MUNIX PASCAL

Version 3.5

Documentation-No.: G0930.051-0188

Best.-Nr.: G0930.051-0188

Trademarks:
MUNIX, CADMUS for PCS
DEC, PDP for DEC
UNIX for AT&T

Copyright 1988 by
PCS GmbH, Pfalzer-Wald-Strasse 36, D-8000 Miinchen 90, tel. (089) 68004-0

The information contained herein is the property of PCS and shall neither be reproduced in
whole or in part without PCS’s prior written approval nor be implied to grant any license to
make, use or sell equipment manufactured herewith.

PCS reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages (including consequential)

caused by reliance on the materials presented.

Relcase Notes

User’s Guide

Uberarbeitete und neue Manualseiten

10

MUNIX - PASCAL

Version 3.5
Release Notes

Documentation-No.: G0830.051-0188

Best.-Nr.: G0930.051-0188
DF: rel.h relV.2-32 relV.2
Author’s initials: DK, LY, RG

Trademarks:
MUNIX, CADMUS for PCS
DEC, PDP for DEC
UNIX for AT&T

Copyright 1988 by
PCS GmbH, Pfalzer-Wald-Strasse 36, D-8000 Miinchen 90, tel. (089) 68004-0

The information contained herein is the property of PCS and shall neither be reproduced in
whole or in part without PCS's prior written approval nor be implied to grant any license to
make, use or sell equipment manufactured herewith.

PCS reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages (including consequential)

caused by reliance on the materials presented.

MUNIX - PASCAL Release Notes Version 3.5

Contents Contents

Table of Contents

1. PASCAL for MUNIX V.2/32 oo e 1
1.1. Update from Version 3.4-32 to Version 3.5-32cciiiiiiiiii. 1
1.2. Update from Version 3.3-32 to Version 3.4-32 ..., 1
1.3. Adaptation of MUNIX Pascal to the 32-bit Systemcccooooo 2
2. PASCAL for MUNIX V. 2 i e e 3
2.1. Update from Version 3.4 to Version 3.5 ...t 3
2.2. Update from Version 3.3 to Version 3.4 ..ot 4
2.3. Update from Version 3.2 to Version 3.3 ... 5
2.4. Update from Version 3.1 to Version 3.2 ..., 6
2.5. Update from Version 2.6 to Version 3.1ccooiiiiiiiiiiiiiiiiinie. 6
* KK K K

This document was printed by PCS using the laser beam printer LBP 68000

January 19, 1988 1

MUNIX - PASCAL Release Notes Version 3.5

Section 1 PASCAL for MUNIX V.2/32

1. PASCAL for MUNIX V.2/32
1.1. Update from Version 3.4-32 to Version 3.5-32

The address space restriction of 32 KBytes for automatic variables in
main programs or subroutines has been abolished.

Warning

. The operating system allows a maximum address space of 3
MBytes for automatic variables in one routine.

Fixed bug

. The sizes of predefined data type variables are always the same as
the equivalent user defined data type variables.

The new pc command option -Y count facilitates the increase of the
maximum value of symbol table entries handled by the code generator
to count.

Further information about changes and releases may be found in the
following sections. (For fixed bugs, see "PASCAL for MUNIX V.2)

1.2. Update from Version 3.3-32 to Version 3.4-32

. The Version 3.4-32 uses the new code generator ncl from the C
compiler

. The MUNIX Pascal Compiler has been adapted to the symbolic
debugger sdb(1). Compiling sources with -g option symbol table
and line number information is included in the produced object
file which facilitates debugging MUNIX Pascal programs at source
language level. Please note that it is impossible to debug symboli-
cally optimized programs.

For the new version the documentation has been updated. Particu-
larly a chapter for using SDB with MUNIX Pascal-32 has been added
(see User's Guide).

Further information about changes and releases may be found in the
following sections.

January 19, 1988 1

Release Notes Version 3.5 MUNIX - PASCAL

Adaptation of MUNIX Pascal to the 32-bit System Section 1.3

1.3. Adaptation of MUNIX Pascal to the 32-bit System

The MUNIX Pascal compiler version 3.3-32 has been adapted to the
99xx/32 32-bit system, based on the MCB68020 microprocessor. This
package has the version number 3.3-32.

The Pascal part of the compiler has undergone no changes, it was just
recompiled. Version 3.3-32 uses the phases c1, c2 from the C compiler
producing COFF format.

Some options in the pc command have been changed. The version
3.3-32 uses the floating point arithmetic of the M68881 coprocessor
and only the four byte libraries (libp.a, libpdisp.a, libpmark.a, libpm.a).

2 January 19, 1988

MUNIX - PASCAL Release Notes Version 3.5

Section 2

PASCAL for MUNIX V.2

2. PASCAL for MUNIX V.2

2.1. Update from Version 3.4 to Version 3.5

Fixed bugs

Set operations with set reference parameter function correctly.

When using constants in programs, the constants had been des-
troyed in some cases. This works correctly now.

Calls of the standard procedures pack and unpack don't cause an
internal compiler error.

Value parameter passing of character arrays with a length of 1, 2
or 3 function correctly.

In the case of repeated reset or rewrite operations on the same
file, the file is closed each time before opening again .

Actual parameters of formal string parameters are checked now.

Conformant arrays :
Lists of conformant array parameters don't cause runtime errors.
Type character for bound identifiers is possible.

Known bug

January 19, 1988

EOF in comments crashes the compiler.

Release Notes Version 3.5 MUNIX - PASCAL

Update from Version 3.3 to Version 3.4 Section 2.2

2.2. Update from Version 3.3 to Version 3.4
Debugging programs with adb(1) parameters and variables may be
referenced symbolically.
Fixed bugs

. When procedure calls have conformant array parameters as the
last parameter, further parameters are not expected.

. Wrong recursive record type definition is detected during analysis
of type declaration.

. For-statements with final value expressions of the following kind
don’t cause an error :

var controlvar : (el,e2);

for controlvar := el to pred(e2) do

Warning

. After dispose(ptr) ptr becomes undefined. The programmer
should make sure that no accesses to undefined pointers occur.

4 January 19, 1988

MUNIX - PASCAL Release Notes Version 3.5

Section 2.3

Update from Version 3.2 to Version 3.3

2.3. Update from Version 3.2 to Version 3.3

Lazy-Input is now implemented.
Interactive programs may be easier to implement using this concept.
The following program does what the user expects:

program p (input, output);
var i: integer;
begin -
write('enter number’);
read(i);
end.

Fixed bugs

Assignment of arrays, sets and parameters are now properly han-
dled

succ, trune, put, LN and ARCTAN don't cause ld error
output of short-variables

wrong formal parameters will be flaged as syntaz error and don't
crashes the compiler

Warning

The C-Code generator handles a limited set of symbols and will
stop with the message symbol table overflow when this limit is
reached.

Files should be declared and exported in the main program (i.e.
program head and export declaration) if they will be used across
different modules. Inside a module a file may be declared only
locally to a procedure.

Word boundaries may sometimes produce unexpected results.
Specifically the customer should take care about variants in
records as in the following example:

record
case z: boolean of
true: (i: integer);
false: (a,b,c: char);
end;

The figure beneath shows how this variable is stored:

January 19, 1988 o]

Release Notes Version 3.5 MUNIX - PASCAL

Update from Version 3.2 to Version 3.3 Section 2.3

2.4. Update from Version 3.1 to Version 3.2

2.9.

The Version 3.2 now supports four types of floating point processing:

(1)
(2)
(3)

(4)

Motorola Fast Floating Point Package (FPP)
Motorola IEEE Floating Point Package (MOT341)

The floating point board with the National Semiconducter NSC
floating point processor (NSC)

The floating point coprocessor M68881 for the M68020 CPU
(MOT881).

Two options have been added for the floating point coprocessor
Me8881:

-fH and -fT.

Update from Version 2.6 to Version 3.1

The compiler structure has been heavily modified. Specifically,
the code generator of the C-Compiler is used. The old passl is
replaced by p0 and the old pass? is replaced by cl.

/usr/include/pc/init.h has minor changes.
String parameters must be declared as VAR parameter.

Local variables of a procedure and global variables of a program
are restricted to 32 Kb. If you need more you may use
EXPORT/IMPORT variables or the heap.

The full range of floating point arithmetics of the C-Compiler is
now supported, i.e. single precision, double precision, floating
point processor, etc. However, a mixture of them is not allowed.

2 Byte and 4 Byte integers are supported (option -2 and -4).
The pc command has some more options.

The documentation has been updated.

January 19, 1988

MUNIX - PASCAL

User’s Guide
Version 3.5

Documentation-No.: G0830.051-0188

The Pascal User's Guide is intended for people developing new Pascal programs,
or compiling and executing existing Pascal programs on MUNIX systems. This
manual gives also some insight into the Pascal System structure its components
and its behaviour.

MUNIX Pascal is an extended implementation of the Pascal language. Specifically
Pascal complies almost completely with the requirements of the ISO standard
proposal for Pascal.

This manual is designed for programmers who have a working knowledge of Pas-
cal. Detailed knowledge of MUNIX is helpful but not essential.

