MUNIX V.3

Programmer’s Guide (Part 2)

Documentation-No.: G0930.005-0688

Table of Contents

Chapter 11: The Common Object File
Format (COFF)

TABLE OF CONTENTS

The Common Object File Format (COFF)

This section describes the Common Object File Format (COFF) used on
CADMUS computers with the UNIX operating system. COFF is the format of
the output file produced by the assembler, as, and the link editor, Id.

Some key features of COFF are

® applications can add system-dependent information to the object file
without causing access utilities to become obsolete

® space is provided for symbolic information used by debuggers and other
applications

® programmers can modify the way the object file is constructed by provid-
ing directives at compile time

The object file supports user-defined sections and contains extensive infor-
mation for symbolic software testing. An object file contains

® a file header

® optional header information

® atable of section headers

® data corresponding to the section headers

® relocation information

® line numbers

® asymbol table

® astring table

Figure 11-1 shows the overall structure.

COMMON OBJECT FILE FORMAT (COFF) 11-1

The Common Object Flle Format (COFF)

FILE HEADER
Optional Information
Section 1 Header

Section n Header
Raw Data for Section 1

Raw Data for Section n
Relocation Info for Sect. 1

Relocation Info for Sect. n
Line Numbers for Sect. |

Line Numbers for Sect. n
SYMBOL TABLE
STRING TABLE

Figure 11-1: Object File Format

The last four sections (relocation, line numbers, symbol table, and the string
table) may be missing if the program is linked with the —s option of the Id com-
mand, or if the line number information, symbol table, and string table are
removed by the strip command. The line number information does not appear
unless the program is compiled with the ~g option of the cc command. Also, if
there are no unresolved external references after linking, the relocation informa-
tion is no longer needed and is absent. The string table is also absent if the

source file does not contain any symbols with names longer than eight charac-
ters.

An object file that contains no errors or unresolved references is considered
executable.

11-2 PROGRAMMER'S GUIDE

The Common Object File Format (COFF)

Definitions and Conventions

Before proceeding further, you should become familiar with the following
terms and conventions.

Sectlons

A section is the smallest portion of an object file that is relocated and treated
as one separate and distinct entity. In the most common case, there are three
sections named .text, .data, and .bss. Additional sections accommodate com-
ments, multiple text or data segments, shared data segments, or user-specified
sections. However, the UNIX operating system loads only .text, .data, and .bss
into memory when the file is executed.

It is a mistake to assume that every COFF file will have a certain number of

NOTE sections, or to assume characteristics of sections such as their order, their loca-
tion in the object file, or the address at which they are to be loaded. This infor-
| mation is available only after the object file has been created. Programs mani-

pulating COFF files should obtain it from file and section headers in the file.

Physical and Virtual Addresses

The physical address of a section or symbol is the offset of that section or
symbol from address zero of the address space. The term physical address as
used in COFF does not correspond to general usage. The physical address of an
object is not necessarily the address at which the object is placed when the pro-
cess is executed. For example, on a system with paging, the address is located
with respect to address zero of virtual memory and the system performs another
address translation. The section header contains two address fields, a physical
address, and a virtual address; but in all versions of COFF on UNIX systems, the
physical address is equivalent to the virtual address.

Target Machine

Compilers and link editors produce executable object files that are intended
to be run on a particular computer. In the case of cross-compilers, the compila-
tion and link editing are done on one computer with the intent of creating an
object file that can be executed on another computer. The term target machine
refers to the computer on which the object file is destined to run. In the majority
of cases, the target machine is the exact same computer on which the object file
is being created.

COMMON OBIJECT FILE FORMAT (COFF) 11-3

The Common Object Flle Format (COFF)

File Header

The file header contains the 20 bytes of information shown in Figure 11-2.
The last 2 bytes are flags that are used by Id and object file utilities.

Bytes Declaration Name Description

0-1 | unsigned short | f magic Magic number

2-3 | unsigned short | f_nscns Number of sections

4-7 | long int f _timdat | Time and date stamp indicating
when the file was created,
expressed as the number of elapsed
seconds since 00:00:00 GMT, Janu-
ary 1, 1970

8-11 | long int f_symptr | File pointer containing the starting
address of the symbol table

12-15 | long int f_ nsyms | Number of entries in the symbol
table

16-17 | unsigned short | f opthdr | Number of bytes in the optional
beader

18-19 | unsigned short | f_flags Flags (see Figure 11-3)

Figure 11-2: File Header Contents

Magic Numbers

The magic number specifies the target machine on which the object file is
executable.

Flags

The last 2 bytes of the file header are flags that describe the type of the
object file. Currently defined flags are found in the header file filehdr.h, and are
shown in Figure 11-3.

114 PROGRAMMER'S GUIDE

The Common Object File Format (COFF)

Mnemonic Flag Meaning

F_RELFLG 00001 | Relocation information stripped

from the file
F_EXEC 00002 | File is executable (i.e., no
unresolved extemnal references)
F_LNNO 00004 | Line numbers stripped from the file
F_LSYMS 00010 | Local symbols stripped from the
file

F_AR32W | 0001000 | 32 bit word

Figure 11-3: File Header Flags (CADMUS 32bit Computer)

Flle Header Declaration

The C structure declaration for the file header is given in Figure 11-4. This
declaration may be found in the header file filehdr.h.

COMMON OBJECT FILE FORMAT (COFF) 11-5

The Common Object File Format (COFF)

(ruct filehdr

{
unsigned short £ magic; /* magic marber */
unsigned short £ nacna; /* muber of section */

long f timdat; /* time and date stamp */
long £ symptr; /* file ptr to symbol table */
long f nsyms; /* mmber entries in the symbol table */

unsigned short £ opthdr; /* size of optional headar */

unsigned short £ flags; /* flags */
y;

#define FILHIR struct filehdr
#define FILHSZ sizeof (FIIHDR)

_ /

Figure 11-4: File Header Declaration

Optional Header Information

The template for optional information varies among different systems that
use COFF. Applications place all system-dependent information into this
record. This allows different operating systems access to information that only
that operating system uses without forcing all COFF files to save space for that
information. General utility programs (for example, the symbol table access
library functions, the disassembler, etc.) are made to work properly on any com-
mon object file. This is done by seeking past this record using the size of
optional header information in the file header field f_opthdr.

i1-6 PROGRAMMER'’S GUIDE

The Common Object Flle Format (COFF)

Standard UNIX System a.out Header

By default, files produced by the link editor for a UNIX system always have
a standard UNIX system a.out header in the optional header field. The UNIX
system a.out header is 28 bytes. The fields of the optional header are described
in Figure 11-5.

Bytes | Declaration Name Description

0-1 | short magic Magic number

2-3 | short vstamp Version stamp

4-7 | long int tsize Size of text in bytes

8-11 | longint dsize Size of initialized data in bytes

12-15 | long int bsize Size of uninitialized data in bytes
16-19 | longint entry Entry point
20-23 | longint text start | Base address of text
24-27 | long int data_start | Base address of data

Figure 11-5: Optional Header Contents (CADMUS 32bit Computers)

Whereas the magic number in the file header specifies the machine on which
the object file runs, the magic number in the optional header supplies informa-
tion telling the operating system on that machine how that file should be exe-
cuted. The magic numbers recognized by the CADMUS MUNIX operating sys-
tem are given in Figure 11-6.

Value Meaning

0407 | The text segment is not write-protected or sharable;
the data segment is contiguous with the text segment.
0410 | The data segment starts at the next segment following
the text segment and the text segment is write pro-
tected.

0413 | Text and data segments are aligned within a.out so it
can be directly paged.

Figure 11-6; UNIX System Magic Numbers (CADMUS 32bit Computers)

COMMON OBJECT FILE FORMAT (COFF) 11-7

The Common Object File Format (COFF)

Optional Header Declaration

The C language structure declaration currently used for the UNIX system
a.out file header is given in Figure 11-7. This declaration may be found in the
header file aouthdr.h.

t/ypodsf struct aouthdr

{

short magic; /* magic mmber */
short vstanp; /* version stamp */
long tsize; /* text size in bytes, padded */

/* to full word boundary */

long dsize; /* initialized data size */
long beize; /* wninitialized data size */
long entry; /* entry point */

long text start; /* base of text for this file */
long data start /* base of data for this file */

} AOUTHIR;

N

Figure 11-7; aouthdr Declaration

Section Headers

Every object file has a table of section headers to specify the layout of data
within the file. The section header table consists of one entry for every section
in the file. The information in the section header is described in Figure 11-8.

11-8 * PROGRAMMER'S GUIDE

The Common Object Flle Format (COFF)

Bytes | Declaration Name Description
0-7 | char S_name 8-character null padded section
name
8-11 | longint s_paddr Physical address of section

12-15 | long int s_vaddr Virtual address of section

16-19 | long int S_size Section size in bytes

20-23 | longint s_scnptr File pointer to raw data

24-27 | long int s_relptr File pointer to relocation entries

28-31 | longint s_Innoptr | File pointer to line number entries

32-33 | unsigned s_nreloc Number of relocation entries
short

34-35 | unsigned s _ninno Number of line number entries
short

36-39 | long int s_flags Flags (see Figure 11-9)

Figure 11-8: Section Header Contents

The size of a section is padded to a multiple of 4 bytes. File pointers are
byte offsets that can be used to locate the start of data, relocation, or line number
entries for the section. They can be readily used with the UNIX system function

fseek(3S).

Flags

The lower 2 bytes of the flag field indicate a section type. The flags are
described in Figure 11-9.

COMMON OBJECT FILE FORMAT (COFF) 11-9

The Common Object File Format (COFF)

Mnemeonic Flag Meaning

STYP_REG 0x00 | Regular section (allocated, relocated,
loaded)

STYP_DSECT 0x01 | Dummy section (not allocated, relocated, not
loaded)

STYP_NOLOAD | 0x02 Noload section (allocated, relocated, not
loaded)

STYP_GROUP 0x04 | Grouped section (formed from input sec-
tions)

STYP_PAD 0x08 | Padding section (not allocated, not relocated,
loaded)

STYP_COPY 0x10 Copy section (for a decision function used in
updating fields; not allocated, not relocated,
loaded, relocation and line number entries
processed normally)

STYP_TEXT 0x20 | Section contains executable text

STYP_DATA 0x40 | Section contains initialized data

STYP_BSS 0x80 | Section contains only uninitialized data

STYP_INFO 0x200 | Comment section (not allocated, not relo-
cated, not loaded)

STYP_OVER 0x400 | Overlay section (relocated, not allocated, not
loaded)

STYP_LIB 0x800 | For .lib section (treated like STYP_INFO)

Figure 11-9: Section Header Flags

Sectlion Header Declaration

The C structure declaration for the section headers is described in Figure
11-10. This declaration may be found in the header file scnhdr.h.

11-10 PROGRAMMER'S GUIDE

The Common Object Flle Format (COFF)

an

char 8 name (8] ; /* section name */

long 8_paddr; /* physical address */

long 8 vaddr; /* virtual address */

long 8 size; /* section size */

long 8_scrptr; /* file ptr to section raw data */
long s _relptr; /* file ptr to relocation */

long s_lnnoptr; /* file ptr to line number */

unsigned short s nreloc; /* muber of relocation entries */
unsigned short s nlmno; /* mnber of line mmber entries */
long 8_flags; /* flaga */

}:

f#define SQEIR struct sconhdr
fdefine BSQNHSZ sizeof (SQWIR)

Figure 11-10: Section Header Declaration

.bss Section Header

The one deviation from the normal rule in the section header table is the
entry for uninitialized data in a .bss section. A .bss section has a size and sym-
bols that refer to it, and symbols that are defined in it. At the same time, a .bss
section has no relocation entries, no line number entries, and no data. Therefore,
a .bss section has an entry in the section beader table but occupies no space else-
where in the file. In this case, the number of relocation and line number entries,
as well as all file pointers in a .bss section header, are 0. The same is true of the
STYP_NOLOAD and STYP_DSECT sections.

COMMON OBJECT FILE FORMAT (COFF) 11-11

The Common Object File Format (COFF)

Sections

Figure 11-1 shows that section headers are followed by the appropriate
number of bytes of text or data. The raw data for each section begins on a
4-byte boundary in the file.

Link editor SECTIONS directives (see Chapter 12) allow users to, among
other things:

® describe how input sections are to be combined

¢ direct the placement of output sections

® rename output sections

If no SECTIONS directives are given, each input section appears in an out-
put section of the same name. For example, if a number of object files, each

with a.text section, are linked together the output object file contains a single
.text section made up of the combined input .text sections.

Relocation Information

Object files have one relocation entry for each relocatable reference in the
text or data. The relocation information consists of entries with the format
described in Figure 11-11.

Bytes Declaration Name Description
0-3 long int r_vaddr (Virtual) address of reference
4-7 long int r_symndx | Symbol table index
8-9 unsigned short | r_type Relocation type

Figure 11-11: Relocation Section Contents

The first 4 bytes of the entry are the virtual address of the text or data to
which this entry applies. The next field is the index, counted from 0, of the sym-
bol table entry that is being referenced. The type field indicates the type of relo-
cation to be applied.

11-12 PROGRAMMER'S GUIDE

The Common Object Flle Format (COFF)

As the link editor reads each input section and performs relocation, the relo-
cation entries are read. They direct how references found within the input sec-
tion are treated. The currently recognized relocation types are given in Figure

11-12.
Mnemonic Flag Meaning
R_ABS 0 Reference is absolute; no relocation is
necessary. The entry will be ignored.
R_RELLONG | 021 The 32-bit reference to the symbol’s virtual

code.

Figure 11-12: Relocation Types (CADMUS 32bit Computers)

address is added to the 32-bit value in the

Relocation Entry Declaration

The structure declaration for relocation entries is given in Figure 11-13.
This declaration may be found in the header file reloc.h.

Q reloc

{
long

long

):

#define RELOC

f#define RELSZ

_

r_vaddr; /* virtual address of reference */

r_symdx; /* index into synbol table */

unsigned short r_type; /* relocation type */

struct reloc

10

/

Figure 11-13: Relocation Entry Declaration

COMMON OBJECT FILE FORMAT (COFF)

11-13

The Common Object Flle Format (COFF)

Line Numbers

When invoked with the —g option, the cc, and 77 commands cause an entry
in the object file for every source line where a breakpoint can be inserted. You
can then reference line numbers when using a software debugger like sdb. All
line numbers in a section are grouped by function as shown in Figure 11-14.

symbol index 0
physical address | line number
physical address | line number

symbol index 0
physical address | line number
physical address | line number

Figure 11-14: Line Number Grouping

The first entry in a function grouping has line number 0 and has, in place of
the physical address, an index into the symbol table for the entry containing the
function name. Subsequent entries have actual line numbers and addresses of
the text corresponding to the line numbers. The line number entries are relative
to the beginning of the function, and appear in increasing order of address.

Line Number Declaration

The structure declaration currently used for line number entries is given in
Figure 11-15.

