SECTION 1l INTRODUCTION

The standard software supplied with the FABRI-TEK MP12 consists of the fol-
lowing programs:

eSource Edit Utility
eAssembler

eBinary Loader
eDebugging Utility
eProcessor Diagnostic
eCross-Assembler

The software is distributed in object format on fan-fold paper tape except for the
Cross-Assembler which is supplied in source-listing form. Source listings for all
programs are provided in the deliverable MP12 documentation package.

MP12 software is designed for stand-alone operation with ateletype, Model 3320-3JA

or equivalent. The minimum equipment configuration required to support operation
with a teletype includes the following items:

ITEM PART NUMBER
MP12 Processor with Teletype Interface 999-4090-01
Teletype Modification Kit 117-0320-00

Chassis Assembly 258-0192-00, or equivalent
Power Supply 261-0125-00, or equivalent
ASR 33 Teleiype supplied by user

The standard software also supports operation with the following devices:
eKeyboard/Printer
eHigh Speed Paper Tape Reader

eHigh Speed Paper Tape Punch

The programming required to operate these devices presupposes standard MP12
interfaces.

2-1

SOURCE EDIT UTILITY

The FABRI-TEK MP12 Source Edit Utility (Edit) facilitates the preparation and
modification of symbolic assembly language source tapes. Edit is an interactive
program which enables the user to perform the following functions by way of the
teletype:

eConstruct a symbolic source tape.

elnsert, delete, replace, and modify statements in an existing source program,
and obtain a new source tape which incorporates the modifications.

eObtain a statement-numbered listing of the program being edited.

Eaiting is performed to update an existing source program punched on paper tape,
or to construct a new source tape. In the former case, editing is accomplished
with reference to a statement-numbered listing of the program. This listing may
be an assembly listing or a statement-numbered listing obtained from Edit.

Edit accepts two kinds of typeins from the teletype keyhoard, Statements and
Commands. Statements consist of a statement-number followed by the text of the
statement. Commands consist of a mnemonic command code and command para-
meters. All typeins are terminated by typing a carriage-return, ® ; Edit supplies
a line-feed and the next statement or command may then be entered. If an error is
discovered during a typein, typing a left-arrow deletes the previously typed
character; typing ESC reinitializes the line typein.

STATEMENTS

All statements entered from the keyboard are placed into an internal edit buffer.
Each statement entered is preceeded by a statement-number that specifies the
relative order of the statement in relation to all other statements. Statement-num-
bers need not be consecutive and the sequence in which statements are entered
is immaterial, however, statements are buffered in order of increasing statement
number and are always listed and dumped in that order. Statement numbers which
preceed each statement entered into Editmay take any of the following forms:

p.q

p.0

2-2

The terms p and q are integers in the range from 1 through 4095. The notation
p.q is used to denote the qm statement inserted after statement p. As special
cases, p and p.0 are the same, and the notation O.q denotes the qth statement
inserted before the first statement. For example, if statements 12 and 13 had
been entered previously, and the user wanted to insert two additional statements
between statements 12 and 13, he could type:

12.10 [Statement Text] ®
12.20 [Statement Text] ®

The statements 12 through 13 would then be ordered within the edit buffer as
follows:

Statement 12
Statement 12.10
Statement 12.20
Statement 13

An additional statement could be inserted between statements 12.10 and 12.20 by
typing:

12.15 [Statement Text] ®
The order of the statements would then be:

Statement 12
Statement 12.10
Statement 12.15
Statement 12,20
Statement 13

Typing a statement-number immediately followed by a carriage-return causes the
corresponding statement to be deleted from the edit buffer. For example, typing

12.15®
would cause statement 12.15 to be deleted.
A statement within the edit buffer can be replaced by another statement by simply
typing the same statement number followed by the text of the new statement. For
example, if a statement numbered 12.10 had previously been entered into the edit
buffer, typing

12.10 [New Statement Text]®

would cause the existing statement 12.10 to be deleted and replaced by the new
statement 12.10.

A special edit feature enables statements to be entered without the need to type
a statement number for each statement. This is accomplished by typing a second

23

carriage-return following the text of a statement. Edit types the next consecutive
four-digit statement number and the user may then type the text of the statement.

Example 1, below, illustrates edit statement typeins and is referenced in exam-
ples 2 through 5 in the following section.

EXAMPLE 1, Statement Typeins

ICH»0
18T 037/READ CHARACTER
JMP =1/

SNA /SKIP 1F N@T NULL

JMP ICH+1/NULL, IGN@RE

JMP I ICH/RETURY

10 AND MASK/REM@VE PARITY BIT
MASK,0177/CHARACTER MASK

? $/END

0.10/I¥PUT CHARACTER SUBR@UTINE

R >N —
.

COMMANDS

Edit commands are implemented as single, double, or triple letter mnemonics
followed by optional command parameters. All commands are terminated by
typing a carriage return, ® . Commands may be typed at any time during the

edit process in place of entering a source statement. If an error is detected,

Edit outputs a question mark (?) and the command is ignored. Typeouts, resulting
from a command, may be aborted by depressing the keyboard BREAK key.

In the following command descriptions, m and n represent statement numbers of

the general form p.q, where p and q are integers in the range 0 through 4095.
Square brackets { []) enclose optional command parameters.

