
Introduction to Z-80
Assembly Language

Programming

VCF SE 3.0

Malcolm Macleod

3 May 2015

malcolm@avitech.com.au

mailto:malcolm@avitech.com.au

Topics Covered Today

• Overview of the Z80 – History & Features

• Pinouts and Architecture

• Instruction Set

• Assembly Language Example 1 - Toggle output port

• Development Environment

• For assembling under Windows

• For assembling under CP/M 2.2

• Assembly Language Example 2 – Output string to console

• Assembling Example 2 under Windows

• Assembling Example 2 in CP/M emulator

• Links:

• Reference Cards and Manuals

• Useful Websites

Overview of the Zilog Z-80 CPU

• Released in 1976

• 16-bit address space, 8 bit data bus

• Each instruction stored as 1, 2, 3 or 4 bytes

• “binary upwards compatible” with 8080 machine code – e.g. CP/M
2.2

• Developed by ex-Intel employees: Federico Faggin, Ralph Ungermann
and Masatoshi Shima.

• Less than 50% of all Z80 CPUs were produced by Zilog

• Second sourced (licensed) manufactures included: Mostek, Toshiba,
Sharp, NEC and SGS-Thomson

• NMOS versions were 2.5 MHz to 8 MHz

• CMOS versions are 4 MHz to 20 MHz

Improvements over the Intel 8080

Relative to the 8080 the Z80 has:

• An enhanced instruction set

• Two new 16-bit index registers (IX & IY)

• 4 new “alternate” 16-bit registers (AF’, BC’, DE’ and HL’)

• Two new interrupt modes (Modes 1 & 2)

• Register I = Interrupt vector base, for Mode 2 interrupts

• Register R = Refresh register

• A non-maskable interrupt input

• Single supply rail (+5V), rather than +5, -5 & +12

• Built in DRAM refresh (only 16k RAMs and smaller)

Z-80 Pin Configuration (40-Pin DIP)

Architecture

Source: http://en.wikipedia.org/wiki/Zilog_Z80#/media/File:Z80_arch.svg Created by Appaloosa,
subject to CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0/). Unmodified.

http://en.wikipedia.org/wiki/Zilog_Z80/media/File:Z80_arch.svg
http://en.wikipedia.org/wiki/Zilog_Z80/media/File:Z80_arch.svg
http://en.wikipedia.org/wiki/Zilog_Z80/media/File:Z80_arch.svg
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

Registers

Source: Zilog, Z80 Family CPU User Manual , Document Number UM008002-0202, Figure 2 (Page 3).
Unmodified.

Instruction Overview

The Z-80 can execute 158 different (published) instruction types,
including all 78 of the 8080A CPU.

The instructions fall into these categories:

• Load and Exchange

• Block Transfer and Search

• Arithmetic and Logical

• Rotate and Shift

• Bit Manipulation (Set, Reset, Test)

• Jump, Call, and Return

• Input and Output

• Basic CPU Control

Addressing Modes

Most instructions need to access data in external memory or
internal CPU registers. The various “addressing modes” describe
the way in which this can occur:

Addressing Mode Assembly Language Example

Immediate LD A,FFH -or- LD BC,1234H

Modified Page Zero
Addressing

RST 30H

Relative Addressing JR Z,EXIT

Extended Addressing JP EXIT -or- LD A,(TIMER)

Indexed Addressing LD A,(IX+9H)

Register Addressing LD A,B

Implied Addressing SUB 30H

Register Indirect Addressing LD A,(HL)

Flags

Notes:

1. When starting out, focus on learning how to use the C and Z flags, then S.

2. Flags H and N cannot be tested – they are only used for BCD arithmetic.

Example of Zilog’s instruction tables

Assembly Language Example 1 – Toggle Output

CYCLS EQU 40000D ; 10 msec = 4,000,000 divided by 100

PORT EQU 0FFH ; We're going to toggle output port 0FFH

 ORG 0000H ; Our program goes in low memory

START LD SP,8000H ; Initialise the stack

LOOP LD A,D ; Get current value of D

 XOR 1H ; Toggle the least significant bit

 LD D,A ; Save new value of D

 OUT (PORT),A ; Output new value of D

 CALL DELAY ; Delay for 10 msec

 JR LOOP ; Loop back to toggle again

DELAY LD BC,CYCLS/26D ; Number of loops required

DELLOOP LD A,B ; Put upper 8 bits of BC into A

 OR C ; Logical or A with lower 8 bits of BC

 DEC BC ; Decrement loop counter

 JR NZ,DELLOOP ; Loop unless BC=0

 RET ; Return to main program loop

 END START

Assembly Language Example 1 – Toggle Output

 19: - 9C40 CYCLS EQU 40000D

 20: - 00FF PORT EQU 0FFH

 21:

