

• use employee
• edut 3
*** UNKNOWN COMMAND
edut 3
CORRECT AND RETRY [YIN)? Y
CHANGE FROM :u
CHANGE TO :i
edit 3
MORE CORRECTIONS [YIN)? N

In response to "CHANGE FROM:" enter just enough of the wrong part of the
command so that it is unambiguous. In the example, only one letter ("u") is wrong
and it is the only "u" that was typed. So enter that letter.

In response to "CHANGE TO:", enter only the replacement for the material to be
changed. Again, it is just one letter, "i".

To signal that all corrections have been made, press N in response to the question
"MORE CORRECTIONS (YIN)?".

Different errors can be corrected and you can change the same error as many times
as necessary until the entire command is correct. When the command is correct,
dBASE II allows the dialog to end and executes the command. You can exit from the
correction dialog at any time by pressing ESC. Pressing RETURN in response to the
prompt "CHANGE TO:" also exits from the dialog.

Creating a Data Base

5-25

Creating a Data Base

5-26

Two more examples of the error correction dialog are shown in the next screen. The
first demonstrates how the system identifies syntax errors with the question mark .

• store (2+2 to x
*** SYNTAX ERROR ***

?
store (2+2 to x
CORRECT AND RETRY (YIN)? Y
CHANGE FROM :+2
CHANGE TO : +2)
sto re (2+2) to x
MORE CORRECTIONS [YIN)? N

4

use employee
. display salay
*** SYNTAX ERROR ***

?
display SALAY
CORRECT AND RETRY [YIN)? Y
CHANGE FROM :SALAY
CHANGE TO :salary
d;sp lay sa la ry
MORE CORRECTIONS (YIN)? N
00001 12500.00

The second example demonstrates that in response to the prompt "CHANGE
FROM:", you must type the error exactly as it is repeated back by the system, which
may not be the way you entered it. dBASE II displays erroneous file names and field
names in uppercase letters. It then compares the CHANGE FROM string you enter
to the command line it displayed back to you. If the data do not match exactly, the
system repeats the prompt "CHANGE FROM:".

In these examples, only a few characters were changed. You will find the error
correction dialog a useful feature when entering long commands.

Chapter 6

Using The Data Base
Selectively

You create data bases in order to get information from them. With dBASE II, you
don't need to specify exactly what that information is until you want it. You don't
have to write computer programs to access or report on file contents. Instead, you
can get answers to questions as they arise. dBASE II allows you to query the data
base in two ways: record location and record contents.

POSITIONING YOURSELF IN THE DATA BASE

Sometimes it is most convenient to operate on records based on their locations in
the file. Assume that EMPLOYEE records are added to the file in the order in which
people are hired. The first person hired is entered as the first record; the tenth record
belongs to the tenth person hired, and so on. If you need to know who was hired
first, sixty-third, or anywhere in between, you could access the appropriate record
by its location.

GOTO

The GOTO command moves you from record to record quickly and easily. Enter
the commands listed below at the dot prompt. When you finish, the screen should
look like the display that follows.

use employee
goto 3
display
g05
display
g020

6-1

Using the Data Base Selectively

6-2

• use employee
• Qoto 3
· display
00003 Ralph Destry 234 Mahogony Deerfield FL 33441 38
• go 5
· display
OOOO~ Duane CI inker 789 Charles LosAngeles CA 90036 54
• 00 20
RECORD OUT OF RANGE
go 20
CORRECT AND RETRY (Y/N)? N

Notice that when the specified record number is greater than the number of records
in the data base file, the message "RECORD OUT OF RANGE" appears and you
are prompted to reenter a number through the error correction dialog.

The GOTO command has five formats.

GOTO TOP
GOTO BOTTOM
GOTO RECORD <n>
GOTO <n>
<n>

NOTE

Pointed brackets (" <" and ">") in command
format descriptions enclose text that you must
replace with your own information. For exam­
ple, in the GOTO command you must replace
<n> with a valid record number.

Using the Data Base Selectively

• GO and GOTO are equally acceptable and may be used interchangeably.

• TOP and BOTTOM are keywords, words that have special meaning to
dBASE II. They must be spelled correctly. Like commands, keywords can
be abbreviated to the first four characters. TOP moves to the first record in
the data base. BOTTOM moves to the last record.

• GOTO RECORD <n>, GOTO <n>, or even <n> alone (where "n" is a record
number) moves to the indicated record. The three commands produce
identical results.

GOTO BOTTOM can be used to find the number of records in sequential files.
Since record sequence numbers are assigned as records are added to a data base file,
you can find the last record's number by issuing the GOTO BOTTOM command.

GOTO by itself may not seem like a very useful command. However, as you will see
later, it is very useful in combination with other commands and in programs.

Skipping Around

You can move forward and backward from your current position with SKIP. Enter
these commands to see how SKIP works.

goto 3
display
skip
skip-2

6-3

Using the Data Base Selectively

6-4

• goto 3
• display
00003 Ralph Destry 234 Mahogony Deerfield FL 33441 38 p3 15575.00 .F.
• skip
RECORD: 00004
• skip -2
RECORD: 00002

The SKIP command operates according to the following rules.

• SKIP by itself moves forward to the next record.

• SKIP + or - <n> moves forward or backward "n" records.

• When <n> is omitted, it is assumed to be 1.

The system always responds with the record number at its new location. Do not try
to skip beyond the end of a file. If you do, the message "RECORD OUT OF
RANGE" appears on the display screen instead of a record number. The system
remains positioned at the last valid record number it used, however the field it calls
"RECORD NUMBER" holds the out of range value.

,

Using the Data Base Selectively

Current Record Pointer

Although you may sometimes need to know which record in the file you are
positioned on, dBASE II always needs to keep track of its current position. So the
system automatically stores the current record number in its memory in a variable
named #. A variable is simply a name assigned to a piece of data. A field name is
another example of a variable. The value of a variable is its contents (for example,
the number of the current record or a particular employee's name). The values a
variable takes on may change, but you can always refer to the variable by name to
find out its contents.

In the previous examples, DISPLAY was used to show the current record and to
demonstrate the effects of the GO TO and SKIP commands. This displayed the
entire record. If all you need to know is the current record number, displaying the
value of the record pointer, #, accomplishes the same thing.

6-5

Using the Data Base Selectively

6-6

? Command
The? command is a specialized form of the DISPLAY command. ? means "What is
... " to dBASE II. To ask "What is the value of the record pointer?" enter:

?#

The system responds with the number of the record at which it is positioned. If you
then want to see the entire record, enter:

display

? can be used to display the value of any variable. Try using it to display the values of
variable names in the data base currently in USE.

use employee
goto 4
? #

4
? last:name

Howser
? salary
9500.00

Using the Data Base Selectively

Calculator Mode

The? command also lets you use dBASE II like a calculator. Simply enter the
question mark followed by a space and the quantity or mathematical expression to
be evaluated. dBASE II returns the answer on the next line of the screen.

Test the command with some calculations of your own or try the examples in the
display that follows. Notice that the answers to mathematical operations are
accurate to the maximum number of decimal places in the numbers entered.

? 73/3.0000
24.3333

? 73.00/3
24.33
? 73/3
24

use empLoyee
goto 4
? saLary
9500.00
? saLary'" 2
19000.00

? can evaluate expressions containing both variables and numbers.

?? Command

~ The command ?? performs the same functions as ? ~ but places the answer on the
same line of the display screen as the command.

Try the?? command in calculator mode and also to display the value of a variable.
You will see that the answer is displayed starting at the left margin of the screen. The
answer overlays as much of the command line as necessary. The rest of the
command remains displayed on the screen.

6-7

Using the Data Base Selectively

6-8

dBASE II SYNTAX

You use commands to communicate with the dBASE II programs to access and
manipulate your data. So far, most of the commands used have consisted of a verb
(USE, LIST, DISPLAY) and a noun (the name ofafile or field). To use dBAS-E II to
its fullest, you can tailor these comll}ands with modifiers and refine their operation.

Every computer program is written in a language that the computer can under­
stand. You have probably heard of COBOL, FORTRAN, and BASIC. These are all
computer programming languages. They are easy for computers to understand, but
they are not so easy for humans to learn. dBASE II, on the other hand, can
understand and accept commands that are also fairly easy for people to understand
and remember. Its language consists of structures with which you're already famil­
iar. The language resembles English and, like any language, it has a syntax (set of
grammatical rules) to follow. This section describes the syntax in general terms.
Once you understand the terminology and typographic conventions, you can take
full advantage of the dBASE II commands.

Command Format

In general, the format of a dBASE II command is:

VERB SCOPE FIELD CONDITION

A verb is an action word. CREATE, USE, LIST, REPORT, and ERASE are all
examples of verbs. They cause a specific action to be taken. The SCOPE, FIELD,
and CONDITION phrases that follow the verb are equivalent to adverbs. They
more fully describe the action.

• SCOPE identifies how much of the file the command covers.

• FIELD identifies specific parts of records to be used. The way each field is
used depends on the command.

• CONDITION states the selection criteria for records.

• Some phrases require special formats. FOR, NEXT, and WITH are exam­
ples of words that begin phrases .. All of these example words are referred to
as "keywords".

The dBASE II languc:).ge includes rules that limit the acceptable combination of
verbs and phrases. Each verb accepts only certain phrases. If the phrase is present, it
must conform to the rules. When phrases are omitted, the system automatically
supplies default values for them so that the command is complete.

Using the Data Base Selectively

RULES FOR ENTERING COMMANDS

dBASE II accepts commands that adhere to the following format.

• The verb must be the first non-blank character of the command line.

• Phrases follow the verb and can be in any order.

• Any number of blanks may be used to separate words and phrases.

• Verbs and keywords can be abbreviated to the first four (or more) charac­
ters. For example, DISPLAY STRUCTURE may be entered as DISP
STRU or DISPL STRUCT, and so on. Just be sure the abbreviation is
spelled correctly up to the point where it ends. All examples in this manual
use complete words for clarity .

• Either uppercase or lowercase letters may be used to enter verbs, keywords,
field names, memory variable names, or file names. dBASE II converts
them to uppercase .

• All commands must contain fewer than 254 characters. This count includes
blanks. If macros (se~ Chapter 11) are used, the length includes the
expanded form of the macro. To extend a command line beyond the width
of the display screen, use a semicolon (;) after the last character that fits on
the line. Press RETURN immediately after the semicolon and continue the
command on the next line.

SPECIAL SYMBOLS USED IN COMMAND FORMATS

Parts of the commands are optional and may be omitted when the command is used.
A typical command format is shown below.

LIST [<scope>] [<field list>] [FOR <exp>]

Square brackets ([...]) are used in the command formats to show which phrases are
optional. These are the phrases that modify the action of commands.

6-9

Using the Data Base Selectively

6-10

Uppercase type identifies keywords (for example, FOR) in phrases. Keywords must
be entered whenever the phrase that contains them is used.

NOTE

Although it is possible to use keywords as file
and/ or field names, it is a good practice to
avoid doing so. dBASE II may incorrectly
interpret your use of them, causing errors and
unpredictable results.

Pointed brackets « ... » enclose words, phrases, and abbreviations that describe the
data you enter. These symbols are defined in Appendix B. You must replace the
entire symbol (the brackets and the words they enclose) with your own values.

Expanding your Control with Phrases

To see how verbs and phrases interact, enter the following series of commands:

use employee
list
goto top
list next 3
goto top
list next 3 last:name
goto top
list last:name for dept:num='89'

These commands demonstrate how phrases can restrict the action of LIST. The
phrases are defined more fully in this section.

SCOPE

The scope phrase determines how much of the file is considered when the command
is executed. Every command has a default for scope. See what happens when you
enter these commands:

use employee
display
list

Using the Data Base Selectively

Without any modifying phrases, DISPLAY shows only one record (the current
record) on the screen while LIST shows the whole file.

Both LIST and DISPLAY can be used to show the contents of a file. They both
accept the same phrases. However, they differ in the default for SCOPE. For any
command that uses this phrase, it can take on three values:

• ALL means all the records in the data base;

• NEXT <n> means the next "n" records, beginning with the current record;

• RECORD <n> means the record with the sequence number "n".

Try the <scope> phrase with both LIST and DISPLAY. The general form of the
commands with this phrase is:

LIST [<scope>]
DISPLA Y [<scope>]

Enter these commands. The screen appears like the display that follows.

use jobdet
list record 1
display all
display record 2
list next 2

6-11

Using the Data Base Selectively

6-12

• use j obdet
list record 1

00001 d2 Operetor 10640.00 22579.20
display ell

00001 d2 Operator 10640.00 22579.20
00002 d8 Shi ft Leader 15000.00 26750.00
00003 m1 Team Leader 12000.00 15500.00
00004 mB Dept Manager 20000.00 35000.00
00005 p3 Programmer 15750.00 25000.00
00006 p_8 Sr Programmr 20000.00 28000.00
00007 pB Sr PrgAnlyst 27500.00 36000.00
00008 s8 Typist 10640.00 17640.00

display record 2
00002 d8 Shi ft Leader 15000.00 26750.00

li st next 2
00002 d8 Shi ft Leader 15000.00 26750.00
00003 m1 Team Leader 12000.00 15500.00

LIST and DISPLAY can produce identical screen displays when the scope phrase is
used. Table 6-1 describes the effect of the scope phrase on the LIST and DISPLAY
commands.

Using the Data Base Selectively

Table 6-1 Effects of Scope Phrase With LIST and DISPLAY

LIST COMMAND DISPLA Y COMMAND ACTION

LIST DISPLAY ALL Contents of entire file
are displayed and cur-
rent record pointer is
set to the last record

LIST NEXT 1 DISPLAY Current record is dis-
played

LIST RECORD <n> DISPLA Y RECORD <n> Indicated record is dis-
played and current
record pointer is reset

FIELDS

Each of your files will probably consist of many fields. Long records may be an
efficient way to organize and store data, however you do not necessarily want to use
all the fields at one time.

When you display records to answer a particular question, the screen should be as
clear and uncluttered as possible. One way to accomplish this is to use a FIELD
phrase, when it is allowed, so that what you see is just what you need.

LIST and DISPLAY can use a field phrase to limit the display to only those fields
included in the <field list>. No keywords are used with this phrase.

LIST [<scope>] [<field list>]
DISPLA Y [<scope>] [<field list>]

For a list of all employees and where in the company they work, you need only the
names and associated department numbers for every record in the EMPLOYEE
file. LIST can be expanded with a phrase so that only those fields are shown. Enter:

use employee
list last:name first:name dept:num

6-13

Using the Data Base Selectively

6-14

The system displays the record number and those three fields for each record.

use employee
list last:name first:name dept:num

00001 Alazar Pat 75
00002 Embry Albert 89
00003 Destry Re lph 38
00004 Howser Peter 89
00005 Clinker Duane 54
00006 Brown John 54
00007 Berger Ma ry
00008 Peters Ali ce 54
00009 Shaffer Peter
00010 Freitag Jean 16
00011 Smyth Gai l 16
00012 Green Te rry 54
00013 Green Frank
00014 Rowland Paul 16
00015 Gi lbert Diane 89
00016 Harris Richard 75
00017 Schaller Paula 75
00018 Inders Per

You can use DISPLAY to accomplish the same thing as the previous LIST com­
mand by also specifying the scope. Enter:

display all last:name first:name dept:num

Using the Data Base Selectively

As you can see in the display that follows, the program responds by displaying 15
records at a time and the message "WAITING". Signal that you are ready to
continue with the display by pressing any key.

display all Last:name first:name dept:num
00001 ALazar Pat 75
00002 Embry ALbert 89
00003 Destry RaLph 38
00004 Howser Peter 89
00005 Clinker Duane 54
00006 8rown John 54
00007 8erger Mary
00008 Peters ALice 54
00009 Shaffer Peter
00010 Freitag Jean 16
00011 Smyth Ga i L 16
00012 Green Terry 54
00013 Green Frank
00014 RowLand Pau l 16
00015 Gi lbert Diane 89
WAITING

LIST and DISPLAY can produce the same output, but they present it in different
ways. LIST scrolls through the display and stops only on your signal. Press CTRL S
or BREAK to start and stop a LISTing. Press ESC to abort the LIST command.
DISPLAY presents output in groups of 15 records. Press any key to continue with
the next group of records.

NOTE

Pressing ESC aborts any dBASE II command
when you are in command mode.

6-15

Using the Data Base Selectively

. 6-16

CONDITIONS

Conditional phrases are very useful for controlling and defining what the com­
mands will do. Conditional phrases consist of keywords and expressions - constants
and/ or variables joined by operators. The following command uses an expression
to restrict record selection to those employees meeting a certain condition:

list for salary = 9500

In that command, "for" is a keyword and "salary = 9500" is an expression made up
of a variable (salary), a constant (9500), and an operator (=).

Keywords

dBASE II recognizes two keywords that identify conditional phrases: FOR and
WHILE. They can be used interchangeably in all commands except LOCATE. The
LOCATE command does not accept the keyword WHILE, however LOCATE
does recognize conditional phrases introduced by FOR.

Variables

NOTE

For consistency,- FOR is used throughout this
manual as the keyword that identifies condi­
tional phrases. You can use FOR or WHILE.

Variables are data items whose values can change. Frequently they are the names of
data base fields, like LAST:NAME, DEPT:NUM, and SALARY. They can also be
system variables like record number (#), and memory variables (see Chapter 12).

Constants

Constants are data items that do not change, no matter where they appear in a data
base or within the system. They are also called literals because they are exactly what
they say. Constants can be one of three types: numeric, logical, or character.

• Numeric constants are numerals such as 3.102, 175, and 42.

• Logical constants are the values ".T." and ".F.".

• Character constants are called strings. They may be composed of numbers,
letters, and symbols and are always enclosed within single or double quotes
or brackets. To see how the computer handles constants, look at the
following screen .

Using the Data Base Selectively

• use employee
• ? 3
3

• ? t
• T.
• ? n
.F.
• ? laat:name
Alazar
• ? "last:name"
last:name

There is no confusion about the first three commands. When you enter "?3" ("What
is 3?") the system responds "3". Three is always 3. The symbols T, t, Y, and yare
logical constants that mean "True", so "?t" gives the answer". T.". Similarly, F, f, N,
and n mean "False". But look at what happened with the last two commands. The
first time the program was asked "What is last:name?" it displayed the current value
of the variable called LAST:NAME. The second time, it displayed the string
constant "last:name". Character string constants must be enclosed within quotes to
distinguish them from variables.

Operators

Literals and constants must be combined with operators to form expressions.
Operators are symbols that tell dBASE II what manipulations to perform on the
data. dBASE II recognizes four kinds of operators. Some of them will be familiar to
you; others may take a bit of practice to understand how they work.

6-17

Using the Data Base Selectively

6-18

Arithmetic operators should be the most familiar. They generate arithmetic results.

Table 6-2 Arithmetic Operators

OPERATOR MEANING

() Parentheses for grouping

* Multiplication

/ Division

+ Addition

- Subtraction

The arithmetic operators are evaluated ina sequence of precedence. The order is:
parentheses; mUltiplication and division; addition and subtraction. When the oper­
ators have equal precedence, they are evaluated from left to right. The following
examples demonstrate the effect of parentheses on normal arithmetic operations.

17/33*72+8 = 45.09 (divide, multiply, add)
17/(33*72+8) = 0.00713 (multiply, add, divide)
17/33*(72+8) = 41.21 (add, divide, multiply)

NOTE

In dBASE II, the results of arithmetic opera­
tions are carried out to the greatest number of
decimal places in the operands. Therefore, the
previous examples would yield the following
answers in dBASE II:

17/33*72+8 = 45
17/(33*72+8) = 0
17/33*(72+8) = 41

Two arithmetic operations are demonstrated in the screen that follows. The first
calculates the midpoint of one salary range. The second example lists the current
salary for each employee and the salary with a 15% increase.

• use j obdet
• dispLay (low:sal + hi:saLl/2
00001 14B30.00
• use empLoyee
• Li st Last: name
00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018

Alazar
Embry
Oestry
Howser
Clinker
Brown
Barger
Peters
Shaffer
Freitag
Smyth
Green
Graan
Rowland
G1 Lbart
Harris
SchalLer
Indars

saLary saLary • 1.15
12500.00 14375.0000
22200.00 25530.0000
15575.00 17911.2500

9500.00 10925.0000
23450.00 26967.5000
21000.00 24150.0000

0.00 0.0000
13700.00 15755.0000
17900.00 20585.0000

2775.00 3191.2500
20100.00 23115.0000
14500.00 16675.0000
12500.00 14375.0000
15750.00 18112.5000
24500.00 28175.0000
21700.00 24955.0000
11000.00 12650.0000

0.00 0.0000

Using the Data Base Selectively

6-19

Using the Data Base Selectively

6-20

Relational Operators make comparisons, then generate logical results. If the expres­
sion is true, the command is performed. If the expression is false, the command is
not performed.

Table 6-3 Relational Operators

OPERATOR MEANING

< Less than

> Grea ter than.
= Equal to

<= Less than or equal to

>= Greater than or equal to

<> or # Not equal to

NOTE

The symbols <=, >=, and <> must be entered
as two characters with no intervening spaces.

Relational operators can compare variables, constants, and expressions. The data
types on both sides of the operator must be the same. For character strings, the data
are compared from left to right for the length of the second argument (the string to
the right of the relational operator). For numeric strings, an arithmetic comparison
is made (for example, 7.00 equals 7). Try the following commands.

use employee
list for zip:code<='70000'
list for job:code<>'p'
list for last:name='Green'
list for salary>23000

Using the Data Base Selectively

use employee
list for zlp:code <= '70000'

00003 Ralph Destry 234 Mahogony Deerfield FL 33441 38 p3 15575.00 • F.
00004 Peter Howser 678 Dusty Rd Chicago IL 60631 89 58 9500.00 • F.
00006 John Brown 456 Minnow PI Bur I I ngton ~lA 01730 54 p3 21000.00 · F.
00007 Mary Berger 10 Kearney Rd Nee,dham MA 02194 p8 0.00 • F.
00008 AI Ice Peters 676 Wacker Dr Chicago IL 60606 54 58 13700.00 • F.
00009 Peter Shaffer 43 Clinton Av Montclair NJ 07042 d8 17900.00 • F.
00011 Ga II Smyth 817 Sth St. Amb I er PA 19147 16 p4 20100.00 • F.
00013 Frank Green 441 Spicer Av Tampa FL 33622 58 12500.00 • F.
00016 Richard Harris 101 Enders Dr Syracuse NY 13211 75 d8 21700.00 • F.

I 1st for Job:code <> 'p'
00001 Pat Alazar 123 Crater Everett WA 98206 75 58 12500.00 • F.
00004 Peter Howser 678 Dusty Rd Chicago IL 60631 89 58 9500.00 • F.
00008 A I Ice Peters 676 \~acker Dr Chicago I L 60606 54 sA 13700.00 • F.
00009 Peter Shaff er 43 Clinton Av Montclair NJ 07042 d8 17900.00 · F.
00012 Terry Green 567 Doheny Dr Ho I I ywood CA 90044 54 ml 14500.00 • F.
00013 Frank Green 441 Spicer Av Tampa FL 33622 58 12500.00 • F.
00016 Richard Harris 101 Enders Dr Syracuse NY 13211 75 d8 21700.00 · F.
00017 Paula Schaller 721 Spring St Everett WA 98206 75 58 11000.00 • F.
00018 Per Inders 321 Sawtelle Tuscon AZ 85702 0.00 · F.

I 1st for last:name = 'Green'
00012 Terry Green 567 Doheny Dr Hoi I ywood CA 90044 54 ml 14500.00 • F.
00013 Frank Green 441 Spicer Av Tampa FL 33622 58 12500.00 • F.

II st for salary > 23000
00005 Duane Clinker 789 Charles LosAngeles CA 90036 54 p3 23450.00 • F.
00015 Diane Gilbert 280 Cactus Wy Las Cruces NM 88001 89 p3 24500.00 • F.

Notice that quotes or square brackets must enclose character data.

Logical Operators are used to test the values in logical fields and to form complex
expressions. They generate logical results (true or false). The logical operators are
listed in Table 6-4 in the order of precedence within an expression.

Table 6-4 Logical Operators

OPERATOR MEANING

() parentheses for grouping

.NOT. boolean not

.AND. boolean and

.OR. boolean or

$ substring logical operator

6-21

Using the Data Base Selectively

6-22

Logical Operators are used to test the values in logical fields. For instance, to find
the records for all employees with the ACT:STAT field value equal to F, enter:

list for .not.act:stat

The system responds with all employees' records because the value of ACT:ST AT is
".F." in all records.

You can use the logical operators to combine arithmetic and relational expressions
into complex expressions like the example that follows. Since the command does
not fit on one line, the semicolon is used to mark the end of the first line and the
comand is continued on the next line.

use employee
list for (zip:code>'5' .and.zip:code<'9');
.or.job:code='p3'

use employee
list for (zlp:code > '5 ' • and. zlp:code < '9') ;

.or. job:code = 'p3'
00003 Ralph Destry 234 Mahogony Deerfield
00004 Peter Howser 678 Dusty Rd Chicago
00005 Duane Clinker 789 Charles LosAngeles
00006 John Brown 456 Minnow PI Burlington
00008 AI Ice Peters 676 Wacker Dr Chicago
00010 Jean Freitag 854 Moose Blv Houston
00014 Paul Row I and 709 Key St HousTon
00015 Diane Gilbert 280 Cactus Wy Las Cruces
00018 Per Inders 321 Sawtelle Tuscon

FL 33441 38 p3 15575.00 • F.
IL 60631 89 s8 9500.00 • F.
CA 90036 54 p3 23450.00 • F.
MA 01730 54 p3 21000.00 · F.
IL 60606 54 s8 13700.00 • F.
TX 77006 16 p9 2775.00 • F.
TX 77007 16 p3 15750.00 • F.
NM 88001 89 p3 24500.00 • F.
AZ 85702 0.00 • F.

Using the Data Base Selectively

The system evaluates complex expressions with logical operators in two stages.
First, each relational or arithmetic expression is evaluated for the data values in a
record. (In the example, there are three such expressions.) Then, the system per­
forms the logical tests (in this case .and., .or.) before deciding whether to display the
record.

Parentheses are used in logical operations just as they are used in arithmetic
expressions. In the example, the expressions within the parentheses are evaluated
first. If both expressions within the parentheses evaluate" .T.", the first logical test
evaluates ".T.". In that case, the next logical test does not have to be made. Ifeither
expression within the parentheses was not true, then the entire expression within the
parentheses would be false and the second logical expression would be evaluated.
Either the expression within parentheses or the other expression must be true for a
record to be ,displayed. If the second logical operator were ".and." (as in the
command LIST FOR (ZIP:CODE > '5' .AND. ZIP:CODE < '9') .AND. JOB:­
CODE = 'p3'), then both logical tests would have to be true for a record to be
displayed. That would result in the display of two employees' records, Rowland and
Gilbert.

The Substring Logical Operator ($) searches for a given string of characters within
another string and returns a true or false value. The format is:

<substring> $ <string>

Either or both terms may be string variables or constants. To see how this works,
enter the following:

use employee
display
? state $ "CALIFORNIA"
? state $ "WASHINGTON"
list for 'ee' $ name
list for 'C~ $ state

6-23

Using the Data Base Selectively

use employee
display

00001 Pat Alazar 123 Crater Eve rett WA 98206 75 58 12500.00 • T.
? state $ "CALIFORNIA"

.F.
? state $ "WASHINGTON"

.T.
list fo r "ee" $ last:name

00012 Terry Green 567 Doheny Dr Hollywood CA 90044 54 m1 14500.00 .F.
00013 Frank Green 441 Spicer Av Tampa FL 33622 58 12500.00 .F.

list fo r 'CA' $ state
00002 Albert Embry 345 Sage Ave Palo Alto CA 94303 89 p8 22200.00 · F.
00005 Duane Clinker 789 Cha r les LosAngeles CA 90036 54 p3 23450.00 .F.
00012 Terry Green 567 Doheny Dr Hollywood CA 90044 54 m1 14500.00 · F.

String Operators generate string results.

Table 6-5 String Operators
-

OPERATOR MEANING

+ String concatenation

- String concatenation, move blanks

,6-24

Using the Data Base Selectively

Concatenation is a computer buzzword. It means that one character string is stuck
on to the end of another one. Enter the following series of commands:

use employee
? last:name + street
? last:name • street
? 'The name in this record is '+name;

.' and the address is '+ street

• use employee
• ? lest:name + street
Alazar 123 Crater
• ? last:name - street

, Alazar123 Crater
• ? 'The name in this record is ' + last:name;
- , and the address is ' + street

The name in this record is Alazar and the address is-

Tht + and - operators both join two strings. The plus sign joins the strings exactly as
they are found. The minus sign moves the trailing blanks in a string to the end of the
concatenated string. The blanks are not eliminated, but for many purposes this is
enough since they do not show up between the strings that are joined.

6-25

Using the Data Base Selectively

6-26

FINDING RECORDS BY THEIR CONTENTS

The previous sections of this chapter have demonstrated how to use LIST and
DISPLAY with conditional phrases to locate data records that meet specified
criteria. In addition to LIST and DISPLAY, a third command that is useful for
retrieving specific records is LOCATE. It searches the data base records in the USE
file for the first record whose data fields allow the conditional expression to be true.
When the expression is satisfied, the record number is displayed. The complete form
of the LOCATE command is:

LOCATE [<scope>] [FOR <exp>]

The verb, like any verb or keyword, may be abbreviated to four or more letters.

The scope phrase is optional; it defaults to ALL. To search the entire database,
omit the scope phrase. To search part of a file, use "NEXT <n>" for the scope. The
search starts at the current record and looks at the next "n" records. If this would
move the pointer past the end of the file, LOCATE examines each record from the
pointer position to the end of the file.

The FOR phrase specifies the conditions which must be true if the record is to be
selected. The keyword "FOR" is required. The expression maybe simple (AGE> 21)

,or complex (AGE >= 25 .and. JOB:CODE= "p9" .or. NAME='GOU'). Notice that
character data must be enclosed in single or double quotes.

To test how LOCATE works, enter the following commands:

use employee
locate for dept:num = '89'

If a record is found that meets the conditions in the expression, dBASE II returns
the message "RECORD n", where "n" is the record number. You can display or edit
the record once it is located.

If a record cannot be found, the message "END OF FILE ENCOUNTERED" is
displayed and the current record pointer is positioned on the last record in the file. If
the NEXT phrase is used and no record can be found within the scope of the phrase,
the message "END OF LOCATE SCOPE" is displayed and the current record
pointer indicates the last record scanned.

There may be more than one record that meets the conditions specified in the
LOCATE command. CONTINUE tells the system to go on with the search.

Using the Data Base Selectively

Other dBASE II commands may be issued between LOCATE and CONTINUE. If
they are, all <exp> phrases in the LOCATE command and the following commands
are limited to 128 characters each instead of the usual 254 characters.

Try the LOCATE - CONTINUE commands. The display that follows shows how
the commands operate.

• use empLoyee
• Locate next 3 for dept:num = '99'
END OF LOCATE SCOPE
• dispLay
00003 RaLph Destry 234 Mahogony DeerfieLd FL 33441 38 p315575.00 .F.
• go top
· Locate for dept:num '99'
END OF FILE ENCOUNTERED
• dispLay
00017 Per
'. go top

Inders 321 SawteLLe Tuscon

• Locate for dept:num '89'
RECORD: 00002
• dispLay

AZ 85702 0.00 .F.

00002 ALbert Embry
• continue

345 Sage Ave PaLo ALto CA 94303 89 p8 22200.00 .F.

RECORD: 00004
• dispLay
00004 Peter Howser 678 Dusty Rd Chicago
• continue
RECORD: 00015
· dispLay

I L 60631 89 s8 9500.00.F.

00015 Diane Gi Lbert 280 Cactus Wy Las Cruces NM 88001 89 p3 24500.00 .F.
• cont.inue
END OF FILE ENCOUNTERED

REFINING SOME FAMILIAR COMMANDS

Now that you are familiar with the command symbols and their definitions, take a
few minutes to look over the commands described below. This list summarizes the
command formats discussed so far in this manual.

6-27

Using the Data Base Selectively

6-28

? <exp list>

?? <exp list>

APPEND

CREA TE [<file>]

GOTO <numeric exp>

DISPLAY [<scope>] [<field list>] [FOR <exp>] [OFF]
LIST [<scope>] [<field list>] [FOR <exp>] [OFF]

Some commands can take special optional phrases that are unique to them. [OFF]
is one such phrase. When it is used, the record sequence numbers are not DIS­
PLA Yed or LISTed. USE a file and try the following commands to test the effects of
OFF.

list
list off

DISPLAY FILES [ON <disk drive>] [LIKE *.<type>]

LIST FILES [ON <disk drive>] [LIKE *.<type>]

This form of the LIST and DISPLAY commands presents the names of files on a
diskette. When no optional phrase is used, all files on the default drive with the
".DBF" extension are listed.

The ON phrase specifies a disk drive other than the default.

The LIKE phrase allows any file type to be displayed. Replace <type> with the
extension (NDX, TXT, FRM, and so on). So far, you've used only DBF and FRM
files, but you'll find this command useful later after you've created other types of
files.

DISPLAY STRUCTURE

LIST STRUCTURE

SKIP <numeric exp>

Chapter 7

Modifying A Data Base

It is inevitable that data bases will change. You will have to respond to changing
governmental regulations, modifications in company policies, and your own reali­
zation that you can make your data bases better as you gain practice with them. The
personnel data base will change as employees transfer between departments. Their
salaries will change. New employees will be hired and others will retire and resign.
The company will have changing information needs. When a new benefit is offered
-leaves of absence, for instance - the personnel department will need more catego­
ries for employee status than just TRUE or FALSE (Active or Not Active). To track
salary history for each employee, the data base would need an entirely new record
type that used some information already available on the EMPLOYEE records.

These examples illustrate the three kinds of changes that can be made to data bases.
First, the contents of fields can change. Second, entire records can be added and
deleted. Third, the data base structure can be altered. This chapter discusses how to
change records and fields. Chapter 8 describes commands and procedures for
changing the data base structure.

ADDING NEW RECORDS

Append

You are already familiar with how the APPEND command works to add records to
the end of a file. This command can be used with both empty files and files that
contain some data records.

APPEND, with no modifiers, puts the system in data entry mode. You can add
records to the end of the file one after another until you signal to return to command
mode.

dBASE II has a number of commands that control how it interacts with the APC.
They are called SET commands and they do things like turn the printer on and off,
set margins, and enable anddisable the bell. You can change these parameters back

7-1

, Modifying a Data Base

7-2

and forth at will. One such feature you may find useful when APPENDing records is
the capability of carrying data forward from one record to the next. SET CARRY
ON does this. It is especially useful if successive records have a lot of common data.
Records are automatically filled with data and can be edited as necessary.

Use the following procedure to carry data forward when adding records to the end
of a file.

1. At the dot prompt, enter the following commands.

use <file>
set carry on
append

The screen is erased and the system is placed in data entry mode. The record
structure is-displayed and the fields are filled with their values from the last
record in the file.

2. Edit the record as necessary. Overtype or insert data, or press RETURN for
each field.

If the last field in the record is modified, the system automatically saves the
record and prepares to accept another record by displaying the next
sequential record number. The data field values remain intact.

If the last field in the record is not modified, press CTRL C to continue
adding records or CTRL W to exit from the data entry mode.

3. Repeat Step 2 until all additions are complete. Then press CTRL W when
the cursor is on the first character of the first field of the record display to
return to control mode.

