
EINFÜHRUNG

Inhalt Seite

Über diesen Kurs 0-2

Zeitplan und Tests 0-3

| Kursbetreuung und Hilfen 0-4

Liste der Kursbetreuer 0-5

Zum AÄrbeitsablauf 0-6

Das Arbeitsmaterial 0-7

Über diesen Kurs

Unser "EINFÜHRUNGSKURS MIKROPROZESSOREN" be-
ginnt im März 198Bi und soi! ein Jahr cauern.

Sie werden mit den Lehrbüchern "Z-80 Einführung und

Programmierung" und '"Z-80 Interface-Technik und An-

wendung" arbeiten, die Bestandteile des Nanocomputer

Trainingskonzeptes der Fa. 5SGS-Ates sind.

Das Informationsangebot, das diese Bücher enthalten, ist

weit umfangreicher, als für einen Einführungskurs nötig

wäre. Wir haben Ihnen deshalb mit der Arbeitsmappe einen

Leitfaden gegeben, der Ihnen den Einstieg und die Arbeit mit

dem Material erleichtern soll. Sie werden diese mehr als 700

Seiten nicht Blatt für Blatt durcharbeiten müssen, nur die

für den Einstieg wesentlichen Passagen.

Dies gilt ganz besonders für den Band "Interface-Technik

und Anwendung", der zunächst nur wenig verwendet wird,

Ihnen aber später viele Möglichkeiten der Arbeit mit dem

Mikroprozessor eröffnet.

Zeitplan und Tests

Dar Kurs Ist in sechs Teile gegiledert. Dadurch wird die E
0
2

&

Fülle an Informationen in Überschaubare, einzeln abgeschlos-

sene Abschnitte aufgeteilt. Es ist sinnvoll, jeweils ein

Kursteil in einem Zuge durchzuarbeiten. Die Arbeitszeit

teilen Sie sich selbst ein.

Versuchen Sie, sich einen ganzen Tag innerhalb der zwei

Monate, die für jeden Teil vorgesehen sind, für diese Arbeit

freizuhalten. Erfahrungsgemäß kommen Sie so besser zum

Ziel, als mit kurzen Abschnitten, die sich über Tage und

Wochen hinziehen.

Die Kursteile schließen mit einem Test ab. Diese Tests

sollen Ihnen eine Bestätigung für den Erfolg Ihrer Arbeit

geben im Sinne eines Rückblickes oder eines Schlußstriches

unter einen Arbeitsabschnitt, nicht im Sinne einer Leistungs-

kontrolle.

Deshalb werde ich Ihre Tests nicht benoten, sondern nur

korrigieren und - falls erforderlich- auch Erklärungen und

Hilfen geben.

Kursbetreuung und Hilfen

Falls Sie bei ihrer Arbeit auf Frasen und Probleme stoßen.

die Sie allein nicht lösen können, bieten wir Ihnen folgende

Hilfen an:

Während der üblichen Bürostunden können Sie mich tele-

fonisch in der SRT erreichen:

Rolf Dräger Tel. 0911/61 20 45.

Für schriftliche Anfragen verwenden Sie einfach einen der

beiliegenden EM-Umschläge. Schreiben Sie Ihre Fragen nur

auf einen Zettel, formvollendete Briefe sind nicht nötig. Nur

bitte ich Sie, alle Zuschriften mit Namen und Rundfunkan-

stalt zu kennzeichnen, um Verwechselungen auszuschließen.

Bitte beschriften Sie auch einen Adressenaufkleber mit Ihrer

Anschrift für den Antwortbrief.

Oder wenden Sie sich an Ihren Fernkursbetreuer. In jeder

Rundfunkanstalt haben sich Kollegen bereiterklärt, Sie im

Rahmen ihrer Möglichkeiten zu unterstützen. Die Liste der

F ernkursbetreuer finden Sie auf der Seite 0-5.

Ich hoffe sehr, daß Sie eine dieser Kontaktmöglichkeiten

nutzen und wir so zu einer guten Zusammenarbeit kommen

werden.

Betreuer für den Fernkurs EM 01

12

HR

NDR

RB

SR

SFB

SDR

SswrF

ZDF

Rainer Bachmann, Sender Dil!berg, 8431 Postbauer

Tel. 0918/87 73

Lothar Sack, HA Techn. Betrieb FS, Floriansmühl-
str. 60, 8000 München 45, Tel. 089/38 06 22 81

Herr Zappe, Bildmeßtechnik, Bertramstr. 8,
6000 Frankfurt/Main, Tel. 0611/15 52 42 9

Walter Träger, ARD-Sternpunkt, Bertramstr. 8,
6000 Frankfurt/Main, Tel. 0611/59 05 56

Pe

Rudolf Janz, Meßtechnik Bild, Gazellenkamp 54,
2000 Hamburg-Lockstedt, Tel. 040/41 34 36 0

Gerhard Brich, HF Meßtechnik, Heinrich-Hertz-Str. 21
2800 Bremen

Werner Brill, Fernsehmeßtechnik, Am Halberg,
6600 Saarbrücken, Tel. 0681/60 23 91

Dieter Alfer, Hochfrequenztechnik, Masurenallee 8 - 14,

1000 Berlin 19, Tel. 030/30 82 11 8 (22 77)

Siegfried Bokelmann, Zentraltechnik, Neckarstr. 230,
7000 Stuttgart, Tel. 0711/28 82 19 4

Helmut Kleine, Meßtechnik, Landesstudio Mainz,
Postfach 37 40, 6500 Mainz, Tel. 06131/30 23 05

Werner Blum, FS/PT-BT, Hans-Bredow-Straße,
7570 Baden-Baden, Tel 07221/27 62 68 2

Engelbert Günter, Studio Bonn, Langer-Graben-
Weg 45 - 47, 5300 Bonn-Bad Godesberg, Tel. 0228/88 61

Zum Arbeitsablauf

Sie finden genaue Angaben Über den ÄArbeitsabiauf zu jedem

Abschnitt hier in der Arbeitsmappe, Die von den Lehr-

büchern vorgegebene Aufteilung in theoretische und prak-

tisch-experimentelle Arbeiten, gibt Ihnen große Freizügig-

keit in der Wahl des Arbeitsplatzes und der Arbeitszeit. Da

Sie den Nanocomputer nur für die praktischen Arbeiten

brauchen, genügt oft auch eines der Bücher, um bei einer

günstigen Gelegenheit für den Fernkurs zu arbeiten.

Die vorgegebenen Bearbeitungszeiträume von zwei Monaten

pro Kursteil sind Richtwerte, Sie können Ihre Tests gern

früher abschicken.

Das Arbeitsmaterial

Jeder Kursteilnehmer erhält als Sturtenmateria::

l. Lehrbuch Band i

Z-80 Kinführung und Programmierung

2. Lehrbuch Band 3

Z-80 Interface-Technik und Anwendung

3. SRT-Arbeitsmappe

Im Laufe des Kurses ergänzen wir die Arbeitsmappe und

schicken Ihnen Programmformulare und eine Befehlsliste.

Für die praktischen Arbeiten stellt Ihnen die Rundfunk-

anstalt einen Nanocomputer. Diese Geräte sind mit eigenem

| Begleitmaterial versehen, das Sie nach Abschluß des Kurses

zusammen mit dem Gerät wieder abgeben müssen. Es

besteht aus folgenden Teilen:

Technisches Handbuch (englisch) mit Schaltbildern

Nanocomputer Bedienungsanleitung (deutsch)

Nanocomputer NC-Z Software DN 314 (englisch)

Nanocomputer NE-Z Software DN 340 (englisch) F
u
n

Bitte überprüfen Sie das Material auf Vollständigkeit.

%

1, Teil

Bearbeitungszeitraum:

April, Mai 1981

Inhalt Seite

Übersicht 1-2

Sprungmöglichkeiten 1-3

Kapitel 1 und 2, Anleitung 1-4

Weitere Übungsaufgaben 1-5

Lösungen dazu 1-6

Kapitel 3, Anleitung 1-7

Kapitel 4, Anleitung 1-9

Kapitel 5, Anleitung 1-11

Zur Schreibweise der Adressen 1-12

1. Test 1-13

1. Teil - Übersicht

5
& im ersten Teil bearoeiten Sie die “apitel 1 — 5 im Lehrbuch

2-80 Zinführung und Programmierung. Es geht hierin zu-

nächst einmai um die wichtigsten Grundbegriffe der Com-

putertechnik und ein erstes Kennenlernen des Nanocom-

puters.

Die Kapitel 1 — 3 stellen die Einführung für den Anfänger

dar. Vieles davon wird Ihnen bereits aus der Digitaltechnik

bekannt sein, Sie werden zügig vorankommen.

Die Kapitel 4 und 5 bringen Ihnen erste Versuche mit dem

Übungsgerät, Sie lernen auch schon einige Befehle des Z-80

kennen.

Jedes Kapitel ist eine in sich geschlossene Einheit mit

Vorschau und Zusammenfassung in Form einiger Fragen.

Dadurch ergibt sich eine Gliederung des Lernstoffes und die

Möglichkeit nach Unterbrechungen an das vorangegangene

Kapitel anzuschließen. Bitte lesen Sie zunächst weiter in der

Arbeitsmappe.

Sprungmöglichkeiten

Wenn Sie bereits über die Grundbegriffe der TComputer-

technik Bescheid wissen, soliten Sie folgende Möglichkeiten

zur Arbeitserleichterung nutzen:

Jedes Kapitel schließt mit einem Rückblick in Form von

Fragen über den Inhalt und den Antworten dazu. Diese

Fragen geben nach meiner Auffassung ein wirklich ehrliches

Bild des Inhalts wieder und gestatten Ihnen deshalb selbst zu

beurteilen, ob Sie ein Kapitel durcharbeiten müssen, oder ob

Sie gleich zum nächsten übergehen können. Möglicherweise

können Sie die ersten beiden Kapitel auf diese Weise

überspringen.

Kapitel 1 und 2, Anleitung

Lesen Sie diese Kapitel gründlich durch und versuchen Sie,

die Fragen im Rückblick seibst zu beantworten. Im Hexa-

dezimal-Code sollten Sie keine besonderen Geheimnisse

suchen. Es ist lediglich eine vereinfachte Schreibweise für

die Bitmuster der Binärzahlen. Die Kunstziffern A bis F hat

man nur deshalb eingeführt, weil man damit alle 16

Kombinationen einer Gruppe von 4 Bit mit einstelligen

Ziffern kennzeichnen kann. Auf der nächsten Seite (1-4)

finden Sie noch weitere Übungsaufgaben zur Zahlenumwand-

lung.

Weitere Übungsaufgaben zur Zahlenumwandlung

a u 2 m alarm (Bearbeitung freiwillig)

Wandeln Sie mit Hilfe der Tabelie auf 5. 13 folgende

Bitmuster in Hexzahlen um:

00011000 AH

11101001 ESRH

01001101 HDN
10100111 NzH a

2
0
 8

Finden Sie zu folgenden Hexzahlen das zugehörige Bit-

muster:

e. F9H 144A AUcA

f. AH Koma AVAO

g- 03H 0000 grAA

Bun AA

Geben Sie zu den folgenden Hexzahlen jeweils die voran-

gehende und die nachfolgende Hexzahl an:

I. BFH OREHRBoH

L_ösungen zu den Übungsaufgaben

b. m 9H

C. 4 DH

d. A7H

e. ı111100]1

f. 00011010

Q. 00000011

h. 10111011

v
.

“ BEH,COH

ij... 2BH,2DH

Kapitel 3, Anleitung

Nun geht es ganz konkret um den Z-80 Mikroprozessor.

Lesen Sie dieses Kapitel zunächst nur bis zum Abschnitt

"Einige Z-80 Befehle" auf S. 37. |

Hier nun noch einige Ergänzungen zu den Registern der

CPU:

Die Allzweck-Register der CPU sind nur eine — wenn auch

sehr nützliche — Zugabe des Z-80 Mikroprozessors. Ihre

Funktion könnte auch ein bestimmter Bereich des Arbeits-

speichers (RAM) übernehmen, nur ergeben sich durch die

Anordnung der Register in der CPU besonders kurze Befehle

und Ausführungszeiten für den Datenaustausch. Diese

CPU-Register müssen beispielsweise nicht über 16-Bit

Adressen angesprochen werden. Sie werden diese Register

sehr häufig verwenden. Auf der nächsten Seite finden Sie ein

Schema der Z-80 CPU, das Ihnen die Orientierung erleich-

tert. Sie arbeiten praktisch nur mit dem Registersatz RS (A,

B,C,D,E,H,L), der alternative Registersatz ARS wird im

Zusammenhang mit Programmunterbrechungen interessant.

RS ARS

A F A' F'

B ı Cc | B'ı cC
D'E | Do: E
H'L)| Hi

8 Bit -— Register

z BO

CPU
Taktzyklus:

O4us

IX

IY

SP
PC

16 Bit Register

Arbeiten Sie nun auf S. 37 weiter. Die Darstellung "(addr.)"

Adresse schließlich nur die "Hausnummer" eines Speicher-

platzes ist. Linmal wird die "Hausnummer" verändert, im

anderen Fall mit "(addr.)" wird der Inhalt dieser Speicher-

zelle, also das, was unter der "Hausnummer" zu finden ist,

verändert.

Der Abschnitt "Befehls-Byte-Terminologie" auf S. 38 enthält

einen Druckfehler:

Es mußheißen LD < B2 > <B3> „A.

Die Fragen 2, 3 und 5 im Rückblick 5. 41 erfordern ein

Nachschlagen im Text, niemand wird so etwas aus dem Kopf

beantworten können.

Kapitel 4, Anleitung

An diesem Kapitel gibt es einiges zu streichen:

Bitte streichen Sie folgende Abschnitte:

Der Nanocomputer $5. 44, 45

ID und DP S, 52, 53, 54, 55 (wird später behandelt)

Regeln zum Versuchsaufbau S. 58, 59, 60 oben (wird v
n

ebenfalls später behandelt)

4. 1. Schritt, 2. Schritt, S. 68, 69 (die Gefahr einer Be-

schädigung der Speicherbausteine ist zu groß)

Beginnen Sie nun mit der Bearbeitung dieses Kapitels. Die

Erklärung der Tastatur wird am Schluß des Kapitels in den

Versuchen noch durch Beispiele ergänzt, außerdem sollten

Sie auch im Anschluß daran die Beispiele aus der Bedie-

nungsanleitung ab 5. 1/7 einmal durchspielen.

Aber nun zunächst einmal zum Text dieses Kapitels. Die

Seite 57 enthält zwei Fehler: Im oberen Teil heißt es: Seine

Übertragungsgeschwindigkeit beträgt 110 Baud. Dieser Wert

stimmt nicht, das Betriebssystem legt 600 Baud fest, die

Baudrate kann jedoch beliebig verändert werden (siehe

Bedienungsanleitung Seite 15).

Der zweite Fehler betrifft die Experimentier—Platine. Im

letzten Satz der Seite 57 heißt es, die äußeren Gruppen der

Anschlüsse wären mit +5 Volt und Masse verbunden. Das

stimmt nicht, die Anschlüsse sind frei.

Die beiden Adressen für die Testprogramme auf Seite 70

iauten:

MEMTUT ADC

CONTST FB43

Bitte denken Sie auch an die Beispiele in der Bedienungsan-

leitung, dort werden die Tastatureingaben noch einmal

Schritt für Schritt angegeben.

Kapitel 5, Anleitung

Wenn Sie die ersien Kapitel Üübersprungen haben, finden Sie

hier noch einmal eine Zusammenfassung der bisher angespro-

chenen Z-80 Befehle und einige Wiederholungen aus dem

Kapitel 2.

Den Text auf S. 75 ab "Ist ein Programm ..." sollten Sie mit

Vorbehalt lesen, die "Handassemblierung" eines Programms

ist bei weitem nicht so schwierig, wie es hier dargestellt

wird. Sie werden diese Erfahrung selbst noch machen, denn

schließlich ist das eines der Ziele unseres Lehrgangs.

Die auf S. 76 dargestellte Form der Programmaufzeichnung

ist heute fast überall eingeführt, nehmen Sie diese Dinge

hier zunächst einmal zur Kenntnis, später werden Sie die

Bedeutung noch kennenlernen.

Bitte nehmen Sie sich Zeit für die Versuche zum Kapitel 5.

Hier wird noch einmal schön langsam und ausführlich die

Eingabe in den Nanocomputer erläutert. Ganz nebenbei

lassen Sie auch schon erste Programme ablaufen und lernen

dabei weitere Z-80 Befehle kennen. Blättern Sie in Zweifels-

fällen zurück oder lesen Sie die Bedienungsanleitung, falls

Sie über die Bedeutung der Eingabetasten zusätzliche Infor-

mationen brauchen. Arbeiten Sie möglichst nicht mit der

RESET-Taste. Diese löscht die CPU-Register und damit die

Ergebnisse. Zur Unterbrechung eines Programms verwenden

Sie besser die BREAK-Taste, die Sie ohne Veränderung der

CPU in das Betriebssystem, also auf die Anzeige, zurück-

bringt.

Zur Schreibweise der Adressen

Sie haben bereits gelernt, daß der Mikroprozessor manche

Befehle nur ausführen kann, wenn er in den nachfolgenden

Befehlsbytes eine Adresse vorfindet. Da nur jeweils ein Byte

in einer Speicherzelle Platz findet, müssen Adressen, die aus

2 Bytes bestehen, geteilt und nacheinander eingegeben

werden. Welche Hälfte kommt zuerst? Für den Z-80 gilt,

daß stets zuerst das I1_O-Adreßbyte, dann das HI-Adreßbyte

im Speicher stehen.

Z. B.: Es lautet ein Befehl: Springe zur Adresse 012 3. Der

Objekt-Code heißt: C 3, 23,01.

Für den Z-80 müssen Sie also die Schreibweise der Adresse

umkehren. Nicht jedoch für den Mnemonik-Code. Dort

finden Siee C3,23,01 entspricht JPO123H.