INITIALIZE

The result of the Initialize command clears the internal edit buffer in prepara-
tion for edit input. The format of the Initialize command is as foilows:

1 ® Initialize Edit Buffer

LOAD

The Load command causes source statements to be loaded into the edit buffer
from the paper tape reader. The format of the Load command is as follows:

Lm®

2-4

The parameter m is the statement number to be assigned to the first source
statement entered. Succeeding statements are assigned consecutive statement
numbers and entered into the edit buffer. The load function is terminated when
a § statement is encountered; the $ statement is not entered into the edit buffer.

PRINT

The Print command causes specified statements within the internal edit buffer
to be listed on the teletype printer. The following is the format of the Print
command:

PIFl[m[,n]1® Print

The optional command letter F controls the format of the listing. For the P com-
mand, each statement is listed exactly as it was entered. For the PF command,
each statement is listed in the following format:

1. The statement number is printed in print positions 1 through 9 in the format
p.q.

2. If the first character of the statement is a slash (/), the statement is listed
beginning in print position 11.

3. If a symbol consisting of no more than six characters followed by a comma or
equal sign is present, the symbol is printed, left justified, in print positions
11 through 17. The remainder of the statement is listed beginning in print pos-
ition 18.

4. If a slash (/) is encountered prior to print position 34, the slash and the re-
mainder of the statement are listed beginning in print position 34.

The Print command is followed by the optional statement numbers m and n. If m
and n are not specified, the entire edit buffer is listed. If mis specified, state-
ment m is listed. If n is also specified, statements m through n, inclusive, are
listed.

If multiple lines of output fesult from the Print command, the statements are listed
in the following order:

1. All statements numbered O.p are listed first. Statement O.p precedes state-
ment 0.q if p<q.

2. All statements numbered p.q are listed after statement s and prior to statement
t if s<p<t. If g<r, then statement p.q is listed prior to statement p.r.

With reference to Example 1, the following examples illustrate the listings pro-
duced by the P and PF commands.

EXAMPLE 2, P Command

P5.10
0005.0010 AND MASX/REM3VE PARITY BIT
PS5, 6

0005 JMP ICH+1/NULL, IGN@RE
0005.0010 AND MASK/REMZVE PARITY BIT
0006 JMP I ICH/RETURN

P

0000.0010 /INPUT CHARACTER SUBRBUTINE
0001 ICH, 0

0002 I8T 037/READ CHARACTER
0003 JMP -1/

0004 SNA /SKIP IF N@T NULL

0005 JMP ICH+1/NULL, IGN@RE
0005.0010 AND MASK/REM@VE PARITY BIT
0006 JMP 1 ICH/RETURN

0008 MASK,0177/CHARACTER MASK
0009 $/END

EXAMPLE 3, PF Command

PF2, 4

oooz 19T 037 /READ CHARACTER
0003 JHP e=1 b :
0004 SNA /SALP IF N@T NULL
PF

0000.0010 /INPUT CHARACTER SUBRAUTIWE

0001 ICH, 0 i

0002 18T 037 /READ CHARACTER
0003 JMP =1 /

0004 SNA /SKIP IF N@T NULL
0005 JMP ICH+1 /NULL, IGN@RE
0005.0010 AND MASK /REAAVE PARITY BIT
0006 JMP I ICH /RETURN)
0008 MASK, 0177 /CHARACTER MASK
0009 % /END

DUMP

The Dump command causes specified statements within the internal edit buffer
to be output on the teletype punch. The format of the Dump command is as follows:

DIm[,n]]1® Dump

The Dump command parameters are identical to the Print command parameters.
The specified statements are sorted and dumped in the same manner as for Print
except that statement-numbers are not output. The dump is preceeded and followed
by 72 frames of blank tape. The Punch Control switch must be set to the ON posi-
tion immediately after the Dump command is issued and returned to the OFF posi-
tion as soon as the dump is complete.

EDIT-PRINT

The Edit-Print command causes the contents of the internal edit buffer to be
merged with the statements on an existing source tape and a listing produced
which represents the edited source program. The format of the Edit-Print com-
mand is indicated below:

EPIF] [P1LPoL..LP 1.1 ® Edit-Print
The optional command letter F controls the format of the listing in the same man-
ner as indicated for the PF command. The optional parameters P¢ through py are
represented in either of the forms m or m-n, where m and n are integers in the
range 1 through 4095 representing statement-numbers corresponding to statements
on the source tape to be edited. The appearance of a parameter of the form m speci-
fies that the mth statement on the source tape is to be deleted and is not to appear
on the listing. A parameter of the form m-n specifies that statements m through n,
inclusive, are to be deleted. Examples of Edit-Print commands are shown below.
EP3,15-18,23,27-31

EPF2-5,12,23,27-31

Prior to issuing an Edit-Print command, the following procedures should be
followed:

1. Set the Reader Control switch to the FREE position.

2. Position the source tape to be edited in the reader with blank tape under the
read heads.

3. Enter the Edit-Print command.

4. Set the Reader Control switch to the START position.

2-7

Edit reads the source tape and produces a listing which is structured as follows:

1. If the edit buffer contains a statement numbered p, then this statement is
listed in place of the pth statement on the source tape. The pth statement
on the source tape is not listed.

2. All statements within the edit buffer which are numbered p.q are listed prior
to the (p + 1)th statement on the source tape. If q<r, then statement p.q is
listed prior to statement p.r.

3. Consecutive statement numbers are printed for each statement as indicated
below:

0001 [First Statement]
0002 [Second Statement]
0003 [Third Statement]
etc.

The listing is terminated when a $ statement is encountered on the source tape.
The following examples illustrate the listings produced by Edit-Print commands.

