R
NIXDORF
P
COMPUTER

Nixdorf 8810

GW BASIC

Edition: 01.10.85 Order no: 16128.00.6.93

3|00q JO dulds uo }axo0d
ul §asul pue ajesedag

AurBwISD)-1SSNA
uioqisped 06/v-d

J ©9j[eusising

ISZ 19V
OV JenduwoD) JIOPXIN

p.Je0ISOd

:(parers aq 1snuwl) 198ys uoljeolipow
Jad sk uoIsiAGI ISB| 8y} JO anss! Jo are(

€6'900'8¢C191

11aguinu sousIeey

dep DYON 10

:Auedwiod uj

‘aweN

‘(paress aq 1snw)
a|qisuodsal Youeiq HOPXIN 8y L

'ss8Jppe BUIMOJ|0} 841 O] JUSWNOOP SIY)

0] Sjuswa|ddns suonedlIpoW Aue puss ases|d

'suoleolipow Buipuss 10} s|gisuodsal si youelig LOPXIN INCA
"pJeD SIY) SN pues ases|d ‘B0IAIS8S UOISIASL INOA 10} 1SI| UOINGLISIP 8y} Ul LUOISN|OUl INOA 81NSUS O} Jop.o Uj

Introduction

Using the GW-Basic Interpreter

Learning the Language

Writing programs using the GW-Basic Editor

Working with files and devices

Using advances features

BASIC commands, functions and statements

Appendices

Index

—
o .
w N -

N —

Copying of this document and giving it 1o others and the use or communication
of the contents thereof are forbidden without express authority. Offenders are
liable to the payment of damages. All rights are reserved in the event of the grant

of a patent or the registration of a utility model or design.

e o o s o 8 e s e
e
N —

WRN —

e o e o o o
P WP NN —
. .

N —

e e 5 s e e s o o s

LWLW WW WL WLW WL WW WW WW WW WW WWw W
.
OO PR PEPLPEWWWWRNIN N =

. .

N —

N)([JCJF!F
TR H T
COMPUTER

C 0O NTE NT S

Introduction.......ccovvuan A, 1 -
Overview....oeeeiieeoeacncnne ceeeescscecsccssaaenn 1 -
Syntax notation.....eeeiieiineeeeeeeeeacacnnnannnn 1
Resources for learning BASIC.......... ceeeesecceas 1

Using the GW-BASIC Interpreter.......... cecseceaasld =
Invoking BASIC...... cececcssccaenn -
Command line option switcheS...ceeeveeeeecncnnns .2
Modes of operation...... iececsecsenanen ceceesceceesl
Line format..c.eeeieeeeeeenceccecannns 4
Active and visual (dlsplay) pages...... ceeesal

Learning the language...... cecetesecasacasasecnnns .3
Character set..ceeeeeececeesn ceeenens ceceaaes ceeeead
Special characters......... ceesescnseene ceeceaccen 3
Control characters........... ceceeeenas ceecesaseasd
ConstantsS..eeeeeeeceeaeccnnas P o3
String and numeric constants.......... ceseacenee .3
Single/Double precision numeric constants.........3
Variables...iiieiieineeieencens P
Variable names and declaration characters.........3
Array variables....cieiiiiiieeiitececaccannns ceeeed -
Space requirements......cc... ceceecsessnasnn P
Expressions and operators...... ceeeccttscssnanans 3
Precedence of operations...cceeececeneccaccacnnns 3
Arithmetic operators.....ceeeeeeeeeceanns cereeeen 3
Integer division and modulus arithmetic.......... 3 -
Overflow and division by zero....ceeeeeeenenn eeesd -
Relational operators..ceeecececececcennns ceeesseas 3 -
Logical operators.....cceeeecce.n ceeeenn ceeeen ee.3 -
String OperatorsS.. e ieeeeeeeeceacecennsconnnanns 3 -
TYPe CONVErSIiON..e.eeeeeeecsooasasecsanssansasnans 3 -
FUNCLIONS . et ieeieeecncnansoooaacscasosesenannns 3 -
Intrinsic fUNCLIONS. et ieeeeeeineeneeannannns 3 -

User-defined functionS...veeeeeeeeeanncacasannans 3

NW ——

N OY = —a

——
O OWWONNOEBELEWN ——

PPN S G
oA PWw

[ACES TV
— —a

CHAPTER 4

AR RLE D
e 8 e e e e
N PN NN N —

CHAPTER 5

D A)
DY
W —

“ s e

© e e e e 8 s s P

PR RN = s =2 a N =

. “ e .
W —

(SRS LS NSNS e, R WS NS WS NS WS, 1T oy oo oo on
.
.o .
wWN —

NoOo oo oo oy on B wWww wwh—

Writing programs using the GW-BASIC-Interpreter...4
EDIT Command. . ..o eeinteeeeeeeeneeecacnaoannnns 4
Full screen editor.....cciuiiiiiiiiiieeneennnanannn 4
Writing programsS... .. it eeieneceeeennancaanns 4
Editing programs.....eeeeeeeieeeeeeeenoacaenncnnas 4
Control characters..eee et ieieeeeeneneeconannnas 4
Logical line definition with INPUT.......ceuunn.. 4
Editing lines with syntax errors.....c.ceieeeeees.. 4
Working with files and devices........cuon.. ceeeeeb
Default device.ieeeeeeieeeieeneneeeeecenconenannns 5
Device-independent input/output............ ceeeeeed
Filenames and paths.....cceeeeiieeenanes ceeeeseasasd
Filename specification....ceeeeeeeenen. ceecescccae 5
PAathnNamesS . ciceeeeeeeaceeseeeceseceoscncoosennaaans 5
Working with pathnames in BASIC......cccvuunnnn eeesd
Re-direction of standard input and standard..... .
Lo U 8 eesb
Handling filesS.eiieeeeiiiiieeeenennnannna ceesesedd
Program File CommandsS.....eeeeinneeereennnanann ...5
Protecting program filesS..ceeeieeeeieeeeenannnn eesb
Data files: sequential and random access I/0..... 5
Sequential fileS.eiiieeeeieieeeeeneeeeonescoaanas 5
Creating a sequential file..oeeeeeeneeenennnnnnn 5
Reading data from a sequential file.......... eeesd
Adding data to a sequential file.........c.... eeed
Random access fileS.iiieeiieiiiieneeenneeaannnens 5
Creating a random access file...ue e neennnn 5
Accessing a random access file...eiieeeeieeennnns 5
Random file operations.....oeeiineieeeneeeenennnn 5
BASIC and child procCessesS...eeeeeeeeccsnccacaanas 5

QT WW N = — =

NMONOBRWN—= 0O VO N GO ND— ==

Copying of this document and giving it to others and the use or communication
of the contents thereof are forbidden without express authority. Offenders are

liable to the payment of damages. Al rights are reserved in the event of the grant

of a patent or the registration of a utility model or design.

B R0
NIXDORF

COMPUTER

CHAPTER 6

6 Using advances featluresS...eeceeeeeeeneceaaanaoenns 6 - 1
6.1 Assembly language subroutines............, 6 - 1
6.1.1 Memory AlloCation....ueeeeeeeeeeeneennnecncnnannns 6 - 1
6.1.2 Internal representation...cceeececeenecescenannnns 6 - 2
6.1.3 CALL statement......eeiiiiieeeeeeneneanrenencocnns 6 - 3
6.1.4 USR fURCLION. .t eeeieeieeenoceenanccaanaannnnnn 6 -9
6.2 Event trapping..ceceeee i ietneeneincaacaneaans 6 - 12
6.2.1 ON GOSUB statement....c.ceeeeceeeceeceaccencannnnns 6 - 14
6.2.2 RETURN statement......eiiieieennennenccncanaasnss 6 - 14
CHAPTER 7

7 BASIC commands, functions and statements.......... 7 -1
7.1 ABS function.....ccceeeees ceerecessascaannne eeeen 7 -1
7.2 ASC function....eeeveiueeenn e etececscsctasaacnne vedd = 2
7.3 ATN function........ Ceeeseeeccecncascensesananansasl =3
7.4 AUTO command..... Ceetcsnncssscesseannnn ceteceseaasd = 4
7.5 BEEP statement............. cececscsccseans ceeesaen 7 -5
7.6 BLOAD command.....eceeeeacacs cececscesecscacassann 7 -6
7.7 BSAVE command.....ceeeeeenns Ceececcsccsearcaanannns 7 -7
7.8 CALL statement............. cececeeeens ceesececaaae 7 -8
7.9 CDBL functionN....ceeeeeans teeeeceseccesetccasennann 7 -9
7.10 CHAIN statement....... ceeeee Cheecececascasaacaann 7 - 10
7.11 CHDIR statement.....ccceeeeen. ceeecesecenns P 7 - 14
7.12 CHRS function....eiierenieieeeoonscaannnns e 7 - 15
7.13 CINT functionN..eeeeeeennnn ceceessescsesns cedeeens 7 - 16
7.14 CIRCLE statement......... ceeeescesesasesnaasanans 7 - 17
7.15 CLEAR statement........... cecceccanoans ceeeaseens 7 - 19
7.16 CLOSE statement........... ceecaeeen ceeeee cereeaes 7 - 20
7.17 CLS statement............. cececeaatnans ceeeeeeeesd = 21
7.18 COLOR statement (in text mode) 7 - 22
7.19 COLOR statement (in graphics mode)....coveuvnnnn. 7 - 24
7.20 COM statement.... .ot eeeeeeeneannnnns [P 7 - 26
7.21 COMMON statement.......... tecteccecetceaceanoanans 7 - 27
7.22 CONT command........ ceeeeerean Cecteesececasaaennn 7 - 28
7.23 COS fUNCEtION. . eeeeeeeeeeeeooceseacaoancsasoannnnns 7 - 29
7.24 CSNG funCtion.. e eeeeeeeeeceacanscncocannnonnns 7 - 30
7.25 CSRLIN fuRCtioN.eeeeeeeeeeeeoenccececenacnnnnnons 7 - 31
7.26 CVI, CVS, CVD functionS....eeeieeeeneneeneennannns 7 - 32
7.27 DATA statement...eeeeeeeeeeeceeenceccaacaanannnns 7 - 33
7.28 DATE$ statement.....iciiiieeereenennnnnnn ceeeeeesd - 34
7.29 DATES function...cieeieieeeeieenenennecnnnaannnns 7 - 35

NONN NN NN NN NN NN NN NN NN NN NN NN NN
e e o s & 6 8 8 6 4 s s e s 0 e e s 6 o s e s s e s 0 s
NNN NN NNNNNOOOOT OO OO Ottt ot oot
OCONONBWNLOOVWORNONHWN—=OLVLOENNANT HWN —

DEF FN statement.....oeeeeeeeeeescaaoacasconcsnnas 7 - 36
DEFINT/SNG/DBL/STR statementsS.....cueeeeeeenananans 7 - 38
DEF SEG statement.......ciiiiiiiiiirieeecannnnnnn 7 - 39
DEF USR statement.....c.ceeeieeeeecencenonnconans 7 - 40
DELETE COMMANG.e.eeeeeeecencecacoaocnannnncnscses 7 - 41
DIM statement....ceeeeeeeereeeeeoacaoceananocnnnns 7 - 42
DRAW statement....c.eeeeeeecoconcoccasccncncnanosns 7 - 43
EDIT COMMANd..eeeeeeeeceenceeoeaoeanaonanannnnnnns 7 - 46
END statement.....coveiiiiiennnnnann. cecseanncs 7 - 47
ENVIRON statement....cceeeeeeeeneecncaeccacnncnns 7 - 48
ENVIRONS function......c.ceiiieeenececncecnnscnnas 7 - 50
EOF function...eeeeieeieneeeeenncecencoceaccscncnns 7 - 51
ERASE statement......ccceeiieereeecenancen ceeeean 7 - 52
ERDEV, ERDEV$ functionsS......eceeeeenn. ceeecsacane 7 - 53
ERR and ERL functionsS....c.oceeeeeeieecencenccennns 7 - 54
ERROR statement.....ccciiririeeeeeecannns ceeeesesl - 55
EXP function..eeeeeereeeeeeceocoosasononnss cecens .7 - 57
FIELD statement....cceeeeiieriennencnnanns eeeesss? = 58
FILES statement.....cceiiiieieennennns cessessas] = 60
FIX function..ceeeoceeeeeeenennannanans ceteanes .7 - 62
FOR...NEXT statement.....coceiececceccacacncsnncs 7 - 63
FRE function........ Ceeeceececccesssasanans ceeeeol = 66
GET statement - file I/0..cicieeneennanns cesesaaa 7 - 67
GET statement - graphics....iieeieneeeeonnnses vee.7 - 68
GOSUB...RETURN statements.....cccvieeeecencanenns 7 - 69
GOTO statement...ceveeeeeececacenannn ceesscne ceeood = 71
HEX$ funCtion.....eeeeeeeeeroecenceccaccnseancanns 7 -172
IF...THEN ...ELSE /IF...GOTO statements........ .7 =73
INKEYS function....eeieieriieeeeeeeccacanannnns ..7 =75
INP function..eeeeeeeaceceeececnenann ceessssvensn 7 - 76
INPUT statement....cceeieeeevceccacccacsnnns ceeeeasd = 77
INPUT# statement...cceeeeeeeeencncaacccans -
INPUTS fUNCtioN..eeeeeeeeeeeeeeceeanocoanssnacnans

INSTR function...eeeeereiiiieeeeeennacencnnns

INT function..veeeeeeeeennneonacnnns

KEY statement....eeeeeeeeeeenanoscecccsssccncones
KEY(n) statement....cceeeeeeeeecenconconncasacnns

KILL statement..........

LEFTS function...eeeeeeeeeeeeneeoececocancacnncns

LEN function..eeieeeeneeereeecesceacaanoncncnnnns

LET statement....c.c.ieeieiieerirnconococancscnccncs

LINE statement....ccieeeeeneceencecannnnnne

LINE INPUT statement.......cveiiennineencencanas

LINE INPUT# statement

LIST command....ceeeeeeeceenocosccocconcsancnasasns

LLIST cOmmand.....cceececoceanscncoscccncsocononsscs

LOAD command...ccecoceceoccscancasonsncascasssssas

LOC function...eeeeeeeeaconcnceacsosasacscsccanns

LOCATE statement......coeiveeeennnnn

LOF funCtion...eeeeereeeeenceaseeecncancancnnnns

ights are reserved in the event of the grant

of the contents thereof are forbidden without express authority. Offenders are
of a paent or the registration of a utility model or design.

Copying of this document and giving it to others and the use or communication
liable 10 the paym

7.80
7.81
7.82
7.83
7.84
7.85
7.86
7.87
7.88

N NN
..
WO W
Y X =}

@ o 9 s 8 e o s 6 s e e % o e e e o 8 6 8 o 8 s 6 s e

e e e e o e

ek b b ks b b ek b b oA b ek b A bk h A h ok b h kb —h i = D OO O WO WO WO WO
PP NN MNONIMNNI N s bk ch e et eh 2 eda 2 D OO OO OO OO OWVWONOLI W N

B i B B e B e B B B e i o e e e e N e e A N N N N R N N N N N N N A AN NN RN
P o .
WO ONONLWN— QOQOWONOANHBWN—=OWERNOUTRWN- O

LPOS funCtioN.. . eieeeee e ieeeeecnaeeaceannnnnns 7
LPRINT and LPRINT using statements.............. 7
LSET and RSET statements.....ceiieieeeennncnanns 7
MERGE command....ceceeeeeeeeeeeecscacececannnnnas 7
MID$ statement......cueeieeeeieineececnecannnnnns 7
MIDS funCLion...e ittt iietineeccnananans 7
MKDIR statement.....ceieiieiiinennennnncnnnnnnne 7
MKI$, MKS$, MKD$ fUNCLIiONS..ciieneeeaennnanannna 7
NAME statement......cecviceennn eeeseesesans P
NEW command. ... eeeeeeeeeeeececacacacocansannnna 7
(0100 1 S0 ATTY 1 Yon v 1 £ O Y 7
ON COM statement.....eeeeeeneienaenacnans ceesanal
ON ERROR GOTO statement......cccciieieeiennnnns o7
ON...GOSUB and ON...GOTO statements.......... -
ON KEY statement.......... e ecececssescacsanns .7
ON PLAY statement.....ceveeeeececcencnnansnns -
ON STRIG statement...... ceeececacascccccsanane .7
ON TIMER statement........cccecveennn [
OPEN statement.............. cecsescecacsns I
OPEN COM statement......ccccericncannns -
OPTION BASE statement....... ceeeeeane -4
OUT statement...ceeeeeeeeececeannn P 4
PAINT statement....cceveeeecanne ceececcscnsnasen 7
PEEK function..cvieeeeeeennnes ceeecacecana R §
PLAY statement....cciiieieniecccnanns O
PLAY function..ieeeeeeeeeeeeeeenenesssecansannnns 7
PLAY ON, PLAY OFF, PLAY STOP statements....... oo
PMAP function....... Ctetecesetesassescscaccesnnnn 7
POINT function....... cecesntenes ceccesecesecnans 7
POKE statement......... ceeeccscsscsesscasnannnn .7
POS function..cieeeeinecnnans cectesennan ceeeeansl
PRESET statement............. cheicssees R 4
PRINT statement....cceiiieererececcaacnnns ceeneadld
PRINT USING statement....ceeeeenrcoceconncnns -
PRINT# and PRINT# USING statements...... T &
PSET statement...oeeeeeeinieeeeenaceonnnnnnnas .7
PUT statement - file I/0..c.ceeiienennnnns ceseedd
PUT statement - graphicCS....ciieereececencannens 7
RANDOMIZE statement.....c.oeeerceeccecnances R
READ statement..iveereeeeeeeereacnnccacnconanncs 7
REM statement....ccieeinenrcieeeccannanens ceeedd
RENUM command....... Ceteaeeecctancntacane P 4
RESET command....... feeceeecetetasascaaans R
RESTORE statement...eeeeeiirenneencanenanns ceeedd
RESUME statement...ceeieieereresnnocencacasannas 7
RETURN statement...ceeeeieieeeeeneceacnaoannns eedd
RIGHT$ statement..... Ceeeceecsecersessaens -
RMDIR statement...cceeeeeeneerecnacenaonncnns R 4
RND fUnCtioN.eeeeeeeeeieeeeeeeoconocncnnnanns ceeod

T N N

PN PON) b —a ot s —a =
o —OowvNOOLLP~W

-
wwmn
& —_—o~N

o

n

e e e

- A h b ek b b kb b ek bk A b

A OO O TN T T T T B D AR PEPRERPWWWWWWWWW W
w

E-N

(o203,

~N

DY
w

N—O

~w

s s o e e e o e o s e s
[$,]

NN NN NN NN NN NN NN NN NN NN NN SNUONIN NN NN NN NN NN NN Y
.

ek e e et b B ek b b h ek b h b b —h A b b b
NOOPLWN 2O LVLONOTIEWN =20 WO NG

RUN statement/command.....cceeeeeeencosocennocans 7

SAVE COMMANd. s e v eneeeeeacoacsccecanaosansanoasns 7
SCREEN statement.....c.cceieeeecececeenoncaannnanns 7
SCREEN fUNCLION. e e eeeeeeeossaoaoancoaocnnnncans 7
SGN fUNCLION. . oeeeeeeeeeeeeooeacscsocasoasssnnnnas 7
SHELL statement......cccueeeecaeccccscanansacccss 7
SIN funCtion.. ..o oeeneeosansanssancancanans 7
SOUND statement......eeeeeeeeccccnncacnscnoasans 7
SPACES fUNCLIiON.. .. esnooancocnnanncnns 7
SPC fUNCLION. e eeeeoeeeoecaoasasncanssascannaasas 7
SQR FUNCLION. . ettt iinieeeeenoonnaascsaannns 7
STICK function.....c.cceeacens Ceecececcsceceancoan 7
STOP statement.......cccoeeeen teessocesscesecanan 7
STR$ fUNCEION. .. eieeeeeenccoaacncoocacnnsananns 7
STRIG fUNCtioN..ceeeeeeeeeeeeceacesconnnnnnconns 7
STRIG(n) ON, STRIG(n) OFF, STRIG(n) STOP........

statements.....ciiiiiiiioenen feceececresecareannn 7
STRING$ function............ ceeccescesescsseanann 7
SWAP statement............c0. ceecscccsesacsnanes 7
SYSTEM command......ocee.. teeeccsscasecaasancans 7
TAB function.....coceeeeeeennn cecsecsecesccsccans 7
TAN function........... teccnscscceens R 4
TIME$ statement........... ceesecane ceceanas R
TIME$ function.......... et eeeeccccccsasasenns o7
TIMER fuNCtioN...eieeeeeeeeesccacencoacansnsanes 7
TIMER ON, TIMER OFF, TIMER STOP statements......7
TRON/TROFF statements/commands... 7
USR function....ccveeeeenenen ceoceecsannon ceeeecas 7
VAL funCtionN..c.eeeeeeeeeecnoscacscasancasncancans 7
VARPTR function.......cceeeee ceeescsscscsasacans 7
VARPTRS function.....ciiieeiecneeceacaanas -
VIEW statement......ccceeen ceecceasccanas ceeeeen 7
VIEW PRINT statement.......... ceeseseses ceeesane 7
WAIT statement...eeeeeeeeeoscaconaoacnncnns R
WHILE...WEND statementsS..ceeeceeeencccccanacane .7
WIDTH statement.....ccviieiieeiennennnn ceessase 7
WINDOW statement........... cescecscseacens cesene 7
WRITE statement...cocececeescccccanccnccnsnscnns 7
WRITE# statement............ feestacccaans ceeeees 7
APPENDICES. .o ieeceecensacas Ceeeececccasscssnocens

| R B I | [I T T R |

[I S R T R R R T R R |

NIXDORF
TS
COMPUTER

8810 GW BASIC

Modifications sheet

This sheet lists all modifications made to this module since the
appearance of the first edition. It should be replaced by the
sheet provided whenever further modifications are announced.

First edition 10/85 Rel. 2.01

re reserved in the event of the grant

odel or design.

Copying of this document and giving it to others and the use or communication

of the contents thereof are forbid

liable to the payment of damages.
of a patent or the registration of a utilit

hts are reserved in the event of the grant

‘model or design.

Copying of this document and giving it to others and the use or communication
of the contents thereof are forbidden without express authority. Offenders are

of a patent of the registration of a utilty

liable to the payment of damag

8810 GW BASIC

Errors/suggestions for improvement

If you have noticed any errors while using this section of the
system's literature, or should you have suggestions for
improvement of the module, please send your written comments to
the following address:

NIXDORF COMPUTER AG
Abt. ZSI
Fiirstenallee 7

D-4790 Paderborn

ut express authority. Offenders are
are reserved in the event of the grant

del or design.,

Copying of this document and giving it to others and the use or communication

of the contents
of a patent o the registration of a utiity mo

liable to the payment of damages. Al

e
NIXDORF

INTRODUCTION

1 Introduction

In 1975, Microsoft wrote the first BASIC interpreter for

microcomputers. Today, Microsoft BASIC has well over
1,000,000 installations and 1is wused in many operating
environments. It's the BASIC you will find on all of the most
popular microcomputers. Many users, manufacturers, and software

vendors have written application programs in Microsoft(R)
BASIC.

The BASIC interpreter is a general-purpose programming
language: it is effective for many applications, including
business, science, games, and education. It is interactive; that
is, without writing a program, a user can perform processes,
calculations, and program testing.

Microsoft GW(tm)-BASIC is the most extensive
implementation of Microsoft BASIC available for
microprocessors. It meets the requirements for the ANSI
subset standard for BASIC, and supports many features rarely
found in other BASIC interpreters. In addition, the
Microsoft GW-BASIC Interpreter has sophisticated screen

handling, graphics, and structured programming features that are
especially suited for application development.

1.1 Overview

GW-BASIC includes several features not found in other BASICs,
and has been designed to take advantage of the MS(tm)-DOS
environment to enhance programming power.

Some of the new features and improvements over GW-BASIC are:

* Re-direction of Standard Input (INPUT, LINE INPUT) and
Standard Qutput (PRINT)

* Character Device support which allows BASIC to initialize and
communicate with user-installed devices

* Improved Disk I/0 facilities for handling larger files

* SHELL which allows COMMAND or Child processes to run
without having to leave BASIC

* Multi level directories for better disk organization

INTRODUCTION

Directory management (MKDIR/CHDIR/RMDIR)

Improved Graphics: Line Clipping, VIEW, WINDOW

Screen Editor enhancements including text window support
Additional Event Trapping: PLAY, TIMER

User definable Keyboard trapping

More precise error vreporting with the new system functions:
ERDEV and ERDEV$

Double Precision Transcendentals (optional with the /D
switch)

More precise control of BASIC's memory allocation for user
routines with the /M: switch

COMPUTER

INTRODUCTION

1.2 Syntax Notatfion

When commands are discussed in this document, the following
notation will be followed:

[] Square brackets indicate that the enclosed entry is
optional.

<> Angle brackets indicate wuser-entered data. When the
angle brackets enclose lowercase text, the user must type
in an entry defined by the text; for example,
<filenamex>. When the angle brackets enclose uppercase
text, the user must press the key named by the text; for
example, <RETURN>.

of the grant

{ } Braces indicate that the user has a choice between two or
more entries. At least one of the entries enclosed in
braces must be chosen unless the entries are also
enclosed in square brackets.

press authority. Offenders are

e reserved in the event

Vertical bars separate choices within braces. At least
one of the entries separated by bars must be chosen unless
the entries are also enclosed in square brackets.

ges

times as needed or desired.

CAPS Capital letters indicate portions of statements or
commands that must be entered exactly as shown.

Copying of this document and giving it to others and the use or communication

of the contents thereof are forbidden without exy

liable to the payment of d
of a patent or the registration of a utility model or design.

All other punctuation, such as commas, colons, slash
marks, and equal signs, must be entered exactly as shown.

1 -3

INTRODUCTION

Examples

Command Line Explanation

SAVE <filespec> [{A|P}]

These two entries are optional as indicated by the square
brackets. They also must be typed in as shown. The braces
indicate an either/or choice.

The lowercase filespec means you must supply the file
specification (disk drive, filename and extension).

Capital letters indicate that the word must be entered exactly as
shown.

INTRODUCTION

1.3 Resources For Learning BASIC

This manual provides complete instructions for using
Microsoft BASIC. However, no training material for BASIC
rogramming has been provided. If you are new to BASIC or need
elp in learning programming, we suggest you read one of the
following:

Dwyer, Thomas A. and Critchfield, Margot. BASIC and the

Personal Computer. Reading, Mass.: Addison-Hesley
Publishing Co., 1978.

Albrecht, Robert L., Finkel, LeRoy, and Brown, derry.
BASIC. New York: Wiley Interscience, 2nd ed., 1978.

grant

Daubach, Guenther Microsoft Basic 80; for Personal Computers
witz the CP/M operating system. Vaterstetten: INWT Publishing Co.,
1984.

ut express authority. Offenders are
are reserved in the event of the

Billings, Karen and Moursund, David. Are You Computer
Literate? Beaverton, Oregon: Dilithium Press, 1979.

Coan, James. Basic BASIC. Rochelle Park, N.J.: Hayden Book
Company, 1978.

of a utility model or design.

Copying of this document and giving it to others and the use or communication
ges. All rights

of the contents thereof are forbidde

liable to the payment of dama
of a patent or the registration

1 -5

NIXDDRF
R
COMPUTER

USING THE GW-BASIC INTERPRETER

2 Using the GW-BASIC Interpreter

2.1 Invoking BASIC

To begin operating the GW-BASIC Interpreter, load the MS-DOS
operating system and then enter:

GWBASIC

To begin operating a specific program as soon as BASIC has
started, load the operating system and enter:

GWBASIC <filespec>

where <filespec>is a filename preceeded by an optional device
designator, and followed by an optional extension name.

e reserved in the event of the grant

of a patent o the registration of a utilty mode! or design.

For example, to start the program FILE.BAS which is on disk drive
A:, enter:

hout express authority. Offenders are

GWBASIC A:FILE.BAS

2.2 Command Line Option Switches

Copying of this document and giving it to others and the use or communication

of the contents thereof are forbidd

The BASIC operating environment may be altered somewhat by
specifying option switches following BASIC on the command
line. The format of BASIC's command line is:

GW-BASIC [<stdin]
[>stdout]
[<filespec>]
[/C:<buffer size>]
C/D]

E/§j<number of files>]

m

C/M: E<highest memory location>] [,<maximum block
size
[/s <Irec1>]

2 -1

WHERE:

USING THE GW-BASIC INTERPRETER

<stdin

GW-BASIC input is vredirected from the file
specified by stdin. When present, this syntax must
appear before any switches. Note that the less-than
character "<" is literally that character, and
not an angle bracket indicating a required argument.
>stdout

GW-BASIC output is redirected to the file
specified by stdout. When present, this syntax must
appear before any switches. If two greater-
than signs appear ("™>"), the output is appended to
an existing output file. If an existing file is
to be written to, this is the way to prevent
that file from being overwritten. Note
that the greater-than character ">" is literally
that character, and not an angle bracket

indicating a required argument.

<filespec>
This is the file specification of a BASIC

program. If <filespec> s present, BASIC
proceeds as if a RUN<filespec> command were given
after initialization 1is complete. This allows

BASIC programs to be initiated by a batch file by
putting this form of the command line in an
AUTOEXEC.BAT file. Programs run in this manner will
need to exit via the SYSTEM statement in order
to allow the next command from the AUTOEXEC.BAT file
to be executed.

/F:<number of files>

This switch is ignored unless the /I switch is
specified on the command line. Please refer to the
/1 switch documentation below.

If this switch and the /I switch are present, the
maximum number of files that may be open
simultaneously during the execution of a BASIC
program is set to <number of files>. Each file
requires 62 bytes for the File Control Block (FCB)
plus 128 bytes for the data buffer. The data buffer
size may be altered via the /S: option switch.
If the /F: option is omitted, the number of files is
set to 3.

ights are reserved in the event of the grant

of the contents thereof are forbidden without express authority. Offenders are
of a patent or the registration of a utility model or design.

Copying of this document and giving it to others and the use or communication

COMPUTER

USING THE GW-BASIC INTERPRETER

The number of open files that MS-DOS supports

depends wupon the value of the FILES= parameter in
the CONFIG.SYS file. It is recommended that FILES=10
for BASIC. Keep in mind that the first 3 are

taken by Stdin, Stdout, Stderr, Stdaux, and Stdprn.
One additional handle 1is needed by BASIC for
LOAD, SAVE, CHAIN, NAME, and MERGE. This leaves 6
for BASIC File 1/0, thus /F:6 is the maximum
supported by MS-DOS when FILES=10 appears in the
CONFIG.SYS file.

Attempting to OPEN a file after all the file
handles have been exhausted will result in a "Too
many files" error.

/S:<lrecl>
This switch is 1ignored unless the /I switch is
specified on the command line. Please refer to the

/1 switch documentation below.

If this switch and the /I switch are present, then
the maximum record size allowed for use with

random files is set to <lrecl>. NOTE: the record
size option to the OPEN statement cannot exceed this
value. If the /S: option 1is omitted, the record

size defaults to 128 bytes.

/C:<buffer sizex>

If present, this switch controls RS232
Communications. If RS232 <cards are present, /C:0
disables RS232 support. Any subsequent I/0
attempts will result in a "Device Unavailable" error.
Specifying /C:<n> allocates space for communications
buffers. The amount of space allocated is dependent
on the machine-specific portion of GW-BASIC.

/D

If present, this switch causes the Double
Precision Transcendental math package to remailn
resident. If omitted, this package is
discarded and the space is freed for program use.

USING THE GW-BASIC INTERPRETER

/1

GW-BASIC is able to dynamically allocate space
required to support file operations. For this
reason, GW-BASIC does not need to support the /S
and /F switches. However, certain
applications have been written in such a manner that

certain BASIC internal data structures must be
static. In order to provide compatibilit{
with these BASIC programs, GW-BASIC wil

statically allocate space required for file

operations based on the /S and /F switches when
the /1 switch is specified.

/M:[<highest memory location>][.<max block size>]
When present, this switch sets the highest
memory location that will be used by BASIC. BASIC
will attempt to allocate 64k of memory for the
data and stack segment. If machine language
subroutines are to be used with BASIC programs, use
the /M: switch to set the highest location that BASIC
can use. When omitted or 0, BASIC attempts to
allocate all it can up to a maximum of 65536 bytes.

If you intend to load things above the highest
location that BASIC can use, then use the
optional parameter < maximum block size> to
preserve space for them. This is necessary if you
intend to use the SHELL statement (see Section
7.135). Failure to do so will result in COMMAND
being loaded on top of your routines when a SHELL
statement is executed.

<maximum block size> must be in paragraphs (byte
multiples of 16). When omitted, &H1000 (4096) is
assumed. This allocates 65536 bytes (65536= 4096 x
16) for BASIC's data and stack segment. For
example, if you wanted 65536 bytes for BASIC and
512 bytes for machine language subroutines, then
use /M:,&H1010 (4096 paragraphs for BASIC + 16
paragraphs for your routines).

This option can also be wused to shrink the BASIC
block in order to free more memory for shelling
other programs. /M:,2048 allocates 32768 bytes
for data and stack. /M:32000,2048 allocates 32768
bytes maximum, but BASIC will only use the lower
32000. This leaves 768 bytes for the user.

of the contents thereof are forbidden without express authority. Offenders are
liable to the payment of damages. Al rights are reserved in the event of the grant

Copying of this document and giving it to others and the use or communication
ol a patent or the registration of a utility model or design.

COMPUTER

USING THE GW-BASIC INTERPRETER

NOTE <number of files>, <lrecl>, <buffer size>, =<highest
memory location>, and <maximum block size> are
numbers that may be decimal, octal (preceeded by

&0), or hexadecimal (preceeded by &H).

Example GWBASIC PAYROLL Use 64k of memory and 3
files, load and execute
PAYROLL.BAS.
GWBASIC INVENT/I/F:6 Use 64k of memory and 6
files, load and execute
INVENT.BAS.

GWBASIC /C:0/M:32768 Disable RS232 support and
use only the first 32k of
memory. The memory above
that 1s free for the user.

GWBASIC /I/F:4/S5:512 Use 4 files and allow a
maximum record length of
512 bytes.

GWBASIC TTY/C:512 Use 64k of memory and 3
files. Allocate 512 bytes
to RS232 receive buffers
and 128 bytes to transmit
buffers, load and execute
TTY.BAS.

USING THE GW-BASIC INTERPRETER

2.3 Modes Of Operation

The Microsoft GW-BASIC Interpreter may be used in either of two
modes: direct mode or indirect mode.

In direct mode, statements and commands are executed as they are
entered. They are not preceded by line numbers. After each
direct statement followed by a <carriage return, the screen
will display the "0Ok" prompt. Results of arithmetic and logical
operations may be displayed immediately and stored for
later use, but the instructions themselves are lost after
execution. Direct mode is useful for debugging and for wusing
the GW-BASIC Interpreter as a calculator for quick computations
that do not require a complete program.

Indirect mode is used for entering programs. Program lines are
preceded by line numbers and may later be stored in memory.

The program stored in memory is executed by entering the
RUN command.

2.4 Line Format

Microsoft GW-BASIC program lines have the following format
(square brackets indicate optional input):

<nnnnn><BASIC statement> [[BASIC statement...] <carriage return>

More than one GW-BASIC statement may be placed on a line, but
each must be separated from the last by a colon.

A Microsoft GW-BASIC program line always begins with a line

number and ends with a carriage return. Line numbers
indicate the order in which the program lines are stored in
memory. Line numbers are also wused as references in

gggnching and editing. Line numbers must be in the range 0 to

A line may contain a maximum of 255 characters.

With the interpreter, you can extend a logical line over more
than one physical line by entering a <linefeed>. <linefeed>
lets you continue typing a logical line on the next physical
line without entering a <carriage return>. Alternatively, you
may type up to 255 characters on a logical line without
issuing either a line feed or a carriage return; the text
is wrapped and continues on the next physical line.

A period (.) may be used in EDIT, LIST, AUTO, and DELETE
commands to refer to the current line.

B
NIXDORF
D iy
COMPUTER

USING THE GW-BASIC INTERPRETER

2.5 Active And Visual (Display) Pages

The size of these pages is set by the SCREEN statement. (See
SCREEN Statement, Section 7.132)

oul express authority. Offenders are
ights are reserved in the event of the grant

of a palent or the registration of a utility mode! o design.

Copying of this document and giving it to others and the us: or communication

c
5
°
°
o
2
o
©
5]
£
2
=
ol
=
8
8
®
£
3

liable to the payment

ights are reserved in the event of the grant

y model or design.

of the contents thereof are forbidden without express authority. Offenders are

Copying of this document and giving it to others and the use or communication
liable to the payment of damages. Al ri

of a patent or the registration of a utilt

COMPUTER

LEARNING THE LANGUAGE

3 LEARNING THE LANGUAGE

Like any language, BASIC has an alphabet and common phrases. This
chapter presents the BASIC character set, and the rules for the
constants, variables, and expressions that the programming
language uses.

3.1 Character Set

The Microsoft GW-BASIC character set consists of alphabetic
characters, numeric characters, and special characters.

The alphabetic <characters 1in GW-BASIC are the uppercase and
lowercase letters of the English alphabet.

The GW-BASIC numeric characters are the digits 0 through 9. The
alphabetic characters A,B,C,D,E, and F may be used as part of
hexadecimal numbers.

LEARNING THE LANGUAGE

3.1.1 Special Characters

The following

special characters and terminal keys

recognized by GW-BASIC:

Character

e =3 eR—~ D>~ K | + 1

@/VA) Ro e

<rubout>

<escape>
<tab>

<linefeed>
<return>

Action

Blank

Equals sign or assignment symbol
Plus sign

Minus sign

Asterisk or multiplication symbol
Slash or division symbol

Up arrow or exponentiation symbol
Left parenthesis

Right parenthesis

Percent

Number (or pound) sign

Dollar sign

Exclamation point

Left bracket

Right bracket

Comma

Single quotation mark (apostrophe)
Semicolon

Colon

Ampersand

Question mark

Less than

Greater than

Backslash or integer division symbol
At sign

Underscore

Deletes last character typed.
Escapes edit mode subcommands.
Moves print position to next tab stop.
Tab stops are set every eight columns.
Moves to next physical line.
Terminates input of a line.

are

3.1.2

Microsoft
characters:

Control Character

GW-BASIC

IXDORF

COMPUTER

LEARNING THE LANGUAGE

Control Characters

supports the

Action

following

control

Control-A Enters edit mode on the line being typed.
Control-B Moves cursor to previous word.
Control-C With the interpreter, interrupts program
o execution and returns to BASIC command
g%g control-E Clears to end of iine.
F
3 Control-F Moves cursor to the next word.
2438 Ccontrol-G Sounds the speaker.
b3
2353 Control-H Backspaces. Deletes the last character
235t typed.
§§§§ Control-1 Tabs to the next tab stop. Tab stops are set
§§§§ every eight columns.
HH Control-K Sends cursor to home location.
§§§§ Control-L Clears the screen.
8583
Control-N Moves cursor to the end of the line.
Control-0 Halts program output while execution
continues. A second Control-0 resumes
output.
Control-Q Resumes program execution after a
Control-S.
Control-R Toggles the insert and typeover modes.
Control-S Suspends program execution.

LEARNING THE LANGUAGE

3.2 Constants

Constants are the values that cannot be changed during
execution. There are two types of constants: string and
numeric.

3.2.1 String and Numeric Constants

A string constant is a sequence of up to 255 alphanumeric and
specified control characters enclosed in double quotation
marks.

of the contents thereof are forbidden without express authority. Offenders are
liable 1o the payment of damages. All rights are reserved in the event of the grant

Copying of this document and giving it to others and the use or communication
of a patent o the registration of a utility mode! o design.

NIXDO

N>

LEARNING THE LANGUAGE

Examples:
"HELLO"
"$25,000.00"
"Number of Employees"
Numeric constants are positive or negative numbers.

Microsoft GW-BASIC numeric constants cannot contain commas.
There are five types of numeric constants:

1. Integer constants Whole numbers between -32768 and
32767. Integer constants do not
contain decimal points.

2. Fixed-point Positive or negative real numbers,
constants 1i.e., numbers that contain
decimal points.

3. Floating-point Positive or negative numbers represented
in exponential form (similar to
scientific notation). A floating-
point constant consists of an
optionally signed 1integer or fixed-
point number (the mantissa) followed
by the letter E and an optionally
signed integer (the exponent). The
allowable range for floating-point
constants is 10-38 to 10+38.

Examples:
235.988E-7 = .0000235988
2359E6 = 2359000000
(Double precision floating-point
constants are denoted by the letter D
instead of E.)

4. Hex constants Hexadecimal numbers, denoted by the

prefix &H. Hex constants may be no
greater than decimal 64K.
Examples:

&H76
&H32F

LEARNING THE LANGUAGE

5. Octal constants Octal numbers, denoted by the
prefix &0 or &. Octal constants may
not exceed decimal 64K.

Examples:
&0347
&1234

3.2.2 Single/Double Precision Numeric Constants

Numeric constants may be either single precision or double

precision numbers. Single precision numeric constants are
stored with 7 digits of precision and printed with up to 6
digits of precision. Double precision numeric constants are

gtored with 16 digits of precision and printed with up to 16
igits.

A single precision constant is any numeric constant that has one
of the following characteristics:

1. Seven or fewer digits

2. Exponential form using E

3. A trailing exclamation point (!)

Examples:

46.8
-1.09E-06

3489.0

22.5!

S
NIXDORF
R
COMPUTER

LEARNING THE LANGUAGE

A double precision constant is any numeric constant that has one
of these characteristics:

1. Eight or more digits

2. Exponential form using D

3. A trailing number sign (#)

Examples:

345692811
-1.09432D-06

3489.0#

7654321.1234

3.3 Variables

out express authority. Offenders are
rights are reserved in the event of the grant

ity model or design.

Variables are names used to represent values wused in a GW-

BASIC program. The value of a variable may be assigned
explicitly by the programmer, or it may be assigned as the
result of calculations in the program. Before a variable is

assigned a value, its value is assumed to be zero (or null for
a string variable).

Copying of this document and giving it to others and the use or communication

3
24
g2
eES
585
8%g
258
SEo
2L
585
S5

goc
852
298
=D a
5835

3.3.1 Vartable Names and Declaration Characters

Microsoft GW-BASIC variable names may be any length. Up to 40
characters are significant. Variable names can contain letters,
numbers, and the decimal point. However, the first character
must be a letter. Special type declaration characters
(listed below) are also allowed.

A variable name may not be a reserved word, but embedded
reserved words are allowed, with one exception: no variable may
start with the letters USR. For example, the wvariable USRNAMS$
will generate a syntax error. Reserved words include all
Microsoft GW-BASIC commands, statements, function names,
and operator names. If a variable begins with FN, it is assumed
to be a <call to a wuser-defined function.

Variables may represent either a numeric value or a string.
String variable names are written with a dollar sign ($) as the
last character. For example: A$ = "SALES REPORT". The dollar
sign 1is a variable type declaration character; that 1is, it
"declares" that the variable will represent a string.

