR CHECK NUMBER '
8 9,20 SAY ' 3> CHANGE CHECKBOOK BALANCE °*
2
?
2! <RETURN>'
WAIT TO Action
IF Action = '1!'

DO Deposits
ELSE

IF ‘Action = '2'

RESTORE FROM B:Constant

ERASE

@ 5,0 SAY 'This is the next check number' GET NextCheck
@ 6,0 SAY 'To leave it -unchanged, use the <return.’
@ 7,0 SAY 'To change it, just type in the new number.’'

READ

SAVE TO B:Constant
RELEASE All

ELSE

IF Action = '3
RESTORE FROM B:Constant
STORE 'Y' TO Ckange

DO

WHILE !(Change) = 'Y!

ERASE

8 5,0 SAY' The current balance is:' GET ‘MBalance
? 'To leave it unchanged, use the <return>.’'

? ;go change it, just type in the new value.'

RE.

?
"

2 Want to change your mind (Y or N)?'
WAIT TO Change

ENDDO

RELEASE Change
SAVE TO B:Constant
RELEASE All

SE
RELEASE All
RETURN

ENDIF
ENDIF 2
ENDIF 1
ERASE

3

STORE T TO Incoming

ENDDO Incoming

dBASE II...156

HEENRRRRNERE DEPOSITS COMMAND FILE S#szsussuss
* This file records any money coming in in a file called Deposits. If the
* the money is in payment of an invoice, the amount and date of payment are
% entered against that invoice in the Invoice file.
* The checkbook balance is kept current for each entry.
* At the end of the sesssion, deposits are printed out individually, then
»
[

the total of deposits plus the new checkbook balance are printed.
I N e e S e L e T L T Y

RESTORE FROM B:Constant

ERASE
5,20 SAY ' ENTERING INCOME'
7, 5 SAY 'The STARTING BALANCE is '+STR(MBalance,9,2)

' <Return> to the main menu to change.'
' C to CONTINUE.!

WAIT TO Continue

IF 1(Continue) <> *'Ct*
RELEASE All
RETURN -

ENDIF

RELEASE Continue

€
é
?
? ' If this does not match the checkbook,"*
°
?
?
?

DO GetDate

SELECT PRIMARY
USE B:Deposits
COPY STRUCTURE TO GetDep

USE GetDep

STORE 'Y' TO Depositing

DO WHILE {(Depositing) <>'F!'
APPEND BLANK
STORE STR(#,5) TO Number
REPLACE Dep:Date WITH Date

ERASE

® Next loop is used when there has been an error in the entry

* (defined as no client or no rate). The operator is shown the
* previous entries and can make any changes reauired.

STORE 'T' TO Incorrect

DO WHILE !(Incorrect) <> 'F!

3, 0'SAY ' If a check covers more than one agency invoiee,
4, 0 SAY ' enter each invoice and amount separately.!

.6,0 SAY * RECORD NUMBER: '-Number -
7,0 SAY HOW MUCH' GET Deposit
8,0 SAY 'OUR INVOICE NO' GET Inv:Nmbr
9,0 SAY ' CHECK FROM' GET Payer
10,0 SAY 'THEIR CHECK NO' GET Pay:Nmbr
11,0 SAY Comments' GET Comments

CHR(7)

READ

-~ ® DD DD

REPLACE Payer WITH !(Payer), Comments WITH !(Comments)
@ 9,15 SAY Payer
€ 11,15 SAY Comments

IF Payer <> ' ' _AND. Deposit > 0
@ 17,5 sAY C to CHANGE,'

dBASE II...157

@ 18,5 SAY '<Return> to continue.'

o

2 CHR(T)

WAIT TO Depositing

IF { (Depositing)='C'
STORE 'T*' TO Incorrect

ERASE
SE

STORE (MBalance + Deposit) TO MBalance
@ 17, 5 SAY ' F if FINISHED,'

?

2t

7 CHR(T)

WAIT TO Depositing
STORE 'F' TO Incorrect

ENDIF
ELSE
@ 15,5 SAY 'CHECK WRITER or AMOUNT missing.'
i d
2! F if FINISHED,'
? ! (Return> to correct the record.'
2 CHR(T)
WALT TO Depositing
ERAS!

E
IF !(Depositing)= 'F’
DELETE RECORD ‘&Number
STORE 'F' TO Incorrect
ELSE
ERASE
STORE 'T' TO Incorrect
ENDIF i
ENDIF
ENDDO Incorrect
ENDDO Depositing

RELEASE Change, Date, NoDate, Depositing, Number, Update, New, Incorrect
SAVE TO B:Constant

COUNT FOR .NOT. ® TO Any

ERASE

IF Any = 0)
? 'No deposits to add to the file.'
7 'Press any key to continue.'
? CHR(T)

WAIT
SE
DO DepPrint

The next portion of this program uses the Primary and Secondary work
areas to recgord payments received against agency invoices in the record
for that invoice in the Invoices file. Both work areas are necessary 8O
that we can compare eac¢h record in the GetDep file against all of the
records in the Invoices file.

DO DepTrans

USE B:Deposits

. APPEND FROM GetDep

ENDIF there are deposits to add to the file

- e. k.

DELETE FILE GetDep
RELEASE All
RETURN

dBASE II...158

SRIREREEEE DEPPRINT COMMAND FILE #sunssssas

* Prints valid deposits in the GetDep file as part of the -Deposits file.
llllllllllli!lIllllIll!!llll!.llII!l!!!llilI'IllIll!llllllllllll"illll.

€ 5,10 SAY 'To print the deposits you just entered, '
€ 6,10 SAY 'press <Returnd.'
? CHR(T)
WAIT
SET PRINT ON
? ' DATE PAID BY AMOUNT INV # COMMENTS:'
?
GO TOP
STORE 0 TO Count
DO WHILE .NOT. EOF
DISPLAY OFF Dep:Date, Payer, Deposit, Inv:Nmbr, Comments FOR .NOT. ®
SKIP
STORE Count+1 TO Count
IF Count=10
STORE 0 TO Count
WAIT
ENDIF
ENDDO
SUM Deposit TO Temp
?

2 ' The total deposit is ' + STR(Temp,9,2)

?

? ' The final balance is ' + STR(Mbalance,9,2)
?

SET PRINT OFF

RELEASE Count, Temp
RETURN

dBASE II...159

ARREENRRRN DEPTRANS COMMAND FILE #u¥Exuiask
* pApplies deposits from the GetDep file against the matching invoices in the

% Invoices file as payments are received against them.
lllllllil!!!l‘li!IIIl!‘llil!'ll‘!!l!lllll!l!llllil!!lllllll!lll!ll!lll!li&!l

GO ToP

ERASE .

DC WHILE .NOT. EOF
STORE STR(#,5) TO Number .
@ 6,20 SAY 'RECORD NUMBER '+Number
2 CHR(T) + CHR(27) + CHR(74)

IF Inv:Nmbr=' ' .OR. *
SKIP ‘

ELSE .

€ 7,20 SAY 'INVOICE NUMBER "'+Inv:fmbr

STORE Inv:Nmbr TO Key

SELECT SECONDARY

USE B:Invoices INDEX B:Invoices

FIND &Key

STORE T TO Again

STORE 'T' TO Decision

IF # =0

DO WHILE Again)) .

@ 9,15 SAY 'THIS INVOICE NUMBER IS NOT IN THE INVOICE FILE.
8 11,15 SAY ! E to EDIT it.
@ 12,15 SAY ! C to CONTINUE.
-

2 CHR(T)
WAIT TO Decision

IF t{(Decision) = 'E'
SELECT PRIMARY
EDIT &Number
SELECT SECONDARY
STORE F TO Again
ELSE
IF !{(Decision) = 'C'
STORE F TO Again
ELSE
STORE T TO Again
ENDIF C
ENDIF E
ENDDO
ELSE)
" REPLACE Amt:Red WITH (Amt:Red + Deposit), Date:Rcd WITH Dep:Date
ENDIF 0
SELECT PRIMARY

¥ We do not skip to the next record if the record was edited. This
allows us to run the edited record through the process again.
IF !(Decision) <> 'E!
SKIP
ENDIF
ENDIF no invoice number or record deleted
ENDDO the transfer

dBASE II...160

RRARNSLHINNENES TOMENU COMMAND FILE H0SRsssssunnnnsans
® Selects the appropriate action to be taken with' insertion orders

* (instructions from our ad agency to magazine publishers).
R T T e T e T e T T e T I)

STORE T TO Inserting
DO WHILE Inserting

ERASE

€ 7,20 SAY ' 1> ENTER INSERTION ORDERS'

€ 9,20 SAY ' 2> EDIT INSERTION ORDERS'

€ 11,20 SAY * 3> REVIEW/PRINT INSERTION ORDERS'
€ 12,20 SAY ' BY CLIENT & MAGAZINE'

@ 14,20 SAY <RETURN>'

WAIT TO Action

IF Action = "1
DO IOPost
E

IF Action = '2!
STORE "Y" TO Changing
DO WHILE !(Changing)='Y'
USE B:Inserts
IF EOF
? 'There are no-entries in the INSERTION ORDER file.'
STORE "N" TO Changing
ELSE
STORE IO:Nmbr TO First
GO BOTTOM
STORE IO:Nmbr TO Last
ERASE . -
€ 3,15 SAY 'EDITING INSERTION ORDERS '+First+'thru 'sLast
€ 5,15 SAY '"W to SAVE, “Q to CANCEL changes you make.'
€ 6,15 SAY '"R for PREVIOUS, "C for NEXT record if MORE = T'
? .
?
ACCEPT 'Which ORDER NUMBER dg you want to EDIT?' TO Order
USE B:Inserts INDEX B:Inserts
FIND &Order
IF #=0
?

