CROMEMCO

MACRO ASSEMBLER

Instruction Manual

CROMEMCO, INC.
280 Bernardo Avenue
Mountailn View, CA 94040

Part No. @23-0039 October 1978
Copyright 1978

This manual was produced on a
Cromemco model 3355 printer
using the Cromemco Word
Processing System.

TABLE OF CONTENTS

CHAPTER PAGE

CROMEMCO RELOCATABLE ASSEMBLER MANUAL

Getting Started in Assembly Language Programming..... 9

Calling the Assembler...... Sl B s EEE R R e Ssrene & emanl
Options Specified When Calling ASMB..cececooocnscos sw 19
Summary of Defaults and LimitS.....c.. os @ Bl ¥ sae 27

Assembler FieldS..cccceccceccccoasns . T a.i29
Names (Labels)...... e § STELSESISENS & SUNARISTAEALS 8 woenese P — 1]
Opcode MNEmMONiCS.ceeceecacss cracetaate w sieeTeIAIS » sessesscas 31
OperandsSs csasase s annsiess § SRS e auele SiRTeee B e e .. uemi 2
RemarkS.ceeess §aE @ eveseTETse B & SRR B SRR . B EEESETEGe w WD

Pseudo-opcodes Recognized by the Assembler..........39
Alphabetical List of Pseudo-OpPS...cccscscss Saraee s 8 639
Sonrce Code SegmentS. .essscaasies s s owaaes s vevnes ¥ 937

Macro and Conditional Assembly...cecccceceeccccnns i% ¥ w65
Macro Assembly (MACRO Definition and CallsS)...ceess.65
Conditional Assembly (IF Statements)...ccceececcscs .. 74
Examples of Macro and Conditional Assembly.....e.c...76

Assembler Error MesSsageS...s.s.- ssates ® aredsisieieie 8 wieieteisrmie = O
Error Messages Generated Following a Call to ASMB...81
Error Messages Generated During Assembly.cceececcccs .84

Assembler Print-ListingS..cceccecssccosscccas srataeveets 92
Sample Listing.ieeeecesssseescanns S SRR B ¥ T ok
Listing ColummS.isss isssies s Caasiss & vaameny » s suwwws v 91
Lines of Listing.eceseccossscnnas S ¢ A ¥ cewanendd
Listing ByMbOlS e s somonon s asessessssdaanssssanmss 20
Tables Following the Listing...ccecececccccncans ceeeell

PART 1I.

CROMEMCO LINKER/LOADER MANUAL

1.

4.

PART TIII.

Using the CROMEMCO Linker/Loader.sceeesees

Command Format.ceceecosoes R G T T
Link Swltchesus : snwewns s v SRR § Saereeie W

Format of LINK-Compatible Object Files..

LINK Error MeSSageS.esecssosccssssssssase

Fatal ErfOfS..............-..-o---. ooooooo

warningS....--..............---.- -------

Examples of Linking ModuleS...ceeeeessss

CROMEMCO PROGRAM DEBUGGER MANUAL

l.

2.

3.

PART IV.

Introduction to DEBUG: 5 s savis S eeRREERS
Loading DEBUG: iessssesiseisensivinnasss e
Control. (Charactek Sh.e e s ¢ sasisiaies s S
Command Format..ccescscesses P

* e s 8 88
“- s o 000
e s 8 00
.o 8 o 00

8 e 8 88
s 8 8 80

@ REGLEEET s nwinrwis » sraisoreas & areesmaraieis o seseseesn & &

Address EXpPressSionS..cccecececcecsscccscss
SwatH Operatorlaaa s ewwwsne s sreainine s eneiese

Efrors.....---.............--...--.-....

DEBUG Commands...................-.-....

Summary of DEBUG CommandS...ceeecceacasss
Summary of Register NameS.....oceeaasccas

CDOS PROGRAMMER'S MANUAL

l.

2.

3.

Introduction to CDOS System Calls.......
Memoty AlloCAtion...sssecessecseceenessesss

Device I/0 - List of CDOS System CallsS.ceec..
CDOS Device Function CallS..ccccecccacasasas
CDOS: Digk Function ‘Calls.us s ewivwins & svaeiareinis o
Additional System CallS.ccscessscssscsccccccs

Summary of CDOS Function CallS.scesssssssss

...155

es.119
e..119
0o ol20
ce.120
e..121
eeel2l
eeel22
sesl22

we 3123

...13?
.--138

...141
...l4l

ese145
«..145
awe 150
++5156

...159

PART V.

ASSEMBLER LIBRARY ROUTINES

2.

PART VI.

Routines Available in ASMLIB.ccseccecescssscsescseanselb3
Degima]l CoNVErS1loHee « sssmmearen » svamasersse s ssosssoresane s s svevazeis O3
Hexades imal. CoORVEESLORsmwmme 5 wwwiveess & & @ rarscEree ® eneveseves LOG
Character I/0 RoUtiNeScucaes s vowmees s e s veaese 165

An Example ------------------- a-aa.-aaaooooooo..ooo.l?l

MISCELLANEOUS PROCEDURES

Procedure for Creating a New LUN Table for FORTRAN.178

‘Using ASMB and DEBUG to Program PROMS....ceeeeseesosl8l

8080 to Z8@ TranslatOor..eeeces.s SRR B SRR TeENe @ avd svae 184

CROMEMCO MACRO ASSEMBLER

CHAPTER 1:
GETTING STARTED IN ASSEMBLY LANGUAGE PROGRAMMING

The purpose of an Assembler is to provide a
means of translating easily understood mnemonics,
which represent the instructions of a computer,
into object code which may be loaded into memory
and run as a program. The CROMEMCO Disk-Resident
Z-80 Relocatable Macro Assembler is a two pass
assembler which reads source code from a disk file,
assembles 1it, and produces a relocatable object
and/or a print-listing file. These files may be
sent to any of the disks, suppressed altogether, or
sent to the console (listing file only). The
CROMEMCO Relocating Linker/ Loader may then be used
to locate the assembled code anywhere in memory.
The completely assembled and linked machine code
may be saved in a disk .COM file for execution as a
command program.

The use of a relocatable assembler and linker
provides one of the most versatile ways of creating
machine language programs for the computer. The
time saved through their use is well-worth the time
spent 1in gaining familiarity. These two command
files allow one to create and assemble a number of
different modules separately, and then 1link them
together at run time. Or one can link an assembled
user—-program to an already existing library of
useful object code files. In addition one may
assemble programs using a compiler (for example,
assemble FORTRAN programs into machine code using
CROMEMCO's FORTRAN Compiler), and link these object
modules to existing machine code modules, programs,
or subroutines. At the same time the final program
may be located to run anywhere in memory.

The CROMEMCO Relocatable Assembler (hereafter
called ASMB or the Assembler) is both a Macro and a
Conditional Assembler as well. A separate chapter
of this manual is devoted to these features. The
Macro capability allows the user to very easily
generate such things as multiple blocks of code,
design added capabilities for the Assembler for a
particular purpose, and write much shortened
versions of source code by having a Macro library
searched for often-used routines. The Conditional

9

CROMEMCO MACRO ASSEMBLER

(IF statement) assembly feature allows blocks of
code to either be included or not, depending on the
satisfaction of user-defined conditions. There are
also capabilities for INCLUDing other source code
files at assembly time and declaring other program
modules EXTernal to the main program, which are
then linked to it at run-time. All these features
are described further in the chapters on pseudo-
ops.

The CROMEMCO Relocatable Macro Assembler is
supplied to the user on diskette (large or small)
under the directory entry "ASMB.COM". The way the
Assembler 1is called is described in detail 1in
Chapter 2. A source code file to be assembled must
have the three-letter extension .Z80¢ to be found by
ASMB. To assure correct operation the Assembler
should be used with the following minimum hardware
configuration: 32K of contiguous RAM memory
beginning at location ¢ and the CROMEMCO 4MHz Z-80
CPU card, along with the CROMEMCO Disk Operating
System (CDOS) hardware and software. When called,
ASMB loads into memory at 1@@H and begins execution
there.

Since most users will be eager to try out some
of the features of ASMB right away, this chapter
may be used as a step-by-step beginner's manual for
the composition, assembly, link, and execution of a
simple Z-8f§ machine language program. The name of
the program is "TIMER" and its purpose is to ring
the console bell at approximately halfsecond (using
4MHz clock) intervals as determined by a timer
loop. It will not be necessary for those users
familiar with assembly language programming to read
this chapter. These persons may skip ahead to
Chapter 2 at this point.

The first step is to turn on the power to the
computer and boot—-up the CROMEMCO Assembler Disk
(Model FDA) in drive-A. You will notice upon
typing out the directory that supplied along with
the Assembler (ASMB.COM) 1is the CROMEMCO Text
Editor (EDIT.COM) and CROMEMCO Debug (DEBUG.COM)
pPrograms. We will use the Text Editor to enter our
source code program. The Editor manual 1is also
supplied with the Assembler package and should be
used for questions and reference concerning EDIT.
However, some of the simple commands are explained
here for the benefit of the user who is unfamiliar
with the Editor.

10

CROMEMCO MACRO ASSEMBLER

The user can now call EDIT giving the name and
three-letter extension of the file we wish to
create by typing the following. (Note that before
typing the command line vyou should have the CDOS
prompt for the drive vyou are using, for example
"A." for drive-A.)

EDIT TIMER.Z8@
The Editor will then respond with:

CDOS EDITOR VERS. XX.YY
NEW FILE

The prompt for the Editor is an asterisk, "*",
and commands may be entered any time this prompt is
displayed. We now wish to enter the text of the
source program so we use the Insert command of
EDIT. This is done simply by typing the letter "I"
followed by a carriage return (CR). We can then
start typing lines of text, ending each line with a
carriage return. Mistakes can be corrected by
backspacing or can be corrected after we have
finished with 1Insert mode as explained below.
There are four fields which may be used in a line

‘of source code: labels, opcodes, operands, and

remarks. Labels are followed by a colon and
remarks are preceded by a semi-colon. If there are
more than one operand, they are separated by a
comma. The instruction mnemonics or opcodes for
the wvarious Z-80 instructions can be found in the
Z—-8@ CPU Technical Manual published by Mostek and
Zilog along with an explanation of each. Note that
in the following text a tab was used to separate
the various fields; this is done in the Editor by
typing the CTRL-I on the console. Also note that
either upper-or lower—-case are allowed. We now
type in the source code:

1::

CROMEMCO MACRO ASSEMBLER

;i This program rings the console bell at approximately

; half-second intervals determined by a timer loop.
BELL: EQU 7 ; console bell is ASCII 9?
WRITE: EQU 2 ; write character to console
CDOS: EQU 5 ; use system call to write
TIMIT: EQU 2FFH ; 2 is no. of half-seconds;
H FF (256) is no. of loops
DURAT: EQU @FFH ; FF (256) is loop duration
; Main Program
START: LD SP,STACK ; initialize stack pointer
LOOP: LD BC,TIMIT ; B is no. of half-sec.;
i C is no. of loops
TIM2: LD A,DURAT ; get duration (256)
TIMI1: DEC A ; decrement and

JR NZ,TIM1 ; loop til zero

DEC & ; decrement loop counter

JR NZ,TIM2 ; until zero

DJINZ TIM2 ; countdown half-seconds

LD E,BELL ; set-up to ring bell

LD C,WRITE ; set—-up to write console

CALL CDOS ; call system

JP LOOP ; loop and repeat
; Stack Area
BOTTOM: DS 40H ; allow 64 bytes for stack
STACK: EQU S ; current location counter
: equals top of stack

END START

This code should be typed

appears here

desired) .

entered,
CTRL-Z.

get the asterisk prompt.)

in exactly as it

(although comments may be omitted if

When the entire body of text has been
end the Insert mode by pressing ESCape or
(You have left Insert mode when you again

You now would like to

review what you have written to check for errors.
Move the character-pointer to the top of the file
by typing "B <CR>". Then type out your file using
the T or P command. For example the command 14T
will type out 1@ 1lines, or @P will type out the
current page of 23 lines. The S or Substitute
command can now be used to make corrections. The
format of the command is:

S<oldtext>" [<newtext>"[<CR>

12

CROMEMCO MACRO ASSEMBLER

where the "7 [" character is an ESCape. The text
string for which you are substituting must be
exclusive; for example the command

SP™[R™[

is not good because the first "P" encountered will
be changed to an "R". The following command 1is
much better because the substitution is for a one
of a kind string:

SJP~INZ,TIM1"[JR™INZ,TIM1"[

The "7I" is the way EDIT prints CTRL-I's. When all
corrections have been made, you may Exit from the
Editor by typing "E <KCR>". When the "A." prompt
is again displayed on the console, the created file
will have been saved on the disk under the filename
"TIMER.Z88". If you desire more information about
editing files at this point, refer to the Text
Editor Manual for complete descriptions of the
Editor commands. We will now proceed with
assembling the file.

The Assembler is called in a similar manner to
the Editor. The command line you should type is:

ASMB TIMER

The Assembler understands when it receives this
command line that it will find the source file on
the current drive, and that it will place the .REL
(relocatable) object file and .PRN (print) listing
file on the current drive as well. Our file
"TIMER.Z80" will now be assembled. When finished,
control will again be returned to CDOS and the "A."
prompt given. Just prior to exiting, ASMB will
print on the console:

Errors g
Program Length 0@05A (90)
end of assembly

provided you have made no typing errors in editing
the file, If there are some errors, re-edit the
file and correct them as described above. Then re-
assemble as before. The numbers above give the
program length first in hexadecimal and then
decimal.

13

CROMEMCO MACRO ASSEMBLER

The Assembler will now have created the .REL
and .PRN files on the disk. If you would like a
listing of the program, type:

TYPE TIMER.PRN

and press CTRL-P (assuming you have a printer
correctly hooked up to parallel port 54H; if vyou
have no printer, omit the CTRL-P) before typing the
carriage return. The listing will then be printed
on both the console and the printer. There is a
great deal of information contained in this
listing. Briefly, the 1listing consists of these
sections. The first column is the hexadecimal
address of the instruction, and the second column
may be one of three things: (1) the object code of
up to a four-byte instruction in hex, (2) the
object code of four bytes of data in hex, or (3)
the equivalent value of the operand expression in
parentheses. The third column gives the line
numbers of the source in decimal. The fourth,
fifth, and sixth columns are the label, opcode, and
operand fields, respectively.

The rest of each line contains the remark if
there 1is one. The complete listing which results
from the assembly of our given example source file
is given 1in Chapter 7 along with a detailed
description of every feature of the listing.

The last step prior to running the program is
to load it into memory. This 1is done using the
CROMEMCO Linker/Loader. The command line that
should be typed is:

LINK TIMER

The Linker will then prompt with an asterisk
(®) . This means that it is awaiting further
instructions. At this point you may either start
execution or exit to CDOS, save the file, and
execute it as a command file, Let us choose the
second method. (For those who wish to try the
first method, simply type /G to the "*" prompt.)
To the asterisk type the characters /E which will
exit to CDOS. LINK will then print on the console
a message similar to:

[1000 105A 16]
The first number is the starting address for

14

CROMEMCO MACRO ASSEMBLER

execution, the second number is one more than the
highest address used by our program, and the last
number gives the number of pages to be saved to
create a command file. We now create this .COM
file by typing:

SAVE TIMER.COM 16

Command files may be executed directly from
CDOS simply by typing their name. They are then
loaded into memory beginning at 10@H and execution
begins there. The Linker has already placed the
necessary "JP 10@@PH" for us at 1l@0H so we execute
the TIMER program simply by typing the word
"TIMER" . The bell on your console should begin
ringing at approximately half-second intervals,
telling you that the machine language program we
have created is working!

Good assembly language programming practice
usually dictates that a program should be debugged
before executing it directly as we have done. By
this method the user can insert breakpoints to stop
execution so that the registers and memory contents
can be checked to determine if the program is
executing correctly. We have skipped the debugging
stage so as not to complicate the example
unnecessarily. However, when you create assembly
language programs of your own, you can use the
CROMEMCO Debugger program (DEBUG.COM) to execute it
using breakpoints. To do this you would first have
to save your program 1in a file as we have done
above; then load it using DEBUG. See Part III on
the Debugger for several examples of the way to
debug a program.

The example program of this chapter is KNOWN

TO WORK 1if the source is created and assembled
according to the procedures outlined above. Should
. you have any difficulties with any of the steps,
try working through that step a second time. You
may also refer to the manual which describes that
function for a detailed description of the
procedure. This book is divided into a number of
distinct parts, which are listed in the table of
contents for reference. Parts I, II, and III are
the complete Assembler, Link, and Debug manuals,
respectively. Part IV is the CDOS Programmer's
Manual, describing the many system calls which can
be made to CDOS for I/0O and disk operations. Part
V is a description of the Library of relocatable

15

9T

*YSTIP I9Tquwassy a9yl Y3 mm parrddns aie yoiym saTnpou

HITIWISSY OOV ODWHWOHD

CROMEMCO MACRO ASSEMBLER

CHAPTER 2: CALLING THE ASSEMBLER

The Assembler 1is called from disk simply by
typing "ASMB" followed by the filename of the
source code to be assembled. This sourcefile MUST
have the extension .Z80 to be found by the
Assembler, regardless of whether or not it consists
entirely of Z8@ code. However, when calling ASMB,
the user may specify an optional 3-letter drive-
request for the filename which has NO relation to
the 3-letter extension of the filename on disk.
Note that if this 3-letter drive instruction is
omitted, ASMB will default to the CURRENT drive for
all operations. This drive-request instruction is
of the form .QRS, where Q stands for one of the
letters, A, B, C, or D, and is the drive on which
the SOURCE file is to be found; R stands for one of
the letters, A, B, C, D, or Z, and is the drive on
which the relocatable OBJECT file is to be placed
during assembly (Z means do not create an object
file); and S stands for one of the letters, A, B,
c, D, X, ¥, or Z, and is the drive on which the
print-listing will be placed during assembly. In
the case of the print-listing Z means do not create
the 1listing, Y means send the 1listing to the
printer, and X means send the 1listing to the
console but not to the disk. Error messages will
as always be sent to the console if the Y
instruction is used. The Y instruction will start
and stop the printer at the correct times provided
the printer 1is turned on and selected before
assembly. This instruction has been provided for
those users having teletypes who would not wish to
have a 1listing sent to both the console and the
printer simultaneously. Note that you may use the
Control-P ("P) function of CD0OS, as always, to
cause the console 1listings to also be sent to a
printer. Also note that the relocatable object
file will be placed on the disk with the extension,
.REL, and the print-listing will be placed with the
.PRN extension.

An example will serve to 1illustrate further
the features described above. Suppose the file to

17

CROMEMCO MACRO ASSEMBLER

be assembled resides on disk drive A under the
filename USERFILE.Z840. If it is desired not to
have the .REL and .PRN files sent to drive A (for
lack of room on disk A, for example), the Assembler
might be called by the command line:

ASMB USERFILE.ABX <"P> <CR>

This will assemble the source file on drive A,
create an object file on drive B, and send the
print-listing to both the console and the printer.

A number of options may also be specified at
assembly time 1if desired; their conventions are
described in detail in the following sections.
These options are specified simply by typing them
as part of the command line when calling ASMB,
separated by spaces. Since there are quite a
number of options, it's possible to have the
command line exceed the line-length limit of the
terminal being used. If this 1is the case, a
Control-E ("E) may be issued to provide a physical
CR-LF so that the command line may be continued.
Note that a logical CR-LF (same as typing RETURN on
the console) terminates the command and begins
assembly. If the terminal being used automatically
provides a logical CR-LF at the physical end of a
line, then a Control-E should be issued before the
end-of-line has been reached. The total 1line
length is limited to 128 characters by CDOS.

Options are specified only in the call to
ASMB. The only exceptions to this are the List
Options (see below), which may be used in slightly
different form as operands of the LIST pseudo-op.
Options may be specified in any order; any number
of the allowable options may be specified at the
same time. Consider the following sample call of
the file THISFILE.Z8@% by ASMB:

ASMB THISFILE RANGE PAGE=5@ SYMB XREF OPCODE

Notice that the 3-letter drive-request instruction
was not used in this example; this means that all
disk operations will involve the current drive.
The options specified ask ASMB to mark relative
jumps, format a listing page, and generate symbol
and cross reference tables. These are described in
more detail below under the respective options.

Throughout this manual, the symbols "< >" are

18

CROMEMCO MACRO ASSEMBLER

used to bracket quantities which are to be replaced
by user—-quantities, usually names of files on the
disk. However, in NO cases are the bracket symbols
themselves to be entered with the gquantity
involved. Also, throughout this manual, the
pseudo-ops are written in all-upper-case to set
them off. However, this does not mean that they
must be written this way 1in source-code. Both
upper—-and lower-case are acceptable.

Options Specified When Calling ASMB

List Options

The List Options are similar to the operands
of the LIST pseudo-op which may be part of a source
file. However, the List Options as specified at
assembly time will override ANY and ALL LIST items
given 1in source code. Following are the four
allowable List Options; they are specified by
typing the word(s) given here in the command line
calling ASMB. Note that if mistakenly both of a
pair Cond-Nocond or Gen-Nogen are specified, the
one which appears last on the command line has
precedence. An important point to note 1is that
NONE of the List Options changes the actual object
code assembled; they merely change what is sent to
the print-listing file on console or disk.

Cond

This option forces the generation and printing
of all blocks of code which are part of an 1IF
definition, whether the IF is true or false. The
default is Cond if no LIST pseudo-ops are present
in the source file; therefore, it would generally
be used as an option only to override all the
Nocond operands of LIST in the source. Note that
this has NO effect on whether the IFs are satisfied
or not.

19

CROMEMCO MACRO ASSEMBLER

Gen

This option forces the generation and printing
of the Macro which follows every Macro call. The
default is Gen if no LIST pseudo-ops are present in
the source file; therefore, it would generally be
used as an option only to override all the Nogen
operands of LIST in the source.

HEX and HEX=

The program LINK.COM supplied with this
ASSEMBLER package has the advantage of being able
to link in any order and load into memory a number
of relocatable modules. However, 1t has the
disadvantage that the final linked machine code
will be loaded beginning at the address 1@@H. The
Linker puts a jump instruction at 10@H so that if
the program is saved as a command file (.COM), it
will still execute correctly from that location.
(Note that LINK locates any DATA areas BEFORE the
program and beginning at 10@H; thus, program
execution may start at an address above 10@H.)
This disadvantage of LINK may be partially
circumvented by assembling the source code as
ABSolute code which has been ORGed at an address in
memory at or above 10@H; however, in this case the
program will no longer be in RELocatable format and
can thus not be linked to other modules.

For those wusers who wish to forgo
relocatability and would prefer instead to create
absolute code which may be ORGed anywhere in
memory, a non-relocating option for ASMB is now
included. This is the HEX or HEX= option, and is
specified when calling the Assembler. This section
is therefore in addition to Part I, Chapter 2,
Section 1 of the Assembler Instruction Manual
describing such options. The HEX option is given
on the command line which specifies a program to be
assembled, and informs the Assembler to create a
.HEX output file INSTEAD OF a .REL (relocatable)
output file. This means that ASMB outputs the
object code to a file on the disk having the same
filename as that being assembled, but with the .HEX
extension. The object code is written to the disk
file in 1Intel hex format. Thus, it can NOT be
loaded into memory using LINK; rather the CROMEMCO

20

CROMEMCO MACRO ASSEMBLER

Debugger program will load a hex-format object file
into memory provided it has the extension .HEX.
(Files having any other extension are loaded by
DEBUG exactly as they are stored on the disk.)

The HEX= option is really an extension of the
HEX option described. It also causes the
generation of a .HEX output file; however, the
output file will be ORGed at the hex address
specified immediately following the "=" sign of the
option. The source program will remain so ORGed
ONLY until it encounters the first ORG pseudo-op of
the source program; that is to say, the ORG
statements of the source override the HEX= option.
However, there are advantages to be gained by
leaving any absolute ORG or ABS statements out of a
program, and then specifying the run address using
the HEX= option. For example, a program which is
eventually to run out of ROM can be developed on
the same system in RAM by first assembling with a
RAM address, then working out any bugs, and finally
re-assembling with the correct run address for ROM.

Nocond

This option forces NO printing of IF or ENDIF
statements and NO printing of IF definitions (the
code following the IF) if the IF statement 1is
false. In other words if the IF statement equals
@, thus causing the code which is part of the IF
not to be assembled, the print-listing will
likewise not contain the unused IF code. If the IF
statement has a value other than @ and 1is thus
true, the print-listing will not contain the IF or
ENDIF 1lines but will contain the code of the IF
definition; therefore, the included portion of code
will appear contiguously with the rest of the
source code. The Nocond option is used to override
all the Cond operands of LIST pseudo-ops in the
source file.

Nogen

This option forces NO printing of the code
following MACRO calls. However, NOTE that Macro
DEFINITIONS are always printed as are the Macro
CALLS themselves; it is only the code which the
Macros generate, the Macro Expansions, which are
not printed. This option prevents very long print-

21

CROMEMCO MACRO ASSEMBLER

listings when using multiple Macro calls. Since
the Macro code will not be printed, neither will
the object code which is printed on the same line;
however, Nogen does not in any way affect the
object code sent to the .REL file. The Nogen
option is used to override all the Gen operands of
LIST pseudo-ops in the source file.

Macro=<d:filename.ext>

The Macro= option is one of the most powerful
features of the Assembler. It is used to specify
the name of a disk file which is to be searched to
satisfy any Macros required at assembly time.
During Pass 1, the Assembler forms a Macro
Definition Table (MDT) of the Macros defined in a
source program. (Remember that ASMB expects Macros
to be defined before they are called.) If the
Macro= option is specified, a table is formed of
the ADDRESSES of the Macros contained in this
library. Now, when an opcode is encountered in a
source program, the MDT is the first place searched
to satisfy it. If it is not found there, the Macro
Address Table for the Macro Library (only when
using Macro=) 1is searched next; if the Macro is
found, then the Macro Definition is loaded into
memory from the disk., If the opcode is not found
in either of these places, the Opcode Definition
Table (ODT) is searched last. Thus, because ASMB
searches for a Macro before an opcode, it is
possible to redefine Z-8@ instructions using Macros
(see the chapter on Macros). Another advantage of
this method of searching is that the entire Macro
Library specified does not become part of the
source code. Thus, you may specify a very large
Macro-library file, but only those Macros actually
used are included in the assembled code. Note that
this is different from the INCLUDE pseudo-op in
that the INCLUDE would include the entire file,

- needed or not.

The Macro= command should be typed exactly as
shown above, where the user would insert following
the "=", the filename.ext to be searched. The "d:"
represents the disk drive letter (one of A-D) and
is optional; if not specified, ASMB defaults to the
current drive in its search for the Macro file.
The default for the Macro= option is, of course, no
Macro file searched; however, this does not in any

22

CROMEMCO MACRO ASSEMBLER

way affect the manner in which Macros intrinsic to
the source code are handled.

Opcode

The Opcode option, when specified, will create
a cross reference listing of OPCODES and MACROS
used, which will be sent to the console or disk
following the assembled-code listing. This cross
reference contains all of the opcodes used in the
assembled program along with the Macro names used,
in alphabetical order, and the 1line numbers of
their definitions and places of occurrence. The
first column following the column of opcodes and
labels is reserved for the 1line numbers of the
definition points of Macros, and is thus blank for
the opcodes. Subsequent entries contain the line
numbers of the places of occurrence of opcodes and
Macros. Note that opcode cross reference listings
are limited in width by the Width option. A line
will be stopped at the last complete entry which
will fit the specified width and will be continued
on the next line. The Opcode opticn is very useful
for debugging purposes as it allows you to find all
the occurrences of a particular opcode very
quickly. The default is no-Opcode cross reference
table.

The Opcode Cross Reference is implemented by a
disk sort. This means that when this option is
selected, ASMB creates a file on the CURRENT drive
called <filename>.$$0 where filename is the file
being assembled. Then, when assembly and the
opcode cross reference are complete, this file is
deleted from the disk. Note that if the current
drive does not have room for the opcode temporary
file, an error message is printed and assembly 1is
aborted (see also "write error" in the error
message chapter).

