Introduction to Z-80
Assembly Language
Programming

VCF SE 3.0
Malcolm Macleod
3 May 2015
malcolm@avitech.com.au

mailto:malcolm@avitech.com.au

Topics Covered Today

Overview of the Z80 — History & Features

Pinouts and Architecture

Instruction Set

Assembly Language Example 1 - Toggle output port
Development Environment

* For assembling under Windows

 For assembling under CP/M 2.2

Assembly Language Example 2 — Output string to console
 Assembling Example 2 under Windows

* Assembling Example 2 in CP/M emulator

Links:

 Reference Cards and Manuals

e Useful Websites

Overview of the Zilog Z-80 CPU

Released in 1976
16-bit address space, 8 bit data bus
Each instruction stored as 1, 2, 3 or 4 bytes

“binary upwards compatible” with 8080 machine code — e.g. CP/M
2.2

Developed by ex-Intel employees: Federico Faggin, Ralph Ungermann
and Masatoshi Shima.

Less than 50% of all Z80 CPUs were produced by Zilog

Second sourced (licensed) manufactures included: Mostek, Toshiba,
Sharp, NEC and SGS-Thomson

NMOS versions were 2.5 MHz to 8 MHz
CMOS versions are 4 MHz to 20 MHz

Improvements over the Intel 8080

Relative to the 8080 the Z80 has:

An enhanced instruction set

Two new 16-bit index registers (IX & 1Y)

4 new “alternate” 16-bit registers (AF’, BC’, DE’ and HL)
Two new interrupt modes (Modes 1 & 2)

Register | = Interrupt vector base, for Mode 2 interrupts
Register R = Refresh register

A non-maskable interrupt input

Single supply rail (+5V), rather than +5, -5 & +12

Built in DRAM refresh (only 16k RAMs and smaller)

Z-80 Pin Configuration (40-Pin DIP)

System
Control

CPU
Control

CPU
Bus
Control

YK -

MREQ -————

_< IORQ 4310—
RD -f——
22

‘28

WR

RFSH

HALT -<-—28
WAIT

24l

NT = ——0 g
s 17
NMI o

— 26
|RESET ——2% 3
{BUSRQ — D

e 23
BUSACK f——

CIK —f g

T VAN
GND ——22 3!

Z80 CPU

€ DO
>3 D1
23 D2
2 D3

< 0
b
<2 07

Address
Bus

Data
Bus

Architecture

Z80 Architecture

Internal Data Bus 8 Bit

BUFFERS

Instruction

Register

¥

Instruction
Decoder

¥

Control
Logic

I+

Control Section

Address Bus 15 Bit

BUFFERS

Control Bus

BUFFERS

Source: http://en.wikipedia.org/wiki/Zilog Z80#/media/File:Z80 arch.svg Created by Appaloosa,
subject to CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0/). Unmodified.

http://en.wikipedia.org/wiki/Zilog_Z80/media/File:Z80_arch.svg
http://en.wikipedia.org/wiki/Zilog_Z80/media/File:Z80_arch.svg
http://en.wikipedia.org/wiki/Zilog_Z80/media/File:Z80_arch.svg
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

Registers

Main Register Set Alternate Register Set
P 8
Accumulator Flags Accumulator Flags
A F A f F’ f
B C B B General
D E D’ E' Purpose
H L H E Registers
Interrupt Vector Memory Refresh |)
i R
Index Register IX Special
: Purpose
index Register Y Registers
Stack Pointer SP
Program Counter PC

Source: Zilog, Z80 Family CPU User Manual , Document Number UM008002-0202, Figure 2 (Page 3).
Unmodified.

Instruction Overview

The Z-80 can execute 158 different (published) instruction types,
including all 78 of the 8080A CPU.

The instructions fall into these categories:
* Load and Exchange

* Block Transfer and Search

e Arithmetic and Logical

* Rotate and Shift

e Bit Manipulation (Set, Reset, Test)

* Jump, Call, and Return

* Input and Output

e Basic CPU Control

Addressing Modes

Most instructions need to access data in external memory or
internal CPU registers. The various “addressing modes” describe

the way in which this can occur:

Addressing Mode

Immediate

Modified Page Zero
Addressing

Relative Addressing
Extended Addressing
Indexed Addressing
Register Addressing

Implied Addressing

Register Indirect Addressing

Assembly Language Example

LD A,FFH -or- LD BC,1234H
RST 30H

JR ZEXIT

JP EXIT -or- LD A,(TIMER)
LD A, (IX+9H)

LD A,B

SUB 30H

LD A, (HL)

Flags

The flag registers (F and F') supply information to the user about the status
of the Z80 at any given time. The bit positions for each flag is listed below:

Z X N X P/V N

Symbol _Field Name
= —
e Carry Flag)
Add/Subtract
Parity/Overtlow Flag
Half (h\rry Flag
Zero F l@
Sign Flag
Not Used

xw’(\l\mgz

Notes:
1. When starting out, focus on learning how to use the C and Z flags, then S.