LEARNING THE LANGUAGE

Numeric variable names may be declared as integer, single
precision, or double precision values. The type declaration
characters for these variable names are as follows:

% Integer variable
! Single precision variable
Double precision variable

The default type for a variable name is single precision.
However, if a number specified in a program has too many
significant digits to be represented by a single precision
number, it will be represented as a double precision number, and
the " " which signifies double precision will follow the number
in the program listing.

Integer variables produce the fastest and most compact
object code. For example, the following program executes
approximately 30 times faster when the loop control variable "I"
is replaced with "I%", or when I is declared an integer variable
with DEFINT.

100 FOR I=1 TO 10

120 A(1)=0
140 NEXT I

Examples of Microsoft GW-BASIC variable names:

PI# Declares a double precision value.
MINIMUM! Declares a single precision value.
LIMIT% Declares an integer value.

N$ Declares a string value.

ABC Represents a single precision value.

The default variable type may be selectively changed by
using the GW-BASIC statements DEFINT, DEFSTR, DEFDBL, and
DEFSNG. These statements are described in detail in Section
7.31.

of the contents thereof are forbidden without express authority. Offenders are
liable (o the payment of damages. All rights are reserved in the event of the grant

Copying of this document and giving it to_others and the use or communication
of a patent or the registration of a utility model or design.

R
NIXDORF
R
COMPUTER

LEARNING THE LANGUAGE

3.3.2 Array Variables

An array is a group or table of wvalues referenced by the same

variable name. Each element in an array is referenced by an
array variable that 1is subscripted with an integer or an
integer expression. An array variable name has as many
subscripts as there are dimensions in the array. For

example V(10) would reference a value in a one-dimension
array, T(1,4) would reference a value 1in a two-dimension
array, and so on. The maximum number of dimensions for an
array is 255. The maximum number of elements per dimension 1is
32,767. The maximum amount of space that may be taken for an
array is 64K.

3.3.3 Space Requirements

The following list gives only the number of bytes occupied by
the values represented by the variable names. Additional
requirements may vary according to implementation.

Variables Type Bytes
Integer 2
Single precision 4
Double precision 8
String 3

Arrays Type Bytes
Integer 2 per element
Single precision 4 per element
Double precision 8 per element
String 3 per element

LEARNING THE LANGUAGE

3.4 Expressions And Operators

An expression may be a string or numeric constant, a
variable, or a combination of constants and variables with
operators. An expression always produces a single value.

Operators perform mathematical or logical operations on
values. GW-BASIC operators may be divided into three
categories:

1. Arithmetic
2. Relational

3. Logical

Each category is described in the following sections.

3.4.1 Precedence of Operations

The GW-BASIC operators have an order of precedence; that is,
when several operations take place within the same progranm
statement, certain kinds of operations will be performed
before others. If the operations are of the same level of
precedence, the first to be executed will be the leftmost, and
the last, the rightmost. The following is the order in which
operations are executed.

Exponentiation
Negation
Multiplication & Division
Integer Division
Modulus Arithmetic
Addition & Subtraction
Relational Operators
NOT

. AND

OR & XOR

EQV

IMP

N0 WVWONOTOIHWN —
e e S e s s s e s

—_

3 -10

others and the use or communication

liable to the payment of damages. All rights are reserved in the event of the grant

of a patent or the registration of a utility model or design.

Copying of this document and giving it to

COMPUTER

LEARNING THE LANGUAGE

3.4.2 Arithmetic Operators

The arithmetic operators, in order of evaluation, are:

Operator Operation Sample Expression
N Exponentiation XAY
- Negation -X
* Multiplication, Floating- X*Y
point Division X/Y
\ Integer division 12\6=2
MOD Modulus arithmetic 10 MOD 4=2

(10/4=2 with remainder 2)
+, - Addition, Subtraction X+Y

You can change the order of evaluation by wusing parentheses.
Operations within parentheses are performed first. Inside
parentheses, the usual order of operations is maintained.

3 - 1

LEARNING THE LANGUAGE

The following list gives some sample algebraic expressions and
their Microsoft GW-BASIC counterparts.

Algebraic Expression BASIC Expression

X+2Y X+Y*2
Y
X- — X-Y/Z
z
XY
_— X*Y/Z
z
X+ Y
(X+Y)/Z
z
2 Y
(x) (XA2)AY
z
Y
X XN(YAZ)
X(-Y) X*(-Y)

Two consecutive operators must be separated
by parentheses.

3 - 12

COMPUTER

LEARNING THE LANGUAGE

3.4.2.1 Integer Division and Modulus Arithmetic

In addition to the six standard operators (addition,
subtraction, multiplication, division, negation, and
exponentiation), GW-BASIC supports integer division and
modulus arithmetic.

Integer division is denoted by the backslash (\). The
operands are rounded to integers (must be in the range -
32768 to 32767) before the division is performed, and the
quotient is truncated to an integer.

Examples:

100 LET DIV1 = 10\4

200 LET DIV2 = 25.68\6.99
300 PRINT DIV1, DIV2

will yield

2

ts are reserved in the event of the grant

of a patent or the registration of a utility model or design.

Modulus arithmetic 1is denoted by the operator MOD. Modulus
arithmetic yields the integer value that is the remainder of an
integer division.

Examples:

Copying of this document and giving it to others and the use or communication

liable to the payment of damages. All

10 PRINT 10.4 MOD 4, 25.68 MOD 6.99
will yield
2 5

because (10/4=2 with a remainder 2) and (26/7=3 with a
remainder 5).

3 - 13

LEARNING THE LANGUAGE

3.4.2.2 Overflow and Division by Zero

If division by zero is encountered during the evaluation of an

expression, a "Division by zero" error message is
displayed. Machine infinity (the largest number that can be
represented in floating-point format) with the sign of the
numerator is supplied as the result of the division, and

execution continues. If the evaluation of an exponentiation
operator results in zero being raised to a negative power, the
"Division by zero" error message is displayed, positive machine
infinity is supplied as the result of the
exporentiation, and execution continues.

If overflow occurs, the interpreter displays an "Overflow"
error message, supplies machine infinity with the
algebraically correct sign as the result, and continues
execution.

3.4.3 Relational Operators

Relational operators are used to compare two values. The
result of the comparison is either "true" (-1) or "false" (0).
This result may then be wused to make a decision regarding
program flow. (See IF Statement, Section 7.57.)

The relational operators are:

Operator Relation Tested Example

= Equality X=Y

<> Inequality X<>Y
Less than X<Y
Greater than X>Y

<= Less than or equal to X<=Y

>= Greater than or equal to X>=Y

(The equal sign is also used to assign a value to a
variable. See the LET statement, Section 7.70.)

3 - 14

press authority. Offenders are

ights are reserved in the event of the grant

Copying of this document and giving it to others and the use or communication

of the contents thereof are forbidden without ex

liable to the payment of damages. Al i
of a patent or the registration of a utility model or design.

RO
NIXDORF
P
COMPUTER

LEARNING THE LANGUAGE

When arithmetic and relational operators are combined in one
expression, the arithmetic 1is always performed first. For
example, the expression

X+Y<(T-1)/2

is true if the value of X plus Y is less than the value of T-1
divided by Z.

More examples:

IF SIN(X)<0 GOTO 1000
IF I MOD J<>0 THEN K=K+1

3.4.4 Logical Operators

The logical operator performs bit-by-bit calculation and
returns a result which is either "true" (not zero) or
“false" (zero). In an expression, logical operations are
performed after arithmetic and relational operations. The
outcome of a logical operation is determined as shown in
Table 3-1. The operators are listed in order of precedence.

3 - 15

LEARNING THE LANGUAGE

Table 3-1. GW-BASIC Relational Operators Truth Table

Operation Value Value Result
NOT
X NOT X
T F
F T
AND
X Y X AND Y
T T T
T F F
F T F
F F F
OR
X Y X OR Y
T T T
T F T
F T T
F F F
XOR
X Y X XOR Y
T T F
T F T
F T T
F F F
EQV
X Y X EQV Y
T T T
T F F
F T F
F F T
IMP
X Y X IMP Y
T T T
T F F
F T T
F F T

3 - 16

FII)([JC)F!F
R
COMPUTER

LEARNING THE LANGUAGE

Just as the relational operators can be used to make
decisions regarding program flow, logical operators can
connect two or more relations and return a true or false
;aégi to be used in a decision (see [IF Statements, Section

Example:

IF D<200 AND F<4 THEN 80
IF I>10 OR K<O THEN 50

IF NOT P THEN 100

Logical operators work by converting their operands to 16-
o bit, signed, two's complement integers 1in the range -32768
to 32767. (If the operands are not in this range, an_error
results.) If both operands are supplied as 0 or -1, logical
operators return 0 or -1. The given operation 1is performed
on these integers bit-by-bit; i.e., each bit of the result is
determined by the corresponding bits in the two operands.

hout express authority. Offenders are
is are reserved in the event of the grant

others and the use or communication
of a patent of the registration of a utility model or design.

Thus, it is possible to use logical operators to test bytes for
a particular bit pattern. For instance, the AND operator
may be used to "mask" all but one of the bits of a status byte
at a machine I/0 port. The OR operator may be used to ‘“"merge"
two bytes to create a particular binary value. The
following examples, all using decimal numbers, demonstrate how
the logical operators work.

Copying of this document and giving
of the contents thereof are forbidde

liable to the payment of dama

63 AND 16 = 16 63 = binary 111111 and 16 = binary
10000, so 63 AND 16 = 16.

15 AND 14 = 14 15 = binary 1111 and 14 = bi ry 1110,
so 15 AND 14 = 14 (binary 11)

-1 AND 8 = 8 -1 = binary 1111111111111111 and
8 = binary 1000, so -1 AND 8 = 8.

4 OR 2 = 6 4 = binary 100 and 2 = binary 10,
so 4 OR 2 = 6 (binary 110).

10 OR 10 = 10 10 = binary 1010, so 1010 OR 1010 =
1010 (decimal 10)

LEARNING THE LANGUAGE

-1 OR -2 = -1 -1 = binary 1111111111111111 and
-2 = binary t111111111111110,
so -1 OR -2 = -1. The bit complement

of sixteen zeros is sixteen ones,
which is the two's complement
representation of -1,

NOT X = ~(X+1) The two's complement of any integer
is the bit complement plus one.

3.4.5 String Operators

Strings may be concatenated by using the plus sign (+). For
example:

10 A$="FILE" : B$="NAME"
20 PRINT A$+B$
30 PRINT "NEW "+A$+B$

will yield

FILENAME
NEW FILENAME

Strings may be compared using the same relational operators that
are used with numbers:

= <> < > <= >=

String comparisons are made by taking one character at a time
from each string and comparing the ASCII codes. If all the ASCII
codes are the same, the strings are equal. If the ASCII codes
differ, the lower code number precedes the higher. If during
string comparison the end of one string is reached, the
shorter string is said to be smaller. Leading and trailing
blanks are significant.

3 -18

Copying of this document and giving it to others and the use or communication
of the contents thereof are forbidden without express authority. Offenders are

s are reserved in the event of the grant
of a patent or the registration of a utility model or design.

liable to the payment of damages. All

COMPUTER

LEARNING THE LANGUAGE

For example:

"AA" is less than . “AB"

"FILENAME" is equal to "FILENAME"

"X&" is greater than WX
(because # comes before &)

“eL is greater than “eL"
(because of the trailing space)

“kg" is greater than "KG"

"SMYTH" is less than "SMYTHE"

B$ is less than n"g/12/78"

(where B$="8/12/78")

Thus, string comparisons can be used to test string values or
to alphabetize strings. All string constants wused in
comparison expressions must be enclosed in quotation marks.

3.5 Type Conversion

When necessary, Microsoft GW-BASIC will convert a numeric
constant from one type to another. The following rules and
examples apply to conversions.

1. If a numeric variable of one type is set equal to a numeric
constant of a different type, the number will be stored as
the type declared in the variable name.

Example:

10 PERCENT%=23.42
20 PRINT PERCENT%

will yield
23
2. During expression evaluation, all of the operands in an

arithmetic or relational operation are converted to the
same degree of precision as that of the most precise
operand. Also, the result of an arithmetic operation 1is
returned to this degree of precision.

3 - 19

LEARNING THE LANGUAGE

Examples:

10 DEDUCTION#=6#/7
20 PRINT DEDUCTION#

will yield

0.8751428571428571

The arithmetic was performed in double precision and the
result was returned in DEDUCTION# as a double precision value.
10 DEDUCTION=6#/7

20 PRINT DEDUCTION

will yield

0.857143

The arithmetic was performed in double precision, and the

result is rounded to single precision and returned to DEDUCTION
(single precision variable), and printed.

3. Logical operators (see Section 3.4.4) convert their operands
to integers and return an integer result. Operands must be in
the range -32768 to 32767 or an "Overflow" error occurs.

4. When a floating-point value 1is converted to an integer,
the fractional portion is rounded.

Example:

10 CASH%=55.88
20 PRINT CASH%

will yield
56

3 - 20

LEARNING THE LANGUAGE

5. If a double precision variable is assigned a single precision
value, only the first seven digits (rounded) of the
converted number will be wvalid. This 1is because only
seven digits of accuracy were supplied with the single

recision value. The absolute value of the difference
etween the printed double precision number and the
original single precision value will be less than 6.3E-8
times the original single precision value.

Example:

: 10 A=2.04
: 20 B#=A
: 30 PRINT A;B#

will yield

press authority. Offenders are

2.04 2.039999961853027

3.6 Functions

GW-BASIC incorporates two kinds of functions: intrinsic and
user-defined.

Copying of this document and giving it to others and the use or communication

of the contents thereof are forbidden without ex

3.6.1 Intrinsic Functions

When a function is wused in an expression, it calls a
predetermined operation that is to be performed on an
operand. Microsoft GW-BASIC has functional operators that
reside in the system, such as SQR (square root) or SIN
(sine), and these "resident functions are called "intrinsic
functions".

3.6.2 User-Defined Functions

Microsoft GW-BASIC also allows "user-defined" functions that are
written by the programmer. See DEF FN Statement, Section
7.30. .

3 -2

WRITING PROGRAMS USING THE GW-BASIC EDITOR

4 WRITING PROGRAMS USING THE GW-BASIC EDITOR

GW-BASIC provides two ways to enter and edit text: you can
issue an EDIT command to place you in edit mode or use the full
screen editor.

4.1 EDIT Command

The EDIT command places the cursor on a specified line so that
ghggges can be made to the line. See EDIT command, Section

grant

4.2 Full Screen Editor

out express authority. Oflenders are
are reserved in the event of the

The full screen editor gives you immediate visual feedback, so
that program text is entered in a "what you see is what you get"
manner. If the user has a program listing on the screen, the
cursor can be moved to a program line, the line edited, and the
change entered by pressing the return key. This time-saving
capability is made possible by special keys for cursor movement,
character insertion and deletion, and line or screen
erasure. Specific functions and key assignments are
discussed in the following sections.

Copying of this document and giving it to others and the use or communication
ights

of the contents thereof are forbidd
of a patent or the registration of a utiity mode! or design.

liable to the payment of damages. Al ri¢

With the full screen editor, you can move quickly around the
screen, making corrections where necessary. The changes are
entered by placing the cursor on the changed line and
pressing <RETURN>.

When input processes are directed from the screen, the user may
use the full-screen editor features in responding to INPUT and
LINE INPUT statements.

WRITING PROGRAMS USING THE GW-BASIC EDITOR

4.2.1 Writing Programs

You are wusing the full screen editor any time between the

interpreter's "oK" prompt and the execution of a RUN
command. Any line of text that is entered is processed by the
editor. Any line of text that begins with a number is

considered a program statement.

It is possible to extend a logical line over more than one
physical line by continuing typing beyond the last column of the

screen. The editor wraps the logical line so that it
continues on the next physical line. A carriage return
signals the end of the logical line; when a carriage return is

entered, the entire logical line is passed to GW-BASIC. Up to
255 characters may be present in one logical line.

Program statements are processed by the editor in one of the
following ways:

1. A new line is added to the program. This occurs if the line
number is valid (0 through 65529) and at least one non-blank
character follows the line number.

2. An existing line is modified. This occurs if the line
number matches that of an existing line in the program. The
existing line is replaced with the text of the new line.

3. An existing line is deleted. This occurs if the line
contains only the line number, and the number matches that of
an existing line.

4. The statements are passed to the command scanner for
interpretation (i.e., the statement is executed).

5. An error is produced.

If an attempt 1is made to delete a non-existent line, an
"Undefined line" error message is displayed.

If program memory is exhausted, and a line is added to the
program, an "Out of memory" error message is displayed, and
the line 1is not added.

More than one statement may be placed on a line. If this is done,
the statements must be separated by a colon (:). The colon need
not be surrounded by spaces.

model or design.

of a patent or the registration of a

N DORF
P
COMPUTER

WRITING PROGRAMS USING THE GW-BASIC EDITOR

4.2.2 Editing Programs

Use the LIST command to display an entire program or range of
lines on the screen so that they can be edited with the full
screen editor. Text can then be modified by moving the cursor
to the place where the change is needed and then performing
one of the following actions:

1. Typing over existing characters

2. Deleting characters to the right of the cursor

3. Deleting characters to the left of the cursor

4. Inserting characters

5. Appending characters to the end of the logical line

These actions are performed by special keys assigned to the

various full screen editor functions (see the next section).

Changes to a line are recorded when a carriage return is

entered while the cursor is somewhere on that line. The

carriage return enters all changes for that logical line, and,
to the 255 character line limitation, no matter how many

u
pRysical lines are included and no matter where the cursor is
located on the line.

4,2.3 Control Characters

Table 4-1 1lists the hexadecimal codes for the GW-BASIC
control characters and summarizes their functions. The
Control-key sequence normally assigned to each function is also
listed.

Individual control functions are described following Table 4-1.

Table 4-1.
Hex. Control
Code Key

01 Ctrl-A
02 Ctrl-B
03 Ctrl-C
04 Ctrl-D
05 Ctrl-E
06 Ctrl-F
07 Ctrl-G
08 Ctrl-H
09 Ctrl-1I
0A Ctrl-yg
0B Ctrl-K
0C Ctrl-L
0D Ctrl-M
0E Ctrl-N
OF Ctrl-0
10 Ctrl-pP
11 Ctrl-Q
12 Ctrl-R
13 Ctrl-S
17 Ctrl-W
1B Ctrl-
1C —

1D -—

1E t

1F {

7F DEL

WRITING PROGRAMS USING THE GW-BASIC EDITOR

GW-BASIC Control Functions.

Function

Enter edit mode

Move cursor to start of previous word
Break

Ignored

Truncate line (clear text to end

of logical line)

Move cursor to start of next word
Beep

Backspace, deleting characters passed
over

Tab (8 spaces)

Linefeed

Move cursor to home position

Clear window

Carriage return (enter current logical
line)

Append to end of line

Suspend or restart program output
Ignored

Restart suspended program

Toggle insert/typeover mode

Suspend program

Delete word

clear line

Cursor right

Cursor left

Cursor up

Cursor down (underscore)

Delete character at cursor

of the contents thereof are forbidden without express authority. Offenders are
liable to the payment of damages. All rights are reserved in the event of the grant

Copying of this document and giving it to others and the use or communication
of a patent or the registration of a utility model or design.

WRITING PROGRAMS USING THE GW-BASIC EDITOR

4.2.4 Logical line Definition with INPUT

Normally, a logical line consists of all the characters on each
of the physical lines that make up the logical line. During
execution of an INPUT or LINE INPUT statement, however,
this definition is modified slightly to allow for forms input.
When either of these statements is executed, the logical line
is restricted to characters actually typed or passed over by the
cursor. The insert and delete modes move only characters that
are within that logical line, and delete mode will decrement the
size of the line.

Insert mode increments the logical line except when the
characters moved will write over non-blank characters that are
on the same physical line but not part of the logical line.
In this case, the non-blank characters not part of the logical
line are preserved and the characters at the end of the logical
line are thrown out. This preserves labels that existed prior to
the INPUT statement.

4.2.5 Editing Lines with Syntax Errors

When a syntax error is encountered during program execution, GHW-
BASIC prints the 1line containing the error and enters direct
mode. You can correct the error, enter the change, and
reexecute the program. When a line is modified, all files are
closed, and all variables are lost. Thus, if the user wishes
to examine the contents of variables just before the syntax error
was encountered, the user should print the values before
modifying the program line. Alternative ways to get to direct
mode without erasing variable values or closing files are the
STOP and END commands.

of the contents thereof are forbidden without express authority. Offenders are
liable to the payment of damages. All rights are reserved in the event of the grant

Copying of this document and giving it to others and the use or communication
of a patent or the registration of a utility model or design.

COMPUTER

WORKING WITH FILES AND DEVICES

5 WORKING WITH FILES AND DEVICES

This chapter discusses the way files and devices are wused and
addressed in GW-BASIC, and the way information is input and
output through the system.

5.1 Default Device

When a filespec is given (in commands or statements such as
FILES, OPEN, KILL), the default (current) disk drive is the one
that was the default in MS-DOS before GW-BASIC was invoked.

5.2 Device-Independent Input/Output

Microsoft GW-BASIC provides device-independent input/output
that permits flexible approaches to data processing. Using

device independent 1/0 means that the syntax for access 1is
the same for any device.

The following statements, commands, and functions support

device-independent 1/0 (see individual descriptions in
Chapter 7):

BLOAD LOF

BSAVE MERGE

CHAIN OPEN

CLOSE POS

EOF PRINT

GET PRINT USING
INPUT PUT

INPUTS$ RUN

LINE INPUT SAVE

LIST WIDTH

LOAD WRITE

LocC

WORKING WITH FILES AND DEVICES

5.3 Filenames And Paths

GW-BASIC uses MS-D0S 2.0's enhanced directory structure, allowing
files to be accessed through their pathname.

5.3.1 Filename Specifications

File specifications follow MS-DOS 2.0 naming conventions. All
filespecs may begin with a device specification such as A: or B:
or COM1: or LPT1:. If no device 1is specified, the current
drive is assumed. The default extension .BAS is appended to
filenames wused in LOAD, SAVE, MERGE and RUN <filename>
commands, if no period (.) appears 1in the filespec and if
the filename is less than nine characters long.

Examples:

RUN "NEWFILE.BAS"

RUN "A:NEWFILE.BAS"

RUN "KYBD:NEWFILE.BAS"

SAVE "NEWFILE" (file is saved with .BAS extension on
default device)

5.3.2 Pathnames

A pathname 1is a sequence of directory names followed by a
simple filename, each separated from the previous one by a
backslash (\), and no longer than 128 characters. If a
device is specified, it must be specified at the beginning of
the pathname. A simple filename is a sequence of
characters that can optionally be preceded by a drive
designation, be devoid of backslashes, and be optionally
followed by an extension.

[<d>:I[<directory>J\[<directory...>s]\[<filenamex]

NIXDOR
COMPUTER

WORKING WITH FILES AND DEVICES

ROOT

GAMES BIN USER ACCOUNTS PROGRAMS

JOE SUE MARY

Text.txt FORMS Text.txt

1A

re reserved in the even of the grant

A Sample Hierarchical Directory Structure

In the structure shown above, directories are in all
upper-case letters. The two entries named Text.txt, and the
entry named 1A are files.

If a pathname begins with a backslash, MS-D0OS searches for the
file beginning at the root (or top) of the tree.
Otherwise, MS-DOS begins at the user's current directory,
known as the working directory, and searches downward from
there.

of the contents thereof are forbidden without express authority. Offenders are

Copying of this document and giving it to others and the use or communication
liable to the payment of damage:

of a patent or the registration of a utility model or design.

The pathname of Sue's TEXT.TXT file is \USER\SUE\TEXT.TXT.

WORKING WITH FILES AND DEVICES

When you are in your working directory, a filename and its
corresponding pathname may be wused interchangeably. Some
sample names are:

\ Indicates the root directory.

\ PROGRAMS Sample directory under the root
directory containing program files.

\USER\MARY\FORMS\1A A typical full pathname. This one
happens to be a file named 1A in the
directory named FORMS belonging to the
a subdirectory of USER named MARY.

USER\SUE A relative pathname; it names the file
or directory SUE in subdirectory USER
of the working directory. If the
working directory 1is the root (\),
(\), it names \USER\SUE.

Text.txt Name of a file or directory in the
working directory.

MS-DOS provides special shorthand notations for the working
directory and the parent directory (one level up) of the
working directory:

name of the working directory in all hierarchical

directory listings. MS-DOS automatically creates

this entry when a directory is made.

directory. If you type:

DIR ..

then MS-DOS will 1list the files in the parent
directory of your working directory.

If you type:
DIR ..\..

then MS-DOS will list the files in the parent's PARENT
directory.

P
NIXDORF
RS
COMPUTER

HORKING WITH FILES AND DEVICES

5.3.3 Working With Pathnames in BASIC

Not only can BASIC provide the ability to access files from
other directories using pathname approaches, but it can also be
used to create, change, and remove paths, using the BASIC
commands MKDIR, CHDIR, and RMDIR.

The BASIC statement MKDIR ACCOUNTS would create a new
directory, ACCOUNTS, in the working directory of the current
drive.

The BASIC statement CHDIR B:EXPENSES would change the
current directory on B: to EXPENSES.

The BASIC statement RMDIR CLIENTS would delete an existin?
directory, CLIENTS, as long as that directory was empty of al
files with the exception of "." and "..".

For further information on handling paths in BASIC, see
CHDIR, ENVIRON, ENVIRONS, MKDIR, and RMDIR Statements in
Chapter 7.

others and the use or communication

of the contents thereol are forbidden without express authority. Offenders are
iable 1o the payment of damages. Al rights are reserved in the event of the grant

of a patent or the registration of a utility mode! or design.

Copying of this document and giving

WORKING WITH FILES AND DEVICES

5.4 Re-direction Of Standard Input And Standard Output

BASIC can be re-directed to read from standard input and
write to standard output by providing the input and output
filenames on the command line:

BASIC [program name] [<input file] [>output file]

Note that the characters "<" before the input file, and ">"
before the output file are literally those characters, and not
angle brackets indicating a required argument. If two greater-
than characters (">>") appear before the output file name, the
output is appended to that file.

Rules:

1. When re-directed, all INPUT, LINE INPUT, INPUT$, and
INKEY$ statements will read from the input file.

2. If the program does not specify a file number in a PRINT
statement, that output is vredirected to the declared
output file instead of the standard output device, the

screen.
3. Error messages go to standard output.
4. File input from "KYBD:" still reads from the
keyboard.

5. File output to "SCRN:" still outputs to the screen.

6. BASIC will continue to trap keys from the keyboard when the
ON KEY(n) statement is used.

7. The printer echo key will not cause LPTH1: echoing if
Standard Output has been re-directed.

8. Typing Control-Break will cause BASIC to close any open
files, 1issue the message "Break in line <line number>"
to standard output, and exit BASIC. -

9. When input is redirected, BASIC will continue to read
from this source until an end-of-file character is
detected. This condition may be tested with the EOF
function. If the file is not terminated by a Control-Z,
or a BASIC input statement tries to read past end-of-
file, then any open files are closed, the message "Read past
end" is written to standard output, and BASIC
terminates.

P
NIXDORF
B
COMPUTER

WORKING WITH FILES AND DEVICES

Examples:
GWBASIC MYPROG >DATA.OUT

Data read by INPUT and LINE INPUT will continue to come from
the keyboard. Data output by PRINT will go into the file
DATA.OUT.

GWBASIC MYPROG <DATA.IN

Data read by INPUT and LINE INPUT will come from DATA.IN.
Data output by PRINT will continue to go to the screen.

GWBASIC MYPROG <MYINPUT.DAT> MYOUTPUT.DAT

Data read by INPUT and LINE INPUT will now come from the
file MYINPUT.DAT and data output by PRINT will go into
MYOUTPUT.DAT.

GWBASIC MYPROG <\SALES\JOHN\TRANS.>> \SALES\SALES.DAT

s are reserved in the event of the grant

ode! or design.

Data read by INPUT and LINE INPUT will now come from the
file \SALES\JOHN\TRANS. Data output by PRINT will be
appended to the file \SALES\SALES.DAT.

5.5 Handling Files

of the contents thereof are forbidden without express authority. Offenders are

Copying of this document and giving it to others and the use or communication

liable 1o the payment of damages. Al
of a patent of the registration of a

File 1/0 procedures for the beginning BASIC user are
examined in this section. If you are new to BASIC, or if you
are encountering file-related errors, read through these
procedures and program examples to make sure you are using all
the file statements correctly.

WORKING WITH FILES AND DEVICES

5.5.1 Program File Commands

The following is a review of the commands and statements used
in program file manipulation. All file specifications may
include the device and pathname.

SAVE <filespec>{[,A:P]}

LOAD <filespec>[,R]

RUN <filespec>[,R]

MERGE <filespec>

Writes the program that currently
resides in memory to the specified file.
Option A writes the program as a
series of ASCII characters. With option
P, BASIC will encode the file in
a read-protected format.

Loads the program from file
into memory. The optional R runs the
program immediately. LOAD always
deletes the current contents of
memory and closes all files before
loading. If R is 1included, however,

open data files are kept open. Thus,
programs can be chained or loaded in
sections and access the same data files.
(LOAD FILESPEC>,R and RUN FILESPEC),R
are equivalent.)

Loads the program from file into
memory and runs it. RUN deletes the

current contents of memory and
closes all files before loading the
program. If the R option is
included, however, all open data
files are kept open. (RUN

<filespec>,R and LOAD <filespec>,R are
equivalent.)

Loads the program from file into
memory but does not delete the
current contents of memory. The
program line numbers in the file are
merged with the line numbers in
memory. If two lines have the same

number, only the line from the file
program is saved. After a MERGE
command is executed, the "merged"
program resides in memory, and BASIC
returns to command level. In order to
successfully MERGE a program, the
filespec must have been saved in

ASCII format.

grant

len without express authority. Offenders are

ges. All rights are reserved in the event of the

Copying of this document and giving it 1o others and the use or communication
of a palent o the registration of utity model or design.

of the contents thereof are forbidde

liable to the payment of dama

FUI)(E)CJF!;
B
COMPUTER

WORKING WITH FILES AND DEVICES

CHAIN [MERGE J<filespec>[,[<line number exp>] [,ALL]

[LDELETE <range>7]]
where ., <line number expression>is the
line number in the new program at
which the program is to start
execution. Passes control to the
named program, and passes the use of the
variables and their current values
to the new program. The user may choose
to start the new program on a
specified line, delete some lines, or
transfer the values of only some of
the variables.

KILL <filespec> Deletes the file from the disk.
<filespec> can be a program file or a
sequential or random access data
file.

NAME<old filespec>

AS <new filespec> Changes the name of a file. NAME AS
<filespec> can be used with

program files, random access files, or
sequential files. Pathnames are not
permitted.

5.5.2 Protecting Program Files

If you wish +to have a program saved in an encoded binary
format, wuse the "Protect" option with the SAVE command. For
example:

SAVE "MYPROG",P

A program saved this way cannot be listed or edited. You may
also want to save an unprotected copy of the program for listing
and editing purposes.

WORKING WITH FILES AND DEVICES

5.6 Data Files: Sequential And Random Access I/0

There are two types of disk data files that can be <created and
accessed by a BASIC program: sequential files and random
access files.

5.6.1 Sequential Files

Sequential files are easier to create than random access
files, but are limited in flexibility and speed when it
comes to locating data. The data written to a sequential file
is a series of ASCII characters stored, one item after another
(sequentially), in the order sent. The data is read back
sequentially, one item after another.

The following statements and functions are used with
sequential data files in sequential order.

OPEN

WIDTH
PRINT#
PRINT USING#
WRITE#
INPUTH#
INPUTS

LINE INPUT#
EOF

LocC

LOF

CLOSE

5-10

giving it to others and the use or communication
bidden without express authority. Offenders are
ges. All rights are reserved in the event of the grant

of a patent or the registration of a utility model or design.

Copying of this document and
of the contents thereof are forl
liable to the payment of dama

R
NIXDORF
COMPUTER

WORKING WITH FILES AND DEVICES

5.6.1.1 Creating a Sequential File

Program 1 is a short program that creates a sequential
"DATA," from information you input at the keyboard.

Program 1--Create a Sequential Data File

10 OPEN "O",#1,"DATA"

20 INPUT “NAME";N$

25 IF N$ = "DONE" THEN END

30 INPUT “DEPARTMENT";DEPTS$

40 INPUT “"DATE HIRED";HIREDATES$

50 PRINT#1,N$;",";DEPT$;",";HIREDATES
60 PRINT

70 GOTO 20

RUN

NAME? SAMUEL GOLDWYN
DEPARTMENT? AUDIO/VISUAL AIDS
DATE HIRED? 01/12/72

NAME? MARVIN HARRIS
DEPARTMENT? RESEARCH
DATE HIRED? 12/03/65

NAME? DEXTER HORTON
DEPARTMENT? ACCOUNTING
DATE HIRED? 04/27/81

NAME? STEVEN SISYPHUS
DEPARTMENT? MAINTENANCE
DATE HIRED? 08/16/81

NAME? etc.

5 -1

WORKING WITH FILES AND DEVICES

As illustrated in Program 1, the following program steps are

required to create a sequential file and access the data in it:
1. OPEN the file in "0" mode.

2. MWrite data to the file wusing the PRINT# statement.
(WRITE# can be used instead.)

3. To access the data in the file, you must CLOSE the file and
reopen it in "I" mode.

4. Use the INPUT# statement to read data from the
sequential file into the program.

5.6.1.2 Reading Data From a Sequential File

Now look at Program 2. It accesses the file "DATA" that was
created in Program 1 and displays the name of everyone hired in
1981.

Program 2--Accessing a Sequential File

10 OPEN"I",#1,"DATA"

20 INPUT#1,N$,DEPT$,HIREDATES

30 IF RIGHT$(HIREDATE$,2) = "81" THEN PRINT N$
40 GOTO 20

RUN

DEXTER HORTON
STEVEN SISYPHUS
Input past end in 20

Program 2 reads, sequentially, every item in the file, and
prints the names of employees hired in 1981. When all the data
has been read, line 20 causes an INPUT PAST END error. To avoid
this error, use the WHILE...WEND control structure, which uses
the EOF function to test for the end-of-file. The revised
program looks like:

10 OPEN"I",#1,"DATA"
15 WHILE NOT EOF(1)

20 INPUT#1,N$,DEPT$,HIREDATES
30 IF RIGHT$(HIREDATE$,2) = "81" THEN PRINT N$
40 WEND

5 -12

NIXD F
R A
[PUTER

WORKING WITH FILES AND DEVICES

A program that <creates a sequential file can also write
formatted data to the disk with the PRINT# USING statement. For
example, the statement

PRINT#1,USING"####.##,";A,B,C,D

could be wused to write numeric data to the file without
explicit delimiters. The commas at the end of the format
string separate the items in the disk file.

If the wuser wants commas to appear in the file as delimiters
between variables, the WRITE statement can be wused. For
example, the statement

WRITE 1, A, B$

could be wused to write these two variables to the file with
commas delimiting them.

The LOC function, when used with a sequential file, returns the
number of sectors that have been written to or read from the file
since it was opened. A sector is a 128-byte block of data.

s are reserved in the event of the grant
del or design

5.6.1.3 Adding Data to a Sequential File

If you have a sequential file residing on disk and want to add
more data to the end of it, you cannot simply open the file in

Copying of this document and giving it 1o others and the use or communication
of the contents thereof are forbidden without express authorily. Offenders are

gs
gc
g2
St
53
o
§e
Es
gt
22
£5
°%
°8
Sw©
23

"0" mode and start writing data. As soon as you open a
sequential file in the output ("0") mode, you destroy its current
contents.

Instead, use the append ("A") mode. If the file doesn't
already exist, the open statement will work exactly as it
would 1If output ("0") mode had been specified.

The following procedure can be wused to add data to an
existing file called "FOLKS".

5 - 13

WORKING WITH FILES AND DEVICES

Program 3--Adding Data to a Sequential File

110 OPEN “A",#1,"FOLKS"

120 REM ADD NEW ENTRIES TO FILE

130 INPUT "NAME";N$

140 IF N$="" THEN 200 'CARRIAGE RETURN EXITS INPUT
LOooP

150 LINE INPUT "ADDRESS? ";ADDR$

160 LINE INPUT "BIRTHDAY? ";BIRTHDATE$
170 PRINT#1,N$

180 PRINT#1,ADDR$

190 PRINT#1,BIRTHDATES$

200 GOTO 120

210 CLOSE 1

5.6.2 Random Access Files

Creating and accessing random access files requires more
rogram steps than creating and accessing sequential files.
owever, there are advantages to using random access files. One

advantage is that random access files require less room on the

disk, since BASIC stores them in a packed binary format.

(A sequential file is stored as a series of ASCII characters.)

The biggest advantage of using random access files is that data
can be accessed randomly, i.e., anywhere on the disk. However,
it is not necessary to read through all the information
from the beginning of the file, as with sequential files.
This 1is possible because the information is stored and
accessed in distinct units called records, each of which 1is
numbered.

5 - 14

Copying of this document and giving it to others and the use or communication
of the contents thereof are forbidden without express authority. Offenders are

liable 10 the payment of damages. All rights are reserved in the event of the grant

of a patent or the registration of a utilty model or design.

COMPUTER

WORKING WITH FILES AND DEVICES

The statements and functions that are wused with random
access files are:

Statements Functions
OPEN Cvd

FIELD CVI

GET CvVs

Loc MKS$

LOF MKD$

LSET MKI$

RSET

PUT

CLOSE

5.6.2.1 Creating a Random Access File

Program 4--Create a Random File

10 OPEN “"R",#1,"“FILE",32

20 FIELD #1,20 AS N$, 4 AS A$, 8 AS P$
30 INPUT "2-DIGIT CODE";CODE%
40 INPUT “NAME";PERSON$

50 INPUT "AMOUNT";AMOUNT

60 INPUT "PHONE";TELELPHONE$
65 PRINT

70 LSET N$=PERSON$

80 LSET A$=MKS$(AMOUNT)

90 LSET P$=TELEPHONE$

100 PUT #1,CODE%

110 GOTO 30

As illustrated by Program 4, the following program steps are
required to create a random access file.

5 - 15

WORKING WITH FILES AND DEVICES

1. OPEN the file for random access ("R" mode). The following

example specifies a record length of 32 bytes. If the
record length is not specified, the default 1is 128 bytes
unless it was set to another value with the /I/S: switches

when invoking BASIC (See Chapter 2 for details).

Example:
OPEN “R", 1,"FILE",32

2. Use the FIELD statement to allocate space in the random
buffer for the variables that will be written to the random
access file.

Example:
FIELD #1, 20 AS N$, 4 AS ADDR$, 8 AS P$

3. Use LSET to move the data into the random access buffer.
Numeric values must be made into strings when placed in the
buffer. To do this, use the "make" functions: MKI$ to make
an integer value into a string, MKS$ to make a single
precision value into a string, and MKD$ to make a double
precision value into a string.

Example:

LSET N$=X$

LSET ADDR$=MKS$(AMT)
LSET P$=TELS$

4. MWrite the data from the buffer to the disk using the PUT
statement.

5 - 16

WORKING WITH FILES AND DEVICES

Example:

PUT #1,CODE%

Program 4 takes information that is input at the terminal and
writes it to a random access file. Each time the PUT statement

is executed, a record is written to the file. The two-digit
code that is input in line 30 becomes the record number.

NOTE

Do not wuse a fielded string variable in an INPUT or LET
statement. Doing so causes that variable to be redeclared;
BASIC will no longer associate that variable with the file
buffer, but with the new program variable.

ights are reserved in the event of the grant

of a patent or the registration of a utility model or design.

5.6.2.2 Accessing a Random Access File

Program 5 accesses the random access file "FILE" that was
created in Program 4. By entering a three-digit code at the
keyboard terminal, the information associated with that code is
read from the file and displayed.

Copying of this document and giving it to others and the use or communication
of the contents thereof are forbidden without express authority. Offenders are

Program 5 -- Access a Random File

10 OPEN "R",#1,"FILE",32

20 FIELD #1, 20 AS N§, 4 AS A$, 8 AS P$
30 INPUT "2-DIGIT CODE";CODE%

40 GET #1, CODE%

50 PRINT N$

60 PRINT USING “"$$###.##",CVS(AS)

70 PRINT P$:PRINT

80 GOTO 30

5 - 17

WORKING WITH FILES AND DEVICES

The following program steps are required to access a random
access file:

1. OPEN the file in "R" mode.
Example:
OPEN "R", {,"FILE",32

2. Use the FIELD statement to allocate space in the random
access buffer for the variables that will be read from the
file.

Example:

FIELD #1 20 AS N$, 4 AS A$, 8 AS P$

NOTE

In a program that performs both input and output on the same
random access file, you can often use just one OPEN statement
and one FIELD statement.

3. Use the GET statement to move the desired record into the
random access buffer.

Example:
GET #1,CODE%

4. The data in the buffer can now be accessed by the program.
Numeric values that were converted to strings by the MKS$,
MKD$ or MKI$ statements must be converted back to
numbers using the "convert" functions: CVl for integers,
Cvs for single precision values, and CVD for double
precision values. The MKI$ and CVI processes mirror each
other, the former converting a number into a format for
storage in random files, the latter converting the random
file storage into a format usable by the program.

5 - 18

of the contents thereof are forbidden without express authorily. Offenders are
liable 10 the payment of damages. Al rights are reserved in the event of the grant

Copying of this document and giving it to others and the use or communication
of a patent or the registration of a utility model or design.

o
NIXDORF
PR A
COMPUTER

WORKING WITH FILES AND DEVICES

Example:

PRINT N$
PRINT CVS(A$)

The LOC function when used with random access files, returns the
"current record number." The current record number is the last

record number that was wused in a GET or PUT statement.
For example, the statement

IF LOC(1) >50 THEN END

ends program execution if the current record number in
file#1 is greater than 50.

5 - 19

WORKING WITH FILES AND DEVICES

5.6.2.3 Random File Operations

Program 6 is an inventory program that illustrates random file
access.