Falls im Moment der Programmerstellung die Sprungadresse

noch nicht festgelegt ist, schreibt man häufig auch:

C3,<B2> ,<B3> _JIP<B3> ‚<B2>

Dieses Verwirrspiel soll Ihnen nicht etwa das Leben schwer

machen, hier wird lediglich darauf hingewiesen, daß im

Befehlscode die Reihenfolge für Adressenangaben mit L O

vor HI vorgeschrieben ist.

} n
en
mn
mm
en

P
r
e
m

!
en
 e

re
ne
nn
r

a
m
e

a
n

;
}

i
{

j
$

L eo R u 3
1 T Ze ® ? re $. I;

5
an 2 wa ei ar Rs: van rn wm Wr RET — u. _ — wie wir

u ® e st e
BOT en

R

ii Bitte analysieren Sie das folgende Programm.

Welche Wirkung hat es?

Speicheradresse Objekt-Code Quelle-Code

100 3E L .M®LDA, 00H

00- <00>

3C INC A

32 LD(0109H), A

09 <L0>

01 <HI >

C3 JP 0102H

02 <L0>

o
o

co

oo

oo

co

0
2

©

©

=

a

m

a

a

o
o

oO
co

59

©

5

©

OO

Ss
oa

ut

>

WW
N

\ Pen “ £ En Fa . vw. Fr / / „* , Fe E
Ü Ä L E FR vg { > \/ F en

Fa

Ä R % io 8 .: fie # Ir BL ı

IIPER Tin ak Ta * ne , Er I yrr EI TS Lea

$

a

— ET m — — —— —— —— — | —— — — — — —n Da

—

\- 5 > x R %
r la & 1A u ge 5 © Po 7 ee ATS G al. ta, a

a EA ar
an

1. Test Korı_Bleumy _ SDR.

® ”

1.3

1.4

1.5

Name der Rundfunkanstalt

Wie lautet sie Hexzahl für inigendes Bitmuster?

110/019110100011

____. D)5k3___H

Nennen sie die allgemein verwendbaren

8-Bit-Register des Z-80 Mikroprozessors.

PR RB c r Y_ En mn en en am en mn m me mn me m me en me ma

Die Anzeige des Nanocomputers zeigt 0425 00

und es leuchtet de MEM-LE D. Was müssen Sie

eingeben, um den Inhalt der Speicherzelle 0401

zur Änzeige zu bringen?

—— tim um m een Ge GUAM UREEEE (EMiEED Mei SUBmme (erriiih AMD Ui GEM (mine Wriuuie MM SMaMEm seen (em TU Me in Fiemn Femeen

Semadp mine Teure SUMTEER SUMiib SUMME SUMME GIMEEN SEM HMMMEp AED ITEM GM win AMBME AMEe Armen SM AMEMHBE SBMbEREM: SM SWHMM. SMEWAME WAHREN SM) WEM MEERES ABM Mermens

Ist es möglich, die Speicherzelle FB 4 0 H Ihres

Nanocomputers mit F 7 H zu laden?

jlnein - Begründung: Km beyech L-
GUSRER CiEmEn Min Geil STimib GUmmiuD Seimmemm AMUHEi: CIE Subtpem © Simumme mail Semi MUMBAEE OMMEE dem

Bitte schicken Sie uns einen Adressenaufkleber

mit Ihrer Anschrift für den Antwortbrief mit.

1. Test - Lösungsblatt

1.1

1.2

1.3

1.4

1.5

Dieses Programm besteht aus einer Zählschleife, in

der der Akkuinhalt bei jedem Durchlauf um eins

erhöht wird. Der dabei erreichte Zählerstand wird bei |

jedem Durchlauf in der Speicherzelle 0109 abge-

speichert. Der erste Befehl setzt den Akku auf den

Wert Null, er sorgt für eindeutige Anfangsbe-

dingungen.

Die Hexzahl lautet D5AFH.

Im Z-80 gibt es folgende 8-Bit-Register zur all-

gemeinen Verwendung:

B,C,D,E,H,L,B', C', D', E, H', I,

Es ist nacheinander einzugeben:
\ ®.

x
% 0,401,LA.

Nein, denn diese Adresse gehört zum ROM-Bereich.

2. Teil

Bearbeitungszeitraum:

Juni, Juli 1981

Inhalt seite

Übersicht 2-2

ö Sprungmöglichkeiten 2-3

Kapitel 6, Anleitung 2 -4

Kapitel 6, Hinweise zu den Experimenten 2-5

 Korrekturblatt | 2-6

Kapitel 7, Anleitung 2-7

Ergänzungen 2-8

Die Bedeutung des Stack 2-10

Tabelle der Adressierungsarten 2-12

2. Test 2-14

2. Teil - Übersicht

Im zweiten Teil bearbeiten Sie die Kapitel 6 und 7 in Ihrem

Lehrbuch Band I. Haupttherna sind die verschiedenen Ad-

ressierungsarten des Z-80 Mikroprozessors. Sie werden dabei

viele neue Begriffe kennenlernen, die ganz grundsätzliche

Bedeutung für alle Mikroprozessor-Systeme und Pro-

. grammiervorhaben in Maschinensprache haben.

Wir werden auch wieder einige Passagen im Buch aussparen,

die für uns unbedeutend sind, bitte halten Sie sich deshalb an

die Vorschläge in der Arbeitsmappe.

n
m

| Sprungmöglichkeiten

Folgende Erleichterungen möchte ich Ihnen vorschlagen, falls

Sie besonders wenig Zeit zur Verfügung haben, oder bereits

genügend Erfahrung im Umgang mit Mikroprozessoren be-

sitzen:

1. Beginnen Sie mit den Experimenten zu Kapitel 6 auf Seite

108. Der entsprechende Abschnitt in der Arbeitsmappe

beginnt auf Seite 2-5.

2. Bearbeiten Sie anschließend das Kapitel 7 ab Seite 137

(Arbeitsmappe ab Seite 2 - 7).

3. Überspringen Sie den Rückblick (Seite 150 — 154) und

gehen Sie gleich weiter zu den Experimenten auf Seite 154

(Arbeitsmappe Seite 2- 11).

.
.
.
-
.
.
.
.

8

Kapitel 6, Anleitung

Kapitel 6 beginnt mit einer Erläuterung zum Aufbau des

Befehls-Codes und der Bedeutung der Bits innerhalb eines

Befehls-Bytes. Diese Betrachtungen haben für uns nur ge-

ringen Nutzen, da wir im Hexcode arbeiten, die innere

Struktur des Z-80 Befehls aber auf dem Octalcode aufbaut

. und deshalb der logische Zusammenhang innerhalb der

| 3-Bit-Registercodierung teilweise verlorengeht. Deshalb

möchte ich Ihnen die Bearbeitung der Seiten 90 bis 101

freistellen. |

Auf Seite 91 unten bei "Anmerkung": sind Klammern ver-

gessen worden. Es muß heißen: (HL)

Nun zu dem sehr wichtigen Abschnitt über die Adressierungs-

arten ab Seite 102:

Viele Mikroprozessoren verwenden mehrere Adressierungs-

arten. Damit wächst die Flexibilität für den Programmierer.

Besonders vielseitig ist hierin der Z-80, nahezu alle Adres-

sierungsarten, die bei anderen Mikroprozessoren vorkommen,

sind in diesem System enthalten. 5o kommt Ihnen die

Arbeitszeit, die Sie hier investieren, auch zugute, wenn Sie

einmal ein anderes System kennenlernen wollen.

Bitte arbeiten Sie diesen Abschnitt durch. Zu den Experi-

menten folgen Hinweise auf der nächsten Seite.

Kapitel 6, Hinweise zu den Experimenten

Die Experimente ab Seite 108 sind wichtig für das Verständnis

der Adressierungsarten, sie geben Beispiele für die verschie-

_ denen Möglichkeiten. Erwarten Sie aber bitte noch keine

praxisbezogenen Anwendungsfälle, im Moment stehen wir

noch am Anfang und müssen uns deshalb mit diesen sehr

. theoretischen Betrachtungen auseinandersetzen. Die ersten

Ansätze für die praktische Verwendung liegen in den Zeit-

schleifenprogrammen in Versuch 3. Da der Mikroprozessor

quarzgesteuert ist, lassen sich mit Hilfe von Zeitschleifen

sehr exakte Zeitverzögerungen einstellen.

Bild 6 — 6 auf Seite 118 enthält einen Fehler. Die richtige

Darstellung finden Sie auf dem nächsten Blatt ($. 2 - 6).

Star

stelle

Register B auf

00

 i
stelle

Register C auf

00

 I
decrementiere

Register C

decrementiere

Register B

nein

gehe ins Nano-!

computer:

Operatwns-

system zuruck
Korrekturblatt zu Bild 6-6 auf Seite 118, Band I.

Kapitel 7, Anleitung

Kapitel 7 beginnt mit der Erklärung der Zweierkomple-

ment-Darstellung, einem Thema, das ich Ihnen im Rahmen

dieses Einführungskurses ersparen möchte. Im Prinzip geht es

dabei um eine Möglichkeit, negative Zahlen darzustellen. Wir

kommen später noch darauf zurück.

‘Gehen Sie gleich bis zur Seite 137. Bearbeiten Sie den

Abschnitt: "Die Z-80 Adressierungsarten" zunächst nur bis

zur Seite 140. Sie bekommen für die darauf folgenden

Abschnitte noch Ergänzungen auf Seite 2 — 8 in der Arbeits-

mappe.

.
.
 „

Erläuterungen zur indizierten und relativen Adressierung:

Diese beiden Adressierungsarten geben die Zieladresse in der

Form eines Abstandswertes an, im Computerdeutsch heißt das

"Distanzbyte". Unterschiedlich ist bei diesen Verfahren nur.

der Ausgangspunkt, von dem aus der Abstand gerechnet wird:

_ Bei der indizierten Adressierung steht der Ausgangspunkt als

"echte" Adresse in einem der 16-Bit Indexregister IX oder IY.

- Bei der relativen Adressierung ist der Ausgangspunkt der

_ Wert des Programm-Counters, der nach dem betreffenden

 Befehi erreicht ist.

Die Bestimmung des Abstandswertes ist für beide Adres-

sierungen gleich: |

In Vorwärtsrichtung, also in Richtung aufsteigender Adressen,

wird der Abstand ausgezählt und ganz normal im Hex-Code

angegeben.

Beispiel?

Zieladresse | 0427 v

Ausgangspunkt - 041B

Distanzbyte d uC

In Rückwärtsrichtung, in Richtung fallender Adressen, muß

"rückwärts" gezählt werden, denken Sie hierbei an einen

Kilometerzähler, den Sie vom Stand 00 an, rückwärts drehen:

. 00, 99, 98, 97 usw. |

In der Hex-Schreibweise sieht das folgendermaßen aus: O0,

FF,FE,FD,FC,FB,FA,F9 Ousw

Diese Zahlen sind nun die Zweierkomplement-Darstellung der

entsprechenden negativen Zahlen, die sich als Abstandswerte

in '"Rückwärtsrichtung" ergeben. An dem Wert des höchst-

wertigen Bits (Bit 7) im Distanzbyte erkennt der Prozessor,

ob das Ziel in Vorwärts- oder Rückwärtsrichtung liegt. Dieses

Bit wird deshalb bei Zahlendarstellungen auch als Vorzeichen-

"Bit bezeichnet:

Bit 7/=0 - pesitive Zahl

Bit 7=1- negative Zahl

"Dieses Bit geht dabei aber für die eigentliche Zahlendar-

stellung verloren. Vorzeichenbehaftete Zahlen in einem 8-Bit

Prozessor erstrecken sich deshalb nur über einen verringerten

Zahilenbereich von:

Hex Dezimal

positiv 00bis7F 00bis1l27

negativ FFbis80 -1lbis-128

Lesen Sie nun die Seiten 140 bis 146 im Lehrb uch durch.

Anschließend gibt ihnen die Arbeitmappe (Seite 2 — 10)

Ergänzungen zum Abschnitt "Stack-Pointer",

' Die Bedeutung des Stack

Moderne Mikroprozessoren besitzen neben den Uhiversal-

registern der CPU auch die Fähigkeit, in einem bestimmten

Bereich des RAM einen speziellen Speicher aufzubauen, den

Stack. Dies ist eine Art von Notizbuch oder Merkzettel-

sammlung für die CPU. Der Stack dient also primär als

Hilfsregister während eines Programmlaufes. Vorzugsweise

werden dort Rücksprungadressen während der Bearbeitung

von Uhnterprogrammmen aufbewahrt oder es werden bei

Verzweigungen die Inhalte von CPU-Registerpaaren zwi-

schengespeichert (auf den Stack gerettet).

Die CPU verwaltet ihren Stack selbst. Ein besonderes 16-Bit

Register, der Stack-Pointer, zeigt der CPU den nächsten

freien Stackplatz an.

Im Stack wird immer mit 16-Bit (vollständige Adressen oder

Inhalte von Registerpaaren) gearbeitet, der Stack-Pointer

bewegt sich also immer um zwei RAM-Adressen weiter. Der

Stack-Pointer in der CPU ist nach einem Reset leer, das

Betriebssystem muß den Stack-Pointer zunächst einmal mit

einer vernünftigen Anfangsadresse im RAM laden. Aus prak-

tischen Gründen legt man den Stack an die höchsten

RAM-Adressen, der Stack-Pointer bewegt sich üblicherweise

"rückwärts" im Adress-Bereich, er wächst also von der oberen

RAM-Grenze nach unten. Ist nur wenig RAM-Speicher in

einem System vorgesehen, so kann der Stack bei Fehlern im

Programm durchaus auch einmal in den Bereich der Arbeits-

‘daten am Anfang des RAM wachsen und dort vorhandene

Daten überschreiben, bei uns kommt so etwas selbstverständ-

lich nicht vor! |

Soweit die zusätzlichen Erläuterungen zum Stack. Lesen Sie

nun im Lehrbuch ab S. 146 weiter.

Da wir die Zweierkomplement-Darstellung weggelassen ha-

ben, sollten Sie im Rückblick (S. 150) die Fragen 1 bis 4

auslassen, Die Frage 5 können Sie leicht bearbeiten, indem

Sie sich eine Tabelle für die Distanzbytes in Rückwärts-

_ richtung anlegen. (00,FF,FE,F D... usw)

. Die abschließenden Versuche zu diesem Kapitel sollten Sie

_ mit viel Sorgfalt durchdenken. Hier wird Ihnen der Sinn und

Nutzen der verschiedenen Adressierungsarten durch die Ge-

 genüberstellung unterschiedlicher Programme verdeutlicht.

Übrigens setzt unser Nanocomputer-Betriebssystem den

Stack-Pointer auf die Adresse OF 00 und’nicht auf OFCE,

wie auf Seite 162 unten angegeben ist.
.
.
.

u.

0

Die ÄAdressierungsarten, Kurzdarstellung

1.
3

5.

6.

Registeradressierung. Einbytebefehl

Datenbewegung zwischen CPU-Registern und über (HL) in

das RAM.

Unmittelbare Adressierung. Zweibytebefehl

Eines der CPU-Register oder eine RAM-Zelle (über (HL))

werden mit den Daten aus dem zweiten Byte geladen.

Indirekte 'Register-Adressierung. Einbytebefehl

Datendewegung zwischen dem Akku und einer RAM-Zelle,

deren Adresse in einem CPU-Registerpaar BC, DE,HL

steht.

Unmittelbare erweiterte Adressierung. Dreibytebefehl

Die zwei letzten Bytes des Befehls werden direkt in ein

CPU-Registerpaar geladen.
x :
%

Erweiterte Adressierung. Dreibytebefehle

Datenbewegung zwischen einem CPU-Registerpaar und

zwei benachbarten RAM-Zellen. Die Zelle mit demi

LOW-Byte wird im Befehl adressiert.

Modifikation der Seite Null. Einbytebefehl

\ Verkürzte Sprungadressierung für acht Restartadressen im

Bereich HI-Byte O0.

7.

10.

Relative Adressierung. Zweibytebefehl

' Bestimmung einer Zieladresse über ein Distanzbyte relativ

zum Stand des Programmzählers nach Ausführung des

Befehls.

Indizierte Adressierung. Dreibytebefehl

Adressierung einer Zieladresse über ein Distanzbyte

relativ zu einer Adresse in einem der Indexregister IX

oder IY.

Implizierte Adressierung. Einbytebefehl

Einige Befehle erfordern keine besondere Adressierung, da

sie ausschließlich den Akku betreffen.

Einzelbit-Adressierung. Zwei/ Vierbytebefehl

In den CPU-Registern und über (HL) und die Index-Re-

gister lassen sich einzelne Bits direkt beeinflussen.

t.,

&

Speicheradressierung für 64 K Byte

64 K

48 K

32 K

16 K

8K

16 Bit Adressen 8 Bit
Dezimal | Hex Daten

65535 FFFF |
61440 ı _F000
61439 | EFFF
57344 ı _EO000
57343 ı DFFF
53248 ı _DO00
53247 ı _CFFF
49152 ı c000
49151 ı _BFFF

145056 ı _BOOO
45055 | AFFF
40960 | A000
40959 I 9FFF
36864 I 9000
36863 I 8FFF
32768 | 8000
32767 IFFF
28672 ı 7000
28671 I 6FFF
24576 I 6000
24575 Il 5FFF
20480 I 5000
20479 | AFFF
16384 I 4000
16383 I 3FFF
12288 I 3000
12287 2FFF
8192 ı 2000
8191 | IFFF
4096 I 1000
4095 Il OFFF
0000 | 0000

2. Test - Lösungsblatt

2.1

2.2

2.3

2.4

Es sind die ersten beiden Programmzeilen in Programm

10 auf Seite 114. Nach dem ursprünglichen Bild 6 - 6

käme dieses Programm nie aus der äußeren Schleife

heraus.

Die Programme werden frei verschiebbar.

Der Sprung führt auf die Adrese O1OD.

Durch diese Befehlsfolge wird der Inhalt des BC-Re-

gisterpaares in das DE-Registerpaar geladen.