ELS

? .
? 'That insertion order is not in the file.'
? 'Do you want to continue (Y or N)7?'
WAIT TO Changing :
ELSE)
STORE STR(#,5) TO Number
Edit &Number ,) g
'REPLACE Client WITH !1(Client), Ad WITH 1(Ad),Magazine WITH;
1(Magazine)
?
? 'Do you want to edit any other insertion orders (Y or N)7!
WAIT TO Changing . .
ENDIF '
ENDIF
ENDDO Changing
RELEASE All
ELSE '
IF Action ='3!
DO IOReview
ELSE i
- RELEASE All
RETURN
ENDIF 3
ENDIF 2

dBASE II...161

ENDIF 1
STORE T TO Inserting
ENDDO Inserting

dBASE II...162

sasussss JOPOST COMMAND FILE S#sasassans
#® Gets information for insertion orders (instructions to magazine
publishers from our ad agency). Works much like Postbills and

posttime.
SENERER RS RN RN RN AN AN R RRN AN RN RN RN EARRNRRRBNBRRBRR ARG

RESTORE FROM B:Constant
DO GetDate

USE B:Inserts
COPY STRUCTURE TO ‘GetInserts
USE GetInserts

STORE ' ' YO New
STORE 'Y' TO Inserting
DO WHILE ! (Inserting) <O'F'
APPEND BLANK
STORE STR(#,5) TO Number
REPLACE IO Date WITH Date, IO.Nmbr HI‘I'H Next I0

ERASE

' Next loop is used when there has been an error in the entry
8 (defined as no client or no rate).

STORE 'T' TO Incorrect

DO WHILE !(Incorrect) <> 'F!'

ERASE)
@ 4,0 SAY ' INSERTION ORDER: '+IO:Nmbr
l& 430 SAY ! DATE: '+Date

.?
@ 6,0 SAY ' RECORD NUMBER: '-Number
IF 1(New) = 'S

! T,0 SAY ' . OUR CLIENT :' + MClient
Q 7,0 SAY ' k OUR CLIENT ' GET l{Cliont
STORE 1(MClient) TO MClient

ENDIF .

@ 8,0 SAY JOB NUMBER ' GET Job:Nmbr

L) L]

' AD DESCRIPTION ' GET Ad

* HOW MUCH SPACE ! GET Space
,0 SAY ' WHICH MAGAZINE ' GET Magazine

Al *

L} *

1

WHICH ISSUE * GET Issue
,0 SAY 'GROSS SPACE. COST GET, Gross:Cost
) 4,0 SAY DISCOUNT RATE ' GET Times
‘READ

REPLACE Net:Cost WITH Gross:Cost®#0.8500, Client WITH MClient,;
Ad WITH !((Ad), Hagazine WITH 1(Magazine), Issue WITH !(Issue)
€ 7,18 SAY Client
€ 9,18 SAY Ad .
€@ 11,18 SAY Magazine
@ 12,18 SAY Issue
@ 15,0'SAY ' NET SPACE CQOST ' GET Net:Cost

IF Client <> ' ' .AND. Gross:Cost > O .A!ID. Job Nmbr > 99
@ 18,5 SAY ! C to CHANGE,'
€ 19,5 SAY '<Return> to continue.'

?
_ WAIT TO New
IF 1(New)='C' .
STORE 'T' TO Incorrect
ELSE
@ 17, 5 SAY ' —F +riFINISHED,""
‘@ 18, 5 SAY ' S for SAME insertion order,'

dBASE II...163

@ 19, 5 SAY '<Return> for NEXT insertion order.'
@ 21, 0 SAY !
ACCEPT TO New

IF 1(New) < 'S!
IF VAL(Next:IO) < 9999
STORE STR(VAL(Next:I0)+1,4) TO Next:IO
ELSE .
STORE '1001' TO Next:IO
ENDIF
ENDIF
STORE 'F' TO Incorrect
ENDIF
STORE New TO Inserting
ELSE

' CLIENT, .JOB or RATE missing.®

' F 1f FINISHED,'
' <{Return> to correct the record.’

"D 0D A) 0D e) e D« WD D

WAIT TO Inserting
IF !(Inserting)= 'F!'
DELETE RECORD &Number
STORE 'F' TO Incorrect
ELSE
STORE 'T* TO Incorrect
ENDIF
ENDIF
ENDDO Incorrect
ENDDO Inserting
L 2
RELEASE Date, NoDate, Inserting, Number, Update, New, Incorrect
SAVE TO B:Constant

COUNT FOR .NOT. * TO Any

ERASE

IF Any = 0
? 'No insertions to add to the file.
? 'Press any key to continue.'
USE

é 5, 10 SAY 'To print the insertions you just entered,’

@ 6,10 SAY 'press <Returnd>.'

WAIT TO Number

#"Number" determines the starting record number for the prinxou

SET PRINT ON _
7 'I0 # MAGAZINE ISSUE Joé AD N

+'SPACE GROSS NET X DATE'
? .

*® noutput™ and"Condition™ needed in the Printout Command file
STORE 'Y' TO Output

STCRE 'OFF' TO Condition

DO Printout

ERASE

dBASE II...164

€ 5,20 SAY 'UPDATING THE INSERTION ORDER FILE'
USE B:Inserts INDEX B:Inserts
APPEND FROM GetInserts

ENDIF

DELETE FILE GetInserts
RELEASE All
RETURN

dBASE II...165

ENREERRERN TOREVIEW COMMAND FILE ##essawass
* provides insertion order displays and printout.
* The operator can select all the insertions for .the client,

or can select only those for a particular magazine.
ERRRERER AR RN R RN RN AR R AR RRRRRRRER RN RN RAR RS RENNRR AR RNRA RN R RN LN

SET TALK OFF
USE B:Inserts

STORE ' ' TO Again
DO WHILE !(Again) < 'F!
STORE ' ' TO MClient
STORE * ' TO MMagazine
STORE ' ' TO Hardcopy
STORE ' * TO Other
ERASE
€ 2,11 sAY ! MEDIA SUMMARY:'
€ U4,11 SAY 'ENTER CLIENT CODE' GET MClient
€ 5,11 SAY ! ‘MAGAZINE NAME?' GET MMagizine
e 6,11 SAY™? P to PRINT' GET Hardcopy
READ
IF MClient = ' !
@ 9, 0SAY ' ¢
70 CLIENT missing.'
?! ‘F 1f Finished,'
? ' <Return> to continue.!
WAIT TO Again
ELSE
STORE !(MClient) TO MClient
STORE ! (MMagazine) TO MMagazine
STORE !(Hardcopy) TO Hardcopy
@ 4,29 SAY MClient ’
8 5,29 SAY MMagazine
6,29 SAY Hardcopy
‘9, 0 SAY ' '

>

ACCEPT 'Type C to CHANGE any entries' TO Changes
IF !(Changes) = 'C'
STORE '~' TO again
ERASE
ELSE
IF MMagazine >!'
STORE TRIM(MMagazine) TO MMagazine .
STORE '.AND. Magazine=MMagazine' TO Condition
ELSE
STORE CHR(0) TO Condition
ENDIF

)) DT

IF t(Hardcopy) = 'P'

STORE 'TO PRINT' TO Hardcopy
ELSE

STORE CHR(0) TO Hardcopy
ENDIF Hardcopy

—SET HEADING TO MEDIA SUMMARY FOR &MClient &MMagazine
REPORT FORM Media %Hardcopy FOR Client=MClient_&Condition
-

2! F if Finished,!'

? ' <Return> to continue.'

WAIT TO Again.

ERASE

ENDIF okay to do the report
ENDIF

dBASE II...166
ENDDO Again

ERASE
RELEASE All
RETURN

dBASE II...167

RRERRNBRBBRRRAR INVMENU COMMAND FILE S#RGESERSRZRRERNRS

* Functions are selected by the menu. This procedure works with two data
®* files, BILLINGS and INVOICES. BILLINGS keeps track of the amount

* billed to a client by individual job number, while INVOICES is a

summary of the total billed on any given invoice. This latter file can
* be used to set up an accounts receivable system, as it has fields for

: storing how much has been received in payment against an invoice and

f

when that amount was received (filled in by the Deposits.CMD file).
!IIIll!l!ll‘lll..lllI.l.l'll!l’.l.'llll"lIl'I'll'll!ll'llllll.!l!llllll

ERASE .
STORE T TO Invoicing
DO WHILE Invoicing
€ 5,20 SAY 1> BILL CLIENTS BY JOB!
@ 17,20 SAY ! 2> EDIT INVOICES and BILLINGS'
€ 9,20 SAY ' .3> REVIEW/PRINT INVOICES and BILLINGS'
@ 12,20 SAY ' <RETURN>'
WAIT TO Action
IF Action = '1!
DO Invoices
ELSE
IF Action = '2!
STORE 'Y'TO Changing
DO WHILE !(Changing) = 'Y’

ERASE
? J to edit individual job billings,-’
? <Return> to edit the summary invoices.!'

WAIT TO Which

IF !(Which) = 'J¢

STORE 'Billings' TO Database
E .

STORE 'Invoices' TO Database
ENDIF :

ELS!