Best.-Nr.: G0930.051-0188
DF:01.t23456.t 61626364 7.t8.t9.t92.t93.t9%495.¢t
Author’'s initials: DK,LY,RG

Trademarks:

MUNIX, CADMUS for PCS
DEC, PDP for DEC
UNIX for AT&T

Copyright 1988 by
PCS GmbH, Pfilzer-Wald-Strasse 36, D-8000 Miinchen 90, tel. (089) 68004-0

The information contained herein is the property of PCS and shall neither be reproduced in
whole or in part without PCS’s prior written approval nor be implied to grant any license to
make, use or sell equipment manufactured herewith.

PCS reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages (including consequential)

caused by reliance on the materials presented.

MUNIX - PASCAL

User’s Guide Version 3.5

Contents Contents
Table of Contents
L It rodUC I O o L 1
1.1. Installation Guide for PASCAL Version 3.5 ... 2
2. Supported Language PP 3
. L. D EeVIa b OM S oo L 3
.. B X e S OIS 3
2.2.1. Separate Compilation ... 3
2.2.2. Additional Standard Procedures ... 4
ARG TIN5 o o V=4 T PSPPI 5
R.2.4. Generic Pointers o 6
2.2.5. Attribute packed ... 7
2.2.8. Defaull Case ..o, 7
R.2.7. Declaralion .o 7
2.2.8. Underscore as letber ..o e 8
2.2.9. Alternate Symbols ..o 8
2.2.10. EXPOonent .o 8
2.2.11. Hexadecimal Constants, 8
2.2.12. Character Constants ... L 8
2.2.13. Additional Predefined Identifiersccoooiiieioiee i, 9
2.3. Implementation Definitions ... 9
2.4. Error Handling ... 10
3. Pascal under MUNIXooooiiiiiiiiiii., PP 11
3.1. Creating and Executing a Program ... 11
3.2. Support of MUNIX Facilities ..o 12
3.3. Debugging MUNIX Pascal-32 with SDB ... 13
3.4. Limitations of Pascal ..., 18
4. Compiler OPLIONS oo 20
S, Error Handling ..o 21
January 20, 1988 i

Version 3.5 User’s Guide MUNIX - PASCAL

Contents Contents
5.1. Compile Time Detection of Source Errors ...l 21
5.2. Other Errors Detected at Compile Timecoooiiiiiiii 21
5.3. Runtime Errors e e 21
6. Pascal System CoOmpPONEentS ... 23
6.1. Hardware and Software Environmentccccoiiiiiiiiiiinn . 24
B 2. PO e 24
6.3. Optimization Pass PR PRPPP 25
B8.4. Cross Reference ... 25
7. Calling CONVENLIONS oo e 26
8. Data Representation and Allocation ... 27
SIRAN o o T=1 o X 8 5 QUSSP 29
9.1 EXAIMPLES o 29
9.1.1. Sample PrOGIraITl ..ot e e 29
9.1.2. CroSS referenCe ...t 29
9.1.3. Separate Compilation ... 30
1 A O oY) o o) Lo o 1< TSP 31
9.3. Standard Procedures and Functions ... 32
9.4. Syntax EqQUationNs .o 36
9.5. Reserved Identifiers ... 40
L0, RO eMCES oo 41
T

11 January 20, 1988

MUNIX - PASCAL User’s Guide Version 3.5

Section 1 Introduction

1. Introduction

The Pascal User’s Guide is intended for people developing new Pascal
programs or compiling and executing existing Pascal programs on MUNIX
systems. This manual also gives some insight into the Pascal System
structure its components and its behaviour.

This manual is designed for programmers who have a working knowledge
of Pascal. Detailed knowledge of MUNIX is helpful but not essential. It is
advisable to get familiar with the MUNIX documentation and MUNIX stan-
dards.

Pascal was designed by Professor N. Wirth as a language for teaching
structured programming techniques and as such is used widely in edu-
cational institutions. It has also gained popularity as a general-purpose
language because it contains a set of language features that make it
suitable for many different programming applications. Pascal has furth-
ermore strongly influenced the development of several languages (e.g.
ADA). The Pascal language includes a variety of control statements,
data types, and predefined procedures and functions.

w~ Throughout this document the following notation is used:
Keywords and predefined identifiers are printed in bold face.

Syntactic variables as well as UNIXt components are printed in italic
font.

Metasymbols "{,}" and "[,]" are used for optional parts (0..© and
0..1), "(,)" bracket syntactical units and ''/'' separates alternatives.
Three dots (...) mean a repetition of the preceeding item. Terminal
symbols are printed in roman face; to distinguish metasymbols from
terminal symbols apostrophes ' are used if necessary.

+UNIX is a Trademark of Bell Laboratories.

January 20, 1988 1

Version 3.5 User’s Guide MUNIX - PASCAL

Introduction Section 1

1.1. Installation Guide for PASCAL Version 3.5

The PASCAL Software is on a streamer or magnetic tape. The strea-
mer or the tape has been created in cpio-format relative to the root
directory.

You will need at least 1080 free blocks on the /usr disk.

To install it, proceed as follows:

login as bin
cd /

for streamer :
cpio -ivindS < /dev/xxx xxx : device name (streamer)

for magnetic tape :
cpio -ivindB < /dev/xxx xxx : device name (magnetic tape)

2 January 20, 1988

MUNIX - PASCAL User’s Guide Version 3.5

Section 2 Supported Language

2. Supported Language

Pascal is an extended implementation of the Pascal language [1]. MUNIX
Pascal adheres to the Pascal language as described in the suggested ISO
Standard. This "draft Standard” is a cleaned up version of the original
Pascal and has been submitted to ISO for acceptance.

2.1. Deviations

Pascal deviates from the standard proposal in the following items:

(1) Only the first 16 characters of an identifier are significant. The
truncation of an identifier to 16 characters alters the meaning of
a conforming program.

(2) Standard procedures and functions are not allowed as parame-
ters, as in previous standard proposals. Identical results with
minor loss in performance can be obtained by declaring user
procedures. For example:

function userodd(i: integer) : boolean;
begin
userodd := odd(i)
end;

(3) Procedures that are to be used as parameters must be declared
at main level.

(4) files are not allowed in structured data.

(5) Assignment to for control variables is done after evaluation of
the initial expression.

(8) The reserved word nil may be redefined.
(7) A goto between branches of a statement is permitted.

(8) For textfiles, no final end-of-line is supplied unless requested
explicitely by the user.

(9) A null string is accepted by the compiler.

2.2. Extensions

2.2.1. Separate Compilation

Pascal is able to compile socalled modules, a collection of declara-
tions, procedures and functions. The result of the compilation (an
a.out object module) can be handled by the wusual MUNIX

January 20, 1988 3

Version 3.5

Extensions

User’s Guide MUNIX - PASCAL

Section 2.2

components, i.e. they can be stored in libraries, bound(loaded)
with other a.out modules, etc.

The separate compilation feature is further supported by enabling
import and export of variables, procedures and functions. Modules
implemented in Pascal, C or assembler can be linked to Pascal
modules. Procedures and functions are imported by using a direc-
tive in the declarations part: extern for Pascal- and assembler-
and externc for C-procedures; they are exported implicitely by
being defined on the outermost level within a compilation unit.
The user is responsible for parameter and result compatibility.

Variables are imported or exported by using the newly introduced
keywords import or export instead of var. The predefined vari-
ables input and output are (per default) exported from a mainpro-
gram, if they are listed in the program heading. If used in a
module, they have to be imported and must be mentioned in
read/write statements. It is not possible to import or export
labels!

The syntax for a compilation unit is:

compilation_unit =
program name '(' files ')’ ; block .
/ module name ; {declaration] .

block =
{declaration] compound_statement

2.2.2. Additional Standard Procedures

The following additional standard procedures are available:

addr
This function returns the address of the parameter. The

returned address is compatible with all pointer types.

convert
convert (variable, typename) returns its first argument as
having type typename.

w~ No run-time widening is done; e.g.

convert (apointer, anotherpointertype) works, but
convert ('A’, integer) won't work!

mark, release
mark and release allow to use the heap as a stack. mark(p)
stores the current value of the heap pointer in p. release(p)
restores the heap pointer to p. Within one program either
dispose or mark and release can be used, but not both simul-
taneously.

January 20, 1988

MUNIX - PASCAL User’s Guide Version 3.5

Section 2.2 ' Extensions

w~ New & dispose use malloc(3) and free(3) which implement a
rather straight-forward memory management. Extensive use
of heap will therefor result in remarkable run time penalties.
To avoid this problem, use new with mark & release which have
a simple and fast memory allocation scheme (see pc (1)).

pcclose, pseek
They supply a Pascal interface to the MUNIX system calls close
and lseek.

errorexit
Exit a program and force a core dump.

message
Write a string to the MUNIX file stderr.

itoa, atoi
Convert integer to ascii and vice versa.

date, ptime
Get date and time in ascii representation.

clock
Get cpu time used by the current process.

2.2.3. Strings

String variables are unique to Pascal. Essentially, they are of type
packed array of char with a dynamic 'length’ attribute. The actual
length of a string is determined by a final zero-byte. string vari-
ables are not compatible with variables of type packed array [...] of
char.

w~ No range checking is done for string operations.

The default maximum length of a string variable is 80 characters.
This value can be overridden in the declaration by appending the
desired length enclosed by []:

var s : string; { 81 bytes will be allocated }
var sl: string [17]; { 18 bytes will be allocated |

A string variable has a maximum length of 255 characters.

Assignment to a string variable can be performed using the assign-
ment statement, the read standard procedure or some other rou-
tine (e.g. a C standard function). strings can be compared irre-
gardless of their current lengths. Furthermore, it is possible to
access the components of a string variable; the first one has index
0.