EXAMPLE 4, Sample EP Listing

000! /INPUT CHARACTER SUBRAUTINE
0002 1ICH.O

0003 18T 037/READ CHARACTER
0004 JMP o=/

0005 SNa /SKIP IF N@T NULL

000€ JMP ICH+1/NULL, IGN@RE
0007 AND MASK/REM@BVE PARITY BIT
0008 JMP I ICH/RETURN

0009 MASK,0177/CHARACTER MASK
0010 S/END

EXAMPLE 5, Sample EPF Listing

0001 /INPUT CHARACTER SUBRAUTINE
0002 ICH. 0

0003 18T 037 /BREAD CHARACTER
0004 JMP e=1 /

0005 SNA /SKIP IF N@T NULL
0006 JMP ICH+1 /NULL, IGNORE

0007 AND MASK /REMBVE PARITY BIT
0008 JMP 1 ICH /RETURN

0009 MASK, 0177 /CHARACTER MASK
0010 3 /END

2-8

EDIT-DUMP

The Edit-Dump command causes a source tape to be punched which contains the

same statements listed via EP, except that the statement-numbers are not output.

The format of the Edit-Dump command is as follows:
ED[P1[,Pz[,...[,Pk]]]...]® Edit-Dump
The optional parameters py through pk are the same as those for Edit-Print.

Prior to entering an Edit-Dump command, the following procedures should be
followed:

1. Set the Reader Control switch to the FREE position.

2. Position the source tape to be edited in the reader with blank tape under the
read heads.

3. Enter the Edit-Dump command.
4. Set the Punch Control switch to the ON position.
5. Set the Reader Control switch to the START position.

The dump is preceded by 72 frames of blank tape and terminated when a § state-
ment is encountered on the source tape.

STORAGE REQUIREMENTS
Edit resides in memory locations 0000 through 21668. Locations 2167g through
75775 are used for the edit buffer. In case buffer capacity is exhausted during

processing, Edit types the message "'BUFFER FULL."” The user should then
dump and initialize the edit buffer prior to entering the next statement.

OPERATING PROCEDURES
The procedures for operating Edit are summarized below.
1. Load the object tape containing Edit with the Binary Loader.

2. When loading is complete, toggle the console Reset switch.

3. Toggle the Run switch. Edit outputs a carriage return to the teletype printer.
The user may then enter statements and commands via the teletype keyboard.

2-9

At the end of the Edit object tape are two additional records which may be
loaded to switch tape reading and punching operations to the high speed reader
and high speed punch, respectively. The first record may be loaded by toggling
the Run switch after the main portion of the object tape has been loaded. The
second record may be loaded by toggling Run after the first record has been
loaded.

When the first record is loaded, Edit is configured to accept input from the high
speed reader for Load, Edit-Print, and Edit-Dump operations. When the second
record is loaded, Edit is configured to use the high speed punch for Dump and
Edit-Dump operations.

2-10

ASSEMBLER

The FABRI-TEK MP12 Assembler translates symbolic assembly language pro-
grams into executable machine programs. Programs are prepared on paper tape,
using the MP-12 Source Edit Utility, and then input to the Assembler by way of

the teletype reader. The Assembler reads the source tape containing the program
and produces (1) a printed listing of the assembled program, and (2) a punched
object tape containing the machine version of the program. The object tape may
then be loaded using the Binary Loader, and the program executed on the computer.

Three separate passes, or readings of the source program tape, are required to
complete the assembly process. The function of each pass is indicated below.

Pass 1 — The Assembler reads the source tape and constructs a table of program
symbols for reference during passes 2 and 3.

Pass 2 — The Assembler reads the source tape and punches an object tape con-
taining the machine version of the program.

Pass 3 — The Assembler reads the source tape and prints a listing of the assembled
program.

Once pass 1 has been completed, passes 2 and 3 may be selected in any order or
repeated as desired. The assembler is completely self-initializing and a pass may
be restarted at location 0200 in case it is manually terminated.

ASSEMBLY LISTING FORMAT

A listing of the assembled program is printed during pass 3 of the assembly. The
format of the listing is indicated below.

Print position 1: Error flag
2: Blank
3-6: Location (octal)
7: Blank
8-11: Contents of location (octal)
12: Blank
13-16: Statement number (decimal)
17: Blank

18-72: Program statement

The text of the program statement is printed in the following format: If the first
character of the statement is a slash (/), the statement is listed in print positions

18 through 72. Otherwise, if a label is specified, the label is printed, left justi-
fied, in print positions 18-24. The remainder of the statement, beginning with the
next non-blank character, is listed beginning in print position 25. If a label is not
specified, the statement, beginning with the first non-blank character, is listed
beginning in print position 25. In all cases, if a slash is encountered prior to
print position 41, the remainder of the statement, beginning with the slash, is
listed beginning in print position 41.

The Assembler prints 52 lines per page; each page is numbered in decimal. Eleven
inch page separation marks, consisting of six dashed lines, are provided to aid
manual page separation. |f multiple lines of output result from the same statement,
the first line printed contains the statement text in print positions 18 through 72.
The remaining lines are truncated at print position 12.

ERROR FLAGS

If an error is detected in processing a statement, the statement is printed along
with an error flag in print position 1. The error flags and their meanings are in-
dicated as follows:

ERROR FLAG MEANING

S STATEMENT ERROR. An illegal or unexpected character
has been encountered in processing the current statement.
This error is indicated during assembly pass 3, and also
pass 1 if detected in processing an expression following an
equal sign (=) or asterisk (*).