USE B:&Database
STORE Inv:Nmbr T First

GO BOTTOM
STORE Inv:Nmbr TO Last

ERASE

€ 3,10 SAY 'EDITING '+!(Database)

€ 3,35 SAY First+'thru '+Last

€ 5,10 SAY '"W to SAVE, "Q to CANCEL changes you make.'
@ 6,10 SAY '"R for PREVIOUS, “C for NEXT record.'

€ 8,10 SAY 'Which INVOICE NUMBER do you want to EDIT?!
IF 1(Which) = *J'

€ 9,10 SAY 'This takes you to the FIRST ENTRY for .that number.
@ 10,10 SAY 'Use ‘C,to look at the rest of them.®'

ENDIF

ACCEPT TO Invoice -

USE B:&Database INDEX B:&Database

FIND &Invoice

IF #=0
?
? .
? 'That invoice number is not in the file.'
? 'Do you want to ,continue (Y or N)?!
WAIT TO Changing -

ELSE -
STORE STR(#,5) TO Number
Edit &Number
REPLACE Sales:Tax WITH 0.06*Taxable
REPLACE Client WITH !(Client) -7

dBASE II...168

IF 1(Which) = 'J°'
REPLACE Descrip WITH {(Descrip),PO:Nmbr HITH 1 (PO:Nmbr)
ENDIF
?
7 'Do you want to edit any other invoices (Y or N)?¢t
WAIT TO Changing
. ENDIF
ENDDO Changing
RELEASE All
ELSE
_ IF Action ='3'

ERASB

@ 4, 0 SAY * !

? o J to see individual job billings,'

o <Return> to see the summary invoices.'

WAIT TO Which

IF !(Which) = *'J'
STORE 'Billings' TO Database

ELSE
STORE 'Invoices' TO Database

ENDIF

USE B:&Database

STORE 'Y' TO Reviewing

DO WHILE !(Reviewing)='Y'

. GO BOTTOM
STORE STR(#,5) TO Last
ERASE
@ 5,10 SAY 'The '+!(Database)+' file has '-Last-' entries.'
'@ 7,10 SAY '<Return> to see the entire file, or’

" -@ 8,10 SAY 'enter the record number to start on.'

'ACCEPT TO Number

72 'Do you want to print the file now (Y or N)?'
WAIT . TO Output

IF I(Output)='Y'
SET PRINT ON
"ENDIF

STORE CHR(0) TO Condition
DO Printout

SET PRINT OFF
? 'Do you want to see it again (Y or N)?!
WAIT TO Reviewing
ERASE
ENDDO Reviewing
RELEASE All
ELSE
RELEASE All
RETURN
ENDIF 3
ENDIF 2
ENDIF 1
ERASE ‘
STORE T TO -Invoicing
ENDDC Invoicing

dBASE II...169

SEEEEFERNS INVOICES COMMAND FILE Wennssnsss
This file accepts inputs for invoices to clients. Individual projects
and items are stored in the Billings data file. Any number of items
may be entered using a single invoice number. Invoice numbers are
automatically generated by the computer and stored in the Constant.Mem

file.
After all the job billings have been entered, they are summarized b
invoice number and the data is stored in the Invoices file.

A printout of items billed and invoice totals is provided.
bt L A T L L LD T D T T P P e P L P T T Y

RESTORE FROM B:Constant
DO GetDate

USE B:Billings
COPY STRUCTURE TO GetCosts

USE. GetCosts
STORE ' ' TO Billing
DO WHILE [{Billing) <>'F!'
APPEND BLANK
STORE STR(#,5) TO Number .
REPLACE Inv:Date WITH Date. Inv:Nmbr WITH Next:Inv

ERASE
STORE 'T' TO Entering
DO WHILE !(Entering) <> ‘'F!

ERASE _
@ 3, 0 SAY 'INVOICE NUMBER ‘'+Next:inv
€ 3,30 SAY * ° DATE '+Inv:Date

€@ 5,0 SAY * RECORD NUMBER: '-Number

IF 1(Billing) = 'S
@ 7,0 SAY . CLIENT:'+ MClient
REPLACE Client WITH MClient ’

ELSE
@ 7,0 SAY-! cYENT ' GET Client

DIF

s0 SAY ' JOB NUMBER ' GET Job:Nmbr
50 SAY 'TAXABLE AMOUNT ' GET Taxable
»0 SAY *'TAXFREE AMOUNT ' GET TaxFree
40 SAY * P. O. NUMBER ' GET PO:Nmbr
0
9

EN|
é
e
6
e SAY ' DESCRIPTION ' GET Descrip

8
9
10
1
12
READ

STORE !(Client) TO MClient *

REPLACE-Client WITH MClient,Descrip WITH I(Deseripz,;
PO:Nmbr WITH !(PO:Nmbr)

€ 7,16 SAY Client :

€ 11,16 SAY PO:Nmbr

@ 12,16 SAY Descrij

IF Taxable > O .

REPLACE Sales:Tax WITH 0.06#Taxable

@ 13,0 SAY ! SALES TAX'GET Sales:Tax
ENDIF"
IF Job:Nmbr < 100

@ 16,0 SAY ' . JOB not. 3 digits.'
ENDIF

IF MClient <> ' ' .AND. (Taxable > O .OR. TaxFree > 0)
@ 17,0 SAY ° C to CHANGE this entry.t
7 <Return> to continue.!'

dBASE 11...170

WAIT TO New
IF 1(New)='C’
STORE 'T' TO Entering
ELSE
€ 16, 0 SAY ' F if FINISHED, '
e 17, 0 SAY ! S for SAME invoice number,'
€@ 18, 0 SAY '. {Return> for NEXT invoice number.'
@ 19, 0 SAY ! .
ACCEPT TO New

IF 1(New) <> 'S')
STORE STR(VAL(Next:Inv)+3,5) TO Next:Inv

ENDIF

STORE 'F' TO Entering
ENDIF
STORE New TO Billing .

ELSE ,

€ 17,0 SAY * CLIENT or AMOUNT missing.'
?

2! F if FINISHED,'
?° <Return> to correct the record.®
WAIT TO Billing
IF 1(Billing)= 'F'
DELETE RECORD &Number
STORE ‘'F' TO Entering

SE
. STORE 'T' TO Entering
ENDIF -
ENDIF
ENDDO Entering
ENDDO Billing

RELEASE Billing, Entering, MClient, 'rask, Number, Date, New
SAVE TO B:Constant

PACK

GO, TOP
ERASE
IF EOF
? 'No invoices to -add to the file.'
? 'Press any -key to continue.'
NAIT
ELSE) .
e 5,20 SAY t#%%% DO NOT INTERRUPT ~ ##as
7,20 SAY *UPDATING BILLINGS AND INVOICES'

Costs entered are totalled by invoice number to Scratch because several
job costs cam be entered against each invoi¢e number. Amounts are adusted
% for one client who always pays promptly and takes a 2% discount. Each

% invoice is totalled. Temp has only summary data needed for a printout.

USE B:Invoices }
COPY STRUCTURE TO Scratch

' USE GotCosts

!a S,10 SAY 'Hhen ready to print the billings you just added,’
€ 6,10 SAY ‘press CReturnd>!

'roru. ON Inv:Nmbr TO Seratch FIBLDS Taxable, Saless'rax, TaxFree
WAIT TO ther

SET PRINT ON
? .'ENTRIES BY JOB NUMBER:'

R4

dBASE II...171
? .
? 'INV # JOB DATE TAXABLE TAX TAXFREE P.O.# DESCRIPTION'
?

® moutput" is needed in the Printout Command file
STORE 'Y' TO Gutput

STORE 'OFF' TO Condition

DO Printout

% One of our clients always pays promptly and takes a 2% discount.

® We do this after the original entries were printed out:

REPLACE Taxable WITH 0.980%Taxable, TaxFree WITH 0.980*TaxFres, Sales:Tax;
WITH 0.980%Sales:Tax FOR Client = 'SPI'

”

? 'Updating the BILLINGS database now.'

USE B:Billings INDEX B:Billings

APPEND FROM GetCosts

USE Scratch
REPLACE “All Amount WITH (Taxable + Sales:Tax + TaxFree)
COPY TO Temp FIELDS Inv:Date, Inv:Nmbr, Taxable, Sales:Tax,;
TaxFree, Amount
REPLACE Taxable WITH 0.980%Taxable, TaxFree WITH 0.980*TaxFree, Sales:Tax;
WITH 0.980%Sales:Tax, Amount WITH 0.980%Amount FOR Client = *SPI*

USE Temp

STORE 'Y' TO Output
SET PRINT ON

?

? .
? 'TOTALS BY INVOICE NUMBER:'

?
? 'DATE INV# TAXABLE TAX TAXFREE TOTAL!
ke

DO Printout
2?

? 'Updating the INVOICES databaSe now.'
USE B:Invoices INDEX B:Invoices
APPEND FROM Scratch

ENDIF

USE

DELETE FILE Scratch
DELETE FILE Temp
DELETE FILE GetCosts
RELEASE All

RETURN

dBASE II...172

. RERESRRRES REPORTMENU COMMAND FILL #esssnssas
This command file is a sub-module of the ACCOUNTS.CMD control
module. It provides detailed choices that relate to reports

database. The functions are set up as sub-sub-procedures
under the control of this module.

»
]
% that the user might choose to see or print from the cost
]
[}
[}

SRR RRERRRRE TR R R R R R R RRNRRRRRRRRRERARRRARR AR AR ANERATERNNRRRRS

ERASE

STORE T"TO Reporting
DO WHILE Reporting

W 0D B ®®

e

3,20 SAY ! 1> COSTS BY JOB!'