Program 6--Inventory

120 OPEN"R",#1,"INVEN.DAT", 39
125 FIELD#1,1 AS F$,30 AS D$, 2 AS Q$,2 AS R$,4 AS P$
130 PRINT:PRINT "FUNCTIONS:":PRINT
135 PRINT "1,INITIALIZE FILE"
140 PRINT "2,CREATE A NEW ENTRY"
150 PRINT "3,DISPLAY INVENTORY FOR ONE PART"
160 PRINT “4,ADD TO STOCK"
170 PRINT "5,SUBTRACT FROM STOCK"
180 PRINT "6,DISPLAY ALL ITEMS BELOW REQORDER LEVEL"
220 PRINT:PRINT:INPUT"FUNCTION";FUNCTION
225 IF (FUNCTION < 1) OR (FUNCTION >6) THEN PRINT
"BAD FUNCTION NUMBER":GO TO 130
230 ON FUNCTION GOSUB 900,250,390,480,560,680
240 GOTO 220
250 REM ** BUILD NEW ENTRY **
260 GOSUB 840
270 IF ASC(F$)<>255 THEN INPUT "OVERWRITE"; ADDR$:
IF ADDR$<>"Y" THEN RETURN
280 LSET F$=CHR$(0)
290 INPUT "DESCRIPTION";DESCRIPTIONS
300 LSET D$=DESCRIPTIONS
310 INPUT "QUANTITY IN STOCK";QUANTITY%
320 LSET Q$=MKI$(QUANTITYY)
330 INPUT "REORDER LEVEL";REORDERY%
340 LSET R$=MKI$(REORDERY)
350 INPUT "UNIT PRICE";PRICE
360 LSET P$=MKS$(PRICE)
370 PUT#1,PARTY
380 RETURN
390 REM ** DISPLAY ENTRY **
400 GOSUB 840
410 IF ASC(F$)=255 THEN PRINT "NULL ENTRY":RETURN
420 PRINT USING "PART NUMBER ###";PARTY
430 PRINT D$
440 PRINT USING "QUANTITY ON HAND #####";CVI
450 PRINT USING "REORDER LEVEL #####";CVI(R$
460 PRINT USING “UNIT PRICE $$##.##";CVS(P$)
470 RETURN
480 REM ADD TO STOCK
490 GOSUB 840

(Q$)
)

5-20

ST,
NIXDORF
COMPUTER

WORKING WITH FILES AND DEVICES

500 IF ASC(F$)=255 THEN PRINT "NULL ENTRY":RETURN

510 PRINT D$:INPUT "QUANTITY TO ADD ";ADDITIONAL%

520 Q%=CVI(Q$)+ADDITIONAL%

530 LSET Q$=MKI$(Q%)

540 PUT#1,PART%

550 RETURN

560 REM REMOVE FROM STOCK

570 GOSUB 840

580 IF ASC(F$)=255 THEN PRINT "NULL ENTRY":RETURN

590 PRINT D$

600 INPUT "QUANTITY TO SUBTRACT";LESS%

610 Q%=CVI(Q$)

620 IF (Q%-LESS%)<O THEN PRINT "ONLY";Q%;" IN STOCK":GOTO 600

630 Q¥%=Q%-LESS%

640 IF Q%=<CVI(R$) THEN PRINT "QUANTITY NOW";Q%;
" REORDER LEVEL";CVI(R$)

650 LSET Q$=MKI$(Q%)

660 PUT#1,PART%

670 RETURN

680 DISPLAY ITEMS BELOW REORDER LEVEL

690 FOR I=1 TO 100

710 GET#1,1

720 IF CVI(Q$)<CVI(R$) THEN PRINT D$;" QUANTITY";
CVI(Q$) TAB(50) "REORDER LEVEL";CVI(R$)

730 NEXT I

740 RETURN

840 INPUT "PART NUMBER";PART%

850 IF(PART%<1)OR(PART%°100) THEN PRINT "“BAD PART NUMBER":
GOTO 840 ELSE GET#1,PART¥%:RETURN

890 END

900 REM INITIALIZE FILE

910 INPUT "ARE YOU SURE";CONFIRM$:IF CONFIRM$<>'Y" THEN RETURN

920 LSET F$=CHR$(255)

930 FOR I=1 TO 100

940 PUT#1,1

950 NEXT I

960 RETURN

liable to the payment of damages. All rights are reserved in the event of the grant

Copying of this document and giving it to others and the use or communication
of a patent or the registration of a ulility mode! or design.

In this program, the record number 1is wused as the part
number. It is assumed the inventory will contain no more than
100 different part numbers. Lines 900-960 1initialize the data
file by writing CHR$(255) as the first character of each record.
This is used later (line 270 and line 500) to determine whether
an entry already exists for that part number.

Lines 130-220 display the various inventory functions that the

program performs. When you type in the desired function number,
line 230 branches to the appropriate subroutine.

5 - 21

WORKING WITH FILES AND DEVICES

5.7 BASIC And Child Processes

Through the use of the SHELL statement, GW-BASIC is able to use
one of the most powerful features of MS-DOS: the ability to
create child processes. SHELL enables the wuser to run part
of a BASIC program, temporarily exit to MS-DOS to perform a
specified function, and return to the BASIC program at the
statement after the SHELL statement to proceed with the rest
of the program.

BASIC will produce a child program when it uses the SHELL
statement. It is not possible for BASIC to totally protect
itself from its <children. When a SHELL statement is
executed, many things may be going on. For example, files may
be OPEN and devices may be in use. It 1is advisable for
programmers to thoroughly read about the SHELL Statement,
Chapter 7, before using this powerful statement.

5 - 22

COMPUTE

USING ADVANCED FEATURES

6 USING ADVANCED FEATURES
6.1 Assembly Language Subroutfnes

You may call assembly language subroutines from your GW-
BASIC program with the USR function or the CALL or CALLS
statement.

It is recommended that you use the CALL or CALLS statement for
interfacing 8086 machine language programs with GW-BASIC. These
statements are more readable and can pass multiple
arguments. In addition, the CALL statement is compatible
with more languages than its alternative, the USR function.

6.1.1 Memory Allocation

o others and the use or communication
hout express authority. Oftenders are
odel or design.

ts are reserved in the event of the grant

Memory space must be set aside for an assembly language
subroutine before it can be loaded. To do so, use the /M:
switch during start-up. The /M: switch sets the highest
memory location to be used by GW-BASIC.

In addition to the GW-BASIC code area, GW-BASIC uses up to 64K of
memory beginning at its data (DS) segment.

of a patent or the registration of a i

Copying of this document and gy
of the contents thereof are forbi
liable to the payment of damages. All

If more stack space is needed when an assembly language
subroutine is called, you can save the GW-BASIC stack and set
up a new stack for use by the assembly language subroutine.
The GW-BASIC stack must be restored, however, before you
return from the subroutine.

The assembly language subroutine can be loaded into memory in
several ways, the most simple being to use the BLOAD command
(see BLOAD Command, Section 7.6?. Also, the wuser could SHELL
a program that exits, but stays resident, leaving the
linked, relocated 1image in memory. As a third choice, the
user could execute a program that exits but stays resident,
and then run BASIC.

USING ADVANCED FEATURES

The following guidelines must be observed if you choose to
BLOAD, or read and poke, an EXE file into memory:

1. Make sure the subroutines do not <contain any long
references, address offsets that exceed 64K or that take the
user out of the code segment. These long references require
handling by the EXE loader.

2. Skip over the first 512 bytes (the header) of the linker's
output file (EXE), then read in the rest of the file.

6.1.2 Internal Representation

The following section describes the internal representation of
numbers in GW-BASIC. Knowledge of these arrangements is critical
for many assembly language programming routines.

Single Precision - 24 bit mantissa

the low mantissa

where loman
S the sign

himan = the high mantissa
exp = the exponent
man = himan:...:loman
- If <exp>= 0, then number = 0.

- If <exp> <>0, then the mantissa is
normalized and

<number >= <sgn>* .{<man>* 2 ** (<exp>-80h)

That is, in single precision (hex notation - bytes low to

high)
00000080 = .5
00008080 = -.5

USING ADVANCED FEATURES

Double Precision - 56 bit mantissa

6.1.3 CALL Statement

The CALL statement is the recommended way of interfacing 8086
machine language subroutines with GW-BASIC. Do not use the USR
function unless you are running previously written
subroutines that already contain USR functions.

The syntax of the CALL statement is:

CALL<variable name>[(<argument list>)]

where <variable name> contains the offset into the current
segment that 1is the starting point in memory of the subroutine
being called. The current segment 1is either the default, or
that which has been defined by a DEF SEG statement.

<argument list>contains the variables or constants, separated
by commas, that are to be passed to the subroutine.

Copying of this document and giving it to others and the use or communication

of the
liable to the payment of damages. All rights are reserved in the event of the grant

of a patent of the registration of a utility model or design

Invoking the CALL statement causes the following to occur:

1. For each argument in the argument 1list, the two-byte
offset of the argument's location within the BASIC segment
is pushed onto the stack.

2. Control 1is transferred to the subroutine with an 8086
long call to the segment address given in the last DEF SEG
statement and the offset given in<variable name>.

Figures 6.1 and 6.2 illustrate the state of the stack at the
time the CALL statement is executed, and the condition of
the stack during execution of the called subroutine,
respectively.

USING ADVANCED FEATURES

! argument 0 i

high R e TR ISP+4+(2*n)
addresses ! . %
| 1 . !
! ! . ! Each argument is a 2-byte
! R e L TR ! pointer into memory
e ! argument n-1 !
slo L e T T T PP 1SP+6
tlu ! argument n !
aln e 1SP+4
clt ! return segment address!
kle R s 1SP+2
Ir I return offset !
! R e E LT ISP --stack pointer
) ! ! (SP register
low ! ! contents)
addresses ! !

Figure 6.1. Stack layout when CALL statement is activated

After the CALL statement has been activated, the subroutine has
control. Arguments may be referenced by moving the stack
pointer (SP) to the base pointer (BP) and adding a positive
offset to BP.

USING ADVANCED FEATURES

high ! !
addresses ! argument 0 !
! ! argument 1 !
! ! . ! <--Absent if any argument is
! ! . ! referenced within a nested
Ic 1 . ! procedure
slo ! argument n !
tlu ! !
aln R i T !
ﬁ;t i return segment address! <--Absent in local procedure
le R it !
Ir I return offset !
seT ! R ke | <--stack pointer
8¢o ! ! ! (SP register
253 ! ! !
§§§ ! ! ! contents)
382 ! ! local variables !
243s ! ! (data pushed on !
£228 ! ! stack) !
£se2 ! ! . !
HH ! Lo !
EFEE ! ! . !
ST I ! !
Bt ! femmmmmmceec oo !
gggé ! ! This space may be !
828, ! ! used during pro- ! Stack pointer may change
§§§§ i E cedure execution ; during procedure execution
§i1: ! Lo !
! ! . !
v ! !
low ! !
resses ! !

Figure 6.2. Stack layout during execution of a CALL statement

USING ADVANCED FEATURES

Observe the following rules when coding a subroutine:

1.

The called routine must preserve segment registers DS, ES,
SS, and the base pointer (BP). If interrupts are
disabled in the routine, they must be enabled before
exiting. The stack must be cleaned up on exit.

The called program must know the number and length of the
arguments passed. The following routine shows an easy way
to reference arguments:

PUSH BP
MOV BP, SP
ADD BP, (2*number of arguments)+4

Then:

argument 0 is at BP
argument 1 is at BP-2
argument n is at BP-2*n

(number of arguments = n+1)

Variables may be allocated either in the code segment
or on the stack. Be careful not to modify the return segment
and offset stored on the stack.

The called subroutine must clean up the stack. A preferred
way to do this is to perform a RET <n> statement (where<n>
is two times the number of arguments in the argument
list) to adjust the stack to the start of the calling
sequence.

Values are returned to GW-BASIC by including in the argument
list the name of the variable that will receive the result.
The internal format for numbers in GW-BASIC is
discussed in "Internal Representation," Section 6.1.2.

If the argument is a string, the argument's offset points
to 3 bytes which, as a unit, are called the "string
descriptor.” Byte 0 of the string descriptor
contains the length of the string (0 to 255). Bytes 1 and 2,
respectively, are the lower and upper 8 bits of the string
starting address in string space.

E

R

USING ADVANCED FEATURES

Warning

If the argument is a string literal in the program, the string
descriptor will point to program text. Be careful not to alter
or destroy your program this way. To avoid wunpredictable
results, add 1 to the string literal in the
program. For example, use

20 A$ = "BASICU+""

This will force the string literal to be copied into string
space. Then the string may be modified without affecting
the program.

7. The contents of a string may be altered by wuser routines,
but the descriptor must not be changed. Do not write past
the end-of-string. GW-BASIC cannot correctly manipulate
strings if their lengths are modified by external routines.

hout express authority. Offenders are
are reserved in the event of the grant

8. Data areas needed by the routine must be allocated either
in the CODE segment of the user routine or on the stack. It
is not possible to declare a separate data area in the
user assembler routine.

Example of CALL statement:

100 DEF SEG=&H8000
110 FOO=&H7FA
120 CALL FOO(A,B$,C)

Copying of this document and giving it to others and the use or communication

of the contents thereof are forbid

Iable o the payment of damag
of a patent or the registration of a utiity model or design

Line 100 sets the segment to 8000 Hex. The value of
variable FO00 is added into the address as the low word after the
DEF SEG value is left shifted 4 bits. Here, the long call to
FOO will execute the subroutine at location 8000:7FA Hex
(absolute address 807FA Hex).

USING ADVANCED FEATURES

The following sequence in 8086 assembly language
demonstrates access to the arguments passed. The returned
result is stored in the variable 'C'.

PUSH BP ;Set up pointer to arguments
MoV BP,SP
ADD BP, (4+2*3)
MoV BX,[BP-2] ;Get address of B$ descriptor.
MoV cL,CBX] ;Get length of B$ in CL.
MOV DX, 1[(BX] ;Get addr of B$ text in DX.
MoV SI,[8P] ;Get address of 'A' in SI.
MOV DI [BP-4] ;Get pointer to 'C' in DI.
MOVS WORD ;Store variable 'A' in 'C'.
POP BP ;Restore pointer.
RET 6 ;Restore stack, return.
IMPORTANT
The <called program must know the variable type for the
numeric arguments passed. In the previous example, the
instruction
MOVS WORD

will copy only two bytes. This 1is fine 1if variables A and
C are integer. You would have to copy four bytes if the
variables were single precision format and copy 8 bytes if
they were double precision.

of the contents thereof are forbidden without express authority. Offenders are
liable to the payment of damages. All rights are reserved in the event of the grant

Copying of this document and giving it to others and the use or communication
of a patent or the registration of a utility model or design.

COMPUTER

USING ADVANCED FEATURES

6.1.4 USR Function

Although wusing the CALL statement is the recommended way of
calling assembly language subroutines, the USR function is also
available for this purpose. This ensures compatibility with
older programs that contain USR functions.

USR<digit>][(<argument>)]

where <digit> is from 0 to 9. <digit> specifies which USR
routing is being called. If <digit>is omitted, USRO 1is
assumed.

<argument> is any numeric or string expression. Arguments
are discussed in detail 1in the following paragraphs.

In the GW-BASIC Interpreter, a DEF SEG statement must be executed
prior to a USR function call to assure that the code segment
points to the subroutine being called. The segment address
given in the DEF SEG statement determines the starting segment
of the subroutine.

For each USR function, a corresponding DEF USR statement must
be executed to define the USR function call offset. This
offset and the currently active DEF SEG address determine
the starting address of the subroutine.

When the USR function call is made, register AL contains a
value that specifies the type of argument that was given. The
value in AL may be one of the following:

Value in AL Type of Argument

Two-byte integer (two's complement)
String

Single precision floating-point number
Double precision floating-point number

@ AWM

If the argument is a number, the BX register points to the
Floaténg—Point Accumulator (FAC) where the argument is
stored.

If the argument is an integer:

FAC-2 contains the upper 8 bits of the integer.
FAC-3 contains the lower 8 bits of the integer.

USING ADVANCED FEATURES

For versions of GW-BASIC that use binary floating-point:

FAC is the exponent minus 128, and the binary point is to the
left of the most significant bit of the mantissa.

FAC-1 contains the highest 7 bits of mantissa with leading 1
suppressed (implied). Bit 7 is the sign of the number (0 =
positive, 1 = negative).

If the argument is a single precision floating-point number:

FAC-2 contains the middle 8 bits of mantissa.
FAC-3 contains the lowest 8 bits of mantissa.

If the argument is a double precision floating-point number:

FAC-7 through FAC-4 contain four more bytes of mantissa
(FAC-7 contains the lowest 8 bits).

If the argument is a string, the DX register points to 3
bytes which, as a unit, are called the "string descriptor." Byte
0 of the string descriptor contains the length of the string
(0 to 255 characters). Bytes 1 and 2, respectively, are the
lower and upper 8 bits of the string starting address in
the GW-BASIC data segment.

Warning

If the argument 1is a string literal in the program, the
string descriptor will point to program text. Be careful not
to alter or destroy the program this way.

Usually, the value returned by a USR function 1is the same type
(integer, string, single precision, or double precision)
as the argument that was passed to it.

GW-BASIC has extended the USR function interface to allow
calls to MAKINT and FRCINT. This allows access to these
routines without giving their absolute addresses. The address
ES:BP is used as an indirect far pointer to the routines
FRCINT and MAKINT.

To call FRCINT from a USR routine use CALL DWORD ES:[BP].
To call MAKINT from a USR routine use CALL DWORD ES:[BP+47].

6 - 10

COMPUTER

USING ADVANCED FEATURES

Example:

110 DEF USR0=&H8000 'Assumes decimal argument /M:32767
120 X=5

130 Y = USRO(X)

140 PRINT Y

The type (numeric or string) of the variable receiving the
fungtion call must be consistent with that of the argument
used.

ts are reserved in the event of the grant

ly model or design.

forbidden without express authority. Offenders are

ying of this document and giving it to others and the use or communication

of the contents thereof are
of a patent or the registration of a

Cop:

6 - 11

USING ADVANCED FEATURES

6.2 Event Trapping

Event trapping allows a program to transfer control to a
specific program line when a certain event occurs. Control is
transferred as if a GOSUB statement had been executed to the
trap routine starting at the specified line number. The trap
routine, after servicing the event, executes a RETURN statement
that causes the program to resume execution at the place where it
was when the event trap occurred.

The events that can be trapped are receipt of characters from
a communications port (ON COM), detection of certain keystrokes
(ON KEY), time passage (ON TIMER), emptying of the background
music) queue (ON PLAY) and joystick trigger activation (ON
STRIG).

This section gives an overview of event trapping. For more
details on individual statements, see Chapter 7.

Event trapping is controlled by the following statements:
<event specifier>ON to turn on trapping

<event specifier> OFF to turn off trapping

<event specifier>STOP to temporarily turn off trapping

where <event specifier>1is one of the following:

COM(n) where n is the number of the communications
channel. The n in (n) is the same device
referred to in COMn:. The COoM channels are
numbered 1 through n, where n 1is implementation
dependent.

Typically, the COM trap routine will read an
entire message from the COM port before
returning. We do not recommend using the COM trap
for single character messages because at high baud
rates the overhead of trapping and reading for
each character may allow the interrupt buffer for
COM to overflow.

6 - 12

KEY(n)

TIMER

of the contents thereof are forbidden without express authority. Offenders are
liable to the payment of damages. All rights are reserved in the event of the grant

Copying of this document and giving it to others and the use or communication
of a patent or the registration of a utility model or design.

PLAY

STRIG(n)

NIXDORF
COMPUTER

USING ADVANCED FEATURES

where n is a trappable key number. Trappable keys
are numbered 1 through n, where n is implemen-
tation dependent.

Note that KEY(n) ON is not the same statement as KEY
ON. KEY(n) ON sets an event trap for the specified
key. KEY ON displays the values of all the
function keys on the twenty-fifth line of the screen
(see Sections 7.65 and 7.66{.

When the GW-BASIC Interpreter is in direct mode
function keys maintain their standard meanings.

When a key is trapped, that occurrence of the key
is destroyed. Therefore, you cannot
subsequently use the INPUT or INKEY$ statements to
find out which key caused the trap. So if you wish

to assign different functions to particular
keys, you must set up a different subroutine for
each key, rather than assigning the _ various

functions within a single subroutine.

ON TIMER(n), where (n) is a numeric expression
representing a number of seconds since the
previous midnight. The ON TIMER statement <can be
used to perform background tasks at defined
intervals.

ON PLAY(n), where (n) is a number of notes left in
the music buffer. The ON PLAY statement is used to
retrieve more notes from the background music queue,
to permit continuous background music during program
execution.

where n is the number of the joystick trigger. For
most machines, the range for n is 0 through 2.

For discussion of STRIG used as a function, see
Section 7.144,.

6 - 13

USING ADVANCED FEATURES

6.2.1 ON GOSUB Statement

The ON GOSUB statement sets wup a line number for the
specified event trap. The format is:

ON <event specifier> GOSUB <line number>
A<line number>of zero disables trapping for that event.

When an event 1is ON and if a non-zero line number has been
specified in the ON GOSUB statement, every time GW-BASIC
starts a new statement it will check to see if the specified
event has occurred (e.g., the lightpen has been struck or a COM
character has come in). When an event 1is OFF, no trapping
t?kes place, and the event is not remembered even if it takes
place.

When an event is stopped (<event specifier> STOP), no
trapping takes place, but the occurrence of an event 1is
remembered so that an immediate trap will take place when an
<event specifier> ON statement is executed.

When a trap is made for a particular event, the trap
automatically causes a STOP on that event, so recursive
traps can never occur. A return from the trap routine

automatically executes an ON statement unless an explicit OFF
has been performed inside the trap routine.

Note that once an error trap takes place, all trapping is
automatically disabled. In addition, event trapping will
never occur when GW-BASIC is not executing a program.

6.2.2 RETURN Statement

When an event trap is in effect, a GOSUB statement will be
executed as soon as the specified event occurs. For
example, the statement

ON COM(1) GOSUB 1000

specifies that the program go to line 1000 as soon as a
character 1is available at the communication interface. If a
simple RETURN statement 1is executed at the end of this
subroutine, program control will return to the statement
following the one where the trap occurred. When the RETURN
statement 1is executed, 1its <corresponding GOSUB return address
is cancelled.

6 - 14

of the contents thereof are forbidden without express authority. Offenders are
liable 1o the payment of damages. All fights are reserved in the event of the grant

Copying of this document and giving it to others and the use or communication
of a patent or the registration of a utility model or design.

R,
NIXDORF
]
COMPUTER

USING ADVANCED FEATURES

GW-BASIC includes the RETURN <line number> enhancement,
which lets processing resume at a definable line. Normally, the
program returns to the statement immediately following the
GOSUB statement when the RETURN statement is
encountered. However, RETURN line number enables the user to
specify another line. If not used with care, however, this
capability may cause problems. Assume, for example, that your
program contains:

10 ON COM (1) GOSUB 1000
20 FOR I =1 TO 10

30 PRINT I

40 NEXT I

50 REM NEXT PROGRAM LINE

200 REM PROGRAM RESUMES HERE
1000 '"FIRST LINE OF SUBROUTINE

1050 RETURN 200

If the communication event occurs while the FOR/NEXT loop
is executing, the subroutine will be performed, but program
control will return to line 200 instead of completing the
FOR/NEXT loop. The original GOSUB entry will be cancelled by
the RETURN statement, and any other GOSUB, WHILE, or FOR (e.g.,
an_ ON STRIG statement) that was active at the time of the trap
will remain active. But the ~current FOR context will also
remain active, and a "FOR without NEXT" error may result.

6 - 15

7
COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7 BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.1 ABS Function

Syntax ABS(X)
Purpose To return the absolute value of the -expression X.
Example PRINT ABS(7*(-5))

will yield
35

H
g
>
@
£
s
z
]
3
@
£
<

2
&
e
3
°
e
g
£
8
£
=1
&
@
]
4
<1

s
S
H
5
E
8
5
2
3
1
@
£
°
2
]
2
5
£
]
e
o
g
=
5.
°
2
s
z
]
€
g
S
2
£
5
°
2
=
8

of the contents thereof are forbidden without ex(
liable to the payment of damages. Al rights are re:
of a patent or the registration of a utility model or design.

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.2 ASC Function

Syntax

Purpose

Remarks

Example

ASC(X$)

To return a numerical value that is the ASCII code

for the first character of the string X$.
Appendix A for ASCII codes.)

If X$ is null, an "Illegal function call" error
returned.

10 X$="TEST"
20 PRINT ASC(X$)

will yield
84

See the CHR$ function, Section 7.12, for details on

ASCII-to-string conversion.

Copying of this document and giving it to others and the use or communication
xpress authority. Offenders are
ges. All rights are reserved in the event of the grant

of the contents thereof are forbidden without e:

liable to the payment of dama
of a patent or the registration of a utility model or design.

B
I XDO
COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.3 ATN Function

Syntax ATN(X)

Purpose To return the arctangent of X, where X
radians. Result is in the range -pi/2 to
radians.

Remarks The expression X may be any numeric type,

default evaluation of ATN is performed in
precision. This may be overridden if the /D

is used when invoking GW-BASIC.

Example 10 LET X = 3
20 PRINT ATN(X)

will yield
1.249046

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.4 AUTO Command

Syntax

Purpose

Remarks

AUTO [<line number>[,<increment>]]

To automatically generate line numbers during
program entry.

AUTO begins numbering at <line number> and

increments each subsequent line number by
<increment>, The default for both values is 10. If
<line number> is followed by a comma but

<increment> is not specified, the last increment
specified in an AUTO command is assumed.

If AUTO generates a line number that is already
being used, an asterisk 1is printed after the
number to warn the wuser that any input will
replace the existing line. However, typing a
carriage return immediately after the asterisk will
savg the existing line and generate the next line
number.

If the cursor is moved to another line on the
screen, numbering will resume there.

AUTO 1is terminated by typing CTRL-Break. The line in
which the termination key is typed will not be saved.
After the termination key 1is typed, Microsoft GW-
BASIC returns to command level.

Example AUTO 100,50 Generates line numbers 100,
150, 200

AUTO Generates line numbers 10,
20, 30, 40

COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.5 BEEP Statement

Syntax BEEP

Purpose To sound the speaker.

Remarks The BEEP statement sounds the ASCII bell
character. This statement has the same effect as

PRINT CHR$(7) in nongraphics versions of MS-
BASIC

Example 20 IF X <20 THEN BEEP

grant

This example executes a beep when X is less than 20.

press authority. Offenders are

ges. All rights are reserved in the event of the

LOpyINg O NS GOCUMENT ana gIvINg 1110 others and the use or communication

of the contents thereof are forbidden without ex;

liable to the payment of dama
of a patent or the registration of a utility model or design.

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.6 BLOAD Command

Syntax BLOAD <filespec> [,<offset>]

The device designation portion of the filespec is
optional. The filename, not including the device
designation, may be 1 to 8 characters long.

<offset> is a numeric expression returning an
unsigned integer in the range 0 to 65535. This is
the offset address at which loading is to start
in the segment declared by the last DEF SEG

statement.

Purpose To load a specified memory image file into
memory from any input device.

Remarks The BLOAD statement allows a program or data that
has been saved as a memory image file to be loaded
anywhere in memory. A memory image file |is a

byte-for-byte copy of what was originally in memory.
See BSAVE Command, in Section 7.7, for information
about saving memory image files.

If the offset is omitted, the segment address and
offset contained in the file (i.e., the address
specified by the BSAVE statement when the file
was created) are used. Therefore, the file is loaded
into the same location from which it was saved.

If offset is specified, the segment address used is
the one given in the most recently executed DEF SEG
statement. If no DEF SEG statement has been given,
the GW-BASIC data segment will be used as the
default (because it is the default for DEF SEG).

CAUTION

BLOAD does not perform an address range check. It is therefore
ossible to load a file anywhere in memory. The wuser must
e careful not to load over GW-BASIC or the operating
system.

Example 10 'Load subroutine at 60:F000

20 DEF SEG=&H6000 'Set segment to 6000 Hex
30 BLOAD"PROG1",&HF000 'Load PROG1

This example sets the segment address at 6000
Hex and loads PROG! at F00O.

I
NIXDORF
R
COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.7 BSAVE Command

Syntax BSAVE <filespec>,<offset>,<length>

The device designation portion of the filespec is
optional. The filename, not including the device
specification, must be 1 to 8 «characters long.

<offset> is a numeric expression returning an
unsigned integer in the range 0 to 65535. This is
the offset address to start saving from in the
segment declared by the last DEF SEG statement.

32 <length> 1is a numeric expression returning an
52 unsigned integer in the range 1 to 65535. This is
£s the length in bytes of the memory image file to be
5t saved.

g3

%% Purpose To transfer the contents of the specified area of

memory to any output device.

Remarks The <filespec>, <offset>, ahd < length> are
required in the syntax.

The BSAVE command allows data or programs to be
saved as memory image files on disk or cassette. A
memory image file is a byte-for-byte copy of what
is in memory.

Copying of this document and giving it to others and the use or communication

of a patent or the registration of a utility model or design.

If the offset is omitted, a "Bad file name"
error message is issued -and the save is
terminated. A DEF SEG statement must be

executed before the BSAVE. The last known DEF SEG
address will be used for the save.

If length 1is omitted, a "Bad file name" error
message is issued and the save is terminated.

Example 10 'Save PROG1
20 DEF SEG=&H6000
30 BSAVE"PROG1",&HF000,256

This example saves 256 bytes starting at
6000:F000 in the file PROGT.

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.8 CALL Statement

Syntax

Purpose

Remarks

Example

CALL <variable name>[(<argument list>)]

where <variable name>contains an address that
the starting point in memory of

subroutine. < variable name> may not be an array

variable name.

<argument list> contains the arguments that

assed to the external subroutine. <<argument

ist>may contain only variables.

To call an assembly language subroutine or

compiled routine written in another high level

language.

The CALL statement is one way to transfer
program flow to an external subroutine. (See also

the USR function, Section 7.156.)

See Section 6.1.3., CALL Statement, for
detailed discussion of calling sequences.

110 MYROUT=&HDOOO
120 CALL MYROUT(I,J,K)

COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.9 CDBL Function

Syntax CDBL(X)
Purpose To convert X to a double precision number.
Example 10 LET PI = 22/7

20 PRINT PI,CDBL(PI)

will yield

3.142857 3.142857074737549

co
58
Se
<38
2¢
£
133
8z
5%
o8
aE
85
HE]
£a
38
28
s9
28
23
£3

liable to the payment of damages. All rights are reserved in the event of the grant

of a patent or the registration of a utility model or design.

of the contents thereof are forbidden

Copying of this document and giving it to

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.10 CHAIN Statement

Syntax

Purpose

Remarks

7

10

CHAIN_[MERGE J<filespec>[[<line number exp>]
[,ALL][,DELETE <range>]]

See the examples below for illustration of the
syntax options.

To call a program and pass variables to it from the
current program.

<filespec>is a string expression containing a name
that conforms to MS-D0S 2.0 rules for disk filenames
or GW-BASIC rules for device specifications.

<line number exp> is a line number or an
expression that evaluates to a line number in the
called program. It is the starting point for
execution of the called program. If it is omitted,
execution begins at the first line.<Iline number
exp> is not affected by a RENUM command.

With the ALL option, every variable in the
current program is passed to the called program. If
the ALL option 1is omitted, the current program
must contain a COMMON statement to list the variables
that are passed. See Section 7.21 for information
about COMMON.

If the ALL option is used and<<line number exp> is
not, a comma must hold the place of <line number
exp>. For example, CHAIN "NEXTPROG",,ALL is correct;
CHAIN “NEXTPROG",ALL 1is incorrect. In the latter
case, GW-BASIC assumes that ALL is a variable
name and evaluates it as a line number expression.

The MERGE option allows a subroutine to be
brought into the GW-BASIC program as an overlay. That
is, the current program and the <called program
are merged (see MERGE Command, Section 7.84). The
called program must be an ASCII file if it is to be
merged.

After an overlay 1is used, it is usually
desirable to delete it so that a new overlay may be
brought in. To do this, wuse the DELETE option.

The line numbers in<range>are affected by the
RENUM command.

COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

of the contents thereof are forbidden without express authority. Offenders are
iable o the payment of damages. Al rights are reserved in the event of the grant

Copying of this document and giving it to others and the use or communication
of a patent or the registration of a utifity mode! or design.

CHAIN 1is wused 1in different ways in the two

examples below. In the first, the two string
arrays are dimensioned, and declared as common
variables. When the program gets to line 90, it

chains to the other program, which loads the BS$s.
At line 90 of PROG2, control chains back to the

first program, but line 100 is delineated,
and so the first program executes from that line.
This process can be observed through the

descriptive text that prints as the programs execute.

10 REM THIS PROGRAM DEMONSTRATES CHAINING USING
COMMON TO PASS VARIABLES.

20 REM SAVE THIS MODULE ON DISK AS "PROG1"
USING THE A OPTION.

30 DIM A$(2),B$(2)

40 COMMON A$(),B$()

50 A$(1)="VARIABLES IN COMMON MUST BE ASSIGNED"
60 A$(2)="VALUES BEFORE CHAINING."

70 B$§1)=Illl

80 B$ 2) =Illl

90 CHAIN "PROG2"

100 PRINT

110 PRINT B$(1)

120 PRINT

130 PRINT B$(2)

140 PRINT

1560 END

10 REM THE STATEMENT "DIM A$(2),B$(2)"

MAY ONLY BE EXECUTED ONCE.

20 REM HENCE, IT DOES NOT APPEAR IN THIS
MODULE.

30 REM SAVE THIS MODULE ON THE DISK AS “"PR0OG2"
USING THE A OPTION.

40 COMMON A$(),B$()

50 PRINT

60 PRINT A$(1);A$(2)

70 B$(1)="NOTE HOW THE OPTION OF SPECIFYING
A STARTING LINE NUMBER"

80 B$(2)="WHEN CHAINING AVOIDS THE DIMENSION
STATEMENT IN 'PROGT'."

90 CHAIN "PROG1",100

100 END

7 - 11

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

In the second example, the MERGE, ALL, and DELETE options
are illustrated. After A$ is loaded in the first progranm,
control chains to line 1010 of the second. At the
second program's line 1040, it chains to line 1010 of the
third program, keeping all variables and deleting all the
second program's lines.

Control passes to the third program. This process can be
observed through the descriptive text that prints as the
programs execute.

Example 2 10 REM THIS PROGRAM DEMONSTRATES CHAINING USING
THE MERGE, ALL, AND DELETE OPTIONS.
20 REM SAVE THIS MODULE ON THE DISK AS
"MAINPRG".
30 A$="MAINPRG"
40 CHAIN MERGE "OVRLAY1",1010,ALL
50 END

1000 REM SAVE THIS MODULE ON THE DISK AS
"OVRLAY1" USING THE A OPTION.

1010 PRINT A$; " HAS CHAINED TO OVRLAY1."
1020 A$="OVRLAY1"

1030 B$="OVRLAY2"

1040 CHAIN MERGE "OVRLAY2",1010,ALL,
DELETE 1000-1050

1050 END

1000 REM SAVE THIS MODULE ON THE DISK AS
“QOVRLAY2" USING THE A OPTION.
1010 PRINT A$; " HAS CHAINED TO ";B$:"."

1020 END

Note The CHAIN statement with MERGE option leaves the
files open and preserves the current OPTION BASE
setting.
If the MERGE option is omitted, CHAIN does not
preserve variable types or user-defined
functions for use by the chained program. That is,

any DEFINT, DEFSNG, DEFDBL, DEFSTR, or DEFFN
statements containing shared variables must be
restated in the chained program.

7 - 12

of the contents thereof are forbidden without express authority. Offenders are
liable to the payment of damages. All rights are reserved in the event of the grant

Copying of this document and giving it to others and the use or communication
of a patent or the registration of a utiiity model or design.

NIXDORF
COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

When using the MERGE option, user-defined
functions should be placed before any CHAIN
MERGE statements in the program. Otherwise, the
user-defined functions will be undefined after the
merge is complete.

7 - 13

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.11 CHDIR Statement

Syntax CHDIR PATHNAME
Purpose To change the current operating directory.
Remarks PATHNAME is a string specifying the name of the

directory which 1is to be the <current directory.
CHDIR works exactly like the MS-DOS command
CHDIR. The PATHNAME must be a string of less than
128 characters.

Example CHDIR "SALES"
This makes SALES the current directory.
CHDIR "B:USERS"

This <c¢hanges the current directory to USERS on drive
B. It does NOT, however, change the default drive to

.

Also see the MKDIR and RMDIR statements.

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.12 CHR$ Function

Syntax CHR$(TI)

Purpose To return a string whose one character is ASCII
character I. (ASCII codes are listed in
Appendix A.)

Remarks CHRS$ is commonly used to send a special
character to the screen or printer. For

instance, the BELL character (CHR$(7)) could be sent
as a preface to an error message, or a form feed
(CHR$(12)) could be sent to clear a terminal
screen and return the cursor to the home position.

Example PRINT CHR$(66)
will yield
B

See the ASC function, Section 7.2, for details on
ASCII-to-numeric conversion.

of the contents thereof are forbidden without express authority. Offenders are
liable to the payment of damages. Al rights are reserved in the event of the grant

Copying of this document and giving it to others and the use or communication
of a patent or the registration of a utility model or design.

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.13 CINT Function

Syntax

Purpose

Remarks

Example

Example

7 - 16

CINT(X)

To convert X to an integer by rounding the
fractional portion.

If X 1is not in the range -32768 to 32767, an
"Overflow" error occurs.

PRINT CINT(45.67)

"Overflow" error occurs.

PRINT CINT(45.67)

will yield

46

See the CDBL and CSNG functions for details on
converting numbers to the double precision and
single precision data type, respectively. See also

the FIX and INT functions, both of which return
integers.

of the contents thereof are forbidden without express authority. Oftenders are
liable 1o the payment of damages. Al rights are reserved in the event of the grant

Copying of this document and giving it (0 others and the use or communication
of a patent o the registration of a utiity model or design.

e R 505
NMIXDORF
COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.14 CIRCLE Statement

Syntax CIRCLE [STEPJ(<xcenter>,<ycenter>),<radius>
[.<color>[,<start><end>[,<aspect>]]]

The [STEP] option makes the specified center and
ycenter coordinates relative to the "most recent
point", instead of absolute, mapped coordinates.

<xcenter>is the x coordinate for the center of the
circle.

<ycenter> 1is the y coordinate for the center of the
circle.

<radius> is the radius of the circle in the
current logical coordinate system.

<color> is the numeric symbol for the color
desired (see COLOR Statement, Section 7.19). The
default color is the foreground color.

<start> and <end>are the start and end angles in
radians. The range is -2 * pi through 2 * pi.
These angles allow the wuser to specify where an
ellipse will begin and end. If the start or end
angle is negative, the ellipse will be connected to
the center point with a line, and the angles will be
treated as if they were positive. Note that
this is different from adding 2 * pi. The start
angle may be less than the end angle.

<aspect> is a numeric expression that affects the
ratio of the x-radius to the y-radius. aspect is
automatically set to 5/6 in medium resolution and
5/12 in high resolution. These values produce a visu-
al circle given the standard screen aspect ratio of
4/3. The radius is measured in points in the horizon-
tal direction.

If the aspect ratio is less than one, the radius
given is the x radius. If it is greater than one,

he y radius is given.

7 - 17

Purpose

Remarks

Example

7

18

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

To draw an ellipse or circle with the specified
center and radius.

The last point referenced after a circle is
drawn is the center of the circle.

It is not an error to supply coordinates that are
outside the screen or viewport.

Coordinates can be shown as absolutes, as in the
syntax shown above, or the STEP option can be used
to reference a point relative to the most recent
point used. The syntax of the STEP option is:

STEP (<xoffset>,<yoffset>)

For example, if the most recent point referenced were
(10,10), STEP (10,5) would reference a point
offset 10 from the current x coordinate and offset
?zgr?g)the current y coordinate, that is, the point

Assume that the last point plotted was 100,50.
Then,

CIRCLE (200,200),50

and

CIRCLE STEP (100,150),50

will both draw a circle at 200,200 with radius 50.

The first example uses absolute notation; the second
uses relative notation.

COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.15 CLEAR Statement

Syntax CLEAR [,[<expressioni>][,<expression2>]]

Purpose To set all numeric variables to =zero, all string
variables to null, and to close all open files; and,
optionally, to set the end of memory and the
amount of stack space.

Remarks <expressioni> is a memory location that, if
specified, sets the highest location available for
use by Microsoft GW-BASIC.

<expression2> sets aside stack space for
Microsoft GW-BASIC. The default is 768 bytes or one-
eighth of the available memory, whichever is smaller.

Note The CLEAR statement performs the following
actions:

e reserved in the event of the grant
I or design.

Closes all files.

Clears all COMMON variables.

Resets numeric variables and arrays to zero.

Resets the stack and string space.

Resets all string variables and arrays to null.
Releases all disk buffers.

Resets all DEF FN and DEF SNG/DBL/STR
statements.

of the contents thereof are forbidden without express authority. Offenders are

Copying of this document and giving it to others and the use or communication
liable to the payment of damages. All

of a patent or the registration of a utilty

Examples CLEAR
CLEAR ,32768
CLEAR ,,2000
CLEAR ,32768,2000

7 - 19

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.16 CLOSE Statement

Syntax

Purpose

Remarks

Example

7 - 20

CLOSE [[#]<file number>[,[#]<file number...>7]]

To conclude I/0 to a file. The CLOSE statement is
complementary to the OPEN statement.

<file number> is the number under which the file was
opened. A CLOSE with no arguments closes all open
files.

The association of a particular file and a file
number terminates upon execution of a CLOSE
statement. The file may then be reopened using the
same or a different file number. Once a file is
closed, that file's number may be wused for any
unopened file.

A CLOSE for a sequential output file writes the
final buffer of output.

The SYSTEM, CLEAR, and END statements and the NEW
and RESET commands always close all files
automatically.

CLOSE #1,#2

of ihe Conter

fiable to the payr

rights are reserved in the event of the grant

of a patent or the registration of a utility model or design.

COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.17 CLS Statement

Syntax CLS
Purpose Erases contents of entire current screen.
Remarks The screen may also be cleared with

Window key (see discussion of CLEAR
Section 4.2, "Full Screen Editor".)

Example 10 CLS 'Clears the screen

the
WINDOW

Clear

7 - 21

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.18 COLOR Statement (In Text Mode)

Syntax COLOR <foreground> ,<<background>, <border>

Purpose The statement will be used to modify the current
default text foreground or background colors.

Remarks foreground is a numeric expression from 0 through 31,
designating the character color.

background is a numeric expression from 0 through 7,
designating the background color.

border is a numeric expression from 0 through 15,
designating the border color.

The following colors are available for foreground:

Black

Blue

Green

Cyan

Red

Magenta

Brown

White

Gray

Light Blue
Light Green
Light Cyan
Light Red
Light Magenta
Yellow
High-intensity White

et e a B OO NOOTE WRN = O

NEWN —=O

You will notice variation in the colors and their
intensity, depending on your display device.

If you set foreground to 16 plus the number of the
color you want (values 16 through 31), the characters
will blink. For example, if you set foreground to 29
you will get blinking light magenta.

Only colors 0 through 7 are available for background.

7 - 22

NIXDORF
P
COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

Note 1. You may create invisible characters, making the
foreground color equal to the background color.
By changing either the foreground or background
color subsequent characters will be visible.

2. If you omit any parameter, the old value is used
for that parameter.

3. Any parameter outside the numeric ranges specified
for the machine will vresult in an "Illegal
function call" error. In this case, previous
values are retained.

Example 100 COLOR 13,2,1

This example produces a light magenta foreground, a
green background, an a blue border screen.

Copying of this document and giving it (o others and the use or communication
of the contents thereof are forbidden without express authority. Offenders are

liable to the payment of damages. All nghts are reserved in the event of the grant

of a patent or the registration of a utility model or design.

7 - 23

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.19 COLOR Statement (In Graphics Mode)

Syntax

Purpose

Remarks

7 - 24

COLOR <background> , <palette>

Sets the background and palette colors in the graphic
mode, medium resolution only.

<background> is a numeric expression that specifies
the background color. The colors you can use for
background are 0 through 31 (see the COLOR statement
for text mode).

palette is a numeric expression that specifies your
choice of palette colors.