4. At the dot prompt, enter the following command to reset the CARRY
feature.

set ca rry off

APPEND BLANK, a second form of the command, adds a single, default-filled
record to the file that is in USE. All character fields are filled with spaces, numeric
fields are zero-filled, and logical fields are assigned the value ".F.". The system
remains in command mode. To supply field values, EDIT the record or use the
REPLACE command, described later in this chapter.

The following screen demonstrates how APPEND BLANK works using a sample
file consisting of three field types: character, numeric, and logical.

• use testapnd
• "display structure
STRUCTURE FOR FILE: TESTAPND.DBF
NUMBER OF RECOROS: 00003
DATE OF LAST UPDATE: 11/04/82
PRIMARY USE DATABASE
FLO NAME TYPE WIOTH DEC
001 ALPHA C 005
002 NUMER N 003
003 LOG L 001
** TOTAL ** 00010

list
00001 Alpha 111 • T.
00002 Beta 222 .F.
00003 Delta 333 • T.

append blank
list

00001 Alpha 111 • T.
00002 Bata 222 .F.
00003 Delta 333 • T.
00004 0 .F.

Modifying a Data Base

7-3

Modifying a Data Base

7-4

Insert

Records can be added to data base files at specific locations (to keep them alphabet­
ical, for example) with INSERT. This command assigns the record sequence
number, accepts input of the data fields, and renumbers all subsequent records in
the file. The full description of the INSERT command is:

INSERT [BEFORE] [BLANK]

To INSERT a record at a particular location, use a command such as GOTO to
position the current record pointer at the record that will immediately precede or
follow the addition. Then use INSERT to format and add the record .

• INSERT alone places the new recordjust after the current record. INSERT
BEFORE adds a record just before the current record. In either case, the
system is placed in data entry mode and you are prompted for data in the
same way as with CREATE and APPEND. Orily one record is added at a
time. The system returns to command mode after the last field of the record
is filled with data .

• INSERT BLANK places a default-filled record in the data base file. The
system remains in command mode.

If the SET CARRY ON command is in effect, the data fields are filled with the
values from the record indicated by the current record pointer immediately prior to
the INSERT command.

The sequence of commands displayed in the following screens inserts records into
the JOB DETAILS file so that it is still in order by job code. Enter the commands
into your system to update the data base file.

• use jobdet
· list
00001 d2 Operator
00002 d8 Shift Laader
00003 m1 Team Leader
00004 m9 Dept Manager
00005 p3 Programmer
00006 p8 Sr Programmr
00007 p9 Sr PrgAnLyst
00008 s8 Typist

go to 3
· insert

9500.00
15000.00
12000.00
20000.00
15750.00
20000.00
27500.00

9500.00

20160.00
26750.00
15500.00
35000.00
25000.00
28000.00
36000.00
15750.00

Modifying a Data Base

7-5

Modifying a Data Base

RECORD # 00004
JOB:CODE :m5:
JOB:TITLE :Grp Manager
LOW:SAL :14750.00:
HI:SAL :19000.00:

gata 7
insert b efa re

7-6

RECORD # 00 07
JOB:COOE p4:
JOB:TITLE Prog/Analyst:
LOW:SAL 17000.00:
HI:SAL 26500.00:

list
00001 d2
00002 d8
00003 m1
00004 m5
00005 'm9
00006 p3
00007 p4
00008 p8
00009 p9
00010 58

oparator 9500.00 20160.00
Shi ft Leadar 15000.00 26750.00
Taam Laadar 12000.00 15500.00
Grp Managar 14750.00 19000.00
Dept Manegar 20000.00 35000.00
Programmer 15750.00 25000.00
Prog/Analyst 17000.00 26500.00
Sr Programmr 20000.00 28000.00
Sr PrgAnlyst 27500.00 36000.00
Typis1r 9500.00 15750.00

NOTE

INSERTs into a large non-indexed database
take a long time to complete and should be
avoided whenever possible. When you have
many inserts, it is more efficient to APPEND
the new records and then SORT the file than to
INSERT each record at its proper location.

Modifying a Data Base

7-7

Modifying a Data Base

7-8

CLEANING UP A DATA BASE

Deleting Records

Removing records from a data base is a two-step process. First, identify the records
to be deleted using either of the methods outlined below. This logically deletes the
records but does not actually remove them from the data base, which is helpful in
preventing catastrophic losses of data. You have a chance to recover your data
before physically removing it from the data base. Records marked for deletion
app-ear on LISTs and DISPLAYs of the data base. However, dBASE II bypasses
these records in most other operations.

DELETING FROM THE COMMAND MODE

DELETE alone deletes the current record. It places an asterisk, called th<? deletion
mark, in the first character position in the record. This is the extra character that
dBASE II adds to the record length in the record structure. It tells the system to
bypass the record when processing the file. The complete form of the DELETE
command is:

DELETE [<scope>] [FOR <exp>]

• The default for <scope> is NEXT 1 (the current record). To delete a record
other than the current record, use the <scope> phrase: ALL, RECORD <n>,
or NEXT <n>.

• To make the deletions conditional, expand the command with the FOR
phrase.

• When both the scope and a conditional phrase are used, the system deletes
aU records within the scope for which the expression is true.

To see how this command works, enter these commands.

use employee
delete record 5
delete next 3
list

use employee
delete record 5

00001 DELETION(S)
delete next 3

00002 DELETION(S)
I 1st

00001 Pat A I az ar 123 Crater Everett WA 98206 75 s8 12500.00 • F.
00002 Albert Embry 345 Sage Ave Palo Alto CA 94303 89 p8 22200.00 • F.
00003 Ralph Destry 234 Mahogony Deerfield FL 33441 38 p3 15575.00 • F.
00004 Peter Howser 678 Dusty Rd Chicago IL 60631 89 s8 9500.00 • F.
00005 *Duane Clinker 789 Charles LosAngeles CA 90036 54 p3 23450.00 • F.
00006 *John Brown 456 Minnow PI Bur I I ngton MA 01730 54 p3 21000.00 • F.
00007 *Mary Berger 10 Kearney Rd Needham MA 02194 p8 0.00 · F.
00008 A I Ice Peters 676 Wacker Dr Chicago IL 60606 54 s8 13700.00 • F.
00009 Peter Shaffer 43 Clinton Av Montclair NJ 07042 d8 17900.00 · F.
00010 Jean Freitag 854 Moose Blv Houston TX 77006 16 p9 2775.00 • F.
00011 Ga II Smyth 817 Sth St. Ambler PA 19147 16 p4 20100.00 • F.
00012 Terry Green 567 Doheny Dr Holl ywood CA 90044 54 ml 14500.00 • F.
00013 Frank Green 441 Spicer Av Tampa FL 33622 s8 12500.00 • F.
00014 Pau I Row I and 709 Key St Houston TX 77007 16 p3 15750.00 · F.
00015 Diane Gilbert 280 Cactus Wy Las Cruces NM 88001 89 p3 24500.00 • F.
00016 Richard Harris 101 Enders Dr Syracuse NY 13211 75 d8 21700.00 • F.
00017 Paula Schaller 721 Spring St Everett WA 98206 75 s8 11000.00 • F.
00018 Per. Inders 321 Saw te I I e Tuscon AZ 85702 0.00 • F.

The first DELETE command moves the current record pointer to the fifth record in
the file and deletes that record. The second DELETE command begins at the
location of the current record pointer. It deletes the current record and the next two
records (records 5, 6, and 7), and updates the current record pointer as it deletes the
records.

DELETING FROM THE EDIT MODE

You can also delete records in edit mode. This is especially useful when you are
moving sequentially through the records in a data base file making both changes and
deletions. Deletions in edit mode are made by pressing CTRL U.

To try this, select any record in the USE file, enter the EDIT command, and press
CTRL U when the record is displayed.

Modifying a Data Base

1-9

Modifying a Data Base

7-10

RECORD # 00 07 DELETED
JOB:CODE p4:
JOB:TITLE Prog/Analyst:
LOW:SAL 17000.00:
HI:SAL 26500.00:

The word "DELETED" appears on the first line of the display. Press CTRL U again.
The word "DELETED" disappears and the recors is restored.

The first step in deleting records only marks them for peletion. They are still
physically on the file. They can be LISTed, DISPLAYed, and COUNTed. But they
are logically deleted and are ignored by dBASE II in most other processing.

Restoring Records to the Data Base

Records marked for deletion can be recovered. In edit mode, CTRL U toggles the
deletion mark on and off. In command mode, RECALL restores records.

RECALL [<scope>] [FOR <exp>]

RECALL operates exactly the opposite of DELETE. It removes the deletion mark
from records. Scope and condition are optional. Scope defaults to the current

record. If a conditional expression is used, it does not have to be the same one that
was used to mark the records for deletion. Enter:

list
recall lor last:name = "8"
list

recall fo r last:name = I B I
00002 RECALL[S J

list
00001 Pat Alazar 123 Crater
00002 Albert Emb ry 345 Sage Ave
00003 Ralph Destry 234 Mahogony
00004 Peter Howser 678 Dusty Rd
00005 *Duane. Clinker 789 Charles
00006 John 8rown 456 Minnow P l
00007 Mary Be rg e r 10 Kearney Rd
00008 Al ice Peters 676 Wacker Dr
00009 Peter Shaffer 43 Clinton Av
00010 Jean Freitag 854 Moose Blv
00011 Ga i l Smyth 817 Sth St.
00012 Terry Green 567 Doheny Dr
00013 Frank Green 441 Spicer Av
00014 Pau.L Rowland 709 Key St
00015 Diane Gi lbert 280 Cactus Wy
00016 Richard Harris 101 Enders Dr
00017 Paula Schaller 721 Spring St
00018 Per Inders 321 Sawte l le .

Everett WA 98206 75 s8 12500.00 .F.
Palo Alto CA 94303 89 p8 22200.00 .F.
Deerfield FL 33441 38 p3 15575.00 .F.
Chicago IL 60631 89 s8 9500.00 .F.
LosAngeles CA 90036 54 p3 23450.00 .F.
Burlington MA 01730 54 p3 21000.00 .F.
Needham MA 02194 p8 0.00 .F.
Chicago IL 60606 54 58 13700.00 • F.
140ntclair NJ 07042 d8 17900.00 .F.
Houston . TX 77006 16 p9 2775.00 .F.
Amb l e r PA 19147 16 p4 20100.00 .F.
Hollywood CA 90044 54 m1 14500.00 .F.
Tampa FL 33622 58 12500.00 .F.
Houston TX 77007 16 p3 15750.00 .F.
Las Cruces NM 88001 89 p3 24500.00 .F.
Syracuse NY 13211 75 d8 21700.00 .F.
Everett WA 98206 75 sA 11000.00 .F.
Tuscon AZ 85702 0.00 .F.

Modifying a Data Base

7-11

Modifying a Data Base

7-12

CAUTION

When there are two or more files in a data base,
be careful as you add and delete records to
keep the files in sync. In the personnel data
base, the job code field is common to both files
and is the way to join information from the two
files. Be sure that you add employee records
with valid job codes -codes that appear in the
JOBDET.DBF file. Conversely, don't delete a
record from the JOBDET.DBF file if there are
still EMPLOYEE.DBF records in that
category.

Permanently Removing Records from the Data Base

The second step in the deletion process permanently removes records from the file.
It cleans up files to clarify displays and speed processing. PACKphysically removes
all records marked for deletion and tells you how many records are left in the data
base file. It is a one-word command that operates on the data base file in USE.
PACK is demonstrated below.

pack
PACK COr-1PLETE, 00017 RECORDS COPIED

I 1st
00001 Pat Alazar 123 Crater Everett WA 98206 75 s8
00002 Albert Embry 345 Sage Ave Palo Alto CA 94303 89 p8
00003 Ralph Destry 234 Mahogony Deerfield FL 33441 38 p3
00004 Peter Howser 678 Dusty Rd Chicago IL 60631 89 s8
00005 John Brown 456 Minnow PI Bur I I ngton MA 01730 54 p3
00006 Mary Berger 10 Kearney Rd Needham MA 02194 p8
00007 A I Ice Peters 676 Wacker Dr ChIcago IL 60606 54 s8
00008 Peter Shaffer 43 CI I nton Av MontclaIr NJ 07042 d8
00009 Jean FreItag 854 Moose Blv Houston TX 77006 16 p9
00010 Gal I Smyth 817 Sth St. Ambler PA 19147 16 p4
00011 Terry Green 567 Doheny Dr Hollywood CA 90044 54 ml
00012 Frank Green 441 SpIcer Av Tampa FL 33622 s8
00013 Pau I Rowland 709 Key St Houston TX 77007 16 p3
00014 DIane GIlbert 280 Cactus Wy Las Cruces NM 88001 89 p3
00015 RIchard HarrIs 101 Enders Dr Syracuse NY 13211 75 d8
00016 Paula Schaller 721 SprIng St Everett WA 98206 75 s8
00017 Per Inders 321 Sawtelle Tuscon AZ 85702

WARNING

Once the PACK command has been issued, the
records are gone forever.

SORTING THE FILE

12500.00 • F.
22200.00 · F.
15575.00 • F.
9500.00 • F.

21000.00 • F.
0.00 • F.

13700.00 · F.
17900.00 • F.
2775.00 • F.

20100.00 • F.
14500.00 · F.
12500.00 · F.
15750.00 · F.
24500.00 • F.
21700.00 • F.
11000.00 • F.

0.00 • F.

SORT resequences the records in a file without changing the original file in any way.
The records are sorted to another file in either ascending or descending order. In
Chapter 3, you SORTed the PEOPLE file into alphabetical (ascending) order in a
file named ABCORDER. The new file contains all the records that were in the
PEOPLE file. The only difference between the two files is the order of the records.

SORTs are useful when a data base performs many functions and must be used in
different orders for different purposes. For instance, if you want to keep the
EMPLOYEE file sequenced by hiring order, but need to display or report informa­
tion about employees in alphabetical order, you can SORT the EMPLOYEE file

Modifying a Data Base

7-13

Modifying a Data Base

7-14

into that order. This works well for small files, but is not efficient for large files. A
better ~echnique, indexing, is discussed in Chapter 9.

The most efficient way to add records to an ordered, sequential file is to APPEND
new records to the end of the data base file and then SORT the file.

The complete form of the SORT commands is:

SORT ON <field> TO <file> [ASCENDING]
[DESCENDING]

The default for order is ASCENDING. SORT uses the ASCII collating sequence:
numerals are "smallest", followed by uppercase letters and then lowercase letters.
This means, for instance, that "SMITH" precedes "Smith" it! a sorted file. (See
Appendix F for the complete collating sequence.)

The file in USE remains in USE and is unaltered.

WARNING

DO NOT SORT A DATA BASE TO ITSELF.
A power line "glitch" at the wrong moment
could destroy your entire data base file.
Instead, sort to another file and confirm the
data.

Sorting on Multiple .Keys

Although SORT operates on only one key field, you can organize a file by a series of
key fields with multiple sorts. For in$tance, you might need to order employees
alphabetically within job code for eachdepartment~ Think ()f these fields as a
hierarchy. In a listing or report, records could appear in the sequence shown in
Figure 7-1.

DEPT. JOB CODE NAME

16 p3 Rowland, Paul
p4 Smyth, Gail
p9 Freitag, Jean

38 p3 Destry, Ralph

75 d8 Harris, Richard
s8 Alazar, Pat

Schaller, Paula

89 p3 Gilbert, Diane
p8 Embry, Albert
s8 Howser, Peter

Figure 7-1 Alphabetical Employee List by Job Code and Department

It takes three sorts to order the file. Start with the least important key (na(I1e), and
lead up to the most important key, (department number). During sorting, dBASE II
moves only as many records as it must. The following series of commands sorts the
file into the order shown in Figure 7-1.

use employee
sort on name to namesort
use namesort
sort on job:code to codesort
use codesort
sort on dept:num to deptsort
use deptsort
list

Modifying a Data Base·

7-15

Modifying a Data Base

7-16

use emp I oyee
sort on last:name to namesort

SORT COMPLETE
use namesort
sort on Job:code to code sort

SORT COMPLETE
use code sort
sort on dept:num to dept sort

SORT COMPLETE
use dept sort
I 1st

00001 Per Inders 321 Sawtelle Tuscon AZ 85702 0.00 • F.
00002 Peter Shaffer 43 Clinton Av Montclair NJ 07042 d8 17900.00 • F.
00003 Mary Berger 10 Kearney Rd Needham ~lA 02194 p8 0.00 • F.
00004 Frank Green 441 Spicer Av Tampa FL 33622 s8 12500.00 • F.
00005 Paul Rowland 709 Key St Houston TX 77007 16 p3 15750.00 • F.
00006 Ga II Smyth 817 Sth St. Ambler PA 19147 16 p4 20100.00 • F.
00007 Jean Freitag 854 Moose Blv Houston TX 77006 16 p9 2775,.00 • F.
00008 Ralph Destry 234 Mahogony Deerfield FL 33441 38 p3 15575.00 • F.
00009 Terry Green 567 Doheny Dr Holl ywood CA 90044 54 ml 14500.00 • F.
00010 John Brown 456 Minnow PI Burlington MA 01730 54 p3 21000.00 • F.
00011 A lice Peters 676 Wacker Dr Ch.lcago IL 60606 54 s8 13700.00 • F.
00012 Richard Harris 101 Enders Dr Syracuse NY 13211 75 d8 21700.00 • F.
00013 Pat A I az ar 123 Crater Everett WA 98206 75 s8 12500.00 • F.
00014 Paula Schaller 721 Spring St Everett WA 98206 75 s8 11000.00 • F.
00015 Diane Gilbert 280 Cactus ~Iy Las Cruces NM 88001 89 p3 24500.00 • F.
00016 Albert Embry 345 Sage Ave Palo Alto CA 94303 89 p8 22200.00 • F.
00017 Peter Howser 678 Dusty Rd Ch I cago IL 60631 89 s8 9500.00 • F.

MODIFYING THE RECORD CONTENTS

The preceding commands add, delete, and sort whole records. dBASE II also
provides several ways to change individual field values in single records and groups
of records. EDIT, BROWSE, and CHANGE all allow you to modify individual
records interactively. REPLACE changes selected fields in the entire data base with
a single statement. UPDATE modifies one file with the contents of another.

Interactive Modifications to Records

EDIT AND BROWSE

EDIT, explained in Chapter 5, allows you to edit one record at a time moving
sequentially through the file. Like EDIT, BROWSE provides full-screen editing
capabilities. However, BROWSE displays more than one record at a time. To see
how this command works, enter:

use employee
browse

Your display will look similar to the one that follows.

RECORD # 00001 INSERT DELETED
FIRST:N LAST:NAM STREET------- CITY------ ST ZIP:C DE JO SALARY--- ACT
Pat Alazar 123 Crater Everett WA 98206 75 sB 12500.00 .F.
Albert Embry 345 Sage Ave Palo Alto CA 94303 B9 p8 22200.00 .F.
Ralph Destry 234 Mahogony Deerfield FL 33441 38 p3 15575.00 .F.
Peter Howser 678 Dusty Rd Chicago IL 60631 89 s8 9500.00 .F.
John Brown 456 Minnow Pl Burlington MA 01730 54 p3 21000.00 • F.
Mary Berger 10 Kearney Rd Needham MA 02194 p8 0.00 .F.
Al ice Peters 676 Wacker Dr Chicago I L 60606 54 sB 13700.00 .F.
Peter Shaffer 43 Clinton Av Montclair NJ 07042 dB 17900.00 .F.
Jean Freitag B54 Moose Slv Houston TX 77006 16 p9 2775.00 .F.
Gai l Smyth B17 Sth St. Ambler PA 19147 16 p4 '20100.00 .F.
Terry Green 567 Doheny Dr Hollywood CA 90044 54 m1 14500.00 .F.

The top line of the display is used for system messages. The current "RECORDW'
appears first. If the system is in insert mode (INS or CTRL V has been pressed), the
word "INSERT" appears next. If the record has been marked for deletion,
"DELETED" appears as the last word on the message line.

The remainder of the display is a two-dimensional table that displays the contents of
the data base file in pieces. Field names appear on the first row, either truncated or
filled with dashes on the right as necessary so that the number of characters in the
field name equals the field width. Data field values are displayed below the field
name, one record per row.

BROWSE displays up to 19 records at a time, starting with the current record. The
system displays as many data fields as possible at one time. If the record exceeds the

Modifying a Data Base

7-17

Modifying a Data Base

7-18

number of characters that can fit on one line of the display screen, you can see the
display in pieces. Forexample, assume that Figure 7-2 represents a data base file.
The circled area fills the display screen.

• LAST NAME FIRST NAME STREET CITY ST ZIP TELEPHONE SSN, SEX OOB OP JOB SALARY • • Embry Albert 345 Sage Ave Palo Alto CA 94303 408 4248971 145842945 M 092042 89 p8 22200.00 • • oastry Ra lph 234 Mahogany Oeerfis ld FL 33441 904 4578218 158458155 M 092348 38 p3 15575.00 • HowBar Patar 678 Dusty Rd Chicago I L 60631 312 2598782 238428822 M 110452 89 s8 9500.00

• Clinker Duane 789 Charles LosAnge les CA 90036 213 5879248 369799247 M 070732 54 p3 23450.00 • 8rown John 456 Minnow Pl Burlington MA 01730 617 2754632 18917624B M 042056 54 p3 21000.00

• 8a rg e r Mary 10 Kearney Rd Needham MA 02194 617 8625698 465897228 F 051649 45 p8 0.00 • Paters Alice 676 Wacker Dr Chicago IL 60606 312 4684254 125712810 F 052044 54 s8 13700.00

• Shaffa r Peter 43 Clinton Av Montcleir NJ 07042 201 3426894 158426512 M 103151 95 d8 17900.00 • Freitag Jean 854 Moose 8lv Houston TX 77006 713 2597125 189148505 F 090225 16 p9 2775.00

• Smyth Gail 817 St h St Amb ler PA 19147 215 5988723 598438414 F 010141 16 p4 20100.00 • Green Terry . 567 Ooheny Dr Ho llywood CA 90044 213 6597852 894188429 M 022859 54 m1 14500.00

• Green Frank 441 Spicer Av Tempa F L 33622 305 3568728 287228115 M 123150 69 s8 12500.00 • Row lend Pau l 709 Kay St Houston TX 77007 713 7894568 951478321 M 082056 16 p3 15750.00

• Gi lbe rt oi ane 280 Cactus Wy Las Cruces NM 88001 505 4678219 548975862 F 102462 89 p3 24500.00 • Ha r r is Richard 101 Enders Dr Syracuse NY 13211 315 6978465 286489578 M 061439 75 d8 21700.00

• Schallar Pau la 721 Spring St Evarett WA 98206 206 5972984 648924861 F 050645 75 s8 11000.00 • Indars Per 321 Sawtelle Tuscan AZ 85702 602 4368488 984258458 M 041150 95 c8 0.00

• Lanahan Thomas 77 Sunset Woburn MA 01801 617 5897851 368487454 M 112255 95 c8 0.00 • Robot Robb is 2 Metal Dr Cesceda CO 80809 303 4684452 459841581 M 081559 75 r7 22255.00

• Fagan Jamas 58 Long Wy Eng lewood NJ 07632 201 3458975 158768415 M 113050 75 d8 45250.00 •
Figure 7-2 Sample Data Base File for BROWSE Command

Think of the display screen as a window into the data base. You can pan right and
left using CTRL Band CTRL Z respectively to see the remaining fields and return to
the original display. You can scroll up and down using CTRL Rand CTRL C to see
other records (rows in the table).

Data can be edited using the full-screen edit commands listed in Table 7-1.

Table 7-1 Full Screen Edit Commands - BROWSE

COMMAND ACTION

T+B Moves cursor down to the next field

CTRLF
CTRLJ

SHIFT TAB Moves cursor up to the previous field

+ CTRLA
CTRLK

~ Moves cursor ahead one character
CTRLD

Table 7-1 _Full Screen Edit Commands - BROWSE (cont'd)

COMMAND ACTION

~ Moves cursor back one character within a
CTRLS field, and back one field from the first character of a field

DEL Deletes character under the cursor
CTRLG
CTRLX

CTRLZ Pans window one field to the right

CTRLB Pans window one field to the left

CTRLC Saves changes and advances to the next record

CTRLR Saves changes and backs up to the previous record with the
cursor positioned on the first character of the field it was in
when CTRL R was pressed.

CTRLW Sayes changes to current record and returns to dBASE II
command mode

CTRLQ Aborts changes in current record and returns to dBASE II
command mode

CTRLY Erases' field

CTRLU Toggles record deletion mark on/off

INS Toggles insert/overtype modes
CTRLV

PRINT Toggles printer on/off
'CTRL P

CHANGE

CHANGE allows you to make a number of alterations to a data base selectively.
You supply the list of fields to be changed and, optionally, the conditions for which

Modifying a Data Base

7-19

Modifying a Data Base

7-20

records are to be selected. The system selects the records that meet the conditions
and presents the fields to change in the order given in the command. You then have
the choice of entering new data, modifying the current data, or skipping to the next
field. When the field list has been exhausted, the system proceeds to the next record
as specified in the scope. The format of the CHANGE command is:

CHANGE [<scope>] FIELD <field list> [FOR <exp>]

• The default for scope is NEXT 1 (the current record).

• The FIELD phrase, including the keyword, is required.
• To skip a field and leave the data intact, press RETURN.

The CHANGE command operates slightly differently for character type fields than
for logical and numeric fields.

For character fields:

• To delete a field in its entirety, replace all data with spaces.

• When entering data, be sure the field does not exceed the number of spaces
allocated in the width parameter of the record structure. The system does
not indicate if the length is exceeded, but it does truncate characters on the
right as necessary to fit the allowable space.

• After a change is entered, the system prompts you with "CHANGE?" to
allow you to alter the field again before saving it.

• To abort the command, press ESC.

For logical and numeric fields:

• To delete a field in its entirety, press CTRL Y in response to "CHANGE?".

• Do not press ESC to abort the command. It resets a numeric field to zero
and produces an error with logical fields.

• When entering data into numeric fields, be sure the data is all numeric. The
system does not indicate if character data has been entered, but it does
replace invalid numeric fields with zero.

Replacing Fields Quickly

REPLACE can be used to change one or more fields in some or all records in a data
base. This command is very powerful because it automatically replaces each field
named with whatever data is specified in every record that meets the conditions.

The format of the REPLACE command is:

REPLACE [<scope>] <field> WITH <data> [,<field2> WITH <data> ...]
[FOR <exp>]

• If <scope> is not supplied in the command, REPLACE acts only on the
current record.

• The keyword WITH is required for each field replacement. There is no limit
to the number offields that can be REPLACEd by one command except the
dBASE II command line limit of 254 characters.

• The <data> can be a constant, variable, or expression.

Character fields must be replaced with character data, numeric fields with numeric
data, and logical fields with logical data. Remember to enclose character constants
between quotes or square brackets. The following example demonstrates how to
REPLACE a logical field with a constant in every record in a file.

When the EMPLOYEE data base was created, the default value ".F." was supplied
for the ACT:ST A T field for every employee. It hasn't mattered up to this point since
the field was never used. But when the field is used, it must have valid data. To
change the value to ".Y." (for Active) for every employee, enter the following
commands.

use employee
replace all act:stat with Y
list

Modifying a Data Base

7-21

Modifying a Data Base

7-22'

use employee
replace all act:stat with y

00017 REPLACEMENT(S)
list

00001 Pat Alazar 123 Crater Everett WA 98206 75 58 12500.00 • T.
00002 Albert Embry 345 Sage Ave Palo Alto CA 94303 89 p8 22200.00 • T.
00003 Ralph Destry 234 Mahogony Deerfield FL 33441 38 p3 15575~00 ! T.
00004 Peter Howser 678 Dusty Rd Chicago IL 60631 89 58 9500.00 • T.
00005 John Brown 456 Minnow PI Burlington MA 01730 54 p3 21000.00 • T.
00006 Mary Berger 10 Kearney Rd Needham ~lA 02194 p8 0.00 • T.
00007 Alice Peters 676 Wacker Dr Chicago I L 60606 54 58 13700.00 • T.
00008 Peter Shaffer 43 CII nton Av Montclair NJ 07042 d8 17900.00 • T.
00009 Jean Freitag 854 Moose Blv Houston TX 77006 16 p9 2775.00 • T.
00010 Gall Smyth 817 Sth St. Amb I er PA 19147 16 p4 20100.00 • T.
00011 Terry Green 567 Doheny Dr Hoi I ywood CA 90044 54 ml 14500.00 • T.
00012 Frank Green 441 Spicer Av Tampa FL 33622 58 12500.00 • T.
00013 Pau I Rowland 709 Key ST HousTon TX 77007 16 p3 15750.00 • T.
00014 Diane G II bert 280 Cactus Wy Las Cruces NM 88001 89 p3 24500.00 • T.
00015 Richard Harris 101 Enders Dr Syracuse NY 13211 75 d8 21700.00 • T.
00016 Paula Schaller 721 Spring ST EveretT WA 98206 75 58 11000.00 • T.
00017 Per I nders 321 Sawte I I.e Tuscon AZ 85702 0.00 • T.

You Can also replace a field selectively with a constant, variable, or expression. To
fill in the department number for those employee records in which it is missing,
enter:

use employee
list for job:code = " "

replace all job:code with 'p9', salary with 31500 for job:code = " "
list for job:code "p9"

• use employee
• list for Job:code = ,
00017 Per Inders 321 Sawtelle Tuscon AZ 85702 0.00
• replace all job:code with 'p9'. salary with 31500 for job:code=" "
00001 REPLACEMENT(S)
• list for job:code = 'p9'
00009 Jean Freitag 854 Moose Blv Houston TX 77006 16 p9 2775.00 .T.
00017 Per Inders 321 Sawtelle Tuscon AZ 85702 p9 31500.00 .T.

When the REPLACE command contains an expression, the system evaluates the
expression and places the result in the specified field. For example, to raise the
salary range by 12% for every job with the low salary less than $11,000, you would
use the following command sequence.

use jobdet
replace low:sal with low:sal*1.12, hi:sal with hi:sal*1.12 for low:sal
<11000
list

Modifying a Data Base

7-23

Modifying a Data Base

7-24

• use Jobdet
• replace low:sal with
00002 REPLACEMENT(S)
• list
00001
00002
00003
00004
00005
00006
00007
00008
00009
00010

d2 Operator
d8 Sh I ft Leader
m1 Team Leader
m5 Grp Manager
m9 Dept Manager
p3 Programmer
p4 Prog/Analyst
p8 Sr Programmr
p9 Sr PrgAnlyst
58 Typ I st

low:sal*1.12, hl:sal with hl:sal*1.12 for low:sal < 1100d

11916.8~ 25288.70
15000.00 26750.00
~2000.0D 15500.00
14750.00 19000.00
20~00.00 35000.00
~5750.00 25000.00
17000.00 26500.00
20000.00 28000.00
27500.00 36000.00
11916.80 19756.80

REPLACE is useful for completing records in which the value of one or more fields
is calculated from other fields in the record. Table 7-2 defines the structure of a
sample Orders File.

Table 7-2 Orders File

ORDERS

CUST # I ITEM I QTY I UNIT PRICE I AMOUNT

When creating order da ta records, you can enter customer number, item, quantity,
and unit price for each order received. To compute the AMOUNT, just use one
command: REPLACE All AMOUNT WITH QTY * UNIT:PRICE. This command
can be a real time saver.

Merging Records from two Data Bases

Data can be transferred from one data base file to another with the UPDATE
command. The two files must have the same key field, and they must both be in key
sequence before this command is issued. The system matches records from the two
files based on key values. When a match is found, the file in USE is updated with
field values from the corresponding record in the FROM file.

UPDATE FROM <file> ON <key> [ADD <field list>]
[REPLACE <field list>]

• The file in USE can be either indexed or sorted on the key.

• The FROM file must be sorted on the key.

• If ADD is specified, the data in the FROM fields are numerically added to
the corresponding fields in the USE file.

• If REPLACE is specified, the FROM file values rep/ace the corresponding
fields in the USE record.

The following series of screens demonstrate how the UPDATE command works.
An inventory file (lNVENTRY) is updated with transactions in a file called
INVUPDAT.

Modifying a Data Base

7-25

Modifying a Data Base

7-26

1. The file of update records is sorted on PART:NO.

• use i 11Vupdat
• display structure
STRUCTURE FOR FILE: INVUPDAT.DBF
NUMBER OF RECORDS: 00003
DATE OF LAST UP.DATE: 00/00/00
PRIMARY USE OATABASE
FLO NAME TYPE WIDTH DEC
001 PART: NO C 005
002 ON:HANO N 005
003 COST N 010 002
** TOTAL ** 00021
• List
00001
00002
00003

21828
70296
89793

77
o
2

35.88
250.00

134999.00

2. The inventory file is indexed on PART:NO. The index file is called
INVENTRY.NDX.

• use ;nventry index ;nventry
· display structure
STRUCTURE FOR FILE: INVENTRY.DBF
NUMBER OF RECORDS: OOOOB
DATE OF LAST UPDATE: 00/00/00
PRIMARY USE DATABASE
FLO NAME TYPE
001 ITEM C
002 COST N
003 PART:NO C
004 ON:HAND N
** TOTAL **

#9 COAL
SINK, KITCHEN
TIME SWITCH
WIDGET

WIDTH
020
010
005
005

00041

DEC

002

22.00
34.72

9.99
1 .67

200.00
19B .37

• L; s t
DODDS
00005
00001
00002
00007
00006
00004
00003

RINGS, GOLDEN
TROMBONES
TANK, SHERMAN
GADGET, LARGE

134999.00
16.33

11528 16
21828 16
24776 1
31415 18
70296 5
76767 76
89793 5
92653 7

Modifying a Data Base

7-27

Modifying a Data Base

7-28

3. The inventory file, the file in USE, is updated with the contents of the
transaction file.

update on part:no from invupdat add on:hand replace cost
list

00008 #9 COAL 22.00 11528 16
00005 SINK, KITCHEN 35.88 21828 93
00001 TIME SWITCH 9.99 24776 1
00002 WI~GET 1.67 31415 18
00007 RINGS, GOLDEN 250.00 70296 5
00006 TROMBONES 198.37 76767 76
00004 TANK, SHERMAN 134999.00 89793 7
00003 GADGET, LARGE 16.33 92653 7

The prices of the Golden Rings and Sherman Tanks were replaced. The
quantities of Kitchen Sink and Sherman Tank were incremented by the
values in the update file.

Chapter 8

Working With The Data Base
Structure

As your information needs change, you are likely to find that your file structures
need modification. New fields must be added. Unused fields, that only take up space
and clutter the displays, can be deleted. Field characteristics - name, size, and type
- may change. With dBASE II, it takes just a few commands to duplicate and
modify file structures.

DUPLICATING FILES

It is a good idea to keep backup copies of important data files. To duplicate dBASE
II files without exiting to the CP 1M operating system, use the COPY command. To
see how this works, enter:

use jobdet
copy to jobtemp
use jobtemp
display structure
list

As you can see on the screen that follows, this command sequence copies the entire
JOBDET.DBF file, the record structure and all data records except those marked
for deletion. The DISPLAY and LIST commands are not necessary for performing
the COpy. They are included for demonstration purposes only.