5,20 SAY 2> FIND & EDIT B(LLS'
7,20 SAY 3> REVIEW A DATABASE'
9,20- SAY 4> Quarterly Sales Tax Summary'

1
'
1
11,20 SAY ! 5> RE-INDEX THE COSTBASE ON JOB NUMBERS'
L
4

12,20 SAY Make sure you won't need the computer®
13,20 SAY for a while: this takes a long tim-.'
17,20 SAY ' <RETURN>*

WAIT TO Action

IF Action = '1!

USE B:Postfile
COUNT FOR. .NOT. * TO Any
IF Any > 0 .
€ 15, O SAY CHR(27)+CHR(TH
?° 'There are !+STR(Any,5)+' entries in the Postfile.'
? 'Do you still want to do the Job Costs (Y or N).'
WAIT TO Continue
IF 1{Continue) = 'Y’
DO JobCosts
ENDIF
ELSE
DO JobCosts
ENDIF
RELEASE Any

ELSE

IF Action = '2°'
DO FipdBills
¢LSE
IF Action = '3
ERASE
DISPLAY FILES ON B
2
?
2 'Which file do you want to review?!
ACCEPT TO Database
IF FILE("B:"+DATABASE) > 0
USE B:&Database
DO Review
ELSE .
% Erases IBM 3101 to end of screen
€ 17,0 SAY CHR(27)+CHR(TH4)

@ 17,0 SAY !(Database) + " isn't on the list, is it? Check ";

+ 'your spelling, then hit <Return>'

? 'and try again. Or not, as the case may be.'
WAIT

ENDIF

ELSE

IF Action = '4
DO SalesTax

ELSE
TF Actidn = '5¢

DO JobsIndx
ELSE
RELEASE All
RETURN
ENDIF 5
ENDIF 4
ENDIF 3
B ENDIF 2
ENDIF 1
ERASE
STORE T TO Reporting
ENDDO- Reporting

dBASE II...173

dBASE II...174

SRANRBRRNRN JoBmSTS COmAND FILE SEARRNNNNN
Provides summaries of costs by client and Job number. This can
also be used to summarize all office categories, since they fall
into these fields.

REPORTS ARE BY JOB NUMBER. Client code is used only in the heading.
The report is actually prepared based on the job number, so accuracy is
eritical. .

This file works with a partially indexed costbase, so "Unindexed" is
used to keep track of how many records are not in the index. 1If this gets

beyond a specific number, the operator is prompted to reindex the Costbase.
l.ll!!l!llll!!l!lllillilllIlll'I!llljllllllllll!llllll!llllllllll!

SET TALK OFF

RESTORE ROM B:Constant
DO GetDate

STORE 0 TO Unindexed
STORE ' ' TO Again
DO WHILE !(Again) <> 'Ft

STORE ' ' TO MClient
STORE. ' ' TO MJob:Nmbr
STORE ' ' TO Hardcopy
STORE 'N' TO Number

2,11 SAY ' JOB COST SUMMARY

e ' .
€ 14,11 SAY '"ENTER CLIENT CODE ' GET MClient
e

5,11 SAY ' ENTER JOB NUMBER ' GET MJob:Nmbr
@ 6,11 SAY ' P to PRINT ' GET Hardcopy
@ 7,11 SAY 'SHOW BILL NUMBERS GET Number
READ ° ’
?
IF MClient = ' ' ,OR. MJob:Nmbp= * ¢

€ 9,0

2 CLIENT or JOB NUMBER missing.'

? F if Finished,’

? ' <Return> to continue.®'

WAIT TO Again
ELS

E

€ 8,0 SAY CHR(27)+CHR(TH) ,
ACCEPT ' OPTIONAL JOB DESCRIPTION ' TO Message
STORE TRIM(!(Message)) TO Message

STORE !(MClient) TO MClient

STORE ! (Hardcopy) TO Hardcopy

STORE™ 1XNumber) TO Number

@ 4,30 SAY MClient

6,30 SAY Hardcopy

7330 SAY Number

9,30 SAY Message

o X X Y

ACCEPT 'Type C to CHANGE any entries' T0 Changes
IF !(Changes) = 'C!
STORE ' ' TO Again
ERASE
ELSE
ERASE
IF 1(Hardcopy) = 'P!
STORE "TO PRINT"™ TO Hardcopy
SET PRINT ON
ENDIF Hardcopy

IF Number = 'Y!
STORE 'Bill #% TO Other

" dBASE II...175

ELSE :
STORE CRR(O) TO Other
ENDIF

? S(Date.3;2)+'/'+$(Date,5,2)*'/'¢$(nate;1,2)+‘} COST SUMMARY FOR '3
y'&HClient—&MJob:Nmbr'
' ' 4+ Message

o3 3

'DATE ~ NAME DESCRIPTION AMOUNT'
+' &Other'

2

USE B:CostBase INDEX B:$Jobs
1IF Number = 'Y’

STORE ',Bill:Nmbr' TO Other

ELSE

STORE CHR(0) TO Other
ENDIF

STORE 0 TO Sum

STORE 0 TO HowMany

STORE 0 TO LineCnt

STORE 0 TO Spacer

FIND &MJob:Nmbr

IF# OO0

DO WHILE Job:Nmbr = VAL(MJob:Nmbr) .AND. .NOT. EOF

DISPLAY Next 1 Bill:Date,Name,Descrip+' * ,Amount &Jther OFF
STORE Sum + Amount TO Sum '
STORE LineCnt + 1 TO LineCnt
STORE Spacer & 1 TO Spacer

IF Spacer = 10
2

STORE 0 TO Sgacer
ENDIF

IF LineCnt = 50
? CHR(12)
STORE 0 TO LineCnt
STORE O TO Spacer
? 'DATE NAME DESCRIPTION';

' AMOUNT" .

kd

ENDIF

SKIP

ENDDO
ENDIF

-GO TOP)
STORE VAL(Name) TO LastReco
USE B:Costbase
STORE 0 TO Unindexed
GO LastReco
SKIP
DO WHILE .NOT. EOF
DISPLAY Next 1 Bill:Date, Name, Descrip+' ', Amount;
FOR Job:Nmbr = VAL(MJob:Nmbr) OF .
1IF Job:Nmbr = &MJob: Nmbr
STORE Sum « Amount TO Sum
STORE LineCnt + 1 TO LineCnt
STORE Spacer + 1 TO Spacer

IF Spacer = 10
?
STORE O TO Spacer

dBASE II...176
“ ENDIF

IF LineCnt = 50
? CHR(12)
STORE 0 TO LineCnt
STORE 0 TO Spacer

? 'DATE NAME DESCRIPTION'
+! AMOUNT*
?
ENDIF
ENDIF
STORE Unindexed + 1 TO Unindexed
SKIP
ENDDO
?
? TOTAL COSTS TO DATE: ! -3
STR(Sum,9,2)

STORE LineCnt + "2 TO LineCnt. -
STORE 0 TO Spacer
IF LineCnt = 40
? CHR(12)
STORE 0 TO LineCnt
BLS§

?
P

ENDIF

N

USE B:Billings .
? 'BILLED TO DATE FOR &MClient-&MJob:Nmbr!'
?) .

? 'DATE INV# DESCRIPTION TAXABLE'® +;
' TAX TAX FREE!' -
?
STORE LineCnt + 4 TO LineCnt
STORE 0 TQ. Sum
STORE 0 TO T
STORE 0 TO S
STORE 0 TO F
DO WHILE .NOT. EOF
IF Job:Nmbr = &MJob:Nmbr
DISPLAY Next 1 Inv:Date, Inv:Nmbr, Descrip,STR(Taxable,9,2)+' ';
STR(Sales:Tax,5,2)+' 'yTaxFree FOR Job:Nmbr = &MJob:Nmdbr OFF
STORE T + Taxable TO T :
STORE S + Sales:Tax TO S
STORE F + TaxFree TO F
STORE. Sum + Taxable + Sales:Tax + TaxFree TO Sum
STORE LineCnt, + 1 TO LineCnt
STORE Spacer + 1 TO Spacer

Ve

IF Spacer = 10
?

éTORE 0 TO Spacer
ENDIF

IF LineCnt = 50
? CHR(12)
STORE 0 TO LineCnt ~
STORE O TO Spacer
? 'DATE INV# DESCRIPTION TAXABLE TAX TAX FREE'
” ?

ENDIF
ENDYF

dBASE II...177

SKIP
ENDDO
?
2 SUB-TOTALS : '+ STR(T,9,2) + '
+ STR(S,9,2)+' ' + STR(F,9,2)
5
2?0 TOTAL BILLED TO DATE:
STR(Sum,9,2)
? CHR(12)
SET PRINT OFF
2! F if Finished,'
2 ' <(Return> to continue.’'
WAIT TO Again
ENDIF okay to do. the report
ENDIF
‘ENDDO Again
IF Unindexed > 50
ERASE
e 5,0
2. There are ' - STR{Unindexed,9) + ' unindexed records'
2 in the Costbase. To speed up the Job Costs procedure, '
?! please reindex from the next menu.'
7 '<Return> to continue.’
WAIT
ENDIF

RELEASE All
RETURN

dBASE II...178

RERRRRRERECRNARANANG JOBSINDX COMMAND FILE SEFsssnsannnsssssnanan

® Indexes the costbase on job numbers to B:Jobs.NDX.
[}

The method of indexing here allows us to use the index to help.