When a string variable is used as parameter to read or readln, all
characters up to, but not including, the end-of-line character in

January 20, 1988 0

Version 3.5

Extensions

User’s Guide MUNIX - PASCAL

Section 2.2

the input file will be assigned to it.

When a string is written without specifying the field width, the
actual number of characters written is equal to the dynamic string
length. If the field width is longer than the dynamic length, leading
blanks are inserted. If the field width is smaller, the string is trun-
cated on the right.

Constant strings (‘hugo’') are compatible with type packed array
[1..n] of char (where n is equal to the string length) and with type
string. They are also terminated by a zero byte that is not
included in the length computation and are limited to a length of
255 characters.

w~ Remember that constant 'a’ is a character and not a string.
Strings of length one must be supplied by other means (e.g. a
C routine).

2.2.4. Generic Pointers

Generic pointers provide a tool for generalized pointer handling.
Variables of type address can be used in the same manner as any
other pointer variable with the following exceptions:

o generic pointers cannot be deferenced since there is no type
associated with them.

° generic pointers cannot be used as an argument to new.

° any pointer can be assigned to a generic pointer. Use convert

for assigning a typed pointer to a generic pointer.

Example:
8 cat example.p
program pt;
type
pc = ~char;
pi = ~integer;
var
a:address;
vi:pi;
ve:pc;

begin
new(vi);
a:=convert(vi,pc);
vei=a;

end

January 20, 1988

MUNIX - PASCAL User’s Guide Version 3.5

Section 2.2 Extensions

2.2.5. Attribute packed

As an extension, the attribute packed can be applied also to simple
types:

type byte = packed 0 .. 255;

{ variables of type byte will be allocated one byte }
Packed subranges that fit in the ranges -27 .. 27-1 or 0 .. 28-1 are
represented in one byte; those fitting in the ranges -215% .. 215-1 or
0 .. 216-1 are implemented in one word (two bytes).

This feature is supported by one-byte, two-byte and four-byte
signed and unsigned arithmetic. But the user should keep in mind,
that in most cases the packed data have to be extended to a full
integer entity. See appendix for details.

Types short and cardinal are defined as

type
short = packed -32768 .. 32767,
cardinal = packed 0 .. 65535;

2.2.6. Default case

In a case statement a default case can be defined. Either otherwise
or else: will be accepted.

2.2.7. Declaration

The order of declaration for labels, constants, types, variables,
functions and procedures has been relaxed. Any order and any
number of declaration sections may be used. Furthermore, import
and export variable declaration are implemented to support the
separate compilation feature.

An identifier must be declared before it is used. Two exceptions
exist to this rule:

(1) Pointer types may be forward referenced as long as the
declaration occurs within the same type-definition-part

(2) Functions and procedures may be predeclared with a forward
declaration.

The syntax for a block is:

January 20, 1988 7

Version 3.5 User’s Guide MUNIX - PASCAL

Extensions Section 2.2

block = {declaration} compound_statement
declaration =
import (names : type) ; ... ;
/export (names : type) ; ... ;
/var (names : type) ; ... ;
/label label , ... ;
/const (name '=' constant) ; ... ;
/type (name '='type) ; ... ;
/function_declaration ;
/procedure_declaration ;

2.2.8. Underscore as letter

The character '_' is significant and can be used in forming
identifiers.

2.2.9. Alternate Symbols

There are two representations for comment symbols ('(*' , '*)' and
't", ")) and for bracket symbols ("(.",".) and '[', ']).
2.2.10. Exponent

A lower case e may be used to indicate real numbers.

2.2.11. Hexadecimal Constants

Hexadecimal integers are indicated by a preceding "#'. The syntax
for a hexadecimal integer is:

unsigned_number = digit {digit] / # hexadigit {hexadigit]
digit =0/1/2/3/74/5/6/7/8/9
hexadigit = digit /A/B/C/D/E/F/B

2.2.12. Character Constants

Certain non-printable characters may be represented according to
the following table of escape sequences:

N\ backslash
\b backspace
\f - form feed

\n newline

\r carriage return

N\t horizontal tabulator
\ ddd

8 January 20, 1988

MUNIX - PASCAL User’s Guide Version 3.5

Section 2.2 Extensions

The escape sequence \ ddd consists of a backslash followed by 1,2,
or 3 octal digits which are taken to specify the value of the desired
character. If the character following the backslash is not one of
those specified, the backslash is ignored.

2.2.13. Additional Predefined Identifiers

See also /usr/include/pc/init.h

const
minint = -maxint - 1;
minshort = -32768;
maxshort = 32767,
mincard =0;
maxcard = 65535;
minchar ="\ 000,
maxchar ="'\377;
type ,
alfa = packed array [1..16] of char;
short = packed minshort .. maxshort;
cardinal = packed mincard .. maxcard;
faddress is predefined too}
import
argc : integer;
argv .~ array [1..100] of ~ string;
environ : ~ array [1..100] of ~ string;

function pcclose (var f: file_of_any_type): integer; externc;

function pseek (var f: file_of_any_type; offset: integer;
whence: short): integer; externc;

procedure message (var s: string); externc;

procedure itoa (i: integer; var s: string); externc;

function atoi (var s: string): integer; externc;

procedure date (var datevar: string); extern;

procedure ptime (var timevar: string); extern;

function clock : integer; extern;

2.3. Implementation Definitions

(1) maxint is 2 147 483 647.
(2) set bounds are 0 and 255.
(

3) A variable is selected before the expression is evaluated in an
assignment statement.

(4) Default field width specification:
12 for integers, 12 for reals and 5 for booleans.

January 20, 1988 9

Version 3.5

User’s Guide MUNIX - PASCAL

Implementation Definitions Section 2.3

10

(5)

reset on the standard input file resp. rewrite on the standard
output file is allowed.

2.4. Error Handling

(1)
()

(3)

(4)
(5)

(6)
(7)
(8)

(9)

Uninitialized or undefined variables are not detected.

A missing reset or rewrite statement is not detected (see 'Limita-
tions of Pascal’).

No runtime checks are performed on the tag field of variant
records.

No bounds checking is performed on overlapping set operands.

A missing assignment to the function value variable is not
detected.

No checks are inserted to check pointers after they have been
assigned a value using the variant form of new.

No bound checks are inserted for the succ, pred or chr func-
tions.

The for control variable is not invalid after the execution of the
for statement.

Two nested for statements with the same control variable are
permitted, but may run into an infinite loop.

(10) Type declarations of the kind

type t = type;

procedure p;
type
pt
t

typeZ;

are not correctly analysed.

January 20, 1988

MUNIX - PASCAL User’s Guide Version 3.5

Section 3 Pascal under MUNIX

3. Pascal under MUNIX
3.1. Creating and Executing a Program

Programs are created and executed with MUNIX commands. With each
command, you include information that further defines what you
want the system to do. Of prime importance is the file specification,
which indicates the file to be processed. You can also specify
qualifiers that modify the processing performed by the system (8 is
the system prompting symbol, all your entries are terminated with
<carriage return>).

A program is entered or corrected by any editor of the user's taste.
The file name of Pascal source programs must have the suffix '".p’.

8 edit <name>.p

The pc (1) command compiles and links the Pascal program. The
resulting object module is left in <name>.

8 pc -0 <name> <name>.p

The program is loaded and run by:

8 name

The only program parameters supported by the Pascal language are
files. There are three ways to associate an (external) MUNIX file
specification with an (internal) Pascal file specification. The standard
Pascal files input and output are always associated with the logical
MUNIX files stdin and stdout. Their comfortable and flexible use is
described in [R]. All other Pascal files can be associated with any
MUNIX file either by assignment within a commandline:

8 name pascalfile_1=MUNIX_file _specification \
pascalfile_2=MUNIX_file_specification ! \

or - if an assignment is missing - interactively:

8 name pascalfile_2=MUNIX_file_specification
pascalfile_1 ? MUNIX_file_specification

! As these assignments are considered as one argument each, there must be no blanks before
or after the "=’ sign.

January 20, 1988 11

Version 3.5 User’s Guide MUNIX - PASCAL

Creating and Executing a Program Section 3.1

12

Example:
8 cat example.p
program example (eingabe,ausgabe);
var eingabe,ausgabe:text;
begin
reset(eingabe);
rewrite(ausgabe);
end

8 pc -0 example example.p
8 example eingabe=/dev/tty
ausgabe ? example.aus

It is advisable to define a shell procedure for a more convenient file
assignment especially if some of the files are ""fixed" or work files.

As an extension of Pascal, the external filename can be stated in the
corresponding reset or rewrite statement. In this case, a file assign-
ment at run time will be meaningless.

For efficiency, output is generally buffered; the buffer is flushed only
when it is full, or - in case of text files - if a writeln is stated. To facili-
tate interactive 170, output to a file of char will be unbuffered, if the
file is connected to a terminal (/dev/tty). Input from a terminal is
line-oriented unless the terminal is in raw mode (see stty(1), toctl(2)).

3.2. Support of MUNIX Facilities

A Pascal program has full access to all MUNIX system calls as well as
files. The system calls can be accessed like C procedures (see below).
The objects are found in the standard library. The predefined pro-
cedure halt provides a return of an "exit code” to the system. Furth-
ermore the "system variables’ argc, argv and environ are provided for
access to the command arguments and the process environment.
argc indicates the number of arguments, whereas argv references an
array of argument strings. The actual length "i" of environ is deter-
mined by environ~[i] = nil. See 2.2.13 for a declaration of these vari-
ables.