 22: - 0000 ORG 0000H

 23:

 24: 0+10 0000 310080 START LD SP,8000H

 25: 10+4 0003 7A LOOP LD A,D

 26: 14+7 0004 EE01 XOR 1H

 27: 21+4 0006 57 LD D,A

 28: 25+11 0007 D3FF OUT (PORT),A

 29: 36+17 0009 CD0E00 CALL DELAY

 30: 53+12 000C 18F5 JR LOOP

 31:

 32: 65+10 000E 010206 DELAY LD BC,CYCLS/26D

 33: 75+4 0011 78 DELLOOP LD A,B

 34: 79+4 0012 B1 OR C

 35: 83+6 0013 0B DEC BC

 36: 89+7+5 0014 20FB JR NZ,DELLOOP

 37: 96+10 0016 C9 RET

 38:

 39: - 0000 END START

Suggested Windows Environment

Editors:

• Crimson Editor (v. 3.72 – 2008) :

http://www.crimsoneditor.com/

• Notepad++ (v6.7.5)

http://notepad-plus-plus.org

Assemblers:

• George Phillips’ ZMAC (version 19sep2013):

http://members.shaw.ca/gp2000/zmac.html

• Matthew Reed’s Z80ASM command-line assembler:

http://www.trs-80emulators.com/z80asm/

http://www.crimsoneditor.com/
http://notepad-plus-plus.org/
http://notepad-plus-plus.org/
http://notepad-plus-plus.org/
http://notepad-plus-plus.org/
http://notepad-plus-plus.org/
http://members.shaw.ca/gp2000/zmac.html
http://members.shaw.ca/gp2000/zmac.html
http://www.trs-80emulators.com/z80asm/
http://www.trs-80emulators.com/z80asm/
http://www.trs-80emulators.com/z80asm/

Configuring Crimson Editor and ZMAC

Crimson Editor:

• Under Tools -> Conf. User Tools, for Hotkey “Ctrl+1”:

• Set Menu Text = zmac

• Set Command = [directory containing zmac]

• Set Argument = $(FileName)

• Set Initial Dir = $(FileDir)

• Use “.z80” as suffix for your source code file

ZMAC:

• To assemble, press Ctrl+1 from within Crimson Editor

• Assembled listing will appear as “.lst” file in the ./zout directory

• Any assembly errors will also show in the “Capture Output” panel

Suggested Emulated CP/M 2.2 Environment

Editors:

• Crimson Editor

• Notepad++ (v6.7.5)

CP/M Emulator:

• CP/M 2.2 or C/M 3.0 on Peter Schorn’s “AltairZ80” SIMH-based
emulator

http://schorn.ch/altair.html

Z80 Assembler:

• SLR Systems’ Z80ASM (run this under CP/M)

http://www.s100computers.com/Software%20Folder/Assembler
%20Collection/Assembler%20Collection.htm

http://schorn.ch/altair.html
http://schorn.ch/altair.html
http://www.s100computers.com/Software Folder/Assembler Collection/Assembler Collection.htm
http://www.s100computers.com/Software Folder/Assembler Collection/Assembler Collection.htm
http://www.s100computers.com/Software Folder/Assembler Collection/Assembler Collection.htm

