

WR

Computersystem

| Bedienungshandbuch

li

m m

h

\

© Copyright 1977, by Olivetti

10.

13.

INHALT

COMPUTERSYSTEM P6060

BEDIENUNG DES P6060

ARBEITEN MIT ANWENDERPROGRAMMEN

BETRIEBSARTEN DES SYSTEMS

ALLGEMEINE INFORMATIONEN ÜBER EXTERNE FILES

SYSTEMBEFEHLE, DIENSTPROGRAMME

EINFÜHRUNG IN DIE SPRACHE BASIC

BASIC - ANWEISUNGEN

EINGABE UND EDITING EINES PROGRAMM- ODER TEXTFILES

DEBUGGING MODE

CALCULATOR MODE

PROGRAMMIERUNG PERIPHERER EINHEITEN

PLOT - ANWEISUNGEN

ANHANG (Tabellen, Fehlermeldungen)

STICHWORTVERZEICHNIS

1. COMPUTERSYSTEM P6060

| Seite

1.1 STANDARDKONFIGURATION 1.1

1.1.1 Zentraleinheit 1.2

1.1.2 Tastatur 1.3

‚1.1.3 Konsole 1.10

1.1.4 Display 1.13

1.1.5 Floppy-Disk-Einheit 1.14

1.1.6 Integrierter alphanumerischer Drucker 1.15

1.2 ERWEITERTE KONFIGURATION 1.16

DAS COMPUTERSYSTEM P 6060
ME Ei milk MIR dimnb ci aM Ab MINE AM MMmib dm WER aME AME ME di MM MH Me aM EM WM 4b A MER MEER gi mm MM am
u Ge u un u nn GO Ab CA MEMME GAME AM AEMAEED MED EMED AIEMED din MAD dam AM mE GRIMM MM: MINE MH GUMMM am ame Am ummmue Ana.

DIE STÄANDARDKONFIGURATION

Die Standar dkonfiguration (Abbildung 1.1) besteht aus folgenden

Komponenten:

- ZENTRÄLEINHEIT

- TASTATUR

- KONSOLE

- DISPLAY

- _ FLOPPY-DISK-EINHEIT MIT 2 LAUFWERKEN

_ THERMODRUCKER

Abb. 1.1 - Das System P 6060: Die Standardkonfiguration

Die Zentraleinheit

Die Zentraleinheit besteht aus:

dem Leitwerk

dem Rechenwerk (Arithmetic-Logice-Unit: ALU)

dem Hauptspeicher (RAM),

Das Leitwerk

koordiniert und kontrolliert die Operationen des Systems,

Das Rechenwerk (ALU)

führt die arithmetischen Operationen durch (Addition,

Subtraktion, usw.),

führt logische Operationen durch, die es dem Leitwerk

ermöglichen, aus verschiedenen Älternativen in der Aus-

führung eine bestimmte auszuwählen.

Der Hauptspeicher besteht aus integrierten MOS-Bauelementen

und enthält:

Mikroprogramme, die aus einer Folge von Mikroanweisungen

bestehen und die bei Aktivierung durch das Leitwerk die ent-

sprechenden Instruktionen ausführen,

. Basis-Softwareprogramme zur Erstellung, Ausführung und

Modifikation der Anwenderprogr amme .

Anwenderprogramme „

die zu verarbeitenden Daten und die Ergebnisse der Operationen,

Man kann daher im Hauptspeicher zwei Teile unterscheiden:

Ein Teil ist für das System reserviert und enthält die Betriebs-

software;

der andere Teil steht dem Anwender zur Verfügung und hat eine Min-

destkapazität von 8K (8192 byte), wobei ein Byte aus 8 Bit besteht.

1.1.2 Die Tastatur

Die Tastatur besteht aus 96 monostabilen Tasten und dient dazu,

dem System Daten, Befehle und Instruktionen über den Tastatur -

puffer mitzuteilen. Der Tastaturpuffer kann bis zu 80 Zeichen

aufnehmen.

Die Tastatur (Abbildung 1.2) ist in Tastenfelder unterteilt:

_ Basic- u. Alphanumerische Tasten

- Editing-Tasten

- Algebraische Tasten

- End-of-Line Tasten

- Befehls-Tasten

_ Funktions-Tasten

G/8/8/8)B/8/8/BIBIBIG/BIBRES EIG
IIAIEIITIAIIN UIID
See @
UIID TIT- ©
SL Le I

Abb. 1.2 - Die Tastatur

_ BASIC- u. ALPHANUMERISCHES TASTENFELD

Dieses Feld besteht aus den in Abbildung 1.3 dargestellten Tasten:

Ja 2 /)\s)J\aJ\5 7)\8)J\9 t

zunımaı REM DIM DCL FKEY# DEF | FN MAT INPUT READ DATA & u

ao /\w/\e /\r /)\t/\v Jlu o,)\P

| PRINT DISP USING WRITE: ON GOTO GOSUB | [RETURN STOP +

A S D F G H K ;]

SHicT | IF THEN | [FOR To STEP NEXT END < > ? SHIT

\ Z/\X C V B N M , . /

es L)

Abb. 1.3 - Basic- u. alphanumerische Tasten

Mit diesen Tasten kann man dem System eingeben:

Programmanweisungen wie: 100 IF A=B3 THEN 120

Rechnen im Calculator-Mode wie:#1 = (3*$+2.5 - PI)/4

Numerische Daten wie: -135,2

Strings (Zeichenketten) wie: MAX MEIER

Systemanweisungen wie: SAVE U, PROG9Y

Befehle zum Aufrufen und Ausführen

von Dienstprogr ammen wie: EXEC FDCOPY, U

Die Basic- u. alphanumerischen Tasten erzeugen die 128 ISO-

Code-Zeichen und die Codes für 26 Schlüsselwörter der Basic-

Instruktionen.

Die 1SO-Code-Zeichen sind im Anhang I dargestellt.

Die alphanumerische Tastatur enthält außerdem die folgenden Tasten:

DEL

CONTROL

SHIFT

KB
| MODE

SONDER

ZEICHEN

(DELETE) erzeugt das ISO-Zeichen DEL, das

im Terminalbetrieb gebraucht wird. Wird dieses

Zeichen ausgedruckt oder im Display angezeigt, So

entspricht ihm das Symbol #.

(CONTROL) ist im Terminal-Mode notwendig und er -

gibt zusammen mit einer alphanumerischen Basic-

Taste gedrückt, die in Anhang ! angegebenen Zeichen

der Spalten O0 und ! der ISO-Tabelle,

(SHIFT): Wird Shift zusammen mit einer Taste mit

zwei Bedeutungen gedrückt, so wird das obere

Zeichen dargestellt. Auf diese Weise erfolgt auch der

Zugriff zu den Basic-Schlüsselworten. Die Shifttaste

entspricht also der Umschalttaste bei Schreibmaschinen.

(KEYBOARD MODE): Wird diese Taste gedrückt, so ge-

stattet dies den Gebrauch des alphanumerischen Basic-

Teiles wie bei einer Schreibmaschine,

Es ist bei gedrückter Taste KB-MODE möglich, Groß-

und Kleinbuchstaben zu erzeugen, je nachdem, ob die

SHIFT-Taste zusätzlich zum jeweiligen Zeichen gedrückt

wird oder nicht.

Ist die KB-MODE Taste gedrückt, so leuchtet die Anzeige

am linken Rand der Tastatur.

Soll der KB-MODE wieder ausgeschaltet werden, so ist

wieder die Taste KB-MODE zu drücken.

Folgende Zeichen können generiert werden:

. die Ziffern Obis 9

die Interpunktionszeichen: , . ;: ! ?

. die Klammern: () [Ji}

. die Akzente: ” “

. die Vergleichs- und Zuweisungszeichen: > <=

die arithmetischen Operationszeichen: + - * /?

die Zeichen: $ % ” - I\#&&

(REPEAT) zusammen mit einer anderen Taste gedrückt,

bewirkt eine Wiederholung dieses Zeichens, bis eine der

beiden Tasten gelöst wird.

BLANK Mit dieser Taste können Leerstellen erzeugt werden.

TASTE |

_ TASTENFELD EDITING

(ausführliche Beschreibung siehe Kap. 7)

Der Editing-Teil besteht aus den 7 Tasten, die in Abbildung 1.4 darge-

stellt sind.

(1) (v)

euren euren

LINE

e3
e3

Abb. 1.4 - Editing

(EOL_) beendet die Eingabe über die Tastatur.

Fe | | > | Verschieben des Pointers im Display nach links bzw.

\ rechts

Y | | L | Anzeige der nächstfolgenden bzw. vorangehenden Pro-

gramm- oder Textzeile

(CHARACTER DELETE) löscht das Zeichen links vom

CHAR DELETE
Pointer und verschiebt etwaige Zeichen rechts davon

um eine Stelle nach links.

CLEAR (CLEAR/RECALL) . zusammen mit SHIFT gedrückt, .
RECALL

bewirkt dies das Löschen aller

Zeichen, die sich im Tastatur-

Puffer befinden.

. ohne SHIFT wird im Display an-

stelle des jetzt ausgegebenen

Textes der Inhalt des Dispiay-

puffers angezeigt.

- ALGEBRAISCHE TASTEN

Der algebraische Teil besteht aus 21 Tasten, die in Abbildung 1.5

dargestellt sind.

te)

.

ee
%

>
ne esese
ee

ET es ® et eteeteteen ee
Abb. 1.5 - Algebraisches Tastenfeld

- NUMERISCHE Sie erzeugen die Dezimalziffern O bis 9

TASTEN

Dezimalpunkt : Ersetzt das Komma in der Dezimal-

darstellung einer Zahl.

nential-Darstellung; die nach E eingegebene Zahl

FE Diese Taste dient zur Eingabe von Zahlen in Expo-

+

wird vom System als Exponent von 10 interpretiert.

Dagegen gilt bei Verwendung des Zeichenst: Die auf

a folgende Zahl wird als Exponent interpretiert.

Werden der Reihe nach die Tasten 1 2E5

5
gedrückt, so wird die Zahl 12 x 10 gebildet.

Drückt man hingegen die Tasten I 215, so wird

5
die Zahl 12 gebildet.

- ARITHMETISCHE Das System führt folgende arithmetische Rechen-

TASTEN .
operationen aus:

(=) Addition + Subtraktion - Multiplikation *

Division / Potenzierung n Zuweisung

(und) :Durch Setzen von Klammern !"'{!! und !"!)"

(+) kann die Reihenfolge der Operationen in arithmetischen

9) Ausdrücken geändert werden.

Anmerkung: Alle vorhin beschriebenen Tasten sind auch im

alphanumerischen Tastenfeld enthalten und haben

dieselbe Wirkung.

(RESULT) Diese Taste wird verwendet, wenn man im

Calculator-Mode oder im Debugging-Mode arbeitet

(siehe RECHNEN IM CALCULATOR MODE Kapitel 3 und 11).

- ABSCHLIESSEN EINER EINGABEZEILE

6 Idung 1. 2 Tasten aus Abb ie ıeser Teil enthält d D

ne,

Abb. 1.6 - Abschließen einer Eingabezeile

(EOL_) hat die gleiche Wirkung wie die
END

LINE
EDITING-Feld beschri ebene Taste,

ım
-

ım ISsen jerung von Ergebni t zur Summ (SUM) dien
SUM

Calculator-Mode (Kap. 11)

- BEFEHLS-TASTEN

in Abbildung 1.7 darge-
ie sie L)

Dieses Feld besteht aus 4 Tasten, w

ind stellt s

SE Harasenen

=

N
E
E

 e
e

D
T

a

e
e

e
e

POROH
TE

t
e
t
e

E
R

ie

Abb. 1.7 - Befehls-Tasten

Damit können die 8 am häufigsten benötigten System-Befehle

aufgerufen werden. Ihre Bedeutung ist in Kap. 6 ausführlich

beschrieben.

_ DIE FUNKTIONSTASTEN

Dieses Feld besteht aus 8 Tasten, wie sie in Abbildung 1.8

dargestellt sind:

Abb. 1.8 - Funktionstasten

Man kann den 16 Funktionstasten Fi bis F 16 (siehe Abb. 1.8)

selbstgewählte Zeichenfolgen zuordnen, sodaß jedesmal, wenn

eine solche Taste gedrückt wird, die entsprechende Zeichen-

folge in den Tastaturpuffer geladen wird. Jeder Taste sind zwei

Funktionen zugeordnet, die obere Funktion wird mit der Taste

SHIFT aktiviert. (Siehe Kapitel 9 und 10 für die Verwendung

der Funktionstasten)

1.1.3 Die Konsole

Die Konsole enthält 7 Tasten, 4 Leuchtanzeigen und ein Dezimal-

stellenrad, wie dies aus Abbildung 1.9 ersichtlich ist. Die 7

Tasten leuchten auf, wenn sie aktiviert sind.

Die Aktivierung der Tasten wird durch nochmaliges Drücken

aufgehoben.

Abb. 1.9 - Die Konsole

1 CALC M
} MODE |:

 .

Gen

BREAK

(CALCULATOR MODE) drückt man diese Taste, so kann

manuell gerechnet werden; dieser Zustand wird durch das

Aufleuchten der Taste angezeigt.

(PRINT ALL) Diese Taste bewirkt, daß alle Texte, die im

Display erscheinen, auch gedruckt werden; dies wird durch

das Aufleuchten der Taste angezeigt.

(NO PRINT) Drückt man diese Taste, so werden alle vom

Programm oder System bewirkten Ausdrucke unterdrückt;

Dieser Zustand wird durch das Aufleuchten der Taste ange-

zeigt.

(BREAK) Wird diese Taste gedrückt, so unterbricht man

die Abarbeitung des laufenden Programmes. Das System

geht in den Command-Mode über.

Die folgenden 3 Tasten werden für das Debugging ver wendet:

(TRACE) Wird diese Taste gedrückt, so werden die Zeilen-

nummern der ausführbaren Anweisungen eines Programmes

während der Äbarbeitung gedruckt. Der Ausdruck der Nummern

erfolgt entsprechend der Reihenfolge der Ausführung.

Anmerkung : Die Taste NO PRINT dominiert die Wirkung der

Tasten PRINT ALL und TRACE.

1,11

Dieser Zustand wird durch das Aufleuchten der Taste ange-

zeigt. Diese Funktion wird durch eine im Programm vorkom-

mende Basic-Anweisung TRACE OFF automatisch wieder

aufgehoben.

(STEP) Drückt man diese Taste, so wird die Ausführung des

Programmes unterbrochen. Mit jedem weiteren Tastendruck

wird ein einzelner Schritt des Programmes durchgeführt.

Im aktivierten Zustand leuchtet die Taste,

CONTINUE (CONTINUE) Drückt man die Taste, wird die Abarbeitung des

unterbrochenen Programmes wieder aufgenommen.

Während der Ausführung von Programmen blinkt diese Lampe,

in allen anderen Betriebszuständen leuchtet diese Lampe kon-

stant.

Leuchtet die Lampe auf, so bedeutet dies, daß versucht wird,

mehr als 80 Zeichen in den Tastatur-Puffer einzugeben,

Bei Eingabe der Anweisungen SDEG oder SGRAD (im Calcu-

> | lator -Mode) leuchtet diese Lampe auf. Sie gibt an, daß für die

Winkelfunktionen das Argument in ÄAltgrad oder Neugrad vor -

liegt bzw. errechnet wird.

; Leuchtet diese Lampe, so arbeitet das System als Terminal.

(DEZIMALSTELLENRAD) Beim Rechnen im Calculator -Mode

kann das Format im Display und im Ausdruck damit beliebig

eingestellt werden.
1.12

1.1.4 Das Display

Das Display ermöglicht die Anzeige von 32 beliebigen ISO-Zeichen

laut Tabelle im Anhang D.

Im Display werden angezeigt:

über die Tastatur eingegebene Zeilen

Mitteilungen vom Programm

Mitteilungen vom System

. . Fehlermeldungen

Auffor derungen, Daten einzugeben (durch die Anweisungen INPUT,

MAT INPUT, RKB)

. über die Tastatur eingegebene Daten

Zeichen, die über die Funktionstasten eingegeben wur den

Abb. 1.10 - Das Display

Wird eine Zeile über die Tastatur eingegeben, so erscheint im Display

ein Leuchtpunkt, der Pointer genannt wird. Er gibt an, in welche Posi-

tion der Zeile das nächste Zeichen gesetzt wird. Vor der Eingabe einer

Zeile zeigt der Pointer auf die erste Position links und wandert bei je-

der weiteren Eingabe eines Zeichens jeweils um eine Stelle nach rechts,

Werden mehr als 31 Zeichen eingegeben, so sind nur die letzten 31 im

Display sichtbar. Während des Programmlaufs sind dagegen 32 Stellen

im Display sichtbar.

1.13

Die Floppy-Disk-Einheit

Die Floppy-Disk - Einheit ist mit beweglichen Schreib-/Leseköpfen

ausgestattet. Als Datenträger werden austauschbare Platten (Dis-

‚ketten) verwendet. (Siehe Abbildung 1.11)

Die Einheit enthält I oder 2 Laufwerke, in die jeweils I Diskette

eingelegt werden kann.

Abb. 1.11 - Die Floppy-Disk-Zinheit

Die Diskette besteht aus Mylar und ist mit einem Plastiküberzug ver -

sehen. Sie wird von einer Papierhülle umgeben und kann darin frei

rotieren.

Die Floppy-Disk - Einheit ist ein Speicher mit Direktzugriff. Bei

einer bestimmten Umdrehungsgeschwindigkeit ist ein Lesen oder Schrei-

ben von Informationen durch einen magnetischen Schreib-/Lesekopf

möglich.

Die Informationen werden auf konzentrischen Kreisen abgespeichert,

die man als Spuren bezeichnet.

Jede Diskette enthält 77 Spuren:

- 73 Spuren für Programme und Daten

-_ 4 Spuren werden vom System benutzt.

Jede Spur ist in 26 Sektoren zu je 128 byte unterteilt. Die Kapa-

zität einer Platte beträgt somit 242. 944 byte. (256. 256 byte, wenn

man auch den vom System benutzten Teil dazuzählt)

Die System-Diskette enthält die Mikroprogramme der Firmware,

Basissoftwareprogramme und die Programme der Anwender -Soft-

ware der Olivetti-Programmbibliothek. Im freien Teil kann der An-

wender Datenfiles (sequentiell oder mit Direktzugriff) und Text-

oder Programmfiles abspeichern, wie im folgenden noch gezeigt

wird.

1.1.6 Der integrierte alphanumerische Drucker

Der integrierte Drucker arbeitet auf thermographischer Basis und

liefert Druckbuchstaben (der vollständige Zeichenvorrat ist in Anhang

D angeführt), die mit einer 5x7-Matrix dargestellt werden. In jeder |

Zeile können maximal 80 Zeichen mit einer Geschwindigkeit von 80

Zeichen/sec. gedruckt werden.

Dieser Drucker ermöglicht mit den entsprechenden Programmbefehlen

- das Plotten von Funktionen

- das Darstellen von Bildern im Punktraster

Abb. 1.12 - System P 6060 mit dem integrierten Drucker

ERWEITERTE KONFIGURATION

Ausgehend von der Standardkonfiguration, wie sie im vorigen Ab-

schnitt beschrieben wurde, gelangt man durch modulares Ergänzen

zu erweiterten Konfigurationen.

Die Erweiterungen betreffen:

GRUNDEINHEIT: -

EXTERNE _

EINHEITEN

Erweiterungen des Hauptspeichers von einem

Minimum von 8K byte (1 K = 1024 byte) bis

maximal 48 K byte und zwar mit folgenden Aus-

baustufen: 8, 16, 24, 32, 40, 48 K byte.

Ein oder zwei IPSO-Inter faces (Interfaccia

Periferiche Standard Olivetti) zum Anschluß

von kompatiblen peripheren Einheiten: an jedes

Interface können gleichzeitig bis zu 4 periphere

Ein-/Ausgabe-Geräte angeschlossen werden.

Interface DCC 6609 zum Anschluß eines externen

Massenspeichers mit beweglichem Schreib-/Lese-

kopf vom Typ DCU 7292.

Interface C CITT V 24 (EIA RS 232 C) zum Anschluß

an Datenfernüber tragungseinrichtungen (Time-Sharing)

und/oder kompatibler Peripherie.

Periphere Olivetti-Einheiten, die mit dem IPSO Inter-

face kompatibel sind:

Schnelldrucker

L_ochstreifenleser

Lochstreifenstanzer

. Loochkartenleser

Magnetbandkassetten-Einheit (ECMA-NORM)

Adapter für Messinstrumente

. Plotter

Magnetbandeinheiten

1.16

Abb, 1.13 - DCU-

DCU: Platte mit beweglichen Köpfen (siehe

Abb. 1:13)

Die Einheit hat bewegliche Schreib/Leseköpfe und

besteht aus 2 Platten, einer Fest- und einer Wech-

selplatte.

Jede Platte ist auf beiden Seiten speicherfähig, wo-

bei jede Seite 2, 45 Megabyte (Mega = eine Million)

aufnehmen kann (Gesamtkapazität beider Platten:

9,8 Megabyte).

Der Zugriff zu Daten kann sowohl sequentiell als

auch direkt erfolgen; die mittlere Zugriffszeit be-

trägt 50,5 m sec, wobei die Wartezeit und die Über-

tragungszeit von 300 K byte/sec. schon inbegriffen

sind.

EXTERNE Verarbeitung in Time-sharing über die

asynchrone Steuereinheit CCITT V 24 (EIA RS 232)

SERIELLE PERIPHERIE beliebiger Hersteller mit

der Schnittstelle CCITT V 24 (EIA RS 232 C).

(z.B. 8 bit-Fernschreiber, Lochstreifenstanzer, Loch-

streifenleser, Magnetbandkassetten, digitale Messgeräte,

Video-Display, Plotter usw.)

In diese Kategorie fallen auch periphere Geräte, die

von fremden Firmen angeboten werden.

2. BEDIENUNG DES P6060

2.1

2.2

2.3

2.4

2.5

EIN- /AUSSCHALTEN DES SYSTEMS

2.1.1 Einschalten

2.1.2 Ausschalten

ARBEITSBEGINN

2.2.1 Auswechseln der Papierrolle

2.2.2 Einlegen der Disketten

2.2.3 Eintnehmen der Disketten

LADEN DES BETRIEBSSYSTEMS

DATIERUNG

EINGABE ÜBER DIE TASTATUR

2.5.1 Korrektur von Eingaben über die Tastatur

Seite

2.1

2.2

2.3

2.4

2.6

2.6

2.7

2.7

.1.1

BEDIENUNG DES P 6060
u (m (ib (mi dm dmmib (EEE SM HAWEEM ammE dm daR demi deB dmmB am AMD diMEB dmEmk MMEb dam amiHEH dm ammm
Om m men mn it Mu Cru dem dem mm HE ARE GUEEM wmmiib cum AMD Am EEE qm (ammB am ide mm

In diesem Kapitel werden die Bedienungsgrundlagen erläutert, die

für das Arbeiten mit den integrierten Einheiten des Systems P 6060

notwendig sind.

EIN-/AUSSCHALTEN DES SYSTEMS

Einschalten

- Hauptschalter (OFF/ON) in Stellung ON bringen (siehe Abb, 1.1)

- Unmittelbar nach dem Einschalten des Systems leuchten alle Lampen

an der Konsole auf: es wird die Funktionsfähigkeit der Hardware

überprüft. Arbeiten alle Teile korrekt, leuchtet nur noch die Taste

NO PRINT und es ertönt ein Signal.

- Nach einigen Sekunden können die Lampen der Konsole in verschie-

denen Kombinationen aufleuchten. Dies hat folgende Bedeutung:

Aufleuchtende KONSOL-LAMPEN BEDEUTUNG

Vor dem Schließen der Ein-

schübe wur de keine Diskette

eingelegt,

Statt der System-Disk ist

eine User-Disk eingelegt worden.

Die System-Disk hat einen

Fehler,

2.1.2

Fehlerhafte Diskette

Einschub einer Floppy-

Disk-Einheit ist offen.

Anmerkung:

Die hier angegebenen Kombinationen aufleuchtender Lampen betreffen nur

jene Anzeigen, die vom Anwender unmittelbar behoben werden können.

Darüberhinaus können andere Kombinationen aufleuchtender Lampen auf-

treten, die auf Fehler in der Hardware hinweisen.

Treten nach dem Einschalten der Maschine solche Kombinationen auf, die

sich nicht durch die Korrektur von Bedienungsfehlern oder einen Wechsel

der Disketten beheben lassen, so empfiehlt es sich, unter Angabe der

auf der Konsole aufleuchtenden Lampen, den technischen Kundendienst zu

verständigen.

Ausschalten

- Läuft ein Programm, das Files auf Disketten verarbeitet, so muß vor

dem Ausschalten des Systems die Konsoltaste BREAK gedrückt werden.

- OFF/ON-Schalter in Stellung OFF bringen.

Anmerkung:

Nach dem Ausschalten des Systems muß ca. 10 Sekunden gewartet werden,

bis das System erneut eingeschaltet werden kann.

2.2.1

ARBEITSBEGINN

Es kann vorkommen, daß der Benutzer vor dem Arbeitsbeginn noch

einige Vorbereitungen treffen muß, z.B. im integrierten Drucker

Papier einlegen, oder die Floppy-Disks in die entsprechenden Ein-

heiten einlegen.

Das Auswechseln der rapier-Rolle

Um die Papierrolle aus dem Drucker zu entfernen und eine neue ein-

zulegen, sind die in Abbildung 2. 1 und 2.2 dargestellten Schritte aus-

zuführen:

- den Plastik-Deckel heben

- den Druckkopf vom Papier entfernen, indem man den entsprechen-

den Heben leicht nach vorn zieht,

- die Papierrolle aus der Halterung nehmen und den Metallzylinder

aus der Rolle ziehen

- den Metallzylinder in die neue Rolle einschieben und die Rolle in

die entsprechende Halterung setzen

- das Papier, von Hand, unter der Druckrolle hindurchziehen und

dann mit dem Vorschubhebel (Abbildung 2.1) das Papier hochziehen

- wenn das Papier ein paar Zentimeter hochsteht, senkt man den Pa-

pierhalter

- den Druckkopf zurückstellen, indem man den entsprechenden Hebel

wieder nach hinten drückt

- die gewünschte Druckstärke kann mit einem Einstellrad gewählt

werden; sie variiert zwischen O und 9: 0 erzeugt Fettdruck und 9

liefert die hellsten Zeichen

- den Plastikdeckel schließen, wobei man das Papier durch den Spalt

hindurchzieht; man betätigt nochmals den Vorschubhebel um zu kon-

trollieren, ob das Papier störungsfrei geführt wird.

.2.2

Abb. 2.1 - Auswechseln der Papierrolle

Einlegen der Disketten

. Das System einschalten,

. Mit dem entsprechenden Hebel die Platteneinheit entriegeln.

Die ganze Einheit hochklappen und mit den entsprechenden

Hebeln die Einschübe öffnen. Muß nur in den oberen Einschub

eine Diskette eingelegt werden, so erübrigt sich das Hochklap-

pen der Einheit.

. In den oberen Einschub ist die Diskette mit dem Etikett nach

oben, in den unteren mit dem Etikett nach unten einzulegen,

bis sie hörbar einrastet.

Siehe Abbildung 2.3.

. Die Einschübe schließen, indem man die entsprechenden Hebel

nach vorne zieht.

Abbildung 2.2: Komponenten des Thermodruckers:

Öffnung für Papiervorschubhebel

Spalt für Papierdurchlauf M

Druckstärkeregler

Papierrolle ya Papiervorschubhebel

Druckrolle

Anpress- Hebel zum Ab-
Hebel zum

rollen und heben des Druck- A nel

Abreißkante kopfes uswechseln
des Druckkopfes.

Station 1 User-Disk -—-

 +... £-.-—- Station 2

System-Disk

o KH

Abb. : 1.3 Einlegen der Disketten

ACHTUNG: Vor dem Schließen muß man sich vergewissern, ob

das System eingeschaltet ist; ist es ausgeschaltet, kann die Dis-

kette zerstört werden.

Die ganze Einheit wieder senken und mit dem entsprechenden He-

bel absichern. Das ist zwar nicht unbedingt erforderlich, es

gewährleistet aber eine bessere Einhaltung der Betriebstemper a-

tur,

Entnehmen der Disketten

Öffnen der Verschlußklappen der Diskettenstationen

Disketten entnehmen und in die Schutzhülle legen

Wichtig !

Disketten sind staub- und druckempfindlich !

Bitte beachten Sie:

Niemals Disketten ohne Schutzhülle aufbewahren

Disketten senkrecht in der mitgelieferten Schachtel aufstellen

Disketten-Etiketten vor dem Aufkleben beschreiben

Die sichtbaren Teile der Magnetplatte nicht berühren

LADEN DES BETRIEBSSYSTEMS

Nachdem man die Disketten eingelegt hat, beginnt das System mit

einer Initialisierungsphase.

während der Initialisierung wird der Teil des Betriebssystems,

der die Interpretation der Tastatureingaben durchführt, von der

System-Diskette in den Hauptspeicher geladen. Während dieser

Phase blinkt die Kontroll-L_ampe RUNNING,

Nach der Initialisierungsphase erscheint auf dem Display die

Meldung READY. Die Lampe RUNNING hört auf zu blinken und

leuchtet konstant. Das System ist nun bereit, Befehle und BASIC-

Anweisungen aufzunehmen,

2.4

(Erscheint anstelle von READY eine Fehlermeldung, so ist der Fehler nach

den Anweisungen der Fehlerliste zu beheben).

DATIERUNG

Bei der Erstellung von Programmen bzw. Files ist es nach der Initialisierung

sinnvoll, mit der Anweisung DATE das Datum einzugeben. Das allgemeine

Format ist :

DATE Datum

"Datum!! besteht aus 6 Zeichen, mit denen in beliebigem Format das Datum

eingegeben werden kann, jedoch darf das Leerzeichen nicht verwendet werden.

Beispiel : 061176
h: AUG 76

OKT.76 falsch : A

Beim Ausdrucken des Kataloges wird das eingegebene Datum in 3 Gruppen zu

je 2 Zeichen, getrennt durch !"-!, ausgegeben.

Beispiel : 06-11-76

Jedes File, das auf Disketten gespeichert wird, wird dann mit dem jeweiligen

Datum versehen. Damit ist bei jedem File ersichtlich, wann es erstellt oder

modifiziert wurde,

Das eingegebene Datum wird zudem auf der System-Diskette festgehalten und

wird erst durch eine neue DATE-Anweisung verändert.

Durch Ändern von Programm- oder Textfiles (REPLACE) oder Beschreiben

von Datenfiles wird im Katalog in der Spalte LAST MOD (letzte Modifikation)

das aktuelle Datum ausgegeben. In der Spalte CREAT bleibt das Datum er-

halten.

EINGABE ÜBER DIE TASTATUR

Über die Tastatur können eingegeben werden :

- Systembefehle

- BASIC-Anweisungen

-— Strings

- Numerische Daten

-— Textzeilen

- Berechnungen im Calculator Mode

Die über die Tastatur eingegebenen Zeichen werden in einem Register,

"Tastatur-Puffer" genannt, abgespeichert. Dieser Puffer hat eine Kapazität

von 80 Zeichen.

Das eingetastete Zeichen erscheint unmittelbar im Display und zwar rechts

von der letzten Stellung des Pointers.

Die numerische Eingabe kann in Fest- oder Gleitkomma (exponentielle Dar-

stellung) erfolgen. Maximal werden 13 signifikante Stellen und bei Gleitkomma-

darstellung 2 Stellen für den Exponenten sowie die negativen Vorzeichen ak-

zeptiert.

Zum Beispiel : .9999999999999E99 / -127.5698 / -31.55E-12

In gewissen Programmen wird aus Kapazitätsgründen für numerische Werte

nur mit halber Kapazität gearbeitet. Entsprechende Hinweise finden sich in

den zugehörigen Bedienungsanleitungen (siehe auch Kapitel 10).

Das Display kann maximal 32 Zeichen und den Pointer anzeigen.

Drückt man die Tasten EOL oder SUM ,„ so werden alle Zeichen außer dem

Pointer vom Tastatur-Puffer in den Hauptspeicher übertragen. Die Zeichen im

Display werden gelöscht und der Pointer weist auf die erste Stelle im Display.

Die Eingabe über die Tastatur ist auch möglich, während das System arbeitet,

während des Druckens und der I/O-Operationen auf Floppy-Disk; die Befehle

EOL oder SUM werden jedoch ignoriert und es ertönt ein Signal;

END OF LINE und SUM werden erst dann angenommen, wenn die Lampe

RUNNING nicht mehr blinkt.

Anmerkung : Gibt man mehr als 80 Zeichen über die Tastatur ein, wird das letzte Zeichen

nicht akzeptiert; dies wird durch ein akustisches Signal angegeben und gleich-

zeitig leuchtet die Konsol-Lampe LINE OVERFLOW auf.

Werden zwei Zeichen gleichzeitig eingegeben, so werden beide ignoriert und

es ertönt ein Signal.

Mitteilungen vom Programm oder vom System werden vom Hauptspeicher in den

ıDisplay-Puffer!!' übertragen. Da bei diesen Mitteilungen der Pointer nicht auf-

leuchtet, können bis zu 32 Zeichen im Display stehen.

Das System ist mit dem Display-Puffer automatisch verbunden, sobald eine An-

weisung DISP ausgeführt wird oder das Programm auf Dateneingabe über die

Tastatur wartet.

Es erscheint bei den Anweisungen INPUT, MAT INPUT oder RKB als An-

frage ? oder ??.

Sobald ein Zeichen eingetastet wird, erlischt diese Mitteilung am Display und

es wird der Inhalt des Tastatur-Puffers angezeigt. Wenn das Display den In-

halt des Tastatur-Puffers anzeigt, ist es möglich, den Inhalt des Display-

CLEAR

RECALL.

wird durch dieselbe Taste der Inhalt des Tastatur-Puffers ins Display gebracht,

Puffers wieder anzuzeigen, indem man die Taste drückt, umgekehrt

in dem sich zuvor der Inhalt des Display-Puffers befand.

Das Display kann sowohl die über die Tastatur eingegebenen Zeichen, als auch

Mitteilungen von Programmen und vom System anzeigen,

Korrektur von Eingaben über die Tastatur

Bevor man EOL oder SUM drückt, ist es möglich, Zeichen im Tastatur-

Puffer : - zu löschen

- zu modifizieren

- einzufügen

- löschen

Löschen eines Zeichens :

Man setzt den Pointer an die Stelle unmittelbar rechts vom Zeichen, das

gelöscht werden soll. Dazu verwendet man die Tasten («) , (>) ,

SHIFT ,„ REPEAT . Man drückt CHAR DELETE.

Das Zeichen wird gelöscht und der Pointer und alle Zeichen rechts davon

werden um eine Stelle weiter nach links verschoben.

Löschen aller Zeichen :

CLEAR
Ü i iti i FT d bhängi Man drückt gleichzeitig die Tasten SHI un RECALL unabhängig von

der Position des Pointers. Es werden im Puffer alle Zeichen gelöscht und

der Pointer weist auf die erste Stelle im Display.

- Modifizieren

Modifizieren eines Zeichens :

Man löscht das zu modifizierende Zeichen (siehe Löschen eines Zeichens)

und gibt das neue Zeichen ein. Das eingetastete Zeichen ersetzt das ge-

löschte Zeichen im Puffer; der Pointer zeigt auf die erste Stelle rechts

nach dem neuen Zeichen.

- Einfügen

Einfügen eines Zeichens :

Man setzt den Pointer an jene Stelle im Display, an der neue Zeichen ein-

gefügt werden sollen. Dazu benutzt man die Tasten

(<) ‚ SHIFT, REPEAT .

Man tastet die neuen Zeichen ein. Im Display werden diese Zeichen an der

Stelle angezeigt, an der sie eingefügt wurden und der Pointer zeigt auf die

erste Stelle rechts vom letzten neuen Zeichen.

ARBEITEN MIT ANWENDERPROGRAMMEN

3.1 STARTEN EINES PROGRAMMES

3.2 INITIALISIEREN UND DUPLIZIEREN VON DISKETTEN

3.2.1 Initialisieren neuer Disketten

3.2.2 Duplizieren von Disketten

3.3 MANUELLES RECHNEN

3.3.1 Umschalten in Calculator-Mode

3.3.2 Mathematische Operation

3.3.3 Rechenvorgang

Seite

3.1

3.3

3.3

3.3

3.3

.1.

MIT ANWENDERPROGRAMMEN
> == m = == = 5553 23 232 zz 2 2 = 5 2 zZ 2 83 = =

Dieses Kapitel soll vorwiegend dem Anwender dienen, der nur mit bestehen-

den Programmen arbeitet und die Programmierung nicht kennt. Es vermittelt

ihm das Vorgehen beim Starten der Programme, dem Vorbereiten und Sichern

der Disketten und erlaubt ihm, den P 6060 als einfachen Tischrechner zu ver-

wenden.

STARTEN EINES PROGRAMMES

- Inbetriebsetzung der Maschine und Einlegen der Disketten laut Beschrei-

bung in Kapitel 2

_ Falls in der Programmbeschreibung nicht anders angegeben, Programm-

start mit der Systemanweisung RUN nach folgendem Format:

RUN Progr ammname FOL.

Der Programmname muß der entsprechenden Programmbeschreibung entnommen

werden.

Beisp iel;

RUN STRESS EOL_

RUN *PROG EOL

Erscheint im Display die Fehlermeldung ERROR 187 (Programm bzw. File nicht

gefunden), ist zu prüfen:

wurde der Programmname richtig eingetippt ?

Zur Kontrolle den eingegebenen Namen mit RECÄALL ins Display zurückrufen.

Ist der verwendete Name richtig, ist zu prüfen : wurden die richtigen Disketten

eingelegt.

INITIALISIEREN UND DUPLIZIEREN VON DISKETTEN

Initialisieren neuer Disketten

Neue Disketten, d.h. Disketten, die nicht beschrieben sind, müssen initiali-

siert werden. Erst dann können Programm- oder Text-Files gespeichert sowie

Daten-Files kreiert werden.

Zur Initialisierung ist folgende Prozedur anzuwenden :

- Maschine in Betrieb nehmen gemäß Kapitel 2 und zu initialisierende Diskette

in Laufwerk 1 legen.

-— Systemanweisung eingeben :

EXEC LBC,UÜ EOL_

(näheres siehe unter LBC, Kapitel 6)

Wenn die Konsol-Lampe RUNNING nicht mehr blinkt, ist die Initialisierung

beendet und im Display erscheint die Meldung READY.

Bereits beschriebene Disketten können durch EXE LBC, U wieder gelöscht

werden (User- und Systemdisketten). Der Befehl EXE LBC,S löscht den In-

halt einer Systemdiskette, nicht aber das sich darauf befindende Betriebs-

system. Dabei muß sich die zu löschende Systemdiskette im Laufwerk 2 be-

finden.

Duplizieren von Disketten

- Kopieren von User-Disks :

Vor Beginn des Kopierens sind die Original-User-Diskette und eine System-

Diskette eingelegt.

. Nach Eingabe von ;

EXEC FDCOPY, U EOL

erscheint im Display die Meldung :

INSERT DISK > RECEIVING DISK ON DRIVE FE

(der zweite Teil der Meldung erscheint nach Drücken der Tasten SHIFT und

[3])

. Empfängerdiskette in das genannte Laufwerk einlegen - Konsoltaste

CONTINUE drücken,

3.3

3.3. 2

.„ Nach dem Kopieren erscheint im Display :

END - ILLEGAL STATUS REARRANGE DISKS

Erscheint anstelle dieser Meldung :

ERROR n - ILLEGAL STATUS REARRANGE DISKS

so ist nach den Anweisungen der Fehlerliste vorzugehen. Die Kopie ist nicht vollständig.

Die Kopie ist dem Laufwerk zu entnehmen und durch die System-Disk zu ersetzen. Nach

Drücken der Taste CONTINUE ist das System wieder arbeitsfähig.

- Kopieren von System-Disks :

Vor Beginn des Kopierens sind eine leere Diskette und eine System-Diskette eingelegt.

. Nach Eingabe von :

EXEC FDCOPY, S EOL

beginnt der Kopiervorgang.

. Nach dem Kopieren erscheint im Display :

END - ILLEGAL STATUS REARRANGE DISKS

Erscheint anstelle dieser Meldung :

ERROR n - ILLEGAL STATUS REARRANGE DISKS

so ist nach den Anweisungen der Fehlerliste vorzugehen. Die Kopie ist nicht vollständig.

Die Kopie ist dem Laufwerk zu entnehmen und durch eine User-Disk zu ersetzen. Nach

Drücken der Taste CONTINUE ist das System wieder arbeitsfähig. (Näheres siehe unter

FDCOPY, Kapitel 6).

MANUELLES RECHNEN (Calculator Mode)

Im folgenden sind nur die wichtigsten Rechenbefehle beschrieben. Alle Möglichkeiten des Cal-

culator Mode enthält das Kapitel 11.

Umschalten in Calculator Mode :

Drücken der Konsoltaste CALC MODE, die nun aufleuchtet.

Die Rückkehr aus dem Calculator Mode erfolgt wieder durch Drücken derselben Taste, oder

durch Eingabe eines Systembefehles wie NEW oder RUN.

Mathematische Operationen :

+ Addition * Multiplikation # Potenzieren

- Subtraktion / Division

3.3

3.3.3 Rechenvorgang :

Es können beliebige mathematische Formeln unter Verwendung dieser Operatoren, sowie der

runden Klammern zur Prioritätensetzung, eingegeben werden (max. 80 Zeichen). Es können

die Tasten der speziellen Rechnertastatur oder der alphanumerischen Tastatur verwendet

werden. Das Resultat wird nach EOL gebildet und erscheint im Display bzw. wird gedruckt,

sofern die PRINT ALL-Taste aktiviert wurde. Das Format des Resultats kann mit dem Dezi-

malstellenrad gesteuert werden.

Das Ergebnis der jeweils letzten Rechenoperation wird gleichzeitig im Register RESULT

gespeichert und kann durch Drücken der entsprechenden Taste RESULT jederzeit wieder in

eine neue Berechnung aufgenommen werden. Dieser Aufruf wird mit dem Symbol 2 dargestellt.

Beispiele :

a) 2*(1.5+2 5) EOL (Dez. Rad auf 3)

im Display erscheint : 67.00

b) $ * 1.0352 E-3 + 108 EOL (®& = vorhergehendes Resultat =\67)

Resultatanzeige : 109.969

3.4

Meldungen :

Wenn die Empfängerdiskette schon als System- bzw. User-Disk initialisiert

wurde, gibt das System vor dem Kopiervorgang eine Warnmeldung aus :

System-Disk User-Disk

FILE "P6FWRZI VALID FILE "P6FSYS! VALID

FILE "P6SW NVALID

FILE "P6FWO !" VALID

FILE "P6FSYS! VALID

Im Display erscheint die Frage !CONTINUE ?!,. Wird die Konsoltaste

CONTINUE gedrückt, so wird der Kopiervorgang gestartet. Soll nicht

kopiert werden, ist die Taste BREAK zu drücken. Es erscheint die Mel-

dung :

BREAK OCCURED - CHECK DISK STATUS.

Nach Herstellen einer gültigen Diskettenkonfiguration (System-Disk und

gegebenenfalls User-Disk) ist die Taste CONTINUE zu drücken.

MANUELLES RECHNEN (Calculator Mode)

Im folgenden sind nur die wichtigsten Rechenbefehle beschrieben. Alle Mög-

lichkeiten des Calculator Mode enthält das Kapitel 11.

Umschalten im Calculator Mode :

Drücken der Konsoltaste CALC MODE, die nun aufleuchtet.

Die Rückkehr aus dem Calculator Mode erfolgt wieder durch Drücken derselber:

Taste, oder durch Eingabe eines Systembefehls wie NEW oder RUN.

Mathematische Operationen :

Addition # Multiplikation T Potenzieren

Subtraktion / Division

3.48

Beispiele:

Rechenvorgang :

Es können beliebige mathematische Formeln unter Verwendung dieser Opera-

toren, sowie der runden Klammern zur Prioritätensetzung, eingegeben werden

(max. 80 Zeichen). Es können die Tasten der speziellen Rechnertastatur oder

der alphanumerischen Tastatur verwendet werden. Das Resultat wird nach

EOL. gebildet und erscheint im Display bzw. wird gedruckt, sofern die PRINT

ALL-Taste aktiviert wurde. Das Format des Resultats kann mit dem Dezimal-

stellenrad gesteuert werden.

Das Ergebnis der jeweils letzten Rechenoperation wird gleichzeitig im Register

RESULT gespeichert und kann durch Drücken der entsprechenden Taste

RESULT jederzeit wieder in eine neue Berechnung aufgenommen werden. Dieser

Aufruf wird mit dem Symbol & dargestellt.

a) 23%#(1.5+2%5) EOL (Dez. Rad auf 3)

im Display erscheint : 67. dd

b) 3 * 1.0352 E-3 + ı@f EOL ($ = vorhergehendes Resultat = 67)

Resultatanzeige : ı dd. 69

4. BETRIEBSARTEN DES SYSTEMS

4.1 COMMAND - MODE

4.2 RUNNING - MODE.

4.2.1 Rückkehr in den Command-Mode

4.2.2 Übergang in den Debugging-Mode

4.2.3 Inputanforderung

4.2.4 Operator Call

4.2.5 Nicht behebbare Fehler

4.3 DEBUGGING - MODE

4.4 CALCULATOR- MODE

4,5 VOLLSTÄNDIGES ZUSTANDSDIAGRAMM

Seite

4.1

4.2

4.2

4.3

4.3

44

4.4

4.5

4.7

BETRIEBSARTEN DES_SYSTEMS

Das System P6@6@ kennt folgende Betriebsarten :

Der

COMMAND MODE

RUNNING MODE

DEBUGGING MODE

CALCULATOR MODE

Zusammenhang der einzelnen Betriebsarten wird am Ende dieses Kapitels

in einer Graphik verdeutlicht.

COMMAND MODE

Der Command-Mode erlaubt :

Das

Die Eingabe und Ausführung von Systembefehlen (Kapitel 6),

den Aufruf von Dienstprogrammen (Abschnitt 6.4),

die Eingabe von Programmen und Texten, sowie Editing-Operationen

(Kapitel 9),

den Übergang in den Calculator-Mode (Kapitel 11).

System ist im Command-Mode :

nach dem Laden des Systems,

nach der Ausführung eines Anwenderprogrammes,

nach der Eingabe von Systembefehlen im Calculator-Mode, oder nach seiner

expliziten Aufhebung durch Drücken der Konsoltaste,

nach dem Drücken der Konsoltaste BREAK im Running-Mode oder

Debugging-Mode.

Im Command-Mode leuchtet die Konsollampe RUNNING konstant. Nach dem

Laden des Systems bzw. nach einer Rückkehr in den Command-Mode aus dem

Running-Mode oder Debugging-Mode erscheint im Display zusätzlich die Mel-

dung NREADY!", falls im Befehl SAVE des laufenden Programmes kein MSG =

d Parameter angegeben wurde.

.2.

RUNNING MODE

Werden vom System Dienstprogr amme oder Anwenderprogr amme ausgeführt,

so befindet sich das System in Running Mode. Bei der Ausführung von

Dienstprogr ammen richten sich die Eingriffsmöglichkeiten nach der Art

und den Erfordernissen des jeweils aufgerufenen Dienstprogrammes.

Die folgende Beschreibung des Running-Modes befaßt sich nur mit der

Ausführung von Anwenderprogr ammen.

Der Aufruf der Ausführung eines Programmes erfolgt mit einem der Befehle:

RUN

PREPARE

Wird eine Programmausführung mit PREPARE gestartet, so wird der

Running-Mode nur über den Debugging-Mode erreicht.

Wird die Ausführung des Programmes mit RUN gestartet, so werden

sämtliche Funktionen von PREPARE mitausgeführt, es wird jedoch

(ohne Übergang in den Debugging-Mode) unmittelbar mit der Ausführung

des Programmes begonnen.

Die genauen Funktionen der Befehle PREPARE und RUN werden in

Kapitel 6 beschrieben.

Möglichkeiten des Verlassens der Programmausführung:

Rückkehr in den Command-Mode

- Wird die Ausführung eines Programmes durch Erreichen der END-An-

weisung regulär beendet, so erfolgt die Rückkehr in den Command-Mode.,

- Nach dem Drücken der Konsoltaste BREAK wird die Abarbeitung des

laufenden Progr ammes abgebrochen, wobei das laufende Statement

regulär beendet wird, eventuell geöffnete Files geschlossen wer den

und das Programm wieder für Editing-Operationen zur Verfügung ge-

stellt wird.

4.2.2 Übergang in den Debugging-Mode

Der Übergang aus dem Running-Mode in den Debugging-Mode erfolgt

durch:

- Drücken der Taste STEP

- Durch einen STOP - Befehl im Programm

- Durch die Ausführung eines STOP - Befehls, der im

Debugging-Mode eingegeben wur de

- Durch einen behebbaren Fehler

- Nach nicht behebbaren Fehlern ohne Möglichkeit der Programmfortsetzung

Wird während der Ausführung eines Programmes die Konsoltaste STEP

gedrückt, so wird am Ende der laufenden Operation die Abarbeitung

des Programmes unterbrochen. Es stehen danach alle Möglichkeiten des

Debugging-Modes zur Verfügung (siehe Kapitel 10). Tritt bei der Ab-

arbeitung eines Programmes ein Fehler auf, so meldet das System den

Fehlercode und bleibt im Debugging-Mode.

Mit den im Debugging-Mode möglichen Operationen können die Ergebnisse

des Statements, das den Fehler verursachte, erzeugt werden und die Ab-

arbeitung mit dem nächsten oder einem beliebigen anderen Befehl fortge-

setzt werden. Die Rückkehr in den Running-Mode erfolgt entweder mit

der Consoltaste CONTINUE oder mit dem Befehl START. (START ist

nur möglich, wenn für das mit RUN aufgerufene Programm bereits die

Preexecution durchgeführt war oder das Programm mit PREPARE ge-

startet wurde.)

Bei Drücken der Taste STEP wird jeweils ein Statement verarbeitet und

in den Debugging-Mode zurückgekehrt.

Inputanfor derung

Tritt im Ablauf der Programmausführung eine der Anweisungen:

RKB, INPUT, MAT INPUT oder RECEIVE# auf, so wartet das System

auf die Eingabe der Daten in richtiger Anzahl und Format.

- Nach dem Abschluß der Eingabe kehrt das System in den Running-

Mode zurück.

4.2.4

- Wird die Konsoltaste BREAK gedrückt, während das System auf eine Ein-

gabe wartet, wird der Programmlauf abgebrochen.

_ Wird die Konsoltaste STEP gedrückt, geht das System in den Debugging-

Mode. Nach Drücken der Taste CONTINUE erscheint im Display ein Frage-

zeichen; die Eingabe kann nun erfolgen.

Wartet das System auf eine Eingabe, so hört die Lampe RUNNING zu blinken

auf und leuchtet konstant.

Operator Call

Bei der Ausführung von Dienstprogrammen werden von einzelnen Programmen

bestimmte Tätigkeiten des Benutzers verlangt, wie etwa den Wechsel von Dis-

ketten durchzuführen.

Die Aufforderung zum Wechseln einer Diskette erfolgt im Display. Nach dem

durchgeführten Diskettentausch wird durch Drücken der Konsoltaste CONTINUE

die Abarbeitung des Dienstprogrammes fortgesetzt.

Das Drücken der Konsoltaste BREAK wird nur akzeptiert, wenn eine arbeits-

fähige Konstellation vorhanden ist.

Behebbare Fehler (Fehlercode 1-16)

Tritt während eines Programmlaufes ein behebbarer Fehler auf, z.B. eine

fehlende Wertzuweisung, geht das System unter Meldung des Fehlercodes in

den DEBUGGING-MODE über. Eine Abfrage von Variablen und gegebenenfalls

eine Wertzuweisung ist möglich. Der Programmlauf kann durch Drücken der

Konsoltaste CONTINUE fortgesetzt werden.

4.2.6.2

Nicht behebbare Fehler

Tritt während der Preexecution eines Programmes (nach PREPARE oder RUN)

ein nicht behebbarer Fehler auf, z.B. ein unerlaubter Sprungbefehl, erfolgt

eine Auflistung der Fehler und das System geht in den COMMAND-MODE über.

Nicht behebbare Fehler der Ausführungsphase (Fehlercode 65-97, 162-170)
Mn mag; AR midi Mm ME Sram SM AH. sad Manch AA. Ama A Mad. Ca DM GN Me Can A AHA ED m send Mn A ME Finn Cie Mm Ar Mi dm AMMHES Mi ME MU sh Min Ma ei

Tritt während eines Programmlaufes ein nicht behebbarer Fehler auf, z.B.

RETURN ohne GOSUB, geht das System unter Meldung des Fehlercodes in

eine Quasi-DEBUGGING-MODE über, d.h. eine Abfrage von Variablen ist

möglich, aber der Programmlauf kann nicht fortgesetzt werden. Es muß die

Konsoltaste BREAK gedrückt werden, danach geht das System in den COMMAND-

MODE über.

DEBUGGING MODE

Das System befindet sich im Debugging-Mode :

. Nach Drücken der Taste STEP

. Nach Ausführung der Anweisung PREPARE

. Bei einer STOP-Anweisung im Programmablauf

. Nach Meldung eines behebbaren Fehlers

. Nach dem Auftreten eines nicht behebbaren Fehlers.

Der Debugging-Mode erlaubt das Austesten eines Programmes und die Behebung

von Fehlern.

Die genaue Arbeitsweise wird im Kapitel 10 beschrieben.

CALCULATOR MODE

Durch die Aktivierung der Calculator-Mode-Taste (leuchtet auf) ist der P6060

als Tischrechner zu verwenden.

Der Debugging-Mode enthält ebenfalls den Calculator-Mode.

Die genaue Beschreibung der Möglichkeiten im Calculator-Mode erfolgt in

Kapitel 11.

4.5 VOLLSTÄNDIGES

ZUSTANDSDITAGRAMM

AUSGESCHALTET

C
I ©®

o
L
O

wi

\
£

PROGRAMMZEILEN z CALC, MODE

Systembefehle | Systembefehle

CALC, MODE Rechneranwei sungen

CALC MODE

BREAK COMMAND MODE Systembef .f CALCULATOR
CONTINUE Ar ne MODE

„> | CALC MODE |
x |

v4 |

N x |
er |

\ 5
| \ V | | &

OPERATOR | ul = EN BEFEHLSNIVEAU
- un OÖ zZ ® | N Ta

CALL Y De, 2 E | en 3 PROGRAMMNIVEAU

\ Q >| %
I

N & | ©
Om N

2
&

y RUNNING
& MODE

° sn STEp

ee x Pt 8 Sn
er Q

rt "ep, &y,
sa“ re „No

Nr x ? °%)

y ver

INPUT Op

ANFORDERUNG iop DEBUGGING
& 08

@ STEP IQ
eh Yen

BREAK, STEP

BREAK BRAEK
STEP STEP

CONTINUE Eingabezeile
Debuggingmode-Anweisung

ALLGEMEINE INFORMATIONEN ÜBER EXTERNE FILES

5.1

5.2

5.4

5.5

5.6

ALLGEMEINES

5.1.1 Programm- und Textflles

5.1.2 Datenfiles

FILE - ORGANISATION

5.2.1 Disketten

FILENAMEN

ERSTELLEN VON FILES

5.4.1 Erstellen von Programmen- und Textfiles

5.4.2 Erstellen von Datenfiles

5.4.2.1 Zugriffsarten

5.4.2.2 Platzbedarf

EXTERNE FILES IN EINEM BASIC - PROGRAMM

5.5.1 Sequentielle Files

5.5.2 Random-Files

5.5.3 Text-Files

SCHÜTZEN VON FILES

Seite

5.1

5.1

5.1

5.2

5.3

5.3

5.4

5.4

5.5

5.5

5.6

5.7

5.7

5.8

5.8

‚1.

.1.2.

A GEMEINE I ORMATIONEN ÜBER EXTERNE FILES

ALLGEMEINES

Unter Files versteht man eine problemorientierte organisatorische

Zusammenfassung gleichartiger oder gleichbehandelter Daten in einem

Speichermedium.

Im System P 6060 werden drei Filetypen unterschieden, und zwar

1) Progr ammfiles

2) Textfiles

3) Datenfiles

Die Files heißen !extern!!, da sie auf dem externen Speicher !"'Floppy-Disk!!

gespeichert sind.

Progr amm- und Textfiles

Progr amm- bzw. Textfiles erlauben es, Programme bzw. Texte unter einem

Namen zu speichern.

Ein Programmfile enthält eine mit Zeilennummern versehene Folge ausführ -

barer BASIC - Anweisungen.

Ein Textfile besteht aus einer Folge numerierter Zeilen, die beliebige

Folgen von ISO - Zeichen enthalten.

Ein Progr ammfile kann daher nur ein Programm, ein Textfile nur einen

Text enthalten. Es haben daher die Begriffe Programm und Progr ammfile

(bzw. Text und Textfile) die gleiche Bedeutung.

Für die Behandlung von Programm-und Textfiles ist im System P6060 eine

Reihe von Systembefehlen vorgesehen. Textfiles können außerdem in einem

Basic-Programm wie sequentielle Datenfiles gelesen werden.

Datenfiles

Datenfiles werden für die progr ammunabhängige permanente Speicherung

numerischer und alphanumerischer Daten verwendet.

FILE - ORGANISATION

Auf den Disketten werden Bibliotheken eingerichtet, die eine gemeinsame

Verwaltung der in ihnen gespeicherten Files erlauben. Jedes File gehört

einer Bibliothek an, wobei 3 verschiedene Arten von Bibliotheken unter-

schieden werden

_ Package - Bibliothek

_ Common - Bibliothek

= USER - Bibliothek

Der wesentliche Unterschied zwischen den einzelnen Bibliotheken be-

steht im Ausmaß, in dem ihre Files vor verschiedenen Operationen ge-

schützt sind.

Die Erstellung der Bibliotheken erfolgt mit Hilfe des Dienstprogr ammes

LBCREATE, das im Kapitel 7 detailliert beschrieben ist.

Die Package - Bibliothek enthält entweder

1) ein von Olivetti erstelltes Programmpaket oder

2) vom Anwender erstellte Programm-, Text- und Datenfiles.

Eine Package - Bibliothek kann als Ganzes mit dem Dienstprogr amm

LBPROTECT gegen ihre Veränderung durch die Systembefehle

CREATE TRUNCATE

MODIFY REPLACE

PURGE TRANSCODE

SAVE FLCOPY

geschützt werden.

- COMMON-Bibliothek

Eine Common-Bibliothek kann sowohl Programme als auch Text- und

Datenfiles enthalten.

Nach der Ausführung des Dienstprogrammes LBPROTECT ist eine

Common-Bibliothek gegen folgende Befehle geschützt

MODIFY

PURGE

—- LISER - Bibliothek

Die User-Bibliothek kann Programme, Text- und Datenfiles enthalten.

Die User-Bibliothek ist nicht geschützt. man kann mit den entsprechenden
»

Befehlen Files modifizieren, löschen und hinzufügen.

.1. Disketten

Es gibt zwei Arten von Disketten: System- und Benutzer -Diskette

(im folgenden als System-Disk und User -Disk bezeichnet).

- die System-Disk

Die System-Disk enthält das Betriebssystem sowie alle Dienst-

programme. Sie kann aber auch eine Package-, eine Common- oder

eine USER-Bibliothek enthalten.

Enthält die Konfiguration nur ein Floppy-Disk-Laufwerk, steht nur

die System-Disk für die Speicherung von Files zur Verfügung.

_ die User -Disk

Die User-Disk kann eine Package-,eine Common- und eine USER-

Bibliothek enthalten.

FILENAMEN

Jedes File auf einer Diskette wird mit seinem Namen identifiziert. Über

den Namen kann ein File gesucht oder vor unerlaubtem Zugriff geschützt

werden.

Ein Filename setzt sich zusammen aus einem Bibliothekskennzeichen (wenn

das File der Package- oder Common-Bibliothek angehört) und dem eigent-

lichen Namen,

- Der eigentliche Name besteht aus maximal 6 alphanumerischen Zeichen,

wobei das erste Zeichen ein Buchstabe sein muß,

- Für das Bibliothekskennzeichen gilt:

n 1 Das File gehört zur Packagebibliothek

+ 11: Das File gehört zur Commonbibliothek

Files, die zum Bestandteil der 1UISER-Bibliothek gehören, haben kein

Bibliothekskennzeichen, d.h. ihre Namen bestehen nur aus dem eigentlichen

Namen.

richtige Namen falsche Namen

Packagebibliothek ”* SINES * (kein Alphazeichen)

Commonbibliothek +G +8G (das 2-te Zeichen ist kein Buchstabe)

Ulserbibliothek GRAPH 2 GRAPH66 (mehr als 6 Zeichen)

ERSTELLEN VON FILES

Erstellen von Programmen und Textfiles

Programme und Texte werden entweder unmittelbar im Arbeitsspeicher

erstellt oder ergeben sich durch die Umwandlung aus einem File eines

anderen Typs.

Soll ein Programm im Arbeitsspeicher über die Tastatur erstellt werden,

so ist vor der Erstellung der Befehl "

NEW

einzugeben.

Soll ein Textfile erstellt werden, so lautet der entsprechende Befehl:

TEXT

Wird nach der Erstellung eines Programmes oder Textes der Befehl

SAVE

gegeben, so wird das Programm (Text) im Arbeitsspeicher unter diesem

Namen in der durch den Namen angegebenen Bibliothek auf einer Diskette

gespeichert.

Beispiel:

TEXT

10 DAS IST EIN TEXT

20 DER IN DER COMMON BIBLIOTHEK

30 DER USER-DISK GESPEICHERT

40 WERDEN SOLL

SAVE U, + TEXTI

Nach der Ausführung des Befehles

SAVE U, + TEXTI

ist der Text in der COMMON-BibHothek der USER-DISK enthalten und

kann unter diesem Namen wieder angesprochen werden.

(z.B. mit OLD +TEXT!).

1) Alle in der Folge erwähnten Systembefehle sind in Kapitel 6 beschrieben.

5.4.2.1

Erstellen von Datenfiles

Für die vollständige Vereinbarung eines Datenfiles sind folgende

Angaben erforderlich:

1) Die Angabe, ob es auf der System-Disk oder User-Disk erstellt

werden soll

2) Ein Name (der auch die Bibliothek festlegt)

3) Die Zugriffsart

4) Der maximale Speicherbedarf,

Ein Datenfile wird mit dem Befehl CREATE erstellt.

Die Zugriffsarten

Ein Datenfile kann sequentiellen oder random f{direkten) Zugriff

erlauben.

- Seqauentielle Datenfiles

Die Daten sind im File in unmittelbarer Aufeinanderfolge gespeichert.

Das Schreiben von Daten in das File erzeugt eine physische Reihen-

folge, die nicht unterbrochen werden kann, und die auch die Reihen-

folge festlegt, in der die Daten aus dem File gelesen werden.

Sequentielle Datenfiles können nur auf zwei Arten beschrieben werden:

- Von Beginn an.

Der vorherige Inhalt wird dabei vollständig zerstört.

- Durch Anhängen der Daten an den alten Inhalt, der dabei erhalten

bleibt,

Es ist dabei nicht möglich, ein Datenelement direkt anzusprechen

und gegen ein anderes auszutauschen,

-— Random Files

Wird für ein Datenfile die Zugriffsart Random festgelegt, so kann auf

jedes Datenelement im File direkt zugegriffen werden, das heißt, es

können Daten an jede beliebige Stelle im File geschrieben werden bzw.

kann beim Lesen auf jedes Datum im File Bezug genommen werden.

Die Festlegung der Position des Datums erfolgt unabhängig von der

Schreib- oder Leseanweisung in einer eigenen Anweisung.

5,4.2.2 Platzbedarf

Die Daten eines Files werden in binärem Format gespeichert. Die

kleinste Einheit, auf die in einem Datenfile zugegriffen werden kann,

ist ein Wort, das aus 4 Bytes besteht.

Ein numerisches Datum belegt in einfacher Genauigkeit in einem

Datenfile ein Wort, in doppelter Genauigkeit belegt es zwei Worte.

Für alphanumerische Daten (Strings) errechnet sich der Platzbedarf

wie folgt:

Die Anzahl der Worte ist gleich INT (({n-1)/4 + 2), wenn n die Anzahl

der Zeichen im String angibt.

Um im Befehl CREATE die Anzahl der Bytes festzulegen, die für

ein Datenfile reserviert werden sollen, ist es daher notwendig, aus

der Art der Daten und der maximalen Anzahl von Daten, die dieses File

enthalten soll, zunächst die Anzahl der Worte und daraus die erforder-

liche Byteanzahl zu errechnen.

Anmerkungen:

- Das Wort ist die kleinste Einheit, auf die in einem File mit random

Zugriff zugegriffen werden kann.

- Ist die Anzahl der im CREATE-Befehl angegebenen Bytes kein Viel-

faches von 128, so wird die Anzahl der Bytes automatisch auf das

nächstgrößere Vielfache von 128 erhöht. Erfolgt keine Angabe der

Länge, so werden 4096 Bytes reserviert.

- Bei Random Files ist die aktuelle Länge unabhängig von der tat-

sächlichen Belegung mit Daten immer gleich der maximalen Länge.

Beispiel:

Auf einer User -Disk soll unter dem Namen SFILE ein File mit sequen-

tiellem Zugriff erstellt werden,

Es soll möglich sein, 1000 Strings mit je zehn Zeichen abzuspeichern.

Der erforderliche Platzbedarf beträgt daher in Bytes:

1000 & 4 x INT ((10-1)/4 +2) = 4000 &4 = 16 000.

Der CREATE Befehl zur Erstellung dieses Files lautet daher:

CRE U, SFILE, S, 16 000.

5.6

5.5

5.5.1

ÖFFNEN VON DATEN-FILES

Bevor ein Programm auf ein externes Datenfile zugreifen kann, ist

es erforderlich, das File durch Angabe seines Namens in einer

FILES oder FILE: Anweisung zu öffnen. Jedem angeführten File

wird ein logischer Kommunikationskanal zwischen Hauptspeicher

und Floppy-Disk zugeordnet. Jeder Kanal hat eine Nummer, die im

weiteren Ablauf des Programmes das File identifiziert, das mit

seinem Namen dem Kanal zugeordnet wurde. Die Zuordnung der

Kanäle zu den Files wird durch die Position des Filenamens im

FILES-Statement bestimmt. Die daraus entstehende Or dnungszahl

heißt !""Filedesignator".

Nach dem Öffnen des Files sind Ein- und Ausgabeoper ationen mit

diesem File möglich, es muß jedoch zwischen Randomfiles und

sequentiellen Files unterschieden werden.

Seqauentielle Files

Nach der Eröffnung eines sequentiellen Files in der FILES oder

in einer FILE: Anweisung kann im File von Beginn an gelesen werden.

Soll auf das File geschrieben werden, so ist das erst nach der An-

weisung SCRÄATCH: möglich, falls von Beginn des Files an geschrieben

werden soll, oder nach APPEND: falls an ein bestehendes File Daten

angehängt werden sollen.

Soll aus dem Schreib-Mode wieder in den Lese-Mode übergegangen

werden, bzw. mit dem Lesen erneut begonnen werden, so ist nach

der Anweisung RESTORE: ein Lesen des Files von Beginn an möglich,

Random Files

Neben allen Möglichkeiten, die sequentielle Files in einem Programm

bieten, gibt es bei Files mit random-Zugriff folgende Möglichkeiten:

Nach seiner Öffnung in einer FILES oder FILE: Anweisung kann sowohl

gelesen als auch geschrieben werden. Die Positionierung auf ein be-

stimmtes Wort im File erfolgt mit einer SETW: Anweisung,

Es gibt zwei Arten von Random-Files :

R -File

Wird das File mit dem Parameter R vereinbart, so enthält es nach

Ausführung von CREATE numerische Daten in einfacher Genauig-

keit, die den Wert "nicht initialisiert!! haben.

Z -File

Wird das File mit dem Parameter Z vereinbart, so enthält es nach

Ausführung von CREATE numerische Daten in einfacher Genauig-

keit, die den Wert @ (Null) haben.

Text — Files

Text-Files können in einem Programm wie sequentielle Datenfiles

im Lese-Mode behandelt werden. Nach dem Öffnen des Files oder

nach Ausführung der Anweisung RESTORE : können Textfiles mit

READ: gelesen werden.

Jede Zeile des Textfiles entspricht einem String, wobei die Zeilen-

nummer Bestandteil dieses Strings ist.

SCHÜTZEN VON FILES

Das Systen P6060 ermöglicht es, Programm- Text- und Daten-Files

vor bestimmten Operationen zu schützen. Es ist dadurch z.B. mög-

lich, Programme zu erstellen, die zwar ausgeführt, aber nicht ge-

druckt oder modifiziert werden können.

Der Schutz einzelner Files ist mit dem Befehl SECURE möglich.

6. SYSTEMBEFEHLE

EINGABE EINES BEFEHLS

NOTATIONEN

LISTE UND FUNKTION DER SYSTEMBEFEHLE

Kurzbeschreibung

Ausführliche Beschreibung

LISTE DER DIENSTPROGRAMME

6.3

6.7

6.89

Der Rechner P 6060 erlaubt es, technische und wissenschaftliche Probleme

mit Programmen in der problemorientierten Sprache BASIC zu lösen.

Auch die Kommunikation mit dem System erfordert eine Sprache; diese

Sprache besteht aus Systembefehlen, die das Erstellen und die Ausführung

eines BASIC-Programmes rasch und bequem ermöglichen. Mit den ver füg-

baren Befehlen kann man unter anderem

Programme erstellen

Programme ausführen

Programme modifizieren

. Programme speichern

Daten- und Textfiles erstellen und abspeichern

Bibliotheken verwalten,

Diese Befehle ermöglichen außerdem noch den Austausch von Information

zwischen dem Hauptspeicher und den externen Einheiten der P6060:

der Floppy-Disk und dem Drucker,

In diesem Kapitel sol! der Aufbau und die Anwendung dieser Systembefehle

besprochen werden.

Bevor die einzelnen Systembefehle besprochen werden, ist es notwendig,

die allgemeinen Regeln und die Elemente der Systembefehle kennenzulernen.

Diese Elemente zu besprechen, ist die Aufgabe des nächsten Kapitels.

DIE EINGABE EINES BEFEHLES

Ein Befehl besteht aus einem Schlüsselwort, dem meistens noch ein oder

mehrere Operanden folgen. Die Schlüsselwörter sind englische Begriffe,

die die Funktion des Befehles beschreiben.

Die Oper anden liefern die zusätzlichen Informationen zur Ausführung der

Operation. Für die Schlüsselwörter der am häufigsten verwendeten Be-

fehle sind eigene Tasten vorhanden.

Das beschleunigt die Eingabe der Befehle und hilft, Eingabefehler zu ver-

meiden. Alle Schlüsselwörter können auf die ersten 3 Buchstaben abge-

kürzt werden; das System analysiert nur die ersten 3 Zeichen zur Be-

stimmung eines Befehles.,

Wird nach dem dritten Zeichen eines Schlüsselwortes ein falscher

Buchstabe eingegeben, so wird dieser Name trotzdem richtig in-

terpretiert.

Nach Eingabe des Schlüsselwortes sind die Operanden zeichenweise

einzutasten; die Anweisung wird dann durch das Drücken der END OF

LINE-Taste abgeschlossen. Zwischen dem Schlüsselwort und dem

ersten Operanden müssen eine oder mehrere Leerstellen stehen.

Nach Drücken der END OF LINE-Taste wird der Befehl analysiert.

Wenn der Befehl vom System interpretiert werden kann, wird er un-

mittelbar ausgeführt, andernfalls wird eine Fehlermeldung ausgege-

ben. Der Befehl kann dann mit den Möglichkeiten der Editing-Oper a-

tionen im Display korrigiert werden.

NOTATIONEN

Die folgenden Symbole wer den nur dazu verwendet, um das Format eines

Befehles zu definieren; sie sind kein Bestandteil des Befehls:

- Bindestrich

Unterstreichung

{} geschwungene Klammer

C) eckige Klammer

Folge von Punkten

schließt eine Folge von Parametern ein, von denen mindestens ein
f

|

\ Parameter vorkommen muß.

| schließt eine Folge von optionalen Parametern ein. Ein solcher

Daramneier kanrı, muß aber nicht angegeben werden.

Stehen mehrere Parameter zur Auswahl und wird kein Parameter

angegeben, so wird vom System der unterstrichene Parameter ein-

gesetzt,

Ein üunterstrichener Parameter muß also nicht explizit eingegeben

werderi,

Beispiel :

Die Befehle SAVE S, PROG

und SAVE ,PROG

sind äquivalent.

.. der vorherige Operand kann mehrmals wiederholt werden.

; trennt die Operanden eines Systembefehls voneinander.

Beachten Sie, daß das Format eines Befehles genau eingehalten werden

muß.

Beispiel :

CAT F ist falsch, richtig ist : CAT ,,‚‚F

LISTE UND FUNKTION DER SYSTEMBEFEHLE

Die Systembefehle und ihre Funktionen sind in alphabetischer Reihenfolge

angeführt.

NAME FUNKTION

AUTO# bewirkt die automatische Vorgabe von Zeilennummern

bei der Eingabe von Text- oder Programmzeilen.

CATALOG druckt das Inhaltsverzeichnis der Bibliotheken aus.

COMPILE wandelt ein Textfile in ein ausführbares BASIC-

Programm um,

CONFIGURE ermöglicht die Verkleinerung des in der Hardware vor-

handenen Anwenderspeichers und erlaubt die Festlegung

der IPSO-Peripherie, die anstelle des Thermodruckers

als Ausgabeeinheit verwendet werden soll.

CREATE reserviert für ein Datenfile den Speicherplatz auf einer

Diskette,

DATE Das über die Tastatur eingegebene Datum wird auf der

System-Disk gespeichert und dient zur Datierung der

Operationen auf externen Files.

DCHANGE Eine Diskette kann gegen eine andere ausgetauscht werden,

während das System eingeschaltet bleibt .

Dadurch wird das Programm im Hauptspeicher nicht ge-

löscht.

6.3

DECOMPILE

DELETE LINE

EXEC

FETCH

LDKEYS

LINK

LIST

MODIFY

NEW

OLD

OPTIONS

PREPARE

PURGE

REPLACE

RESEQUENCE

Ein ausführbares Programm im Arbeitsspeicher wird

in ein Textfile umgewandelt.

löscht eine oder mehrere Zeilen eines Programmes

oder eines Textfiles.

Ein Dienstprogramm (siehe Kapitel 7) wird in den

Arbeitsspeicher geladen und ausgeführt.

Eine Zeile eines Programmes oder Textfiles aus dem

Arbeitsspeicher wird in den Tastaturpuffer übertragen.

Den Funktionstasten wird der auf der System-Disk ge-

speicherte Standardinhalt zugewiesen.

Ein als Textfile auf einer Diskette gespeichertes

Unterprogramm (oder eine mehrzeilige Funktion) wird

in ein Programm im mHauptspeicher integriert.

Es werden eine oder mehrere Zeilen eines im Arbeits-

speicher befindlichen Programmes oder Textfiles ausgedruckt.

Der Name und/oder der reservierte Speicherplatz eines

Files auf einer Diskette wird geändert.

Ein Programm kann über die Tastatur eingegeben werden.

Ein Programm oder ein Textfile wird von einer Diskette

in den Arbeitsspeicher geladen.

Zusätzliche Teile des Betriebssystems werden in den

Hauptspeicher geladen. Der für den Anwender verfügbare

Teil des Hauptspeichers wird dadurch verkleinert.

Syntaktische Analyse eines Programmes und Umwandlung

in ein (lauffähiges) Objekt-?rogramm. Nach Ausführung

des Befehls befindet sich das System im DEBUGGING-Mode.

Ein File in einer nicht geschützten Bibliothek wird gelöscht.

Ein Programm (oder ein Textfile) auf einer Diskette wird

durch das Programm (oder den Text) gleichen Namens er-

setzt, das sich im Arbeitsspeicner befindet.

ermöglicht die Neu- bzw. Umnumerierung eines Programmes

oder eines Textes im Arbeitsspeicher.

RUN

SAVE

SECURE

SHIFT

START

STOP

TEXT

TRANSCODE

TRUNCATE

VALIDATE

startet die Ausführung eines Programmes im Arbeitsspeicher oder von

Filoppy-Disk.

Ein Programm oder ein Textfile im Arbeitsspeicher wird unter einem Namen

auf einer Diskette gespeichert.

schützt ein Programm oder einen Datenfile ganz oder teilweise vor dem ÄAus-

druck oder Display und vor Änderungen.

ermöglicht das Addieren einer Konstanten zu den im Arbeitsspeicher vor-

handenen Zeilennummern ab einer bestimmten Stelle.

Der verfügbare Speicherplatz auf den beiden Disketten wird im Display an-

gezeigt.

ermöglicht die Abarbeitung eines Programmes ab einer angegebenen Zeilen-

nummer. (Eingabe im DEBUGGING-MODE).

Das Programm geht an der durch die Zeilennummer angegebenen Stelle in den

DEBUGGING-MODE über (Eingabe im DEB, -MODE).

der aktuelle Inhalt der Funktionstasten wird auf die Systemn-Disk als Standard-

belegung gespeichert.

Ein Textfile kann über Tastatur eingegeben werden.

Ein Datenfile wird in ein Textfile konvertiert und umgekehrt.

der reservierte Speicherplatz eines sequentieilen Datenfiles wird auf die

aktuelle Länge des Files reduziert.

Ein offen gebliebenes File wird geschlossen.

N

[i
n

| AUTO#

Der Befehl AUTO# (Automatic)

Funktion:

Format:

Wirkung:

Bemerkung:

Für die Anweisungen eines Programmes oder die Zeilen eines

Textfiles werden automatisch Zeilennummern vergeben.

AUT [o#] [zeitemnr.| F Schrittweite]

Zeilennummer ist eine positive ganze Zahl zwischen I und 9999

und gibt die Nummer der nächstfolgenden Anweisung oder Text-

zeile an.

Schrittweite ist eine positive ganze Zahl und gibt die Schrittweite

zur nächsten Zeilennummer an.

Sobald eine Anweisung oder Textzeile mit der Taste EOL

abgeschlossen und in den Arbeitsspeicher übertragen wird, wird

die Nummer der nächsten Zeile im Tastaturpuffer generiert und im

Display angezeigt.

Fehlt die Option-ÄAngabe, so wählt das System als nächste Zeilen-

nummer die um 10 erhöhte, bisher höchste Zeilennummer und er-

höht jeweils um 10. Steht im Arbeitsspeicher noch keine Progr amm-

oder Textzeile, so beginnt die Numerierung bei 10.

Fehlt nur der Parameter Zeilennr. ,„ so wählt das System als nächste

Zeilennummer die um die Schrittweite erhöhte bisher größte Zeilen-

nummer im Hauptspeicher, Steht im Hauptspeicher noch keine Pro-

gramm- oder Textzeile, so beginnt die Numerierung mit der Zahl

Schrittweite,

Ohne Parameter-Angabe Schrittweite begingt die Numerierung bei

Zeilennr. und die Schrittweite beträgt Io.

Um die automatische Zeilennumerierung zu unterbrechen, drückt man

. CLEAR .
die Taste RECALL mit der Taste SHIFT

Das System geht in den COMMAND-MODE.

will man die automatische Zeilennumerierung wieder fortsetzen, muß

neuerlich der Befehl AUTO# eingegeben werden.