2.2

‚2.3

2. Test „una - nn on - Fe
Name und Rundi funkanstalt

2.1 Welche Programmzeilen werden durch den Fehler in

Bild 6 — 6 betroffen?

F Fr

mu nn ent (CE CE CiEEE UEMEE CME Ulm SUB (ubub HMMM SUR CME ‚min TERM MEHR GUME> Sende WANNE SMS AMMAHED Sims ARMEE SEE AUBinD SOME <iMmEir era

Welchen Vorteil bringt eine rTelocative Program-

mierung?

mn Ti Cut in TEBD SAME Mimi SEHE GMmERD AMAED miiiim Smide TuiiD GMONBiD Gin GAME SEM SM GEedam Mmbiie tdenmn SUMME SUTOue SUFBEEe Train GEBE MEMSE SMmme Sul

Auf welche Adresse führt folgender Sprungbefehl?

Adresse OP-Codee __ Mnemonic

0110 16 JR,d

o1lll FB "

2.4 Was bewirkt folgende Befehlsfolge in einem Pro-

gramm?

PUSHBC

POP DE

yo j De SEN

Zahn Bl wird uur HE
„ea_ ET sus DE Jarsch Bua: ___

7 PoPp_SP > DE__
BU>S: Feür_2»2r ih TE

3. Teil

Bearbejtungszeitraum:

August, September 1981

inhalt _ Seite

Übersicht 3-2

Kapitel 8, Anleitung 3-3

Die Flags als Bitmuster 3-5

Programmbeispiel 3.1 3-6

Unterprogrammtechnik 3-7

Programmbeispiel 3.2 3-9

Pregrammbeispiel 3.3 3-14

3, Test 3-20

3, Teil - Übersicht

Sie lernen im dritten Teil zunächst noch einige spezielle

Sprungbefehle kennen. Dann werden wir uns ausführlich mit

der Handhabung von Unterprogrammen beschäftigen. Die

Unterprogrammtechnik eröffnet uns den Zugang zum Nano-

computer-Betriebssystem, wir werden Teile daraus in unseren

Programmbeispielen verwenden. Sie beginnen im Lehrbuch

Band I mit dem Kapitel 8, später kommen Abschnitte aus dem

Band III dazu. Die Versuche werden Sie weitgehend mit

Beispielen aus der Arbeitsmappe durchführen. Sprungmöglich-

keiten sind nicht eingeplant.

Kapitel 8, Anleitung

Lesen Sie zunächst einmal im Kapitel 8 bis zur Seite 169

unten. Sie finden dort Erklärungen zur Funktion des Pro-

grammzählers bei Sprungbefehlen. Die Beispiele im Text

liegen außerhalb unseres RAM-Bereiches, Sie können sie des-

halb mit dem Übungsgerät nicht nachvollziehen.

Auf S. 169 unten beginnt ein Abschnitt über die Flags und die

bedingten Sprünge. Hierzu folgende Ergänzung:

. Flags sind die Zustandssignale der CPU. Über die Flags

erfahren Sie, welches Ergebnis eine gerade abgeschlossene

Operation erzielt hat. Sie bekommen die Möglichkeit, weitere

Schritte von diesem Ergebnis abhängig zu machen. Bildlich

gesprochen, erlauben die Flags, Weichen im Programmablauf

zu stellen. Es werden Programmverzweigungen in Abhängig-

keit von Zwischenergebnisser ermöglicht.

Flags verhalten sich wie Flip-Flops. Einmal gesetzt, behalten

sie ihren Wert (0 oder 1) bei, bis zu einem Reset des Com-

puters oder bis sie eine andere Operation gegenteilig be-

einflußt. Im Z-80 stehen für jeden Registersatz sechs Flags

zur Verfügung. Vier davon werden normalerweise in Program-

men als Entscheidungskriterium verwendet, die übrigen erfül-

len Sonderaufgaben.

Einzelne Flags besitzen unterschiedliche Bedeutung, abhängig

davon, welcher Befehl gerade bearbeitet wird. Hauptsächlich

arbeitet man aber mit drei eindeutig bestimmten Flags:

C-Flag:; Carry = Übertrag

Z-Flag: Zero = Null

S-Flag: Sign = Vorzeichen

Die Flags des Z-80 sind reine Software-Steuersignale,

keine Steuerspannungen für die Hardware. Das Betriebs-

system des Nanocomputers erlaubt uns jedoch, die Flags

anzuschauen. Die Flags, eine Gruppe von untereinander

unabhängigen Einzelbits, wird hierbei als geschlossenes Byte

in einer zweistelligen Hexziffer präsentiert. Zur Beurteilung

einzelner Flags muß die Hexziffer in die 8-Bit Binärstellung

umgewandelt werden. Die Stellung der Flags innerhalb des

8-Bit Rahmens gibt Ihnen die Darstellung auf Seite 3-5.

Lesen Sie nun erst einmal im Buch die Seiten 169 bis 172. Die

Seiten 173 und 174 lassen Sie aus, ein Beispiel finden Sie hier

in der Arbeitsmappe auf Seite 3-6.

Die FLAGS

s[z|xiHıx|ejnic

S=- 1: Bıt7=1

Z = 1: Ergebnis = O

X: keine Bedeutung

H= 1: ÜbertagvBit3n.4

P = 1: gerade Parität

V= 13 Übergang bei 0

N = 1: Subtraktion

C= 1: üÜbertragv.Bit 7

Arbeitsweise der Flaas, Programmbeispiel 3.1 ! 05, G

Adresse Op-Code Label Mnemonic

0100 | us oa ZEIT LD 8,02

012 | oe 02 SCHL.2 |LD c,02

0104 | un SCHL.1 I DEC C

0105 | co FD 0 JR NZ,-3

0107_| e5 DEC_B
oı08a_| 20_F8 JR_NZ,-8

oa I Er RST 38

Dieses Programm entspricht der auf den Seiten 114 bis 119

besprochenen Zeitschleife.

Entscheidend ist für uns hier die Beobachtung der Flags. Bitte

laden Sie dieses Programm und führen Sie es im Einzelschritt

aus. Notieren Sie dabei für jeden Schritt die Anzeige der

Flags (AF anwählen). Setzen Sie anschließend die Hexzahlen

in Bitmuster um und verfolgen Sie die Veränderungen des

Zero-Flags während des Programmablaufs. An diesem Bei-

spiel wird die Beeinflussung des Zero-Flags durch den gerade

eben bearbeiteten Decrement-Befenl besonders deutlich. Es

zeigt sich auch, daß Ladebefehle keine Auswirkungen auf

Flags haben.

Unterprogrammtechnik

Unterprogramme sind abgeschlossene Programmteile, die

Teilaufgaben in größeren Programmiervorhaben erfüllen. Sie

können von einem beliebigen Hauptprogramm aus angerufen

werden. Am Ende des Unterprogramms erfolgt automatisch

ein Rücksprung in das Hauptprogramm.

Die Verwendung von Unterprogrammen bringt für den Pro-

grammierer folgende Vorteile:

1. Mehrfach verwendete Programmteile belegen als Uhnter-

programm häufig weniger Speicherraum.

2. Unterprogramme erlauben eine übersichtliche Programm-

struktur. Eine Modultechnik ist möglich, sofern genügend

lauffähige Unterprogramme vorhanden sind.

3. Fremde Software, die in Form von Uhnterprogrammen

vorliegt, kann in eigenen Programmen leicht. verwendet

werden. (Programmbibliotheken)

Diese Vorteile überzeugen, es ist heute unmöglich, ohne

Unterprogramme sinnvoll zu programmieren. Besonders rückt

Punkt 2 immer stärker in den Vordergrund. Speicherplätze

werden durch den Fortschritt der Halbleitertechnik immer

billiger, dagegen wird es immer schwieriger sich in unüber-

sichtlichen, unstrukturierten Programmen zurechtzufinden.

Ein besonderes Anliegen dieses Kurses ist es deshalb, Ihnen

die Regeln zur Verwendung von Unterprogrammen zu vermit-

teln.

Die speziellen Befehle, die ein Unterprogramm möglich

machen, werden Ihnen im Lehrbuch von Seite 175 bis 178

vorgestellt. Lesen Sie diesen Text durch. Es wird dort viel mit

dem Stack gearbeitet, ohne noch einmal ausführlich die

Zusammenhänge zu erläutern. Grundsätzliches dazu können

Sie in der Arbeitsmappe (Seite 2 - 10) nachlesen.

Die Versuche zum 8. Kapitel werden wir nicht durchführen,

sie finden andere Versuche hier in der Arbeitsmappe.

Umwandlung eines Programms in ein Unterprogramm

Das Programm 3.2 hat die Aufgabe, zwei 8-Bit Zahlen zu

addieren. Die beiden Summanden stehen in den RAM-Zellen

Sl und 52 bereit, das Ergebnis soll in der Zelle ES erscheinen.

Da diese Zellen direkt hintereinander liegen, wird die

indirekte Register-Adressierung mit dem HL-Register ver-

wendet.

Programmbeispiel 3.2: ADDIT]1

Adresse Op-Cocde Label Mnemonic

0100 I vo tis FF sı

0101 | 00 bis FF 52

0102 00 bis FF ES

0103 1 oo ADDIT 1 | N0P

0104 | vo | NUP

0105 21 00 01 | LD HL,0100

0108 | 7E LD A,(HL)
0109 2C INC L

0104 86 ADD A,(HL)

0108 2C INC L

o1cc 177 LD (HL),A

O10D FF RST 38

Das Programm beginnt mit zwei NOP-Befehlen, hiermit

halten wir uns zwei Bytes für die spätere Erweiterung des

Programms frei.

In Zeile 0105 wird das HL-RP für die Adressierung der Zelle

51 vorbereitet. |

Der Befehl 7E lädt den ersten Summanden aus S1 in den Akku.

LDA, (HL) heißt wörtlich: Lade den Inhalt der Speicherzelle,

deren Adresse im HL-RP steht, in den Akku (siehe auch S.

104). Mit INC L wird nun die Zelle 52 adressiert. Jetzt kann

der Inhalt des Akkus, das ist der Wert S1, mit dem Inhalt der

Speicherzelle 52 (über HL-Adressierung) addiert werden. Mit

INC L adressieren wir nun die Ergebniszelle ES und bringen

mit dem Befehl 77 den Inhalt des Akkus dorthin. Der

Schlußbefehl FF führt uns wieder in das Betriebssystem

zurück. Dieses Programm zeigt Ihnen deutlich die Vorteile

dieser indirekten Adressierungsart. Genausogut hätten wir

über das IX oder IY Register mit Distanzangaben adressieren

können. Soweit unser Programmbeispiel. Sie können es einge-

ben und ausprobieren, vergessen Sie nicht, vorher irgendwel-

che Werte für Sl und S2 zu laden.

Dieses Additionsprogramm soll nun in ein Unterprogamm

umgewandelt werden:

Die Umwandlung ist für dieses Beispiel sehr einfach. Ersetzen

Sie den letzten Befehl RST 38 durch einen Return-Befehl

CI9-REIT.

Um die Wirkung dieser Umwandlung zu studieren, fehlt uns

nun ein Hauptprogramm, das dieses Unterprogramm aufruft,

es könnte folgendermaßen aussehen:

Adresse |0Op-Code Label Mnemonic

0000 __| cp 03 01 | CALL ADDIT 1
_0003 __| FE RST_38

Geben Sie dieses Hauptprogramm ein und lassen Sie es im

Einzelschritt ablaufen. Beobachten Sie dabei den PC. Vom

Hauptprogramm wird in das Unterprogramm gesprungen, dort

die Addition ausgeführt und in das Hauptprogramm zurückge-

kehrt.

Von anderen Programmen aus könnte nach diesem Verfahren

ebenfalls eine Addition durchgeführt werden. Es muß nur

dafür gesorgt werden, daß die neuen Summanden in den Zellen

Sl und 52 bereitstehen.

Die eindeutige Festlegung der drei Zeilen Sl, 52 und ES

erlaubt uns, von beliebiger Stelle aus Daten an das Uhnter-

programm A D D IT 1 zu übergeben oder, was für das

Ergebnis der Addition in ES gilt, vom Unterprogramm an das

Hauptprogramm weiterzureichen. Eine Datenübergabe dieser

Art bezeichnet man als "Parameterübergabe in definierten

RAM-Zellen".,

Es ist dies eine der sichersten und im Sinne einer Über-

sichtlichen Programmierung, eine der "saubersten" Formen

der Datenübergabe in Programmen. Andere Verfahren werden

Sie noch kennenlernen. Unser Unterprogramm ADDIT1

besitzt noch einen Schönheitsfehler. Nach Rückkehr in das

Hauptprogramm ist das HL_—RP mit 0102 und der Akku mit

dem Wert aus ES geladen. Ein wirklich gutes Unterprogramm

darf die CPU-Register, die eventuell im Hauptprogramm mit

Daten belegt sind, in keiner Weise verändern, nur dann ist ein

Unterprogramm wirklich universell einsetzbar. Wir sorgen nun

dafür, daß die Inhalte der Register A, H, L während des

Ablaufs unseres Unterprogramms auf dem Stack zwischenge-

speichert (gerettet) und nachher wieder eingesetzt werden.

Hierzu dienen die PUSH- und POP-Befehle.

Das Unterprogramm bekommt nun seine endgültige Form. Zur

besseren Unterscheidung erhält es auch einen neuen Namen:

ADDLILT 2. Im Hauptprogramm ändert sich, bis auf diesen

Namen, nichts.

Adresse I Op-Code Label Mnemonic

0100 _ | 00 bis FF S

0401 Ü0_bis FF Ss 2

QWw2_ OC_bis FF ES

0103 F5 ADDIT 2 | PUSH AF

0104 E5 PUSI IL

0105 21 00 Ol LD HL,0100

9108 TE LD A,(UL)

0109 2C INC L

ewa | 86 ADD A,(HL)
0108. Sc INC L

oc |77 Ä LD (HL),A

V10D Ei PUP HL

010E Fi PUP AF

01UF- c9 IE

Bitte überprüfen Sie dieses Programm, stellen Sie fest, ob es

in der gewünschten Weise funktioniert. Im nächsten Schritt

werden wir versuchen ein Unterprogramm zu erstellen, das

uns erlaubt, die Summanden S1 und S2 über die Tastatur

direkt in die RAM-Zellen einzugeben.

Programmbeispiel 3.3 Tasteneingabe

Die Summanden haben Sie bisher recht umständlich über MEM

und ST eingeben müssen. Nun soll die Eingabe über die

Tastatur direkt in das Programm erfolgen. Das Betriebs-

system des Nanocomputers enthält ein Unterprogramm

KBSCAN, das die Tastatur abliest. Dieses Programm ist in

Band III ab S. 223 und in der Software-Beschreibung DN 314

ab Seite 3 beschrieben. (DN 314 finden Sie im Technical

Manual des Nanocomputers.) Bitte lesen Sie sich diese

Beschreibungen durch, damit Sie ungefähr wissen, wie eine

Tastatur-Eingabe verarbeitet wird.

Folgende Punkte sind für die Benutzung des Unterprogramms

KBSCAN von Bedeutung:

l. Es werden die CPU-Register AF, BC verwendet, deren

ursprüngliche Inhalte gehen verloren.

2. Die Parameterübergabe (Tastenwert) erfolgt über die

CPl-Register AundC.

3. Die Mitteilung "Taste gedrückt — Taste nicht gedrückt"

gibt KBSCAN über das Carry-Flag ab.

KBSCAN prüft die Tastatur bei jedem Anruf nur ein

einziges Mal innerhalb weniger Millisekunden, Es ist also vom

Anwender eine Programmschleife aufzubauen, die das Unter-

programm wiederholt aufruft.

Vorversuch: Programmschleife

"Abwarten auf Tastendruck"

Adresse Op-Code Label Mnemonic

0200 |CcDb DB F8 CALL KBSCAN

0203 30 FB JR NC,-5

0205 CD DB F8 | CALL KBSCAN

0208 38 FB JR C,-5

0204 IFF RST 38

Hier sehen Sie, wie die Abfrageschleifen für die Tastatur

aufgebaut sind. Da auch dieses Programm mit der GO-Taste

gestartet wird, warten wir zunächst ab, daß diese Taste

losgelassen wird. Die ersten beiden Programmzeilen bilden

eine schieife, in der das Unterprogramm KBS CA N solange

aufgerufen wird, bis die GSO-Taste nicht mehr gedrückt ist.

Diese Entscheidung führen wir über den bedingten, relativen

Sprungbefehl

IR NC,-3

durch. Solange das Carry-Flag den Wert O besitzt (C=0d.h.

Taste gedrückt), springt das Programm um 5 Adressen zurück

und ruft KBSCAN erneut an. Ist die Taste losgelassen,

wird Zeile 0205 ausgeführt. Das Programm läuft in eine neue

Schleife, in der abgewartet wird, daß endlich jemand eine

Taste drückt. Sie erkennen das daran, daß in Zeile 0208 der

Befehl

IR C,-3

steht. Übersetzt heißt dieser Befehl:

Springe relativ um 5 Äcressen zurück, wenn das Carry-Fliag

den Wert 1 besitzt. Wird jetzt eine Taste gedrückt, verläßt

das Programm die Schleife und führt uns zurück in das

Betriebssystem. Den Tastenwert finden Sie in A oder C. Bitte

geben Sie dieses Programm ein und überzeugen Sie sich von

dessen Funktion. Überprüfen Sie die Tabelle in DN 314, Seite

4. Es ist dort ein Druckfehler enthalten, den Sie ausbessern

sollten.

Im nächsten Schritt werden wir nun die Tasteneingabe für

unser Additionsprogramm erarbeiten.