Assembling with SLR’s Z80ASM under AltairZ80

1. Download altairz80 from Peter Schorn’s website. The website has
versions available for PC, Mac and Linux.

2. Configure a “cpm2” file (on your host computer) for altairz80 that
attaches “cpm2.dsk” and “i.dsk” as hdsk0.

3. Create/Edit your “PROG.Z80” source file on your host computer.

4. Run altairz80. You’ll get a SIMH “sim >” prompt.

5. Type “do cpm2” to start CP/M 2.2. [use Ctrl-E later to exit to SIMH]

6. Use “R.COM” (on Drive I) to import SLR’s “Z80ASM.COM” from your
host computer and store it on Drive I.

7. On Drive I, Use “R PROG.Z80” to import your source file from the
host file system and store it on Drive I.

8. On Drive I, type “Z80ASM PROG/F” to assemble your program.

9. On Drive I, type “W SOURCE.LST” to export a copy of your
“PROG.LST” file back to the host file system.

Example 2: Output String to Console

Note: This will be an on-screen demonstration using Crimson
Editor, altairz80 and other applications:

1. Assembling under Windows using George Phillips’ zmac

assembler.

2. Assembling under emulated CP/M 2.2 environment using Peter
Schorn’s altairz80 emulator and SLR’s Z80ASM assembler.

Tips & Tricks

• Execution starts at 0x0000

• Remember to initialize SP before doing any calls or push/pop

• Stack grows downwards (and doesn’t store at initial value of
SP)

• JR can only jump +127/-128. Use JP for longer jumps

• Some instructions do NOT update flags - eg “LD A,(HL)”

• Have a strategy about preserving registers - eg “caller saves”

• Document your assembly code thoroughly

• There are two interrupt inputs available: /NMI and /INT

• The Z80 is Little Endian (16 bit values are stored LSB first)

• You can assemble to a ROM address, but need to use EPROM
programmer to write the program to the chip.

• You can’t store variables in ROM!

Key Reference Documents

Z-80 Instant Reference Card:

http://www.ballyalley.com/ml/z80_docs/Z80%20CPU%20Instant%20
Reference%20Card%20(Color).pdf

Z-80 Family CPU User Manual

http://www.ballyalley.com/ml/z80_docs/Z80%20Family%20CPU%20
User%20Manual%20(Feb%202002)(Zilog)(UM008002).pdf

Rodney Zaks – How to Program the Z80

http://www.ballyalley.com/ml/z80_docs/Programming%20the%20Z-
80%203rd%20Edition%20(1980)(Rodnay%20Zaks)(Sybex).pdf

http://www.ballyalley.com/ml/z80_docs/Z80 CPU Instant Reference Card (Color).pdf
http://www.ballyalley.com/ml/z80_docs/Z80 CPU Instant Reference Card (Color).pdf
http://www.ballyalley.com/ml/z80_docs/Z80 Family CPU User Manual (Feb 2002)(Zilog)(UM008002).pdf
http://www.ballyalley.com/ml/z80_docs/Z80 Family CPU User Manual (Feb 2002)(Zilog)(UM008002).pdf
http://www.ballyalley.com/ml/z80_docs/Programming the Z-80 3rd Edition (1980)(Rodnay Zaks)(Sybex).pdf
http://www.ballyalley.com/ml/z80_docs/Programming the Z-80 3rd Edition (1980)(Rodnay Zaks)(Sybex).pdf
http://www.ballyalley.com/ml/z80_docs/Programming the Z-80 3rd Edition (1980)(Rodnay Zaks)(Sybex).pdf

Useful Websites

Documentation:

http://www.ballyalley.com/ml/z80_docs/z80_docs.html

Home of the Z80 CPU – Official Support Page:

http://www.z80.info/

Wikipedia Page on the Z80:

http://en.wikipedia.org/wiki/Zilog_Z80

John Monahan’s guide to Peter Schorn’s altairz80:

http://www.s100computers.com/Software%20Folder/Altair%20Sim
mulator/Altair%20Software.htm

http://www.ballyalley.com/ml/z80_docs/z80_docs.html
http://www.z80.info/
http://en.wikipedia.org/wiki/Zilog_Z80
http://www.s100computers.com/Software Folder/Altair Simmulator/Altair Software.htm
http://www.s100computers.com/Software Folder/Altair Simmulator/Altair Software.htm
http://www.s100computers.com/Software Folder/Altair Simmulator/Altair Software.htm
http://www.s100computers.com/Software Folder/Altair Simmulator/Altair Software.htm