The file specifications are command arguments too, i.e. argv~[1]~[0]
is the first character of the program name. If you access argv~ or
environ~, it is essential to switch off the pointer test.

January 20, 1988

MUNIX - PASCAL User’s Guide Version 3.5

Section 3.2 Support of MUNIX Facilities

Example:

The following statement will print out the environment:
{(8t- 3
{switch off pointer test, see section compiler options)
begin
1:=1;
while environ~ [i] <> nil do
begin
writeln(output, environ~[i]~);
1:=1i+1
end
end;

The C preprocessor cpp [3] may be used without limitations.

C and assembler modules can be loaded with Pascal. When connect-
ing Pascal modules with C modules you should take care of parameter
compatibility (see 8.). Moreover, you must be sure that the C modules
do not use the sbrk/brk system call which interferes with the Pascal
heap.

3.3. Debugging MUNIX Pascal-32 with SDB

For all modules that will be debugged the option -g should be
specified for compiling these modules. SDB also works on modules
compiled without this option, but its capabilities are limited to
machine level.

Detailed information about the use of SDB may be found in sdb [4].

You will notice the following limitations and features while using SDB
for MUNIX Pascal :

- Symbolic constants cannot be referenced.

- Subrange types are not distinguished from the according scalar
types.

- Indices of array variables are relative to the lower bound 0
independent of their declarations in programs. SDB knows only
the number of elements in every dimension. Enumeration and
character type indices are numerated up from value 0 also.

- Variables of set types are treated as arrays of bytes. To display
these variables more meaningfully the hexadecimal format may
be used.

- The main program is treated as procedure named 'main’.

January 20, 1988 13

Version 3.5 User’s Guide MUNIX - PASCAL

Debugging MUNIX Pascal-32 with SDB Section 3.3

14

The following example is an introductory demonstration of how to
debug MUNIX Pascal. The debugged program is designed only for this
purpose and has no other use. The example is in no way complete.

Compile program modules with -g option

8 pc -c -fH -g demo.p demol.p
$ pc -g -fH demo.o demo1l.o

Execute file a.out using SDB with no core file. The source files of a.out
may be found in the directory ./src . Please note "8" is the operating
system prompt and ""*' is the SDB prompt.

8 sdb a.out - ./src
Source path: ./src
No core image

Print name of the current procedure.

*e
main() in ""./src/demo.p"

Print ten lines of the current file starting at line 1.

*1z
1: program demo ;

: type rec = record
: 1:integer ;
r:real ;
end ;
feld = array[1..6] of integer ;

:var recp : ~rec ;
0: recl rec

SOPNP

Print another ten lines starting at current line.

*z

10: recl :rec
11: vektor :feld:
12: ilimit :integer;

13:

14: procedure proc(var vektorl : feld ; li : integer) ; extern ;
15: function sum (a,b : integer) : integer ; extern ;
16:

17: begin

18: limit := 6 ;

19: fori:=1 to limit do

January 20, 1988

MUNIX - PASCAL User’s Guide Version 3.5

Section 3.3 Debugging MUNIX Pascal-32 with SDB

Print another ten lines starting at current line.

*z

19: fori:= 1 to limit do
20: vektor[i] :=1i;

21: proc(vektor,4) ;
22: new(recp) ;

23: recp~.i = 3;

24: recp~r = 1.2;

25: recl :=recp~;

26: i:=sum(3,i);
27:end .

Change to source file demol.p.

*e demol.p
"./src/demol.p”

Print ten lines of the current file starting at line 1.

*1z
: module demol ;

type feld = array[1..6] of integer ;

: procedure proc(var vektorl : feld ; li : integer) ;
;var 1:integer;
. begin
fori:=1tolido
vektorl[i] := vektorl1[i] + 1 ;
10: end ;

Print another ten lines starting at current line.

10: end ;

11:

12: function sum (a,b : integer) : integer ;
13: begin

14: sum:=a+b

15: end ;

16:.

Set a breakpoint at line 21 in main program.

*main:21b
main:21 b

January 20, 1988 15

Version 3.5 User’s Guide MUNIX - PASCAL

Debugging MUNIX Pascal-32 with SDB Section 3.3

Set a breakpoint at the entrance of procedure proc.

*proc:b
proc:7 b

Run a.out without arguments.

*r

a.out

Breakpoint at

main:21: proc(vektor,4) ;

Print out variable 'vektor’ of main program.

*main:vektor/
vektor[0]/ 1
vektor[1]/ 2
vektor[2]/ 3
vektor[3]/ 4
vektor[4]/ 5
vektor[5]/ 6

Note that indices are relative to lower bound 0!

Print out one element of 'vektor’.

*vektor[3]/
vektor[3]/ 4

Continue execution.

*c

Breakpoint at

0x204 in proc:7: begin
Single step.

*s

proc:8: fori:=1tolido

Print out parameter vektorl. Since it is a reference parameter its
address is printed.

*proc:vektorl/
Ox3f7feed4

16 January 20, 1988

MUNIX - PASCAL User’s Guide Version 3.5

Section 3.3 Debugging MUNIX Pascal-32 with SDB

Print out parameter li. Since it is a value parameter its value is
printed.

*proc:li/
4

Print a 10 line window around current line.

*w

3: type feld = array[1..6] of integer ;
4:

5: procedure proc(var vektorl : feld ; li : integer) ;
6: vari: integer ;

7: begin

8: fori:= 1 tolido

9: vektorl[i] := vektori1[i] + 1 ;

10: end;

11: begin

12: sum:=a+b

Set a temporary breakpoint at line 10 and continue.

*10c
Breakpoint at
proc:10: end ;

Dereference the reference parameter 'vektorl' using the ¢ conven-
tion of [0].

*proc:vektor1[0]/
vektor1[0]0]
vektor1[0]1]
vektor1[0]2]
vektor1[0]3]
vektor1[0]4]

[0]5]

0]/
2
3
4
5
6
vektor1|O 7

/
/
/
/
/
/

Change one element of 'vektorl’ and print it out.

*vektor1[0][
*vektor1[0][
100

511100
5]/

Set a temporary breakpoint at line 26 in main and continue.
*main:26¢

Breakpoint at
main:26: i:=sum(3,i) ;

January 20, 1988 17

Version 3.5 User’s Guide MUNIX - PASCAL

Debugging MUNIX Pascal-32 with SDB Section 3.3

Print a 10 line window around current line.

*w

21: proc(vektor,4) ;
22: new(recp) ;

23: recp~.i:=3;
24: recp~.r:=1.2;
25: recl ;= recp~;
26: i:=sum(3,i) ;
27: end .

Print out record component 'i’ pointed to by 'recp’.

*recp->i
3

Print out components of record variable 'recl’.

*recl/
recl.i/ 3
reclr/ 1.2

Single step without leaving current procedure.

*S
main:27: end ;

Call function 'sum’ with other arguments and print out result value.

*sum(4,recl.i)/
7

Quit the debugger.

*q

3.4. Limitations of Pascal

° Because of the separate compilation feature, a missing reset or
rewrite cannot be detected by the compiler and will most prob-
ably cause the program to crash with an address error at the
first attempt to access the corresponding file-variable.

° In general, it is possible to reset input or rewrite output with the
effect, that stdin or stdout is repositioned to the beginning of
the associated file. If the file is connected to a pipe this will have
no effect at all.

18 January 20, 1988

MUNIX - PASCAL User Guide Version 3.5

Section 3.4 Limitations of Pascal
a Because of a very straight-forward register allocation mechan-
ism, there may be very deeply nested expressions that do not

compile.

June 5, 1987 19

Version 3.5 User’s Guide MUNIX - PASCAL

Compiler Options Section 4
4. Compiler Options
Compiler options inside a Pascal program are "{8<option>}". Each

20

r_re

option consists of a lower or upper case letter followed by "+" or
Options are separated by commas. There must be no blanks between "{"
and "8" or between a comma and the succeeding option. The following

options are supported:

B/b +/- b+ accept C-string notation (i.e. with backslash)

Dsd +/- d+ produces code for pointer, subrange and arithmetic
overflow check and the tracing of line numbers

E/e +/- e- will suppress extension warnings

T/t +/- t+ produces code for pointer check

V/v +/- v+ produces code for arithmetic overflow check

W/w+/- w- will suppress warning messages

Defaults: {$b+,d+,e-,w+]}
d+ implies v+ and t+.
d - impliesv-and t -.

Options appearing before the program or module symbol are overwritten
by options in the pc (1) command.

January 20, 1988

MUNIX - PASCAL User’s Guide Version 3.5

Section 5 Error Handling

5. Error Handling

Errors are detected and reported by several components of the Pascal
system:

- preprocessor cpp, see pc (1)
- compiler

- loader ld, see pc(1)

- run-time system

5.1. Combile Time Detection of Source Errors

p0 detects syntactical and some semantical errors and (optionally)
deviations from the standard language definition. Errors that are not
detected are listed in 2.4. p0 does not produce error messages or a
listing but compiles a condensed version of the diagnostics that will
be printed in a readable form by an extra pass perror. If only warn-
ings are issued compilation proceeds otherwise it will be terminated.