Page=<number decimal lines/page>

The Page option 1is used when generating a
printer-listing to cause the Assembler to calculate
and display a specified number of lines per page.
At the top of each page ASMB will also print a
heading, a title if specified, and a page number.
Note that even if several lines are longer than the
Width specification and wrap around, the Page

23

CROMEMCO MACRO ASSEMBLER

function will count these correctly, and will list
the exact number of 1lines specified per page
(including the heading). The default value is 60
and the limits are 10 to 254 lines. Note that the
Page=, Top=, and Width= options must be typed
exactly as shown (no spaces) in order to be
interpreted correctly.

Parity

The Parity option 1is normally specified when
assembling code which was originally 8068@ code and
has been entered wusing Z8# mnemonics. This is
because the Z80 and 8080 microprocessors treat the
parity flag slightly differently and the 2Z8@¢ may
not execute 8080 parity instructions correctly (the
Z8@ treats parity as an overflow flag after
arithmetic instructions). By specifying the Parity
option, the user will be warned in the assembled
listing of possible problems along this line by the
letter 'P' preceding the 1line numbers of the
affected lines. It is up to the user to determine
whether or not the parity flag is used correctly in
a given situation. The instructions which will be
marked are: JP PE,nn; JP PO,nn; CALL PE,nn; CALL
PO,nn; RET PE; and RET PO. The default is no-
Parity.

Range

The Range option is used to have the Assembler
tell you all those places in code which currently
use absolute Jjumps which are "within range" for
doing relative jumps. When specified, the 1line
numbers of the affected Jjumps will be preceded by
the character "R". Thus, the next time the code is
edited for changes, the corresponding absolute
jumps may be replaced by relative jumps. Note that
the Assembler 1itself does NOT make the
replacements. The default is no-Range option.

Symbol or Symb

The Symbol option 1is used to cause the
Assembler to print the symbol table following the
listing. The symbol table 1lists all program or
data label names in alphabetical order from left to
right in rows, and the hex address which is the

24

CROMEMCO MACRO ASSEMBLER

value of the label used by the Assembler followed
by the type of code segment there. For example the
entry:

LABEL @@A7'

means that LABEL has the wvalue @@A7 in the
relative-code program area. (The symbols #, *, ",
and ' are defined in the section on code segments.)
If the label belongs to an EXTernal, the address
given 1is that of its last OCCURRENCE in the present
module, rather than its actual wvalue. Similarly,
for a label defined by a DL (see Define Label), the
value listed in the symbol table is its last value
to occur in the source code. The Width of the
symbol table in a printer listing will be the same
as that of the code listing preceding it; however,
the line length of the symbol table will be limited
to include the last full 1label name and address
which can be fit within that width. The default is
no-Symb table option.

Top=<no. dec. lines before top>

The Top option is used to specify the number
of lines between the last line of one page and the
top or first line of the next page when creating
printer 1listings. This feature may be used to
specify the spacing between pages when creating
listings. If the value @ is specified, formfeeds
are issued to the printer at the end of each page.
This is the default value and is the one ordinarily
used. Notice that the values of Page+Top should
equal the number of lines desired per page of
printed text. The limits are @ to 255 lines.

Width=<number decimal columns>

The Width option is used to specify the number
of characters of printed text which will appear per
line of a listing. This feature is used to allow
the use of different widths of paper in printer
listings or to allow for terminals capable of
displaying different numbers of characters per
line. The default wvalue 1is 79, which should
accommodate all 8@-character terminals. The limits
are 39 to 255 characters. If lines longer than
that specified are written, they will wrap around
and be continued on the next line of the listing.

25

CROMEMCO MACRO ASSEMBLER

Note that the symbol table, error 1listing, and
opcode and 1label cross reference tables are also
limited by the Width specification.

Xref

The Xref option, when specified, will create a
cross reference listing which will be sent to the
console, printer, or disk (as specified) following
the assembled-code listing. This cross reference
contains each of the 1label names used 1in the
assembled program, the 1line number of its
definition, and the line numbers in numerical order
of each of 1its places of occurrence. The first
column following the column of labels is the column
of line numbers of their definitions. Note that if
DL's (Define Labels) are used in the source code,
those label names may be defined more than once.
Thus, 1in the c¢ross reference 1listing, the
subsequent defining line numbers are preceded by a
"#' to set them off. Do NOT confuse this with the
'#' for Data areas defined elsewhere. The ENTRY
pseudo-op will also generate a doubly defined
label, once at the ENTRY point itself and once
where the 1label is actually defined. The Xref
option is very useful for debugging purposes as it
provides an alphabetical listing of the locations
of every label used in a program. The default is
no-Xref table. Note that cross reference listings
are limited in width by the Width option and that a
line will be limited to the last complete entry
which will fit within that specification; entries
will then be continued on succeeding lines.

The Xref Cross Reference is implemented by a
disk sort. This means that when this option is
selected, ASMB creates a file on the CURRENT drive
called <filename>.$5$$ where filename is the file
being assembled. Then, when assembly and the cross
reference are complete, this file is deleted from
the disk. Note that if the current drive does not
have room for the cross reference temporary file,
an error message is printed and assembly is aborted
(see also "write error" in Chapter 6).

26

CROMEMCO MACRO ASSEMBLER

Summary of Defaults and Limits

The default values and limits of the above
options are summarized here for convenient
reference.

Defaults

In the absence of specified options, ASMB will
default to these values: no-Range, no-Parity, no-
Xref, no-Symb, no Macro=, no-Opcode, Page=60 lines,
Top=0 (formfeed), Width=79 characters, default to
List options specified within source code as
operands of the LIST pseudo-op.

Limits

The paper-managing options for generating
printer listings are limited to the following
values: Page= 14 through 254 1lines, Top= 0
(formfeed) through 255 1lines, Width= 39 to 255
characters. The lower limits on Page and Width are
imposed to assure that at least some code 1is
printed on each page.

27

8¢

HITAWISSY OYOVW ODWHWOMD

CROMEMCO MACRO ASSEMBLER

CHAPTER 3: ASSEMBLER FIELDS

The Assembler recognizes four fields or
different types of expressions. These are:
labels, opcode mnemonics, operands, and remarks.
The conventions which apply in the use of these
four fields are given below following remarks on
the syntax of ASMB. Any two of the four fields
must be separated from each other by at least one
delimiter; these are: a tab, a space, a colon
(after labels only), a semi-colon (before remarks
only), or a CR-LF (to terminate lines). Multiple
delimiters may be used to improve readability.

Characters and Line Length

The Assembler accepts any printable ASCII
characters in lines of code. Specifically, this
means any ASCII character having a hex wvalue
between 2@H and 7EH inclusive. In addition the
three control characters, CTRL-I, CTRL-N, and CR
are also recognized ("I is the tab character which
is translated into up to eight spaces by ASMB, "N
is the character to expand a line on the printer,
and CR is a carriage return). NO other control-
characters are recognized by ASMB. The maximum
length of a line accepted by the Assembler is 840
characters, where the 1last character is the CR.
Lines having more than 80 characters will be
truncated.

Upper and Lower Case

It would be good to mention at this point that
the Assembler will accept ALL commands, options,
opcodes, pseudo-ops, filenames, or any of the other
Input it requires in both upper and lower case or a
combination of the two. This means that source
code files may be entirely lower case and will
still be understood by ASMB. However, even though
internally ASMB treats them the same, when listing
out the opcode and cross reference tables, because

29

CROMEMCO

MACRO ASSEMBLER

of the sort routine used, there will be as many
different entries as there are variations in the
label or opcode used. For example, the label BEGIN
will be a separate entry from the label Begin.
This is actually a useful feature; it is possible
to have sections of code which use the same data
labels, but still have the ENTRIES in the cross
reference table remain separate. Thus, it is
easier for the user to keep track of the two
sections while debugging. Note that the two labels
are ALWAYS equivalent to the Assembler.

Names (Labels)

Names are considered to be the labels of all
instructions as well as the operands of pseudo-ops
such as ENTRY, EXT, and NAME,. Labels may be as
long as desired (if all on one line); however, only
up to the first 6 characters are used by the
assembler. Thus, the first six characters of a
label may not be duplicated in another label. The
first character of a label must be an alphabetic
character or "." or "$"; the remaining characters
may be ".", "$", or any alphanumeric (A-Z, a-z, 0-
99 The delimiter for a label is generally a
colon-space, colon-tab, or a colon-CR-LF. However,
the colon may be eliminated IF the label begins in
column one. Note that this means that opcode
mnemonics may NOT begin in column one. The operand
may follow the colon immediately if desired.

The following labels are 1illegal because the
Assembler considers them to be register names:

ABCDEFHTVLTIR
AF BC DE HL SP IX IY

These symbols are also illegal if written in lower-
case.

30

CROMEMCO MACRO ASSEMBLER

Opcode Mnemonics

The ASMB Assembler recognizes all standard 2Z-
80 mnemonics. For the reader who does not have
familiarity with these, they are well documented in
the Z-8@ CPU Technical Manual published by both
Zilog and Mostek. The following mnemonics are
recognized by ASMB in BOTH the forms shown. ASMB
recognizes these opcodes in the form published by
Zilog and Mostek:

ADC A,s; ADD A,n; ADD A,r; ADD A, (HL); ADD A, (IX+d);
ADD A, (IY+d); SBC A,s; IN A,(n); OUT (n),A.

ASMB also recognizes them in this abbreviated form:

ADC s; ADD n; ADD r; ADD (HL); ADD (IX+d); ADD (IY+d);
SBC s; IN A,n; OUT n,A.

In addition the Assembler will allow either of the
formats shown for the following four instructions:

IM @ or M@
IM 1 or IM1
IM 2 oY M2
DINZ nn or DJNZ ,nn

Opcodes may begin on any column of a line
EXCEPT column one. They may be preceded by a
label. They must be followed by a space or tab as
a delimiter between the opcode and the operands, or
if there are no operands and no remarks, the line
is terminated by a CR-LF.

Pseudo-opcodes are a special form recognized
only by the Assembler and for which no object code
is generated. The conventions of ASMB for pseudo-
ops are described in other sections. Some of the
common ones are ORG, EQU, EXT, ENTRY, DEFB, DEFS,
DEFM, and END.

A special type of opcode is the MACRO name;
when this is listed in a column of source code,
ASMB will insert the corresponding code of the
MACRO at assembly time. For more information on
this see the description of MACROs in Chapter 5.

31

CROMEMCO MACRO ASSEMBLER

Operands

Operands may consist of register names,
constants, label names, or expressions. Register
names 1include all standard Z-80 registers. These
are documented in the Z-80 CPU Technical Manual
published by Zilog and Mostek for the reader who is
not familiar with their names or purposes.
Constants consist of one of the five types outlined
in the Constants section below. Names may include
DATA labels, program segment labels, subroutine
names, COMmon names, EXTernals, ENTRY names, EQUate
statement labels, or the like; they must be set up
as described in the Names section above. NOTE that
names of Macros may not be used as operands;
instead, they are used as opcodes and the assembler
will substitute the correct code at assembly time.
Also note that "operands" for statements such as
the TITLE and *INCLUDE statements are not operands
in the sense described here and are subject to
other restrictions.

Constants
ASMB allows binary, octal, hexadecimal,

decimal, and ASCII constants according to the
following conventions:

Binary - Numbers formed from binary digits
(#,1) and terminated by the character 'B'.
Range:

1111111111111111B<=n<=11111111111111118B.
Example: LD BC,10101101111910B

Octal - Numbers formed from octal digits (@8-7)
and terminated by the character 'Q'.

Range: -177777Q<=n<=177777Q.

Example: LD BC,25572Q

Hex - Numbers formed from hexadecimal digits
(-9 and A-F) and terminated by the character
'H' ; A hex number beginning with a letter
MUST be preceded by a '@#' to distinguish it
from a label or register name.

Range: -@FFFFH<=n<=@FFFFH.

Example: LD BC,2B7AH

32

TR W

CROMEMCO MACRO ASSEMBLER

Decimal - Numbers formed from decimal digits
(0-9) and EITHER 1left unterminated or
terminated by the character 'D'.

Range: -65535<=n<=65535.

Example: LD BC,11130

ASCII - Numbers represented by the ASCII
character(s) itself (themselves) enclosed in
single quotes.
Range: ' ' through '~' which amounts to
the values 2¢H through 7EH, including all
alphanumerics and punctuation.
Example: LD BC,'+z'

Note that each of the previous examples will
produce the same value in the BC register upon
assembly and execution.

Current Program Counter - $

The "$" character may be used in the operand
of any opcode allowing expressions as operands.
The "$" is used to represent the current location
counter of the Assembler. Note that "$" points to
the BEGINNING of the instruction which contains it
and not to the end. An example of the way to use
it is:

DATA:: DB ¢,11,3,2,7,24,17
COUNT: EQU $—-DATA

The name COUNT thus has the value of seven, because
this is the number of entries in DATA (the address
of DATA subtracted from the current location). Now
elsewhere in the source program, the name COUNT can
be used to stand for the number of entries in DATA.
There is great advantage to this representation; if
it becomes necessary to change the number of
entries of DATA and re-assemble, the value of COUNT
will be changed automatically. Whereas if an
absolute 7 were used instead of COUNT, every
occurrence of the 7 in the source program would
have to be changed.

The "S$" is often used in another way which is
actually poor programming practice. That is to use
the "$" in a relative jump instruction. The best
way to handle relative jumps 1is to 1label the
location to be jumped to, and use this label as the
operand of the jump instruction. ASMB will then

23

CROMEMCO MACRO ASSEMBLER

calculate the correct displacement (see also "range
"error" in Chapter 6). Remember that "$" represents
the location counter at the start of the CURRENT
instruction.

Expressions and Operators

The Assembler allows expressions to be used as
operands, which it evaluates at assembly time and
places the calculated values in the object code.
These expressions may be used in place of either
address or constant operands, provided they do not
evaluate to an illegal quantity. The following
operators may be used to form expressions.
Operators which are symbols (eg, "+") should NOT be
separated from their operands by a space.
Operators written as one or more letters MUST be
separated from their operands by a space. It is
sometimes desirable to group operations; however,
parentheses could cause confusion since they are
also used for memory references. Therefore,
brackets ("[" and "]") are also acceptable to group
the operands of expressions. Parentheses may be
used provided they do not begin an expression or
enclose one. Some examples will illustrate this;
the following are legal expressions, but they may
be different from what the programmer wished:

LD A, (X4Y) /2
LD BC, (Q+R-8)

In the first example the "/Z" 1is ignored and the
expression evaluates to the contents of the address
X+Y The expression of the second example means
the contents of the address given by Q+R-S. These
examples may be rewritten slightly to change their
meanings:

LD A,[X+Y]/2
LD BC, [0+R=-S]

Now in the first example, the QUANTITY of X added
to Y and divided by Z is loaded into A, and not the
CONTENTS of this address. In the second example
also, the brackets mean QUANTITY, whereas
parentheses would mean CONTENTS. (Note that
neither brackets nor parentheses are required 1in
this example.) An example in which either
parentheses or brackets may be used because the
meaning is not ambiguous is:

34

CROMEMCO MACRO ASSEMBLER

ADD A,Z/(X+Y)

The following 1lists the legal operators for
expressions along with an explanation of each:

+ Addition or Plus - binary or unary

- Subtraction or Negative - binary or unary

* Multiplication

/ Division

MOD Modulus - compute the remainder of a division

X MOD Y is defined to be X-(Y*INT(X/Y))
if X=23 and Y=7 then X MOD Yy=2

> or GT Greater Than - true if the left operand is
greater than the right operand

GE Greater Than or Equal - true if the left operand is
greater than or equal to the right operand

< or LT Less Than - true if the left operand is
less than the right operand

LE Less Than or Equal - true if the left operand is
less than or equal to the right operand

= or EQ Equals - true if the left and right
operands are equal

NE Not Equal - true if the left and right
operands are not equal

SHL n Shift Left Logical - shift n places
if X=2AH then X SHL 1=54H

SHR n Shift RIGHT Logical - shift n places
if X=2AH then X SHR 2=@gAH

NOT Logical Not - unary

AND Logical And
if X=CPH and Y=47H then X AND Y=40H

OR Logical Or
if X=C@H and Y=47H then X OR Y=C7H

XOR Exclusive Or
if X=C@H and Y=47H then X XOR Y¥Y=87H

35

CROMEMCO MACRO ASSEMBLER

ASMB considers these operators to have a hierarchy
that determines which take precedence over others.
The 1list which follows gives this hierarchy,
progressing downward from those of highest priority
to those of lowest priority; all those operations
on any given 1line are of equal priority. Thus,
operators which are on the same 1line of the
hierarchy would be evaluated from left to right as
they occur in an expression. However, operators or
parts of expressions enclosed in parentheses or
brackets are evaluated first, beginning with the
innermost set. The hierarchy is:

*, /, MOD, SHL, SHR

+, - (unarvy)
+, - (binary)
NOT (unary)
AND

OR , XOR

>y <y = GT, LT, EQ, NE, LE, GE

All operations not marked are assumed to be
binary. If the result of an expression is @, the
expression is false; if the result of an expression
is other than @ (specifically -1), the expression
is true. Also two operands which are equal result
in a true expression; two that are not equal result
in a false expression. This information is
important for determining how to satisfy the IF
operand. See the chapter on Conditional Assembly
and Macros for more information on the IF
statement. Also, see the chapter on Error Messages
(specifically "Expression Error") for information
on which of the above operators may be used with
labels belonging to relative (REL) program
segments.

Remarks

The remarks field is free-format including any
printable ASCII characters as long as the comment
is preceded by a ';'. The remark may follow an
opcode, operand, or label or may exist on a line by
itself. The ';' may be in column one if it is
desired to have the remark on a line by itself.
Multiple blanks or tabs may be used before or

36

CROMEMCO MACRO ASSEMBLER

within the remark to improve readability. A CR-LF
terminates the remark. Remarks may appear on any

line, i.e., following any of the legal opcodes or
pseudo-ops except TITLE and FORM.

37

8¢

JATAWISSY O"HOVYIW OSWIWOHD

CROMEMCO MACRO ASSEMBLER

CHAPTER 4:
. PSEUDO-OPCODES RECOGNIZED BY THE ASSEMBLER

The following section contains an alphabetical
list of the pseudo-ops recognized by ASMB. They
are all 1listed here for convenient reference;
however, several of the pseudo-ops are described in
other sections. Certain of the pseudo-ops require
labels; others require no label. More information
on this may be found under "missing 1label"™ and
"label not allowed" 1in the chapter on error
messages. Macros and Conditional Assembly are
explained in detail in a separate chapter.

Alphabetical List of Pseudo-ops

ABS (Absolute code segment)

The ABS pseudo-op is described in the Source
Code Segments section at the end of this chapter.
COM (COMmon code segment)

The COM pseudo-op is described in the Source
Code Segments section at the end of this chapter.
DATA (Data code segment)

The DATA pseudo—-op is described in the Source
Code Segments section at the end of this chapter.
DB or DEFB (Define Byte)

The DB pseudo-op is used to tell the Assembler
to reserve a byte or string of bytes as data in the

object code. The bytes may be specified using any

39

CROMEMCO MACRO ASSEMBLER

of the forms of constants described in the
Constants section of Chapter 3, or as a series of
labels which have been previously defined or
EQUated to a value. NOTE that if the value of the
label or constant exceeds the range # to FFH (or
its equivalent representation in decimal, octal, or
binary), the DB will generate an expression error
and insert a null. Also note that either of the
terms DB or DEFB may be used. The format of the DB
pseudo-op is:

<Label:> DB <Item or List of Items>

where the label is optional and the item or list is
any of: a byte, a string of bytes separated by
commas, a string of ASCII characters, or an
expression or string of expressions following the
rules for expressions outlined in Chapter 3 (note
that the expression must be eguivalent to an
absolute byte). The length of the string of bytes
is limited by the length of a 1line for ASMB (80
total characters). A string of ASCII characters
must be enclosed in single quotes. LE it &8
desired to represent the single quote itself in a
string, it must be given as two adjacent single

quotes (''). ©Some examples will illustrate the use
of DB:
DB 'how are you?' (the string will be

converted to ASCII
bytes and stored 1in
consecutive memory
locations in the object
code)

DB -2,-4,-6,16,11,17 (in order the hex bytes
which will be stored
are: FE, FC, FA, @A,
@B, 11)

DL or DEFL (Define Label)

The DL pseudo-op 1s similar to the EQUate
statement and 1iIs used to define the wvalue of a
label. The major difference between DL and EQU is
that DL can be used to set a label to different
values at different times in the assembly of a
particular program. The format of DL is:

<Label:> DL <Expression>

40

CROMEMCO MACRO ASSEMBLER

where both the label and the expression are
required. The expression may be in the form of
another label or an arithmetic expression which 1is
a combination of names or constants and which
follows the conventions for expressions outlined in
Chapter 3. However, note that the expression can
NOT be a string of bytes, nor can the expression
use any EXTernal names. The DL command is exactly
like the SET pseudo-op of some other assemblers.
An example of its use follows:

START: LD SP,...
COUNT DL 4
LD A,COUNT
COUNT DL COUNT-1
LD B,COUNT
END START

In this example COUNT is redefined later in the
source program from its original wvalue. Note that
only the original definition of COUNT need be
changed for both of them to be changed upon re-
assembly.

It's important to note here that the DL
command is quite wunlike the DB, DM, DS, and DW
commands although their formats are all similar.
These other commands all cause the Assembler to
reserve a specified number of bytes in the object
code, whereas DL is an Assembler DIRECTIVE, but
does NOT reserve any bytes. The DL statement is
used to define a value or values internally to
ASMB.

DM or DEFM (Define Message)

The DM pseudo-op is similar to the DB pseudo-
op except that the DM command sets the high bit
(Bit 7) of the last byte in the string of bytes
following the command, when this string 1is
converted to object <code. This 1is a very
convenient feature for defining ASCII strings (in
which Bit 7 is not used), provided the user-program

41

CROMEMCO MACRO ASSEMBLER

tests this bit to determine the end of a string.
Note that the DB command leaves the high bit of the
last byte unchanged. The format of DM is:

<Label:> DM <Item or List of Items>

where the label is optional and the item or list is
any of: a byte, a string of bytes, a string of
ASCII characters, or any expression or string of
expressions following the rules for expressions
outlined in Chapter 3 (expression must evaluate to
be 8-bit absolute, however). As was the case for
DB, a string of ASCII characters must be enclosed
in single quotes ('). If it is desired to
represent the single quote itself in a string, it
must be given as two adjacent single quotes. An
example of the use of DM is:

-

CR: EQU @DH
LF: EQU @AH
STRING: DM **his: s a string”,CR,LE

In this example the last byte of the string (LF or
@AH) would be placed in the object code as 8AH with
the high bit set. Note that the length of a DM
command is limited to the 8@f-character total line
length of ASMB. Allowing for a space in column 1,
the characters "DM", a space, the opening "'", and
the CR at the end of the line; this means that the
maximum length of a single string using the DM
command 1is 74 characters. However, preceding DB
statements may be used to accommodate longer
strings.

DS or DEFS (Define Storage)

The DS pseudo-op is used to tell the Assembler
to reserve a specified number of bytes 1in the
object code for storage. Note that ASMB will not
insert any particular values in these reserved
bytes. The format of the DS command is:

<Label:> DS <Expression>
where the label is optional and the expression is

either a constant or an expression which evaluates
to an absolute and which follows the rules for

42

CROMEMCO MACRO ASSEMBLER

expressions outlined in Chapter 3. Please note
that all the terms of the expression used MUST have
been previously defined in the source code or an
error will result. A constant value of 1 causes
ASMB to reserve one byte. An example of DS is:

ADDRSTABL: DS 240

in which 20 bytes are reserved by a program to be
used as an Address Table of 10 entries (two bytes
per entry). Note that either of the terms DS or
DEFS is allowed by the Assembler.

DW or DEFW (Define Word)

The DW pseudo-op is used to tell the Assembler to
reserve a word or string of words in the object
code. A word is defined to be 2 bytes. Thus, the
DW pseudo-op might be used to specify a look-up
table of absolute addresses. The words may be
specified using any of the forms of constants
described in the Constants section above, or a
label which has been previously defined or EQUated
to a word. Note that either of the terms DW or
DEFW 1is recognized by ASMB. Also note that the
Assembler places the low byte FIRST, treating every
word of two bytes as though it were an address.
For example, the word "@C923H" would appear in the
object file as the two bytes, "23H" followed by
"Co9H". Likewise, if LABEL]1l had been previously
defined as "@C923H", a "DW LABEL1" would generate
the same two bytes, "23H" followed by "C9H". This
follows the conventions described elsewhere for
expressions or labels used as operands anywhere in
the source code. In general the DW pseudo-op is
associated with addresses and the DB statement with
data; however, this is by no means an absolute.
The DW pseudo-op is a very convenient way for
entering addresses because the user does not need
to keep track of placing the low byte before the
high byte; simply enter an address as it is
written. The format of DW is:

<Label:> DW <Item or List of Items>

where the label is optional and the item or list is
any of: a word, a string of words, or an
expression or string of expressions following the
rules for expressions outlined in Chapter 3 and
evaluating to an absolute word or string of words.

43

CROMEMCO MACRO ASSEMBLER

The length of the string of words is limited to the
8@—-character total 1line length expected by ASMB.
However, successive DW commands may be given to
accommodate longer tables of words.

Unlike the DB statement, an expression which
exceeds the legal range for a DW will not cause an
"expression error". Instead, the expression will
be evaluated modulus 65,536. See "value error" in
the chapter on error messages for a further
explanation of this. Note, however, that with the
DW statement ASCII character strings 1longer than
two bytes are not allowed. Some examples will
illustrate these ideas:

Dw 'AA' (evaluates to 4141H)
DW 'AY (evaluates to 0@41H)
DW 'ABC' (illegal, expression

longer than one word)

DW 1¢@H,1ACH,-814 (multiple expressions,
evaluates to the hex
bytes, in order: ga, @1,
AC, @1, D2, FC)

END (End of assembly)

The END pseudo-op 1is used to terminate
assembly of a block of source code. The format of
END is:

<Label:> END <Expression>

where the label is optional and the expression is
subject to these rules: ONLY the main module of a
program should have an expression or name
following, and this module MUST have this
expression. The expression should be equivalent to
the entry point of the module at which execution
will begin. All other modules are then terminated
with the END statement alone and are thus
considered by ASMB to be sub-modules. The reason
for this convention is that the Linker/Loader must
know in which of the modules and at what address to
begin execution. The quantity in the Expression
may contain any 1legal operators (see section on
Expressions in Chapter 3). Following is a sample

44

CROMEMCO MACRO ASSEMBLER

use of the END statement to terminate assembly of a
main module:

ENTRY MAIN
MAIN: LD SP,1800H

END MAIN

whereas this example shows termination of a sub-
module to be linked to the main module:

EXT MAIN
BEGIN: LD A,10
END

The END command is a signal to the Assembler
that a logical body of code is complete.
Therefore, only one END statement should appear in
a module. Should the END appear in the middle of a
block of code, everything following the statement
will be ignored by ASMB.

ENDIF (END of IF definition)

The ENDIF pseudo-op 1is wused to terminate
Conditional Assembly of a block of code which
follows an IF statement. The formats of IF and
ENDIF are described in detail in the following
chapter on Macro and Conditional Assembly.

ENTRY (Entry point for these modules)

A program module may be assembled with
unresolved addresses providing they are declared
EXTernal 1in that module. Any address declared
EXTernal to one module must be declared an ENTRY in
another module. These two modules are eventually
linked. Since these addresses are unresolved, they
are represented in the EXT and ENTRY statements as
label names. The names then become a part of the
.REL file. The Linker/Loader reads the .REL files
at run time, determines the unresolved addresses,
and places their correct values in those bytes
which expect the addresses. If the Linker is
unable to resolve an address, it prints the
undefined label name on the console followed by an

45

CROMEMCO MACRO ASSEMBLER

asterisk (see Part II for more information on
LINK) .

