MUNIX
BASICQ OPTIONS
VOLUME III

D930100V3e04B4 Version 1.5/02

Information in this document is subject to change without notice and does not
represent a commitment on the part of Periphere ‘Computer Systeme GmbH.
The software,described in this document §s furnished under a-license agree-
ment. The softwere may be used or copied bhly in accordance with the terms of
the agreement.

Doc.-No.: D930100V3e0484

Trademarks: MUNIX for PCS
DEC, PDP for DEC
UNIX for Bell Laboratories

Copyright 1984 by
PCS GmbH, Pfaelzer-Wald-Strasse 36, D-8000 Muenchen 80, tel. 088/.67804-0
The.information contained herein is the property of PCS and shall neither
be reproduced in-whole orifi"part withéut PCS's prior written approval nor
be immplied to grant any licence to make, use, or sell equipment nanufactured
in accordance herewith.. = /= .

- L

-

PCS reserves the right to make changés without notice in the specifications
and materials contained herein and shall not'be responsible for any damages
(including consequential) caused-by reliance on the materials presented.

Copyright 1979,:Bell Telephone Laboratories, Incorporated.

Holders of a UNIX™ sqftware license are permitted to copy this document, or
any portion of it, as necessary for licensed use of the software, provided this
copyright notice and statement of permission are included.

MUNIX Il
(binder 4)

Options:

BASICS, OPTIONS

Current MUNIX Commands - Surnmary
Setting up MUNIX V1.5 ‘

UNIX Programming

Assembler Reference Manual

Assembler 68000 User’'s Guide - outdated
A Portable Fortran 77 Compiler

A Tutorial Introduction to ADB

CADMUS Testmonitor V1.0

Bad Block Bechandlung /7 Bad Sector Handling
Typing Documents on the UNIX System
Using the -MS Macros *

The UNIX Time-Sharing System

UNIX Implementaion

The UNIX 170 System

Display Editing with VI

Edit: A Tutorial

Ex Reference Manual

MED, PASCAL

Berkeley Extension Package

MUNIX - Volume 1]
BASICS,OPTIONS

Options:

Berkeley Extension:

Current MUNIX Commands - Summary

Sctling up MUNIX V1.5

UNIX Programming

Assernbler Reference Manual
Assembler 68000 User's Guide - outdated

A Portable Fortran 77 Compiler

A Tutorial Introduction to ADB

CADMUS Testmonitor V1.0

Bad Block Bchandlung
Bad Sector Handling

Typing Documents on the UNIX System
Using the MS Macros

The UNIX Time-Sharing System

UNIX Implementaion

The UNIX 170 System

Display Editing with V1

Edit: A Tutorial

Ex Reference Manual

MED - MUNIX Editor

MUNIX - PASCAL - Package

Berkeley Extension Summary

Writing Papers with NROFF using ME
-ME Reference Manual

Writing Tools
The Style and Diction Programms

Berkeley Font Catalogue

Screen updating and Cursor Movement

CURRENT MUNIX COMMANDS

DF
DU

DEVNM
QuOT
WHO

WHODO
FINGER

W

USERS
UPTIME
1D
LOGNAME
UNAME
TTY

PS

PWD
CRON

-10-

e May set UNIX 's idea of date and time.

Report amount of {free space on flle system devices.

Print a summary of total space occupied by all files in a hierar-
chy.

Give the device name where a specified subdirectory is resident.
Print summary of file space usage by user id.

Tell who’s on the system.

e List of presently logged in users, ports and times on.

« Optional history of all logins and logouts.

Tell who is doing what on the system.

(*BE*) List the current users including login name, terminal
name, login time...

(*BE®) Print a summary of the current activity on the system,
including what each user is doing.

(*BE*®) Print a compact list of users who are on the system.
(*BE*®) Show how long system has been up.

Print user and group IDs and names.

Print login name.

Print the current system name of UNIX.

Print name of your terminal.

Report on active processes.

e List your own or everybody's processes.

* Tell what commands are being executed.

Optional status information: state and scheduling info, prior-
ity, attached terminal, what it's waiting for, size.

Print name of your working directory.
Clock daemon.

1.8. Backup and Maintenance

CLRI
MOUNT

UMOUNT

MKFS
MKXNOD

TAR

Clear i-node.

Attach a device containing a file system to the tree of direc-
tories. Protects against nonsense arrangements.

Remove the file system contained on a device from the tree of
directories. Protects against removing a busy device.

Make a new file system on a device.

Make an i-node (file system entry) for a special file. Special
files are physical devices, virtual devices, physical memory, etc.

Manage file archives on magnetic tape.
* Collect files into an archive.

e Update DECtape archive by date.

*» Replace or delete DECtape files.

DUMP

RESTOR

YOLCOPY
LABELIT
SU

FSCK
FSDB

DCHECK

ICHECK

NCHECK

CLRI

INSTALL
SYNC

SHUTDOWN
BADSECT
SCRIPT

DMESG

-11-

* Print table of contents.
* Retrieve from archive.

(-0-) Dump the file system stored on a specified device, selec-
tively by date, or indiscriminately. A multi-volume dump (i.e. on
floppies) is possible.

Restore a dumped file system, or selectively retrieve parts
thereof.

(-0-) Copy a file system with label checking.
(-0-) Create initial labels for disk or tape file systems.

Temporarily become the super user with all the rights and
privileges thereof. Requires a password.

(-B-) File system consistency check and interactive repair.

File systemn debugger. Used to patch up a damaged filesystem
after a crash.

Read the directories in a file systemn and compare the link-
count in each i-node with the number of directory entries by
which it is referenced.

Check the number of used and free blocks. List the number of
regular files, of directories and special files. If specified, a new
free list is constructed.

Generate a pathname vs. i-number list.

Peremptorily expunge a file and its space from a file system.
Used to repair damaged file systems.

Install commands.

Force all outstanding 170 on the system to completion. Used to
shut down gracefully.

(*BE*) Close down the system at a given time. Used to notify
users nicely when the system is shutting down.

(*BE®) Create files to contain bad sectors. Less general than
bad block forwarding, but better than nothing.

(*BE*) Make a typescript of everything printed on the terminal
during a session.

(*BE®) Look in a system buffer for recently printed diagnostic
messages and print them on the standard output.

1.8. Accounting

The UNIX System-V Accounting provides methods to collect per-process
resource utilization data, record connect sessions. monitor disk utilization,
and charge fees to specific logins. A set of C language programs and shell pro-
cedures is provided to reduce this accounting data into summary files and

reports.

At process termination, the UNIX system kernel writes one record per pro-
cess to a distinct file.

-12-

The LOGIN and INIT programs record connect sessions by writing records
into /etc/wtmp. Date changes, reboots, and shutdowns are also recorded
in this file.

The following list describes programs and shell-procedures of the System V
accounting system:

ACCTCMS (*ACC*): Command summary from per process accounting
records.

ACCTDISK (*ACC*) Converts user ID, login name and number of disk blocks
to total accounting records.

ACCTDUSG (°ACC®) Breaks down disk usage by LOGIN.
ACCTON (*ACC*) Turns process accounting ofl.

ACCTMERG (®*ACC®) Merge or add total accounting files.
CHARGEFEE (°*ACC*) Charge a number of units to a login-name.

CKPACCT (®*ACC*) Check total size of the accounting files, initiated by the
clock daemon.

MONACCT (*ACC*) Creates summary files monthly.
PRDAILY (®*ACC®) Format a report of the previous day's accounting data.

RUNACCT (*ACC*) Performs daily accumulation of connect, process, fee,
and disk accounting.

1.10. Communication

MAIL Mail a message to one or more users. Also used to read and
dispose of incoming mail. The presence of mail is announced by
LOGIN and optionally by SH.

e Each message can be disposed of individually.
« Messages can be saved in files or forwarded.

RMAIL (*UUCP*) Restricted version of MAIL for UUCP.

BIFF (*BE®*) Be notified if mail arrives and who it is from. {(not longer
supported)

FROM (*BE*®) Show who is the sender of my mail.

PRMAIL (*BE*) Print the mail which waits for you, or a specified user, in
the ‘post office’.

LEAVE (*BE*) Remind you when you have to leave.

CALENDAR Automatic reminder service for events of today and tomorrow.

WRITE Establish direct terminal communication with another user.

MESG Inhibit receipt of messages from WRITE and WALL.

MSGS (*BE*®) Read system messages. These messages are sent by mail-
ing to the login ‘msgs’.

CuU Call up another time-sharing system.

¢ Transparent interface to remote machine.
e File transmission.

UUCP

UULOG

UUNAME
UUSTAT

UUSUB
UUTO

UUPICK

EXCR
CHECKNEWS
INEWS
NEWS
POSTNEWS
READNEWS
RECNEWS
RJESTART
SEND

UUX
UUCLEAN
WALL

-13-

Take remote input from local flle or put remote output into
locel file.

*» Remote systemn need not be UNIX.
File transfer between CPU's.

e Automatic queuing until line becomes available and remote
machine is up.

» Copy between to remote machines.
¢ Differences, malil, etc., between two macines.

(*UUCP*) Maintain a summary log of UUCP and UUX transac-
tions.

(*UUCP®) List the UUCP names of known systems.

(*UUCP®) UUCP stetus inquiry and job control. Display status of,
or cancel, previously specified UUCP commands, or provide gen-
eral status on UUCP connections to other systems.

(*UUCP®) Define and monitor a UUCP subnetwork.

Public CPU to CPU command execution. Gather files from vari-
ous CPUs, execute a command on a specified CPU, and send
standard output to a file on a specified CPU.

Accept or reject the files sent by UUTO. Looks somewhat like
MAIL.

(*NC*) Run a program on another system.
(*UUCP*) Check to see if user has news.
(*UUCP*) Submit news articles.

(*UUCP?*) Print news items.

(*UUCP*) Submit news articles.

(*UUCP®) Read news articles.

(*UUCP?) Receive unprocessed articles via mail.
(*RJE®) RJE-status report and interactive status console.
(*RJE®) Gather files and submit RJE-jobs.
(*UUCP®) Unix to unix command execution.
(*UUCP®) Uucp spool directory clean-up.

Write to all users.

1.11. Basic Program Development Tools

Some of these utilities are used as integral parts of the higher level languages
described in section 2.

AR

Maintain archives and libraries. Combines several files into one
for housekeeping efliciency.

e Create new archive.

Update archive by date.
Replace or delete files.
Print table of contents.
Retrieve from archive.

A6B

LIBRARY

CURSES

ADB

oD

58

-14 -

A fast M68000-Assembler,

e Creates object program consisting of
code, possibly read-only
initialized data
uninitialized data.

» Object code normally includes a symbol table.

The basic run-time library. These routines are used freely by
all software.

o Buffered character-by-character 1/0.

e Formatted input and output conversion (SCANF and PRINTF) _
for standard input and output, files, in-memory conversion.

Storage allocator.

Time conversions.

Number conversions.
Password encryption.
Quicksort.

Random number generator.

Mathematical function library, including trigonometric func-
tions and inverses, exponential, logarithm, square root,
bessel functions.

(*BE®) Library of screen functions which allows screen updating
(with user input) and cursor motion optimization.

(-0-) Interactive debugger.
» Postmortem dumping.
Examination of arbitrary files, with no limit on size.

Interactive breakpoint debugging with the debugger as a
separate process.

Symbolic reference to local and global variables.
Stack trace for C programs.

Output formats:
1-, 2-, or 4-byte integers in hex, octal
or decimal
single and double floating point
character and string
disassembled machine instructions
Patching.
Searching for integer, character, or floating patterns.
+ Handles separated instruction and data space.
Dump any file. Output options include any combination of octal
or decimal by words, octal by bytes, ASCIl, opcodes, hexade-
cimal.
e Range of dumping is controllable.
Hexadecimal file dumnp.

Link edit. Combine relocatable object files. Insert required
routines from specified libraries.

LORDER

NM

SIZE
STRIP

TIME
PROF

MAKE

ERROR

HELP
NOTES
PACK
RANLIB
REGCMP
TIMEX

-15-

Resulting code may be sharable.

Resulting code may have separate instruction and data
spaces.

Places object file names in proper order for loading, so that
files depending on others come after them.

Print the namelist (symbol table) of an object program. Pro-
vides control over the style and order of names that are
printed.

Report the core requirements of one or more object files.

Remove the relocation and symbol table information from an
object file to save space.

Run a command and report timing information on it.

Construct a profile of time spent per routine from statistics
gathered by time-sampling the execution of a program.

s Subroutine call frequency and average times for C programs.

Controls creation of large programs. Uses a control file specify-
ing source file dependencies to make new version; uses time last
changed to deduce minimum amount of work necessary.

¢ Knows about CC, PASCAL, YACC, LEX etc.
(*BE*) Analyze and disperse compiler error messages.

* Knows about error messages produced by MAKE, CC, CPP, AS,
LD, LINT, PC, F77.

Attempts to determine which language processor produced
each error message.

Determines source file and line number to which the error
message refers.

Determines if the error message is to be ignored, or not.
» Inserts the error message into the source file as comment
Ask for help.
A news system.
(-V7-) Packs or unpacks many files <---> one.
(-V7-) Convert archives to random libraries.
Regular expression compile.
Time a command; report process date and system activity.

-16 -

1.12. UNIX Programmer's Manual

MANUAL

MAN
MAN

CATMAN
APROPOS

WHATIS

Machine-readable version of the UNIX Programmer's Manual.
e System overview.

e All commands.

» All system calls.

e All subroutines in C and assembler libraries.

e All devices and other special files.

e Formats of flle system and kinds of files known to system
software.

* Boot and maintenance procedures.
Print specified manual section on your terminal.
(*BE*) Give information from the on line programmers’ manual.

e Gives all commands whose description contains any of a
specified set of keywords.

Attempts to locate manual sections related to a specified list
of files.

e Formats a specified set of manual pages.
(*BE®) Create the preformatted versions of the on-line manuals.

(*BE®) Show which manual sections contain instances of any of
the given keywords in their title.

(*BE*) Look up a given command and give the header line from
the manual section.

1.13. Computer-Aided Instruction

LEARN

A program for interpreting CAl scripts, plus scripts for learning
about UNIX by using it.

e Scripts for basic files and commands, editor, advanced files
and commands, EQN, MS macros, C programming language.

2. Languages

-17-

2.1. The C langunge

cC

LINT

CB

CPP
INDENT

(-0-) Compile and/or link edit programs in the C language. The
UNIX operating system, most of the subsystems and C itself are
written in C. For a full description of C, read "The C Program-
ming Language', Brian W. Kernighan and Dennis M. Ritchie,
Prentice-Hall, 1878.
* General purpose language designed for structured program-
ming.
Data types include character, integer, float, double, pointers
to all types, functions returning above types, arrays of all
types, structures and unions of all types.

Operations intended to give machine-independent contro} of
full machine facility, including to-memory operations and
pointer arithmetic.

Macro preprocessor for parameterized code and inclusion of
standard files.

e All procedures recursive, with parameters by value.

e Machine-independent pointer manipulation.

* Object code uses full addressing capability of the M68000.
* Runtime library gives access to all system facilities.

» Floating point arithmetic realized by soltware.

*» Definable data types.

* Block structure

Verifier for C programs. Reports questionable or nonportable
usage such as:

Mismatched data declarations and procedure

interfaces.

Nonportable type conversions.

Unused variables, unreachable code, no-efiICect

operations.

Mistyped pointers.

Obsolete syntax.

e Full cross-module checking of separately compiled programs.

A beautifier for C programs. Does proper indentation and
placement of braces.

The C language preprocessor. Also used by F77 and Pascal.
(-V-) Indent and format a C program source.

2.2. Fortran

F77

RATFOR

STRUCT

EFL

-18 -

A full compiler for ANS! Standard Fortran 77.

Compatible with C and supporting tools at object level.
Optional source compatibility with Fortran 66.
Free format source.

Optional subscript-range checking, detection of uninitialized
variables.

all widths of arithmetic: 2- and 4-byte integer; 4- and 8-byte
real; 8- and 16-byte complex.

Ratfor adds rational control structure like C to Fortran.

Compound statements.

If-else, do, for, while, repeat-until, break, next statements.
Symbolic constants.

File insertion.

Free format source

Translation of relationals like >, >=.

Produces genuine Fortran to carry away.

May be used with F77.

Converts ordinary ugly Fortran into structured Fortran (i.e.,
Ratfor), using statement grouping, if-else, while, for, repeat-
until.

(-V7-) Extended Fortran Language.

-19 -
2.3. Pasncal

PC (*PAS*) Compile and/or link programs in the PASCAL 68000
language.
PASCAL 68000 is an extended implementation of the PASCAL
language. Specifically PASCAL 68000 complies almost com-
pletely with the requirements of the ISO standard proposal for
PASCAL. Some of the features of PASCAL 68000 are

o General purpose language
¢ Block oriented language
» Strong type checking

e Variety of data structures:
simple types, arrays, records,
sets, files, pointers, strings

Conformant arrays

Various control statements

Predefined procedures and functions

Seperate compilation of modules

Import and export of variables,procedures and functions

Linking C, FORTRAN or assembler modules to PASCAL 68000
modules

2.4. Snobol

SNO

-20 -

(°SNO*) Is an implementation of the SNOBOL language (espe-
cially the SPITBOL version). Its unusual support for string, list
and table manipulation makes SNO a powerful tool for several
applications.

e SNO has some of the best features of Basic and Lisp: It is

interactive, has ‘rubber memory’ for strings, lists and associ-
ative tables, and finally it is easy to learn.
SNO is qualified for the following applications:

text editing jobs

small interactive data bases

small translators: mini-languages, macros...

Preprocessor snif

2.5. Other Algorithmic Languages

BS

DC

BC

BASIC
FACTOR

A compiler/interpreter for modest-sized programs. A descen-
dant of Basic and SNOBOL 4 with a little C language thrown in.

o Statements from console execute immediately.

e Statements from a file compile for later execution (by
default).

e Line-at-a-time debugging.
e Many builtin functions.

Interactive programmable desk calculator. Has named storage
locations as well as conventional stack for holding integers or
programs.

» Unlimited precision decimal arithmetic.
o Appropriate treatment of decimal fractions.

e Arbitrary input and output radices, in particular binary,
octal, decimal and hexadecimal.

Reverse Polish operators:
+-°*/
remainder, power, square root,
load, store, duplicate, clear,
print, enter program text, execute.

A C-like interactive interface to the desk calculator DC.
o All the capabilities of DC with a high-level syntax.
e Arrays and recursive functions.

e Immediate evaluation of expressions and evaluation of func-
tions upon call.

e Arbitrary precision elementary functions: exp, sin, cos, atan.
e Go-to-less programming.

Basic Interpreter.

(-V-) Factor a number.

IFPROLOG

-21-

(*PRO*) The prolog interpreter system.

2.6. Macroprocessing

M4

A general purpose macroprocessor.

¢ Stream-oriented, recognizes macros anywhere in text.

» Syntax fits with functional syntax of most higher-level
languages.
Can evaluate integer arithmetic expressions.

2.7. Compiler-complilers

YACC

An LR(1)-based compiler writing system. During execution of

resulting parsers, arbitrary C functions may be called to do

code generation or semantic actions.

e BNF syntax specifications.

* Precedence relations.

» Accepts formally ambiguous grammars with non-BNF resolu-
tion rules.

Generator of lexical analyzers. Arbitrary C functions may be

called upon isolation of each lexical token.

s Full regular expression, plus left and right context depen-
dence.
Resulting lexical analysers interface cleanly with YACC
parsers.

-22-

3. Text Processing

3.1. Document Preparation

ED

MED

EX

Interactive context editor. Random access to all lines of a file.

Find lines by number or pattern. patterns may include:
specified characters, don't care characters, choices among
characters, repetitions of these constructs, beginning of
line, end of line.

e Add, delete, change, copy, move or join lines.
e Permute or split contents of a line.

e Replace one or all instances of a pattern within a line.
Combine or split files.
Escape to Shell (command language) during editing.

Do any of above operations on every pattern-selected line in
a given range.

« Optional encryption for extra security.

(*MED*) This editor allows you to edit a file using the screen and
the cursor keys somewhat like paper, pencil and eraser.

e Add, delete, change, copy lines.
e Split, concatenate lines.
e Find lines by number or pattern.

Manage previous defined rectangles.
Switch to another file.
Macro facility.

Install windows for working simultaneously with different
files.

e Escape to Shell during editing.

(*BE®) The line oriented text editor EX is a superset of the ED
editor from UNIX V7 and the root of the interactive display
function VIEW and the family of editors: EX, EDIT, V1.

e Find lines by number or pattern.
e Add, delete, change, copy, move or join lines.

Permute or split contents of a line.

Replace one or all instances of a pattern within a line.
Combine or split files.

Switch to the location of a ‘tag’.

Enter intraline editing.

Reverse the eflects of the last command.

Escape to Shell during editing.

Indent automatically.

e Define abbreviations.
e Attempt to recover the buffer in case of hangups or crashes.

EDIT

VIEW

CTAGS

SPELL

CRYPT
HYPHEN
MKSTR

-23-

» Read and execute commands from a specified file.
 Simulate an intelligent terminal on a dumb terminal.

(*BE®) A small version of EX. Avoids some of the complexities of
EX to provide an environment for new and casual users. (not
longer supported)

* Find lines by number or pattern.

e Add, delete, change, copy or move lines.

* Replace a patiern in a line.

e Add the contents of a file.

* Reverse the effects of the last command.

* Escape to Shell.

» Attemnpt to recover the buffer in case of hangups or crashes.

(*BE®) The screen oriented editor V1 is based on EX (see above).
Additional attributes:

¢ Numerous commands for file manipulation.
i.e. edit file containing the tag ‘teg’
at the first line of ‘tag’

Extensive command set for scrolling, paging and cursor
motion.
i.e. move to the end of line

move to the begin of the next word

Various units of text can be handled: words, sentences, sec-
tions.
i.e. duplicate sentence

delete word

Searching for strings by a set of difflerent conditions.
i.e. matches any character between 'x' and 'y’
matches the end of a word

» Definition of macros for saving time by typing commands.
¢« Escape to the line oriented editor EX.

(*BE*®) Interactive display function. Works like the VI - but with
read-only files. (not longer supported)

(*BE®) Make a tags file for EX from the specified C, PASCAL and
FORTRAN sources. A tags file gives the locations of specified
objects (in this case functions) in a group of files.

Make a permuted (key word in context) index.

Look for spelling errors by comparing each word in a document
against a word list.

» 25,000-word list includes proper names.

* Handles common prefixes and suflixes.

e Collects words to help tailor local spelling lists.
Encrypt and decrypt files for security.

Find hyphenated words.

(*BE*) Used to create a file of error messages by massaging C
source code.

-24-

Places all error messages from a C source flle in a specified
file.

Keys on the string "error(
the message file.

The copy of the C source file contains pointer into the mes-
sage file to retrieve the error message.

XSTR (*BE®) Extract strings from C programs to implement shared
constant strings.

e Maintains a file into which strings of component parts of a
large program are hashed.

The strings are replaced with references to the common
area.

DICTION (*BE*) Find wordy sentences in a document.

* Finds all sentences that contain phrases from a data base of
bad or wordy diction.

e The user may supply his own pattern file.

to process the error messages to

EXPLAIN (*BE*) Interactive thesaurus for the phrases found by diction.
STYLE (*BE*®) Analyze surface characteristics of a document.
e Reportson
readability

sentence length and structure
word length and usage

verb type

sentence openers

« Options to locate sentences with certain characteristics.

CUT (-V-) Cut out selected fields of each line of a file.
DBADD (*EMAC®) Add entry to an Emacs data base.
EMACS (*EMAC®) A screen editor.

PREP Prepare text for statistical processing.

REFER Find and insert literature references in documents.

-25-
3.2. Document Formatting

TROFF

NROFF Advanced typesetting. TROFF drives a Graphic Systems photo-
typesetter; NROFF drives ascii terminals of all types. TROFF and
NROFF style is similar to ROFF (not available on MUNIX), but
they are capable of much more elaborate feats of formatting,
when appropriately programmed. TROFF and NROFF accept the
same input language.
* All ROFF capabilities available or definable.

» Completely definable page format keyed to dynamically
planted “interrupts'’ at specified lines.

Maintains several separately definable typesetting environ-

ments (e.g., one for body text, one for footnotes, and one for
unusually elaborate headings).

Arbitrary number of output pools can be combined at will.

Macros with substitutable arguments, and macros invocable
in mid-line.

Computation and printing of numerical quantities.
Conditional execution of macros.
Tabular layout facility.

Positions expressible in inches, centimeters, ems, points,
machine units or arithmetic combinations thereof.

Access to character-width computation for unusually
difficult layout problems.

Overstrikes, built-up brackets, horizontal and vertical line
drawing.

Dynamic relative or absolute positioning and size selection,
globally or at the character level.

Can exploit the characteristics of the terminal being used,
for approximating special characters, reverse motions, pro-
portional spacing, etc.

The Graphic Systems typesetter has a vocabulary of several 102-character
fonts (4 simultaneously) in 15 sizes. TROFF provides terminal output for
rough sampling of the product.

NROFF will produce multicolumn output on terminals capable of reverse line
feed, or through the postprocessor COL.

High programming skill is required to exploit the formatting capabilities of
TROFF and NROFF, although unskilled personnel can easily be trained to
enter documents according to canned formats such as those provided by MS,
below. TROFF and EQN are essentially identical to NROFF and NEQN so it is
usually possible to define interchangeable formats to produce approximate
proof copy on terminals before actual typesetting. The preprocessors MS and
TBL are {ully compatible with TROFFand NROFF.

MS The standardized manuscript layout package of V7 for use with
NROFF or TROFF. This document was formatted with MS.

MM

ME

COLCRT
MMCHEK
MMT
VTROFF
LTROFF

EQN

NEQN

TBL

- 28 -

Page numbers and draft dates.
Automatically numbered subheads.
Footnotes.

« Single or double column.

e Paragraphing, display and indentation.

¢ Numbered equations.

The standardized manuscript layout package of System III for
use with NROFF or TROFF. Some {eatures different from the MS
macro package:

e Table of contents.
Static and Floating displays.

Special formatting macros for preparing memoranda and
released papers..

(*BE*®) Package from Berkeley 4.1 bsd for formatting technical
papers with NROFF or TROFF. Easy to learn.

(-V-) Filter nroff output for CRT previewing.

(-V-) Check usage of mm macros and eqn delimiters.
(-V-) Typeset documents, view graphs, and slides.
(*BE*®) Trofl for raster printer/plotter.

(*TSP*) Troff for CANON laser beam printer. Ltrofl accepts the
same input language as trofl.

A mathematical typesetting preprocessor for TROFF. Translates
easily readable formulas, either in-line or displayed, into
detailed typesetting instructions.

 Automatic calculation of size changes for subscripts, sub-
subscripts, ete.
Full vocabulary of Greek letters and special symbols, such as
‘gamma’, "GAMMA', 'integral’.
Automatic calculation of large bracket sizes.
Vertical “piling’’ of formulae for matrices, conditional alter-
natives, etc.
Integrals, sums, etc., with arbitrarily complex limits.
Diacriticals: dots, double dots, hats, bars, etc.
Easily learned by nonprogrammers and mathematical typ-
ists.

A version of EQN for NROFF; accepts the same input language.
Prepares formulas for display on any terminal that NROFF
knows about, for example, those based on Diablo printing
mechanism.

» Same facilities as EQN within graphical capability of termi-

nal.

A preprocessor for NROFF/TROFF that translates simple
descriptions of table layouts and contents into detailed
typesetting instructions.

» Computes column widths.

GREEK

COL
DEROFF
CHECKERQ
YFONTINFO
SOELIM
CHECKNR

FMT

-27-

Handles left- and right-justified columns, centered columns
and decimal-point alignment.

e Places column titles.
* Table entries can be text, which is adjusted to fit.
¢ Can box all or parts of table.

Fancy printing on Diablo-mechanism terminals like DASI-300
and DASI-450, and on Tektronix 4014.

» Gives half-line forward and reverse motions.

Approximates Greek letters and other special characters by
-overstriking.

Canonicalize files with reverse line feeds for one-pass printing.
Remove all TROFF commands from input.

Check document for possible errors in EQN usage.

(*BE*) Inspect and print out information about unix fonts.
(*BE*) Eliminate .80's from nroff input.

(°*BE*) Check NROFF /TROFT files.

* Knows about MS and ME macro packages.

¢ Checks unknown commands.

¢ Checks mismatched opening and closing delimiters in case of
macros which always come in pairs
font changes
size changes

(*BE®) Interpret a stream from the standard output of TROFF as
it would act on the typesetter.

(*BE*) Simple text formatter.

* Produces an output with lines as close to 72 characters as
possible.

Spacing at the beginning of input lines and blank lines are
preserved.

- 28 -

4. Information Handling

SORT

TSORT
UNIQ

TR

DIFF

SDIFF
COMM
JOIN

GREP

LOOK
WC

SED

AWK

Sort or merge ASCII flles line-by-line. No limit on input size.
e Sort up or down.
o Sort lexicographically or on numeric key.
Multiple keys located by delimiters or by character position.

May sort upper case together with lower into dictionary
order.

e Optionally suppress duplicate data.

Topological sort — converts a partial order into a total order.
Collapse successive duplicate lines in a file into one line.

¢ Publish lines that were originally unique, duplicated, or both.
 May give redundancy count for each line.

Do one-to-one character translation according to an arbitrary
code.

« May coalesce selected repeated characters.
o May delete selected characters.

Report line changes, additions and deletions necessary to bring
two files into agreement.

e May produce an editor script to convert one file into
another.

» A variant compares two new versions against one old one.

Produce a side-by-side listing of two files indicating those lines
that are different.

Identify common lines in two sorted files. Output in up to 3
columns shows lines present in first file only, present in both,
and/or present in second only.

Combine two files by joining records that have identical keys.
Print all lines in a file that satisfy a pattern.

e May print all lines that fail to match.

e May print count of hits.

e May print first hit in each file.

Binary search in sorted file for lines with specified prefix.

Count the lines, ‘'words' (blank-separated strings) and charac-
ters in a file.

Stream-oriented version of ED. Can perform a sequence of edit-
ing operations on each line of an input stream of unbounded
length.

e Lines may be selected by address or range of addresses.

» Control flow and conditional testing.

 Multiple output streams.

 Multi-line capability.

Pattern scanning and processing language. Searches input for

patterns, and performs actions on each line of input that
satisfies the pattern.

BFS

PWCK
GRPCK
CREF
XREF

5. Graphics

-29-

Patterns include regular expressions, arithmetic and lexico-
graphic conditions, boolean combinations and ranges of
these.

e Datn treated as string or numeric as appropriate.

e Can break input into fields; fields are variables.

e Variables and arrays (with non-numeric subscripts).

e Full set of arithmetic operators and control fiow.

e Multiple output streams to files and pipes.

e Output can be formatted as desired.

e Multi-line capabilities.

Big file scanner. Similar to ED, except it is read-only and

processes larger files. Useful for identifying sections of a large
file where CSPLIT can be used to divide it.

» Maximum file size is 1024-K bytes.

* Scans actual file, not a copy.

o All ED address expressions are supported.
* Repgular expression processing.

e Most ED commands operate.

e Many additional commands.

Scan the password file and note inconsistencies..
Verify entries in the group file.
Make a cross-reference listing of an assembler or C program.

(*PAS*) Create a cross reference listing from a C or Pascal pro-
gram.

The programs in this section are predominantly intended for use with Tek-
tronix 4014 storage scopes.

GRAPH

SPLINE

TPLOT

PLOT

TC
TK

Prepares a graph of a set of input numbers.

¢ Input scaled to fit standard plotting area.

* Abscissae may be supplied automatically.

* Graph may be labeled.

o Control over grid style, line style, graph orientation, etc.

Provides a smooth curve through a set of points intended for
GRAPH.

A set of filters for printing graphs produced by GRAPH and
other programs on various terminals. Filters provided for Tek-
tronix 4014, DAS] terminals, Versatec printer/plotter.

Graphics filters.
(-V7-) Phototypesetter simulator.
(-V7-) Paginator for the Tektronix 4014.

-30 -
8. Source Code Control System SCCS

SCCS is a collection of commands for controlling changes to files of text (typi-
cally, the source code of programs or text of documents).

ADMIN (*SCCS*) Create new SCCS files and change parameters of exist-
ing ones.

CDC (*SCCS*) Change the delta commentary of an SCCS delta.

COMB (*SCCS*®) Combine SCCS deltas.

DELTA (*SCCS*) Make a delta (change) to an SCCS file.

GET (*SCCS*) Create an ASCII text file

PRS (*SCCS*) Print an SCCS file.

RMDEL (*SCCS*) Remove a delta from an SCCS file.

SACT (*SCCS*) Inform the user of any impending deltas to a named
SCCS file.

SCCSDIFF (*SCCS*) Compare two versions of an SCCS file and generate a
list of differences.

UNGET (*SCCS*) Undo a previous GET of an SCCS file.

VAL (*SCCS*) Determine if a specified file is an SCS file meeting
characteristics specified by the argument list.

WHAT (*SCCS*) Identify SCCS files.

7. Novelties, Games, and Things That Didn‘t Fit Any Where Else

ARITHMETIC Speed and accuracy test for number facts.
BACKGAMMON A player of modest accomplishment.

BANNER Print output in huge letters.

BCD Converts ascii to card-image form.

CAL Print a calendar of specified month and year.

FCOOKIE Presents a random fortune cookie on each invocation. Limited
jar of cookies included.

QUIZ Test your knowledge of Shakespeare, Presidents, capitals, etc.

STARTREK Strategy game. Destroy the klingons.

UNITS Convert amounts between different scales of measurement. =

Knows about hundreds of units. For example, how many km/sec
is a parsec/megayear?

WUMP Hunt the wumpus, thrilling search in a dangerous cave.

FISH (*E*) Childrens’ card guessing game. (not longer supported)

HANGMAN

HANG (*BE®) Word guessing games. Uses the dictionary supplied with
SPELL.

TWINKLE1

TWINKLE2 (*BE*) Milky way on the screen. (not longer supported)
WORM (*BE*®) Lead the worm to random points. (not longer supported)

WORMS

BACK

CRAPS
MO0
REVERS]
ROGUE

WUMP
HUP
TRUE
FALSE

-31 -

(*BE*®) Several worms running around on screen. (not longer
supported)

The game of backgammon.

The game of black jack.

The game of craps.

Guessing game.

Reversi, a game of dramatic reversals.

Exploring The Dungeons of Doom - the biggest game you 've
ever seen.

Tic-tac-toe.
The game of hunt-the-wumpus.
(-0-) Ring the terminal bell. (not longer supported)

Provide truth values.

Setting up MUNIX

Version 1.5

Trademarks:
MUNIX, CADMUS for PCS
DEC, PDP for DEC
UNIX for Bell Laboratories

Copyright 1984 by
PCS GmbH, Pfalzer-Wald-Strasse 36, D-8000 Mlinchen 80, tel (089) 67804-0

The information contained herein is the property of PCS and shall neither be reproduced in
whole or in part without PCS's prior written approval nor be implied to grant any license to
make, use or sell equipment manufactured herewith.

PCS reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages (including consequential)
caused by reliance on the materials presented.

Setting up MUNIX Version 1.5 7 02

Unix grows at a considerable speed, getting more and more complex. Moreover,
systems by PCS come in a wide range of hardware configurations. These factors
together make the setting up process a nontrivial task. It is complicated to
describe this process in a linear fashion. We hope we made the process a bit
easier to follow by writing it down as an "algorithm” with conditionals and
(phooey) gotos.

ENTRY
If you have a new system, where the disks have been configured for 1.5 by
PCS, go to label NEWSTAND.

If you have an old system with pre 1.5 software, go to SAVEOLD, else go to
READV1.5

SAVEOLD
Save your own files on a backup medium. When you read the files in later,
you will read them probably onto a 1024 byte fllesystem. In addition, save
several system files. The first set of system files should be saved for later
examination. They will not be copied back! The second set is saved and
later copied back.

The following files are in the first set, which is not copied back, but must be
inspected, if you have introduced local additions or changes.

File Reason

/.profile

/etc/{stab your file systemn names
/etc/group your groups

/etc/keycap your keyboard capabilities
/etc/passwd your user entries
/etc/profile

/etc/re

/etc/termcap your terminal capabilities
/etc/tiys your terminal names
/etc/tiytype your termineal types and speeds
/usr/lib/crontadb your local additions
/usr/sys/conf.h

setup -2- setup

The following files must be saved to be copied back later:

File Reason
/tmp/spool/*® NEWS
/usr/lib/news/active NEWS
/usr/lib/news/history NEWS

/usr/lib/news/history.dir NEWS
Zusr/lib/news/history.pag NEWS
/usr/lib/news/net.recording NEWS

/usr/lib/news/recording NEWS
/usr/lib/news/sys NEWS
/usr/lib/uucp/L-devices UUCP
/usr/lib/uucp/L.sys UUCP
/usr/local/*® your own commands

If you had other local commands in /bin or /usr/bin, move them to /usr/local!

READV1.5
If the new release is on a set of floppies, go to READFLOPPY.

READTAPE
You have to read the new version from tape or cartridge. You got two or
more tapes or streamer cartridges. The first tape or cartridge contains the
standalone programs and a minimal root file system in dump format (see
dump (5)), the other tape(s) or cartridge(s) contain additional files in cpio
format. The first tape or cartridge starts with four standalone programs,
i.e. boot (a boot program), check (a disk formatter program), mkfs (to
make a new filesystem), and restor (to restore from a dump tape). A dump
of a minimal root file system follows. Additional filesets are on the second
tape.

You start by loading the boot program from the tape or streamer car-
tridge. After that, the boot program can be used to load more programs
from the tape or other medias. The minitor must prompt you with a ".”.

Power on (if you want to boot from tape, set the magtape drive to
ONLINE)

hit any key

the Minitor prompts with
what ?

Your input Machine Reaction

rtorrs select tape or streamer
/ reads in first file (boot program)
E starts boot program, prompts for new program

2 May 22, 19684 2

setup -3- setup

If your disks are not hardware formatted, or if they have not been checked
for bad blocks, go to FORMAT, else go to MKFS

FORMAT
The second program on the tape, check, formats the disks and checks
them for bad blocks. If bad blocks are found, they are recorded in a bad
sector table, together with a replacement block. Thus, the disk appears
1007 ok.

Your Input Machine Reaction

tm(0,1) or load second file (check) from tape
st(0,1) or streamer
check program starts

The check program will ask for a device name. You enter r], hl, rm or hk,
and the disk number in brackets. The disk number is the physical disk
number, as interpreted by the controller. You may e.g. have a Fujitsu 80 Mb
disk, which is "seen” by the controller as three physical disks, 2 RK07s and
1 RKO6. So you would enter the names hk(0), hk(1) and hk(2). The disk
number must not be confused with major or minor device numbers, or with
device names. /dev/hkl is not the same as hk(1) for the check program!

Then you are asked for a command. You enter “{” to format the disk, "b"
to make a bad sector scan, and "q" to quit. You repeat this sequence for
all disks, and then enter "“exit” to exit the check program.

MKFS
The third program on the tape is the mkfs program. It is used to make a
new root file system. The boot program is still loaded and prompts you for
a new program:

Your input Machine Reaction Comment
tm(0,2) or loads mkfs program
st(0,2)

mkfs prompts with "file sys size:"
8000 or enter root fs size for-
9600 or rl, rmor hk resp.
8636

mk{s prompts with "file system?”
r1(0,0) or enter your type of
rm(0,0) or root device
hk(0,0)

8000 blocks are used for RL, 8600 for RM and 9636 for HK.

3 May 22, 1084 3

setup

RESTOR

setup

Now you load the restor program, and read the root file system onto the
newly formatted disk.

hit INIT key

the Minitor prompts with

Your input

Machine Reaction

Comment

rtorrs
/

4
tm(0,3) or
st(0,3)

tm(0,4) or
st(0.4)

r1(0,0) or

rm(0,0) or
hk(0.0)

Hit <Return>

select tape or streamer

reads in first file (boot program)

starts boot program,
prompts for new program

loads restor program

restor prompts ‘Tape?”

restor prompts “Disk?”

restor prompts
last chance before
scribbling on disk"

a few seconds will pass
before the tape or the
streamer cartridge moves

the root file system is the
4th file on the tape

enter the type of disk
for the root file system

wait until restor prompts
with “Exit called”

go to LOADAUNIX.

May 22, 1984

setup -6- setup

READFLOPPY
You have a bunch of floppies, which must be read in one by one. One floppy
contains the standalone programs, the others contain a root filesystem in
dump format and additional files in cpio format for the usr filesystem. The
disk is emulated as an RLO2. Insert the floppy with standalone programs
into drive O and start the boot program.

Your input Machine Reaction

rx select floppy as boot device
/boot reads in boot program
4 starts boot program,

prompts for new program

Formatting and checking the disks is analogous to the sequence of actions
described at READTAPE. So we just give the commands and a short descrip-
tion here.

| Your input Machine Reaction Comment

boot prompts for a program
rx(2,0)check load disk check/format program
asks for devname(unit)
r1(0) check/format rl disk 0,
asks for command
format disk
answer each question
with y for yes

bad sector scan

quit actions for rl(0)
rl{1) check/format r] disk 1,

asks for command

1
y
y formats disk,
b
q

f format disk
y answer each question
with y for yes
y formats disk,
b bad sector scan
q quit actions for ri(1)
exit exit check program
rx(2,0)mkfs load mkfs from floppy,
asks file system size
8000 root filesystem size

r1(0,0) makes new file system, exits
rx(2,0)restor load restor program,
asks for "Tape"

5 May 22, 1984 5

setup -6- setup

Change floppy to #1 of root file system

Your input Machine Reaction

rx(2,0) “Tape" is the floppy drive
asks for "Disk"”

r1(0,0) “Disk" is the RL drive

"last chance before
scribbling on disk”
press ‘return” key reads in first floppy, “mount volume 2..."

Change floppy to #2 of root file system and press return. Repeat this with
floppy #3. #4 and so on. Eventually, the restor will be done.

LOADAUNIX
You now have a root file system. This contains a unix kernel, /unix,
configured for your system, and a unix kernel, Zaunix, that can run on a
variety of disks. Load /unix with the minitor or with the boot program from
the root file system and start it. If you have a minitor with autoload capa-
bility, Zunix will be loaded automatically after hitting the INIT key, other-
wise, follow the description below.

Your Input Machine Reaction Comment

Hit INIT key Minitor prompts with ".”
if not, press RETURN until
Minitor prompts with "."

hk or select disk type
rmor (default is HK)
rl

/unix load /unix

E start /unix

If you load /aunix instead of /unix, aunix will ask some questions before it

comes up. When the kernel asks you whether it shall go into multi user
mode, answer n for no.

Your Input Machine Reaction

going Multi-user mode ? (y/n):

to go multi-user type "init 2".

6 May 22, 1984 6

setup -7- setup

SETDATE
Set the correct date with the command

date mmddhhmmyy

mm isthe month number

dd is the day number in the month

hh isthe hour number (24 hour system)
mm isthe minute number

vy isthe last two digits of the year

For example: date 0415093084 sets the date to Apr 15, 1984, 8:30 pm.
This will be usefull if you want to make a new kernel.

MAKEDEV
Look at the entries in directory /dev. The special files in this directory
should reflect your hardware configuration. If not, call make for the
needed entries.

MKFS
Next you must make additional filesystems on the disk, first of all the sys-
temn for /usr. The following commands make a default /usr filesystem:

Device Command

RL: mkfs /dev/rri2 20380
HK: mkfs /dev/rhk2 53636
RM: mkfs /dev/rrm2 105120

For HK and RM, the logical disk partion for the swap space (minor unit 1)
can be partly used for a /tmp filesystem, if the main memory has not more
than 1 megabyte. E.g. for HK, you can use 4000 blocks of the 8910 blocks
of the swap space for a /tmp filesystem. The 8910 blocks would be divided
into the /tmp area from 0 to 3999, and the swap space proper from 4000 to
8909. Both the special files for /tmp (/dev/tmp) and for swap (/dev/swap)
would have minor unit number 1. For swap, we would have SWPLO = 4000
instead of 0, and NSWAP = 4910 instead of 8910, in /usr/sys/conf.h.

After the mk{s for all filesystems, mount them on their respective direc-
tories and read the second tape or cartridge with the /usr files. Make sure
you are in the / directory (ed /). Use cpio with the options -iBvind on the
tape or -iSvimnd on the streamer or -ivind on the floppy:

7 May 22, 1884 7

setup -8- setup

Device Commands

streamer: cd /
cpio -iSvind </dev/nrst0

tape: cd/
cpio -iBvind </dev/nrmt0

floppy: cd /
cpio -ivind < /dev/rrx2

Repeat as many times as there are filesets listed on your distribution
media.

NEWKERNEL

You may configure a Unix kernel specially adopted to your hardware. This
is best done by calling /etc/newcon{ in directory /usr/sys, followed by
make. You may wish to look at the files /usr/sys/conf.h, /usr/sys/c.c and
/usr/sys/name.c before starting make, and edit them if you want to devi-
ate from the standard values supplied there. After the make, you have a
new kernel /nunix, which you should try out, as described in newconf(8).
Go to MODIFETC

NEWSTAND
You can immediately boot /unix.

Power on (if you want to boot from tape, set the magtape drive to
ONLINE)

hit any key
the Minitor prompts with
what ?

Your input Machine Reaction Comment

hk or select disk type
rmor (default is HK)
rl

/unix load /unix

e start /unix

However, you should edit /usr/sys/name.c in order to introduce correct
identifying information, followed by make in the directory /usr/sys.

8 May 22, 1984 8

setup -9- setup

In the directory /usr/local/filesets you will find several files with a suffix of
'list’ (e.g. rootlist). These files contain the pathnames of the files distri-
buted with your system.

In the initial state, as shipped by PCS, the system has only the files from
rootlist and usrlist copied on its disk(s). If you want to use files from addi-
tional filesets, you have to read them in from your distribution media.

To read in a new set of flles, be aware of the following:

first, you have to go to / in all cases
cd /

if reading in filesets from tape or streamer cartridge, first rewind the
tape or the streamer cartridge and then skip the filesets you do not

need:
Device Commands Comment
tape: < /dev/rmt0 rewind tape
tmfsfn skip n filesets on tape
cpio -iBmvd < /dev/nrmt0 read a fileset without rewinding
streamer: < /dev/rst0 rewind streamer cartridge
stskip n skip n filesets on cartridge
cpio -iSmvd < /dev/nrst0 read a fileset without rewinding

Continue by alternating the skip and the read commands according to your
needs. After having finished reading in the filesets you need, rewind:

Device Commands Comment

tape: < /dev/rmt0 rewind tape

streamer: < /dev/rst0 rewind streamer cartridge

if reading in from floppies, insert the fioppies labeled with the fileset you
need (any order), and use for each floppy the command:

cpio -ivind < /dev/rrx2

If you wish to remove filesets from your disk(s), we suggest to use the files
/7usr/local/filesets/®list to get complete lists of related files. One way to
do this is to use the shell command listed bellow:

sed '/~§/4d’' /usr/local/filesets/xxxlist | sed ‘/~8/d° |\
(while read F; do rm $F; done)

8 May 22, 1984 9

setup -10 - setup

MODIFETC
There are several files, mainly in /ete, which have to reflect your hardware
configuration, how many terminals you have, what speeds they run on,
what kinds of terminals are attached and so on. For a description of the
files, read manual sections 5 and 8.

You should inspect the following files and modify them if necessary:

File Reason

/etc/bcheckrc for definition of TZ

/etc/checklist for your disks, used by fsck, look at old /etc/fstab

/etc/group add your own groups, do not modify otherwise

/etc/inittab add your terminals and types, look at old /etc/ttys,
/etc/tiytype

/etc/issue will be printed before login

/etc/passwd add your own users, do not modify otherwise

/etc/profile for definition of TZ, look at old /etc/profile

/etc/rc add your own mount commands, look at old /etc/rc

/usr/lib/crontab used by clock daemon for regular tasks

You should examine and modify the following files, if you intend to use

them:

File Reason
/etc/checkall fsck for your disks
/etc/filesave backup shell script
/etc/gettydefs for other speeds
/etc/motd message of the day
/etc/tapesave backup shell script
/usr/lib/acct/holidays for local holiday schedule

RESTOROLD

If you saved old files, read them in now.

ENDOFSETUP
Now all files are set up. You can go into multi user mode with init 2. Make
sure that you can login at all terminals.

10 May 22, 1984 10

UNIX Programming

This paper is an introduction to programming on the UNIX system. The
emphasis is on how to write programs that interface to the operating system,
either directly or through the standard- 170 library. The topics discussed
include

handling command arguments
rudimentary 1/0; the standard input and output
the standard 170 library; file system access
low-level 1/0: open, read, write, close, seek
processes: exec, fork, pipes
. signals — interrupts, etc.
There is also an appendix which describes the standard 1/0 library in detail.

Trademarks:
MUNIX, CADMUS for PCS
DEC, PDP for DEC
UNIX for Bell Laboratories

Copyright 1984 by
PCS GmbH, Pfilzer-Wald-Strasse 368, D-8000 MGnchen 90, tel. (089) 87804-0

The information contained herein is the property of PCS and shall neither be reproduced in
whole or in part without PCS's prior written approval nor be implied to grant any license to
make, use or sell equipment manufactured herewith.

PCS reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages (including consequential)

caused by reliance on the materials presented.

UNIX Programming — Second Edition

Brian W. Kernighan
Dennis M. Ritchie-

Bell Laboratories
Murray Hill, New Jersey 07974

1. INTRODUCTION

This paper describes how to write programs that interface with the UNIX operating system
in a non-trivial way. This includes programs that use files by name, that use pipes, that invoke
other commands as they run, or that attempt t0 catch interrupts and other signals during execu-
tion.

The document collects material which is scattered throughout several sections of The UNIY
Programmer's Manual (1] for Version 7 UNIX. There is no attempt to be complete; only gen-
erally useful material is dealt with. It is assumed that you will be programming in C, so you
must be able to read the language roughly up to the level of The C Programming Language [2].
Some of the material in sections 2 through 4 is based on topics covered more carefully there.
You should also be familiar with UNIX itself at least to the level of UNIX for Beginners (3].

2. BASICS

2.1. Program Arguments

When a C program is run as a command, the arguments on the command line are made
available to the function main as an argument count arge and an array argv of pointers to
character strings that contain the arguments. By convention, argv (0] is the command name
itself, so argc is always greater than 0.

The following program illustrates the mechanism: it simply echoes its arguments back to
the terminal. (This is essentially the echo command.)

main(arge, argv) /+ echo argumants s/
int arge;
char wargv(]:;
{
int §;

for (1 = 1; 1 < azge; i++)
printf ("sssc”, argv(i), (i<arge-1) ? ‘\n’);
)

argv is a pointer to an array whose individual elements are pointers to arrays of characters;
each is terminated by \0, so they can be treated as strings. The program starts by printing
argv (1) and loops until it has printed them all.

The argument count and the arguments are parameters (0 main. If you want to keep them
around so other routines can get at them, you must copy them to external variabies.

2.2. The “Standard [nput’ and **Standard Qutput’’

The simplest input mechanism is to read the *‘standard input,” which is generally the
user's terminal. The function getchar returns the next input character each time it is called.
A file may te substituted for the terminal by using the < convention: if prog uses getchar,

then the command line

prog <file
causes prog to read file instead of the terminal. prog itself need know nothing about
where its input is coming from. This is also true if the input comes from another program via
the pipe mechanism:

otherprog | prog

provides the standard input for prog from the standard output of otherprog.

getchar returns the value EOF when it encounters the end of file (or an error) on what-
ever you are reading. The value of EOP is normally defined to be =1, but it is unwise to take
any advantage of that knowledge. As will become clear shortly, this value is automatically
defined for you when you compile a program, and need not be of any concern.

Similarly, putchar (c) puts the character ¢ on the “‘standard output,” which is aiso by
default the terminal. The output can be captured on a file by using >: if prog uses putchar,
prog >outziio
writes the standard output on ocutfile instead of the terminal. ocutfile is created if it
doesn’t exist; if it already exists, its previous contents are overwritten. And a pipe can be used:
prog | otherprog
puts the standard output of prog into the standard input of otherprog.
The function printf, which formats output in various ways, uses the same mechanism as

putchar does, so0 cails to print? and putchar may be intermixed.in any order: the output
will appear in the order of the calls.

Similarly, the function scanf provides for formatted input conversion; it will resd the
standard input and break it up into strings, numbers, etc., as desired. scanf uses the same
mechanism 2as gatchar, so calls to them may also be intermixed.

Many programs read only one input and. write one output; for such programs /O with
getchar, putchar, scanf, and printf may-be entirely adequate, and it is almost always
enough to get started. This is particularly true if the UNIX pipe facility is used to connect the
output of one program to the input of the next. For example, the following program strips out
all ascii control characters from its input (except for newline and tab).

#include <atdio.h>

main() /* ccstrip: strip non—graphic charactsrs ¢/
{

int ¢;
while ((c = getchar()) != EZOP)
if ((c>= ' ' ¢a ¢ < 0177) || ¢ wm ’\2’ || ¢ == ’'\n’)
putchar(c);
exit(Q);

)
The line
#include <stdio.h>

should appear at the beginning of each source file. It causes the C compiler to read a file
(/uv/indudg/szdio.h) of standard routines and symbols that includes the definition of ZOPF.

If it is necessary to treat multipie files, you can use cat to collect the files for you:
cat filet file2 | ecatrip >output

and thus avoid learning how to access files from a program. By the way, the call o exit at the
end is not necessary to make the program work properly, but it assures that any cailer of the

-3

program will see a normal termination status (conventionally 0) from the program when it com-
pletes. Section 6 discusses status returns in more detail.

3. THE STANDARD 1/0 LIBRARY

The *‘Standard [/O Library' is a collection of routines intended 1o provide efficient and
portable 1/0 services for most C programs. The standard 1/O library is available on' each sys-
tem that supports C, so programs that confine their system interactions to its facilities can be
transported from one system to another essentially without change.

In this section, we will discuss the basics of the standard 1/O library. The appendix con-
tains a more compiete description of its capabilities.

3.1. File Access

The programs written so far have all read the standard input and written the standard out-
put, which we have assumed are magically pre-defined The next step is to write a program that
accesses a file that is nor already connected to the program. One simple example is we, which
counts the lines, words and characters in a set of files. For instance, the command

we X.C Y.C

prints the number of lines, words and characters in x.c and y. ¢ and the totals.

The question is how to arrange (or the named files to be read = that is, how to connect the
file system names to the 1/0 statements which actually read the data.

The rules are simple. Before it can be read or written a file has to-be opened by the stan-
dard library function fopen. fopen takes an external name (like x.c or y.c), does some
housekeeping and negotiation with the operating system, and returns an internal name which
must be used in subsequent reads or writes of the file.

This internal name is actually a pointer, called a file pointer, to a structure which contains
information about the file, such as the location of a buffer, the current character position in the
buffer, whether the file is being read or written, and the like. Users don't need to know the
details, because part of the standard /0 definitions obtained by including stdio.h is a struc-
ture definition called FILE. The only declaration needed for a file pointer is exemplified by

PILE «fp, vfcpen!);

This says that £p is a pointer t0o a FILE, and fopen returns a pointer to a FILE. (FILE is a
type name, like int, not a structure tag

The actual call to fopen in a program is
fp = fopen(name, mods);

The first argument of £open is the name of the file, as a character string. The second argu-
ment is the mode, also as a character string, which indicates how you intend to use the file.
The only allowable modes are read ("z*), write ("w"), or append ("a").

If a file that you open for writing or appending does not exist, it is created (if possibie).
Opening an existing file for writing causes the old contents to be discarded. Trying to read a
file that does not exist is an error, and there may be other causes of error as well (like trying to
read a file when you don't have permission). If there is any error, fopen will return the null
pointer value NULL (which is defined as zero in stdio.h).

The next thing needed is 2 way to read or write the file onc= it is open. There are severai
possibilities, of which getec and putc are the simplest. getc returns the next character from
a file; it needs the file pointer to tell it what file. Thus

¢ = getc(fp)

places in ¢ the next character from the file referred to by £p: it returns EOF when it reaches
end of file. putc is the inverse of getec:

putc(c, £p)
puts the character ¢ on the file £p and returns ¢. getc and putc return EOF on error.

When a program is started, three files are opened automatically, and file pointers are pro-
vided for them. These files are the standard input, the standard output, and the standard error
output; the corresponding- file pointers are called stdin, stdout, and stderr. Normally
these are all connected to the terminal, but may be redirected to files or pipes as described in
Section 2.2. stdin, stdout and stderr are pre-defined in the [/0 library as the standard
input, output and error files; they may be used anywhere an object of type PILE + can be.
They are constants, however, nor variables, so don't try to assign to them.

With some of the preliminaries out of the way, we can now write we. The basic design is
one that has been found convenient for many programs: if there are command-line arguments,
they are procezssed in order. If there are no arguments, the standard input is processed. This
way the program can be used stand-alone or as part of a larger process,

#include <stdio.h>

main (arge, axgv) /+ we: count lines, words, chars e/
int argec;
char wargv(l;
{
int ¢, i, inword;
FILE +fp, efopen();
loeng linect, wordet, charct;
long tlinect = 0, twordct = 0, tcharct = 0;

- 1
= gtdin;
(

gd"

if (axgc > 1 && (fp=fopen({argv(i], "r")) == NULL) |{
fprintf (stderr, "wc: can’t open %s\n”, argv(i]);
continue;

)

linect = wordct = charct = inword = 0;

vhile ((c = getc{fp)) 1= ZOF) |

charct++;
if {(c == '\n’)
linect++;
if (cwm ' ' || c == '\’ || ¢ wa ’\n’)
inword = 0;
else if (inword == Q) |
inwozrd = 1;
wordctes;

)

)
printf("%71d %71d %71d", linect, wordct, charct);
printf(arge > 1 ? ® %g\n"” : "\n", argv(i]);
fclose(fp);
tlinect += linect;
twordet +e wordct;
tcharct += charct;
} while (++i < arge);
if (axrge > 2)
printZd("a471d %71d %71d total\n”, tlinect, twordct, tcharct);
exit(Q);
)

The function £print is identical to print$, save that the first argument is a file pointer that
specifies the file 1o be written.

.5.

The function fclose is the inverse of fopen: it breaks the connection between the file
pointer and the external name that was established by fopen. f(recing the file pointer for
another file. Since there is a limit on the number of files that 2 program may have open simul-
taneously. it's a good idea to free things when they are no longer needed There is also another
reason to call £close on an output file = it flushes the buffer in which putc is collecting out-
put. (fclose is called automaticaily for each open file when a program terminates normally.)

3.2. Error Handling —~ Stderr and Exit

stderr is assigned to a program in the same way that stdin and stdout are. Quiput
-written on stderzr appears on the user’s terminal even if the standard output is redirected. we
writes its diagnostics on stderr instead of stdout so that if one of the files can’t be accessed
for some reason, the message finds its way to the user’s terminal instead of disappearing down
a pipeline or into an output file.

The program actually signals errors in another way, using the function exit to terminate
program execution. The argument of exit is available to whatever process called it (see Sec-
tion 6). so the success or failure of the program can be tested by another program that uses this
one as a sub-process. By convention, a return value of O signals that all is well; non-zero
values signal abnormal situations.

exit itself calls £close for each open output file, to flush out any buffered output, then
calls a routine named _exit. The function _exit causes immediate termination without any
buffer flushing; it may be called directly il desired.

3.3. Miscellaneous 1/0 Functions

The standard 1/0 library provides several other 1/O functions besides those we have illus-
trated above.

Normally output with pute, etc., is buffered (except o stderz): to force it out immedi-
ately, use ££f1lush(£fp).

fscanf is identical to scanf, except that its first argument is a file pointer (as with
fprint¥) that specifies the file from which the input comes: it returns EOF at end of file.

The functions sscanf and sprintf are identical to £scanf and fprintf, except that
the first argument names a character string instead of a file pointer. The conversion is done
from the string for sscanf and into it for sprint®f.

fgets (buf, size, £p) copies the next line from £p, up to and incuding 2 newline,
into buf., at most size-1 characters are copied; it returns NULL at end of file.
fputs (buf, .£p) writes the string in buf onto file £p.

The function ungetc({c, £p) *‘pushes back™ the character ¢ onto the input stream £p: a
subsequent call to gete, £scanf, etc., will encounter ¢. Only one characier of pushback per
file is permitted.

4. LOW-LEVEL /O

This section describes the bottom level of [/0 on the UNIX system. The lowest level of
[/0 in UNIX provides no buffering or any other services; it is in fact a direct entry into the
operating system. You are entirely on your own, but on the other hand, you have the most
control over what happens. And since the calls and usage are quite simple, this isn't as bad as
it sounds.

4.1. File Descriptors

In the UNIX operating system, all input and output is done by reading or writing files.
because all peripheral devices, even the user’s terminal, are files in the file system. This means
that a single, homogeneous interface handles all communication between a program and peri-
pheral devices. '

-6-

In the most general case, before reading or writing a file, it is necessary o inform the sys-
tem of your intent to do so, a process called ‘‘opening’’ the file. If you are going to write on a
file, it may also be necessary to create it. The system checks your right to do so (Does the file
exist? Do you have permission to access it?), and if all is well, returns a small positive integer
called a file descripror. Whenever [/0 is to be done on the file, the file descriptor is used instead
of the name to identify the file. (This is roughly analogous to the use of READ(S....) and
WRITE(6....) in Fortran.) All information about an open file is maintained by the systemy; the
user program refers to the file only by the file descriptor.

The file pointers discussed in section 3 are similar in spirit to file descriptors, but file
descriptors are more fundamental. A file pointer is a pointer to a structure that contains,
among other things, the file descriptor for the file in question.

Since input and output involving the user’s terminal are so common, special arrangements
exist to make this convenient. When the command interpreter (the *‘sheil’’) runs a program, it
opens three files, with file descriptors 0, 1, and 2, clled the standard input, the standard out-
put, and the standard error output. All of these are normally connected to the terminal, so if a
program reads file descriptor 0 and writes file descriptors | and 2, it can do terminal [/O
without worrying about opening the files.

If 1/0 is redirected to and from files with < and >, as in
prog <infile >outfile

the shell changes the default assignments for file descriptors 0 and | from the terminal to the
named files. Similar observations hoid if the input or output is associated with s pipe. Nor-
mally file descriptor 2 remains attached to the terminal, so error messages can go there. In all
cases, the file assignments are changed by the shelil, not by the program. The program does not
need to know where its input comes {rom nor where its output goes, 30 long as it uses file 0 for
input and | and 2 for output.

4.2. Rexd and Write

All input and output is done by two functions called read and writas. For both, the first
argument is a file descriptor. The second argument is a buffer in your program where the data
is to come from or go to. The third argument is the number of bytes to be transferred. The
calls are

n_read = read(fd, buf, n);

a_written = writs(fd, buf, n);

Each call returns a byte count which is the number of bytes actually transferred. On reading,
the number of bytes returned may be less than the number asked for, because fewer than n
bytes remained 10 be read. (When the file is a terminal, read normally reads only up to the
next newline, which is generally less than what was requested.) A return value of zero bytes
implies end of file, and =1 indicates an error of some sort. For writing, the returtied value is
the number of bytes actually written: it is generafly an error if this isn't equal 1o the number
supposed to be written.

The number of bytes to be read or written is quite arbitrary. The two most common values
are 1, which means one character at a time (“‘unbuffered’’), and 512, which corresponds to a
physical blocksize on many peripheral devices. This latter size will be most efficient, but even
character at a time [/O is not inordinately expensive.

Putting these facis together, we can write a simplc program to copy its input to its output.
This program will copy anything to anything, since the input and output can be redirected to
any file or device.

«7-

fdefine BUFSIZZE $12 /e best size for PDP-11 UNIX e/

main() /+ copy input'to output e/
{

char buf (BUFSIZE];

int n;

while ((n = read(0, buf, BUFSIZE)) > 0)
write(1, buf, n};
exit(0);
)

If the file size is not a multiple of BUFSIZE, some read will return a smaller number of bytes
to be written by write: the next call to read after that will retumn zero.

It is instructive to see how read and write can be used to construct higher leve! routines
like getchar, putchar, etc. For example, here is a version of getchar which does
unbuffered input.

#dafine CMASX 0377 /¢ for making char‘s > 0 ¢/

getchar() /e« unbuffered single character input s/
{
char ¢;

raturn((read(0, &c, 1) > 0) ? ¢ & CMASKX EOP);
|

c musr be declared char, because read accepts a character pointer. The character being
returned must be masked with 0377 to ensure that it is positive; otherwise sign extension may
make it negative. (The constant 0377 is appropriate for the PDP-1] but not necessarily for
other machines.)

The second version of getchar does input in big chunks, and hands out the characters
one at a time.

#define CMASK 0377 /+ for making char’'s > 0 ¢/
g$define BUFSIZE $12

getchar() /» buffered version o/
{
static char buf (BUFSIZE];
static char sbufp = buf;
static int n=0;

if (n w= Q) (/v buffer is empty =/
n = read(0, buf, BUFSIZE);
bufp = buf;
)
return{{(——n >= 0) ? sbufp++ & CMASX EOP) ;

4.3. Open, Creat, Close; Unlink

Other than the default standard input, output and error files, you must explicitly open files
in order to read or write them. There are two system entry points for this, open and ¢reat
(sicl.

open is rather iike the fopen discussed in the previous section, excspt that instead of
returning a file pointer, it returns a file descriptor, which is just an int.

int £4;

fd = open(name, rwvmode);

As with fopen, the name argument is a charactetr string corresponding to the external file
name. The access mode argument is different, however: rwmodae is 0 for read, 1 for write, and
2 for read and write access. open returns -1 if any error occurs; otherwise it returns a valid
file descriptor.

It is an error to try to open a file that does not exist. The entry point creat is provided
to create new files, or to re-write old ones.

fd = creat{name, pmode);

returns a file descriptor if it was able to create the fle called name, and =1 if not. If the file
already exists, czeat will truncate it to zero lengtlr; it is not an error to creat a file that
already exisis.

If the file is brand new, creat creates it with the protection mode specified by the pmode
argument. [n the UNIX file system, there are nine bits of protection information associated
with a file, conwolling-read, write and execute permission for the owner of the file, for the
owner’s group, and for all others. Thus a three-digit octal number is most convenient for
specifying the permissions. For example, 0755 specifies read, write and execute permission for
the owner, and read and execute permission for the group and everyone else.

To illustrate, here.is a simplified version of the UNIX utility ¢p," a program which copies one
file to another. (The main simplification is that our version copies only one file, and does not
permit the second argument to be a directory.)

#define NULL O
tdefine BUFSIZE 512
$define PMCDE 0644 /» RW for owner, R for group, others e/

main(arge, argv) /= cp: copy £1 to £2 e/
int argc;
char wargv(];
{
inc £1, £2, n;
char buf (BUFSIZZE];

if (argec != 3)
erTor ("Usage: cp frocm to”, NULL);

if ((£1 = open(argv(1], 0)) == =1)
exrror(“cp: can’t cpen %a”, argv(il);

if ((£2 = creat({azgv(l], PMCDE)) == =1)
erTor ("cp: can’t creata %s8”, argv{(l));

while ((n = read(£1, buf, BUPSIZZ)) > 0)
if (write(£2, uf, n) != n)
. erTor ("cp:. writes errzor®, NULL);
exit(0);
)

erzor(sl, 32) /+ print erxor messaga and die e/
char =s1, »e2;
{

princf(al, 82);

printf (*\a");

exdt(l);

.9.

As we said earlier, there is a limit (typically 15-25) on the number of files which a program
may have open simultaneously. Accordingly, any program which intends to process many files
must be prepared to re-use file descriptors. The routine close breaks the connection between
a file descriptor and an open file, and frees the filé descriptor for use with some other file. Ter-
mination of a program via exit or return from the main program closes all open files.

The function unlink (filename) removes the file £ilename from the file system.

4.4. Random Access — Seek and Lseek

File [/0 is normally sequential: each read or write takes place at a paosition in the file
right after the previous one. When necessary, however, a file can be read or written in any
arbitrary order. The system call 1seek provides a way to move around in a file without actu-
ally reading or writing:

lseex(£d, offset, origin);

forces the current position in the file whose descriptor is £d to move (o position offset,
which is taken relative to the location specified by origin. Subsequent reading or writing will
begin at that position. offset is a long; £d and origin arz int's. origin can be 0, I,
or 2 to specify that of£set is to be measured from the beginning, from the current paosition,
or from the end of the file respectively. For example, to append to a file, seek to the end
before writing:

lseek(£d, OL, 2);
To get back to the beginning (*‘rewind"’),
lseek(£4, OL, 0);

Notice the 0L argument; it could also be written as (long) 0.

With 1seek, it is possible to treat files more or less like large arrays, at the price of slower
access. For example, the following simple function reads any number of bytes from any arbi-
trary place in a file.

get(fa, pos, buf, n) /¢ read n bytes from poaition pos ¢/
int £4, n;
leng pos;
char ebuf;
{
laseek(£2, pos, 0); /+ get to pos e/
return{rsad(£4, duf, n));
)

In pre-version 7 UNIX, the basic entry point to the [/O system is called seek. seek is
identical to 1lseelk, except that its offset argument is an int rather than 3 long. Accord-
ingly, since PDP-11 integers have only 16 bits, the offset specified for seek is limited to
65,535, for this reason, origin values of 3, 4, 5§ cause seek to multiply the given offset by
512 (the number of bytes in one physical block) and then interpret origin as if it were 0, 1,
or 2 respectively. Thus to get to an arbitrary place in a large file requires two seeks, first one
which selects the biock, then one which has origin equal to 1 and moves to the desired byte
within the block.

4.5. Error Processing

The routines discussed in this section, and in fact all the routines which are direct entries
into the system can incur errors. Usually they indicate an error by returning a value of" —1.
Sometimes it is nice to know what sort of error occurred: for this purpose all these routines,
when appropriate, leave an error number in the external cell erzno. The meanings of the
various error numbers are listed in the introduction to Section II of the UNIX Programmer’s
Manual, so your program can, for example, determine if an attempt to open a file failed

-10 -

because it did not exist or because the user lacked permission to read it. Perhaps more com-
monly, you may want to print out the reason for failure. The routine pexrxror will print a mes-
sage associated with the value of errno: more generally, sys_errmo is an array of character
strings which can be indexed by errmo and printed by your program.

5. PROCESSES

It is often easier t0 use a program written by someone else than to invent one’s own. This
section describes how to execute a program from within another.

5.1. The “System’’ Function

The easiest way to execute a program from another is to use the standard library routine
system system lakes one argument, a command string exactly as typed at the terminal
(except for the newline at the end) and executes it. For instance, to time-stamp the output of
a program,

main()
{

system(“date”);

/* rest of processing e/
)

If the command string has to be built from pieces, the in-memory formatting capabilities of
sprintf may be useful

Remember than getc and putc normally buffer their input; terminal I/O will not be prop-
erly synchronized uniess this buffering is defeated. For output, use ££1lush; for input, see
setbuf in the appendix.

5.2. Low-Level Process Cre_ation - Execi and Execv

If you're not using the standard library, or if you need finer control over what happens, you
will have to construct calls to other programs using the more primitive routines that the stan-
dard library’s system routine is based on.

The most basic operation is to execute another program without returning, by using the rou-
tine execl. To print the date as the last action of a running program, use

exscl("/bin/date”, "date”, NULL);

The first argument t0 exacl is the file name of the command; you have to know where it is
found in the file system. The second argument is conventionally the program name (that is,
the last component of the file name), but this is seldom used excspt as a place-holder. If the
command takes arguments, they are strung out after this; the end of the list is marked by a
NULL argument.

The execl cail overlays the existing program with the new one, runs that, thea exits.
There is 7o return to the original program.

More realistically, a program might fall into two or more phases that communicate only
through temporary files. Here it is natural to make the second pass simply an exacl all from
the first.

The one exception to the rule that the original program never gets control back occurs
when there is an error, for example if the file can’t be found or is not executable. If you don't
know where date is located, say

execl ("/din/date”, "data®, NULL);
exacl ("/usr/bin/dates”, “dats”, NULL);
fprintf (stderr, "Somecne stole ‘dats’\n");

A variant of execl called execv is useful whea you don't know in advance how many
arguments there are going to be. The call is

«11-

execv(Zilename, argp);

where argp is an array of pointers to the arguments; the last pointer in the array must be
NULL s0 execw can tell where the list ends. As with execl, filename is the file in which
the program is found, and axrgp (0] is the name of the program. (This arrangement is identi-
cal to the argv array for program arguments.)

Neither of these routines provides the niceties of normal command execution. There is no
automatic search of multiple directories = you have to know precisely where the command is
located. Nor do you get the expansion of metacharacters like <, >, », ?, and (] in the argu-
ment list. If you want these, use execl to invoke the shell sh, which then does all the work.
Construct a string commandline that contains the codmplete command as it would have bezn
typed at the terminal, then say

execl (*/bin/sh®, "sh", "=c%, commandline, NULL);

The shell is assumed to be at a fixed place, /bin/sh. Its argument —¢ says to treat the next
argument as a whole command line, so it does just what you want. The only problem is in con-
structing the right information in commandline.

S.3. Control of Processes — Fork and Wait

So far what we've talked about isn't really all that useful by itself. Now we will show how
to regain control after running a program with execl or execv. Since these routines simply
overiay the new program on the old one, to save the old one requires that it first be split into
two copies; one of these can be overiaid, while the other waits for the new, overlaying program
to finish. The splitting is done by a routine called fork:

proc_id = fork();

splits the program into two copies, both of which continue to run. The only difference between
the two is the value of proc_id, the *‘process id."” In one of these processes (the *‘child™),
proc_id is zero. In the other (the **parent™), proc_4d is non-zero; it is the process number
of the child. Thus the basic way to call, and return from, another program is

if (fork() == Q)
execl ("/bin/sh”, "sh*, "-c¥, cmd, NULL); /* in child «/

And in fact, except for handling errors, this is sufficient. The fork makes two copies of the
program. In the child, the value returned by fork-is zero, so it calls execl which does the
command and then dies. In the parent, fork returns non-zero so it skips the execl. (If
there is any error, fork returns -=1).

More often, the parent wants to wait for the child to terminate before continuing itself.
This can be done with the function wait:

int status;

if (fork() == Q)
execl(...);
wait(&status);

This still doesn’t handle any abnormal conditions, such as a failure of the execl or fork. or
the possibility that there might be more than one child running simultaneously. (The wait
returns the process id of the terminated child, il you want to check it against the value returned
by fork.) Finally, this fragment doesn't deal with any funny behavior on the part of the child
(which is reported in status). Siill, these three lines are the heart of the standard library's
systemn routine, which we’ll show in a moment.

The status returned by wait encodes in its low-order eight bits the system’s idea of ‘the
child’s termination status: it is 0 for normal termination and non-zero (o indicate various kinds
of problems. The next higher eight bits are taken {rom the argument of the call (0 exit which
caused a normal termination of the child process. It is good coding practice for all programs to

-12-

return meaningful status.

When a program is called by the shell, the three file descriptors 0, 1, and 2 are set up point-
ing at the right files, and all other possible file descriptors are available for use. When this pro-
gram calls another one, correct etiquette suggests making sure the same conditions hold. Nei-
ther fork nor the exec calls affects open files in any way. If the parent is buffering output
that must come out before output from the child, the parent must flush its buffers before the
execl. Conversely,.if a caller buffers an input stream, the called program will lose any infor-
mation that has been read by the cailer.

5.4. Pipes

A pipe is an [/O channei intended for use between two cooperating processes: one process
writes into the pipe, while the other reads. The system looks after buffering the data and syn-
chronizing the two processes. Mast pipes are created by the shell, as in

1s | px

which connects the standard output of 1s to the standard input of pxr. Sometimes, however, it
is most convenient for a process to set up its own plumbing; in this section, we will illustrate
how the pipe connection is established and used.

The system call pipe creates a pipe. Since a pipe is used for both reading and writing, two
file descriptors are returned; the actual usage is like this:

ine £4(2];

stat = pipe(fd);
if (stat == =1)
/+ there wvas an error =/

£d is an array of two file descriptors, where £a(0] is the read side of the pipe and £4(1] is
for writing. These may be used in rsad, write and close calls just like any other file
descriptors.

If a process reads a pipe which is empty, it will wait until data arrives; if a process writes
into a pipe which is too full, it will wait until the pipe empties somewhat. If the write side of
the pipe is closed, a subsequent read will encounter end of file.

To illustrate the use of pipes in a realistic setting, let us write a function called
popen{cmd, mcde), which creates a process cmd (just as system does), and returns a file
descriptor that will either read or write that process, according to mode. That is, the call

fout = popen("pxr”, WRITZ);

creates a process that executes the pr command: subsequent write cails using the file descrip-
tor fout will send their data to that process through the pipe.

popen first creates the the pipe with a pipe system call; it then forks to create two
copies of itself. The child decides whether it is supposed (o read or write, closes the other side
of the pipe. then calls the shell (via execl) to run the desired process. The parent likewise
closes the end of the pipe it does not use. These closes are necsssary to make end-of-file tests
work properly. For example. if a child that intends to read fails to close the write end of the
pipe. it will never see the end of the pipe file. just because there is one writer potentially active.

- 13-

#include <stdio.h>

#define READ 0

#define WRITZ 1

fdefine tst(a, b) (mode == READ ? (b) (a))
static int popen_pid;

popen{cmd, mode)
char scmd;
int mode;
(
int p(2);

if (pipe(p) < 0)
return (NULL) ;
if ((popen_pid = fork()) == Q) (
close (tst(p(WRITZ], p(READ]));
close(tst(0, 1));
dup (tst (p(READ], p(WRITE)));
close(tst (p(READ], p(WRITE]));
execl (¥/bin/sh*, "sh*, "=c®, exnd, 0);
-exit(1}; /+ disaster has occurred if we get hers =/
}
if (popen_pid == =1)
return (NULL) ;
close(tst(p(READ], plWRITE)));
return{tst(p(WRITE], p(READ]));
]

The sequence of closes in the child is a bit tricky. Suppose that the task is to create a child
process that will read data from the parent. Then the first close closes the write side of the
pipe, leaving the read side open. The lines

close(tst(0, 1)); .
dup(tsc(p(READ], p(WRITE]));

are the conventional way 1o associate the pipe descriptor with the standard input of the child.
The close closes file descriptor 0, that is, the standard input. dup is a system call that returns
a duplicate of an already open file descriptor. File descriptors are assigned in increasing order
and the first available one is returned, so the effect of the dup is to copy the file descriptor for
the pipe (read side) 10 file descriptor 0; thus the read side of the pipe becomes the standard
input. (Yes, this is a bit tricky. but it's a standard idiom.) Finally, the old read side of the pipe
is closed.

A similar sequence of operations takes place when the child process is supposed to write
from the parent instead of reading. You may find it a useful exercise to step through that case.

The job is not quite done, for we still need a function pclose 1o close the pipe created by
popen. The main reason for using a separate function rather than close is that it is desirable
to wait-for the termination of the child process. First, the retumn value from pclose indicates
whether the process succeeded. Equally important when a process creates several children is
that only a bounded number of unweited-for children can exist, even il some of them have ter-
minated: performing the wait lays the child to rest. Thus:

- 14 -

sinclude <signal.h>

pclose(£4) /* close pipe £d e/
int £4;

{
registar r, (ehstat)(), (eistat) (), (eqatat)();

int status;
extarn int popen_pid;

Qlose(£d);
istat = signal (SIGINT, SIGC_IQA);
gstat = gignal (SIGQUIY, SIG_IRA);
hstat = signal (SIGAUP, SIG_IGN);
while ((r =» wait(sstatus)) != poper _pid && r l= =1);
{2 (r == =1)
status = -1;

signal (SIGAT, istat);
signal (SIGQUIT, qstat);
signal (SICHEUP, hstat);
return(status);

)

The cails to signal make sure that no interrupts, etc., interfere with the waiting process; this
is the topic of the next section.

The routine as written has the limitation that only one pipe may be open at once, because
of the single shared variable popen_pid: it really should be an array indexed by file descrip-
tor. A popen function, with slightly different arguments and return value is availabie as part
of the standard 1/O library discussed below. AsS currently written, it shares the same limitation.

6. SIGNALS — INTERRUPTS AND ALL THAT

This section is concemed with how to deal gracefully with signals from the outside world
(like interrupts), and with program faults. Since there's nothing very useful that can be done
from within C about program faults, which arise mainly from illegzl memory references or [rom
execution of peculiar instructions, we'll discuss only the outside-world signals: incerrupe, which
is sent when the DEL character is typed: quit, generated by the FS character; hangup, caused by
hanging up the phone; and terminate, generated by the kil command. When one of these
events occurs, the signal is sent to af processes which were started from the corresponding ter-
minal; unless other arrangements have been made, the signal terminates the process. In the
quit case, a core image file is written for debugging purposes.

The routine which alters the default action is called signal. It has two arguments: the
first specifies the signal, and the second specifies how to treat it. The first argument is just a
number code, but the second is the address is either a function, or 2 somewhat strange code
that requests that the signal either be ignored, or that it be given the default action. The

include file signal.h gives names for the various arguments, and should always be inciuded
when signais are used. Thus

#include <zignal.h>

signal (SIGINT, SIG_IMN);
causes interTupts to be ignored, while
signal (SIGINT, SIG_Drun);

restores the default action of process termination. In all cases, signal returns the previous
value of the signal. The second argument t0 signal may instead be the name of a function
(which has to be declared explicitly if the compiler hasn't seen it already). In this case, the
named routine will be called when the signal occurs. Most commonly this facility is used to

.15 -

allow the program to clean up unfinished business before terminating, for exampie to delete a
temporary file:

#include <signal.h>
pain ()

{
int onintr();

if (signal (SIGINT, SIG_IGN) |= SIG_IGN)
signal (SIGINT, cnintr);

/* Process v/
exit(0);

)

cnintr()

(
unlink(tempfile);
exit(1);

}

Why the test and the double call to signal? Recall that signals like interrupt are sent to
all processes started from a particular terminal. Accordingly, when a program is to be run non-
interactively (started by &), the shell turns off interrupts for it so it won't be stopped by inter-
rupts intended for foreground processes. If this program began by announcing that all inter-
rupts were to be sent to the onintr routine regardless, that would undo the shell’s effort to
protect it when run in the background.

The solution, shown above, is to test the state of interrupt handling, and to continue to
ignore interrupts if they are already being ignored. The code as written depends on the fact
that sigmal returns the previous state of a particular signal. If signals were already being
ignored, the process should continue to ignore them; otherwise, they should be caught.

A more sophisticated program may wish to intercept an interrupt and interpret it as a
request to stop what it is doing and return to its own command-processing loop. Think of a
text editor: interrupting a long printout should not cause it to terminate and lose the work
already done. The outline of the code for this case is probably best written like this:

$include <signal.h>
#$include <zetimp.h>
4mp _buf sjbuf;

main()

{
int (eistat) (), onintx();

istat = gignal (SIGINT, SIG_IGN); /* save original status s/
setimp(sdbuf); /+ save current stack position e/
if (istat != SIG_IQN) .

signal (SIGINT, onintx);

/+ main procsasing loop e/

-16 -

onintr()
(

printf ("\nlatarrupt\n”);

longjmp (sibuf); /* rTeturn to saved stats e/
]

The include file setjmp.h declares the type Jmp_buf an object in which the state can be
saved. sibuf is such an object; it is an array of some sort. The set4mp routine then saves
the state of things. When an interrupt occurs, a call is forced to the onintr routine, which
can print 2 message, set {lags, or whatever. longjmp takes as argument an object stored into
by setjmp, and restores controt to the location after the call to set3jmp, o control (and the
stack level) will pop back to the place in the main routine where the signal is set up and the
main loop entered. Notice, by the way, that the signal gets set again after an interrupt occurs.
This is necessary; most signals are automatically reset to their default action when they occur.

Some programs that want to detect signals simply can’t be stopped at an arbitrary point, for
example in the middle of updating & linked list. If the routine called on octurrence of a signal
sets a flag and then returns instead of calling exit or longdmp; execution will continue at the
exact point it was interrupted. The interrupt flag can then be tested later.

There is one difficulty associated with this approach. Suppose the program is reading the
terminai when the interrupt is seat. The specified routine is duly called; it sets its flag and
returns. [f it were really true, as we said above, that ‘‘execution resumes at the exact point it
was interrupted,’” the program would continue reading the terminal until the user typed another
line. This behavior might well be confusing, sinces the user might not know that the program is
reading; he presumably would prefer to have the signal take effect instantly. The method
chosen to resolve this difficuity is to terminate the terminal resd when execution resumes after
the signal, returning an error code which indicates what happened.

Thus programs which catch and resume execution after signals should be prepared for
“errors’’ which are caused by interrupted system cails. (The ones to watch out for are reads
from a terminal, wait, and pause.) A program whose onintx program just sets intflag,
resets the interrupt signal, and returns, should usually include code like the following when it
reads the standard input:

if (getchar() == EOF)
if (intflaq)
/e EZOP caused by intsrrupt e/
else
/* true end-of-file ¢/

A final subtlety to keep in mind becomes important when signal-catching is combined with
execution of other programs. Suppose 2 program catches interrupts, and also inciudes 1 method
(like **1"* in the editor) whereby other programs can be executed Then the code should look
something like this

i2 (fork() == Q)

execl(...);
signal (SIGINT, SIG_IGN); /¢ ignore intarzupts ¢/
wait(&status); /+ until the child is done ¢/
signal (SIGINT, onintr); /* rustore intexrTupts =/

Why is this? Again, it's not obvious but not reaily difficult. Suppose the program you call
catches its own interrupts. If you interrupt the subprogram. it will get the signal and return to
its main loop, and probably read your terminal. But the cailing program will also pop out of its
wait for the subprogram and read your terminal. Having two processes reading your terminal is
very unfortunate, since the system figuratively flips a coin to decide who should get each line of
input. A simple way out is to have the parent program ignore interrupts until the child is done.
This reasoning is reflected in the standard [/O library function system:

-17-

#¢include <sigmal.h>

systemn(s) /+ run command string s e/
char es;
{

int status, pid, w;

register int (wistat) (), (+qgstat)();

if ((pid = fork()) == Q) {
axecl ("/bin/sh*, “sh", "=¢", s, 0);
axit(127);

)

istat = gigmal (SIGINT, SIG_IGN);

gscat = signal (SIGQUIT, SIG_IGN);

while ((w = wait(sstatus)) |lw pid & v |= =1)
[

if (w == =1)
status = =1;

sigmnal (SIGINT, istat);

signal (SIGQUIT, qstat);

rsturn{status);

}

As an aside on declarations, the function signal obviously has a rather strange second
argument. It is in fact a pointer to a function delivering an integer, and this is also the type of
the signal routine itself. The (wo values SIG_IGN and SIG_DF¥L have the right type, but are
chosen so they coincide with no possible actual functions. For the enthusiast, here is how they
are defined for the PDP-11; the definitions should be sufficiently ugly and nonportable to
encourage use of the include file.

f8define SIG_DrL (int («}())0
sdefine SIC_IN (int («) ())1

References
1] K. L. Thompson and D. M. Ritchie, The UNIX Programmer’'s Manual, Bell Laboratories,
1978.

{2] B. W. Kemnighan and D. M. Ritchie, The C Programming Language, Prenticz-Hall, Inc.,
1978.

[3] B. W. Kernighan, **UNIX for Beginners — Second Edition.”* Bell Laboratories, 1978.

«18 -

Appendix — The Standard [/O Library

D. M. Ritchie
Bell Laboratories
Murray Hill, New Jersey 07974

The standard 1/0 library was designed with the following goals in mind.
1. It must be as efficient as possible, both in time and in space, so that there will be no hesita-

tion in using it no matter how critical the application.
2. It must be simpie 1o use, and also free of the magic numbers and mysterious calls whose

use mars the understandability and portability of many programs using older packages.

3. The interface provided should be applicable on all machines, whether or not the programs
which implement it are directly portable to other systems, or to machines other than the
PDP-11 running a version of UNIX.

1. General Usage
Each program using the library must have the line

#include <stdio.h>

which defines certzin macros and variables. The routines are in the normal C library, so no
special library argument is needed {or loading. All names in the include file intended only for
internal use begin with an underscore _ to reduce the possibility of collision with a user name.
The names intended to be visibile outside the package are

stdin The name of the standard input file
stdout The name of the standard output file
stderr The name of the standard error file

) o) 4 is actually =1, and is the value returned by the read routines on end-of-file or error.

NUGLL is a nowation for the null pointer, returned by pointer-valued functions to indicate an
error

PILE expands to struct _iob and is a useful shorthand when declaring pointers to
streams.

BUPSIZ is a number (viz. 512) of the size suitable for an /0 buffer supplied by the user.
See setbuf, below.

getc, getchar, pute, putchar, feof, ferror, fileno
are defined as macros. Their actions are described below; they are mentioned here
to point out that it is not passible to redeciare them and that they are not actually
functions; thus, for exampie, they may not have breakpoints set on them.

The routines in this package offer the convenience of automatic buffer allocation and out-
put flushing where appropriate. The names stdin, stdout, and stderr are in effect con-
stants and may not be assigned to.

2. Calls

PILE tfopen(filename, type) char rfilename, rtype;
opens the file and, if needed, allocates a buffer for it filename is a character string
specifying the name. type is a character string (not a single character). It may be "z,
. or "a" to indicate intent to read, write, or append. The value returned is a file
pointer. If it is NULL the attempt to open failed.

FILE wfreopen(filename, type, icptz) char rfilename, *type; FILE rioptr;

-19.

The stream named by ioptr is closed, il necessary, and then reopened as if by fopen If
the attempt to open fails, NULL is retumed, otherwise ioptz, which will now refer to the
new file. Often the reopened stream is stdin or stdout.

int getc(ioptr) FILE wioptx;
returns the next character from the stream named by ioptr. which is a pointer to a file
such as returned by fopen, or the name stdin The integer EOF is retumned on end-of-
file or when an error occurs. The null character \0 is a legal character.

int fgetc(ioptr) PILE wioptx;
acts like getc but is a genuine function, not a macro, so it can be pointed to, passed as an
argument, etc.

putc(c, ioptr) FILE wiopt:;
putc writes the character ¢ on the output stream named by ioptx, which is a value
returned {rom fopen or perhaps stdout or stderr. The character is returned as value,
but EOF is returned on error.

fputec (e, ioptr) FILE wioptr;
acts like pute but is a genuine function, not a macro.

fclose(ioptr) FILE wioptr;
The file corresponding to ioptr is closed after any buffers are emptied. A buffer allocated
by the 1/0 system is freed. f£close is sutomatic on normal termination of the program.

£flush(ioptr) FILE wioptr;
Any buffered information on the (output) stream named by ioptr is written out. Output
files are normally buffered if and only if they are not directed to the terminal; however,
stdexrz always starts off unbuffered and remains so unless getbuf is used, or unless it is
reopened.

exit(errcode);
terminates the process and returns its argument as status to the parent. This is a special
version of the routine which calls ££1ush for each output file. To terminate without flush-
ing, use _exit.

feof(ioptr) FILE rioptr;
returns non-zero when end-of-file has occurred on the specified input stream.

ferror(ioptr) FILE wicptr;
retums non-zero when an error has occurred while reading or writing the named streamn.
The error indication lasts unti] the file has been closed.

getchar();
is identical to getc (stdin).

putchar(c);
is identical to putc(c, stdout).

char r*fgets(s, n, ioptr) char »s; FILE wioptr;
reads up to n-1 characters from the stream ioptr into the character pointer 3. The read
terminates with a newline character. The newline character is placed in the buffer followed
by a null character. fgets returns the first argument, or NULL il error or end-of-file
ocsurred.

fputs(s, ioptr) char »s; FILE wioptr;
writes the null-terminated string (character array) s on the stream ioptz. No newline is
appended. No value is returned.

ungetc(c, ioptr) FILE wioptr;

-20-

The argument character ¢ is pushed back on the input streamn named by ioptx. Only one
character may be pushed back.

printf (format, al, ...) char ~format;
fprintf(ioptr, format, al, ...) FILE #ioptr; char #format;
sprintf(s, format, al, ...)char ss, eformat;

printf writes on the standard output. f£pxrintf writes on the named output stream.
sprintf puts characters in the character array (string) named by s. The specifications are
as described in section print£(3) of the UNIXY Programmer’s Manual.

scanf (format, al, ...) char s»format;
fscanf (ioptz, fomt, a1, ...) FILE w»ioptr; char -fomt,
sscanf (s, format, al, .) char w3, «format;

scanf reads from lhc standard input. fscanf reads from the named mput stream.
sscanf reads from the character string supplied as 8. scanf reads characters, interprets
them according to a format, and stores the results in its arguments. Each routine expects.
as arguments a control string format, and & set of arguments, each of which must be a
pointer, indicating where the converted input shouid be-stored.

scanf returns as its value the number of successfully matched and assigned input items.
This can be used to decide how many input items were found. On end of fle, rzOP is
returned; note that this is different {rom 0, which means that the next input character does
not maich what was cailed for in the control string.

fread(ptr, sizeocf(wptxr), nitems, ioptr) FILE riopt:;

reads nitems of data beginning at ptx from file {optz. No advance notification that binary
170 is being done is required; when, for portability reasons, it becomes required, it will be done
by adding an additional character to the mode-string oa the fopen cail

fwrita(ptr, sizeof(wptr), nitems, ioptr) FILZ sricptr;
Like £fread, but in the other direction.

rewind (ioptr) FILZ »ioptx;
rewinds the stream named by {optxr. [t is not very useful except on input, since a rewound
output file is still open oniy for output.

system(string) char w»string;
The string is executed by the shell as if typed at the terminal.

getw(ioptr) FILE wioptr;

returns the next word from the input stream named by ioptz. EOP is returned on end-of-file
or error, but since this a perfectly good integer feof and ferror should be used. A “‘word”
is 16 bits on the PDP-11.

putw(w, icptr) FILE rioptr;
writes the integer w on the named output stream.

satbuf (ioptxr, buf) FILE »ioptr; char rbuf;

setbuf may be used after a streamn has been opened but before /O has started. If buf is
NULL, the stream will be unbuffered. Otherwise the buffer supplied will be used. It must be a
character array of sufficient size:

char buf (BUPSIZ];

fileno(ioptx) FILE rioptrx;.
returns the integer file descriptor associated with the file.

fseek (ioptr, offset, ptrname) FILE wioptr; long offset;

The location of the next byte in the stream named by ioptr is adjusted. offset is a long
integer. If ptrname is 0, the offset is measured from the beginning of the file; if ptrname is
1. the offset is measured from the current read or write pointer; if ptxname is 2, the offset is
measured {rom the end of the file. The routine accounts properly for any buffering. (When

.21 -

this routine is usad on non-UNIX systems, the offset must be a value returned from £tell and
the ptrname must be 0). ’

long ftell(ioptr) FILE wioptr;

The byte offset, measured from the beginning of the file, associated with the named stream is
returned. Any buffering is properly accounted for. (On non-UNIX systems the value of this
cail is useful only for handing to £seek. so as to position the file to the same place it was when
£ftell was called.)

getpw(uid, buf) char sbuf;

The password file is searched for the given integer user ID. If an appropriate line is found, it is
copied into the character array buf, and 0 is returned. If no line is found corresponding to the
user [D then | is returned.

char smalloc (num);
allocates mum bytes. The pointer returned is sufficiently well aligned to be usable for any pur-
pose. NULL is returned if no space is available.

char rcalloc(num, size);

allocates space {or num items each of size size. The space is guaranteed to be set to 0 and the
pointer is sufficiently well aligned to be usable for any purpose. NULL is returned if no space is
availabie . :

cfree(ptr) char w»ptr;
Space is returned to the pool used by calloc. Disorder can be expected if the pointer was not
obtained from calloec.

The following are macros whose definitions may be obtained by inciuding <ctype.bh>.
isalpha (¢) returns non-zero if the argument is alphabetic.

isupper (¢) returns non-zero if the argument is upper-case alphabetic.

islower.(c) returns non-zero if the argument is lower-case alphabetic.

i3sdigit(e) returns non-zero if the argument is a digit.

isspace (¢) returns non-zero if the argument is a spacing character: tab, newline, carriage
return, vertical tab, form [eed, space.

ispunct(c) returns non-zero if the argument is any punctuation character, i.e., not a space,
letter, digit or control character.

isalnum(c) returns non-zero if the argument is a letter or a digit.

isprint(ec) returns non-zero if the argument is printable — a letter, digit, or punctuation
character.

iscntrl (c) returns non-zero if the argument is a control character.

isascii (c) returns non-zero if the argument is an ascii character, i.e., less than octal 0200.
toupper (c) returns the upper-case character corresponding to the lower-case letter ¢.
tolower {c) returns the lower-case character corresponding to the upper-case letter c.

AB8 Assembler

Reference Manual

This document describes the syntax and usage of the a68 assembler for the
Motorola 68000 microprocessor. The basic format of a68 is loosely based on the
Digital Equipment Corp Macro-11 assembler described in DEC’'s publication
DEC-11-OMACA-A-D, but also contains elements of the UNIX as assembler. The
instruction mnemonics and eflective address format are derived from a
Motorola publication on the 68000, the MACSS MC68000 Design Specification
mstruction Set Processor dated June30, 1979.

Sections 1-3 of this document describe the general form of a68 programs, sec-
tion 4 describes the instruction mnemonics and addressing modes, section 5
describes the pseudo-ops supported by the assembler and section 6 describes
the error codes generated. For instructions on how to operate the assembler
from UNIX, readers should type in man a68.

May, 1981
Massachusetts Institute of Technology
Laboratory of Computer Science
Cambridge, Massachusetts

Author's initials: DK

Trademarks:
MUNIX, CADMUS for PCS
DEC, PDP for DEC
UNIX for Bell Laboratories

Copyright 1984 by
PCS GmbH, Ptalzer-Wald-Strasse 38, D-8000 Miinchen 90, tel (089) 87804-0

The information contained herein is the property of PCS and shall neither be reproduced in
whole or in part without PCS's prior written approval nor be implied to grant any license to
make, use or sell equipment manufactured herewith.

PCS reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages (including consequential)

caused by reliance on the materials presented.

Acknowledgement: To those unknown guys wherever they are who implemented the a68
compiler belong our thanks. Denis Bzowy did the adaption for the MUNIX system and added the
listing option. Dittmar Krall massaged this user's guide a little and did some few error
correction.

TABLE OF CONTENTS

1 NOTATION

2 SOURCE PROGRAM FORMAT
2.1 Label Fields
2.2 Op-code Fields
2.3 Operand Fields
2.4 Comment Field

3 SYMBOLS AND EXPRESSIONS
3.1 Symbols
3.2 Direct Assignment Statements
3.3 Register Symbols
3.4 External Symbols
3.5 Local Symbols
3.6 Assembly Location Counter
3.7 Program Sections
3.8 Constants
3.8.1 Numeric CONSLANLS ...cirveireeiiieacireetiricrrcneeccreesercmraesaeeseerecesanennes
3.9 Operators
3.9.1 Unary Operators
3.9.2 Binary OPeratorsc.cociiiiieimnieiiniiireisnit st eeaeeeesesmnesaseaeaeen e
3.10 Terms
3.11 Expressions

4 INSTRUCTIONS AND ADDRESSING MODES
4.1 Instruction Mnemonics
4.2 Addressing Modes

5 ASSEMBLER DIRECTIVES
5.1 .ascii .asciz
5.2 .byte .word .long
5.3 .text .data .bss
5.4 .globl .comm
5.5 .even

6 ERROR CODES

a68 -f-

—

WL+~

© W WWDODMMD®DM-NIO WU WO bbb

a8

a68 - fi - aB8

7 Appendix 18

ii March 5, 1984 ii

aB8 -1- a8

1. NOTATION

The notation used in this document is a modified BNF similar to that used in
the MULTICS PL/]1 Language Manual. The operators of the BNF in order of
decreasing precedence are:

X .. Repetition: Denotes one or more occurrences of
x.

xy Juxtaposition: Denotes an occurrence of x
followed by an occurrence of y

xly Alternation: Denotes an occurrence of x or y
but not both.

Brackets and braces define the order of expression interpretation. The
subexpression enclosed in brackets is optional. That is,

[x] denotes zero or one occurrence of x.
ixlyiz denotes an x or a y, followed by a z.

Brackets or braces which appear in a68 syntax will be boldfaced, to distin-
guish them from the meta- brackets and braces.

2. SOURCE PROGRAM FORMAT

An a68 program consists of a series of statements, each of which occupies
exactly one line, i.e., a sequence of characters followed by the newline char-
acter. Form feed, ascii ~L, also serves as a line terminator. Neither multiple
statements on a single line nor continuation lines are allowed.

The format of an a68 assembly language statement is:
[LabelField :] op-code [OperandField] [|comment]

There are three exceptions to this rule:
Blank lines are permitted.

2. A statement may contain only a LabelFteld. The label defined in this
field has the same value as if it were defined in the LabelField of the
next statement in the program. For example, the two statements

sea:
movw d1,d2

are equivalent to the single statement -
sea: movw d1,d2

3. Aline may consist of only the comment fleld. For example, the two state-
ments below are allowed:

1 March 5, 1984 1

a68 -2- a68

| This is a comment field.
| So is this

In general, blanks or tabs are allowed anywhere in a statement. For example,
multiple blanks are allowed in the OperandField to separate symbols from
operators. Blanks are meaningful only when they occur in a character string
(e.g. as the operand of an .ascii pseudo-op). At least one blank or tab must
appear between the op-code and the OperandfField of a statement.

2.1. Label Fields

A label is a user-defined symbol which is assigned the value of the current
location counter and entered into the assembler’s symbol table. The value
of the label may be either absolute or relocatable; in the latter case, the
absolute value of the symbol is assigned when the program is linked via Id.

A label is a symbolic means of referring to a specific location within a pro-
gram. If present, a label always occurs first in a statement and must be
terminated by a colon. The collection of label deflnitions in a statement is
called the LabelField.

The format of a LabelField is:
symbol: [symbol:]...

Examples: -
start:
sea: bar: | Multiple symbols
73: | A local symbol, defined below

2.2. Op-code Fields

The OpcodeField of an assembly language statement identifies the state-
ment as either a machine instruction, or an assembler directive. One or
more blanks (or tabs) must separate the OpcodeField from the Operand-
Field in a statement. No blanks are necessary between LabelFields and
OpcodeFields, but they are recommended to improve readability of the
program.

A machine instruction is indicated by an instruction mnemonic. The
assembly language statement is intended to produce a single executable
meachine instruction. The operation of each instruction is described in the
manufacturer’'s user manual. Some conventions used in a68 for instruc-
tion mnemonics are described in section 4 and a complete list of the
instructions is presented in the appendix.

2 March 5, 1984 2

ab8 -3- a6é8

An assembler directive, or pseudo-op, performs some function during the
assembly process. It does not produce any executable code, but it may
assign space in a program for data.

2.3. Operand Fields

A distinction is made between OperandField and operand in aB8B. Several
machine instructions and assembler directives require two or more argu-
ments, and each of these is referred to as an operand. In general, an
OperandFfield consists of zero or more operands, and in eall cases,
operands are separated by a comma. In other words, the format for an
OperandField is:

[operand [, operand] .. .]

The format of the OperandField for machine instruction statements is the
same for all instructions, and is described in section 4. The format of the
OperandField for assembler directives depends on the directive itself, and
is included in the directive's description in section 5 of this manual.

2.4. Comment Field

The comment character in a68 is the vertical bar, (). not the semicolon,
(;). Use of the semicolon as a comment character will result in an “Invalid
Operator” error.

The comment field consists of all characters on a source line following and
including the comment character. These characters are ignored by the
assembler. Any character may appear in the comment field, with the obvi-
ous exception of the newline character, which starts a new line.

A } line switches listing off. A |+ line switches listing on.

March 5, _1984 3

a8 -4 - a8

3. SYMBOLS AND EXPRESSIONS

This section describes the various components of a88 expressions: sym-
bols, numbers, terms, and expressions.

3.1. Symbols
A symbol consists of a sequence of characters, with the following restric-
tions:

1. Valid characters include A-Z, a-z, 0-9, period (.), underscore (_), and
dollar sign (8).

2. The first character must not be numeric.

All characters are significant and are checked in comparisons with other
symbols. Upper and lower cases are distinct, ("One” and “one” are
separate symbols).

A symbol is declared when the assembler recognizes it as a symbol of the
program. A symbol is defined when a value is associated with it. With the
exception of symbols declared by a .globl directive, all symbols are defined
when they are declared. A label symbol (which represents an address of
the program) may not be redefined; all other symbols are allowed to
receive a new value.

