IIDIGITAL RESEARCH

/Eost Office Box 579, Pacific Grove, California 93950, (408) 373-3403

An Introduction to CP/M Features and Facllities

Copyright (e¢) 1976
Digital Research

Version (.3

Table of Contents

Section Page

GENER-ALOQ..O.DODO....I.........l......'..ll
FUNCTIONAL DESCRIPTION OF CP/M:iceescoscsosel
2.1. General Command Structure€,.cceseeeee
2.2. File References. 2 9 0 08 0 ¢ 00 0600 00 00 00 .}
SWITCHING DISKS. ® 0 0 0 0 9 08 5 5 0 0 000000 PO SO PREYN Q5
THE FORM OF BUILT~-IN COMMANDS:sesssssscsced
4. 1. ERA afn cr. "R EEE N A N ECE B I R N RN B A .6
4'2. DIR afn cr. 2 6 0 0 0 6 0 9 6 ¢ O U O E S H IS BRSSO l6
4,3, REN ufnleufn2 Creeecscesscsscsnssensd
4. ul SAVE n ufn cr. 0 6 000060 0006080 9 0900000 l?
4.5. TYPE ufn cr. 0 8 6 0 0 00 0 % 000 00 20080 PO P .7
LINE EDITING.......‘..I...................?
TRANSIENT COMMANDS O 0 6 9 6 & 8 0 ¢ 0 0008 00t 08000 PO 7
6.1. STAT cr.l.....l.................l.l.s
6.2. ASM ufn cr. 'Y EEEEENENENNEN N NI B B B I B R B AN) 08
3. LOAD ufn cr. ® 0 00 086 0 000 ¢ 0000 000 00 F PO .9
u. PIP cr'....‘....0..................'10
5. ED ufn cr. G 6 0 & 8 00 080000 000 00000800 e 12
6. SYSGEN crl " EEENNENRENRNEN I I I B A B B E B AN .13
7, SUBMIT ufn parm#l...parm#n CTr.......1%
8. DUMP urn cr. ' EE R RN I I RN B BN A BN A] .15
E

An Introduction to CP/M Features and Facilities

1. GENERAL

CP/M is a monitor control vprogram for microcomputer system development
which uses IBM-compatible flexible disks for back-uo storage, Using a
computer mainframe based upon Intel’s 8688 microcomputer, CP/M provides a
general environment for program construction, storage, and editing, along with
assembly\and program check-out facilities,

The CP/M monitor ©provides rapid access to programs through a
comprehensive file management package. The file subsystem supports a named
file structure, allowing dynamic allocation of file spece as well as
sequential and random file access. Using this file system, a large number of
distinct programs can be stored in both source and machine-executable form,

CP/M also supports a powerful context editor, Intel compatible assembler,
and debugger supsystems. When coupled with CP/M’s console command processor,
the resulting facilities equal or excel similar large computer facilities.

CP/M is logically divided into several distinct parts:
BIOS ~ the basic I/0 system
BDOS - the basic disk operating system
CCP - the conscle command processor
TPA - the transient program area

The BIOS provides the primitive operations necessary to interface
standard peripherals (teletype, CRT, Paper Tape Reader/Punch, and user—defined
peripherals), and can be tailored by the user tfor any particular hardware
environment by “patching” this portion of Cp/M. The BDOS provides disk
management by controlling one or more disk drives containing independent file
directories. The BDOS implements disk allocation strategies which provide
tully dynamic file construction while minimizing head movement across the disk
during access. Any particular file may contain any number of records, not
exceeding the size of any single disk (240 records of 128 bytes each). In a
standard CP/M system, each disk can contain up to 64 distinct files, The BDOS
has entry points which include the following primitive operations:

SEARCH look for a perticular disk file by name
OPEN open a file for further operations
CLOSE close a file after processina

RENAME change the name of a particular file

READ read a record from a particular file

WRITE write a record onto the disk
SELECT select a particular disk drive for further
operations

The CCP provides symbolic interface between the user s console and the
remainder of the CP/M system. The CCP reads the console device and processes
commands which include listing the file directory, printing the contents of
files, and controlling the operation of assemblers, editors, and debuggers.
The standard commands which are available in the CCP are listed in a following
section.