Das Schlüsselwort des Befehles kann durch die Taste SAVE
" AUTO &

auf der Befehls-Tastatur eingegeben werden.

Beispiele: Beispiel 1: Automatische Vergabe von Zeilennummern bei der

Progr ammerstellung.

Automatisch: Anfangswert 10

Schrittweite 10

NEL

AUTNH

12 DIM AC?m
za FOR I=1 TO 2a
23 INPUT ACD

“@ NEXT I

SH ENO

Beispiel 2: Zeilennumerierung bei der Eingabe eines Textfiles

mit vorgewähltem Anfangswert und vorgewählter Schrittweite.

TEXT

AUTÜ# 23.7
4 Das ist eine Texteingsbe,

a Jie automatisch bei 72 beasinnend

” mit einer Schrittweite von >

9 rumeriert wird,

B
I
T

R
R
E
L
T
T
E

nn EIHTSTTERRTSTENIE TE

Der Befehi CATALOG

I 5 rt D.

vr
. &

=

wo:
 a

F

wi
 Funktion: Das Inhaltsverzeichn!s von Eibilotheken wird ausce

Format:

uU |

filename/

|
|

_ |
cAT [ALocli=}|, (*

'

IS gibt die Sysiem-Din"

e-

au At $! ® PP ae re on an men m ; u vi
£ Fun Fe De re Ma 2 8%
4 8 5 EN ee Be Fe nr 3 En %

en ® “

+ gibt die Dommon-Bib!ioihek an

N steht für alle Bibiloiheken

Fiiename’ mais Dil Uri war malilgmen Uber

VIER En az ee er lamırn SETZE ig % % | Sk 5 3 des ea Le un e * 3 EWR: ET 3
ve & Er STE RE Be

®

Namen der Fiicz ansstzt

BEIN ea sollnur dor >rtntan Alam cn
& % RE a han en nt we u ® u E

@$ “Er we ” & E & une 2 & & & u de a = Be ee - u een ; we ie eg ee en ft "it 55 Soli nur der M.atiı ga der Texirfiies yedrunzkt worden

h { En a im: ru ge N‘ “ ; ; ID Er soll nun den Marsa gen Datenfllas yedrunrio worden

IR gibt an, daß die vollständige Information über die Files

Wirkung: Der voiisiändige Bei! oa en Oneranden Dan, DATA gr

ersien 3 Operänden Spezilialari werder:

- Filename

- Ersieliunasdatum des la

- Datum der letirien Wert toi han MUT gs x BEE RZ Ze \ ur ER DR z x a

Bemerkung :

Beispiele :

Für das File reservierter Speicherplatz (in Byte)

Aktuelle Länge des Files (in Byte)

Identifikationscode des Files

Bei Release 3.$@:

Anzahl der Abschnitte, in die das File auf der Floppy-Disk zerlegt ist

(max. 4)

Fehlt der 4. Operand, so werden folgende verkürzte Informationen über

die Files, die durch die anderen Operanden spezifiziert wurden, ausge-

geben :

Filename (ohne Bibliotheksangabe # oder +)

Art des Files

Fehlt der 3. Operand, so erfolgt der Ausdruck der Informationen über

Programm-, Text- und Datenfiles.

Fehlt der 2. Operand, so erfolgt der Ausdruck der Informationen über die

Files der Benutzerbibliothek.

Datenfiles, die nicht durch ein reguläres Programmende geschlossen

wurden, werden im Katalog durch das Wort OPEN gekennzeichnet.

Steht als zweiter Operand Filename, so ist der dritte Operand bedeutungs-

los.

Die Ausführung des Befehls kann mit der Konsol-Taste BREAK beendet

werden.

CATU Es werden die Namen und der Typ aller Files der User-

Library der User-Disk gelistet.

CATU + T,F Es wird ein Katalog der Textfiles der Common-Library

der LUser-Disk gedruckt.

CAT, %#, ‚F Es wird ein vollständiger Katalog aller Files der

Package-Library der System-Disk gedruckt.

6.10a

Beispiele : Ausdruck aller Bibliotheken der System-Disk mit vollständiger Information.

1. Release 2.:

DOLLABEL = Ka1179

FILE TYPE EREAT LAST MOD MAX 5IZE USED SIZE CODE NUMBER

*FILE ss 878777 870777 18112 8

+FILE > 578777 ar?08777 18112 a

SEN Ss 878777 970777 18112 8
FPROG1 P 8780777 n78777 256 256
RAN RK 878777 478777 18112 18112
FRÜG2 F a70777 0760777 256 256
ZER zZ 878777 70777? 18112 18112

2. Release 3.@:

CRT S::3,F

* KUFDSB-R 2.98 % NOLLABEL = K812931

FILE TYFE ECREAT LAST MOD MAX SIZE USED SIZE CODE NUMBER EXT

=FILE 5 87-07-77 87-87-77 14112 8 1

+FILE ss 87-07-77 87-07-77 18112 a 1

SEU Ss M7-87-77 8987-87-77 718117 9 2
FRÜOG 1 F 67-07-77 87-07-77 256 256 1
RAN R 2 B7-a7-77 87-87-77 18112 18112 z
PROGZ F 87-07-77 87-87-77 25E 256 1
ZER 2 87-97-77 87-87-77 19112 18112 2

6.10b

| COMPILE

Der Befehl COMPILE

Funktion: Dieser Befehl übersetzt ein Textfile im Arbeitsspeicher in

ein ausführbares BASIC-Progr amm.

Format: COM [P I LE]

Wirkung: Ein Textfile im Arbeitsspeicher wird in ein ausführbares

BASIC-Programm umgewandelt.

Bemerkung: Das Textfile im Arbeitsspeicher muß ein BASIC-Quellenprogramm

sein. Ist das nicht der Fall, so erfolgt eine Fehlermeldung.

Sind im Textfile syntaktische Fehler, so werden die entsprechenden

Fehlermeldungen nach der vollständigen Übersetzung des Files ge-

druckt.

Die Zeilennummern der fehlerhaften Zeilen bleiben erhalten; diese

können dadurch für die notwendigen Korrekturen in den Tastatur -

Puffer geholt werden (Befehl FETCH).

Beispiel 1: Eingabe eines Programmes als Text mit nachfolgender Compilierung

und Ausführung

TEX
AUTOR 5,5
5 INPUT I
18 X=PI+I
415 PRINT X
28 END
com
RUN
“4 FORMALLY CORRECT PROGRAM «ak
ige

®

15
17.141593

Beispiel 2: Fehlerhafte Programmeingabe mit Korrektur:

TEXT
AUTOR
18 INPUT I
28 DIEP I
s8 GOTD 18
46 END

COM

ERROR 182 IN LINE 28

FETCH 28

08286 DIEP I

uB828 DISP I

RUN

#*++# FOÜRMALLY CORRECT PROGRAM kr

?

10588

19888

Zeile 20 : falsches Schlüsselwort DIEP.

Es erfolgt eine Syntax-Kontrolle.

Korrektur der Zeile 20.

Nachfolgende Ausführung ohne neuerliche

Eingabe von COM.

CONFIGURE

Der Befehl CONFIGURE

Funktion :

Format:

Wirkung :

Neufestlegung der Größe des Anwenderspeichers und/oder der Standard-

ausgabeeinheit über das Betriebssystem.

EP=n MS = con [Fısure] |, _ „ [' 2
2

n, und n, sind ganze Zahlen, für diegilt: f&en & 31
1

& = M san,

mit M = in der Hardware vorhandene Anzahl K-Byte.

Der Inhalt des Hauptspeichers wird gelöscht und das System neu initialisiert.

Die Parameter werden auf der Systemdiskette gespeichert und bestimmen so

lange die Konfiguration, bis sie durch einen neuen CONFIGURE-Befehl ge-

ändert werden.

Parameter EP (External Printer) ist angegeben :

Die periphere Einheit, die unter der Adresse N, über IPSO-Interface an-

geschlossen ist, wird statt des Thermodruckers als Ausgabeeinheit ver-

wendet. Das System arbeitet mit dem gesamten Hauptspeicher.

Parameter MS (Memory Size) ist angegeben :

Die Größe des Anwenderspeichers wird auf N, K-Byte festgelegt, Aus-

gabeeinheit ist der Thermodrucker,

Beide Parameter sind angegeben :

Die periphere Einheit, die unter der Adresse n, über IPSO-Interface an-

geschlossen ist, wird als Ausgabeeinheit verwendet und die Größe des

Anwenderspeichers wird auf n, K-Byte festgelegt.

Beide Parameter fehlen :

Ausgabeeinheit ist der Thermodrucker, die Größe des Anwenderspeichers

entspricht der in der Hardware vorhandenen Anzahl K-Byte.

Bemerkungen : Anstelle des Thermodruckers kann ein Schnelldrucker wie der 1220, 1230,

1240 oder eine andere Einheit mit dem gleichen Steuerzeichen verwendet

werden. Es steht nur der Zeichensatz des gewählten Gerätes zur Verfügung.

Zeichnungen der Option PLOT werden in jedem Falle über den Thermo-

drucker ausgeführt.

Durch die Angabe des Parameters EP werden im Arbeitsspeicher 312 Byte

belegt.

Treten bei der Übertragung zum peripheren Drucker Fehler auf, so erfolgt

im Display die Meldung ABN PRT. Nach Beheben der Fehlerursache kann

mit CLEAR und CONTINUE fortgesetzt werden.

Beispiel :

NEW
1BEND
FRE
++** FORMALLY CORRECT PROGRAN xxx :: ROONM=26346 ::

Das System hat 32 K Anwenderspeicher, es sind alle Options geladen.

CON MS=16

NEW

T1dEND

FRE

“*** FORMALLY CORRECT PROGRAM ra : ROON=9982 ::

Durch den Befehl CON wird der Anwenderspeicher auf 16 K verkleinert.

Um wieder den vollen Speicher zu erhalten, wird

CON

eingegeben.

NEW

TAEND

FRE
##+%* FORMALLY CORRECT PROGRAN karte -: RÜON=SPEISE ::

Der Befehl CREATE

Funktion :

Format:

Wirkung ;

CREATE

Für ein Datenfile wird in einer Bibliothek auf einer Diskette der

angegebene Speicherplatz reserviert.

S .
CRE [Are] S ‚„ filename |,

Femme dumm

 _—

"St gibt an, daß der Platz auf der System-Disk reserviert werden soll.

gie gibt an, daß der Platz auf der User-Disk reserviert werden soll.

"filename!! wird ersetzt durch den Namen des Files, das erstellt werden

5"

man

nz

In!

soll.

legt fest, daß das File vom Typ "SEQUENTIELL! ist.

legt fest, daß das File vom Typ "NRANDOM!! ist, Es enthält numerische

Daten in einfacher Genauigkeit, die den Wert "nicht initialisiert"

haben.

legt fest, daß das File vom Typ "RANDOM! ist, Es enthält numerische

Daten in einfacher Genauigkeit, die den Wert @ (Null) haben.

wird ersetzt durch die Anzahl der Bytes, die vom System für das File

reserviert werden sollen.

n ist eine ganz positive Zahl mit : | # n® 242 120

Der vollständige Befehl mit allen Parametern reserviert für das File

mit den Namen Filename n Bytes auf der angegebenen Diskette.

Fehlt der vierte Operand, so werden für das File 4096 Bytes auf der

angegebenen Diskette reserviert.

Die Anzahl n von Bytes wird vom System automatisch auf Vielfache von

128 aufgerundet.

Bemerkung : In einer Bibliothek dürfen zwei Flles nicht den gleichen Namen haben.

Ist eine Package-Bibliothek geschützt, so können darin keine weiteren

Files gespeichert werden,

Man kann in einer Bibliothek nicht mehr Files erstellen, als im Dienst-

programm LBCREATE bei der Erstellung der Bibliothek festgelegt

wurde (siehe Abschnitt 6.4).

Beispiel: _ In der Package-Bibliothek der User-Disk
CFRE U. #HRME.R.51932

wird ein Randomfile mit 8K-Byte erstellt.

In der User-Bibliothek der System-Disk

TEE .USFIL.S
wird ein sequentielles Datenfile mit der

Standar dlänge von 4096 Byte erstellt.

Der Befehl

Funktion :

Format :

Wirkung :

Bemerkung

Beispiele:

| DATE

DATE

Die Operationen mit den Files auf einer Floppy-Disk werden datiert.

DAT B Datum

1WDatum!! ist eine Folge von 6 beliebigen ISO-Zeichen mit Ausnahme des

Leerzeichens.

Bei jedem Laden des Systems (nach dem Einschalten oder nach der Aus-

führung eines OPTIONS- oder CONFIGURE-Befehls) wird die Zeichen-

folge, die zuletzt als Datum auf der System-Disk gespeichert wurde, in

den Hauptspeicher geladen.

Die Zeichenfolge wird im allgemeinen folgendermaßen aussehen :

TTMMJJ (Tag, Monat, Jahr)

Es ist zu beachten, daß die Ausgabe der Zeichenfolge in drei Gruppen zu

je zwei Zeichen getrennt durch "-!!, erfolgt : die eingegebene Zeichenfolge

n3U1770 wird mit NOU-L1-77" ausgegeben.

LATE JULI?F

F m Mi ICT avır- PR ILE TYPE CREAT ILHST MOb MAX SIZE USED SIZE CObE HUMBER EXT

FILE 5 JU-LI- FF JuU-LI-77 +agE 5 ’

DATE Grar??

FILE TYFE CRERT LHST NOG MAX SIZE USED SIrE CODE NUMBER EXT

FILE > JU-LI-?7 87-87-77 89%6 a 4

| DCHANGE

Der Befehl DCHANGE (Disk change)

Funktion: Dieser Befehl ermöglicht das Austauschen von Floppy-Disks,

während das System geladen ist, ohne dabei den Inhalt des

Arbeitsspeichers zu löschen.

Format: och [anse] [3]

st gibt an, daß die System-Disk gewechselt wird.

ut gibt an, daß die UÜser-Disk gewechselt wird,

Wirkung: . Bei einer Konfiguration mit zwei Platten kann man die durch

den Operanden angegebenen Floppy-Disk austauschen.

Wurde bis zu diesem Befehl nur mit der System-Disk gearbei -

tet und wird der Befehl DCH U eingegeben, kann danach mit

beiden Disketten gearbeitet werden.

Nach Eingabe des Befehles gibt das System die Meldung

USDIS x ON DRIVE INSERT DISK > NEW ee 2
aus, je nachdem, ob der Operand S oder UÜ eingegeben wur de.

Nachdem man die gewünschte Platte eingelegt hat, muß man die

Konsol-Taste CONTINUE drücken.

Bemerkung: Wechselt man eine Systemplatte aus, so muß die neue Platte dem-

selben Release angehören.

Wird eine Disk ohne vorherige Eingabe des Befehls DCHANGE ge-

wechselt, so erfolgt im Display die Meldung

ABN FD - DCH OMITTED

Sobald ein Systembefehl eingegeben wird. Durch Drücken der Taste

CLEAR (oder der Tasten RECALL. und CONTINUE) kehrt das System

in den Command-Mode zurück,

Beispiele:

Wechseln der System-Disk

DCH
INSERT DISK

Wechseln der User-Disk

CCH U

INSERT DISK

>NEW SYSDIS UN DRIVE **

>NEW USDIS ON DRIVE *

DECOMPILE

Der Befehl DECOMPILE

Funktion :

Format:

Wirkung :

Bemerkung :

Beispiel :

Ein BASIC-Programm im Arbeitsspeicher wird in ein Textfile

umgewandelt.

DEC [omPıre]

Das BASIC-Programm im Hauptspeicher wird in ein Textfile

umgewandelt,

Bei der Decompilierung werden Variablennamen oder Zeilen-

nummern die noch in den Tabellen enthalten sind, aufgrund von

Änderungen aber nicht mehr verwendet bzw. angesprochen werden

aus den Tabellen entfernt. Durch Eingabe der Befehle DEC-COM

kann ein Programm dadurch verkürzt und im Ablauf beschleunigt

werden.

Durch den Befehl SECURE geschützte Programme können nicht in ein

Textfile konvertiert werden.

Es können nur Zeilen decompiliert werden, die außer der Zeilen-

nummer höchstens 76 signifikante Zeichen enthalten.

LIST
FILE

9819 KANDOMIZE Programmeingabe
gaza PRINT USING 20, RND.RND.RND, PN
Ba le
as END

ENG GOF LISTING

or Umwandlung des Programmes
15 vo

FILE in einen Text

FRNDOMIZE
‚PRINT USING 39. RND. RND,RND, RND Ausdruck als Text ohne

BH.KHHhDO 0 EHRE ee Zeilennummer
ENE:

END üF LISTING

DELETE LINE

Der Befehi DELETE LINE

Funktion: Eine oder mehrere Programm- oder Textzeilen im Arbeitsspeicher

werden gelöscht.

Forniat: DEL Gi: LINE 1Zeitennummer | [, Zeilennummer ,]|

!'Zeilennummer |" gibt die Nummer der Zeile an, (oder die erste

Zeile eines Abschnittes), die (der) gelöscht

werden soli.

! Zeilennummer 2 gibt die letzte Zeile eines Abschnittes an, der

gelöscht werden soll.

Wirkung: . Der vollständige Befehl mit allen Operanden gibt dem System an,

daß alle Zeilen des durch Zeilennummer ’ und Zeilennummer 2 be-

stimmten Abschnittes des Programmes oder des Textfiles im

Arbeitsspeicher gelöscht werden sollen.

Fehlt der zweite Operand, so wird nur die Zeile, deren Zeilen-

nummer durch den ersten Operanden angegeben wird, gelöscht.

Fehlen beide Operanden, so wird eine der folgenden Zeilen ge-

löscht:

1) Die letzte über Tastatur eingegebene Zeile

2) Die letzte Zeile, die mit dem Befehl FETCH oder mit Hilfe

der Tasten Y oder # in den Tastaturpuffer übertragen wur de.

3) Die letzte Zeile, die mit dem Befehl LIST ausgedruckt wurde.

4) Die letzte Zeile eines Programmes, das mit dem Befehl RUN

ausgeführt wird.

Bemerkung: Zeilen von Programmen oder Textfiles, die mit dem Befehi SECURE

geschützt wurden, können nicht gelöscht werden.

DELETE LINE
das Schlüsselwort DELETE LINE kannmit der Taste RUN

zusammen mit der Taste SHIFT eingegeben werden.

im Befehl angegebene Zeilennummern müssen im Programm vorhanden

sein.

Beispiel:
OLb TEST

LIST
FILE TEST

8818 REM BEISPIEL"DELETE LINE"

BBZB REM
83838 FOR I=1 TO 5 STEP 1

9848 PRINT 1,

8858 FOR J=1 TO 4 STEP 1

3668 PRINT)J;

48786 NEXT J

8688 PRINT

5698 NEXT I

a18a8 END

END OF LISTING

RUN

1 1 234

2 12 3 4
3 1.23 4

4 1 2.3 4
5 1 2 3 4

GCELETE LINE 38,48

DELETE LINE 98

LIST

FILE TEST

5518 REM BEISPIEL'"DELETE LINE"
GaZB REM

9858 FOR J=1 TO “# STEP 1

Gg686 PRINT);

06578 NEAT J

8a36 PRINT

A188 END

END OF LISTING

RUN

6.26

Der Befehl EXEC (Execute)

Funktion :

Format :

Wirkung :

Bemerkung :

Lädt ein Dienstprogramm in den Arbeitsspeicher und führt es aus.

EXE C Dienstprogramm „ Parameter , Parameter ...

NDienstprogramm!! gibt den Namen des Dienstprogrammes an.

NParameter! kennzeichnet die für das jeweilige Dienstprogramm spezi-

fischen Operanden.

EXEC fordert vom System das angegebene Dienstprogramm an. Dieses wird

nach dem L.aden in den Arbeitsspeicher ausgeführt.

Durch den Befehl EXEC wird der Inhalt der Arbeitsspeicher gelöscht. Es

stehen die folgenden Dienstprogramme zur Verfügung :

FDCOPY

FLCOPY

LBCREATE

LIBCOPY

LBPROTECT

6.27

Der Befehl

Funktion:

Format:

Wirkung:

Bemerkung:

| FETCH

FETCH

Eine Programmzeile oder eine Textzeile im Hauptspeicher wird

in den Tastatur -Puffer übertragen.

FET [cH] [zei lennummer)

ıZeilennummer! ist die Nummer der Zeile, die in den Tastatur -

Puffer übertragen werden soll.

Die Progr amm- oder Textzeile mit der angegebenen Zeilen-

nummer wird in den Tastatur -Puffer übertragen und im Display

angezeigt.

Fehit der Operand, so wird je nachdem, welche Operation

unmittelbar zuvor durchgeführt wurde, eine der folgenden

Zeilen in den Tastatur -Puffer übertragen und im Display

angezeigt:

- Die letzte über Tastatur eingegebene Zeile;

- Die letzte Zeile eines Files, das mit dem Befehl OLD

in den Arbeitsspeicher geladen wurde;

- Die letzte mit dem Befehl LIST ausgedruckte Zeile;

- Die letzte Anweisung eines Programmes, das gerade aus-

geführt wurde und noch im Arbeitsspeicher steht;

- Die letzte Zeile, die mit Hilfe der Tasten Y oder t

in den Tastatur-Puffer übertragen wurde.

Gibt man im Befehl FETCH eine Zeilennummer ein, die im

Arbeitsspeicher nicht existiert, so wird die Zeile mit der

nächst kleineren Zeilennummer in den Tastatur-Puffer übertragen,

ist die eingegebene Zeilennummer kleiner als die kleinste Zeilen-

nummer im Arbeitsspeicher, so wird die Zeile mit der größten Zeilen-

nummer in den Tastatur-Puffer übertragen,

Die im Display angezeigte Zeile hat nicht immer das gleiche Format,

in dem die Zeile über die Tastatur eingegeben wurde; sie wird vor-

her vom System modifiziert. Gibt man zum Beispiel die Anweisung

19 A=B

ein, so wird sie mit dem Befehl FETCH im Display als

BIIg LETA=B

angezeigt.

Ergibt sich beim Editing durch das System eine Zeile mit

mehr als 80 Zeichen, so werden alle Leerstellen eliminiert.

FETCH kann nicht angewendet werden, wenn ein Programm

oder Text mit SECURE geschützt wurde.

. FETCH .
Das Schlüsselwort kann durch die Taste NEW mit SHIFT

eingegeben werden.

Beispiele:

OLD TEST

LIST

FILE TEST

4318 REM BEISPIEL"DELETE LINE"
a828 REM

8838 FOR I=1 TO 5 STEP 1
aas#u PRINT I,
u8858 FOR J=1 TO 4 STEP 14
4VB6B PRINT J;

aur9a NEXT J

8688 PRINT
0998 NEXT I

aide END

END OF LISTING

FETCH 38
an39 FÜR I=1 TO 5 STEP 1

LIST 58,68

FILE TEST

85450 FOR J=1 TO & STEP 4
yasd PRINT 3;

END OF LISTING

FETCH

GbR FRINT 3;

FETICH 5

4188 END

FETCH 71
8878 NEXT J

Der Befehl LDKEYS (Load Keys)

Funktion :

Format :

Wirkung ;

Beispiel 1:

Beispiel 2:

LDKEYS

Die Standardbelegung der Funktionstasten wird wieder

hergestellt.

LDK Ers]

Die aktuelle Belegung der Funktionstasten wird durch

die Standardbelegung ersetzt. (s.a. STKEY)

(Die Standardbelegung sei :

Fi : STANDARD

F2 : BELEGUNG)

CALC

MODE

FEET#1 72 MODIFIZIERTE

drücken von Fi und F2:

und Eingabe von

LDKEYS

FI F2

STANDARDBELEGUNG

NEW

15 FKEY#1, AENDERUNG

za FEEY#Z. DURCH PROGRAMM

3a END

RUN
*##%# FORMALLY CORRECT PROGRAM rar

HENDERUNG DURCH PROGRAMM

LDKEYS

Übergang in den CALC.-Mode

Die Belegung "STANDARD! der

Taste Fi wird durch den String

NMODIFIZIERTE! ersetzt.

Im Display steht :

MODIFIZIERTE BELEGUNG

Es wird die Standardbelegung

wiederhergestellt.

Angabe eines Programmes zur

Modifikation.

Im Display erscheinender Text

Wiederherstellung der Standard-

belegung. 6.31

Der Befehl LINK

Funktion

Format :

Wirkung :

| LINK

Ein Unterprogramm oder eine Funktionsdefinition, die als Textfile auf einer

Diskette gespeichert ist, wird in das Programm im Hauptspeicher integriert.

LIN [«<] filename, Zeilennummer .]

N"filename! ist der Name des Textfiles, das in das Programm im Haupt-

speicher eingefügt werden soll.

"Zeilennummer!! gibt die Zeilennummer an, ab der ein Unterprogramm einge-

fügt werden soll.

Nag N ist ein Großbuchstabe, der den Namen angibt, unter dem eine

Funktionsdefinition in das Programm eingefügt werden soll.

Wird der Operand & angegeben, so wird die Funktionsdefinition, die auf einer

Diskette als Textfile unter dem Namen !filename!' gespeichert ist, in das Pro-

gramm im Hauptspeicher eingefügt. Der ersten Zeile der Funktionsdefinition

wird die im LINK-Befehl angegebene !"Zeilennummer! zugewiesen. Alle fol-

genden Zeilennummern werden in der Schrittweite der Funktionsdefinition um-

numeriert. Das System weist der Funktion den Namen FN©€ zu, oder, bei

einer Stringfunktion, den Namen FNX 8.

Wird nur der Operand "Zeilennummer!! angegeben, so wird das Unterprogramm,

das als Textfile mit dem Namen !filename!' auf einer Diskette gespeichert ist,

in das bestehende Programm eingefügt. Die erste Zeile des Unterprogrammes

erhält die im LINK-Befehl angegebene Zeilennummer, die folgenden Zeilen

werden in der Schrittweite des Unterprogrammes umnumeriert.

Bemerkung :

Beispiel 1:

Soll ein Unterprogramm oder eine Funktionsdefinition in ein Programm einge-

fügt werden, so muß durch den Befehl SHIFT an entsprechender Stelle Platz

für die einzufügenden Zeilen geschaffen werden.

Nach der Ausführung des Befehls LINK steht im Arbeitsspeicher ein neues,

ausführbares Programm zur Verfügung.

Es ist darauf zu achten, daß das Programm nach der Ausführung des Befehles

LINK nur ein END-Statement enthält.

Einfügen einer Funktionsdefinition in ein Programm im Hauptspeicher

FILE LINE Funktionsdefinition (Textfile)

agaa DEF FHB
stas FRINT " 1", "SORCII"
ala PRINT
atza FOR I=1 TON
s13a IF IMHTÜSGREIDII<CHSRRCII THEN 158
Sisf PRINT 1.5S0RCH
a4sa NEXT I
AiER FÜR I=1 TO 18
S4ra FRIHNT
“152 NET I

3150 FNxk=A
sraa FHNEND

EHDb OF LISTING

FILE LINK1 Hauptprogramm

S4aa DISF "N='":
Sta IHFUT HN
S4za LET V=FhdA
341234 GOTO 158
44152 BISF WEITER";
166 IHNFUT &
ara IF K=1 THEN 198
a15a END

END OF LISTING

OLD LINE1

SHIFT 158, 10604

LINE LINK. ts. A

FILE LINK Neues Hauptprogramm (nach Ausführung

des Befehles LINK)

aaa DISP "'N='"

aiia INPUT N

BIER LET Y=FNH

31739 GOTO 1158

Aisd DEF FNRA

a158 FRINT '" I","SQRELI"

niet PRINT

3178 FOR I=1 TO N STEP 1

vi2B IF INTISGREIIIS>PSORCII THEN 288

41933 PRINT I,>SGRCI

3288 NEXT I

5z12 FOR I=1 TO 18 5STEP 1

GZZRA PRINT

0236 NEAT I

3248 LET FN#=8

‚42586 FNEND

1158 DISP "WEITER";

1162 INPUT X

ı17a IF x=1 THEN 108

1158 END

END UF, LISTING

Beispiel 2: Einfügen eines Unterprogrammes in ein Programm im Hauptspeicher

FILE *_ INK Unterprogramm (Textfile)

ajaa FRIHT '"' 1°."SORCII"

"118 FRINT

FOR I=1 TON

IF INTÜSUERLIIISPSURCII THEN 158

PRINT I1.SdARCD)

NEXT I

FGR I=1 TO 16

u FRINT

n18A NEXT I

“194 RETURN

u

a
t

n
r

an

1

he

e
e

he

S
I
T
E

i
h

S
a
a
t

EHb OF LISTING

6.35

r ILE LINKZ

ga DISP "N=";

1@ INPUT N

za GOSUB 148

3a GATO 154

EISP "WEITER";

ba INPUT x

re IF A=1 THEN 188

88 ENL

So

K
R
)

Z
u
g
 ı

e[
n

Ss

a
e

EHE OF LISTING

ÜULD LINEZ

SHIFT 158. 1888

LINK #LINK, 146

FILE LINKZ Neues Hauptprogramm (nach Ausführung

des Befehles LINK)

DISF '"N=';

INFUT N

GDSUB 148

GDTDO 1158

FEINT ' 1'"."SORLEII"

PRINT

FüR I=1 TO N STEP 1

IF INTEISGREIII<DSORCII THEN 198

PRINT I.50RCD

NEST I

FÜR I=ı Tü 1A STEF 1

PRINT

NEXT I

RETURN

DISP "WEITER":

INFUT Ss

IF x=1 THEN 1688

END

Z
n

IN
 Be

 S
e
Ze

m
a

S
m

a

Do

u
u

8)

ma
ch

e
e

Bi

BI

RI

I

TI

M
u
n
i
r
i

u

m
a
ß

m
i
n

a!

B
m

a

a

u

a

.
.

Pu

“
u

D
o

EHb OF LISTING

6.36

Der Befehl

Funktion:

Format:

Wirkung:

Bemerkung:

LIST

Eine oder mehrere Zeilen eines Programmes oder eines Text-

files im Arbeitsspeicher werden ausgedruckt,

[Zeitemnr. J „x

LIS [r] [Zeitennr. ‚| ;

£. j . eilennr 2

"Zeilennummer " gibt die Zeile an, die ausgedruckt werden

soll, beziehungsweise gibt die erste Zeile

eines Absatzes an, der ausgedruckt werden

soll.

"Zeilennummer „! gibt die letzte Zeile eines Äbsatzes an, der

ausgedruckt werden soll.

nic unterdrückt den Ausdruck der Zeilennummern

bei der Ausgabe eines Textfiles.

Progr amm- oder Textzeilen im Arbeitsspeicher, deren Zeilen-

nummern nicht kleiner als Zeilennummer, und nicht größer als

Zeilennummer,_ sind, werden ausgedruckt.
2

Fehlen die beiden letzten Operanden, so werden die Programm-

oder Textzeilen im Arbeitsspeicher beginnend mit der Zeile,

deren Nummer als erster Operand angegeben wird, ausgedruckt.

. Fehlt der erste und der dritte Operand, so werden alle Zeilen

mit einer Nummer, die kleiner oder gleich der angegebenen

Nummer ist, gedruckt.

. Fehlen sämtliche Operanden, so wird das gesamte Programm

bzw. das gesamte Textfile im Arbeitsspeicher gedruckt.

Der Operand X bewirkt, daß die Zeilen eines Textfiles ohne

Zeilennummern gedruckt werden.

Die mit dem Befehl LIST ausgegebenen Zeilen werden in einem

Standardformat gedruckt; dabei wird die Zeilennummer vierstellig

mit führenden Nullen ausgegeben.

Wurde zum Beispiel

4$ A=B

eingegeben, so erfolgt der Ausdruck:

dd49 LET A=B.

Ergibt sich dabei eine Zeile mit mehr als 80 Zeichen, so wird

sie komprimiert, indem nicht signifikante Leerstellen wegge-

lassen werden.

Die gleichen Editing-Operationen erfolgen auch, wenn ein

Programm mit dem Befehl DECOMPILE in ein Textfile um-

gewandelt wird.

Ist ein Programm oder Textfile mit SECURE geschützt,

so kann das Programrn oder das Textfile nicht mit LIST

ausgedruckt werden.

Das Schlüsselwort des Befehles LIST kann durch die Taste

OLD
LIST eingegeben werden.

Beispiele: Beispiel 1: Ausdruck von Textfiles und Programmen

TEST m
a
s
ı

m

m
m

vo
l

be
l

3818 REM BEISPIEL"DELETE LINE"

Bo2e REM

6836 FOR I=1 TO 5 STEP 1

ads+8 FRINT IT

8858 FOR J=1 TO + STEP 1

B858 FRINT J;

Bay’a NEAT J

aAasB PRINT

3659 NEST I

siag END

EHb GF LISTING

LIST 78
FILE TEST

Sar78 NEAT J

G8gB FRINT
3958 NEST I

tes END

EHb OF LISTING

LIST 36,58

FILE TEST

1. 8 FOR I=1 TO 5 STEP 1
8 PRINT I,

8 FOR J=1 TO 4 STEP 1 n
f

Gl

S
D

S
m

Do

EHRD OF LISTING

LIST „Z

FILE TEST

h
 an

B818 REM BEISPIEL'"DELETE LINE"
8628 REM

END OF LISTING

Beispiel 2;

LIST ,,x

FILE TEXT

BEISPIEL 2:
ade a af ae ae

DAS BEISPIEL ZEIGT DEN RUSDRUCK
EINES TEXTFILES OHNE ZEILENNUMNMERN.
IM ENTSPRECHENDEN LIST-BEFEHL

IST ALS DRITTER PARAMETER "X" ANZUGEBEN

END OF LISTING

Der Befehl MODIFY

Funktion: Der Name eines Files und/oder der für ein Datenfile reservierte

Speicherplatz auf einer Diskette werden geändert.

fil

Format: MOD ırv] filename | Ba 1 ’

n

filename, ! ist der Name des zu modifizierenden Files.

"filename," gibt den neuen Namen für das File an.

In! ist eine positive ganze Zahl und legt den neuen

Speicherplatz fest, der für das File auf der Floppy-

Disk reserviert werden soll.

Wirkung: Der vollständige Befehl mit allen drei Operanden bewirkt, daß

der alte Name des Files in der Bibliothek durch den neuen Namen

ersetzt wird und daß der Speicherbereich auf der Piatte auf

n byte geändert werden soll.

Werden nur die Operanden filename, und filename, angegeben,

so erhält das Programm-, Text- oder Datenfile den neuen

Namen filename,.

Sind die Operanden filename, und filename, angegeben, wird

zunächst geprüft, ob beide Filenamen zum gleichen Bibliothek-

Typ gehören. Wenn nein, erfolgt eine Fehlermeldung. Ändern-

falls wird geprüft, ob in der entsprechenden Bibliothek ein

File mit Namen filename, vorhanden ist. Falls ja, erfolgt wie-

der Fehlermeldung, andernfalls wird die Ausführung des Befehles

fortgesetzt.

. Wirdnals zweiter Operand angegeben, so behält das File seinen

Namen, es werden aber n byte auf der Diskette für das File re-

serviert.

Bemerkung: Durch den Befehl MODIFY kann der für Datenfiles reservierte Platz

nur bis zum aktuell belegten Speicherplatz verkleinert werden, um zu

verhindern, daß Daten verloren gehen.

Beispiel:

Da für Random-Files das logische Ende und physische Ende zu-

sammenfallen, kann der für ein Random-File reservierte Spei-

cherplatz nicht verkleinert werden.

In einer Bibliothek dürfen zwei Files nicht den gleichen Namen

haben.

Für Files in Package- und Commonbibliotheken, die mit dem Dienst-

programm LB PROTECT geschützt wurden, kann nur die Größe

modifiziert werden.

Ändern des Namens und der reservierten Länge für ein Random-

file

#%

FILE

RR 1

RFI
SFI
SPI

Müb

MOD

+

1.7
 DJ F

RELEASE 28 *«

TYPE CREAT LAST MOD

S 259277 250277
LE RK 221176 221176
LE 5 2588976 269976
EL R 264976 268376

55.55NEU.S89

SFILE,8088A

RFILE.RANDOM

17

er

7

RELEASE 2.8 *

FILE TFFE CREAT LAST MOD

S5SNEU 5 2539277 250277
EHNDOM R Z341176E 250277
SFILE SS 2689376 268976
SPIEL R 288976 2683976

VOLLABEL = K91179

MAX SIZE USED SIZE CODE NUMBER

4896 +38
128 128
48396 32
18112 18112

Das File SS erhält den Namen SSNEU

und wird verkleinert.

Das File SFILE wird vergrößert.

Das File RFILE erhält den Namen

RANDOM.,

VOLLABEL = K811793

MAX SIZE SEC SIZE CODE NUMBER

312 +a0

128 128

DAb4 I7

18112 19112

NEW

Der Befehl NEW

Funktion: Das System wird auf die Eingabe eines Programmes über die

Tastatur vorbereitet.

Format: NEW

Wirkung: Der aktuelle Inhalt des Arbeitsspeichers wird gelöscht. Das

System faßt alle im folgenden eingegebenen Zeilen als Zeilen

eines neuen BÄASIC-Programmes auf und kontrolliert die Zei-

len auf syntaktische Richtigkeit.

Bemerkung: Da der aktuelle Inhalt des Arbeitsspeichers bei der Eingabe

des Befehles NEW gelöscht wird, muß zuvor einer der Befehle

SAVE oder REPLACE eingegeben werden, wenn dieser In-

halt des Arbeitsspeichers gespeichert werden soll.

Nach dem Laden (z.B. nach einem OPTIONS-Befehl) des

Systems kann ein Programm ohne den Befehl NEW einge-

geben werden.

Der Befehl

Funktion:

Format:

Wirkung:

Bemerkung:

Beispiel:

OLD

OLD

Ein Programm oder Textfile wird von der Diskette in den

Arbeitsspeicher geladen.

OLD filename

Nfilename!! ist der Name des Programmes oder des Text-

files, das in den Arbeitsspeicher geladen wer -

den soll.

Es wird geprüft, ob ein Programm oder Textfile mit dem

Namen !"filename!! auf einer Diskette gespeichert ist, wenn

ja, wird das Programm (das Textfile) in den Arbeitsspeicher

geladen. Der bisherige Inhalt des Arbeitsspeichers wird ge-

löscht.

Enthält das System zwei Floppy-Disks, so wird das File zu-

erst auf der Systemplatte gesucht,

Hat man also zwei Programme unter demselben Namen auf

der System- und auf der User-Disk gespeichert und soll das

Programm von der User-Disk in den Hauptspeicher geladen

werden, so muß die System-Disk gegen eine andere, die kein

Programm oder Textfile dieses Namens enthält, ausgewechselt

werden.

Das Schlüsselwort des Befehles kann durch Drücken der

Taste SHIFT zusammen mit der Taste ar eingegeben

werden.

OLD TEXT
LIST ‚18,8%

FILE TEXT

BEISPIEL 2:

END OF LISTING

OLD TEST
FETCH 58
8858 FOR J=1 TO & STEP 1

6.45

Der Befehl

Funktion :

Format :

Wirkung :

OPTIONS

OPTIONS

Das Betriebssystem im Hauptspeicher wird um die angegebenen zusätzlichen

Routinen erweitert; dabei wird der Anwenderbereich des Hauptspeichers ein-

geschränkt.

OPT lons] Prtion] [option]

Noption!! kann sein: MAT [Rıx] ‚ STR [ne], PLO rer], RS2 2] .

Jede Option darf nur einmal im Befehl angegeben

werden.

Es werden die im Befehl angeführten Module (= Teile) des Betriebssystems in

den Anwenderteil des Hauptspeichers geladen.

Der Parameter MAT bewirkt, daß der zur Ausführung von Matrizenoperationen

benötigte Modul geladen wird; es werden 1,5 K-Byte im Anwenderteil des

Hauptspeichers benötigt.

Der Parameter STR bewirkt, daß der zur Ausführung von Stringoperationen

benötigte Modul geladen wird. Es werden 2 K-Byte im Anwenderteil des

Hauptspeichers benötigt.

Der Parameter PLO bewirkt, daß der zur Ausführung von Plottanweisungen

benötigte Modul geladen wird. Die Option PLO belegt im Arbeitsspeicher einen

Platz von 2 K-Byte.

Der Parameter RS2 bewirkt, daß der Modul des Betriebssystems geladen wird,

der das Arbeiten mit peripheren Einheiten Über ein serielles Interface

(V.24, EIA RS232-C) ermöglicht. Die Option RS2 belegt im Hauptspeicher

3 K-Byte.

Der Befehl ohne Parameter bewirkt, daß die Markierung der bisher geladenen

Options auf der System-Disk gelöscht wird. Das System wird ohne Options

neu initialisiert.

Bemerkung : Auf der System-Disk ist gespeichert, welche Options bei der Initiali-

sierung des Systems mitzuladen sind. Bei jeder Neuinitialisierung

- d.h. nach dem Einschalten, nach CON, OPT oder einem Fehler mit.

Systemabbruch (ERROR n #A) - konfiguriert sich das System ent-

sprechend dem zuletzt ausgeführten OPTIONS-Befehl.

. Durch den OPTIONS-Befehl wird der Inhalt des Arbeitsspeichers

gelöscht,

« Die entsprechenden Options werden nur bei der Ausführung der

Anweisungen benötigt. Die Eingabe und syntaktische Kontrolle kann

auch bei nicht geladener Option erfolgen.

. Die Option STR muß für die Ausführung folgender Anweisungen und

Funktionen geladen sein:

BPAD, CHR2, DEPAD, EXT%, PAD, REPZ, SCN.

Stringverkettung (+), Stringvektoren, Mehrfachzuweisungen (AB = BZ=Cß),

Stringvergleich.

| PREPARE

Der BefehIi PREPARE

Funktion: Es wird die vollständige syntaktische Analyse des Programmes

im Arbeitsspeicher durchgeführt und die Ausführbarkeit des

Programmes überprüft. Ist das Programm formal korrekt, geht

das System in den DEBUGGING MODE über.

Format: PRE [Pare] [ri lename]

Nfilename!! ist der Name eines Programmes auf einer Diskette.

Wirkung: . Das Programm mit dem Namen filename wird in den Haupt-

speicher geladen und auf die Durchführbarkeit der Anwei-

sungen überprüft.

Ohne Angabe des Operanden wird die syntaktische Analyse

des Programmes, das sich im Arbeitsspeicher befindet, durch-

geführt.

Bemerkung: Erfolgt nach Eingabe des Befehles keine Fehlermeldung, so

steht das Programm im Arbeitsspeicher in ausführbarer Form

und das System befindet sich im DEBUGGING MODE.

Ist die Konsoltaste PRINT ALL. aktiviert, so erfolgt die Meldung :

“RM ROEORMALLY CORRECT PROGRAM F#% *

Außerdem wird die Meldung : : ROOM =X :; ausgedruckt.

X gibt die Anzahl der freien Bytes im Änwenderteil des Haupt-

speichers an. Ferner erscheint im Display die Meldung:

PROGRAM Programmname READY TO RUN

Erfolgte nach der Ausführung des Befehles PREPARE

keine Fehlermeldung, so kann die Durchführung des Pro-

grammes im Arbeitsspeicher mit der Konsol-Taste CONTINUE

gestartet werden; durch die Taste STEP kann das Programm

Schritt für Schritt abgearbeitet werden.

Beispiel:

Treten bei der Durchführung des Befehles PREPARE

Fehler im Programm auf, so werden die dazugehörigen

Fehlermeldungen ausgedruckt.

Das System ist nun im COMMAND MODE und es können

die nötigen Korrekturen vorgenommen werden.

Nicht ausführbare Anweisungen wie z.B. DCL, DIM oder

BUFFER# werden bereits bei der Ausführung des Befehles

berücksichtigt. Im Programm angesprochene Files müssen

bereits vor der Ausführung von PREPARE kreiert werden,

Der bei ROOM = X angegebene freie Platz wird bei der

Programmausführung für die Auflösung numerischer Aus-

drücke für FOR/NEXT - Schleifen , Funktionen und zur

Speicherung der Rücksprungadressen bei Unterprogrammen

verwendet.

Wird nach der Ausführung von PREPARE das Programm ohne

weitere Änderung abgespeichert, so entfällt bei weiteren Auf-

rufen durch RUN, CHAIN oder PREPARE die Vorausfünrung.

(Näheres siehe unter Systembefehl RUN.)

FRE URAHI

*#+%# FORMALLT CORRECT PROGRAM ra
7 ROOM=26346 ::

Der Befehl

Funktion:

Format:

Wirkung:

Bemerkung:

Beispiel:

PURGE

PURGE

Ein File in einer Bibliothek der Diskette wird gelöscht,

PUR [se] filename

tt filename!' ist der Name des Files, das gelöscht werden soll.

Das System prüft, ob auf einer Diskette ein File mit dem Namen

filename!! vorhanden ist. Wenn ja, wird dieses File gelöscht.

Sind bei einer Konfiguration mit zwei Disketten zwei Programme

mit demselben Namen auf den Disketten gespeichert,so wird

durch PURGE nur das File auf der System-Disk gelöscht,

CAT

Bei Files in Packagebibliotheken oder in Commonbibllotheken,

die vorher mit dem Dienstprograrnm LBPROTECT geschützt

wor den sind, ist der Befehl unwirksam.

::F»F

+ RELERHRSE

FILE TTFE CREAT

LIINMA P ZEAITE

HUTG F I6EAI37E

SCHÄCH F Z£6U09I7E

FEERU F ZEAITE

FUrR AUTO

CAT F.F

+ FELERASE

FILE TYPE CREAT

LUNA F ZEAITE

SCHRCH P 268976
FRERU F ZERIP7E

u)
0 + ut

LAST NOD

ZERATE
2BAITE
254976
26EBI76E

BO *

LAST MOD

2EAITE
SEBITE
2EB97E

UOLLRABEL

MAX =

3298
4352

512

UOLLHEBEL

MAX S

USED SIEE

USED SIZE

= Katirs

ZÖbE NUMBER

ha

5

rı
ıi

a
B
i
d

M
a
l

Mm

r
a
i
n

DS
x)

= #81179

COBE NUMEER

Der Befehl

Funktion:

Format:

Wirkung:

Bemerkung:

REPLACE |

REPLACE

Ein Programm oder ein Textfile wird gegen ein anderes ausge-

tauscht, wobei der Name erhalten bleibt.

REP [LAce]

Es wird geprüft, ob das Programm oder das Textfile im Arbeits-

speicher einen Namen besitzt und ob auf einer Diskette ein Pro-

gramm oder Textfile unter demselben Namen abgespeichert ist.

Sind beide Bedingungen erfüllt, wird das gespeicherte Progr amm

(Textfile) durch das Programm oder den Text im Arbeitsspeicher

ersetzt,

Der Befehl ermöglicht, daß ein gespeichertes Programm. (Text-

file) durch eine beliebig modifizierte Fassung ersetzt werden

kann.

Nach Ausführung des Befehles ist unter dem Namen des ursprüng-

lichen Programmes (Textfiles) die modifizierte Fassung gespeichert.

Ein neu eingegebenes Programm (Textfile) kann nur mit dem Befehl

SAVE abgespeichert werden. Soll ein unter dem Namen filename

gespeichertes Programm (Textfile) durch ein neu eingegebenes

Programm ersetzt werden, ist die Befehlsfolge

PUR filename

SAVE n, filename

Wird mit zwei Disketten gearbeitet und ist auf jeder ein Programm

(Textfile) mit Namen filename gespeichert, so wird durch REPLACE

nur das Programm (das Textfile) auf der System-Disk ersetzt.

Das Programm oder der Text im Arbeitsspeicher hat nur dann einen

Namen, wenn es (er) von der Diskette geladen wurde, d.h. nach Aus-

führung der Befehle OLD filename, RUN filename und PREPARE filename.

Beispiel : OLD TEST

LIST

FILE TEST

8a8418 REN
8a28 FOR I=1 TO 18 STEP 1
8838 PRINT I
8848 NEXT I
8258 END

END OF LISTING

FETCH 28

8828 FOR I=1 TO 18 STEP 1

8828 FOR I=1 TO 15 STEP 1

REP

OLD TEST

LIST

FILE TEST

8818 REN

8828 FOR I=1 TO 15 STEP 1

8838 PRINT I

8948 NEXT I
3858 END

END OF LISTING

| RESEQUENCE

Der Befehl RESEQUENCE

Funktion: Umnumerierung der Zeilen eines Programmes oder eines Text-

files im Arbeitsspeicher.

Format: RES [eauence| zei Iennummer| : Schrittweite]

NZeilennummer!! gibt die Zeilennummer an, die der ersten Zeile

des Programmes (Textfiles) im Arbeitsspeicher

zugewiesen wird,

I Schrittweite!! ist eine positive ganze Zahl, die die Schritt-

weite der Numerierung festlegt.

Wirkung: Das System weist der ersten Zeile eines Programmes oder Text-

files im Arbeitsspeicher die Zeilennummer zu, die durch den ersten

Operanden angegeben wird; jeder folgenden Zeile wird eine jeweils

um die Schrittweite erhöhte Zeilennummer zugewiesen.

. Wird nur der erste Operand angegeben, so wird die durch den

Operanden spezifizierte Zeilennummer der ersten Zeile des Pro-

grammes oder Textfiles zugewiesen und als Schrittweite 10 ange-

nommen.

Wird nun der zweite Operand angegeben, so wird die Zahl

Schrittweite der ersten Zeile des Programmes oder Textfiles

zugewiesen, jede folgende Zeile erhält dann eine jeweils um die

Schrittweite erhöhte Zeilennummer zugewiesen.

Fehlen beide Operanden, erhält die erste Zeile die Zeilen-

nummer 10, die Schrittweite ist ebenfalls 10.

Bemerkung; Im Programm modifiziert das System automatisch die Sprungziele

bei bestimmten Anweisungen (GOTO, GOSUB, ON GOTO, ON GOSUB)

im Arbeitsspeicher,

Beispiele:

LIST

FILE

aasa DISP "EINGABE EINER ZAHL ZWISCHEN 1 UND 18";

Ba6R8 INPUT A

aara IF CAZIIOR CA>18) THEN 58

Bega FOR I=1 TO A STEP 1

4898 PRINT IT;

e1aa NEXT I

8185 PRINT

a118 GOTO 58

128 END

END OF LISTING

RES 1,2

LIST

FILE

a@81 DISP "EINGABE EINER ZAHL ZWISCHEN 1 UND 18";

aaa3 INPUT A

a8aS5 IF LA<IIOR LA>IEM) THEN 1

#87? FOR I=1 TO A STEP 1

3439 PRINT T;

au1ti NEXT I

4213 PRINT

2915 GDTO #

2317 END

END OF LISTING

n
m

m

ve

[T
I

m
i
n

N

m

84518 DISP "EINGABE EINER ZAHL ZWISCHEN 1 UND 18";

3aze INPUT A

ea IF CARZTIOR [A>10I THEN 18

gaAsB FOR I=1 TO A STEP 1

4958 PRINT I;

aa6B NEXT I

ga7’B PRINT

“038 GOTO 18

ag238 END

END OF LISTING

RES 5

LIST

FILE

8985 DISP "EINGABE EINER ZAHL ZWISCHEN 1 UND 18";
8845 INPUT A
8425 IF CA<NIOR CA>1B8I THEN 5
8835 FOR I=1 TO A STEP 1
@A45 PRINT I;
a955 NEXT I
Ba65 PRINT 9.56
8475 GOTO 5
8485 END

END OF LISTING

RES ‚4

LIST

FILE

R884 DISP "EINGABE EINER ZAHL ZWISCHEN 1 UND 18%;

8888 INPUT A

8812 IF CA<TIOR CA>18I THEN 4

8816 FOR I=1 TO R STEP 1

8828 FRINT I;

R924 NEXT I

8828 PRINT

0332 GOTO 4

8836 END

END OF LISTING

TEX

AUTOR

12 PRINT"Olivetti'"

298 GOTO 19

3a END

LIST

FILE

Ha1i8 PRINT"Olivetti"

8028 GOTO 18

2830 END

END OF LISTING

RES 17,3
LIST

FILE

8817 FRINT'"Olivetti"

8828 GOTO 18

99323 END

END OF LISTING

Der Befehl RUN

Funktion :

Format:

Wirkung :

Bemerkung :

Veranlaßt die Ausführung eines Programmes.

| |
Filename

RUN

Zeilennr.

\ |

Wird der Befeni RUN Filename eingegeben, wird überprüft, ob auf einer

Diskette ein File mit dem Namen Filename gespeichert ist. Die Suche nach

dem File beginnt immer auf der System-Diskette. Ist das File ein Programm-

oder Textfile, wird es in den Arbeitsspeicher geladen. Ist das File ein

Programmfile,wird es ausgeführt, andernfalls erfolgt eine Fehlermeldung.

Wird der Befehl RUN oder RUN Zeilennummer eingegeben, wird überprüft,

ob der Arbeitsspeicher ein Programm enthält; wenn nein, erfolgt eine

Fehlermeldung, wenn ja, wird das Programm ausgeführt.

Wird RUN Zeilennummer eingegeben, beginnt die Ausführung in der ange-

gebenen Zeile, sonst wird mit der I. Programmzeile begonnen.

Nach Eingabe eines RUN-Befehles wird vom System geprüft, ob eine Pre-

execution durchzuführen ist. Unter "!Preexecution!! versteht man dabei eine

Prüfung des Programmes auf formale Richtigkeit (Syntaxprüfung) durch das

System.

Eine Preexecution wird nur durchgeführt, wenn

. ein neu eingegebenes Programm zum ersten Mal ausgeführt werden soll.

. bei der letzten Preexecution ein Fehler festgestellt wurde,

. ein Programm nach dem letzten RUN oder PREPARE - Befehl geändert

worden ist,

. ein Programm durch RUN Filename gestartet wird, das gespeichert wurde,

ohne daß zuvor eine fehlerfreie Preexecution durchgeführt worden ist.

6.59

®

Eine erneute Preexecution eines solchen Programmes bei Aufruf RUN

Filename unterbleibt, wenn folgende Befehlsfolge ausgeführt wird:

OLD Filename

PREPARE

Drücken der Taste BREAK nach fehlerfreier Preexecution

REPLACE.

Tritt während der Preexecution ein Fehler auf, wird eine Fehlermeldung

angegeben, das Programm wird nicht ausgeführt.

Ist die Konsoltaste PRINT ALL. aktiviert, wird nach einer fehlerfreien

Preexecution die Meldung

EHE FORMALLY CORRECT PROGRAM HH %

ausgedruckt.

Wird ein Programm, für das eine fehlerfreie Preexecution durchgeführt

wurde, erneut gestartet, unterbleibt die Preexecution.

Zum Zweck der Optimierung wird das Programm vor der eigentlichen Aus-

führung in eine Form überführt, die keine Anwendung der Befehle LIST,

FETCH u.ä. erlaubt. Daher wird vom System eine Kopie der ursprünglichen

Version auf der LIlser-Diskette zwischengespeichert und nach der Ausführung

oder einem Abbruch durch BREAK wieder in dem Arbeitsspeicher geladen.

Wird nur mit der System-Diskette gearbeitet, erfolgt diese Zwischen-

speicherung auf der System-Diskette.

Ist auf der entsprechenden Diskette der dafür erforderliche Platz nicht ver-

fügbar, erfolgt die Fehlermeldung ERROR 188.

Die Zwischenspeicherung entfällt, wenn der Befehl in der Form RUN

Filename eingegeben wird. In diesem Fall lädt das System nach der Aus-

führung des Programms die gespeicherte Version erneut in den Arbeits-

speicher.

Beispiel :

Die Programmausführung kann mit der Konsoltaste BREAK abgebrochen

werden. Begonnene Input /Output - Operationen werden regulär beendet und

eventuell geöffnete Files werden geschlossen. Das System geht in den

Command-Mode über.

Mit der Konsoltaste STEP kann die Programmausführung unterbrochen

werden, das System geht in den Debugging-Mode über.

NEW

AUTO

10 PRINT !""PROGRAMMBEGINN!"

20 REM WIRD PREEXECUTION

30 REM DRUCHGEFÜHRT ODER NICHT

40 PRINT "!"PROGRAMMENDE!

50 END

RUN

xx%% FORMALLY CORRECT PROGRAM

»
PROGRAMMBEGINN

PROGRAMMENDE

RUN

PROGRAMMBEGINN

PROGRAMMENDE

SAVE S, PROGM

?

Bei der ersten Ausführung wird die

Preexecution durchgeführt.

FERN

Bei der zweiten Ausführung entfällt

die Preexecution.,

Abspeichern des Programms mit

durchgeführter Preexecution.

(D.h. bei weiteren Programmläufen

entfällt die Preexecution).

6.61

| SAVE

Der Befehl SAVE

Funktion: Abspeichern eines Programms oder Textfiles in einer

Bibliothek.

S .
Format: save]] ‚„ filename |, ms6- n]

Ifilename!!: Name, unter dem das Programm oder Textfile

abgespeichert werden soll.

Si; gibt die System-Disk an,

nl: gibt die User-Disk an.

IInil: O oder 1

Wirkung: Es wird geprüft, ob auf der angegebenen Diskette ein File

mit dem Namen !!filename!! gespeichert ist; wenn nicht, wird

geprüft, ob in der durch das Format des Namens !!filename!!

bestimmten Bibliothek genügend Speicherplatz vorhanden ist,

wenn ja, wird das Programm bzw. das Textfile'unter diesem

Namen abgespeichert.

Die Angabe des Parameters !"S! kann entfallen.

Bedeutung des Parameters !!MSG = n!! (MSG = Message) :

Er legt fest, ob und gegebenfalls welche Nachrichten während

eines jeden Programmlaufs vom Betriebssystem ausgegeben

werden.

- Wird fürn" ı eingegeben, wird nur die Meldung PROGRAM

filename RUNNING unterdrückt.

- Wird für'n" 0 eingesetzt, wird zusätzlich die Meldung READY

nach Ende der Ausführung unterdrückt. Dies ermöglicht die

Ausgabe einer Display-Anzeige durch das Programm, die auch

im COMMAND-MODE erhalten bleibt.

- Ist der Parameter im Befehl nicht ausgeführt, werden alle

Meldungen angegeben.

Bemerkungen:

Beispiel:

Der Aufbau des Namens !filename!! bestimmt die Bibliothek,

in die gespeichert wird.

Im einzelnen gilt für das Format der Filenamen:

1) "name Speicherung in Package-Bibliothek

2) tname Speicherung in Common-Bibliothek

3) name Speicherung in User -Bibliothek

IInamel!!: String, der bis zu 6 alphanumerische Zeichen

enthalten kann. Der String muß mit einem Buch-

staben beginnen, zwischen !'*t! bzw, "!+!! und dem

ersten Buchstaben des Strings darf kein Leer -

zeichen stehen. Der String darf ferner kein

Sonderzeichen enthalten.

Ist die Package-Bibllothek durch das Dienstprogr amm

LBPROTECT geschützt, kann kein weiteres File in dieser

Bibliothek gespeichert werden, ein Save-Befehl

s
SAVE |, ‚ * NAME

bewirkt eine Fehlermeldung.

Ein Programm soll unter dem Namen +PROG in die Common-

bibliothek der System-Disk, und unter dem Namen *PROG in

die Package-Bibliothek der User-Disk gespeichert werden.

Die Befehle lauten:

SAVE, +PROG

SAVE U, *PROG

SECURE

Der Befehl SECURE

Funktion: Der Befehl verhindert, daß Anweisungen oder Elemente

eines Programmes über den Drucker oder das Display

ausgegeben oder durch Editingoperationen verändert

werden und verhindert das Neubeschreiben von Datenfiles.

Format: SEC [ure] filename [n]

filename!!; Name des Files, das geschützt werden soll.

IInlie positive, ganze Zahl

Wirkung: Das System prüft, ob ein Programm oder Datenfile unter dem

Namen !filename!! auf einer Diskette gespeichert ist.

Wenn ja, wird dieses gesichert und es gilt daß die Befehle

-DECOMPILE

-RESEQUENCE

-MODIFY

- TRANSCODE

-TRUNCATE

-LINK |

nicht ausgeführt werden.

Für die Befehle

- DELETE LINE

- FETCH

- LIST

gilt:

1) Ist im Befehl kein Par ameter !!n!! angegeben, wird keiner

dieser Befehle ausgeführt.

2) Ist ein Wert für !Inıı eingegeben, werden die Befehle nur

ausgeführt, sofern sie sich auf eine Anweisung mit einer

Zeilennummer kleiner als !!n!! beziehen.

Bemerkung :

Beispiele:

Für gesicherte Datenfiles gilt :

Der Befehl

TRANSCODE

wird nicht ausgeführt.

Der geschützte Bereich eines Programmes oder Datenfiles kann durch einen

weiteren SECURE-Befehl erweitert, nicht aber verkleinert werden. Daten

von geschützten Datenfiles können nur gelesen werden.

NEW

10 DATA 5, 7, 10, 20, 10, 3

20 READ N

305=-g

40 FOR I= 1 TON

50 READ A

605 =-5+HA

70 NEXT I

80 PRINT "MITTELWERT"; S/N

90 END

SAVE U, MITTEL

SECURE MITTEL, 20

Das so gesicherte Programm erlaubt die Berechnung des arithmetischen

Mittels einer Zahlenfolge. Der Rechenteil, der mit Zeile 20 beginnt, ist

gesichert, der Inhalt der Data-Anweisung kann verändert werden, um z.B.

verschiedene Datensätze auszuwerten.

OLDMITTEL

LIST

10 DATA 5, 7, 10, 20, 10, 2

SECURED FILE

FETCH 20

ERROR 205

20 FOR! = 1 TO 20

ERROR 205

Es wird nur der ungesicherte

Teil des Programms gedruckt.

Die Zeile 20 kann nicht ins

Display geholt werden.

Zeile 20 kann nicht verändert

werden,

Der Befehl SHIFT

Funktion :

Format :

Wirkung :

Bemerkung :

SHIFT

Der Befehl erlaubt die Erhöhung der Zeilennummern ab einer beliebigen

Stelle eines Programmes oder Textes.

sHı [FT] Zeilennummer, Konstante

— Zeilennummer : Nummer der ersten Zeile, die geshiftet wird.

- Konstante : Positive ganze Zahl, um die die Zeilennummern erhöht

werden.

Die Zeilennummern eines im Arbeitsspeicher vorhandenen Textes oder

Programmes werden ab der Zeilennummer um den Betrag Konstante erhöht.

- Befindet sich im Arbeitsspeicher ein Programm, so werden alle Sprünge

entsprechend der neuen Numerierung modifiziert.

- Die mit Zeilennummer angesprochene Zeile muß existieren.

- Die Schrittweite der Numerierung wird durch SHIFT nicht verändert.

- Ist die Summe von größter Zeilennummer und angegebener Konstante

größer als 9999,so erfolgt eine Fehlermeldung.

Beispiel: LIST

FILE

8945

A310

aa 15

aa28

A025

303%

0235

1048

8845

FILES SDAT

SCRATCH :1

DISP "Ihr String",

RKB R$

IF A$='"" THEN 48

WRITE :1,A$ EOF 48

GOTO 15

EISP "ENDE"

END

END OF LISTING

SHIFT 39,12

aas4z

mas

a952

aa57

FILES SDAT

SCRATCH :41

DISP "Ihr String",

REB A$

IF A$='"" THEN 52

UREITE :1,RA$ EOF 52

GOTO 15

DISP "ENDE"

END

END OF LISTING

Programm vor Ausführung von

SHIFT.

Erhöhung der Zeilennummern ab

Zeile 30 um 12.

Programm nach Ausführung des

Befehls.

| SPACE

Der Befehl SPACE

Funktion; Mit SPACE kann der freie Platz auf den Disketten

abgefragt werden.

Format: spa [ce]

Wirkung: Getrenmnt für System-Disk und User-Disk wird der

freie Platz auf den Disketten ausgegeben; die Angabe

erfolgt in Bytes.

Beispiel:

Monodisksystem
spA
SYSDIS 68988

Bei zwei Disketten erfolgt

SPA . a
EYSDIS 68988 ‚uspıs 237770 Al® Anzeige im Display ge-

trennt für beide Disketten,

Der Befehl START

Funktion

Format :

Wirkung :

Bemerkung :

Beispiel :

Startet einen unterbrochenen Programmlauf ab einer bestimmten Zeilen-

nummer.

STA [Rt] Zeilennummer

"Zeilennummer"' ist eine positive ganze Zahl zwischen I und 9999

Der Befehl START bewirkt die Abarbeitung eines unterbrochenen Programm-

laufes ab der durch den Parameter Zeilennummer angegebenen Programmzeile.

- Für die Ausführung des Befehls muß sich das System im DEBUGGING-MODE

befinden.

- Der Parameter Zeilennummer ist so zu wählen, daß eine sinnvolle Abarbei-

tung des Programmes möglich ist. Das Sprungziel darf nicht innerhalb von

. FOR/NEXT- Schleifen

. Unterprogrammen

. mehrzeiligen Funktionsdefinitionen liegen.

-— Die als Parameter angegebene Zeilennr. muß eine im Programm vorhandene

Zeilennr. Sein.

LIST

FILE START

8818 DISP "’STRA Line-nunber’ eingeben";

8828 STOP
8838 PRINT " ZEILE 38"
8848 PRINT " ZEILE 48"
8858 PRINT " ZEILE 58"
8868 PRINT " ZEILE 68"
8878 END

END OF LISTING

RUN START
’STA line-nusber’ eingeben

STR 58
ZEILE 58
ZEILE 68

STKEYS

Der Befehl STKEYS (Store Keys)

Funktion :

Format :

Wirkung :

Beispiel :

Die aktuelle Belegung der Funktionstasten wird als Standardinhalt

gespeichert.

STK Evs]

Die in den Funktionstasten F1 bis F16 gespeicherten Strings werden als

neuer Standardinhalt auf der System-Disk gespeichert. Der Standard-

inhalt wird bei jedem Neuladen des Systems oder mit dem Befehl LDKEYS

wieder in die Funktionstasten geladen. Der Standardinhalt wird durch

eine zwischenzeitliche andere Belegung der Funktionstasten nicht geändert.

LIST Belegung der Funktionstasten

FILE .
durch ein Programm,

an18 FKEY #1, STANDARD

aaza FKEY #2,BELEGUNG

BAn38 END

END OF LISTING

Nach

RUN

enthält die Taste FI den Text STANDARD,

die Taste F2 den Text BELEGUNG,.

Nach

STKEYS

wird diese Belegung auf der System-Disk als Standardbelegung gespeichert.

Nach Drücken der Tasten Fi und F2 erscheint der Text STANDARDBELEGUNG

im Display.

Konsoltaste CALC MODE aktivieren Belegung der Funktionstasten mittels

Calculator-Mode

Said FKEY #1.RUN HELP:
828 FKEY #5,LIST:

Das Setzen eines Doppelpunktes nach den Systembefehlen LIST oder RUN

HELP ersetzt das Drücken der "End of Line!!-Taste.

Nach dem Drücken von F1 wird das Programm HEL_P gestartet und nach dem

Drücken von F2 wird ein sich im Arbeitsspeicher befindendes Programm ge-

listet.

Nach STKEYS wird diese Belegung auf der System-Disk als Standardbelegung

gespeichert.

Wird im Calculator-Mode oder innerhalb eines Programmes Fi durch

FKEY#1, AKTUELL

geändert, so erhält man die Standardbeliegung zurück, wenn entweder der Be-

fehl LDKEYS eingegeben oder das System neu initialisiert wird.

D.h. nach Eingabe von

LDKEYS

wird durch Drücken von F1 das Programm HELP gestartet.

Der Befehl

Funktion :

Format :

Wirkung :

Bemerkung :

Beispiel :

STOP

STOP

Unterbricht die Ausführung des Programmes im Arbeitsspeicher bei einer

bestimmten Zeile (vor deren Ausführung).

STO Pl Zeilennummer

"Zeilennummer!! ist eine positive ganze Zahl zwischen 1 und 9999

Die Abarbeitung des Programmes wird bei der angegebenen Zeile unterbrochen

und das System geht in den DEBUGGING-MODE.

- Für die Ausführung des Befehls muß sich das System im DEBUGGING-MODE

befinden.

- Die als Parameter angegebene Zeilennummer muß eine im Programm vor-

handene Zeilennummer sein.

LIST

FILE STOSTA

8818 DISP '"STO line-nusber EOL, STA line-nunaber EOL eingeben";
8828 STOP

8838 PRINT " ZEILE 38"

8848 PRINT " ZEILE 48"

8858 PRINT " ZEILE 58"

8868 PRINT ' ZEILE 68"
8878 END

END OF LISTING

RUN STOSTA
sTO line-nurber EOL, STAR line-number EOL eingeben

sTo 58

sTA +8

ZEILE 48

| TEXT |

Der Befehl TEXT

Funktion: Das System wird auf die Eingabe eines Textfiles

über die Tastatur vorbereitet.

Format: TEX [r]

Wirkung: Der aktuelle Inhalt des Arbeitsspeichers wird gelöscht.

Das System faßt alle im folgenden eingegebenen Zeilen

als Zeilen eines Textfiles auf. Es erfolgt keine Syntax-

kontrolle.

Bemerkung; Die Zeilennummer einer Textzeile ist kein Bestandteil

des Textes; sie kann durch RESEQUENCE verändert

werden.

Beispiel: TE=T
AUTO#
14 Eeispiel
ZA KHK KH

38
“3 Ein Textfile wird zunsechst mit dem Befehl SAUE

5A gespeichert, und -— um es mit REPLACE nach der Aenderung wieder
GA zurueckstellen zu koennen - sofort mit OLD geladen,
ra Anschliessend wird der Text erweitert und mit FEPLACE zurueckgestellt,

SAUE . TEXT
ÖLE TEXT

35 Die Erweiterung des Textfiles auf der Diskette,

AR wird vom Sy=ztem automatisch durchgefuehrt,

REF

OLD TEXT
LIST ..#
FILE TEXT

beispiel

ZEEKE Kr

Ein Texktfile wird zunaechst mit dem Befehl SAUE

gezpeichert, und - um es mit REPLACE nach der Aenderung wieder

zuryeäckstellen zu koennen - scafort mit OLD geladen,

Anschliessend wird der Text erweitert und mit FEPLACE zurueckgestellt,
bie Erweiterung des Text filez 3uyuF der Diskette

Wırd vom System sutomatisch Jurchgefuehrt,

END OF LISTING

6.79

Der Befehl

Funktion:

Format:

Wirkung:

| TRANSCODE

TRANSCODE

Der Befehl konvertiert Datenfiles in Textfiles und

umgekehrt.

T, filename |

TRA [Nscope] S [,‚*]
D, [2] ‚ filename

Nfijlename!!: Name eines Datenfiles

151: System-Disk

NUN: User-Disk

-— Parameter T:

Es wird geprüft, ob auf einer Diskette ein Datenfile mit

Namen !filename!! existiert. Ist das File geschützt, er-

folgt eine Fehlermeldung, andernfalls wird geprüft, ob

alle Datenelemente alphanumer isch (Strings) sind. Ist

dies der Fall, wird jedes einzelne Datenelement in eine

Textzeile umgewandelt.

- Parameter # ist angegeben:

Es wird geprüft, ob das Datenfile ein konvertiertes

Textfile ist und ob bei dieser Umformung die Zeilen-

nummer mit abgespeichert wurde. Wenn ja, werden die

ursprünglichen Zeilennummern beibehalten.

- Ohne Parameter #:

Das Textfile wird mit erster Zeilennummer 1 und mit

Schrittweite I numeriert, eventuell mit abgespeicherte

Zeilennummern werden ignoriert.

Das Textfile befindet sich nach der Umwandlung im Arbeitsspeicher.

- Parameter D:

Es wird geprüft, ob der Arbeitsspeicher ein Textfile ent-

hält. Es wird weiter geprüft, ob auf einer Diskette ein File

mit Namen !filename!! existiert;

wenn ja, erfolgt Fehlermeldung, andernfalls wird geprüft,

ob auf der durch den Parameter 5 bzw. U bestimmten Dis-

kette genügend Speicherplatz frei ist.

Bemerkung:

Wenn ja, wird ein sequentielles Datenfile mit dem Namen

Itfjlename!! kreiert. Für den Speicherbedarf des Daten-

files gilt:

kKleinstes Vielfaches von 128, das größer oder gleich der Länge

des Textfiles (in Bytes) ist.

In dem so kreierten Datenfile wird jede Zeile des Textfiles

als ein alphanumer isches Datenelement (String) abgespeichert.

- Parameter # ist angegeben:

Die Nummer einer jeden Zeile wird mitgespeichert. Die

gesamte Zeile wird als ein String gespeicunert.

- Parameter # fehlt:

Die Zeilennummern werden nicht mitgespeichert.

Ist der Arbeitsspeicher zu klein, um ein komplettes kon-

vertiertes Datenfile aufzunehmen, werden nur soviel Daten-

elemente in Textzeilen umgewandelt, wie der Arbeitsspeicher

aufnehmen kann.

Enthält ein Datenelement mehr als 76 Zeichen (ohne mit-

gespeicherte Zeilennummern), so wird dieses Datenelement

nicht konvertiert.

Während der Ausführung des Befehles (Parameter T) kann

die Tastatur nicht verwendet werden.

Beispiele: Beispiel 1:

TEX
AUTO#
15 P6868 fuer
2& TEXTVERARBEITUNG
3A ideal !!

TRA D.UV,TEXT

EXE FLPRINT,TEXT

Eingabe des Textfiles.

Umwandlung des Textes in ein

Datenfile.

Ausdruck des Datenfiles mit

Dienstprogramm FLPRINT

P&EU6A Fuer TEXTVERARBEITUNG ideal !ı

READY

TRA T,TEXT

LIST

FILE

auaa1 Pba6B Fuer

aana2 TEXTVERARBEITUNG

paugZ3 ıdeal I

END OF LISTING

Umwandlung des Datenfiles in

einen Text im Arbeitsspeicher.

Ausdruck des Textes im

Arbeitsspeicher.

Beispiel 2:

Das Programm PTRANS liegt als Textfile vor. Durch den Befehl TRANSCODE

werden die Programmzeilen in Elemente des Datenfiles DPROG umgewandelt.

Die ausführbare Form des Programmes PTRANS (nach COMPILE) druckt

sich selbst aus.

LIST
FILE PTRANS

aa18 FILES DPROG Listing des Textfiles.
aa28 DCL 89RA$
6538 READ :1.A$ EOF 78
Ba48 PRINT USING 68, A$
na58 GOTO 38
3368 :’LLLLLLLLLLLLLELLLLLLLLLLLLLLLLLLELLLLLLLLLLELLLL
Bara FRINT
a88a END

ENL OF LISTING

IRA B,U.BPROG: # Umwandlung des vorliegenden

Textfiles in das Datenfile DPRCOG.

COM
RUN Umwandlung des vorliegenden

##4%* FORMALLY CORRECT PROGRAM work on .
aim FILES DPRÜG Textfiles in ein ausführbares
az Di o Buza DLL BORS Programm. Das Programm
Ha3a RERD :1.A$ EOF 78
aaa PRINT USING 58,9$ druckt den Inhalt des Files DPROG.
Massa GOTÜ 34

ABB :LLLLLELLLLLLLLLLLLLLLLLLELLLLLLLILLLLLLELLL

ara FRINT

139 END

Der Befehl

Funktion:

Format:

Wirkung:

Bemerkung:

Beispiel:

CAT V,,D,F

*RELE

FILE TYPE

|

| TRUNCATE

TRUNCATE

Der für ein sequentielles Datenfile reservierte Speicher -

platz wird auf den aktuell belegten Platz verkleinert.

TRU [NcATE| filename

Es wird geprüft, ob ein nicht geschütztes Datenfile mit

dem Namen filename existiert. Ist das der Fall, und ist

das Datenfile vom Typ !!'sequentiell!!, wird der reservierte

Speicherplatz auf den aktuell belegten Platz verkleinert.

(Das logische Ende des Files gilt auch als physisches.)

Für Random-Files ist der Befehl unwirksam, da für Random-

Files immer logisches = physisches Ende gilt.

Die maximale Länge des Datenfiles ist nach Ausführung des

Befehless TRUNCATE immer ein ganzzahliges Vielfaches

von 128,

nSsE 2.8 * VOLLABEL =

CRERT LAST MOD MAX SIZE USED SIZE CODE NUMBER

RDRESS R JULI?E JULI?EG 18112 18112
SDAT S JULI?TE JULI?E 18112 8

RU ADRESS TRUNCATE hat für RANDOM-Files keine Wirkung.

TRU SDAT Das File SDAT wird auf die aktuelle Länge reduziert.

CAT U,,D,F

RELENRNSE 2.8 * VOLLABEL =

FILE TYPE

ARDRESS R

SDAT 5

CRERT LAST MOD MAX SIzE. USED SIZE CODE NUNBER

JULI?E JULI?E 18112 1811
JULI?G& JULI?E 8 8 °

| VALIDATE |

Der Befehl VALIDATE

Funktion :

Format :

Wirkung :

Bemerkung :

Beispiel :

Der Befehl schließt ein offen gebliebenes Datenfile.

VAL [oATE] filename

Das Datenfile mit dem Namen filename, das aufgrund eines nicht regulären

Programmendes (z.B. nach einem Stromausfall) offen geblieben ist, wird

geschlossen.

- Ein nach Leseoperationen offen gebliebenes File ist unverändert.

Wurde das File beschrieben, so kann bei Randomfiles das zuletzt ge-

schriebene Datum zerstört sein. Bei sequentiellen Files ist nach dem

Schließen die aktuelle Länge gespeichert, die es vor dem Öffnen hatte.

Die Daten des Files sind nur entsprechend der gespeicherten aktuellen

Länge des Files verfügbar.

- Offen gebliebene Files werden im Catalog durch !OPEN! gekennzeichnet.

CHAT U,+,.D,F

+ RELERSE 2.0 « VOLLABEL = K81179

FILE TYPE CRERT LAST MOD MAX SIZE USED SI2E CODE NUNBER

+RD R 250277? 250277 88118 38118
+55 Ss :258277 250277 4836 +08 UPEN

UAL +55

CART U.+,D,F

*-RELERARSE 2.8 VOLLABEL = K81179

FILE TYPE CREAT LAST MOD MAX SIZE USED SIZE CODE NUMBER

+RD R 2580277 250277 838118 38118
+55 Ss 258277 258277 +896 4088

6.87

LISTE DER DIENSTPROGRAMME

Im folgenden Abschnitt wird die Funktion der im Betriebssystem enthaltenen

Dienstprogramme beschrieben.

Der Aufruf eines Dienstprogrammes erfolgt unter Angabe des Namens und der

erforderlichen Parameter mit dem Befehl EXEC.

Im Gaägensatz zur Ausführung von Systembefehlen wird bei der Ausführung von

Dienstprogrammen der Arbeitsspeicher benötigt. Soll der bisherige Inhalt des

Arbeitsspeichers erhalten bleiben, so ist vor Aufruf eines Dienstprogrammes

der Inhalt des Arbeitsspeichers mit SAVE oder REPLACE abzuspeichern.

FDCOPY Kopieren von Disketten

FLCOPY Kopieren von Files

LBCREATE Initialisierung einer Diskette

LIBCOPY Kopieren von Bibliotheken

LBPROTECT Sichern einer Bibliothek

6.89

| FDCopy |

Das Dienstprogramm FDCOPY (Floppy-Disk Copy)

Funktion :

Format:

Wirkung :

Bemerkungen :

Das Dienstprogramm ermöglicht das Kopieren von Disketten.