There are several ways to declare a symbol:

As the label of a statement (See section 2.1).
In a direct assignment statement.
As an ezternal symbol via the .glodl directive.

As a common symbol via the .comm directive.

o s 0 b =

As a local symbol.

3.2. Direct Assignment Statements

A direct assignment statement assigns the value of an arbitrary expres-
sion to a specified symbol. The format of a direct assignment statement is:

symbol = expression

Examples of valid direct assignments are:

4 March 5, 1884 4

aBB

-5- a8

vect_size =4

vectora = OxFFFE

vectorb = vectora - vect__mize
CRLF = O0x0D0OA

Only one symbol may be assigned in a single statement.

Any symbol defined by direct assignment may be redefined later in the
program, in which case its value is the result of the last such statement. A
local symbol may be defined by direct assignment, though this doesn't
make much sense. Label or register symbols may not be redefined.

If the expression is absolute, then the symbol is also absolute, and may be
treated as a constant in subsequent expressions (see section 3.4). If the
expression is relocatable, however, then the symbol is also relocatable,
and it is considered to be declared in the same program section as the
expression. See section 3.7 for an explanation of absolute and relocatable
expressions.

If the expression contains an ezternal symbol, then the symbol defined by
the = statement will also be considered external. For example:

.globl x | x is declared as external symbol
sum = x | sum becomes an external symbol

assigns the value of x (zero if it is undefined) to sum and makes sum an
ezternal symbol. Ezternal symbols may be defined by direct assignment.

3.3. Register Symbols

Register symbols are symbols used to represent registers in the machine.
Register symbols are deflned in the source descriptor file for a machine in
the pre-assembly code portion of the file. This portion consists of source
statements that are assembled before every source program for the
machine.

The following symbols are register symbols.
do di d2 d3 d4 ds dé a7

a0 al a2 a3 a4 ad ab a7
sp pc ce 8T usp

3.4. External Symbols

A program may be assembled in separate modules, and then linked
together to form a single program (see ld (I)). External symbols may be
defined in each of these separate modules. A symbol which is declared

March 5, 1984 5

a8

-8- aég

(given a value) in one module may be referenced in another module by
declaring the symbol to be external in both modules. There are two forms
of external symbols: those defined with the .glodl and those deflned with
the .comm directive.

Ezternal symbols are declared with the .globl assembler directive. The
format is:

.globl symbeol [, symbel]...

For example, the following statements declare the array TABLE and the
routine SRCH to be external symbols:

.globl TABLE ,SRCH
TABLE: .=+20
SRCH: mov] §TABLE a0

External symbols are only declared to the assembler. Erzternal symbols
must be defined (i.e. given a value) in some other statement by one of the
methods mentioned above. They need not be defined in the current pro-
gram; in this case they are flagged as "undefined” in the symbol table. If
they are undefined, they are considered to have a value of zero in expres-
sions.

The other form of external symbol is defined with the .comm directive.
These statement reserve storage in the bss section similar to FORTRAN
common areas. The format of the statement is:

.comm narne, ConstantExpression

which causes a68 to declare the name as a common symbol with a value
equal to the ConstantErpression. For the rest of the assembly this symbol
will be treated as though it was an undefined global. a8 does not allocate
storage for common symbols; this task is left to the loader. The loader will
compute the maximum size of for each common symbol which may appear
in several load modules, allocates storage for it in the final bss section and
resolves linkages.

3.5. Local Symbols

Local symbols provide a convenient means of generating labels for branch
instructions, etc. Use of local symbols reduces the possibility of multiply-
defined symbols in a program, and separates entry point symbols from
local references, such as the top of a loop. Local symbols cannot be refer-
enced by other object modules.

March 5, 1984 6

a8

-7- a68

Local symbols are of the form n8 where n is any integer. The following are
valid local symbols

13
273
3943

A local symbol is defined and referenced only within a single "local symbol

block” (Isb). A new local symbol block is entered when:

1. alabel is declared; or,

2. anew program section is entered.

There is no conflict between local symbols with the same name which
appear in different local symbol blocks.

3.6. Assembly Location Counter

The assembly location counter is the period character, *.’; hence its name
"dot"”. When used in the operand field of any statement, dot represents the
address of the first byte of the statement. Even in assembly directives, it
represents the address of the start of the directive. A dot appearing as the
third argument in a .byte instruction has the value of the address where
the first byte was loaded; this address is not updated "during” the
pseudo-op.

For example,
Ralph: movl .,a0 [load value of this instruction into a0

At the beginning of each assembly pass, the assembler clears the location
counter. Normally, consecutive memory locations are assigned to each
byte of generate code. However, the location where the code is stored may
be changed by a direct assignment altering the location counter:

. = expression

This ezpression must not contain any forward references, and must not
change from one pass to another. Storage area may also be reserved by
advancing dot. For example, if the current value of dot is 1000, the direct
assignment statement:

Table: .=.+100

would reserve 100 (decimal) bytes of storage, with the address of the first
byte as the value of Table. The next instruction would be stored at address
1100.

March 5, 1884 7

a68 -8- aé8

3.7. Program Sections

As in UNIX, programs to a68 are divided into three sections: text, data and
bss. The normal interpretation of these sections is: instruction space, ini-
tialized data space and uninitialized data space, respectively. These three
sections are equivalent as far as a88 is concerned with the exception that
no instructions or data will be output for the bss section although its size
will be computed and its symbol values will be output.

In the first pass of the assembly, a68 maintains a separate location
counter for each section, thus for code like:

text

sum: movw d1,d2
.data

hello: .long 27
text

jnk: addw d2,d1
.data

myst: .byte 4

in the output, sum will immediately precede jnk and hello will immediately
precede myst. At the end of the first pass, a88 rearranges all the
addresses so that the sections will be output in the following order: tezt,
data and bss. The resulting output file is an executable image file with all
addresses correctly resolved, with the exception of undefined .globls and
.comms. For more information on the format of the output file, consult
the UNIX man entry on a.out files.

3.8. Constants

All constants are considered absolute quantities when appearing in an
expression.

3.8.1. Numeric Constants

An a88 numeric constant is a sequence of digits. aB8 interprets
integers as octal, hex, or decimal according to the following conven-
tions.

octal octal numbers begin with 0
hex hex numbers begin with Ox or 0X
decimal all other numbers

8 March 5, 1984 8

aB8 -9- aB8

3.9. Operators

3.9.1. Unary Operators

There are two unary operators in a68:

- unary minus.
logical negation.

l

3.9.2. Binary Operators

Binary operators in aé8 include:

+ Addition; e.g. "3+4" evaluates to 7.

- Subtraction; e.g. ""3-4" evaluates to -1., or
OxFFFFFFFF

. Multiplication; e.g. "4°3" evaluates to 12.

Each operator is assumed to work on a 32-bit number.

3.10. Terms

A term is a component of an expression. A term may be one of the follow-
ing:

A number.
2. A symbol

3. A term preceded by a unary operator. For example, both "sum” and
“"~sum" may be considered to be terms. Multiple unary operators are
allowed; e.g. "’ -- A" has the same value as "A".

3.11. Expressions

Expressions are combinations of terms joined together by binary opera-
tors. An expression is always evaluated to a 32-bit value. If the instruction
calls for only one byte, (e.g. .byte), then the low-order byte is used.

Expressions are evaluated left to right with no operator precedence. Thus
"1+2*3" evaluates to 8, not 7. Unary operators have precedence over
binary operators since they are considered part of a term, and both terms
of a binary operator must be evaluated before the binary operator can be
applied.

2] March 5, 19684 9

a8

10

-10- a8

A missing expression or term is interpeted as having a value of zero. In
this case, an "Invalid expression” error will be generated. An "Invalid
Operator” error means that a valid end-of-line character or binary opera-
tor was not detected after the assembler processed a term. In particular,
this error will be generated if an expression contains a symbol with an ille-
gal character, or if an incorrect comment character was used.

Any
nal:

a.

expression, when evaluated, is either absolute, relocatable, or exter-

An expression is absolute if its value is fixed. An expression whose
terms are constants, or symbols whose values are constants via a
direct assignment statement, is absolute. A relocatable expression
minus a relocatable term, where both items belong to the same pro-
gram section is also absolute.

An expression is relocatable if its value is fixed relative to a base
address, but will have an offset value when it is linked, or loaded into
core. All labels of a program defined in relocatable sections are relo-
catable terms, and any expression which contains them must only
add or subtract constants to their value. For example, assume the
symbol "sum” was defined in a relocatable section of the program.
Then the following demonstrates the use of relocatable expressions:

sum relocatable

sum+5 relocatable

sum®*2 Not relocatable (error)

2-sum Not relocatable (error), since the expression

cannot be linked by adding sum's offset to it.
sum-jnk Absolute, since the offsets added to sum and jnk
cancel each other out.

An expression is external (or global) if it contains an external symbol
not defined in the current program. The same restrictions on expres-
sions containing relocatable symbols apply to expressions containing
ezternal symbols. Exception: the expression sum-jnk where both sum
and jnk are external symbols is not allowed.

March 5, 1984 10

ab8 -11- a8

4. INSTRUCTIONS AND ADDRESSING MODES

This section describes the conventions used in a88 to specify instruction
mnemonics and addressing modes.

4.1. Instruction Mnemonics

The instruction mnemonics used by a88 are described in the previously
mentioned Motorola manual with a few variations. Most of the 68000
instructions can apply to byte, word on long operands, so in a88 the nor-
mal instruction mnemonic is suflixed with b, w, or 1 to indicate which
length operand was intended. For example, there are three mnemonics
for the or instruction: ord, orw and orl. Op-codes for instructions with
unusual opcodes may have additional sufflixes, thus in addition to the nor-
mal add variations, there also exist: addgd, addqw and addql for the add
quick instruction.

Branch instructions come in two flavors, byte and word. In a88, the byte
(i.e., short) version is specified by eppending the suflix s to the basic
mnemonic as in beq and begs.

In addition to the instructions which explicitly specify the instruction
length, a68 supports extended branch instructions, whose names are gen-
erally constructed by replacing the b with j. If the operand of the
extended branch instruction is a simple address in the current segment,
and the offset to that address is sufliciently small, a68 will automatically
generate the corresponding short branch instruction. If the offset is too
large for a short branch, but small enough for a branch, then the
corresponding branch instruction is generated. If the operand references
an external address or is complex, then the extended branch instruction
is implemented either by a jmp or jsr (for jra or jbsr), or by a conditional
branch (with the sense of the conditional inverted) around a jmp for the
extended conditional branches. In this context, a complex address is
either an address which specifies other than normal mode addressing, or
relocatable expressions containing more than one relocatable symbol. i.e.
if a, b and ¢ are symbols in the current segment, then the expression
a+b-c is relocatable, but not simple.

Note that a68 is not optimal for extended branch instructions whose
operand addresses the next instruction. The optimal code is no instruc-
tion at all, but a68 currently retains insuflficient information to make this
optimization. The difficulty is that if a8 decides to just eliminate the
instruction, the address of the next instruction will be the same as the
address of the (nonexistent) extended branch instruction. This instruc-
tion will then look like a branch to the current location, which would
require an instruction to be generated. The code that a88 actually gen-
erates for this case is a nop (recall that an offset of zero in a branch
instruction indicates a long offset). Although this problem may arise in
compiler code generators, it can easily be handled by a peephole

11 March 5, 1984 11

aB8

-12 - aé8

optimizer.

The algorithm used by a68 for deciding how to implement extended
branch instructions is described in "Assembling Code for Machines with
Span-Dependent Instruction,’” by Thomas G. Szymanski in Communications
of the ACM, Yolume 21, Number 4, pp300-308, April 1978.

Consult the appendix for a complete list of the instruction op-codes.

4.2. Addressing Modes

The following table describes the addressing modes recognized by a68. In
this table an refers to an address register, dn refers to a data register, Ri
to either a data or an address register, d to a displacement, which, in a68
is a constant expression, and xxx to a constant expression. Certain
instructions, particularly move accept a variety of special registers
including sp, the stack pointer which is equivalent to a7, sr {, the status
register, cc, the condition codes of the status register, usp, the user mode
stack pointer, and pc, the program counter.

Mode Notation Example

Register an,dn,sp,pc,cc,sr,usp movw a3,d2

Register Deferred an@ movw a3@,d2
Postincrement an@+ movw a3@+,d2
Predecrement an@- movw a3@-,d2
Displacement an@(d) movw a3@(24),d2 _
Word Index an@(d, Ri:W) movw a3@(16, d2:W),d3
Long Index an@®(d, Ri:L) movw a3@(16, d2:1),d3
Absolute Short xxx:W § movw 14:W,d2
Absolute Long xxx:L movw 14:L,d2

PC Displacement pc@(d) movw pc@(20),d3

PC Word Index pc@(d, Ri:W) movw pc@(14, d2:W),d3
PC Long Index pc@(d, Ri:L) movw pc@(14, d2:L),d3
Normal sun movw sun,d3
Immediate #xxx movw #27+3,d3

Normal mode actually assembles as absolute long, although the value of
the constant will be flagged as relocatable to the loader. The notation for
these modes derived from the Motorola notation with the exception of the
colon in index mode rather than period.

The Motorola manual presents different opcodes for instructions that use
the eflective address as data rather than the contents of the eflective
address such as adda for add address. a68 does not make this distinction
because it can determine the type of the operand from its form. Thus an

t The access to ar is restricted to specific 88000 instructions.
4 MUNIX LD(1) does not support short external addresses

12

March 5, 1984 12

aB8

13

-13 - a8

instruction of the form:
sun: .word 0

;.ddl #sun,a0

will assemble to the add address instruction because sun is known to be
an address.

The 68000 tends to be very restrictive in that most instructions accept
only a limited subset of the address modes above. For example, the add
address instruction does not accepl a data register as a destination. a8
tries to check all these restrictions and will generate the illegal operand
error code for instructions that do not satisfy the address mode restric-
tions.

March 5, 1884 13

a68 -14 - a68

5. ASSEMBLER DIRECTIVES

The following pseudo-ops are available in a68:

.ascii stores character strings
.asciz "

.byte stores 8-bit bytes

.word stores 16-bit words

Jdong stores 32-bit longwords
.zerol long zeroes

.text Text csect

.data Data csect

.bss Bss csect

.globl declares external symbols
.extern same as .globl _
.comm declares cormmon symbols

5.1. .ascii .asciz

The .ascii directive translates character strings into their 7-bit ascii
(represented as B-bit bytes) equivalents for use in the source program.
The format of the ascii directive is as follows:

.ascii "character string”

The syntax of C-strings is used (\ n is newline, etc.). Obviously, a newline
must not appear within the character string.

The .asciz directive is equivalent to the .ascii directive with a zero byte
automatically inserted as the final character of the string. Thus, when a

list or text string is to be printed, a search for the null character can ter-
minate the string.

5.2. .byte .word .long

The .byte, .word and .long directives are used to reserve bytes and words,
and to initialize them with certain values.

The format is:
[1abel:] .byte [expression] [,cxpression] .

[label:] .word [expression] [.expression]..

[label:] Jong [expression] [.expression]..

14 March 5, 1984 14

aB8 -15- a68

For example, the first statement reserves one byte for each expression in
the operand field, and initializes the value of the byte to be the low-order
byte of the corresponding expression. Note that multiple expressions must
be separated by commas. A blank expression is interpreted as zero, and
no error is generated.

The syntax and semantics for .word is identical, except that 16-bit words
are reserved and initialized, of course, and .long uses 32-bit quantities.

5.3. .text .data .bss

These statements change the "program section” where assembled code
will be loaded.

5.4. .globl .comm

See section 4.4.

5.5. .even
This directive advences the location counter if its current value is odd.

This is useful for forcing storage allocation like .word directives to be on
word boundaries.

15 March 5, 1984 15

a8

-18 - a6t

6. ERROR CODES

16

If an error is detected during assembly, a message of the form:

line_no .error_code

is output to the standard error stream.

The following .error_codes, and their probable cause, appear below:

10
11

12

13

14

15

Invalid Character. An invalid character for a character constant or
character string was encountered.

Multiply defined symbol. A symbol appears twice as a label, or an
attempt to redefine a label using an = statement.

Symbol storage exceeded. No more room is left in the symbol table.
Assemble portions of the program separately, then bind them together.

Symbol length exceeded. A symbol of more than 31 characters was
encountered.

Undefined symbol. A symbol nct declared by one of the methods men-
tioned above in 'Symbols’ was encountered. This happens when an
invalid instruction mnemonic is used. This also occurs when an invalid or
non-printing character occurs in the statement.

Invalid Constant. An invalid digil vwas encountered in a number.

Invalid Term. The expression evzluator could not find a valid term: sym-
bol, constant or expression. An invalid prefix to a number or a bad sym-
bol name in an operand will generate this.

Invalid Operator. Check the operand field for a bad operator.

Non-relocatable expression. If an expression contains a relocatable sym-
bol (e.g. label) then the only operations that can be applied to it are the
addition of absolute expressions or the subtraction of another relocat-
able symbol (which produces an absolute result).

Invalid operand type. The type field of an operand is either not defined
for the machine, or represents an addressing mode incompatible with
the current instruction.

Invalid operand. This is a catch-all .error. It appears notably when an
attempt is made to assign an undefined value to dot during pass 1.

Invalid symbol. If the first token on the source line is not a valid symbol
(or the beginning of a comment), this is generated. Might happen if you
try and implied .word.

Invalid assignment. An attempt was made to redefine a label with an =
statement.

March 5, 1984 16

aB8

16

17

18

19

20

22

25

26

27

17

-17 - a@s

Too many labels. More than 10 labels and/or symbol= 's appeared on a
single statement.

Invalid op-code. An op-code mnemonic was not recognized by the assem-
bler.

Invalid entry point. The entry point of the program (declared on the .end
statement) must be a defined label.

Invalid string. An invalid string for .ascii or .asciz was encountered.
Make sure string is enclosed in double quotes.

Bad filename or too many levels. An invalid fllename was given to .inst,
or there were more than 10 levels of nested .insrts.

.error statement. An .error statement was encountered during pass 2.

Wrong number of operands. This is usually a warning. Check the
manufacturer’'s assembly manual for the correct number of operands
for the current instruction.

Line too long. A statement with more that 132 characters before the
newline was encountered.

Invalid register expression. Any expression inside parentheses should be
absolute and have the value of a register code (register symbols). This
may occur if you use parentheses for anything other than the register
portion of an eperand.

March 5, 1984 17

a8 -18 - a8
7. Appendix
OpCode Description OpCode Description
abcd add decimal with extend movepl move peripheral
addL add movepw move peripheral
addqlL add quick moveq move quick
addxL add extended muls signed multiply
andL and mulu unsigned multiply
aslL arithmetic shift left nbed negate decimal with extend
asrL arithmetic shift right negl negate binary
bCCS branch on condition negxlL negate binary with extend
bchg test a bit and change nop no operation
belr test a bit and clear notL logical compliment
bra branch orL inclusive or
bset test a bit and set pea push effective address
bsrS subroutine branch reset reset machine
btst test a bit roll, rotate left
chk check register against bounds rorL rotate right
cirL clear an operand roxlL rotate left with extend
cmpl compare roxrL rotate right with extend
cmpmlL compare memory rte return from exception
divs signed divide rtr returm and restore codes
diva unsigned divide rts return from subroutine
eorL exclusive or sbed subtract decimal with extend
exg exchange registers sCC set on condition
extl sign extend sf set all zeros
extw sign extend st set all ones
jbsr jump to subroutine stop halt machine
icC jump on condition subL, subtract
jra jump subqlL subtract quick
jsr jump to subroutine subxL subtract extended
lea load eflective address swap swap register halves
link link tas test operand then set
IslL logical shift left trap trap
IsrL logical shift right trapv trap on overflow
movL move tstL test operand
movernl move multiple registers unlk unlink
movernw move multiple registers
Where:
S Short branch
8 short
long branch
18 March 5, 1884 18

a8

19

-19 -

CC Condition Code
cs carry set
eq equal
ra inconditional
ge greater or equal
gt greater than
hi high
le less or equal
Is lower or same
It less than
mi minus
ne not equal
pl positive
vc no overflow
vs overflow set
L Length
b byte
w word
1 long
March 5, 1984

a8

19

This piece of software will not longer be supported

Assembler 68000 User's Guide
Version 1.1
July 1982

ABSTRACT

This user's guide is intended for use in writing and translating
assembly programs on 68000 UNIXt systems. The assembler is
upward compatible with the MEB000 Cross Macro assembler pro-
vided by Motorola. This guide restricts itself therefore to describ-
ing the extensions provided by us.

The Assembler 68000 is a modified version of the CERN Cross
Macro Assembler M68NMIL implemented i{n Pasceal. Changes were
made to write a.out format (the object module format coming with
UNX) instead of CUFOM (CERN Universal Format for Object
Modules).

1UNIX is a Trademark of Hell Laborzatories.

CONTENTS

1. Introductien
2. Short Description of a.out

3. Symbols and Expressions
3.1 Symbols
3.2 Expressions
8.3 Direct Addressing

4, Pseudo Instructions
4.1 Module Identification
ident - Module Identification

end - End of Module
4.2 Segment Control
text - Text Segment
data - Data Segment
bss - Bss Segment
4.3 Symbol Definition
equ - Equate Symbol Value
set - Set or Reset Symbol Value

4.4 Module Linkage
entry .= Declare Entry Symbols
. extern - Declare External Symbols
4.5 Data Generation and Storage Reservation

dc - Define Constant
ds - Deflne Storage
org - Advance Location Counter

4.6 Conditional Assembly
endif - End of IF Range

else - Reverse Effects of IF
ifeq - Test Expression is Equal Zero
ifne - Text Expression i{s Not Equal Zero

4.7 Source Stream Control
insert - Insert Secondary Source
4.8 Listing Control
list (g) - Select List Options
nolist.nol - Cancel Listing
page - Top of Page
nopage - Suppress Paging

spe - Space Between Source Lines
ttl - Assembly Listing Title

sttl - Assembly Listing Subtitle
fail - Generate Error Message

4.9 Object Code Control

blong - Use Two-Word Conditional Branch
bshort - Use One-Word Conditional Branch

fiong - Force Direct Lonz Address
tshort - Force Direct Short Address
noobj - Suppress a.out Output

-3-

4.10 Cross Reference Control
xrefon - Print Crossreference and Error Listing
xrefof - Suppress Crossreference and Error Listing

S. Macro Operations
5.1 endm - End Macro Definition
5.2 local - Local Symbols
5.3 macro - Macro Heading
5.4 Macro Calls

6. How to use the Assembler
7. Appendix

1. INTRODUCTION

The Cross Macro Assembler described in this manusal is derived from the CERN
Cross Macro Assembler ME3MIL but writes a.out object format instead of CUFOMN.
Some of the pseudo {nstructions were changed to provide the user with a means
1o control a.out segments instead of CUFOM sections. All other pseudo instruc-
tions, all machine instructions and the expression rules - as far as symbol types
are not concerned - are the same as for M68MIL and Motorola's Cross Assem-
dler.

The assembler transiates assembler source programs for the Motorola 68000
mnicroprocessor into a.out, the format of UNKX loadable modules. A linkage editor
subsequently allows the combination and linking of several such modules into a
Dew a.out module. An archiver (see ar(l)) permits the construction of a.out
libraries, which can be placed in the input to the linkage editor. Besides, the
-assembler will accept source flles 'piped’ through the UNIX preprocessor cpp.

The assembler is upward compatible with the ME8000 Cross Macro Assembler
Pprovided by Motorola. Additional pseudo instructions are provided to allow the
generation of relocatable object modules. The user is advised to see the follow-
ing Motorola publications:

}68000 Cross Macro Assembler Reference Manual
B68BKXASK(D3J), Third Edition. September 1979

MC58000 16-Bit Microprocessor, User's Manual
MCEBOOOUM(AD2), Second Edition, January, 1880

and the UNX documentation
UNIX Programmer's Manual, Volume 1 (especially ar(1), id(1), a.out(5))

as a base for the use of this assembler. This manual will restrict itself to the
description of the extensions made to the definitions of the Motorola cross
assembler. For the readers’ convenience this will be done in complete chapters
rather than by listing the explicit differences.

The main areas covered by this note are:

Short description of a.out
Expressions (generalized)
Pseudo instructions

)M acro definitions

How to use the assembler

‘Acknowledgement:] would like to thank Mr. Horst von Eicken who gave us the
Pascal sources and user manual of his CERN Cross Asserzbler. I! you are
interested in this assembler, please contact him at:

Horst von Eicken
Data Handling Division
CERN

CH 1211 Geneva 23
Switzerland

2. SHORT DESCRIPTION OF aout

In a.cut modules code and data {all into three segments: the text segment. the
data segment and the bss segment. The taxt segment is the one in which the
assembler begins, and it is the one into which instructions are typically placed.
The UNIX system can enforce the purity of the text segment of programs by
trapping write operations into it (see 1d(1)).

The data segment is available for placing data or Instructions which will be
modified during execution. Anything which may go in the text segment may be
put into the data segment. In programs with write-protected, shareable text
segments, data segment contains the initialized but variable parts of a program

The bss segment may not contain any explicitely i{nitialized code or data. The
length of the bss segment (like that of text or data) is determined by the high-
water mark of the location counter within it. At the start of execution of a pro-
Zram. the bss segment is set up by statements such as:

lab dsl 2

Another a.ocut convention concerns the entry point to a program: a program
starts at a label _entry (which is typically defined by some runtime system and
does some basic initialization) and branches then to a user-defined label _main.
The user has to make surs that one and only one _main label i{s defined within
her/his program.

%= Since a.out modules are a.lways relocatable it is not possible in an a.out
module to allocats a label {symbol) at a certain absolute address - as it can
be reached elsewhere by means of an org pseudo instruction - rather than
by arranging the link-edit input appropriately (see ld(1)) org is supported
{or compatibility but it's Umited.

3. SYXBOLS AND EXPRESSIONS

3.1. ‘Symbeols

Symbols recognized by the assembler consist of one or more characters, the
frst sixteen of which are significant. The first character must be a letter
(a through z;and A through Z) or an underscore (), each remaining character
may be a letter, a digit (0 through 8) or an underscore. The names for registers
(a0 through a7, d0 through d7.sp,usp.cer.sr), instructions (abed . unink) and

pseudo instructions (blong .. til) are predefined symbols and may not be
redefined bythe user. '

W= aand A are different; predefined names must be written in lower case,

Numbers recognized by the assembler include decimal, hexadecimal and octal
values. Decimal numbers are specified by a string of decimal digits (0 through
9): hexadecimal numbers are specified by a dollar sign (S). followed by a string
of hexadecimal digits (O through 8, A through F, a through {); octal numbers are
specified by a colon (), followed by a string of octal digits {0 through 7).

One or more characters enclosed by apostrophes (') constitute a character
string. Character strings are left-adjusted and zero-fillled (if mecessary),
whether stored or used as immediate operands. Only strings of four or fewer
characters may be used as {mmediate operands. (In order to specify an apos-
trophe within a character string, two successive apostrcphes mmust appear
where the single apostrophe is intended to appear.)

The assembler has six types of symbols:
absolute symbol:
1. The symbol is equated { equ) or set to an absolute value.

2. The symbol is equated { equ) or set to a constant. Its value is unaffected
by any possible future applications of the link- editor to the module.

text symbol:
1. The symbol is equated (equ) or set to a text symbol.

2. The symbol is defined in the text segment of the program Its value is
measured with respect to the beginning of the text segment of the pro-
Zram If the assembler output is link-edited, its text symbols may change in
value since the module need not be the first in the link editor's output. At
the start of an assembly the value of "*'is text 0.

data symbol:
1. Thesymbol is equated (equ) or set to a data symbol.

2. The symbol is defined in the data segment of the program Its value is
measured with respect to the beginning of the data segment of the pro-
gram I the assembler output is link-edited, its data symbols may change
in value since the module need not be the first in the link editor's output.
After the first data pseudo instruction the value of “*"is data 0.

bss symbol:
1. The symbolis equated (equ) or set to a bss:symbol.

2. The symbolis defined in the bss segment of the program. Its value is meas-
ured with respect to the beginning of the bss segment of the program Like
text and data symbols, the value of a bss symbol may change during a sub-
sequent link-editor run. since previously loaded programs may have bss
segments. After the first bss pseudo instruction the value of "*'is bss Q.

external symbol:

The symbol is listed in a extern pseudo instruction and is not defined in the
current assembly. Its value is set to zero and must be defined during a sub-
sequent link-editor run.
undeflned symbol:
The symbol is neither defined {n the current .assembly nor listed in an
extern pseudo instruction. The occurrcnce of such a symbol is indicated as
an error.
All symbols except absolute symbols are relative, {.e. they represent relocatable
addresses. Whenever the assembler encounters a text, data, or bss symbol it will
generate a direct address (see below) and related relocation information. To
yield a program counter relative address write

<sym>(pe) or
<Tsym{pe,<reg>)
respectively..

Symbols defined within an assembly as absolute, text, data, or bss symbol may
be exported by occurring in a entry pseudo instruction, {.e. their value.and
their type are available to the link-editor so that the program may be loaded
with others that reference these symbols.

3.2. Expressions

An expression is a combination of symbols, constants, algebraic operators, and
parentheses. The expression is used to specify a value which is to be used as an
operand. Expressions follow the conventional rules of algebra.

Expressions may contain relative symbols. However the following rules must be
followed In order for the expression. to be valid:

1. Relative symbols or expressions cannot be multiplied, divided, added, or
operated on with the logical operators.

2. A relative symbol or expression may have an absclute value added to or
subtracted from it. The result is relative.

3. A relative symbol or expression may be subtracted from ancther relative
symbol or expression provided they are both deflned and of same type. The
result is absolute,

3.3. Direct Addressing

(The addressing mode discussed hers {s called 'absolute addressing mode’ in
the related Motorola documentation. Since those address values cannot be
changed at run time, but may be changed during a link-edit run, they are
referred to hers as direct addresses to avoid confusion with absclute symbols

defined ealier in this manual.)
Since the M 8000 microprocessor allows two forms of direct addressing,

- short direct address (16 bit address) -
- long direct-address (32 bit address) -

the assembler has to take a decision as to which form to assume whenever it
encounters a forward referenced absolute symbol, i.e. a symbol which has not
yet becn defined, or a relative symbol, L.e. a symbol the value of which may be
changed by the link-editor. By default it will use the long direct address to
ensure correct handling of the symbol. The pseudo instructions fshort, fiong.
text, data and bss will allow the programmer to override the assembler delaults.
Assembling external:'symbols it will always use the long direct address mode.

A similar problem exists for branches. I a forward reference is found in a
branch instruction, the assembler will use the two-word {orm of the instruction.
Using the suffix .s for the branch instruction the prograrmmmer can force the
assembler to generate the one-word form of the branch instruction. The pseudo
instructions bshort and blong allow additional control.

4. PSEUDO INSTRUCTIONS

Pseudo Instructions discussed in this chapter are classifled according to appli-
cation as follows:

Module identification (ident, end)

Segment control (text, data, bss)

Symbol definition (equ, set)

Module linkage (entry, extern)

Data generation and storage reservation (dec, ds, org)
Conditional assembly (else, endc, endif, feq, ifne)
Source stream control (insert)

Listing control (list.g.nolist page nopage stilttl fail)
Object code control (blong, bshort, flong, fshort, noabj)
Cross reference control (xrefon, xrefof)

The next chapter describes the deflnition and use of macros. The format
description for the pseudo instructions uses symbols which have the following
syntactical meaning:

{..;] Enclose optional fields of the pseudo instruction.

<.> Enclose a ‘syntactic variable’, e.g. <qumber>.

4.1. ¥odule Jdentification

4.1.1. IDENT - Module Identification

For compatibility with ME68MIL an ident pseudo instruction is accepted but is
ignored. It has the following {ormat:

ident <symbol>

<symbol>
The symbol defines a name (originally that of the module).

4.1.2. END - End of Module

An end pseudo instruction must be the last instruction of each module. It
causes the assemmbler to terminate all counters, conditional assembly, or macro
generation. It also causes the a.out module to be terminated.

end {<symbol>
<symbol>
An optional symbeol is accepted - for compatibility - but ignored. The pro-
gram main entrypolnt is determined by the label _main as stated in the
a.out description.

42, Segment Control

Segment contrcl pseudo instructions allow the programmer to divide a source
module into separately controlled regions of a program, providing her/him with
a means of changing type and value of the location counter. They start or
resume assembly f{or one of the three a.out segments. The segment in use is the
segment into wkich code is subsequently assembled. By default the assembler
will always start with the text segment using long direct address mode (see 3.3).
I the suflix s is appended to a segment control pseudo instruction, the asszm-
bler will assurze that this segment will fAnally be loaded into low address

-10-

memory and use direct short addresses for backward references.

= The suflix s does not imply that forward references in that segment will
2lso be resolved with direct short addresses. fshort must be used for this
purpose.

42.1. Text Segment

text{.s]
Description:
The pseudo instruction causes the assembler to start or resume assembly
in the text segment.

422 Data Segment

dataf.s]
Description:

The psesudo instruction causes the assembler to start or resume assembly
in the data segment.

423. Bss Segment

bssi.s)
Description:

The pseudo instruction causes the assembler to start or resume storage
allocation in the bss segment {uninitialized data: ds and org oaly).

43. Symbol Definition
43.1. EQU - Equate Symbol Value.

<symbol> equ <expression>

<symbol>
A location symbol following the naming rules must be defined.
<expression>

An expression following the expression rules. Forward references are not
allowed.

Description:
An equ pseudo instruction permanently defines the symbol in the location

field as having the value and type indicated by the expression in the vari-
able fleld.

43.2. SET - Set or reset symbol value.

<symbol> set <expression>

-1 -

<symbol>
A location symbol following the naming rules must be defined.

<expression>
An expression {ollowing the expression rules. Forward references are not
allowed.

Description:
A set pseudo instruction defines the symbol in the location fleld as having
the value and type indicated by the expressien in the variable fleld. A sub-
sequent set using the same symbol redefines the symbol to the new value
-and type.

4.4. Module Linkage

The pseudo instructions entry and extern do not define symbols but either
declare symbols defined within a2 module as being available outside the module
or declare symbols referred to in the module as being defined outside the
module.

4.4.1. ENTRY - Declare Entry Symbols

entry <Sym, > <Symyp? .. Sym,>
<sym >)

+

Linkage symbol. Each symbol must be defined in the module as nonexter-
nal {must not be listed on an extern pseudo instruction).

Description:
The entry pseudo instruction specifies which of the symbelic addresses
deflned in the module can be referred to by modules assembled indepen-
dently; entrylists entry points to the current module.

4.4.2. EXTERN - Declare External Symbols

extern <symy >, <symp> .., <Sym,>
<Sym >

Linkage symbol. These symbols must not be defined within the module.
Description:

The externm pseudo instruction lists symbols thal are defined as entry

points in independently assembled modules f{or which references can

appear in the module being assembled.

4.5. Data Generation and Storage Reservation
4.5.1. DC - Define Constant

{<symbeol> de <opr,>, <ODPry> ..., Opr,>
{<symbol>{ de.b <opr;>, <pry>.., Opry>
{<symbol>] de.w <opr,>, <opry> ..., Opry>
{<symbol> del <opr;>, <opry>... <pr.>

-12-

<symbol>
A symbol following the naming rules may be defined.

<opr>

The operand can be a symbol, an ascii, decimal or hexadecimal value or an
expression evaluating to such a value.
Description:

The function of the dc pseudo instruction is to define a constant in
memory. The de directive may have one operand. or multiple operands
which are separated by commas. The operand fleld may contain a value
{decimal, octal, hexadecimal, or character string), a symbol or a expres-
sion. The constant is aligned on a word boundary if word(.w) or leng (.1) is
specified, or a byte boundary if byte (.b) is specified. The constant is lirm-
ited to 60 bytes.

The following rules apply to size specifications on character strings:

de.b If an odd number of bytes (characters) are entered, the odd byte on the
right will be zero filled unless the next source statement is another de.b
or ds.b. In this case the next de.b or ds.b will start in the odd byte on the

right
de.w 1! an odd number of bytes (characters) are entered, the last word will be
zero fllled on the right to force an even byte count.

decl I less than a multiple of four bytes are entered, the last long word will be
zero filled.on the right to a multiple of four bytes.

4.5.2. DS - Define Storage

{<symbol>] -ds <expression>
{<symbol>y ds.b <expression>
{<symbol>{ ds.w<expression>
{<symbol>{ dsl <expression>

<symbol>

A symbol following the naming rules may be defined.
<expression>

The expression must evaluate to an absolute, positive value.

Description:
The ds pseudo instruction is used to reserve memory locations. The con-
tents of the memory reserved are zero fllled for text and data segment. for
bss segment they are not initialized in any way. The expression rnust evalu-
ate to an absolute value. Forward references are not allowed.

4.5.3. ORG - Origin

Since a.out modules are always rclocatable the org pseudo instruction is appli-
cable only in a very restricted manner: it can be used to advance the location
counter a certain npumber of bytes or to a certain label. The skipped locations
are zero filled.

org <expression>

-13-

Description:
The org pseudo instruction i{s used to advance the location counter
<expression> bytes. It's identical with

ds.b <expression>*

l.e. the expression must be of current segment type and evaluate to an
value greater than the actual Jocation counter.

4.8. Conditional Assembly

The pseudo instructions ifeq and ifne permit optional assembly or skipping of
source code. The instructions irmmediately following the test instruction are
assembled if the tested condition Is true and skipped if the condition is false.
Skipping is terminated either by a source statement count on the if instruction,
or by an endil, else or an end. The statement count, when used, is decremented
for instruction lines only; comment lines (identified by ® in column one) are not
counted.

The result of an if test is determined by the value of the expression in pass one
of the assembler; the value of a relative symbol is relative to the origin of the
segment In which it was defined The value of an external symbol is zero if the
symbel was declared as external.]! the symbol was deflned relative to a
declared external, the value is the relative value. if's may be nested up to ten
levels deep.

4.8.1. ENDIF - End of IF Range

{<U.name>] endif

<U_name>

An opticnal symbol; deflnes the name of an ifeq, ifne or else sequence; or
blank.

Description:
An endif pseudo insiruction (or endc for compatibility with the Motorola
assembler) causes termination of skipping and assembly to resume. When
the sequence containing the endif is being assembled, or is controlled by a

statement count, the endif has no effect other than to be included in the
count.

Skipped instructions such as macro references are not expanded. Thus,
any endif that would have resulted from an expansion is not detected.

Skipping of 2 sequence initiated by an ifeq, ifne or else that is assigned a
name is terminated by an endif specifying the same name. Skipping of a
sequence initiated by an unnamed ifeq, ifne or else is terminated by an
unnamed endif.

.14.

4.62. ELSE - Reverse Effects of IF.

{df_name>| else

<_name>
An opticnal symbol: defines the name of an ifeq, ifne or else sequence: or
blank.

Description: .
By means of the else instruction, the assembler provides the facility to
Teverse the effects of an If test within the if range. An else detected during
skipping causes assembly to resume at the instruction following the else.
An else detected while a sequence is being assembled initiates skippinz of
source code {ollowing the else. Skipping continues until either an end or
an endif for the sequence is detected.

An else specitying the sequence by name terminates skipping of a sequence
initiated by an ifeq or ifne with the same name. An unnamed else ter-
minates skipping of a sequence |nitiated by an unnamed ifeq or iftne.
Skipped instructions such as macro references are not expanded; any else
that would have resulted from the expansion.is not detected.

4.5.3. IFEQ - Test Expression is Equal Zero.
4.6.4. IFNE - Test Expression is Not Equal Zero.

{df_name>| {ifeq <expression>{.dine_count>i
fdf.name>| ifne prression>[.<une_count>}

<UY_narme>
An optional symbol, defines the name of the ifeq or ifne sequence; or blank.

<expression>
A simple expression without forward relerence. If the expression is errone-
ous, an error message is printed and assembly continues with the next
instruction.

<ine_count>
Optional absclute value'specifying an integer count of the nurzber of state-
ments to be skipped.

Description:
The ifeq and ifne pseudo instructions test the value of the expression and
assemble instruction in the if range when the condition is satisfied.

The <ine_count>, if specified, takes precedence over an d!.name>, if specified
at all.

-15 -

4.7. Source Stream Control

4.7.1. INSERT - Insert Secondary Source.

insert
Description:
The insert pseudo instruction provides a means of obtaining source state-
ments from a flle other than that being used [or (nput. The assembler
transfers the text [rom this fAle and assembles it belore taking the next
statement fromthe interrupted source of statements.

There are no parameters for the insert pseudo instruction. The file to be used is
specified when the assembler is called (see 6.) The flle. will be rewound before
using it. Under UNIX , the preprocessor cap supports the inclusion of flles and
some other features. cpp may be used with the assembler (see 6.). Its usage is
described in

Kernighan B. W.; Ritchie D. X.:

The C Programming Language.
Prentice-Hall Software Series; Chapter 4.11

4 8. Listing Control

The pseudo instructions described in this section permit extensive control of
the assembly Usting format..

4 8.1. LIST - Listing

list <op,;>.<opy>... <Opy>
<op>

Optional parameter. A list option or a list option prefixed by a minus sizn.
The unprefixed option selects the option: the prefixed option cancels it.
Options are separated by commas and terminated by a blank. The following
options are available:

dc When dc is selected, the source line of the dc pseudo tnstruction and its
expansion are listed, ctherwise only the source line will be listed.
-dc is the default.

if VWhen {f is selected, the source lines of the ifeq, ifne, else or endif pseudo
instructions and the skipped source statements in the if range are listed,
otherwise the pseudo instructions are listed, but not the skipped source
statements.
-{f is the default.

macro
When macro is selected, the source line of the macro reference and the
fully expancded macro body are listed, otherwise only the source line of the

outermost macro reference of possibly nested macro calls is listed.
-macro is the default.

- 16 -

Xope
When xopc is:selected, the assembler will list the use of all opcodes in the
cross reference list,

-xopc is the default.

xpse
When xpse is selected, the assembler will list the use of all pseudo instruc-
tion in the cross reference list.

-xpse is the default.

XTeg
When xreg ist-selected, the assembler will list the use of all registers in the
cross reference list.

-xreg is the default.

Description:

The list pseudo instruction controls the content and format of the assem-
bler listing. Use of the list pseudo instruction is optional. If not specified in
a module, or if specified without parameters, the assembler will produce an
output according to the default for each possible option.

For compatibility with the Moterola assembler the pseudo instruction g is also
accepted

B

Description.. '
The eflect of the g pseudo instruction is identical with the effect of

list dc

482, NOLIST - Turn off Listing

nolist
nol
Description:
The nolist pseudo instruction suppresses the printing of the assembly list-
ing until a list pseudo instruction is encountered.

483. PAGE - Top of Page.

page
Description:
The page pseudo instruction advances printer paper to a new page before
printing. Then peage hcadings are printed and listing continues. The page
pseudo instruction does not appear on the program listing.

48.4. NOPAGE - Turn off Paging.

nopage

-17-

Descriptien:
The nopage pseudo instruction suppresses paging to the output device.
Page and line numbers in the cross reference and error listing will be

meaningless.

4.85. SPC- Space Between Source Lines.

gpc <count>

<count>
An absolute value,

Description:
The spc pseudo instruction causes the assembler to output <count> blank
lines to the assembly listing. The spe pseudo instruction does not appear
on the program listing.

4.8.6. TTL - Assembly Listing Title.
4.8.7. STTIL - Assembly Listing Subtitle.

tHl ‘<exty’
sttl ‘ext>
Description:

The ttl and sttl pseudo instruction allow the programmer to print a title
and a subtitle on the top of each page of the listing. To this effect the
assembler maintains internally two text strings which are set to blank at
the beginning of pass one. In pass two, whenever a new page is started,
these two text strings together with other information are printed in the
page header. Specifying a title or subtitle merely means, that the contents
of the corresponding internal text string is changed to the one specified
with the ttl or sttl pseudo instruction. It does not imply an automatic start
of 2 new page. The first specified title is in addition kept in a third internal
text string and is copied into the title text string at the start of pass two.
Neither the ttl nor the sttl pseudo instruction are lsted {n the assembly
listing.

4.8.8. FAIL - Cenerate an Error Message.

fail

Description:
An error message is printed on the assembly listing.

4.9. Object Code Control

The pseudo instructions blong, bshort, flong or fshort allow the prograrmmer to
influence the assembler’'s choice whenever forward references or relative sym-
bols are encountered, be it for direct addresses or relative branching instruc-
tions.

-18-

4.9.1. BELONG - Use Two-Word Branch.
4.92. BSHORT - Use One-¥ord Branch.

blong
bshort
Description:

The two pseudo instructions blong and bshort allow the programmer to
influence the assembler whenever it is assembling 2 {forward reference. By
default the assembler will use the two-word instruction form allowing a
larger relative address range. After a bshort pseudo instruction the assem-
bler will generate the one-word relative branch instruction, unless the
suffix .1 a blong pseudo instruction forces the two-word relative branch
instruction to be generated, unless the suflix .s has been appended to that
branch instruction.

4.9.3. FLONG - Force Direct Long Address.
4.9.4. FSHORT - Force Direct Short Address.

flong
fshort
Description: .

The two pseudo -instructions flong and fshort allow the programmer to
mfluence the assembler whenever it is assembling an direct address the
.1abel of which contains a forward reference. By default the assembler will
use the long direct address form After an fshort pseudo instruction the
assembler will generate the direct short address form. The occurrence of a
flong pseudo instruction forces the direct long address form to be gen-
erated.

W= The selected option, long or short direct addresses, is only valid until the
next occurrence of a flong, f=hort or segment control pseudo instruction.

4.9.5. NOOBJ - Suppress aout Cutput.

noobj

Description:
The pseudo instruction noobj suppresses the generation of a a.out module.

-19-

4.10. Cross Reference Control

The pseudo instructions allow the programmer to select whether a cross refer-

ence listing shall be built up and printed at the end of the assembler listing. De-
fault is xrefon.

xrefon
Description:
A cross reference listing is bulilt up and printed.
xrefofd
Description:
A cross reference listing is suppressed.

-20-

5. MACRO OPERATIONS

A macro definition is a sequence of source statements that are saved and then
assembled whenever needed through a macro call. A macro call consists of the
occurrence of the macro name in the operation fleld of a statement. [t usually
includes parameters to be substituted for formal parameters in the macro code
sequence so that code generated can vary with each assembly of the definition.

Use of a macro req;m'es two steps, definition of the macro, and calling of the
definition.

A definition consists of three parts: heading, body, and terminator.

heading A macro definition is headed by a macro pseudo instruction stating
the name of the macro. The heading optionally includes a local
pseudo instruction identifying symbols local to the definition.

bedy The body begins with the first statement in a definition that is not a
local pseudo instruction or a comment line. The body consists of a
series of symbolic instructions. All instructions other than end or
another macro definition are legal within a definition. The assem-
bler recognizes substitutable arguments in all flelds of the source
line. The macro argument =0 however can only be used in the
operation field for referring to the data size subparameter in an
opcode or pseudo instruction. The arguments =i through ~9 can
appear anywhere in-a source line. Ten is the maximum number of
arguments that can be handled by any macro definition. Macro calls
may be nested up to ten levels deep.

termunator. An endm pseudo instruction terminates a macro definition.

5.1. ENDM - End ¥Macro Definition.
endm

.An endm pseudo instruction terminates the macro definition.

5.2. LOCAL - Local Symbols.

local . Sym, >, <Sym,> ... <Sym,>

<sym>
List of local symbols. Symbols must be separated by commas. A blank ter-
minates the list. The maximum number of local symbols is :0.

Description:
The local pseudo instruction, which lists symbols local to the definition
optionally follows the macro pseudo instruction.

A symobol in the list is considered local to the macro; that is, it is known only
within the macro definition. On each expansion of the macro, the assembler
creates a2 new symbol for each local symbol and substitutes it for each
occurrence of the local symbol in the definition. Thus invented symbols replace
local named symbols wherever they appear in a macro definition in a manner
similar to the way substitutable parameters are replaced.

-21-

5.3. MACRO - Macro Heading.

<n_name> InaACTo

<m._name>
A mandatory symbol that defines the name of the macro.

Description:
A macro pseudo Instruction tells the assembler to place the tnstructions
forming the body of the macro in a table of macro definitions for assembly
upon call, and to place the macro name in the symbol table.

5.4. MACRO CALLS

A macro headed by a macro pseudo tnstruction can be called by an instruction
in the following format:

<symbol> <m_name> <P;>. P> .es Pp>

<symbel> <m_name>s <p,>, <Py> ... P>
<symbol> <m-name>b <p,;>, <Py> .. <Py>

<symbol> <m.name>.w <p;>, <P ... Pp>
<symbol> <mname>l <p;>, P> ... Py>

<symbol>
An optional location symbol

<@ _name>
Name of a previously defined macro. The (optional) size attribute substi-
tutes macro parameter 0 {see above).

;>
Parameter list composed of strings of characters. Parameters are

separated by commas and terminated by a blank. Two consecutive commas
constitute a null parameter.

I null parameters are {nterspersed with non-null parameters, the correct posi-
tions must be established with commas. When the list terminates before the last
possible parameter, all remaining parameters are considered null

YWhen the first character of a parameter {s a left angle bracket { <), the assem-
bler considers all the characters between {t and the matching right angular
bracket (>) as one parameter. The assembler removes the outer pair of angle
brackets before substituting the enclosed character string in a line. Embedded
brackets must be properly paired. A bracketed item can contain blanks and
¢ommas.

-22-

6. HOW TO USE THE ASSEMELER

The assembler has been designed as a two pass assembler and is written in Pas-
cal. To run the assembler two {nput flles (INPUT - assembler source, INSERT -
accessed only by the insert pseudo instruction), two output files (OUTPUT -
assembler listing, AOUT - a.out object module) and two work files (SCRATCH.
XRETFIL) must be provided.

VUnder UNKX the shell procedure as runs the preprocessor cpp and the assembler
gsm. One or more assembler source flles may be listed as arguments. There is
no provision for assignment of INSERT since insertion can be achieved more
conveniently by use of cpp. Following UNX convention, AOUT is written on a file
named <aamed.o, while the assembler sources should be named <name>.s. List-
ings will be displayed to <caame>.lst.

<source>.s
(assembler + cpp instructions)

<source>.0 <source>.ist

Example 1:
as mysource.s
reads mysource.s
displays the listing to mysourcelst, the object module to mysource.o

Example 2:
2&s mysource®s
reads mysource0.s mysourcel.s mysourced.s
files the listings to mysource0.lst mysource!.lst mysourced.ist
writes the object modules to mysource0.0 mysource:.o mysourced.o

Should you experience any problems or encounter errors. please contact the
author.

7. APPENDIX

-23-

Symbols and related address modes and relocation information

symbol type textsegment datasegment
absolute DA (r-abs) DA (r.abs)
text gf?:;i(e;gbs) DA {r_text)
data DA (r-data) B8 rabs)
bss DA (r.bss) DA {r.bss)
external DA (r-ext) DA (r_sxt)

Notation:

DA direct addressing mode
PCD16 program counter relative addressing mode {generated if requested)
Related relocaticn information

r-abs (absolute symbol)

rtext (text symbol)

r_data {data symbol)

r-bss (bss symbol)

r-ext (external symbol)

-24-
List of Error Messages

O:constant too large

l:character not defined for m 68000 assembler
2:character missing or not valid for constant
3:string too long or not terminated properly
4:entry point or external symbol multiply defined
S:entry point not defined

7:symbol cannot be used as a label

B:this operation needs a label

B:this operation does not allow a label

10:symbol multiply defined

12:symbol not defined

13:initial ifeq or ifne is missing or misplaced

14:the label of an if should not be used here

15:4 conditions more than maxinest levels deep
18:symbol cannot be used as an opcode

17:size specification {llegal or not allowed

18:macro expansion error

19:more than maxmlocal local parameters

20:at most one local pseudo per macrodefinition
21:initial macro definition missing or misplaced
22:macro calls more than maxmnest levels deep
23:> expected

24:do not nest macro definitions

25:opcode/macro or pseudocode missing

26:no such cross-reference option

28:operation needs one or more operands
29:address or data register expected

30:address register expected

31:bad termination of an expression

32:an expression cannot start with this symbol
33:an operand cannot start with this symbol

34:the count must be absolute [or this pseudo
35:the count must be positive for this pseudo
36:the expression must be greater lc {for org pseudo
38:displacements are restricted to byte or word size
40:argument(s) missing in expression
41:displacement is restricted to byte size

42:type conflict between address and program counter
4£3:expression too complicated, use equ or set pseudo to break it down
44:expression too large for size specified
45:forward reference nol allowed for this pseudo
46:both arguments must be absolute for logical operations
47:3 option does not allow branch to next word
48:register specification expected

49:; expected

50:) or , expected

S5i:separator expected

52:no size specification for this operation

S53:byte size specification not allowed

54:both arguments must be absolute for shift operations
558:string expected

-25-
List of Error Messages (continued)

56:too0 many operands are specified for this operation
§7:both arguments must be absolute for ®*or /
58:this address mode is illegal {or the opcode
59:address mode combination illegal {or opcode
60:do not write a comment on this line
61:synchronization error between pass one and two
€2:too many errors this instruction line

63:fail generated error, consult listing

84:syntax error {n register list for movem

65:org argument is of illegal type

68:no code generation in bss segment

69:list options are: dc, if, macro, xopc, xpse, xreg
70:one argurment must be absolute {for add operation
71:illegal operand types for sub operation

72:a.0ut buffers exceeded

Erganzungen zu MUNIX - Fortran 77

Norbert Radt
PCS Gmbh
Pfdlzer- Wald-Strasse 36

8000 Minchen 90

1. Einleitung
An dieser Stelle werden verschiedene systemspezifische Eigenschaften des
MUNIX Fortran-77 Systems beschrieben, die in [1] nichl dargestellt werden.

2. Hinweise zu einigen Statements
2.1 OPEN-statement

- Nach einem OPEN steht der "file-pointer” immer auf end-of-file.
Soll von einem sequentiellen File gelesen werden, so muss
daher nach dem OPEN ein REWIND-statement ausgefiihrt werden.

- Der Filename muss, wenn er nicht als Literal angegeben wird,
als CHARACTER*N deklariert sein.

- Bei direct-access-Files muss die Recordlange in Byte angegeben
werden.

- Bei status=‘new’darf, im Gegensatz zu friheren Versionen,
das angegebene File nicht existieren, bei status='old 'muss
es dagegen vorhanden sein.

2.2 READ/WRITE-statements

- Entgegen der fruheren Darstellung in [1] kénnen die Fileunits
0 - 18 verwendet werden. Davon sind vorbelegt :

0 - stderr (standard error output) = Terminal. Die Ausgabe kann
durch "2>errors"” in der Kommandozeile auf ein
File "errors’” umgeleitet werden.

5 - stdin (standard input) = Terminal. Die Eingabe kann durch
“<input” in der Kommandozeile von einem File
"input” erfolgen.

6 - stdout (standard output) = Terminal. Die Ausgabe kann

durch ">output” in der Kommandozeile auf ein
File "output” umgeleitet werden.

- Interne Files (entspricht ENCODE/DECODE auf anderen Systemen)
missen

a) bei nur einem Record der Lange N als
CHARACTER®N record

b) bei m Records (m > 1) der Lange N als
CHARACTER®*N record(m)

deklariert werden.

- Eine geklammerte E/A-Liste ohne implizite DO-Schleife ist ein
Syntax-Fehler (ist in Standard Fortran-77 nicht erlaubt).

- Ein CHARACTER-Wert, der listengesteuert ausgegeben wurde,
kann nicht wieder eingelesen werden (It. Standard Fortran-77
werden CHARACTER als ein Zeichen ausgegeben, aber nur geklam-
mert in ‘' oder “ eingelesen!).

2.3 DATA-statement

- In DATA-Anweisungen kénnen fur CHARACTER nur darstellbare
ASCIll-Zeichen oder Ersatzzeichen verwendet werden.

Ersatzzeichen \ O (binar Null),
\f (formfeed),
\n (newline),
NN (\)
siehe auch in [1] Punkt 2.9.

Eine Oktal- oder Hexadezimal-Darstellung wie bei INTEGER-Werten
ist nicht méglich, ist aber fir spatere Versionen
vorgesehen.

2.4 PARAMETER-statement

- Im Gegensatz zu DATA-Anweisungen besteht bei der PARAMETER-Anweisung
durchaus die Moglichkeit, CHARACTER-Konstanten nicht darstellbare
ASCIll-Zeichen zuzuordnen.

Beispiel
PARAMETER (ETX = char(3))

Durch diese Anweisung wird eine CHARACTER-Konstante ETX definiert,
die den binaren Wert 3 erhalt.

3. Allgemeine Hinweise
3.1 COMMON-Bloacke

- COMMON-Blécke durfen nur langer als 32 kByte sein,
falls man beim Ubersetzen die Option -1l verwendet.

- COMMON-Blocke miissen bei jeder Deklaration die gleiche
Lénge besitzen !

3.2 Feld-Deklarationen

- Felder durfen nur léanger als 32 kByte sein, wenn man
beim Ubersetzen die Option -1l verwendet.

3.3 Sonstiges

- Konversionen zwischen den Datentypen

CHARACTER-Werte --> INTEGER-Werte
INTEGER-Werte --> CHARACTER-Werte

INTEGER®*2-Werte --> INTEGER®*4-Werte
INTEGER®*4-Werte --> INTEGER®*2-Werte

Konversion automatisch
char-Function (intrinsic)

int4-Function
int2-Function

- Die UNIX-spezifische Verwendung des Zeichens "\ " als Fluchtsymbol
bedingt auch in Fortran-77 eine abweichende Handhabung dieses
Zeichens. Anstelle eines "\ " sind stets zwei ("\ \"') anzugeben.

Dazu siehe auch in [1] Punkt 2.9 und Punkt 2.3 oben.

- EQUIVALENCE auf CHARACTER-Feldern dirfen nur bei ungeraden
Indices beginnen, sonst kommt es zu Laufzeitfehlern

{(odd address error).

- Die Fortran-Steuerzeichen 1, 0, + und (space) werden bei der
Ausgabe nicht interpretiert. Sie kénnen jedoch mit dem
Filter "fpr” (siehe Man. 1) auf dem Drucker oder dem Terminal

ausgegeben werden.

- Die (Unter-) Programme die einen Aufruf der Funktion inquire
enthalten, missen bei einer Umstellung von MUNIX-Version 1.4/06

auf MUNIX-Version 1.5 neu tibersetzt werden.

- Zum Laden von bereits Uibersetzten f77-Moduln (suffix .o)

sollte wie beim Compilieren der Aufruf
"{77 prog.o sub.o "

verwendet werden. Damit werden dann automatisch alle notwendigen
Bibliotheken dazu gebunden und ein lauflahiges Programm erstellt.

- Ab MUNIX-Version 1.5 hat sich die Bedeutung der f77-Option -14

verandert.

Ohne Verwendung weiterer Optionen bedeutete -14

froher 4-Byte Integer, 4-Byte Indices
jetzt 4-Byte Integer, 2-Byte Indices.

Dies bedeutet, dass man statt wie fraoher -14 nun -1l

verwenden muss.

4. Abschliessende Bemerkungen

Ich hoffe, dass lhnen mit diesen Hinweisen die Arbeit mit dem
CADMUS/MUNIX-Fortran-77 Compiler und Laufzeitsystem erleichtert
wird. Hinweise lhrerseits werden vom Autor gerne entgegengenommen.

Literatur:

[1] - S.1. Feldman, P.J. Weinberger,
A Portable Fortran 77 Compiler,
Bell Lab’s Murray Hill, New Jersey 07974

Restrictions/unsolved problems on MUNIX - Fortran 77

Norbert Bladt
PCS Gmbh
Pfdlzer- Wald- Strasse 36

8000 Minchen 90

Unsolved Problems
There are several unsolved problems in the fortran-77 runtime-system.

1. statement-functions
Using the archaic feature of statement-functions in fortran-77

errors can occur. To avoid such errors, use normal functions
instead.

2. DATA-statement
The error-message overlapping initialisation without

any linenumber can occur during initialisation of
CHARACTER-strings.

3. The option -fN

Using the -fN option the error-message out of registers
means that you have to simplify your arithmetic expressions.

Restrictions
asgign-statement

A FORMAT-statement must be given before an assign-statement
that assigns the label of the format statement to an integer variable.

Changes in MUNIX - Fortran 77

Norbert Hladt
PCS Gmbh
Pfdlzer- Wald- Strasse 36

D- 8000 Minchen 80

Changes in 77 (MUNIX-Version 1.4/06 to 1.5)

There are several changes in the {77 runtime-system.
These are

1. the inquire-function.

The internal call of the inquire-function has changed,
i. e. you have to compile at least the (sub-)programs
which call this function.

2. the option -]4.

Without any other options it means now only 4-byte-integer
(not as earlier also 4-byte-subscipts).
To run with 4-byte-subscipts you now have to choose the
-11 (ell) option, i.e. you have to change your invocation
of the {77-compiler e.g. from

{77 -14 prog 1
into

77 -1l prog.f

3. the open-statement.

The meaning of the argument “status"” has been changed
according to the standard definition of Fortran-77.

If status="new’ is given, the file must not exist, if
status='old’ is given the file must exist. Otherwise

an error is reported.

A Portable Fortran 77 Compiler

S. I. Feldman
P. J. Weinberger

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

The Fortran language has just been revised. The new language,
known as Fortran 77, became an official American National Stan-
dard on April 3, 1978. We report here on a compiler and run-
time system for the new extended language. This is believed to
be the first complete Fortran 77 system to be implemented. This
compiler is designed to be portable, to be correct and complete,
and to generate code compatible with calling sequences pro-
duced by C compilers. In particular, this Fortran is quite usable
on UNIXt systems. In this paper, we describe the language com-
piled, interfaces between procedures, and file forrnats assumed
by the 1/0 system. An appendix describes the Fortran 77
language.

1 August 1978

tUNIX is & Trademark of Bell Laboratories.

A Portable Fortran 77 Compiler

S. I. Feldman
P. J. Weinberger

Bell Laboratories
Murray Hill, New Jersey 07974

1. INTRODUCTION

The Fortran language has just been revised. The new language, known as
Fortran 77, became an official American National Standard [1] on April 3,
1978. for the language, known as Fortran 77, is about to be published. For-
tran 77 supplants 1966 Standard Fortran [2]. We report here on a compiler
and run-time system for the new extended language. The compiler and com-
putation library were written by SIF, the 170 system by PJW. We believe ours
to be the first complete Fortran 77 system to be implemented. This compiler
is designed to be portable to a number of different machines, to be correct
and complete, and to generate code compatible with calling sequences pro-
duced by compilers for the C language [3]). In particular, it is in use on UNIXt
systems. Two families of C compilers are in use at Bell Laboratories, those
based on D. M. Ritchie's PDP-11 compiler{4] and those based on S. C.
Johnson's portable C compiler [5]. This Fortran compiler can drive the
second passes of either family. In this paper, we describe the language com-
piled, interfaces between procedures, and file formats assumed by the 170
system. We will describe implementation details in companion papers.

1.1. Usage

At present, versions of the compiler run on and compile for the PDP-11,
the VAX-11/780, and CADMUS 9000 UNIX systems. For the command to run the
compiler see {77(1).

1.2. Documentation Conventions

In running text, we write Fortran keywords and other literal strings in
boldface lower case. Examples will be presented in lightface lower case.
Names representing a class of values will be printed in italics.

1.3. Implementation Strategy

The compiler and library are written entirely in C. The compiler gen-
erates C compiler intermediate code. Since there are C compilers running on
a variety of machines, relatively small changes will make this Fortran com-
piler generate code for any of them. Furthermore, this approach guarantees
thatl the resulting programs are compatible with C usage. The runtime com-
putational library is complete. The mathematical functions are computed to
at least 63 bit precision. The runtime 1/0 library makes use of D. M. Ritchie's
Standard C 170 package [8] for transferring data. With the few exceptions
described below, only documented calls are used, so it should be relatively
easy to modify Lo run on other operating systems.

tUNIX is a Trademark of Bell Laboratories.

2. LANGUAGE EXTENSIONS

Fortran 77 includes almost all of Fortran 66 as a subset. We describe the

diflerences briefly in the Appendix. The most important additions are a char-
acter string data type, file-oriented input/output statements, and random
access 170. Also, the language has been cleaned up considerably.

In addition to implementing the language specified in the new Standard,

our compiler implements a few extensions described in this section. Most are
useful additions to the language. The remainder are extensions to make it
easier to communicate with C procedures or to permit compilation of old
(1966 Standard) programs.

2.1,

2.2.

2.3.

2.4.

2.5.

2.6.

Double Complex Data Type

The new type double complex is defined. Each datum is represented by a
pair of double precision real variables. A double complex version of
every complex built-in function is provided. The specific function names
begin with z instead of c.

Internal Files

The Fortran 77 standard introduces “internal files" (memory arrays) and
restricts their use to formatted sequential 1/0 statements.

Implicit Undefined statement

Fortran 66 has a fixed rule that the type of a variable that does not
appear in a type statement is integer if its first letter is i, j. k., 1, m or n,
and real otherwise. Fortran 77 has an implicit statement for overriding
this rule. As an aid to good programming practice, we permit an addi-
tional type, undefined. The statement

implicit undefined(a-z)

turns ofl the automatic data typing mechanism, and the compiler will
issue a diagnostic for each variable that is used but does not appear in a
type statement. Specifying the —u compiler flag is equivalent to begin-
ning each procedure with this statement.

Recursion

Procedures may call themselves, directly or through a chain of other
procedures.

Automatic Storage

Two new keywords are recognized, static and automatic. These keywords
may appear as ‘‘types” in type statements and in implicit statements.
Local variables are static by default; there is exactly one copy of the
datum, and its value is retained between calls. There is one copy of each
variable declared automatic for each invocation of the procedure.
Automatic variables may not appear in equivalence, data, or save state-
ments.

Source Input Format

The Standard expects input to the compiler to be in 72 column format:
except in comment lines, the first five characters are the slatement
number, the next is the continuation character, and the next sixty-six
are the body of the line. (If there are fewer than seventy-two characters

2.7.

2.8.

2.9.

-3-

on a line, the compiler pads it with blanks; characters after the seventy-
second are ignored).

In order to make {t easier to type Fortran programs, our compiler also
accepts input in variable length lines. An ampersand (“&') in the first
position of a line indicates a continuation line; the remaining characters
form the body of the line. A tab character in one of the first six positions
of a line signals the end of the statement number and continuation part
of the line; the remaining characters form the body of the line. A tab
elsewhere on the line is treated as another kind of blank by the compiler.

In the Standard, there are only 26 letters — Fortran is a one-case
language. Consistent with ordinary UNIX system usage, our compiler
expects lower case input. By default, the compiler converts all upper
case characters to lower case except those inside character constants.
However, if the —U compiler flag is specified, upper case letters are not
transformed. In this mode, it is possible to specify external names with
upper case letters in them, and to have distinct variables differing only
in case. Regardless of the setting of the flag, keywords will only be
recognized in lower case.

Include Statement
The statement

include 'stufl’

is replaced by the contents of the file stuff. includes may be nested to a
reasonable depth, currently ten.

Binary Initialization Constants

A logical, real, or integer variable may be initialized in a data statement
by a binary constant, denoted by a letter followed by a quoted string. If
the letter is b, the string is binary, and only zeroes and ones are permit-
ted. If the letter is o, the string is octal, with digits 0—-7. If the letter is z
or x, the string is hexadecimal, with digits 0—-9, a—f. Thus, the state-
ments

integer a(3)
data a /7 b'1010', 0'12', z'a’' /
initialize all three elements of a to ten.

Character Strings

For compatibility with C usage, the following backslash escapes are
recognized:

\n newline
\t tab

\b backspace
\f formfeed

\0 null

\' apostrophe (does not terminate a string)

\" quotation mark (does not terminate a string)
NN N\

\z =z where zis any other character

Fortran 77 only has one quoting character, the apostrophe. Our com-
piler and 170 system recognize both the apostrophe (') and the double- -

-4 -

quote ("). If a string begins with one variety of quote mark, the other
may be embedded within it without using the repeated quote or
backslash escapes.

Every unequivalenced scalar local character variable and every charac-
ter string constant is aligned on an integer word boundary. Each char-
acter string constant appearing outside a data statement is followed by a
null character to ease communication with C routines.

2.10. Hollerith

Fortran 77 does not have the old Hollerith (nh) notation, though the new
Standard recommends implementing the old Hollerith feature in order to
improve compatibility with old programs. In our compiler, Hollerith data
may be used in place of character string constants, and may also be used
to initialize non-character variables in data statements.

2.11. Equivalence Statements

As a very special and peculiar case, Fortran 66 permits an element of a
multiply-dimensioned array to be represented by e singly-subscripted
reference in equivalence statements. Fortran 77 does not permit this
usage, since subscript lower bounds may now be different from 1. Our
compiler permits single subscripts in equivalence statements, under the
interpretation that all missing subscripts are equel to 1. A warning mes-
sage is printed for each such incomplete subscript.

2.12. One-Trip DO Loops

The Fortran 77 Standard requires that the range of a do loop not be per-
formed if the initial value is already past the limit value, asin

do10i=2,1

The 1966 Standard stated that the eflect of such a statement was
undefined, but it was common practice that the range of a do loop would
be performed at least once. In order to accommodate old programs,
though they were in violation of the 1966 Standard, the —onetrip com-
piler flag causes non-standard loops to be generated.

2.13. Commas in Formatted Input

The 1/0 system attempts to be more lenient than the Standard when it
seems worthwhile. When doing a formatted read of non-character vari-
ables, commas may be used as value separators in the input record,
overriding the field lengths given in the format statement. Thus, the for-
mat

(i10, f20.10, i4)
will read the record
-345,.05e-3,12

correctly.

2.14. Short Integers

On machines that support halfword integers, the compiler accepts
declarations of type integer*2. (Ordinary integers follow the Fortran
rules about occupying the same space as a REAL variable; they are
assumed to be of C type long int; halfword integers are of C type short

-5-

int.) An expression involving only objects of type integer*2 is of that
type. Generic functions return short or long integers depending on the
actual types of their arguments. Ilf a procedure is compiled using the -12
flag, all small integer constants will be of type integer*2. If the precision
of an integer-valued intrinsic function is not determined by the generic
function rules, one will be chosen that returns the prevailing length
(integer*2 when the —12 command flag is in effect). When the —I2 option
is in eflect, all quantities of type logical will be short. Note that these
short integer and logical quantities do not obey the standard rules for
storage association.

2.15. Additional Intrinsic Functions

This compiler supports all of the intrinsic functions specified in the For-
tran 77 Standard. In addition, there are functions for performing bitwise
Boolean operations (or, and, xor, and not) and for accessing the UNIX
command arguments (getarg and iargc).

3. VIOLATIONS OF THE STANDARD

We know only thre ways in which our Fortran system violates the new

standard:

3.1.

3.2.

Double Precision Alignment

The Fortran standards (both 1966 and 1977) permit common or
equivalence statements to force a double precision quantity onto an odd
word boundary, as in the following example:

real a(4)
double precision b,c

equivalence (a(1),b), (a(4).c)

Some machines (e.g., Honeywell 6000, IBM 360) require that double preci-
sion quantities be on double word boundaries; other machines (e.g., IBM
370), run inefliciently if this alignment rule is not observed. It is possible
to tell which equivalenced and common variables suffer from a forced
odd alignment, but every double precision argument would have to be
assumed on a bad boundary. To load such a quantity on some machines,
it would be necessary to use separate operations to move the upper and
lower halves into the halves of an aligned temporary, then to load that
double precision temporary; the reverse would be needed to store a
result. We have chosen to require that all double precision real and com-
plex quantities fall on even word boundaries on machines with
corresponding hardware requirements, and to issue a diagnostic if the
source code demands a violation of the rule.

Durmnmy Procedurec Arguments

If any argument of a procedure is of type character, all dummy pro-
cedure arguments of that procedure must be declared in an external
statement. This requirement arises as a subtle corollary of the way we
represent character string arguments and of the one-pass nature of the
compiler. A warning is printed if a dummy procedure is not declared
external. Code is correct if there are no character arguments.

3.3. T and TL Formats

The implementation of the t (absolute tab) and tl (leftward tab) format
codes is defective. These codes allow rereading or rewriting part of the
record which has already been processed. (Section 6.3.2 in the Appen-
dix.) The implementation uses seeks, so if the unit is not one which
allows seeks, such as a terminal, the program is in error. (People who
can make a case for using tl should let us know.) A benefit of the imple-
mentation chosen is that there is no upper limit on the length of a
record, nor is it necessary to predeclare any record lengths except
where specifically required by Fortran or the operating system.

4. INTER-PROCEDURE INTERFACE

To be able to write C procedures that call or are called by Fortran pro-
cedures, it is necessary to know the conventions for procedure names, data
representation, return values, and argument lists that the compiled code
obeys.

4.1. Procedure Names

On UNIX systems, the name of a common block or a Fortran procedure
has an underscore appended to it by the compiler to distinguish it froma C
procedure or external variable with the same user-assigned name. Fortran
library procedure names have embedded underscores to avoid clashes with
user-assigned subroutine names.

4.2. Data Representations
The following is a table of corresponding Fortran and C declarations:

Fortran Cc
integere*2 x short int x;
integer x long int x;
logical x long int x;
real x float x;
double precision x double x;
complex x struct § float r, i; | x;
double complex x struct | double dr, di; | x;
charactere*6 x char x[6];

(By the rules of Fortran, integer, logical, and real data occupy the same
amount of memory).

4.3. Return VYalues

A function of type integer, logical, real, or double precision declared as a
C function that returns the corresponding type. A complex or double com-
plex function is equivalent to a C routine with an additional initial argument
that points to the place where the return value is to be stored. Thus,

complex function f(..)
is equivalent to

f (temp,...)
struct { float r, i; | *temp;

A character-valued function is equivalent to a C routine with two extra initial

-7 -

arguments: a data address and a length. Thus,
charactere15 functiong(...)
is equivalent to

g_(result, length, .. .)
char result| J;
long int length;

and could be invoked in C by
char chars[15];

g._.(.chars, 15L, ..)

Subroutines are invoked as if they were integer-valued functions whose value
specifies which alternate return to use. Alternate return arguments (state-
ment labels) are not passed to the function, but are used to do an indexed
branch in the calling procedure. (If the subroutine has no entry points with
alternate return arguments, the returned value is undefined.) The statement

call nret(e1, 2, *3)
is treated exactly as if it were the computed goto
goto (1, 2, 3), nret()

4.4. Argument Lists

All Fortran arguments are passed by address. In addition, for every
argument that is of type character or that is a dummy procedure, an argu-
ment giving the length of the value is passed. (The string lengths are long int
quantities passed by value). The order of arguments is then:

Extra arguments for complex and character functions
Address for each datum or function
A long int for each character or procedure argument

Thus, the call in

external
characteres? s
integer b(3)

call sam(f, b(2), s)

is equivalent to that in

int 1();
char s[7];
long int b[3];

sam_(f, &b[1], s, OL, 7L);

Note that the first element of a C array always has subscript zero, but For-
tran arrays begin at 1 by default. Fortran arrays are stored in column-major
order, C arrays are stored in row-major order.

5. FILE FORMATS

5.1. Structure of Fortran Files

Fortran requires four kinds of external files: sequential formatted and
unformatted, and direct formatted and unformatted. On UNIX systems, these
are all implemented as ordinary files which are assumed to have the proper
internal structure.

Fortran 170 is based on *records”. When a direct file is opened in a For-
tran program, the record length of the records must be given, and this is
used by the Fortran 170 system to make the file look as if it is made up of
records of the given length. In the special case that the record length is
given as 1, the files are not considered to be divided into records, but are
treated as byte-addressable byte strings; that is, as ordinary UNKX file system
files. (A read or write request on such a file keeps consuming bytes until
satisfied, rather than being restricted to a single record.)

The peculiar requirements on sequential unformatted files make it
unlikely that they will ever be read or written by any means except Fortran
170 statements. Each record is preceded and followed by an integer contain-
ing the record’s length in bytes.

The Fortran 170 system breaks sequential formatted files into records
while reading by using each newline as a record separator. The result of
reading off the end of a record is undefined according to the Standard. The
1/0 system is permissive and treats the record as being extended by blanks.
On output, the 170 system will write a newline at the end of each record. It is
also possible for programs to write newlines for themselves. This is an error,
but the only effect will be that the single record the user thought he wrote
will be treated as more than one record when being read or backspaced over.

5.2. Portability Considerations

The Fortran 1/0 system uses only the facilities of the standard C 1/0
library, a widely available and fairly portable package, with the following two
nonstandard features: The 170 system needs to know whether a file can be
used for direct 1/0, and whether or not it is possible to backspace. Both of
these facilities are implemented using the fseek routine, so there is a routine
canscek which determines if fseek will have the desired effect. Also, the
inquire statement provides the user with the ability to find out if two files are
the same, and to get the name of an already opened file in a form which would
enable the program to reopen it. (The UNIX operating system implementation
attempts to determine the full pathname.) Therefore there are two routines
which depend on facilities of the operating system to provide these two ser-
vices. In any case, the 170 system runs on the PDP-11, VAX-11/780, and
Interdata 8/32 UNIX systems.

5.3. Pre-Connected Files and File Positions

Units 5, 6, and 0 are preconnected when the program starts. Unit § is
connected to the standard input, unit 6 is connected to the standard output,
and unit O is connected to the standard error unit. All are connected for
sequential formatted 1/0.

All the other units are also preconnected when exccution begins. Unit n
is connected to a file named fort.n. These files need not exist, nor will they be
crcated unless their units are used without first executing an open. The
default connection is for sequential formatted 1/0.

-9 -

The Standard does not specify where a file which has been explicitly

opened for sequential 170 is initially positioned. In fact, the 1/0 system
attempts to position the file at the end, so a write will append to the file and a
read will result in an end-of-file indication. To position a file to its beginning,
use a rewind statement. The preconnected units 0, 5, and 6 are positioned as
they come from the program's parent process.

REFERENCES

1. Sigplan Notices 11, No.3 (1976), as amended in X3J3 internal documents
through "'780.1".

2. USA Standard FORTRAN, USAS X3.9-1966, New York: United States of
America Standards Institute, March 7, 1966. Clarified in Comm. ACM 12,
289 (1969) and Comm. ACM 14, 628 (1971).

3. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Engle-
wood Clifls: Prentice-Hall (1978).

4. D. M. Ritchie, private communication.

5. S.C.Johnson, "A Portable Compiler: Theory and Practice', Proc. 5th ACM
Symp. on Principles of Programming Languages (January 1978).

6. S.I. Feldman, "An Informal Description of EFL", internal memorandum.

7. B. ¥W. Kernighan, *'RATFOR — A Preprocessor for a Rational Fortran’, Bell
Laboratories Computing Science Technical Report 55, (January 1977).

8. D. M. Ritchie, private communication.

-10 -

APPENDIX. Differences Between Fortran 668 and Fortran 77

The following is a very brief description of the differences between the
1966 [2] and the 1977 [1] Standard languages We assume that the reader is
famniliar with Fortran 66. We do not pretend to be complete, precise, or
unbiased, but plan to describe what we feel are the most important aspects of
the new language. At present the only current information on the 1977 Stan-
dard is in publications of the X3J3 Subcommittee of the American National
Standards Institute. The following information is from the /92" document.
This draft Standard is written in English rather than a meta-language, but it
is forbidding and legalistic. No tutorials or textbooks are available yet.

1. Features Deleted from Fortran 66

1.1. Hollerith

All notions of ''Hollerith" (nh) as data have been oflicially removed,
although our compiler, like almost all in the foreseeable future, will con-
tinue to support this archaism.

1.2. Extended Range

In Fortran 65, under a set of very restrictive and rarely-understood con-
ditions, it is permissible to jump out of the range of a do loop, then jump
back into it. Extended range has been removed in the Fortran 77
language. The restrictions are so special, and the implementation of
extended range is so unreliable in many compilers, that this change
really counts as no loss.

2. Program Form

2.1. Blank Lines
Completely blank lines are now legal comment lines.

2.2. Program and Block Data Statements
A main program may now begin with a statement that gives that program
an external name:
program work
Block data procedures may also have names.
block data stufl

There is now a rule that only one unnamed block data procedure may
appear in a program. (This rule is not enforced by our system.) The
Standard does not specify the effect of the program and block data
names, but they are clearly intended to aid conventional loaders.

2.3. ENTRY Statement

Multiple entry points are now legal. Subroutine and function subpro-
grams may have additional entry points, declared by an entry statement
with an optional argument list.

entry extra(a, b, c)

Execution begins at the first statement following the entry line. All vari-
able declarations must precede all executable statements in the pro-
cedure. If the procedure begins with a subroutine statement, all entry

2.4

2.5.

- 11 -

points are subroutine names. If it begins with a function statement,
each entry is a function entry point, with type determined by the type
declared for the entry name. If any entry is a character-valued function,
then all entries must be. In a function, an entry name of the same type
as that where control entered must be assigned a value. Arguments do
not retain their values between calls. (The ancient trick of calling one
entry point with a large number of arguments to cause the procedure to
“remember’’ the locations of those arguments, then invoking an entry
with just a few arguments for later calculation, is still illegal. Further-
more, the trick doesn’t work in our implementation, since arguments are
not kept in static storage.)

DO lLoops

do variables and range parameters may now be of integer, real, or double
precision types. (The use of floating point do variables is very dangerous
because of the possibility of unexpected roundofl, and we strongly
recommend against their use). The action of the do statement is now
defined for all values of the do parameters. The statement

do10i=1u,d

performs max(0,[(u-l)/d) iterations. The do variable has a predictable
value when exiting a loop: the value at the time a goto or return ter-
minates the loop; otherwise the value that failed the limit test.

Alternate Returns

In a subroutine or subroutine entry statement, some of the arguments
may be noted by an asterisk, as in

subroutine s(a, ¢, b, ¢)

The meaning of the "alternate returns"” is described in section 5.2 of the
Appendix.

3. Declarations

3.1.

CHARACTER Data Type

One of the biggest improvements to the language is the addition of a
character-string data type. Local and common character variables must
have a length denoted by a constant expression:

character*17 a, b(3,4)
character¢(6+3) c

If the length is omitted entirely, it is assumed equal to 1. A character
string argument may have a constant length, or the length may be
declared to be the same as that of the corresponding actual argument at
run time by a stalement like

charactere(*) a

(There is an intrinsic function len that returns the actual length of a
character string). Character arrays and common blocks containing
character variables must be packed: in an array of character variables,
the first character of one element must follow the last character of the
preceding element, without holes.

3.2.

3.3.

3.4.

3.5.

-12-

DMPLICIT Statement

The traditional implied declaration rules still hold: a variable whose
name begins with i, j, k, 1, m, or n is of type integer, other variables are of
type real, unless otherwise declared. This general rule may be overrid-
den with an implicit statement:

implicit real(a-c,g), complex(w-z), character*(17) (s)

declares that variables whose name begins with en a ,b, ¢, or g are real,
those beginning with w, x, y, or z are assumed complex, and so on. It is
still poor practice to depend on implicit typing, but this statement is an
industry standard.

PARAMETER Statement
It is now possible to give a constant a symbolic name, as in

parameter (x=17, y=x/3, pi=3.14159d0, s='hello’)

The type of each parameter name is governed by the type of the con-
stant expressions. The right side of each equal sign must be a constant
expression (an expression made up of constants, operators, and already
defined parameters).

Array Declarations

Arrays may now have as many as seven dimensions. (Only three were
permitted in 1966). The lower bound of each dimension may be declared
to be other than 1 by using a colon. Furthermore, an adjustable array
bound may be an integer expression involving constants, arguments, and
variables in common.

real a(—5:3, 7, m:n), b{n+1:2*n)

The upper bound on the last dimension of an array argument may be
denoted by an asterisk to indicate that the upper bound is not specified:

integer a(5, *), b(*), c(0:1, =2:9)

SAVE Statement

A poorly known rule of Fortran 66 is that local variables in a procedure
do not necessarily retain their values between invocations of that pro-
cedure. At any instant in the execution of a program, if a common block
is declared neither in the currently executing procedure nor in any of
the procedures in the chain of callers, all of the variables in that com-
mon block also become undefined. (The only exceptions are variables
that have been defined in a data statement and never changed). These
rules permit overlay and stack implementations for the aflected vari-
ables. Fortran 77 permits one to specify that certain variables and com-
mon blocks are to retain their values between invocations. The declara-
tion

save a, /b/, c

leaves the values of the variables a and c and all of the contents of com-
mon block b unaffected by a return. The simple declaration

save

has this eflect on all variables and common blocks in the procedure. A

3.6.

-13-

common block must be saved in every procedure in which it is declared if
the desired effect is to occur.

INTRINSIC Statement

All of the functions specified in the Standard are in a single category,
“intrinsic functions', rather than being divided into ‘‘intrinsic’ and
“basic external” functions. If an intrinsic function is to be passed to
another procedure, it must be declared intrinsic. Declaring it external
(as in Fortran 66) causes a function other than the built-in one to be
passed.

4. Expressions

4.1.

4.2

4.3.

4.4,

Character Constants

Character string constants are marked by strings surrounded by apos-
trophes. If an apostrophe is to be included in a constant, it is repeated:

‘abc’
'ain"t'
There are no null (zero-length) character strings in Fortran 77. Our

compiler has two different quotation marks, **' "' and ** " "'. (See Section
2.9 in the main text.)

Concatenation

One new operator has been added, character string concatenation,
marked by a double slash (/7). The result of a concatenation is the
string containing the characters of the left operand followed by the
characters of the right operand. The strings

'ab’ 7/ 'cd’

'abed’
are equal. The strings being concatenated must be of constant length in
all concatenations that are not the right sides of assignments. (The only
concatenation expressions in which a character string declared adju-
stable with a **¢(*)" modifier or a substring denotation with nonconstant
position values may appear are the right sides of assignments).

Character String Assignment

The left and right sides of a character assignment may not share
storage. (The assumed implementation of character assignment is to
copy characters from the right to the left side.) If the left side is longer
than the right, it is padded with blanks. If the left side is shorter than
the right, trailing characters are discarded.

Substrings

It is possible to extract a substring of a character variable or character
array element, using the colon notation:

a(i,j) (m:n)
is the string of (n-m+1) characters beginning at the m® character of the
character array element ay. Results are undefined unless m=<n. Sub-
strings may be used on the left sides of assignments and as procedure
actual arguments.

4.5

4.6.

- 14 -

Exponentiation

It is now permissible to raise real quantities to complex powers, or com-
plex quantities to real or complex powers. (The principal part of the log-
arithm is used). Also, multiple exponentiation is now defined:

a*sbeec = g *¢ (besc)

Relaxation of Restrictions

Mixed mode expressions are now permitted. (For instance, il is permissi-
ble to combine integer and complex quantities in an expression.)

Constant expressions are permitted where a constant is allowed, except
in data statements. (A constant expression is made up of explicit con-
stants and paramcters and the Fortran operators, except for exponen-
tiation to a floating-point power). An adjustable dimension may now be
an integer expression involving constants, arguments, and variables in B
common..

Subscripts may now be general integer expressions; the old cvic' rules
have been removed. do loop bounds may be general integer, real, or dou-
ble precision expressions. Computed goto expressions and /0 unit
numbers may be general integer expressions.

5. Executable Statements

5.1.

IF-THEN-ELSE
At last, the if-then-else branching structure has been added to Fortran.
It is called a "'Block If"'. A Block If begins with a statement of the form

if () then
and ends with an
end if

statement. Two other new statements may appear in a Block If. There
may be several

else if(. .) then
statements, followed by at most one
else

statement. If the logical expression in the Block If statement is true, the
statements {following it up to the next elseif, else, or endif are executed.
Otherwise, the next elseif statement in the group is executed. If none of
the sh: Jt: not found elseif conditions are true, control passes to the
statements following the else statement, if any. (The else must follow all
elseifs in a Block If. Of course, there may be Block Ifs embedded inside
of other Block If structures). A case construct may be rendered

if (s .eq. 'ab’) then
élse if (s .eq. 'cd’) then
else

end if

-15-

5.2. Alternate Returns

Some of the arguments of a subroutine call may be statement labels pre-
ceded by an asterisk, asin

call joe(j, *10, m, *2)
A return statement may have an integer expression, such as
return k

If the entry point has n alternate return (asterisk) arguments and if
1<k <n, the return is followed by a branch to the corresponding statement
label; otherwise the usual return to the statement following the call is
executed.

6. Input/QOutput

6.1.

6.2.

Format Variables

A format may be the value of a character expression (constant or other-
wise), or be stored in a character array, as in

write(6, '(i5)') x

END=, ERR=, and I0STAT= Clauses

A read or write statement may contain end=, err=, and iostat= clauses,
as in

write(6, 101, err=20, iostat=a(4))
read(5, 101, err=20, end=30, iostat=x)

Here 5 and 6 are the units on which the 170 is done, 101 is the statement
number of the associated format, 20 and 30 are statement numbers, and
a and x are integers. If an error occurs during 170, control returns to
the program at statement 20. If the end of the file is reached, control
returns to the program at statement 30. In any case, the variable
referred to in the iostat= clause is given a value when the 1/0 statement
finishes. (Yes, the value is assigned to the name on the right side of the
equal sign.) This value is zero if all went well, negative for end of file, and
some positive value for errors.

6.3. Formatted 1/0

6.3.1. Character Constants

Character constants in formats are copied literally to the output. Char-
acter constants cannot be read into.

write(6,'(i2,"” isn""t ",i1)') 7, 4
produces
7isn't 4
Here the format is the character constant
(i2,' isn''t '|i1)
and the character constant

isn't

-16 -

is copied into the output.

6.3.2. Positional Editing Codes

t, t], tr, and x codes control where the next character is in the record.
trn or nx specifies that the next character is n to the right of the
current position. tin specifies that the next character is n to the left of
the current position, allowing parts of the record to be reconsidered. tn
says that the next character is to be character number n in the record.
(See section 3.4 in the main text.)

6.3.3. Colon

A colon in the format terminates the 1/0 operation if there are no more
data items in the 1/0 list, otherwise it has no eflect. In the fragment

x="("hello”, :, "' there”, i4)’
write(6, x) 12
write(6, x)

the first write statement prints hello there 12, while the second only
prints hello.

6.3.4. Optional Plus Signs

According to the Standard, each implementation has the option of put-
ting plus signs in front of non-negative numeric output. The sp format
code may be used to make the optional plus signs actually appear for all
subsequent items while the format is active. The ss format code guaran-
tees that the 170 system will not insert the optional plus signs, and the s
format code restores the default behavior of the 170 system. (Since we
never put out optional plus signs, ss and s codes have the same effect in
our implementation.)

6.3.5. Blanks on Input

Blanks in numeric input fields, other than leading blanks will be ignored
following a bn code in a format statement, and will be treated as zeros
following a bz code in a format statement. The default for a unit may be
changed by using the open statement. (Blanks are ignored by default.)

6.3.6. Unrepresentable Values

The Standard requires that if a numeric item cannot be represented in
the form required by a format code, the output field must be filled with
asterisks. (We think this should have been an option.)

6.3.7. Iwm

There is a new integer output code, iwm. It is the same as iw, except
that there will be al least m digits in the output field, including, if neces-
sary, leading zeros. The case iw.0 is special, in that if the value being
printed is 0, the output field is entirely blank. iw.l is the same as iw.

6.3.8. Floating Point

On input, exponents may start with the letter E, D, e, or d. All have the
same meaning. On output we always use e. The e and d formal codes
also have identical meanings. A leading zero before the decimal point in
e output without a scale factor is optional with the implementation. (We
do not print it.) There is a gw.d format code which is the same as ew.d

-17 -

and fw.d on input, but which chooses f or e formats for output depend-
ing. on the size of the number and of d.

6.3.9. A" Format Code

6.4.

6.5.

6.6.

A codes are used for character values. aw use a field width of w, while a
plain a uses the length of the character item.

Standard Units
There are default formatted input and output units. The statement

read 10, a, b
S

reads from the standard unit using format statement 10. The default
unit may be explicitly specified by an asterisk, as in

read(e®, 10) a,b

Similarly, the standard output units is specified by a print statement or
an asterisk unit:

print 10
write(®, 10)

List-Directed Formatting

List-directed 1/0 is a kind of free form input for sequential 170. It is
invoked by using an asterisk as the format identifier, as in

read(6, *) a,b,c

On input, values are separated by strings of blanks and possibly a
comma. Values, except for character strings, cannot contain blanks.
End of record counts as a blank, except in character strings, where it is
ignored. Complex constants are given as two real constants separated
by a comma and enclosed in parentheses. A null input field, such as
between two consecutive commas, means the corresponding variable in
the 1/0 list is not changed. Values may be preceded by repetition
counts, as in

4+(3.,2.) 2+, 4¢hello’
which stands for 4 complex constants, 2 null values, and 4 string con-
stants.

For output, suitable formals are chosen for each item. The values of
character strings are printed; they are not enclosed in quotes, so they
cannot be read back using list-directed input.

Direct 170

A file connected for direct access consists of a set of equal-sized records
each of which is uniquely identified by a positive integer. The records
may be written or read in any order, using direct access 1/0 statements.

Direct access read and write statements have an extra argument, rec=,
which gives the record number to be read or written.

read(2, rec=13, err=20) (a(i), i=1, 203)

reads the thirteenth record into the array a.

6.7.

6.8.

- 18 -

The size of the records must be given by an open statement (see below).
Direct access files may be connected for either formatted or unformat-
ted 1/0.

Internal Files

Internal files are character string objects, such as variables or sub-
strings, or arrays of type character. In the former cases there is only a
single record in the file, in the latter case each array element is a
record. The Standard includes only sequential formatted 170 on internal
files. (170 is not a very precise term to use here, but internal files are
dealt with using read and write). There is no list-directed 170 on internal
files. Internal files are used by giving the name of the character object
in place of the unit number, as in

character*80 x
read(5,"(a)") x
read(x,"(i3,i4)"") n1,n2

which reads a card image into x and then reads two integers from the
front of it. A sequential read or write always starts at the beginning of
an internal file.

(We also support a compatible extension, direct 170 on internal files.
This is like direct 1/0 on external files, except that the number of
records in the file cannot be changed.)

OPEN, CLOSE, and INQUIRE Statements

These statements are used to connect and disconnect units and files,
and to gather information about units and files.

6.8.1. OPEN

The open statement is used to connect a file with a unit, or to alter some
properlies of the connection. The following is a minimal example.

open(1, file='fort.junk')
open takes a variety of arguments with meanings described below.

unit= a small non-negative integer which is the unit to which the file is to
be connected. We allow, at the time of this writing, 0 through 18. If
this parameter is the first one in the open statement, the unit= can
be omitted.

iostat= is the same as in read or write.
err= is the same as in read or write.

file= a character expression, which when stripped of trailing blanks, is
the name of the file to be connected to the unit. The filename
should not be given if the status=scratch.

status= one of old, new, scratch, or unknown. If this parameter is not
given, unknown is assumed. If scratch is given, a temporary file will
be created. Temporary files are destroyed at the end of execution.
If new is given, the file must not exist. If old is given, it must exist.
The meaning of unknown is processor dependent; our system opens
the file if it exists and creates it otherwise.

-19-

access= sequential (default) or direct, depending on whether the file is
to be opened for sequential or direct 170.

formm= formatted or unformatted. If this parameter is not given, format-
ted is assumed for a sequential file and unformatted for a direct-
access file.

recl= a positive integer specifying the record length of the direct access
file being opened. We measure all record lengths in bytes. On UNIXt
systems a record length of 1 has the special meaning explained in
section 5.1 of the text.

blank= null or zero. This parameter has meaning only for formatted 1/0.
The default value is null. zero means that blanks, other than lead-
ing blanks, in numeric input fields are to be treated as zeros.

Opening a new file on a unit which is already connected has the eflect of

first closing the old file. Note that the file pointer is positioned at the

end of a sequential file; for reading the file must be rewound.

6.8.2. CLOSE

close severs the connection between a unit and a file. The unit number
must be given. The optional parameters are iostat= and err= with their
usual meanings, and status= either keep or delete. Scratch files cannot
be kept, otherwise keep is the default. delete means the file will be
removed. A simple example is

close(3, err=17)

6.8.3. INQUIRE
The inquire statement gives information about a unit (“‘inquire by unit'’)
or a file ("inquire by file"'). Simple examples are:
inquire(unit=3, namexx)
inquire(file='junk’, number=n, exist=l)

file= a character variable specifies the file the inquire is about. Trailing
blanks in the file name are ignored.

unit= an integer variable specifies the unit the inquire is about. Exactly
one of file= or unit= must be used.

iostat=, err= are as before.

exist= a logical variable. The logical variable is set to .true. if the file or
unit exists and is set to false. otherwise.

opened= a logical variable. The logical variable is set to .true. if the file
is connected to a unit or if the unit is connected to a file, and it is
set to .false. otherwise.

number= an integer variable to which is assigned the number of the unit
connected to the file, if any.

named= a logical variable to which is assigned .true. if the file has a
name, or .false. otherwise.

tUNIX is a Trademark of Bell Laboratories.

-20 -

name= a characler variable to which is assigned the name of the file
(inquire by file) or the name of the file connected to the unit
(inquire by unit). The name will be the full name of the file.

access= a character variable to which will be assigned the value ‘sequen-
tial’ if the connection is for sequential 170, ‘direct’ if the connection
is for direct 170. The value becomes undefined if there is no connec-
tion.

sequential= a character variable to which is assigned the value ‘yes if
the file could be connected for sequential 170, 'no’ if the file could
not be connected for sequential 1/0, and ‘'unknown’ if we can't tell.

direct= a character variable to which is assigned the value 'yes’ if the file
could be connected for direct 170, ‘'no’ if the file could not be con-
nected for direct 170, and ‘unknown’ if we can't tell.

forrn= e character variable to which is assigned the value ‘formatted’ if
the file is connected for formatted 170, or ‘unformatted’ if the file is
connected for unformatted 1/0.

formatted= a character variable to which is assigned the value 'yes’ if
the file could be connected for formatted 170, 'no’ if the file could
not be connected for formatted 1/0, and ‘unknown’ if we can't tell.

unformatted= a character variable to which is assigned the value 'yes’ if
the file could be connected for unformatted 1/0, 'no’ if the file could
not be connected for unformatted 1/0, and 'unknown’ if we can't
tell.

recl= an integer variable to which is assigned the record length of the
records in the file if the file is connected for direct access.

nextrec= an integer variable to which is assigned one more than the
number of the last record read from a file connected for direct
access.

blank= a character variable to which is assigned the value 'null’ if null
blank control is in effect for the file connected for formatted 1/0,
‘zero’ if blanks are being converted to zeros and the file is con-
nected for formatted 1/0.

The gentle reader will remember that the people who wrote the standard
probably weren’t thinking of his needs. Here is an example. The declarations
are omitted.

open(l, file="/dev/console")

On a UNIX system this statement opens the console for formatted sequential
1/0. An inquire statement for either unit 1 or file “/dev/console” would
reveal that the file exists, is connected to unit 1, has a name, namely
"/dev/console”, is opened for sequential 170, could be connected for sequen-
tial 170, could not be connected for direct 170 (can't seek), is connected for
formatted 170, could be connected for formatted 1/0, could not be connected
for unformatted 170 (can’t seek), has neither a record length nor a next
record number, and is ignoring blanks in numeric fields.

In the UNIX system environment, the only way to discover what permis-
sions you have for a file is to open it and try to read and write it. The err=
parameter will return system error numbers. The inquire statement does not
give a way of determining permissions.

A Tutorial Introduction

to ADB

The debugging program ADB provides capabilities to examine "core” and other
program files in a varity of formats, run programs with embedded breakpoints
and patch files.

ADB is an indispensable but complex tool for debugging crashed programs. This
document provides an introduction to ADB with examples of its use. It explains
the various formatting options, techniques for debugging C programs, examples
of printing file system information and patching.

J. F. Maranzano
S. R. Bourne
May 1977

Bell Laboratories
Murray Hill, New Jersey 07974

Author's initials: MU

Trademarks:
MUNIX, CADMUS for PCS
DEC, PDP for DEC
UNIX for Bell Laboratories

Copyright 1984 by
PCS GmbH, Plalzer-Wald-Strasse 38, D-BO00 MGnchen 80, tel. (089) 87804-0

The information contained herein is the property of PCS and shall neither be reproduced in
whole or in part without PCS's prior written approval nor be Implied to grant any license to
make, use or sell equipment manufactured herewith.

PCS reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages (including consequential)

caused by reliance on the materials presented.

adb -1- adb

1. Introduction

ADB is a debugging program that is available on UNIX. It provides capabilities to
look at “‘core” files resulting from aborted programs, print output in a variety
of formats, patch files, and run programs with embedded breakpoints. This
document provides examples of the more useful features of ADB. The reader is
expected to be familiar with the basic commands on UNIX t ,with the C
language, and with References 1, 2 and 3.

2. A Quick Survey

2.1. Invocation
ADB is invoked as:

adb objfile corefile

where ob]flle is an executable UNIX file and corefile is a core image file. Many
times this will look like:

adb a.out core
or more simply:
adb

where the defaults are a.out and core respectively. The filename minus (=)
means ignore this argument as in:

adb - core

ADB has requests for examining locations in either file. The ? request examines
the contents of objflle, the / request examines the coreflle. The general
form of these requests is:

address ? format

or

address / format

2.2. Current Address

ADB maintains a current address, called dot, similar in function to the current
pointer in the UNIX editor. When an address is entered, the current addresss
set to that location, so that:

#2621

sets dot to hex 126 and prints the instruction at that address. The request:

tUNIX is a Trademark of Bell Laboratories.

1 March 19, 1984 1

adb -2- adb

..10/d

prints 10 decimal numbers starting at dot. Dot ends up referring to the address
of the last item printed. When used with the ? or / requests, the current
address can be advanced by typing newline; it can be decremented by typing ~.

Addresses are represented by expressions. Expressions are made up from
decimal, octal, and hexadecimal integers, and symbols from the program under
test. These may be combined with the operators +, —, *, % (integer division), &
(bitwise and), | (bitwise inclusive or), # (round up to the next multiple), and ~
(not) (internal arithmetic uses 32 bits). When typing a symbolic address for a C
program, the user can type name or _name; ADB will recognize both forms.

2.3. Formats

To print data, a user specifies a collection of letters and characters that
describe the format of the printout. Formats are "remembered” in the sense
that typing a request without one will cause the new printout to appear in the
previous format. The following are the most commonly used format letters.

one byte in octal

one byte as a character

one word in octal

one word in decimal

two words in floating point
MC68000 instruction

a null terminated character string
the value of dot

one word as unsigned integer
print a newline

print a blank space

backup dot

(Format letters are also available for "long" values, for example, ‘D' for long
decimal, ‘X for long hex, and ‘F’ for double floating point.) For other formats
see the ADB manual.

yipeEep==a0nor

2.4. General Request Meanings
The general form of a request is:

address, count command modi fier

which sets "dot’ to address and executes the command count times.
The following table illustrates some general ADB command meanings:

Command Meaning

? Print contents from a.out file
/ Print contents fromcore file
= Print value of "dot"

: Breakpoint control

3 Miscellaneous requests

. Request separator

Escape to shell

2 March 19, 1984 2

adb -3- adb

ADB catches signals, so a user cannot use a quit signal to exit from ADB. The
request 8q or 8Q (or crtl-Z) must be used to exit from ADB.

3. Debugging C Programs

3.1. Debugging A Core Image

Consider the C program in Figure 1. The program is used to illustrate a com-
mon error made by C programmers. The object of the program is to change the
lower case ""t" to upper case in the string pointed to by charp and then write the
character string to the file indicated by argument 1. The bug shown is that the
character "T" is stored in the pointer charp instead of the string pointed to by
charp. Executing the program produces a core file because of an out of bounds
memory reference.

ADB is invoked by:

adb a.out core
The first debugging request:

$c

is used to give a C backtrace through the subroutines called. As shown in Fig-
ure 2 only one function (main) was called and the arguments argc and argv have
hex values #2 and #efff4e respectively. Both of these values look reasonable; #2
= two arguments, #efff4e = address on stack of parameter vector.

The next request:

sC

is used to give a C backtrace plus an interpretation of all the local variables in
each function and their values in hex. Note that of the value for cc only the
first byte is significant, because cc is declared as char. Were it declared as
short, only the first two bytes would be significant. If however cc would have
been declared as register char or register short, the name cc would have been
prefixed with a '<’, the shown value would be the value of the register, and the
significant byte or word would be the last byte or word of the value!