8-1

Working with the Data Base Structure

8-2

use jobdet
copy to jobtemp

00010 RECORDS COPIED
use jobtemp
display structure

STRUCTURE FOR FILE: JOBTEMP.DBF
NUMBER OF RECORDS: 00010
DATE OF LAST UPDATE: 11/04/82
PRIMARY USE DATABASE
FLO NAME TYPE WIDTH DEC
001 JOB:COOE C 002
002 JOB: TIT LE C 012
003 LOW:SAL N 008 002
004 HI:SAL N 008 002
** TOTAL ** 00031

List
00001 d2 Operator 10640.00 22579.20
00002 d8 Sh i ft Leade r 15000.00 26750.00
00003 m1 Team Leade r 12000.00 15500.00
00004 m5 Grp Manager 14750.00 19000.00
00005 m9 Dept Manage r 20000.00 35000.00
00006 p3 Programmer 15750.00 25000.00
00007 p4 Prog/Analyst 17000.00 26500.00
00008 p8 Sr Programmr 20000.00 28000.00
00009 p9 Sr PrgAnLyst 27500.00 36000.00
00010 s8 Typist 10640.00 17640.00

Selective Copies

The general form of the COpy command is:

COPY TO <file> [<scope>] [FIELD <field list>] [FOR <exp>]

Since the command takes qualifying phrases, it can be used to copy whole files or to
copy selectively. The command is written according to the following rules.

• The file name can be either a new or existing file.

• If the file does not exist, it is created.

• If the file does exist, its structure and contents are completely replaced by
the structure and contents of the file in USE.

Working with the Data Base Structure

• The new file has the same file type extension (for example, ".DBF") as the
file from which it is copied.

• The scope parameter defaults to ALL.

• If a list of fields is supplied, those data fields are the only ones copied to the
new file. The keyword FIELD must be used. The field names in the field list
must be separated by commas.

• Records marked for deletion are not copied.

DELETING AND RENAMING FILES

At this point, there are more files on your dBASE II diskette than you need. There
are" original" files, files sorted into various sequences, backup copies, and so on.

It is a good practice to delete unnecessary files to free up.space and avoid confusion.
At the same time, it is a good idea to make backup copies of data files. To keep
appropriately labelled copies of data files, use the COpy command with the
DELETE and RENAME commands described in this section.

To remove files from the diskette, use the DELETE command.

DELETE FILE [<disk drive>:]<file>

Deleting files is a one-step process. Once this command is executed, the entire file is
gone forever. It cannot be recalled. dBASE II includes two features that help
prevent the accidental deletion offiles. The keyword FILE must be entered, and you
cannot DELETE a file that is currently in USE.

ABCORDER.DBF and TEMP.DBF are demonstration files created in Chapter 3
to hold PEOPLE records sorted in different orders. JOBDET.DBF is the job details
file with records marked for deletion. Since you don't need these files and a few
others, delete them by entering the following sequence of commands.

8-3

8-4

Working with the Data Base Structure

use
list files
delete file abcorder
delete file temp
delete file namesort
delete file codesort
delete file deptsort
delete file jobdet
list files

• use
• List files

DATABASE FILES
PEOPLE DBF
TEMP DBF
ABCORDER DBF
EMPLOYEE DBF
NAMESORT DBF
CODESORT DBF
DEPTSORT DBF
JOBDET DBF
JOBTEMP DBF

RCDS
00006
00006
00006
00017
00017
00017
00017
00010
00010

• deLete fiLe abcorder
FILE HAS BEEN DELETED
• de Lete fi Le temp
FILE HAS BEEN DELETED
• deLete fi Le namesort
FILE HAS BEEN DELETED
• de Lete fi Le codesort
FILE HAS BEEN DELETED
• deLete fi Le deptsort
FILE HAS BEEN DELETED
• deLete fi Le jobdet
FILE HAS BEEN DELETED
• List fi Les

DATABASE FILES
PEOPLE DBF
EMPLOYEE DBF
JOBTEMP DBF

RCDS
00006
00017
00010

LAST UPDATE
00/00/00
10/21/82
10/21/B2
10/31/B2
10/31/B2
10/31/82
10/31/B2
00/00/00
00/00/00

LAST UPDATE
00/00/00
10/31/82
00/00/00

The USE command closed any open files. LIST FILES was included in the sequence
to verify that the files were DELETEd. All the DELETEd files were data base files
(type DBF)so it was not necessary to include the file type extension as part of the file
name. For any other file types, the command requires the full file name. When files
are not on the default drive, the drive specifier (disk drive:) must prefix the file
name.

Working with the Data Base Structure

DELETE removes the file name from the CP/M directory and frees space on the
diskette. Use this command to remove temporary files, SORT files, and any other
unneeded files from diskettes.

Renaming Files

The file named JOBTEMP.DBF is the cleaned up version of the job details file.
JOBDET.DBF is a better name for the file. It is more descriptive and is the name the
file has been called throughout this guide. Since the JOBDET.DBF file has been
deleted, you can change the name of JOBTEMP.DBF to JOBDET.DBF with the
RENAME command.

RENAME <orig file> TO <new file>

This command changes the name of a file in the CP/M directory. ~f no file type
extension is given, dBASE II assumes that the type is DBF. Although it is' possible
to change the file type along with the name, it is generally not a good practice to do
so. Backups are the exception. The extension ".BAK" is conventionally used to
identify backup copies of files.

Rename the JOBTEMP file to JOBDET as shown in the following screen.

8-5

Working with the Data Base Structure

8-6

• use jobtemp
• reneme jobtemp to jobdet
• list fi les

DATABASE FILES
PEOPLE DBF
EMPLOYEE DBF
JOBDET DBF

ReDS
00006
00017
00010

LAST UPDATE
00/00/00
10/31/82
00/00/00

WARNING

Do not RENAME a file that is in USE.

Maximizing Diskette Space

The PACK command described in Chapter 7 removes deleted records from a file
but does not release the freed space on the diskette. To release the space, use the
following procedure:

1. USE the original file. This is the file that has been PACKed or that has
records marked for deletion.

2. COpy the original file to a new file.

3. DELETE the original file.

4. RENAME the new file with the original file name.

Working with the Data Base Structure

Backup Procedures for a Dual-Drive APC

With the three commands just described, you can create backup copies of individual
files with appropriate names. If you have a dual-drive APC, you can create backup
data files on a diskette kept for just that purpose. Individual files can be copied from
within dBASE II. The following is a suggested backup sequence for a dual-drive
system.

1. If the data file to be copied is on Drive A with the dBASE II program, skip
this step. Otherwise, COPY B:<file> TO A:<temp>.

2. Insert the formatted backup diskette in Drive B.

3. COPY A:<temp> TO B:<backup>

4. Remove the backup diskette from Drive B.

5. Take appropriate action with the original file. This can mean doing
nothing, renaming the file, or deleting it.

6. If the data file was copied to Drive A in Step 1, delete it: DELETE
A:<temp>.

As an alternative, you can create backup copies of files using the 'CP/M-86
Peripherals Interc.hange Program (P1P). To use this procedure, you must exit from
dBASE II. (See the CP/M-86 System User's Guide for information on howto use
this program.)

Backup Procedures for a Single-Drive APC .

If you ha ve a sinBle-drive APC, you must exit from dBASE II and use the CP 1M -86
Peripherals Interchange Program (PIPI) to copy files from one diskette to another.
(See the CP/ M-86 Systems User's Guide for information on how to use this
program.)

CHANGING THE DATA BASE STRUCTURE

The structure of a data base and its contents are two separate, but related, entities.
So far, you have used commands to manipulate either the data base contents
-records - or the entire data base file. This chapter describes procedures for working
with the data base structure.

There are many ways to add and delete fields in a data base structure. The best
method is the one that has the lowest probability of error and results in the least
work for you. All methods should involve the same basic steps. Start by creating a
new data base structure in a temporary file. Then, bring the data from the original
file into the new, modified structure.

8-7

8-8

Working with the Data Base Structure

Generating the Structure

You can define the new structure with the CREATE command or CO PY the
structure of an existing file and MODIFY it.

CREATING THE STRUCTURE FROM SCRATCH

Assume you have the job of compiling a telephone list of all employees in the
personnel data base. To do ·this, you could CREATE a new file, PHONELST,
consisting of four fields: last name, first name, department number, and telephone
number.

USING EXISTING DATA

Then, instead of entering name and department number data from the keyboard,
you could copy the values from the EMPLOYEE file using a new form of APPEND.
(You would have to fill in the telephone numbers another way.)

APPEND FROM <file> [FOR <exp>]

The records to be APPENDed are taken from an existing file.

dBASE II reads the structures of both files and looks for fields with matching
names. It then transfers data from the "FROM" file to the file that is in USE for the
fields that match.

This sequence is illustrated in the following screen.

Working with the Data Base Structure

• create phonelst
ENTER RECORD STRUCTURE AS FOLLOWS:

FIELD NAME,TVPE,WIDTH,DECIMAL PLACES
001 last:name,c,8
002 first:name,c,7
003 dept:num,c,~

004 phonenum,c,12
005

INPUT DATA NOW? N
use phonelst
append from employee

00017 RECORDS ADDED
list

00001 Alazar Pat 75
00002 Embry Albert 89
00003 Destry Ralph 38
00004 Howser Peter 89
00005 Brown John 54
00006 Berger Mary
00007 Peters A lice 54
00008 Shaffer Peter
00009 Freitag Jean 16
00010 Smyth Gai l 16
00011 Green Terry 54
00012 Green Frank
00013 Rowland Pau l 16
00014 Gi lbert Diane 89
00015 Ha r r is Richard 75
00016 Schaller Paula 75
00017 Inders Per

APPEND FROM works selectively when the optional [FOR <exp>] phrase is
included. To APPEND the names of only those employees in department 54, you
could use the command:

append from employee for dept:num='54'

When the FOR phrase is used, dBASE II APPENDs the records in the FROM file
one by one, each time checking to see if the condition in the FOR expression is true.
That is, the first record is appended. Then the expression is evaluated. If the
expression is true, the record is kept. If the expression is false, the record is
discarded. This procedure continues until the end-of-file is reached for the FROM
file. This means that the fields used in the expression must reside in the file receiving
the new records.

8-9

Working with the Data Base Structure

8-10

MODIFYING AN EXISTING STRUCTURE

When only one or two fields from an existing data base are needed in the new file, it
is efficient to CREATE the new structure. However, the sequence of COpy
STRUCTURE and then MODIFY STRUCTURE is probably the fastest and
easiest way to add, delete, rename, resize, or otherwise change a data base file
structure.

The following format of the COpy comIl1and duplicates a file structure.

COpy STRUCTURE TO <file> [FIELD <field list>]

All or part of the structure can be copied. To copy selectively, use the optional
FIELD phrase. List the names of fields from the original file that are to be included
in the new structure. Commas are required in the field list to separate names.

As an alternative to the CREATE and APPEND sequence described previously,
you can use COPY STRUCTURE to copy only the last name, first name, and
department number fields from the EMPLOYEE file structure, as shown in the
following screen.

Working with the Data Base Structure

• use empLoyee
copy structure to temp fieLd Last:name, first:name, dept:num
use temp

• modify structure
MODIFY ERASES ALL DATA RECORDS ... PROCEED? [YIN] Y

This copies only two fields from the structure of the EMPLOYEE file. No data
records are copied. Once the structure has been copied without data records, it can
be changed with the MODIFY STRUCTURE c.ommand.

WARNING

The MODIFY STRUCTURE command de­
letes all data records that were in the USE file
prior to the MODIFY. It should only be used
with empty data bases. Use this command only
after copying the structure.

8-11

Working with the Data Base Structure

8-12

MODIFY STRUCTURE acts upon the data base currently in USE. Since it
destroys all data records, the system prompts you to be sure this is what you want to
do before it takes any action. If you respond that you want to continue, the display
screen is erased and up to 16 fields of the existing structure are displayed.

FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD

NAME
01 LAST: NAME
02 FIRST:NAME
03 DEPT:NUM
04
05
06
07
08
09
10
11
12
13
14
15
16

TYP LEN
C 008
C 007
C 002

DEC
000
000
000

You can make changes in full-screen edit mode using the commands listed in Table
8-1. Two commands are especially useful:

CTRLN

CTRLT

inserts a blank line under the cursor, allowing you to insert fields
where you want them;

deletes the line under the cursor.

Working with the Data Base Structure

In the full-screen edit mode, you can add and delete fields and change field sizes and
types. Exit from MODIFY STRUCTURE in either of two ways:

CTRL W changes the structure on disk;

CTRL Q aborts the command without making the changes, leaving the
existing structure description intact.

Table 8-1 Full Screen Edit Commands - MODIFY STRUCTURE

COMMAND ACTION

TAB Moves cursor down to the next field • CTRLF
CTRLJ
SHIFT TAB Moves cursor up to the previous field
+

CTRLA
CTRLK

~ Moves cursor ahead one character
CTRLD

~ Moves cursor back one character within a field, and
CTRLS back one field from the first character of a field

DEL Deletes character under the cursor
CTRLG
CTRLX

CTRLC Advances to the next panel of fields

CTRLR Moves back to the previous panel of fields

CTRLW Saves changes to record structure and returns to dBASE II
command mode

Working with the Data Base Structure

Table 8-1 Full Screen Edit Commands-MODIFY STRUCTURE (cont'd)

COMMAND ACTION

CTRLQ Returns to dBASE II command mode and does not change
record structure

CTRLY Erases field

CTRLN Inserts a blank line and moves subsequent fields down one,
line

CTRLT Deletes line under the cursor and moves subsequent fields up
one line

INS Toggles insert/overtype modes
CTRLV

PRINT Toggles printer on/off
CTRLP

R-14

Working with the Data Base Structure

The following screens demonstrate-how MODIFY STRUCTURE is used to create
the telephone list file. Once in full-screen edit mode, the first and last name fields are
reversed by typing over the existing entries. Then, the new field-phone number-is
added. When CTRL W is pressed, the new structure is saved and the system returns
to command mode .

• display structure
STRUCTURE FOR FILE: TEMP.DBF
NUMBER OF RECORDS: 00000
DATE OF LAST UPDATE: 00/00/00
PRIMARY USE DATABASE
FLO NAME TYPE WIDTH DEC
001 LAST:NAME C 008
002 ~IRST:NAME C 007
003 DEPT:NUM C 002
004 PHONENUM C 012
•• TOTAL ** 00030

8-15

Working with the Data Base Structure

8-16·

To fill the last name, first name, and department number fields, data are appended
from the EMPLOYEE file. As in the previous example, the telephone number must
be supplied from another source.

append from empLoyee
00017 RECORDS ADDED

List
00001 ALazar Pat 75
00002 Emb ry ALbert 89
00003 Oestry RaLph 38
00004 Howser Peter 89
00005 Brown John 54
00006 Berger Mary
00007 Peters ALi ce 54
00008 Shaffer Peter
00009 Freitag Jean 16
00010 Smyth Ga i L 16
00011 Green Terry 54
00012 Green Frank
00013 RO'JLand Pau L 16
00014 Gi Lbert Diane 89
00015 Harris Richard 75
00016 Scha LLer PauLe 75
00017 Inders Per

RESTRUCTURING THE SAMPLE DATA BASE

This section demonstrates how dBASE II commands can be used to restructure a
data base. Follow the examples presented and make the same changes to your
personnel data base.

The following changes are to be made to the personnel data base .

• Add a three digit employee number. This number will be used for seniority
ranking and indicates hiring order .

• Increase the length of the last name field to 12 characters.

Working with the Data Base Structure

• Reverse the order of first name and last name.

• Sequence the file in alphabetical order for last name.

• Allow the following values for status: Active, Resigned/Retired, Termi­
nated, Medical Leave. Change the field name to STATUS and the type from
Logical to Character.

Using the commands discussed so far in this chapter, you can do everything
required except change the name of the ACT:ST A T field. The first step is to identify
exactly what has to change. To do this, define what the data base should look like
after all changes are in place. Then you can work backwards to figure out how to get
there.

Table 8-2 describes the structure of EMPLOYEE after the changes. The JOBDET
file does not change.

Table 8-2 New EMPLOYEE Record Structure

FIELD NAME TYPE WIDTH DECIMAL PLACES

LAST:NAME C 12

FIRST:NAME C 7

NUMBER N 3

STREET C 13

CITY C 10

STATE C 2

ZIP:CODE C 5

DEPT:NUM C 2

JOB:CODE C 2

SALARY N 8 2

STATUS C 1

There are many ways to make the changes. One sequence is shown in the following
screens.

8-17

Working with the Data Base Structure

8-18

1. COpy the EMPLOYEE file structure to a temporary EMPLOYEE file
called TEMPEMP. Use TEMPEMP and modify the structure.

use employee
copy structure to tempemp
use tempemp

, modify structure
MODIFY ERASES All DATA RECORDS '" PROCEED? [YIN) Y

Working with the Data Base Structure

2. In full-screen edit mode, insert the NUMBER field, reverse LAST:NAME
and FIRST: NAME, change the length of LAST: NAME field, and change
the type of ACT:STAT.

FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
~IELD
FIELD
FIELD
FIELD
FIELD
FIELD
FIELD
F.I ELD

NAME
01 LAST:NAME
02 FIRST:NAME
03 NUMBER
04 STREET
05 CITY
06 STATE
07 ZIP:CODE
08 DEPT:NUM
09 JOB: CODE
10 SALARY
11 ACT:STAT
12
13
14
15
16

TYP LEN
C 012
C 007
N 003
C 013
COlO
C 002
C 005
C 002
C 002
N 008
COOl

DEC
000
000
000
000
000
000
000
000
000
002
000

3. Press CTRL W to save the changes and return to command mode.

8-19

Working with the Data Base Structure

8-20

4. APPEND the data from the original EMPLOYEE file to TEMPEMP.

5. REPLACE the NUMBER field (currently the default value zero for all
employees) with the RECORD #. REPLACE ACT:STAT with "A" (for
Active) for all employees.

6. Verify the changes.

append from employee
00017 RECOROS AOOEO

replace all number with #
00017 REPLACEMENT(S]

replace all act:stat with "A"
00017 REPLACEMENT(S]

list
00001 Alazar Pat 1 123 Crater Everett WA
12500.00 A
00002 Emb ry Alb e rt 2 345 Sage Ave Palo Alto CA 94303 89 p8
22200.00 A
00003 Oestry Ralph 3 234 Mahogony Deerfield FL 33441 38 p3
15575.00 A
00004 Howser Peter 4 678 Dusty Rd Chicago IL 60631 89 58
9500.00 A
00005 Brown John 5 456 Minnow Pl Burlington MA 01730 54 p3
21000.00 A
00006 Be rg e r Mary 6 10 Kearney Rd Needham ~lA 02194 89 p8
30000.00 A
00007 Peters Ali ce 7 676 Wacker Dr Chicago IL 60606 54 58
13700.00 A
OOOOB Shaffer Peter 8 43 Clinton Av Montc la i r NJ 07042 38 d8
17900.00 A
00009 Freitag Jean 9 854 Moose SLv Houston TX 77006 16 p9
2775.00 A
00010 Smyth Ga i L 10 817 8th St. AmbLer
20100.00 A
00011 Green Terry 11 567 Doheny Or HoLLywood
14500.00 A
00012 Green Frank 12 441 Spicer Av Tampa
12500.00 A
00913 RowLand Pau L 13 709 Key St Houston
15750.00 A
00014 GiLbert Oiane 14 280 Cactus Wy Las Cruc.es

7. SORT the temporary file back to the EMPLOYEE file on LAST: NAME.

8. DELETE the temporary file.

Working with the Data Base Structure

CHANGING FIELD NAMES

Renaming fields requires a different procedure than making any oth~r changes to
the data base structure. You can not just use the MODIFY STRUCTuRE com­
mand to edit a field name because that destroys all existing records. And APPEND,
as you know it, transfers data from one file to another only for matching field
names. So that can't be used either. Instead, you have to separate the data records
from the file structure, modify the structure, and then add the data back to the file
without reference to field names.

Both COpy and APPEND have an option that allows you to do just that. To
rename the field ACT:ST A T to STATUS in EMPLOYEE.DBF, use the following
procedure:

1. USE the file to be changed.

2. COpy the data records to a temporary file using the optional phrase SDF
in the command.

3. Delete the original data records and enter full-screen edit mode by entering
the MODIFY STRUCTURE command .

• copy to dataonLy sdf
00017 RECORDS COPIED
• modify structure
MODIFY ERASES ALL DATA RECORDS ... PROCEED? (YIN) Y

8-21

Working with the Data Base Structure

4. Now edit the field name only. Do not change the field width or type.

NAME TYP LEN DEC
FiElD 01 LAST:NAME C 012 000
FIELD 02 FIRST:NAME C 007 000
FIELD 03 NUMBER N 003 000
FI ElD 04 STREET C 013 000
FIELD 05 CITY C 010 000
FIELD 06 STATE C 002 000
FIELD 07 ZIP:CODE C 005 000
FIELD 08 DEPT:NUM C 002 000
FIELD 09 JOB:CODE C 002 000
FIELD 10 SALARY N 008 002
FIELD " STATUS C 001 000
FIELD 12
FIELD 13
FIELD 14
FIELD 15
FIELD 16

8-22

Working with the Data Base Structure

5. Last, append the data records you copied back onto the original file with
the new structure and delete the temporary file.

• append from dataonly sdf
00017 RECORDS ADDED
• delete file dataonly.txt
FILE HAS BEEN DELETED
• II st structure
STRUCTURE FOR FILE: EMPLOYEE.DBF
NUMBER OF RECORDS: 00017
DATE OF LAST UPDATE: 00/00/00
PRIMARY USE DATABASE
FLO NAME TYPE WIDTH DEC
001 LAST:NAME C 012
002 FIRST:NAME C 007
003 NUMBER N 003
004 STREET C 013
005 CITY COlO
006 STATE C 002
007 ZIP:CODE C 005
008 DEPT:NUM C 002
009 JOB:CODE C 002
010 SALARY N 008 002
011 STATUS COOl
** TOTAL ** 00066

8-23

Working with the Data Base Structure

8-24

I 1st
00001 Alazar Pat 1 123 Crater Everett WA 98206 75
12500.00 A
00002 Berger Mary 6 10 Kearney Rd Needham MA 02194 89 p8
30000.00 A
00003 Brown Joh n 5 456 Minnow PI BurlIngton MA 01730 54 p3
21000.00 A
00004 Destry Ralph 3 234 Mahogony DeerfIeld FL 33441 38 p3
15575.00 A
00005 Embry Albert 2 345 Sage Ave Palo Alto CA 94303 89 p8
22200.00 A
00006 Freitag Jean 9 854 Moose Blv Houston TX 77006 16 p9
2775.00 A
00007 G II bert Diane 14 280 Cactus Wy Las Cruces NM 88001 89 p3
24500.00 A
00008 Green Terry 11 567 Doheny Dr Hollywood CA 90044 54 ml
14500.00 A
00009 Green Frank 12 441 Spicer Av Tampa FL 33622 54 s8
12500.00 A
00010 Harris Richard 15 101 Enders Dr Syracuse NY 13211 75 d8
21700.00 A
00011 Howser Peter 4 678 Dusty Rd Chicago I L 60631 89 s8
9500.00 A
00012 Inders Per 17 321 Sawtelle Tuscon AZ 85702 66 p9
31500.00 A
00013 Peters Ali ce 7 676 Wacker Dr Chicago IL
13700.00 A
00014 ROYlland Pau l 13 709 Key St Houston TX
15750.00 A
00015 Schaller Paula 16 721 Spring St Everett WA
11000.00 A
00016 Sha ffe r Peter 8 43 Clinton Av Montc la i r NJ
17900.00 A
00017 Smyth Ga i l 10 817 8th St. Ambler PA
20100.00 A

The above sequence uses the optional phrase [SDF] with the COPY and APPEND
commands. SDF stands for Standard Data Format. CP 1M files created in this
format by dBASE II, word processors, or other programs can be read by dBASE II.
Similarly, dBASE II, word processors, and other programs can create files in this
format. This is how "foreign" files can be input to and output from dBASE II. (See
Chapter 20 for more about CP 1M files.)

COpy with the SDF option copies only the data records to the named file. (SDF
and STRUCTURE are mutually exclusive options.) dBASE II automatically
appends the ".TXT" extension to the file name. The data is stored by record with a
carriage return and line feed signalling end-of-record. It is stored without any
structure information, not even field names. TXT files can be edited with a word
processor, but this can be dangerous if you plan to APPEND the TXT file to a DBF
file structure.

When SDF is present in the APPEND command, the records are assumed to be in
the Standard Data Format.

WARNING

Do not change field positions or sizes in the
data base structure to which the TXT file will
be APPENDed. The TXT data is saved by
position, not by name. If you modify the struc­
ture in any way except changing field names,
you will destroy your data base when you bring
the saved data back into it.

Working with the Data Base Structure

8-25

Chapter 9

Indexed Files

Data base files contain data that can be organized and viewed from many perspec­
tives. At different times, the EMPLOYEE file may need to be organized by zip code
for mailings, by department number for staff reporting, and by employee number
within status for seniority listings. dBASE II provides two ways to reorganize whole
files.

SORT creates a new copy of the data base file for each sort sequence. The same
information appears in every file; only the order differs. This takes up a lot of space
on a diskette. Moreover, it is up to you to maintain the files. Additions must be
inserted in the right place in each file or every file must be resorted after additions to
insert the new records in the correct positions.

An alternative to SORT is INDEX. The file appears to be sorted, but actually only
an index to the file is sorted. The INDEX command creates an index file consisting
of one record for each record in the data base file. Index file records are sorted in
ascending order on the value of the key field. Records consist of the key value and a
pointer to the corresponding data record in the data base file. A data base file can
have an unlimited number of index files associated with it.

This chapter describes indexing commands. It also describes how indexed files
affect the operation of some commands that were discussed in previous chapters.

9-1

Indexed Files

9-2

INDEXING FILES

Index files are sorted into ascending order according to the ASCII collating
sequence (see Appendix F). Each index to a file must be created separately with the
following command:

INDEX ON <exp> TO <index file>

The command creates or updates an index file with the extension ".NDX". All of the
command fields are required.

• <exp> is known as the key. Its value determines the sequence of records in
the index file. The expression can be a numeric variable, a character varia­
ble, or a simple or complex expression.

• The <index file> name must conform to the file name conventions described
in Chapter 5. Do not include the extension. dBASE II automatically adds
".NDX" to the file name. Use the drive specifier prefix as necessary for files
that are not on the default drive.

The key field can be a maximum of 100 characters. Keys can be formed by
concatenating fields using the string operators (see the next section of this chapter).
The TRIM function (described in Chapter 15) must not be used as part of an index
key.

To index the EMPLOYEE file by department number, USE the file and issue the
INDEX command. Then, to utilize the index feature, USE the data base file with the
index.

use employee
Index on dept:num to deptndx
use employee index deptndx
list

use employee
Index on dept:num to deptndx

00017 RECORDS INDEXED
use employee Index deptndx
I 1st

00006 Freitag Jean 9 854 Moose Blv Houston
2775.00 A
00014 Rowland Paul 13 709 Key St Houston
15750.00 A
00017 Smyth Gall 10 817 5th St. Ambler
20100.00 A
00004 Destry Ralph 3 234 Mahogony Deerfield FL 33441 38 p3
15575.00 A
00016 Shaffer Peter 8 43 C I I nton Av Montclair NJ 07042 38 d8
17900.00 A
00003 Brown Joh n 456 Minnow PI Bur I I ngton MA 01730 54 p3
21000.00 A
00008 Green Terry 11 567 Doheny Dr Hoi I ywood CA 90044 54 ml
14500.00 A
00009 Green Frank 12 441 Spicer Av Tampa FL 33622 54 58
12500.00 A
00013 Peters AI Ice 7 676 Wacker Dr Chicago IL 60606 54 58
13700.00 A
00012 Inders Per 17 321 Sawtelle Tuscon AZ 85702 66 p9
31500.00 A
00001 A I az ar Pat 123 Crater Everett WA 98206 75 58
12500.00 A
00010 Harris Richard 15 101 Enders Dr Syracuse NY 13211 75 d8
21700.00 A
00015 Schaller Paula 16 721 Spring St Everett WA 98206 75 58
11000.00 A
00002 Berger Mary 6 10 Kearney Rd Needham MA 02194 89 p8
30000.00 A
00005 Embry Albert 2 345 Sage Ave Palo Alto CA 94303

Notice that when the file is USEd with the index, the records appear in department
number order but retain their original record sequence numbers.

Indexed Files

9-3

Indexed Files

9-4

INDEXING ON MORE THAN ONE FIELD

To index on several keys at once, concatena te the key fields with string opera tors (+
and -) in order from most important to least important. In the example that follows,
EMPLOYEE.DBF is indexed on Last Name within Job Code for each Department,
resulting in the sequence shown in Figure 9-1. Department is the primary (most
important) field; Last Name is least important.

Table 9-1 Alphabetical Employee List by Job Code and Department

DEPT. JOB CODE NAME

16 p3 Rowland, Paul
p4 Smyth, Gail
p9 Freitag, Jean

38 p3 Destry, Ralph

54 ml Green, Terry
p3 Brown, John
s8 Peters, Alice

75 d8 Harris, Richard
s8 Alazar, Pat

Schaller, Paula

89 p3 Gilbert, Diane
p8 Embry, Albert
s8 Howser, Peter

The following screen demonstrates how this is done.

• use employee
• Index on dept:num+Job:code+last:name to concatx
00017 RECORDS INDEXED
• use employee Index concatx
• list dept:num Job:code last:name
00014
00017
00006
00016
00004
00008
00003
00009
00013
00012
00010
00001
00015
00007
00002
00005
00011

1 6 p 3 R ow I and
16 p4 Smyth
16 p9 Freitag
38 d8 Shaffer
38 p3 Destry
54 ml Green

.54 p3 Brown
54 58 Green
54 58 Peters
66· p9 I nders
75 d8 Harris
75 58 AI azar
75 58 Schaller
89 p3 G II bert
89 p8 Berger
89 p8 Embry
89 58 Howser

Concatenating fields accomplishes the same thing as mUltiple SORTs, and it only
requires one command.

NOTE

All fields in concatenated keys must be charac­
ter type. Numeric fields must first be converted
to character type using the STRING function
(see Chapter 15) . For example, the
EMPLOYEE file can be indexed on employee
number (NUMBER) within department
(DEPT:NUM).

Indexed Files

9-5

Indexed Files

9-6

USING INDEXED FILES

A data base file should not be indexed unless an application that uses the file
benefits from the feature. Indexes are useful when one file must be ordered on more
than one key sequence. Indexing also allows very rapid location of data records
when the key is specified in the FIND command.

An indexed data base file functions like a sequential, non-indexed file when it is
opened with the form of the USE oommand (USE <file» already introduced. To
take advantage of the speed built into an indexed file, you must associate an index
with the file, as follows.

USE <file> INDEX <index file list>

The first file named in the index file list is called the master index. It determines the
sequence of records and is the reference for any FIND commands. The other
indexes in the list are not used for sequencing, but are automatically updated by
certain commands as explained later in this chapter. dBASE II automatically
maintains up to seven index files for the data base file in USE. The file names must
be separated by commas.

The master index can be changed by the following command.

SET INDEX TO <new index file list>

The SET command closes all currently open index files and then opens the index
files named in the list. The data base file is not closed and its current record pointer
setting is not changed. However, the relationship between the master index file and
the data base file is lost. A FIND command or GOTO must be issued to reset th~
index pointer of the new master index file before any commands that have a NEXT
phrase are issued.

A SET INDEX TO command with no index file list closes all index files for the data
base file in USE. The USE file then functions as a sequential file.

• use employee
set Index to
go top

• display
00014 Rowland
15750.00 A

concatx, deptndx

Paul 13 709 Key St Houston TX 77007 16 p3

• skip 3
RECORD: 00016
• display
00016 Shaffer
17900.00 A

Peter 8 43 Clinton Av Montclair NJ 07042 38 d8

• set Index to
• go top
• display
00006 Freitag
2775.00 A

deptndx

Jean 9 854 Moose Siv Houston TX 77006 16 p9

• skip 3
RECORD: 00004
• display
00004 Destry
15575.00 A

Ralph 3 234 Mahogony Deerfield FL 33441 38 p3

• set Index to
• go top
• display
00001 Alazar
12500.00 A
• sk I P 3
RECORD: 00004
• display
00004 Destry
15575.00 A

Pat

Ralph

Finding Records in an Indexed File

1 123 Crater Everett WA 98206 75 s8

3 234 Mahogony Deerfield FL 33441 38 p3

To locate one or more records that have a particular key value, use the FIND
command. The system searches the index file for the first record whose key field
matches the value specified in the FIND command. It then sets the current record
pointer in the data base file to the appropriate record.

FIND operates only on data base files that have been previously indexed and that
are in USE with an index file.

The FIND command has two forms:

FIND <char string>
FIND' <char string>'

Indexed Files

9-7

Indexed Files

9-8

In most cases, use the first form of the command, without quotes. Use the second
form of the command, with quote marks enclosing the character string, when the
key field has leading blanks and is a character type field. Also use quotes with
concatenated keys that have leading or trailing blanks. Include the exact number of
blanks in the character string.

FINDING CHARACTER STRING KEYS

. If the data base file was indexed using a character string expression as the key, then
FIND compares the key values in the index file with as much of the key as is
specified in the command. The record found is the first one whose key matches the
character string. For example, a record with the key "SMITH, JOHN" could be
found by the statement FIND SMI provided that there are no other keys starting
with SMI pieceeding SMITH, JOHN in the index. The command always finds only
the first record whose key is the same as the character string. Even if the record.
pointer is moved down further in the file, a subsequent FIND on the same key
points to the first record with that key.

Comparison of character strings in dBASE II proceeds only as far as the length of
the second argument. To require an exact string comparison, issue the command
SET EXACT ON. This feature requires that all characters except trailing blanks are
identical for a true match to be indicated.

FINDING NUMERIC KEYS

If the index was created with a numeric key, then the found record will be the first
record whose key is arithmetically equal to the object of the FIND.

FINDING CONCATENATED KEYS

FIND works with a file indexed on concatenated keys when the key values are'
placed within quotes and the full fields, including leading and trailing blanks are
included.

• use employee Index deptndx
• flnd75
• display
00001 Alazar Pat
12500.00 A
• find 89
· d I sp lay
00002 Berger Mary
30000.00 A
• find 16
· display
00006 Freitag Jean
2775.00 A
· set Index to concatx
• find '75s5Schaller
NO PIND
• find 138p3Destry
• display
00004 Destry Ralph
15575.00 A

Using the Found Record

1 123 Crater Everett WA 98206 75 s8

6 10 Kearney Rd Needham MA 02194 89 p8

9 854 Moose Blv Houston TX 77006 16 p9

3234 Mahogony Deerfield FL 33441 38 p3

Once a record in a data base file has been selected with the FIND command, it can
be processed just like any other data base record. It can be interrogated, altered,
displayed, and so on. dBASE II commands that reposition the record pointer
process the found record first and proceed to the next record in key sequence.

If there is no record in the index file whose key matches the character string in the
FIND command, the message "NO FIND" is displayed on the screen and the record
number function, #, returns the value zero.

Indexed Files

9-9

9-10

Indexed Files

Finding More

To access additional records with the same key, use either the SKIP or LOCATE
FOR <exp> command. SKIP does not know when there is no longer a match.
LOCA TE finds additional matches provided <exp> equals the key value.

The example that follows uses the EMPLOYEE file indexed on dept:num.

• use employee Index deptndx
• fInd 89
• display
00002 Berger Mary 6 10 Kearney Rd Needham MA 02194 89 p8
30000.00 A
• locate next 3
RECORD: 00002
• dIsplay
00002 Berger
30000.00 A
• contInue
RECORD: 00005
• display
00005 Embry
22200.00 A
• continue
RECORD: 00007
• display
00007 G II bert
24500.00 A
• contInue
END OF LOCATE SCOPE

Mary

Albert

Diane

• store dept:num to sdept
89
• go top
• locate for dept:num = sdept
RECORD: 00002
• continue
RECORD: 00005
• continue
RECORD: 00007
• continue
RECORD: 00011

6 10 Kearney Rd Needham MA 02194 89 p8

2 345 Sage Ave Palo Alto CA 94303 89 p8

14 280 Cactus Wy Las Cruces NM 88001 89 p3

Command Operations with Indexed Files

Some commands operate with indexed files differently than with sequential files.
This section details the effects of using one or more indexes simultaneously with a
data base file.