2. Flags Hand N cannot be tested — they are only used for BCD arithmetic.

Example of Zilog’s instruction tables

Table 4. Exchanges EX and EXX

Implied Addressing

AF' |BC', DE',and HL' |HL [IX [IY

IMPLIED [AF |08

BC

DE D9

HL

DE EB
REG. (SP) E3 |DD |FD
IND. E3 |E3

Assembly Language Example 1 — Toggle Output

CYCLS EQU
PORT EQU

ORG

START LD

LOOP LD
XOR
LD
ouT
CALL
JR

DELAY LD

DELLOOP LD
OR
DEC
JR
RET

END

40000D
OFFH

0000H

SP,8000H
A,D

1H

D,A
(PORT) ,A
DELAY
LOOP

BC,CYCLS/26D
A,B

C

BC

NZ ,DELLOOP

START

10 msec = 4,000,000 divided by 100

; We're going to toggle output port OFFH

; Our program goes in low memory

Initialise the stack

Get current value of D

Toggle the least significant bit
Save new value of D

; Output new value of D
; Delay for 10 msec

Loop back to toggle again

; Number of loops required

Put upper 8 bits of BC into A
Logical or A with lower 8 bits of BC

; Decrement loop counter

Loop unless BC=0

; Return to main program loop

Assembly Language Example 1 — Toggle Output

19:
20:
21:
22:
23:
24:
25:
26:
27 :
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:

0+10
10+4
14+7
21+4
25+11
36+17
53+12

65+10
75+4
79+4
83+6
89+7+5
96+10

9C40
OOFF

0000

0000
0003
0004
0006
0007
0009
0oocC

O00O0E
0011
0012
0013
0014
0016

0000

310080
TA
EEO1
57
D3FF
CDOEOO
18F5

010206
78

Bl

OB
20FB
C9

CYCLS
PORT

EQU
EQU

ORG

START 11D

LOOP LD
XOR
LD
ouT
CALL
JR

DELAY LD

DELLOOP LD
OR
DEC
JR
RET

END

40000D
OFFH

0000H

SP,8000H
A,D

1H

D,A
(PORT) ,A
DELAY
LOOP

BC,CYCLS/26D
A,B

C

BC

NZ ,DELLOOP

START

Suggested Windows Environment

Editors:
e Crimson Editor (v. 3.72 —2008) :
http://www.crimsoneditor.com/

* Notepad++ (v6.7.5)

http://notepad-plus-plus.org

Assemblers:
* George Phillips’ ZMAC (version 19sep2013):
http://members.shaw.ca/gp2000/zmac.html

e Matthew Reed’s ZSOASM command-line assembler:

http://www.trs-80emulators.com/z80asm/

http://www.crimsoneditor.com/
http://notepad-plus-plus.org/
http://notepad-plus-plus.org/
http://notepad-plus-plus.org/
http://notepad-plus-plus.org/
http://notepad-plus-plus.org/
http://members.shaw.ca/gp2000/zmac.html
http://members.shaw.ca/gp2000/zmac.html
http://www.trs-80emulators.com/z80asm/
http://www.trs-80emulators.com/z80asm/
http://www.trs-80emulators.com/z80asm/

Configuring Crimson Editor and ZMAC

Crimson Editor:
* Under Tools -> Conf. User Tools, for Hotkey “Ctrl+1”:
* Set Menu Text = zmac
 Set Command = [directory containing zmac]
* Set Argument = S(FileName)
* Set Initial Dir = S(FileDir)
* Use “z80” as suffix for your source code file
ZMAC:
 To assemble, press Ctrl+1 from within Crimson Editor
* Assembled listing will appear as “Ist” file in the ./zout directory

* Any assembly errors will also show in the “Capture Output” panel

Suggested Emulated CP/M 2.2 Environment

Editors:

* Crimson Editor

* Notepad++ (v6.7.5)
CP/M Emulator:

e CP/M 2.2 or C/M 3.0 on Peter Schorn’s “AltairZz80” SIMH-based
emulator

http://schorn.ch/altair.html
Z80 Assembler:
* SLR Systems’ Z8OASM (run this under CP/M)

http://www.s100computers.com/Software%20Folder/Assembler
%20Collection/Assembler%20Collection.htm

http://schorn.ch/altair.html
http://schorn.ch/altair.html
http://www.s100computers.com/Software Folder/Assembler Collection/Assembler Collection.htm
http://www.s100computers.com/Software Folder/Assembler Collection/Assembler Collection.htm
http://www.s100computers.com/Software Folder/Assembler Collection/Assembler Collection.htm

o ok~ W

Assembling with SLR’s ZBOASM under AltairZ80

Download altairz80 from Peter Schorn’s website. The website has
versions available for PC, Mac and Linux.