11-14 PROGRAMMER'S GUIDE

The Common Object Flle Format (COFF)

1

lineno
union
{
long 1 symndx; /* syntbl index of func name */
long 1 paddr; /* paddr of line mumber */
} 1 addc;
unsigned short 1 lnno; /* line mmber */
};
fdefine LINENO struct lineno
fdafine LINESZ 6

/

Figure 11-15: Line Number Entry Declaration

Symbol Table

Because of symbolic debugging requirements, the order of symbols in the
symbol table is very important. Symbols appear in the sequence shown in Fig-
ure 11-16.

COMMON OBJECT FILE FORMAT (COFF) 11-15

The Common Object Flle Format (COFF)

filename 1
function |

local symbols
for function 1

function 2

local symbols
for function 2

statics

filename 2
function 1

local symbols
for function 1

statics

defined global
symbols

undefined global
symbols

Figure 11-16: COFF Symbol Table

The word statics in Figure 11-16 means symbols defined with the C
language storage class static outside any function. The symbol table consists of
at least one fixed-length entry per symbol with some symbols followed by auxi-
liary entries of the same size. The entry for each symbol is a structure that holds
the value, the type, and other information.,

11-16 PROGRAMMER'S GUIDE

Speclal Symbols

The Common Object File Format (COFF)

The symbol table contains some special symbols that are generated by as,
and other tools. These symbols are given in Figure 11-17.

Symbol Meaning

Lile filename

text address of .text section

.data address of .data section

.bss address of .bss section

.bb address of start of inner block

.eb address of end of inner block

.bf address of start of function

.ef address of end of function

target pointer to the structure or union returned by
a function

xfake dummy tag name for structure, union, or
enumeration

208 end of members of structure, union, or
enumeration

etext next available address after the end of the
output section .text

edata next available address after the end of the
output section .data

end next available address after the end of the

output section .bss

Figure 11-17: Special Symbols in the Symbol Table

Six of these special symbols occur in pairs. The .bb and .eb symbols indi-
cate the boundaries of inner blocks; a .bf and .ef pair brackets each function. An
xfake and .eos pair names and defines the limit of structures, unions, and
enumerations that were not named. The .eos symbol also appears after named
structures, unions, and enumerations.

COMMON OBJECT FILE FORMAT (COFF) 11-17

The Common Object Flie Format (COFF)

When a structure, union, or enumeration has no tag name, the compiler
invents a name to be used in the symbol table. The name chosen for the symbol
table is xfake, where x is an integer. If there are three unnamed structures,
unions, or enumerations in the source, their tag names are .0fake, .1fake, and
.2fake. Each of the special symbols has different information stored in the sym-
bol table entry as well as the auxiliary entries.

Inner Blocks

The C language defines a block as a compound statement that begins and
ends with braces, {, and }. An inner block is a block that occurs within a func-
tion (which is also a block).

For each inner block that has local symbols defined, a special symbol, .bb,
is put in the symbol table immediately before the first local symbol of that block.
Also a special symbol, .eb, is put in the symbol table immediately after the last
local symbol of that block. The sequence is shown in Figure 11-18.

.bb

local symbols
for that block

.eb

Figure 11-18: Special Symbols (.bb and .eb)

Because inner blocks can be nested by several levels, the .bb-.eb pairs and
associated symbols may also be nested. See Figure 11-19.

11-18 PROGRAMMER'S GUIDE

The Common Object Flle Format (COFF)

/* block 1 */
int 1;
char c;
{ /* block 2 */
long a;
{ h /* block 3 */
int x;
} . /* block 3 */
} /* block 2 */
{ /* block 4 */
long 4;
} /* block 4 */
} /* block 1 */

_/

Figure 11-19: Nested blocks

The symbol table would look like Figure 11-20.

COMMON OBJECT FILE FORMAT (COFF)

11-19

The Common Object File Format (COFF)

.bb for block 1
i
c

.bb for block 2
a

.bb for block 3
x

.eb for block 3

.eb for block 2

.bb for block 4
i

.eb for block 4

.eb for block 1

Figure 11-20: Example of the Symbol Table

Symbols and Functions

For each function, a special symbol .bf is put between the function name
and the first local symbol of the function in the symbol table. Also, a special
symbol .ef is put immediately afier the last local symbol of the function in the
symbol table. The sequence is shown in Figure 11-21.

function name
.bf

local symbol
ef

Figure 11-21: Symbols for Functions

11-20 PROGRAMMER'S GUIDE

The Common Object File Format (COFF)

Symbol Table Entries

All symbols, regardless of storage class and type, have the same format for
their entries in the symbol table. The symbol table entries each contain 18 bytes
of information. The meaning of each of the fields in the symbol table entry is
described in Figure 11-22. It should be noted that indices for symbol table
entries begin at 0 and count upward. Each auxiliary entry also counts as one
symbol.

Bytes Declaration Name Description
0-7 | (seetextbelow) | n These 8 bytes contain either a sym-
bol name or an index to a symbol
8-11 | long int n_value Symbol value; storage class depen-
dent
12-13 | short n_scoum Section number of symbol
14-15 | unsigned short | n_type Basic and derived type
specification
16 | char n_sclass Storage class of symbol
17 | char n_numaux | Number of auxiliary entries

Figure 11-22: Symbol Table Entry Format

Symbol Names

The first 8 bytes in the symbol table entry are a union of a character array
and two longs. If the symbol name is eight characters or less, the (null-padded)
symbol name is stored there. If the symbol name is longer than eight characters,
then the entire symbol name is stored in the string table. In this case, the 8 bytes
contain two long integers, the first is zero, and the second is the offset (relative
to the beginning of the string table) of the name in the string table. Since there
can be no symbols with a null name, the zeroes on the first 4 bytes serve to dis-
tinguish a symbol table entry with an offset from one with a name in the first 8
bytes as shown in Figure 11-23,

COMMON OBJECT FILE FORMAT (COFF) 11-21

The Common Object File Format (COFF)

Bytes | Declaration Name Description
0-7 char n_name | 8-character null-padded symbol
name
0-3 long n_zeroes | Zero in this field indicates the name
is in the string table
4-7 long n_offset | Offset of the name in the string
table

Figure 11-23: Name Field

Special symbols generated by the C Compilation System are discussed

above in "Special Symbols."

Storage Classes

The storage class field has one of the values described in Figure 11-24.
These #define's may be found in the header file storclass.h.

11-22

PROGRAMMER'S GUIDE

Mnemonic Value Storage Class
C_EFCN -1 physical end of a function
C_NULL 0 -

C_AUTO 1 automatic variable
C_EXT 2 external symbol
C_STAT 3 static

C_REG 4 register variable
C_EXTDEF 5 external definition
C_LABEL 6 label

C_ULABEL 7 undefined label
C_MOs 8 member of structure
C_ARG 9 function argument
C_STRTAG 10 structure tag
C_MOU 11 member of union
C_UNTAG 12 union tag
C_TPDEF 13 type definition
C_USTATIC 14 uninitialized static
C_ENTAG 15 enumeration tag
C_MOE 16 member of enumeration
C_REGPARM 17 register parameter
C_FIELD 18 bit field

Figure 11-24: Storage Classes (Sheet 1 of 2)

The Common Object Flle Format (COFF)

COMMON OBJECT FILE FORMAT (COFF)

11-23

The Common Object File Format (COFF)

Mnemonic | Value Storage Class

C_BLOCK 100 beginning and end of block

C_FCN 101 beginning and end of function
C_EOS 102 end of structure

C_FILE 103 filename

C_LINE 104 used only by utility programs
C_ALIAS 105 duplicated tag

C_HIDDEN 106 like static, used to avoid
name conflicts

Figure 11-24: Storage Classes (Sheet 2 of 2)

All of these storage classes except for C_ALIAS and C_HIDDEN are gen-
erated by the cc or as commands. The compress utility, cprs(1), generates the
C_ALIAS mnemonic. This utility removes duplicated structure, union, and
enumeration definitions and puts alias eatries in their places. The storage class
C_HIDDEN is not used by any UNIX system tools.

Some of these storage classes are used only internally by the C Compilation
Systems. These storage classes are C_EFCN, C_EXTDEF, C_ULABEL,
C_USTATIC, and C_LINE.

Storage Classes for Speclal Symbols

Some special symbols are restricted to certain storage classes. They are
given in Figure 11-25.

11-24 PROGRAMMER'S GUIDE

The Common Object File Format (COFF)

Special Symbol Storage Class
file C_FILE

.bb C_BLOCK

.eb C_BLOCK

.bf C_FCN

.ef C_FCN

.target C_AUTO

afake C_STRTAG, C_UNTAG, C_ENTAG
.08 C_EOS

.text C_STAT

.data C_STAT

.bss C_STAT

Figure 11-25: Storage Class by Special Symbols

Also some storage classes are used only for certain special symbols. They
are summarized in Figure 11-26.

Storage Class | Special Symbol
C_BLOCK .bb, .eb

C_FCN .bf, .ef

C_EOS .e08

C_FILE file

Figure 11-26: Restricted Storage Classes

Symbol Value Fleld

The meaning of the value of a symbol depends on its storage class. This
relationship is summarized in Figure 11-27.

COMMON OBJECT FILE FORMAT (COFF) 11-25

The Common Object File Format (COFF)

Storage Class | Meaning of Value
C_AUTO stack offset in bytes
C_EXT relocatable address
C_STAT relocatable address
C_REG register number
C_LABEL relocatable address
C_MOS offset in bytes
C_ARG stack offset in bytes
C_STRTAG 0

C_MOU 0

C_UNTAG 0

C_TPDEF 0

C_ENTAG 0

C_MOE enumeration value
C_REGPARM | register number
C_FIELD bit displacement
C_BLOCK relocatable address
C_FCN relocatable address
C_EOS size

C_FILE (see text below)
C_ALIAS tag index
C_HIDDEN relocatable address

Figure 11-27: Storage Class and Value

If a symbol has storage class C_FILE, the value of that symbol equals the
symbol table entry index of the next .file symbol. That is, the .file entries form a
one-way linked list in the symbol table. If there are no more .file entries in the
symbol table, the value of the symbol is the index of the first global symbol.

Relocatable symbols have a value equal to the virtual address of that sym-
bol. When the section is relocated by the link editor, the value of these symbols
changes.

11-26 PROGRAMMER'S GUIDE

The Common Object Flle Format (COFF)

Sectlon Number Fleld
Section numbers are listed in Figure 11-28.

Mnemonic | Section Number Meaning

N_DEBUG -2 Special symbolic debugging sym-
bol

N_ABS -1 Absolute symbol

N_UNDEF 0 Undefined external symbol

N_SCNUM 1-077717 Section number where symbol is
defined

Figure 11-28: Section Number

A special section number (~2) marks symbolic debugging symbols, includ-
ing structure/union/enumeration tag names, typedefs, and the name of the file. A
section number of —1 indicates that the symbol has a value but is not relocatable.
Examples of absolute-valued symbols include automatic and register variables,
function arguments, and .eos symbols.

With one exception, a section number of 0 indicates a relocatable external
symbol that is not defined in the current file. The one exception is a multiply
defined extemnal symbol (i.e., FORTRAN common or an uninitialized variable
defined extemnal to a function in C). In the symbol table of each file where the
symbol is defined, the section number of the symbol is 0 and the value of the
symbol is a positive number giving the size of the symbol. When the files are
combined to form an executable object file, the link editor combines all the input
symbols of the same name into one symbol with the section number of the .bss
section. The maximum size of all the input symbols with the same name is used
to allocate space for the symbol and the value becomes the address of the sym-
bol. This is the only case where a symbol has a section number of 0 and a
non-zero value.

Section Numbers and Storage Classes
Symbols having certain storage classes are also restricted to certain section
numbers. They are summarized in Figure 11-29.

COMMON OBJECT FILE FORMAT (COFF) 11-27

The Common Object Flle Format (COFF)

Storage Class Section Number
C_AUTO N_ABS

C_EXT N_ABS, N_UNDEF, N_SCNUM
C_STAT N_SCNUM

C_REG N_ABS

C_LABEL N_UNDEF, N_SCNUM
C_MOS N_ABS

C_ARG N_ABS

C_STRTAG N_DEBUG

C_MOU N_ABS

C_UNTAG N_DEBUG

C_TPDEF N_DEBUG

C_ENTAG N_DEBUG

C_MOE N_ABS

C_REGPARM | N_ABS

C_FIELD N_ABS

C_BLOCK N_SCNUM

C_FCN N_SCNUM

C_EOS N_ABS

C_FILE N_DEBUG

C_ALIAS N_DEBUG

Figure 11-29: Section Number and Storage Class

Type Entry

The type field in the symbol table entry contains information about the basic
and derived type for the symbol. This information is generated by the C Compi-
lation System only if the —g option is used. Each symbol has exactly one basic
or fundamental type but can have more than one derived type. The format of the
16-bit type entry is

d6 | d5 | d4 | d3 | d2 | d1 | typ

11-28 PROGRAMMER'S GUIDE

The Common Object Flle Format (COFF)

Bits 0 through 3, called typ, indicate one of the fundamental types given in

Figure 11-30.
Mnemonic Value Type
T_NULL 0 type not assigned
T_VOID 1 void
T_CHAR 2 character
T_SHORT 3 short integer
T_INT 4 integer
T_LONG 5 long integer
T_FLOAT 6 floating point
T_DOUBLE 7 double word
T_STRUCT 8 structure
T_UNION 9 union
T_ENUM 10 enumeration
T_MOE 11 member of enumeration
T_UCHAR 12 unsigned character
T_USHORT 13 unsigned short
T_UINT 14 unsigned integer
T_ULONG 15 unsigned long

Figure 11-30: Fundamental Types

Bits 4 throﬁgh 15 are arranged as six 2-bit fields marked d1 through d6.
These d fields represent levels of the derived types given in Figure 11-31.

COMMON OBJECT FILE FORMAT (COFF)

11-29

The Common Object Flle Format (COFF)

Mnemonic | Value Type
DT_NON 0 no derived type
DT_PTR 1 pointer
DT_FCN 2 function
DT_ARY 3 array

Figure 11-31: Derived Types

The following examples demonstrate the interpretation of the symbol table
entry representing type.

char *func();

Here func is the name of a function that retumns a pointer to a character.
The fundamental type of func is 2 (character), the d1 field is 2 (function), and
the d2 field is 1 (pointer). Therefore, the type word in the symbol table for func
contains the hexadecimal number 0x62, which is interpreted to mean a function
that returns a pointer to a character.

short *tabptr([10] [25](3];

Here tabptr is a three-dimensional array of pointers to short integers. The
fundamental type of tabptr is 3 (short integer); the d1, d2, and d3 fields each
contains a 3 (array), and the d4 field is 1 (pointer). Therefore, the type entry in
the symbol table contains the hexadecimal number 0x7f3 indicating a
three-dimensional array of pointers to short integers.

Type Entrles and Storage Classes
Figure 11-32 shows the type entries that are legal for each storage class.