The ENTRY pseudo-op is used to declare in a
source-file that that file contains the entry
point(s) of the listed names. These names may be
label names of subroutines, or program or data
blocks. The format of the ENTRY command is:

(no label) ENTRY <Namel,Name2,...>

The number of names used as operands of the
ENTRY pseudo-op is limited only by the total line
length (89 characters). Extra names in ENTRY not
actually defined in the source-file will produce
the error message "undefined symbol". ENTRYs may
appear anywhere within a program module, but are
typically written at the top of a file to be easily
seen in the print-listing. ENTRY labels (standing
for corresponding addresses) can be referenced by
any other module which declares those names to be
EXTernal (see EXT section). Refer to Part II on
the Linker for information on linking these modules
at run time.

Below is an example of a module which uses an
ENTRY statement to demark two subroutines and a
table of data:

ENTRY METRIC,ENGLIS,CONTBL
METRIC: ee. ;metric-to-English conversions
RET
ENGLIS: ... ;English-to-metric conversions
RET
CONTBL: .++ j;conversions table
END

The corresponding example of a program module
which calls these subroutines is given with the
description of EXTernals.

EQU (Equate)

The EQU pseudo-op is used to inform the
Assembler that two named gquantities are equivalent.
The format of EQU is:

<Label:> EQU <Item>

46

CROMEMCO MACRO ASSEMBLER

where the label is required and the item is any of:
a constant, an address, a label, or an expression
following the rules given in Chapter 3. Note that
all the terms of the expression MUST have been
previously defined. Also, the expression may NOT
involve the names of any EXTernals.

The EQU statement is used to equate a label to
a particular value. Once this label is defined, it
is defined for the entire source program. The DEFL
command should be used for labels which are to
change within a module. EQU is a useful statement
for simplifying or clarifying source code. For
example suppose the ASCII characters for carriage
return (CR) and line feed (LF) were to be used
throughout a source program. Instead of using
their values, a clearer procedure would be to enter
the lines:

CR: EQU JDH
L'z EQU @AH

somewhere in the source program and then use the
names "CR" and "LF" to stand for the values as in:

STRING: DB 'end of text',CR,LF

The EQU statement is also very valuable for
changing a quantity quickly and in all places.
Suppose that it is desired to test a program with
different values for a timer. Suppose further that
this value is used 10 times throughout the source
code. If the original value is used in each of
those 1@ places, then all 10 will have to be
changed to change the timer. However, if each of
the 10 places uses the label "TIMER" and the
following statement appears somewhere in the
module:

TIMER: EQU <value>
then this statement can very easily be changed by
editing. This assures upon re-assembly that all
the places TIMER occurs will be changed.
EXT or EXTRN (these modules External)
Using ASMB, program modules may be assembled
with unresolved addresses. The EXT pseudo-op is

used to declare in a source-file that that file

47

CROMEMCO MACRO ASSEMBLER

must depend on some other module(s) to satisfy
certain EXTernal names. The EXT and corresponding
ENTRY names become parts of the two .REL files; the
addresses are then resolved at run time. Further
information about this is described in the first
paragraph under the ENTRY pseudo-op; information
about linking and running files is given in Part II
on the Linker. The format of the EXT command is:

(no label) EXT <Namel,Name2,...>

where the names may be label names of subroutines,
or program or data blocks. Note that Module Names
under the NAME pseudo-op may NOT be used in the EXT
fields of other modules. The number of names used
as operands in an EXT pseudo-op is limited only by
the total 1line 1length of ASMB (80 characters).
Either of the forms EXT or EXTRN is accepted by the
Assembler. EXTs may appear anywhere within a
program module, but are typically written at the
top of a file to be easily seen in the print-
listing. When the assembled modules are linked and
run, all EXTs must be satisfied by corresponding
ENTRYs in other modules or the Linker will return
an error message.

It is important to note that 1label names
declared EXTernal to a module may be used as
operands within the module, but may NOT be used in
expressions. For example the following lines would
be legal:

EXT COUNT

LD A, COUNT
whereas the following would be illegal and generate
an error:

EXT COUNT

A, COUNT+3

se 1 oee e
w)

Also note that a label name declared as an EXTernal
to a module may NOT be redefined (i.e., used in the
label field) within that module.

48

CROMEMCO MACRO ASSEMBLER

Below is an example of a module which uses an
EXTernal statement to declare the names of two
outside subroutines and a table of data:

EXT METRIC,ENGLIS,CONTBL
START: e

LD HL,CONTBL

LD A, (HL)

CALL METRIC

INC HL

LD A, (HL)

CALL ENGLIS

END START

The corresponding example of the module which
contains these subroutines is given with the
description of ENTRY pseudo-ops.

FORM (paper Formfeed)

The FORM command is used to advance the paper
in a print listing to the top of the next page.
The format of FORM is:

(no label) FORM (no operands)

FORM is used for clarity in a print-listing,
as the beginning of a routine can be more clearly
identified if it starts at the top of a page. The
FORM command in the source code will not be printed
on the listing. Multiple FORM commands may also be
used; however, each page will be numbered and
titled by ASMB. The command "EJECT" may be used in
exactly the same way as FORM to force a paper—feed
to the top of the next page.

The Assembler implements FORM by issuing a
series of linefeeds to the printer; the number of
linefeeds needed to reach the next page 1is
determined by ASMB from the TOP= and PAGE= options.
The only exception to this is that when TOP=@ has
been selected, an actual formfeed character 1is
issued to the printer. In this case the printer
will advance according to the paper size for which
it is designed.

49

CROMEMCO MACRO ASSEMBLER

IF (begin Conditional Assembly)

The IF pseudo-op is described in the following
chapter on Macro and Conditional Assembly.

*INCLUDE (Include the given disk file)

The *INCLUDE pseudo-op is used to specify a
source-file on disk which is to be included in the
assembly of the present source. The format of the
*INCLUDE command is:

*TNCLUDE <d:filename.ext>

where d stands for the disk drive letter (A-D), and
filename is the user's disk filename, which may or
may not include a 3-letter extension. If the disk
drive letter is omitted, ASMB assumes the file is
on the current drive, It is IMPORTANT to note that
the *INCLUDE statement MUST begin with the asterisk
in column one. Hence, NO label field is permitted
with this opcode. The filename may follow the
*INCLUDE after at least one delimiter (space or
tab). Another important point to notice about the
*INCLUDE is that all »of the given file is included
in the present file. Hence, if the included file
has an END statement, this END statement will
terminate assembly of the present source when it is
encountered. An example will illustrate this;
suppose this is the source-file to be assembled:

BEGIN: LD SP,...
*INCLUDE A:USERFILE.Z80
LD HL;.--
LDIR
END

and suppose the following is USERFILE.Z80:

START: LD B jimei
LD DE o
END

Because the USERFILE contains an END
statement, the Assembler will never see the LD and
LDIR instructions of the source-file. Assembly

50

CROMEMCO MACRO ASSEMBLER

will be terminated following the inclusion of
USERFILE. To avoid this problem simply leave off
the END statements of files which are to be
INCLUDEd in the assembly of other files, or put the
*INCLUDE statement as the last one in a source
program and leave off that source's END statement.

The *INCLUDE statement is particularly useful
in conjunction with Conditional Assembly blocks of
code (see the discussion of the IF statement in the
next chapter). For example a file may be INCLUDEd
depending on whether or not an IF statement 1is
satisfied. Also, the IF statement can be used to
determine which of several files will be INCLUDEAd.
An example of this use of *INCLUDE follows; one of
three different files will be included and the
others ignored dependent on the value of the label
DECIDE (defined earlier in the source):

IF DECIDE EQ @
*INCLUDE A:MOVROUTN.Z8@

ENDIF

IF DECIDE EQ 1
*INCLUDE B:SAVROUTN. Z80

ENDIF

IF DECIDE EQ 2
*INCLUDE LOADROUT.Z89

ENDIF

where the first file would be found on drive A, the
second on drive B, and the third on the current
drive. The entire block of code above could be put
in a file of its own called DECIDFIL. The user
source file would initialize the wvariable DECIDE
using an EQU or DL statement and give the command
"*INCLUDE DECIDFIL". Then, based on the wvalue of
DECIDE, the routine which would be included would
be either the move, save, or load routine above.

*INCLUDEs may be nested up to four 1levels;
more than this will generate a nesting error. The
example above illustrates two levels of nesting:
the user file INCLUDEs the file DECIDFIL, which in
turn INCLUDEs one of the files MOVROUTN, SAVROUTN,
or LOADROUT. It is possible to write a source
program which consists of *INCLUDEs only.

51

CROMEMCO MACRO ASSEMBLER

LIST (use following commands to generate Listings)

The LIST pseudo-op 1is used to set the
Assembler print-listing options. This at NO TIME
affects the actual object code put out by ASMB. It
is simply used to suppress undesired or repetitive
sections of the listing file. The format of the
LIST statement is:

(no label) LIST <Optionl,Option2,...>

where the options are taken from the 1list of six
legal operands which follows this paragraph. The
number of options which may be placed on a line is
limited only by the 1line 1length. However, 3
options is the practical 1limit because more than
this will result in duplicate or conflicting
options. Options may be given in any order. It
conflicting options are given (conflicting options
are the pairs gen-nogen, cond-nocond, on-off), only
the last one of the pair on the line will be used.

The LIST command may be used as often as
desired throughout a sourcecode file. However,
note that 1if the List Options of Chapter 2 are
issued at the time of the CALL of ASMB, these will
override any corresponding LIST commands given in
the SOURCE. For example if the List Option "Gen"
is specified when calling ASMB, all "Nogen"
operands of LIST in the source would be overridden.
However, the OTHER operands of LIST in the source
would still be effective. Following are the six
allowable operands of the LIST pseudo-op.
Information on the use of List Options when calling
ASMB will be found in Chapter 2.

OFF (turn Off assembly listing)
Suppress print-listing until end of code or an
ON option. This option is de-selected when

assembly of a program begins (before encountering a
LIST pseudo-op) .

52

CROMEMCO MACRO ASSEMBLER

ON (turn On assembly listing)

List print-listing to disk-file or console
until end of code or an OFF option. ON 1is the
default when assembly of a source file begins.

COND (begin listing Conditional Assemblies)

Force the generation and printing of all
blocks of code which are parts of IF definitions,
until end of code or a NOCOND cption. COND is the
default when assembly of a source file begins;
therefore, it would generally be expressed only to
override a previous NOCOND option. Note that COND
forces the printing of IF statements but NOT the
assembly of them; that is determined by whether the
IF statement is true or false.

GEN (begin listing Generated Macros)

Force the printing of the Macro expansion
following every Macro call, until end of code or a
NOGEN option. GEN is the default when assembly of
a source file begins; therefore, it would generally
be selected only to override a previous NOGEN
option.

NOCOND (do Not print Conditional Assemblies)

Force no printing of IF or ENDIF statements
and no printing of IF definitions (the code
following the IF) if the IF statement is false.

In other words an IF definition which is not
assembled due to its being false will not be listed
in the print-listing either. This option will
remain selected until the end of code or a COND
option. The option is de-selected when assembly of
a program begins and thus must be first selected
using the LIST pseudo-op. Selection of NOCOND in
NO WAY affects the object code of an assembled
file.

D3

CROMEMCO MACRO ASSEMBLER

NOGEN (do Not print Generated Macros)

Force no printing of Macro expansions.
However, note that Macro definitions are always
printed as are the Macro calls themselves; it 1is
only the code which the Macro generates which 1is
not printed. This option will remain selected
until the end of code or a GEN option. The option
is de-selected when assembly of a program begins
and thus must be first selected using the LIST
pseudo-op. Selection of NOGEN in NO WAY affects
the object code of generated macros of an assembled
source file.

MACRO (begin Macro definition)

The MACRO pseudo-op 1is described in the
following chapter on Macro and Conditional
Assembly.

MEND (Macro definition End)

The MEND pseudo-op 1s used to terminate the
block of code which forms a Macro Definition. The
formats of MACRO Definitions and Calls, and the
MEND statement are described 1in detailil in the
following chapter.

NAME (module Name)
The NAME pseudo-op is used to assign a name to
a particular module for use by the Linker. This
name is, however, written in alphanumerics so it is
also useful to the programmer for remembering the
purpose of the module. The format of NAME is:
(no label) NAME <Module Name> (1-6 characters)

where the module name should follow the same syntax

rules as for labels. The NAME statement 1is
optional; it is not required for 1linking of
modules. However, 1if the NAME statement is

omitted, the Assembler automatically assigns the
first six characters of the filename to be the
module name. Note that NAME 1is different from
TITLE. The TITLE statement merely tells ASMB to

54

CROMEMCO MACRO ASSEMBLER

print a heading at the top of each page of the
listing but has no effect on the object code; NAME
forces the name of the module to be saved as part
of the .REL file. Thus, a library manager program
is able to locate .REL files by name.

ORG (Origin)

The ORG pseudo-op sets the Assembler location
counter and is wused when it is desired to start
assembly of a block of code at a particular
address. This location may be set by the user to
be absolute, or it may be left up to the Assembler
to determine the value of the ORG. The location
counter may be set to a value as often as desired
in a source program; that 1is, multiple ORG
statements may be used. The format of the ORG is:

<Label:> ORG <ABS Address, Label Name, or Expression>

where the label is optional but the expression or
address 1is required. The VALUE of the ORG (i.e.,
the address of the first statement following the
ORG) 1is determined by the value of the label or
expression. Note that all the terms used in the
~expression MUST have been previously defined. The
TYPE of code segment which will follow the ORG is
determined by the type of code segment to which the
label or expression belongs. For example, the
statement "“ORG LEFTOFF" would continue a COMmon
area 1if LEFTOFF belonged to a COMmon area, and
would continue a RELocatable area 1if LEFTOFF
belonged to a RELocatable program area. In either
case, however, the wvalue of the ORG would be
determined by the value of LEFTOFF. The statement
"ORG 1@@H" would begin an ABSolute program area
since the address is absolute. Note that the ORG
pseudo-op does not reserve any bytes, but merely
specifies an address at which those bytes are to
begin.

REL (Relocatable code segment)

The REL pseudo-op is described in the Source
Code Segments section at the end of this chapter.

55

CROMEMCO MACRO ASSEMBLER

REM (Remark beginning in column one)

The REM statement is another method of
designating a remark; however, REM assures that the
remark is always printed begining in column 1 of a
print-listing without any characters preceding (as
with the ";"). The REM pseudo-op itself is never
printed as is also the case with the FORM and TITLE
printer-controls. The format of REM is:

(no label) REM <Remark Phrase> (as many char. as will fit)

The Cromemco 37@3 Printer will expand a line
if the line contains the Control-N (@EH) character.
This is the reason for the REM statement, to be
able to give this character at the beginning of a
remark and have the printer expand the line to make
it more noticeable. However, when using the N
feature, the user must take care that the remark to
be printed does not exceed HALF the width
specification of the Width= option. For example
most listings use the default value of Width=79;
thus, the number of characters in the REM statement
which uses the "N should not exceed 39. This is to
prevent the printer from printing off the side of
the paper. Also note that the maximum length of a
REMark is 74 characters.

TITLE (Title to be printed at top of each page)

The TITLE pseudo-op is used to print a title
at the top of each page of a print-listing
beginning in column 1. The format is:

(no label) TITLE <Title Phrase> (as many char. as fit)

As with the REM statement, the Title Phrase
may contain the character Control-N (@EH). On the
Cromemco 37@3 Printer this character will expand
the line to twice 1its normal width. For this
reason when using the "N in a TITLE statement, the
number of characters in the Title Phrase should not
exceed half the number of characters which will be
specified in the Width= option. The TITLE command
should be the first line of a program in order to
be printed on Page 1 as well as the other pages.
Note that titles may be changed in the middle of a
source progran simply by giving a new TITLE

56

CROMEMCO MACRO ASSEMBLER

command. Also note that in such a case TITLE
causes an automatic FORM feed. The maximum length
of a Title Phrase is 72 characters; strings longer
than 72 are truncated. The Assembler inserts a
blank line where the Title Phrase would be if TITLE
is not specified.

Source Code Segments

Perhaps the single most important feature of
the CROMEMCO Assembler is its ability to generate
relocatable code. This feature allows a user to
assemble a number of modules of source code
separately, and link them together in any order at
run time. It also means that the object code can
be executed at nearly any address in memory (it is
generally not advised to assemble and run programs
over portions of CDOS). The Assembler can assemble
all data in 1locations separate from the program
area so that either area may be programmed into
ROM.

There are four special pseudo-ops which inform
the Assembler what type of object code to generate.
This section describes these four Source Code
Segment pseudo-ops and the ways they are used.
Explanations of the way relocatability works are
given in the following, and information on the
CROMEMCO Linker/Loader may be found in Part II.

ABSolute

The ABS pseudo-op precedes a code segment
which is to be assembled in absolute code (absolute
addresses). The Linker will consider this code to
be non-relocatable. The format of ABS is:

(no label) ABS (no operand)

All the code following the ABS will be
considered to be absolute until another Code
Segment pseudo-op is given. The Assembler defaults
to REL upon start of assembly of a program; thus,
if no pseudo-op is given, the object code will be
relocatable. ABS areas are addressed contiguously
throughout a source program unless ASMB is told
otherwise by the use of ORG statements. At the

57

CROMEMCO MACRO ASSEMBLER

beginning of a program the program counter for ABS
is set to @ (however, unless ABS is specified, ASMB
assumes the REL pseudo-op) unless the user
overrides it with an ORG. For subsequent ABS areas
the current contents of the program counter (which
is the address at which the last ABS left off) will
specify the loading address. Some examples will

help 1illustrate these ideas. Consider the
following:
ABS
START: LD SPyese
END

In this example the entire source program is to be
considered absolute and the addresses are to begin
at @. If the same example were written:

ORG 1000H
START: LD SP,ese
END

the entire source program is again to be considered
absolute with the addresses beginning at 10¢@H.
Now consider two ABS areas and a DATA scratch-pad
area between them:

ABS
START: LD SPye.e.
STOP: LD HL,oe®
DATA
ADDR1l: DS 2
ADDRZ2: DS 2
ABS
NEXT : LD BC, ...
END

In this example assembly will begin at absolute
location @ because no ORG statement is specified.

|.‘

58

CROMEMCO MACRO ASSEMBLER

Assembly of the second ABS area will begin with the
next address following the LD instruction at STOP.
Note that an ORG statement could have replaced
either ABS statement to cause the code segment
following to assemble elsewhere. The DATA area
will be assembled relocatable.

COMmon

The COM pseudo-op precedes a data segment
which is to be assembled common to more than one
module. The name and size of the COMmon(s) are
then saved in the .REL file; this enables the
Linker to load the addresses correctly at run time
such that the given area is common to several
program modules. The CROMEMCO Linker/Loader is the
same one used to 1link .REL files produced by the
CROMEMCO FORTRAN IV Compiler. Hence, COMmons are a
very convenient way of enabling a machine language
subroutine to use a FORTRAN data area, or as a fast
way to pass arguments between FORTRAN and machine
language programs. COMmons may be used in this way
for assembly language programs as well; two or more
program modules may use the same data scratch-pad
area for passing arguments. EXT and ENTRY
statements which apply to data areas may be
replaced by COMmons. (When interfacing FORTRAN to
machine language routines, allow four bytes for
Real, two bytes for Integer, and one byte for
Logical variables.) The format of COM is:

(no label) COM <Common Name> (1-6 characters)

Note that the full word COMMON is NOT allowed
by ASMB. The Common Name may be omitted in the
above, and this is considered the blank common. If
the name is used, it should follow the rules for
labels given in Chapter 3. Following the COM
command are the labels and pseudo-ops allocating
storage. Note that when COMmons are used by more
than one program module, they must either be the
same length in every module, or the module which is
linked first must contain the longest COMmon
specification so that LINK allocates at least that
number of bytes.

Also, note that the COMmons of different

modules DO NOT have to have the same labels on the
data. Thus, this COMmon in one module:

59

CROMEMCO MACRO ASSEMBLER

coM DATA
ADDRTB: Ds 20
COMMTB: DS 10

and the following COMmon in another module:

COM DATA
COUNT: DS 4
LOOKUP: DS 26

would assemble and 1link correctly; they are the

same length and the data labels are transparent to
the Linker.

There are 15 different COMmons of equal level
(i.e., there is no hierarchy) allowed by the
Assembler in any one program; exceeding this number
will generate an error. All the code following the
COM will be considered to be a common until another
Program Segment pseudo-op is given. A common may
also be continued later in the same program segment
by giving the COM command with the same name as
before. Using a different name will cause the COM
location counter for THAT common to start over at
zero. Remember that COMmons of the same name need
not be the same length in every module as long as
the module containing the longest COMmon
specification is 1linked first. An example will
illustrate some of the features of COM:

BEGIN: LD SP,e..

CcoM INSTRC
TABLEl: DS 50

REL

LD HT josrsss

CcoM ADDRES
LOCATE: DS 20

coM INSTRC
TABLE2: DS 50

END

Both TABLEl and LOCATE in the above will begin at
COM location counter zero; however, note that they
are different commons. TABLE2 will begin at
location counter 50 for COM INSTRC (thus COM INSTRC
reserves 100 total bytes as storage). Also note

60

CROMEMCO MACRO ASSEMBLER

the wuse of the REL statement to return to
RELocatable code following the end of the first
part of COM INSTRC. Generally the DS pseudo-op is
used to allocate storage area for a COMmon; if the
DB, DM, or DW statements are used, bear in mind
that the loaded bytes of the first COMmon may be
over-written by the second loaded COMmon when they
are linked.

DATA

The DATA pseudo-op precedes a program segment
which is to be assembled as a block of data. LINK
will consider this code to be relocatable. The
format of DATA is simply:

(no label) DATA (no operand)

All the code following the DATA will be
considered to be part of the data block until
another Code Segment pseudo-op is given. The DATA
pseudo-op is very similar to REL; DATA is provided
so that the user may maintain separate data and
program code segments in a source file. Thus, the
program segments may be programmed into ROM
following their being linked and loaded, and the
data segments may remain in RAM, for example. All
DATA segments of a program are based upon the DATA
location counter, which 1is set to zero upon the
start of assembly. As is the case with ABS and
REL, all DATA segments in a program will be
addressed contiguously if ORG statements are not
used to change the addressing. Also, remember that
an ORG will cause assembly to continue with the
type of Code Segment to which the expression of the
ORG statement belongs. For example the following
section of a source code program:

DATA
LABEL1: DS 10H
REL
LD A,...

DATA
LABEL2: DS 10H
END

would be assembled in exactly the same way as this
section:

61

CROMEMCO MACRO ASSEMBLER

DATA
LABELl: DS 10H

REL

LD A,ee

ORG LABEL1+16
LABEL2: DS 19H

END

where the ORG statement has replaced the second
DATA statement. Since LABEL1l belongs to a DATA
area, the ORG statement tells ASMB to return to
assembling in the DATA code segment without the
need for the second DATA pseudo-op. For more
information on the ORG see the list of pseudo-ops
above.

RELocatable

The REL pseudo-op precedes a code segment
which is to be assembled in RELocatable form. The
Linker will recognize this code at run time, 1link
it with any other relocatable modules, and load
them into the desired address 1in memory.
Relocatability works in this way: following
assembly, the .REL file contains the locations of
all bytes which contain unresolved addresses. At
run time the Linker then determines the place at
which the program is to be run and correctly fills
in the unresolved addresses. As the modules are
linked, LINK also prints the names of any still
undefined labels (those declared 1in EXT
statements).

The Assembler defaults to the REL code segment
upon start of assembly of a program and the REL
location counter 1is set to zero. However, other
code segment pseudo-ops may be specified throughout
the source, and REL issued to return to relocatable
code at the end of these segments. The format of
REL is:

(no label) REL (no operand)

The code following the REL will be considered
to be relocatable program area until another Code
Segment pseudo-op 1is given. REL areas are

addressed contiguously throughout a source program

62

CROMEMCO MACRO ASSEMBLER

unless ASMB 1is told otherwise by the use of ORG
statements. Note, however, that the ORG will cause
assembly to continue with the type of Code Segment
to which the expression of the ORG statement
belongs (see the example of this in the section
above on the DATA pseudo-op). The REL statement is
generally needed only to return to relocatable
program code following the use of another Code
Segment opcode. Note also that data may be
included in the REL area. The DATA and REL pseudo-
ops treat relocatable code in an identical manner;
therefore, unless there is a specific reason for
keeping the data and program areas separate, the
DATA statement(s) could be eliminated.

63

&%)

HITAWI SSY OHOVIW ODWIWOHD

CROMEMCO MACRO ASSEMBLER

CHAPTER 5: MACRO AND CONDITIONAL ASSEMBLY

Two of the most powerful features of the
CROMEMCO Relocatable Assembler are Macro and
Conditional Assembly. The purpose of this chapter
is to define and explain these two features and
illustrate their use with examples. However, the
user should bear in mind that these examples only
scratch the surface as illustrations of the uses of
Macros. It is left up to the readers to adapt
Macro and Conditional Assembly to their needs.

Macro Assembly (MACRO definition and calls)

Macros provide the user with a method of
Producing a block of in-line code in a source file
without having to generate this block of code each
time it is required. This block of code is known
as the Macro body. Macros also allow a great deal
more flexibility than in-line source code because
of the ability to accept parameters. This means
the Macro may be tailored to suit a particular
purpose. For example suppose a user wishes to use
a move routine which does a block move of 100
bytes. Later in the same program, a block move of
50@ bytes is desired. Although these two routines
could be written separately, it would be much
easier to write a Macro which accepts the correct
parameters and generates the correct block move.
Some other advantages of the use of Macros are:

-Rewriting repetitive blocks of code is
not required. The code is written only
once in the Macro.

—Macros can be used to improve program
readability and to create easily-read
skeleton programs.

-Macros written by a number of
programmers can be collected in a Macro

65

CROMEMCO MACRO ASSEMBLER

library which may be used by all.
Eventually nearly entire programs may be
written using the Macros in this library.

-New Z-80¢ instructions may be designed
using existing instructions in a Macro
(this is an instruction only to the

Assembler; it 1is not possible to add
instructions to the Z-8@ Instruction
Set) .

-An error found 1in a Macro need be
corrected only once regardless of the
number of times the Macro is called.

Some users may wonder how Macros differ from
subroutines, since subroutines may also be used to
reduce the coding of frequently executed blocks of
code. One distinction between the two 1is that
subroutines branch to another part of the program
while Macros generate in-line code. However, a
Macro does not necessarily generate the same source
code each time it is called. The source code the
Macro generates can be changed by changing the
parameters in the Macro Call. Also, Macro
parameters can be tested at assembly-time by the
Conditional Assembly (IF) statement. These two
features enable a general purpose Macro Definition
to generate customized source code for a particular
situation. Thus, the biggest difference between
Macros and subroutines is that Macro expansion and
customized code result at assembly-time within the
object code. Subroutines, on the other hand,
reside in the source program, and require extra
execution time (especially if the subroutines do
any conditional operations). There is a trade-off,
however, between the extra memory required for
Macros (in-line code) and the longer execution time
of subroutines. In most cases using a single
subroutine rather than multiple in-line Macros will
reduce the overall program size. However, the use
of Macros may be more efficient in situations
involving a large number of parameters. Note that
Macros can call subroutines, and subroutines can
contain Macro Calls.

An example of a simple Macro Definition would
perhaps 1illustrate some of these points. Suppose
that there were a number of times in a source
program that it was desired to exchange the upper
four and the lower four bits of the A register.