The last segment of CP/M is the area called the TPA., The transient
program area holds programs which are loaded from the disk under command by
the CCP. During program editing, for example, the TPA holds the CP/M text
editor machine code and data areas. Similarly, programs created under CP/M
can be checked-out by loading and executing these programs in the TPA.

It should be mentioned that any or all of the CP/M component subsystems
can be "overlayed" by an executing program. That is, once a user s program is
loaded into the TPA, the CCP, BDOS and BIOS areas can be used as the program’s
data area. A "pootstrap" loader is programmatically accessible at all times;
thus, the user program need only branch to the bootstrap loader at the end of
execution, and the complete CP/M monitor is reloaded from disk.

It should be reiterated that the CP/M operating system is partitioned
into distinct modules, including the BIOS portion which defines the hardware
environment in which CP/M is executing. Thus, the standard system can be
easily modified to any nonstandard enviromment by changing the peripheral
drivers to handle the custom system. The standard system is provided with I/0O
drivers for Intel’ s MDS microcomputer development system, along with a general
discussion of the modification techniqgue.

2. FUNCTIONAL DESCRIPTION OF CP/M.

The user interacts with CP/M primarily through the CCP which reads and
interprets commands input through the console. In general, the CCP addresses
one of several disks which are online (the standard system addresses up to two
different disk drives), These drives are labelled disk "A", "“B", and
so-forth. A disk is "logged in" if the CCP is currently addressing the disk.
In order to clearly indicate which disk is the currently logged disk, the CCP
always prompts the operator with the disk name, followed by the symbol *“>"
indicating that the CCP is ready for another command. Upon initial start up,
the CP/M system is brought in from disk A, and the CCP displays the message

xxK CP/M VER m.m

where xx is the memory size (in kilobytes) which this CP/M system manages, and
m.m is the CP/M version number. The CCP then automatically logs-in disk A,
and prompts the user with the symbol "A>" (indicating that CP/M is currently
addressing disk “A") and waits for a camand. The commands are implemented at
two levels: built-in commands and transient commands.,

2.1. GENERAL COMMAND STRUCTURE.
Built-in cammands are a part of the CCP program itself, while transient

commands are loaded into the TPA from disk and executed. The built—in
commands are:

ERA remove files from the logged disk

DIR list names of the files on the logged disk
REN rename the specified file on the logged disk
SAVE save the specified file on the logged disk
TYPE type the contents aof a file on the logged disk

Nearly all of the cammands reference a particular file or group of files.
Thus, the form of a file reference is specified below.

2.2, FILE REFERENCES.,

A file reference identifies a particular file or qroup of files on a
particular disk attached to CP/M. These file references can be either
"unambiguous” or “ambiguous". An wnambiquous file reference uniguely
identifies a single file, while an ambiguous file reference may be satisfied
by a number of different files.

File references consist of two parts: the primary name and the secondary
name. Although the secondary name is optional, it usually is generic; that
is, the secondary name "ASM" for example, is used to denote that the file is
an assembly language source file, while the primary name distinguishes each
particular source file., The two names are separated by a "." as shown below:

PPPPPPPP .« SSS
Where pppppppp represents the primary name of eight characters or 1less, and

sss is the secondary name of no more than three characters. As mentioned
above, the name

PPPPPPPP

is also allowed and is equivalent to a secondary name consisting of three

blanks. The characters used in specifying an unambiguous file reference
cannot contain any of the special characters

« s 3 3= 2%

while all alphanumerics and remaining special characters are allowed,

An ambiquous file reference is used for directory search and rattern
matching. The form of an ambiguous file reference 1is similar to an
unambiguwus reference, except the symbol "?" may be interspersed throughout
the primary and secondary names. In various commands throughout CP/M, the “2?*
symbol indicates that any file name satisfies a match if it matches exactly in
all character positions where “?" appears. Thus, the ambiguous reference

X?2.C?M
is satisfied by the wmambiguous file names
XYZ .COM
and
X3Z.CAaM
Note that the ambiguous reference

* %k
L

is equivalent to the ambiguous file reference

2922°?22°2.727
while
PPPPPPPP. *
and
*,SSS
are abbreviations for
PPPPPPPP. 277
and
??727??2272.588

respectively. As an example,
DIR *,*

is interpreted by the CCP as a command to list the names of all disk files in
the directory, while

DIR X.Y
searches only for a file by the name X.Y Similarly, the command
DIR X?Y.C?M

causes a search for all (unambiguous) file names on the disk which satisfy
this ambiguous reference.