D DUPLICATE DEFINITION. A label or equality symbol has
been duplicated in the current statement. The value assigned
at the first occurrence is used. This error is only indicated
during pass 1.

u UNDEFINED SYMBOL. A symbol appearing within the cur-
rent statement has not been defined as either a label, an
equality symbol, or an Assembler mnemonic. A value of zero
is assumed. This error is indicated during pass 3, and also
pass 1 if detected in processing an expression following an
equal sign (=) or asterisk (*).

| ILLEGAL COMBINATION. An illegal combination of oper-
ate instructions has been specified in the current statement.
This error is indicated during assembly pass 3.

P PAGE ERROR. A memory reference instruction operand
does not lie within either the current page or the base page;
the instruction cannot be assembled in the present form.

The highest current page address is inserted for the instruc-
tion operand address. This error is indicated during assembly
pass 3.

2-12

SYMBOL TABLE FULL. The program symbo! table has
overflowed available storage. The assembly continues,
but no further symbols are stored. This error is indicated
during assembly pass 3.

EXTENDED MNEMONIC SET

The following additional mnemonics are recognized by the assembler.

MNEMONIC

STL

GLK

STA

CIA

LAS

OCTAL CODE OPERATION
7120 Set Link to 1.
7204 Copy Link into AC bit 11.
7240 Set each bit of the AC to 1.
7041 Two's complement the AC.
7604 Load AC from switch register.

STORAGE REQUIREMENTS

The assembler occupies memory locations 0 through 3175g- Locations 31 76g —
757T7g are used for symbol table storage.

OPERATING PROCEDURES

The procedures for operating the assembler are described as follows:

1.

2

Load the assembler object tape using the Binary Loader.

When loading is complete, toggle the console Reset switch.

Enter the selected pass number into console switches 10-11 as follows:

Ready the teletype and position the tape containing the source program in the
reader with blank tape under the read heads. For passes 1 and 3, the teletype
punch should be turned OFF. For pass 2, the teletype punch must be turned

ON.

015 — Pass 1
105 — Pass 2
11 — Pass 3

Switches 0-9 are ignored.

2-13

5. Toggle the Run switch to commence processing. The assembler begins the
selected pass and executes a halt when an end-of-program statement (the $
statement) is encountered. A halt is executed at location 0177g with 0000g
displayed in the AC. The user may then select the next pass and repeat steps
3 through 5 above.

At the end of the Assembler object tape are two additional records which may be
loaded to switch tape reading and punching operations to the high speed reader
and high speed punch, respectively. The first record may be loaded by toggling
the Run switch after the main portion of the object tape has been loaded. The
second record may be loaded by toggling Run after the first record has been

loaded.

When the first record is loaded, the assembler is configured to accept source in-
put from the high speed reader for passes 1, 2, and 3. When the second record is
loaded, the assembler is configured to punch an object tape on the high speed

punch during pass 2.

2-14

BINARY LOADER

The FABRI-TEK MP12 Binary Loader is used to load binary object tapes ob-
tained from the Assembler or Debugging utility. Each tape is made up of a num-
ber of load records which contain address data, object data, and checksum data.
The Loader reads the object tape via the teletype reader and processes each re-
cord sequentially by placing the object data into the memory locations specified
by the address data.

PAPER TAPE

Data is recorded on paper tape by groups of holes arranged in binary format a-
long the length of the tape. The tape is divided into columns which run the length
of the tape, and channels which extend across the width of the tape; as illustrated
below.
CHANNELS
87654 321

L
FEED 00080°000 | ¢— COLUMN
DIRECTION .

A column can represent eight bits (one byte) of binary information; a channel
punch within a column denotes a binary one, and an unpunched channel repre-
sents a binary zero. For example. a column with a punch in channels 2, 4, and
8 would represent the binary quantity 10001010, or 21 2g.

2-15

TAPE FORMAT

A binary object tape consists of one or more records which are organized in ‘a se-
guential fashion along the length of the tape. Each record consists of a maximum
of 67, and a minimum of 1, consecutive tape columns. Blank tape may appear be-
fore, between, or after records. The arrangement of records on a binary object
tape is illustrated as follows:

FIRST RECORD

77

ADDITIONAL RECORDS

LAST RECORD |

END RECORD

RECORD ARRANGEMENT

RECORD FORMAT

The following illustrates the format of a binary load record.

CHANNEL

8 7 6 5 4 3 2 1
1 n 1
2
/ ADDRESS 3
, 4
LOAD RECORD FORMAT / &
0]
E
U
DATA 7
N
2n+3
2n+4
b——— CHECKSUM S

The first column of a load record contains a control punch in channel 7, followed
by a count (n) of the number of data words in channels 1 through 6. This count
excludes the address word and checksum word, and specifies a maximum of 31
(37g) data words. A count of zero indicates an end record and causes the loader
to discontinue processing. An end record is characterized by a tape column con-
taining a channel 7 punch only; the binary quantity 001000000, or 100g.

Address, data, and checksum words are formed from pairs of consecutive tape
columns as illustrated below.