66

CROMEMCO MACRO ASSEMBLER

Although a subroutine could be written to do this,
the associated CALLs and RETurns would slow down
execution time. Thus, to save typing when writing
the source code, a Macro is used:

ROTATE: MACRO
RLCA
RLCA
RLCA
RLCA
MEND

The general format of a Macro Definition can
be seen from this example. The word ROTATE becomes
the Macro name. Thus, to CALL this Macro one would
simply use the word ROTATE as an opcode in the
source code, and the Assembler would insert the
four RLCA opcodes as in-line source code following
the ROTATE Macro opcode. This is known as the
Macro EXPANSION. The MEND statement informs the
Assembler that the Macro Definition is complete.
Suppose now that rather than be limited to having
the Macro exchange the high and low bits of the A
register only, it was desired to have it operate on
any of the 8-bit registers. The following Macro
Definition might be used in place of the above:

ROTATE: MACRO #REGIS

RLC #REGIS
RLC #REGIS
RLC #REGIS
RLC #REGIS
MEND

This Macro uses the parameter REGIS, the value
of which it will determine when the ROTATE macro is
called. The "#" symbol is required to precede the
parameter (s) everywhere it appears in a Macro
Definition *to distinguish it from other labels;
however, this symbol is NOT required when
specifying the parameter in a Macro Call. Since
ROTATE now expects one parameter, the form of a
Call would be:

ROTATE <register>
where the word "register" would be replaced with
one of: A, By € D, E, H, &6r L. The Assembler

would then generate in-line code using the correct

67

CROMEMCO MACRO ASSEMBLER

register name. For example 1f the Macro Call
"ROTATE H" was wused, ASMB would generate the in-
line code:

RLC H
RLC H
RLC H
RLC H

Based on the above examples we now give the
complete format of a Macro Definition and Call. A
Macro is defined by:

<{Macro Name:> MACRO <#Parameterl , #Parameter2,...>
<opcodes and
operands which
may use the
parameters of
the Macro statement
and which form
the Macro body>
(no label) MEND (no operand)

where the parameters are optional and are limited
in number only by the length of a line for ASMB (840
characters). The Macro Name is required and is the
name used when calling a Macro. The MEND is the
Macro End statement and is required to inform the
Assembler that the source code of the Macro 1is
complete. The opcodes or pseudo-ops between the
MACRO and MEND statements comprise the Macro
Definition, and may be any legal Z-80 instructions,
calls to other Macros, or ASMB pseudo-opsS.

There are a number of important points to note
about the above format of Macros. First, note that
when passing parameters to the Macro the parameter
name must be preceded by the symbol "#" everywhere
it appears in the Definition; however, it is NOT
used to precede parameters in a Macro Call. The
parameters are actually dummy names; they stand for
a quantity which will be substituted at assembly
time. Therefore, the same parameter name may be
used in several separate Macro Definitions (for
example #REGIS may be used more than once). The
parameters MUST follow the syntax rules for
whatever portion of code they represent. Note that
the text itself of the actual (not dummy) parameter
is substituted in the Macro Expansion. Thus,
register names can be used rather than a wvalue

68

CROMEMCO MACRO ASSEMBLER

which stands for the register as in some other
assemblers. See the above example where the letter
H is used as the parameter. Another way this is
useful is to substitute for letters in the opcode
itself:

ROTATE: MACRO #DIR, #REGIS
R#DIRC #REGIS
R#DIRC #REGIS
R#DIRC #REGIS
R#DIRC #REGIS
MEND

In this example either the command RLC or RRC
could be generated by assigning the letter "R" or
"L" to the first parameter. However, if the letter
"QO" was used, this would generate the 1illegal
opcode "RQC", causing an error message when the
Macro is expanded. A last point te be made about
parameters in Macros is that parameter names that
appear early in a list should NOT be subsets of
parameters that fall later iIn a 1list. This 1is
because dummy parameter names do not have a
delimiter (such as a colon) to inform the Assembler
of their last character; note that parameter names

do not follow the same syntax rules as label names.

Dummy parameter names may be as many characters as
will fit on the line and be composed of any
printable ASCII characters. An example of an
illegal use of parameters is:

LOAD: MACRO #OPER, #OPERND

where the user desired one parameter to be the
operation and the other the operand. This 1is
illegal as it stands because OPER is a subset of
OPERND. A correct example is:

LOAD: MACRO #OPERAT, #0PER

Another important point to be made about the
format of Macro Definitions concerns the way in
which labels are defined. Labels appearing in DL
statements within the Macro Definition are not
subject to the following restriction because they
can be multiply defined (see section on Conditional
Assembly for an example of the use of a DL and an
IF statement to cause conditional Macro assembly).
A label appearing on any other statement of a Macro
Definition will generate a multiple definition

69

CROMEMCO MACRO ASSEMBLER

error if that Macro is called more than once (the
second expansion would also reproduce the label).
To avoid this problem a general 1label name for
Macros has been provided, which 1is used by
assigning two letters to the label name followed by
the characters "#SYM". These four characters are
replaced by a four-digit number each time a Macro
is called. The four-digit number starts at 0000
and is incremented by one each time ANY Macro is
called, whether or not it is the given Macro.
Thus, for example the dummy label name AA#SYM in
this Macro:

BITEST: MACRO -

AA#SYM: LD HL, ...

JP AA#SYM

would be assigned the actual label name AAQ@@P@@ if
BITEST was the first Macro called in the program.
The next Macro call would increment this to AA@@AL,
and the next to AA@@P2, etc. In general do NOT use
#SYM as the name of a parameter 1in a Macro
Definition; the effect of this is that the current
value of #SYM will be used instead of the desired
parameter.

The final point to be made concerning the
format of the Macro Definition concerns nesting of
Macros. Macro Definitions may be nested
indefinitely; this means there can exist a Macro
Definition which completely contains a Macro
Definition which completely contains a Macro
Definition, and so on indefinitely. However, Macro
Calls may be nested to eight levels maximum. This
means there can exist a Macro Definition which
contains a Macro Call, whose Macro Definition
contains a Macro Call, whose Macro Definition
contains a Macro Call, and so on up to eight levels
deep. Exceeding this limit will generate a nesting
error. Note that a Macro may also call itself,
provided there is a Conditional way (see IF) of
ending the self-calling before the ninth level. An
example of nested Macro CALLS will be found in the
examples section later in this chapter.

Some special notes are necessary on nested
Macro DEFINITIONS. The Assembler does not evaluate

70

CROMEMCO MACRO ASSEMBLER

a Macro Definition within a larger, outside Macro
Definition until the larger definition is called.
This means that the outside Macro should be called
BEFORE the inside Macro to avoid generating a phase
error. The benefit of nesting Macro Definitions
may not be obvious; the following example
illustrates one level of nesting used to define
several different Macros:

DEFINE: MACRO #1,4#2
EX#14#2: MACRO

PUSH #1
PUSH #2
POP #1
POP 2
MEND
MEND

This nested definition may then be called in a
source program as follows:

-

DEFINE BC,HL
START: +a.

EXBCHL

The opcode "EXBCHL" was defined by the call to
DEFINE; other calls to DEFINE could define such
source code segments as "EXAFBC" or "EXBCDE",.
After the 1initial call to DEFINE the necessary
PUSHes and POPs to generate a double register
exchange will be inserted into the source code by
the call "EXBCHL" used as an opcode. The DEFINE
Macro could be resident in a Macro Library to
further save typing. Note, however, that DEFINE
must be called once for every Macro which it
defines and that this call must precede the call to
the nested Macro.

The above functions could also have been
implemented by the single Macro:

71

CROMEMCO MACRO ASSEMBLER

EXCH: MACRO #1,#2

PUSH #1
PUSH #2
POP #1
POP #2
MEND

The difference here is that the parameters must be
specified each time the Macro is called. For
example a Call in a program would be:

EXCH BC,HL

-
-

Either of the above examples could be used to
create a Macro to exchange register pairs. Note
the differences between them. There is a more
advanced example of nested Macro Definitions in the
last section of this chapter.

The above sections describing the details of a
Macro Definition are provided for reference.
However, a better feeling for the ways in which
Macros may be used will come after these details
are 1llustrated by means of examples. The 1last
section of this chapter provides examples of the
uses and correct formats of Macro Definitions and
Gallss The 1last thing to be described in this
section is the format of the Macro Call:

{Label:> <Macro Name> <Parameterl,Parameter2,.

The label is optional; the parameters are also
optional 1if none are specified in the Macro
Definition. That is, the parameters in the Macro
Call must match those in the Macro Definition in
number and order; they are NOT, however, preceded
by the "#" symbol (because these are the actual,
not the dummy parameters). The Macro Name should
match the name appearing in the label field of the
MACRO statement. At assembly time the Macro will
be expanded and the source code generated will be
printed on consecutive lines following the Macro
Call statement (unless NOGEN is selected--see List
Options and LIST pseudo-op). Each of these lines
will have a plus, "+", sign immediately following
the line number of the print-listing to distinguish
these lines as belonging to a Macro Expansion.
Note that Macro Call statements may appear anywhere

42

CROMEMCO MACRO ASSEMBLER

throughout a source program including within
another Macro Definition (beware of nesting to more
than eight levels deep, however).

An important point about Macro Calls and
Definitions is that a Macro must be defined in a
Source program BEFORE it is called. This is to
prevent a phase error from occurring. The general
practice is to give all Macro Definitions near the
beginning of the source code, followed by the body
of the program itself. One of the most interesting
features of the CROMEMCO Relocatable Assembler is
that Z-80 instructions can be redefined (in terms
of other Z-80¢ instructions) using Macros. of
course, such an instruction which is redefined can
not be used in its traditional sense again within
the same source program; however, there are
specialized cases in which it 1is desirable to
slightly modify the function of an instruction.
Note that the 1instruction 1itself cannot be
modified; it is merely redefined in terms of other
Z-80 instructions.

The way ASMB interprets instructions 1is an
important part of understanding the Macro
capability. The Assembler forms a Macro Definition
Table (MDT) of the Macros residing in the source
program. This is the first place searched to
satisfy an opcode. The second place searched is a
table of addresses specifying the Macros which are
accessed by the source program and which reside on
disk (this table is formed ONLY if the Macro=
option is specified when calling ASMB). If an
opcode is found in this address table, the required
Macro Definition is read into memory from the disk
and added to the MDT. Finally, any still
unsatisfied opcodes are found in the Z-80 Opcode
Definition Table (ODT). Thus, it is possible to
write an entire source program consisting only of
Macros. In expanding these Macros, ASMB then uses
the ODT to evaluate the Z-80¢ instructions. This
feature means that ASMB may be used as a language
compiler by having a library of Macros which
translate the commands of the language into a
series of 2Z-80 instructions. To avoid wasting
memory and repeating Macros unnecessarily when
using such a scheme, Conditional Assembly may be
used 1in conjunction with Macros to automatically
generate subroutine calls. This feature, along
with the other features of Conditional (IF)
Assembly, are described in the following section.

73

CROMEMCO MACRO ASSEMBLER

At the end of this chapter is a section of examples
illustrating some of the features described 1in
these first two parts of the chapter.

Conditional Assembly (IF statements)

An often close associate of the Macro is the
Conditional Assembly or IF statement. The IF
statement allows the user to write a source program
in which certain blocks of code are assembled or
not depending on the satisfaction of particular
conditions. This is especially useful in
conjunction with the MACRO or *INCLUDE statements.
When wusing the IF statement with *INCLUDE,
particular files may be included or not depending
on values in the source program. Note that such a
file may be a series of Macros which are needed in
the source program only under certain conditions.
The IF statement 1s useful with MACRO definitions
as a means of determining the desired number of
levels of nesting of a Macro within itself (this is
illustrated 1in an example 1in the following
section). The feature may also be used to cause a
Macro to set up a subroutine the first time the
Macro is called, and to generate a subroutine CALL
upon subsequent Macro calls. The format of the IF
statement is as follows:

(no label) IF <Item>
<opcodes and
operands which
form the body
of code to be
assembled
conditionally>
(no label) ENDIF (no operand)

The item following the IF may be any legal
label name, expression, or constant as described in
Chapter 3. (Note that an ASCII constant must be
limited to two characters. For example, 'AB' 1is
legal, while 'ABC' is not.) It will be evaluated
by the Assembler to determine whether it is True or
False; a False expression is one that evaluates to
@, and a True expression is one that evaluates to -
1 (@FFFFH). However, ANY non-zero wvalue 1is
considered to be True. NOTE that the IF statement

74

CROMEMCO MACRO ASSEMBLER

evaluates the expression as a sixteen-bit quantity.
If the expression exceeds this limit (for example:
'90@9@' is a 32-bit (4-byte) ASCII expression; the
correct expression is: @000 or simply @), it will
generate an error message. A constant which
exceeds the range will, however, be evaluated MOD
65,536 and will generate no error. Note that the
Expression in the IF statement may use the
operators described in Chapter 3. All the terms of
the expression MUST have been previously defined to
avoid errors; also, the expression must evaluate to
an absolute quantity. An example of an 1IF
statement with an expression is:

IF COUNT EQ @

This will generate a value of True (or -1) if COUNT
is equal to @#. The example could have been written
a different way:

COUNT: DL 1
IF COUNT

which will generate a value of True because in this
case COUNT has the value of 1 which also stands for
True (non-zero). Note the difference between these
two examples; in the first case COUNT must equal @
for the expression to be True, and in the second
case COUNT must equal anything but zero for the
expression to be True.

After evaluating the expression the Assembler
will then assemble the code following the IF
statement 1f and only if the expression evaluated
to be True. If the expression was False, the block
of code bounded by the IF and ENDIF statements will
simply be ignored by ASMB. It is also possible to
suppress the print-listing of such ignored code by
using either the NOCOND List Option or the LIST
NOCOND pseudo-op (see the appropriate sections for
more information). An ENDIF statement is required
for every IF statement in a source program to tell
the Assembler when Conditional Assembly is
finished.

IF statements may be nested up to eight levels
deep; more than this will generate an error
message. IF statements may also be nested in

15

CROMEMCO MACRO ASSEMBLER

Macros; this makes it possible for a Macro to call
itself a number of times specified by the IF
statement (an example of this may be found in the
following section). Macro parameters may be used
in the expression of the IF statement. The
following example to do three rotates illustrates
this:

ROTATE: MACRO #DIREC
IF '"#DIREC' EQ 'R'
RRCA
RRCA
RRCA
ENDIF
I '"$§DIREC' EQ 'L’
RLCA
RLCA
RLCA
ENDIF
MEND

Note that the actual ASCII value of the
parameter may be specified by enclosing it in
single quotation marks as with any ASCII string.
The two IF statements check to see if the parameter
specified when calling ROTAT3 is "R" or "L"; if it
is neither, then no source code is assembled. If
one or the other, then the corresponding 1left or
right rotates will be generated.

Examples of Macro and Conditional Assembly

Many of the features of MACRO and IF
statements described above are made clearest by
illustrating them by means of examples. This
section is included to give the user some idea of
the many ways in which Macro and Conditional
Assembly may be used.

Example 1: Block Move Macro
The Macro Definition which follows provides an
example of the use of a Macro. This Macro defines

a method for easily generating a block-move of a
portion of a program:

76

CROMEMCO MACRO ASSEMBLER

MOVE : MACRO #SOURCE, #SRCEND, #DESTIN

LD HL, #SOURCE

LD DE, #DESTIN

LD BC, #SRCEND-#SOURCE

LDIR

JPp #DESTIN

MEND
Note that three parameters are expected: a
starting and ending location for the source, and a

destination;
(move)

this
command of DEBUG.

is of the same format as the M
Thus, the Macro Call for

this example might be part of a program such as:

ORG 200 0H
LOAD: MOVE START,STOP, 1@0H
START: LD .o
STOP: END LOAD
In this example the program would begin

execution with LOAD,
code between START and STOP to

190H.

Example 2:

and would move the block of
absolute address

A Macro that Converts Itself into a Subroutine

In some cases the in-line coding which results

from many Macro Calls

requirements.
created which
Such a Macro has
a subroutine.
SUBMAC,

converts

is undesirable due to memory
such a case a Macro can be
itself to a subroutine.
both the advantages of a Macro and
Following is the Definition for

In

a Macro which calls itself:

77/

CROMEMCO MACRO ASSEMBLER

TRUE : EQU -1
FALSE: EQU @
FIRST: DL TRUE
SUBMAC: MACRO
IF NOT FIRST
CALL SUBRQOT
ENDIF
IF FIRST
FIRST: DL FALSE
JP DONE ; causes program to jump around

subroutine upon first call

-

SUBROT: ...

RET

DONE : NOP ; program jumps here
ENDIF
MEND

The first three lines above are not part of the
Macro Definition, but the wvalue of FIRST must be
initialized before it is used in the Definition.
The JP DONE instruction in the above is used to
cause a Jjump around the subroutine when it is
assembled in-line with the source upon the first
Call to SUBMAC. A sample program which might use
this Macro is:

START: e

SUBMAC

SUBMAC

END START

The first Call to SUBMAC above would generate
the subroutine itself in-1line. After the first
call the value of FIRST has been redefined to be
FALSE; hence, the second Call to SUBMAC would
generate simply the line: CALL SUBROT.

Example 3:
Nested Macro Definitions to Generate
Rotate Instructions

A number of interesting and useful functions
can be implemented by using nested Macro

78

CROMEMCO MACRO ASSEMBLER

Definitions or Calls. The following 1is one such
example, making use of one level of nested Macro
Definitions to define a number of different Macros:

ROTATE: MACRO #SHFT
M#SHFT: MACRO #NUM, #REG

VALUE: DL #NUM-1
#SHFT #REG
IF VALUE NE 0
M#SHFT VALUE, #REG
ENDIF
MEND
MEND

The Macro ROTATE may be used to define a
number of shift and rotate Macros; however, the
inner Macros are not defined until ROTATE has been
called one time. Thus, at the beginning of the
program in which we wish to use the Macros, it is
necessary to initialize them by the Calls:

SETUP: ROTATE SRA
ROTATE RRC
ROTATE RR
ROTATE SRL
ROTATE RLC
ROTATE RL
ROTATE SLA

Note that this will define 7 additional Macros with
the names MSRA through MSLA. The M (or any other
legal character) 1is necessary 1in order to avoid
having the Macro names match Z-80 opcodes. (Note
that these same Z-80 opcodes are used within the
Macro Definitions.) We can now call any of these
Macros, giving a number and a register as
parameters:

START: LD

MSRA 4,A
MRLC 8,B
MRR 3.5
END START

The number in each of the above cases is the
number of shifts or rotates which will be
generated. Thus, the Macro Call "MSRA 4,A" will,
when expanded, generate 4 "SRA A" instructions in

79

CROMEMCO MACRO ASSEMBLER

the source code. Since the ROTATE Macro could be
contained in a Macro Library, the user's source
program could contain a Macro Call of this type.

80

CROMEMCO MACRO ASSEMBLER

CHAPTER 6: ASSEMBLER ERROR MESSAGES

The Assembler generates a number of error
messages while assembling to inform vyou of its
progress. These messages fall into two general
classes: those that 1involve the actual call to
ASMB, are generated shortly thereafter, and are
sent to the console; and those that are generated
while the source code is being assembled and which
inform the user of incorrect structures in the
code. These two classes are described below. The
user should note that in most cases the Assembler,
when encountering an error, will assemble the line
such that the correct number of bytes are reserved.
Thus, the addresses are still numbered correctly,
and the program may be loaded into memory and the
incorrect bytes changed using DEBUG. This saves
reassembling a very long program when the user
plans to debug it anyway. Of course, in the final
version of source code, the error should be
corrected.

Error Messages Generated Following a Call to ASMB

The following is a 1list of error messages,
followed by a brief description of their meanings.
Note that the errors are printed exactly as they
would be sent to the console, upper or lower case.
All the errors described in this section will ABORT
the assembly and return control to CDOS. The user
should be aware that any temporary files created by
ASMB will remain on the disk following an abort;
these may be erased if desired, but this is not
required if the error is fixed and the file
reassembled.

81

CROMEMCO MACRO ASSEMBLER

source file not found

This is generated when ASMB cannot find the
specified source file on the disk. Check vyour
spelling of the filename and the disk directory for
the file.

no directory space

This is generated when ASMB attempts to open an
output file (.REL or .PRN, for example) and finds
that there. are already 64 entries (the maximum
allowed by CDOS) on the disk. This is NOT the same
as running out of disk space (see following error
message). There may be 64 directory entries which
are all short files, and thus not all the available
kilobytes may be used (81 Kbytes for small and 241
Kbytes for large disks).

write error, file — <filename.ext>

ASMB will open any files which it requires (.REL or
.PRN files, or the temporary files it opens to
manage the XREF and OPCODE listings), shortly after
being called. This message 1is generated 1if the
disk is full (81 Kbytes for small, 241 Kbytes for
large) when these files are opened, or if a file
being written to causes the disk to become full
during assembly.

Note: The temporary files for XREF and OPCODE
listings are created only if one or both of these
options are specified. The XREF file 1is named
<filename>.$$$ and the OPCODE file is named
<filename>.S$$@, where <Kfilename> 1is the one
specified in calling ASMB. These files are created
during Pass 1 of the Assembler; they are removed
from the disk following completion of the assembly.

selected disk error
This message is generated if the 3-letter
drive-request instruction given after the filename
is incorrect, i.e., if it specifies a drive which

does not exist or is not one of the characters, "X"

82

CROMEMCO MACRO ASSEMBLER

oir 2. An example which will generate this
message 1is: ASMB TESTFILE.ABE. "E" is not a
correct drive letter.

invalid option

This message is generated if an invalid or
misspelled Option is specified following the
<filename> in a call to ASMB. This will also
appear if an invalid delimiter (such as ",") is
used between Options. One or more <space(s)> is
the only valid delimiter to separate Options.

MACRO library not found

This is generated only if the
Macro=<d:filename.ext> option has been 1issued and
the filename cannot be found by the Assembler on
the specified drive.

MACRO library file error

This error will abort assembly of the source
program. The error message 1is printed to the
console as shown above. It is caused by the
Assembler encountering a MEND statement with no
matching MACRO definition statement in the source
code preceding it ONLY FOR THE MACRO LIBRARY if one
has been specified. On the other hand the "no
matching MACRO" message is printed if this
condition occurs with a MACRO present in the SOURCE
file and will NOT abort assembly. The primary
reason for the addition of this error message is to
inform you of mistakes in a MACRO library before
assembly occurs so that you will have the
opportunity to change it using EDIT,.

out of memory

The Assembler program (ASMB.COM) 1is loaded
into memory at 1@@H and begins execution there.
Above itself in memory ASMB forms the symbol table,
which grows upward. Above the symbol table but
below CDOS ASMB forms the Macro Definition Table
(MDT), which grows downward through memory. If a
user—-program being assembled contains a great
number of Macros and/or symbols, the symbol table

83

CROMEMCO MACRO ASSEMBLER

and the MDT may grow together, thus generating the
"out of memory" error. The message will be printed
on the console and assembly will be aborted at this
point. The simplest solution to the problem if it
occurs is to edit the source code into two or more
separate modules, assemble them separately, and
link them at run time.

Error Messages Generated During Assembly

The following list contains the error messages
generated during assembly of source code. They
inform the user of a wide range of incorrect
specifications such as misspelled opcodes or
invalid relative Jjumps. When an error occurs, ASMB
prints the error message which applies on the line
immediately following the error. The message is a
complete expression, not a symbol, and it occupies
the entire line in a print-listing.

It is set off by being preceded and followed
by a string of asterisks. If the print-listing is
sent to the disk or is not generated at all, any
errors occurring during assembly will still be
printed on the console; in this case the entire
line of code as generated in the listing along with
the error-type will be printed. Following assembly
the total number of errors will be printed. Also,
at the end of the listing will be printed a summary
of all the line numbers where errors have occurred
during assembly. This summary is printed (either
to the disk or to the console) in the form of a
table; the Width= option will 1limit the length of
lines of characters in this table, but will not end
any line in the middle of an entry just as was the
case with the cross reference tables. Note that
for each type of error message up to 100 entries
will be printed in this table. The error summary
table is a very useful feature for going back and
editing the file for corrections. Below in
alphabetical order are the error messages which may
appear along with a brief explanation of each one.

84

CROMEMCO MACRO ASSEMBLER

instruction not allowed

This error message will be printed to the
console and the print-listing during assembly but
will not abort assembly. The error message will be
printed on the console exactly as shown above, but
ONLY if the HEX or HEX= option has been specified
in calling ASMB. It will follow one of these
pseudo-ops:

COM DATA REL
ENTRY EXT or EXTRN NAME

because these apply to several aspects of
RELocatable code, which is not produced under the
HEX option. Note that for the DATA, REL, and NAME
pseudo-ops this error message may be treated as a
warning because there will be no effect on the .HEX
output file due to its occurence. However, if the
message occurs following the COM, ENTRY, or EXT
pseudo-opcodes, the original source will have to be
re-—edited to change these lines and any references
to label names appearing under them.

argument error

This arises when an invalid constant is used.
This might happen when a number is incorrect for
its base, or when an ASCII character string is too
long for an expression. For example, the lines:

LD A,10880 (8 not valid octal character)
LD HL,'ABC' (too many ASCII chracters)

will both generate argument errors.

divide by zero error

This arises when an evaluated expression
involves an attempt to divide by zero. An example
is:

END: EQU @GFFF8H

LD HL, 255/ (END+8)

85

CROMEMCO MACRO ASSEMBLER

Since the value of END+8 is @, this would produce
the divide by zero error.

expression error

This applies to operand expressions which
involve certain illegal operations with labels
belonging to REL, DATA, or COM code segments.
Expressions involving relocatable labels are
limited to the following operations:

RELNAM+ABSNAM (relocatable)
RELNAM—-ABSNAM (relocatable)
RELNAM-RELNAM (absolute)

where RELNAM stands for a label belonging to a
relocatable code segment and ABSNAM stands for a
label belonging to an ABS code segment (see REL and
ABS in the chapter on pseudo-ops). The type of
expression of the result of the given operation is
given to the right in parentheses. Also note that
in the last case above both RELNAMs must belong to
the same type of Code Segment or an error will also
be generated. (For example a label belonging to a
COMmon area may not be subtracted from a 1label
belonging to a REL area.) An expression error is
generated if any arithmetic is attempted (i.e., an
expression is formed) using EXTernal names, as the
values of these are unknown to the Assembler. This
does not mean that EXTernals may not be used as
operands, of course. Relative Jjumps from one type
of Code Segment to another will also generate
expression errors; for example it is illegal to
jump from a REL to a DATA area using a relative
jump. The reader should refer to the section of
Chapter 3 on operators for more information on the
use of expressions.

file not found

This message is printed following an INCLUDE
for which the file to be included cannot be found
on the disk. This error does not terminate
assembly, but further errors may be generated if
the source code looks for labels belonging to the
missing file. Note the difference between this
message, which is printed in the listing, and the
"source file not found" and "MACRO library not

86

CROMEMCO MACRO ASSEMBLER

found" messages which abort assembly and are
printed on the console.

label error

This arises when a label contains or begins
with an illegal character. The characters @-9 are
legal within a label but are illegal as the FIRST
character. Allowable characters for labels are A-
Z, a-z, ".", and "$". All register names are also
illegal as 1labels; these are listed in Chapter 3
under the section on labels.

label not allowed

The following list of pseudo-ops do not ALLOW
labels to precede them because of their nature.
This message is printed if a label is used before
one of the following pseudo-ops:

ABS FORM or EXT or MEND
COM EJECT EXTRN NAME
DATA ENDIF IF REM

REL ENTRY LIST TITLE

Note that this is NOT the error message which
is printed in the case of an illegal character in a
label (see "label error"). Although the "label not
allowed" message 1s printed and counted as an
error, the source code will still be assembled
correctly and the incorrect label will be ignored
by ASMB.

missing label

This message 1is printed when the following
pseudo-ops are NOT preceded by a label: EQU and
DEFL or DL. This is opposite to the above case
(see "label not allowed"); note that these two
pseudo-ops REQUIRE a 1label to be assembled
correctly. A MACRO definition section of code also
requires a label in order to be used by the
Assembler. For more information on Macros see the
chapter devoted to them.