11-30 . PROGRAMMER'S GUIDE

The Common Object Flle Format (COFF)

d Entry
Storage typ Entry
Class Function? | Array? | Pointer? Basic Type
C_AUTO no yes yes Any except T_MOE
C_EXT yes yes yes Any except T_MOE
C_STAT yes yes yes Any except T_MOE
C_REG no no yes Any except T_MOE
C_LABEL no no no T_NULL
C_MOS no yes yes Any except T_MOE
C_ARG yes no yes Any except T_MOE
C_STRTAG | no no no T_STRUCT
C_MOuU no yes yes Any except T_MOE
C_UNTAG no no no T_UNION

Figure 11-32: Type Entries by Storage Class (Sheet 1 of 2)

COMMON OBJECT FILE FORMAT (COFF) 11-31

The Common Object Flle Format (COFF)

d Entry
Storage typ Entry
Class Function? | Array? | Pointer? Basic Type
C_TPDEF no yes yes Any except T_MOE
C_ENTAG no no no T_ENUM
C_MOE no no no T_MOE
C_REGPARM | no no yes Any except T_MOE
C_FIELD no no no T_ENUM,
T_UCHAR,
T_USHORT,
T_UNIT, T_ULONG
C_BLOCK no no no T_NULL
C_FCN no no no T_NULL
C_EOS no no no T_NULL
C_FILE no no no T_NULL
C_ALIAS no no no T_STRUCT,
T_UNION, T_ENUM

Figure 11-32: Type Entries by Storage Class (Sheet 2 of 2)

Conditions for the d entries apply to d1 through d6, except that it is impos-
sible to have two consecutive derived types of function.

Although function arguments can be declared as arrays, they are changed to
pointers by default. Therefore, no function argument can have array as its first
derived type.

Structure for Symbol Table Entrles
The C language structure declaration for the symbol table entry is given in
Figure 11-33. This declaration may be found in the header file syms.h.

11-32 PROGRAMMER'S GUIDE

) nn;

) _n;
unsigned long

short

unsigned short

}:

#define n_name
fdefine n_zerves
fdofine n offset
fdefine n_nptr

fdefine SYMESZ

N

_n_name [SYMMLEN] ;

/* symbol name*/

long n_zeroes; /* synbol name */

The Common Object Flle Format (COFF)

long _n offset; /* location in string table */

* n mptr(2); /* allows overlaying */

n_value;
n_scram;
n_type;
n_sclass;
n_mamain;
n. n _name
:n .___n:n ._n_zerces

_n. nn._n offaet

_n._n mptr(l]

fdefine SYMMEN 8

18 /* size of a symbol

/* value of symbol */
/* section mmber */
/* type and derived */

/* storage class */

/* muxber of aux entries */

table entry */

Figure 11-33: Symbol Table Entry Declaration

Auxiliary Table Entrles

An auxiliary table entry of a symbol contains the same number of bytes as
the symbol table entry. However, unlike symbol table entries, the format of an
auxiliary table entry of a symbol depends on its type and storage class. They are
summarized in Figure 11-34.

COMMON OBJECT FILE FORMAT (COFF)

11-33

The Common Object Flle Format (COFF)

Type Entry
Storage Auxiliary
Name Class d1 typ Entry Format
file C_FILE DT_NON | T_NULL filename
.text,.data, C_STAT DT_NON | T_NULL section
.bss
tagname C_STRTAG | DT_NON | T_NULL tag name
C_UNTAG
C_ENTAG
.08 C_EOS DT_NON | T_NULL end of structure
fename C_EXT DT_FCN (Note 1) function
C_STAT
arrname (Note 2) DT_ARY | (Note I) armray
.bb,.eb C_BLOCK DT_NON | T_NULL beginning and
end of block
.bf,.ef C_FCN DT_NON | T_NULL beginning and
end of function
name related | (Note 2) DT_PTR, | T_STRUCT, | name related to
to structure, DT_ARR, | T_UNION, structure, union,
union, DT_NON | T_ENUM enumeration
enumeration

Figure 11-34: Auxiliary Symbol Table Entries

Notes to Figure 11-34:
1. Any except T_MOE.
2. C_AUTO, C_STAT, C_MOS, C_MOU, C_TPDEF.

In Figure 11-34, tagname means any symbol name including the special
symbol xfake, and fcname and arrname represent any symbol name for a func-
tion or an array respectively. Any symbol that satisfies more than one condition
in Figure 11-34 should have a union format in its auxiliary entry.

11-34

PROGRAMMER'S GUIDE

The Common Object Flle Format (COFF)

It is a mistake to assume how many auxiliary entries are associated with any
given symbol table entry. This information is available, and should be
obtained from the n_numaux field in the symbol table.

Fllenames

Each of the auxiliary table entries for a filename contains a 14-character
filename in bytes 0 through 13. The remaining bytes are 0.

Sections
The auxiliary table entries for sections have the format as shown in Figure

11-35.

Bytes Declaration Name Description

0-3 long int x_scnlen | section length

4-5 unsigned short | x_nreloc | number of relocation entrics

6-7 unsigned short | x _nlinno | number of line numbers

8-17 - - unused (filled with zeroes)

Figure 11-35: Format for Auxiliary Table Entries for Sections

Tag Names
The auxiliary table entries for tag names have the format shown in Figure
11-36.
Bytes Declaration Name Description
0-5 - - unused (filled with zeroes)
6-7 unsigned short | x_size size of structure, union, and
enumeration
8-11 - - unused (filled with zeroes)
12-15 | longint x_endndx | index of next entry beyond this
structure, union, or enumeration
16-17 | - - unused (filled with zeroes)

Figure 11-36: Tag Names Table Entries

COMMON OBJECT FILE FORMAT (COFF) 11-35

The Common Object File Format (COFF)

End of Structures

The auxiliary table entries for the end of structures have the format shown
in Figure 11-37:

Bytes Declaration Name Description

0-3 long int x_tagndx | tag index

4-5 - - unused (filled with zeroes)

6-7 unsigned short | x_size size of structure, union, or
enumeration

8-17 - - unused (filled with zeroes)

Figure 11-37: Table Entries for End of Structures

Functions

The auxiliary table entries for functions have the format shown in Figure
11-38:

Bytes Declaration Name Description

0-3 long int x_tagndx | tagindex

4-7 long int x_fsize size of function (in bytes)

8-11 long int x_Innoptr | file pointer to line number

12-15 | long int x_endndx | index of next entry beyond this
point

16-17 | unsigned short | x_tvndx index of the function’s address in
the transfer vector table (not used
in UNIX system)

Figure 11-38: Table Entries for Functions

11-36 PROGRAMMER'S GUIDE

Arrays

The Common Object File Format (COFF)

The auxiliary table entries for arrays have the format shown in Figure 11-
39. Defining arrays having more than four dimensions produces a warning mes-

sage.

Bytes Declaration Name Description
0-3 long int x_tagndx tag index

4-5 unsigned short | x_Inno line number of declaration
6-7 unsigned short | x_size size of array

8-9 unsigned short | x_dimen[0] | first dimension

10-11 | unsigned short | x_dimen[1] | second dimension

12-13 | unsigned short x_dimen(2] | third dimension

14-15 | unsigned short | x_dimen(3] | fourth dimension

16-17 | - - unused (filled with zeroes)

Figure 11-39: Table Entries for Arrays

End of Blocks and Functions
The auxiliary table entries for the end of blocks and functions have the for-

mat shown in Figure 11-40:

Bytes Declaration Name Description
0-3 - - unused (filled with zeroes)
4-5 unsigned short | x_Inno | C-source line number
6-17 - - unused (filled with zeroes)

Figure 11-40: End of Block and Function Entries

Beginning of Blocks and Functions
The auxiliary table entries for the beginning of blocks and functions have
the format shown in Figure 11-41:

COMMON OBJECT FILE FORMAT (COFF) 11-37

The Common Object Flle Format (COFF)

Bytes Declaration Name Description

0-3 - - unused (filled with zeroes)

4-5 unsigned short | x_Inno C-source line number

6-11 - - unused (filled with zeroes)

12-15 | long int x_endndx | index of next entry past this block
16-17 | - - unused (filled with zeroes)

Figure 11-41: Format for Beginning of Block and Function

Names Related to Structures, Unlons, and Enumerations

The auxiliary table entries for structure, union, and enumeration symbols
have the format shown in Figure 11-42:

Bytes Declaration Name Description

03 long int x_tagndx | tagindex

4-5 - - unused (filled with zeroes)

6-7 unsigned short | x_size size of the structure, union, or
enumeration

8-17 - - unused (filled with zeroes)

Figure 11-42: Entries for Structures, Unions, and Enumerations

Aggregates defined by typedef may or may not have auxiliary table entries.
For example,

11-38 PROGRAMMER'S GUIDE

The Common Object File Format (COFF)

(pedaf struct people STUDENT;

struct people

{
char name (20}
long id;

»:

typedef struct people EMPLOYEE;

The symbol EMPLOYEE has an auxiliary table entry in the symbol table
but symbol STUDENT will not because it is a forward reference to a structure.

Auxlilary Entry Declaration

The C language structure declaration for an auxiliary symbol table entry is
given in Figure 11-43. This declaration may be found in the header file syms.h.

COMMON OBJECT FILE FORMAT (COFF) 11-39

The Common Object Flle Format (COFF)

union auxent
{

struct
{
long x tagndx;
union
{
struct
{
unsigned short x lmno;
unsigned short x size;
} x lnsz;
long x faize;
} x misc;
union
{
struct

N

/

Figure 11-43: Auxiliary Symbol Table Entry (Sheet 1 of 2)

1140 PROGRAMMER'’S GUIDE

The Common Object Flle Format (COFF)

long x_lnnoptr;
long x_et'ﬁxdx;
} x fon;
struct

{
unsigned short x dimen(DIMNUM] ;
) x_ary;
} x_fonary;
unsigned short x tvndx;
} x _sym;
struct
{
char x_fname [FILMMEN];
} x file;
struct
{
long x sonlen;
unsigned short x nreloc;
unsigned short x nlimno;
} x son;
struct
{
long x tvfill;
unsigned short x tvlen;
unsigned short x tvran(2];
} x tv; .
}
fdofine FIINMIEN 14
fdefine DIMNUM 4
#define AUXENT union mneat
f#define AUXESZ 18

Figure 11-43: Auxiliary Symbol Table Entry (Sheet 2 of 2)

COMMON OBJECT FILE FORMAT (COFF) 11-41

The Common Object Flle Format (COFF)

String Table

Symbol table names longer than eight characters are stored contiguously in
the string table with each symbol name delimited by a null byte. The first four
bytes of the string table are the size of the string table in bytes; offsets into the
string table, therefore, are greater than or equal to 4. For example, given a file
containing two symbols (with names longer then eight characters, long_name_1
and another_one) the string table has the format as shown in Figure 11-44:

ll' lol ln g

av ‘n ot dl'
ohv lel lr' «
lov ln) le) CV)D

Figure 11-44: String Table

The index of long_name_1 in the string table is 4 and the index of
another_one is 16.

Access Routines

UNIX system releases contain a set of access routines that are used for read-
ing the various parts of a common object file. Although the calling program
must know the detailed structure of the parts of the object file it processes, the
routines effectively insulate the calling program from the knowledge of the
overall structure of the object file.

11-42 PROGRAMMER'S GUIDE

The Common Object File Format (COFF)

The access routines can be divided into four categorics:
1. functions that open or close an object file
2. functions that read header or symbol table information

3. functions that position an object file at the start of a particular section of
the object file

4. afunction that returns the symbol table index for a particular symbol

These routines can be found in the library libld.a and are listed in Section 3
of Manual Ib. A summary of what is available can be found under ldfcn(4).

COMMON OBJECT FILE FORMAT (COFF) 1143

Table of Contents

Chapter 12: The Link Editor

The Link Editor 12-1
Link Editor Command Language 12-4
Notes and Special Considerations 12-20

Syntax Diagram for Input Directives 12-29

TABLE OF CONTENTS

The Link Editor

In Chapter 2 there was a discussion of link editor command line options
(some of which may also be provided on the ce(1) command line). This chapter
contains information on the Link Editor Command Language.

The command language enables you to .
® specify the memory configuration of the target machine

® combine the sections of an object file in arrangements other than the
default

® bind sections to specific addresses or within specific portions of memory
® define or redefine global symbols

Under most normal circumstances there is no compelling need to have such
tight control over object files and where they are located in memory. When you
do need to be very precise in controlling the link editor output, you do it by
means of the command language.

Link editor command language directives are passed in a file named on the
1d(1) command line. Any file named on the command line that is not
identifiable as an object module or an archive library is assumed to contain
directives. The following paragraphs define terms and describe conditions with
which you need to be familiar before you begin to use the command language.

Memory Configuration

The virtual memory of the target machioe is, for purposes of allocation, par-
titioned into configured and unconfigured memory. The default condition is to
treat all memory as configured. It is common with microprocessor applications,
however, to have different types of memory at different addresses. For example,
an application might have 3K of PROM (Programmable Read-Only Memory)
beginning at address 0, and 8K of ROM (Read-Only Memory) starting at 20K. .
Addresses in the range 3K to 20K-1 are then not configured. Unconfigured
memory is treated as reserved or unusable by 1d(1). Nothing can ever be linked
into unconfigured memory. Thus, specifying a certain memory range to be
unconfigured is one way of marking the addresses (in that range) illegal or
nonexistent with respect to the linking process. Memory configurations other
than the default must be explicitly specified by you (the user).

THE LINK EDITOR 12-1

The Link Editor

Unless otherwise specified, all discussion in this document of memory,
addresses, etc. are with respect to the configured sections of the address space.

Sections

A section of an object file is the smallest unit of relocation and must be a
contiguous block of memory. A section is identified by a starting address and a
size. Information describing all the sections in a file is stored in section headers
at the start of the file. Sections from input files are combined to form output sec-
tions that contain executable text, data, or a mixture of both. Although there
may be holes or gaps between input sections and between output sections,
storage is allocated contiguously within each output section and may not overlap
a hole in memory.

Addresses

The physical address of a section or symbol is the relative offset from
address zero of the address space. The physical address of an object is not
necessarily the location at which it is placed when the process is executed. For
example, on a system with paging, the address is with respect to address zero of
the virtual space, and the system performs another address translation.

Binding

It is often necessary to have a section begin at a specific, predefined address
in the address space. The process of specifying this starting address is called
binding, and the section in question is said to be bound to or bound at the
required address. While binding is most commonly relevant to output sections,

it is also possible to bind special absolute global symbols with an assignment
statement in the 1d(1) command language.

Object File

Object files are produced both by the assembler (typically as a result of cal-
ling the compiler) and by 1d(1). 1d(1) accepts relocatable object files as input
and produces an output object file that may or may not be relocatable. Under
certain special circumstances, the input object files given to 1d(1) can also be
absolute files.