? find job numbers for the Job Costs command files, but allows us to
® do so without having to index the Costbase every time we add a bill.
The strategy is: before we index the Costbase on job numbers,
we first store the number of the last record in a record with a job

of the indexed file ($Jobs) so that we can find it wheneve

[]
(]
* number of zero. When the file is indexed, this record is
[]
bbb bbb L LALL LI I IR D T DOt P T T T TRt P T vl oo

USE B:Costbase

GO BOTTOM

STORE STR(#,5) TO Temp

Go TOP !

IF Job:Nmbr = 0
REPLACE Name WITH Temp
E

DO WHILE 1(Code) <> tH'
? "Uh, Oh--trouble. Don't touch anything"
ACCEPT 'and call Hal.' TO Code
ENDDO
"ENDIF

DELETE FILE B:$Jobs.NDX
ERASE

€@ 5,0 SAY 'There are ' + Temp + ' records to index.'
SET TALK ON

INDEX ON Job:Nmbr TO B:$Jobs

SET TALX OFF

RELEASE Temp
RETURN

at the top
r we want to.

dBASE II...179

AEERRNenys CINDBILLS COMMAND FILB nnBRRBTRNE
This procedure finds specific bills that we are looking for, then allows
us to edit them.
The bill can be specified by bill number and/or amount. If you decide
not to pay a bill that was found specifying more than one item, you will. be
presented the rest of the entries for the supplier based on name only.

ll!‘lllIIll.lll!!lIIIllll‘.I.'lIlIllllII.I.llil‘lllIIQ!'.II...I'.'.'-l'.‘

SELECT PRIMARY
USE B:CostBase INDEX B:$Supp

STORE 'N' TO Fin’shed
DO WHILE !(Finished) <> 'F'

#* nEntering" controls a closed lbop that allows the operator to change
®* the entry if he or she spots and error.

STORE "C" TO Entering

DO WHILE !(Entering) = *'C'

ERASE

€ 4,0

ACCEPT ' NAME OF SUPPLIER ' 10 mami
ACCEPT ' INVOICE NUMBER ' TO MBill:Nmbr
ACCEPT ' ENTER AMOUNT ' TO Temp

STORE ! (MName) TO MName

STORE ! (MBill:Nmbr) TO MBill:Nmbr
STORE VAL(Temp) TO MAmount

STORE MAmount®1.00 TO MAmount
6,19 SAY MName

7,19 SAY MBill:Nmbr

8,19 SAY MAmount

11, O SAY ' C to CHANGE,'
' <Return> to contirfhe.!

-~ ® ® W ®

% OneByOne is used so that we look at the entire listing for a name once
% If we could have started in the middle of the 1ist and the bill is not
® the one we want, we go up to the first listing then go through all the
® entries for the name, one by one. Used in the last loop in this fiie.
IF Bill:Nmbr > ' ' .OR. Amount < 0

STORE 0 TO OneByOne

ELSE
STORE 1 TO OneByOne
ENDIF

WAIT TO Entering
ENDDO Entering

STORE T TO Looking

€ 11, 0 SAY "I'M LOOKING, I'M LOOKING!!"
e 12,0

é 13,0

Now look for a match on the first 10 characters of the name. This finds
the first entry for that supplier, then looks for bill number or amount

® if we specified them. If not specified, it skips through all the entries
* for the name.

IF LEN(MName) > 10

STORE $(MName,i,10) TO Key
ELSE

STORE MName TO Key
ENDIF

FIND &Key

dBASE II...180

é 11, 0
IF#=0
?

2" GEE, I CAN'T FIND THE NAME. Please check the spelling."
7" Or maybe it hasn't beén posted to the COSTBASE yet.n
? '<Return> to continue."’
WAIT
ERASE
ELSE .
* Found at least one entry with a matching name.
STORE T TO Looking
IF MBill:Nmbr = ' ' _AND. MAmount = 0
STORE F TO Looking
ELSE .
® If we have more than the names we-first check for the bill number.
IF MBill:Nmbr > t ¢)
DO WHILE Name=Key -AND. .NOT. EOF .AND. Looking
IF Bill:Nmtr <> MBill:Nmbr
SKIP
ELSE
STORE F TO Looking
ENDIF
ENDDO

* If we're on a new name or the end of the file, Looking is TRUE
* because we have not found the supplier we were looking for.
* Otherwise, we have a matching bill number to confirm.
IF Looking
2 This BILL NUMBER is not in the costbase.'
? '<{Return> to continue.'
WAIT
ENDIF
ELSE

L

® If no bill number, look for the amount. :
DO WHILE Name=Key .AND. .NOT. EOF «AND. Looking
IF Amount <> MAmount :
SKIP .
ELSE . =
STORE F TO Looking :
ENDIF
ENDDO

® If we're on a new name or the end of the file, Looking is TRUE

* Otherwise, we have an unpaid bill to confirm.

IF Looking :
? ¥ No bill for this amount and this supplier.’
? '<Return> to continue.'
WAIT

ENDIF

ENDIF we have the bill number
ENDIF we have only the name
ENDIF there is an unpaid bill for the supplier

STORE 'N' TO Changing.) '
DO WHILE !(Changing) <> 'Y' .AND. .NOT. Looking

@ 12,0

DISPLAY

? CHR(T) —=
7! . E to EDIT this record,*

7 Q to QUIT this supplier,' |

ACCEPT ! <Return> to continue.'® TO -Changing

2

/i

dBASE II...181

IF t(Changing) = 'Q'
STORE ‘T TO Looking
ELSE
IF 1(Changing) = 'E'
STORE STR(#,5) TO Found
EDIT &Number
4 ERASE
ELSE
If the first record is not the one we want, we skip through the
% pest of the entries for the name. We first go on from where we
#* yere in the listing (if we had more than the name), then go back
% to the first entry and look at those we had skipped. If we had
* only the name, OneByOne = 1 and we go through the list only once.
SKIP
IF EOF .OR. Name <> Key
IF OneByOne = 0
FIND &Key
STORE 1 TO OneByOne
ELSE
@ 11, 0 SAY CHR(2T) + CHR(TH)
? "We've gone through all the entries for " + MName+'.'
? '<Return> to continue.'
STORE T TO Looking
WAIT
ENDIF
ENDIF we've gone thgpough the 1list
ENDIF is it the right record
. ENDIF
- ENDDO Changing the record
?

2! F if FINISHED finding bills,*
2 <Return> to continue.'
? CHR(T)

. WAIT TO Finished
ENDDO Finished

dBASE II...182

(2222222221 REVIEW.CMD FILE RARBARRARSE

* This is used to list entries in any .DBF file. The database must be named in
®* the command file calling the procedure. Records may be listed conditicrally,
% with or without the record numbers.

* Records are listed in groups of 10 with a line space between each group.
Processing can be continuous, or can stop after every group of 10.

. The listing can start on a specified record number.

* The files can be re-listed as many times as desired.

L] Printing is optional. The "CHR(X)" commands are for a Diablo 1650

#* printer.

RN E RN NN RN RN SRR RN RN RN RN AN RSN R RN RSN R R R RN R RAANS

STORE 'Y' TO Reviewing
DO WHILE !{Reviewing)='Y'
COPY STRUCTURE EXTENDED TO Temp
GO BOTTOM
STORE STR(#,5) TO Last
ERASE
?
? 'The '+!(Database)+' database has '-Last+' entries. They will be shown'’
? 'in groups of 10 records, 50 records to a page if printed.'
? 'Enter new values for defaults or press <Return>:'
?

- -

'#8% DISPLAY ([Field list] [FOR <expression>] [OFF] ###r

STORE 1 TO First

STORE 1 TO PageCnt

STORE VAL(Last) TO RecoCnt
STORE 'N' TO Pause

STORE 'N' TO Partial

STORE 'N' TO Conditions
STORE 'N' TO Tally

STORE 'C' TO Changing

DO WHILE !(Changing) = 'C'

€ 8,10 SAY 'START ON RECORD NUMBER ' GET First

€ 9,10 SAY ' STOP ON RECORD NUMBER ' GET RecoCnt

€ 10,10 SAY ' START PAGE NUMBERS ON ' GET PageCnt

€ 11,10 SAY 'PAUSE EVERY 10 RECORDS ' GET Pause

€ 12,10 SAY ' SHOW SELECTED FIELDS ' GET Partial

@ 13,10 SAY 'DISPLAY FOR EXPRESSION ' GET Conditions
€ 14,10 SAY ! SHOW RECORD NUMBERS ' GET Tally

»
?' C to CHANGE the defaults,’
?° <Return>:to continue.'
WAIT TO Changing

IF 1(Changing) = 'C'
® Clear to end of screen on IBM 3101
€ 15,0 SAY CHR(27)+CHR(TH)
READ
ELSE
IF First > VAL(Last) .OR. First <= 0 .OR. RecoCnt > VAL(Last);
.OR. RecoCnt <= 0
@ 15,0 SAY CHR(27)+CHR(7Y4)
€ 16,0 SAY 'Sorry, wrong number: '-!(Database)+' contains '+;
*records 1 through's+Last+'.’ ’
? '<Return> to correct your entry.?
WAIT
€ 15,0 SAY CHR(27)+CHR(T74)
STORE 'C' TO Changing
STORE 1 TO First
STORE VAL(Last) TC RecoCnt
ENDIF

dBASE II...183

ENDIF
Clears to end of screen on IBM 3101
€ 15,0 SAY CHR(27)+CHR(TY)

NDDO

E
?
?
?
?
?
?
?
?
?
?
?
?
?
?
IF t(Partial)= 'Y’

@ 11,0 SAY- CHR(27)+CHR(TY)

€ 11,0 SAY 'The '+!(Database)+' database consists of these FIELDS:'

USE Temp
b4

STORE ' ' TO Choices
DO WHILE .NOT. EOF
STORE Choices+TRIM(Field:Name)+', ' TO Choices
SKIP
ENDDO
STORE $(Choices,2,LEN(Choices)-3) TO Choices
STORE 'Y' TO UnfinZ?shed
DO WHILE !{(Unfinished) = 'Y'
@ 13, 0 SAY Choices

USE B:&Database
?