87

CROMEMCO MACRO ASSEMBLER

multiple definition

This message occurs any time a data or program
label is defined more than once. This is prone to
happen when using INCLUDEs, as the included file
may contain a label also used in the source file.
Simply re-edit one of the files and change the
label (s) involved.

multiple MACRO definition

This error is exactly similar to the "multiple
definition" above, but is caused by a multiply-
defined Macro name.

nesting error

This message appears whenever INCLUDEs,
MACROs, or IFs are nested beyond the levels allowed
by the Assembler. These are: 8 levels of nesting
for MACROs and 1IFs, and 4 1levels of nesting for
INCLUDEs. Note that this means 8 levels of nesting
for Macro CALLS; Macro DEFINITIONS may be nested
indefinitely. However, be sure, when nesting Macro
definitions, to insert the correct number of MEND
(Macro END) pseudo-ops; the Assembler might
otherwise consider a portion of the source code to
be part of a Macro. Examples of both nested Macro
calls and definitions appear in the chapter on
Macros.

no matching IF
This message appears following an ENDIF
pseudo-op which has no corresponding IF statement
in the source code preceding it.
no matching MACRO
This message appears following a MEND pseudo-

op which has no corresponding MACRO definition
statement in the source code preceding it.

88

CROMEMCO MACRO ASSEMBLER

opcode error

This follows an opcode which is illegal; this
may be because it is misspelled or because the user
intended for it to be a Macro and forgot to include
this Macro definition.

phase error

This error message follows a line containing a
name which was defined differently between Pass 1
and Pass 2 of ASMB. The most common cause of this
is that a label has been used as a value (such as
in an EQUate statement) before it has been defined.
An example is:

LABELl: EQU LABEL2

LABEL2: LD A,S

LABEL2 has been used in the EQU statement before it
was defined. The error is corrected by moving the
offending statement (in this case the EQU
statement) to follow the label definition. Other
causes of phase errors are (1) using a term in an
expression in a DS or IF statement which has not
been defined yet, and (2) calling a Macro before it
has been defined.

range error

This message follows a relative jump which
exceeds the range allowed for such Jjumps. This
range is -126 bytes to +129 bytes measured from the
address at which the relative jump is located; the
actual values generated by the Assembler are in the
range -128 to 127 because the Z-80 measures
relative jumps from the instruction following the

jump.

The Assembler requires an ADDRESS, usually
specified by means of a label, to be used as the
operand of a relative jump instruction. ASMB then
calculates the relative displacement of the Jjump
and places this value in the object code. Remember

89

CROMEMCO MACRO ASSEMBLER

that if a number is used, it will be considered to
be an absolute address, NOT a displacement. DNote
that this may be different from the description of
relative jumps in the Z-80 manuals by Mostek and
Zilog. Some examples will illustrate these
concepts; the statement:

JR NZ,100

tells ASMB to generate a relative jump to LOCATION
100 or 64H, NOT to Jjump relative to the present
location by 180 bytes. To avoid this confusion a
better form would be:

JR NZ ,LABEL
LABEL: LD A,3

for which ASMB will calculate the correct jump no
matter where LABEL happens to be located.
(However, if the label belongs to another type of
Code Segment, an expression error will be
generated; for example it is illegal to jump from a
REL area to a DATA area using a relative jump.)

syntax error

This error message covers a wide range of
ills; it generally appears when a quantity in one
of the four Assembler Fields (see Chapter 3) has
been misused. For example, writing a remark
without preceding it with a ";" on a line which
already contains a label, opcode, and operand will
produce a syntax error. If you don't know the
cause of the message, look up the expression or
opcode of which you are unsure.

too many COMnons

This message follows the use of more than the
allowable number of COMmons. ASMB allows a total
of 15 COMmons including one "blank" COMmon. The
term blank COMmon means that one of the COMmons
need not be named, not that there is nothing in it.
See the COM pseudo-op for more information on their
use.

9@

CROMEMCO MACRO ASSEMBLER

undefined symbol

This message follows a line containing a label
name in the operand field which has not been
defined. This is one of the most common of
assembly language mistakes: using a label name for
a data quantity and then forgetting to define it.
Labels are defined by appearing in the label field
of any opcode or pseudo-op which allows labels.

value error

This message follows a line in which a wvalue
is used which exceeds the range allowable for the
opcode used. This value may be a constant or an
expression. Opcodes which expect one-byte
quantities will generate a value error for any
expression whose value exceeds the range # to FFH
(or its equivalent representation in decimal,
octal, or binary). Opcodes which expect two-byte
quantities will not generate an error if the value
simply exceeds the numeric range (65,535); the
value will simply "wrap around". That is, a value
of modulus 65,536 1is returned without an error
flag. ©Some examples will illustrate these ideas.
The following will generate a value error:

LD A,3000H (a two-byte quantity used as one byte)
However, the line

LD HL,70000
will not generate a value error; instead, the wvalue
4464 or 1170H (which is 70000-65536) will be
generated.

Value errors will also be generated by the
BIT, SET, and RES opcodes if the wvalue of the

expression used as an operand is outside the range
@ through 7.

91

CROMEMCO MACRO ASSEMBLER

CHAPTER 7: ASSEMBLER PRINT-LISTINGS

Following is the print-listing which results
from the assembly of the example in Chapter 1
("Getting Started"). There 1is much wvaluable
information in this listing; it is therefore given
here in a separate chapter so that the various
terms and symbols can be explained. The command
line which was typed to produce this assembly 1is
slightly different from the command line typed in
Chapter 1. This 1is because several Assembler
Options have been specified here so the user can
see what type of listing they produce. The command
line which was typed to produce the following
assembly is:

ASMB TIMER SYMB XREF OPCODE RANGE

The SYMB option requests a Symbol Table, XREF
and OPCODE request Symbol and Opcode Cross
Reference Tables, and Range requests those absolute
jumps which are within range to be relative jumps.
The next four pages contain the 1listing that
results from this assembly. Following that is an
explanation of the terms and conventions used in
the listing.

92

CROMEMCO MACRO ASSEMBLER

CROMEMCO CDOS Z8% ASSEMBLER version 02.02

(B60@7)
(8@@2)
(0@@5)
(B2FF)
(BOFF)
geg@"' 315A08"
pep3' @G1lFF@2
p@@6"' 3EFF
@@@8"' 3D
@@@9 ' 2@FD
PpaB" @D
g@ggc' 20gF8
PPPE" 10F6
gal@' 1eE@7
g@l2' GE@2
@@l14' CD@500
@@17" C30300"
g@1AY (9040)
(B@5BA")
@@5A' (0000")
Errors

Range Count
Parity Count

Program Length @25A

0oe1
paa2
poa3
goo4
G035
0oa6
o087
peegs
pa@ao
pa1o
po11l
pa12
gg13
p@14
ga15
gale
0817
pa18
ga19
2020
@a21
o222
g@23
pa24
o225
7826
ga27
0@28
Go29
gB30
ga31
@332

Y]
1
@

PAGE 0001

; This program rings the console bell at approximately
: intervals determined by a timer loop.

half-second

r
BELL:
WRITE:
CDOS:
LIMLT 2

r
DURAT:

-
r

; Main Program

START:
LOOP:
TIM2:
TIM1:

; Stack

r
BOTTOM :
STACK:

r

(99)

EQU
EQU
EQU
EQU

EQU

LD
LD

LD
DEC
JR
DEC
JR
DINZ
LD
LD
CALL
JpP

Area

DS
EQU

END

93

7
2
5
2FFH

@FFH

SP,STACK
BC,TIMIT

A,DURAT
A
NZ,TIM1
2
NZ,TIM2
TIM2
E,BELL
C,WRITE
CDOS
LOOP

40H

START

mE ma wmy we

-

e WE M mg WE my we WE wme W

-

console bell is ASCII @7

write character to console

use system call to write

2 is no. of half-seconds;
FF (256) is no. of loops

FF (256) is loop duration

initialize stack pointer

B is no. of half-sec.;
C is no. of loops

get duration (256)

decrement and

loop til zero

decrement loop counter

until =zero

countdown half-seconds

set-up to ring bell

set—up to write console

call system

loop and repeat

allow 64 bytes for stack
current location counter
equals top of stack

CROMEMCO MACRO ASSEMBLER

CROMEMCO CDOS z8@ ASSEMBLER version 02.02

SYMBOL TABLE

BELL o897
STACK g@5A"
WRITE gag2

BOTTOM
START

GOLA"
pooo’

CDOS
TIM1

94

gea5
ppa8’

DURAT
TIM2

g@FF
po06"

PAGE 0002

LOOP
TIMIT

@3’
G2FF

CROMEMCO MACRO ASSEMBLER

CROMEMCO CDOS Z8@ ASSEMBLER version 02.02 PAGE 0003
CROSS REFERENCE LISTING

BELL nop4a 0022

BOTTOM @929

CDOS goge BB24

DURAT gog@9 @016

LOOP #9814 @025

STACK @930 0013
START 2813 0832

TIM1 @17 G@18
TIM2 pPle @920 0P21

TIMIT gae7 0914
WRITE 0p@s5 @B23

95

CROMEMCO MACRO ASSEMBLER

CROMEMCO CDOS Z8@ ASSEMBLER version #2.02 PAGE 0@@4
OPCODE CROSS REFERENCE LISTING

CALL pa24

DEC gal7 0019

DJINZ pa21

DS 2029

END PR32

EQU poP4 @PB5 G006 V07 00@9 QO30
Jp 9025

JR gpl8 0020

LD gP13 0014 Q0le 0Q22 B@23

96

CROMEMCO MACRO ASSEMBLER

Listing Columns

This 1listing is divided up into a number of
columns or fields. These are described below.

Column 1 -

Column 2 -

Column 3 -

Column 4 -

This is a 16-bit address printed in
hex. If an absolute ORG statement has
not been given, the addresses will
start with @. Since the modules are
relocatable, however, the subsequent
addresses are only relative to the
final program base when the program has
been loaded. Immediately following the
address is either a space or one of the
symbols: Y'e Ty ol &y These are
described below.

If the statement is a pseudo-op which
generates a value (for example, the EQU
statement), that value will be printed
here in parentheses,. For all Z-8¢
opcodes this column will contain up to
four bytes of object code in hex. The
DB and DW pseudo-ops will also produce
object code in this column. If the
code being assembled is relocatable,
all addresses will correspond to
relocatable addresses in column one,
NOT the actual addresses these bytes
will have when the program is 1linked
and loaded into memory. Relocatable
addresses will be followed by one of
the symbols: ', ", *, or #, described
below.

This column is usually not printed. If
the Range Option has been specified,
all absolute Jjumps which are within
range to be relative jumps are marked
with an "R" character in this column.

This column contains the line numbers
of the source code in decimal beginning
with @#@@1l. All lines will be numbered
including those containing only
remarks.

97

CROMEMCO MACRO ASSEMBLER

Column 5 - This is the label field of the original
source. See Chapter 3 of this Part for
a complete description.

Column 6 — This is the opcode field of the
original source. See Chapter 3 for a
complete description.

Column 7 - This is the operand field of the
original source. See Chapter 3 for a
complete description.

Column 8 — This is the remark field of the

original source. See Chapter 3 for a
complete description.

Lines of Listing

The listing also contains useful information
on the lines printed out at its beginning and end.
These are described below.

Beginning, Line 1 - This 1line contains the
heading of the 1listing giving the
current version and release numbers of
ASMB. Also on this 1line 1is the page
number ; listings are numbered
consecutively in decimal including the
symbol and other tables at the end.

Beginning, Line 2 - This line will contain the
title of the module being assembled if
the user specified one using the TITLE
pseudo-op. A blank line is inserted if
no title is used. The Assembler also
inserts a blank line just before the
listing begins on every page.

Interspersed Lines - Error messagesS occupy one
full line of a listing and are printed
immediately following the line in which
the error was first detected.

End of Listing, Line 1 - The total number of

errors which occurred during Assembly
is printed on this line.

98

CROMEMCO MACRO ASSEMBLER

End of Listing, Line 2 - This line will be
printed only if the Range Option has
been specified, and it gives the total
number of jumps marked by Range.

End of Listing, Line 3 - This 1line will be
printed only if the Parity Option has
been specified, and it gives the total
number of 808@-Z80 conflicts found (see
Parity Option in Chapter 2).

End of Listing, Line 4 - This gives total
program length (i.e., the byte-count of
the object code) in both hex and in
decimal.

End of Listing, Line 5 - This and the
following lines 1list all those COMmons
which have been defined in the module
along with their lengths in both hex
and in decimal. Up to 15 COMmons may
be listed.

Listing Symbols

There are four symbols which appear throughout
a print-listing which give some additional
information. These are described below.

Single Quotation Mark (') - This symbol
follows all addresses (column 1) which
belong to a REL area. The symbol also
follows all references to REL addresses
made in the object code. For example
the three bytes:

C31Fga'"

in the object code mean to Jjump to

address @@1lF of the REL segment of
code.

Double Quotation Mark (") - This symbol
follows all addresses (column 1) which
belong to a DATA area. The symbol also
follows all references to DATA

39

CROMEMCO MACRO ASSEMBLER

addresses made in the object code.
Remember that DATA program segments are
very similar to REL program segments.

Asterisk (*) - This symbol follows all
addresses (in column 1) which belong to
a COMmon program segment. The symbol
also follows all references to COMmon
addresses made in the object code.

Pound Sign (#) - This symbol appears only
following an address in the object
code, and marks those lines as ones
referencing EXTernals. The address
just preceding the pound sign is the
location that that EXT was last
referenced, or is @@@@ if it's the
first time in the module that the EXT
is referenced.

Note that addresses in column 1 or in the
object which are not followed by one of the four
symbols above belong to an ABSolute segment of
code.

Tables Following the Listing

There are several tables which may follow the
print-listing of the source code. These are
described briefly below.

Symbol Table

The symbol table contains an alphabetical list
of all the symbols (labels) defined in the source
program. Each symbol will be followed by its value
and one of the four symbols described above to tell
the user to which program segment it belongs. The
value will be either the address at which the
symbol is defined or the value of the expression to
which it equates. Note that EXTernals listed in
the symbol table do not follow this rule. The
address listed following an EXT name is the address
of its first occurrence in the source.

100

CROMEMCO MACRO ASSEMBLER

Cross Reference Table

The cross reference table contains an
alphabetical 1list of all symbols and the 1line
numbers of both their places of definition and
occurrence throughout the source program. The
symbols are listed in the first column, the line
numbers of their definition in the second column,
and the line numbers of their occurrence are listed
by rows to the right of the first two columns.
Symbols which have been multiply-defined by the use
of DL statements will have the line numbers of
subsequent definitions listed to the right and
followed by the pound sign (#).

Opcode Cross Reference Table

The opcode cross reference table contains an
alphabetical 1list of all opcodes and Macro names
along with the line numbers of their places of
occurrence (and places of definition for Macros).
The opcodes or Macro names are listed in the first
column, the line numbers of Macro definitions ONLY
are listed in the second column, and the 1line
numbers of their places of occurrence are listed by
rows to the right.

This completes the description of the items

which make up an assembled print-listing. This
also completes Part I of this manual.

101

(4"}

€0t

TYNNYW H3AVOT/JdTNNIT ODWIAWOHD

PeT

HdIAVOT/YINNIT ODWHWOHUD

CROMEMCO LINKER/LOADER

CHAPTER 1l: USING THE CROMEMCO LINKER/LOADER

Command Format

The CROMEMCO Linker/Loader is wused to 1link
assembled program modules together, load them into
memory, and begin execution there if desired. The
Linker is supplied to the user on diskette (large
or small) wunder the directory entry "LINK.COM".
The command line to call LINK consists of a number
of filenames and switches according to the
following format:

LINK <d:filenaml.ext/s,d:filenam2.exXxt/S, .«..>

where d stands for the disk drive letter (A through
D), s stands for one of the legal switches of the
Linker (see list in this chapter), and filename.ext
stands for a user filename plus 1its 3-letter
extension. The only quantity required above after
the word LINK is filenaml. LINK defaults to the
current drive if the disk drive letter is omitted,
and it defaults to the extension .REL if the 3-
letter extension is omitted. The switches are not
necessarily required, and are used to give LINK
instructions regarding the files. The Linker will
accept commands in the order received, but does not
require a single command line. The prompt for LINK
is an asterisk, "*"; any time the asterisk appears,
a command may be entered. Thus, the names of files
to be linked may be given one at a time rather than
on one command line. The example of Chapter 4 will
illustrate this further. After each line is typed,
LINK will load or search the named file(s). When
LINK finishes this process, it will 1list all
symbols that remain undefined followed by an
asterisk.

The switches LINK accepts give the user a
variety of ways to control the 1linking process.

185

CROMEMCO LINKER/LOADER

For example the user may cause the Linker to search
special library files to satisfy undefined globals
by linking the filename to be searched followed by
/S. The /M switch can be used to map a list of all
defined and undefined symbols. These switches are
described in the next section. Chapter 2 gives a
brief explanation of the operation and format of
LINK and associated .REL files for those who are
interested. It may be safely skipped, however, for
it contains no information on the actual use of the
Linker. Chapter 3 is a brief summary of the error
messages that occur and why, and Chapter 4 gives a
step-by-step example of the process of linking and
loading program modules.

LINK Switches

The Linker allows a number of switches which
specify actions affecting the loading process.
These switches are listed here:

E (Exit to CDOS)

Exit to CDOS upon completion of link and load.
Prior to exiting, LINK prints on the console the
start and stop execution addresses along with the
number of 256-byte pages of memory the program
occupies (in decimal), according to the following
format:

[xxxx yyyy zz]

where xxxx is the address at which execution will
start, yyyy is one more than the highest location
used by the 1loaded object code, and zz is the
decimal number of pages required.

If it is desired after executing the /E to
save the file now located in memory, this can be
done using the SAVE command, which is one of the
CDOS intrinsic commands (see also CDOS manual).
The user would then type:

SAVE filename.ext zz

where zz 1is the same number printed out by LINK
above (following the issue of /E). The filename

106

CROMEMCO LINKER/LOADER

can be any legal name; however, if the name used
already resides on the disk, the saved file will be
written over this existing file. The 3—letter
extension is frequently .COM because this procedure
is often used to create command files; however, any
extension may be given. Note that other CDOS
INTRINSIC commands may be given before the SAVE
command; for example, DIR may be typed to see about
available directory space. However, executing any
EXTRINSIC commands (XFER, EDIT, etc.) will change
the contents of the user-area. For a 32K system,
zz=105 will save the entire user-area.

G (Go - start execution)

Start execution of the program as soon as the
current command line has been interpreted. Prior
to execution, LINK prints on the console the start
and stop addresses and the number of 256-byte pages
occupied by the object code, according to the
format shown above (see /E). Following this is the
message "[BEGIN EXECUTION]" at which point
execution 1is started by LINK. The Linker
initializes the stack pointer at the highest
address of the user-area in case this operation is
forgotten by the user program.

M (Map all symbols)

List both all the defined globals and their
values and all undefined globals followed by an
asterisk, The map may be sent to the printer by
typing Control-P ("P) following the LINK command
line. This printed map of symbols is very useful
for debugging the user-program. Once the object
code has been loaded into memory by LINK, /E can be
issued and the correct portion of the user-area
SAVEd in a file. Then the program DEBUG can be
called and used to load and debug the file just
created. The global map printed previously can be
used to reference addresses.

107

CROMEMCO LINKER/LOADER

R (Reset linker)

Put Loader back in its initial state. /R is
used to restart LINK if the wrong file was loaded
by mistake. /R will take effect as soon as it is
encountered in a command string.

S (Search file)

Search the disk file having the filename
immediately preceding the /S in the command string,
to satisfy any undefined globals. This 1is
convenient for having the Linker search a library
file of much-used routines. (Note that when using
LINK with CROMEMCO FORTRAN, the 1library file
FORLIB.REL is searched automatically to satisfy
undefined globals.) '

U (list all Undefined globals)

List all undefined globals as soon as the
current command line has been interpreted and
executed. LINK defaults to this switch; therefore,
it is generally not needed unless it is desired to
reproduce this 1list more than once. For example
say that during link the list of undefined globals
is printed to the console. The wuser could then
type Comtrol-P followed by "/U" to cause the
undefined globals to be listed a second time, this
time to the printer as well as the console.

198

CROMEMCO LINKER/LOADER

CHAPTER 2: FORMAT OF LINK-COMPATIBLE OBJECT FILES

The following is a description of the format
of .REL files which are to be compatible with the
CROMEMCO Linker. This information is provided for
the interested programmer, but is not in any way
required reading for the person learning how to USE
the Linker.

LINK compatible object files consist of a bit
stream. Individual fields within the bit stream
are not aligned on byte boundaries except as noted
below. The use of a bit stream for relocatable
object files keeps the size of the files to a
minimum, thereby decreasing the number of disk
reads and writes. The first bit of a field 1is
either a one or a zero, and this is followed either
by an 8-bit byte or a 2-bit field having the
following meanings:

Bit Meaning
Y] load the following eight-bit byte as absolute code
1 read in the following two bit field:

11 Add sixteen-bit offset to common base
19 Add sixteen-bit offset to data base

@l Add sixteen—-bit offset to program base
@@ Special LINK item

Special LINK item fields begin with the bit
stream 10@ as just explained. This is followed by
a four-bit control field, an optional A-field which
consists of a two-bit code specifying address type,
and an optional B-field which consists of 3 bits
giving a symbol length. The 2-bit address type has
the same meanings as the 2-bit field above except
@@ specifies absolute addressing. The 3-bit symbol
length is followed by eight bits for each character
of the symbol. We can represent this bit stream by
the following:

A-field B-field
1 0P xxxx <yy two-byte-value> <zzz characters-of-symbol-name>

where the spaces in the above show where the

109

CROMEMCO LINKER/LOADER

various fields end, the angular brackets denote
optional quantities, and where

xxxx is the four-bit control field
vy is the two-bit address type field
zzz 1s the three-bit symbol length field

The two-byte-value following yy will be either
the 16-bit offset specified or the absolute
address, and the characters-of-symbol-name
following zzz will be in ASCII, each character
occupying eight bits.

The four-bit control field will specify the
operation or function of the bit stream. It can
have the following values, where the four-bit value
is given in the left-hand column in decimal:

(The following LINK items have a B-field only)

Entry Symbol (name for search).
Select COMmon Block.

Program Name.

Reserved for Future Expansion.
Reserved for Future Expansion.

=W o=

(The following LINK items have both an A-field and a B-field)

5 Define COMmon Size.

6 Chain External (A is head of address chain).
B is name of external symbol.

7 Define Entry Point.

8 Reserved for Future Expansion.

9 Reserved for Future Expansion.

(The following LINK items have an A-field only)

10 Define Size of Program Data Area.
11 Set Loading Location.
12 Chain Address.

A is head of chain; replace all entries in chain

with

current location counter. The last entry in the chain

has an address field of absolute zero.
13 Define Program Size.
14 End Program (forces to byte boundary).

(The following LINK item has neither an A- nor a B-field)

15 End of File.

110

CROMEMCO LINKER/LOADER

CHAPTER 3: LINK ERROR MESSAGES

The Linker gives several error messages 1in
case of an 1illegal operation. These are listed
below in the summary along with an explanation of
each one. Note that there are two types of error
messages: fatal errors and warnings. Fatal error
messages are preceded by question marks (?) and
warning messages are preceded by percent signs (%).
A program will run in some cases when a warning has
been 1issued; however, it 1is better practice to
correct the error and link again.

Fatal Errors

?No Start Address A /G switch is issued, but no
main program module has been
loaded. Remember when creating
and 1linking machine language
programs that the main module
must have an address or label
in its END statement. This
then becomes part of the .REL
file which informs LINK where
to begin execution (see also
the END pseudo-op).

?Loading Error The 1last file given to be
linked and 1loaded 1is not a
properly formatted LINK object
file.

?Fatal Table Collision There 1is not enough
memory to load the given
program(s) .

?Command Error An unrecognizable LINK command
has been given. Type the
correct command or re-link.

?File Not Found A file in the command string

does not exist as spelled or
specified. Check to see if the

111

CROMEMCO LINKER/LOADER

$2nd COMMON

gMult. Def.

file resides on the specified
drive. Often this message
results if the user forgets to
specify the drive letter, and
LINK looks on the current
drive.

Warnings

Larger /XXXXXX/ The: fEipst

definition of COMmon block
XXXXXX 1is not the largest.
COMmons do not have to be the
same size provided the module
containing the larger COMmon
specification is 1linked first
so that LINK allocates an
appropriate number of bytes for
data storage. To prevent this
error re-order the module
loading sequence or change the
COMmon block definitions.

Global YYYYYY More than one

definition for the global
(internal) symbol YYYYYY is
encountered during the loading
process. This message may
result if vou redefine the LUN
table of FORTRAN (SLUNTB) and
then 1link with FORLIB.REL
without specifying the /S
switch. The Linker then loads
both the redefined version of
SLUNTB and the wversion
contained in FORLIB.

1.2

CROMEMCO LINKER/LOADER

CHAPTER 4: EXAMPLES OF LINKING MODULES

Following are several examples of the process
of linking, loading, saving, and executing files.
The asterisk (*) in the following command lines is
NOT user-typed; it is the prompt for LINK.

We would type the following command to load a
32-byte program called MYPROG into memory and begin
execution:

LINK MYPROG/G

If the load is successful (no errors), the Linker
will respond with the message:

(1000 1020 16] [BEGIN EXECUTION]
This program will begin execution at 106@H. If we
desired to save the program prior to execution, we
could type instead:

LINK MYPROG/E
to which the Linker would respond with:

[1000 1028 16]
followed by a return to CDOS and the issue of the
CDOS prompt. This return to CDOS does not change

the user area; hence, we could then save the
program by typing:

SAVE MYPROG.COM 16
Since we have named this a .COM file, we can
execute it directly from CDOS by typing the name
"MYPROG" .
Another example would be to 1link several
modules together as they are loaded into memory.

Suppose we have the three relocatable modules
GRAPHX, MAIN, and SUBPLOT. We first type:

113

CROMEMCO LINKER/LOADER

LINK <CR>

to which LINK responds with the asterisk. We could
then type:

MAIN

The Linker would look on the current drive for MAIN
and then return the still-undefined symbols (each
one followed by an asterisk) and the address at
which they are referenced:

INITG* 122E
LINE* 164D
CURSR* 163E
STRIN* 131B
SUBROT* 147D

*
We then link the next module:
GRAPHX

and LINK again responds with the undefined symbols
and the prompt:

SUBROT* 147D
*

Finally, we link the last module:

SUBROT
to which link responds with the prompt. We could
now type /G or /E to run or exit from the program
as we did in the first example. However, 1let's
first generate a map of all the symbols using the
/M LINK switch:

* /M

to which the Linker would respond:

114

CROMEMCO LINKER/LOADER

INITG 122E
LINE l64D
CURSR 163E
STRIN 131B
SUSROT 147D
PAGE 17DF
DOT 180E
ANIMT 1558

Note that this is similar to the map of undefined
symbols; however, in this case symbols which are
not used, but have been defined in one of the
linked programs, are also listed.

The above example could also have been linked
directly, and without producing the maps of
undefined symbols, by typing the command line:

LINK GRAPHX,SUBPLOT,MAIN/M

Note also that this command line links them in a
different order than the first case since all of
the modules are relocatable. Thus, the map printed
to the console this time would have a different
address after each symbol.

The Linker can also be used to link machine
language subroutines to programs written for and
compiled with CROMEMCO FORTRAN 1IV. The assembly
language subroutine should be assembled with ASMB,
which forms a .REL file. The form of the link is
then exactly the same as for the previous example.
An important note is that LINK has been designed to
automatically search FORLIB.REL, the FORTRAN
Library file of subroutines. LINK looks for this
file on drive A, rather than the current drive.
The user can force the Linker to look for FORLIB on
another drive by typing a command like:

LINK FORTRAN,SUBROT,B:FORLIB/S

where FORTRAN is the user's compiled FORTRAN
program. Note the use of the /S switch following
FORLIB. This tells LINK to load into memory only
those routines which are actually needed rather
than the entire Library. It is important to use
this switch with library files in order to save
memory space.

115

CROMEMCO LINKER/LOADER

Finally, note that the user may return to CDOS
at any time while using LINK (to abort the linking
or loading process, for example) by typing Control-
€ ("C)»

LTT

TYANVIN "HdIDDNdHd WVED0dd OODWHWOYHD

IIT LYvYd

8TT

ddoonNdda Wvdd0odd ODWIHWOHUD

CROMEMCO PROGRAM DEBUGGER

CHAPTER 1: INTRODUCTION TO DEBUG

The CROMEMCO DEBUG program makes it possible
to test and debug user programs. DEBUG is loaded
into memory and moved to the highest memory
available below CDOS. When using a 32K CDOS and
DEBUG, there is 20K left for the user program.