EXE [<] FDC [or] . =

- Parameter !!S!

Es soll die System-Disk (auf die zweite Disk) kopiert werden.

- Parameter "UN

Es soll die User-Disk (auf eine noch einzulegende Disk) kopiert werden.

- Kein Parameter

Es wird der Parameter "!S! angenommen,

- FDCOPY kann nur für Zweidisketten-Stationen verwendet werden.

- Das System überprüft, ob die Empfängerdiskette gültige Bibliotheken

des Betriebssystems oder des Anwenders enthält und druckt in diesem

Fall eine entsprechende Meldung. Im Display erscheint die Meldung

CONTINUE. Soll dennoch kopiert werden, so ist die Konsoltaste

CONTINUE zu drücken, soll nicht kopiert werden, ist BREAK zu drücken.

- Soll eine UÜser-Disk kopiert werden, so kommt nach dem Aufruf die

Meldung

%*
INSERT DISK >RECEIVING DISK ON DRIVE I # »

Die System-Disk ist dann durch die Empfängerdisk zu ersetzen, Die

Fortsetzung erfolgt mit CONTINUE.

- Da am Ende des Kopierens das System entweder zwei System-Disks oder

zwei User-Disks enthält, erfolgt die Meldung

END - ILLEGAL STATUS > REARRANGE DISKS

- Wird das Kopieren aufgrund eines Fehlers oder Stromausfalls abgebrochen,

so enthält die Empfängerdisk keine vollständige Kopie. Der Kopiervorgang

ist von Beginn an zu wiederholen.

Meldungen : CONTINUE ?

Die Ausführung des Kopierens wird nicht gestartet, da die Empfängerdis-

kette eine gültige Diskette ist. Ist die Empfängerdisk eine gültige System-

Disk, wird am Thermodrucker (oder externen Drucker)

FILE "P6FWRZ! VALID

FILE !P6SW VALID

FILE "P6FWO ! VALID

FILE !NPEFSYS!" VALID

gedruckt.

Ist die Empfängerdiskette eine gültige User-Disk, so wird

FILE !\PEFSYS" VALID

gedruckt.

Ist die Empfängerdiskette eine gültige Diskette eines anderen Systems (aber

keine P6060-Diskette), so werden ebenfalls Meldungen gedruckt.

Soll der Kopiervorgang gestartet werden, ist die Konsoltaste CONTINUE

zu drücken, soll -— da beim Einlegen der Disketten eine Verwechslung er-

folgte - nicht kopiert werden, so ist die Taste BREAK zu drücken.

BREAK OCCURED % CHECK DISK STATUS

Diese Meldung wird angezeigt, wenn die Konsoltaste BREAK entweder nach

der Meldung "!'CONTINUE?!" aktiviert wird (Empfängerdiskette bleibt unver-

sehrt) oder durch Drücken dieser Taste der bereits begonnene Kopiervor-

gang abgebrochen wird (Empfängerdiskette enthält meist keine gültige Kopie).

Enthält das System zwei System-Disks, so ist eine zu entnehmen und ge-

gebenenfalls durch eine User-Disk zu ersetzen. Enthält das System zwei

User-Disks, so ist eine System-Disk einzulegen. Die System-Disk muß

nicht in der Einheit eingelegt werden, an der sie sich vor dem Kopieren

befand.

Wurde eine gültige Diskettenkonfiguration eingelegt, so ist mit CONTINUE

fortzusetzen.

6.92

END - ILLEGAL STATUS 9 REARRANGE DISKS

Das Kopieren wurde regulär beendet. Die eingelegte Diskettenkombination

ist ungültig, da entweder zwei System- oder zwei User-Disks eingelegt

sind. Es ist eine gültige Diskettenkombination herzustellen, wobei die

System-Disk nicht an der Stelle eingelegt werden muß, wo sie vor dem

Kopieren war. Dann ist mit CONTINUE fortzufahren.

ERROR n

Das Kopieren wurde aufgrund eines Fehlers abgebrochen. Der Fehler

ist nach den Anweisungen der Fehlerliste zu beheben und das Kopieren

erneut zu Starten.

ERROR n - ILLEGAL STATUS 3 REARRANGE DISKS

Das Kopieren wurde aufgrund des angezeigten Fehlers abgebrochen, Das

System hat eine ungültige Diskettenkombination (z.B. keine System-Disk).

Die Empfängerdiskette ist nach der Behebung der Fehlerursache durch

die ursprünglich eingelegte Diskette zu ersetzen und das Kopieren er-

neut zu starten.

%
INSERT DISK > RECEIVING DISK ON DRIVE “x

Beim Kopieren von User-Disks ist die eingelegte System-Disk durch die

Empfängerdisk zu ersetzen. Die Meldung gibt an, in welche Einheit

(% - obere Einheit, &# - untere Einheit) die Empfängerdiskette einzu-

legen ist.

Nach dem Austausch der Disketten ist mit CONTINUE fortzusetzen.

READY

Die Ausführung des Dienstprogrammes ist beendet, das System hat eine

arbeitsfähige Diskettenkonfiguration. Das System befindet sich im

Command-Mode.

Anmerkung :

Beispiele :

Ist das letzte Zeichen im Display !' ?'"', so erscheint die Meldung nicht voll-

ständig. Der zweite Teil der Meldung wird nach Drücken der Tasten SHIFT

und sichtbar.

1. Kopieren einer System-Disk

Es sind die zu kopierende System-Disk und eine beliebige User-Disk

eingelegt. Die System-Disk soll auf eine neue Diskette kopiert werden.

a)

b)

c)

Die User -Disk ist mit DCH U durch die Empfängerdiskette zu tauschen.

Eingabe von :

DCH U

Im Display wird

INSERT DISK > NEW USDIS ON DRIVE *

angezeigt. Die Empfängerdiskette ist in die entsprechende Einheit

einzulegen. Nach Drücken von CONTINUE erscheint die Meldung

USDIS NOT INITIALIZD

Es kann sofort mit Eingabe von

EXE FDCOPY, S

fortgesetzt werden. Es wird unmittelbar mit dem Kopieren begonnen.

Wird es erfolgreich beendet, erscheint die Meldung

END - ILLEGAL STATUS > REARRANGE DISKS

Das System enthält nun zwei System-Disks. Es ist eine Diskette

- meist die Kopie -— wieder durch eine User-Disk zu ersetzen. Nach

Drücken von CONTINUE erscheint im Display

READY

und das System ist im Command-Mode.

Kopieren einer User-Disk

Das System enthält eine System- und eine User-Disk. Es wird im

Beispiel angenommen, daß die Empfängerdisk bereits als User-Disk

verwendet wurde.

a)

b)

c)

Eingabe von

EXE FDCOPY, U

Im Display kommt die Meldung

INSERT DISK > RECEIVING DISK ON DRIVE *

Die Empfängerdiskette ist statt der System-Disk in die entsprechende

Einheit einzulegen und das Programm ist mit CONTINUE fortzusetzen.

Da die soeben eingelegte Empfängerdiskette bereits als User-Disk

verwendet wurde, wird

FILE "NP6FSYS" VALID

gedruckt und im Display

CONTINUE ?

angezeigt. Da bewußt auf eine bereits verwendete Diskette kopiert

werden soll, wird das Kopieren mit Drücken von CONTINUE ge-

startet. |

Nach dem regulären Ende des Kopierens wird

END - ILLEGAL STATUS 7 REARRANGE DISKS

angezeigt. Es ist eine User-Disk (im allgemeinen wieder die Kopie)

durch die System-Disk zu ersetzen. Nach Drücken von CONTINUE

wird

READY

angezeigt und das System befindet sich im Command-Mode.

FLCOPY

DIENSTPROGRAMM FLCOPY (File Copy)

Funktion:

Format:

Wirkung:

Kopieren eines Files in eine beliebige Bibliothek

auf derselben oder einer anderen Diskette,

| SYSLIB SYSL.IB filename 2
s Y TEE ‘ u exe[c]ruc [or ı IN | SLIB | filename 1, OUT | S | .

+

Nfilename 1!!, !!filename 2!!; Filenamen

Die Bedeutung der einzelnen Parameter ist die folgende:

SYSLIB . . . - IN - [354 } : gibt die Diskette an, auf der das

zu kopierende File gespeichert ist:

NSYSLIB!:; System-Disk

WISLIBN: User-Disk

ohne Angabe: Es wird die System-Disk angenommen

-— Nfilename 1!!: Name des Files, das kopiert werden soll

- our -[]:
ISYSLIB'!:Es wird auf eine System-Disk kopiert,

und zwar;

gilt IN=USLIB, wird auf die eingelegte

System-Disk,

gilt IN = SYSLIB oder nur IN=, wird

auf eine andere, an Stelle der User-Disk

einzulegende System-Disk kopiert.

Bemerkung:

NUSLIB!: Es wird auf eine User-Disk kopiert, und zwar:

gilt

IN = SYSLIB, wird auf die eingelegte,

gilt

IN = USLIB , wird auf eine andere, an Stelle

der System-Disk einzulegende User-Disk kopiert.

Iohne Angabe!!: Es wird auf dieselbe Diskette kopiert, auf

der sich das Originalfile befindet.

- Wirdals vierter Parameter "*" angegeben, wird in die Package-

Bibliothek kopiert.

- Wird !!4!! angegeben, wird in die Common-Bibliothek kopiert.

- Wirdkeine Angabe gemacht, wird die Kopie in der User-Bibliothek

abgelegt.

- Iifilename 2!': Name, den die Kopie erhalten soll

Es wird geprüft, ob in der Empfängerbibliothek ein File mit dem

gewünschten Namen vorhanden ist; wenn ja, wird der Kopiervorgang

abgebrochen, andernfalls wird gemäß den obigen Erläuterungen

kopiert.

Ist die Empfänger -Bibliothek eine Package-Bibiliothek, die durch das

Dienstprogramm LBPROTECT geschützt worden ist, wird der

Kopiervorgang abgebrochen.

Ist das zu kopierende File durch den Befehl SECURE geschützt

worden, ist auch die Kopie in gleicher Weise geschützt.

Ist auf der Empfängerdiskette für die Kopie nicht genügend Platz,

so wird nicht kopiert.

Sequentielle Files werden entsprechend ihrer maximalen Länge

kopiert.

Meldungen : BREAK OCCURED > CHECK DISK STATUS

Das Dienstprogramm wurde nach dem Drücken der Taste BREAK abge-

brochen. Es ist sicherzustellen, daß eine arbeitsfähige Diskettenkon-

figuration eingelegt ist. Die System-Disk muß nicht in der Einheit ein-

gelegt werden, an der sie vor dem Kopieren war. Während des eigent-

lichen Kopiervorgangs wird BREAK nicht akzeptiert. Die Fortsetzung

erfolgt mit CONTINUE.

END - ILLEGAL STATUS > REARRANGE DISKS

Wurde von einer System-Disk auf eine andere System-Disk, oder von

einer User-Disk auf eine andere kopiert, so enthält das System nach

dem Kopieren keine gültige Diskettenkonfiguration,. Es ist eine arbeits-

fähige Diskettenkonfiguration herzustellen, und mit CONTINUE fortzu-

setzen.

ERROR n

Das Kopieren wurde aufgrund eines Fehlers nicht ausgeführt oder ab-

gebrochen. Das System enthält eine arbeitsfähige Diskettenkonfiguration.

Nach Beheben der Fehlerursache kann das Kopieren erneut gestartet

werden.

ERROR n - ILLEGAL STATUS > REARRANGE DISKS

Das Kopieren wurde aufgrund eines Fehlers nicht ausgeführt oder abge-

brochen. Das System enthält keine gültige Diskettenkonfiguration. Es

ist eine entsprechende Diskettenkonfiguration einzulegen und mit

CONTINUE fortzusetzen. Nach Beheben der Fehlerursache kann mit dem

Kopieren erneut begonnen werden.

6. 99

- INSERT DISK P>RECEIVING SYSDIS ON DRIVE *
USDIS *%

Im Aufruf des Dienstprogrammes stimmen die beiden Parameter nach

IN= und OUT= überein. Für die Ausführung des Kopierens ist dann

entsprechend als Empfängerdiskette eine zweite System- oder zweite

User-Disk einzulegen. Ist diese Diskettenkonfiguration hergestellt,

wird mit CONTINUE das Kopieren gestartet. Das Kopieren führt dann

immer zu einer Meldung, die ILLEGAL. STATUS enthält.

- READY

Nach dem Ende des Kopierens mit gültiger Diskettenkonfiguration oder

nach Herstellen einer gültigen Konfiguration wird die Ausführung des

Dienstprogrammes beendet und das System befindet sich im Command-

Mode.

Anmerkung : Ist das letzte Zeichen im Display das Zeichen , , so kann der zweite Teil

durch Drücken der Tasten SHIFT und[—]sichtbar gemacht werden.

6.100

Beispiele : Beispiel 1: Kopieren mit den eingelegten Disketten :

Ein File der Common-Bibliothek der User-Disk wird in

die User-Biblliothek der System-Disk kopiert.

CAT UV,+,,F

*RELERSE 2.28 * VOLLRBEL = KB1179

FILE TYPE CREAT LAST MOD MAX SIZE USED SIZE CODE NUMBER

+RD R 259277 258277 89118 93118
+DATEN 5 258277 250277 +896 498

EXEC FLCOPY, IN=USLIB, +DATEN, OUT=SYSLIB,DAT1

READY

CAT 5: :,>»F

*RELERNSE 2.8 * NVOLLABEL = K81179

FILE TYPE CREAT LAST MOD MAX SIZE USED SIZE CODE NUMBER

DATA Ss 258277 258277 4996 +03

6.101

Kopieren mit Austausch der System-Disk gegen eine zweite

User-Disk. Nach dem Kopieren wurde die Original-User-

Disk gegen die System-Disk getauscht.

Beispiel 2:

CAT U,.D,F

+ RELERSE

FILE TYFE CREAT

FLO 5.248177

SGN “ 1440277

SIGN = 848277

FANFLO ZZ 949277

FLOT 5.829777

-PLO 5.920777

2 .B %* DOLLRBEL =

LAST MOD MA SIZE USED SIZE COLE NUMBER

249177? 17924 16324

048277 +A96 3472

0940277 +096 384

920777 +8B6&4 +a064

a20a777 24064 12223

020777 18112 u

E#E FLC,IN=USLIB,RANFLO,OUT=USLIEB, *

INSERT DISK -RECEIUING USDCIS ON DRIVE **
END - ILLEGAL STATUS REARRANGE DISHK>
READY

CAT U.*,.F

RELEASE 2.8 # JOLLABEL = KA1179

FILE TYPE CREAT LAST MOD MAX SIEE USED SIZE COCE NUMBER

*RPANFLO = 549277 920777 +0064 +aB64

6.102

| LBCREATE |

DIENSTPROGRAMM LBCREATE (Library Create)

Funktion :

Format :

Wirkung :

Meldungen :

Initialisierung des File-Systems auf einer Diskette.

exe [6] usc Bearz] |, =] ni Jo bon] Gel]

'n, ", N," N," : positive ganze Zahlen mit

mn

La N, ın,+n,&14

NS; Initialisierung der System-Disk

nu; Initialisierung der User-Disk

nd: Package-Library

nl; Common-Library

ıNPN : User-Library

Auf der angegebenen Diskette werden die Bibliotheken für die Anwender-

Programme eingerichtet. Die Zahlen N. N, und n, legen fest, wieviele

Directory-Sektoren den einzelnen Bibliotheken zur Verfügung gestellt verden.

Da in jedem dieser Sektoren 13 Einträge von Filenamen gemacht werden können,

wird dadurch implizit die Zahl der Files festgelegt, die in den einzelnen Bib-

liotheken gespeichert werden können. Werden keine Werte für N, ; N, oder N,

angegeben, werden folgende Werte vom System angenommen :

=5
u
n,=4

n„=9

Wird mindestens ein N. angegeben, so werden allenfalls nicht angegebene N,

gleich @ gesetzt.

- ACTION ON UNIT E ?

Vor Ausführung der Initialisierung wird der Benutzer darauf hingewiesen,

auf welcher Diskettenstation das Dienstprogramm ausgeführt wird. Durch

Drücken der Taste CONTINUE wird das Dienstprogramm gestartet; durch

Drücken der Taste BREAK wird die Initialisierung nicht durchgeführt.

6.195

Bemerkungen :

Beispiele:

- READY

Nach regulärem Ende der Initialisierung erscheint im Display die Meldung

READY: das System befindet sich im COMMAND-MODE.

Nach Ausführung des Dienstprogrammes LBCREATE sind vorher gespeicherte

Files gelöscht.

EXEC LBCREATE.U
ALTION ON UNIT * 2?
READY
SPA
SiSsbISs 7’ua88 ‚„USDIS 248598

EXE LBEC.U,+=1

HETION ON UNIT = 7

FERDY

FA

=YSbIS 78848 ‚USbDIS 242250

E<E LBC,5S,#=2,+=3,NP=9

RHETION ON UNIT *%* 7?

8
y

SYSDIS PFoasa ‚„USDIS 242258

EXE LBC,,NP=1

HETION DH UNIT sk 7

FERDY

FA

SYSbDIS 71678 ‚„USDIS 242258

Die Bibliotheken der User-Disk

werden mit den Standardwerten

ertellt (*=-5,+=4,NP=5)

Es wird auf der User-Disk nur

eine Common-Bibliothek für max.

13 Files erstellt

Die System-Disk enthält:

- eine Package-Bibliothek für

26 Files

- eine Common-Bibliothek für

39 Files

- eine Uiser-Bibliothek für

117 Files

Die System-Disk enthält eine User-

Bibliothek für 13 Files

6.106

DIENSTPROGRAMM LIBCOPY (Library Copy)

Funktion: Kopieren einer oder aller Bibliotheken von.einer Diskette auf eine andere.

%

YsLIB + YstL_IB

Format: EXE [<] Lıskorv] „ .IN= ; ‚ OUT =
SL_IB : USLIB

Wirkung: Die einzelnen Parameter haben folgende Bedeutung:

SYSLIB

- IN= Gibt die Diskette an, auf der sich die

sL_I1B
zu kopierende Bibliothek befindet.

- N1SYSLIB!: System-Disk

- MUSLIB!; User-Disk

- IL Spezifiziert die Bibliothek

e

®

nn Es ist die User -Bibliothek zu kopieren.

(kein Parameter)

gu Es ist die Package-Bibliothek zu kopieren.

n+n Es ist die Common-Bibliothek zu kopieren.

u, Es sind alle Bibliotheken zu kopieren,

SYSLIB
USLIB : gibt den Typ der Diskette an, auf die die - OUT =

Bibliothek kopiert werden soll

NSYSLIB!: Es wird auf eine System-Disk kopiert,

und zwar,

gilt IN = SYSLIB, ist an Stelle der User-Disk

eine weitere System-Disk einzulegen,

gilt IN = USLIB, werden die Bibliotheken

auf die eingelegte System-Disk kopiert.

6.107

Meldungen :

NUISLIBN : Es wird auf eine User-Disk kopiert, und zwar :

gilt IN= SYSLIB, wird auf die eingelegte Ulser-

Disk kopiert,

gilt IN= USLIB, ist an Stelle der System-Disk

eine User-Disk einzulegen.

BREAK OCCURED > CHECK DISK STATUS

Wird die Ausführung des Dienstprogrammes durch BREAK abgebrochen,

so erscheint diese Meldung. Es ist sicherzustellen, daß eine gültige

Diskettenkonfiguration eingelegt ist und es ist mit CONTINUE fortzusetzen.

Wird das Kopieren durch BREAK unterbrochen, so wird das zu ko-

pierende File zu Ende kopiert und dann das BREAK ausgeführt. Die

System-Disk muß nicht an der Stelle eingelegt sein, an der sie vor Auf-

ruf des Kopierens eingelegt war.

END - ILLEGAL STATUS > REARRANGE DISKS

Nach dem regulären Ende des Kopierens wird bei nicht arbeitsfähiger

Diskettenkonfiguration diese Meldung ausgegeben. Es ist eine arbeits-

fähige Diskettenkonfiguration einzulegen, wobei die System-Disk nicht

an der Stelle eingelegt werden muß, an der sie vor dem Kopieren ein-

gelegt war. Nach dem Herstellen einer arbeitsfähigen Konfiguration ist

das Dienstprogramm mit CONTINUE fortzusetzen.

ERROR n

Das Kopieren wurde aufgrund des angezeigten Fehlers abgebrochen. Das

System enthält eine arbeitsfähige Diskettenkonfiguration. Das System

befindet sich im Command-Mode,

6.108

- ERROR n - ILLEGAL STATUS > REARRANGE DISKS

Das Kopieren wurde aufgrund des angezeigten Fehlers abgebrochen,

Das System enthält keine gültige Diskettenkonfiguration. (Zwei System-

oder zwei User-Disks.) Es ist eine arbeitsfähige Konfiguration herzu-

stellen und mit CONTINUE forizusetzen. Das System befindet sich im

Command-Mode.

SYSDIS
- INSERT DISK > RECEIVING USDIS ON DRIVE

Stimmen im Aufruf des Dienstprogrammes die Parameter bei IN= und

OUT= überein, so wird auf eine zweite Diskette gleichen Typs kopiert.

Entsprechend der Meldung ist eine System- bzw. User-Disk in die an-

gegebene Einheit einzulegen und mit CONTINUE fortzusetzen. Nach

Ausführung der Kopie kommt immer eine Meldung, die ILLEGAL STATUS

enthält.

- READY

Nach regulärem Ende des Kopierens bei gültiger Diskettenkonfiguration

oder nach Herstellen einer gültigen Konfiguration und CONTINUE wird

das Dienstprogramm beendet und das System befindet sich im Command-

Mode.

Anmerkung : Ist das letzte Zeichen im Display das Zeichen !! >!!, so kann der zweite Teil

der Meldung durch Drücken der Tasten SHIFT und [—S]

sichtbar gemacht

werden.

6.109

Bemerkungen : - Das Dienstprogramm Ist nur verfügbar, wenn mit System-Disk und

User-Disk gearbeitet wird.

- Die Kopien werden neu organisiert abgespeichert : die einzelnen

Files werden zusammenhängend gespeichert, auch wenn Files der

Original-Bibliothek In segmentierter Form abgespeichert waren.

- Ist zur Ausführung der Kopie nicht genügend Platz auf der Empfänger-

diskette, so wird - in der Reihenfolge des Kataloges der entsprechen-

den Bibliothek - nur die Anzahl von Files kopiert, die vollständig ko-

piert werden können.

Beispiel: Der Inhalt der User-Library der System-Disk wird in die User-Library

der User-Disk übertragen.

EsXEC LIBCOPY, IN=SYSLIB, ,OUT=USLIB

6.110

| LBPROTECT

DIENSTPROGRAMM LBPROTECT (Library Protect)

Funktion:

Format:

Wirkung:

Bemerkungen:

Die angegebene Bibliothek wird gesichert.

SYSLIB { 1}
USLIB ’ +

SYSLIB
USLIB

EXE [<] Lerfrorect]

Die einzelnen Parameter haben folgende Bedeutung:

NSYSLIB! Die zu schützende Bibliothek liegt auf der

System-Disk

NUSLIB'! Die zu schützende Bibliothek liegt auf der

User-Disk.

Wird keiner dieser beiden Parameter angegeben, wird

NSYSLIB!' angenommen.

men Es soll die Package-Bibliothek geschützt werden.

nt Es soll die Common-Bibliothek geschützt werden »

Wird keiner dieser Parameter eingegeben, werden die

Package- und die Common-Bibliothek geschützt.

Ist die Package-Bibliothek geschützt, werden folgende

Befehle nicht mehr akzeptiert, soweit sie sich auf Files

in dieser Bibliothek beziehen:

SAVE TRANSCODE

CREATE TRUNCATE

PURGE REPLACE

MODIFY FLCOPY

- Ist die Common-Library geschützt, werden folgende

Befehle nicht durchgeführt:

PURGE

MODIFY

- Der Schutz bleibt beim Kopieren einer Diskette erhalten.

- User-Bibliotheken können nicht geschützt werden.

- Ist eine Bibliothek geschützt, kann dies nicht mehr rück-

gängig gemacht werden.

6.111

- Mit dem Dienstprogramm FLCOPY ist es nur möglich, Files aus einer

geschützten Bibliothek zu kopieren.

Beispiel : Schützen der Package-Bibliothek der User-Disk :

EXEC LBPROTECT,USLIB,*
READY

ALD HEXA Der Versuch, ein Programm zu
SAUE U,+-HEXA,MSG=O
ERROR 298 speichern, bewirkt die Fehler-

meldung : "Unerlaubte Operation,

da Bibliothek geschützt ist. !"

6.112

pc Da

BAR a
a 5‘ u ee

Baht un
- & aa ih ae

DR a a ; "auafen 1809

EINFÜHRUNG IN DIE SRRACHIEE BASIC

Seite

7.1 BASIC-ZEICHEN 7.1

7.1.1 Alphabetische Zeichen 7.1

7.1.2 Numerische Zeichen 7.1

7.1.3 Sonderzeichen 7.1

7.1.4 Leerzeichen 7.2

7.2 ZAHLENDARSTELLUNG | 7.2

7.2.1 Zahlenbereich 7.2

7.2.2 Genauigkeit | 7.2

7.2.3 Externe Darstellung von Zahlen 7,3

7.2.3.1 Ganze Zahlen 7.3

7.2.3.2 Dezimalzahlen in Festkommadarstellung 7.3

7.2.3.3 Dezimalzahlen in Gleitkommadarstellung 7.4

| 7.2.4 Wahl der Zahlendarstellung 7.4

7.3 NUMERISCHE KONSTANTE 7.4

7.4 INTERNE KONSTANTE 7° 7.5

7.5 NUMERISCHE VARIABLE 7.5

7.6 STRINGKONSTANTE 7.6

7.7 STRINGVARIABLE 7.6

7.8 FELDER (INDIZIERTE VARIABLE) 7.7

7.8.1 Feldvereinbarung 7.8

7.8.2 Veränderung der Dimensionen einer Matrix 7.9

7.9 NAMEN VON VARIABLEN 7.9

7.10

7.11

7.12

STANDARDFUNKTIONEN

7.10.1 Mathematische Funktionen

7.10.2 String-Funktionen

AUSDRÜCKE

7.11.1 Arithmetische Ausdrücke und Operatoren

7.11.1.1 Regeln zu den arithmetischen Oper

Operatoren

7.11.1.2 Prioritätsregeln

7.11.2 Stringausdrücke und Operatoren

7.11.3 Vergleichsoperatoren

7.11.4 Boole!sche Operatoren

STRUKTUR EINES BASICPROGRAMMES

7.12.1 Zeilennummer

7.12.2 Schlüsselwort

7.12.3 Operanden

Seite

7.9

7.10

7.12

7.13

7.14

7.15

7.15

7.17

7.18

7.18

7.18

7.18

.1.2

.1.3

EINFÜHRUNG IN DIE SPRACHE BASIC

BASICZE ICHEN

Die BASIC-Sprache hat einen Zeichenvorrat, einen Wortvorrat

und bestimmte Regeln der Syntax, aus denen man Befehle, Daten

und Variable bilden kann.

Die Zeichen unterteilt man In

- alphabetische

_ numerische

_ Sonderzeichen,

Alphabetische Zeichen

Zu den alphabetischen Zeichen gehören die Großbuchstaben des

lateinischen Alphabetes und folgende 3 Zeichen:

@ kommerzielles a (Klammeraffe)

Nummernzeichen

8 Dollarzeichen

Numerische Zeichen

Numerische Zeichen sind die Ziffern von O0 - 9.

Sonderzeichen

Die Sonderzeichen sind in folgender Tabelle zusammengefaßt:

NAME NAME

Leerzeichen ; Strichpunkt

= Gleichheitszeichen . Schlußpunkt oder

oder Zuweisung Dezimalpunkt

+ Additionszeichen : Doppelpunkt

- Subtraktionszeichen & kommerzielles "und!!

* Sternchen oder Mul_ ? Fragezeichen

tiplikationszeichen ? größer als

/ Schrägstrich oder < kleiner als

Divisionszeichen ; Komma

? Potenzierung
n Anführungszeichen

(öffnende Klammer

) schließende Klammer

.J.

.2.

Die Leerzeichen (Bilanks)

Leerzeichen können in einem Programm beliebig gesetzt werden,

um die Lesbarkeit zu erhöhen.

Man beachte aber, daß Leerzeichen in den folgenden Fällen signi-

fikant sind:

- Innerhalb von alphanumerischen Konstanten (Strings)

- In Formatanweisungen, die das Format der Ausgabedaten

auf Drucker und Display spezifizieren.

Nicht zugelassen sind Leerzeichen an folgenden Stellen:

- Innerhalb einer Zeilen-Nummer

Innerhalb von BASIC-Wörtern

_ Innerhalb von Variablennamen und Funktionen

. Innerhalb numerischer Konstanten

ZAHLENDARSTELLUNG

Der numerische Wert der Zahlen wird im Dezimalsystem dargestellt.

Zahlenbereich

Unter der Größe einer Zahl versteht man den Absolutwert der Zahl.

Der Zahlenbereich des P6060 BASIC umfaßt alle Zahlen, die größer

_ 99
oder gleich 10 99 und kleiner oder gleich 9. 999999999999 %& 10 sind.

Genaui gkei t

Unter der Genauigkeit einer Zahl versteht man die maximale Anzahl der

signifikanten Ziffern, aus denen die Zahl bestehen kann.

Der P6060 kann mit einfacher oder doppelter Genauigkeit arbeiten.

Wird für die Darstellung der Zahl die allgemeine Form n 10" ver.

wendet, so gilt:

einfache Genaeigkeit doppelte Genauigkeit

1 <n<999999 1 <n< 9999999999999

- 63 mX<+ 63 -.99<mx +99

Das System arbeitet generell mit doppelter Genauigkeit. Für die Fest_

legung einfacher Genauigkeit siehe die Anweisung DCL in Kapitel 8.

7.2.3.1

7.2.3.2

Externe Darstellung von Zahlen

Arithmetische Zahlen können als:

ganze Zahlen

Dezimalzahlen in Festkommadarstellung

Dezimalzahlen in Gleitkommadarstellung

ein- oder ausgegeben werden. Die Wahl der Darstellung

ist abhängig von der Größe der Zahlen und der erforderlichen

Genauigkeit. Die Zahlen können positiv oder negativ sein. Ne.

gative Zahlen werden durch ein Minuszeichen vor der Zahl

dargestellt, positiven Zahlen kann ein Pluszeichen vorange-

setzt werden.

Ganze Zahlen

Ganze Zahlen können bis zu 13 Ziffern aufweisen. Bei positiven

Zahlen braucht das Vorzeichen nicht gesetzt zu werden,

Beispiele: 9

+4

„dä

Dezimalzahlen in Festkommadarstel lung,

Dezimalzahlen in Festkommadarstellung können bis zu 13 Stellen

lang und mit einem Vorzeichen versehen sein. Dem ganzzahligen

Teil folgt ein Dezimalpunkt und anschließend bis zu 12 Nachkomma.

stellen.

ZBeispiele: 9.

99.

-.99

+.99

+99.99

- 99999999999999 0. 00000000000 I

+ 0. 0000000000001 9999999999999

7.2.3.3 Dezimalzahlen in Gleitkommadarstellung

Zahlen in Gleitkommadarstellung bestehen aus einem Vorzeichen,

gefolgt von einer ganzen Zahl oder einer Dezimalzahl (Mantisse

genannt), der der Buchstabe E angehängt wird. Die Zahl hinter

dem Buchstaben E gibt die Zehnerpotenz an, mit der multipliziert

wird und besteht aus maximal zwel Ziffern. Sie kann mit positivem

oder negativem Vorzeichen versehen sein. Die Mantisse kann max.

13 signifikante Ziffern enthalten.

Beispiele: Gleltkomma/Festkomma

‚99E- 5 B. Badaga9

+1. 0E+1@ ı ade

9E-1B Y. Budaddadng

Wahl der Zahlendarstellung

Eine Zahl kann in jeder der 3 beschriebenen Zahlendarstellungen

über die Tastatur eingegeben werden. Die Zahl 9 Millionen kann

z.B. auf folgende Arten dargestellt werden:

9 da daR

9 dan daR. daR
9E +6

Der Zahlenbereich des Absolutbetrages liegt zwischen I E — 99 und

9. 999999999999E +99. |

Werden mehr als 13 signifikante Stellen eingegeben, so erscheint

im Display eine Fehlermeldung.

Die Zahlendarstellung der Daten auf dem Display und auf dem Aus.

druck kann im Programm festgelegt werden (siehe die Befehle DISP

USING, PRINT USING).

NUMERISCHE KONSTANTE

Eine numerische Konstante ist eine ganze Zahl oder eine Dezimal.

zahl in Fest- oder Gleitkomma, deren Wert während der Programm...

ausführung unverändert blelbt.

X = Y/95

X = Y-99.9

Beispiele:

x = 2x9. 9E-10

95, 99.9 und 9.9E — 10 sind Konstante

INTERNE KONSTANTE FT

Die Zahl Tf = 3, 141592 654590 ist als Interne Konstante in

doppelter Genauigkeit vorhanden. Sie kann mit dem Namen Pi

aufgerufen werden.

Interne Konstante können im Zusammenhang mit numerischen

Ausdrücken verwendet werden. Sie können mit den Vorzeichen

Plus und Minus versehen werden.

Beispiele: PIx%2

NUMERISCHE VARIABLE

Variable sind Größen, die mit Namen bezeichnet werden und deren

Wert während der Programmausführung verändert werden kann.

Variable werden durch einen beliebigen Großbuchstaben dargestellt,

dem eine Ziffer (ß-9) folgen kann.

Beispiele: 2, 29, 2zd

Eine Variable, der noch kein Wert zugewiesen wurde, hat einen

nicht definierten!! Wert. Wird eine solche Variable in einem arithme_

tischen Ausdruck verwendet, so wird an den Operator eine Fehler_

meldung ausgegeben. Wird ohne Eingabe eines anderen Wertes wei_

tergerechnet, so wird der Variablen vom System der Wert @ zuge.

wiesen. Die Variable gilt weiterhin als "nicht definiert".

Maximal können 128 numerische Variable im gleichen Programm ver-

wendet werden.

STRINSKONSTANTE

Eine Stringkonstante besteht aus einer Folge von Zeichen, die

von Anführungszeichen eingeschlossen werden. Das Anfüh-

rungszeichen selbst ist kein Bestandteil der Konstanten. Zu-

gelassen sind alle Zeichen der ISO-Code Tabelle,

Beispiele: "DIE FLÄCHE DES TRAPEZES BETRÄGT"!

ug 123456789"

VOLUMEN

Unter der Länge einer Stringkonstanten versteht man die Anzahl

der Zeichen Innerhalb der Anführungszeichen. Die maximale Län.

ge ist gleich der max. Länge einer Zeile und beträgt 75 Zeichen.

STRINGVARIABLE

Stringvariable enthalten eine Folge von zulässigen Zeichen und

können im Laufe des Programmes verändert werden. Namen von

Stringvariablen bestehen aus einem Großbuchstaben des Alphabetes

(A - Z) gefolgt von einem Dollarzeichen ($£) , oder aus einem Groß.

buchstaben gefolgt von einer Ziffer und dem Dollarzeichen (%).

Die Zeichen können über Tastatur eingegeben werden (siehe die

Anweisungen INPUT, RKB) oder werden im Programm zugewiesen

(siehe READ/DATA).

Eine Variable, der kein Wert zugewiesen wird, wird mit dem Wert

IInicht definiert!" initialisiert und erhält bei der Ausführung des Pro.

grammes den Wert "!Nullstring!!; außerdem wird eine Fehlermeldung

an den Operator ausgegeben.

Stringvariable können bis zu 1023 Zeichen enthalten. Die Länge

einer Stringvariablen kann mit dem Befehl DCL festgelegt werden

(siehe Kapitel 8).

Wird die Länge einer Stringvarlablen nicht angegeben, so wird

sie automatisch auf 16 Zeichen limitiert. Wird einer Stringvariab.

len ein String zugewiesen, der Jänger Ist als die deklarierte Län-

ge für die Variable, so erfolgt eine Fehlermeldung. Wird das

Programm trotzdem mit CONTINUE fortgesetzt, so wird der

String rechts abgeschnitten.

FELDER (INDIZIERTE VARIABLE)

Indizierte Variable bezeichnen ein Feld von Variablen (numeri-

sche Variable oder String-Variable).

Ein Feld kann ein- oder zweidimensional sein.

Fin eindimensionales Feld (Vektor) kann als eine natürliche Folge

von Elementen gedacht werden.

Ein zweidimensionales Feld hingegen ist eine Matrix, bestehend

aus Zeilen und Spalten.

Ein Feldname besteht aus einem Großbuchstaben (A *"Z). Der Na.

me eines Feldes kann z.B. A sein, A2 ist nicht erlaubt.

Ein Element des Feldes wird bestimmt durch den Namen des Feldes,

zusammen mit einem Index, wenn es sich um einen Vector handelt,

und zusammen mit zwei Indices bei einer Matrix. Die Indices geben

die Position des Elementes im Feld an.

Beispiele:

Wenn A der Name eines Vectors ist, so heißen die Elemente A(1),

A(2), A(3), A(4), A(5), A(6), A(7), A(8), A(9), A(10),.....

A(4) ist also die vierte Komponente des Vectors A.

Bezeichnet Z eine Matrix, so sind die Elemente:

z(1,1) 2 (1,2) zZ (1,3) zZ (1,4)

2 (2,1) 2 (2,2) zZ (2,3) zZ (2,4)

2 (3,1) zZ (3,2) zZ (3,3) zZ (3,4)

7.7

.8. 1

Das Element Z (2, 3) ist also das dritte Element der zwelten Zelle.

Die Indices können beliebige arlthmetische Ausdrücke sein, die

einen ganzzahligen Wert zwischen eins und der oberen Feldgren-

ze ergeben, wobei bel einem nicht ganzzahligen Ergebnis gerundet

wird.

Die Dimension eines Feldes (die Anzahl der Elemente) wird durch

den Befehl DIM festgelegt.

In einem Programm kann man einer Variablen und einem Feld den-

selben Namen geben; so kann B eine Variable, aber auch ein Feld

angeben. Es ist jedoch nicht erlaubt, in einem Programm einem

Vector und einer Matrix denselben Namen zu geben. Vor der Aus-

führung eines Programmes sind die Elemente "nicht definiert",

erst wenn im Laufe des Programmes ein Feldelement verwendet

wird, erfolgt eine Fehlermeldung. Wird ohne eine Wertzuweisung

weitergerechnet, wird der Variablen vom System der Wert g zuge-

wiesen; die Variable gilt weiterhin als "nicht definiert".

Feldverei nbarung

Unter Feldvereinbarung versteht man die Angabe, ob ein Feld ein-

oder zweidimensional aufgebaut ist, sowie die Angabe der Anzahl

der Elemente.

Man unterscheidet explizite und implizite Feldvereinbarungen, je

nachdem, ob das Feld durch den Dimensionierungsbefehl DIM de-

klariert wurde, oder ob man sich im Programm ohne DIM-Anweisung

auf ein Feldelement bezieht.

Die implizite Deklaration weist einem Feld pro Dimension 10 Ele-

mente zu. Wird der Vector Z nicht explizit durch den Befehl DIM

deklariert, so bedeutet das, daß der Vector Z 10 Elemente besitzt.

Der Befehl Z (5) =* 99 gibt an, daß dem 5. Element des Vector Z die

Zahl 99 zugewiesen wird.

Ebenso bedeutet Y (5,7) =-990.5, daß die Matrix Y (ohne Dimensionie-

rungsbefehl DIM) 100 Elemente (10 Zeilen und 10 Spalten) besitzt. Ana-

log wird hier dem 7. ten Element der 5.ten Zeile die Zahi —990. 5 zuge”

wiesen,

Bei einer Matrix für Stringvariable ist die größtmögliche Dimension

ohne DIM-Anweisung 5 x 5.

.8.

. 10

Veränderung der Dimensionen einer Matrix

Die Dimensionen einer Matrix mit numerischen oder Stringelemen.-

ten kann verändert werden, jedoch muß die Anzahl der Elemente

kleiner sein als anfangs explizit oder implizit festgelegt wurde,

Siehe dazu die Beschreibung der Matrix Befehle in Kapitel 8.

NAMEN VON VARIABLEN

In Abb, 1 sind die Regeln zur Bildung von Variablen_Namen

nochmals zusammengefaßt:

Bedeutung Name Beispiel

Numerische Variable &lzitfer] z, K3

Stringvariable d[Zitter] 238,z2%

n
Numerisches Feld al? my) 2(3) 2 (3,4)

’

n
Feld mit Stringelementen ef, mJ) ZzEB(3) Z(3,4)

’

& bedeutet: bel. Großbuchstabe

richtig falsch

zi=10 einfache Variable Z(1)= 10

Z (1) = 10 indizierte Variable Z 3 (1,2) = 100

Z& =" WECHSELSPANNUNG! zZ (5)&$ = !IGESCHW INDIGKE IT"
(einfache Stringvariable)

Z58(1,5) = "LEISTUNG!

(indizierte Stringvariable) zZ (1,3) 8 = "RAUM!

Abb. 1:Regeln zur Bildung von Variablen-Namen

STANDARDFUNKT IONEN

OLIVETTI P6060 BASIC enthält folgende Funktionen für numerische

Operationen und die Verarbeitung von Zeichenketten (Strings).

7.10.1 Numerische Funktionen

Eine numerische Funktion kann in jedem arithmetischen Ausdruck mit Kon-

stanten, Variablen und Feldelementen verwendet werden.

Z=SIN(X PI)-A

Al = SAR (SIN (X))

Alle numerischen Funktionen haben nur ein Argument und ergeben einen Wert

in doppelter Genauigkeit. Das Argument kann auch ein arithmetischer Ausdruck

sein (siehe 7. 11.1).

Ist ein Argument unzulässig, wird ein Fehler gemeldet.

Abb. 2 gibt eine Übersicht über alle numerischen Funktionen.

Name Bezeichnung

ACS (x) Arcuscosinus von X (Bogenmaß)

ASN (X) Arcussinus von X (Bogenmaß)

ATN (x) Arcustangens von X (Bogenmaß)

ABS (x) Absolutbetrag von X

COS (x) Cosinus von X (Bogenmaß)

COT (x) Cotangens von X (Bogenmaß)

DEG (x) Umwandlung von X (Bogenmaß) in Grad

EXP (x) Exponentialfunktion von X (e)

HCN (x) Cosinus hyperbolicus von X

HSN (x) Sinus hyperbolicus von X

HTN (x) Tangens hyperbolicus von X

INT (X) Abrundung auf nächste kleinere ganze Zahl

1IOC (x) Abfrage des Zustandes einer peripheren Einheit

LEN (X%$) Länge der Variablen X%

RND

SGN (x)

SIN (x)

SCN (AS, BS, X, Y)

SAR (x)

TAN (x)

Bezeichnung

dekadischer Logarithmus von X

natürlicher Logarithmus von X

Umwandlung von X (Grad) in Bogenmaß

Zufallszahl zwischen O und I

Signum (Vorzeichen) von X

Sinus von X (Bogenmaß)

Aufsuchen von BZ innerhalb A&

Quadratwurzel von X

Tangens von X (Bogenmaß)

Abb. 2 : Numerische Standardfunktionen

siehe ausführliche Beschreibung in Abschnitt 8. 3

7.10.2 STRING - FUNKTIONEN

Eine Stringfunktion kann In allen Stringausdrücken verwendet werden und

liefert als Ergebnis einen String. Die Argumente einer Stringfunktion

können sowohl numerisch als auch alphanumerisch sein.

Name Beschreibung

BLNZ(X, AS, BD) Vergleich zweier Strings gemäß Regeln der

Boole'schen Algebra.

CHR& (x) Wandelt eine Zahl zwischen O0 und 255 in das

entsprechende Zeichen der ISO-Tabelle um,

EXT 8 (AZ, I, L) Tellstring von Aß: Vom I -ten Zeichen be-

ginnend bis zum L-ten Zeichen einschließlich.

REP B (AZ, B%, CE, Ändert den String A, indem BB durch C3

N, I) N-mal ersetzt wird, beginnend beim I-ten

Zeichen.

Abb.4 - Standards der STRING-FUNKTIONEN

Ausführliche Beschreibung in Abschnitt 8.3

AUSDRÜCKE

Ein Ausdruck kann ein beliebiger arithmetischer Ausdruck sein oder ein

Stringausdruck. Ausdrücke sind also alle Konstanten, Variablen, Felder,

indizierte Variable, die Standardfunktionen und Anwenderfunktionen und

alle Kombinationen davon, die man durch Verknüpfung mit Operatoren er-

hält.

T. 11. 1.1

Arithmetische Ausdrücke und Operatoren

Arithmetische Ausdrücke sind z.B.:

Al

x/Y+11.5- 73%Z1

(x- 19) *Z 1

SIN (X XY)

— 97.4

A#B

ARITHME TISCHE OPERATOREN:

Symbol

+
SS

>

Operätoren

Potenzierung

Multiplikation

Division

Addition oder Pluszeichen

Subtraktion oder Minuszeichen

Zuweisung

Regeln zu den arithmetischen Operatoren

Potenzierung:

B+tE

Voraussetzung

B=-E=0

B=0, E<O

B<0, E#ZINT(E)

B?/0, E=-0

B=-0, E>O

Basis B wird zur Potenz von E erhoben

Ergebnis

BE >=1

Fehlermeldung (Overflow)

Fehlermeldung (Overflow)

BtE=1

BtE=-0

.11.

Multiplikation und Addition:

AXB ist gleichbedeutend mit B#A

A + B ist gleichbedeutendmit B+ A

es gilt also das kommutätive Gesetz.

A%#* (B%*C) ist nicht immer gleich mit (A B)*C

A+ (B+C) ist nicht immer gleich mit (A+B) +C

Das Ergebnis in der Klammer kann nämlich gerundet oder

abgeschnitten werden.

Division und Subtraktion:

A / B bedeutet A dividiert durch B

ist B= 0 so erfolgt eine Fehlermeldung (Overflow)

A“ B bedeutet A minus B

Vorzeichen erlaubt:

-B+(-A)+Cc”r(-Z)

A+=-B oder AX-B Der zweite Operator (+ od. —)

A++B (wird als AtB ge- wird hier jeweils als Vorzeichen

speichert) von B interpretiert.

Die Zeichen + und - können zwischen einer öffnenden Klammer und einem

arithmetischen Ausdruck gesetzt werden. Außerdem können sie auch

noch vor dem ersten Zeichen eines arithmetischen Ausdruckes stehen.

Prioritätsregeln

Die numerischen Operatoren haben folgende Priorität:

Operation Priorität

% höchste

:/ |

+,- niedrigste

Operationen Innerhalb der Klammern werden zuerst ausgeführt: Im

Beispiel (A+ B-C)% D wird zuerst die Klammer berechnet und das

Ergebnis mit D multipliziert. Ausdrücke mit Operatoren gleicher Pri.

orität werden, wenn nicht Klammern es anders bestimmen, von links

nach rechts ausgewertet.

7.14

7.11.93

Stringausdrücke und Operatoren

Ein Stringausdruck besteht aus Stringkonstanten, Stringvariablen,

indizierten Stringvariablen oder Stringfunktionen, die eventuell

auch durch den Verknüpfungsoperator verbunden sein können.

Der Verknüpfungsoperator wird durch das Symbol + dargestellt.

Stringkonstante müssen immer zwischen Anführungszeichen stehen.

Beispiele:

Aß+N= "+BB + "x0+ Ch

stand n AZ VOLUMEN

in BS GRUNDFLAECHE

inc HOEHE

so ergibt der Ausdruck:

VOLUMEN = GRUNDFLAECHE ?* HOEHE

Vergleichsoperäatoren

Hier wird der Inhalt zweier Stringausdrücke oder der Wert von

arithmetischen Ausdrücken verglichen. Das Ergebnis ist ein Wahr.

heitswert, "wahr!! oder "falsch" (Boole'sche Variable).

Vergleichsoperaäatoren sind:

OPERATOR BEDEUTUNG

= gleich

<> oder >< ungleich

= oder =), größer gleich

{= oder =& kleiner gleich

2 größer

< kleiner

Die allgemeine Form des Ausdrucks von Vergleichsoperäationen ist:

Ausdruck 1 Vergleichsoperator Ausdruck 2

Ausdruck I und 2 dürfen beliebige Ausdrücke sein, jedoch ohne Vergleichs.

operatoren. Es können nur 2 Ausdrücke verglichen werden.

Die zu vergleichenden Ausdrücke müssen beide numerisch oder alphanumerisch

sein.

Werden Zeichenketten verglichen, so erfolgt der Vergleich

Zeichen für Zeichen von Iinks nach rechts, entsprechend der

+

Reihenfolge der Zeichen In der ISO-Code-Tabelle.

Vergleicht man zwei Zeichenketten verschledener Länge, so

wird der kürzere String mit dem ISO-Zeichen NUL bis zur

Länge der längeren Zeichenkette aufgefüllt.

Wird bis zur signifikanten Länge des kürzeren Strings Gleich.

heit festgestellt, so gilt der längere Ausdruck als der größere.

BEISPIEL

AB IST GROESSER ALS ARAAARAAAAAAAARAR

2588 IST KLEINER ALS 3

123456 IST GLEICH 123456

7.11.4
BOOL_E!sche Operatoren

Ein Vergleich liefert als Ergebnis einen Wahrheitswert "wahr!' oder "falsch",

Die Wahrheitswerte von zwei Vergleichen können durch die boole'schen

Operatoren

AND

OR

verknüpft werden und liefern wieder einen Wahrheitswert. Das allgemeine

Format lautet :

AND
OR: (Vergleich 2) (Vergleich 1)

Die beiden Vergleichsoperatoren "Vergleich 1" und !"!"Vergleich 2!! müssen

in Klammern eingeschlossen sein,

Die Verknüpfung der beiden Vergleiche mit AND liefert genau dann den Wahr-

heitswert !"!wahr!!, wenn sowohl "Vergleich 1" als auch "'Vergleich 2! den

Wahrheitswert "wahr! hat.

Die Verknüpfung der beiden Vergleiche mit OR liefert genau dann den Wahr-

heitswert ıwahr!; wenn zumindest einer der beiden Vergleiche "Vergleich 1"

oder "!Vergleich 2!!! den Wahrheitswert !"'wahr!! hat.

Wird für "wahr!! 1 und für "falsch!! @ geschrieben, kann man die Wahrheits-

tafel für AND und OR bilden :

AND OR

Vergleich 1| 1 11 1010 Vergleich 1 | 1 I1 10 0

Vergleich 2] 1 |0O }1 JO Vergleich 2 } 1|J0]1 JO

(1) AND (2) | ı [0 jo Jo (1) OR (2) ılı lı lo

Beispiel : (A>B) OR(C>D) Der Ausdruck ist !!wahr!! wenn A

größer als B und/oder C größer als

D ist.

(A>B) AND (C>D) Der Ausdruck ist !!wahr!!, wenn so-

wohl A größer als Bals auch C größer

als Diist.

7.17

7.12.1

7.12.2

7.12.3

STRUKTUR EINES BASICPROGRAMMES

Ein BASIC-Programm besteht aus einer Folge von Zeilen (Statements).

Jede Zeile hat die folgende allgemeine Form:

Zeilennummer Schlüsselwort Operanden

Die Zeilennummer

Jede Zeile beginnt mit einer Zeilennummer, einer ganzen Zahl

zwischen 1 und 9999.

Ein Programm wird in aufsteigender Reihenfolge der Zeilennummern

abgearbeltet, wobei der direkte Ablauf durch spezielle Programman.

weisungen wie Sprungbefehle, Unterprogrammaufrufe etc. unterbrochen

werden kann.

Werden bei der Programmeingabe die Zeilen nicht In aufsteigender

Reihenfolge eingegeben, so werden sie automatisch entsprechend ge-

ordnet. Lücken beliebiger Größe in der fortlaufenden Zeilennumerie-

rung sind erlaubt. |

Das genaue Vorgehen bei der Eingabe eines Programmes ist in Kapi.

tel 9 ausführlich beschrieben.

Schlüsselwort

Jede Basic_-Anweisung beginnt (nach der Zeilennummer) mit einem

ein. bis dreltelligen Schlüsselwort.

Operanden

Nach jedem Schlüsselwort, bzw. dessen Teilwort, können ein oder

mehrere Operanden stehen, wie Konstanten, Variable, Ausdrücke oder

Vergleichs- und Zuweisungsoperanden.

geispiele:

a) ein. bis dreiteilige Schlüsselwörter PRINT

| EEE THEN ...

FOR TO... STEP..

b) Einfügen von Operanden PRINT A*B

IFA=B THEN 200

FOR K = 1 TO 10 STEP 2/A

Über die Verwendung der Operanden und der möglichen

Trennzeichen bestehen für jedes Schlüsselwort genaue For.

matanweisungen, die in Kapitel 8 für jedes BASIC_-Wort ge-

nau beschrieben sind.

BASIC - ANWEISUNGEN

8.1

8.2

8.3

8.4

LISTE DER BASIC - ANWEISUNGEN

Kurzbeschreibung nach Funktionen geordnet

Ausführliche Beschreibung alphabetisch geordnet

DIE ANWEISUNGEN DER OPTION MAT

DIE STANDARDFUNKTIONEN

8.3.1

8.3.2

8.3.3

8.3.4

8.3.5

Die trigonometrischen Funktionen

Mathematische Standardfunktionen

Numerische Funktionen ohne Argument

Spezielle numerische Funktionen

Alphanumerische Funktionen

DAS STANDARDFORMAT

8.4.1

8.4.2

8.4.3

8.4.4

8.4.5

8.4.6

8.4.7

8.4.8

8.4.9

Zahlendarstellung

Darstellung von Strings

Stellenkontrolle bei den Anweisungen

DISP und PRINT

Das Trennzeichen Komma !", !!

Das Trennzeichen Strichpunkt !;!

Die Funktion TAB (num. Ausdruck)

Trennzeichen am Ende der Anweisung

DISP oder PRINT

Besonderheiten der Anweisung DISP

Beispiele

Seite

8.1

8.2

8.9

8.123

8.157

8.158

8.161

8.163

8.167

8.177

8.189

8.189

8, 192

8. 192

8.193

8.193

8.194

8.194

8.195

8.196

BASIC - ANWEISUNGEN

Ein BASIC-Programm besteht aus einer Folge von Anweisungen,

wobei man ausführbare und nicht ausführbare Anweisungen unter.

scheidet,

Die ausführbaren Anweisungen bewirken eine Aktion des Program.

mes, wie zum Beispiel die Zuweisung eines Wertes an eine Variab.

le oder das Ausdrucken der Ergebnisse.

Nicht ausführbare Anweisungen beschreiben die für das Programm

und für den Benutzer notwendigen Informationen, sie bewirken je.

doch keine sichtbare Aktion. Sie können im Laufe des Programmes

zwischen die ausführbaren Anweisungen gesetzt werden.

Die Anzahl der Anweisungen in einem Programm ist einerseits be-

schränkt durch die Speicherkapazität des OLIVETTI P6060 und

andererseits durch die Art der Befehle selbst. Jede Anweisung

eines BASIC-Programmes nennt man eine Zeile und muß mit einer

Nummer, !'der Zeilennummer!!, beginnen. Die Zeilennummer legt

die Reihenfolge in der Abarbeitung der Befehle fest.

Alle Anweisungen werden entsprechend der Zeilennummer nach-

einander ausgeführt, unabhängig von der Reihenfolge der Eingabe.

Ausnahmen davon verursachen Sprünge, Wiederholungen und Sub_

routinen.

Als Zeilennummer können alle ganzen Zahlen zwischen 1 und 9999

verwendet werden.

Eine Programmzeile kann maximal 80 Zeichen inklusive 4 Stellen der

Zeilen-Nummer enthalten und wird über Tastatur eingegeben. Jede

Zeile wird durch EOL abgeschlossen.

Das Zeichen EOL. (End of Line) ist jedoch nicht Bestandteil der

Programmzeile selbst.

Beispiel einer BASIC-Anweisung :

Zeilennummer BASIC-Anweisung

10 PRINTA, B

In diesem Kapitel werden alle Anweisungen der Sprache BASIC zunächst nach

Funktionen geordnet und kurz erläutert; anschließend folgt die ausführliche Be-

schreibung der BASIC-Anweisungen in alphabetischer Reihenfolge.

Die Beschreibung der Option MAT, der Standardfunktionen und der Darstellung

von Ausgabeelementen im Standardformat beschließen dieses Kapitel.

Die Anweisungen der Option PLOT und Programmierung von IPSO-Peripherie

werden in eigenen Kapiteln behandelt.

8.1 LISTE DER BASIC-ANWEISUNGEN

1. Vereinbarungen für Speicherzuweisungen

DCL.

DIM

2. Zuweisung
mn er GRE EE we men Ei ERE Geen GEEE TE Cum

Legt fest, welche Variablen mit einfacher Genauigkeit verarbeitet werden

sollen und bestimmt die maximale Länge von Strings

Legt für numerische und alphanumerische Felder die Anzahl der Elemente

fest

Weist das Ergebnis eines Ausdruckes einer numerischen Variablen oder

einer Stringvariablen zu

3. Programmverzweigungen

FOR/NEXT

GOTO

IF/THEN

ON. oo. GOTO

Dient zur Bildung von Schleifen in Abhängigkeit von einer Laufvariablen

Unbedingter Sprung zu einer Zeilennummer

Bedingter Sprung zu einer Zeilennummer

Bedingter Sprung zu einer Zeilennummer in Abhängigkeit vom Wert eines

Ausdruckes

4. Unterprogramme und definierte Funktionen

DEF

DEF/FNEND

GOSUB

ON. . . . GOSUB

RETURN

Dient zur Vereinbarung einzeiliger Funktionen

Dient zur Vereinbarung mehrzeiliger Funktionen

Aufruf eines Unterprogrammes

Aufruf von Unterprogrammen in Abhängigkeit vom Wert eines Ausdruckes

Markiert das logische Ende eines Uinterprogrammes

5. Anweisungen zur Ein/Ausgabe und für interne Files

DATA

DISP

DISP USING

: (IMAGE)

INPUT

PRINT

PRINT USING

READ

RESTORE

RKB

Baut ein internes Datenfile auf

Ausgabe von Daten über Display im Standardformat

Ausgabe von Daten über Display in definiertem Format

Festlegung eines Formates in einer Zeile, die dann mit USING Zeilen Nr.

aufgerufen wird

Ermöglicht die Eingabe von numerischen und/oder alphanumerischen Daten

über die Tastatur

Ausgabe über den Drucker im Standardformat

Ausgabe über den Drucker im definierten Format

Lesen von Daten aus einem internen File

Setzt den Pointer im internen Datenfile auf das erste Eiement

Ermöglicht.die Eingabe einer beliebigen Zeichenfolge über die Tastatur,

wobei alle Zeichen akzeptiert werden

6. Anweisungen für Strings
— an un rn et an re ne TE m ER HER a A

ASSIGN

BASSIGN

BBUILD

BPAD

BUILD

BUILD USING

CONVERT

DEPAD

PAD

Die in einem String durch einen Delimiter begrenzten Teilstrings werden

einer Liste von numerischen oder alphanumerischen Variablen zugeordnet.

Daten, die in einem String in internem Format enthalten sind, werden auf

eine Liste von numerischen Variablen oder Stringvariablen aufgeteilt.

Die Ergebnisse einer Liste von numerischen oder Stringausdrücken werden

einer Stringvariablen in internem Format zugewiesen.

Eine Stringvariable wird mit binären Zeichen bis zur deklarierten Länge

aufgefüllt.

Die Werte einer Liste von Ausdrücken werden im Standardformat einer

Stringvariablen zugewiesen, wobei ein Trennzeichen eingefügt werden

kann.

Die Werte einer Liste von Ausdrücken werden in definiertem Format einer

Stringvariablen zugewiesen.

1.) Die ISO-Codes der Zeichen eines Stringausdruckes werden der Reihe

nach den Elementen eines Vektors zugewiesen.

2.) Die Werte eines Vektors werden als ISO-Zeichen interpretiert und

der Reihe nach einer Stringvariablen zugewiesen.

Entfernt die Füllzeichen aus einer Stringvariablen.

Eine Stringvariable wird bis zur deklarierten Länge mit ISO-Zeichen

aufgefüllt.

7. Anweisungen für externe Files

APPEND:

FILES

FILE:

Erlaubt das Anfügen von Daten an ein bestehendes sequentielles Datenfile

Legt die Maximalzahl der Files fest, die bei Ausführung des Programmes

gleichzeitig geöffnet sein können und öffnet die, deren Namen in der An-

weisung aufgeführt sind

Schließt das File, das dem Fitedesignator zugeordnet ist und erlaubt das

Öffnen eines anderen Files unter Beibehaltung des Filedesignators

READ:

RESTORE:

SCRATCH:

SETW:

WHERE:

WRITE:

Erlaubt das Lesen von Daten aus einem Text- oder Datenfile

Setzt in einem Text- oder sequentiellen Datenfile den Pointer auf das erste

Element und erlaubt das nachfolgende Lesen von Beginn an

Setzt in einem sequentiellen Datenfile den Pointer an den Beginn und versetzt

das File in den Schreib-Mode

Der Pointer eines Random Files (R-File oder Z-File) wird auf das angegebene

Wort gesetzt

Die aktuelle Position, der Typ des adressierten Datenelementes und die L.änge

eines Strings können abgefragt werden

Schreibt Daten auf das angegebene Datenfile

8. Spezielle Anweisungen

BEEP

CHAIN

DELAY

END

FKEY

RANDOMIZE

REMARK

STOP

TRACE ON

TRACE OFF

Programmierbares akustisches Signal

Beendet die Ausführung des laufenden Programmes und startet die Ausführung

eines anderen Programmes

Bewirkt die Unterbrechung der Programmausführung für eine bestimmte Zeit

Gibt das physische Ende eines Programmes an

Erlaubt die Belegung einer Funktionstaste mit einer Zeichenfolge

Bei Aufruf der Funktion RND wird eine von der Standardfolge verschiedene

Folge von Zufallszahlen erzeugt

Ermöglicht das Einfügen von Kommentaren in ein Programm

Unterbricht die Ausführung eines Programmes und bewirkt den Übergang in den

Debugging-Mode

Bewirkt den Ausdruck der Zeilennummern in der Reihenfolge ihrer Verarbei-

tung

Hebt die Wirkung der Anweisung TRACE ON und der Konsoltaste TRACE auf

9. Anweisungen der Option MAT

MAT...-

MAT...+

MAT...%

MAT...CON

MAT...IDN

MAT INPUT

MAT...INV

MAT READ

MAT READ:

MAT PRINT

MAT PRINT

USING

MAT... TRN

MAT WRITE:

MAT... ZER

10. Anweisungen

Elementweise Zuweisung der Werte einer Matrix an eine andere

Matrizenaddition oder Subtraktion

Multiplikation einer Matrix mit einem Skalar oder Multiplikation zweier

Matrizen

Setzt alle Elemente einer Matrix auf I

Erzeugt eine Einheitsmatrix

Zeilenweise Eingabe der Werte eines Feldes über Tastatur

Bildet die Inverse einer Matrix

Elementweise Zuweisung von Daten aus einem internen File an ein oder

mehrere Felder

Elementweise Zuweisung von Daten aus einem externen File an ein oder

mehrere Felder

Ausdruck eines oder mehrerer Felder im Standardformat

Ausdruck eines oder mehrerer Felder im definierten Format

Bildet die Transponierte einer Matrix

Schreibt die Elemente eines oder mehrerer Felder auf ein Datenfile

Erzeugt eine Nullmatrix

der Option PLOT

CPLOT

CSIZE

CTAB

run mung We am Fee int ana

Ausgabe der Ergebnisse von Stringausdrücken über den Plotter

Definition der Größe und Schreibrichtung für die Ausgabe von Strings

über Plotter

Verschiebung um eine bestimmte Zeichen- und Zeilenanzahl für die Aus-

gabe von Strings

DOT

DRAW

EXTERNAL

PLOTTER

FRAME

IDOT

INIMAGE

IPLOT

LDIMAGE

MOVE

OFFSET

PLOT

SCALE

xXAXIS

YAXIS

Zeichnen eines Punktes, der durch Koordinaten definiert ist

Ausgabeanweisung für das Bild über den integrierten Printer

Vorwahl für einen externen peripheren Plotter

Festlegung der Größe der Zeichenfläche, des Rahmens für das Bild

Zeichnen eines Punktes durch Angaben von Inkrementen dx und dy

Angabe des Namens des Datenfiles, in dem das Bild gespeichert werden

soll, Aufbauen des Puffers im Arbeitsspeicher und Laden der Parameter,

die notwendig für die Plotoperationen sind

Ziehen einer Verbindungslinie zu dem Punkt, der durch Inkremente dx

und dy erreicht wird

Definition eines Plotfiles, Übernahme des letzten gespeicherten Bildes

mit den Parametern in den Arbeitsspeicher

Positionieren auf einen durch Koordinaten definierten Punkt

Verschiebt den Koordinatenursprung im Koordinatensystem

Ziehen einer Linie zu dem durch Koordinaten definierten Punkt

Festlegen der Maßstäbe im Koordinatensystem durch Minimum und Maximum

der beiden Achsen, implizit werden dadurch Maßstabfaktoren und der Ko-

ordinatenursprung definiert

Zeichnen einer Strecke parallel zur X-Achse

Zeichnen einer Strecke parallel zur Y-Achse

11. Anweisungen zur Programmierung von peripheren Einheiten

BUFFER

CMD

RECEIVE

SEND

TEST

WAIT

Funktion IOC (x)

Für einen I/O-Kanal wird im Arbeitsspeicher ein Puffer für den Daten-

austausch mit einer peripheren Einheit reserviert.

Kommandos, Steuerbefehle an die Peripherie

Eingabebefehl, String-Input von der peripheren Eingabeeinheit in den

Arbeitsspeicher

Ausgabebefehl, String-Output aus dem Arbeitsspeicher an Ausgabe-

einheit

Der Status der peripheren Einheit wird in das Arbeitsregister übertragen,

laufende I/O-Operationen mit dieser Einheit werden nicht unterbrochen.

Ende der I/O-Operationen wird abgewartet und Status der Peripherie

in das Arbeitsregister übertragen.

Ermöglicht die Abfrage des Arbeitsregisters im Programm

ANWEISUNG APPEND:

Funktion :

Format :

| APPEND:

Diese Anweisung erlaubt das Hinzufügen von Daten an ein sequentielles File.

APPEND: Filedesignator

Filedesignator ist ein num. Audruck.

Wirkung : Bei dem durch den Filedesignator angegebenen externen File wird der Pointer

auf das erste freie Element im File gesetzt. Bei einer nachfolgenden WRITE:

Anweisung mit dem gleichen Filedesignator werden die Daten an die bereits

bestehenden angefügt. Ergibt die Berechnung des Ausdruckes für den Filede-

signator keinen ganzzahligen Wert, so wird der Wert gerundet.

Bemerkung : Der Wert des Filedesignators muß größer als Null sein und kleiner oder gleich

der Anzahl der Filenamen in der Anweisung "FILES!,

FILE
Beispiel:

8818

a826

8838

eu4B

8658

3068

0878

9454

3A98

8100

9118

A129

9138

9148

9158

8168

9178

8198

a1ad

02008

4219

9220

0238

8248

0258

2268

9278

8238

APP

FILES SDAT
REM DIESER TEIL BESCHREIBT DAS FILE YON BEGINN AN SCRATCH :4
FOR I=1 TO 18 STEP 1
WRITE :4,1I
NEXT I
REM ES WERDEN DIE ERSTEN 5 DATEN GELESEN
RESTORE :1
FOR I=1 TO 5 STEP 4
READ :1,1
PRINT I;
NEXT I
PRINT
REM NEUE DATEN WERDEN HINZUGEFUEGT.
REM DR 0e 34e Die ade abe ae af abe abe De ale ale fe ac ac De ae fe ae he ae fe ar af ae ae af ae ae

REM
APPEND :1
FOR I=11 TO 415 STEP 1
WRITE :4,1
NEXT I
REM LESEN DES GESAMTEN FILES
RESTORE :1
READ :1,I EOF 268
PRINT I;
GOTO 238
PRINT
PRINT
END

"FILEENDE"

END OF LISTING

1
1

345
3456 78593 48 41 412 43 44 45

FILEENDE

ASSIGN |

ANWEISUNG ASSIGN

Funktion: Diese Anweisung bewirkt die Zuweisung von Werten aus

einem Stringausdruck an eine oder mehrere numerische

oder alphanumerische Variable. Als Datentrennungs-

zeichen dient ein fixer Delimiter.

Format: num. Variable num.Var.
ASSIGN Stringausdruck , ,15 Deli-

Stringvar. Stringvar. miter d

Delimiter d: Numerischer Wert eines beliebigen ISO-Zeichens,

Os ds 255

Wirkung: Das System berechnet den Stringausdruck. Entsprechend der

Zahl d wird die entstandene Zeichenkette in verschiedene

Strings aufgeteilt, die mit ihrem numerischen oder alpha.

numerischen Wert den Variablen der Variablenliste zuge.

wiesen werden.

Bemerkung: Einer numerischen Variablen in der Variablenliste muß ein

numerischer Wert als Ergebnis zugewiesen werden. Die An.

zahl der Strings, in die die Zeichenkette aufgeteilt wird,

und die durch den Delimiter d getrennt sind, muß größer

oder gleich sein der Anzahl der Variablen in der Variab.

lenliste.

Beispiel: FILE ASS

Ba818 CLL 38C0R$,0V$,2%)

2928 LISP "BITTE VOR- UND ZUNAME EINGEBEN";

88390 RKB A$

2046 REM TRENNUNG DES NAMENS IN WOR- UND ZUNAME

aa58 REM

Ba6CB ASSIGN A$,V$,2$;32

8878 PRINT "UDORNAME: ":V$,TARC3SI:"ZUNAME: ':2$

8858 GOTO 28

2630 END

END OF LISTING

FUN

UORNAME: HELMUT ZUNAME: SCHMICT

VORNAME: FRANZ-JOSEF ZUNAME: STRAUSS

DORNAME: HELMUT ZUNAME: KOHL

VORNAME: FRIEDRICH ZUNAME: GENSCHER

| BASSIGN |

ANWEISUNG BASSIGN (Binary Assign)

Funktion : Dieser Befehl weist einer oder mehreren Variablen, in internem Format, den

Inhalt eines String-Ausdruckes zu.

num. Var. num. Var.
Format : BASSIGN Stringausdruck, ; ern une.e.

Stringvar. Stringvar.

Wirkung : Es wird der Stringausdruck berechnet. Die entstandene Zeichenkette wird als

eine Liste von Daten in internem Format aufgefaßt. Die Daten werden den ent-

sprechenden Variablen in der Variablenliste zugewiesen,

Bemerkung : Die Anzahl der Daten im "Stringausdruck!! muß größer oder gleich sein der

Anzahl der Variablen in der Variablenliste. Einer numerischen Variablen muß

ein numerischer Wert zugewiesen werden.

Beispiel : FILE ERASSIG

salat REM BEISPIEL FUER BASSIGN-BBUILD

3828 REM
aa3a DISF "EINGABE VON A UND RB";

agaım INPUT RA.E

aast BBUILD R$.R,B
aaBAa FRINT "RA=":A;',.E=":B; TABL4BI 5 "BBUILD: A$=",RA%#

ea?a BASSIGN A$.X%,Y
aaB5 PRINT "A$=":A$:; TAB L4BI ; "BRSSIGN: %=",8: N. Vet YV

sage PRINT

aaa GOTO 38

8118 END

END OF LISTING

n= 5 ‚Be 5 BEUILC: At=IMREREBSHRRERRES
AS=-IIEREEENSIREBAERS BASSIGN: K= 5 ‚Y= 5

A= 1.2345 .E=-1.2385 BEUILD: A$=IREREERSIHEREEMS
AS=UFEREEBSNFERMENS BASSIGN: %= 1.2345 ‚Y=-1.2345

A= 190099 .E= „00891 BSUILD: AS=UNHREREINEEEEER (
AS-NEERERENN BERNER (BASSIGN: = 188088 .Y= „08991

N= 5.555 ‚B= 6.666 BBUILD: A$=HUPEERBENF EENES
AS=NUPHEREENF BERN! BASSIGN: X= 5.555 ‚Y= 6.666

ANWEISUNG BBUILD (Binary Build)

Funktion : Diese Anweisung überträgt in internem Format das Ergebnis von einer Liste

mit arithmetischen- oder Stringausdrücken an eine Stringvariable.

| num. Ausdr. um. Ausdr.
Format: BBUID Stringvar., Ä R NV res reeene.

Ä String Ausdr. String Ausdr.

Wirkung : Die angegebenen Ausdrücke werden berechnet.

Ihre Werte werden der String-Variablen in Binärdarstellung zugewiesen.

Strings sind in internem Format dargestellt.

Bemerkung : Eine Zahl belegt in einfacher Genauigkeit 4 Byte (1 Wort), in doppelter hin-

gegen 8 Byte. Jeder String mit N Zeichen benötigt INT((N- 1) /4 +2) *

4 Byte.

Beispiel :

FILE BBUILD

aa18 REM BEISPIEL FUER BASSIGN-/BBUILD

Bu2B0 REM

aa3B DISP "EINGABE VON A UND B';

gasB INFUT A,B

aasa BBUILD AF,R,B
BaeER PRINT "RA=":RA:".B=";B;TABLC#BI: "BBUILD!: A$s=";R$

gar? BASSIGN A$.%,Y

aasa PRINT "Ar=";A$: TABL4BI; "BASSIGN: K=",8,:0,V=e',Y

ga9a PRINT

aAtcda GDTO 382

g11a END

END OF LISTING

A=-1 ‚B=-3.25 - BBUILD: A$=NGRENERSNTBERERS

AF=IBEBERERSI{ERERES BASSIGNH: K=-1 „Y=-3.25

RA=--.1 ‚B= 18 EBUILD: A$=NIBEHERRRENENBBEREN

A+=-IBEBRENRSNRERRBENN BASSIGN: %=-.1 .„Y= 18

RA= 123456.79 ‚B= 987654.722 _ BBUILD: R$=SNHESNERNNNEeC! BEN

AF=NKESURINN Ne! RR ER5SSIGN: #= 123456.79 ‚Y= 987654.32

A= 11111 ‚E=-11111 M Ä BBUILD: A$=MVORREENKSCHREEN

AF=-NOOREBRRNNGDEREER HM BASSIGN: %= 11111 ‚Y=-11111

Anweisung BEEP

Funktion :

Format:

Wirkung :

Beispiel :

BEEP

Die Anweisung bewirkt ein akustisches Signal.

BEEP

Für die Dauer von ca. 0,2 Sekunden wird ein akustisches Signal

gegeben.

o
o

856 DISP "ZAHL ZWISCHEN 1 UND 19 EINGEBEN";
AB6B INPUT I

8878 IF CI>=1)IAND CI<=18) THEN 108
8888 BEEP
8898 GOTO 58
eo.

®

°

.

| BPAD

ANWEISUNG BPAD (Binary Pad)

Funktion:

Format:

Bemerkung:

Beispiel:

Füllt eine Stringvarliable mit binären Füllzeichen bis

zur deklarierten Länge auf

BPAD Stringvariable

Das binäre Füllzeichen entspricht der Binärdarstellung

von 255: 11111111

Für die Ausführung der Anweisung muß das System mit

der Option STR initialisiert sein.

FILE BPAD

818 DCL 308R$
8828 DISP "BITTE STRING EINGEBEN: ';
08838 RKB A$
8848 PRINT "'A$:'";R$
8058 BPRAD A$
8868 FRINT "AS$:";RAS$
89878 GOTO 28
9838 END

END OF LISTING

A$:BEISPIEL PBRD
R$: BEISPIEL PBADEEEEEA TRENNEN TEE MER EURE EHI

8.19

| BUILD

ANWE ISUNG BUILD

Funktion: Dieser Befehl überträgt, im Standard-Format, das Ergeb-

nis einer Liste mit arlithmetischen Ausdrücken und/ oder

Stringausdrücken an eine Stringvarlable.

Format:
Num. Ausdr. Num. Ausdr.

BUILD Stringvarlable , , onn.e E Delimiter d]

Stringausdr. Stringausdr.

Wirkung: Es werden die Ausdrücke berechnet und die Ergebnisse

in Zeichen-Format an die Stringvariable übertragen.

Die Elemente werden durch das Zeichen getrennt, das

in der ISO- Tabelle dem angegebenen Dellmiter entspricht.

Bemerkung: Der Wert des: arithmetischen Ausdruckes wird im Standard.

format (siehe Abschnitt 8.4.) an die Stringvariable über.

geben.

Ist das Resultat eines Ausdruckes eine Zeichenkette, so

werden die einzelnen Zeichen ohne Veränderung an die

Stringvariable übertragen.

Beispiel:

FILE

8818 REM «PROGRANNBEISPIEL ’BUILD’«*
8828 REM
8838 DCL 38R$
8848 DISP "A UND B EINGEBEN";
8858 INPUT A,B
8868 LET C=htB
8878 BUILD A$,A. "HOCH",B, "=",C:32
8888 PRINT A$
8898 GOTO 48
8188 END

END OF LISTING

2 HOCH 3 = 58
2.9 HOCH 4.55 = 64.658711
18 HOCH 9 = 1.88B8B8BE +89

| BUILD USING

ANWEISUNG BUILD USING

Funktion: Dieser Befehl überträgt, im spezifizierten Format, das

Ergebnis von einer Liste mit arlthmetischen und/oder

Stringausdrücken an eine Stringvariable.

Format:

Z.eellennr. num. Ausdr. num. Ausdr.

BUILD USING ‚ Stringvariable, ‚ .on..

Stringvar. Stringausdr. Stringausdr.

Zeilennummer ist die Nummer derjenigen Programmzeile,

die das Format einer Zeichenkette in der !"Stringvariablen!!

festlegt. Anstelle der Zeilennummer kann der Name einer

Stringvariablen stehen, die das Format definiert.

Wirkung: Es werden die Ausdrücke berechnet und die Resultate an die

NStringvariable!! übertragen. Das Format ist jenes, das in

der Programmzeile mit derjenigen Nummer steht, die in der

Anweisung angegeben ist.

"Steht in einer Anweisung anstelle der !"Zeilennummer! der

Name einer Stringvariablen, so werden die Ergebnisse in

dem Format übertragen, das darin arigegeben ist.

Bemerkung: Die Zeichen, die für die Formatspezifikation von Zeichen.

strings verwendet werden dürfen, sind in der Beschreibung

IFormatspezifikation!!' angeführt.

Beispiele:

Beispiel I:

Formatangabe für BUILD USING in einer Image- Zeile

Ba18 REM *PROGRANMBEISPIEL ’BUILD USING’*

9828 REN

8938 DEL #BR$

aas8 DISP ''A UND B EINGEBEN";

4858 INPUT A,B

ua&R LET C=AtB

0878 BUILD USING 189,RA$,R,B.C

9888 PRINT R$

aas38 GOTO 48

31a0 :#4#4#.28# HOCH HB. 208 = er N

8118 END

END OF LISTING

2.8886 HOCH 3.868 = 8.088

2.58 HOCH 4.558 = 64.659

18.006 HOCH 5.008 = a

Beispiel 2:

Aufbereitung des Formates in einer Stringvariablen.