You can select the following palette colors:

Color Palette 0 Palette 1
1 Green Cyan
2 Red Magenta
3 Brown White

In palette 0, the colors associated with numbers 1,
2, and 3 are Green, Red, and Brown, respectively.

In palette 1, the colors associated with numbers 1,
2, and 3 are Cyan, Magenta, and White respectively.

You may select a background color that is the same as
a palette color.

The background and palette parameters may be omitted
from the COLOR statement. In this case, the old
values are used for the omitted parameters.

In graphics mode, the COLOR statement designates the
background color and one palette (three colors). The
PSET, PRESET, LINE, CIRCLE, PAINT, and DRAW
statements may then select any of these four colors
for display.

|xnon
R

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

The COLOR statement has meaning in medium resolution
only. If you use it in high resolution you will get
an “"Illegal function call" error.

Values wused outside the range of 0 to 255 result in
an "Illegal function call" error, but previous values
are retainded.

Example 100 SCREEN 1
110 COLOR 8,1

Sets the background color to gray, and selects
palette 1.

120 COLOR ,0

Theobackground color stays gray, and palette changes
to 0.

| ights are reserved in the event of the grant

ility model or design.

Copying of this document and giving it to others and the use or communication
of the contents thereof are forbidden without express authority. Offenders are

of a patent or the registration of a uti

7 - 25

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.20 COM Statement

Syntax COM(n) ON
COM(n) OFF
COM(n) STOP

Where (n) is the number of the communications
port. The range for (n) is specified by the
implementor.

Purpose To enable or disable event trapping of
communications activity on the specified port.

Remarks The COM(n) ON statement enables communications
) event trapping by an ON COM statement (see ON COM
Statement, Section 7.92). While trapping is enabled,
and if a non-zero line number is specified in the ON
COM statement, GW-BASIC checks between every state-
ment to see if activity has occurred on the communi-
cations channel. 1If it has, the ON COM statement is

executed.

COM(n) OFF disables communications event
trapping. If an event takes place, it is not
remembered.

COM(n) STOP disables communications event
trapping, but if an event occurs, it is
remembered. If there 1is a subsequent COM(n) ON
statement, the remembered event will be

successfully trapped.

Note For additional information on communications
event trapping, see "Event Trapping," Section 6.2,
and ON COM Statement, Section 7.92.

Example 10 COM(1) ON

Enables error trapping of communications
activity on channel 1.

7 - 26

COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.21 COMMON Statement

Syntax COMMON<list of variables>
Purpose To pass variables to a chained program.
Remarks The COMMON statement is used in conjunction with the

CHAIN statement. COMMON statements may appear
anywhere in a program, though it 1is recommended
that they appear at the beginning. The same variable
cannot appear in more than one COMMON statement.
Array variables are specified by appending "()" to
the variable name. If all variables are to be
passed, use CHAIN with the ALL option and omit the
COMMON statement.

Some Microsoft products allow the number of
dimensions in the array to be included in the
COMMON statement. GW-BASIC will accept that
syntax, but will ignore the numeric expression
itself. For example, the following statements are
both valid and are considered equivalent:

ts are reserved in the event of the grant

COMMON A()
COMMON A(3)

The number in parentheses is the number of
dimensions, not the dimensions themselves. For
example, the variable A(3) in this example might
correspond to a DIM statement of DIM A(5,8,4).

of the contents thereof are forbidden without express authority. Offenders are

Copying of this document and giving it to others and the use or communication
liable to the payment of damages. All

of a patent or the registration of a utility model or design.

Example 100 COMMON A,B,C,D(),G$
110 CHAIN "PROG3",10

.

.
.

7 - 27

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.22 CONT Command

Syntax CONT

Purpose To continue program execution after a Break has been
typed or a STOP statement has been executed.

Remarks Execution resumes at the point where the break
occurred. If the break occurred after a prompt from
an INPUT statement, execution continues with the
reprinting of the prompt ("?" or prompt string).

CONT is usually used in conjunction with STOP for
debugging. When execution is stopped,
intermediate values may be examined and changed
using direct mode statements. Execution may be
resumed with CONT or a direct mode GOTO, which
resumes execution at a specified line number. CONT
may be used to continue execution after an error has
occurred.

CONT is invalid if the program has been edited
during the break.

Example See STOP Statement, Section 7.142.

7 - 28

of the contents thereof are forbidden without express authority. Offenders are
liable 1o the payment of damages. All rights are reserved in the event of the grant

Copying of this document and giving it to others and the use or communication
of a patent or the registration of a utility model or design.

]
NIXDORF

COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.23 COS Function

Syntax COS(X)

Purpose To return the cosine of X, where X is in
radians.

Remarks The calculation of COS(X) is performed in single

precision, unless the /D switch is specified when
BASIC 1is invoked and either the argument that
receives the value of the cosine is a double
precision variable or (X) is specified a double
precision number with the # sign.

Example 10 X=2*C0S(.4)
20 PRINT X

will yield
1.842122

7 - 29

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.24 CSNG Function

Syntax CSNG(X)
Purpose To convert X to a single precision number.
Example 10 A# = 975.3421115#

20 PRINT A#, CSNG(A#)

will yield

975.3421115 975.3421

See the CINT and CDBL functions for converting

numbers to the integer and double precision data
types, respectively.

7 - 30

COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.25 CSRLIN Function

Syntax CSRLIN
CSRLIN returns the current line position.

Purpose To obtain the current line position of the
cursor in a numeric variable.

Remarks To return the current column position, use the POS
function (Section 7.111).

Example 10 y CSRLIN 'Record current line.
20 x P0S(0) 'Record current column.
30 LOCATE 24,1
40 PRINT "HELLO"
50 LOCATE x,y 'Restore position to old
line and column

t express authority. Offenders are
rights are reserved in the event of the grant

of a patent or the registration of a utility model or design.

Copying of this document and giving it 1o others and the use or communication

2
s
@
s
8
3
£
2
g
g
2
8
®
£
s

7 - 31

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.26 CVI, CVS, CVD Functions

Syntax CVI(<2-byte string>)
CVS(<4-byte string>)
CVD(<8-byte string>)

Purpose To convert string values to numeric values.

Remarks Numeric values that are read in from a vrandom disk
file must be converted from strings back into
numbers. CVI converts a 2-byte string to an
integer. CVS converts a 4-byte string to a single
precision number. CVD converts an 8-byte string to a
double precision number.

Example

.

70 FIELD #1,4 AS N$, 12 AS BS$, ...
80 GET #1
90 Y=CVS(N$)

See also MKIS, MKS$, MKD$ Functions, Section
7.88.

7 - 32

S
NIXDOR

COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.27 DATA Statement

Syntax DATA<list of constants>

Purpose To store the numeric and string constants that are
accessed by the program's READ statement(s). (See
READ Statement, Section 7.120.)

Remarks DATA statements are nonexecutable and may be
placed anywhere in the program. A DATA
statement may contain as many constants as will fit
on a line (separated by commas). Any number of DATA
statements may be used in a program. READ
statements access DATA statements in order (by line
number). The data contained therein may be
thought of as one continuous list of items,
regardless of how many items are on a line or
where the 1lines are placed 1in the program.

<list of constants> may contain numeric
constants in any format; i.e., fixed-point,
floating-point, or integer. (No numeric
expressions are allowed in the 1list.) String

constants in DATA statements must be surrounded by
double quotation marks only if they contain commas,
colons, or significant leading or trailing
spaces. Otherwise, quotation marks are not needed.

iiable to the payment of damages. All rights are reserved in the event of the grant

Copying of this document and giving it 10 others and the use or communication
of a patent o the registration of a utiity model or design.

The variable type (numeric or string) given in the
READ statement must agree with the
corresponding constant in the DATA statement.

DATA statements may be reread from the beginning by
use of the RESTORE statement (Section 7.124).

Example See READ Statement, Section 7.120.

7 - 33

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.28 DATE$ Statement

Syntax

Purpose

Example

7 - 34

DATE$=<string expression>

<string expression> must be a string in one of the
following forms:

mm-dd-yy
mm-dd-yyyy
mm/dd/yy
mm/dd/yyyy

To set the current date. This statement

complements the DATE$ function, which retrieves the
current date.

10 DATE$="07-01-1983"

The current date is set at July 1, 1983.

COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.29 DATE$ Function

Syntax DATES$

Purpose To retrieve the current date. (To set the date, use
the DATE$ statement, described in Section 7.28.)

Remarks The DATES$ function returns a ten-character
string in the form mm-dd-yyyy, where mm 1is the
month (01 through 12), dd is the da{ (01 through 31},
and yyyy is the year (1980 through 2099).

Example 10 PRINT DATE$

grant

The DATE$ function prints the date, calculated from
the date set with the DATE$ statement.

it express authority. Offenders are
re reserved in the event of the

of a patent or the registration of a utility model or design.

Copying of this document and giving it 1o others and the use or communication

of the contents thereof are forbidde!
liable to the payment of damages. Al

7 - 35

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.30 DEF FN Statement

Syntax

Purpose

Remarks

7 - 36

DEF FN<name>[(<parameter list>)]=<function
definition>

To define and name a function that is written by the
user.

<name> must be a legal variable name. This
name, preceded by FN, becomes the name of the
function.

<parameter list> consists of those variable
names in the function definition that are to be
replaced when the function is called. The items in
the list are separated by commas.

<function definition> is an expression that

erforms the operation of the function. It is

imited to one logical line. Variable names that
appear in this expression serve only to define the
function; they do not affect program variables that
have the same name. A variable name wused in a
function definition may or may not appear in the
parameter list. If it does, the value of the
parameter is supplied when the function 1is called.
Othgrwise, the current value of the variable 1is
used.

The variables in the parameter 1list represent, on a
one-to-one basis, the argument variables or values
that will be given in the function call.

This statement may define either numeric or
string functions. If a type is specified in the
function name, the value of the expression is
forced to that type before it is returned to the
calling statement. If a type is specified in the
function name and the argument type does not match, a
"Type mismatch" error occurs.

A DEF FN statement must be encountered before the
function it defines may be called. If a function
is called before it has been defined, an
"Undefined user function" error occurs. DEF FN s
illegal in the direct mode.

The

FNAB.

function

XN3/YN2
the

COMPUTER
FNAB(I,J)
410 defines

function is called in line 420.

410 DEF FNAB(X,Y)

420 T
Line

.

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

Example

"uBIsap 10 japow AN e jo uoyeiisIBal 3y} 10 Jusied e jo
1weib ay) 0 Juane By} Ul PaAIaSa) a1k SIYBU |y ‘sabewep jo JuawAed ay) o) aiqel
21 $18pUBKO AIOUINE SSAITIXD INOYIIM UBPPIQIO} B JOBJAY) SIUBIUDD Uyl JO
UONBOIUNUWILIOD JO SN BY) PUB S13Y10 O} It BuiAlB pue Juawnoop siy) jo Buikdoy

7 - 37

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.31 DEFINT/SNG/DBL/STR Statements

Syntax DEF<type><range(s) of letters>

where <type>is INT, SNG, DBL, or STR

Purpose To declare variable types as integer, single
precision, double precision, or string.

Remarks Any variable names beginning with the letter(s)
specified in <range of letters> will be

considered the type of variable specified in the
<type> portion of the statement. However, a type
declaration character always takes precedence
over a DEFtype statement. (See "Variable Names
and Declaration Characters," Section 3.3.1.)

If no type declaration statements are
encountered, GW-BASIC assumes that all variables
without declaration characters are single
precision variables.

Examples 10 DEFDBL L-P All variables beginning with the
letters L, M, N, 0, and P will be double precision
variables.

10 DEFSTR A All variables beginning with the
letter A will be string variables.

10 DEFINT I-N,W-Z

All variables beginning with the letters I, J, K, L,
M, N, W, X, Y, Z will be integer variables.

7 - 38

of the contents thereof are forbidden without express authority. Offenders are
liable to the payment of damages. All rights are reserved in the event of the grant

Copying of this document and giving it to others and the use or communication
of a patent or the registration of a utility model or design.

B
COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.32 DEF SEG Statement

Syntax DEF SEG [=<address>]
where <address> is a numeric expression
returning an unsigned integer in the range 0 to
65535.

Purpose To assign the current segment address to

be
referenced by a subsequent BLOAD, BSAVE, CALL,
or POKE statement or by a USR or PEEK function.

Remarks The address specified 1is saved for use as the
segment required by BLOAD, BSAVE, CALL, POKE, USR,
and PEEK. .

Entry of any value outside the <address> range 0
throu?h 65535 will result in an “Illegal
function call" error, and the previous value will
be retained.

If the <address> option is omitted, the segment to
be used is set to the GW-BASIC data segment. This is
the initial default value.

Note DEF and SEG must be separated by a space.
Otherwise, GW-BASIC will interpret the statement
DEFSEG=100 to mean "assign the value 100 to the
variable DEFSEG."

Example 10 DEF SEG=&HB8B00 'Seg segment at B800 Hex
20 DEF SEG ‘Restore segment to GW-BASIC data
segment

7 - 39

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.33 DEF USR Statement

Syntax

Purpose

Remarks

Example

7 - 40

DEF USR[<digit>]=<integer expression>

To specify the starting address of an assembly
language subroutine.

<digit> may be any digit from 0 to 9. The digit
corresponds to the number of the USR routine
whose address 1is being specified. If <digit> is
omitted, DEF USRO is assumed. The value of
<integer expression> is the starting address of the
USR routine.

Any number of DEF USR statements may appear in a
program to redefine subroutine starting
addresses, thus allowing access to as many
subroutines as necessary.

200 DEF USR0=24000
210 X=USRO(YA2/2.89)

of the contents thereof are forbidden without express authority. Offenders are
liable to the payment of damages. All rights are reserved in the event of the grant

Copying of this document and giving it to others and the use or communication
of a patent or the registration of a utility model or design.

COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.34 DELETE Command

Syntax - DELETE {[<line number>][<line number >][<line
number>-7}

Purpose To delete program lines.

Remarks Microsoft GW-BASIC always returns to command
level after a DELETE is executed. If <line
number> does not exist, an "Illegal function
call" error occurs.

Examples DELETE 40 Deletes line 40.

DELETE 40-100 Deletes lines 40 through

100, inclusive.

DELETE -40 Deletes all lines up to
and including line 40.

DELETE 40- Deletes lines 40 through
the end, inclusive.

7 - 41

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.35 DIM Statement

Syntax DIM<list of subscripted variables>

Purpose To specify the maximum values for array variable
subscripts and allocate storage accordingly.

Remarks If an array variable name is used without a DIM
statement, the maximum value of the array's
subscript(s) is assumed to be 10. If a

subscript is used that is greater than the
maximum specified, a "Subscript out of range"
error occurs. The minimum value for a subscript is
0, unless otherwise specified with the OPTION BASE
statement (see Section 7.101).

The DIM statement sets all the elements of the
specified numerical arrays to an initial value of
zero and elements of string arrays to null
strings.

Theoretically, the maximum number of dimensions
allowed in a DIM statement is 255. In reality,
however, that number would be impossible, since the
name and punctuation are also counted as spaces on
the line, and the line itself has a limit of 255
characters.

If the default dimension (10) has already been
established for an array variable, and that

variable is later encountered in a DIM
statement, an "Array already dimensioned" error
results. Therefore, it is good programming
ractice to put the required DIM statements at the
eginning of a program, outside of any

processing loops.

Example 10 DIM A(20)
20 FOR I=0 TO 20
30 READ A(I)
40 NEXT I

.
.

COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.36 DRAW Statement

Syntax DRAW <string expression>

where <string expression> -is one of the
subcommands described below in "Remarks."

Purpose To draw an object defined by the subcommands
described below.

Remarks The DRAW statement combines many of the
capabilities of the other graphics statements into
the Graphics Macro Language. The Graphics Macro
Language defines a set of characteristics that

comprehensively describe a particular image.
In this case, the characteristics include motion
gup, down, left, right), color, angle, and scale
actor.

others and the use or communication
hout express authority. Offenders are

liable to the payment of damages. Al rights are reserved in the event of the grant

of a patent or the registration of a utility mode! or design.

Each of the following subcommands initiates
movement from the current graphics position. This
is usually the coordinate of the last graphics
point plotted with another GML command. The current
position defaults to the center of the screen when
a program is run.

Copying of this document and giving it to
of the contents thereof are forbidden witt

Prefixes

The following prefix commands may precede any of the movement
commands:

B Move but don't plot any points.

N Move but return to original position when done.

7 - 43

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

Cursor Movement

The following commands specify movement in wunits. The
size of a unit may be modified by the S command. The default
unit size is one point. If no argument is supplied, the
cursor is moved one unit.

U [<n>] Move up (scale factor *n) points

D [<n>J Move down

L [<n>3 Move left

R [<n>3] Move right

E [<n>3 Move diagonally up and right

F [<n>7 Move diagonally up and left

G [<n>1 Move diagonally down and left

H [<n>3] Move diagonally down and right

Other Commands

M<x,y>Move absolute or relative. If x is preceded by a

A <n>

plus (+) or minus (-), x and y are added to the current
graphics position and connected with the current
position by a line. Otherwise, a line is drawn to
point x,y from the current cursor position.

Set angle n. n may range from 0 to 3, where 0 is O
degrees, 1 is 90, 2 is 180, and 3 1is 270. Figures
rotated 90 or 270 degrees are scaled so they will
appear the same size as with 0 or 180 degrees on a
monitor screen with the standard aspect ratio of 4/3.

TA <degrees> - rotate <degrees>.

7 - 44

DEGREES must be in the range -360 to 360 degrees. If
DEGREES is positive, rotation is counter-
clockwise. If DEGREES is negative, rotation is

clockwise.

of the contents thereof are forbidden without express authority. Offenders are
liable to the payment of damages. All rights are reserved in the event of the grant

Copying of this document and giving it to others and the use or communication
of a patent of the registration of a utiity mode! or design.

D
COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

Example:

FOR D=0 TO 360 ‘'Draw spokes
DRAW "TA=D;NU50"
NEXT D

C<n> Set color n.

S<n> Set scale factor. n may range from 1 to 255. The scale
factor multiplied by the distances given with U, D, L,
R, or relative M commands gives the actual distance
traveled.

X <string expression>

Execute substring. This powerful command allows
ou to execute a second substring from a string, much
ike a GOSUB in Microsoft BASIC. You can have one

string execute another, which executes a third, and so

on.

Numeric arguments can be constants like "123" or
u_<variable>" where<variable>is the name of a variable.

P <paintcolor>, bordercolor .
<paintcolor> is an integer paint attribute, and

<bordercolor> is the integer border attribute. "Tile"
painting is not supported in Draw.

Examples DRAW "USOR50D50L50" 'Draw a box

gRAH “BE10" '‘Move up and right into
ox

DRAW "P1,3" 'Paint interior

10 U$="u30;"

20 D$=“D30;H

30 L$="L40;"

40 R$="R40;"

50 BOX$=U$+R$+D$+L$
60 DRAW "XBOX$;"

The statement DRAW "XU$;XR$;XD$;XL$;" would have
drawn the same box.

7 - 45

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.37 EDIT Command

Syntax EDIT <line number>
Purpose To edit the specified line.
Remarks When EDIT 1is used, GW-BASIC types the specified

program line and leaves the user in direct mode. The
cursor is placed on the first character of the
program line.

See Chapter 4, "Writing Programs Using the GW-

BASIC Editor," for full details on screen editing
capabilities.

7 - 46

COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.38 END Statement

Syntax END

Purpose To terminate program execution, close all files, and
return to command level.

Remarks END statements may be placed anywhere in the
program to terminate execution. Unlike the STOP

statement, END does not cause a "Break in line
nnnnn" message to be printed. An END statement at
the end of a program is optional. Microsoft GW-
BASIC always returns to command level after an END
is executed.

Example 520 IF K>1000 THEN END ELSE GOTO 20

s are reserved in the event of the grant

ly model or design.

Copying of this document and giving it to others and the use or communication
of the contents thereof are forbidden without express authority. Offenders are

liable to the payment of damages.
of a patent or the registration of a

7 - 47

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.39 ENVIRON Statement

Syntax ENVIRON <string>

Purpose To modify a parameter in MS-DO0S's Environment
String Table.

Remarks <string>is a string expression. The value of the
expression must be of the form <parameter-
id> = <text>, or <parameter-id> <text>

Everything to the left of the equal sign or space
will be assumed to be a parameter, and everything to
the right, text.

If the parameter-id has not previously existed in
the Environment String Table, it will be appended
to the end of the table. If the parameter-id
exists on the table when the ENVIRON statement
is executed, the existing parameter-id is deleted
and the new one appended to the end of the table.

The text string is the new parameter text. If the

text 1is a null string (""), or consists only of a
semicolon (";") then the existing parameter-
id will be removed from the Environment
String Table, and the remaining body of the file
compressed.

This statement could be used to change the
"PATH" parameter for a child process, or to pass
parameters to a child by inventing a new
Environment Parameter. (See the MS-DOS 2.0
Utilities - PATH Command).

Errors include parameters that are not strings and
an ‘"out of memory" when no more space can be
allocated to the Environment String Table. The
amount of free space in the table will usually be
quite small.

7 - 48

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

Example The following MS-DOS command will create a
default "PATH" to the root directory on DISK A:

PATH=A:
The PATH may be changed to a new value by:
ENVIRON "PATH=A:SALES;A:ACCOUNTING"

A new parameter may be added to the Environment
String Table:

ENVIRON “SESAME=PLAN"

The Environment String Table now contains:

PATH=A:SALES;A:ACCOUNTING
SESAME=PLAN

co
S®
8¢
£8
€
32
Eg
£S5
e
5%
o8
8<
g3
23
£,
o8
T8
© g
03
23
52

ights are reserved in the event of the grant

y model or design

If you then entered:

ENVIRON "SESAME=;"

then you would have deleted SESAME, and you
would have a table containing:

Copying of this document and giving
liable to the payment of damages. All ri
of a patent or the registration of a utili

PATH=A:SALES;A:ACCOUNTING

Also see ENVIRON$ Function and SHELL Command,
Sections 7.40 and 7.135, respectively.

7 - 49

BASIC, COMMANDS, FUNCTIONS AND STATEMENTS

7.40 ENVIRON$ Function

Syntax

Purpose

Remarks

7 - 50

ENVIRON$ (<string parameter>)
ENVIRONS (<n>)

where n is an integer.

To retrieve a parameter string from BASIC's
Environment String Table.

The string result returned by the ENVIRONS
function may not exceed 255 characters. If a
parameter name is specified, and if it either
cannot be found or it has no text following it, a
null string is returned by ENVIRONS. When the
parameter name is specified, ENVIRON$ returns all
the associated text that follows
"<parameter>=" in the Environment String Table.

If the argument is numeric, the the nth string in

the Environment String Table is returned. It
includes all the text, including the parameter
name. If the nth string does not exist, a null

string is returned.

COMPUTER

BASIC, COMMANDS, FUNCTIONS AND STATEMENTS

7.41 EOF Function

Syntax EOF(<file number>)

Purpose To test for the end-of-file condition.

Remarks Returns -1 (true) if the end of a sequential file
has been reached. Use EOF to test for end-of-
file while inputting, to avoid "Input past end"
errors.

When EOF 1is used with random access files, it
returns "true" if the last executed GET
statement was unable to read an entire record
because of an attempt to read beyond the end.

When EOF is used with a communications device, the
definition of the end-of-file condition is dependent
on the mode (ASCII or binary) that the device was
opened in. In binary mode, EOF is true when the
input queue is empty (LOC(n)=0). It becomes false
when the input queue is not empty. In ASCII mode,
EOF is false wuntil a Control-Z 1is received, and
from then on it will remain true until the device is
closed.

o others and the use or communication
ithout express authority. Offenders are
hts are reserved in the event of the grant

of a patent or the registration of a utility model or design.

Copying of this document and givint
of the contents thereof are forbidd
liable to the payment of damages. All rig!

Example ;g OPEN "I",1,"DATA"
30 IF EOF(1) THEN 100
40 INPUT #1,M(C)
50 C=C+1:6070 30

7 - 51

BASIC, COMMANDS, FUNCTIONS AND STATEMENTS

7.42 ERASE Statement

Syntax
Purpose

Remarks

Example

7 - 52

ERASE <list of array variables>
To eliminate arrays from memory.

Arrays may be redimensioned after they are
erased, or the previously allocated array space in
memory may be used for other purposes. If an attempt
is made to redimension an array without first erasing
it, a "Duplicate definition" error occurs.

450 ERASE A,B
460 DIM B(99)

of the contents thereof are forbidden without express authority. Offenders are
liable to the payment of damages. Al rights are reserved in the event of the grant

Copying of this document and giving it to others and the use or communication
of a patent or the registration of a utility model or design.

BASIC, COMMANDS, FUNCTIONS AND STATEMENTS

7.43 ERDEV,ERDEV$ FUNCTIONS

Syntax ERDEV ERDEVS
Purpose To provide a way to obtain device-specific
status information. ERDEV is an integer

function which contains the error code returned by
the last device to declare an error. ERDEV$ is a
string function which contains the name of the
Device Driver which generated the error.

Remarks These functions may not be set by the
programmer.

ERDEV is set by the Interrupt X'24' handler when an
error within DOS is detected.

ERDEV will contain the INT 24 error code in the
lower eight bits.

Example If a user-installed Device Driver, "MYLPT2", ran out
of aper, and the Driver's error number for that
problem was "9":

PRINT ERDEV, ERDEVS$
will yield
9 MYLPT2

7 - 53

BASIC, COMMANDS, FUNCTIONS AND STATEMENTS

7.44 ERR And ERL FUNCTIONS

Syntax ERR ERL

Remarks When an error handling routine is entered, the
function ERR contains the error code for the
error and the function ERL contains the line
number of the line in which the error was
detected. The ERR and ERL functions are usually used
in IF...THEN statements to direct program flow in
the error handling routine.

With the GW-BASIC Interpreter, if the statement that
caused the error was a direct mode statement,
ERL will contain 65535.

If the line number is not on the right side of the
relational operator, it cannot be renumbered with
RENUM. Because ERL and ERR are reserved words,
neither may appear to the left of the equal sign
in a LET (assignment) statement. Microsoft GW-
BASIC error codes are listed in Appendix B.

Example To test whether an error occurred in a direct
statement, the user could enter:

IF 65535 = ERL THEN PRINT "Direct Error"
When testing within a program, use:

IF ERR=error code THEN ...

IF ERL=line number THEN ...

7 - 54

BRGSO

NIXDORF
ARG
COMPUTER

BASIC, COMMANDS, FUNCTIONS AND STATEMENTS

7.45 ERROR Statement

Syntax ERROR <integer expression>

Purpose To simulate the occurrence of a BASIC error, or to
allow error codes to be defined by the user.

Remarks ERROR can be wused as a statement (part of a
program source line) or as a command (in direct
mode).

The value of <integer expression> must be

greater than 0 and less than 256. If the value of
<integer expression> equals an error code already
in use by BASIC (see Appendix B), the ERROR
statement will simulate the occurrence of that
error and the corresponding error message will be
printed. (See Example 1.)

To define your own error code, use a value that Iis
greater than any used by Microsoft GW-BASIC error
codes. (1t is preferable to wuse the highest
available values, so compatibility may be maintained
when more error codes are added to Microsoft GW-
BASIC.) This wuser-defined error code may then be
conveniently handled in an error handling routine.
(See Example 2.)

ights are reserved in the event of the grant

ty model or design.

Copying of this document and giving it to others and the use or communication

of a patent or the registration of a utilif

If an ERROR statement specifies a code for which no

error message has been defined, Microsoft GW-BASIC

responds with the "Unprintable error" error

message. Execution of an ERROR statement for which

there s no error handling routine causes an

ﬁrygr message to be printed and execution to
alt.

Example 1 20 S=15
30 ERROR S
40 END
will yield

String too long in line 30

Or, in direct mode (interpreter only):

0k

ERROR 15 (You type this line.)
String too long (GW-BASIC types this line.)
0k

7 - 55

BASIC, COMMANDS, FUNCTIONS AND STATEMENTS

Example 2

110 ON ERROR GOTO 400
120 INPUT "WHAT IS YOUR BET";B
130 IF B>5000 THEN ERROR 210

460 IF ERR=210 THEN PRINT "HOUSE LIMIT IS $5000"
410 IF ERL=130 THEN RESUME 120

7 - 56

Copying of this document and giving it to others and the use or communication

of a patent or the registration of a utility model or design.

COMPUTER

BASIC, COMMANDS, FUNCTIONS AND STATEMENTS

7.46 EXP Function

Syntax

Purpose

Remarks

Example

EXP(X)

To return e (base of natural logarithms)

power of X. X must be <= 88.02969.

If x 1is greater than 88.02969, the

to

"Overflow"

error message is displayed, machine infinity with

the appropriate sign 1is supplied as
and execution continues.

The EXP function will return a single
value unless the /D switch was used when BASIC was
invoked and a double precision variable

the argument.

10 X=5
20 PRINT EXP(X-1)

will yield
54.59815

result,

precision

is used

7 - 57

the

BASIC, COMMANDS, FUNCTIONS AND STATEMENTS

7.47 FIELD Statement

Syntax

Purpose

Remarks

Note

Example 1

7 - 58

FIELD [#]<file number>,<field width> AS <string
variable>...

To allocate space for variables in a random file
buffer.

Before a GET statement or PUT statement can be
executed, a FIELD statement must be executed to
format the random file buffer.

<file number> is the number under which the file was
opened. < field width> is the number of
characters to be allocated to <string variable>.

The total number of bytes allocated in a FIELD
statement must not exceed the record length that was
specified when the file was opened.
Otherwise, a "Field overflow" error occurs. (The
default record length is 128 bytes.)

Any number of FIELD statements may be executed for
the same file. All FIELD statements that have been
executed will remain in effect at the same time.

Do not use a fielded variable name in an INPUT or
LET statement. Once a variable name is fielded,
it points to the correct place in the random file
buffer. If a subsequent INPUT or LET statement
with that variable name is executed, the
variable no longer refers to the random file record
buffer, but to the variables stored in string space.

FIELD 1,20 AS N$,10 AS ID$,40 AS ADDS

Allocates the first 20 bytes in the random file
buffer to the string variable N$§, the next 10
bytes to ID$, and the next 40 to ADDS$. FIELD does
not lace any data in the random file buffer.
(See also GET Statement, Section 7.52, and LSET and
RSET Statements, Section 7.83.)

BASIC, COMMANDS, FUNCTIONS AND STATEMENTS

Example 2 10 OPEN "“R,"#1,"A:PHONELST",35
15 FIELD #1,2 AS RECNBR$,33 AS DUMMY$
20 FIELD #1,25 AS NAMES,10 AS PHONENBRS$
25 GET #1
30 TOTAL=CVI(RECNBR)S$
35 FOR I=2 TO TOTAL
40 GET #1, I
45 PRINT NAMES, PHONENBR$
50 NEXT I

Illustrates a multiple defined FIELD statement. In
statement 15, the 35-byte field is defined for the
first record to keep track of the number of records
in the file. In the next loop of statements (35-
50), statement 20 defines the field for
individual names and phone numbers.

Example 3 10 FOR LOOP%=0 TO 7
20 FIELD #1,(LOOP%*16) AS OFFSET$,16 AS
A$(LOOP%)
30 NEXT LOOP%

N

Shows the construction of a FIELD statement

using an array of elements of equal size. The
result is equivalent to the single declaration:

FIELD #1,16 AS A$(0),16 AS A$(1),...,16 AS

A$(6),16 AS A$(7)

of the contents thereof are forbidden without express authority. Offenders are
liable to the payment of damages. All rights are reserved in the event of the grant

Copying of this document and giving it to others and the use or communication
of a patent or the registration of a utility model or design.

Example 4 10 DIM SIZE% (4%): REM ARRAY OF FIELD SIZES
20 FOR LOOP%=0 TO 4%
30 READ SIZE% (LOOP%)
40 NEXT LOOP%
50 DATA 9,10,12,21,41

120 DIM A§(4%): REM ARRAY OF FIELDED VARIABLES
130 OFFSET%=0

140 FOR LOOP%=0 TO 4%

150 FIELD #1,0FFSET% AS OFFSET$,SIZE%(LOOP%)
AS A$(LOOP%)

160 OFFSET%=0FFSET%+SIZE%(LOOP%)

170 NEXT LOOP%

Creates a field in the same manner as Example 3.
However, the element size wvaries with each
element. The equivalent declaration is:

FIELD #1,SIZE%(0) AS A$(0),SIZE%(1) AS A$(1),...
SIZE%(4%) AS A$(4%)

7 - 59

BASIC, COMMANDS, FUNCTIONS AND STATEMENTS

7.48 FILES Statement

Syntax

Purpose

Remarks

7 - 60

FILES [<filespec>]

where <filespec> includes either a filename or a
pathname and optional device designation.

To print the names of files residing on the
specified disk.

If <filespec> is omitted, all the files on the
currently selected drive will be listed.
<filespec> is a string formula which may contain
question marks (?) or asterisks (*) used as wild
cards. A question mark will match any single
character in the filename or extension. An
asterisk will match one or more characters
starting at that position. The asterisk 1is a
shorthand notation for a series of question
marks. The asterisk need not be used in the case
where all the files on a drive are requested,
e.g., FILES "B:".

If a filespec is used, and no explicit path is
given, the current directory is the default.

MNMIXDO
R
COMPUTER

BASIC, COMMANDS, FUNCTIONS AND STATEMENTS

Examples FILES
Shows all files on the current directory.
FILES "*.BAS" '
Shows all files with extension .BAS.
FILES "B:*.*"
Shows all files on drive B.
FILES "B:" (equivalent to "B:*.*")
FILES "TEST?.BAS"

Shows all five-letter files whose names start with
"TEST" and end with the .BAS extension.

FILES “\SALES"

hts are reserved in the event of the grant

model or design

If SALES is a subdirectory of the current directory,
this statement displays SALES<dir>. If SALES is a
file in the current directory, this statement
displays SALES.

Copying of this document and giving it 10 olhers and the use or communication

of the contents thereof are forbi
liable 1o the payment of damages. Al! fig]
of a patent or the registration of a utlity

FILES "\SALES\MARY"

MARY <dir>if MARY is a subdirectory of

ays
or if MARY is a file, displays its name.

Displ
SALES

7 - 61

BASIC, COMMANDS, FUNCTIONS AND STATEMENTS

7.49 FIX Function

Syntax FIX(X)
Purpose To'return the truncated integer part of X.
Remarks FIX(X) is equivalent to SGN(X)*INT(ABS(X)). The

difference between FIX and INT is that FIX doe
not return the next lower number for negative X.

Examples PRINT FIX(58.75)
will yield
58

PRINT FIX(-58.75)
will yield
-58

7 - 62

of the contents thereof are forbidden without express authonty. Offenders are
liabie to the payment of damages. All rights are reserved in the event of the grant

Copying of this document and giving it to others and the use or communication
of a patent or the registration of a utility model or design.

COMPUTER

BASIC, COMMANDS, FUNCTIONS AND STATEMENTS

7.50 FOR...NEXT Statement

Syntax FOR<variable>=x TO y [STEP z]

NEXT [<variable>T[,<variable>...]
where x, y, and z are numeric expressions.

Purpose To allow a series of instructions to be
performed in a loop a given number of times.

Remarks <variable> is wused as a counter. The first
numeric expression (x) is the initial value of the
counter. The second numeric expression (y) is the
final value of the counter. The program lines
following the FOR statement are executed until the
NEXT statement is encountered. Then the counter is
adjusted by the amount specified by STEP. A
check is performed to see if the value of the
counter is now greater than the final value (y).
If it is not greater, GW-BASIC branches back to the
statement after the FOR statement and the process
is repeated. If it is greater, execution continues
with the statement following the NEXT
statement. This is a FOR...NEXT loop.

If STEP is not specified, the increment is
assumed to be one. If STEP is negative, the
final value of the counter is set to be less than
the initial value. The counter 1is decreased

each time through the loop. The loop is executed
until the counter is less than the final value.

The counter must be an integer or single
precision numeric constant. If a double
precision numeric constant is used, a "Type

mismatch" error will result.

The body of +the loop is skipped if the initial
value of the loop times the sign of the STEP
exceeds the final value times the sign of the
STEP.

7 - 63

BASIC, COMMANDS, FUNCTIONS AND STATEMENTS

Nested Loops

FOR...NEXT loops may be nested; that is, a
FOR...NEXT loop may be placed within the context of
another FOR...NEXT loop. When loops are nested,
each loop must have a unique variable name as its
counter. The NEXT statement for the inside loop
must appear before that for the outside loop. If
nested loops have the same end point, a single NEXT
statement may be used for all of them.

The variable(s) 1in the NEXT statement may be
omitted, in which case the NEXT statement will
match the most recent FOR statement. If a NEXT

statement encountered before its
corresponding FOR statement, a "MEXT without FOR"
error message is issued and execution is
terminated.

Example 1 10 K=10
20 FOR'I = 1 T0 10 STEP 2
30 PRINT I;
40 LET K = K+10
50 PRINT K
60 NEXT I

will yield

20
30
40
50
60

ON W -

In this example, the loop counter, I, advances +2
on each cycle. The loop prints the counter,
increments K, and prints K.

Example 2 10 J=0
20 FOR I=1 T0O J
30 PRINT I
40 NEXT I

In this example, the loop does not execute

because the initial value of the loop exceeds the
final value.

7 - 64

of the contents thereof are forbidden without express authority. Offenders are
liable to the paymenit of damages. All rights are reserved in the event of the grant

Copying of this document and giving it to others and the use or communication
of a patent or the registration of a utility model or design.

BASIC, COMMANDS, FUNCTIONS AND STATEMENTS

Example 3 10 I=5
20 FOR I=1 TO I+5
30 PRINT I;
40 NEXT I

will yield
i 2 3 4 5 6 7 8 9 10
In this example, the loop executes ten times. The

final value for the loop variable is always set
before the initial value is set.

7 - 65

BASIC, COMMANDS, FUNCTIONS AND STATEMENTS

7.51 FRE Function

Syntax

Purpose

Remarks

Example

7 - 66

FRE(0)
FRE(" ll)

With a numeric argument, FRE returns the number
bytes in memory that are not being wused

Microsoft GW-BASIC. Arguments to FRE are dummy

arguments.

FRE("") forces a garbage collection before

returning the number of free bytes.

GW-BASIC will not initiate garbage collection

until all free memory has been used
Therefore, using FRE("") periodically

result in shorter delays for each garbage

collection.
PRINT FRE(O)
might yield
14542

of the contents thereof are forbidden without express authority. Offenders are
liable to the payment of damages. All rights are reserved in the event of the grant

Copying of this document and giving it to others and the use or communication
of a patent or the registration of a utility model or design.

COMPUTEF

BASIC, COMMANDS, FUNCTIONS AND STATEMENTS

7.52 GET Statement - File I/0

Syntax GET [#]<file number>[,<record number>]

Purpose To read a record from a random disk file into a
random buffer.

Remarks <file number> is the number under which the file was
OPENed. If <record number>is omitted, the next
record (after the last GET) 1is read into the
buffer. The largest possible record number is
16,777,215,

The GET and PUT statements allow fixed-length
input and output for GW-BASIC COM files.
However, because of the low performance
associated with telephone line communications, we
recommend that you do not use GET and PUT for
telephone communication.

Example GET #1,75

Note After a GET statement has been executed, INPUT# and
LINE INPUT# may be executed to read characters
from the random file buffer. The EOF function may
be used after a GET statement to see if that GET
was beyond the end of file marker.

7 - 67

BASIC, COMMANDS, FUNCTIONS AND STATEMENTS

7.53 GET Statement - Graphics

Syntax

Purpose

Remarks

7 - 68

GET (x1,y1)-(x2,y2),<array name>
used with
PUT (x1,y1),<array name>[,action verb]

where (x1,y1) -(x2,y2) is a rectangular area on the
displa screen. The rectangle is defined with
(x1,y1 and (x2,y2) being the wupper-left and the
lower right vertices.

<array name>is the name assigned to the place that
will hold the 1image. The array can be any type
except string. It must be dimensioned large
enough to hold the entire image. Unless the array
is type integer, the contents of the array after
a GET will be meaningless when interpreted
directly (see below).

The GET and PUT statements are used together to
transfer graphic images to and from the screen.

The GET statement transfers the screen image
bounded by the rectangle described by the
specified points into the array.

The PUT statement transfers the image stored 1in the
array onto the screen.

One of the most useful things that can be done with
GET and PUT 1is animation. (See PUT Statement,
Section 7.118 for discussion of animation.)

G

B
NIXDORF
COMPUTER

BASIC, COMMANDS, FUNCTIONS AND STATEMENTS

7.54 GOSUB...RETURN Statements

Syntax GOSUB <line number>
RETURN [<line number>]
Purpose To branch to, and return from, a subroutine.

Remarks <line number> in the GOSUB statement is the
first line of the subroutine.

A subroutine may be called any number of times in
a program. A subroutine also may be called from
within another subroutine. Such nesting of
subroutines is limited only by available memory.

re reserved in the event of the grant

Simple RETURN statement(s) in a subroutine cause
Microsoft GW-BASIC to branch back to the
statement following the most recent GOSUB
statement. A subroutine may contain more than one
RETURN statement.

The <line number>option may be included in the
RETURN statement to return to a specific line
number from the subroutine. Use this type of
return with care, however, because any other
GOSUBs, WHILEs, or FORs that were active at the time
of the GOSUB will remain active, and errors such as
"FOR without NEXT" may result.

of the contents thereof are forbidden without express authority. Offenders are

Copying of this document and giving it to others and the use or communication
liable to the payment of damages. All

of a patent or the registration of a utility modei or design.

Subroutines may appear anywhere in the program, but
it is recommended that the subroutine be readily
distinguishable from the main program. To
prevent inadvertent entry into the
subroutine, precede it with a STOP, END, or GOTO
statement that directs program control around the
subroutine.

7 - 69

Example

7 -170

BASIC, COMMANDS, FUNCTIONS AND STATEMENTS

10 GOSuUB
20 PRINT
30 END

40 PRINT
50 PRINT
60 PRINT

70 RETURN

40
"BACK FROM SUBROUTINE"

"SUBROUTINE";
L INII;
" PROGRESS"

will yield

SUBROUTINE IN PROGRESS
BACK FROM SUBROUTINE

of the contents thereof are forbidden without express authority. Offenders are
liable to the payment of damages. All rights are reserved in the event of the grant

Copying of this document and giving it to others and the use or communication
of a patent o the registration of a utiity model or design.

NIXDORF
R
COMPUTER

BASIC, COMMANDS, FUNCTIONS AND STATEMENTS

7.55 GOTO Statement

Syntax GOTO <line number>

Purpose To branch wunconditionally to a specified line
number.

Remarks If <line number> is an executable statement, that

statement and those following are executed. If it is
a nonexecutable statement, execution proceeds at
the first executable statement encountered after
<line number>,

Example 10 READ R
20 PRINT "R =";R,
30 A=3.14*R 2
40 PRINT "AREA =";A
50 GOTO 10
60 DATA 5,7,12

will yield

R=5 AREA = 78.5

R =7 AREA = 153.86
R =12 AREA = 452.16
Out of DATA in 10

7 - 71

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.56 HEX$ Function

Syntax HEX$(X)

Purpose To return a string that represents the
hexadecimal value of the decimal argument.