(=]
o
(=]
-
-

HIGH LOW

L_ Second column, channels 1-6

First column, channels 1-6

The control column of a load record is followed by an address word which gives
the starting address of the data words to be loaded. If the record count is repre-

sented by n and the address by a, then the n data words following the address word
are inserted into memory locations a through a + n - 1, inclusive. Each data word

is assembled from two successive tape columns and placed into the proper memory
location. The data words within the record are followed by a checksum word which

2-17

represents the arithmetic sum of all columns in the record, excluding the check-
sum columns. The loader computes a checksum while loading the record and com-
pares the computed checksum with the record checksum after the record has been
loaded. In case of disparity, the loader halts processing and displays an error
code in the AC console display.

OPERATING PROCEDURES
The procedures for operating the MP12 Binary Loader are summarized below.

1. If the Binary Loader is not resident in memory locations 7702g through 7777g,
refer to the Loading the Binary Loader information.

2. Position the object tape to be loaded in the teletype reader with blank tape
under the read heads. Insure that the unit is powered, on-line, and the reader
switch is set to the START position.

3. Toggle the console Reset switch and enter 7777g into the PC via the console
switches.

4. Toggle the Run switch. The reader should begin reading tape; the loader will
halt when the load is complete, or an error condition is encountered, with one
of the following codes present in the AC console display:

HALT CODE MEANING

0000g END OF LOAD. The user may place a new tape in the read-
er and toggle Run to continue loading, if desired. Otherwise
the program just loaded may be executed by setting the PC to
its starting address and toggling Run.

02004 RECORD ERROR. The first column of a record does not con-

03003 tain a punch in channel seven, or contains a punch in channel
eight. Possible causes of this error are a wrong format tape, a
punch error, or a read error. Toggling Run causes the loader to
process the next record.

7777g CHECKSUM ERROR. The last record loaded contained a
checksum error and as a result, the loaded data does not cor-
respond to the tape data. Possible causes of this error are a
punch error or a read error. The record may be reread by manu-
ally repositioning the tape at the beginning of the last record
and toggling the console Run switch. Otherwise, toggling Run
causes the loader to process the next record.

2-18

LOADING THE BINARY LOADER

The Binary Loader occupies memory locations 7702g through 7777g. In the event
that the loader must be reloaded, a 14 word bootstrap program is used to load a
special tape containing the loader. The bootstrap program resides in memory loca-
tions 7662 through 7677 as listed below.

LOCATION CONTENTS

7662 7700
7663 1262
7664 3261
7665 6032 or 6012 for High Speed Reader
7666 7106
7667 7006
7670 7006
7671 6031 or 6011 for High Speed Reader
7672 5271
7673 6034 or 6014 for High Speed Reader
7674 7420
7675 5265
7676 3661
7677 2261

The procedures for loading the tape containing the binary loader are summarized
as follows:

1. Insure that the bootstrap program is installed in memory locations 7662g
through 7677g. If not, manually reload via the console switches.

2. Position the tape containing the loader in the teletype reader with blank tape
under the read heads. Insure that the unit is powered, on-line, and that the
reader switch is set to the START position.

3. Toggle the console Reset switch and enter 7662g into the PC via the console
switches.

4. Toggle the Run switch. The teletype should begin reading tape. The bootstrap
program will execute a halt with the PC set to 77025 when the loader is loaded.
Toggling Run will cause the binary loader to begin execution.

Once loaded, the Binary Loader is configured to use the teletype reader. The in-
put device may be switched to the high speed reader by manually changing the
contents of location 77555 from 6037g to 6017g-

DEBUGGING UTILITY

The FABRI-TEK MP12 debugging utility (Debug) is an interactive debugging
tool which aids program development and testing. Debug normally operates in
conjunction with a user program undergoing checkout, and provides a number of
functions which support the checkout activity. These functions are summarized
below.

eSet and clear execution breakpoints for a program under test.
eTransfer control to a program under test.

eDisplay and alter registers for a program under test.

eTrace program execution.

eDisplay and alter specified memory locations.

ePrint memory contents between specified locations.

eDump memory contents, between specified locations, on paper tape in binary
load format.

eFill memory, between specified locations, with a specified value.

eSearch memory, between specified locations, for a specified pattern.

COMMANDS

Commands to Debug are implemented as single letter mnemonics followed by a
maximum of four octal command parameters separated by commas. All commands
are terminated by typing a carriage-return, ® . Command parameters are unsigned
octal integers; if more than four digits are typed, only the last four are used. If

an error is detected during command processing, Debug types a question mark (?)
under the command line and the command is not executed. In case an error is dis-
covered during command typein, depressing the keyboard ESC key causes the com-
mand to be ignored. After a command has been processed, Debug positions the
teletype carriage at the beginning of the next line and a new command may

then be entered.

2-20

In the following command descriptions, the letters x, y, m, and n represent user-
entered octal values. Optional command parameters are enclosed in square brack-
ets ([]). The symbol ® denotes a typed carriage return.

SET BREAKPOINT

The Set Breakpoint command is issued with respect to a program under test and
causes a breakpoint to be set into a specified memory location. When the program
attempts to execute the instruction at the breakpoint location, control is transfer-
red back to Debug. Debug clears the breakpoint; preserves the contents of the ac-
cumulator, link, and PC for the executing program; and types out the breakpoint
number, breakpoint location, and the contents of the accumulator and link. The
format of the Set Breakpoint command is indicated below.

Bn, x® Set Breakpoint

The parameter n is the breakpoint number assigned by the user and may range from
0 to 7, enabling eight possible breakpoints to be set simultaneously. The para-
meter x specifies the location at which the breakpoint is to be inserted. Setting

a breakpoint causes any previous breakpoint with the same breakpoint number to
be cleared. The following example illustrates the setting of a breakpoint and the
typeout which occurs when the breakpoint location is executed. Note that the exe-
cution of a breakpoint location does not result in the execution of the instruction
at that location; the typeout represents conditicns existing prior to the execution
of the breakpoint instruction.