The following file names are valid unambiguous file references:
X XYZ GAMMA

X.Y XYZ.COM GAMMA, 1

3. SWITCHING DISKS.

The operator can switch the currently logged-in disk by typing the disk
drive name (A, B, ...) followed by a colon (:) when the CCP is waiting for
console input. Thus, the sequence of prompts and commands shown below might
occur after the CP/M system is loaded from disk A:

16K CP/M VER 1.9

A>DIR *,.* list all files on disk A
SAMPLE AM

SAMPLE PRN

A>B: switch to disk B

B>DIR *,ASM list all “ASM” files on B
DUMP ASM

FILES ASM

B>A: switch back to A

4, THE FORM OF BUILT-IN COMMANDS.

The file and device reference forms described above can now be used to
fully specify the structure of the built-in commands. In the description
below, assume the following abbreviations:

ufn - unambiguous file reference
afn - ambiguous file reference
cr - carriage return

Further, note that the CCP always translates lower case characters to upper
case characters internally. Thus, lower case alphabetics are treated as if
they are upper case in command names file references.,

4,1 ERA afn cr

The ERA (erase) command removes files from the currently logged-in disk
(i.e., the disk name currently prompted by CP/M preceding the ">"). The files
which are erased are those which satisfy the ambiguous file reference afn.
The following examples illustrate the use of ERA:

ERA X.Y the file named X.Y on the currently logged disk
is removed from the disk directory, and the space
is returned

ERA X.* all files with primary name X are removed from
the current disk

ERA *,ASM all files with secondary name ASM are removed
from the current disk

ERA X?Y.C?M all files on the current disk which satisfy the
ambiguous reference X?Y.C?M are deleted
4,2, DIR afn cr

The DIR (directory} command causes the names of all files which satisfy
the ambiguous file name afn to be listed at the console device., The command

DIR *,*
for example, lists the files on the currently logged disk.
Valid DIR commands are:
DIR X.Y

DIR X?Z.C?M

DIR ??.Y

4,3, REN ufnl=ufn2 cr

The REN (rename) command allows the user to change the names of files on
disk. The file satisfying ufn2 is changed to ufnl. The currently loaged disk
is assumed to contain the file to rename. The CCP also allows the user to
type a left-oriented arrow instead of the equal sian, if the user’s console
supports this graphic character., Examples of the REN command are:

REN X.Y=0Q.R The file Q.R is changed to X.Y

REN XYZ,COM=XYZ.XXX The file XYZ.XXX is changed to XYZ.COM

4,4, SAVE n ufn cr
The SAVE command places n pages (256 byte blocks) onto disk from the TPA
and names this file ufn. The machine code file can be subseguently loaded and
executed., Examples are:
SAVE 3 X.COM
SAVE 48 O
SAVE 4 X.Y

(Note that n is a decimal value).

4,5, TYPE ufn cr

The TYPE command displays the contents of the ASCII source file ufn on
the currently logged disk at the console device. Valid TYPE commands are

TYPE X.Y
TYPE X.C
TYPE XXX

The TYPE command expands tabs (clt-I characters), assumming tab positions
are set at every eighth colum.

5. LINE EDITING.

The CCP allows certain line editing functions while typing the command.

rubout delete and echo the last character typed at the console
ctl-U delete the entire line typed at the console
ctl-E physical end of line, carriage is returned, but line

is not sent until the carriage return key is depressed
ctl=C CP/M system reboot (warm start)
ctl-2Z end-of~-input from the console (used in PIP and ED)

Note that the ctl-x sequence shown above denotes that the control key and the
key x are depressed simultaneously.