Remarks X is rounded to an integer before HEX$(X) is
evaluated.

Example 10 INPUT X

20 A$=HEX$(X)
30 PRINT X "DECIMAL IS " A$ " HEXADECIMAL"

will yield

? 32
32 DECIMAL IS 20 HEXADECIMAL

See the OCT$ function, Section 7.91, for details
on octal conversion.

7 -72

COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

IF...THEN ...ELSE /IF...GOTO Statements

of the contents thereof are forbidden without express authority. Offenders are
liable to the payment of damages. All rights are reserved in the event of the grant

Copying of this document and giving it to others and the use or communication
of a patent or the registration of a utility model or design.

IF <expression>[,]THEN {<statement (s)> |
<line number>}

[L[ELSE {<statement(s)>|<line number>}7]]
IF <expression>[,]GOTO <line number>
[,[ELSE {<statement(s)>|<line number>}]]

To make a decision regarding program flow based on
the result returned by an expression.

If the result of <expression> is not =zero, the THEN
or GOTO clause is executed. THEN may be followed
by either a line number for branching or one or
more statements to be executed. GOTO is always

followed by a line number. If the result of
<expression> is zero, the THEN or GOTO clause is
ignored and the ELSE clause, if present, is
executed. Execution continues with the next
executable statement. A comma is allowed before
THEN.

Nesting of IF Statements

IF...THEN...ELSE statements may be nested.
Nesting is limited only by the length of the
line. For example,

‘IF X>Y THEN PRINT "GREATER" ELSE IF X>Y
THEN PRINT "LESS THAN" ELSE PRINT “EQUAL"

is a legal statement. If the statement does not
contain the same number of ELSE and THEN
clauses, each ELSE 1is matched with the closest
unmatched THEN. For example

IF A=B THEN IF B=C THEN PRINT "A=C"
ELSE PRINT "A<>C"

will not print "A<>C" when A<>B.

If an IF...THEN statement is followed by a line
number in direct mode, an "Undefined 1line" error
results, unless a statement with the specified line
nugber had previously been entered in indirect
mode.

7 - 73

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

Note When wusing IF to test equality for a value that is
the result of a floating-point computation, remember
that the internal representation of the value may
not be exact. Therefore, the test should be
against the range over which the accuracy of the
value may vary. For example, to test a computed
variable A against the value 1.0, use:

IF ABS (A-1.0)<1.0E-6 THEN ...

This test returns true if the value of A is 1.0 with
a relative error of less than 1.0E-6.

Example 1 200 IF I THEN GET#1,I

This statement GETs record number I if I is not
zero.

Example 2 100 IF(I<20)*(I>10) THEN DB=1979-1:G0TO0 300
110 PRINT "OUT OF RANGE"

In this example, a test determines if I is
greater than 10 and less than 20. If I is in this
range, DB is calculated and execution branches
to line 300. If I is not 1in this vrange,
execution continues with line 110.

Example 3 210 IF IOFLAG THEN PRINT A$ ELSE LPRINT A$

This statement causes printed output to go
either to the screen or the line printer,
depending on the value of the variable I0FLAG. If
IOFLAG is zero, output goes to the line printer;
otherwise, output goes to the screen.

7 -74

COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.58 INKEY$ Function

Syntax INKEY$

Purpose To return either a one-character string
containing a character read from the standard
input device or a null string if no character is
pending there. The keyboard is usually the
standard input device.

Remarks No characters will be echoed. All characters are
passed through to the program except for Break,
which terminates the program.

Example 1000 'TIMED INPUT SUBROUTINE
1010 RESPONSE$=""
1020 FOR I%=1 TO TIMELIMITY%
1030 A$=INKEYS
1035 IF LEN(A$)=0 THEN 1060
1040 IF ASC(A$)=13 THEN TIMEOUT%=0
1045 IF TIMEOUT% = O THEN RETURN
1050 RESPONSE$=RESPONSE$+A$
1060 NEXT I%
1070 TIMEOUT%=1 : RETURN

others and the use or communication
hout express authority. Offenders are

Note Some keys may return a two-byte string,
depending on your implementation.

liable to the payment of damages. All rights are reserved in the event of the grant
of a patent or the registration of a utility model or design

Copying of this document and gi
of the contents thereot are forbi

7 -175

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.59 INP Function

Syntax INP(I)

Purpose To return the byte read from port I. I must be in
the range 0 to 65535.

Remarks INP is the complementary function to the ouT
statement.

Example 100 A=INP(54321)

In 8086 assembly language, this is equivalent to:

MOV DX, 54321
IN AL,DX

7 -176

XD
R
o UTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.50 INPUT Statement

Syntax INPUT[;] [<"prompt string">;]j<list of variables>

Purpose To allow input from the keyboard during program
execution.

Remarks When an INPUT statement 1is encountered, program
execution pauses and a question mark is printed to
indicate the program is waiting for data. If

<"prompt string"> is included, the string is
printed before the question mark. The required data
is then entered at the keyboard.

ommunication
Offenders are
ent of the grant

BASIC can be re-directed to read from standard
input and write to standard output by providing the
input and output filenames when 1invoking BASIC.
(See Section 2.1, "Invoking BASIC.")

are reserved

ut express a

A comma may be used instead of a semicolon after the
prompt string to suppress the question mark. For
example, the statement INPUT "ENTER N~

BIRTHDATE",B$ will print the prompt with no
question mark.

If INPUT is immediately followed by a semicolon, then
the carriage return typed by the wuser to input

data does not echo a carriage
return/linefeed sequence.

Copying of this document and giving it 1o others and the use or communication
of a patent or the registration of a utility mocel or design.

of the contents thereof are forbidden
liable to the payment of damages. All rig|

The data that is entered is assigned to the
variable(s) given in =variable list>. The
number of data items supplied must be the same as

the number of variables in the list. Data items
are separated by commas.

The variable names in the list may be numeric or

string variable names (including subscripted
variables). The type of each data item that is
input must agree with the type specified by the
variable name. (Strings input to an INPUT
staEemﬁnt need not be surrounded by quotation
marks.

Responding to INPUT with too many or too few
items or with the wrong type of value (numeric

instead of string, etc.) causes the message
"?Redo from start" to be printed. No assignment of
input values is made until an acceptable

response is given.

7 =77

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

Examples 10 INPUT X
20 PRINT X "SQUARED IS" XxA2
30 END

will yield

? 5 (The 5 was typed in by the user in response
to the question mark.{

5 SQUARED IS 25

10 PI=3.14

20 INPUT "WHAT IS THE RADIUS";R

30 A=PI*RA2

40 PRINT "THE AREA OF THE CIRCLE IS";A
50 PRINT

60 GOTO 20

will yield WHAT IS THE RADIUS? 7.4
(User types 7.4)

THE AREA OF THE CIRCLE IS 171.946

WHAT IS THE RADIUS?
etc.

7 -78

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.61 INPUT# Statement

Syntax INPUT#<file number>,<variable list>

Purpose To read data items from a sequential device or file
and assign them to program variables.

Remarks <file number> is the number used when the file was
OPENed for input. <variable list> contains the
variable names that will be assigned to the items
in the file. (The variable type must match the
type specified by the variable name.) With INPUT#,
no question mark is printed, as with INPUT.

The data items in the file should appear just as they
would if data were being typed in response to an
INPUT statement. With numeric values, leading
spaces, carriage returns, and linefeeds are ignored.
The first character encountered that is not a
space, carriage return, or linefeed is assumed to
be the start of a number. The number terminates on
a space, carriage return, linefeed, or comma.

@
s
2
5
k]
]
2
e}
Z
]
s
£
]
3
g
3
3

If GW-BASIC is scanning the sequential data file for
a string item, it will also ignore leading spaces,
carriage returns, and linefeeds. The first
character encountered that is not a space, carriage
return, or linefeed is assumed to be the start
of a string item. If this first character is a
quotation mark ("), the string item will consist
of all characters read between the first quotation
mark and the second. Thus, a quoted string may not
contain a quotation mark as a character. If the
first character of the string is not a quotation
mark, the string is an unquoted string, and will
terminate on a comma, carriage return, or
linefeed (or after 255 characters have been read).
If end-of-file is reached when a numeric or
string item is being INPUT, the item is terminated.

<
2
g
5
E
£
3
3
5
@
2
3
@
£
°
2
S
@
5
<
5
e
o
<
2
&
°
e
&
€
8
€
3
3
8
°
@
£
k]
o
e
=
&
IS
(8}

lable to the payment of damages. All rights are reserved in the event of the grant

of a patent or the registration of a utility model or design.

of the contents thereof are forbidde

Example INPUT 2,A,B,C

7 -79

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.62 INPUT$ Function

Syntax INeuTS (X[, (#JY D

Purpose To return a string of X characters, read from file
number Y. If the file number 1is not specified,
the characters will be read from the standard input
device. If input has not been redirected, the
keyboard is the standard input device).

Remarks If the keyboard is used for input, no characters will
be echoed on the screen. All control characters
are passed through except Break which 1is wused to
interrupt the execution of the INPUT$ function.

BASIC <can be re-directed to read from standard
input by providing the 1input filename on the

command line. (See Section 2.1,"Invoking
BASIC.")

Example 1 5 'LIST THE CONTENTS OF A SEQUENTIAL FILE IN
HEXADECIMAL

10 OPEN"I",1,"DATA"
20 IF EOF(1) THEN 50

30 PRINT HEX$(ASC(INPUTS$(1,#1)));
40 GOTO 20

50 PRINT

60 END

Example 2 .
160 PRINT "TYPE P TO PROCEED OR S TO STOP"
110 X$=INPUTS$(1)

120 IF X$="P" THEN 500
130 IF X$="S" THEN 700 ELSE 100

7 - 80

COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.63 INSTR Function

Syntax INSTR(CI,]X$,Y$)

Purpose To search for the first occurrence of string Y$ in
X$, and to return the position at which the match is
found. Optional offset I sets the position for

starting the search.

Remarks 1 must be in the range 1 to 255. If I is
reater than the number of characters in X$
LEN(X$)), or if X$ is null or Y$ cannot be
found, INSTR returns 0. If Y$ is null, INSTR
returns I or 1, and if no I was specified, then
INSTR returns 1. X$ and Y$ may be string
variables, string expressions, or string
literals.

Example 10 X$="ABCDEB"
20 Y$=IIBII
30 PRINT INSTR(X$,Y$);INSTR(4,X$,Y$)
will yield

2 6

Copying of this document and giving it 1o others and the use or communication
of the contents thereof are forbidden without express authority. Ofienders are

liable to the payment of damages. Al rights are reserved in the event of the grant

of a patent or the registration of a utility model or design

7 - 81

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.64 INT Function

Syntax INT(X)
Purpose To return the largest integer <=X.
Examples PRINT INT(99.89)

will yield

99

PRINT INT(-12.11)

will yield

-13

See the CINT and FIX functions, Sections 7.13 and
7.49, respectively, which also return integer
values.

7 - 82

press authority. Offenders are

Copying of this document and giving it to others and the use or communication
ges. All rights are reserved in the event of the grant

of the contents thereof are forbidden without ex;

liable to the payment of dama
of a patent or the registration of a utility model or design.

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.65 KEY Statement

Syntax KEY n, X$
KEY LIST
KEY ON
KEY OFF

n is the number of the function key.
X$ is the text assigned to the specified key.

Purpose To assign softkey values to function keys and
display the values.

Remarks The KEY statement allows function keys to be
designated for special "“softkey" functions. Each
of the function keys may be assigned a 15-byte
string which will be input to GW-BASIC when that key
is pressed.

Softkeys can be displayed with the KEY ON, KEY OFF,
and KEY LIST statements.

KEY ON causes the softkey values to be displayed on
the bottom line of the screen.

KEY OFF erases the softkey display from the
bottom line, making that line available for
program use. It does not disable the function
keys.

KEY LIST displays all softkey values on the
screen, with all 15 characters of each key
displayed.

Assigning a null string (string of length 0) to a
softkey disables the function key as a softkey.

If the function key number is not in the range of
permissible function key numbers, an "Illegal
function call" error is produced, and the
previous key string expression is retained.

When a softkey is assigned, the INKEY$ function

returns one character of the softkey string per
invocation.

7 - 83

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

The soft keys are initially assigned as follows:

F1 LIST F2 RUN

F3 LOAD" F4 SAVE"

F5 CONT F6 YLPT1:"

F7 TRON F8 TROFF ..

F9 KEY F10 SCREEN 0,0,0
Example 50 KEY ON 'Displays the softkey on bottom line

60 KEY OFF ' Erases softkey display
70 KEY 1,"MENU"+CHR$(13) '

Assigns the string "MENU" followed by a carriage
return to softkey 1.

Such assignments might be used to speed data entry.
80 KEY 1,"" ‘'Disables softkey 1

The following routine initializes the first five
softkeys:

10 KEY OFF 'Turns off key display during
initialization
?0 DATA "EDIT ","LET ","SYSTEM","PRINT ","LPRINT

30 FORI =1 T0 5

40 READ SOFTKEYSS$(I)

50 KEY I,SOFTKEY$(I)

60 NEXT I

70 KEY ON 'Displays new softkeys

7 - 84

COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.66 KEY(n) Statement

Syntax KEY(n) ON
KEY(n) OFF
KEY(n) STOP

where n represents a numeric expression whose value
ranges from one to 20, and specifies the key to be

trapped:

1-10 functions keys F1 to F10
11 Cursor Up

12 Cursor Left

13 Cursor Right

14 Cursor Down

15-20 keys defined by the syntax:
KEY n,CHR$(s)+CHR$(t)
(keys 15-20 are trappable only in
BASIC 2.0 and later)

Purpose To enable or disable event trapping of softkey or r\-
cursor direction key activity for the specified
trappable key.

mages. All rights are reserved in the event of the grant

of a patent or the registration of a utility model or design.

Remarks Note that the KEY statement described in Section 7.65
assigns softkey and cursor direction values to
function keys and displays the values. Do not

confuse KEY ON and KEY OFF, which display and erase
these values, with the event trapping statements
described in this section.

The KEY(n) ON statement enables softkey or
cursor direction key event trapping by an ON KEY
statement (see ON KEY Statement, Section 7.95). While
trapping is enabled, and if a non-zero line
number is specified in the ON KEY statement,
GW-BASIC checks between every statement to
see if a softkey or cursor direction key has
been used. If it has, the ON KEY statement 1is
executed. The text that would normally be
associated with a function key will not be printed.

KEY(n) OFF disables the event trap. If an event
takes place, it is not remembered.

7 - 85

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

KEY(n) STOP disables the event trap, but if an

event occurs, it is remembered and an ON KEY
statement will be executed as soon as trapping 1is
enabled.

Note For additional information on key event

trapping, see "Event Trapping," Section 6.2, and "ON
KEY Statement," Section 7.95.

Example 10 KEY 4,SCREEN 0,0 ' assigns softkey 4
20 KEY(4) ON 'enables event trapping

70 ON KEY(4) GOSUB 200

Eey 4 pressed

éOO 'Subroutine for screen

7 - 86

NIXD O
COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.67 KILL Statement

Syntax KILL [<filespec>7]

Purpose To delete a file or a pathname from disk.

Remarks If a KILL statement is given for a file that is
currently open, a "File already open" error
occurs.

KILL is used for all types of disk files:
program files, random data files, and sequential data
files. The filespec may contain question marks (?

or asterisks (*) used as wildcards. A question mar

will match any single character in the filename or
extension. An asterisk will match one or more
characters starting at 1its position.

grant

Since it is possible to reference the same file in
a sub-directory via different paths, it is nearly
impossible for BASIC to know that it is indeed the
same file simply by looking at the path. For
example; if MARY is your current directory,
then:

are reserved in the event of the

of a patent or the registration of a utilty model or design.

"REPORT" ...
"\SALES\MARY \REPORT" ...
" .. \MARY \REPORT" ...

“..\..\MARY\REPORT" ...

Copying of this document and giving it to others and the use or communication
of the contents thereof are forbidden without express authority. Offenders are

liable to the payment of damages.

all refer to the same file. Therefore, any open file
with the same file name will cause a "file already
open" error.

WARNING

Be extremely careful when using wildcards
with this command.

7 - 87

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

Examples 200 KILL "DATA1?.DAT"

The position taken by the question mark will
match any valid filename character. This
command will kill any file that has a six
character name starting with "DATA!1" and has the
filename extension " DAT". This includes
“DATA10.DAT" and "DATA1Z.DAT".

210 KILL "DATA1.**

Kills all files named DATA1, regardless of the
filename extension.

220 KILL “..\GREG*.DAT"

Kills all files with the extension ".DAT" in a
directory called GREG.

7 - 88

of the contents thereof are forbidden without express authority. Oftenders are
liable 10 the payment of damages. All rights are reserved in the event of the grant

Copying of this document and giving it to others and the use or communication
of a patent or the registration of a utility model or design.

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.68 LEFT$ Function

Syntax LEFT$(<string>,1)

Purpose To return a string comprising the leftmost I
characters of X$.

Remarks I must be in the range 0 to 255. If 1 is
greater than the number of characters in
<string>, (LEN(X$)), the entire strin
(<string>) will be returned. If 1 = 0, the nul
string (length zero) is returned.

Example 10 A$="BASIC LANGUAGE"
20 B$=LEFT$(A$,5)
30 PRINT BS$
will yield
BASIC

Also see the MID$ and RIGHT$ functions, Sections 7.85
and 7.127, respectively.

7 - 89

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.69 LEN Function

Syntax LEN(<string>)

Purpose To return the number of <characters in <string>.
Nonprinting characters and blanks are counted.

Example 10 X$="PORTLAND, OREGON"
20 PRINT LEN(X$)

will yield
16

7 - 90

of the contents thereof are forbidden without express authority. Offenders are
liable to the payment of damages. All rights are reserved in the event of the grant

Copying of this document and giving it to others and the use or communication
of a patent or the registration of a utifity model or design.

COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.70 LET Statement

Syntax [LET] <variable>=<expression>

Purpose To assign the value of an expression to a
variable.

Remarks Notice that the word LET is optional; i.e., the
equal sign is sufficient for assigning an
expression to a variable name.

Example 0 LET D=12

11

120 LET E=12A2
130 LET F=12A4
140 LET SUM=D+E+F

or

110 D=12

120 E=12A2
130 F=12/4
140 SUM=D+E+F

7 - 91

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.71 LINE Statement

Syntax LINE [CSTEPJ(x1,y1)]- [STEP] (x2,y2)
[L<color>]Lb[f]J1[. style]
(x1,y1) 1is the coordinate for the starting point of
the line.
(x2,y2) is the ending point for the line.
The STEP option makes the specified
coordinates relative to the "most recent point",
instead of absolute, mapped coordinates.
<color> is the number of the color in which the line
should be drawn. (See COLOR statement, Section
7.19.) If the ,b or ,bf option is wused, the box is
drawn in this color.
,b draws a box with the points (x1,y1) and
(x2,y2) specifying the upper left and lower
right corners.
,bf draws a filled box.
»Style is a 16-bit integer mask used when
putting pixels down on the screen. This is
called "line styling".

Purpose To draw a line or box on the screen.

7 - 92

of the contents thereof are forbidden without express authority. Ofienders are
fiable to the payment of damages. Al rights are reserved in the event of the grant

Copying of this document and giving it 1o olhers and the use or communication
of a patent of the registration of a ulility model or design

NIXDORF

B ey
UTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

Remarks When coordinates specify a point that is not in the
current viewport, the line segment 1is clipped to
the viewport.

The relative coordinate form STEP
(xoffset,yoffset) can be wused in place of an
absolute coordinate. For example, assume that the
most recent point referenced was (10,10). The
statement LINE STEP (10,5) would specify a point
?go 1gm)’fset 10 from x and offset 5 from y, that Iis,

If the STEP option 1is used for the second
coordinate on a LINE statement, it is relative to
the first coordinate in the statement. Other ways
to establish a new "most recent point" are to
initialize the screen with the CLS and SCREEN
statements (Sections 7.17 and 7.132,
respectively). Using the PSET, PRESET, CIRCLE and
DRANt statements will establish a new "most recent
point".

Each time LINE stores a point on the screen, it uses
the current circulating bit in [style]. If that bit
is a 0, then no storing will be done; if the bit
is a 1 the peint is stored. After each point 1is
stored, the next bit position in [style] is
selected. Since a 0 bit in [style] causes no change
to the point on the screen, the user may prefer to
draw a background line before a 'styled' line in
order to force a known background. Style is
used for normal lines and boxaes, but has no effect on
filled boxes.

7 - 93

Examples

7 - 94

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

The following examples assume a screen 320
pixels wide by 200 pixels high.
10 LINE -(x2,y2)

Draws a line from the last point to x2,y2 in the
foreground color.

20 LINE (0,0)-(319,199)

Draws a diagonal line across the screen
(downward).

30 LINE (0,100)-(319,100)

Draws a line across the screen.
40 LINE (10,10)-(20,20),2

Draws a line in color 2.

10 FOR x=0 to 319

20 LINE (x,0)-(x,199),x AND ¢
30 NEXT

Draws an alternating line on-line off pattern on a
monochrome display.

10 LINE (0,0)-(100,100),,b

Draws a box in the foreground (note that the
color is not included).

20 LINE STEP (0,0)-STEP (200,200),2,bf

Draws a filled box in color 2. Coordinates are
given as offsets.

10 LINE (0,0)-(160,100),3,,&HFF00

Draws a dashed line from the upper left hand
corner to the center of the screen.

A
NIXDORF
B T
COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.72 LINE INPUT Statement

Syntax LINE INPUT[;] [<"prompt string">] <string variables

Purpose To input an entire line (up to 254 characters) to
a string variable, without the use of
delimiters.

Remarks <"prompt string"> is a string literal that is
printed at the terminal before input is

accepted. A question mark is not printed unless it
is part of <"prompt string">. All input from the end
of <"prompt string"> to the carriage return is

assigned to <string variable>. However, if a
linefeed/carriage return sequence (this order
only) is encountered, both characters are

echoed; but the carriage return is ignored, the
linefeed is put into<string variable>, and data
input continues.

are reserved in the event of the grant
gn.

If LINE INPUT is immediately followed by a
semicolon, then the carriage return typed by the user
to end the input line does not echo a carriage
return/linefeed sequence at the terminal.

yment of damages.
a patent or the registration of a utility model or desi

A LINE INPUT statement may be aborted by typing
Control-cC. GW-BASIC will return to command
level. If you are using the interpreter, typing CONT
resumes execution at the LINE INPUT.

Copying of this document and giving it to others and the use or communication

of the contents thereof are forl
liable to the pa;

of

Example See LINE INPUT# Statement, Section 7.73.

7 - 95

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.73 LINE INPUT# Statement

Syntax

Purpose

Remarks

Example

7 - 96

LINE INPUT#<file number>,<string variable>

To read an entire line (up to 255 characters),
without delimiters, from a sequential disk data file
to a string variable.

<file number> is the number under which the file was
OPENed. <string variable>is the variable name to
which the line will be assigned. LINE INPUT#
reads all characters in the sequential file up to a
carriage return. It then skips over the carriage
return/linefeed sequence. The next LINE INPUT# reads
all characters up to the next carriage return.
(If a linefeed/carriage return sequence is
encountered, it is preserved.)

LINE INPUT# is especially useful if each line of a
data file has been broken into fields, or if a GH-
BASIC program saved in ASCII format is being read
as data by another program. (See SAVE Command,
Section 7.131.)

When GW-BASIC is invoked with redirected input and
output, all LINE INPUT statements will read from the
input file specified instead of the keyboard.

Wwhen input is redirected, GW-BASIC will continue ?o

read from this source wuntil a control-Z is
detected. This condition may be tested with the EOF
function. If the file is not terminated by a

control-Z, or a BASIC file input statement tries
to read past end-of-file, then any open files are
closed, the message "Read past end" is written to
standard output, and BASIC returns to MS-DOS.

10 OPEN "O0",1,"LIST"

20 LINE INPUT "CUSTOMER INFORMATION? ";C$
30 PRINT #1, C$

40 CLOSE 1

50 OPEN "I",1,"LIST"

60 LINE INPUT #1, C$

70 PRINT C$

80 CLOSE 1

will yield

CUSTOMER INFORMATION? LINDA JONES 234,4 MEMPHIS
LINDA JONES 234,4 MEMPHIS

Copying of this docurment and giving it to others and the use or communication
press authority. Offenders are
ges. Al rights are reserved in the event of the grant

of the contents thereof are forbidden without exy

liable to the payment of dama
of a patent or the registration of a utility model or design.

COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.74 LIST Command

Syntax LIST [<line number>] [-[<line number>]7]
[,<device>]
<line number>is in the range 0 to 65529.

<device> is a device designaticn string, such as
SCRN: or LPT:, or a filename.

Purpose To list all or part of the program currently in
memory.
Remarks GW-BASIC always returns to command level after a LIST

is executed.

If <line number> is omitted, the program is
listed beginning at the lowest line number.
(Listing is terminated either when the end of the
program is reached or by typing Break.) If <line
number> is included, only the specified line will
be listed.

If only the first<line number> is specified, that
line and all higher-numbered lines are listed.

If only the second<line number> is specified, all
lines from the beginning of the program through
that line are listed.

If both <1line number(s)> are specified, the
entire range is listed.

If the<device>is omitted, the listing is shown at
the terminal.

7 - 97

Examples

7 - 98

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

LIST

LIST 500
LIST 150-

LIST -1000

LIST 150-1000

LIST 150-1000,"LPT:

Lists the program currently
in memory.

Lists line 500.

Lists all lines from 150
to the end.

Lists all lines from the
lowest number through 1000.

Lists lines 150 through
1000, inclusive.

Lists lines 150 through 1000
on the line printer.

bidden without express authority. Offenders are
All rights are reserved in the event of the grant

Copying of this document and giving it to others and the use or communication
es.

of the contents thereof are fort
of a patent or the registration of a utility model or design.

liable to the payment of damage

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.75 LLIST Command

Syntax LLIST [<line number>[-[<line number >777

Purpose To list all or part of the program currently in
memory on the line printer.

Remarks LLIST assumes a f32-character-wide printer.

GW-BASIC always returns to command level after an
LLIST 1is executed. The options for LLIST are the
same as for the LIST Command, Section 7.74.

Example See the examples for the LIST Command, Section
7.74. With the exception of the last one, which
addresses a device, LLIST will work in a similar way.

7 - 99

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.76 LOAD Command

Syntax LOAD <filespec>[,R]
Purpose To load a file from an input device into memory.
Remarks For loading a program, the <filespec> is an

optional device specification followed by a
filename or pathname that conforms to MS-DOS
2.0's rules for filenames. BASIC appends the
default filename extension .BAS if the user
specifies no extensions, when the file is saved to
the disk.

The<filespec>must include the filename that was
used when the file was saved, or created by an
editor. (BASIC will append a default filename
extension if one was not supplied in the SAVE
command.)

The R option automatically runs the program
after it has been loaded.

LOAD closes all open files and deletes all
variables and program lines currently residing in
memory before it loads the designated program.
However, if the R option is used with LOAD, the
program is run after it is loaded, and all open
data files are kept open. Thus, LOAD with the R
option may be used to chain several programs (or
segments of the same program). Information may be
ggised between the programs using their disk data
iles.

Example LOAD "STRTRK",R
Loads and runs the program STRTRK.BAS
LOAD "B:MYPROG"

Loads the program MYPROG.BAS from the disk in
drive B, but does not run the program.

7 - 100

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.77 LOC Function

Syntax LOC(<file number>)

where<<file number>is the number under which the
file was opened.

Purpose With random disk files, LOC returns the actual
record number within the file.

With sequential files, LOC returns the current byte
position in the file, divided by 128.

Remarks When a file is opened for APPEND or OUTPUT, LOC
returns the size of the file in (bytes/128).

For a communications file, LOC(X) is used to
determine if there are any characters in the
input queue waiting to be read. If there are more
than 255 characters in the queue, LOC(X) returns
255, Since interpreter strings are limited to N
255 characters, this practical limit alleviates the
need for an interpreter user to test for string
size before reading data into it.

are reserved in the event of the grant

out express authority. Offenders are
del or design

If fewer than 255 characters remain in the
queue, the value returned by LOC(X) depends on
whether the device was opened in ASCII or binary

Copying of this document and giving it to others and the use or communication

2
£
5
H
3
¢
g
£
g
g
s
€
g
&
g
2
s
2
g
S

of a patent of the registration of a utility mo:

s
5
s
3
£
e
g
g
g
§
8
2
£
s

mode. In either mode, LOC will return the
number of characters that can be read from the
device. However, in ASCII mode, the low level

routines stop queueing characters as soon as end-
of-file is received. The end-of-file itself is not
queued and cannot be read. An attempt to read the
end-of-file will result in an "Input past end"
error.

Example 200 IF LOC(1)>50 THEN STOP

7 - 101

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.78 LOCATE Statement

Syntax

Purpose

Remarks

7 - 102

tocaTE [row][, [col][, [cursor] [.[start][,stop]]]]

<row>is a line number (vertical) on the screen. Row
should be a numeric expression returning an wunsigned
integer.

<col> is the column number on the screen. It
should be a numeric expression returning an
unsigned integer.

<cursor> is a Boolean value indicating whether the
cursor should be visible or not.

<start> is the cursor starting line (vertical) on
the screen. It should be a numeric
expression returning an unsigned integer.

<stop> is the cursor stop line (vertical) on the
screen. It should be a numeric expression
returning an unsigned integer.

Moves the cursor to the specified position.
Optional parameters turn the blinking cursor on and
off and define the vertical start and stop lines.

Any value outside the specified ranges will
result in an "Illegal function call" error. In this
case, previous values are retained.

Any parameter may be omitted from the statement. If a
parameter is omitted, the previous value is assumed.

Note that the=start> and<stop> lines are the
raster lines that specify which pixels on the
screen are lit. A wider range between the start and
stop lines will produce a taller cursor, such as
one that occupies an entire character block.

If the<start>1line is given but the<stop>line is
omitted, <stop> assumes the same value as <start>.

The last line on the screen is reserved for
softkey display and is not accessible to the
cursor unles the softkey display 1is of f and
LOCATE is used to get to it.

of the grant

press authority. Offenders are

ges. All rights are reserved in the event

Copying of this document and giving it to others and the use or communication

of the contents thereof are forbidden without ex
of a patent or the registration of a utility model or design.

liable 1o the payment of dama

COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

Example 10 LOCATE 1,1
Moves cursor to upper-left corner of the screen.
20 LOCATE ,,1

Makes the cursor visible; position remains
unchanged.

30 LOCATE ,,,7

Position and cursor visibility remain unchanged. Sets
the cursor to display at the bottom of the character
starting and ending on raster line 7.

40 LOCATE 5,1,1,0,7
Moves the cursor to line 5, column 1; turns

cursor on. Cursor will cover entire charécter cell
starting at scan line 0 and ending on scan line 7.

7 - 103

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.79 LOF Function

Syntax LOF(<file number>)

Purpose To return the length of the named file in bytes.

Remark When a file is opened for APPEND or OUTPUT, LOF
returns the size of the file, in bytes.

Example 110 IF REC*RECSIZ>LOF(1)

THEN PRINT "INVALID ENTRY"

In this example, the variables REC and RECSIZ
contain the record number and record length,

respectively. The calculation determines
wheth?r the specified record is beyond the end-
of-file.

7 - 104

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.80 LOG Function

Syntax LOG(X)

Purpose To return the natural logarithm of X. X must be
greater than zero.

Example PRINT LOG(45/7)
will yield
1.860752

oul express authority. Offenders are

ges. All rights are reserved in the event of the grant

Copying of this document and giving it to others and the use or communication

<
o
8
£
5
o
K]
g
Z
E
H
5
2
e
s
k]
g
°
£
5
H
H
g
s
s

3
2
58
0 E
S8
33
25
£E
Py
&
Sa
29
cc
83
@
2
£35
8

7 - 105

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.81 LPOS Function

Syntax LPOS(X)

where X is the index of the printer being
tested; that is LPT1: would be tested with
LPOS(IS, LPT2: with LP0S(2), etc.

Purpose To return the current position of the printer's
print head within the printer buffer.

Remarks LPOS does not necessarily give the physical
position of the print head.

Example 100 IF LPOS(X)>60 THEN LPRINT CHR$(13)

7 - 106

damages. All rights are reserved in the event of the grant

of the contents thereof are forbidden without express authority. Offenders are

Copying of this document and giving it o others and the use or communication

of a patent or the registration of a utility model or design.

liable to the payment of

COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.82 LPRINT and LPRINT USING Statements

Syntax LPRINT [<list of expressions>]
LPRINT USING <string exp>;<list of expressions>

Purpose To print data on the printer.

Remarks Same as PRINT and PRINT USING, except output goes
to the line printer, and the file number option is
not permitted. See Sections 7.113 and 7.114
respectively.
The line length may be changed with a WIDTH "LPT1:"
statement.

Examples See Sections 7.113 and 7.114.

7 - 107

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.83 LSET And RSET Statements

Syntax LSET <string variable>=<string expression>
RSET <string variable>=<string expression>

Purpose To move data from memory to a random file buffer (in
preparation for a PUT statement) or to left- or
right-justify the value of a string into a string
variable.

Remarks If <string expression> requires fewer bytes than were
fielded to <string variable>, LSET left-
justifies the string in the field, and RSET right-
justifies the string. (Spaces are used to pad the
extra positions.) If the string is too long for
the field, characters are dropped from the right.
Numeric values must be converted to strings before
they are LSET or_ RSET. See MKI$, MKS$, MKD$
functions, Section 7.88.

Examples 150 LSET A$=MKS$(AMT)
160 LSET D$=MKI$(COUNT%)

Note LSET or RSET may also be used with a nonfielded
string variable to left-justify or right-justify a
string in a given field. For example, the

program lines

110 A$=SPACE$(20)
120 RSET A$=N$

right-justify the string N$ in a 20-character

field. This can be very handy for formatting
printed output.

7 - 108

NIXDORF
COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.84 MERGE Command

Syntax MERGE<filespec>

Purpose To merge a specified file 1into the program
currently in memory.

Remarks For merging a program not in memory, the
<filespec> s an optional device specification
followed by a filename or pathname that conforms to
MS-D0S 2.0's rules for filenames. BASIC appends
the default filename extension ".BAS" if the user
specifies no extensions, and the file has been saved
to the disk.

e event of the grant

If any lines in the disk file have the same line
numbers as lines in the program in memory, the
lines from the file on disk will replace the
corresponding lines in memory. (MERGEing may be
thought of as "inserting" the program lines on disk
into the program in memory.)

served in th

of a utility model or design.

gwing il to others and the use or communication

Microsoft GW-BASIC always returns to command
level after executing a MERGE command.

Example MERGE "NUMBRS"

Inserts, by sequential line number, all lines in the
program NUMBRS.BAS into the program currently
in memory.

liable to the payment of damages. Al rights are re:

Copying of this document and
of a patent or the registration

7 - 109

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.85 MID$ Statement

Syntax

Purpose

Remarks

Example

7 - 110

MID$(<string 1>,n [,m])=<string 2>

where n and m are integer expressions and
<string exp!> and <string exp2> are string
expressions.

To replace a portion of one string with another
string.

The characters in <string 1>, beginning at
position n, are replaced by the characters 1n
<string 2>. The optional "m" refers to the
number of characters from<string 2>that will be
used in the replacement. If "m" is omitted, all of
<string 2>is used. However, regardless of whether
"m" is omitted or included, the replacement of
characters never goes beyond the original length of
<string 1>

10 A$="KANSAS CITY, MO"
20 MID$(A$,14)="KS"

30 PRINT A$

will yield

KANSAS CITY, KS

MID$ is also a function that returns a substring of a
given string. See Section 7.86.

of the contents thereof are forbidden without express authority. Offenders are
liable to the payment of damages. All rights are reserved in the event of the grant

Copying of this document and giving it to others and the use or communication
of a patent or the registration of a utility mode! or design.

COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.86 MID$ Function

Syntax MID$(<string>n[,m])

Purpose To return a string of length m characters from X$,
beginning with the nth character.

Remarks n and m must be in the range 1 to 255. If m is
omitted or if there are fewer than m characters to
the right of the nth character, all rightmost
characters beginning with the nth character are
returned. If n 1is greater than the number of
characters in <string> that is, (LEN(<string>)), MID$
returns a null string.

Example 10 A$="GOOD "
20 B$="MORNING EVENING AFTERNOON"
30 PRINT A$;MID$(B$,9,7)
will yield

GOOD EVENING

Also see the LEFT$ and RIGHT$ functions,
Sections 7.68 and 7.127, respectively.

7 - 111

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.87 MKDIR Statement

Syntax
Purpose

Remarks

Example

7 - 112

MKDIR<pathname>

To create a new directory

<pathname> is a string expression specifying the name
of the directory which is to be «created. MKDIR
works exactly like the MS-DOS command MKDIR.
The <pathname> must be a string of less than 128
characters. (See Section 5.5, "File Handling,"
for a discussion of tree-structured directories).
Assume the current directory is the root.

MKDIR "SALES"

Creates a sub-directory named SALES in the current
directory of the current drive.

MKDIR "B:USERS

Creates a sub-directory named USERS in the current
directory of drive B.

Also see the CHDIR and RMDIR statements, Sections
7.11 and 7.128, respectively.

of the contents thereof are forbidden without express authority. Offenders are
liable to the payment of damages. All rights are reserved in the event of the grant

Copying of this document and giving it 1o others and the use or communication
of a patent or the registration of a utility model or design.

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.88 MKI$, MKS$, MKD$ Functions

Syntax MKI$(<integer expression>)
MKS$(<single precision expression>)
MKD$ (<double precision expression>

Purpose Jo convert numeric values to string values.

Remarks Any numeric value that is placed in a random file
buffer with an LSET or RSET statement must be
converted to a string. MKI$ converts an integer
to a 2-byte string. MKS$ converts a single
precision number to a 4-byte string. MKD$
converts a double precision number to an 8-byte
string.

Example 90 AMT=(K+T)
100 FIELD #1,8 AS D$,20 AS N$
110 LSET D$=MKS$ (AMT)
120 LSET N$=A$
130 PUT #1

See also CVI, CVS, CVD Functions, Section 7.26.

7 - 13

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.89 NAME Statement

Syntax

Purpose

Remarks

Examples

7 - 114

NAME<old filename> AS<new filename>
To change the name of a disk file.

<old filename> must exist and <new filename> must
not exist; otherwise, an error will result.
Also, both files must be on the same drive.

A file may not be vrenamed with a new drive
designation. If this 1is attempted, a “Rename
across disks" error will be generated. After a NAME
command, the file exists on the same disk with the
new name.

NAME may not be used to rename directories.

<old filename> must be closed before the
renaming command is executed. Also, there must be
one free file handle.

NAME "ACCTS" AS "LEDGER"

In this example, the file that was formerly
named ACCTS will now be named LEDGER.

NAME may be used to move a file from one
directory to another. For example:

NAME "\ X\CLIENTS" AS "\XYZ\P\CLIENTS"

COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.90 NEW Command

Syntax NEW

Purpose To delete the program currently in memory and
clear all variables.

Remarks NEW 1is entered 1in direct mode to clear memory
before entering a new program. Microsoft GW-
BASIC always returns to command level after a NEW is
executed.

NEW closes all files and turns tracing off.

Example NEW

of the contents thereof are forbidden without express authorily. Offenders are

fiable to the payment of damages. Al rights are reserved in the event of the grant

Copying of this document and giving it 1o others and the use or communication
of a patent o the registration of a utiity model or design.

7 - 115

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.91 0CT$ Function

Syntax 0CT$(X)

Purpose To return a string that represents the octal
value of the decimal argument. X is rounded to an
integer before OCT$(X) is evaluated.

Example PRINT 0CT$(24)
will yield

30

See the HEX$ function, Section 7.56, for details on
hexadecimal conversion.

7 - 116

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.92 ON COM Statement

Syntax ON COM(n) GOSUB <line number>

where <line number>is the number of the first line
of a subroutine that is to be performed when
activity occurs on the specified communi-
cations port.

(n) is the number of the communications port.

Purpose To specify the first line number of a subroutine to
be performed when activity occurs on a communi-
cations port.

Remarks A <<line number> of zero disables the
communications event trap.

The ON COM statement will only be executed if a
COM(n) ON statement has been executed (see COM
Statement, Section 7.20) to enable event
trapping. If event trapping is enabled, and if the
< line number> in the ON COM statement is not
zero, GW-BASIC checks between statements to see if

f damages. All rights are reserved in the event of the grant

egisiration of a utilty model or design.

of the contents thereof are forbidden without express authority. Offenders are

Copying of this document and giving it 1o others and the use or communication

: communications activity has occurred on the
52 specified port. If communications activity has
HE occurred, a GOSUB will be performed to the

specified line.

If a COM OFF statement has been executed for the
communications port (see COM Statement, Section
7.20), the GOSUB is not performed and is not
remembered.

If a COM STOP statement has been executed for the
communications port (see COM Statement, Section
7.20), the GOSUB is not performed, but will be
performed as soon as a COM ON statement is executed.

When an event trap occurs (i.e., the GOSUB is
performed), an automatic COM STOP is executed so that
recursive traps cannot take place. The RETURN
from the trapping subroutine will automatically
perform a COM ON statement wunless an explicit COM
OFF was performed inside the subroutine.

7 - 117

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

The RETURN <line number> form of the RETURN
statement may be wused to return to a specific line
number from the trapping subroutine. Use this
type of return with care, however, because any other
GOSUBs, WHILES, or FORs that were active at
the time of the trap will remain active, and
errors such as "FOR without NEXT" may result.

Event trapping does not take place when GW-BASIC is

not executing a program, and event trapping is auto-
matically disabled when an error trap occurs.

7 - 118

NIXDOR
TP
COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.93 ON ERROR GOTO Statement

Syntax ON ERROR GOTO <line number>

Purpose To enable error handling and specify the first line
of the error handling routine.

Remarks Once error handling has been enabled, all errors
detected, including direct mode errors (e.g.,
syntax errors), will cause a jump to the
specified error handling routine. If <line
number> does not exist, an "Undefined line"

error results.

To disable error handling, execute an ON ERROR GOTO
0. Subsequent errors will print an error message
and halt execution. An ON ERROR GOTO 0 statement
that appears 1in an error handling routine causes
Microsoft GW-BASIC to stop and print the error
message for the error that caused the trap. It
is recommended that all error handling routines

execute an ON ERROR GOTO 0 if an error is encountered [
for which there 1is no recovery action.

out express authority. Offenders are
ights are reserved in the event of the grant

model or desigr.

i to others and the use or communication

Note If an error occurs during execution of an error
handling routine, that error message is printed and
execution terminates. Error trapping does not
occur within the error handling routine.

Copying of this document and givi
of the contents thereof are forbid
liable to the payment of damages.
of a patent or the registration of a

Example 10 ON ERROR GOTO 1000

7 - 119

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.94 ON...GOSUB And ON...GOTO Statements

Syntax ON <expression> GOTO <list of line numbers>
ON <expression> GOSUB <list of line numbers>

Purpose To branch to one of several specified line
numbers, depending on the value returned when an
expression is evaluated.

Remarks The value of <expression> determines which line
number in the list will be used for branching. For
example, if the value is three, the third line
number in the list will be the destination of the
branch. (If the value is a noninteger, the number
is rounded.)