Da wir für die Addition zwei Zahlenwerte brauchen, sollten

wir die Tasteneingabe auch wieder in Form eines Unterpro-

gramms schreiben. Wenn dieses Unterprogramm mehrfach

verwendet werden soll, darf es nicht die Abwarteschleife für

das Loslassen der GO-Taste enthalten. Durch die Vorgabe von

KBSCAN sind wir auf die Parameterübergabe über

CPU-Register festgelegt. Sl und 52, die Zellen, die die

Tastenwerte aufnehmen, adressieren wir diesmal über das

DE-RP,

Adresse |Op-Code Label Mnemonic

vı20 | DB Fe TASTE 1| CALL KLSCAN
0123 38 FB Ä JR C,-5

0125 12 LD (DE),A

0125 |CD DB F8 CALL KBSCAN

0129 30 FB JR NC,-5

012B 1c9 RET
Dieses Unterprogramm "TASTE 1" wartet auf einen Tasten-

druck, bringt dann den Tastenwert in die Speicherzelle, deren

Adresse im DE-RP steht und wartet anschließend darauf, daß

die Taste wieder losgelassen wird. Es verwendet AF, BC, die

Datenadresse muß in DE stehen. Darauf sollte ein noch zu

erstellendes Hauptprogramm Rücksicht nehmen.

Fassen wir noch einmal zusammen:

Es sind zwei Zahlen zu addieren, die in RAM-Zellen bereit-

stehen.

Diese Zahlen sollen durch die Tastatur eingegeben werden.

Zwei Unterprogramme stehen bereits fest: ADDIT 2,

TASTE 1. Bleibt nur noch die Aufgabe, diese Unterprogramme

sinnvoll zu kombinieren.

Ablauf des Hauptprogramms:

1. Loslassen der GO-Taste abwarten

2. DE-RP mit Adresse $1 laden

3. TASTE 1 aufrufen

4. 52 adressieren

5. TASTE 1 aufrufen

6. ADDIT 2 aufrufen

7 . Rückkehr in das Betriebssystem

Programmname: HAUPT 1

Adresse I}Op-Code [tabel | Mnemenic

0000 CD LB FS HAUPT 1 [CALL KBSCAN
0003 130 FB IR NC,-5

0005 |ıı oo 01 LD DE,0100
0008 cD 20 01 CALL TASTE 1
ooo& Tıc INC E
ovooc_' | co 20 01 CALL TASTE 1
000F_ | CD 03 01 CALL ADDIT 2
0012 | FF RST 38

Dieses Hauptprogramm sollten Sie nun ausprobieren. Über-

zeugen Sie sich, ob tatsächlich die gewünschten Zahlen

addiert werden.

Dabei wird Ihnen auffallen, daß die Zahlen, die die Tastatur

abgibt, 4 Bit-Zahlen mit führender Null sind. Hier ist unser

schönes Programm irgendwie noch nicht vollkommen oder

ausbaufähig. Wir werden im 4. Teil noch einmal darauf

zurückkommen und gemeinsam die Eingabe auf 2-stellige

Hexziffern erweitern. Ebenso werden wir versuchen, auch die

Anzeige des Nanocomputers für unser Additionsvorhaben zu

verwenden.

3. Test

Schreiben Sie ein Programm, mit dem Sie 4 Zahlenwerte über

die Tastatur in die RAM-Zellen 0300 bis 0303 eingeben können.

Als Zahlenwerte gelten die 4-Bit Zahlen mit führender Null

(00 bis OF), die KBSCAN abgibt. Die Wahl der Adressen für

Ihr Programm steht Ihnen frei.

Versuchen Sie, das viermalige Eingeben in Form einer Programm-

‚schleife über das Herunterzählen eines Schleifenzählers und

bedingten Sprung auszuführen. Ihr Programm sollte mit dem

RST 38-Befehl schließen. An eine Addition der Zahlenwerte

ist nicht gedacht.

Verwenden Sie beiliegende Programmformulare. Bitte geben

Sie Namen und Rundfunkanstalt an, um Verwechselungen aus-

zuschließen.

zz _ on

4. Teil

Bearbeitungszeitraum:

Oktober, November 1981

Inhalt Seite

Übersicht 4-2

Kapitel 9 und 10, Anleitung 4-3

Zusammenfassung der neuen Befehle 4-4

Ein- und Ausgänge für Mikroprozessoren 4-6

Die Z-80-PIO 4-9

. Versuche zu den Kapiteln 9 und 10 4-15

Die Verwendung der Nanocomputer-— 4 - 20
Anzeige

Erweiterung des Additionsprogramms 4 - 27

4. Test u - 29

4. Teil - Übersicht

Sie lernen wieder weitere Befehle kennen. Befehle, die eine

Verbindung herstellen zwischen der digitalen Schaltungs-

technik und dem Mikroprozessor. Mit einem weiteren Ab-

schnitt über Ein- und Ausgänge in Mikroprozessoren werden

Sie dann auf dem Experimentierfeld erste Versuche durch-

führen und erfahren, wie Sie Steuersignale erzeugen oder

verarbeiten können.

Die angekündigte Erweiterung des Additionsprogramms aus

dem Teil 3 zeigt Ihnen Möglichkeiten zur Verwendung der

Nanocomputer-Anzeige. Sie erhalten damit weitere Beispiele

für den Einbau von Teilen des Betriebssystems in eigene

Programme.

Kapitel 9 und 10, Anleitung

Lesen Sie bitte im Kapitel 9 die Seiten 196 bis 205. Die dort

beschriebenen L.ogik-Befehle sind Ihnen aus der Digitaltechnik

geläufig. Neu daran ist nur die parallele Verarbeitung aller

8 Bits eines Datenwortes. Der Mikroprozessor benimmt sich

sehr eigenartig. Betrachten Sie den Akku: Vor der Operation

muß er mit einer der "Eingangsvariablen" geladen sein,

nachher enthält er das Ergebnis der Verknüpfung. Ein Ergeb-

nis, das aus acht einzelnen, bitweise durchgeführten Logik-

verknüpfungen hervorgeht. Im Gegensatz dazu wirkt das

Zero- lag wie der Ausgang eines dem Akku nachgeschalteten

NAND-Gatters, das alle BBit gleichzeitig miteinander ver-

knüpft. |

Gehen Sie von der Seite 205 aus gleich zum 10. Kapitel

weiter. Lesen Sie bitte die Seiten 216 bis 228. Dort sind

weitere Befehle recht anschaulich erläutert. Die Fortsetzung

finden Sie hier in der Arbeitsmappe.

Zusammenfassung der neuen Befehle

1. Die Gruppe der Logikbefehle

Logische Verknüpfungen führt der Mikroprozessor Bit für Bit

durch. Der Akku besitzt eine Sonderfunktion. Vor der Opera-

tion muß er mit einer Eingangsvariablen geladen sein. Diese

Variable geht verloren, der Akku enthält anschließend das

Ergebnis der Verknüpfung. Die zweite Eingangsvariable kann

in einem der CPU-Register stehen; mit (HL), (IX + dd),

(IY + dd) aus einer RAM- oder ROM-Zelle stammen oder

direkt angegeben werden. Folgende Operationen sind möglich:

AND - UND-Verknüpfung

OR - ODER-Verknüpfung

xOR - Exclusiv-ODER

NEG - Zweierkomplement des Akkuinhalts

CPL - Bitweises Invertieren des Akkuinhalts

Die Logikbefehle verwenden wir selten im eigentlichen Sinne

der Digitaltechnik.

AND dient zum Maskieren (Ausblenden) bestimmter Bits aus

einem 8-Bit Datenwort. |

Mit dem Befehl AND A, einer UND-Verknüpfung des Akku-

inhalts mit sich selbst, können Sie die Flags nach Ladebe-

fehlen setzen, ohne den Akkuinhalt zu verändern.

OR dient zum Mischen oder Zusammensetzen von zwei

Bitmustern. Bei 16-Bit Decrementbefehlen erlaubt der

OR-Befehl eine Überprüfung auf das Ergebnis Null.

XxOR ist im Hilfsmittel, nach Unterschieden in zwei Daten-

worten zu suchen, Auswertung über das Zero lag.

NEG und CPL_ Diese Befehle besitzen leider irreführende

Mnemonics. Die Negation der Digitaltechnik (Umkehr der

Logikpegel 1 in O und Ö in 1) heißt CPL. Der Befehl NEG

dagegen gehört nicht zu den Logikoperationen, er bildet das

Zweierkomplement des Akkuinhalts!

2. Die Einzelbit-Operationen

In den CPU-Registern und im Speicherraum über die indirekte

Adressierung, können Sie einzelne Bits setzen, rücksetzen

oder ohne Beeinflussung prüfen. Die Bits werden von Obis 7

gezählt, von rechts beginnend (0 bis 7! Eine beliebte Fehler-

quelle).

Diese Befehle ersetzen oft umständliche Maskierungen, sie

sind außerordentlich nützlich.

3. Rotate- und Shift-Befehle

Diese Befehle ersetzen die Schieberegister der Digital-

technik. Die einzelnen Varianten sind leicht auseinanderzu-

halten. SHIF T-Befehle entsprechen genau dem klassischen

Schieberegister, die Befehle unterscheiden sich bezüglich der

Schieberichtung und der Einbeziehung des Carry-Bits.

ROTATE-Befehle bewirken .unterschiedliche Bitmuster, sie

sind dem zyklischen Speicher, der aus einem rückgekoppelten

Schieberegister entsteht, ähnlich.

Shift— und Rotate-Befehle lassen sich am leichtesten anhand

der bildlichen Darstellungen der Bitverschiebung auseinander-

halten.

h „5

Eingänge und Ausgänge für Mikroprozessoren,

die I/O - Technik

Vortemerkungen

Mikroprozessoren besitzen keine Eingänge und Ausgänge im üblichen Sirne.

Die Rus-Leitunger der CFU, auf deren der zesamte Datenverkehr des Mikro-

prozessors mit seinen angeschlossenen Systembausteinen stattfindet, ver-

langen besondere Schaltungen für den Kontakt mit der Aussenwelt, soge-

narnte Ports. Ports beobachten den Adreß-, Steuer- und Datenbus. Sie

werden aktiviert, sobald sie ihre Adresse zusammen mit einem I/O - Steuer-

si=nal erkennen.

Eingangsports legen dabei die ankommenden Daten kurzzeitig auf den Daten-

bus; es werden hierzu sogenannte Three-State-Puffer verwendet. Diese

speziellen Bausteine sind im Lehrbuch Band III, Seite 131 bis 134 er-

klärt.

Ausgangsports übernehmen Daten vom Datenbus der CPU und speichern sie für

die Wweiterverarbeitung ausserhalb des Mikroprozessors. Sie formen die

impulsförmigen Bussignale in statische Logiksignale um. Hierfür werden

beispielsweise getaktete D-Flip-Flops verwendet.

Memory - mapped - I/O

Die vorher beschriebenen Forts können einfach an freien Plätzen innerhalb

des 64 KPByte-Adreßraumes der CPU angeordnet sein, Der Hersteller des Systens

baut anstelle der RAM- oder ROM-Zellen dort Input- oder Qutput-Ports ein.

Die CPU behandelt solche Forts wie Speicherzellen. Daten werden wie üblich

über Ladebefehle aus den Adressen, die den Eingangsports zugeordnet sind,

in das Mikroprozessorsystem eingelesen (z.R. LDA, NN). Ebenso wird über

ladebefehle an solche Adressen ausgegeben, die mit den Ausgangsports be-

legt sind (z.R. LD \N,A). Der Frozessor kann solche Fingangs- und Ausgangs-

vorts selbst nicht auseinanderhalten, für die CFU handelt es sich um ge-

wöhnliche Speicherzellen, dies ist allein Aufgabe des Programmierers.

Forts dieser Art werden mit "Memory - Mapped - I/O" bezeichnet. Der deutsche

Ausdruck lautet "Speicherplan-I/0O", Man spricht auch von "transparenten

RAM-Zellen",.

Forts dieser Art sind grundsätzlich bei jedem Mikroprozessorsystem möglich.

Sie sind jederzeit erweiterungsfähig und nachrüsttar, solange der Adreß-

raum nicnt vollständig belegt ist. Bei kleinen Systemen erlauben sie

sparsame Hardwarekonzepte, dadurch daß einzelne Adreßleitunzen

direkt, ohne Verwendung ven Adreßdekodern, zum Aktivieren der

Ports benutzt werden,

Mikroprozessoren mit speziellen Input - Output - Befehlen

Moderne Mikroprozessoren bieten zusätzlich zur Memory-Mapped-

I/0O-Technik besondere Input-Output-Befehle, die für den Be-

nutzer einige Vorteile bringen:

Einmal reduzieren sie den Hardware-Aufwand. Es ergeben sich

einfachere Schaltungen für die Steuerung der Ports. Der

größere Vorteil liegt aber im Software-Bereich,. Besondere

I/0O-Befehle sorgen dafür, daß bei der Programmierung eine

Trennung zwischen Speicheroperationen und Ein- und Ausgaben

möglich wird. Die Programme werden dadurch übersichtlicher und

von Geräten unabhängig, schließlich soll die Software viel-

seitig verwendbar werden.

Die Input / Output - Befehle der Z - 80

(siehe auch Bard III ab Seite 57)

Im Befehlssatz des Z - 380 finden Sie eine Reihe von Input/

Output - Befehlen, die von der Speicheradressierung unab-

hängig sind. Der Z - 80 erzeugt spezielle Steuersignale für

Ports, verbunden mit einer 8 - Bit Portadresse auch Geräte-

adresse genannt. Es sind damit 256 Ports ans;rechbar. Jede

Portadresse kann mit Input- und Output-Port doprelt belegt

werden, die Auswahl erfolgt über die Steuersignale.Die ein-

fachsten I/O-Befehle erlauben den Datenaustausch zwischen

dem Akku und einem Port.

Die Befehle lauten:

IN A,N = DB, N Input vom Fort N zum Akku

OUT N,A

Es sind Zwei-Byte-Befehle mit direkter Adressierung des

D3, N Output vom Akku zum Port N

Ports.

Bei beiden Befehlen ist der Akku Zwischenstation für die

Daten. Dies kann zu Verzögerungen im Datenfluß führen, der

Akku wird zum "Flaschenhals" des Systens,

Andere I/O - Befehle des Z - 80 erlauben Dateneingabe- oder Ausgabe

mit den CFU - Registern. Dabei muß das C - Register die Portadresse

angeben. (Vergleichbar der indirekten Registeradressierung.)

IN A,(C) = ED 78 OUT (C), A = ED 79

IN B,(C) = ED 40 OUT (C), B= ED 41

IN C,(C) = ED 48 OUT (C), C = ED 49

IN D,(C) = ED 50 OUT (C),D = ED5i

IN E,(C) = ED 58 OUT (C), E = ED59J

IN H,(C) = ED 60 OUT (C), H = ED 61

IN L,(C) = ED 68 OUT (C), L = ED 69

Darüber hinaus kann der Z - 80 noch Blockeingaben und -Ausgaben

ausführen. Diese Befehle sind den Block - Transfer - Befehlen

(Band I, Seite 148) sehr ähnlich, sie sind in Band III ab

Seite 59 beschrieben.

Die Z - 80 PIO (siehe auch Band III, Seite 306)

Die festverdrahteten Ports mit fest zugeordneten B - Bit Port-

adressen finden Sie überall in der Mikroprozessortechnik. Im

Zuge der Weiterentwicklung der IC - Technik entstanden darüber

hinaus spezielle Portbausteine, die genau auf einen Mikropro-

zessortyp zugeschnitten sind. Sie bieten viele zusätzliche

Möglichkeiten gegenüber den einfachen Ports, sind aber oft auf-

grund ihres komplexen Innenlebens schwer zu verstehen. Hierzu

gehört auch die Z - 80 PIO, ein programmierbarer I/O - Baustein

mit 2 x 8 Bit Datenleitungen. Sie haben richtig gelesen, die

PIO ist programmierbar! Das Programm bestimmt, ob eine der

16 Datenleitungen gerade Eingang oder Ausgang Sein soll. Ein

8 - Bit Port der PIO muß nicht zwangsläufig Eingang- oder Aus-

gangsport sein, innerhalb der 8 - Bit lassen sich einzelne

Leitungen beliebig zuordnen. Weiterhin läßt die Z - 80 PIO

sehr schöne Interrupt - Lösungen zu. Doch gehen wir systematisch

vor:

Die 2 - 80 PIO besteht aus zwei Teilen, die bis auf Kleinig-.

keiten völlig gleich sind. Jede Hälfte stellt ein 8 - Bit Port

dar. Ein PIO - Baustein belegt deshalb zunächst zwei Port-

adressen. Beide Ports der PIO sind unabhängig voneinander

programmierbar. Deshalb benötigt eine FIO ausser den Fort-

adressen auch noch zwei Adressen, die den Steuerteilen der

PIO - Hälften zugeordnet sind. Das liest sich zunächst etwas

kompliziert, gehen wir deshalb zu einem praktischen Beispiel

für den Nanocomputer über,

Vorarbeiten

Unterhalb des Experimentierfeldes Ihres Nanocomputers finden

Sie drei 40 - polige IC - Fassungen. “Wir verabreden, die

linke Fassung FL, die mittlere FM und die rechte FR zu nennen.

An FL liegen in der unteren Reihe die PIO - Anschlüsse. Die

eine FPIO - Hälfte wird PIO C genannt, die entsprechenden

Datenleitungen PC O bis PC 7. Die zweite PIO - Hälfte ist

FIO D mit PD O bis PD 7.

wir wollen nun die FIO C als Ausgangsport betreiben. Mit den

Ausgangsdaten steuern wir die Leuchtdioden LM O bis LM 7 an.

Schalten Sie den Nanocomputer jetzt erst einmal aus und suchen

Sie das Plastic - Kästchen mit den Drähten. Verbinden Sie schön

der Reihe nach alle PC - Anschlüsse von FL (Fassung links) mit

den LM - Anschlüssen von FR. Wenn Sie den Nanocomputer nun wieder

einschalten, bleiben die Anzeigedioden dunkel. Die FPIO wird beim

Einschalten der Betriebsspannung zurückgesetzt, sie geht in eine

definierte Anfangsstellung, bei der die Datenleitungen den hoch-

ohmigen Zustand annehmen (weitere Details: Band III, S. 313),

Programmierung der PIO

Die FIO C ist als Ausgangsport zu programmieren. Der entsprechende

Befehl lautet OF,

Diesen Befehl gilt es nun,per Programm an den Steuereingang der

PIO C mit der Fortadresse OA zu senden. Hier das erforderliche

Programm:

Adresse JOp-Code Label Mnemonic Bemerkungen

00 00 3 E OF PIO LD A, OF Steuerwort" Ausgang" zum Akku

02 D3 CA OUT OA, A OUTPUT:Akkuinhalt zum Steuerpo

05 FF RST 38

Mit dieser Prozedur programmieren Sie die PIO C als Ausgangsport.