Configure a “cpom2” file (on your host computer) for altairz80 that
attaches “com2.dsk” and “j.dsk” as hdskO.

Create/Edit your “PROG.Z80” source file on your host computer.
Run altairz80. You’ll get a SIMH “sim >” prompt.
Type “do cpom2” to start CP/M 2.2. [use Ctrl-E later to exit to SIMH]

Use “R.COM” (on Drive I) to import SLR’s “Z80ASM.COM” from your
host computer and store it on Drive |.

On Drive |, Use “R PROG.Z80” to import your source file from the
host file system and store it on Drive I.

On Drive |, type “Z80ASM PROG/F” to assemble your program.

On Drive |, type “W SOURCE.LST” to export a copy of your
“PROG.LST” file back to the host file system.

Example 2: Output String to Console

Note: This will be an on-screen demonstration using Crimson
Editor, altairz80 and other applications:

1.

Assembling under Windows using George Phillips’ zmac
assembler.

Assembling under emulated CP/M 2.2 environment using Peter
Schorn’s altairz80 emulator and SLR’s ZBOASM assembler.

Tips & Tricks

Execution starts at 0x0000
Remember to initialize SP before doing any calls or push/pop

Stack grows downwards (and doesn’t store at initial value of
SP)

JR can only jump +127/-128. Use JP for longer jumps

Some instructions do NOT update flags - eg “LD A,(HL)”
Have a strategy about preserving registers - eg “caller saves”
Document your assembly code thoroughly

There are two interrupt inputs available: /NMI and /INT

The Z80 is Little Endian (16 bit values are stored LSB first)

You can assemble to a ROM address, but need to use EPROM
programmer to write the program to the chip.

You can’t store variables in ROM!

Key Reference Documents

Z-80 Instant Reference Card:

http://www.ballyalley.com/ml/z80 docs/Z80%20CPU%20Instant%20
Reference%20Card%20(Color).pdf

Z-80 Family CPU User Manual

http://www.ballyalley.com/ml/z80 docs/Z80%20Family%20CPU%20
User%20Manual%20(Feb%202002)(Zilog)(UMO008002).pdf

Rodney Zaks — How to Program the Z80

http://www.ballyalley.com/ml|/z80 docs/Programming%20the%?20Z-
80%203rd%20Edition%20(1980)(Rodnay%20Zaks)(Sybex).pdf

http://www.ballyalley.com/ml/z80_docs/Z80 CPU Instant Reference Card (Color).pdf
http://www.ballyalley.com/ml/z80_docs/Z80 CPU Instant Reference Card (Color).pdf
http://www.ballyalley.com/ml/z80_docs/Z80 Family CPU User Manual (Feb 2002)(Zilog)(UM008002).pdf
http://www.ballyalley.com/ml/z80_docs/Z80 Family CPU User Manual (Feb 2002)(Zilog)(UM008002).pdf
http://www.ballyalley.com/ml/z80_docs/Programming the Z-80 3rd Edition (1980)(Rodnay Zaks)(Sybex).pdf
http://www.ballyalley.com/ml/z80_docs/Programming the Z-80 3rd Edition (1980)(Rodnay Zaks)(Sybex).pdf
http://www.ballyalley.com/ml/z80_docs/Programming the Z-80 3rd Edition (1980)(Rodnay Zaks)(Sybex).pdf

Useful Websites

Documentation:

http://www.ballyalley.com/ml/z80 docs/z80 docs.html

Home of the Z80 CPU — Official Support Page:
http://www.z80.info/

Wikipedia Page on the Z80:
http://en.wikipedia.org/wiki/Zilog Z80

John Monahan’s guide to Peter Schorn’s altairz80:

http://www.s100computers.com/Software%20Folder/Altair%20Sim
mulator/Altair%20Software.htm

http://www.ballyalley.com/ml/z80_docs/z80_docs.html
http://www.z80.info/
http://en.wikipedia.org/wiki/Zilog_Z80
http://www.s100computers.com/Software Folder/Altair Simmulator/Altair Software.htm
http://www.s100computers.com/Software Folder/Altair Simmulator/Altair Software.htm
http://www.s100computers.com/Software Folder/Altair Simmulator/Altair Software.htm
http://www.s100computers.com/Software Folder/Altair Simmulator/Altair Software.htm