12-2 PROGRAMMER'S GUIDE

The Link Editor

~ Files produced from the compilation system may contain, among others,
sections called .text and .data. The .text section contains the instruction text
(executable instructions), .data contains initialized data variables. For example,
if a C program contained the global (i.e., not inside a function) declaration

int i = 100;
and the assignment
i=0;

then compiled code from the C assignment is stored in .text, and the variable i is
located in .data.

THE LINK EDITOR 12-3

Link Editor Command Language

Expressions

Expressions may contain global symbols, constants, and most of the basic C
language operators. (See Figure 12-2, "Syntax Diagram for Input Directives.")
Constants are as in C with a number recognized as decimal unless preceded with
0 for octal or Ox for hexadecimal. All numbers are treated as long integers’s.
Symbol names may contain uppercase or lowercase letters, digits, and the under-
score, _. Symbols within an expression have the value of the address of the
symbol only. 1d(1) does not do symbol table lookup to find the contents of a
symbol, the dimensionality of an array, structure elements declared in a C pro-
gram, etc.

1d(1) uses a lex-generated input scanner to identify symbols, numbers,
operators, etc. The current scanner design makes the following names reserved
and unavailable as symbol names or section names:

ADDR BLOCK GROUP NEXT RANGE SPARE
ALIGN COMMON INFO NOLOAD REGIONS PHY
ASSIGN COPY LENGTH ORIGIN SECTIONS TV
BIND DSECT MEMORY OVERLAY SIZEOF

addr block length origin sizeof
align group next phy spare
assign 1 0 range

bind len org S

The operators that are supported, in order of precedence from high to low,
are shown in Figure 12-1:

124 PROGRAMMER'S GUIDE

Link Editor Command Language

symbol

| ~— (UNARY Minus)
* [%

+ — (BINARY Minus)
>> <<

= |l= > < <= >=

Figure 12-1: Operator Symbols

The above operators have the same meaning as in the C language. Operators on
the same line have the same precedence.

Assignment Statements

External symbols may be defined and assigned addresses via the assignment
statement. The syntax of the assignment statement is

symbol = expression;

or

symbol op= expression;

where op is one of the operators +,—, *, or /. Assignment statements must be
terminated by a semicolon.

All assignment statements (with the exception of the one case described in
the following paragraph) are evaluated after allocation has been performed. This
occurs after all input-file-defined symbols are appropriately relocated but before
the actual relocation of the text and data itself. Therefore, if an assignment state-
ment expression contains any symbol name, the address used for that symbol in
the evaluation of the expression reflects the symbol address in the output object
file. References within text and data (to symbols given a value through an
assignment statement) access this latest assigned value. Assignment statements
are processed in the same order in which they are input to Id(1).

THE LINK EDITOR 12-5

Link Editor Command Language

Assignment statements are normally placed outside the scope of
section-definition directives (see "Section Definition Directives" under "Link
Editor Command Language"). However, there exists a special symbol, called
dot, ., that can occur only within a section-definition directive. This symbol
refers to the current address of 1d(1)’s location counter. Thus, assignment
expressions involving . are evaluated during the allocation phase of 1d(1).
Assigning a value to the . symbol within a section-definition directive can incre-
ment (but not decrement) ld(1)’s location counter and can create holes within the
section, as described in "Section Definition Directives." Assigning the value of
the . symbol to a conventional symbol permits the final allocated address (of a
particular point within the link edit run) to be saved.

align is provided as a shorthand notation to allow alignment of a symbol to
an n-byte boundary within an output section, where n is a power of 2. For exam-
ple, the expression

align(n)
is equivalent to
(.+n-1 & (n-1)
SIZEOF and ADDR are pseudo-functions that, given the name of a section,

retum the size or address of the section respectively. They may be used in sym-
bol definitions outside of section directives.

Link editor expressions may have either an absolute or a relocatable value.
When 1d(1) creates a symbol through an assignment statement, the symbol’s
value takes on that type of expression. That type depends on the following
rules:

® An expression with a single relocatable symbol (and zero or more con-
stants or absolute symbols) is relocatable.

® The difference of two relocatable symbols from the same section is abso-
lute.

® All other expressions are combinations of the above.

12-6 PROGRAMMER'S GUIDE

Link Editor Command Language

Specifying a Memory Configuration
MEMORY directives are used to specify
1. The total size of the virtual space of the target machine.
2. The configured and unconfigured areas of the virtual space.

If no directives are supplied, 1d(1) assumes that all memory is configured. The
size of the default memory is dependent upon the target machine.

By means of MEMORY directives, an arbitrary name of up to eight charac-
ters is assigned to a virtual address range. Output sections can then be forced to
be bound to virtual addresses within specifically named memory areas. Memory
names may contain uppercase or lowercase letters, digits, and the special charac-
ters §, ., or _. Names of memory ranges are used by 1d(1) only and are not car-
ried in the output file symbol table or beaders.

When MEMORY directives are used, all virtual memory not described in a
MEMORY directive is considered to be unconfigured. Uncontigured memory is
not used in 1d(1)’s allocation process; hence nothing except DSECT sections can
be link edited or bound to an address within unconfigured memory.

As an option on the MEMORY directive, attributes may be associated with
a named memory area. In future releases this may be used to provide error
checking. Currently, error checking of this type is not implemented.

The attributes currently accepted are
1. R :readable memory
2. W : writable memory
3. X:executable, i.e., instructions may reside in this memory
4. 1:initializable, i.e., stack areas are typically not initialized

Other attributes may be added in the future if necessary. If no attributes are
specified on a MEMORY directive or if no MEMORY directives are supplied,
memory areas assume the attributes of R, W, X, and I.

THE LINK EDITOR 12-7

Link Editor Command Language

The syntax of the MEMORY directive is

MEMORY

{
namel (attr) :origin = nl, length = n2
name2 (attr) :origin = n3, length = n4
etc.

The keyword origin (or org or 0) must precede the origin of a memory
range, and length (or len or 1) must precede the length as shown in the above
prototype. The origin operand refers to the virtual address of the memory range.
origin and length are entered as long integer constants in either decimal, octal,
or hexadecimal (standard C syntax). origin and length specifications, as well as
individual MEMORY directives, may be separated by white space or a comma.

By specifying MEMORY directives, Id(1) can be told that memory is
configured in some manner other than the default. For example, if it is necessary
to prevent anything from being linked to the first 0x10000 words of memory, a
MEMORY directive can accomplish this.

MEMCRY
{

valid : org = 0x10000, len = OxFE0000
}

Section Definition Directives

The purpose of the SECTIONS directive is to describe how input sections
are to be combined, to direct where to place output sections (both in relation to
each other and to the entire virtual memory space), and to permit the renaming
of output sections.

In the default case where no SECTIONS directives are given, all input sec-
tions of the same name appear in an output section of that name. If two object
files are linked, one containing sections s1 and s2 and the other containing sec-
tions s3 and s4, the output object file contains the four sections s, s2, s3, and s4.
The order of these sections would depend on the order in which the link editor
sees the input files.

12-8 PROGRAMMER'S GUIDE

.

The basic syntax of the SECTIONS directive is

/ SECTINS

{

.

secnamel :

file specifications,
assignment statements

file specifications,
assignment statemants

Link Editor Command Language

The various types of section definition directives are discussed in the remainder

of this section.

Flle Specifications

Within a section definition, the files and sections of files to be included in
the output section are listed in the order in which they are to appear in the output
section. Sections from an input file are specified by

filename (secname)

or

filename (secnaml secnam?2 . . .)

Sections of an input file are separated either by white space or commas as are the

file specifications themselves.

filename [OOMMON]

may be used in the same way to refer to all the uninitialized, unallocated global

symbols in a file.

THE LINK EDITOR

12-9

Link Editor Command Language

If a file name appears with no sections listed, then all sections from the file
(but not the uninitialized, unallocated globals) are linked into the current output
section. For example,

filel.o (secl)
file2.0
file3.o (secl, sec2)

}

o

According to this directive, the order in which the input sections appear in the
output section outsecl would be

1. section secl from file filel.o
2. all sections from file2.0, in the order they appear in the file
3. section secl from file file3.0, and then section sec2 from file file3.0

If there are any additional input files that contain input sections also named
outsecl, these sections are linked following the last section named in the
definition of outsecl. If there are any other input sections in filel.o or file3.o,
they will be placed in output sections with the same names as the input sections
unless they are included in other file specifications.

The code
* (secname)
may be used to indicate all previously unallocated input sections of the given

name, regardless of what input file they are contained in.

Load a Section at a Specified Address

Bonding of an output section to a specific virtual address is accomplished
by an Id(1) option as shown in the following SECTIONS directive example:

12-10 PROGRAMMER'S GUIDE

Link Editor Command Language

The addr is the bonding address expressed as a C constant. If outsec does not fit
at addr (perhaps because of holes in the memory configuration or because
outsec is too large to fit without overlapping some other output section), 1d(1)
issues an appropriate error message. addr may also be the word BIND, followed
by a parenthesized expression. The expression may use the pseudo-functions
SIZEOQF, ADDR or NEXT. NEXT accepts a constant and returns the first multi-
ple of that value that falls into configured unallocated memory; SIZEOF and
ADDR accept previously defined sections.

As long as output sections do not overlap and there is enough space, they can be
bound anywhere in configured memory. The SECTIONS directives defining
output sections need not be given to 1d(1) in any particular order, unless
SIZEOF or ADDR is used.

1d(1) does not ensure that each section’s size consists of an even number of
bytes or that each section starts on an even byte boundary. The assembler
ensures that the size (in bytes) of a section is evenly divisible by 4. 1d(1) direc-
tives can be used to force a section to start on an odd byte boundary although
this is not recommended. If a section starts on an odd byte boundary, the
section’s contents are either accessed incorrectly or are not executed properly.
When a user specifies an odd byte boundary, 1d(1) issues a waming message.

Aligning an Output Section

It is possible to request that an output section be bound to a virtual address
that falls on an n-byte boundary, where n is a power of 2. The ALIGN option of
the SECTIONS directive performs this function, so that the option

ALIGN (n)
is equivalent to specifying a bonding address of
(.+n-1) & (n-1)

THE LINK EDITOR 12-11

Link Editor Command Language

For example

s

{

outsec ALIGN (0x20000) :

The output section outsec is not bound to any given address but is placed at

some virtual address that is a multiple of 0x20000 (e.g., at address 0x0,
0x20000, 0x40000, 0x60000, etc.).

Grouping Sectlons Together
The default allocation algorithm for 1d(1)

1. Links all input .init sections together, followed by .text sections, into

one output section. This output section is called .text and is bound to
an address of 0x0 plus the size of all headers in the output file.

2. Links all input .data sections together into one output section. This out-
put section is called .data and, in paging systems, is bound to an
address aligned to a machine dependent constant plus a number depen-
dent on the size of headers and text.

3.

Links all input .bss sections together with all uninitialized, unallocated
global symbols, into one output section. This output section is called
.bss and is allocated so as to immediately follow the output section

.data. Note that the output section .bss is not given any particular
address alignment.

Specifying any SECTIONS directives results in this default allocation not
being performed. Rather than relying on the 1d(1) default algorithm, if you are
manipulating COFF files, the one certain way of determining address and order
information is to take it from the file and section headers. The default allocation
of 1d(1) is equivalent to supplying the following directive:

12-12 PROGRAMMER'’S GUIDE

Link Edltor Command Language

/ SECTINS

{
.text sizeof headers : { *(.init) *(.text) }
GROUP BIND(NEXT(align value) +
((SIZECF (.text) + ADDR(.text)) % 0x2000)) :
{
.data t ()
.bss ()

}

_

where align_value is a machine dependent constant. The GROUP command
ensures that the two output sections, .data and .bss, are allocated (e.g., grouped)
together. Bonding or alighment information is supplied only for the group and
not for the output sections contained within the group. The sections making up
the group are allocated in the order listed in the directive.

If .text, .data, and .bss are to be placed in the same segment, the following
SECTIONS directive is used:

s

{

GROUP

(
text
.data
.bas

e we ee
—— -
- -

}

\- /

Note that there are still three output sections (.text, .data, and .bss), but now
they are allocated into consecutive virtual memory.

THE LINK EDITOR 12-13

Link Editor Command Language

This entire group of output sections could be bound to a starting address or
aligned simply by adding a field to the GROUP directive. To bind to 0xC0000,
use

GROUP 0xC0000.: {
To align to 0x10000, use
GROUP ALIGN (0x10000) : |

With this addition, first the output section .text is bound at 0xC0000 (or is
aligned to 0x10000); then the remaining members of the group are allocated in
order of their appearance into the next available memory locations.

When the GROUP directive is not used, each output section is treated as an
independent entity:

SECTIONS

{
taxt : {)
.data ALIGN(0x20000) : {)}
.bes : ()

—

The .text section starts at virtual address 0x0 (if it is in configured memory) and
the .data section at a virtual address aligned to 0x20000. The .bss section fol-
lows immediately after the .text section if there is enough space. If there is not,
it follows the .data section. The order in which output sections are defined to
1d(1) cannot be used to force a certain allocation order in the output file.

Creating Holes Within Output Sectlons

The special symbol dot, ., appears only within section definitions and
assignment statements. When it appears on the left side of an assignment state-
ment, . causes ld(1)’s location counter to be incremented or reset and a hole left
in the output section. Holes built into output sections in this manner take up
physical space in the output file and are initialized using a fill character (either
the default fill character (0x00) or a supplied fill character). See the definition of
the —f option in "Using the Link Editor” and the discussion of filling holes in
“Initialized Section Holes" or .bss Sections." in this chapter.

12-14 PROGRAMMER'S GUIDE

Link Editor Command Language

Consider the following section definition:

am

{

. 4= 0x1000;
fl.o (.text)
. 4= 0x100;
2.0 (.text)
. = align (4);
£3.0 (.text)

}

_ /

The effect of this command is as follows:

1. A 0x1000 byte hole, filled with the default fill character, is lcft at the
beginning of the section. Input section F1.0 (.text) is linked after this
hole.

2. The .text section of input file f2.0 begins at 0x100 bytes following the
end of f1.0 (.text).

3. The .text section of £3.0 is linked to start at the next full word boundary
following the .text section of f2.0 with respect to the beginning of
outsec.

For the purposes of allocating and aligning addresses within an output sec-
tion, 1d(1) treats the output section as if it began at address zero. As a result, if,
in the above example, outsec ultimately is linked to start at an odd address, then
the part of outsec built from f3.0 (.text) also starts at an odd address—even
though £3.0 (.text) is aligned to a full word boundary. This is prevented by
specifying an alignment factor for the entire output section.

outsec ALIGN(4) : {
It should be noted that the assembler, as, always pads the sections it gen-

erates to a full word length making explicit alignment specifications unneces-
sary. This also holds true for the compiler.

THE LINK EDITOR 12-15

Link Editor Command Language

Expressions that decrement . are illegal. For example, subtracting a value
from the location counter is not allowed since overwrites are not allowed. The
most common operators in expressions that assign a value to . are += and align.