FILE

ga1d REM =PROGRAMMBEISPIEL ’BUILD USING’«

nA29B REM

yasa DEL *BCA$,B$)

3949 DISP "AR UND B EINGEBEN";

„858 TNPUT A.B

gab LET C=AtTB

uu7’a LET BESSERE. 8384 HOCH Wa 24 = Ba et"

nasa BUILD USING B$.9$,.9A,B.C

Ba38 PRINT RA$

188 GOTO 48

343128 END

END OF LISTING

2.888 HOCH 3.6088 = 8.888

2.580 HOCH 3.558 = 25.863

198.uaAR BOCH 93.909 = aaa a ee

 | CHAIN

ANWEISUNG CHAIN

Funktion :

Format :

Wirkung :

Bemerkung :

Dieser Befehl unterbricht die Abarbeitung eines Programmes und beginnt mit

der Ausführung eines anderen, ohne daß ein manueller Eingriff nötig ist.

NFilename!

CHAIN

Stringvariable

tFilename!! ist der Name eines Programmes, das auf einer Diskette gespeichert

ist.

Die Stringvariable enthält den Namen eines Programmes, das auf einer Dis-

kette gespeichert ist,

Es wird die Abarbeitung des laufenden Programmes beendet. Alle in diesem

Programm verwendeten externen Files werden geschlossen.

Alle in dem durch CHAIN aufgerufenen Programm verwendeten externen Files

müssen mit der FILES-Anweisung geöffnet werden, auch wenn in dem aufruf-

enden Programm gleiche Files verwendet werden. Da über die Files, deren

Filedesignator 1,2,3 oder 4 ist, Informationen im Hauptspeicher zurückbe-

halten werden, wird die Ausführung von CHAIN schneller, wenn die von beiden

Programmen verwendeten externen Files in der FILES-Anweisung an den Po-

sitionen 1-4 aufgeführt sind.

Beispiel:

FILE

u81a

928

8838

8848

ua5ß

9968

HAUPT

FILES SFILE

PRINT "ANFANG HAUPTPROGRAMN CHRUPTI

SCRATCH :1

WRITE :1, "HAUPT"

CHAIN "ULPI"

END

END OF LISTING

FILE

aa16

4928

HB3u

A848

4458

OB6bE

gBar7ı

a984

UP 4

FILES SFILE

FRINT "ANFANG UNTERPROGRAMAM 1 <UPII"

DISP "WELCHES PROGRAMM SOLL RECHNEN",

INPUT A%

AFPEND :1

WRITE :1,"UPT"

CHAIN NA$

END

END OF LISTING

FILE

aa18

A288

0838

9048

9a58

gacd

nor

nagd

UP2

FILES SFILE

PRINT "ANFANG UNTERPROGRAHN 2 CUP2I"

FRINT "FOLGENDE PROGRANHNE HABEN GERECHNET:

REND :1.1% EüF 78

FRINT A$

GOTO 48

PRINT "UP2"

END

END OF LISTING

RUN H

HNFAH

RUPT

G HAUPTPROGRAMN CHAUPT)

HNFANG UNTERFROGRAMAM 1 CUP1I)

WELCHES PROGRAMM SOLL RECHNEN?
HPZ

HNFRAN

FOLGE

HAUPT

up1

UP2Z

5 UNTERPKOGRAMM 2 (CUP2I

NDE PROGRAMME HABEN GERECHNET:

CONVERT

ANWEISUNG CONVERT

Funktion:

Format:

Wirkung:

Dieser Befehl wandelt eine Zeichenkette in die entsprechenden

numerischen Codes der ISO-Tabelle um oder umgekehrt.

1) CONVERT Stringausdruck TO num, Vektor LENGTH num. Variable

2) CONVERT num. Vektor TO Stringvariable LENGTH arithmet. Ausdruck

1. Format:

Es wird der Stringausdruck berechnet. Jedes Zeichen des sich da-

bei ergebenden Strings erhält den entsprechenden numerischen Code

aus der ISO-Tabelle (siehe Anhang) und wird der Reihe nach den

Elementen des Vektors aus der Anweisung zugewiesen. Die !!Längen!!-

Variable enthält die Anzahl der umgewandelten Zeichen.

2. Format:

Es wird der arithmetische Ausdruck berechnet und das Ergebnis auf

die nächste ganze Zahl n gerundet.

Die Werte der ersten n Elemente des Vektors aus der Anweisung

werden ebenfalls auf die nächste ganze Zahl gerundet und dann in

die entsprechenden Zeichen der ISO-Tabelle umgewandelt. Der Zei-

chenstring, der daraus entsteht, wird der entsprechenden String-

variablen zugewiesen.

Beispiel:

FILE

aa18

9428

u838

8848

au58

aB68

4878

0498

9n98

4104

ar1g

4128

9138

4148

9158

A160

Aa178

8186

4138

32808

9218

0228

238

A248

4258

268

azre

923B

n298

348

0318

REM *PROGRANMBEISPIEL FUER DIE ANWEISUNG
REM

DCEL 32A$

pIm AC32)J

PRINT

PRINT

DISP "STRING EINGEBEN";

RKB A$

CONVERT A$ TO A LENGTH L

PRINT 'n$ = "RA,"

FRINT "LAENGE=";L

PRINT "ISO-CODE:";

FOR I=1 TO L STEP 1

PRINT AUDI:

NEXT I

PRINT
PRINT

DISP "LAENGE DES

INPUT N

PRINT "LAENGE="}N

PRINT "ISO-CODE:'";

FOR I=1 TO N STEP 1

DISP "ELEMENT":T;

INPUT ACH)

PRINT RACI;

NEXT I
PRINT

CONVBERT A TO A$

PRINT "RA$ =

GOTO 58

END

VEKTORS";

LENGTH N
. ..Nn$; iur 88

END OF LISTING

H+ = "BEISPIEL *CONVERT#’

LHENGE= 18

ISöO-CODE: &&6 69 73 83 88 73 69 7 32 42 67

LAENGE= 3

1IS0-COBE: 73 83 79 45 67 79 68 69

A$ = ’ISO-CODE’

At = "ULIVETTT’

LAENGE= 8

I50-CODE: 793 7 73 86 6939 84 84 73

LAENGE= 5

1I5S0-CODE: 66 65 83 73 67

A$ = ’BASIC’

’CONVERT’*

3 78 86 69 82 84 42

 | DATA

ANWEISUNG DATA

Funktion :

Format :

Wirkung :

Bemerkung :

Beispiel

Dieser Befehl erzeugt ein internes File von Daten, die dann den Variablen

aus den READ- und MATREAD-Befehlen zugewiesen werden.

num. Konst. num. Konst.

DATA 3 . ..— .: >. 0 000000 0.09 08

Stringkonst. Stringkonst.

Zu Beginn der Ausführung des Programmes wird im Hauptspeicher eine Tabelle

erzeugt, die alle Konstanten aller DATA-Anweisungen des Programmes ent-

hält. Ein Pointer zeigt auf das erste Element der Tabelle. Die Konstanten der

Tabelle werden den Variablen aus den READ- und MATREAD-Anweisungen

zugewiesen, wobei der Pointer nach jeder Zuweisung auf das jeweils nächste

Element der Tabelle zeigt. (Mit dem Befehl RESTORE kann der Pointer wieder

auf das erste Element zurückgesetzt werden.)

Stringkonstanten, die ein Komma (,) oder Leerzeichen am Anfang oder Ende

enthalten, müssen in Anführungszeichen stehen.

Die DATA-Anweisungen können an jeder Stelle im Programm stehen. Jede

String-Konstante muß einer String-Variablen zugewiesen werden. Jeder

numerischen Variablen eines READ- oder MATREAD-Befehles muß eine be-

stimmte Zahl aus der Tabelle entsprechen.

Ba18 PRINT
8828 PRINT "IHR TYp:"
8834 PRINT

4848 RESTORE
858 FOR I=1 TO 5 STEP 1
B868 READ A%$

8878 DISP A$;

8888 RKB B$

8838 PRINT A$;":",B$
8188 NEXT I

8118 GOTO 18
8128 DATA "ALTER", "GROESSE", " a, .,. “
8138 END SE GEWICHT HAARFARBE BES. KENNZ.

8.29

Beispiel:

IHR TYP:

ALTER:

GROESSE:

GEWICHT:

HAARFARBE:

BES. KENNZ.:

IHR TYP:

ALTER:

GROESSE:

GEWICHT:

HAARFARBE:

BES. KENNZ.:

25
170
56
blond

Brillentraegerin

<68

158

68-78

grau

kein 3

ANWEISUNG DCL (Declare)

Funktion: Mit dieser Anweisung wird festgelegt, welche numerischen

Variablen mit einfacher Genauigkeit verarbeitet werden sollen

und welche Längen für Strings max. vorgesehen sind.

Format:

S(Variablenliste num.) S(Variablenliste num.)

DCL n(Variablenliste alphan] |’ n{Variablenliste alphan.)

SINGLE

n ist eine ganze Zahl zwischen 1 und 1023; nach einem Feld-

namen muß ein leeres Klammernpaar folgen. Beziehen sich S

und n auf eine einzige numerische Variable oder Stringvariable, so

können die Klammern wegfallen.

Wirkung: Die Werte der numerischen Variablen zwischen den Klammern

hinter dem S werden im Speicher in einfacher Genauigkeit

dargestellt, ebenso auch die Elemente von Feldern.

Wirdbei einer DCL-Anweisung der Parameter SINGLE angege-

ben, so werden alle Werte der numerischen Variablen in einfacher

Genauigkeit gerechnet. Dem Inhalt der Stringvariablen, auf die

sich die Zahl n bezieht, werden im Hauptspeicher n Bytes zuge-

wiesen, ebenso werden für jedes Feldelement eines Stringfeldes

n Bytes im Hauptspeicher reserviert.

Bemerkung: Bezieht man sich in einem Programm mehrmals durch verschiedene

DCL auf dieselbe Variable, so hat die Anweisung mit der höchsten

Zeilennummer Gültigkeit. Bei mehreren Deklarationen innerhalb

einer Anweisung ist die jeweils letzte gültig.

Beispiele:

30 DCL SINGLE

90 DCL 30 AS

20 DCL 30 (A, B&, C& (), D6), S (I, J,K)

I0DCLS(I, ı1, 12), 20 (AZ, E3$), 10(BZ,D$)

DEF

ANWEISUNG DEF

Funktion:

Format:

Wirkung:

DEF ist eine nicht ausführbare Anweisung, die innerhalb einer Zeile eine numerische

Funktion oder eine Stringfunktion definiert [Definition einer einzeiligen Funktions-

prozedur).

EN (Parameterlisie}) = Num. Ausdruck

DER FNGS {Par ameterliste) = Stringausdruck

Se=A,.. Z, Parameterliste: Einfache num. oder alphanum. Variable

Für & muß ein Großbuchstabe des Älphabetes stehen.

nes ist der Name einer numerischen Funktion, die als Ergebnis einen numerischen Wert

tiefert,

FNag ist der Name einer Stringfunktion, als Ergebnis wird ein String geliefert. Parame-

ter können numerische Variable oder Siringvariable sein.

Die in einer DEF=-ÄAnweisung innerhalb der Klammer stehenden Parameter sind Schein-

Variable, die keinen Bezug zu gleichnamigen Variablen außerhalb der Funktion haben.

Beim Funktions aufruf sind diese Parameter adurch entsprechende Variable zu ersetzen,

wobei der Scheinvarlablern der aktuelle Wert der an entsprechender Stelle im Aufruf

stehenden Variablen zugewiesen wird. Die Scheinvariablen nennt man formale Parameter.

Auf der rechten Seite der Anweisung können außer den Parameternamen auch noch andere

Variabie, sogenannte globale Variable, stehen, die aber schon vor dem Funktionsaufruf

einen Wert besitzen müssen,

Die Funktion FN® oder FN&F wird durch den Ausdruck auf der rechten Seite definiert.

Die Funktion wird in einem Programm so oft ausgeführt, wie ihr Name FN& oder FNa&$ zu-

sammen mit den aktuellen Parametern vorkommt.

Bemerkung:

Eine Funktion kann an leder Stelle im Programm stehen, darf jedoch nur ein einziges Mal

definiert werden und in dieser Form nur eine Zeile umfassen.

Auch direkie rekursive Aufruffolgen (Bso, 10 DEF FNA = FNA) oder

indirekte rekursive Aufruffoligen (Bsp. 10 DEFFNA = X+FNB

50 DEF FNB = FNA + Y)

sind nicht erlaubt.

Es können maximal 15 Parameter verwendet werden. Formale Parameter haben keinerlei

Beziehung zu Warlaplen mit den gleichen Namen,

Tritt in der Äbarbeitung eines Programmes die Änweisung DEF auf, so wird die Äbarbei-

tung in der folgenden Programmzeile fortgesetzt.

Die aktuellen Parameter müssen in Typ und Anzahl mit den formalen übereinstimmen. In

einem Programm dürfen maximal 26 Funktionen definiert werden.

Für die Ausführung der Funktion FN& $ muß das System mit der Option STR initialisiert

en 8.33

Beispiel I: Einzeilige numerische Funktionen

FILE

aAB18 DEF FNBLX)I=PI1/180*X

8828 DEF FNCCXI=SCOSCFNBECK)I)

8838 DEF FNSCRI=SINEFNBCRII

8848 DEF FNTCXI=TANEFNBECK)I)

Ba58 DEF FNACKI=188=ATNCKI /PI

8868 PRINT ' X SIN COS TAN ATN"

ua878 PRINT

8888 DISF "VON GRAD?,BIS GRAD?,SCHRITTWEITE";

aa9B8 INPUT A.,B,C

91848 FOR I=A TO B STEP C

8118 PRINT USING 158, 1,.FNSCD,FNCED.:FNTCHI.,FNACDD

8128 NEXT I

aRA138 PRINT

a1+A GOTO 88

a15se 4 Ba. Be a BE

B1i68 END

END OF LISTING

x SIN CDS TAN ATN

1 3.017452 8.999848 98.817455 45.8888
2 4.034899 3.39393391 8.934921 63.4349
3 4.052336 8.998638 8.957488 71.5651
4 4.469756 a. 937564 08.9699327 75.9638
5 a.087156 6.996195 8.087489 78.6981

48 3.647788 4.766944 09.839188 88.5679
45 a. 707107 8.787187 1.006888 88.7278
58 a. 76bAs4 8.642788 1.191754 88.8542

Beispiel 2: Einzeilige alphanumerische Funktion

FILE

aata DEF FHAFCAF.H.BISEXTECAS.A,BN

Mazda DISP "STRING",

12M EKB KE

“as GISPFO"'UON .„.. BIS";

aasa INPUT &.%
EubH FRINT “#: THBLZSISVERTELCUERSEN IR PI =" IFNASCKS,K,YI
udra GUTO 2a

baag END

ENbL OF LISTING

PRakA BEASIC EAT$SCPEBER EARSIC, 7 , 11 I=BASIC
CLIVETTI | EXT£COLIVETTI, 1 , 5 I=GLIVE
CLIVETTI FEoeH EXT$COLIVETTI P6d6a, 1 , 14 I=OLIVETTI P6A6a

DEF/FNEND |

ANWEISUNG DEF/FNEND (Define/ Funktion End)

Funktion:

Format:

Es ist eine nicht ausführbare Anweisung, die sich auch über mehrere Zeilen erstrecken

darf und eine numerische Funktion oder eine Stringfunktion definiert (Definition von

Funktionsunterprogr ammen).

FNOG [{Par ameteriste)] [Liste d. lokalen Variablen]

DEF

FNIAS [(Par ameteriste)] [Liste d. lokalen Variablen]

FN# = Num. Ausdruck mindestens eine Zuweisung

FN&Z = Stringausdruck

FNEND

FNd& ist der Name einer numerischen Funktion; dem Funktionsnamen wird der errechnete

Wert zugewiesen.

FNd3 ist der Name einer Stringfunktion; dem Funktionsnamen wird als Ergebnis ein

Zeichenstring zugewiesen.

Parameter können numerische Variable oder Stringvariable sein,

Lokale Variable sind nur im Funktionsunterprogramm verwendete Variable, die sowohl

numerisch, als auch alphanumerisch sein können.

FN%# oder FN#%3 sind Pseudovariable, denen ver dem Rücksprung aus der Funktion FN& oder

FNd$ der jeweilige Funktionswert zugewiesen wird.

in arithmetischen Ausdrücken oder Stringausdrücken können außer den Parametern und lo-

kalen Variablen auch noch sogenannte globale Variable auftreten, die aber schon vor dem

Funktionsaufruf einen Wert besitzen müssen.

Zwischen den Programmzeilen DEF und FNEND können außer den Anweisungen für die Be-

rechnung der Werte der Pseudovariablen (FN%xund FNx3) beliebige BASIC-Anweisungen

stehen.

Wirkung:

Die Funktionen FNa und FN«g werden durch alle Anweisungen zwischen den Progr amm-

zeilen FN&oder FNag und der Zeile mit FNEND definiert.

Die Funktion wird in einem Programm so oft ausgeführt, wie ihr Name FNa oder FNx 5

zusammen mit den aktuellen Parametern, die in runden Klammern eingeschlossen sind,

vorkommt.

Bemerkung:

Eine Funktion, die sich über mehrere Zeilen erstreckt, kann an jeder Stelle des Pro-

yrammes definiert werden; direkte oder indirekte rekursive Funktionsaufrufe sind

nicht zulässig.

Durch die Anweisungen GO TO, ON... GO TO, GO SUB, ON... GO SUB, IF... THEN

darf nicht aus der Funktion hinausgesprungen werden, Auch eine STOP-Anweisung im

Inneren einer Funktion ist verboten,

Mit den Anweisungen GO TO, ON...GO TO, GO SUB, ON... GO SUB, IF... THEN

darf nicht von außen in eine Funktion gesprungen werden.

Es ist mit der Anweisung DCL möglich auch innerhalb einer Funktion die Länge der

Pseudo-Stringvariablen FNx%& festzulegen.

Lokale Parameter arbeiten mit doppelter Genauigkeit.

Der Wert einer globalen Größe darf innerhalb einer Funktion verändert werden, wenn die

Funktion eine Zuweisung an die globale Variable enthält.

Im Inneren einer Funktion sind Wertzuweisungen an Parameter gestattet, der Wert des ent-

sprechenden Argumentes bleibt jedoch unverändert.

Die aktuellen Parameter müssen im Typ und in der Anzahl den formalen entsprechen. Tritt

in der Abarbeitung eines Programmes die Anweisung DEF auf, so wird die Abarbeitung in

der Programmzeile nach dem FNEND fortgesetzt.

Parameternamen haben keinerlei Beziehung zu Variablen mit den gleichen Namen, die im Pro-

gr amın vorkommen.

l.okalen Größen muß innerhalb der Funktion ein Wert zugewiesen werden. Namen von lokalen

Größen haben keinerlei Beziehung zu etwaigen gleichlautenden Namen von Variablen im Pro-

gramm.

Insgesamt dürfen maximal 15 Parameter und lokale Größen verwendet werden.

In einem Programm dürfen maximal 26 Funktionen vorkommen.

Für die Ausführung der Funktion FN&2 muß das System mit der Option STR initialisiert sein.

Beispiel 1: Mehrzeilige numerische Funktion.

FILE

aB1a DEF FNACI, JIL

6928 LET L=I-INTCEIJI#)J

8838 IF L=8 THEN 78

gasa LET I=)J

BaS58 LET J=L

368 GOTO 28

Ga78 LET FN#*=J

8958 FNEND

8898 LISP "EINGABE A,B";

g1gaa INPUT A,B

811A PRINT "DER GROESSTE GEMEINSAME TEILER VON“"SR; "UND'"SB;"IST";FNACA,BI

a126 GUOTO 90

61368 END

END OF LISTING

LER GROESSTE GEMEINSAME TEILER VON 85 UND 63 IST 1

GER GROESSTE GEMEINSAME TEILER VON 125 UND 35 IST 5

CER GEDESSTE GEMEINSAME TEILER VON 95478 UND 24 IST 6

Beispiel 2: Mehrzeilige alphanumerische Funktion.

FILE

anais GEF FNAFCKIT,AS

au2a LET A$="'"
baza FÜR I=SLENCX$)I TO 1 STEP -1
Basa LET A$=A$+EXTSSCX,L.D

gaS@B NEXT I

Ba6&B LET FNx$=R$

na7o FHEND
688 DISP "EINGABE STRING";
anya RKB A$
aiaa FEINT USING 118,A$,FNASCA$)
a118 : "RERRRRRRRRRRERR I ’LLLLLLLLLLLLLLL
A128 GOTO 80

41138 END

END OF LISTING

EIN ı NIE

NEGER I REGEN

MIT I TIM

GAZELLE I ELLEZAG

ZRGT 1 TORAZ

Im ı MI

REGEN I NEGER

NIE I EIN

| DELAY

ANWEISUNG DELAY

Funktion:

Diese Anweisung bewirkt eine Pause vor der Ausführung des nächsten Progr amm-

schrittes.

Format:

DELAYn

n.. Zehntelsekunden

n ist eine positive ganze Zahl mit maximal 4 Stellen.

Wirkung:

Der folgende Programmschritt wird nach n Zehnteisekunden ausgeführt.

Bemerkung:

Mit der Taste CONTINUE kann die Wirkung von DELAY aufgehoben werden.

Beispiele:

“ia DISF "EINGABE DER MATRIX A"
a118 DELAY za
g12a DISF "ANZAHL ZEILEN. ANZAHL SPALTEN";
41359 INPUT N,M

8.39

| DEPAD

ANWEISUNG DEPAD

Funktion: Die Füllzeichen am Ende einer Stringvarlablen werden entfernt,

Format:

DEPAD Stringvariable, n

n ist eine ganze Zahl zwischen Q und 255

Wirkung:

Aus Stringvariablen werden die Zeichen entfernt, die in der ISO-Tabelle der

Zahl n entsprechen. Die Zeichen werden rechts beginnend entfernt, solange,

bis das erste Zeichen auftritt, das nicht den ISO-Code n hat.

Bemerkung:

Für die Ausführung der Anweisung muß das System mit der Option STR initialisiert

sein.

Beispiel:

FILE

aa16 REM *PROGRAMNBEISPIEL FUER ’PAD’ UND ’DEPAD’*

va2a REM
aa38 DCL 32%

4948 PRINT

Ba58 PRINT

AB68 DISP "STRING EINGEBEN";

6878 RKB A$

8988 FRINT "EINGABE: ’";RA$,"7"

Base FAD A$,42
8188 PRINT "A$ NACH ’PAD’: as"
B11@ DEPAD A$,42
8128 PRINT "A# NACH ’DEPAD’: "As; "
#138 GOTO 48
8148 END

END OF LISTING

EINGABE: "BEISPIEL PAD-DEPAD’

A$ NACH ’PAD’: "BEISPIEL PAD-DEPADSHHrIEEEEHEEE"

A$ NACH ’DEPAD’: "BEISPIEL PAD-DEPAD’

EINGABE: "sk OLIVETTI *=+%*’

n# NACH ’PAD’: "sc OLIVETTI we?’

n# NACH ’DEPAD’: "ek OLIVETTI ’

EINGABE: ik PRB6B kur BASIC wer ’

As NACH ’PRAB’: 'sr PEOEB Fur BASIC Kur Kirk”

A$ NACH ’DEPAD’: ’sıkk PEBEB rs BASIC Fer ’

DIM

ANWEISUNG DIM (Dimension)

Funktion :

Format :

Wirkung :

Bemerkung :

Die Anweisung legt für ein oder mehrere Felder die Dimension fest.

DIM Feldname (Zeilen [: Spalten]) I Feldname (Zeilen [Spalten]]. ..

Folgt einem Feldnamen nur eine Zahl r zwischen Klammern, so handelt es sich

um einen Vektor mit r Elementen. Die Feldindices müssen kleiner gleich r sein;

folgt einem Feldnamen ein Zahlenpaar zwischen Klammern (r,c), so handelt es

sich um eine Matrix mit r Zeilen und c Spalten. Die Indices dürfen die jewei-

ligen Feldgrenzen nicht überschreiten (£r und &c). Die Indices einer Feld-

vereinbarung müssen größer (Null) sein.

Wird ein eindimensionales Feld nicht durch DIM deklariert, so werden ihm

vom System 10 Elemente zugewiesen.

Wird ein 2-dimensionales Feld nicht durch DIM deklariert, so werden ihm vom

System 10 Zeilen und 10 Spalten bei num. Feldern und 5 Zeilen und 5 Spalten

bei alphanumerischen Feldern zugewiesen.

Der vom Compiler zugelassene höchste Wert für eine Dimension beträgt 65536,

bei zwei Dimensionen muß das Produkt kleiner als 65536 sein. Die tatsächlich

höchstzulässigen Werte für die Dimensionen hängen von der Größe des Haupt-

speichers und seiner Belegung durch das Programm ab.

Die Anweisung DIM kann an jeder Stelle des Programmes stehen.

Es können auch mehrere DIM-Anweisungen in einem Programm vorkommen.

Ein eindimensionales Feld darf nicht den gleichen Namen wie ein zweidimen-

sionales haben.

Jedes Feldelement wird anfangs mit dem Wert "nicht definiert!! belegt.

Beispiel :
FILE

8818

0928

8858

u848

8958

BAER

4078

9882

2898

108

8118

B128

8138

8148

REN +BEISPIEL ’DIN’*
REM
DCL SAU
DIN AL2,3)
FOR 1=1 TO 2 STEP 1
FOR J=1 TO 3 STEP 1
LET ACI,JI=188*RND
NEXT J
NEXT I
DISP "WELCHES ELEMENT";
INPUT 1,J
PRINT "ACC; 15,535 9="5ACT, 3)
GOTO 188
END

END OF LISTING

AL

At

Hi

AL a

A
)

N

*

N.

2.1)3)= 21.5878

DISP

ANWEISUNG DISP (Display)

Funktion :

Format :

Wirkung :

Die Anweisung dient zur Ausgabe von num. und/oder alphanum. Daten im

Display.

num. Ausdr. ;) (num. Ausdr. ;

DISP I] (Stringausdr. Stringausdr.

TAB (num. Ausdr.) ‚J) TAB (num. Auscr.) ,

NN und ";! sind Trennzeichen mit bestimmter Bedeutung für die Ausgabe.

(siehe Abschnitt 8.4).

Die Ergebnisse der Ausdrücke werden im Standardformat dargestellt und im

Display sichtbar gemacht.

Die Position der Ausdrücke in einer Zeile hängt sowohl ab von der erforder-

lichen Länge der Darstellung als auch von den verwendeten Trennzeichen

(Komma oder Strichpunkt) und der Funktion TAB.

Stellenkontrolle der Zeichen im Display

Die Ergebnisse eines Ausdruckes werden durch den Befehl DISP in einem

Register, dem Puffer des Display (siehe Abb. 1), in Form einer Folge von

Zeichen dargestellt und im Display angezeigt.

Ergibt die Darstellung der Liste der Ausdrücke im Standardformat mehr als

32 Zeichen, so können die überzähligen Zeichen nicht angezeigt werden.

Bei genügend langem DELAY ist es aber möglich, mit Hilfe der Tasten -—>

bzw. auch &— und ihren Kombinationen mit SHIFT und REPEAT den ge-

samten Inhalt des Display-Puffers (die ersten 80 Zeichen der Ausgabe) zu

lesen. Bei gedrückter PRINT-ALL-Taste wird in jedem Fall die gesamte

Zeile gedruckt.

Bemerkung :

Beispiel :

Die Anweisung DISP ohne Angabe von Parametern löscht den Inhalt des

Puffers und setzt den Pointer an die erste Stelle. Ebenso werden alle Zeichen

im Display gelöscht.

Ist der Puffer des Display voll, so erscheinen im Display die ersten 32

Zeichen. Wird ein weiteres Zeichen erzeugt, so werden alle Zeichen vom

Display gelöscht und das generierte Zeichen kommt an die erste Stelle im

Puffer und erscheint als erstes Zeichen im Display.

Das Standardformat ist in Abschnitt 8.4 am Ende dieses Kapitels genau be-

schrieben,

FILE Die PRINT-ALL-Taste ist aktiviert.

Baia DISP "WERTE VON X UND Y";

a828 INPUT X,Y

Ba3Aa PRINT X%,Y,xtY

vB4A GOTO 1A

8658 END

END OF LISTING

WERTE VON % UND Y?

3,9

3 3 243

WERTE VON % UND Y?
72

2 32 4.294936 ’3E +09

WERTE WON % UND Y?

N!

Fu

8.46

|DISP USING

ANWEISUNG DISP USING

Funktion :

Format:

Wirkung :

Bemerkung :

Mit dieser Anweisung können Zahlen und Strings auf dem Display sichtbar ge-

macht werden, die Formatspezifikation ist vom Benutzer frei wählbar.

Zeilennr. num. Ausdr. num. Ausdr.

DISP USING ; , ...

Stringvar. Stringausdr. Stringausdr,

tt Zeilennummer!! bezieht sich auf die Programmzeile mit der Formatspezifikation

(siehe Anweisung IMAGE).

"Stringvariable!! enthält eine Formatspezifikation.

Die Ergebnisse der Ausdrücke werden der Reihe nach in dem Format auf dem

Display ausgegeben, das durch die Formatanweisung spezifiziert wurde oder

durch die Stringvariable festgelegt wird.

Jede Größe, die auf dem Display dargestellt wird, wird von links nach rechts,

gemäß dem jeweiligen Abbildungszeichen des Formatfeldes, ausgegeben.

Jede Ausgabe auf dem Display durch die Anweisung DISP USING erfolgt ab

der ersten Stelle, auch wenn eine vorhergehende DISP-Anweisung mit !!, !

oder !!;!! endete. Es dürfen nicht mehr Größen ausgegeben werden, als durch

die Formatspezifikation angegeben wird.

Sind es weniger, so haben die restlichen Formatelemente keine Wirkung.

Die Ausgabeelemente der DISP USING-Anweisung müssen dem spezifizierten

Format entsprechen.

Beispiel I:

Beispiel 2 :

8818

a928

2838

8848

B86B

8878

8838

8898

A108

9128

REM «BEISPIEL ’DISP USING’* Die PRINT-ALL-Taste ist

REM u
DCL Z8A$ aktiviert.

LET A$="I=t844. 2388 J2388. 238°

DISP "1.3":

INPUT I.,J

DISP USING A$,T,.)J

DELAY 28

GDOTO 68

END

END OF LISTING

RUN

1.3?

1,2
I=

1,.7

1.838 J= 2.880

. © u ru
1.2, 8. sb.

I=

1.47

1.508 J= 2.365

3.1415.,99654.871
I=

I,.4?

LIST
FILE

4218

4929
M133Q

ua

515 2077)

3968

ga7’a

vage

88934

END

RUN

Ihr

3.142 Jr

Die PRINT-ALL-Taste ist

aktiviert.

REM «BEISPIEL ’DISP USING’ *

REM

bDISP "Ihr Name',

RKE A

DISP USING 88,9#

DELAY 58

GNTO 398

sa CECCCECECECCCCE + 0%%

END

ÜF LISTING

Nsme?

NMıcky Mouse

a rer ae Mıcky Mouse ru

Ihr Name?

bP[racula

Krk Pracula E22 027 2

ANWEISUNG END

Funktion :

Format:

Wirkung :

Bemerkung :

Beispiel :

END

Die Anweisung gibt das physische Ende eines Programmes an.

END

Die Ausführung eines Programmes wird beendet. Die Werte von Variablen sind

nicht mehr definiert und externe Files werden geschlossen.

Die END-Anweisung muß in jedem Programm genau einmal vorkommen. Das

Programm verbleibt nach der END-Anweisung weiterhin im Arbeitsspeicher.

Die END-Anweisung hat die höchste Nummer im Programm.

Bei der Programmerstellung mit automatischer Zeilennumerierung ist nach der

Eingabe von END die Numerierung mit SHIFT und CLEAR zu unterbrechen.

8588

9518

0528

0530

a54d

3554

B8S6H

REM xxx DIE LETZTE ANWEISUNG ok
REM *#k IN EINEM BASIC - PROGRAMM rk
REN xx% IST IMMER : ik
REM

FEM "END"
REM

END

| FILES
ANWEISUNG FILES

Funktion:

Diese Anweisung legt die Namen und die Anzahl der Files auf den Floppy Disks

fest, auf die ein Programm zugreift .

Format:

Filename Filename

FILES ; eo...
* *

Wirkung:

Alle Files, die in der Anweisung mit Ihrem Namen angegeben sind, werden geöffnet.

Ein sequentielles File wird hierbei in derı Lesemodus versetzt.

Jedem Filenamen wird eine Zahl (Designator) zugewiesen, die der Reihenfolge

in der Liste entspricht: der erste Filename bekommt die Zahl I, dem zweiten

wird die Zahl 2 zugewiesen usw.

Wird statt eines Filenamens ein * gesetzt, so wird der Platz und Filedesignator

reserviert für ein File, das in einer nachfolgenden FILE: Anweisung geöffnet wird.

Bemerkung:

Bei jeder Operation, die sich auf ein File bezieht, muß als I. Operand der File.

designator angegeben werden.

Die Anweisung FILES darf in einem Programm nur einmal vorkommen.

Jedes File kann mit einer weiteren FILE: Anweisung durch ein anderes File er.

setzt werden (siehe Anweisung FILE:).

Die Anweisung FILES muß jeder FILE: Anweisung vorausgehen; die FILES An.

weisung muß auch jeder Anweisung vom Typ: SETW:, READ:, WRITE:, RESTORE:,

SCHATCH:, APPEND:, MAT READ:, MAT WRITE: und WHERE: vorausgehen.

Ein Filename muß mit einem Buchstaben bzw. mit dem Bibliothekskennzeichen

(+ oder *) beginnen.

Folgende Zeichen sind nicht zulässig: Schrägstrich (/), Komma (,), Strichpunkt (;),

Leerstelle (ß), Doppelpunkt (:).

Beispiel:

FILE

0818
3628

9834
9048

30859

80969

8078

4u8g

0898

9188

118

8128

3138

8148

8158

8168

3178

4138

81938

9288

8718

92260

9238

32%

0258

8268
278

9288

4798

85388

9318

A378

3338

9248

6358

3368

B37E

4358

FILES

REM *** BEISPIEL FUER ’FILES’ UND ’FILE’ #+%*

REM
REM «uk OEFFNEN VON 5 FILES #*#+%*+

REM

FILES SDAT;: TDAT:UDAT: VDAT: WDAT

REM

REit «e# DEFFNEN FUER SCHREIBEN *+#+*

REM

FOR I=1 TO 5 STEP 1

SERATCH 1

READ A$FLL)

REM

REM *#& BESCHREIBEN DER FILES ++%*

Ren

WEITE :1,"DA5S IST FILE ",A$CD

REM

REM *#%* SCHLIESSEN DER FILES +*%*

REM

FILE : I,«*

NEXT I

DATA SDRAT,TDAT, UDAT, UVDAT, WDAT

DISP "WELCHES FILE";

INPUT I

REM

kREM + DEFFNEN DES ANGEGEBENEN FILES #3%
RE

FILE : 1,A$CI)

REM

REM wer BEFFNEN FUER LESEN #+%
REn

RESTÜRE :1

Ren

REM a4 LESEN VOM FILE ++%*
REM

FERADb :1,R$,B$%

FRINT "FILE", 1," "AS: B$
GOTIO 2Z6

ERD

END OF LISTING

FILE
FILE

FILE
FILE

FILE

3 DAS IST FILE UDAT
3 DAS IST FILE WDAT

1 EAS IST FILE SDAT

4 bAS I5T FILE VDAT

£ DAS 15T FILE TDAT

FILE:

ANWEISUNG FILE:

Funktion:

Diese Anweisung ermöglicht den Zugriff auf ein File, dessen Name nicht

in einer FILES-Anweisung spezifiziert wurde und das Schließen von Files

vor dem Programmende.

Format: Stringausdruck

FILE: arithm. Ausdruck,
*

Der arithmetische Ausdruck wird berechnet und das Ergebnis wird gerundet,

Die so erhaltene ganze Zahl n ist der Filedesignator des Filenamens in der

Anweisung.

Wirkung:

Der Ergebnisstring des Stringausdrucks muß ein Filename sein. Das so

durch seinen Namen angegebene File ersetzt das File, das bisher den

Filedesignator n hatte.

Dieses File wird geschlossen und an seiner Stelle wird das File mit dem

angegebenen Filenamen unter dem gleichen Filedesignator geöffnet.

Wird statt des Filenamens ein * angegeben, so wird das entsprechende File

mit dem Filedesignator n geschlossen, ohne daß ein anderes File geöffnet

wird.

Bemerkung:

Der Filename in der Anweisung muß verschieden sein von allen Files, die

geöffnet sind.

Der Filedesignator n muß größer als @ sein und darf höchstens gleich der

Anzahl der Files in der FILES-Anweisung sein.

8.53

| FKEY# |

ANWEISUNG FKEY# (Funktion Key)

Funktions

Format:

Wirkung:

Bemerkung;

Mit Hilfe dieser Anweisung kann einer Funktionstaste ein

Inhalt zugewiesen werden.

FKEY# n, Stringkonstante :]

n ist ganze Zahl zwischen I und 16

Einer Taste, die durch den Wert des Identifikators n bestimmt ist,

wird der Inhalt der Stringkonstanten zugewiesen.

So oft die Funktionstaste gedrückt wird, wird die der Taste zuge-

wiesene Zeichenfolge in den Tastaturpuffer übertragen. Folgt der

Stringkonstanten ein Doppelpunkt, so wird der Inhalt des Tastatur-

puffers unmittelbar (d.h. ohne EOL) an das System übermittelt. Den

16 Funktionstasten können insgesamt maximal 238 Zeichen zugewiesen

werden.

Der Inhalt der Funktionstaste bleibt erhalten, bis er durch eine neue

Anweisung FKZY mit gleichem n überschrieben wird oder durch den

Befehl LDKEYS oder eine Neuinitialisierung des Systems wieder

durch den Standardinhalt ersetzt wird. Wird STKEYS eingegeben,

wird der so definierte Inhalt zum Standardinhalt.

Die Übermittlung des Inhaltes von Funktionstasten an Variable eines

Programmes kann nur mit den Anweisungen INPUT oder RKB erfolgen.

Die Funktionstastenbelegung kann nicht nur über Programm, sondern

auch im CALCULATOR-MODE und im DEBUGGING-MODE erfolgen.

Beispiel:

FILE

8818

9928

9838

uo4u

8858

8969

a6’B

9038

8998

81898

ga118

gar

9138

aiad

158

8160

178

8188

9199

9208

3210

3220

425B

u274#B

56

0?c0

END

STRING:

FKEY

DCL 8OR$

FKEY # 1,DIES

FKEY #2, 15T

FKEY %83,EIN

FKEY #4. TEST

FKEY #5, BEISPIEL

FKEY #6, 1. 11111:

FKEY #7,2.22222:
FKEY 83, ENDE:

DISP "EINGABE STRING CF8=ENDE)";

NUMERISCHER WERT 2.22222

STFING:

HUNERISCHER WERT 1. 11111

STRING. 1.1

HUMERISCHER

»TRING

dc

= TRINRG

1111

WERT 1.171111

ENDE

TEST BEISPIEL
HUFERISCHER WERT 7.272722

STRING: ENDE

SIE DIE TASTE Fi ZUM ERNEUTEN

RKB A$

PRINT "STRING: ";R$

IF A$="ENDE" THEN 198

DISP "EINGABE NUNERISCHER WERT";

INPUT A

PRINT "NUNERISCHER WERT";A

PRINT

GOTO 188

FKETY #1,RUN FKETY:

PRINT

PRINT

PRINT 'x#* DRUECKEN

PRINT

PRINT

PEINT

END

OF LISTING

DIES IST EIN TEST BEISPIEL

EIN BEISPIEL 15T DIES

START DES PROGRAMMES #r*

DRUECKEN SIE DIE TASTE Fi ZUM ERNEUTEN START DES PROGRANMES +*+*

t+#* DRÜECKEN SIE DIE TASTE Fi ZUM ERNEUTEN START DES PROGRMMES #*+%

| FNEND |

ANWEISUNG FNEND (Function End)

Funktion:

Kennzeichnet das Enae einer mehrzeiligen Funktionsdefinition

Format:

FNEND

Wirkung:

siehe DEF /FNEND

Bemerkung:

Jede mehrzeilige Funktionsdefinition muß mit der Anweisung

FNEND enden.

ANWEISUNG FOR

Funktion:

Format:

Wirkung:

| FOR

Kennzeichnet den Beginn einer Schleife

FOR Laufvariable = Num. Ausdruck TO num. Ausdruck [step num, Ausdruck.|

beliebige BASIC-Instruktionen

NEXT Laufvariable

Laufvariable ist eine einfache numerische Variable; die arithmetischen Ausdrücke

in der Laufanweisung geben den Anfangswert der Laufvariablen, den Endwert und

die Schrittweite an, um die sich die Laufvariable nach jedem Durchlauf der Schleife

erhöht. Nach Beendigung der Schleife durch NEXT ist der Wert der Laufvariablen =

letzter erreichter Wert + Schrittweite.

Die Folge von Anweisungen zwischen FOR und NEXT wird solange ausgeführt, bis der

Wert der lL_aufvariablen den angegebenen Endwert übersteigt. Ist der Anfangswert

der Laufvariablen größer (kleiner, wenn eine negative Schrittweite angegeben wird)

als der Endwert, wird die Schleife nicht ausgeführt, der Wert der Laufvariablen

bleibt unverändert und das Programm wird mit dem 1. Befehl nach NEXT fortgesetzt.

Ist der Anfangswert kleiner (größer bei negativer Schrittweite) als der Endwert, so

wird die Schleife durchlaufen, wobei bei jeder NEXT-Anweisung der Wert der Lauf-

variablen um die Schrittweite erhöht wird. Ist der neue Wert der Laufvariablen kleiner

oder gleich (bei negativer Schrittweite größer oder gleich) als der Endwert, wird die

Schleife von neuem durchlaufen und zwar solange, wie der Wert der Laufvariablen den

Endwert nicht überschreitet (bzw. unterschreitet bei negativer Schrittweite).

Nach Beendigung der Schleife fährt das Programm mit dem auf NEXT folgenden Pro-

grammschritt fort.

Bemerkung:

Fehlt die Angabe der Schrittweite, so wird diese implizit als I angenommen. Zwei

oder mehrere Schleifen können geschachtelt werden, sie dürfen sich jedoch nicht über -

schneiden.

richtig: falsch:

FOR A = I TO ı0 FORA= 1 TO 10

FORB =1 TO5 FORB=1 TO5

NEXT B NEXTA

NEXTA NEXT B

Ist die Schrittweite Null, so hat man eine Endlos-Schleife, wenn der Wert der Lauf-

variablen nicht in der Schleife verändert wird.

Eine Schleife muß immer mit FOR beginnen.

Mit den Anweisungen:

GO TO

ON... GO TO

IF... THEN

(wobei die jeweilige Zeilennummer größer ist als die der Anweisung NEXT) kann aus

einer Schleife gesprungen werden.

Bei einem Sprung aus der Schleife behält die Laufvariable ihren letzten Wert bei, es

kann jedoch nicht zurück in die Schleife gesprungen werden.

Folgende Elemente können auch noch Bestandteil einer Schleife sein:

GO SUB

ON... GO SUB

Jeder Anweisung FOR muß ein NEXT entsprechen. Sind mehrere Schleifen geschachtelt,

so müssen sie verschiedene L.aufvariable haben.

Der Wert einer Laufvariablen darf innerhalb der Schleife verändert werden, nicht je-

doch der Endwert und die Schrittweite,

Die Anweisung NEXT bewirkt eine Fehlermeldung, wenn nicht zuerst die Anweisung FOR

ausgeführt wurde.

Es können bis zu 15 Schleifen geschachtelt werden.

Beispiel:

FILE

818 REN *** PROGRAMAMBEISPIEL FOR 7 NEXT ++*

8828 REN

B9a38 DISP "1. SCHLEIFE: ANFANGSWERT, ENDWERT, SCHRITTWEITE":;

8848 INPUT A1,92,A3

8858 DISP "2. SCHLEIFE: ANFANGSWERT , ENDWERT, SCHRITTWEITE";

8868 INPUT B1,B2,B3

8879 PRINT „"RANFANGSWERT" , "ENDWERT", "SCHRITTWEITE"

8488 PRINT
8898 PRINT "I-SCHLEIFE",A1,R2,RA3

6188 PRINT "J-SCHLEIFE",B1,B2,B3

8118 PRINT

8128 FOR I=At TO A2 STEP 93
8138 PRINT "I-SCHLEIFE: I=";51,"J-SCHLEIFE: ";

8148 FOR J=B1 TO B2 STEP B3

8158 PRINT "J=",J;

6168 NEXT J

8178 PRINT

8158 NEXT I

81938 PRINT

8288 PRINT “I=":1;TRABLISI;"LCLETZTER BERTLC";I-A3;") + SCHRITTWEITEC";A3,"II"
8218 PRINT "J=";,):TABCISI ; "CLETZTER WERTC";J-B3;') + SCHRITTWEITEC";B3:"II"

228 PRINT

89238 PRINT

0248 GOTO 38

0258 END

END OF LISTING

ANFANGSBERT ENDWERT SCHRITTWEITE

I-SCHLEIFE 1 3 1
J-SCHLEIFE 1 1.5 .2

I-SCHLEIFE: I1>= 1 J-SCHLEIFE: J= 1 J= 1.2 J= 1.4
I-SCHLEIFE: I= 2 J-SCHLEIFE: J= 1 J= 1.2 J= 1.%
1-SCHLEIFE: I= 3 J-SCHLEIFE: J= 1 J= 1.2 J= 1.%

I= 4 [LETZTER WERTE 3 3 + SCHRITTWEITEE 1))
J= 1.6 [LETZTER WERTE 1.4 3 + SCHRITTWEITEC .2 93)

ANFANGSWERT ENDUERT SCHRITTWEITE

1-SCHLEIFE -1.2 -1.9 -.J3

J-SCHLEIFE 1 3 z

I-SCHLEIFE: I1=-1.2 J3-SCHLEIFE: J= 1 J= 3
I-SCHLEIFE: I=-1.35 J-SCHLEIFE: J= 1 J= 3

I-SCHLEIFE: I=-1.8 J-SCHLEIFE: J= 1 J= 3

I=-2.1 [LETZTER WERTE-1.8 3 + SCHRITTWEITEC-.3 3)

J= 5 [LETZTER WERTE 3 3 + SCHRITTWEITEC 2 9

ANWEISUNG GO SUB

Funktion :

Format :

Wirkung :

Bemerkung :

Übergibt die Kontrolle der Abarbeitung des Programmes an eine bestimmte

Anweisung, bei der ein Unterprogramm beginnt.

GO SUB Zeilennummer

Das Programm fährt bei der Anweisung fort, die durch die Zeilennummer fest-

gelegt wird und die die erste Anweisung eines Unterprogrammes ist. Die letzte

Anweisung des Unterprogrammes ist RETURN, mit der in die Zeile nach

GO SUB zurückgesprungen wird (in die Zeile mit der nächst höheren Zeilen-

nummer).

In einem Unterprogramm können auch mehrere RETURN vorkommen. Der Auf-

ruf eines Unterprogrammes kann in einer mehrzeiligen Funktion vorkommen,

Die Anweisung GO SUB ist dann ein Element der mehrzeiligen Funktion. Ein

Unterprogramm kann selbst SO SUB Anweisungen enthalten. Nach dem RETURN

wird jedesmal in die Zeile nach dem letzten GO SUB gesprungen (die Zeile,

mit der nächst höheren Zeilennummer). Die Anzahl der möglichen Schachte-

lungen von Unterprogrammen hängt ab vom Platz, der bei der Ausführung des

Programmes im Arbeitsspeicher zur Speicherung der Rücksprungadressen frei

bleibt. Der rekursive Aufruf von Unterprogrammen ist möglich.

Beispiel : FILE

8818

0628

4838

8848
8458

Ba6B

6878

08838
98938

89188

9118

8128
8138

148

9158
0168

6178

REN *x*%# PROGRAMMBEISPIEL FUER REKURSIVEN UNTERPROGRAHMAUFRUF 4%

REN

LET A=B8

PRINT "DAS UNTERPROGRAANM RUFT SICH SELBST AUF:

PRINT

GOSUB 188

PRINT

PRINT "ENDE BER UNTERPROGRANMMAUFRUFE

GOTO 178

LET A=fA+1

IF A>5 THEN 168

FRINT "Rusfuehrung“,PA; "des Unterprogrannes"

GDOSUB 188

LET A=A-1

PRINT "Ruecksprung von RETURN zu GOSUB";A
RETURN

END

END OF LISTING

DAS UNTERPROGRAMANM RUFT SICH SELBST AUF:

Aus fuehrung

Aus fuehrung

Aus fuehrung

Aus fuehrung

des Unterprüogr3ases

de5 Unterprogrammaes

des UnterprogrTranaes

des Unterprogranmes

1

2
3

Rusfuehrung 4 des Unterprogrammes

3
Y kRuecksprung

Ruecksprung von RETURN zu GOSUB

Rusecksprung von RETURN zu GOSUB
kKuecksprung von RETURN zu GOSUB
Ruecksprung von RETURN zu GOSUB

on RETURN zu GOSUB

N
W
K
E
n

ENCE DER UNTERFROGRAAMAAUFRUFE

8.64

| Go To |

ANWEISUNG GO TO

Funktion:

Format:

Wirkung:

Bemerkung:

Beispiele:

GO TO bewirkt einen Sprung Zu einer bestimmten Zeile des Pro-

grammes.

GO TO Zeilennummer

Die Abarbeitung des Programmes setzt in der Zeile fort, In die

mit GO TO gesprungen wurde.

Sprünge in mehrzeilige Funktionen, FOR/NEXT-Schleifen und

Subroutinen sind nicht erlaubt, ebenso sind aber auch Sprünge

aus Subroutinen heraus unzulässig, wenn danach kein RETURN

erreicht wird.

Beim GO TO innerhalb einer Schleife muß das Sprungziel immer

zwischen FOR und NEXT liegen, falls die Schleife nicht vorzei-

tig beendet werden soll.

FILE

8818 REM *** PROGRAMMBEISPIEL ’GOTO’ *+*
8828 REN

8838 REM **#* BEISPIEL FUER EINE ENDLOSSCHLEIFE *+%

8848 REM

8858 PRINT "DIES IST EINE ENDLOSSCHLEIFE -....--2uucuuneunnen -on0nn.

8868 PRINT "DAS PROGRAMM KANN NUR NIT DER TASTE ’BRERK’ ABGEBROCHEN

Ga7’8 PRINT

8088 GOTO 58

8398 EHD

EHb OF LISTING

GIES IST EINE ENDLOSSCHLEIFE „. ou un un n nn nn nun
EAS PROGRAMM KANN NUR NIT BER TASTE ’BREAK’ ABGEBROCHEN WERDEN

DIES IST EINE ENDLOSSCHLEIFE „..0...0... -

DAS PROGRAMM KANN NUR NIT DER TRSTE ’BREAK’ ABGEBROCHEN WERDEN

DIES IST EINE ENDLOSSCHLEIFE „.--. „oo. 0n0n. Dunn nenn nn une

ERS PROGRAMM KANN NUR NIT DER TASTE ’BRERK’ ABGEBROCHEN WERDEN

DIES IST EINE ENDLOSSCHLEIFE „nn. 00000 nn nn nn nn nenn nn ne

DAS FROGRANM KANN NUR MIT DER TASTE ’BREAK’ ABGEBROCHEN WERDEN

DIES IST EINE ENDLOSSCHLEIFE „. oo 000m nn nn nn nn nennen on nen en

DAS PROGRAMM KANN NUR MIT DER TASTE ’BREAK’ ABGEBROCHEN WERDEN

DIES 15T EINE ENDLOSSCHLEIFE nn nn nn nenn nee

DAS PROGRAMM KANN NUR MIT DER TASTE ’BRERK’ ABGEBROCHEN WERDEN

DIES 1ST EINE ENDLOSSCHLEIFE „...... nn non nennen .

DAS PROGRAMM KANN NUR MIT DER TASTE ’BRERK’ ABGEBROCHEN WERDEN

DIES IST EINE ENDLOSSCHLEIFE „oo o nn nn nn nn nennen ne

DAS PROGRAMM KANN NUR HIT DER TASTE "BREAK’ ABGEBROCHEN WERDEN

“:

WERDEN"

ANWEISUNG

Funktion :

Format :

Wirkung :

Bemerkung :

Beispiel :

IF... THEN

IF.... THEN

Diese Anweisung ermöglicht bedingte Verzweigungen in einem Programm.

Vergleich

IF AND THEN Zeilennr.

(Vergleich 1) (OR (Vergleich 2)

num. Ausdr. num. Ausdr. 0. i == Vergl. Operator . mit : Vergleich Stringausdr. 9 pera Stringausdr.

Es werden die Ausdrücke berechnet, die Ergebnisse miteinander verglichen

und ihr Wahrheitswert gebildet. Sind zwei Vergleiche mit den Boole'!schen

Operatoren AND oder OR verknüpft, so wird der Wahrheitswert der Ver-

knüpfung gebildet. Liefert der gesamte Ausdruck den Wahrheitswert !!wahr!',

so wird zu der angegebenen Zeilennummer verzweigt.

Liefert der Vergleich oder die Verknüpfung von zwei Vergleichen den Wahr-

heitswert !!falsch!!, wird das Programm mit der nächsten Zeile fortgesetzt.

Befindet sich die Anweisung IF... THEN in einer mehrzeiligen Funktion, so

muß das Sprungziel der Verzweigung innerhalb der Funktion liegen. Dasselbe

gilt auch, wenn die Anweisung in einer Schleife vorkommt und die Schleife

nicht aufgrund der Bedingung vorzeitig verlassen werden soll. Beide Ver-

gleichsausdrücke müssen entweder arithmetische Ausdrücke oder Stringaus-

drücke sein.

FILE

8818 REM =PROGRANMMBEISPIEL ’IF-THEN’*

8828 REM

8838 LET 1=173%3

8848 IF I=1 THEN 78

8658 PRINT USING 88,1
B86B GOTO 98

8878 PRINT 'Da haben Sıe Glueck gehabt"

8838 :I=#4. 2423843333333
8838 END

END OF LISTING

RUN

I= 8.339393939939399999

| IMAGE statement

FORMATSPEZIFIKATIONEN

Funktion:

Die Formatspezifikation bestimmt das Format, in dem die Ausgabegrößen

(Zahlen und Strings) für den Drucker und für das Display im jeweiligen

Puffer abgebildet werden (siehe PRINT USING, DISP USING und BUILD

USING).

Format:

Text Text

Image_Field Image-Field)]) une unen

st ist das Kennzeichen für die Formatspezifikation.

Wirkung:

Beziehen sich die Operanden der Anweisung PRINT USING, MAT PRINT

USING, DISP USING oder BUILD USING auf eine Zeile mit einer Format.

spezifikation, so werden die Ausgabegrößen für den Drucker und für das

Display dem Format entsprechend im jeweiligen Puffer generiert. Die Aus-

gabe der Werte erfolgt gemäß der Beschreibung im Abschnitt "Ausgabe von

Werten bei PRINT USING, DIS? USING, BUILD USING!,

FORMATFELDER (IMAGE FIELD)

Die Formatfelder einer Formatspezifikation müssen numerisch für numerische Werte, bzw.

String-Formatfelder für Stringausdrücke sein.

Die Formatfelder für Zahlenausgabe können sein:

Felder für ganzzahlige Größen

Felder für Dezimalzahlen

Felder für Zahlen in Exponentialdarstellung

Felder mit dem Zeichen 3 als Symbol

Formatfeld für ganzzahlige Größen: #9)... %#]

Es besteht aus einer Folge von Symbolen, die für Ziffern stehen.

Größe: Minimum 2 Zeichen, Maximum 20

Formatfeld für Dezimalzahlen: FHH .. [#7

Es besteht aus einer Folge von Symbolen, die für Dezimalzahlen stehen.

Größe! Minimal 3 Zeichen, maximal 26 Zeichen inkl. Dezimalpunkt

Formatfeld für Exponentialdarstellung:

Für die Mantisse gelten die Regeln für Dezimalzahlen, zusätzlich ist für

das Exponentenfeld +4 einzugeben.

Größe: Minimum 7 Zeichen, Maximum 30 Zeichen (3# -Zeichen, a u

Bemerkung:

Das Symbol ##$## ist immer das letzte Zeichen des Formatfeldes.

Formatfeld mit & als Symbol :

Formatfeld für Ganzzahlgrößen

& (&] --- cal

Es besteht aus einer Folge von &-Zeichen.,.

Formatfeld für Dezimalgrößen

Größe: Minimum 12 Zeichen, Maximum 20 Zeichen

Formatfelder für Stringausdrücke:

LL UL

RR R

cc .c

bestehen aus einem Hochkomma und eventuell einem oder mehreren Buchstaben

L, Roder C.

Größe:

Beispiele:

LIST

FILE

aM
za -

 MN

=

u

wi

a
!

aa
 a

r
e

ch
e

D
 ,

i
l

u

G
a

._

I
t

a

d
a

B
a
r

Da

a

y
a

a

I

= au
!

(

n
e

he
n
r

ch
e‘

J
r

W
a
n
d

i
n
i
ı

B
i
d
)

a

S
a
l

c
n

T
u
n

G
r

wm

-

w
w
‘

EHD

RUM
zur

FELL KK ERER I F K

Als Minimum 1 Zeichen, maximal 74 Zeichen

FEM »BEISPIELE FUER FORMATFELDER*

REM

PRINT

FEINT

FRINT

BES 25 205 50202 222 2 272 2 2 2 2 2 2720202020

"Tuyr Kontrolle der Druckposıtıonen:"

"1234567891 1234567891 1234567891 1234567891 1234567891 12345678931 ''

RRRRRBRRRRRSBRSERSNN ERSTER WERT #%# ZWEITER WERT

FrHnH

#H.% ya

EHRE HR HE

PRINT

FREINT

FREINT

FEINT

FRINT

FPEINT

LET A$=' HH.

FREINT

ISING

USING

USING

USING

ISING
ISING

USING

efi,-5,6

ra, 122345

’9.0091.9902,0083

79,123.4, 123.75
34.1.7, 12E18

34.712,80. 1,.12,80.

A$.

1236

-25.8

A RRRRITTTT

FFEINT USING 128.-12.12345678981E77,-123, 1234567390

-FEFSEFFEHEFFF TZRRRER FH SEEH.RHHTTTT

FREIHT USING z2u9,715 30,25, 45,25. 15E15

FEINT "1234567391 12345673931 1234567891 1234567891 1234567891 1234567891"

EN

E44 %+

ed

a

r
a
t

üF LISTING

Kontrolle der Rruckpositiünen:

234567531 1234567891 12345678931 1234567891

-53 ERSTER WERT G& ZWEITER WERT

. 148

12 PPRPERPFEFER Ger

8.1 12.8888
FREE EERETKERRK ER FREE KH

-£h,

-1?00,.H0804
12234.5678

- 1229. 090%
1234. 5678

$1
234567391

in

i
d

A

a
u
s

e
r
d
e

51%)

1a

ua

ac

&

t

Auc

234567

ROBEEGUABBUBE-B2

ABAUGBAGBABBE+SS

RROABBEBBAABE-U1

WBABBBMABE+RE

£ 25.4588 $251.588E+r1%

3911234567831 1234567891 1234567891 1234567891

Beispiel 2:

9818 REM «BEISPIELE FUER FORMATFELDER*

nc28 REM
aaza FRINT "Zur Kontrolle der Druckposition:"

aas4d FRINT

5554 PRINT '123456578911234567831 12345678931 1234567891 1234567391 123456 789 1

BAER FÜR I=1 TO 3 STEP 1

ag73 FRINT

3U85A : "LLLLLLLLLLLL

aa9R I" ERERRRERRERRR

aaa : "EICÜLCICCCCE

ara ZLLLLLLLLLLLL

gIza :"LLLLLLL trtt $+$+$ aueh HR$78’ CI) _=<>+HABCDEFGabcedeFfghi
g120 PRINT I

9145 NExT I

154 2 "LLLLLLLL Dann! ’ECECCECEEE ee ’ERERRRRR

g1sa FFINT USING 36, "OL INUETTI"."'P69868'

ara FEINT USING 90.'0lıvettı'",''"P6O68"

R185 FRINT USING 188, "0LINETTL","P6O6R"

41239 PRINT USING 128, ''Mserz', 125.358

azaa PRINT USING 158, "HUBERT'". "MARIA", "JOSEFA","SYLUIA"

213 PRINT USING 150, "ENDE"

22a PRINT '"123#+567391123#+567891 1234567891 1234567891 1234567891 1234567391"
0225 END

END OF LISTING

FUN

zur Köntrolle der Druckpoasition

12343675931 12343673931 1234567391 1234567891 1234567891 1234567891

a

OLIUETTI

FEack
nlıvwetti

FEARH

OLIUETTI

FEice
Hserz trtt 2125 258 14352’ 0) _=<>+AECDEFGabcdefghi
HUBERT E MARIA nd JÖOSEFRA
=LVIA nn nid]

ENDE

12234367531 1233567931 1234567891 1234567891 1234567391 123456789

8.72

AUSGABE VON WERTEN BEI DEN ANWEISUNGEN PRINT USING, MAT PRINT USING,

DISP USING, BUILD USING

Die Ausgabe der Daten erfolgt nach den folgenden Regeln :

Bei numerischen Größen entspricht in einem Formatfeld für ganzzahlige Werte

jeder Ziffer das Symbol #.- Für die Ausgabe des Vorzeichens ist über die

maximale Stellenzahl hinaus ein weiteres Symbol vorzusehen. Die Zahl wird

rechtsbündig in das Formatfeld übertragen; ist die Zahl nicht ganzzahlig, so

wird der gebrochene Anteil abgeschnitten; ist die Zahl positiv, so ist das

letzte Zeichen vor der ersten Ziffer eine Leerstelle; ist die Zahl negativ, so

steht ein Minus vor der ersten Ziffer dieser Zahl; im Falle eines Formatüber-

laufes werden an Stelle der auszugebenden Ziffern 3 (Sternchen) ausgegeben.

Bei numerischen Größen entspricht in einem Formatfeld für Dezimalzahlen

jeder Ziffer das Symbol #.

Sind für den gebrochenen Anteil der Zahl zu wenig Symbole vorgesehen, so

wird gerundet und der letzte Teil rechts abgeschnitten;

ist die Zahl positiv, so ist das letzte Zeichen vor der ersten Ziffer eine

Leerstelle;

ist die Zahl negativ, so steht ein Minus vor der ersten Ziffer dieser Zahl;

sind für den ganzzahligen Anteil der Zahl zu wenig Symbole # vorgesehen,

wird für jedes Zeichen des Formatfeldes ein # ausgegeben.

Bei numerischen Größen entspricht in einem Formatfeld für Zahlen in Expo-

nentialdarstellung jeder Ziffer ein Symbol #, analog zu Il. Anstelle der

Zeichen ira der Buchstabe E, ein Minus- oder Leerzeichen und 2

darauffolgende Ziffern gesetzt. Diese Ziffern bilden den Exponenten zur

Basis 10.

Der numerische Wert wird auf ein Formatfeld mit einem 3 -Zeichen als Symbol

abgebildet, wobei nur ein einziges &-Zeichen links im Formatfeld stehen muß.

Anmerkung : In allen Formatfeldern für die Ausgabe numerischer Werte muß eine Stelle

für das Vorzeichen enthalten sein. Bei der Ausgabe einer positiven Zahl

wird die erste Stelle des Formatfeldes (4foder &) durch ein Leerzeichen

ersetzt, bei der Ausgabe einer negativen Zahl wird die erste Stelle des

Formatfeldes für die Ausgabe des !!-!! Zeichens verwendet.

Zahlen, deren Absolutbetrag kleiner 1 ist, werden mit ß vor dem Dezimal-

punkt dargestellt. Ein Formatfeld für Dezimalzahlen muß daher vor dem

Dezimalpunkt zweidf-Zeichen haben.

8.74

ANWEISUNG

Funktion :

Format:

Wirkung :

Bemerkung :

Meldungen :

INPUT

INPUT

Diese Anweisung erlaubt eine Zuweisung von Werten an Variable während der

Ausführung eines Programmes.

Die Werte werden über die Tastatur eingegeben.

num. Var. num. Var.

INPUT Stringvar. ’ \Stringvar.

Das Programm wird angehalten und auf dem Display erscheint ein Frage-

zeichen. Der Operator kann nun die Werte, getrennt durch Komma, eingeben.

Sie werden der Reihe nach den Variablen der INPUT-Anweisung zugewiesen.

Nachdem man allen Variablen einen Wert zugewiesen hat, kann durch die Taste

EOL. der Ablauf des Programmes fortgesetzt werden.

Zwei Fragezeichen (??) auf dem Display geben an, daß noch nicht allen Vari-

ablen Werte zugewiesen wurden. Das System wartet auf die Eingabe der rest-

lichen Daten. Die Eingabewerte müssen mit dem Typ der entsprechenden Vari-

ablen übereinstimmen. Man darf nicht mehr Werte eingeben, als Variable vor-

handen sind. Ein String muß in Anführungszeichen (!!) stehen, falls er folgende

Zeichen enthält.

(,) Komma

Leerzeichen am Anfang

?

Das Fragezeichen gibt an, daß auf eine Eingabezeile gewartet wird. Das Fra-

gezeichen kann auch Bestandteil einer vorangehenden Display-Anzeige sein,

fails sie durch das Trennzeichen : ;‚ abgeschlossen wurde.

??

Zwei Fragezeichen geben an, daß noch nicht allen Variablen in der Variablen-

liste der Anweisung INPUT Werte zugewiesen wurden. Die Eingabe ist fortzu-

setzen, bis allen Variablen Werte zugewiesen wurden.

"TOO MUCH INPUT-EXCESS IGNORED!

Diese Meldung gibt an, daß mehr Werte eingegeben wurden, als Elemente in

der Variablenliste stehen.

NWINCORRECT FORMAT-RETYPE LINE!

Wird versucht, an numerische Variable alphanumerische Daten zu übergeben,

so erscheint diese Meldung. Zahlen, die an alphanumerische Variable über-

geben werden, werden als String interpretiert und ohne Fehlermeldung über-

nommen.

Beispiel 1: LIST

FILE

gaia bDISP "'Z

saza INFUT I

aa3A FRINT 5

uas+B GOTUO 19

u155 END

‚STRING, ZAHL":

r
n

u
n

ENb ÖF LISTING

FUN

ZHHL,STREING, ZAHL?

-1.256232.5TRING. . 2Z5E-23

5STEING -1.2563 .a56025

ZAHL. STRING. ZAHL?

STRING. 2.5TRING

INCORRFECT FORMAT-FETYPE LINE

3.,5TFING.->3

STRING E -.3
ZAHL. STRING. ZAHL?

1,2,3

2 1 3

ZAHL. STRING, ZAHL?

1: KSKEKRARN SSH

TOb NUCH INPUT-EXTESS IGNÖORED
ya year n ern 1
“nr NIIT D "m

ZHHL, STRING, ZAHL?

a)

8.76

Beispiel 2: BB48 LET K=1=9
a828 INPUT I,BCI) |
aa3a PRINT "Altes]I =":K;" ‚ Neues I =";];' ‚, BC’IK:') =",BCK)

8848 END

END ÜF LISTING

RUN

2.18.6
Altes I = 9 ‚ Neues I = 2 BCI3I I = 18.6

ANWEISUNG LET

Funktion :

Format :

Wirkung :

Bemerkung :

Die Anweisung erlaubt es, Werte von Ausdrücken an eine oder mehrere

Variable eines Programmes zuzuweisen.

n.V. .n.vJ L-.-]- n

u. £eJ] &-]-6.
n.V. = num. Variable

[Let]

S.V. = Stringvariable

Der Ausdruck rechts vom letzten Gleichheitszeichen wird ausgeführt und das

Ergebnis den Variablen auf der linken Seite zugewiesen.

Das Schlüsselwort LET muß nicht eingegeben werden.

Die Anzahl der Variablen links vom Gleichheitszeichen wird beschränkt durch

die maximale Anzahl von Zeichen pro Zeile (80).

Die aktuelle Länge der Stringvariablen in einer Zuweisung ist gleich der An-

zahl der Zeichen, die sich als Resultat des Stringausdruckes ergeben.

Ist die vereinbarte Länge der Stringvariablen kleiner, so erfolgt eine Fehler-

meldung. Nach Drücken der Taste CONTINUE wird der Ergebnisstring ent-

sprechend der L.änge der Variablen abgeschnitten.

Beispiel Il:

LIST
FILE

ata REM *BEISPIEL FUER ’LET’x
gazan=B=Ü=D=E=F=G=H=1=)J=K=L=M=N=0=-P=Q=R=5=-T=U=-U=W=X=Y=27=N1=BA=-C3=-D3=-E4=-6G8=U4=%

aa2d FRINT AR.E.C.D.L

nasR LET A=B

sasa LET A=A+1

4869 FRINT HA

amra IF Ai=4 THEN 5

BaSu PRINT "Ai1=":nA1

gasada LET HiI=FI#=Ü3+SDRLCPrüO+R-SI/LGTCWrTZ)

aiarn FRINT 'A1='":91

91198 END

END OF LISTING

FUN

+ ö & & &

1

z

Ai= 4

Ai= 14.174592

FILE il

aaia FRINT

iani ° aaza FRINT

Beispiel 2: nazA LET Af="bie Kapitel"

Hase LET Bt='" 4

aasa LET Che" 5

nasB LET DE=" 6 "

aara LET E$=" F bis 9"

Agsa DEL SBIFF.6%.H$)
33a LET Ff='"beschreiben Jas System. '
aaa LET G$="beschreiben die Sprache."

alla LET H$=" "+As+B$+", "+CHH und" +O$+PF$

a12a FRINT 'HE=':H$
5138 LET H$=NAF$+EFt+G$

ai14a PRINT ''H$= ';H$

a15a LET 5F='"

gisßa FOR I=1 TO 93 STEP 1

a1ra LET Sf=S$+HCHR$ CI)

aisa NEXT I

aA13a FRINT "5$=":S$

1788 END

END OF LISTING

RUN

Ht= Die Kapıtel 4 „ 5 und 6 beschreiben das System,

H+= bie Kapitel 7? bıiı5 9 beschreiben die Sprache,

Ss$=f11:B.0%?

8.80

ANWEISUNG NEXT

Funktion:

NEXT gibt das Ende einer Schleife an.

Format:

NEXT Laufvariable

Wirkung:

Siehe Anweisung FOR/NEXT

| NEXT |

ON ... GOSUB

ANWE ISUNG ON .. GO SUB

Funktion:

Diese Anweisung bewirkt den Sprung In ein Unterprogramm, wobei das Sprung-

ziel vom Wert eines Ausdruckes abhängt.

Format:

ON arithmetischer Ausdruck GO SUB Zeilennummer [; Zeilennummer |

tZeilennummer"! ist die Nummer der Programmzelle, die das Sprungziel enthält.

Wirkung:

Der arithmetische Ausdruck wird berechnet und das Ergebnis wird gerundet.

Diese ganze Zahl gibt an, in welcher der Zeilennummern rechts von GO SUB das

Sprungziel liegt.

So wird das Ergebnis 3.85 eines arithmetischen Ausdruckes auf die ganze Zahl 4

gerundet und es erfolgt ein Sprung zu der Zeile, die als 4. Zeilennummer in der

Anweisung angegeben ist. Jede Zeilennummer in der Anweisung gibt die erste

Zeile des jeweiligen Unterprogrammes an. Die letzte Zeile eines Unterprogram.

mes enthält die Anweisung RETURN, die den Rücksprung in die Zeile nach ON ..

GO SUB bewirkt.

Bemerkung:

In jedem Unterprogramm können auch mehrere RETURN- Anweisungen vorkommen.

Der Aufruf von Unterprogrammen kann auch in mehrzeiligen Funktionen enthalten

sein; in diesem Falle ist dann auch die Anweisung GO SUB Bestandteil dieser Funk.

tion.

Ergibt der arithmetische Ausdruck nach der Rundung eine Zahl kleiner als 1 oder

größer als die Anzahl der Zeilennummern in der Verteilerfunktion ON .. GO SUB,

so wird das Programm mit der nächsten Anweisung nach ON ... GO SUB fortgesetzt.

Beispiel:

FILE

aa18 REM *BEISPIEL FUER "ON GOSUB’*

“a28 REM
aanza DISP "Waehlen Sie ein Unterprogramm";

aa46 INFUT I

aasa PRINT

naba PRINT 'I="51

aara FRINT

Ga>2a GN I GUOSURB 148, 168, 188, 2008

aasaa Ir I<X8.5 THEN 128

ataga IF ITis.5 THEN 30

311& IF I=93 THEN 228

aA128 PFINT "KEIN UNTERPROGRAMM UNTER DIESER NUMMER"

a12a GOTO 38

a1s4a FRINT "DAS IST DAS ERSTE UNTERFROGRAMM'

41759 RETURN

mis PRINT "DAS IST DAS ZWEITE UNTERFROGRAMM"

aim RETURN

#158 FRINT "DAS IST DAS DRITTE UNTERFROGRAMM"

4139 RETURN

zen PRINT "DAS IST DAS VIERTE UNTERPRÜGRAMM"

121R FETUÜRN

azz2a END

END OF LISTING

kr]
«

I= 2%

CAS IST DAS DRITTE UNTERPROGRAMM

Wsehlen sie eın Unterprogyramm?

2.

I= 2,1

ERS IST DAS ZWEITE UNTERPROGRAMM
Wsehlen Sıe eın Uunterprcagramm?

-1?

I=-12

EEIN UNTERFROGRAMM UNTER DIESER NUMMER
Wsehlen Sıe eın IUInterpraogramm”

„4323

I= „+33

KEIN UNTERFREOGRAMM UNTER DIESER NUMMER
Waehlen Sıe ein UÜnterfrogramm?
„71

T DAS ERSTE UNTERFROGRAMM
n Sıe ein Unterprog3oramm?

ON ... GOTO

ANWEISUNG ON... SO TO

Funktion :

Format :

Wirkung :

Bemerkung :

Diese Anweisung bewirkt den Sprung in eine bestimmte Programmzeile in Ab-

hängigkeit vom Wert eines arithmetischen Ausdruckes.

ON arithmetischer Ausdruck GO TO Zeilennummer Lk Zeilennummer] ...

t Zeilennummer"! ist die Nummer der Programmzeile, die das Sprungziel

enthält.

Der arithmetische Ausdruck wird berechnet und das Ergebnis auf die nächste

ganze Zahl gerundet; diese ganze Zahl gibt an, in welcher der Zeilennummern

rechts von GO TO das Sprungziel liegt.

So wird die Zahl 2.75 auf 3 gerundet und zu der Zeile gesprungen, die als 3.

Zeilennummer angegeben ist.

Die Anweisung ON... GO TO kann einen Sprung in eine mehrzeilige Funktion

bewirken, wenn die Anweisung selbst bereits Bestandteil einer solchen

Funktion ist.

Ergibt der arithmetische Ausdruck eine gerundete Zahl kleiner als I oder

größer als die Anzahl der Zeilennummern der Verteilerfunktion ON... GO TO,

so wird diese Anweisung ignoriert und das Programm fährt mit der nächsten

Anweisung fort.

Beispiel: LIST

FILE

Ba1c REM *BEISPIEL FUER ’ON GOTO’x*

AG28 REM

aa20 FOR I=-1 TO 5 STEP 1

aasa DN I GOTO 78,98, 118. 138

aaSa PRINT "KEIN GUELTIGES T"

AGB GOTG 140

gara PRINT '"I=EINS"

ua38 GOTO 148

gaaa PRINT "I=ZWELI"

aisa GOTO 149

a11a PRINT '"I=DREI'"

aiza GOTO 148

a12a FEINT "I=UIER'

aisa NEXT I

115A END

END GF LISTING

RIM

KEIN GUELTIGES I

KEIN GUELTIGES I

I=EINS

I=ZuIEI

I=DFEI

I=UIER

KEIN GUELTIGES I

ANWEISUNG PAD

Funktion:

Eine Stringvariable wird mit Füllzeichen aufgefüllt.

Format:

PAD Stringvariable, n

n ist eine ganze Zahl zwischen O und 255 (1ISO-Zeichen).

Wirkung:

Der Teil zwischen aktueller Länge und Speicherlänge einer Stringvariablen

wird mit dem Zeichen, das der Zahl n in der ISO-Tabelle entspricht, aufgefüllt.

Bemerkung :

Für die Ausführung der Anweisung muß das System mit der Option STR initialisiert

sein.

Beispiel :

Siehe Anweisung DEPAD.

| PRINT

ANWEISUNG PRINT

Funktion:

Mit der PRINT_Anweisung kann man Zahlen und Strings im Standardformat über den

Drucker ausgeben.

Format:

Stringausdruck ; Stringausdruck ;

PRINT num. Ausdruck num. Ausdruck |

TAB (num. Ausdruck) ; TAB (num. Ausdr.) ;

ut und !;1 sind Trennzeichen der Ausgabeelemente.

Wirkung:

Die Ergebnisse der Ausdrücke werden im Standardformat am Ende des Kapitels in

Abschnitt 8.4. beschrieben und von links nach rechts der Reihe nach gedruckt.

Die Position der Zeichen in der Druckzelle kann mit den Anweisungselementen

TAB (arithmetischer Ausdruck)

"U Komma

u. Strichpunkt

beliebig festgelegt werden, wie es in Abschnittt 8.4. beschrieben wird.

PRINT ohne Angabe von Ausgabeelementen bewirkt die Ausgabe einer Leerzeile.

Stellenkontrolle der Zeichen in einer Druckzeile

Der PRINT-Befehl erzeugt in einem Register, dem Puffer des Druckers, eine Folge von

Zeichen, die dem ausgegebenen String entspricht (siehe Abb. 1).

Ein zweites Register, POINTER genannt, weist auf die erste freie Stelle im Puffer,

Sobald der Puffer voll ist, wird sein Inhalt In einer Druckzelle ausgegeben (siehe

Abb. 1) und der Pointer auf die I. Stelle im Puffer zurückgesetzt.

Mit den Elementen !!, !, 1 und TAB (arithmetischer Ausdruck) kann man das Ausgabe.

format einer Druckzeile festlegen.

Bemerkung:

Wird das Komma !!, W als Trennzeichen verwendet, wird der Püffer des Druckers

in 5 Druckzonen zu je 16 Stellen aufgeteilt.

Die Funktion TAB bewirkt die Ausgabe des nächsten Elementes ab einer be_

stimmten Position.

Beispiele:

FILE

aaıa

nazn

gazu

ans

gs

aabd

PRINT "Es folgen 18 Leerzeilen"

FOR I=1 TO 18 STEP 1

FRINT

NEXT I

PRINT 'Das waren 1A Leerzeilen"

END

END OF LISTING

FUN

Es Folgen 19 Leerzeilen

Es> waren 19 Leerzeilen

Beispiel 2:

FILE

14 PRINT "OLIVETTI"

A126 PRINT ..»5>-

auzaa PRINT "PBEBEM'

8848 FRINT 1.2,.3,4#:-95

aa5a PRINT 1:2:3:4:5

MAGOPRINT1. 123.1. 123456789856 , -12. 123456789,8.8880889, "DIESER STRING IST ZU LANG

ara END

END ÖF LISTING

OLINMETTI

FERAEH

1 z 3 4 5

12 23 4 5
1.123 1.1234563E+56 -12.123457 . 8888609

DIESER STRING IST ZU LANG

Beispiel 3:

7

r
t

rm

m

GEL ZIEHE

LET H#

FOR Isa TO 253 STEP 1

LET AF=AF++CHRELI)

HEAT I

FRIHT A#

END

u

m
m
m

m
m

a

ı
m

31
t
u
n

id

Bi

g
a
m
a
m
m
m

en

ch
e

EHNb OF LISTING

#+4% FORMALLY CORRECT FROGRAN #r%%
ATLIBSONFELFEBÜBOHHBFN-AZHTOBNUB 1"EE%R’ (I #+,-. 790123456783: 5 <=>?DABCDEFGHIJKLNNO
FORSTLUWEFZCHIT_Sbcderanijklmnoparstuvwxyz Cl 3” & INNERN RADAR AA URAN SUN AARON N
I AROFNREU RU RO OD U OO A A BD BR DO ED DR RB OO FEN U
IHREN SEAN

8.91

PRINT USING |

ANWEISUNG PRINT USING

Funktion :

Format :

Wirkung :

Bemerkung :

Diese Anweisung bewirkt den Ausdruck von Daten in einem definierten Format.