Positioning Commands

Commands that operate by record number (GOTO, SKIP, EDIT, and the
RECORD <n> and NEXT <n> options for scope) move through the index file, not
the actual data base file. That is, the current record pointer is positioned in the index
file, and it uses information contained there to access the indicated data record.
Moving between records yields the next or previous indexed record relative to the
current record pointer.

Test the effect with GOTO, SKIP, or any other commands that accept the scope
phrase. Then try the EDIT and BROWSE commands. In edit mode, CTRL Rand
CTRL C also use the index file for positioning.

Commands that Change File Contents

APPEND automatically updates all files specified in <index list> in the USE or SET
'INDEX TO command for new data records unless the records are blank. Records
appended with the BLANK option are not indexed until they are supplied with
some data. Any index files associated with a data base file and not in USE when the
file is updated are not automatically updated and must be indexed again.

INSERTs into an indexed file are identical to APPENDs for the Master Index file.

The EDIT, BROWSE, and REPLACE commands delete a record from the index
file and reenter a new index entry if the key field is altered for any index file except
the Master Index. Do not edit the key field of the Master Index. The index files must
be in USE with the data base file or called with a SET INDEX TO <index list>
command prior to any modifications.

In an indexed file, the key shoul9 not be REPLACEd with NEXT <n> as the scope
phrase.

An indexed file can be packed with the PACK comma,nd and the data base file, as
well as the Master Index file, will be properly adjusted. For large indexed files,
PACKing the file without the index and then reindexing is faster than PACKing
with the index. If a data base file has more than one index associated with it, the
recommended technique is to PACK the file without any indexes and then index the
file again.

Indexed Files

9-11

Chapter 10

Reporting The Contents Of
Data Bases

At some point you will need to summarize and quantify what is in the data base.
You may need formal reports or statistics about the data. The REPORT feature was
introduced in Chapter 3. It is fully explained in this chapter, along with other
commands that allow you to manipulate, reorganize, and format data to present it
in the manner you require.

SUMMARIZING THE RECORD CONTENTS

In most applications, you are likely to need formatted listings of data base contents
and, perhaps, other information derived from the data. The REPORT command
prepares reports and displays them on the screen or prints them in "hard copy" on
paper. It can also be used to format tables of data.

Creating a Report Form File

Defining a report is similar to defining a file. The system leads you through a dialog
in which you describe the layout and contents of the report. Reports can have titled
columns, totaled numeric fields, and displayed expressions involving data fields,
memory variables, and constants.

10-1

Reporting the Contents of Data Bases

10-2

The following screen illustrates the dialog that produced the SALARY EXPENSE
BY DEPARTMENT report, Figure 10-1.

• use employee Index deptndx
• report
ENTER REPORT FORM NAME: salarIes
ENTER OPTIONS, M=LEFT MARGIN, L=LINES/PAGE, W=PAGE WIDTH
PAGE HEADING? (YIN) Y
ENTER PAGE HEADING: SALARY EXPENSE BY DEPARTMENT
DOUBLE SPACE REPORT? (YIN) n
ARE TOTALS REQUIRED? (YIN) Y
SUBTOTALS IN REPORT? (yiN) Y
ENTER SUBTOTALS FIELD: dept:num
SUMMARY REPORT ONLY? (YIN) n
EJECT PAGE AFTER SUBTOTALS? (YIN) n
ENTER SUBTOTAL HEADING: Department Number
COL WIDTH,CONTENTS
001 5,number
ENTER HEADING: EMP #
002 16,last:name
ENTER HEADING: NAME
003 to,flrst:name
ENTER HEAD I NG:
004 to,salary
ENTER HEADING: SALARY
ARE TOTALS REQUIRED? (YIN) Y
005

Reporting the Contents of Data Bases

PAGE NO. 00001
11/11/82

Er~p # NMlE

· Department N um ber
9 Freitag

13 Rowland
10 Smyth
SUBTOTAL ..

· Department Number
3 Destry
8 Shaffer .. SUBTOTAL .*

· Department N um ber
5 Brow n

11 Green
12 Green

7 Peters
SUBTOTAL *.

* Department Number
17 I nders

** SUBTOTAL .*

· Department Number
1 A I az ar

15 Harr i 5

16 Schaller
SUBTOTAL *.

* Department Number
6 Berger
2 Embry

14 Girbert
4 How ser

SUBTOTAL

TOTAL **

•
•

SALARY EXPENSE BY DEPARTMENT •
SAL ARY •

16
Jean 2775.00 • Pau I 15750.00
Ga I I 20100.00 • 38625.00

• 38
Ra I ph 15575.00
Peter 17900.00 •

33475.00

•
54

Joh n 21000.00
Terry 14500.00 •
Fra nk 12500.00
AI Ice 13700.00 •

61700.00

•
66

Per 31500.00 • 31500.00

• 75
PaT 12500.00
Richard 21700.00 • Pau I a 11000.00

45200.00 •
89 • Mary 30000.00

A I ber t 22200.00
DI ane 24500.00 • PeTer 9500.00

86200.00 •
296700.00 •

•
~----~--~------------'------------'~--------------------------~------------~----~

Figure 10-1 Salary Expense by Department Report

The dialog is described in the next section of this chapter. To see how the REPORT
command works, enter the report description as it appears in the preceding example
or create another report by following along with the rules listed here.

10-3

Reporting the Contents of Data Bases

10-4

PREPARATION

Plan your reports as carefully as you plan your data base structures. Each time you
create a report, follow this procedure.

1. Define the report. The example shows a report with the following features:

• Report heading is "SALARY EXPENSE BY DEPARTMENT".

• Employees are grouped by department and salary is subtotaled
within. department.

• Department subtotals are printed after the detail records for each
employee. Detail records list employee name (last name first),
number and salary.

If you are defining a new report rather than copying the example, take a
piece of paper and plan what the report should look like. Include headers
and field names and see how much space to allow for each column. Decide
what fields should be subtotaled and totaled.

2. Issue all SET commands.

• If you want a printed copy of the report, turn the printer on. Then
press PRINT on the numeric keypad, issue the command SET
PRINT ON, or use the phrase "TO PRINT" in the REPORT
command.

• If you are printing on single sheets of paper, enter the command
SET EJECT OFF to suppress the initial form feed.

3. USE the file that contains the data (with the INDEX option if necessary).
REPORT requires an open file.

4. Issue the REPORT command. In the example, it is presented without
modifiers. This creates a new report form file and initiates the report
formatting dialog.

REPORT FORMATTING DIALOG

This section describes the formatting dialog. The system prompts are printed in
uppercase, just as they appear on the screen. Following each prompt are definitions,
restrictions, and descriptions of the system's actions based on your input.

Reporting the Contents of Data Bases

ENTER REPORT FORM NAME:

• Follow standard eight-character file name rules (see Chapter 5).

• Enter <file>, including the drive specifier if necessary.

• The system automatically assigns the ".FRM" extension.

ENTER OPTIONS, M=LEFT MARGIN, L=LINES/PAGE, W=PAGE WIDTH

• Standard report layout is:
LEFT MARGIN, M=8
LINES/PAGE, L=56
PAGE WIDTH, W=80

• Page width controls only the centering of the PAGE HEADING. The
"Employees by Department" report in Chapter 3 could be cleaned up either
by centering the columns under the heading or placing the heading over the
data.

• Enter options(s), separated by commas, or press RETURN to accept the
defaults.

PAGE HEADING? (YIN)

• Enter Y If you want a heading printed at the top of each page; otherwise
enter N.

ENTER PAGE HEADING:

• This prompt appears only if you answered Y to the previous question.

• The limit is 254 characters.

• Enter text for the heading without quotation marks.

• . The semicolon (;) may be used to mark a line break. The display is continued
on the next line.

DOUBLE SPACE REPORT? (Y IN)

• Enter Y or N.

10-5

Reporting the Contents of Data Bases

10-6

ARE TOTALS REQUIRED? (YIN)

• REPORT can total some or all numeric fields.

• Enter N if you do not want any totals.

• If Y is entered, you have the option of printing the total for each numeric
field in the report. The system prompts you as you enter descriptions of
numeric fields.

SUBTOTALS IN REPORT? (YIN)

• This question appears only if the report requires totals.

• REPORT can subtotal on one field only.

• Enter Y or N'.

The next four prompts refer to subtotaling. They appear only when subtotals are
required.

ENTER SUBTOTALS FIELD:

• The file must be indexed on, or sorted by, this field.

• Ent,er <field>.

SUMMARY REPORT ONLY? (YIN)

• If Y is entered, only the headings, column subtotals, and report totals are
produced.

• If N is entered, headings, detail records, subtotals, and report totals are
produced.

EJECT PAGE AFTER SUBTOTALS (YIN)

• Enter Y or N.

ENTER SUBTOTAL HEADING:

• Enter the character string to be used as the heading.

• The character string is concatenated with the subtotal field and appears
preceeding any detail records in the format

* <character string> <field>

Reporting the Contents of Data Bases

The next prompts accept the description of each column in the report. Enter the
width and contents of each field, or press RETURN instead of entering a width to
terminate the report description process.

COL WIDTH, CONTENTS
OOn

COL

• Column number is generated by the computer.

• Reports may have up to 24 columns.

• Number is used for identification only. It does not appear in the report.

WIDTH

• This is the number of positions allotted to the column.

• There is not necessarily a direct relationship between the column width and
the width of a field in a file.

• If the data (header or contents) are less than the width, numeric values are
right-justified and alphanumeric values are left-justified.

• If the data are greater than the width, the data wrap around to more than
one line. For example, an 80-character field wraps to two lines in a 50-
character column.

• dBASE II inserts one space between columns. To allow more space between
columns, add extra characters to the width or concatenate spaces to data in
the contents field.

CONTENTS

• Describe the source of the data. Acceptable entries include fields
(FIRST:NAME), memory variables, literals (" ABC"), and expressions
(SALARY * 1.15).

• Concatenated strings may be used (DEPT:NUM + " ").

10-7

Reporting the Contents of Data Bases

10-8

ENTER HEADING:

Enter the literal data to be displayed above the column.

• Heading must fit in the WIDTH or it wraps around.

• Special symbols can be used as follows:

Semicolons embedded in headings and strings mark line breaks.

> As the first character, this symbol indicates that the heading should
be right-justified in the column.

< As the first character, this symbol indicates that the heading should
be left-justified in the column.

ARE TOTALS REQUIRED? (YIN)

• This question appears only for numeric fields and only if you requested
totals in the overall report description.

• Enter Y or N.

When all columns in the report have been defined, press RETURN at the next field
number prompt. dBASE II immediately starts printing the report. It will process the
entire data base if you let it. To stop the report display, press ESC.

HINT

I t is a good idea to keep a printed copy of
report form file descriptions as you create them
since it is difficult to access them later. (You
cannot simply USE and LIST a report form
file.) To print the file, use SET PRINT ON (or
press PRINT) before issuing the REPORT
command. From that point on, until you enter
SET PRINT OFF or press PRINT again, every­
thing that appears on the screen is also printed.

Using Report Form Files

Once a report form has been described, it is saved in a file with the extension
".FRM". Report form file names may be listed with the command LIST FILE LIKE
* .FRM. These files can be modified using a word processor or text editor, but it is
not recommended that you do so. It is usually easier to define a new report form file.

Reporting the Contents of Data Bases

You can use the same report form to generate different reports by displaying the
contents of different data bases, using phrases to report selectively, and using SET
commands to exercise options at run time.

• Any data base file can be USEd as input to REPORT if it contains all the
fields used in the report form file.

• The complete form of the REPORT command is:

REPORT [FORM <form>] [<scope>] [FOR <exp>] [TO PRINT]
[PLAIN]

• The optional phrases may be used to control reporting.

• FORM is required to use an existing form file.

• <scope> defaults to all when not specified.

• FOR allows only the information which meets the conditions of the
exp~ession to be reported.

• TO PRINT sends the report to the printer as well as the screen. The
printer must be turned on. This phrase may be used instead of
issuing the SET PRINT ON command or pressing PRINT.

• PLAIN suppresses the printing of page numbers and date at the top
of each page. The page heading is printed only at the beginning of
the report.

• SET commands issued at run time allow you to exercise additional controls .

• The date appears under the page number. The system defaults to the
date entered at sign-on. It can be changed to another date or spaces
by the SET DATE TO command.

• An additional heading may be generated for each run with the
command SET HEADING TO <char string>.

The character string limit is 60 characters. Do not use quotation
marks in the character string. This heading must. be set each time a
new dBASE II session is initiated. (The standard report heading
entering through tbe dialog is saved in the report form file) .

• The report medium is controlled by the SET PRINT ON command, the
PRINT key, or the TO PRINT phrase in the REPORT command .

• Before printing anything, REPORT ejects the page in the printer. To
suppress this, enter SET EJECT OFF. If you are using single sheets of paper
in the printer, be sure to use this command.

10-9

10-10

Reporting the Contents of Data Bases

The screens that follow demonstrate some of the run-time options available with the
REPORT command. They use a data base of scores for three people in an on-going
card game.

• use cards
• II st structure
STRUCTURE FOR FILE: CARDS.DBF
NUMBER OF RECORDS: 00012
DATE OF LAST UPDATE: 11/11/82
PRIMARY USE DATABASE
FLO NAME TYPE WIDTH DEC
001 DATE C 008
002 LISA N 003
003 ANNA N 003
004 WAYNE N 003
** TOTAL ** 00018
• II st
00001 OS/26/81 29 75 53
00002 OS/27/81 45 48 63
00003 OS/28/81 50 56 74
00004 OS/29/81 86 24 72
00005 06/05/81 43 12 75
00006 06/12/81 42 9 27
00007 06/26/81 84 35 63
00008 07/06/81 33 71 26
00009 08/19/81 37 55 38
00010 09/15/81 19 57 54
00011 09/16/81 15 7 108
00012 09/17/81 58 13 58

Column headings can be printed on two lines by using the semicolon to mark the
line break. Column contents can be fields names and expressions.

Reporting the Contents of Data Bases·

• use cards
. report
ENTER REPORT FORM NAME: cards
ENTER OPTIONS, M=LEFT MARGIN, L=LINES/PAGE, W=PAGE WIDTH w=40
PAGE HEADING? (YIN) Y
ENTER PAGE HEADING: Hearts Scores
DOUBLE SPACE REPORT? (YIN) n
ARE TOTALS REQUIRED? (YIN) Y
SUBTOTALS IN REPORT? (YIN) n
COL WIDTH,CONTENTS
001 10,date
ENTER HEADING: Date of;Game
002 6, lisa
ENTER HEADING: Score;Llsa
ARE TOTALS REQUIRED? (YIN) y
003 6,anna
ENTER HEADING: Score;Anna
ARE TOTALS REQUIRED? (YIN)
004 6, way ne
ENTER HEADING: Score;Wayne
ARE TOTALS REQUIRED? (YIN) y
005 6, I isa+anna+wayne
ENTER HEADING: Game;Total
ARE TOTALS REQUIRED? (YIN) y
006

The "HeartsSeores" format is saved in a file called CARDS.FRM. The report can be
produced at any time with the REPORT command.

10-11

Reporting the Contents oj Data Bases

10-12

PAGE NO. 00001
11/11/82

Hearts Scores

Date of Score Score Score Game
Game LI sa Anna Wayne Total

OS/26/81 29 75 53 157
OS/27/81 45 48 63 156
OS/28/81 50 56 74 180
OS/29/81 86 24 72 182
06/05/81 43 12 75 130
06/12/81 42 9 27 78
06/26/81 84 35 63 182
07/06/81 33 71 26 130
08/19/81 37 55 38 130
09/15/81 19 57 54 130
09/16/81 15 7 108 130
09/17/81 58 13 58 129
** TOTAL ** 541 462 711 1714

An additional heading can be added to the report during the dBASE II session. The
PLAIN option and conditional phrases can also be used to change the contents and
format of the report.

Reporting the Contents of Data Bases

use cards
set heading to MAY
report form cards next 4

PAGE NO. 00001 MAY
11/11 /82

Hearts Scores

Date of Score Score Score Game
G.ame LI sa Anna Wayne Total

OS/26/81 29 75 53 157
OS/27/81 45 48 63 156
OS/28/81 50 56 74 180
OS/29/81 86 24 72 182
** TOTAL **

210 203 262 675

goto top
report form cards for way ne < 50 plain

Hearts Scores

Date o.f Score Score Score Game
Game lisa Anna Way ne Total

06/12/81 42 9 27 78
07/06/81 33 71 26 130
08/19/81 37 55 38 130
** TOTAL **

112 135 91 338

PREPARING TABLES WITH REPORT

PLAIN is an option with the REPORT command. It allows you to create reports
and tables that can be inserted into reports generated by a word processor. You can
even use the PLAIN option to surround the report with other calculations or text.

QUANTIFYING THE FILE CONTENTS

In some applications, you don't need to see the actual records, but want to know
how many meet certain conditions, or what the total is for some specified condition.
(How many widgets do we have in stock? How many are on back .order? What is the
total of our AlP?)

For counting use the COUNT command.

COUNT [<scope>] [FOR <exp>] [TO <memvar list>]

10-13

Repor~ing the Contents of Data Bases

10-14

This command can be used with none, some or all of the modifiers. Unqualified, it
counts all the records in the data base, including those marked for deletion.

• <scope> can be limited to one or a specified number or records. The default
is ALL.

• The FOR phrase can be any simple or complex expression.

• The result can be stored in a memory variable (see Chapter 12) when the TO
phrase is used. If memory variable does not already exist, it is created when
the command is executed.

• use employee
• count
COUNT = 00017
• count for dept:num = '89'
COUNT = 00004
• count for "G" $ last:name
COUNT = 00003
• count for job:code = 'p3' .and. dept:num = '89'
COUNT = 00001

To total data base field values, use the SUM command.

SUM <field list> [<scope>] [FOR <exp>] [TO <memvar list>]

Reporting the Contents of Data Bases

This command computes and displays the totals for all named fields in records that
meet the conditions in the FO R phrase.

• You can list up to five numeric fields to total in the data base in USE.

• If more than one field or expression is to be totaled, the field names must be
separated by commas.

• <scope> defaults to ALL; other values may be used to limit the records
included in the scope. Records marked for deletion are bypassed.

• The FOR phrase can be a simple or complex expression.

• The results can be stored in memory variables, with one sum in each
variable named. There is a one-to-one correspondence, based on position in
the lists, between the summed fields and the memory variables.

The following screen shows examples of the SUM command formats .

• use employee
• sum salary
296700.00

sum salary
45200.00

sum salary
183400.00

sum salary
197900.00

for

for

for

sum dept:num
sum DEPT:NUM
CORRECT AND RETRY

dept:num = '75 '

Job:code = 'p'

Job:code = , p' .or. Job:code = 'm'

(YIN)? N

10-15

Reporting the COfJ,tents of Dlita Bpses

·10-16

SUMMARIZING DATA AND ELIMINATING DETAILS

The TOTAL commanq is similar to the subtotal capability in the REPORT
comm.and. It sums data fields, but instead of printing them out, it stores the

. subtotals in a data base file that is a summary of the source file.

TOTAL ON <key> TO <file> [FIELD <field list>] [FOR <exp>]

• The USE data base file must be presorted or indexed on <key>.

• <file> may be a new or existing data base. If it already exists, its structure is
left intact.

• If <file> did not exist prior to this TOTAL command, the structure is copied
from the USE file.

• If the FIELD phrase is included, only the named fields are totaled. If the
phrase is not present, all numeric fields are totaled.

use employee Index deptndx
total on dept:num to deptsals field salary

00006 RECORDS COPIED
use deptsals
II~t structure

STRUCTURE FOR FILE: DEPTSALS.DBF
NUMBER OF RECORDS: 00006
DATE OF LAST UPDATE: 00/00/00
PRIMARY USE DATABASE
FLO NAME TYPE WIDTH DEC
001 LAST:NAME C 012
002 FIRST:NAME C 007
003 NUMBER N 003
004 STREET C 013
005 CITY C 010
006 STATE C 002
007 ZIP:CODE C 005
008 DEPT:NUM C 002
009 JOB:CODE C 002
010 SAL ARY N 008 002
011 ACT:STAT C 001
** TOTAL ** 00066

II st
00001 Freitag Jean 9 854 Moose Blv Ho.uston TX
77006 16 p9 38625.00 A
00002 Destry Ralph 3 234 Mahogany Deerfield FL
33441 38 p3 33475.00 A
00003 Brown John 5 456 MI nnow PI Bur I I ngton
01730 54 p3 61700.00 A
00004 Inders Per 17 321 Sawtelle Tuscan
85702 66 p9 31500.00 A
00005 A I az ar Pat 1 123 Crater Everett
98206 75 s8 45200.00 A
00006 Berger Mary 6 10 Kearney Rd Needham
02194 89 p8 86200.00 A

Reporting the Contents of Data Bases

This command is most selective when the TO file, consisting of only the fields used
in the TOTAL command, exists and the FIELD phrase is used. The next screen
demonstrates this. First, the TO data base is created using COPY TO <file> FIELD
<fieldl> [, <field2> ... [, <fieldn>] where:

<file> = "TO" file for TOTAL command
<fieldl> = <key> in TOTAL command
<field2> ... <fieldn> = FIELDS in TOTAL command.

Then, the TOTAL command is issued.

• use employee index deptndx
• copy to deptsajs field dept:num, salary
00017 RECORDS COPIED
• total on dept:num to deptsals field salary
00006 RECORDS COPIED
• use deptsals
• II st structure
STRUCTURE FOR FILE: DEPTSALS.DBF
NUMBER OF RECORDS: 00006
DATE OF LAST UPDATE: 00/00/00
PRIMARY USE DATABASE
FLO NAME T~PE WIDTH DEC
001 DEPT:NUM C 002
002 SALARY N 008 002
** TOTAL ** 00011
• I 1st
00001 16 38625.00
00002 38 33475.00
00003 54 61700.00
00004 66 31500.00
00005 75 45200.00
00006 89 86200.00

10-17

Chapter 11

U sing The Printer

You will probably use the printer most often to print hard copies of reports.
However, there are times when you need printed copies of listings, command files,
and screen displays. This chapter summarizes the commands for using the printer.
Before using any print command, turn the printer on and align paper in it.

PRINTING REPORTS

The easiest way to print a report is to use the TO PRINT option in the REPORT
command. This prints the named report, and only that report.

REPORT automatically performs a page eject before printing any report. If you are
using single sheets of paper, suppress the page eject by entering SET EJECT OFF
before the REPORT command. If you are using continuous paper, the SET com­
mand is optional.

INTERACTIVE PRINT CONTROL

There are three ways to control printing from the console.

The PRINT key is located in the top row of the numeric keypad on the right side of
the keyboard. It toggles the printer on and off. When you start a dBASE II session,
the print function is set to off. To print, press PRINT. From then on, until you press
PRINT again, everything that you enter and most of the dBASE II commands and
prompts that appear on the screen are also printed.

Pressing CTRL P also toggles the printer on and off. CTRL P operates exactly like
PRINT.

The SET PRINT ON and SET PRINT OFF commands can be used to control
printing. They may be entered at the dot prompt.

-1

Using the Printer

11-2

PRINTING COMMAND FILES

It is a good idea to keep hard copies of your dBASE II programs and command files.
Use the listings when you are writing and debugging new routines. Save printed
copies of working command files for backup and reference.

dBASE II does not have a capability to print the contents of command files. To
print these files, you must exit from dBASE II and return to the CP IM-86 "A>"
prompt. The CP IM-86 program for the APC includes a command called TYPE that
lists and prints CP 1M files. Use the following procedure to print command files.

1. Exit from dBASE II. The system displays the CP/M-86 "A>" prompt.

2. Turn on the printer and align paper in it.

3. Press either PRINT or CTRL P to set print function on.

4. Enter the TYPE command, specifying the full name of the file.
TYPE [<disk drive>:] <file name>. <type>

The system responds by printing the contents of the command file.

S. When the file listing is completed, press PRINT or CTRL P to turn off the
printer.

NOTE

Seethe CPIM-86 System User's Guide for more
information about using the TYPE command.

PRINTING FROM COMMAND FILES

The SET PRINT command just described can be used in command files to control
printing.

SET FORMAT TO PRINT sends the outpout of @ commands (see Chapter 18) to
the printer instead of the display screen.

Chapter 12

Generating Reusable Variables
And Instructions

MEMORY VARIABLES .
dBASE II reserves a part of its memory for storing variables that you name. You
might want to think of this area as a series of pigeon-holes available for you to tuck
data into while you are working out a problem. Memory variables are not fields in a
data base; they exist simply to hold data temporarily.

You can use a memory variable to hold a value you need to use in different
commands and expressions. You can then refer to the memory variable instead of
entering the same data repetitively. For example, in one dBASE II session, you
might "tuck" the day's "prime rate into a pigeon-hole (variable) named RATE.
During the session, you could get it by asking for RATE. You could then place the
value into a prime rate field in any file, or use it in calculations, without having to
reenter it.

dBASE II allocates enough memory to store up to 64 memory variables, each with a
maximum length of254 characters, up to a maximum total of 1536 characters for all
the variables.

Creating Memory Variables

The STORE command creates a memory variable and stores a value in it at the same
time. The complete form of the command is:

STORE <var/constant/exp> TO <memvar>

The stored value can be a variable or constant or the result of an expression. If the
memory variable did not exist before the command was issued, dBASE II creates it
automatically. Memory variable names can be any legal dBASE II identifier.

12-1

Generating Reusable Variables and Instructions

12-2

NOTE

If you use only nine characters for data base
field names, when you want to use the name as
a memory variable, you can do so by putting an
"M" in front of it. What it stands for will be
clearer than if the variable were assigned a
completely different name.

To see how the STORE command works with character and numeric data and
expressions, enter the following commands at the prompt.

store "How's it going so far?" to message
store 1 0 to hours
store 17.35 to pay:rate
?pay:rate * hours
? message

• store "How's it going so far?" to message
How's it going so far?
• store 10 to hours

10
• store 17.35 to pay:rate
17.35

• ? pay:rate * hours
173.50

• ? message
How's it going so far?

Generating Reusable Variables and Instructions

Notice the double quotes around the character string, a constant, in the first
command. They are necessary because a single quote is used as an apostrophe inside
the string. -

If the differences between constant and variable data are not clear, try experiment­
ing with and without the quotes. To start off, enter the following commands.

store 99 to variable
store 33 to another
store variable/ another to third
store '99' to constant
? variable/ another
? variable/3
? constant/3

Your screen will look like the display that follows.

store 99 to variable
99
store 33 to another
33
store variable/another to third
3

• store '99' to constant
99

? variable/another
3

? variable/3
33

? constant/3

*** SYNTAX ERROR ***
?

? CONSTANT/3
CORRECT AND RETRY (YIN]? N

12-~

Generating Reusable Variables and Instructions

12-4

Storing a value into a memory variabl€ automatically tells the system what the data
type is. From then on, you Cannot mix data types. The last example demonstrates
the results of trying to divide a character string by a number.

Rules for Character String Memory Variables

Character strings that appear in expressions must be enclosed in matching single or
double quote marks or square brackets.

Character strings may contain any of the printable characters, including the space.

If the ampersand (&) is included as a character, it must be between two spaces. This
insures that dBASE II does not interpret the character as indicating the marco
substitution function described later in this chapter.

Creating Numeric Memory Variables

Numeric memory variables can be created using the STORE command. They can
also be created automatically by the COUNT and SUM commands (see Chapter
10).

Displaying Memory Variables

DISPLAY MEMORY and LIST MEMORY are special forms of these commands
that show the contents of the memory variable area. Try entering one of those
commands. Your screen display will look like the one that follows.

Generating Reusable Variables and Instructions

. dispLay
MESSAGE
HOURS
PAY:RATE
VARIABLE
ANOTHER
THIRD
CONSTANT

memo ry
(C)
(N)
(N)
(N)
(N)
(N)
(C)

'" '" TOTA L '" '"

How's it coinC 50 far?
10

17.35
99
33
3

99
07 VARIABLES USED 00054 BYTES USED

The command lists each memory variable name, data type, and value. It also
presents a count of the number of variables and the total number of characters
(bytes) they use.

Eliminating Memory Variables

You can delete all or selected memory variables with the RELEASE command. This
frees the space that the variables occupied and makes the space available for new
memory variables. RELEASE has two forms:

RELEASE <memvar list>
RELEASE ALL

12-5

Generating Reusable Variables and Instructions

Enter these commands at the dot prompt.

display memory
release another
list memory
release all
display . memory

• display
MESSAGE
HOURS
PA":RAT~
VARIABI,..E
ANOTHER
THIRD
CONSTANT

memory
(CJ
(N)
(N)
(N)
(N)
(N)
(C)

How's it going so far?
10

17.35
99
33
3

99
** TOTAL ** 07 VARIABLES USED 00054 BYTES USED
• r~laase another
• list memory
14ESSAGE (C)
HOlmS (N)

How's it going so far?
10

PAY:RATE (N) 17.35
VARIABLE (N) 99
THIRD (If) 3
CONSTANT (C) 99
** TOTAL ** 06 VARIABLES USED 00048 BYTES USED
• release all
• display memory
** TOTAL ** 00 VARIABLES USED 00000 BYTES USED

The above screen shows the different effects of the two forms of RELEASE.

Saving Memory Variables

Memory variables can be created and used for a single dBASE II session or saved in
memory files and reused from session to session. The SAVE command writes all
current memory variables into a Q1emory file.

SA VE to <mem file>

Generating Reusable Variables and Instructions

The memory file name can be any valid dBASE II file name. The system automati­
cally appends the extension ".MEM" to memory file names.

Reading Memory Files

RESTORE reads a file of memory variables created with the SAVE command. The
memory variable values are read into the system's memory variable space. All
memory variables which were defined prior to the RESTORE command are
deleted.

RESTORE FROM <mem file>

The foHowing series of commands demonstrates how memory files work. Try them.

release all
store 1 to one
store 'abcdefghijkl' to alfabet
store alfabet +' new stuff' to chars
display memory
save to memfile
list files like * .mem
release all
display memory
store 3 to three
display memory
restore from memfile
display memory

12-7

Generating Reusable Variables and Instructions

12-8

release all
sto re 1 to one
1
store 'abcdefghijkl' to alfabet

abcdefghijkl
• store alfabet +' new stuff' to chars
abcdefghijkl new stuff
· display memory
ONE (N)
ALFABET (C) abcdefghijkl
CHARS (C) abcdefghijkl new stuff
** TOTAL ** 03 VARIABLES USEO 00041 BYTES USED
• save to memfi le
• list files like *.mem

~IEMFILE.MEM

• r e lea s·e all
· display memory
** TOTAL ** 00 VARIABLES USED 00000 BYTES USED
· store 3 to three

3
• display memory
THREE (N) 3
** TOTAL ** 01 VARIABLES USED 00006 BYTES IISED
· restore from memfi le
· display memory
ONE (N)
ALFABET Ie) abcdefghijkl
CHARS (C) abcdefghijkl new stuff
** TOTAL ** 03 VARIABLES USED 00041 BYTES USEO

NOTE

Once created or read into memory, memory
variable values remain intact until they are
overlaid by other variables (using RESTORE)
or the dBASE II session is ended. This means
the variables are available to you interactively
and to command files used during the session.

MACRO SUBSTITUTION FUNCTION

Memory variables can be used with the macro substitution/unction to save typing.
(A function is a special purpose command, like the "!" you used in Chapter 3 to
convert lowercase letters to uppercase.) When dBASE II finds an ampersand (&)
followed by the name of a character string memory variable in a command, it
executes the macro substitution function. The system replaces the & and memory
variable name with the memory variable's contents. So, you can create memory
variables consisting of frequently used character strings such as long commands or

Generating Reusable Variables and Instructions

complex expressions. Assign them short names, then use them with the macro
substitution function to generate long commands with just a few keystrokes.

• store 'salary> 20000 .and.
salary> 20000 .and. dert:num
• use employee
• list for &c
00002 Berger Mary
30000.00 A
00005 Embry Albert
22200.00 A
00007 Gilhert Diane
24500.00 A

dept:num "89"' to c
= "89"

6 10 KeArney Rd Needham MA

2 345 88Ge Ave Palo Alto CA 94303 88 oR

14 280 Cactus Wy Las Cruces NM 88001 88 p3

If the & is not followed by a valid memory variable name, no expansIOn IS

attempted.

USING MEMORY VARIABLES WITH THE FIND COMMAND

Memory variables can be used as objects of FIND commands. In this case, the
memory variable must be used with the macro substitution function. The first
command sequence in the following screen demonstrates how a name stored in a
memory variable can be the object of a FIND.

12-9

Generating Reusable Variables and Instructions

12-10

• use employee
• I ndex on last: name to nmx
00017 RECORDS INDEXED
• set Index to nmx
• store 'Green' to nm
Green
• find &nm
• display
00008 Green Terry
14500.00 A

• use employee
• Index on salary to sx
00017 RECORDS INDEXED
• set Index to sx
• find 21000.00
• dlspfay
00003 Brown
21000.00 A

John

11 567 Doheny Dr Hoi Iywood CA 90044 54 m1

5 456 Minnow PI Burlington MA 01730 54 p3

Chapter 13

Using More Than One
Data Base File

This guide uses two files for demonstration: EMPLOYEE.DBF and JOBDET.DBF.
Together, the files form the personnel data base. The data base was set up as two
files for ease of maintenance, non-redundancy of data, and good use of storage
space. To make the best use of the files, however, you must be able to integrate
them. That way, you can answer questions like "What is employee Green's job
title?" and "How many employees in each department earn salaries above the
midpoint for their salary range?". To answer these questions, you need information
from more than one file.

USING TWO DATA BASES CONCURRENTLY

Up to this point, you have used only one data base file at a time. dBASE II has the
capability of working with two files concurrently and independently. You can
compare information between the files, use the information from one to update the
other, and combine the files to form a new file.

When two files are uS,ed at the same time, the system processes them in two different
areas called the primary and secondary areas. dBASE II automatically selects the
primary area when you USE a file, unless you tell it otherwise. Recall that when you
DISPLAY STRUCTURE, the data base file in USE is called the "PRIMARY USE
DATA BASE". To activate the secondary area, use the SELECT command and
name the secondary area. Use the following procedure to set up two file areas.

1. USE one file. The system automatically assigns the file to the primary area.

2. Issue the following command:
select secondary

3. USE the second file. It is assigned to the secondary area.

13-1

Using More Than One Data Base File

13-2

Access the two files by using the SELECT command to switch between the active
areas. The system maintains a position in each file. The complete form of the
SELECT command is:

SELECT [PRIMARY]
[SECONDARY]

The two data base files can be processed concurrently. dBASE II commands
operate on the currently selected data base file. To change the SELECTed file, issue
the SELECT command.

use employee
display

00001 New Name Pat 1 123 Crater Everett GA 12345 75 s8
12500.00 A

select secondary
use Jobdet
display

00001 d2 Operator 10640.00 22579.20
goto bottom
display

00010 s8 Typ I st 10640.00 17640.00
select primary
II st next 3

00001 New Name Pat 1 123 Crater Everett GA 12345 75 s8
12500.00 A
00002 Berger Mary 6 10 Kearney Rd Needham MA 02194 89 p8
30000.00 A
00003 Brown John 5 456 Minnow PI Bur I f ngton MA 01730 54 p3
21000.00 A

dBASE II commands that change the position of the current record pointer affect
only the currently selected data base file. These commands include GOTO, SKIP,
REPORT, SORT, COPY, LIST, DISPLAY (for scope of more than one), and
others.