The next request:

$r

prints out the registers including the program counter and an interpretation of
the instruction at that location.

The request:
$e

prints out the values of all external variables.

A map exists for each file handled by ADB. The map for the a.out file is refer-
enced by ? whereas the map for core file is referenced by /. Furthermore, a

3 March 19, 1984 3

adb -4- adb

good rule of thumb is to use ? for instructions and / for data when looking at
programs. To print out information about the maps type:

$m

This produces a report of the contents of the maps. More about these maps
later.

In our example, it is useful to try to see the contents of the string pointed to by
charp. This is done by:

xcharp/s

which says use charp as a pointer in the core file and print the information as a
character string. This gives the message 'data address not found’, because §#55
is not a valid data address. Using ADB similarly, we could print information
about the arguments to a function. The request:

main.argec/d

prints the decimal core image value of the argument argc in the functionmain,
The request:

xmain.argv/3X

prints the long hex values of the three consecutive pointers pointed to by argv
in the function main. Note that these values are the addresses of the argu-
ments to main. Therefore:

gaffflal/s

prints the ASCII value of the first argument. Another way to print this value
would have been

x''/s

The means ditto which remembers the last address typed, in this case
main.argc the ® instructs ADB to use the address field of the core file as a
pointer.

The request:
. ‘x

prints the current address (not its contents) in long hex which has been set to
the address of the first argument. The current address, dot, is used by ADB to
"remember"” its current location. It allows the user to reference locations rela-
tive to the current address, for example:

.-18/d

4 March 19, 1984 4

adb -5- adb

3.2. Multiple Functions

Consider the C program illustrated in Figure 3. This program calls functions
f.g. and h until the stack is exhausted and a core image is produced. This
example is a bit dangerous. On a system with a 68000, which does not generally
recover from stack overflows, the program will sooner or later crash. With a
68010, however, the stack may grow very very large!

Again you can enter the debugger via:
adb

which assumes the names a.out and core for the executable file and core image
file respectively. The request:

$c

will fill a page of backtrace references to f,g. and h. Figure 4 shows an
abbreviated list (typing Ctrl1-C will terminate the output and bring you back to
ADB request level).

The request:

,S8C

prints the five most recent activations.

Notice that each function (f.g.h) has a counter of the number of times it was
called.

The request:

fent/d

prints the decimal value of the counter for the function f. Similarly gcnt and
hcnt could be printed. To print the value of an automatic variable, for example
the decimal value of x in the last call of the function h, type:

h.x/d

It is not possible to print stack frames other than the most recent activation of
a function. Therefore, a user can print everything with $C or the occurrence of
a variable in the most recent call of a function. It is possible with the $C
request, however, to print the stack frame starting at some address as
address$C.

3.3. Setting Breakpoints

Consider the C program in Figure 5. This program, which changes tabs into
blanks, is adapted from Software Tools by Kernighan and Plauger, pp. 18-27

We will run this program under the control of ADB (see Figure 6) by:

adb a.out ~

Breakpoints are set in the program as:

S March 19, 1984 S

adb -6- adb

address:b [requestl

The requests:

settab+4:b
fopen+4:b
getc+4:b
tabpos+4:b

set breakpoints at the start of these functions, except for getc, which is called
as a function, but in reality a macro defined in <stdio.h>. With the C compiler
option -g, C generates statement labels. So it would be possible to plant a
breakpoint at line 32 with the command

L3X2:b
The above addresses are entered as

symbo | +4

so that they will appear in any C backtrace since the first instruction of each
function is the 68000 LINK instruction. If you want to see the correct values of
the register variables, if any, in the topmost procedure, you have to set the
breakpoint after the MOVEM instruction which comes second. Note that some of
the functions are from the C library.

To print the location of breakpoints one types:

$b

The display indicates a count field. A breakpoint is bypassed count —1times
before causing a stop. The command field indicates the ADB requests to be exe-
cuted each time the breakpoint is encountered. In our example no command
fields are present.

By displaying the original instructions at the function settab we see that the
breakpoint is set after the LINK instruction. We can display the instructions
using the ADB request:

settab,5?ia

This request displays five instructions starting at settab with the addresses of
each location displayed. Another variation is:

settab,5?i

which displays the instructions with only the starting address.

Notice that we accessed the addresses from the a.out file with the ? command.
In general when asking for a printout of multiple items, ADB will advance the
current address the number of bytes necessary to satisfy the request; in the
above example five instructions were displayed and the current address was
advanced 20 (decimal) bytes.

6 March 19, 1884 6

adb -7- adb

To run the program one simply types:
r

To delete a breakpoint, for instance the entry to the function settab, one
types:

settab+4:d

To continue execution of the program from the breakpoint type:

:C

Once the program has stopped (in this case at the breakpoint for fopen), ADB
requests can be used to display the contents of memory. For example:

$C

to display a stack trace, or:
tabs,.3/8d

to print three lines of 8 locations each from the array called tabs. By this time
(at location fopen) in the C program, settab has been called and should have
set a one in every eighth location of tabs.

3.4. Advanced Breakpoint Usage
We recompile the program, this time with the -g and -L option:

cc -g -L figureS.c

The -g option will add symbols Li to the symbol table of the program which point
to the code for line i. The -L option adds code to the program itself, that writes
the current line number into the stackframe. If you set a breakpoint to Li, than
the code for writing i into the stackframe will probably be executed next.

Now we start adb again, setting breakpoints to line 24, after the getc and just in
front of the switch statement, and to the start of tabpos. See figure 7. The first
breakpoint shall be executed three times, each time displaying the value of c as
a character. When the tabpos breakpoint is reached, we want to have a full
dump of the topmost stackframe. The file "data” contains the text
"This<tab>is<tab>a...".

adb a.out -
L24,3:b main.c-1/C
tabpos+4:b ,18C
:r

The program starts, displaying the value of c three times, and then stops. When
we continue the program with:

:C

7 March 19, 1984 7

adb -8- adb

the L24 breakpoint is executed two more times, then we hit our breakpoint at
tabpos since there is a tab following the "This" word of the data.

We see that tabpos is called with a value of 5. The displayed linenumber is
incorrect because the code for storing the linenumber is not yet executed.
Next we want to set a breakpoint at the end of the procedure. We could use the
linenumber again, but for demonstration we are searching for the UNLK
instruction at the end of the procedure, which has the opcode #4e5e, and set a
breakpoint to it. The command

?) #ieSe

searches from the current value of dot, which is set (in this case) to tabpos+4,
until it finds the value #4e5e. This value is reported to be at location
tabpos+#2e, and dot is set to this address. With :b we set a breakpoint to dot,
and with :¢c we continue. When we reach the breakpoint, we can look at the
value tabpos returns, by displaying the contents of register DO. A final view of
the active frames with 8C shows us, that main is executing line 26 and tabpos
line 49.

The UNIX quit and interrupt signals act on ADB itself rather than on the pro-
gram being debugged. If such a signal occurs then the program being debugged
is stopped and control is returned to ADB. The signal is saved by ADB and is
passed on to the test program if:

:C

is typed. This can be useful when testing interrupt handling routines. The 51g-
nal is not passed on to the test program if:

tc 0O

is typed.

A breakpoint can be overwritten without first deleting the old breakpoint. For
example:

settab+4:b eettab,5?ia; ptab/x

could be entered after typing the above requests.

3.5. Other Breakpoint Facilities

Arguments and change of standard input and output are passed to a pro-
gram as:

ir argl arg2 ... <infile >outfile

This request kills any existing program under test and starts the a.out
afresh.

The program being debugged can be single stepped by:

8 March 19, 1984 8

adb -9- adb

If necessary, this request will start up the program being debugged and
stop after executing the first instruction.

ADB allows a program to be entered at a specific address by typing:

address:r

The count field can be used to skip the first n breakpoints as:
n:r

The request:
N:cC

may also be used for skipping the first n breakpoints when continuing a
program.

A program can be continued at an address different from the breakpoint
by:

address: c

The program being debugged runs as a separate process and can be killed
by:

4. Maps

UNIX knows several object file formats. These are used to tell the loader how to
load the program file. File type 407 is the format of object modules generated
by a C compiler invocation such as cc -c pgm.c. A 411 file is produced by the
loader, when all references are resolved. This is the format of all executable
files. ADB provides access to the program or module through a set of maps. To
print the maps type:

$m

The b, e, and f fields are used by ADB to map addresses into file addresses. The
“b” and "e" fields are the starting and ending locations for a segment, i.e. logi-
cal addresses. When an address A followed by ? or / is given, adb goes to the
specified map, and sees if A lies in the interval [bl,e1] or [b2,e2]. If yes, it sub-
tracts the corresponding b value from A and adds the corresponding f value, to
obtain the physical address in the file. More formally, given an address, A, the
location in the file (either a.out or core) is calculated as:

bl<A<pl & file address = (A-bl)+fl
b2<A<e? » file address = (A-b2)+f2°

2] March 19, 1984 9

adb -10 - adb

In the normal case, the first segment of the ? map corresponds to the a.out
text, the second to the a.out data. The first segment of the / map corresponds
to the core data segment, and the second segment to the core stack segment. A
core file does not include the text of the crashed program. Note that data can
be accessed in two ways. However, the a.out data segment is the data segment
as it looked at load time. It also contains only the initialized data. The core data
segment is the data at the time of the core dump. Note that the b2 value of the
/ map is the lower limit of the stack.

A user can access locations by using the ADB defined variables. The 8v request
prints the variables initialized by ADB (Figure 8):

base address of data segment
length of the data segment
entry point of the program
execution type (407,410,411)
length of the stack

length of the text

PHBNQ—U’

Use can be made of these variables by expressions such as:
<s

in the address field. Similarly the value of the variable can be changed by an
assignment request such as:

02000>b

that sets b to octal 2000. These variables are useful to know if the file under
examination is an executable or core image file. '

ADB reads the header of the core image file to find the values for these vari-
ables. If the second file specified does not seem to be a core file, then standard
values for identical mapping are used instead.

5. Advanced Usage

It is possible with ADB to combine formatting requests to provide elaborate
displays. Below are several examples.

56.1. Formatted dump
The line:

D, -1/4x4-8Cn

prints 4 hex words followed by their ASCII interpretation from the data space of
the core image file. Broken down, the various request pieces mean:

<b The base address of the data segment.
<b,—-1
Print from the base address to the end of file. A negative count is used

here and elsewhere to loop indefinitely or until some error condition (like
end of file) is detected.

10 March 19, 1984 10

adb -11- adb

The format 4x4~8Cn is broken down as follows:
4x Print 4 hex locations.
4~ Backup the current address 4 locations (to the original start of the field).
B8C Print 8 consecutive characters using an escape convention; each character

in the range 0 to 037 is printed as @ followed by the corresponding charac-
ter in the range 0140 to 0177. An @ is printed as @@.

n Print a newline.

The request:
b, <d/4x4-8Cn

could have been used instead to allow the printing to stop at the end of the
data segment (<d provides the data segment size in bytes).

The formatting requests can be combined with ADB's ability to read in a script
to produce a core image dump script. ADB is invoked as:

adb a.out core < dump
to read in a script file, dump, of requests. An example of such a script is:

1208

4@35%¢s

$v

=3n

$m

=3n'C Stack Backtrace"”
$C

=3n'C External Variables"
: 1)

=3n'Registers"

$r

2] 13

=3n'Data Segment’
<,-1/8xna

ADB attempts to print addresses as:

symbol + offset

The request 40958s sets the maximum permissible offset to the nearest sym-
bolic address to 4095 (default 32767). The request = can be used to print
literal strings. Thus, headings are provided in this dump program with requests
of the form:

=3n'C Stack Backtrace"

that spaces three lines and prints the literal string. The request 8v prints all
non-zero ADB variables (see Figure 8). The request 08s sets the maximum offset

11 March 19, 1984 11

adb -12 - adb

for symbol matches to zero thus suppressing the printing of symbolic labels in
favor of hex values. Note that this is only done for the printing of the data seg-
ment. Try dumping the data segment without changing the maximum offset for
a comparison. The request:

<, -1/8xna

prints a dump from the base of the data segment to the end of file with a hex
address field and eight hex numbers per line.

Figure 10 shows the results of some formatting requests on the C program of
Figure 9.

5.2. Directory Dump

As another illustration (Figure 11) consider a set of requests to dump the con-
tents of a directory (which is made up of an integer Inumber followed by a 14
character name):

acdb dir -
=n8t"Inum'8t'Name"”
0,-17 u8tl4en

In this example, the u prints the inumber as an unsigned decimal integer, the 8t
means that ADB will space to the next multiple of 8 on the output line, and the
14c prints the 14 character file name.

5.3. Dlist Durmp

Similarly the contents of the ilist of a file system, (e.g. /dev/hk0, see
inode(5)) could be dumped with the following set of requests:

adb /dev/hkB -
1824,-1?"flags"8ton"1inks,uid,gid"8t3on", aize'"8tDn addr "8t18Xn"times " "8t3Y2na

In this example the dump be%ins at location 1024, since that is the start of an
ilist within a 512 byte per block file system. The last access time, last modify
time and creation time are printed with the 3Y operator. Figure 11 shows por-
tions of these requests as applied to a directory and file system.

5.4. Converting values

ADB may be used to convert values from one representation to another. For
example:

072 = odx
will print
072 S8 #Ka

which are the octal, decimal and hexadecimal representations of 072 (octal).
The format is remembered so that typing subsequent numbers will print them in
the given formats. Character values may be converted similarly, for example:

a = Cco

12 March 19, 1984 12

adb - 13- adb

prints
a o141

It may also be used to evaluate expressions but be warned that all binary opera-
tors have the same precedence which is lower than that for unary operators.

6. Patching

Patching files with ADB is accomplished with the write, w or W, request (which
is not like the ed editor write command). This is often used in conjunction with
the locate, lor Lrequest. In general, the request syntax for 1 and w are similar
as follows:

?1 value

The request] is used to match on two bytes, L is used for four bytes. The
request w is used to write two bytes, whereas W writes four bytes. The value
field in either locate or write requests is an expression. Therefore, decimal,
octal and hex numbers, or character strings are supported.

In order to modify a file, ADB must be called as:
ab -u filel

When called with this option, filel is created if necessary and opened for both
reading and writing.

For example, consider the C program shown in Figure 9. We can change the
word 'This” to "The " in the executable file for this program, ex7, by using the
following requests:

adb -u ex7 -
©?!1 TR
24 *The '

The request ?l starts at dot and stops at the first match of "Th” having set dot
to the address of the location found. Note the use of ? to write to the a.out file.

More frequently the request will be typed as:
?21 *Th's 7?8

and locates the first occurrence of "Th' and print the entire string. Execution
of this ADB request will set dot to the address of the ""Th’ characters.

As another example of the utility of the patching facility, consider a C program
that has an internal logic flag. The flag could be set by the user through ADB
and the program run. For example:

adb a.out -
:s argl arg2
flag/u 1

:C

13 March 19, 1984 13

adb -14 - adb

The :s request is normally used to single step through a process or start a pro-
cess in single step mode. In this case it starts a.out as a subprocess with argu-
ments argl and arg2. If there is a subprocess running ADB writes to it rather
than to the file so the w request causes flag to be changed in the memory of
the subprocess.

7. References
1. D. M. Ritchie and K. Thompson, ""The UNIX Time-Sharing System,” CACM,

July, 1974.

2. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-
Hall, 1978.

3. K. Thompson and D. M. Ritchie, UNIX Programmer's Manual - 7th Edition,
1978.

4. B. W.Kernighan and P. J. Plauger, Software Tools, Addison-Wesley, 1976.

14 March 19, 1984 14

adb -15 -

Figure 1: C program with pointer bug
#include <stdio.h>

char =xcharp = "thie is a sentence.'';
FILE =obuf;

maln(argec,argyv)
int argc;
char xxargv;

t

char cc;

iflarge < 2) §
printf("ODutput file argument missing\n");
exit(l);

if((obut = fopen{argv(l],' u”)) == MJLL){
printf("Is 1 not found\n", argvlill);
‘ exit(l);
cc = "X'; /= for DEMD purpoee only =/
charp = 'T*; /= BUG: should be xcharp = *T";
while(cc = xcharp++)
putc{cc,obuf);
fclose (obuf)

15 March 19, 1984

N 7

adb

15

adb -16 - adb
Figure 2: ADB output for C program of Figure 1
adb a.out core

8
thln(ﬁﬂaﬂz. #Bef, fffoe, fOBef, §ffSa) line O

gC
~main (42882, j0et, fttée, j3Bef, §ff52) line O

_arge: 08268 e
_argv: #oBefffbe
_cc: §5828008e

8r

d@ 28808878 __iob+#@824

dl #20282888¢ _charp+ #2083

d2 J20608e3e

d3 #2e008eLes

db Joeeegoes

dS #200000060

db #200080080

d7 §28002088

aé #20688e48

al #0888883a _charp+48836

a2 20088054

a3 #Be 1 ¢¢56

ab Joeoeeese

a5 #oceespes

ab #20etffl8

a7 #Betfefc

ns #22021d51

ac #000080854

ip #d520ee8

pc #306c808e4 ~nain+ {882

~main+$0e82: move.b (a2),-28(a6)

8e

_environ: fBBeff t5a

_charps #oB8eeasS

_pbuf: #08800970

__lobt #008805ca

__lastouf: #8828813c

__aibuf: #o002e0ee

__sobuf: #Roeeeeoes

_pfile: flogeeeees

_errno: #ecoeeess

ctype: #062020208

_currbrk: #206860dd8

_end: #o02geeee

$m

? map 'a.out’

bl = jO0GEEEes el = J@OEL126a fl = /OP0eEllc

b2 = 420888808 e2 = /PB8EBddB f2 = 420801286

/ map ‘core’

bl - /028388088 el = j00808el8 fl = 4080eBc54

b2 - jR@BeffEC2 e2 = ROfEE080 f2 = #2B001a54

charp/X

_charp: #088008855

*charp/s

paeaags:

16 March 19, 1984 16

adb

data address not found

main.arge/d
#20e f120: 2

*main.argv/3X

LBetffie: #Beffta #20ef 180
#efff7a/s
e ftf7a: a.out

*main.argv/3X

§Rettthe: #Bettf7a #20et ffE0
."/S
#Betttla: a.out
=X
Betffla
8q

-17 -

28022069

{00022208

17 March 19, 1984

adb

1?

adb

Figure 3: Multiple function C program for stack trace fllustration

int
hix,y)

%(p.q)

t(a,b)

!

main()

t
!

18

fent,gent,hent

int hi; register int hr;
hi = x+l;

hr = x-y+l;

hent++ 3

hj:
f(hr,hils

int gi: register int gr;
gi = q-p;

gr = q-p+l;

gent++ ¢

gi:
higr,gi);

int fi; register int fr;
fi = a+2wb;

fr = a4b;

fente+

fj:
glfr,fi);

1(1,1)s

-18 -

March 19, 1984

adb

18

adb -19- adb

Figure 4: ADB output for C program of Figure 3

adb

8c

~h (2840, g2B3f) line B
~g (#8841, 4808B) line 8
~f (42822, $283f) line 8
~h (#303e, §003d) line B
~g (#2831, J@07c) line @
~f ({2282, $003d) line B
~h{§283c, $803b) line @
~g (#283d, #20878) line B
~f (§0022, g223b) line B
~h (§223a, 42833) line O
~g (#8330, §8074) line 8

HIT INTR KEY
adb
.58C
~h (#8848, f203¢f) |line @
_x: 2042003 1
5 e
hi 1
{}r: ﬁggz
~g (42841, Jeogs) line 8
_p: #2B410080
_a: #08808880
_giz #2083 120008
{ ps:mﬁj” e a
~f . ine
gz _;: #3082003 f
_bs #0083 1003 f
_fis #2030022880
< fr: #38880041
~h (j203e, J233d) line 8
_x: Meggd
: dgd3d
ji: ggngBBB
< hrs §2e8e0eee2
~g(j223f, 827c) line B -
_p: f887c
_q: %CWC
_gi: #383deP08
< gr: §282eeX3e
fcnt/d
_fcnt: 2
gent/d
_gcnt: 2
hent/d
_hent: 3
h.x/d
§2Be f 1826: b4
8q

19 March 19, 1984 19

adb

-20-

Figure 5: C program to decode tabs

20

finclude <stdic.h>
fdefine MAXLINE 80
#define YES 1
fidefine NO -}
jdefine TABSP 8

char input(] = "data";
FILE zibuf;
int tabs MAXLINE] ;

main()

!
int col, xptab;
char c;

ptab = tabs;

settab(ptab); /aSet initial tab stops &/

col = 1;

if {{ibuf « fopen(input,”r"}} == NJLL) |
printf('Xe : not found\n", input);

exit(l);
ILI“B((C = getclibuf)) !e EOF) {§
suitch(c) §
case °'\t': /= TAB &/
while(tabpos{col) != YES) }
putchar (* *);
col++ g
break;
case '\n': /sNEJLINE »/
putchar{’'\n');
col = 13
break;
default:
putchar (c);
col++ 3

/x Tabpos return YES If col is a tab stop »/
tabpos(co!)
int col;

iflcol > MAXLINE)
return(YES);

else
return{tabs(coll);

!
/% Settab - Set initlal tab st'ope »/
settab(tabp)
int stabp;
int I;

for(i = 8; 1< MAXLINE; [++)
(iXTABSP) ? (tabsl(i) = NO) : (tabal(i) = YES);

March 19, 1984

adb

20

adb -21-

Figure 6: ADB output for C program of Figure 5

adb a.out -
settab+4:b
fopen+4:b

getc+4:b
symbol not found

tabpos+4:b 8b

breakpoints

count bkpt command
1 ~tabpos+LB04

1 _fopen+ j0834

1 ~set tab+ 2284

settab,5%ia

~settab: link a6,6-28
~gettab+ @BB4: clr.u -28(a6)
~settab+2028: cmpi.u @88,-28(a6)
~settab+jiddBe: bgt ~set tab+ LS4
~settab+j2018: move.u -28(a6),dl
~set tab+ 831 4:

settab,5?i

~aettab: link ab,0-28
clr.w -28(a6)
cmpl.u €80,-28(ab)
bgt ~settab+
move.w -28(ab),dl

r
a.out: running
breakpoint ~settab+j08B4: clr.u -28(ab)

settab+4:d

C

a.out: rumning

breakpoint _fopen+ §2084: jsr _findiop

8C

_fopen (j8288, 400884, 40088, jOCBa) |ine £
~main{/22el1, $B0ef, #1158, j0Bef, §160) line B

_cols mﬂlgef
_ptab: #063805ae
_ec: #20080888

tabs,3/8d

_tabs: 1)) e 8 e
1 L) 8 o -] -]
1] %] e) 0

21 March 19, 1984

oo

adb

21

adb -22 -

Figure 7: ADB output for C program of Figure 5

adb a.out -
L24,3:b main.c/C
tabpos+4:b,18C

.r
a.out: running
#Beffefe: T
fleffefe: h
fReffefo: i
breakpoint ~main+jBBch: ext.w df
.C
a.out: running
PBeffefe: 8
j2Beffefe: @
~tabpos(j228S) |ine -224
_col: #20e58320
breakpoint ~tabpos+#0884: move.u @47,-2(ab)
?]1 #4eSe
~tabpos+{082e
b
:c
a.out: running
breakpoint ~tabpos+#002e: unik ab
<d0=x
foges
8$C
~tabpos (3285S) line 43
_col: #20052300
~main (#8801, j20ef, §ffS6, jBBef, §#fSe) line 26
_col: #0005008e f
_ptab: #00888Sae
_c: #398000808

22 March 19, 1984

adb

22

adb

Figure 8: ADB output for maps

adb cat core

8m

? map ‘ecat’
bl = #O0GBL0Ee8
b2 = #3280e0e8

/ map ‘core
bl = 308200028
b2 = jB0eff6CB

Sv

variables

b = #20882820
d = j2P8eBale
s = jB26E0C08
m = #B00081€3
s = #20200a00
t - joocoelses

Figure 9: Simple C program for illustrating formatting and patching

el = jBOG017ee
e2 = (208EC3dD
el - 408320208
e2 = (28100000

-29-

f1 - 48828871c
f2 - 400021882

f1 - JE00EBCS4
12 - 42221654

char strl{]) = ‘This is a character string';

int one -1;
int number = 456;
long tnum = 1234;

float fpt =

1.25;

char str2(] = 'This ls the second character string”;

main()

one = 2;

23

March 19, 1984

adb

23

adb

-24 - adb

Figure 10: ADB output illustrating fancy formats

adb ex10 -

'S
stopped at

<b,6/8xna

_execargs:
_strl+jB88c:

_one:
_pne:

_atr2+j02884:
_8tr2+j8014:

__iob:
__iob:

~ entry:

{elef
16172

eeel
42269
#6861

12988

<b,10/4x4~8Cn

_execargs:

_bne:
fpt:

folef

269
#6172
#7374

#2801

#2008
o859
#7365

#6861
2073

<b,10/4x4~Bt8cna

_execargs: {%8ef

|This

_atrl+/0004: #2063

_strl+48008c: #6172

_strl+8014: #7374

_one:

_pne: #2081

_fpt:

_fpt: #2020

_9tr2+#0084: #2063

_str2+4280c: #7365

_Sstr2+40814: #6861

_str2+jR8lc: 073

<b,10/2bBt~2cn

_execargs: #eees
LB ff

|

_strl: #RO854
#2863
#e2e
#2873
#2061
#2083
#20tE1
#eeel

8Q

24

#tife
#6163

J1c8
#7320
#7261

#fffc
#7328
#6163
#7263
#0B1c8
#2841
#6356t

#7261
§7472

fRBef
#lfc

6572

#2063 7328 6128 45368
#7374 71269 j6e57 42908

#oB28 4oLl 45468 46973
#7365 4835f joebh 42063
Q073 1472 Be 6708

#0148 0188 40008 4eees

©'08{This
Is a8 ch

aracter

string®'@’

0'8xEaHE @R

6'@‘AThis

Is the
second ¢
haracter

string®*

=)

is 3 ch
aracter
string

AThis
is the
eecond ¢
haracter
string

March 19, 1984 24

adb -25- adb

Figure 11: Directory and inode dumps

adb dir -
=nt"Inode”t"Name"
0.6?utl4cn
Inode Name
§o000ee08: 167
2 ..
1849 renice
334 shutdown. sh
1391 cron
163 ddate

adb /dev/hkO - L .
1024,3?""flags’"B8ton"links,uid,gid""8t3on"size”’8tDn"addr”"8t10Xn""times""8t3Y2na

#32002488: flage B£1080208
linke,uld,gid 8 -} @
size 8
addr #og0eees Joeoeeeeo #oeegeess #20028228
jeeeegees 2020 #00282e00 #O2820203

Joegencese
,tp;:ea 1984 Feb 8 17:142:14 1884 Feb 8 17:42:14 1984 Feb 8 17:42:14

28448: flags 848777
#2e links,uid,gid €5 "] 8
size 2832
addr #oep13388 b3080 2881333 #20184508
#1 f {2280 #20002020 Jeogees #20280ee0
#20222008 #20200808
times 1984 Mar 7 12:51:18 1984 Mar 7 15:23:53 1984 Mar 7 15:29:53
88488: flags 0180755
yeee links,uid,gid 81 e a2
size 16968
addr #06013a08 #91410e81 # 820814 #200156080
#81548881 #6488016b #28017208 #8179e881

482220828 422202200
times 1984 Mar G ©3:11:67 1983 Oct 12 13:09:28 1984 Feb 8 17:44:83

25 March 19, 1984 25

adb - 26 - adb

ADB Summary

Command Summary
a) formatted printing

?format print from a.out file
according to format

/format print from core file accord-
ing to format

=format print the value of dot

7w expr write expression into a.out
file

/w expr write expression into core
file

?]1 expr locate expression in a.out
file

b) breakpoint and program control

set breakpoint at dot

continue running program
delete breakpoint

kill the program being debugged
run a.out file under ADB control
single step

UH Ao

c) miscellaneous printing

$b print current breakpoints
Sc C stack trace
Se external variables

sf floating registers (not yet)
$m print ADB segment maps
8q exit from ADB

3r general registers

$s set offset for symbol match
Sv print ADB variables

Sw set output line width

d) calling the shell

! call shel |l to read rest of line

e) assignment to variables

> name assign dot to variable or

register name

Format Sumrmary

the value of dot -
one byte in octal

one byte as a character

one word in decimal

two words in floating point
68000 instruction

one word in octal

print a newline

print a blank space

a null terminated character string
move to next n space tab

one word as unsigned integer
hexadecimal

date

backup dot

print string

“uHRpDoT=maAanoe

=)
-

)y <X £

Expression Summary
a) expression components

decimal integer e.g. 256

octal integer e.g. 0277
hexadecimal e.g. #ff

symbols e.g. _main main.argc
variables eg. <b

registers e.g. <pc <dO
(expression) expression grouping

b) dyadic operators

+ add

— subtract

. multiply

integer division

bitwise and

bitwise or

round up to the next multiple

TR N

c) monadic operators

l

not
contents of location
- integer negate

26 March 19, 1984 26

ADB(1) UNIX 3.0 ADB(1)

NAME
adb - debugger

SYNOPSIS
adb [-w] [objfil [corfil]]

DESCRIPTION
Adb is a general purpose debugging program. It may be used
to examine files and to provide a controlled environment for
the execution of UNIX programs.

Objfil is normally an executable program file, preferably
containing a symbol table; if not then the symbolic features
of adb cannot be used although the file can still be
examined. The default for objfil is a.out. Corfil is
assumed to be a core image file produced after executing
objfil; the default for corfil is core.

Requests to adb are read from the standard input and
responses are to the standard output. If the -w flag is
present then both objfil and corfil are created if necessary
and opened for reading and writing so that files can be
modified using adb. Adb ignores QUIT; INTERRUPT causes
return to the next adb command.

In general requests to adb are of the form

[address] [, count] [command] [;]

If address is present then dot is set to address. Initially
dot is set to 0. For most commands count specifies how many
times the command will be executed. The default count is 1.
Address and count are expressions.

The interpretation of an address depends on the context it
is used in. If a subprocess is being debugged then
addresses are interpreted in the usual way in the address
space of the subprocess. For further details of address
mapping see ADDRESSES.

EXPRESSIONS
The value of dot.

+ The value of dot incremented by the current
increment.

The value of dot decremented by the current
increment.

The last address typed.

integer

Page 1 (last mod. 2/16/84)

ADB(1)

UNIX 3.0 ADB(1)

An octal number if integer begins with a 0; a
hexadecimal number if preceded by #; otherwise a
decimal number.

integer.fraction

A 32 bit floating point number.

“ccee’ The ASCII value of up to 4 characters. \ may be used

4

to escape a .

< name The value of name, which is either a variable name or

a register name. Adb maintains a number of variables
(see VARIABLES) named by single letters or digits.

If name is a register name then the value of the
register is obtained from the system header in

corfil. The register names are d0 ... d7 a0 ... a7

pc ns ac ip. The register names ns, ac and ip
deserve special explanation. The register ns is the
concatenation of the 2 byte exception vector number
plus the 2 byte 68000 cpustate stored during bus or
address error exceptions. If e.g. the first two
bytes of ns are 0002, the program was interrupted by
a bus error (exception vector 2). The register ac
contains the access address for a bus or address
error exception. The register ip is the concatenation
of the 2 byte instruction register, i.e. the first
two bytes of the instruction that caused a bus or
address error, and the 2 byte processor status. For
exceptions that are not bus or address error, the
second half of ns, all of ac, and the first half of
ip are O.

symbol A symbol is a sequence of upper or lower case

letters, underscores or digits, not starting with a
digit. The value of the symbol is taken from the

symbol table in objfil. An initial or ~ will be

prepended to symbol if needed.

__ symbol

In C, the ‘true name’ of an external symbol begins
with . It may be necessary to utter this name to
distiﬁguish it from internal or hidden variables of a
program.

routine.name

(exp)

Page 2

The address of the variable name in the specified C
routine. Both routine and name are symbols. If name
is omitted the value is the address of the most
recently activated C stack frame corresponding to

routine.

The value of the expression exp.

(last mod. 2/16/84)

ADB(1) UNIX 3.0 ADB(1)

Monadic operators

*exp The contents of the location addressed by exp in
corfil.

@exp The contents of the location addressed by exp in
objfil.

—exp Integer negation.
~exp Bitwise complement.

Dyadic operators are left associative and are less binding
than monadic operators.

el+e2 Integer addition.
el-e?2 Integer subtraction.
el*e2 Integer multiplication.
el%e2 Integer division.
el&e?2 Bitwise conjunction.
el|e2 Bitwise disjunction.
el#e2 EL rounded up to the next maltiple of e2.
COMMANDS
Most commands consist of a verb followed by a modifier or
list of modifiers. The following verbs are available. (The
commands ‘?’ and '/’ may be followed by ‘*’; see ADDRESSES

for further details.)

?7f Locations starting at address in objfil are printed
according to the format f.

/f Locations starting at address in corfil are printed
according to the format f.

=f The value of address itself is printed in the styles
indicated by the format f. (For i format '?’ is
printed for the parts of the instruction that reference
subsequent words.)

A format consists of one or more characters that specify a
style of printing. Each format character may be preceded by
a decimal integer that is a repeat count for the format
character. While stepping through a format dot is

incremented temporarily by the amount given for each format
letter. If no format is given then the last format is used.

Page 3 (last mod. 2/16/84)

ADB(1)

UNIX 3.0 ADB(1)

The format letters available are as follows.

[«
[\

mae XX oROoNn O
SEENDENBENEN S

o rrj
— [0 0]

aon
—

-~

r O
n 0

Print 2 bytes in octal. All octal numbers output
by adb are preceded by O.

Print 4 bytes in octal.

Print in signed octal.

Print long signed octal.

Print in decimal.

Print long decimal.

Print 2 bytes in hexadecimal.

Print 4 bytes in hexadecimal.

Print as an unsigned decimal number.

Print long unsigned decimal.

Print the 32 bit value as a floating point number.
Currently only FFP format supported (see fp(3)).
Print double floating point. For FFP same as
above, except larger printing format.

Print the addressed byte in octal.

Print the addressed character.

Print the addressed character using the following
escape convention. Character values 000 to 040
are printed as @ followed by the corresponding
character in the range 0100 to 0140. The
character @ is printed as @@.

Print the addressed characters until a zero
character is reached.

Print a string using the @ escape convention. n
is the length of the string including its zero
terminator.

Print 4 bytes in date format (see ctime(3C)).
Print as 68000 instructions. n is the number of
bytes occupied by the instruction. This style of
printing causes variables 1 and 2 to be set to the
offset parts of the source and destination
respectively.

Print the value of dot in symbolic form. Symbols
are checked to ensure that they have an
appropriate type as indicated below.

local or global data symbol
local or global text symbol
local or global absolute symbol

Print the addressed value in symbolic form using
the same rules for symbol lookup as a.

When preceded by an integer tabs to the next
appropriate tab stop. For example, Bt moves to
the next 8-space tab stop.

Print a space.

Print a newline.

"0

Page 4

Print the enclosed string.

(last mod. 2/16/84)

ADB(1) UNIX 3.0 ADB(1)

Dot is decremented by the current increment.
Nothing is printed.
+ Dot is incremented by l. Nothing is printed.
- Dot is decremented by 1. Nothing is printed.
newline
If the previous command temporarily incremented dot,
make the increment permanent. Repeat the previous
command with a count of 1.

[?/]1 value mask
Words starting at dot are masked with mask and compared
with value until a match is found. If L is used then
the match is for 4 bytes at a time instead of 2. If no
match is found then dot is unchanged; otherwise dot is
set to the matched location. If mask is omitted then
-1 is used.

[?/]w value ...
Write the 2-byte value into the addressed location. If
the command is W, write 4 bytes. 0dd addresses are not
allowed when writing to the subprocess address space.

[2/]m bl el £1(7/]
New values for (bl, el, fl) are recorded. If less than
three expressions are given then the remaining map
parameters are left unchanged. If the ‘?’ or ‘/’ is
followed by ‘*’ then the second segment (b2,e2,f2) of
the mapping is changed. If the list is terminated by
*?7” or ‘/’ then the file (objfil or corfil
respectively) is used for subsequent requests. (So
that, for example, ‘/m?’ will cause ‘/’ to refer to
objfil.)

>name
Dot is assigned to the variable or register named.

! A shell is called to read the rest of the line
following ‘!’.
Smodifier

Miscellaneous commands. The available modifiers are:

<f Read commands from the file f and return.

>f Send output to the file f, which is created if it
does not exist.

r Print the general registers and the instruction
addressed by pc. Dot is set to pc.

b Print all breakpoints and their associated counts
and commands.

c C stack backtrace. If address is given then it is

taken as the address of the current frame (instead

Page 5 (last mod. 2/16/84)

ADB(1)

:tmodifier

Page 6

7]

B <. A0

UNIX 3.0 ADB(1)

of a6). If C is used then the names and (32 bit)
values of all automatic and static variables are
printed for each active function. If count is
given then only the first count frames are
printed. If the module was compiled with the -L
option of cc(l), the procedure name is followed by
the current linenumber. For all variables 32 bits
are printed, even if the variable is only char or
short. In this case only the foremost bytes are to
be considered. For register variables, however,
the whole register in which the variable resides
is printed, and so for shorts the last two bytes
are the relevant ones! In order to help you make
the distinction between register and normal
variables, the latter are prefixed with a "<(".

The names and values of external variables are
printed.

Set the page width for output to address (default
80).

Set the limit for symbol matches to address
(default 255).

All integers input are regarded as octal.

Reset integer input as described in EXPRESSIONS.
Exit from adb.

Print all non zero variables in octal.

Print the address map.

Manage a subprocess. Available modifiers are:

be

Set breakpoint at address. The breakpoint is
executed count-1 times before causing a stop.

Each time the breakpoint is encountered the
command ¢ is executed. If this command sets dot
to zero then the breakpoint causes a stop. If the
module has been compiled with option -g, see
cc(l), you can set a breakpoint at line 75 by
saying L75:b.

Delete breakpoint at address.

Run objfil as a subprocess. If address is given
explicitly then the program 1s entered at this
point; otherwise the program is entered at its
standard entry point. count specifies how many
breakpoints are to be ignored before stopping.
Arguments to the subprocess may be supplied on the
same line as the command. An argument starting
with < or > causes the standard input or output to
be established for the command. All signals are
turned on on entry to the subprocess.

(last mod. 2/16/84)

ADB(1) UNIX 3.0 ADB(1)

cs The subprocess is continued with signal s, see
signal(2). 1If address is given then the
subprocess is continued at this address. If no
signal is specified then the signal that caused
the subprocess to stop is sent. Breakpoint
skipping is the same as for r.

Ss As for c except that the subprocess is single
stepped count times. If there is no current
subprocess then objfil is run as a subprocess as
for r. 1In this case no signal can be sent; the
remainder of the line is treated as arguments to
the subprocess.

k The current subprocess, if any, is terminated.

VARIABLES
Adb provides a number of variables. Named variables are set
initially by adb but are not used subsequently. Numbered
variables are reserved for communication as follows.

0 The last value printed.
1 The last offset part of an instruction source.
2 The previous value of variable 1.

On entry the following are set from the system header in the
corfil. If corfil does not appear to be a core file then
these values are set from objfil.

The base address of the data segment.

The data segment size.

The entry point.

The ‘magic’ number (0405, 0407, 0410 or 0411).
The stack segment size.

The text segment size.

tn 3 0 AT

ADDRESSES
The address in a file associated with a written address is
determined by a mapping associated with that file. Each
mapping is represented by two triples (bl, el, f1) and (b2,
e2, £2) and the file address corresponding to a written
address is calculated as follows.

bl<address<el => file address=address+fl-bl, otherwise,

b2<address<e2 => file address=address+f2-b2,

otherwise, the requested address is not legal. In some
cases (e.g. for programs with separated I and D space) the
two segments for a file may overlap. If a ? or / is
followed by an * then only the second triple is udﬁd.

Page 7 (last mod. 2/16/84)

ADB(1) UNIX 3.0 ADB(1)

The initial setting of both mappings is suitable for normal
a.out and core files. If either file is not of the kind
expected then, for that file, bl is set to 0, el is set to
the maximum file size and fl is set to 0; in this way the
whole file can be examined with no address translation.

So that adb may be used on large files all appropriate
values are kept as signed 32 bit integers.

FILES
/dev/mem
/dev/swap
a.out
core

SEE ALSO
ptrace(2), a.out(5), core(5)

DIAGNOSTICS
‘Adb’ when there is no current command or format. Comments
about inaccessible files, syntax errors, abnormal
termination of commands, etc. Exit status is 0, unless last
command failed or returned nonzero status.

BUGS
A breakpoint set at the entry point is not effective on
initial entry to the program.
When single stepping, system calls do not count as an
executed instruction.
Local variables whose names are the same as an external
variable may foul up the accessing of the external.

EXAMPLES
After a core dump:
adb prog (second parameter core is assumed)
St (print registers)
$c (print C stack trace)
$C (print full C stack trace)
Se (print external variables)
bufp/X (print contents of ‘bufp as long hex)
*bufp/X (print 4 bytes hex where bufp points to)
write?i (prints first instruction, link a6,...)
(cr) (print next instruction)
:b (set breakpoint at this instruction)
:r hello <inp (run prog with param hello and input from inp)
main,-1?ia (disassemble program starting at main)
data/4X2d (print data: 4 long hex, 2 short decimal)
(cr) (print next data in same format
#100>d0 (write #100 to register d0)
<d1=X (print dl long hex)
*(<ab6+8) /XXX (print first three longs of parameter area)

write?l #4e75 (search for rts instruction at end of proc write)

Page 8 (last mod. 2/16/84)

ADB(1) UNIX 3.0 ADB(1)

:b (set breakpoint at this address)

‘c (continue program until stop or breakpoint)
s (single step through program

etc.

On the 68000, as opposed to the 68010 or 68020, the stack
will not necessarily grow automatically. You can recognize a
stackoverflow with the following commands:

adb prog
St
$m

If the value of register ac is less than the value b2 for
the second (/) map, the stack overflowed. To get the needed
stack size, type

#£00000-<ac=D
This will output the difference between the top of the stack
and the access address in decimal. Round the value up some
kbyte, and give the command

stksiz prog <value)>

-

Page 9 (last mod. 2/16/84)

CADMUS
Testmonitor V1.2

Dokumentations-Nr.: TMV1.2403084

Best.-Nr.: TMV1.2d0384
Autoren-Kennzeichen: rw

Eingetragene Warenzeichen:
MUNIX von PCS
DEC, PDP von DEC
UNIX von Bell Laboratories

Copyright 1984 by
PCS GmbH, Ptalzer-Wald-Strasse 38, D-8000 Minchen 90, tel. (089) 87804-0

Die Vervielfdaltigung des vorliegenden Textes, auch auszugsweise ist nur mit ausdcklicher
schriftlicher Genehmigung der PCS erlaubt.

¥Wir sind bestrebt, immer auf dem neuesten Stand der Technologie zu bleiben. Aus diesem
Grunde behalten wir uns Anderungen vor.

CADMUS Testmonitor V1.2 PCS GmbH

Abschnitt 1 Inhalt

1. Inhalt

1) CADMUS Testmonitor V1.2 Benutzeranleitung

2) Kurzbeschreibungen der Testprogramme und Kommandoprozeduren:

BSCTEST(TM)
CHECK(TM)
DZTST(TM)
EMUINIT(TM)
FPPTST(TM)
LBPTST(TM)
MEMTST(TM)
MUXKETST(TM)
QETEST(TM)
SCSITST(TM)
SLUTST(TM)
T68030(TM)
T68050(TM)
TDMA(TM)

3) Beschreibung fiir Speichertestprogramm MEMTST

4) Programmbeschreibung t68030
Prozessortestprogramm fir den QU688030 und QU68050
Version 3.1

5) Kurzbeschreibung far MMU2-Testprogramm (t68050)

6) Kurzbeschreibung faur DMA-Testprogramm des QU68030/50 (tdma)
7) Beschreibung fur SCSI-Testprogramm

8) SLS 88 - Testprogramm

9) FPP81 Floating Point Processor - Testanweisung

10) LBP68000 Laser Beam Printer - Testanweisung

11) Beschreibung fir MUX-KE - Testprogramm (muxketst)

12) Beschreibung fur DZV11 - Testprogramm (dztst)

13) Hinweise zur Fehlerursache, -behebung und Teststrategie am System
CADMUS

22. Maerz 1984 1

CADMUS Testmonitor V1.2 Benutzeranleitung

Rudolf Wildgruber

PCS Gmbh
Pfalzer-Wald-Str. 36
8000 Minchen 90

ABSTRACT

Der CADMUS Testmonitor V1.2 ist ein Standalone-Programm,
das vom Minitor von Platte, Floppy-Disk, Band oder Streamer
geladen werden kann. Es dient als Steuerprogramm zur
Parametrierung und zum Ablauf einzelner Test- und Diag-
noseprogramme. Der Testmonitor realisiert eine einheitliche
Schnittstelle zu den Test- und Diagnoseprogrammen. Far die
Bedienerschnittstelle werden MUNIX-Standards verwendet.

Die Version 1.2 unterscheidet sich von Version 1.0 in folgenden
Erweiterungen:

O Laden der Testprogramme von Magnetband oder Streamer
moéglich (sowohl 7TM11- als auch TS11-Bander werden
unterstiitzt)

Kommandoprozeduren

Test der Checksumme beim Laden der Testprogramme
Unterstiitzung der SLS48/88 - Konsole

weitere Testprogramme verfugbar

0000

March 23, 1984

CADMUS Testmonitor V1.2 Benutzeranleitung

Rudolf Wildgruber

PCS Gmbh
Pfalzer-Wald-Str. 36
8000 Mianchen 90

1. Einfahrung
Der Testmonitor gliedert sich in 4 Teile:
O Ablaufsteuerung
O Kommando-Interpreter
O Testmonitor-Kommandos
O Systemfunktionen far E/A, Filesystem-Zugriff u.a.

Die Test- und Diagnoseprogramme sind selbsténdige Programme, die vom
Testmonitor geladen und ausgefiihrt werden.

1.1. Ablaufsteuerung

— Initialisierungsdialog
— Aufruf des Kommandointerpreters

1.2. Kommando-Interpreter

— Entgegennahme von Benutzereingaben
— syntaktische Korrektheitsprifung der Benutzereingaben

— Plausibilitatsprafung von Flag-Kombinationen bei Aufrufen von Test-
programmen

— Ausfiithrung von Kommandos
— Ausfihrung von Kommandoprozeduren

— Laden von Testprogrammen, Priifung der Checksumme, Versorgung
der Programme mit Parametern und Ausfiihrung

1.3. Testmonitor-Kommandos

— Unterstiatzung des Benutzers bei Testabldufen
— Zugang zur MUNIX-Dateihierarchie
— einfache Dateifunktionen: Statusabfrage, Listing, Dump

2. Benutzerschnittstelle

2.1. Start

Der Testmonitor wird vom Minitor von einem Datentréager (Platte, Floppy-Disk,
Band oder Streamer) geladen. Der Minitor kann von Band oder Streamer nur
jeweils die erste Datei (a.out-Format, kein cpio- oder tar-Format) laden. Beim
Laden von Platte ist folgendes' zu beachten:

Der Minitor sieht die Filestruktur auf der Platte so, wie sie tatsachlich
aufgebaut ist. Daher kann der Dateibaum, wenn die Directory-Struktur
gedndert wurde - wie z.B. bei der Newcastle-Connection der Fall, - etwas

March 23, 1984

-2-

anders ausehen, wie unter MUNIX. Beim Laden des Testmonitors muss
diese Tatsache beriicksichtigt werden, und jeweils der vollstandige Pfad-
namen angegeben werden (z.B. /nodename/satest).

Mit g0 wird der Testmonitor wie jedes andere Standalone-Programm gestar-

tet.

Beispiele (Benutzereingaben sind fett gedruckt):

Laden des Testmonitors testmon (im Directory /satest) vom Default-
Device:

./satest/testmon
.g0

Laden des Testmonitors testmon vom Streamer

.rs
./testmon
.£0

2.2. Initialisierunsdialog
Nach dem Starten des Testmonitors wird ein kleiner Initialisierungsdialog mit
dem Benutzer gefiihrt.

Dabei wird gefragt nach dem Eingabemedium und Directory, von dem aus die
Testprogramme geladen werden sollen, ob ein Drucker am System angeschlos-
sen ist und nach dem Terminal-Typ.

Nach dem Initialisierungs-Dialog befindet sich der Testmonitor im Kommando-
Modus (sichtbar am Prompt '@') und ist bereit Kommandos, Aufrufe von Kom-
mandoprozeduren oder Testprogramm-Aufrufe mit oder ohne Parameter-
Angaben zu akzeptieren.

2.2.1. Eingabemedium

Testprogramme und Kommandoprozeduren kénnen von Platte, Magnetband
oder Streamer-Kassette pgeladen werden. Auf Platte wird eine MUNIX-
Filesystem-Struktur mit 512 Byte Blockgrésse vorausgesetzt (Achtung: Test-
programme kénnen nicht von Filesystemen mit 1 kByte Blockgrésse geladen
werden). Auf Band oder Streamer-Kassette missen die Testprogramme und
Kommandoprozeduren im cpio-Format abgespeichert sein.

Das Eingabemedium ist in der Form
devname(drive,offset)

zu spezifizieren. Dabei gibt devname den Device-Typ an. Zulassige
Bezeichnungen fiir Gerate sind der nachfolgenden Tabelle zu entnehmen.
Drive ist die Nummer des Laufwerks und die Bedeutung von offset ist bei Mag-
netband und Streamer gegeniiber Platte und Floppy-Disk unterschiedlich. Bei
Bandern spezifiziert offset die Anzahl der Files, die auf dem Band iiberlesen
werden sollen. Bei Platten ist offset die logische Blocknummer, ab der gelesen
wird.

March 23, 1984

devname | Device-Typ '

rm RMO02/03/05 (80 MB Fujitsu mit DATARAM controller)
rl RLO1/02

hk RK06 /707 (80 MB Fujitsu mit EMULEX controller)
rp RPO3

hp RP04/05/06, RM02/03 (ohne bad sector handling)
rk RKO05

rx RXO02 Floppy Disk

tm TM11 Magnetband

ts TS11 Magnetband

ot Tandon Winchester und Floppy (OMTI controller)
td Tandon Winchester (XEBEC controller)

st SCT11 Streamer

Bei rz gibt es eine Besonderheit beziiglich der Laufwerksnummer: 0 und 1
beziehen sich auf single density Laufwerke O und 1; 2 und 3 beziehen sich auf
double density Laufwerke 0 und 1.

2.2.2. Directory

Nach einem current directory wird nur bei Platten als Eingabemedium
gefragt. Der Directory-Name ist so anzugeben, wie er der tatsdchlichen
Dateistruktur auf dem Eingabemedium entspricht, also ohne Mount-Préfixe
und eventuell mit dem Knotennamen (bei der Newcastle Connection).

2.23. Drucker

Die Frage nach einem angeschlossenen Drucker ist mit n (kein Drucker), s
(serieller Drucker) oder p (paralleler Drucker) zu beantworten. Bei einem
seriellen Drucker wird zusatzlich nach der Kanalnummer gefragt.

Einige Testprograrmmme unterstitzen nur einen Drucker mit paralleler
Schnittstelle. Siehe dazu Abschnitt BUGS bei den Kurzbeschreibungen der
Testprogramme.

2.2.4. Terminal-Typ

Hier kann der Typ des Konsol-Terminals als String (max. 11 Zeichen) eingege-
ben werden. Diese Angabe wird von manchen Testprogrammen zur
Bildschirmsteuerung ausgewertet. Sinnvolle Eingaben sind v£100, vt52 oder
tvig970, d.h. nur bei diesen Terminals kann eine entsprechende Bildschirm-
maske generiert werden. Bei leerer Eingabe wird dummy als Terminal-Typ

eingesetzt.
Einige Testprogramme unterstitzen nur V7100-kompatible Terminals. Siehe
dazu Abschnitt BUGS bei den Kurzbeschreibungen der Testprogramme.

2.3. Kommandointerpreter

Die im Testmonitor zur Verfigung stehenden Kommandos sind an die Shell-
Kommandos von MUNIX angelehnt. Sie werden nachfolgend ausfihrlicher
spezifiziert.

2.3.1. Kommandos
In der Testmonitor-Version V 1.2 stehen folgende Kommandos zur Verfagung:
Is [-1] Inhalt des current directory auflisten. Es werden nur die Datei-
namen ausgegeben.
Option: -1 (ausfihrliches Listing mit Dateigrésse in Bytes und
Berechtigungsbits)

March 23, 1984

-4 -

cat file Ausgabe der Datei file auf Konsole

pr file Ausgabe der Datei file auf Drucker

exit Beenden Testmonitor

help Ausgabe eines Help-Textes auf Konsole

xd file Ausgabe der Datei file auf Konsole im ‘hex-dump'-Format

cd directory
Wechsel des current directory; jedoch im Gegensatz zu MUNIX
nur relativ zum current directory. Absolute Directory-Namen
werden nicht akzeptiert. cd erkennt auch '..' als Directory-
Namen, jedoch nur den unmittelbaren Vater; ein Wechsel zu
weiter oben liegenden Knoten ist nur durch mehrmaligen
Eingabe von 'cd ..' zu erreichen.

cdev dev [dir]
Wechsel des Eingabemediums mit Angabe eines Directories bei
Platten

cterm type
Terminal-Typ é&ndern, z.B. zur Korrektur; als neuer Terminal-Typ
wird type eingetragen

pwd Ausgabe des current directory; es wird jeweils der komplette
Pfadnamen mit Device angegeben; die root wird dabei mit '’
bezeichnet.

prog [param-list]
Aufruf des Testprogramms prag:
Laden der Datei prog vom Eingabemedium und current directory
Prifung der Checksumme
Versorgung von prog mit den angegebenen Parametern
Start von prog

proc [param-list]
Aufruf der Kommandoprozedur proc:
Laden der Datei proc vom Eingabemedium und current directory
Interpretation des Dateiinhalts als Testmonitor-Kommandos
Angegebene Paramter werden ignoriert. Innerhalb einer Kom-
mandoprozedur kdnnen weitere Prozeduren aufgerufen werden.
Die maximale Schachtelungstiefe betragt 10.

2.3.2. Testprogramm-Parameter

Die Testprogramme laufen parametergesteuert ab. Es ist zwischen
allgemeinen und speziellen Parametern zu unterscheiden. Allgemeine Param-
eter sind solche, die fiur alle oder nahezu alle Testprogramme sinnvoll und
anwendbar sind. Spezielle Parameter sind einem einzigen oder sehr wenigen
Testprogrammen zugeordnet.

Allgemeine Parameter werden als Teil des Kommandos beim Start eines Test-
programmes angegeben. Der Testmonitor baut einen Parameterblock auf und
tibergibt diesen an das Testprogramm. Far nicht angegebene Parameter wer-
den Default-Werte verwendet, die abhéngig vom Testprogramm sind. Ein
allgemeiner Parameter (dialog) gibt an, ob far die speziellen Parameter
Default-Werte verwendet werden oder ob das Testprogramm mit dem Bediener
einen Dialog fuhren soll.

Allgemeine Parameter sind:

March 23, 1984

pass

test

unit

flag

base

dialog
sl

-5-

Anzahl no der Testdurchlaufe (0 fur Dauertest), wie beim
Testprogramm-Aufruf mit pass=no angegeben. 0 steht fuar
Dauertest. I ist der Default-Wert, wenn beim Aufruf keine
Angabe gemacht wurde.

Liste der Teiltests, die durchgefuhrt werden.

Liste der Units (Testeinheiten: z.B. drives oder controllers), die
getestet werden.
Angabe von speziellen Flags zum Verhalten des Testprogramms
im Fehlerfall. Die Flags sind:
HOE halt on error
Testprogramm anhalten und Rickkehr in den Komman-
domodus
LOE loop on error
In einer unendlichen Schleife den Fehler reproduzieren
IER inhibit error reports
Kein Ausdruck einer Fehlermeldung
IXE inhibit extended error reports
Kein Ausdruck einer ausfihrlichen Fehlermeldung, nur
kurze Fehlermeldung
PRI print on line printer
Ausdruck der Fehlermeldungen auf Drucker
BOE bell on error
Akustisches Signal im Fehlerfall
ISR inhibit statistical reports
Keine Fehlerstatistik nach einem Testdurchlauf
Die entsprechenden Flags sind gesetzt, wenn sie beim
Testprogramm-Aufruf mit flag=... angegeben wurden. Per
default wird kein Flag gesetzt.
Basis-Gerateadresse addr, die beim Aufruf mit base=addr
angegeben wurde, sonst 0.

Interrupt-Vektor Adresse addr, die beim Aufruf mit vec=addr
angegeben wurde, sonst 0.

Das Testprogramm fragt spezielle Parameter im Dialog ab.

Die Zeichenfolge string (max. 11 Zeichen), die beim Aufruf mit
s1=string angegben wurde, sonst leer. Die Bedeutung dieses
Parameters legt das Testprogramm fest.

Die allgemeinen Parameter werden beim Aufruf in param-list angegeben. Die
Syntax fur param-list ist dabei folgendermassen definiert:

param-list param [param]

param

no-list
range
Jlag-list
no

pass=no | test=no-list | unit=no-list | lag=flag-list |
base=no | vec=no | dialog | s1=string

(no|range) [, (no|range)]

no—no

Jlagname [, flagname]

eine positive ganze Zahl (einschliesslich 0) oder eine Hexa-
dezimalzahl in der Form Oxnnnnnn

March 23, 1984

-6-

flagname eines der oben spezifizierten Flags
string eine beliebige Zeichenfolge (maximal 11 Zeichen)

2.3.3. Kormmandoprozeduren

Kommandoprozeduren fiir den automatischen Ablauf von Testprogrammen
konnen nur unter MUNIX erstellt werden. Jede Zeile der Kommandoprozedur
darf hochstens ein Testmonitor-Kommando, einen Testprogramm-Aufruf oder
einen Kommandoprozedur-Aufruf enthalten. Leerzeilen sind erlaubt, Kom-
mentare verboten.

Die Abarbeitung einer Zeile der Kommandoprozedur wird protokolliert.

2.4. Terminalhandling

Fir die Terminalein- und ausgabe stehen nachfolgend beschriebene Steuer-
zeichen zur Verfugung:

CTRL S: Anhalten einer gerade laufenden Terminal-Ausgabe.

CTRL Q: Fortsetzen einer mit CTKL S angehaltenen Terminal-Ausgabe.
CTRL X: Loschen der aktuellen Eingabezeile im Kommandomodus.
CTRL C: Unterbrechen eines gerade laufenden Programmes.

3. Beispiele

Anhand des Testprogrammes check soll ein kompletter Dialog durchgespielt
werden:

Dabei werden die Ausgaben des Testmonitors fett gedruckt dargestellt,
sowie die Eingaben des Benutzers in Kursiv- Schrift.

Es wird angenommen, dass sowohl der Testmonitor wie auch die Testpro-
gramme bereits unter MUNIX in das Directory /satest im Filesystem
s/dev/hk0 eingespielt worden sind, und die Directory-Struktur
unverédndert (also keine Superroot der Newcastle Connection) vorliegt.

Nach dem Einschalten des Systems bzw dem Betatigen des INIT-
Schalters erscheint an der Konsole

MINITOR
Mit der Eingabe
/satest /testmon

wird der Testmonitor von Platte (80 MB Fujitsu, Laufwerk 0) geladen und
es meldet sich wieder der Minitor mit dem Prompt '.’

Mit

g0

wird der Testmonitor nun gestartet. Er meldet sich mit dem Text:
CADMUS-TESTMONITOR V1.2

input-device xx(d,o):

Nach Eingabe des Eingabemediums, (z.B. rx(2,0) far das erste Floppy-
laufwerk) oder im Beispiel fiir die Platte

hk(0,0)

fragt der Testmonitor weiter:

March 23, 1984

directory

Die Eingabe

/satest

stellt das current directory ein.

Der weitere Dialog:

line printer (n/s/p): s

line number (1-7): I

terminal :vt100

@

Nun ist der Testmonitor bereit, Kommandos oder Programmnamen zu

akzeptieren, im Beispiel:

check s 1=hk-w unit=1 flag=PRIIXE

Alle weiteren Ausgaben erscheinen am Drucker, bis sich der Testmonitor

wieder mit @ zurickmeldet.

Ein weiteres Beispiel ist der Aufruf des SCSI-Testprogramms scsitst:

Das Kommando
@scsitst pass=3 test=1,3-6 unit=0,1 s1=d503

fuhrt zu folgendem Testablauf:
Die Tests mit den Nummern 1,3,4,5 und 6 werden in dieser Reihen-
folge ausgefihrt. Dieser Testdurchlauf erfolgt insgesamt dreimal.
Getestet werden unit 0 und unit 1, d.h. 2 Winchester-Drives. Die Win-

chester sind vom Typ TM 503. Es wird der Controller DTC 520 verwen-
det.

4. 170 Page Adressen
Fir Konsole und seriellen Drucker wird sowohl eine DLV11 als auch eine
S1S48/88-Schnittstelle unterstutzt.

In der Version 1.2 sind die Adressen und Interruptvektoren von Konsole und
Drucker fest eingestellt und konnen auch nicht durch die Parameter base
und vec verandert werden.

Die in V1.2 gultigen Adressen und Interrupt-Vektoren sind nachfolgend
angegeben. Beachten Sie bitte:

— die oktal angegebenen Adressen sind direkt auf die Controller-Switches zu
Ubertragen,;

— die sedezimal angegebenen Adressen in Klammern stellen die echten
Adressen im 68000-Adressraum dar und sind bei den Interruptvektoren das
Vierfache der oktal angegebenen Adresse.

March 23, 1984

-8-

Gerat Interruptvektor | 1/0-Page Adresse
oktal | hex oktal hex
DLV11-Konsole 60 Co 777560 | FFFF70
paralleler Drucker | 200 200 777514 | FFFF4C
serieller Drucker:
DLV11-line 1 300 300 776500 | FFFD40
DLV11-line 2 310 320 776510 | FFFD48
DLV11i-line 3 320 340 776520 | FFFD50
DLV11-line 4 330 360 776530 | FFFD58
DLVil-line § 340 380 776540 | FFFD60
DLV11-line 6 350 3A0 776550 | FFFD68
DLV11-line 7 360 3C0 776560 | FFFD70
SLS48/88 300 300 776000 | FFFCOO

5. YerfGgbare Testprogramme und Kommandoprozeduren

5.1. Testprogramme
In V1.2 sind nachfolgend aufgefiihrte Testprogramme verfiigbar:

bsctest BSC-KE Testprogramm

check Platten-Test- und Formatierprogramm

dztst DZV11 Testprogramm

fpptst Floating Point Processor Test

lbptst CANON Laser Beam Printer Test

memtst Speichertest

muzketst MUX-KE Testprogramm

getest 3COM Q-Bus Ethernet Controller Testprogramm
scsitst SCSI-Adapter Test

slutst S1.S48/S5SLS88 Test

68030 "QU6B030/50 Prozessortest (ohne MMU-Stufe 2)
t68050 QU68050 Prozessortest (nur MMU-Stufe 2)
tdma DMA Testprogramm

Dabei spielen die Programme memist und lbptest eine gesonderte Rolle, da
diese nach Ablauf nicht mehr in den Testmonitor zuriickkommen. Der Test-
monitor muss danach mit dem Minitor neu geladen und gestartet werden.

Fir getest wird ein MUNIX-Programm (kein Standalone-Programm) echoserver
mitgeliefert, das von einem anderen CADMUS-System mit getest kommun-
iziert.

5.2. Kommandoprozeduren

In V1.2 werden standardmassig 4 Kommandoprozeduren ausgeliefert
(emuinit, emuinitpr, emuinit2, emuinitZpr). Sie dienen zur Initialisierung
(Formatierung und Bad Sector Test) von Platten, die an den EMULEX SC02
Controller (RK0O6/07-Emulation) angeschlossen werden.

6. Installation

Der Testmonitor ist mit den Testprogrammen Bestandteil der MUNIX-
Basissoftware (ab V1.5). Im MUNIX-Dateibaum ist er im Directory /satest oder
/usr/satest zu finden.

Separat erfolgt die Lieferung des Testmonitors V1.2 mit den erwahnten Pro-
grammen auf Band, Streamer-Kassette oder Floppy-Disk:

March 23, 1984

-9-

Die Floppy ist im MUNIX-Filesystem-Format beschrieben (512 Byte
Blockgrosse). Das Magnetband bzw. die Streamer-Kassette enthialt als
erste Datei den Testmonitor im a.out-Format und als zweite Datei die
Testprogramme und Kommandoprozeduren im cpio-Format. Der Test-
monitor kann also direkt von diesen Datentrédgern geladen werden. Um
die Testprogramme vom Testmonitor zu laden, ist dann als Einga-
bemedium rz(2,0), tm(0,1) oder st(0,1) einzugeben.

Wir empfehlen, die Programme auch unter die Root einzulesen, damit sie
direkt von der Winchester geladen werden konnen. Folgende Kommandos
sind z.B. notwendig, um die Streamer-Kassette einzulesen:

cd /

mkdir satest

cd satest

stskip 1

cpio -ivinS < /dev/nrst0 (Standalone-Testprogramme)
cd /

cpio -ivinS < /dev/rst0 (Echoserver)

March 23, 1984

BSCTEST(TM) MUNIX (STANDALONE-TEST) BSCTEST(TM)

NAME
bsctest - KE-BSC1/2 (KE-SIO1 + KE-V24 /7 KE-SI02) - test

SYNOPSIS
bsctest [param-list]

DESCRIPTION
Bsctest checks 4 (2) synchronous BSC channels in short circuit mode
(short circuit plug K907.027:
channel 0 < - > channel 1
channel 2 < - > channel 3).
Data and control lines are checked in both directions.

Hardware: KE-BSC2 or KE-BSC1 or CP-WCS
+KE-SI02 +KE-SI101 [KE-SIO1] +KE-SI102
+KE-V24 [KE-V24]
(default: KE-BSC2
+KE-S102)

The jumper configuration for the boards is printed on the console if
bsctest is started with the parameter dialog .

PARAM-LIST
pass Number of test passes or 0 for infinite test loop. The default value
isl.

flag HOE Halt on error and return to testmonitor.
BOE Bell on error.
LOE Loop on error. Number of test passes is set to 0 (infinite test
loop).

unit Number of channels (2 or 4). Default is 4 .

dialog The test program asks interactively for test commands. Jumper
configurations are printed according to hardware configurations.

EXAMPLES
Test with 10 passes, halt on error and bell on error, 2 channels

bsctest pass=10 flag=HOE,BOE unit=2

FILES
KEBSC2.KEA
KEBSC2.MAP

SEE ALSO
T920.518 MUNIX RJE mit BSC-KE-Controller
T922.103/104/105.01 KE-SIO2 Testvorschrift

Page 1 March 21, 1984

CHECK(TM) MUNIX (STANDALONE-TEST) CHECK(TM)

NAME

check — disk checking and formatting
SYNOPSIS

check s1=devname[-(wju)] [param-list]
DESCRIPTION

Check is the CADMUS disk checking program. Additionally it has a for-
matting capability for disks with standard headers. 5 1/4'" winchesters
emulated by the Andromeda WDC11 controller as RLO2 can also be for-
matted. As disk checking is done without interrupts a separate test for
controller interrupts was added.

The main purpose of check is to test disks for the location of bad sectors
and to write the bad sector file onto disks. The bad sector file is a list of
all bad sectors found on a disk. MUNIX uses this information to avoid
allocating bad sectors to a user’s file. If there is an error in a header, or
if there is a read or write error within one sector, that sector is defined
as a bad sector. If possible the header of this sector is marked.

Check is aborted if one of the following conditions occurs:
— controller not accessible at specified or default address
— bad status on all specified or default units
— too many bad blocks (more than 126) on a tested unit
If there is a bad status on one unit, that unit is omitted from testing.

A brief explanation of check is available in check.help Use the testmoni-
tor cat command to get it on screen.

PARAM-LIST

sl The device name (see table below) of the disks to be tested
optionally followed by —wor —u.
The devices in the following table are supported by check. The
listed CSR and vector addresses (hex notation) are default values.
They can be changed by the base resp. vec parameter. Devices
indicated by S7D in the column Formatting uses standard
headers. Those indicated by WDC11 need the ANDROMEDA WDC11
controller to be formatted.

Supported Devices

Device Disk CSR Vector | Formatting
Name Type Address | Address
hk RK06/07 FFFF20 220 STD
rl RLO1/02 FFF900 1CO WDC11
hl RLO1/02 FFF910 1DO WDC11
rm RM02/03/05 | FFFDCO 2B0 - STD

The option -w opens the disk in read /write-mode, while -u opens
the disk in update-mode. A missing option opens the disk in read-
only-mode.

In read /urite-mode the contents of the disk is overwritten, bad
sectors are marked, the bad sector file is initialized or modified

\

Page 1 March 21, 1984

CHECK(TM)

pass

test

MUNIX (STANDALONE-TEST) CHECK(TM)

and formatting is possible. This is the proper mode for new disks.
In update-mode sectors ar tested only by reading, bad sectors are
marked and the bad sector file is initialized or modified. Format-
ting is inhibited.

In read-only-mode the contents of the disk is left unchanged.
Sectors are tested only by reading, no formatting is done, no sec-
tor is marked as bad and the contents of an existing bad sector
file is not modified.

For example (user input is bold):

si=hk-wor
sl=rm-u or
s1=rl

Number of test passes or 0 for infinite test loop. The default value
is1

A list of testnumbers in the range 0 to 6 If no test-list is
specified, tests 0, 1, 2 and 6 are executed by default. During a
test pass the tests are executed in increasing order. The test
descriptions refer to disks opened in read /write-mode. If you
opened a disk in another mode read the descriptions accordingly:

0 Bad Sector Scan:
The complete disk is tested. Sectors are first written in
increasing order and then read in decreasing order. A bad
sector file is written onto the disk.

1 Sector Range Test:

A range of consecutive sectors is tested. By default these
are the sectors 0 to 1999 . If the parameter dialog is
specified you are interactively asked for the starting sec-
tor and the number of sectors to be tested. The sectors
are tested alternately: Ist sector, last sector, 2nd sector, ...
to the midst of the given interval. The already existing bad
sector file is updated.

2 Random Sector Test:
Test disk sectors in random order. By default 2500 sectors
are tested. If the parameter dialog is specified you are
interactively asked for the number of sectors to be tested.
The already existing bad sector file is updated.

3 Inspect Bad Sector File:
List the contents of an existing bad sector file.
4 Append Bad Sectors:

Bad sectors are appended manually to an existing bad
sector file. When the message enter sector numbers (-1 to
end) appears on the screen, type in the numbers of sec-
tors to be marked as bad sectors. To exit from this test
enter —1.

This test is extremely helpful if you know any bad sectors
not detected by the check program.

March 21, 1984 Page 2

CHECK(TM) MUNIX (STANDALONE-TEST) CHECK(TM)

5 Format Disk:
Write good sector headers and initialize data fields option-
ally on the complete disk volume or on single tracks. If
the parameter dialog is not specified the complete disk is
formatted. If dialog is specified you are interactively
asked for complete or single track formatting.

6 Controller mterrupt Test:
A RESET or DRIVE CLEAR command is executed with inter-
rupt enabled. The test is successful if the controller inter-
rupts within a certain time (about 1 second). There are
three kinds of possible error conditions:

— timeout: no interrupt occured
— spurious interrupt: daisy chain not closed
— tllegal interrupt: wrong interrupt address

As a proper test strategy for new disks we suggest first to format all
drives with test 5 and then to start the default tests for all drives.

If there is a new bad sector on an already used disk test a small range
around the bad sector by test 1 (dialog specified) or use test 4 to mark
the bad sector manually. Used disks should be checked in read-only-
mode.

unit A list of units (disk drive numbers) to be tested. 0is default.
For Rk and rm a disk drive number is in the range 0to 7, for 7l
and hl the rangeis Oto 3

flag A list of flags (see CADMUS Testmonitor Benutzeranleitung). PRI
makes a line printer protocol. IXE and IER suppress detailed
error messages. HOE terminates check immediately if there is a
bad status on one unit or if the controller interrupt test fails.
BOE bells on an error condition. All other flags are ignored

base A nonstandard CSR address
vec A nonstandard interrupt vector address.

dialog Ask interactively for special parameters. Applies to tests 1, 2 and
5

EXAMPLES

Formatting a complete 80 MB Fujitsu winchester (EMULEX controller):
check s1=hk-w unit=0-2 test=5

Default tests with line printer protocol:
check si=hk-w unit=0-2 flag=PRI

Formatting a complete 80 MB Fujitsu winchester (DATARAM controller):
check s1=rm-w test=5

Testing a user defined sector range in read-only-mode
check s1=rl test=1 unit=1 dialog flag=PRI

FILES
check.help

Page 3 March 21, 1984

CHECK(TM) MUNIX (STANDALONE-TEST) CHECK(TM)

SEE ALSO
ri(4). rm(4), hk(4), iopage(7)
Bad Sector Handling
CADMUS Testmonitor Benutzeranleitung

BUGS
The interrupt test doesn’'t work with DATARAM S04/A controller. Ignore
the timeout message.

March 21. 1984 Page 4

DZTST(TM)

NAME

MUNIX (STANDALONE-TEST) DZTST(TM)

dztst — DZV11 test (without send interrupts)

SYNOPSIS

dztst [param-list]

DESCRIPTION

Dztst is the CADMUS DZV11 test program.

Dztst

tests simultanously two DZV11 channels. One acts as the

transmitter the other as the receiver. In this way all DZV11 channels can
be tested.

In test 1 data is only transmitted, while test 2 transmits and receives
data using two channels. Test 3 checks the signals: DTR,RING LINE and
CARRIER LINE. For the tests 2,3 you need a short circuit plug, connect-
ing the channels 0and 1, 2and Jetc.

PARAM-LIST
pass

test

unit

flag

base

vec

dialog

EXAMPLES

Number of test passes or 0 for infinite test loop. The default value
is1.
A list of testnumbers in the range 1 to 3 If no test-list is

specified, tests 1 to 3 are executed by default. During a test pass
the tests are executed in increasing order.

1 Transmit test:
The output channel is tested (255 characters will be
transmitted).

2 Transmit - recetive test:

The output and the input channels will be tested (255
characters are transmitted from output to input channel).

3 Modem test:
The signals: DTR, CARRIER LINE and RING LINE will be
tested.

Input and output channels. All are default.

A list of flags (see CADMUS Testmonitor Benutzeranleitung). PRI
makes a line printer protocol. IER suppresses error messages.
BOE bells on error. HOE halts on error. LOE loops on error.

This parameter is ignored.
This parameter is ignored.
If specified you are interactively asked for the number of charac-

ters to be transferred, the channels to be tested and display
flags.

Default tests (1,2,3); Channels: All (0<>1,2<>3,..) ; 255 characters.

dztst

Detault tests with dialog

Page 1

dztst dialog

March 21, 1984

DZTST(TM) MUNIX (STANDALONE-TEST) DZTST(TM)

Only test 1; output channel 2 ; 255 characters.
dztst test=1 unit=2

Only test 2; channel 3 and 5; loop on error; bell on error
dztst test=2 unit=3,5 flag=LOE,BOE -

SEE ALSO
Beschreibung fuer DZV11 - Testprogramm
CADMUS Testmonitor Benutzeranleitung

March 21, 1984 Page 2

EMUINIT(TM) MUNIX (STANDALONE-TEST) EMUINIT(TM)

NAME -
emuinit — format and check an 84 MB Fujitsu drive with EMULEX SC02
controller

SYNOPSIS
emuinit
emuinitpr
ermuinit2
emuinit2pr

DESCRIPTION
These command procedures format and check complete 84 MB Fujitsu
drives with EMULEX SC02 controller. They can be used for the initial set-
up of winchester drives.
Pmuinit and emuinitpr refer to the first drive, while emuinit2 and
emuinitZpr refer to the second drive. Emuinifpr and emuinitZpr make a
line printer protocol, while emuinit and emuinit2 only print a protocol to
the console.

PARAM-LIST
All params are ignored.

SEE ALSO
check(TM)
Bad Sector Handling
CADMUS Testmonitor Benutzeranleitung

Page 1 March 21, 1984

FPPTST(TM) MUNIX (STANDALONE-TEST) FPPTST(TM)

NAME
fpptst — test program for FPP B1 (floating point processor)

SYNOPSIS
fpptst [param-list]

DESCRIPTION
Fpptst serves as a GO/NOGO test program for the floating point proces-
sor FPP 81. Both single loop tests and infinite loop tests are possible. For
a detailed description of fpptst see FPP 81 Floating Point Prozessor Tes-

tanweisung.
PARAM-LIST
pass Number of test passes or O for infinite test loop. The default value
isl.

test A list of testnumbers in the range 1 to 30. If no test-list is
specified, all tests are executed by default. During a test pass the
tests are executed in increasing order.

1..19, 21, 22
Instruction tests: all floating point instructions are tested
(single precision only) with different address modes.

20 Compare (CMP) / CSR-TEST

23..27 Address mode tests

28 Trap test

29 Double precision test

30 Op. buffer - result dbuffer - transfer test

unit This parameter is ignored.

flag A list of flags (see CADMUS Testmonitor Benutzeranleitung). PRI
makes a line printer protocoll. IER suppresses error messages.
BOE bells on error. HOE halts on error. LOE loops on error.

base This parameter is ignored.

vec This parameter is ignored.

sl This parameter is ignored.

dialog The test program asks interactively for test commands.

SEE ALSO

FPP 81 Floating Point Prozessor Testanweisung
CADMUS Testmonitor Benutzeranleitung

Page 1 March 21, 1984

LBPTST(TM) MUNIX (STANDALONE-TEST) LBPTST(TM)

NAME
lbptst — laser beam printer test

SYNOPSIS
lbptst

DESCRIPTION
Lbptst is the test program for the CANON laser beam printer. Lbptst
overwrites the testmonitor in main memory. After termination of lbptst
the testmonitor has to be loaded from disk, tape or streamer by the Min-
itor.

PARAM-LIST
All params are ignored. Lbptst asks the user for test commands.

SEE ALSO
Minitor-Manual
CADMUS Testmonitor Benutzeranleitung
LBP68000 LASER PRINTER SYSTEM - Testanweisung

BUGS
The console is dead when the LBP controller is missing. Push INIT.

Page 1 March 21, 1984

MEMTST(TM) MUNIX (STANDALONE-TEST) MEMTST(TM)

NAME
memtst — memory test
SYNOPSIS
memtst
DESCRIPTION
Memtst is the CADMUS memory test program. Memtst overwrites the test-
monitor in main memory. After termination of memitst the testmonitor
has to be loaded from disk, tape or streamer by the Minitor.
PARAM-LIST
All params are ignored. Memtst asks the user for test commands.
SEE ALSO
Minitor-Manual
CADMUS Testmonitor Benutzeranleitung
Beschreibung fuer Speichertestprogramm MEMTST
BUGS

Memtst supports only a parallel line printer.

Page 1 March 21, 1984

MUXKETST(TM) MUNIX (STANDALONE-TEST) MUXKETST(TM)

NAME
muxketst — MUX-KE test (without interrupt handling)
SYNOPSIS
muxketst [param-list] -
DESCRIPTION
Muxketst is the CADMUS MUX-KE test program.
Muzketst tests simultanously two MUX-KE channels (DH). One acts as the
transmitter the other as the receiver.
In test 1 data is only transmitted, while test 2 transmits and receives
data using two channels. For test 2 you need a short circuit plug.
PARAM-LIST
pass Number of test passes or 0 for infinite test loop. The default value
is1l.
test A list of testnumbers in the range 1 to 2 If no test-list is
specified, tests 1 and 2 are executed by default. During a test
pass the tests are executed in increasing order.
1 Transmit test:
The output channel is tested (255 characters will be
transmitted).
2 Transmit - receive test:
The output and the input channels will be tested (255
characters are transmitted from output to input channel).
unit Input and output channel (max. 2 channels). 0and I are default.
flag A list of flags (see CADMUS Testmonitor Benutzeranleitung). PRI
makes a line printer protocol. IER suppresses error messages.
BOE bells on error. HOE halts on error. LOE loops on error.
base This parameter is ignored.
vec This parameter is ignored.
dialog If specified you are interactively asked for the number of charac-
ters to be transferred, the channels to be tested and display
flags.
EXAMPLES
Default tests (1,2); Channels: 0 and 1 ; 255 characters.
muxketst
Default tests with dialog
muxketst dialog

Only test 1; output channel 2; 255 characters.
muxketst test=1 unit=2

Only test 2; channel 3 and 5; loop on error; bell on error
muxketst test=2 unit=3,5 lag=LOE BOE

Page 1 March 21, 1964

MUXKETST(TM) MUNIX (STANDALONE-TEST) MUXKETST(TM)

SEE ALSO
Beschreibung fuer MUX-KE - Testprogramm
CADMUS Testmonitor Benutzeranleitung

March 21, 1984 Page 2

QETEST(TM) MUNIX (STANDALONE-TEST) QETEST(TM)

NAME
getest - test 3 Com QBus Ethernet-Controller QE
SYNOPSIS
qetest [param-list] -
DESCRIPTION
qetest is a check and diagnostic program for the 3 Com Ethernet Con-
troller QE. qetest offers several functional tests for the memory, control
and serial board of the controller.
Memory and Transmit-functions are testable (with some restrictions)
without another Ethernet-Controller. The Receive-function-test and test
of data-integrity at transmission need an echoserver running on a
remote unix-machine. The echoserver should reside in /usr/bin.
getest is aborted if control-registers or buffermemory-addresses are not
accessible. There is no checking of the interrupt-vector because qetest
runs in polling-mode.
After every pass qetest may be forced to detail error-messages.
PARAM-LIST
dialog In dialog-mode qetest gives detail information before running a
test.

pass Number of test passes; 0 for infinite test Coop. The default value
is 1. An infinite test loop can be stopped with CNTR-C.

test A list of testnumbers in the range of 0 to 4. If no test-list is
specified, test 0, 1, 4 are executed by default. Tests are executed
in increasing order during a test pass.

0 Test of buffer memory: Addressing, Data and byte-
operations are tested.

1 Transmit a single packet using each buffer. The test checks
transmit-done, jam-occurrence and buffer-release. No
echoserver is required.

2 Transmit multiple packets. All 16 buffers are prepared for
transmission, then the controller is started. Checking is
done analogous test 1.

3 Receive a single packet using each buffer. Each packet on
the Ethernet is received independent of its destination
address. (Monitoring Ethernet cable).

4 Echo-Test: Transmit and Receive of a single packet with
check of data integrity.

An echoserver on a remote unix machine is necessary to
reflect the Ethernet packet. If test 4 is selected, a dialog
asks the addressing parameters before starting the test-
passes.

Page 1 March 21, 1984

QETEST(TM) MUNIX (STANDALONE-TEST) QETEST(TM)

flag HOE halt on error.

LOE loop on error. qetest loops the faulty test independently of
further errors until break.

IER, IXE inhibit error reports. Only the error-count of the actual
pass and the total error-count are displayed. After every error
report a detailled explanation of the error-codes may be asked by
the user.

EXAMPLE
Infinite echo-test:

qetest test=4 pass=0

FILES
/usr/bin/echoserver

SEE ALSO
Ethernet-Controller 3C200
Installation und Standalone-Test
im System QU68000.
T923.408.01

March 21, 1984 Page 2

SCSITST(TM) MUNIX (STANDALONE-TEST) SCSITST(TM)

NAME
scsitst— test program for SCSI adapter.
SYNOPSIS
scsitst [param-list]
DESCRIPTION
Scsitst Version 3.0 tests the SCSI-Bus-Controller and the SCSI-Adapter
with a § 174" Winchester ora 5 1/4" Floppy.
PARAM-LIST
pass Number of test passes or 0 for infinite test loop. The default value
is 1
test A list of testnumbers in the range 0 to 6 . If no test-list is
specified, test 2 (read sequent) is executed by default.
0 Read block - you are asked for the number of the block to
be read.
1 Write block - you are asked for the number of the block to
be written.
2 Read sequent - read the blocks of the data medium (floppy
or winchester) sequentially.
3 Write sequent - write blocks sequentially.
4 Write + read + compare sequent
5 Write + read + compare zigzag
6 Write sequent read + write random
unit Logical drive number (0..3). Unit O winchester 0, unit 1 winchester
1, unit 2 floppy 0 and unit 3 floppy 1.
s1 Controller- and drive type. D or d for DTC 520 controller. O or o
for OMTI 20D controller. 503 for TM 503 winchester, 603 for TM
603 winchester, 703 for TM 703 winchester, 100-4 for TM 100-4 or
TM 101 floppy, 208 for RO 208 winchester, 1085 for Maxtor 1065
winchester and 6185 for BASF 6185 winchester. For example D503
for DTC 520 controller and TM 503 winchester.
dialog The test program asks interactively for test commands.
EXAMPLES
Zigzag-test, 1 pass, with DTC 520 controller and TM 503 winchester as
unit 1.

scsitst pass=1 unit=1 s1=D503 test=5 oder
scsitst pass=1 unit=1 31=d503 test=5

Interactive testing.

scsitst dialog

Page 1 March 21, 1984

SCSITST(TM) MUNIX (STANDALONE-TEST) SCSITST(TM;

SEE ALSO
Beschreibung fuer SCSI - Testprogramm
CADMUS Testmonitor Benutzeranleitung

BUGS
Scsitst works fine only with a VT100-compatible terminal.

March 21, 1984 Page 2

SLUTST(TM) MUNIX (STANDALONE-TEST) SLUTST(TM)

NAME

slutst — SLS-48 and SLS-88 test program.
SYNOPSIS

slutst [param-list]
DESCRIPTION

Slutst Version 3.0 tests the serial lines of the Multi-Function-Board
(MFB). To run this test you need a DLV11 for the console interface (stan-
dard DEC-console).

PARAM-LIST
pass Number of test passes or 0 for infinite test loop. The default value
is1.

dialog The test program asks interactively for test commands.
EXAMPLES
Short circuit test with 100 passes
slutst pass=100
Interactive testing.
slutst dialog
SEE ALSO

SLS 88 - Testprogramm
CADMUS Testmonitor Benutzeranleitung

BUGS
Slutst works fine only with a VT100-compatible terminal.

Page 1 March 21, 1984

T68030(TM) MUNIX (STANDALONE-TEST) T68030(TM)

NAME

t68030 ~ processor test for QU68030/50
SYNOPSIS

t68030 [param-list]
DESCRIPTION

T68030 version 3.1 tests the QU68030/50. The program checks for
MC68000 or MC68010. The second mmu-stage of QU68050 is not tested
(see T68050(TM)).

PARAM-LIST
pass Number of test passes or O for infinite test loop. The default value
isl.

test A list of testnumbers in the range 0 to 10. If no test-list is
specified, tests 0 7 and 10 are executed by default. During a
test pass the tests are executed in increasing order.
0 (ed) test of basic processor functions
1 (ad) test of address modes.

(bel) test of 1-operand instructions.

(be2) test of 2-operand instructions.

(rr) RAM-ROM test.

(mt) MMU - test.

(sd) test of MMU - segment descriptors

(ir) interrupt test.

@ N O O s W N

is ignored. This test (force parity error) can only be
started interactively.

9 (pf) Page-Fault-Test. (Nur QU68050)
10 (bt) bus timeout test

flag HOE Halts (program. termination) on error and returns to test-
monitor. PRI prints error messages to line printer. IER
suppresses extended error messages.

dialog The test program asks interactively for test commands. -

EXAMPLES
Test with extended error messages, do not halt on error.

t68030
100 test passes, halt on error and suppress extended error messages.
t68030 pass=100 flag=HOE,IER

Page 1 March 21, 1984

T68030(TM) MUNIX (STANDALONE-TEST) T68030(TM)

Interactive testing.
t68030 dialog

SEE ALSO
Programmbeschreibung t68030
CADMUS Testmonitor Benutzeranleitung

BUGS
T68030 works fine only with a VT100-compatible terminal. Only a parallel
line printer is supported.

March 21, 1984 Page 2

T6B0OS0(TM) MUNIX (STANDALONE-TEST) TEB0S50(TM)

NAME
t68050 — MMU 2 test program

SYNOPSIS
t68050 [param-list]

DESCRIPTION
T68050 Version 3.0 tests the second MMU-stage of the QU68050.

PARAM-LIST
pass Number of test passes or 0 for infinite test loop. The default value
is1.

EXAMPLES
Test with 100 passes.

t68050 pass=100

SEE ALSO
Kurzbeschreibung fuer MMUZ - Testprogramm
CADMUS Testmonitor Benutzeranleitung

BUGS
768050 works fine only with a VT100-compatible terminal.

Page 1 March 21, 1984

TDMA (TM) MUNIX (STANDALONE-TEST) TDMA(TM)

NAME

tdma — DMA - test program
SYNOPSIS

tdma [param-list]
DESCRIPTION

Tdma version 3.0 is running under QU68030 or QU68050. For this test
you have to plug a test-CP to the CADMUS-System.

The test-CP is a Communication Processor (in German Kommunikations-
Element or KE) with special firmware (test proms). If you want to order
the test-CP please contact PCS.

PARAM-LIST
pass Number of test passes or 0 for infinite test loop. The default value
is1.
test A list of testnumbers in the range 0to 2. If no test-list is specified

all tests are executed by default. During a test pass the tests are
executed in increasing order.

0 DMA-read - read blocks of data from memory.

1 DMA-write - write blocks of data to memory.

2 DMA-move - read blocks of data from memory and write to
memory.

unit Number of the associated DMA extension register (0, 2, 3).
Default = 0 (DERO).

s1 DMA request time in ms (5..255). Default = 5 ms.
dialog The test program asks interactively for test commands.

EXAMPLES
Test with 100 passes, DMA extension register 2, DMA request time 255 ms.
tdma pass=0 unit=2 s1=255
Interactive testing
tdma dialog
SEE ALSO

Kurzbeschreibung fur DMA-Testprogramm des QU68030/50
CADMUS Testmonitor Benutzeranleitung

BUGS
Tdma works fine only with a VT100-compatible terminal.

Page 1 March 21, 1984

Beschreibung
fur
Speichertestprogramm MEMTST

Martin Grdber

Periphere Computer Systeme
Pfalzerwald Str. 36
D-8000 Miinchen 90

1. Einleitung

Das Testprogramm "MEMTST" ist ein Speichertestprogramm, das in 68000-
Assembler-Sprache geschrieben ist. Mit Hilfe dieses Programmes kann ein
beliebig grosser Q-Bus- und/oder S-Bus-Speicher ausgetestet werden.
"MEMTST" ist speziell auf den Prozessor QU6B000 (QU68030/50) zugeschnit-
ten. (Das Programm nutzt das lokale RAM des QU68000.)

2. Voraussetzung

2.1. Hardware

QU 68000 System

QU 68000 Prozessor

Serielle Schnittstelle

FlLoppyDisk oder anderer Massenspeicher
Terminator

Option: parallele Drucker-Schnittstelle mit Drucker

2.2. Software

CADMUS Testmonitor
Testprogramm MEMTST

"MEMTST" ist ein Standalone-Testprogramm, das ohne Betriebssystem lauft.
Gestartet wird "MEMTST" vom Testmonitor. Optional kann "MEMTST" auch

direkt vom Minitor geladen werden.

3. Bedienerfithrung

3.1. Laden und Starten des Testprogrammes
Durch Angabe des Programmnamens

memtst

wird "MEMTST" vomn Testmonitor geladen. Ohne Testmonitor kann "MEMTST"
auch direkt vom "Minitor" mit folgenden Befehlen geladen werden.

Eingabe:
rx<cr> Laden von Floppy
/memtst<cr>
go<cr>

Nach jedem <cr> meldet sich der "Minitor” mit dem Prompt. Durch g0 wird
das Programm gestartet.
Memtst meldet sich mit folgender Systemausgabe.

QU6B000 MEMORY TEST Vers.xx

Prozessor - Version : MC 680kx

sesee] okaler RAM-Bereich o.k. #¢e¢es

Gesamt-Speicherkapazitaet D0xxxx KByte o.k. (CR/n) ?

Das Programm stellt selbststaendig die Grosse des Speichers fest. Die Grosse
wird durch obigen Ausdruck angezeigt und muss durch Eingabe von "j" oder
<cr> bestatigt werden.

Testprogramm-Auswahlliste:

Housenumber =0 Read/Modify/Write =5
Random =1 Write Byte =6
Bit-Shifting =2 VWrite Long Word =7
Refresh =3 Parity =8
Opcode =4 Force Parity Error =9
Tests 0....8 =CR

Testnummer (getrennt d. ',') :

Das Programm bietet mehrere Testmodule zur Auswahl an. Beschreibung der
Testmodule siehe Programmbeschreibung. Nach dem Ausdruck der System-
meldung hat das Programm den lokalen Speicherbereich des QU6B000 bereits
getestet. Tritt bei diesern Test ein Fehler auf, wird dies durch eine
entsprechende Fehlermeldung angezeigt. Der lokale RAM-Bereich des
QU68000 wird fir den weiteren Programmablauf benutzt.

3.2. Programmeingaben

Testnummer (getrennt d. *,’) :

Hier koennen die verschieden Tests ausgewaehlt werden, die ausgefuehrt wer-
den sollen. Es koennen auch mehrere Tests ausgewaehlt werden. Die einzel-
nen Tests sind durch ",” zu trennen. Wird nur <CR> eingegeben, werden die

Tests 0-8 ausgefuehrt.

Fuer den Test 8 (Parity) muss der Speicher entsprechend den Standardein-
stellungen fuer den QU68000 verdrahtet sein. D.h. Wort-Parity-Uebertragung
auf Leitung BDAL16. (Kein CSR)

Der Test 9 (Force Parity Error) ist nicht mit allen Speichern moeglich. Der
Speicher muss die Option: "Write wrong Parity’ besitzen.

Speicher-Teilbereich testen (j,CR) ?

Soll nur ein Teilbereich des Speichers getestet werden muss hier "j" eingege-
ben werden. Mit "n"” oder <cr> wird der gesamte erkannte Speicher getestet.
Bei einem Prozessor mit S-Bus-Speicher kann das Speichertestprogramm
ueber den S-Bus oder ueber den Q-Bus ablaufen. Die Auswahl wird mit der fol-
genden Abfrage getroffen.

S-Bus abschalten (j,CR) ?

Dauertest ?

Es besteht die Méglichkeit, das Programm im Dauertest zu betreiben.

3.3. Testprotokoll auf Drucker ?

Das Testprotokoll kann zusaetzlich zur Terminal-Ausgabe auf einem Drucker
ausgegeben werden. Bei Dauertest werden nur die Fehlermeldungen ausgege-
ben. Wird eine Anzahl von 20 Druckseiten ueberschritten, wird die Druck-
erausgabe automatisch beendet.

3.4. Programmm-Abbruch

Das Programm kann jederzeit durch die Eingabe von "Contr C" abgebrochen
werden.

3.5. Fehler- und Statusreport

Waehrend des Programmlaufes wird immer angezeigt, welcher Teiltest gerade
laeuft. Durch Druecken einer beliebigen Taste (ausser Contr C) wird eine Sta-
tuszeile ausgegeben. Die Ausgabe enthaelt: Test-Nr., Adresse und Testmuster
der gerade getesteten Speicherzelle.

Bei Fehlern wird durch das Fehlerprotokoll die Art des Fehlers angezeigt.

3.6. Testdauer
Ein Durchlauf der Tests 0-8 dauert fuer 512 kB ca. 6 Minuten.

-6-

4. Kurzbeschreibung der Testmodule

4.1. Housenumber-Test

Der Housenumber-Test wird in mehreren Durchlaeufen ausgefuehrt. Im
1.Durchlauf - Lower Word Up - werden die Worte im angegebenen Speicher-
bereich mit dem unteren Wort ihrer 22 Bit-Adresse in aufsteigender
Adressfolge beschrieben. Nach dem Schreiben eines Worts wird es geprueft;
ist der ganze Speicherbereich beschrieben erfolgt eine zweite Pruefung mit
der sich eine "Adressverkopplung abwaerts” innerhalb eines 64 KByte-
Bereichs feststellen laesst.

Der 2.Durchlauf - Lower Word Down - fuehrt denselben Test mit abfallender
Adressfolge durch, d.h. er beschreibt den Speicher von "oben" nach "unten’.
Auf diese Weise laesst sich eine "Adressverkopplung aufwaerts” erkennen.

Im 3. und 4.Durchlauf - Upper Word Up/Down - werden die Tests 1 und 2 mit
dem oberen Wort der 22 Bit-Adresse durchgefuehrt, um Adressverkopplungen
ueber die 64 KByte-Grenzen hinaus feststellen zu koennen.

Die Durchlaeufe 5-8 Lower Word Complement Up/Down und Upper Word
Complement Up/Down - entsprechen den Tests 1-4, nur werden hier die kom-
plentierten Daten verwendet, um auch Adressverkopplungen mit invertierten
Bits erkennen.

4.2. Random-Pattern-Test

Im Random-Test wird der Speicherbereich mit einem reproduzierbaren
"Zufalls"-Bitmuster wortweise beschrieben, wobei fuer jedes Wort ein neues
Bitmuster berechnet wird. Danach erfolgt das wortweise Lesen und Ver-
gleichen mit den erneut berechneten Bitmustern.

4.3. Bit-Shifting-Test

Der Bit-Shifting-Test besteht aus 34 Durchlaeufen in denen jeweils der ganze
Speicherbereich mit demselben Bitmuster getestet wird. Der 1.Durchlauf
verwendet das Bitmuster 11111111111111111111, der 2.Durchlauf das Bit-
muster 11111111111111111110. Die Muster der naechsten 15 Durchlaeufe
werden durch Linksschieben der O erzeugt. Anschliessend folgen weitere 17
Durchlaeufe mit den invertierten Bitmustern.

4 4. Refresh-Test

Beim Refresh-Test wird der Speicherbereich mit einem Schachbrett-Muster
wortweise beschrieben und nach 5 Sekunden Wartezeit geprueft. Danach wird
der Test mit dem invertierten Bitmuster wiederholt.

4.5. Opcode-Test

Beim Opcode-Test wird der Speicherbereich mit dem Opcode des RTS-Befehls
(Return from Subroutine) beschrieben und anschliessend auf jedes Wort ein
CALL-Befehl ausgefuehrt. Dann wird der Speicherbereich daraufhin geprueft,
ob durch die Ausfuehrung der RTS-Befehle der Inhalt von Speicherzellen
veraendert wurde.

4.6. Read/Modify/Write-Test

Der Read/Modify/Write-Test prueft den TAS-Befehl, der als einziger Befeh!
des MC6B000 einen unteilbaren Zyklus fuer Lesen/Schreiben benutzt. Dazu
wird der Speicherbereich byteweise geloescht und mit dem TAS-Befehl das Bit
7 auf 0 getestet und gesetzt (TAS = Test And Set). Mit einem zweiten TAS-
Befehl wird geprueft, ob der erste TAS das Bit 7 gesetzt hat. Eine Fehlermel-
dung kann damit sowohl beim ersten TAS als auch beim Zweiten ausgegeben
werden.

4.7. Write-Byte-Test

Der Write-Byte-Test beschreibt den Speicherbereich byteweise mit einem
Schachbrettmuster und prueft jedes Byte sofort nach dem Schreiben.

4.8. Write-Long-Word

Der Write-Long-Word-Test beschreibt den Speicherbereich doppelwortweise
mit einem Schachbrettmuster und prueft jedes Doppelwort sofort nach dem
Schreiben.

4.9. Parity-Test

Der Parity-Test beschreibt im 1.Durchlauf den Speicherbereich wortweise mit
einem Bitmuster mit gerader Bit-Anzahl. Danach wird jedes Wort gelesen und
gleich wieder zurueckgeschrieben (Move memory to memory - Befehl). Das ist
notwendig, da das Testprogramm im lokalen RAM ablaeuft und zur Erkennung
eines Parity-Fehlers (Bus Error) zwei aufeinanderfolgende Q-Bus-Zyklen
erforderlich sind, was bei dem verwendeten Befehl der Fall ist. Der 2.Dur-
chlauf verwendet ein Bitmuster mit ungerader Bit-Anzahl.

4.10. Force-Parity-Test

Der Force-Parity-Error-Test setzt im Prozessor-Control-Register das FPE-Bit
und beschreibt den Speicherbereich wortweise mit einem Bitmuster mit
gerader Bit-Anzahl. Danach wird jedes Wort gelesen, wobei jeweils ein Parity-
Fehler (Bus Error) auftreten muss, der vom Testprogramm abgefangen wird,
sonst erfolgt eine Fehlermeldung. Dasselbe wird mit einem Bitmuster mit
ungerader Bit-Anzahl wiederholt.

Programmbeschreibung
t68030

Prozessortestprogramm fir
den QU 68030 und QU 68050

Yersion 3.1

Martin Grober
PCS GmbH

28. November 1983

1. Einleitung

Das Programrn t68030 Version 3.1 ist aus dem Programm t68030 Version 1.1
entstanden. In der Version 3.1 wurden auch die Eigenschaften des Prozessors
MC 68010 (Motorola) bericksichtigt. Der MC 68010 besitzt ein anderes
Error-Handling als der MC 68000. Ausserdem wird beim Prozessor MC 68010
mit einer zusatzlichen Testroutine 'pf’ die Page-Fault-Option tberpriift. Far
diesen Test ist der Prozessor QU68050 notwendig. Die zweite MMU-Stufe dieses
Prozessors wird aber nicht ausgetestet.

Die Version 3.1 wird unter dem CADMUS Testmonitor aufgerufen und mit
Parameter versorgt (siehe t68030(TM)).

2. Struktur des Programms

Das gesamte Programm besteht aus folgenden Moduln:
Hauptprogramm
10 Testroutinen
170-Routinen

3. Laden und Starten des Programms vom Testmonitor
@t68030 [param-list]

Fir eine detailierte Beschreibung siehe t68030(TM).

4. Bedienung des Programms bei Aufruf mit dialog
Zunachst werden 2 Fragen an den Bediener gestellt:

Ob der Prozessor-Typ QU 68050 (mit MMU-Stufe 2) getestet werden soll.
In diesemn Fall wird der MMU-Test (siehe Abschnitt §) nicht durchlaufen.

Ob der verwendete Speicher die Erzwingung eines Parity-Fehlers (force
parity error) ermdglicht.

Ist dies nicht der Fall, dann wird der Force-Parity-Error-Test (fp) aus-
gelassen.

Nun kann der Testlauf gestartet werden. Dabei gibt es im wesentlichen 2
unterschiedliche Betriebsarten:

single 1 Testdurchlauf

Die Testroutinen werden nur je 1x durchlaufen. Am Beginn und
Ende einer jeden Routine und im Fehlerfall erscheint eine Meldung
auf dem Bildschirm. Wahlweise ist hier auch eine Ausgabe auf
Drucker moglich.

dauer Dauertest

Die Testroutinen werden fortlaufend nacheinander betrieben. Der
Abbruch erfolgt durch Tastatureingabe oder wahlweise auch im
Fehlerfall. Es wird im Normalfall nur die Anzahl der Testdurchlaufe
und die Anzahl der Fehler je Testroutine (wenn ungleich Null)
angezeigt. Die Fehlerzihler werden pro Durchlauf um max. 1 erhéht
(im Gegensatz zum Einzeltestdurchlauf, bei dem die genaue Anzahl
der Fehler der jeweiligen Routine ausgegeben wird).

In beiden Betriebsarten kann im Fehlerfall der Test abgebrochen werden
(Stop bei Fehler); es wird dann keine weitere Testroutine aufgerufen. Beim
Dauertest kann dabei wahlweise die ausfiihrliche Fehlerinformation angezeigt
werden (wie beim Einzeltest).

Einige Testfunktionen kénnen im Dauertest nicht durchgefihrt werden
(ROM-Test, BUS-INIT-Test). Deshalb sollten immer beide Betriebsarten bentitzt
werden.

Alle Bediener-Eingaben kénnen bis auf den 1.Buchstaben abgekiirzt werden.

Durch Betéatigen der Taste ‘NO SCROLL' kann die Ausgabe auf das Terminal
jederzeit unterbrochen werden (es wird auch die Ausfithrung des Programms
angehalten). Der Smooth-Scroll-Mode des VT100 und DSG101 wird ebenfalls
unterstutzt.

5. Beenden des Programms

Funktion: 'ende’ eingeben.
Die Kontrolle wird an den Testmonitor zuriickgegeben.