Creating and Defining Symbols at Link-EdIit Time

The assignment instruction of 1d(1) can be used to give symbols a value that

is link-edit dependent. Typically, there are three types of assignments:
1. Use of . to adjust 1d(1)’s location counter during allocation.
2. Use of . to assign an allocation-dependent value to a symbol.

3. Assigning an allocation-independent value to a symbol.

Case 1) has already been discussed in the previous section.

Case 2) provides a means to assign addresses (known only after allocation) to
symbols. For example,

s

{

}

N

outecl: (...}

outsec2:

{
filel.o (sl)
82 start = . ;
file2.0 (82)
82 end = ., -1;

J

The symbol s2_start is defined to be the address of file2.0(s2), and s2_end is the
address of the last byte of file2.0(s2).

Consider the following example:

12-16 PROGRAMMER'S GUIDE

Link Editor Command Language

filel.o (.data)
mark = .;

. =4

file2.0 (.data)

In this example, the symbol mark is created and is equal to the address of
the first byte beyond the end of filel.o’s .data section. Four bytes are reserved

for a future run-time initialization of the symbol mark. The type of the symbol
is a long integer (32 bits).

Assignment instructions involving . must appear within SECTIONS
definitions since they are evaluated during allocation. Assignment instructions
that do not involve . can appear within SECTIONS definitions but typically do
not. Such instructions are evaluated after allocation is complete. Reassignment
of a defined symbol to a different address is dangerous. For example, if a sym-
bol within .data is defined, initialized, and referenced within a set of object files
being link-edited, the symbol table entry for that symbol is changed to reflect the
new, reassigned physical address. However, the associated initialized data is not
moved to the new address, and there may be references to the old address. The
1d(1) issues warning messages for each defined symbol that is being redefined
within an ifile. However, assignments of absolute values to new symbols are
safe because there are no references or initialized data associated with the sym-
bol.

Allocating a Sectlon Into Named Memory

It is possible to specify that a section be linked (somewhere) within a
specific named memory (as previously specified on a MEMORY directive).
(The > notation is borrowed from the UNIX system concept of redirected out-
put.) For example,

THE LINK EDITOR 12-17

Link Editor Command Language

meaml ; o=0x000000 1=0x10000
me2 (RW) ¢ o=0x020000 1=0x40000
mem3 (RW) ¢ o=0x070000 1=0x40000
mennl : o=0x120000 1=0x04000
}
SBECTIONS

outsecl: { fl.o(.data) } > meml
outsec2: { f2.o(.data) } > mem3

_ -
This directs 1d(1) to place outsecl anywhere within the memory area named
meml (i.e., somewhere within the address range 0x0-0xFFFF or

0x120000-0x123FFF). The outsec2 is to be placed somewhere in the address
range 0x70000-0xAFFFF.

Initlalized Sectlon Holes or .bss Sectlons

When holes are created within a section (as in the example in "Creating
Holes within Output Sections"), Id(1) normally puts out bytes of zero as fill. By
default, .bss sections are not initialized at all; that is, no initialized data is gen-
erated for any .bss section by the assembler nor supplied by the link editor, not
even zeros.

Initialization options can be used in a SECTIONS directive to set such holes
or output .bss sections to an arbitrary 2-byte pattern. Such initialization options
apply only to .bss sections or holes. As an example, an application might want
an uninitialized data table to be initialized to a constant value without recompil-
ing the .o file or a hole in the text area to be filled with a transfer to an error rou-
tine.

Either specific areas within an output section or the entire output section
may be specified as being initialized. However, since no text is generated for an
uninitialized .bss section, if part of such a section is initialized, then the entire
section is initialized. In other words, if a .bss section is to be combined with a
-text or .data section (both of which are initialized) or if part of an output .bss
section is to be initialized, then one of the following will hold:

12-18 PROGRAMMER'S GUIDE

Link Editor Command Language

1. Explicit initialization options must be used to initialize all .bss sections
in the output section.

2. 1d(1) will use the default fill value to initialize all .bss sections in the

output section.

Consider the following 1d(1) ifile:

/

SECTINS
{
secl:
{
fl.o
. = 0x200;
f2.0 (.text)
} = OXIEFF
sec2:
(
fl.o (.bes)
f2.0 (.bss) = 0x1234
}
sec3:
{
£3.0 (.bes)
)} = OXFFFF
secd: (fd.o (.bss))

k | j
In the example above, the 0x200 byte hole in section secl is filled with the
value O0xDFFF. In section sec2, f1.0(.bss) is initialized to the default fill value of
0x00, and £2.0(.bss) is initialized to 0x1234. All .bss sections within sec3 as

well as all holes are initialized to OxFFFF. Section secd is not initialized; that is,
no data is written to the object file for this section.

THE LINK EDITOR 12-19

Notes and Special Considerations

Changing the Entry Point

The UNIX system a.out optional header contains a field for the (primary)
entry point of the file. This field is set using one of the following rules (listed in
the order they are applied):

1. The value of the symbol specified with the —e option, if present, is used.
2. The value of the symbol __entry, if present, is used.

3. The value of the symbol _main, if present, is used.

4. The value zero is used.

Thus, an explicit entry point can be assigned to this a.out header field through
the —e option or by using an assignment instruction in an ifile of the form

_entry = expression;

If 1d(1) is called through cc(1), a startup routine is automatically linked in.
Then, when the program is executed, the routine exit(1) is called after the main
routine finishes to close file descriptors and do other cleanup. The user must
therefore be careful when calling 1d(1) directly or when changing the entry
point. The user must supply the startup routine or make sure that the program
always calls exit rather than falling through the end. Otherwise, the program
will dump core.

Use of Archive Libraries

Each member of an archive library (e.g., libc.a) is a complete object file.
Archive libraries are created with the ar(1) command from object files generated
by ccoras. An archive library is always processed using selective inclusion:
only those members that resolve existing undefined-symbol references are taken
from the library for link editing. Libraries can be placed both inside and outside
section definitions. In both cases, a member of a library is included for linking
whenever

12-20 PROGRAMMER'S GUIDE

Notes and Speclal Consideratlons

1. There exists a reference to a symbol defined in that member.

2. The reference is found by Id(1) prior to the actual scanning of the
library.

When a library member is included by searching the library inside a SEC-
TIONS directive, all input sections from the library member are included in the
output section being defined. When a library member is included by searching
the library outside of a SECTIONS directive, all input sections from the library
member are included into the output section with the same name. If necessary,
new output sections are defined to provide a place to put the input sections.
Note, however, that

1. Specific members of a library cannot be referenced explicitly in an ifile.

2. The default rules for the placement of members and sections cannot be
overridden when they apply to archive library members.

The -1 option is a shorthand notation for specifying an input file coming
from a predefined set of directories and having a predefined name. By conven-
tion, such files are archive libraries. However, they need not be so. Further-
more, archive libraries can be specified without using the -1 option by simply
giving the (full or relative) UNIX system file path.

The ordering of archive libraries is important since for a member to be
extracted from the library it must satisfy a reference that is known to be
unresolved at the time the library is searched. Archive libraries can be specified
more than once. They are searched every time they are encountered. Archive
files have a symbol table at the beginning of the archive. 1d(1) will cycle
through this symbol table until it has determined that it cannot resolve any more
references from that library.

Consider the following example:

1. The input files filel.o and file2.0 each contain a reference to the extemal
function FCN.

Input filel.o contains a reference to symbol ABC.
Input file2.0 contains a reference to symbol XYZ.
Library liba.a, member 0, contains a definition of XYZ.
Library libc.a, member 0, contains a definition of ABC.
Both libraries have a member 1 that defines FCN.

THE LINK EDITOR 12-21

Notes and Speclal Consideratlons

If the 1d(1) command were entered as
Id filel.o -la file2.0 ¢

then the FCN references are satisfied by liba.a, member 1, ABC is obtained
from libc.a, member 0, and XYZ remains undefined (because the library liba.a
is searched before file2.o is specified). If the Id(1) command were entered as

Id filel.o file2.0 -la -c

then the FCN references is satisfied by liba.a, member 1, ABC is obtained from
libc.a, member 0, and XYZ is obtained from liba.a, member 0. If the Id(1)
command were entered as

Id filel.o file2.0 -Ic -la

then the FCN references is satisfied by libc.a, member 1, ABC is obtained from
libc.a, member 0, and XYZ is obtained from liba.a, member 0.

The —u option is used to force the linking of library members when the link
edit run does not contain an actual external reference to the members. For exam-
ple,

Id —uroutl -la
creates an undefined symbol called routl in ld(1)’s global symbol table. If any
member of library liba.a defines this symbol, it (and perhaps other members as

well) is extracted. Without the —u option, there would have been no unresolved
references or undefined symbols to cause ld(1) to search the archive library.

Dealing With Holes in Physical Memory

When memory configurations are defined such that unconfigured areas exist
in the virtual memory, each application or user must assume the responsibility of
forming output sections that will fit into memory. For example, assume that
memory is configured as follows:

12-22 PROGRAMMER'’S GUIDE

Notes and Speclal Conslderations

MEMCRY

{
merml : o = 0x00000 1 = 0x02000
mer2 o = 0x40000 1 = 0x05000
meam3 ¢ o = 0x20000 1 = 0x10000

Let the files fl.0, f2.0, . . . fn.0 each contain three sections .text, .data, and
.bss, and suppose the combined .text section is 0x12000 bytes. There is no
configured area of memory in which this section can be placed. Appropriate
directives must be supplied to break up the .text output section so 1d(1) may do
allocation. For example,

{
txtl:
{
fl.o (.text)
f2.0 (.text)
f3.0 (.text)
}
txt2:
(
f4.0 (.text)
f5.0 (.text)
f6.0 (.text)
}
etc.
}

THE LINK EDITOR 12-23

Notes and Speclal Consideratlons

Allocation Algorithm

An output section is formed either as a result of a SECTIONS directive, by
combining input sections of the same name, or by combining .text and .init into
.text. An output section can have zero or more input sections comprising it.
After the composition of an output section is determined, it must then be allo-
cated into configured virtual memory. 1d(1) uses an algorithm that attempts to
minimize fragmentation of memory, and bence increases the possibility that a
link edit run will be able to allocate all output sections within the specified vir-
tual memory configuration. The algorithm proceeds as follows:

1. Any output sections for which explicit bonding addresses were specified
are allocated.

2. Any output sections to be included in a specific named memory are allo-
cated. In both this and the succeeding step, each output section is
placed into the first available space within the (named) memory with
any alignment taken into consideration.

3. Output sections not handled by one of the above steps are allocated.

If all memory is contiguous and configured (the default case), and no SEC-
TIONS directives are given, then output sections are allocated in the order they
appear to ld(1). Otherwise, output sections are allocated in the order they were
defined or made known to 1d(1) into the first available space they fit.

Incremental Link Editing

As previously mentioned, the output of Id(1) can be used as an input file to
subsequent 1d(1) runs providing that the relocation information is retained (-r
option). Large applications may find it desirable to partition their C programs
into subsystems, link each subsystem independently, and then link edit the entire
application. For example,

12-24 PROGRAMMER'S GUIDE

Notes and Speclal Conslderations
Step 1:

Id —r —o outfilel ifilel infilel.o

///////' /* ifilel */

SECTIONS
{

8sl:

{
fl.o
f2.0

fn.o

}

N

. Step 2:

Id —r —o outfile2 ifile2 infile2.0

//////”7 /* 1file2 */

SECTICNS
{
a8s2:
(
gl.o
g2.0
gn.o
}
_ -

Step 3:
Id —a —o final.out outfilel outfile2

THE LINK EDITOR 12-25

Notes and Speclal Conslderations

By judiciously forming subsystems, applications may achieve a form of incre-
mental link editing whereby it is necessary to relink only a portion of the total
link edit when a few files are recompiled.

To apply this technique, there are two simple rules

1. Intermediate link edits should contain only SECTIONS declarations and
be concerned only with the formation of output sections from input files
and input sections. No binding of output sections should be done in
these runs.

2. All allocation and memory directives, as well as any assignment state-
ments, are included only in the final 1d(1) call.

DSECT, COPY, NOLOAD, INFO, and OVERLAY
Sections

Sections may be given a type in a section definition as shown in the follow-
ing example:

-

namel 0x200000 (DSECT) : { filel.o }
name2 0x400000 (CCPY) : { file2.0)
name3 0x600000 (NCLQAD) : { file3.0 }
named (INFO) : { filed4.o }
name5 0x900000 (OVERLAY) : { file5.0 }

The DSECT option creates what is called a dummy section. A dummy sec-
tion has the following properties:

L. It does not participate in the memory allocation for output sections. As
a result, it takes up no memory and does not show up in the memory
map generated by Id(1).

12-26 PROGRAMMER'S GUIDE

Notes and Speclal Considerations

2. Itmay overlay other output sections and even unconfigured memory.
DSECTs may overlay other DSECTs.

3. 'The global symbols defined within the dummy section are relocated nor-
mally. That is, they appear in the output file’s symbol table with the
same value they would have had if the DSECT were actually loaded at
its virtual address. DSECT-defined symbols may be referenced by
other input sections. Undefined extemal symbols found within a
DSECT cause specified archive libraries to be searched and any
members which define such symbols are link edited normally (i.e., not
as a DSECT).

4. None of the section contents, relocation information, or line number
information associated with the section is written to the output file.

In the above example, none of the sections from filel.o are allocated, but all
symbols are relocated as though the sections were link edited at the specified
address. Other sections could refer to any of the global symbols and they are
resolved correctly,

A copy section created by the COPY option is similar to a dummy section.
The only difference between a copy section and a dummy section is that the con-
tents of a copy section and all associated information is written to the output file.

An INFO section is the same as a COPY section but its purpose is to carry
information about the object file whereas the COPY section may contain valid
text and data. INFO sections are usually used to contain file version
identification information,

A section with the type of NOLOAD differs in only one respect from a nor-
mal output section: its text and/or data is not written to the output file. A
NOLOAD section is allocated virtual space, appears in the memory map, etc.

An OVERLAY section is relocated and written to the output file. It is
different from a normal section in that it is not allocated and may overlay other
sections or unconfigured memory.

Output File Blocking

The BLOCK option (applied to any output section or GROUP directive) is
used to direct Id(1) to align a section at a specified byte offset in the output file.
It has no effect on the address at which the section is allocated nor on any part of
the link edit process. It is used purely to adjust the physical position of the sec-
tion in the output file.

THE LINK EDITOR 12-27

Notes and Speclal Conslderations

SECTIONS

.text BLOCK(0x200) : { }
.data ALIGN (0x20000) BLOCK(0x200) : { }
)

With this SECTIONS directive, 1d(1) assures that each section, .text and .data,
is physically written at a file offset, which is a multiple of 0x200 (e.g., at an
offset of 0, 0x200, 0x400, and so forth, in the file).

Nonrelocatable Input Files

If a file produced by Id(1) is intended to be used in a subsequent Id(1) run,
the first 1d(1) run should have the —r option set. This preserves relocation infor-
mation and permits the sections of the file to be relocated by the subscquent run.