In the ON...GOSUB statement, each line number in the

list must be the first line number of a
subroutine.

It the value of<expression>is either zero or
greater than the number of items 1in the 1list,
control drops to the next BASIC statement.

If the value of <expression> 1is negative or
greater than 255, an "Illegal function call"
error occurs.

Example 100 ON L-1 GOTO 150,300,320,390

7 - 120

of the contents thereof are forbidden without express authority. Offenders are
liable to the payment of damages. Al rights are reserved in the event of the grant

Copying of this document and giving it to others and the use or communication
of a patent or the registration of a utiity model or design.

COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.95 ON KEY Statement

Syntax ON KEY(n) GOSUB <line number>

n is a numeric expression ranging from 1 to 20 that
specifies the key to be trapped as follows:

1-10 function keys F1 to F10

11 Cursor Up

12 Cursor Left

13 Cursor Right

14 Cursor Down

15-20 keys defined by the syntax:
KEY n,CHR$(s)+CHR$(t)

<line number>is the number of the first line of a

subroutine that is to be performed when the
specified function or cursor direction key is
pressed.

Purpose To specify the first line number of a subroutine to

be performed when a specified key is pressed.
Remarks A <line number> of zero disables the event trap.

The ON KEY statement will only be executed if a
KEY(n) ON statement has been executed (see
KEY(n) Statement, Section 7.66) to enable event
trapping. If key trapping is enabled, and if the

<line number> in the ON KEY statement is not
zero, GW-BASIC checks between statements to see if
the specified function, user-defined or cursor
direction key has been pressed. If so, the progranm
will branch to a subroutine specified by the
GOSUB statement.

If a KEY(n) OFF statement has been executed for the
specified key, (see KEY(n) Statement, Section
7.66), the GOSUB is not performed and is not
remembered.

If a KEY STOP statement has been executed for the
specified key, (see KEY(n) Statement, Section
7.66), the GOSUB is not performed, but will be
performed as soon as a KEY(n) ON statement is
executed.

7 - 121

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

When an event trap occurs (i.e., the GOSUB is
performed), an automatic KEY(n) STOP is executed so

that recursive traps cannot take place. The RETURN
from the trapping subroutine will automatically
perform a KEY(n) ON statement wunless an

explicit KEY(n) OFF was performed 1inside the
subroutine.

The RETURN <line number> form of the RETURN
statement may be wused to return to a specific line
number from the trapping subroutine. Use this
type of return with care, however, because any other
GOSUBs, WHILES, or FORs that were active at
the time of the trap will remain active, and
errors such as "FOR without NEXT" may result.

Event trapping does not take place when GW-BASIC is

not executing a program, and event trapping is auto-
matically disabled when an error trap occurs.

The following rules apply to keys trapped by

BASIC:
1. The line printer echo toggle key is
processed first. Defining this key as a user

defined key trap will not prevent characters
from being echoed to the line printer if
depressed.

2. Function keys and the cursor direction keys are
examined next. Defining a function key or cursor
direction key as a wuser defined key trap will
have no effect as they are considered pre-
defined.

3. Finally, the user defined keys are examined.

4. Any key that is trapped is not passed on. That
is, the key is not read by BASIC.

WARNING

This may apply to any key, including Break or
system reset (warm boot)! This is a powerful
feature when you consider that it is now

possible to prevent BASIC Application wusers from
accidentally Breaking out of a program, or worse yet,
rebooting the machine.

7 - 122

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

Note When a key is trapped, that occurrence of the key
is destroyed. Therefore, you cannot sub-
sequently use the INPUT or INKEY$ statements to
find out which key caused the trap. So if you
wish to assign different functions to
particular keys, you must set up a different
subroutine for each key, rather than assigning the
various functions within a single subroutine.

The ON KEY(n) statement allows 6 additional user
defined KEY traps. This allows any keg,
control-key, shift-key, or super-shift-key to e
trapped by the user as follows:

grant

ON KEY(i) GOSUB line_number

Where: <i> is an integer expressing a legal user-
defined key number.

xpress authority. Offenders are

Example 10 KEY 4,"SCREEN 0,0" ‘assigns softkey 4
20 KEY(4) ON 'enables event trapping

ges. All fights are reserved in the event of the

70 ON KEY(4) GOSUB 200

key 4 pressed

.

Copying of this document and giving it to others and the use or communication

of the contents thereof are forbidden without e;

liable 1o the payment of dama
of a patent or the registration of a utility modei or design.

éOO'Subroutine for screen

In the above, the programmer has overridden the
normal function associated with function key 4, and
replaced it with "SCREEN 0,0", which will be printed
whenever that key is pressed. The value may be
reassigned and it will resume its standard
function when the machine is rebooted.

7 - 123

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

100 KEY 15, CHR$(&H04) + CHR$(83)
105 REM ** Key 15 now is Control-S **
110 KEY(15) ON

.

1000 ﬁRINT "If you want to stop processing for a
break"

1010 PRINT "press the Control key and the 'S' at
the"

1020 PRINT "same time."

1030 ON KEY(15) GOSUB 3000.

Ope;ator presses Control-S

3000 REM ** Suspend processing loop.
3010 CLOSE #1

3020 RESET

3030 CLS

3035 PRINT "Enter CONT to continue."
3040 STOP

3050 OPEN "A", #1, "ACCOUNTS.DAT"
3060 RETURN

In the above, the programmer has enable the
Control-S key to enter a subroutine which closes the
files and stops program execution until the operator
is ready to continue.

7 - 124

grant

Copying of this document and giving it to others and the use or communication
press authority. Offenders are
ges. All ights are reserved in the event of the

of the contents thereof are forbidden without ex(

liable to the payment of dama
of a patent or the registration of a utility model or design.

NIXDORF
COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.96 ON PLAY Statement

Syntax ON PLAY (n) GOSUB line number

(n) 1is an Integer expression in the range 1
through 32. Values outside this range will
result in an "Illegal function call" error.

line number 1is the statement line number of the
Play event trap subroutine.

Purpose To branch to a specified subroutine when the
music queue contains fewer than (n) notes. This
permits continuous music during program
execution.

Remarks ON PLAY causes an event trap when the Background -

Music queue goes from (n) notes to (n-1) notes.
(n) must be an integer between 1 and 255.
PLAY ON Enables Play event trapping

PLAY OFF Disables Play event trapping
PLAY STOP Suspends Play event trapping

If a PLAY OFF statement has been executed the
GOSUB is not performed and is not remembered.

If a PLAY STOP statement has been executed the
GOSUB is not performed, but will be performed as soon
as a PLAY ON statement is executed.

When an event trap occurs (i.e., the GOSUB is
performed), an automatic PLAY STOP is executed so
that recursive traps cannot take place. The RETURN
from the trapping subroutine will automatically
perform a PLAY ON statement unless an explicit PLAY
OFF was performed inside the subroutine.

The RETURN <line number> form of the RETURN
statement may be wused to return to a specific line
number from the trapping subroutine. Use this
type of return with care, however, because any other
GOSUBs, WHILEs, or FORs that were active at
the time of the trap will remain active, and
errors such as "FOR without NEXT" may result.

7 - 125

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

Rules:

1. A play event trap is issued only when
playing background music (e.g. PLAY "MB..). Play
event traps are not issued when running in Music
Foreground (e.g.,default case, or PLAY "MF..).

2. A play event trap is not issued if the
background music queue has already gone from
having (n) to (n-1) notes when a PLAY ON is
executed.

3. If (n) 1is a large number, event traps will
occur frequently enough to diminish program
execution speed.

Also see PLAY ON, PLAY OFF, PLAY STOP
Statements, Section 7.107.

Example In this example control branches to a subroutine when
the background music buffer decreases to 7 notes.

100 PLAY ON

540 PLAY "MB L1 XZITHER$"
550 ON PLAY(8) GOSUB 6000

6000 REM **BACKGROUND MUSIC**
6010 LET COUNT% = COUNT% + 1

-

6999 RETURN

7 - 126

S,
NIXDDRF
R

CDMF’UTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.97 ON STRIG Statement

Syntax ON STRIG(n) GOSUB<line number>
where (n) is the number of the joystick trigger.

where <line number>is the number of the first line
of a subroutine that is to be performed when the
joystick trigger is pressed.

Purpose To specify the first line number of a subroutine to
be performed when the joystick trigger is pressed.

Remarks A<line number> of zero disables the event trap.

The ON STRIG statement will only be executed if a
STRIG ON statement has been executed (see STRIG
Function and STRIG Statements Sections 7.144 and
7.145) to enable event trapping. If event trapping
is enabled, and if the <line number> in the ON
STRIG statement is not zero, GW-BASIC checks between
statements to see if the joystick trigger has been
pressed. If it has, a GOSUB will be performed to the
specified line.

ghts are reserved in the event of the grant

If a STRIG OFF statement has been executed (see
STRIG Statement, Section 7.145), the GOSUB is not
performed and is not remembered.

of the contents thereo! are forbidden without express authority. Oftenders are

Copying of this document and giving it 1o others and the use or communication
liabie to the payment of damages.

of a patent or the registration of a utility model or design.

If a STRIG STOP statement has been executed (see
STRIG Statement, Section 7.145), the GOSUB is not
performed, but will be performed as soon as a STRIG
ON statement is executed.

When an event trap occurs (i.e., the GOSUB is

performed), an automatic STRIG STOP is executed so
that recursive traps cannot take place. The RETURN
from the trapping subroutine will automatically
perform a STRIG ON statement unless an
explicit STRIG OFF was performed 1inside the
subroutine.

7 - 127

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

The RETURN <line number> form of the RETURN
statement may be used to return to a specific line
number from the trapping subroutine. Use this
type of return with care, however, because any other
GOSUBs, WHILES, or FORs that were active at
the time of the trap will remain active, and
errors such as "FOR without NEXT" may result.

Event trapping does not take place when GW-BASIC is
not executing a program, and event trapping is auto-
matically disabled when an error trap occurs.

7 - 128

Copying of this document and giving it to others and the use or communication
of the contents thereof are forbidden without express authority. Offenders are

liable to the payment of damages. Al rights are reserved in the event of the grant

of a patent or the registration of a uliiity model or design

e

NIXDORF
T
COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.98 ON TIMER Statement

Syntax ON TIMER (n) GOSUB<Iline-number>

Purpose To provide an event trap during real time.

Remarks ON TIMER causes an event trap every (n)
seconds. (N) must be a numeric expression in the
range of 1 to 86400 (1 second to 24 hours).
Values outside this range generate and "Illegal

function call" error.

The ON TIMER statement will only be executed if a
TIMER ON statement has been executed to enable event
trapping. If event trapping is enabled, and if
the < line number> in the ON TIMER statement is
not zero, GW-BASIC checks between statements to
see if the time has been reached. If it has, a GOSUB
will be performed to the specified line.

If a TIMER OFF statement has been executed the
GOSUB is not performed and is not remembered.

If a TIMER STOP statement has been executed the
GOSUB is not performed, but will be performed as soon
as a TIMER ON statement is executed.

When an event trap occurs (i.e., the GOSUB is

performed), an automatic TIMER STOP is executed so
that recursive traps cannot take place. The RETURN
from the trapping subroutine will automatically
perform a TIMER ON statement unless an

explicit TIMER OFF was performed inside the
subroutine.

The RETURN <<line number> form of the RETURN
statement may be wused to return to a specific line
number from the trapping subroutine. Use this
type of return with care, however, because any other
GOSUBs, WHILES, or FORs that were active at
the time of the trap will remain active, and
errors such as "FOR without NEXT" may result.

7 - 129

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

Example Display the time of day on line 1 every minute.
10 ON TIMER(60) GOSUB 10000
20 TIMER ON

.

10000 LET OLDROW=CSRLIN 'Save current Row
10010 LET OLDCOL=P0S(0) 'Save current Column
10020 LOCATE 1,1:PRINT TIMES;

10030 LOCATE OLDROW,OLDCOL 'Restore Row & Col
10040 RETURN

Also see TIMER ON, TIMER OFF and TIMER STOP
Statements, Section 7.154.

7 - 130

B Y
NIXDORF
P
COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.99 OPEN Statement

Syntaxes OPEN <mode1>,[#]<file number>, <filespec>
[,<record length>]

OPEN <filespec> (FOR <mode2>) AS [#]<file
number> [LEN=<record length>1]

<filespec> is an optional device specification
followed by a filename or pathname, that
conforms to MS-DOS 2.0's rules for filenames.

<device> is a character device.

% <modei> is a string expression. The first
£ character must be one of the following:
%g 0 Specifies sequential output mode.
%? I Specifies sequential input mode.
R Specifies random input/output mode.
A Specifies sequential output mode and sets the

file pointer at the end of file and the
record number as the last record of the file.
A PRINT# or WRITE# statement will then extend
(append) the file.

Copying of this document and giving it to others and the use or communication
of the contents thereof are forbidden without express authority. Offenders are

%
g2
ge
g2
33
Sw
€
g?
g
28
2=
3
28
oo
=5

<mode2> is an expression which 1is one of
the following:

OUTPUT Specifies sequential output mode.
INPUT Specifies sequential input mode.

APPEND Specifies sequential output mode and
sets the file pointer at the end of
file and the record number as the
last record of the file. A PRINT#
or WRITE# statement will then extend
(append) the file.

If <mode2>is omitted, the default random access
mode is assumed. Random, however, cannot be
expressed explicitly as the file mode.

7 - 131

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

<file number> is an integer expression whose
value is between 1 and 255. The number is then
associated with the file for as long as it is
OPEN and 1is wused to refer other disk 1/0
statements to the file.

<record length>is an integer expression that,
if included, sets the record length for
random files. GW-BASIC will 1ignore this
option if it 1is wused in a statement to OPEN
a sequential file. The default length for
records is 128 bytes, unless the command
line options /I and /R have been wused (See
Section 2.2, "Command Line Option
Switches"). The record length may not be more
than the value set by the /S: switch of the
BASIC command, if the /I switch is not speci-
fied.

Purpose To allow I/0 to a file or device.

Remarks Files
A file must be opened before any 1/0 operation can
be performed on that file. OPEN allocates a buffer
for 1/0 to the file or device and determines
the mode of access that will be used with the buffer.

OPEN allows <pathname> in place of <filespec>. If

the pathname is used, and a drive is
specified the drive must be specified at the
beginning of the pathname. That is,
"B: \SALES\JOHN" is legal, while *"\SALES\B:JOHN" is
NOT legal.

The LEN= option is ignored if the file being
opened has been specified as a sequential file.

Since it is possible to reference the same file in
a sub-directorﬁ via different paths, it is nearly
impossible for BASIC to know that it 1is the same
file simply by looking at the path. For this
reason, BASIC will not let you open the file for
OUTPUT or APPEND if it is on the same disk even if
the path is different. For example; if MARY 1is your
current directory, then the following statements
refer to the same file:

OPEN- "REPORT" .
OPEN "\SALES\MARY\REPORT"...
OPEN .\MARY\REPORT" ...

OPEN "..\..\MARY\REPORT" eee

7 - 132

of the contents thereof are forbidden without express authority. Offenders are
liable to the payment of damages. All rights are reserved in the event of the grant

Copying of this document and giving it to others and the use or communication
of a patent or the registration of a utility model or design.

ER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

MS-DOS Devices

BASIC devices are:

KYBD: LPTn:
SCRN: CON:
COMn:

The BASIC file I/0 system allows the user to take
advantage of user installed devices (See the MS-
DOS manual for information on character
devices).

Character devices opened are opened and used in the
same manner as disk files. However, characters
are not buffered by BASIC as they are for disk
files. The record length is set to one.

BASIC only sends a CR (carriage return X'0D') as end
of line. If the device requires a LF (line feed
X'0A'), the driver must provide it.

Note A file can be opened for sequential input or
random access on more than one file number at a
time. A file may be OPENed for output, however, on
only one file number at a time.

Examples 10 OPEN "I",2,"INVEN"

10 OPEN "MAILING.DAT" FOR APPEND AS 1

If a user writes and installs a device called F0O,
then the OPEN statement might appear as:

10 OPEN "\DEV\FOO" FOR OUTPUT AS #1

To open the printer for output, the user could use
the line:

100 OPEN "LPT:" FOR OUTPUT AS #1

which uses the GW-BASIC device driver, or as part of
a pathname as in:

100 OPEN "\DEV\LPT1" FOR OUTPUT AS #1

which uses the MS-DOS device driver.

7 - 133

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.100 OPEN COM Statement

Syntax OPEN "COMn:Efspeed>]ﬂ[<parity>
[,[:<data>:£[[, <stop>][,RSJL CSCnJJ L DS [n]]
C.CD[n]) [,BINJ [,ASCIL,LFJJ]] " [FOR<mode> AS
[#]<filenumber> [LEN= <record length>]
COMn: 1is the name of the device to be opened.

n is the number or a legal communications
device, i.e., COMi: or COM2:.

<speed> is the baud rate, in bits per second, of the
device to be opened.

<parity> designates the parity of the device to be
opened. Valid entries are: N (none), E (even),
0 (odd), S (space), or M (mark).

<data> designates the number of data bits per byte.
Valid entries are: 5, 6, 7, or 8.

<stop> designates the stop bit. Valid entries are:
1, 1.5, or 2

RS suppresses RTS (Request To Send).

€S[n] controls CTS (Clear To Send).

DS[n] controls DSR (Data Set Ready).

CD[n] controls CD (Carrier Detect).

LF specifies that a linefeed is to be sent after a
carriage return. See "Remarks" for further
discussion of LF.

BIN opens the device in binary mode. BIN is

selected by default wunless ASC is specified. See
"Remarks" for further discussion of BIN.

7 - 134

ORF

B e et
OMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

ASC opens the ~device in ASCII mode. See
"Remarks" for further discussion of ASC.

<mode> is one of the following string expressions:
OUTPUT Specifies sequential output mode.

INPUT Specifies sequential input mode.

If the < mode> expression is omitted, it is
assumed to be random input/output. Random
cannot, however, be explicitly chosen as<mode>.

<file number> is the number of the file to be

§% opened.
%% Purpose To open and initialize a communications channel for
g3 input/output.
Remarks The OPEN COM statement must be executed before a r~_
device can be used for RS232 communication.

Any syntax errors in the OPEN COM statement will
result in a "Bad File name" error.

of a patent or the registration of a utility model or design.

liable to the payment of damages. All rights

The <speed>, <parity> <data>, and <stop>
options must be listed in the order shown in the
above syntax. The remaining options may be

listed in any order, but they must be listed
after the <speed>, <paritys, =<data>, and <stop>
options.

n in the CS, DS, and CD options specifies the number
of milliseconds to wait for the signal before
returning a "Device Timeout" error. n can be any
number from zero to 65535. If n is omitted or zero,
the line status is not checked.

The defaults are n=1000 for CS and DS, and n=zero for
CD. If RS is specified, the default for CS is zero.

What this means is that usually I/0 statements to a
communication file will fail if the CTS or DSR
signals are off. The systrem will wait one second
before returning a "Device Timeout" message. The CS
and DS options let you ignore these lines, or specify
the waiting time before the timeout.

7 - 135

7 - 136

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

Usually Carrier Detect (CD or RLSD) is ignored when
OPEN "COM... is executed. The CD option lets you test
this line by including the n argument, in the same
way as CS and DS. If n is omitted or zero, then
Carrier Detect is not checked (which is like omitting
the CD option).

LF allows communication files to be printed on a
serial line printer. When LF is specified, a
linefeed character (O0AH) is automatically sent
after each carriage return character (OCH). This
includes the carriage return sent as a result
of the width setting. Note that INPUT# and LINE
INPUT#, when wused to read from a COM file that
was opened with the LF option, stop when they see a
carriage return, ignoring the linefeed.

The LF option is superseded by the BIN option.

The PE option allows parity checks. Using this
parameter will yield a "Device I/0 error" message for
each parity error. It will also turn on the high
order bit for 7 or fewer data bits. The default is no
parity checks. Note that PE option has no effect on
framing and overrun errors. These will always turn
the high order bit on and result in a "Device I/0
error".

In the BIN mode, tabs are not expanded to
spaces, a carriage return is not forced at the end-
of-line, and Control-Z 1is not treated as end-of-
file. When the channel is closed, Control-Z
will not be sent over the RS232 line. The BIN option
supersedes the LF option.

In ASC mode, tabs are expanded, carriage returns are
forced at the end-of-line, Control-Z is treated
as end-of-file, and XON/XOFF protocol (if
supported) 1is enabled. When the channel is closed,
Control-Z will be sent over the RS232 line.

ges. All fights are reserved i the event of the grant

Copying of this document and giving it to others and the use or communication
of the contents thereof are forbidden without express authority. Offenders are

of a patent or the registration of a utility mode! or design.

liable to the payment of dama

COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

Examples The following statement opens COM1: for communications
as file #1 with all defaults, meaning the speed of
gOO bps, even parity, and 7 data bits with one stop

it.

100 OPEN "COM1:" ASt

The following statement opens COM1: for
communication at 1200 bps. Parity and numbers of data
bits and stop bits will be the defaults.

100 OPEN "COM1:1200" AS #1

COM1:is opened as File 1 for asynchronous 1/0 at 600
bps, with no parity produced or checked, 8-bit bytes
sent and received, and 1 stop bit transmitted.

100 OPEN "COM1:600,N,8" AS #1

The next opens COM1: at 1800 bps with no parity,
eight data bits, and CS, DS, and CD being checked.

10 OPEN "COM?1:1800,N,8,,CS,DS,CD" AS #1

The following statement opens COM1: at 600 bps with
the defaults of even parity and seven data bits and
with parity checking. RTS is sent, and Device Timeout
is given if DSR is not seen within five seconds.

50 OPEN "COM1:600,,,,CS,DS5000,PE" AS #1

Note that the commas are used to indicate the
position of the positional arguments parity, start,
and stop, even though values for them are not
specified.

An OPEN statement can be used with an ON ERROR
statement to make certain that a modem 1is working
properly before sending any data. For instance, the
following program makes sure of a Carrier Detect (CD
or RLSD) from the modem before beginning. Line 200 is
is set to timeout after waiting 10 seconds. TIMES is
set to 3 so we give up if Carrier Detect is not seen
within half a minute. Once communication is
established, the file is reopened with a shorter wait
until timeout.

7 - 137

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

50 TIMES=6

100 ON ERROR GOTO 900

200 OPEN "“COM1:1200,N,8,2,CS,DS,CD10000" AS #2
300 ON ERROR GOTO O

400 CLOSE #2' to continue

500 GOTO 2000

900 IF ERR=24 THEN GOTO 920

910 ON.ERROR GOTO 0

920 TIMES=TIMES-1

930 IF TIMES=0 THEN ON ERROR GOTO 0' forget it
940 RESUME

2000 OPEN “COM1:1200,N,8,2,CS,DS,CD5000" AS #1

The last example shows a typical way of using
communication file to control a serial line printer.
The LF argument in the OPEN statement ensures that
lines are not printed on top of each other.

100 WIDTH "COM1:", 132

200 OPEN "COM1:300,N,8,,CS10000,DS10000,CD10000,
LF" AS #1

7 - 138

Cepying of this document and giving it to others and the use or communication
of the contents thereof are forbidden without express authority. Offenders are

liable to the payment of damages. All rights are reserved in the event of the grant

of a patent or the registration of a utility model or design.

NIXDORF

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.101 OPTION BASE Statement

Syntax OPTION BASE n

where n is 1 or O

Purpose To declare the minimum value for array
subscripts.
Remarks The default base is 0. If the statement

OPTION BASE 1

is executed, the lowest value an array subscript may
have is 1.

The OPTION BASE statement must be coded before you
define or use any arrays.

Chained programs may have an OPTION BASE
statement if no arrays are passed between them or
the specified base 1is identical 1in the chained
programs. The chained program will inherit the
OPTION BASE value of the chaining program.

Example 10 OPTION BASE 1

7 - 139

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.102 O0UT Statement

Syntax

Purpose

Example

7 - 140

ouT I1,J

where I is the port number. It must be
integer expression in the range 0 to 65535.

J 1is the data to be transmitted. It must be
integer expression in the range 0 to 255.

To send a byte to a machine output port.

100 OUT 12345,255

an

an

In 8086 assembly language, this 1is -equivalent to:

MOV DX, 12345
MOV AL, 255
0UT DX, AL

TR R,

iy
OMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.103 PAINT Statement

Syntax PAINT (<x>,<y>)[,<paint attribute>
[<border color>] [,background attribute]]

(<xstart> and <ystart>) are the coordinates
where painting is to begin. Painting should
always start on a non-border point. If painting
starts within a border, the bordered figure is
painted. If painting starts outside a bordered
figure, the background is painted.

If the <paint attribute>is a string expression
PAINT will execute "Tiling", a process similar to
"Line-styling". Like LINE, PAINT looks at a
"tiling" mask each time a point is put down on the
screen.

If <paint attribute>is a numeric expression, then
the number must be a valid color and is wused to
paint the area as before. (see COLOR Statement,
Section 7.19). If the<paint attribute> N~
is not specified, the foreground color will be
used.

ights are reserved in the event of the grant

ly model or design.

<border color= identifies the border color of the
figure to be filled. When the border color is
encountered, painting of the current line will
stop. If the border <color is not specified,
the <paint attribute> will be used.

of the contents thereof are forbidden without express authority. Offenders are

Copying of this document and giving it 1o others and the use or communication
iiable to the payment of damages.

of a patent or the registration of a utilt

<background attribute> is a string formula
returning character data. When it is omitted, the
default is CHR$(0).

When specified, <background attribute> gives the
"background tile slice"™ to skip when checking for
termination of the boundary. Painting 1is termi-
nated when adjacent points display the paint
color; specifying a background tile slice allows the
user to paint over an already painted area without
terminating the process because two consecutive lines
with the same paint attributes are encountered.

7 - 141

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

Purpose To fill a graphics area with the color or
pattern specified.

Remarks Painting 1is complete when a line is painted
without changing the color of any pixel; i.e., the
entire line is equal to the paint color.

The PAINT command can be used to fill any
figure, but painting complex figures may result in
an "Out of Memory" error. If this happens, the
CLEAR statement may be given to increase the amount
of stack space available.

The PAINT command permits coordinates outside the
screen or viewport.

Tiling

Tiling 1is the design of a PAINT pattern that is 8
bits wide and up to 64 bytes long. Each byte in the
Tile String masks 8 bits along the x axis when
putting down points. Construction of this Tile mask
works as follows:

Use the syntax PAINT (x,y), CHR$(n)...CHR$(n)
where (n) is a number between 0 and 255 which will
be represented in binary across the x-axis of the
"tile". Each CHR$(n) up to 64 will generate an
image not of the assigned character, but of the bit
arrangement of the code for that character. For
example, the decimal number 85 is binary
"01010101"; the graphic image line on a black and
white screen generated by CHR$(85) is an eight
pixel line, with even numbered points turned
white, and odd ones black. That is, each bit
containing a "1" will be set the associated pixel on
and each bit filled with a "O" will set the
associated bit off in a black and white system. - The
ASCII character CHR$(85), which is "U", is not
displayed in this case.

7 - 142

of the contents thereof are forbidden without express authority. Offenders are
iable to the payment of damages. Al nghts are reserved in the event of the grant

Copying of this document and giving it to others and the use or communication
of a patent or the registration of a utility model or design.

B
NIXDORF
B
COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

If the current screen mode supports only two
colors, then the screen can be painted with 'X's with
the following statement.

PAINT (320,100),CHR$(129)+CHR$(66)
+CHR$(36)+CHR$(24)+ CHR$(24)+CHR$(36)+
CHR$(66)+CHR$(129)

This appears on the screen as:

X increases ->

0,0|x x] CHR$(129) Tile byte 1
0,1 X X CHR$(66) Tile byte 2
0,2 X X CHR$(36) Tile byte 3
0,3 X | X CHR$(24) Tile byte 4
0,4 X |x CHR$(24) Tile byte 5
0,5 X X CHR$(36) Tile byte 6
0,6 X X CHR$(66) Tile byte 7
0,7 |x x| CHR$(129) Tile byte 8

When supplied, <backgroundattr> specifies the
“background tile slice” to skip when checking for
boundary termination.

You cannot specify more than two consecutive
bytes in the tile background slice that match the
tile string. Specifying more than two will result
in an "Illegal function call® error.

Example 10 PAINT (5,15),2,0

begins painting at coordinates 5,15 with color 2 and
border color 0, and fills to a border.

7 - 143

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.104 PEEK Function

Syntax PEEK(I)

Purpose To return the byte read from the indicated
memory location (I).

Remarks The returned value is an integer in the range 0 to
255. I must be in the range -32768 to 65535. I is
the offset from the current segment, which was
defined by the last DEF SEG statement (see Section
7.32). For the interpretation of a negative
value of I, see VARPTR Function, Section 7.158.

PEEK is the complementary function of the POKE
statement.

Example A=PEEK(&H5A00)

In this example, the value at the location with the
hex address 5A00 is loaded into a variable, A.

7 - 144

COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.105 PLAY Statement

Syntax PLAY <string>

Purpose To play music as specified by <string>.

Remarks PLAY uses a concept similar to that in DRAW (see
Section 7.36) by embedding a Music Macro
Language into one statement. A set of

subcommands, used as part of the PLAY statement,
specifies the particular action to be taken.
Prefixes-ChangeOctave

> Increments octave. Octave will not
advance beyond 6.

oF
© g
25
2
82
§3
28
g
Oo,\
X
5o
£<
ER
28
]
g2
25
&2
58
5¢
s
Le
E:
)
g
§=

ility model or design.

< Decrements octave. Octave will not drop
below 0.

Tone

0 <n> Sets the current octave. There are

seven octaves, numbered 0 through 6.

A-G Plays a note in the range A-G. # or +
after the note specifies sharp; -
specifies flat.

<
S
€
5
£
3
3
8
]
@
&
3
@
<
o
5
®
2
]
£
1
2
o
S
2
5
°
€
&
€
53
£
g
°
2
£
B
2
<
s
§

of the contents thereof are forbidds

hable to the payment of damag
of a patent or the registration of a ut

N<n> Plays note n. n may range from 0
through 84 (in the 7 possible
octaves, there are 84 notes). n= 0
means a rest.

Duration

L <n> Sets the length of each note. L 4 is
a quarter note, L 1 is a whole note,
etc. n may be in the range 1 through
64.
The length may also follow the note when
a change of length only is desired
for a particular note. In this case,
A 16 is wequivalent to L 16 A.

MN Sets "music normal" so that each note

will play 7/8 of the time determined
by the length (L).

7 - 145

7 - 146

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

ML

MS

Tempo

P<n>

T<n>

Operation

MF

MB

Substring

X <string>

Sets "music legato" so that each note
will play the full period set by length
(L)

Sets "music staccato" so that each note
will play 3/4 of the time determined
by the length (L).

Specifies a pause, ranging from 1
through 64. This option corresponds to
the length of each note, set with L<n>.

Sets the "tempo," or the number of L
4's in one minute. n may range from
32 through 255. The default is 120.

Sets music (PLAY statement) and
SOUND to run in the foreground. That
is, each subsequent note or sound

will not start until the previous
note or sound has finished. This is the
default setting.

Music (PLAY statement) and SOUND are set
to run in the background. That is, each
note or sound is placed in a buffer
allowing the GW-BASIC program to
continue executing while the note or
sound plays 1in the background. The
number of notes that can be played in
the background at one time varies
according to the particular machine.

Executes a substring. Because of the
slow clock interrupt rate, some notes
will not play at higher tempos (L 64 at T
255, for example).

Note (as shown in the "Examples"
below) that a substring may be
executed by appending the character form
of the substring address to "X".

R
COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

Suffixes

or + Follows a specified note, and turns it
into a sharp.
Follows a specified note, and turns it
into a flat.
A period after a note causes the note
to play 3/2 times the length determined
by L multiplied by T (tempo).
Multiple periods may appear after a
note. The period 1is scaled accordingly;
for example, A. is 3/2, A.. 1is 9/4, A...
is 27/8, etc. Periods may appear
after a pause (P). In this case, the
pause length may be scaled in the same
way notes are scaled.

Examples PLAY "<<¢ 'pecrement by two octaves

PLAY ">" 'Increment by an octave

PLAY ">A" 'Increment by an octave and play an A note

PLAY "XSONG$"

of the contents thereof are forbidden without express authority. Offenders are
liable 1o the payment of damages. All rights are reserved in the event of the grant

Copying of this document and giving it to others and the use or communication
of a patent or the registration of a utility model or design.

LET LISTEN$ = "T180 02 P2 P8 L8 GGG L2 E-"
LET FATE$ = "P24 P8 L8 FFF L2 D"
PLAY LISTEN$ + FATES

This example will play the beginning of the
first movement of Beethoven's Fifth Symphony.

7 - 147

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.106 PLAY Function

Syntax PLAY(n)
(n) is a dummy argument and may be any value.

Purpose To return the number of notes currently in the
background music queue.

Remarks PLAY(n) will vreturn 0 when the user is in Music
Foreground Mode. Since the music buffer can hold up
47 notes, 47 is the maximum value that can be re-
turned.

7 - 148

of the contents thereof are forbidden without express authonty. Offenders are
liable 1o the payment of damages. All rights are reserved in the event of the grant

Copying of this document and giving it to others and the use or communication
of a patent or the registration of a utiity model or design.

B BeER
NIXDORFE

COMPUTER

T

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.107 PLAY ON, PLAY OFF, PLAY STOP Statements

Syntax PLAY ON
PLAY OFF
PLAY STOP
Purpose PLAY ON enables play event trapping.

PLAY OFF disables play event trapping.
PLAY STOP suspends play event trapping.

Remarks If a PLAY OFF statement has been executed the
GOSUB is not performed and is not remembered.

If a PLAY STOP statement has been executed the
GOSUB is not performed, but will be performed as soon
as a PLAY ON statement is executed.

When an event trap occurs (i.e., the GOSUB is
performed), an automatic PLAY STOP is executed so
that recursive traps cannot take place. The RETURN
from the trapping subroutine will automatically
perform a PLAY ON statement unless an explicit PLAY
OFF was performed inside the subroutine.

The RETURN <line number> form of the RETURN
statement may be wused to return to a specific line
number from the trapping subroutine. Use this
type of return with care, however, because any other
GOSUBs, WHILES, or FORs that were active at
the time of the trap will remain active, and
errors such as "FOR without NEXT" may result.

7 - 149

7.108

Syntax

Purpose

Remarks

Examples

7

150

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

PMAP Function

PMAP <expression>, <function>

To map world coordinate expressions to physical
locations or to map physical expressions to a
world coordinate location.

<function>=
0 Maps world expression to physical x
coordinate.

1 Maps world expression to physical y
coordinate.

2 Maps physical expression to world x
coordinate.

3 Maps physical expression to world y
coordinate.

The four PMAP functions allow the user to find
equivalent point locations between the world
coordinates created with the WINDOW statement and
the physical coordinate system of the screen or view-
port as defined by the VIEW statement.

If a user had defined a WINDOW SCREEN (80,100) -
(200,200) then the upper left coordinate of the
window would be (80,100) and the lower right
would be (200,200). The screen coordinates may be
é0,0) in the upper left hand corner and
639,199) in the lower right. Then:

X = PMAP(80,0)

would return the screen x coordinate of the
window x coordinate 80:

0

NIXDORF
COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

The PMAP function in the statement:
Y = PMAP(200,1)

would return the screen y coordinate of the
window y coordinate 200:

199
The PMAP function in the statement:
X = PMAP(619,2)

5 would return the "world" «x coordinate that
§s corresponds to the screen or viewport X
g coordinate 619:

£ 199

reserved in the event of the

The PMAP function in the statement:

Y = PMAP(100,3)

would return the "world" 'y coordinate that
corresponds to the screen or viewport y
coordinate 100:

140

Copying of this document and giving it to others and the use or communication
of a patent or the registration of a utilty model or design.

of the contents thereof are forbidden without ex;

liable to the payment of damages. All rights are

7 - 151

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.109 POINT Function

Syntax

Purpose

7 - 152

POINT (<xcoordinate>,<ycoordinate>)

<xcoordinate> and <ycoordinate> are the
coordinates of the pixel that is to be
referenced.

or

POINT (<function>)

POINT (x,y) allows the user to read the color
number of a pixel from the screen. If the
specified point 1is out of range, the value -1 is
returned.

POINT with one argument allows the user to
retrieve the current Graphics cursor
coordinates. Therefore:

x= POINT(funct) Returns the value of the current x
or y Graphics accumulator as
follows:

function =

0 Returns the current physical x coordinate.

1 Returns the current physical y coordinate.

2 Returns the current logical x coordinate. If
the WINDOW statement has not been used, this
will return the same value as the POINT(0)
function.

3 Returns the current logical y coordinate - if
WINDOW is active, else returns the current
physical y coordinate as in 1 above.

where the physical coordinate is the coordinate
on the screen or current viewport.

Copying of this document and giving it 1o others and the use or communication

liable to the payment of damages. All rights are reserved in the event of the grant

of a patent or the registration of a utility model or design.

Examples

COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

10 SCREEN 1

20 LET C=3

30 PSET (10,10),C

40 IF POINT(10,10)=C THEN PRINT “"This point is
color ";C

5 SCREEN 2

10 IF POINT(i,i)<>0 THEN PRESET (i,i)
ELSE PSET (i,i)
'invert current state of a point

20 PSET (i,i),1-POINT(i,i) 'another way
tg'%nvert a point if the system is black and
white.

7 - 153

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.110 POKE Statement

Syntax POKE I,J
where I and J are integer expressions.

Purpose To write a byte into a memory location.

Remarks I and J are integer expressions. The expression
represents the address of the memory location and
is the data byte. J must be in the range 0 to 255.

I must be in the range -32768 to 65535.

offset from the current segment,. which was set by
the last DEF SEG statement (see Section 7.32).

interpretation of negative values of I,
Function, Section 7.158.

The complementary function to POKE s
Section 7.104.)

WARNING

Use POKE carefully. If it 1is wused incorrectly,
it can cause GW-BASIC or MS-DOS to crash.

Example 10 POKE &H5A00, &HFF

7 - 154

en without express authority. Offenders are
. All rights are reserved in the event of the grant
utility model or design.

Copying of this document and giving it to others and the use or communication

of the contents thereof are forbiddt

liable to the payment of damages.
of a patent or the registration of a

COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.111 POS Function

Syntax POS(I)

Purpose To return the current horizontal (column)
position of the cursor.

Remarks The leftmost position is 1. I is a dummy
argument. To return the current vertical line

position of the cursor, use the CSRLIN function
(Section 7.25).

Example IF POS(X)>60 THEN BEEP

Also see LPOS Function, Section 7.81.

7 - 155

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.112 PRESET Statement

Syntax

Purpose

Remarks

Example

7 - 156

PRESET [STEP](<xcoordinate>,<ycoordinate>)
[s<color>]

<xcoordinate> and <ycoordinate> specify the
pixel that is to be set.

<color> is the color number that is to be wused for
the specified point.

The STEP option, when used, indicates the given x
and y coordinates will be relative, not
absolute. That means the x and y are distances from
the most recent cursor location, not distances
from the (0,0) screen coordinate.

To draw a specified point on the screen. PRESET
works exactly like PSET except that if the
<color> is not specified, the background color is
selected.

If a coordinate is outside the current viewport, no
action 1is taken, nor 1is an error message given.

Coordinates <can be shown as absolutes, as in the
above syntax, or the STEP option can be wused to
reference a point relative to the most recent
point used. For example, if the most recent
point referenced were (10,10), STEP (10,5) would
reference the point at (20,15).

5 REM DRAW A LINE FROM (0,0) TO (100,100)
10 FOR i=0 TO 100

20 PRESET (i,i),1

30 NEXT

35 REM NOW ERASE THAT LINE
40 FOR i=0 TO 100

50 PRESET STEP (-1,-1)

60 NEXT

This example draws a line from (0,0) to
(100,100) and then erases that line by
overwriting it with the background color.

NIXDORF
COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.113 PRINT Statement

Syntax PRINT [<list of expressions>7]

Purpose To output data on the screen.

Remarks If <list of expressions> is omitted, a_ blank line
is printed. If <list of expressions> is included,

the values of the expressions are printed on
the screen. The expressions in the list may be
numeric and/or string expressions. (String
literals must be enclosed in quotation marks.)

A question mark (?) can be used as a form of
shorthand by the user. It will be interpreted as
the word "“PRINT", and will appear as "PRINT" in
subsequent listings.

event of the grant

ut express authority. Offenders are

g
g
s
£
£
8
5
°
2
°
£
s
2
&
[
g
2

Print Positions

are reserved in the

The position of each printed item is determined by
the punctuation wused to separate the items in the
list. Microsoft GW-BASIC divides the line into
print zones of 14 spaces each. In the 1list of
expressions, a comma causes the next value to be
printed at the beginning of the next zone.
semicolon causes the next value to be printed
immediately after the last value. Typing one or more
spaces between expressions has the same effect as
typing a semicolon.

giving it

of the contents thereof are forbidden wi
liable to the payment of damages. All rights
of a patent or the registration of a utiiity model or design.

Copying of this document and

If a comma or a semicolon terminates the 1list of
expressions, the next PRINT statement begins
printing on the same line, spacing according . to
instructions. If the list of expressions
terminates without a comma or a semicolon, a
carriage return is printed at the end of the
line. If the printed line 1is wider than the
screen width, Microsoft GW-BASIC goes to the next
physical line and continues printing.

7 - 157

Example 1

7 - 158

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

Printed numbers are always followed by a space.
Positive numbers are preceded by a space.
Negative numbers are preceded by a minus sign.
Single precision numbers that can be represented with
6 or fewer digits in the unscaled format no less
accurately than they can be represented in the scaled
format, are output using the unscaled format. For
example, 1E-7 1is output as .0000001 and 1E-8 is
output as 1E-08. Double precision numbers that can
be represented with 16 or fewer digits in the
unscaled format no less accurately than they can
be represented in the scaled format, are output
using the unscaled format. For example,
1D-15 is output as .0000000000000001 and 1D-
16 is output as 1D-16.

With the interpreter, a question mark may be used
in place of the word PRINT in a PRINT statement.

10 X=5
20 PRINT X+5,X-5,X*(-5),XA5
30 END

will yield
10 0 -25 3125
In this example, the commas in the PRINT

statement cause each value to be printed at the
beginning of the next print zone.

e
COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

10 INPUT X

20 PRINT X “SQUARED IS" XA2 "AND";
30 PRINT X "CUBED IS" XA3

40 PRINT

50 GOTO 10

Example 2

will yield

?9
9 SQUARED IS 81 AND 9 CUBED IS 729

? 21
21 SQUARED IS 441 AND 21 CUBED IS 9261

?

In this example, the semicolon at the end of line
20 causes both PRINT statements to be printed on
the same line. Line 40 causes a blank line to
be printed before the next prompt.

Example 3 10 FOR X=1 T0 5
20 J=J+5
30 K=K+10
40 ?J;K;
50 NEXT X

damages. Al fights are reserved in the event of the grant

of a patent or the registration of a utiity model or design.

will yield

of the contents thereof are forbidden without express authorily. Offenders are

Copying of this document and giving it to others and the use or communication

5 10 10 20 15 30 20 40 25 50

In this example, the semicolons in the PRINT
statement cause each value to be printed
immediately after the preceding value.
(Remember, a number is always followed by a
space, and positive numbers are preceded by a
space.) In line 40, a question mark 1is used
instead of the word PRINT.