6. TRANSIENT COMMANDS.

Transient cammands are loaded from the system disk and executed in the
TPA., The transient commands defined with the CCP are:

STAT List the number of bytes of storage remaining on the
currently logged disk

ASM load the CP/M macro assembler and assemble the
specified program from disk

LCAD load the file in Intel "hex" machine code format and
produce a file in machine executable form which can be
loaded into the TPA

DDT load the CP/M debugger into the TPA and start execution

PIP load the Peripheral Interchange Program for subseouent
media conversion operations

ED load and execute the CP/M text editor program

SYSGEN Create a new CP/M system diskette

SUBMIT Submit a file of commands for batch processing

DUMP Dump the contents of a file in hex

Transient commands are specified in the same manner as built-in commands, and
additional commands can be easily defined by the user. The basic transient
commands are listed in detail below.

6.1. STAT cr

The STAT transient command examines the storage map for the currenly
logged diskette and prints a message in the format

xxxK BYTES REMAINING
where xxx is the number of kilobytes of storage available
6.2. ASM ufn cr
the ASM command loads and executes the CP/M 8080 assembler. The ufn
specified a source file containing assembly lanquage statements where the
secondary name is assumed to be ASM, and thus is not specified. The following
ASM commands are valid: .

ASM X

ASM GAMMA

The two pass assembler is automatically executed. If assembly errors occur
during pass 2, the errors are printed at the console.

The assembler produces a file
X« PRN

where x is the primary name specified in the ASM command. The PRN file
contains a listing of the source program (with imbedded tab characters if
present in the source program), along with the machine code generated for each
statement and diagnostic error messages, if any. The PRN file can be listed
at the console using the TYPE command, or sent to a peripheral device using
PIP (see the PIP command structure below). The file

X JHEX

is also produced which contains 8080 machine language in Intel “hex" format
suitable for subsequent loading and execution (see the LOAD command). For
complete details of CP/M assembly language program, see the "CP/M Assembler
Language (ASM) User s Guide.”

6.3. LOAD ufn cr

The LOAD cammand reads the file ufn, which is assumed to contain "hex"
format machine code, and produces a memory imaage file which can be
subsequently executed. The file name ufn is assumed to be of the form

xHEX

and thus only the name x need be specified in the command., If a file x.HEX
does not exist, the LOAD command reads the current RDR: device instead of a
disk file. The LOAD command creates a file named

x.COM

which marks it as a machine executable code. The file is actually loaded into
memory and executed when the user types the name x immediately after the
prompting character ">" printed by the CCP.

In general, the CCP reads the name x following the prompting character
and looks for a built-in function name. If no function name is found, the CCP
searches the system disk directory for a file by the name

X .COM
If found, the machine code is loaded into the TPA, and the program executes.

Thus, the user need only IOAD a hex file once; it can be subsegquently
executed any number of times by simply typing the primary name. 1In this way,

the user can "invent” new caommands in the CCP. In fact, initialized disks
have the transient cammands as COM files, and thus can be deleted at the users
option,

6.4. PIP cr

PIP is the CP/M Peripheral Interchange Program which implements the basic
media conversion operations necessary to load, print, punch, copy, and combine
disk files. The PIP program is initiated by typing one of the following forme

PIP cr
PIP command-line cr

In pboth cases, PIP is loaded into the TPA and executed. In the first case,
PIP reads cawmand lines directly from the console, prompted with the character
“x» ntil an empty command line is typed (i.e., a single carriage return is
issued by the operator). Each successive command line causes some media
conversion to take place according to the rules shown below. The second form
of the PIP cammand is eguivalent to the first, except that the single command
line given with the PIP command is automatically executed, and PIP terminates
immediately with no further mrompting of the console for input command lines.
The form of each command line is

destination = source#l, source#2, ... , source#n cr

where “destination” is the file or peripheral device to receive the data, and
"source#l, ..., source#n” represents a series of one or more files or devices
which are copied from left to riaht to the destination. A& CP/M end of file
mark (ctl-2Z) is inserted as the last character if the destination is an ASCII
file (all files except ".COM" files are treated as ASCII files in the current
CP/M implementation). The eqgual symbol (=) can be replaced by a left—oriented
arrow if your console supports this ASCII character, to improve readability.
Lower case ASCII alphabetics are internally translated to upper case to be
consistent with CP/M file and device name conventions, finally, the total
command line length cannot exceed 255 characters (the ctl-E control can be
used to force a physical carriage return for lines which exceed the console

width) .