Die Übertragung des Steuerwortes vom Akku in die Steuerung der

PIO erledigt hier der OUT - Befehl an die Portadresse der PIO -

Steuerung. Geben Sie dieses Programm ein und lassen Sie es damn

ablaufen. Damit ist die FIO zum Ausgangsport geworden. Sie bleibt

solange Ausgang, bis die Steuerung ein anderes Steuerwort empfängt

oder die Setriebssr=rnung abgeschaltet wird, manchmal gelingt es

auch die FIO mit der Reset - Taste zurückzusetzen.

Ausgabe von Daten

Überprüfen Sie nun die Punktion des Ports. Laden Sie das folgende

Programm und lassen Sie es im Einzelschritt - Betrieb ablaufen“

Adresse }Op-Code Labei Mnemonic Bemerkungen

01 00 3 E FF LD A, FF Anfangstedinsung Lampen eiı

01 02 D 3 08 OUT 08, A Ausgabe an Datenport PIO C

01 04 3D Sci.Döu | DEC A AKKU - 1

01 06. D 3 08 OUT 08, A Ausgabe an Datenport PIO C

01 07 18 FB JR-5 Sprung zu SCHLEIFE

Ihre Lampen müssen das Verhalten eines binären Rückwärts-

zählers zeigen. Falls Sie das Programm mit GO starten,

leuchten Ihre Lampen gleichmäßig, da die Augen der hohen

Zählgeschwindigkeit nicht folgen können.

Deshalb sollten wir in dieses Programm eine Zeitverzögerung

einarbeiten! Geeignet ist die Ssubroutine"Universelle Zeit-

schleife", die Sie mit dieser Lieferung als Programmbeispiel

bekommen haben. Bitte laden Sie diese Zeitschleife ab Adresse

0200. Für die Versuche zu den Kapiteln 9 und 10 wird die Zeit-

schleife ebenfalls benötigt, Wir

die Zählschleife,

Unterprogramm handelt, das keine

direkt vor den

stehen keine neuen Probleme.

legen die Zeitverzögerung in

Rücksprung. Da es sich um ein

CPU - Register verändert, ent-

Adresse JOp-Code Label Mnemonic Bemerkungen

00 00 3 E OF PIO C LD A, OF Steuerwort Ausgang zum Akku

02 D3 CA OUT OA, A Ausgabe zum Steuerport FIO C
04 03 00 01 JP 0100

01 00 3E FF LD A, FF Anfangsbedingung

02 D 3 08 OUT 08, A Ausgabe Datenport PIO C
04 |3n SCHLEIFE |DEC A AKKU - 1 7”
05 00 00 00 NCP (3x) freihalten für spätere Änderunge
08 D 3 08 OUT 08, A Ausgabe

OA CD 00 02 CALL ZEIT Zeitverzögerung
CD 18 F5 JR- 19 Sprung: SCHLEIFE

4-11

Starten Sie dieses irogramm mit GO. Überzeugen Sie sich,

daß die gewünschten Funktionen ablaufen. Folgende Variations-

möglichkeiten bieten sich an:

1. Statt DEC A = 3 D, ein INC A, ergibt einen

Vorwärtszähler.

2. Die Anfangsbedingung für den Vorwärtszähler

in 00 abändern.

3. Unterschiedliche Zeitbytes in der Zeitschleife

ausprobieren.

Spielen Sie diese Möglichkeiten einmal durch. Versuchen

Sie auch, ein Gefühl für die Fein- und Grobabstimmung der

Zeitschleife zu bekommen. Falls Ihnen ein digitaler Frequenz-

zähler mit der Einrichtung zur Zeitintervallmessung zur Ver-

fügung steht, könnten Sie den Einfluß der Zeitbytes auch messen,

Der Zähler ist an PC O anzuschließen.

Nun folgen die Übungen zu den Kapiteln 9 und 10. Teile des Zähl-

programms und die Zeitschleife können Sie dabei verwenden, schalten

Sie deshalb Ihren Nanocomputer noch nicht aus.

Noch etwas sehr wichtiges! Bitte vermeiden Sie Kurzschlüsse der

FIG - Leitungen, besondere Vorsieht ist an der Fassung FR ge-

boten. Dort liegen die Betriebsspannungen + 12 V, -12 V, -5 V,

Diese Spannungen sind für jeden Logikschaltkreis tödlich. Über-

kleben Sie diese Anschlüsse mit Tesafilm oder brechen Sie die

Stifte an der Zwischenfassung aus. Dies ist leicht möglich da

wir auf die Fassungen des Nanocomputers noch einmal zusätzliche

Fassungen gesteckt haben.

Üpbrigens sind die FIO - Ausgänge Sehr leistungsschwach.Sie dürfen

nur mit einem TTL - Eingang belastet werden, der zulässige Strom

beträgt:

2,0 mA im 0 - Zustand

0,25 mA im 1 - Zustand

Die FIO - Bausteine sind keine Kraftmeier, ihre Vorteile liegen

im Software - Rereicn.

Die FIO als Eingabe - Port

Das Steuerwort 4 F programmiert die PIO zu einem kingangsport. Wie

vorher schon, muß das Steuerwort über einen OUTPUT - Befehl an das

Steuerport der gewünschten FPIO - Hälfte geschickt werden. Erst dann

können Daten von dem entsprechenden Datenport entgegengenommen werden.

Ein Programmbeispiel soll diese PIO - Betriebsart verdeutlichen. Die

Adressen liegen so, daß keine Kollision mit den vorher eingegebenen

Programmen auftreten können. Dieses Programm fragt die Stellungen der

Schalter SW O bis SW 7 ab und zeigt das Ergebnis über die LED'S LM O

bıs LM 7 an. Eingabeport wird PIO D. Stellen Die die Drahtverbindungen

zwischen den Datenleitungen PD O bis 7 auf FL und den Schalterausgängen

SW O0 bis SW 7 auf FR her, bitte achten Sie auf die richtige Reihenfolge.

Die Verbindungen der PIO C mit den Lampen besteht schon vom letzten Bei-

spiel her.

Adresse |Op-Code Label Mnemonıc Bemerkungen

0300 354 F PIO D LDA, 4 F Akku: Steuerwort Eingang

0302 D3 OB OUT OB, A zum Steuerport FIO D

0304 2 E OF PIOC LD A, OF Akku: Steuerwort Ausgang

0306 D 3 0A OUT OA, A |zum Steuerport PIO C

0308 ‚DB 09 EINGABE IN A,09 Einlesen vom Datenport 09, FIO

O30A 00 00 NOFP freihalten für

030C 00 00 NOP spätere Änderungen

0O30E D>3 08 AUSGABE OUT 08, A Ausgeben an Datenport 08, PIO (C

0310 18 F6 JR - 10
wern dieses Programm zufriedenstellend läuft, sollten Sie Ihren

Nanocomputer noch nicht ausschalten, Die Programme und Drahtver-

bindungen verwenden wir auch im folzenden Abschritt.

[even Al _ Daten C|_
Steuerg.A|. un Steuerg.C\

u 08 3700.
un

»9200909%9

HUGH
FLO

PIO 1 PIO 2
EINGABE - EU I EINGABE -
AUSGABE - re AUSGABE -
BAUSTEIN 440 BAUSTEIN 7330 un.

Daten D| _
Steuerg D

 Daten Steue

Die PIıO’S

PIO 1 AlB

Datenport 04| 05

Steuerpot 0lür

PIO 2 c D

Datenport 08| 09

Steuerport 0A| 0B

Steuerworte |

Ausgang OF

Eingang 4F

Bidirektional BF

Steuerbar, Interr. I cF

Versuche zu den Kapiteln 9 und 10

wir beginnen mit den Versuchen zu den Logikbefehlen. Zunächst arbeiten

wir mit dem Programm auf Seite 4-13, beginnend bei der Adresse 0300.

Die freien Adressen 03 OA bis 030 D erlauben uns eine Veränderung der

Eingangssignale, bevor die Ausgabe an die Lampen erfolgt.

1. Versuch, Wirkung des CPL - Befehls,

Setzen Sie an die Adresse 030 A den Befehl 2 F = CPL, Negation des

Akkuinhalts.Starten Sie das Programm. Die Zuordnung der Lamrensignale

zu den Schalterstellungen ist jetzt entgegengesetzt gegenüber der ur-

sprünglichen Fassung. Dies entspricht einer bitweisen Negation des

Akkuinhalts,

2. Versuch, Wirkung des NEG - Befehls.

Der Befehl NEG = ED 44 bildet das Zweierkomplement des Akkuinhalts.

Setzen Sie diesen 2 - Byte - Befehl in unser Versuchsprogramm bei

Adresse 030A, O30B ein. Starten Sie das Programm. Um die Wirkung

dieses Befehls richtig deuten zu können, sollten wir uns an die

binäre Zählweise und die Darstellung der negativen Zahlen im Mikro-

prozessor erinnern. Der Mikroprozessor stellt negative Zahlen als

Zweierkomplement dar, er zählt "rückwärts" beginnend bei 00, FF, FE,

FD usw. Genau das erledigt dieses Programm jetzt.

Die mit den Schaltern eingegebene Binärzahl wird auf den Lampen als

"negative" Zahl in der 8 - Bit- Zweierkomplementform dargestellt.

Sicher denken Sie jetzt an die Aufgabe 2.3. Dort entspricht der Wert

FB finf Rückwärtsschritten.

Hier noch weitere Zahlenbeispiele:

Schalter - Lamper

00 00 es gibt keine "negative" Null

01 FF -1 für den Mikropozessor

OA F6 der Rücksprung von Adresse 03 10

3. Versuch, Maskierungstechnik

Stellen Sie sich vor, Sie wollten nur die Stellungen der Schalter

SW 1, SW 4 und SW 5 auswerten, Es giltnun,die restlichen Schalter-

informationen auszublenden. Wir sucnen eine passende Maske und führen

damit eine AND - Verknüpfung mit dem \kku inhalt durch:

4-15

Schalter: 5W 7 SW 6 SW 5 SW 4 SW 3 SW 2 SW 1 SW 0

Maske : 0 OÖ 1 1 Ö 0 1 Ö

AND : 0 0 SW 5 SW 4 0 0 SW 1 O

Das Maskenwort lautet als Hex - Zahl 32.

Fügen Sie den AND N - Befehl in unser Übungsprogramm ein:

030 A E6 32 AND 32

Die wirkung ist sofort sichtbar, nur noch die Werte der Schalter

SW 1, SW 4 und SW 5 werden ausgegeben, die übrigen Eingänge des

Ports werden ignoriert. Dieses Verfahren wird bei Steuerungen

angewandt, um zu bestimmten Zeiten einzel ne Schalter oder Grupren

abzufragen. Suchen Sie sich selbst eine Schalterkombination, die

Sie ablesen wollen. Bilden Sie ein neues Maskenwort, das Sie dann

in das Frogramm einfügen.

4. Versuch, die OR - Verknüpfung

Stellen Sie sich vor, Sie wollten die Lampen LMO und LM7 ständig leuchten

lassen, unabhängig von der Stellung der zugeordneten Schalter, während

weiterhin alle übrigen Schalter die Lampen ohne Veränderung ansteuern.

Der Mikroprozessor müßte dem Bitmuster, das die Schalter abgeben, für

LMC und LM? eine T dazusetzen, auch wenn SWO und SW7 O-Signale liefern.

Die Lösung ist sehr einfach, wir verknüpfen das eingelesene Bitmuster

der Schalter mit einem Zahlenwert, der für LMO und LM7 1-Signale ergibt.

Die Zahl heißt &1, der vollständige ?Refehl lautet OR 81 = F6 81,

Setzen Sie ihn an die Adresse 6304 und überprüfen Sie die Furktionsweise,

Frobieren Sie auch noch andere werte aus.

5. Versucn, die XOÖR-Verknüpfung

Das XOR-Versuchsprogramm ist länger als 4 Schritte, es ist deshalb in Forn

eines Untervrogramms zeschrieben,. Der Aufruf dieses Unterprogramms muß in

das Versuchsprogramm eingesetzt werden:

D30A CD 0004 CALL 0400

Bitte laden Sie das Unterprogramm XÜR:

Label Mnemonıc Bemerkungen Adresse }Op-Code

Vergleich: Ei be mit E-Re

AÖR E

LT &,60

JR NZ

XÖR

Lanrer löscher
 +1 ‚SD +1, werr Werte ungleic

Lampen einschalten

Dieses Unterprogramm vergleicht das RBitmuster im E-Register und von den

Schaltern miteinander. Sind beide gleich, werden alle Lampen eingeschal-

tet, bei ungleichen Zahlen bleiben die Lampen dunkel. Die Auswertung der

XOR - Verknüpfung übernimmt das Zero - Flag. Die Lampen werden nur einge-

schaltet, wenn Z = 1 ist. Der bei 0401 eingeschobene Ladebefehl verändert

keine Flags, das Ergebnis der X6R - Verknüpfung kann auch nach dem Lade-

befehl ausgewertet werden.

Laden Sie eine beliebige Zahl über die Tastatur in das E-Register. Starten

Sie das Programm bei 0300. Es muß nun so etwas wie ein Zahlenlotto 1 aus

256 ablaufen. Nur bei der von Ihnen in E vorgegebenen Schalterkombination

leuchten die Lampen.

6. Versuch, Rotate - und Shift:- Befehle

Die Wirkungsweise dieser Refenle können Sie gut mit unserem Übungsprogramm

"Rückwärtszähler mit Zeitschleife" von Seite 4 - 11 studieren. Wir werden

lediglich die Anfangsbedingung in LDA, 01 (Zeile O1GC) und den Rechenbefenl

in 6104 variierer. Stellen Sie die Zeitschleife auf die längste Verzögerungs-

zeit ein. Die Lampen werden wieder vom Fort der PFID C angesteuert. Hier

noch einmal das Übungsprogramm, eingetragen sind bereits die Werte für

den ALCA - Befehl:

Adresse |Op-Code Label |Mnemonic Bemerkungen

00 00 3 EOF PIO C LD A, OF Steuerwort Ausgang zum Akku

02 D3 0A OUT OA, A Ausgabe zum Steuerport PIO C

04 cC 3 00 01 JP 0100

01 00 3 E01 LD A, 01 Anfangsbedingung

02 D 308 _ OUT 08, A Ausgabe Datenport PIO C _ 7

04 07 SCHLEIFE | RLCA AKKU 1 x links rotieren

05 00 00 00 NCP (3x) freihalten für srätere !rderur

08 D 3 08 CIT 08, A Ausgate

SA cD 00 02 CALL ZEIT Zeitverzögerung

cD 18 P5 JR - 1 Sprung: SCHLEIFE
 4-17

Starten Sie dieses Programm bei ©90 0O.Ein einelnes 1-Signal wird nach
%

lirks durch Ihre Lampenreihe laufen. Bitte probieren Sie nacheinander

auch die anderen nRotate - und Shift - Befehle aus. Die folgende Tabelle

pibt Ihnen die Befehlscodes und die Anfangswerte (0101) an. Achten Sie

auf die Unterschiede, die sich durch die Einbeziehung des Carry - Flag

ergeben.

Befehl Anfangswert Funktion

(0104) (0101)

RLCA = 07 09

SH Hmmm
* RLE A = CE 07 01

RLA = 17 01 | [} |
EEE

* RLA = CH 17 01

RRCA = OF 80 | " |

" EEE

* RRC A = CR OF 80

*RRA = CH IP 80

SRA A = CR 2F 80 r 1 0

SLA A = CR 27 01 (I —— 0

Die mit * bezeichneten Refehle entsprechen den vorangehenden. Die Doprei-

belegung mit unterschiedlichen Öp-Codes ergibt sich durch die Erweiterung

des BÖBÜ - Pefehlssatzes im Z-&0,.

7. Versuch, die Einzelbit - Üperationen

Das Versuchsprogramm, das die Befehle BIT, SET und RESET demonstrieren

soll, finden Sie unter den DIN A 4 - Programmbeispielen, der FProgramn-

name lautet: 7. Versuch. Es verwendet die universelle Zeitschleife

bei 02 00 und den Anfang des Eingab:-Ausabe-Programms. Die Drahtver-

bindungen PC - LM und PD - 5W werden weiterhin gebraucht. Das Programm

läßt, abhängig von der Stellung des Sthalters SWO, zwei unterschiedliche

Lauflichter über die Lampen laufen. Nach links bewegt sich ein einzelnes

Licht, nach rechts eine Dunkelsteile,. Die unterschiedlichen Anfangs-

bedingungen werden über SET- und RESET - Befehle eingestellt, in diesen

Beispiel ein etwas umständlicher Weg. Jedoch erkennen Sie die Wirkungs-

weise der Befehle hieran recht gut. Die Schalterabfrage zeigt die An-

wendung des BIT - Befehls. Die verschiedenen Bitmuster rotieren in den

Registern B und C. B enthält das Muster für das Ekinzellicht, C für die

Dunkelstelle. Dieses Programm bietet viele Variationsmöglichkeiten.

Ihnen sind keine Grenzen für eigene Versuche gesetzt. Bitmuster,

Rotationsrichtung und - geschwindigkeit sowie Schalterzuordnung lassen

sich leicht verändern.

Nur Mut!

Die Verwendung der Nanocomputer-Anzeige

Tastatur und Anzeige des Nanocomputers sind ganz typisch für diese Art von Geräten. Sie

sind im wesentlichen Software - gesteuert, die Leitungsverbindungen bestehen nur aus

2 x 8-Bit Datenleitungen der PIO A und B. Die Hardware, obwohl sie sehr interessant ist,

wollen wir nicht weiter betrachten. Schaltungsdetails sind in Band III, ab Seite 207 und 223

beschrieben.