6. Vorhandene Testroutinen

et

ad

bel

Test der elementaren Prozessorfunktionen

Bedingte Verzweigungen, Compare-Befehle, Register-Test, byte-weise
schreiben und lesen vom Speicher, TAS-Befehl mit dem Speicher (Read-
Modify-Write-Zyklus)

Test der Adressierungsarten

Alle auf den Speicher wirkenden Adressierungsarten werden durch
Schreib- und Lese-Zugriffe mit den Operandengréssen Byte, Wort und
Doppelwort getestet.

Test der 1-Operanden-Befehle

Alle 1-Operanden-Befehle (ausgenommen Sprung-, Verzweigungs-Befehle
und Befehle mit Sonderfunktionen) werden mit verschiedenen Datenwer-
ten und mit den Operandengrossen Byte, Wort und Doppelwort getestet.
Die Operanden befinden sich im Datenregister 4 (ausser bei Shift-
Befehlen). Nach der ausgefithrten Operation wird auch der Inhalt des
Condition-Code-Registers auf Richtigkeit Gberpriift. Im Fehlerfall werden
der Befehl, der Operand, Soll- und Ist-Wert des Ergebnisses und des
Condition-Code-Registers angezeigt.

be2 Test der 2-Operanden-Befehle

rr

mt

Alle 2-Operanden-Befehle (ausgenommen Immediate-Befehle, Befehle mit
Sonderfunktionen und Befehle, die nur auf Adressregister wirken) wer-
den mit verschiedenen Datenwerten und mit den Operandengréssen Byte,
Wort und Doppelwort getestet. Die Operanden befinden sich in den
Datenregistern 2 und 4. Nach der ausgefithrten Operation wird auch der
Inhalt des Condition-Code-Registers auf Richtigkeit iberpriift. Im Fehler-
fall werden der Befehl, die Operanden, Soll- und Ist-Wert des Ergebnisses
und des Condition-Code-Registers angezeigt.

RAM /ROM-Test

Bei Einzeltestdurchlauf (single) wird iber den ROM-Inhalt (alle 3 Teil-
bereiche) eine Prifsumme erzeugt und ausgedruckt. Diese Prifsumme
darf sich nicht dndern, solange dieselbe Minitor-Version verwendet wird.
Die Kontrolle muss manuell erfolgen.

Das interne RAM wird durch Einschreiben eines Testmusters (im 1. und 2.
Testteil) bzw. durch Einschreiben der Adresse (im 3. Testteil) und
auslesen des Inhalts aberpruft.

Achtung, durch diese Verdnderung des RAM-Inhalts wird die Information
uber evtl. gesetzte Breakpoints tiberschrieben.

MMU-Test

Beschreiben der Basisadressregister und lesen der erzeugten phys.
Adresse Guber den Page-Deskriptor.

sd

ir

-5-

Es wird nur die MMU-Stufe 1 getestet. Beim Test des QU 68050 wird diese
Routine nicht durchlaufen.

Beim QU 68030 kann das Page-Deskriptor-Register (PD) verwendet wer-
den, um die durch die MMU erzeugte physikalische Adresse zu lesen.

Im Anlaufzustand, der hier beim Ansprechen des PD-Registers gewahit
wird, sind fir die Adressierung des PD-Registers die Bits 0...14
ausreichend. Die Bits 15...19 werden nur zur Bildung der phys. Adresse in
der MMU herangezogen. Die Bits 20...23 wahlen eines von 15 MMU-
Segmenten aus (das Segment 0 wird hier nicht verwendet). Die Bits 9...21
der durch die MMU erzeugten phys. Adresse kénnen aus dem PD-Register
gelesen werden.

In diesem Programm werden die Basis-Adress-Register (BAR) und
Addierer der MMU getestet durch Verwendung von 15 Segmenten, ver-
schiedener BAR BAR-Inhalte und verschiedener Adressbit 15...19 des auf
das PD-Register zugreifenden Befehls.

Segment 0 wird nicht getestet.
Beim Test des Segment 15 gelten folgende Einschrankungen:

Beim Segment 15 aufgetretene Fehler werden zwar registriert (der
Fehlerzahler wird erhoht), beim Einzeldurchlauf erfolgt aber kein
genauer Fehlerausdruck, da der Zugriff auf die DLV-11 iiber den Q-
BUS nur mit ganz bestimmten BAR-Inhalten méglich ist.

Es konnen keine Breakpoints verwendet werden. Dies kann vermieden
werden, indem der Test mit Segment 14 (statt 15) begonnen wird:
Equate ‘'maxseg’ entsprechend andern.

Test der Segmentdeskriptoren der MMU

Die Segmentdeskriptoren werden beschrieben, Testzugriffle (Daten
schreiben, Daten lesen, Code Fetch) auf das jeweilige Segment
ausgefuhrt, die zum Teil gegen den gewahlten Segment-Schutz verstos-
sen (Trap!) und in diesen Féllen die Fehler-Anzeige im ESR kontrolliert.

Segment 0 wird nicht getestet.

Beim Test des Segment 15 gelten die gleichen Einschrankungen wie beim
MMU-Test.

Interrupt-Test

Testet das Bus-Event-Signal (Linetime-Clock) und den Ausgabe-Interrupt
vom Interface der Console.

In beiden Fillen wird der Interrupt zunéchst durch eine hdohere Prioritat
im Status-Register gesperrt, nach einiger Zeit die Prioritdt erniedrigt
und die Zeit zwischen 2 Interrupts grob kontrolliert. (Die Baudrate des
Terminals sollte deshalb zwischen 4800 und 19200 Bd liegen.)

Bei Einzeltestdurchlauf (single) wird zusétzlich das Bus-Init-Signal am
Q-Bus getestet. Dies geschieht tber das Interrupt-Enable-Bit des
Consolen-Interface: Nach dem Bus-Init-Signal darf kein Interrupt mehr
auftreten.

Im Fehlerfall wird eine Fehlertyp-Nummer angezeigt, sie hat folgende
Bedeutung:

Fehlertyp

fp

bt

-6 -

1 Interrupt von der Linetime-Clock ist aufgetreten, obwohl die
Prioritat im Statusregister héher sein sollte.

2...4 Der erwartete Interrupt von der Linetime-Clock ist ausgeblieben
bzw. nicht innerhalb einer bestimmten Zeit gekommen.

5 Der Abstand zwischen 2 Interrupts von der Linetime-Clock war
zu kurz.

6 Interrupt vom Consol-Interface ist aufgetreten, obwohl die
Prioritat im Statusregister héher sein sollte.

7...9 Der erwartete Interrupt vom Consol-Interface ist ausgeblieben
bzw. nicht innerhalb einer bestimmten Zeit gekommen.

10 Der Abstand zwischen 2 Interrupts vom Consol-Interface war zu
kurz.

11 Interrupt vom Consol-Interface kam, obwohl {iber den RESET-
Befehl des 68000 ein Bus-Init ausgelost wurde.

12 Interrupt vom Consol-Interface kam, obwohl uber das

Processor-Control-Register (PCR) ein Bus-Init ausgelést wurde.

Force-Parity-Error-Test

Erzwingt durch 'force parity error’' ein fehlerhaftes Parity-Bit im
Speicher und kontrolliert, ob beim Auslesen dieser Zelle die richtige
Fehlerreaktion erfolgt (Bus-Error, Inhalt des ESR).

Einige Speicher far den Q-Bus unterstiitzen diese Méglichkeit nicht; dies
fuhrt dann zu einer Fehleranzeige.

BUS-Timeout-Test

Erzwingt einen BUS-Timeout durch Beschreiben einer nicht vorhandenen
Speicherzelle (Adresse EO0O000 hex) und kontrolliert die Fehlerreaktion.
(Bus-Error, im ESR muss das Timeout-Bit oder das Page-Fault-Bit gesetzt
sein.)

t68050

Kurzbeschreibung fiir
MMUZ2-Testprogramm

Manfred Gléckel
PCS GmbH

4. Marz 1983

1. Voraussetzung

1.1. Hardware

CADMUS System

QU 68050 Prozessor

mindestens 512 kByte Speicher

Serielle Schnittstelle

FLoppyDisk oder anderer Massenspeicher
Terminator

1.2. Software

CADMUS Testmonitor
Testprogramm t68050

2. MMU2-Test: t68050

2.1. Laden und Starten des Prograrnms vom Testmonitor
@t68050 [param-list]

Fiir eine detailierte Beschreibung siehe t68050(TM).

2.2. Laden und Starten des Programms durch den Minitor

X (laden von der Floppy)
./t68050
g (Start)

(Der Punkt ist das Minitor-Prompt-Symbol.)

2.3. Programmausgabe:

Memory von xxx bis xxx (hex)
loop xxx error xxx

Erklarung zum Ausdruck:

Loop gibt die Anzahl der Durchlaufe an.
error gibt die Summe der Fehler an.
Memory von x bis x verfiigbarer Testspeicher

3. Kurzbeschreibung des Programms

Die Grosse des Testspeichers wird angezeigt. Innerhalb des Testspeichers wer-
den virtuell 16Mbyte dargestellt.

Das Programm testet ob beim Beschreiben des Seitendiskriptors die beiden
Statusbits gleich 0 und bei einem entsprechenden Bus-Zyklus (Lese-,
Schreibzugriff) auf 1 gesetzt wurden. Wird auf eine gerade nicht im Speicher

-3

befindliche Seite oder auf eine nicht definierte Seite zugegriffen wird ein
Page-fault ausgeloest.

Kachel 0 - 12 und 1023 werden nicht getestet.

Bei loop 0,1,2 ..,usw wird die Adresse (loop *® 4) innerhalb jeder Kachel
getestet.

4. Fehlermeldung
z.B.

*** bus error nicht eingetrofien
kachel = xxx viradr = xxx pd = xx -> aaa -> bbb
loop xxx error xx

kachel Kachelnummer

viradr virtuelle Adresse

pd Inhalt des Page-diskriptors

-> aaa Zugriff (Test, Lese-, Schreibzugrifl)
-> bbb Testsollstatus der Kachel

loop Anzahl der Durchlaufe

error Summe der Fehler

kaadr Kacheladresse

mmu3 Inhalt der mmu3 (offset)

5. Programmmabbruch
Das Programm kann durch CTRL-C abgebrochen werden.

tdma

Kurzbeschreibung far
DMA-Testprogramm des QU68030/50

Martin Gréber

PCS GmbH
1. Marz 19683

1. DMA-Test: DMATST

1.1. Laden und Starten des Programms vom Testmonitor
@tdma [param-list]
Fiir eine detailierte Beschreibung siehe tdma(TM).

1.2. Laden und Starten des Programms durch den Minitor

rx (laden von der Floppy)
./tdma
g (Start)

(Der Punkt ist das Minitor-Prompt-Symbol.)

1.3. Bedienung des Programrus bei Aufruf mit dialog

Es gibt 3 unterschiedliche Betriebsarten. Diese sind: Read, Write und Move.
Méglich sind auch Kombinationen der drei verscheidenen Betriebsarten.

Testmemory von XXX bis YYY (hex) (j/n)

Die Grosse des Speichers wird Gberprift. Bei Eingabe von <n> kann ein
anderer zu testender Speicherbereich ausgewahlt werden. Eingaben sind
dann: Startadresse und Endadresse des zu testenden Speichers. Die
Grosse des zu testenden Speichers muss mindestens 2000 (hex) Byte
sein. Nach der Eingabe wird Gberprift, ob der Speicher wirklich im Sys-
temn ist und zur Bestédtigung nochmals abgefragt. Bei Fehlern in der
Eingabe wird eine neue Eingabe erwartet.

DMA-Read (j/n) Im DMA-Betrieb wird blockweise vom Speicher gelesen.
DMA-Write (j/n) Im DMA-Betrieb wird blockweise in den Speicher geschrieben.

DMA-Move (j/n) Im DMA-Betrieb wird vom Speicher gelesen und auf den
Speicher geschrieben.

Dauertest (j/n) Bei ja befindet sich das Programm in einer Endlosschleife die
nur durch CTRL C unterbrochen werden kann. Bei nein wird
nur ein Durchlauf gemacht.

DER Eingabe des 2zu verwendenden DMA-Extensionregisters.
Befindet sich am Backplane keine Zusatzverdrahtung muss
das DER O verwendet werden.

DMA-Req.Time Hier kann die Anzahl der DMA-Requests pro Sec. eingegeben
werden. Mogliche Eingaben sind 5 - 255 ms.

Programmausgabe:

Loop xx Ges.Error xx DMA-Time xxx

read
writ
move i

-3-

akt buserr checks intimo daterr adress

. XX XX XX XX XX
. XX XX XX xXx XX
. XX XX XX XX XX

Erklaerung zum Ausdruck:

Loop
akt
buserr
checks
intimo
daterr
adress
wecnt

1.4.

Anzahl der Durchlaufe

gerade aktive Funktion

Anzahl der aufgetretenen Busfehler

Anzahl der aufgetretenen Checksummen-Fehler
Anzahl der Timeout-Fehler

Anzahl der Datenfehler

Adresse bei der ein Datenfehler aufgetreten ist
Wordcount bei aufgetretenem Datenfehler

Das Programm kann durch CTRL C abgebrochen werden.

went
p.& 4
Xx
xx

Beschreibung
far
SCSI-Testprogramm

Periphere Computer Systeme
Pfalzer-Wald-Str. 36
8000 Manchen 90

1. Einleitung

Das Programm testet die Schreib-, und Lesefunktion des Omti 20d bzw. DTC
520A Controllers in Verbindung mit 5 1/4" Winchester-, oder Floppy-
laufwerken. Ein Controller kann max. zwei Winchester und zwei Floppys
bedienen. Es werden sektorweise Daten auf die Floppy bzw. Winchester
geschrieben und wieder gelesen. Hierzu wird nicht der UNIX-Treiber, sondern
eigene Subroutines benutzt. Durch Datenvergleich und durch Abfrage der
Controller Fehleranzeigen oder durch Timeout werden Schreib-, Lese-, und
Datenfehler erkannt.

2. Voraussetzung

2.1. Hardware

CADMUS System

Serielle Schnittstelle

FLoppy Disk oder anderer Massenspeicher

OMTI 20D oder DTC 520 Controller und 5 1/4 " Winchester
SCSI - Adapter

Adresse: FFFB80(16) Vektor: 230(8)

Terminator

2.2. Software

CADMUS Testmonitor
Testprogramm SCSITST

"SCSITST" ist ein in C geschriebens Testprogramm, das mit dem Testmonitor
gestartet wird.

3. Bedienerfithrung

3.1. Laden und Starten des Testprogrammes
@scsitst [param-list]

Fur eine detailierte Beschreibung siehe SCSITST(TM).
Bei Start mit dialog meldet sich das Programm mit folgender Systemausgabe.

¢ OMTI 20D DTC-520A Test-Programm **
0 = OMTI 20D

1= DTC-5204
enter controller type

Abfrage nach welchem SCSI-Controller

0= TM 503
1=THM 603
2=TM 703

3 = floppy

4= RO 208
5= MAX 1065
6 = BASF 6185

enter drive type

Abfrage nach welchem Massenspeicher

unit
0 1= Winchester
2..3= Floppy

enter unit [0..3]

Abfrage nach welchem Winchester-, bzw. Floppy-Laufwerk. 0=1., 1=2.
Winchester-Laufwerk, 2=1., 3=2. Floppy-Laufwerk.

Das Programm bietet mehrere Testmodule zur Auswahl an.

Testprogramm-Auswahlliste:

0 = read block

1 = write block

2 = read sequent

3 = write sequent

4 = write + read + compare sequent

5 = write + read + compare zigzag

6 = write sequent read + write random
enter test number

Hier kénnen die verschieden Tests ausgewéhlt werden.
test with move multiple [y /n]

Uebertragungsmodus wort-, bzw. blockweise.
continous test [y /n]

Es besteht die Moglichkeit, das Programm im Dauertest zu betreiben.

3.2. Programm-Abbruch
Das Programm kann jederzeit mit “CTRL C" abgebrochen werden.

3.3. Fehler- und Statusreport (S)

Wahrend des Programmlaufes wird immer angezeigt, welcher Teiltest gerade
lauft. Durch Driicken der S-Taste wird eine Statuszeile ausgegeben. Die Aus-
gabe enthalt: Test-Nr., Anzahl der Durchlaufe und Summe aller Fehler.

-4 -

3.4. Anhalten der Bildschirmausgabe (W)

Um ein Weglaufen des Bildschirminhaltes zu verhindern wird mit der W-Taste
die Ausgabe angehalten. Nach Erkennen der Wait-Funktion wird dies mit “con-
tinue <cr>" am Bildschirm angezeigt. Mit der Return-Taste wird die Ausgabe
wieder fortgesetzt.

4. Kurzbeschreibung der Testmodule

4.1. Read Block - Write Block

Bei Read Block bzw. Write Block kann ein beliebiger Sektor innerhalb der
angegebenen Grenzen ausgewahlt werden. Bei ungultiger Sektorgrosse wird
die Abfrage wiederholt. Nach dem Lesen bzw. Schreiben wird getestet ob ein
Fehler aufgetreten ist.

4.2. Read sequent Write sequent

Auf der Winchester bzw. Floppy werden fortlaufend alle Sektoren mit einem
festen Datenmuster beschrieben bzw. gelesen.

4.3. VWrite Read Compare sequent

Auf der Winchester bzw. Floppy wird fortlaufend ein Zylinder beschrieben,
gelesen und die gelesenen Daten mit der Sollinformation verglichen.
Zwischen Schreiben und Lesen findet keine Kopfbewegung statt.

4.4. Write Read Compare zigzag

Vom diesem Test werden die Sektoren alternierend (1. Sektor, letzter Sektor,
2. Sektor, usw) ausgewahlt, beschrieben, gelesen und mit der Sollinformation
verglichen.

4.5. Write sequent Read Write random

Das zu testente Medium wird sequentiell beschreiben. Danach wird nach
Zufall ein beliebiger Sektor ausgewdhlt, gelesen und mit der Sollinformation
verglichen. Nun wird der Sektor mit eimem anderen Muster beschrieben.

Beschreibung
far
SLS 88 - Testprogramm

Periphere Computer Systeme
Pfalzerwald Str. 36
8000 Munchen 80

1. Einleitung
Das Programm "“SLUTST” testet das SLS-48 bzw. SLS-88 Interface im

Kurzschluss. Der Test arbeitet mit Interrupts. Es wird mit Baud-Raten
zwischen 110 Baud und 9600 Baud getestet.

2. Voraussetzung

2.1. Hardware

CADMUS System (CPU + Speicher)
Serielle Schnittstelle DLV11

FLoppy Disk oder anderer Massenspeicher
SLS 48 oder SLS 88

Adresse: FFFC00(16) Vektor: 300(8)
Terminator

2.2. Software

CADMUS Testmonitor
Testprogramm SLUTST

"SLUTST" ist ein in C geschriebenes Testprogramm, das mit dem Testmonitor
gestartet wird.

3. Bedienerfuhrung

3.1. Laden und Starten des Testprogrammes
@slutst [param-list]

Fir eine detailierte Beschreibung siehe SLUTST(TM).
Bei Start mit dialog meldet sich das Programm mit folgender Systemausgabe.

SLU TESTPROGRAMM
Keyboard Commands:
~C:Abdruch S:Show W : Wait <Ret> : Continue

Schaltereinstellung: S1 S8 = off
S9..50=o0n

Schaltereinstellung ok ?

Nach Ueberpriifung des 10 pol. Miniaturschalters auf korrekte Einstellung ist
diese Abfrage mit Return zu beantworten.

Konfigurationsregister: 9600 Baud, 8bit, 1Stop bit sls 88

Hier wird der Inhalt des Konfigurationsregisters angezeigt und getestet ob es
sich um ein sls-48 oder sls-88 Interface handelt.

Dauertest [J/N]

Bei Dauertest gleich 'J’ fir ja werden alle Tests im Endlos-loop durchgefihrt.

Auto- Kurzschlusstest [J/N]
Bet Auto- Kurzschlusstest missen folgende Verbindungen hergestellt werden.

Transmitter: tty40 - Receiver: tty42
Transmitter: tty42 - Receiver: tty40
Transmitter: tty41 - Receiver: tty43
Transmitter: tty43 - Recetver: tty41
Transmitter: tty44 - Receiver: tty46
Transmitter: tty46 - Receiver: tty44
Transmitter: tty45 - Receiver: tty47
Transmitter: tty47 - Receiver: tty45

Verbindungen ok ?

Nach Ueberpriafung der vorgeschriebenen Verbindungen ist dies mit Return
zu quittieren.

Bei Nicht-Auto-Kurzschlusstest koénnen beliebige Verbindungen hergestellt
werden.

Sendekanal [tty4z]

Empfangskanal [tty4z)

X gibt den Kanal (0 .. 7) an. Bei Eingabe von Ctrl C Return wird zur Sen-
dekanalabfrage verzeigt.

3.2. Programm-Abbruch (~C)
Das Programm kann jederzeit mit "Contr C" abgebrochen werden.

3.3. Fehler- und Statusreport (S)

Wahrend des Programmlaufes wird immer angezeigt, welcher Teiltest gerade
lauft. Durch Driicken der S Taste wird eine Statuszeile ausgegeben. Die Aus-
gabe enthalt: Anzahl der Testdurchlaufe, Summe aller Fehler, Interruptfehler,
Vectorfehler und Datenvergleichsfehler.

3.4. Anhalten der Bildschirmausgabe (W)

Um ein Weglaufen der Terminalinformation zu verhindern wird mit der W-
Taste die Ausgabe angehalten. Nach erkennen der Wait-Funktion wird dies mit
“continue <Ret>" am Bildschirm angezeigt. Mit der Return-Taste wird die
Ausgabe wieder fortgesetzt.

-4 -

4. Kurzbeschreibung der Testmodule

4.1. Auto-Kurzschlusstest

Bei Auto-Kurzschlusstest werden die oben angegebenen Kanale der Reihe
nach mit den Baud-Raten 9600 Baud, 4800 Baud, 2400 Baud, 1200 Baud, 600
Baud, 300 Baud und 110 Baud getestet. Als Datenmuster werden alle
moglichen Zeichen von 00(hex) bis FF(hex) Gbertragen. Am Terminal wird die
zu testende Verbindung und die augenblickliche Geschwindigkeit angezeigt.

4.2. Nicht-Auto-Kurzschlusstest

Bei Nicht-Auto-Kurzschlusstest kann eine beliebige Verbindung zwischen
einem Transmitter und einem Receiver hergestellt werden.

5. Systemmeldungen

5.1. loop error cmperr vecerr interr

loop Anzahl der Durchléufe

error Summe aller Fehler

cmperr Anzahl der Datenvergleichsfehler
vecerr Anzahl der Vectorfehler

interr Anzahl der Interruptfehler

5.2. Data Error soll = aa ist = ba cperr = x

Datenvergleichsfehler mit Sollmuster gleich aa und Empfangmuster gléich ba.
cmperr = x ist der x. Vergleichsfehler in diesem Block.

5.3. Receiver Interrupt Timeout /dev/tty4z xxxx Baud
Bei Kanal z(0..7) ist kein Zeichen empfangen worden.

5.4. Transmitter Interrupt Timeout /dev/tty4z xxxx Baud
Nach Starten des Kanals z(0..7) ist kein Sendeinterrupt eingetroffen.

5.5. Interrupts: Transmit = x Receive =y Ext/Status =z Special = w

Anzahl der Tramsmitter Interrupts
Anzahl der Receiver Interrupts
Anzahl der Ext/Status Interrupts
Anzahl der Special Interrupts

T LN

-5-

5.8. Special Receive Condition status bits:

10(hex) Parity Error
20(hex) Rx Overrun Error
40(hex) Framming Error

5.7. External status bits:

40(hex) Tx Underrun
80(hex) Break/Abort

FPP 81
FLOATING POINT PROZESSOR

Testanweisung

28. Oktober 1983
PCS GmbH

2.1

2.2

3.1

3.2

3.3
3.3.1
3.3.2

3.4

3.4.1
3.4.2
3.43
3.4.4
3.4.5

INHALTSVERZEICHNIS

Einleitung

Voraussetzungen ..

Testhilfsmittel

Testprogramm

Testablauf

Sichtkontrolle

Kurzschlussprifung ..

Basistests mit Minitor

Test-Register

Test-Sequenzen

Testprogramm ‘fpptst’
Uebersicht
Beschreibung
Bedienung
Fehlermeldungen

Beispiele

w

[JE S B <> BN N & N &)

2.1

2.2

Einleitung

Diese Testanweisung setzt die Kenntnis folgender Beschreibungen
voraus:
Spezifikation FPP 81 Floating Point Prozessor
Hardware-Beschreibung FPP 81
Datenblatt NS16081-6 (-10) Floating Point Unit
CADMUS Testmonitor Benutzeranleitung

Voraussetzungen

Testhilfsmittel

CADMUS-System mit Q22-Bus

Minitor Version 2.2 (R900.123)

FPP 81 + S-Bus-Kabel

DLV 11 oder Multi-Function-Board
Platten-, Band- oder Streamer-Laufwerk
Platten-, Band- oder Streamer-Controller
Terminal

Testprogramm

fpptst

3.1

3.2

Testablauf

Sichtkontrolle

- Ist das Board vollstandig bestiickt?

- Befinden sich alle IC’s am richtigen Steckplatz?
- Stimmt die IC-Richtung?

- Sind alle Elkos richtig gepolt ?

- Sind alle Briicken richtig konfiguriert?

Kurzschlussprufung

Messen der 5 Volt Versorgungsspannung auf Kurzschluss

3.3

3.3.1

3.3.2

Basistests mit Minitor

Um die Durchfihrung einfacher Tests ohne Logic-Analyser zu
erméglichen, wurden auf dem FPP B1 ein Test-Register, sowie ver-
schiedene Test-Sequenzen in den Sequenzer-PROM's vorgesehen.

Test-Register

Das 16 Bit breite Testregister speichert jedes Kommandowort, das an
die FPU ubergeben wird, bis zum néchsten Befehl. Damit kann durch
Auslesen des Testregisters geprift werden, ob das FPU-Kommandowort
aus der FPP-Adresse richtig umcodiert wurde. Der Zusammenhang
zwischen FPP-Adresse und Kommandowort ist der Spezifikation (Bild
3.3 f1.) zu entnehmen.

Das Testregister kann per Minitor unter der Adresse XXFFF8 (hex) aus-
gelesen werden. XX ist die Basisadresse des FPP, die Standardeinstel-
lung ist 3E (hex).

Beispiel:
3E0020.2 <CR> FPP-Befehl ROUNDFB

3EFFFB8.2 <CR> Testregister lesen
2402 Ausgabe

Test-Sequenzen

Die Testsequenzen im Sequenzer ermdéglichen einen Datentransfer vom
Operanden-Buffer in den Result-Buffer, ohne Beteiligung der FPU. Die
Umschaltung in den Testbetrieb des Sequenzers erfolgt iber das TST-
Bit im Command/Status-Register, das mit folgender Minitor-Eingabe zu
setzen ist:

3EFFFO0-20

Fahrt man jetzt per Minitor einen FPP-Schreibzugriff durch, so erfolgt
der Transfer von 1,2 oder 4 Worten vom Operanden- in den Result-
Buffer. Die Anzahl der Worte héngt vom jeweiligen Befehl ab. Wahlt man
z.b. einen MOVFF-Befehl (mit ext. Source), so erfolgt ein 2-Wort-
Transfer, bei einern MOVLL-Befehl erfolgt ein 4-Wort-Transfer.

Beispiele:

Schreil iff mit 1-Wort-T [
3E2800-1234 <CR> FPP-Befehl MOVWF
3EFFE0.2 <CR> Result-Bufler lesen
1234 Ausgabe

Schreil iff mit 2-Wort-T (
3E9000-1111 2222 <CR> FPP-Befehl MOVFF
3EFFEO0.4 <CR> Result-Buflfer lesen
1111 2222 Ausgabe

Schreil il mit 4-Wort-T [
3EDO000-1111 2222 3333 4444 <CR> FPP-Befehl MOVLL
3EFFE0.8 <CR> Result-Buffer lesen

1111 2222 3333 4444 Ausgabe

3.4

3.4.1

3.42

Testprogramm ‘fpptst’

Uebersicht

Der Floating Point Prozessor FPP 81 ist als peripherer Prozessor am
QU68000 angeschlossen und wird mit MOVE-Befehlen entweder tGber
den Q-Bus oder Gber den S-Bus angesprochen.

Das Testprogramm ‘fpptst’' dient als GO/NOGO Test und lauft im
Standalone-Betrieb oder unter dem CADMUS Testmonitor. Es kdénnen
damit Einzel- und Dauertests durchgefuhrt werden. Der FPP sollte
zuerst ohne S-Bus-Anschluss getestet werden. Erst wenn damit alle
Testdurchlaufe fehlerfrei sind, ist der S-Bus anzuschliessen.

Interrupt-Vektor: 231 (oktal) FPP-Basisadresse: 3E0000

Beschreibung
Folgende Tests werden bei einem Testdurchlauf ausgefihrt :

1. Befehls-Tests (Tests 1..19,21,22)

Alle Floating-Point-Befehle (ausser Double-Precision) werden
mit verschiedenen Adress-Modes iberprift.

2. Compare(CMP)/CSR-Test (Test 20)

In diesemn Test werden der COMPARE-Befehl und die Statusbits
der FPU (Negative und Zero), die bei diesemn Befehl ins CSR
iibertragen werden, gepruft. ’

3. Adress-Mode-Tests

- Schreibzugriff:
Source extern, Destination intern (Test 23)
Source intern, Destination extern (Test 24)

- Lesezugriff:

Source intern, Destination extern (Test 25)
Source intern, Destination intern (Test 26)
Source intern, Destination intern (Test 27)

- Registerpointertests: (Tests 23..27)

Die Schreib/Lese-Zugriffe (auf Reg. F0) werden wiederholt,
wobei der interne Operand jeweils durch den Registerpointer
adressiert wird. Far den Registerpointer werden die Modes
(RP), -(RP), --(RP), (RP)+ und (RP)++ verwendet. Beim Test 27
erfolgt eine Kombination aller Register-Pointer-Modes
untereinander (z.b. -(RP),(RP)++).

3.4.3

4. TRAP-Test (Test 28)

In diesem Test wird die Trap-Condition der FPU uberprift. Der
Trap wird durch einen ZERO DIVIDE ausgelost, wobei ein Inter-
rupt erzeugt werden muss.

5. DOUBLE-PRECISION-Test (Test 29)

In diesem Test wird der Befehl MOVLL (mit Double-Precision-
Zahl) geprift.

6. OP.BUFFER-RES.BUFFER-TRANSFER-Test (Test 30)

In diesemn Test wird mit Hilfe einer Testsequenz im Sequenzer
die Datenltbertragung vom Op-Buffer in den Res-Buffer (ohne
Beteiligung der FPU) gepriift.

Die vorhandenen Tests kann man entweder im Single- oder im Loop-
Betrieb starten. Im Loop-Betrieb kann der Test durch Eingabe von Ctrl Z
gestoppt werden, durch Eingabe des Kommandos ‘e’ wird das Testpro-
gramm abgebrochen.

Die Fehler, die wédhrend der Tests auftreten, werden durch Fehlerzahler
und Fehlermeldungen auf dem Bildschirm oder Drucker protokolliert.
Der Abbruch des Testprogramms im Fehlerfall kann wahlweise angege-
ben werden.

Bedienung

Mégliche Kommandos:

Sxy Einmalige Durchfihrung des Test Nr. xy
Szz Einmalige Durchfithrung aller Tests

Lxy Dauertest des Test Nr. xy
Lzz Dauertest aller Tests

Cxy Losche Test Nr. xy

G Start

E Exit

zz = (maximale Anzahl der Tests) + 1

xy = maximal zweistellige Zahl zwischen 0 und (zz-1),
z.B <01>,<2>,<3>

344

Fehlermeldungen

Tests 10,11,14,15,16,17:

Zusatzlich zum Fehlerzéhler wird eine Fehlermeldung im folgenden For-
mat ausgegeben

"FPU :aaaa aanaa [1:I2 bbbb bbbb -- ccecc cecece QU6EB :dddd dddd”
(FPU-Ergebnis,Input-Operand1,Input-Operand2,QU68000-Ergebnis)

Das QU6B000-Ergebnis wird per Software berechnet und mit dem FPU-
Ergebnis verglichen.
Tests 23..27:

Zuséatzlich zum Fehlerzéhler wird ein Fehlercode (z.b. 420) mit folgender
Bedeutung ausgegeben :

Fehlerbit Adress-Mode Fehler
0 (1) Fx Daten
1(2) Fx Reg.Ptr.
2(4) RP Daten
3 (8) RP Reg.Ptr.
4 (10) RP+ Daten
5 (R0) RP+ Reg.Ptr.
6 (40) RP++ Daten
7 (80) RP++ Reg.Ptr.
8 (100) -RP Daten
9 (200) -RP Reg.Ptr.
10 (400) --RP Daten
11 (800) --RP Reg.Ptr.

Fx = FPU-Register x
RP = Register-Pointer

Bei Fehler-Abbruch:

Der gesamte Zustand des FPP wird am Bildschirm ausgegeben, d.h. es
erfolgt ein Dump von Op-Buffer, Res-Bufler, aller FPU-Register, CSR und
Test-Register.

3.4.5 Beispiele

Laden des Testprogramms mit dem Minitor von Floppy:
TIx

./ipptst

.g0

Laden des Testprogramms mit dem Testmonitor:
fpptst dialog

Dialog:

Gib Kommando [max. 3 Zeichen]:L1
Gib Kommando [max. 3 Zeichen]:L 2
Gib Kommando | max. 3 Zeichen }:L3
Gib Kommando [max. 3 Zeichen]J:L15
Gib Kommando [max. 3 Zeichen]:g
Konsole [J/N]: J

LP-Drucker [J/N] : N

Die Tests 1,2,3, und 15 werden als Dauertest gestartet.
Abbruch mit ~Z

Gib Kommando [max. 3 Zeichen]:L31
Gib Kommando [max. 3 Zeichen]:c21
Gib Kommando [max. 3 Zeichen]:c22
Gib Kommando [max. 3 Zeichen]:g
Konsole [J/N]:J

LP-Drucker [J/N] N

Alle Tests mit Ausnahme von Test 21 und 22 werden als Dauertest ges-
tartet.

Abbruch mit ~Z

Gib Kommando [max. 3 Zeichen }:s10
Gib Kommando [max. 3 Zeichen]:s 9
Gib Kommando [max. 3 Zeichen]:s20
Gib Kommando [max. 3 Zeichen]:s07
Gib Kommando [max. 3 Zeichen]:g
Konsole [J/N]:j

LP-Drucker {J/N] : n

Der Test 7 wird einmal gestartet.

Weiter [J/N] 2 :j (Test 9?)
Weiter [J/N] ?2:j (Test 10?)
Weiter [J/N] ?:j (Test 20?)
Weiter [J/N] 2:j (Test 7 ?)
Weiter [J/N] ?:j (Test 9 ?)

Weiter [J/N] ?:n (Test 10?)
Gib Kommando [max. 3 Zeichen]:e
PROGRAMM-ENDE

LBP68000
LASER PRINTER SYSTEM

Testanweisung

Bernhard Rothballer 1.Marz 1983

Einleitung

For den Test des LBP68000-Gesamtsystemns wurde ein Standalone-
Testprogramm entwickelt, das verschiedene Testmuster erzeugt und auf
dem Laser-Drucker ausgibt. Damit kann die Funktion des LBP-KE und
des Laser-Druckers sowie die Druckqualitat uberprift werden, was
immer nach Reparaturen, Wartungs- und Einstellarbeiten am Drucker

erforderlich ist.

2. Voraussetzungen

2.1 Dokumentation

Diese Testanweisung setzt die Kenntnis folgender Beschreibung voraus:
LBP-KE Hardware/Firmware-Dokumentation
Drucker-Service-Unterlagen:

CANON LBP10 Operation Manual
CANON LBP10 Service Handbook
CADMUS Testmonitor Benutzeranleitung

2.2 Testhilfsmittel

QU68000-Systemn mit Q22-Bus
LBP-KE Laser Printer Controller bestehend aus

LBP-CP B907.034 mit PROM-Satz gebr. nach R900.062
LBP-MA B922.202 (LBP10-MIKIBUS-Adapter)
Verb.kabel K900.452

Verb.kabel K924.302

512 KByte RAM

DLV 11 oder Multi-Function-Board
Platten-, Band- oder Streamer-Laufwerk
Platten-, Band- oder Streamer-Controller
Terminal (VT100 komp.)

Laser Printer LBP10

2.3 Testprogramm
1bptst

3.1

3.1.1

3.1.2

3.1.3

3.1.4

Testablauf -

Testprogramm lbpist

Das Testprogramm [lbpist wird vom Minitor oder vom Testmonitor
geladen und gestartet. Es meldet sich mit einem Menue der
verfigbaren Testkommandos bzw. -Muster.

Testmuster

Gibt man die Nummer eines Testmusters ein, kommt nach einigen
Sekunden, die der Rechner zum Aufbau des Bildes im Speicher
braucht, die Abfrage nach der Anzahl der Kopien; nach dieser Eingabe
sollte der Drucker anlaufen (falls nicht = 3.1.4). Eine Kombination
aller Testmuster wird mit dem Kommando "K' ausgedruckt.

Statusabfrage

Mit dem Kommando “S” kann der Status des Laser-Druckers abgefragt
werden, der als Hex-Code am Bildschirm ausgegeben wird (Normal:
001BH). Zur Auswertung des Codes siehe Hardware/Firmware-
Dokumentation.

Fehlermeldungen

Bei Auftreten bestimmter Fehler, z.b Drucker nicht selektiert, erfolgt
eine Fehlermeldung mit Angabe des Command/Status-Register-Inhalts.
Zur Auswertung des Codes siehe Hardwere/Firmware-Dokumentation.

Fehler-Diagnose

Bleibt das Testprogramrm héngen und/oder lauft der Drucker nicht an,
kann mit Hilfe des Controller-Diagnose-Registers der Zustand des
LBP-KE festgestellt werden. Die Zustandscodierung ist der
Hardware/Firmware-Dokumentation zu entnehmen. Wartet z.b das
LBP-KE vergeblich auf ein bestimmtes Signal vom Drucker, kann aus
dem Zustandscode entommen werden, um welches Signal es sich han-
delt. In jedem Fall sollte bei Auftreten derartiger Fehler ein INIT und
Neustart des Testprogramms versucht werden.

Beschreibung
far
MUX-KE - Testprograrmnm

Periphere Computer Systeme
Pfalzer-Wald-Str. 38
8000 Miinchen 80

1. Einleitung

Mit Hilfe des Testprogramms muzketst kann das MUX-KE-Modul der Firma PCS
getestet werden. Muzketst ist speziell auf den Prozessor QU68000
(Q68030/50) zugeschnitten.

2. Voraussetzung

2.1. Hardware

- MUX-KE Modul
Adresse: 766000

- 1 bis 4 DLV11-j
Adressen: 776500

776540
776600
776640
- Kurzchluss-Stecker fur V24:
output input
§-=mmemoe r
| s
masse=----====- masse

2.2. Software

- CADMUS Testmonitor
- Testprogramm MUXKETST

Muzketst ist ein Standalone-Testprogramm das ohne Betriebssystem ablauft.
Gestartet wird muzketst mit dem Testmonitor. Optional kann muzketst auch
direkt vom Minitor geladen und gestartet werden (siehe Punkt 3).

3. Testprogramm muxketst

3.1. Laden und Starten des Programms vom Testmonitor
@muczketst [param-list]

Fur eine detailierte Beschreibung sieche MUXKETST(TM).

3.2. Laden und Starten des Programms durch den Minitor
.40.7f11=000000<cr> (Optional)

X (Laden von der Floppy)
./muxketst
.g0 (Start)

(Der Punkt ist das Minitor-Prompt-Symbol.)

3.3. Programmausgabe:

s MUX-KE TEST VO1.xx see
1 Senden 2 : Kurschluss
L3,S3: ALL G: START Cxy: CLEAR E: EXIT

Gib Kommando [maximal 3 Zeichen]:

Die vorhandenen Tests kann man entweder als Einzel- oder Dauertest starten.
Als mogliche Kommandos sind einzugeben:

Sxy Einmalige Durchfiihrung des Tests zy
S3 Einmalige Durchfihrung aller Tests
Lxy Test zy im Endlos-Betrieb

L3 Endlos-Betrieb aller Tests

Cxy Losche Test zy

G Start

E Riickkehr zum Testmonitor

zy ist maximal eine zweistellige Zahl zwischen 1 und 2, z.B.:

LO1<cr> Dauerbetrieb fiir Test 1

L02<cr> Dauerbetrieb fiir Test 2

Cc Test 2 nicht durchgefiuhrt werden

S2<cr> Einmalige Durchfithrung von Test 2
Beispiel: Alle Tests im Endlos-Betrieb starten

13<cr>
G<er>

3.4. Programmeingabe

3.4.1. Minitor-Betrieb

Bei Aufruf von muzketst direkt vom Minitor erfolgt die Testauswahl wie oben
beschrieben. Besondere Parameter werden im Dialog wie beim Aufruf des
Programmes vom Testmonitor mit dem Parameter dialog eingegeben.

3.42. Testmonitor-Betrieb

3.4.2.1. Testauswahl durch Aufruf:

muxketst<cr> Default Test 1 und 2
muxketst test=1<cr> nur Test 1
muxketst test=2<cr> nur Test 2
muxketst test=1,2<cr> Test 1 und 2

Fiir weitere Mdglichkeiten siehe MUXKETST(TM).

3.4.2.2. Dialog

Bei Aufruf mit dem Parameter dialog fihrt das Programm folgenden Dialog
mit dem Bediener:

1) Konsole [J/N]?:
J: Das Protokoll wird auf der Konsole erstellt.
N: Kein Protokoll auf der Konsole. Diese Option ist bei H¥-Messungen
zu empfehlen, da die Testfolge schneller durchgefihrt wird.

2) LP-Drucker [J/N]?:
J. Das Protokoll kann zusétzlich zur Terminal-Ausgabe auf einem
Drucker ausgegeben werden. Bei Dauertest werden nur die Fehlermel-
dungen ausgegeben.

3) Gib Anzahl der Bytes:
Hier kann man eine Zahl zwischen 0 und 255 eintippen. Diese Zahl
gibt an, wieviele Zeichen gesendet werden sollen.

4) Gleiches Datum {x] [J/N]?:
J: Nur x's werden gesendet. Das x ist ein beliebiges ASCII- Zeichen.
N: Die Zeichen werden in aufsteigenden Form gesendet, z.B: abcdef.

5) Gib OUTPUT channel [0..15]:
Hier muss man die Nummer des Sendekanals eingeben.

Kanal 0 bis 3: 1. DLV11-J Modul mit der Adresse: 776500
Kanal 4 bis 7: 2. DLV11-J Modul mit der Adresse: 776540
Kanal 8 bis 11: 3. DLV11-J Modul mit der Adresse: 776600
Kanal 12 bis 15: 4. DLV11-J Modul mit der Adresse: 776640

6) Gib INPUT channel [0..15]:
Hier muss man die Nummer des Empféangerkanals eingeben. Siehe 5)

3.5. Statusreport

Tritt wiahrend des Tests ein Fehler auf, wird dieser Fehler durch einen Zahler
auf dem Bildschirm oder auf dem Drucker protokolliert.

LOOP-COUNTER entspricht der Anzahl der Tests, die durchgefiihrt wur-
den.

ERROR-COUNTER gibt die Anzahl der fehlerhaften Versuche bei den
entsprechenden Tests an. Z.B.:
Anzeige: 1:100 2: 300
Interpretation:
Test 1 hat bisher 100 fehlerhafte Versuche. Test
2 hat bisher 300 fehlerhafte Versuche.

3.6. Fehlermeldungen

Fehler, die vom MUX-KE-Modul gemeldet werden (Siehe MUX-KE
Multiterminal-Controller Beschreibung D920.221):

Transmit error

Parity error

FPraming error

Data overrun

Silo overflow

Non ezistent memory

Diese Meldungen zeigen die Anzahl der Fehler an, die wahrend des Tests
auftreten, z.B.:

Anzeige: Parily error: 40

Interpretation: Es haben bisher 40 Uebertragungen mit Parity-Fehler
stattgefunden.

-5-

Fehler, die der Test selbst feststellen kann:

Receive-Timeout Hier empfdangt man die Daten entweder zu
langsam oder iberhaupt nicht.
Send-Timeout Der Sender ist entweder zu langsam, oder

beendet sich nicht innerhalb eines fest-
gelegten Zeitraums.

Too many received bytes Hier wurden mehr Zeichen empfangen als
erwartet.

Too less received bytes Hier wurden weniger Zeichen empfangen als
erwartet.

Diese Meldungen zeigen die Anzaehl der Fehler an, die wahrend des Tests
auftreten, z.B.:

Anzeige: Too less received bytes: 10

Interpretation: Hier haben bisher 10 Uebertragungen mit zu wenig
empfangenen Daten stattgefunden.

Vergleich error gibt an, wieviele Zeichen bei einem vorangegangenen Versuch
fehlerhaft empfangen wurden (nur bei Test 2 méglich).

3.7. Programmabbruch

Durch Eingabe von CTRL-C kann das Programm jederzeit abgebrochen wer-
den.

4. Kurzbeschreibung der Testmodule

Sende-TEST:

— Fiir Minitor-Betrieb: (Kommandoes: sl, 11, s3, 13)

— Hier werden auf einen Kanal (OUTPUT CHANNEL) nur Daten gesendet. Alle
moglichen Sendefehler werden auf der Konsole protokolliert.

Kurschluss-TEST:

— Fir Minitor-Betrieb: (Kommandos: s2, 12, s3, 13)

— Hier werden zuerst Daten Gber einen Kanal gesendet und Gber einen

anderen empfangen. Daflir wird ein entsprechender Kurzschluss-Stecker
zwischen beiden Kanalen benétigt.

Beschreibung
far
DZV11 - Testprogramm

Periphere Computer Systeme
Pfalzer-Wald-Str. 36
8000 Munchen 80

1. Einleitung
Mit Hilfe des Testprogramms dztst kann das DZV11-Modul der Firma PCS
getestet werden. Dztst ist speziell auf den Prozessor QU68000 (Q68030/50)

zugeschnitten.
2. Yoraussetzung
2.1. Hardware
- DZV11 Modul (4 oder 8 Kanale)
Basisadresse: 0xfIe040 Vektor: 0360

- Kurzchluss-Stecker far V24: (DEC: H329)

output input
S r
e s
DTR--------- CO,RI
CO.RI--------- DTR
masse-==--===== masse

2.2. Software

- CADMUS Testmonitor
- Testprogramm DZTST

Dztst ist ein Standalone-Testprogramm das ohne Betriebssystem ablauft.
Gestartet wird dzist mit dem Testmonitor. Optional kann dzfst auch direkt
vom Minitor geladen und gestartet werden (siehe Punkt 3).

3. Testprogramm dztst

3.1. Laden und Starten des Programms vom Testmonitor
@dztst [param-list]

Fir eine detailierte Beschreibung siehe DZTST(TM).

3.2. Laden und Starten des Programms durch den Minitor
.40.7f1fI=000000<cr> (Optional)

X (Laden von der Floppy)
./dztst
.g0 (Start)

(Der Punkt ist das Minitor-Prompt-Symbol.)

3.3. Programmausgabe:

-3-

sss DZV11 TEST V01.xx ads
1 Senden 2:Kurschluss 3: Modem (DTR=>CO,RI)
14,54: ALL G: START Cxy: CLEAR E: EXIT

Gib Kommando [maximal 3 Zeichen]:

Die vorhandenen Tests kann man entweder als Einzel- oder Dauertest starten.
Als mégliche Kommandos sind einzugeben:

Sxy Einmalige Durchfuhrung des Tests zy
S4 Einmalige Durchfihrung aller Tests
Lxy Test zy im Endlos-Betrieb

L4 Endlos-Betrieb aller Tests

Cxy Losche Test zy

G Start

E Ruckkehr zum Testmonitor

zy ist maximal eine zweistellige Zahl zwischen 1 und 3, z.B.:

LO1<cr> Dauerbetrieb fur Test 1

L02<cr> Dauerbetrieb fir Test 2

Cc Test 2 nicht durchgefihrt werden
S2<cr> Einmalige Durchfihrung von Test 2

Beispiel: Alle Tests im Endlos-Betrieb starten

L4a<cr>
G<cer>

3.4. Programmeingabe

3.4.1. Minitor-Betrieb

Bei Aufruf von dztst direkt vom Minitor erfolgt die Testauswahl wie oben
beschrieben. Besondere Parameter werden im Dialog wie beim Aufruf des
Programmes vom Testmonitor mit dem Parameter dialog eingegeben.

3.4.2. Testmonitor-Betrieb

3.4.2.1. Testauswahl durch Aufruf:

dztst<cr> Default Test 1, 2 und 3:
dztst test=1<cr> nur Test 1

dztst test=2<cr> nur Test 2

dztst test=1,2<cr> Test 1 und 2

Fur weitere Moglichkeiten siehe DZTST(TM).

3.4.2.2. Dialog

Bei Aufruf mit dem Parameter dialog fihrt das Programm folgenden Dialog
mit dem Bediener:
1) Konsole [J/N]?:
J: Das Protokoll wird auf der Konsole erstelit.
N: Kein Protokoll auf der Konsole. Diese Option ist bei HY-Messungen
zu empfehlen, da die Testfolge schneller durchgefiihrt wird.

2) LP-Drucker [J/N]?:
J: Das Protokoll kann zusatzlich zur Terminal-Ausgabe auf einem
Drucker ausgegeben werden. Bei Dauertest werden nur die Fehlermel-
dungen ausgegeben.

3) Gib Anzahl der Bytes:
Hier kann man eine Zahl zwischen 0 und 255 eintippen. Diese Zahl
gibt an, wieviele Zeichen gesendet werden sollen.

4) Gleiches Datum {x] [J/N]?:
J: Nur x's werden gesendet. Das x ist ein beliebiges ASCII- Zeichen.
N: Die Zeichen werden in aufsteigenden Form gesendet, z.B: abedef.

3.5. Statusreport

Tritt wahrend des Tests ein Fehler auf, wird dieser Fehler durch einen Zahler
auf dem Bildschirm oder auf dem Drucker protokolliert.

LOOP-COUNTER entspricht der Anzahl der Tests, die durchgefuhrt wur-
den.

ERROR-COUNTER gibt die Anzahl der fehlerhaften Versuche bei den
entsprechenden Tests an. Z.B.:
Anzeige: 1:100 2: 300
Interpretation:
Test 1 hat bisher 100 fehlerhafte Versuche. Test
2 hat bisher 300 fehlerhafte Versuche.

3.6. Fehlermeldungen

Fehler, die vom DZV11-Modul gemeldet werden (Siehe DZV11, Digital micro-
computer interfaces handbook):

Transmit error

Parity error

Framing error

Data overrun

Silo overflow

Non eristent memory

Diese Meldungen zeigen die Anzahl der Fehler an, die wahrend des Tests
auftreten, z.B.:

Anzeige: Parily error: 40

Interpretation: Es haben bisher 40 Uebertragungen mit Parity-Fehler

stattgefunden.
Fehler, die der Test selbst feststellen kann:
Receive-Timeout Hier empfédngt man die Daten entweder zu
langsam oder dberhaupt nicht.
Send-Timeout Der Sender ist entweder zu langsam, oder

beendet sich nicht innerhalb eines fest-
gelegten Zeitraums.

Too many received bytes Hier wurden mehr Zeichen empfangen als
erwartet.

Too less received bytes Hier wurden weniger Zeichen empfangen als
erwartet.

Diese Meldungen zeigen die Anzahl der Fehler an, die wahrend des Tests
auftreten,z.B.:
Anzeige: Too less received bytes: 10

-5-

Interpretation: Hier haben bisher 10 Uebertragungen mit zu wenig
empfangenen Daten stattgefunden.

Vergleich error gibt an, wieviele Zeichen bei einem vorangegangenen Versuch
fehlerhaft empfangen wurden (nur bei Test 2 méglich).

3.7. Programmabbruch

Durch Eingabe von CTRL-C kann das Programm jederzeit abgebrochen wer-
den.

4. Kurzbeschreibung der Testmodule

Sende-TEST:

— Fur Minitor-Betrieb: (Kommandos: s1, 11, s4, 14)

— Hier werden auf einen Kanal (OUTPUT CHANNEL) nur Daten gesendet. Alle
moglichen Sendefehler werden auf der Konsole protokolliert.

Kurschluss-TEST:

— Fir Minitor-Betrieb: (Kommandos: s2, 12, s4, 14)

— Hier werden zuerst Daten uber einen Kanal gesendet und iber einen
anderen empfangen. Dafiir wird ein entsprechender Kurzschluss-Stecker
zwischen beiden Kanélen benétigt.

uejenidayeqan

Yone Jop
Je}NeuUJe UuBp ‘udlJeM Jee gT

149 |0J43U02-x8 | NWJ

t'ell@ Z=682 Z=uq
J0J44@yy 1bunp|ey

%0 3yd1u Bunpujqueajegey-
1e33e| 4 4ep ue usbunueojs

ueJyejebysoy JYo(u Yyoou B}}E|g

Yo1 |Be0ow uswwe sB0.d
-8ud|epue}s Jepo
xiunseuweuspouys ‘xiuny
UCA uepe|] uley

ueydsneysne @3 Jey

ueyoeneyeane ULNODJOM

uejenudaeqgen epow-dnyes

uejanudaeqen Bunyien

y%ejop (BuebBuiy)
9193833 |{UYIG-|0BUOY 6| 0! JeE

1394 0p pJeoqghiey

}{19yeebuie
yle|e; ejeJdpneg-){wsued)

1¥9ap Buny @|>3deny-|euimJe]

zoh~z_:. uc:u_om
304} Yo |Beow age
-ui3-jeulwde| SU1Id)

uayodsnejene ey)Jey

ud||e3e1e neu epoy-dnyeg

Meep
0__000u¥—C£UWI_OOCO¥ @] |o1Je8

yas|ej
@|eu|mie] eep epow-dn}eg

9|08UDy Jep
JNe UeYd|eZ-Z3NWYds

ueJe B as0y uesselpy

usysdsne}sne 93 JexJays|edg

CRUELE
YoBU UBUO!} (804 Z
un 3Bujade Jowdn)

Y| i93sebuye
yoe |e} ueeseJpy-

INejop-
}i1Yej- 4oyl |edg

HOLINIW®
Bunp e} eu(ey

USJe | |0J3u0y
BunJeBuse|Jop-8ng Jep eeN|yosuy

ueyosnejene ejJey

uejanidiegen Bun|jeysu|y]
|euinde|-z3eedy
uejendsdaeqen uebuny e
uayosnejene ejJe)

uayosneyene Bundeydig

oS Jeyjen

(x0gsbBunJe} 18HJ] (89) INDeE
-90 yoe|e; Buniabuse|Jep-sng

e 0p
9]193833 |UYIG~|0BUDY @ 9| I06

epou
-dN-135 Jeyde |e}-

INejop |eUlNIe)|~-
Inesop Buny|e- [euimae)
I%9)9p 108802044

juueaqebyosunp ueBundeyaig

ue} |eYdeu(J wep yoeu
©|0suUDY J4ep jNE
uo[3Neey (9] Jeu|eY

@) luav

ue|ewyJo|y vaydsi1dhy
-uab |0 ue JequuexyJe

usyoesJn eya||Beou

sJeuUydey eep
SpuUQB}ENZJa |Ye

(S°TA 92) | Ienuey XINNW ®! (8)HSYH) Yone @3131g @1§ uejyseeq sdung-Jeyeibey seuie eshjeuy Lam

.cocuco:m .ou_>Lowmu&concmauan_nsuounnnzo coauo:yn
~-19q sep @1doy @} | |9njebene euie ©}}1q @15 USpPUaE ‘uuey USpJeM UIQDYRQ
18Q98 3yd1u dung-4e39i6ey 31w Zunjeqy weuie 18Q BYIJEsJNJA|ye4 OIp uuep

SNUQV D weichs we @160)eJ38389) pun Bungayeq- 'eYIEEJNJA|YI4 JNZ B61BHUIH

-Platten-Transport-
Sicherung nicht geloest
Filesystem zerstoert

Platte nlcht formatiert
Bad-Block in der file /unix
falsches Boot-Device ver-

wendet

Minitor passt nicht fuer
das Boot-Device

Kontroli-Lampe blinkt

Ready-Lampe am
Plattenlaufuerk
(soueit vorhanden
oder zugaenglich)
leuchtet nicht

Meidung:
can’t find file

Maldung:
hkerror bn=dddd...

HMaldung:
can’t find file

bus error esr=1

Sicherung loesen

Platte formatieren;
dann
“SET-UP-MUNIX"

/sa/boot laden, dann
hk {8,8) /unix |aden

Versuch, von alter-
nativem Datentraeger
zZu booten

8.0. oder
Minitor-PROM austauachen

keine Reaktlion
nach ‘g8’

Speicher nicht in Ordnung
Hinchester oder Controller
defekt

Testmonl tor laden:
Speichertest wit "memtst”
Plattentest mit “check”
Prozessortest mit "t680830"

oder

Austausch von Speicher,

Plattencontrol ler, Prozessor

kaine weltere

Terminal-Ausgabe

nach

“start of c 68200
Clear Memory ...
free memory = ...
largest contiguous
block = ,.. "

Swap-bersich klelner als
Hauptepeicher

UNIX taiech konfiguriert

eines der folgenden Pro-
gramne fehl t:
/etc/init
/etc/gtty
/bin/sh

kein Interrupt vom Platten-
Controller

Speicher oder Prozessor
defekt

mit aunix hochfahren,
dann unix neukonfigurieren

Root-Filesystem restaurieren
bZu,
*SET-UP-MUNIX'

Testmonitor laden:
Speicher-, Prozessor- und
Plattentest

Absturz mit
Register-dump

{siehe dazu auch
CRASH(8) in Hanual
ab NUNIX V1.5)

I

daisy-chain unterbrochen

Spelcher-Timeout

MUNIX falsch konfiguriert

ein Controlier hat sich

exception 24
in Register-Dump

bus-error ... esral
in Regieter-Dump

bus-error ... esr=}
access address=ff....

dito

HW umstecken
(daisy-chain echliessen)

Speicher und Prozaessor teeten

mit /aunix hochfahren;
Konfiguration mit Kommando
*whatconf" ueberpruefen
evtl. unix neu konfigurieren

Ueberpruefen, ob Controller

uaJe 1 4nB) Juoy neu xiun

(uejyoe

d| pun yp zp jne) uezenddsaqan
uoiieundijuoy ei1p juodjeyn

31w epoy] Jeen @|Buig wy

(qeiy1ul/o3e/ yauanp

1Z19848 G°TA Ul 38} SA33/03ay)
*uabeJjule 3%eJJ0Y B |BUIWIS]
ueuesso|yssabue 9Ip sA3}/ 2309, U]
‘uUIjenada’gan 24/339y pun
6A11/339, ueeieg @|p pun
ueJyejys0y epoy dJeen e|Buig wy
JOp0 uBjeeNJYIRU 48| |DJIUO)

oy1p

Tece3=8004PPE 890208
ﬁILUO tee JOJJOSNQ

tdunp-J93e18ay wy

3401 JnB} U0 Y8 |es XINMW

(49%2nJg Jepospun
@|eUjWIa] J4ON}) J@||0J}UO)
BUGPUEYJOA JYD|U jne j;|4Bn2

9pouw-Jeen
-1} |Nw uep Ui Bueb
-J8QeM w|eq zJnieqy

U9J4e|Jne}sed 3319 |dwoy sepo
%28} }juw udsejJedes wejehiee|i4

Bunq
-|94yde0g-)I8} eye|e

149038
-Jez ee|on||e)} weysfg-9|4

USZUR} 8 1BUONU|
34901 | w3839/

ueJe10)ad0y
(S°TA U! 391 1%20Yyd) qeys;

uaJe|Jne}eed wn|pey-dn
-3JBQ WOU}@ UOA %28)

ziexyeuyqy
}1W UBYROYJe eZ}|e8)oe3s

***/ABp/ uedo jouued
:Bunp ey

yBnezJe @J402 @414
eep pJ|n 2}8/ Jejun

(S°TA U! 391 |%28Yya/3309/)
yoe|ej qeys)/oe/ of (4

3149018
~48Z J40p0 3 |YS4 WIe} /O30y

uieiy nz
W99} /D319 UOA @Z|e)del§

343U ynaee | ydey

ueJe1JnBi juoy neu xjun
(ueBuilug £q1| Yoeu Jeqied]
uspuessed @1p @2{0ydql| ene)
uessedue sfasJenys u) gai|
fusJaye;yooy xjune 3 |w

ugJa | JnB juoy neu Bunjyedp
-JOA-VLQ <49P PueyleJdsjue xjun
fueJdyejyooy xjune j|m

(ueyds0| e edue~und)
eqebBuiy

199 @[0suoNwe)s8Ag

Jap ue oyo3 uey

1Jdyexebun JepO IEPUBMIGA
J@||0J43U0) J1Q-g] UaU|d Jan}
Pd|H J9Q|94]-92]A8Q }1Q-2Z uUle

BunjyeJsp
-JOA-VIQ UeuBpuUBYJOA JeU|@ NZ
IYo{u jeeed uojjeanBdjuoy-x|un

Bun|puey
-9g-Je|yejeng Jeu|e
pueJysen Je|yejsng
‘Y°p *JoJua-8nqQ-e@|qnop

uaJeiJeualB xi1un eansu pun uessedue
8| s8fis uen/ Jap0 UBJSIBI1JI0Y
49| |043U0]) jne J03NIA-}dnaJe U]

ue||aye
NJ07 4ne 49y |eyde |eseaNn|Yyog

ue|ges|p
9|0suoyuwe3sfis Jap ue ejeel}xeadJg
U369} JOE9EZ0Jd pun -ueydiedg
U9Je1Jne}eed 84-300Yy Jepo
ueu@1J4nbi U0y Nau xiun

ueJye Yooy xiune,; 31w

ueJe1Jnbijuoy
Yo ieJeg-deng waJlaesl04b 31w x1un

Ua}88} Ja||0J43u0)
tuayda3s DiIyd1a

ydnadeju)
J0}20A |ebe) |1

gg uo1jdeoxe

epoado |eBej|!

}iuLy tojued
J48p0 84 ou :di1ued
1Bunp | oYy

edede-derns 0
yno :31ued :Bunpjey

11193e00ule yoe|e; Jo||0J3u0)
WAU|9 jne JO}%eA-}dnJaaeyu]

(9dwe-uny Jep ueyIeNJQ]
993813y21eqesqun yoJnp J8p0
9|osuoNwe3sfig Jop ue eyee)y
-jeeJg yo4np }ee0|ebene |3A9)

} | eY40880204y

3xajep
408882044 49p0 Jeydiaedg

3149018402 8 4-}00Yy JOPO
34014nBijuoy yie e XINW

U9y Nz yoiedeg-deng

I%X9)0p 181 JepO }JexD0|8b

(3239640 QB3I 1UI/ /D387 Yyounp

S°TA XINNH ul 381 sA33/a30y)

3681 | CTITAN0 °Z JapO °T Jep jne
9|08U0Yy @1p qO0 wapyoeu 8l ‘gzhiyy
Jop0 gTA3} Jan) 680Z044-uiBo| uiey
uejenudiagan sfy3/o019/7 914 eep epoy
408 131ny uap u| Buebueqen Joa

ueJUeN ene %J9j) Pun UeJyejYOoY x{un
uedjjeejeq eyse|-3|u]

(S°TA Qe 8 iUl °nzq)
T 1= 111

yoeu e|osuoxywe}shg
JOp ue uo(}Neey eu (@Y

140104y
880Z044-u1B80| ui@ epdanrt ‘pdin

31%29pJeA @|0suUOqwe}efg Jep uoa
eip *‘Bunjie-I-xny 1P Jen; -

sne jyeye uomgom ueueydy Jed
wau}e uoa jdnauejuj ule -

tuepJeM UeY20.4q
-90Qge JYD (U uuey B99Z0J4 U|®

epoy J4esn @|Buig Uy
131N voa BueBuegen
yoeu jyeie wa)sfig

woeyq-waichs-a |14 xiun “83un

puaesa! [yosue ‘usbedJjuie ||enuecw ejqe|ieae . WY
J0}0@8 PEQ °(IAP u93E8} ,%NOeyd, 403098 eJe|ded Ou « W
W 8AjJpURIR| 4 BOURjj0I30Q 16unp | ey UepueYJOA %20|q peq J0J440 %O P MY
(3Z368J40 qel} (ul/d3e/ YoJnp
S*TA XINNW Ul 38t 8A3y/038/)
uaJ9|B8| 440y sRy}y /0368y
(EMIIAG °@°Z) uUepdJon jJaiaJy
c89z0ud-uibo| uiey 2R -TAY} (uspuey

48n} jJep (ZTRNIAT °@°Z)

PJin 1J0104% 6682044-ulBo)

ute gzRyi-pIhiy Jeny uuepM
syos|ej shyy/oyey o014

=40A JY-XMJ uusn Jnu)
(910suoxwe}6hg
Jop ue Jascne)
0yo3 &0} |eddop

ritAg
UOA Yyone e|e ‘ule uayalez

IA-XNW wOoA {yonos 38&i(| XINN

S|BUIMNJI| uUBYOUEwm jne
uays1e7 ueusqebebuie
19Q 0yd23 ©93 |eddop

ueJe 181440y

pun uejenidieqan (g°TA XINNW
Qe qeyituly/aiey) shyyyajes ety

ueJa I8 440y
ueqo 9|H 89| |} |e}dade

(S*TA XINNW
qe gejyiut/oyey) shy}y o319/
9|14 w ebeeJjul] eyds|ey

yos ey}
puie Jopo ue|yey e A} e1p Jeny
(A9py dOjuN) 89} |4-jB|2ede @|p

spoy Jesn 13Ny w1
393 |9qJe 9{08U0) JNU

UBJeIBIJION |[eNjueAD

pun uajenadaaqen (5°TA XINNUW
qe gey}luly/oyay) efyy/oiey o4

(TTAZQ 199) zp oxew

(3X-XNW 199) Yp exew
taepys RAu0yDadig wi uuep *(G°TA Qe
8 }IUI JIW *nZg) Uel|eyde @poy
Jesn 016uig Uap UL T - (119w

ug puesed uasyoen
UJeWWNUBSRZOJY

1401 J8uel yoejey
puts e A}y e1p Jany (Aepy
Jajun) €@ 1)-|e12a3ds eyp

epoy Jesn 13 |NY Ul
BueBuaqan yoeu uLB}18Z
suol}iyeay sbue| dyeg

‘ueuo|yemJoju] ueysBijyo|n e1g

*3JOIMJEW %X }|W pule ‘Us||0s uepJen JJe8130u JBuipequn e|p
*ueq|@JYdeNZAae ©|0sUONue}eAG JOp UOA 89| |8 B|PUBMIOU JYJ|U 38| 83

‘@ Yyate|B puys ‘uspuen }Bezelue @|OsuoxHue}SA5 JOp jne IYd|U e@|p ‘Jeye|Boy Jep @}JeH B|(Q 190 |QHU|H

®e 00 e0ccsoe m:

(4® UeWBURJNPRZOJY
jne mfis *xjun/sfe/Jen/ UOA 95| |H }|W UGESEJPY-JNPRZOJY 8|P ©3}|q @|S Uep||q) oueuy |

J93}s 604 uo(3onasuy c*°°*

LRI R N B) m< N< .

A J0UYD|8ZEBNE teeceecrecaene

JeO%

()

sss++ gROJPPE GSUDOEK

t seeselppe

/euln

@.4Nped0Jds

L B B UQ. ®8B 0680000 OOL .3#““.

essncssesss .“ﬂu.zno

19YJES NJIS | YO J- X0 | %

®0 900000 mc'...g
”Q P09 00 00O CRS QQ

1) |0%0}0

LI BN RN Y] m< s8 000000000 ¢<
LRI W) ﬁ(LI N B BN N Q(

(y1-T)naw

sJ0ye|Bey

Jdzanysaqy

*ee 13YOEPJeA °*HZQ @YIBOJNZJIN}SQY 9} @INWISA

un ¢e0ccscsvsescssrse gp NL:ﬁonmﬂouﬁ3w|x~§

Bad Sector Handling

Version 1.2

PREFACE

Magnetic disks are derived into seperate sectors by the controller. Due to error
conditions some sectors might be unsuitable for read and write operations (bad
sectors). If the number of bad sectors is below a pre-defined limit, the disk can
still be used under the operating system MUNIX. In this case, MUNIX ensures
that bad sectors are replaced by error-free sectors.

During normal execution, bad sector handling is transparent to the user. It sup-
ports new magnetic disks, containing bad sectors on delivery and bad sectors
which came about as a result of continuous use.

The following magnetic disk types are supported: Standard-RL0O1/02, Standard-
RK06/07 and Standard-RM02/03/05.

Author's initials: RW

Trademarks:
MUNIX, CADMUS for PCS
DEC, PDP for DEC
UNIX for Bell Laboratories

Copyright 1984 by
PCS GmbH, Pfalzer-Wald-Strasse 38, D-8000 MGnchen 90, tel. (089) 67804-0

The information contained herein is the property of PCS and shall neither be reproduced in
whole or in part without PCS's prior written approval nor be implied to grant any license to
make, use or sell equipment manufactured herewith.

PCS reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any demages (including consequential)

caused by reliance on the materials presented.

~

n
(8]

— s p— p—
. . . . -

N O NN
e e e 8 .

NN N
« v e
N NN

~N

U WM

——
v e e

WP

—

5AN SeCTN? HANDLING

TASLE OF CONTENTS

[NTRODUCTION

Disk Organization

Disk Criver

Verification Progqrams

User Information

Compatibility to Earlier MUMIX Releases

SPECIFICATION

Disk Organization

Division of Areas

Bad Sector File

A1location: Bad Sector - Renlacement Sector
Allocation Sector lumber - MUMIX Blocknurber

Verfification Programs
Sector Test
Test Runs

Disk Driver

SclITE

U H»>Ww w P N =

~N OO,

1. INTRODUCTIOM
The bad sector handling routine is divided into the followincg three areas:

- Disk Oraanization,
- Disk Driver,
- Verification Programs.

1.1 Disk Organization

tach disk is regarded as a linear sucession of "n" sectors. The sectors are
numbered "0" throuch to "n-1". A disk is divided into the following three
areas:

- conrmon area,
- replacement sectors area,
- bad sector information file.

Each area mav contain bad sectors. The common area is used by HUNIX for the
definition of file systems. Bad sectors found in this area cause sactors to
be used in the replacement area. The bad sector file contains a directory of
all bad sectors found on the disk and a reference to the renlacement sec-
tors. For each bad sector found in the replacement area, an additional sec-
tor is used within this area. The bad sector file is based on a redundant
structure, i.e. information stored in bad sectors in this area is not de-
stroyed.

1.2 Disk Driver

There are two versions of the disk driver: the stand-alone version and
HUNIX-version. For bad sector handling, both versions must be able to ner-
form the following functions:

1. Protection against unauthorized access on that part of the disk re-
served for bad sector handling (replacement area, bad sector file).

2. User transparent replacement of bad sectors with replacement sectors.

1.3 Verification Programs

Snecial utilityv nrograms have been developed to check maanetic disks for bad
sectors and to initialize the bad sector file for the individual magnetic
disk. '

On d2livery, new magnetic disks should be checked for bad sectors. Addition-
al bad sectors can be generated on disks already used. In this case, the
sector nust be marked anprooriately and the infornmation transferred to a
renlacement sector.

TAD SECTOR yaunLIng

1.4 User Information

‘hen using 1agnetic disks, the user (system administrator) should to adhere
to the followina annroach:

1. A new disk should be verified for bad sectors and the bad sector file
should be initialized (Verification Program).

2. 'low the magnetic disks can be.used under the operating system UNIX.

1f a bad sector is found during operations, the following stens need to be
taken:

3. The information stored in the bad sector is to be transferrasd to a re-
placement sector (Verification Program). The information contained in
the bad sector is destroyed.

4, The user can continue to use the magnetic disk under the operating
system *1UNIX.

1.5 Compatibility to Earlier MUNIX Releases

2L01/02 and RX06/C7 magnetic disks, used in earlier MUNIX releases not con-
taining bad sector handling routines (inclusive V1.4) are not comnatible
with subsequent releases. The maqnetic disks involved can be used in future,
if the following steps are executed:

1. safe maqgnetic disk contents with the operating system release used sc
far,

ro

. check magnetic disk for bad sectors,
3. the contents are now to be written back, using the new rzlease.
Please note that the file sizes might be changed (see r1(4), hk(4)).

Disk tyoes RM02/03 are compatible if addressed via the hp-driver (RP24/05/
56, Ri'02/03 withcut bad sector handling). However, they can be converted in
the way described, so that the rm-driver fitted with bad sector handling can
he used. In this case, the contents of the maanetic disk are to be saved
ith the nn-driver, after which the contents are to b2 restored using the
ru-driver. File sizes do not chanage for Ri102/03 magnetic disks (see hn(4),
rm(4d)).

TADOSECTAR HennLIn:

2. SPECIFICATION

2.1 Disk Organization
2.1.1 Division of Areas

The magetic disk division in common area, replacement area and bad sector
file is stated in detail in the following table.

AREA First Last Ho. of
Sector Sector Sectors
Total disk 0 n-l n
Cormion area 0 p-1 D
Peplacensnt area D r-1 r-o
Bad sector file r n-1 nr

The disk organization and the bad sector file structure is very similar to
the DEC Standard 144, The size of each area is specified in a wav that the
maximun of 126 bad sectors can be handled. Peference is also mada %o the
rough division in tracks and cylinders.

The bad sector file is, for examnle, always allocated to the last track of
the last cylinder. Due to the fact that individual disk typs vary in track
size (number of sectors per track), the sizes of the replacement areas and
bad sector files are dependent on the disk type used. The structure of the
magnetic disks currently supported is found in the following table.

MUMBER OF SECTCRS

Disk Tyoe Total Commion Replacemant Bad Sector
Disk Area Area File
RLO1 20480 20230 160 49
PLO2 40960 40760 160 40
RKO6 27126 26972 132 22
BX07 53790 53636 132 22
R102/03 1316890 131520 128 32

PMO3 500384 500224 128 32

2.1.2 Bad Sector File

Tha bad sector file is structured as follows:

0 bad sector information
1
2 not used
3
4 copy from Q, I
5
5 not used
7
. 8 copy from Q, 1
9
10 not used
11
2 cooy from Q, 1
13
14 not used
15
. 16 copv from O, 1
17
18 not used
19

GAD SECTO2 HANDLIMG

The pad sector information consists of 256 16-bit words:

[L L L L L L L L P +
: Vord Contents
: - 5 :
1 0 :
: 2 Number of bad sectors ;
: ; ; :
. 4 Sector number ' 1st bad sector entry
5
. 6 Sector number ; 2nd bad sector entry
7 .
252 Sector number . 125th bad sector entry
253 :
' 254 Sector number ; 126th bad sector entry
255 :
tecccccccrccccccc e ceme—ee= +

The bad sector table containing sector numbers is named "bad sector table".
Unused bad sector elements are filled with "-1". On each magnetic disk there
are five copies of the bad sector table avajlable. A disk can be used at any
time if one of the copies does not contain bad sector entries and no more
than 126 bad sectors are found on the disk.

2.1.3 Allocation: Bad Sector - Replacement Sector

The allocation bad sector - replacement sector" is determined by the
sequence of entries found in the bad sector table:

The last sector available in the replacement area (sector number r-l) is
allocated to the first bad sector found (lst bad sector entry); the last

replacement sector but 1 (r-2) is allocated to the second bad sector
found, etc.

BAD SECTOR HAMDLING

2.1.4 Allocation: Sector Number - MUNIX Blocknumber

“MUNIX data blocks are 1024 bytes lonqg, whereas disk sectors are 256 hytes
{’L01/02) or 512 bytes (RK06/07, RM02/03/05) long. Therefore, a tUMIX block
spans ¢ to &4 sectors.

The stand-alone driver considers a disk as a 1inear succession of blocks,
nurbered 0 to n/4-1 or n/2-1 (n = number of disk sectors). The allocation 1s
(devendent on the sector size):

Sector Size Block Mumber Sector Number(s)

256 bytes a 4*3 - 4*a+3
512 bytes a 2*a - 2%a+l

When using MUNIX, a disk can be subdivided into a number of file systems.
The file system blocks are numbered sequentially, relative to the first
block of the file system (starting with 0). The absolute block number "a* of
a particular block within a given file system is calculated by adding all
blocks allocated to prior file systems (offset) as well as the relative
block number within this file system (r). By taking the absolute block num-
ber "a", the user receives the allocated sector number (see table above).

2.2 VYerification Programs
The verification programs are responsible for the following tasks:

- find all bad sectors on a disk,
- generate the bad sector table and {nitialize the bad sector file on
disk.

A test run needs to be performed on disk, in order to find the bad sectors.

2.2.1 Sector Test
The following types of sector tests are available:

1. Hrite/Read processing cycle with subsequent comparison operations.
If an error is indicated by the disk controller, the write/read ooera-
tion is not repeated. A sector is regarded as "bad", if a write/read
error is detected or the comparison result {is found to be negative. If
possible, the header of the individual sector is marked accordingly.

2. Ootionally, a sector test is possible using the "read-only-mode". In
this case the disk content is not overwritten. After a read error is
detected, the relevant sector is declared "bad".

Th2 bad sector table is generated at will. MNew bad sector entries are added
to the end of the table. Since the sequence of entriss also indicates the
i11location of replacement sectors, it is nossible in this way to entar had
sector table entries subsequently. The sequence of "old" hacd secitors is not
chanqed.

BAD SECTOR HANDLINS

2.2.2 Test Runs

Yerification programs nrovide a number of functions:

1.

Complete test (bad sector scan):

The complete disk 1s tested. In the first step, all sectors are over-
written in ascending order with the DEC test pnattern “Oxed6db6db". 1In
the second step, all sectors are read in reverse order. The read and
write operations are performed on complete tracks. If an error is
found, each sector is tested 1ndividually and the bad sector 1s deter-
rmined. In this operation, the bad sector file is generated and written
to disk, when the test is terminated.

Functions 2 to &4 assume that the bad sector file 1s already available on

disk.

2.

3.

Partial test:

A contiquous number of sectors (specifications are entered in dialogue
mode) are tested. Prior to the actual test, the bad sector file is
read, Alternating continuously (first sector, last sector, second sec-
tor, last but one sector, ...) the sectors are tested with a random
pattern. During the test operation some new entries might be put into
the bad sector table, in which case the table is written back to the
bad sector file prior to terminating the test program.

Manual entries of bad sectors:

If a disk is used frequently and bad sector develop during normal
usage, in some cases the verification oprogram is not able to detect
all bad sectors. This function helps to identify such cases. The bad
sector file 1% read and the user enters the numbers of the bad sectors
involved. The sectors are marked "bad", and the sector identifications
are entered in the bad sector table. Subsequently the bad sector table
is written back onto disk.

. Listing all known bad sectors:

The bad sector file is read and the identification numbers of all bad
sectors known are listed.

A further function is avaiiable for extented tests:

5.

Random sector test:

A random character generator produces a sequence of sector numbers.
The sectors addressed by these numbers are tested, using the random
pattern generated by the test program.

The test runs on a continuing basis but can be terminated with a "bus
reset".

Attention: If a bad sector file is stored on disk, Ehe file may be
destroyed.

BAD SECTCR HANDLING

2.3 Disk Driver
The general aponroach of both stand-alone and MUMIX driver are sinilar:

tormal write/read access operations are performed as long as no bad
sector is detected. (Bad sector detection is dependent on the disk
type used; further details are found below.)

If the bad sector table has not yet been read (initialization status
or disk change), it is now read into memory. If the sector is marked
"bad", the system accesses the relevant renlacement sector. If the
following message is displayed on the system console: disk error.

Jad sector detection:

a) The sector is marked "bad" in the header (e.q. P¥06/07, RM02/03/05):
In a write/read ooeration, the disk controller oroduces an error mess-
age. Each time the System tries to access a bad sector the controller

answers with an error message, causing the driver to access the rele-
vant replacement sector.

b) The sector cannot be marked in the header (e.g. RLO1/02):
In order to avoid writing on a sector while not being able to read it
without error, access to bad sectors are not allowed on principle.
Prior to a write/read operation, the bad sector table is checked to
find out if the required sector is marked "bad". In this case, the
system immediately accesses the repnlacement sector.

This aporoach assumes that the bad sector table is read into memory

prior to the first disk access or immediately after a disk is ex-
changed.

Tha stand-alone driver is different to MUMNIX drivers, in that the first disk
access reads the bad sector table. For this reason, the stand-alone orogram
is to be restarted irmediately after a disk is exchanged. Operating under

HUMIX however, disks can be exchanged at any time without re-booting the
systen.

Bad Block Behandlung

Version 1.2

Abstract

Magnetplatten werden vom Controller in einzelne Sektoren unterteilt. Ein Teil
dieser Sektoren kann unbrauchbar sein (dad sectors). Liegt die Anzahl der bad
sectors unter einer bestimmten Obergrenze, kann die Platte trotzdem unter
MUNIX verwendet werden. MUNIX sorgt in diesem Fall daffir, dass bad sectors
durch Ersatzsektoren ersetzt werden.

Dieses bad sector handling ist wihrend des normalen Betriebs {tr den Benutzer
transparent. Es unterstdtzt sowohl! fabrikneue Platten mit bad sectors als auch
Platten bei denen wahrend des Betriebs neue bad sectors entstehen.

Zur Zeit werden folgende Plattentypen unterstiitzt:
Standard-RLO1/02, Standard-RK068/07 und Standard-RM02/03/05.

Autoren-Kennzeichen: RW

Eingetragene Warenzeichen:
MUNIX, CADMUS von PCS
DEC, PDP von DEC
UNIX von Bell Laboratories

Copyright 1984 by
PCS GmbH, Pfilzer-Wald-Strasse 38, D-8000 MQnchen 80, tel. (089) 87804-0

Die Vervielfdltigung des vorliegenden Textes, auch auszugsweise ist nur mit ausdriicklicher
schriftlicher Genehmigung der PCS erlaubt.

Wir sind bestrebt, immer auf dem neuesten Stand der Technologie zu bleiben. Aus diesem
Grunde behalten wir uns Anderungen vor.

Bad Sector Handling V1.2

Rudolf Wildgruber

PCS Gmbh
Pfélzer-Wald-Str. 36
8000 Minchen 90

1. Einfihrung
Das bad sector handling teilt sich auf in drei Teilbereiche:

— Plattenorganisation
— Disk-Check-Programme
— Plattentreiber

1.1. Plattenorganisation

Jede Platte wird als lineare Folge von n Sektoren betrachtet. Die Sek-
toren sind voh 0 bis n-1 durchnumeriert. Eine Platte wird in drei Bereiche
eingeteilt:

— 6flentlicher Bereich
— Bereich {ur Ersatzsektoren
— bad sector Information (bad sector file)

Jeder dieser Bereiche darf bad sectors enthalten. Der oflentliche
Bereich wird unter MUNIX fiir das Anlegen von Filesystemen verwendet. Far
bad sectors in diesem Bereich werden im Ersatzbereich Sektoren belegt
(Auslagerung). Das bad sector file enthalt ein Verzeichnis aller bad sectors
der Platte und die Verweise zu den Ersatzsektoren. Fir einen bad sector im
Ersatzbereich wird ein weiterer Sektor in diesemn Bereich belegt. Das bad sec-
tor file ist redundant aufgebaut, so dass bad sectors in diesem Bereich in der
Regel die benétigte Information nicht vernichten.

1.2. Plattentreiber
Ein Plattentreiber existiert in zwei Versionen: Standalone-Version und
MUNIX-Version. Beide Versionen missen {Gr das bad sector handling folgende
Funktionen gewahrleisten:
a) Schutz des fur das bad sector handling reservierten Teils der Platte
(Ersatzbereich, bad sector file) vor unberechtigtem Zugrifl.

b) Fur den Benuizer transparente Ersetzung von bad sectors durch ihre
Ersatzsektoren.

1.3. Disk-Check-Programme

Spezielle Dienstprogramme ubernehmen die Aufgabe, eine Platte auf bad
sectors zu Oberprufen und das bad sector file dieser Platte zu initialisieren.

Bei f{abrikneuen Platten muss die gesamte Platte auf bad sectors
iberpruft werden. Bei bereits beschriebenen Platten bei denen ein weiterer
bad sector festgestellt wird, muss dieser entsprechend markiert und aus-
gelagert werden, chne dass die restliche Information auf der Platte zerstért
wird.

August 23, 1983

1.4. Benutzersicht

Der Benutzer (Systemverwalter) hat beim Einsatz einer Platte folgender-
massen vorzugehen:

1) Uberprufung einer neuen Platte auf bad sectors und Initialisierung des
bad sector files (Disk-Check-Programm)

2), Benutzung der Platte unter MUNIX
und falls ein weiterer bad sector wihrend des Betriebs auftritt:

3) Auslagerung des bad sectors in den Ersatzbereich (Disk-Check-
Programm). Die Information, die der bad sector enthielt, ist zerstort.

4) VWeitere Benutzung der Platte unter MUNIX.

1.5. Kompatibilitat zu friheren HUNIX-Releases

RLQ1/02- bzw. RK06/07-Platten, die unter einer friheren MUNIX-Release
ohne bad sector handling (bis einschl. ¥1.4) in Gebrauch waren, sind nicht
kompatibel zu den nachfolgenden Releases. Man kann diese Platten weiterhin
verwenden, wenn der Inhalt der Platte mit der bisherigen Release gerettet,
die Platte auf bad sectors QGberpriuft und der Inhalt mit der neuen Release
wiederhergestellt wird. Es ist zu beachten, dass sich die Filesystem-Gréssen
eventuell andern (siehe ri(4), hk(4)).

RM02/03-Platten sind weiterhin kompatibel, wenn sie Gber den hp-
Treiber (RP04/05/06, RM02/03 ohne bad sector handling) angesprochen wer-
den. Sie kénnen jedoch in der geschilderten Art und Weise auf den rm-
Treiber mit bad sector handling umgestellt werden. Dazu ist der Inhalt einer
Platte mit dem hp-Treiber zu retten und mit dem rm-Treiber wiederherzustel-
len. Die Filesystem-Grossen a&ndern sich bei RM02/03-Platten nicht (siehe

hp(4), rm(4)).

August 23, 1983

2. Spezifikation
2.1. Plattenorganisation
2.1.1. Einteilung in Bereiche

Die Einteilung einer Platte in 6flentlicher Bereich, Ersatzbereich und bad
sector file ergibt sich aus nachstehender Tabelle.

Bereich erster Sektor | letzier Sektor | Sektorzahl
pesamte Platte 0 n-1 n
6flentlicher Bereich 0 p-1 P
Ersatzbereich P r-1 r-p
bad sector file r n-1 n-r

Die Plattenorganisation und der Aufbau des bad sector file lehnt sich eng

an den DEC Standard 144 an. Die Grosse der einzelnen Bereiche wird fur die
Behandlung von bis zu 126 bad sectors ausgelegt. Dabei wird auch auf die
Grobeinteilung einer Platte in Spuren und Zylinder Bezug genommen.
Das bad sector flle liegt z. B. immer auf der letzten Spur des letzten Zylinders.
Ebenfalls umfasst der Ersatzbereich immer mehrere komplette Spuren. Da bei
verschiedenen Plattentypen die Spurgrésse (Anzahl Sektoren pro Spur) vari-
iert, sind die Gréssen des Ersatzbereiches und bad sector files abhangig vom
Plattentyp. Die Aufteilung bei den zur Zeit unterstiitzten Plattentypen ist der
folgenden Tabelle zu entnehmen

Anzahl der Sektoren
Plattentyp | gesamte | 6flentlicher | Ersatz- | bad sector

Platte- Bereich bereich file

RLO1 20480 20280. 160 40
RLO2 40960 40760 160 40
-RX06 27126 26972 132 22
RKO7 53790 53636 132 22
RM02/03 131680 131520 128 32
RMO5 500384 500224 128 32

2.1.2. Bad Sector File
Das bad sector file besitzt folgenden Aufbau:

Anvvoniet 23 19R3

-4 -

Sektor Inhait
0] bad sector Information
1
2 nicht benatzt
3
4 Kopie von 0,1
5
6 nicht benatzt
5
8 Kopie von 0,1
9
10 nicht benutzt
11
12 Kopie von 0,1
13
14 nicht benuatzt
15
16 Kopie von 0,1
17
18 nicht benutzt
19

Die bad sector Information besteht aus 256 16-Bit-Worten:

Wort Inhalt
0 0
1 0
2 Anzahl bad sectors
3 0
4 Sektornummer
S
6 Sektornummer
- h
252 Sektornumrmer
253
254 Sektornummer
255

Die Tabelle der bad sector - Sektormummern heisst dad sector tabdle.
Unbenutzte bad sector Eintrage werden mit "-1" aufgefdllt. Die bad sector
table wird in funflacher Kopie auf einer Platte abgespeichert. Eine Platte ist
dann verwendbar, wenn eine dieser Kopien bad-sector-frei ist und die

1. bad sector
Eintrag
2. bad sector
Eintrag

125. bad sector
Eintrag
126. bad sector
Eintrag

Gesamtzahl der bad sectors 126 nicht Gbersteigt.

August 23, 1983

-5-

2.1.3. Zuordnung: Bad Sector — Ersatzsektor

Die Zuordnung bad sector — Ersatzsektor ergibt sich aus der Reihenfolge
der Eintrége in der bad sector table:

Dem ersten erfassten bad sector (1. bad sector Eintrag) wird der letzte
Sektor im Ersatzbereich zugeordnet (Sektornummer 1) dem 2. der vor-
letzte Sektor im Ersatzbereich (~2), usw.

2.1.4. Zuordnung: Sektornummer — NUNIX-Blocknummer

MUNIX-Blocke sind 1024 bytes gross, Plattensektoren 256 (bei RLO1/02)
oder 512 bytes (RK06/07, RM02/03/0S). Ein MUNIX-Block umfasst somit 4
bzw. 2 Sektoren.

Die Standalone-Treiber betrachten eine Platte als lineare Folge von
Blocken mit den Nummern O bis n/4-1 bzw. n/2-1 (n = Anzah! der Sektoren
einer Platte). Die Zuordnung lautet (abhangig von der Sektorgrosse):

ISektorErésse l Blocknummer Sektomummer‘n!l

256 bytes a 4%a — 4°*a+3
" 512 bytes a 2% = 2%a+]

Unter MUNIX kann eine Platte in mehrere Filesysteme unterteilt werden.
Die Blocke eines Filesystems werden relativ zum ersten Block des Filesystems
durchnumeriert (beginnend mit 0). Die absolute Blocknummer a des Blocks
eines Filesystems ergibt sich aus der Summation der Blocke der vorhergehen-
den Filesysteme (offset) plus der relativen Blocknummer r. Aus der absoluten
Blocknummer a erhédlt man die zugeordneten Sektornummern Gber die

vorstehende Tabelle.

22. Disk-Check-Programme
Aufgabe der Disk-Check-Programme ist es
— alle bad sectors auf einer Platte zu finden

—~ die bad sector table aufzubauen und das bad sector file-auf der Platte
anzulegen.
Das Auflinden der bad sectors erfolgt durch Testen der Plattensektoren.

22.1. Sektortest
Beim Sektortest? wird folgendermassen vorgegangen:

1) Schreib-/Lese-Zyklus mit anschliessendem Datenvergleich.
Der Schreib- bzw. Lesezugriff wird nicht wiederholt, wenn vom Platten-
controller ein Fehler angezeigt wird. Ein Sektor wird als bad betra-
chtet bei einem Schreib-/Lesefehler oder falls der Vergleich Unter-
schiede erbringt. Falls moglich, erfolgt eine entsprechende Mar-
kierung im Header des Sektors.

2) Wahlweise ist ein Sektortest im Recd-Only-Modus moglich, um den
Inhalt einer Platte nicht zu zerstdren. In diesemn Fall wird nach einem
Lesefehler der Sektor als dad betrachtet.

Der Aufbau der bad sector table erfolgt ungeordnet. Neue bad sectors
werden ans Ende der Tabelle angefiigt. Da sich aus der Reihenfolge der
Eintrage die Zuordnung zu den Ersatzsekioren ergibt, kann auf diese Weise
auch nachtriaglich ein neuer bad sector in die Tabelle aufgenommen werden.
An der Reihenfolge der "alten” bad sectors &ndert sich dadurch nichts.

August 23, 1983

2.22. Testablaufe
Die Disk-Check-Programme stellen verschiedene Funktionen zur
Verfiigung:
1) Vollstandiger Test (dad sector scan):
Die komplette Platte wird getestet. Die Sektoren werden zuerst in
aufsteigender Ordnung mit dem DEC-Testmuster 0Oxeb8db6db
beschrieben. Anschliessend werden die Sektoren in absteigender
Ordnung gelesen. Auf die Sektoren wird dabei in grosseren Einheiten
zugegriffen (komplette Spur). Tritt dabei ein Fehler auf, wird der
Zugrifl {ir jeden Sektor einzeln wiederholt und der bad sector fest-
gestellt. Dabei wird das bad sector flle aufgebaut und nach Abschluss
des Tests auf die Platte geschrieben.

Die Funktionen 2) bis 4) setzen voraus, dass au!{ der Platte bereits ein
bad sector file existiert.

2) Partieller Test:
Eine zusammenhdngende Folge von Sektoren (im Dialog spezifiziert)
wird getestet. Vor diesern Test wird das bad sector flle gelesen. Die
Sektoren werden alternierend (1. Sektor, letzter Sektor, 2. Sektor, ...)
mit eimrem Random-Muster getestet. Beim Test werden eventuell neue
bad sectors eingetragen und anschliessend das bad sector file
zuruckgeschrieben.

3) Manuelles Eintragen von bad sectors:

Bad sectors, die erst nach langerer Benidtzung einer Platte entstehen,
werden von den Disk-Check-Programmen nicht in allen Fallen registri-
ert. Diese Funktion dient zur Kennzeichnung solcher bad sectors.

Das bad sector file wird gelesen. Der Benutzer gibt die Nummern von
bad sectors ein. Diese Sektoren werden als bad markiert und in die
bad sector table aufgenommen. Anschliessend wird das bad sector file
zurickgeschrieben.

4) Auflisten aller bekannten bad sectors:
Das bad sector file wird eingelesen. Die Nummern aller bad sectors
werden aufgelistet

Far einen Langzeittest steht eine weitere Funktion zur VerfGgung:

5) Random-Sektortest:
Ein Zufallsgenerator erzeugt eine Folge von Sektornummern. Diese
Sektoren werden mit einem Random-Muster getestet.
Der Test ist nicht terminiert. Er kann durch einen Bus-Reset abgebro-
chen werden.
Ein vorhandenes bad sector fille auf der Platte wird eventuell zerstort.

2.3. Plattentreiber

Die generelle Vorgehensweise ist beirn Standalone-Treiber und beim
HMUNIX-Treiber ahnlich:

Es werden solange Schreib-/Lesezugrifle auf die Platte ausgefuhrt, bis
auf einen bad sector zugegriffen wird. (Die bad sector Erkennung kann
vomn Plattentyp abhangig sein; sie wird weiter unten skizziert.)

Falls die bad sector table noch nicht von der Platte gelesen wurde
(Anfangszustand bzw. nach Plattenwechsel), wird sie nun eingelesen. Ist
der Sektor als bad markiert, wird auf den zugeordneten Ersatzsektor
zugegriffen (rekursiv!). Andernfalls erfolgt eine Meldung auf die System- ~
konsole: disk error.

August 23, 1983

Erkennen von bad sectors:

a) Der Sektor ist im Header als bad markiert (z.B. RK06/07,
RM02/03/05):
Der Plattencontroller erzeugt eine Fehlermeldung bei einer Schreib-
/Leseoperation. Jeder Versuch auf einen als bad markierten Sektor
zuzugreifen wird vom Controller mit einer Fehlermeldung quittiert,
auf die der Treiber mit einem Zugrif] auf den Ersatzsektor reagiert.

b) Der Sektor kann nicht im Header markiert werden (z.B. RL01/02):

Um zu verhindern, dass ein Sektor zwar {ehler{rei beschrieben, jedoch
nicht fehlerfrei gelesen werden kann, wird ein Zugriff auf bad sectors
von vorneherein ausgeschlossen. Vor einer Schreib-/Leseoperation
wird die bad sector table inspiziert, ob der betroflene Sektor als bad
bekannt ist. In diesermn Falle wird sofort auf den Ersatzsektor
zugegriflen.

Diese Yorgehensweise setzt voraus, dass vor dem ersten Plattenzugrif
bzw. nach einem Plattenwechsel die bad sector table eingelesen wird.

Die Standalone-Treiber unterscheiden sich von den MUNIX-Treibern
dadurch, dass generell als erster Plattenzugriff die bad sector table
eingelesen wird. Nach einem Plattenwechsel ist deshalb ein Standalone-
Programm neu zu starten. Unter MUNIX kénnen dagegen beliebige Plat-
tenwechsel erfolgen, ohne das System neu zu booten.

August 23, 1983

Typing Documents on the UNIX System:
Using the —ms Macros
with Troff and Nroff

This document describes a set of easy-to-use macros for preparing documents
on the UNIX system. Documents may be produced on either the phototypesetter
or on a computer terminal, without changing the input.

The macros provide facilities for paragraphs, sections (optionally with
automatic numbering), page titles, footnotes, equations, tables, two-column for-
mat and cover pages for papers.

This memo includes, as an appendix, the text of the "Guide to Preparing Docu-
ments with —ms"” which contains additional examples of features of —ms.

This manual is a revision of, and replaces, '"Typing Documents on UNIX"', dated
November 22, 1974.

Trademarks:
MUNIX, CADMUS for PCS
DEC, PDP for DEC
UNIX for Bell Laboratories

Copyright 1984 by
PCS GmbH, Pféalzer-Wald-Strasse 38, D-8000 MiGnchen 90, tel. (089) 87804-0

The information contained herein is the property of PCS and shall neither be reproduced in
whole or in part without PCS's prior written approval nor be implied to grant any license to
make, use or sell equipment manufactured herewith.

PCS reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages (including consequential)

caused by reliance on the materials presented.

Typing Documents on the UNIX System:
Using the —ms Macros with Troff and Nroff

M. E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

Introduction. This memorandum describes a package of commands (o produce papers
using the trof and nroff formatting programs on the UNIX system. As with other rof~derived
programs, text is prepared interspersed with [ormatting commands. However, this package,
which itself is written in troff commands. provides higher-level commands than those provided
with the basic troff program. The commands availabie in this package are listed in Appendix A.

Text. Type normally, except that instead of indenting for paragraphs, place a line reading
* PP* before each paragraph. This will produce indenting and extra space.

Alternatively, the command .LP that was used here will produce a left-aligned (block) para-
graph. The paragraph spacing can be changed: see below under “‘Registers.”’

Beginning. For a document with a paper-type cover sheet, the input should start as foi-
lows:

(optional overall format .RP — see below]

TL

Title of document (one or more lines)

AU)

Author(s) (may also be several lines)

Al

Author's institution (s)

.AB

Abstract; to’be placed on the cover sheet of a paper.
Line length is 5/6 of normal; use .ll here to change.
.AE (abstract end)

text ... (begins with .PP, which see)

To omit some of the standard headings (e.g. no abstract, or no author's institution) just omit
the corresponding fields and command lines. The word ABSTRACT can be suppressed by writing
**.AB no"" for *“.AB'. Several interspersed .AU and .Al lines can be used for multiple authors.
The headings are not compuisory: beginning with a .PP command is perfectly OK and will just
start printing an ordinary paragraph. Warning: You can't just begin a document with a line of
text, Some —ms command must precede any text input. When in doubt, use .LP to g2t
proper initialization, although any of the commands .PP, .LP, .TL, .SH, .NH is good enough.
Figure | shows the legal arrangement of commands at the start of a document

~ Cover Sheets and First Pages. The first line of a document signals the general format of
the first page. In particular, if it is “.RP" a cover sheet with title and abstract is prepared. The
default format is useful for scanning drafts.

In general —ms is arranged so that only. one form of a document need be stored, contain-
ing all information; the first command gives the format, and unnecessary items [or that format
are ignored.

Warning: don’t put extraneous material between the .TL and .AE commands. Processing
of the titling items is special, and other data placed in them may not behave as you expect.
Don't forget that some —ms command must precede any input text.

Page headings. The —ms macros. by default, will print a page heading containing a page
number (if greater than 1). A default page footer is provided only in nroff. where the date is
used. The user can make minor adjustments to the page headings/footings by redefining the
stings LH. CH. and RH which are the left, center and right portions of the page headings.
respectively; and the strings LF, CF, and RF, which are the left, center and right portions of
the page footer. For more compiex formats, the user can redefine the macros PT and BT,
which are invoked respectively at the top and bottom of each page. The margins (taken from
registers HM and FM for the top and bottom margin respectively) are normalily 1 inch; the page
header/footer are in the middle of that space. The user who redefines these macros should be
careful not to change parameters such as point size or font without resetting them to defauit

values,
Multicolumn formars. If you place

the command **.2C™" in your document, the

document wiil be printed in double column
format beginning at that point. This feature
is not too useful in computer terminal out-
put, but is often desirable on the typesettes.
The command **.1C" will go back to one-
column format and aiso skip to a new page.
The *.2C" command is actually a spedal
case of the command

.MC [column width (gutter width]]

which makes multiple columns with the
specified column and gutter width; as many
columns as will fit across the page are used.
Thus triple, quadruple, ... column puges can
be printed. Whenever the number of
columns is changed (except going from (full
width Lo some larger number of columns) a
new page is started.

Headings. To produce a special head-
ing, there are two commands. If you type

.NH
lype section heading here
may be several lines

you will get automatically numbered section
headings (1, 2, 3, ..), in boldface. For
exampie,

.NH
Care and Feeding of Depariment Heads

produces

1. Care and Feeding of Department Heads
Alternatively,

.SH
Care and Feeding of Directors

will print the heading with no number
added:

Care and Feeding of Directors

Every section heading, of either type.
should be followed by a paragraph beginning.
with .PP or .LP, indicating the end of the
heading. Headings may contain more than
one line of text.

The .NH command also supports more:
complex numbering schemes. If a numeri-
cal argument is given, it is taken to be a
‘levei’’ number and an appropriate sub-
section number is generated. Larger level
numbers indicate deeper sub-sections, as in
this example:

.NH

Erie-Lackawanna

.NH 2

Morris and Essex Division
.NH 3

Gladstone Branch

.NH 3]

Montclair Branch

.NH 2

Boonton Line

generates:

2. Erie-Lackawanna

2.1. Morris and Essex Divisioa
2.1.1. Gladstoae Branch

2.1.2. Monteclair Branch

2.2. Boonton Line

An explicit **NH 0" will reset the
numbering of level | to one, as here:

.NHO
Penn Central

1. Penn Central

Indented paragraphs. (Paragraphs
with hanging numbers, e.g. references.) The
sequence

JP (1]

Text for first paragraph, typed
normally {or as long as you would
like on as many lines as needed.
IP (2)

Text {or second paragraph, ...

produces
{1

Text for first paragraph. typed nor-
mally {or as long as you would like on
as many lines as needed.,

{2] Text for second paragraph, ...

A series of indented paragraphs may be fol-
lowed by an ordinary paragraph beginning
with .PP or .LP, depending on whether you
wish indenting or not. The command .LP
was used here,

More sophisticated uses of .IP are also
passible. If the label is omitted, for exam-
ple. a plain block indent is produced.

P

This material will

just be turned into a

block indent suitable for quotstions or
.such matter.

LP

will produce
This material will just be tumed into a

block indent suitable for quotations or
such matter.

If 2 non-standard amount of indenting is
required, it may be specified after the label
(in character positions) and will remain in
effect until the next .PP or .LP. Thus, the
general form of the .IP command contains
two additional feids: the label and the
indenting length. For example,

JP first: 9

Notice the longer label, requiring larger

indenting for these paragraphs.
.IP second:

And so forth.

.LP

produces this:

first: Notice the longer label, requiring
larger indenting for these pan-
graphs.

second: And so forth.

It is also possible to produce multiple nesies
indents; the command RS indicates that the
next .IP siarts from the current indentation
level. Each .RE will eat up one level of
indenting so you should balance RS and
.RE commands. The .RS command should
be thought of ss ““move right’’ and the .RE
command a3 ‘‘move left’’. As an example

P 1.