If an input file to 1d(1) does not have relocation or symbol table information
(perhaps from the action of a strip(1) command, or from being link edited
without a —r option or with a —s option), the link edit run continues using the
nonrelocatable input file.

For such a link edit to be successful (i.e., to actually and correctly link edit
all input files, relocate all symbols, resolve unresolved references, etc.), two con-
ditions on the nonrelocatable input files must be met.

1. Eachinput file must have no unresolved external references.

2. Each input file must be bound to the exact same virtual address as it was
bound to in the 1d(1) run that created it.

If these two conditions are not met for all nonrelocatable input files, no error
NOTE messages are issued. Because of this fact, extreme care must be taken when
supplying such input files to Id(1).

12-28 PROGRAMMER'’S GUIDE

Syntax Diagram for Input Directives

Directives Expanded Directives
<ifile> {<cmd>}
<cmd> <memory>
<sections>
<assignment>
<filename>
<flags>
<memory> MEMORY (<memory_spec>

<memory_spec>

<attributes>
<origin_spec>
<lenth_spec>
<origin>
<length>

<name> [<attributes>] :

({RIWIXII})
<origin> = <long>
<length> = <long>
ORIGIN I ol org | origin
LENGTH |11 len | length

Figure 12-2: Syntax Diagram for Input Directives (Sheet 1 of 4)

NOTB this diagram.

Two punctuation symbols, square brackets and curly braces, do double duty in

Ll Where the actual symbols, [] and [) are used, they are part of the syntax and
must be present when the directive is specified.

Where you see the symbols [and] (larger and in bold), it means the material

enclosed is optional.

Where you see the symbols { and } (larger and in bold), it means multiple
occurrences of the material enclosed are permitted.

THE LINK EDITOR 12-29

Syntax Dlagram for Input Directives

Directives

Expanded Directives

<sections>

<sec_or_group>
<group>

<section_list>

<section>

<group_options>
<sec_options>

<addr>
<alignoption>
<align>
<block_option>
<block>
<type_option>

<fill>
<mem_spec>

<statement>

SECTIONS { {<sec_or__group>} }

<section> | <group> | <library>
GROUP <group_options> : |

<section> { [,] <section> }

<name> <sec_options> :

[<addr>]l [<align_option>] [<block_option>]

[<a_ddr>] | [<a1ign_opu'on>]

<long> | <bind>(<expr>)
<align> (<expr>)

ALIGN | align

<block> (<long>)

BLOCK | block

(DSECT) | (NOLOAD) | (COPY)

= <long>

> <name>

> <attributes>

<filename>

<filename> (<name_list>) | [COMMON]
* (<name_list>) | [COMMON]
<assignment>

<library>

null

Figure 12-2: Syntax Diagram for Input Directives (Sheet 2 of 4)

PROGRAMMER'S GUIDE

Directives Expanded Directives
<name_list> <section_name> [,] { <section_name> }
<library> —l<name>
<bind> BIND | bind
<assignment> | <Iside> <assign_op> <expr> <end>
<side> <name> | .
<assign_op> =l4=l-=|*=|/=
<end> N
<expr> <expr> <binary_op> <expr>

<term>
<binary_op> *1/1%
+1-
>> <<
=ll=I>l<l<=I>=
&
|
&&
I
<term> <long>
<pame>
<align> (<term>)
(<expr>)
<unary_op> <term>
<phy> (<Iside>)
<sizeof>(<sectionname>)
<next>(<long>)
<addr>(<sectionname>)
<unary_op> -
<phy> PHY | phy
<sizeof> SIZEOF | sizeof

Figure 12-2: Syntax Diagram for Input Directives (Sheet 3 of 4)

Syntax Dlagram for Input Directives

THE LINK EDITOR

12-31

Syntax Dlagram for Input Directives

Directives

Expanded Directives

<next>
<addr>
<flags>

<name>
<long>
<wht_space>
<filename>

<sectionname>

<path_name>

NEXT | next

ADDR | addr
—e<wht_space><name>
—f<wht_space><long>
-h<wht_space><long>
—l<name>

-m
—o<wht_space><filename>
b §

-

-t
—u<wht_space><name>
-z

-H

~L<path_name>

-M

-N

-S

-V
—VS<wht_space><long>
-a

| =

Any valid symbol name

Any valid long integer constant
Blanks, tabs, and newlines

Any valid UNIX operating system

Any valid section name,

Any valid UNIX operating system

Figure 12-2: Syntax Diagram for Input Directives (Sheet 4 of 4)

12-32 PROGRAMMER'S GUIDE

Table of Contents

Chapter 13: make

Introduction 13-1

Basic Features 13-2

Description Files and Substitutions 137
Recursive Makefiles 13-11

Command Usage 13-17

Sliggestions and Warnings 13-20

Internal Rules 13-21

TABLE OF CONTENTS

Introduction

The trend toward increased modularity of programs means that a project
may have to cope with a large assortment of individual files. There may also be
a wide range of generation procedures needed to turn the assortment of indivi-
dual files into the final executable product.

make(1) provides a method for maintaining up-to-date versions of programs
that consist of a number of files that may be generated in a variety of ways.

An individual programmer can easily forget
® file-to-file dependencies
® files that were modified and the impact that it has on other files

® the exact sequence of operations needed to generate a new version of the
program

In a description file, make keeps track of the commands that create files and
the relationship between files. Whenever a change is made in any of the files
that make up a program, the make command creates the finished program by
recompiling only those portions directly or indirectly affected by the change.

" The basic operation of make is to
® find the target in the description file

® ensure that all the files on which the target depends, the files needed to
generate the target, exist and are up to date

® create the target file if any of the generators have been modified more
recently than the target

The description file that holds the information on interfile dependencies and
command sequences is convéntionally called makefile, Makefile, or
s.[mM]akefile. If this naming convention is followed, the simple command
make is usually sufficient to regenerate the target regardless of the number files
edited since the last make. Inmost cases, the description file is not difficult to
write and changes infrequently. Even if only a single file has been edited, rather
than typing all the commands to regenerate the target, typing the make com-
mand ensures the regeneration is done in the prescribed way.

make 13-1

Basic Features

The basic operation of make is to update a target file by ensuring that all of
the files on which the target file depends exist and are up to date. The target file
is regenerated if it has not been modified since the dependents were modified.
The make program searches the graph of dependencies. The operation of make
depends on its ability to find the date and time that a file was last modified.

The make program operates using three sources of information:

® auser-supplied description file

¢ filenames and last-modified times from the file system

® built-in rules to bridge some of the gaps

To illustrate, consider a simple example in which a program named prog is
made by compiling and loading three C language files x.c, y.c, and z.c with the
math library. By convention, the output of the C language compilations will be
found in files named x.o0, y.o0, and z.0. Assume that the files x.c and y.c share

some declarations in a file named defs.h, but that z.c does not. That is, x.c and
y.c have the line

#include "defs.h"

The following specification describes the relationships and operations:

prog : x.0 y.o z.0
cc x.0 y.0o z.0 -lm -o prog

X.0 y.o : defs.h
If this information were stored in a file named makefile, the command
make

would perform the operations needed to regenerate prog after any changes had
been made to any of the four source files x.c, y.c, z.c, or defs.h. In the example
above, the first line states that prog depends on three .o files. Once these object
files are current, the second line describes how to load them to create prog. The
third line states that x.0 and y.o depend on the file defs.h. From the file system,
make discovers that there are three .c files corresponding to the needed .o files
and uses built-in rules on how to generate an object from a C source file (i.e.,
issue a cc —c command).

13-2 PROGRAMMER'S GUIDE

Baslc Features

If make did not have the ability to determine automatically what needs to be
done, the following longer description file would be necessary:

prog : x.0 y.o0o z.0
cc x.0 y.0o z.0 -lm -0 prog
x.0 ¢ x.c defs.h
cc —€ x.c
y.0 ! y.c defs.h
cc -¢ y.c
Z.0 ! z.C
cc ¢ z.c

If none of the source or object files have changed since the last time prog
was made, and all of the files are current, the command make announces this
fact and stops. If, however, the defs.h file has been edited, x.c and y.c (but not
z.c) are recompiled; and then prog is created from the new x.0 and y.o files, and
the existing z.0 file. If only the file y.c bad changed, only it is recompiled; but it
is still necessary to reload prog. If no target name is given on the make com-
mand line, the first target mentioned in the description is created; otherwise, the
specified targets are made. The command

make x.0
would regenerate x.0 if x.c or defs.h had changed.

A method often useful to programmers is to include rules with mnemonic
names and commands that do not actually produce a file with that name. These
entries can take advantage of make’s ability to generate files and substitute mac-
ros (for information about macros, see "Description Files and Substitutions”
below.) Thus, an entry "save" might be included to copy a certain set of files, or
an entry "clean" might be used to throw away unneeded intermediate files.

If a file exists after such commands are executed, the file’s time of last
modification is used in further decisions. If the file does not exist after the com-
mands are executed, the current time is used in making further decisions.

You can maintain a zero-length file purely to keep track of the time at which
certain actions were performed. This technique is useful for maintaining remote
archives and listings.

A simple macro mechanism for substitution in dependency lines and com-
mand strings is used by make. Macros can either be defined by command-line
arguments or included in the description file. In either case, a macro consists of
a name followed by an equals sign followed by what the macro stands for. A
macro is invoked by preceding the name by a dollar sign. Macro names longer
than one character must be parenthesized.

make 13-3

Baslic Features

The following are valid macro invocations:

$ (CFLAGS)
$2

$ (xy)

$2Z

$(2)

The last two are equivalent.

$*, $@, $?, and $< are four special macros that change values during the
execution of the command. (These four macros are described later in this
chapter under "Description Files and Substitutions.") The following fragment
shows assignment and use of some macros:

OBJECTS = x.0 y.0 z.0
LIBES = —Im
prog: $ (OBJECTS)
cc $(OBJECTS) $(LIBES) -o prog

The command
make LIBES="-ll dm"

loads the three objects with both the lex (-1l) and the math (-lm) libraries,
because macro definitions on the command line override definitions in the
description file. (In UNIX system commands, arguments with embedded blanks
must be quoted.)

As an example of the use of make, a description file that might be used to
maintain the make command itself is given. The code for make is spread over a
number of C language source files and has a yacc grammar. The description file
contains the following:

13-4 PROGRAMMER 'S GUIDE

Baslc Features

Description file for the make command

FILES = Makefile defs.h main.c doname.c miac.c
files.c dosys.c gram.y

OBJECTS = main.o doname.o misc.o files.o

dosys.o gram.o

LIBES= -11d

LINT = lint -p

CFLAGS = -O

ILP = /usr/bin/lp

make: $(CBJECTS)
3(CC) $(CFLAGS) $(OBJECTS) $(LIBES) -o make
@size make

3 (CBJECTS) : defs.h
clearup:

-m *.0 gram.c
-du

install:
Raize make /ust/bin/nakg
cp make /usr/bin/make && rm make

lint : dosys.c donams.c files.c main.c misc.c gram.c
$ (LINT) dosys.c doname.c files.c main.c misc.c \
gram.c
§ print files that are out-of-date
with respect to "primt" file.

print: $(FIIES)
pr $7 | $(p)
touch print

The make program prints out each command before issuing it.

make 13-5

Baslic Features

The following output results from typing the command make in a directory
containing only the source and description files:

cc -0 -c gram.c

cc main.o doname.o misc.o files.o dosys.o
gram.o -1lld -o make

13188 + 3348 + 3044 = 19580

The string of digits results from the size make command. The printing of the
command line itself was suppressed by an at sign, @, in the description file.

13-6 PROGRAMMER'S GUIDE

Description Files and Substitutions

The following section will explain the customary elements of the descrip-
tion file.

Comments

The comment convention is that a sharp, #, and all characters on the same
line after a sharp are ignored. Blaok lines and lines beginning with a sharp are
totally ignored.

Continuation Lines

If a noncomment line is too long, the line can be continued by using a
backslash. If the last character of a line is a backslash, then the backslash, the
new line, and all following blanks and tabs are replaced by a single blank.

Macro Definitions

A macro definition is an identifier followed by an equal sign. The identifier
must not be preceded by a colon or a tab. The name (string of letters and digits)
to the left of the equal sign (trailing blanks and tabs are stripped) is assigned the
string of characters following the equal sign (leading blanks and tabs are
stripped). The following are valid macro definitions:

2 = xyz
abc = -11 -ly -lm
LIBES =

The last definition assigns LIBES the null string. A macro that is never expli-
citly defined has the null string as its value. Remember, however, that some
macros are explicitly defined in make’s own rules. (See Figure 13-2 at the end
of the chapter.)

make 13-7

Description Files and Substitutions

General Form

The general form of an entry in a description file is

targetl [target2 ...] :[:] [dependentl ...] [; cammands] (# ...]
[\t camands] [# ...]

Items inside brackets may be omitted and targets and dependents are strings
of letters, digits, periods, and slashes. Shell metacharacters such as * and ? are
expanded when the line is evaluated. Commands may appear either after a semi-
colon on a dependency line or on lines beginning with a tab immediately follow-
ing a dependency line. A command is any string of characters not including a
sharp, #, except when the sharp is in quotes.

Dependency Information

A dependency line may have either a single or a double colon. A target
name may appear on more than one dependency line, but all of those lines must
be of the same (single or double colon) type. For the more common
single-colon case, a command sequence may be associated with at most one
dependency line. If the target is out of date with any of the dependents on any of
the lines and a command sequence is specified (even a null one following a
semicolon or tab), it is executed; otherwise, a default rule may be invoked. In
the double-colon case, a command sequence may be associated with more than
one dependency line. If the target is out of date with any of the files on a partic-
ular line, the associated commands are executed. A built-in rule may also be
executed. The double colon form is particularly useful in updating archive-type
files, where the target is the archive library itself. (An example is included in the
"Archive Libraries" section later in this chapter.)

Executable Commands

If a target must be created, the sequence of commands is executed. Nor-
mally, each command line is printed and then passed to a separate invocation of
the shell after substituting for macros. The printing is suppressed in the silent
mode (s option of the make command) or if the command line in the descrip-
tion file begins with an @ sign. make normally stops if any command signals
an error by returning a nonzero error code. Errors are ignored if the —i flag has
been specified on the make command line, if the fake target name .IGNORE
appears in the description file, or if the command string in the description file

13-8 PROGRAMMER'S GUIDE

Descriptlon Files and Substitutions

begins with a hyphen. If a program is known to retum a meaningless status, a
hyphen in front of the command that invokes it is appropriate. Because each
command line is passed to a separate invocation of the shell, care must be taken
with certain commands (e.g., cd and shell control commands) that have meaning
only within a single shell process. These results are forgotien before the next
line is executed.