Das Nanocomputer-Betriebssystem enthält das Unterprogramm DISPL = F9 09, das die

Verwendung der Anzeige ermöglicht. Die Anzeige wird bei Aufruf dieses Unterprogram-

mes nur einmal kurz aufleuchten. Deshalb müssen Ihre Programme, die die Anzeige ver-

wenden, Schleifen enthalten, die DISPL wiederholt anrufen. Die Wiederholzeit sollte un-

ter 10 ms bleiben, damit die Helligkeit ausreicht.

Anzuzeigende Daten können dem Nanocomputer-Betriebssystem direkt im Code der Sie-

bensegment-Anzeigen oder in der üblichen Art als Hex-Ziffer angegeben werden. Für beide

Möglichkeiten gibt es im oberen RAM-Bereich spezielle Speicherzellen, die bestimmten

Anzeigestellen zugeordnet sind, den Display-Buffer für Siebensegment-Codeworte und

den Zeichenspeicher für Hex-Ziffern. Bei Eingabe von Hex-Ziffern übernimmt ein beson-

deres Unterprogramm CONVDI die Umwandlung in den Siebensegment-Code. Das Ausblen-

den einzelner Ziffern ist in dieser Betriebsart über ein Maskenwort möglich.

Bei der direkten Ansteuerung im Siebensegment-Code ist kein Maskenwort erforderlich,

die Dunkelsteuerung einer bestimmten Ziffer übernimmt das Siebensegment-Codewort

00 oder 0].

Zwei Speicherplätze innerhalb des Display-Buffers sind den Kontroll-LED's BRK bis ARS

zugeordnet, sie werden genauso behandelt, wie eine Änzeigeziffer.

Versuche

l. Ansteuerung der ERR-LED

Je sieben LED's sind einem Hex-Wort innerhalb des Display-Buffers zugeordnet. Bit 0

wird bei allen Anzeigestellen nicht benutzt.

Aus Tabelle 4.1 entnehmen Sie, daß die ERR-LED mit einem 1-Signal im Bit 2 der Spei-

cherzelle OF B8 anzusteuern ist. Das entspricht der Hex-Ziffer 04. Diesen Zahlenwert

müssen Sie nun per Programm an die Adresse OF BB laden und anschließend das Anzeige-

unterprogramm DISPL aufrufen:

Adresse |Op-Code Label Mnemonic Bemerkungen

00 00 3E 04 ERR LD A,04 Codewort:ERR-LED ein

02 32 B3& OF LD OF B8,A Akku zum Display-Buffer LEDH

05 CD 09 F9 CALL DISPL SR-Anzeige im Betriebssystem

08 18 FB JR -5 Schleife für kontinuierliche Anz
Variieren Sie dieses Programm, verändern Sie das Codewort und die Adresse. Ein Ausstieg

ist jederzeit durch die Break-Taste möglich. Da Sie nur LEDH verändern, bleiben die

übrigen Anzeigestellen unverändert, die Anzeige zeigt:

die ERR-LED.

Adresse: OF BB Label: LEDH

0000 3E, zusätzlich leuchtet

BIT | 7 6 5 3 2 1 0

LED | BRK 1/O MEM PC sp ERR ARS _

Adresse: OF BI Label: LEDL

Bit | > 6 5 3 2 1 0
LED | IR AF BC DE HL IX IV -

BIT = 1: LED leuchtet

Tabelle 4.1 Anordnung der Kontroll-LED's innerhalb der Codeworte in LEDH und LEDL

SR-DISPL: F9 09

2. Ansteuerung.einer bestimmten Siebensegment-Ziffer

Die dritte Ziffer von rechts soll das Zeichen L zeigen. Das Siebensegment-Codewort

zu diesem Zeichen entnehmen Sie der Tabelle 4.2. Die Segmente F,.G, E, D sollen leuch-

ten, die Bitfolge lautet demnach: 0001 1110, entsprechend IE als Hex-Ziffer. DaBit D

nicht verwendet wird, könnten Sie genausogut 1F eingeben.

.

BIT | 7 6 5 4 3 2 1 0 >| 5 E

Segment | A B C D E F G: - za bc

BIT = 1:2 Segment leuchtet

Tabelle 4.2 Stellung der Segmente einer Anzeigeziffer innerhalb des Codewortes

Tabelle 4.3 gibt die zu einer Stelle der Anzeige zugehörige Adresse im Display-Buffer an.

Die dritte Stelle von rechts, D2, liegt an der Adresse OF BF, Label: Data 7 + 1. Also muß

Ihr Programm die Hex-Zahl lE nach OF BF laden:

Adresse |Op-Code Label Mnemonıc Bemerkungen

00 00 3E 1lE LD A,lE Siebensegment-Codewort

02 32 BF OF LD OF B8,A übertragen zum Display-Buffer

05 CD 09 F9 CALL DISPL anzeigen

08 18 FB JR -5

Prinzipiell besteht also kein Unterschied zwischen der Ansteuerung einer Kontroll-LED

und einer Siebensegment-Ziffer.

Jyayıng

-
kejdsıg

pP1343b13ZUy

-
W
I
W
I
B
S
S
U
S
g
a
I
G

Ja},ng-Aefdsıqg
wi

UassaIpYy
8
J
a
U
p
J
o
a
b
n
z

pun
a
b
l
a
e
z
u
y
-
J
u
s
w
b
a
s
u
g
g
a
t
s

c
t

alfegelL

60
64:

I
d
S
I
Q

-
US

TII0O
0
9
4
0

44410
J
4
4
0

aı1ıo
E
4
0

1
1
4
0

v
a
d
o

E
+
L
V
L
V
A
I
T
Z
+
/
L
V
L
I
V
O
R
+
/
V
L
V
A

LVIVva
|

E
+
2
a
Q
V

|

z
+
/
a
a
V

|
T+r/2aaV

L
a
Q
V

I
nl

o
o

0
/
0

0
1
0

1
1
1
0

0
0
0
0
/
0
/
0

Y7q
ea

ca
Ta

YV
eV

cV
IV

ISSaIpPY

[age]

4-23

3. Programmbeispiel WUSEL

Das WUSEL-Programm basiert auf den vorangegangenen Beispielen 1 und 2. Der Zahlen-

wert im B-Register wird während eines Durchlaufes in alle Adressen des Display-Buffers

geladen und angezeigt. Der Vorgang wiederholt sich, nachdem B zweimal incrementiert

wurde. Der Zeittakt ergibt sich durch N-maliges Aufrufen der SR-DISPL bei jeder neuen

Anzeigestelle. So werden Ihnen nacheinander alle mit einer Siebensegment-Anzeige dar-

stellbaren Zeichen vorgeführt.

WUSEL belegt folgende Register:

AKKU: Enthält den N-Wert, der die Taktzeit bestimmt.

B: Enthält den Siebensegment-Code, der gerade angezeigt wird.

C: Wirkt als Zähler für die zu ladenden Speicheradressen des Display-Buffers, läuft daher

von DA bis 00

HL: Indirekte Adressierung der Zellen des Display-Buffers. Außerdem werden A und HL

noch in DISPL verwendet.

4. Anzeige von Hex-Ziffern mit Codewandlung

Das mühsame Aufsuchen von Siebensegment-Codeworten ist für die Anzeige von Hex-

Ziffern nicht nötig, da hierzu das Unterprogramm CONVDI verwendet werden kann.

CONVDI liest vier 2-stellige Hex-Zahlen aus einem definierten Zeichenspeicher ab,

setzt sie in acht Siebensegment-Codeworte für die acht Anzeigeziffern um und lädt

die Codeworte in den Display-Buffer. Zusätzlich wird über ein spezielles Maskenwort

die Dunkelsteuerung einzelner Anzeigeziffern möglich. Das Maskenwort muß vor dem

Aufruf des Unterprogramms CONVDI in den Akku des alternativen Registersatzes ge-

laden werden. Die Zusammenhänge zwischen Anzeigeziffer, Maskenwort und Adressen

des Zeichenspeichers gibt Tabelle 4.4 an. Das folgende Programm HEX zeigt die Anwen-

dung in einem Beispiel.

Die Aufgabe lautet, die Hex-Zahl 8F an den Stellen Al und A2 anzuzeigen, alle übrigen

Anzeigeziffern sollen dunkel bleiben. Sie können dieses Beispiel selbst erweitern und

eigene Beispiele ausprobieren, auch sollten Sie versuchen, mehrere Anzeigeziffern anzu-

steuern.

Wie das Programmbeispiel HEX zeigt, verlangt CONVDI bestimmte Vorbereitungspro-

zeduren:

l. Maskenwort im AKKU des ARS angeben.

2. HEX-Ziffern im Zeichenspeicher bereitstellen. '

3. InDE die letzte Adresse des Zeichenspeichers laden.

"4. InHL die Adresse vor dem Display-Buffer laden (LEDL)

Unter 3. teilen Sie dem Unterprogramm mit, wo die zu wandelnden Daten zu finden sind,

unter 4. bestimmen Sie die Speicheradressen, die die Siebensegment-Codes aufnehmen sol-

len. Dadurch ist CONVDI auch an beliebigen anderen Adressen verwendbar. CONVDI und

DISPL sind im Band Ill, Seite 231 ausführlich beschrieben.

4-24

Falls Sie vorhaben, alle 8 Ziffern anzusteuern, müssen Sie nacheinander ADDH, ADDL,

DATAH, DATAL mit den gewünschten Hex-Ziffern laden. Das Maskenwort lautet dann O0.

Im übrigen bleibt das Programm HEX unverändert.

Adresse |Op-Cone Labei Mnemonic Bemerkungen

05 00 3E 8F HEX | LD A,8F | HEX-Ziffer zum
02 | 32 ES OF LD OF E5,A Zahlenspeicher ADDH

05 08 EX AF,AF') Maskenwort über Austausch-

06 3E 3F LD A,3F ? befehle zum Akku des ARS

08 | 08 EX AF,AF'
09 21 B9 OF LD HL,OF BJ9 HL mit Adresse LEDL laden

oc_] 11 E5 OF LD DE,OF ES | DE mit Adresse ADDH laden

OF CD_7C_FA CALL CONVDI Umwandlung HEX-Siebensegment

12 CD 09 F9 CALL DISPL Anzeige ansteuern

15 18 FB IR -5 Schleife für kontinuierliche An

a
a
y
s
ı
a
d
s
u
a
y
s
1
g
7

I
C
J
A
N
O
D

ulayjTz
uoA

BunJ1anaJsfayYung

(SYyv)v
ul

WOMUSYSeW

pfajJabıazuy

-WIWIBISUAgaIS

U13}}1Z-X3H
v
o

Bungjsjsueg
pun

B
u
n
j
p
u
e
m
u
n

anz

I
G
A
N
O
I

s
w
w
e
4
u
b
o
u
d
i
s
g
u
n

s
a
p

a
a
y
a
ı
a
d
s
u
a
y
9
ı
a
z

wiI
B
u
n
u
p
J
o
n
z
u
a
s
s
a
1
p
y

7
%

s
i
I
s
g
e
l
L

OL
v
3
:

TIQOANOI
-
45

za40
€140

73410
K
E
N

v
ı
v
a

HVLVa
"adv

HaaV

Tayunp
1837717

:
T=

LIg

o
z
l
s
e
|
t
r
ı
m
a

|zıma
Je

ıaIa
|

7
21a

|s
11a

|9
l
a

|

2
ı1q

ı
nn

1
0

no)
0
0
/
0

o
o

o
O

O0
O
0
]

0
ra

ea
za

ta
YV

eV
zv

IV

3ss3IpY

19q9e871

4 - 26

Erweiterung des Additionsprogramms aus Teil 3

Das ursprüngliche Additionsprogramm wird in diesem Abschnitt auf die Verarbeitung zwei-

stelliger Hex-Ziffern und Anzeige der Eingabe- und Ausgabewerte erweitert. Die Eingabe

der vier Tastenwerte haben Sie bereits im 3. Test bearbeitet, lediglich der Schlußbefehl

FF muß in C9 = RET abgeändert werden und das Programm ist als Unterprogramm für

unseren Zweck hier verwendbar. Die Adressen behalten wir bei. In die Zelle 03 04, die auf

die Tastenwert-Speicher folgt, laden wir später das Ergebnis der Rechnung.

Ein weiteres Unterprogramm setzt zwei 4-Bit-Hexzahlen in eine zweistellige 8-Bit-Hex-

zahl um. Die erste Ziffer wird dabei um 4 Bit nach links verschoben und mit der zweiten

Ziffer OR - verknüpft. Da die Gefahr besteht, daß versehentlich auch irgendwelche F unktions-

tasten gedrückt werden, maskieren wir zunächst die oberen 4 Bit jeder Tasteneingabe, be-

vor die Umsetzung erfolgt. Dies ist jedoch nur eine Notlösung, besser wäre es, die Über-

prüfung auf Zahleneingaben bereits bei der Tasteneingabe zu erledigen, hier haben Sie

noch reichlich Spielraum für eigene Versuche.

Die eigentliche Addition wird ganz ähnlich wie auf 5. 3 - 13 durchgeführt. Die Unterpro-

gramme ADDIT 2 und ADDIT 3 unterscheiden sich nur hinsichtlich der Adressierung der

Zahlenspeicher (siehe Adressenplan).

Das Hauptprogramm A-HAU verwaltet im wesentlichen die Registerpaare DE und HL, die

die indirekte Adressierung der Tastenwerte und Anzeigezahlenspeicher übernehmen. Ab

01 17 finden Sie die Prozedur zum Unterprogramm CONVDI, die bis auf das Maskenwort

dem Programm auf Seite 4 - 25 entspricht. Weitere Einzelheiten entnehmen Sie bitte den

Programmlisten, die einzelnen Schritte sind ausreichend erläutert.

Das erweiterte Additionsprogramm eignet sich vorzüglich zur Berechnung von Entfernungs-

bytes bei relativen Sprüngen. Einzige Änderung:

Der Rechenbefehl in Adresse 02 22 muß von 86 = ADDA, (HL) in 96 = SUB A, (HL) abge-

ändert werden. Es entsteht dadurch ein Subtraktionsprogramm, das folgendermaßen benutzt

wird: |

l. und 2. Tasteneingabe: LOW-Byte der Zieladresse

3. und 4. Tasteneingabe: LOW-Byte der Startadresse

Ergebnis: Entfernungsbyte, vorzeichenbehaftete B-Bit HEX-Ziffer.

Beispiel:

Tasteneingabe: : 24: LOW-Byte Zieladresse

2 29: LOW-Byte Startadresse

Ergebnis: FB = -5

Adressenplan:

0300 Tastenwert 1

0301 Tastenwert 2 nach 2 STELL: 1. Summand S1

0302 Tastenwert 3

0303 Tastenwert 4 nach 2 STELL: 2. Summand 52

0304 Ergebnis ES

0100 bis 0128 Hauptprogramm A-HAU

0130 bis 0146 SR-2STELL

0200 bis 0219 SR-3. Test

021A bis 0227 SR-ADDIT 3

Alle Programme sind frei verschiebbar, jedoch sind die Aufrufe der Unterprogramme in

A-HAU und die Tastenwertspeicher absolut adressiert,

4.Tesstt ee -R-- 0-2 ---
Name und Rundfunkanstalt

4.1 Das Übungsprogramm PIO C, S. 4 - 11 zeigt im

Normalbetrieb mit GO den Anfangswert nicht. Dieser

Fehler wirkt besonders störend im Versuch 6, 5.4 - 17.

Geben Sie an, welche Änderungen nötig sind, um den

Anfangswert ebenso lange auf den Lampen zu sehen,

wie die folgenden Werte.

_ Ne £F Jana &e € “| D 20 & Yu B era e Zert =
um msn mn die ii u Tu Er —— mb wi m ne EEE AiEmEn m

57 u ni # , j

BISHER n- Cu ll_2ut__eiuyerayt Werden
Au «+ A: € ;

— | | | ib m er a TE m —— || | Tr (rn mr

ee wird _ und Ama u_erst Hey
RLÜR Bell ausge päucl wind ___

m ar En ein au

Schreiben Sie das Programm "7,-Versuch" so um, daß

die Richtung der Rotation nicht mehr vom Schalter

SW O0 abhängt, sondern selbsttätig umkehrt, sobald das

Einzellicht Bit 7 oder die Dunkelstelle Bit DO erreicht

hat.

>. Teil

Bearbeitungszeitraum

Dezember 1981, Januar 1982

Inhalt Seite

Übersicht 5-2

Kapitel 11, Anleitung 5-3

Versuche zu den Arithmetik-Befehlen 5-5.

Kapitel 11. Fortsetzung 5-8

Die Anwendung des Compare-Befehls 5-9

Die Interrupt-Technik 5-11

Versuche zur Interrupt-Technik 5-12

>. Test 5-22

5. Teil - Übersicht

Sie werden im 5. Teil zwei sehr wichtige Themen bearbeiten.

Einmal geht es um das Rechnen mit dem Mikroprozessor, um

die Grundrechenarten Addition und Subtraktion und darauf

aufbauend, die Multiplikation und die Division.

Die Interrupttechnik, das zweite Thema, ist mehr hardware-

betont und wird deshalb die Praktiker ansprechen.

Einige der Versuche, die die Lehrbücher zu diesen Abschnit-

ten anbieten, sind teilweise zu aufwendig und dadurch auch

undurchsichtig. Deshalb werden Sie auch Versuche mit Pro-

grammen aus der Arbeitsmappe durchführen.

Sprungmöglichkeiten bestehen im Abschnitt über die Inter-

rupttechnik, Sie finden dort entsprechende Hinweise.

Kapitel 11, Anleitung

Die Arithmetik-Befehle ermöglichen das Rechnen mit dem

Mikroprozessor. Grundsätzlich sind die beiden Rechenarten

Addition und Subtraktion vorgesehen. Alle weiteren mathe-

matischen Funktionen und Verfahren müssen per Software

daraus abgeleitet werden, oft ein sehr schwieriges und

zeitaufwendiges Vorhaben für den Anwender eines Systems.