The option "-L" (see pc (1)) produces a full listing with error mes-
sages. The default is a listing containing the offending line, its prede-
cessor and the error message. Sometimes an error causes several
messages to be printed in which case all but the first one can be
ignored.

Furthur passes detect no source errors, but might report a violation
of a compiler limitation (see 3.3) or a compiler error (though, of
course, it should not). Please let us know if you get an compiler error
or an unknown error message.

9.2. Other Errors Detected at Compile Time

During compilation, MUNIX resources can be exhausted, e.g. file sys-
tem, process table, or memory overflow, etc. Furthermore MUNIX can
deny access to files. Extensive treatment of these errors is beyond
the scope of this manual. They are described in the MUNIX documen-
tation.

5.3. Runtime Errors

Errors occurring at run time are always fatal, i.e. the program will
report an error message, dump the core file and then abort. With the
help of the MUNIX debugger adb [5] or sdb the user can generate a
(partially) symbolic post mortem dump which indicates the location
of the fatal error, the number of the corresponding source line (if the
debug option was on), the dynamic calling sequence, etc.

January 20, 1988 21

Version 3.5 User’s Guide MUNIX - PASCAL

Runtime Errors Section 5.3

22

The error message should comprise a sufficient diagnosis of the error
detected. As far as file access is concerned, the errors are mostly
reported by the MUNIX system and must be investigated using the
documentation. Other messages indicate programming errors such as
divide by zero, integer overflow, etc.

January 20, 1988

MUNIX - PASCAL User’s Guide Version 3.5

Section 6 Pascal System Components

6. Pascal System Components

Figure 6.1 gives an overview of the Pascal system components. The
preprocessor is the same as the C-compiler’s, and does macro prepro-
cessing and including of source files.

The first pass p0 performs the lexical, the syntactical and the semanti-
cal analysis. It constructs a parse tree for each block and outputs it.

The extra pass optim is optional and is called by the -0 option in the pec
command (see pc(1)).

init.h <source>.p

1 perror | ‘ cl
I !
{ N
stdout <source>.s
c2 I
|
$
<source>.o

$
ld
i
N
a.out

Figure 6.1: Pascal System Components*

January 20, 1988 23

Version 3.5 User’s Guide MUNIX - PASCAL

Pascal System Components Section 6

24

The extra pass perror produces a source listing if requsted, and prints
error messages based on the diagnostics compiled by p0.

The second pass c! is the same as the C-Compiler’'s and generates code
in several files. The generated code is output in several files.

The third pass c2is the same as the C-Compiler’'s and collects the code
distributed in various files. It produces the file <name> containing the
object code in a.out format [8].

* For MUNIX Pascal-32 the pass ncl takes the place of cl1 and c2. It produces object
code in COF format.

6.1. Hardware and Software Environment

Pascal runs on CADMUS Systems under MUNIX Version V.2.
Features of these systems are:

s large memory (= 1MB)

a hard disk (= 50MB)

° memory management unit

MUNIX is a time-sharing system and provides all features needed by
Pascal. Of great importance are the file system, the command inter-
preter (shell), and the object module management (ar (1), ld (1) [7]).
Of equal, if not greater, weight are all those MUNIX components which
make life easier: ed, med, make, etc.

6.2. PO

The first pass performs lexical analysis, parsing, declaration handling,
tree building, and some optimization. This pass is largely machine
independent.

The lexical analysis is a conceptually simple procedure that reads
the input and returns the tokens of the Pascal language as it
encounters them: identifiers, constants, operators and keywords.
Comments are skipped, decimal and hexadecimal constants, charac-
ters and strings are properly dealed with.

The first pass parses, as the original Pascal-P4 compiler, the tokens
In a top down, left right, recursive descendent fashion. During the
processing of a declaration part a symbol table is built up, addresses
are allocated to variables and procedures, and the semantic of
declarations is checked.

January 20, 1988

MUNIX - PASCAL User’s Guide Version 3.5

Section 6.2 PO

During the processing of the statement part a parse tree is built. The
proper use of operators and operands is checked. Some complex syn-
tactical structures are broken down into simpler ones.

6.3. Optimization Pass

The optim pass is optional and is invoked by the -O option in the pc
command. Optimization will result in smaller object code and faster
run time of your programms.

This pass implements several optimizations: common subexpression
elimination, subscript expression optimization, constant folding and
an increased usage of registers for variables.

The optimization pass will increase the compile time of a program, we
suggest you to use the -O Option only for the final version of your
already debugged programs or modules.

6.4. Cross Reference

The cross reference program zref produces the usual cross-reference
list with identifiers and line numbers.

zref is implemented as an independent component. The reasons are:

o The compiler is not bothered with cross referencing.

° The multiprogramming (parallel processing) of the system can be
exploited.

° Many programming errors can be found with the help of a cross-

reference listing; i.e. it is not necessary to start the big, resource
consuming, compiler.

zref reads from standard input. The following options are interpreted
by xref:

-¢ C-comments will be skipped.
-p Pascal-comments will be skipped.

-P Packed files will be handled.

January 20, 1988 25

Version 3.5 User’s Guide MUNIX - PASCAL

Calling Conventions Section 7

7. Calling Conventions

26

Procedure calls are implemented by a commonly used mechanism
defining stackframes, which are allocated or deallocated as a procedure
is activated or deactivated. In our implementation four registers and a
vector of pseudo registers are used: a7 is used as stackpointer, a6 refer-
ences the current stackframe base. dO0 returns a function result and
the system variable _pbvec[0..maxdepth] stores the base addresses of all
currently accessible stackframes. The layout of a stackframe is shown
below.

stackframe

paramn

param 1
retaddr
old a6
a6 - old _pbvec([i] (i = current nesting depth)

local vars
a7 -

A parameter is passed by-reference or by-value depending on whether it
was declared as var parameter or not. The representation of parame-
ters in memory is the same as for other variables with the exception
that they are always word aligned, i.e. a parameter occupying an odd
number of bytes in memory will always be followed by a byte of
undefined storage.

Example:

stackframe for
procedure p(var j:integer; c,d:char);
after procedure entry

0 4 8 12 16 17 18 19

| _pbvec | old a6 1 retaddr] addr(j) | * l c [* { d 1

?
a6

* undefined

January 20, 1988

MUNIX - PASCAL User’s Guide Version 3.5

Section 8 Data Representation and Allocation

8. Data Representation and Allocation

In a.out modules program data fall into three segments: the text seg-
ment, the data segment and the bss segment. Pascal uses only two of
them: the text segment contains program code and constants whereas
static data (variables declared at the outmost level in a module) and
exported variables are stored in the bss segment. Automatic and
dynamic data are allocated at runtime on the stack and ""free memory”
is managed by the brk . sbrk system calls.

To cope with alignment, one general rule can be stated: any data allo-
cated more than one byte is aligned on a word (2 bytes) boundary.

Variables of scalar and pointer types allocate storage space as summar-
ized in table 8.1. Variables of subrange types are allocated as variables
of the associated scalar types. For example, a type 1..10 is considered a
subrange of integer and therefor allocates a longword. Variables of
packed subrange types are implemented in one byte (-128 .. 127; O ..
255), two bytes (-32768 .. 327687; 0 .. 65535) or four bytes (all others).
The structured types are stored as described below.

Type Storage Allocation

character 8 bits (1 byte) Byte

boolean 8 bits (1 byte) Byte

short 16 bits (1 word) Word

integer 32 bits (1 longword) | Word

real 32 bits (1 longword) | Word

enumerated | 8 bits (1 byte) if | Byte if type
type contains 256 | contains 256
elements or less; | elements or less;
16 bits (1 word) | Word otherwise
otherwise

pointer 32 bits (1 longword) | Word

|

Table 8.1: Storage of Scalar and Pointer Types

* MUNIX Pascal-32 always allocates 64 bits for 'real’ variables. On the 16-bit System,
you can choose 32- or 64-bit format.

January 20, 1988 27

Version 3.5 User’s Guide MUNIX - PASCAL

Data Representation and Allocation Section 8

28

A set allocates storage depending on the ordinal value of its largest ele-
ment: the number of bytes it occupies is equal to the ordinal value
rounded up to the nearest byte boundary. Since the size of a set is lim-
ited to 256 elements, with ordinal values from 0 to 255, a set occupies at
most 32 bytes.

An array is stored and aligned according to the type of its components.
For example, each element of a character array is stored in a byte and
aligned on a byte boundary; if the array has more than one component
then the total array is aligned a one word boundary. Similarly, each ele-
ment of an array of set of 3..21 occupies three bytes and is aligned on a
word boundary.

strings and constant strings are internally terminated by a binary 0; i.e.
they adhere to the C convention.

Records are stored and aligned field by field according to the type of the
field. For example, a variable of type

record
x: integer;
y: boolean;
z:1..10
end;

is aligned on a word boundary because it occupies more than one byte
of storage. The figure beneath shows how this variable is stored:

* undefined

The attribute packed does not affect the allocation of data structures; it
is only interpreted with subranges as stated earlier. To yield a more
compact representation than in the example above, you had to define
the following structure:

record

X: integer;

y: boolean,;

z: packed 1..10
end;

which would result in the following storage allocation:

January 20, 1988

MUNIX - PASCAL User’s Guide Version 3.5

Section 9 Appendix

9. Appendix
9.1. Examples
9.1.1. Sample program

1 program ackermann(input,output);

2 var x,y: integer;

3 function ack(i,j: integer): integer;

4 begin

5 if 1=0then ack:=j+1

6 else if j = 0 then ack:=ack(i-1,1)

7 else ack:=ack(i-1,ack(i,j-1))

8 end;

9

10 begin

11 repeat

12 writeln(output,’Enter two integers. Terminate with zero.’);
13 read(input,x,y);

14 writeln(output,’acker(’,x:0,",",y:0,") = ",ack(x,y):0)
15 until x=0

16 end.