Bell Laboratories
.RS

JP 1.1
Murray Hili
JP 1.2
Holmdel
JP 1.3
Whippany
.RS

JP 1.3.1
Madison
.RE

JP 1.4
Chester
.RE

LP

will result in
1. Bell Laboratories
1.1 Murmay Hill
1.2 Holmdel
1.3 Whippany
1.3.1 Madison
1.4 Chester

All of these variations on .LP leave the right
margin untouched. Sometimes, for pur-
poses such as setting off a quotation, a para-
graph indented on both right and left is
required.
A single paragraph like this is
obtained by preceding it with
.QP. More complicated material
(several paragraphs) should be
bracketed with .QS and .QE.

Emphasis. To get italics (on the typesetter)
or underlining (on the terminal) say

A

as much text as you want
can be typed here

.R

as was done for these three words. The .R
command
Roman) font. If only one word is to be ital-
icized, it may be just given on the line with
the .l command.

.J word

and in this case no .R is needed to restore
the previous font. Boldface can be pro-
duced by

B
Text to be set in boldface

goes here
R

and also will be underlined on the terminal
or line printer. As with ., a single word can
be placed in boldface by placing it on the
same line as the .B command.

A few size changes can be specified
similarly with the commands .LG (make
larger), .SM (make smaller), and .NL
(return to normal size). The size change is
two points; the commands may be repeated
for increased «tea (here one .NL canceled two
.SM commands).

If actual underlining 2s opposed to ital-
icizing is required on the typesetter, the
command

.UL word

will underline a word. There is no way to
underiine multiple words on the typesetter.

Footnotes. Material placed between
lines with the commands .FS (footnote) and
.FE (footnote end) will be collected,
remembered, and finally placed at the bot-
tom of the current page®. By default, foot-
notes are 11/12th the length of normal text,
but this can be changed using the FL regis-
ter (see beiow).

Displays and Tables. To prepare
displays of lines, such as tables, in which the
lines should not be re-arranged, enclose
them in the commands .DS and .DE

* Like this.

restores the normal (usually

.DS

table lines, like the
examples here, are placed
between .DS and .DE
.DE

By default, lines between .DS and .DE are
indented and left-adjusted. You can also
center lines, or retain the left margin. Lines
bracketed by .DS C and .DE commands are
centered (and not re-arranged); lines brack-
eted by .DS L and .DE are left-adjusted, not
indented, and not re-arranged. A plain .DS
is equivalent to .DS L which indents and
left-adjusts. Thus,

these lines were preceded:
by .DS C and foilowed by
a .DE command;

whereas

these lines were preceded
by .DS L and.foilowed by
a .DE command.

Note that .DS C centers each line; there is a
variant .DS B that makes the display into a
left-adjusted block of text, and then centers
that entire block. Normally a display is kept
together, on one page. If you wish to have
a long display which may be split across page
boundaries, use .CD, .LD, or .ID in place of
the commands .DS C, .DS L, or .DS |
respectively. An extra argument to the .DS
[or .DS command is taken as an arnount to
indent. Note: it is tempting (o assume that
.DS R will right adjust lines, but it doesn't
work.

Baxing words or lines. To draw rec-
tangular boxes around words the command
.BX word

will print as shown. The boxes will
not be neat on a terminal. and this should
not be used as a substitute for italics.

Longer pieces of text may be boxed by
enclosing them with .Bl and .B2:

.Bl
text...
.B2

as has been done here.

Keeping blocks together. If you wish
to keep a (able or other block of lines
together on a page. there are ‘‘kesp

release’ commands. [f a block of lines pre-
ceded by .KS and followed by .KE does not
fit on the remainder of the current page, it
will begin on a new page. Lines bracketed
by .DS and .DE commands are automatically
kept together this way. There is also a
‘‘keep floating’’ command: if the block to be
kept together is preceded by .KF instead of
.KS and does not fit on the current page, it
will be moved down through the text until
the top of the next page. Thus, no large
blank space will be,introduced in the docu-
ment.

NrofTTroff commands. Among the
useful commands [rom the basic formatting
programs are the following. They all work
with both typesetter and computer terminal
output:

.bp - begin new page.

.br - **break’’, stop running text
from line to line.

Sp n - insert n blank lines.

.na - don't adjust right margins.

Date. By default, documents produced
on computer terminals have the date at the
bottom of each page; documents produced
on the typesetter don't. To force the date,
say “.DA™. To force no date, say **.ND".
To lie about the date, say ‘*.DA July 4,
1776™ which puts the specified date at the
bottom of each page. The command

.ND May 8, 1945

in ".RP* format places the specified date on
the cover sheet and nowhere else. Place
this line before the title.

Signature line. You can obtain a sig-
nature line by placing the command .SG in
the document. The authors’ names will be
output in place of the .SG line. An argu-
ment to .SG is used as a typing identification
line, and placed after the signatures. The
.SG. command is ignored in reieased paper
format.

Registers. Certain of the registers
used by —ms can be altered to change
default settings. They should be changed
with .nr commands, as with

.nrPS9

to make the default point size 9 point. If
the effect is needed immediately, the normal

troff command should be used in addition to
changing the number register.

Register Defines Takes Default
efe
PS point size fext para. 10
VS line spacing fext para. 12 pts
LL line length next para. 6"
LT tle length aext para. 6"

nextpara 03 VS
next pars. S ens

PD para. spacing
Pl para. indent

FL f(ootnote length next FS 1V/12 LL
CW column width next 2C 715 LL
GW intercolumn gap, next 2C 1715 LL
PO page offset next page 26/27"
HM top margin next page 1"

FM bortom margin nextpage 1”7

You may also alter the strings LH, CH, and
RH which are the left, center, and right
headings respectively; and similarly LF, CF,
and RF which are strings in the page footer.
The page number on ourpur is taken from
register PN, to permit changing its output
style. For more complicated headers and
footers the macros PT and BT cn be
redefined, as explained earlier.

Accents. To simplify typing certain
foreign words, strings representing common
accent marks are defined. They precede the
letter over which the mark is to appear.
Here are the strings:

Input Output Input OQutpu
*e é \"a a
*e ¢ *Ce ¢
*u d *%¢ ¢
\"e é

Use. After your document is prepared
and stored on a file, you can print it on a
terminal with the command®

aroff —ms file

and you can print it on the typesetter with
the command

troffify =ms file

(many options are possible). In each case,
il your document is stored in several files,
just list all the filenames where we have
used *‘file”. If equations or tabies are used,
eqn and/or tb6(must be invoked as prepro-
cessors.

* If .2C was used, pipe the arof output through
col: make the firm line of the input *‘.pi
/usr/bin/col.”

References and further study. U you
have to do Greek or muthematics, see eqn
(1] for equation setting. To aid egm users,
-ms provides definitions of .EQ and .EN
which normally center the equation and set
it off slightly. An argument on .EQ is taken
to be an equation number and placed .in the
right margin near the equation. In addition,
there are three special arguments to EQ: the
lecters C, I, and L indicate centered
(default), indented, and left adjusted equa-
tions, respectively. [f there is both 2 format
argument and an equation number, give the
format argument first, as in

EQL (L3a)

for a left-adjusted equation numbered
(1.30).

Similarly, the macros .TS and .TE are
defined o separate tabies (see {2]) from text
with a little space. A very long table with a
heading may be broken across pages by
beginning it with .TS H instead of .TS, and
placing the line .TH in the table data after
the heading. If the table has no heading
repeated from page to page, just use the
ordinary .TS and .TE macros.

To learmn more about trof see (3] for a
general introduction, and (4] for the full
details (experts only). Information on
related UNIX commands is in [5]. For jobs
that do not seem well-adapted to —ms, con-
sider other macro packages. It is often far
easier to write 2 specific macro packages for
such tasks as imitating particular journais
than to try to adapt —ms.

Acknowiedgment. Many thanks are
due to Brian Kemighan for his help in the
design and implementation of this package,
and for his assistance in preparing this
manual.

References

(1] B. W. Kemighan and L. L. Cherry,
Typesetting Mathematics — Users Guide
(2nd edition), Bell Laboratories Com-
puting Science Report no. 17.

(2] M. E. Lesk, T — A Program to For-

mar Tables. Bell Laboratories Comput-
ing Science Report no. 45.

(3]
(4]

(5]

B. W. Kernighan, 4 Troff Turorial, Bell
Laboratories, 1976.

I. F. Ossanna, Nroff/Troff Reference
Manual, Bell Laboratories Computing
Science Report no. S1.

K. Thompson and D. M. Ritchie,

UNIX Programmer's Manual, Bell
Laboratories, 1978.

Begin abstract.

End abstract.
Specify author’s institution.

Specify author.
Begin boldface.

Provide the date on each page.

End displs

y.

Start display (also CD, LD, ID).
End equation.

Begin equation.

End footnote.

Begin footnote.

Begin italics.

Begin indented paragraph.
Release keep.

Begin floating keep.

Start keep.

S

Appendix A
Lilst of Commands

Return to single column format.
Start doubie column format.

LG Increase type size.
LP Left aligned block paragraph.
ND Change or cance! date.
NH Specifly numbered heading.
NL Return to normal type size.
PP Begin paragraph.
R Return to regular font (usually Roman).
RE End oge level of relative indenting.
RP Use released paper format
RS Relative indent increased one level.
SG Insert signature line.
SH Specify section heading.
SM Change to smaller type size.
TL Specify title.
UL Underline one word.
Register Names

The following register names are used by —ms internally. Independent use of these

names in one’s own macros may produce incorrect output. Note that no lower case letters are
used in any —ms internal name.

#T
1T
AY

1C
2C
Al
A2
Al
A4

cC
CD

CH
CM

DA
DE

Number registers used in —ms
LL
LT
MM
MN

HM IQ
HT IR
IK Kl
M L1
IP LE

M

o

String registers used in —ms

DW EZ
DY FA
El FE
E2 FJ

E3 FX
E4 FN
ES FO
EE FQ
EL FS

EM Fv
EN FY
EQ HO

I
I1
R
B
14
IS
ID
IE
M
IP
1z
KE

NA oJ PO T. TV
NC PD PQ T8 VS
NF PF PX TD YE
NS P! RO N YY
ol PN ST TQ ZN
KF MR Rl RT TL
KQ ND R2 S0 ™
KS NH R3 S1 TQ
LB NL R4 S2 TS
LD NP RS SG TT
LG oD RC SH UL
LP OK RE M WB
ME PP RF SN WH
MF PT RH SY wT
MH PY RP TA XD
MN QF RQ TE XF
MO R RS TH XK

Order of Commands in Input

NH, SH
\yr
PP, LP
~y -
text ...

Figure 1

A Guide to Preparing
Documents with —ms

M. E Lesk

Bell Laboratories August 1978

This guide gives some simple examples of do-
cument preparation on Bell Labs computers,
emphasizing the use of the —ms macro pack-
age. It enormously abbreviates information in
1. Typing Documents on UNIX and GCOS, by
M. E. Lesk:
2. Typesetting Mathematics — User's Guide,
by B. W. Kernighan and L. L. Cherry; and
3. Tbd = A Program to Format Tables, by M.
E. Lesk
These memos are all included in the UNIX
Programmer's Manual, Volume 2. The new
user should also have A Turorial Introduction to
the UNIX Text Editor, by B. W. Kernighan.

For more detailed information, read Advanced
Editing on UNIX and A Troff Tutorial, by B. W.
Kemighan, and (for experts) NroffTTroff Refer-
ence Manual by J. F. Ossanna. Information on
related commands is found (for UNIX users) in
UNIX for Beginners by B. W. Kemighan and
the UNIX Programmer’s Manual by K. Thomp-
son and D. M. Ritchie.

Contents

ATM . i i e
A released paper c et e eenee
An internal memo, and headings
Lists, displays, and footnotes

Indents, keeps, and double column
Equations and registers

Tabies and usage

00 ~ O\ b WN

Throughout the examples, input is shown in
this Helvetica sans serif font

while the resulting output is shown in
this Times Roman font.

UNIX Document no. 1111

2

Commands for a TM

TM 1978-5b3 999989 99999-11

.ND April 1, 1978

TL

The Roie of the Alien Wrench in Modern
Electronics

AU "MH 2G-111° 2345

J. Q. Penclipusher

AU “MH 1K-222° 5432

X. Y. Hardwired

Al

MH

LOK

Tools

Design

AB

This abstract shouid be_short enough to
fit on a sinQie page cover sheet

it must attract the reader into sending for
the compiete memorandum.

AE

CS10212567

NH

Introduction.

PP

Now the first paragraph of actual text _

Last line of text.

.SG MH-1234-JQP/XYH-unix
.NH

References ..

Commands not needed in a particular format are ig-
nored.,

Cover Sheet for T™M

@uu——u

This informenca s for empiovers of Bl [aborarormes. (GE! [1 %]}

Tive-The Roile of the Allen Wrench
in Modern Electronics

Daws-April 1, 1976

T™- 1973-5b3
Other Keywords- Tools
Design
Auther Location Ext Qharging Case- 99999

J. Q. Pencilpusher MH 2G-111 2345 Filing Case- 9999%
X Y. Hardwired MH 1K-222 5432

ABSTRACT

This absiract shouid be short enough (o
fit on a single page cover sheet [t must
attract the reader into sending for the com-
plete memorandum.

Pages Text 1C Other 2 Towd 12
No. Figures § No. Tables 6 No. Refs. 7

E-1932-U (7)) SEE REVERSE SIDE FOR DISTRIBUTION LIST

]

A Released Paper with Mathematics

E£Q
delim $3
EN
.RP

- (as for 2 T™)
£S10212867

PP

The solution to the torque handle equation

EQ (1)

sumtomOtoinf F(xsubl) =G (x)

EN

Ia found with the transformation $ x = rho over
theta $ where $ rho = G prime (x) $ and Stheta$
Is dertved _.

4

An Internal Memorandum

M

.ND January 24, 1958

TU

The 1958 Consent Decree
AU

Able, Baker &

Charley, Attya.

PP

Plaintitf, United States of America. having flied
Its complaint herein on January 14, 1948: the
defendants having appeared and fiied their
answer to such complaint denying the
substantive ailegations thereof: and the parties.

The Role of the Allen Wrench
in Modern Elsctronics
L Q. Amoyipacsiver
X. Y. Herdwired

Beil Laborztories
Murrsy Hill, New Jersey 07974

ABSTRACT

This abstract should be short enough w it on a
singiea pegs Cover shest [t must aaract the
resder ino serxding (or 1he compiets memoran-
dum.

Aprd 1, 1976

The Role of the Alles Wreach
in Modern Electronics

J. Q. Pemaipnaier
X V. Hardwered

Beil Laboratories
Murray Hillk New Jersey 07974

1. |atroduction
The solution 10 the torque handle equation

ZF(x,)-G(x) n
)

} 13 found with the Uransformation .r-% where p=G (x) and
| 9 is derived from weil-known pninc:pies.
{

by their attomeys, -

Beil Lsbmurasnries
Subject The 1956 Conseat Decres dux Januoary 24, 1956

fror: Able, Baker &
. ATyR

Phaindfl, United Swates of America, having filed its com-
plaint herein on January [4, |9549. the defendants having
appeared and flled their answer (0 such complant denying
the subsunuve allegations thereol. and the parties. by thetr
auomeys. having severilly consented 0 the entry of this
Final Judgment without trisl or adjudication of any issues
of fact or law herein and without this Final Judgment con-
sutuung any evidencs or admission by any party in respect
of any such issues;

Now, therefore before sny (lestimony has been laken
herein, and without trial or adjudicauon of any issus of fact
or law herem, and upon (he consent of ail parties herewo. it
is heredy

Ordered. adjudged and decreed as followsx:

L [Sherman Act]

This Court has jurtsdiction of (he subdject matter herein
and of all the purties hereto. The complaint siuates a clum
upon which relief may be granted against each of the
defendants undar Secuons l. 2 and j of the Act of
Congress of July . 1890, entitled **An act to protect trade
and commerce againgt uniaw(ul restraints and monopo-
lies.”* commmoniy known as the Sherman AcL as amended.
L [Dednitions]

For the purposes of this F_mu Judgmenc

() **Western'" shall mean (he defendant Western Elec-
tric Company, Incorporated.

Other formats possibie (specify before .TL) are: MR
(**memo for record”’). .MF (“*memo for file’). .EG
(**engineer’s notes’’) and .TR (Computing Science
Tech. Report).

Headings
NH .SH
Introduction. Appendix |
PP Lo

text text text taxt text taxt

1. Introduction
text text text

Appendix |
iext (ext text

$

A Simple List

JP .

J. Pencilpusher and X. Hardwired,
J

A New Kind ot Set Screw,

R

Proc. IEEE

B7S

{1978), 23-258.

JP 2

M. Nails and R. Ilrons,

J .

Fasteners for Printed Circuit Boarda,
R

Proc. ASME

B3

{1974}, 23-24.

LP (terminates list)

1. Il Pencilpusher and X. Hardwired, 4 New Kind
of Set Screw, Proc. [EEE 7§ (1976), 23-25S.

2 H. Nails and R. lrons, Fasteners for Prinied Cir-
cuit Boards. Proc. ASME 23 (1974), 23-24,

Displays
text text text text text text
DS
and now

for something

compietely difterent

DE

text text text text text text

hoboken harrison newark roseville avenue grove
street east orange beick church orange highland ave-
nue mountain sution south orsnge mapiewood
millburn short hills summit new providencs

and now
for something
compietely different

murray hill berkeley heights gillette stirling milling-
ton lyons basking ridge bernardsville far hills
peapack gladstone

Options: .DS L left-adjust: DS C: line-by-line
center, .DS B: make block, then center.

Footnotes

Among the most important occupants

of the workbench are the long-nosed pliers.
Without these basic tools*

FS

* As first shown by Tiger & Leopard

(1975).

FE

few assembliies couid be compieted. They may
lack the popular appeal of the siedgehammer

Among the most important occupants of the work-
bench are the long-nosed pliers. Without these basic
tools® lew assemblies could be completed. They
may lack the popular appeal of the siedgechammer

* As first shown by Tiger & Leopard (1979).

6

Multiple Indents

This is orcinary text to point out

the margins of the page.
JP 1,

First leval item

RS

JP a)

Second leval.

JP b)

Continued here with another second
level item, but somewhat longer.

RE
JP 2.

Return to pravious vaiuse of the

Indenting at this point.
JP 3.

Another

line,

This Is ordinary text to point out the margins of the

page.
1. First level item
8) Second level

b) Continued here with another second level
jtem, but somewhat longer.
2. Return 0 previous value of the indenting a1 this

paint
3. Aanother line.

Keeps’

Lines bracketed by the following commands are kept
together, and will sppear entirely on one page:

KS not moved
KE through tex

KF may float
KE in ext

Double Column

T

;l'ho Declaration of independencs

2C
PP

When-in the course of human events, it becomes
necessary for one people to dissoive the
political bonds which have connected them with
ancther, and to assume among the powers of the
earth the separate and equal station to which
the laws of Nature and of Nature’'s God entitle
them, a decent respect t0 the opinions of

The Declaration of Independence

When in the course of
human events, it be-
comes necessary for one
people to dissolve the
political bonds which
have connected them
with another, and to as-
sume among the powers
of the earth the separate
and equal station to
which the laws of Nature
and of Nature's God en-
lile them, a decent
respect (0 the opinions
of mankind requires that

they should declare :ihe
causes which impel them
to the separation.

We hold these truths
to be seif-evident, that
all men are created
equal. that they are en-
dowed by their creator
with certain unalienable
rights. that among these
are life, liberty. and the
pursuit of happiness.
That to secure these
rights. governments are
instituted among men.

7

Equations

A displayed eqQuation is marked

with an equation number at the right margin

Dy adding an argument lo the EQ line:

E£Q (1.3

X SuD 2 over 3 sup 2 “="sart (p z sup 2 +qz+r|
.EN

A displuyed equation is murked with an equution
number at the right margin by adding an argument

to the EQ line:
2
6;—2 - Jm’-bq:d-r (1.9

EQ I(22a)

Boid V bar sub nu”=Tleft [pile (s above b above
¢ | right] + left [matrix [col { A(11) above .
above . | col | . above . above .} cot {. abave .
above A(33) || right) cdot lett (pile { aipha
above beta above gamma. | nght |

EN
a] [A‘(ll) [a
b{+ . <18
¢ AQGH] Ly
EQ L

Fhat (chi) “mark = ~|del V|sup 2

.EN

EQ L

lineup =" {left ((partial V| over (partiai x| right)
| sup 2 + { left ({partial V} over (partial y] right

V.- (2.22)

) Jsup 2 lambaga > int
EN
Fly) =TV
av] [ar)
L 4= A
arx dy -

S adot S S bdotdots, S xitiide times y vecsS:
a. b, Exv.

See also the equations in the second table, panel 8.

(with defim S$ on, see panel).

Some Registers You Can Change

Line length Paragraph spacing
.ar LL T .arPDQ
Title length Page offset
ar LT 7 .nr PO 0.5i
Paint size Page heading
.nrPS 9 .ds CH Appendix
: : (center)
v
erucal spacing ds RH 7-25-76
.ar VS 11 (right)
Column width .ds LH Private
.ar CW i (left)
{ntercolumn spacing Page footer
-ar GW .Si .ds CF Draft
Margins — head and foot dsLlF . .
‘ar HM .75i ds RF Similar
.ar FM 78i

Page numbers
Paragraph indent .Ar % 3
.ar P1 2n

8

Tables
TS (@ indicates a (ab)
allbox;
css AT&T Common Siock
g ﬁ z Yeur| Price | Dividend
AT&T Common Stock 1971]41-54 1 $2.60
Year @ Price @ Dividend 2(41-34| 2.70
1971 041-540S2.60 3| 46-58 2.87
2941-5402.,70 4{40-53 J.24
30 46-5502.87 -
4040-5303.24 3 ;5 ;; 340
S®45-5203.40 6151- 95

8051-590.95° * (Rrst quarier only)
JE

* (first quarter only)

The meanings of the key-letters describing the align-
ment of each entry are;

¢ center A numencal
r right-adjust a subcolumn
| left-adjust s spanned

The global table options are csnter, expand, box,
doublebox, alibox, tab (x) and linesize (n).

TS (with delim S$ on. see panef 3)
doubisbox, center;
ce

R
Name @ Oefinition

Gamma ®SGAMMA (2) = int sub 0 sup inf\

t sup {z-1) & sup -t dtS$;
Sine®Ssin (x) = 1 over 2| (@ sSup ix - @ sup -ix)S
Error®S roman erf (2) = 2 over sart pi \

int sub O sup z e sup (-t sup 2} dts
Bessel®S Jsub 0 (z) = 1 over pi \

int sub Q sup pi cos (Z sin theta) d theta §
Zota @S zata (s) =\

sum from k=1 to inf X sup -s —{ Re’s > 1)S$
TE

Name Definition

Gamma I'(:)-fo- ~le=dr

Sine sin(.r)-%(e“-e"‘)
el -2

Error erf(-)-zfoe dr

Bessel "°(:)":.'.ro cos(:sind)d 8

Zeta {(s)=F &~ (Res>I)
[

Usage

Documents with just text:
troff -ms files
With equations only:
eqn files| troff -ms
With wbles only:
tbl files | troff -ms
With both tables and equations:
b files|eqn|{troi -ms

The above generates STARE oulput on GCOS: replace
—=st with —ph lor typesetter output.

The UNIX Time-Sharing System

Trademarks:
MUNIX, CADNUS for PCS
DEC, PDP for DEC
UNIX for Bell Laboratories

Copyright 1984 by
PCS GmbH, Pfalzer-Wald-Strasse 36, D-8000 Miinchen 90, tel. (0B9) 67804-0

The information contained herein is the property of PCS and shall neither be reproduced in
whole or in part without PCS's prior written approval nor be implied to grant any license to
make, use or sell equipment manufactured herewith.

PCS reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages (including consequential)

caused by reliance on the materials presented.

The UNIX Time-Sharing System®

D. M. Rirchie and K. Thompson’

ABSTRACT

UNIXT is a general-purpose, multi-user, interactive operating systern for
the larger Digital Equipment Corporation PDP-11 and the Interdata 8/32 com-
puters. It offers a number of features seldom found even in larger operating
systems, including

i A hierarchical file system incorporating demountable volumes,
ii Compatible file, device, and inter-process [/0,

iii The ability to initidte asynchronous processes,

iv System command language selectabie on a per-user basis,

v Over 100 subsystems including a dozen languages,

vi High degree of portability.

This paper discusses the nature and implementation of the file system and of
the user command interface.

1. INTRODUCTION

There have been four versions of the UNIX time-sharing system. The earliest (circa
1969-70) ran on the Digital Equipment Corporation PDP-7 and -9 computers. The second ver-
sion ran on the unprotected PDP-11/20 computer. The third incorporated multiprogramming
and ran on the PDP-11/34, /40, /45, /60, and /70 computers; it is the one described in the pre-
viously published version of this paper, and is also the most widely used today. This paper
describes only the fourth, current sysiem that runs on the PDP-11/70 and the Interdata 8/32
computers. In fact, the differences among the various systems is rather small; most of the revi-
sions made to the originally published version of this paper, aside from those concerned with
style, had to do with details of the implementation of the file system.

Since PDP-1]1 UNIX became operational in February, 1971, over 600 installations have been
put into service. Most of them are engaged in applications such as computer science education,
the preparation and formatting of documents and other textual material, the collection and pro-
cessing of trouble data from various switching machines within the Bell System, and recording
and checking telephone service orders. Our ownm installation is used mainly for research in

operaling systems, languages, computer networks, and other topics in computer science, and
also for document preparation.

Perhaps the most important achievement of UNIX is to demonstate that a powerful
operating system for interactive use need not be expensive either in equipment or in human
effort: it can run on hardware costing as little as 340,000, and less than two man-years were
spent on the main system software. We hope, however, that users find that the most important

* Copyright 1974, Association for Computing Machinery, Inc., Teprinted by permission. This is a revised ver-
sion of an articie that appeared in Communications of the acM, /7, No. 7 (July 1974), pp. 365-375. That aru-.
cle was a revised version of a paper presented at the Fourth AcM Symposium on Operating Systems Pring-
pies, s Thomas J. Watson Research Center, Yorkiown Heights, New York, October 15-17, 1973,

tUNIX s a Trademark of Beil Laboratories.

.2

characierisucs of the system are its simplicity. elegance, and ease of use.
Besides the operating sysiem proper, some major programs available under UNIX are

C compiler

Text editor based on QED!

Assembler, linking loader, symbolic debugger

Phototypesatting and equation setting programs®

Dozens of languages including Fortran 77, Basic. Smobol, APL, Algol 68, M6,
T™MG, Pascal

There is. a host of maintenance, utility, recrzation and noveity programs, all written locally.
The UNIX user community, which numbers in the thousands, has contributed many more pro-
grams and languages. [t is worth noting that the system is toawlly seif-supporting. All UNIX
software is mainuined on the sysiem; likewise, this paper and all other documents in this issue
were generated and formatted by the UNIX editor and text fortnastting programs.

II. HARDWARE AND SOFTWARE ENVIRONMENT

The POR-11/70 on which the Research UNIX sysiem is installed is a 16-bit word (8-bit
byte) computer with 768K bytes of core memory: the system kernei occupies 30K bytes about
equally divided between code and data tables. This system, however, inciudes a very large
number of device drivers and enjoys a generous allounent of space for [/O buffers and sysitem
tables: a minimal system capabie of running the software mentioned above can require as lictie
as 96K bytes of core altogether. There are even larger installations; see the descripuon of the
PWB/UNIX systems.® 5 for exampie. There are also much smaller, though somewhat restricted.
versions of the system.®

Our own POP-11 has two 200-Mb moving-head disks for file sysiern storage and swapping.
There are 20 variabie-speed communications interfaces attached to 300- and 1200-baud data
sets, and an additional 12 communication lines hard-wired to 9600-5aud terminais and sateilite
computers. There are aiso several 2400- and 4300-baud synchronous communication interfaces
used for machine-to~-machine fle transfer. Finally, there is a variety of miscailaneous devices
including nine-track magnetic tape, a line printer, a voice synthesizer, a phototypesetter, a digi-
tai switching network. and a chess machine.

The preponderancs of UNIX software is written in the abovementioned C language.” Early
versions of the operating sysiem were writtert in assembly language. but during the summer of
1973, it was rewritten in C. The size of the new system was about one-third greater than that
of the old. Since the new system not only became much easier (0 understand and 0 modify
but aiso included many functional improvements, including muitiprogramming and the ability
10 share resntrant code among several user programs, we consider this increase in size quite

=ptabie.

[I1. THE FILE SYSTEM

The most important roie of the system is to provide a file system. From the point of view
of the user, there are three kinds of files: ordinary disk files, directories, and special files

3.1 Ordinary files

A file conuins whatever information the user places on it, for example, symbolic or
binary (object) programs. No particular structuring is expected by the system. A file of text
consists simply of a swring of characters, with lines demarcated by the newline character. Binary
programs are sequenc=3 of words as they will appear in core memory when the program starts
executing. A few user programs manipulate files with more strucrure; for sxample, the assem-
bler generates, and the loader expects. an object file in a particular format. However, the struc-
ture of fles is conurotled by the programs that use them. not by the system.

3.2 Directories

Directories provide the mapping between the aames of files and the fles themseives, and
thus induce a structure on the file system as a whole. Each user has a directory of his own
files: he may aiso create subdirectories to conuain groups of files conveniently treated together.
A directory behaves exactly like an ordinary file except that it cannot be written on by
unprivileged programs. so that the system controls the contents of directories. However, any-
one with appropriate permission may read a directory just like any other file.

The system maintains several directories for its own use. One of these is the root direc-
tory. All files in the system can be found by tracing a path through a chain of directories until
the desired file is reached. The starting point for such searches.s often the root. Other sysiem
directories contain all the programs provided for general use; that is, all the commands As will
be seen, however, it is by no means necessary that a program reside in one of these directories
for it 10 be executed.

Files are named by sequences of 14 or fewer characters. When the name of a file is
specified to the system, it may be in the form of 2 path name, which is a sequence of directory
names separated by slashes, **/°', and ending in a fle name. If the sequence begins with a
slash, the search begins in the root directory. The name /alpha/beta/gamma causes the sys-
temn to search the root for direciory alpha, then to search alpha for beta, finally 1o find gamms
in beta. gamms may be an ordinary fle, a directory, or a special file. As a limiting case, the
name **/"" refers to the root itself.

A path name not starting with '*/’’ causes the system to begin the search in the user’s
current directory. Thus, the name alpha/beta specifies the file named beta in subdirectory
alpha of the current directory. The simplest kind of name, for exampie, aipha, refers to a file
that itself is found in the current directory. As another limiting case, the null file name refers
to the current directory.

The same non-directory file may appear in several directories under possibly different
names. This feature is called linking, a directory entry for a file is sometimes called a link The
UNIX system differs from other sysiems in which linking is permitied in that all links w0 a file
have equal status. That is, a file does not exist within a particular directory; the directory entry
for a file consists merely of its name and a pointer to the information actually describing the
file. Thus a file exists independently of any directory entry, although in practice a file is made
to disappear along with the last link to it

Each directory always has at least two entries. The name *‘."" in each directory refers to
the directory itself. Thus a program may read the current directory under the name **.""
without knowing its complete path name. The .:ame **.." by convention refers 1o the parent
of the directory in which it appears, that is, to the directory in which it was created.

The directory structure is constrained to have the form of a rooted =ee. Except for the
special entries ** .’ and ‘*..’", each directory must appear as an entry in exactly one other
directory, which is its parent. The reason for this is to simplify the writing of programs that
visit subtrees of the directory structure, and more important, to avoid the separation of portions
of the hierarchy. If arbitrary links to directories were permitted, it would be quite difficult to
detec: when the last connection from the root to a directory was severed

3.3 Special files

Special files constitute the most unusual feature of the UNIX file systern. Each supported
[/0 device is associated with at least one such file. Special files are read and written just like
ordinary disk files, but requests to read or write result in activation of the associated devics.
An entry [or each special file resides in directory /dev, although a link may be made to one of
these files just as it may to an ordinary file. Thus, for example, to write on a2 magnetic tape one
may write on the file /dev/mt. Special files exist for each communication line, each disk, each
tape drive, and for physical main memory. Of course, the active disks and the memory special
file are protected from indiscriminate access.

. 4.

There is a threefold advantage in treating [/O devices this way: flle and device [/O are as
similar as possible; Ole and device names have the same syntax and meaning, so that a program
expecting a fle name as a parameter can be passed a device name: finally, special files are sub-
ject 10 the same protection mechanism as regular files.

3.4 Remavable file systems

Although the root of the file system is always stored on the same device. it is not neces-
sary that the entire file system hierarchy reside on this device. There is a2 mount system
request with two arguments: the name of an existing ordinary fle, and the name of a special file
whose associated storage volume (e.g., a disk pack) should have the structure of an indepen-
dent file system containing its own directory hierarchy. The effect of mount is to cause refer-
ences to the heretofore ordinary file 1o refer instead to the root directory of the file system on
the removable volume. [n effect, mount replaces a leaf of the hierarchy tree (the ordinary file)
by a whole new subtree (the hierarchy stored on the removable volume). After the mount.
there is virtually no distinction between files on the removable voiume and those in the per-
maneat fle system. [n our instailation., for exampie. the root directory resides on a smail parti-
tion of ane of our disk drives, while the other drive, which contains the user’s fles. is mounted
by the system initialization sequence. A mountabie file sysiem is generated by writing on its
corresponding special file. A utility program is available to create an empty file system. or one
may simply copy an existing fle system.

There is oniy one exception 0 the rule of identical treatment of files on different devices:
a0 link may exist between one flle systemr hierarchy and another. This restriction is enforced
so as to avoid the elaborate bookkeeping that would otherwise be required (o assure removal of
the links whenever the removable volume is dismounted

3.5 Protection

Althouglr the access conTol scheme is quite simple, it has some unusual features. Each
user of the system is assigned a unique user identification number. When a file is created, it is
marked with the user D of its owner. Also given for new files is a set of tea protection bits.
Nine of these specify independently read, write, and execute permission for the owner of the
fle, for other members of his group, and for all remaining users.

If the tenth bit is on, the system will temporarily change the user identification (hereafter,
user) of the current user to that of the creator of the file whenever the file is executed as a
program. This change in user ID is effective only during the execution of the program that calls
for it The set-user-iD feature provides for privileged programs that may use files inaccessible
to other users. For example, a program may keep an accounting fle that should neither be read
nor changed excspt by the program itself. If the set-user-iD bit is on for the program, it may
access the file although this access might be forbidden to other programs invoked by the given
program'’s user. Since the actual user ID of the invoker of any program is always available, set-
user-(D programs may take any measures desired (0 satisfy themseives as to their invoker's
cedentials. This mechanism is used to allow users 10 execute the carefully written cormmands
that call privileged system enwies. For example, there is a system enuy invokable only by the
“‘super-user’’ (below) that creates an empty directory. As indicated above, direciories are
expecied to have entries for **.’" and **.."" The command which creates a directory is owned
by the super-user and has the set-user-{D bit set. After it checks its invoker’s authorization to
create the specified directory, it cceates it and makes the enuies for **. " and **.."

Because anyone may set the set-user-{D bit on one of his own fles. this mechanism is
generally- available without administrative interveation. For. example, this protecion scheme
sasily solves the MOO accounting problem posed by *“Aleph-auil.”"$

The system recognizes one particular user ID (that of the '‘super-user’’) as sxempt {rom
the usual constraints on file access; thus (for example), programs may be written to dump and
reload the file system without unwanted interference {rom the protection system.

3.6 1/0 aulls

The sysiem calls 1o do 1/0 are designed to eliminate the differences between the various
devices and styles of access. There is no distinction between *‘random’’ and **sequential** 1/0.
nor is any logical record size imposed by the system. The size of an ordinary file is determined
by the number of bytes written on it, no predetermination of the size of a file is necessary or
possible.

To illustrate the essentials of 1/0, some of the basic calls are summarized below in an
anonymous language that will indicate the required parameters without getting into the underly-
ing complexities. Each call 10 the sysiem may potentially resuit in an error remm. which for
simplicity is not represented in the calling sequence.

To read or write a file assumed to exist already, It must be opened by the following cali:
filep = open (name, flag)

where name indicates the name of the file. An arbitrary path name may be given. The flag
argument indicates whether the file is 10 be read, written, or *‘updated,’’ that is, read and writ-
len simultaneousiy.

The returned value fllep is called a Jile descripror. [1 is 2 small integer used to identify the
file in subsequent calls 1o read, write, or otherwise manipulate the file.

To create 3 new flle or completely rewrite an old one, there is a create sysiem call that
creates the given file if it does not exist, or truncates it (o zero length if it does exist; crexte
also opens the new file for writing and, like open, returns s file descripior.

The file system maintains no locks visible to the user, nor is there any restriction on the
number of users who may have a file open for reading or writing. Although it is possible for
the contents of a file 10 become scrambled when two users write on it simultaneously, in prac-
uce difficulties do not arise. We take the view that locks are neither necessary nor sufficient, in
our environment, to prevent interference between users of the same file. They are unnecessary
because we are not faced with large, single-file data bases maintained by independent processes.
They are insufficient because locks in the ordinary sense, whereby one user is prevented from
writing on a file that another user is reading, cannot prevent confusion when, for example, both
users are editing a file with an editor that makes a copy of the file being edited.

There are, however, sufficient internal interlocks to maintain the logical consistency of the
file system when two users engage simultaneously in activities such as writing on the same file,
creating files in the same directory, or deleting each other’s open files.

Except as indicated beiow, reading and writing are sequential. This means that if a partic-
ular byte in the file was the last byte written (or read), the next [/0 call implicitly refers to the
immediately {ollowing byte. For each open flle there is a pointer, maintained inside the system.
that indicates the next byte 10 be read or written. If n bytes are read or written, the pointer
advances by a bytes.

Once a file is open. the following calls may be used:

n = read (filep, buffer, count)
n = write (filep, buffer, count)

Up to count bytes are transmitted between the file specified by fllep and the byte array specified
by buffer. The returned value n is the number of bytes actually transmitted. In the write case,
n is the same as count except under exceptional conditions, such as [/O errors or end of physi-
cal medium on special fles; in 2 read, however, n may without error be less than count. If the
read pointer is so near the end of the file that reading count characters would cause reading
beyond the end. oniy suflicient bytes are transmitted to reach the end of the file; also.
typewriter-like lerminals never return more than one line of inpuL. When a read call returns
with n equal to zero, the end of the file has been reached For disk files this occurs when the
read pointer becomes equal to the current size of the file. It is possible to generate an end-of-
file from a terminal by use of an escape sequence that depends on the device used

. 6 -

Bytes wnttea afec: only those paris of a file implied by the position of the write pointer
and the count; no other part of the fle is changed. If the last byte lies beyond the end of the
file. the flle is made to grow as nesded.

To do random (direct-access) I/O it is only necessary to move the read or write pointer to
the appropriate location in the file.

location = lseek (filep, odset, base)

The pointer asscciated with filep is moved to a position offset bytes from the beginning of the
file. from the current position of the pointer, or {rom the end of the file. depending on base.
offset may be negative. For some devices (e.g.. paper tape and terminals) seek calls are
ignored. The actual offset {rom the beginning of the file to which the pointer was moved is
returmed in location

There are several additional system entries having to do with /O and with the file system
that will aot be discussed. For example: close a file, get the status of a file, change the protec-
tion mode or the owner of a file, create a directory, make a link to an existing file, defete 2 fle.

IV. (MPLEMENTATION OF THE FILE SYSTEM

As mentioned in Section J.2 above, a directory entry contains only a name for the assoq-
ated file and 1 pointer to the fle itself, This pointer is an integer called the j-aumber (for index
aumber) of the Gle. When the fle is acce=ssed, its {-qumber is used as an index into a sysiem
table (the :-{ist) stored in a known part of the device on which the directory resides. The enuy
found thereby (the file's i-tode) contains the description of the file:

t the user and group-D of its owner

u its protection bits

ii the physical disk or tape addresses for the fle contents

iv s size

v time of creation, last use, and last modification

vi the pumber of links to the fle, that is, the number of times it appears ia a direczory
vii a code indicating whether the file is a directory, an ordinary file, or a special fle.

The purpose of an open or create system call is to turmn the path name given by the user into an
i-aumber by searching the expiicitdy or implicitly named directories. Oncs a fle is open, ifs
device, i-aumber, and read/write pointer are stored in a system table indexed by the file
descriptor returned by the open or create Thus, during a subsequent cll to read or write the
Sle, the descriptor may be =asily related to the information aecsssary to access the file.

When a gew file is created, an i-aode is allocated for it and a directory entry is made that
contains the name of the file and the i-aode qumber. Making a link to an existing file invoives
crealing a directory entry with the new name, copying the i-number from the original file entry,
and incrementing the link-count feld of the i-node. Removing (deieting) a dle is dome by
decrementing the link-count of the i-aode specified dy its directory entry and erasing the direc-
tory eatry. I the link-count drops to 0, any disk blocks in the file are freed and the i-node is
de-allocated,

The spacs on ail disks that contain a file system is divided into 2 aumber of 512-byte
biocks logically addressed {rom O up to a limit that depends on the device. There is spacs in
the i-gode of each file for 13 devics addresses. For nonspecial files, the first 10 devies
addresses point at the frst 10 blocks of the file. If the file is larger than 10 biocks, the 11 dev-
ic= address points to an indirect block containing up to 128 addresses of additional bliocks in the
dle. Still larger dles use the tweifth device address of the i-node to point to a doubie-indirect
block naming 128 indirect blocks, each pointing to 128 blocks of the fle. If required. the thir-
tesnth device address is a triple-indirect block. Thus files- may concsptuaily grow to
((10+128+128°+128")-512] bytes. Oncs opened. bytes numbered beiow 5120 cn be read
with a single disk access: bytes in the range 5120 to 70,656 require two acc=sses; bytes in the

7.

range 70,656 1o 8,459,264 require three accesses; bytes from there (0 the largest file
(1,082.201,088) require four accesses. In practice, a device cache mechanism (see below)
proves effective in eliminating most of the indirect fetches.

The foregoing discussion applies to ordinary files. When an 1/0 request is made 10 a file
whose i-node indicates that it is special, the last 12 device address words are immaterial, and
the first specifies an internal device name, which is interpreted as a pair of numbers represent-
ing. respectively, a device type and subdevice number. The device type indicates which system
routine will deal with [/O on that device: the subdevice number selects, for example, a disk
drive attached to a particular controller or one of several similar terminal interfaces.

In this environment, the implementation of the mount system call (Section 3.4) is quite
straightforward. mount maintains a systemn table whose argument is the i-number and device
name of the ordinary file specified during the mount, and whose corresponding value is the
device name of the indicated special file. This tabie is searched for each i-number/device pair
that turns up while a path name is being scanned during an open or creste; il a match is found,
the i-number is replaced by the i-number of the root directory and the device name is replaced
by the table vaiue.

To the user, both reading and writing of files appear 10 be synchronous and unbuffered
That is, immediately after return from a read call the dawa are available; conversely, after a
write the user’s workspace may be reused. In fact, the system mainuins a rather complicated
buffering mechanism that reduces greatly the number of [/O operations required to access a
file. Suppose a write call is made specifying transmission of a single byte. The system will
search its buffers to see whether the affected disk block currenuy resides in main memory; if
not, it will be read in from the device. Then the affected byte is replaced in the buffer and an
entry is made in a list of blocks to be written. The return from the write call may then take
place, although the actual [/O may not be completed until a later time. Conversely, if a single
byte is read, the systern determines whether the secondary storage block in which the byte is
located is already in one of the system's buffers: if so, the byte can be returned immediately. If
not, the block is read into a buffer and the byte picked out

The sysiem recognizes when a program has made accesses 10 sequentidl blocks of a file,
and asynchronously pre-reads the next biock. This significanty reduces the running time of
most programs while adding little to system overhead

A program that reads or writes files in units of 512 bytes has an advantage over a program
that reads or writes a single byte at a time, but the gain is not immense; it comes mainly from
the avoidance of system overhead. If a program is used rarely or does no great volume of I/O,
it may quite reasonably read and write in units as small as it wishes.

The notion of the i-list is an unusual feature of UNIX. In practice, this method of organiz-
ing the file system has proved quite reliabie and easy to deal with. To the system itself, one of
its strengths is the fact that each file has a short, unambiguous name related in a simple way to
the protection, addressing, and other information needed to- access the file. It also permits a
quite simple and rapid algorithm for checking the consisiency of a file system, for example,
verification that the portions of each device containing useful information and those free to be
allocated are disjoint and together exhaust the space on the device. This algorithm is indepen-
dent of the directory hierarchy, because it need only scan the linearly organized i-list. At the
same ume the notion of the i-list induces certain peculiarities not found in other Gle system
organizations. For example, there is the question of who is 0 be charged for the space a file
occupies, because all directory entries for a file have equal status. Charging the owner of a file
is unfair in general, for one user may create a file, another may link to it. and the first user may
delete the file. The first user is still the owner of the file, but it should be charged to the
second user. The simplest reasonably fair algorithm seems to be 10 spread the charges equally
among users who have links to a file. Many installations avoid the issue by not charging any
fees at all.

V. PROCESSES AND IMAGES

An image is a2 computer execution environment. [t includes 3 memory image. general
register values, status of open files, current directory and the like. An image is the current
siate of a pseudo-computer.

A process is the execution of an image. While the processor is executing on behalf of 2
process, the image must reside in main memory; during the execution of other proc=sses it
remains in main memory unless the appearance of an active, higher-priority process (orces it o
be swapped out to the disk.

The user-memory part of an image'is divided into three logical segments. The program
text segment begins at location 0 in the virtual address space. During execution, this segment
is write~protected and a single copy of it is shared among all processes executing the same pro-
gram. At the first hardware protection byte boundary ibove the program text segment in the
virtual address spacs begins a non-shared, writable data segment, the size of which may be
extended by a system cail. Starting at the highest address in the virtual address space is a stack
segment, which automaticaily grows downward as the stack pointer ucruates

§.1 Processes

Except while the system is bootstrapping itseif into operation, 2 new procsss can come
into existence oniy by use of the fork system call

processid = fork ()

When fork is executed, the process splits into (wo independently executing processes. The two
procssses have independent copies of the. original .memory image. and share ail open files The
new processes differ oaly in that one is considered the parent process: in the parent, the
returned processid actually identifies the child process and. is never 0, while in the child, the
returned value is always 0.

Becgquse the values returned by fork in the parent and child process are distinguishabie,
each proczss may determine whether it is the parent or chiid.

5.2 Pipes

Processes may communicate with related processes using the same sysiem read ind write
calls that are used {or file-system /O. The all:

filep = pipe ()

returns a file descriptor filep and creates an inter-process channe! called a pipe This channel,
like other open files, is passed (rom parent (o child process in the image by the fork call. A’
read using a pipe fle descriptor waits until another process writes using the file descriptor for
the same pipe. At this point, data are passed berween the images of the (wo proczsses. Neither
process need know that a pipe, rather than an ordinary file, is involved

Although inter-procsss communication via pipes is a2 quite valuable wol (see Secton 6.2),
it is not a completely general mechanism, because the pipe must be set up by a common ancss-
tor of the processes invoived.

5.3 Execudoun of programs
Another major system primitive is invoked by

execute (file, arg,, arg.,, ,arg,)

which requests the system (o read in and execute the program named by file, passing it sting
arguments arg,. arg,;. ... arg,. All the code and data in the procsss invoking execute is
replaced from the file, but open files, current directory, and inter-procsss relationships are
unaltered. Only if the <all fails, for example because flle could not be found or because its
sxecute-permission bit was not set, does a return take placs from the execute primitive; it

.9 .

resembles a *‘jump’’ machine instruction rather than a subroutine call

§.4 Process synchronization
Another process control sysiem call:

processid = wait (status)

causes its caller to suspend execution until one of its children has completed execution. Then
wait returns the processid of the terminated process. An error return is taken if the calling
process has no descendants. Certain status from the child process is also available.

5.5 Termination
Lastty:

exit (status)

lerminates a process, destroys its image, closes its open files, and generally obliterates it The
parent is notified through the wait primitive, and status is made available to it. Processes may
also terminate as a result of various illegal actions or user-generated signals (Section VII
below).

V1. THE SHELL

For most users, communication with the system is carried on with the aid of a program
called the shell The shell is a command-line interpreter: it reads lines typed by the user and
interprets them as requests (o execute other programs. (The shell is described fully elsewhere,’
so this section will discuss only the theory of its operation.) In simplest form, a command line
consists of the command name followed by arguments to the command, all separated by spaces:

' command arg, &g, ... AR,

The shell splits up the command name and the arguments into separate strings. Then a file
with name command is sought; command may be a path name including the **/** character to
specify any file in the system. If command is found, it is brought into memory and executed.
The arguments collected by the shell are accessible to the command. When the command is
finished, the shell resumes its own execution, and indicates its readiness to accept another com-
mand by typing a prompt character.

If file command cannot be found, the shell generally prefixes a string such as /bin/ to
command and atternpts sgain to find the file. Directory /bin contains commands intended to
be generally used. (The sequence of directories to be searched may be changed by user
request.)

6.1 Standard I/0

The discussion of 17O in Section III above seems to imply that every file used by a pro-
gram must be opened or created by the program in order to get a file descriptor for the file.
Programs executed by the shell, however, start off with three open files with file descriptors 0,
1, and 2. As such a program begins execution, file 1 is open for writing, and is best understood
as the standard output file. Except under circumstances indicated below, this file is the user’s
terminal. Thus programs that wish to write informative information ordinarily use file deacrip-
tor 1. Conversely, file 0 starts off open for reading, and programs that wish to read messages
typed by the user read this file.

The shell is able to change the standard assignments of these file descriptors from the
user’s terminal printer and keyboard. If one of the arguments to a command is prefixed by
*>" file descriptor 1 will, for the duration of the command, refer to the file named after the
*“>" For example:

-10 -

ls

ordinarily lists, on the typewtiter, the names.of the fles in the curreat directory. The com-
mand:

Is >there

creates a file called there and placss the listing there. Thus the argument > there means “‘place
output on there.'” On the other hand:

ed

ordinarily enters the editor, which takes requests from the user via his keyboard The com-
mand

ed <script

interprets script as a file of editor commands; thus <script means ‘‘take input {rom scripe.””

Although the file name following '*<'* or *“>' appears to be an argument (o the com-
mand, in fact it is interpreted completely by the shell and is not passed (o the command at all
Thus no special coding 0 handle /O redirection is needed within each command; the com-
mand need mereiy use the standard fle descriptors 0 and | where appropriate.

File descriptor 2 is. like file 1, ordinarily associated with the terminal output stream.
When an output-diversion request with **>"" is specified, file 2 remains artached 0 the termi-
nal. so that commands may produce diagnostic messages that do not silently end up in the out-
put fle.

6.2 Filters

An extension of the standard [/O notion is used to direct output from one command to
the input of another. A sequence of commands separated by vertical bars causes the sheil
execute all the commands simultaneously and to arrange that the standard output of each com-
mand be delivered to the standard input of the next command in the sequencs. Thus in the
command line:

's | pr =2 | opr

Is lists the names of the files in the current directory; its output is passed (0 pr, which paginates
its input with dated headings. (The argument **=2'" requests double-column outputr) Likewise,
the output from pr is input lo opr; this command spools its input onto a file for off-line print-
ing.

This procedure could have been carried out more clumsily by:

Is >templ
pr =2 <templ >templ
opr <templ

foilowed by removal of the temporary files. In the absence of the ability to redirect output and
input, a still clumsier method wouid have been t0 require the ls command to accept user
requests to paginate its output, to priat in multi-<columna format, and to arrange that its ourput
be delivered of-line. Actually it would be surprising, and in fact unwise for efficiency reasons,
to expect authors of commands such as ls to provide such a wide variety of output options.

A program such as pr which copies its standard input to its standard output (with procsss-
ing) is called a filer. Some filters that we have found useful perform character transliteration,
selection of lines according to a pattern, sorting of the input, and encryption and decryption.

Z 11

6¢.) Command separators; muititasking

Another fcature provided by the shell is relatively straightforward Commands need not
be on different lines; instead they may be separated by semicolons:

Is; ed

will first list the contents of the current directory, then enter the editor,

A related feature is more interesting. If a command is followed by *‘&,’* the shell will not
wait for the command to finish before prompting again: instead, it is ready immediately to
accept 3 new command. For exampie:

as source >output &

causes source to be assembled, with diagnostic output going to output; no matter how long the
assembly takes, the shell returns immediately, When the shell does not wait for the completion
of a command, the identification number of the process running that command is printed This
identification may be used to wait for the compietion of the command or 1o terminate it. The
“&’ may be used several times in a line:

as source >output & ls >files &

does both the assembly and the listing in the background. In these examples, an output file
other than the terminal was provided; if this had not been done, the outputs of the various
commands would have been inu:rminsl'cd.

The shell aiso allows parentheses in the sbove operations. For example:
(date; Is) >x &

writes the current date and time {ollowed by a list of the current directory onto the file x. The
shell also returns immediately for another request.

6.4 The shell as s command; command files

The shell is itself 3 command, and may be called recursively. Suppose flie tryout contains
the lines:

a3 source

my a.0ut lestprog
testprog

The mv command causes the file a.out to be renamed testprog. s.out is the (binary) output of
the assembler, ready to be executed. Thus if the three lines above were typed on the keyboard,
source would be assembled, the resulting program renamed testprog, and testprog executed.
When the lines are in tryout, the command:

sh <tryout

would cause the shell sh 10 execute the commands sequentiaily.

The shell has further capabilities, including the ability to substitute parameters and to con-
sTuct argument lists from a specified subset of the flle names in a directory. It also provides
general conditional and looping constuctions.

6.5 Impiementation of the shell

The outline of the operation of the shell can now be undersiocod Most of the time, the
shell is waiting for the user to type 2 command When the newline character ending the line is
typed, the shell's read call returns. The shell analyzes the command line, putting the argu-
ments in a form appropriate for execute. Then fork is called. The child process, whose code of
course is still that of the shell, attempts to perform an execute with the appropriate arguments.
If successful, this will bring in and start execution of the program whose name was given
Meanwhile, the other process resulting from the fork, which is the parent process, waits for the

.12 -

child process to die. When this happens, the shell knows the command is finished. so it rypes
its prornpt and reads the keyboard to obtain another command.

Given this (ramework, the implementation of background processes is trivial; whenever a
command line conuins '‘&," the shell merely refrains from waiting for the procsss that it
ceated 0 execute the command

Happily, all of this mechanism meshes very nicsly with the notion of standard input and
output files. When a process is created by the fork primitive, it inherits not only the memory
image of its parent but also all the files currently open in its pareat, including those with file
descriptors 0, 1, and 2 The shell, of course, uses these files to read command lines and (0
write its prompts and diagnostics, and in the ordinary case its children—=the command
programs—inherit them automatically. When an argument with ** <" or **>" is given, how-
ever, the offspring procsss, just before it performs execute, makes the standard /O file descrip-
wor (0 or |, respectively) refer ta the named file. This is easy because, by agreement, the smal-
lest. unused file descriptor is assigned when a.new file is opened (or created); it is only nec=s-
sary to close file 0 (or 1) and open the named file. Because the process in which the command
program runs simply terminates when it is through, the association between a file specified after
“<" or *>" and file descriptor 0 or | is ended automatically when the process dies. There-
fore the shell nesd not know the actual names of the files that are its own standard input and
output, because it ne=d never reopen them.

Fiters are straighdorward extensions: of standard [/O redirection with pipes used instead
of fles

In ordinary circumstances, the main loop of the, sheil never terminates. (The main loop
inciudes the branch of the return from fork belonging to the pareat process; that is, the branch
that does a wait, then reads another command line.) The one thing that causes the sheil o tes-
minate is discovering an end-of-file condition on its input file. Thus, when the shell is exe-
cuted as 2 command with a given input file, as in:

sh <comfile

the commands in comfile will be executed until the end of comfile is reached; then the instance
of the sheil invoked by sh will terminate. Because this sheil process is the child of another
instance of the shell, the wait executed in the latter will return, and another command may
then be processed.

6.6 Initlalization

The instances of the sheil to which users type commands are themseives childrea of
another process. The last step in the initialization of the system is the creation of a single pro-
cess and the invocation (via execute) of a program cailed init. The roie of init is o create one
process [or each terminai channel The various subinstances of init open the appropriate termi-
nals for input and output on files 0, 1, and 2, waiting, if necessary, for carrier to be established
on dial-up lines. Then a message is (yped out requesting. that the user log in. When the user
types a2 name or other identification, the appropriate instance of init wakes up, recsives the
log-in line, and reads a password file. If the user’'s name is found, and if he is able to supply
the correct password, init changes to the user’s default current directory, sets the process's user
D to that of the person logging in, and performs an execute of the shell At this point, the
shell is ready to rec=ive commands and the logging-in protocol is complete.

Meanwhile, the mainsweam path of init (the pareat of ail the subinstances of itseif that
will later become sheils) does a wait. If one of the child processes terminates, either because a
sheil found an end of file or because a user typed an incorrect name or password, this path of
init simply recreates the defunct process, which in turn reopens the appropriate input and out-
put files and lypes another log-in message. Thus a user may log out simply by typing the 2nd-
of-file sequencs to the shell.

.13 .

6.7 Other programs as shell

The shell as described above is designed to allow users full access to the facilities of the
system, because it will invoke the execution of any program with appropriate protection mode.
Sometimes, however, a different interface 10 the system is desirable, and this feature is easily
arranged for.

Recall that after a user has successfully logged in by supplying a name and password, Init
ordinarily invokes the shell to interpret command lines. The user’s entry in the password file
may contain the name of a program to be invoked after log-in instead of the shell. This pro-
gram is free to interpret the user's messages in any way it wishes.

For exampie, the password file entries for users of a secretarial editing system might
specify that the editor ed is to be used instead of the shell. Thus whean users of the editing sys-
tem log in, they are inside the editor and can begin work immediately; also, they can be
prevented from invoking programs not intended for their use. In practice, it has proved desir-
able 10 allow a temporary escape from the editor to execute the formatting program and other
utilities.

Several of the games (e.g., chess, blackjack, 3D tic-tac-toe) available on the system illus-
trate 2 much more severely restricted environment. For each of these, an entry exists in the
password file specifying that the appropriate game-playing program is to be invoked instead of
the sheil. People who log in as a player of one of these games find themselves limited to the
game and unable o investigate the (presumably more interesting) offerings of the UNIX system
as a whoie.

VII. TRAPS

The PDP-11 hardware detects 2 number of program faults, such as references to aoon-
existent memory, unimplemented instructions, and odd addresses used where an even address
is required. Such faults cause the processor to trap to a system routine. Unless other arrange-
ments have been made, an illegal action causes the system to terminate the process and to write
its image on file core in the current directory. A debugger can be used to determine the state
of the program at the time of the fault.

Programs that are looping, that produce unwanted output, or about which the user has
second thoughts may be halted by the use of the interrupt signal, which is generated by typing
the *‘delete™ character. Unless special action has been taken, this signal simply causes the pro-
gram to cease execution without producing a core file. There is also a quit signal used to force
an image file to be produced. Thus programs that loop unexpectedly may be halted and the
remains inspected without prearrangement.

The hardware-generated faults and the interrupt and quit signals can, by request, be either
ignored or caught by a process. For example, the shell ignores quits to prevent a quit from log-
ging the user out. The editor catches interrupts and returns to its command level. This is use-
ful for stopping long printouts without losing work in progress (the editor manipulates a copy of
the file it is editing). In systems without floating-point hardware, unimplemented instructions
are caught and floating-point instructions are interpreted.

VYIIl. PERSPECTIVE

Perhaps paradoxically, the success of the UNIX system is largely due to the fact that it was
not designed to meet any predefined objectives. The first version was writien when one of us
(Thompson), dissatisfied with the available computer facilities, discovered a little-used PDP-7
and set out to create a more hospitable environment. This (essentially personal) effort was
sufficiently successful to gain the interest of the other author and several colleagues, and later
to justify the acquisition of the PDP-11/20, specifically to support a text editing and formatting
system. When in turn the 11/20 was outgrown, the system had proved useful enough (o per-
suade management to invest in the PDP-11/45, and later in the PDP-11/70 and Interdata 8/32
machines, upon which it developed to its present form. Our goals throughout the effort, when

.14 -

articulated at all, have always been (0 build a comfortable relationship with the machine and o
explore ideas und inventions in operating systems and other software. We have not been faced
with the aeed to satisfy someone else's requirements, and for this (reedom we are grateful.

Three considerations that influenced the design of UNIX are visible in retrospect.

First because we are programmers, we naturally designed the system to make it easy (o
write, lest, and run programs. The most important expression of our desire for programming
convenieacs was that the system was arranged {or interactive use, even though the original ver-
sion only supported one user. We believe that a properly designed interactive system is much
more productive and satisfying to use than s ‘‘batch™ system. Moreover, such a system is
rather easily adaptable to noainteractive use, while the converse is not true.

Second: there have always been fairly severe size constraints on the system and its
software. Given the partially antagonistic desires. for reasonable efficiency and expressive
power, the size constraint has encouraged not only economy, but aiso a certain elegance of
design. This may be a thinly disguised. version of the ‘‘salvation through suffering’’ philesophy,
but in our case it worked.

Third: gearty from the start, the sysiem was able to, and did. maintin itseif. This fact is
more important than it might seem. [f designers of 2 systemn are forced (0 use that system.
they quickly become aware of its. funciional and superficial deficiencies and are strongly
motivated. to correct them before it is too late. Because all source programs were always avail-
able and essily modified on-line, we were willing to revise and rewrite the system and its
software when new ideas were invented. discovered, or suggested by others.

The aspects of UNIX discussed in this paper exhibit clearty at least the first two of these
design considerations. The. interface to the fle sysiem, for example, is extwremely convenient
from a programming standpoint. The lowest possible interface. level is designed (o eliminate
distinctions. between the various devices and files and between direct and sequeatial access. No
large ‘‘acc=ss method’ routines are required Lo insulate the programmer {rom the system calls;
i fact, all user programs either call the system directly or use 2 small library program, less than
a page long. that buffers a number of characters and reads or writes them ail a¢ once.

Another imporuant aspect of programming convenience: is that there are no ‘“‘control
blocks™ with a complicated structure partially maintained by and depended on by the file system
or other sysiem cails. Generally speaking, the contents of a program's address space are the
property of the program, and we have tried to avoid placing restrictions on the data sguctures
within that address space.

Given the requirement that all programs should be usable with any file or device as input
Qr qulpul, it is also desirable to push device-dependent considerations into the operating system
itself. The only aiternatives seem to be to load, with all programs, routines for dealing with
each device, which is expensive in space, or to depend on some means of dynamically linking
w0 the routine appropriate to each davice when it is actually needed, which is expensive either
in overhead or in hardware.

Likewise, the process-control scheme and the command interface have proved both con-
venient and efficient. Because the shell operates as an ordinary, swappablie user program, it
consumes no ‘‘wired-down'’ space in the system proper, and it may be made as powerful as
desired at little cost. [n particular, given the framework in which the sheil executes as a process
that spawns other processes to perform commands, the notions of [/O redirection, background
processes, command files, and user-selectable system interfaces all become essentially trivial to
implement.

Influences

The success of UNKX lies not so much in aew inventons but rather ia the full exploitation
of a carefully selected set of fertile ideas, and especially in showing that they can be keys to the
implementation of a small yet powerful operating system.

.15 -

The fork operation, essentially as we implemented it, was present in the GENIE time-
sharing system. 10 On a number of points we were influenced by Multics, which suggested the
particular form of the [/O system calls!! and both the name of the shell and its general func-
tions. The notion that the shell should create a process for each command was also suggested
to us by the early design of Multics, aithough in that system it was later dropped for efficiency
reasons. A similar scheme is used by TENEX.!2

IX. STATISTICS

The following numbers are presented to suggest the scale of the Research UNIX operation.
Those of our users not involved in document preparation tend to use the system for program
development, especially language work. There are few important ‘‘applications’ programs.

Overall, we have today:

125 user population

33 maximum simuitaneous users
1,630 directories
28,300 files

301,700 512-byte secondary storage biocks used

There is a ‘‘background’’ process that runs at the lowest possible priority; it is used 1o soak up
any idle CPU time. It has been used to produce a million-digit approximation to the consunt e,
and other semi-infinite problems. Not counting this background work, we average daily:

13,500 commands
9.6 CPU hours
230 connect hours
62 different users
240 log-ins

X. ACKNOWLEDGMENTS

The contributors to UNIX are, in the traditional but here especially apposite phrase, too
numerous to mention. Certainly, collective salutes are due to our colleagues in the Computing
Science Research Center. R. H. Canaday contributed much to the basic design of the file sys-
tem. We are particularly appreciative of the inventiveness, thoughtful criticism, and constant
support of R. Morris, M. D. Mcllroy, and J. F. Ossanna.

References

1. L. P. Deutsch and B. W. Lampson, ‘“An online editor,” Comm Assoc Comp. Mach
10(12) pp. 793-799, 803 (Decernber 1967).

2. B. W. Kernighan and L. L. Cherry, ‘*A System for Typesetting Mathematics,” Comm.
Assoc. Comp. Mach. 18 pp. 151-157 (March 1975).

3. B. W. Kemighan, M. E. Lesk, and J. F. Ossanna, ‘“UNIX Time-Sharing System: Docu-
ment Preparation,” Bell Sys. Tech J. 57(6) pp. 2115-2135 (1978).

4. T. A. Dolotta and J. R. Mashey, **An Introduction to the Programmer's Workbench,”
Proc. 2nd Int Conf. on Sofrware Engineering, pp. 164-168 (October 13-15, 1976).

5. T. A. Dolotta, R. C. Haight, and J. R. Mashey, “UNIX Time-Sharing System: The
Programmer’s Workbench,” Befl Sys Tech J. 57(6) pp. 2177-2200 (1978).

10.

11.

12

-16 -

H. Lyckiama, “UNX Time-Sharing Sysiem: UNIX on a Microprocessor,'* Beil S,
57(6) pp. 2087-2101 (1973). r,” Beil Sys. Tech J.

B. W. Kemighan and D. M. Ritchie, The C Programming La . Prentics-H .
wood Clifs, New Jersey (19738). . Larguage, Prentcs-Hall, Engle

Aleph-auil, “*Computer Recreations,’” Sofware Pracmce and iernce 1(2) oo, .
(April-Juze 1971). Experience 1(2) pp. 201-204

S. R Bourne, “*UNIX Time-Sharing System: The UNTX Shell,” Beif S .
1971-1990. (1973). ell Sys. Tech J. §7(6) pp.

L. P. Deuwsch and B. W. Lammn. *spS 930 time- . system fimi
amnisl~ Doe. 30.10.10, Projecs GENTE, Univ. Cal. at Berkeley (aprty 1968 o0

R. J. Feiertag and E. L Organick, ‘“The Multics input-output system.” Proc. Third Sympo-
sium on Operating Systems Principles, pp. 35-41 (October 18-20, 1971).

D. G. %brow, J. D. anﬁeL D. L. Mu.rphy. and R. S. Tomﬁ.mti' Hma‘ P
&me Shasg% Syswem for the PDP-10." Comm. Assoc. Comp. Mach 1503) pp. ?Jsﬁg
arch 1 .

UNIX Implementation

Trademarks:
MUNIX, CADMUS for PCS
DEC, PDP tor DEC
UNIX for Bell Laboratories

Copyright 1984 by
PCS GmbH, Pfalzer-Wald-Strasse 36, D-8000 Miinchen 90, tel. (089) 87804-0

The information contained herein is the property of PCS and shall neither be reproduced in
whole or in part without PCS's prior written approval nor be implied to grant any license to
make, use or sell equipment manufactured herewith.

PCS reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages (including consequential)

caused by reliance on the materials presented.

UNIX Implementation

K. Thompson

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

This paper describes in high-level terms the implementation of the
resident UNIXT kernel. This discussion is broken into three parts. The first part
describes how the UNIX system views processes, users, and programs. The
second part describes the [/O system. The last part describes the UNIX file sys-
tem.

1. INTRODUCTION

The UNIX kernel consists of about 10,000 lines of C code and about 1,000 lines of assem-
bly code. The assembly code can be further broken down into 200 lines included for the sake
of efficiency (they could have been written in C) and 800 lines to perform hardware functions
not possible in C.

This code represeats 5 10 10 percent of what has been lumped into the broad expression
‘“‘the UNIX operating system.” The kernel is the only UNIX code that cannot be substituted by a
user to his own liking. For this reason, the kernel should make as few real decisions as possi-
ble. This does not mean to allow the user a million options to do the same thing. Rather, it
means to allow only one way to do one thing, but have that way be the least-common divisor of
all the options that might have been provided.

What is or is not implemented in the kernel represents both a great responsibility and a
great power. It is a soap-box platform on ‘‘the way things should be done.”” Even so, if *‘the
way” is too radical, no one will follow it. Every important decision was weighed carefuily.
Throughout, simplicity has been substituted for efficiency. Complex algorithms are used only if
their compiexity can be localized.

2. PROCESS CONTROL

In the UNIX system, a user executes programs in an environment called a2 user process
When a system function is required, the user process calls the system as a subroutine. At some
point in this call, there is.a distinct switch of environments. After this, the process is said to be
a system process. In the normal definition of processes, the user and system processes are
different phases of the same process (they never execute simultaneously). For protection, each
system process has its own stack

The user process may execute from a read-only text segment, which is shared by all
processes executing the same code. There is no functional/ benefit from shared-text segments.
An efficiency benefit comes from the fact that there is no need to swap read-only segments out
because the original copy on secondary memory is still current. This is a great benefit to
interactive programs that tend to be swapped while waiting for terminal input. Furthermore, if
tWO processes are executing simultaneously from the same copy of a read-only segment, only
one copy needs to reside in primary memory. This is a secondary effect, because simultaneous

TUNIX is a Trademark of Bell Laboratories.

.2.

execution of a program is not common. It is ironic that this effect, which reduces the use of
primary memory, only comes into play when there is an overabundance of primary memory,
that is, when there is enough memory to keep waiting processes |oaded.

All current read-only text segments in the system are maintained (rom the wexr wble. A
text table entry holds the location of the text segment on secondary memory. [f the segment is
loaded, that table aiso holds the primary memory location and the count of the number of
processes sharing this entry. When this count is reduced to zero, the entry is freed along with
any primary and secondary memory holding the segment. When a process first executes a
shared-text segment, a lext table entry is allocated and the segment is loaded onto secondary
memory. I[a second process executes a text segment that is already allocated, the entry refer-
ence count is simply incremented.

A user process has some strictly private read-write data contained in its data segment. As
far as possibie, the system does not use the user’s data segment to hold system data. In partic-
ular, there are no /O buffers in the user address space.

The user data segment has two growing boundaries. One, increased automatically by the
system as a result of memory [laults, is used for a stack. The second boundary is only grown
(or shrunk) by explicit requests. The contents of newly allocated primary memory is initialized
to zero.

Also associated and swapped with a process is a small fixed-size systermn data segment
This segment contains all the data about the process that the system needs only when the pro-
cess is active, Examples of the kind of data contained in the system data segment are: saved
central processor registers, open file descriptors, accounting information, scratch data area, and
the stack for the system phase of the process. The system data segment is not addressable {rom
the user process and is therefore protected.

Last, there is a process table with one entry per process. This entry contains all the data
needed by the systern when the process is not¢ active. Examples are the process’s name, the
location of the other.segments, and scheduling information. The process table entry is ailo-
cated when the process is created, and freed when the process terminates. This process entry is
always directly addressable by the kernel.

Figure 1 shows the relationships between the various process controi data. In a sense, the
process table is the definition of all processes, because all the data associated with a process may
be accessed starting from the process table entry.

o ™
TeXT
PROCESS TAsLL
TASUE ._1 ENTRY
ENTRY L
-W‘L L RESIOENT
PROCESS TASLE TEXT TASLE ?
| m" SWAPPASLE
SEGMENT
ustR
TEXT
UsEn
DATA SEGuEnT
SEGMENT
USEn
AQORESS
=1 Ve §

Fig. 1—=Process control data structure.

-3

2.1. Process creation and program execution

Processes are created by the system primitive fork. The newly created process (child) is a
copy of the original process (parent). There is no detectable sharing of primary memory
between the two processes. (Of course, if the parent process was executing from a read-only
text segment, the child will share the text segment.) Copies of all writable data segments are
made for the child process. Files that were open before the fork are truly shared after the fork.
The processes are informed as to their part in the relationship to allow them to select their own
(usually non-identical) destiny. The parent may wait for the termination of any of its children.

A process may exec a file. This consists of exchanging the current text and data segments
of the process for new text and data segments specified in the file. The old segments are lost
Doing an exec does nor change processes; the process that did the exec persists, but after the
exec it is executing a different program. Files that were open before the exec remain open after
the exec

If a program, say the first pass of a compiler, wishes to overlay itself with another pro-
gram, say the second pass, then it simply execs the second program. This is analogous to0 -a
“‘goto.'” If a program wishes to regain control after execing a second program, it should fork a
child process, have the child exec the second program, and have the parent wait for the child
This is analogous to a *‘cail.”” Breaking up the call into a binding followed by a transfer is simi-
lar to the subroutine linkage in SL-S.!

1.2. Swapping

The major data associated with a process (the user data segment, the system data seg-
ment, and the text segment) are swapped (0 and from secondary memory, as needed. The user
data segment and the system data segment are kept in contiguous primary memory to reduce
swapping latency. (When low-latency devices, such as bubbles, CCDs, or scatter/gather
devices, .are used, this decision will have to be reconsidered.) Allocation of both primary and
secondary memory is performed by the same simple first-fit algorithm. When a process grows,
a new piece of primary memory is allocated. The contents of the old memory is copied to the
new memory. The old memory is freed and the tables are updated. If there is not enough pri-
mary memory, secondary memory is allocated instead. The process is swapped out onto the
secondary memory, ready to be swapped in with its new size,

One separate process in the kernel, the swapping process, simply swaps the other
processes in and out of primary memory. It examines the process table looking for & process
that is swapped out and is ready to run. It allocates primary memory for that process and reads
its segments into primary memory, where that process competes for the central processor with
other loaded processes. If no primary memory is available, the swapping process makes
memory available by examining the process table for processes that can be swapped out. [t
selects a process to swap out, writes it 10 secondary memory, frees the primary memory, and
then goes back to look for a process to swap in.

Thus there are two specific algorithms to the swapping process. Which of the possibly
many processes that are swapped out is to be swapped in? This is decided by secondary storage
residence time. The one with the longest time out is swapped in first. There is a slight penalty
for larger processes. Which of the possibly many processes.that are loaded is to be swapped
out? Processes that are waiting for slow events (i.e., not currently running or waiting for disk
[/0) are picked first, by age in primary memory, again with size penalties. The other processes
are examined by the same age algorithm, but are not taken out unless they are at least of some
age. This adds hysteresis to the swapping and prevents total thrashing.

These swapping algorithms are the most suspect in the system. With limited primary
memory, these algorithms cause total swapping. This is not bad in itself, because the swapping
does not impact the execution of the resident processes. However, if the swapping device must
also be used for file storage, the swapping traffic severely impacts the file system traffic. It is
exactly these small systems that tend to double usage of limited disk resourcss.

2.3. Synchronization and scheduling

Process synchronization is accomplished by having processses wait for events. Events are
represented by arbitrary integers. By convention, events are chosen to be addresses of tables
associated with those events. For example, a process that is waiting for any of its children to
terminate will wait for an event that is the address of its own process table entry. When a pro-
cess lerminates, it signals the event represented by its parent’s process table entry. Signaling an
event on whicht no process is waiting has no effect. Similarly, signaling an event on which
many processes are waiting will wake all of them up. This differs considerably from Dijkstra’s
P and V synchronization operations.? in that no memory is associated with events. Thus there
need be no allocation of events prior to their use. Events exist simply by being used

On the negative side, because there is no memory associated with events, no notion of
‘““how much'® can be signaled via the event mechanism. For exampie, processes that want
memory might wait on am event associated with memory allocation. When any amount of
memory becomes available, the event would be signaled. All the competing processes would
then wake up to fight over the new memory. (In reality, the swapping process is the only pro-
cess that waits for primary memory to become available.)

If an event occurs between the time a process decides to wait for that event and the time
that process enters the wait state, then the process will wait on an eveat that has aiready hap-
pened (and may never happen again). This race condition happens because there is no memory
associated with the event to indicate that the event has occurred; the only action of an event is
to change a set of processes from wait state to run state. This problem is relieved largely by the
fact that process switching can only occur in the kernel by explicit calls to the event-wait
mechanism. If the event in queston is signaled by another process, then there is no problem.
But if the event is signaled by a hardware interrupt, then special care must be taken. These
synchronization races pose the biggest problem when UNIX is adapted to multiple-processor
configurations.?

The event-wait code in the kernel is like a co-routine linkage. At any time, all but one of
the processes has called event-wait. The remaining process is the one currendy executing.
When it calls event-wait, a prucess whose event has been signaled is selected and that process
returns from its cail to event-wait.

Which of the runable processes is to run next? Associated with each process is a priority.
The priority of a system process is assigned by the code issuing the wait on an event. This is
roughly equivalent to the response that one would expect on such an event. Disk events have
high priority, teletype events are low, and time-of-day events are very low. (From observation,
the difference in system process priorities has little or no performance impact.) All user-process
priorities are lower than the lowest system priority. User-process priorities are assigned by an
algorithm based on the recent ratio of the amount of compute time (0 real time consumed by
the process. A process that has used a lot of compute time in the last real-time unit is assigned
a low user priority. Because interactive processes are characterized by low ratios of compute o
real time, interactive response is maintained without any special arrangements.

The scheduling algorithm simply picks the process with the highest priority, thus picking
all system processes first and user processes second. The compute-to-real-time ratio is updated
every second. Thus, all other things being equal, looping user processes will be scheduled
round-robin with a l-second quantum. A high-priority process waking up will preempt a run-
ning, low-priority process. The scheduling algorithm has a very desirable negative fesdback
character. If a process uses its high priority to hog the computer, its priority wiil drop. At the
same time, if a low-priority procsss is ignored for a long time, its priority will rise.

3. 1I/0 SYSTEM

The 1/0 system is broken into two completely separate systems: the block [/O system and
the character [/O system. In retrospect, the names should have besn ‘‘structured 1/O'" and
“‘unstructured [/O," respectively; while the term ‘‘block [/O' has some meaning, ‘‘character

[/0" is a complete misnomer.

Devices are characterized by a major device number, a minor device number, and a class
(block or character). For each class, there is an array of entry points into the device drivers.
The major device number is used to index the array when calling the code for a particular
device driver. The minor device number is passed to the device driver as an argument. The
minor number has no significance other than that sattributed to it by the driver. Usually, the
driver uses the minor number to access one of several identical physical devices.

The use of the array of entry points (configuration table) as the only connection between
the system code and the device drivers is very important Early versions of the system had a
much less formal connection with the drivers, so that it was extemely hard to handcraft
differently configured systems. Now it is possible to create new device drivers in an average of
a few hours. The configuration table in most cases is created automatically by a program that
reads the system'’s parts list.

3.1. Block 1/0 system

The model biock 1/Q device consists of randomly addressed, secondary memory blocks of
512 bytes each. The blocks are uniformly addressed 0, 1, ... up to the size of the device. The
block device driver has the job of emulating this model on a physical device.

The block /O devices are accessed through a layer of buffering software. The system
maintains a list of buffers (typically between 10 and 70) each assigned a device name and a
device address. This buffer pool constitutes s data cache for the block devices. On a read
request, the cache is searched for the desired block. If the block is found, the data are made
available to the requester without any physical I/O. If the block is not in the cache, the least
recently used block in the cache is renamed, the correct device driver is called to fill up the
renamed buffer, and then the daia are made available. Write requests are handled in an analo-
gous manner. The correct buffer is found and relabeled if necessary. The write is performed
simply by marking the buffer as *‘dirty.”” The physical I/O is then deferred until the buffer is
renamed.

The benefits in reduction of physical I/O of this scheme are substaatial, especially consid-
ering the file system implementation. There are, however, some drawbacks. The asynchroaous
nature of the algorithm makes error reporting and meaningful user error handling almost
impossible. The cavalier approach to I/0 error handling in the UNIX system is partly due to the
asynchronous nature of the block I/O system. A second problem is in the delayed writes. If
the system stops unexpectedly, it is almost certain that there is a lot of logically complete, but
physically incomplete, I/O in the buffers. There is a system primitive to flush all outstanding
[/0 aciivity from the buffers. Periodic use of this primitive helps, but does not solve, the prob-
lem. Finally, the associativity in the buffers can alter the physical I/O sequence from that of
the logical I/0 sequence. This means that there are times when dam structures on disk are
inconsistent, even though the software is careful to perform /O in the correct order. On non-
random devices, notably magnetic tape, the inversions of writes can be disastrous. The prob-
lem with magnetic tapes is ‘‘cured’’ by allowing only one outstanding write request per drive.

3.2. Character 1/0 system

The character [/O system consists of ‘all devices that do not fall into the block I/0 model
This includes the *‘classical’” character devices such as communications lines, paper tape, and
line printers. It also includes magnetic tape and disks when they are not used in a stereotyped
way, for example, 80-byte physical records on tape and track-at-a-time disk copies. In short,
the character [/O interface means ‘‘everything other than block.’ 1/0 requests from the user
are sent to the device driver essentially unaitered. The implementation of these requests is, of
course, up to the device driver. There are guidelines and conventions to help the implementa-
tion of certain types of device drivers.

3.2.1. Disk drivers

Disk drivers are implemented with a queue of transaction records. Each record holds a
read/write flag, a primary memory address, a secondary memory address, and a transfer byte
count. Swapping is accomplished by passing such a record to the swapping device driver. The
block /O interface is implemented by passing such records with requests (o fill and empty sys-
tem buffers. The character [/O interface to the disk drivers create a transaction record that
points directly into the user area. The routine that creates this record also insures that the user
is not swapped during this [/O transaction. Thus by implementing the general disk driver, it is
possible to use the disk as a block device, a character device; and d swap device. The only
really disk-specific code in normal disk drivers is the pre-sort of transactions (o minimize
latency for a particular device, and the actual issuing of the /0 request

3.2.2. Character lists

Real character-oriented devices may be impiemented using the common code to. handle
character lists. A character list is a queue of characters. One routine puts a character on a
queue. Another gets a character from a queue. [t is also possible to ask how many characters
are currently on a queue. Storage for all queues in the system comes from a single common
pool. Putting a character on a queue will allocate space from the common pool and link the
character onto the data structure defining the queue. Getting a character from a queue returns
the corresponding space to the pool

A typical character-output device (paper tape punch, for example) is implemented by
passing characters {rom the user onto a character queue until some maximum aumber of char-
acters is on the queue. The /O is prodded to start as soon as there is anything on the queue
and, once started, it is sustained by hardware compietion interrupts. Each time there is a com-
pletion interrupt, the driver gets the next character from the queue and sends it to the
hardware. The number of characters on the queue is checked and, as the count fails through
some intermediate level, an event (the queue address) is signaled. The process that is passing
characters from the user to the queue can be waiting on the event, and refill the queue to its
maximum when the event occurs.

A typical character input device (for example, a paper tape reader) is handled in a very
similar manner.

Another class of character devices is the terminals. A terminal is represented by three
character queues. There are two input queues (raw and canonical) and an output queue. Char-
acters going to the output of 2 terminal are handled by common code exactly as described
above. The main difference is that there is also code to interpret the output stream as ASCI
characters and to perform some translations, e.g., escapes for deficient terminals. Another
common aspect of terminals is code to insert real-time delay after certain controi characters.

Input on terminals is a little different. Characters are collected from the terminal and
placed on a raw input queue. Some device-dependent code conversion and escape interpreta-
tion is handled here. When a line is complete in the raw queue, an event is signaled. The code
caatching this signal then copies a line from the raw queue to a canonical queue performing the
character erase and line kill editing. User read requests on terminals can be directed at either
the raw or canonical queues.

3.2.3. Other character devices

Finally, there are devices that fit no general category. These devices are set up as charac-
ter [/O drivers. An example is a driver that reads and writes unmapped primary memory as an
1/0 devics. Some devices are too fast to be treated a character at time, but do not fit the disk
[/0 mold. Examples are fast communications lines and (ast line printers. These devices either
have their own buffers or **borrow’’ block [/0 buffers for a while and then give them back.

4. THE FILE SYSTEM

In the UNIX system, a Ble is a (one-dimensional) array of bytes. No other structure of
files is implied by the system. Files are attached anywhere (and possibly multiply) onto a
hierarchy of directories. Directories are simply files that users cannot write. For a further dis-
cussion of the external view of files and directories, see Ref. 4.

The UNIX fle system is a disk data structure accessed completely through the block 170
system. As stated before, the canonical view of a *‘disk’’ is a randomly addressable array of
512-byte blocks. A file system breaks the disk into four self-identifying regions. The first
block (address 0) is unused by the file system. It is left aside for booting procedures. The
second block (address 1) contains the so-called ‘‘super-block.' This block, among other things,
contains the size of the disk and the boundaries of the other regions. Next comes the i-list, a
list of file definitions. Each fille definition is a 64-byte structure, called an i-node. The offset of
a particular i-node within the i-list is called its i-number. The combination of device name
(major and minor numbers) and i-number serves to uniquely name a particular file. After the
i-list, and to the end of the disk, come free storage blocks that are available for the contents of
files.

The free space on a disk is maintained by a linked list of available disk biocks. Every
block in this chain contains a disk address of the next block in the chain. The remaining space
contains the address of up to 50 disk blocks that are also free. Thus with one /O operation,
the system obtains 50 free blocks and a pointer where to find more. The disk allocation algo-
rithms are very swaightforward. Since all allocation is in fixed-size blocks and there is strict
accounting of space, there is no need to compact or garbage collect. However, as disk space
becomes dispersed, latency gradually increases. Some installations choose o occasionally com-
pact disk space to reduce latency.

An i-node contains. 13 disk addresses. The first 10 of these addresses point directly at the
first 10 blocks of a file. If a file is larger than 10 biocks (5,120 bytes), then the eleventh
address points at a2 block that contains the addresses of the next 128 blocks of the file. If the
file is still larger than this (70,656 bytes), then the twelfth block points at up to 128 blocks,
each pointing to 128 blocks of the file. Files yet larger (8,459,264 bytes) use the thirteenth
address for a ‘‘triple indirect™ address. The algorithm ends here with the maximum file size of
1,082,201,087 bytes.

A logical directory hierarchy is added to this flat physical structure simply by adding a new
type of file, the directory. A directory is accessed exactly as an ordinary file. It contains 16-
‘byte entries consisting of a 14-byte name and an i-number. The root of the hierarchy is at a
known i-number (viz, 2). The file system structure allows an arbitrary, directed graph of direc-
tories with regular files linked in at arbitrary places in this graph. In fact, very early UNIX sys-
tems used such a structure. Administration of such a structure became so chaotic that later sys-
temns were restricted to a directory tree. Even now, with regular files linked multiply into arbi-
trary places in the tree, accounting for space has become a problem. It may become necessary
to restrict the entire structure to a tree, and allow a new form of linking that is subservient to
the tree structure.

The fle system allows easy creation, easy removal, easy random accessing, and very easy
space allocation. With most physical addresses confined to a2 small contiguous section of disk, it
is also easy to dump, restore, and check the consistency of the file system. Large files suffer
from indirect addressing, but the cache prevents most of the implied physical /O without
adding much execution. The space overhead properties of this scheme are quite good. For
exampie, on ones panicular file system, there are 25,000 files containing 130M bytes of data-file
content. The overhead (i-node, indirect blocks, and last block breakage) is about 11.5M bytes.
The directory structure to support these files has about 1,500 directories containing 0.6M bytes
of directory content and about 0.5M bytes of overhead in accessing the directories. Added up
any way, this comes out to less than a 10 percent overhead for actual stored data. Most sys-
tems have this much overhead in padded trailing blanks alone.

4.1. Flle system implementation

Because the i-node defines a file, the implementation of the file system centers around
access to the i-node. The system maintains a table of all active i-nodes. As a new file is
accessed, the system locates the corresponding i-node, allocates an i-node table entry, and reads
the i-aode into primary memory. As in the buffer cache, the table entry is considered to be the
curreat version of the isnode. Modifications to the i-node are made to the table entry. When
the last access to the i-node goes away, the table entry is copied back to the secondary store i-
list and the table entry is freed.

All /O operations on files are carried out with the aid of the corresponding i-node table
eatry. The accessing of a file is a straightforward implementation of the algorithms mentioned
previously. The user is not aware of i-nodes and i-numbers. References o0 the fle system are
made in terms of path names of the directory tree. Converting a path name into an i-node
able eauy is also swaightforward Starting at some known i-iode (the root or the current
directory of some process), the next component of the path name is searched by reading the
directory. This gives an i-number and an implied device (that of the directory). Thus the nex:
i-aode table eatry can be accessed. If that was the last component of the path name, then this
i-aode is the resuit. If not, this i-node is the directory needed to look up the next component
of the path name, and the algorithm is repeated

The user process accesses the flle system with cerwin primitives. The most common of
thess are open, create, read, write, seek, and close. The data structures maintained are shown
in Fig. 2

PRA-LUSER OPFEN
P TasLd
SWAPPLD
PERAUSER
QPEN FILE ACTIVE I-NQOR
TALLE TASLE
~- —)
L RESIDENT
—1 PER/SYSTEM
Jtr JL J
ﬂ/ h
1.NQDE SECONDARY
STORAGE
e PER/
nu MAPPING —— FILE SYSTEM
ALGORITHMS J

Fig. 2—=File system data structure.

[a the system data segment associated with a user, there is room for some (usually between 10
and 50) open files. This open file table consists of pointers that can be used to access
corresponding i-node table entries. Associated with each of these open files is a current /O
pointer. This is a byte offset of the next read/write operation on the file. The system treats
each read/write request as random with an implied seek to the 1/0 pointer. The user usually
thinks of the file as sequential with the 1/O pointer automatically counting the number of bytes
that have been read/written from the file. The user may, of course. perform random I/0 by
setung the [/O pointer before reads/writes.

With file sharing, it is necessary to allow related procssses to share a common [/0 pointer

.9.

and yet have separate [/O pointers for independent processes that access the same file. With
these two conditions, the [/O pointer cannot reside in the i-aode table nor can it .reside in the
list of open files for the process. A new table (the open file table) was invented for the sole
purpose of holding the 1/O pointer. Processes that share the same open file (the result of
forks) share a common open file table entry. A separate open of the same file will only share
the i-node table entry, but will have distinct open file table entries.

The main file system primitives are implemented as follows. open converts a file system
path name into an i-node table entry. A pointer to the i-node table entry is placed in a newly
created open. file table entry. A pointer to the file table entry is placed in the system data seg-
ment for the process. create first creates 3 new i-node eatry, writes the i-number into a direc-
tory, and then buiids the same structure as for an open. read and write just access the i-node
entry as described above. seek simply manipulates the /O pointer. No physical seeking is
done. close just frees the structures built by open and create. Reference counts are kept on
the open file table entries and the i-node table entries to free these structures after the last
reference goes away. unlink simply decrements the count of the number of directories point-
ing at the given i-node. When the last reference to an i-node table entry goes away, if the i-
node has no directories pointing to it, then the flle is removed and the i-node is freed This
delayed removal of files prevents problems arising from removing active files. A file may be
removed while still opea. The resulting unnamed file vanishes when the file is closed This is
a method of obtaining temporary files.

There is a type of unnamed FIFO file called a pipe. Implementation of pipes consists of
implied seeks before each read or write in order to implement first-in-first-out. There are aiso
checks and synchronization to prevent the writer from grossly outproducing the reader and to
prevent the reader from overtaking the writer.

4.1, Mounted file systems

The file system of a UNIX system starts with some designated block device formatied as
described above to contain a hierarchy. The root of this structure is the root of the UNIX file
system. A second formatted block device may be mounted at any leaf of the current hierarchy.
This logically extends the current hierarchy. The implementation of mounting is trivial. A
mount table is maintained containing pairs of designated leaf i-nodes and block devices. When
converting a path name into an i-node, a check is made to see if the new i-node is a designated
leaf. If it is, the i-node of the root of the block device replaces it

Allocation of space for a file is taken from the free pool on the device on which the file
lives. Thus a file system consisting of many mounted devices does not have a common pool of
free secondary storage space. This separation of space on different devices is necessary (o allow
easy unmounting of a device.

4.]. Other system functions

There are some other things that the system does for the user—a little accounting, a little
tracing/debugging, and a little access protection. Most of these things are not very well
developed because our use of the system in computing science research does not need them.
There are some features that are missed in some applications, for example, better inter-procsss
communication.

The UNIX kemnel is an [/0 multiplexer more than a complete operating system. This is as
it should be. Because of this outlook, many features are found in most other operating systems
that are missing from the UNIX kernel. For exampie, the UNIX kerne! does not support file
access methods, file disposition, fle formats, file maximum size, spooling, command language,
logical records, physical records, assignment of logical file names, logical file names, more than
one character set, an operator’'s console, an operator, log-in, or log-out. Many of these things
are symptoms rather than features. Many of these things are implemented in user software
using the kernel as a tool. A good example of this is the command language.® Each user may
have his own command language. Maintenance of such code is as easy as maintaining user

-10-

code. The idea of implementing '‘system’’ code with general user primitives comes directly
from MULTICS.*

References

1

P

R. E. Griswold and D. R. Hanson, **An Overview of SLS," SIGPLAN Notices 12(4) pp.
40-50 (April 1977).

E W. Dijkszra, “Cooperating Sequential Processes,” pp. 43-112 in Programming
Languages, ed. F. Genuys,Academic Press, New York (1968).

J. A. Hawiey and W. B. Meyer, “MUNIX, A Multiprocessing Version of UNIX,'' M.S.
Thesis. Naval Postgraduste School, Monterey, Cal. (1975),

D. M. Riwchie and K. Thompson, *‘The UNIX Time-Sharing System,' Besl Sys. Tech J.
£7(6) pp. 1905-1929 (1978).

S. R. Bourne, “UNIX Time-Sharing System: The UNIX Shell,” Bell Sys. Tech. J. 57(6) pp.
1971-1990 (19783).

E. L. Organick, The MULTICS Sysrem, M.LT. Press, Cambridge, Mass. (1972).

The UNIX I/0 System

Trademarks:
MUNIX, CADMUS for PCS
DEC. PDP for DEC
UNIX for Bell Laboratories

Copyright 1984 by
PCS GmbH, Pfalzer-Wald-Strasse 38, D-8000 Mtinchen 90, tel. (089) 87804-0

The information contained herein is the property of PCS and shall neither be reproduced in
whole or in part without PCS's prior written approval nor be implied to grant any license to
make, use or sell equipment manufactured herewith.

PCS reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages (including consequential)

caused by reliance on the materials presented.

The UNIX I/O System

Dennis M. Ritchie

Bell Laboratories
Murray Hill, New Jersey 07974

This paper gives an overview of the workings of the UNIXt [/O system. It was written
with an eye toward providing guidance to writers of device driver routines, and is oriented more
toward describing the environment and nature of device drivers than the implementation of
that part of the file system which deais with ordinary files.

It is assumed that the reader has a good knowledge of the overall structure of the file sys-
tem as discussed in the paper ““The UNIX Time-sharing System.’”” A more detailed discussion
appears in “UNIX Impiementation;" the current document restates parts of that one, but is
still more detailed. It is most useful in conjunction with a copy of the system code, since it is
basically an exegesis of that code.

Device Classes

There are two classes of device: Mock and character. The block interface is suitable for
devices like disks, tapes, and DECQlape which work, or can work, with addressible §12-byte
blocks. Ordinary magnetic tape just barely fits in this category, since by use of forward and
backward spacing any block can be read, even though blocks can be written only at the end of
the tape. Block devices can at least potentially contain a mounted file system. The interface to
block devices is very highly structured; the drivers for these devices share a great many rou-
tines as well as 3 pool of buffers.

Character-type devices have a much more straightforward interface, although more work
must be done by the driver itself.

Devices of both types are named by 1 mgjor and a8 minor device number. These numbers
are generally stored as an integer with the minor device number in the low-order 8 bits and the
major device number in the next-higher § bits; macros mgjor and minor are available to access
these numbers. The major device number selects which driver will deal with the device; the
minor device number is not used by the rest of the system but is passed to the driver at
appropriate times. Typically the minor number selects a subdevice attached to 2 given con-
troller, or one of several similar hardware interfaces.

The major device numbers for block and character devices are used as indices in separate
tables; they both start at 0 and therefore overiap.

Overview of 1/0

The purpose of the open and crear system calls is to set up entries in three separate system
tabies. The first of these is the u_ofife table, which is stored in the system's per-process data
area u. This table is indexed by the file descriptor returned by the open or crear, and is accessed
during a read, write, or other operation on the open file. An entry contains only a pointer to the
corresponding entry of the file table, which is a per-systemn data base. -There is one entry in the
file table for each instance of open or crear. This table is per-system because the same instance
of an open file must be shared among the several processes which can result from forks after

tUNIX is 2 Trademark of Bell Laboratories..

-2.

the file is opened. A file table entry contains flags which indicate whether the file was open for
reading or writing or is a pipe, and a count which is used to decide when all processes using the
entry have terminated or closed the file (so the entry can be abandoned). There is also a 32-bit
file offset which is used to indicate where in the file the next read or write will take place.
Finally, there is a pointer to the entry for the file in the inode table, which contains a copy of
the file's i-node.

Certain open files can be designated ‘‘multiplexed” files, and several other flags appiy to
such channels. In such a case, iastead of an offset, there is 2 pointer to an associated multiplex
channel table. Multiplex channels will not be discussed here.

An entry in the file table corresponds precisely to an instance of open or creas; if the same
file is opened several times, it will have several gntries in this table. However, there is at most
one entry in the inode table for a given file. Also, a file may enter the /node table not only
because it is open. but also because it is the current directory of some process or because it is a
special file containing a currentdy-mounted file system.

An entry in the inode table differs somewhat from the corresponding i-node as stored on
the disk; the modified and accessed times are not stored, and. the entry is augmented by a flag
word containing information about the entry, a count used to determine when it may be
allowed to disappear, and the device and i-number whence the entry came. Also, the several
block numbers that give addressing information for the file are expanded from the 3-byte,
compressed format used on the disk to full /ong quantities.

During the processing of an open or crear call for a special file, the system always calls the
device's open routine to allow for any special processing required (rewinding a tape, turning on
the data-terminal-ready lead of a modem, etc.). However, the close routine is called only when
the last process closes a file, that is, when the i-node table entry is being deallocated. Thus it is
not feasibie for a device to maintain, or depend on, a count of its users, although it is quite
possible to implement an exclusive-use device which cannot te reopened until it has been
closed.

When a read or write takes place, the user’s arguments and the fi/e tabie entry are used to
set up the variables w.u_base, u.u_count, and w.u_offset which respectively contain the (user)
address of the [/O target area, the byte-count for the transfer, and the current location in the
file. If the file referred to.is a character-type special file, the appropriate read or write routine is
called: it is responsible for transferring data and updating the count and current location
appropriately as discussed below. Otherwise, the current location is used to calculate a logical
block number in the file. If the file is an ordinary file the logical block number must be
mapped (possibly using indirect blocks) to a physical biock number; a block-type special file
need not be mapped This mapping is performed by the bémap routine. In any event, the
resulting physical block number is used, as discussed below, to read or write the appropriate
device.

Character Device Drivers

The cdevsw tabie specifies the interface routines present for character devices. Each dev-
ice provides five routines: open, close, read, write, and special-function (to impiement the /oct/
system call). Any of these may be missing. I[f a call on the routine should be ignored, (e.g.
open on non-exclusive devices that require no setup) the cdevsw entry can be given as nufldev; if
it should be considered an error, (e.g. write on read-only devices) nodev is used. For terminals,
the cdevsw structure also contains a pointer to the (ry structure associated with the terminal.

The open routine is called each time the file is opened with the full device number as
argument. The second argument is a flag which is non-zero only if the devics is to be written
upon.

The close routine is called only when the file is closed for the last time. that is when the
very last process in which the file is open closes it. This means it is not possible for the driver
to maintain its own count of its users. The first argument is the device number; the second is a

.3.

flag which is non-zero If the flle was open for writing in the process which performs the final
close.

When write Is called, it Is supplied the device as argument. The per-user wvariabie
w.u_couns has been set to the number of characters indicated by the user; for character devices,
this number may be 0 initially, w.u_base is the address supplied by the user from which to start
taking characters. The system may call the routine internally, so the flag w.u_segflg is supplied
that indicates, if on, that w.u_base refers to the system sddress space instead of the user’s.

The write routine should copy up to w.u_count characters from the user’s buffer to the
device, decrementing w.u_count for each character passed. For most drivers. which work onc
character at 8 time, the routine cpass() is used to pick up characters from the user’'s puffer.
Successive calls on it return the characters to be written until w.u_counr goes to 0 or an error
occurs, when it returns —1. Cpass takes care of interrogating u.u_segflg and updating w.u_count

Write routines which want to transfer s probably large number of characters into an inter-
nal buffer may also use the routine iomove(buffer, offset. count, flag) which is faster when many
characters must be moved. Jomove transfers up to counr characters into the buffer starting offser
bytes from the start of the buffer; flag should be B_WRI/TE (which is 0) in the write case. Cau-
tion: the caller is responsible for making sure the count is not too large and is non-zero. As an
cfficiency note, iomove is much slower If any of byffer+offset, count or u.u_base is odd.

The device's read routine Is called under conditions similar to wrire, except that w.u_counr
is guaranteed to be non-zero. To return characters to the user, the routine passc(c) is availabie;
it takes care of housekeeping like cpass and returns —] as the last character specified by
wu_count is returned to the user; before that time, 0 is retumed. /omove is aiso usable as with
write; the flag should be B_READ but the same cautions apply.

The *‘special-functions’” routine Is invoked by the sry and gmry system calls as follows: (“p)
(dev, v) where p is a pointer to the device's routine, dey is the device number, and vis a vector.
In the grry case, the device is supposed to place up to 3 words of status information into the
vector, this will be retumned to the caller. In the sy case, v is 0; the device should take up to 3
words of control information from the array w.u_arg/0...2].

Finally, each device should have appropriate interrupt-time routines. When an interrupt
occurs, it is turned into & C-compatible call on the devices's interrupt routine. The interrupt-
catching' mechanism makes the low-order four bits of the “‘new PS’’ word in the trap vector for
the interrupt available to the interrupt handler. This is conventionally used by drivers which
deal with multiple simnilar devices to encode the minor device number. After the interrupt has
been processed, a return from the interrupt handler will return from the interrupt itself.

A number of subroutines are available which are useful to character device drivers. Most
of these handlers, for example, need a place to buffer characters in the intemal interface
between their *‘top half®' (read/write) and *‘bottom half** (interrupt) routines. For relatively
low data-rate devices, the best mechanism is the character queue maintained by the routines
gerc and purc. A queue header has the structure

struct |
int c_cc, /* character count */
char *c_cf; /" first character */
char ®c_cli /® last character */

} queue;

A character is placed on the end of a queue by purce, &queue) where ¢ is the character and
queue is the queue header. The routine returns —1 if there is no space to put the character, 0
otherwise. The first character on the queue may be retrieved by gerc(&queue) which retumns
either the (non-negative) character or —1 if the queue is empty.

Notice that the space for characters in queues is shared among all devices in the system
and in the standard system there are only some 600 character siots available. Thus devics
handlers, especially write routines, must take care to avoid gobbling up excessive numbers of

characters.

The other major help available to devics handlers is the sleep-wakeup mechanism. The
call sleep(event, priority) causes the process to wait (allowing other processes to run) untl the
evenr occurs; al that tume, the process is marked ready-to-run and the call will return when
there is no process with higher priony.

The call wakeup(event) indicates that the evenr has happened. that s, causes processes
sleeping on the event to be awakened. The evenr |s an arbitrary quantity agreed upon by the
sleeper and the waker-up. By convention, it is the address of some data area used by the
driver. which guarantees that events are unique.

Processes sleeping on an event should not assume that the event has really happened:
they should check that the conditions which caused them to sleep no longer hold.