Before issuing any command, certain interally maintained macros are set.
The $@ macro is set to the full target name of the current target. The $@ macro
is evaluated only for explicitly named dependencies. The $? macro is set to the
string of names that were found to be younger than the target. The $? macro is
evaluated when explicit rules from the makefile are evaluated. If the command
was generated by an implicit rule, the $< macro is the name of the related file
that caused the action; and the $* macro is the prefix shared by the current and
the dependent filenames. If a file must be made but there are no explicit com-
mands or relevant built-in rules, the commands associated with the name
DEFAULT are used. If there is no such name, make prints a message and stops.

In addition, a description file may also use the following related macros:

$(@D), $(@F), $(+D), $(+F), $(<D), and $(<F) (see below).

Extensions of $+, $@, and $<

The internally generated macros $+, $@, and $< are useful generic terms for
current targets and out-of-date relatives. To this list has been added the follow-
ing related macros: $(@D), $(@F), $(+*D), $(+F), $(<D), and $(<F). The D
refers to the directory part of the single character macro. The F refers to the
filename part of the single character macro. These additions are useful when
building hierarchical makefiles. They allow access to directory names for pur-
poses of using the cd command of the shell. Thus, a command can be

cd $(<D); $(MAKE) $(<F)

Output Translations

Macros in shell commands are translated when evaluated. The form is as
follows:

$ (macro: stringl=string2)

The meaning of $(macro) is evaluated. For each appearance of stringl in the
evaluated macro, string2 is substituted. The meaning of finding stringl in
$(macro) is that the evaluated $(macro) is considered as a series of strings each
delimited by white space (blanks or tabs). Thus, the occurrence of stringl in

make 139

Description Flles and Substitutions

$(macro) means that a regular expression of the following form has been found:

. #<stringl>[TAB | BLANK]

This particular form was chosen because make usually concems itself with
suffixes. The usefulness of this type of translation occurs when maintaining
archive libraries. Now, all that is necessary is to accumulate the out-of-date
members and write a shell script, which can handle all the C language programs
(i.e., those files ending in .c). Thus, the following fragment optimizes the execu-
tions of make for maintaining an archive library:

$(LIB): $(LIB) (a.o) $(LIB) (b.o) $(LIB) (c.o)
$(CC) -c $(CFLAGS) $(?:.0=.c)
$(AR) $(ARFLAGS) $(LIB) $?

m $?

A dependency of the preceding form is necessary for each of the different
types of source files (suffixes) that define the archive library. These translations
are added in an effort to make more general use of the wealth of information that
make generates.

13-10 PROGRAMMER'S GUIDE

Recursive Makefiles

Another feature of make concemns the environment and recursive invoca-
tions. If the sequence $(MAKE) appears anywhere in a shell command line, the
line is executed even if the —n flag is set. Since the —n flag is exported across
invocations of make (through the MAKEFLAGS variable), the only thing that is
executed is the make command itself. This feature is useful when a hierarchy of
makefile(s) describes a set of software subsystems. For testing purposes, make
-n ... can be executed and everything that would have been done will be printed
including output from lower level invocations of make.

Suffixes and Transformation Rules

make uses an internal table of rules to learn how to transform a file with one
suffix into a file with another suffix. If the —r flag is used on the make command
line, the internal table is not used.

The list of suffixes is actually the dependency list for the name .SUFFIXES.
make searches for a file with any of the suffixes on the list. If it finds one, make
transforms it into a file with another suffix. The transformation rule names are
the concatenation of the before and after suffixes. The name of the rule to
transform a .r file to a .o file is thus .r.o. If the rule is present and no explicit
command sequence has been given in the user’s description files, the command
sequence for the rule .r.o is used. If a command is generated by using one of
these suffixing rules, the macro $* is given the value of the stem (everything but
the suffix) of the name of the file to be made; and the macro $< is the full name
of the dependent that caused the action.

The order of the suffix list is significant since the list is scanned from left to
right. The first name formed that has both a file and a rule associated with it is
used. If new names are to be appended, the user can add an entry for .SUF-
FIXES in the description file. The dependents are added to the usual list. A
SUFFIXES line without any dependents deletes the current list. It is necessary
to clear the current list if the order of names is to be changed.

make 13-11

Recursive Makefiles

Implicit Rules

make uses a table of suffixes and a set of transformation rules to supply
default dependency information and implied commands. The default suffix list
is as follows:

.0 Object file

.c Csource file

.c~ SCCS C source file

.f FORTRAN source file

.f~ SCCS FORTRAN source file
s Assembler source file

.8~ SCCS Assembler source file
Yy yacc source grammar

.y~ SCCS yacc source grammar
I lex source grammar

Jd~ SCCS ex source grammar
.h Header file

.h~ SCCS header file

.sh Shell file

.sh~ SCCS shell file

Figure 13-1 summarizes the default transformation paths. If there are two paths
connecting a pair of suffixes, the longer one is used only if the intermediate file
exists or is named in the description.

13-12 PROGRAMMER'S GUIDE

Recursive Makefiles

If the file x.0 is needed and an x.c is found in the description or directory,
the x.o file would be compiled. If there is also an x.1, that source file would be
run through lex before compiling the result. However, if there is no x.c but there
is an x.l, make would discard the intermediate C language file and use the direct
link as shown in Figure 13-1.

It is possible to change the names of some of the compilers used in the
default or the flag arguments with which they are invoked by knowing the macro
names used. The compiler names are the macros AS, CC, F77, YACC, and
LEX. The command

make CC=newcc
Figure 13-1: Summary of Default Transformation Path

will cause the newce command to be used instead of the usual C language com-
piler. The macros ASFLAGS, CFLAGS, F77FLAGS, YFLAGS, and LFLAGS
may be set to cause these commands to be issued with optional flags. Thus

make "CFLAGS=-g"

causes the cc command to include debugging information.

Archive Libraries

The make program has an interface to archive libraries. A user may name a
member of a library in the following manner:

make 13-13

Recursive Makefiles

projlib (object.o)
or
projlib ((entrypt))

where the second method actually refers to an entry point of an object file within
the library. (make looks through the library, locates the entry point, and
translates it to the correct object filename.)

To use this procedure to maintain an archive library, the following type of
makefile is required:

projlib:: projlib(pfilel.o)
$(CC) — -0 pfilel.c
$(AR) $ (ARFLAGS) projlib pfilel.o
m pfilel.o

projlib:: projlib(pfile2.o)
$(CC) —c -0 pfile2.c
$(AR) $ (ARFLAGS) projlib pfile2.o
m pfile2.o

... and so on for each object ...

This is tedious and error prone. Obviously, the command sequences for
adding a C language file to a library are the same for each invocation; the
filename being the only difference each time. (This is true in most cases.)

The make command also gives the user access to a rule for building
libraries. The handle for the rule is the .a suffix. Thus, a .c.a rule is the rule for
compiling a C language source file, adding it *o the library, and removing the .0
cadaver. Similarly, the .y.a, the .s.a, and the .La rules rebuild yacc, assembler,
and lex files, respectively. The archive rules defined intemally are .c.a, .c".a,
[f.a, f~.a, and .s~.a. (The tilde, ~, syntax will be described shortly.) The user
may define other needed rules in the description file.

The above two-member library is then maintained with the following
shorter makefile:

projlib: projlib(pfilel.o) projlib(pfile2.o)
Qecho projlib up—to—date.

13-14 PROGRAMMER'S GUIDE

Recursive Makefiles

The internal rules are already defined to complete the preceding library mainte-
nance. The actual .c.a rule is as follows:

.c.a:
$(CC) -c $(CFLAGS) $<
$(AR) $(ARFLAGS) $@ $*.0
m -f£ $*.0

Thus, the $@ macro is the .a target (projlib); the $< and $* macros are set to the
out-of-date C language file; and the filename minus the suffix, respectively
(pfilel.c and pfilel). The $< macro (in the preceding rule) could have been
changed to $*.c.

It might be useful to go into some detail about exactly what make does
when it sees the construction
projlib: projlib(pfilel.o)
@echo projlib up—to—date

Assume the object in the library is out of date with respect to pfilel.c. Also,
there is no pfilel.o file.

1. make projlib.

2. Before makeing projlib, check each dependent of projlib.

3. projlib(pfilel.o) is a dependent of projlib and needs to be generated.
4

. Before generating projlib(pfilel.0), check each dependent of
projlib(pfilel.0). (There are none.)

5. Use internal rules to try to create projlib(pfilel.o). (There is no explicit
rule.) Note that projlib(pfilel.0) has a parenthesis in the name to iden-
tify the target suffix as .a. This is the key. There is no explicit .a at the
end of the projlib library name. The parenthesis implies the .a suffix.
In this sense, the .a is hard-wired into make.

6. Break the name projlib(pfilel.0) up into projlib and pfilel.o. Define
two macros, $@ (=projlib) and $* (=pfilel).

7. Look for a rule X.a and a file $*.X. The first .X (in the .SUFFIXES list)
which fulfills these conditions is .c so the rule is .c.a, and the file is
pfilel.c. Set $< to be pfilel.c and execute the rule. In fact, make must
then compile pfilel.c.

8. The library bas been updated. Execute the command associated with the
projlib: dependency; namely

@echo projlib up—to—date

make 13-15

Recursive Makefiles

It should be noted that to let pfilel.o have dependencies, the following syn-
tax is required:

projlib(pfilel.o): $ (INCDIR) /stdio.h pfilel.c

There is also a macro for referencing the archive member name when this form
is used. The $% macro is evaluated each time $@ is evaluated. If there is no
current archive member, $% is null. If an archive member exists, then $%
evaluates to the expression between the parenthesis.

13-16 PROGRAMMER'S GUIDE

Command Usage

The make command description is found under make(1).

The make Command

The make command takes macro definitions, options, description filenames,
and target filenames as arguments in the form:

make [options] [macro definitions 1 [targets |
The following summary of command operations explains how these argu-
ments are interpreted.

First, all macro definition arguments (arguments with embedded equal
signs) are analyzed and the assignments made. Command-line macros override
corresponding definitions found in the description files. Next, the option argu-
ments are examined. The permissible options are as follows:

~i Ignore error codes returned by invoked commands. This mode is entered
if the fake target name .IGNORE appears in the description file.

-8 Silent mode. Do not print command lines before executing. This mode
is also entered if the fake target name .SILENT appears in the descrip-
tion file.

~r Do not use the built-in rules.

-n No execute mode. Print commands, but do not execute them. Even lines
beginning with an @ sign are printed.

~t Touch the target files (causing them to be up to date) rather than issue the
usual commands.

—q Question. The make command retumns a zero or nonzero status code
depending on whether the target file is or is not up to date.

-p Print out the complete set of macro definitions and target descriptions.

—k Abandon work on the current entry if something goes wrong, but con-
tinue on other branches that do not depend on the current entry.

make 13-17

Command Usage

—e Environment variables override assignments within makefiles.

—f Description filename. The next argument is assumed to be the name of a
description file. A filename of — denotes the standard input. If there are
no ~f arguments, the file named makefile or Makefile or s.[mM]akefile
in the current directory is read. The contents of the description files
override the built-in rules if they are present.

The following two arguments are evaluated in the same manner as flags:

.DEFAULT If a file must be made but there are no explicit commands or
relevant built-in rules, the commands associated with the
name .DEFAULT are used if it exists.

.PRECIOUS Dependents on this target are not removed when quit or
interrupt is pressed.

Finally, the remaining arguments are assumed to be the names of targets to
be made and the arguments are done in left-to-right order. If there are no such
arguments, the first name in the description file that does not begin with a period
is made.

Environment Variables

Environment variables are read and added to the macro definitions each
time make executes. Precedence is a prime consideration in doing this properly.
The following describes make’s interaction with the environment. A macro,
MAKEFLAGS, is maintained by make. The macro is defined as the collection
of all input flag arguments into a string (without minus signs). The macro is
exported and thus accessible to further invocations of make. Command line
flags and assignments in the makefile update MAKEFLAGS. Thus, to describe
how the environment interacts with make, the MAKEFLAGS macro (environ-
ment variable) must be considered.

When executed, make assigns macro definitions in the following order:

1. Read the MAKEFLAGS environment variable. If it is not present or
null, the intemal make variable MAKEFLAGS is set to the null string.
Otherwise, each letter in MAKEFLAGS is assumed to be an input flag
argument and is processed as such. (The only exceptions are the —f, —p,
and -r flags.)

2. Read the intemal list of macro definitions.

13-18 PROGRAMMER 'S GUIDE

Command Usage

3. Read the environment. The environment variables are trcated as macro

definitions and marked as exported (in the shell sense).

4. Read the makefile(s). The assignments in the makefile(s) overrides the

environment. This order is chosen so that when a makefile is read and
executed, you know what to expect. That is, you get what is scen
unless the —e flag is used. The —e is the line flag, which tells make to
have the environment override the makefile assignments. Thus, if
make —e ... is typed, the variables in the environment override the
definitions in the makefile. Also MAKEFLAGS override the environ-
ment if assigned. This is useful for further invocations of make from
the current makefile.

It may be clearer to list the precedence of assignments. Thus, in order from
least binding to most binding, the precedence of assignments is as follows:

1.
2.
3.
4.

internal definitions
environment
makefile(s)

command line

The —e flag has the effect of rearranging the order to:

1
2.
3

4.

internal definitions
makefile(s)
environment

command line

This order is general enough to allow a programmer to define a makefile or set
of makefiles whose parameters are dynamically definable.

make 13-19

Suggestions and Warnings

The most common difficulties arise from make’s specific meaning of
dependency. If file x.c has a

#include "defs.h"

line, then the object file x.0 depends on defs.h; the source file x.c does not. If
defs.h is changed, nothing is done to the file x.c while file x.0 must be recreated.

To discover what make would do, the —n option is very useful. The com-
mand

make -n

orders make to print out the commands that make would issue without actually
taking the time to execute them. If a change to a file is absolutely certain to be
mild in character (e.g., adding a comment to an include file), the -t (touch)
option can save a lot of time. Instead of issuing a large number of superfluous
recompilations, make updates the modification times on the affected file. Thus,
the command

make —ts

(touch silently) causes the relevant files to appear up to date. Obvious care is
necessary because this mode of operation subverts the intention of make and
destroys all memory of the previous relationships.

13-20 PROGRAMMER'S GUIDE

Internal Rules

The standard set of internal rules used by make are reproduced below.