The destination and source elements can be unambiguous references to CP/M
source files, with or without a preceding disk drive name. That is, any file
can be referenced with a preceding drive name (A:, B:, C:, +es) which defines
the particular drive to fetch or store the file. When the drive name is not
included, the currently logged disk is assumed. Further, the destination file
can also appear as one or more of the source files, in which case the source
file is not altered until the entire concatenation is complete. If the
destination file already exists, it is removed if the command line is properly
formed (it is not removed if an error condition arises). The followina
command lines (with explanations to the right) are valid as input to PIP

10

X =Yy cCr copy to file x from file vy, v
remains unchanged

X = Y,z Cr concatenate files y and z and
copy to file x, with y and z
unchanged

X.ASM=Y,ASM,Z,ASM,FIN.,ASM cr create the file X.ASM from the

concatenation of the Y, 7, and
FIN files with type ASM

NEW.ZOT = B:0OLD.ZAP cr move a copy of OLD,ZAP from drive
B to the currently logged disk,
and name the file NEW.ZOT

B:A,U = B:B.V,A:C.W,D.X cr concatenate file B.V from drive B
with C.W from drive A and D.X
from the logoed disk, and create
the file A.U on drive B

PIP also allows reference to physical and logical devices which are
attached to the CP/M system. The device names are three character
identifiers, followed by the colon (:) symbol., The device names are

7

’ RDR: Paper tape reader
IST: Listing device (printer)
PUN: Paper tape punch
TTY: Teletype device
CRT: Cathode ray tube display
ARD: Addmaster paver tape reader
IRD: Intel or Icom paper tape reader
PRN: Tally printer device
QON: Currently defined console device

The RDR, IST, PUN, and CON devices are all defined within the BIOS
portion of CP/M, and thus are easily altered to any particular I/O system.
The 'ITY and CRT devices are present - to support the Intel "iobyte" function
which allow a simple logical to physical device mapping (see the CP/M
Interface Guide for a discussion of the iobyte function). ARD, IRD, and PRN
are three yopular peripheral devices which have dedicated input/output ports
in the CP/M environment, Tab characters (ctl-I) are expanded when the
destination device is not the punch. The allowable destination devices are

IST PUN TTY CRI' PRN CON
while the allowable source devices are

RDR TTY CRT ARD IRD CON
When devices are used as input, the end of file is indicated by a ctl-Z (the
CP/M end of file standard) or, in the case of the ARD and IRD devices, a

sequence of 255 rubout characters which is obtained by running the reader with
no paper tape.

11

It should also be noted that PIP performs a special function if the
destination is a disk file with type "HEX" (an Intel hex formatted machine
code file), and the source is an external peripheral device, such as a paper
tape reader. In this case, the PIP program checks to ensure that the source
file contains a operly formed hex file, with legal hexadecimal values and
checksum records, When an invalid input record is found, PIP reports an error
message at the console and waits for corrective action, It is usually
sufficient to open the reader and rerun a section of the tape (pull the tape
back about 2@ inches). When the tape is ready for the re-read, typre a single
carriage return at the console, and PIP will attempt another read. If the
tape position cannot be properly read, simply continue the read (by tyrino a
return following the error message), and enter the record manually with the ED
program after the disk file is constructed.

valid PIP commands are shown below

pip 1lst: = X.prn cr copy X.prn to the LST device and
terminate the PIP program
. pip cr start PIP for a sequence of
' commands (PIP prompts with "*")
*con:=x.asm,y.asm,z.asm Cr concatenate three ASM files and
copy to the CON device
*x.hex=con:,y.hex,ard: cr create a HEX file by reading the

QON (until a ctl-2Z is typed), fol-
lowed by data from v.hex, followed
by data from ARD until a ctl-Z or
255 rubouts are encountered.