7 - 159

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.114 PRINT USING Statement

Syntax PRINT USING <string exp>;<list of expressions>
Purpose To print strings or numbers using a specified
format.

Remarks/ <list of expressions> is comprised of the string
Examples expressions or numeric expressions that are to be
printed, separated by semicolons.

<string exp> is a string literal (or variable)
composed of special formatting characters.
These formatting characters (see below)
determine the field and the format of the
printed strings or numbers.

String Fields

When PRINT USING is used to print strings, one of
three formatting characters may be used to format
the string field:

" Specifies that only the first character in the
given string is to be printed.

“\n\spaces

"Specifies that 2 + n characters from the string are
to be printed. If the backslashes are typed with no
spaces, two characters will be printed; with one
space, three characters will be printed, and so
on. If the string 1is longer than the field,
the extra characters are ignored. If the field
is longer than the string, the string will be
left-justified in the field and padded with spaces on
the right.

Example:
10 A$="LOOK":B$="0UT"
30 PRINT USING "!";A$;B$

40 PRINT USING "\, \";A$;:B$
50 PRINT USING " \i Ag;Bg; 1t

will yield
L0

LOOKOUT
LOOK ouT !!

7 - 160

COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

of the contents thereof are forbidden without express authority. Offenders are
iable to the payment of damages. Al rights are reserved in the event of the grant

Copying of this document and giving it to others and the use or communication
of a patent or the registration of a utility model or design.

Specifies a variable length string field. When the
field is specified with "&", the string is output
without modification.

Example:

10 A$="LOOK":B§="0UT"
20 PRINT USING "!";Ai;
30 PRINT USING "&";B

will yield
LOUT

Numeric Fields

When PRINT USING is used to print numbers, the
following special characters may be used to
format the numeric field:

A number sign 1is used to represent each digit
position. Digit positions are always filled. If
the number to be printed has fewer digits than
positions specified, the number will be right-
justified (preceded by spaces) in the field.

A decimal point may be inserted at any position 1in
the field. If the format string specifies that a
digit is to precede the decimal point, the digit
will always be printed (as 0, if necessary).
Numbers are rounded as necessary.

PRINT USING "“##.##";.78
0.78

PRINT USING "###.##";987.654
987.65

PRINT USING "##.## ";10

.2,5.3,66.789,.234
10.20 5.30 66.79 0.23

’
2
In the last example, three spaces were inserted at

the end of the format string to separate the printed
values on the line.

A plus sign at the beginning or end of the
format string will cause the sign of the number
(plgs or minus) to be printed before or after the
number.

7 - 161

*%

$$

**$

7 - 162

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

A minus sign at the end of the format field will
cause negative numbers to be printed with a
trailing minus sign.

PRINT USING "+##.## ";-68.95,2.4,55.6,-.9

-68.95 +2.40 +55.60 -0.90
PRINT USING "##.#4#- ";-68.95,22.449,-7.01
68.95- 22.45 7.01-

A double asterisk at the beginning of the format
string causes leading spaces in the numeric
field to be filled with asterisks. The ** also
specifies positions for two more digits.

PRINT USING "**#. 4 ";12.39,-0.9,765.1
*12.4 *-0.9 765.1

A double dollar sign causes a dollar sign to be
printed to the immediate left of the formatted
number. The $3 specifies two more digit
positions, one of which is the dollar sign. The
exponential format cannot be used with $$.
Negative numbers cannot be used unless the minus sign
trails to the right.

PRINT USING "$$###.#4";456.78
$456.78

The **$ at the beginning of a format string
combines the effects of the above two symbols.
Leading spaces will be asterisk-filled and a
dollar sign will be printed before the number. **§
specifies three more digit positions, one of which is
the dollar sign.

The exponential format cannot be used with **$. When
negative numbers are printed, the minus sign will
appear immediately to the left of the dollar sign.

PRINT USING "**$##. ##";2.34
**%$2.34

B 0
COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

A comma that is to the left of the decimal point in
a formatting string causes a comma to be printed
to the left of every third digit to the left of
the decimal point. A comma that is at the end of the
format string is printed as part of the string. A
comma specifies another digit position. The comma
has no effect if wused with exponential (AAAA)

format.

PRINT USING "“####, . ##";1234.5

1,234.50

PRINT USING "####.##,";1234.5
H 1234.50,
§ AAAA Four carets (or up-arrows) may be placed after the
8 digit position characters to specify
£ exponential format. The four carets allow space for
3 E+xx to be printed. Any decimal point position
] may be specified. The significant digits are
8 left-justified, and the exponent is adjusted. Unless
2 a leading + or trailing + or - is specified, one

digit position will be used to the left of the
decimal point to print a space or a minus sign.

PRINT USING "##.##/A A 234 56
2.35E+02 ’

PRINT USING ".####AAA-";-.888888
-.8889E+06

Copying of this document and giving it o others and the use or communication
of the contents thereof are forbidden without express authority. Offenders are

of a patent or the registration of a utility model or design.

PRINT USING "+, ##AAAAN-123
+.12E+03

An underscore in the format string causes the next
character to be output as a literal character.

PRINT USING "_!##.##!";12.34

112.34!
The literal character itself may be an
underscore by placing "__ " in the format string.

7 - 163

7 - 164

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

If the number to be printed is larger than the
specified numeric field, a percent sign is
printed in front of the number. If rounding
causes the number to exceed the field, a percent sign
will be printed in front of the rounded number.

PRINT USING "##.##";111.22
%111.22

PRINT USING ".##";.999

%1.00

If the number of digits specified exceeds 24, an
“Illegal function call" error will result.

ges. Al rights are reserved in the event of the grant

Copying of this document and giving it to others and the use or communication
of a patent or the registration of a utility model or design.

of the contents thereof are forbidden without express authority. Offenders are

liable to the payment of dama

COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.115 PRINT# and PRINT# USING Statements

Syntax PRINT#<file number>,[USING <string exp>;]
<list of expressions>

Purpose To write data to a sequential file.

Remarks/ <file number> 1is the number wused when the file was

Examples opened for output. <string exp> consists of
formatting characters as described in "PRINT
USING Statement," Section 7.114. The

expressions in <list of expressions> are the
numeric and/or string expressions that will be
written to the file.

PRINT# does not compress data. An image of the data
is written to the file, just as it would be displayed
on the terminal screen with a PRINT statement.
For this reason, care should be taken to delimit
the data, so that it will be input correctly.

In the 1list of expressions, numeric expressions
should be delimited by semicolons. For example:

PRINT#1,A;B;C;X;Y;2Z

(If commas are used as delimiters, the extra
blanks that are inserted between print fields will
also be written to the file.)

String expressions must be separated by
semicolons in the list. To format the string
expressions correctly in the file, wuse explicit
delimiters in the list of expressions.

For example, let A$="CAMERA" and B$="93604-1". The
statement

PRINT#1,A$;B$
would write CAMERA93604-1 to the file. Because
there are no delimiters, this could not be input as
two separate strings. To correct the problem
insert explicit delimiters into the PRINTH
statement as follows:
PRINT#1,A$;",";B$

" The image written to the file is

CAMERA,93604-1

7 - 165

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

which can be read back into two string
variables.
If the strings themselves contain commas,

semicolons, significant leading blanks, carriage
returns, or linefeeds, write them to the file
surrounded by explicit quotation marks,
CHR$(34).

For example, let A$="CAMERA, AUTOMATIC" and
B$=" 93604-1". The statement

PRINT#1,A$;:B$

would write the following image to file:

CAMERA, AUTOMATIC 93604-1

And the statement

INPUT#1,A$,B$

would input "CAMERA" to A$ and
"AUTOMATIC 93604-1" to BS. To separate these
strings properly in the file, write double
quotation marks to the file image using
CHR$(34). The statement

PRINT#1,CHR$(34);A$;CHR$(34);CHR$(34);B%
;CHR$(34)

writes the following image to the file:
“CAMERA, AUTOMATIC"" 93604-1"

And the statement

INPUT#1,A$,B$

would input "CAMERA, AUTOMATIC" to A$ and
“93604-1" to BS$.

The PRINT# statement may also be used with the
USING option to control the format of the file. For

example:
PRINT#1,USING"S###.##,":J:K;L
Note See also WRITE# Statement, Section 7.167.

7 - 166

press authority. Offenders are
grant

ges. All rights are reserved in the event of the

Copying of this document and giving it to others and the use or communication

of the contents thereof are forbidden without exy

liabie 1o the payment of dama
of a patent or the registration of a ulilty model or design

R s
COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.116 PSET Statement

Syntax PSET [STEP](<xcoordinate><ycoordinate>)
[~<color>7]

(<xcoordinate>and <ycoordinate>) specify the
point on the screen to be colored.

<color>is the number of the color to be used.

The STEP option, when used, indicates the given x
and y coordinates will be relative, not
absolute. That means the x and y are distances from
the most recent cursor location, not distances
from the (0,0) screen coordinate.

Remarks When GW-BASIC scans coordinate values, it will
allow them to be beyond the edge of the screen
(size of the screen is dependent on the
particular machine being used, and can be

adjusted with the WIDTH statement). However,
values outside the integer range -32768 to 32767 will
cause an "Overflow" error.

Coordinates can be shown as offsets by using the STEP
option to reference a point relative to the most
recent point used. The syntax of the STEP option
is:

STEP (<xoffset>,<yoffset>)
For example, if the most recent point referenced were

(0,0), PSET STEP (10,0) would reference a point at
offset 10 from x and offset 0 from y.

The coordinate (0,0) is always the upper left
corner of the screen.

PSET allows the =<color> to be left of f the

command line. If it is omitted, the default is the
foreground color.

7 - 167

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

Example 5 REM DRAW A LINE FROM (0,0) TO (100,100)
10 FOR I=0 TO 100
20 PSET (I,I)
30 NEXT I

35 REM NOW ERASE THAT LINE
40 FOR I=0 TO 100

50 PSET STEP (-1,-1),0
60 NEXT I

This example draws a line from (0,0) to

(100,100) and then erases that line by writing over
it with the background color.

7 - 168

COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.117 PUT Statement - File I/0

Syntax PUT [#]<file number>[,<record number>]

Purpose To write a record from a random buffer to a
random access file.

Remarks <file number> is the number under which the file was
opened. If record number 1is omitted, the record
will assume the next available record number
(after the last PUT or GET). The largest possible
record number is 32767. The smallest record number is

The GET and PUT statements allow fixed-length
input and output for GW-BASIC COoM files.
However, because of the low performance
associated with telephone line communications, we
recommend that you do not use GET and PUT for
telephone communication.

Note LSET, RSET, PRINT#, PRINT# USING, and WRITE# may be N
used to put characters in the random file buffer
before executing a PUT statement.

ts are reserved in the event of the grant

odel or design.

In the case of WRITE#, Microsoft GW-BASIC pads the
buffer with spaces up to the carriage return.
Any attempt to read or write past the end of the
buffer causes a "Field overflow" error.

Copying of this document and giving it to others and the use or communication

of the contents thereof are forbi
liable 10 the payment of damages. Al
of a patent or the registration of a utll

For details on file I/0, see Chapter 5, "Working with
Files and Devices."

Example 100 PUT 1, A$, BS$, C$

7 - 169

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.118 PUT Statement - Graphics

Syntax

7 - 170

PUT (x1,y1),<array name>[,action verb]
used with
GET (x1,y1)-(x2,y2),<array name>

(x1,y1) in the PUT statement specifies the point
where a stored image is to be displayed on the
screen. The specified point is the coordinate of
the top left corner of the image. If the image to
be transferred is too large to fit in the current
view grt, an "Illegal function call" error will
result.

<action verb> is one of: PSET, PRESET, AND, OR, XOR.

PSET transfers the data point by point onto the
screen. Each point has the exact color attribute it
had when it was taken from the screen with a GET.

PRESET is the same as PSET except that a negative
image (black on white) is produced.

AND is used when the image is to be
transferred over an existing image on the screen.
The resulting image is the product of the logical
AND expression; points that had the same color in
both the existing 1image and the PUT image will
remain the same color, points that do not have
the same color in both the existing image and the
PUT image, will not.

OR is used to superimpose the image onto an existing
image.

XOR is a special mode often used for
animation. It causes the points on the screen
to be inverted where a point exists in the array
image. This behavior 1is exactly like that of the
cursor. When an image 1is PUT against a complex
background twice, the background is restored
unchanged. This allows a user to move an object
around the screen without erasing the background.

The default<action verb> is XOR.

event of the grant

of the contents thereof are forbidden without express authority. Offenders are

liable to the payment of damages. All rights are reserved in the

Copying of this document and giving it to others and the use or communication
of a patent or the registration of a utility model or design.

COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

Purpose The GET and PUT statements are used together to
transfer graphic images to and from the screen.

The GET statement transfers the screen image
bounded by the rectangle described by the
specified points into the array.

The PUT statement transfers the image stored in the
array onto the screen.

The <action verb> specifies the interaction
between the stored image and the one already on the
screen.

Remarks One of the most useful things that can be done with
GET and PUT 1is animation. Animation is performed
as follows:

1. PUT the object(s) on the screen.

2. Recalculate the new position of the
object(s).

3. PUT the object(s) on the screen a second time
at the old location(s) (using XOR) to remove the
old image(s).

4, Go to step 1, but this time PUT the
object(s) at the new location.

Movement done this way will leave the background
unchanged. Flicker can be cut down by
minimizing the time between steps 4 and 1 and by
making sure that there 1is enough time delay
between 1 and 3. If more than one object is
being animated, every object should be processed at
once, one step at a time.

If it is not important to preserve the
background, animation can be performed using the PSET
action verb. The idea is to leave a border around
the image when it is first gotten that is as large or
larger than the maximum distance the object will
move. Thus, when an object is moved, this border
will effectively erase any points left by the

previous PUT. This method may be somewhat faster
than the method using XOR described above, since
only one PUT 1is required to move an object

(although you must PUT a larger image).

7 - 171

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

It is possible to examine the x and y dimensions and
even the data itself if an integer array 1is used.
With the interpreter, the x dimension 1is in element
0 of the array, and the y dimension is found in
element 1. gHowever, this will not always be true
for the compiler.) Remember that integers are stored
low byte first, then high byte, but the data
is transferred high byte first (leftmost) and then
low byte.

7 - 172

ent of the grant

giving it to others and the use or communication
bidden without express authority. Offenders are
ges. Al rights are reserved in the ev

of a patent or the registration of a utiity model or design.

Copying of this docurnent and
of the contents thereof are fort
liable to the payment of dama

COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.119 RANDOMIZE Statement

Syntax RANDOMIZE [<expression>]]

Purpose To reseed the random number generator.

Remarks If <expression> is omitted, Microsoft GW-BASIC
suspends program execution and asks for a value by
printing

Random Number Seed (-32768 to 32767)?
before executing RANDOMIZE.

If-<ex?ression>-is a variable, the value of that
variable is used to seed the random numbers.

If expression is the word "TIMER" then the
TIMER function is wused to pass a random number
seed.

If the random number generator is not reseeded, the
RND function returns the same sequence of random
numbers each time the program is run. To change the
sequence of random numbers every time the program is
run, place a RANDOMIZE statement at the beginning
of the program and change the argument with each run.

Example 10 RANDOMIZE
20 FOR I=1 TO 5
30 PRINT RND;
40 NEXT I
will yield

Random Number Seed (-32768 to 32767)? 3
(user types 3)

will yield
.885982 .4845668 .586328 .1194246 .7039225

7 - 173

7 - 174

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

Random Number Seed (-32768 to 32767)? 4
(user types 4 for new sequence)

will yield
.803506 .1625462 .929364 .2924443 .322921

Random Number Seed (-32768 to 32767)? 3
(same sequence as first run)

will yield
.885982 .4845668 .586328 .1194246 .7039225

Note that the numbers your program produces may not
be the same as the ones shown here.

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.120 READ Statement

Syntax READ <list of variables>

Purpose To read values from a DATA statement and assign them
to variables. (See "“DATA Statement," Section
7.27.)

Remarks A READ statement must always be used in
conjunction with a DATA statement. READ

statements assign variables to DATA statement
values on a one-to-one basis. READ statement
variables may be numeric or string, and the
values read must agree with the variable types
specified. If they do not agree, a "Syntax
error" will result.

A single READ statement may access one or more DATA
statements (they will be accessed in order), or
several READ statements may access the same DATA
statement. If the number of variables in <list
of variables> exceeds the number of elements in
the DATA statement(s), an "Out of data" error message
is printed. If the number of variables specified
is fewer than the number of elements 1in the DATA
statement(s), subsequent READ statements will
begin reading data at the first unread element. If
there are no subsequent READ statements, the extra
data is ignored.

Copying of this document and giving it to others and the use or communication
of the contents thereof are forbidden without express authority. Offenders are

of a patent of the registration of a utility model or design.

To reread DATA statements from the start, use the
RES;Q?E statement (see RESTORE Statement, Section
7.1

Example 1 .

.

80 FOR I=1 TO 10

90 READ A(I)

100 NEXT I

110 DATA 3.08,5.19,3.12,3.98,4.24
120 DATA 5.08,5.55,4.00,3.16,3.37

This program segment READs the values from the DATA

statements into the array A. After execution,
the value of A(1) will be 3.08, and so on.

7 - 175

Example

7 - 176

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

10 PRINT "“CITY", “STATE", " ZIP"

20 READ C$,S$,7$

30 DATA "DENVER,", "COLORADO","80211"
40 PRINT C$,S$,Z$

will yield
CITY STATE ZI1P
DENVER, COLORADO 80211

This program reads string and numeric data
DATA statement in line 30.

from

the

of the contents thereof are forbidden without express authority. Offenders are
iable to the payment of damages. All rights are reserved in the event of the grant

Copying of this document and giving it to others and the use or communication
of a patent o the registration of a utiity mode! or design.

B i
NIXDORF
BB
COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.121 REM Statement

Syntax REM <remark>

Purpose To allow explanatory remarks to be inserted in a
program.

Remarks REM statements are not executed but are output

exactly as entered when the program is listed.

REM statements may be branched into from a GOTO or
GOSUB statement. Execution will continue with the
first executable statement after the REM
statement.

Remarks may be added to the end of a line b
preceding the remark with a single quotation mar
instead of :REM.

Important Do not use the single quotation form of the REM
statement in a data statement, because it would be
considered legal data.

Example

REM CALCULATE AVERAGE VELOCITY
FOR I=1 TO 20
SUM=SUM + V(I)

ocooo

12
13
14

or

.

1é0 FOR I=1 TO 20 'CALCULATE AVERAGE VELOCITY
130 SUM=SUM+V(I)
140 NEXT I

7 -177

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.122 RENUM Command

Syntax RENUM [[<new number>][,[<old number>][<increment>]]]
Purpose To renumber program lines.
Remarks <new number> is the first line number to be used in

the new sequence. The default is 10. <o0ld number>
is the line in the current program where renumbering
is to Dbegin. The default is the first line of the
program. <increment> is the increment to be used
in the new sequence. The default is 10.

RENUM also changes all line number references
following GOTO, GosuB, THEN, ON...GOTO,
ON...GOSUB, and ERL statements to reflect the new
line numbers. If a nonexistent line number appears
after one of these statements, the error message
"Undefined line number in xxxxx" is printed. The
incorrect 1line number reference is not changed by
RENUM, but line number yyyyy may be changed.

Note RENUM cannot be used to change the order of
program lines (for example, RENUM 15,30 when the
program has three lines numbered 10, 20 and 30) or
to create line numbers greater than 65529. An
"Illegal function call" error will result.

Examples RENUM Renumbers the entire program. The
first new line number will be 10.
Lines will be numbered in
increments of 10.
RENUM 300,,50 Renumbers the entire program. The
first new line number will be 300.
Lines will be numbered in

increments of 50.

RENUM 1000,900,20 Renumbers the lines from 900 up so
they start with line number 1000
and are numbered in increments of
20.

7 - 178

S,
NIXDORF
DR
COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.123 RESET Command

Syntax RESET
Purpose To close all files.
Remarks RESET «closes all open files and forces all

blocks in memory to be written to disk. Thus, if
the machine loses power, all files will be
properly updated.

All files must be <closed before a disk is
removed from its drive.

Example 998 RESET
999 END

hts are reserved in the event of the grant

Copying of this document and giving it to others and the use or communication
of the contents thereof are forbidden without express authority. Offenders are

tiable to the payment of damag:
of a patent or the registration of a utility model or design.

7 - 179

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.124 RESTORE Statement

Syntax RESTORE [<line number>]

Purpose To allow DATA statements to be reread from a
specified line.

Remarks After a RESTORE statement without a specified line
number is executed, the next READ statement accesses
the first item 1in the first DATA statement in

the program.

If <line number>is specified, the next READ
statement accesses the first item in the
specified DATA statement.

Example 10 READ A,B,C
20 RESTORE
30 READ D,E,F
40 DATA 57, 68, 79

7 - 180

A

COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.125 RESUME Statement

Syntaxes RESUME
RESUME 0
RESUME NEXT

RESUME <line number>

Purpose To continue program execution after an error
recovery procedure has been performed.

é Remarks Any one of the four syntaxes shown above may be
g used, depending upon where execution is to
3 resume:
2 RESUME Execution resumes at the
g or statement that caused the error.
5 RESUME 0

RESUME NEXT Execution resumes at the
statement immediately following
the one that caused the error.

RESUME <line number> Execution resumes at <line
number>.

Copying of this document and giving it to others and the use or communication
liable to the payment of damages. Al ights are reserved in the event of the grant

of a patent or the registration of a utility model or design.

A RESUME statement that 1is not in an error
handling routine causes a "RESUME without error"
message to be printed.

Example 10 ON ERROR GOTO 900

900 IF (ERR=230)AND(ERL=90) THEN PRINT "TRY
AGAIN":RESUME 80

7 - 181

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.126 RETURN Statement

See GOSUB...RETURN Statements, Section 7.54.

7 - 182

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.128 RMDIR Statement

Syntax

Purpose

Remarks

Example

7 - 184

RMDIR<pathname>
To remove an existing directory

PATHNAME is the name of the directory which is to
be deleted. RMDIR works exactly like the MS-DOS
command RMDIR. The PATHNAME must be a string of
less than 128 characters.

The PATHNAME to be removed must be empty of any
files except the working directory('.') and the
parent directory('..') or else a "Path not
found" or a "Path/File Access error" is given.

RMDIR "\SALES"

In this stafement. the SALES directory on the current
drive is to be removed.

COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.129 RND Function

Syntax RND [(x)]
Purpose To return a random number between 0 and 1.
Remarks The same sequence of random numbers is generated each

time the program is run unless the random number

enerator_ is reseeded (see "“RANDOMIZE Statement,"
ection 7.119). However, X=0 always restarts the
same sequence for any given X.

X > 0 or X omitted generates the next random
number in the sequence. X = 0 repeats the last
number generated.

Example 10 FOR I=1 TO 5
20 PRINT INT(RND*100);
30 NEXT I

e
&
2
3

k]
g

£

S
2
g
5

£
]

E
2
8
2
s
g
3

H

might yield

24 30 31 51 5

Note The values produced by the RND function may vary with
different implementations of Microsoft GW-BASIC.

liabie to the payment of damages. All rights are reserved in the event of the grant

of a patent or the registration of a utilty model or design.

<
S
€
5
€
5
5
@
2
E]
@
=
°
2
&
2
5
£
=]
2
o
€
2
5
°
e
s
€
5
13
5
3
g
3
2
£
B
o
€
ES
a
e
o

7 - 185

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.132 SCREEN Statement

Syntax

Purpose

Remarks

7 - 188

SCREEN [mode]] [,[burst] [,[apage] [}vpage]]

Sets screen attributes that control the subsequent
display.

mode represents a numeric expression that results in
an integer value of zero, 1, or 2. Valid vaules are:

zero = Test mode with current width (40 or 80)
1 = Medium resolution graphics mode (320 x 200)
2 = High resolution graphics mode (640 x 200)

burst is a numeric expression that results in a true
or false value. In medium resolution graphics mode
(mode = 1), a true value disables color, and a false
falue enables it. This parameter cannot affect high
resolution (mode = 2) and text mode (mode = zero?.

apage (active page)

is an integer expression ranging from zero to 7 for
width 40, or zero to 3 for width 80 that selects the
page to be written to by output statements to the
sreen, and is valid only in text mode.

vpage (visual page)

specifies which page is to be displayed on the
screen, in the same way as apage, which may be
different. Vpage is valid only in text mode, and if
not specified, defaults to apage.

If all parameters are valid, the new screen mode is
stored, the display is erased, the foreground color
is set to white, and the background and border colors
to black. Any subsequent screen output will be
displayed according to the newly stored screen
attributes. If the new mode is the same as the
previous one, nothing changes.

In text mode, with only <page> and <vpage> specified,
the effect 1is that of changing display pages for
viewin?. Initially, both pages default to zero. By
manipulating the pages, you can display one page
while building another, then switch visual pages
instantaneously. :

len without express authority. Offenders are
All rights are reserved in the event of the grant

of a patent or the registration of utility model or design.

Copying of this document and giving it 1o olhers and the use or communication

of the contents thereof are forbidd
liable 10 the payment of damages.

BT
NIXDORF
B
COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

Note

One cursor is shared between all the pages. To switch
active pages back and forth, first save the cursor
position on the current active page with P0S(0) and
CSRLIN before changing to another active page. Then,
on returning to the original page, the cursor
position can be restored with the LOCATE statement.

Any omitted parameter, except vpage, assumes the old
value.

In a program intended to run on a machine that may
have either adapter, it is recommended that you use
SCREEN 0,0,0 and WIDTH 40 statements at the
beginning.

Examples The first example specifies text mode with color, and
sets both the active and visual pages to zero:

SCREEN 0,1,0,0
The next statement leaves mode and color burst
unchanged, but sets the active page to 1 and the
visual page to 2:

SCREEN ,,1,2

Thés statement changes to high resolution graphics
mode:

SCREEN 2

7 - 189

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.135 SHELL Statement

Syntax

Purpose

Remarks

7 - 192

SHELL [<command-strings]

To exit the BASIC program, run a COM or EXE or BAT
program, or a built in DOS function such as DIR or
TYPE, and return to the BASIC program at the line
after the SHELL statement.

A COM, EXE, or BAT program or DOS function which runs
under the SHELL statement 1is called a "Child
Yrocess“. Child processes are executed by SHELL
oading and running a copy of COMMAND with the “/C"
switch. By wusing COMMAND in this way, command
line parameters are passed to the child. Standard
input and output may be redirected, and built
in commands such as DIR, PATH, and SORT may be
executed.

The <command-string> must be a valid string
expression containing the name of a program to run
and (optionally) command arguments.

The program name in <<command-string> may have any
extension you wish. If no extension is supplied,
COMMAND will look for a .COM file, then a .EXE
file, and finally, a .BAT file. If COMMAND is not
found, SHELL will issue a "File not found" error.
No error is generated if COMMAND cannot find the
the file specified in <command-string>.

Any text separated from the program name by at
least one blank will be processed by COMMAND as
program parameters.

BASIC remains in memory while the child process 1is
running. When the child finishes, BASIC
continues.

This version of GW-BASIC does not allow the user to
SHELL to another copy of BASIC. If you attempt to do
this, you will receive this error message: "You can
not run BASIC as a child of BASIC" .

SHELL with no <command-string>will give you a new
COMMAND shell. You may now do anything that COMMAND
allows. When ready to return to BASIC, enter the
DOS command: EXIT

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

Examples SHELL 'get a new COMMAND

ADIR {user types DIR to see files}
AEXIT {user types EXIT to return to BASIC}
0k 'now back in BASIC

Write some data to be sorted, SHELL sort to sort it,
then read the sorted data to write a report.

900 OPEN “SORTIN.DAT" FOR OUTPUT AS 1
950 REM ** write data to be sorted

1000 CLOSE 1

1010 SHELL "SORT SORTIN.DAT SORTOUT.DAT"
1020 OPEN "SORTOUT.DAT"™ FOR INPUT AS 1
1030 REM ** Process the sorted data

10 SHELL "DIR SORT FILES.
20 OPEN "FILES." FOR INPUT AS 1

Also see "BASIC and Child Processes", Section 5.7.

s thereol are forbidden without express authority. Offenders are
yment of damages. All rights are reserved in the event of the grant

Copying of this document and giving it to others and the use or communication

of the

liable
of a patent or the registration of a utility model or design.

7 - 193

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

Note Frequency Note Frequency
C 130.810 Cc* 523.250
D 146.830 D 587.330
E 164.810 E 659.260
F 174.610 F 698.460
G 196.000 G 783.990
A 220.000 A 880.000
B 246.940 B 987.770
C 261.630 C 1046.500
D 293.660 D 1174.700
E 329.630 E 1318.500
F 349.230 F 1396.900
G 392.000 G 1568.000
A 440.000 A 1760.000
B 493.880 B 1975.500

Higher (or 1lower) notes can be approximated by doubling (or
halving) the frequency of the corresponding note in the previous
(following) octave.

SOUND 32767, <duration> will create periods of silence.

The duration for each beat can be calculated by dividing the
beats)per minute into 1092 (the number of clock ticks in one
minute).

The following table shows typical tempos in terms of clock ticks:

Tempo Beats/Minute Ticks/Beat
very slow Larghissimo
Largo 40-60 27.3-18.2
Larghetto 60-66 18.2-16.55
Grave
Lento
Adagio 66-76 16.55-14.37
slow Adagietto
Andante 76-108 14.37-10.11
medium Andantino
Moderato 108-120 10.11-9.1
fast Allegretto
Allegro 120-168 9.1-6.5
Vivace
Veloce
Presto 168-208 6.5-5.25

very fast Prestissimo

7 - 196

COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

30 SOUND RND*1000+37,2

Example

This statement creates random sounds.

UBISap 10 [PPOW Al
Jueib 8y} JO JUIAS BY) UI PANIBSA) BIB S

0N e jo uonessibas syl
ew

10 juajed e jo
d au) 0} B1qeY

aJe SIapuBHQ “AIOUINE $SBI0XS INOYIIM USPPIGIO) BIE [0BIBY) SIUBIUOD BU) JO
UOHBOIUNWILIOD 0 8SN 8yl PUE S18Uj0 O} Jt BuIAIB pue Juawnoop siyj jo Butkdo)

197

7

Copying of this document and giving it to others and the use or communication
press authority. Offenders are
ges. All rights are reserved in the event of the grant

of the contents thereof are forbidden without ex
of a patent or the registration of a utility model or design.

liable to the payment of dama

poz

NIXDORF
R e
COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.139 SPC Function

Syntax SPC(n)

Purpose To skip spaces in a PRINT statement. n is the
number is spaces to be skipped.

Remarks SPC may only be wused with PRINT and LPRINT
statements. must be in the range 0 to 255. A';!
is assumed to follow the SPC(n) command.

Example PRINT "OVER" SPC(15) “THERE"
will yield
OVER THERE

Also see SPACE$ Function, Section 7.138.

7 - 199

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.140 SQR Function

Syntax SQR(X)

Purpose To return the square root of X.

Remarks X must be > = 0.

Example 10 FOR X=10 TO 25 STEP 5
20 PRINT X, SQR(X)
30 NEXT X
will yield
10 3.162278
15 3.872984
20 4.472136
25 5

7 - 200

COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.141 STICK Function

Syntax x=STICK(n)

X is a numeric variable for storing the result of
the function.

(n) is a numeric expression returning an
unsigned integer in the range 0 to 3.

Purpose To return the x and y coordinates of the two
joysticks.

Remarks The values returned for n can be:

0 - returns the x coordinate for joystick A. Also
stores the x and y values for both joysticks
for the following function calls:

Returns the y coordinate of joystick A.

rights are reserved in the event of the grant

y model or design.
-
]

2 - Returns the x coordinate of joystick B.

3 - Returns the y coordinate of joystick B.

Example 10 CLS
20 LOCATE 1,1
30 PRINT "X=5";STICK(O)
40 PRINT "Y=5";STICK(1)
50 GOTO 20

Copying of this document and giving it to others and the use or communication
of the contents thereof are forbidden without express authority. Offenders are

of a patent or the registration of a ut

This example creates an endless loop to display the
value of the x,y coordinate for joystick A.

7 - 201

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.142 STOP Statement

Syntax STOP

Purpose To terminate program execution and
command level.

Remarks STOP statements may be wused anywhere
program to terminate execution. STOP is often used
for debugging. When a STOP is encountered,

following message is printed:
Break in line nnnnn
The STOP Statement doesn't close files.

Microsoft GW-BASIC always returns
level after a STOP is executed.
renged by issuing a CONT command
7.22).

Example 10 INPUT A,B,C
20 K=AN2*5,3:L=BA3/.26
30 STOP
40 M=C*K+100:PRINT M

will yield

?1,2,3
BREAK IN 30

PRINT L
30.76923

CONT
115.9

7 - 202

grant

xpress authorily. Offenders are

Copying of this document and giving it to others and the use or communication
reserved in the event of the
of a patent or the registration of a utility model or design.

of the contents thereof are forbidden without e;
liable to the payment of damages. Al rights are

COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.143 STR$ Function

Syntax STR$(n)

Purpose To return a string representation of the value
n.

Example 5 REM ARITHMETIC FOR KIDS

10 INPUT “"TYPE A NUMBER";N
20 ON LEN(STR$(N)) GosuB 30,100,200,300,400,500

Also see VAL Function, Section 7.157.

7 - 203

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.144 STRIG Function

Syntax STRIG(n)

where x is a numeric variable for storing the
result of the function.

(n) is a numeric expression returning an
unsigned integer in the range 0 to 3,
designating which trigger is to be checked.

Purpose To return the status of a specified joystick
trigger.

Remarks In the STRIG(n) function, the values returned for
(n) can be:

0 - Returns -1 if trigger A1 was pressed since the
last STRIG(O0) statement; returns 0 if not.

1 - Returns -1 if trigger A1 is currently down, 0 if
not.

2 - Returns -1 if trigger B1 was pressed since the
last STRIG(2) statement, 0 if not.

3 - Returns -1 if trigger B1 is currently down, 0 if
not.

4 - will return -1 if button A2 was pressed since the
last STRIG(4), and zero if not.

5 - will return-1 if button A2 is currently pressed,
and zero if not.

6 - will return-1 if button B2 was pressed since the
last STRIG(6), and zero if not.

7 - will return-1 if button B2 is currently pressed,
and zero if not.

When a joystick event trap occurs, that
occurrence of the event is destroyed.
Therefore, the x=STRIG(n) function will always
return false inside a subroutine, unless the
event has been repeated since the trap. So if you
wish to perform different procedures for various
joysticks, you must set up a different subroutine

7 - 204

rbidden without express authority. Offenders are
reserved in the event of the grant
of a utility model or design.

ges. All rights are re

Copying of this document and giving it to others and the use or communication
liable to the payment of dama
of a patent or the registration

of the contents thereof are fo

Example

Example

COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

for each joystick, rather than including all
-«the procedures in a single subroutine.

10 IF STRIG(O) THEN BEEP
20 GOTO 10

10 IF STRIG(0) THEN BEEP
20 GOTO 10

In this example an endless loop is created to beep

whenever the trigger button on joystick 0 1is
pressed.

7 - 205

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.145 STRIG(n) ON, STRIG(n) OFF, STRIG(n) STOP Statements

Syntax

Purpose

Remarks

7 - 206

STRIG(n) ON
STRIG(n) OFF
STRIG(n) STOP

The STRIG{n) ON statement enables event trapping of

joystick activity.

The STRIG(n) OFF statement disables event trapping

of joystick activity.

The STRIG(n) STOP statement disables event trapping

of joystick activity.

n can be 0,2,4 or 6, and specifies the button to be

trapped as follows:

O=button A1
2=button B1
4=button A2
6=button B2

The STRIG(n) ON statement enables joystick event
trapping by an ON STRIG(n) statement (see STRIG(n)

Statement, Section 7.145). While trapping
enabled, and non-zero line number

if a
specified in the ON STRIG(n) statement, GW-BASIC
checks between every statement to see if the

joystick trigger has been pressed.

The STRIG(n) OFF statement disables event trapping.
If a subsequent event occurs (i.e., if the trigger

is pressed), it will not be remembered when
next STRIG ON is invoked.

The STRIG(n) STOP statement disables event

trapping, but if an event occurs it will

remembered, and the event trap will take place as

soon as trapping is reenabled.

of tne contents thereof are forbidden without express authority. Offenders are
liable to the payment of damages. All rights are reserved in the event of the grant

Copying of this document and giving it to others and the use or communication
of a patent or the registration of a utility model or design.

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.146 STRING$ Function
Syntaxes STRINGS$(I,J)
STRING$(I,X$)

Purpose To return a string of length I whose characters all
have ASCII code J or the first character of X$.

Examples 10 DASH$ = STRING$(10,45)
20 PRINT DASH$;"MONTHLY REPORT";DASH$

will yield

10 LET A$ = "HOUSTON"
20 LET X$ = STRING$(8,A$)
30 PRINT X$
will yield
HHHHHHHH

7 - 207

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.147 SWAP Statement

Syntax SWAP <variable>,<variable>
Purpose To exchange the values of two variables.
Remarks Any type variable may be swapped (integer,

single precision, double precision, string), but the
two variables must be of the same type or a "Type
mismatch" error results.

If the second variable is not already defined when
SWAP is executed, an "Illegal function call"
error will result.

Example 10 A$=" ONE " : B$=" ALL " : C$="FOR"
20 PRINT A$ C$ BS
30 SWAP A$, B$
40 PRINT A$ C$ BS

will yield

ONE FOR ALL
ALL FOR ONE

7 - 208

COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.148 SYSTEM Command

Syntax SYSTEM

Purpose To close all open files and return control to the
operating system.

Remarks When a SYSTEM command is executed, all files are
closed, and BASIC performs an exit to the
operating system.

hts are reserved in the event of the grant

tration of a utifity model or design.

f damage

of the contents thereof are forbidden without express authority. Offenders are

Copying of this document and giving it to others and the use or communication
liable 1o the paym

of a patent or the regist

7 - 209

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.149 TAB Function

Syntax TAB(I)

Purpose To move the print position to I.

Remarks If the current print position 1is already beyond
space I, TAB goes to that position on the next
line. Space 1 is the leftmost position, and the

rightmost position is the width minus one. I must
be in the range 1 to 255. TAB may only be used in
PRINT and LPRINT statements.

Example 10 PRINT "NAME" TAB(25) "AMOUNT" : PRINT
20 READ A$,B$
30 PRINT A$ TAB(25) BS$
40 DATA "G. T. JONES","$25.00"

will yield
NAME AMOUNT
G. T. JONES $25.00

7 - 210

COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.150 TAN Function

Syntax TAN(X)

Purpose To return the tangent of X. X should be given in
radians.

Remarks With the interpreter, if TAN overflows, the
"Overflow" error message is displayed, machine

infinity with the appropriate sign 1is supplied as
the result, and execution continues.

Example 10 Y=Q*TAN(X)/2

press authority. Offenders are

ges. All rights are reserved in the event of the grant

Copying of this document and giving it to others and the use or communication

of the contents thereof are forbidden without ex

liable to the payment of damay
of a patent or the registration of a utility model or design.

7 - 211

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.151 TIME$ Statement

Syntax TIME$=<string expression>

<string expression> returns a string in one of the
following forms:

hh (sets the hour; minutes and seconds default
to 00)
hh:mm (sets the hour and minutes; seconds default
to 00)

hh:mm:ss (sets the hour, minutes, and seconds)

Purpose To set the time. This statement complements the
TIME$ function, which retrieves the time.

Remarks A 24-hour clock is used; 8:00 p.m., therefore,
would be entered as 20:00:00.

Example 10 TIME$="08:00:00"

The current time is set at 8:00 a.m.

7 - 212

COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.152 TIME$ Function

Syntax TIMES
Purpose To retrieve the current time. (To set the time, use
the TIME$ statement, described in Section 7.151.)

Remarks The TIME$ function returns an eight-character
string in the form hh:mm:ss, where hh is the hour
(00 through 23), mm is minutes (00 through 59), and
Ss is seconds (00 through 59). A 24-hour clock

is used; 8:00 p.m., therefore, would be shown as
20:00:00.
Example 10 PRINT TIMES$

Prints the time, calculated from the time set with
the TIME$ statement.

1s are reserved in the event of the grant

of a patent or the registration of a utility model or design.

Copying of this document and giving it to others and the use or communication

of the contents thereof are forbidde

7 - 213

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.153 TIMER Function

Syntax

Purpose

Remarks

Example

7 - 214

v = TIMER

Tracks the number of elapsed seconds since midnight
or system reset. For use in BASIC 2.0 and later only.

TIMER returns a single-precision number. Fractional
second are expressed in the nearest possible degree.
This is a read only function.

100 TIME$="23:59:59"

200 FOR I=1 to 15

300 PRINT "TIME$= “,TIME$,"TIMER= ";TIMER
400 NEXT

RUN

TIME$= 23:59:59 TIMER= 86399.11
TIME$= 23:59:59 TIMER= 86399.22
TIME$= 23:59:59 TIMER= 86399.39
TIME$= 23:59:59 TIMER= 86399.5
TIME$= 23:59:59 TIMER= 86399.61
TIME$= 23:59:59 TIMER= 86399.72
TIME$= 23:59:59 TIMER= 86399.83
TIME$= 23:59:59 TIMER= 86399.94
TIME$= 23:59:59 TIMER= 86400.05
TIME$= 00:00:00 TIMER= .05
TIME$= 00:00:00 TIMER= .21
TIME$= 00:00:00 TIMER= .32
TIME$= 00:00:00 TIMER= .43
TIME$= 00:00:00 TIMER= .49
TIME$= 00:00:00 TIMER= .6

0k

NIXDOR
A
[PUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.154 TIMER ON, TIMER OFF, TIMER STOP Statements

Syntax TIMER ON
TIMER OFF
TIMER STOP
Purpose TIMER ON enables event trapping during real time.

TIMER OFF disables event trapping during real time.
TIMER STOP suspends real time event trapping.

Remarks The TIMER ON statement enables real time event
trapping by an ON TIMER statement (see "ON TIMER
Statement," Section 7.98). While trapping is
enabled with the ON TIMER statement, GW-BASIC
checks between every statement to see if the
timer has reached the specified level. If it has,
the ON TIMER statement is executed.

press authority. Offenders are

TIMER OFF disables the event trap. If an event
takes place, it is not remembered if a
subsequent TIMER ON is used.

ights are reserved in the event of the grant
model or design.

TIMER STOP disables the event trap, but if an
event occurs, it 1is remembered and an ON TIMER
staE?mgnt will be executed as soon as trapping is
enabled. ‘

Also see ON TIMER Statement, Section 7.98.

Copying of this document and giving it to others and the use or communication

of the contents thereof are forbidden without ex;

iable 10 the payment of damages.
of a patent of the registration of a u

7 - 215

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.155 TRON/TROFF Statements/Commands

Syntax

Purpose

Remarks

Example

7 - 216

TRON
TROFF

To trace the execution of program statements.