Priocities can range from 0 to 127, a higher numerical value indicates 2 less-favored
scheduling situation. A distinction is made between processes sieeping at priority less than the
parameter PZERO and those at numerically larger priorities. The former cannot be interrupted
by signals, although it is conceivable that it may be swapped out. Thus it is a bad idea to sleep
with priority less than PZERO on an event witich might never occur. On the other hand, calls
ta sleep with larger priority may never return if the process is terminated by some signal in the
meantime. Incidentally, it is a gross error to call sfeep in a routine called at interrupt time,
since the process which is running is almost certainly not the process which should go to sieep.
Likewise, none of the variables in the user area **u.” should be touched, let alone changed, by
an interTupt routine.

Il 2 device driver wishes to wait for some event for which it is inconvenient or impossiole
to supply a wakeup, (for example. a device going on-line, which does not generally cause an
interrupt), the call sleep(&ibolr, prioriry) may be given. Lbolris an external ¢ell whose address is
awakened once every 4 seconds by the clock interrupt routine.

The routines spi4(), spi5(), spl6(), sp/7() are available to set the processor priority leve!
as indicated to avoid inconvenient interrupts (rom the device.

If a device needs 1o know about real-time intervals, then rimeour(func. arg, interval) will be
useful. This routine arranges that after inrerval sixtieths of a second, the func will be called with
arg as argument, in the style (*func)(arg). Timeouts are used, for example, to provide real-
time delays after function characters like new-line and tab in typewriter output, and to ter-
minate an attempt to read the 201 Dataphone dp if there is no response within a specified
number of seconds. Notice that the number of sixtieths of a second is limited to 32767, since
it must appear to be positive, and that only a bounded number of timeouts can be going on at
once. Also, the specified func is called at clock-interrupt time, so it should conform to the
requirements of interrupt routines in general.

The Block-device Interface

Handling of block devices is mediated by a collection of routines that manage a set of
buffers containing the images of blocks of data on the various devices. The most important
purpose of these routines is to assure that several processes that accass the same block of the
same device in multiprogrammed fashion maintain a consistent view of the data in the block.
A secondary but still important purpose is to increase the efficiency of the system by keeping
in-core copies of blocks that are being accessed frequentlv. The main data base for this
mechanism is the table of buffers buf. Each buffer header contains a pair of pointers (b_forw,
b_back) which maintain a doubly-linked list of the buffers associated with a panticular block
device. and a pair of pointers (av_forw, av_back) which generally maintain a doubiy-linked list
of blocks which are ‘*free,’”” that is, eligible to be reallocated for another transaction. Buffers
that have [/O in progress or are busy {or other purposes do not appear in this list. The buffer
header also contains the device and biock number to which the buffer refers, and a pointer to
the actual storage associated with the buffer. There is a word count which is the negative of the
number of words to be transierred to or from the buffer; there is also an error byte and a

.5.

residual word count used to communicate information from an [/O routige to its caller.
Finally, there is a flag word with bits indicating the status of the buffer. These flags will be dis-
cussed below,

Seven routines constitute the most important part of the interface with the rest of the sys-
tem. Given a device and block number. both bread and gerbik return a pointer to a buffer
header for the block; the difference is that dread is guaranteed to return a buffer actually con-
uining the current data for the block, while gerbk returns a buffer which conuins the dawa in
the block only if it is already in core (whether it is or not is indicated by the B_DONE bit; see
below). In either case the buffer, and the corresponding device block, is made *‘busy,’ so that
other processes referring to it are obliged to wait until it becomes free. Gerblk is used, for
example, when a block is about to be totally rewritten, so that its previous contents are not use-
ful; still, no other process can be allowed to refer to the block until the new dawa is placed into
it

The breada routine is used to implement read-ahead. it is logically similar o bread, but
takes as an additional argument the number of & block (on the same device) to be read asyn-
chronously after the specifically requested block is available.

Given a pointer to a buffer, the breise routine makes the buffer again available to other
processes. [t is called, for example, after data has been extracted following a bread There are
three subty-different write routines, all of which take a buffer pointer as argument, and ail of
which logically release the buffer for use by others and place it on the free list. Bwrire puts the
buffer on the appropriate device queue, waits for the write to be done, and sets the user's error
flag if required. Bawrire places the buffer on the device's queue, but does not wait for comple-
ton, so that errors cannot be reflected directly to the user. Bdwrire does not start any /O
operation at all, but merely marks the buffer so that if it happens (0 be grabbed from the free
list to contain dat from some other block, the data in it will first be written out

Bwrir is used when one wants to be sure that I/O takes place correctly, and that errors are
reflected to the proper user; it is used, for example, when updating i-nodes. Bawrieze is useful
when more overiap is desired (because no wait is required for 1/0 to finish) but when it is rea-
sonably certain that the write is really required. Bdwriee is used when there is doubt that the
write is needed at the moment. For example, bdwrie is called when the last byte of a wrire sys-
tem call falls short of the end of a block, on the assumption that another write will be given
soon which will re-use the same block. On the other hand, as the.end of 2 block is passed,
bawrite is called, since probably the block will not be accessed again soon and one might as well
start the writing process as soon as possibie.

[n any event, notice that the routines gerb/k and bread dedicate the given block exclusively
t0 the use of the caller, and make others wait, while one of brelse, bdwrire. bawrite, or bdwrite
must evenrually be called to free the block for use by others.

As mentioned, each buffer header contains a flag word which indicates the status of the
buffer. Since they provide one important channel for information between the drivers and the
bleck I/O sysiem, it is important to understand these flags. The following names are manifest
constants which select the associated flag bits.

B_READ This bit is set when the buffer is handed to the device strategy routine (see below)
to indicate a read operation. The symbol B_WRITE is defined as 0 and does not
define a flag; it is provided as a mnemonic convenience o callers of routines like
swap which have a separate argument which indicates read or write.

B_DONE This bit is set to 0 when a block is handed to the the device strategy routine and is
turned on when the operation completes, whether normally as the result of an error.
It is also used as part of the return argument of gerblk 1o indicate if 1 that the
returned buffer actually contains the data in the requested block.

-6

B ERROR This bit may be set to | when 8_DONE is set to indicate that an /O or other error
- occurted. If it is set the &_error byte of the buffer header may contain an error code
if it is non-zero. If 6_erroris O the nature of the error is not specified. Actually no.
driver at present sets b_error; the latter is provided for a future improvement

whereby a more detailed error-reporting scheme may be implemented.

B BUSY This bit indicates that the buffer header is not on the free list, i.e. is dedicated to
- someone’s exclusive use. The buffer still remains attached to the list of blocks asso-
ciated with its device, however. When gerdlk (or dread, which calls it) searches the
buffer list for a given device and finds the requested block with this bit on, it sleeps

until the bit clears.

B_PHYS This bit is set for raw /O transactions that need to ailocate the Unibus map on an
11/70.

B_MAP This bit is set on buffers that have the Unibus map allocated, so that the rodone rou-
tine knows to deallocate the map.

B WANTEDThis flag is used in conjunction with the 8_BUSY bit. Before sleeping as described
" just above, gerbik sets this flag. Conversely, when the block is freed and the busy bit
goes down (in dreise) a wakeup is given for the block header whenever 8_WANTED
is on. This strategem avoids the overhead of having to caill wakeup every time a

buffer is freed on the chance that someone might want iL

B_AGE This bit may be set on buffers just before releasing them: if it is on, the buffer is
placed at the head of the free list, rather than at the tail. [t is a performance heuris-
tc used when the caller judges that the same block will not soon be used again.

B_ASYNC This bit is set by bawrite to indicate to the appropriate device driver that the buffer
should be released when the write has been fnished, usually at interrupt time. The
diference between bwrite and bawrite is that the former starts [/O, waits until it is
done, and frees the buffer. The latter merely sets this bit and starts [/O. The bit
indicates that refse should be called for the buffer on completion.

B_DELWRIThis bit is set by sdwrire before releasing the buffer. When gerbik, while searching
for a free block. discovers the bit is 1 in a buffer it would otherwise grab, it causes
the block to be written out before reusing it.

Block Device Drivers

The bdevsw table contains the names of the interface routines and that of a table for each
block device.

Just as for character devices, block device drivers may supply an open and a close routine
called respectively on each open and on the final close of the device. Instead of separate read
and write routines, each block device driver has a straregy routine which is called with a pointer
to a buffer header as argument. As discussed, the buffer header contains a read/write flag, the
core address, the biock number., a (negative) word count, and the major and minor device
number. T.e role of the strategy routine is (0 carty out the operation as requested by the
information in the buffer header. When the transaction is complete the 8_DONE (and possibly
the B_ERROR) bits should be set. Then if the B_ASYNC bit is set, breise should be called;
otherwise, wakeup. In cases where tHe device is capable. under error-{ree operation, of
transferring [ewer words than requested, the device's word-count register should be placed in
the residual count slot of the buffer header;, otherwise, the residual count should be se: 1o 0.
This particular mechanism is reaily for the benefit of the magtape driver: when reading this
device records shorter than requested are quite normal. and the user should be told the aciual
length of the record.

Although the most usual argument to the strategy routines is a genuine buffer header
allocated as discussed above, all that is actually required is that the argument be a pointer i0 a
placz containing the appropnate information. For examplie the swap routine. which manages
movement of core images (o and [rom the swapping devicz, usas the strategy routine for this

.7-

device. Care has to be taken that no extraneous bits get tumed on in the flag word.

The device's table specified by bdevsw has a byte to contain an active flag and an error
count, a pair of links which constitute the head of the chain of buffers for the device (b_forw,
b_back), and a first and last pointer for a device queue. Of these things, all are used solely by
the device driver itself except for the buffer<chain pointers. Typically the flag encodes the state
of the device, and is used at a minimum (o indicate that the device is currently engaged in
transferring information and no new command should be issued. The error count is useful for
counting retries when errors occur. The device queue is used to remember stacked requests; in
the simplest case it may be maintained as a first-in first-out list. Since buffers which have been
handed over to the strategy routines are never on the list of free buffers, the pointers in the
buffer which maintain the free list (av_forw, av_back) are also used to contain the pointers
which maintain the device queues.

A coupie of routines are provided which are useful to biock device drivers. iodone(bp)
arranges that the buffer to which 4p points be released or awakened, as appropriate, when the
strategy module has finished with the buffer, either normally or after an error. (In the latier
case the 8_FRROR bit has presumably been set.)

The routine gererrorf{bp) can be used to examine the error bit in a buffer header ard
arrange that any error indication found therein is reflected to the user. It may be called only in
the non-interrupt part of a driver when /O has completed (B_DONE has been set).

Raw Block-device [/0

A scheme has been set up whereby biock device drivers may provide the ability to
transfer information directly between the user’s core image and the device without the use of
buffers and in blocks as large as the caller requests. The method invoives setting up a
character-type special file corresponding to the raw device and providing read and wrire routines
which set up what is usually a private, non-shared buffer header with the appropriate informa-
tion and call the device’s strategy routine. If desired, separate open and close routines may be
provided but this is usually unnecessary. A special-function routine might come in handy,
especially for magtape.

A great deal of work has to be done tp generate the ‘“‘appropriate information’’ to put in
the argument buffer for the strategy module; the worst part is to map relocated user addresses
to physical addresses. Most of this work is done by physio(sirat, bp, dev, rw) whose arguments
are the name of the strategy routine sirar, the buffer pointer bp, the device number dev, and a
read-write flag rw whose value is either 8_READ or B_WRITE Physio makes sure that the
user's base address and count are even (because most devices work in words) and that the core
area affected is contiguous in physical space; it delays until the buffer is not busy, and makes it
busy while the operation is in progress; and it sets up user error return information.

An Introduction to

Display Editing with VI

W (visual) is a display oriented interactive text editor. When using vi the
screen of your terminal acts as a window into the file which you are editing.
Changes which you make to the file are reflected in what you see.

Using vi you can insert new text at any place in the file quite easily. Most of the
commands to vi move the cursor around in the file. There are commands to
move the cursor forward and backward in units of characters, words, sentences
and paragraghs. A small set of operators, like d for delete and ¢ for change, are
combined with the motion commands to form opterations such as delete word
or change paragraph, in a simple and natural way. This regularity and the
mnemonic assignment of cornmands to keys makes the editor command set
easy to remember and to use.

Vi will work on a large number of display terminals, and new terminals are easily
driven after editing a terminal description file. While it is advantageous to have
an intelligent terminal which can locally insert and delete lines and characters
from the display, the editor will function quite well on dumb terminals over slow
phone lines. The editor makes allowance for the low bandwidth in these situa-
tions and uses smaller window sizes and different display updating algorithms to
make best use of the limited speed available.

It is also possible to use the command set of vi on hardcopy terminals, storage
tubes and "glass tty's” using a one line editing window; thus vi’s command set is
available on all terminals. The full command set of the more traditional, line
oriented editor ez is available within vi; it is quite simple to switch between the
two modes of editing.

Trademarks:
MUNIX, CADMUS for PCS
DEC, PDP for DEC
UNIX for Bell Laboratories

Copyright 1984 by
PCS GmbH, Pfalzer-Wald-Strasse 38, D-8000 MGnchen 90, tel. (089) 87804-0

The information contained herein is the property of PCS and shall neither be reproduced in
whole or in part without PCS’s prior written approval nor be implied to grant any license to
make, use or sell equipment manufactured herewith.

PCS reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages (including consequential)

caused by reliance on the materials presented.

An Introduction to Display Editing with Vi
Willlam Joy

Rewsed for wrsons 3.3/2.13 by
Mark Horton

Computer Scieace Division
Department of Electrical Enginesring and Computer Scencs
University of California. Berkeley
Berkeley, Ca. 94720

1. Genting started

This document provides a2 quick introduction to vi. (Pronounced vee-eye.) You should be
running v on & file you are familiar with while you sre reading this. The first part of this docu-
ment (sections | through §) describes the basics of using vi. Some topics of spedial interest ar=
presented in section §, and some nitty-gritty details of how the editor functions are saved for
section 7 o avoid clutiering the presentation bhere.

There is aiso a short appendix here, which gives for each character the special meanings
which this character has in vi Attached o this document should be a quick referencs card.
This card summarizes the commands of v/ in 2 very compact [ormat. You should have the crd
handy while you are learning vi.

1.1. Specifying terminal type

Before you can start v you must tell the system what kind of terminal you are using
Here is 2 (necessarily incompiete) list of terminal type codes. If your terminal does not appear
here. you should consult with one of the staf members on your system to find out the code for
your terminal. If your terminal does not have a code, one can be assigned and a description for
the 12rminal can be created.

Code Full name Type
2621 Hewlett-Packard 2521 A/P Inteiligent
2645 Hewlett-Packard 264x Intelligent
actd Microterm ACT-IV Dumb
acts Microterm ACT-V Dumb
adm3a Lear Siegler ADM-3a Dumb
adm3l Lear Siegler ADM-31 Intetligenat
¢100 Human Design Concept 100 Intelligant
dmi520 Datamedia 1520 Dumb
dm2500 Datamedia 2500 Inteiligent
dm3025 Datamedia 3025 Inteilig=nt
fox Perkin-Elmer Fox Dumb
k1500 Hazeltine 1500 [ntellig=nt
hl9 Hezthig: h19 Intelligent
1100 Infoton 100 Inteiligent
mime Imitating 2 smart ac4 Intellig=nt

The Znancal support of a0 Bm Gradusie Fellowship and the Nsuonal Scence Founaauon under grants
MCS74L076dat- AQ) and MCS73-0T291 is gratefully acknowiegged.

'2'

toél Teleray 1061 [ntelligent
wil Dec VT.82 Dumb

Suppase for example that you have a Hewlett-Packard HP2621A terminal. The code used
by the system (or this tarminal is ‘2621°. la this case you can use ons of the following com.
mands 0 =il the system e type of your terminal:

% setenv TERM 2621

Tiis command works with Wie shell csh on both version § and 7 systems. If you are using the
standard versioa 7 shell then you should give the commands

$ TIRM=262)
S export TERM

If you want to wranges to have your terminal lype set up sutomatically when you log in.
you can yse the oer program. If you dial in on a mume, but often use hardwired ports, a typical
hne for your .Jogin fle (if you use c3h) would be

setear TERM ‘tset = =d mime’
or for your .groftie 8le (if you uss sh)
TERM ='tsat = =d mime’

Tser knows which terminals are hardwired to each port and needs oaly (o be told that whea you

dial in you sre probably on 3 mime. Tseris usually used o change the erase and kill characters,
oo,

12. Editing a Qle
After telling the system which kind of terminal you have, you snould make 2 copy of a
fle you are familiar with, aad run v on this file, giving the command
% vl same

repiacing aame with the name of the copy Ble vou just created. The screen should clear and the
text of your file should appear on the screen. [Uf something else happens refer o the footnote, s

1.J. The editor’s copy: the buffer

The editor does oot directly modify the flle which you are editing Rather, the editor
makes 2 copy of ths file, in & place qlled the fyfer, tnd remembers the fle’'s aame. You do
not affect the contents of tha file uniess and unti] you write the changes you make back into the
original file.

1 Il you pave the fystem an incorrest arrmnud type cods then the editor may have just made 3 mess out of
your seea. This happers whes it jends control codes for one king of termina W some other king of (srm-
mi In this czse Xi¢ e L9y3 q (colon and Wie Q ksy) and then hit the RETUZN key. This should get you back
W the command level inrpreter. Figure owt wimt you did wrong (ask someone eiss if ascessary) ind Uy
min

Another txng which g go wrong is Ul you (yped the wrong flls name and (s ectitor just prmted an
error “fiagnoruc. In this asa you should folow :ba ibove proccure for getung out of (s egitor. and iy
again this time speiling the Ale name correctty.

If the esitor doesn't ssem W respond (9 (hs commands which you (ype hers, ry sending an interTupt W0 it
by hiuling the OFL or RUS key on your tervminal, ind then hitung tis :q command again (oilowed by 2 curiage
return.

1.4. Notational conventions

In our examples, input which must be typed as is will be presented in bold face. Text
which should be replaced with appropriate input will be given in iralics We will represent spe-
cal characiers in SMALL CAPITALS.

1.5. Arrow keys

The editor command set is independent of the terminal you are using. On most terminals
with cursor positioning keys, these keys will also work within the editor. If you don’t have cur-
sor pesitioning keys. or even if you do, you an use the b J k and | keys as cursor positioning
keys (these are labelled with arrows on an gdmJda).*

(Partcular note for the HP2621: on this terminal the function keys must be shifted (ick)

to send (o the machine, otherwise they only act locally. Unshifted use will teave the cursor
positioned incorrecuy.)

1.6. Spedial characters: £SC, CR and DEL,

Several of these special characters are very important, so be sure (o0 fnd them right now.
Look on your keyboard for a key labelled ESC or ALT. [t should be near the upper left comer of
your terminal. Try hicing this key a few times. The editor will ring the bell to indicate that it
is in & quiescent state.: Partially formed commands are canceiled by ESC, and when you insert
text -in the flle you end the text insertion with ESC. This key is a fairly harmless one to hit. 30
you can just hit it if you don’t know what is going on until the editor rings the beil.

The CR or RETURN key is important because it is used to terminate certain commands. It
is usually at the right side of the keyboard, and is the same command used at the end of each
shell command.

Another very useful key is the DEL or RUB key, which generates an interrupt, telling the
editor to stop what it is doing. It is a fore=ful way of making the editor listen to you. or o
retura it to the quiescent state if you don't know or don't like what is going on. Try hitting the
‘/" key on your terminal. This key is used whea you want 10 specify a string to be searched for.
The cursor should now be positioned at the bottom line of the terminal after 2 */° printed as a
prompt. You can get the cursor back to the current pesition by hitting the DEL or RUB key: try
this now.* From now on we will simpily refer to hirting the DEL or RUB key as **sending an
interrupt ™

The editor often echoes your commands on the last line of the terminal. If the cursor is
on the first position of this last line, then the editor is performing a computation, such as com-
puting a new position in the fle after a sesrch or nunning 1 command to reformat part of the
buffer. When this is happening you can stop the editor by seading an interrupt

1.7. Getting out of the editor

Afler you have worked with this introduction for 2 while, and you wish to do something
else, you can give the command ZZ to the editor. This will write the contents of the editor’s
buffer back into the dle you are editing, if you made any changss, and then quit from the edi-
wr. You can also end an editor session by giving the command :q!CR:¢ this is a2 dangerous but
occasionally essential command which ends the editor session and discards all your changes.
You need 10 kiow about this command in case you change the editor’s copy of a file you wish

® As we will see laier, » moves back W the left (ks controi-h which i3 2 backspace), j moves down (in the
same column). k moves up (in the smme colummn). and / moves (o e right

3 On smart wrrminais where it 3 postible. ths editor will quietty Jash the scre=n rather than ringing the bell
* Bacrspacng over the °/° will aiso cance| the search

= On some systems, this interTuptibility comes at 2 price: you qanot (ype ahead when the editor is ompul-
ing with the cursor on tha bouom line.

t All commands which read [rom s last display line cn aiso be terminated with 2 £5C a3 well 3s an C1.

4.

only to look at. Be very careful not to give this command when you really want to save the
changes you have made.

2. Moving arvuad in the fle

2.1. Scroillng and jaging

The editor has a aumber of commands for moving around in the file. The mest useful of
these is generated by hitting the control and D keys at the same time. 2 control-D or *'D’ Wa
will use this (wo character notation [or referring to these control keys from aow on. You may
have a key labelled '™ on your terminal, This key will be represented as *{’ in this document:
*** is excdusively used as part of the ‘“x’ notationt for control characters.s

AS you know gow if you tried hirting “D. this commuand scolls dowa in the dle. The D
thus suands for down. Many editor commands are mnemonic and this makes them much easier
to remember. For instance the command to scroll up is “U. Many dumb terminals can't scroll
up at ul, in which case hitting “U dears the screen and refreshes it with 3 line which is farther
back in the file at the top.

If you want to see more of the fle below where you are, you can hit “E to expose one
more line at the bottom of the screen, leaving the cursor where it is. 2 The command Y
(which is bopelessly non-mnemonic, but next to “U oa the keyboard) exposes one more line at
the top of the screen,

There arc other ways to move around in the flle; the keys “F aad *B ¢ move forward and
backward a page. kesping a couple of lines of continuity between screens so that it is possible to
read through a file using these rather than “D and “U if you wish.

Notce the difference betwesn scoiling and paging. If you are ying to read the text in 2
file. hitting 7 o move forward a page will leave you only a lile context to look back at
Scolling on the other hand leaves more context, and happens more smoothly. You c¢an con-
tinue (o read the text as scrolling is taiking placs.

2.2, Searching, goto, and previous context

Another way W position yourself in the flle is by giving the «ditor 2 string to search f{or.
Type the character / followed by a string of characters terminated by CR. The editor will posi-
tion the cursor at the gext occcurrencs of this string. Try hitting o to then go to the next
occurreace of this string. The characier ? will search backwards from whers you are, and is
otherwise like /.1

If the search string you give the editor is not present in the file the editor will print a diag-
nostic on the last line of the scre=n, and the cursor will be returned to its initial positon.

If you wish the search to maich oaly at the beginning of a line, begin the search siring
with an |. To match only at the end of a1 line, end the search string with a2 & Thus /{searchc’
will search for the word ‘search’ at the beginning of a line, and /lastSCR searcies for the word
Mast’ at the end of a line.®

1 If you don’'t have 2 *~ key oo your terminal then there is probably a key lbefled ‘1°. in any cisq thess
characiers are one and the same,

22 Version J onty.

t Not availanie m 3l v1 editors dus (0 memory consraints.

* These searches will aormsaily wrap around the end of the file. and thus find the string sven if it is 10t on 2
line in the direcion you search provided it 8 anywhere eise in the flle. You an disabie tris wraparound in
scans by pving he command e nowrapsaanch. of mors briedy 38 oewscx

*Actually, :he siring you give W szarch (or hers An Ye¢ 3 reguwiar cprexnoa in ths sease of the editors exil)
g anl). I vou don't wish 0 learn about this yet, you an disable this more general (aality by doing
e nomagicCR: 7Y putung this ommand in EXINIT in youwr eavironment, you cn have (Ris always %e in
eJea 1more aoout ZY/VIT later.)

..

The command G, when preceded by 4 aumber will position the cursor at that line in the
file. Thus 1G will move the cursor to the first line of the file. If you give G no count. then it
moves (o the end of the fle.

If you are near the end of the file, and the last line is sot at the bottom of the sce=n. the
editor will place only the character ‘™ on each remaining line. This indicates that the last line
in the file is on the screen: that is, the '™ lines are past the end of the file.

You an find out the state of the flle you are editing by typing 8 °G. The editor wiil show
you the name of the file you are editing, the number of the current line, the aumber of lines in
the buffer, and the percentage of the way through the buffer which you are. Try doing this
now, and remember the number of the lne you are on. Give 3 G command to get (o the end
and then another G command Lo get back where you were.

You can also get back to & previous position by using the command “ (two back quotes).
This is often more convenient than G because it requires 0o advancs preparation. Try giving a
G or a search with / or ? and then s ™ to get back to where you were. [f you accidentally hit n
or any command which moves you {ar sway {rom & context of interest, you can quickiy get
back by hiting .

23. Moving around on the screen

Now try just moving the cursor around on the scresa. If your terminal has arrow keys (4
or § keys with srrows going in esch direction) try them and convince yourself thas they work.
(On certain terminals using v2 edjtors, they won't) If you don’t have working arrow keys, you
can always use h,], k, and L. Experienced users of v prefer these keys 10 arrow keys, because
they are usually right underneath their fingers,

Hit the <+ key. Each time you do, notice that the cursor advances to the gext line in the
file. at the first con-white pesition on the line. The = key is like 4+ but goes the other way.

These zre very common keys for moving up and down lines in the file. Notice that if you
go off’ the bottom or top with these keys thea the screen will scroll down (and up if possible) to
bring & line at a time into view. The RETURN key has the same effect as the <+ key.

Vi aiso has commands to take you (o the top, middle and bottom of the screen. H will
take you to the top (bome) line on the screen. Try preceding it with a sumber as in 3H. This
will take you to the third line on the screen. Many v commands take preceding numbers and
do interesting things with them. Try M, which takes you to the middle line on the screen. and
L. which takes you to the last line on the screen. L also takes counts, thus 5L will take you to
the fifth line from the bottom.

2.4. Moving within a line

Now try picking a2 word on some line on the scceen, not the first word on the line. move
the cursor using RETURN and = 10 be on the line whers the word is Try hitting the w key.
This will advance the cursor o the aext word on the line. Try hitting the b key o back up
words in the line. Also try the ¢ key which advances you to the ead of the current word rather
than to the beginning of the next word. Also try SPACE (the spacs bar) which moves right one
—character and the BS (backspace or “H) key which moves left one character. The key h works
as “H does and is useful if you dona’t have a 8S key. (Also. &s noted just above. | will move o
the right)
If the line had punctuation in it you may have noticed that that the w and b keys stopped
at each group of puncruarion. You can aiso go back and forwards words without stopping a:
puncruation by using W and B rather than the lower casé squivalents. Think of these as biggar
words. Try these on a few lines with punctuation o ses bhow they differ from tae lower case w
and b.

The word keys wrap arouad the end of line. rather than siopping at the end. Try moving
10 2 word on a line below where vou are by repeatedly hinting w.

SPACE advance the cursor one position

B backwards to previous page

‘D scrolls down in the fle

‘E exposes another line at the bottom (v3)
T forward to gext page

‘G tell what is going on

‘H backspacs the cursor

N next line, same column

B4 previous line, same column

U scrolls up in the fle

Y exposes.another line at the top (v3)
+ gext line, at the beginning

- previous line, at the beginning

/ scan for a following string forwards

? scan backwards

B back 2 word, ignoring punctuation

G §o to specified line, last defauit

H home screen line

M middle screen line

L last screen line

W forward a word. ignoring punctuation
] back 3 word

. end of curreat word

n scan for next instance of / or ? partern
w word after this word

2.6. View s

If you want to use the editor to look at a file, rather than to make changes. invoke it as
view instead of vi This will set the readonly option which will preveat you from ac=idenady
overwriting the fle.

3. Making simple changes

3.1. Inserting

One of the most useful commands is the | (insert) command. After you type i, avery-
thing you type_until you hit ESC is inserted into the file. Try this now; pesition yourself to
some word in the file and uy insarting taxt before this word. If you are on an dumb terminal it
will seam, for 2 minute, that some of the characters in your line have been overwritten, but
they will reappear when you hit ESC.

Now try finding 2 word which can, but does not, end in aa ‘s’. Position yourself at this
word and type e (move to ead of word), then a for append and then ‘sESC’ (o termminate the
texmual insert. This sequencs of commands can be used to easily pluraliz= 2 word.

Try inserting and appending a [ew times to make surs you understand how this works: i
placing text to the left of the cursor, a to the right

It is often :he case that you want to add aew lines :0 the file you ars editing, tefore or
after some specific line in the file. Find a line whers this makes sense and then give the com-
mand o to cr=ate a naw line after the line you are on, or the command O o ceate 2 a=w line
before the line you are on. After you create a new line in this way, text you type up to an =5C

: Not available i all v2 =ditors cdus (0 MeMOry CONSLrints,

is inserted on the new line,

Many related editor commands are nvoked by the same lefter key and differ only in thas
one is given by a lower case key and the other is given by an upper case key. In these cases.
the upper case key often differs from the lower case key in its sense of direction. with the
upper case key working backward and/or up. while the lower case key moves forward and/or
dowvm

Whenever you are typiog io text, you can give many lines of input or just a few charac-.
ters. To type in more than one line of text, hit 8 RETURN at the middle of your inputl. A gew
line will be ceated for text, and you czn continue to type. If you are on s slow and dumb ter-
minal the editor may choose o wait 0 redraw the il of the screen, aod will et you type over
the existing scresn lines. This avoids the lengthy delay which would occur if the editor
artempted 10 keep the il of the screen alweys up to date. The tail of the scre=n will be fixed
up, and the missing lines will resppear, when you kit ESC.

While you are inserting new text, you-can use the characters you normally use at the sys-
tem command level (usually “H or #) to backspace over the last character which you typed.
and the character which you use 0 kill jnput lines (usually @, “X. or “U) o erase the inpws
you have typed on the current line.t The character “W will erase 1 wkole word 2ad leave you
after the space after the previous word: it Is useful for quickly backing up in 20 insert.

Notice that when you backspace during an insertion the characters you backspace over are
not erased: the cursor moves backwards, and the characters remain on the display. This is
often useful if you are planning o type n something similar, In any case the characters disap-
pear when when you hit ESC; if you want to get rid of them immediately, hit a0 ESC and then a
again.

Notice aiso that you can't erase characters which you didn't insest, snd that you cant
backspace sround the end of a line. If you peed 0 back up 1o the previous line to make s
correction, just hit ESC and move the cursor back to the previous line. After making the
corTection you can return o where you were and use the insert or append command again.

3.2. Making small corrections

You can make small corrections in existing text quite easily. Find a single character
which is wrong or just pick any character, Use the srrow keys to find the character, or get pear
the character with the word motion kzys and thea either backspace (hit the &s key or “H or
even just h) or SPACE (using the space bar) until the cursor is on the character which is wrong.
If the character is not nesded then hit the x key: this deletes the chzracter from the file [t is
analogous (o the way you X out characters when you make mistakes on a typewriter (except it’s
pot as messy).

If the character is incorrect, you can replace it with the correct character by giving the
command rc, where ¢ is replaced by the correct character. Finally if the character which is
incorrest should be replaced by more than one character, give the command s which substitures
a string of characrers, ending with ESC, for it If there sre 2 small number of characters which
are wrong you can precede § with a count of the gumber of characters to be replaced. Counts
zre also useful with x to spedfy the aumber of characters to be dejeted

33. More corrections: operators

You already know almost enough to make changes at s higher level. All you ne=d (0
know now is that the d key acts as a2 delete operator. Try the command dw o delete 2 wordh
Tryv hirting . & few times. Notics that this repeats the effect of the dw. The command . repeats
the last command which made a change. You can remember it by analogy with an =lipsis "..."

¢ In fac, the character “H (backopacs) aiwsys works (o erase the last input characier here, regardiess of what
your evase character i,

Now try db. This deletes a word backwards, namely the preceding word. Try dSPaCE
This deletes a single character, and is equivalent to the x command.

Ancther very useful operator is ¢ or change. Tae command cw thus changes the text of 2
single word. You follow it by the replacament text eading with an ESC. Find a word which vou
can change to another. and try this now. Notice that the end of the text to be changed was
marked with the character 'S’ so that you can ses this as you are typing in the new material.

3.4. Operating on lines

It is often the case that you want to operate on lines. Find a line which you want to
delete, and type dd, the d operator twice. This will delete the line. Uf you are on a dumb ter-
minal, the editor may just erase the line oa the screen, replacing it with a line with only an @
on iL. This line does aot correspond to any line in your file, but only acts as a ptace hoider. [t
keips 0 avoid a leagthy redraw of the rest of the scre=n which would be necessary o close up
the hole created by the deietion on a terminal without a delete line capability.

Try repeating the ¢ operator twice: this will change a whole line, srasing its previous con-
tents and replacing them w#ith text you type up to an esc.t

You can delete or change more than one line by preceding the dd or e with a count, i.e.
5dd deletes § lines. You can aiso give a command like dL to delete all the lines up to and
including the last line on the screen, or d3L to0 delets through the third from the bottom line.
Try some commands like this aow.® Notice that the editor lets you know when you change a
large aumber of lines so that you can see the extant of the change. The editor will also always
tell you when a change you make afects text which you cannot ses.

3.5. Undoing

Now suppose that the last changs which you made was incorrest; you could use the insert
delete and append commands (o put the correct material back. However, sincs it is often the
case that we regret a change or make s change incorrecty, the editor provides a u (unds) com-
mand to reverse the last change which you made. Try this a few times, and give it twicz ia a
row 1o notice that an u also undoes a u.

The undo command lets you reverse only a single change. After you make a qumber of
changes to a line, you may cdecide that you would rather have the original state of the line back.
The U command restores the current line to the state before vou started changing it

You can recover text which you delete, even if undo will not bring it back; see the section
on recovering lost taxt beiow.

3.6. Summary
SPACZ advancs the cursor one pesition
‘H backspacs the cursor
w erase a word during an insert
erase’ your erzse (usually “H or #), erases a character during an insert
kil your idll (usually @, “X. or “U), kills the insert on this line
. repeats the changing command
o) opens and inputs new lines, above the curreat
8] undoes the changss you made to the curreat line
a appends text after the cursor
< changes the object you specify to the following text

t The command S is & convement synonym for (or ce. by analogy with 3. Think of § as 2 subsuwue on
lines, while s is a substitutes on charactery

* One subtie poict here invoives using the / search afler 3 . This will normally delews ciaracers from the
currem position W the point of the mawch U what is denred is 10 deiete whole lines including the (wo points,
gve the pattern as /pat/ <=4, 2 lins agdress,

..

d deletes the object you specify

! inserts text before the cursor

0 opens and inputs new lines, below the current
a undoes the last change

4. Moving about; rearranging and duplicating tu'.x

4.1. Low level character motions

Now move the carsor 0 a line where there is a puncruation or a bracketing character such
as a parenthesis or a comma or period. Try the command fx where x is this character. This
command finds the next x character to0 the right of the cursor in the current line. Try then hit-
ling a ;. which finds the next instance of the same character. By using the f command and then
a sequence of ;'s you can often get to a particular place in 3 line much faster than with a
sequencs of word motions or SPACES. There is also a F command, which is like {, but searches
backward. The ; command repeats F also.

When you are operating on the text in a line it is often desirable 0 deal with the caarac-
ters up 0. but not including, the first instance of a character. Try dfx for some x now and
gotice that the x character is deleted. Undo this with o and then try dtxx the t here stands for
0. Le. delete up to the next x, but not the x The command T is the reverse of ¢

When working with the text of s single line, an | moves the cursor to the first non-white
position on the line, and 2 § moves it o the end of the line. Thus Sa will append new text at
the end of the current line.

Your file may have tab (") characters in it. These characters are represented as a aumber
of spaces expanding t0 a tab stop. where tab stops are every 8 positions.® When the cursor is at
a wb, it sits on the last of the several spaces which represent that wb. Try moving the cursor
back and forth over tabs so you understand how this works.

On rare occasions, your file may have sonprinting characrers in it. These characters are
displayed in the same way they are represented in this document, that is with a two character
code., the first character of which is *“*. On the screen non-printing characters resemble a **°
character adjacent to another, but spacing or backspacing over the character will reveal that the
two characters are, like the spaces representing a tab character, a single character.

The editor sometimes discards control characters, depending on the character and the set-
ting of the begurify option, if you attempt o insert them in your Sle. You cn get 2 control
character in the file by beginning an insert and then typing 2 “V before the control characrer.
The “Y quotes the following character, causing it to be inserted directly into the file.

4.2, Higher level text objects

In working with 2 document it is often advanitageous to work in terms of sentencss. para-
graphs, and sections. The operations (and) move W the beginning of the previous and hext
sentances respectively. Thus the command d) will delete the rest of the current sentence: like-
wise d(will deiete the previous sentence if you are at the beginning of the current sentencs. or
the current senlence up to where you are if you are not at the beginning of the current sen-
tencs.

A sentence is defined to end ar a2 '.*, " or ‘7" which is {ollowed by either the 2nd of a
line. or by two spacss. Any sumber of closing *)'. ‘)’, *™ and *** characters may appear after
the *.°, *1* or *?* before the spacss or end of line.

The operations { and | move over paragrapas and the operations | and]l move over szc-
tions.t

* This is settadle by a command of the form =e ts=xca. where ris 4 L0 set Labstops every four eolumns.
This has effect on the screen representation within the editor.
* The (I and || operations require Wis operation caracier W be doubied because they can move the cursor far

.10 -

A paragraph begins after each empry line, and also at each of a set of paragraph macros.
specified by the pairs of characters in the dednition of the string valued option parograpss. The
default setting for this option defines the paragraph macros of the —ms and =—mm maco pack-
ages, i.e. the *.JIP', *LP’, * PP’ and *.QP’, ".P’ and ‘LI’ macros.$ Each paragraph boundary is
aso a3 sentence boundary. The seatence and paragraph commands can be given counts (o
operate over groups of sentenc=s and paragraphs.

Sections in the editor begin after each macro In the secrions option, aormally . NH', *.SH",
*H and ‘HU", and each line with a formfesd “L in the first column. Secton boundaries are
aiways line and paragraph boundaries alsa.

Try experimenting with the sentence ind paragraph commands unti] you are sure how
they work. If you have a large document, &y looking through it using the. section commands.
The section commands: interpret 3 precading count as 3. different window size in which to
redraw the sceen at the gew location, and this window size is the base size for newly drawn
windows untl another size is specified. This is very useful if you are on a siow terminal and
are looking for a particular section. You can give the first section command a2 small count to
then see esch succ=ssive section beading in a small window.

43. Rearranging and dupiicating taxt

The editor bas a single unnamed buffer where the last deleted or changed away text is
saved. and 2 set of named bufers a—z which you cag use (o save copies of text and 0 move
text around in your flle and between files.

The operator y yanks a copy of the objest which {cilows into the unnamed buffer. If pre-
ceded by a buffer name, “xy, where x hers is replaced by a letter a=2. it places the text in the
pamed buffer. The text can then be put back in the file with the commaads p and P; p puts
the text after or below the cursor, while P puts the text before or above the cursor.

If the text which you yank forms s part of a line, or is an objest such as a seatence which
partially spans more than one line, then when you put the text back. it will be placed after the
cursor (or before if you use P). IUf the yanked text forms whole lines. they will be put back as
whole lines, without changing the current line, o this case, the put acts much like 2 0 or O
command.

Try the command YP. This makes 2 copy of ths current line and leaves you on this copy.
which is placed before the current line. The command Y is a convenient abbreviation for yy.
The command Yp will also make & copy of the current line, and place it after the current line.
You can give Y a count of lines to yank, and thus duplicate several lines: y 3YP.

To move text within the buffer, you nesd to delete it in one place, and put it back in
another. You can precede a delets operation by the name of a buffer in wiich the text is t0. be
stored as in "25dd deleting § lines into the named buffer ¢ You can then move the cursor to
the evenrual resting place of the these lines and do a “ap or "aP to put them back In fact vou
can switch and edit another file befors you put the lines back. by giving a command of the form
2 nameCR where name is the name of the other file you want 1o edit. You will have 0 write
back the contents of the current editor buffer (or discard them) if you have made changes
before the editor will let you switch to the other fle. An ordinary delete command saves the
text in the unnamed buffser, so that an ordinary put can move it elsewher=. However. the
unnamed buder is last when you change files. so to move text from one file to another you
should use an unnamed buffer.

from where it carrently is. While it is exsy 10 get back with the command =, these commands wowld stll de
frustrating if they were easy (0 hit accidentally.

t You an easnly shange or extend this set of macos by wsugning a different suinng o te seroeruoss opuon
in your SXINTT. Se= secuon 6.2 for dewils, The “.bp' directive is 2iso considersa (0 st a saragraol.

<11 -

4.4. Summary.

first non-white on line

end of line

forward sentencs

forward paragraph

forward section

backward seatence

backward paragraph

backward section

find x forward in line .
put text back. after cursor or below current line ¢
yank operator, for copies and moves

up to x forward, for operators

f backward in line

put text back, before cursor or above qurrent line

t backward in line

'un'l q o =—-A=——'VM—.
CRFTRRE

§. High level commands

5.1. Writing, quitting, editing new files

So far we have se=n how to enter w and (o write out our file using either ZZ or :wCR.
The first exits {rom the editor, (writing if changes were mads), the second writes and stays in
the editor.

If you have changed.the editor's copy of the file but do not wish to save your changes.
sither because you messed up the file or decided that the changes are not an improvement to
the file, then you can give the command :g!CR to quit {rom the editor without writing the
changes. You can aiso reedit the same file (starting over) by giving the command :e!CR. These
commands should be used only rarely, and with caution. as it is not possible 10 recover the
changes you have made after you discard them in this mananer.

You can edit a different file without leaving the editor by giving the command :2 ngmecR.
If you have not wricten out your file before you try to do this, then the editor will tell you this,
and delay editing the other file. You can then give the command swCR 10 save your work and
then the :2 nameCR command agzin, or carefully give the command :e! namecR. which edits
the other file discarding the changes you have made (0 the curreat Sle. To have the aditor
automatically save changes, include ser aurowrite in your EXINIT, and use = instead of ==.

5.2, Escaping to a shell

You can get o a shell 10 execute a single command by giving a v command of the form
slomdC®. The system will run the single command omd and when the command rishes. the
editor will ask you to hit 2 RETURN to continue. When you have finished looking at the output
on the scre=n, you should hit RETURN and the editor will clear the scresn and redraw it. You
can then continue editing. You can also give snother command when it asks vou for a
RETURN; in this case the screen will not be redrawn,

If you wish to execufe more than one command in the shell. then you can give the com-
mand :shCR. This will give you a new shell, and whea you finish with the shell, ending it by
typing a "D, the editor will clear the screen and contigue.

On systems which support it, “Z will suspend the editor and return to the (top leve!)
shell. When the editor is resumed. the screeg will be redrawn.

<12-

$§.3. Marking and returning

The command ™ returned to the previous place after a motion of the cursor by a com-
mand such as /, ? or G. You can also mark lines in the fAle with singie lerter wgs and return to
these marks later by naming the tags. Try marking the current line with the command mrx.
where you should pick some letter for x, say ‘a’. Then move the cursor to a different [ize (any
way you like) and hit 'a. The cursur will retum to the placs which you marked. Marks last
only until you edit another file.

When using operators such as d and referring to marked lines, it is oftan desirable o
delete whole lines rather than defeting to the exact pasition in the line marked by m. In this
case you can use the form ‘rrather than ‘x Used without an operator. “x will. move o the first
non-white character of the marked line: similarly ™ moves to the first non-white character of
the line containing the previous context mark ™.

5.4. Adjusting the screen

[f the screen image is messed up because of a transmission erTor to your tarminal. or
because some program other than the editor wrote output to your termninal, you can hit a L.
the AsCh [orm-{e=d character, to cause the scoesn (o be refreshed.

On a dump terminal, if there are @ lines in the middle of the scre=n as a result of line
deletion, you may get rid of these lines by typing "R (0 cause the editor 1o retype the scre=n,
closing up these holes.

Finally, if you wish to piace a certain line on the scresn at the top middle or bottom of
the screen, you can position the cursor to that line, and then give a z command. You should
follow the z command with a RETURN if you want the line to appear at the top of the window, a
. if you wunt it at the centar, or 3 — if you want it at the bottom. (z.. z-, and 2+ are oot avail-
able on all v2 =ditors.)

6. Special topics

6.1. Editing on slow terminals

Whea you are on a'slow terminal, it is important to limit the amount of output which is
generated 10 your scTeen 30 that you will mot suffer long delays, waiting for the scre=n to be
refreshed. We have already pointed out how the aditor optimizes the updating of the sce=n
during insertions on dumb terminais to limit the delays, and Yow the editor erases linss to @
when they are deleted on dumb termninals,

The use of the slow terminal insertion mode is controlled by the siowoper option. You
can force the editor o use this mode even on faster terminals by giving the command :se
slowCR. If your system is sluggish this heips lessen the amount of output coming to your ter-
minal. You can disable this option by :se noslowCR

The editor can simulate an intefligent terminal on a dumb one. Try giving the command
:se redrawCR. This simulation generates a great deal of output and is generally wlerable only
on lightly loaded systems and fast terminals. You can disable this by giving the command

:se noredrawcCg,

The editor also makes editing more pleasant at low spesd by staing edidng in 2 small
window, and letticg the window expand as you edit. This works particularly well on intelligent
terminals. The editor can expand the window easily when you insert in the middle of the
screen on these terminals. If possible, uy the editor on an inteiligent terminal 10 se= how this
works.

You can control the size of the window which is redrawn each time the scrsen is cleared
by giving window sizes as argument to the commands which cause largs scT==1 motons:

/2l

Thus if vou are sez2rciing {or 2 particular instance of a comumon string in a file you can orecsds

.13 -

the first search command by a small number, say 3, and the editor will draw thres line windows
around each instance of the string which it locates.

You can easily expand or contract the window, placing the current line as you choose. by
giving a8 number on a2 z command, after the z and before the following RETURN, . or =. Tnus
the comunand z3. redraws the screen with the current line in the center of a five line window. t

If the editor is redrawing or otherwise updating large portions of the display, you cn
interrupt this updating by hitting a DEL or RUB as usual. [f you do this you may partially con-
fuse the editor about what is displayed on the scre=n. You can still edit the text on the screen
if you wish; clear up the confusion by hitting a “L. or move or search again, ignoring the
curreqt suate of the display.

See section 7.8 on open mode for another way to use the v command st on slow (ermi-
nals

6.2. Options, set, and editor startup flles

The editor has a set of options, some of which have besn meationed above. The most
useful options are given in the following table.

Name Default Description

autcindent noai Supply indentation automatically

autowrite noaw Automatic write before :n, 112, °1, !
ignorecase moic Ignore case in searching

lisp nolisp ({)) commands deal with S-expressions ,
list nolist Tabs print as °I; end of lines marked with S
magic nomagic The characters . [and * are special in scans
sumber nonu Lines are dispiayed prefixed with line aumbers
paragraphs para=[PLPPPQPYpP LI Macro names which start paragraphs

redraw nore Simulate a smart termina] on a dumb oae
seclions sec:=NHSHH HU Macso names which start new sectons
shiftwidth swmg§ ° Shift distance for <. > and input "D and T
showmatch nosm Show matching (or (as) or } is typed
siowopen slow Postpone display updates during inserts

term dumb The kind of terminal you are using.

The options are of three kinds: numeric options, string options, and toggle options. You
cn set gumeric and string options by a statament of the form

set opr== vqf
and toggle options can be set or unset by statements of oae of the forms

set opt
set noopt

These statements can be placed in your EXINIT in your eavironment, or givea while vou are
running v by preceding them with a : and following them with a CR.

You can get a list of all options which you bhave changed by the command :setCR. or the
value of a single opuon by the command :set opr?CR. A list of all possible options and their
values is generated by :set alICR. Set can be abbreviated se. Multiple options can be placsd on
one line, e.g. :s& 2i aw nuCR.

Options set by the set cormmand only last while you sty in the editor. It is common (o

want 0 have cernain options set whenever you use the editor. This can be accomplished by
creating a list of ex commandst which are w be run svery time you swart up ex. edit. or v. A

¢ Note that the command $z. has an entirety different effect. placing line 5 in the cemter of a new window.
? All commands which start with ; are ex commands.

<14 -

typical list inciudes a set command, and possibly a few map commands (on v3 editors). Sincs
it is advisabie to get these commands on one line, they can be separated with the | character, for
example:

sef ai aw lersemap @ ddmap # x

which sets the options gquroindent, qutowrie, rerse, {he set command), makes @ delete a line,
(ihe first map). and makes # delete a character, (the sacond map). (See section 6.9 for a
description of the map command, which only works in version 3.) This string should be placed
in the variable EXINIT in your environment. If you use csh, put this line in the file ./ogin in
your home directory:

seteny EXAOINTT “set ai aw tersemap @ ddimap # x°
If you use the standard v7 shell, put these lines in the file .profile in your home directory:

EXINIT ="set ai aw lersemap @ ddmap # x’
export EXINIT

On a version 6 system, the concept of snvironments is oot present. [n this case, put the line in.
the file .zxrc in vour bome directory.

set 2i aw tersemap @ 'dﬁap# x
Of course. the particulars of the line would depend on which options you wanted to set.

6. Recovering lost lines

You might have a serious problem if you delete 2 aumber of lines and then regret that
they were deleted. Despair not, the editor saves the last 9 deleted blocks of text in a set of
numbered registers 1 =9. You can. get the #'th previcus deleted text back in your fle by the
command “ap. The “ here says that 2 bufer name is to foilow, # is the number of the bufer
you wish to try (use the aumber | for aow), and p is the put command. witich puts text in the
bufer aftar the cursor. If this doesn't bring back the text you wanted, hit u to undo this and
then . (period) 10 repeat the put command. In general the ., command will repeat the last
change you made. As a special case, when the last command refers to a aumbered text buffer,
the . command increments the aumber of the buffer before repeating the command. Thus a
sequence of the form

"1pu.a.n.

will, if repeated long enough. show you all the deleted text which has been saved fer you. You
can omit the u commands here to gather up all this text ig the bufer, or stop arter any . com-
mand. to ke=p just the then recovered text. The command P can also be used rather than p (o
put the recovered text before rather than after the cursor.

6.4. Recovering lost files

[f the system crasies. you can recover the work you wers doing to within a few changes.
You will normally recsive mail when you next login giving you the name of the file whica has
besn saved for youw You should then change to the directory where you wers when the system
crasiied and give a cornmand of the form:

% vi =r name

reclacing name with the game of the §le which you were editing. This will recover your work
10 a point aear where you left od.t

* In rare cases, some of the lines of e Ala may by lost. The editor will give you the mumbers of thesa lines
and the text of ‘e Lines will be replaced by the string "LOST. These lines will almost aiwayy Se among the
128t (ew which you czanged. You cn either choose 19 discard the changes which you made fif they urs easv
o remake) or W restace the {ew jost lines by hand.

«15.

You can get a listing of the fles which are saved for you by giving the command:
% vi =

[l there is more than one instance of a particular flle saved, the editor gives you the newest
instance each time you recover it. You can thus get an older saved copy back by first recover-
ing the newer copies.

For this feature o work. v must be correctly installed by a super user on your system.
and the mail program must exist o receive mail. The invocation **vi " will not always list ail
saved flles, but they can be recovered even f they sre not listed

6.5. Continuous text input

When you are typing in large amounts of lext it is convenient (o have lines brokea near
the right margin automatically. You can czuse this to happen by giving the command :se
wm=10CR. This causes all lines to be broken at & space af least 10 columns from the right
hand edge of the scre=n.*

If the editor breaks an input line and you wish o put it back together you can tell it o
join the lines with J. You can give J a count of the number of lines o be joined 25 in 3J 10
join 3 lines. The editor supplies white space, if appropriate, at the juncture of the joined lines.
and leaves the cursor at this white spacs. You can kill the white space with x if you don't wanit
it.

6.6. Fearures for editing programs

The editor has & number of commands for editing programs. The thing that most distin-
guishes editing of programs from editing ef text is the desirability of maintaining an indented
structure (o the body of the program. The editor has a quroinderm facility [or helping you gen-
erate correctly indented programs.

To enable this facility you can give the command 38 alCR. Now try opening a new line
with o and type some characters on the line after a few tabs. If you now start another line.
notice that the editor supplies white space at the beginning of the line w line it up with the pre-
vious line, You cannot backspace over this indentation, but you can use “D key to backtab
over the supplied indentation.

Each time you type ‘D you back up cne position, normally to an § column boundary.
This amount is settable; the editor has an option called shifrwidth which you can set to change
this value. Try giving the command 338 sw=4CR and then experimenting with autoindeat
again.

For shifting lines in the program left and right, there are operators < and >. These shift
the lines you .specify right or left by one shitwicth. Try << and > > which shilt one line left
or right, and <L and >L shifting the rest of the display left and right.

If you have a complicated expression and wish to see how the parentheses match, put the
cursor af a left or right parenthesis and hit %. This will show you the matching parsathssis.
This works also for braces { and), and brackets { and].

If you are editing C programs. you can use the [[and |] keys to advance or retreat o0 2

line starting with a {, ie. a function declaration at s time. Whea |} is used with an operator it
stops after g line which starts with J; this is sometimes useful with yll.

* This feature is not availabie on some vl editors. [n v2 editors where it is available. the dbreak an only oc-
cur 1o the right of the specified boundary instead of W 1he left

llé.

6.7. Flltering portioas of the bufler

You aan run systern commands over portdons of the buffer using the operator !. You an
use this 0 sort lines in the buffer, or 10 reformat portions of the buffer with s presty-princer.
Try typing in 1 list of random words, one per line and ending them with & blank line. Back up
to the beginning of the list. and then give the comnand !|sorzCR. This says Lo sort the next
paragraph of matesial, and the blank line ends a paragraph.

6.3. Commands for editing LISP?

If you are editing a LISP program you should set the opdon lisp by doing :se llspCR. This
changes the (and) commands to move backward and forwerd over s-expressions. The { and |
commands are like (and) but don't stop & stoms. These can be used (o skip (o the aext list,
or through & comment quickly.

The quroindenr option works differently for LISP, supplying indent to align a¢ the first argu-
ment o the last open list. If there is oo such argument thex the indent is two spaces more
than the last level.

There is another option which is useful for typing in LISP, the showmarch option. Try set-
ting it with 38 smCR and then try typing & *(* some words aad then s *)’. Notce that the cur-
sor shows the position of the ‘(* which matches the ‘)’ briefly. This happens only if the match-
ing ‘(" is on the scresn, and the cursor stays there [or at most one second.

The editor aiso has an operator to realign existing lines as. though they had been typed in
with lisp and quroindent set. This is the = operator. Try the command =% at the beginning of
s funcrion. This will realign all the lines of the [unction declaration.

When you are editing LisP,, the ([and]] sdvancs and retreat o lines beginaing with a (,
and are useful for dealing with entire function definitions.

6.9. Macros:

Vi has a4 parameteriess macro facility, which lets you set it up so that when you hit a single
keystroke, the editor will act as though you had bit some longer sequence of keys. You can set
this up if you find yourself typing the same sequence of commands repeatedly.

Briedy, there are two flavors of macrom

1) Ones where you put the macro body in & buffer register, 2y & You cn thea type @x 0
invoke the macro. The @ may be followed by wnother @ to repeat the last macro.

b) You can use the map command {rom w (typically in your £YZVIT) with a command of ke
form:

map hs rhCR

mapping ls into A3, There are restrictions: Urs should be one keystroke (either | ¢karac-
ter or one function key) since it must. be entered within one second (unless aorimeour is
set, in which case you can type it as siowly as you wish. and w will wait for you to fnish it
before it echoes anything). The /i3 can be as longer than 10 characters, the ras oo longer
than 100. To get a spacs. tab or newline mto (s or rAs you should escape them with a °V
(It may be necsssary to double the “V if the map command is givea inside v/, rather than
in ec.) Spaces and wbs inside the rAs need not be escaped.

Thus to make the q key write and 2xit the editor, you can give the command
map g WV YCR QR

which means that whenever you type q, it will be as though you had typed the four characers
iwqCR. A “Y’s is nesded because without it the R would end the : command. rather than

* The Ls?P (eatures are not availabie on some vl editors dus L0 memory coastraints,
¢ The macro (eature s available oniy 18 version J editors.

-17-

becoming part of the map definition. There are two “Y's because from within v, two “V's mus:
be typed o get one. The first CR is part of the rAs, the second Lcrminuume:cpmmand.

Macros can be deleted with
unmap lhs

If the /hs of & macro Is “#0™ through **#¥9", this maps the particular function key instead
of the 1 character “#" sequeace. So that terminals without function keys aan access such
definitions. the form “#x' will mean function key x on all terminals (and need not be typed
within oae second.) The character “#'' an be changed by using 3 maco in the usual way:

map VYlg#
o use b, for example. (This won't affet the map command. which stll uses &, but just the
invocation [rom visual mode,
The undo command reverses.an eatire macro cll as ¢ unit, if it made any changes.
Placing a *!* after the word map causes the mapping to apply (0 input mode. rather than
command mode. Thus, to arrange far “T 0 be the szme as 4 spaces in input mode, you can
type:

Triap “T “VYEEY

where ¥ is a blank. The “V is necessary to prevent the blanks from being taken as white space
between the (s and iz

7. Weord Abbreviatons &

A feature simmilar to macros in input mode is word abbreviation. This allows you o type 2
short word and bave it expanded into a longer word or words. The commands are :abbreviate
and cunabbreviate (:ab and mna) and have the same syntax as zmap. For example:

ab e=cs Electrical Engineering md Computer Sciences

causes the word ‘eecs’ to always be changed into the phrase ‘Electrical Engineering and Com-
puter Sciences’. Word abbrevistion is different from macros in that only whole words are
wffected. If ‘eecs’ were typed as part of a larger word, it would be left 2lone. Also, the partial
word is echoed as it is typed There is no need for a abbreviation to be a single keystroke. as
it should be with 2 macyo,

7.1. Abbreviadons

The editor has 2. number of short commands which abbreviate longer commands which we
bave introduced here. You can find these commands ezsily on the quick referencs card. They
often save 2 bit of typing and you can learn them as convenient

8. Nitty-gritty details

8.1. Line representation In the display

The editor foids long logical lines onto many physical lines in the display. Commands
which advance lines sdvance logical lines and will skip over all the segments of a line in one
motion. The comumand | moves the cursor (o a specific column, snd may be usefu! for geming
near the middle of & long line o split it in half. Try 80 cn a line which is more than 30
columns long.t

The editor only puts full lines on the display: if there is not enough room on the display
to fit a [ogical line, the editor leaves the physical line empry, placing only an @ on the line as 2

12 Verzion J only.
? You an make iong lines wery easily by uxing J 0 join together sbon hinex

<18 -

place bolder. When you delete lines on 3 dumb terminal, the editor will often just clear the
lines to @ to save time (rather than rewriting the rest of ke screen.) You can always maximize
the information oa the screea by giving the "R command.

If you wish, you can bave the editor placs line numbers before each line on the dispiay
Give the command :se nuCR to enabie this, and the command :se noauCR to wm it of. You
can have abs represented as °1 and the ends of lines indicated with 'S” by giving the commancd
e UstCR; e nolistCR turns this off.

Finally, lines consisting of only the character '™ are displayed when the last line in the file
is in the muddle of the sceen. These represent physical lines which are past the logical end of
fle.

3.2. Counts

Most v commands will use a preceding count to affest. their behavior in some way. Tne
following table gives the common ways in which the counts are used:

gew window size A AN
scroll amount D U
line/colummn qumber 1 G |

repeat edfex most of the rest

The editor maintains a notion of the current default window size. On terminals which run
at spe=ds greater than 1200 baud the editor uses the full terminal scresn. On terminais which
are slower than 1200 baud (most dizlup lines are in this group) the editor uses 8 lines as the
defauit window size. At 1200 baud the defauit i3 16 lines.

This size is the size used winen the =ditor clears and refiils the screen after a search or
other moton moves far from the edge of the current window. The commands which take 2
new window size as count all often cause the scyeen to be redrawn. [f you anticpate this. but
do nol ge=d as large 2 window as you are currently using, you may wish (o cange the screan
size by specifying the new size before these commands. In any case. the aumber of lines used
on the screen will expand if you move of the top with a = or similar command or of the Sot-
tom with 2 command such as RETURN or “D. The window will revert to the last specified sizs
the next time it is cdeared and refilled.t

The scroll commands D and *“U likewise remember the amount of scroll last spesified.
using half the basic window size initally. The simple insert commaneds use 1 count to sceciiy 2
repetition of the inserted text. Thus 10a-+ = ——==£3¢ wil] insert a grid-like string of text. A
few commancds also use 3 precading count as a line or column gumber.

Except for a few commands which ignore any counts (such as “R). the rest of the 2ditor
commands use 2 count o indicate a simple repetition of their efect. Thus Sw advances fve
words on the curr=nt line, while SRETURN advances five lines. A very useful instance of 1
count as a repetition is a sount given to the . cormmand, which repeats the last c=angizg som-
mand. [f you do dw and then 3.. you wiil delete first one and then thres words. You san then
delete two more words with 2,.

8.3. More file manipulation commands

The following table lists the dle manipulation commands which you can use winen vou are
in vi. All of these commands are followed by 2 CR or ESC. The most basic commands ire :w
and :2. A normal editing session ca a single file will end with 2 ZZ sommand. If vou ar= 2dit-
ing for a long period of time you cn give :w commands oc=asionally afier major amounts of
editing, and then Enish with 2 ZZ. Whez vou 24it mor= than one fle. vou can dnish with one

? 3ut not by 1 "L winch just redraws Lhe screen as it is.

- 19.

™ write back changes

wq write and quit

x write (if necessary) and quit (same as Z2).
s nrame edit flle name

! reedit, discarding changes
8 + name edit, starting at end

2 +n edit, saarting at line »

a#® ‘edit alternate flle

w name write file nome

w! name overwrite file name

wxxyw name write lines x through y 10.name
T name read flle name into buffer

T lomd read output of emd into buffer
@ edit next fle in argument list

! edit next file, discarding changes to current
@ args speci{ly new argument list

ta g edit fle containing tag g, at g

with 2 :w and surn editing a new flle by giving a :» command, or set quiowrize and use :n
<file>.

If you make changes to the editor’s copy of 1 flle. but do oot wish 0 write themn back.
then you must give an ! afler the command you would otherwise use; this forces the sditor o
discard any changes you have made. Use this carefully.

The :» command can be given 3 < argument to start at the ead of the file. or 3 +7 argu-
ment to start at line 2. [n actuality, # muay be any editor command anot contzining a spacs. use-
fully a scan like +/par or +?par In forming new names to the ¢ command. you &an use the
characier % which is replaced by the current file name, or the character # which is replaced Sy
the alternate file name, The alternate file name is generally the last name you ‘yped other thas
the current file. Thus if you try to do a :» and get & diagnostic thar you havea't wrintea the ile.
you can give a :w comrnand and then a :» # command to redo the previous =

You can write part of the buffer to a file by finding our the lines that bound the rang= w
be writtea using "G, and giving these sumbers after the : and before the w, separated by ,'s.
You can also mark these lines with m and then use an address of the form ‘x v on the w com-
mand here,

You @n read snother flle into the buffer after the current line by using the ;7 sommand.
You can similarty read in the output from a command, just use !omd instead of a Sle name.

If you wish 10 edit 2 set of files in succession, you can give all the names on the command
line, and then edit each one in turn using thé command m. It is also possible to respe=fy the
list of files to be edited by giving the 1 command a list of fle names. or a pattemn to be
expanded as you would have given it on the inidal v command.

If you are editing large programs. you will find the xa command verv useful. It utilizes a
data base of funciion names and their locations, which can be created by programs such is
cags. 10 quickly Snd a function whose name you give. If the ta command will requirs the egi-
wr o switch files, then you must :w or abandon any changes before switching. You can regeat
the sta command without any argumeants o look for the same tag again. (The g feature is not
available in sorne v2 editors.)

8.4. More about searching for strings

When you are searching for sirings in the file with / and ?, the editor normally piaces yvou
at the next or previous occurrence of the string. If you are using an operator such as d. cor v,
then you may well wish 10 affect lines up to the line before the line conuining the pattem.

020'

You cn give a search of the form /pat/=n to refer o the a'th line before the nexs line con-
wining paz of you can use <+ instead of = to refer 10 the lines after the one conuining pac. If
you doa't give a line offset, then the editor will affect characiers up to the mawch place, rather
than whole lines: thus use “*+Q" to affect o ths line which matches.

You cn have the editor ignore the case o words in the sear:ha It does by zving the
command 3e icch. The command :3a noleCR turns this of,

Strings given to searches may actually be regulsr expressions. [f you do not want or ne=d
this facility. you shouid

set pomagic
in your EXINTT. [n this case, only the characters | and 3 are special in patterns. The characzer
\ is also then special (as it is most everywhere in he system), and may be used 0 g22 at (ke an
exteaded pattern matching facility. [t is elso necessary to use s \ befors &2 / in 2 forward scan

or a ? io a backward scan, in any case. Ths (ollowing table gives the exiended forms whea
magic is set.

1 at beginming of patiern, maiches beginning of line
S at end of pattern, maiches end of line
maiches any character

\< matches the beginning of a word

\> matches the end of 2 word

(= maiches any single characier in g2r

(t=Ad maiches any singls chanacter not in

(x=y1 maiches any character batweea xrand y

* matches any sumber of the precsding pattemn

If you use nomagic mode, then the , [and ® primitives are given with 2 preceding \.

8.5. More about lnput mode

There are a number of characters which you can use t0 make cocrrestions during iopus
mode. Thess are summarized in the [ollowing tabie.

H dejetes the last input character

w deletes the last input word, dedned as by b
erase your erase character, same as “H

kill your dll character, deletes the input on this line
\ escapes 3 following “H and your-srase and kill
sC ends n insertion

DEL interrupts in insertion, terminating it abnormally
(e} starts a new line

‘D baciktabs over guroindent

"D Kkills all the quroindent

1D same 23 0°D. but restores indent gext line

v quotes the next non-priating character inzo the fle

Ths most usual way of making corrections to input is by typing “H to correct a single
character, or by lyping one or more “W's to back over incorrect words. If you use 3 2s vour
erase characiar in the normal system, it will work like “H.

Your sysiem iGll character, normally @. “X or “U. will erase ail the input you have given
on the curren: line In gensral, you can aeither erase iaput back around a line boundary aor
can you erase characiers which you did not insert with this insartion command. To make
corrections on the previous line after a new line has been suarted vou cac hit £5C (0 end :he
insertion. move over and make the correciion. ind thea reiurm (0 where you were o sontinue.

.21.

Toe command A which appends at the end of the current line is often useful for continuing

If you wish to type in your erase or kill character (say # or @) then you must precee i
with 2 \, just as you would do at the normal system command level. A more genesal way of
typing noa-printing characters into the fle is 1o precede them with 2 Y., The “V echoes 2s 2 |
character on which the cursor rests. This indicates that the editor expects you o type a controf
character. In fact you may type any character and it will be inserted into the fle at that poir”

If you are using auroindent you can backtab over the indent which it supplies by typing a
“D. This backs up o 8 shiftwidth boundary. This only works immediately after the supplied
aquroindent.

When you ars using guro/ndent you may wish 0 place 2 label st the left margin of a line.
The way to do this easily is to type | and then “D. The editor will move the cursor to the le:
margin for one line, and restore the previous indent on the next. You can also type 2 0 foi-
lowed immediately by a "D if you wish 10 kill all the indent and oot have it come back on the
gext line.

8.6. Upper cass only terminals

If your terminal has only upper case, you can still use v by using the aormal system con-
vention for typing on such a2 terminal Characters which you normally type are converted o
lower case, and you @n (ype upper case lecters by preceding them with a\. The characzers { ~ |
| * ere not svailable on such terminals, but you can escape them as \(\] V) \! \". These charac-
ters are represented on the dispiay in the same way they are typed.t ¢

8.7. Viand ex

Vi is actually one mode of editing within the editor ex When you are nmning v you cn
escape to the line oriented editor of ex by giving the command Q. All of the : commands
which were introduced sbove sre svailable in ex. Likewise, most ex commands can be invoked
from wusing ;. Just give them without the : and follow them with aCR.

In rare instances, an internal esTor may occur in vi. [n this case you will get a diagnostic
and be left in the command mode of ex You can then save your work and quit if you wish by
giving a command x after the : which ex prompts you with, or you can resnter v by giving exa
v command.

There are 1 aumber of things which you can do more easily in ex than in w. Systemalic
changes in line oriented material are particularly easy. You can read the advanced editing docu-
ments for the editor ed 1o find out & lot more about this style of editing. Experienced usess
often mix their use of exr command mode and vi command mode to spe=d the work they are
doing.

8.8. Open mode: vi on hardcopy terminals and “‘glass try’s™ ¢

If you are on & hardcopy terminal or & terminal which does not have a cursor whick can
move of the bortom line, you aan still use the command set of v, but in 2 dif=r=nt mods.
When you give & vi command, the editor will tell you that it is using oper mode. This name
comes {rom the openr command in ex. which is used (0 get into the same mode.

The only differsnce between -visua/ mode and operr mode is the way in winich the text is

* This is oot quite trus. The impiemenution of the edior does not allow the wULL (@) character to appear
in Ales. Also the Lr (linefeed or °J) charscier is used by ths ediior 0 separate lines in tie dle. 0 it amot
ippear i the middle of 1 line. You an insert any other sharacter. however, if you wait for the editor to
echo the | before you (ype ths character. [n facs, e editor will ireat 2 following letter as s request for the
corresponding control character. This is the only way o type °S or “Q. since the sysiem normally uses (hem
to suspend and resume output and never gives them W e editor W process.

t Ths \ caracter you give will aot echo until you type another key.

$ Not availabie in all v] editors due (0 memory constraints,

displayed.

ln coer mode the editor uses a single line window into the file, and moving backward and
forwvard ia the fBle csuses new lines o be displayed, always bslow the current line. Two com-
mands of w work differenty (o opearz and ‘R. The 3 command does not ke parametess. bus
rather draws a window of context around the current line and then retumns you (9, the custent
line. : . '

If you are on a bardcopy terminal, the ‘R command will retype the current line, On such
terminals, the editor normally uses two lines to represent the cwrent line. The fArst line is 2
copy of the line as you started to edit it, and you work on the line below this line When you
delete charscters, the editor types & sumber of \'s o show you the chariciers which are defeted.
The editor aiso reprints the current line soon after such changes so that you an see what e
line looks like again. :

It is sometimes useful 1o usa this mods on very slow lerminals which can support v in (ke
full screen mode. You can do this by eatering ex and using a8 open command ’

Acknowiledgements

Brucs Englar encouraged the early development of this display editor. Peter Kessler
heiped bring sanity o version 2's commuand layout Blll Joy wrote versions | and 2.0 through
2.7, and created the {ramework that users ses in the present editor. Mark Horton added macros
and other [eatures and made the editor work on s large aumber of tarminals and Unix systems.

Appendix: character functions

This appendix gives the uses the editor makes of each character. The characters are
presented in their order in the aSCl character set: Control characters come first, then most
special characters, then the digits, upper and then lower case characters.

For each character we tell a meaning it has as a command and any meaning it has during
an insert. [f it has only meaning as a command, then only this is discussed. Section numbers
in parentheses indicate where the character is discussed; 1 ‘f" after the section number means
that the character is mentioned in a footnote.

‘@

‘B

C

“H (BS)

"1 (TAB)

3w

™ (®

o 4

Not a command character. If typed as the first character of an insertion it is
replaced with the last ext inserted, and the insert terminates. Only 128 char-
scters are saved (rom the last insert; if more characters were inserted the
mechanism is not available. A "@ cannot be part of the file due to the editor
impiementatioa (7.50).

Unused.

Backward window. A count specifies repetition. Two lines of continuity are
kept if possible (2.1, 6.1, 7.2).

Unused.

AS 2 command, scrolls down & half-window of text. A count gives the number
of (logical) lines o scroll. and is remembersd for future "D and “U commands
(2.1, 7.2). During an insert, backtabs over quroindenr white space at the begin-
ning of 2 line (6.6, 7.5); this white space cannot be backspaced over.

Exposes one more line below the current scre=n in the file, leaving the cursor
where it is if possible. (Version J oniy.)

Forward window. A count specifies repetition. Two lines of continuiry are
kept if possible (2.1, 6.1, 7.2).

Equivalent to CR. printing the current file. whether it has been modified. the
current line number and the aumber of lines in the file, and the percentage of
the way through the file that you are,

Same as left arrow. (Se= h). During an insert, eliminates the last input char.
acter, backing over it but not erasing it; it remains so you can se= what you
typed if you wish to type something oaly slightly differ=nt (3.1, 7.5).

Not a command character. Whea inserted it prints as some aumber of spacss.
When the cursor is at a tab character it rests at the last of the spaces which
represent the tab. The spacing of tabstops is coatrolled by the wasrop option
(4.1, 6.6).

Same as down arrow (ses .

Unused.

The Asch formfeed character, this causas the scresn to be cleared and redrawn.
This is useful after 2 transmission error, il characiers typed by a program other

than the editor sccamble the scre=n, or after ourput is stopped by.an mtesTupt
(5.4, 720. :)

A carriage recurn advances to the next line. at the first aon-white position in
the line. Given a count, it advancss that many lines (2.3). During an insert. a
CR causes the insert o continue onto anotker line (3.1).

Same as down arrow (ses j).
Unused

o

A

1 (=50).

]

SPACS

-24 .

Same as up arrow (ses k).

Not 2 command character. [n input mode. “Q Qquotes the next characier. the
same as 'V, except that some ieletype drivers will eat the “Q so that the sditor
aever se=s it

Redraws the currast screen, elirminating logical lines not correspoading to phy-
sical lines (lines with oaly a single @ character on them). On hardcopy termi-
gals in openr mode, retypes the current line (5.4, 7.2, 7.9).

Unused. Some teletype drivers use °S to suspend output until “Qis

Not 2 command character, During an insert, with auroindent set and at the
beginning of the line, inserts shiffwidrth white space.

Scrolls the screen up, inverting “D which scrolls down. Counts work as they
do for “D. and the previous scroll amount is common (o both. On a dumb ter-
minal, “U will often necsessitate clearing and redrawing the scra==n furtier back
in the fAle (2.1, 7.2).

Not a command character. [n input mode. quotes the next characeer so that it
is possible to insert non-printing and special characrers into the fle (4.2, 7.3).
Not a2 command character. During an insert, backs up as b would in command
mode; the dejeted characters rermain on the display (se= “H) (7.5).

Unused.

Exposes one more line zbove the current scresn. leaving the cursor where it is
f possible. (No mnemonic value for this key; however, it is next o “U whica
scrolls up 2 bunch.) (Version 3 only.)

If supported by the Unix system, stops the editor, exiting o the top level sheil.
Same a3 stopCR. Otherwise. unused.

Cancels a partally formed command, such as a z when no following character
has yet be=n given; terminates inputs on the last line (read by commands such
as : / and ?); ends insertions of new text into the bufer. [f an ESC is given
when quiescent in command state, the editor rings the bell or flashoes the
scre=n. You can thus hit BSC if you don't know what is happening till the adi-
tor rings the beil. If you don't know if you are in insert mods you can type
ESCa, and thea material to be input: the material will be insartad correcdy
whether or 20t you were in insert mode when you sartad (1.5, 3.1. 7.5).

Unused.

Searches for the word which is after the cursor as a tag. Egquivalent to typing
a2, this word, and thea a3 CR. Mnemonically, this command is ‘*go rght to™
(1.3).

Egquivalent to :2 #CR. requrning to the previous positon in the last edited fle.
or editing a file which you speciied if you got a ‘No write since last changs
diagnostic’ and do not want to have to type the file name again (7.3). (You
have to do a :w before 1 will work in this case. [f you do not wish to writa
tae file you should do :e! #CR instead.)

Unused. Reserved as the command character for the T=ktronix 3025 and <027
terminal

Same as right arrow (se= 1),

An operator. which procssses lines {rom the bufer with reformartting com-
mands. Follow ! with the objec: 10 be procsssed, and thea the command aame
te=minated by CR. Doubling ! and pressding it by a count causes count lines o
be fltersd: otherwise the count is passed on w0 the objes: aftar the ! Taus
21 /mcR reformats the oext two paragraphs by running them through tSe pro-
gram smt If you are working on LISP. the command !%grincCR.® given at ihe

*Soth /mr and znnd are Serkeley programs and may 3ot be present at ail installauons.

1t

.25 .

beginning of a fuaction. will run the text of the funcition through the LIS?
grinder (6.7, 7.3). To read a file or the output of a command into the buffer
use :r (7.3). To simply execute a command use :! (7.3).

Precades a named buffer specification. There are named buffers 1 =9 used for
saving deleted text and named buffers a=2 into which you can placs tex: (4.3,
6.3)

The macro character which, when followed by a number. will substitute for a
function key on terminals without function keys (6.9). In input mode. if this
is your erase character, it will delete the last character you typed in input
mode, and must be preceded with a \ to insert it, since it aormaily backs over
the last input character you gave.

Moves to the end of the current line. If you :se listcR. thea the end of each
line will be shown by printing a § after the end of the dispiayed text in the
line. Given a count, advancss o the count'th following end of line: thus 2S
advances to the end of the following line,

Moves 10 the parenthesis or brace | } which balances the perenthesis or bracs
a1 the current cursor position.

A synoaym for :ACR, by analogy with the ex & command

When followed by s * returns o the previous conlext al the beginning of a
line. The previous context is set whenever the current line is moved in a
non-relative way, When [ollowed by a letter a=—2z, returns to the line which
was marked with this letter with a m command, at the first non-white character
in the line. (2.2, $.3). When used with an operator such as d. the operation
takes place over complete lines: if you use °, the operation takes place from the
exact marked place to the current cursor position within the line.

Retreats to the beginning of a seatsncs, or to the beginming of a LIS? s-
expredsion if the lsp option is set. A sentence ends at a . ! or ? which is foi-
lowed by either the end of a line or by two spaces. Any number of closing) |
* and ' characters may appear after the . ! or ?, and before the spacss or 2ad of
line. Sentences also begin at paragraph and section boundaries (ses { and
below). A count advances that many sentences (4.2, 6.8).

Advances to the beginning of a sentence. A count repeats the effect. Ses (
above for the definition of a sentencs (4.2, 6.8).

Unused.
Same as CR when usesd as a command.

Reverse of the last { F t or T command. looiing the other way in the current
line, Espedially useful after hitting oo many ; characters. A count repeats the
search.

Retreats to the previous line ar the first non-whit2 characier. Tais is the
inverse of <+ and RETURN. [the line moved to is not on the scr==n. the
scre=n is scrolled, or cleared and redrawm if this is not possible. If a largs
amount of scrolling would be required the screen is also cdeared and redrawn.
with the current line at the center (2.3).

Repeats the last command waich changed the buffer. Especially useful when
deleting words or lines: you can delete soms words/lines and then bit 1o
deiete more and more words/lines. Given a count, it passes it on o the com-
mand being repeated. Thus after a 2dw, 3. deletes thres words (3.3, 6.3, 7.2,
7.4).

o0

« 26 -

Reads 3 string from the last line on the scceen., and scans (orward for the next
occurrence of this string. The normal input editing sequeacss may be used
during the input on the bottom line: an returns to command state without ever
searching. The search begins when you hit CR to terminate the pattern: the
cursor moves to the beginning of the last line to indicate that the search is in
progress; the search may then be terminated with a DEL or RUB. or by back-
spacing when at the beginning of the bottom line, returning the cursor to its
initial position. Searches normaily wrap end-around to find a string anywhere
in the buffer.

When used with an operator the enclosed region is normally afected. By men-
tioning an offset from the line maiched by the patiern you can forcs waole
lines to be afected. " Ta do this give a pattern with a closing a closing / and
then an odset +nror =

To include the character / in the search siring, you must escape it with 2
preceding \. A [at the beginning of the pantern forcss the match 0 ocTur at
the beginning of a line only: this speeds the search. A § at the 2ad of the pat-
tern forces the match to occur at the end of a line only. More extended pat-
tern matching is available. se= section 7.4; unless you set nomagic in your
.exre file you will have 10 preceed the characters . [® and ~ in the search pat-
tern with 2 \ to get them to work as you would naively expect (1.5, 2.2, 6.1.
7.2, 7.9).

Moves to the first character on the current line. Also used. in f{orming
mumbers, after an initial 1=9.

Used to {orm numeric arguments to commands (2.3, 7.2).

A prefix (0 a sat of commands for file and option manipulation and 2scapes to
the systam. Input is given on the bottom line and terminated with an CR. and
the command then executed. You cn return to whers vou were by hirting
DEL or RUB if-you hit : accidenatally (see primarily 6.2 and 7.3).

Repeats the last single character find which used f F t or T. A count iterates
the basic scan (4.1).

An operator which shifts lines left one shiftwidth, normally 8 spaces. Like all
operators, afects lines when repeated, as in < <. Counts are passed through
10 the basic object, thus 3< < shifts thre= lines (6.6, 7.2).

Reindents line for LIS?, as though they wers typed in with /isp and aquroindent
set (6.8).

An operator whichh shifts lines right one shiftwider, normally 8 spacss. AJ=2sts
lines when repeated as in > >. Counts repeat the basic abject (6.6, 7.2).

Scans backwards, the opposite -cf /. See the / descsiption above for details on
scanming (2.2, 6.1, 7.4).

A macro character (6.9). If this is your kill character, you must escape it with
a \ to type it in during iaput mode. as it normally backs over the input you
have given on the curreat line (3.1, 3.4. 7.5).

Appeads at the end of line, a synonym for Sa (7.2).

Backs up a word, whers words are composed of nen-blank sequencss. placing
the cursor at the beginning of the word. A count repears the sfes: (1<),

Changes the rest of the text on the curreani line: a synonym for ¢S
Deletes the r=5t of the text on the curreat line: a synonym for dS.

o]

X

.27.

Moves forward to the end of a word, defined as bianks and aon-blanks. like B
and W. A count repeats the effece.

Finds a single following character,- backwards in the current line. A count
repeats this search that many times (4.1).

Goes w0 the line number given as preceding argument, or the ead of the fie if
no preceding count is given., The sceen is redrawn with the new current line
In the ceater if necessary (7.2).

Home arrow. Homes the cursor o the top line on the screen. If 2 coun: is
given, then the cursor is moved 1o the count'th line on the screen. [n any case
the cursor is moved to the first non-white character on the line. If used as the
target of an operator. full lines are affected (2.3, 3.2).

Inserts at the beginning of a-line: a2 synoaym {or [1.

Joins. together lines, supplying appropriate white space: one spacs betwesn
words, two spaces after 1 ., and no spaces at all if the first character of the
joined on line i3). A count causes that many lines to be joined rather than the
default two (6.5, 7.11).

Unused.

Moves the cursor to the first non-white character of the last line on the scre=n.
With s count, to the first non-white of the count’th line from the dottom.
QOperators affect whole lines when used with L (2.3).

Moves the cursor to the middle line on the screen, at the first non-white posi-
tion on .the line (2.3).

Scaans for the next match of the last pattern givea to / or ?, but in the reverse

. direction; this is the reverse of a.

Ovpens 2 new line above the carrent line and inputs text thers up to am E5C. A
count can be used on dumb terminals to specify a osumber of lines w be
opened; this is generally obsolete, as the slowopen oplion. works better (3.1).

Puts the last deleted text back before/above the cursor. The text goes back as
whole lines above the cursor if it was deleted as whoie lines. Otherwise the
text is.inserted between the characters before and at the cursor. May be ore-
ceded by a named buffer specification “x to retrieve the contents of the buffer:
buffers 1 =9 conuin deleted material. buffers 2=z are available for general use
(63).

Quits from v 0 e command mode. In this mode, whole lines form com-
mands, ending with 3 RETURN. You can give all the : commands: the editor
supplies the : as a prompt (7.7).

Replacss charactess on the screen with characters you type (overiay fashion).
Terminates with an £SC.

Changes whoie lines, 1 synooym for c. A count substiutes for that many
lines. The lines are saved in the numeric buffers, and 2rased on the screen
before the substitution begins.

Takes a single {ollowing character, locates the character before the cursor in
the current line, and piaces the cursor just after that character. A count
repeats the effecs. Most useful with operators such as d (4.1).

Restores the current line to its state before you started changing it (3.3).
Unused.

-

<38 -

Moves forward to the beginning of a word ia the current line. where words are
defined as sequencss of blank/non-blank charscters. A count repeats the effect
(2.9).

Deletes the character befors the cursor. A cousnt repeats the effect, but only
characters oa the surrent lins are deleted

Yanks a copy of the current line Into the unnamed buffer, to be put back by 2
later p or P a very useful synoaym for yy. A count yanks that maay lines.
May be preceded by a buffer name to put lines in that buffer (7.4).

Exits the editor. (Same as :xCR.) U any changes have been made, the buffer s
wrintea out to the current Ale. Then the editor quits,

Backs up to the previous section boundary. A section begins 2t each macro in
the secrions option.. aormally & “NH' or 'SH' and uso at lines which which
start with a formfeed ‘L. Lines begianing with | also stop [f: this makes it
useful for |doking backwards, s functon at ¢ time, in C programs. - If the
option lsp is sat, stops at each (&t the beginning of 1 line. and is thus useful
for moving backwards at the Wwp level LISP objects. (4.2, 6.1, 6.8, 7.2).

Uznused.

Forward to a section boundary, see [l for 1 dedaition (4.2 6.1, 6.6, 7.2).
Moves to the frst non-whits position on ths current line (4.4).

Unused.

When followed by ¢ ° returns to the previous context. Ths previous context is
set whenever'the current line is moved in a2 non-relative way. When followed
by a lenter a—2. returns o the position which was marked with this lefter with
s m command When used with an operator such as d. the operation takes
placs from the exact marked placs to the current position within the lines if
you use ', the operation lakes place over complete lines (2.2, 5§.3).

Appends arbitrary text after the curreat cursor position: the insert can continue
onto multiple lines by using RETURN within the insert. A count causes the
inserted text W be replicated. but only if the insertad text is all on one line.
The insertion terminates with aa ¢ (3.1, 7.2).

Backs up to the beginning of & word ia the current line. A word is 1 sequencs

of alphanumerics, aor 3 sequencs of special characiers. A count repeats the
effect (24).

An operator which changss the following object, replacing it with the {ollowing
input text up to an ESC. If more than part of a single line is aJected, the taxt
which is changed away is saved in the aumeric named buffers. If only part of
the current line is affecied, then the last character to be changsd away is
marked with 4 . A count causes that many objects to be afected. thus both
3¢) and c3) change the following thres senteacss (7.4).

An operator which deletes the following object. If more than part of a line is
afected, the text is saved in the aumeric bufers. A count causes that many
objects to be affectad: thus 3dw is the same as d3w (3.3, 3.4, 4.1, 7.4).

Advancess to the end of the aex: word. defined as for b and w. A count
repeats the efect (2.4, 3.0).

Finds the first instance of the next characzer following the cursor on lre
carrent line. A count repeats the find (4.1).

Unused.

Arrow keys h. J. k, L. and H.

~ O v 6 B

«29 .

Left arrow. Moves the cursor one character to the left. Like the other arrow
keys, either h, the left arrow key. or one of the synonyms ("H) has the same
effect. On v2 editors. arTow keys on cerin kinds of terminals (those which
send escape sequences, such as vtS2, ¢100, or hp) cannot be used. A count
repeats the effect (3.1, 7.9).

Inserts text before the cursor, otherwise like 2 (7.2).

Down arrow. Moves the cursor one line down in the same column. If the
position does not exist, v/ comes ss close as possible o the same column.
Synonyms include °J (linefeed) and “N.

Up arrow. Moves the cursor one line up. “P is 2 synonym.

Right arrow. Moves the cursor one character to the right $PACZ is a
synonym.

Marks the current position of the cursor in the mark register which is specified
by the next character a=2. Return two this position or use with an operator
using 'or * (5.3).

Repeats the last / or ? scanning commands (2.2).

Opens new lines below the current line; otherwise like O (5.1).
Puts text after/beiow the cursor; otherwise like P (6.3).
Unused.

Replaces the single character at the cursor with a single character you type.
The new character may be a RETURN; this is the easiest way to split lines. A
count repiacss each of the following count characters with the single character
given; see R above which is the more usually useful iteration of r (3.2).

Changes the single character under the cursor to the text which follows up w0
an ESC; given a count, that many characters from the currear line are changsd.
The last character to be changed is marked with S as in ¢ (3.2).

Advances the cursor upto the character before the next character typed Most
usefu! with operators such as d and ¢ to delets the characters up to 2 {ollowing
character. You can use . to delete more if this doesn't delete enough the first
time (4.1).

Undoes the last change made to the current buffer. If repeated, will alternare
between these two states, thus is its own inverse. Whea used after an inse:
which inserted text on more than one line, the lines are saved in = numeric
pamed buffers (3J3).

Unused..
Advances 1o the beginning of the next word, as defined by b (2.4).

Deletes the single character under the cursor. With a count deletes delet=s
that rmany characters forward from the cursor position. but only on the curren:
line (6.5).

An operator, yanks the following object into the unnamed temporary buder. If
prececded by 2 named buffer specification, “x, the text is placed in that buffer
also. Text can be recovered by a later por P (7.4).

Redraws the scresn with the-curreat line placed as specified by the jollowing
character: RETURN speciies the top of the scre=n. . the center of the sco=en.
and = at the bottom of the scresn. A count may be givea after the z and
before-the following character o specify the new scre=n size for the redraw. A
count before the 2z gives the number of the line o placs in the center of the
scre=n instead of the default curreat line. (5.4)

°? (DEL)

« 30 -

Retreats o the beginning of the beginning of the precsding paragraph. A para-
grapn begins at 2ach macro in the paragrgphs option. normally ‘.IP'. *.LP',
*PP°, ".QP’ and '.bp’. A paragraph also begins after a completely empty line.
and at each section boundary (see [[above) (4.2, 6.8, 7.6).

Places the cursor on the character in the column specified by the count (7.1.
1.2.

Advances o the beginning of the next paragraph. See { for the definition of
paragraph (4.2, 6.8, 7.6).

Unused.

[nterrupts the editor, returning it to commang acceaung state (1.3, 7.3)

Edit: A Tutorial

This narrative introduction to the use of the text editor edit assumes no prior
familiarity with computers or with text editing. Its aim is to lead the beginning
UNIX user through the fundamental steps of writing and revising a file of text.
Edit, a version of the text editor ez, was designed to provide an informative
environment for new casual users.

This edition documents Version 2 of edif and ez.

We welcome comments and suggestions about this tutorial and the UNIX docu-
mentation in general.

Trademarks:
UNIX for Bell Laboratories
MUNIX. CADNUS for PCS
DEC, PDP for DEC

Copyright 1984 by
PCS GmbH, Plalzer-Wald-Strasse 36, D-8000 MGnchen 90, tel (089) 87804-0

The information contained herein is the property of PCS and shall neither be reproduced in
whole or in part without PCS's prior written approval nor be implied to grant any license to
make, use or sell equipment manufactured herewith.

PCS reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages (including consequential)
caused by reliance on the materials presented.

Edit: A Tutorial

Ricki Blau
James Joyce

Computing Servicss
University of California
Berkeley, California 94720

Text editing using a terminal connected o a computer allows one to create. modify. and
print text easily. A specialized computer program. known as a exr editor, assists in cr=ating and
revising text. Creating text is very much like typing oa an electric typewriter. Modifying text
involves telling the text editor what 1o add. ¢hange, or delete. Text is printed by giving 2 com-
mand to print the file contents, with or without special instructions as to the format of the
desired output

These lessons assume no prior familiarity with computers or with text editing They con-
sist of a series of lext editing sessions which will lead you through the fundamental steps of
creating and revising a file of text After scanning each lesson and before beginning the next,
you should follow the exampies at a terminal (o get a fesling for the actual procass of text 2dit-
ing. Set aside some time for experimentation. and you will soon become familiar with using
the computer to write and modify text. In addition to the actual use of the taext editor. other
features of UNDX will be very imporant to your work. You can begin (o learn about these other
features by reading **Communicating with UNIX' or one of the other tutorials which provide a
g=neral inwoduction to the syster. You will be ready to proceed with this !esson as soon as
vou are familiar with your terminal and its specal keys. the login procsdure. and the ways of
correcting typing errors. Let's first define some terms:

program A set of instructions givea to the computer, describing the sequencs of steps
which the computer performs in order to accomplish a spedfic task. As an exam-
ple, a series of steps o balance your checkbook is a program.

UNIX UNTX is a special type of program. called an operating systemn. :that supervises the
machinery and all other programs comprising the total computer syster.
edit edir is the name of the UNTX text editor which you will be learning to use. a pro-

gram that aids you in writing or revising text. Edit was designed for beginning
users. and is a simplified version of an editor named ex

file Each UNIX account is allotted space for the permanent storage of information.
such as programs. data or text A file is a2 logical unit of data, for example. an
essay, a program. or a chapter {rom a book, which is stored on a2 computer system.
Once you create g file it is kept until you instruct the system to remove it. You
may create a flle during one UNIX session. log out. and return to use it at a later
time. Files contain anything vou choose to write and store in them. Tne sizes of
files vary to suit your needs: one file might hold only a single aumber. and
another might contain a very long document or program. The only way to save
information from one session to the next is to write it to a file, storing it for later
use.

filename Filenames are used to distinguish one file from another. serving the same purgose
as the labels of manila folders in a file .cabinet. In order to write or acc=ss inior-
mation in a file. you use the name of that file in a UNIX command. and ths systzam
will automatically iocate the file.

-2.

disk Files are stored on an input/output devics called a disk. which looks some:hing
like a stack of phonograph records. Each surface is coated with a matenal simiiar
10 the coating on magnetic recording pe. on which information is recorded.

buffer A temporary work spacs. made available to the user for the duration of a session
of lext editing and used for building and modifying the text file. We can imagine
the buffer as a blackboard that is srased after each class, wherT each session with
the editor is a class,

Session 1: Creating a File of Text

To use the editor you must first make contact with the computer by logging in 1o UNIX.
We'll quickly review the standard UNTX login procedure.

[f the terminal you are using is directly linked to the computer, tum it on and press car-
riage return. usually labefled **RETURN"™. If your terminal connects with the computes over a
telephone line. turn on the terminal, dial the system access number, and, when you hear a
high-pitched tone. place the recsiver of the telephone in the acoustic coupler. Press carriage
return once and await the login message:

login:

Type your login name, which identifies you to UNIX, on the same line as the login mes-
sage. and press carriage return. [f the terminal you are using has both upper and lower case, be
sure you enter your login name in lower case: otherwise UNIX assumes your terminal has oniy
upper case and will not recognize lower case letrers you may type. UNIX types “*:login:"" and
you reply with your login name, for example *‘susan':

dogin: susan (and press carriage return)

(In the examplies, input typed by the user appears in bold face to distinguich it from ihe
responses from UNUL)

UNIX will next respond with a request for a password as an additional precaution to
prevent unauthorized people from using your account. The password will not appear when you
type it to prevent others {rom seeing it. The message is:

Password: (type your password and press carriage rerurn)

If any of the information you gave during the login sequencs was rxiisryped or incorracL. UNIX
will respond with

Login incorrecs.

Jdogin:
in which cases you should start the login process anew. Assuming that you have succs=ssiully
logged in. UNIX will print the message of the day and sventuaily will present vou with a % at

the beginning of a (r=sh line. The % is the UNIX prompt symbol which tells vou that UNIX is
r=ady to acce3t a command.

Asking for edit

You are ready to (=il UNIX that you want to work with edit. the text 2ditor. Now is 2 can-
venient time (0 choose a name for the file of text which vou are about to crzate. To degin vour
example ““taxt’”” When vou have completad the command. press carriage recurn and wait icr
2dit's response:

-3.

% edit text (followed bv a carriage recurn)
“text” No such file or directory

If you typed the command correctly. you will now be in communication with edit. Edit has sa¢
aside a bduffer for use as a (emporary working space during your current editing session. It alsc
checked to ses if the fle you named. "*text™, already exisied. As we expected. it was unable (o
find such a Ole since *text’” is the name of the new file that we will create. Edit confirms this
with the line:

“lext” No such file or directory

On the next line appears edit’s prompt **:"', announcing that edit expec:s a command from you.
You may now begin o create the new fle.

The **Command got found'’ message .
If you misspelled edit by typing, say, *‘editor’, your request would be handled as follows:

% editor
editor; Command not found.
%

Your mistake in calling edit ‘‘editor’ was treated by UNIX as a request for a program named
“editor™, Since there is no program named “‘editor’’, UNIX reported that the program was *‘not
found.” A new % indicaies that UNIX is ready for another command, 50 you may enter the
correct command.

A summary
Your exchange with UNIX as you logged in and made contact with edit should look some-
thing like this:
Jdogin: susan
Password:
- A Message of General [nterest ...

% edit text
"text” No such file or directory

Entering text

You may now begin (o enter text into the buffer. This is done by appending text o what-
ever is currendy in the buffer. Since there.is nothing in the buffer at the moment. you are
appending text to oothing: in effect, you are creating text. Most edit commands have two
forms: a word which describes what the command dees and a shorter abbreviation of that word.
Either form may be used. Many beginners find the full command names 2asier 1o remember.
but once you are familiar with editing you may prefer to type the shorter abbreviatons. Tns
command (o input lext is *“‘append’ which may be abbreviated “a’". Type append and press
carriage rewumn.

% edit text
:append

Messages from edit
If you make a mistake in entering a command and type something that 2dit does zot

recognize, edit will respond with a2 messags intended to help vou diagnose your srror. For
example. ii vou misspell the command to input text by typing. perhaps. “"add™ instzad of

«d .

“append’” or "a’", you will reczive this message:

‘add
add: Not an editor command

When you recsive 2 diagnostic message. check what you typed in order to determine what part
of your command confused edit. The messags above means that edit was unable to recognize
your mistyped command and., therefore, did not execute it. Instead. 2 new **:"" appeared to let
you know that edit is again ready to reczive a command.

Text input mode

Bv giving the command “append’” (or using the abbreviation **a'"). you entered texr inpur
mode. aiso known as append mode. When you enter iext input mode, edit responds by doing
aothing. You will not ressive any prompts while in text input mode. This is your signal that
vou are (0 begin entering lines of text. You can enter pretty much anything you want on the
lines. The lines are transmitied one by one to the buffer and heid ther= during the editing ses-
sion. You may append as much text as you want, and when you wish [0 stop enterng (ext lines
you should rvpe a period as. ihe onfy character on-the line and press carriage rerurn. When vou give
this signal that you want to stop appending text, you will exit from text input mode and resnter
command mode. Edit will again prompt you for a command by printing **:*"

L=aving append mode does not destroy the text in the buffer. You have (0 ieave append
mode to do any of the other kinds of editing, such as changing, adding, or printing text. If vou
type a period as the first character and type any other character on the same line. edit will
believe you want o remain in append mode and will not let you out. As this can be very frus-
trating, be sure to type only the period and carriage returmn.

This is as good a place as any to learn an umportan: lesson about computers and text: a
btank spacs is a character as far as a computer is concemed. If you so much as type a period
fdllowed by 2 blank (that is. type a period and then the space bar on the keyboard), you will
remain in append mode with the last line of text being:

Lat's say that the lines of text you enter are (ury to type exactly what you ses, including
*~hiss’"):
This is some sample text.

And thiss Is some moce text.
Text editing is strange, but nice.

The last line is the period followed by a carriage return that gs=ts you out of append mode. If
while typing the line you hit an incorrect key, recall that you may delete the incorrect character
or cancel the entire line of input by erasing in the usual way. Refer to “*Commugricating with
UNIX" il you ne=d to review the procsdures for making a correction. Erasing a characier or
cancelling a line must be done before the line has be=n completed by 2 carriage reiurn. We will
discuss changes in lines already typed in session 2.

Writing text to disk

You are now ready. to edit the text. The simplest kind of editing is to write it to disk as a
file for safexesping after the session is over. This is the only way (0 save information {rom one
session to the aaxt. since the editor’s bufer is temporary and will last only until the ead of the
editing session. Thus. learning how to write a file to disk is sazond in importancs only (o eater-
ing the text. To write the contents of the bufer to a disk file. use the command ““write™ (or its
abbreviation ‘*w™):

twrite

Edit will copy the buffer to a disk file. I the file does not yet exist. a new file will be created
automatically and the presence of a3 "*New file™ will be noted. The newly-created file will de
given the name specified when you enterad the editor, in this case “*text’”* To confirm that the
disk file has been successfully written, edit will repeat the filename and give the number of
lines and the total number of characters in the file. The buffer remains unchanged by the
“write'* command. All of the lines which were written to disk will still be in the buffer. should
you want to modify or add to them.

Edit must have 2 filename to use before it can write a fle. If you forgot to indiczte the
name of the file when you began the editing session. edit will print

No current filename

in response to your write command. U this happeas. you can specify the Slename in a new
write command:

1 write text
Aflter the “write™ (or **w'") type a spacs and then the name of the file.

Logging off

We have done enough (or this first lesson on using the UNIX text editor, and are ready 1o
quit the session with edit. To do this we type *‘quit’ (or **q’’) and press carriage return:

1write .

“text” (New fle] 3 lines. 90 characters

: quit

%
The % is from UNIX to tell you that your session with edit is over and you may command UNIX
further. Sincs we want (0 end the entire session a the terminal we also need to exit (rom
UNIX. ln response to the UNIX prompt of % " type the command logout or a “‘control 4"’
This is done by holding down the control key (usually labelled ““CTRL"") and simuitanesously
pressing the d key. This will end your session with UNIX and will ready the terminal for the
next user. It is always important to logout at the end of a sassion to make absolutely sure no
one could accidentally stumbie into vour abandoned session and thus gain acc=ss to your filss.
tempting even the most honest of souls.

This is the end of the first session on UNIX text editing.

-6

Session 2
Login with UNIX as in the first session:

:login: susan (carriage return)
Password: (g1ve password and carriage return)

¥

This time when you say that you want to edit, you can specify the name of the fle you worked
on last time. This will start edit working and it will fetch the contents of the file into the
bufTer. so that you <an resume editing the same Qle. When edit has copied the file into the
buder. it will repeat its name and tell you the number of lines and characters it conuains. Thus.,

% edit text
“text® 3 lines, 90 characzers

means vou asked edit to fetch the file named ‘text’ for editing, cusing it to copy the 90 char-
acters of text into the bufer. Edit awaits your [urther instructions. [n this session. we will
append more taxt to our file, print the contents of the buifer, and learn to change the taxt of 2
line,

Mdding more text to the file

Il you. want to add more to the end of your text you may do so by using the append com-
.mand to sater text input mede. When append is the first command of your editing session. the
Jines you enter are placed at the end of the buffer. We'll soon discuss why this happens. Hers
“we'll use the abbreviation [or the append command, “*a’":

:a

This is text added in Session 2.
It doesa’t mean much here, but
it does illustrate the editor.

[aterrupt

Should you press the RUBOUT key (sometimes labelled DELETE) while working with edit. it
will send this message to you:

[ntesTupt

Any command that edit might be execudng is terminated by rubout or delete, causing edit to
.prompt you for a new command. If you are appending text at the time. you will exit from
.append mode and be expected to give another command. The line of text that you wers typing
‘when the append command was interrupted will not be entersd into the buder.

Making correctioas

If you have read a zeneral introduction to UNIX. such as ‘*Communicating with UNIX™
you will recall that it is possible to erase individual letters that vou have tvped. This is done by
typing the designated erase characier as many limes as there ars cZaractars vou want (o arasa.
Aczounts aormally start out using the number sign () as the erase character, but it's possibie
for a diffzre=at erase characier 10 be seleciedt. We'll show 3" as the srase characier in our

FUNIX 2cDUntS may Ye “personalized” in other ‘wvayy. 100. ([you're using an eswblisned Jcoount. sheck with
someone who i3 familiar with your account Lo find out if it has any other aon-slandarg Staraciessucs waich
may afect vour work. Accounts {or students in iasses are oflen given cluss commanas ind other specal
features: the tzaching Lssisiant or insirucior 18 the pest source of informaton about these cungss,

.7.

examples, but if vou've changed vour erase character to backspace (control-H) or something
else. be sure to use your own erase character.

If you make a bad start in a line and would like to begin again. erasing individual charac-
ters with 2 *#"" is cumbersome — what if you had |5 characters in your line and wanted to g=:
rid of them? To do so either requires:

This Is YukKY lex @ R AR RERRRrnssss
with no room for the great text you'd like to type. or.
This is yukky tex@This is great rex:.