Using More Than One Data Base File

NOTE

There is no effect if SELECT SECONDARY is
entered when the secondary area is already
selected or if SELECT PRIMARY is entered
when that area is already active.

TRANSFERRING INFORMATION BETWEEN AREAS

To answer the question "What is employee Green'sjob title?" the system must access
the EMPLOYEE file for last name and job code and the JOBDET for job title.
Variables from both files are needed in one command. The screen that follows
demonstrates how to do this.

• use emp loyee
• locate for last:name 'Green'
RECORD: DDDDB
• select secondary
• use jobdet
• List Last:name job:titLe for p.job:code=s.job:code .and. p.lest:neme='Green'
00003 Green Team Leader

Notice that the DISPLAY command uses variables from both the primary and
secondary areas. When variables in the two open files have the same name, those
from the area that is not in USE must be prefixed with "P." (Primary) or "S."

13-3

Using More Than One Data Base File

13-4

(Secondary) to denote the source. It is good practice to prefix all variables in the
non-selected area.

• use jobdet
• select secondary

use employee
• select primary
• join to newfi le
• use newfile
• list
00001
00002
00003
00004
00005
00006
00007
DODDS
DODDS
00010
00011
00012
00013
00014
00015
00016
00017

Harris
She ffe r
Green
Brown
Destry
Gilbert
Rowland
Smyth
Berger
Embry
Freitag
Inders
New Name
Green
Howser
Peters

'Scheller

for p.job:code=s.job:code fi~ld last:name,job:code,job:titl~

dS Shift Leader
dB Shift Leader
m1 Team Leader
p3 Programmer
p3 Programmer
p3 Prog rammer
p3 Programmer
p4 Prog/An'alyst
pB Sr Programmr
pB Sr Programmr
p9 Sr PrgAnlyst
p9 Sr PrgAnlyst
sB Typist
sB Typist
sB Typist
sB Typist
sB Typist

When using two areas, the system can compare and select data from both areas, but
can only reposition the current record pointer in one area.

In the previous example, JOBDET.DBF is selected as the primary use data base and
EMPLOYEE.DBF is the secondary use data base. When the files are first USEd, the
system is positioned on the first record in each file. The current record pointer is
moved to the last record in the primary area. Then, the secondary area is selected.
When the FOR phrase is evaluated in the LIST command, each EMPLOYEE
record is compared, in turn, with the last JOBDET record. The current record
pointer moves sequentially through the EMPLOYEE file, while the system main­
tains its position in the JOBDET file. This process is shown in Figure 13-1.

Using More Than One Data Base File

PRIMARY AREA SECONDARY AREA

00001 d2 Operator 10640.00 22579.20 00001 Alazar @
00002 d8 Shift Leader 15000.00 26750.00 00002 Berger p8
00003 ml Team Leader 12000.00 15500.00 00003 Brown p3
00004 m5 Grp Manager 14750.00 19000.00 00004 Destry p3
00005 p3 Programmer 15750.00 25000.00 00005 Embry p8
00006 p4 Progl Analyst 17000.00 26500.00 00006 Freitag p9
00007 p8 Sr Programmr 20000.00 28000.00 00007 Gilbert p3
00008 9 Sr PrgAnlyst 27500.00 36000.00 00008 Green ml
00009 Typist 10640.00 17640.00 00009 Green @)

00010 Harris d8
00011 Howser @)
00012 Inders R9
00013 Peters @)
00014 Rowland

~ 00015 Schaller s8
00016 Shaffer p8
00017 Smyth p4

Figure 13-1 Current Record Pointer Movement with Two Files in Use

When using sequential commands, it is important to SELECT the area containing
the file to be process~d sequentially before issuing any file processing commands.

SET LINKAGE ON can be used to make sequential commands perform position­
ing on both the primary and secondary data base files. The effect is that of a single
data base with up to 64 fields and 2000 characters per record. Use prefixes to
distinguish field names that are the same in both data files.

13-5

Using More Than One Data Base File

13-6

COMBINING TO FORM A NEW FILE

JOIN creates a new file from elements of existing files, two files at a time. The files
must be related to each other in some way. The complete form of the .TOT~
command is:

JOIN TO <file> FOR <exp> [FIELD <field list>]

• The FOR phrase sets the criteria for joining the files. It can be a simple expres­
sion (PART:NO = S.PART:NO) or a cOl11plex logical expression.

• The FIELD phrase is optional. If it is omitted, the new file consists of all
fields in the PRIMARY USE file's structure plus as many of the SECON­
DARY USE file's fields as will fit before exceeding dBASE II's limit of 32
fields per file.

• If the FIELD phrase is included, the new file consists of the named fields
only. Th~ fields may be selected from both files. Be sure to use commas in
the field list to separate the field names. Do not prefix the field names unless
the same name is used in both files.

• Before issuing the JOIN command, SELECT PRIMARY and position the
current record pointer on the first record of that file.

• If the new file does not exist, it is created with this command. If the file
already exists, it is completely replaced with the results of the JOIN
command.

Using More Than One Data Base File

• use jobdet
select secondary

• use employee
• select primary
• Join to newflle

use newflle
• I 1st
00001 Harr Is
00002 Shaffer
00003 Green
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016

Brown.
Destry
G II bert
Rowland
Smyth
Berger
Embry
Freitag
Inders
New Name
Green
Howser
Peters

for p.job:code=s.job:code field last:name,job:code,job:tltle

d8 Sh I ft Leader
d8 Sh I ft Leader
ml Team Leader
p3 Programmer
p3 Programmer
p3 Programmer
p3 Programmer
p4 Prog/Analyst
p8 Sr Programmr
p8 Sr Programmr
p9 Sr PrgAnlyst
p9 Sr PrgAnlyst
s8 Typist
s8 Typist
s8 Typist
s8 Typist

In operation, JOIN positions dBASE II on the first record of the primary file and
evaluates the FOR expression for each record in the secondary file. Each time the
expression yields a TRUE result, a record is added to the new data base. When the
end of the secondary file is reached, the primary file is advanced one record, the
secondary file is repositioned on the first record, and the FOR expression is
evaluated for each record in the secondary file. Then, the comparison is made for
the third record of the primary file, and so on. This process continues until the
primary file is exhausted.

The JOIN command takes a lot of time to complete if the contributing data bases
are large. If the JOINing criteria are too loose, causing many joinings per primary
record, there is the potential for causing a JOIN that dBASE II cannot complete.
For example, suppose that the primary and secondary USE files each contain 1000
records, and that the FOR expression is always true. A million records should be
output by the JOIN into a data base whose size would exceed the dBASE II
maximum of 65,535 records.

13-7

Chapter 14

Command Files

Up to this point, every time you needed to execute a command you entered it. Once
you are familiar with dBASE II, you will find yourself repeating sequences of
commands again and again. You may use one routine to update files, another to
produce a report, a third to display the answer to a frequently asked question.
dBASE II can save instruction sequences in commandfiles that you call and execute
with just one statement.

A command file consists of dBASE II commands. When you execute a command
file, the system reads the command list from diskette and starts at the first line,
processing the commands one at a time until the list is finished.

SETTING UP COMMAND FILES

Command files can be created and modified by text editors and word processors
that produce CP/M files, and with the MODIFY COMMAND capability in
dBASE II. Regardless of how they are created, command files must conform to the
naming conventions and file structures the dBASE II system uses. Consult your
word processor or text editor manual for instructions to use them or use the
following dBASE II command to write command files.

MODIFY COMMAND [<command file>]

If the command file name is omitted, the system prompts you for the file name. You
may enter the name with or without the extension ".PRG" (for PROGRAM).Ifthe
file does not exist, it is created with ".PRG" as the file type extension. If the file does
exist, changes are made to the copy of the file with the ".PRG" extension. A backup
of the original unchanged file with the extension ".BAK" is automatically created.

14-1

Command Files

14-2

Editing Command Files in dBase II

The MODIFY COMMAND instruction creates a command file if it does not
already exist, or retrieves an existing file. dBASE II erases the screen, displays the
file contents, and puts the system in full-screen edit mode. Table 14-1 lists the
dBASE II commands to use when editing command files.

Table 14-1 Full Screen Edit Commands - MODIFY COMMf\.ND

COMMAND ACTION

~ Moves cursor ahead one character
CTRLD
~ Moves cursor back one character
CTRLS
DEL Deletes character under the cursor
CTRLG
CTRLX
CTRLC Advances one screen

CTRLR Moves down one line

CTRLW Saves changes and returns to dBASE II command mode

CTRLQ A horts changes and returns to dBASE II command mode

INS Toggles insert/overtype modes
CTRLV
PRINT Toggles printer on/off
CTRLP
CTRLT Deletes line under cursor

CTRLN Inserts blank line under cursor

To see how MODIFY COMMAND works, create a file called DEPTLIST.PRG
that produces the "SALARY EXPENSE BY DEPARTMENT" report defined in
Chapter 10. Enter the following command at the prompt:

modify command deptlist

Since this is a new file, when the screen is erased the only thing you see is the cursor
in the upper left corner. Enter the command file displayed in the following screen.

* DEPTLIST 10/10/82 LAH
* List all employees In Department 89
erase
use employee
goto top
display number last:name flrst:name status for dept:num = '89'
return

Use the cursor control commands in Table 14-1 to make corrections and changes.
When the file is completely entered, press CTRL W to save the file and return to
command mode.

NOTE

The editor can back up only about 5,000 lines,
so plan to edit moving forward through the
text on larger files.

Command Files

14-3

Command Files

,14-4

Using Other Systems to Create Command Files

Command files created using text editors and word processors must conform to the
command file structure that dBASE II generates automatically.

• Each physical command line can be a maximum of 77 characters, including
the semicolon signaling that the line is continued or the carriage return and
line feed characters that signal end-of-record.

• Logical command lines can be a maximum of 256 characters, including
semicolons and the carriage return and line feed characters.

• Tab characters can be entered, but they are converted to single spaces.

COMMAND FILE CONTENTS

Command files can contain any dBASE II commands. However, be careful in
selecting the commands that are included. If you do not want the person using the
command file to enter data through the keyboard, do not use commands that
require user input (like INSERT, CREATE, APPEND, REPORT, and so on).

The sample file (DEPTLIST.PRG) produces the "SALARY EXPENSE BY
DEPARTMENT" report. It uses commands you already know plus several new
ones.

Documenting the Procedures

It is a good idea to include comments in command files explaining the processing.
Programmers call this documentation. The comments are not printed or displayed
when the command file is executed. They are simply in the file for your own
information. dBASE II has two commands that allow the insertion of text in
command files.

* <char string>
NOTE <char string>

The commands are identical in the rul,es for tbeir formation and the results they
generate. There must be at least one space between the command and the characters
that form the comment. The comment command cannot 'be on the same line with
another command.

Communicating with the System User

Comments and instructions can also be created for display and printing with the
REMARK command. REMARK stores comments in the command file and (unlike
NOTE) also displays and prints them as comments or prompts when the file is
executed.

REMARK <char string>

There must be at least one space between the command and the characters that form
the remark. The REMARK command cannot be on the same line with another
command.

Housekeeping

ERASE clears the screen. It is a one-word command that does not take any
modifiers.

Ending a Command File

A command file is closed when the end of the file is reached or when the RETURN
command is issued. (The RETURN command is the world "RETURN", not the key
labelled RETURN on the APC keyboard.) This command is usually the last
executable instruction in a command file. RETURN is not always necessary, but it is
a good practice to include it.

EXECUTING COMMAND FILES

Command files are started by the DO command, which names the file containing
instructions for the system to execute.

DO <command file>

• The named file must be stored with either the ",.PRG" or ".BAK" extension.
If the extension is not included in the name, ".PRG" is assumed.

• <command file> must consist entirely of commands.

When the DO command is executed, the system opens the command file and reads
it. The commands are interpreted and executed just as keyboard commands are.
(The DO .command is fully explained in Chapter 17.)

Test the command file you just created by entering the following DO command:

do deptlist

Command Files

14-5

Command Files

14-6

If you made a mistake when you typed in the file, your display will not look like the
one that follows. Instead, the system will display a standard error message. Enter
MODIFY COMMAND DEPTLIST and compare your file to the sample. Edit the
command file as necessary and try to DO command again.

00002
00005
00007
00011

6 Berger
2 Embry

14 Gilbert
4 Howser

Mary A
Albert A
Diane A
Peter A

When you create a command file, you are actually writing a dBASE II program.
Chapters 17 through 19 describe the dBASE II programming capabilities and
commands in detail.

Chapter 15

Functions

Functions are special purpose operations that accomplish things that are difficult or
impossible to do using regular arithmetic, logical, and string operations. In dBASE
II, there are three types of functions: numeric, character, and logical. The function
type is determined by the type of value that the function generates. Table 15-1 lists
the dBASE II functions by type.

In general, functions are called by a name or symbol followed by an expression
enclosed within parentheses. Be sure to use the parentheses when entering func­
tions. Do not worry about memorizing the functions, but do scan the descriptions in
this chapter so that you know the kinds of things functions can do and where to look
for information about them.

15-1

Functions

15-2·

Table 15-1 Functions

FUNCTION NAME

Data Type

Date

Deleted Record

End-of-File

File

Integer

Macro Substitution

Number to Character

Peek

Record Number

String

String Length

String to Numeric

Substring

Substring Search

Test

Trim

Uppercase

NUMERIC FUNCTIONS

Integer Function

INT(<number/var/exp»

TYPE

Character

Character

Logical

Logical

Logical

Numeric

Character

Character

Numeric

Numeric

Character

Numeric

Numeric

Character

Numeric

Numeric

Character

Character

The integer function evaluates a numeric expression and discards the fractional
part, if any, to yield an integer value. The value returned is the truncated - not
rounded - value of the numeric expression within parentheses. The term inside the
parentheses can be a number, numeric variable, or simple or complex expression.
Expressions are evaluated and then the result is truncated.

The following examples demonstrate some properties of the integer function and
ways it can be used. Enter these commands at the dot prompt, or try some examples
of your own.

? Inl(123.456)
slore 123.456 to X
? Inl(x)
? Inl(123.876)
? Inl(-123.876)
? inl(x + 0.5)
? Inl(25.09/5.04)

• ? Int(123.456)
123

• store 123.456 to x
123.456

• ? I nt (x)
123

• ? I nt (1 23 • 876,)
123

• ? Int(-123.876)
-123
? Int(x + 0.5)

123
• ? Int(25.09/5.04)

4

Functions

15-3

Functions

15-4

Notice that both positive and negative numbers can be used. A call to a variable
returns the truncated integer formed from the current value of that variable. The
result of the function can be stored in a file or memory variable.

To round to the nearest whole number, add .5 to the value of the expression. The
expression within parentheses is first evaluated, and then the integer function of the
result is taken.

The integer function can be used to round a value to any number of decimal places.
INT(<value> * 10 + .05)/10 rounds a value to the nearest tenth because of the order
of precedence of operations - parentheses, then integer, then division. To round to
two places, use "100" in place of the "10"s. For three places, use "1000", and so on.

Peek Function

PEEK «address»

The peek function returns the decimal value of the byte at the specified address in
the computer's memory. The address must be in decimal format. This function is
used by advanced programming operations.

Record Number Function

The record number function, #, returns the integer corresponding to the current
record number. The result is a number that can be stored, displayed, and used in
operations.

use emp I oyee
goto 5
? II

5
? II + 10

15
goto bottom
? #

17-

String Length Function

LEN (<var / char string»

The string l'ength function returns the number of characters in the named variable
or string. If a character type variable is used, this function returns the size of the
field, not the length of the contents. To test the difference, enter the following
commands.

? len('abc')
store 'abc' to string
? len(string)
use employee
display last: name
? len(last:name)

Functions

15-5

Functions

15-6

• ? I en (, abc')
3

• store "abc" to string
abc
• ? len(strlng)

3
• use employee
• display last:name
00001 AI azar
• ? len(last:name)

12
• ? len('Alazar')

6

The string length function can be useful when a program has to determine, without
operator i"ntervention, how much storage to allocate for information.

String to Numeric Function

V AL(<char string»

The string to numeric function converts a character string or substring consisting of
numerals and a sign, if present, into the equivalent numeric quantity.
The length of the integer returned iS,equal to the number of characters in the string.
If the character string begins with numeric characters but contains non-numeric
characters, the value generated by the function is the value of the leading numeric
characters only. The system interprets a period as a non-numeric character, not a
decimal point. Therefore, the function truncates the numerals to a whole number
value. '

The following screen demonstrates how the function works.

• ? val('123')
123

? val('122xxx')
122

• ? val ('123.456 I)
123

• store '123.456' to num
123.456

? 14 + &num
137.456

Another way to convert character strings of numerals into numeric values is the
macro substitution function (&). This function is demonstrated in the previous
screen and is described in Chapter 12 and later in this chapter. The macro substitu­
tion function will convert a character string, including the decimal point and sign if
present, into a numeric value.

Substring Search Function
@(<char string 1 > ,<char string2»

Think of the substring search function as a way of asking the system "Where is
stringl in string2?" The function returns an integer whose value is the character
position which begins a substring identical to <char stringl>. If the first string does
not occur in the second string, a value of 0 is returned.

Functions

15-7

Functions

15-8 I

One use for this function is to determine where a specific string starts so that you can
use that number for <start> in the substring function (described later in this
chapter). The function can also tell whether a specific string occurs at all. Command
~iles can. use this information when searching for strings without operator
mterventIon.

• use emp I oyee
• display
00001 Pat Alazar 123 Crater
• ? @('AI',last:name)

1
• ? 'AI' $ last:name
• T.

Everett WA 98206 75 s8 12500.00 .F.

Note that the substring search function is similar to the substring logical operator
($). The substring logical operator tells whether one string occurs within another (it
returns a True or False value), while the substring search function tells the starting
position of one string within another string.

Test Function

TEST «exp»

The test function checks an expression for syntactic correctness and returns a value
of zero if the expression contains a syntax error. If the expression does not contain a
syntax error, a non-zero value is returned.

? test(2+2=4l
1

? test((3*7l/(14l
o

The test function is useful during the development and testing of command files (see
Chapters 17-19). Normally, when the system encounters a syntax error, it interrupts
execution of the command file and displays an error message. Using the test
function, you can test a command for accurate syntax and bypass a command or
take corrective action if the command contains an error. The following IF com­
mand demonstrates this use of the TEST function.

IF 0 = TEST «exp»
take a corrective aCtion; expression contains an error

ELSE
proceed; expression is correct

ENDIF

Functions

15-9

Functions

15-10

CHARACTER FUNCTIONS

Data Type Function

TYPE(<exp>)

The data type function returns a one-character string that contains "C", "N", or "L"
depending on whether the data type of the expression is Character, Numeric, or
Logical respectively.

• I nput to char
: 123

123
• ? typeCchar)
N
• I nput to another
:'hello'
hello
• ? typeCanother)
C
• Input to lastone
:t
• T.

? typeClastone)
L
• use emp I oyee

? typeCsalary)
N

? typeClast:name)
c

typeCact:stat)

Date Function

DATEO

The date function generates a character string that contains the system date in the
format MM/DD/YY. The character string returned is always eight characters long.
Enter the function exactly as shown, with no characters or spaces between the
parentheses. The parentheses indicate to dBASE II that this is a function and not a
variable named "DATE".

The date can be entered when you start a dBASE II session, and can be changed at
any time using the SET DATE TO command.

• ? date()
00/00/00
· set date to 9 23 48
• ? date()
09/23/48
· set date to 15+68+99
• ? date()
15/68/99

Number to Character Function
CHR(<numeric exp»

The number to character function returns the ASCII character equivalent of the
numeric expression. For instance, if the expression is the number 13, CHR(l3)
generates the ASCII carriage return character. This function is useful for sending
direct controls to hardware devices such as printers and for interpreting keyboard
input.

Macro Substitution Function
&memvar

The macro substitution function is fully described in Chapter 12. It tells the system
to substitute the contents of a memory variable for the macro substitution symbol
and variable name in the current command.

Functions

15-11

. Functions

15-12

String Function

STR(<numeric exp/var/number>, <length> ,[<dec>])

The string function converts a number or the contents of a numeric variable or
expression into a string of the specified length with the specified number of digits to
the right of the decimal point. The length must be at least large enough to hold all
the digits plus the decimal point. If the field is not large enough to hold the result,
the function returns asterisks (*) to indicate that the value is wrong. If the numeric
value is shorter than the specified field, the remaining portion is filled with blanks. If
the decimal portion is not specified, zero is assumed. Except when used to generate a
key for indexing, all specifiers may be literals, variables, or expressions.

• 1 str(salary,10,2)
12500.00

• ? str(salary,5,2)
**125
• 1 str(159.852,9,3)

159.852
• ? str(159.852,9,1)

159.8
· 1 str(159.852,7,3)
159.852
• ? str(159.852,4,3)

WARNING

When this function is used to generate a key for
indexing, the specifiers must be literals. Var­
iables and expressions are not accepted.

Substring Function

$(<char string>, <start> , <length»

The substring function forms a character string from the specified part of another
character string. The value of the substring is a character string of the specified
length filled with characters from <char string> starting at the specified position. As
with the string function, <start> and <length> may be literals, variables, or expres­
sions unless the function is used to generate an index key.

If <length> is longer than the character string or if it is longer than the number of
characters from <start> to the end of the string, the result consists of only those
characters that are in the character string.

The following example demonstrates how this function can be used as the first step
ofa date validation routine. Groups of two characters are taken from a six character
date field. Then, the results can be converted to integers (using the VAL(...) function)
and checked to determine whether they are in the correct range.

Functions

15-13

Functions

15-14

• store date() to mdate
11/09/82
• store S(mdate,1,2) to month
11
• store $(mdate,4,2) to day
09
• store $(mdate,7,Z) to year
82

WARNING

When the function is used to generate a key for
indexing, the specifiers must be literals.

Trim Function

TRIM(<char string»

The trim function eliminates the trailing blanks in a field. Usually dBASE II carries
trailing blanks on all variables to avoid column alignment problems on displays.

A special form of the TRIM function removes the trailing blanks from a character
string memory variable:

STORE TRIM(<char var» TO <memvar>

• use emp I oyee
• display last:name flrst:name
00001 Alazar Pat
• display trlmClast:name) trlmCflrst:name)
00001 AI azar Pat

• store 'a few characters
a few characters

? lenChold)
26
store trlmChold) to hold

a few characters
• ? lenChold)

16

, to hold

WARNING

This function must not be used as part of an
index key.

Functions

15-15

Functions

15-16

Uppercase Function

! «char string»

The uppercase function converts all lowercase characters in the character string to
uppercase. Any other characters in the string are unaffected.

This function is useful for converting keyboard input into a standard form in the
files. This makes it simpler when searching for data later, since all of the data is
stored in uppercase regardless of how it was entered.

• ? I('thls will print In uppercase letters once converted')
THIS WILL PRINT IN UPPERCASE LETTERS ONCE CONVERTED
.use employee
• display last:name
00001 Alazar
• display 1(last:name)
00001 AL AZ AR
• display street
00001 123 Crater
• display I(street)
00001 123 CRATER
• d I sp lay. sa I ary
00001 12500.00
• display !(salary)
*** SYNTAX ERROR ***

?
dis play I (SAL ARY)
CORRECT AND RETRY (YIN)? N

LOGICAL FUNCTIONS

Deleted Record Function

*
The deleted record function returns .T. (TRUE) if the current record has been
marked for deletion and .F. (FALSE) otherwise.

use emp I oyee
I 1st next 5

00001 Pat Alazar 123 Crater Everett WA 98206 75 58 12500.00 • F.
00002 Albert Embry 345 Sage Ave Palo Alto CA 94303 89 p8 22200.00 • F.
00003 Ralph Destry 234 Mahogony Deerfield FL 33441 38 p3 15575.00 • F.
00004 Peter How ser 678 Dusty Rd Chicago IL 60631 89 58 9500.00 • F.
00005 Joh n Brown 456 Minnow PI Bur I I ngton MA 01730 54 p3 21000.00 • F.

goto top
delete

00001 DELET 10N(S)
? *

• T.
dlspley next 5 for *

00001 *Pat Alazar 123 Crater Everett WA 98206 75 58 12500.00 • F.
goto top
dlspley next 5 for .not. *

00002 Albert Embry 345 Sage Ave Palo Alto CA 94303 89 p8 22200.00 • F.
00003 Ralph Destry 234 Mahogony Deerfield FL 33441 38 p3 15575.00 • F.
00004 Peter Howser 678 Dusty Rd Chlcego IL 60631 89 58 9500.00 .F.
00005 John '. Brown 456 Minnow PI Bur II ngton MA 01730 54 p3 21000.00 • F.

Functions

15-17

Functions

15-18

End-OC-File Function

EOF

The end-of-file function returns .T. (TRUE) if the end of file has been reached for
the file in USE. (This means that the current record pointer is set beyond the last
record in the data base file.) Otherwise, the value is .F. (FALSE). This function is
useful in command files that must perform a series of operations on each record in a
file and then perform a new set of actions when file processing is complete.

• use employee
• goto 5
• ? eof
• F.
• goto bottom
• ? eof
• F.
• display
00017 Per Inders 321 Sawtelle Tuscon AZ 85702 0.00 .F.
• skip
RECORD: 00017
• ? eof
• T.

File Function
FILE(<"file name" /var/ exp»

The file function is a logical function that yields the value .T. if the named file exists
and .F. if it does not. If you use a specific file name, enclose it in quote marks. The
name of a string variable does not require the quote marks. You can also use any
valid string expression. For instance, FILE("B:"+ database) would tell you whether
the file name stored in the memory variable" database" is on Drive B. This function
is useful in programs to see whether a file name entered by the user is spelled
correctly.

• ? flle('employee')
• T.

• ? f I I e (; , em p ,)
• F.
• store'Jobdet' to filename
Jobdet
• ? flJe(flJename)
• T.

Functions

15-19

Chapter 16

Setting Up The Environment

dBASE II has a number of commands, called SET commands, that control how the
system interacts with the APC. You can change these parameters or leave them at
their default values. The SET command have two formats.

The first format allows those parameters that are "toggles" to be set on or off. These
commands are listed in Table 16-1. The general format of these commands is:

SET <parm> [ON]
[OFF]

The second format allows you to reset parameters that need string values to operate.
These parameters can be changed in command files or interactively as you work at
the APC. These SET commands are listed in Table 16-2. Their general form is:

SET <parm> TO <option>

There is no need to memorize the SET commands. As you work with the established
defaults, you can decide whether you want to change any of the parameters. For
now, just read through the list and try the commands.

Every time you initiate a dBASE II session, each parameter is set to its default value.
These values are underlined in Table 16-1.

16-1

Setting Up the Environment

16-2

Table 16-1 SET ON and SET OFF Commands

COMMAND

SET ALTERNATE ON

OFF

SET BELL ON

OFF

SET CARRY ON

SET COLON ON

ACTION

Echo output to a disk file.

Do not echo to a disk file.

In data entry and edit modes, ring bell
when illegal data is entered and when
data completely fills a field.

Turn bell off.

When inserting and appending rec­
ords, carry data forward from the
previous record.

Do not carry data forward.

Bound GET data items with colons in
@ commands.

OFF Do not display colons as boundaries
in @ commands.

SET CONFIRM

SET CONSOLE

SET DEBUG

ON

OFF

ON

OFF

ON

OFF

Do not skip to the next field in editing
until a contol key (such as RETURN)
is pressed.

Skip to the next field as each field is
filled with characters.

Echo all output tothe display screen.

Do not echo output to the display
screen.

Send output from the ECHO and
STEP commands to the printer.

Do not send ECHO and STEP output
to the printer.

Table 16-1 SET ON and SET OFF Commands (cont'd)

COMMAND

SET ECHO

SET EJECT

SET ESCAPE

SET EXACT

ON

ACTION

Display all commands from a com­
mand file on the screen as the file is exe­
cuted.

OFF Do not echo command file statements

ON

on the screen.

Eject one page before printing the
output of a REPORT command.

OFF Suppress the page eject prior to print­
ing REPORT command output.

ON Activate the ESC key, allowing the
system user to abort execution of
command files.

OFF Do not allow any escape from com­
mand files.

ON

OFF

Require an exact match for character
strings, except for trailing blanks, in
expressions and the FIND command.

Match character strings on the basis of
the length of the second argument.

SET INTENSITY ON Use dual intensity for full-screen
operations.

OFF

SET LINKAGE ON

OFF

Do not use dual intensity.

Make all sequential commands (LIST,
SKIP, and so on) perform positioning
on both the PRIMARY and SEC­
ONDARY data bases.

Keep PRIMARY and SECONDARY
data base operations inde­
pendent.

Setting Up the Environment

16-3

Setting Up the Environment

Table 16-1 SET ON and SET OFF Commands (cont'd)

COMMAND

SET PRINT

SET RAW

SET SCREEN

SET STEP

SET TALK

16-4

ON

OFF

ON

OFF

ON

ACTION

Echo all output to the printer.

Do not list output on the printer.

Do not insert spaces between fields for
LIST and DISPLAY commands that
do not use a field list.

Place spaces between fields for LIST
and DISPLA Y commands that do not
use a field list.

Use full-screen capability for EDIT,
APPEND, INSERT, and CREATE.

OFF Turn off full-screen capabilities.

ON Halt after the completion of each
command in a command file. Wait for
instructions to continue with the next
command, escape from the command
file, or accept a command from the
keyboard. (STEP is used for debug­
ging command files.)

OFF Follow normal operations.

ON Display results from commands on
the display screen.

OFF Do not display command results on
the display screen.

Setting Up the Environment

Table 16-2 Character String SET Commands

COMMAND ACTION

SET ALTERN ATE TO [<file>] This command is part of a two-step
process to write everything that is
normally written on the screen into a
diskette file as well.

SET CALL TO <address> This command is part of a two-step
process to set up a branch to a jump
vector or machine language subrou-
tine. It specifies an address, in deci-
mal, in the computer's memory.

SET DATE TO <mm/dd/yy> The system date can be set or reset at
any time with this command. It does
not validate the date entered.

SET DEFAULT TO <disk drive> This command makes the specified
disk drive the default drive. dBASE II
assumes that all files are on this disk
drive unless the name is preceded by a
different drive specifier. This allows
you to write command files so that
referenced files can be on any drive in
the system. (You can also use the
macro substitution function for disk
drive assignment in command files.)

When the default drive has been set,
all inexplicit file names are set to the
default. This is true for form files,
command files, memory files, format
files, index files, and text files, as well
as data base files.

The parameter <disk drive> mayor
may not have the colon (:) attached.
That is, both "B" and "B:" are accep-
table forms of specifyiI?g Drive B.

16-5

Setting Up the Environment

Table 16;.2 Character String SET Commands (cont'd)

16-6

COMMAND

SET FORMAT TO [SCREEN]
[PRINT]
[<format file>]

SET HEADING TO <char string>

SET INDEX TO <index file list>

ACTION

This SET command does not affect
the CP 1M default drive in any way.
The dBASE II default drive is the
same as the CP 1M default drive you
initiate a dBASE Il session. The SET
DEFAULT command redefines the
system's internal default only within
dBASE II.

The first two formats of this SET
command determine where the output
of commands is sent. The last format
names the source of input for READ­
ING data in the @ command.

This command saves the character
string internally and prints it as part of
a REPORT header. The character
string is saved for the duration of the
current session only.

This command closes any index files
that are currently open and then opens
all index files named in the index file
list. The first file named is called the
master index. It is used to sequence
the data base file. All index files listed
are automatically updated with addi­
tions to and deletions from the data
base in use.

Chapter 17

Introduction To Programming

For most applications, the commands covered to this point in the manual will be
sufficient. You can create data bases, query them, and report the contents without
creating programs. But if you want to, you can write programs to accomplish many
functions using dBASE II. This chapter discusses the basic constructs, building
blocks, from which computer programs are developed .

. SEQUENCE

The command file you have already created demonstrates the first programming
construct, sequence. This simply means that the system executes instructions in
order, one after the other, from the first command it encounters to the last one in a
file.

DECISIONS

Sometimes it is necessary to take different actions based on the data. Computers can
make choices and decisions as long as they are presented in a way that the system
can understand. Suppose you want to calculate raises for all employees in the
EMPLOYEE file. The percentage of the increase is based on the current salary; 10%
for those earning less than $15,000, 5% for everyone else. You could state the policy
as a procedure in English something like this: If the salary is less than $15,000 add
10% to it, otherwise add 5%. Decisions are stated in dBASE II in much the same
way. The salary increase policy could be written in the following form.

I F salary < 15000

salary = salary + (.10 * salary)

ELSE

salary = salary + (.05 * salary)

ENDIF

17-1

Introduction to Programming

17-2

The IF. .. ELSE ... ENDIF structure, or decision construct, is dBASE II's way of
making choices. Try this structure in a command file to see how it works. Create a
new command file called "RAISES" using MODIFY COMMAND. Then enter the
file as it appears in the following display.

* RAISES 10-15-82 LAH
* ~alculate and display raise
erase
set ta I k off
use emp I oyee
goto top
? "NUMBER: "+ str(number,3)
? "NAME: " + last:name
? "OLD SAL: "+ str(salary,8,2)
IF salary < 15000

store salary + (.10 * salary) to msalary
ELSE

store salary + (.05 * salary) to msalary
ENDIF
? "NEW SAL: "+ str(msalary,8,2)
return

NOTE

Indenting is not required. However, it makes
the command file easier to read.

Introduction to Programming

Execute the file by entering:

do raises

If the system displays the name, old salary, and correct new salary for the first
employee, the command file worked. (If it did not execute properly, enter MODIFY
COMMAND, RAISES and check your command file against the example.)

The general form of the IF command is:

IF <exp>
<statement>

[ELSE
<statement>]

ENDIF

The IF command allows conditional execution of other commands. When <exp> is
true, the commands following the IF are executed. When <exp> is false, the
commands following the IF are bypassed and those following the ELSE are
executed. ENDIF is required to signal that the IF command is complete.

The square brackets enclosing the ELSE clause indicate that it is optional. This is
useful when you want to take certain actions if a condition is true and take no action
ifit is false. For example, the DEPTLIST command file created in Chapter 13 could
be modified to print information about active employees only. The screen below
demonstrates how the IF works with this kind of simple decision.

17-3

Introduction to Programming

17-4

IF (number> 50 .and. salary < 22000) .or. name = 'T'
display flrst:name last:name dept:num

ENOl F

In a simple decision, ELSE is not specified. The IF <exp> is evaluated. When it is
true, all statements between IF and ENDIF are executed. When it is false, all
commands between IF and ENDIF are skipped.

Notice that <exp> is complex. The IF condition can be a series of expressions (up to
a maximum of 254 characters) that are evaluated logically. If all the conditions are
true, the system performs the commands following the IF.

Introduction to Programming

MULTIPLE CHOICES

Frequently, you have to make a choice and take an action from a list of alternatives.
A common example is a screen menu from which a system user selects one of several
different procedures.

Nesting

In creating a program that involves choices and selections, you can use a special
form of the IF ... ELSE ... ENDIF construction called "nesting".

IF <exp>
<statement>

ELSE
IF <exp>

<statement>
ELSE

IF <exp>
<statement>

ELSE
<statement>

ENDIF
ENDIF

ENDIF

Figure 17-1 Nested IF Command

Figure 17-1 demonstrates how much indenting helps you to understand nested
commands. IF ... ELSE ... ENDIF commands may be nested to as many levels as
necessary. Notice that every IF has a corresponding ENDIF.