9.1.2. Crossreference

ack 3p 5 6 6 7T 7 7 14

ackermann 1

i 3f 5 6 7 7
input 1 13

integer 2 3 3

j 3f 5 6 7
output 1 12 14

read 13

X 2v 13 14 14 15
3% 2v 13 14 14

J

January 20, 1988 29

Version 3.5 User’s Guide MUNIX - PASCAL

Examples Section 9.1

9.1.3. Separate Compilation

program ackermann(input,output);
var X, y: integer;

import counter: integer;
function ack(i,j: integer): integer; extern;

begin
repeat

writeln(output,’Enter two integers. Terminate with zero.’);
read(input,x,y);
counter:=0;

13 writeln(output,’acker(’,x:0,’,",y:0,") = ',ack(x,y):0);

14 writeln(output,'number of calls=’,counter:5);

15 until x=0

1
2
3
4
5
6
7
8
9
10
11
12

16 end.

1 module ack;

2

3 export counter: integer;

4

5 function ack(i,j: integer): integer;

6 begin

7 counter:=counter+1;

8 if i =0then ack:=j+1

9 else if j =0 then ack:=ack(i-1,1)
10 else ack:=ack(i-1,ack(i,j-1))
11 end;

12

30 January 20, 1988

MUNIX - PASCAL User’s Guide Version 3.5

Section 9.1 Examples

9.2. Coercions

The following gives an overview of the coercions implemented by Pas-
cal to provide consistent use of one-, two- and four-byte signed and
unsigned operands. The rules are valid for all arithmetic and rela-
tional operations.

Index expressions are always extended to a full integer value.
Expressions representing set elements are considered unsigned one-

byte.

f i il i2 u ul u?2
f f f f f f f f
1 f i i i i 1 i
il f i il i i i i
i2 f i i i2 i i i
u f i i i u u u
ul f i i i u ul u
ul f i i i u u u

Notation

f: floating point

i: (signed) integer

u: unsigned (0 .. 231-1)
il: one-byte integer

il: two-byte integer
ul: one-byte unsigned
u2: two-byte unsigned

January 20, 1988 31

Version 3.5 User’s Guide MUNIX - PASCAL

Coercions Section 9.2

9.3. Standard Procedures and Functions

For a detailed description see also [1].

Procedure Parameter Fesult Function

abs(x) integer or real same as x Computes the absolute
value of x.

addr(x) any type address Type address is compa-
tible with all pointer
types.

arctan(x) integer or real real Computes the arcus

tangens of x.

atoi(s) string integer Convert ascii string to
integer.

chr(x) integer char Returns the character
whose ordinal number
is x.

clock integer Returns the cpu time (in

milliseconds) used by the
current process.

convert(a,t) any type t Returns value of a with
type t.

cos(x) integer or real real Computes the cosinus
of x.

date(x) string Return date in ascii
representation:
dd-mon-yyyy

dispose(p) any pointer Deallocates heap memory

pointed to by p. After dispos
p becomes undefined.

eof(f) file boolean End of file encountered.
true only when the file
position is after the last
element in the file.

32 January 20, 1988

MUNIX - PASCAL

Section 9.3

User’s Guide

Version 3.5

Standard Procedures and Functions

eoln(f)

errorexit

exp(x)

get(f)

halt(x)

halt

itoa(i,s)

In(x)

mark(x)

‘message(X)

new(p)

new(p,tl,.tn)

odd(x)

ord(x)

January 20, 1988

file

integer or real

file

integer

integer,string

integer or real

any pointer

string

any pointer

integer

any scalar type
except real

boolean

real

real

boolean

integer

End of line encountered.
true only when the file
position is after the last
character in a line. The
value of f~ is a space.

Exit program and force a
core dump.

Computes the base of the
natural logarithmus raised
to the power of x.

Moves the current file
position to the next element

Terminates the execution of
the program and returns
the value of x. See also the
system call exit(2).

same as halt(0).
Convert integer to ascii;
the result is delivered in

variable s.

Computes the natural
logarithmus of x.

Stores the current value of
the heap pointer into x.

Write string to stderr.

Allocates heap memory and
returns the address in p.

Allocates heap memory to
pointer. p~ must be a re-
cord with variants.

Returns true if the integer x
Is odd; false otherwise.

Returns the ordinal (inte-

ger) value corresponding
to the value of x.

33

Version 3.5

User’s Guide

Standard Procedures and Functions

MUNIX - PASCAL

Section 9.3

34

pack(a,i,z)

page(f)

pcclose(f)

pred(x)

pseek(f,o,w)

ptime(x)

put(f)

read(f,x)

readIn(f)

read(f,x1,..,xn)

file

file

any scalar type same as X

except real

file, integer
short

string

file

file

type of x
depends on the
filetype

text

readIn(f,x1,..,.xn)

release(x)

reset(f[,s])

any pointer

file,string

z:=ali.n];
where i.n: index range of z.

skip to the top of a new
page before printing the
next line of the textfile f.
The default for f is output.

See system call close (2).

Returns the predecessor
value of x.

See system call Iseek (2).

Return time in ascii
representation:
hh-mm-ss.0 .

Appends f~ to the file f.
The default for f is output.

Reads the value of x from
the file f. The default
for f is input.

Skips to the beginning of
the next line. The default
for f is input.

same as
read(f,x1); read(f,x2,..xn)

same as
read(f,x1,..,xn); readln(f)

Loads the heap pointer with
the value of x.

Resets file for reading. The
optional second parameter
designates a MUNIX
pathname.

January 20, 1988

MUNIX - PASCAL User’s Guide Version 3.5

Section 9.3 Standard Procedures and Functions

rewrite(f[,s]) file,string Resets file for writing. The
optional second parameter
designates a MUNIX
pathname.

round(x) real integer trunc{x + 0.5) if x >=0
, trunc(x - 0.5) if x< O

sin(x) integer or real real Compute sinus of x.

sizeof(x) any type integer Returns size used to
represent variables of same
type as x.

sqr(x) integer or real same as X Computes the square of x.

sqrt(x) integer or real real Compute square root of x.

suce(x) any scalar type same as X Returns the successor

except real value of x.

trunc(x) real integer Truncate x to a integer
value.

unpack(z,a,i) ali.n]:=z;

where i.n: index range of z.

write(f x) text Writes the value of x to
type of x the file f. The default for
depends on the f is output.
filetype :

writeln(f) file Starts a new line. The

default for f is output.

write(f,x1,..,xn) same as
write(f,x1); write(f,x2,..xn)

writeln(f x1,..,xn) same as
) write(f,x1,..,xn); writeln(f)

January 20, 1988 35

Version 3.5 User’s Guide MUNIX - PASCAL

Syntax Equations Section 9.4

36

9.4. Syntax Equations

letter = a/b/csd/e/f/7g/h/izjsk/l/m/n/so/p/qQ/r/s/L/W/V/IW/IX/Y/ 2
/A/B/C/D/E/F/G/H/1/73/K/L/M/N/O/P/Q/R/S/T
/U/VN/WI/XIY /27—

digit = 0/1/2/3/4/5/6/7/8/9

name = letter { letter / digit |
constant_name = name

lype_name = name

variable_name = name

names = name , ...

label = unsigned_number

compilation_unit =
program name ‘(‘ names ‘) ; block .
/ module name ; {declaration .

block = {declaration} compound_statement

declaration =
/ import (names :type) ;... ;
/ export (names :type), ...
/var (mnames :type), .. ;
/ label label , ... ;
/ const (nmame ‘=' constant); ... ;
7/ type (mname '='type); .. ;
/ function_declaration ;
7/ procedure_declaration ;

constant =
[sign] (unsigned_number / constant_name)
/ character_string

sign =+ / -

unsigned_constant =
unsigned_number / character_string
/ constant_name ./ nil

unsigned_number =
digit {digit] - # hexadigit {hexadigit}

hezadigit = digit /A/B/C/D/E/Frsa/b/c/d/e/f
character_string = ./ *characters enclose by '’ *~

January 20, 1988

MUNIX - PASCAL User’s Guide Version 3.5

Section 9.4 Syntax Equations
---------------------- type -
type = type_name / new_type
new_type = simple_type / structured_type / ~ type_name
sitmple_type = ordinal_type / real
ordinal _type =

‘(‘ names *)
/ constant .. constant
7/ ordinal_type_name

structured_type =
[packed | unpacked _structured_type
/ structured_type_name

unpacked_structured_type =
array ‘[‘ ordinal_type , ... '] of type
/ file of type
7 record [fleld list [;]] end
/ set of ordinal _type

fleld_list =
flzed _part [;variant_part]
s variant _part

fized part = (names :type) ..

variant _part = case [tag_field_name : | tag_type of variant ; ...
variant = case_constant_list - (‘[field _List [;]])
case_constant_list = case_constant , ...

case_constant = constant [.. constant |

variable = (variable_name / field_name)
{ ‘[expression, .. ‘]
/. fleld_name

Iy

factor =
variable
7 unsigned_constant
/ function_name [‘(‘ actual_parameter , ... ')]
/ set
/(" expression ‘)
/ not factor