When you type the at-sign (@). you erase the entire line tvped so far. (An account may seiect
a different line erase character to use in placs of @. If your line erase character has be=n
changed. use it where the examples show **@'.) You may immediately begin to retype th=
line. This, unfortunately, does not help aftzr you type the line and press carriage return. To
make correcuons in lines which have besn compieted, it is necessary to use the =diting com-
mands coversd in this session and those that follow.

Listing what's in the buffer

Having appended text to what you wrote in Lesson 1. you might be curious to ses what is
in the buffer. To print the conteats of the buffer, type the command:

11,8

The **1" stands for line | of the buffer, the **S™ is a special symbol designating the last line of
the buffer. and **p" (or print) is the command to print from line | to the end of the buier.
Thus. *1,5p" gives you:

This is somne sample text

And thiss is some more text
Text editing is strange. but nice.
This is taxt added in Session 2
It doesn’t mean much here, but
it does illustrate the editor.

Oczzsionally, you may enter into the buifer a character which can’t be printed, which is done by
striking a key while the CTRL key is depressed. [n printing lines, edit uses a special notation to
show the existencs of non-printing characters. Suppose you had introduced the non-printing
character “‘control-A" into the word “‘illustrate’ by actidently holding cown the CTRL kev
while typing **a’". Edit would display

it does illustr® Ate the editor.

if you asked to have the line printed To represent the control-A. edit shows ““A"" The
sequence **** followed by a capital letter stands for the one character entered by holding down
the CTRL key and typing the letter which appears after the “**°°. We'll soon discuss the com-
mands which can be used to corrsct this typing ervor.

In looking over the text we ses that *‘this’" is typed as ‘‘thiss’ in the second line. as sug-
g=sted. Leat's correct the spelling.

Finding things in the buffer

In order to change something in the buffar we first need 10 find it. We can find ““thiss™’
in the text we have entered by looking at a listing of the lines. Physically speaking. we search
the lines of text looking for **:hiss™ and stop searching when we have found it. The way (o tall
edit to search for something is to type it inside slash marks:

:/thiss/

By typing /thiss/ and pressing carriage return edit is instructed to search for “thiss’. [f we
asked edit to look for 1 pattern of characters which it could not find in the buffer. it would
respond “‘Pattern not found’™ When edit finds the characters ““thiss”, it will print the line of
text for your inspection:

And thiss is some more text

Edit is now positioned in the buffer at the ling which it just printed, ready to make a change in
the line.

The carreat line

At all times during an sditing session, edit keeps track of the line in the buffer whers it is
positioned. [n general, the line which has besn most recently printed. entered. or changed is
considered (0 be the current position in the buffer. The editor is prepared (0 make changss at
the curreat positon in the buffer, uniess you direct it to act in another location. When vou
bring a fle into the editor, you will be positioned at the last line in the fle. If your inital edit-
ing command is “*append’, the lines you enter are added to the end of the fle. that is, they are
placed after the current position. You cn refer 1o your current position in the buffer by the
symbol period (.) usuaily known by the name **dot”. If you type ** ** and carriage return you
will be instructing edit to print the current line:

And thiss is some more text

If vou want to know the aumber of the current line. vou can type .= and carriage recurmn.
and edit will respond with the line number:

2

If.you type the number of any line and a carriage return, edit will pesition you at that line and
grint its contents:

-9

And thiss is some more (extL

You should experiment with these commands to assure yourself that you understand what they
do.

Numbering lines (nu)

~ The number (nu) command is similar to print, giving both the number and the text of
each printed line. To se= the number and the text of lhg curreat line type

:nu
2 And thiss is some more taxt

Notice that the shortest abbreviation for the number command is **ou’" (and not **n'" which is
used for a differsnt command). You may specify a rangs of lines to be listed by the number
sommand in the same way that lines are specified for print. For example. **1.Sau’" lists all
lines in the buder with the corresponding line numbers.

Substitute command (s)

Now that we nave found our misspelled word it is time (0 change it [rom ““thiss™ (o
this™ As far s adit is concemed. changing things is 1 matter of substituting one thing for
another. As g stood for append. 50 s stands for sudsirure. We will use the aboreviation **s” o
reduce the chance of mistyping ke substitute command. This command wiil astruc: 24it to
make the <hange:

2s/thiss/this/

We first indicate the line o be changed. line 2. and then type an ‘s’ (o0 indicate we want sub-
sutution. [nside the first set of slashes are the characters that we want (o change. followed by
the characters to replace them and then a closing slash mark. To summarize:

2s/ what is 1o be changed / what (o change 1o/

Il edit finds an exact match of the characters to be changed it will make the change only in the
first octurrencs of the charasters. If it does not find the characters to be changed it will
respond:

Substitute pattern match failed

indicating vour instructions could not be carried out. When edit does find the charactars whica
you want to change. it will make the substitution and automatically print the changed line, so
that vou can check that the correct substitution was made. In the example.

: 2s/thiss/this/

And this is some more text

line 2 (and line 2 only) will be searched for the characters ‘‘thiss’’, and when the first exact
match is found. ‘‘thiss” will be changed to ‘“this'". Strictly speaking, it was not necsssary
above 10 specify the number of the line w be changed. In

:s/thiss/this/

edit will assume that we mean to change the line where we are currently positioned (**.*°). In
this case. the command without a line snumber would have producsed the same result because
we were already positioned at the line we wished to change.

For another illustration of substitution we may choose the line:
Text editing is strange. but nice.
We might like to be a bit more positive. Thus. we could take out the characters “*sirangs,
but *° so the line would read:
Text editing is nice.
A command which will first position edit at that line and then make the substitution is:
: /strange/s/strange, but //

What we have done here is combine our search with our substitution. Such combinations
are perfecty legal. This illustrates that we do not necessarily have 10 use line aumbers to idsn-
tify a line to edit. [nstead. we may identify the line we want to changs by asking edit. to search
for a specified patiern of lenters which occurs in that line. The parts of the above command are:

/strange/ tells edit to find the characiers **sirange™ in the text
s tells edit we want to make a substitution
/strange, but // substitutes nothing at all for the characters **strange. but ™

You should note the spaces after **but’ in **/strange. but /*". I[you do not indicate the
space is to be wken out. your line will be:
Tex: editing is nic=.

which looks a littie furiny because of the extra spacs betwesn **is”” and '‘nic2’" Again. we rez{-
iz= from this that a blank space is a real character to 2 computer. and in sditing text we nesd (0
be aware of spacss within 1 line just as we would be aware of an **2'" or a *1"

.10 -

Another way to list what's in the butfer (2)

Although the print command is useful for looking at specific lines in the buffer. other
commands can be more convenient {or viewing large sections of (ext. You can ask to ses 2
scre=n full of text at a ime by using the command z. If you type

12

edit will start with line 1 and continue printing lines. stopping either whea the screen of your
terminal is full or when the last line in the buffer has been printed. If you want to read the
next segmment of text, give the command

4

I no starting line number is given for the z command. printing will start a¢ the “*current’” line,
in chis case the last line printed. Viewing lines in the buffer one sce=a (ull at 2 time is known
as paging. Paging cam also oe used (o print a section of text ont a hard-copy terminal.

Saving the modified text
This se=ms o be a good place to pause in our work, and so we should ead the second ses-
sion. If you (in haste) type **q’" to quit the session vour dialogue with edit wiil be:
+q
No write since last changs (q! quits)

This is edit’s waming that you have not written the modified contents of the buifer to disk.
You run the risk of lesing the work you have done during the 2diting session sinc= the latest
write command. Since in this lesson we have not written o disk at all. evervthing we have
done would be lost. [we did qot want to save the work done during this editing session., we
would have to type **q!" to confirm that we indeed wanted to end the session immediately, los-
ing the contents of the buifer. However, since we want to preserve what we have edited. we
ne=d to say:

‘w

“text” 6 lines, 171 characters
and then,

:q

% logout

and hang up the phone or tura of the terminal when UNIX asks {or a login name. Tais is the
end of the second sessicn on UNIX text editing.

-11-

Session 3

Bringing text into the bufler (e)

Login to UNIX and maks contact with edit. You should try to login without looking at the
notes, but if you must then by all means do.

Did you remember to give the name of the file you wanted 10 edit? That is. did you say
% edit text
or simply
% edit

Both ways ge! you in contact with edit. but the first way will bring a copy of the fle named
“text’”” into the buffer. If you did forgst to tell edit the name of your file, you can get it into
the buder by saying:

e text
“text” 6 lines. 171 characters

The command edit, which may be abbreviated ‘‘e™ when you're in the editor. tells =dit :qat
you want (o erase anything that might already be in the buffer and bring 2 copy of the fle
‘text” into the buffer for editing. You may aiso use the edit (e) tommand w chang= files in
the middle of an editing session or to give edit the name of a new file that you want to create.
Because the edit command dears the buffer, vou will receive 2 warning if you try to edit a new
file without having saved a copy of the old file. This gives you a2 chance o writa the contents
of the bufler to disk before editing the next file.

*

Moving text in the buffer (m)

Edit ailows vou to move lines of text from one location in the buffer to another by means
of the move (m) command:

:2,4m$

This command directs edit 10 move lines 2, 3, and 4 to the end of the buffer (S). The format
for the move command is:-that you specify the first line t0 be moved. the last line to be moved.
the move ¢command “m'", and the line after which the moved text is to be placed. Thus.

:1,6m29

would instruce edit to move lines 1 through 6 (inclusive) to a position after line 20 in ths
buifzr. To move only one line, say, line 4, to a position in the buffer after line 6. the com-
mand would be **4mé™.

Let's move some text using the command:

:5,.Sm1
2 lines moved
it does illustrate the aditor.

After executing a2 command which changes more than one line of the buiTer. edit tells how
many lines wers afected by the change. The last moved line is printed for your inspection. [
you wani to se= more than just the last line, use the print (p). z. or number (nu) command :o
view more text. The buffer should now contain:

This is some sample text
[t doesn't mean much here. but
it does illustrate the editor.
And this is some more text
Text editing is nics.
This is text added in Session L
We @n cestore the original order by typing:
14, 8ml
or. combining context searching and the move command:
:/And this is some/./This Is text/m/This is some sample/

The problem with combining context searching with the move command is that the chance of
making a lyping srror in such a long command is greater than if one types line numbers.

Copring lines (copy)

The copy command is used to make a second copy of specified lines. leaving the original
lines where they were. Copy has the same format as the move command, for example:

:12,15copy 3

makes a copy of lines 12 through 15, placing the added lines after the buffer’s ead (S). Experi-
mert with the copy command so that you can become familiar with how it works. Note that
i_he shortest abbreviation {or copy is **co’” (and not the letter **¢'” which has another meaning).

Deleting lines (d)
Suppose vou want to defete the line

This is text added in Session 2.

{tom e dufer. U you know the aumber of the line to be deleted, vou c@n type that number
followed by **defete’” or **d’". This example delezes line 4:

tdd .
It doesn’t mean much here, but

Here 4’ is the aumber of the line to be deleted and ‘‘delete” or **d" is the command to
delete the line. Afier sxecuting the defets sommand. edit priats the line which has become the

YY1

curr=at line (**.'").

If you do not happea to know the line number you can search for the line and then dele:=
it using this sequencs of commands:

:/added in Session 2./

This is text added in Session 2.
:d

{t doesnn't mean much here. but

The **/added in Session 2./°" asks edit to lecate and print the next line which contains the indi-
Qted text. Onc= you are surs that vou have correculy spezified the line that vou want to delets,
you @n enter the delets (d) command. [n this case it is not necsssarv to specify a line number
before the "*d”" [f no line number is given. sdit d=let=s the current line (**.”"). that is. the line
found by our search. After the deletion. your butfer should contain:

«13.

This is some sample text

And this is some more texL
Text editing is nice.

It doesn’t mean much here, but
it does illustrate the editor.

To delete both lines 2 and 3:

And this is some more text
Text editing is nice.

you type
1 2.3d

which specifies the range of lines from 2 0 3. and the operation on those lines — **d’" for
delete.

Again, this presumes that you know the line numbers for the lines to be deleted. If you
do not you might combine the search comumand with the delete command as so:

:/And this Is some/,/Text editing Is nice./d

This tells the editor to start deleting with the next line that contains the characters **And diis is
some'’ and continue until it has deleted the line containing **Text editing is nic=.™

A word or two of caution:

In using the search function to Incate lines to be deleted you should be ahsolutely sure
the characters you give as the basis for the search will take edit 1o the line you want deletad.
Edit will search for the first occurreace of the characters starting from where you las: edited —
that is, {rom the line you see printed if you type dot (.).

A search based on too few characters may result in the wrong lines being deleted. which
edit will do s easily as if you had meant it. For this reason, it is usually safer o specify the
search and thea deiete in two separate steps. at least until vou become familiar enough with
using the editor that you understand how best o specify searches. For a beginner it is not a
bad idea o double<check each command before pressing carriags r=turmn to send the command
on its way.

Undo (u) to the rescue

The undo (u) command has the ability to reverse the effects of the last command. To
undo the previous command. type **u’ or “undo’. Undo can rescue the contents of the bufer
from many an unfortunate mistake. However, its powers are not unlimiced, so it is stll wise to
be reasonably careful about the commands you give. It is possibie to undo only commands
which have the power 0 change the buffer, for example delete, append, move, copy. substi-
tute, and even undo itself. The commands write (w) and edit (e) which interact with disk files
cannol be undone. nor can commands such as print which do not change the buffer. Most
importantly, the onfy command which can be reversed by undo is the last “*undo-able™ com-
mand which vou gave.

To illustrate, let's issue an undo command. Recall that the last buffer<changing command
we gave dsleted the lines which were {ormerly numbered 2 and 3. Executing undo at this

moment will reverse the effects of the deletion, causing those two lines (o be replaced in the
buder.

‘u
2 more lines in file after undo
And this is some more text.

Hers again. edit informs vou if the commang aiTects more than one line. and orints the text of
the line which is now *‘dot’" (the curr=nt line).

-l‘o

More about the dot (,) and buffler end (S)
The (unction assumed by the symbol dot depends on its context. [t can be used:

l. to exit from append mode we type dot (and only 1 dot) on a line and press carriage
retum:

2. to refer to the line we are at in the buffer.
Dot can also be combined with the equal sign to get the number of the line currently being
edited:

Thus if we type **.=" we are asking [or the number of the line and if we type **.”" we are ask-
ing for the text of the line.

In this editing session and the last, we used the dollar sign to indicate the end of the
buffer in commands such as print, copy. snd move. The dollar sign as a cormmnand asks edit to
print the last line in the buffer. If the doilar sign is combined with the squal sign (S=) =it
will print the line aumber corresponding to the last line in the buffer.

" and S therefore represent lins aumbers. Whenever sppropriate, these symbois can
be used in place of line numbers in commands., For example

leed
instructs edit to delete ol lines from the current line (.) to the end of the buffer.

Moving around in the buffer (+ and =)

[t is frequently convenient during an editing session to go back and re-read a previous
line. We could specify a context search (or a line we want 1o read if we remember some of is
text, but if we simply want to ses what wes wriuen a few. say J. lines ago. we can type

-3p

This tells edit to move back to a position J lines before the current line (.) and print that line.
We can mave [orward in the buffer similarly:

+1p

instructs edit to print the line which is 2 ahead of our current position.

You may use <+ and *'="" in any command wheres edit acsepts line numpers. Line
aumbers specified with ** <" or **="" can be combined to print a range of lines. The command

:=1,+2copyS

makes 1 copy of 4 lines: the current line. the line before it, and the two after it The copied
lines will be placsd after-the last line in the buffer (S).

Try typing only **="": vou wil] move back one line just as if you had typed “*=1p" Tvp-
ing the command ** <" works similarty. You might also try typing a few plus or minus signs in
3 row (such as “* =<+ +"") 10 ses odit’s response. Typing a carmiage recurn alone on 2 lin= is the
equivalent of typing " <1p'". it will move you one line ahead i the buffer and print that line.

Il you are at the last line of the buffer and try to move further ahead. perhaps by typing a

‘*<=" or a carriage requrn alone on the line. edit will remind you that you are at the end oi the
buifer:

Al end-of-{ile’

Similarly, if you trv to move ‘o a position before (he first line. edit will prinit one of these rmes-
sages:

.15.

Nonzero address required on this command
Negative address — firs: buffer line is |

The number associated with a buffer line is the line’s **address'". in that it can be used to loc(=
the line.

Changing lines (¢)

There may be occasions when vou want to delete cerwin lines and insart new text.in their
place. This can be accomplished easily with the change (¢) command. The changs command
instructs edit to delete specified lines and then switch to text input mode in order to aceapt the
text which will repiace them. Let's say we want to change the first two lines in the buffer:

This is some sample text
And this is some more text.

to read
This text was created with the UNIX text editor.
To do so. you can rype:

(1.2
2 lines changed
This text was created with the UNIX text editor.

In the command 1.2¢ we specily that we want to change the range of lines beginning with 1 and
eading with 2 by giving line numbers as with the print command. These lines wiil be deleted
After a carriage return enters the change command, edit notifies you if more than one line will
be changed and places you in text input mode. Any text typed on the following lines will be
inserted into the position where lines were deleted by the shangs command. You will remnain
in text input mode until you exit in the usuzal way. by tvping a period alone on 3 line. Note
that the number of lines added to the buJer nesd not be the same as the number of lines
deleted.

This is the end of the third session on text editing with UNIX.

<15 -

Session 4

This lesson covers several topics. starting with commands which apply throughout the
buffer, characters with special meanings. and how to issue UNIX commands while in the editor.
The next topics deal with files: more on reading and writing. and methods of recovering files
lost in a crash. The Enal secion suggests sources of further information.

Making commands globai (g)

One disadvantage 0 the commands we have used for searching or substituting is that if
vou have a number of instanc=s of 2 word to change it appears that you have to type the com-
mand repeatedly, oncs for sach time the change needs to be made. Edit, however. provides 2
way (0 make commands apply to the eatire contents of the buffer — the global (g) command.

To print all lines conuwining a cerain sequence of characiers (say, “*text’’) the command
[~
1g/text/p

The '3 instructs adit to make a giobal search for all lines in the buifsr contzining the charac-
lers ‘“‘taxt’’. The “‘p" prints the lines found.

To issue a global command, start by typing a ''3’" and then 2 search pattern identifying
the lines to be afected. Then. on the same line, type the command to be executed an the
Weatified lines. Global substitutions are frequently useful. For example, to chang= ail
instancss of the word ‘“text’ to the word ‘‘material™ the command would be a combination of
the glooal search and the substtute command:

: g/text/s/text/material/g

Note the *g’" at the end of the giobal command which instruc:s edit (o change each and avery
instance of '‘text’’ to **material’’. If you do not type the "°g§'" at the end of the command only
the first instance of ‘“text’ in each line will be changed (the normal resuit of the substitute
command). The **g" at the end of the command is independent of the **3™ at the beginning.
You may give a command such as:

: 14s/text/material/g

10 changs every instancs of ‘“text” in line 14 alone. Further. neither command will change
“Text'” to ‘*material™ because ‘“Text” begins with a capital rather than a lower-case ¢

Edit does not automatically print the lines modified by a glodal command. [f you want
the lines to be printed, type a **p’” a1 the 2nd of the gicbal command:

:g/text/s/text/material/gp

The usual qualification should be made about using the glotal command in combination with
any other — in assencs, be sure of what you are telling edit to do to the entire buffer. For
.exampie.

e/ /d
72 less lines in fle after glooal

wil] delets evary line containing 2 blank anywhere in it. This ¢ould adversely afes: vour docu-
ment, since most lines have spacss betwe=n words and (kus would be deieted. After axacuting
the giobal command. =dit will print a warning if the command added or dele!2d mors than one
line. Fortunately. the undo command can reverse the 2fecis of a2 global command. You
should experimant with the global command on a small bufer of taxt to ses what it can do for
vou.

< 17-

Yore about searching and substituting

In using slashes to identifly a character string that we want 1o search for or change. we
have always specified the exact characters. There is a less tedious way to repeat the same string
of characters. To change “‘noun’’ to **nouns™ we may type either

:/noun/s/noun/nouns/
as we have done in the past, or a somewhat uabbreviated command:

:/noun/s//nouns/

In this exampie. the characters to be changed are not specified — there are no characters. not
even a spacs, between the two slash marks which indicate what is to be changed. This lack of
characters betwesn the slashes is taken by the editor 10 mean ‘‘use the characters we las:
searched for as the characters to be changed.™

Similarly. the last context search may be repeated by typing a pair of slashes with nothing
betwesa them:

:/does/

[t doesn’t mean much hers, but
{4

it does illustrate the editor.

Because no characters are specified for the second search, the editor scans the buffer for the
next occurrence of the characters ‘*does”.

Edit normally searches forward through the buffer, wrapping around from the end of the
tuffer to the beginning, until the specified character string is found. If you want to search in
the reverse direction, use question marks (?) instead of siashes Lo surround the character
string.

It’s also possible to repeat the last substitution without having to retype the eatirs com-
mand. An ampersand (&) used as a command repeats the most raceat substituts commarnd.
using the same search and replacament pattems. After altering the curreat line by typing

:s/noun/nouns/
we could use the cornmand
:/nouns/&
or simply
/&

to make the same change on the next line in the buffer conuining the characters “*nouns™

Special characters

Two characters have special meanings when used in specifying searches: S and
**$™ is taken by the editor 10 mezn “‘end of the line™ and is used to identify strings which
occur at the end of a line.

:¢/ingS/s//ed/p

talls the editor to search for all lines ending in “ing'’ {and nothing else. not even a biank
space), to change each final “*ing™ to **ed™ and print the changed lines.
The symbol **°*" indicates the beginning of a line. Thus,
18/

instructs ihe editor to insert *°1."" and a space at the beginning of the curr=at line.
The charactars **S™ and **"° have special meanings only in the ¢ontaxt of searciing. Al

.18 -

other times. they are ordinary characters. If you sver ne=d to search for a character that has a
special meaning, you must indicate that the character is to temporarly lose its special
significancs by typing another special character. the backslash (\). before it

:sA\S/dollar/

looks for the character '*S™ in the currsnt line and replaces it by the word ‘‘dollar’™™ Were it
not for the backslash, the **S™ would have represented *‘the end of the line’” in vour search.
rather than the character **S”". The backslash retains its special significance unless it is pre-
ceded by another backslash

Issuing UN1X commands from the editor

After creating several files with the editor, you may want to delete files no longer useful

to you or ask for a list of your files.. Removing and listing files are not functions of the editor.

-and so they require the use of UNIX system commands (also. referred to as “‘sheil” commands,

as “‘shell” is the name of the program thar procssses UNIX commands). You do not nesd to

quit the editor o exscute a2 UNIX command as long as you indicate that it is 0 be seat to the
shell for execution. To use the UNIX command 7 to remove the file named “junk’ cvpe:

:'rm junk
]

The exciamation mark (!) indicates that the rest of the line is (0 be processed as a UNIX com-
mand. [f the buder contents have not been written since the last change. a warming wiil oe
printed before the command is executed. The editor prints a3 *!"" waen the command is com-
pleted. The tutorial “Communicating with UNIX'" describes useful featurss of the system. of
which the editor is only one part.

Tilenames and file manipulation

Throughout each editing session. edit keeps track of the name of the file being 2dited 2s
the current filename. Edit remembers as the current filename the aame given when vou entered
the aditor. The current dlename changas whenever the sdit (¢) command is used :0 specify a
new file. Once edit has recorded a current flename, it inserts that name into any command
where a filename has been omitted. [f 2 write command does not specify a fle, edit, as we
have sesn. supplies the current filename. You can have the editor write onto a differant file by
including its name in the write command:

1w chapter3
“chapter3” 2835 lines, 8698 characters

The curreat flename remembered by the editor will nor be changed as a resuir of the write com-
mand unless it is the first filename given in the edinrg session. Thus. in the aext write command
which does not speciiy a name. edit will write onto the current fle and not onto the fle
“*chapterd™

The file () command

To ask for the current filename. type file (or). In response. the editor provides curreat
information apout the bufer. inciuding the {lenama. vour curraat position. and the aumoer of
lines in the ouden

f
“text’ (Modified] line 3 of 4 =73% -~
If the contents of the bufar have changed since :he l!ast tume the Sle was written. the sditor

wiil tell you that the file has been *{Modified|'" After you save the changss oy writing onto a
disk file. the buifer will no longer be considersd modifed:

.19 .-

W

“text” 4 lines, 38 characters
o f

“text® line 3 of ¢ —75%—-

Reading additioaal files (r)

The read (r) comrmnand allows you to add the contents of a file to the buffer without des-
troying the text already there. To use it, specify the line after which the new text wiil be
placed. the command r. and then the name of the fie.

: 8¢ bibliography
“bibliography” 18 lines, 473 characters

This command reads in the file bdidliography and adds it to the buffer after the last line. The
current filename is not changed by the read command unless it is the ‘first filename given in the
editing session.

Writing parts of the buffer

The write (w) command can write all or part of the buffer 0 a file you specify. We are
already familiar with writing the eatire contents of the buffer to a disk file. To write only part
of the buffer onto a fle, indicate the beginning and ending lines before the write command. for
examplie

:45,5w ending

Here all lines from 45 through the end of the buffer’are writen onto the file named ending.
The lines remain in the buffer as part.of the document you are editing, and you may continue
to edit the entire buffer.

Recovering files

Under most drocumstances, edit’s crash recovery mechanism is able o save work to within
a few lines of changes after a crash or if the phone is hung up accidendy. If vou lose the ¢on-
tents of an editing buffer in a system crash. you will normally recsive mail when vou login
which gives the name of the recovered file. To recover the fle, enter the editor and type the
command recover (ree), followed by the name of the lost fle.

:recover chapé

Recover is sometimes unable to save the entire buffer successfully, so always check the con-
tents of the saved buffer carefully before writing it back onto the original file.

Other recovery techniques

If something goes wrong when you are using the editor, it may be possible to save your
work by using the command preserve (pre), which saves the buffer as il the systzam had
crashed. If you are writing a file and vou get the message **Quota exce=ded", you have tried 0
use more disk storage than is allotted to vour account. Proceed with caurion because it is likely
that only a part of the editor's buffer is now present in the fle vou tried to write. [n this case
you should use the shell escape (rom the aditor (!) to remove some {les you don't nesd and :rv
1o write the file again. If this is not possible and you cannot find someone (0 nelp yow. 2atar
the command '

. preserve

and then se=k heip. Do not simply leave the editor. If you do. the buffer will be lost. and vou
may not be able to save vour file. Aftar a preserve. you can use the racover command oncs the
problem has been correcied.

-20-

If you make an undesirable change (o the buffer and issue 2 write command before dis-
covering your miswake, the modified version will replace any previous version of the file.
Should vou ever lose a2 good version of a document in this way, do not panic and leave the =di-
tor. As long as vou stay in the editor, the contents of the buifer remain acc=ssible. Depending
on the nature of the probiem. it may be possible to restore the buffer to 3 more complete state
with the undo command. After fixing the darnaged bufTer, you can again write the file to disk.

Further reading and other information

Edit is an editor designed [or beginning and casual users. [t is actually a version of a
more powerful editor cailed ex. These lessons are intended to introduce you to the editor and
its more commonly-used commands. We have not covered all of the editor's commands. just a
selection of commands which should be suffident (o accomplish most of your editing tasks.
You can find out more about the editor in the £x Reference Manual. which is applicabie o bath
ex and edir. The manual is available from the Computer Caater Library, 213 Evans Hall. Cne
way to become familiar with the manual is to begin by rzading the descripion of commands
that you alrsady know:

Using ex
As you become more experienced with using the editor. vou may still find that edit con-

tinues 10 mes=t your nesds, However, should you become interested in using ex. it is 2asy (o
switch. To begin an editing session with ex, use the name ex in your command instead of edit.

Edit commands work the same way in ex, but the editing environment is somewhat
different. You should be aware of a few differencss that exist betwes=n the two versioas oi the
editor. In edit. only the characiers **"*, **S’", and **\" have special meanings in searching the
butder or indicating characiers to be changsd by a substitute command. Several additional char-
acters have special meanings in ex. as described in the £x Reference Vianual Another feature
of the edit snvironment prevents users {rom accideatly entering two alisrmative modes of =dit-
irig, open and wisual. in which the editor behaves quite differendy than in normal command
mode. If you are using ex and the editof behaves strangsly. you may have accidently eatered
open mode by typing “0"". Type the ESC key and then a '*Q’" to get out of open or visual mode
and back into the regular editor command mode. The document An /nrroduction to Displav Edit-
ing with Vi provides a fuil discussion of visual mode.

This tutorial was produced ar the Computer Center of the University of
California, Berkeley. We welcome comments and suggestions concern-
ing this item and the UNIX documentation in general.

.21

Index

addressing. see line numbers
append mode, 4
backsiash (\), 18
buffer. 2
.command mode. 4
**Command not found’ (message), 3
context search. 7-8. 9. 13. 17
control characters (***"" notation), 7
control-D. §
current filename, 18, 19
current line (.), 8, 14
diagnostic messages, 3=4
disk, 1
documentation, 20
edit (10 begin editing session), 2. 6
editing commands:
append (a). 3, 4. 6
changs (c). 15
copy (co0). 12
delete (d). 12-13
edit (e), 11
file (f), 18
global (g). 16-17
move (m). 11-12
aumber (nu), 8
preserve (pre), 19
print (p). 7
quit (q). 3, 10
quit! (q!). 10
read (r), 19
recover (rec), 19
substitute (s), 8-9, 16. 17-18
undo (u), 13, 16
write. (w), 45, 10. 19
z 10

' (shell escape). 18
S= |4
-~ 14
-. 14
/7, 7-8. 17
717
w 8. 14
.=, 8. 13
erasing
characters (&), §
lines (@), 7
ex (text «ditor). 20
Ex Reference Vlanual, 20
file, 1
file recovery, 19
filename, |
[nterrupt (message). 6
line numbers. see aiso current line
dollar sign (S), 7, 14
dot (), 8. 14
relative (+ and =). 14
logging ouL, §
login procs=dure, 2
non-printing characters, 7
program. 1
recovery see file recovery
shell, 18
shell escape (1), 18
special charaeters (© S.\), 17-18
taxt input mode. 4
UNIX, 1

Ex Reference Manual

Er a line oriented text editor, which supports both command and display
oriented editing. This reference manual describes the command oriented part
of ex; the display editing features of ex are described in An Mtroduction to
Display Editing with Wi. Other documents about the editor include the intro-
duction Edit: A Tutorial, the Ex/edit Command Summary, and a W Quick Refer
ence card.

Trademarks:
MUNIX, CADMUS for PCS
DEC, PDP for DEC
UNIX for Bell Laboratories

Copyright 1984 by
PCS GmbH, Plfalzer-Wald-Strasse 38, D-8000 MQnchen 90, tel. (089) 87804-0

The information contained herein Is the property of PCS and shall neither be reproduced in
whole or in part without PCS's prior written approval nor be implied to grant any license to
make, use or sell equipment manufactured herewith.

PCS reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages (including consequential)

caused by reliance on the materials presented.

Ex Reference Manual
Version 3.5/2.13 ~ September, 1980

William Joy

Revsed for wrsions L5211 by
Moark Horton

Computer Science Division
Department of Electrical Engineering and Computer Scencs
University of California, Berkeley
Berkeley. Ca. 94720

1. Starting ex

Each instancs of the editor has a set of options, which can be set to tailor it 1o your liking.
The command edir invokes a version of ex designed for more casual or beginning users by
changing the default settings of some of these options. To simplify the descripion whica fol-
lows we assume the dafanlt seqtings of the options.

When invoked, ex determines the terminal type from the TERM vuriable in the environ-
ment. [t there is 8 TERMCAP variable in the environment, and the type of the terminal
described there matches the TERM variable, then that description is used. Also if the TERMCAP
variable conuins s pathname (beginning with 2 /) then the editor will se=k the descsiption of
the terminal in that flle (rather than the default /eic/termeap.) If there is a variable EXONIT in
the environment, then the editor will exetute the commands in that variable, otherwise if thers
is a file .20 in your HOME directory ex reads commands from that file. simulating 2 source com-
mand. Option seqing commands placed in EXINTT or .exe will be executed before sach editor
session.

A command to enter ex has the following prototype:t
ex{=][=v][=twg]{=r][=1]{=wn]{=x][=R][+command] name _.
The most common case edits & singie file with no options, ie.:
ex name

The = command line opton option suppresses all interactive-user feedback and is useful in
processing editor scripts in command files The =v option is equivalent to using v rather than
. The =t option is equivalent to an initial ag command, editing the file containing the rag
and positioning the editor at its definition. The =r option is used in recovering after an editor
or sysiem crash, retrieving the last saved version of the named file or, if no file is specified.
typing a list of saved files The =1{ option sets up for editing LISP, senting the showmarch and
lisp options. The =w option sets the default window size to 2, and is useful on dialups to start
in small windows. The =z option causes ex to prompt for 3 key, which is used (o encrvpt and
decrypt the contents of the file, which should already be encrypted using the same key. ses
eypr(1). The =R option sets the readonly option at the start. $ Name arguments indicate files
to be edited. An argument of the form <+ command indicates that the editor shouid begin bv

The fnancal support of an M Graduaie Feilowship and the Nauonal Scence Foundation under grants
MCS7407644-A 0] and MCS7E07291 is gratefully acknowiedged.

¢ Brackets *(° *|° surround optionsl parameters here.

¢ Not availabie in all v editors dus (0 memory consraints

.2-

execuling the specified command. If command is omitted, then it defaults to 'S, positioning
the editor at the last line of the frst Ale initially. Other useful commands here are scanning
patterns of the form **/pat’’ or line cumbers, e.g. **+100" starting at line 100.

2. File manipulation

2.1. Current flle

Ex is normally editing the contents of a single Ale; whose name is recorded in the currenr
fle name. Ex performs all editing actions in a buffer (actuaily a temporary file) into which the
text of the file is initially read. Changes made to the buffer have no effect on the fle being
edited uniess and until the buder contents are writtea out to the file with a2 wrire command.
After the buffer contenty are written, the previous contents of the written file are no longer
acesssible. When a file is edited, its pame becomes the cuwrrent file name. and its contents are
read into the bufder.

The current file is almost aiways considered to be edired. This means thac the conteats of
the bufer are logically connecied with the current Ale name. so that writing the curreat bufer
contents onto that file, even if it exists, is a reasonable action. [f the curreat fle is not edited
the ex will not normally write on it if it already exists.®

2.2, Alternate file

Each dme 2 aew value is given to the current fils scame. the previous current file name is
saved as the afrernare file name. Similarly if a2 fle is. mentioned but does not become the
current file, it is saved as the alternate file name.

2.3. Filename expansion

Filenames within the editor may be specified using the normal shell expansion conven-
tons. I[n addidon, the character “%' in filenames ig replaced by the currenr file name and the
character ‘%’ by the aizernare fle name.t

2.4. Multiple files and named buflers

If more than one file is given on the command line, then the first file is edited as
described 3bove. The remaining arguments are placed with the first file in the argument lst.
The curreat argumest list may be displayed with the args command. The next file in the argu-
ment list may be edited with the nexr command. The argument list may also be respeciied by
specifying a list of names to the nexr command. These names are expanded. the resulting list
of cames becomes the new argument list, and ex edits the first dle on the list.

For saving blocks of tex:t while editing, and especially when editing more than one fle. ex
has 2 group of named huffers. These are simlar to the normal bufer, except that only a lim-
ited aumber of operations are available on them. The buffers have names a through =¢

2.5. Read only

It is possible o use ex in read only mode 10 look at fles thar you have no inteation of
modifying. This mode protects you from accidently overwriting the file. Read only mode is on
when the readoniy option is set. [t can be turned on with the —R command line option, by the
view comurand line invocation, or by setting the readonfy option. [t can be cleared by sefiing
noreadonfy. It is possibile to write, even while in read only mode, by indicating that you really

* The /ile commang will say " {Not editeq|”™ if the carremt Al is not consider=d edited.

* This makes it easy (o deal siiernatety with two files and efiminates the ased for retyping (he mme supplied
on an edit command arter 1 Vo wre uace lag change diagnosts is received.

$ It is Uso posubia to refer w0 4 through Z' the upper ase bufers are the same a3 the lower but commands
append 10 named buders rather than replacng if upper cise aames are used,

.3.

know what you are doing. You can write (o 8 different file. or can use the ! form of write. even
while in read only mode,

3. Exceptional Conditions

3.1. Errors and interrupts

When errors ocsur ex (optionally) rings the terminal bell and. in any ase, prints an error
diagnostic. lf the primary input is from a file, editor processing will terminate. If an interrupt
signal is received. ex prints “Interrupt’* and recums to its command level, If the primary input
is a file, then ex will exit when this oczurs.

3.2. Recovering from hangups and crashes

If a hangup signai is received and the buffer has been modified since it was last written
out. or if the system crashes, either the editor (in the first case) or the system (after it reboots
in the second) will attempt to preserve the buffer. The next time you log in you should be able
1o recover the work you were doing. losing at most & few lines of changes from the last point
befcre the bangup or editor crash. To recover a file you can use the =r option. If you were
editing the file resume, then you should change to the directory where you were when the crasi
occurred, giving the command

eX =f resume

Aflter checking that the retrieved file is inde=d ok, you can wrire it over the previous conteats of
that file,

You will normally get mail {rom the system telling you when a file has been saved after 2
crash. The command

eX =-fr

will print a list of the files which have besn saved for you. (In the case of a hangup. the fle
will pot appear in the list, aithough it can be recovered.)

4. Editing modes

Ex has five distinct modes. The primary mode is command mode. Commands are entered
in command mode when a *:' prompt is present, and are executed each time a2 complete line is
seat In texr inpur mode ex gathers input lines and placss them in the file. The append. inserr.
and change commands use text input mode. No prompt is printed when you ars in text inpu:
mode. This mode is left by typing a '.’ done at the beginning of a line. and command mode
resumes.

The last three modes are open and visual/ modes, entered by the commands of the same
pame, and, within opea and visual modes tex insertion mode. Open and visua/ modes allow
local editing operations to be performed on the text in the file. The open command displays
one line at a time on any terminal while visual works on CRT terminals with random positioning
cursors, using the screen as a (single) window for file editing chang=s. These modes are
described (only) in An [atroduction 1o Display Editing with Vi.

5. Command structure

Most command names are English words, and initial prefixes of the words are accsptable
abbreviations. The ambiguity of abbreviations is resoived in favor of the more commonly used
commands.*®

* As an exampie, e command sudsnnuae can be abbreviated s’ while the shonest available abbrevaation lor
the ser command is ‘se’.

3.1. Command parameters

Maost commands accept prefx addresses specifying the lines in the file upon which they
are to have 2Tect. The forms of these addresses will be discussed below. A number of com-
mands also may take a trailing counr specifying the number of lines to be invoived in the com-
mand.t Thus the command **10p’" will print the tenth line in the buder while “*defete 5§ will
delete five lines from the buffer, starting with the current line.

Some ccmmands take other information or parameters, this information always being
given after the comumand name.$

§.2. Command variants

A oumter of commands have two distinct variants. The variaat ferm of the command is
invoked by placing an '!” immediately after the command name. Some of the default variamts.
may be controiled by options; in this case. the ‘!’ sexves ta toggle the defauir

§.J3. Flags after commands

The characzers *#', 'p’ and ‘" may be placed after many commands.* [a this case, the
command abbreviated by these characters is exesuted after the command compietes. Since ex
normally prints the new current line after esch change, ‘p’ is rarely necsssary. Any number of
‘4 or ‘="' characiers may ilso be given with these flags. [f they appear, the specified odset is
applied o ke curreat line value before the printing commuand is executed.

§5.4. Comments

It is possidie to give editor commands which are ignored. This is useful when making
compiex editor scripts for which comments ir= desired. The comment character is the double
quote: °. Any comrnand line beginning with ° is ighor=d. Comments beginning with * may also
be placsd a1 the eads of commands, excspt in cases where they could be confused as part of
text (sheil =scapes and the substitute and map cormmands).

5.5. Muitipie commands per line

More than one command may be placsd on a line by separating each pair of commands by
a T characier. However the gloda/ commands, comments, and the shell sscape °*!° must be the
last command on 2 line, as they are not terminated by a Y.

5.6. Reporting large changes

Mest commands which change the contents of the editor bufer give fesdback if the scope
of the change excseds a threshold given by the reporr option. This fesdback helps to detect
undesirably large changes so that they may be quickly and easily reversed with an undo. After
commands with more global effect such as gloda/ or visual, you will be informed if the net
change in the gumber of lines in the buffer during this command axce=ds this threshold.

6. Command addressing

6.1. Addressing primitives

The current line. Most commands leave the curresat line as the last line
which they afect. The default address for most commands is the current
line, thus *.’ is rarsly used alone as an addrass.

¢ Counts are rounded down if necsssary.

1 Examoles wowid be oouon names in 2 w7 Cymmand e ""set numoer’, 1 fle name ! an edir command. a
requiar SXPreIuon (N 3 swousrure COMMand., or 3 targe! adarsss (or 1 cppy command, i.e. *1.5 opy 15

A ‘D or 1" must be preceded dy 2 blank or b exce: n the ungie spesal case dp’

.5.

n The mh line in the editor’s buffer. lines being numbered sequentially
from 1.

S The last line in the buffer.

% An abbreviation for *‘1.5", the eatire buffer.

+n =n An offset relative to the curreat buffer line.t

/pat/ ?par? San forward and backward respectively for a line conuining par. a regu-

lar expression (as defined belew). The scans normally wrap around the
end of the buffer. If all that is desired is to print the next line containing
par, then the trailing / or ? may be omitted. If par is omitted or expli-
citly empty, then the last regular expression specified is located. s

‘x Before each non-reiative motion of the current line *.’, the previous
carrent line is marked with 2 tag, subsequently referred to as **°. This
makes It exsy to refer or rerurn to this previous context. Marks may
also be established by the mark command, using single lower case
letters x and the marked lines referred to 23 *'x'.

§.2. Combining addressing primitives

Addresses to cormmands consist of a series of addressing primitives, separated by *," or ;'
Such address lists are evaluated left-to-right. When addresses are separated by *:' the currant
line *.’ is set 1o the value of the previous addressing expression before the next address is inter-
preted. If more addresses sre given than the command requires, thea all but the last one or
two are ignored. If the command takes two eddresses, the first addressed line must precede the
second in the buffer.t

7. Command descriptions
The following form is a prowtype for all er commands:

cddress command ! parameters count flags

All parts are optional: the degenerate sase is the empty command which prints the next line in
the file. For sanity with use from within visua/ mode, ex ignores a **:"" preceding any com-
mand.)

In the following cornmand descriptions, the default addresses are shown in parentheses.
which are nor, however, part of the command.

abbreviate word ris abbr: ab

Add the named abbreviation to the current list. When in input mode in visual, if word is
typed as 2 complete word. it will be changed o ris

(.) append abbr: a
texr

Reads the input text and places it after the specified line. After the command. °.
addresses the last line input or the specified line if no lines were input. If address ‘0" is
given, text is placed at the beginning of the bufer.

* The forms *.+3" <3 ang e <=’ zre all equivalent: if the current line is line {00 they ail agdress line
103,

t The forms \/ and \? san using the last regular expression wed in 2 s@n: after 2 subsuwwte // ang 7
would san using the subsuruig’s regular exoreasion.

* Null add-ess specifications are permitiad in a list of addresses the defaull in this case is the current line
thus °,]00° is equivaient w0 "..100°. [t is an error to pive 2 predx address (o a command which ezpes:s fone.

text
The variant flag to append toggles the setting for the gquroindent option during the input of
lext

args
The members of the argument list are printed, with the current argument delimited by *(°
and ‘)"

(...) changs counr abbr: ¢

exT
Reaplacas the specified lines with the input rexz. The current line bYecomes the last line
input: if no lines were input it is left as for a defere

c!

lexx
The variant taggies quroingenr during the change.

(.,.)copy addr flags abbr &
A copy of the specified lines is piaced aftar addr, which may be ‘0’. The current line *.’
addressas ths last line of the copy. The command ris a synonym f(or copy.

(...)delete buffer count fags abbr: d
Removes the specified lines from the bufer. The ling after the last line deleted becomes
the current line: if the lines deleted wers originally at the efid, the new last line becomes
the current line. [f a named dufer is specified by giving a letter, then the specified lines
are saved in that buffer, or appended to it if an upper case letter is used.

edit file abbr e

ex file

Used 1o begin an editing session on a new file. The sditor first chscks o se= if the sufer
has bean modified sincs the last write command was issued. [it has besa, 2 waming is
issued and the command is abortad. The command otherwise delstes the eatire contents
of the editor bufer, makes ths named file the current file and prints the new flecame.
After insuring that this file is. sensibiet the editor reads whe file into its buffer.

If the read of the file completes without error, the qumber of lines angd characters read is
typed. If there were any non-asSCU characters in the flle they are stripped of their aon-
ASCT high bits, and any aull characiers in the file are discarded. If none of these errors
ocrurred, the fle is considersd edited. If the lagt line of the input file is missing the trail-
ing newline charactar, it will be supplied and 1 complaint will be issved. This command
leaves the current line °.’ at the last line read t

¢ Le. that it s not a binary Ale such a3 a directory. a Mock or characer special dle other than /dewirr. a ter-
minal, or 3 binary or executable dle (as indicted by the Arst word).
3 If executed [rom within open or wsial (e cuarrent ling is imtially the frst line of the dle.

e! file
The variant form suppresses the complaint about modifications having been made and not

written from the editor buffer, thus discarding all changes which have besn made bejors
editing the new file. :

e +nfile

Causes the editor to begin at line # rather than ar the last line; 7 may aiso be an editer
command containing 1o spacses, €.g.: **+/pat’’,

fle abbr: f
Prints the current file name, whether it has been ‘{Modified]’ since the last wrire com-
mand, whether it is read onfy, the current line, the number of lines in the buffer. and the
percentage of the way through the buffer of the curren: line.®

file file
The current file name is changed to file which is considersd ‘{Not edited]’

(1,8) global /par/ cmds abbr: g

First marks each line among those specified which matches the given regular expression.
Then the given command list is executed with '.' inijtially set t0 each marked line.

The command list consists of the remaining commands on the current input line and may
continue to multiple lines by ending all but the last such line with a *\". If emds (and pos-
sibly the trailing / delimiter) is omitted, each line matching par is printed. Append. insert.
and change commands and associated input are permined: the ‘.’ terminating input may
be omitted if it would be on the last line of the command list. Open and visua/ commands
are permirted in the command list and take input from the terminal.

The glodal command itself may not appear in cmds. The undo commang is also not per-
mitted there, as wndo instead can be used 10 reverse the eatire gioda/ command. The
options guroprint and gutoindent are inhibited during a glodal (and possibly the trailing /
delimiter) and the value of the reporr option is temporarily infinite, in deference to a
report for the entire.global. Finally, the context mark *7 is set to the value of *.° before
the global command begins and is ot changsd during a global command, except perhaps
by an oper or visual within the global

g! /pat/ emds abbrr v

The variant form of glodal runs emds at each line not matching par.
(.)insert abbr: |
i

Places the given text before the specified line. The currenat line is left ar the last line
input; if there were none input it is left at the line before the addressed line. This com-
mand differs from append only in the placement of text

* |n the rare case that the current Ale s ‘(Not edited]® this is notea aiso: in this- ase yoy have 10 use the
form w! 10 write 0 the file. ince the editor i nNot sure that 2 write will aot destroy a Sle unrelsied to the
current contents of the buder.

text
The variant toggles quroindenr during the insert.

(...+1) join count flags abbr: |
Places the text from a specified range of lines together on one line. White space is
adjusted al each junction o provide at least one blank character. two if there was a *." at
the end of the line, or oone if the first following character is a *)’. If there is already
white space at the end of the line, then the: white spacs at the start of the next line will be
discarded.

!
The variant causes a simpler join with no white space procsssing; the characters in the
lines are simply concatenated.

() k=x
The k command is a synoaym for mark. It does not require a blank or b before the fol-
lowing letter.

(.,.) st count flags

Prints the specified lines in 2 more unambiguous way: tabs are printed as *“T" and the end
of each line is marked with a trailing 'S". The current line is left at the last line printad.

map lhs rhs

The map command is used o define macros for use in visual mode. Lhs should be a sin-
gle character, or the sequence “*#n'’, for 0 a digit, referring to funczion key ~. When this
charactar or function key is typed in wisual/ mode, it will be as though the corresponding
rhs had besn typed. On terminals without funcron keys. you can type “*#un"". Se= saction
6.9 of the “‘Introduction to Display Editing with Vi™ for more details.

(.) mark x
Gives the specified line mark x, a single lower case letter. The x must de precadad by a
blank or a tab. The addressing form ‘'x’ thea addresses this line. The current line is aot
affected by this command.

(...) move addr abbr m

The move command repositions the specified lines 10 be after addr. The first of the
moved lines becomes the current lice.

next abbr: n
The next file from the command line argument list is edited.

The variant suppresses warnings about the modifications to the buder not having been
atitlen out. discarding (irretrievably) any changes which may have be=n made.

n Alelist
n +command filelist

.9.

The specified filelist is expanded and the resuiting list replaces the current argument list:
the frst file in the new list is then edited. U command is given (it must conwin no
spacss). then it is exzcuted after editing the first such file.

.) number counr flags abbr: # or nu

Prints each specified line preceded by its buffer line number. The current line is left ac
the iast line printed.

(.) open flags abbr: o
(.) opea /pat/ flags

Enters intraline editing open mode at each addressed line. [f paris given. then the cursor
will be placed initially at the beginning of the string matched by the pattern. To exit this
mode use Q. See An /ntroduction to Display Editing with Vi for more details.

4

preserve

(..

The current editor buffer is saved as though the system had just crashed. This command
is for use only in emergencies when a write command has resuited in an erTor and you
don’t know how 10 save your work. Afler a preserve you should se=k help.

.) print count abbripor P

Prints the specified lines with non-printing characters printed as control characters *"x';
delete (octal 177) is represented as *°7°. The current line is left at the last line printed.

(.)put buffer abbr: pu

quit

q!

Puts back previously delered or yanked lines. Normally used with defere 1o effect move-
ment of lines, or with yank to effect duplication of lines. If no bugfer is specified; then the
last delered or yanked text is restored.® By using a named buffer. text may be restor=d that
was saved there &t any previous time.

abbr: q

Causes ex to terminate. No automatic write of the editor buffer to a file is performed.
However, exissues a warning message if the fle has changed since the last write command
was issued, and does not qui.} Normally, you will wish t0 save vour changes. and you
should give a write commmand; if you wish to discard them, use the q! command variant.

Quits {rom the editor, discarding changes to the buffer without complaint

(.) read file abbrr

Plac=s a copy of the text of the given flle in the editing buffer after the specified line. [f
no file is given the current file name is used. The curreat file name is not changed uniess
there is none in which case file becomes the current name. The sensibility restrictions for
the edit cormmand apply here also. If the file buffer is empty and there is no current name
then ex treats this as an edir command.

¢ Not availadie in all v2 editors due 0 memory constraints.

* But no modifying commands may intervene between the defere of wank and the puz. nor may lines be
moved between files without using a named duiler.

* Zx will aiso issue a diagnostic if there are more fAles in the argument lst

-10.

Address ‘0’ is legal (or this command and causes the file to be read at the beginning of
the buer. Statistics are given as for the edit command when the read successfully ter-
minates. After a regd the current line is the last line read.$

(.) read 'commuand

Reads the output of the command commuand into the bufer after the specified line. This
is not a variant form of the command, rather a read specifying a command rather than a

Jfilename: a blank or tab before the ! is mandatory.

recover jlle

Recovers file from the system save area. Used after a2 accidental hangup of the phone*~
or a system ash*®® or preserve command. Except when you use preserve you will be
notified by mail when a dle is saved

rewind abbr: rew

rew!

The argument list is rewound, and the frst fle in the list is edited.

Rewinds the argument list discarding any changes made 1o the current buder.

set parameter

shell

With no arguments, prints those options whose values have besn changed (rom wheir
defaults; with parameter a/l it prints ail of the option values.

Giving 2o option name followed by a2 '7° causes the curreat value of that option to be
printed. The '?" is unnecsssary uniess the option is Boolean valued. Boolean options are
given values either by the form ‘set oprion” 1o turn thern oa or ‘set nooprion’ 1o turm them
off, string and numeric options are assigned via the form ‘szt oprior=value’.

More than one parameter may be given to ser; they are interpreted left-to-right.

abbr: sh
A new shell is coeated. When it tarminates, editing resumes.

source file abbr: so

(...

Reads and executes commands from the specified fle. Source commands cay te nested.

) substitute /par/rep(/ options count flags abbr s

On each specified line, the first instance of pattem par is repiaced by replacsment pattemn
repl. If the glodal indicator option character ‘g’ appears, then all instances are substituted:
if the confirm indication character ‘¢’ appears, then before 2ach substitution the line 1o be
substituted is typed with the string to be substituted markad with ‘1’ characters. By typing
an 'y’ one can cause the substitution to be performed. any other input causes no change
to take place. Afler a subsiiture the carrent line is the last line substituted

Lines may bde split by substituting new-line characters into them. The newline in reof
must be escaped by preceding it with a *\'. Other metacharaczers available in par and repf
are described below.

: Within oper and visugf the current line is set to the first line read radher than the last
** The system saves a copy of e {ile you were ediung onfy i you Bave mage chang=y (0 ‘he e,

stop

<11 -

Suspends the editor, returmng control to the top level shell. If agurowrite is set and thers
are unsaved changes, a write is done first unless the form stop! is used. This commands
is only available where supporied by the teletype driver and operating sysiem.

(...) substitute options count flags abbr: s

(...

If por and rep/ are omitted, hen the last substitution is repeated. This is a synonym for
the & command.

) t addr flags
The ¢ command is a synonym for copy.

ta g

The focus of editing switches to the .location of g, switching to a different line in the
current file where it is defined, or if necessary o0 another file.$

THe tags file is normally created by a program such as crags, and consists of a number of
lines with thres fields separated by blanks or tabs. The first field gives the name of the
tag. the second the name of the file where the g resides. and the third gives an address-
ing form which can be used by the editor to find the tag; this field is usually a contextual
scap using ‘/par” to be immune o minor ¢hanges in the fle. Such scans are always per-
formed as if nomagic was set.

The tag names in the tags fle must be sorted alphabeticaily. ¢

unabbreviate word abbr: ana

undo

Delete word from the list of abbreviations.

abbr u

Reverses the changes made in the buffer by the last buffer editing command. Note that
global commands are considered a single command for the purpose of uado (as are open
and visual) Also, the commands write and edir which interac: with the file system cannot
be undone. Undo is its own iaverse.

Undo always marks the previous value of the current line *.’ as ¥~. After an undo the
current line is the first line restored or the line before the first line defeted if no lines
were restored. For commands with more global effect such as glodel/ and visua! the
curreat line regains it's pre-command value after an undo.

uomap ks

(1,

The macro expansion associated by map for (ks is removed.

S) v /pat/ cmds

A synonym for the globa/ command variant g!, running the specified onds on each line
which does not match pat.

version abbr: ve

Prints the current version number of the editor as well as the date the editor was last
chang=d.

t If you have modified the current file before pving 1 @y cOMmand. you Must wnie it oul Eving another
wy cormmand. specifying 80 gy will reuse the previous lag

t Not

available in all v =ditors due W Memory construnts.

-12-

(.) visual rype counr flags abbr vi

Enters visual mode at the specified line. 7Type is optional and may be =", '1" or'. asin
the : command to specify the placement of the specified line on the screen. By default. if
type is omitted. the specified line is piaced as the Arst on the scresn. A counr specifies an
initial window size; the default is the value of the option window. See the document A
Introduction to Display Editing with Vi for more details. To exit this mode. type Q.

visual file
visoai +n fle

From visual mode, this command is the same as edit.

(1,S) write fAle abbr w
Writes changes made back w0 file, printing the aumber of lines and characters wrinen.
Normmally file is: omitted and the text goes back where it came from. [f a file is specifed.
then text will be written to that file.* If the Gle does not exist it is ceated. The current
file name is changed only if there is oo current file name: the current line is never
changed.
If an error occurs while writing the current and edired file. the editor considers that there
has besn “No write since last change' even if the buder had not previously be=n
modifed.

(1,8) write>> file b w>> -
Writes the buffer contents at the end of an existing fle.

w! name
Overrides the checking of the normal write command, and #ill write to any file which the
SysStem permiits.

(1.S) w 'command
Writes the specified lines into command. Nota the difference betwesn w! waich overrides
checks and w ! which writes 10 a command.

wq name
Like a write and hen a quir command.

wq! name
The variant overrides checking on the seasibility of the wrire command, as w! does.

xit name
I any changes have besn made and not wrirten, writes the buffer out. Thea, in any cse.
quits.

(...)yank buffer counr abbr: ya

Placss the specified lines in the namned bufer. for later retrieval via pur. [f no buder name
is specified, the lines go o 2 more volatile piace; ses the pur command desciption.

* The editor wrmies (0 a fle only if it is the current dle and is atired i tRe fle does not exist. or if e dle s
aauaily a telerype. /devimy, /dewmuil Qtherwise, you must five the varmam form w! 0 foree the wnte,

<13 -

(.+1) 2z count
Print the next counr lines, default window.

(.) z rype count
Prints a window of text with the specified line at the top. If ppeis *=—' the line is plac=d
at the bottom: 1 *.’ causes the line to be placed in the czater.® A count gives the number
of lines to be displayed rather than doubie the number specified by the scrofl option. On 2
CRT the screen is cleared before display begins uniess a count which is less than the
screen size is given, The current line is left at the last line printed.

! command
The remainder of the line after the ‘!’ characier is sent to a shell to be executed. Within
the text of command the characters *%"° and '#' are expanded as in filenames and the char-
acter ‘" is replaced with the text of the previous command. Thus, in particular, *!!
repeats the last such shell escape. If any such expansion is performed. the expandad line
will be echoed. The current line is unchanged by this command.

If there has been **{No write]"™ of the bufer contents since the last change to the =diting
buffer, then a diagnostic will be printed before the command is executed as 2 warning. A
single '!" is printed when the command completes.

(addr , addr) ! command

Takes the specified address range and supplies it as standard input to command: the resuit-
ing ourput then repiaces the inpu_l lines.

(S) =
Prints the line aumber of the addressed line. The current line is unchanged.

(...) > count flags

(...) < count flags .
Perform inelligent shifting on the specified lines; < shifts left and > shift right. The
quantity of shift is determined by the shiffwidth option and the repetition of the
specification character. Only white space (blanks and tabs) is shifted: no non-white char-
acters are discarded in a left-shift. The current line becomes the last line which changed
due to the shifting.

‘D
An end-of-file from a terminal input scolls through the file. The scroll option specifies
the size of the scroll, normally a half screen of text.

(.<=1,.+1)

(.=1,.+1)]
An address alone causes the addressed lines 10 be printad. A blank line prints the next
line in the file.

Forms "t=" and "1’ also exist: 'Tw’ places the current line in the center. surrounds it with lines of "=~
characters and leaves the current line at this line. The form “2[° prints the window defore 't— would The
caracers "=", ‘1’ and =" may be repeated for cumulauve effec. On some v2 edilors. no npe may be
gven.

-14.

(...) & options count flags
Repeats the previous subdsuiure command.

(...) " oprions count flags

Replaces the previous regular expression with the previous replacement pattern from a
substtution..

8. Regular expressions and substitute replacement patterns

8.1. Regular expressions

A reqular expression specifies 2 set of strings of characters. A member of this set of
strings is said to be marched by the regular expression. Ex remembers (wo previous regular
expressions: the previous regular expression used in a. substituze command and the previous reg-
ular expression used eisewhers (referred (0 1s the previous scanaing regular expression.) The
previous regular expression can always be referred to by a aull re, e.g *// or *77",

8.2, Magic and nomagic

The regular expressions allowed by & are. constructed in one of two ways depending on
the setting of the magic option. The exr and v default serting of magic gives quick acse=ss to 2
powerful set of regular expression metacharacters. The disadvantage of magic is that the user
must remember that these metacharaciers are magrc and precede them with the characzer *\' w0
use them as ‘‘ordinary’” characters. With nomagic. the default for edir, regular expressions are
much simpler, there being only two metacharacters. The power of the other metacharaciers is
still availahlie by preceding the (now) ordinary character with 2 *\' Note that *\' is thus ajways
a metacharacter.

The remmainder of the discussion of regular expressions assumes that that the setting of
this option is magrc. 7

8.3. Basic reguiar expression summary
The following basic constructs are used to construct magic mode regular expressions.

char An ordinary charactsr matches itself. The characrers ‘1° at the beginning of a
line, 'S’ at the end of line, *** as any character other than the frst, *.", *\'. ‘(.

and '™ are oot ordinary characters and must be escaped (preceded) by \ zobe
treated as such.

I At the beginning of a pattern forcss the match to succe=d only at the begin-
ning of a line.

S Al the end of a regular expression forces the match to succe=ed only at the end
of the line.
Matches any single character except the new-line character.

\ < Forcss the mawch 10 ocsur only at the beginning of a ‘‘variacie' or **word’";
that is, either at the beginning of a line, or just before a lenter, digit, or under-
line and after a character not one of these.

\> Similar to "\ <’', but marching the end of a **variable™ or “‘word'’, i.2. either
the end of the line or before character which is aeither a l=2ter, nor a digit. nor
the underiine character. .

? To discern wnat is (rue with somagre it swilcss (0 remember that e onty specal Caracess in ths qQse wiil
be '{° at the deginmmng of 4 regular expresnion. "S° at (he ena of a regular expression, and \" With momgrc
We ctaracters * ' and '&’° aiso lose thewr specal meanungs related (0 the redlacement sattern of a substitute.

«15.

|srring] Matches any (single) character in the dass defined by string. Most characiers
in uring define themselves. A pair of characiers separated by ‘=" in siring
defines the set of characters collating between the specified lower and upper
bounds, thus ‘{a—z]" as a regular expression matches any (single) lower-case
letter. If the first character of siring is an *1° then the construct matches those
characters which it otherwise would not thus *{la=z]" matches anything but a
lower-case letter (and of course a newline). To place any of the characters '{°
‘', or ‘=" in sring you must escape them with a preceding *\".

8.4. Combining regular expression primitives

The concatenation of two regular expressions matches the leftmost and then longest string
which can be divided with the first piece maiching the first regular expression and the second
piece matching the second. Any of the (single character marching) regular expressions men-
tioned above may be followed by the character *** 10 form a reguiar expression which matches
any number of adjacent occurrencss (including 0) of characters matched by the regular =xpres-
sion it follows. :

The character ** may be used in a regular expression, and matches toe text which defined
the replacement part of the last sudsurure command. A regular expression may be enclosed
between the sequences ‘\(* and ‘\)° with side effects in the sudsnrure replacsment patterns.

8.5. Substitute repiacement patterns

The basic metacharacters for the replacsment pattern are ‘&’ and *~"; these are given as
\&' and '\~ when nomagic is ser. Each instance of ‘&’ is replaced by the characters which the
regular expression matched. The metacharacter *~ stands, in the replacement pattern. for the
dedning text of the: previous replacement partern.

Other metasequences possibie in the replacement pattern are always introducsd by the
escaping character *\'. The sequence ‘\n’ is replaced by the text matched by the ~~th regular
subexpression eadosed berwesn \(' and *\)".t The sequences ‘\u' and ‘\I' cause the immedi-
ately following character in the replacement to be converted to upper- or lower-case respectively
if this character is a letter. The sequences ‘\U" and “\L’ turm such conversion on. either until
“\E" or ‘\¢’ is encountered, or until the end of the replacement pattern.

9. Option descriptions

autoindent, ai default: noai

Can be used to ease the preparation of structured program lext. Ai the beginning of each
append, change or insert command or when a new line is opened or created by an append.
change, insert, or substitute operation within open or visua/ mode. exlooks at the line being
appended after, the first line changed or the line inserted befors and calculates the
armount of white space at the start of the line. It then aligns the cursor at the level of
indentation so determined.

If the user then types lines of .text {n, they will continue to be justified ar the displayed
indenting level. If more white spacs is typed at the beginning of a line. the following line
will start aligned with the first non-white character of the previous line. To back the cur-
sor up lo the preceding tab stop ome cn hit “D. The tab stops going backwards are
dedned at multipies of the shifiwidth opuon. You cannor backspacs over the indent.
except by sending an end-of-dle with a2 °D..

* When nested. parenthesized sudbexpressions are present. 2 is determined by counting occurreaces of “\('
starting from the fefL

<16 -

Specially processed in this mode is a line with no characters added (o it. which turms into a
completely blank line (the white spacs provided for the autoindent is discarded.) Also spe’
cally processed in this mode are lines beginming with an °*1’ and immediately followed by
2 “D. This causes the input to be repositioned at the beginning of the line, but retaining
the previous indeat for the next line. Similarly, a *0°’ followed by a “D repositions at the
beginning but without retaining the previous indent, T

Autgindent doesa’t happen in globa/ commands or when the input is not a terminal.

autoprint, ap default: ap
Causes the current line to be printed after each defere, copy. join, move. substituie, !, undo
or shift command. This has the same effez: as supplying a trailing 'p’ to each such com-
mand. Auroprint is suppressed in globals, and only appiies to the last of many commands
on a line:

autowrite, aw default: noaw
Canses the conteats of the buder to be written o the current file if vou have medified it
and give a next, rewind, stop. (ag, or ! command. or a “1 (switch files) or °] (tag goto)
command in wisual Note, that the edir and ex commands do not autowrite, [n 2ach case,
there is an equivalent way of switching when autowrite is set (o avoid the quiowrite (edir
for next, rewind! for .I rewind , srop! for stop, wg! for tag, sheilfor !, and :2 # and 3 :ta’
command from within visual).

besurify, bf defauit: nobeautify
Causes all eontrol characters except tab, newline and form-{esd to be discarded from the
input. A compiaint is registered the first ime a backspace character is discarded. Begunsy
does not apply to comrmand input..
directory, dir defauit: dir=/tmp
Specifies the direczory inm which ‘ex places its buffer fle. If this directory in not writabie.
then the editor will exit abruptly when it fails to be able 0 =ate its buffer thers,
edcompatible defauit: noedcompatibie

Causes the presence of absence of g and ¢ sufixes on substitute commands (o0 be remem-
bered. and o be toggled by repeating the suffices. The suffix r makes the substitution be
as in the ~ command, instead of like & =

errorbells, eb default: noeb

Ertor messages are preceded by a bell.® [f possible the editor always places the error mes-
sage in a2 standout mode of the terminal (such as inverse video) instead of ringing ths

bell.

hardtabs, ht defauit: hr=3
Gives the boundaries on which terminal hardware tabs are set (or on which the system
expands tabs).

ignorecase, ic default: noic

32 Version) only.
* Bell ringing in ooen and vgual on errors is not suppressed by jetting roed.

217 -

All upper case characters in the text are mapped to lower case in regular expression
matching. In addition, all upper case characters in regular expressions are mapped to
lower case except in character class specifications.

lsp defauit: nolisp

Auroindent indeats appropriately for lisp code, and the () { } [and Il commands in open
and visua/ are modifed to have meaning for lsp.

list default: nolist

All printed lines will be displayed (more) unambiguously. showing tabs and end-of-lines
as in the lUst comunand.

magic default: magic for evand wt

If nomagrc is set, the number of regular expression metacharacters is greatly reducad. with
only ‘!’ and ‘S’ having spedal eflects. In addition the metacharacters '™ and ‘&' of the
replacement patiern are treated as normal characters. All the normal metacharacters may
be made magic when aomagic is set by preceding them with 3 *\".

mesg default: mesg

Causes write permission to be turned off to the terminal while you are in visual mode. if
nomesg is seL. &2

number, nu default: nonumber
Causes all outpu! lines to be printed with their line aumbers. [n addition each input line
will be prompted for by supplying the line oumber it will have.

.open default: opea

If noopen, the commands open and visua/ are 2ot permitted. This is set for edir to prevent
confusion resulting from accidental entry to open or visual mode.

optimize, opt default: optimize

Throughput of text is expedited by sefting the terminal to not do automatic carriage
resurns when printing more than one (logical) line of output, greatly spesding output on
terminals without addressable cursors when text with leading white spacs is printed.

paragraphs, para default: para=[PLPPPQPP Libp

Specifies the paragraphs for the { and) operations in open and visual The pairs of charac-
ters in the option's value are the names of the macros which start paragraphs.

prompt default: prompt
Command mode input is prompted for with a *:".

redraw default: noredraw

The editor simulates (using great amounts of output). an intelligant terminal on 1 dumb
terminal (e.g. during insertions in visua/ the characiars to the right of the cursor position
are refrashed as each input character is typed.) Useful only at very high spesd.

* Nomaygr for edic
22 Yermon J onty.

- 18-

remap defauit: remap
If on. macros are repeatedly tried until they are unchanged. $t For example. if o is
mapped 0 O, and O is mapped to I, then if remap is set, o will map to 1. but if noremap is
set. it will map to O.

report default: report=5¢

Specifies a threshold for fesdback from commands. Any command which modifies more
than the specfied number of lines will provide [eedback as to the scope of its changes.
For commuands such as glodal open, undo, and visua/ which have potenually more far
reaching scope. the net changs in the number of lines in the bufer is presented at the 2nd
of the command, subject to this same threshold. Thus notification is suppressed during a
global command on the individual commands performed.

scroll defauir: scroll =4 window

Determines the number of logical lines scrolled when an end-of-file is received from a
terminal input in command mode; and the number of lines printed oy a command mode =
command (double the value of soroll).

sections defauit: sections=SHNHH HU
Specifies the section macros for the ([and]] operations in oper and visval The pairs of
characiers in the options’s value are the names of the macros which start paragrapns.

sheil. sh default: sh=/bin/sh

Gives the path name of the shell forked for the shell escape command '!°, and by the shef/
command. The dafault is taken from SHELL in the environment, if preseac

shiftwidth, sw defauit: sw=§

Gives the width a2 software b stop, used in reverse tabbing with “D when using qutoin-
dent 10 append text, and by the shift comraands,

showmatch, sm default: nosm

In open and visual mode, when a) or } is typed, move the cursor to the matching (or (
for one second if this matching character is on the screen. Extremely useful with fisp.

slowopen, siow terminal dependent

Affects the display algorithm used in wisual mode. holding off display updating during
input of new text to improve throughput when the terminal in use is both slow and unin-
telligent See An [ntroducsion 1o Display Editing with Vi for more details,

tabstop, ts default: ts=§
The editor sxpands tabs in the input file to be on radsiop boundaries for the purposes of
dispiay.

tagleagth. tl default: U=Q

Tags are not significant beyond this many characrters. A value of z=ro (the default) means
that al] characters are significant.

t2 Version j oniy.
* 1 for edit.

-19.

tags defauit: tags==tags /usr/lib/tags
A path of files to be used as tag files for the /ag command. $2 A requested tag 1s searchec

P-4

for in the specified files. sequentially. By default (even in version 2) files clled tags are
searched for in the current directory and in /ust/lib (a master file for the entire sysiem.)

term from environment TERM
The terminal type of the output device.

terse default: noterse
Shorter error diagnostics are producsd {or the experieaced user.

warn defauit: warn
Warn if thers has deen ‘{No write since last change]® before a '!" command escape.

window default: window=spead depeadent

The number of lines in a text window in the visug/ cornmand. The default is & at slow
spe=ds (600 baud or less), 16 at medium spe=d (1200 baud). and the full scce=a (minus
one line) at higher speeds.

w300, w1200, w9600

These are not true options but set window only if the spead is slow (300). mecium
(1200). or high (9600), respectvely. They are suitable for an EXINIT and make it easy
to change the 8/16/full scresn rule.

wrapscan., ws default: ws
Searches using the regular expressions in addressing will wrap around past the end of the
file.

wrapmargin, wm default: wme=0

Defines a margin for automatic wrapover of text during input in open and visua/ modes.
See An Introduction 10 Texr Editing with Vi for datails.

writeany, wa defauit: nowa

Inhibit the checks normally made before wrire commands, allowing a write o any fle
which the sysiem protection mechanism will allow.

10. Limitations

Editor limits that the user is likeiy to encounter are as follows: 1024 characters per line.
256 characters per global command list, 128 characters per file name, 128 characters in the pre-
vious inserted and deleted text in open or visual, 100 characters in a sheil escape command. 63
characters in a string valued option, and 30 characters in a tag name, and a limit of 250000 lines
in the file is silently enforced.

The visual implementation limits the oumber of macros dedned with map to J2. and the
total number of characiers in macros to be less than 312.

Acknowledgments. Chuck Haley contributed greatly to the early developmeatr of ex. Brucs
Englar encouraged the redesign which led to ex version 1. Bill Joy wrote versions 1 and 2.0
through 2.7, and created the framework that users ses in the preseat editor. Mark Horton
added macros and other features and made the editor work on a large aumber of terminals and
Unix systams.

33 Version] onty.

Ex changes — Version 3.1 to 3.5

This update describes the new features and changes which have been made in convernting
from version 3.1 10 3.5 of ex Each change is marked with the first version where it appearec.

Update to Ex Reference Manual

Command llne options
3.4 A pew command called view has been created. View is just like v but it sets regdoniy.

3.4 The encryption code from the v7 editor is now part of ex You an invoke ex with the
—x option and it will ask for a key, as ed The ed x command (to eater encyption mode
from within the editor) is not available. This feature may not be available in all instancss
of ex due 10 memory limitations,

Commands

3.4 Provisions to handle the new process stopping features of the Berkeley TTY driver have
been added. A new command, sop, takes you out of the editor deanly and eficently.
recuming you to the shell Resuming the editor puts you back in command or visual
mode, as appropriate. I qurowrne is set and thers are outstanding chang=s, 2 write is done
first unless you say “‘stop!”’.

34 A

vi <8le>
command from visual mode is now teated the same as a
wedit <file> or 2x <file>

command. The meading of the v command from er command mode is not affected.

33 A new command mode command xir (abbreviated x) has besan added. This is the same as
wq but will not bother to write if there have besn no changes w the file.

Options

3.4 A read only mode now lets you guarantee you won’t clobber your file by acsideat. You
an set the on/off option readonly (r0), and writes will fail unless you use an ! after the
write. Commands such as x. ZZ. the autowrite opuion, and in general anything that writes
is affected. This option is turned on if you invoke ex with the —R flag

3.4 The wrapmaryin option is now usable. The way it works has been completely revamped.
Now if you go past the margin (even in the middle of 2 word) the entire word is erased
and rewritten on the next line. This changes the semantics of the aumber given (o wrap-
margin. 0 stll means off. Any other gumber is still 3 distance from the right edge of the
scresn, but this location is now the right edge of the ar=a where wraps can take place,
instead of the left edge. Wrapmargin aow behzaves much like fill/nojustfy mode in arofl

33 The optons w300, w/200, and w9600 can be szt. They are synonyms for window, but only
apply at 300, 1200, or 9600 baud, respectively. Thus you can specify you want 2 12 line
window at 300 baud and a 23 line window at 1200 baud in your EXXINIT with

et wi00=12 w(200=23

3.3 The new opdon timeour (default on) cuses macTos o time out after one second. Turn it
off and they will wait forever. This is usefud iff you want multi character macros. but if
your terminal sends escape sequencss for arrow keys, it will be pecs=ssary to hit sscape
twice to get a beep.

.2.

3.3 The new opuon remap (default on) causes the editor to attempt to map the result of a
macro mapping again unul the mapping fails. This makes it possible, say, (0 map q to &
and #1 1o something eise and get ql mapped to something eise. Turning it o makes it
possible to map "L 10 | and map "R to "L without having "R map to L

33 The new (string) valued option tags allows you to specify a list of tag files, similar to the
“path’* variable of csh. The files are separated by spacss (which are entered precaded by
2 backslash) and are searched left o right. The default value is ‘‘tags /usr/lib/tags’”.
which has the same effect as before. [is recommended that *12gs™ always be the first
enuy. On Emnie CoVax, /usr/lib/tags contains entries for the system defined library pro-
cedures from section J of the manual

Eavironment eaquiries

3.4 The editor now adopts the conveaton that a guil string in the eavironment is the same as
not being set. This applies to TERM, TERMCAP, and EXTNTT.

Y1 Tutorial Update

Deleted {eatures

3.3 The “q" command {rom visual no longer works at all. You must use “Q’* 10 get to =x
command mode, The *'q"’ command was deleted because of user compiaints about hitting
it by ac=ident 0o often.

3.5 The provisions for changing \he window size with 2 numeric prefix argument to csrwin
visual commands have besn deleted. The correct way to change the window siza is to use
the z command, for exampie 25 <e&r> to change the window to 5 lines.

33 The opuon "mapinput” is dead. It has been replaced by 3 much more powerful mechan-
ism: **xnap!™.

Change in defauit option settings

3.3 The d=fauit window sizes have be=n changed. At 300 baud the window is now 8 lines (it
was 1/2 the screen size). At 1200 baud the window is now 16 lines (it was 2/3 the scr==n
size. wanich was usually also 16 for a cypical 24 line CRT). At 9600 baud the window is
stll the full scceen size. Any baud rate less than 1200 behaves like 300, any over 1200
like 9600. This change makes w more usabie on a large scre=n at slow spesds,

Yi commands

33 The command “ZZ° from vi is the same as “*x<c>'". This is the recommended way (o
leave the editor. Z must be typed twice to avoid himing it acsidently.

3.4 The command “Z is the same a3 ‘“stop<cr>"™. Note that if you have an arrow key that
sends “Z the stop function will take priority over the arrow funcdon. If you have your
*“susp’ characier se: t0 something besides “Z, that key will be honored as well.

3.3 It is pow possible from visual (0 string several search expressions together separated by
semnicolons the same as command mode. For example, you cn say

/foo/ /bar
[rom wvisual and it will move 0 the first *“*bar’ afier the next ‘“foo’” This also works
within one line.
3.3 "R is aow the same as “L on terminais where the right arrow key sends "L (This includes
the Televideo 912/920 and the ADM 31 terminais.)

3.4

.3

The visual page motion commands “F and "B now treat any precading counts as number
of pages 10 move, instead of changes to the window size. That is, 2°F moves [orward 2
pages.

Macros

33

34

The “‘mapinput” mechanism of version J.1 has be=a replaced by a2 more powerful
mechanism. An *“!" an follow the word *“map” in the map command. Map!'ed macros
only apply during input mode, while map'ed macros only apply during command mode.
Using “map™ or “map!" by itself produces a listing of macros in the corresponding
mode.

A word abbreviation mode is now available. You can define abbreviations with the gbore-
wafe command

:abbr foo find outer otier

which maps *“foo'" to **find outer otter™. Abbreviations can be mumed off with the unas-
breviate command. The syntax of these commands is identical to the map and unmap
cormnmands, excent that the ! forms do pot exist. Abbreviations are considesed when in
visual input mode only. and only affect whole words typed in, using the conservative
defniton. (Thus *“foobar’ will not be mapped as it would using “‘map!") Abbreviatz
and unabbreviate can be abbreviated 10 “ab’™ and ‘“unz’, respecuvely.

MED
MUNIX-Editor

Documentation-No.: D830038e

Best.-Nr.: D930058e
Author’s initials: DK

Trademarks:
MUNIX, for PCS
DEC, PDP for DEC
UNIX for Bell Laboratories

Copyright 1983 by
PCS GmbH, Ptélzer-Wald-Strasse 368, D-8000 MOnchen 80, tel (089) 87804-0

The information contained herein is the property of PCS and shall neither be reproduced in
whole or in part without PCS’s prior written approval nor be implicd to grant any license to
make, use or sell equipment manufactured herewith.

PCS reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages (including consequential)

caused by reliance on the materials presented.

MED (1) MUNIX MED(1)

NAME

med — screen editor

SYNOPSIS

med file [startline] [searchkey]
med -
med

DESCRIPTION

Page 1

Med calls the MED editor, which allows you to edit a file using the screen
of your terminal and the cursor keys, somewhat like paper, pencil and
eraser.

If you call the editor by med file, the first lines of the file will be shown on
the terminal screen. lf the file does not exist, it will be created.

Med called with no arguments continues where the previous med session
ended.

Med called with argument "-" restores only one file from the last session.

The purpose of a screen editor is to create a new file, or to look at and
change existing files. Med allows you to look through a file by moving a
"window" (the text shown at the screen) over the files contents. The win-
dow may be moved up, down, to the left or the right. The "cursor” (a
blinking underline or box) shows where med is at the moment. Initially
med is in "replace mode", i.e. the characters typed will replace those
under the cursor. The cursor may be moved around with the arrow keys
& [=] or with [return], [Rome] or [Tab].

To change text on the screen, the cursor has to be placed there and the
new characters entered. deletes the character under the cursor.
To insert characters in the middle of a word (like a 'd' in ‘midle’), press
; then new characters will be inserted, and the rest of the line will
move to the right. Pressing again, med is switched back to
“"replace mode".

“Function keys” are special keys along the top or the right of the key-
board. Each function key does one job, such as moving some lines, look-
ing for a word, or using another file. A picture of all the different func-
tion keys for your terminal should be attached to this description.

Some functions take arguments such as a number, a search string, a file
name, etc. To enter an argument, type the sequence:

number or string .
leaves an '@’ marker on the screen to remind you where the cur-
sor was. |t then goes to the bottom line on the screen to read the argu-
ment. This bottom line is also used to display error messages.

February 20, 1984

MED(1) MUNIX MED(1)

Functlion keys and their meaning

Move around:

t 4 e Move cursor
+tab Skip to next/previous tab stop
t+page Move to next/previous page
+line Move a halfpage up/down
+search Search for a word

olo Goto linen
left Move window left
right Move window right

Use another file or window:

use Use another file
window Create/delete a window
chwin Go to next window

Cut and paste:

backspace | Delete character left of cursor
close Delete line(s) into CLOSE buffer
delch Delete character

open Insert blank line(s)

ick Copy text to PICK buffer

put Get text from PICK buffer
restore Get text from CLOSE bufier
Others:

do Run a Unix command

enter Enter a parameter

exit Go back to Unix

insert Flip insert mode

quote Control character escape
refresh Refresh

save Write changes to disk

chtabs Change tabs

macro collect keystrokes

lenter|n [tee—]

February 20, 1984

Move the cursor n lines/columns in the direction of the

arrow.

Page 2

MED(1)

chia

enterj[chlab

cnwln
[enler] n [chwin]

4o~ [Ehvin]

[close]

enler

close

enter|nj|close

do

]enEer[

entler
enler

enter|tie- |close]

[enter;[do]

cemd [do]

a [exi
ad [exi(]

O[Ol

enter

|goto]

enter

n(goto]

enter

Page 3

tie- [goto]

MUNIX MED(1)

Remove the last character entered; thus typing
"ERX R” is the same as "E R R". This also

works in insert mode.

Set a tab stop at the current position.
Remove the tab stop at the current position.

Go to the next window.

Go to window n. Windows are numbered in the order they
are created.

Argument defined by the cursor js used as window
number.

Delete one line. It is saved in the CLOSE buffer.

Delete the rest of the line, replacing it with the line below.
Delete n lines and save them in the CLOSE buffer.

Delete lines or a rectangle defined by the cursor and put
it into the CLOSE buffer.

Delete the character at the current cursor position, mov-
ing the following characters to the left.

Run the previous DO command exactly as it was given.
Take the current line as a command for the shell. Results
are inserted below the current line.

cmd is a Unix command in the format [n[1]] prg [arg...] (in
shell notation). It replaces n paragraphs (or n lines if 1
appears) by the result of running filter prg on that text
with given args. The replaced paragraphs are saved in the
CLOSE buffer.

Exit med, writing back the changed files to disk (a backup
file named °bak is ¢created).

Exit, but do not save files.

Terminate with core dump.

Move window to top of file.

Move window to end of file.

Move to the nth line.

Argument defined by the cursor is used as line number.

Put the editor into insert mode. Subsequent characters
are inserted at the cursor, l.e., characters to the right of
the cursor are not replaced but moved to the right.
Pressing again will place med back to replace
mode.

February 20, 1984

[-page
[enter|n

(enter] n [pick]
[enler] tée- [pICK]|

enter nh_)u{l
enter| té«- [put]

enter|n

0

uote

1

|enter|n[restore|

February 20, 1984

MUNIX MED(1)

Move window left (about a 1/3 window width).
Make the current column the last one (if possible).
Move window n ecolumns left.

Move window down (about 1/3 page).
Make the current line the top one.
Move window down n lines.

Move window up (about 1/3 page).
Make the current line the bottom one (if possible).
Move window up n lines.

Open up one blank line.

Split the line exactly at cursor position.

Open up for n blank lines.

Insert blank lines or rectangle in area defined by cursor.

Move window down one page (page = size of window).
Move down n pages.

Move window up one page.
Move up n pages.

Put the current line into the PICK buffer.
Put n lines into the PICK buffer.
Place lines or rectangle deflned by cursor in PICK buffer.

Insert the contents of the PICK buffer (i.e. the lines or
rectangle last "picked"”) at the current position.

Insert n copies of the PICK buffer at the current position.
Argument defined by the cursor is used as number of
copies.

To put a control character into the file. [quote] echoes as
a @, and whatever key on the keyboard you press next
appears as some printable character. The two characters
now behave as two characters on the screen, but they are
really the single control character in the file. Changing
the second letter changes the control character; chang-
ing the preceding mark results in two ordinary charac-
ters.

Redraw terminal display.

Insert the contents of the CLOSE buffer (i.e. the lines or
rectangle last deleted). Insertion is done at the current
position.

Insert n copies of the CLOSE bufler at the current posi-

Page 4

MED(1)

MUNIX MED(1)

tion.

enler] t4~~ [reslore] Argument defined by the cursor is used as number of

[right)

entler|right]
enler]n
[save)

[enter] neme
toe—
enter|{+search]
(enler) word [t+searc

[enler] tie—

+search

-searc

enler|l-search|

enter, word

-search

enter| tée=—

-searc

[use
‘enferﬂ

use;

]enger name

[usei

[eriter] 4« - [se)

[enter][window]|

copies.

Move window right (about a 1/3 window width).
Make current column the first one,
Move window right n columns.

Save the file shown in the current window.

Save the file shown in the current window under filename
narne.

Argument defined by the cursor is used as filename.

Search forwards (from the cursor towards the end of the
file) for an occurrence of the search key last used.
Search key used is from cursor position up to next blank.
Search for the next occurrence of word.

Argument defined by the cursor {s used as search key.

Search backwards (from the cursor towards the beginning
of the file) for an occurrence of the search key last used.
Search key used is from cursor position up to next blank.
Search for the next occurrence of word.

Argument defined by the cursor {s used as search key.

Switch to the flle previously used.

Edit file, taking its name from cursor position up to next
blank.

Make the current window look at file name. A linenumber
and/or searchkey can be specified (as in the med com-
mand).

Argument defined by the cursor is used as filename.

Meke another window on the real screen, so that you now
have two, or three, or more windows. A “default file” is
used. It may be set to look at a file using . and all
other functions work within this little window. If the cur-
sor is on the first or last column of your window the line
separating the two windows goes horizontally on the line
where the cursor is. The separating line goes vertically if
the cursor is on the first or last line of your window. You
may have two windows looking at the same file. ‘In fact, it
is rather neat, since changes made by editing in either
window are reflected (al reasonable intervals) in the
other window.

Delete last created window and return to the previous
one.

name Create another window displaying file name.

Page 5

February 20, 1984

MED(1) MUNIX MED(1)

MACRO

Typing
keystrokes key
stores the keystrokes sequence into the key. To avoid trouble, key can
only be a printable character. From now on pressing the key is
equivalent to typing the (long) keystrokes sequence. The sequence
[macro][{macro] key
restores the original function of the key.

Miscellaneous

What do the funny characters in the margins mean?

| is normal.
means this is past the end of the file. You may still type stuff -
there just wasn't anything there before. Even if you type some-
thing on a line, the character won't go away until the line is rewrit-
ten by the editor - but the stuf] is still there.

< There is still more text to the left (may be blanks).

> There is still more text to the right (not only blanks).

When editing a file for which you don't have write permission, the
appropriate editor functions will be disabled.

What to do when disaster comes:

FILES

You are protected from loss of. files by the insurance system of the MED
editor. If you edit a file named foo, the old file foo is renamed foo.bak
(the old foo.bak is deleted). If you do not like the results of your edit, the
UNIX command:

mv foo.bak foo
restores the original file foo.

/tmp/MED* temporary workfile (PICK- and CLOSE-bufler)
8SAVE/MED* saves state of editing session
/usr/lib/med/default default file

* bak backup files

SEE ALSO

termcap(5), curses(3), keycap(5)

AUTHOR

BUGS

Dittmar Krall, Wolfratshausen, Germany.
Inspired by the RAND Editor, Steve Zucker e.a., Santa Monica, California.

Editor crashes can leave your terminal in a strange state, e.g. with dis-
abled keyboard. Your system administrator should have a command to
enable the keyboard. My panic solution is to switch terminal off/on in
order Lo continue.

February 20, 1984 Page 6

MED - Tastatur

far

Televideo - 970

Exit ~2
save to Disk ~D
-Tadb Linefeed
Refresh ~X
ChTab ~T
ChV¥in ~C
Left ~L
Right ~R
¥Window ~W
Control char -\
Macrofunction ~F
Anlang Suche Seite(n) Zeilen
Bildschirm vorwarts vorwarts vorwarts
Home +Srch +Page +Line
CHAR DELETE LINE DELETE PACE ERASE PACE RESET
Suche Seite(n) Zeilen Gehe nach
ruckwarts ruckwarts rickwarts
-Srch -Page -Line Goto
7 -
Tab
Speicher Fage Fihre aus Editiere
Zeile ein andere Datei
Pick Open Do Use
4 9
Cebe Losche Loschtext
Speicher aus Zeile Speicher
Put Close Restor
CE 1
Enter
Losche Zeichen Fuge ein
Delete Char Insert
0 00

MED - Tastatur

far
DSG101
Exit ~Z
save to Disk -D
-Tab Linefeed
Refresh ~X
ChTab -~T
ChVWin ~C
Left -~L
Right ~R
¥indow -W
Control char -\

Macrofunction ~F

Anfang Seite(n) Zeilen Suche
Bildschirm vorwirts vorwarts vorwarts
Home +Page +Line +Srch
PF1 PF2 PF3 PF4
Gehe nach Seite(n) Zeilen Suche
ruckwarts rickwarts rackwarts
Goto -Page -line -Srch
7 8 1) -
Speicher Fige Fihre aus Editiere
Zeile ein andere Datei
Pick Open Do Use
4 3 [] L]
Gebe Losche Loschtext
Speicher aus Zeile Speicher
Put Close Restor
1 2 3
Enter
L3sche Zeichen Fhge ein
Delete Char Insert
0 °

MUNIX - PASCAL
Package

Pascal 68000 User's Guide

The Pascal 68000 User's Guide is intended for use in developing new Pascal pro-
grams, and in compiling and executing existing Pascal programs on 68000 Unix
systems. This manual gives also some insight into the Pascal 68000 System
structure, its components and its behaviour.

Pascal 68000 is an extended implementation of the Pascal language.
Specifically Pascal 68000 complies almost completely with the requirements of
the ISO standard proposal for Pascal.

This manual is designed for programmers who have a working knowledge of Pas-
cal. Detailed knowledge of 68000 UNIX is helpful but not essential.

Author's initials: DK

Trademarks:
MUNIX, CADMUS for PCS
DEC. PDP for DEC
UNIX for Bell Laboratories

Copyright 1984 by
PCS GmbH, Pfalzer-Wald-Strasse 38, D-8000 Miinchen 90, tel. (0B9) 87804-0

The information contained herein is the property of PCS and shall neither be reproduced in
whole or in part without PCS's prior written approval nor be implied to grant any license to
make, use or sell equipment manufactured berewith.

PCS reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages (including consequential)
caused by reliance on the materials presented.

TABLE OF CONTENTS

1 Introduction

2 Summary Release 2

2.1 Release 2.1

2.2 Release 2.2

3 Supported Language

3.1 Deviations

3.2 Extensions

3.2.1 Separate compilation

3.2.2 Additional standard procedures
3.2.3 Strings

3.2.4 Generic pointerscccoiiiriviiviniien .

3.2.5 Attribute packed
3.2.6 Default case

ST A D T=Y o3 F-'5 o1 8 1o o N

3.2.8 Underscore as letter
3.2.9 Alternate symbols
3.2.10 Exponent

3.2.11 Hexadecimal constants

3.2.12 Character cONStANLSc.cceeveererieirerriciarnsnreneneennnns

3.2.13 Additional predefined identifiers
3.3 Implementationdefined

3.4 Error Handling

4 Pascal 68000 under UNIX

4.1 Creating and executing a program
4.2 Support of UNKX Facilities

4.3 Limitations of Pascal 68000

Pascal 68000/2.3

L

t

© O DODDODODOMODODO®IIOOOOULWL

10

10

12

12

13

14

5 Compiler options

6 Error handling
6.1 Compiletime Detection of Source Errors
6.2 Other Errors Detected at Compiletime
6.3 Runtime errors

7 Pascal System Components
7.1 Hardware and Software Environment
7.2 Passl
7.3 Pass2
7.4 Cross Reference

8 Calling Conventions

9 Data Representation and Allocation

10 Appendix

10.1 Examples

10.1.1 Sample program
10.1.2 Crossreference

10.1.3 Separate Compilation

10.2 Coercions

10.3 Standard Procedures and Functions
10.4 Syntax Equations

10.5 Reserved ldentifiers

11 References

15

16

16

16

16

18

19

19

20

20

21

23

25

25
25
25
26

28

32

36

37

Pascal 88000/2.3

1. Introduction

The Pascal 68000 User's Guide is intended for use in developing new Pascal
programs and in compiling and executing existing Pascal programs on 68000
UNIX systems. This manual also gives some insight into the Pascal 68000 Sys-
tem structure, its components and its behaviour.

This manual is designed for programmers who have a working knowledge of
Pascal. Detailed knowledge of 68000 UNKX is helpful but not essential. In any
case, it is advisable to get familiar with the UNX documentation and UNIX
standards. The user of this manual should also read the QU68000 documents
[1] and [2].

Pascal was designed by Professor N. Wirth as a language for teaching struc-
tured programming techniques and as such is used widely in educational
institutions. It has also gained popularity as a general-purpose language
because it contains a set of language features that make it suitable for many
different programming applications. Pascal has furthermore strongly
influenced the development of several languages (e.g. ADA). The Pascal
language includes a variety of control statements, data types, and predefined
procedures and functions.

w~ Throughout this document the following notation is used:
Keywords and predefined identifiers are printed in bold face.
Syntactic variables as well as UNIX components are printed in italic font.

Metasymbols {,} and [,] are used for optional parts (0..0 and 0..1), (,)
bracket syntactical units and /’separates alternatives. Three dots (...)
means a repetition of the preceeding item. Terminal symbols are
printed in roman face; to distinguish metasymbols from terminal sym-
bols apostrophes ' are used if necessary.

Pascal 68000/2.3 1

2. Summary Release 2

2.1. Release 2.1

* Pascal 68000 release 2.1 meets the suggested Pascal ISO Standard [3]
more closely than release 1.1 did:

(1)
(2)
(3)
(4)

Type real is implemented.
Conformant arrays are implemented.
dispose is available; alternately, mark and release can be used.

The attribute packed is implemented for subranges. Packing is done
on byte level but not on bit level.

«» Release 2.1 has some further extensions.

(1)
(2)
(3)

(4)
(5)

(6)

A type string is predefined and supported by a few operations.
The attribute packed can be applied to simple types.

Besides type short there is a type cardinal (unsigned) predefined and
supported.

There are new standard procedures pclose and pseek.

reset and rewrite are extended by a optional second parameter (UNIX
filename).

read allows variables of type string.

e Bits & Pieces

(1)
(2)
(3)
(4)

(5)

A new option v. check arithmetic overflow.

Naming conventions: the compiler prefixes all imported/exported
identifiers by an underscore ”_" to make the calling of C routines a
bit more comfortable.

Some minor, but useful and often used predefined procedures and
functions.

Initialisation of the compiler (passl) is partly done by reading a file
"init.h", that is supposed to reside in the directory /usr/include/pc.

Procedures at the outermost level in the main program are exported.

Pascal 68000/2.3

2.2. Release 2.2

= Within modules, variables can be declared at the outermost level. They
will exist during the whole program, but cannot be accessed from out-
side (static variables).

» The size of a procedure is no longer limited.

Pascal 68000/2.3 3

3. Supported Language

Pascal 68000 is an extended implementation of the Pascal language [4].
Specifically Pascal 68000 adheres to the Pascal language as described in the
suggested 1SO Standard. This “*draft Standard" is a cleaned up version of the
original Pascal and has been submitted to ISO for acceptance.

Pascal 68000 release 2.2 has not yet been tested against a *'Pascal Processor
Validation Suite"'.

3.1. Deviations

Pascal 68000 deviates from the standard proposal in the following ways:

(1)

(2)

(3)

(4)
(5)

(6)
(7)
(8)

(9)

Only the first 16 characters of an identifier are significant. The trun-
cation of an identifier to 16 characters alters the meaning of a con-
forming program.

Standard procedures and functions are not allowed as parameters, as
in previous standard proposals. ldentical results with minor loss in
performance can be obtained by declaring user procedures. For
example:

function userodd(i: integer) boolean;
begin
userodd := odd(i)
end;

Procedures that are to be used as parameters must be declared at
main level.

files are not allowed in structured data.

Assignment to for control variable is done after evaluation of initial
expression.

The reserved word nil may be redefined.
A goto between branches of a statement is permitted.

For textfiles, no final end-of-line is supplied unless requested expli-
citely by the user.

If the access to record variable in a with-statement involves only de-
referencing of a pointer variable, this is not done before the state-
ment is executed but for every access to the record.

(10) A null string is accepted by the compiler.

Pascal 68000/2.3

3.2. Extensions

3.2.1. Separate compilation

Pascal 68000 is able to compile so called modules, a collection of
declarations, procedures and functions. The result of the compilation
(an a.out object module) can be handled by the usual UNX components,
i.e. they can be stored in libraries, bound(loaded) with other a.out
modules, etc.

The separate compilation feature is further supported by enabling
import and export of variables, procedures and functions. Modules
implemented in Pascal, C or assembler can be linked to Pascal 68000
modules. Procedures and functions are imported by using a directive
in the heading: extern for Pascal- and assembler- and externc for C-
procedures; they are exported implicitely by being defined on the
outermost level within a compilation unit. The user is responsible for
parameter and result compatibility.

Variables are imported or exported by using the newly introduced key-
words import or export instead of var. The predefined variables input
and output are (per default) exported from a mainprogram, if they are
listed in the program heading. If used in a module, they have to be
imported and must be mentioned in read/write statements. It is not
possible to import or export labels!

The new syntax for a compilation unit is:

compilation_untt =
program name ‘(' files ')’ ; dblock .
/ module name ; [declaration]

block =
{declaration] compound_statement

3.2.2. Additional standard procedures
The following additional standard procedures are available:

addr
This function returns the address of the parameter, which is com-
patible with all pointer types.

convert
convert (value, typename) returns its first argument as having
type typename.

w~ No run-time widening is done; e.g.
convert (apointer, anotherpointertype) works, but
convert ('A’, integer) won't work!

mark, release
mark and release allow to use the heap as a stack. mark(p) stores

Pascal 60000/2.3 5

the current value of the heap pointer in p. release(p) restores the
heap pointer to p. Within one program either dispose or mark and
release can be used, but not both simultaneously.

w~ New & dispose are realised by malloc(3) and free(3) which imple-
ment a rather straight-forward memory management. Extensive
use of heap will therefor result in remarkable run time penalties.
To avoid this problem, use new with mark & release which use a
simple and fast memory allocation scheme (see pc(1)).

pclose, pseek
They simply supply a Pascal interface to the UNKX system calls close
and Iseek.

errorexit -
Exit a program and force a core dump.

message
Write a string to the UNIX file stderr.

itoa, atoi
Convert integer to ascii and vice versa.

date, ptime
Get date and time in ascii representation.

clock
Get cpu time used by the current process.

3.2.3. Strings

String variables are unique to Pascal 68000. Essentially, they are of
type packed arrdy of char with a dynamic ‘length’ attribute. The actual
length of a string is determined by a final zero-byte. string variables
are not compatible with variables of type packed array [...] of char. No
range checking is done for string operations.

The default maximum length of a string variable is 80 characters. This
value can be overridden in the declaration by appending the desired
length enclosed by []

var s : string; { 81 bytes will be allocated |}
var sl: string [17]; { 18 bytes will be allocated }

A string variable has a maximum length of 255 characters.

Assignment to a string variable can be performed using the assignment
statement, the read standard procedure or some other routine (e.g. a C
standard function). strings can be compared, no matter what the
current lengths are. Furthermore, it is possible to access the com-
ponents of a string variable; the first one has index 0.

When a string variable is used as parameter to read or readln, all char-
acters up to, but not including, the end-of-line character in the input
file will be assigned to it.

Pascal 68000/2.3

When a string is written without specifying the field width, the actual
number of characters written is equal to the dynamic string length. If
the field width is longer than the dynamic length, leading blanks are
inserted. If the field width is smaller, the string is truncated on the
right.

Constant strings (‘hugo’) are compatible with type packed array [1..n]
of char (where n is equal to the string length) and with type string.
They are also terminated by a zero byte that is not included in the
length computation and are limited to a length of 255 characters.

w~ Remember that constant ‘a’ is a character and not a string.
Strings of length one must be supplied by other means (eg. a C
routine).

3.2.4. Generic pointers

Generic pointers provide a tool for generalized pointer handling. Vari-
ables of type address can be used in the same manner as any other
pointer variable with the following exceptions:

generic pointers cannot be deferenced since there is no type asso-
ciated with them.

generic pointers cannot be used as an argument to new.

any pointer can be assigned to a generic pointer. Use convert for
assigning a generic pointer to a typed pointer.

3.2.5. Attribute packed

As an extension, the attribute packed can be applied also to simple
types:

type byte = packed 0 .. 255;
{ variables of type byte will be allocated one byte |

Packed subranges that fit in the ranges -27 27-1 or 0 28-1 are

represented in one byte; those fitting in the ranges -2!® 215-1 or 0
216.1 are implemented in one word (two bytes).

This feature is supported by one-byte, two-byte and four-byte signed
and unsigned arithmetic. But the user should keep in mind, that in
most cases the packed data have to be extended to a full integer entity.
See appendix for details.

Types short and cardinal are defined as
type

short = packed -32768 .. 32767,
cardinal = packed 0 65535;

Pascal 68000/2.3 7

3.2.8. Default case

In a case statement a default case can be defined. Either otherwise or
else: will be accepted.

3.2.7. Declaration

The order of declaration for labels, constants, types, variables, func-
tions and procedures has been relaxed. Any order and any number of
times declaration sections may be used. Furthermore, import and
export variable declaration are implemented to support the separate
compilation feature.

An identifier must be declared before it is used. Two exceptions exist to
this rule:

(1) Pointer types may be forward referenced as long as the declara-
tion occurs within the same type-definition-part

(2) Functions and procedures may be predeclared with a forward
declaration.

The new syntax for a block is:

block = {declaration] compound_statement
declaration =

import (names : type) ;
/ export (names :type), ...;
/ var (names : type) ;
/ label labdel , N
/ const (name ‘='constant) ;

/ type (name '='type) ;.. ;
7 function_declaration ;
/ procedure_declaration ; -

3.2.8. Underscore as letter

The character '_ is significant and can be used in forming identifiers.

3.2.9. Alternate symbols

There are two representations for comment symbols ('(** '*)' and '{’
‘{’) and for bracket symbols ('(.", *.)’ and [, ']").

3.2.10. Exponent

A lower case e may be used to indicate real numbers.

3.2.11. Hexadecimal constants

Hexadecimal integers are indicated by a preceding “#'. The syntax for
a hexadecimal integer is:

Pascal 88000/2.3

unsigned_number = digit {digit] / # hezadigit {hezadigit]
digit =0/71/2/3/4/5/76/7/8/9
hezadigit = digit /A/B/C/D/E/F/a/b/c/d/e/t

3.2.12. Character constants

Certain non-printable characters may be represented according to the
following table of escape sequences:

\\
\b
\f
\n
\r
\t

backslash
backspace

form feed

newline

carriage return
horizontal tabulator

\ddd

The escape sequence \ ddd consists of a backslash followed by 1,2, or 3
octal digits which are taken to specify the value of the desired charac-
ter. If the character following the backslash is not one of those
specified, the backslash is ignored.