Zeilennummer num. Ausdr. num. Ausdr.

PRINT USING » ; ...

Stringvariable Stringausdr. Stringausdr,

t Zeilennummer"! gibt die Zeile mit der Formatspezifikation an.

NStringvariable! ist der Name der Stringvariablen, die die Formatspezifikation

enthält.

Die Werte der Ausdrücke werden in dem Format, das in der Formatspezifikation

aufbereitet ist oder in der Stringvariablen angegeben wird ausgedruckt. Jeder

Wert korrespondiert mit einem Formatfeld, von links beginnend.

Jede Anweisung PRINT USING bewirkt, daß die Werte in einer neuen Zeile

ausgedruckt werden, auch wenn die vorhergehende Anweisung PRINT mit !!, "

oder !!;!! endet. Sind mehr Werte auszudrucken, als im Formatstring vorge-

sehen sind, so werden die restlichen Werte in den nächsten Zeilen im gleichen

Format ausgegeben. Sind hingegen weniger Ausgabeelemente als Formatelemen-

te, so werden an Stelle der restlichen Formatelemente Leerzeichen gedruckt.

Die Ausgabeelemente und die Formatfelder müssen in ihrem Typ überein-

stimmen.

8.93

Beispiel: FILE USINGA

8618 KEN *+* PROGRAMNMBEISPIEL ’PRINT USING’ vr“

#828 REN *** NUNERISCHE FELDER #%4%*

8838 REN

3848 DISP "NUNERISCHER WERT";

8858 INPUT A

B868 PRINT USING 118,R,.A.R

a8#?8 PRINT USING 128,RA

B888R PRINT LSING 136,RA,H

4898 PRINT

A188 GOTO 48

a118 :MIT 7 CHNE NACHKONNMASTELLEN: 234 , Si. Um Bat

891Z24 :EXPONENTIRALDARSTELLUNG: #81 T1T1T7

49138 :DOLLAR FELDER: 35335.3 UND su 34

#148 END

END OF LISTING

RUN

HIT #7 OHNE NHEHKOMNAASTELLEN: 123 > 123.8 UND 122. 8948

EXPDNENTIALDARSTELLUNG: 1.23E+82

DÜLLAR FELDER: 123.8 UND $ 123.B808

HIT 7 OHNE NACHKOMARRSTELLEN: 123 > 123.5 UND 123.43568

EXPONEHNTIALDARSTELLUNG: 1.23. +22

BOLLAR FELDER: 3123.53 UND $ 123.+56B

MIT # GHNE NACHKOMMASTELLEN: -123 , -123.5 UND -123.4568

EXPONENTIRLDARSTELLUNG: -1.23E+B82

DOLLAR FELDER: $-123.53 UND #-123.4568

HIT + SHAE NARCHKOMNMASTELLER: us a.3 UND n.s6a8

EXPONENTIALDARSTELLUNG: >. BBE-01

DOLLHR FELDER: 8.2 UND $ A. oda

NIT 7 SHNE NACHKOAMASTELLEN: -B -» -5.5 UND -B. 3868

EXPONENTIALDANSTELLUNG: -3.BBE-81

DOLLAR FELDER: $-5.5 UNb $ -3.58085

Beispiel : FILE

8818

80828

8838

8848

8858

8868

8878

8838

8898

8188

8118

8128

8130

81486

8158

8168

8178

2188

USING2

REM *#%# PROGRAANMBEISPIEL ’PRINT USING’ *s#*

REN *#*#*= ALPHANUNERISCHE FELDER #++%*

REN

DCL 88 A$

DISP "STRING";

RKB NA$

PRINT "STRING: ";R$

PRINT

PRINT USING 158, n$

PRINT USING 168,n1$

PRINT USING 178,9$

PRINT

PRINT

GOTO 58

:RECHTSBUENDIGE RUSGABE: ’RRRRRERRRERRERRRRRERRR

:LINKSBUENDIGE AUSGABE: ’LLLLLILLLLLLLLILLLL

:ZENTRIERTE AUSGABE: ’ECCICCECECECCCCCCECCEE

END

END OF LISTING

RUN

STRING: A

RECHTSBUENDIGE AUSGABE: A
LINKSBUENDIGE AUSGABE: A
ZENTRIERTE AUSGABE: A

STRING: OLIVETTI P6868

RECHTSBUENDIGE RUSGABE: OLIVETTI PbB86B

LINKSBUENDIGE AUSGABE: OLIVETTI P6B6B

ZENTRIERTE AUSGABE: OLIVETTI P6868

STRING: CONRPUTERSYSTEN OLIVETTI P6868

RECHTSBUENDIGE AUSGABE: CONPUTERSYSTEN OLIVE

LINKSBUENDIGE AUSGABE: CONPUTERSYSTEN OLIVE

ZENTRIERTE AUSGABE: CONPUTERSYSTEN OLIVE

| RANDOMIZE |

ANWEISUNG RANDOMIZE

Funktion :

Format :

Bemerkung :

Beim Aufruf der Anweisung RANDOMIZE in Verbindung mit der Funktion RND

wird eine von der Standardfolge verschiedene Folge von Zufallszahlen erzeugt.

RAN [Dowize]

Nach dem Einschalten der Maschine wird bei der Erzeugung der Zufallszahlen

jeweils mit der gleichen Basiszahl begonnen.

Mit Hilfe von RANDOMIZE wird bei jedem Programmlauf eine andere Folge von

Zufallszahlen erzeugt.

Beispiel 1:

LIST

FILE

gBai16 REM *ERZEUGUNG UON ZUFALLSZAHLEN«

a32AR REM *MIT UND OHNE RANDOMIZE*

a833 REM

u848 FOR I=1 TO 28 STEP 1

RBa53B PRINT RND,

BAEBO NEXT I

0379 END

ENb OF LISTING

RUN

.63829324 . 41333398 . 37356805 33653157 +4507853
4.7279296E-82 .938707979 . 35457324 55742896 E27 105
4.7633357E-02 68675523 . 17611758 3.5848356E-02 SA7IEFIE
. 62662924 . 23834813 . 35254313 „72713255 oasaag5

RUN
„63523321 .41339398 . 937256885 .336493157 34507852
4.7273296E-82 .93707873 . 95457924 . 55712396 S132r7105
4.7632357E-82 .68675523 . 17611758 3.5848356E-A2 .SATIEIIE
67662924 . 533834913 .35254312 . 73719855 ‚raosaags

FUN
. 638293321 .41839396 . 97356304 .33643157 21507253
4.7279296E-82 .98707873 . 95457924 . 55713396 31327185
4.7693357E-B2 68675523 . 17611758 3.53343356E-082 .580296996
52662824 . 33334013 . 85254312 . 73719855 . 75aSaas5

Beispiel 2:

LIST

FILE

REM *ERZEUGUNG VON ZUFALLSZAHLEN*

REM *MIT UND OHNE RANDUOMTZE*

FEM

FRNDOMIZE

FÜR 1=1 TO 28 5STEP 1

Basa FRINT RND,

gaßbe NENT I

va7a END

a8 18

AaZR

aa38

34035

aan«+u

ENT OF LISTING
aa

nn

Do
ca

i
n

I
ry

m

Pe

cn

 M

3

sd

ac
ı

5

1
.

Z
a
c

W
e

in

il

cn

I
n

a
c
n

m I zZ Ind

RUM

.45923153 .3234815B .73981330 .92170342

4. 346E3396E-82 ‚1167724 . 16474361 4.3257438E-82

.23941342 . 37893782 1.858866 ?7’E-982 .92415374

. 2684356393 . 15637495 7.7 169896E-83 . 13172449

FUH

. Satz rag ‚24385646 . 14483391 .5327396934

SiI3rr7730 .21353162 35957285 .5399965537

. 65446233 . 33748557 .387532783 . 34 39+928

. 359845649 ‚ur4r344b .63348580 ‚51139501

FUN

„13125996 . 149755976 .+57803308 . 246931844

"015713724 ‚21337296 «894 17735 . 15263155

‚9596429 .4+052658 .92823354 .‚65734337

. a4 17a ‚1315537 .‚ 3494+351% .+41126932

a
a

o
n

i
d

Y
i
n

S$

I
p

c
a
i
n

a

G
h
)

"
1
0

MD

EN

i
n
t

o
a
)

R
a
n
g

ıc
n

F

ri

cc

M
i
d

T
r

c
u
p

in

in

—

=J

D
e

1
ca

can

r
u

F N
i
e

un

| READ

ANWEISUNG READ

Funktion:

Mit der READ_Anweisung können Werte aus dem internen File an Variable zu-

gewiesen werden.

Die Werte werden in einer Internen Tabelle mit Hilfe der Anweisung DATA gene.

riert (siehe Anweisung DATA).

Formät:

num. Var. num. Var.

RE AD ’

Stringvar. Stringvar.

Wirkung:

Es werden die Werte der Internen Tabelle der Reihe nach den Variablen in der

READ-Anweisung zugewiesen, wobei mit dem Lesen an der Stelle in der Tabelle

begonnen wird, auf die der Pointer zeigt (siehe Anweisung DATA).

Der Pointer kann mit der Anweisung RESTORE auf das 1. Element in der Tabelle

zurückgesetzt werden.

Bemerkung:

Den Indices von Feldern werden die Werte erst beim Aufruf innerhalb der READ_

Anweisung zugewiesen; es kann also eine Variable der READ_Anweisung als

Index eines Feldelementes der gleichen READ_-Anweisung verwendet werden. Die

Werte müssen in ihrem Typ mit den Variablen übereinstimmen (Zahlen oder String.

variable).

RE AD darf nur dann verwendet werden, wenn im Programm mindestens eine DATA_

Anweisung vorgekommen ist. Es dürfen nur soviele Variable in einer READ-An.-

weisung stehen, als noch Werte in der internen Tabelle frei sind.

Beispiele:

NEW
AUTO#

18 DATA1,2.54

20 RERDI.ACID

38 FPRINT"'I=";1,"ACOD)=";ACH
«6 END

RUN

I= 1 ACD)= r
J

Beispiel 2:

LIST

FILE

ga1ß DATA 1,2,3,4.5,6

ag26 FOR I=1 TO 18 STEP 1

ga39 READ &

B940 PRINT %

gaSsa NEXT I

nacHa END

ENDE OF LISTING

RLIN

I
T

h
a
l
r
i
n

m
 RÜR 38 IN LINE 38

8.100

| READ:

ANWEISUNG READ:

Funktion :

Format:

Wirkung :

Bemerkung :

Mit Hilfe dieser Anweisung kann man Variablen des Programmes Daten aus

einem externen File zuweisen.

num. Var. num. Var.

READ: Filedesignator, ; ... [eor Zeitennr.]

Stringvar. Stringvar.

"Filedesignator! : ist ein arithmetischer Ausdruck.

Der Wert des arithmetischen Ausdruckes wird berechnet und auf die nächste

ganze Zahl n gerundet. Diese Zahl n bezeichnet das File in der FILES-An-

weisung, dessen Elemente gelesen werden sollen. Der Lesevorgang beginnt

bei dem Element, auf das der Pointer des Files zeigt. ‘Nach dem Lesen weist

der Pointer auf das nächste Element des Datenfiles. Wird versucht, über das

Ende des Files hinaus zu lesen, erfolgt eine Fehlermeldung. Ist jedoch der

Parameter EOF Zeilennr. angegeben, wird das Programm beim Erreichen des

File-Endes, ohne daß eine Fehlermeldung erfolgt, bei der Zeile "Zeilennr. !"

fortgesetzt.

in einem Random-File kann vor der Anweisung READ: noch die Anweisung

SETW: stehen (siehe Anweisung SETW:), um den Pointer an die Stelle des

Files zu setzen, ab der die File-Elemente gelesen werden sollen. Fehlt die

Anweisung SETW: vor der ersten READ:-Anweisung, so beginnt das Lesen

beim ersten Wort des Files.

Textfiles können mit READ: wie sequentielle Datenfiles gelesen werden. Jede

Zeile des Textes entspricht einem String, in dem auch die (vierstellige) Zeilen-

nummer enthalten ist. Der Filedesignator muß größer als Null sein und kleiner

oder gleich der Anzahl der Filenamen in der FILES:-Anweisung. In einer

READ:-Anweisung kann eine Variable als Index eines darauffolgenden Feld-

elementes derselben READ:-Anweisung verwendet werden. Die vom File mit

den Variablen der READ:-Anweisung übereinstimmen,

8.101

Beispiele:

FILE

8818

8828

8838

8848
8858

8968

8878

9188

RERD1

FILES SFILE

DEL SA$

RESTORE :1

FOR I=1 TO 188 STEP 1
RERD .1,RA,R$

PRINT A$;N,

NEXT I

END

END OF LISTING

RUN

FILE 1 FILE 2

FILE 6 FILE 7

FILE 11 FILE 12

FILE 16 FILE 17

FILE 21 FILE 22
FILE 26 FILE 27

FILE 31 FILE 32

FILE 36 FILE 37

ERROR 84 IN LINE 58

FILE RERD2

satte FILES SFILE

80286 DCL @AN$

B6S@ RESTORE :1

0849 FOR 1=1 TO 188 STEP 1
e658 REAB :1,R,RA$ EOF 98
8866 PRINT A$;RA,

egfa NEXT I

sasg GETO 188

5599 FRINT
#168 END

FILE
FILE
FILE
FILE
FILE
FILE

FILE

FILE

4

3

"FILE-ENDE NACH", TI-1;: "WERTEPAAREN ERREICHT"

END OF LISTING

RUN

FILE

FILE

FILE

FILE
FILE
FILE
FILE

FILE

1

&

11

16
21
26
31
36

FILE

FILE

FILE

FILE

FILE
FILE
FILE
FILE

2

?

37 FILE 38

FILE-ENDE NACH 48 WERTEPAAREN ERREICHT

‚8.102

ANWEISUNG REMARK

Funktion :

Format :

Wirkung

Beispiel

| REMARK |

Mit REMARK können in ein Programm erläuternde Texte eingefügt werden.

REM [Ark] Kommentar

Kommentar! ist ein beliebiger Text.

REMARK ist eine nicht ausführbare Anweisung; der Kommentar erscheint im

Ausdruck (Listing), ist jedoch für die Programmausführung bedeutungslos.

FILE

8818
8828
8838
8848
8858

REN

Ken *#%* DIES IST EIN BEISPIEL FUER DIE ANWEISUNG *+#*

REN x+%* REN [CARKI +*%
REN

END

END OF LISTING

8.103

| RESTORE

ANWE ISUNG RESTORE

Funktion:

Mit dieser Anweisung wird der Pointer des internen Files auf das erste Element

des Files (d.h. auf das erste Element der DATA-Anweisung mit der niedrigsten

Zeilennummer) gesetzt.

Format:

RESTORE

Wirkung:

Der Pointer des internen Files wird auf die erste Stelle gesetzt.

Bemerkung:

Von zwei aufeinander folgenden RESTORE._ Anweisungen ohne I1/O Operationen

dazwischen, hat die zweite keinerlei Wirkung. Eine RESTORE.-Anweisung ohne

DATA ist wirkungslos.

Beispiel

FILE REST

a818 FOR I=1 TO 5 STEP 1
2826 RERD RA

8638 PRINT A,

8848 NEXT I

B85B FÜR K=1 TO 5 STEP 1
8668 READ B

8678 PRINT B,

6858 NEAT K

00398 PRINT

8188 RESTORE

5118 FOR I=1 TO 5 STEP 1
8128 RERD A

6138 PRINT A,

8148 NEXT I

8158 DATA 18,28,38,48, 56,68, 78, 88,98, 188
8168 END

END OF LISTING

RUN
18 20 38 46 58
58 7 | 86 38 188

18 28 38 48 58

8.105

ANWEISUNG

Funktion :

Format:

Wirkung :

Bemerkung :

Beispiel :

RESTORE:

RESTORE:

Mit dieser Anweisung wird der Pointer eines externen Text- oder sequentiellen

Datenfiles auf das erste Element im File positioniert und das File für Lese-

operationen geöffnet.

RESTORE: Filedesignator

NFiledesignator! ist ein arithmetischer Ausdruck.

Der Wert des arithmetischen Ausdrucks wiıra berechnet und auf die nächste

ganze Zahl n gerundet.

Der Pointer des Files, das durch den Filedesignator n bestimmt ist, wird

auf die I. Stelle gesetzt.

Ein sequentielles Daten- oder Textfile ist nach der Anweisung RESTORE:

im Lese-Modus. Bei einem Random-File bewirkt diese Anweisung, daß der

Pointer auf das 1. Wort gesetzt wird. Anschließend kann sowohl gelesen

als auch geschrieben werden.

FILE RESTOR

8818 FILES SFILE
8828 RESTORE :1
8838 FOR I=1 TO 18 STEP 1
8848 RERD :1,A
8858 PRINT A,
8868 NEXT I
8878 PRINT
8688 RESTORE :1
8898 FOR K=1 TO 5 STEP 4
8188 READ :1,8
8118 PRINT B,
8128 NEXT K
8138 END

END OF LISTING

RUN

+8

°e .e 80 98 198
18 28 38 48 er

8.107

RETURN

ANWE SUNG RETURN

Funktion:

RETURN bildet das logische und physische Ende eines Unterprogrammes und

bewirkt einen Rücksprung in die Programmzeile, die unmittelbar auf GO SUB

oder ON,... GO SUB folgt.

Format:

RE TURN

Wirkung:

Siehe Anweisungen GO SUB und ON..GO SUB

8.109

RKB

ANWE ISUNG RKB (Read Keyboard)

Funktion:

Diese Anweisung ermöglicht die Eingabe beliebiger Zeichen (einschließlich aller

Sonderzeichen, wie z.B. Komma (,) und Anführungszeichen (")) über die Tastatur

und ihre Zuweisung an eine Stringvariable.

Format:

RKB Stringvariable

"Stringvariable!' ist eine einfache oder Indizierte Variable.

Wirkung:

Die Ausführung des Programmes wird unterbrochen und im Display erscheint ein

Fragezeichen !!?!!, Die eingegebene Zeichenfolge wird der Stringvariablen zuge-

wiesen.

Bemerkung:

RKB ist die einzige Anweisung mit der man auch das Anführungszeichen (!!) einer

Stringvariable zuweisen kann.

Beispiel:

FILE RKB

8818 DISP "INPUT STRING";
8828 INPUT RA$

4838 DISP "RKB STRING";
8848 RKB B$

B8u58 FRINT "INPUT :","’"aHpnsHt
9668 PRINT '"RKB zB
86878 PRINT

u88B GOTO 18

8898 END

END OF LISTING

RUN

INPUT STRING?

A:B

TOO MUCH INPUT-EXCESS IGNORED
RKB STRING?

A.B

INPUT :’R’

RKB -’RA,B’

INPUT STRING?
"Q, B"

RKB STRING?
. "Q, B"

INPUT :’A,B’
RKB ‚run,B"’

INPUT STRING?
A

RKB STRING?
A

INPUT :’A
RKB ® A sm

SCRATCH:

ANWEISUNG SCRATCH:

Die Anweisung ermöglicht das Schreiben auf ein externes, sequentielles Funktion :

Datenfile ab dem ersten Element.

Format : SCRATCH: Filedesignator

NFjledesignator" ist ein arithmetischer Ausdruck

Wirkung : Der Wert des arithmetischen Ausdruckes wird berechnet und auf die nächste

ganze Zahl n gerundet.

Der Pointer des Files mit dem Filedesignator n wird an den Anfang des Files

gesetzt. Mit WRITE: können nun die Daten sequentiell auf das externe File

geschrieben werden.

Bemerkung : Der Filedesignator muß eine Zahl größer als Null und kleiner oder gleich der

Anzahl der Filenamen in der FILES-Anweisung sein.

Die SCRATCH:-Anweisung darf nur auf sequentielle Datenfiles angewendet

werden.

Beispiel: FILE SCRAT

8818 FILES SFILE
8828 SCRATECH 4
8838 FOR I=1 TO 18 STEP 14
8848 WRITE :1,1I
88586 NEXT I

8868 SCRATCH :1
8878 FOR K=18 TO 188 STEP 18
8888 WRITE :1,K

8898 NEXT K
8188 PRINT "ENDE DES SCHREIBENS"
8118 END

END OF LISTING

RUN

ENDE DES SCHREIBENS

EXEC FLP,SFILE

18 28 38 +8 8 68 re 88 98 188

8.113

ANWEISUNG SETW: (Set Word)

Funktion :

Format :

Wirkung :

Bemerkung :

Mit dieser Anweisung kann der Pointer eines Random Files auf ein beliebiges

Wort im File gesetzt werden.

SETW Filedesignator TO Wortdesignator

tFjledesignator"! ist ein arithmetischer Ausdruck

ıWortdesignator"!" ist ein arithmetischer Ausdruck

Die Ergebnisse der arithmetischen Ausdrücke werden auf die nächste ganze

Zahl gerundet : n ist der Filedesignator und m der Wortdesignator.

Der Pointer des Files mit dem Filedesignator n wird auf das m-te Wort

(4 Byte-Worte) im File positioniert.

Das File mit dem Designator n muß den Typ Random haben. Nach der Anwei-

sung SETW: können Daten auf das File geschrieben (WRITE:) oder Daten vom

File gelesen (READ:) werden.

Der Filedesignator n muß eine ganze Zahl größer als Null und kleiner oder

gleich der Anzahl der Filenamen in der FILES-Anweisung sein.

Der Wortdesignator m muß ganzzahlig, größer als Null und (von 4 Byte-Worten

ausgehend) kleiner oder gieich der Anzahl der maximal zu speichernden Worte

sein (siehe Kapitel 5.4.2 Erstellen von Datenfiles).

8.115

Beisviel : FILE

8818

88628

8838

8848
9858
8868

8878

8488
8838

8188

8118

8128

8138

8148
8158

8168

FILE

DCL

SETW

FOR
LET
WRIT

NEXT

DISP
INPU

IFA

IFA

SETW

READ

PRIN

SET

S RFILE

SINGLE

:3 TO 1
1=1 TO 188 STEP 1
X=INT LIB8«RND+1)

E :1,X

I

“"POINTER AUF WORT";
TR

<1 THEN 88

>188 THEN 88

170 A

-3,B

T "AUF WORT";R:;"STEHT DIE ZAHL';B
GOTO 88
END

END OF LISTING

RUN

AUF
AUF
AUF
AUF
AUF
AUF
AUF
nur
AUF
AUF

WORT
WORT
WORT
WORT
WORT
WORT
WORT
WORT
WORT
JORT

1 STEHT DIE ZAHL 64
188 STEHT DIE ZAHL 53
87.5 STEHT DIE ZAHL 188
88 STEHT DIE ZAHL 188
88.2 STEHT DIE ZAHL 1088
37 STEHT DIE ZAHL 9
3.993939 STEHT DIE ZAHL 89
4 STEHT DIE ZAHL 89
3.493999 STEHT DIE ZAHL 98
3 STEHT DIE ZAHL 98

8.116

ANWEISUNG

Funktion :

Format :

Wirkung :

Bemerkung :

Beispiel :

| stop

STOP

Mit dieser Anweisung kann die Ausführung des Programmes unterbrochen

werden.

STOP

Die Ausführung des Programmes wird unterbrochen. Auf dem Display er-

scheint die Meldung "STOP IN LINE Zeilennummer! wobei !"Zeilennummer!''

die Nummer der Zeile mit der STOP-Anweisung angibt.

Das System geht in den DEBUGGING-Mode über (siehe Kapitel 10).

STOP darf nicht in einer mehrzeiligen Funktion vorkommen. Die Ausführung

des Programmes kann mit CONTINUE oder START Zeilennummer fortgesetzt

werden, oder durch Drücken der Taste STEP Anweisung für Anweisung abge-

arbeitet werden.

Die Meldung "'STOP IN LINE Zeilennummer!' kann unterdrückt werden, wenn

zuvor eine DISP-Anweisung steht, die mit Strichpunkt (;) abgeschlossen wurde.

FILE sTOor

8818 FOR 1=1 TO 18 STEP 1
8828 LET ACII=INTLEIO=RND+1)
8838 NEXT I

8848 5TOP

8658 DISP "ABFRAGE DER WERTE";
8868 STOP

8876 END

END OF LISTING

RUN

STOF IN LINE 48
A(5)

3

AL3)

18

RBFRAGE DER WERTE
A(6)

1

AC18)

93

8.117

| TRACE OFF

ANWE ISUNG TRACE OFF

Funktion:

Mit Hilfe dieser Anwelsung kann man die Wirkung von TRACE ON aufheben.

Format:

TRACE OFF

Wirkung:

Es werden die Nummern der ausgeführten Programmzellen nicht mehr gedruckt

(die Gültigkelt von TRACE ON wird aufgehoben).

Zemerkung:

Fehlt TRACE OFF, werden die Zellennummern solange gedruckt, bis die

END_- Anweisung erreicht wird. Die Anweisung TRACE OFF hebt auch die

Wirkung der Konsoltaste TRACE auf.

Beispiel:

FILE OFF

8818 TRACE ON

8828 DCEL SINGLE

8838 DIM AC25)

8848 DEF FNACK)

8858 LET FN#=X#X
8868 FNEND

8878 FOR I=1 TO 3 STEP 1
8888 PRINT FNACIH,

8898 NEXT I

8188 PRINT

8118 TRACE OFF

8128 GOSUB 148

8138 GOTO 198

8148 FOR K=18 TO 38 STEP 18
6158 PRINT FNACKI,

8168 NEAT K

8178 PRINT

8168 RETURN

8198 END

END OF LISTING

RUN

478

#498

#98

#38

#98
#39

#98

#188

#118

188 488 988

8.119

| TRACE ON |

ANWEISUNG TRACE ON

Funktion : Ausdruck der Zeilennummern während eines Programmlaufs.

Format: TRACE ON

Wirkung : Die Zeilennummer der jeweils ausgeführten Anweisung wird ausgedruckt.

Ausnahme : nicht ausführbare Anweisungen. (REMARK, DCL, DIM, DEF FN

etc.) und die Anweisung TRACE ON.

Der Ausdruck der Zeilennummern erfolgt zwischen den programmgesteuerten

Ausgaben.

Bemerkung : Die Anweisung TRACE ON hat dieselbe Wirkung wie die entsprechende Kon-

soltaste. Die Wirkung wird aufgehoben durch die Anweisung TRACE OFF

oder durch Drücken der erleuchteten Konsoltaste TRACE.

8.121la

FILE ON
Beispiel:

8818 TRACE ON

ea28 DCEL SINGLE

8838 DIM AC25)I

848 DEF FNACK)I

0858 LET FNr=Xx%

8868 FNEND

4978 FOR I=1 TO 3 STEP 1

8888 PRINT FNACTD),
8898 NEXT I

8188 PRINT

8118 GOSUB 138

8128 GOTO 188

2138 FOR K=18 TO 38 STEP 18
8148 PRINT FNACKI,

8158 NEXT K

8168 PRINT

8178 RETURN

8186 END

END OF LISTING

RUN

#70

#38

#96

#88

#98

#88

#938

#188

1
#118

#138

#18

#158

#148

#158

#148

#158

#168

188 488 388
#178

#128

#138

8.121b

WHERE:

ANWEISUNG WHERE:

Funktion :

Format :

Wirkung :

In einem externen Datenfile können die Positionen des Pointers, der Typ des

adressierten Datenelementes und gegebenenfalls die Länge des adressierten

Strings abgefragt werden.

WHERE: Flledesignator, N, ng Hz

NFiledesignator!! ist ein arithmetischer Ausdruck.

n sind numerische Variable.
NN

- Der Wert des arithmetischen Ausdrucks wird berechnet und auf die

nächste ganze Zahl gerundet. Diese Zahl bezeichnet das externe Daten-

file, dessen Pointerposition abgefragt werden soll.

- Der Variablen n, wird die Position des Pointers zugewiesen.

- Der Variablen n wird ein Wert zugewiesen, der Aufschluß über den Da-

tentyp des adressierten Datenelementes gibt.

N, kann folgende Werte annehmen :

Wert vonn Bedeutung

2

d Der Pointer zeigt auf ein nicht identifizierbares

Wort.

1 Der Pointer weist entweder :

. auf eine einfach genaue numerische Variable oder

. auf das zweite Wort einer doppelt genauen nume-

rischen Variablen oder

. aufein Wort innerhalb eines Strings (d.h. nicht

auf das Kontrollwort).

2 Der Pointer zeigt auf das erste Wort einer doppelt

genauen numerischen Variablen.

3 Der Pointer weist auf das Kontroliwort eines Strings,

4 Die End - of - file - Marke ist erreicht.

5 Der Pointer weist auf eine nicht initialisierte einfach

genaue numerische Variable.

8. 122a

Wert von N. Bedeutung

6

Der Pointer zeigt auf das erste Wort einer nicht ini-

tialisierten doppelt genauen numerischen Variablen.

Der Pointer zeigt auf das Kontrollwort eines nicht

initialisierten Strings.

Wenn der Pointer auf den Anfang eines alphanumerischen Datenelementes

3
weist (n, = 3), wird der Variablen n, die Anzahl der Zeichen des Strings

zugewiesen, andernfalls ist n,= p.

Bemerkung : Die Variablen N und N, können nur dann spezifiziert werden, wenn sich das

externe Datenfile im Lesemodus befindet.

8. 122b

Beispiel : Ausdruck eines externen Datenfiles (anstelle des Dienstprogramms FLP).

FILE

01894
Br1ua

A1ZU

413%

Bid

4158

Bitsd

a1ra

aısd

9198

3250

az 1a

n12780

4238

3240

az7Sua

AZbR

W
e

B
E
E

E
D

E
A

SS

A

AG
RM

U

E
G

a
l
a

W
I
R
)

N
d
s

G
i

lM
Nn

eE
n
B
o
l
t
o
n

d
a
d

Ti
iu
n

Fr

I
R

D
I
E

A

SE

I

A

RR

EI

I

I

SD

a

I

n
n

B
S
H

un

Z
i

as28

8538

FLP

REM *** AUSCRUCK EINES FILES NIT HILFE DES STATEMENTS ’WHERE’ Ka

FILES FILE1M

bDEL SCHI, 18Z3xX$

LET P=1
FRINT "Wort - Nr.",'"Typ7Laenge",'"iInhalt‘“

PRINT

FRINT

SETW :1 TO P
REM ak ae ste ae abe ar ale ae ade ade af ab age age ade af a ar ae ae af abc ae a al ar aa al ae ae a ae ae ara aaa ae ake ae ae ar ea area ae ae ae ae

WHERE : 1:R,B,C

REM H=WÜRT-NE. B=CATENTYP [C=LRENGE DES STRINGS]
FREE > ale ak alk ak abe ale fe ae ade abe ad alle ac fe af ir af all af al a ke a. a af are ea aa ae aa af ae al ae af a ae a ae a air a a af ae ae ae ae ae ae oe ale

IF B;>a THEN 278

REM B=&8 »= NICHT ANFANG EINES DATENELEMENTES aa ade abe ade abe ade ste abe ale ale ar ae age abe abe ade ade ade ade abe ae pc abe ae
PRINT ‚„‚'" Foıinter innerhalb eines Datenelementes'

LET F=F+1

GOTO 198

IF B>1 THEN 338

REM E=1 > EINFACH GENRUE NUMERISCHE VARIABLE ae abe abe abe abe abe abe abe ale ae abe ale ale fe ade abe ale abe abe ade age ae abe ode
REARD :1,%

FRINT nA." ='.x%

LET P=F+1l

GOTO 198

IF B>5Z THEN 398

REM E=Z2 > DOPPELT GENRUE NUMERISCHE VARIABLE 66 ale abe ae nie als ale abe ads abe abe abe ae abe fr ar ee ae ae abe ae ae ae ae
RERDG :1,Y

PRINT AR." D".Y

LET F=P+2

,0OTO 1938

IF 6>3 THEN 458

REM BE=3 > STRING DER LHENGE Ü 3a air al ale ahe sic ahe ahead abe a ade ade ae abc ade ale af af ae abe ae aa he ae ae are se ae ap ae a ae ae ah ae

EEHRL :1,%%

FRIHT A.C." NPIS$

LET F=F+1NTILC-1174+2)

GLTO 196

ir E74 THEN Sea

REM E=4 > FILE - ENDE ERREICHT ae ieate rate ale age ade age abe ale abe abc ahead abe ade ade sah are she a ae ad abe ae az ac ae

FRINT "FILE - ENDE ERREICHT"

GOTO 538

REM E:4 > WORT NICHT BESCHRIEBEN 3 ak ae abe ale abc abe ae abc ale age ae abe age af af abe ae af ae le ah al af ah ah ae lie a ae ae ae a ade ac ar af

FRINT A..." nıcht beschrieben!

LET P=FP+1

GOTO 178

END

END OF LISTING

8. 122c

Wort - Nr. TypsrLaenge

1 Ss

2 5

3 5

4 D

& D

8 D

18 D

12

13

14

15 8

18 5

2 12

25 5

26. D

28 5

29 D

31 4

FILE - ENDE ERREICHT

Inhalt

64

42

98

45

11

3

58
nicht beschrieben

nicht beschrieben

nicht beschrieben

OLIVETTI

P6868

*+% TEST *k%*

10

6.5713896

9

1.4769336

ENDE

8. 122d

ANWEISUNG WRITE:

Funktion :

Format :

Wirkung :

Bemerkung :

Mit WRITE: werden Daten auf ein externes File geschrieben.

num. Ausdr.

WRITE: Filedesignator,

Stringausdr.

num. Ausdr.

... [Eor Zeitennr.]

Stringausdr.

NFiledesignator'' ist ein arithmetischer Ausdruck

Der Wert des arithmetischen Ausdrucks wird berechnet und auf die nächste

ganze Zahl n gerundet. Diese Zahl n bezeichnet das File in der FILES-An-

weisung, in das geschrieben werden soll. Der Schreibvorgang beginnt bei

dem Element, auf das der Pointer des Files zeigt. Nach dem Schreiben weist

der Pointer auf das nächste Element des Datenfiles. Wird versucht, über das

Ende eines Files hinaus zu schreiben, erfolgt eine Fehlermeldung. Ist jedoch

der Parameter EOF Zeilennummer angegeben, wird das Programm beim Er-

reichen des File-Endes ohne daß eine Fehlermeldung erfolgt bei der Zeile

ı Zeilennr.!" fortgesetzt.

Ist bei einem Random-File WRITE: die erste Anweisung (ohne eine vorherige

SETW:-Anweisung), oder folgt WRITE: auf eine FILE:- oder RESTORE:-

Anweisung, so wird mit dem Schreiben beim ersten Wort des Files begonnen.

Ein numerischer Ausdruck wird immer in doppelter Genauigkeit geschrieben,

auch wenn für die Variablen einfache Genauigkeit vereinbart wurde :

Bdıg DCL SINGLE

dıdd WRITE: 1,2# x

Der Wert 2 # X wird doppelt genau

in das File geschrieben.

ddıdg DCL SINGLE

dd vV=2%#xX

glıg WRITE: 1, Y

Der Wert Y=2 %& X wird einfach

genau in das File geschrieben.

8.123

Beispiel : FILE WRITEA

8818 FILES SFILE
8828 DCEL 4N$
8838 LET A$S="FILE”
8848 SCRATCH :1
8858 FOR I=1 TO 188 STEP 1
8868 WRITE :1,1,A$
80878 NEXT I
8888 END

END OF LISTING

RUN
ERROR 84 IN LINE 68

FILE WRITE2

8818 FILES SFILE
8828 DCL 4R$
8838 LET A$="FILE"
8848 SCRATCH :1
8858 FOR I=1 TO 188 STEP 1
8868 WRITE :1,1,n$ EOF 98
8878 NEXT I
8888 GOTO 188
8898 PRINT "FILE-ENDE NACH"; I-1; "WERTEPAAREN ERREICHT“
8188 END

END OF LISTING

RUN
FILE-ENDE NACH 48 WERTEPRAREN ERREICHT

8.124

DIE ANWEISUNGEN DER OPTION MAT (Matrix)

Die im folgenden angegebenen Anweisungen können nur ausgeführt werden,

wenn das System mit der Option MAT initialisiert wurde (außer MAT INPUT).

Die Anweisungen erlauben alle Matrix-Operationen mit numerischen Matrizen

(zweidimensionalen numerischen Feldern) und Ein- /Ausgabe-Operationen für

numerische und alphanumerische Matrizen (zweidimensionale alphanumerische

Felder).

Man unterscheidet zwischen den deklarierten und den aktuellen Dimensionen

einer Matrix. Die deklarierten Dimensionen werden in einer DIM-Anweisung

festgelegt oder, falls diese fehlt, mit den Dimensionen 10 x 10 (10 Zeilen und

10 Spalten) für numerische Matrizen und 5 x 5 für alphanumerische Matrizen

angenommen. Die aktuellen Dimensionen einer Matrix können bei bestimmten

Operationen verändert werden, sie sind immer kleiner oder gleich den dekla-

rierten Dimensionen.

8.125

ANWEISUNG

Funktion :

Format:

Wirkung :

Bemerkung :

Beispiel :

MAT...= (Matrix Zuweisung)

MAT ... =

Es werden die Elemente einer Matrix den Elementen einer anderen Matrix

zugewiesen.

MAT Matrix = Matrix

Die Werte aller Elemente der Matrix auf der rechten Seite des Gleichheits-

zeichens werden den korrespondierenden Elementen der Matrix auf der linken

Seite zugewiesen.

Die deklarierten Dimensionen der Matrix auf der linken Seite des Gleichheits-

zeichens müssen größer oder gleich den aktuellen Dimensionen der rechten

Matrix sein.

FILE

8818

08928
89838
8848

08858

80868

8878

89388

80898

2188

8118

8128

8138

8148

Dim

FOR
FOR
LET

MAT

nA(8,8)
1=1 TO 8 STEP 1
K=1 TO 8 STEP 1
ACI,KJI=18*I+K

NEXT K

NEXT I

PRINT

PRINT

MAT B=R

PRINT

PRINT

END

"MATRIX A

NAT PRINT AR;

"MATRIX B

MAT PRINT B;

END OF LISTING

RUN
MATRIX A
1112
21 22
31 32
41 42
51 52
61 62
71 72
81 82

MATRIX B
11 12
21 22
31 32
41 42
51 52
61 62
1 72
81 82

13
23
33
43
33
63
23
83

13
23
33
43
53
63
73
83

14
24
34
44

64
74
84

14
24
34
44
54
64
74
84

15
25
35
45
55
65
5
85

15
25
35
45
33
65
75
85

- 8
.

16
26
36
46
56
66
[4:)
86

16
26
36
46
S6
66
?6
86

17
27
37
47
57
67
v7
87

17
27
37
47
5?
67
v7
87

18
28
38
48
38
68
v8
88

18
28
38
48
38
68
?8
38

8.127

MAT ... +

ANWEISUNG MAT ... + (Matrix Addition/Subtraktion)

Funktion:

Diese Anweisung ermöglicht die Addition bzw. die Subtraktion der Elemente zweier

Matrizen; die Ergebnisse können einer dritten Matrix zugewiesen werden.

Format:

+

MAT Matrix = Matrix{ * }Matrix

Wirkung:

Es werden die Werte der korrespondierenden Elemente der beiden Matrizen rechts

vom Gleichheitszeichen addiert bzw. subtrahlert und die Ergebnisse dieser Opera.

tion der Matrix links vom Glelichheitszeichen zugewiesen. Diese Matrix auf der lin.

ken Seite nimmt die aktuellen Dimensionen der beiden rechten Matrizen an.

Bemerkung:

Die Matrizen auf der rechten Seite des Gleichheitszeichens müssen die selben aktuel-

len Dimensionen haben. Die deklarierten Dimensionen der Matrix auf der linken Seite

des Gleichheitszeichens müssen größer oder gleich den aktuellen Dimensionen der

beiden rechten Matrizen sein.

Die Ergebnismatrix kann auch als Operand auf der rechten Seite an der Stelle eines

oder auch beider Operanden stehen.

Beispiel:

FILE MAT2 RUN

| MATRIX RA:
_ _ 12 274 aa18 DIM AC3,4),B(3,4),C(3,%4) 23335

8828 DISP "MATRIX A";
8838 MAT INPUT A 344 3
B648 DISP "MATRIX B";
Ge58 MAT INPUT B MATRIX B :
8868 PRINT "MATRIX A :" 2 171 2
8878 MAT PRINT PR; 3 2273
8836 PRINT 4 3073 4
89898 PRINT "MATRIX B :"
8186 MAT PRINT B; MATRIX C = MATRIX A + MATRIX 8

8118 PRINT 33373
8128 MAT C=A+B s 5355
@138 PRINT "MATRIX C = MATRIX A + MATRIX B :" er
8148 MAT PRINT GC;
8158 PRINT MATRIX C = MATRIX C - HATRIX A
8168 MAT C=Cc-A 21712
8178 PRINT "MATRIX C = MATRIX C - MATRIX A :" 3 2 2 3
G18@ MAT PRINT GC; 4373 4
8198 PRINT
8288 END

END OF LISTING

8.129

MAT...*
(scalar multip)

ANWE ISUNG MAT ... Skalar * (Skalare Multiplikation)

Funktion:

Die Werte aller Elemente einer Matrix werden mit dem Ergebnis eines arithmetischen

Ausdruckes multipliziert und die Ergebnisse den korrespondierenden Elementen der

Matrix auf der linken Seite des Gleichheltszeichens zugewiesen.

Die Matrix auf der linken Seite nimmt die aktuellen Dimensionen der rechten Matrix

an.

Format:

MAT Matrix = (num. Ausdruck) * Matrix

Bemerkung:

Die deklarierten Dimenslonen der Matrix Iinks vom Gleichheitszeichen müssen

größer oder gleich den aktuellen Dimensionen der Matrix rechts vom Gleichheits-

zeichen sein. Die angegebene Matrix auf der linken Seite des Gleichheitszeichens

kann auch ais Operand auf der rechten Seite auftreten.

Beispiel:

FILE HMATS3

8818 DIN ACS5,33,B(5,3)
8828 DISP "NATRIX AR";
8838 MAT INPUT A
8648 DISP '"FAKTOR X";
8858 INPUT X
8868 MAT B=CX)I«A
8878 PRINT "NATRIX A :"
88868 MAT PRINT AR;
8838 PRINT

8188 PRINT "MATRIX B = C";5%5'") * MATRIX A :"
6118 MAT PRINT B;
6128 PRINT

8138 END

END OF LISTING

RUN
MATRIX A

18 28 38
28 38 18
38 18 28

18 286 38

28 38 18

MATRIX B= C 3) * MATRIX A
38 68 98
68 98 38
98 398 68
38 68 98
6bB 98 38

8.131

ANWEISUNG MAT... (Matrix Multiplikation)

Funktion :

Format:

Wirkung :

Bemerkung :

Mit dieser Anweisung kann eine Matrizenmultiplikation durchgeführt werden

(Zeilen x Spalten); das Ergebnis wird einer dritten Matrix zugewiesen.

MAT Matrix = Matrix # Matrix

Die beiden Matrizen auf der rechten Seite des Gleichheitszeichens werden

nach den Regeln der Matrizenmultiplikation multipliziert. Voraussetzung ist,

daß die Anzahl der Spalten der linken Matrix gleich der Anzahl der Zeilen der

rechten Matrix ist.

Wird eine Matrix A mit den aktuellen Dimensionen (p, m) mit einer Matrix B

mit den Dimensionen (m, n) multipliziert, so erhält man eine Ergebnismatrix C

mit den Dimensionen (p, n) für die gilt :

i=1,2,..., pP

j=1,2,...,n

m
= M c, . > a, bb.

1, J K=] i,k k,J

Die Ergebnismatrix darf nicht _ als Operand auf der rechten Seite des Gleich-

heitszeichens stehen.

Die deklarierten Dimensionen der Matrix auf der linken Seite des Gleichheits-

zeichens müssen größer oder gleich der Anzahl der Zeilen der ersten Matrix,

auf der rechten Seite und der Anzahl der Spalten der zweiten Matrix sein.

8.133

Beispiel : FILE

8818
8828

8838

8848

8858

8868

8878

8888

8898

8188

8118

8128

8138

8148
8158
8168

8178
8188

8198

8288

NAT

DIN AC2,2,8(3,23,C(2,2),D(3,3)
DISP "NATRIX A",

NAT INPUT A

DISP "NATRIX BB";

NAT INPUT B

NAT C=n=B

NAT D=B*+RA

PRINT "NATRIX A :"”

MAT PRINT R;

PRINT |

PRINT "NATRIX B :"

MAT FRINT B;

PRINT

PRINT "NATRIX C
MAT PRINT C,

PRINT

PRINT 'nATRIX D = NATRIX B = HATRIX A :"
MAT PRINT D;

PRINT

END

NHATRIX A = MATRIX B :"

END OF LISTING

RUN

NATRIX R

24 6

6 4 2

MATRIX B

eb 4

2 2
4 6

MATRIX C = MATRIX A = MATRIX B
44
52

52
44

HATRIX D = MATRIX B * MATRIX A
36 48 44
16 16 16
44 48 36

8.134

ANWEISUNG MAT...

Funktion :

Format :

Wirkung :

Bemerkung :

Beispiel :

| MAT... CON

CON (einer Matrix)

Jedem Element einer Matrix wird der Wert 1 zugewiesen.

MAT Matrix = CON (num, Ausdr. , num. Ausdr.)

Jedem Element der numerischen Matrix links vom Gleichheitszeichen wird

der Wert I zugewiesen.

Falls Parameter angegeben sind, werden die beiden num. Ausdrücke be-

rechnet und auf die nächste ganze Zahl gerundet; diese beiden Zahlen be-

stimmen die aktuellen Dimensionen der Matrix.

Die deklarierten Dimensionen der Matrix links vom Gleichheitszeichen

müssen größer oder gleich den aktuellen Dimensionen, die sich aus den

num. Ausdrücken ergeben, Sein.

FILE

6818

8028

aa38
89438

8858

6968

EB78
2030

8638

9108

END

RUN

NHTR
1

ii

m
c

re

e
e

u

u

e
e

n
a

u

u

u

u

u

MATS

bIM ALS3,8)

MAT A=CON
PRINT "MATRIX A CDIMENSIONEN 8 x 8) :“
MAT PRINT RA;
FRINT

MAT A=CON(S,S3

PRINT "NATRIX A CDINENSIONEN 5 x 3) :""
HAT PRINT A;
PRINT
END

OF LISTING

IX A (DINENSIONEN 8 x 9)
ia aa ad

ıı 10103104
ıı 1 1 1 4
ııı 109104
ıı 1 10174
ı1ı 1 101 [4
111 10174
11 1 313 174

IX A CDINENSIONEN 5 x 3)
101
1A
10 4
104

4a

8.135

 MAT ... IDN
ANWE ISUNG MAT ... IDN (Einheitsmatrix)

Funktion:

Eine quadratische Matrix erhält die Werte der Einheltsmatrix.

Format:

MAT Matrix = IDN [(num. Ausdr., num, Ausdr.)]

Wirkung:

Den Elementen der Hauptdiagonale wird der Wert I zugewiesen, alle anderen Elemente

der quadratischen Matrix werden mit Null belegt. Falls als Parameter angegeben, werden

die num. Ausdrücke berechnet und die Ergebnisse gerundet; diese ganzen Zahlen legen die

aktuellen Dimensionen der quadratischen Matrix fest.

Bemerkung:

D’e Ergebnisse der beiden num, Ausdrücke müssen gleich und größer als Null sein.

Die deklarierten Dimensionen der quadratischen Matrix müssen größer oder gleich den

ganzen Zahlen, die sich aus den arithmetischen Ausdrücken ergeben, sein.

Beispiel:

FILE

8618

8828

5938
4948
0358

0868

0878
0038

56998

5188

ENE

RUN

MHATR
1

De

MHATR
1

E
S
S

0

I
8

G
R
A
S

OS
—

I

S
S
 a.

©

MATE

DIM A(?,”7)

HAT A=IDN
PRINT "MATRIX A CDINENSIONEN 7 x a): "
HART PRINT RA;
PRINT

HAT A=IDNCS,5)
PRINT "MATRIX A CDIMENSIONEN Sx 5) :"
HART PRINT AR;
PRINT

END

F LISTING

x A (DINENSIONEN 7 x 7)
8 68 8 8

088868 98

ı1e8 808

01%8 8 8

8816 8
688 ı 8

88 8 14

“* A CDINENSIONEN 5 x 5)
9886 8

868 8

18 6

8108

ee 1

8.137

| MAT INPUT

ANWEISUNG MAT INPUT (Matrix Input)

Funktion :

Format :

Wirkung :

Bemerkung :

Diese Anweisung erlaubt eine Zuweisung von Werten an die Elemente einer

Matrix über die Tastatur.

MAT INPUT Feld (num. Ausdr., num, Ausar.)]

Die Programmausführung wird unterbrochen und auf dem Display erscheint

ein Fragezeichen (?). Die Elemente werden nun zeilenweise durch Komma

getrennt eingegeben.

Nach Ende der Eingabe aller Werte über die Tastatur muß die Taste EOL

gedrückt werden. Werden nicht alle Elemente der Matrix mit Werten belegt,

so erscheinen auf dem Display zwei Fragezeichen und das System wartet auf

die restliche Eingabe. Sind alle Elemente belegt, wird mit der Ausführung

des Programmes fortgesetzt.

Werden die Parameter angegeben, so werden die num. Ausdrücke berechnet

und die Ergebnisse gerundet; die ganzen Zahlen bestimmen die aktuellen

Dimensionen der Matrix und legen somit die Anzahl der einzugebenden Werte

fest.

Die Eingabewerte müssen entsprechend dem Typ der Matrix numerisch oder

alphanumerisch sein.

Die Anzahl der Eingabewerte muß gleich sein der Anzahl der Matrixelemente

oder gleich dem Produkt der ganzen Zahlen sein, die sich aus den num. Aus-

drücken ergeben.

Strings müssen in Arführungszeichen stehen, wenn sie ein Komma oder Leer-

zeichen am Anfang oder Ende enthalten.

8.139

Beispiel

FILE MAT?

8818 DIM ACS,5)3,BC15, 123,RA$(5,53,B$(8,9)
8828 DISF "MATRIX AR";

8838 MAT INPUT A

8848 DISP "NATRIX B';

8858 MAT INPUT B(C5,3)

8868 DISP '"'NATRIX AS",

8878 MAT INPUT A$

8888 DISP "NATRIX B$",

889398 MAT INPUT B$C2,5)
8188 PRINT "MATRIX A (DINENSIONEN 5 x 5) :"

8118 MAT PRINT R

8128 PRINT

8138 PRINT "MATRIX B CDINENSIONEN 5 x 3 :"
8148 MAT PRINT B;

8158 PRINT

8168 PRINT "NATRIX A$ CDINENSIONEN 5 x 5 :"
Be17’8 MAT PRINT RS,

8188 PRINT

8138 PRINT "MATRIX B$ CDIMENSIONEN 2 x 59 :"
8288 MAT PRINT B$,

BZ18 PRINT

8228 END

END OF LISTING

RUN

MATRIS A {DIMENSIONEN 5 x 5)
ae 8 182 08

618 1 08

18 1608 1

18a 18

66 1319 8

MATRIX B CDIMENSIONEN 5 x 3)
11 i2 13

21 22 23

31 32 33

“1 “2 43

s1 52 53

MATRIX A$ CDIMENSIONEN 5 x 5)
-— -B--—

-B-I-

B-B-BN
-B-B-

- —-B--

MATRIX B$ (DIMENSIONEN 2 x 5) :
HEUTE IST DAS WETTER SCHOEN
HEFR LEHRER WIR WOLLEN SPAZIERENGEHN

8.140

| MAT ... INV
 “

ANWE ISUNG MAT ... INV (Inverse Matrix)

Funktion:

Von einer Matrix wird die inverse Matrix gebildet.

Format:

MAT Matrix = INV (Matrix)

Wirkung:

Es wird die Inverse der Matrix rechts vom Gleichheitszeichen gebildet; die Werte der

inversen Matrix werden in der entsprechenden Reihenfolge den Elementen der Matrix

links vom Gleichheitszeichen zugewiesen. Ist M eine quadratische Matrix und N

die dazugehörige inverse Matrix so gilt:

MN = N*M = I

I = die Einheitsmatrix

Nicht zu jeder Matrix existiert eine inverse Matrix, Ist die Determinate einer Matrix

gleich Null, so gibt es keine dazugehörige Inverse. Die Matrix links vom Gleichheits-

zeichen hat die gleichen Dimensionen wie die rechte Matrix.

Bemerkung:

Die deklarierten Dimensionen der Matrix links vom Sleichheitszeichen müssen gleich

oder größer als jene der Matrix rechts vom Gleichheitszeichen sein. Die Berechnung

der inversen Matrix liefert auch den Wert der Determinate. Er wird mit der Standard-

funktion DET abgerufen.

8.141

geispiel

FILE MATS

au1ı8 DIM NL3,3)
8828 DISP "NATRIX RR";

8838 MAT INPUT A

884B MAT B=-INUCH)

8858 PRINT "MATRIX A :"
8868 MAT PRINT USING 1486,

u878 PRINT

8888 PRINT "NATRIX B = INVUCHATRIX AI :"
a83&6 MAT PRINT USING 148,B

9188 PRINT

8118 MAT A=INV(CB)
8128 PRINT "MATRIX AR = INUCHATRIX BI :"

6138 MAT PRINT USING 148, A

3148 HR. BER Bar. ut war
#158 PRINT

a168 FRINT

B1’e GOTO 28

4158 END

END OF LISTING

KUN

MATRIX A

1.800 2.888 3.8886
2.808 3.808 1.8886

3.488 1.088 2.8688

MATRIX B = INVUCHATRIX A)

-8.27 0.856 8.389

4.656 6.3893 -8B. 278

4.339 -8.278 4.956

MATRIX A = INVEMATRIX B) :

1.988 2.888 3.868
2.080 3.888 1.8988

3.806 1.898 2.888

MATRIX A

1.088 3.080 8.8088
g.008 1.588 8.088
2.9500 9.5808 1.088

MATRIx B = INUCHATRIS AM)

1.648 3.088 6.888
1.866 1.988 8.089
E.066 0.488 1.088

MATRIX A = INUCMATRIX BI :

1.000 3.686 8.088

0.066 1.8886 6.688

8.0608 4.088 1.8088

8.142

| MAT PRINT

ANWEISUNG MAT PRINT (Matrix Print)

Funktion :

Format:

Wirkung :

Regeln :

Es werden die Werte der Elemente einer oder mehrerer Matrizen über den

Drucker ausgegeben.

’

;
MAT PRINT Matrix }

’ .

Matrix {) Matrix. vo...

"N und !";" bilden die Trennzeichen für die Ausgabe der Elemente der davor-

stehenden Matrix.

Die Werte der Matrixelemente werden zeilenweise im Standardformat gedruckt.

Die Position der Elemente in der Druckzeile wird mit den Zeichen !", " und !;"

bestimmt.

Positionskontrolle in der Druckzeile

Das erste Element jeder Zeile einer Matrix wird immer in der ersten Position

einer neuen Druckzeile ausgegeben.

Enthält eine Anweisung MAT PRINT mehr als eine Matrix, so müssen die Feld-

namen durch ", !! oder ";!! getrennt werden,

Folgt einer Matrix ein Komma (,), so werden die Elemente jeder Zeile der

Matrix beginnend am Anfang einer der 5 Druckspalten, in die eine Druckzeile

unterteilt ist, gedruckt.

Folgt hingegen der Matrix ein Strichpunkt (;), so werden die Elemente jeder

Zeile der Matrix unmittelbar an den bestehenden Ausdruck anschließend, aus-

gegeben,

Folgt der letzten Matrix einer MAT PRINT-Anweisung kein Trennungszeichen,

so wird das Komma (,) als Trennzeichen angenommen.

Die Matrizen werden entsprechend ihren aktuellen Dimensionen gedruckt.

8.143

Beispiel

FILE MATI

8818 DIM ACS,4),A$C2,3)
8828 FOR I=1 TO 5 STEP 1

8838 FOR K=1 TO 4 STEP 1

8848 LET ALI,KI=18*I+K

88568 NEXT K

8868 NEXT I

8978 DISP "MATRIX A$";

8888 MAT INPUT A$
8898 PRINT 'NATRIX A CTRENNZEICHEN KOMMA ’,’) :"

8188 MAT PRINT N,
118 PRINT

8128 PRINT "NATRIX A CTRENNZEICHEN STRICHPUNKT ’;°) :"

8138 MAT PRINT A,

8148 PRINT

8158 PRINT

81686 PRINT "MATRIX A$ CTRENNZEICHEN KOMMA ’,’) :"
8178 MAT PRINT AS,

4188 PRINT

819398 PRINT "MATRIX A$ [TRENNZEICHEN STRICHPUNKT ’;°’) :"
9288 MAT PRINT A$S;

6218 PRINT

a228 END

END OF LISTING

RUN

MATRIX A [CTRENNZEICHEN KOMMA ’,°) :

11 12 13 14
21 22 23 24
31 32 33 34
+1 42 43 44

31 s2 33 54

MATRIX A LTRENNZEICHEN STRICHPUNKT ’;°)
11 12 13 44
21 22 23 24
231 32 33 34
al 42 832 34
51 52 53 54

HATRI< A$ LTRENNZEICHEN KONMMA ’,°) :
FETER SABINE HANS
GERTRUD KLAUS RENATE

MHHTRIS A$ CTRENNZEICHEN STRICHPUNKT ’;°)
FETERSABINEHRNS

GERTRUDKLAUSRENATE

8.144

MAT PRINT USING

ANWEISUNG MAT PRINT USING (Matrix Print Using)

Funktion :

Format:

Wirkung :

Bemerkung :

Es werden die Elemente eines oder mehrerer Felder in einem vom Benutzer

spezifizierten Format gedruckt.

eilennr.

MAT PRINT USING ‚Feld [Feid]. ..

Stringvar

! Zeilennummer'"!' gibt die Zeile mit der gewählten Formatspezifikation an.

"Stringvariable!!' enthält eine Formatspezifikation.

Die Werte der Elemente jeder Zeile eines Feldes werden in dem Format ausge-

geben, das durch die Formatspezifikation oder durch den Inhalt der String -

variablen festgelegt ist. Der Ausdruck erfolgt von links nach rechts in der

entsprechenden Reihenfolge, wobei jedem Element jeder Zeile des Feldes ein

Formatelement entspricht.

Mit jeder Zeile des Feldes wird eine neue Druckzeile begonnen. Enthält ein

Feld mehr Elemente in einer Zeile, als im Format vorgesehen ist, so werden

die restlichen Werte in der nächsten Zeile im selben Format ausgegeben.

Sind dagegen weniger Zeilenelemente vorhanden als im Format vorgesehen, so

werden die restlichen Formatfelder mit Blanks ausgefüllt.

Die Werte der Feldelemente müssen im Typ den Formatspezifikationen ent-

sprechen.

8.145

Beispiel

FILE NAT 1O

8818 DIN AC5,4),A$C2,3)
8828 DEL 8BCK$,YN

8838 FOR I1>=1 TO 5 STEP 1

8848 FOR K=1 TO 4 STEP 1

8858 LET ALCI,.K)I=10#rI+K

8868 NEXT K

887a@a NEXT I

8888 DISP "MATRIX

8898 NAT INPUT A$

Nn$";

8188 DISP "FORMATSTRING FUER NATRIX AR”;
g118& INPUT x%$

8128 DISP "FORHMATSTRING FUER NATRIX R$";

8138 INPUT Y$
8148 PRINT "MATRIX AR CFORMAT:"

8158 PRINT X%$

a168 MAT PRINT USING %$,A

8178 FRINT

8188 PRINT "MATRIX A$ CFORMAT:"

8198 PRINT Y$

8288 MAT PRINT USING Y$,NR$

8218 FRINT

89226 GOTO 188

8238 END

END OF LISTING

RUN

MATRIX RA CFORMNAT:

ar ar. wur
11.08 12.88 13.88
21.88 22.88 23.88
31.98 32.88 33.88
+1.88B 42.88 43.88

51.88 52.88 33.88

MATRI=S A$ (FORMAT:

LLLLLLLLL "LLLLLLLLL
FETER SABINE
GERTRUD KLAUS

MATRIX A (FORMAT:

Bu. HE Kur. 48 4.4

11.808 12.88 13.8

21.868 22.88 23.8

31.098 37.88 33.8

+1.808 2.88 43.8

51.8808 32.88 33.8

MATRIZ A$ tFÜRMAT:

"LLLLLLILL CICCECcECEC
PETER SABINE
GERTRUD KLAUS

"R

14.88
24.88
34.88
44.88
54.08

"LLLLLLLLL
HANS
RENATE

RRRRRRRR
HANS

RENATE

8.146

MAT READ |

ANWEISUNG MAT READ (Matrix Read)

Funktion : Den Elementen eines Feldes werden Werte aus dem (mit DATA generierten)

internen Datenfile zugewiesen. Das Feld kann sowohl numerisch als auch

alphanumerisch sein,

Format: MAT READ Feld [num. Ausdr., num. Ausdr.] \ Felalinum. Ausdr. , num, Ausdr.] ..

Wirkung : Zu Beginn der Ausführung des Programmes oder durch die Anweisung RESTORE

wird der Pointer an die erste Stelle des internen Files gesetzt.

Durch die Ausführung der Anweisung READ oder MAT READ werden die Werte

aus dem internen File der Reihe nach, beginnend ab der Position, auf die der

Pointer zeigt, den Variablen oder Feldelementen, die in der READ-Anweisung

angegeben sind, zugewiesen.

Bei MAT READ (ohne Parameter) bestimmen die deklarierten Dimensionen die

Größe des Feldes.

Sind Parameter angegeben, so werden die num. Ausdrücke berechnet und ge-

gebenenfalls auf die nächste ganze Zahl gerundet. Diese Zahlen sind die

aktuellen Dimensionen des Feldes.

Den Feldelementen werden die Werte aus dem File zeilenweise zugewiesen.

Nach jeder Wertzuweisung zeigt der Pointer auf das nächste File-Element.

Bemerkung : Jedem Element der Matrix muß ein Wert in der internen Tabelle entsprechen.

Die Werte des internen Files müssen dem Typ nach dem Feld entsprechen

(numerisch oder alphanumerisch).

Strings in einer DATA-Anweisung müssen in Anführungszeichen stehen, wenn

sie ein Komma (,) oder Leerzeichen am Anfang oder Ende enthalten.

8.147

Beispiel

FILE

8818
99828

8038

8848

86858

8068

8878

8088

88938

0188

8118

128

9138

8148

8158
0168

uB1i’e
9188

MAT11

bCIN A(3,2)3,8(2,3)3,0$(02,5)
MAT REARD A

RESTORE

MAT RERD B,A$

PRINT "NATRIXA

MAT PRINT AR;

PRINT

PRINT '"NATRIX

MAT PRINT B;

PRINT

PRINT "MATRIX

MAT PRINT 9A$;

PRINT

PRINT

DATA 18,28,38,48,58,68

DATA "HANS ","UND ","LIESE

EATA SCHWIN,MEN IN SEE.
END

END OF LISTING

RUN

MATRIX A

18 28

33 48

>s8 68

MATRIX B

198 28 38

48 SA 68

MHAHTRIS A$

HANS UND LIESE GEHEN
PRUL UND LOTTE SCHWIMMEN IM SEE.

SPAZIEREN.

"‚SPRAZIEREN. , '"PRUL

8.148

| MAT READ: |

ANWEISUNG MAT READ:

Funktion : Einem oder mehreren Feldern werden Werte aus externen Datenfiles zuge-

wiesen.

Format : MAT READ: Filedesignator, Feldl(n. A. ; n.A.)] ‚Feld I. A., nA.]] .. [Eor Zeitennr

NFiledesignator! ist ein arithmetischer Ausdruck.

n.A. bedeutet numerischer Ausdruck.

Es gelten die gleichen Regeln wie für die Anweisung REZEAD: . Die aus dem Wirkung :

Datenfile gelesenen Daten werden den Elementen der angegebenen Matrix

zeilenweise zugewiesen. Sind nach dem Namen der Matrix die aktuellen Dimen-

sionen angegeben, so wird die Matrix !"redimensioniert!", d.h. im weiteren

Ablauf des Programmes gelten diese aktuellen Dimensionen,

Bemerkung : Das Produkt der Dimensionen der Matrix darf die Anzahl der im Datenfile vor-

handenen Daten nicht überschreiten.

8.149

Beispiel : FILE nAT1ı2

8818 FILES SFILE

8828 RESTORE :1

8838 DIM A(6:6) -A$C7,4),BL4,9) ,B$ 4,7)

3848 MAT RERAD :1,A,R$ EOF 228

8858 RESTORE :1
8868 MAT RERAD :1,B,B$ EOF 228

a878 PRINT "NATRIX A CDIMENSIONEN 6 X 63 :"

09888 MAT PRINT RA;

080898 PRINT

a188 PRINT "MATRIX B CDIMENSIONEN 4 x N :"

8118 MAT PRINT B;

81728 PRINT

8138 PRINT '"NATRIX A$ CDIMENSIONEN 7 x 4) :"

8148 MAT PRINT USING 158,R$
9158 4, ’ ’ Pi

9168 PRINT
8178 PRINT "MATRIX B$ CDIMENSIONEN 4 x I :"

8188 MAT PRINT USING 1968,B$
89198 + » 3 , , , ,

8286 PRINT

8218 GOTO 288

8228 PRINT "FILE-ENDE ERREICHT"

9238 REM

9248 REN *** SCHREIBEN DER HIER GELESENEN NATRIZEN SIEHE *+#+*

9258 REN
8268 REN *#%* PROGRAMNBEISPIEL ’MAT WRITE:’ +%*%

80278 REN

0288 END

END OF LISTING

RUN MAT12
MATRIX A {DIMENSIONEN 6 x 6)

11 12 13 14 21 22

23 24 31 32 33 34
1 42 43 44 51 52
3 54 61 62 63 64
vı 72 73 74 81 82
83 84 91 92 93 94

MATRIX B CDIMNENSIONEN 4 x 9 :
11 12 413 14 21 22 23 24 34
32 33 34 41 42 43 44 51 52
S3 54 61 62 63 64 71 72 73
v4 81 82 83 8 91 92 93 %%

ATRIX A$ CDIMENSIONEN 7 x 4) TRI
AE

EF

I)J

MN

OR

U

Y K
H

D
P
r
I
O

A
Z

“
E
N
G
O
G
A
D
M

u

£

D
S
O
I
T
I
D
-
 a

E

D
e
m

D
o
m

R
n

li
x om

R
A
D

DIMENSIONEN 4 x 7)

z
o

m
l
 (DI

EF

LM

57T

2)

8.150

ANWEISUNG MAT ...

Funktion:

TRN (Transponierte Matrix)

| MAT ... TRN

Diese Anweisung bewirkt die Berechnung der Transponierten einer Matrix,

Format:

MAT Matrix = TRN (Matrix)

Wirkung:

Es werden die Zeilen und Spalten der Matrix rechts vom Gleichheitszeichen ver.

tauscht und die so entstandene transponierte Matrix wird der Matrix auf der linken

Seite des Gleichheitszeichens zugewiesen.

Die Werte der Spalte x der Matrix rechts vom Gleichheitszeichen stimmen mit den

Werten der Zeile x der linken Matrix überein; ebenso korrespondieren die Werte

der Zeile y der rechten Matrix mit den Werten der Spalte y der linken Matrix.

Bemerkung:

Die deklarierten Dimensionen der Matrix links vom Gleichheltszeichen müssen

größer oder gleich den aktuellen Dimensionen der rechter Matrix sein. Die beiden

Matrizen dürfen nicht den gleichen Namen haben.

Beispiel
FILE

a918
0928
99538
3648

9358

B068

5270

4438

G8989

8162

8118
128

6138

9148

MAT1I3

DIM RAC3,4)3,B(4,3)
FÜR I=1 TO 3 STEP 4
FOR K=1 TO 4 STEP 1
LET ACI,RKI=18*I+K
NEXT K

NEXT I

NAT B=TRNCHA)
PRINT "MATRIS A :"

HAT PRINT A;

PRINT

PRINT "MATRIX B = TRNCNMATRIX A) :"
HAT PRINT B;

PRINT

END

EHD OF LISTING

RUH

MATRIX A

11 12 13 14%

z2i 22 23 24
si 32 33 34

NHATRIX B = TRNCHMATRIX A)
11 21 31

12 2Z 32

13 23 33

14 24 34

8.151

|MAT WRITE: |

ANWEISUNG MAT WRITE: (Matrix Write)

Funktion : Schreibt die Elemente der angeführten Matrizen auf das durch den Filedesig-

nator bestimmte externe Datenfile.

Format: MAT WRITE: Filedesignator, Feld L Feid] ... [Eor Zeilennr.]

Filedesignator" ist ein arithmetischer Ausdruck.

Wirkung : Es gelten die gleichen Regeln wie für die Anweisung WRITE:.

Die Elemente der angegebenen Matrizen werden zeilenweise in das Datenfile

geschrieben.

8.153

Beispiel

FILE

9818
8828

8838

08+8
8858

8968

BurB

809808

9398

8188

8118
9128

9138

W148
8158

8168

9178

150
9198

4288

4216

228

0238

8248
3258

9266

FILES SFILE

SCERATCH

pIim ACI,+3,R$ (4,7)

FOR I=1 TO 9 STEP 1

FOR K=1 TO 4 STEP

LET ACI,RKI=18*I+K

BEXT K

NEXT I

DISP

MAT INPUT A$ M

PRINT '"NMATRIX A CDINENSIONEN 9 x 4) :"

MAT PRINT R;

PRINT

PRINT
MAT

.

"MATRIX AS";

PRINT

MAT WRITE
GOTO 268

PRINT

REM

RE.H

REM

REM
Ren

END

LESEN DER HIER GESCHRIEBENEN NATRIZEN SIEHE

PRINT

MAT 14

4

,

END OF LISTING

RUM

MATRI
11

Fa

31

x AH
12

o
c

en

En

d
d

DD

r
i
m

h
i
k
i

k
i
n
d

P9

s
u
n
”

M
R

(BINENSIONEN I x 4)
13

23

33

43

33

63

"3

83

93

[
E

L

S

T
I

m

e
e

1%
24
34
44
54
64
7%
84
=

MEHSIONEN 4 x 7)

ExEC FLF,SFILE

LES
ER

07
0

BRE
IT

W
R

e
h

U
N

Oo
J
r

N
E

*#+%# PROGRANMBEISPIEL

o
u

m
m

"MATRIX A$
USING 168, R$

-1,R,RA$ EOF 288

"FILE ZU KLEIN"

N
E
D
A
T
N
I
D

(DINMENSIONEN 4 x 7) :"

’MAT RERD: ’

“
z
n

u...

u.%

E
R
D
I
T
I
N

21
32
43

1
82
933

8,154

ANWEISUNG MAT...

Funktion :

Format :

Wirkung :

Bemerkung :

Beispiel:

MAT ... ZER

ZER (Null Matrix)

Mit dieser Anweisung kann man alle Elemente einer Matrix auf Null setzen.

MAT Matrix = ZER [(num. Ausdruck, num. Ausdruck)]

Jedem Element der angegebenen Matrix wird der Wert Null zugewiesen. Bei

Angabe der Parameter werden die num. Ausdrücke berechnet und die Ergeb-

nisse auf die nächsten ganzen Zahlen gerundet (m, n). Diese bilden die aktu-

ellen Dimensionen der Matrix.

Die deklarierten Dimensionen der Matrix müssen größer oder gleich den durch

m und n angegebenen, aktuellen Dimensionen sein.

FILE

8818

09928

30838
8048

80858

8068

6078
9938

8838

6188

ENG 0

RUN

HATRI
8

a
 GC

N

er
)

O
S

m

MATRI

a
a
n

B
m

MAT1S

DIM RA(5,.3

NAT A=ZER

PRINT "NATRIX A CDINENSIONEN 5 x 3)
MAT PRINT RA,
PRINT

NAT A=ZERL4,2)

PRINT "MATRIX A CDINENSIONEN 4 x 2)
MAT PRINT AR;
PRINT

END

F LISTING

x (GIMENSIONEN 5 x 3)

B
a
c
a
ı
o

@ı
c

x RA (DIMENSIONEN 4 x 2)

8.155

DIE STANDARDFUNKTIONEN

Die Standardfunktionen liefern als Ergebnis einen numerischen oder

alphanumerischen Wert. Ist das Ergebnis der Funktion numerisch, so

wird von einer numerischen Funktion gesprochen, entsprechend wird

von alphanumerischen Funktionen gesprochen, wenn das Ergebnis der

Funktion alphanumerisch ist.

Numerische Funktionen können auch alphanumerische Parameter (z.B.

LEN) und alphanumerische Funktionen können auch numerische Par ame-

ter (z.B. CHR%&) haben.

Der Aufruf numerischer Standar dfunktionen ist innerhalb numerischer

Ausdrücke (bzw. anstelle von numerischen Ausdrücken) möglich, ana-

log dazu ist der Aufruf alphanumerischer Funktionen innerhalb von

Stringausdrücken möglich,

Das allgemeine Format für Funktionen lautet:

FKT (Arg 1, Arg2 ...)

FKT; Ist der Name der Funktion, der bei numerischen Funktionen eine

Folge von 3 Buchstaben ist, die die Bedeutung der Funktion be-

schreibt. Alphanumerische Funktionen haben Namen, denen als

4. Zeichen das Dollarzeichen (&) angeführt ist.

Arg: Die Argumente (Parameter) der Funktion können numerische und/

oder alphanumerische Ausdrücke sein.

8.157

.3.1 Die trigonometrischen Funktionen

Die trigonometrischen Funktion

SIN (num. Ausdr.)

COS (num. Ausdr.)

TAN (num. Ausdr.)

COT (num. Ausdr.)

ASN (num. Ausdr.)

ACS (num, Ausdr.)

ATN (num. Ausdr.)

liefern die Werte der entsprechenden Sinus-, Cosinus-, Tangens-, Cotangens-,

Arcussinus-, Arcuscosinus- und Arcustangensfunktion, wobei das Argument

im Bogenmaß vorliegen muß, bzw. bei der Arcussinus-, Arcuscosinus- und

Arcustangensfunktion das Ergebnis ein Winkel im Bogenmaß ist.

Für die Umwandlung eines Arguments von Altgrad in Bogenmaß, bzw. eines

Arguments von Bogenmaß in Altgrad, dienen die Funktionen

RAD (num. Ausdr.)

DEG (num. Ausdr.)

Werden die Funktionen im CALCULATOR-MODE oder DEBUGGING-MODE

verwendet, so ist mit der Vorwahl

SDEG

SGRAD

SRAD

die Angabe der Winkel sowohl in Altgrad (SDEG) oder Neugrad (SGRAD) als

auch im Bogenmaß (SRAD) möglich. Werden keine Angaben gemacht, sind

Winkel im Bogenmaß einzugeben.

8.158

FILE WINKEL

8018
8828 REM
8638 DEF FNACX)I=PI1/180*X

8848 DISP "VON
8858 INPUT A,E,S

8868 IF S=8B THEN 188

8878 PRINT "VON":A; "GRAD BIS";E; "GRAD.

8888 PRINT

8898 PRINT '" GRAD

8188 PRINT

GRAD, BIS GRAD,

BOGEN

SCHRITTWEITE";

SINUS

8118 FOR I=FNACARI TO FNACEI STEP FNACS)
8128 PRINT USING 148,DEGCIJ,I,SINCHI,COSCII,TANCII ,COT CI)
8138 NEXT I

8148 :#84. 288%

8158 PRINT

8168 PRINT

9178 GOTO 48

8188 END

END OF LISTING

RUN

VON 18 GRAD BIS 45 GRAD,

GRAD BOGEN

18.0888 8.1745

15.8888 8.2618

28.0888 8.3491
25.8898 8.4363

38.0886 8.5236

35.008088 8.6189

48.0808 8.6981

45.8888 8.7854

FILE ABINSG

BRiG REM *** PROGRAMMBEISPIEL FUER DIE FUNKTIONEN ’ABS’,’INT’ UND 4928 REM

6838 DISP "EINGABE EINER
G6#+8 INPUT A

6058 FRINT USING 6B,A,RBSCAI,A,INTCAI,A, SGN
VOEB - ABSCHHE. SE) SB ir
6878 PRINT

9838 G0TO 38

9838 END

END OF LISTING

RUN

HBSt 27.688) =

HBSCt 2.586) =

HB5SC -2.588) =

HBSC 8.668) =

wu. 48

2.888

2.588

2.588

8.888

SINUS

86.1736

8.2588

8.3428

8.4226

8.5888

8.5736

8.6428

8.7871

ZAHL“;

INTC 2.980 =

INTC 2.588)= 2.888

INTC -2.568)= -3.888

INTCE 8.888) =

SCHRITTWEITE 5 GRAD

COSINUS

8.9848

8.9659

8.9397

8.9863

8.8668

8.8192

8.7668

8.7871

2.888

8.888

COS INUS

ar Bu BU

TANGENS

8.1763
8.2679
8.3648
8.4663
8.5774
8.7882
8.8391
1.6888

INT CHS#. 2828) 208.088

SGHL

SGN

REM **# PROGRAMMBEISPIEL FUER DIE WINKELFUNKTIONEN *+**

SCHRITTWEITE'";S; "GRAD"

TANGENS

COTRANGENS

3.6713

3.7321

2.7475
2.1445

1.7321

1.4281

1.1918

1.6888

SGN (a4#. 444) #8

2.886) = 1

2.586)= 1

SGN -2.5808)=-1

SGH(8.888)= 8

COTANGENS"

’SGN’ #r%*

8.159

.3.2 Mathematische Standardfunktionen

EXP

HSN

HCS

HTN

LOG

LGT

SQaR

ABS

INT

SGN

(x)

(X)

(x)

(x)

(x)

(x)

(x)

(x)

(x)

(x)

Exponentialfunktion (e, e: Eulersche Zahl)

Sinus hyperbolicus von X

Cosinus hyperbolicus von X

Tangens hyperbolicus von X

Natürlicher Logarithmus (x)

Zehnerlogarithmus (Briggscher Logarithmus) (log 10%)

Quadratwurzel von X (V x)

Absolutbetrag von X (IxI)

Nächste ganze Zahl, die kleiner oder gleich dem Wert des

Arguments ist

Vorzeichen von X

Die Funktion liefert bei positivem X als Ergebnis + 1, bei

negativem X - 1 und 0, falls X gleich 0 ist.

Arithmetischer Ausdruck

8.161

| PI RND

8.3.3 Numerische Funktionen ohne Argument

PI Die Funktion P!I liefert als Ergebnis die Zahl = 3,141592....

in doppelter Genauigkeit.