Diese Schwierigkeiten kann man dadurch umgehen, daß man

ein komplettes Softwarepaket vom Hersteller im ROM kauft,

oder das Rechnen einem speziellen Baustein, einem "Arith-

metic-Processor" oder '"Number-Cruncher" überläßt. Beide

Möglichkeiten scheiden aus, wenn der Mikroprozessor in

kleinen Systemen sowieso nicht ausgelastet ist und nur

einfache Rechnungen wie Additionen oder Multiplikationen

_ auszuführen sind. Aus diesem Grund lohnt es sich für uns, die

Arithmetik-Befehle genauer zu betrachten:

Der Z-80 erlaubt Rechnungen in 8 Bit und in 16 Bit Breite.

Durch die Einbeziehung des. Carry-f lags lassen sich diese

beiden Datenbreiten jeweils verdoppeln, d. h. der Übergang

von 8 zu 16 Bit und von 16 Bit zu 32 Bit Datenbreite ist

möglich. Ebenso ist eine Verarbeitung von BCD-Zahlen mit

4 Bit für 10 Codewerte vorgesehen. Bei allen diesen Möglich-

keiten spielen die Flags eine herausragende Rolle. Erst nach

Auswertung der Flags, ergeben scheinbar sinnlose Rechener-

gebnisse sinnvolle Lösungen. Im Text des Kapitels 11 wird

deshalb den Flags sehr viel Platz eingeräumt.

Lesen Sie bitte nun ab Seite 237 den Abschnitt "Die acht-Bit

Arithmetik-Gruppe". Bitte korrigieren Sie vorher die Druck-

fehler nach den folgenden Angaben. Lesen Sie anschließend in

der Arbeitsmappe weiter.

Druckfehler Seite 237, unten in der Tabelle

Zeile 4:

ADD A,80 00 80 10 — D - 000

Zeile 5:

ADD A,80 80 00 01-0- 101

Druckfehler Seite 238, unten in der Tabelle

Zeile 6:

SBC A,0l 00 1 FE 10-1-0ll

Zeile 7:

SBC A,80 00 1 7F 00-1-0ll

Versuche zu den Arithmetik-Befehlen.

1. Addition und Subtraktion von 3-Byte Binärzahlen

Die Berechnung von Mehrbytezahlen wird aus der wiederhol-

ten Addition und Subtraktion von 1-Bytezahlen aufgebaut.

Grundsätzlich ist das mit einem linearen Programm oder als

Programmschleife möglich. Die beiden Programmbeispiele

ADD und SUB zeigen den Unterschied sehr deutlich. Die

Programmschleife ist die elegantere Form, ein deutlicher

Vorteil zeigt sich bereits in unserem Beispiel, der 3-Byte

Addition. Das lineare Programm belegt mehr Speicherraum

als die Schleife.

Beide Programme sind an sich sehr ähnlich. Es müssen die

Adressen der beteiligten Speicherplätze verwaltet werden,

hierzu verwenden wir die Indexregister IX und IY. Im ersten

Rechenschritt, der die niederwertigsten Bytes verarbeitet,

darf das Carry lag das Ergebnis nicht verfälschen. Deshalb

beginnt das lineare Programm die Rechnung mit dem

ADD-Befehl, das Schleifenprogramm setzt mit XOR A das

Carry-F lag am Anfang auf Null.

Speicherbelegung:

ADD: X3 X, X] + Y3 Yo Yı =Z23Z2,Z, je 3Byte

IX + 2:X%, später 13 IY+2:Y3

Ix +1:X%, später Z, W+1:Y\Y,

IX +0:X, später Zı Y+0:Y,

SUB: X, X,X) -Y3 Y, Yı =23 2, Z| je 3 Byte

Zuordnung wie ADD, jedoch andere Anfangswerte für IX und

IY

Bitte laden Sie diese Programme und lassen Sie sich einige

Zahlenbeispiele durchrechnen. Falls es Ihre Zeit zuläßt,

sollten Sie noch versuchen, das Schleifenprogramm zu einem

universellen Unterprogramm umzuwandeln. Da nur ein einzi-

ger Rechenbefehl vorkommt, ist es leicht, von außen die

Rechenart (Subtraktion oder Addition) zu bestimmen. Hierzu

könnten Sie eine weitere RAM-Zelle oder ein CPU-Register

als Steuerung einsetzen. Ebenso könnten Sie die Zahlenbreite

(N-Wert in B) variabel gestalten. Vielleicht wäre es auch ganz

nützlich, wenn Sie das Setzen des Carry-flags bei der

Berechnung des höchstwertigen Bytes irgendwie berücksichti-

gen könnten, da in der vorliegenden Form ein Übertrag oder

Borgen an höchster Stelle nicht im Ergebnis sichtbar wird.

2. Multiplikation und Division von Binärzahlen

Die Multiplikation und Division im Z-80O erfordern einigen

Programmaufwand, da sie aus wiederholten Additionen und

Subtraktionen hervorgehen. Das Verfahren ist der gewohnten

schriftlichen Multiplikation/Division im Dezimalsystem sehr

ähnlich, ein recht anschauliches Beispiel für die Multiplika-

tion gibt der Versuch Nr. 1 Seite 245. Es genügt für uns, die

Schritte 1 und 2 durchzuarbeiten. Das Programm 32 enthält

einige Druckfehler:

Adresse: Korrektur:

010D ; wenn DE = 0, springe

DO11C CA2901

0123 CALLC,0038

Das Verfahren zur Division stellt der Versuch Nr. 3 auf

Seite 251 dar. Spielen Sie auch dieses Beispiel durch, es

gelten hier zwar einige Einschränkungen, die durch die

8-Bit-Breite der Ergebniszelle vorgegeben sind, dafür bleibt

das Programm selbst aber überschaubar. Die Fortsetzung

finden Sie in der Arbeitsmappe.

Kapitel 11 - Fortsetzung

Man hat Ihnen vom Anfang an die hexadezimale Zählweise

zugemutet, schließlich rechnet man mit Ihrer Anpassungsfä-

higkeit und Lernbereitschaft. Anders ist es, wenn der Mikro-

prozessor als Steuerung in einem Fahrkartenautomat oder

einer Zapfsäule an der Tankstelle eingebaut ist. Ein Kunde

wird kaum richtig reagieren, wenn die Zapfsäule beispiels-

weise statt 90,13 DMnur 5A,0O D DM anzeigte.

Der Z-8BO kann selbst nicht im BCD-Code rechnen, vielmehr

muß die Binär-BCD-Umwandlung nach jedem Rechenschritt

erfolgen. Hierzu dient der DAA-Befehl, der das H-Flag

auswertet und für das richtige BCD-Ergebnis sorgt. Die

Anwendung ist problemlos, beachten Sie aber, daß die

Eingangsgrößen für Ihre Rechnung bereits als BCD-Zahlen

vorliegen müssen. Da das oft nicht der Fall ist, haben wir

Ihnen das Programmbeispiel HEX DE mitgeschickt, das

2-stellige Hexziffern in 3-stellige BCD-Ziffern umwandelt.

Bitte lesen Sie den Rest des 11. Kapitels von Seite 240 bis 243

durch. Für die DAA und 16-Bit-Arithmetik-Befehle führen

Sie keine Versuche durch. Zum letzten Abschnitt über die

Compare-Befehle, geben wir Ihnen auf der nächsten Seite ein

Beispiel.

Die Anwendung des Compare-Befehls

Den Vergleich von Datenworten haben Sie im 4. Teil mit den

Logik-Befehlen durchgeführt. Nachteil dabei war, daß nach

der AND- oder XOR-Verknüpfung das Vergleichswort im

Akku überschrieben wurde. Die neue Methode mit dem

Compare-Befehl vergleicht Datenworte ohne sie zu verän-

dern, Ergebnisse werden über die Flags mitgeteilt. Dadurch

sind wiederholte Vergleiche und solche Befehle wie die

Blocksuchbefehle möglich. Die Auswertung erfolgt über die

bedingten Sprung-, Call- oder Returnbefehle. Folgende Aus-

sagen sind möglich:

l. Z=1: Beide Werte sind gleich

2. C=1: Suchbyte ist größer als Akkuinhalt

3. C = 1,5 = 1: Suchbyte ist höchstens 80 H größer
als Akkuinhalt

4. C=0, Z= 0: Suchbyte ist kleiner als Akkuinhalt

Zur Demonstration dieser Möglichkeiten dient das Programm-

beispiel DEMO-CP. Führen Sie dieses Programm im S5-Modus

aus und notieren Sie in der angegebenen Tabelle die Werte der

Flags. Versuchen Sie dann, die oben angegebenen Aussagen

dort einzuordnen. Vergleichsbyte ist für alle Fälle der Wert

20 H im Akku. | |

Ein echtes Suchprogramm finden Sie unter dem Programm-

namen SUCH 3. Es ist als Unterprogramm geschrieben und

kann beliebig eingesetzt werden. Beispielsweise ist möglich |

mit diesem Programm nach einem Codewort in Texteingaben

zu suchen.

Texte verarbeitet der Mikroprozessor in Form von ASCIH-Zei-

chen. Das sind 7-Bit Codeworte für 128 Schrift- und Steuer-

zeichen, die heutzutage von fast allen modernen Datensicht-

geräten und Druckern verstanden werden. Die Codetabellen

sind auf S. 53 im Z-80 Taschenbuch angegeben.

Basic-Tischeomputer verwenden Texte in ASCII zur Program-

mierung über eine Schreibmaschinentastatur. Hierbei muß der

Mikroprozessor mit einem Suchprogramm die eingegebenen

Texte in Befehle der Maschinensprache umwandeln. Die

meisten kleinen Systeme arbeiten dabei mit drei Zeichen pro

Befehl wie im Programmbeispiel SUCH 3. Aus dem Basic-Be-

fehl GO TO 12 34 muß der Mikroprozessor einen Sprungbe-

fehl zur Adresse 12 34 ableiten. Das Suchprogramm erkennt

die ersten drei Buchstaben GO T und geht in ein Uhnterpro-

gramm, das die Adresse in den Hexcode umwandelt und den

Sprung ausführt.

Die Interrupt-Technik

Interrupts, zu deutsch Unterbrechungen, bringen Leben in die

starre, an einen vorgegebenen Ablauf gebundene Program-

mierung. Sie erlauben sehr schnelle Reaktionen auf Umwelt-

ereignisse und sinnvolle Mehrfachausnutzung eines Prozes-

sorSs.

Zur Einführung in diese Technik verwenden wir die Texte im

Lehrbuch Band Ill, Seite 254 bis 265. Falls Sie es sich

zutrauen, können Sie den allgemeinen Teil überspringen und

gleich auf der Seite 261 beginnen. Eine Zusammenfassung

enthält das Z-80 Taschenbuch auf den Seiten 44 bis 46. Die

Versuche zu den verschiedenen Interrupts folgen in der

Arbeitsmappe, lesen Sie zunächst den Einführungstext.

Versuche zur Interrupt-Technik

Die folgenden Versuche sind möglichst zusammenhängend zu

bearbeiten, da die Programme stufenweise ausgebaut werden.

Sie ersparen sich dadurch einige Eingaben.

1. Der nichtmaskierbare Interrupt NMI

Dieser Interrupt besitzt im Z-80 die höchste Priorität. Er ist

weder durch Hardware, noch durch Software zu blockieren.

Die Wirkung entspricht einem Call zur Adresse 0066, der

durch ein 0-Signal am NMI-Eingang der CPU ausgelöst wird.

An dieser Adresse 0066 muß nun das gewünschte Inter-

rupt-Service-Programm beginnen, diese und die nächste

Adresse sind mindestens für einen relativen Sprung freizuhal-

ten, also nicht mehr allgemein verwendbar. Das spezielle

NMI-Unterprogramm muß mit dem RTN-Befehl schließen,

damit der Prozessor das unterbrochene Hauptprogramm fort-

setzen kann. Zur Demonstration des NMI sind nun vier

Voraussetzungen zu schaffen:

1. Ein lauffähiges Hauptprogramm, das "sichtbar" unterbro-

chen werden kann.

2. Eine NMI-Service-Routine mit anschaulicher Wirkung.

3. Der Sprung zur NMI-Routine muß nach 0066 geladen

werden.

4. Es ist für eine entsprechende Verdrahtung des NM-Ein-

gangs der CPU zu sorgen.

Üblicherweise wird man die Punkte 3 und 1 zusammenfassen.

Damit ist sichergestellt, daß sofort nach dem Start des

Hauptprogramms ein NMI möglich ist.

5-12

Für diesen und spätere Versuche verwenden wir das Haupt-

programm BLINK 1. Die NOP-Befehle darin dienen der

späteren Erweiterung. Der erste Teil des Hauptprogramms

lädt die Adressen für den Sprung zur NMI-Service-Routine:

0066 C3

0067 00

0068 02

Dieser Sprungbefehl ist bereits der erste Befehl dieses

NMI-Programms. Es läßt ein Lauflicht von rechts nach links

über die Lampen laufen.

Geben Sie die Programme BLINK 1 und NMI ein. Folgende

Drahtverbindungen sind erforderlich:

Alle PC (FL-Fassung links) mit allen LM (FR-Fassung rechts)

in der richtigen Reihenfolge.

BNMI (FM-mittlere Fassung) mit Pl auf FR. Diese letzte

Drahtverbindung gibt den NMI-Impuls an die CPU. Der Impuls

wird vom entprellten Impulsgeber Pl erzeugt (zweiter Schal-

ter von rechts).

Starten Sie nun das Hauptprogramm. Die beiden 4er-Lampen-

gruppen müssen im Gegentakt blinken. Nach einer kurzen

Betätigung des P1 läuft das Lauflicht einmal über die

Lampenreihe. Anschließend wird das Blinkprogramm fortge-

setzt.

Wenn Sie nun, während das NMI-Programm läuft, mehrmals

den Pl betätigen, werden Sie eine Überraschung erleben. Die

CPU registriert alle NMI-Impulse, sie verschachtelt selbstän-

dig die einzelnen Unterbrechungsanforderungen und arbeitet

sie nacheinander ab.

Übrigens verwendet das Nanocomputer-Betriebssystem den

NMI für die Break-Funktion. Die Break-Taste hat in Ihrem

Programm deshalb dieselbe Funktion wie der Pl. Erst wenn

Sie den Reset betätigen, arbeitet die Break-Taste wieder in

der altgewohnten Weise, sehen Sie sich dann einmal die

Sprungadressen 0066 bis 0068 an!

2. Der maskierbare Interrupt

Als Beispiel für einen maskierbaren Interrupt wählen wir die

Interrupt-Methode IM1. Ein O-Impuls am INT-Eingang der

CPU löst dabei einen TCALL zur Speicheradresse 0038 aus.

Dieser Interrupt wird jedoch nur akzeptiert, wenn das

Hauptprogramm den Interruptfreigabebefehl EI enthält. Wie

müssen folgendermaßen vorgehen:

1. Die CPU ist auf die Interrupt-Methode IM1 umzuschalten.

2. Der Interrupt ist zu sperren, damit vor Beginn des

Hauptprogramms keine unkontrollierten Interrupts mög-

lich werden.

3. Es ist ein Programm für den maskierbaren Interrupt

bereitzustellen. Es muß mit dem Befehl RETI schließen

(siehe Taschenbuch S. 46).

4. Der Sprung zu dem Interrupt-Service-Programm muß an

die Speicheradressen 0038, 39, 3A geladen werden.

> Der INT-Eingang der CPU ist zu beschalten.

6. Das Hauptprogramm muß an den gewünschten Stellen mit

den Interruptfreigabe— oder Interruptsperr-Befehlen ver-

sehen werden.

Die Punkte 1, 2 und 4 müssen bereits in der Einleitung zum

Hauptprogramm Blink 1 abgearbeitet werden. Der besseren

Übersicht wegen, lagern wir diesen Teil aus und geben ihm

den Programmnamen INTV für Interrupt-Vorbereitung. INTV

beginnt bei Adresse 0140, deshalb muß am Anfang des

Programms BLINK 1 nun ein Sprung statt der NOP-Befehle

eingesetzt werden. Bitte setzen Sie diesen Sprung jetzt ein

und laden Sie auch die Programme INTV und INT1.

>-15

1. Anderung in BLINK]1:

0100 C3

0101 40

0102 01

Es ist wichtig, jetzt die Übersicht zu behalten. Fassen wir

noch einmal zusammen:

Der Versuch soll die Arbeitsweise der maskierbaren Unterbre-

chung demonstrieren. In unserer Maschine ist bereits ein

Hauptprogramm und ein nichtmaskierbarer Interrupt vom].

Versuch her vorhanden. Zusätzlich werden nun eine Ser-

vice-Routine für den maskierbaren Interrupt und die notwen-

digen Prozeduren dazu bereitgestellt. Mit der Eingabe von

INTV und INT1l, sowie der 1. Änderung in Blink 1, sind

folgende Bedingungen erfüllt: 1, 2, 4in INTV, 3 in INT].

Es fehlen noch die Bedingungen 5 und 6.

Zu D.:

Verbinden Sie den Anschluß BINT an FM mit PO an FR. BINT

liegt neben BNMI.

Zu 6.:

Ein maskierbarer Interrupt soll nur während der Hell-Phase

der rechten Lampengruppe zugelassen werden, die Hell-Phase

der linken Lampengruppe wollen wir vor Störungen durch

maskierbare Interrupts schützen. Fügen Sie deshalb folgende

Befehle in das Hauptprogramm BLINK 1 ein:

2. Änderung in BLINK 1

0116 FB EI Interruptfreigabe

Ol1lE F3 DI Interruptsperre

Nun sind alle Vorarbeiten abgeschlossen. Studieren Sie in aller

Ruhe die Arbeitsweise der Interrupts. Folgende Möglichkeiten

bieten sich an:

1. INT-Impuls von PO während der Hellphase der linken

lLampengruppe (nur sehr kurz drücken!).

2. INT-Impuls von PO während der Hellphase der rechten

Lampengruppe.