? 'List FIELDS to display (<return> to show all).!
?

ACCEPT ' DISPLAY ' TO Partial

STORE ! (Partial) TO Partial

STORE Partial TC String

STORE LEN(String) TO Size

IF Size =0 .OR. (Size=1 .AND. Partialz' ')
STORE CHR(0) TO Partial
STORE 'N*' TO Unfinished

ELSE
?

? 'Want to change it (Y or N)?'
WAIT TO Unfinished
IF 1(Unfinished) = 'Y!'
€ 12, 0 SAY CHR(27) + CHR(TM)
ELSE :
@ 10,0 SAY CHR(27) + CHR(TY))
7 '#8% Checking fields ['+Partial+'] : !
?
STORE O TO F
STORE O TO Counter
DO WHILE Size >0
STORE Counter + 1ito Counter
?? ' ®1,.STR(Counter,?2)
STORE €(*,', String) TO Mark
IF Mark = 1 .OR. Mark = Size
? 'Uh, oh--trouble: comma cannot be at the 'j;
+'start or end of a list of values.'

dBASE II...184,

? '<Return> and try again.'
STORE 0 TO Size
STORE 'Y' TO Unfinished

WAIT
ELSE
IF Mark > 0
STORE (Mark - 1) TO Size
ENDIF

STORE T TO Blank
STORE 1 TO Start
DO WHILE Blank .AND. (.NOT. Start > Size)
IF $(String, Start, 1)=' !
STORE (Start + 1) TO Start
ELSE ‘
STORE (.NOT. Blank) TO Blank
ENDIF
ENDDO

IF Start > Size
? 'How on earth can I find a blank field?'
? '<Return> and-try again.'
STORE O TO Size
STORE 'Y' TO Unfinished

WAIT

ELSE
STORE (F + 1) TO F
IF F <10

STORE STR(F,1) TO Suffix

LSE
STORE STR(F,Z) TO Suffix
ENDIF
STORE 'FIELD'+Suffix TQ Field)
STORE TRIM($(String,Start,(Size-Start+1))) TO &Field

IF Mark > 0
STORE TRIM($(String, (Size + 2))) TO String
STORE ‘LEN(String) TO Size
ELSE
STORE 'N' TO Unfinished
STORE 0 TO Size
ENDIF
ENDIF
ENDIF
ENDDO
ENDIF
_ ENDIF
ENDDO

IF LEN(Partial) > 0
DO headings
? "WE'D DO THE HEADINGS HERE."
WAIT

ENDIF

ELSE
STORE CHR(O) TO Partial
ENDIF

IF- 1 (Conditions) = 'Y
STORE 'Y' TO Unfinished
DO WHILE !(Unfinished) = 'Y!
€ 11, O SAY CHR(27)+CHR(74}
€ 11, 0 SAY 'Specify the EXPRESSION or <Returnd> to skip.'

dBASE II...185

?
? 'DISPLAY &Partial FOR *
ACCEPT TO Expression
2.
? 'Do you want to change the expression (Y or N)?'
WAIT TO Unfinished
ENDDO

IF Expression > !
STORE 'FOR '+ Expression TO Conditions
ELSE
STORE CHR(O) TO Conditions
. ENDIF
ELSE
STORE CHR(O0) TO Conditions
ENDIF

IF1(Tally) <> 'Y

STORE 'OFF' TO Tally
ELSE

STORE ,CHR(0) TO Tally
END1IF

STORE [DISPLAY Next 1 &Partial &Conditions &Tally] TO Command

€ 11, 0 SAY CHR(27)+CHR(T4)

€ 11, O SAY *#%* ',[DISPLAY &Partial &Conditions &Tallyls+' #esr

?

? 'is the-command that will be performed on the '+!(Database)+' database.'
? ! C to CHANGE #4t,'

kS Q to QUIT with no action,'

? <Regurn> to review the database.'
WAIT TO Abort

IF !(Abort) = 'Q'
STORE CHR(0) TO Reviewing
ELSE
IF I{Abort) < 'C*
ERASE
? 'Enter a one-line heading or press <Return> to skip.!'
ACCEPT TO Message
STORE ! (Message) TO Message
?

STORE 0 TO Count

STORE 0 TO PageMark

STORE STR(First,5) TO Number
GO &Number =~

ERASE
? 'Do you want to print the listing now (Y or N)?2'
ACCEPT TO Hardcopy

IF 1(Hardcopy)='Y"
SET PRINT ON
DO RevMrgn
ENDIF

ERASE
? Message
? 'Page '+ STR(PageCnt,3)

IF Tally = 'OFF!'
?? ' starts on Record #'-STR(#,5)
?
IF .NOT.(Partial > ' ' ,OR. Conditions > ' ')

dBASE II...186

DO RevHdr
ENDIF
ENDIF
?

DO WHILE .NOT. EOF .AND. # <= RecoCnt
&Command

IF 1(Conditions) > CHR(O)
IF &Expression
STORE. (Count + 1) TO Count
ENDIF
ELSE
STORE (Count + 1) TO Count
ENDIF
SKIP

IF Count=10
STORE 0 TO Count
® Inserts a space every ten records, then waits. 17.e printer
is turned off so that "WAIT" does not print on tha hardcopy.

?

SET PRINT OFF

IF 1(Pause) = 'Y’
WAIT

ENDIF

IF t(Hardcopy) = 'Y
SET PRINT ON
ENDIF

® The following routine prints 50 entries to a page,
® then moves to the next page and prints a heading

‘STORE (PageMark + 1) TO PageMark
IF PageMark =.5

7 CHR(12)

STORE (PageCnt + 1) TO PageCnt

1F -INT(PageCnt/7) = PageCnt/7
2
ENDIF

? Message
? tPage '+STR(PageCnt,3)

IF Tally = 'OFF'
77 ' starts on Record #'-STR(#,5)

?
IF .NOT.(Partial > ' * .OR. Conditions > ' ')
‘DO RevHdr
ENDIF
ENDIF
2

STORE 0 TO PageMark
ENDIF
ENDIF
ENDDO

% Formfeed cn Diablo 1650 printer

? CHR(1D)

SET PRINT OFF

SET RAW ON

SET MARGIN TO 38 ,
7 'Do you want to see the '+!(Database)+' again (Y or N)?2'

WAIT TO Reviewing
SE

STORE 'Y' TO Reviewing
ENDIF
ENDIF
?

ENDDO Reviewing

USE

: DELETE FILE Temp
RELEASE A1l
RETURN

dBASE II...187

dBASE I1I...188
FNEERRRBNRNERARNER® REVHDR COMMAND FILE H#RRERSERRERERNSNENNRNEE

Used by Review.CMD to print headings for different database listings.
illllllil!!ll!ll‘.l!ll!llllIllll‘lllllilllliill!lilllil‘illIIIIIII!!!IQI

IF {(Database)="INSERTS'

? 'IO# MAGAZINE ISSUE JOB AD SPACE
' - GROSS NET X DATE!
ELSE
IF 1(Database)='BILLINGS'
? 'INV# JOB DATE TAXABLE TAX NO:TAX PO# DESCRIPTION®
ELSE
IF t(Database)="'INVOICES'
? 'INV# CLT DATE TAXABLE TAX NO:TAX 43
'TOTAL AMT:RCD DATE'
ELSE
IF !(Database)='COSTBASE'
? 'DATE CHECK JOB AMOUNT NAME Y4
' DESCRIPTION DATE BILL# HOURS EMP'
ELoe
IF !(Database)='DEPOSITS'
? 'DATE RECEIVED FROM CHECK AMOUNT '+
YINV# COMMENTS'
ENDIF
ENDIF
ENDIF
ENDIF

ENDIF

o

dBASE 1I...189

ARRERRRSENANNNAINES REUMRGN OOMMAND FILE SEMNSmssmassasnsnusnnnny

* Used by Review.CMD to set margins for different database listings.
ll!llllll!!!llllllll«llllilllllll!lilll*!]!Q{!l!i!llilllll!*illllil!llll

IF !(Database)='INSERTS'
SET MARGIN TO 38
ELSE
IF !(Database)='COSTBASE'
SET MARGIN TO 36
ELSE
SET MARGIN TO 45
ENDIF
ENDIF
RETURN

dBASE II...190

SESERERARNNRERRNES SALES TAX COMMAND FILE WASRSSnsssssassnasss
% This file summarizes the invoice file for a specified period.

. It shows the invoices and the type of billing (taxable or

® service) along with the totals for the two types and the total

® sales tax liability for the period.