RND Die Funktion RND liefert eine im Intervall (0,1) liegende Zufalls-

zahl. Bei wiederholtem Aufruf von RND wird eine Standardfolge

von Zufallszahlen geliefert. Wurde vor dem Aufruf von RND die

Anweisung RANDOMIZE ausgeführt, liefert die Funktion RND eine

von der Standardfolge verschiedene Folge von Zufallszahlen.

Beispiel zu RND (Random) :

FILE RND

ua1e REN *** PROGRANMBEISPIEL FUER DIE FUNKTION ’RND’ =«*
9828 REN

4438 RANDOMIZE

u9+B8 FOR 1-8 TO 3 STEP 1

W858 FOR K=1 TO 5 STEP 1

Bach PRINT RND#=18tr1,
4878 NEXT K

uu8a NEXT I

va3e@ PRINT

»i98 FOR I=1 TO 18 STEP 1

311g PRINT INTLI888=RND+1),
aize HEXT I

2138 END

ENLr OF LISTIAG

RUN

. 358270845 - 84385646 . 14483391 -393239684 . 31177673 3.1377738 2. 1853162 3.3957285 8.8986657 9.39127861 35.344639 33.743537 67.53932788 94.394928 14.757729 35393.654+649 +474.23446 633.48588 611.96581 134.59461

455 252 224 332 4b6 v7’ 813 +89 372 68

8.163

DET

Die Funktion DET liefert als Ergebnis den Wert der Determinante

u

DET

der zuletzt invertierten Matrix. Bei Aufruf der Funktion muß das

System mit der Option MAT initialisiert sein.

Beispiel zu DET (Determinant) :

FILE DET

BB81iB& REM “sr PROGRAMMBEISPIEL FUER DIE FUNKTION ’DET’

86286 REM

Bea3a DIM A(5,2,BA(5,5)

Ba4u DISP "NATRIX RA":

8856 MRT INPUT A

83868 MAT B=INVER)

8873 PRINT 'NATRIX AR“

BaS8 MAT PRINT USING 986,R

4838 a3. 358 Ba. 493 2. Hr

Ba188 PRINT

#118 PRINT "INVERSE MATRIX"

5128 MAT PRINT USING 98.8

#128 PRINT

3148 PRINT

#158 PRINT "DETERNHINATE BER HATRIX A: ':DET

8168 PRINT

a17’8 PRINT

#188 PRINT

61398 GOTO 48

#768 END

END OF LISTING

RUN

NHATRIX HA

1.888 3.668 3.888 6.888 4.388

3.0808 3.8686 2.9808 9.888 -1.688

4.008 3.888 0.008 5.066 -7.880

9.6804 5.088 2.808 -1.8566 9.848

’.408 1.508 4.080 3.888 -2.988

INUERSE AHTRIS

-5.8533 9.877 -5.838 3.078 -8.6838

5.848 -4.939 A.048 3.669 -#4.0851

6.Bra -6. 155 -8.0833 -4. 134 B.348

9.454 8.869 8.0848 -9.815 -3.8268

B.Gbr 2.842 -58.888 4.017 -8.888

DETERMINATE DER NATRIX AR: 29489.088

8.165

Spezielle numerische Funktionen

Es stehen folgende spezielle numerische Funktionen zur Verfügung :

LEN

SCN

TAB

Die Funktion IOC fragt den Zustand einer peripheren Einheit

über ein Arbeitsregister ab.

Die Funktion liefert als Ergebnis die aktuelle Länge (Anzahl der

Zeichen) des als Argument angeführten Stringausdruckes.

Die Funktion SCN ermöglicht das Aufsuchen der Position eines

Teilstrings in einem String.

Die Funktion TAB ermöglicht bei der Ausgabe von Werten im

Standardformat das Drucken ab einer bestimmten Druckposition.

8.167

Funktion lOC (input/Output Control)

Funktion :

Format :

Wirkung :

Bemerkungen :

Beispiel :

Abfrage des Zustandes einer peripheren Einheit über ein Arbeitsregister.

IOC (x)

xX ist ein numerischer Ausdruck.

Der numerische Ausdruck wird berechnet und gegebenenfalls auf die nächste

ganze Zahl gerundet. Durch die Funktion IOC (X) können die im Arbeitsre-

gister enthaltenen Informationen über den Zustand einer peripheren Einheit

abgefragt und im Programm verarbeitet werden.

Die durch IOC (X) gelieferte Information wird in Kapitel 123, Seite 12.10

Tabelle 12.1 beschrieben.

1.) Die Funktion IOC kann wie jede andere numerische Funktion verwendet

werden.

2.) Bevor der Zustand einer peripheren Einheit durch IOC abgefragt werden

kann, muß der Inhalt des zugehörigen Zustandsregisters dieser Peripherie

durch TEST bzw. WAIT in das Arbeitsregister übertragen worden sein.

3.) Die Interpretation der IOC-Werte für X = 3,4,5 ist abhängig von dem

verwendeten I/O-Kanal.

LIST
FILE

ante

6928

0038

4048

258

6868

6378
9980

2398

Bid

END

KUN
rk

REN * er IOC-FUNKTION sr:
BUFFER #9. 132

SEND #93:.'0 L IV ET T IZ" AND GO
WAIT #9

IF 1I01663=1 THEN 78
GOTO 38

DISP "BITTE SCHNELLDRUCKER EINSCHALTEN";
STOP

GOTO 38

END

IF LISTING

FÜRMALLT CORRECT PROGRAM ri

EITTE SCHNELLDRUCKER EINSCHALTEN

8.169

Funktion LEN (Length)

Funktion :

| LEN

Die Funktion LEN liefert als Ergebnis die aktuelle Länge (Anzahl der Zeichen)

des als Argument angeführten Stringausdruckes.

Format: LEN (Stringausdruck)

Beispiel : FILE

8618
80828
9036
8848
8858
08068
88706
898886
8898
8168

LEN

REN #s% PROGRAMNBEISPIEL FUER DIE FUNKTION ’LEN’ »»#*
REN
DCL 8ON$
DISP "STRING {NAX. 48 ZEICHEN)";
RKB A$
IF LENCRSI><B THEN 48
PRINT "Der String ’",qA$;"’ enthaelt";LENCA$); "Zeichen"
PRINT
GOTO 48
END

END OF LISTING

RUN
ber

Der

Der

String ’OLIVETTI P6868’ enthaelt 1% Zeichen

Strıng ’’ enthaelt 8 Zeichen

String ’A+B=C’ enthaelt 5 Zeichen

8.171

SCH

Funktion SCN (Scan)

Funktion :

Format :

Wirkung :

Bemerkung :

Die Funktion SCN ermöglicht das Aufsuchen der Position eines Teilstrings in

einem String.

SCN (Stringausdruck Stringausdruck, , num. Ausdruck, , num, Ausdruck) 1’

Zunächst werden die Ergebnisstrings der beiden Stringausdrücke gebildet

"String, N, "String,") und die Ergebnisse P, ‚ P, der beiden numerischen

Ausdrücke errechnet und gerundet.

"String," ist ein Teilstring von "String, ",

p, gibt an, das wievielte Auftreten von "String," in "String, I ermittelt werden

soll.

p,_ gibt die Stelle in "String, ! an, von der ab mit dem Suchen begonnen werden
2 1

soll.

Als Ergebnis wird die Stelle des ersten Zeichens von "String, ! geliefert, an

der "String," ab der P,-ten Stelle das p,-te mal in String 1 auftritt.

Kommt "String," im angegebenen Teil von "String, I nicht oder weniger als

p mal vor, so liefert die Funktion SCN als Ergebnis den Wert 0.

Für die Ausführung der Funktion SCN muß das System mit der Option STR

initialisiert sein.

8.173

Beispiel : FILE

9910

9928

80838

09048

#858

868

a078

unse

aaIga

2188

8118

7128

8138

R1308

81584

SCH

REN «= PROGRAMNMBEISPIEL FUER DIE FUNKTION ’SCHN’

REN

DELL 8B8i9$,B9)

DISP "STRING CMAX. +8 ZEICHENI";

RKB A$

IF LEN{ASI >48 THEN 48

DISP "Zu SUCHENDER SUBSTRING (MAX. 48 ZEICHENI";

RKB B$

IF LEN{BSI>4B THEN 78

bDISP "DAS WIEVUIELTE MAL. AB STELLE":

INPUT A,B

au

PRINT "SCH C",R$:".",B$:.",",R,",",B: "3=",SCNECA$,B$,A.,B)I

PRINT

GOIO +8

END

END OF LISTING

(OLIVETTI P6B6EB,OLIVUE,. 1, 1)> 1

{OLIVETTI P6B6B,6b8, 2 ,„ 1)> 13

[OLIVETTI F6BoB,68, 1, 2)= #1

(OLIVETTI P6868,.0LIVE, 2, 19-98

8.174

TAB

Funktion TAB (Tabulation)

Funktion :

Format :

Beispiel

LIST

FILE

‘ '

D
s

n
n

m

ie
‘

n
a

m

M
o

s
h

G
m

a
m

SQ

zo
2
w
e

a &

Gar’ı

nase

gay

5152

END

RUN

,

Die Funktion TAB ermöglicht bei der Ausgabe von Werten im Standardformat

das Drucken ab einer bestimmten Druckposition,

TAB (x)

x ist ein numerischer Ausdruck.

LET A=17.6

LET B=4152.693

LET Ü=462. 1896

PRINT TABLISI:YOUT PUT"

PRINT

PRINT RA.B,C;' (PRINT ohne TABI"
PRINT

PRINT

PRINT R;TABC39I:B:TABL4II ;C; " [PRINT mit TABI
END

OF LISTING

ın

Ti

OUTPUT

152.698 452. 1896 {FEINT shne TAERI

(PRINT mit TABI

8.175

Beispiel :

FILE

auie

8828

8838

8848

8858

a86B

0878

8808

88398

39188

A110

8128

TAB

REN *## PROGRAMMBEISPIEL FUER DIE FUNKTION

ken

DISP "TRBULIEREN AN STELLE";

INPUT %

IF x=8 THEN 128

IF x<X78 THEN 188

IF <x>88 THEN 98

GOTO 386

LET x=i(X7398-1INT(CX/88)33*886

PRINT TABCXI:%;

GOTD 38

END

END UF LISTING

RUN

18 28 38 48

25 35 45 un

ma
d

D
o

i
h
 un

NO w
c

’ TAB’

38

31

a...

39

68 ro

1

75

8.176

Alphanumerische Funktionen

Für die Ausführung von alphanumerischen Funktionen muß das System mit der

Option STR initialisiert sein.

An alphanumerischen Funktionen stehen zur Verfügung :

BLNS

CHR%

EXTS

REP

Zwei Strings werden durch eine Operation bitweise verknüpft

Ein num. Ausdruck wird in ein ISO-Zeichen umgewandelt.

Einem Stringausdruck wird ein Teilstring entnommen

In einem String wird ein Teilstring durch einen anderen String

ersetzt

8.177

| BLN$

Funktion BLN& (Boolean)

Funktion :

Format:

Wirkung :

Die Zeichen zweier Strings werden nach den Gesetzen der Boole!schen

Algebra Bit für Bit verknüpft.

BLNS (num. Ausdr., Stringausdr.1, Stringausdr. 2)

Stringausdruck : alphanum. Ausdruck.

Der num. Ausdruck wird berechnet und gegebenenfalls auf die nächste ganze

Zahl P gerundet.

P gibt an,welche Boole!sche Operation der Verknüpfung zugrunde gelegt wird.

Die Ergenisse der Stringausdrücke werden gebildet und ergeben SI (String 1)

und S2 (String 2). Haben SI und S2 verschiedene Länge, so wird der kürzere

String mit Byte-Inhalt "NUL'-Zeichen bis zur Länge des längeren Strings

ergänzt. Die einander entsprechenden Bits werden mit der durch P angege-

benen Operation verknüpft und es wird das entsprechende Bit des Ergebnis-

strings >. gebildet.

Der Ergebnisstring S. hat die Länge , wenn P kleiner als @ oder größer als

15 ist, ansonsten hat er die Länge des größeren der beiden zu verknüpfenden

Strings.

8.179

Argument P

10

11

12

13

Ergebnisstring

String, der aus Bytes mit dem ISO-Code ß besteht

Sı AND S2

Sı AND (NOT S2)

Sı

(NOT Sı) AND S2

S2

SI ORE S2

SI OR S2

SI NOR S2

NOT (SI ORE S2)

NOT S2

Si OR (NOT 32)

NOT S1

(NOT Sı) OR S2

SI NAND 52

String, der aus Bytes mit dem ISO-Code 255 besteht.

8.180

Verknüpfungstabelle

Beispiel: 8618 REM *** BEISPIEL FUER BLN$ *+*

8028 REN

8838 REM Dıe Boole’sche OPeratıon AND wırd zur Umwandlung von
B8#+8 REM Kleinbuchstaäben ın Grossbuchstäben verwendet,

8858 REN

9668 DCEL 4+BCR$,B$)

8678 LET B$S=CHR$ (32)

8638 PAD B$, 232

89938 DISP "STRING COHNE SONDERZEICHEN) '";

8188 INPUT 3%

8118 PRINT A$

8128 LET B$=EAT$CB$, 1, LENCASII

8138 PRINT BLN$(&6,RA$,B$)

39148 PRINT

8158 GOTO 76

8168 ENG

END OF LISTING

ABECDEFGHIJKsbCdefghijk
sbcdefghı 3 KRBÜDEFGHIJK

8.181

CHR$

FUNKTION CHR& (Charakter)

Funktion: Die Funktion liefert als Ergebnis das Zeichen aus der ISO-Code-

Tabelle, dessen Wert dem Argument entspricht.

Format des Aufrufes:

CHR2 (num. Ausdruck)

Wirkung: Der Wert des numerischen Ausdruckes wird berechnet und gegebenen-

falls gerundet. Er muß einen Wert n zwischen O und 255 ergeben.

Bemerkung: Ist nkleiner als 128, so wird das entsprechende Zeichen der ISO-

Code-Tabelle als Ergebnis geliefert.

Istn = 128 wird das Zeichen® „ istn>128, wird das Zeichen Ill

als Ergebnis geliefert.

Liegt der Wert des numerischen Ausdruckes nicht zwischen O und 255,

so wird als Ergebnis der Nullstring geliefert und es wird ERROR 2

gemeldet.

8.183

Beispiel

FILE

8818
8828

8638

88438

80858
8868

8878

8038

8998

0188

8118

8128

8138

8148
8158

8168

8178
8188

61938

8288

8218

END

RUN

NR.
ISU-

NR.

ISO-

NR.

150-

NR.
ISO-

HR.

150-

CHR

REN *** PROGRANMNMBEISPIEL FUER DIE FUNKTION ’CHR$’ *+%

REM

DCL BONS

LET A$=""

PRINT "NR. DES ZEICHENS: ";
DISP "NR. DES ZEICHENS";

INPUT 1

IF I<8 THEN 168

IF 1399 THEN 138

PRINT " ",

IF 1>9 THEN 138

PRINT " ";

PRINT TI;

LET A$=NAS+" "+CHR$SCII +"
GOTO 68

PRINT

PRINT "1SO-ZEICHEN: ",n$
PRINT

PRINT

GOTO 48

END

OF LISTING

DES ZEICHENS: 79 76 73 8 69 84 84 ?3
ZEICHEN: OÖ L I U E T T I

DES ZEICHENS: 98 24 48 34 48 32 66 65
ZEICHEN: P 6 8 & 8 B A

DES ZEICHENS: 8 1 2 3 4 9 6 ?
ZEICHEN: u r 1 J ? B oO

DES ZEICHENS: 18 11 12 13 14 15 16 17
ZEICHEN: = + T € 8 8 B 8

DES ZEICHENS: 128 4121 122 123 124 125 126 127
ZEICHEN: x y z Ä I 3 ” 3

128 129

8.184

| EXTS |

DIE FUNKTION EXTS (Extract)

Funktion: Einem Stringausdruck wird ein Teilstring entnommen.

Format des Aufrufes:

EXTS (Stringausdruck, num. Ausdruck , num. Ausdruck,)

Wirkung: Der Ergebnisstring !"String!! des Stringausdruckes wird ge-

bildet und die beiden numerischen Ausdrücke werden berech-

net und gegebenenfalls gerundet. Die Ergebnisse seien p ' und

P,-

Als Ergebnis des Funktionsaufrufes wird der Teilstring vom

p „ten Zeichen bis zum p „ten Zeichen des Ergebnisstrings

NString!" geliefert.

Bemerkung: Istp so wird als Ergebnis ein Zeichen geliefert. ı Pa:
muß größer als @ und kleiner oder gleich p 2 sein.

p 2 muß kleiner oder gleich der aktuellen Länge des Ergebnis-

p

strings sein.

Beispiel:

FILE EXT

8816 REM *#* PROGRAMNMBEISPIEL FUER DIE FUNKTION ’EXTS’ *.%*
8826 REM

8838 DIL 38A$

8848 bDISP "STRING";
8858 RKB A$
8868 DISP "AB STELLE, BIS STELLE";
8878 INPUT A,B
u888 PRINT "EXTS C"3A85",";R5","5B5'9=’";EXTECAS,A, BI;
8898 PRINT

8188 GOTO 48
8118 END

END OF LISTING

RUN

EXT$ (OLIVETTI P6868, 1 „ 5 J="’OLIUE’

EXT$ COLIVETTI P6B68, 18 ,„ 14)3=’P686B’

EXT$ COLIVETTIL,R, 8 ,„ 1 I=°’:

EXT3 COLIVETTI, 1, 28 3=’’
ERROR 2 IN LINE 88

8.185

| REP$

DIE FUNKTION REP%& (Replace)

Funktion: In einem Stringausdruck wird ein Teilstring durch einen anderen

String ersetzt.

Format des ÄAufrufes:

Wirkung:

Bemerkung:

REP (Stringausdruck , Stringausdruck,, Stringausdruck „, num.

Ausdruck, num, Ausdruck,)

Die Stringausdrücke werden ausgewertet und liefern die Ergebnis-

strings "String, N, "String," und "String". Die beiden numerischen

Ausdrücke werden berechnet und gegebenenfalls gerundet. Sie liefern

die Ergebnisse P, und P,-

"String," ist der String, der durch die Funktion modifiziert wird

"String," ist der Teilstring von "String, ", der ersetzt wird

"String," ist der String, durch den "String," in "String," er -

setzt wird

P, gibt an, wie oft "String," durch "String," ersetzt wird

(p mal)

P, gibt die Position des Zeichens in "String," an, bei dem

mit der Suche nach "String," begonnen werden soll.

Istp, = 0, so hat die Funktion keine Wirkung
1

ist p ’ kleiner 0, wird "String," bei jedem Auftreten durch "String,"

ersetzt.

Ist p ı? O und "String," ein Nullstring, so wird "String," vordem Zei-

chen p 2 in "String," p ‚mal eingefügt.

Ist p „co und "String, ein Nullstring, so wird ein (behebbarer) Feh-

ler gemeldet (ERROR 2).

8.187

Beispiel

FILE

8818
8828

8938

3948

8058

8868
8878

8u88

48938

8108

8118

8128

8138

8148

8158

REP

REM *** PROGRAMNMBEISPIEL FUER DIE FUNKTION ’REP$’ »+*+*

REN
DEL 88CA$,B$,CH
DISP "STRING";
RKB A$
DISP "ZU ERSETZENDER STRING";
RKB B$
DISP "ERSETZENDER STRING”;
RKB C$
DISP "WIE OFT, AB STELLE";
INPUT A,B
PRINT "REP$ C",A$;",":B$;","3C$;", RA", BE)=’"REPSCHS,BS,CH,A,BI

PRINT

GOTO 48

END

END OF LISTING

RUN

REP$

REP$

REP$

REP$

[TEXT TEXT TEXT,X,S, 3 , 1 3=’TEST TEST TEST’

[TEXT TEXT TEXT,X%,S,-1 , 1 3=’TEST TEST TEST’

[TEXT TEXT TEXT,TEXT,, 1, 3 I=’TEXT TEXT’

(TEXT TEXT TEXT,,TEXT ,„ 1, 6 3=’TEXT TEXT TEXT TEXT’

8.188

DAS STANDARDFORMAT

Bei den Anweisungen des Typs

ASSIGN

BUIL_D

DISP

PRINT

MAT PRINT

wer den die Ergebnisse von numerischen oder alphanumerischen

Ausdrücken im Standardformat dargestelit bzw. übergeben. Darü-

ber hinaus erfolgt beim Rechnen im DEBUGGING-MODE und bei

der Stellung ST des Dezimalstellenrades beim Rechnen im

CALCULATOR-MODE die Ausgabe der Werte im Standardformat.

Die Zahlendarstellung und die Darstellung von Strings erfolgt in

all diesen Fällen im Standardformat; bei den Anweisungen DISP

und PRINT bestehen durch die Stellenbeschränkung und die Mög-

lichkeit der Verwendung von verschiedenen Trennzeichen zusätz-

liche Möglichkeiten, die getrennt behandelt werden.

Die Zahlendarstellung

a) Darstellung ganzer Zahlen

Ganze Zahlen werden linksbündig entsprechend ihrer Stellenzahl aus-

gegeben, Das erste Zeichen ist bei positiven Zahlen das Leerzeichen,

bei negativen Zahlen das Vorzeichen !'-!, Am Ende der Zahl steht im-

mer ein Leerzeichen. Ist die Zah} intern in doppelter Genauigkeit dar -

gestellt, so erfolgt die Ausgabe im Standar dformat mit maximal 8 Zif-

fern, ist sie in einfacher Genauigkeit dargestellt, so erfolgt die Aus-

gabe im Standardformat mit maximal 6 Ziffern. Ganze Zahlen, die in

doppelter Genauigkeit mehr als 8 Stellen, in einfacher Genauigkeit mehr

als 6 Stellen haben, werden im Gleitkommaformat dargestellt. Dabei er-

folgt bei Zahlen in doppelter Genauigkeit eine Rundung auf 8 Stellen, bei

Zahlen in einfacher Genauigkeit erfolgt keine Rundung, da auch intern

nicht mehr als 6 Stellen vorhanden sind.

8.189

b) Dezimalzahlen in Festkommaformat

ba) Darstellung von Dezimalzahlen in doppelter Genauigkeit

Die Darstellung von Dezimalzahlen erfolgt mit maximal 8 Ziffern.

Zusätzlich werden eine Stelle vor der Zahl für das Vorzeichen

("-t bei negativen Zahlen, Leerzeichen bei positiven Zahlen), eine

Stelle für den Dezimalpunkt und eine Leerstelle am Ende der Zahl

benötigt.

Führende Nullen werden unterdrückt, Nullen am Ende der Zahl

werden im Dezimalteil nur dann dargestellt, wenn sie Ergebnis

einer Rundung sind.

Die Anzahl der Nachkommastellen in der Darstellung richtet sich nach

der Anzahl der Vorkommastellen, wobei die Summe aus Vorkomma-

und Nachkommastellen max. 8 ist. Ist die Summe aus signifikanten

Vorkomma- und Nachkommastellen kleiner als 8, so erfolgt die Dar-

stellung mit entsprechend weniger Stellen. Hat die Zahl genau 8 Vor-

kommastellen, so wird zwar der Dezimalpunkt, jedoch keine Nach-

kommastelle dargestellt. Hat die darzustellende Zahl einen Absolut-

betrag kleiner als 1, so ist die erste Stelle nach dem Vorzeichen der

Dezimalpunkt.

bb) Darstellung von Dezimalzahlen in einfacher Genauigkeit

Für die Darstellung von Dezimalzahlen in einfacher Genauigkeit gelten

sinngemäß die gleichen Regeln wie für die Darstellung von Zahlen in

doppelter Genauigkeit. Die maximale Anzahl von Ziffern ist jedoch auf

6 begrenzt. Die letzten Stellen werden nicht gerundet, da auch in der

internen Darstellung nicht mehr als 6 Ziffern vorhanden sind.

8.190

bc) Zahlendarstellung in Gleitkommaformat

Zahlen haben in Gleitkommadarstellung folgendes Format:

_ Vorzeichen Mantisse ("-! oder Leerstelle)

—- Mantisse

. Eine Vorkommastelle (ungleich Null)

. Dezimalpunkt

Sieben Nachkommastellen (bei der doppelt genauen Darstellung

wird die letzte Ziffer gegebenenfalis gerundet, bei einfach ge-

nauer Darstellung sind nur 5 Stellen signifikant).

- E (Kennzeichen für den Exponenten zur Basis 10)

- Vorzeichen der Exponenten ("+! oder !"!-!)

- Exponent (2 Stellen), führende Nullen werden ausgedruckt

- Leerzeichen nach der Zahl

Insgesamt erfordert die Gleitkommadarstellung daher 15 Stellen.

Der Übergang zur Gleitkommadarstellung erfolgt dann, wenn mehr

signifikante Stellen vorhanden sind, als in Festkommadarstellung

ausgegeben werden können,

bd) Beispiele zur Zahlendarstellung

GLEITKOMMADARSTELLUNG

1. @888888B98808E +88

1.8B8888888B8BBE +B 1
1. 089888888888BE +82
1. B88B88B8BB888BE +B3

1. B8880888688898E +84
1. B88BBBBBBBBBE +85

1. B898G8BEBBABE +6

1. BBBBBBBBBBBBE +69

1. 888888888888E -8 1

1. 088888088888E -B2

1. 8888888888BBE -83
1. BBEBBBBHBBBBBE - 8%

1.B88886888088BE -B87

1. B8BBBBBBBBBBE - 18
1. 180898888BBBBE +88
1. 123458 88BBBBE +88

1. 123456 7’BBBBBE +BB
1.123456 789IBB8BE +BB

-1.B8BB8BBBÄBBBBE +88
-1. 123+35678938088E +08
1.234567830B8BE +82

-3.939393399 1868BE +88
-5. 3399939918888, +87

DOPPELT GENAU

4

18
188

1888

18888
168888

1988888

1. B88BBBBE +89

.1

.81

.881

. 8881

. 69898881
1. 8888888E - 18
1.1
1. 12343

1.123456 7

1. 1234368

1
-1. 1234568
123.45679

-9.9393939399
-933339393939.

EINFACH GENAU

4

18
188

1888

18868
168888

1.B8888888E +86

1. BABBBBBE +89

.1i

.81

.881

.58881

. 8888881

1. 88886888 - 18
1.1
1. 123435

1.123435

1. 123%

1
-1. 12345
123.456

-3. 33999
-9. 93939393988BE +87

8.191

8.4.2 Darstellung von Strings

Die Strings werden zeichenweise linksbündig dargestellt. Die Anzahl der aus-

gegebenen Zeichen im Beispiel entspricht der aktuellen Länge des Strings.

Beispiel :

FILE

3818 DEL SANS
8828 DISP "STRINS";
#838 RKB A
8848 PRINT A$
8858 GOTO 28
8868 END

END SF LISTING

Strings werden mit ihrer aktıellen Laeng2 gedrisckt,

r11r.0N?

Dieser Strıng wırd mit ’*’ bıs Zur naxımalen | enge zufgefimllt es:

8.4.3 Stellenkontrolle bei den Anweisungen DISP und PRINT

Für das Display und den Drucker steht je ein Puffer mit 80 Zeichen zur Ver-

fügung, in dem die Aufbereitung der Ausgabezeile erfolgt. Für jeden Puffer

existiert ein Pointer, der auf die Stelle im Puffer zeigt, an der mit der Dar-

stellung des nächsten Ausgabeelementes begonnen werden kann.

Die Stellung des Pointers ist einerseits abhängig von den bisher dargestellten

Ausgabeelementen, andererseits kann seine Stellung durch die Wahl der Trenn-

zeichen !', !! oder !!;!! oder durch Verwendung der Funktion TAB verändert

werden.

8.192

Ist die vollständige Darstellung im Puffer nicht möglich, so wird der bisherige

Inhalt des Puffers ausgegeben, sein Inhalt gelöscht und mit der weiteren Dar-

stellung der Ausgabeelemente wieder beim ersten Zeichen im Puffer begonnen.

Die Darstellung von Strings mit einer Länge von mehr als 8O Zeichen in einer

Zeile ist nicht möglich.

Das Trennzeichen Komma !, !"

Wird iin der Liste der Ausgabeelemente das Trennzeichen Komma verwendet,

so wird der Puffer in fünf Zonen zu je 16 Zeichen unterteilt. Die Zonen be-

ginnen demnach bei den Positionen 1, 17, 33, 49 und 65. Ist das Trennzeichen,

das dem zuletzt dargestellten Ausgabeelement folgt, das Komma, so wird der

Wert des Pointers auf das nächsthöhere ganzzahlige Vielfache von IE +1 er-

höht. Ist dieser Wert größer oder gleich 80, wird der Inhalt des Puffers aus-

gegeben und erneut mit der Aufbereitung des Pufferinhalts ab der ersten Stelle

begonnen.

Das Trennzeichen Strichpunkt ";!"

Das Trennzeichen ";" bewirkt keine Änderung der Stellung des Pointers. Es

werden daher durch !;!! getrennte Ausgabeelemente unmittelbar aneinander

anschließend ausgegeben. Der Inhalt des Puffers wird ausgegeben, sobald

durch ein weiteres Ausgabeelement 80 Zeichen erreicht oder überschritten

werden. Dieses Ausgabeelement kommt dann wieder als erstes Element in den

Puffer.

8.193

8.4.6

8.4.7

Die Funktion TAB (num. Ausdruck)

Die Funktion TAB erlaubt es, eine beliebige Position im Puffer direkt anzu-

laufen. Ist diese Position bereits mit Daten belegt, so wird der Inhalt des

Puffers ausgegeben und der Pointer wird auf die Stelle im Puffer gesetzt, die

durch die Funktion TAB bestimmt ist.

Ist der Wert n, den das gerundete Ergebnis des arithmetischen Ausdrucks

liefert, kleiner als I, so erfolgt eine Fehlermeldung. Ist der Wert n? 80, so

wird n = (n/8 - INT (n/8f))#8@ gesetzt. Um nicht durch das Trennzeichen

eine weitere Tabulation zu bewirken, ist es günstig, nach Aufruf der Funktion

TAB das Trennzeichen Strichpunkt !;!!" zu setzen.

Trennzeichen am Ende der Anweisung DISP oder PRINT

Wird hinter das letzte Element einer Ausgabeliste ein Trennzeichen (!;!! oder

"1) gesetzt, so wird der Inhalt des Puffers nur dann ausgegeben, wenn 80

Zeichen erreicht wurden. Ausgabeelemente nachfolgender PRINT- (bzw. DISP-)

Anweisungen werden an den bestehenden Inhalt des Puffers angefügt. Dadurch

ist es möglich, die Elemente mehrerer PRINT- (oder DISP-) Anweisungen in

einer Zeile auszugeben.

Fehlt am Ende der Ausgabeliste einer PRINT- (bzw. DISP-) Anweisung das

Trennzeichen, so wird der Inhalt des Puffers ausgegeben und der Pointer an

die erste Stelle gesetzt. Folgt einer PRINT - (bzw. DISP-) Anweisung, die

durch ein Trennzeichen abgeschlossen wurde, eine PRINT- (oder DISP-)

Anweisung ohne Ausgabeelemente, so wird der bestehende Inhalt des Puffers

ausgegeben und der Pointer auf die erste Stelle zurückgesetzt.

Hat der Druckpuffer keinen Inhalt, bewirkt eine PRINT-Anrweisung ohne Aus-

gabe-Element eine Leerzeile, ist der Puffer des Displays leer, so wird

durch eine DISP-Anweisung ohne Ausgabe-Element die Anzeige im Display ge-

löscht.

8.194

a. Besonderheiten der Anweisung DISP

Im Display können bei der Ausgabe 32 Zeichen angezeigt werden.

Da der Puffer des Display jedoch eine Kapazität von 80 Zeichen

hat, ist es möglich, daß nicht alle im Puffer generlerten Zeichen

auch im Display sichtbar sind.

Mit Hilfe der Tasten (>) und und deren Kombinationen

mit SHIFT und REPEAT (siehe Kapitel 1) ist es jedoch möglich, die

weiteren Zeichen im Display sichtbar zu machen. Dazu ist jedoch

notwendig, daß die Anzeige genügend lang im Display sichtbar bleibt,

was gegebenenfalls durch eine DELAY - Anweisung mit genügend

großem n erreicht werden kann.

8.195

8.4.9 Beispiele

FILE TRENN

B818 REN *+* WIRKUNG DER TRENNZEICHEN ’.,’ UND ’,’ as

8828 REM
8838 DISP "STRING 1,STRING 2,ZAHL 1,ZAHL 2";

8848 INPUT A$.,B$,RA,B

8858 PRINT "KOnnm ",A$,B$,RA,B

8868 PRINT "STRICHPUNKT: '";RA$;B$;R,B

8878 PRINT

8888 PRINT "ES WURDEN DIE STRINGS ";

88938 PRINT 'A$=’",n$;"’ UND B$='";B$,"’ EINGEGEBEN"

a188 PRINT "DIE ZAHLEN WAREN",

8118 PRINT "A=",RA, "UND", "B="5B

8128 PRINT

8138 GOTO 38

8148 END

END OF LISTING

RUN

KOMMA: OLIVETTI P6868 1.2345679 123456. 79
STRICHPUNKT:OLIVETTIP686B 1.2345679 123456. 79

ES WURDEN DIE STRINGS A$='OLIVETTI’ UND B$S=’P6868’ EINGEGEBEN

DIE ZAHLEN WAREN nA= 1.2345679 UND B= 123456. 79

KOMMR: TEST BEISPIEL 1 2

STRICHPUNKT: TESTBEISPIEL 1 2

ES WURDEN DIE STRINGS A$='TEST’ UND B$S='BEISPIEL’ EINGEGEBEN

DIE ZAHLEN WAREN A= 1 UND B= 2

FILE ZAHL

BBiG REM “ki ZAHLENDARSTELLUNG K%%
89828 REN

838 FÜR I=1 TO 18 STEP 1
8948 PRINT 1,1871, 18t1, INT C188=RND+1)J ‚SQOR
3868 NEXT I m
9078 END

END OF LISTING

RUN

1 M 18 14 1 x 138 15 1.314213
3 3. 3333333 18898 46 117328588 ‘ 2.5 18098 25 z 5 2 198988 53 2.236 ;
= _

2368658
6 1.666666 7 1988888 71 2.44348937
? 1.4+285714 18888689 82 2.6457513
8 1.25 1.09668688E +08 98 2.825427
3 1.1111111 1. 88688888E +89 16 3
18 t 1. 8988888E +19 51 3. 1622777

8.196

FILE PUFFER

818 REM *** AUSDRUCK DES DRUCKPUFFERS BEI ERREICHEN VON 88 ZEICHEN **+*
uu28 REM

6838 TRACE ON

8848 FÜR I=1 TO 7 STEP 1

u858 PRINT "a", 1], 'sk#", INTCIBB=RND+ 1),

B86B NEST I

0878 PRINT

89888 TRACE OFF

u898 END

END OF LISTING

RUN

#48

#50

#60

#60

#56

rt 14 se 2 15

#68

#59

#8

#58

+5 u 4 ai 25 u 5 KK

#0

#50

#00

#5B

#69

#78

sa bb x 71 uk / ac 82
#58

Xu Z rk

33

8.197

FILE

8818

0828

8838

9848

8858

0868

9878

8988

0u38

9188
81186

8128

8138
9148

0150

9168

REM

DISP

DISP

INPUT

PRINT

PRINT
PRINT

PRINT

NEXT I

“TEILSTRING =

“ZU DRUCKENDE LRENGE
IL RENGE DES TEILSTRINGS =";LENCBSI , "ZEICHEN"

IF LENCASI=R THEN

STRING

DEL 1923N$,88B%$
"TEILSTRING";

RKB B$
"ZU DRUCKENDE LAENGE";

LET A$=""

FOR I=1 TO A/LENCBSI STEP 1

LET A$=A$+B$

218

+ “,B$,; a2 3 88

=",A, "ZEICHEN"

288 B178 IF LENCASI+LENCBSI=SRA THEN

8138 LET A$S=R$+ERTS$ LBS, 1,A-LENCA$))

4198 GOTD Z18

89288 LET A$=EXT$CA$+B$,1,A)

4218 PRINT RA$

a2za PRINT

8238 PRINT

8248 GUTO 48

8258 END

ENDE OF LISTING

RUN

TEILSTRING =

ZU ETRUCKENDE LRENGE =
IRENGE DES TEILSTRINGS =

’*-TESTR-’
258 ZEICHEN

8 ZEICHEN

REM “ter AUSDRUCK EINES STRINGS MIT BELIEBIGER ANZAHL VON ZEICHEN

*- TEST#-#-TEST#-#-TESTE-#- TEST #-TEST&-#- TESTR-#- TESTE-#-TESTR-#-TESTR-R- TESTER
- TESTr-+- TEST#--TEST#-#-TESTR-#-TESTR-#- TESTR-#- TESTR-#- TESTE-#- TEST TESTR-
#- TEST#-#-TESTR-#- TESTR-#- TEST&-#-TEST#-#-TESTR-#- TESTE-#- TESTER TESTR-#-TESTR-
-TESTR--

TEILSTRING >:
ZU BRUCKENEBE LAENGE =
LRENGE DES TEILSTRINGS =

*-#OLIVETTI

*-AULIVETTI

*#- UL 1ULTTI

+-+QLINETTI

=-*0L1IVETTI

*-*OLIVETTI
*-#=ULIVETTI
#-+GLIJETTI
#-#GL IUETTi
* OLIVETTI

#-#ULIGE TI

#-#0L TVETTI

*-#GLIVETTI

"#-*QOLIVUETTI P6868-#*-

P6B68-*-*-#DLIUETTI
P&EB69-#*- x-sOLIUETTI

PE868-*- »-=OLIVETTI
F&6B6B-#*-*-“QOLIVETTI
FE56E8-*—-*-sGLIVETTI
FEB6R-*-*-xDLIVETTI

F6B68-+*—-*-#OLIUETTI
PE:OGBH-#=—-#*-#OLINEITI
FCU6EI-#-k-kOLIDEITI
Fr&EB68-*- “OLIVETTI

PtLo66-=-*-*DLIVETTI
P69b4-%*-%*-#OLIVETTI
F686B-#*-*-#OLIVETTI

1823 ZEICHEN
28 ZEICHEN

P&E968-*-=-=s0OLIVETTI
P68B69-*-*-s=UlLIVUETTI

P686B-*-*-=U0L_LIVETTI

P&6868-*-#=-DLIVETTI
Fb868-*-#*-«OLIUETTI

FERBB-“-x-»U0LIVUETTI
P&6SE9-#*-=-=OLIVETTI

PRBEEB-&-*- OLIVETTI
PEBEB-*-&-“OLISJETTI
F6968-#-&- «OL IUCTTI

P693689-*-#*-»DOL_LIVETTI

P6868-#*=-x-sOLIVETTI

P6856B-*-x-xDOLIVETTI

P&6B68-*-*-=OLIVETTI
P6868-*-*-=#ULIVUETTI
P6B6B-*-*- OLIVETTI
P6BBEB-*-#—-=OLINETTI
PEBBB-*-#-«OLIVUETTI

F6868-#=-#*-«OLIVUETTI
P6868-*—-*-#=DLIVETTI

P6866-#-#*-=UOLIVETTI
F6868-*-*-+DLIVETTI

P68689-#*-*-=OLIUVETTI

F6868-#=-*- OLIVETTI
P&E868B-*-*-sUÜLIVETTI

P6BBEB-- *—-*

P6B68-#*-
F6EBOGA-#«—
P6868-#*—

FP6868-%*-
PEBEB-#*—
F6Bbdg-*-

FERGRB-%—

P6EBEO-*—
P&EUBEB-*—

P6BEB-*—-

P69665-#*-

P68B68B-#*-

8.198

EINGABE UND EDITING EINES PROGRAMM -

9.4

STRUKTUR EINES PROGRAMMES

STRUKTUR EINES TEXT- FILES

EINGABE EINES PROGRAMMES

9.3.1 Vorbereitung des Hauptspeichers

9.3.2 Zeilennumerierung

9.3.3 Programmeingabe und Syntaxkontrolle

EINGABE EINES TEXT-FILES

' SPEICHERN VON PROGRAMM

KORREKTUR EINES PROGRAMMES (EDITING)

9.6.1 Hilfstasten und Befehle für das Editing

9.6.2 Editing am Beispiel eines Programmes

9.6.3 Editing im Display

ODER TEXT-FILES

Seite

9.3

9.3

9.4

9.4

9.5

9.5

9.5

9.5

9.10

EINSABE UND EDITING EINES PROGRAMM - ODER TEXT - FILES

Dieses Kapitel vermittelt die notwendigen Kenntnisse, um ein Programm- oder

Text-File erzeugen oder ausgeben zu können.

STRUKTUR EINES PROGRAMMES

Ein BASIC-Programm besteht aus einer Folge von Zeilen (Anweisungen ge-

nannt). Jede Programmzeile muß eine Zeilennummer und mindestens ein BASIC-

Schlüsselwort enthalten.

Mögliche Zusammensetzung einer BASIC-Programmzeile :

. Eine Zeilennummer

. Ein oder mehrere BASIC-Schlüsselwörter

. Einen oder mehrere Operatoren

. Einen oder mehrere Operanden

Die Zeilennummer : identifiziert jede Programmzeile. Sie setzt sich aus 4

Ziffern zusammen, wobei Nummern, die kleiner als 1000 sind mit führenden

Nullen ausgegeben werden.

Das BASIC-Schiüsselwort : gibt die Funktion der Anweisung an.

Die Operatoren : sind Symbole, die Operationen und Relationen zwischen den

Operanden kennzeichnen.

Die Operanden : können Konstante, Variable oder Ausdrücke sein.

Die letzte Zeile eines BASIC-Programmes muß die Anweisung END enthalten.

Beispiel eines BÄSIC - Programmes:

FILE BASIC

aa18 REM **= Beispiel fuer eın BASIC —- PTOJramm *#+%

8828 REM

8838 DCL 88R$

8846 DISP "RNFANGSWERT, ENDWERT, SCHRITTWEITE";
8858 INPUT A,B,C

BB6B DISP "AUSZUDRUCKENBER STRING";

80878 RKB R$

8888 FOR I=A TO B STEP C

8698 PRINT R$,L;

8188 NEXT I

a118 END

END OF LISTING

STRUKTUR EINES TEXT - FILES

Ein Text - File besteht aus einer Folge von Zeilen. Jede Zeile

besteht aus einer Zeilennummer, gefolgt von Zeichen aus dem

Zeichenvorrat des P6060 (siehe Anhang). Jede Zeile enthält

maximal 80 Zeichen (einschließlich der Zeilennummer).

Beispiel eines Text-Files:

TEXAT

AUTO

18 Beispiel fuer ein Textfıle
28

38 Fın beliebiger Text Wird Bit FZeilennunanern eıngegeben
“8 In der gleichen Hit wie bei Progrannrfıles " 59 Koennen Zeilen gesendert, gyeloescht oder hınzugefuegt werden

8 Wird beı Jer Au=g9abe als letzter Parameter des Befehles LIST 38 eın °'° zı gegeben. <so erfolgt der Ausdruck
99 dez Textes ohne Zeılennumsern,
188

116 Dıe Speicherung eines Textes auf einer Diskette erfolgt wie 128 beı Programmen mit dem Befehl SARUE 138 \
138 Ebenso wird eın auf Dıskett 1

“
e gyespeichertes Textfile i © 159 OLD ın den Hrbeiıtsspeicher gelzden " "it dem Befehl 160

"

Text-Files werden - um nur einige Beispiele zu nennen - für Sprachanalysen,

Aufbereitung von Dokumenten und zur Erstellung von kommerziellen und ad-

ministrativen Bibliotheken verwendet.

Text-Files können außerdem in der Programmierung verwendet werden :

1) Als sequentielle Datenfiles, die vom Programm gelesen werden können.

Die Zeilen dieses Text-Files können nur als Strings (von max. 80 Zeichen)

eingelesen werden, die auch die 4-stellige Zeilennummer enthalten.

2) Zur Erstellung von Programmen, Unterprogrammen oder zur Definition

von Funktionen, die als '""Quellenprogramme!! auf Disketten gespeichert

werden und später in eine ausführbare Form Übersetzt werden. (Siehe

die Anweisungen COMPILE und LINK.)

EINGABE EINES PROGRAMMES

(siehe auch Kapitel 7.12 : Struktur eines BASIC-Programmes).

Vorbereitung des Hauptspeichers

Befindet sich im Hauptspeicher bereits ein Programm oder Text-File und soll

ein neues Programm über die Tastatur eingegeben werden, so sind die Tasten

NEW und EOL. zu drücken,

Zeilennumerierung

Die Eingabe eines Programmes erfolgt Zeile für Zeile,

Die Zeilennummern (1-9999) sind sinnvollerweise in aufsteigender Reihenfolge

einzugeben, jedoch kann mit jeder beliebigen Nummer begonnen werden und in

beliebigen Abständen numeriert werden.

Lücken in der Zeilennumerierung erleichtern das spätere Einfügen von Zeilen.

Mit der Anweisung AUTO#F h. Zeilennr.] [, Abstand]

können Zeilennummern automatisch vorgegeben werden.

Standardwerte : 1, 19

Programmeingabe und Syntaxkontrolle

Jede Zeile wird durch Drücken der Taste (EOL_) abgeschlossen und sofort vom

System analysiert. Ist die Zeile syntaktisch korrekt (siehe Kap. 8), so wird

sie sofort übersetzt und in den Arbeitsspeicher übernommen.

Bei fehlerhafter Syntax wird die Zeile vom System nicht übernommen und auf

dem Display erscheint eine entsprechende Fehlermeldung (siehe Anhang).

Die fehlerhafte Zeile blieb im Tastaturpuffer gespeichert und kann mit der

Taste RECALL zur Korrektur ins Display zurückgeholt werden. Dabei zeigt

der Pointer auf eine der möglichen Fehlerstellen. Nach der Korrektur kann

die Zeile mit der Taste (EOL.) in den Arbeitsspeicher übernommen werden.

EINGABE EINES TEXTFILES

Ein Textfile kann nur eingegeben werden, wenn vorher die Anweisung TEXT

(EOL.) erfolgte. Auch ein Textfile muß zeilenweise eingegeben werden, wobei

die Zeilennumerierung wie unter 9.3.2 beschrieben erfolgt. Jede Zeile wird

durch Drücken der Taste (EOL) dem Arbeitsspeicher übergeben. Dabei erfolgt

keine syntaktische Kontrolle und Fehlermeldungen sind nicht möglich, da in

einer Textzeile alle ISO-Zeichen gemäß Anhang verwendet werden können.

9.6.2

SPEICHERN VON PROGRAMMEN ODER TEXTFILES AUF DISKETTEN

Wird der P6060 ausgeschaltet, so geht der Inhalt des Arbeitsspeichers ver-

loren. Deshalb ist es wichtig, Programme und Textfiles nach der Eingabe

möglichst rasch auf einer Diskette zu speichern. Sie werden dazu mit einem

Namen versehen. Eine neue Diskette muß für die Aufnahme von Bibliotheken

gemäß Kapitel 5 vorbereitet sein.

Die Anweisung SAVE name (genaues Format siehe Kap. 6.3 Systembefehle)

führt die gewünschte Speicherung auf der Diskette durch. Der Inhalt des Ar-

beitsspeichers bleibt unverändert.

Beispiel : SAVE U, TEST Speicherung des Inhaltes des

Arbeitsspeichers unter dem

Namen TEST 1 auf die Anwen-

derdiskette

KORREKTUR EINES PROGRAMMES (EDITING)

Hilfstasten und Befehle für das Editing

Die Funktion der für das Editing verwendbaren Tasten und Befehle wurde in

Kapitel I bzw. Kapitel 6 beschrieben.

Editing am Beispiel eines Programmes

Um die Technik des Editing besser zu verstehen, betrachten wir das folgende

Programm zur Lösung von quadratischen Gleichungen.

Im Beispiel sind die wesentlichsten Punkte am linken Rand mit

Nummern gekennzeichnet:

NEW
RUTO#
18 DIZF "GIB DIE KOEFFIZIENTEN EIN";
ERROR 182
18 DISP "GIB DIE KOEFFIZIENTEN EIN";

28 INFUT R,B,C

3a DISP

“8 A1=RA

s8 A2=0

ARUTOS 238

s3sßB FRINT

“4a FRINT

56 FRINT "DIE GLEICHUNG:":AS"Xt2 +";BI"X +";C0;"= 0 HAT ©;
g&8 IF A=& THEN 238

"8 R=-B-(2*4]

Se bL=R#+R-CIA

3a =1=%2=R

186 IF B>B THEN 210

110 IF b<@ THEN 168

128 PRINT "GLEICHE LOESUNGEN"

138 PRINT

134 PRINT "X1=22=",%1

sa GOTO 398

E=SOR{-DI

PRINT "KOMPLEXE LOESUNGEN"

PRINT

GOTO 398

bD=SQOR CD)

»1=%X1-D

A2=MZ+D

PRINT "ZWEI LOESUNGEN"
PRINT

FRINT "%1=";31;" K2=")X2

GOTO 298

IF B=8 THEN 3498

*1=-[L-B

FRINT "EINE LOESUNG"
FRIHT

r
a
m

h
s
h
ö
t
ö

N

D
D

a.

w
i

M
i
n

B
l

R
a

d
i
r

he
‘

E
n

u

DE
N

a

En

ES
 Eu

 a
 B

E
ES

 B
ar
Zo

e B
ar
EB

SR

26
 E

u
Re

za PRINT "A1=",X1

29 GOTD 398

“9 IF C=8 THEN 338

8 FEINT "KEINE LOESUNG"

c# PRINT

‘& GOTO 396
SE PEINT "EINE UNBESTIMMTE LOESUNG"
aa GISP "EINE ANDERE GLEICHUNG";

423 FER A

“a IF FRINHT$S<>"NEIN" THEN 18
EFRÜÖR 113

“1a IF R${>''NEIN' THEN 18
“za END

FRINT "=1 - i#11="; 815 "-1",D:" X2 + ixl2=";X2; i'";D

Man gibt die Anweisung NEW ein, da sich im Hauptspeicher

bereits ein Programm befindet.

Man gibt die Anweisung AUTO#ein, die eine automatische

Zeilennumer ierung mit einem Abstand von 10 beginnend bei

10 bewirkt. Auf dem Display wird die 10 angezeigt.

Das System meldet im Display einen syntaktischen Fehler

(siehe Anhang). Das Schlüsselwort DISP wurde nicht kor-

rekt eingegeben. Drückt man die Taste RECALL , so er-

scheint im Display:

10DI ZP "GIB DIE KOEFFIZIENTEN EIN!
o

Drückt man die Taste so erscheint im Display

10 DIZ_P "GIB DIE KOEFFIZIENTEN EIN!

Drückt man CHAR DELETE, so erscheint im Display

10 DI_P NG1B DIE KOEFFIZIENTEN EIN!

Nach drücken von S erscheint im Display

10 DIS_P "GIB DIE KOEFFIZIENTEN EIN!

Mit EOL wird die Korrektur der Zeile beendet.

Die Zeile wurde angenommen und in den Arbeitsspeicher über -

tragen. Jetzt kann mit der Eingabe der nächsten Anweisung

fortgefahren werden. In der Zeile 30 hat der Operator DISP

und in Zeile 40 und 50 A1=0bzw. A2=0 eingetastet. Diese

beiden Zeilen sollen überschrieben werden. Man drückt

CLEAR

RECALL

gelöscht und der Pointer auf die erste Position gesetzt. Die

mit SHIFT und die Zeile im Tastatur -Puffer wird

automatische Zeilennumerierung wurde unterbrochen.

Man drückt AUTO#30 und EOL und am Display wird die Num-

mer 30 angezeigt; die automatische Zeilennumerierung ist wie-

der hergestellt. Nun können die neuen Zeilen eingegeben werden

und die bisherigen Zeilen 30 bis 50 werden überschrieben.

Die Anweisung END wurde eingegeben.

CLEAR

RECALL

numerierung ist unterbrochen. Das System ist im Command-

Man drückt mit SHIFT : die automatische Zeilen-

Mode: Man kann nun jeden beliebigen Befehl eingeben. Das

Programm liegt in ausführbarer Form vor und befindet sich

im Arbeitsspeicher; es kann nun ausgeführt oder geändert

werden.

Es soll nachträglich noch die Anweisung für eine Zeilenschal-

tung eingefügt werden. Die Eingabe lautet:

385 PRINT EOL

Diese Zeile wird im Arbeitsspeicher zwischen der Zeile:.380

und der Zeile 390 eingefügt.

Drückt man RES (Resequence), so werden die Zeilen des

Programmes nochmals durchnumeriert mit einem Abstand

von 10 beginnend mit 10. Wie man in folgender Listung er-

sieht, werden alle Sprungziele ebenfalls automatisch neu Nnu-

meriert.

Listen des Programmes:
r
m

e
e

m
W

m

t
h
,

sata EISP "GIB DIE KOEFFIZIENTEN EIN";

aezua INFUT R,EB,C

aaga PREINT

säsea PFINT

agsA PRINT "DIE GLEICHUNG: "A; 'AtT2 +",B; "X +",C;"=

naecea IF A=@ THEN 238

zart LET R=-B-LZ#+R]

2ASE LET D=R#R-C/R

a3a LET »*1=X2=R
Ei IF D:& THEN 218 en

7"

«119 IF Dita THEN 169

a1za FRINT "GLEICHE LOESUNGEN"

o
n

v
u
 FREINT

FRINT "EZ1=52=":81

SITDO +80

N
E
)

u
n

ch
e

mu
ch

uc
h

a

m
i
n
o
r
)

M
i
n

e
d

h
i
a
e

B
l

M
i
n

R
I

m
o
m

Tasten LIST und EOL drücken

8 HAT ';

SIER LET D=5SGRC-DI

ailrYa FRINT "KONFLEXE LOESUNGEN'

a13A FRINT

gi PRINT "31 - ı*11=",81,"-ı1")b,'" A2 + ix1l2=",%2; "+ 1'";D

azea GUOTO sad
zig LET D=SQORCO)

n
i

I
R

S2za LET %1=-41-D m,

ch
e

o
n

er

wo
 n wu

r 2OTO +29

PEINT "EINE UNEESTIMMTE LOESUNG"
FEIHT

DISP "EINE AHNbERE GLEICHUNG":

m
.

—
n

a

 ı

az2M LET A2=RZ+D

as FRINT "ZWEI LOESUNGEN'"

a1zS5a PRINT

gZeEE FRINT "K1=",M1:" K2="82

Bira GOTO +94
a.ca IF B=8 THEN 3480

R2S0 LET =1=-[C-E

gzcda FREINT "EINE LOESUNG"

az12 FRINT

gzza FRINT "Je.

4220 LOTTO +30

Dza4a IF C=8 THEN 320

4259 FRIMT "KEINE LOESUNG"

GZbRA FRINT

23

ET

i
I
R

.

he

u

u

#4 la FEE ORF

442 IF A$Z "NEIN" THEN 1

4430 EHD

END OF LISTING

,

Ausführung des Programmes:

GIB DIE KOEFFIZIENTEN EIN?
@,2,9

DIE GLEICHUNG a xt2 + 3% + 9 = B HAT EINE LOESUNG

x1=-3

EINE ANDERE GLEICHUNG?

JA

GIB DIE KOEFFIZIENTEN EIN?

,7.8

DIE GLEICHUNG 93 tZ + 3% +8 = @ HAT ZUEI LÖOESUNGEN

x1=2-.3322332333 52=-1.BA8@0B8E-12

EINE ANDERE GLEICHUNG?

JR

WIE DIE KOÖEFFIZIENTEN EIN?

0.0,0

DIE GLEICHUNG. 8 #12 + a A + a = 8 HAT EINE UNBESTIMNTE LOESUNG

EINE ANbERE GLEICHUNG?

JA

GIE DIE KOEFFIZIENTEN EIN?

1.2.3

DIE GLEICHUNG: 1 =t2 + 2% +3 = a HAT KOMPLEKE LOESUNGEN

“1 - ı*11=-1 -ı 1.41s2136 AZ + ı#l2=-1 + ı 1.43142136

EINE ANDERE GLEICHUNG?

NEIH

Bemerkung: Man beachte, daß auch bei Zuweisungen ohne das

Schlüsselwort LET dieses im Listing erscheint.

9.6.3 Editing im Display

Das Editing gilt auch für die Programmzeilen im Display unter

Zuhilfenahme der Tasten (3) und, (+) der Anweisung

FETCH.

Erhält eine Zeile im Display durch das Editing mehr als 76 Zei-

chen, so wird das Ausgabeformat durch Unterdrückung nicht

signifikanter Leerstellen beim Listen verändert, da die Zeilen-

nummer immer mit führenden Nullen auf 4 Stellen aufgefüllt wird.

Beispiel zum Editing im Display:

Nach FETCH 120 EOL

erscheint im Display: „120 DISP

Diese Anweisung soll in PRINT abgeändert werden:

Man drückt SHIFT und

Im Display erscheint:

120 DISP d.h. der Pointer wurde ans Anweisungsende verschoben
oO

Drückt man viermal CHAR.DELETE, so wird DISP gelöscht,

PRINT
Drückt man SHIFT A ‚ Im Display erscheint: 120 PRINT

Nach der Eingabe von EOL. wird im Programm die vorige Zeile

durch die eben eingegebene ersetzt.

Eine kürzere Korrekturmöglichkeit besteht in diesem Falle auch

darin, daß einfach neu die Zeile 120 PRINT eingegeben wird. Durch

Drücken von EOL. wirddie alte Zeile 120 im Arbeitsspeicher durch

die neue überschrieben.

F'achträgliches Löschen einer Zeile im Programm:

SHIFT DEL.LINE 280 EOl_

Zeile 280 im Arbeitsspeicher ist gelöscht.

10. DEBUGGING - MODE

10.1

10.2

10.3

10.4

ERREICHEN UND VERLASSEN DES DEBUGGING

OPERATIONEN IM DEBUGGING- MODE

10.2.1 Behebbare Fehler

10.2.2 Abfrage von Variablenwerten

10.2.3 Wertzuweisungen an Variable

RECHNEN IM DEBUGGING

START, STOP ANWEISUNG IM DEBUGGING

Seite

10.1

10.2

10.2

10.5

10.8

10.9

10.10

10.

10.1

DEBUGGING - MODE

Der DEBUGGING - MODE dient zum Testen und Prüfen von Programmen und

Programmteilen. Treten während der Ausführung eines Programmes nicht be-

hebbare Fehler auf, so ermöglicht der Übergang in den DEBUGGING-MODE

die Abfrage von Variablenwerten sowie Berechnungen zur Ermittlung der

Fehlerursache. Der DEBUGGING-MODE kann in diesem Falle nur durch

Drücken der Taste BREAK und somit durch Übergang in den COMMAND-MODE

verlassen werden. In allen anderen Fällen sind foigende Operationen verfügbar :!

- Korrektur behebbarer Fehler

- Abfrage von Variablenwerten

- Zuweisung neuer Werte an Variable

- Zeilenweise Abarbeitung eines Programmes im DEBUGGING-MODE

- Neubelegung der Funktionstasten

- Fortsetzung des Programmlaufes in einer beliebigen Zeile

- Anweisung zum STOP des Programmlaufes in einer beliebigen Zeile

Daneben besteht die Möglichkeit,mit -— vom Benutzer definierten - ein- oder

mehrzeiligen Funktionen genauso wie mit den Standardfunktionen zu arbeiten.

ERREICHEN UND VERLASSEN DES DEBUGGING - MODE

Befindet sich das System in den Betriebsarten COMMAND-MODE oder

CALCULATOR-MODE, so erreicht man den DEBUGGING-MODE durch Aus-

führung des Befehles PREPARE.

Befindet sich das System im RUNNING-MODE, wird der DEBUGGING-MODE

erreicht durch

- Ausführung eines (programmierten) STOP-Statements.

- Drücken der Konsol-Taste STEP.

- Auffinden eines behebbaren Fehlers durch das System während eines

Programmlaufes,

- Ausführung eines zuvor eingegebenen STOP - Zeilennummer - Befehles.

-— Auftreten eines nicht behebbaren Fehlers,

Erwartet das System eine Tastatureingabe, erreicht man den DEBUGGING-

MODE durch Drücken der STEP-Taste.

10.1

10.2

10.2.1

Der DEBUGGING-MODE wird verlassen durch :

Drücken der Konsoltaste BREAK. In diesem Fall wird der COMMAND-MODE

erreicht.

Drücken der Konsoltaste CONTINUE. In diesem Fall wird die Ausführung

des Programmes fortgesetzt.

Eingabe des Befehles START Zeilennummer. In diesem Fall wird die Aus-

führung des Programmes bei der angegebenen Zeilennummer fortgesetzt. Es

ist vom Anwender sicherzustellen, daß eine Ausführung des Programmes ab

der angegebenen Zeilennummer sinnvoll ist.

Durch Drücken der Taste STEP. Es wird genau ein Statement ausgeführt

und dann wieder in den DEBUGGING-MODE zurückgekehrt. Hierdurch wird

eine Abarbeitung des Programmes im Einzelschrittverfahren ermöglicht.

Durch Drücken der Taste CONTINUE. Die Ausführung des Programmes wird

fortgesetzt. Wurde während der Ausführung eines Programmes eine manuelle

Eingabe durch STEP unterbrochen, so besteht die Möglichkeit, Kontrolli-

rechnungen durchzuführen. Nach Drücken von CONTINUE muß die vom

System erwartete Eingabe getätigt werden.

Durch Drücken der Taste BREAK nach Auftreten eines nicht behebbaren

Fehlers, wie zu Beginn des Kapitels schon beschrieben.

OPERATIONEN IM DEBUGGING - MODE

Behebbare Fehler

Unter behebbaren Fehlern verstehen wir solche, die während des Programm-

laufes korrigiert werden können und nicht zum Abbruch eines Programmes

führen.

10.2

Beispiele solcher Fehler sind u.a.

- eine Variable soli verarbeitet werden, ohne daß ihr zuvor ein Wert zuge-

wiesen wurde,

- es soll die Quadratwurzel aus einer negativen Zahl gezogen werden,

eine singuläre Matrix soll invertiert werden (d.h. die Determinate ist Null),

- eine angesprochene IPSO-Einheit ist nicht eingeschaltet

- der für die Erzeugung eines Bildes beim Plotten vereinbarte Puffer kann

keine weiteren Punkte aufnehmen.

Der Benutzer hat die Möglichkeit, die Fehler durch explizite Wertzuweisungen

oder Änderungen zu beheben oder nur die Taste CONTINUE zu drücken. In

diesem Fall werden vom System Werte zugewiesen.

Die behebbaren Fehler sind in der Fehlerliste gesondert

angeführt (Fehler 1 bis Fehler 16); zusätzlich sind dort

die Werte angegeben, die vom System als Standardwerte

zugewiesen werden.

Beispiel:

NEW Eingabe eines neuen Programmes

10 X=\YA2

20 PRINT

30 PRINT X

40 END

RUN

ERROR 1 IN LINE I1o Im Display erscheint die Meldung,

daß ein behebbarer Fehler aufge-

treten ist, da die Variable Y nicht

definiert ist.

Möglichkeiten:

1) CONTINUE

d Es wird der Variablen Y der Wert

ß zugewiesen und $t2 = B ausgedruckt.

2) Wertzuweisung durch den Benutzer

Y=2 Direkte Wertzuweisung an Y, START 10

START 10 bewirkt die Fortsetzung des Programmlaufes,

4 es wird der Wert 212 =4 ausgegeben.

10.4

10.2.2 Abfrage von Variablenwerten

Werte von Variablen können dadurch abgefragt werden,

daß der Name der Variablen eingegeben wird und anschlies-

send die Taste EOL gedrückt wird.

Beispiel:

NEW

10 A»=3

20 B=-At2

30C=-Bt2

40 STOP

50 END

RUN

STOP IN LINE 40

A FOL.

3

C FOL.

81

Eingabe eines neuen Programmes

Start des Programmlaufes

Durch das STOP-Statement wird das

System in die Betriebsart des DEBUGGING-

MODES versetzt.

Es wird der Wert von A abgefragt

Es wird der Wert ausgegeben

Es wird der Wert der Variablen C abge-

fragt und ausgegeben

Genau wie im CALCULATOR-MODE erfolgt die Ausgabe der

Werte über Display, ein zusätzlicher Ausdruck erfolgt, wenn

die Taste PRINT ALL. aktiviert ist.

10.5

Auch das Ausgabeformat, d.h. die Anzahl der Dezimal-

stellen etc. ist dasselbe wie im CALCULATOR-MODE

und wird durch die Stellung des Dezimalstellenrades be-

stimmt. Eine genaue Beschreibung ist im Kapitel 11 ent-

halten.

Neben den Werten der numerischen Variablen können auch

die Werte alphanumerischer Variablen abgefragt werden.

Beispiel:

NEW

10 AZ = "TEST

20 BS = NAUSGABE!

30 C3= A3Z+B3

40 STOP

50 END

RUN

STOP IN LINE 40

AS EOL

TEST

ce EOL

TESTAUSGÄABE

Eingabe eines neuen Progr ammes

In Zeile 40 steht eine STOP - An-

weisung, das System geht in die

Betriebsart DEBUGGING über.

Die Variablenwerte werden abge-

fragt und ausgegeben

Zu beachten ist jedoch folgendes: Ein Programm wird

zeilenweise abgearbeitet, daher können nur Variable

abgefragt werden, die zu diesem Zeitpunkt bereits

einen definierten Wert haben, da sonst eine Fehler-

meldung erfolgt. Ein Beispiel soli diesen Sachverhalt

erläutern;

NEW

10 STOP

20 A=5

30 END

RUN

STOP IN LINE 10

A FOL

p
ERROR 1

Eingabe eines neuen Programmes

Ausführung des STOP - Statements,

Übergang in den DEBUGGING - MODE

Es erscheint kurz die Zahl @ auf dem

Display und anschließend die Fehlermeldung

ERROR 1, da die Variable A zur Zeit der

Ausführung des STOP - Statements noch

keine Werte zugewiesen bekommen hat. Be-

vor die Wertzuweisung erfolgen kann oder

die Taste CONTINUE gedrückt werden

kann, muß zusätzlich die Fehlermeldung

ERROR 1 gelöscht werden. Dies geschieht

durch Drücken der Tasten SHIFT und CLEAR,

Nach Abfrage der Variablenwerte wird der Programmlauf fort-

gesetzt durch Drücken der Taste CONTINUE u.s.w.

10.7

10.2.3 Wertzuweisung an Variable

Die Wertzuweisung an Variable geschieht durch folgende

Anweisung:

Variablenname = num. Ausdruck EOL.

Wertzuweisungen können an numerische und alphanumerische

Variable erfolgen. Diese Variablen können globale, im Pro-

gramm verwendete Variable sein, oder die lokalen Variablen

&,$0 - $2 des CALCULATOR-MODE sein. Werte die im

DEBUGGING an globale Variable zugewiesen werden, bleiben

nach Wiederaufnahme des Programmlaufes durch CONTINUE

etc. erhalten. Jede im Programm bereits definierte Variable

sowie alle Funktionen können im numerischen Ausdruck ver -

wendet werden.

Beispiel:

NEW Eingabe eines neuen Programmes

10A=3

20 B2 = "TEST!

30 PRINT A; B$&

40 STOP

50 PRINT A; B$&

60 END

RUN

3 TEST

STOP IN LINE 40

A = 100 EOL

BS = "PROGRAMM! EOL

CONTINUE

100 PROGRAMM

10.8

10.3 RECHNEN IM DEBUGGING

Der DEBUGGING-MODE umfaßt alle Möglichkeiten, die auch im CALCULATOR-

MODE zur Verfügung stehen.

Auch das Eingabeformat einer Anweisung ist das gleiche wie dort (siehe

Kapitel 11).

Insbesondere gilt :

- es kann in Neugrad, Altgrad oder Bogenmaß gerechnet werden

- die Funktionstasten können im DEBUGGING belegt werden

- die Variablen &, dp, di und $2 stehen zur Verfügung

Die entsprechenden Anweisungen sind die gleichen wie im CALCULATOR-

MODE, es ist aber zu beachten, daß bei Fortsetzung des Programmlaufs nur

noch im Bogenmaß gerechnet wird !

Zusätzlich zu den Möglichkeiten für das manuelle Rechnen sind folgende Opera-

tionen möglich :

- Verwendung aller im BASIC-Programm angeführten Variablen und nicht nur

der Variablen®, By, 61 und & 2. Beide Arten können gemischt verwendet

werden

- Verwendung von Variablenwerten, die im Programm bestimmt wurden

- Verwendung von Funktionen, die im Programm durch DEFFN oder

DEFFN / FNEND definiert sind

Beispiel I : (Bestimmung des Maximums zweier Zahlen)

NEW Eingabe eines neuen Programmes

10 DEFFNA (X, Y)

20 IFX=\Y THEN 50

30 FN®=Y

40 GOTO 60

50 FN®#=x

60 FNEND
10.9

10.4

PRE Es wird die Preexecution durchgeführt und das System

befindet sich im DEBUGGING-MODE.

FNA (50,20) EOL Es wird die Funktion FNA als Standardfunktion ver-

50 wendet.

100 EOL Der lokalen Variablen ®wird der Wert 100,

$ g = 200 EOL der lokalen Variablen $ß wird der Wert 200 zugewiesen.

FNA (BB, EP) EOL Es wird.der Wert der Funktion FNA abgefragt.

200

START, STOP ANWEISUNGEN IM DEBUGGING

Die Anweisung STOP In EOL

"nl! Zeilennummer

bewirkt, daß der Programmlauf unmittelbar vor Ausführung des Statements

mit der Zeilennummer !iIn! unterbrochen wird. Durch diese Anweisung wird

der DEBUGGING-MODE aber nicht verlassen, dazu ist wieder die Taste

CONTINUE oder STEP zu drücken oder eine Anweisung START In einzugeben.

10.10

Die DEBUGGING-Anweisung STOP In hat die gleiche Wirkung wie das BASIC-

Statement

In STOP

Durch die Kombination einer START- mit einer STOP-Anweisung Ist es mög-

lich, einzelne Programmteile isoliert auszuführen.

STOP Ini EOL_

START In 2 EOL

Es wird das Programmstück zwischen den Zeilennummern In 2 (inclusive) und

In 1 (exclusive) ausgeführt.

10.11

11. CALCULATOR - MODE

1.1

11.2

11.3

11.4

11.6

11.7

EINLEITUNG

ERREICHEN DES CALCULATOR - MODES

FESTLEGEN DES ARGUMENT - TYPS

TRIGONOMETRISCHER FUNKTIONEN

ANWEISUNG DER BELEGUNG DER FUNKTIONS-

TASTEN

LOKALE VARIABLE UND NUMERISCHE

AUSDRÜCKE

11.5.1 Zahlendarstellung

11.5.2 Standardfunktionen

VERARBEITUNG DER ANWEISUNG

AUSGABE DER ERGEBNISSE

Seite

11.1

11.1

11.2

11.3

11.7

11.7

11.8

11.8

11.

11.

CALCULATOR - MODE
m un am ma an mb em em ame mn mE am mu ER rum ri emme win ame rien
= u = 2 2 5 = m ne mn mn an Mare ann

EINLEITUNG

In der Betriebsart CALCULATOR-MODE kann das System P6060 als

Tischrechner verwendet werden, ohne daß Programme und Text-

files, die sich im Arbeitsspeicher befinden, dadurch berührt wer-

den. Im einzelnen lassen sich numerische Ausdrücke berechnen,

die aus numerischen Konstanten, Standar dfunktionen und/oder

den gespeicherten Werten zuvor durchgeführter Rechenoper ationen

bestehen.

An Standar dfunktionen stehen dabei die Funktionen zur Verfügung,

die auch in einem Basic-Programm verwendet werden können,

Für die trigonometrischen Funktionen kann zusätzlich festgelegt

wer den, ob mit dem Bogenmaß, mit ÄAltgrad oder mit Neugr ad

gerechnet werden soll. Das Ergebnis einer Operation läßt sich

abspeichern, entweder als einzelner Wert oder summiert zu den

gespeicherten Werten vorausgegangener Operationen.

Das Ergebnis einer Operation wird im Display angezeigt, es kann

aber auch gedruckt werden. Dazu ist zuvor die Taste PRINT ALL

zu drücken. Das Format, in dem die Werte ausgegeben werden,

wird bestimmt durch das Dezimaistellenrad auf der Konsole.

Ebenso wie durch ein Basic-Programm lassen sich die Funktions-

tasten auch im CALCULATOR-MODE belegen, die Standardbelegung

kann danach wieder durch den Befehl LDKEYS erreicht werden.

ERREICHEN DES CALCULATOR MODES

Der CALCULATOR-MODE wird erreicht durch Drücken der Taste

CALC
auf der Konsole, der CALCULATOR-MODE wird verlassen

MODE

durch nochmaliges Drücken dieser Taste oder aber durch Eingabe

eines Systembefehls,

11.1

11.3

- Drücken der Taste

Im einzelnen sind folgende Eingaben zulässig:

CALC ; der CALCULATOR-MODE wird verlassen
MODE

Eingabe eines System-Befehles : der CALCULATOR-MODE wird verlassen

und der Befehl wird durchgeführt

- Eingabe einer CALCULATOR-MODE-Anweisung :

Anweisung, daß bei der Berechnung trigonometrischer Funktionen das

Argument als Bogenmaß, Alt- oder Neugrad interpretiert werden soll

Anweisung zur Belegung der Funktionstasten

Anweisung zur Berechnung eines numerischen Ausdrucks

Nicht akzeptiert werden :

- Basic-Statements

- Zeilennummern vor einer der oben angeführten Anweisungen

- Variablennamen, die von d , d9, di oder ® 2 verschieden sind

Alle Anweisungen im CALCULATOR - MODE werden durch Drücken von EOL

bzw. der Taste SUM abgeschlossen (außer Drücken der Taste CALC-MODE).

FESTLEGEN DES ARGUMENT-TYPS TRIGONOMETRISCHER FUNKTIONEN

Die Festlegung, ob im Bogenmaß, in Altgrad oder in Neugrad gearbeitet wird,

geschieht durch eine der folgenden Anweisungen :

- SRAD es wird im Bogenmaß gerechnet

- SDEG es wird in Altgrad gerechnet

- SGRAD es wird in Neugrad gerechnet

Nach Einschalten des CALCULATOR-MODES wird !!SRAD! angenommen, d.h.

die Argumente trigonometrischer Funktionen werden als Bogenmaß interprtiert.

Bemerkung :

Beispiel:

ANWEISUNGEN ZUR BELEGUNG DER FUNKTIONSTASTEN

Das Format der Anweisung ist das folgende :

FKEY4#n, String-Konstante

- nl: positive ganze Zahl, 1I@n 16

- NString-Konstante!! : beliebige Folge von ISO-Zeichen

Wie in der Basic-Anweisung "!"FKEY!'" kann auch hier ein EOL_ durch einen

Doppelpunkt am Ende des Strings codiert werden, so daß das Drücken der

EOl_ - Taste entfällt, wenn die Funktionstaste gedrückt ist.

Die FKEY-Anweisung darf keine Zeilennummer enthalten. Die ursprüngliche

Standardbelegung wird durch Eingabe des Befehls _LDKEYS erreicht. Dabei

wird der CALCULATOR-MODE verlassen und der COMMAND-MODE erreicht.

Die Standardbelegung der Funktionstasten sei :

Fi : STANDARD

F2 : BELEGUNG

CAL.C-MODE

FKEY#t, CALCULATOR-MODE

Fi F2

CALCULATOR-MODE-BELEGUNG Die modifizierte Belegung wird ange-

zeigt.

FKEY#ı ; ı®1: Nach Drücken der Funktionstaste wird

Pl der String ı* als num. Ausdruck

interpretiert, ausgerechnet das Er-

1. 0000000000000 gebnis angezeigt.

Beispiel :

Nach der Anweisung "SDEG! wird in Altgrad gerechnet, dabei sind die

Winkel in dezimaler Form, z.B. 257 Grad (und nicht in der Form Grad,

Minute, Sekunde) einzugeben. Nach der Anweisung "SGRAD! wird in Neugrad

gerechnet, auch hier müssen Winkel in dezimaler Form eingegeben werden.

Die Verwendung von Alt- oder Neugrad im CALCULATOR-MODE hat keinen

Einfluß auf die Interpretation der Argumente trigonometrischer Funktionen in

einem Basic-Programm, dort wird nur im Bogenmaß gerechnet.

Für den Zusammenhang von Altgrad, Neugrad und Bogenmaß gilt :

100 Neugrad = 90 Altgrad = /2

CALC MODE

cos (PI)

-1. 0000000000000

SDEG

COS (180)

-1. 0000000000000

SGRAD

COS (200)

-1. 0000000000000

SRAD

COS (PI)

-1. 0000000000000

11.4

- num. - exp. SUM :

Der Wert des numerischen Ausdrucks

wird berechnet und zum aktuellen Wert

der Variablen $& addiert.

- RESULT n = num. exp. EOL

Der Wert des numerischen Ausdrucks

wird berechnet und der Variablen$® n

zugewiesen.

- RESULT n = num. exp. SUM

Der Wert des Ausdrucks wird berechnet

und der Variablen $ n zugewiesen. Zu-

sätzlich wird der Wert zum aktuellen Wert

der Variablen $ addiert.

Wird für !!n!! kein Wert angegeben:

RESULT = num. exp. SUM,

wird der Wert des Ausdrucks zum Wert von ö addiert.

Die Variablen werden durch eine der folgenden Anweisungen neu

initialisiert, d.h. es wird ihnen der Wert ß zugewiesen:

- 9 EOL. : es wird $ = @ gesetzt

- 0 RESULT n=g@ EOL : es wird die Variable $ n = d gesetzt

- CALC MODE CALC MODE durch Aus- und Einschalten des

CALCULATOR-MODE werden alle

lokalen Variablen auf gesetzt.

Numerische Ausdrücke im CALCULATOR-MODE können enthalten :

- numerische Konstante

- lokale Variable

- Standardfunktion (SIN,)

- Operationszeichen (+, *, -, /,t)

Die Reihenfolge und Priorität in der Berechnung ist die gleiche wie

in einem BASIC - Programm, sie können durch Setzen von Klammern

beeinflußt werden.

11.5

11.5

LDKEYS

FI F2

STANDARDBELEGUNG Die Standar dbelegung wird

wieder hergestellt und ange-

zeigt. Der CALCULATOR-MODE

wird verlassen.

Bemerkung:

Die Summe der Länge der Strings, mit denen die Funktionstasten

belegt sind, darf 238 nicht überschreiten. Das gleiche gilt für die

Länge der Strings der Standard-Belegung.

LOKALE VARIABLE UND NUMERISCHE AUSDRÜCKE

Eine Anweisung zur Berechnung numerischer Ausdrücke hat fol-

gende Form:

num. Ausdruck

$& [n]= num. Ausdruck

- ng; Das Symbol ist der Taste RESULT zugeordnet

- !Inum. Ausdruck!! : numerischer Ausdruck

_ Ip » eine der Zahlen 0, 1 oder 2

8, 59, $ 1, $ 2 sind die Namen lokaler Variabler.

Diesen Variablen können die Resultate der im CALCULATOR-MODE

durchgeführten Rechnungen als Wert zugewiesen werden.

Eine Anweisung im CAL-CULATOR-MODE kann durch die

Taste EOL. oder SUM abgeschlossen werden, damit er-

geben sich 4 mögliche Formate :

- num. - expr. FOL

der Wert des Ausdrucks !Inum. -expr. !!

wird berechnet und der lokalen Variablen

$ zugewiesen.