January 20, 1988 37

Version 3.5 User’s Guide MUNIX - PASCAL

Syntax Equations Section 9.4

actual_parameter =
expression
/ procedure_name / function_name

set = ‘[[member, ... 1]
member = expression [.. expression |

term = factor
¢ (*7 ' /div / mod / and) factor |

simple_ezpression = [sign | term
{ (+ /- /or)term]

expression = simple_expression
[(<> /=< /> /<= /<=)simple_expression]

procedure_declaration =
procedure_heading ;
(block / directive)

function_declaration =
function_heading ;
(block ~ directive)

directive = forward / extern ~ externc
procedure_heading = procedure name [‘(‘ parameter ;... ')']
Sfunction_heading = function name [*(* parameter ;...)]

s result_type

parameter =
function_heading / procedure_heading
7 names : type
/ var names : (type_name / array_type)

array_type =
array ‘[' indez_type ; ... '|' of (type_name / array_type)

index_type =
name .. name : ordinal_type_name

38 January 20, 1988

MUNIX - PASCAL User’s Guide Version 3.5

Section 9.4 Syntax Equations

statement = [label :]
compound_statement
/ case expression of case_element ;... [;] end
/ for name = expression
(to ~ downto) expression
do statement
/ goto label
/ if expression then statement
[else statement]
/ repeat statement ; ... until expression
/ while expression do statement
/ with variable , ... do statement
7/ (variable / function_name) .= expression
/ procedure_name [‘(‘ actual_parameter , ... ')]

compound_statement =
begin statement ; ... end

case_element =
((case_constant / else) : / otherwise)
statement

January 20, 1988 39

Version 3.5 User’s Guide MUNIX - PASCAL

Syntax FEquations Section 9.4

9.5. Reserved Identifiers

The following identifiers are predefined by Pascal.

40

abs environ mincard readln
addr eof minchar real
address eoln minint release
alfa errorexit minshort rewrite
arctan exp new round
argc false . nil short
argv get odd sin
atoi halt ord sqr
boolean integer pack sqrt
cardinal itoa page succ
char In pcclose text
chr mark pread true
clock maxcard pseek trunc
convert maxchar ptime unpack
cos maxint put write
date maxshort read writeln
dispose message

Furthermore, there are identifiers of data and subroutines used by
the Pascal run time system that are referenced at linking time.
Among them are system calls (e.g. open, close) and some C standard
subroutines; all others are listed below.

Warning: if a programmer uses these identifiers to define his own pro-
cedures or types and the linker Id will reference the users’ entity and

report no error.

_copen
_error
_ferror
_flushbuffer
_paddm
_pblank
_pbvec
_pcase
_pcerr
_pchki
_pchkp
—pchku
_pcidx

-pcmpa
-pcmpg
_pcmpl
—-pcmpm
—pconf
_pdot2
_pelem
_pemptyset
_pemptystr
_pgoto
_pierr

—pin

_pinit

-pjerr
—pmulm
_popen
—pperr
—prdi
_prdr
_prds
_pserr
_pset
-psqr
—psubm
_puerr
_pwrb

_pwrc
—_pwrcl
_pwrf
_pwri
_pwrr
_pwrs
_syserror
atan
closefiles
final

fsqr

In

main

January 20, 1988

MUNIX - PASCAL User’s Guide Version 3.5

Section 10

References

10. References

[1]

(2]

Jensen K.; Wirth N.: Pascal User Manual and Report

Second Corrected Reprint of the Second Edition 1978, Springer Ver-
lag

MUNIX Volume 2
Kernighan B.; Ritchie D.: The C Programming Language

Prentice-Hall Software Series; Prentice Hall, Inc.; New Jersey

MUNIX Commands; Volume la;sdb (1) and
MUNIX Programming and Administration, Volume II; sdb
MUNIX Commands; Volume la; adb (1) and
MUNIX Basics, Options,; Volume III: adb (5)
MUNIX Programming, Volume 1b; a.out (5)

January 20, 1988 41

PC(1)

NAME

SYNOP

MUNIX (*PASCAL®) PC(1)

pc — Pascal compiler

SIS
pc [option | ... file ...

DESCRIPTION

Page 1

pc is the MUNIX Pascal compiler. It accepts several types of arguments:

Arguments whose names end with ".p’ are taken to be Pascal source pro-
grams; they are compiled, and each object program is left on a file with
suffix ".o’. The ".o’ file is normally deleted, however, if a single Pascal pro-
gram is compiled and loaded all at one go. Errors detected by the com-
piler are listed on stdout. This Pascal compiler has the cpp-identifier
m68000 predefined, i.e. "#ifdef m68000" is true.

Filenames are built from the basename of the source program and a cer-
tain suffix.

A call "pc test.p” is the same as "pc -c test.p && 1d -t -X /lib/crt0.o test.o
-lpdisp -lpfip -lp -lffp -lc && rm test.o”. The call "pc *.0" is the same as
"ld -t -X /lib/crt0.o *.o -lpdisp -lpfip -lp -Iffp -lc". If your directory con-
tains the file xyz.p, a call "make xyz'" will result in "pc -0 xyz xyz.p".

The following options are interpreted by pc. See ld(1) for load options.

—c Suppress the loading phase of the compilation, and force an
object file to be produced even if only one program is compiled.

—d Switch on the debug mode.
—e Display extension warning messages to stdout.

—f[FNSHT]
Floating point options. One of these options must be given, if the
program includes floating point operations.

—f The option -f alone is default and will compile code for the
Motorola Fast Floating Point Package, which is fast but does not
have double precision arithmetic. The libraries libpflp.a and
libffp.a will be searched before libc.a. Implicit define options:
-DFFP.

The option -fF will compile code for the Motorola IEEE Floating
Point Package. This package offers single and double precision
according to the IEEE specifications. The execution speed is
rather slow, as the generated code is emulated in Software. The
libraries libpmot.a and libmot.a will be searched before libc.a.
Implicit define options: -DIEEE and -DMOT_IEEE.

The option -fN will compile code for the CADMUS FPP board with a
NSC 16081 floating point processor. The numbers are also in [EEE
format, but the generated code is much different from the one
produced with option -fF. The libraries libpnsc.a and libnsc.a will
be searched before libc.a. Implicit define options: -DIEEE and
-DNSC_IEEE.

January 20, 1988

PC(1)

—fH

3

—m

—n

MUNIX (*PASCAL*) PC(1)

The option -fS will compile code with Single precision for the
CADMUS FPP board with a NSC 16081 floating point processor. The
libraries libpnSc.a and libnSc.a will be searched before libc.a.
Implicit define options: -DNSS_IEEE.

The option -fH will compile code for the Motorola 68881 floating
point coprocessor. This code will only run if the CPU is 68020.
The option -M is set implicitly. The libraries libp881l.a and
lib881.a will be searched before libc.a. Implicit define options:
-DIEEE and -DMOT_IEEE. See also mot881(3)

The option -fT also compiles code for the Motorola 68881 floating
point coprocessor. In addition, calls to functions sin, cos, exp etc.
are converted into floating point instructions f{sin, fcos, fexp etc.
and executed by the 68881. The option -M is set implicitly. The
libraries libp881.a and 1lib881.a will be searched before libc.a.
Implicit define options: -DIEEE and -DMOT_IEEE. See also
mot881(3)

Adds entries to the symbol table of the produced .o module which
indicate line numbers and corresponding code location. To set a
breakpoint at line 75 you can tell adb "L75:b"”". Make sure that
only one module of a program is compiled with this option.

Load new, mark & release instead of new & dispose.

Suppress execution (**dry run’') of pc commands.

—o output

-P

-V

i

Name the final output file output. If this option is used the file
'a.out’ will be left undisturbed. This option is passed on to the
linker.

Arrange for the compiler to produce code which counts the
number of times each routine is called; also, if loading takes
place, replace the standard startup routine by one which
automatically calls monitor(3C) at the start and arranges to write
out a mon.out file at normal termination of execution of the
object program. An execution profile can then be generated by
use of prof(1).

Find only the designated compiler passO in the file whose name is
constructed by a —B option. In the absence of a —B option, the
string is taken to be ‘/usr/lib/o’.

Trace and print pc commands. Temporary files are not deleted.
Display warning messages to stdout.

Changes the integer size from 2 (default) to 4. This makes pro-
grams which neglect the differences between int and pointer or
int and long much more portable. On the other hand, the pro-
duced code is less efficient. The linker transforms the option -llib
to -1Llib, e.g. -lc to -1Lc or -lcurses to -1Lcurses. These libraries are
themselves compiled with option -4.

January 20, 1988 Page 2

PC(1)

FILES

Page 3

MUNIX (*PASCAL®) PC(1)

—Bstring
Find substitute compiler passO in the file named string with the
suffix p0. If string is empty, use a standard backup version.

—Dname=def

—Dname
Define the nmame to the preprocessor, as if by '#define’. If no
definition is given, the name is defined as 1.

-E Run only the macro preprocessor and send the result to the stan-
dard output. The output is intended for compiler debugging; it is
unacceptable as input to pc.

—Idir Files of '#include’ type whose names do not begin with '/’ are
always sought first in the directory of the file argument, then in
directories named in —I options, then in directories on a standard
list.