LOADING DEBUG

DEBUG is loaded by typing one of the following
commands from CDOS.

DEBUG
DEBUG filename.ext

where "filename" is the name of the program to be
tested, and "ext" is the file extension. In both
cases, DEBUG is loaded into memory directly below
CDOS. The CDOS Jjump instruction located at
location 5H is changed to Jjump to the start of
DEBUG. This allows locations 6H and 7H to still
point to the lowest available memory location.

The second commnand above is used to load the
file to be tested into memory. If the extension
("ext") 1is ".HEX", then the file is read as an
INTEL HEX file. Any other extension is read as an
absolute binary file, loaded at location 1@@H.
Note that DEBUG does not load relocatable files.
If an extension is ".REL" it will be loaded in as
if it were binary and will not be executable.

119

CROMEMCO PROGRAM DEBUGGER

CONTROL CHARACTERS

Control characters are used in DEBUG and TRACE

to help in entering commands. These
characters are the same as CDOS uses.

Control-C (7C) go back to CDOS
Control-H ("H) delete character and
Control-U (7U) delete line
Control-X ("X) delete character and
underscore delete character and
RUBout (DEL) delete character and

control

backspace on CRT

echo
backspace on CRT
backspace on CRT

During a printing (such as from the DM
command) the following characters may be used.

Control-8 (78) stop/start printling. if
printing, this character will
stop the printing. If already
stopped, this character will

resume the printing.

break (or any other character) will
abort the printing, prompt, and
wait for the next command.

COMMAND FORMAT

DEBUG is controlled by one and two character

commands from the terminal. The format

is free-

form with respect to spaces. Commas may be used in

place of spaces. In the following, the

examples

all dump memory starting at 1location 1@@0@H and

ending at location 1@FIH.

DM19@@ 10FF (CR)
DM10@0@@S100@ (CR)

D M 19908 109FF (CR)
DM 1000 S 109 (CR)
DM1@@@,10FF (CR)
DM172@@,51@88 (CR)

D M 1090 , 1@FF (CR)

120

CROMEMCO PROGRAM DEBUGGER

@ REGISTER

DEBUG was designed to give flexibility in
testing relocatable programs. The "@" register is
used to tell DEBUG where the module you wish to
debug is located. This address can be found from
the map generated by the linking loader "LINK". To
change the "@" register, type "@ (CR)" on the
console. The computer will then type "@-xxxx "
(where xxxx 1is the current value of the register).
The computer will then wait for a new address. If
a CR only is typed, the register remains unchanged.
If an address and a CR is typed, then the register
will contain the new address. The "@" register may
now be used as part of an address. The following
example demonstrates its use.

G/@ @A3 1000

This is an example of the go command. Break
points will be set at the beginning of the current
module, relative location A3H in the current
module, and at location 1@@@H. This feature allows
you to test a module without having to calculate
absolute addresses.

ADDRESS EXPRESSIONS

For additional ease in specifying addresses an
expression can be used. Within these expressions,
addition, subtraction, the "@" register, and the
"$" may be used. The "$" is the current location
of the program counter (P register). If many
modules are being tested, addition can be used to
specify relative addresses.

G/2321+A3
The preceding example would set a break point

at relative location A3H 1f the module is located
at 2321H.

121

CROMEMCO PROGRAM DEBUGGER

SWATH OPERATOR

There are two ways to specify the address
range of many commands. The first is to simply
list the beginning and end addresses (and where
appropriate, the destination address). For
example, the first command below programs the range
@ through 13FFH into PROMs starting at location
E4A@@PH. The second command displays the contents of
memory between addresses E4@0@H and E402H.

P@ 13FF E400
DME4@@ E402

Another way to do the same thing is to use the
Swath operator, "S", to specify the width of the
address range, rather than state the end address
explicitly.

PO S1400 E400
DM E400S3

ERRORS

Any errors made during entering of a command
may be corrected by typing Control-U ("U) to abort
the line or by backspacing and correcting the line.
If a CR has already been entered and DEBUG detects
an error, the line will not be accepted and a "2"
will be printed. Re-enter the 1line with the
incorrect data corrected.

122

CROMEMCO PROGRAM DEBUGGER

CHAPTER 2: DEBUG COMMANDS

DEBUG and TRACE commands are described in
detail below. The operator must wait for the
prompt character ("-") before entering the command.

A - Assemble into memory

This command allows in-line assembly language
to be assembled into memory. The command takes the
following format.

A beginning-addr (CR)

The user 1is prompted with the absclute
address, followed by the relative address. DEBUG
reads from the console the assembler mnemonics and
assembles the instruction into memory. The
mnhemonics for the various Z-8@ instructions can be
found in the Z-8@ CPU TECHNICAL MANUAL published by
Mostek and Zilog. If there was no error in the
instruction, it is stored in memory and the user is
prompted for the next instruction. The rules for
address expressions apply to the addresses in the
assembler mnemonics. In the following example the
"@" register contains 1234H.

AR4D

1274 @g@g4¢' ADD B

1275 @#@41' CALL @93
1278 @@44' JP 1@32+95
127B @@47"' .

The A command terminates when the first blank line
or a line starting with a "." 1is entered from the
console. If there is an error in the input 1line,
it will not be accepted, a "?" will be printed and
the console will be prompted with the addresses
again.

123

CROMEMCO PROGRAM DEBUGGER

DM - DISPLAY MEMORY

The contents of memory are displayed in
hexadecimal form. Each line of the display is
preceded by the address of the first byte and
followed by the ASCII representation of the
hexadecimal bytes. An example follows:

DM1@@,S30

9100 4@ 41 42 43 44 45 46 47-48 49 4A 4B AC 4D 4E 4F @ABCDEFGHIJKLMNO
116 50 51 52 53 54 55 56 57-58 59 5A 3¢ 31 32 33 34 PQRSTUVWXYZ@1234
01290 35 36 37 38 39 00 00 00-00 00 00 00 00 00 00 00 56789%.cccececces

The formats of this command are as follows.

DM (CR)

DM beginnig—-addr (CR)

DM beginning-addr ending—addr (CR)
DM beginning-addr S swath-width (CR)
DM,ending-addr (CR)

DM S swath-width (CR)

The first format displays memory from the
CURRENT display address, initially 1@@¢H, and
continues for 8 lines. The second format displays
from the beginning address and continues for 8
lines. The third format displays from the
beginning address to the ending address. The
fourth format displays from the beginning address
for a 1length specified by the swath-width. The
fifth format displays from the CURRENT display
address to the ending address. The sixth format
displays from the CURRENT display address for a
length specified by the swath-width.

If an "X" is included after the "DM", the
relative addresses are also printed. In the
following example assume that the "@" register
contains 1@0H.

DMX16@,S30
0100 0Q00' 40 41 42 43 44 45 46 47-48 49 4A 4B 4C 4D 4E 4F @ABCDEFGHIJKLMNO

g11¢ @@10' 5¢ 51 52 53 54 55 56 57-58 59 5A 3¢ 31 32 33 34 PQRSTUVWXYZ@1234
9120 0@28' 35 36 37 38 39 00 00 00-00 00 00 00 00 00 @0 00 56789%...... cese

124

CROMEMCO PROGRAM DEBUGGER

DR - DISPLAY REGISTERS

When DEBUG is re-entered from a break point,
the user registers are saved. The registers may be
displayed at any time by typing the following
command .

-DR (CR)
SZHVNCE A=00 BC=0¢00@ DE=0000 HL=0000 S=010¢ P=0100 @1086"' LD E,A
SZHVNC A'=0@ B'=0@@@ D'=0000 H'=0000 X=0000 Y=0000 I=00

The letters "SZHVNC" on the first row
represent the flags, while on the second row they
represent the prime flags. If the flag is on, it
is printed, if the flag is off, a space is printed.
If only the carry and zero flag are set then " Z C"
would be printed. The flags are described below.

S - Sign flag, S=1 if the MSB of the result
is one, i.e., the result is negative.

Z = Zero flag, Z=1 if the result of an
operation is zero.

H - Half-carry flag, H=1 if the add operation
produced a carry into the 4th bit of the
accumulator or a subtract operation
produced a borrow from the 4th bit of the
accumulator.

v - Parity or overflow flag. This flag 1is
affected by arithmetic and 1logical
operations. If an overflow occurs during
an arithmetic operation, the flag is set
to one. After a logical operation, the
flag is set to 1 if the result of the
operation has even parity.

N - Add/subtract flag, N=1 if the 1last
operation was a subtraction.

G = Carry flag, C=1 if the operation produced
a carry.

The E flag on the first line is the state of
the interrupt enabled flip-flop (IFF). T.£
interrupts are enabled, the "E" 1is printed,
otherwise a space is printed.

125

CROMEMCO PROGRAM DEBUGGER

-DR (CR)
S H NCE

The A register is printed next, followed by
the BC, DE, and HL register pairs and the stack
pointer. The program counter value is then printed
in both absolute and relative. The opcode pointed
to by the program counter is then displayed as an
instruction.

On the second line, the prime registers are
displayed, F' (prime flags), A', BC', DE', and HL'.
The IX, IY, and I (interrrupt page) registers are
printed next. If the disassembled opcode includes
an address, the relative value of this address is
printed as the last thing on the line.

A=¢@ BC=0@@@ DE=0@@00 HL=000@0 S=0000¢ P=1234 @@1@¢' CALL 1334
SZ NC A'=0@0 B'=000@ D'=0000 H'=0000 X=0000 Y=0000 I1=00

E - EXAMINE INPUT PORT

The data port is read and displayed as a
hexadecimal number. The format of the command is:

E data—-port (CR)

In the following example the data port 3 is
read and displayed on the console.

=E3 (CR)
23

EJ - EJECT DISK

The format of the command follows.
EJ d

Where 4 is the disk number (A, B, C, D). If the
designated disk is a CROMEMCO DUAL DISK SYSTEM
model PFD, with the eject option, the diskette in
the disk drive will eject.

F — SPECIFY FILE NAME
This command allows the operator to insert
filenames in the two default FCBs (at 5CH and 6CH)

and the command line into the default buffer (at

126

(@118")

CROMEMCO PROGRAM DEBUGGER

80H) . The example below loads FILE1l.COM into the
first FCB and FILE2.COM into the second FCB. The
complete line is also loaded 1into the default
buffer.

-FFILEl.COM FILE2.COM OPTION1 OPTION2

This command can be used with the "R" command to
read in disk files.

G - GO
The GO command has the following format.
G(starting—-addr)/(breakpoint-1) (breakpoint-2)...(breakpoint-5)

Each of the addresses is optional. If the starting
address 1is omitted, then the contents of the
program counter is used. The registers are loaded
from the wuser registers (these are the values
displayed with the DR command). Execution begins
with the starting address or the contents of the
program counter., If break points were specified,
an RST 30PH is inserted at the break point addresses
and a jump instruction is placed at location 3@H.
When a breakpoint is executed, control is returned
to DEBUG, and all of the user registers are saved
(the registers may then be displayed with the DR
command) . ALL breakpoints are then removed from
the user program. The program counter is displayed
after the breakpoint. Note the following about
breakpoints:

(a) Breakpoints can only be set in programs
residing in RAM. This is because an RST 30H is
inserted at each break point 1location. (The
original contents of these locations are saved so
that they can be restored after a break point is
executed.)

(b) Up to 5 break points can be set. If an
attempt is made to enter more than 5 break points,
the command will not be accepted.

(c) When a break point is used, a Jjump
instruction is stored at location 30H. Therefore
locations 3@H, 31H, and 32H are not available to a
user program.

The GO command has an additional feature that

127

CROMEMCO PROGRAM DEBUGGER

is very helpful in debugging a program. A count is
allowed for each break-point. This count 1is
entered after the break-point and enclosed in
parentheses. This count is the number of times the
program reaches this address before control is
returned to DEBUG. A count of one says to break
the next time the address is reached. In the
example below execution begins at location 1@@H and
will break when address 109H is reached for the
second time or when 123H is reached for the first
time.

-G100/109(2) 123

Note that 123 and 123(1l) means the same thing.
Also note that the count is a hexadecimal number.
Therefore 123(F) means to break after the address
has been executed for the 15th time.

H - HEXADECIMAL ARITHMETIC

Hexadecimal addition and subtraction may be
performed by this command. The first number to be
printed is the sum of the two input numbers. The
second number to be printed is the difference
between the first number and the second number. 1In
the example following, the first number is 1234 +
321, and the second number is 1234 -321.

-H1234,321
1555 @F13

L - LIST IN ASSEMBLER MNEMONICS

The list command is used to list the contents
of memory in assembly language mnemonics. The
formats for this command are.

L (CR)

L starting—-addr (CR)

L starting—addr ending—addr (CR)

L starting-addf S swath-width (CR)
L,ending-addr (CR)

L S swath-width (CR)

The first format 1lists 16 1lines of
disassembled code starting from the current 1list
address. The second format lists 16 lines from the
starting address. The third format lists from the

128

CROMEMCO PROGRAM DEBUGGER

starting address to the ending address. The fourth
format lists from the starting address for a length
specified by the swath width. The fifth format
lists from the current list address to the ending
address. The sixth format lists from the current
address for a length specified by the swath
address.

The first address of the disassembly is the
absolute address. The second address 1is the
relative address. If the disassembled instruction
contains an address, the absolute address 1is
printed in the instruction in hexadecimal and the
relative address is printed to the right of the
disassembled 1line. In the example that follows,
the "@" register contains 28@@H.

-L@e87W 812

3000 08@@' ADD B

3001 @8@1' CALL 3200 (BAQO")
3004 ¢804"' CALL 3243 (BA43")
3007 88@97' CALL 3333 (4B33")

300A @8QA' LD A,B

390B 80B' OR C

3¢0C 980C' JR Z,3000 (0800")
300F @98@F' INC HL

3910 @81@' INC DE

3¢g11 ©811' INC BC

3¢12 @¢812' LD A,H

M - MOVE MEMORY
The formats of this command follow.

M source—addr source—-end destination-addr
M source—-addr S swath-width destination-addr

The first format moves the contents of memory
beginning with the source address and ending with
the source-end to the destination address. The
second format uses the swath width to determine the
length of the move.

The move is verified to insure that all bytes
were moved correctly. If an overlapping move was
made, errors will be reported. The error reporting
can be terminated by typing any character.

The move command can be used to fill a block
of memory with a constant. In the following

129

CROMEMCO PROGRAM DEBUGGER

example, a zero has been entered into location 10@H
using the SM command. The following command will
move zeros from location 1@@H through 1@8H.

-M10@ S7 101 —ontep

i v

Care should be taken not to move memory over DEBUG,
TRACE or CDOS.

O - OUTPUT TO DATA PORT

This command outputs data to a data port. The
following is the command format.

0O data-byte port-number (CR)

P - PROGRAM PROMS

This command allows programming of PROMs. The
following are the command formats.

P source-addr source-end destination-addr
P source-addr S swath-width destination-—-addr

The first format programs PROMs starting with the
source address and ending with the source-end into
PROMs beginning at the destination address. The
second format determines the length from the swath
width.

If the length of the source is not a multiple
of 400H or 1f the destination does not begin at a
400H boundary, DEBUG will reject the command.
(Multiples of 40¢H end in '@@@', '496', '806', and
'cee’t.)

Any number of 2708 or 2704 PROMs can be
programmed in the execution of one command as long
as there are enough BYTESAVERS to contain them.
Each PROM is verified with its source after all are
programmed and any discrepancies are printed out.
If no discrepancies are found, a prompt is printed
and the next command may be entered.

Software can be loaded into a PROM in as small
increments as you desire, provided it is added to
previously unused areas of the PROM. This is done
by first using the Move command, "M", to transfer
the contents of the PROM to RAM, adding the new

130

CROMEMCO PROGRAM DEBUGGER

software to an area of RAM which corresponds to the
unused portion of the PROM and finally using the
Program command, "P", to reprogram the PROM with
the result. Athough the entire PROM must always be
programmed, it never hurts to rewrite the same data
over again. In general, a 1 may be written over a
l, a @ over either a 1 or a ¥, but the only way to
change @'s to 1's 1is to erase the PROM with
appropriate UV light. (See the Cromemco BYTESAVER
IT manual for details.)

R - READ DISK FILE

This command allows the operator to read a
disk file. The "R" command is used with the "F"
command. The "F" command is used to specify the
filename, and the "R" command reads in the file.
If the file has an extension of ".HEX", then the
file is an INTEL HEX file and will be read into
memory. Any other file 1is considered to be a
binary file and will be read directly into memory
beginning at location 1@@H. The format of the "R"
commmands is:

R
R displacement

The first format reads the file with no
displacement. The second format reads the file
with a displacement. If the input file is in HEX,
then the displacement is added to the addresses in
the file to determine the addresses at which to
store the file. If the file is a binary file, it
will be stored at the displacement + 100H.

When the "R" command is executed, DEBUG prints
either a "?" if there is an error (file not found,
checksum error, or file attempting to read above
highest available memory location) or with the
following message if there is no error:

NEXT = xxxXx

where xxxx 1s the address of the next available
memory location past the end of the file.

131

CROMEMCO PROGRAM DEBUGGER

SM - SUBSTITUTE MEMORY

This command 1is used to substitute memory.
The format of the command follows.

SM starting-addr

DEBUG prints the absolute address, followed by the
relative address, followed by the contents of the
memory byte. One of the following may then be
entered.

ll@ll

(a)

(b)

(c)

(d)

(e)

(£)

data-byte value. The data byte value
is stored at the address of the
prompt. The address 1is then
incremented by 1 and displayed on the
next line.

string enclosed in quotes. The string
is stored beginning at the address of
the prompt. The address 1is then
incremented past the string and
displayed on the next line.

Any number of (a) and (b) above can be
entered on one line. The address is
then incremented past the bytes that
were stored and the new address is
displayed on the next line.

e Mg A minus sign does not store a
byte. The address will be decremented
to the previous address. The minus
sign can be used to "back up" to a
previous location in case an error has
been made.

(CR) only. If no entry is made on the
line, the memory byte remains
unchanged. The address is incremented
by 1 and displayed on the next 1line.

period. A period ends the input mode
and returns to the command level.

In the example that follows, assume that the

register

-SMER144d

contains the value 28@@H.

132

CROMEMCO PROGRAM DEBUGGER

29900 @190' 32 @

29901 @l@l' 17 @0

29¢2 @l@2' 31 'THIS IS AN ASCII STRING'
2919 @¢119' 7A 'AAAA' 0 P 1 2 3 456 789
2928 @#128"' 22

2929 @129' 29

292A @g12A' 87 -

2929 @129' 29 .

Sr - SUBSTITUTE REGISTER

The Sr command allows the user registers to be
altered. The letter "r" stands for the register
which is to be changed. The section SUMMARY OF
REGISTER NAMES gives a summary of the names that
can be substituted. When substituting the F and F'
flags, enter the command SF or SF'. DEBUG will
then print the flags that are set and wait for the
operator to enter the names of the registers that
are to be set. If the flags are NOT entered, the
flags are reset. In the following example, the
"SZHC" flags are set. After the example 1is
executed the "ZC" flags are set. The lower case
letters are entered by the operator.

-sf
SZH C 2zc

When sustituting a one byte register, a one
byte wvalue 1is accepted. When substituting a two
byte register, a two byte value is accepted. If no
value is entered, or if an error occurs, the value
of the register remains wunchanged. In the
following example, the A register 1is changed to
contain 41H.

-sa
A=98 41

133

CROMEMCO PROGRAM DEBUGGER

T - TRACE
The format of trace is:

T (CR)
T number-of-lines (CR)

The first format traces the program through one
instruction. The second format traces the program
through "number-of-lines" instructions. After
every instruction traced, the values of the user
registers are printed in the same format as the
"DR" command.

You can trace only through RAM. The trace
command places a break point after the instruction,
loads the registers and executes the instruction.
The break point is then executed and the registers
are resaved. The registers are printed, and the
next instruction is executed unless the count has
reached zero, in which case a prompt is printed and
you may enter the next command.

To abort the trace, hit any key on the
console. A prompt will be printed and you may
enter the next command.

TN - TRACE WITH NO PRINTING

The "TN" command is the same as the "T"
command with the exception that after every
instruction 1is traced, the registers are not
printed. only the 1last traced instruction is
printed.

V - VERIFY MEMORY

Verify that the block of memory between souce
address and source end contain the same value as
the block beginning at destination address. The
addresses and contents are printed for each
discrepancy found. The following is the format of
this command.

V source—addr source—end destination-addr
V source—addr S swath-width destination—addr

134

CROMEMCO PROGRAM DEBUGGER

This command works by reading bytes from the source
and destination and comparing them. ILE =
discrepancy is found, the memory is read again for
print-out. Thus, it can happen that a discrepancy
is printed-out with the source and the destination
contents indicated to be the same. This is caused
by a defective memory element.

A discrepancy is printed in the following
order, source address, source contents, destination
contents, destination address. In the example that
follows, memory 1locations 1@83d and 10@08H are
defective.

-V 2 S30 1000
gg@3 32 12 1003
2008 7A 5A 1088

135

9EL

HIDONGHd WYYO0dd OJWIWOHD

CROMEMCO PROGRAM DEBUGGER

CHAPTER 3: SUMMARY OF DEBUG COMMANDS

The following is an alphabetical 1list of

DEBUG commands.

Command

Description

A

DM

DR

E

EJ

(]

SM

Sr

TN

Assemble into memory
Display Memory
Display Register
Examine input port
EJect disk
specify disk File name
Go
Hexadecimal arithmetic
List in assembler mnemonics
Move memory
Output to data port
Program PROMs
Read disk file
Substitute Memory
Substitute register
(r = A; B, D; Hy S; P,
A'; B, D' H'; X; ¥; I)
Trace
Trace with No print

Verify memory

137

the

CROMEMCO PROGRAM DEBUGGER

SUMMARY OF REGISTER NAMES

The following register names are printed by
the DM command and should be used with the Sr
command .

Register Decription

F Flags, the following flags may be changed.

S -8ign flag

Z -Zero flag

H -Half carry flag

V -parity/oVerflow flag
N -subtractioN flag

C -Carry flag

The interrupt enable flag ("E") may also be changed.

F! The F' flags are the same as the "F" flags.
(note that the "E" flag may not be changed here.)

A accumulator

Al prime accumulator

B BC register pair

B! BC' register pair

D DE register pair

D! DE' register pair

H HL register pair

H' HL' register pair

S Stack pointer

P Program counter

X IX register

b4 1Y register

I Interrupt page register

138

6€T

TYNNVWN S,HIWNWYHDOHd S0dd

Al Ldvd

pvT

TYNNYIW S, dIWWNYHO0dd SO0dD

CDOS PROGRAMMER'S MANUAL

CHAPTER 1: INTRODUCTION TO CDOS SYSTEM CALLS

This section of the manual descibes the use of
CDOS system calls. CD0OS handles disk files,
performs device input and output, and contains a
number of useful subroutines.

Memory Allocation

CDOS resides in high memory. It reserves
memory below 1@@0H for 1its own use. The user 1is
left all memory from 100H to the beginning of CDOS
(see below).

A program with the extent ".COM" can be loaded
and executed by merely typing the program name.
The program must have its origin at 100H because
that is where CDOS loads and executes it. (Note
that when saving files that have been linked using
the CROMEMCO Linker, they can be LINKed anywhere
using the /P option. This is because LINK
automatically puts the correct jump instruction at
10PH.) After it is loaded, the program can use any
memory at all. Note however that if it alters the
CDOS areas, it will have no way of communicating
with the disk or returning to CDOS. (CDOS would
have to be reloaded by resetting the computer.)

CDOS places a jump instruction at bytes 0, 1
and 2. If a jump is made to location @, the CDOS
warm start, control will be returned with the
prompt for the current drive (eg, "A."). Command
lines may then be entered from the console
keyboard. CDOS places another Jjump instruction at
locations 5, 6 and 7. The normal way to make
system requests of CDOS (those described below) is
6 ©#l11 Joceatien 5. The address stored at
locations 6 and 7 is the address of the beginning
of CDOS and thus marks the upper 1limit of user
memory.

141

CDOS PROGRAMMER'S MANUAL

The following address map describes the memory
area from @ to @FFH. All addresses are in hex.

7, S CDOS re—-entry

3 I/0 byte

4 reserved

Sunerel! system request call
8...40 interrupt vectors

49...5B reserved _

5C s bB default File Control Block 1 (FCB-1)
6Cs B default File Control Block 2 (FCB-2)
T ecwsmil P reserved

B0 erai L default command-line buffer

When a .COM program is run by typing the
program name on the console, the default command-
line buffer and default file control blocks are
used as follows. FCB-1 will contain the first
filename, if any, typed after the program name.
FCB-2 will contain the second filename, if any.
The default buffer will contain the entire command
line following the program name. For example, 1if
this command line is typed:

PROG FILE1l.Z80@ FILEZ2.COM

cpos will place "FILE1Z86"™ in FCB=1, “FILE2COM" in
FCB-2, " FILEl.Z80 FILE2.COM" in the command-line
buffer, and load and execute PROG.COM at 1¢0@H.
Note that the second FCB starts before the end of
the first FCB. Before using FCB-1, FCB-2 should be
moved. If it is not moved, part of FCB-2 will be
destroyed.

The command line which is placed 1in the
default buffer can be used to send more than two
filenames to a program, or to start execution of a
program with various options specified. For the
following command line:

PROG FILEl.Z8@ FILE2.COM OPTION1 OPTIONZ2

the string of ASCII characters " FILEl1.zZ890
FILE2.COM OPTIONl1 OPTION2" will be stored beginning
at location 8.1H. The byte at location 8@¢H will
contain the 1length of the string. The byte
following the string will contain a null (00).
PROG.COM can then look at the command line stored
in the default buffer to determine which options
were specified.

142

CDOS PROGRAMMER'S MANUAL

When a program is loaded, the disk buffer 1is
set to 8@H, which is the default command buffer.
If the disk is then read to or written from, this
buffer will be altered. The program must either
reset the disk buffer to another area or move the
command line before accessing the disk, if it 1is
desired to save the command line.

143

PrI

TYANVYNWN S, HHWWYED0dd S0dD

CDOS PROGRAMMER'S MANUAL

CHAPTER 2: DEVICE I/0 - LIST OF CDOS SYSTEM CALLS

CDOS has a set of system calls for device
input and output. ALL input and output should be
done through these calls. This allows wuser
programs to be independant of physical devices. If
a change needs to be made in a device driver, it
has only to be done once in the system drivers.
This chapter gives a detailed description of the
CDOS system calls. They are roughly divided into
three sections: the first section covers device
I/0, where all devices are 1included except disk
drives. The next section covers the system calls
used to access disk files (disk I/0, opening and
closing files, etc.). The last section covers
several useful additional calls. To use one of
these routines the C register must be set to the
function number given below with the title of each
instruction. The other registers are set-up as
that function requires (for example the E or DE
registers usually contain the parameter passed),
and a "CALL 5" instruction is executed. [Remember
that CDOS initializes 1location 5 with a Jjump
instruction. This is done so that the location of
CDOS in memory is transparent to a user program. A
user program using the CDOS system functions does
therefore not need to do a CALL to a particular
address in CDOS.] For a complete summary of the
CDOS system calls, refer to Chapter 3. The system
calls given below are in numerical order in each of
the three sections.

CDOS DEVICE FUNCTION CALLS

These system calls involve device I/0 with all
devices except disk drives. The number given
preceding each CDOS function is the number which
should be loaded into the C register prior to the
"CALL 5". The number is given first in hex and
then in decimal in parentheses.

145

CDOS PROGRAMMER'S MANUAL

1 - READ CONSOLE (with echo)

This call is used to retrieve one byte from
the console. The byte will be returned in the A
register. CDOS does not return to the user program
until a character is read and echoed back to the
console. The parity bit is set to #. ©Note that a
Control-Z ("Z) character is usually considered an
end of file mark.