11.5.1

11.5.2

Zahlendarstellung

Wie in einem Basic-Programm werden numerische Werte auch

im CALCULATOR-MODE intern im Gleitkomma-Format (halblogarithmi-

sche Darstellung) dargestellt. Die Rechnung und Darstellung er -

folgt in doppelter Genauigkeit. Jeder Zahl Z wird eine Mantisse m

und ein Exponent n zugeordnet:

Z =m-10"

Im! : 13-stellige Mantisse der Form

xX.VYVVVYYYYYYYYY

IExX<29, 0<vY£9

ni! ganze Zahl, -99 £n £99

Eine Zahl kann als ganze Zahl oder als Dezimalzahl eingegeben

werden; sie darf bis zu 13 Ziffern (ohne Dezimalpunkt und Vorzeichen)

enthalten:

248 -5 1234. 5678901 23

Eine weitere Form der Eingabe ist das Gleitkomma-Format !

nEa

In! Dezimalzahl mit maximal 13 Ziffern

all. Ganze Zahl zwischen -98 und +99

5.698E2 -678. 3456E4 2E -27

Da alle eingegebenen Zahlen durch das System in die halblogarithmische

Darstellung über führt werden, ist die gewählte Eingabeform für die Be-

rechnung unerheblich.

Standar dfunktionen

Die im CALCULATOR-MODE verwendbaren Anweisungen sind die gleichen

wie in der Programmierung mit BASIC . Eine Liste der Funktionen

ist in Kapitel 8 angegeben.

11.7

11.

VERARBEITUNG DER ANWEISUNGEN

Wird die Eingabe einer Anweisung durch EOL_ oder SUM abge-

schlossen, wird die Anweisung syntaktisch überprüft. Ein even-

tueller Syntax-Fehler wird angezeigt, die Tastatur ist mit Aus-

nahme der Tasten RECALL. und CLEAR gesperrt.

Durch Drücken der Taste RECALL wird die fehlerhafte Anweisung

im Display sichtbar, die Stellung des Printers gibt eine der mög-

lichen Fehlerpositionen an. Die Fehler können mit den Editing-

Routinen korrigiert werden. Die korrigierte Anweisung kann dann

wieder durch EOL. oder SUM eingegeben werden. Wird CLEAR

gedrückt, wird die fehlerhafte Anweisung gelöscht. Zur Ausführung

gelangan nur syntaktische korrekte Anweisungen.

AUSGABE DER ERGEBNISSE

Im Display sind sichtbar

- alle Eingaben

- alle Fehlermeldungen

- die Ergebnisse

Wird RESULT gedrückt, erscheint im Display das Zeichen !$!! als

Symbol der lokalen Variablen $.

Die Werte der lokalen Variablen können durch folgende Anweisungen

abgefragt werden:

„RESULT EOL : es wird der aktuelle Wert der Variablen $ aus-

gegeben, der Wert bleibt unverändert.

- RESULT nEOL : es wird der aktuelle Wert der Variablen en

ausgegeben, der Wert von d wird durch den Wert

von $ n überschrieben, der Wert von $ n bleibt

unveränden*t.

- RESULT n = RESULT n EOL : es wird der Wert von $ n ausgegeben,

der Wert aller Variablen (incl. $)

bleibt unverändert.

11.8

Das Format, in dem Zahlenwerte ausgegeben werden, wird bestimmt

durch die Stellung des Dezimalstellenrades auf der Konsole:

- Position @:

- Positionn;:

- Position Flt:

- Position St:

Der Wert wird 3erundet und ganzzahlig ausgegeben

Der Wert wird (gerundet) als Dezimalzahl mitn

Stellen nach dem Dezimalpunkt ausgegeben.

Der Wert wird in Gleitkomma-(halblogar ithmischer)

Darstellung ausgegeben

Der Wert wird im Standar dformat ausgegeben (siehe

Kapitel 8)

Hat der auszugebende Zahlenwert mehr als 16 Stellen (incl. der

Stellen für das Vorzeichen und den Dezimalpunkt), erfolgt die Aus-

gabe im Standardformat unabhängig von der aktuellen Stellung des

Dezimalstellenrades.

11.9

12. PROGRAMMIERUNG PERIPHERER EINHEITEN

12.1 ALLGEMEINES

12.1.1 Logische Komponenten für den Datentransfer

12.1.2 Periphere Einheiten

12.1.3 1/O-Kanal

12.1.3.1 Puffer

12.1.3.2 Zustandsregister

12.1.3.3 Kanalsteuerung

12.2 ANWENDERPROGRAMM

12.3 1/O-KANAL.

12.3.1 1/O nicht überlappt, Fehlerhandling durch das

System

12.3.2 I/O überlappt, Fehlerhandling durch das System

12.3.3 I/O überlappt, Fehlerhandling durch das

Programm

12.4 BASIC - ANWEISUNGEN

12.5 PERIPHERE IPSO- EINHEITEN

12.5.1 BASIC-Anweisungen für den Kanal IPSO

12.5.2 Steuerung IPSO- peripherer Einheiten

12.5.2.1 Lochstreifenstanzer PN2O

12.5.2.2 Lochstreifenleser LN2O

12.5.2.3 Magnetbandkassetteneinheit CTU 1010

bzw. CTU1000, CTU1050 bzw. CTD

12.5.2.4 Schreibmaschine EDITOR 4 st

12.5.2.5 Steuerbefehle

12.5.2.6 Prüfbefehle

12.5.3 Schnelldrucker PR1220, PR1230, PR1240

12.6 YO - KANAL TASTATUR

ef, ®
Sr 6 ET,

» sr Eu per

Seite

12.1

12.1

12.2

12.5

12.6

12.6

12.6

12.7

12.11

12.12

12.13

12.14

12.17

12.31

12.33

12.36

12.36

12. 36

12. 36

12.37

12.38

12.40

12.42

- u a et
ir we En
en

12.1.1

PROGRAMMIERUNG PERIPHERER EINHEITEN
wma mann ame na a m Amen ann Ber, PR

ALLGEMEINES

Dieses Kapitel beschreibt die logischen Komponenten (Anwenderprogramm,

Input /Output-Kanal und periphere Einheit), die den Datenaustausch zwischen

der CPU der P6060 und der externen Einheit ermöglichen. Ohne auf spezielle

periphere Einheiten einzugehen, werden zunächst die grundlegenden Funktionen

und Operationen erläutert.

Dies vermittelt dem Leser die Arbeitsweise, das Konzept für die Program-

mierung der Peripherie und erleichtert das Verständnis der BASIC-Anwei -

sungen.

Logische Komponenten für den Datentransfer

Die logischen Komponenten, die an einem Datenaustausch beteiligt sind, sind:

- das Anwenderprogramm im Arbeitsspeicher

- der Input/Output-Kanal {1/O-Kanal)

- die periphere Einheit

Anwender- Dat a Daten Peripher wender aten |/O-Kanal a erip e

Progranım Steuer- Steuer- Einheit

befehle befehle

4 Daten s Daten

Zustands- Zustands-

meldungen meldungen

Bild 12.1

Jede der aufgeführten Komponenten führt bestimmte F’unktionen aus, von denen

nur die grundlegenden beschrieben werden sollen.

12.1

12.1.2

- Das Anwenderprogramm teilt dem System durch BASIC-Anweisungen mit,

welche I/O-Operationen durchgeführt werden sollen, in welcher Folge und

auf welche Art und Weise.

- Der I/O-Kanal führt die im Programm festgelegten I/O-Operationen durch.

Die periphere Einheit empfängt die durch den I/O-Kanal übermittelten Daten

oder sendet an die Zentraleinheit (CPU) die vom Programm verlangten Daten.

Ferner sendet sie der CPU Zustands- und Rückmeldungen.

In den folgenden Abschnitten werden die einzelnen logischen Komponenten be-

schrieben. Begonnen wird mit der Beschreibung der peripheren Einheit, dann

des Anwenderprogramms und schließlich des I/O-Kanals. Diese Reihenfolge der

Darstellung läßt die genauen Zusammenhänge, das Zusammenspiel P6060 und

Peripherie erkennen.

Periphere Einheit

Eine periphere Einheit besteht im allgemeinen aus drei Teilen:

periphere Einheit

DATEN OUTPUT

=— Sektion

DATEN INPUT

Sektion
.———

Steuer-

befehle

=—P STEUERUNG

Gands-

meldungen

Bild 12.2

12.2

Dabei beziehen sich die Begriffe 'OUTPUT! und !INPUT' auf die CPU des P6060:

IOUTPUT'! bedeutet die Übermittlung von Daten von der CPU an die periphere Ein-

heit, 'INPUT'! bedeutet, daß Daten von der peripheren Einheit an die CPU über-

mittelt werden,

Eine periphere Einheit kann auch Steuer- oder Prüfbefehle erhalten (z.B. Anwei-

sungen zur Prüfung oder zur Positionierung eines Datenträgers). Dies erfolgt durch

den Teil 'STEUERUNG!, Dieser sendet auch Meldungen an die CPU über den Zustand

der peripheren Einheit, ferner Meldungen darüber, ob die gewünschte Operation

fehlerfrei durchgeführt worden ist.

Die in einer BASIC-Anweisung angesprochene Peripherie wird durch den Operanden

Iner.-Einh. ! festgelegt; '!per.-Einh,. ! ist die Adresse der Peripherie.

Die Adresse ist eine ganze Zahl, sie ist die Dezimaldarstellung einer 8-stelligen

Binärzahl.

Durch die einzelnen Bits wird der Kanal, die periphere Einheit und die Art der Ope-

ration (INPUT oder OUTPUT) definiert. Es gilt :

128 64 32 16 8 4 2 1

0007 I

I_ogischer Name des ı/O L_ogischer Name der

Kanals (3) (2) Peripherie (1)

Bild 12.3

(1) Logischer Name der Peripherie:

Dieser wird durch den Wert der letzten 3 Bits festgelegt, es können also bis zu

8 logische Namen festgelegt werden. Hat eine periphere Einheit 2 Datenträger

(CTU 1000/1010), so hat jeder Datenträger einen eigenen logischen Namen d.h. ,

wird als eigene periphere Einheit betrachtet.

12.3

(2) ı/O:

Der Wert des 4. -ten Bits legt fest, ob an die Einheit gesendet wird (OUTPUT :

1) oder ob von der Einheit Daten emfpangen werden sollen (INPUT : Wert

Wert = ß). Beispiel : CTU 1000 mit 2 Stationen hat je zwei INPUT und zwei OUTPUT

Sektionen, damit insgesamt 4 logische Namen.

(3) Logischer Name des Kanals :

Da 16 Bitkombinationen möglich sind, können 16 verschiedene I/O-Kanäle definiert

werden.

Damit ergibt sich, daß bis zu 256 Adressen von peripheren Einheiten festgelegt werden

können, aufgeteilt auf 16 Kanäle, die Kanalnamen gehen von ß bis 15.

Für jeden Kanal lassen sich bis zu 16 Sektionen definieren :

8 für INPUT und 8 für OUTPUT.

Die Einheiten, die an dem Kanal @ angeschlossen sind, bekommen als Adressen die

Zahlen @ bis 15, die des Kanals 1 die Zahlen 16 bis 31, die des Kanals 15 die Zahlen

240 bis 255.

Schließlich sei bemerkt, daß einige periphere Einheiten über einen eigenen Puffer ver-

fügen, in dem die von der CPU gesendeten Daten gespeichert werden, bevor sie auf den

Datenträger geschrieben werden, bzw. in den die vom Datenträger gelesenen Daten ge-

speichert werden, bevor sie an die CPU geschickt werden. Dadurch wird erreicht, daß

der I/O-Kanal selbst nur sehr kurze Zeit belegt ist:

Die Dauer der eigentlichen Datenübertragung ist unabhängig von der Zeit, die die peri-

phere Einheit zum Aufzeichnen oder Lesen der Daten vom Datenträger benötigt. Damit

wird eine rationelle, optimale Nutzung des I/O-Kanals ermöglicht.

12.4

12.1.3 I/O- Kanal

Der P6060 kann bis zu 16 I/O-Kanäle für den Datenaustausch steuern. Ein

ı/O-Kanal besteht aus mehreren Hardware-Komponenten (Teile des Arbeits-

speichers, logische Schaltkreise der CPU und Interface), diese werden von

Soft- und Firmware-Komponenten gesteuert.

Jeder Kanal besteht aus :

- Puffer

- 16 Zustandsregistern

- Kanalsteuerung

KANAL-

STEUERUNG

Z
m
n
T
c
d

ZUSTANDS-

REGISTER

 BASIS - SOFTWARE MODUL

Bild 12.4

12.1.3.1

12.1.3.2

12.1.3.3

Der Puffer ist Teil des Arbeitsspeichers, seine Größe wird durch die BASIC-

Anweisung BUFFER festgelegt. Er wird dem I/O-Kanal zum Datenaustausch

mit peripheren Einheiten zugewiesen.

Zustandsregister

Jedes Zustandsregister besteht aus 2 Bytes (= 16 Bits) des Arbeitsspeichers,

In diesem Register legt die KANALSTEUERUNG Informationen über den Zu-

stand des Kanals und der peripheren Einheit, über das Ergebnis einer Über-

tragung und über die Interpretation eines empfangenen Signals ab. Da an einen

Kanal je 8 INPUT und OUTPUT Sektionen angeschlossen werden können, hat

jeder Kanal 16 solcher Register.

Kanalsteuerung

Die Kanalsteuerung besteht aus Firmware und Software-Komponenten, die aus

Modulen des Betriebssystems aufgebaut sind und die die gewünschten Operatio-

nen durchführen.

Jeder Kanal ist eine selbständige INPUT/OUTPUT-Einheit in dem Sinn, daß

die Operationen eines Kanals unabhängig von denen eines anderen Kanals durch-

geführt werden,

Da jeder Kanal über einen eigenen Puffer verfügt, können 1/O-Operationen

eines Kanals gleichzeitig mit I/O-Operationen eines anderen Kanals durchge-

führt werden, ferner gleichzeitig mit I/O-Operationen, für eine integrierte

Peripherie (Floppy, Drucker, Display), und gleichzeitig mit den übrigen Ope-

rationen der CPU. Diese Arbeitsweise bezeichnen wir als !"überlappend!!,

Ein überlappendes Arbeiten wird erreicht, wenn die Option !'!AND GO! in den

BASIC-Anweisungen angegeben wird.

Zu beachten ist, daß jeder Kanal zu einem bestimmten Zeitpunkt aber nur eine

periphere Einheit bedienen kann, obwohl bis zu 8 INPUT und 8 OUTPUT -

Sektionen anschließbar sind.

12.6

12.2 ANWENDERPROGRAMM

12.2.1 Die BASIC-Anweisungen

Die folgenden BASIC-Anweisungen stehen für die Datenübertragung von bzw. zu

einer peripheren Einheit zur Verfügung :

BUFFER: Reserviert einen Teil des Arbeitsspeichers als Puffer für den

Datenaustausch mit einer Peripherie

CMD : Schickt Steuer- oder Prüfbefehle an eine Peripherie

RECEIVE : Fordert Daten von der Peripherie an, deren Adresse in der An-

weisung angegeben ist

SEND : Schickt eine Zeichenfolge an die Peripherie, deren Adresse in der

Anweisung angegeben ist

TEST: Der Inhalt des Zustandsregisters der Peripherie, deren Adresse

in der Anweisung angegeben ist, wird in das 'ARBEITSREGISTER!

übertragen, ohne daß das Ende einer laufenden I/O-Operation abgewar-
tet wird.

WAIT : Es wird gewartet, bis der I/O-Kanal, zu dem die Peripherie, deren

Adresse in der Anweisung angegeben ist, die laufende I/O-Operation

abgeschlossen hat. Dann wird der Inhalt des Zustandsregisters

dieser Peripherie in das Arbeitsregister geladen.

Funktion IOC (num. -Ausdr.) : Diese Funktion ermöglicht es, den Inhalt des Arbeits-

registers per Programm abzufragen.

Die Anweisung BUFFER ist eine nicht ausführbare Anweisung und kann daher an einer

beliebigen Stelle im Programm stehen, dem entsprechenden I/O-Kanal wird ein Puffer

der gewünschten Größe eingerichtet.

Sind für einen Kanal mehrere BUFFER-Anweisungen im Programm aufgeführt, wird

der Puffer auf die maximale Größe dimensioniert :

Beispiel:
ga1a EUFFER #8, 1080

8188 BUFFER #15,290

8158 BUFFER #12,19

®

RUN

12.7

Es wird für den Kanal ein Puffer der Größe 200 Bytes reserviert (die Peripherie-

Adressen ß, 12, 15 beziehen sich auf Kanal ß).

Man beachte, daß der Puffer so groß gewählt werden muß, daß er den Record mit

der größten Länge aufnehmen kann, der von einer an den Kanal angeschlossenen

Peripherie aufgezeichnet oder gelesen werden soll.

Die Instruktion CMD erlaubt es, Steuerbefehle zu senden, die typisch für die ent-

sprechende Einheit sind {es gibt nicht für alle peripheren Einheiten solche Steuer-

befehle). Daneben lassen sich durch CMD Prüfbefehle an die Peripherie schicken,

durch die die periphere Einheit veranlaßt wird, an die CPU Statusmeldungen zu

senden.

Die Anweisung RECEIVE ermöglicht es der CPU, Daten auf zwei verschiedene

Arten zu empfangen, je nachdem ob die Option "NAND GO! in der Anweisung ent-

halten ist oder nicht. Wenn die Option NAND GO" nicht vorhanden ist, werden die

Daten in den Puffer geladen und der im Statement von dort aus aufgeführten String-

variablen zugewiesen. Ist "AND GO! angegeben, werden die Daten in den Puffer

geladen, aber die Zuweisung an die Stringvariable erfolgt erst, nachdem eine

weitere Anweisung auszuführen ist, die sich auf denselben Kanal bezieht.

Die Instruktion SEND erlaubt die Ausgabe von Daten auf zwei Arten, je nachdem ob

NAND GO! vorhanden ist oder nicht.

Fehlt NAND GO", wird das Ergebnis des Stringausdruckes in den Puffer der CPU

gegeben und von dort an die periphere Einheit gesendet; ist "AND GO!! angeführt,

wird der String in den Puffer geladen und das Programm fortgesetzt, parallel dazu wer-

den die Daten an die Peripherie gesendet, die Übertragung ist mit Sicherheit beendet,

sobald eine weitere Instruktion ausgeführt wird, die sich auf denselben Kanal bezieht.

Die Anweisungen TEST, WAIT und die Funktion IOC ermöglichen es, die im Zu-

standsregister der Peripherie, deren Adresse in der TEST- oder WAIT-Anweisung

angegeben ist, abgelegte Information im Programm zu verarbeiten.

12.8

12.2.2 Das Arbeitsregister

Neben den jeweils 16 Zustandsregistern, die für jeden einzelnen I/O-Kanal eingerichtet

werden, wird im Arbeitsspeicher ein weiteres Register bereitgestellt, das als

ARBEITSREGISTER bezeichnei wird.

Durch die Anweisung TEST bzw. WAÄIT wird der Inhalt des Zustandsregisters, das zu

der in der Anweisung aufgeführten peripheren Einheit gehört, in das Arbeitsregister

übertragen und kann dann im Anwenderprogramm mittels der IOC-Funktion ausgewertet

werden.

Da es nur ein Arbeitsregister für alle I/O-Kanäle gibt, ist zu beachten:

Bei jeder Ausführung einer WAIT oder TEST-Anweisung wird der Inhalt des Arbeits-

registers durch den Inhalt des Zustandsregisters der in der Anweisung angesprochenen

Peripherie überschrieben, damit ist der alte Inhalt verloren.

PROGRAMM I/O-KANAL PERIPHERIE

BUFFER

KANAL-

STEUERUNG

 a
m
n
n
c
o

RECEIVE

 CMD STEUERUNG

5

ZUSTANDS-
REGISTER

ARBEITS-

REGISTER

Bild 12.6: Mittels TEST/WAIT und der IOC-Funrktion wird die Fehlerbehandlung vom Programm gesteuert

(Fehlermeldungen unterbleiben)

12.9

PROGRAMM I/O-KANAL PERIPHERIE

BUFFER

KANAL-

SEND STEUERUNG

p

U
F
F

E
R

RECEIVE

CMD STEUERUNG

Bild 12.7 : FFehlermeldungen werden vom System angezeigt.

12. 9a

Tabelle 12.1

Gerundeter Wert

des Argumentes

num. -Ausdr.

Wenn

IOC (num. -Ausdr.) = 1

ist, so gilt:

Wenn

IOC (num. -Ausdr.) =
ist, so gilt :

Die periphere Einheit

steht vorübergehend

nicht zur Verfügung

Die periphere Einheit

steht zur Verfügung

Fehlerfreie Übertragung

$ und 127, dessen Bedeutung vom Typ des I/O-Kanals abhängt

2 Fehler während der

Datenübertragung

3-5 Hängt vom Typ des Hängt vom Typ des

I/O-Kanals ab I/O-Kanals ab

6 Die periphere Einheit Die periphere Einheit ist

ist außer Betrieb. Voraus- in Betrieb

gehende Informationen

sind nicht signifikant

7 Der I/O-Kanal ist be- Der I/O-Kanal ist frei

legt

8 Zwischen CPU und peri- Es findet kein Datentransfer

pherer Einheit findet ein Statt

Datentransfer statt

Bem.: Ist der Wert von num. -exp. <1 oder 38, liefert 1IOC (.) einen Wert zwischen

12.10

12.3 YO-KANAL

Nachdem der Aufbau und die Arbeitsweise einer peripheren Einheit, des I/O-Kanals

und des Anwenderprogramms im Arbeitsspeicher beschrieben ist, werden nun die ver-

schiedenen Arten beschrieben, in denen eine Datenübertragung zwischen CPU und Peri-

pherie gesteuert werden kann. {Siehe Abb. 12.6.)

Jede der ausführbaren Anweisungen, die bis jetzt beschrieben sind, bewirkt, daß ent-

sprechende Module des Betriebssystems geladen werden, die die gewünschte Operation

durchführen.

Wie die Anweisungen ausgeführt werden, hängt davon ab, wie der I/O-Kanal gesteuert

wird.

Drei Arten des Datenaustausches stehen zur Verfügung :

- Der /o erfolgt nicht überlappt, eventuelle Fehler werden vom System angezeigt.

- Der I/O erfolgt überlappt, eventuelle Fehler werden vom System angezeigt.

- Der ı/o erfolgt überlappt, die Fehlerbehandlung wird durch das Programm gesteuert.

Selbstverständlich können in einem Programm alle Arten des Datenaustausches nebenein-

ander verwendet werden.

12.11

12.3.1 |/O nicht überlappt, Fehlerbehandlung durch das System

Für diese Art des I/O gelten die Anweisungen :

- RECEIVE # per.-Einh., String-Var.

- SEND # per.-Einh., String-Ausdr.

- CMD Y per.-Einh., Steuer-Bef.

Die Peripherie mit der Adresse n wird veranlaßt, Daten an die CPU zu senden, diese

Daten werden der Stringvariablen zugewiesen. Eventuelle Übertragungsfehler während

der Operation werden vom System angezeigt, die Programmausführung wird unter-

brochen. Die Adressen ist ein numerischer Ausdruck.

seno4# n, String-Ausdruck

Die CPU sendet das Ergebnis des Stringausdruckes an die Peripherie n. Eventuelle

Fehler während der Operation werden vom System angezeigt, die Programmausführung

wird unterbrochen. Die Adressen ist ein numerischer Ausdruck.

CMD# n, cl, ©, .]

Die CPU sendet die Steuerbefehle C1, C2,..... an die Peripherie. Eventuelle Fehler

während der Operation werden angezeigt, die Programmausführung wird unterbrochen.

Die Adressen ist ein numerischer Ausdruck.

Folgende Fehler werden vom System angezeigt :

- Übertragungsfehler :

im Display wird

ERROR 15 INLINE ...

angezeigt.

- Die angesprochene Einheit ist nicht angeschlossen :

im Display wird

ERROR 14 INLINE ...

angezeigt.
12.12

- Die angesprochene Einheit ist vorübergehend nicht verfügbar :

das System wartet, bis die Einheit wieder verfügbar ist.

Es gilt also:

- Sobald die Anweisung RECEIVE ausgeführt ist, hat die Stringvariable den gelesenen

String als Inhalt zugewiesen bekommen und kann verarbeitet werden.

- Das System wartet, bis die Datenübertragung abgeschlossen ist und führt erst dann die

nächste Anweisung aus,

- Eventuell auftretende Fehler werden während der Ausführung angezeigt, der Pro-

grammablauf wird unterbrochen.

12.3.2 I/O überlappt und Fehlerbehandlung durch das System

Für diese Art des Datenaustausches stehen folgende ausführbare Basic-Anweisungen

zur Verfügung :

- RECEIVE 4 per.-Einh., String-Var. AND GO

- SEND # per.-Einh., String-Ausdr. AND GO

- CMD 4 per.-Einh., Steuer-Bef. AND CO

RECEIVE#n, Stringvariable AND GO
um mn sem in Miele mn TEE ame ME arme MEER GE Me mem dm Mr Men Summe Main auf Mer MEER MmETEE Au imme MTEEb amade MEEED MEERES MER Tuniem aie ai TE me au

Die von der Peripherie gesendeten Daten werden in den Puffer des I/O-Kanals ge-

schrieben,

Die Zuweisung an die String-Variable erfolgt erst, wenn eine weitere Anweisung aus-

geführt wird, die sich auf denselben I/O-Kanal bezieht.

Das heißt, das System veranlaßt den Empfang der Daten, wartet aber nicht ab, bis

diese vollständig in den Puffer geladen sind, es wird sofort die nächste Anweisung

im Programm ausgeführt.

Treten Fehler bei der Übertragung auf, werden diese vom System erst dann angezeigt,

wenn eine weitere Anweisung dieselbe Peripherie anspricht.

12.13

Das System lädt den Puffer des I/O-Kanals mit dem Ergebnis des Stringausdruckes. Die

Übertragung wird veranlaßt, es wird sofort die nächste Programmanweisung ausgeführt,

Die Übertragung ist sicher abgeschlossen, wenn die nächste Anweisung ausgeführt wird,

die sich auf denselben Kanal bezieht.

Eventuell auftretende Übertragungsfehler werden erst angezeigt, sobald die nächste An-

weisung ausgeführt werden soll, die sich auf dieselbe Peripherie bezieht.

CMD #n, cıl, c2....] AND Go

Das Programm sendet die Steuerbefehle !!C1, C2,...! an die Peripherie. Eventuelle Über-

tragungsfehler werden erst angezeigt, sobald eine weitere Anweisung ausgeführt wird, die

sich auf dieselbe Peripherie bezieht.

Es gilt also:

- Durch RECEIVE AND GO angeforderte Daten stehen erst dann im Programm zur Ver-

fügung, wenn eine weitere I/O-Operation, die sich auf denselben Kanal bezieht, aus-

führt ist (das entsprechende gilt für SEND AND GO).

_ Übertragungsfehler, die bei der Ausführung einer I/O-Operation auftreten, werden

erst angezeigt, sobald eine weitere I/O-Operation ausgeführt wird, die sich auf die-

selbe Peripherie bezieht.

Zur Erläuterung:

Fehlerbedingungen werden in Zustandsregistern, die für jede Peripherie gesondert ein-

gerichtet werden, gespeichert. Das Zustandsregister einer Peripherie wird erst wieder

geprüft, wenn das System auf diese Peripherie zugreift.

12.3.3 1/O überlappend, Fehlerbehandiung durch das Programm

Folgende(ausführbare) Basic-Anweisungen stehen für diese Art der Datenübertragung zur

Verfügung :

- RECEIVE #fper.-Einh., String-Var. AND GO

- SEND # per. -Einh,, String-Ausdr. AND GO

- CMD # per. -Einh., Steuer-Befehl AND SO

- WAIT # per. -Einh.

- TEST # per. -Einh,

- Die Funktion IOC (x)

12.14

Die ersten drei Anweisungen arbeiten wie vorher beschrieben (AND GO bedeutet

überlappende Arbeitsweise). Die Unterschiede liegen in der Behandlung eventuell

auftretender Fehler.

Durch die Anweisung TEST nbzw. WAIT n, wird der Inhalt des Zustandsre-

gisters der Peripherie mit der Adresse n in das Arbeitsregister übertragen, gleich-

zeitig werden die Bits im Zustandsregister, die eine Fehlermeldung verursachen

könnten, = ß gesetzt. Der Zustand der Peripherie kann nun durch die Funktion IOC

abgefragt werden und es kann in Abhängigkeit vom IOC-Wert im Programm verzweigt

werden. In diesem Falle erfolgt keine Fehlermeldung durch das System, weder wenn

die Übertragung fehlerhaft war, noch wenn eine Peripherie nicht angeschlossen ist.

Der Benutzer ist selbst für die Fehlerbehandlung im Programm verantwortlich.

Wichtig ist, daß die Anweisung TEST bzw. WAIT so im Programm plaziert wird, daß

sie ausgeführt wird, bevor eine andere I/O-Anweisung ausgeführt wird, die sich auf

dieselbe Peripherie bezieht. Sonst werden die eventuell aufgetret=znen Fehler vom

System angezeigt.

 men Sun em rm Sm mümn FOifE MUME Mr ihn diem GEHE MÄR MEN dEnE ARE Tun

WAIT: Es wird gewartet, bis die laufende Datenübertragung beendet ist, anschlies-

send wird der Inhalt des Zustandsregisters in das Arbeitsregister über-

tragen.

TEST : Die Übertragung der Information aus dem Zustandsregister erfolgt sofort,

ohne daß das Ende einer laufenden I/O-Operation abgewartet wird.

Durch Verwendung der IOC-Funktion kann geprüft werden, ob die Über-

tragung beendet ist oder nicht,und zwar durch IOC (8); ist IOC (8) = 1, ist

die Übertragung noch nicht beendet, die CPU kann andere Operationen aus-

führen, während die Übertragung läuft. Durch eine erneute TEST-Anweisung

in Verbindung mit der Abfrage von IOC (8) kann dann wieder geprüft werden,

ob die Übertragung schon beendet ist usw.

Diese Möglichkeit ist besonders nützlich, wenn in einem Programm Daten-

übertragung über mehrere I/O-Kanäle erfolgt und man eine rationelle Aus-

nutzung der CPU haben will.

12.15

BASIC - ANWEISUNGEN
nn ur Su) une ‚mu SüdEm hc Maul sm guugh aunme Mu amman mid gAihE> oraps MM ma SMEUe —meiER Srumn mann mm

Zu Sum GE Tun Teenie Ware Ann wre, wiärne urn, Gerne Gum, Gera MEER. Sin annureh MOrTeb anEnD din AmaENE arammEt mean wenn

Im folgenden Kapitel sind die BASIC-Anweisungen für die Programmierung

von peripheren Einheiten in alphabetischer Reihenfolge geordnet und aus-

führlich beschrieben.

12.17

Funktion :

Format :

Wirkung :

Bemerkungen:

Beispiel :

BUFFER #

Anweisung BUFFERF#

Für einen I/O-Kanal wird im Arbeitsspeicher ein Puffer (temporärer

Speicher) für den Datenaustausch mit einer peripheren Einheit reserviert.

BUFFERH per. -Einh., Puffergröße.

"ner. -Einh. !! ganze Zahl zwischen @ und 255 (einschließlich)

NPuffergröße! : ganze Zahl zwischen 1 und 32767 (byte).

Im Arbeitsspeicher wird für den I/O-Kanal, an den die periphere Einheit mit

der Adresse "per. -Eirh. !'' angeschlossen ist, ein Puffer für den Datenaus-

tausch eingerichtet. Die Größe in Byte wird durch den Operanden !"Puffer-

größe! festgelegt.

1.) Die Anweisung BUFFER ist eine nichtausführbare Anweisung. Die An-

weisung kann an einer beliebigen Stelle des Programmes stehen (analog

einer DIM- oder DCL-Anweisung).

2.) Enthält ein Programm mehrere BUFFER-Anweisungen die sich auf den-

selben Kanal beziehen, wird der Puffer mit der maximalen Größe festge-

legt, die in den Anweisungen angegeben ist.

3.) Soll eine RECEIVE-Anweisung ausgeführt werden, darf die deklarierte

Länge der String-Variablen, der der Pufferinhalt zugewiesen wird,

nicht größer sein als die Größe des Puffers, der dem entsprechenden

I/O-Kanal zugewiesen wurde.

Im folgenden Beispiel wird dem Kanal Bein Puffer von 256 Bytes, dem Kanal |

ein Puffer von 64 Bytes zugewiesen. (Die peripheren Einheiten mit den

Adressen @bis 15 sind an den Kanal f, die Einheiten mit den Adressen 16

bis 31 sind an den Kanal I angeschlossen.)

18 BUFFER %5,288
28 BUFFER #12, 128

128 BUFFER #1.256

“

288 BUFFER #äß,58
218 BUFFER 816,64

12.19

Funktion :

Format :

Wirkung :

| CMD#

Anweisung CMDf#F (Comand)

Sendet an eine periphere Einheit ein oder mehrere Steuerbefehle.

CMD#F per. -Einh. , Steuer-Bef. [, steuer-Ber. | ... [ano co]

"per. -Einh.!! : Adresse der Peripherie; der (gerundete) Wert muß eine Zahl

zwischen ß und 255 (einschließlich) sein.

NSteuer-Bef.!!: Ganze Zahl, die für einen Steuerbefehl oder Prüfbefehl für

die periphere Einheit steht.

"AND GO! ; Legt fest, daß der Steuerbefehl (wenn mehrere Steuerbefehle

2.)

gesendet werden, der letzte in der Reihe) überlappend mit

anderen Operationen der CPU ausgeführt wird.

F ehlt NAND GO", werden die durch die Operanden "Steuer-Bef.'!' spezi-

fizierten Steuerbefehle in der Reihenfolge gesendet und ausgeführt, wie

sie in der Anweisung angeführt sind. Die periphere Einheit ist durch die

Adresse !"per. -Einh. !! bestimmt.

In das Zustandsregister der Peripherie '"'per. -Einh, !! werden die Infor-

mationen übertragen, die den "Zustand!!! der Peripherie angeben.

Treten während der Übertragung der Steuerbefehle Fehler auf, werden

diese vom System angezeigt.

Ist NAND GO! angegeben, wird die Übertragung der Steuerbefehle initiali-

siert. Das System wartet das Ende der Übertragung und die Rückmeldung

der Peripherie nicht ab, sondern die Programmausführung wird sofort

mit der nächsten Anweisung fortgesetzt.

Eventuelle Fehlermeldungen werden erst angezeigt, wenn dieselbe Peri-

pherie erneut angesprochen wird.

12.21

RECEIVE# |

Anweisung RECEIVE#

Funktion : Die Zentraleinheit fordert die periphere Einheit auf, Daten zu senden.

Format : RECEIVE# per.-Einh., String-Var. [ano co]

per. -Einh,." : Numerischer Ausdruck, Adresse der Peripherie, zulässig:

0-7; 16-23; 32-39,»
’

. . 0 oe.0 240-247,

allgemein :

(n- 16)bis (n- 16 +7), n=0,1,....

....,15

"String-Var.!: String-Variable

NAND GO! : Legt fest, daß die Operation "RECEIVE! überlappt mit

anderen Operationen der Zentraleinheit ausgeführt wird.

Wirkung : 1.) Fehlt NAND GO", wird von der peripheren Einheit mit der Adresse

per. -Einh. !' ein Datensatz (String) in den Puffer des I/O-Kanals,

an den sie angeschlossen ist, übertragen : der Inhalt des Puffers wird

dann der String-Variablen "String-Var.!" zugewiesen. Eventuell auf-

tretende Fehler bei der Übertragung werden vom System angezeigt.

2.) Ist "HAND GO" aufgeführt, wird die Übertragung eines Strings in den I/O-

Puffer initialisiert. Das Ende der Übertragung wird nicht abgewartet.

Der im Puffer stehende String wird erst dann der String-Variablen

NString-Var.'! zugewiesen, wenn die nächste I/O-Operation ausge-

führt wird, die sich auf denselben I/O-Kanal bezieht. Eventuell auf-

tretende Fehler werden erst dann vom Systern angezeigt, wenn eine

I/O-Operation ausgeführt wird, die sich auf dieselbe periphere Einheit

bezieht.

12.23

Bemerkungen:

Beispiel :

1.)

2.)

3.)

4.)

2.)

ist "per. -Einh, !! keine ganze Zahl, wird der gerundete Wert genommen,

Besitzt die Peripherie "per. -Einn.! einen eigenen Puffer, muß vor dem

RECEIVE eine Anweisung CMD ausgeführt werden, die die Informationen

vom Datenträger in der Puffer der peripheren Einheit schreibt.

Die deklarierte Länge der Stringvarıiablen "String-Var. ! darf nicht

größer sein (in Byte) als der Puffer des I/O-Kanals, an den die periphere

Einheit !"!per. -Einh. !! angeschlossen ist.

Enthält der empfangene Datensatz weniger Zeichen, als die deklarierte

Länge der Stringvariablen "Strng-Var.'! angibt, so ist IOC (5) = 1, wenn

eine TEST oder WAIT-Anweisung ausgeführt wird, die sich auf densel-

ben Kanal bezieht.

Der Empfang der Strings A& und BS erfolgt nicht überlappt, die Strings

können sofort verarbeitet werden :

188 RECEIVE #4,N$
118 PRINT A$

288 RECEIVE #1, B$

388 PRINT B$

Der Empfang von A& und B$3 erfolgt überlappt :

Der String AS steht erst nach Ausführung der Anweisung 110 zur Ver-

fügung, entsprechend kann BB erst nach Ausführung der Anweisung 200

verarbeitet werden :

188 RECEIVE #4,RA$ AND GO
118 RECEIVE #4,B$ AND GO

288 RECEIVE #24,A$ AND GO

-

12. 24

Funktion :

Format:

Wirkung ;

SEND #

Anweisung senp#

Es wird ein String aus dem Arbeitsspeicher an eine periphere Einheit ge-

sendet.

SEND#per.-Einh., Sıring-Ausdr. [And co]

tper.-Einh.!!'; Numerischer Ausdruck, Adresse der Peripherie,

zulässig :

8-15; 24-31; 40-47;,...., 248-255

allgemein:

(n. 16 +8) bis ((n + 1). 16-1)

n=ß, 1, 2,..., 15

NString-Ausdr. !!: Stringausdruck.

NAND GO! : Legt fest, daß die Übertragung überlappt mit anderen Ope-

2.)

rationen der Zentraleinheit ausgeführt wird.

Fehlt "AND GO, wird der Stringausdruck "String-Ausdr. !! in den Puffer

des entsprechenden I/O-Kanals geladen und an die periphere Einheit mit

dem Namen !!per. -Einh. !"! übertragen. Eventuell auftretende Fehler bei

der Datenübertragung werden vom System angezeigt.

Ist WAND GO" in der Anweisung angeführt, wird die Übertragung des

Stringausdruckes in den I/O-Puffer initialisiert und die Programmaus-

führung mit der nächsten Anweisung fortgesetzt.

Eine weitere I/O-Operation, die sich auf denselben Y/O-Kanal bezieht,

wird erst dann ausgeführt, wenn die Peripherie wieder frei ist.

Eventuelle Fehler, die bei der Übertragung auftreten, werden vom System

angezeigt, sobald eine I/O-Operation mit derselben peripheren Einheit

ner. -Einh, !! auszuführen ist.

12.25

Bemerkungen: 1.)

Beispiel :

2.)

3.)

2.)

Ist "per. -Einh. " keine ganze Zahl, so wird der gerundete Wert ange-

nommen.

Wenn die periphere Einheit !"'per.-Einh. !' einen Puffer enthält, werden

die von der Zentraleinheit gesendeten Daten zunächst dort gespeichert.

Damit die Daten aus dem Puffer auf den Datenträger gebracht werden, muß

ein Steuerbefehl gesendet werden.

Die Anzahl der Zeichen des Strings (aktuelle Länge), auch das Ergeb-

nis des Stringausdruckes, darf nicht größer sein als die Kapazität des

Puffers des I/O-Kanals, an den die periphere Einheit "per. -Einnh. !"

angeschlossen ist.

Im folgenden Beispiel werden die Strings, die von der Peripherie 4

empfangen werden, an die Peripherie mit der Adresse 31 geschickt.

Sendung und Empfang erfolgen überlappt.

1188 LET At="Pea6sa"
u11@ FOR I=1 TO N STEF 1

3128 RECEIUE #4,Nn$ AND CO
139 SEND #31,RA$ AND GO
ais8 NEXT I

Weil die RECEIVE-Anweisung überlappt erfolgt, hat die Stringvariable

Aßin der Anweisung 110 noch den Wert, der ihr in der Anweisung 90

zugewiesen wurde. Erst nach dem SEND-Befehl hat die Variable AS

den neuen Wert :

8488 BUFFER #4,88

8898 A$="OLIVETTL"

8188 RECEIVUE #4,A$ AND GO
8118 SEND #15.9$

8128 PRINT A$

6138 END

RUN

P6B68

12.26

Funktion :

Format :

Wirkung :

Bemerkungen:

TEST #

Anweisung TEST

Der Inhalt des Zustandsregisters der peripheren Einheit wird in das Ar-

beitsregister übertragen, ohne daß das Ende einer eventuell laufenden

ı/O-Operation mit dieser Peripherie abgewartet wird.

TEST ff per.-Einh.

ıner.-Einh.": Numerischer Ausdruck, Adresse der Peripherie

Die Information im Zustandsregister der peripheren Einheit "per. -Einh, !

wird in das Arbeitsregister übertragen.

Im Zustandsregister der Peripherie "per. -Einh. !' werden die beiden Bits = Q

gesetzt, die die Information "außer Betrieb! und !"!Fehler bei Datenüber-

tragung!! enthalten. Dadurch wird verhindert, daß das System diese Fehler

meldet.

1.) Wenn "per. -Einh, !!' keinen ganzzahligen Wert hat, wird auf die nächste

ganze Zahl gerundet.

2.) Die Anweisung TEST muß ausgeführt werden, bevor eine I/O-Operation

mit derselben peripheren Einheit ausgeführt wird, sonst gilt :

- Es erfolgen Fehlermeldungen.

- Wenn die periphere Einheit den Kanal belegt, wartet das System bis

er frei ist.

3.) Der Inhalt des Arbeitsregisters kann durch die Funktion IOC (num. -

Ausdr.) abgefragt werden.

12.27

Funktion :

Format :

Wirkung :

Bemerkungen:

WAIT #

Anweisung WAIT#

Es wird gewartet, bis eine laufende I/O-Operation mit der angesprochenen

Peripherie beendet ist, der Inhalt des zur peripheren Einheit gehörenden

Zustandsregisters wird vom I/O-Kanal in das Arbeitsregister übertragen,

WAIT ff per. -Einh.

ber. -Einh.!!: Numerischer Ausdruck, Adresse der Peripherie.

Die Information, die im Zustandsregister der peripheren Einheit "per. -Einh. !"

steht, wird in das Arbeitsregister übertragen.

Im Zustandsregister der Peripherie "per. -Einh. !' werden die beiden Bits = @

gesetzt, die die Information "außer Betrieb! und "Fehler bei Datenübertragung!

repräsentieren. Dadurch wird verhindert, daß das System solche Fehler-

meldungen ausgibt.

1.) Ist "per. -Einh. ! keine ganze Zahl, wird auf die nächste ganze Zahl

gerundet.

2.) Die Anweisung WAIT muß ausgeführt werden, bevor eine andere ı/O-

Instruktion mit derselben peripheren Einheit ausgeführt wird, sonst

erfolgt gegebenenfalls eine Fehlermeldung durch das System,

3.) Das Arbeitsregister kann durch die Funktion IOC (num. -Ausdr.) ab-

gefragt werden.

12. 29

12.5 Periphere IPSO-Einheiten

Im folgenden werden nur die wichtigsten, nachstehend aufgeführten, peripheren Einheiten

beschrieben. Für eine vollständige Übersicht siehe das Handbuch !!P 6060 - Program-

mierung peripherer Einheiten!,

- PN 20 Lochstreifenstanzer

- LN 20 L_ochstreifenleser

- CTU 1010 Magnetbandkassetteneinheit (eine Station)

- CTU 1050 Zweite Magnetbandstation (zum Anschluß an CTU 1010)

- CTU 1000 Magnetbandstation

- PR 1220 Schnelldrucker 100 Z/sec.

- PR 1230 Schneildrucker 175 Z/sec.

- PR 1240 Schnelldrucker 300 Z/sec.

- EDITOR 45T Ein- und Ausgabe-Schreibmaschine

Um eine der oben genannten Einheiten an den P 6060 anschließen zu können, benötigt man

die Steuereinheit IPSO 6600 (IPSO-Interface). An jede Interfacekarte können bis zu 4

periphere Input- und Output-Einheiten angeschlossen werden. Da in die Basiseinheit zwei

Interface-Karten gesteckt werden können, sind also bis zu 8 Input- und Output-Einheiten

(gleichzeitig) anschließbar.

Die IPSO-Steuereinheit besteht aus einem Steuerprogramm innerhalb des Betriebssystems,

logischen Steuerkreisen und einem Teil des Arbeitsspeichers, der als Puffer verwendet

wird (die Dimension des Puffers wird durch die Anweisung BUFFER im Anwenderpro-

gramm festgelegt). Die genannten Teile zusammen werden als IPSO-Kanal bezeichnet und

ermöglichen den Datenaustausch zwischen der Zentraleinheit und einer IPSO-Peripherie.

12. 31

LN 20 L
mu

IPSO 6600

 IPSO 6600

CTU 1010 CTU 1050
OO ©.)

 IC 1010

-- OO] cTu 1000

.J | /] SERVOGOR PLOTTER

wu, ..

r.. MESSGERAT

U
PR1240 PR1230 PR1220

Bild 12.7

12.32

12.5.1 BASIC-Anweisungen für gen Kanal IPSO

Der Dialog zwischen der Zentraleinheit und einer IPSO-Peripherie erfolgt genau so,

wie im Abschnitt 12.1 beschrieben.

Die beiden IPSO-Kanäle haben die logischen Namen @ und 1, damit stehen folgende

Namen für IPSO-Peripherie zur Verfügung :

Kanal @ Kanal I

INPUT OUTPUT INPUT OUTPUT

9-7 8-15 16 — 23 24 - 31

Im Abschnitt 5 werden die Standardadressen angegeben.

Folgende BASIC-Anweisungen können für den Datenaustausch verwendet werden :

BUFFER # per. -Einh. Puffergröße

CMD#f per.-Einh., Steuer-Befehl,.... (AND GO)

RECEIVE# per.-Einh., String-Var. (AND GO)

SEND # per.-Einh., String-Ausdr. (AND GO)

TEST# per. -Einh.

WAIT # per. -Einh.

Für "per. -Einh. " ist die Adresse der Peripherie einzusetzen. Für SEND # sind die

Namen 8-15 bzw. 24-31 zulässig, für RECEIVE die Namen 8-7 bzw. 16-23, in den

Anweisungen BUFFER, TEST und WAIT können die Namen f-15 bzw. 16-31 verwen-

det werden, je nachdem, ob die periphere Einheit an den IPSO-Kanal @ oder I ange-

schlossen ist. Für die Anweisung CMD findet man die Adressen und Steuerbefehle in

Abschnitt 5.

12.33

Die IPSO-BASIC-Anweisungen erlauben nur die Übertragung von Strings, besonders

wichtig sind daher die Befehle mit String-Operationen; dazu gehören:

ASSIGN : Der Wert eines Stringausdruckes wird einer oder (nach Auf-

spaltung) mehreren numerischen oder alphanumerischen Variablen

zugewiesen.

BASSIGN : Der Wert eines Stringausdruckes im internen Format wird einer

oder mehreren numerischen oder alphanumerischen Variablen

zugewiesen,

BBUILD : Die Werte einer oder mehrerer Variabien werden (in internem

Format) einer Stringvariablen zugewiesen.

BPAD : Füllt einen String mit binären Füllzeichen bis zur deklarierten

Länge auf.

BUILD : Wert einer oder mehrerer Variablen werden (im Standardformat)

einer Stringvariablen zugewiesen.

BUIH_D USING : Der Wert einer oder mehrerer Variablen wird im definierten

Format einer Stringvariablen zugewiesen.

CONVERT : Ein String wird in eine Folge der entsprechenden ISO-Codes

umgewandelt und umgekehrt.

DEPAD : Die Füllzeichen am Ende einer Stringvariablen werden gelöscht.

PAD: Füllt einen String mit dem angegebenen Füllzeichen bis zur de-

klarierten Länge auf.

12.34

Bemerkung :

Für die IPSO-Kanäle ist die Tabelle der IOC-Funktion wie folgt zu ergänzen :

IOC (3) = 1 Aufforderung an die Peripherie, betriebsbereit zu sein,

IOC (4) = 1 Die durch den letzten Steuer- oder Prüfbefehl gegebene An-

weisung ist korrekt beendet.

IOC (5) = 1 Die Länge des von der peripheren Einheit gesendeten Daten-

satzes ist kleiner als die deklarierte Länge der Stringvari-

ablen im RECEIVE-Statement.

Der Wert des Arguments num. -Ausdr. der IOC-Funktion wird auf die nächste

ganze Zahl gerundet.

Liegt der Wert des Arguments nicht zwischen 1 und 8, ist das Resultat der

IOC-Fuunktion gleich @ und liefert keine Information über den Zustand der

peripheren Einheit.

Wird ein Drucker durch den Systembefehl CONFIGURE angeschlossen, so darf

eine PRINT-Anweisung erst dann ausgeführt werden, wenn laufende I/O-Cpe-

rationen mit peripheren Einheiten, die an denselben IPSO-Kanal angeschlossen

sind, beendet sind. (Beispiel : eine PRINT-Anweisung darf nicht zwischen einer

RECEIVE#n,... AND GO - und einer WAIT#E n-Anweisung stehen.)

12. 35

12.5.2

12. 5.2.1

12.5. 2.2

12.5.2.3

Steuerung IPSO-peripherer Einheiten

Lochstreifenstanzer PN2O

Standard-Adresse : 11

Bei Installationen kann die Adresse geändert werden in:

Kanal O 8 - 15

Kanal 1 24 - 31

Die Abfrage auf "Ende des Lochstreifens! erfolgt über IOC (4).

Lochstreifenleser L_N2O

Standard-Adresse : 3

Bei Installationen kann die Adresse geändert werden in :

Kanal O0 0-7

Kanal 1 16 — 23

Magnetbandkassetteneinheit CTU 1010 bzw. CTU 1000, CTU 1050 bzw. CTD

Standard-Adressen :

INPUT | OUTPUT

CTU 1010 (Station I) 4 12

CTU 1050 (Station Il) 6 14

Bei Installationen können die Adressen geändert werden in:

INPUT OUTPUT
Kanal @ 0-7 8-15

Kanal I 16 - 23 24 - 31

Anmerkung :

Ist die Input-Adresse X, dann muß für den Output die Adresse Y = X +8 ver-

wendet werden.

12.36

Steuerbefehle

Befehis-Code

Name Funktion

Keine Bedeutung 0

BR BACK RECORD, 1 Block zurückspulen 1

ER ERASE, 20 mm auf Band löschen 2

RW REWIND, Zurückspulen des Bandes 3

BOT BEGIN OF TAPE, Vorlauf zur Marke 4

BOT (gleiche Funktion wie _LBR)

WCB WRITE CONTROL. BLOCK, Satzmarke 5

HS1I schreiben

SCB SEARCH CONTROL BLOCK, Vorlauf 6

auf nächstes HS]

IN INITIALISIEREN, LOAD BEFORE 7

WRITE (LBR) Löschen Band bis BOT

cp CLEAR POINTER, Pointer auf Null 8

setzen

LP LOCK POINTER, Ende des Records 9

festlegen

RB READ BLOCK, Lesen eines Records 10

in CTU-Puffer

WR WRITE BLOCK, Record (CTU-Puffer) 11

auf Band schreiben

PP PUT POINTER, Tabulation des 12

Pointers im CTU-Puffer

IS (#) Vorbereiten - Überschreiben eines 13

Records

CC ı|(%#) Kassettenwechsel 14

EE (3) Satzmarke HS2 schreiben, 400 mm 15

löschen des Magnetbandes

(%) gilt nicht für CTU 1000

Für alle Steuerbefehle ist die Input-Adresse der Magnetbandeinheit zu programmieren.

12.37

»rüfbefehle

Command-Code

Name Funktion

LD LEADER, prüfen ob Leader (nicht g

bespielbarer Teil des Bandes) erreicht

ist.

ERR ERROR, prüft auf Übertragungsfehler 1

COB CONTROL BLOCK HSI, prüft, ob HSI 2

gelesen ist

END END, prüft auf Bandende (HS2) 3

BET BEGIN/END OF TAPE, Prüfung auf 4

Bandanfang oder Bandende(BOT, EOT)

SID SIDE B, prüft ob Seite B eingelegt ist 5

REC RECORD, prüft ob die Kassette gegen 6

Aufzeichnung gesperrt ist

IMP Prüft ob einer der Prüfkreise auf I 7

steht

Bemerkung : 1.) Als Adresse ist der Name der OUTPUT-Selektion im entsprechenden

CMD-Befehl anzugeben.

2.) Mit IOC (4) wird das Ergebnis der Prüfung abgefragt.

12.38

Beispiel : Im folgenden Beispiel werden 4 Datensätze über die Tastatur eingegeben

und auf die Kassette geschrieben; anschließend werden sie von der Kas-

sette gelesen und ausgedruckt.

FILE

a818
08828

8838

8848

8058

8868

8878

80888

8898

8188

8118

8128

8138

8148
8158

8168

8178

TAPE

REM sr CTU-1818 wun%
DCL 256 CH$,B$)

BUFFER #4, 256

CHD 44,4

FOR I=1 TO 4 STEP 1

RKB A$

CHD #4,8

SEND #12,R$

CHD 34,9, 11

NEXT I

CMHD #4,4

FOR I=1 TO 4 STEP 1

CHD #4,18

RECEIUVUE %#4,B$

PRINT B$

NEXT I

END

END OF LISTING

12.39

12.5. 2.4 Schreibmaschine EDITOR 4ST

Standard-Adresse : 8

Zusätzlich zum Quellenprogramm, welches auf dem integrierten Drucker

arbeitet ist nach jeder Print-Anweisung mit Hilfe eines Command-Befehles

(CMD4#B, 2) eine Zeilenschaltung durchzuführen.

Steuerbefehle

Befehls-Code Funktion

Tabulation

Wagenrücklauf mit Zeilenschaltung

Partieller Wagenrücklauf mit Zeilenschaltung

Setzen der Tabulatorstops

Löschen der Tabulatorstops

Wagenrücklauf ohne Zeilenschaltung

Wie 6

Vorwahl ROT

Wie Bmit Tabulation

Wie 8 mit Wagenrücklauf

Wie 8 mit partiellem Wagenrücklauf

Tastaturfreigabe

Wie 12

Wie 12

Wie 12

12.40

12.5.2.5 Schnelldrucker PR1220, PR1230, PR1240

Standardadresse : 9

Bei installation können die Adressen geändert werden in:

Kanal O

Kanal |

8-15

24 - 31

Steuerung :

ISO- Funktion Dezimal-Code

Zeichen

BEL. Drucker in Status lokal bringen 7

HT Zeichen in doppelter Größe angeben 9

LF Druckt Inhalt des Puffers, anschließend 10

Zeilenschaltung

vVT Druckt Inhalt des Puffers, vertikale 11

Tabulation

FF Druckt Inhalt des Puffers, Formular 12

in Grundstellung bringen

CR Druckt Inhalt des Puffers, Schreib- 13

kopfrücklauf (keine Zeilenschaltung)

DC! Druckt Inhalt des Puffers, auf dem 17

zweiten Sprocket wird eine Zeilen-

schaltung durchgeführt

DC2 Druckt Inhalt des Puffers, vertikale 18

Tabulation auf dem zweiten Sprocket

DC3 Druckt Inhalt des Puffers, Formular 19

auf dem zweiten Sprocket wird in

Grundstellung gebracht

12.42

Die Steuerzeichen für den Schnelldrucker werden durch Drücken der Taste

CONTROL. zusammen mit folgenden Tasten erzeugt :

Taste Darstellung Zeichen

G [OD BEL

| > HT

J = LF

K Y VT

L_ Y FF

M — CR

Q & DC1

R (DD DC2

s &) DC3

Bemerkung : Das Papierende kann auf zwei Arten abgefragt werden:

- durch Verwendung des Steuerbefehls 10 (CMD per Einheit, 10 AND GO).

Wird das Papierende erreicht, so ist IOC (4) = 1.

- ist der Programmstecker des Druckers entsprechend vorbereitet, so ist

bei Papierende IOC (1) = 1.

In beiden Fällen geht der Drucker in den Zustand "lokal".

Beispiele: FILE PRPIER FILE PIAPER

> Ä aaa BUFFER #9. 122
en1a BUFFER 89.132 gaza FOR I=1 TO 132 STER 4
6028 FÜR I=1 TO 288 STEP 1 aaza CcHOb #3, 10 AND Gu
8838 SEND #93."Z" AND Gi) as WRAIT #3

IT Ä 3058 IF IQCts]=1 THEN 9
sa IF TO-C1)=1 THEN 76 MAG SEND #3."22" AND 30
8868 Gora ® "476 GOITO 19
ae Dıcn PARTERENDE ERREICHT"; Ba3a DISF "PAPIERENDE ERREICHT"
239 Nexr 2498 STOP

tl g1an NEXT I 2180 END a11a END

END OF LISTING END OF LISTING

RUN

FAPIERENDE ERREICHT
12.43

Die Steuerung der Printer erfolgt über ISO-Zeichen im auszugebenden String. Dafür

gibt es 2 Möglichkeiten :

a) Das Steuerzeichen ist im String enthalten (seEnDpf# 9, "P6060= !)

b) Das Steuerzeichen wird über CHR () zum auszugebenden String addiert.

(senpf 9, "P6060" + CHRZ(10))

im folgenden Beispiel soll der String "OLIVETTI P-6060" auf dem

Durch "HAND GO! in der Anweisung 50 und durch die Anweisung 60

kann nun die IOC-Funktion verwendet werden um den Zustand des

Druckers per Programm abzufragen. lOC (6) ist 1, wenn der Drucker

nicht eingeschaltet ist, in diesem Fall wird eine entsprechende Dis-

- >", TRABC523 ; "'CONTINUE DRUECKEN”,

Beispiel :

Schnelldrucker ausgegeben werden.

play-Anweisung ausgegeben.

LIST

FILE FRINT

Gala REN + SCHNELLDRUCKER Fra
85278 BUFFER #93, 132

8838 DCEL 132A$

6848 A$='"0OLIVETTI P-6868"

8656 SEND #93, A$+CHRF LI) AND GO

0868 WAIT #9

8876 IF IOCC63=8 THEN 118

5838 DISP "DRUCKER EINSCHALTEN

5898 STOP

8186 GOTO 58

8118 END

ENb OF LISTING

12.44

12.6.1

Der I/O-Kanal TASTATUR

Wie in den vorangehenden Kapiteln beschrieben ist, kann die Tastatur des

P 6060 während eines Programmlaufs zur Dateneingabe verwendet werden

(INPUT- oder RKB-Anweisung), aber auch zur Abfrage von Variablenwerten

und zur Wertzuweisung an Variable (DEBUGGING - MODE).

Daneben kann die Tastatur von einem BASIC-Programm wie eine externe peri-

phere Einheit durch die Statements BUFFER, SEND, RECEIVE etc. ange-

sprochen werden. Dadurch wird zweierlei möglich:

_ die Dateneingabe während eines Programmlaufs kann überlappt erfolgen:

die Programmausführung wird nicht notwendiger Weise wie bei einer

INPUT- oder RKB-Anweisung unterbrochen.

_ Das BASIC-Programm kann Strings in das Display senden, diese Strings

können mittels der Tastatur modifiziert und anschließend - wie eine nor-

male Eingabe - an das Programm zurückgegeben werden.

BASIC-Anweisungen für den Kanal TASTATUR

Folgende BASIC-Anweisungen können für den Kanal TASTATUR verwendet

werden :

BUFFER 4 per. -Einh. , Puffergröße

CMD# per. -Einh., Steuer-Bef. |, Steuer-Befehi] [And Go]

RECEIVE4Fper. -Einh., String-Var. [AND Go]
SEND# per. -Einh,, String-Ausdr. [AND so]

TEST4#f per. -Einh.

WAIT #£ per. -Einh,

Ferner kann die Funktion IOC (num, -Ausdr.) verwendet werden.

Bei der Ausführung einer RECEIVE-Anweisung gibt das System die Tastatur

für die Dateneingabe frei : die eingetasteten Zeichen werden im Tastaturpuffer

gespeichert und im Display angezeigt. Sobald die Taste END OF LINE ge-

drückt wird, wird der eingegebene String dem Tastaturpuffer entnommen, in

den Puffer des Kanals TASTATUR übertragen und von dort aus der Stringva-

riablen zugewiesen, die im RECEIVE-Statement aufgeführt ist.

Bei der Ausführung einer SEND-Anweisung wird der in der Anweisung aufge-

führte String in den durch die BUFFER-Anweisung definierten Puffer des Ka-

nals TASTATUR geladen und von dort in den Tastaturpuffer übertragen. Der

String kann (durch eine CMD-Anweisung) im Display sichtbar gemacht werden.

12.45

Mittels der Tastatur kann der String modifiziert und über eine INPUT, RKB

oder RECEIVE-Anweisung an das Programm zurückgegeben werden.

SEND Puffer Tastatur- Tastatur

RECEIVE puffer

Anwender- I/O-Kanal periphere Einheit TASTATUR

programm TASTATUR

Bild 12.7 Die Tastatur des P 6060 als periphere Einheit

Der I/O-Kanal TASTATUR hat den logischen Namen 2, damit stehen folgende

Werte für die Adresse !'per. -Einh,. !!' zur Verfügung.

INPUT OUTPUT

32-39 40-47

Von den angegebenen Adressen kann jeweils eine beliebige gewählt werden,

aber diese sollte dann konsequent beibehalten werden : Wird z.B. in einer

RECEIVE- AND GO-Anweisung die Adresse 32 verwendet, muß in einer nach-

folgenden TEST- oder WAIT-Anweisung dieselbe Adresse verwendet werden,

denn für jede der Adressen von 32-47 wird ein eigenes Zustandsregister ein-

gerichtet. Statusmeldungen werden nur in dem Register abgelegt, das zu der

in der Anweisung angegebenen Adresse gehört. Steht also in der TEST-An-

weisung eine andere Adresse als 32, so wird ein anderes Zustandsregister ge-

testet, die erhaltene Information ist irrelevant.

Für die einzelnen BASIC-Anweisungen gilt zunächst das in 12. 4 gesagte. Da-

neben gibt es bei der Verwendung der Tastatur als periphere Einheit einige

Besonderheiten, diese werden im folgenden zusammengestellt.

BUFFER : Als Adresse !per. -Einh. ! kann eine beliebige Zahl

zwischen 32 und 47 gewählt werden. Die Puffergröße

sollte 80 nicht überschreiten, da auch der Tastaturpuffer

nur 80 Zeichen aufnehmen kann.

12. 46

CMD :

RECEIVE :

Folgende Steuerbefehke sind gültig :

Steuer-Befehl Wirkung

d ohne Wirkung

1 Inhalt des Tastatur-Puffers wird

im Display angezeigt.

16 Inaktiviert die Tastaur als per-

phere Einheit.

 2-15 Diese Code werden nicht be-

17-31 nützt,

D ie zugehörige Adresse !per. -Einh. ! liegt zwischen

40 und 47.

Fehlt "AND GO!, wird die Programmausführung wie bei

einer INPUT- oder RKB-Anweisung unterbrochen, das

System wartet darauf, daß der Benutzer einen String ein-

gibt. Die Konsollampe ON-LINE leuchtet auf. Sobald der

Benutzer die Taste END OF LINE drückt, erlischt die

Konsollampe ON-LINE, der im Tastaturpuffer enthaltene

String wird in den Puffer des I/O-Kanals übertragen und

von dort aus der in der Anweisung aufgeführten String-

Variablen zugewiesen und der Puffer des I/O-Kanals wird

geleert. Die Programmausführung wird fortgesetzt.

Ist NAND GO! angeführt, wird die Tastatur für die Ein-

aktiviert, die Konsollampe ON-LINE leuchtet auf um dem

Benutzer anzuzeigen, daß er nun Zeichen eingeben kann,

Die Programmausführung wird nicht unterbrochen: es wird

sofort das nächste Statement ausgeführt. Wird die Taste

END OF LINE gedrückt, erlischt die Konsollampe ON-

LINE und der String wird in den Puffer des I/O-Kanals

übertragen. Er wird nicht sofort der in der Anweisung

stehenden Stringvariablen zugewiesen, sondern erst,

wenn eine weitere I/O-Anweisung auszuführen ist, die

sich auf den Kanal TASTATUR bezieht, z.B. wenn eine

Anweisung CMD mit dem Steuerbefehl @ folgt.

12. 47

SEND:

Für die Adresse !!per. -Einh. " sind Werte zwischen 32

und 39 zulässig.

Als String kann auch der Leerstring eingegeben werden,

d.h. es kann die Taste END OF LINE gedrückt werden,

ohne daß zwar ein Zeichen eingegeben wurde,

Werden mehr Zeichen über die Tastatur eingegeben als

der Parameter !"Puffer-Größe! in der Anweisung BUFFER

zuläßt, wird der Leerstring in den Puffer des I/O-Kanals

geschrieben, d.h. die eingegebenen Zeichen gehen ver-

loren.

Der Wert des String-Ausdrucks "String-Ausdr. ! (im

folyenden kurz "String! genannt) wird in den durch die

Anweisung BUFFER definierten Puffer geschrieben. Von

dort wird er in den Tastaturpuffer übertragen. Ist der

String vom Leerstring verschieden, werden dabei Zeichen,

die sich im Tastaturpuffer befinden, überschrieben. Der

String wird nicht im Display angezeigt, Um dies zu er-

reichen, muß auf die SEND-Anweisung eine CMD-Anwei-

sung folgen, die den Steuerbefehl 1 gibt.

Dadurch wird der String im Display angezeigt, der Pointer

befindet sich hinter dem letzten Zeichen des Strings. Der

String kann nun mittels der Editing-Tasten (&—] [3]

CHARACTER\) auf der Tastatur modifiziert werden,
DELETE

ferner können weitere Zeichen ein- oder angefügt werden

bis z u einer Gesamtlänge von 80 Zeichen.

Um den so erhaltenen String wieder einer Stringvariablen

zuzuweisen, muß eine RECEIVE, INPUT, MAT INPUT oder

RKB-Anweisung folgen.

Hat der Wert des Stringausdrucks in der SEND-Anweisung

eine Länge größer als 80 Zeichen, werden nur die ersten

80 Zeichen in den Tastaturpuffer geladen.

Für die Adresse !''per. -Einh. !!' sind Werte zwischen 40

und 47 zulässig.

Ist der Wert des Stringausdrucks "String-Ausdr. !!' der

Leerstring, bleibt der Inhalt des Tastaturpuffers erhalten.

12.48

12.6.2

TEST: Der Inhalt des Zustandsregisters wird in das Arbeitsre-

gister übertragen, ohne das Ende einer laufenden I/O-

Operation abzuwarten.

WAIT : Das Ende einer laufenden I/O-Operation wird abgewartet

und der Inhalt des Zustandsregisters in das Arbeitsre-

gister überführt.

Für die IOC-Funktion sind nur die Argumente 7 und 8 relevant; dabei gilt:

IOC (8) = 1 Bei Ausführung einer RECEIVE AND GO-Anweisung ist

IOC (7) = 1 die Eingabe nocht nicht durch END OF LINE abgeschlossen.

Sonst gilt IOC (8) = 10C (7) = 2.

Zusammentreffen von RECEIVE-Anweisungen mit Eingabeanforderungen oder

Systemmeldungen.

Da bei der Ausführung einer RECEIVE-Anweisung ohne AND GO die Programm-

ausführung unterbrochen wird, tritt keine Konfliktsituation im Zusammenhang

mit Fehlermeldungen durch das System oder mit INPUT bzw. RKB-Anweisungen

auf.

Da aber die Ausführung einer RECEIVE AND GO-Anweisung Üüberlappt erfolgt,

d.h. die Programmausführung fortgesetzt wird, kann der Fall eintreten, daß

INPUT- bzw. RKB-Anweisungen auszuführen sind oder daß das System in den

DEBUGGING-MODE geht, bevor die Eingabe durch END OF LINE abgeschlossen

ist. Für diese Fälle gilt folgende Regelung :

- Übergang in den DEBUGGING MODE :

Die Konsoltasten RUNNING und ON-L INE leuchten mit konstanter Helligkeit,

anstelle der Taste CONTINUE leuchtet die Taste STEP. Der Inhalt des Tas-

taturpuffers bleibt unverändert. Sollen Variablenwerte abgefragt oder Wert-

anweisungen an Variable durchgeführt werden, muß der Tastaturpuffer durch

Drücken der Tasten SHIFT und CLEAR geleert werden. Damit wer-

den aber auch die bis dahin eingegebenen Zeichen gelöscht.

Wird der DEBUGGING MODE verlassen und die Programmausführung fort-

gesetzt (durch Drücken der Konsoltaste CONTINUE), beginnt die Konsol-

taste RUNNING wieder zu blinken und die Eingabe kann fortgesetzt werden.

Wurde der Tastaturpuffer gelöscht, so muß der String vollständig neu ein-

gegeben werden,

12. 49

INPUT- bzw. RKB-Anweisung

Die Konsollampen RUNNING und ON LINE leuchten mit konstanter Hellig-

keit, ferner leuchtet die Taste CONTINUE.

Die INPUT-, MAT INPUT- und RKB-Anweisung haben Vorrang gegenüber

der RECEIVE-Anweisung, d.h. es muß gegebenenfalls der Tastaturpuffer

gelöscht werden und es müssen die Werte für die Variablen in der INPUT-,

MAT INPUT bzw. RKB-Anweisung eingegeben werden.

Wenn diese Eingaben durchgeführt sind, beginnt die RUNNING-Lampe

wieder zu blinken und es sind die Zeichen für die in der RECEIVE-Anwei-

sung aufgeführten Stringvariablen erneut einzugeben.

In der Tabelle sind die Statusanzeigen zusammenfassend dargestellt :

Konsollampe Status

RUNNING ON LINE | CONTINUE | STEP

konstant aus an aus INPUT, MAT INPUT

oder RKB ohne

RECEIVE.

konstant aus aus an DEBUGGING MODE

ohne RECEIVE.

blinkt an an aus RECEIVE mit AND GO

konstant an an aus RECEIVE ohne AND GO

oder INPUT, MAT

INPUT, RKB und RE-

CEIVE mit AND GO,

konstant an aus an DEBUGGING MODE und

RECEIVE mit AND GO

Tabelle 12.8 Statusanzeigen

12. 50

12.6.3 Beispiele

Im ersten Programmbeispiel wird eine einfache Routine zur überlappten Eingabe

von Datensätzen vorgestellt. Der Unterschied gegenüber einer Eingabe über

eine INPUT- oder RKB-Anweisung besteht darin, daß das System kein !"!?'!' als

Aufforderung zur Eingabe gibt und damit !!kontinuierlich!! erfolgen kann.

FILE RECEIN

Bata: «ke BEISPIEL FUER DIE WERWENDUNG DER TASTATUR ALS PERIPHERER EINHEIT «ri

naza BUFFER #32.34

anze DIL SOR$
Sas4f FILES FILE

aaSia SIRATCH :1

ac FEDEIUE #32.9% AND 50

agra FÜR I=1t Tö ta 5STEP 1

3386 RECEIUE #32.4$ AND GO

AuSAR WRITE 1: H£
ataı NEST I

11a END

EHb OF LISTING

Im zweiten Beispiel wird eine Routine zur Korrektur gespeicherter Datensätze

beschrieben. Die zu ändernden Datensätze brauchen dazu nicht neu eingegeben

werden, sondern Korrekturen können !mittels des Pointers!! im Display durch-

geführt werden.

FILE SEND

Sue . * uisrrel FJER KORREKTUR UON DATEN, DIE IN EINEM FILE WESPEICHERT SIND «
sale FILES FILE

. sasg BUFFER #32.58
ausd DIL FZ[H$:B$)
“459 FEINT "RLTER HAMNE:'.. "NEUER NAME: "
SEE PRINT

gr’ FOR I=1I TO 1a STEP 1

aRsfa SETW ı! TO £1I-13#93+1
sagst PFERD I. R#

4786 SEND #4. 0

17a CD #49, 1

#129 FRINT As:
41258 PECDIUE #32.68$
14 SETW :3 TOD CI-1) «341
25a WRITE 1.:8$

Kick PRINT TABLI3S2I:BF
Bir’ra NEXT i

1520 ENG

END OF LTSTING

12.51

RUN 5END

ALTER NAHME:

BILLY THE RHIPPER
JACK THE ROTHOUT
AUGUST DER RUEPPEL
DON CAMILLO OLIVETTI
CARL ZEISS
PEFFONE SIEMENS
KARL ARVER VALENTIN
BIEBER HAUS
FISCHER5S FRITZLEIN
HÖL’’ NIGHT

NEUER NAME:

BILLY THE KITT
JACK NIT ROTHOUT
AUGUST DER KRUEPPEL
DON CAMILLD OLIVETTI
KARL ZEISS
PEPPONE SIEMENS
KARL URALENTIN
BIEBER HAUS
FISCHERS FRITZLEIN
HOLLY AT NIGHT

12. 52

13. PLOTANWEISUNGEN

13.1

13.2

13.3

13.4

13.5

13.6

EINLEITUNG

DEFINITION DES BILDES

ZEICHNEN MIT DEM INTEGRIERTEN PRINTER

13.3.1 Der integrierte Printer als Digitalplotter

13.3.2 Darstellung von Punkten, Geraden, Buchstaben

und Sonderzeichen

13.3.3 Konstruktion und Ausgabe des Bildes

ARBEITEN MIT PERIPHEREM PLOTTER

BASIC - PLOTANWEISUNGEN

Kurzbeschreibung

Ausführliche Beschreibung

BEISPIELE MIT OPTION PLOT

13.6.1 Die Logarithmus-Funktion

13.6.2 Lineare Regression

Seite

13.1

13.4

13.4

13.4

13.6

13.10

13.12

13.12

13.13

13.49

13.49

13.50

PLOTANWEISUNGEN
nn u wur vum wann sn — en nn

= mn m m = nm Zn mn nn mn nn

EINLZITUNG

Zin Plotter ist eine periphere Einheit zur Erstellung von Zeichnungen und

Skizzen, allgemein eine Einheit, die automatisch numerische Daten in die

Zeichenebene überträgt und dadurch ein Bild erzeugt. Als zu verarbeitende

Daten werden vom Plotter rechtwinklige Koordinaten gefordert. Ein Bild

wird immer aus einer großen Anzahl von Punkten, numerisch repräsentiert

durch Koordinaten, bestimmt.

Da numerische Informationen allein nicht übersichtlich und oft unvollständig

sind, fordert der Anwender den Anschluß eines Plotters. Besondere Be-

deutung wird der graphischen Information dort bemessen, wo Strukturen

und Abhängigkeiten untersucht und erklärt werden müssen. In der Mathematik

und Statistik, den reinen numerischen Wissenschaften, erlaubt erst die

graphische Aussage vielen Anwendern, die Zahlen zu interpretieren und zu

verstehen. In der numerischen Steuerung für Werkzeugmaschinen wird vor

der eigentlichen Fertigung des Werkstückes der Arbeitsprozeß mit Hilfe

des Plotters simuliert, um Fehlproduktionen und Werkzeugschäden zu ver-

meiden. Sicher lassen sich noch viele Anwendungen aufführen. Für alle

diese Lösungen gilt, daß sehr viele Zahlen automatisch in eine Zeichnung,

die für das menschliche Auge angenehmste Form, umgesetzt werden.

Der integrierte Printer des 76060 kann als Plotter verwendet werden.

An den P6060 können zudem verschiedene periphere Plotter angeschlossen

werden. Im Rahmen der System-Option PLOT werden integrierter Printer

und peripnerer Plotter durch spezielle BASIC-Anweisungen unterstützt.

DEFINITION DES BILDES

Ein Bild wird durch ein BASIC-Programm mit speziellen Anweisungen der

Option PLOT konstruiert. Diese Anweisungen zeichnen Punkte und Linien

und schreiben Buchstaben und Sonderzeichen. Andere Anweisungen legen

das Koordinatensystem fest oder bestimmen, ob über einen externen Plotter

oder den integrierten Printer ausgegeben werden soll. Das Bild schließlich

ist die Gesamtheit aller Punkte, Linien und Buchstaben. Jeder Punkt für

sich wird digital, durch numerische Informationen in Form von !!X"- und

"Yıl_Koordinaten, entwickelt und auf der Zeichenfläche markiert.

Jeder Punkt dieser Zeichenfläche wird über seine Koordinaten angesprochen.

Die ©#eschränkung liegt hier in der Größe der Ausgabeeinheit. Sicher ist

immer nur ein \eil des allgemeinen Koordinatensystems abzubilden; es

kommt also darauf an, den Teil herauszunehmen, der die wesentlichen In-

formationen des Bildes enthält. In vielen Fällen muß dieser Teil maßstäblich

veränderlich sein. Diese Grundfunktionen sollen nicht Punkt für Punkt dem

Anwender überlassen sein, sondern in der unterstützenden Systemsoftware

enthalten sein.

Es kann sowohl die Größe der Zeichenfläche als auch die Lage des Koordi-

natensystems frei gewählt werden. Der Ursprung kann innerhalb oder außer-

halb der Zeichenfläche liegen.

a) Ursprung innerhalb der Zeichenfläche F :

.. und < >
x min min 9, “max und Y max u

Y

Y max >

I

| F

|

|

L “max >od —--J1____-_ > x

“min Co | (9,8

|

l

13.2

b) Ursprung außerhalb der Zeichenfläche F:

und > :

Ar

max>gr—

 min>gr-

—_ %

x

>
m

m
 *min>g max > Q

Die Festlegung des Koordinatensystems der Zeichenfläche erfolgt über die

Anweisung SCALE, in der das Maximum und Minimum der Abszisse und

Ordinate angegeben wird. Dies wird am Anfang definiert und bestimmt damit

die Maßeinheit und die Lage des Nullpunktes des Koordinatensystems,

Da die Extremwerte für Abszisse (X-Richtung) und Ordinate (Y-Richtung)

angegeben werden, können sich unterschiedliche Maßstäbe für die X-Achse

und Y-Achse bei gleichbleibender Zeichenfläche ergeben,

13.3

13.3

13.3.1

13.3.2

ZEICHNEN MIT DEM INTEGRIERTEN PRINTER

Der integrierte Printer als Digitalplotter

Der Minicomputer P6060 kann den integrierten Printer wie einen Digital-

plotter benutzen. Das Bild, das über den integrierten Printer ausgegeben

wird, setzt sich aus einzelnen Punkten zusammen. Die Zeichenfläche selbst

kann als eine große rechtwinklige Punktmatrix mit konstantem Punktabstand

in Zeile und Spalte angesehen werden. Die Grundeinheit ist also ein Punkt.

Die Dimension der Zeichenfläche (Breite und Höhe des Feldes) ist definier-

bar, die Maße werden in Zoll angegeben. Die Relation zwischen Zollmaß

und Punkt-Einheit ist :

1 Zoll € 70 Punkte

Über den integrierten Printer werden immer 7 zusammengehörende Zeilen

der Matrix gleichzeitig ausgegeben.