-L Arrange for the compiler to produce code which puts the current
linenumber into the stackframe during execution. The C-
stacktrace of adb(1l) (command $c or $C) will then give for each
active procedure the current linenumber.

-M Produce code for the Motorola 68020 cpu. Some new instructions
of the 68020 like extb.l, or 32 bit multiply/divide, or bit field
instructions, or scaling of index variables by 1,2,4 or 8 are gen-
erated with this option. Code thus generated will normally not
run on the 68000/68010.

-0 Invokes optimisation phase.

-P Run only the macro preprocessor and place the result for each
“.p’ file in a corresponding ‘.i’ file and has no ‘#’ lines in it.

=S Compile the named Pascal programs and leave the assembler-
language output on corresponding files suffixed ‘s’

-T With this option initialized data is put into the text- rather than

the data segment. Thus for programs like the shell, whose text
segments are shared between many users, memory space can be
saved.

—Uname
Remove any initial definition of name.

Other arguments are taken to be either loader(ld) option arguments, or
Pascal-compatible object programs, typically produced by an earlier pc
run, or perhaps libraries of Pascal-compatible routines. These programs,
together with the results of any compilations specified, are loaded (in the
order given) to produce an executable program with name a.out.

file.i preprocessor output file
file.l error and listing file
file.o object file

file.p input file

file.s assembler listing file
a.out loaded (linked) output

January 20, 1988

PC(1)

/tmp/ptm*
/lib/cpp
/usr/lib/p0
/lib/e[12]
/lib/crt0.o
/lib/mert0.o
/lib/lert0.o0
/lib/mlert0.o

/usr/lib/perror
/usr/lib/libpmark.a

/usr/lib/libpdisp.a
/usr/lib/libp.a
/usr/lib/libffp.a
/usr/lib/libmot.a
/usr/lib/1ib881.a
/usr/lib/libnsc.a
/usr/lib/libnSc.a
/usr/lib/libpffp.a
/usr/lib/libpmot.a

/usr/lib/libp881.a
/usr/lib/libpnsc.a

/usr/lib/libpnSc.a
/lib/libc.a

/usr/include/pc/init.h

/usr/lib/op0

SEE ALSO
K. Jensen and N. Wirth Pascal User Manual and Report Springer Verlag

1978

MUNIX (*PASCAL®*) PC(1)

temporary files for pc

preprocessor

compiler passO for pc

compiler passes for pc

runtime initialization

runtime initialization for profiling
runtime initialization for option -4
runtime initialization for profiling and
option -4

prints errors and listing

Pascal runtime-support (new, mark &
release)

Pascal runtime-support (new & dispose)
Pascal runtime-support

Floating point library FFP

Floating point library Motorola IEEE
Floating point library M68881 IEEE
Floating point library NCS IEEE

Floating point library NCS

Pascal Floating point library FFP

Pascal Floating point library Motorola
IEEE

Pascal Floating point library M68881
IEEE

Pascal Floating point library NCS IEEE
Pascal Floating point library NCS
standard library, see intro (3)
initialisation of Pascal compilation
backup compiler passO for pc

monitor(3C), prof(1), adb(1), 1d(1), fp(3), mot341(3), mot881(3)

DIAGNOSTICS
The diagnostics produced by pc itself are intended to be self-
explanatory. Occasional messages may be produced by the loader(ld).
Any messages from the other passes should be send to PCS.

January 20, 1988

Page 4

PC(1) MUNIX (*PASCAL-32*) PC(1)

NAME

pc — Pascal compiler
SYNOPSIS

pc [option] ... file ...
DESCRIPTION

Pc is the MUNIX Pascal compiler. It accepts several types of arguments:

Arguments whose names end with '.p’ are taken to be Pascal source pro-
grams; they are compiled, and each object program is left on a file with
suffix '.o’. The "0’ file is normally deleted, however, if a single Pascal pro-
gram is compiled and loaded all at one go. Errors detected by the com-
piler are listed on stdout. This Pascal compiler has the cpp-identifier
m68000 predefined, i.e. "#ifdef m68000" is true.

Filenames are built from the basename of the source program and a cer-
tain suffix.

A call "pc test.p” is the same as "pc -c¢ test.p && ld /lib/crt0.o test.o
-lpdisp -lp -lc && rm test.o”. The call "pc *0" is the same as "ld -t
/1lib/crt0.o *.o0 -lpdisp -lp -l¢”. If your directory contains the file xyz.p, a
call "make xyz" will result in "pc -0 xyz xyz.p"".

The following options are interpreted by pc. See ld(1) for load options.

—c Suppress the loading phase of the compilation, and force an
object file to be produced even if only one program is compiled.

—d Switch on the debug mode.

—e Display extension warning messages to stdout.

—fH The option -fH will compile code for the Motorola 368881 floating
point coprocessor. The libraries libpm.a and libm.a will be
searched before libc.a. Implicit define options: -DIEEE and
-DMOT_IEEE. See also mot881(3M)

—{T The option -fT also compiles code for the Motorola M68881 float-
ing point coprocessor. In addition, calls to functions sin, cos, exp
etc. are converted into floating point instructions fsin, fcos, fexp
etc. and executed by the M68881. The libraries libpm.a and libm.a
will be searched before libc.a. Implicit define options: -DIEEE and
-DMOT_IEEE. See also mot881(3M)

-g Adds line number and symbol table information to the produced
.0 file necessary for symbolic debugging using sdb(1). Cannot be
used with -O option since optimization may rearrange code and
cause line number information to be incorrect. Must be given for
compiling and loading as well. During loading, the library libg.a
will be included. '

—m Load new, mark & release instead of new & dispose.
-n Suppress execution (“'dry run’’) of pc commands.
—o output

Name the final output file output. If this option is used the file
‘a.out’ will be left undisturbed. This option is passed on to the
linker.

Page 1 January 20, 1988

PC(1) MUNIX (*PASCAL-32*) PC(1)

-p Arrange for the compiler to produce code which counts the
number of times each routine is called; also, if loading takes
place, replace the standard startup routine by one which
automatically calls monitor(3C) at the start and arranges to write
out a mon.out file at normal termination of execution of the
object program. An execution profile can then be generated by
use of prof(1).

—to Find only the designated compiler pass0 in the file whose name is

constructed by a —B option. In the absence of a —B option, the
string is taken to be ‘/usr/lib/o’.

-v Trace and print pc commands. Temporary files are not deleted.
-w Display warning messages to stdout.
—Bstring

Find substitute compiler pass0O in the file named string with the
suffix p0. If stmng is empty, use a standard backup version.

—Dname=def

—Dname
Define the mame to the preprocessor, as if by '#define’. If no
definition is given, the name is defined as 1.

-E Run only the macro preprocessor and send the result to the stan-
dard output. The output is intended for compiler debugging; it is
unacceptable as input to pc.

—lIdir Tiles of '#include’ type whose names do not begin with '/’ are
always sought first in the directory of the file argument, then in
directories named in —I options, then in directories on a standard
list.

-L Arrange for the compiler to produce code which puts the current
linenumber into the stackframe during execution. The C-
stacktrace of adb(1l) (command 8c or $C) will then give for each
active procedure the current linenumber.

-0 Invokes optimisation phase.

-P Run only the macro preprocessor and place the result for each
".p’ file in a corresponding ‘.i’ file and has no ‘# lines in it.

-S Compile the named Pascal programs and leave the assembler-
language output on corresponding files suffixed “.s’.

-T With this option initialized data is put into the text- rather than

the data segment. Thus for programs like the shell, whose text
segments are shared between many users, memory space can be
saved.

—Uname
Remove any initial definition of name.

=Y count
Set the maximum value of symbol table entries handled by the
code generator to count.

January 20, 1988 Page 2

PC(1) MUNIX (*PASCAL-32*) PC(1)

Other arguments are taken to be either loader(ld) option arguments, or
Pascal-compatible object programs, typically produced by an earlier pc
run, or perhaps libraries of Pascal-compatible routines. These programs,
together with the results of any compilations specified, are loaded (in the
order given) to produce an executable program with name a.out.

FILES
file.i
file.l
file.o
file.p
file.s
a.out
/tmp/ptm*
/lib/cpp
/usr/lib/p0
/lib/ncl
/lib/crt0.0
/lib/mecert0.o
/usr/lib/perror
/usr/lib/libpmark.a

/usr/lib/libpdisp.a
/usr/lib/libp.a
/usr/lib/libpm.a

/lib/libc.a

/lib/libm.a
/usr/include/pc/init.h
/usr/lib/op0

SEE ALSO

preprocessor output file

error and listing file

object file

input file

assembler listing file

loaded (linked) output

temporary files for pc

preprocessor

compiler passO for pc

compiler passl for pc

runtime initialization

runtime initialization for profiling
prints errors and listing

Pascal runtime-support (new, mark &
release)

Pascal runtime-support (new & dispose)
Pascal runtime-support

Pascal Floating point library M68881
IEEE

standard library, see intro (3)

Floating point library M68881 IEEE
initialisation of Pascal compilation
backup compiler passO for pc

K. Jensen and N. Wirth Pascal User Manual and Report Springer Verlag

1978

adb(1), sdb(1), 1d(1), prof(1), monitor(3C), fp(3M), mot881(3M)

DIAGNOSTICS

The diagnostics produced by pc itself are intended to be self-
explanatory. Occasional messages may be produced by the loader(ld).
Any messages from the other passes should be send to PCS.

Page 3

January 20, 1988