2 — WRITE CONSOLE

This call is used to write one ASCII character
to the console. The character is placed in the E
register before the call. <CDOS will wait until the
console is ready to receive the character and then
print it.

After Control-P ("P) 1is typed all subsequent
characters are sent to both the console and the
printer, until a second Control-P is typed (thus
Control-P acts as a toggle switch). Control-W also
causes subsequent characters to be sent to both the
console and the printer, and Control-T causes them
to be sent only to the console again. Control-W
and Control-T are usually edited into a file so
that when that file is typed out on the console, it
can stop and start the printer at the appropriate
places.

Control-I is the tab control. It is converted
to spaces so that the cursor is positioned at one
of the standard tab stops, 1, 9, 17, 25, 33, 41,...
However, the tab is still stored internally in a
file as the single ASCII character, @9H.

3 - READ READER

This call will read one character from the
paper tape reader. All 8 bits are read. The
character will be returned in the A register. If
it is the end-of-file character (Control-Z), the
ZERO flag is set.

146

CDOS PROGRAMMER'S MANUAL

4 - WRITE PUNCH

This call will punch one character on the
paper tape punch. All 8 bits are punched. The
character is placed in the E register before the
call. CDOS will wait until the punch is ready to
receive the character.

5 — WRITE LIST

This call will print a character on the
printer. Before the call, the character to be
printed is placed in the E-register. Tabs are not
expanded. CDOS will wait for the printer to accept
the character before it returns.

7 - GET I/0 BYTE

For extra I1/0 devices, an "IOBYTE" has been
provided. This byte is not currently used by CDOS,
but it is provided for the user's programs. This
function call returns the "IOBYTE" in the A
register. The format of the byte is:

BIT : i) . 6 : 5 . 4 : 3 : 2 : 1
PRN : PUNCH . READER . CONSOLE

Thus up to eight consoles can be designated, four
each of paper-tape punch and reader, &and one
printer.

8 - SET I/0O BYTE

This call allows the user program to set the
"IOBYTE". The E register contains the byte prior
to the call. See above for the format of the byte.

9 - PRINT BUFFER

This call will print a string of ASCII
characters which has been terminated with the "s$"
character. The DE register pair is set up with the
address of the beginning of the string before the
call is made to CDOS. If the printer toggle is on,
the message will also be sent to the printer.

147

CDOS PROGRAMMER'S MANUAL

19 (@WAH) - INPUT BUFFERED LINE

This call will read an input line from the
console. The DE register must be pointing to an
available buffer before the call is made to CDOS.
The first byte of the buffer must contain the
maximum length of the buffer. On return from this
call the second byte of the buffer will contain the
actual length entered. The line that is input will
be stored beginning at the third byte. If the
buffer is not full, the byte at the end of the line
will contain a =zero.

When the line is being entered, the following
characters will have a special meaning:

Control-C (7Q) Abort. Warm boot back to CDOS.

Control-E ("E) Physical CR-LF. The 1line 1is
not terminated and nothing is
entered into the buffer. This
character 1is used to enter a
line longer than can be printed
on the console.

Control-P ("P) Toggle printer/console 1link.
When this character is first
typed, the 1link is toggled ON.
All characters will then be
sent to the console and the
printer. The next time the
character is typed, the toggle
will be turned off. All
characters will then be sent to
the console only.

Control-R ("R) Repeat what has been typed so
far on the line.

Control-U (7U) Delete the entered line and go
back to beginning of buffer for
new line.

Control-X ("X) Delete the previous character
and echo the deleted character
(used for hard-copy terminals).

RUBout Delete the previous character
and back up the cursor (used

148

CDOS PROGRAMMER'S MANUAL

for CRT terminals).

DEL Same as RUBout.
Underscore Same as RUBout.
Backspace ("H) Same as RUBout.

11 (@BH) - TEST CONSOLE READY

The console is tested to see 1f a character
has been typed. If a character has been typed,
@FFH 1s returned 1in the A register. If no
character has been typed, @ is returned in the A
register.

128 (8@WH) - READ CONSOLE (without echo)

This call is the same as "READ CONSOLE (with
echo)" except that it does not echo the character
after it is read. The byte is returned in the A
register.

142 (8EH) - SET CURSOR ADDRESS

This call will set the cursor at the specified
address. This command will only work when the
console is a CRT with cursor addressing. The D
register 1is set up with the column address (1
through 88 for most CRT's) and the E register is
set up with the row address (1 through 24 for most
CRTY8) .

149

CDOS PROGRAMMER'S MANUAL

CD0OS DISK FUNCTION CALLS

CDOS divides the disk 1into regions called
files. Files are referenced through file control
blocks (FCBs). FCBs are 33 bytes long and have the
following format, whers each of the numbers below
stands for one byte:

FCBDK Disk descriptor @ (@=current disk, l=drive-A,
2=B, 3=C, 4=D)

FCBFN File name 1...8 (right-filled with blanks)
FCBFT File type (extension) 9...11 (right-filled with blanks)

FCBEX File extent 12 (initially @; is incremented
by one in every new
extent of 16 Kbytes)

Reserved 13...14

FCBRC Record count 15 (total number of 128-byte
sectors or records)

FCBMP Cluster allocation map 16...31 (allocated clusters 2
through 249)

FCBNR Next record 32 (next record to be read or
written; has the wvalue
@ through 127)

It should be noted that directory entries on
the disk consist of 32-byte FCBs. The last byte,
FCBNR, which points to the next record, is omitted.

12 (@CH) - DESELECT CURRENT DISK

The current disk is deselected. The CDOS disk
driver can be changed to perform any desired
function at this time to deselect the disk.
Currently the driver outputs a @ to port 34H when
this function is selected.

150

CDOS PROGRAMMER'S MANUAL

13 (@¢DH) - RESET CDOS AND SELECT DRIVE A

CDOS is initialized, all disks are logged-off,
and drive A is selected as the current drive. The
other disks will be logged-on again as soon as they
are accessed.

14 (WEH) - SELECT DISK DRIVE

The disk drive number in the E register 1is
selected as the current disk. The drive number in
the E register is @ for drive A, 1 for drive B, 2
for drive C, or 3 for drive D.

15 (@PFH) - OPEN DISK FILE

The FCB pointed to by the DE register pair is
opened to allow reading or writing to the file
whose name is specified in the FCB. The A register
returns with -1 (@FFH or 255D) if the file is not
found, or the directory block number if the file is
found. Block numbers start at @ and there is one
block number for every four directory entries. The
HL register pair returns pointing to the directory
entry in memory.

16 (19H) - CLOSE FILE

The FCB pointed to by the DE register pair is
closed and the disk directory is updated. The file
described by the FCB must have been previously
opened or created; 1if it has not been, an
unpredictable directory entry will be written to
the disk. A file to which bytes have just been
written MUST be closed using this function or the
entire last extent will be unable to be read.

17 (11H) - SEARCH DIRECTORY

The directory is searched for the first
occurrence of the file specified in the FCB pointed
to by the DE register pair. ASCII "2" (3FH) 1in
the FCB matches any character. The block number
(see description of directory block numbers in @FH
-Open Disk File, above) 1is returned in the A

151

CDOS PROGRAMMER'S MANUAL

register if found; 1if the file is not found, -1
(#FFH or 255D) 1is returned in A. HL is returned
pointing to the directory entry in memory. An
important point to note about this call and the one
following (12H) is that they will get the directory
entry whether it has been erased or not; i.e.,
these calls do not check to see if a file has been
erased. Files are erased by placing a @GES5H in the
first byte (FCBDK); the rest of the FCB is left
unchanged.

18 (12H) - FIND NEXT DIRECTORY ENTRY

This call is the same as 11H (17) above except
that it finds the NEXT occurrence of the filename
in the directory. This may be either the next
extent of a file occupying more than one extent, or
another filename if the match-character, "?2", was
used in the FCB. This call is made after function
17 and no other disk system call can be made
between these calls.

19 (13H) - DELETE FILE

The file specified by the FCB pointed to by
the DE register pair 1is deleted from the disk
directory. ASCII "2* in the FCB matches any
character. The number of directory entries deleted
is returned in the A register.

20 (14H) - READ NEXT RECORD

The DE register pair points to a successfully
OPENED FCB. The next record (128 bytes) is read
into the current disk buffer. The FCBNR in the FCB
is incremented to read the next record. One of the
following codes is returned in the A register:

= read completed

1 - end of file

2 - read attempted on unwritten cluster
(random access file only)

152

CDOS

PROGRAMMER'S MANUAL

21 (15H) - WRITE NEXT RECORD

The DE register pair points to a successfully
OPENED FCB. The next record (128 bytes) is written
into the file from the current disk buffer. The
FCBNR in the FCB 1is incremented to be ready to
write the next record. One of the following codes
is returned in the A register:

- write completed

NS

64 extents)

22 (l6H) - CREATE FILE

The file specified in the FCB pointed to by
the DE register pair is created .on the disk. The A
register is returned containing the block number of
the directory entry (see @FH -Open Disk File), or -
1 (@FFH or 255) if no more directory space is
available.

23 (17H) - RENAME FILE

This call will rename a disk file. The DE
register pair points to the FCB to be renamed. The
old file name and file type are in the first 16
bytes and the new file name and file type are in
the second 16 bytes of the FCB. ASCII "?" 1in the
FCB will match with any character. The A register
returns containing the number of directory entries
renamed.

24 (18H) - DISK LOG-IN VECTOR

The A register 1is returned specifying the
disks that are logged in. Each bit represents one
disk drive logged in. If the bit is a one, then it
is logged in; else it is off-line. The least
significant bit is the A drive, next most
significant (Bit 1) is drive B, etc. Since there
would be no more than four drives, the upper four
bits are 0#'s.

153

- extent error (attempted to close an unopened extent)
- out of disk space (limited to 81K = small,
- (@FFH or 255D) out of directory space (limited to

241K - large)

CDOS PROGRAMMER'S MANUAL

25 (19H) - CURRENT DISK

The number of the current disk drive 1is
returned in the A register. @ = drive A, 1 = drive
B, 2 = drive C, 3 = drive D.

26 (l1AH) - SET DISK BUFFER

The buffer pointed to by the DE register pair
is used for disk I/0. When a program is loaded,
the disk buffer is initially located at 8@H.

27 (1BH) - DISK CLUSTER ALLOCATION MAP

The BC register pair returns pointing to a bit
map that corresponds to the allocated clusters on
the disk. The DE register pair returns containing
the capacity of the current disk in number of
clusters. The A register returns containing the
number of records or sectors per cluster (8). This
system call is used by "STAT".

131 (83H) - READ LOGICAL BLOCK

This system call will read a 1logical block
from the disk without any attention to the files it
may contain (i.e., no FCB is specified). A block
is defined to be one sector or record of 128 bytes.
When this function is called, the DE register pair
should contain the block number and the B register
should contain the disk number (@ for current
drive, 1-4 for A-D). The high bit of the B
register contains a 1 for an interleaved and a 0
for a non-interleaved read. Interleaved means the
block which is read is found 1in the order CDOS
stores it (every fifth sector for small disks and
every sixth sector for large disks). Non-
interleaved means the block which is read is found
in sequential order, the order it 1is physically
stored on the disk. The A register 1is returned
with the status of the read according to the
following:

@ -OK
1l -I/0 error
2 —-illegal request

154

CDOS PROGRAMMER'S MANUAL

3 =illegal block

An example will help to illustrate these
points. CDOS makes use of 716 sectors on the small
floppy disks. Therefore, the block numbers which
could legally be loaded into the DE register are @
through 715 decimal, or @ through 2CBH. Suppose
that DE 1is loaded with the value 2 and the B
register with @ (current disk, non-interleaved
read) . Thus, since the sectors are numbered
beginning with 1, sector 3 would be read into
memory in the disk buffer (located at 8@H if it has
not been changed). The same read with the B
register loaded with 80H (current disk, interleaved
read) would read sector @BH (the third sector when
they are read every fifth one).

132 (384H) - WRITE LOGICAL BLOCK

This system call will write a logical block or
sector to the disk without any attention to the
file there (no FCB is specified). The registers
are set up and returned in the same way as they
were for the Read Logical Block system call above.

134 (86H) - FORMAT NAME TO FCB

This system call will build a File Control
Block. The HL register pair points to the start of
the input 1line. The DE register points to the
place in memory where the FCB is to be built. The
input line is of the format:

d:filename.ext

where d stands for one of A-D, the filename is up
to 8 letters with a 3-letter extension. The FCB is
then built from this input line, converting lower
case to upper case. The input line is terminated
by an ASCII "/" or any character less than 21H
(such as a space or carriage return).

On return the HL register pair points to the

terminator that ended the build operation. The DE
register pair points to the start of the new FCB.

155

CDOS PROGRAMMER'S MANUAL

135 (87H) - UPDATE DIRECTORY ENTRY

The 1last disk I/0 function called must have
been function 17 or 18, Search Directory or Find
Next Entry. The DE register pair points to the FCB
used in the function call 17 or 18. The directory
entry is then updated on the disk; this means that
the entry is written back to the disk without the
user having to specify a block. The user merely
specifies a filename when calling 17 or 18. This
is useful if it is desired to change a directory
entry and write it back to the disk.

139 (8BH) - HOME DISK

The disk drive specified in the B register (0
for current drive and 1-4 for drives A-D) is sent a
command to "home" the head. The disk drive head
will return to track 4@.

149 (8CH) - EJECT DISK

This call will eject the disk whose number is
given in the E register (@ for current drive and 1-
4 for drives A-D, respectively), only if the disk
drive is a CROMEMCO Dual Disk Drive System, Model
PFD with the eject option. Otherwise, the call
will have no effect.

ADDITIONAL SYSTEM CALLS

Several additional CDOS system calls have been
added for the programmer's convenience. These
calls are explained in this section.

@ - ABORT
This call will abort the current program and

return control to CDOS. This call has the same
effect as jumping to location #.

156

CDOS PROGRAMMER'S MANUAL

129 (81H) - GET USER REGISTER POINTER

This call is provided for expansion of CDOS to
a multiprogramming system. The BC register pair
returns pointing to the user register pointers.

13@ (82H) - SET USER CONTROL-C ABORT

When Control-C (°C) 1is typed, the system
usually aborts and returns control to CDOS. This
call allows the programmer to assign an address to
which to jump when Control-C is typed (i.e., users
can assign their own function to Control-C). The
address is given in the DE register pair. Note
that if DE contains a zero, the system abort is
reset., Jumping to location @ at any time still
causes a return to CD0OS, also with the Control-C
being restored to its original function.

136 (88H) - LINK TO PROGRAM

This enables one command program to call
another. The default command-line buffer and
default FCBs for the new program must be set up
prior to this call if that program expects to be
able to use them. The DE register pair should
contain the address of the FCB of the new program
(which must have an extension of ".COM"). If the
new program is NOT found, the A register returns
containing -1 (@FFH or 255); also in this case the
first 80H bytes (from 1@@PH to 17FH) will be
destroyed because this is used in reading the
directory. Otherwise, execution begins at 1@g@H and
no return is made to the original program.

137 (89H) - MULTIPLY
This system call provides a 16-bit multiply.
The HL and DE register pairs contain the two 16-bit

factors, and the answer is returned in register DE
(i.e., DE = DE*HL).

157

CDOS PROGRAMMER'S MANUAL

138 (8AH) - DIVIDE

This system call provides a 16-bit divide.

The HL register pair should contain the dividend,

and the DE register pair, the divisor. The

quotient is returned in HL, and the remainder in DE

(ie, HL = HL/DE with DE = remainder). DE contains
the remainder.

141 (8DH) - GET VERSION NUMBER

This call will
CDOS in the B

return the version—-number of
the C register.

register and the release-number in

158

CDOS PROGRAMMER'S MANUAL

are listed in numerical order,
loaded into the C register
NUMBER FUNCTION
@ ABORT
1 READ CONSOLE
(with echo)
2 WRITE CONSOLE
3 READ READER
4 WRITE PUNCH
5 WRITE LIST
7 GET I/0 BYTE
8 SET I/0 BYTE
9 PRINT BUFFER
10 (@AH) INPUT BUFFERED
LINE
11 (@BH) TEST CONSOLE
READY
l2 (@BCH) DESELECT
CURRENT DISK
13 (@DH) RESET CDOS AND
SELECT DRIVE A
14 (PEH) SELECT DISK
15 (@FH) OPEN DISK FILE
16 (1@H) CLOSE FILE
17 (11H) SEARCH
DIRECTORY
18 (12H) FIND NEXT ENTRY
19 (13H) DELETE FILE
20 (14H) READ NEXT
RECORD
21 (15H) WRITE NEXT

CHAPTER 3:

SUMMARY OF CDOS FUNCTION CALLS

Following

RECORD

i.e., by order

of the number which

to achieve the desired function.

ENTRY PARAMETERS

none

none

E = character
none

E = character

E = character
none

E = I/0 byte

DE = buffer address
DE = buffer address
none

none

none

E = disk drive
DE = FCB address
DE = FCB address
DE = FCB address
DE = FCB address
DE = FCB address
DE = FCB address
DE = FCB address

159

RETURN PARAMETERS

none
A = character
none

A = character
Z flag set =
none
none
A =
none
none
none

I/0 byte

= QPFFH (-1) if ready
= @ if not ready
none

none

none

A = directory block
@FFH if not found
o
directory block
@FFH if not found
directory block
@FFH if not found
number of entries
deleted

@ if ok

1 if end of file

2 if tried to read
unwritten records
@ if ok

1 if extent error
= 2 if out of disk
space

-1 (@FFH) if out
of directory space

i i i i = i
L T T T | s
o)

o
1l

I

i

is a summary table listing all the system calls described

in Chapter 2 along with their entry and return parameters. The functions

is

end of file

CDOS PROGRAMMER'S MANUAL

NUMBER FUNCTION

22 (16H) CREATE FILE

23 (17H) RENAME FILE

24 (18H) DISK LOG-IN
VECTOR

25 (19H) CURRENT DISK

26 (lAH) SET DISK BUFFER

27 (1BH) DISK CLUSTER
ALLOCATION MAP

128 (8PH) READ CONSOLE
(with no echo)

129 (81H) GET USER
REGISTER
POINTER

130 (82H) SET USER
CONTROL-C
ABORT

131 (83H) READ LOGICAL
BLOCK

132 (84H) WRITE LOGICAL
BLOCK

134 (86H) IFORMAT NAME
TO FCB

135 (87H) UPDATE
DIRECTORY ENTRY

136 (88H) LINK TO PROGRAM

137 (89H) MULTIPLY

138 (8AH) DIVIDE

139 (8BH) HOME DISK

149 (8CH) EJECT DISK

141 (8DH) GET VERSION

142 (8EH) SET CURSOR

ADDRESS

ENT

DE

DE =
none
none
DE =
none

none

none

DE

DE
E =
B to

i
DE =
B =
B to

i
HL =

DE
DE

DE

1l

DE
HL
HL
DE
B

E

none

D
E

o

RY PARAMETERS
FCB address

FCB address

buffer address

address

block number
disk number
p bit = 1 if
nterleaved
block number
disk number
p bit = 1 if
nterleaved
address of
string
FCB address
FCB address

FCB address

factor 1
factor 2
dividend
divisor
disk number
disk number

column address
row address

160

RETURN PARAMETERS

A = directory block

A = number of entries
renamed

A = those disks

logged-in

A = disk number

none

BC = address of bitmap

DE = number of clusters

A = sectors/cluster

A = character

BC = pointer to user
register
pointers

none

A =0 if ok

A =11if I/0 error

A =2 if illegal request

A = 3 if illegal block

A =0 if ok -

A =11f I/0 error

A = 2 1if illegal request

A =3 1if illegal block

HL = address of
terminator

DE = FCB address

none

A = -1 if error, else

execute at 1@@H

DE = product

HL = quotient

DE = remainder

none

none

B = version-number

C = release—-number

none

L91

SHNILNOY AYUVHEIT HITHWISSV

A LYvd

29T

SANILNOY AYVHAIT YITIWISSY ODWHWOHD

CROMEMCO ASSEMBLER LIBRARY ROUTINES

CHAPTER 1: ROUTINES AVAILABLE IN ASMLIB

The 1library file "ASMLIB.REL" has been
provided for vyour use 1in assembly 1language
programming. There are three types of routines
(decimal conversion, hexadecimal conversion, and
character I/0). An example of how to add these
routines to your program follows.

LINK PROG,ASMLIB/S/G
This example will load a program called "PROG" and
then load only the routines in "ASMLIB" that are

required. See Part II on LINK for more
information.

DECIMAL CONVERSION

ADEC - DECIMAL TO BINARY CONVERSION

This routine will convert a decimal string to
a binary number. The following example will
illustrate how to use this routine.

LD BC, STRING ;point to ASCII string
CALL ADEC ;convert to binary

The routine will return with the HL register pair
containing the 16-bit binary number and the BC
register pair pointing to the first non-digit.

BINDF, BINDB, BINDS, BIND -
CONVERT BINARY TO DECIMAL

These routines will convert a binary number
into a decimal string. The routine "BINDF" will

163

CROMEMCO ASSEMBLER LIBRARY ROUTINES

zero fill, "BINDB" will fill with spaces, "BINDS"
will suppress printing of leading zeros, and "BIND"
will fill with the character in the A register. 1In
the following example leading zeros will be printed

as "+"s.
LD HL,STRING ;store ASCII string here
LD BC, (BINARY) ;this is binary number
LD A,"+! ;£111 character
CALL BIND ;convert to ASCII string

Six bytes must be reserved for the string, unless
"BINDS" 1is used, in which case this routine will
use only the number of bytes that are not leading
zeros. The decimal numbers returned are 1in the
range @ through +32767 (@#H - 7FFFH) and -32768
through -1 (80@@H - FFFFH).

HEXADECIMAL CONVERSION

AHEX - ASCII TO HEX CONVERSION

This routine will convert a hexadecimal string
(which must be terminated by an 'H') to a binary
number. The calling sequence is

LD BC,STRING ;point to ASCII string
CALL AHEX ;convert to binary

The routine will return with the HL register pair
containing the binary number and the BC register
pair pointing to the first nonhexadecimal digit.

BINH4 - BINARY TO 4 HEX DIGITS
This routine will convert the binary number in

the BC register pair to 4 ASCII digits. The
calling sequence is

LD BC, (NUMBER) ;get binary number
LD HL,STRING ;store ASCII string here
CALL BINH4 ;convert to ASCII

164

CROMEMCO ASSEMBLER LIBRARY ROUTINES

BINHZ - BINARY TO 2 HEX DIGITS

This routine will store 2 ASCII digits. The

calling sequence is

LD A, (NUMBER)
LD HL,STRING
CALL BINH2

;jget binary number
;jstore ASCII string here

BINH]1 - BINARY TO 1 HEX DIGIT

This routine will store 1 ASCII digit. The

calling sequence is

LD A, (DIGIT)
LD HL,STRING
CALL BINH1

;get binary digit (lower 4 bits of A)
;store digit here

CHARACTER I/O ROUTINES

Providing character

I/O0O which 1is device

independent adds considerable power to a program.

These routines allow opening

file by symbolic

name (disk or device) and then calling the same

routines for I/O0.
ASCIT and BINARY data.

There are
The binary calls pass 8

routines for both

bits of data. The ASCII calls pass only printable
characters plus carriage return, line feed, and

tab. All other characters

are passed as two

characters (an up arrow and the corresponding

printable character; e.g.,

printed as ""B").

the following symbolic names;

considered disk files.

RDR: [#] -reader (@..4)
PUN: [#] -punch (#..4)
LST:[#] -printer (#..1)
PRT: [#] -printer (@0..1)
CON: [#] =-console (@..7)
DUM: —dummy

165

Control-B would be
Devices are referenced by using

all others are

CROMEMCO ASSEMBLER LIBRARY ROUTINES

The option number is set into the "IOBYTE" to
select device units.
used to throw away output, or as end of file.

The symbolic name "DUM:" 1is

An extended FCB (XFCB) is used which includes

character

the number

bytes) .

pointers.

only -disk: £i

When the XFCB is initialized,

of buffers are specified (each is 128

les use the buffers.

The format of the XFCB follows.

name

ZCNT
ZFCB
ZBPTR
ZBCUR
ZNBUF
ZFBUF

position 1le

@
2..34
35..36
37
38
39

ngth description

1 byte count (@..127 or 255)
3 CDOS file control block (FCB)
2 buffer pointer (lst buffer)
1 current buffer

1: number of buffers

1 full number of buffers

40 total length

The byte count indicates a non-disk device if
ns 255. ZFLG will then contain the system

it contai
call for

RDR:
PUN:
L5T:
PRT:
CON:
DUM:

The initi
DEFB
DEFS

DEFW
DEFB

This
the routi

register

that device.

== U W

al format of

@

34
buffer
number

FNAME

The following are the flags.

an XFCB should be:

address, @
of buffers

- SET UP XFCB

routine sets up an XFCB from an FCB. If
ne is called with the A register equal to
@, then the extension in the FCB is used. 1If the A

is not equa

1 to @, then the A, B, and C

registers contain the extension that is to be used.

The example

below will set up an XFCB from the

system FCB at location 5CH with an implied

166

CROMEMCO ASSEMBLER LIBRARY ROUTINES

extension of ".PRN",. This routine is for disk
files only.

LD HL,5CH ;point to system FCB
LD DE, XFCB1 ;point to XFCB

LD A,'P' ;" .PRN" extension

LD BC,'RN"

CALL FNAME ;build XFCB

XDISK - SET UP SPECIAL XFCB

This routine will modify an XFCB using a
letter in the A register. If the A register
contains A through W, this is considered to be a
disk identifier. If the A register contains "X",
the XFCB is converted to use the console. If it
contains a "Y", the XFCB is converted to use the
list device. If it contains a "Z", then the XFCB
is converted to use the dummy driver. This routine
allows the decoding of parameters such as the
assembler uses for its files. In the following
example the XFCB is converted to use the console.

LD DE, XFCB ;point to the XFCB
LD A,'X! :make it the console
CALL XDISK :convert XFCB

ZNEW - OPEN NEW XFCB

This routine will delete any old file with the
same name and then create and open a new file. If
there is an error the ZERO flag is set and the HL
register pair points to an error message. In the
following example a new file is created.

LD DE, XFCB ;point to XFCB
CALL ZNEW ;create a new file
CALL Z,2I0ER ;print error and abort

ZOPN - OPEN OLD XFCB
This routine Qill open an existing file. If
there is an error the ZERO flag is set and the HL
register pair points to an error message. In the

167

CROMEMCO ASSEMBLER LIBRARY ROUTINES

following example an old file is opened.
LD DE, XFCB ;point to XFCB
CALL ZOPN ;open the file
CALL Z,ZI0ER ;print error and abort
ZCLOS — CLOSE XFCB
This routine will close a file. In the

following example a file is closed.

LD DE, XFCB ;point to XFCB
CALL ZCLOS ;close the file
CALL Z,ZI0ER ;print error and abort
PCHAR - PUT CHARACTER (BINARY)
This routine 1is used to output binary

characters.
is output.

LD DE , XFCB
LD C, (HL)
CALL PCHAR
CALL Z , ZIOER

In the following example a character

;point to XFCB

;get character to output
;output character

;print error and abort

PUTC - PUT CHARACTER (ASCII)

This routine 1is
characters to a disk file or
console, a printer, etc. In
a character 1is output.

LD DE, XFCB
LD C, (HL)
CALE PUTC
CRLD Z,ZIOER

GCHAR - GET A

This routine is used to
a disk file or a device.

used

to oputput ASCIIL
a device such as the
the following example

;point to XFCB

;get character to output
;output character

;print error and abort

CHARACTER

input characters from

In the following example,

a character is returned in the A register.

168

CROMEMCO ASSEMBLER LIBRARY ROUTINES

LD DE , XI'CB ;point to XFCB
CALL GCHAR ;get a character
Cp 1AH ;0, end of file
JP Z ,EQF ;ves, end of file

When an unwritten random record is read, it is
treated as an end of file.