NOTE

<statement> refers to whole command state­
ments. The IF command begins with IF and
ends with ENDIF. Statements must nest pro­
perly.

17-5

Introduction to Programming

17-6

Case Structure

An alternative to nesting IF statements is the CASE structure. It can simplify
coding by eliminating nesting. Figure 17-1 demonstrates a three-level nested IF.
The same three levels are demonstrated using the CASE structure in Figure 17-2.

DO CASE
CASE <exp>

<statement>
CASE <exp>

<statement>
CASE <exp>

<statement>
OTHERWISE

<statement>
ENDCASE

Figure 17-2 Case Structure

The expressions can be any logical expression. Only the first CASE for which the
expression is true is executed. Even if succeeding CASE expressions are true,
processing skips to the first command after the ENDCASE command (see the
programs in the sample application, Appendix H, for examples of the CASE
structure).

REPEATING A PROCESS

RAISE works well for one employee, but the command should do the same thing
for every employee on the file. The repetition construct is handled by the DO
WHILE command in dBASE II.

DO WHILE <exp>
<statement>

ENDDO

To make RAISES work for every employee record on the file, you can use the DO
WHILE construction. Modify your RAISES command file to look like the one that
follows. The DO WHILE command uses the end-of-file function. As long as the
record pointer is not at the end of the file, the commands between DO WHILE and
ENDDO are executed.

* RAISES 10-15-82 LAH
* Calculate and display raIses
erase
set ta I k off
use employee
goto top
DO WHILE .not. eof

? "NUMBER: "+ str(number,3)
? "NAME: " + last:name
? "OLD SAL: "+ str(salary,8,2)
IF salary < 15000

store salary + (.10 * salary) to msalary
ELSE

store salary + (.05 * salary) to msalary
ENDIF
? "NEW SAL: "+ str(msalary,8,2)
skit p

ENDDO
return

N OW execute the command file by entering:

do raises

Introduction to Programming

17-7

Introduction to Programming

17-8

When the file is executed, the output scrolls by on the display screen so fast it is
impossible to read. To correct this, you can add a line to the command file to turn
the printer on. Then, the results can be printed. Alternatively, you can change the
format of the output so that each employee's data is displayed on a single line. To do
that, edit the command file as follows.

* RAISES 10-15-82 LAH
* Calculate and display raises
erase
set tal k off
use employee
goto top
? uNUM NAME OLD SAL NEW SAL"
DO WHILE .not. eof

IF salary < 15000
store salary + (.10 * salary) to msalary

ELSE
store salary + (.05 * salary) to msalary

ENDIF
? str(number,3) +" "~Iast:name +" "+ str(salary,8,2);

+" "+ str(rnsalary,8,2)
skip

ENDDO
return

Introduction to Programming

When the command file is executed, your screen should look like the display that
follows.

NUM NAME OLD SAL NEW SAL
1 Alazar 12500.00 13750.00
6 Berger 30000.00 31500.00
5 Brow n 21000.00 22050.00
3 Destry 15575.00 16353.75
2 Embry 22200.00 23310.00
9 Freitag 2775.00 3052.50

14 Gilbert 24500.00 25725.00
11 Green 14500.00 15950.00
12 Green 12500.00 13750.00
15 Harris 21700.00 22785.00

4 Howser 9500.00 10450.00
17 Inders 31500.00 33075.00

7 Peters 13700.00 15070.00
13 Rowland 15750.00 16537.50
16 Schaller 11000.00 12100.00

8 Shaffer 17900.00 18795.00
10 Smyth 20100.00 21105.00

Repetition is one of the major advantages of a computer. It can do the same task
over and over without getting bored or making mistakes because of the monotony.
However, the computer will continue to execute the commands within the loop
forever if the value in the specified condition never changes.

17-9

Introduction to Programming

17-10

DO WHILE constructs are useful when you know how many times you want a
process repeated, as the sequence below demonstrates.

STORE 1 TO Index
DO WHILE Index < 11

I F Item =" "
SKIP
LOOP

ENDIF Item Is blank
DISPLAY Item
SKIP
STORE Index + 1 TO Index

ENDDO Repeats ten times

In this example, the user wants to display the names of10 items. The computer first
stores the value "1" in a memory variable called INDEX. This is known asinitalizing
the counter. Then it enters the DO WHILE loop. The first thing that happens in this
loop is a test to see if the instructions within it should be executed or bypassed. If the
value of INDEX is less than 11, the computer proceeds through the DO WHILE
instructions. When the counter passes 10, the computer skips the loop and performs
the next instruction after the ENDDO. Within the DO WHILE loop, the system
tests the value of ITEM. If there is data in the ITEM field, it is displayed, the value of
INDEX is increased by 1, and the system skips to the next record. If the value of
ITEM is spaces, the system just skips to the next record.

The LOOP instruction is used to stop a sequence and send the system back to the
start of the DO WHILE loop that contains the instruction. In the example, if the
ITEM field is blank, the record is not processed because the LOOP command
moves the computer back to "DO WHILE INDEX < 11". The records with blank
items are not counted, since this loop bypasses the instruction where the counter is
incremented.

Introduction to Programming

The problem with LOOP is that is short-circuits program flow, making it very
difficult to follow program logic. The best practice is to avoid the LOOP instruction
whenever possible.

COMBINING IFs and DO WHILEs

. dBASE II statements in command files must nest correctly. To nest something
means that one statement must fit completely inside another statement. This is
especially important to proper execution of the IF-ELSE-ENDIF and the DO
WHILE-ENDDO commands. Indenting a command file helps show that the
statements are correctly nested. dBASE II does not catch nesting errors. It will,
however, execute the command file in an unpredictable manner.

Figure 17-3 demonstrates the correct way to nest. The IF-ELSE-ENDIF statement
is totally within the first DO WHILE-ENDDO command. The second DO WHILE
statement is totallY within the ELSE part of the IF-ELSE-ENDIF. It would be just
as easy to show more levels of nesting, since dBASE II allows many more levels to
exist.

DO WHILE .NOT. EOF

statements

IF A .AND.~

more statements

ELSE
DO WHILE A <= 57

some more statements

ENDDO

more statements

ENDIF

more statements

ENDDO

Figure 17-3 Correct Nesting

17-11

Introduction to Programming

17-12

Figure 17-4 is an example of an error. The results of executing this file are unpredic­
table. The ENDDO crosses the boundary of the IF-ENDIF group. The statements
do not nest properly. This command file would not execute properly and dBASE II
would not explain why.

DO WHILE .NOT. EOF

statements

IF A .AND. B

statements

ENDDO

statements

ENDIF

Figure 17-4 Incorrect Nesting

PROCEDURES

Command files can execute other command files. This means that you can create
standard procedures and use them again and again. To call a command file from
within a command file, use the DO command just as you wouldfrom the keyboard.

DO <command file>

DOs can be stacked up to 16 deep. That is, a command file can contain DO
commands which invoke other command files that invoke other command files,
and so on.

Introduction to Programming

EXITING A COMMAND FILE

There are two ways to exit from a command file. The RETURN command signals
that the end of the commands has been reached and execution of the file is complete.
This command is used inside a command file to return control to the command file
which called it or to the keyboard if the command file was called interactively. The
command is the single word RETURN, without any modifiers. (It is not the
RETURN key on the alphanumeric keyboard.)

CANCEL is used in command files to stop file execution and return to the normal
keyboard interactive mode. The following segment of a command file demonstrates
one use for this command.

IF status = 'S'
cancel

ELSE
display last:name status dept:num

ENDIF

A command file releases control when it reaches the end of the file or encounters the
RETURN command. If the current command file was called by another command
file, control is returned to the higher level command file.

If, during the execution of a command file, a CANCEL command is encountered,
all command files are closed and the keyboard becomes the source for future
commands.

17-13

Chapter 18

Interactive Programs

For some applications, command files need more information than is available in
the data bases. The programs require communication and interaction with the
system user. Command files can be set up so that they prompt the system operator
with messages to indicate what information is needed. The commands presented in
this chapter do this. They are useful in programs that present menus of functions
from which one is to be selected. They are also found frequently in command files
when it is important to insure that data is entered correctly.

ACCEPTING DATA INTERACTIVELY

The following commands all accept input from the keyboard. WAIT and ACCEPT
take character data only. INPUT accepts all data types as input.

Wait Command

WAIT [TO <memvar>]

The WAIT statement halts command file processing. The system displays the
prompt "W AITINO" and waits for a single character to be typed at the keyboard.
Processing continues after any key is pressed.

If a memory variable is specified in a TO phrase, the input character is stored in that
variable. If the iIlPut is a non-printable character (RETURN, ESC, CTRL, and so
on), a blank is stored in the memory variable.

WAIT can be used for rapid data entry since it reacts instantly to an input. The user
does not have to press RETURN to enter the data. Therefore, the WAIT command
should not be used when an incorrect entry could do serious damage to your data
base.

18-1

Interactive Programs

18-2

• wait
WAITING
· wait to holdloglc
WAITING t
· wait to holdchar
WAITING e
• wait to holdnum
WA iT I NG 1
· display memory
HOLDLOGIC (C) t
HOLDCHAR (C) e
HOLDNUM (C) 1
** TOTAL ** 03 VARIABLES USED 00003 BYTES USED

Input Command

INPUT ['<char string>'] TO <memvar>

The INPUT command accepts any data type from the keyboard and stores the input
in the named memory variable, creating that variable if it did not exist. If a character
string is included, it appears on the display screen followed by a colon. The
character string is a prompt. Data should be entered following the colon. The data
type of the memory variable (character, numeric, or logical) is determined by the
type of data that is entered. Character string prompts must be enclosed by quotes or
square brackets.

· Input to x
:3

3
· Input to z
:23/17.000 + x
4.352

• Input 'PROMPT USER TO FOR I NPUT' to q
PROMPT USER FOR INPUT:12345

12345
• Input 'ENTER T IF EVERYTHING IS OKAY' to log
ENTER T IF EVERYTHING IS OKAY:t
• T.
• Input "ENTER A CHARACTER STRING" to char
ENTER A CHARACTER STRING:'Character string must be delimited.'
Character str I ng must be de I I m I ted.

d I sp I ay memory
x
z
Q
LOG
CHAR
** TOTAL **

(N) 3

(N) 4.352
(N) 12345
(L) • T.
(C) Character string must be delimited.

05 VARIABLES USED 00053 BYTES USED

Interactive Programs

18-3

Interactive Programs

18-4

Accept Command

ACCEPT -['<char string>'] TO <memvar>

The ACCEPT command accepts character data without the need for delimiters. It is
useful for long input strings, where a forgotten quote mark can mean a lot of
retyping. ACCEPT requires the operator to press RETURN after typing in the data.
Therefore, it can also be used for single character entry when data integrity is
important.

• accept "ENTER PERSON'S NAME" to nam
ENTER PERSON'S NAME:John PatrIck HardIman
• accept "ENTER PERSON'S NAME" to nam2
ENTER PERSON'S NAME:Marllyn Green
• accept to any
:any characters
• dIsplay memory
NAM (C) John PatrIck HardIman
NAM2 (C) MarIlyn Green
ANY (C) any characters
** TOTAL ** 03 VARIABLES USED 00048 BYTES USED

FORMATTING THE SCREEN

ACCEPT, INPUT, and the? command can all be used to place messages and
prompts to the system user on the screen. The problem with all of these commands,
however, is that the character strings appear just below the last line of print that is
already on the screen. There is a better way to ask for input.

Positioning the Cursor

The @ command positions prompts and accepts data from almost any position on
the screen. At its simplest, the format of the @ command is:

@ <coordinates> [SAY' <char string>']

The @ command positions the character string prompt, if any, at the screen
coordinates specified. The coordinates are the row and column on the screen.
Position 0,0 is the top row, first column; position 23,79 is the bottom row, last
column. If 9,34 were specified as the coordinates, the prompt would start on the
tenth row in the 35th column.

Displaying Prompts and Messages

The SAY phrase is optional. Without it, the @ command erases the row on the
display screen indicated by the row coordinate beginning with the column specified
by the column coordinate.

To see how the command works, enter the following commands at the prompt:

erase
@ 20,30 say 'What?'
@ 5,67 say 'Here ... '
@ 11,11 say "That's all."
@20,0
@ 5,0
@ 11,16

Displaying Data Field Values

Instead of only displaying a prompt, the command can be used to show the value of
an expression consisting of one or more variables.

@ coordinates [SAY <exp>]

Interactive Programs

18-5

Interactive Programs

18-6

Enter the following commands to test this format:

erase
use employee
@ 13,9 say zip:code
@ 13,6 say state
skip 3
@ 23,5 say last:name +',' + street

The @ command can be expanded further to show the values of variables at
whatever screen position is specified.

@ <coordinates> [SAY <exp>] [GET <var>]

To see how this works, enter the following commands:

erase
use employee
@ 15,5 say 'state' get state
@ 10,17 get zip:code
@ 5,0 say 'Name' get last:name

This sequepce positions the values of the variables, with and without prompts, at
various places on the screen. With this facility, you can design displays so that your
screens look just like the paper forms that they are replacing.

@ commands do not have to be presented in row order when writing to the screen,
but it is good practice to write them this way.

• The top row of the screen, row 0, is reserved for special dBASE II purposes.
Therefore, do not issue a format command for that row.

• The @ command with no GET or SAY phrase clears a line or the part of a
line, from the designated column to the end of the line. For example, the
command"@ 10,12" erases row 10 from column 12 through the end of the
row.

• The coordinates can be literals, variables, or expressions.

• When the GET phrase is used without the SAY phrase, only the colons
delimiting the field length for the variable are displayed.

FILLING IN THE DATA

Once the screen has been formatted using @ commands, the system is ready to
accept data. To get data into the variables on the screen, enter:

read

The cursor is positioned on the first field displayed by an @ command. The operator
can type in new data or leave the field as it is by pressing RETURN. When data fills a
field or RETURN is pressed, the cursor jumps to the next variable to accept data.

In the example that follows, the state, zip code and name fields were edited and the
results were stored in the data base file. You can verify' this by executing the display
command after editing the data.

Name:New Name

state:GA
read

• d I sp lay

12345

00001 New Name Pat
12500.00 A -

Interactive Programs

18-7

Interactive Programs

18-8

READ is a one-word command. It tells the system to enter full-screen edit mode for
editing and/or data entry. Additions and ~hanges made to the variables on the
screen are entered into the appropriate data base fields or memory variables. The
SET SCREEN ON command must be in effect for this command to operate. This is
the default condition for that SET command.

Variables used with the @ command and edited with READ must either be in the
file that is in USE as field names or be in the system as character string memory
variables. Memory variables must be defined prior to the @ command. If necessary~
set up the memory variable by creating it with as many blanks as the maximum
number of positions the field should occupy. (For example, "STORE' , TO
MEMVAR" sets up a variable called MEMV AR with a length orfive.)

You must use the ERASE or CLEAR GETS command after every 64 GET
commands are issued. CLEAR GETS removes all pending GETs. All READ
commands that follow will READ only the input from GETs that are issued after
the CLEAR GETS. ERASE accomplishes the same action of removing all pending
GETs and also clears the display screen.

If the SET FORMA T TO <format file> command has been issued, READ causes all
of the @ commands in the format file to be executed. This sequence formats the
screen and allows editing of all GET variables.

If the SET FORMAT TO SCREEN command has been issued, issue an ERASE
command to clear the screen first. Then, use a series of@ commands to format the
screen. To edit the fields, use the READ command. If a second or later series of @
commands is issued after a READ command, READ places the cursor on the first
GET variable following the last READ. In this way, the screen format and the
specific variables edited can be based on decisions made by the user in response to
prior READ commands.

FORMATTING THE INPUT FIELDS

The @ command can be expanded still further for special formatting.

@ <coordinates> [SAY <exp>] [GET <var>] [PICTURE '<format>']

The optional PICTURE phrase is filled in using the format symbols listed in Table
18-1.

Table 18-1 PICTURE Symbols for @ Command

SYMBOL ACTION

9 or # Accept only digits as entries

A Accept only alphabetic characters

! Convert character input to uppercase

X Accept any characters

$ Show '$' on the screen

* Show '*' on the screen. .
The following screen demonstrates how to enter the picture symbols in @ com­
mands. To test their effect on data entry, enter the commands on your system and
type in data values.

erase
store '00000' to d;g;ts

00000
store , , to letters

store , , to convert

store , , to amount

store , , to stars

erase
@ 2,5 say "d;g;ts " get d;g;ts p;cture '99999'

d;g;ts :00000:
• @ 4,5 say "letters" get letters p;cture 'AAAAA'

letters : :
@ 6,5 say "convert" get convert p;cture 'lIllI'

convert :
· @ 8,5 sey "amount" get amount p;cture '$9.99'

amount :$. :
@ 10,5 say "starf;ll " get stars p;cture '**999'

starnll :**
• read

Interactive Programs

18-9

Interactive Programs

18-10

PRINTING FORMS

If you SET FORM·AT TO PRINT, the @ command formats the prompt on the
printer instead of the display screen. The GET and PICTURE phrases are ignored,
and the READ command cannot be used. The @ commands must be in order by the
row and column coordinates so they can be printed from top to bottom, left to right.
Use this SET option with the @ command in command files to produce forms.

A SAMPLE DATA ENTRY PROCESS

A data base may have many fields but for any given data entry procedure, you may
be entering data in only some of them. Rather than using APPEND, which lists all
the fields in the data base on the screen, you can use APPEND BLANK to create a
record with empty fields and then GET only the data you want.

To give you more practice with command files, create a command file called
TRIAL.PRG consisting of the program displayed on the. following screen.

erase
? 'This procedure allows you to add new records to the'

'EMPLOYEE.OBF file selectively. You wll I add only'
'Iast:name and zlp:code now.'

'Press 5 to stop the procedure.'
'Press RETURN to continue.'

walt to continue
use employee
do while continue <> '5' .and. continue <> 's'

append blank
erase
@ 10,0 say "LAST NAME" get last:name
@ 10,30 say "ZIP CODE" get zlp:code
read
?' 5 to stop the procedure,'
?' RETURN to conti nue.'
walt to continue

enddo
return

DO the command file to see that it works. Enter several records. After you have
finished, LIST the file to check what was added. As you can see, the data entry
screen is simple and uncluttered. The screen can be customized by placing prompts
and variable input fields where you want them.

Interactive Programs

18-11

Chapter 19

Planning Command Files

The first thing to do when you want to write a command file is turn the computer
off. That is where many programmers go wrong. They immediately start "coding" a
solution, before they even have a clear idea of what problem they are solving. Don't
worry. You will have plenty of opportunities to use all the commands and functions
you have read about. But first, take the time to plan how to use them.

This chapter uses part of the sample application (see Appendix H) to demonstrate
the recommended approach for planning command files.

DEFINING THE PROBLEM

Start by defining the problem in ordinary English. Make it a general statement,
something like this: The purpose of this program is to update the EMPLOYEE file
with additions, changes, and deletions.

Now define the problem further. What inputs does the program need? In what form
do you want the outputs and reports? For the sample program, the inputs are the
EMPLOYEE file and data that the operator enters from the keyboard. The
operator will be presented with a menu with the following options: Add New
Employee, Change Current Employee Information, Delete Employee Record.
Depending on the option selected, the appropriate action will be taken. When all
changes have been made, the operator should get a list of all updates made to the file
during the session and a count of additions, changes, and deletions.

HANDLING EXCEPTIONS

Once the normal processing flow is sketched out, think about the exceptions. What
are the starting conditions? What happens if a record is missing? This program will
have to check that additions and changes have validjob and department codes and
that the salary is within the range for the job code. It will have to handle errors such
as the operator trying to change or delete the record of an employee who is not on
the file.

19-1

Planning Command Files

19-2

DETERMINING THE FLOW OF PROCESSING

After you have defined what the program should do, describe the details. Use
English terms that are somewhat similar to the instructions that dBASE II
understands: IF ... ELSE, DO WHILE, FOR, and so on. In the sample application,
the first part of the data entry procedure is the presentation of the menu and the
selection of a function. The following outline describes that sequence of actions in
an English-like form.

Use the EMPLOYEE file
Present the menu and get a selection
If the choice is Add New Employee

Do the append routine
If the choice is Delete Employee

Do the delete record routine
If the choice is Change Employee Data

Do the change routine
For each modification to the file

Display the record after any processing
Keep a running count of the number of additions,
deletions and changes

After you finish the first outline, go back to the beginning and add more detail,
name procedures, and reorganize the processing as necessary. After a few revisions,
the program might look like the next outline. It is still not a program that dBASE II
can execute, but many of the commands are starting to take shape, gaps have been
filled in, and potential problems· are identified.

USE EMPLOYEE
STORE 0 too numadd, numdel, numchng
STORE I I TO choice
*Need· to have two files open - remember to select primary
*and secondary as necessary.
*EMPLOYEE will be primary. TEMPFILE will be secondary.
DELETE all the records in tempfile
PACK or COpy to tempfil2
DELETE tempfile
RENAME tempfil2 to tempfile
DO WHILE choice .NOT. "E"

DO MENU
IF choice = I A'

Planning Command Files

DO ADD
ELSE

IF choice = "D"
DO DELETE

ELSE
IF choice = "c"

DO CHANGE
ELSE
? "TRY AGAIN. PRESS EITHER A, D, C, or E."
ENDIF

ENDIF
ENDIF

ENDDO
LIST tempfile
DISPLA Y numadd, numdel, numchng

TESTING COMMAND FILES

Start over again at the top and continue adding detail, including comments, until
the dBASE II commands are in a format that you can begin testing. With this
approach, the entire system does not have to be written before you begin testing.
You can save the complicated details until late in the program development process.
In fact, you are probably better off not worrying about details too early on because
then you can concentrate on the overall problem solution. Go back after you have
tested the overall solution and clean up the procedures then.

You can test a partial program that calls other command files (ADD, CHANGE,
DELETE, and MENU in this example) by creating dummy files. The dummy files
consist of a single instruction or a few instructions, enough to let you know that the
procedure was called. For instance, to test the way the program calls ADD.PRG
based on operator input, ADD.PRG can consist of the following two instructions.

? "COMMAND FILE ADD"
RETURN

When you test the program and see "COMMAND FILE ADD" displayed on the
screen, you know that the command file named "ADD.PRG" was executed.

In computer programming texts, the terms top-down, step-wise refinement are
applied to this kind of program development procedure. Actually, it's just a sensible
approach to solving most kinds of problems. First, state the overall problem, trying

19-3

Planning Command Files

19-4

to define what it is and what it is not. Gradually get into more and more detail.
Begin testing the solution as soon as enough of the program is finished to give some
results. Just as you develop command files in pieces, test each part separately and
then test again to be sure each part integrates with the whole system.

Chapter 20

CP 1M Interfaces

INTERFACING WITH CPIM DATA FILES

dBASE II can read data from files that were created by text editors, word
processors, and other programs and can generate files that are compatible with
other programs and systems. This interface is possible with files that are in ASCII
text format using the CP 1M convention of a line of text followed by a carriage
return and line feed.

Appending Data From CP 1M Files

The APPEND command, in the following format, reads ASCII text files created by
dBASE II and other systems.

APPEND FROM <file> [FOR <exp>] [SDF] [DELIMITED WITH <delimiter>]

If SDF is specified, dBASE II assumes that the records are in Standard Data
Format (ASCII text format). If the FROM file records are smaller than the records
in the USE file, the new records are padded on the right with blanks. If the FROM
file records are longer than the USE file records, the newly appended records are
truncated. Records are added to the USE file until end-of-file is detected in the
FROM file.

Some processors add field delimiters to the records. A popular format uses commas
to separate fields and single or double quotes to enclose character strings. dBASE II
can accept records in these formats when the DELIMITED phrase is specified.
dBASE II removes the quotes and commas from a DELIMITED file and stores the
data in a dBASE-structured data base file according to the data base's structure.

20-1

CP/M Interfaces

20-2

Creating CP 1M Compatible Output Files

The CO PY command can create delimited and non-delimited ASCII text files with
the following command.

COpy TO <file> [<scope>] [FIELD <field list>] [FOR <exp>] [SDF]
[DELIMITED [WITH <delimiter>]]

IfSDF is specified, the file in USE is copied to the named file without the structure.
It is in standard ASCII format. The extension ".TXT" is automatically appended
unless another extension is specified.

If the DELIMITED keyword is used, the otitput file will have all of its character
string fields enclosed in quotes and the fields will be separated by commas. By
default, COPY DELIMITED uses single quotes as delimiters to mark character
string fields. The WITH sub-phrase of the DELIMITED phrase allows any
character to be the delimiter. If a comma (,) is used as the delimiter, the character
fields will have trailing blanks trimmed, the numeric fields will have the leading
blanks trimmed, and the character strings will not be enclosed in quotes.

WRITING TO DISKETTE

When the system is in command mode, everything that is written on the display
screen or printed on the printer can also be written to a disk file. This includes the
system output as well as commands and other inputs typed at the console. The
diskette file that contains screen and printer text is created in standard ASCII
format using the CP/M convention of a line of text followed by a carriage return
and line feed. The file may be saved as an audit trail for a terminal session, printed,
or used as input to a word processor, text editor, or other program. (The screens in
this manual were created this way and then modified using a word processor.)

Use the following procedure to copy command mode text to diskette:

1. If you have a two-drive APC and want to create the text file on Drive B,
insert a formatted diskette in Drive B.

2. Identify the text file to the system by entering the following command at the
dot prompt.

set alternate to [<disk drive>~<file>

If the file does not exist, the system automatically creates the file. If a file
with the same name already exists, its contents will be overwritten.

3. To begin the echo process, enter the following command at the dot prompt.

set alternate on

From now on, until you enter a command to set alternate off or exit from
dBASE II, everything that is entered, displayed, and printed in command
mode is echoed to the text file.

CHAINING dBASE II TO OTHER PROGRAMS

When a dBASE II session is terminated, you can exit back to the CP/M-86
operating system or the system can automatically begin executing other programs.
An optional phrase for the QUIT command initiates the process of chaining to
other command files.

QUIT [TO<CMD file list>]

The programs in the <CMD file list> are executed in sequence by CP/M-86. You
can reenter dBASE II after the other programs have finished executing by entering
"-OBASE<::CMD file>", but it is not required. If dBASE II is not the last program in
the command file list, the CP / M-86 operating system will be given control when all
command files have been executed .

. There is no limit to the number of CP/M commands that can be executed, but the
normal dBASE II restriction of 254 characters per command line must be followed.
The command file names must be enclosed in single quotes and separated by
commas.

RESETTING THE SYSTEM

The RESET command is used to reset the CP 1M bit map after a diskette has been
swapped. Normally, if a diskette is swapped, CP 1M will not allow writes to take
place until after a soft boot. RESET attempts to reopen all files that were open prior
to the swap. If a file that was open is no longer mounted on an active disk drive,
RESET closes the file internally.

CP/M Interfaces

20-3

CP/M Interfaces

20-4

Issuing a RESET command when no disk swap has taken place has no effect.

WARNING

If the new disk contains a file with the same as a
name file that was previously open, the RESET
operation will erroneously not close that file.
This can be avoided if you close all non­
essential files prior to the swap and subsequent
RESET command. A USE command with no
file name closes the file in USE; a CANCEL
command closes any open command files.

ACCESSING THE APC'S MEMORY BY LOCATION

dBASE II allows access to specific APC memory locations with four operations:
PEEK, POKE, SET CALL TO, and CALL. To use these commands and functions,
you should be familiar with the organization of the computer's memory, the
CP/M-86 operating system, and assembly language commands and subroutines.
(See the CPIM-86 System Reference Guide for the APC for more information about
these topics.)

Finding A Byte Value

PEEK is a numeric function that returns the value of a specified byte in the
computer's memory. It is useful for operations like testing the value of a port for the
status of an I/O device. The format of the function is:

PEEK «address»

The address is a decimal value that specifies a byte location. The function returns
the contents of the address in decimal format.

Storing Values

POKE stores a list of values into the computer's memory starting at the specified
location. The command format is:

PO KE <address>, <byte list>

The address and byte list values are expressed in decimal. Values in the byte list must
be separated by commas. This command is used for such functions as resetting I/O
device status bytes and storing subroutine instructions.

Executing Assembler Subroutines

The SET CALL TO <address> command specifies the decima~ddress of a jump
vector or subroutine. CALL <memvar> can then be used to branch processing to
the address specified in the SET command. The memory variable must be a string.
dBASE II saves the registers upon entering the subroutine and restores them upon
exit. The subroutine must execute a machine language return to get back to dBASE
II. Use this sequence of commands to enter the APC BIOS and to execute machine
language subroutines.

CP/M Interfaces

20-5

t, Appendix A

Full Screen Edit Commands

APPEND
CREATE MODIFY MODIFY

KEY(S) ACTION EDIT BROWSE INSERT STRUCTURE COMMAND

TAB Move ahead one field x x x x ,
CTRLF
CTRLJ

SHIFT TAB

+
Move back one field 1 1 x x

CTRLE
CTRLA
CTRLK ---. Move ahead one character x x x x x
CTRLD

.--- Move back one character x x x x x
CTRLS within a field and back

one field from first
character of a field

DEL Delete character x x x x x
CTRLG under cursor
CTRLX

CTRLC Save changes and x x x 2 3
advance to next record

CTRLR Save changes and x x 4 5
back up one record

A-I

Full Screen Edit Commands

A-2

APPEND
CREATE -MODIFY

KEY(S) ACTION EDIT BROWSE INSERT STRUCTURE

CTRLW Exit, save changes x x x x
on screen

CTRLQ Exit without saving x x x x
current changes

- - ----

CTRLZ Pan window one field to x
the right

CTRLB Pan window on,e field to x
the left

-'

CTRLT Delete line under cursor x

CTRLN Insert blank line x

CTRLY Erase field x x x x

CTRLU Toggle record deletion x x x
mark

INS Toggle insert/overtype x x x x
CTRLV

PRINT Toggle printer onloff x x x x
CTRLP

1 - When the cursor is on the first character of the first field in a record, this
command moves the cursor back to the first character in the first field of the
previous record.

2 - Advance to the next panel of fields.

3 - Advance one screen.

4 - Move back to the previous panel of fields.

5 - Move back to the previous screen.

MODIFY
COMMAND '1

x

x

x

x
I

x

x

Appendix B

dBASE II Command Symbols
Table B-1 defines the symbols used in dBASE II commands. Understanding the
special symbols used in the general formats of the commands is vitally important.
Not only does it help in understanding just what the format of the command really
is, but it helps to show the potential of the command.

SYMBOL

<command file>

<char string>

<delimiter>

<exp>

<exp list>

<field>

<field list>

<file>

<form file>

Table B.;.l Command Symbols

MEANING

Name of a command file with the "PRG" extension.

Character string. Must be enclosed in single quotes,
('), double quotes, ("), or square brackets, ([]).

Any special character, including" 0 * = , @.

Expression. Can be created by combining numbers,
functions, field names, or character strings in any
meaningful manner. For example 4+8, doc = '3' .or.
doc = '4', and "$(' abc' +&somestr ,n,3)=' abcdefg' " are
all expressions.

one or more expressions, separated by commas.

Any record field name.

One or more field names, separated by commas.

Any file name.

Name of a report form file with. the "FRM"
extension.

B-1

dBASE II Command Symbols

..

SYMBOL

<format file>

<index file>

<key>

<mem file>

<memvar>

<memvar list>

<n>

<scope>

<statements>

<type>

B-2

Table B-1 Command Symbols (cont'd)

MEANING

Name of a format file with the "TXT" extension.

Name of an index file with the "NDX" extension.

The field name on which a file is indexed. Keys may
be variable names or expressions.

Name of a memory file with the "MEM" extension.

Memory variable.

One or more memory variables, separated by
commas.

Numeric literal.

How much of the file a command covers. Accepta­
ble values are:
ALL
NEXTn
RECORD n

Any valid dBASE II commands. Must be whole
statements.

Three-character file type extension.

SYMBOL

<var>

FOR <exp>

WHILE <exp>

dBASE II Command Symbols

Table B-1 Command Symbols (cont'd)

MEANING

Variable name.

Any record so long as some logical expression has a
true value. Unless otherwise specified, the presence
of a FOR phrase causes ALL records to be scanned
starting with the first record in the file.

All sequential records as long as some logical
expression has a true value. The controlling com-
mand stops the first time the expression is false. The
presence of a WHILE clause implies NEXT 65534
unless otherwise specified. It starts at the current
position.

NOTE

There are other special symbols used in the
command formats. These are specific to the
command and are explained in the body of the
command.

B-3

Appendix C

Summary of dBASE II
Commands

This appendix is an alphabetical listing of the formats of dBASE II commands.

TYPOGRAPHIC CONVENTIONS

The following conventions are used in the command formats.

[... J

< ... >

/

" "

UPPERCASE

Square brackets indicate parts of commands that are
optional. DO NOT TYPE THE SYMBOLS.

Pointed brackets enclose portions of commands that are
to be filled in with real information. DO NOT TYPE
EITHER THE SYMBOLS OR THE LOWERCASE
WORDS AND ABBREVIATIONS THEY ENCLOSE.
Replace them entirely with your information.

Slash indicates alternatives. Select one and only one.

In certain commands, character strings must be enclosed
within delimiters. The double quotes in the command
summary identify these. You must use delimiters: match­
ing pairs of double quotes, single quotes, or square
brackets.

This type style indicates verbs and keywords. They may
be abbreviated to four characters or more and must be
spelled as presented in the command format. You may
enter commands in uppercase and/or lowercase.

C-I

Summary of dBASE II Commands

C-2

ALPHABETICAL SUMMARY OF dBASE II COMMANDS

* [<char string>]

Places comments into a command file. <char string> is not displayed when the file is
executed.

? [<exp list>]
?? [<exp list>]

Displays the value of one or more expressions. The expression list is optional. A"?"
with no expression spaces down one line on the output. "n" operates exactly like "?"
except that the result is printed on the same line as the command.

@ <coordinates> [SAY <exp> [USING "<format>"]]
[GET <var> [PICTURE "<format>"]]

Displays formatted information on the screen or printer. The <coordinates> are a
row, column pair. The display screen is 24 rows by 80 columns numbered as rows 0
-23 and columns 0 - 79. The Oth row is reserved for system messages and should not
be used. For the printer, both coordinates have ranges of 0 - 254. The coordinates
can be literals, numeric memory variables, or numeric expressions. With no
optional phrases, this command clears a row, or part of a row, on the display screen
to spaces beginning with the row,column coordinates. The <format> consists of
characters that have special meanings to dBASE II to identify character and
numeric input, dollar signs, and so on (see Chapter 18).

ACCEPT ["<char string>"] TO <memvar>

Stores keyboard input to a character string memory variable. The memory variable
is created ifit does not already exist.If"<char string>" is present, it is displayed as a
prompt message followed by a colon. If it is not present, a colon is displayed as the
prompt. Keyed input is accepted as character type. It does not have to be enclosed
within quotes.

APPEND
APPEND BLANK
APPEND FROM <file> [FOR <exp>] [SDF] [DELIMITED WITH <delimiter>]

In all three forms, records are added to the end of the data base in USE. In the first
form, the user is prompted with the field names from the USE file's structure. In the
second form, a single, space-filled record is appended. In the third form, records are
taken from another file. ifSDF is present, the records are assumed to be in Standard
Data Format. If the DELIMITED phrase is included, the records taken from the
FROM file are assumed to be delimited. If the SDF and DELIMITED phrases are
not present, the FROM file is assumed to be a dBASE II-structured data base file.