*cr Single carriage return stops PIP

6.6. ED ufn cr

The ED program is the CP/M system context editor, which allows creation
and alteration of ASCII files in the CP/M enviromment. Complete details of
operation are given the ED user s manual "ED: a Context Editor for the CP/M
Disk System.” In general, ED allows the operator to create and operate upon
source files which are organized as a seqguence of ASCII characters, separated
by end of line characters (a carriage return line feed sequence). There is no
oractical restriction on line length (no single line can exceed the size of
the working memory) but is instead defined by the number of characters typed
between cr’s. The ED program has a number of commands for character string
searching, replacement, and insertion, which are useful in the creation and
correction of programs or text files under CP/M. Although the CP/M has a
limited memory work space area (approximately 6000 characters in a 16K CP/M
system), the file size which can be edited is not limited, since data is
easily "paged” through this work area.

Upon initiation, ED creates the specified source file if it does not

exist, and opens the file for access. The programmer then “appends" data from
the source file into the work area, if the source file already exists (see the

12

-mmand) for editing, The appended data can then be displayed, altered, and
written from the work area back to the disk (see the W command). Particular
points in the program can be automatically paged and located by context (see
the N canmand) allowing easy access to particular portions of a large file,

Given that the operator has typed
ED X,ASM cr
the ED program creates an intermediate work file with the name

X.$$$

to hold the edited data during the ED run. Upon completion of ED, the X.ASM
file (original file) is renamed to X.BAK, and the edited work file is renamed
to X.ASM. Thus, the X.BAK file contains the original (unedited) file, and the
X.ASM file contains the newly edited file. The operator can always return to
the previous version of a file by removing the most recent version, and
renaming the previous version. Suppose, for example, that the current X.ASM
file was improperly edited, the seguence of CCP command shown below would
reclaim the backup file

DIR X.* check to see that BAK file
is available

ERA X.ASM erase most recent version

REN X.ASM=X.BAK rename the BAK file to ASM

Note that the operator can abort the edit at any point (reboot, power failure,
ctl-C, or Q command) without destroying the original file. 1In this case, the
BAK file is not created, although the original file is always intact.

The ED user s manual should be consulted for complete operating details.,
6.6. SYSGEN cr
The SYSGEN transient caommand allows generation of an initialized diskette

containing the CP/M operating system., The SYSGEN program prompts the console
for cammands, with interaction as shown below

SYSGEN cr initiate the SYSGEN program
*SYSGEN VERSION m.m SYSGEN signon message
GET SYSTEM? (Y/N) If a memory image of the CP/M

is not present (see CP/M inter-
face quide) type N, otherwise
type Y. Normally type Y.
SOURCE ON B THEN TYPE RETURN Place a diskette containing the
CP/M operating system on drive
B (it's ok to remove the one
that you are using on drive A)
and follow with a return when

13

ready.
FUNCTION COMPLETE System is copied to memory

PUT SYSTEM? (Y/N) If a new diskette is being
built, type Y: otherwise type
N. Normally type Y.

DESTINATION ON B THEN TYPE RETURN Place new diskette into drive
B, type return when ready.

FUNCTION COMPLETE New diskette is initialized
in drive B

The SYSGEN program then reboots the system from drive A. Upon completion of a
successful system generation, the new diskette contains the operating system,
and only the built-in commands are available. A factory-fresh IBM-compatible
diskette appears to CP/M as a diskette with an empty directory, and thus the
operator must copy the appropriate COM files from an existing CP/M diskette to
the newly constructed diskette using the PIP transient.

It should be noted that a SYSGEN does not destroy the files which already
exist on a diskette; it results only in construction of a new operating
system. Further, if a diskette is being used only on drive B, and will never
be the source of a bootstrap operation on drive A, the SYSGEN need not take
place, and, in fact, a new diskette needs absolutely no initialization to be
used with CP/M,

6.7. SUBMIT ufn parm#l parm#2 ... parm#n cr

The SUBMIT command allows CP/M commands to be batched together for
automatic processing. The ufn given in the SUBMIT command must be the
filename of a file which exists on the currently logged disk, with an assumed
file type of “SUB." The SUB file contains CP/M prototype commands, with
possible parameter substitution, The actual parameters parm#l ... parm#n are
substituted into the prototype commands, and, if no errors occur, the file of
substituted commands are processed sequentially by CP/M.