Darstellung von Punkten, Geraden, Buchstaben und Sonderzeichen

Ein BASIC-Programm konstruiert aus Daten die Punkte, Geraden und Strings

des Bildes. Ob Geraden oder alphanum.-Zeichen, alle Elemente der Zeichnung

werden auf die Grundeinheit durch ihre Koordinaten, Abszisse und Ordinate,

eindeutig fixiert. Die Koordinaten selbst sind einfach genaue Werte.

Im allgemeinen werden die Koordinaten eines Punktes berechnet und als

Punkt in die Zeichenfläche gesetzt, Dabei ergeben sich Abweichungen

zwischen den echten Koordinaten und den dargestellten Punkten aufgrund

des Auflösungsvermögens (1/70 Zoll als kleinste darstellbare Einheit).

Geraden sind nichts anderes als eine Folge dicht beeinander liegender Punkte.

Der Weg von einem Ausgangspunkt zum Endpunkt wird analytisch durch die

Lösung von Gleichungen bestimmt. Die Folge der zwischen Ausgangspunkt

und Endpunkt liegenden Punkte wird berechnet uı.d Punkt für Punkt in die

Punktmatrix übertragen.

Das System P6060 übernimmt diese Aufgabe, ohne daß der Programmer-

steller Punkt für Punkt konstruieren muß. Auch Buchstaben, numerische

Zeichen und Sonderzeichen werden vom P6060 automalisch generiert.

Der Zeichengenerator erzeugt mittels eines 9-Punkt-Rasters und den Ver-

bindungslinien das gewünscht& Symbol. Das Baugesetz eines Zeichens be-

nötigt mindestens 2 Punkte. Der Programmierer definiert nur die Größe

der Symbole (Anweisung CSIZE). Unabhängig von der Dimension wird der

Abstand zu anderen Zeichen aufgebaut. Zum Beispiel wird der Buchstabe

Y und die Zahl 2 folgendermaßen konstruiert.

 — 4

a = Abstand zum nächsten Zeichen

Der Punkt P zeigt die Position an, die als Ausgangspunkt für ein Symbol

oder einen ganzen String gilt.

Auch die Schreibrichtung des Strings ist frei wählbar. Diese Drehung wird

durch einen Winkel zur Abszisse angegeben,

Da Leerräume in Breite und Höhe als Bestandteil eines Zeichens gelten,

wird auf natürliche Weise das Blatt in Linien aufgeteilt. Zu beachten ist,

daß die Größe der Zeichen im Zeichengenerator in Zoll angegeben wird

in
 „zelzm 7e:7nvelt ist, und nicht mit der Maßeinheit für das Koorz'-a:="

13.5

13.3.3 Konstruktion und Ausgabe des Bildes

Das Plotten über den integrierten Printer kann nicht allein als natürliche

Folge von Plotanweisungen gesehen werden. Der Drucker ist keine Aus-

gabeeinheit mit einem Schreibstift, der beliebig über das Papier geführt

werden kann.

Benutzt man den integrierten Printer als Plotter, muß das Bild zunächst

digital entwickelt und gespeichert werden. Erst wenn dieser Vorgang be-

endet ist, kann die Ausgabe zeilenweise erfolgen.

Für die Aufzeichnung des Bildes ist es notwendig, einen Puffer im Arbeits-

speicher aufzubauen und ein Datenfile auf einer Diskette zu eröffnen. (CREATE).

Die Größe des Puffers und der Name des Files werden in der ersten Plot-

anweisung definiert. Diese Anweisung heißt INIMAGE .

Im Puffer wird byteweise gespeichert. Die vier folgenden Formate sind

möglich :

1)
1 oO iO |0O 0 0 0 0

Definiert erstes und letztes Byte des Puffers.

2)
1 xIXx1xX xI XIX 1X

Definiert eine Spalte (Kolonne) mit 7 Punkten, eine Markierung

bedeutet den Wert 1 für das Bit.

3
OÖ n

Heißt, n-Spalten mit 7 Punkten sind nicht markiert.

4)

Dieses Byte wird nicht verwendet.

Im Puffer wird noch ein Arbeitsspeicher von 256 Byte eingerichtet.

13.6

Nacheinander wird der Puffer mit allen Informationen gefüllt, die über An-

weisungen generiert werden. Die Zeichenfläche ist aufgeteilt in Zeilen mit

je 7 Punkten, von denen jeder für sich alleine markiert sein kann, Diese

Zeilen sind sequentiell zusammengestellt und ergeben somit die Gesamtheit

aller Punkte, das Bild.

Angenommen, ein Bild der Größe 2 x 8 Zoll (1 Zoll 2 2.5399 cm) wird auf-

gebaut und ein Puffer von 3 K-Byte im Arbeitsspeicher eingerichtet. Nach

den Anweisungen INIMAGE und FixAME wird nıt B9 Byte des Foiımniats 3

die gesamte Fläche beschrieben. Berücksichtigt man ferner, daß für System-

zwecke 258 Bytes benötigt werden, bleiben 2725 Bytes frei (Format 4).

Die folgende Tabelle soll zeigen, wie in Abhängigkeit der Zeichenfläche der

Puffer von 3 K-Byte aufgeteilt wird.

Zeichen- | max. Platz- Puffer (3K) 3072 Byte

fläche bedarf % Arbeits- [Anfangs- [Byte Syte End-

(Zoll) speicher |byte Format 3 | frei byte

8x2 11.200 256 1 89 2725 1

8x8 44.800 256 1 353 2461 1

8 x 20 112. 000 256 1 882 1932 1

8 x 40 224.000 256 1 1764 1050 1
wenn jeder Punkt der Zeichenfläche markiert wird.

Mit jeder Markierung vermindert sich der noch freie Platz im Puffer. Ist der

Puffer vollständig gefüllt, dann wird dieses erste Teilbild in das Datenfile

auf der Diskette geschrieben und der Puffer im Arbeitsspeicher neu aufbe-

reitet, um neue Punkte zu speichern. Auf diese Weise wird das Bild aus

Teilbildern zusammengesetzt, die im Puffer in Byteform entwickelt werden.

13.7

Die Anweisung DRAW schreibt ein letztesmal den Inhalt des Puffers ins

Datenfile. Dann wird dieser Platz benötigt um das Bild aus den Teilbildern

zusammenzusetzen. Als Ergebnis sieht man das Bild zeilenweise entstehen.

Das Bild ist gespeichert und kann als Ausgangssituation für weitere Verar-

beitungen benutzt werden.

In manchen Programmen kann es genügen, allein im Puffer des Arbeits-

speichers zu arbeiten. In diesem Fall kann das Bild nicht in Teilbildern ent-

wickelt werden und der Puffer muß groß genug bemessen sein. Nach der

Anweisung DRAW ist aber dann das Bild nicht mehr verfügbar.

Beim Plotten über den integrierten Printer werden die folgenden Arbeits-

schritte ausgeführt :

_ Definition des Datenfiles und des Puffers im Arbeitsspeicher durch die

Anweisungen INIMAGE oder LDIMAGE

- Definition der Zeichenfläche, der Bildgröße, mit der Anweisung FRAME,

die nur in Verbindung mit INIMAGE gilt

_ Folge von Plotanweisungen, mit der Aufgabe, das gewünschte Bild zu

konstruieren

_ Ausgabe der Zeichnung mit der Anweisung DRAW

Sekundär sind sicher die folgenden Probleme :

Optimale Dimensionierung des Puffers und des Files, minimale Speicher-

kapazität auf der Diskette und maximale Geschwindigkeit für das Programm.

Berücksichtigt man, was über den Puffer und die Speicherform gesagt wurde,

dann ist vorteilhaft, das Bild möglichst horizontal zu entwickeln. Ist der

Puffer sehr groß, dann sind wenige Speichervorgänge für das Bild notwendig.

Ein zu kleiner Puffer bedeutet viele Speicherungen und mehr Zeitaufwand.

Eine allgemeine Regel zu definieren, ist nicht möglich. Sicher ist, daß

Größe des Puffers und des Files von der Größe des Bildes und der Anzahl

der markierten Punkte abhängt.

13.8

Richtwerte lassen sich folgendermaßen finden :

_ 1 Zoll“ benötigt 700 Bytes, wenn alle Punkte markiert sind.

Der maximale Speicherbedarf für ein Bild, in dem alle Punkte markiert

sind, wird bestimmt nach der Formel:

Fläche x 700 Bytes + 384 Bytes für Parameter

Breite und Höhe des Bildes in Zoll gemessen, Ein Puffer, der nach

dieser Regel dimensioniert ist, kann das gesamte Bild aufnehmen.

Bildet man das Verhältnis !"Anzahl der markierten Punkte!!! zu "Anzahl

der nicht markierten Punkte!, kann als Größe des Files die Verhältnis-

zahl, multipliziert mit maximalem Speicherbedarf überschlagsmäßig an-

gesetzt werden.

13.9

ARBEITEN MIT PERIPHEREM PLOTTER

Die Anweisungen in der Option PLOT sollen nicht nur das Plotten über den

integrierten Printer ermöglichen, sondern auch das Arbeiten mit peripheren

Plottern unterstützen. In diesem Falle werden die einzelnen Plot-Anweisungen

als Aufruf einer BASIC-Funktion, die Bestandteil des Programmes sein muß

und auf die Art und die Funktion des Plotters abgestimmt ist, angesehen.

Das BASIC-Programm muß dann zusätzlich zu den BASIC-Anweisungen für den

integrierten Printer die mehrzeilige Funktion FNP enthalten.

Diese Funktion ist als Textfile auf einer Diskette gespeichert und kann mit dem

Befehl UNK an das bestehende Programm angehängt werden.

Die Funktion FNP enthält :

a) 6 Argumente mit einer Stringvariablen an der 5. Stelle

b) die Anweisung FN# = 0

c) die Anweisung EXTERNAL PLOTTER

d) die einzelnen PLOT-Anweisungen, die direkt in Kommandos für den ent-

sprechenden externen Plotter übersetzt werden.

Form der Funktion FNP ::

DEF FNP (A, B, C, D, ES, F) lokale Parameter
®

EXTERNAL PLOTTER
e

F =9

.

eo

N
.
®
o

°

FN

Die Funktion FNP darf nicht aufgerufen werden, sondern die Plotanweisungen

werden direkt in Funktionsaufrufe übersetzt und die Parameter in die Argu-

mente übernommen. Die ersten 4 Argumente (A, B, C, D) der Funktion nehmen

die 4 möglichen numerischen Parameter der Anweisungen auf, Die String-

variable in der Anweisung CPLOT wird in die Stringvariable EZ geschrieben.

Der 6. Operand (F) enthält als numerische Information den Typ der Plotanwei-

sung, die im Programm aufgerufen wird. Auf der Basis dieser Werte wird die

Funktion FNP entwickelt.

13.10

An das System P6060 können verschiedene Plotter angeschlossen werden,

Notwendig ist für jeden einzelnen Plotter, daß einmal die Funktion FNP

die Plotanweisungen in Steuerbefehle des Plotters umsetzt. Die Arbeits-

weise mit einem peripheren Plotter unterscheidet sich wesentlich von der

mit dem integrierten Printer. Es entfällt die Entwicklung des Bildes im

Puffer und das Speichern in ein Datenfile. Deshalb werden die Anweisungen

INIMAGE, LDIMAGE, FRAME und DRAW hinfällig und falls vorhanden über-

lesen.

Die folgende Tabelle zeigt die Zuordnung zwischen Plotanweisung und dem

numerischen Wert des 6. Arguments der Funktion FNP :

BASIC-Anweisung Typ der Anweisung (Argument F)

SCALE 10

CSIZE 11

OFFSET 12

CTAB 13

xAXIS 14

YAXIS 15

PLOT 16

IPLOT 17

CPLOT 18

IDOT 19

DOT 20

MOVE 21

13.11

13.

CPLOT

CSIZE

CTAB

DOT

DRAW

EXTERNAL.

PLOTTER

FRAME

IDOT

INIMAGE

IPLOT

LDIMAGE

MOVE

OFFSET

PLOT

SCALE

xAXIS

YAXIS

BASIC - PLOTANWEISUNGEN

Kurzbeschreibung

Mit den BASIC-Anweisungen der Option PLOT werden Bilder generiert. Sie

gelten für den integrierten Printer und alle angeschlossenen externen Plotter.

Schreiben eines Strings

Definition der Größe und Schreibrichtung für einen String

Tabulation für die Ausgabe von Strings (in Schriftrichtung senkrecht dazu)

Zeichnen eines Punktes

Ausgabe des Bildes über den integrierten Printer

Definition zur Ausgabe auf externen Plotter

Festlegung der Größe der Zeichenfläche (nur bei integr. Printer)

Zeichnen eines Punktes mit Inkrementen dx und dy

Definiert Puffer und Datenfile für das Bild (nur integr. Printer)

Zeichnen einer Geraden zu dem Punkt, der durch Inkremente dx und dy

erreicht wird

Laden eines gespeicherten Bildes (nur bei integr. Printer)

Positionieren auf einen Punkt

Definiert einen neuen Ursprung für das Kartesische Koordinatensystem

Zeichnen einer Geraden zu dem durch Koordinaten definierten Punkt

Festlegen von Lage und Maßstab des Koordinatensystem

Zeichnen einer Parallele zur X-Achse

Zeichnen einer Parallele zur Y-Achse

13.12

CPLOT

Anweisung CPLOT (Characterplot)

Funktion : Ausgabe einer Liste von Strings mittels Plot-Zeichengenerator

Format : CPLOT [Eirios-Aumer :Erreauei] .. []

mit : NString-Ausdr. ! für alphanumerische Ausdrücke, Beschränkung

auf maximal 8 Stringausdrücke.

Wirkung : Stringausdrücke werden an die Stelle geschrieben, die vorher positioniert

wurde. Die Größe der Zeichen und die Schreibrichtung richtet sich nach

der Anweisung CSIZE.

Wird als letztes Zeichen in der Anweisung das Trennzeichen !!;!! geschrieben,

wird auf den Ausgangspunkt für das direkt nachfolgende Zeichen positioniert,

Wird !!;!! nicht als letztes Zeichen angegeben, dann wird als neuer Ausgangs-

punkt der Stringanfang eine Zeile tiefer gesetzt. Dies ermöglicht eine ein-

fache spaltenmäßige Stringausgabe.

Bemerkung : Der Zeichengenerator erzeugt folgende Zeichen :

- dıe Grossbuchstaben:

A-B,C,D,E.F,G.H,AT,J,K,L:N.N.O,P,Q,R:-S,T.ULU,W,X, TV, ?

- dıe Zıfrern:

8.,1,2,3,%4,5,6, 7,9,9

- dıe Sonderzeichen:

ı SAL’ CI +. - 1:1. =>? 3 [Ir N

Enthält ein String andere Zeichen, so werden diese durch das Symbol "ll

dargestellt.

13.13

Es wird nur der Teil des Strings geschrieben, der in die definierte

Zeichenebene hineinpaßt. Wird über den Rand hinausgeschrieben, wird als

Hinweis nach der Ausgabe des Bildes das Maximum oder Minimum in X und

(oder) Y ausgegeben.

Fehlermeldungen: Die Anweisung INIMAGE oder LDIMAGE wurde nicht gegeben. (ERROR 241)

Die Operation konnte nicht ausgeführt werden :

der Inhalt des Puffers kann nicht auf die Diskette geschrieben werden oder

der Puffer ist für das Bild nicht groß genug. Der Fehler ist behebbar, die

Punkte, die die Meldung hervorrufen, werden nicht gezeichnet. (ERROR 250)

13.14

Anweisung CSIZE (Charactersize)

Funktion :

Format :

Wirkung :

Bemerkung :

Fehlermeldungen:

Definition der Zeichengröße von Strings und der Schreibrichtung,

bezüglich der X-Achse.

CSIZE b, h, w

mit : numerischen Werten für die Parameter b (Breite), h (Höhe) und

dem Winkel w im Bogenmaß.

b, h 2 0, 03

Die numerischen Werte für die Breite und Höhe stehen für das Punktraster

in dem die Zeichen generiert werden. Die Dimension für Breite und Höhe ist

das Maß Zoll. Der Winkel, der im Bogenmaß angegeben wird, hat als Dreh-

richtung die mathematisch positive Definition (entgegen dem Uhrzeigersinn).

Die Anweisung CSIZE gilt so lange für alle nachfolgenden CPLOT-Anwei-

sungen, bis eine erneute CSIZE-Anweisung erfolgt.

Wenn die Anweisung CSIZE fehlt, wird für Breite und Höhe 1/7 Zoll ge-

nommen und der Winkel @ gesetzt.

Von den festgelegten Werten für Breite und Höhe werden 6/10 für das

Zeichen selbst und 4/10 für den Zwischenraum zum nächsten Zeichen nach

rechts bzw. oben genommen.

Der Wert für Breite oder Höhe ist kleiner 0, 03 (ERROR 251).

Die Anweisungen INIMAGE oder LDIMAGE wurden nicht gegeben (ERROR 241).

13.15

CTAB

Anweisung CTAB (Charactertab)

Funktion :

Format:

Wirkung :

Bemerkungen

Tabulation auf einen Punkt, dessen Koordinaten durch eine Verschiebung

um n Zeichen und m Zeilen gegeben sind (bezüglich der letzten ausgeführten

CPLOT-Anweisung)

CTAB n, m

mit : den Parametern n und mals numerische Ausdrücke*®

Die nächste String-Ausgabe mittels CPLOT erfolgt um n Zeichenbreiten und

m Zeilen (gemäß CSIZE) versetzt. Die Anweisung CTAB bezieht sich immer

auf die letzte CPLOT-Anweisung.

Die Anweisung CTAB ist vergleichbar mit der Anweisung MOVE, die eine

Koordinatenbewegung zu einem durch Koordinaten definierten Punkt aus-

führt und als Vorbereitung für PLOT, DOT,...... verwendet wird. Der

Vorteil der Anweisung CTAB besteht darin, daß man nicht auf Koordinaten

umrechnen und auch die Schreibrichtung für den String nicht berücksich-

tigen muß.

Das Positionieren sollte so ausgeführt werden, daß innerhalb der Zeichen-

fläche geblieben wird. Reicht der Rahmen für das Gesamtbild nicht aus, so

wird am Ende das Maximum oder Minimum der Koordinatenwerte als Hinweis

ausgegeben.

Fehlermeldungen: Die Anweisungen INIMAGE oder LDIMAGE wurden nicht gegeben (ERROR 241).

13.17

Anweisung DOT

Funktion :

Format :

Wirkung :

Bemerkungen :

Fehlermeldungen:

Markieren eines Punktes, der durch Koordinaten definiert ist

DOT X, Y

mit : x und Y sind numerische Ausdrücke, die die Abszisse und

die Ordinate des Punktes angeben,

Die numerischen Werte X und Y bestimmen Abszisse und Ordinate des

Punktes, der markiert werden soll. Es erfolgt die Koordinatenbewegung zu

dem angegebenen Punkt, ohne daß eine Linie gezogen wird.

Liegt der Punkt außerhalb der Bildfläche, wird er nicht markiert. In diesem

Falle wird der Wert der Abszisse und (oder) Ordinate als Außenpunkt regis-

triert. Als Hinweis wird nach der Ausgabe des Bildes, das Maximum und

(oder) Minimum der Außenpunkte ausgegeben.

Die Anweisung INIMAGE oder LDIMAGE wurde nicht gegeben. (ERROR 241)

Die Operation konnte nicht ausgeführt werden :

der Inhalt des Puffers kann nicht auf die Diskette geschrieben werden oder

der Puffer ist für das Bild nicht groß genug. Der Fehler ist behebbar, die

Punkte, die die Meldung hervorrufen, werden nicht gezeichnet. (ERROR 250)

13.19

DRAW

Anweisung DRAW

Funktion : Ausgabeanweisung für das Bild über den integrierten Printer

Format: DRAW [a]

mit : d als numerischen Ausdruck (0.03&£d<8) für die Verschiebung

des Koordinatenursprungs in X-Richtung

Wirkung : Mit dieser Anweisung wird das erzeugte Bild ausgegeben. Es wird aus den

Teilbildern des Datenfiles, festgelegt durch die Anweisung INIMAGE oder

LDIMAGE, zusammengesetzt.

Wird der Parameter d (in Zoll) angegeben, so wird das im Datenfile ge-

speicherte Bild bei der Ausgabe entsprechend nach rechts verschoben.

Bemerkungen : Die Anweisung DRAW veranlaßt zunächst die Aufzeichnung des Puffers im

Arbeitsspeicher auf das genamnte Datenfile auf der Diskette. Der Inhalt

des Datenfiles bleibt so lange erhalten, bis mit den Anweisungen INIMAGE

oder LDIMAGE neue Plotoperationen mit dem gleichen File ausgeführt werden.

Nach dem Schreiben aus dem Puffer steht im Zentralspeicher, wie sich das

Bild aus gespeicherten Teilbildern in dem File zusammensetzt. Das Bild

kann nicht in beliebig viele Teilbilder gesplittert werden. Es sind maximal

n = (Puffergröße - 256) /128 (alle Angaben in Byte) Teilbilder möglich, wo-

bei jedes Teilbild durch eine Abspeicherung des Pufferinhalts auf die Dis-

kette erzeugt wird.

Ist in den Anweisungen INIMAGE oder LDIMAGE als Parameter OFF aufge-

führt, dann werden mit DRAW nur die Extremwerte, Maximum und Minimum

der Abszissen und Ordinaten des Bildes, ausgegeben. Diese Werte, ge-

messen in Zoll, zeigen an,welcher Bereich für das Bild vorzusehen ist, und

können dann in der Anweisung SCALE für die Festlegung der Zeichenfläche

angegeben werden.

13.21

Die Ausführung der Anweisung DRAW kann durch Drücken der Tasten

STEP oder BREAK unterbrochen werden. STEP führt in den Debugging-

Mode, die Ausführung kann wiederholt werden. BREAK bedeutet vorzeitiges

Programmende. In jedem Fall werden jedoch die Extremwerte ausgedruckt.

Steht im Programm die Anweisung EXTERNAL PLOTTER, wird die An-

weisung DRAW überlesen.

Fehlermeldungen: Die Anweisung INIMAGE oder LDIMAGE wurde nicht gegeben. (ERROR 241)

Der Wert für die Verschiebung bei der Ausführung der DRAW-Anweisung

überschreitet zulässige Grenzen (ERROR 239).

Der integrierte Printer fehlt (ERROR 240).

13.22

EXTERNAL PLOTTER

Anweisung EXTERNAL PLOTTER

Funktion :

Format:

Wirkung :

Bemerkungen :

Fehlermeldungen:

Vorwahl für einen externen Plotter

EXTERNAL. PLOTTER

Mit dieser Anweisung wird angegeben, daß das Bild nicht in einem Datenfile

erzeugt wird, sondern direkt über den angeschlossenen externen Plotter

gezeichnet wird. Die eigentliche Plottergrundsoftware, die bei verschie-

denen Plottern unterschiedlich ist, muß’ in der Funktion FNP zur Verfügung

stehen. Diese Funktion enthält auf BASIC-Ebene alle spezifischen An-

weisungen für den externen Plotter.

Die Anweisung EXTERNAL PLOTTER ist eine nicht ausführbare Anweis.rs,

kann also an jeder Stelle des Programmes stehen (z.B. in FNP).

Die Anweisungen INIMAGE, LDIMAGE, FRAME und DRAW gelten nur für

den integrierten Printer. Steht im gkeichen Programm die Anweisung

EXTERNAL PLOTTER;,dann werden diese Anweisungen überlesen,

Im Programm fehlt die Funktion FNP (ERROR 238).

13.23

FRAME

Anweisung FRAME

Funktion :

Format;

Wirkung :

Bemerkungen :

Fehlermeldungen:

Festlegung der Größe der Zeichenfläche

FRAME b, h

mit : b (Breite) und h (Höhe) als numerische Ausdrücke

0.03<=b<=8 (ca. 20 cm)

0.03(C=h<= 936 (ca. 23.4 m)

Die numerischen Werte für "Breite! und !!'Höhe!! definieren die Größe der

Zeichenfläche, in der das Bild generiert wird. Die Dimension der Para-

meter ist Zoll.

Die obere Grenze der !"Breite'!" wird durch die Breite des Thermopapiers

bestimmt und entspricht ca. DIN A4 mit Hochformat. Die Höhe ist nur theo-

retisch limitiert (23 Meter!) und hängt, genau wie die Gesamtfläche des

Bildes, von der Größe des Puffers im Arbeitsspeicher und derjenigen des

externen Datenfiles ab.

Im Programm muß die Anweisung FRAME nach INIMAGE, aber vor allen

anderen Plotanweisungen stehen. Wird die Anweisung FRAME nicht aufger

führt, dann wird für das Bild eine Größe von 8x 8 Zoll angenommen,

Steht im Programm die Anweisung EXTERNAL. PLOTTER, so wird die

Anweisung FRAME Überlesen.

Der Wert für die Breite liegt nicht innerhalb der vorgegebenen Grenzen

(ERROR 245).

Der Wert für die Höhe liegt nicht innerhalb der vorgegebenen Grenzen

(ERROR 246).

Die Anweisung FRAME steht vor INIMAGE (ERROR 242).

Der Puffer im Arbeitsspeicher ist zu klein, um das Bild aufzunehmen

(ERROR 248).

Die Anweisung INIMAGE wurde nicht gegeben (ERROR 241). 13.25

Anweisung IDOT

Funktion :

Format:

Wirkung :

Bemerkungen :

Fehlermeldungen:

IDOT

(Incrementdot)

Zeichnen eines Punktes durch Angabe von Inkrementen dx und dy

IDOT dx, dy

mit : dx und dy als numerische Ausdrücke

Die numerischen Werte für dx und dy heißen Inkremente und definieren einen

Punkt, der bezüglich des zuletzt angesprochenen Punktes x die Koordi-

naten dx/dy hat (Koordinaten bezüglich des Ursprungs : X + dx/ Y +.dy).

Wenn IDOT auf keinen Bezugspunkt zurückgreifen kann, wird der Ursprung

des Koordinatensystems als Ausgangspunkt genommen.

Wenn der zu zeichnende Punkt außerhalb des Rahmens fällt, werden das

Maximum und (oder) Minimum von Abszisse und Ordinate gespeichert, damit

ein Hinweis auf zu kleine Zeichenfläche gegeben werden kann.

Die Anweisung INIMAGE oder LDIMAGE wurde nicht gegeben (ERROR 241).

Die Operation konnte nicht ausgeführt werden :

Der Inhalt des Puffers kann nicht auf die Diskette geschrieben werden oder

der Puffer ist für das Bild zu klein. Der Fehler ist behebbar, die Punkte,

die die Meldung hervorrufen, werden nicht gezeichnet (ERROR 250).

13.27

Anweisung INIMAGE

Funktion :

Format;

Bemerkungen :

Definition des Datenfiles, das das Bild speichern soll, Aufbauen des Puffers

im Arbeitsspeicher und Laden der Parameter, die für die Plotoperationen not-

wendig sind

OFF ınımace |°° Er]
Filename

mit : NFilename!! = Name des sequentiellen Datenfiles,'!Iin!! = Größe des

Puffers (26=n<= 48 Kbyte).

Erster Parameter :

_ OFF : Das gesamte Plot-Programm wird ausgeführt, Anstelle der Mar-

kierung von Punkten und der Speicherung des Bildes wird über das

gesamte Bild das Maximum und Minimum der Abszissen und Ordinaten

bestimmt.

_ Filename : Das File mit dem Namen !Filename!! ist für die Speicherung

des Bildes vorgesehen. Das sequentielle File darf nicht gesichert sein

und kann der Package-, Common- oder User-Bibliothek angehören. Mit

der Anweisung INIMAGE wird das File zur Speicherung des Bildes vor-

bereitet und ein eventuell bereits vorhandenes Bild gelöscht. Damit ist

das File kein gewöhnliches Datenfile.

- Wenn weder OFF noch ein Filename als Parameter eingesetzt ist, wird

als Filename SYSPLO gesetzt. Existiert das genannte File SYSPLO

nicht, dann wird das Biid im Puffer des Arbeitsspeichers erzeugt. Jede

neue INIMAGE oder LDIMAGE -Anweisung löscht dann das gespeicherte

Bild im Arbeitsspeicher.

13.29

Zweiter Parameter :

_ Im Arbeitsspeicher wird ein Puffer von n-Kbyte eingerichtet, der alle

Informationen über die gezeichneten Punkte aufnehmen soll. Nach dem

Aufbau des Puffers sind keine Punkte darin gespeichert. Ist der Puffer

durch fortlaufende Plotanweisungen gefüllt, wird der Pufferinhalt auf

das genannte File als Teilbild gespeichert und danach neu aufgebaut.

Auf diese Weise wird das Bild aus Teilbildern zusammengesetzt.

_ Ist ""Filename!' aufgeführt, aber fehlt !!n!!, dann wird n = 3 gesetzt.

- Ist OFF! aufgeführt, ist !!n!! nicht bedeutend und wird überlesen, wenn

es aufgeführt ist.

_ Die Anweisung INIMAGE initialisiert die Standard-Parameter für die

im Programmfolgenden Plot-Anweisungen in den Arbeitsspeicher.

Diese sind:

- Die Dimension des Bildes :8xB8 Zoll

- Die Maßeinheiten für die Achsen, Minimum und Maximum von Abszissen

und Ordinaten für die Zeichenfläche.

1 Maßeinheit = I Punkt = 1/70 Zoll

Abszisse : Minimum = - 279. 5; Maximum = 279.5

Ordinate : Minimum = - 279.5; Maximum = 279.5

Dies bedeutet, daß der Ursprung des Koordinatensystems in der Mitte

der Zeichenfläche liegt.

— Die Dimension der Buchstaben im Zeichengenerator.

Breite des Punkterasters für 1 Zeichen = 1/7 Zoll (10 Punkte)

Höhe des Punkterasters für 1 Zeichen = 1/7 Zoll (10 Punkte)

Winkel = @ (Bogenmaß)«

Die Werte für die Plot-Parameter können durch die Anweisungen FRAME,

SCALE und CSIZE modifiziert und damit dem Problem angepaßt werden.

13.30

Bemerkungen :

Fehlermeldungen:

Die Anweisung INIMAGE (oder alternativ LDIMAGE) muß als erste Plot-

anweisung geschrieben sein. Alle Plotanweisungen greifen in der Aus-

führung auf Parameter zurück, die durch INIMAGE definiert werden, Die

Ausführung eines neuen INIMAGE kann sich nicht nur auf den Inhalt des

Puffers sondern auch des Datenfiles auswirken und bedeutet immer die

Vorbereitungen für ein neues Bild und damit das Löschen des gespeicherten

Bildes.

Nach der Ausführung der INIMAGE-Anweisung sind die Daten des Files

nicht mehr verfügbar. Nach dem Speichern eines Bildes is das File ge-

schützt und kann nur als Plotfile verwendet werden. Als Datenfile ist es

nur nach PURGE und erneutem CREATE einzusetzen,

Wenn EXTERNAL. PLOTTER im Programm aufgeführt ist, wird INIMAGE

bedeutungslos und daher überlesen,

Das File "Filename!! existiert nicht (ERROR 236).

Das File '"Filename! ist nicht sequentiell (ERROR 207).

Das File "Filename! ist gesichert (ERROR 199).

Das File ist kleiner dimensioniert als der Puffer (ERROR 249).

Nach der Preexecution ist der noch freie Speicher kleiner als 1280 Bytes

(ERROR 244).

Nach der Preexecution ist die Dimension des Files und der noch freie

Speicherraum nicht ausreichend (ERROR 237).

Overflow des Zentralspeichers (ERROR 181).

13.31

PLOT

Anweisung IPLOT (Incrementplot)

Funktion :

Format :

Wirkung :

Bemerkungen :

Fehlermeldungen:

Zeichnen einer Verbindungslinie zu dem Punkt, der durch Inkremente dx und

dy erreicht wird

IPLOT dx, dy

mit: "dxtt und "dy!! als numerische Ausdrücke"

Die numerischen Werte !"!dx!! und !!dy!! bezeichnen nicht Koordinaten sondern

Inkremente, d.h. die Koordinaten dx/dy bezüglich der Koordinaten X/\Y des

zuletzt angesprochenen Punktes (Koordinaten bezüglich des Ursprungs :

x +dx/Y +dy). Bis zu diesem so definierten Punkt wird linear interpoliert

und eine Gerade gezeichnet.

Wenn noch kein Ausgangspunkt beim ersten Aufruf vorliegt, wird der Ur-

sprung des Koordinatensystems als Ausgangspunkt angenommen.

Liegen diese linearen Elemente ganz oder teilweise außerhalb der Zeichen-

fläche, dann wird der Teil gezeichnet, der ins Bild paßt. Für außerhalb

liegende Punkte wird das Maximum und Minimum festgestellt und als Hinweis

nach Ausgabe des Bildes geschrieben,

Die Anweisung INIMAGE oder ILDIMAGE wurde nicht gegeben (ERROR 241).

Die Operation konnte nicht ausgeführt werden :

Der Inhalt des Puffers kann nicht auf die Diskette geschrieben werden oder

der Puffer ist für das Bild nicht groß genug. Der Fehler ist behebbar, die

Punkte, die die Meldung hervorrufen, werden nicht gezeichnet (ERROR 250).

13.33

LDIMAGE

Anweisung LDIMAGE (Loadimage)

Funktion :

Format:

Wirkung :

Bemerkungen :

Definition eines Plotfiles mit Übernahme des letzten gespeicherten Bildes

mit den Parametern aus diesem File und Aufbau des Arbeitsspeichers für

Plot-Anweisungen.

LDIMAGE Filename

mit : "Filename!! als Namen des Plotfiles.

Das in dem File !"'Filename!! gespeicherte Plot-Bild wird geladen, kann an-

schließend ergänzt werden und wird dann zurückgespeichert. Das File muß

als sequentielles Datenfile in einer der Bibliotheken kreiert sein und ist

nach dem ersten Speichervorgang nur noch für Plotoperationen offen.

In den Arbeitsspeicher werden die Parameter für die Plotanweisungen ge-

laden. Die Parameter sind die gleichen, wie sie bei INIMAGE beschrieben

sind. Es gelten die Werte, die zum Zeitpunkt des Abspeicherns für das

Bild definiert waren. Der Arbeitsspeicher enthält auch Informationen, wie

den neuen Koordinatenursprung und den zuletzt markierten Punkt. Wurde

ein Puffer im Arbeitsspeicher durch INIMAGE dimensioniert, gilt dieser

auch für LDIMAGE.

Die Anweisung LDIMAGE (oder alternativ INIMAGE) muß die erste ausge-

führte Plotoperation im Programm sein. Alle Plotanweisungen benötigen

Informationen, die durch LDIMAGE bereitgestellt sind. Nach der Ausführung

der LDIMAGE-Anweisung kann das geladene Bild ergänzt werden. Es können

neue Punkte dazu gezeichnet werden, aber bereits vorhandene Punkte können

nicht gelöscht werden.

13.35

Wenn in ein File ein Bild gespeichert wurde, ist es geschützt und kann nicht

wie ein gewöhnliches sequentielles Datenfile benutzt werden.

Steht im Programm die Anweisung EXTERNAL. PLOTTER, wird LDIMAGE

bedeutungslos und überlesen.

Fehlermeldungen: Das File "Filename!' existiert nicht (ERROR 187).

Das File "Filename! ist nicht sequentiell oder nicht zum Speichern eines

Bildes vorbereitet (ERROR 252).

Overflow im Zentralspeicher (ERROR 184).

13.36

Anweisung MOVE

Funktion :

Format :

Wirkung :

Bemerkungen :

Fehlermeldungen:

MOVE

Positionieren auf einen durch Koordinaten definierten Punkt

MOVE X, Y

mit : "X und !Y" als numerische Ausdrücke! die Abszisse und Ordinate

eines Punktes bezeichnen

Die numerischen Werte für "X" und !!Y!" stehen für die Abszisse und Ordinate

eines Punktes. Der Punkt wird nicht markiert. Er wird als Ausgangspunkt

für nachfolgende Plotoperationen gespeichert.

Ein Positionieren kann aus der Zeichenfläche herausführen. In diesem Falle

werden das Maximum oder Minimum oder Abszissen und Ordinaten der außen-

liegenden Punkte als Hinweis nach dem Plot ausgegeben.

Die Anweisung INIMAGE oder LDIMAGE wurde nicht gegeben (ERROR 241).

13.37

OFFSET

Anweisung OFFSET

Funktion :

Format:

Wirkung :

Bemerkungen :

Fehlermeldungen:

Verschiebt den Koordinatenursprung im Koordinatensystem.

OFFSET X, Y

mit : X! und !!Y! numerische "Ausdrücke"

Die numerischen Werte !"!X!! und !!Y!" sind die neuen Koordinaten für eine

Verschiebung des Koordinatenursprungs und legen damit ein neues recht-

winkliges Koordinatensystem fest.

Die Koordinaten aller Punkte nach der OFFSET-Anweisung beziehen sich

auf dieses neue Koordinatensystem,. Der Ursprung des Koordinatensystems

darf auch außerhalb der Zeichenfläche liegen.

Der neue Ursprung, der durch OFFSET definiert wird, bezieht sich immer

auf den Koordinatenursprung, der aus der letzten SCALE-Anweisung re-

sultiert, auch wenn bereits zuvor eine andere OFFSET-Anweisung ausge-

führt wurde.

Der Koordinatenursprung kann durch die Anweisung OFFSET oder ein

neues SCALE geändert werden.

Die Anweisung INIMAGE oder ILDIMAGE wurde nicht gegeben (ERROR 241).

13.39

Anweisung PLOT

Funktion :

Format :

Wirkung :

Bemerkungen :

Fehlermeldungen:

PLOT

Zeichnen einer Geraden zu dem durch Koordinaten definierten Punkt.

PLOT x, Y

mit: "x und !"!\Y'! als numerische "Ausdrückel!,

Die numerischen Werte !!X!! und !!Y!! stehen für die Abszisse und Ordinate

eines: Punktes; Es wird eine Gerade gezeichnet, die von dem zuletzt ge-

speicherten Punkt zu dem in den Parametern definierten Punkt führt. Da-

nach gilt diese Koordinate als Ausgangspunkt für die nächste Plotoperation.

Ist noch kein Ausgangspunkt vorhanden, wird als Ausgangswert der Ur-

sprung des Koordinatensystems verwendet. Liegen diese linearen Elemente

ganz oder teilweise außerhalb der Zeichenfläche, dann wird nur der Teil

gezeichnet, der ins Bild paßt. Für außerhalb liegende Punkte wird das

Maximum und (oder) Minimum festgestellt und als Hinweis nach der Ausgabe

des Bildes geschrieben.

Die Anweisung INIMAGE oder LDIMAGE wurde nicht gegeben (ERROR 241).

Die Operation konnte nicht ausgeführt werden :

Der Inhalt des Puffers kann nicht auf die Diskette geschrieben werden oder

der Puffer ist für das Bild nicht groß genug. Der Fehler ist behebbar, die

Punkte, die die Meldung hervorrufen, werden nicht gezeichnet (ERROR 250).

13.41

| SCALE

Anweisung SCALE

Funktion :

Format :

Wirkung :

Bemerkungen :

Festlegen der Eirheiten des Koordinatensystems durch Minimum und Maximum

der beiden Achsen; implizit werden dadurch Maßstabsfaktoren und der Koordi-

natenursprung definiert.

SCALE X-min, X-max, Y-min, Y-max

mit: "X-min!, 1X-max!!, !N-min!, !\-max'! numerische Ausdrücke und

den Bedingungen X-min &X-max und Y-min £Y-max

Die numerischen Werte für !"!'X-min!, "X-max!, !W-min! und "Y-max!

definieren die Zeichenfläche als X- und Y-Intervall. Die Breite der Zeichen-

fläche in Zoll,in der Anweisung FRAME festgelegt oder als Standardpara-

meter angenommen,zeigt das Intervall (X-min - X-max) an. In diesem Fall gilt

als Maßeinheit für die Abszisse :

(Breite/ (X-max - X-min)) Zoll

Analog gilt für die Ordinate die Maßeinheit :

(Höhe/ (Y-max - Y-min)) Zoll

Implizit bestimmen die Werte X-min, X-max, Y-min und Y-max die Lage

des Nullpunktes (Koordinatenursprung).

Der Koordinatenursprung darf auch außerhalb der Zeichenfläche liegen.

Die Maßeinheit für beide Achsen kann unterschiedlich sein und durch eine

neue SCAL.-E-Anweisung geändert werden.

Fehlt das SCALE, wird als Maßeinheit 1/70 Zoll für beide Achsen ge-

nommen. Als Koordinatenursprung wird die Bildmitte mit den Parametern

xX-min = - (Breite/2) 70

X-max = (Breite/2) 70

Y-min = - (Höhe /2) 70

Y-max = (Höhe /2) 70

gesehen.

13.43

Fehlermeldungen: X-min> = X-max oder Y-min >= Y-max (ERROR 247).

Die Anweisung INIMAGE oder LDIMAGE wurde nicht gegeben (ERROR 241).

13.44

Anweisung XAXIS

Funktion :

Format :

Wirkung :

Bemerkungen :

Fehlermeldungen:

XAXIS

Zeichnen einer Parallelen zur X-Achse.

KAXIS vb [x x2]

mit: Y,t, Xıl und X2 als numerische Ausdrücke'und t f0

Es wird eine Parallele zur X-Achse mit der Ordinate \Y gezeichnet. Mit

Xi als Startpunkt und X2 als Endpunkt wird das Intervall für die X-Achse

definiert. Fehlt diese Information, dann wird die Parailele zur Achse über

die gesamte Zeichenfläche gezeichnet. Ist t angegeben, wird die Achse

vom Startpunkt beginnend mit Markierungen im Abstand t versehen,

Ist X1 < X2 und t negativ oder auch Xi > X2 und t positiv

oder It} >1X2 - X1| dann wird die Achse nicht markiert.

Wird die Achse ganz oder teilweise außerhalb der Zeichenfläche definiert,

dann wird nur der Teil gezeichnet, der ins Bild paßt. Für außerhalb

liegende Punkte wird das Maximum und (oder) Minimum festgestellt und als

Hinweis nach der Ausgabe des Bildes geschrieben,

Die Anweisungen INIMAGE oder LDIMAGE wurde nicht gegeben (ERROR 241).

Die Operation konnte nicht ausgeführt werden :

Der Inhalt des Puffers kann nicht auf die Diskette geschrieben werden oder

der Puffer ist für das Bild nicht groß genug. Der Fehler ist behebbar, die

Punkte, die die Meldung hervorrufen, werden nicht gezeichnet (ERROR 250).

13.45

Anweisung VYAXIS

Funktion :

Format :

Wirkung :

Bemerkungen :

Fehlermeldungen:

Zeichnen einer Parallelen zur Y-Achse.

vaxıs xL Lv ‚v2

mit: X, t, Yıi und Y2 als numerischen Variablen oder Ausdrücken

und t:#0

Es wird eine Parallele zur Y-Achse mit der Abszisse X gezeichnet. Mit

Yıi als Startpunkt und \Y2' als Endpunkt wird das Intervall für die Y-Achse

definiert. Fehlt diese Information, dann wird die Parallele zur Achse über

die gesamte Zeichenfläche gezeichnet. Ist t angegeben, wird die Achse

von Y1i beginnend mit Markierungen im Abstand t versehen.

Ist Yı<Y2 und t negativ (Y1> Y2 und t positiv) oder [tl >Y2 - Yi,dann wird

die Achse nicht markiert.

Wird die Achse ganz oder teilweise außerhalb der Zeichenfläche definiert,

dann wird nur der Teil gezeichnet, der ins Bild paßt. Für außerhalb liegende

Punkte wird das Maximum und (oder) Minimum festgestellt und als Hinweis

nach der Ausgabe des Bildes geschrieben.

Die Anweisungen INIMAGE oder LDIMAGE wurde nicht gegeben (ERROR 241).

Die Operation konnte nicht ausgeführt werden :

Der Inhalt des Puffers kann nicht auf die Diskette geschrieben werden oder

der Puffer ist für das Bild nicht groß genug. Der Fehler ist behebbar, die

Punkte, die die Meldung hervorrufen, werden nicht gezeichnet (ERROR 250).

13.47

13.6.1

BEISPIELE MIT OPTION PLOT

Aufbau eines Plot-Programmes

Integrierter Printer Externer Plotter

1. Vereinbarungsteil

INIMAGE LDIMAGE -

FRAME |! - FRAME

SCALE ! SCALE SCALE

2. Plot-Anweisungen

OFFSET OFFSET

MOVE MOVE

XAXIS XAXIS

YAXIS YAXIS

PLOT/IPLOT PLOT/IPLOT

DOT/IDOT DOT/IDOT

3. Generierung von Strings

CSIZE CSIZE

CPLOT CPLOT

CTAB CTAB

4. Ausgabe des Plot-Bildes

DRAW (wird simultan

ausgeführt)

13.49

13.6.2 Die Logarithmus-Funktion

Die Funktion LOG(xX) ist zu zeichnen im Intervall 0.01 <& =X <=10. Die

Berechnung der Funktion erfolgt in 2 Abschnitten : im Intervall 0.01 bis I

mit der Schrittweite 0.91, im Intervall 1 bis 10 mit der Schrittweite 0.5.

Zur Speicherung des Bildes wird das File DIS genommen, der Puffer im

Arbeitsspeicher wird mit 4 K-Byte aufgebaut.

Das Koordinatensystem wird gezeichnet für :

10

3

X-min = - 1; X-max

Y-min = - 5; Y-max

Soli keine Verzerrrung durch das Verhältnis X : Y = 11 : 8 Einheiten auf-

treten, dann muß mit der Anweisung FRAME für einen einheitlichen Maß-

stab gesorgt werden. Bei einer Breite für das Bild von 6 Zoll ergibt sich

für die Höhe 4. 363636 Zoll nach dem Verhältnis

11:8=-6:X

FILE “UN

gaia ININAGEDIS,4

3828 FRAME 6,4.363636

Ba38 SCALE -1.18,.-5,3

BB4a AHAIS 8, 1,-1,10

8586 YAXIS 8,1,-5,3

3868 MOVE 5,-1

au78 CPLOT "Y=LNER)"

au88 MOVE .981,L0GL.801)

86898 FOR %=.81 TO 1 5STEF „81

8188 FLOT %,LOGLX)

Ba118 NET 4

3128 FOR %=1 TO 18 STEF „5

8138 FLOT %,LOGLCX)

9148 NEXT x

9158 ECRAW

A16B END

END OF LISTING

13. 50

13.6.3 Lineare Regression

Eine Punktfolge (X, Y) wird auf die Zeichenfläche übertragen, die Punkte

werden durch !!+!! in der Funktion FNC markiert. Die Regressionsgerade

wird berechnet, gezeichnet und die Kennwerte für die Regression werden

mit CPLOT ausgegeben.

13.51

n
e

[
n
e
n
n
e
n

cn

in

F
o

u
i

INIMAGELIS, 4

FRANE 8,8

SCALE -1, 18, -1, 18

MOVE 9.5,9

CSIZE 8.25,0.25:8

CPLOT "LINEARE REGRESSION"

CSIZE 176.176,8

BUILD T$,R

MUVE 8.5,8.5

CFLOT '"'KORR. KOEFF. ="+T$

BUILD T$,HA1

CPLOT "ABSCHNITT ="+T$

FRINT TAB(28):"DATENPRARHR E"

FRINT

PRINT

PRINT

PRINT TRBLISI:"PAAR NY, a,

PRINT

SETW:1 TO 13

FOR I=1 TO NZ STEP 1

RERD: 1.X%.Y

LET KI=SFNCCR, VI

NEXT 1

FLOT 7.1.A1+B1*7.1

DEAUW

DEF OFNCCH.VY

MOVE %-8.1,%

PLOT %+4.1,Y\

MÜVE x,Y+6.1

FLOT %,Y-8.1

LET FN#*=1

FNEND

END

13. 52

- _

x
 T
 tk

—

—-
n
n

Yy
N
a
m
 FL.

s
e

«
N

8
2.

8
0

.
o

N
N
M
N
M
I
I
D
T
-

N
1

i
W
0
7

m

-

m

-

(
1
0
9
%

e
e

.-
A
N
D

W
I
N

t
r

a
i
r

-

(
o
f

7

I

9

fr.
DS
I
m
m
u
n

u

I_INERRE REGRESSION

13. 53

ANHANG

ISO-CODE TABELLE

LISTE DER DARSTELLBAREN ZEICHEN UND IHRER

DEZIMALEN WERTE

DARSTELLUNG DER ISO-ZEICHEN DER SPALTEN

UND 1 DER ISO-CODE TABELLE

LISTE DER FEHLERCODES

Seite

Al

A3

AS

A7

Hesaderimal OÖ 1 2 3 A 5 6 1

Dual 0000 ! 0001 | 0010 | 0011 | 0100| 0101 | 0110 | 0111

0 16 32 48 64 80 96 112
0J 0000 |\yL IoLe I|sP O P p

1 17 33 49 65 81 97 113

17000 [son |ocı |! A Q a q
2 18 34 50 66 82 98 114

210010 „
STX DC2 2 B R b r

3 19 35 51 67 83 99 115
310011

ETX DC3 + 3 C S 6 S

4 20 36 52 68 84 100 116
A1 0100

EOT DC4A $ 4 D T d t

5 5 21 37 53 69 85 101 117

0101 ENO NAK % 5 E U e u

6 22 38 54 70 86 102 118
650110 |

ACK SYN & 6 . F V V

n 7 23 39 55 71 87| 103 119
/10111

BEL ETB 7 G W g W

8 24 40 56 72 88 104 120
81 1000

BS CAN (8 H X h x

91 41001 9 25 41 57 73 89 105 121

HT EM) 9 Y y

10 26 42 58 74) 0 Al 1010 0 106 122

LF SUB * J Z zZ

11 27 43 59 75 91 107 123
Bi 1011

vr ESC + ; K It k {
12 28 44 60 76! 92 108 124

Ci 1100
FF FS < L / |

13 29 45 61 77 93 0 DI 41404 109 125
CR cs - = M] m }

14 30 46 62 78 94 110
Ei 1110 _ 126

15 FI 4414 31 47 63 79 95 111 127
| sı US / 2 oO _ o DEL

Al

LISTE DER DARSTELLBAREN ZEICHEN UND IHRE ENTSPRECHENDEN DEZIMALEN WERTE

Dargestelltes Zugehörender Dargestelltes Zugehörender

Zeichen dezimaler Wert Zeichen dezimaler Wert

u 6 0 \ 67
r 1 DU 68

1 2 E 69

u 3 F 70

4 I; 71

d 5 H 72

6 I 73

Ü 7 .! 74

. 8 HE 75

+ 9 L 76

Z i0 H 77
+ 11 H 78

t 12 I 79
+ 13 F 80
2 14 & 81

Mi 15 F: 82

8 16 2 83

ıy 17 T 84
r 18 u 85
hl 19 4 86

2 20 u 87
- 91 A 88

RK 22 y 89

4 23 Ä 90
= 24 Ü 91

; 25 “ 92

“ 26 J 93

3 27 94

dl 28 _ 95

Bl 29 96

@ 30 3 97

3 31 c. 098

32 L <9
1 33 3 100

" 34 = 101
35 f 102
$ 36 3 103

37 H 104

38 ı 105

39] 106

| 40 K. 107

1 41 1 108

t 42 fi 109

+ 43 n 110

44 J 111
- 45 Fi 112

46 7 113
47 r 114

a 48 z 115

1 49 r 116

z 50 4 117

2 51 1 118

4 52 y 119

S 53 ei 120

E 54 Y 121
” 55 zZ 122

= 56 Ä 123
4 57 | 124

58 > 125

9 u 126
60 127

- 61 x 128
62 Ki 129

[CK BE EEE

a! 64 ennonsen

H 65 In 255

= 66

AS

DARSTELLUNG DER 1SO- ZEICHEN DER SPALTEN @ UND 1

DER ISO-CODE-TABELLE

In der folgenden Tabeile ist dargestellt, weche Taste gemeinsam mit der Taste

CONTROL zu drücken ist, um ein Zeichen der Spalten @ und I der ISO-Tabelle

darstellen zu können.

Tasten Darstellung des entsprechendes Dezimalwert des

Zeichens ISO-Zeichen ISO-Zeichens

a

= NUL 0
8 .r \ - TC1 (TO1) I D—: 8

TC2 (T02) 2
FOR

> /J & TC3 (T03) 3
5 >: TC4 (T04) 4
8 -58 TC5 (T05) 5
en) . TC6 (T06) 6

Q > { BEL '

w m. FEg 8

FEI
GOSUB

-_- FE2 10 a

|

RETURN
 3 !

K FE3 1
STOP m +

Ü FE4 12

ri FE5 13

N) > E SO 14

AS

Tasten

)

Darstellung des

Zeichens

e
E
d
e
d

Ed

e
£ > 1

 S
H
S
F
F
H
A
A
H
E

entsprechendes

ISO-Zeichen

Si

DLE

DC1

DC2

DC3

DC4

NAK

SYN

ETB

CAN

EM

SUB

ESC

154

1IS3

152

1IS1

Dezimalwert des

ISO- Zeichens

15

16

17

18

19

20

21

22

23

24
25

26

27

28

29

30

31

A6

LISTE DER FIEHLERCODES

Fehlermeldungen werden auf Grund eines numerischen

Fehlercodes identifiziert. Bei Fehlermeldungen der

Preexecution und bei den Ausführungsfehlern wird-
wenn möglich - zusätzlich die Zeilennummer der
Programmzeile, in der der Fehler auftrat, ange-

geben. (Beispiel: ERROR 6 INLINE 155).

Im folgenden Abschnitt werden die möglichen Fehler-
codes mit ihrer Beschreibung angegeben, wobei die

Liste in die oben beschriebenen Gruppen unterteilt ist.

Fehler mit den Nummern 1 bis 16 beziehen sich auf

behebbare Fehler bei der Ausführung eines BASIC-
Procrammes; Fehler mit Codes von 40 bis 55
können bei der Preexecutuion eines Programmes auf-

treten.

Die Fehlercodes von 65 bis 98 bezeichnen nicht beheb-

bare Ausführungsfehler, Codes zwischen 109 und 128
können bei der fehlerhaften Eingabe von BASIC-Zeilen
oder der Compilierung eines Textfiles auftreten.

Die Fehlercodes 151 und 152 zeigen an, daß im Zugriff
auf eine Diskette ein Fehler auftrat.

Nicht behebbare Fehler in der Vebindung mit peripheren

Einheiten werden durch die Codes 162 bis 171 gemeldet,
und Fehler, die bei der Eingabe oder Ausführung von
Systembefehlen auftreten, haben Nummern zwischen

181 und 214.

Die Codes 232 bis 235 zeigen Fehler in der Ausführung
von Dienstprogrammen an, behebbare und nicht beheb-

bare Fehler der Plot-Option werden in den Codes 236

bis 254 beschrieben.

Abschließend werden noch die Fehlercodes, die

einen Systemabbruch anzeigen und die Meldungen

für nicht betriebsbereite Einheiten, angeführt.

A7

LISTE DER FEHLERCODES

1. Behebbare Fehler während der Ausführung von BASIC-Programmen

Fehlercode

1

10

11

Bedeutung

Eine numerische oder alphanumerische Variable

wurde nicht initialisiert. Es wird für das auszu-
führende Statement der Wert O0 bzw. der Nullstring

angenommen, die Variable gilt jedoch weiterhin

als nicht initialisiert.

Fehlerhaftes Argument in einer Stringfunktion.

Overflow. Als Ergebnis der Operation wird die
größte darstellbare Zahl mit dem richtigen Vor-

zeichen angenommen.

Underflow. Als Ergebnis der Operation wird

Null angenommen.

Entweder ist das Argument einer Funktion außer-
halb der zulässigen Grenzen, oder es soll die
Wurzel einer negativen Zahl berechnet werden.

Es wird dann die Wurzel des Absolutbetrages be-
rechnet.

Bei einer Stringoperation entsteht ein String mit
einer Länge von mehr als 1023 Zeichen. Der String
wird nach der 1023. Stelle abgeschnitten.

Der String, der an eine Stringvariable zugewiesen
werden soll, ist länger als die deklarierte Länge
der Stringvariablen. Der String wird entsprechend
der deklarierten Länge der Stringvariablen abge-

schnitten.

Es soll der Logarithmus einer negativen Zahl be-
rechnet werden. Es wird der Logarithmus des
Absolutbetrages berechnet.

Es wird versucht, den Logarithmus von Null zu
berechnen. Als Ergebnis wird -9.999999999999 E +99
gesetzt.

Eine negative Zahl hat einen nicht ganzzahligen
Exponenten.

Es wird mit dem Absolutbetrag der Basis gerechnet.

AS

Fehlercode

12

13

14

15

16

Bedeutung

Der Wert Null hat einen negativen L.xponenten.
Als Ergebnis wird die größte darstellbare Zahl

gesetzt.

Die zu invertierende Matrix ist singulär (d.h.
die Determinante ist gleich Null).

Die Ergebnismatrix enthält nicht &finierte Werte,
eine nachfolgende Verwendung der Funktion DET
liefert jedoch ein korrektes Ergebnis.

Die adressierte Peripherie ist nicht angeschlossen

oder eingeschaltet, oder es tritt während des Be-
triebes eine abnormale Kondition auf.

Übertragungsfehler während eines Datenaustausches

Beim letzten überlappten Input/Output für die

gleiche Peripherie ist ein Übertragungsfehler
aufgetreten

2. Fehler bei der Preexecution eines Programmes

40

41

42

43

Unerlaubter Sprung:

a) Sprung zu einer nicht existierenden Zeilennummer

b) Sprung aus einer mehrzeiligen Funktion oder von
außen in den Vereinbarungsteil einer mehrzeiligen

Funktion

c) Sprung von außen in eine FOR/NEXT-Schleife

NEXT ohne zugehörendes FOR oder Überschneidung

von FOR/NEXT-Schleifen.

Innerhalb der Definition einer mehrzeiligen Funktion
wird eine andere mehrzeilige Funktion definiert.

Eine aufzurufende Funktion wurde nicht definiert.

Es sind mehr als 15 FOR/NEXT-Schleifen ge-
schachtelt.

A9

Fehlercode

45

46

47

48

49

50

51

32

53

54

55

Bedeutung

a)FN*, FN*&, FNEND treten außerhalb der
Definition einer mehrzeiligen Funktion auf.

b) In einer Definition einer mehrzeiligen String-
funktion wird die Pseudovariable FN * oder

in der Definition einer mehrzeiligen numerischen
Funktion wird die Pseudovariable FN*3 ver-
wendet.

Zwei oder mehrere ineinander geschachtelte FOR/

NE XT-Schleifen haben dieselbe Laufvariable.

FOR ohne nachfolgendes NEXT.

In der Definition einer mehrzeiligen Funktion
fehlt die FNEND-Anweisung.

Eine einfache indizierte und eine doppelt indizierte

Variable haben denselben Namen.

END hat nicht die höchste Zeilennummer im

Programm.

Das Programm enthält keine END-Anweisung.

Das auszuführende Programm enthält nicht
compilierte Zeilen. Der Fehler tritt auf, falls
die bei der Compilierung eines Textfiles ge-
meldeten Fehler nicht korrigiert wurden.

In der Definition einer mehrzeiligen Funktion
erfolgt keine Wertzuweisung an die Pseudovariable
FN*bzw. FN* 3.

Für eine PRINTUSING-Anweisung (oder
DISPUSING ...) fehlt die zugehörende Format-
vereinbarung.

Innerhalb der Definition einer mehrzeiligen

Funktion befindet sich eine STOP-Anweisung.

A1O

3. Nicht behebbare Fehler während der Ausführung eines

BASIC-Programmes

Fehlercode

69

66

67

68

69

70

71

73

75

Bedeutung

Während der Programmausführung wird der zur

Verfügung stehende Bereich des Anwenderspeichers
überschritten (z.B. bei zu tiefer Schachtelung von
Unterprogrammen).

Der Index einer indizierten Variablen hat einen

nicht zulässigen Wert (d.h. kleiner als I oder
größer als die maximale Dimension dieser Variablen).

Die Anweisung verlangt die Vereinbarung von

Dimensionen einer Matrix, die größer sind als

die maximalen Dimensionen.

Beim Aufruf der Programmausführung beginnend

mit einer angeführten Zeilennummer (nach RUN

Zeilennummer, oder START Zeilennummer) tritt
ein NEXT ohne zugehörendes FOR auf.

Die Parameter im Aufruf einer Funktion stimmen

nicht in ihrem Typ mit den Parametern der Definition

dieser Funktion überein.

Es soll ein RETURN-Statement ohne vorangehendes
GOSUB ausgeführt werden.

Die Summe der Längen der Strings, die den Funktions-

tasten zugewiesen werden sollen, ist größer als die

maximal zulässige Länge (238 Byte).

Die Anzahl der Parameter in einem Funktionsaufruf

stimmt nicht überein mit der Anzahl der Parameter

in der Definition der Funktion.

Die aktuellen Dimensionen einer Matrix erlauben

nicht die Ausführung der gewünschten Operation

(z.B. nicht quadratische Matrix bei einer Inversion).

Innerhalb einer definierten Funktion wurde die

maximal zulässige Anzahl von Aufrufen anderer

definierter Funktionen (max. 255) überschritten.

Die zur Ausführung des Programmes benötigten

Options wurden nicht in den Hauptspeicher geladen.

All

Fehlercodes

76

77

78

80

81

82

83

84

85

86

87

88

Bedeutung

Es wird versucht, ein File zu öffnen, das bei

einer vorherigen Ausführung eines Programmes

nicht geschlossen wurde.

Das File muß mit dem Befehl VALIDATE ge-

schlossen werden.

Es fehlt entweder das F ILES-Statement oder der

Filedesignator ist kleiner als I oder größer als
die Anzahl der Files in der FILES-Anweisung.

Ein File ist nicht entsprechend dem Typ der aus-
zuführenden Operation geöffnet.

Der Wert des Wortdesignators einer SETW: -

Anweisung ist größer als es der Länge des ent-

sprechenden Files entspricht.

Innerhalb eines Programmes wird versucht, ein

bereits offenes File zu öffnen.

Der verfügbare Platz in einem externen File reicht
nicht für die Ausführung der verlangten Operation.

Das angesprochene File ist nicht geöffnet.

Es wurde bei einer Lese- oder Schreiboperation

das Fileende ohne EOF -Angabe erreicht.

Das Argument einer TAB-Funktion in einer PRINT
oder DISP - Anweisung ist kleiner als 1.

Einer numerischen Variablen soll ein String zuge-

wiesen werden.

Die deklarierte Länge der Stringvariablen in einer

BBUILD-Anweisung reicht nicht für die Ausführung
der Anweisung.

Zu wenig Daten im internen File bei der Ausführung

einer READ-Anweisung oder im Stringausdruck bei
der Ausführung von ASSIGN.

A12

Fehlercode Bedeutung

89 Die Formatfelder stimmen in ihren: Typ nicht
mit den Daten der aufrufenden PRINT USING
oder DISP USING Anweisung überein.

90 Ein Wert kleiner als O oder größer als 255 soll
in ein ISO-Zeichen umgewandelt werden.

9] Der Ausdruck, der die Anzahl der in einer

CONVERT-Anweisung umzuwandelnden Vector-
elemente festlegt, ergibt einen negativen Wert.

92 Der in einer CHAIN-Anweisung aufgerufene
Filename existiert nicht.

93 Die Daten eines externen Files stimmen in ihrem

Typ nicht mit den Variablen der entsprechenden

READ:-Anweisung überein.
Derselbe Fehler tritt auch bei der Ausführung

einer BASSIGN-Anweisung auf, falls der Typ

der Daten und der entsprechenden Variablen

nicht übereinstimmt.

96 Der Wortdesignator einer SETW:-Anweisung hat
einen negativen Wert oder ist null.

97 Line SCRATCH: - oder APPEND: - Anweisung

bezieht sich auf ein Randomfile.

98 Die Anzahl der angegebenen Parameter in einer

WHERE: - Anweisung verlangt, daß das sequentielle

File für das Lesen geöffnet ist.

A13

4. Fehlermeldungen des BASIC-Compilers

Fehlercode

100

101

102

103

104

105

106

109

110

111

112

113

114

Bedeutung

Eine Programmzeile besteht nur aus der
Zeilennummer.

Zeilennummer mit syntaktischem Fehler.

Unzulässiges Schlüsselwort

Unzulässiger Parameter

Unzulässiger Ausdruck

Der Operator ist für den Typ der Operanden
nicht zulässig.

In einem Aufruf einer Funktion stimmt die Anzahl

oder Typ der Parameter nicht mit den verlangten
Parametern überein.

Nicht interpretierbarer Syntaxfehler

Der Name der Funktion in der DEF-Anweisung
kommt bereits in einer DEF-Anweisung mit einer

anderen Zeilennummer vor.

Es wurden bereits zuviele verschiedene Zeilen-
nummern als Sprungziele definiert. Es sind
maximal 255 Sprungzeile zulässig, jeder Funktions-

aufruf gilt als eine Verzweigung.

Die Anzahl der verwendeten Variablen übersteigt
die maximal zulässige Anzahl(max. 123 numerische
bzw. 255 Stringvariable).

Unzulässiges Zeichen (z.B. bei verschiedener
Anzahl von öffnenden und schließenden Klammern
in einem numerischen Ausdruck).

Rekursiver Aufruf in der Definition einer ein-

zeiligen Funktion.

A14

Fehlercode

115

117

118

119

120

128

Bedeutung

Unzulässiger Bezug auf eine Variable oder eine
Funktion.

Speicherüberschreitung bei der Eingabe eines
Programmes oder Textes.

Es wurde bereits eine F ILES-Anweisung mit
einer anderen Zeilennummer eingegeben.

Es wurde bereits die maximal zulässige Anzahl
von Funktionen definiert.

Die Zeilennummer, auf die Bezug genommen wird,
existiert nicht.

Unzureichender Platz für die Compilierung der
eingegebenen Zeile.

5. Fehlermeldungen im Zusammenhang mit den Diskettenstationen

Fehlercode

151

152

Bedeutung

Fehler auf der Floppy-Disk-Einheit 1

(obere Station)

Fehler auf der Floppy-Disk-Einheit 2

(untere Station)

AI15

6. Nicht behebbare Fehler im Zusammenhang mit peripheren

Einheiten

Fehlercode

162

163

165

166

167

169

170

171

Bedeutung

SEND für Input-Einheit oder RECEIVE für
QOutput-Einheit.

Der mit SEND zu übertragende String ist größer
als der Puffer des entsprechenden Kanals.

Das Statement bezieht sich auf einen IPSO-Kanal,
der in der Konfiguration nicht vorhanden ist.

Für den angesprochenen Kanal wurde kein Puffer
definiert.

Es wurde eine negative Peripherieadresse oder
eine negative Command Nummer angegeben.

Eine Peripherieadresse oder eine Commandnummer

sind größer als 255.

Die in einem RECE IVE-Statement angegebene String-
variable ist länger als der Puffer des entsprechenden

Kanals.

Der mit CONF IGURE angegebene externe Drucker ist
nicht betriebsbereit.

7. Fehler bei der Eingabe oder Ausführung von Systembefehlen

Fehlercode

172

175

176

Bedeutung

Für die EVD-Option des Befehles CONFIGURE
muß ein RS 232-C Interface vorhanden sein.

Im Befehl CONF IGURE wird mehr Speicher-

kapazität verlangt, als im System vorhanden ist.

Im Befehl CONF IGURE wird ein im System nicht

vorhandener externer IPSO-Drucker verlangt.

AI6

Fehlercode

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

Bedeutung

Der zur Verfügung stehende Speicher reicht nicht für

die Ausführung des Befehles.

Beim Befehl TRANSCODE wurde bei der Umwandlung
eines Datenfiles in ein Textfile der Parameter % ange-
geben, es sind jedoch im Datenfile keine Zeilen-

nummern enthalten.

Die angesprochene Bibliothek ist auf der Diskette
nicht vorhanden, oder es wurde die zulässige
maximale File-Anzahl für eine Bibliothek über-
schritten.

Die User Disk ist entweder nicht initialisiert,
oder es wird versucht, auf eine User-Disk zuzu-

greifen, ohne daß eine eingelegt wurde.

Nicht initialisierte System-Disk.

In der Bibliothek existiert bereits ein File mit

gleichem Namen.

Das File mit dem angegebenen Namen wird nicht

gefunden.

Auf der Diskette ist zu wenig Platz für die Aus-

führung des Befehls.

Für ein File, das signifikante Information enthält,

soll der reservierte Speicher verkleinert werden.

Der Befehl wird im gegenwärtigen Status des

Systems nicht akzeptiert.

Es wurde kein Filename angegeben oder das File

im Arbeitsspeicher hat keinen Namen.

Unzulässiges Zeichen im Befehl.

Es fehlen Parameter im Befehl.

Aufruf einer nicht existierenden Zeilennummer.

Im Debugging-Mode wird der Befehl "START Zeilen-

nummer'' nach einem Befehl "'RUN Filename" nicht

akzeptiert, da das auszuführende Programm ohne

vorhergehende Preexecution auf der Diskette abge-

speichert ist. Das gilt auch für den Befehl

"PREPARE Filename"!".

A17

Fehlercode

196

197

198

199

200

201

202

203

205

206

207

208

209

210

212

213

Bedeutung

Unzulässiger oder nicht signifikanter Parameter.

Der Befehl bezieht sich auf eine Zeilennummer, die
innerhalb der Definition einer mehrzeiligen Funktion

liegt.

Es wird mehr Speicherplatz verlangt, als auf der

Diskette vorhanden ist.

Die verlangte Operation ist für ein geschütztes File
nicht zulässig.

Unerlaubte Operationen, da die Bibliothek geschützt
ist.

Der Befehl ist nicht ausführbar, da das System als
Mono-Disk-System initialisiert ist.

In der Ausführung eines Befehls müßte ein File in
mehr als 4 Teile aufgeteilt werden, was unzulässig
ist.

In einem LIST- oder DELETE-Befehl ist die erste
Zeilennummer größer als die zweite.

Unerlaubte Operation, da die Zeile geschützt ist.

Das File im Arbeitsspeicher ist kein Programm.

Die Operation ist für den angesprochenen Filetyp

nicht ausführbar.

Die im OPTION-Befehl angeführte Option ist im
System nicht vorhanden.

Es wurde eine Zeilennummer größer als 9999 er-
zeugt.

In einem LIST-Befehl wurde für den Ausdruck
eines Programmes der Parameter X angegeben.

Leerer Arbeitsspeicher.

Die zu druckende(n) Zeile(n) existieren nicht.

Bei der Decompilierung einer Zeile tritt ein Line-
Overflow auf.

A18

Fehlercode Bedeutung

214 Im Unterprogramm, das als mehrzeilige Funktion
mit LINK angefügt werden soll, ist die erste Zeile

kein DEF-Statement.

8. Fehler beim Aufruf oder der Ausführung von Dienstprogrammen

Fehlercode Bedeutung

232 In einem Aufruf von LBCREATE ist die Anzahl
der Sektoren , die für den Katalog reserviert

werden sollen, größer als 14n, +n, + N).

234 Es fehlt die Angabe des Namens des Dienstpro-
grammes.

235 Das aufgerufene Dienstprogramm existiert nicht.

9. Fehlermeldungen die sich auf PLOT-Operation beziehen.

Fehlercode Bedeutung

236 behebbar: Das in INIMAGE genannte File existiert

nicht, das Bild wird nur im Arbeitsspeicher generiert.

237 behebbar: Das genannte File ist nicht sequentiell

oder zuklein. Nach der Preexecution bleibt nur

eine Anwenderkapazität kleiner als 1280 bytes.
Das Bild wird nur im Arbeitsspeicher generiert.

A19

Fehlercode

238

239

240

241

242

243

244

245

246

247

248

249

Bedeutung

Für den externen Plotter fehlt die Funktion

FNP (nicht behebbar).

In der Anweisung DRAW wird das Bild außer-
halb des Zeichenbereiches verschoben

(nicht behebbar).

nicht behebbar: Zur Ausführung von DRAW fehlt
der Thermodrucker.

nicht behebbar:Es wurde weder INIMAGE noch

LDIMAGE ausgeführt.

behebbar: FRAME folgt nicht unmittelbar auf
INIMAGE.

behebbar: Als Abstand für die Markierung der
Achsen wurde angegeben. Der Operand wird
ignoriert.

behebbar: Nach der Preexecution ist der ver-
fügbare Speicherplatz für den Anwender kleiner
als 1280 Bytes, die Ausführung kann dadurch
langsamer werden.

nicht behebbar: In FRAME ist der Wert für die

Breite nicht zulässig.

nicht behebbar: In FRAME ist der Wert für die

Höhe nicht zulässig.

nicht behebbar: In SCALE ist X-Min =X-Max

oder Y - Min = Y- Max.

nicht behebbar: Der in INIMIGAE vereinbarte

Puffer ist für die in FRAME angegebene Größe
des Bildes zuklein.

behebbar: Die für das File vereinbarte Größe

ist kleiner als der Puffer im Arbeitsspeicher.

Das Bild wird nur im Arbeitsspeicher erzeugt.

A2O

Fehlercode

250

251

252

253

254

Bedeutung

behebbar:
1.) Die Größe des Puffers oder des externen

Files ist zu klein, sodaß keine weiteren

Punkte gespeichert werden können. Alle

folgenden Plot-Anweisungen mit Ausnahme
von INIMAGE, LDIMAGE und DRAW werden
ignoriert.

2.) In einem Programm, für das kein externes
File zur Speicherung des Bildes existiert,

soll ein DRAW-Statement zum zweiten Mal
ausgeführt werden. Alle folgenden Plot-
Anweisungen mit Ausnahme von INIMAGE
und LDIMAGE werden ignoriert.

nicht behebbar: In der Anweisung CSIZE ergibt
die Angabe von Breite oder Höhe einen negativen
Wert.

nicht behebbar: Das File in der Anweisung
LDIMAGE enthält kein Bild.

behebbar: Die angegebene Funktion enthält ein
INIMAGE oder LDIMAGE -Statement.

behebbar: Bei der Ausführung der Zeichnung wurde
die maximal mögliche Anzahl von Schreibvorgängen
erreicht. Alle nachfolgenden Plotanweisungen mit
Ausnahme von DRAW werden ignoriert.

10. Fehlermeldungen für einen nicht normalen Systemzustand

Fehlercode

mÄ*

Bedeutung

Falls meine andere Zahl als 12 oder 16 ist, und
der Fehler tritt auch bei anderen als den einge-
legten Disketten auf, so liegt ein Hardwarefehler
im Speicher vor.

A21

Fehlercode

12 A*
16 A*

ABN FD*

ABN FD**

ABN PRT

ABNFD -
DCH OMIT TED

Bedeutung

Die eingelegte Systemdiskette ist beschädigt.

Tritt der Fehler auch mit anderen System-
disketten auf, liegt ein Hardwarefehler vor.

Anmerkung:

Fehlermeldungen, die nach dem numerischen Code

A* haben, bewirken ein Löschen des Arbeitsspeichers.

Nach Drücken der Taste CONTINUE wird das System

neu geladen.

Die obere Floppy-Disk-Station arbeitet nicht korrekt.

Es ist zu überprüfen, ob der Einschub geschlossen
und eine Diskette eingelegt wurde.

Die untere Floppy-Disk-Station arbeitet nicht korrekt.
Es ist zu überprüfen, ob der Einschub geschlossen
und eine Diskette eingelegt wurde.

Der integrierte Drucker oder der konfigurierte externe
Drucker arbeitet nicht korrekt.
Beim Thermodrucker ist zu überprüfen, ob sich der
Schreibkopf in der richtigen Position befindet.

Bei einer Diskettenstation wurde ohne vorherige
Eingabe des DCHANGE -Befehles ein Einschub ge-
öffnet.
Der DCHANGE-Befehl muß bei Tausch der Disketten
nachgeholt werden.

Anmerkung:

Statusmeldungen mit ABN können nach Beheben der
Fehlerursache mit CLEAR gelöscht werden.

A22

Alphabetisches Stichwortverzeichnis

Enthalten sind BASIC-Anweisungen, Systembefehle, Funktionen und Dienst-

programme. im folgenden sprechen wir von

B = BASIC-Anweisungen und Funktionen

S = Systembefehl

D = Dienstprogramm

ABS 3 8.161

ACS B 8.158

APPEND: B 8.9

ASN B 8.158

ASSIGN B 8.11

ATN B 8.158

AUTOF s 67

BASSIGN B 8.13

BBUILD B 8.15

BEEP B 8.17

BLN B 8.179

BPAD B 8.19

BUFFER# B 12.19

BUILD B 8.21

BUILD USING B 8.23

CATALOG

CHAIN

CHR&

CMD#

COMPILE

CONFIGURE

CONVERT

COS

COT

CPLOT

CREATE

CSIZE

CTAB

DATA

DATE

DCHANGE

DCL

DECOMPILE

DEF

DEF/FNEND

DEG

DELAY

DELETE LINE

DEPAD

DET

DIM

DISP

8.27

8.158

8.158

13.13

13.15

13.17

DISP USING

DOT

DRAW

END

EXEC

EXP

EXTERNAL PLOTTER

EXT

FDCOPY

FETCH

FILES

FILE:

FKEY#

FLCOPY

FNEND

FOR

FRAME

GOSUB

GOTO

HCS

HSN

HTN

8.47

13.19

13.21

8.161

8.161

8.161

IDOT B 13.27

IF... THEN B 8.67

IMAGE B 8.69

INIMAGE B 13.29

INPUT B 8.75

IOC B 8.169

INT B 8.161

LBCREATE D 6.105

LBPROTECT D 6.111

LDIMAGE B 13.35

LDKEYS Ss 6.31

LEN B 8.171

LET | B 8.79

LGT B 8.161

LIBCOPY D 6.107

LINK B 6.33

LIST Ss 6.37

LOG B 8.161

MAT ADDITION (MAT...+) B 8.129

MAT ASSIGNMENT (MAT...=) B 8.127

MAT...CON B 8.135

MAT... IDN B 8.137

MAT... INPUT B 8.139

MAT... INV B 8.141

MAT MULTIPLICATION

(MAT... Skalar) B 8.131

(MAT...#) B 8.133

MAT PRINT

MAT PRINT USING

MAT READ

MAT READ:

MAT... TRN

MAT WRITE

MAT... ZER

MODIFY

MOVE

NEW

NEXT

OFFSET

OLD

ON. .„ . GOSUB

ON... GOTO

OPTIONS

PAD

PI

PLOT

PREPARE

PRINT

PRINT USING

PURGE

8.143

8.145

8.147

8.149

8.163

13.41

6.49

8.89

8.93

RAD

RANDOMIZE

READ

READ:

RECEIVE#

REMARK

REPLACE

REP

RESEQUENCE

RESTORE

RESTORE:

RETURN

RKB

RND

RUN

SAVE

SCALE

SCN

SCRATCH:

SECURE

sENDdf

SETW:

SGN

SHIFT

SIN

SPACE

SQR

8.103

8.107

8.109

8.11]

8.163

START

STKEYS

STOP

STOP

TAB

TAN

TEST#

TEXT

TRACE OFF

TRACE ON

TRANSCODE

' TRUNCATE

VALIDATE

wAıIT#

WHERE:

WRITE:

XAXIS

YAXIS

12.29

8. 122a

8.123

13.45

13.47

Fi