Summary of dBASE II Commands

BROWSE

Displays data from up to 19 records at a time for editing and viewing. As many
fields as will fit are put on each line. They can be edited with standard editing
commands.

CALL <memvar>

Branches to the address specified in a previous SET CALL TO command.

CANCEL

Aborts command file execution.

CHANGE [<scope>] FIELD <field list> [FOR <exp>]

Makes multiple changes to a data base. All data base fields that are referenced in the
list are presented in the order given by <field list>. They may be edited or skipped.

CLEAR [GETS]

Resets dBASE II, closing all files, clearing all memory variables, and reselecting the
primary work area. If the GETS keyword is used, clears all the pending GETs and
leaves screen intact.

CONTINUE

Used with the LOCATE command to search for another record. LOCATE and
CONTINUE may be/separated by other commands.

COpy TO <file> [<scope>] [FIELD <field list>] [FOR <exp>]
[DELIMITED [WITH <delimiter>]] [SDF]

Copies the USE data base to another file, creating that file if it does not already
exist. If SDF is not specified, the structure and all records not marked for deletion
are copied. If SDF is specified, only the data records are copied in ASCII standard
format. If the DELIMITED keyword is used, the character string fields are
enclosed in single quotes and all fields are separated with commas. The WITH
sub-phrase allows the user to specify any character as the delimiter. If"," is used as
the delimiter, character fields have trailing blanks trimmed, numeric fields have
leading blanks trimmed, and character strings are not enclosed in quotes. If either
the DELIMITED or SDF option is used, the output file name defaults to the "TXT"
extension.

COpy STRUCTURE TO <file> [FIELD <field list>]

Copies only the structure of the USE data base to another file, creating that file ifit
does not already exist.

C-3

· Summary of dBASE II Commands

C-4

COUNT [<scope>] [FOR <exp>] [TO <memvar>.]

Counts the number of records in the USE file, including records marked for
deletion.

CREA TE [<file>]

Creates a new data base file. Prompts user for name if it is omitted.

DELETE [<scope>] [FOR <exp>]

Places deletion mark (*) in first character of all records that are within <scope> and
which satisfy the FOR expression. Default is current record.

DELETE FILE [<disk drive>:]<file>

Deletes the named file from the CP/M directory on diskette and releases the space it
occupied to the operating system for reassignment. If the <disk drive> is omitted,
the default drive is assumed.

DISPLA Y [<scope>] [FOR <exp>] [<field list>] [OFF]

Displays all or part of the data base file in USE. If <scope> and FOR are not present,
only the current record can contribute information for the display. If a FOR phrase
is present, the default is ALL. OFF inhibits displaying the record sequence number.

DISPLA Y FILES [ON <disk drive>] [LIKE *. <type>]

Displays names offiles residing on a diskette. If there are no phrases, DBF files are
listed. ON allows the specification of a drive other than the default drive. The LIKE
phrase allows files of type other than DBF to be displayed. The <type> is the three
character extension such as TXT, FRM, MEM, and so on.

DISPLAY MEMORY

Displays all currently defined memory variables. Gives name, type, length, and
contents for each variable and total number of bytes for all memory variables.

DISPLAY STRUCTURE

Displays the structure of the USE data base. Lists name, type, length for each field,
total record length, and usage such as date of last update and primary/secondary
area assignment.

DO <command file>

Executes the commands in the named file. When dBASE II reaches a RETURN
command or an end-of-file indicator, it returns control to the source of the DO
command (either another command file or the keyboard).

Summary of dBASE II Commands

DO CASE
CASE <exp>

<statements>
CASE <exp>

<statements>

[OTHERWISE]
<statements>

ENDCASE

Extends the DO command to execute one of a list of processes depending on the
logical value of <exp>. dBASE II executes DO CASE as if it were a list of
IF-ENDIFs. It examines the expressions in the individual CASEs and executes the
statements following the first expression that evaluates as TRUE. When it reaches
the next phrase beginning with CASE, it exits to the ENDCASE.

If the OTHERWISE clause is present and none of the CASEs is true, the statements
in the OTHERWISE clause are executed.

Any statements placed between the DO CASE and the first CASE are'not executed.

DO WHILE <exp>
<statements>

ENDDO

Executes <statements> as long as <exp> evaluates as a logical TRUE. When <exp>
evaluates to a logical FALSE, control is transferred to the statement following the
ENDDO.

EDIT <n>

Displays the indicated record and allows the user to selectively change the contents
of the data fields.

EJECT

Forces a form feed if the printer is turned on and either the SET PRINT ON or SET
FORMAT TO PRINT command has been issued.

ELSE

Executes an alternate instruction path in an IF statement.

C-5

Summary of dBASE II Commands

C-6

ENDCASE

Terminates a DO CASE statement.

ENDDO

Terminates a DO WHILE statement.

ENDIF

Terminates an IF statement.

ERASE

Clears the screen and places the cursor in the upper left corner of the screen.

FIND <char string>
FIND" <char string>"

Positions the current record pointer on the first record in an indexed data base
whose key is the same as the character string. The data base file must be indexed and
the index must be in USE.

GOTO [RECORD] <n>
GOTOTOP
GOTO BOTTOM
<n>
GOTO <memvar>

Repositions the record pointer of the file that is in USE. GO and GO TO may be
used interchangeably. TOP positions the pointer on the first record in the data base,
BOTTOM positions it on the last record. The other three forms of the command
position the pointer on the indicated record number.

IF <exp>
<statements>

[ELSE
<statements>]

ENDIF

Allows conditional execution of commands. When <exp> evaluates to TRUE, the
commands following the IF are executed. When <exp> evaluates to FALSE, the
commands following the ELSE are executed. If no ELSE is specified, all commands
to the ENDIF are skipped. IF commands may be nested to any level.

Summary ojdBASE II Commands

INDEX ON <exp> TO <index file>

Creates an <index file> for the file in USE. <exp> is the key to the index file; records
are sequenced on that value.

INPUT [If <char string>"] TO <memvar>

Stores keyboard input to a character string memory variable. The memory variable
is created if it does not already exist. The data type of <memvar> is determined from
the type of data that is entered. If "<char string>" is present, it is displayed on the
screen, followed by a colon as a prompt message. If it is not present, a colon is
displayed on the screen as the prompt.

INSERT [BEFORE] [BLANK]

Adds one record to the data base file that is in USE. If BEFORE is present, the
record is inserted before the current record, otherwise the new record is placed just
after the. current record. If BLANK is specified, a space-filled record is inserted,
otherwise the user is prompted for input values in the data entry mode.

JOIN TO <file> FOR <exp> [FIELD <field list>]

Combines data from two data base files into a third file when some criterion is met.
The two files used are the primary and secondary USE files. The current record
pointer must be positioned on the first record of the primary USE file. JOIN
evaluates the FOR <exp> for each record in the secondary USE file. Each time
<exp> yields a logical TRUE, a record is added to the new file. When the end of the
secondary USE file is reached, the primary USE file record pointer is advanced one
record, the secondary USE file is repositioned on the first record, and the process
continues until the primary USE file is exhausted.

If the FIELD phrase is omitted, the output file will consist of all the fields in the
primary USE file's structure and as many of the secondary USE file's fields as will fit
before exceeding the 32 field limit.

LIST [<scope>] [FOR <exp>] [<field list>] [OFF]

Lists all or part of the data base file in USE. If <scope> and FOR are not present,
only the current record can contribute information for the LIST. If a FOR <exp> is

. present, the default becomes ALL. OFF inhibits listing the record number.

LIST FILES [qN <disk drive>] [LIKE *. <type>]

Lists names of files residing on a diskette. If there are no modifiers, DBF files are
listed. ON allows the specification of a drive other than the default drive. Use the
letter only to identify the drive; do not include the colon. The LIKE phrase allows
other types of files to be listed. The <type> is the three character extension such as
TXT, FRM, MEM, and so on.

C-7

Summary of dBASE II Commands

C-8

LIST MEMORY

Lists all currently defined memory variables. Gives name, type, length, and
contents for each variable and total number of bytes for all memory variables.

LIST STRUCTURE

Lists the structure of the USE data base. Lists name, type, length for each field, total
record length, and usage such as date of last update and primary/secondary area
assignment.

LOCA TE [<scope>] [FOR <exp>]

Searches the records in the USE file for the first one for which <exp> is logically
TRUE. When <exp> is satisfied, the message "RECORD n" is displayed. The
CONTINUE command continues the search. Other dBASE II commands may be
issued between LOCATE and CONTINUE.

LOOP

Redirects the flow of control in a DO WHILE command back to the DO WHILE
clause.

MODIFY COMMAND [<command file>]

Creates a command file if the named file does not already exist. If the file exists, this
command reads it from disk. Enters full-screen edit mode and allows additions,
deletions, and changes to text in the file. Limits physical text lines to 77 characters.
Interprets TAB characters as single spaces.

MODIFY STRUCTURE

Enters full-screen edit mode and allows changes to the structure of a data base file.
Fields can be added and deleted, or the characteristics (type and length) can be
changed. MODIFY STRUCTURE operates on the file that is in USE. It deletes
ALL data records that are currently in the file.

NOTE [<char string>]

Place~ comments into a command file. <char string> is not displayed when the file is
executed.

OTHERWISE

Executes an alternate path of instructions in a CASE structure.

Summary of dBASE II Commands

PACK

Purges all records marked for deletion from the file that is in USE. If the file is
indexed and the index file is in use, PACK adjusts the index file at the same time it
adjusts the USE file. PACK does not free the unused space on the diskette.

PO KE <address>, <byte list>

Stores a list of byte values into memory starting at the specified address.

QUIT [TO <CMD file list>]

Closes all data base files, command files, and alternate files and returns control to
the operating system. If the TO phrase is present, all programs in <CMD file list>
are executed in sequence by CP 1M. There is no limit to the number of programs or
CP 1M commands which can be executed as long as the 254 character limit for
dBASE II commands is not broken.

READ

Accepts data into GET commands in full-screen edit mode.

RECALL [<scope>] [FOR <exp>]

Removes deletion marks from records in the data base that is in use. The default for
<scope> is the current record. If the FOR phrase is used, only those records that
meet the criterion in <exp> are recalled.

RELEASE [<memvar list>]
[ALL]

Releases all or selected memory variables and makes the space they occupied
available for new memory variables.

REMARK <char string>

Allows comments in a command file. Displays the comments on the output device
when the file is executed.

REN AME <original file> TO <new file>

Changes the name of a file in the CP 1M directory. If no file type is given, dBASE II
assumes that the type is "DBF" and assigns that extension to the new file.

C-9

Summary of dBASE II Commands

C-IO

REPLACE [<scope>] <field> WITH <data> [, <field2> WITH <data2> ...]
[FOR <exp>]

Replaces the contents of specified data field(s) of the file in USE with new data as
specified in the corresponding data symbols. The <data> can be a constant,
variable, or expression. The default for <scope> is the current record.

REPORT [FORM <form file>] [<scvpe>] [FOR <exp>] [TO PRINT]
[PLAIN]

Creates and/or prints reports by displaying data from the file in USE in a defined
manner. The first time REPORT is used for a particular report, a FORM file (with
the extension "FRM") is built. dBASE II pro~pts the user for specification of the
report format. Once the form file is created, the report is automatically generated on
the screen and/or the printer. The FORM phrase identifies an existing form file.
<scope> defaults to ALL. The FOR phrase may be used to qualify the records to be
included in the report. TO PRINT sends the report to the printer as well as the
display screen. PLAIN suppresses printing the date and page number and is useful
for producing tabular data.

RESET

Resets the CP/M bit map after a disk swap.

RESTORE FROM <mem file>

Reads the contents ofa file of memory variables back into the computer's memory.
The file must have been created with the SAVE command. Deletes any existing
memory variables.

RETURN

Terminates a command file. Returns control to the command file which called the
current command file, or to the keyboard if the command file was called from there.

SAVE TO <mem file>

Stores all currently defined memory variables to the named file with the entension
"MEM".

SELECT [PRIMARY]
[SECONDARY]

Activates the named area for file access commands.

Summary of dBASE II Commands

SET <parm> [ON]
[OFF]

SET <parm> TO <option>

Dynamically reconfigures the dBASE II environment. The <parm> field is a key­
word, as described in Chapter 16. The value of <option> depends on the parameter
and is also described in Chapter 16.

SKIP [+] [<var/literal/numeric exp>]
[-]

Advances or backs up the current record pOInter relative to its present location.

SORT ON <field> TO <file> [ASCENDING]
[DESCENDING]

Sorts the file in USE to another file on the named field. The file that is in USE
remains in USE and is unaltered. Records are sorted into ascending order unless
otherwise specified.

STORE <exp> TO <memvar>

Saves the value of <exp> into the named memory variable, creating the variable if it
does not already exist.

SUM <field list> [TO <memvar list>] [<scope>] [FOR <exp>]

Adds numeric expressions in the file in USE according to the <scope> and FOR
phrases. Up to five fields can be summed. If the TO phrase is present, the sums are
also stored into memory variables. The memory variables are created if they did not
exist prior to the SUM command. The default for scope is all non-deleted records.

TOTAL ON <key> TO <file> [FIELD <field list>] [FOR <exp>]

Adds all or selected numeric fields in the file in USE and stores the totals in the
named file. If the TO file does not exist, its structure is derived from the fields in the
FIELD phrase. If there is no FIELD phrase, the structure for the file in USE is
copied to the TO file.

UPDATE FROM <file> ON <key> [ADD <field list>]
[REPLACE <field list>]

Revises the file in USE with data from another data base file. Both files must be
ordered on <key>. The USE file can be sorted or indexed; the FROM file must be
sorted. Updated fields can be summed or replaced in their entirety.

C-II

Summary of dBASE II Commands

C-12

USE [<file>]
USE <file> INDEX <index file list>

Closes all open files in the active area and opens the named file, if any. When the
INDEX option is used, multiple index files can be opened for the data base file that
is named.

WAIT [TO <memvar>]

Pauses in program operation for keyboard input.

Appendix D

dBASE II Commands by Type
of Operation

OPERATION COMMAND

Create File COPY
CREATE
INDEX
JOIN
MODIFY COMMAND
REPORT
SAVE
TOTAL • Add Data To File APPEND
CREATE
INSERT

Edit Data BROWSE
CHANGE
DELETE
EDIT
READ
RECALL
REPLACE
UPDATE

D-l

dBASE II Commands by Type of Operation

OPERATION COMMAND

Display Data ?
??
@

BROWSE
COUNT
DISPLAY
LIST
READ
REPORT
SUM

Reposition Current CONTINUE
Record Pointer FIND

GOTO
/ LOCATE

SKIP

Manipulate File APPEND
COpy
DELETE
DELETE FILE

(.!,f(. DO
MODIFY STRUCTURE
PACK
RENAME
SELECT
SORT
USE

D-2

dBASE II Commands by Type of Operation

OPERATION COMMAND

Use Memory Variables ACCEPT
COUNT
DISPLA Y MEMORY
INPUT
LIST MEMORY
RELEASE
RESTORE
SAVE
STORE
SUM
WAIT

Program Command Files ACCEPT
CANCEL
DO
DO CASE
IF
ELSE
ENDCASE
ENDDO
ENDIF
INPUT
LOOP
MODIFY COMMAND
OTHERWISE
RETURN
SET
WAIT

Control The APC EJECT
Environment ERASE

SET

Access the APC's POKE
Memory SET CALL TO

CALL

D-3

Appendix E

dBASE II Functions

FORMAT TYPE FUNCTION

!(<char string» C Convert lowercase to uppercase.

N Return the current record
number.

$(<char string> ,<start> ,<length>) C Form a character string from part
of another string.

&<mem var> C Replace the function symbol in
the current command with the
contents on the named memory
variable.

* L Indicate whether current record is
marked for deletion.

@(<char string 1> ,<char string2» N Return starting point of character
stringl relative to start of char-
acter string2.

CHR(<numeric exp» C Return the ASCII character equiv-
alent of the expression.

DATEO C Generate the system date.

EOF L Indicate whether the end of file
has been reached.

E-1

dBASE II Functions

FORMAT I TYPE I FUNCTION

FILE(<"file name" Ivarl exp>) L Indicate whether the file exists.

INT«exp» N Return the truncated integer value
of the expression.

LEN (<var I string>) N Return the number of characters
in the variable or string.

PEEK(<address» N Return the value of the byte at the
specified address.

STR«numeric exp/var/number>, C Convert numeric data to
<length>, [<decimals>]) character string.

TEST(<exp» N Check expression for syntactic
correctness.

TRIM(<char string» C Eliminate trailing blanks.

TYPE(<exp>) C Return character type of the data
in the expression.

V AL(<char string» N Convert character string to numeric
data.

E-2

Appendix F

ASCII Character Codes

dBASE II uses the ASCII character codes listed in Table F-l. The table lists both the
decimal value and the printed character. The collating sequence for characters is
ascending order according to decimal values.

Table F-l ASCII Character Codes

DECIMAL DECIMAL DECIMAL
CODE CHARACTER CODE CHARACTER CODE CHARACTER

32 space 64 @ 96 ,
33 ! 65 A 97 a
34 " 66 B 98 b
35 # 67 C 99 c
36 $ 68 D 100 d
37 % 69 E 101 e
38 & 70 F 102 f
39 71 G 103 g
40 (72 H 104 h
41) 73 I 105 i
42 * 74 J 106 j
43 + 75 K 107 k
44 76 L 108 1
45 - 77 M 109 m
46 78 N 110 n
47 / 79 0 111 0

48 0 80 P 112 P
49 1 81 Q 113 q
50 2 82 R 114 r

51 3 83 S 115 s
52 4 84 T 116 t

53 5 85 U 117 u

54 6 86 V 118 v
55 7 87 W 119 w
56 8 88 X 120 x
57 9 89 Y 121 y
58 : 90 Z 122 z
59 ; 91 [123 {
60 < 92 \ 124 :
61 = 93] 125 }
62 > 94 1\ 126 ~

63 ? 95 -

F-l

Appendix G

dBASE II File Types

A file is a collection of information residing on a storage device such as a diskette.
Data can be stored to, or retrieved from, a file. dBASE II files are grouped into
seven types according to the kinds of data they contain, their organization, and how
they are used by the system. All dBASE II files are standard CP 1M files. File names
conform to the following format:

[<disk drive>:]<file name>[.<extension>]

• <disk drive> is optional. If it is not specified, the default drive is assumed.

• <file name> is forme:d according to the same rules for all dBASE II file
types: eight character limit, letters and numbers acceptable, must begin with
a letter, no embedded spaces.

• <extension> identifies the file type. For each command that accesses a file,
the extension may be omitted and dBASE II will assume the default type for
that command. The defaults are shown in Table G-l.

Table G-l File Type Extensions

FILE TYPE EXTENSION

Data Base File DBF
Memory File MEM
Command (Program) File PRG
Report Form File FRM
Text File TXT
Index File NDX
Format File FMT

Any legitimate CP 1M file name may be used to refer to dBASE II files. Remember,
if the file type is not supplied in a command, dBASE II Cl'ssumes the default listed
above. You may list files on a diskette by type with the command "LIST FILES

G-l

dBASE II File Types

G-2

[LIKE *. <extension>]" where <extension> is the three-character extension. If the
LIKE phrase is omitted, DBF file names are displayed.

DATA BASE FILES (DBF)

These files consist of one structure record and from zero to 65,535 data records. The
extension is automatically assigned when a new file is CREATEd. These files should
be modified only by dBASE II commands. Do not use a word processor or text
editor to alter them.

REPORT FORM FILES (FRM)

Report formats are stored in files with the FRM extension. They are automatically
created by dBASE II the first time a report is assigned a name with the REPORT
command. They contain instructions to the report generator on headings, total
fields, and column content identifiers. Report Form files can be modified using a
word processor or text editor, however it is usually easier to define a new report
from the scratch than to change an existing one.

COMMAND FILES (PRG)

The PRG files contain sequences of dBASE II command statements. They provide a
way to save sets of frequently used command sequences and dBASE II programs.
Command files may be created and modified with the MODIFY COMMAND
instruction or with a word processor or text editor.

Command files may be nested, meaning that command files may contain DO
commands that call other command files. Care should be taken when nesting
command files so as not to exceed dBASE II's limitations. dBASE II allows up to 16
files to be open at any given time. Therefore, if there is a file in USE, only 15
command files may be nested. Certain commands also use work files. SORT uses
two additional files; REPORT, INSERT, COPY, SAVE, RESTORE, and PACK
use one additional file each. This further limits the number of available files. For
instance, if a SORT command is issued from the lowest command file in a nest, only
13 levels of command file are left to be used (the USE file, 2 SORT work files, and 13
command files). When a command file issues the RETURN command or end-of-file
is encountered in a command file, the command file is closed and its resources are
again available for other commands.

INDEX FILES (NDX)

Index files consist of key values and pointers to data base file records. Index files are
automatically created by the INDEX command. Indexing is a dBASE II technique
that allows rapid location of data in a large data base.

MEMORY FILES (MEM)

Memory files are static files of memory variables. The values of memory variables
are independent of the data base in USE. Memory variables are used to contain
constants, results of computations, and symbolic substitution strings. The SAVE
command writes all current memory variables to a memory file. The RESTORE
command reads a memory file back into the memory variables. In this way, memory
variables can be reused from one dBASE II session to another. The maximum file
size is 64 items, each up to 254 characters long.

TEXT FILES (TXT)

Text files are created in standard ASCII format by dBASE II under two conditions.
Files created on disk using SET ALTERNATE TO <text file name> and SET
ALTERNATE ON echo all screen output to the named file for session documenta­
tion. TXT files are also created by the COpy command with either the SDF or
DELIMITED option.

FORMAT FILES (FMT)

Format files contain only @ and* commands. They are identified by the SET
FORMA T TO <format file name> command and are activated by subsequent
READ commands. Like command files, format files are created and modified by
the MODIFY COMMAND instruction, a word processor, or a text editor. Format
files are useful but not necessary. The commands they contain may be built into the
command file that needs them.

dBASE II File Types

G-3

Appendix H

A Sample Application

The sample application presented in this appendix uses a personnel data base to
demonstrate programming techniques using dBASE II. Two files, EMPLOYEE.DBF
and JOBDET.DBF, form the data base. They are developed in this guide. The
version of EMPLOYEE.DBF that is distributed with dBASE II does not operate
properly with the sample programs. It must be modified as described in this manual.
You must also create JOBDET.DBF as described in this guide to run the sample
application.

The programs that comprise the sample application are included on the dBASE II
diskette you purchased. This appendix contains listings of the programs.

The sample application consists often separate programs, or procedures, that allow
you to accomplish two major functions: updating the data base and reporting the
contents of the data base.

1. DEMO.PRG

This is the master menu program. It calls the UPDATE or REPORT
procedure, or returns the system user to dBASE II or CP/M.

2. UPDATEDM.PRG

This procedure directs the processing of file updates. Either the
EMPLOYEE or JOBDET file can be updated. Records can be added,
changed, deleted/recalled, or viewed.

3. REPORTDM.PRG

This procedure directs report production. The system produces three
reports that can be either displayed on the screen or printed.

4. VIEWDM.PRG

This procedure is called by UPDATEDM.PRG. It allows the user to view
all or part of the data base.

H-l

A Sample Application

H-2

5. ADDM.PRG

This procedure is called by UPDATEDM.PRG. It allows the user to add
records to either file in the data base.

6. CHANGEDM.PRG

This procedure is called by UPDATEDM.PRG. It allows the user to edit
records, one field at a time.

7. DELETEDM.PRG

This procedure is called by UPDA TEDM.PRG.1t allows the user to delete
and recall records in the selected file.

8. REPTIDM.PRG

This procedure displays or prints the average salary for each job.

9. REPT2DM.PRG

This procedure prints or displays information about employees earning
more than the midpoint of their salary range. This program uses the report
form file MIDFORM.FRM.

10. REPT3DM.PRG

This program prints or displays a salary increase report, using the param­
eter contained in the report form file SALINCR.FRM.

* DEMO: This is the system's master program. It calls command files UPDA TEDM
* and REPORTDM, and it exits to either the dBASE prompt or CP/M (depending
* on user input).

* display colons at boundaries of 'get' fields
set colon on
set screen on
* do not display dBASE messages
set talk off
* program cannot be halted with <ESC>
set escape off
set bell off
* saves current memory variables
save to tempdm
set print off
set format to screen
* create and initialize memory variables
store ' , to spaces
store' , to menu:let
store ° to menu:num
do while t

erase
@ 5,30 say 'MASTER MENU'
@ 8,26 say '1) Update Database'
@ 10,26 say '2) Report'
@ 12,26 say '3) Return to DBASE prompt'
@ 14,26 say' 4) Return to CP/M'
@ 18,18 say 'Please choose one' get menu:num picture '9'
read
do case

case menu:num = 1
do updatedm

case menu:num = 2
do reportdm

case menu:num = 3
select primary
use
set talk on
set bell on
restore from tempdm
return

A Sample Application

A Sample Application

case menu:num = 4
quit

endcase
enddo t

* UPDATEDM: This program directs processing of updates. The user selects a
* database, which is loaded into the primary area. Then a second menu offers
* a number of update options.
do while t

erase
@ 2,30 say 'UPDATE MENU'
@ 5,25 say '1) Update Employee Database'
@ 7,25 say '2) Update Job Desc. Database'
@ 9,25 say '3) Return to MASTER MENU'
@ 11,18 say 'Please choose one' get menu:num picture '9'
read
do case

case menu:num = 3
return

* This block erases unchosen menu options from the display and loads
* the appropriate database into the primary area.
case menu:num = 1 .or. menu:num = 2

@ 9,18 say spaces
@ 11,18 say spaces
select primary
if menu:num = 1

@ 5,25 say ,* '
@ 7,25 say spaces
?
use employee

else
@ 5,25 say spaces
@ 7,25 say ,* '
?
use jobdet

endif 1
store t to update:on
* Update loop. Store f to update:on if another database is to be
* loaded. (Returns to first menu.)
do while update:on

store ° to menu:num2
@ 10,25 say '1) View Database'
@ 12,25 say '2) Add Records'
@ 14,25 say '3) Change Records'
@ 16,25 say '4) Delete/Recall Records'
@ 18,25 say '5) Update Another Database'

A Sample Application

H-5

A Sample Application

H-6

@ 20,25 say '6) Return to MASTER MENU'
@ 23,18 say 'Please choose one' get menu:num2 picture '9'
read
do case

case menu:num2 = 1
do viewdm

case menu:num2 = 2
do addm

case menu:num2 = 3
do changedm

case menu:num2 = 4
do deletedm

case menu:num2 = 5
store f to update:on

case menu:num2 = 6
return

endcase
* Menu:num2 = 0 when user chooses to return to MASTER MENU from
* VIEWDM, ADDM, CHANGEDM, or DELETEDM.
if menu:num2 = 0

return
endif 0

enddo update: on
endcase

enddo t

* REPORTDM: This program gives user 3 report options: REPTIDM, REPT2DM,
* and REPT3DM (g.v.). Control returns to DEMO only if menu option #4 is
* chosen. Reports may be displayed or printed.
store 0 to menu:num
do while t

erase
@ 5,30 say 'REPORT MENU'
@ 8,10 say' 1) Average salary for each job title'
@ 10,10 say '2) Employees earning more than midpoint of salary range'
@ 12,10 say '3) Salary increase (by Department)'
@ 14,10 say '4) Return to MASTER MENU'
@ 17,5 say 'Please choose one' get menu:num picture '9'
read
if menu:num >0 .and. menu:num <4

store t to true2
do while true2

@ 20,15 say 'Do you want a printed copy of this report? (y,n)';
get menu:let picture 'A'

read
if menu:let = 'y'

set format to print
set print on
store f to true2

else
if menu:let = 'n'

@ 22,20 say;
'(Press <CTRL> S to stop scrolling, any key to continue.),

set console off
wait
set console on
store f to true2

endif n
endif y

enddo tru.e2
endif 0,4
do case

case menu:num = 1
do reptldm

case menu:num = 2
do rept2dm

A Sample Application

H-7

A Sample Application

H-8

case menu:num = 3
do rept3dm

case menu:num = 4
return

endcase
if menu:num >= 1 .and. menu:num <= 3

set print off
set format to screen
?
? 'Press any key to continue'
set console off
wait
set console on

endif
enddo t

* VIEWDM: This program allows users to view part or all of the database
* chosen in UPDATEDM.
select primary
count to reccount
copy structure extended to structx
select secondary
use structx
do while t

erase
store t to true2

* input record #'s
do while true2

store 0 to startrec
@ 15,5 say 'List from record #' get startrec picture '99999'
read
if startrec > 0 .and. startrec <= reccount

select primary
go startrec
* main loop
do while .not. eof

erase
store 1 to accum
@ accum, 1 say 'Record #' + str (#,5)
if *

@ 1,30 say 'DELETED'
endif *
select secondary
go top
* print field names and contents
do while .not. eof

store accum + 1 to accum
store field:name to field
@ accum, 1 say field:name + ': '
@ accum,len(field:name) + 3 say &field
skip

enddo .not. eof
select primary
@ 23,10 say "Press any key to continue (' q' to quit)"
set console off
wait to waitvar

A Sample Application

H-9

A Sample Application

H-I0

set console on
if !(waitvar) = 'Q'

go bottom
endif!
skip

enddo .not. eof
store f to true2

endif> 0 .and. <= reccount
enddo true2
erase
store t to true2
do while true2

@ 5,30 say 'VIEW MENU'
@ 8,25 say 'I) List records'
@ 10,25 say '2) Return to UPDATE MENU'
@ 12,25 say '3) Return to MASTER MENU'
@ 15,25 say 'Please choose one' get menu:num2 picture '9'
read
do case

case menu:num2 = 1
store f to true2

case menu:num2 = 2
erase
return

case menu:num2 = 3
store 0 to menu:num2
return

endcase
enddo true2

enddo t

* ADDM: This program adds records to the database chosen in UPDATEDM.
select primary
copy structure extended to structx
select secondary
use structx
do while t

set colon off
erase
* line counter
store 1 to accum
select primary
append blank
@ accum,l say 'Record #' + str(#,5)
select seco
go top
* display field names
do while .not. eof

store accum + 1 to accum
@ accum, 1 say field:name + ': '
skip

enddo .not. eof
go top
store 1 to accum
* loop until all fields have been entered
do while .not. eof

store field:name to field
store accum + 1 to accum
do case

* get character field
cate field:type = 'e'
store t to true2

do while true2
store spaces to charin
@ accum,len(field:name) + 3 get charin ;

picture 'XXXXXXXXXXXXXXXXXXXX'
read
if len(trim(charin)) <= field: len

store f to true2
replace &field with charin

endif <= field: len
enddo true2

A Sample Application

H-ll

A Sample Application

H-12

* get logical field
case field:type = 'L'

store t to login
@ accum,len(field:name) + 3 get login picture' A'
read
replace &field with login

* get numerical field
otherwise

store t to true2
do while true2

store 0 to numin
@ accum,len(field:name) + 3 get numin picture '99999999'
read

* data check
replace &field with numin
store f to true2

* *end check
enddo true2

endcase
skip

enddo .not. eof
set colon on
store t to true2
do while true2

erase
@ 5,30 say 'ADD MENU'
@ 8,25 say '1) Add another record'
@ 10,25 say '2) Return to UPDATE MENU'
@ 12,25 say '3) Return to MASTER MENU'
@ 15,18 say 'Please choose one' get menu:num2 picture '9'
read
do case

case menu:num2 = 1
store f to true2

case menu:num2 = 2
erase
return

case menu:num2 = 3
store 0 to menu:num2
return

endcase
enddo true2

enddo t

A Sample Application

H-13

A Sample Application

H-14

* CHANGEDM: This program edits records, one field at a time.
select primary
* count # records (for input checking)
count to reccount
copy structure extended to structx
select secondary
use structx
do while true

erase
store t to true2
* input record #' s
do while true2

store 0 to loree, hirec
@ 10,0 say 'Edit record #' get lorec picture '99999'
@ 10,24 say 'thru record #' get hirec picture '99999'
@ 11,37 say '<RETURN> if only one'
@ 12,35 say 'record is to be changed'
read
if hirec = 0

store lorec to hirec
endif
if hirec - lorec >= 0 .and .. not. (hirec > reccount) .and. lorec > 0

store f to true2
endif

enddo true2
set colon off
* execute once/record
do while lorec <= hirec

erase
select primary
go lorec
@ 1,2 say 'Record #' + str(# ,5)
if *

@ 1,30 say 'DELETED'
endif
select secondary
go top
store 0 to fieldno
* display field names and contents
do while .not. eof

store field:name to fieldname
store fieldno + 1 to fieldno
@ fieldno + 1,1 say str(fieldno,2) + ') , + field:name + ': '
@ fieldno + 1 ,len(field:name) + 7 say &fieldname
skip

enddo .not. eof
@ fieldno + 2,1 say str(fieldno + 1,2) + ') ';

+ '**Proceed to next record'
store t to true3
* execute until changes to current record are complete
do while true3

store t to true2
* input field number
do while true2

store 0 to menu:num2
@fieldno + 4,2 say 'Please choose one «RETURN> to quit) , ;

get menu:num2 picture '99'
read
* if <RETURN>, quit
if menu:num2 = 0

store hirec + 1 to lorec
store f to true2, true3

else
* skip to next record
if menu:num2 = fieldno + 1

store lorec + 1 to lorec
store f to true2, true3

else
if menu:num2 > 0 .and. menu:num2 <= fieldno

store f to true2
endif> 0

endif = fieldno + 1
endif = 0

enddo true2
* change block
if menu:num2 0 > .and. menu:num2 <= fieldno

go menu:num2
store field:name to fieldname
do case

* change character field
case field:type = 'e'

A Sample Application

. H-15

A Sample Application

*

H-16

store t to true2
do while true2

store spaces to charin
@ menu:num2 + 1 ,len(field:name) + field:len + 10 ;

sa y ':: ' get charin picture 'XXXXXXXXXXXXXXXXXXXX'
read
if len(trim(charin)) <= field:len

store f to true2
replace &fieldname with charin
@ menu:num2 + 1 ,len(field:name) + 7 say charin

endif <= field:len
enddo true2

* change logical field
case field:type = 'L'

store t to login
@ menu:num2 + 1,len(field:name) + field:len + 10 ;

say':: ' get login picture' A'
read
replace &fieldname with login
@ menu:num2 + 1, len(field name) + 7 say login

* change numerical field
otherwise

store t to true2
do while true2

store 0 to numin
@ menu:num2 + 1 ,len(field:name) + field:len + 10 ;

say':: ' get numin picture '99999999'
read
if len(trim(str (numin,))) <= field:len

replace &fieldname with numin
@ menu:num2 + 1,len(field:name) + 7 say &fieldname
store f to true2

*endif <= field:len
enddo true2

endcase
* erase display beyond new field (in case of input beyond
* allowabk length)
@ menu:num2 + 1 ,len(field:name) + field:len + 10 say spaces

endif = fieldno
enddo true3

enddo lorec = hirec

store t to true2
do while true2

set colon on
erase
@ 5,30 say 'CHANGE MENU'
@ 8,25 say' I) Edit records'
@ 10,25 say '2) Return to UPDATE MENU'
@ 12,25 say '3) Return to MASTER MENU'
@ 15,18 say 'Please choose one' get menu:num2 picture '9'
read
erase
do case

case menu:num2 = 1
store f to true2

case menu:num2 = 2
return

case menu:num2 = 3
store 0 to menu:num2
return

endcase
enddo true2

enddo t

A Sample Application

H-17

A Sample Application

H-18

* DELETEDM: This program deletes and recalls records from database chosen
* in UPDATEDM.
erase
select primary
count to reccount
do while t

@ 5,30 say 'DELETE MENU'
@ 8 ,25 say' 1) Delete a record'
@ 10,25 say '2) Recall a record'
@ 12,25 say '3) Return to UPDATE MENU'
@ 14,25 say '4) Return to MASTER MENU'
@ 17,18 say 'Please choose one' get menu:num2 picture '9'
read
do case

case menu:num2 = 1
store t to true2
* input loop
do while true2

store 0 to recnum
@ 21,28 say 'Delete record #' get recnum picture '99999'
read
if recnum > 0 .and. recnum <= reccount

go recnum
* display DELETE message
set talk on
delete
set talk off
store f to true2

endif >0 .and. <= reccount
enddo true2

case menu:num2 = 2
store t to true2
do while true2

store 0 to recn urn
@ 21,28 say 'Recall record #' get recnum picture '99999'
read
if recnum > 0 .and. recnum <= reccount

go recnum
* display RECALL message
set talk on
recall

set talk off
store f to true2

endif> 0 .and. <= reccount
enddo true2

case menu;num2 = 3
erase
return

case menu:num2 = 4
store 0 to menu:num2
return

endcase
enddo t

A Sample Application

H-19

A Sample Application

H-20

* REPTIDM: This program displays or prints average salary for each job
* title.
erase
@ 2,30 say , AVERAGE SALARIES'
@ 4,10 say' Job Title'
@ 4,35"say 'Job Code'
@ 4,50 say '# Emp.'
@ 4,62 say' Average Salary'
* line counter
store 7 to ace urn
select primary
use employee
select secondary
use jobdet
* executes once/job title
do while .not. eof

select primary
sum salary for job:code = s.job:code to sumsal
count for job:code = s.job:code to jobcount
if jobcount = 0

* to prevent zero divide
store 0.0 ~o average

else
store sumsal/jobcount to average

endif
@ accum,10 say job:title
@ accum,39 say s.job:code
@ accum,43 say jobcount
@ accum,63 say average
select secondary
skip
store accum = 1 to accum

enddo
select primary
return

* REPT2DM: This program prints or displays information about employees
* earning more than the midpoint of their salary range.
erase
select secondary
use jobdet
select primary
use employee,
* create new file with fields from employee (last name, first name, salary)
* and jobdet (job title, low salary, high salary)
join to midpoint for job:code = s.job:code field first:name, last:name,;

job:title, low:sal, hi:sal,salary
use midpoint
* second line of heading is within midform
set heading to Employees Earning More Than
report form midform for salary> (low:sal + hi:sal)/2
set heading to
return

A Sample Application

H-21

A Sample Application

H-22

* REPT3DM: This program prints or displays a salary increase report.
* Amount of increase is supplied by user at runtime.
erase
store 0 to percent
@ 14,3 say 'Percentage Increase? (5, 12, etc.)' get percent picture '999'
read -
@ 16,3
* get title
accept 'Report Title?' to headng
erase
if len(trim(headng)) < 80

* center heading if < 80 characters
@ 4, (80-len(trim(headng)))/2 say headng

else
@ 4,0 say headng

endif
use employee
index on dept:num to dptndxdm
report form salincr plain
return

A Sample Application

SAMPLE APPLICATION REPORT FORM FILES

The sample application uses two report form files. REPTIDM.PRGcalls MIDFORM.FRM,
REPT3DM.PRG calls SALINCR.FRM. Table H-I lists the report parameter
values for these two form files.