ZIOER - PRINT FILE ERROR MESSAGE

This routine is the standard error routine.
When an error occurs in one of the file handling
routines, the HL register pair points to the error
message, the DE register pair points to the XFCB,
and the ZERO flag 1is set. This allows the
instruction "CALL Z,ZIOER" to follow a disk
handling routine. In the following example, a
character 1is written. If there 1is an error, it
will be printed and control will be passed to CDOS.

LD DE , XFCB ;point to XFCB

LD C, (HL) ;get a character

CALL PUTC ;output character

CALL Z,ZI0ER ;Print error and abort

PFNAM - GET FILE NAME FOR PRINTING

This routine will extract the file name from
the XFCB and form a printable string. The string
will be in the following format:

d:filename.ext

where d: is an optional disk number (A-D),
filename 1s the name of the user file (1 to 8
characters), and ext is the filename extension (0
to 3 characters). The string is terminated by a
byte equal to zero. The length of the string is
returned in the A register. In the following
example a string is formed from the XFCB.

LD DE, XFCB ;point to XFCB

LD HL,BFLINE " ;store string here
CALL PENAM ;form string

CALL PRNT ;print the file name

169

CROMEMCO ASSEMBLER LIBRARY ROUTINES

PRNT - PRINT A LINE

This routine will print a string which ends
with either a zero-byte or a carriage return. If a
carriage return is found, the carriage return and a
line feed 1is output. In the following example the
string "THIS IS A STRING" is output.

LD DE, XFCB ;set up for device

LD HL,STRING ;point to string

CALL PRNT ;print the string
STRING: DEFB '"THIS IS A STRING',d

ABORT - ABORT USER PROGRAM

This routine will print a message and then
abort to CDOS. The format of the message is the
same as in the previous example. In the following
example the message "*** END OF JOB ***" is output
to the console and control is returned to CDOS.

LD HL ,STRING ;point to string
CALL ABORT ;abort program
STRING: DEFB '%%% END OF JOB ***' 13

1709

CROMEMCO ASSEMBLER LIBRARY ROUTINES

CHAPTER 2: AN EXAMPLE

The program "EXAMPLE.Z8@" has been included as
an example. To run this example use the batch file
"EXAMPLE.CMD". The first line of "the example is
typed by the user. The rest of the example is
typed by the computer.

B.@ EXAMPLE
BATCH VERSION 00.02

B.ASMB EXAMPLE.AAX
CROMEMCO CDOS Z8@ ASSEMBLER version @2.02

Ll

CROMEMCO ASSEMBLER LIBRARY ROUTINES

pang’
gea3"’
aa@s!’
poas8!
pE@9’
gaac’'
Gogar'
ga12!
g@1s5!

@a18"
p@1B"'
g@1D"'
pe2a’
Jg21!
g@24"
g@27"
ga2a"
gg2p!

a030"
@g@33"
gg36"
g@38"
O@3A"
@@3D!
@A3E"
g@41’
@gaaq’

CROMEMCO CDOS Z8@ ASSEMBLER version @2.02
*%% EXAMPLE ***

3A5DAY
FrE24
CAG500"
97
215C@0
117F@@’
CDOOoo#
CDooRaH#
CCooaa#

3A6D@Y
FE20
CA6500"
97
21e6C@d
11A7009"
CR100o4#
CDOGBIH#
CCled g4

11A700"
CDOR@dH#
FE1A
280C
117F@@"
4F
CDO@Od#
CC2E00#
18EA

poo2
20033
paaa
poas
pad6
aaa7
2008
gaa9
o110
goll
pe12
pA13
gB14
Ga15
P16
ge17
pE18
ga19
pa20
paz1
922
@a23
o224
BJaAz25
@326
go27
2028
@3e29
Be30
pE31
B@32
@@33
pE34
@a35
po36
aa37
3938
@@39
o440
gaal
pa4a2
pa43
pE44
Pa4s
go46
paa7
0348
gp49
@350
@51
AA52

r

PAGE

; THIS PROGRAM WILL INPUT FROM ONE
;DISK FILE OR DEVICE
;AND OUTPUT TO ONE DISK FILE OR DEVICE

-
r

;TO CALL THIS PROGRAM TYPE

;"EXAMPLE filenaml.ext filenam2.ext"
;"filenaml.ext"
;"filenam2.ext"

r

NAME
EXT
EXT
EXT
EXT
EXT
EXT
EXT
EXT

where

IS THE OUTPUT FILE/DEVICE and
IS THE INPUT FILE/DEVICE

EXAMPL
FNAME
ZNEW
ZOPN
ZCLOS
ZIOER
ABORT
GCHAR
PUTC

; START OF PROGRAWM

I

START:

-
r

172

LD
CP
JP
SUB
LD
LD
CALL
CALL
CALL

LD
CP
JP
SUB
LD
LD
CALL
CALL
CALL

LD
CALL
8
JR
LD
LD
CALL
CALL
JR

A, (5DH)
|]

Z ,ERROUT
A

HL, 5CH
DE , OXFCB
FNAME
ZNEW
Z,ZIOER

A, (6DH)

]]

7 ,ERROUT
A

HL,6CH
DE, IXFCB
FNAME
ZOPN

Z , ZIOER

DE, IXFCB
GCHAR
1AH
Z,EOF
DE, OXFCB
€A

PUTC

Z, ZIOER
LOOP

;SET UP XFCB
; OPEN NEW XFCB
;OPEN OLD XFCB

; CLOSE XFCB

; ERROR ROUTINE

; END PROGRAM
;GET A CHARACTER
; PUT A -CHARACTER

; 1ST BYTE OF FILENAME
;0, BLANK FILE NAME
:YES, ERROR

;USE EXT FROM FCB
;POINT TO 1ST FCB

; POINT TO OUTPUT XFCB
;BUILD XFCB

;CREATE A NEW FILE

; ERROR

; 1ST BYTE OF FILENAME
;0, BLANK FILE NAME
;YES, ERROR

;USE EXT FROM FCB
;POINT TO 2ND FCB

; POINT TO INPUT XFCB
;BUILD XFCB

;OPEN OLD XFCB

; ERROR

;POINT TO INPUT XFCB
;GET A CHARACTER

;0, END OF FILE

1 ¥YES

;POINT TO QUTPUT FCB
;GET CHARACTER

;PUT ASCII CHARACTER
; ERROR

;GET NEXT CHARACTER

2001

CROMEMCO ASSEMBLER LIBRARY ROUTINES

pade!
pea9’
gpac'
goar!

117F@@"
CDOOdO#
215200"
CDOGBOH#

@053
p@s54
@355
pB56
2057
po58

EQOF:

173

LD
CALL
LD
CALL

DE , OXFCB
ZCLOS
HL, EOFMSG
ABORT

;CLOSE QOUTPUT XFCB

;POINT TO EOF MESSAGE
;ABORT PROGRAM

CROMEMCO ASSEMBLER LIBRARY ROUTINES

CROMEMCO CDOS Z8¢ ASSEMBLER version @2.02

*%% EXAMPLE *%%*

PAGE @002

tak* END -QF JOB ***% ;13

; ERROR ROUTINE FOR MISSING FILES

PE52' 2A2A2A20 @#@59 EOFMSG: DEFB
454E4420
A4F46204A
4AF42202A
2A2A0D
goed ;
g6l
gB62 ;
g@e65' 216BOA" @63 ERROUT: LD
gge8' CD5@@0# goe6d CALL
@@65 ;
@g@6eB' 53504543 @#@66 ERRMSG: DEFB
49464943
4154494F
4E2@4552
524F 520D
@a67 ;
P@68 ;OUTPUT XFCB
gee9 ;
gO7F' @@ @@7@ OXFCB: DEFB
go8@' (0@22) a7l DEFS
@goga2' Creoa@' ae72 DEFW
0000
ggr6' @4 ga73 DEFB
@74 ;
g@75 ;INPUT XFCB
pa76 ;
goAT7' 00 @@77 IXFCB: DEFB
gOA8' (0@22) @078 DEFS
@@CA' CF@2' @a79 DEFW
p0@0
@ACE' 04 gp80d DEFB
pa8l ;
gOCF' (0200) @@82 OBUFF: DEFS
@2CF' (0200) @983 IBUFF: DEFS
gg84a ;
@ACF' (000@"') @085 END
Errors]
Program Length @4CF (1231)
end of assembly
B.LINK EXAMPLE,ASMLIB/S/E
(1000 18B6
B.SAVE EXAMPLE.COM 24
B.

174

HL, ERRMSG

ABORT

; POINT TO MESSAGE

'"'SPECIFICATION ERROR',13

@
34
OBUFF,@

4

4/

34
IBUFF, @
4

8OH*4
8QH*4

START

:OUTPUT BUFFERS
; INPUT BUFFERS

CROMEMCO ASSEMBLER LIBRARY ROUTINES

The program "EXAMPLE.COM" 1is now ready to be
executed. To use the program type in the name of
the program followed by an output file and an input
file. For example:

B.EXAMPLE NEWFILE.Z80¢ EXAMPLE.Z80

This example will copy the file "EXAMPLE.Z8@" to
the file "NEWFILE.Z80".

Device names may also be used. The following
example will type the file "EXAMPLE.Z8@" on the
console.

B.EXAMPLE CON: EXAMPLE. Z80

175

LT

LLT

SHdYNAID0Ed SNOIANVITIDSIW

IA LYvd

% |

MISCELLANEOUS PROCEDURES

PROCEDURE FOR CREATING A NEW LUN TABLE FOR FORTRAN

There have been a number of requests among our
customers for information on how to change the
driver dispatch table (LUN Table) to accommodate
other I/0 drivers with CROMEMCO FORTRAN 1IV. The
purpose of this section is to explain the method
for doing this. The present LUN Table is located
in the FORTRAN Library file, FORLIB.REL, under the
name: SLUNTB. The Linker automatically searches
FORLIB when linking FORTRAN programs to satisfy any
undefined symbols. LINK then 1loads these needed
routines into memory. However, if the LUN Table
were defined PRIOR to the search of FORLIB, the
Linker would not load $LUNTB from FORLIB. This is
done by first composing the new LUN Table giving it
the same name ($SLUNTB), then assembling it using
ASMB, and finally linking it prior to the 1link of
FORLIB. This procedure 1is demonstrated below.
However, first here is a duplicate of the LUN Table
which is presently used in CROMEMCO FORTRAN:

ENTRY SLUNTB

EXT $SDRV3, LPTDRV, DSKDRV
SLUNTB: DB @BH
ONE: DW SDRV3
TWO: DW LPTDRV
THREE: DW SDRV3
FOUR: DW SDRV 3
FIVE: DW SDRV3
SIX: DW DSKDRV
SEVEN: DW DSKDRV
EIGHT: DW DSKDRV
NINE: DW DSKDRV
TEN: DW DSKDRV

END

Note the use of the ENTRY statement to define
the module. The symbols $DRV3, LPTDRV, and DSKDRV
stand for the console driver, line-printer driver,
and disk driver modules, respectively. The labels
ONE through TEN are provided for convenient
reference; they mark the driver—-address which

178

MISCELLANEOUS PROCEDURES

stands for each of the LUNs 1 through 1@. As can
be seen from the above, LUNs 1 and 3-5 are
presently assigned to the console, LUN 2 is
assigned to the printer, and LUNs 6-10 are assigned
to disk files. (See FORTRAN IV Instruction Manual,
Appendix B and page 15 for more information on
Logical Unit Numbers.) Also note in the above that
the first byte of the module (DB @BH) must be one
more than the maximum LUN (in this case 10@).
Hence, more LUNs could be defined simply by adding
DW statements and by changing this first byte.

The present LUNs can be changed simply by
rearranging the driver addresses in each DW
statement above. (LUN 3 should be preserved as the
console driver, however, as that is the one used by
the system to print out error messages.) Users may
also write their own drivers in Z-80 assembly code,
assemble them with ASMB, and link them with the new
SLUNTB. To illustrate these ideas here is a sample
altered LUN Table:

ENTRY SLUNTB

EXT $DRV3, LPTDRV, DSKDRV, SPTDRV
SLUNTB: DB 21
ONE: DW $DRV3
TWO: DW SDRV 3
THREE: DW $DRV3
FOUR: DW LPTDRV
FIVE: DW LPTDRV
SIX: DW SPTDRV
SEVEN: DW SPTDRV
EIGHT: DW DSKDRV
NINE: DW DSKDRV
TEN: DW DSKDRV
ELEVN: DW DSKDRV
TWELV: DW DSKDRV
THIRTN: DW DSKDRV
FOURTN: DW DSKDRV
FIFTN: DW DSKDRV
SIXTN: DW DSKDRV
SEVNTN: DW DSKDRV
EIGHTN: DW DSKDRV
NINETN: DW DSKDRV
TWENTY: DW DSKDRV
END

In this example the user has added an EXTernal
declaration for a serial line-printer, SPTDRV. The
LUN assignments have also been changed as follows:

149

MISCELLANEOUS PROCEDURES

LUNs 1 through 3 are assigned to the console, 4 and
5 are assigned to the parallel-port printer, 6 and
7 are assigned to the serial-port printer, 8
through 1@ remain assigned to disk files, and LUNs
11 through 2@ have also been assigned to disk
files.

The driver for the serial printer should be of
the format:

ENTRY SPTDRV
START: ses

END

The LUN file which has been created can now be
assembled using ASMB simply by typing:

ASMB LUNTBNEW

where LUNTBNEW.Z8@ 1is the name of this file on the
disk. The source file for the added driver
(SPTDRIVR.Z80) must also be assembled; ASMB will
create .REL files for both these modules. These
two files can finally be linked to the FORTRAN by
typing:

LINK FORPROG,LUNTBNEW,SPTDRIVR

where FORPROG is the user's previously-compiled
FORTRAN IV program. LINK will automatically search
FORLIB, but will ignore the S$SLUNTB file there
because LUNTBNEW was linked first. Note that the
ENTRY statement for LUNTBNEW.Z8@ must have the same
name as the original module (SLUNTB).

189

 —

MISCELLANEOUS PROCEDURES

USING ASMB AND DEBUG TO PROGRAM PROMS

The usual method for storing a program into
PROMs is to first load the program into RAM at a
different location from the ROM card containing the
PROMs to be programmed. Then DEBUG (the "pP"
command) 1s wused to actually do the programming.
However, DEBUG will attempt to load .HEX object
files at the location which was specified by the
ORG statement of the original program (or by the
address specified by the HEX= option in the absence
of an ORG), unless a loading offset is specified.
This offset is specified by the following
procedure:

(1) Either ORG the source program at the location
desired for the PROMs to execute or use the
HEX= option (see above) at assembly time to
specify the address.

(2) Assemble the source using ASMB and the HEX (or
HEX=) option to create a .HEX object file.

(3) Type "DEBUG <CR>" to call the Debugger
program.

(4) After receiving the DEBUG prompt (=), type
F<filename>.HEX

where filename is the name of your program on
the disk.

(5) Then type
R<displacement>

where displacement is a hex number from @ to
FFFFH which gives the amount of the
displacement from the 1location at which the
.HEX file is ORGed to the address in RAM at
which it is desired to load the object code
(displacement =loading address-run address).
This displacement should give a 1loading
address which is in available RAM. The
addition of the displacement to the source
address uses no carry and is limited to 16-

181

MISCELLANEOUS PROCEDURES

bits; this means that a displacement can be

given to "wrap around" FFFFH. (For example, a
program ORGed at 9200H will be loaded at 200H
if an "R7000" command 1is 1issued because

92@@H+70PPH=1020@H, and the "1" is dropped.)
DEBUG will not allow a program to be lcaded
over the area where DEBUG lies, and will issue
a gquestion mark (?) instead of the usual
"NEXT=xxxx" message.

(6) Finally insert the PROM(s) to be programmed
and type the command

P<source-begin> <source-end> <destination-
begin>

to complete the process.

Note that when using this method, the PROM(S)
need not be located at the same address for
programming as they will be for execution. The
following example will help to illustrate the above
procedure. Suppose we wish to program a 2708 PROM
with a monitor program to be run at D@@@H. Suppose
also that we have a CROMEMCO BYTESAVER board
currently addressed at E@@@H. We then insert the
PROM into the first available slot on the BYTESAVER
at F8@@PH. We either ORG our monitor source program
(called MONITOR.Z8@) at D@@PH and assemble it using
ASMB, or use no ORG statement in the source program
and use the HEX=D@@@ option when assembling, both
of which create a file called MONITOR.HEX on the
disk. We now enter DEBUG by typing

DEBUG <CR>

and load the .HEX file into memory by typing the
following two commands to the DEBUG prompt:

FMONITOR.HEX <CR>
R4@GA <CR>

to which DEBUG will then respond with (assuming the
MONITOR program occupies 40@0H bytes exactly):

NEXT=1400
which means the object code file has been 1loaded
into RAM from 1¢@@H to 13FFH. We can now program
the PROM at F80@H by typing

182

MISCELLANEOUS PROCEDURES

P1lO@@ S400 F800

When the PROM is completely programmed, it may
be removed from the BYTESAVER and placed in memory
at D@PEPH, 1its run address. Note that the PROM
could have been programmed while residing at D@@G@H
if desired; that was not done here simply to
illustrate a few additional points. Also note that
the swath length for the P command just above must
be a multiple of 400H bytes; for example the

command

P1009 1400 F800

will generate an error in DEBUG. The correct
command is either

P1¢0P@ 13FF F800 or
P10@@ S400 F8O0

as above.

183

MISCELLANEOUS PROCEDURES

gggs@ TO 280 TRANSLATOR

i £
For those users who presently have portions Ol

. oaqan
their software written in 8089 code, an AURUREN 140
Translator program has been provided with the
Assembler package. This program resides on the
disk under the filename TRANSLAT.COM. The
Translator program may be used with source code
only. Its function is to translate the 8080
mnemonics of the original code into Z8@ mnemonics
(those published by Mostek and Zilog), and then
write this translated program back onto a file on
the disk. The translated program will then be in a
form such that it can be assembled by the CROMEMCO
7280 Assembler (ASMB.COM) .

Your original source program must ‘have the
filename extension .ASM to be found by the
Translator; if it does not have this extension,
your file should be renamed before translating it.
TRANSLAT will create an output file having the same
filename but with the extension .Z8@. The original
source file will be left unchanged on the disk.
TRANSLAT requires at least an equal amount of disk
space for the output file as that used by the

source file. Therefore, be sure that there 1is
sufficient space on the disk before calling the
Translator. For example, if the source file

requires 9K in 1 extent, the output file will also
occupy at least 9K in 1 extent (the output file may
use more disk space because Z80 mnemonics tend to
have more characters than 8@80¢ mnemonics). The
Translator gives three error messages having to do
with disk I/O:

OUTPUT FILE WRITE ERROR

This message occurs during the writing of a
record to the disk because of one of these
conditions: (1) out of disk space, more than 81K
for small and more than 241K for large disks; (2)
out of directory space, more than 64 extents; (3)
extent error, an attempt to close an unopened
extent.

NO SOURCE FILE PRESENT

184

~—’

MISCELLANEOUS PROCEDURES

The source filename was either misspelled or
the specified disk does not contain a file of that
name.

NO DIRECTORY SPACE

The output file (.Z8@) cannot be opened
because there are already 64 files or extents
stored on the disk. Note that this is different
from the first error. "OUTPUT FILE WRITE ERROR"
occurs after the file has been opened but during a
write to it.

The Translator will translate opcodes ONLY and
not pseudo-ops. Therefore any pseudo-ops in the
source which do not match corresponding ASMB
pseudo-ops should be changed by the user (using
EDIT) after translating but prior to assembling the
.280 source file. The most common of these is the
"SET" pseudo-op used with a number of 8080
Assemblers which should be changed to the "DL"
pseudo-op for use with ASMB.

TRANSLAT expects certain standard conventions
in the 808@ source. Remarks should be preceded by
semi-colons (;) somewhere in the 1line. Labels
should be followed by colons (:); however, if the
colon is missing, TRANSLAT will insert it in the
output file. The opcodes which must be used are
the standard 8080 opcodes published by Intel.
Also, the opcodes and register names must be given
in upper case, and registers must be specified by
their symbolic names (A, BC, SP, etc.) instead of
by values assigned to the registers as is used by
some Assemblers.

The Translator works by translating 8@8¢
opcodes which it recognizes, and ignoring
essentially everything else in a line of code.
Pseudo-ops or other lines which do not contain 898g
opcodes are simply written to the output file
exactly as they appear in the source file. Be
aware that 1if the original 8080 source contains
syntax or spelling errors, the Z80 output file will
contain these same errors. Therefore, the output
file may need to be edited following translation to
correct the errors; this step is not necessary if
the source file is formatted according to the
guidelines described here.

185

INDEX

I N D E X

A

A - Assemble into memory, 123
ABORT, 156

ABORT - ABORT USER PROGRAM, 170

ABS (Absolute code segment), 39
ABSolute, 57

ADDITIONAL SYSTEM CALLS, 156
ADDRESS EXPRESSIONS, 121

ADEC - DECIMAL TO BINARY CONVERSION, 163
AHEX - ASCII TO HEX CONVERSION, 164
Alphabetical List of Pseudo-ops, 39
argument error, 85

B

BIND - Convert Binary to Decimal, 163
BINDB - Convert Binary to Decimal, 163
BINDF - Convert Binary to Decimal, 163
BINDS - Convert Binary to Decimal, 163
BINH1 - BINARY TO 1 HEX DIGIT, 165
BINH2 - BINARY TO 2 HEX DIGITS, 165
BINH4 - BINARY TO 4 HEX DIGITS, 164

C

CDOS DEVICE FUNCTION CALLS, 145

CDOS DISK FUNCTION CALLS, 150

CHARACTER I/0O ROUTINES, 165

Characters and Line Length, 29

CLOSE FILE, 151

COM (COMmon code segment), 39

Command Format, 105, 120

COMmon, 59

Cond, 19

COND (begin listing Conditional Assemblies), 53
Conditional Assembly (IF statements), 74
Constants, 32

CONTROL CHARACTERS, 120

CREATE FILE, 153

Cross Reference Table, 101

CURRENT DISK, 154

Current Program Counter - §, 33

D

DATA, 61

DATA (Data code segment), 39
DB or DEFB (Define Byte), 39
DECIMAL CONVERSION, 163
Defaults, 27

DELETE FILE, 152

DESELECT CURRENT DISK, 15§

INDEX

DISK CLUSTER ALLOCATION MAP, 154
DISK LOG-IN VECTOR, 153

DIVIDE, 158

divide by zero error, 85

DL or DEFL (Define Label), 40
DM - DISPLAY MEMORY, 124

DM or DEFM (Define Message), 41
DR - DISPLAY REGISTERS, 125

DS or DEFS (Define Storage), 42
DW or DEFW (Define Word), 43

E

E (Exit to CDOS), 106

E - EXAMINE INPUT PORT, 126

EJ - EJECT DISK, 126

EJECT DISK, 156

END (End of assembly), 44

ENDIF (END of IF definition), 45

ENTRY (Entry point for these modules), 45

EQU (Equate), 46

Error Messages Generated During Assembly, 84
Error Messages Generated Following a Call to ASMB,
ERRORS, 122

Examples of Macro and Conditional Assembly, 76
expression error, 86

Expressions and Operators, 34

EXT or EXTRN (these modules External), 47

F

F — SPECIFY FILE NAME, 126
Fatal Errors, 111

file not found, 86

FIND NEXT DIRECTORY ENTRY, 152
FNAME - SET UP XFCB, 166

FORM (paper Formfeed), 49
FORMAT NAME TO FCB, 155

G

G (Go - start execution), 187

G - GO, 127

GCHAR - GET A CHARACTER, 168

Gen, 20

GEN (begin listing Generated Macros), 53
GET I/0 BYTE, 147

GET USER REGISTER POINTER, 157

GET VERSION NUMBER, 158

H

H - HEXADECIMAL ARITHMETIC, 128
HEXADECIMAL CONVERSION, 164
HOME DISK, 156

81

INDEX

I

IF (begin Conditional Assembly), 59
INCLUDE (Include the given disk file), 50
INPUT BUFFERED LINE, 148

invalid option, 83

L ;

L - LIST IN ASSEMBLER MNEMONICS, 128
label error, 87

label not allowed, 87

Limits, 27

Lines of Listing, 98

LINK Switches, 106

LINK TO PROGRAM, 157

LIST (use following commands to generate Listings), 52
List Options, 19

Listing Columns, 97

Listing Symbols, 99

LOADING DEBUG, 119

M

M (Map all symbols), 187

M - MOVE MEMORY, 129

MACRO (begin Macro definition), 54
Macro Assembly (MACRO definition and calls), 65
MACRO library not found, 83
Macro=<d:filename.ext>, 22

Memory Allocation, 141

MEND (Macro definition End), 54
missing label, 87

multiple definition, 88

multiple MACRO definition, 88
MULTIPLY, 157

N

NAME (module Name) , 54

Names (Labels), 38

nesting error, 88

no directory space, 82

no matching IF, 88

no matching MACRO, 88

Nocond, 21

NOCOND (do Not print Conditional Assemblies), 53
Nogen, 21

NOGEN (do Not print Generated Macros), 54

0

O - OUTPUT TO DATA PORT, 130

OFF (turn Off assembly listing), 52
ON (turn On assembly listing), 53
Opcode, 23

INDEX

Opcode Cross Reference Table, 141
opcode error, 89

Opcode Mnenonics, 31

OPEN DISK FILE, 151

Operands, 32

Options Specified When Calling ASMB, 19
ORG (Origin), 55

out of memory, 83

P

P - PROGRAM PROMS, 130

Page=<number decimal lines/page>, 23
Parity, 24

PCHAR - PUT CHARACTER (BINARY), 168
PFNAM — GET FILE NAME FOR PRINTING, 169
phase error, 89

PRINT BUFFER, 147

PRNT - PRINT A LINE, 170

PUTC - PUT CHARACTER (ASCII), 168

R

R (Reset linker), 108

R - READ DISK FILE, 131

Range, 24

range error, 89

READ CONSOLE (with echo), 146

READ CONSOLE (without echo), 149
READ LOGICAL BLOCK, 154

READ NEXT RECORD, 152

READ READER, 146

REGISTER @, 121

REL (Relocatable code segment), 55
RELocatable, 62

REM (Remark beginning in column one), 56
Remarks, 36

RENAME FILE, 153

RESET CDOS AND SELECT DRIVE A, 151

S

S (Search file), 108

SEARCH DIRECTORY, 151

SELECT DISK DRIVE, 151
selected disk error, 82

SET CURSOR ADDRESS, 149

SET DISK BUFFER, 154

SET I/O BYTE, 147

SET USER CONTKROL-C ABORT, 157
SM - SUBSTITUTE MEMORY, 132
Source Code Segments, 57
source file not found, 82

Sr - SUBSTITUTE REGISTER, 133

INDEX

Summary of Defaults and Limits, 27
SUMMARY OF REGISTER NAMES, 138
SWATH OPERATER, 122

Symbol or Symb, 24

Symbol Table, 100

syntax error, 90

T

T - TRACE, 134

Tables Following the Listing, 100

TEST CONSOLE READY, 149

TITLE (Title to be printed at top of each page), 56
TN — TRACE WITH NO PRINTING, 134

too many COMmons, 90

Top=<no. dec. lines before top>, 25

U

U (list all Undefined globals), 108
undefined symbol, 91

UPNATE DIRECTORY ENTRY, 156

Upper and Lower Case, 29

Y
V - VERIFY MEMORY, 134
value error, 91

W

Warnings, 112

Width=<number decimal columns>, 25
WRITE CONSOLE, 146

write error, file - <filenane.ext>, 82
WRITE LIST, 147

WRITE LOGICAL BLOCK, 155

WRITE NEXT RECORD, 153

WRITE PUNCH, 147

X

XDISK - SET UP SPECIAL XFCB, 167
Xref, 26

z

ZCLOS - CLOSE XFCB, 168

ZIOER - PRINT FILE ERROR MESSAGE, 169
ZNEW - OPEN NEW XFCB, 167

ZOPN - OPEN OLD XFCB, 167