F11=£17
FTIFLAGS=

GET=get

LEX=1ax

/

Figure 13-2: make Internal Rules (Sheet I of 5)

make 13-21

Internal Rules

3 SINGLE SUFFIX RULES

$(CC) $(CFLAGS) §(LDFLAGS) $< —o $@

3(ET) $(FLAGS) $<
$(CC) $(CFLAGS) $§(LDFLAGS) $*.c -o $*

-m ~-f $*.c
£
* $(F77) $(FTTFLAGS) $ (LDFLAGS) $< —o $8
£
$(GET) $(FLIGS) $<
$(FT1) $(FTTFLAGS) $ (LDFLAGS) 3$< —o $*
-m -f $*.f
.sh:
cp $< $@; ctmod 0777 $@
.sh™

$(GET) $(GFLAGS) $<
cp $*.sh $*; chrod 0777 $R
-m -f $*.sh

N

Figure 13-2: make Internal Rules (Sheet 2 of 5)

13-22 PROGRAMMER'S GUIDE

Internal Rules

DOUBLE SUFFIX RULES

< .c £7.f 87.8 .sh".sh .y .y .17.1 .h7.h:
$(GET) $(FLAGS) $<

$(CC) —c $(CFLAGS) $<
$(AR) $ (ARFLAGS) $R $*.0
m ~-f $*.0

$(GET) $(FLAGS) $<
$(XC) — $(TFLAGY) $*.c
$(AR) $ (ARFLAGS) $@ $*.0

m ~-f $*, [oo]
$(cC) 3(CFLAGS) — <

$(ET) $(FLASI) $<
3(cC) $(FLAGS) —¢ $*.c
-m ~f $*.c

$(F77) $(FTTFLAGS) $(LLFLAGS) -c $*.f
$(AR) $(ARFLAGS) $@ $*.0
-m ~-f $*.0

$(GET) $(FLAGI) $<

$(E77) $(FTIFLAGS) $(LIFLAGS) —c $*.f
$(AR) $(ARFLAGS) 9@ $*.0

-m -£ $*.[fo]

Figure 13-2: make Intemal Rules (Sheet 3 of 5)

make 13-23

Internal Rules

.

N

$(F77) $(FTTFLAGS) $ (LDFLAGS) —c $*.f

$(GET) §(FLIGS)

$(F77) $(FTTFLAGS) $ (LDFLAGS) -c $*.f

-m -f §$*.f

$(GET) $(GFLAGS)
$(AS) $(ASFLAGS)
$(AR) §(RREFLAGS)
-m ~-f §*.[s0]

$(AS) $(ASFLAGS)

$(GET) $(FLIGS)
$(AS) $(ASFLAGS)
-m -f $*.8

$(LEX) § (LFLAGS)
v lex.yy.c $@

$(GET) $(GFLAGS)
$(LEX) $(LFLAGS)
v lex.yy.c $@

$<

$<
-0 §*.0 §*.8

$8 $*.0

—o $8 $<

$<

-0 §*.0 §*.8

$<

$<
$*.1

Figure 13-2: make Internal Rules (Sheet 4 of 5)

13-24

PROGRAMMER'S GUIDE

$(LEX) $(LFLAGS) $<

$(cC) $(CFLAGS) — lex.yy.c
m lex.yy.c

mv lex.yy.o $@

-mm -f $*.1

$(GET) $(&FLAGS) $<

$(LEX) $(LFLAGS) $*.1
$(C) $(FLAGS) —¢ lex.yy.c
m -f lex.yy.c $§*.1

mv lex.yy.o $*.o

.y.c:

$ (XAOC) 3 (YFLAGS) $<
mv y.tab.c 3@

$(ET) $(FLAGS) $<
$ (YACC) $ (YFLAGS) $*.y
mv y.tab.c $*.c

-m ~f $*.y

.y.o:
$ (XACC) § (YFLAGS) $<
$(cC) $(CFLAGS) —¢ y.tab.c
m y.tab.c
mv y.tab.o $@

.y .o

$(GET) $(FLAGS) $<

$ (IACC) § (YFLAGS) $*.y
3(C) $(F1LAGS) —c y.tab.c
m ~-f y.tab.c $*.y

mv y.tab.o $*.0

which are very similar to the C rules.

Instead of .c we have .p, CC is PC, and (FLAGS is PFLAGS.

Figure 13-2: make Intemal Rules (Sheet 5 of 5)

Internal Rules

CADMUS added to the above rules a set of rules for pascal programs,

make

13-25

Table of Contents

Chapter 14: sdb/adb—The Debuggers

Introduction 14-1
Using sdb 14-2
Using adb 14-16

TABLE OF CONTENTS

Introduction

This chapter describes the symbolic debugger, sdb(1), as implemented for C
language and Fortran 77 programs on the UNIX operating system and the
debugger adb.

The sdb program is useful both for examining core images of aborted programs
and for providing an environment in which execution of a program can be moni-
tored and controlled.

The sdb program allows interaction with a debugged program at the source
language level. When debugging a core image from an aborted program, sdb
reports which line in the source program caused the error and allows all vari-
ables to be accessed symbolically and to be displayed in the correct format.

When executing, breakpoints may be placed at selected statements or the
program may be single stepped on a line-by-line basis. To facilitate
specification of lines in the program without a source listing, sdb provides a
mechanism for examining the source text. Procedures may be called directly
from the debugger. This feature is useful both for testing individual procedures
and for calling user-provided routines, which provide formatted printouts of
structured data.

The debugger adb also provides capabilities to examine "core” and other
program files in a variety of formats, to run programs with embedded break-
points, and to patch files. With the availability of the source oriented debugger
sdb, adb has however become mostly obsolescent for the normal UNIX pro-
grammer. But in some circumstances, for example to look at binary files, to
patch files or programs or to look at stripped programs, it can still be useful.
This tutorial explains the various formatting options, techniques for debugging C
programs, examples of printing file system information and patching.

sdb—DEBUGGERS (sdb/adb) 14-1

Using sdb

In order to use sdb to its full capabilities, it is necessary to compile the
source program with the —g option. This causes the compiler to generate addi-
tional information about the variables and statements of the compiled program.
When the —g option has been specified, sdb can be used to obtain a trace of the
called functions at the time of the abort and interactively display the values of
variables.

A typical sequence of shell commands for debugging a core image is

CC~—g prgm.c -0 prgm
prgm

Bus error — core dumped
sdb prgm

main:25: x[i] = 0;

*

The program prgm was compiled with the -g option and then executed. An
error occurred, which caused a core dump. The sdb program is then invoked to
examine the core dump to determine the cause of the error. It reports that the
bus error occurred in function main at line 25 (line numbers are always relative
to the beginning of the file) and outputs the source text of the offending line.

The sdb program then prompts the user with an *, which shows that it is waiting
for a command.

It is useful to know that sdb has a notion of current function and current
line. In this example, they are initially set to main and 25, respectively.

Here sdb was called with one argument, prgm. In general, it takes three
arguments on the command line. The first is the name of the executable file that
is to be debugged, it defaults to a.out when not specified. The second is the
name of the core file, defaulting to core; and the third is the list of the directories
(separated by colons) containing the source of the program being debugged. The
default is the current working directory. In the example, the second and third
arguments defaulted to the correct values, so only the first was specified.

If the error occurred in a function that was not compiled with the —g option,
sdb prints the function name and the address at which the error occurred. The
current line and function are set to the first executable line in main. If main was
not compiled with the —g option, sdb will print an error message, but debugging
can continue for those routines that were compiled with the ~g option.

14-2 PROGRAMMER'S GUIDE

Usling sdb

Figure 15-1 at the end of the chapter, shows a more extensive example of
sdb use.

Printing a Stack Trace

It is often useful to obtain a listing of the function calls that led to the error.
This is obtained with the t command. For example:

*t
sub (x=2,y=3) [prgm.c:25]
inter (i=16012) [prgm.c:96]

main (argc=1, argv=0x7£££££54, envp=0x7£££££5c) [prgm.c:15]

This indicates that the program was stopped within the function sub at line 25 in
file prgm.c. The sub function was called with the arguments x=2 and y=3 from
inter at line 96. The inter function was called from main at line 15. The main
function is always called by a startup routine with three arguments often referred
to as argc, argy, and envp. Note that argv and envp are pointers, so their
values are printed in hexadecimal.

Examining Variables

The sdb program can be used to display variables in the stopped program.
Variables are displayed by typing their name followed by a slash, so

*errflag/

causes sdb to display the value of variable errflag. Unless otherwise specified,
variables are assumed to be either local to or accessible from the current func-
tion. To specify a different function, use the form

*sub:i/
to display variable i in function sub. FORTRAN 77 users can specify a com-
mon block variable in the same manner, provided it is on the call stack.

The sdb program supports a limited form of pattern matching for variable
and function names. The symbol * is used to match any sequence of characters
of a variable name and ? to match any single character. Consider the following
commands

x/
*sub:y?/
**/

sdb—DEBUGGERS (sdb/adb) 14-3

Using sdb

The first prints the values of all variables beginning with x, the second prints the
values of all two letter variables in function sub beginning with y, and the last
prints all variables. In the first and last examples, only variables accessible from
the current function are printed. The command

*k ok /
displays the variables for each function on the call stack.

The sdb program normally displays the variable in a format determined by
its type as declared in the source program. To request a different format, a
specifier is placed after the slash. The specifier consists of an optional length
specification followed by the format. The length specifiers are:

b one byte
htwo bytes (half word)
1 four bytes (long word)

The length specifiers are effective only with the formats d, o, x, and u. If no
length is specified, the word length of the host machine is used. A number can
be used with the s or a formats to control the number of characters printed. The
s and a formats normally print characters until either a null is reached or 128
characters have been printed. The number specifies exactly how many charac-
ters should be printed.
There are a number of format specifiers available:

¢ character

ddecimal

udecimal unsigned

o octal

x hexadecimal

f 32-bit single-precision floating point

g 64-bit double-precision floating point

8 Assume variable is a string pointer and print characters starting at the
address pointed to by the variable until a null is reached.

a Print characters starting at the variable’s address until a null is reached.

p Pointer to function.

14-4 PROGRAMMER'S GUIDE

Using sdb

i Interpret as a machine-language instruction.
For example, the variable i can be displayed with
*i/x
which prints out the value of i in hexadecimal.

sdb also knows about structures, arrays, and pointers so that all of the fol-
lowing commands work.

*array(2] (3]/
*gym.id/
*psym->usage/
*xsym(20] .p->usage/

The only restriction is that array subscripts must be numbers. Note that as a spe-
cial case:

*psym(0]
displays the structure pointed to by psym in decimal.

Core locations can also be displayed by specifying their absolute addresses.
The command

*1024/

displays location 1024 in decimal. As in C language, numbers may also be
specified in octal or hexadecimal so the above command is equivalent to both

*02000/
and
*0x400/
It is possible to mix numbers and variables so that
*1000.x/
refers to an element of a structure starting at address 1000, and
*1000->x/

refers to an element of a structure whose address is at 1000. For commands of
the type *1000.x/ and *1000->x/, the sdb program uses the structure template of
the last structured referenced.

sdb-—DEBUGGERS (sdb/adb) 14-5

Using sdb

The address of a variable is printed with =, so

*j=

displays the address of i. Another feature whose usefulness will become
apparent later is the command

*,/
which redisplays the last variable typed.

Source File Display and Manipulation

The sdb program has been designed to make it easy to debug a program
without constant reference to a current source listing. Facilities are provided
that perform context searches within the source files of the program being
debugged and that display selected portions of the source files. The commands
are similar to those of the UNIX system text editor ed(1). Like the editor, sdb
has a notion of current file and line within the current file. sdb also knows how
the lines of a file are partitioned into functions, so it also has a notion of cument
function. As noted in other parts of this document, the current function is used
by a number of sdb commands.

Displaylng the Source Flle

Four commands exist for displaying lines in the source file. They are useful

for perusing the source program and for determining the context of the current
line. The commands are:

p Prints the current line.

w Window; prints a window of ten lines around the current line.

z Prints ten lines starting at the current line. Advances the current
line by ten.

control-d Scrolls; prints the next ten lines and advances the current line by
ten. This command is used to cleanly display long segments
of the program.

When a line from a file is printed, it is preceded by its line number. This

not only gives an indication of its relative position in the file, but it is also used
as input by some sdb commands.

14-6 PROGRAMMER'S GUIDE

Using sdb

Changing the Current Source Flle or Function

The e command is used to change the current source file. Either of the
forms

*e function
*e file.c

may be used. The first causes the file containing the named function to become
the cumrent file, and the current line becomes the first line of the function. The
other form causes the named file to become current. In this case, the current line
is set to the first line of the named file. Finally, an e command with no argument
causes the current function and file named to be printed.

Changing the Current Line In the Source Flle

The z and control-d commands have a side effect of changing the current
line in the source file. The following paragraphs describe other commands that
change the current line.

There are two commands for searching for instances of regular expressions
in source files. They are

*/regular expression/
*?regular expression?

The first command searches forward through the file for a line containing a
string that matches the regular expression and the second searches backwards.
The trailing / and ? may be omitted from these commands. Regular expression
matching is identical to that of ed(1). '

The + and ~ commands may be used to move the current line forward or
backward by a specified number of lines. Typing a new-line advances the
current line by one, and typing a number causes that line to become the current
line in the file. These commands may be combined with the display commands
so that

*4+15z

advances the current line by 15 and then prints ten lines.

sdb—DEBUGGERS (sdb/adb) 14-7

Using sdb

A Controlled Environment for Program Testing

One very useful feature of sdb is breakpoint debugging. After entering sdb,
breakpoints can be set at certain lines in the source program. The program is
then started with an sdb command. Execution of the program proceeds as nor-
mal until it is about to execute one of the lines at which a breakpoint has been
set. The program stops and sdb reports the breakpoint where the program
stopped. Now, sdb commands may be used to display the trace of function calls
and the values of variables. If the user is satisfied the program is working
correctly to this point, some breakpoints can be deleted and others set; then pro-
gram execution may be continued from the point where it stopped.

A useful alternative to setting breakpoints is single stepping. sdb can be
requested to execute the next line of the program and then stop. This feature is
especially useful for testing new programs, so they can be verified on a
statement-by-statement basis. If an attempt is made to single step through a
function that has not been compiled with the —g option, execution proceeds until
a statement in a function compiled with the —g option is reached. It is also possi-
ble to have the program execute one machine level instruction at a time. This is
particularly useful when the program has not been compiled with the —g option.

Setting and Deleting Breakpolints

Breakpoints can be set at any line in a function compiled with the —g option.
The command format is:

*12b

*proc:12b

*proc:b

*b
The first form sets a breakpoint at line 12 in the current file. The line numbers
are relative to the beginning of the file as printed by the source file display com-
mands. The second form sets a breakpoint at line 12 of function proc, and the

third sets a breakpoint at the first line of proc. The last sets a breakpoint at the
current line,

Breakpoints are deleted similarly with the d command:

*12d
*proc:12d
*proc:d

In addition, if the command d is given alone, the breakpoints are deleted interac-
tively. Each breakpoint location is printed, and a line is read from the user. If

14-8 PROGRAMMER'S GUIDE

Using sdb

the line begins with a y or d, the breakpoint is deleted.

A list of the current breakpoints is printed in response to a B command, and
the D command deletes all breakpoints. It is sometimes desirable to have sdb
automatically perform a sequence of commands at a breakpoint and then have
execution continue. This is achieved with another form of the b command.

*12b t;x/

causes both a trace back and the value of x to be printed each time execution gets
to line 12. The a command is a variation of the above command. There are two
forms:

*proc:a
*proc:12a

The first prints the function name and its arguments each time it is called, and

the second prints the source line each time it is about to be executed. For both

<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>