Table H-l. Report Form File Parameters

REPORT PROMPT MIDFORM.FRM SALINCR.FRM

PAGE HEADING? (YIN) y n

PAGE HEADING Midpoint of Salary Range

DOUBLE SPACE REPORT? (YIN) n n

TOTALS REQUIRED? (YIN) n y

SUBTOTALS REQUIRED? (YIN) y

SUBTOT ALS FIELD dept:num

SUMMARY REPORT? (YIN) n

EJECT PAGE AFTER SUBTOTALS? n

SUBTOTAL HEADING Department

001 20,TRIM(FIRST:NAME) 20, TRIM(FIRST:NAME)
+' '+LAST:NAME +' '+LAST:NAME

HEADING Employee Employee

002 20,JOB:TITLE 8, SALARY

HEADING Job Title Current Salary

TOTALS REQUIRED? (YIN) Y
003 9,LOW:SAL 28, , increased by , + str

(PERCENT,3) + '% --- '

HEADING Minimum Salary

004 9,HI:SAL 10, SALARY * (100 +
PERCENT)/IOO

HEADING Maxim urn Salary New Salary

TOTALS REQUIRED? (YIN) y

005 9,SALARY

HEADING Current Salary

H-23

Appendix I

Function Keys

At the top of the APC keyboard are a key labelled FNC and 22 function keys. The
most frequently used dBASE II commands are assigned to the first twelve function
keys. A template is included with the dBASE II documentation package. This
template, placed above the function keys on the keyboard, indicates the command
assigned to each function key. Press the appropriate function key to execute these
commands. When you use a function key, you do not have to type the command.
When the function key is pressed, up to eight characters of the corresponding
command appear on the display screen. If the command requires or accepts
modifiers, type your entry immediately following the display.

Two word commands, such as MODIFY COMMAND, SELECT PRIMARY, and
SELECT SECONDARY can be entered with two function keys.

Table 1-1 Function Keys for dBASE II

FUNCTION KEY COMMAND SCREEN DISPLAY

1 USE USE
2 LIST LIST
3 DISPLAY DISPLAY
4 CREATE CREATE
5 APPEND APPEND
6 EDIT EDIT
7 SELECT SELE
8 PRIMARY PRIM
9 SECONDARY SECO
10 MODIFY MODI
11 COMMAND COMM
12 ERASE ERASE

1-1 ...

Appendix J

Ideas and Applications

Ideas and Applications is intended to be a collection of short, useful dBASE II
programs and techniques that may ease the process of data management for other
dBASE II users. The programs are examples of how something may be done with
dBASE, and it is hoped that other dBASE users can take these ideas and move
beyond.

Ashton-Tate urges anyone with a short program in dBASE II that does something
particularly difficult, handy, or unusual to send it along. It is understood that these
programs are written by the contributor and are given gratis into the public domain.
Credit will be given to the contributors hy name and city. With a language as
powerful as dBASE we know that there is a wealth of material out there. Discovery
and fixes of bugs are also welcome.

Ashton-Tate will select and edit as necessary, and mail Ideas and Applications from
time to time to registered owners of dBASE II. The programs can then be added to
the back of this manual. Ashton-Tate is especially interested in applications of the
BROWSE, PEEK, POKE, and CALL commands.

Ashton-Tate hopes that this is a valuable service, and would appreciate your written
comments.

ASHTON-TATE
9929 W. JEFFERSON BLVD.

CULVER CITY, CA 90230

J-1

Ideas and Applications

J-2

*

* II.CMD by
*

* additional thanks to

II COMMAND

BILL WEINMAN
LOS ANGELES, CA

STEVE EDIGER

* THIS dBASE COMMAND FILE DISPLAYS A MENU OF USER OPTIONS.
* YOU CAN SET THE SYSTEM DATE, RETURN TO dBASE, DO THE RUN
* COMMAND, OR ANY OTHER FUNCTION YOU WOULD LIKE TO ADD.
* II.CMD COMBINED WITH RUN.CMD IS A CONVENIENT TURNKEY
* UTILITY FOR EXIT TO ANY CP/M FILE AND RETURN TO dBASE.
* THE OPTION TO SET THE SYSTEM DATE ALLOWS A SYSTEM DATE IN
* A FORMAT OTHER THAN "MM/DD/YY", AND THEREBY GETS
* AROUND THE INVALID DATE CHECK DONE BY dBASE. FOR EXAMPLE,
* USE A EUROPEAN DATE FORMAT "DD/MM/YY"; OR, DO AN ABSOLUTE
* DATE COMPARISON BY ASCII CHARACTER WITH A FORMAT LIKE
* "YY/MM/DD" (WITH < OR ». BRING UP 'II.CMD' AUTOMATICALLY
* BY TYPING 'DBASE II' FROM CP/M.

SET TALK OFF
DELETE FILE $$$.SUB
SET BELL OFF
SET SCREEN ON
SET FORMAT TO SCREEN
SET ECHO OFF
SET CONSOLE ON
SET ALTERNATE OFF

* MENU SELECTION
* --------------
STORE T TO MAINFLG
DO WHILE MAINFLG

ERASE
?
?
?
?
?
? " THIS IS WHAT YOU MAY NOW DO:"
?
?
?" 1 - SET DATE"
? " 2 - dBASE II COMMAND SUMMARY"
? " 3 - RUN A CP/M PROGRAM"
? " 4 - RETURN TO dBASE"
?
? " SELECT FROM ABOVE CHOICES"
?
*

II.CMD CONTINUED
*
STORE "I" TO Mchoice
@ 19,5 SAY "ENTER YOUR SELECTION ->" GET Mchoice PICTURE "#"
READ

DO CASE
CASE Mchoice = "1"

SET CONFIRM ON
SET COLON OFF
ERASE
STORE" " TO Mdate

@ 10,20 SAY "ENTER DATE (MM/DD(YY): " GET Mdate PICTURE '99/99/99'
READ
SET DATE TO &Mdate
SET COLON ON
SET CONFIRM ON

Ideas and Applications

J-3

Ideas and Applications

J-4

CASE Mchoice = "2"
DOCMDS

CASE Mchoice = "3"
DO RUN

CASE Mchoice = "4"
SET TALK ON
SET BELL ON
RETURN

ENDCASE
ENDDO MAINFLG
SET TALK ON
RETURN

* RUN COMMAND

* RUN.CMD by BILL WEINMAN
LOS ANGELES, CA *

* additional thanks to STEVE EDIGER

ERASE
REMA- THIS dBASE COMMAND FILE WILL EXIT dBASE TO AUTOMATI­
REMA- CALLY EXECUTE A DIR, TYPE, SAVE, ERA, OR ANY CP/M .COM
REMA- FILE THAT EXISTS ON THE CURRENTLY LOGGED DRIVE.
REMA- AFTER COMPLETION OF THE COMMAND, RUN RETURNS TO
REMA- dBASE. IN THIS EXAMPLE, RUN STARTS EXECUTION OF
REMA-' II.CMD', WHICH IS ATTACHED.

SET TALK OFF
STORE" " TO Mcom
DO WHILE T

@10,20SAY"ENTERCOMMAND->"GETMComPICTURE"!!!!!!!!!!!!!!!!!!!!"
READ
STORE! ($ (Mcom, 1, @ (" ",Mcom)-l)) TO Verb

IF Verb "TYPE";
.OR. Verb = "DIR";
.OR. Verb = "SAVE";
.OR. Verb = "ERA";
.OR. FILE (Verb+".COM")

DO CASE
CASE Verb = "TYPE"

@ 12,22
@ 12,22 SAY "TYPE ctrl-S TO STOP/START SCROLLING."
WAIT

CASE Verb = "DIR"
@ 12,22
@ 12,22 SAY "TYPE ctrl-S TO STOP/START SCROLLING."
WAIT

ENDCASE
ERASE

STORE TRIM(Mcom) TO TMcom
QUIT TO "&TMcom","DBASE II"

Ideas and Applications

1-5

Ideas and Applications

J-6

ELSE
@ 12,20
@ 12,20 SAY "FILE "+Verb+".COM DOES NOT EXIST."

ENDIF FILE
ENDDOT

**
* REMA- THIS PROGRAM WILL CALCULATE THE SQUARE ROOT OF A *
* REMA- NUMBER *
**
* CONTRIBUTED BY NELSON TSO *
**
*
STORE 1.00000000 TO ROOT
STORE" " TO NUMBER
SET TALK OFF
ERASE
STORE T TO ENTER
DO WHILE ENTER
@ 3,3 SAY "ENTER NUMBER TO BE ROOTED" GET NUMBER PICTURE '9999999999'
READ
@5,3
IF "-" $NUMBER

@ 5,3 SAY "NO '-' IN THE ENTRY PLEASE"
LOOP

ENDIF
IF &NUMBER > 99.9999999

@ 5,3 SAY "NUMBER IS TOO LARGE"
LOOP

ENDIF
IF &NUMBER < 0

@ 5,3 SAY "ERROR IN ENTRY"
LOOP

ENDIF
STORE F TO ENTER
ENDDO ENTER
IF &NUMBER = 0

@ 5,3 SAY "ROOT = 0"
STORE FTO B

ELSE
STORE T TO B

ENDIF
DO WHILE B

STORE &NUMBER/(ROOT*ROOT) - 1 TO C
IF C <0

STORE C*(-l) TO C
ENDIF
IF C < 0.0000001

@ 5,3 SAY "ROOT ="
@ 5,15 SAY ROOT
STORE F TO B

ELSE
STORE (&NUMBER/ROOT + ROOT)/2 TO ROOT
STORE TTO B

ENDIF
ENDDO
RETURN
NOTE- SQUARE ROOTS OF NUMBERS LARGER THAN 99 CAN BE
NOTE- CALCULATED BY DIVIDING THE NUMBER BY 10000 OR 100
NOTE- AND MULTIPLYING THE RESULTING SQUARE ROOT BY 100 OR
NOTE- 10 RESPECTIVELY.

Ideas and Applications

J-7

Ideas and Applications

J-8

*
* SEARCH.CMD by

SEARCH AND REPLACE
JIM TAYLOR

ASHTON-TATE *
*
* THIS PROGRAM IS AN EXAMPLE OF HOW TO LOCATE PARTICULAR
* CHARACTER SUBSTRINGS AND REPLACE THEM TO ACHIEVE
>1' UNIFORMITY IN THE ENTIRE DATABASE FILE. THIS IS ESPECIALLY
* USEFUL IF UNWANTED MARKERS CAME ALONG WITH YOUR
* DATA WHEN BROUGHT INTO dBASE FROM A FOREIGN FILE
* STRUCTURE. EVEN INVISIBLE CHARACTERS CAN BE DELETED. BE
* CAREFUL TO KEEP THE SUBSTRING LENGTHS CORRECT.

ERASE
@ 8,10 SAY" SEARCH"
@ 10,10 SAY "THIS PROGRAM REMOVES ALL' von ',' yom ',' v. ',' der', etc."
@ 12,10 SAY" AND REPLACES THEM WITH' v', AND' d ' "
SET TALK ON
SET ECHO ON
ACCEPT "REMOVE 'VONS' FROM WHICH FILE? " TO FILE
USE &FILE
* WORKS ON FIELD CALLED 'NAME' WHICH IS SO CHARACTERS LONG
DO WHILE .NOT. EOF

IF " von "$name
STORE @(" von", name) TO V
REPLACE name WITH $(name,l,V)+"v "+$ (name,V+S,45-V)

ELSE
IF" v. "$name

STORE @(" v. ",name) TO V
REPLACE name WITH $ (name,l,V)+"v "+S (name,V+4,46-V)

ELSE
IF " yom "$name

STORE @(" yom ",name) TO V
REPLACE name WITH $(name,l,v)+"v "+$(name,V+4,46-V)

ELSE
IF " van "$name

STORE @(" van" ,name) TO V
REPLACE name WITH $(name,l,v)+"v "+$(name,V+S,4S-V)

ENDIF
ENDIF

ENDIF
ENDIF

*
IF " d. "$name

STORE @(" d. ",name) TO V
REPLACE name WITH $ (name, 1,V)+"d "+$ (name,V+4,46-V)

ELSE
IF " der "$name

STORE @(" der ",name) TO V
REPLACE name WITH $ (name, 1,V)+"d "+$ (name,v+5,45-V)

ENDIF
ENDIF

RELEASE ALL
SKIP
ENDDO
* END OF SEARCH.CMD

Ideas and Applications

1-9

Index

$
$
$
&
&

Picture symbol 18-9
Uppercase function 3-13, 15-2, 15-16
Uppercase function 3-13, E-l
Not Equal operator 6-20
Picture symbol 18-9
Record number function 6-5, 15-2,

15-4, E-l
Picture symbol 18-9
Substring function 15-2, 15-13, E-l
Substring Logical Operator 6-21, 15-8
Character in strings 12-4
Macro substitution function 12-8,

15-11, E-l
() Parentheses for grouping 6-18,6-21
* Command 14-4, C-2
*
*
*
*
+

Deleted record function 15-2, 15-7, E-l
Deletion mark 7-8
Multiplication 6-18
Picture symbol 18-9
Addition 6-18

+ String concatenation 6-24
String concatenation 6-24
Subtraction 6-18
dBASE prompt 3-3, 5-2

.AND. Boolean and 6-21

.BAK extension 8-5, 14-1

.DBF Database file name extension 3-7,
5-6, G-l

. FMT Format files G-l

.FRM Report file name extension 10-5,
G-1

.MEM Memory file name extension 12-7,
G-l

.NDX

.NOT.

.OR.

.PRG.

Index file name extension 9-2, G-1
Boolean not 6-21
Boolean or 6-21
Command file name extension 14-1,

B-1, G-l

.TXT Text output file 8-24, G-l
/ Alternatives C-l
/ Division 6-18
9 Picture symbol 18-9

,
<

Continuation character 6-9
Line break character 10-5, 10-10
Less than 6-20

~ . -> Pointed brackets 1-4,6-10, C-l
<= Less than or equal to 6-20
< > Not equal to 6-20

>
Equal to 6-20
Grea ter than 6-20

>= Greater than or equal to 6-20
[...] Square brackets 1-4, 6-9 C-l

Character string delimiter C-l
? Command
? Command, interactive 6-6, C-2
? Spacing Lines C-2
?? Command 6-7, 6-28, C-2
@ Command 11-2, 18-5, C-2

data display 18-5
formatting printed page 18-10
and READ 18-7
screen editing 18-5

@ Substrings Search function 15-2, 15-7,
E-l

A
\ A-Picture symbol 18-9
Abbreviations for commands 3-16, 6-9
Abbreviations for keywords 6-3, 6-9
Abort a command 6-15
ACCEPT command 18 .. 4, C-2
Accuracy, numeric 6-18
ALL keyword 6-11
APPEND BLANK command 7-2, C-2
APPEND command' 5-12, 6-26, 7-1, 8-8,

A-I, C-2

Index-l

Index

and MODIFY STRUCTURE 8-10
foreign data files 8-24, 20-1
key field changes 9-11
renaming database fields 8-20
SDF files 8-20, 20-1

APPEND FROM command 8-8,20-1, C-2
Arithmetic Operators 6-18
ASCII collating sequence 7-14, 9-2
Automatic counting. 10-3, 10-4
Automatic summing 10-14, 10-16, C-ll
Autostart program 2-1, 2-10

B
BACKSPACE 3-4, 3-6, 5-9, 5-20
Backups 2-1, 2-4, 8-1, 8-7
Basic programming structures 17-1
BEFORE Keyword 7-4
BLANK

in APPEND command 7-2,9-11
in INSERT command 7-4

Blanks in commands 6-9
Boolean operators 6-21
Brackets 1-4, 6-9, 6-10, 6-16
BREAK key 6-15
BROWSE command 7-16,9-11, A-I, C-3
BROWSE cursor control 7-18, A-I
Byte 12-5

C
CALL command 20-4, C-3
CANCEL command 17-3, C-3
CASE structure 17-6
CHANGE command 7-16,7-19, C-3
char string-definition B-1
Character constant 6-16
Character data with ACCEPT 18-4
Character string

constant 6-16
in FIND command 9-8
memory variables 12-4

Characters per field 5-8
Characters per record 7-8

Index-2

CHR-Number to Character function 15-2,
15-11, E-l

CLEAR command C-3
CLEAR GETS command 18-8, C-3
Clear screen 14-5, 18-8, C-3
Closing of database files 3-18, 5-10, 20-3,

C-9
Collating sequence, ASCII 7-14, 9-2, F-l
Command file B-1
Command files 14-1, 17-1, 18-1, 19-1, G-l,

G-2
commands 14-1, 14-4
and DO command 17 -7, C-4
indentation for readability 17-2
interactive 18-1
name extension 14-1
nested 17-12
planning for 19-1
printing 11-2
proceduresin 17-12
programming for 14-1,17-1,18-1, 19-1
restrictions 14-4
sample 11-1
setup 14-1
testing 19-3

Command mode 5-2,5-10
Command Summary C-l
Command syntax 6-7
Comments 14-4, C-2
Complex expressions 6-22
Concatenation 6-24, 9-2, 9-8
Conditional execution 6-8, 6-16
Constant 6-16
CONTINUE command 6-26, C-3
Control characters A-I
Conventions 1-3, B-1
COpy command 8-1,8-8,20-1, C-3

and PACK 8-6
and TOTAL 10-6
creation of files 8-2
foreign data files 20-1
renaming database fields 8-20

selective copying 8-2
SDF files 8-21,20-1

COpy STRUCTURE command 8-10, C-3
COPYDISK program 2-4
Copying diskettes 2-4
Correction dialog, error 5-24
COUNT command 10-13, C-4
CP/M-86 operating system 2-1,2-7,11-2

bit map resetting 20-3
commands 20-1
data files 20-1
directory 8-5

CP/M files 14-1,20-1
CREATE command 3-3, 5-4, 6-28, 8-8,

A-I, C-4
Creating a database 3-3, 5-1
Creating a file 3-3, 5-1
Creating a structure 5-1
CTRL 5-20
CTRL A 5-20, 5-23, 7-18, 8-13~ A-I
CTRL B 7-18, 7-19, A-2
CTRL C 5-23,7-2,7-18,7-19,8-13,9-11,

14-2, A-I
CTRL D 5-20, 5-23, 7-18, 8-13, 14-2, A-I
CTRL E 5-20, 5-23,8-13, A-I
CTRL F 5-20, 5-23, 7-8, A-I
CTRL G 5-21,5-23,7-19,8-13,14-2, A-I
CTRL J 5-23, 7-18, 8-13, A-I
CTRL K 5-23, 7-18,8-13, A-I
CTRL N 8-12,8-14, 14-2, A-2
CTRL P 5-23, 7-19, 8-13, 11-1, 14-2, A-2
CTRL Q 5-22, 5-23, 7-19, 8-13, 8-14, 14-2,

A-2
CTRL R 5-23, 7-18, 7-19, 8-13,9-11, A-I
CTRL S 5-20, 5-23, 6-15, 7-19, 8-13, 14-2,

A-I
CTRL T 8-12~ 8-13, 14-2, A-2
CTRL U 5-23, 7-9, 7-10, 7-19, A-2
CTRL V 5-21,5-23,7-17,7-19,8-13,14-2,

A-2
CTRL W 5-22, 5-23, 7-2, 7-19, 8-13, 14-2,

A-2

CTRL X 5-21,5-23,7-19,8-13,14-2, A-I
CTRL Y 5-23,7-19,7-20,8-14, A-2
CTRL Z 7-18,7-19, A-2
Current record pointer 6-5, 13-4
Cursor control keys 1-2, 5-20, A-I

D
Data base

creation of 3-2
definition of 4-1
file name extension 5-6
files 4-2, G-l, G-2
indexed 9-1
management systems 4-1
modification of structure 8-1, 8-7
records 5-4
renaming of fields 8-1, 8-20
structure 5-4, 8-7

Data bases
combination of 7-25
duplication of 8-1
joining of 13-5

Data diskette 5-3
Data entry mode 3-7,5-10,7-2
Data type function 15-2, 15-10
Data types 3-5, 5-7
Date prompt 3-2, 5-2
DATE () function 15-2,15-10, E-l
dBASE II distribution diskette 2-1, H-l
DBF extension 3-7, 5-6
Decimal places 3-5, 5-8
Decision construct 17-1
Default drive 5-4, 8-4, 16-5
Default values 5-8, 5-14
DEL key 5-21,5-23, 7-19, 8-13, 14-2, A-I
DELETE command 7 -8, C-4

database cleanup 7-8
and PACK 7-12
and RECALL 7 -1 °

DELETE FILE command 8-3, C-4
DELETE NEXT command 7-8, C-4
DELETE RECORD command 7-8, C-4

Index

Index-3

Index

Deleted record function 15-2, 15-17
Deletion mark 7-8
DELIMITED keyword 20-1,20-2
Delimiter-definition B-1
Disk drive specifier 5-4, 8-4, 9-2
Diskette 1-3, 2-1
Diskette drive 1-3, 2-2
Diskette handling procedures 1-3, 2-2
Diskette swap 20-3
DISPLAY command 5-14,6-11,6-28, C-4

vs. LIST 6-10
DISPAY FILES command 6-28 C-4
DISPLAY MEMORY command' 12-4, C-4
DISPLAY OFF command C-4
DISPLAY STRUCTURE command 6-28,

C-4
Distribution diskette 2-1, H-l
DO command 14-5, 17-12, C-4
DO CASE command 17-6, C-5
DO WHILE command 17-6, C-5
DO WHILE Loop 17-10
Documentation 14-4
Dot prompt 3-3, 5-2
Dual-drive APC 1-3, 2-3, 5-3, 8-7

E
EDIT command 5-19,7-16,9-11, A-I
EJECT command C-5
ELSE command 17-1, C-5
End-of-File function 15-2, 15-18
ENDCASE command C-6
ENDDO command 17-6, C-6
ENDIF command 17-2, C-6
EOF-End-of-File function 15-12, 15-18

E-l '
ERASE command 14-5, 18-8, C-6

and @ command 18-8
or CLEAR GETS 18-8
housekeeping 14-5

Error correction dialog 5-24
ESC key 6-15, 7-20
exp-defintion B-1

Index-4

exp list-definition B-1
Expression 6-16
Extensions, file name 5-6, G-l

F
field-definition B-1
field list-definition B-1
Fields 3-5

characters per 5-8
definition 4-2
per record 5-7
type 5-7
width 5-8

Field names 3-5, 5-7
FIELD phrase 6-8,6-13, 8-3, 10-16
file-definition B-1
File-definition 4-2
FILE function 15-2, 15-19, E-2
File name 3-3, 5-4
File structure 3-5, 5-4, 8-1
FIND command 9-6, 9-7, C-6
For exp -definition B-2
FOR phrase 6-8,6-16, B-2
Foreign data files 20-1
form file-definition B-1
format file-definition B-2
Format file-G-l, G-3
FORMAT program 2-1,5-3
Formatting diskettes 2-1,5-3
Full-screen cursor controls 5-20
Full-screen editing 5-18, 14-2, A-I
Function 12-8, 15-1
Function key 1-2, 3-4, F-l

G
GET phrase 18-5, C-2
GETS keyword 18-8, C-3
GO BOTTOM comrhand 6-2, C-6
GO command 6-1, ~-6
GO TOP command 6-2, C-6
GOTO command 6-1,6-28,9-11, C-=-6

H
Hardware environment 1-2

I
IF command 17 -1, C-6
IF .. ELSE .. ENDIF 17-1, C-6
Indentation for readability 17-2
INDEX command 8-1, C-7
index file-definition B-2
Index file(s) 9-1, G-l, G-2

definition 9-1
name extension 9-2, G-l

Index key length 9-2
Indexed database 4-2
Initializing diskettes 2-1, 5-3
INPUT command 18-3, C-7
Input commands, interactive 18-1
INS key 5-21,5-23,7-17,7-19,8-14,

14-2, A-2
INSERT command 7-4,9-11, A-I, C-7
INT-Integer function 15-2, E-2
Integer function 15-2
Interfacing with non-dBASE processors 20-1

J
JOIN function 13-5, C-7

K
Key 4-2
key-definition B-2
Keyboard 1-2
Keyword 6-3, 6-8, 6-16

abbreviation for 6-3
Key, index 9-2, 9-8
Key, sort 7-14

L
LDCOPY program 2-10
LEN-String Length function 15-2, 15-5,

E-2
Length

command line 6-9
field 5-8

index key 9-2
report header 10-5

LIST command 3-10,5-14,6-11,6-28, C-7
LIST FILES command 5-15,6-28, C-7
LIST MEMORY command 12-4, C-8
LIST STRUCTURE command 5-17,6-28,

C-8
Literal 6-16
LOCATE command 6-16,6-26,9-10, C-8
Logical constant 6-16
Logical operations 6-19
Logical operators 6-21
Logical values 6-17
LOOP command 17-10, C-8

M
Macro substitution function 12-4, 12-8,

15-11
Master index 9-6, 9-11
mem file-definition B-2
Memory files 12-6, G-l, G-3
Memory variable(s) 6-16, 12-1

and COUNT 10-14
characters for names 12-2
data types 12-4
definition 12-1
as FIND object 12-9
release of 12-5
storage of 12-5
and SUM 10-15

memvar-definition B-2
memvar list-definition B-2
Merging records 7-25
MODIFY COMMAND command 14-1,

A-I, C-8
MODIFY STRUCTURE command 8-10,

A-I, C-8

N
n-definition 6-2, B-2
Naming variables 5-7, 12-2
Nested command files 17 -12

Index

Index-5

Index

Nested IF statements 17-5
NEXT phrase 6-8
NEXT n-definition 6-11
N on-dBASE processors 20-1
NOTE command 14-4, C-8
Number to Character function 15-2, 15-11
Numeric accuracy 6-18
Numeric constant 6-16
Numeric key field 9-8
Numeric memory variables 12-4

o
Operators

arithmetic 6-17
definition 6-17
logical 6-21
relational 6-20
string 6-24

OTHERWISE command C-8
p
PACK command 7-12,9-11, C-9
Page format 10-5
Panning on screen 7 -18
Parentheses for grouping 6-18, 6-21
PEEK-Peek function 15-2, 15-4, 20-4, E-2
Period, dBASE prompt 3-3, 5-2
Peripherals Interchange Program (PIP) 2-7,

8-7
PI CTURE phrase 18-8
PLAIN report 10-9, 10-12
Planning command files 19-1
Planning data bases 4-1
POKE command 20-4, C-9
Precedence of operators 6-17
Prefix 13-3
PRINT key 5-23, 7-19, 8-14, 10-4, 10-9,

11-1, 14-2, A-2
Printer instructions 3-17, 11-1
Printing forms 18-10
Procedures in command files 17 -12
Program function keys 1-2, 1-1

Index-6

Programming 17-1
Prompt, dBASE II dot 3-3,5-2

Q
QUIT command 3-18, 5-10, 20-3, C-9
Quotation marks 6-16

R
RAW parameter
READ command 18-7, C-9
RECALL command 7-10, C-9
RECORD <n)-definition 6-11, 9-11
Record Number function 15-2, 15-4
Record sequence number 3-11, 6-4, 7-4, 9-3
Records

characters per 7-8
per database file
definition 4-2
fields per 5-7
structure 3-7, 5-4

Relational operators 6-19
RELEASE command 12-5, C-9
RELEASE ALL command 12-5, C-9
REMARK command 14-5, C-9
RENAME command 8-5, C-9
Renaming database fields 8-1, 8-20
Repetition construct 17-6
REPLACE command 3-13, 7-16, 7-20, 9-11,

C-10
REPORT command 3-15,10-1,11-1, C-I0
REPORT FORM command 10-9
Report form file name extension 3-17, 10-5,

G-l
Report form files 3-17,10-4, G-1, G-2
Report format 3-15, 10-1, 10-5
Report header length 10-5
Report preparation 10-4
RESET command 20-3, C-10
RESTORE command 12-7, C-10
RETURN command 14-5, 17-12, C-I0

S
Sample application H-1

SAVE command 12-6, C-I0
SAY phrase 18-5
scope-definition 6-8,6-10, B-2
Screen 1-2
Scrolling, start/stop 6-15
SDF 8-21
Sequence construct 17-1
SELECT command 13-1, C-I0
SELECT PRIMARY command 13-1, C-I0
SELECT SECONDARY command 13-1,

C-I0
Sequence number 3-11
SET commands 7-1, 16-1, C-ll

ALTERNATE 16-2
ALTERNATE TO 16-5
BELL 16-2
CALL TO 16-5, 20-4
CARRY 7-2, 16-2
COLON 16-2
CONFIRM 16-2
CONSOLE 16-2
DATE TO 10-9, 16-5
DEBUG 16-2
DEFAULT TO 5-4,16-5
ECHO 16-3
EJECT 3-17,10-4,10-9,11-1,16-3
ESCAPE 16-3
EXACT 9-8, 16-3
FORMAT TO PRINT 11-2, 16-6, 18-10
FORMAT TO SCREEN 16-6,18-8
HEADING TO 16-6
INDEX TO 9-6,9-11, 16-6
INTENSITY 16-3
LINKAGE 13-5, 16-3
PRINT 10-4, 10-9, 11-1, 16-4
RAW 16-4
SCREEN 16-4
STEP 16-4
TALK 16-4

SHIFT TAB key 5-20,5-23,7-18,8-13, A-I
Sign-on message 3-3, 5-2
Simple decision 17-3

Single-drive APC 1-2, 2-3, 5-3, 8-7
Single-drive disk copying 2-8
SKIP command 6-3,6-28,9-10, C-ll
SORT command 3-11,7-13,9-1, C-ll
Sort key 7-14
Special symbols 1-4, 6-9
Standard CP/M files 20-1
Standard data format 8-24,20-1
statement-definition 17-5, B-2
STORE command 12-1, C-ll
STORE TRIM command 15-15
STR-String function 15-2, 15-12, E-2
String Length function 15-2, 15-5
String operators 6-24, 9-2
String to Numeric function 15-2, 15-6
Substring function 15-2, 15-13
Substring logical operator 15-8
Substring Search function 15-2, 15-7
SUM command 10-14, C-l1
Syntax 6-7
System loader 2-1,2-10
System variable 6-16

T
TAB key 5-20,5-23,7-18,8-13, A-I
Template 1-2
Termination of dBASE II session 3-18
Terminology 1-4
TEST function 15-2, 15-8, E-2
Text output file 8-24, 20-2, G-l, G-3
Text output file name extension 8-24, G-l
TOTAL command 10-16, C-ll
TRIM function 9-2, 15-2, 15-15, E-2
type-definition B-2
TYPE command, CP/M -86 11-2
TYPE-Date type function 15-2, 15-10, E-2
Typographic conventions 1-4

U
UPDATE command 7-16, 7-25, C-ll
Uppercase 1-4,2-3,3-3, 5-26,6-9,6-10, C-l
Uppercase function 3-13, 15-2, 15-16
USE command 3-10, 5-10, C-12

Index

Index-7

Index

V
VAL-String to Numeric function 15-2,

15-6, E-2
Value· 4-2, 6-5
var-definition B-3
Variables 6-5,6-16
Verb 6-7

W
WAIT command 18-1, C:.12
WAITING prompt 6-14
What is ... ? command 6-5
WHILE 6-16
WHILE exp -definition B-3
WIDTH 3-5,5-8,10-7
WITH phrase 6-8, 7-21

X
X Picture symbol 18-9

Index-8

~
~

5
till
C
9

~

~~ Advanced
~"'Personal Computer

TM

NEe
NEe Information Systems,/nc.

USER'S COMMENTS FORM

Document: dBase II User's Guide

Document No.: 819-000 J OO-XOO J

Please suggest improvements to this manual.

~ ~ Please list any errors in this manual. Specify by page.
!:l
~

From:
Name __ _

Title __ _

Company __ ___

Address __ __

Dealer Name __ _

Date: __________________ _

Seal or tape all edges for mailing-do not use staples_

FOLD HERE

111111

BUSINESS REPLY CARD
FIRST CLASS PERMIT NO. 386 LEXINGTON, MA

POSTAGE WILL BE PAID BY ADDRESSEE

NEe Information Systems, Inc.
Dept: Publications -APC
5 Militia Drive
Lexington, MA 02173

FOLD HERE

Seal or tape all edges for mailing-do not use staples.

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITFD STATES