B7.,403® =—SET BREAKP@INT 7 AT LGCATI@N 0403
G400@® <———G? TP LOCATION 400
BP PC AC L {TYPE@UT WHEN BREAL-
0007 0403 1121 1 PAINT 7 1S5 EXECUTED

Debug uses memory location 0 for breakpoint processing. Programs executing under
Debug must not use this location.

CLEAR BREAKPOINT

This command results in the clearing of previously set breakpoints. The format of
the Clear Breakpoint command is indicated as follows:

C(n]® Clear Breakpoint

The optional parameter n is the number of the breakpoint to be cleared. If n is not
specified, all breakpoints are cleared.

2-21

EXAMPLE:

C7® <«—CLEAR BREAKPJINT 7
C® «=—CLEAR ALL BREAKPJINTS

GO TO PROGRAM

This command causes the accumulator and link, preserved from the last break-
point execution, to be restored and control to be passed to the test program. The
format of the Go command is indicated below.

G[x]® Go to program location

The optional parameter x is the address to which control is to be passed. If x is
not specified, control is passed to the location at which the last breakpoint was
executed. The Go command is usually preceeded by a Set Breakpoint command;
otherwise no return linkage to Debug is maintained.

EXAMPLE:

BO,215® -=—SIT BREAKPZINT O AT LE@CATIIN 0215
G210R =——GJ Td LICATION 0210
BP PC AC 1 {TYPEE&UT WAEN BREAK-
0000 0215 3172 | PJINT O IS EXECUTED
B0, 220@ =—SET BREAKXPAINT 0 AT L@CATIEN 0220
G® +———0G7 T# LAST BREAKPOINT L@CATI@N
B3P PC AC L {TYPEE’IUT WHEN BREAK-
0000 0220 0172 0 P@INT 0 IS EXECUTED

REGISTER DISPLAY AND ALTER

These commands enable the contents of the accumulator and link, preserved from
the last breakpoint execution, to be displayed and optionally changed. The for-
mats of the register display commands are indicated below.

A Display accumulator -
5 Display link register

When the command letter is typed, Debug types the contents of the specified reg-
ister. The user may then type a carriage return to terminate the display, or a new
value to replace the existing value, followed by a carriage-return. The link regis-
ter may only be set to the value zero or one.

EXAMPLE:

6543@ =—CONTENTS JF AC ARE 6543

0001 O®-==CONTENTS @F L ARE 1, CHANGE T@ O
Q000® =—CaUTENTS #F L ARE NIW 0

6543 6523®=CHANGE CANTENTS 8F AC T2 6523
6523@® =+=——CBNTENTS #F AC ARE N@W 6523

- rCr

2-22

TRACE PROGRAM EXECUTION

The Trace command causes snapshot typeouts to occur as program instructions are
executed. The format of the trace command is indicated below.

T(x] ® Trace program
The optional parameter x is the address to which control is to be passed and the

trace is to begin. If x is not specified, the trace begins at the location at which the
last breakpoint was executed, or the 1ocation at which the last trace was com-

pleted. Each trace typeout provides the following information:

1. The location of the instruction, i.e., the contents of the program counter (PG).
2. The instruction executed, i.e., the contents of the instruction register (IR).

3. The contents of the accumulator after execution of the instruction (AC).

4. The contents of the link register (L) after execution of the instruction.

5. For memory reference instructions, the effective address of the instruction oper-
and, i.e., the contents of the memory address register (MA).

6. For memory reference instructions, the contents of the effective address after
execution of the instruction, i.e., the contents of the memory data register (MD).

In contrast to breakpoint execution, the trace typeout represents conditions existing
after the execution of an instruction. An execution trace, once started, may be ter-
minated by depressing the keyboard BREAK key. The following conventions are
adopted with respect to trace processing:

1. Input/Qutput instructions are not traced and result in trace termination at the
location containing the instruction.

2. Tracing is terminated whenever a breakpoint instruction is encountered.

3. HLT instructions result in trace termination at the location containing the
instruction.

4. Auto-index addressing through locations 10-17 is legal.

When a trace is terminated by Debug, the value of the program counter is typed fol-

lowing the last line of trace typeout. The instruction at this location is not executed.

2-23

The following is a sample execution trace.

EXAMPLE:
T600® «—INITIATE TRACE AT LZCATIJN 0600

PC IR AC L MA MD

0600 7010 3251 1

0601 7620 0000 |

0603 4511 0000 | 1500 0604

1501 1022 0002 1 0022 (0002

1502 7010 4001 O

1503 7620 0000 O

1504 5700 0000 O 0604 4515

0604

DISPLAY AND ALTER MEMORY

This command enables the contents of a specified memory location to be displayed
and optionally changed to a specified value. The format of the Display and Alter
Memory command is indicated below.

Mx ® Display memory location x

The parameter x is the location to be displayed. The location and its contents
are typed on the next line as illustrated below.