L4 It also includes materials and equipment subject to a use tax
: that has not been paid. These are entered in the invoices database
[

when they come in as well as in the Postfile.
i 222222 2222 X R R SRR R Z 2SS a2 222222222322 32223}

USE B:Invoices

ERASE

? 'This file summarizes the data you need to prepare the End-of-Quarter'
* 7 'report to the State Board of Equalization for SALES TAX collected by'
? 'the agency. It includes use tax on materials bought out of state or’
? 'bought with our resale number without paying a use tax.'

STORE *'C' TO Dating
DO WHILE 1(Dating) = 'C'
STORE 'YYMMDD' TO Start
STORE 'YYMMDD' TO Finish
@ 7, 0 SAY 'This summary is for the period FROM ' GET Start
@ 7,45 SAY ' TO ' GET Finish
READ
@ 9,0 SAY '
?0 C to CHANGE,'
? '<Return> to continue.'
WAIT TO Dating
e 17,0
? CHR(27) + CHR(T4)
ENDDO Dating

ERASE
€ 5,10 SAY 'sessessssns DO NOT INTERRUPT Sesnsssnsss:
e 7,10 SAY 'COMPUTING THE QUARTERLY SALES TAX REPORT'

COP! TO Temp FIELDS Inv:Nmbr, Inv:Ddte,Taxable,Sales: Tax,TaxFree,Amount;
FOR Inv:Date >= Start .AND. Inv:Date <= Finish

USE Temp

SORT ON Inv:Nmbr TO Temp2

USE Temp?2

REPLACE Inv:nmbr WITH ' USED' FOR VAL{Inv:Nmbr) < 1000

STORE $(Start,3,2)+'/'+$(Start,5,2)+'/'+$(Start,1,2) TO Start
STORE $(Finish,3,2)+'/'+$(Finish,5,2)+'/'+$(Finish,1,2) TO Finish

é 5,0

SET MARGIN TO 45

SET PRINT ON

STORE 1 TO PageCnt

? 'SALES TAX SUMMARY FROM ‘'+Start+' TO '+Finish+': Page '+STR(PageCnt,3)

?.
7 'INV# DATE TAXABLE TAX SERVICE TOTAL®
?

STORE 0 TO Count
STORE 0 TO PageMark
GO TOP
DO WHILE .NOT. EOF
DISPLAY Inv:Nmbr,Inv:Date,Taxable,Sales:Tax,TaxFree,' '+STR(Amount,9,2) OFF
STORE (Count + 1} TO Count
SKIP
IF Count=10
STORE 0 TO Count
% Inserts a space every ten records, then waits. The printen

F-7____________f____________________________——ﬂ

dBASE II...191
% is turned off so that "WAIT® does not print .on the hardcopy.
2 -

The foll¢wing routine prints 50 entries to a page,
* then moves to the next page and prints a heading

STORE (PageMark + 1) TO PageMark
IF PageMark = 5
STORE 0 TO PageMark
] ? CHR(12)
STORE (PageCnt & 1) TO Pagelnt

#* Compensates for an offset gaused by the 7 lines/inch printing
IF INT(PageCnt/7) = PageCnt/T
?

ENDIF
2 'SALES TA® SUMMARY FROM ' + Start + ' TO ' + Finish+': Page ' +;
STR(PageCnt,3)"
? .
? 'INVE DATE TAXABLE TAX SERVICE TOTAL'
2 .
ENDIF
ENDIF
ENDDO
?
SET PRINT OFF
2.
? ! COMPUTING TOTALS NOW.'
?
REPLACE All Inv:Nmbr WITH ' ' FOR VAL(Inv:Nmbr) > 1000
TOTAL ON Inv:Nmbr TO Other

USE Other

REPLACE All Inv:Date WITH ‘'TOTAL'

REPLACE All Inv:Nmbr WITH 'SALES' FOR Inv:Nmbr = '
SUM Taxable TO Used FOR Inv:Nmbr = ' USED'
SUM Amount TO Sold

STORE Sold + Used TO Gross

SUM Sales:Tax TO Collected

SUM TaxFree TO Service -

STORE Collected + Service TO Exempt

STORE Gross - Exempt TO Subject

STORE 0:06%Subject + 0.005 TO Payable

#® Print totals of all the invoices

GO TOP

SET PRINT ON

DO WHILE .NOT. EOF) .
DISPLAY Inv:Nmbr,Inv:Date,Taxable,Sales:Tax,TaxFree,' '+STR(Amount,9,2) OFF
STORE Count + 1 TO Count
SKIP

ENDDO

IF PageMark > 3
* Formfeed if not enough room to print the following list

.7 CHR(12)
ENDIF™ °
?
?
? 'ENTER THE FOLLOWING DATA ON THE BOARD OF EQUALIZATION FORM:'
? .
% The following segment is not the final, but the state auditor is in right now
and I've got to get the info out to him.and to the state for this month.
The final version will include all lines in the form, to allow for changes
in the way we do our business. Obviously, this is also the place to
»

print the form if you want to do that. Since the form is used only once

' LINE D
! LINE 2>
' LINE 3>

' LINE 9>
! LINE 10>
' LINE 11>
! LINE 12>
' LINE 13>
' LINE 1%

' LINE 19>
' LINE 21>
' LINE 28>
CHR(12)

SET MARGIN Tu 38
SET PRINT OFF

D oD 2D oD 2D 0D 2D D 0D +D 4D 2D 0D +D =)~ WD

RELEASE All
USE

DELETE FILE Teamp
DELETE FILE Temp2
DELETE FILE Other
RETURN

TOTAL GROSS SALES:
SUBJECT TO USE TAX:
TOTAL TRANSACTIONS:

SALES TAX INCLUDED:
ADVERTISING SERVICES:
TOTAL EXEMPTIONS:
SUBJECT TO STATE TAX:
AMOUNT OF STATE TAX:
SUBJECT TO LOCAL TAX:

AMOUNT OF LOCAL TAX:
TOTAL TAXES:
TOTAL DUE AND PAYABLE:

+*
+
+

++ 4+ ++ 4+

+

dBASE II...192

every three months, we won't automate it entirely.

STR(Sold,9,2)
STR(Used,9,2)
STR(Gross,9,2)

STR(Collected,9,2;
STR(Service,9,2)
STR(Exempt,9,2)

STR(Sub ject,9,2)
STR(0.05'SubjeCC+0.005,9,2)
STR(Sub ject,9,2)

STR{0.01#Sub ject+0.005,9,2)
STR(Payable,9,2)
STR(Payablg,Q,?)

dBASE II...193

asssanssss TIMECALC COMMAND FILE ARERRRRRNY
% yerifies that employee name and number match, then

% calculates billing charges for employee time.
lll!lll«lllllIlllllllilﬁiIllilll!lli.‘llill'lllllllllllli

SET TALK :OFF

ERASE

SELECT PRIMARY

RESTORE FROM B:Congtant

GO TOP
DO WHILE .NOT. EOF
ERASE
8 4,20 SAY ' #% DO NOT INTERRUPT **#
@ 5,20 SAY ' PROCESSING TIME CHARGES
IF * .OR. Job:Nmbr = 31 .OR. Check:Nmbr <> '=-=='
SKIP
ELSE

REPLACE Client WITH 1(Client),Name WITH 1 (Name)
STORE STR(#,4) TO Number

@ 7,20 SAY ! Record # '+Number

@ 8,20 SAY ! ' +Name

? CHR(T)

IF Emp:Nmbr<=0 .OR. Emp:Nmbr>MaxEmpl .OR. Hours = 0
ERASE"

REPLACE Hours WITH Hours*1.00
REPLACE Emp:Nmbr WITH Emp:Nmbr#*1
@ 4,0 SAY ' !
DISPLAY
@ 6,3 SAY 'HOURS='
@ 6,18 SAY '=EMPLOYEE NUMBER'
d
7 'Press ANY KEY to correct the EMPLOYEE NUMBER,'
? tor press H to correct the HOURS."
WAIT TO Decision
IF 1(Decision) <> 'H'
@ 6,14 GET Emp:Nmbr
ELSE
@ 6,8 GET Hours
ENDIF
READ
ELSE
SELECT SECONDARY
USE B:Personne
STORE T TO Looking
DO WHILE Looking .AND. .NOT. EOF
IF $(Name,1,10)=$(P.Name,1,10)
IF Emp:Nmbr=P.Emp:Nmbr
SELECT PRIMARY
Formula optimistically assumes 65 billable hours out
® of 75 hours possible in two weeks. Eff. mult.=3.23
REPLACE Amount WITH Pay:Rate'Z.B'Houre/GS
SELECT SECONDARY
STORE F TO Looking
ELSE
SELECT PRIMARY
STORE T TO Fixing
DO WHILE Fixing
ERASE
@ 4,0 SAY ' !
DISPLAY
g 6,16 SAY '=EMPLOYEE NUMBER'

dBASE II...19%4

? 'The correct Employee Number is'
?? S.Emp:Nmbr
77 ' ror '+S.Name
? 'Press ANY KEY to change the EMPLOYEE NUMBER' .
? 'press N to change the NAME.?'
WAIT TO Choice
IF 1(Choice) <> 'N!'
€@ 6,12 GET Emp:Nmbr
READ :
STORE F TO Fixing
ELSE)
@ 5,25 GET Name
REPLACE Name WITH !(Name)
READ
STORE F TO Fixing
ENDIF Employee number
ERASE
ENDDO Fixing
SELECT SECONDARY-
GO TOP
ENDIF Numbers match

IF EOF.
ERASE
SELECT PRIMARY
€ 4,0 saYy ' ¢
DISPLAY
6,16 SAY '=EMPLOYEE NUMBER'