3 NMI-Impuls von Pl während das INT-Programm läuft.

4. INT-Impuls von PO während das NMI-Programm läuft.

Diese Kombinationen lassen aufgrund der eindeutigen Auswir-

kungen auf das Lampenfeld genaue Rückschlüsse auf das

gerade laufende Programm zu.

Kombination 1 ist schwer zu treffen, hiermit können Sie Ihre

Reaktionszeit testen.

3. Der Vektorinterrupt

Während alle übrigen Interruptarten auf bestimmte Anfangs-

adressen im unteren RAM-Bereich (HI-Byte 00) angewiesen

sind, läßt der Vektorinterrupt alle Adressen im gesamten

Speicherraum als Anfangsadressen der Interrupt-Ser-

vice-Routinen zu. Durch diese Betriebsart gewinnt die Inter-

ruptverarbeitung eine wesentlich größere Flexibilität, jedoch

muß der Interrupt über einen der Z-80 Peripheriebausteine

eingespeist werden. Die CPU ermittelt nach dem Erkennen

eines INT-Impulses einen sog. Interruptvektor in Zusammen-

arbeit mit dem Peripheriebaustein, der den Interrupt entge-

gengenommen, oder selbst erzeugt hat. Jeder Teilbereich

eines solchen Bausteins enthält ein spezielles Interrupt-Vek-

tor-Register, das über den Steuereingang mit dem 1LO-Byte

einer Adresse zu Programmbeginn geladen wird. Das HI-Byte

wird dem I-Register der CPU entnommen. Der Interruptvek-

tor selbst stellt noch nicht die Adresse der Interrupt-Ser-

vice-Routine dar. Er gibt die Adresse an, bei der die

Anfangsadresse der Interrupt-Service-Routine abgelegt ist.

Vektor und Anfangsadressen können beliebig oft und unab-

hängig voneinander mit unterschiedlichen Werten geladen

werden. Dadurch sind mit derselben Hardware-Beschaltung zu

verschiedenen Zeiten unterschiedliche Interrupt-Ser-

vice-Routinen einschaltbar. Um diesen idealen Zustand zu

erreichen, ist natürlich ein gewisser Programmieraufwand

erforderlich. Die Prozedur sieht folgendermaßen aus:

Vorbereitung der CPU:

1.

2.

3.

Sperren des Interrupts, um Störungen zu verhindern.

Einschalten der Interruptbetriebsart IM2.

Laden des I-Registers mit dem HI-Byte der Anfangs-

adresse der gewünschten Interrupt-Service-Routine.

Bereitstellen von Haupt- und Interruptprogramm.

Laden der Anfangsadresse an die Speicherzellen, die der

Interruptvektor angibt.

1O-Byte = Interruptvektor

HI-Byte = Interruptvektor + 1

Vorbereitung des Peripheriebausteins:

Zur Demonstration des Vektorinterrupts verwenden wir die

PIO D in der Betriebsart 3, Bit Ein/Ausgabe.

1. LO-Byte der Interrupt-Vektor-Adresse an das Steuerport,

PIOD ausgeben. Vorschrift: Bit O0 = 0, deshalb sind nur

gerade Adressen für den Interruptvektor möglich.

Steuerwort CF für Betriebsart 3 an PIO D, Steuerport

ausgeben.

Im nächsten Steuerwort angeben, welche Leitungen Ein-

gänge werden sollen. Bit = l1-Eingang, Bit = O-Ausgang.

Interruptsteuerwort an PIO D, Steuerport ausgeben, es

enthält mehrere Informationen zur Hardware-Änpassung:

Bit 7: O = Interrupt ausschalten, 1 = Interrupt einschalten.

Bit 6 0 = Jeder Eingang kann einzeln den Interrupt

auslösen.

1 = Alle Eingänge gemeinsam lösen den Interrupt

nach Art der UND-Verknüpfung aus.

Bit 5: 0 = Ein 0-Signal am Eingang löst den Interrupt aus.

1 = Ein 1-Signal am Eingang löst den Interrupt aus.

Bit 4: 0 = Alle Eingänge können den Interrupt auslösen.

1 = Es folgt ein Steuerwort, das einen Teil der

Eingänge maskiert, so daß sie unwirksam werden.

Bit 3bis Bit 0: O111 für das Interruptsteuerwort festge-

legt.

5. Ist im Interruptsteuerwort Bit 4 = 1, so muß nun ein

Maskenwort an das Steuerport der PIO D ausgegeben

werden, das festlegt, welche Eingangsleitungen den Inter-

rupt auslösen sollen. Die 1 im Maskenwort verhindert

einen Interrupt der betreffenden Leitung, die 0 läßt den

Interrupt zu.

Aus dieser umfangreichen Liste wird deutlich, wie vielseitig

diese Interruptbearbeitung sein kann. Hiermit lassen sich die

Vorzüge der Mikroprozessortechnik in extremer Weise aus-

nutzen, denn die Z-80 PIO kann per Programm jeder

beliebigen Hardwarebeschaltung angepaßt werden.

Nun zu dem eigentlichen Versuchsprogramm. Um Ihnen die

Arbeit zu erleichtern, arbeiten wir mit den vorhandenen

Programmen weiter, BLINK 1 bleibt Hauptprogramm, NMI

bedient weiterhin den nichtmaskierbaren Interrupt und INT1

den maskierbaren Interrupt. Unterschiedlich ist die Art der

Auslösung des INT1-Programmes. Es wird deshalb nötig sein,

ein völlig neues Vorbereitungsprogramm, das die Program-

mierung von CPU und PIO D übernimmt,

einzugeben. Dieses Programm führt den Programmnamen

VOR2. Bitte geben Sie VOR2 ein.

Im Hauptprogramm BLINK 1 ist eine Adresse zu ändern:

0102 statt Dlnun 04.

Weiterhin sind Drahtverbindungen von den Schaltern SWO bis

SW7 auf FR zu PDO bis PD7 auf FL herzustellen. Bitte ziehen

Sie den Draht von PO nach BINT heraus.

Nach diesen Vorbereitungen müßte sich eine Situation wie im

2. Versuch ergeben, mit dem Unterschied, daß der Interrupt

nicht mehr mit PO ausgelöst wird, sondern sobald die Schalter

SWO und SW1 in "1"-Lage stehen. Nun bieten sich viele

schöne Variationsmöglichkeiten an. Sofern es Ihre Zeit zuläßt,

sollten Sie einen Teil davon ausprobieren:

1. SWO und SW1 lösen den Interrupt einzeln aus.

2. Statt SWO, SW1 andere Schalter zur Interruptsteuerung

heranziehen.

3. Verändern Sie den Interruptvektor und das Programm

VOR2, um die Vorbereitungsprozedur genauer kennenzu-

lernen.

4. Versuchen Sie eine neue Interrupt-Service-Routine zu

schreiben, die über andere Schalter ausgelöst wird.

Aufschlüsselung des Interruptsteuerwortes in VOR2:

Steuerwort :F7= 1111 0111

Bit 7= 1 Interrupt einschalten

Bit 6= 1 Eingänge UND-verknüpft

Bit 5= 1 1-Signal löst Interrupt aus

Bit 4=1 Maske folgt

Bit 3bisO durch PIO-Vorschrift vorgegeben.

5. Test

Wenn das Programm INT1 von einem NMI unterbrochen wird,

ergibt sich anschließend eine völlig falsche Anzeige auf dem

Lampenfeld, da kein Output-Befehl mehr vorkommt. Bitte

versuchen Sie, ein neues Programm INT 2 zu schreiben, das

auch nach Ablauf der NMI-Routine wieder alle Lampen

einschaltet. Bitte geben Sie auf dem Programmformular Ihren

Namen und die Rundfunkanstalt an.

6. Teil

Bearbeitungszeitraum:

Februar, März 1982

Inhalt Seite

Übersicht 6-2

Die Z - 80 Zentraleinheit 6-3

Berechnung der Befehlsausführungszeit 6-5

Z- 80 Systembausteine 6 -6

Weitere Mikroprozessoren 6-9

6. Test 6 - 10

6. Teil - Übersicht

Nachdem Sie sich bisher ausführlich mit dem Befehls-

satz und der Programmierung des Z - BO Mikroprozes-

sors beschäftigt haben, werden wir Ihnen zum Schluß

des Kurses noch einen kurzen Einblick in die Hardware

vermitteln.

Zunächsteinmal geht es um die wichtigsten CPU _-

Steuersignale und die zeitsynchronen Abläufe bei der

Befehlsausführung. Diese Themen liegen noch sehr nahe

bei der Programmierarbeit. Durch die taktgebundene

Arbeitsweise der CPU ergeben sich schließlich die

zeitlichen Zusammenhänge zwischen Taktfrequenz, Ma-

schinenzyklen und Bearbeitungsdauer eines Program-

mes.

Es lohnt sich, diesen Abschnitt sorgfältig zu durchden-

ken, denn es arbeiten fast alle programmgesteuerten

Maschinen (nicht nur Mikroprozessaren) in ähnlicher

Weise.

Anschließend informieren wir Sie über weitere Z -80

Systembausteine und schließen mit einer Zusammenstel-

lung der wichtigsten Mikroprozessor - - Familien. |

Die Z - 80 Zentraleinheit, Anleitung

Der Text zu diesem Abschnitt befindet sich im Lehrbuch

Band Ill, Seite 14 bis 26. Die ersten Erläuterungen

beziehen sich auf das Blockschaltbild 1 - 2, Seite 15.

Hierin wird die CPU als komplexe Einheit aus mehreren

Baugruppen dargestellt. Bisher hatten Sie die CPU nur aus

der Sicht des Programmierers betrachtet, etwa so, wie es

das Bild 1 - 3 wiedergibt.

Leider sind in dem Text einige Druckfehler enthalten.

Bitte korrigieren Sie die Fehler, bevor Sie den Text lesen.

Druckfehler:

Seite 17, Zeile 30:

. .. oder einem Ein-/Ausgabegerät ablesen will.

Seite 18, Zeile 20:

NMI Eingang, getriggert von der negativen Flanke...

Seite 19, Zeile 5:

ß Einphasiger TTL - Takteingang.

Zeile 17:

7. Ausstieg infolge HALT-Befehl.

Zeile 27:

. Der Speicherbaustein interpretiert diese Signale...

vorletzte Zeile

Der Z - 80 entschlüsselt den Code 3 E als unmittelbaren‘

Ladebefehl für den Akku.

Seite 23, letzte Zeile:

. . über (überstrichene Signale (negiert!) sind im

Ruhezustand high, während nichtüberstrichene normaler-

weise low sind).

Ergänzend zu diesem Text, könnten Sie noch die Seiten 52

bis 67 lesen, hier finden Sie weitere Informationen zu den

Zeitabläufen bei verschiedenen Befehlen.

Berechnung der Befehlsausführungszeit

Die Zeitdauer, für die ein Mikrocomputer mit der Ausfüh-

rung eines bestimmten Programmteils beschäftigt ist, läßt

sich genau bestimmen. Unabhängig vom jeweiligen Gerät

und dessen Taktgenerator, sind für jeden Befehl die

erforderlichen Taktzyklen in den Befehlslisten angegeben.

Bei Befehlen, die Bedingungen auswerten, sind zwei

verschiedene Werte angegeben, die für die erfüllte oder

nicht erfüllte Bedingung gelten. Die Erläuterung der

Berechnung anhand von Beispielen finden Sie im Band I,

Seite 276 und 277. Bitte arbeiten Sie diese Seiten durch.
Im Gegensatz zum Text dort, hat sich in der Praxis

folgende Vereinfachung bewährt:

Statt für jeden Befehl zusätzlich zur Anzahl der Taktzyk-

len auch noch die Ausführungszeit zu berechnen, genügt

es, die Summe der Taktzyklen aller Befehle des Pro-

gramms zu ermitteln und erst dann mit der Taktzeit, zu

multiplizieren.

Einmal ermittelte Programmausführungszeiten halten die

Mikroprozessoren sehr genau ein, da die Takt frequenz-

oszillatoren in der Regel quarzstabilisiert sind.

Z - BD Systembausteine

Sieht man einmal von sogenannten Einchip-Mikrocom-

putern ab, so sind die CPU-Bausteine allein nicht lebens-

fähig. Für ein komplettes Mikrocomputersystem sind noch

weitere Bausteine wie Speicher und Ports erforderlich.

Speicher, als RAM oder ROM, sind Massenware und

universell einsetzbar, deshalb ist es nicht üblich, spezielle

Speicherbausteine für eine CPU vorzuschreiben. Es ist

lediglich eine Abstimmung bezüglich der Taktfrequenz des

Systems und der Zugriffszeit der Speicher nötig (s. Bd. III,

5. 66).

Anders verhält es sich mit den Peripheriebausteinen.

Diese sind oft mit zahlreichen komplexen Funktionen

ausgerüstet, die auf die Steuerung durch einen ganz

bestimmten Mikroprozessortyp zugeschnitten sind. So ist

jeder Hersteller bemüht, seine CPU mit einer vielseitigen

Bausteinfamilie auszurüsten, die die besonderen Eigen-

schaften seines Systems voll zur Geltung bringen.

Dies gilt für den Z - 80 fast nicht mehr. Als: Universal-

Prozessor kann er leicht mit Systembausteinen anderer

Mikroprozessor-F amilien zusammenarbeiten, jedoch: muß:

man.dann auf den Vektor-Interrupt verzichten. Der Vek-

tor-Interrupt ist die herausragende Fähigkeit des Z - 80

Systems, für die das Z - 80 Familienkonzept ausgelegt ist.

Dinge wie Prioritäts-Steuerung: der Interrupts und viel-

seitige Steuermöglichkeiten durch die Software

6-6

eine Rolle. Im Rahmen dieses Einführungskurses können

wir diese Einzelheiten nur kurz ansprechen. Ausführ-

lichere Informationen finden Sie im, Lehrbuch Band II,

Kapitel 7 und 9, hier besonders ab Seite 384.

Es folgen Kurzbeschreibungen der Z - 80 Systembausteine.

Z-80PIO (s. Bd. III, S. 306)

Parallel Input/Output Interface Controller

Zwei unabhängige 8 - Bit bidirektionale Ports

Vier Betriebsarten durch Software anwählbar

Eigene Interrupt - Logik

Z-80 CTC_ (s. Bd. II, S. 376)

Counter - Timer - Circuit

Vier voneinander unabhängig programmierbare 8 - Bit
Zähler/Zeitgeber - Kanäle

Rückwärtszähler mit Konstanten - Register

Eigene Interrupt - Logik für jeden Kanal

Wählbare Triggerflanken

Z - 80 SIO

Serial Input/Output Controller

Zwei unabhängige Vollduplex - Kanäle für serielle Daten-
übertragung

Steuer- und Statussignale für Datenaustausch

Übliche asynchrone und synchrone Verfahren wählbar

Eigene Interrupt - Logik für selbsttätige Arbeitsweise

Z - BB DART

Dual Asynchronous Receiver/Transmitter

Zwei unabhängige Vollduplex-Kanäle für serielle Daten-

übertragung. Asynchrone Betriebsart mit Statussignalen

des Modems.Übliche Übertragungsverfahren programmier-

bar.

Eigene Interrupt - Logik

Z - 88 DMA

Direct Memory Access

Automatischer Datentransfer zwischen Ports ünd Spei-

cher, unabhängig von der CPU

Vielseitige, programmierbare Funktionen

Im Z - 80 System keine weitere Logik erforderlich

Eigene Interrupt - Logik

Weitere Mikroprozessoren

Nachdem Sie sich ausführlich mit dem. Z - 80 Mikropro-

zessor beschäftigt haben, wird es Ihnen leicht fallen, auch
andere Systeme zu verstehen. Die grundsätzliche Arbeits-

weise aller Mikroprozessaren ist etwa gleich. Gravierende

Unterschiede gibt es hauptsächlich in der mnemonischen

Schreibweise der Befehle und den Befehlscodes. Die

Befehle selbst sind oft identisch oder ähneln sich. Auffäl-

lig ist dabei, daß einige der älteren Mikroprozessoren

einzelne Adressierungsarten oder bestimmte Befehlsgrup-

pen überhaupt nicht kennen. Insofern können Sie den

Übergang vom Z - 80 zu anderen Systemen leicht

bewältigen, jedoch werden Sie oft einige der komfortablen

Befehle vermissen.

Unterschiede bestehen auch in der Hardware- Beschaltung

und bezüglich der internen Register der CPU. Hierzu

finden Sie Hinweise auf den DINA 4 - Übersichtsblättern.

6. Test

6.1

6.2

3 ©.
a Ep Gm Sm — un mn mn un un un u ne u mn

Name und Rundfunkanstalt

Wodurch meldet der Z - 80 nach aussen, daß er gera-
de dabei ist, einen Befehlscode zu lesen?

Wie lange dauert die Bearbeitung des folgenden Pro-
gramms in einem Z - BO mit 2.5 MHz Taktfrequenz?

Fa \ / Aaan!T pm Por! 9,64 ser _[nestoep! Zn £r0
Pu mE up GEM Sim EHE ‚GEB MMiAii SEHE SEHE Senmungp

Adresse ‘| Op-Code "FLabel . Mnemonic

o1coro | ___|LDBc,Foco|

3E_ 30 _ | _:fpaA 30%:

3D IL JDEC A

20 FD Ä | IARNZ, 3],

OB | IDEC BC

Ba | ILD_ A, B
. Bl | OR C

20F6 IR NZ, - 10

OO | : NOP

6.3 Preisfrage

Das beiliegende Programm "Preis" läßt die LEDs
des Nanocomputers nur dann leuchten, wenn vorher
die Schalter SW 7 bis SWOD in einer bestimmten, vom
Programm vorgegebenen Weise eingestellt werden.

Drahtverbindungen:
SW 7-SW 0 mit PD7 -PDO und LM7-LMO mit PC7-PC0.

Wie müssen die Schalter betätigt werden, damit alle
LEDs leuchten? nn
Bitte geben Sie die Schalterstellungen in HEX-Schreib-
weise und in der richtigen Reihenfolge an.

Er, Ag # | 6, 43H

00 4 .