The prototype command file is created using the ED program, with
interspersed "$" parameters of the form

$1 $2 $3 .ee Sn

corresponding to the number of actual parameters which will be included when
the file is submitted for execution. Wwhen the SUBMIT transient is executed,
the actual parameters parm#l ... parm#n are paired with the formal parameters
$1 ... Sn in the prototype cammands. If the number of formal and actual
parameters does not correspond, then the submit function is aborted with an
error message at the console. The SUBMIT function creates a file of
substituted commands with the name

$$$.SUB

14

on the logged disk. When the system reboots (at the termination of the
SUBMIT), this cammand file is read by the CCP as a source of input, rather
than the console. If the SUBMIT function is performed on any disk other than
drive A, the cammands are not processed until the disk is inserted into drive
A, and the system reboots. Further, the user can abort command processing at
any time by typing a rubout when the comrand is read and echoed. In this
case, the $$$.SUB file is removed, and the subsecuent commands come from the
console. Command processing is also aborted if the CCP detects an error in
any of the commands. Programs which execute under CP/M can abort processing of
command files when error conditions occur by simply erasing any existing
$$$.SUB file,

The 1last command in a SUB file can initiate another SUB file, thus
allowing chained batch commands,

Suppose the file ASMBL.SUB exists on disk, and contains the prototype
commands
ASM S1
DIR $1.*
ERA *,BAK
PIP S$2:=$1.PRN
ERA S$1.PRN

and the cammand
SUBMIT ASMBL X PRN cr

is issued by the operator. The SUBMIT program reads the ASMBL.SUB file, and
substitutes "X" for all occurrences of $1, and "PRN" for all occurrences of
$2, resulting in a $$$.SUB file containing

ASM X

DIR X.*

ERA * BAK

PIP PRN:=X.PRN
ERA X.PRN

which are executed in seguence by the CCP.

6.8. DUMP ufn cr

The DUMP program types the contents of the disk file given by ufn at the
console in hexadecimal form. The file contents is listed sixteen bytes at a
time, with the absolute byte address listed to the left of each 1line in
hexadecimal. Long typeouts can be aborted by pushing the rubout key during

printout. (The source 1listing of the DUMP program is given in the CP/M
interface quide, as an example of program written for the CP/M environment.)

7. OPERATION OF CP/M ON THE MIS.

15

This section gives operating procedures for using CP/M on the Intel MDS
microcomputer development system. A basic knowledge of the MDS hardware and
software systems is assumed. :

CP/M is initiated in easentially the same manner as Intel’s ISIS
operating system, The disk drives are labelled # and 1 on the MDS,
corresponding to CP/M’s drive A and B, respectively. The CP/M system diskette
is inserted into drive @, and the BOOT and KESET switches are depressed in
sequence. The interrupt 2 light should go on at this point. The space bar is
then depressed on the device which is to be taken as the system console, and
the light should go out (if it does not, then check connections and baud
rates). The BOOT switch is then turned off, and the CP/M signon message
should appear at the selected console device, followed by the “A>" system
prompt. The user can then issue the various resident and transient commands

The CP/M system can be restarted (warm start) at any time by pushing the
INT @ switch on the front panel, The built-in Intel ROM monitor can be
initiated by pushing the INT 7 switch, except when operating under DDT, in
which case the DDI' program gets control instead.

Diskettes can be removed from the drives at any time, and the system can
be shut down during operation without affecting data integrity. Note,
however, that the user must not remove a diskette and replace it with another

without rebooting the system (cold or warm start) unless the inserted diskette
is read-only.

Due to hardware hang-ups or malfunctions, CP/M may type the message

PERM ERR DISK x

where x is the drive name which has the permanent error. This error may occur
when drive doors are opened and closed randomly, followed by disk operations,
or may be due to a diskette, drive, or controller failure. The user can
optionally elect to ianore the error by typing a single return at the
console. The error may produce a bad data record, reguiring re-initialization
of up to 128 bytes of data. The operator can reboot the CP/M system and try
the operation again.

Termination of a CP/M session requires no special action, although it is

best to remove the diskettes before turning the power off, to avoid random
transients which could make their way to the drive electronics.

16