EXAMPLE:

M32®) <————————DISPLAY LJCATION 0032
0032 1356 CBNTENTS @F 0032 ARE 1356

M400Q) +=————————DISPLAY L@CATIdN 0400
0400 7000 CANTENTS @F 0400 ARE 79000

After the contents of a location have been displayed, typing a carriage-return
terminates the display function. In place of a carriage-return, the user may type
a new value to replace the existing contents, followed by a carriage-return. This
procedure is illustrated as follows:

EXAMPLE:

M400® <¢—————DISPLAY L@CATIAN 0400
0400 7000 7777® CONTENTS ARE 7000, CHANGE
T® 7777
M400® -¢——————————DISPLAY LACATIOAN 0400
. 0400 7777 CONTENTS ARE N@W 7777

2-24

In place of typing a carriage-return after a location has been displayed or the con-
tents of a location changed, the user may type one of the following characters:

. Display next location

’ Display location again
/ Display last location

| Display indirect. Replace location by its contents and display.

The following example illustrates the use of the display control characters:

EXAMPLE:

M400@ = DISPLAY LACATI@N 0400

0400 7777 »<————C3INTENTS ARE 7777, TYPE
'"»" T@ DISPLAY NEXT

0401 7200 7600 .4—CONTENTS OF LOCATIGN 0401
ARE 7200, CHANGE T@ 7600
AND TYPE *." T@ DISPLAY
AGAIN

0401 7600 - ———— CONTENTS @F LOCATION 0401
ARE NOW 7600, TYPE "," T@
DISPLAY WEXT L@CATIJIN

0402 1073 I «<———CONTENTS @F LOCATI@N 0402
ARE 1073, TYPE "I T@
DI SPLAY INDIRECT

1073 3275 /g0 COWTENTS @F LOBCATISN 1073
ARE 3275, TYPE "“/" T@
DISPLAY PREVIQ@US LOCATI@N

1072 1144® «+——— CONTENTS @F LOCATION 1072
ARE 1144, TYPE CARRIAGE-
RETURN T@ TER4INATE DISPLAY

PRINT MEMORY CONTENTS

This command causes the contents of memory, between two specified locations,
to be listed on the printer. The format of the Print command is indicated below.

Px,y ® Print memory contents between location x and y

The listing originates on an even octal boundary and terminates at the specified
end address. The listing is printed with nine octal values per line, the first value
being the starting address of eight consecutive memory locations which contain
the next eight values listed. When in progress, the listing may be terminated by
depressing the BREAK key.

EXAMPLE:

P403, 4240®
0400 7006 0120 1146 7450 5302 7001 7650 5267

0410 4467 S264 4501 1036 1175 7640 5233 4473
0420 4500 1036 1162 7650 5227

225

DUMP MEMORY CONTENTS

This command causes the contents of memory, between two specified locations,
to be dumped in binary load format on the teletype punch. The format of the Dump
command is indicated below.

Dx,y ® Dump memory between locations x and y

The dump is preceeded and followed by 72 blank tape columns. Immediately after
the dump starts, the user should depress the punch ON button and tear off any
non-blank tape. When the dump stops, the user should depress the punch OFF but-
ton and tear off the punched tape. The tape should then be marked for future refer-
ence. The punched tape received via the Debug Dump command may be loaded
using the binary loader.

FILL MEMORY

The Fill Memory command enables the contents of memory, between two specified

locations, to be set to a specified value. The format of the Fill Memory command

is indicated below.
Fx,y[,m] ® Fill memory between locations x and y

The optional parameter m, if specified, is the fill value. If m is not specified, zero
is assumed.

EXAMPLE:

F4000, 4037®

Fa010, 4027, 7777®

P4000, 4037®
4000 0000 0000 0000 0000 0000 0000 ©0000 0000
4010 1171 1777 11T 717 O ANAT O vrtiv Mt 11
4020 TITTT 17T ORITT ORITT O OTIATOCTTIT NI 1IN
4030 0000 0000 0000 0000 0000 0000 0000 0000

SEARCH MEMORY

This command enables memory, between two specified locations, to be searched
for a specified pattern. The format of the Search Memory command is indicated
below.

Sx,yl.nl,ml1 ® Search memory between locations x and y

The optional parameter n, if specified, is the search value. If n is specified, the
optional parameter m is a mask to which the contents of each search location are
to be logically AND'ed prior to comparison with the search value. If n is not speci-
fied, 0 is assumed; if m is not specified, octal 7777 is assumed. Thus any of the
following forms of the search command are legal:

2-26

Sx,y Search memory locations x through y for zero
Sx.,y.n Search memory locations x through y for the value n

Sx,y,n,m Search memory locations x through y for a match to the
value n under the mask m

Whenever a match is detected during the search, the following typeout occurs:
XXXX yyyy

where xxxx is the location at which a match was found and yyyy is the contents

of location xxxx. The following example illustrates the use of the Search com-

mand to locate all JMP instructions (instructions with an op code of 5) in the
range of 7200 through 7400.

EXAMPLE
57200, 7400, 5000, 7000®

7224 5210

7226 5600

7227 5770

7244 5247

7266 5270

7267 5277

7271 5261

7276 5242

7305 5770

7312 5310

7313 5706

.7341 5714

7345 5742

STORAGE REQUIREMENTS

Debug occupies memory locations 56008 through 75778, Base page location 0
is used for breakpoint processing.

OPERATING PROCEDURES
The procedures for operating Debug are summarized below.

1. If Debug is not resident in memory, load the paper tape containing Debug
using the Binary Loader.

2-27

2. Toggle the console Reset switch and enter 5600g into the PC via the console

switches.

3. Toggle the Run switch, Debug outputs a carriage return to the teletype printer.
The user may then enter commands via the teletype keyboard.