As an aid in debugging, the TRON statement may be
executed in either direct or indirect mode. With
TRON in operation, each line number of the program
is printed on the screen as it is executed.

The numbers appear enclosed in square brackets. The
trace flag 1is disabled with the TROFF statement
(or when a NEW command is executed).

TRON

10 K=10

20 FOR J=1 T0 2
30 L=K + 10

40 PRINT J;K;L
50 K=K + 10

60 NEXT J

70 END

will yield
C10dC20]C30]040] 1 10 20

(501C601[30][40] 2 20 30
[£5010601[70]

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.156 USR Function

Syntax USR[<digit>]{(<argument>)]

where <digit> specifies which USR routine is
being called. See the DEF USR statement,
Section 7.33, for rules governing =<digit> If
<digit>is omitted, USRO is assumed.

<argument> is the value passed to the
subroutine. It may be any numeric or string
expression.

Purpose To call an assembly language subroutine.

Remarks If a segment other than the default segment

(data segment) is to be used, a DEF SEG
statement must be executed prior to a USR
function call. The address given in the DEF SEG
statement determines the segment address of the
subroutine.

ges. All rights are reserved in the event of the grant

For each USR function, a corresponding DEF USR
statement must be executed to define the USR call
offset. This offset and the currently active
DEF SEG segment address determine the starting
address of the subroutine.

of the contents thereof are forbidden without express authority. Offenders are

Copying of this document and giving it 1o others and the use or communication
liable to the payment of dama

ot a patent or the registration of a utility model or design.

Example 100 DEF SEG=&H8000
110 DEF USRO0=0
120 X=5
130 Y = USRO(X)
140 PRINT Y

The type (numeric or string) of the variable
receiving the value must be consistent with the
argument passed. This setup of the string space
differs from that of the interpreter.

7 - 217

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.157 VAL Function

Syntax VAL(<string>)
<string> must be a numeric character stored as a
string.

Purpose To return the numeric value of string <string>. The

VAL function also strips leading blanks, tabs, and
linefeeds from the argument string. For example,

VAL(" _3")
returns -3.

Example 10 READ NAME$,CITY$,STATES,ZIPS
20 IF VAL(ZIP$)<90000 OR VAL(ZIP$)>96699
THEN PRINT NAME$ TAB(25) "OUT OF STATE"
30 IF VAL(ZIP$)>=90801 AND VAL(ZIP$)<=90815
THEN PRINT NAME$ TAB(25) "LONG BEACH"

See the STRS$ function, Section 7.143, for
details on numeric-to-string conversion.

7 - 218

COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.158 VARPTR Function

Syntax 1 VARPTR(<variable name>)
Syntax 2 VARPTR(#<file number>)
Purpose Syntax 1

Returns the address of the first byte of data
identified with =<variable name>. The variable must
have been defined prior to the execution of the
VARPTR function. Otherwise an "Illegal function
call" error results. Variables are defined by
executing any reference to the variable.

Any type variable name may be used (numeric,
string, array). - For string variables, the
address of the first byte of the string
descriptor is returned (see "“Assembly Language
Subroutines," Section 6.1 for discussion of the
string descriptor). The address returned will be
an integer in the range 32767 to -32768. If a
negative address 1is returned, add it to 65536 to
obtain the actual address.

VARPTR is usually used to obtain the address of a
variable or array so that it may be passed to an
assembl language subroutine. A function call
of the form VARPTR(A(0)) 1is wusually specified
when passing an array, so that the lowest-
addressed element of the array 1is returned.

Copying of this document and giving it to others and the use or communication
of the contents thereof are forbidden without express authonty. Offenders are

liable to the payment of damages. All rights are reserved in the event of the grant

of a patent or the registration of a utility model or design.

Note All simple variables should be assigned before
calling VARPTR for an array, because the
addresses of the arrays change whenever a new
simple variable is assigned.

Syntax 2
For sequential files, returns the starting
address of the disk I/0 buffer assigned to <file

number>. For random files, returns the address of
the FIELD buffer assigned to<<file number>.,

Example 100 X=USR(VARPTR(Y))

7 - 219

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.159 VARPTR$ Function

Syntax

Purpose

Remarks

Note

Example

7 - 220

VARPTR$ (<variable name>)

where <variable name> is the name of a variable in
the program.

To return a character form of the memory address of
the variable in a form that is compatible for
programs that may later be compiled.

VARPTR$ is primarily used to execute substrings with
the DRAW and PLAY statements (Sections 7.36 and
7.105, respectively) in programs that will later
be compiled. With programs that will not be later
compiled, the standard syntax of the PLAY and
DRAW statements will be sufficient to produce desired
effects.

The variable must have been defined prior to the
execution of the VARPTR function. Otherwise an
"Illegal function call® error results.
Variables are defined by executing any reference to
the variable.

VARPTR$ returns a three-byte string in the form:

2 integer

3 string

4 single-precision
8 double-precision

byte 0 = type, where type is:

byte 1
byte 2

low byte of address
high byte of address

nou

Note, however, that the individual parts of the
string are not considered characters.

Because array addresses, string addresses and file

data block change whenever a new variable is
assigned, it 1is unsafe to save the result of a
VARPTR function in a variable. It is

recommended that VARPTR is executed before each use
of the result.

10 PLAY "X"+VARPTR$(AS$)
Uses the subcommand X (execute), plus the

contents of A$, as the string expression in the PLAY
statement.

NIXDOR
COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.160 VIEW Statement

Syntax VIEW [[SCREEN] [(vx1,Vy1)-(vx2,Vy2) [,[<color>]
[.[<border>7]]]]

Purpose To define screen limits for graphics activity.

Remarks VIEW defines a "Physical Viewport" limit from
Vx1,Vylt (upper left x,y coordinates) to Vx2,Vy2
(lower right X,y coordinates). The x and vy
coordinates must be within the physical bounds of
the screen. The physical viewport defines the

rectangle within the screen into which graphics
may be mapped.

ity. Offenders are

RUN, and SCREEN and VIEW with no arguments, define
the entire screen as the viewport.

n the event of the grant

§ The <color>attribute allows the wuse¢r to fill the
28 view area with a color. If color 1is omitted,
§§ the view area is not filled.

?é The<border>attribute allows the user to draw a line
38 surrounding the viewport if space for a border |is

available. if border 1is omitted, no border is
drawn.

The [SCREEN] option dictates that the x and y
coordinates are absolute to the screen, not
relative to the border of the physical viewport, and
only graphics within the viewport will be plotted.

Examples For the form: VIEW (Vx1,Vyt)-(Vx2,Vy2)

all points plotted are relative to the viewport. That
is, Vxi1 and Vyt! are added to the X and y

coordinates before putting the point down on the
screen.

If: VIEW (10,10)-(200,100)

Copying of this document and giving it to others and ine use o comrrunication

of the contents thereof are forbidden without express authori

were executed, then the point set down by the
statement PSET (0,0),3 would actually be at the
physical screen location 10,10.

7 - 221

7 - 222

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

For the form: VIEW SCREEN (Vx1,Vy1)-(Vx2,Vy2)

all coordinates are screen absolute rather than
viewport relative.

If: VIEW SCREEN (10,10)-(200,100)

were executed, then the point set down by the
statement PSET (0,0),3 would actually not appear
because 0,0 is outside of the Viewport. PSET
(10,10),3 is within the Viewport, and places the
point in the upper-left hand corner of the
viewport.

A number of VIEW statements may be executed. If the
newly described viewport is not wholly within
the previous viewport, the screen can be re-
initialized with the VIEW statement. Then the new
viewport may be stated. If the new viewport is
entirely within the previous one, as in the following
exampie, the intermediate VIEW statement. isn't
necessary. This example opens three viewports, each
smaller than the previous one. In each case, a line
that is defined to go beyond the borders is
programmed, but appears only within the viewport
border.

260 CLS

280 VIEW: REM ** Make the viewport the entire
screen.

300 VIEW (10,10) - (300,180),,1

320 CLS

340 LINE (0,0) - (310,190),1

360 LOCATE 1,11: PRINT "A big viewport"
380 VIEW SCREEN (50,50)-(250,150),,1

400 CLS:REM** Note, CLS clears only viewport
420 LINE (300,0)-(0,199),1

440 LOCATE 9,9: PRINT "A medium viewport"
460 VIEW SCREEN (80,80)-(200,125),,1

480 CLS

500 CIRCLE (150,100),20,1

520 LOCATE 11,9: PRINT "A small viewport"

i

NIXDDRF
BT OO
CDM PUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.161 VIEW PRINT Statement

Syntax VIEW PRINT [<top screen line> TO <bottom screen
line>]

Purpose To set the boundaries of the screen text window.

Remarks VIEW PRINT without top and bottom line

parameters initializes the whole screen area as the
text window.

Statements and functions which operate within the
defined text window include CLS, LOCATE PRINT
and SCREEN.

The Screen Editor will limit functions such as
scroll and cursor movement to the text window.

Also see the VIEW Statement, Section 7.160.

are reserved in the event of the grant

of a patent of the registration of a utiity model o design.

Copying of this document and giving it to others and the use or communication
of the contents thereof are forbidden without express authority. Offenders are

liable t

7 - 223

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.162 WAIT Statement

Syntax WAIT <port number>,1[,J]

where I and J are integer expressions.

"Purpose To suspend program execution while monitoring the

status of a machine input port.

Remarks The WAIT statement causes execution

suspended until a specified machine input port
develops a specified bit pattern. The data read

the port is exclusive OR'ed with the
expression J, and then AND'ed with I.

result is zero, Microscft GW-BASTC loops back and
reads the data at the port again. If the

is nonzero, execution continues with the
statement. If J is omitted, it is assumed to

zero
Warning It is possible to enter an infinite loog
WAIT statement, in which case it will be

to manually restart the machine. To avoid this,

WAIT must have the specified value at <port

during some point in the program execution.

Example 100 WAIT 32,2

7 - 224

ly. Offenders are
event of the grant

{ damages. All rights are reserved in the
model or design

Copying cf this document and giving it to others and the use or communication
tration of a u

of the conlents thereof are forbidden without express authorit

liable to the paym
of a patent or the

G
NIXDORF
R
COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.163 WHILE...WEND Statements

Syntax WHILE <expression>

[<loop statements>]

WEND

Purpose To execute a series of statements in a loop as long
as a given condition is true.

Remarks If <expression>is not zero (i.e., true), <loop
statements> are executed until the WEND
statement is encountered. Microsoft GW-BASIC then
returns to the WHILE statement and checks
<expressions, If it is still true, the process is
repeated. If it 1is not true, execution resumes

with the statement following the WEND statement.

WHILE/WEND loops may be nested to any level. Each N
WEND will match the most recent WHILE. An unmatched ‘
WHILE statement causes a "WHILE without WEND"
error, and an unmatched WEND statement causes a
"WEND without WHILE" error.

Example 90 'BUBBLE SORT ARRAY A$ WHICH HAS J ELEMENTS.
100 FLIPS=1 'FORCE ONE PASS THRU LOOP
110 WHILE FLIPS
115 FLIPS=0
120 FOR I=1 TO J-1
130 IF A$(I)>A$(I+1) THEN
SWAP A$(1),A$(I+1):FLIPS=1
140 NEXT I
150 WEND

Note Do not direct program flow into a WHILE/WEND loop
without entering through the WHILE statement.

7 - 225

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.164 MWIDTH Statement

Syntax 1
Syntax 2

Syntax 3

Purpose

Remarks

7 - 226

WIDTH LPRINT <size>
WIDTH <file number>,<size>
WIDTH <device><sizex>

<size>is a numeric expression in the range 0 to 255.
It specifies the width of the printed line. The
default width 1is 72 characters. If <integer
expression>is 255, the 1line width is "infinite";
that is, Microsoft GW-BASIC never inserts a
carriage return. However, the position of the
cursor or the print head, as given by the POS or
LPOS function, returns to zero after position 255.

<file number> is a numeric expression in the
range 1 to 15. This is the number of the file that
is open.

<device=> is a string expression indicating the
device that is to be used.

To set the printed line width in number of
characters for the screen or line printer.

Syntax 1:If the LPRINT option 1is omitted, the line
width 1is set at the screen. If LPRINT is included,
the line width is set at the line printer.

The WIDTH statement may cause the screen to be
cleared.

Syntax 2: With Syntax 2, if the file 1is open, the
width is immediately changed to the specified
size. This allows the width to be changed while
the file is open.

Syntax 3: With Syntax 3, the default line width for
the specified device is set to —<size>. The line
widths of currently open files are not modified.
A subsequent OPEN <<filespec> FOR OUTPUT AS #n
will use the specified value for the width
initially.

R 5 S
IXDORF
COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

Example 10 WIDTH "LPT1:", 5
20 OPEN "LPT1:" FOR OUTPUT AS 1
30 PRINT 1, "1234567890"

35 PRINT 1

40 WIDTH 1, 6

50 PRINT 1, "1234567890"
RUN

will yield on the printer

12345

67890
|3 123456
g 7890

o others and the use or communication
ithout express authority. Offenders are

hts are reserved in the event of the

of a patent or the registration of a utility model or design.

Copying of this document and givin
of the contents thereof are forbidd
liable to the payment of damages. All rigt

7 - 227

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.165 WINDOW Statement

Syntax WINDOW [[SCREENT (Wx1,Wy1)-(Wx2,Wy2)]
where:
(Wx1,Wy1)-(Wx2,Hy2) are the world coordinates

specified by the programmer to define the
coordinates of the lower left and upper right screen

border.

SCREEN inverts the y axis of the world
coordinates So that screen coordinates
coincide with the traditional Cartesian
arrangement: x increases left to right, and Yy

decreases top to bottom.

Purpose To define the logical dimensions of the
current viewport.

Remarks WINDOW allows the wuser to to redefine the screen
border coordinates.

WINDOW allows the user to draw lines, graphs, or
objects in space not bounded by the physical
dimensions of the screen. This is done by using
programmer-defined coordinates called "World
coordinates". When the programmer has redefined
the screen, graphics can be drawn within a
customized mapping system.

BASIC converts world coordinates into physical
coordinates for subsequent display within the
current viewport. To make this transformation from
world space to the physical space of the viewing
surface (screen), one must know what portion of
the (floating point) world coordinate space
contains the information to be displayed. This
rectangular region in world coordinate space is
called a Window.

7 - 228

grant

bidden without express authority. Offenders are

giving it to others and the use or communication
ges. All rights are reserved in the event of the

of a patent or the registration of a utility model or design.

Copying of this document and
of the contents thereof are forl
liable to the payment of dama

COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

RUN, or WINDOW with no arguments, disables
"Window" transformation.

The WINDOW SCREEN variant inverts the normal
Cartesian direction of the y coordinate.
Consider the following:

In the default, a section of the screen appears as:

0,0 50,0 100,0

l Yy increases
100,0

0,100 50,100 100,100

now execute:

WINDOW (-1,-1)-(1,1)

and the screen appears as:

-1,1 0,1 1,1
y increases

0,0

vY decreases
-1,-1 0,-1 1,-1

7 - 229

7 - 230

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

If the variant:
WINDOW SCREEN (-1,-1)-(1,1)

is executed then the screen appears as:

-1,-1 0,-1 1,-1
y decreases

0,0

y increases
-1,1 0,1 i,1

The following example illustrates two lines with the
same endpoint coordinates. The first is drawn on
the default screen, and the second is on a
redefined window.

200 LINE (100,100) - (150,150), 1

220 LOCATE 2,20:PRINT "The line on the
default screen"

240 WINDOW SCREEN (100,100) - (200,200)

260 LINE (100,100) - (150,150), 1

280 LOCATE 8,18:PRINT"& the same line on a
redefined window"

P s

IXDORF
B]
COMPUTER

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.166 WRITE Statement

Syntax WRITE [<list of expressions>]

Purpose To output data to the screen.

Remarks If <list of expressions> is omitted, a blank line
is output. If <list of expressions>is included,

the values of the expressions are output to
the screen. The expressions in the list may be
numeric and/or string expressions. They must be
separated by commas.

grant

When the printed items are output, each item is
separated from the last by a comma. Printed
strings are delimited by quotation marks. After the
last item in the list is printed, GW-BASIC inserts a
carriage return/linefeed.

@
£
S
€
o
2
&
@
£
<
]
3
e
&
2

<
=4
3
8
3
s
3
3
8
€
z
3
°
5
c
S
]
b
S
@
°
£
5
z
g
3
g
©
k)

ithout express authority. Offenders are

WRITE outputs numeric values using the same
format as the PRINT statement. (See Section N
7.113.)

Example 10 A=80:B=90:C§="THAT'S ALL"
20 WRITE A,B,C

will yield
80, 90,"THAT'S ALL"

Copying of this document and giving it to others and the use or communication

of the contents thereof are forbidd

7 - 231

BASIC COMMANDS, FUNCTIONS AND STATEMENTS

7.167 MWRITE# Statement

Syntax WRITE#<file number>,<list of expressions>
Purpose To write data to a sequential file.
Remarks <file number>is the number under which the file was

OPENed in "0" mode (see "OPEN Statement," Section
7.99). The expressions in the list are string or
numeric expressions. They must be separated by
commas.

The difference between WRITE# and PRINT# 1is that
WRITE# inserts commas between the items as they are
written to the file and delimits strings with

uotation marks. Therefore, it 1is not necessary
or the user to put explicit delimiters
in the list. A carriage return/linefeed

sequence 1is 1inserted after the last item in the
list is written to the file.

Example Let A$="CAMERA" and B$="93604-1"
The statement:
WRITE#1,A$,B$
writes the following image to disk:
"CAMERA","93604-1"
A subsequent INPUT# statement, such as
INPUT#1,A$,B$
would input "CAMERA" to A$ and "93604-1" to BS.

7 - 232

APPENDICES

ASCII Character Codes

A

Error Codes and Error Messages

Microsoft GW-BASIC Reserved Words

Mathematical Functions Not Intrinsic to GW-BASIC

“uBisap 1o fppow AN e jo uonensiBai ayl Jo Jusied e jo
weib ay) jo JUaAs ay) Ul PaAISSa) 1. SIYBL ‘sabewep jo juswAed ay) o} 3|qel
912 $IBPUIHQ "AOUINE $S2I0X3 INOYIM UBPPIGIO| BJE JOBIAU) SIUBIUOD BU) O
UOIBOILNUILIOD 10 SN BY) PUB SIAYI0 O It BUIAIB PUE JUAWINOOP SIlL JO ButkdoD)

APPENDIX A
ASCII CHARACTER CODES

Dec Hex CHR Dec Hex CHR
000 00H NUL 033 21H !
001 01H SOH 034 22H "
002 02H STX 035 23H #
003 03H ETX 036 24H $
004 04H EOT 037 25H %
005 05H ENQ 038 26H &
006 06H ACK 039 27H s
007 07H BEL 040 28H (
008 08H BS 041 29H)
009 09H HT 042 2AH *
010 0AH LF 043 2BH +
011 0BH VT 044 2CH s
012 0CH FF 045 2DH -
013 0DH CR 046 2EH .
014 OEH SO 047 2FH /
015 OFH SI 048 30H 0
016 10H DLE 049 31H 1
017 11H DC1 050 32H 2
018 12H DC2 051 33H 3
019 13H DC3 052 34H 4
020 14H DC4 053 35H 5
021 15H NAK 054 36H 6
022 16H SYN 055 37H 7
023 17H ETB 056 38H 8
024 18H CAN 057 39H 9
025 19H EM 058 3AH :
026 1AH SUB 059 3BH ;
027 1BH ESCAPE 060 3CH

028 1CH FS 061 3DH =
029 1DH GS 062 3EH

030 1EH RS 063 3FH ?
031 1FH us 064 40H §

032 20H SPACE

Dec=decimal, Hex=hexadecimal (H), CHR=character.
LF=Line Feed, FF=Form Feed, CR=Carriage Return, DEL=Rubout

en without express authority. Offenders are

All ights are reserved in the event of the grant
ol a patent or the registration of a utility model or design.

Copying of this document and giving it to others and the use or communication

of the contents thereof are forbidd
liable 1o the payment of damages.

ASCII CHARACTER CODES

Dec Hex CHR Dec Hex CHR
065 41H A 097 61H a
066 42H B 098 62H b
067 43H C 099 63H c
068 44H D 100 64H d
069 45H E 101 65H e
070 46H F 102 66H f
071 47H G 103 67H g
072 48H H 104 68H h
073 49H I 105 69H i
074 4AH J 106 6AH j
075 4BH K 107 6BH k
076 4CH L 108 6CH 1
077 4DH M 109 6DH m
078 4EH N 110 6EH n
079 4FH 0 11 6FH 0
080 50H P 112 70H p
081 51H Q 113 71H q
082 52H R 114 72H r
083 53H S 115 73H S
084 54H T 116 74H t
085 55H U 117 75H u
086 56H v 118 76H v
087 57H W 119 77H W
088 58H X 120 78H X
089 59H Y 121 79H y
090 5AH z 122 7AH z
091 5BH 123 7BH

092 5CH 124 7CH

093 5DH 125 7DH

094 5EH 126 7EH

095 5FH 128 7FH DEL

096 60H T

Dec=decimal, Hex=hexadecimal (H), CHR=character.
LF=Line Feed, FF=Form Feed, CR=Carriage Return, DEL=Rubout

APPENDIX B

ERROR CODES AND ERROR MESSAGES

Number

NEXT without FOR

A variable in a NEXT statement does not correspond
to any previously executed, unmatched FOR statement
variable.

Syntax error

A line is encountered that contains some incorrect
sequence of characters (such as an unmatched
parenthesis, misspelled command or statement,
incorrect punctuation, etc.).

With GW-BASIC, the incorrect line will be part of a
DATA statement.

Microsoft GW-BASIC Interpreter automatically enters
edit mode at the line that caused the error.

Return without GOSUB

A RETURN statement is encountered for which there
is no previous, unmatched GOSUB statement.

Out of data

A READ statement is executed when there are no DATA
statements with unread data remaining 1in the
program.

Illegal function call

A parameter that is out of range is passed to a
math or string function. An FC error may also
occur as the result of:

. Offenders are
avent of the grant

Copying of this document and giving it to others and the use or communicaticn
of the contents thereof are forbidden without express authorit

liable to the payment of damages. All rights are reserved in the

of a patent or the registration of a utility model or design.

e e
ORF

COMPUTER

ERROR CODES AND ERROR MESSAGES

A negative or unreasonably large subscript.

2. A negative or zero argument with LOG.
A negative argument to SQR.

4. A negative mantissa with a noninteger exponent.

5. A call to a USR function for which the starting address has
not yet been given.

6. An improper argument to MID$, LEFTS$, RIGHT$, INP, OUT,
WAIT, 0¥5EK, POKE, TAB, SPC, STRING$, SPACE$, INSTR, or

7. A negative record number used with GET or PUT.

6 Overflow

The result of a calculation is too large to be
represented in Microsoft GW-BASIC number format. If
underflow occurs, the result 1is zero and execution
continues without an error.

7 Out of memory
A program is too large, or has too many FOR loops or
GOSUBs, too many variables, or expressions that are too
complicated for a file buffer to be allocated.

8 Undefined line

A nonexistent line is referenced in a GOTO, GOosus,
IF...THEN...ELSE, or DELETE statement.

9 Subscript out of range
An array element is referenced either with a

subscript that 1is outside the dimensions of the array
or with the wrong number of subscripts.

12

13

14

15

16

Duplicate definition

Two DIM statements are given for the same array; or, a
DIM statement 1is given for an array after the default
dimension of 10 has been established for that array.

Division by zero

A division by zero is encountered in an expression; or,
the operation of involution results in zero being raised
to a negative power. Machine infinity with the sign of
the numerator is supplied as the result of the division,
or positive machine infinity is supplied as the
result of the involution, and execution continues.

Illegal direct

A statement that is 1illegal in direct mode is entered
as a direct mode command.

Type mismatch

A string variable name is assigned a numeric value or
vice versa; a function that expects a numeric argument is
given a string argument or vice versa.

Qut of string space

String variables have caused BASIC to exceed the amount
of free memory remaining. Microsoft GW-BASIC will
allocate string space dynamically, wuntil it runs out of
memory.

String too long

An attempt 1is made to create a string more than 255
characters long.

String formula too complex

A string expression is too long or too complex. The
expression should be broken into smaller expressions.

GBI 0RO
MIXDORFE

s
COMPUTER

17 Can't continue
An attempt is made to continue a program that:
1. Has halted due to an error.
2. Has been modified during a break in execution.
3. Does not exist.
18 Undefined user function

A USR function is called before the function
definition (DEF statement) is given.

19 No RESUME

An error handling routine is entered but contains no
RESUME statement.

others and the use or communication

of the contents thereof are forbidden without express authority. Offenders are

20 RESUME without error

s are reserved in the event of the grant

odel or design.

A RESUME statement 1is encountered before an error
handling routine is entered.

21 Unprintable error

An error message is not available for the error
condition that exists.

Copying of this document and giving

PH
g
gc
a2
3%
53
33
o @
;az
SE
02
2s
£5
ok
28
D©
83

22 Missing operand

An expression contains an operator with no operand
following it.

23 Line buffer overflow

An attempt has been made to input a line that has too
many characters.

24 Device timeout

The device you have specified is not available at this
time.

25 Device fault

An incorrect device designation has been entered.

26 FOR without NEXT

A FOR statement was encountered without a matching NEXT.
27 Out of paper

The printer device is out of paper.
28 Unprintable error

An error message is not available for the condition which
exists.

29 WHILE without WEND

A WHILE statement does not have a matching WEND.
30 WEND without WHILE

A WEND statement was encountered without a matching WHILE.
31-49 Unprintable error

An error message is not available for the condition which
exists.

of the contents thereof are forbidden without express authority. Oftenders are
iable to the payment of damages. All rights are reserved in the event of the grant

Copying of this document and giving it to others and the use or communication
of a patent or the registration of a utiity model or design.

e
NIXDORF

COMPUTER

ERROR CODES AND ERROR MESSAGES

Disk Errors

50

51

52

53

54

55

56

57

Field overflow

A FIELD statement is attempting to allocate more bytes
than were specified for the record length of a random file.

Internal error

An internal malfunction has occurred in Microsoft GHW-
BASIC. Report to Microsoft the conditions under which the
message appeared.

Bad file number

A statement or command references a file with a file
number that 1is not OPEN or is out of the range of file
numbers specified at initialization.

File not found

A LOAD, KILL, NAME, or OPEN statement/command
ggfﬁrences a file that does not exist on the current
isk.

Bad file mode

An attempt 1is made to use PUT, GET, or LOF with a
sequential file, to LOAD a random file, or to execute
an OPEN statement with a file mode other than I, 0, or
R.

File already open

A sequential output mode OPEN statement is issued for a
file that 1is already open; or a KILL statement 1is
given for a file that is open.

Unprintable error

An %rror message is not available for the condition that
exists.

Device I/0 error
An 1/0 error occurred on a disk I/0 operation. It is a

fatal error; i.e., the operating system cannot recover
from the error.

58

59-60

61

62

63

64

65

66

67

68

A

10

File already exists

The filename specified in a NAME statement is
identical to a filename already in use on the disk.

Unprintable error

An error message is not available for the condition that
exists.

Disk full

All disk storage space is in use.

Input past end

An INPUT statement is executed after all the data in the
file has been INPUT, or for a null (empty) file. To avoid
this error, use the EOF function to detect the end-of-file.
Bad record number

In a PUT or GET statement, the record number 1is either
greater than the maximum allowed (32,767) or equal to zero.

Bad file name

An illegal form is used for the filename with a LOAD,
SAVE, KILL, or OPEN statement (e.g., a filename with
too many characters).

Unprintable error

An error message is not available for the condition that
exists.

Direct statement in file

A direct statement is encountered while LOADing an ASCII-
format file. The LOAD is terminated.

Too many files

An attempt is made to create a new file (using SAVE or
OPEN) when all 255 directory entries are full.

Device Unavailable

The device that has been specified is not available at this
time.

P

COMPUTER
69 Communications buffer overflow
Not enough space has been reserved for

communications I/0.

70 Disk write protected

The disk has a write protect tab intact, or is a disk
that cannot be written to.

71 Disk not ready

Could be caused by a number of problems. The most likely
is that the disk is not inserted properly.

72 Disk media error
A hardware or disk problem occurred while the disk was

being written to or read from. For example, the disk may
be damaged or the disk drive may not be working properly.

are reserved in the event of the grant

del or design.

74 Rename across disks

An attempt was made to rename a file with a new drive
designation. This is not allowed.

75 Path/file access error

During an OPEN, MKDIR, CHDIR, or RMDIR operation, MS-DOS
was unable to make a correct Path to File name
connection. The ovperation is not completed.

76 Path not Found
During an OPEN, MKDIR, CHDIR, or RMDIR operation, MS-DOS

was unable to find the path specified. The operation 1is
not completed.

Copying of this document and giving it 1o others and the use or communication

8
€
IS
E
®

5
c
S
]
z
S
4
@
£
5
=
8
3
g
©
5

<
¢
58
S
@ E
38
i
8%
25
3
S
2
g
2o
€<
85
@
@
£5
52

*% You cannot run BASIC as a Child of BASIC

No error number. During initialization, BASIC
discovers that it is being run as a Child. BASIC is not
run and control returns to the Parent copy of BASIC.

* % Can't continue after SHELL
No error number. Upon returning from a Child
process, the SHELL statement discovers that there is not
enough memory for BASIC to continue. BASIC closes any

open files and exits to MS-DOS.

A - 11

APPENDIX C
MICROSOFT GW-BASIC RESERVED WORDS

The following is a list of reserved words used in Microsoft

BASIC.

ABS
AND
ASC

ATN
AUTO
BEEP
BLOAD
BSAVE
CALL
CDBL
CHAIN
CHDIR
CHR$

CINT
CIRCLE
CLEAR
CLOSE
CLS
COLOR
COM
COMMON
CONT
c0S
CSNG
CvD

CVI
CVS
DATA
DATES
DEFDBL
DEFINT
DEFSNG

A - 12

DEFSNG
DEFSTR
DEF FN

DEF USR
DELETE
DIM
DRAW
EDIT
ELSE
END
ENVIRON
EOF
ERASE
ERDEV
ERL
ERR
ERROR
END
EXP
FIELD
FILES
FIX
FOR
FRE
GET
GosuB

HEX$
IF

IMP
INP
INPUT
INKEY$
INPUT#

INPUTS
INSTR
INT
I0CTL
KEY
KILL
LEFT$
LEN
LET
LINE
LIST
LLIST

LOAD

Loc
LOCATE
LOF
LOG
LPOS
LPRINT
LSET
MERGE
MID$
MKD$
MKI$
MKS$
MKDIR
MOD
MOTOR
NAME
NEW
NEXT
NOT
0CT$

GW-

MICROSOFT GW-BASIC RESERVED WORDS

SHELL
ON SIN
OPEN SOUND
OPEN COM SPACE
OPTION SPC
OR SQR
PAINT STICK
PALETTE STOP
PALETTE USING STR$
PEEK STRIG
cor PEN STRINGS
e PLAY SWAP
st PMAP
558 POINT SYSTEM
H POKE TAB
N POS TAN
g PRESET THEN
gois PRINT TIMES
B PRINT# USING T0
S5l PSET TROFF
S PUT TRON
Bo8t RANDOMI ZE USING
5ois READ USR
ge5¢ REM VAL
g23s RENUM VARPTR
B RESET VARPTR$
VIEW
Se2e RESTORE WAIT
RESUME WEND
RIGHTS WHILE
RMDIR WIDTH
RND WINDOW
RSET WRITE
RUN WRITE#
SAVE XOR
SGN

A - 13

APPENDIX D
MATHEMATICAL FUNCTIONS NOT INTRINSIC TO GW-BASIC

Derived Functions

Functions that are not intrinsic to Microsoft GW-BASIC may be
calculated as follows.

Function Microsoft GW-BASIC Equivalent

SECANT SEC(X)=1/C0S(X)

COSECANT CSC(X)=1/SIN(X)

COTANGENT COT(X)=1/TAN(X)

INVERSE SINE ARCSIN(X)=ATN(X/SQR(=X*X+1))

INVERSE COSINE ARCCOS(X)=-ATN(X/SQR(-X*X+1))+1.5708
INVERSE SECANT ARCSEC(X)=ATN(X/SQR(X*X-1))

+SGN(SGN(X)-1)*1.5708

INVERSE COSECANT ARCCSC(X)=ATN(X/SQR(X*X-1))
+(SGN(X)-1)*1.5708

INVERSE COTANGENT ARCCOT(X)=ATN(X)+1.5708

HYPERBOLIC SINE SINH(X)=(EXP(X)~ EXP(-X))/2

HYPERBOLIC COSINE COSH(X)=(EXP(X)+EXP(-X))/2

HYPERBOLIC TANGENT TANH(X)=(EXP(X)-EXP(-X))/
(EXP(X)+EXP(-X))

HYPERBOLIC SECANT SECH(X)=2/(EXP(X)+EXP(-X))

HYPERBOLIC COSECANT CSCH(X)=2/(EXP(X)-EXP(-X))

HYPERBOLIC COTANGENT COTH(X)=(EXP(X)+EXP(-X))/
(EXP(X)-EXP(-X))

INVERSE HYPERBOLIC

SINE ARCSINH(X)=LOG(X+SQR(X*X+1))

INVERSE HYPERBOLIC

COSINE ARCCOSH(X)=LOG(X+SQR(X*X-1))

INVERSE HYPERBOLIC

TANGENT ARCTANH(X)=LOG((1+X)/(1-X))/2

INVERSE HYPERBOLIC

SECANT ARCSECH(X)=LOG((SQR(-X*X+1)+1)/X)

INVERSE HYPERBOLIC

COSECANT ARCCSCH(X)=LOG((SGN(X)*SQR{X*X+1)+1)/X)

INVERSE HYPERBOLIC

COTANGENT ARCCOTH(X)=LOG((X+1)/(X-1))/2

A - 14

{

S
ORF
A
TER

O3
o
{
7

INDEKX

A

ABS Function, 7-1

Active, 2-7

Addition, 3-10, 3-11

AL register, 6-9

Arctangent, 7-3

Array variable, 7-8

Array Variables, 3-9

Arrays, 3-9

ASC Function, 7-2

ASCII, 7-2

ASCII CHARACTER CODES, A-2, A-3
Assembly Language subroutine, 7-8
Assembly Language Subroutines, 6-1
ATN Function, 7-3

AUTO Command, 7-4

grant

ights are reserved in the event of the

ly model or design.

B

bidden without express authority. Offenders are

ges.
ofau

BEEP Statement, 7-5
BLOAD Command, 7-6
BSAVE Command, 7-7

liable to the payment of dama

c

Copying of this document and giving it to others and the use or communication

of the contents therecf are fort
of a patent or the registration

CALL Statement, 6-3, 7-8
CDBL Function, 7-9
CHAIN Statement, 7-10
Character set, 3-1
CHDIR Statement, 7-14
CHR$ Function, 7-15
CINT Function, 7-16
CIRCLE Statement, 7-17
CLEAR Statement, 7-19
CLOSE Statement, 7-20
CLS Statement, 7-21
COLOR Statement, 7-22
COM statement, 7-26

INDEX

(o]

COMMON Statement, 7-27

CONT Command, 7-28

Control Characters, 3-3, 4-3
COS Function, 7-29

CSNG Function, 7-30

CSRLIN Function, 7-31

CcvD, 7-32

cvI, 7-32

cvs, 7-32

D

DATA Statement, 7-33

DATES$ Function, 7-35

DATES Statement 7-34

DEF FN Statement, 7-36

DEF SEG statement, 6-9, 7-39
DEF USR Statement, 7-40
Default Device, 5-1

DEFDBL, 3-8

DEFINT, 3-8
DEFINT/SNG/DBL/STR Statements, 7-38
DEFSNG, 3-8

DEFSTR, 3-8

DELETE Command, 7-41
Device-independent, 5-1

DIM Statement, 7-42

Direct mode 2-6

Display, 2-7

Double precision, 3-6

DRAW Statement, 7-43

o
NIXDORF
COMPUTER

INDEJX

E

EDIT, 2-6

EDIT Command, 7-46

Editor, 4-1

END Statement, 7-47

ENVIRON Statement, 7-48

ENVIRONS Function, 7-50

Environment String Table 7-50

EOF Function, 7-51

ERASE Statement, 7-52

ERDEV, 7-53

ERDEVS, 7-53

ERL, 7-54

ERR, 7-54

Error codes, 7-55

ERROR CODES AND ERROR MESSAGES, A-4

Error handling, 7-54

ERROR Statement, 7-55

Evaluation of operators
arithmetic, 3-11
logical, 3-15

Event Trapping, 6-12

EXP Function, 7-57

Exponentiation, 3-10, 3-11

Expressions, 3-10

of the contents thereof are forbidden without express authority. Offenders are
liable to the payment of damages. All rights are reserved in the event oi the grant

Copying of this document and giving it to others and the use or communication
of a patent or the registration of a utility model or design.

F

FIELD Statement, 7-58

FILES Statement, 7-60

FIX Function, 7-62

Floating Point Accumulator (FAC), 6-9
FOR...NEXT Statement, 7-63

FRE Function, 7-66

G

GET Statement - File I/0, 7-67
GET Statement - Graphics, 7-68
GOSUB. . .RETURN Statements, 7-69
GOTO Statement, 7-71

INDEKX

H

HEX$ Function, 7-72
Hexadecimal, 3-5, 7-72

I

IF...GOTO, 7-73

IF...THEN, 7-73

Illegal function call, A-4
Indirect mode, 2-6

INKEYS$ Function, 7-75

INP Function, 7-76

INPUT Statement, 7-77
INPUT# Statement, 7-79
INPUTS$ Function, 7-80
INSTR Function, 7-81

INT Function, 7-82

Integer division, 3-11
Internal Representation, 6-2

K

KEY Statement, 7-83
KEY(n) Statement, 7-85
KILL Statement, 7-87

event of the grant

of the contents thereof are forbidden without express authority. Offenders are

liable to the payment of damages. All rights are reserved in the

Copying of this document and giving it to others and the use or communication
of a patent or the registration of a utility model or design.

INDEX

L

LEFT$ Function, 7-89

LEN Function, 7-90

LET Statement, 7-91

LINE INPUT Statement, 7-95
LINE INPUT# Statement, 7-96
Line numbers, 2-6

LINE Statement, 7-92
Linefeed, 2-6

LIST, 2-6

LIST COMMAND, 7-97

LLIST Command, 7-99

LOAD Command, 7-100

LOC Function, 7-101
LOCATE Statement, 7-102
LOF Function, 7-104

LOG Function, 7-105
Logical Operators, 3-17
LPOS Function, 7-106
LPRINT, 7-107

LPRINT USING, 7-107

LSET And RSET Statements, 7-108

M

MERGE Command, 7-109
MID$ Function, 7-111
MID$ Statement, 7-110
MKD$, 7-113

MKDIR Statement, 7-112
MKIS$, 7-113

MKS$, 7-113

MOD, 3-11, 3-13

Modulus arithmetic, 3-13
Multiplication, 3-2, 3-13

INDEZX

N

NAME Statement, 7-114
Negation, 3-10, 3-11
NEW Command, 7-115
NEXT without FOR, A-4
Numeric constants, 3-5
Numeric variable, 3-8

(o]

OCT$ Function, 7-116
Octal, 3-6
ON COM Statement, 7-117
ON ERROR GOTO Statement 7-119
ON KEY Statement, 7-121
ON PLAY Statement, 7-125
ON STRIG Statement, 7-127
ON TIMER Statement, 7-129
ON...GOSUB And ON...GOTO Statements, 7-120
OPEN COM Statement, 7-134
OPEN Statement, 7-131
Operators, 3-10, 3-11, 3-14, 3-15, 3-16
OPTION BASE Statement, 7-139
Order of evaluation
arithmetic operators, 3-11
out of data, A-4
OUT Statement, 7-140
Overflow, 3-14, 3-20

P

PAINT Statement, 7-141
Parent directory, 5-4
Pathnames, 5-2

PEEK Function, 7-144
PLAY Function, 7-148
PLAY ON, PLAY OFF, PLAY STOP Statement, 7-149
PLAY Statement, 7-145
PMAP Function, 7-150
POINT Function, 7-152
POKE Statement, 7-154
POS, Function 7-155

of the contents thereof are forbidden without express authority. Offenders are
liable to the payment of damages. All rights are reserved in the event of the grant

Copying of this document and giving it to others and the use or communication
of a patent or the registration of a utility model or design.

INDEX

P

PRESET Statement, 7-156

PRINT Statement, 7-157

PRINT Using Statement, 7-160

PRINT# and PRINT# USING Statements, 7-165
PSET Statement, 7-167

PUT Statement - File I/0, 7-169

PUT Statement - Graphics, 7-170

R

Random access, 5-9
RANDOMIZE Statement, 7-173
READ Statement, 7-175

REM Statement, 7-177
RENUM Command, 7-178

RESET Command, 7-179
RESTORE Statement, 7-180
RESUME Statement, 7-181
RETURN Statement, 7-182
Return without GOSUB, A-4
RIGHT$ Function, 7-183
RMDIR Statement, 7-184

RND Function, 7-185
Rubout, 3-2

RUN Statement/Command, 7-186

S

SAVE Command, 7-187

SCREEN Function, 7-190
SCREEN Statement, 7-188

SGN Function,7-191

SHELL statement, 5-22, 7-192
Shorthand notations, 5-4

SIN Function, 7-194

Single precision, 3-6, 3-8, 3-9, 3-20, 3-21
SOUND Statement, 7-195
SPACES$ Function, 7-198

SPC Function, 7-199

Special characters, 3-1

SQR Function, 7-200

STICK Function, 7-201

INDEKX

S

STOP Statement, 7-202
STR$ Function, 7-203
STRIG Function, 7-204
STRIG(n) OFF, 7-206
STRIG(n) ON, 7-206
STRIG(n) STOP, 7-206
string and numeric, 3-4
String constant, 3-4
String Operators, 3-18
String Variable, 3-7
STRINGS$ Function, 7-207
Subscripts, 3-9
Subtraction, 3-10, 3-11, 3-13
SWAP Statement, 7-208
Syntax error, A-4
Syntax Notation, 1-3
SYSTEM Command, 7-209

T

Tab, 3-2

TAB Function, 7-210

Tabs, 3-3

TAN Function, 7-211

TIMES$ Function, 7-213

TIMES Statement, 7-212

TIMER Function, 7-214

TIMER ON, TIMER OFF, TIMER STOP Statements, 7-215
TRON/TROFF Statements/Commands, 7-216

U

USR Function, 6-9, 7-217

COMPUTER

INDEKX

v

VAL Function, 7-218
Variables, 3-7

VARPTR Function, 7-219
VARPTRS Function, 7-220
VIEW PRINT Statement 7-223
VIEW Statement, 7-221
Visual 2-7

W

WAIT Statement, 7-224
WHILE...WEND Statements, 7-225
WIDTH Statement, 7-226

WINDOW Statement 7-228

WRITE Statement, 7-231

WRITE# Statement, 7-232

e reserved in the event of the grant

hout express authority. Offenders are
ol a palent or the registration of a utility model or design.

others and the use or communication

Copying of this document and giving
of the contents thereof are forbidden