'This name is not.listed in the Personnel file,'
'so time charges were not calculated.!
'Press any key to change the name, or write the'
'record number down and press D to DELETE.'
WAIT TO Change
IF 1(Change)<> 'D'
@ 5,25 GET Name .
REPLACE Name WITH !(Name)
READ
SKIP-1
ELSE -
ERASE
DELETE
DISPLAY

) =) W)) N D

?
? 'THIS RECORD HAS BEEN DELETED.'
WAIT
ENDIF Change]
SELECT SECONDARY
ENDIF no name
ENDDO Looking
SELECT PRIMARY
SKIP
ENDIF
ENDIF deleted
‘NDDO billing calculations

RELEASE Al1
RETURN -

dBASE II...195

ERERBRBERR PRINTOUT COMMAND FILE !!l!ljllll
This file is is used by several other command files. It prints out a
% j4sting of the records in a file without the record number. The
outut is spaced every 10 records and the printer is positioned back
at the left margin after the printout.)
* The calling command file determines where the printout starts by
® gpecifying a value for the variable "Number".
* This does Rot show.the record numders. To do so, use the
*
[]

Review.Cad file.
!l!ll!lllllIlllllIllllllillil!lllil!l!llll!lllilI!lllllll!!llll.lllll

IF VAL(Number) > O
GOTO RECORD &Number

STORE 0 TO Count
DO WHILE .NOT. EOF
IF ®
SKIP
ELSE
DISPLAY &Condition
SKIP -)
STORE Count+1 TO Count
IF Count=10
STORE 0 TO Count
® Spaces -one line every 10 records, then waits. Turns the printer
% off so that "WAIT" does not print.

?
SET PRINT OFF
WAIT
IF 1(Output)= 'Y’
SET PRINT ON
ENDIF
ENDIF
ENDIF
ENDDO
The next 2 lines reposition the printer at the
left margin.

?
SET PRINT OFF

RELEASE Count, Output
RETURN

dBASE II...196

SSESRSINEE GETDATE COMMAND FILE #®#sunassans
* Confirms that the date is entered as YYMMDD by checking to see that
* the entries for each item are in the correct range. The year is

® checked against a constant stored in the B:Constant .MEM file.
lllllll!lllI!lllillllllllllllll!lllllllllllllllllll!l!'lllllll!llllll

STORE "T" TO :oDate
DO WHILE 1(NoDate) <> 'Ft
ERASE
STORE 'YYMMDD' TO Date
€ 5,10 SAY "Enter TODAY'S date™ GET Date
? CHR(7)
READ

IF VAL($(Date,1,2)) <> ThisYear;
"~ +OR. VAL($(Date,3,2)) < 1 .OR. VAL($(Date,3,2)) > 1

-OR. VAL($(Date,5,2)) < 1 .0R. VAL($(Date,5,2)) > 3

€ 10,25 SAY 'DATE ERROR'

STORE 0 TO X

DO WHILE X < 50
STORE X + 1 TO X

ENDDO

?
€ 10,0 SAY C to CHANGE the date,!
? '<Return> to eontinue.!'
WAIT TO Change
IF 1(Change) < '¢!
STCRE 'F' TO NoDate
ENDIF
ENDIF
ENDDO NoDate

RELEASE NoDate, Change, X
RETURN

dBASE II...197

SERRRFERNRE DATETEST COMMAND FILE RE#EREZRSER
®# This file verifies the Bill:Date and Check:Date to see that they are

®* in the right format. If incorrect, the operator may edit them.
!IlllliIIllll:lill!!l!llllIlIlll&lll}ll!llill!llllll!l!l

ERASE
GO TOF”

* The variable DATE brings in the NAME of the date field to be checked
% from the command files where this is used.
DO WHILE .NOT. EOF

@ 6,30 SAY ' VERIFYING ‘+Dates+' !

IF ®
SKIP
ELSE
IF &Date <> '
STORE STR(#,5) TO Found
STORE T TO NoDate
DO WHILE NoDate
€ 8,30 SAY ' RECORD '+Found
e 9,30 SAY ! '+$(&Date,1,2)+"/'+$(&Date,3,2)+"' /' +$(&Late,5,2)
? CHR(T) '
The macro symbol is used to get the contents of the date field
being checked without creating a new variable.
IF VAL%$(&Date,1,2)) > ThisYear .OR. VAL($(&Date !,2)) < MinYear;
.OR. VAL($(&Date,3,2)) < 1 .OR. VAL($(4&Date,3,2)) > 12;
LOR. VAL($(&Date,5,2)) < 1 .OR. VAL($(&Date,5,2)) > 31
?
?
7! DATE ERROR: Must be YYMMDD '
ACCEPT 'Enter new Date' TO Temp
REPLACE &Date WITH Temp
ERASE
ELSE
STORE F TO NoDate
SKIP
ENDIF
ENDDO NoDate
RELEASE Temp, NoDate
ELSE
SKIP
ENDIF date is not blank

® Delay to allow date being checked to be read (quickly)
STORE 0 TO X ‘
DO WHILE X < 5
STORE (X + 1) TC X
ENDDO

ENDIF deleted or posted
ENDDO
RELEASE All
RETURN

dBASE II...198 °

L3222 222)7) NAME‘]‘ES‘[comAND FILE ARARRBANNE
® Checks names in the file in USE against the Suppliers file and gives
* the operator the options of editing, adding them to the Suppliers file
® or ignoring them. If a name is edited, it is presented again.
!llllllllll!‘lllllllIllIl!llllllllllllﬁ!!ll!IlllllllIlll!lllllllllll!ll.
GO TOP
DO WHILE .NOT. EOF

IF ®
3KIP
ELSE
STORE STR(#,5) TO Number
STORE !{(Name) TO Name
ERASE
€ 4,25 SAY 'CHECKING NAMES '
€ 6,25 SAY 'RECORD !'+Number
€ 7,25 SAY Nam
? CHR(T))
STORE $(Name,1,10) to Key
SELECT SECONDARY
USE B:Supplier INDEX B:Supplier
FIND &Key
STORE T TO Again
STORE 'T' TO Decision
IF # =0
DO WHILE Again
€ 9,20 SAY 'THIS SUPPLIER NAME IS NOT IN THE SUPPLIERS FILE.

€ 11,20 say E to EDIT it.

€ 12,20 SAY ¢ A to ADD 1t to the -SUPPLIERS file.
€ 13,20 sSAY ¢ C to CONTINUE.

?

WAIT TO Decision
IF t(Decision) = "7t
APPEND
SKIP-1)
HMFE%MWHHHMM%RW%SHW'“MN”L&WHHM
1(City
STORE F TO Again
ELSE
IF 1(Decision) = 'E*
SELECT PRIMARY
EDIT &Number
REPLACE Name WITH 1(Name)
SELECT SECONDARY
STORE F TO Again
ELSE
IE 1(Decision) = *'C!
~STORE F TO Again
ELSE
STORE T TO Again
ENDIF C
ENDIF E
ENDIF A
ENDDO
ENDIF 0
SELECT PRIMARY -
IF !(Decision) <> 'E!
SKIP
ENDIF
ENDIF deleted
ENDDY
RELEASE All
RETURN

L] dBASE II...199

essssswnsEees® CHECKSTUB COMMAND FILE Seresunsupsssssss
prints out check numbers, amounts, and balances from the CheckFile when
® SALARIES and BILLS are p&id. When more than one bill is paid by a
@& single check, the program totals all the bills against that check if they
® are entered in consecutive order (which they are in the two command files)

® Records are marked for deletion, but <an be reviewed and retrieved.
unnuuounnnunuuuuuuuuuunuuuuuunuuuuuuuu"-

ERAo:
@ 5,10 SAY '### DO NOY INTERRUPT ##&!
@ 6,10 SAY ' JUST GETTING ORGANIZED' -

USE B:Checkfil
TOTAL ON Check:Nmbr TO Scratch FOR .NOT. L
COUNT FOR .NOT. # TO Entries

USE Scratch
UPDATE FROM B:Checkfil ON Check:Nmbr REPLACE Balance
COUNT FOR .NOT. * TO Checks :

IF Entries > Checks
USE B:Checkfil
ERASE -
@ 4,0 SAY *
SET PRINT ON .
2?2 THESE INDIVIDUAL BILLS WERE PAID:'

' .Date Check Name Amount

?
?
?
LIST ! v4Check:Date, Check:Nmbr, Name, Amount, BillsNmbr OFF;
FOR' .NOT.*
?
?
?
ENDIF
USE Scratch
STORE 'Y' TO Doing
DO. WHILE 1(Doing)='Y"'
‘ERASE
SET PRINT ON
?! MAKE THE FOLLOWING ‘ENTRIES IN THE CHECK BOOK:'
? .
?°! Date Check Name Amount Balance'

?

LIST ! 1 4+Check:Date, Check:Nmbr, Name, Amourit, Balance OFF
2 5

?

?
SET PRINT OFF .
2 'Do you want to print it again (Y or N)?'
WAIT TO Doing
‘ENDDO

SET PRINT ON'
7. CHR(12)
SET PRINT OFF

USE B:CheckFil
DELETE ALl

DELETE FILE Scratch .
RELEASE Doing, Checks, Entries
RETURN

	dBaseII_00_cover
	dBaseII_00_toc
	dBaseII_01_section
	dBaseII_02_section
	dBaseII_03_section
	dBaseII_04_section
	dBaseII_05_section
	dBaseII_06_section