At the end of the Debug object tape is an additional record which may be loaded
to switch Dump operations to the high speed punch. This record may be loaded
by toggling the Run switch after the main portion of the object tape has been
loaded.

If it is necessary to restart Debug, the user should be aware that any breakpoints
which may be set are automatically cleared. The contents of the accumulator, link,
and program counter, preserved for the program under test, are not altered. Initially,
the values of the PC, AC, and link are set as follows:

PC: 200g
AC: 0
LINK: 0

2-28

PROCESSOR DIAGNOSTIC 1. Load the Processor Diagnostic object tape using the binary loader.

2. When loading is complete, set the Switch Regiéter to 7777g, toggle the con-

The FABRI-TEK MP12 Processor Diagnostic is used to verify MP12 Micro- sole Reset switch, and toggle the Run switch. The program will cycle con-
processor operation. It is organized into 23 groups of test routines as indicated tinuously unless an error is detected. In the event of an error, the test routine
below. detecting the error will execute a halt instruction. The location at which the
HLT was executed may be used to reference the program listing for specific
1. SKP Test Group information regarding the error.
2. SZA Test Group
3. SPA Test Group
4. SMA Test Group
5. SZL Test Group
6. DCA-TAD Test Group
7. TAD Test Group
8. IAC Test Group
9. RAR Test Group
10. RTR Test Group
11. RAL Test Group
12. RTL Test Group
13. Group | Operate Test Group
14. OSR Test Group
15. NOP Test Group
16. Group |l Operate Test Group
17. AND Test Group
18. JMP Test Group
19. DCA Test Group
20. 1SZ Test Group
21. JMS Test Group
22. Indirect Addressing Test Group
23. Auto-Index Test Group

Each test group consists of a series of individual tests for specific processor
functions that fall under the general group heading. Each test function is identified
and documented by a comments block on the program listing. Tests are executed by
the processor in the order indicated above.

STORAGE REQUIREMENTS

The Processor Diagnostic cccupies memory locations Og — 7546g with an initial
starting address of 200g.

OPERATING PROCEDURES

The procedures for operating the Processor Diagnostic are summarized below.

2-29 2-30

CROSS-ASSEMBLER

The FABRI-TEK MP12 Cross-Assembler executes under IBM DOS and permits
programs written for the MP12 computer to be assembled on IBM 360/370 series
computers. Input to the assembler is in card form from the system unit §YS005.
A program listing is written on SYS007 and an object deck output on SYS006.
5YS002 is used as an intermediate storage file. The standard assignments for
the system units are as follows:

SYS002 — 2314 DASD

SYS005 — Card Reader

SYS006 — Card Punch or Magnetic Tape
SYS007 — Line Printer

All system units must be assigned for an assembly. In case an object deck is not
required, the statement

//ASSGN SYS006,IGN

must be specified. A sample input deck is depicted below and assumes that the
assembler has been previously cataloged in the core image library under the name
XMP12',

//JOB ASSEMBLE
//ABSGN SYS5005,--
//ASSGN SYS006,--
//ASSGN 8YS007,--
//EXEC XMP12
{Source deck terminated by a $ card}

It
/&

Object data is output on SYS006 in the following format:

1. The first four character field of each card contains the beginning octal address,
in hollerith code, of the data field which follows.

2. The address field is followed by a data field consisting of a maximum of 18
four-character data values; each data value represents an octal data word in
hollerith card code.

3. The data field is terminated by a blank column.

2-31

APPENDIX A
FABRI-TEK MP12 INSTRUCTION SET

MEMORY REFERENCE INSTRUCTIONS

MNEMONIC OPERATION EXECUTION OPERATION
SYMBOL CODE TIME* DESCRIPTION
AND Y 0 Direct-3.0 LOGICAL AND. This instruction generates the logical pro-
Indirect-4.5 duct of the contents of memory location ¥ and the contents of
the accumulator, The result replaces the previous contents of
the accumulator, The bit stored in the link register is not af-
fected by the LOGICAL AND operation.
TAD Y 1 Direct-3.0 TWO'S COMPLEMENT ADD. This instruction generates the
Indirect-4.5 arithmetic sum of the contents of memory location Y and the
contents of the accumulator. The result replaces the previous
contents of the accumulator, If the operation produces a carry
from the most significant bit position, the link bit is
complemented.
ISZ Y 2 Direct-3.0 INCREMENT AND SKIP IF ZERO. This instruction adds one
Indirect-4.5 to the contents of memory location Y. If the result is zero the
next instruction in sequence is skipped. The contents of the
link register and accumulator are not affected by the INCRE-
MENT AND SKIP IF ZERO operation.
DCA Y 3 Direct-3.0 DEPOSIT AND CLEAR ACCUMULATOR. This instruction
Indirect-4.5 copies the contents of the accumulator into memory location
¥ and then clears the accumulator to zero, The bit stored in
the link register is not affected by the DEPOSIT AND CLEAR
ACCUMULATOR operation.
JMS Y 4 Direct-3.0 JUMP TO SUBROUTINE. This instruction copies the address
Indirect-4.5 of the next instruction in sequence into memory location Y and
transfers program control to location Y+1. The contents of the
link register and accumulator are not affected by JUMP TO
SUBROUTINE operation.
JMP Y 5 Direct-1.5 JUMP. This instruction transfers program control to location
Indirect-3.0 Y. The contents of the link register and accumulator are not
affected by the JUMP operation.

*Time referenced in microseconds.

A-l