3.2.13. Additional predefined identifiers

See also /usr/include/pc/init.h

Pascal 68000/2.3

const
minint = -maxint - 1;
maxshort = 32767;
maxcard = 65535;
maxchar ='\377";
minshort = -32768;
mincard = 0;
minchar = '\000’;
type

alfa = packed array[1..16] of char;
short = packed minshort .. maxshort;
cardinal = packed mincard .. maxcard;
faddress is predefined too{

var
argc : integer;
argv : ~array[1..100] of ~ string;
environ :~ array[1..100] of ~ string;

function pclose (var {: file_of_any_type): integer; externc;

function pseek (var f: file_of_any_type; oflset: integer;
whence: short): integer; externc;

procedure message (s: string); externc;

procedure itoa (i: integer; var s: string); externc;

function atoi (s: string): integer; externc;

procedure date (var datevar: string); extern;
procedure ptime (var timevar: string); extern;
function clock : integer; extern;

3.3. Implementationdefined -

(1)
(2)
(3)

(4)

(5)

maxint is 2 147 483 647.
set bounds are 0 and 255.

A variable is selected before the expression is evaluated in an assign-
ment statement.

Default field width specification:
12 for integers, 12 for reals and 5 for booleans.

reset on the standard input file resp. rewrite on the standard output
file is permissible.

3.4. Error Handling

(1)
(2)
(3)
(4)
(5)

(6)

(7)
(8)

(9)

Uninitialized or undefined variables are not detected.

A missing reset or rewrite statement is not detected (see 4.3).

No runtime checks are performed on the tag field of variant records.
No boupds checking is performed on overlapping set operands.

The use of a function without an assignment to the function value
variable is permitted.

No checks are inserted to check pointers after they have been
assigned a value using the variant form of new.

No bound checks are inserted for the succ, pred or chr functions.

The evaluation of expressions involving big constants can cause com-
piler crash.

The for control variable is not invalid after the execution of the for
statement.

(10) Two nested for statements with the same control variable are permit-

10

ted, but do not run into an infinite loop.

Pascal 68000/2.3

(11) Type declarations of the kind

type t = typel,;

procedure p;

type
pt=~¢;
t = type2;

are not correctly analysed.

Pascal 88000/2.3

11

4. Pascal 68000 under UNIX

4.1. Creating and executing a program

The usual way to create and execute a program is realized by entering the
following commands to the 68000 UNIX operating system. With each com-
mand, you include information that further defines what you want the sys-
tem to do. Of prime importance is the file specification, which indicates
the file to be processed. You can also specify qualifiers that modify the
processing performed by the system (8 is the system prompting symbol).

A program is entered or corrected by any editor of the user’s taste. The
file name of Pascal source programs must have the suffix '.p'.

3 edit <name>.p cr

The pc [5] command compiles and links the Pascal program. The resulting
object module is left in <name>.

$ pc -0 <name> <name>.p CR

The program is loaded and run by:

g name cR

The only program parameters supported by the Pascal language are files.
There are three ways to associate an (external) UNIX file specification with
an (internal) Pascal file specification. The standard Pascal files input and
output are always associated with the logical UNIX flles stdin and stdout.
Their comfortable and flexible use is described in [6]. All other Pascal
files can be associated with any UNIX file either by assignment within a
commandline:

$ name pascalfile_1=UNIX_file_specification \

pascalfile_2=UNIX_file_specification ! \
cR

or - if an assignment is missing - interactively:

$ name pascalfile 2=UNIX_file_specification cr
pascalfile_1 ? UNIX_file_specification cr

! As these assignments are considered as one argument each, there must be no blanks before
or after the '=" sign.

12

Pascal 88000/2.3

Example:

$ ed example.p ¢r

$ pc -o example example.p ¢rR

$ example eingabe=/dev/tty cr
ausgabe ? example.aus cr

It is advisable to define a shell procedure for a more convenient file
assignment especially if some of the files are “fixed" or work files.

As an extension of Pascal 68000, the external filename can be stated in
the corresponding reset or rewrite statement. In this case, a file assign-
ment at run time will be meaningless.

For efliciency, output is in general buflered; the buffer is flushed only
when it's full, or - in case of text files - if a writeln is stated. To facilitate
interactive 170, output to a file of char will be unbuflered, if the file is con-
nected to a terminal (/dev/tty). Input from a terminal is line-oriented
unless the terminal is in raw mode (see stty(1), ioctl(2)).

4.2. Support of UNKX Facilities

The user has full access to all UNIX system calls as well as files. The system
calls can be accessed just like C procedures (see below). The objects are to
be found in the standard library. The predefined procedure halt provides
a means to return an “exit code’ to the system. Furthermore the “system
variables’' argc, argv and environ are provided for access to the command
arguments and the process environment. argc indicates the number of
arguments whereas argv references an array of argument strings. The
actual length "i" of environ is determined by environ~[i] = nil. See 3.2.13
for a declaration of these variables.

Remember that the file specifications are command arguments too, i.e.
argv~[1]~[0] is the first character of the program name. If you access
argv~ or environ-, it is essential to switch off the pointertest.

Example:

The following statement will print out the environment:
{8t- |
begin
i=1,;
while environ~ [i] <> nil do
begin
writeln(output, environ~[i}~);
i:=i+1
end
end;

The C preprocessor cpp [7] may be used without limitations.

Pascal 88000/2.3 13

As stated earlier C and assembler modules can be loaded with Pascal.
When connecting Pascal modules with C modules you should take care of
parameter compatibility (see 9.). Moreover, you must be sure that the C
modules do not use the sbrk/brk system call which interferes with the
Pascal heap.

4.3. Limitations of Pascal 68000

14

Because of the separate compilation feature, a missing reset or
rewrite cannot be detected by the compiler and will most probably
cause the program to crash with an address error at the first attempt
to access the corresponding file-variable.

In general, it is possible to reset input or rewrite output with the
eflect, that stdin or stdout is repositioned to the beginning of the
associated file. If the file is connected to a pipe this will have pno

effect at all.

Because of a very straight-forward register allocation mechanism,

there may be very deeply nested expressions that do not compile.

Pascal 68000/2.3

5. Compiler options

Compiler options are given by using "{8...{". Each option consists of a lower
or upper case letter followed by “+" or ''-". Options are separated by com-
mas. There must be no blanks between *{" and 8" or between a comma and
the succeeding option. The following options are supported:

A/a +/- a+ produces an assembler listing

B/b +/- b+ accept C-string notation (i.e. with backslash)

D/d +/- d+ produces code for pointer, subrange and arithmetic overflow
check and the tracing of line numbers

E/e +/- e- will suppress extension warnings

P/p +/- p+ code for profiling is generated (see prof [8])

T/t +/- t+ produces code for pointer check

V/v +/- v+ produces code for arithmetic overflow check

W/w +/- w- will suppress warning messages

Defaults: {8a-,b+,d+,e-, w+]
d+ implies v+ and t+.
d - impliesv-and t -.

Options appearing before the program or module symbol can be overwritten
by options given in the pc command.

Pascal 88000/2.3 15

6. Error handling

Errors are detected and reported by several components of the Pascal 68000
system:

- preprocessor cpp, see pcC
- compiler

- loader ld, see pc

- run-time system

6.1. Compiletime Detection of Source Errors

passl detects syntactical and some semantical errors and (optionally)
deviations from the standard language definition. Errors that are not
detected are listed in 3.4. passl does not produce error messages or a
listing but compiles a condensed version of the diagnostics that will be
printed in a readable form by an extra pass perror. If only warnings are
issued compilation proceeds otherwise it will be terminated.

The option "-L" (see pc) produces a full listing with error messages. The
default is a listing containing the offending line, its predecessor and the
readable (and hopefully understandable) error messages. Sometimes an
error causes several messages to be printed in which case all but the first
one can be ignored.

pass2 detects no source errors, but might report a violation of a compiler
limitation (see 4.3) or a compiler error (though, of course, it should not).
Please let us know if you get an compiler error or an unknown error mes-
sage.

6.2. Other Errors Detected at Compiletime

During compilation, UNKX resources can be exhausted, e.g. file system, pro-
cess table, or memory overflow, etc. Furthermore UNIX can deny access to
files. Extensive treatment of these errors is beyond the scope of this
manual. They are described in the UNIX documentation.

6.3. Runtime errors

Errors occurring at run time are always fatal, i.e. the program will report
an error message, dump the core file and then abort. With the help of the
UNIX debugger adb [9] the user can generate a (partially) symbolic post
mortem dump which indicates the location of the fatal error, the number
of the corresponding source line (if the debug option was on), the dynamic
calling sequence, etc.

The error message should comprise a suflicient diagnosis of the error
detected. As far as file access is concerned, the errors are mostly

16 Pascal 88000/2.3

reported by the UNIX system and must be investigated using the documen-
tation. Other messages indicate programming errors such as divide by
zero, integer overflow , etc.

Pascal 68000/2.3 17

7.

Pascal System Components

Figure 7.1 gives an overview of the Pascal system components. The prepro-
cessor is the same as the C-compiler’'s, and does macro preprocessing and
including of source files.

The first pass passl does the lexical, the syntactical and the semantical
analysis. It constructs a parse tree for each block and outputs it.

There is an extra pass perror to produce a source listing if requsted, and to
print error messages based on the diagnostics compiled by pass 1.

The second pass pass2 does the code generation. The output of pass! is read
in and an identical parse tree as in pass! is built up. The generated code is
output in several files.

init.h <s|ource>.p

$

l cpp]
l
i

{ pass1 |

| perror] [pa_lsse |

4 d
stdout <source>.s
| c2 |
|
$
<source>.o

¢

I Id]
i
4
a.out

Figure 7.1: Pascal System Components

18

Pascal 68000/2.3

The third pass c2is the same as the C-Cormrpiler's and collects the code distri-
buted on various files. It produces one file containing the object code in a.out
format [10].

7.1. Hardware and Software Environment

Pascal 68000 runs on two quite similar 68000 UNKX systems, PERKEO [11]
and QU6B000 [12].

Features of these systems are:
actually supported microprocessor Motorola 68000
large memory (2 0.5 MB)
hard disk (= 10MB)
memory management unit

UNIX [13] [14] is a time-sharing system and provides all such features
needed by Pascal 68000. Of great importance are the file system, the
command interpreter (shell), and the object module management (ar, id
[15]). But of equal, if not greater, weight are all those UNIX components
which make life easier: ed, med, make, etc.

7.2. Passl

The first pass does lexical analysis, parsing. declaration handling, tree
building, and some optimization. This pass is largely machine independent.

The lexical analysis is a conceptually simple procedure that reads the
input and returns the tokens of the Pascal language as it encounters
them: identifiers, constants, operators and keywords. Comments must be
skipped. Decimal and hexadecimal constants, characters and strings must
be properly dealed with.

The first pass parses, as the original Pascal-P4 compiler, the tokens in a
top down, left right, recursive descendent fashion. During the processing
of a declaration part a symbol table is built up, addresses will be allocated
to variables and procedures, and the semantic of the declaration is
checked. Besides this, information is prepared for the debugger adb.

During the processing of the statement part a parse tree is built. The
proper use of operators and operands is checked. Some complex syntacti-
cal structures are broken down into simpler ones.

Pascal 68000/2.3 19

7.3. Pass2

The second pass generates 68000 machine code and related information
from the source program represented by the parse tree; these will be
combined to a a.out object. In addition it completes the debugger informa-
tion prepared by passl.

Code generation is done in two steps. The first one traverses the parse
tree generating pseudo instructions for a hypothetical stack machine.
This step is rather simple, machine independent and straightforward. The
second step deals with machine specific tasks such as address computa-
tion, register allocation and 68000 code generation, thus interpreting the
pseudo instructions in a real existing environment. Step one and two take
place in parallel for efliciency reasons; the generation of a pseudo
instruction is replaced by calling a procedure implementing this instruc-
tion.

pass2 yields different kinds of output. Three files contain binary informa-
tion ready to be combined to an a.out object by a third pass. A fourth file
may contain the generated machine code in an assembler-like representa-
tion. On another file debugger information is prepared. And there might
be diagnostic messages indicating a violation of a limitation or a compiler
error.

7.4. Cross Reference

20

The cross reference program zref produces the usual cross-reference list
with identifiers and line numbers.

zref is implemented as an independent component. There are several rea-
sons for doing so:

The compiler is not bothered with cross referencing.

The multiprogramming (parallel processing) of the system can be
exploited.

Many programming errors can be found with the help of a cross-
reference listing; i.e. it is not necessary to start the big, resource
consuming, compiler.

Pascal 88000/2.3

8. Calling Conventions

Procedure calls are realised by a commonly used mechanism defining stack-
frames, which are allocated or deallocated as a procedure is activated or
deactivated, respectively. In our implementation four registers and a vector
of pseudo registers are used: a7 is used as stackpointer, a6 and a5 reference
the current and the global stackframe base, respectively. dO returns a func-
tion result and the system variable _pbvec[0..maxdepth] stores the base
addresses of all currently accessible stackirames. The layout of a stack-
frame is shown below.

stackframe

param n

param 1
retaddr
old a8

aB - old_pbvec]i] (i = current nesting depth)
local vars

a7 -

A parameter is passed by-reference or by-value depending on whether it was
declared as var parameter or not. For long parameters (> 4 bytes; strings)
the parameter address is transferred and - in case of value parameters - the
parameter itself copied within the procedure body. The representation of
parameters in memory is the same as for other variables with the exception
that they are always word aligned, i.e. a parameter occupying an odd number
of bytes in memory will always be followed by a byte of undefined storage.

Example:

stackframe for
procedure p(var jiinteger; c,d:char; s:string);
after procedure entry

[s] 4] 12 16 17 18 19 20

| _pbvec | old a8 | retaddr | addr(j) [c |2l a || addr(s) |
by

a8

®* undefined

The C interface provided as an extension differs from the Pascal parameter
passing conventions only in the treatment of one-byte values; following the C
semantics, data occupying one byte of storage are extended to (unsigned)
word values and then treated like a short

Pascal 68000/2.3 21

22

Example:

stackframe for
procedure p(var j:integer; c,d:char; i:integer); externc;
after procedure entry

0 4 8 12 14 18

] old ao_l retaddr] addr(j) le d ' i
*

ad

where c & d are pushed as zero extended short items
(at our installation Pascal short corresponds with C int).

Pascal 68000/2.3

9. Data Representation and Allocation

In a.out modules program data fall into three segments: the text segment,
the data segment and the bss segment. Pascal 68000 uses only two of them:
the text segment contains program code and constants whereas static data
(variables declared at the outmost level in a module) and exported variables
are stored in the bss segment. Automatic and dynamic data are allocated at
runtime in stack and ‘free memory’ managed by the dbrk/sbrk system calls,
respectively.

To cope with alignment, one general rule can be stated: any data allocated
more than one byte is aligned on a word (2 bytes) boundary.

Variables of scalar and pointer types are allocated storage space as surnmar-
ized in table 9.1. Variables of subrange types are allocated as variables of the
associated scalar types. For example, a type 1..10 is considered a subrange of
integer and therefor allocated a longword. Variables of packed subrange
types are implemented in one byte (-128 .. 127; 0 255), two bytes (-32768 ..
32767; 0 .. 65535) or four bytes (all others). The structured types are stored
as described below.

Type Storage Allocation

character 8 bits (1 byte) Byte

boolean 8 bits (1 byte) Byte

short 16 bits (1 word) Word

integer 32 bits (1 longword) | Word

real 32 bits (1 longword) | Word

enumerated | 8 bits (1 byte) if | Byte if type
type contains 256 | contains 256
elements or less; | elements or less;
16 bits (1 word) | Word otherwise
otherwise

pointer 32 bits (1 longword) | Word

Table 9.1: Storage of Scalar and Pointer Types

A set is allocated storage depending on the ordinal value of its largest ele-
ment: the number of bytes it occupies is equal to the ordinal value rounded
up to the nearest byte boundary. Since the size of a set is limited to 256

Pascal 68000/2.3 23

elements, with ordinal values from 0 to 255, a set occupies at most 32 bytes.

An array is stored and aligned according to the type of its components. For
example, each element of a character array is stored in a byte and aligned
on a byte boundary; if the array has more than one component then the
total array is alighed a on word boundary. Similarly, each element of an
array of set of 3..21 occupies three bytes and is aligned on a word boundary.

strings and constant strings are internally terminated by a binary 0; i.e. they
adhere to the C convention.

Records are stored and aligned field by fleld according to the type of the
field. For example, a variable of type

record
X: integer;
y: boolean;
z:1..10
end,

is aligned on a word boundary because it occupies more than one byte of
storage. The figure beneath shows how this variable is stored:

T x Iyf*] =z |

®* undefined

The attribute packed does not affect the allocation of data structures; it is
only interpreted with subranges as stated earlier. To yield a more compact
representation than in the example above, you had to define the following
structure:

record
x: integer;
y: boolean;
z: packed 1..10
end;

which would result in the following storage allocation:

T = Iyl

24 Pascal 88000/2.3

10. Appendix
10.1. Examples
10.1.1. Sample program

1 program ackermann(input,output);
2 varx, y:integer;

3 function ack(i,j: integer): integer;
4 begin

5 if i =0then ack:=j+1
6 else if j =0 then ack:=ack(i-1,1)

7 else ack:=ack(i-1,ack(i,j-1))
8

9

end;
10 begin
11 repeat
12 writeln(output,’'Enter two integers. Terminate with zero.’);

13 read(input,x,y);

14 writeln(output,’acker(’,x:0,’,',y:0,') = ',ack(x,y):0)
15 until x=0

16 end.

10.1.2. Crossreference

ack 3p] 6 6 7T 7 7 14
ackermann 1

i 3f) 6 7 7

input 1 13

integer 2 3 3

j 3f 5 6 7

output 1 12 14

read 13

x 2v. 13 14 14 15

y 2v 13 14 14

Pascal 68000/2.3 25

10.1.3. Separate Compilation

1 program ackermann(input,output);
var x, y: integer;

import counter: integer;
function ack(i,j: integer): integer; extern;

begin
repeat

writeln(output,’Enter two integers. Terminate with zero.');
read(input,x,y);
counter:=0;

13 writeln(output,’acker(’,x:0,",",y:0,’) = *,ack(x,y):0);

14 writeln{output,'number of calls=',counter:5);

15 until x=0

16 end.

——
el N RN NS FUNAR

1 module ack;
export counter: integer;

function ack(i,j: integer): integer; -
begin
counter:=counter+1;
if i=0then ack:=j+1
else if j=0then ack:=ack(i-1,1)
else ack:=ack(i-1,ack(i,j-1))
end;

Ll ol o
P O@®IOU A WM

Pascal 68000/2.3

10.2. Coercions

The following gives an overview about the coercions implemented by Pas-
cal 68000 to provide for consistent use of one-, two- and four-byte signed
and unsigned operands. The rules are valid for all arithmetic and rela-
tional operations.

Index expressions are always extended to a full integer value. Expressions
representing setelements are considered unsigned one-byte.

il f i i1 i i i i
i2 { i i i2 i i i

u f i i i u u u
ul f i i i u ul u
ul f i i i u u u2
Notatjon

f: floating point

i: (signed) integer

u: unsigned (0 .. 231-1)

i1: one-byte integer

il: two-byte integer

ul: one-byte unsigned

u2l: two-byte unsigned

Pascal 68000/2.3 27

28

10.3. Standard Procedures and Functions

For a detailed description see [3], [4].

Procedure
abs(x)
addr(x)
arctan(x)
atoi(s)
chr(x)

clock

convert(a,t)

cos(x)

date(x)

eof(f)

eoln(f)

errorexit

Parameter

integer or real

any type

integer or real

string

integer

any type

integer or real

string

file

file

Result

same as X

address

real

integer

char

integer

real

boolean

boolean

Function
Computes the absolute value
of x.

Type address is compatible
with all pointer types.

Computes the arcus tangens
of x.

Convert
integer.

ascii string to

Returns the character whose
ordinal number is x.

Returns the cpu time (in
milliseconds) used by the
current process.

Returns value of a with type
t.

Computes the cosinus of x.
Return date in ascii

representation:
dd-mon-yyyy

End of file encountered. true
only when the file position is

after the last element in the
file.

End of line encountered.
true only when the file
position is after the last
character in a line. The value
of f~ is a space.

Exit program and force a
core dump.

Pascal 68000/2.3

exp(x)

get(f)

halt(x)

halt

itoa(i,s)

In(x)

mark(x)

message(x)

new(p)

new(p,tl,.tn)

odd(x)

ord(x)

pack(a,i,z)

page(f)

pclose(f)

Pascal 88000/2.3

integer or real real

file

integer

integer.string

integer or real real

any pointer

string

any pointer

integer boolean

any scalar type
except real

integer

file

file

Computes the base of the
natural logarithmus raised to
the power of x.

Moves the current file
position to the next element.

Terminates the execution of
the program and returns the
value of x. See also the
systemn call exit(2).

same as halt(0).
Convert integer to ascii; the

result is delivered in variable
s.

Computes the natural

logarithmus of x.

Stores the current value of
the heap pointer into x.

Write string to stderr.

Allocates heap memory and
returns the address in p.

Allocates heap memory to
pointer. p~ must be a record
with variants.

Returns true if the integer x
is odd; false otherwise.

Returns the ordinal (integer)
value corresponding to the
value of x.

z:=ali..n];

where i..n: index range of z.
skip to the top of a new page
before printing the next line
of the textfile f. The default
for f is output.

See system call close (2).

29

pred(x)

pseek(f,o,w)

ptime(x)

put(f)

read(f,x)

readln(f)

read(f,x1,..,xn)

any scalar type
except real

file,
short

integer,

string

file

file

type of x
depends on the
filetype

text

readln(f,x1,..,xn)

release(x)

reset(f[.s])

rewrite(f[,s])

round(x)

sin(x)

sizeof(x)

sqr(x)

any pointer

file,string

file,string

real

integer or real

any type

integer or real

same as x

integer

real

integer

same as x

Returns the

value of x.

predecessor

See system call Iseek (2).

Return time in
representation:
hh-mm-ss.0

ascii

Appends f~ to the file f. The
default for f is output.

Reads the value of x from the
file . The default for f is
input.

Skips to the beginning of the
next line. The default for f is
input.

same as
read(f,x1); read(f,x2,..xn)

same as
read(f,x1,..,xn); readIn(f)

Loads the heap pointer with
the value of x.

Resets file for reading. The
optional second parameter
designates a UNIX pathname.

Resets file for writing. The
optional second parameter
designates a UNIX pathname.

trunc(x + 0.5) if x>=0
trunc(x - 0.5) ifx< O

Compute sinus of x.
Returns size used to
represent variables of same

type as x.

Computes the square of x.

Pascal 868000/2.3

sqrt(x) integer or real
succ(x) any scalar type

except real
trunc(x) real

unpack(z,a,i)

depends on the

write(f x) text
type of x
filetype

writeln(f) file

write(f,x1,..,xn)

writeln(f,x1,..,xn)

Pascal 68000/2.3

real

same as x

integer

Compute square root of x.

Returns the successor value
of x.

Truncate x to a integer value.

afi..n):=z;
where i..n: index range of z.

Writes the value of x to the

file f. The default for f is
output

Starts a new line. The
default for f is output.

same as
write(f,x1); write(f,x2,..xn)

same as
write(f,x1,..,xn); writeln(f)

31

10.4. Syntax Equations

letter = a/b/csdse/t/sg/shrizj/k/l/m/n/o/p/q/r/s/triu/v/w/x/y/z
/A/B/C/D/E/FsG/H/170/7K/L/M/N/7O0/P/Q/R/S/T
/U/N/WN/XIY 12/ -

digit = 0/1/2/3/4/5/6/7/8/9

name = letter | letter / digit |
constant_name = name
type_name = name

variable_name = name

names = name , ...
label = unsigned.number
compilation_unit =

program ‘(* names ') ; block .
7/ module name ; {declaration|

block = {declaration] compound_statement

declaration =
/ import (names :type) ;...
/ export (names :type);...;
/var (mnames :type);..;
/ label label, ;
/ const (name '=' constant);
/ type (name'='type);...;
/ function_declaration ;
7 procedure_declaration ;

constant =
[sign] (unsigned_number / constant_name)
/ character_string

sign =+ /-

unsigned_constant =
unsigned_number / character_string
/ constant_name / nil

unsigned_number =

digit {digit] / # hexadigit {hezadigit|
hezadigit = digit /A/B/C/D/E/F/a/b/c/d/e/f
character_string = /*characters enclase by ' ' %/

Pascal 68000/2.3

type --

type = type_name / new_type
new_type = simple_type / structured_type / ~ type_name

simple_type = ordinal_type / real

ordinal_type =
‘¢ names ‘)

7/ constant .. constant

7 ordinal_type_name

structured_type =
[packed] unpacked_structured_type
7/ structured_type_name

unpacked_structured_type =
array °[* ordinal_type, ... ']’ of type
/7 file of type
/ record [field list [;]] end
7 set of ordinal_type

fleld_list =
fized_part [; variant_part]
7/ variant_part
fized_part = (names : type) ;...
variant_part = case [tag_field_name :] tag_type of variant ;
variant = case_constant list :'(* [fleld_list [;]]°)
case_constant_list = case_constant , ...
case_constant = constant [.. constant]
expression -----------
variable = (variable_name / fleld_name)
{ ‘[expression, ‘]
7/ . field name
7/~
Jactor =
variable
7/ unsigned_constant
/ function_name ['(* actual_parameter, .."')]
/ set

7 *(expression ')
7/ not factor
actual_parameter =

ezrpression
/ pracedure_name / function_name

Pascal 68000/2.3

33

set ='['[member,]']
member = ezpression| expression]

term = factor
{(*7'/ 7/div/mod / and) factor |

simple_expression = [sign] term
{(+7-/or)term |

erpression = simple_ezpression
[(<>7=/< /> /<= /<=)simple_expression]

procedure -------------

procedure_declaration =
procedure_heading ;
(block / directive)

Junction_declaration =
SJunction_heading ;
(block / directive)

directive = forward / extern / externc
procedure_heading = procedure name [‘(' parameter ; ‘)]

Sfunction_heading = function name ['(* parameter ;...")]
:result_type '

parameter =
Junction_heading / procedure_heading
/ names : type
7/ var names : (type_name / array_type)

array_type =
array '[' index_type; ‘]' of (type_name /array_type)

index_type =
name name :ordinal_type_name

------------------- ~— statement -----s-eeee--

statement = [ladel :]
compound_statement
/ case expression of case_element ;...[;] end
7/ for name = expression
(to 7/ downto) expression
do statement
7 goto label
7/ if expression then statement
[else statement]

Pascal 68000/2.3

/ repeat statement; until expression

/ while expression do statement

/ with variable , ... do statement

/ (variable / function_name) := ezxpression

/ procedure_name ['(* actual_parameter,...")]
compound_statement =
begin statement ; ... end
case_element =
((case_constant / else) : / otherwise)
statement

Pascal 68000/2.3

10.5. Reserved ldentifiers

The following identifiers are predefined by Pascal 68000.

abs environ mincard readln
addr eof minchar real
address eoln minint release
alfa errorexit minshort rewrite
arctan exp new round
argc false nil short
argv get odd sin
atoi halt ord sqr
boolean integer pack sqrt
cardinal itoa page succ
char In pclose text
chr mark pred true
clock maxcard pseek trunc
convert maxchar ptime unpack
cos maxint put write
date maxshort read writeln
message

Furthermore, there are identifiers of data and subroutines used by the
Pascal run time system that are referenced at linking time. Among them
are system calls (e.g. open, close) and some C standard subroutines; all
others are listed below. Warning: the user might use this identifiers to
define own procedures or data and the linker ld will reference the users'
entity and report no error.

-copen —pconf -pperr —pwrf
_div10 -pemptyset —prdi ~pwri
—entry —pemptystr —prdr —pwrr
—error -phigh -prds —pwrs
Aferror ~pierr -pserr —syserr
flushbufler -pjerr -pstaticstring atan
—pblank -plim —puerr closefiles
—pbvec -plow -pwrb final
—pcase -popen ~pwrc fsqr
-pcerr -popenfileindx _pwrcl In
-pclose -popenfiles main

Pascal 668000/2.3

11. References

(1]

(2]

(3]

(4]

(5]
(6]
[7]

(8]
(9]

Uhlenberg, M.: Unterschiede von Muniz zu UNIX V7
Siemens AG, ZTI INF 212

Uhlenberg, M.: Munix - Erste Schritte auf dem QU68000
Siemens AG, ZTI INF 212

Addyman, A. M.: BSI /IS0 Working Draft of Standard Pascal
BSI DPS 7 13/ 4 Working Group, Pascal News §14, January 1979

Jensen K.; Wirth N.: Pascal User Manual and Report
Second Corrected Reprint of the Second Edition 1978, Springer Verlag

UNIX Programmer’s Hanual; pc(1)
UNIX Programmer's Manual; Yolume 2; 2,3,6,...
Kernighan B.; Ritchie D.: The C Programming Language

Prentice-Hall Software Series; Prentice Hall, Inc.; New Jersey

UNIX Programmer’s Manual; prof (1)
UNIX Programmer's Manual; adb (1) and

UNIX Programmer’s Manual; Yolume 2; 18

[10) UNIx Programmer’s Manual,; a.out (5)
[11] PERKEO - a Hardware / Software System for Personal, Scientific Comput-

ing

Siemens AG, ZT ZFE FL AIF

[12) Q68K - Ein @ Bus-Prozessor hoher Leistung auf 68000-Basis

Spezification Version 1; PCS interner Bericht; 1982

[13] UNIX Time-Sharing System

The Bell Sytemn Technical Journal, July-August 1978, Vol. 57, No.6, Part 2

Pascal 68000/2.3 37

{14) uUNIx Time-Sharing System

UNIX Programmer’'s Manual, Seventh Edition, Volume 1 & 2A, January
1979 Bell Telephone Laboratories, Inc.

[15) uNIx Programmer's Manual; ar(1), 1d(1)

38 Pascal 68000/2.3

Berkeley Extension Summary

Trademarks:
MUNIX, CADMUS for PCS
DEC, PDP tor DEC
UNIX for Bell Laboratories

Copyright 1984 by
PCS GmbH, Pfalzer-Weld-Strasse 38, D-8000 Minchen 80, tel. (089) 87804-0

The information contained herein is the property of PCS and shall neither be reproduced in
whole or in part without PCS's prior written approval nor be implied to grant any license to
make, use or sell equipment manufactured herewith.

PCS reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages (including consequential)

caused by reliance on the materials presented.

The MUNIX extension package consists of utilities of the fourth Berke-
ley Distribution. This manual contains the command descriptions and
supplementary documents.

1. MUNIX Extension Package - Summary
Features of the extension package.

2. VWriting Papers with nroff using -me

A popular macro package for nrofl.

3. -me Reference Manual

The final word on -me.

4. Writing tools - the Style and Diction Programs

Description of programs which help you understand and improve
your writing style.

5. The Berkeley Font Catalog

Samples of fonts currently available for the raster plotters.

6. Screen Updating and Cursor Movement Optimization

Description of a package of C library functions which allow screen
updating (with user input) and cursor motion optimization.

7. Command Descriptions in MUNIX Ia ("Berkeley")

Command descriptions in the style of the MUNIX Programmers’
Manual Volume 1.

MUNIX Extension Package V1.1 - Summary

PCS
Prdlzer Wald-Str. 36
D-8000 Minchen S0

The MUNIX Extension Package includes a set of useful utilities from the
fourth Berkeley Distribution. Some of them are extensions of UNXt V7 com-
mands, i.e. cat and man, others are complete new. The most important facil-
ity of this package is the screen oriented editor V1.

1. Basic Software

1.1. User Access Control

CHFN Change full name of user. The gcos fi=ld of the passwd-file is used
to give additional information about the user like phone number,
office...

1.2. Terminal Handling

TSET Set terminal modes.

RESET Reset the terminal bits to a sensible state. Useful after a. program
dies leaving a terminal in a funny state.

CLEAR Clear terminal screen.
LOCK Reserve a terminal.

1.3. File Manipulation
CAT Concatenate and print one or more files onto standard output.
Additional options to the CAT command of the 7th edition:
Numbering of output lines.
Crushing out multiple adjacent empty lines.
Printing non-printing characters in a visible way.

SEE Print a file which contains non-printing characters in a readable
format.
MORE Interactive display function for text files.

§ Start at linenumber i or two lines before pattern.

tUNIX is a Trademark of Bell Laboratories.

-2-

Display next page or i-more lines.
Skipi lines.
§ Search i-th occurence of pattern.
Display current filename, current line number.
Define window size.
Squeeze rultiple blank lines.
#§ Start up the editor VI at current line.
§ Exit to Shell.
Help function.
VPR Raster printer/plotter spooler.
HEAD Give first few lines of a stream.
STRINGS Look for ASCII strings in a binary flle.
FOLD Fold long lines for flnite width output device.
NUM Number lines.
UL Do underlining.
COLRM Remove selected columns from a file.
EXPAND
UNEXPAND Expand tabs to spaces and vice versa.
COMPACT
UNCOMPACTCompress and uncompress flles using an adaptive Huffman code.
CCAT Cat the original file from a flle compressed by compact, without

uncompressing the file.

1.4. Running of Programs
YES Be repetitively aflirmative. Outputs ‘y’.

1.5. Status Inquiries
FINGER List the current users including login name, terminal name, login
time...

W Print a summary of the current activity on the system, including
what each user is doing.

USERS Print a compact list of users who are on the system.
UPTIME Show how long system has been up.

1.8. Backup and Maintenance

SHUTDOWN Close down the system at a given time. Used to notify users nicely
when the system is shutting down.

BADSECT Create files to contain bad sectors. Less general than bad block
forwarding, but better than nothing.

SCRIPT Make a typescript of everything printed on the terminal during a
session.

DMESG

-3-

Look in a system buffer for recently printed diagnostic messages
and print them on the standard output.

1.7. Accounting

SA

LAST

Publish Shell accounting report. Gives usage information on each
command executed. Additional options to the SA command of the
7th edition.
Number of times used.
§ Total system time, user time and elapsed time.
§ Optional averages and percentages.
Sorting by different criterions
disk 170 operation
cpu-time average memory usage
cpu-storage integral
number of calls
Indicate last logins of users, groups or on specified terminals.

LASTCOMM Show last commands executed in reverse order.

1.8. Communication

MSGS

BIFF
FROM
PRMAIL

LEAVE

Read systern messages. These messages are sent by mailing to the
login ‘msgs’.

Be notified if mail arrives and who it is from.

Show who is the sender of my mail

Print the mail which waits for you, or a specified user, in the "post
office’.

Remind you when you have to leave.

1.9. Basic Program Development Tools

CURSES

WHAT

ERROR

Library of screen functions which allows screen updating (with
user input) and cursor motion optimization.

Show what versions of object modules were used to construct a
file.

Analyze and disperse compiler error messages.

Knows about error messages produced by MAKE, CC, CPP, AS,
LD, LINT, PC, F77.

Attemnpts to determine which language processor produced
each error message.

Determines source file and line number to which the error mes-
sage refers.

Determines if the error message is to be ignored, or not.
Inserts the error message into the source file as comment

M W W %

PRINTENV Print out the values of the variables in the Shell environment.

1.10. Unix Programmers’ Manual

MAN

CATMAN
APROPOS

WHATIS

WHEREIS

Give information from the on line programmers’ manual.

Gives all commands whose description contains any of a
specified set of keywords.

§# Attempts to locate manual sections related to a specified list of
files.

Formats a specified set of manual pages.
Create the preformatted versions of the on-line manuals.

Show which manual sections contain instances of any of the given
keywords in their title.

Look up a given command and give the header line from the
manual section.

Locate source, binary, and or manual for specified flles.

2. Tape Manipulation

MT

REWIND

Give commands to the tape drive.
Space forward i flles or records.
Space backward i files or records.
§ Vrite i end-of-file marks.

Rewind tape.

Swap or do not swap bytes.
Rewind the tape drive.

3. Text Processing

3.1. Document Preparation

EX

The line oriented text editor EX is a superset of the ED editor
from UNIX V7 and the root of the interactive display function VIEW
and the family of editors: EX, EDIT, VL

Find lines by number or pattern.

Add, delete, change, copy, move or join lines.

Permute or split contents of a line.

Replace one or all instances of a pattern within a line.
Combine or split flles.

Switch to the location of a ‘tag’.

Enter intraline editing.

Reverse the eflects of the last command.

Escape to Shell during editing.

Indent automatically.

Deflne abbreviations.

Attemnpt to recover the buffer in case of hangups or crashes.
Read and execute commands from a specified file.

M Sk Hh h Bk Sh th Sk Sh S R Sk Sk

EDIT

CTAGS

MKSTR

DICTION

-5-

Simulate an intelligent terminal on a dumb terminal.
A small version of EX. Avoids some of the complexities of EX to pro-
vide an environment {or new and casual users.
Find lines by number or pattern.
Add, delete, change, copy or move lines.
Replace a pattern in a line.
Add the contents of a file.
Reverse the effects of the last command.
Escape to Shell.
Attempt to recover the buffer in case of hangups or crashes.
The screen oriented editor VI is based on EX (see above). Addi-
tional attributes:
§ Numerous commands for file manipulation.
ij.e. edit file containing the tag ‘'tag’
at the first line of ‘tag’
§ Extensive cornmand set for scrolling, paging and cursor motion.
i.e. move to the end of line
move to the begin of the next word
§ Various units of text can be handled: words, sentences, sec-
tions.
j.e. duplicate sentence
delete word
§ Searching for strings by a set of different conditions.
i.e. matches any character between ‘x’ and 'y’
matches the end of a word
Definition of macros for saving time by typing commands.
§ Escape to the line oriented editor EX.

Interactive display function. Works like the VI - but with read-only
files.

Make a tags file for EX from the specified C, PASCAL and FORTRAN
sources. A tags file gives the locations of specified objects (in this
case [unctions) in a group of files.

Used to create a file of error messages by massaging C source
code.

Places all error messages from a C source file in a specified file.

§ Keys on the string 'error("™ to process the error messages to
the message flle.

#§ The copy of the C source file contains pointer into the message
flle to retrieve the error message.

Extract strings from C programs to implement shared constant

strings.

Meaintains a file into which strings of component parts of a large
program are hashed.

The strings are replaced with references to the common area.

Find wordy sentences in a document.

T h Hh T R h

EXPLAIN

-6-

Finds all sentences that contain phrases from a data base of
bad or wordy diction.

§ The user may supply his own pattern file.
Interactive thesaurus for the phrases found by diction.
Analyze surface characteristics of a documient.
Reportson

readability

sentence length and structure

word length and usage

verb type

sentence openers

Options to locate sentences with certain characteristics.

3.2. Document Formatting

VTROFF

Troff for raster printer/plotter.

VFONTINFOInspect and print out information about unix fonts.

SOELIM
FMT

ME

CHECKNR

4. Games

HANGMAN
HANG
TWINKLEL
TWINKLEZ2
WORM
WORMS

Eliminate .so’s from nroff input.
Simple text formatter.

Produces an output with lines as close to 72 characters as pos-
sible.

Spacing at the beginning of input lines and blank lines are
preserved.

Technical paper layout package for use with NROFF, TROFF and
VTROFF.

Check NROFF/TROFF files.
Knows about MS and ME macro packages.
Checks unknown commands.

Checks mismatched opening and closing delimiters in case of
macros which always come in pairs
font changes
size changes

Interpret a stream from the standard output of TROFF as it would
act on the typesetter.

Childrens’ card guessing game.
Word guessing games. Uses the dictionary supplied with SPELL.
Milky way on the screen.

Lead the worm to random points.
Several worms running around on screen.

Writing Papers with Nroff

Using — ME

Trademarks:
MUNIX, CADMUS tor PCS
DEC, PDP for DEC
UNIX for Bell Laboratories

Copyright 1984 by
PCS GmbH, Pfalzer-Wald-Strasse 38, D-B000 MGnchen 90, tel. (089) 87804-0

The information contained herein is the property of PCS and shall neither be reproduced in
whole or in part without PCS's prior written approval nor be implied to grant any license to
make, use or sell equipment manufactured herewith.

PCS reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages (including consequential)

caused by reliance on the materials presented. -

WRITING PAPERS WITH NROFF USING —ME

Eric P. Allman

Electronics Research Laboratory
University of California, Berkeley
Berkeley, California 94720

This document describes the text processing fadlities available on the UNIXT operating
system via NROFFt and the —me macro package. I is assumed that the reader already is gea-
erally familiar with the UNIX operaung system and a text editor such as ex, This is intended to
be a casual introduction, and as such not all material is covered. In particular, many variations
and additional features of the —me maco package are not explained. For a complet= discus-
sion of this and other issues, see The —me Reference Manual and The NROFFITROFF Reference
Manual

NROFF, 2 computer .program that runs on the UNIX operating system, reads an input fle
srepared by the user and outputs a formaued paper suitable for publication or framing. The
input comsists of fexz, or words to be primted, and requeszs, which give instructions to the
NROFT program telling how to format the printzd copy.

Secdon | describes the basics of text processing. Section 2 describes the basic requests.
Section J introducss displays. Annotations, such as footnotes, are handled in section 4. The
more compiex requests which are not discussed in section 2 are coversd in section 5. Finally,
section 6 discusses things you will nesd to know i you want to typeset documents. If you are a
novics, you probably won't want to resd beyond section 4 until you have trisd some of the
basic fearures out.

When you have your raw text ready, call the NROFF formarnter by typing as a request to
the UNIX shell:

proff —me —Type files
where fype descripes the type of terminal you are ourputting to. Common values are dtc for a
DTC 300s (daisy-whesl type) printer and lpr for the line printer. If the =T flag is omitted, a
“lowest common denominstor’® terminal is assumed: this is good for previewing output on

most terminals. A complete desctiption of options 10 the NROFF command can be found in
The NROFFITROFF Reference Marual

The word argument is used in this manual to mean a word or aumber which appears on
the same line as 2 request which modifies the meaning of that request. For example, the
request

3p
.spaces ooe line, but
Spé

spaces [our lines. The gumber 4 is an argumenr 10 the .sp request which says to space four
lines instead of one. Arguments are separated from the request and {rom each other by spacss.

TUNDX. NROFF, and TROFF wre Trademarts of Bell Liboratories

USING NROFF AND =ML 1

USING NROFF AND =ME

"

1. Basics of Text Processing

The primary funcdon of NROFF is to collecr words {rom input lines, 51/ output lines
with those words, jusrify the right hand margin by inserting extra spacss in the line, and out-
put the resuit. For example, the input.

Now is the time
for all good men
to come 1o the aid
of thetr party.
Four score and seven
years ago....
will be read, packed onto output lines, and justfied to preducs:

Now is the time for ail good men to come to the aid of their party. Four scors and
seves years ago....

Sometimes you may want (o start 2 aew ourput line evea though the line you are on is aot
yet full; for example, at the end of a paragraph. To do this you can cause a break, which
slarts a2 pew ourput line. Some requests cause a break automatically, as do blank input lines
and input lines beginning with a spacs.

; Not all input lines are text to be formarnted. Some of the input lines are requesss which
describe how o formar the text. Requests always have a period or an apostrophe (**°*°) as
the first character of the input line,

The text formatier also does more complex things, such 2s automatically aumbering
pages, skipping over page folds, purting footnotes in the correct place, and so (orth.

; | can offer you a [ew hints for yrepanns text for input to NROFF. First, keep the
mpul lines short. Short input lines are easier o edit, and NROFr will pack words onto
longer lines for you anyhow. In kesping with this, it is helpful to begin a new line after
every period, comma, or phrase, sincs common correctioas are to add or delets seatences or
phrases. Second, do oot put spacss at the end of lines, since this can sometimes confuse
the NROFT processor. Third, do not hyphenate words at the end of lines (except words that
should have hyphens in them, such as ‘‘mother-in-law’’); NROFF is smart eaough to
hyphenate words for you as nesded, but is not smart esough to taks hyphenas out and join a
word back togsther. Also, words such as ‘*mother-in-law’’ should not be brokea over a
line, since then you will get a2 space where aot wanted, such is “‘mother- in-law’".

Z Basic Requests

2.1. Paragraphs
Paragraphs are begun by using the .pp requr.s:. For exampie, the input:

PP

Now is the time for all good men
to come to the aid of their party.
Four score and seven years ago,.

producss 2 blank line followed by an indented frst line. The result is
Now is the time for all good mea to come to the aid of their party. Four
score and seven years ago....

Notice that the seatences of the paragraphs must nor begin with a spacs. since blank
lines and lines begining with spaces cause a break. For example, if | had typed:

USING NROFF AND =ME 3

-£P
Now is the time for all good men

to come to the aid of their party.
Four score and seven years ago,...

The output would be:

Now is the time for all good men
to come 1o the aid of their party. Four score and seven years ago....
A new line begins after the word “‘men’ because the second line began with a spacs
character,

There are many fancier types of paragraphs, which will be described later.,

2.2. Headers and Footers

Arbitrary headers and footers can be put at the top and bottom of every page. Two
requests of the form .he title and fo ndle define the titles to put at the head and the foot
of every page, respectively. The titles are called three-parr titles, thar is, there is a left-
justified part, a centered pam, and a right-justified part. To separate these thres parts the
first character of nitle (whatever it may be) is used as a delimiter. Any character may be
used, but backslash and double quote marks should be avoided The percent sign is
replaced by the current page number whenever found in the tile. For example. the
input:

Je “H”

Jo “Jane Jones"™My Book’
results in the page number centered at the top of each pags, “‘Jane Jones™ in the !ower
left corner, and ‘‘My Book' in the lower right corner.)

2.3. Double Spacing
NROFT will double spacs ourpur text automatically if you use the request .Is 2, as

is done in this section. You can revert to singie spaced mode by typing .ls 1.

2.4. Page Layout

A oumber of requests allow you to change the way the printed copy !ooks, scme-
times called the layour of the cutput page. Most of these requests adjust the placing of
“‘white space” (blank lines or spaces). In these explanations, characters in italics should
be replaced with values you wish to use; bold characters represent characters which
should acrually be typed.

The .bp request starts a new page.

The request .sp N leaves N lines of blank space. N can be ominted (meaning skip a
singie line) or can be of the form Ni (for A inches) or Nc (for N ceatimeters). For
example, the input

sp L5

My thougints on the subject

p
leaves one and a half inches of spacs. followed by the line ‘*My thoughts on the sub-
jez”, followed by a single blank line.

The .in +¥ request changss the amount of white spacs on the left of the pags (the
indent). The argumeat N can be of the.form +XN (meaning leave .V spacss more than

you are dlready leaving), — /¥ (meaning leave less than you do now), or just .V (meaning
leave exactly .V spacss). N can be of the form Vi or Ve also. For axampie. the input:

USING NROFF AND =ME 4

initial text

in §

some text

Ao i

more text

in -2

fina] text
producss ‘‘some text” indented exactly five spacss from the left margin, *‘more text”
indented fve spacss plus one inch from the left margin (fifizen spaces on a pica type-
writer), and ‘‘final text’’ indented fve spaces plus one inch minus (wo centimeters {rom
the margin. That is, the ourput is:

some taxt
more taxt
final text

The .d +¥ (temporary indant) request is used like .in +& whea the indent
should apply to one line only, after which it should revert to the previous ingear. For
exampie, the input:

dg i

M0

Ware, James R. The Best of Confucius,

Halcyon House, 1950.

An exc=llent book containing transiations of

most of Confucius’ most delighdful sayings.

A definite must for anyone interesizd in the early foundations
of Chinese philosophy.

producss:

Ware, James R. The Best of Confudius, Halcyon House, 1950. An excsllent book con-
taining transiations of most of Confucius’ most delightful sayings. A
definite must for anyone interested in the early foundations of Chinese
philosophy.

Text lines can be centered by using the .c» request. The line after the .co is ca2n-
tered (horizontally) on the page. To center more than one line, use .ce N (where Vis

the gumber of lines to canter), followed by the N lines. If you want 1o csater many
lines but don’'t want to count them, type:

.c= 1000
lines to center
c20

The .c= 0 request tells NROFF to center zero more lines, in other words, stop c=ntering.

All of these requests cause a break: that is, they always start a pew line. If you
want to szart a new line without performing any other action, use .br.

2.5. Underlining

Text c2n be underiined using the .al request. The .al request causes the gext
input line to be underiined whea output. You can underiine multiple lines by stating a
sount of inpur lines to underline, followed by those lines (as with the .ce request). For
example, the input:

al 2
Notics that these two input lines
are underlined.

will underiine those eight words in NROFF. (In TROFF they wiil be set in italics.)

USING NROFF AND =ME 5

3. Displays

Displays are sectons of text to be set off from the body of the paper. Major quotes.
tables, and figures are types of displays, as are all the examples used ia this documneat. All
dispiays except centered blocks are output single spaced.

3.1. Major Quotes

Major quotes. are quotes which are several lines long, and hencs are set in from the
rest of the text without quote marks around them. These can be generated using the
commmands .{(q.and .)q to surround the quote. For example, the input:
As Weizenbaum points out:
(q
It is said that to explain is-to explain away.
This maxim is nowhere so well fulfilled
as in the areas of computer programming,..
Jq

generates as output

As Weizenbaum points out

It is said that to explain is to explain away. This maxim is aowhere so well fulfilled as in
the areas of computer programming,...

3.2. Lists
A lisris an indented, single spaced, unfilled display. Lists should be used when the
material to be printed should not be filled and justified like aormal text, such as columns
of figures or the examples used in this paper. Lists are surrounded by the requests .(1
and JL For example, type: ’

Alternatives to avoid deadlock are:

Q

Lock in a specified order

Detect deadlock and back out one process
Lock all resourcss nesded before procseding
D]

will produce:

Alternatives 10 avoid deadlock are:
Lock in a specified order
Detect deadlock and back out one process
Lock all resources aesded before procseding

3.3. Keeps

A keep is a display of lines which are kept on a single page if possible. An example
of whers you would use 2 kesp might be 2 diagram. Kesps differ from lists in that lists
may be brokea over a page boundary whereas ke=ps will not.

Blocks are the basic kind of kesp. They begin with the request .(b and ead with
the request J)b. II there is not room on the current pag= {or everything in the biock. a
pew page is begun. This has the unpleasant effect of leaving blank space at the bottom
of the page. Whea this is not appropriate, you can use the altematve, called Aoanng

Floaiing keeps move relative to the text. Hence, they are good for things which will
be referred to by name, such as “*Se= figure 3. A floating ke=p will appear at the bot-
tom of the current page if it will 1: otherwise, it will appear at the top of the aext page.
Floating keeps begin with the line .(z and end with the line .)Jz. For an example of a

USING NROFF AND =ME 3

floating keep. see figure |. The .hl r=quest is used to draw a horizontal line so that the
figure stands out {rom the texw.

3.4. Fancier Displays

Keeps and lists are normally collected in nofill mode, so that they are good for
tables and such. If you want a dispiay in fll mode (for tex1), type .(I F.(Throughout this
section, comments applied to .(1 also apply to .(b and .(z). This kind of display will be
indented from both margins. For example, the input:

A F
And now boys and grls,
a newer, bigger, beitar toy than ever before!
Be the first on your biock to have your own computer!
Yes kids, you 100 can have one of these modern
data processing devices.
You too can produce beautifully formatted papers
without even baruing an aye!
Il
will be ourput as:
And now boys and girls, a2 newer, bigger, better toy than ever before! Be the
first on your block to have your owa computer! Yes kids, you too can have one
of these modern data procsssing devices. You too can produce beautifully for-
matted papers without even banring an eye!

Lists and.blocks are also normally indeated (floating kesps are normally left
justified). To get a left-justified list, type .0 L. To get a list centered line-for-line, type
.(1 C. For example, to get a filled, leit justified list, enter:

AILF
ext of block
N

The inpuc

Al

first line of unfilled display
more lines

I

produces the indented text:

(z

.l

Text of keep to be floated

5P

.ce

Figure 1. Example of a Floating Xe=p.
Al

J2

Figure 1. Example of a Floating K==p.

USING NROFF AND -ME 7

first line of unfilled display
more lines

Typing the character L after the .{l request producss the left justified resuit:

first line of unfilled display
more lines

Using C instzad of L produces the line-at-a-time centered output:

first line of unfilled display
more lines

Sometimes it may be that you want to center several lines as a group. rather than
centering them one line at a time. To do this use centered blocks, which are surrounded
by the requests .(c and .Je. All the lines are centered as a unit, such that the loagest
line is centered and the rest are lined up around that line. Notice that lines do not move
relative to each other using centered blocks, wheresas they do using the C argument to
keeps.

Cantered blocks are nor keeps, and may be used in conjunction with keeps. For
exampie, to center a group of lines as a unit and ke=p them on one page, use:

0L

(c

first line of unfilled display
more lines

Je

Jb

to produce:

first line of uniilled display

more lines
If the block requests (.(b and .)b) bad besn omitted the result would have be=g the
same, but with no guarantes that the lines of the centersd block would have all been on
one page. Note the use of the L argument to .(b; this causes the csatered block to

canter within the eatire line rather than within the line minus the indent Alsg, the
c=nter requasts must be nested inside the keep requests.

4. Annotations

There are 2 number of requests to save text for later printing. Foomotes are printed at
the bottom of the current page. Delgyed unxy is intended to be a variant form of footnote;
the text is printed only when explicitly called [or, such as at the ead of each chapter.
Indexes are a type of delayed text having a tag (usually the page aumber) artached to each
entry after a row of dots. Indexes are also saved unrtil called for explicitly.

4.1. Footnotes
Footnotes begin with the request .(f and end with the request .){. The curreat
foomote number is maintained automatically, and can be used by typing **, to producs

a footnote number!. The number is automatically incremented after every footnote. For
example, the ioput

ILixe this.

USING NROFT AND =ME 8

q

A man who is not upright

and at the same time is presumptuous;

one who is zot diligent and at the same time is ignorant
one who is untruthful and at the same time is incompetent;
such mea [do not count among acguaintances.**

Af

**James R. Ware,

.l
The Best of Confucius,
Halcyon House, 1950.
Page 77.
Of
Jq
generates the resuite
A man who is not upright and at the same dme is presumpruous: one who is aot¢ dili-
gent and at the same time is ignoranc ons who is uawuthful and at the same tme is in-
competent; such men | do oot count among acquaintances.!

It is imporwant that the footnote appears /nside the quote, so that you can be sure that the
foomote will appear on the same page as the quote.

4.2, Delayed Text

Delayed text is very similar 10 a footnote except that it is printed when called for
explicitly. This allows a list of refersnces to appear (for example) at the 2nd of each
chapter, a3 is the convention in some disciplines. Use *# oa delayed text instead of **
as on foomotes.

If you are using delayed text as your standard referencs mechanism, you can sull
use footnotes, except that you may want lo refereacs them with special characters”
rather than aumbers.

4.3. Indexes

An “‘index’ (actually more like a table of contents, since the entries ars not sortad
aiphabetically) resembles delayed text, in that it is saved untl called for. However, each
entry has the page number (or some other tzg) appeaded 1o the last line of the index
eatry after a row of dots.

Index entries begin with the request .(x and ead with .)x. The .)x request may
have a argument, which is the value to print as the ‘‘page number’”. [t defaults to the
current page number. If the page oumber given is an underscore (**_"*) 0o page aumber
or line of dots is printed at all. To get the line of dots without a pagd oumber, type .)x
" which specifies an explicitly aull page aumber.

The .xp request prints the index.
For example, the inpun:

Hames R. Ware, The Sexr of Consixcrus, Haicyon House, 1950, Page 77.
*Such as an astenisk

USING NROFF AND -ME

s.

Ax

Sealing wax

JX

(x

Cabbages and kiogs

I _

Ax .

Why the sea is boiling hot

Jx 2L5a

(x

Whether pigs have wings

Jx =

Ax

This is a terribly long index entry, such as might be used

for a list of illustrations, tables, or figures; [expect it o

take at least two lines.

Jx

Xp
generates:
Sealing wax 9
Cabbages and kings
Why the sea is boiling hot 2.52
Whether pigs have wings
This is a terribly long index eatry, such as might be used for a list of illustra-
tions, tables, or figures; [expect it to take at least two lines. 9

The .(x request may have a single character argument, specifying the “*name’ of
the index; the normal index is x. Thus, several “‘indicies’” may be maintained simul-
taneously (such as a list of tabies, table of contents, etc.).
Notics that the index must be printed at the end of the paper, rather than at the

beginning where it will probably appear (as a wable of contents); the pages may have to
be physically rearranged after printing.

Fancier Features

A large number of fancier requests exist, notably requests o provide other sorts cof
saragraphs, numbered sections of the form 1.2.3 (such as used in this document), and mul-
ticolumn output.

5.1. More Paragraphs

Paragraphs generally start with.a blank line and with the first line indeated. It is
possible 1o get left-justifisd block-style paragraphs by using .lp instead of .pp, as demon-
strated by the next paragraph.

Sometimes you want to use paragraphs that have the body indeated, and the first line
exdented (opposite of indented) with a label. This can be done with the .ip request. A
word specified on the same line as .Ip is printed in the margin, and the body is lined up
at a prespecified position (normally five spaces). For sxample, the inpuc

USING NROFF AND =ME 10

.1p one
This is the first paragraph
Notice how the first line
of the resulting paragraph lines up
with the ocher lines in the paragraph.
Jdp two
And here we are at the second paragraph aiready.
You may notice that the argument t0 .ip
appears
in the margin.
dp
We can continue text..
produces as ourput

one This is the first paragraph. Notice how the first line of the resuiting paragraph lines
up with the other lines in the paragraph.

wo And here we are at the second paragraph already. You may aotice that the argu-
meat,to Jp appears in the margin.

We can continue text without starting a new indented paragraph by using the .lp request
If you have spaces in the label of a Up request, you must use an ‘‘unpaddable
space’’ instead of a reguliar space. This is typed as a backslash character (**\'") followed
by a spacs. For exampie, (o print the label “*Part 1™, enter:
Jp "Part\ 17

If a label of an indeated paragraph (thas is, the argument (0 .ip) is longer than the
space allocated for the label, .dp will begin 2 gew line after the label. For example, the
input:

.ip longlabel
This paragraph had a long label.
The first character of text on the first line
will not line up with the taxt on second and subsaquent lines,
aithough they will line up with each other.
will producs:
longlabei
This paragraph had a long label. The first character of text on the first line will not

line up with the text on second and subsequent lines, although they will line up
with each other.

It is possible to change the siz= of the [abel by using a second argument whaich is
the size of the label. For example, the above example could be done correcdy by saying:
.ip longlabel 10

which will make the paragraph ind=mt 10 spaces for this paragraph only. If you have
many paragraphs to indent all the sarme amount, use the mumber regiszer ii. For example,
to leave one inch of space for the label, type:

arii li
somewhere before the first call to .Ip. Refer to the referencs manual for more informa-
tion.

[f .ip is used with no argument at ail no hanging tag will be printed For exampie.
the input:

USING NROFF AND -ME 11

dp (a]
This is the first paragraph of the example.
We have sesn this sort of example before.
dp
This paragraph is lined up with the previous paragraph,
but it has no tag in the margin.
producss as output:

(a] This is the first paragraph of the example. We have seen this sort of example
before. '

This paragraph is lined up with the previous paragraph, but it has'co tzg in the

margin.

A special case of .Ip is .np, which automatically numbers paragraphs sequentially
from 1. The oumbering is reset at the next .pp, .lp, or .sh (1o be described in the next
section) request. For example, the input

-ap

This is the first point

np

This is the second point

Points are just regular paragraphs

which are given sequencs pumbers automatically
by the op request

PP
This paragraph will reset aumbering by .op.
ap
For example,
we have reveried to numberizg from one now.
generates:
(1) This is the first point

(2) This is the second point. Points are just regular paragraphs which are givea
sequencs gumbers automatically by the .op request.

This paragraph will reset pumbering by ap.
(1) For example, we have reverted to numbering from one now.

5.2. Section Headings

Section nurnbers (such as the ones used in this document) can be automatically
generated using the .sh request. You must tell .sh the deprh of the section number and
a section title. The depth specifies how many numbers are to appear (separated by

decimal pojnr.s) in the section number. For example, the seciion number 4.2.5 has a
depth of thres.

Section numbers are incremeated in a fairly intuitive fashion. If you add 2 aumber
(increase the depth), the new number starts out at one. If you subtract section numbers
(or ke=p the same gumber) the final number is incremmented. For example, the inputl:

sh 1 "The Preprocessor”
sh 2 “Basic Concepts”
sh 2 "Conrrol Inputs”

*Code Geaeration”

3323

producss as output the resuit:

USING NROFF AND —ME 12

1. The Preprocessar
1.1. Basic Concepts
1.2. Control Inputs
1.2.1.
1.2.2.
2. Code Generation
2.1.1.

You can specify the section aumber to begin by placing the section aumber after
the section title, using spacss instead of dots. For example, the request

sh 3 "Another section” 73 4

will begin the secdon agumbered 7.J3.4; all subsequent .sh requests will aumber relative
to this gumber.

There are more complex features which will cause each section to be indented pro-
portonally to the depth of the section. For example, if you eater:

arsy
each section will be indeated by an amount . NV must have a scaling factor attached,
that is, it must be of the form Nx, where x is a character telling what units ¥ is in.

Common values for x are | for inches, ¢ [or cantimeters, and n for ens (the width of a
single characier). For example, to indent each section one-half inch, type:

.arsi 0.51

After this, sections will be indented by one-half inch per level of depth in the section
pumber. For example, this document was producsd using the request

or s 3n
at the beginning of the input fle, giving three spacss of indeat per saction depth.
Secdon headers without automatically generated numbers can be done using:
.uh “Tide”
which will do a section heading, but will put no aumber ona the section.

5.3. Parts of the Basic Paper

There are some requests whicd assist in setting up papers. The .tp request inial-
izes for a title page. Thers are ao headers or footers on a tile page, and unlikes other
pages you can spacs down and leave blank space at the top. For sxample, a typical tide
page might appear as

Ree)

sp 2

Rige

THE GROWTH OF TOENAILS

IN UPPER PRIMATES

Sp

by

sp

Frank N. Furter
Il

.bp

The request .th sets up the savironmeat of the NROFF procsssor o do a1 thesis,
using the rules established at Berksley. [t dednes the correct headers and footers (a page
pumber in the upper right hand corner only), se's the margins correcly, and double
spacss.

USING NROFF AND -ME 13

The .+c T request can be used to start chapters. Each chapter is automatically
numbered {rom one. and a heading is printed at the top of each chapter with the chapter
number and the chapter name T. For example, 10 begin 2 chapter called **Conclusions’,
use the request:

.+¢ "CONCLUSIONS™
which will produce, on a new page, the lines
CHAPTER §
CONCLUSIONS

with appropriate spacing for a thesis. Also. the header is moved o the foot of the page
on the first page of a chapter. Although the .<+c request was not designed to work only
with the .th request, it is tuned for the format acce=puable for a PhD thesis at Berkeley.

If the title parameter 7 is omitted from the . ¢ request, the resuit is a chapter with
oo heading. This can also be used at the beginning of a paper; for example, .+¢ was
used to generate page one of this document.

Although papers traditionally have the abstract, table of contents, and so forth at
the front of the paper, it is more convenient to formart and print them last when using
NROFF. This is so that index entries can be collected and then printed for the tabie of
contents (or whatever). At the end of the paper, issue the .+ P request, which begins
the preliminary part of the paper. After issuing this request, the .<4¢ request will begin a
preliminary section of the paper. Most nowably, this prints the page number restarted
from one in lower case Roman numbers. .+t may be used repeatedly to begin different
parts of the front material for example, the abstract, the table of contents, acknowledg-
ments, list of.ilustrations, etc. The request .+ <+ B may also be used to begin the
bibliographic section at the end of the paper. For example, the paper might appear as
outlined in figure 2. (In this figurs, commeants begin with the sequeacs \".)

§.4. Equations and Tables

Two special UNIX programs exist to format special types of material Egn and
neqn se! equations for the phototypesetter and NROFF respectively. Thl arranges to
print exiremely pretty tabies in a variety of formats. This documeat will only descrive
the embellishments to the standard fearures; consult the reference manuals for these
processors for a description of their use.

The eqn and neqn programs are descibed fully in the documeat 7Typesering
Mathematics — Users' Guide by Brian W. Kemighan and Lorinda L. Cherry. Equations
are centered, and are kept on one page. They are introduced by the .EQ request and ter-
minated by the .EN request,

The .EQ request may take an equation pumber as an optional argument, wiich is
printed vertically centered on the right hand side of the equaton. If the equation
becomes oo long it should be split betwesn two lines. To do this, type:

EQ (eq 34)

text of equation 34

ENC

EQ

continuation of equation 34
EN

The C on the .EN request specifies that the equation will be continued.

The thl program produces tables. It is fully described (including numerous sxam-
ples) in the document 7d/ = A4 Program to Formar Tables by M. E. Lesk. Tables begin
with the .TS request and end with the .TE request. Tables are normaily kept on a singis
page. If you have a wable which is too big 10 i on a single page. so that vou kaow it wiil
extend to several pages, begin the table with the request .TS H and put the reques: .TH

USING NROFF AND =ME 14

.th \" set for thesis mode

fo “DRAFT * define footer for each page
P \" begin title page

acC \" center a large block

THE GROWTH OF TOENAILS
IN UPPER PRIMATES

Sp

by

Sp

Frank Furter

I \" eand centered part

.+¢ INTRODUCTION \" begin chapter named "INTRODUCTION"
Azt \" make an eatry into index ¢’
Introduction

Jx \" end of index entry

text of chapter one

.+¢ NEXT CHAPTER" \" begin another chapter

Axt \" enter into index ‘t’ again
Next Chapter

Jx

text of chapter two

] (:c CONCLUSIONS

Axt

Conclusions

Jx

text of chapter thres

.++B ’ \" begin bibliographic information
.+¢ BIBLIOGRAPHY \" begin another ‘chapter’

Azt

Bibliography

Jx

text of bibliography

++ P \" begin preliminary material
.+¢ “TABLE OF CONTENTS"

xpt \" print index ‘t’ collected above
.+¢ PREFACE \" begin another prelirninary secton
text of prefacs

Figure 2. Outline of a Sample Paper

after the part of the wple which you want duplicated at the top of every page that the
tabie is printed on. For example, a table dednition for a long table might look like:

USING NROFF AND ~ME 15

JISH

¢SS

gaon

THE TABLE TITLE
.TH

text of the wble
IE

535. Two Column QOutpat

You can ge: two column ourpur automatically by using the request .2c. This cusas
everything after it to be ourput in two-column form. The request .be will start a new
column; it differs from .bp in that .bp may leave a totally blank column when it starts a
new page. To revert to single column output, use .1c

5.6. Defining Macros

A macro is a collection of requests and text which may be used by s:ating a simple
request. Macros begin with the line .de xx (where =x is the name of the macro to be
defined) and end with the line consisting of two dots. After defining the macro, stating
the line xx is the same as stating all the other lines. For example, 1o define a macro that
spaces 3 lines and then centers the next input line, enter:

.de SS
sp3
.2

and use it by typing:

SS
Title Line
(beginning of text)

Macro names may berone or two characters. In order to avoid conflicts with names
in —me, always use upper case letters as names. The only names to avoid are TS, TH.,
TE, EQ, and EN.

§.7. Annotations Inside Keeps

Sometimes you may want to put a footnote or index entry inside a keep. For
exampie, if you want to maintain a *'list of figures’” you will want to do something like:

(z
e
text of figure
Je

-3

Figure S.
Axf

Figure §

Jx

Jz

which you may hope will give you a figure with a label and an eatry in the index !
(presumably a list of figures index). Unfortunately, the index entry is read and inter-
preted whea the ke=p is read, not when it is printed, so the page aumber in the index is
likely to be wrong. The solution is to use the magic string \! at the beginning of all the
lines dealing with the index. In other words, you should use:

USING NROFF AND =ME 16

Az
(e
Text of figure
Je
=3
Figure §.
\L(xf
\!Figure §
\L)x
Jz
which will defer the processing of the index until the figure is output. This will guaran-
tee that the page gumber in the index is correct. The same comments apply o blocks
(with .(b and .Jb) as weil

6. TROFT and the Photosetter

With a littie care, you can prepare documents that will print niceiy on either a reguiar
terminal or when photorypeset using the TROFF formatting program.

6.1. Fonts

A font is a style of type. There are three [onts that are available simuitaneousiy,
Times Roman, Times Italic, and Times Bold, plus the special math font. The normal
font is Roman. Text which would be underiined in NROFF with the .al request is set in
italics in TROFT.

There are ways of switching betwe=n [onts. The requests .z, .[, and .b switch ©0
Roman, italic, and bold fonts respecuively. You can set a single word in some font by
typing (for example):

4 word
which will set word in italics but does not affest the surrounding text. la NROFF, italic
and bold taxt is undariined.

Notice that if you are setting more than one word in whatever font, you rmust sur-
round that word with double quote marks (‘"°) so that it will appear to the NROFF pro-
c=ssor as a single word. The quote marks will not appear in the formaned text. If you
do want a quote mark o appear, you should quote the entire string (eves if a single
word), and use nwo quote marks where you want one to appear. For example, if you
want to producs the text:

*Master Conorol™
in italics, you must type:
i ™Master Control\™

The \| produces a very narrow spacs so that the **I"" does oot overlap the quote sign in
TROFT, like this:

*Master Conool

There are aiso several ‘‘pseudo-{onts’ availabie. The input:

(b

.1 underiined

.bi “bold italics”

.bx *words in 2 box*
Jb

geaerares

USING NROFF AND -ME 17

underlined

bold italics

(words in 2 box]
In NROFT these all just underiine the text. Notice that pseudo font requests set only the
single parameter in the pseudo font: ordinary font requests will begin setting all text in
the special font if you do not provide a parameter. No more than one word should
appear with these thre= font requests in the middle of lines. This is because of the way
TROFF justifies text. For example, if you were (o issue the requests:

.bi "some bold italics”

and

.bx "words in a box”

in the middle of a line TROFF would producs sewmer toxdfideitizs and |words in_a Dox|,
which [think you will agres does not look good.

The second parameter of all font requests is set in the original font. For sxample,
the font request:

.b bold face
generates ‘“‘bold™ in bold font, but sets *““face™ in the font of the surrounding text,
resulting in:
boidface.
To set the two words bold and face both in boid face, type:
.b "bold face®
You can mix fonts in a word by using the special sequence \¢ at the end of 2 line

1o indicate ‘“continue text processing'’; this allows input lines to be joined together
without a space inbetween them. For exampie, the inpur
.u under \c
J italics
generates undersalics, but if we had typed:
. under
4 italics
the result would have be=n under ialics as two words.

6.2. Point Sizes

The phototypesetter supports different sizes of type, measured in points. The
default point size is 10 points for most text, 8§ points for foomotes. To change the
pointsize, fype:

2 +V
where NV is the size wanted in points. The verucal spacing (distancs betwe=n the bottom
of most leners (the baseline) between adjacent lines) is set to be proportonal to the type
size.

Warning: changing point sizes on the phototypesetiar is a2 slow mechanical opera-
ton. Size changes should be considersd carefully.

6J3. Quotes

[t is conveational whea using the typeserter to use pairs of grave and acute acosnts
10 generate double quotes, rather than the double quote character (**°). This is because
it looks bettar 10 use grave and acuie acs=nis; for exampie, compare "quote” to “"quote””

In order 10 make quotes cornpatible betwe=n the typesarter and terminals. you may
use the sequences \"(lq and \"(rq to stand for the left and right quote respscuiveiy.

USING NROFF AND —ME 18

These both appear as * on most terminals, but are typeset as ** and " respecuvely. For
exampie, use:

*(IqSome things aren't true
even if they did happen.*(rg

10 generate the results

**Some things aren’t true even if they did happen.”
As a shorthand, the special font request

.q "quoted text’

will generate ‘‘quoted text’’. Notce that you must surround the material to be quoted
with double quote marks if it is more than one word

Acknowiedgments

I would like to thank Bob Egpstein, Bill Joy, and Larry Rowe for having the courage (o use
the —me macros o0 produce non-trivial papers during the davelopment stages: Rick Blau,
Pamela Humphrey, and Jim Joycs for their help with the documentation phase; and the
plethora of people who have conmibuted ideas and have given support for the projecs.

This document was TROFF'ed on December 18, 1979 and applies 10 version 1.1 of the —~me
macTos.

— ME Reference Manual

Trademarks:
MUNIX, CADMUS for PCS
DEC, PDP for DEC
UNIX for Bell Laboratories

Copyright 1984 by
PCS GmbH, Pfalzer-Wald-Strasse 38, D-B000 Miinchen 90, tel (089) 87804-0

The information contained herein is the property of PCS and shall neither be reproduced in
whole or in part without PCS’s prior written approval nor be implied to grant any license to
make, use or sell equipment manufactured herewith.

PCS reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages (including consequential)

caused by reliance on the materials presented.

—ME REFERENCE MANUAL
Release 1.1/25

Eric P. Allman

Hectronics Research Laboratory
University of California, Berkeley
Berkeley, California 94720

“This document describes in extremely terse form the features of the —me macro package
for version seven NROFF/TROFF. Some familiarity is assumed with those programs,
specifically, the reader should understand breaks, fonts, pointsizes, the use and definition of
gumber registers and strings, how to define macros, and scaling factors for ens, points, v's
(vertcal line spac=s), etc.

¢For a more csual introduction to text processing using NROFF, refer to the document
Writing Papers with NROFF using —me.

. There are a number of macro parameters that may be adjusted. Fonts may be set to 2
fonttnumber only. In NROFF font 8 is undeslined, and is set in bold font in TROFF (although
font3, bold in TROFF, is not underlined in NROFF). Font 0 is no foat change: the font of the
surrounding text is used instead. Nodcs that fonts O and 8 are *‘pseudo-fonts'"; that is, they
are §imulated by the macros. This means that although it is legal to set a font register to zero
or eight, it is not legal to use the escape character form, such as:

\f3

All distances are in basic units, so it is nearty always necessary to use a scaling factor. For
example, the request to set the paragraph indent to eight one-en spacss is

&r pi 8n
and not

.orpi 8
which would set the paragraph indent to eight basic umits, or about 0.02 inch Default parame-
ter values are given in brackets in the remainder of this document.

Registers and strings of the form Sx may be used in expressions but should not be
changed. Macros of the form Sx perform some function (as described) and may be redefined 1o
change this function. This may be a seasitive operation; look at the body of the original macro
before changing it

All names in —me follow a rigid naming convention. The user may define sumber regis-
ters, strings, and macsos, provided that s/he uses single character upper case names or double
characier names consisung of letters and digits, with at least one upper case lerter. In no case
should special characters be used in user-defined names.

Ou daisy whee! type printers in twelve pitch, the =rx1 flag can be stated to make lines
default to ome eighth inch (the normal spacing for a newline in twelve-pitch). This is normally

TNROFF and TROFF are Trademarks of Bell Laboratories

=ME RETERENCE MANTUAL 1

"~

-ME REFERENCE MANUAL

too small for easy readability, so the default is to spacs one sixth inch.

This documentation was TROFF'ed on Decsmber 14, 1979 and applies to version 1.1/25
of the —me macTos.

1. Paragraphing
These macros are uszed to begin paragraphs. The standard paragraph macro is .pp; the
others are all variants o be used {or special purposes.

The first cail to one of the paragraphing macres defined in this section or the .sh macso
(defined in the next session) inializes the macTo processor. After initialization it is not possible
10 use any of the following requests: .se, Jo, .th, or .ac. Also, the effects of changing parame-
ters which will have a global edect on the format of the page (nowably page length and header
and footer margins) are not weil defined and should be avoided.

Jp Begin left-justified paragraph. Cantering and underiining are turned off
if they were on, the font is sat to \n(pf (1] the type size is set to \a(pp
(10p], and a \n{ps spacs is inserted before the paragrapa (0.35v in
TROFF, lv or 0.5v in NROFF depending oa device resolution]. The
indeat is reset to \n(S1 (0] plus \n{(po (0] unless the parzagrapi is insids
a display. (ses .ba). Al least the first two lines of the paragrapa are
kept wogether on a page.

PP Lixe .lp, except that it puts \n(pi (5n] units of indent. This is the stan-
dard paragraph macro.
Jp T/ Indented paragraph with hanging tag. The body of the following para-

graph is indented [spacss (or \n(i (5a] spaces if / is not specified)
more than 2. gon-indented paragraph’ (such as with .pp) is. The tde T
is exdented (opposite of indeated). The result is a paragraph with an
even left edge and 7T printed in the margin. Any spac=s ir 7 must be
unpaddable. If T will not fit in the spacs provided, .ip will start a2 new
line,

ap A variant of ip which aumbers paragraphs. Numbering is reset after a
Jp, .pp, or .sh. The current paragraph aumber is in \a(Sp.

2. Section Headings

Numbered sections are similiar to paragraphs exc=pt that a section aumber is automati-
cally generated for each one. The section aumbers are of the form 1.2.3. The depth of the sec-
tion is the count of numbers (separated by decimal points) in the section number.

Unnumbersd section headings are similar, except that go number is attached to the head-
ing.
sh +¥ Tabcdef Begin aumbered section of depth N. If N is missing the current depth
(maintained in the aumber register \n(S0) is used. The vaiues of the
individual parts of the section number are maintained in \n(S1 through
\n(SS. There is a \a(ss (1v] spacs before the section. Tis printed as a
section title in font \a(sf (8] and size \n(sp (10p]. The “*name’ of the
section may be accessed via \"(Sa. If \n(si is non-zero, the base
indent is set to \n(si times the section depth, and the section tide is
exdented. (See .ba.) Also, an additional indent of \a(so (0] is added o
the secdon title (but not to the body of the section). The font is thea
set 10 the paragraph font, so that more information may occur on the
line with the section aumber and tue. .sh insures that ther= is eaough
room to print the section head pius the beginning of a paragrapn (about
J lines total). If a through fare specified, the section numbers is sat to
that number rather than incTemented automatically. If any of «
through / are a hyphen that oumber is not reset. If T is a single

=ME REFERENCE MANUAL 3

Sx =N

ah T

Sp TBN

SO TEN

underscore (**_") thena the section depth and numbering is reset, but
the base indent is not reset and nothing is printed out. This is useful to
automatically coordinate section aumbers with chapter cumbers.

Go to section depth & [=1], but do not print the aumber and title, and
do not increment the section number at level N, This has the effect of
stariing a new paragraph at level V.

Unnumbered section heading. The title T is printed with the same
rules for spacing, font, etc., as for .sh.

Print section heading. May be redefined to get fancier headings. T is
the tite passed on the .sh or .oh line; B is the section gumber for this
section, and N is the depth of this secion. These parameters are ot
always preseat; in particular, .sh passes all three, .nh passes only the
first, and .sx passes three, but the first two are null strings. Care
should be taken if this macco is rededned; it is quits complex and sub-
te.

This macro is called automatically after every call to .Sp. It is normally
undefined, but may be used to automatically put.every section ttle into
the table of contents or for some similiar function. 7T is the section title
for the saction title which was just printed, B is the section number,
ard Vs the secton depth.

Traps called just before printing that depth section. May be defined to
(for example) give variable spacing before sections. These macos are
called from .Sp, so if you redefine that macro you may lose this fearurs.

3. Headers and Footers

+ Headers and [ooters are put ar the top and bottom of every page automatically. They are
set 1n font \n(tf (3] and size \o(tp [10p]. Each of the definitions apply as of the nexr page.
Thre=-part titles must be quoted if there are two blanks adjacent anywhere in the title or more

than eight blanks total.

The spacing of beaders and footers are controlled by thres oumber registers. \n(hm (4v]
is the distance from the top of the page to the top of the header, \n(fm (3v] is the distance
from the botiom of the page to the bottom of ihe footer, \n(tm (7v] is the distance from tke
top of the pags to the top of the text, and \n{bm [6v] is the distancs from the bortom of the
pageé to the bottom of the text (nominal). The macros .ml, .m2, .m3, and .m4 are also sup-
plied for compatibility with ROFF documeants.

JeSm'r
JoTm'r

Ax

ml +N
o =N
m3 =N
md +N

Define thres-part header, to be printad on the top of every page.
Define footer, to be printed at the bottom of every pags.

Define header, to be printed at the top of every eveh-gumbered page.
Define header, to be printed at the top of every odd-numbered page.
Define footer, to be printed at the bortom of every evea-gumbersd
page.

Define footer, to be printed at the bottom of every odd-number=d page.
Suppress headers and footers on the next page.

Set the spacs betwesn the top of the page and the header [dv].

Set the spacs betwe=n the header and the first line of text (2v].

Set the spaces berwesa the bottom of the text and the footer [2v].

Set the space betwesn the footer and the bottom of the page [4v].

Exd this page, but do not begin the next page. Useful for formeg our
footnotes, but other than that hardly every used. Must be jollowed by

~ME REFERENCE MANUAL 4

St
SH

4. Displays

a .bp or the end of inpuL

Called at every page (0 print the header. May be redeined to provide
fancy (e.g., muiti-line) headers, but doing so loses the fuaction of the
Je, Jo, .eh, .ob, .ef, and .of requests, as well as the chapter-style title
feature of .+c

Print footer; same comments apply as in .S

A gormally undefined macro which is called at the top of each page
(after outputing the header, initial saved floating keeps. etc.): in other
words, this macro is called immediataly before printing text on a page.
It can be used for column. beadings and the like.

All displays except c=atersd blocks and block quotes are precesded and followed by an
exra \n(bs (same as \n(ps] spacs. Quote spacing is swored in a separate register; csstersd
blocks have no default initial or trailing spacs. The' vertical spacing of all displays excapt quotes
and caatered blocks is stored in register \n (SR instzad of \n(Sr.

Admf

N
.(q

Jq
b m/f

b
lamf

Jz
e

Begin list. Lists are single spaced, unfilled text. If fis F, the list will
be filled. If m (I} is I the list is indented by \n(bi (4al; if M the list is
indented to the left margin: if L the list is left justiied with respect o
the text (different from M only if the base indent (stored in \n(Si and
set with .ba) is not z=rv); and if C the list is centered on a line-by-line
basis. The list is set in foat \o(df (0]. Must be matched by a .)L This
macro is almost like .(b except that no atempt is made o ke=p the
display on one page.

End list.

Begin major quote. These are single spaced. filled, moved in from the
text on both sides by \n(qi (4a], prec=eded and foilowed by \n(gs
[same as \n(bsl space, and are set in point size \n(qp [one point
smaller than surrounding text}.

End major quote.

Begin block. Blocks are a form of keep, where the text of 2 kesp is
kept together on one page if possible (keeps are useful for tabies and
figures which should aot be brokea over 2 page). If thes block will not
ft on the current page a new page is begun, unless that would leave
more than \n(bt (0] white space at the bottom of the taxt. If \a(bt is
zero, the threshold feature is turned off. Blocks are not filled unless /
is F, when they are filled. The block will be left-justified if m is L.
indented by \n(bi (4a] if ~ris I or absent, ceatered (line-for-line) if =~
is C, and left justified to the margin (ot to the base indent) if mis M.
The block is set in font \a(df {0].

End block.

Begin foating ke=p. Like .(b excsapt that the ke=p is foared to the tot-
tom of the page or the top of the next page, Therefore, its position
relative to the text changss. The floating kesp is prec=eded and fol-
lowed by \n(zs (1v] spacs. Also, it defaults to mods M.

End floating ke=p.

Begin centered block. The next k=ep is ceatarsd 1s a block, rather than
on a line-by-line basis as with .(b C. This «all may be nested inside
kesps.

=ME RETERENCE MANUAL 5

Je

5. Annotations
.(d

Jdn
-pd
N

JMa

JTPA

Xp x

§. Columped Output
2e +SN

Jde

7. Fonts and Sizes
52 +F

End centered block.

Begin delayed text. Everything in the next kesp is saved for output
later with .pd, in a manner similar to footnotes.

End delayed text. The delayed text number register \n(Sd and the
associated string *# are incremented if *# has bes=a refersnced.

Print delayed text. Everything diverted via .(d is printed and truncated.
This might be used at the and of each chapter,

Begin footnote. The text of the footnote is floated to the bottom of the
page and set in font \n(& [1] and siz= \n(fp (8p]. Each entry is pre-
ceeded by \n(fs [0.2v] spacs, is indeated \n(fi (3n] on the first line,
and is indented \n(fu (0] from the right margin. Footnotes line up
underneath two columned outpur. If the text of the footnote will not
all it on one page it will be carried over 10 the next page.

End footnote. The oumber register \n(SI and the associated string **
are incremented if they have been referenced.

The macro to output the footnote seperator. This maco may be
redefined to give other size lines or other rtypes of separators.
Currently it draws a 1.5i line.

Begin index entry. Index eatries are saved in the index x [x] until
called up with .xp. Each entry is precseded by a \n(xs (0.2v] spac=.
Each entry is *“‘undented’” by \n(xu [0.5i]; this register tells how far the
page number extends into the right margin.

End index enrry. The index entry is finished with 2 row of dots with A4
(oull] right justified on the last line (such as for an author's name), fol-
lowed by P (\n%]. If 4 is specified, P must be specified: \n% can be
used to print the current page number. If Pis an underscore, no pags
number and no row of dots are printed.

Print index x [x]. The index is formated in the font, siz=, and so forth
in effect at the time it is printed, rather than at the time it is collecred

Enter two-colurmn mode. The column separation is set 1o +S [4a, 0.5i
in ‘ACM mode] (saved in \n(Ss). The column width, calculated to fill
the single column line length with both columns, is stored in \n(SL
The current column is in \a{(Se. You can test register \n(Sm (1] to se=
if you are in single column or double column mode. Actually, the
request enters N (2] columned ourput

Rever: to single-column mode.

Begin colurm. This is like .bp except that it bezins a aew column on a
new page only if necsssary, rather than forcing a whole new pags if
there is another column left on the currsnr page.

The pointsize is set to P [10p], and the line spacing is set proportion-
ally. The ratio of line spacing to pointsize is stored in \n(Sr. The ratio
used internally by dispiays and annotations is stored in \n(SR (although
this is not used by .sz).

-ME REFERENCE MANUAL 6

T WX

iWX
b WX

agh WA

awx

q WX

WY

Jx WX

8. Roff Support
Jdx +Y
BT §

p2 +¥
.ro

.ar

.al

az N
sk

Set W in roman font, appending X in the previous font To appead
different font requests, use X = \c. [f no parameters, change to roman
font

Set W in italics. appending X in the previous font. If a0 parameters,
change to italic font. Underlines in NROFF.

Set W in bold font and append X in the previous font. If no parame-
ters, switch to bold font. In NROFF, underlines.

Set ¥ in boid fent and append X in the previous font. [f no parame-
ters, switch to bold font. .rb diffars from .b in that .rb does not under-
line in NROFF.

Ugderline B and append XL This is a2 true underlining, as opposed to
the .al request, which changes to “‘underiine font’’ (usually italics in
TROFF). It won't work right if W is spread or broken (including
hyphenated). In other words, it is safe in oodll mode oaly.

Quote W and append X [n NROFF this just surrounds W with double
quote marks (**°), but in TROFF usas directed quotss.

Set W in bold italics and append X. Actually, sets W in italic and over-
strikes oncs. Underlines in NROFF. It won't work right if ¥ is spread
or broken (including hyphenated). In other words, it is safe in aeodll
mode only.

Sets ¥ in a box, with { appended. Underlines in NROFF. It won't
work right if W is spread or brokea (including hyphenated). In other
words, it is safe in nofill mode only.

Indent, no break. Equivaieat to “In .

Leave N contiguous white spacs, on the next page if not enough room
cn this page. Equivalent to a .sp .Y inside a block.

Equivalent to .bp.

Set page number in roman numerals, Equivalent to .af % i.

Set page aumber in arabic. Equivalent to .af % 1.

Number lines in margin {rom one cn each page.

Number lines from Y, stop if ¥ = 0.

Leave the next output page blank, excespt for headers and footers. This
is used to leave space for a full-page diagram which is producsd exter-
nally and pasted in later. To get a partal-page paste-in display, say
.SY N, wiere ¥ is the amount of space to0 leave; this space will be out-
put immediately if there is room. and will otherwise be output at the
top of the next page. However, be warned: if N is greatsr than the

amount of available spacs on an empty pags, 10 spacs will ever be out-
putL.

9. Preprocessor Sapport

EQmT

Begin equation. The equation is centered if m is C or ormirtted.
indented \n(bi (4a] if mis I, and left justified if mis L. Tis a ttle
printed on the right margin next to the equation. Ses Typesernng
Mathematiecs = User’s Guide by Brian W. Kamighan and Lorinda L.
Chery.

=ME REFERENCE MANUAL 1

JIN¢
oTSh

TH
TE

10. Miscellaneous
Je
ba +N

x +N
A+

8.1l

Jdo

11. Standard Papers
I

.m

A+ mH

End equation. If cis C the equation must be continued by immediately
following with another .EQ, the text of which can be centered along
with this one. Otherwise, the equation is printed. always on one page,
with \n{es [0.5v in TROFF, lv in NROFF] spacs above and below it

Table start. Tables are single spaced and kept on one page if possible.
If you have a large table which will not fit on one page, use 4 = H and
follow the header part (1o be printed on every page of the tabie) with a
JH. See Tbl = A Program m Formar Tables by M. E. Lask.

With .TS H, ends the header portion of the table.

Table end. Note that this table does not floar, in fact, it is oot even
guarantesd to stay on one pege if you use requests such as .sp inter-
mixed with the text of the table. If you want it to float (or if you use
requests inside the table), surround the entire tabie (inciuding the .TS
and .TE requests) with the requests .(z and .)z.

Reset tabs. Set to every 0.5i in TROFF and every 0.8i in NROFF.

Set the base indent to +AN [0} (saved in \n(Si). All paragraphs, sec-
tions, and displays come out indented by this amount. Titles and foot-
notes are unaffected. The .sh request performs a .ba request if \n(si
(0] is not zero, and sets the base indent to \n(si"™\n(S0.

Set the line length to N [6.0i]. This differs from .11 because it only
affects the current environmeat

Set line length in all environmezts to N [6.0i]. This should not be used
after ourput has begun, and partcularty not in two-columned output
The current line length is stored in \n(SL

Draws a horizontal line the length of the page. This is useful inside
floating keeps to differentiate betwe=n the text and the figure,

This macto loads another set of macros (in /usr/lib/me/local.me)
which is intended to be 2 set of locally defined macros. These macros
should all be of the form .*X, where X is any letter (upper or lower
case) or digit.

Begin title page. Spacing at the wop of the page an occur, and headers
and footers are supressed. Also, the page number is not incremented
for this page.

Set thesis mode. This defines the modes acceptable for 2 doctoral
dissertation at Berkeley. It double spaces, defines the header to be a
single page number, and changes the margins 10 be 1.5 inca on the left
and one inch on the top. .+ and .<c shouw!d be used with i. Tais
macro must be stated before imitialization, that is, before the frst call of
a paragraphing macro or .sh.

This request defines the section of the paper which we ars entering.
The section type is defined by m C means that we are entering the
chapter pordon of the paper, A means that we are entering the appea-
dix portion of the paper, P meags that the material following should be
the preliminary portion (abstract, table of contents, s:c.) portion of the
paper, AB means that we are eatering the abstract (aumbersd indspen-
deaty from | in Arabic aumerals), and B means that we ars 2at=ring
the bibliographic portion it the ead of the paper. Also, the variants RC

-ME REFERENCE MANUAL 8

and RA are allowed, which specify renumbering of pages {rom one at
the beginning of each chapter or appendix, respectively. The A param-
eter defines the aew header. If there ar= any spaces in it, the eatire
header must be quoted. If you want the header to have the chapter
pumber in it, Use the string \\\\n(ch. For example. to aumber appen-
dixes A.l etc, type .++ RA “\\\\n(ch.%". Each section (chapter.
appendix, etc.) should be precesded by the .+¢ request. [t should be
mentoned that it is easier when using TROFT to put the front material
at the end of the paper, so that the table of conteats can be collecied
and output; this material can thea be physically moved to the beginning
of the paper.

+eT Begin chapter with title 7. The chapter number is maintained ia \n{ch.
This register is incremented every time . +c is called with a parameter.
The tide and chapter number are printed by .Sc. The header is moved
to the footer on the first page of each chapter. [f Tis omitted, .Sc is
not called; this is useful for doing your own ‘‘title page" at the begin-
ning of papers without a title page proper. .Sc¢ cails .SC 1s a2 hook so
that chapter tities can be inserted into a table of conteats automatically.
The footnote numbering is reset to one.

ST Print chapter sumber (from \n(ch) and 7. This macco @n be
redefined to your liking. It is defined by default 1o be 2cc=puable for a
PhD thesis at Berkeley. This macro calls SC, which can be defined to
make index enmies, or whatever.

SCKNT This macro is called by .Sc. It is normally undefined, but can be used
to autornatically insert index eatries, or whatever. K is a2 keyword,
either **Chapter’’ or ‘*Appendix’’ (depeading on.the .+ < mode); ¥V is
the chapter or appendix gumber, and 7 is the chaptar or appendix title.

acAN This macro (short for .acm) sets up the NROFTF eavironmeat for
photo-ready papers as used by the ACM. This format is 25% larger,
and has oo headers or footers. The author's aame A4 is printed at the
bonom of the page (but of the part which will be printed in the confer-
ence procsedings), together with the curreat page aumber and the total
gumber of pages N. Additionally, this macro loads the fle
/ust/lib/me/acm.me, which may later te augmented with otker macros
useful for printing papers for ACM confersnces. [soould be noted
that this macro will not work correctly in TROFF, sincs it sets the page
leagth wider than the physical width of the photorypesatter roil

12. Predefined Strings

*= Footnote number, acmally *(\a(SN*l. This maco is incemeatad
after each call to Jf.

*# Delayed text number. Actually (\n(Sdl.

*{ Superscript. This string gives upward movement and a chang= to a

smaller point size if possible, otherwise it gives the left bracket charac-
ter (‘1°). Extra spaces is left above the line to allow room for the super-

scTipt

* Unsuperscript. Inverse to *{. For exampie, to producs a superscipt
you might type x*{2\"!, which will producs x-.

*< Subscript. Defaults to * <' if balf-carriags motion not possible. Extra

spacs is left below the line to allow for the subscript.
*> Inverse to * <.

=ME REFERENCE MANUAL 9

*(dw The day of the week, as a word.
*{mo The month, as a worc.
*(td Today’s date, directly printable. The date is of the form December 14.

1979. Other [orms of the date can be used by using \n(dy (the day o
the month; for example, 14), *(mo (as noted above) or \n{(mo (ike
same, but as an ordinal oumber; for example, Decamber is 12), and
\n(yr (the last two digits of the current year).

\"(q Left quote marks. Double quote in NROFF.
*(q Right quote.
*=- % em dash in TROFF, two hyphens in NROFT.

13. Spedial Characters and Marks

There are a2 number of special characters and diacritical marks (such as acceats) availabie
through —me. To referencs these characters, you must call the macso .sc to define the charac-
tess before using them.

sc Define special characters and diacritical marks, as described in the
remainder of this secdon. This macro must be stated before initializa-
tion.

_The spetial characters available are listed below.

Name Usage Example

Acute accent *~ |\ i

Grave accent * e\ ¢

Umlat *: u\": a

Tiide \"~ o*” a

Care A

Cedilla \". A\, ¢

Czech *v e*v ¢

Circle *o A\%0 A

There exists *(qe 3

For all *"(qa v

Acknowiedgments

I woulid like to thank Bob Epstein, Bill Joy, and Larry Rowe for having the courage o use
the —me macros to produce non-irivial papers during the developmear stages: Rizki Blaw.
Pamela Humphrsy, and Jim Joyce for their help with the documentation phase; and the
plethora of people who have contributed ideas and have given support for the projecs.

Writing Tools

The Style and Diction Programs

Text processing systems are now in heavy use in many companies to format
documents. With many documents stored on line, it has become possible to use
computers to study writing style itself and to help writers produce better writ-
ten and more readable prose. The system of programs described here is an ini-
tial step toward such help. It includes programs and data base designed to pro-
duce a stylistic profile of writing at the word and sentence level. The system
measures readability, sentence and word lenght, sentence type, word usage, and
sentence openers. It also locates common examples of wordy phrasing and bad
diction. The system is useful for evaluating a document's style, locating sen-
tences that may be difficult to read or excessively wordy, and determining a
particular writer’s style over several documents.

Trademarks:
MUNIX, CADMUS for PCS
DEC, PDP for DEC
UNIX for Bell Laboratories

Copyright 1984 by
PCS GmbH, Pfalzer-Wald-Strasse 36, D-8000 Miinchen 90, tel. (089) 67804-0

The information contained herein is the property of PCS and shall neither be reproduced in
whole or in part without PCS's prior written approval nor be implied to grant any license to
make, use or sell equipment manufactured herewith.

PCS reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages (including consequential)

caused by reliancé on the materials presented.

Writing Tools - The STYLE and DICTION Programs

L L Cherry

Bell Laboratories
Murray Hill, New Jersey 07974

W. Vesterman

Livingston College
Ruts:r_s University

1. Introduction

Computers have become important in the document preparation process, with programs to
check for spelling errors and to format documents. As the amount of text stored on line
increases, it becomes feasible and attracthve to study writing style and to attempt to heip the
writer in producing readable documents. The system of writing tools described here is a first
step toward such help. The system includes programs and a dara base to analyzs writing style at
the word and seatencs level. We use the term ‘‘style™ in this paper to describe the results of a
writer’s particular choices among individual words and sentence forms. Although many judge-
ments of style are subjectve, particularly those of word choice, there are some objective meas-
ures that experts agree lead to good style. Three programs have besn writien to measure some
of the objecively definable characteristcs of writing style and to ideatify some commoniy
misused or unmecs=ssary phrases. Although a document that conforms to the stylistic rules is
not guaranieed to be coherent and readable, one that violates all of the rules is likely to be
difficult or tedious to read. The program STYLE caiculates readability, sentencs length variabii-
ity, seatence type. word usage and sentencs openers at a rate of about 400 words per second on
a PDP11/70 running the UNIXT Operating System. [t assumes that the sentencss are well-
formed. i. e. that each sentence has a2 verb and that the subject and verd agres in aumber.
DICTION identifies phrases that are either bad usage or unnecessarily wordy. EXPLAIN acis
as a thesaurus for the phrases found by DICTION. Sectons 2, 3, and 4 describe the programs:
Secton 5 gives the results on a oss-section of technical documeats; Sechon § discusses acsu-
racy and problems; Section 7 gives implementaton details.

2. STYLE

The program STYLE reads a document and prints a summary of readability indices. sea-
tenice length and type, word usage, and sentencs openers. [t may also be used to locate all sen-
tences in a2 document longer than a given length, of readability index higher than a given
number, those containing a passive verb, or those beginning with an expletdve. STYLE is
based on the system for finding English word classes or parts of spesch, PARTS [1]. PARTS is
a set of programs that uses 2 small dictionary (about 350 words) and suffix rules to partially
assign word classes to English text. It then uses experimeantally derived rules of word order to
assign word classes to all words in the text with an accuracy of about 95%. Because PARTS
uses only a small dictionary and general rules, it works on text about any subject. from pnysics
1o psychology. Style measures have been built into the outpur phase of the programs that make
up PARTS. Some of the measures are simple counters of the word classes found by PARTS:
many are more complicated. For example, the verd count is the total number of verb phrases.
This includes phrases like:

tUNTX is 2 Trademark of Bell Ladborutories.

has been going

was only going

t0 go
each of which each counts as one verb. Figure 1 shows the output of STYLE run on a paper by
Kernighao and Mashey about the UNTX programming eavironment (2],

programming eavironment
readability grades:

sentencs info:
no. sent 335 no. wds 7419
av sent leng 22.1 av word leng 4.91
go. questions 0 no. imperatves 0
no. nonfunc wds 4362 58.3% av leng 633
short seat (<17) 35% (118) long seat (>32) 16% (55)
longest sent 82 wds at sent 174; shortest seat 1 wds at sent 117
sentence types:
simple 34% (114) complex 32% (108)
compound 12% (41) compound-compiex 21% (72)
word usage:
verb rypes as % of total verbs
tobe 45% (373) aux 16% (133) inf 14% (114)
passives as % of aon-inf verbs 20% (144)
types as % of total
prep 10.8% (804) conj 3.5% (262) adv 4.83% (354)
noun 26.7% (1983) adj 13.7% (1338) proa 3.3% (393)
pominalizations 2 % (155)
seatence beginnings:

v prep 12% (39) adv 9% (31)
verd 0% (1) sub_conj 6% (20) conj 1% (9)
expledves 4% (13)

(Kincaid) 12.3 (auto) 12.8 (Coleman-Liau) 11.8 (Flesch) 13.5 (46.3)

subject opener: aoun (63) proa (43) pes (0) adj (58) art (62) tot 67%

Figure 1

As the example shows, STYLE outpur s in five parts. After 2 brief discussion of sentences, we
will describe the parts in order.

2.1. What is 2 seatence?

Readers of documents have littie ttouble deciding where the sentences end. People don't
evern have 10 stop and think about uses of the character “.” in constructons like 1.25, A. I
Jones, PhLD., i. e, or et When a computer reads a document, finding the end of sentencss
is oot as easy. First we must throw away the printer’s marks and formatting commands that
licter the text in computer form. Then STYLE defines a sentence as a string of words ending in
one of:

1?7

The =ad marker '*/.”" may be used t0 indicate an imperative senteacs. [mperative sentancss
that are oot so marked are aot ideatfied as imperative. ST YLE properly handles aumbers with
embedded decimal points and commas, swrings of lerters and numbers with embedded dacimal
points used for naming computar fle names. and the common abbreviations lisied in Appendix

.3

1. Numbers that end sentences, like the preceding sentence, cause a seatencs break if the next
word begins with a capital letter. [nitials only cause 2 seatence break if the next word begins
with a czpital and is found in the dictionary of function words used by PARTS. So the string

J. D. JONES
does not cause a break, but the swing
- .. system H. The ...

does. With these rules most sentences are broken at the proper placs, although ocsasionally
either two sentences are called one or a fragment is called a sentence. More on this later.

2.2. Readabdility Grades

The first secdon of STYLE output comsists of four readability indices. As Klare points
out in (3] readability indicss may be used to estimate the reading sikills nesded by the reader to
understand a document. The readability indices reported by STYLE are based on measures of
sentence and word lengths. Although the indices may not measurs whether the document is
coherent and well organized, experiencs has shown that high indices se=m to be indicators of
stylistic difficulty. Documents with short seatences and shont words have low scores; those with
long sentencss and many polysyllabic words have high scores. The 4 formulae reported are
Kincaid Formula {4]., Automated Readability Index (5], Coleman-Liau Formuila (6] and a nor-
malized version of Flesch Reading Ease Score (7). The formulae differ because they were
experimentally derived using different texis and subject groups. We will discuss each of the
formulae briefly; for 2 more detiled discussion the reader should see (3].

The Xincaid Formula, given by:

Reading_Grade=11.8 *syl_per_wd+.39 *wds_per_sent—15.59

was based on Navy training manuals that ranged in difficulty from 5.5 10 16.3 in reading grade
level. The score reported by this formula tends to be in the mid-range of the 4 scores,
Because it is based on aduit training manuals rather than school book text, this formulz is prob-
ably the best one to apply to technical documents.

The Automated Readability Index (ARI), based on text from grades 0 to 7, was derived
to be easy to automate. The formula is:

Reading_Grade=4.71 “let_per_wd+3 “wds_per_sent—~21.43

ARI tends to produce scores that are higher than Kincaid and Coleman-Liau but are usually
slightly lower than Flesch

The Coleman-Liau Formula, based on text ranging in difficulty from .4 0 163, is:
Reading_Grade=5.89 “ler_per_wd—5 “sent_per_100_wds—15.8

Of the four formulae this one usually gives the lowest grade when applied 10 technical docu-
ments.

The last formula, the Flesch Reading Ease Score, is based on grade school lext covering
grades 3 1o 12, The formula, givea by:

Reading_Score=206.835=~84.6 “syl_per_wd—1.015 “wds_per_sent

is usually reported in the range 0 (very difficult) to 100 (very easy). The score reported by
STYLE is scaled to be comparable 10 the other forrnulas, except that the maximum grads level
reportzed is set 10 17. The Flesch score is usually the highest of the 4 scores on technical docu-
ments.

Coke (8] found that the Kincaid Forrnula is probably the best predictor for technical docu-
meants; both AR] and Flesch tead to overestimate the dificuity: Coleman-Liau tend (o underss-
timate. On text in the range of grades 7 1o 9 the four forraulas t=nd to be about the same. On
easy text the Coleman-Liau formula is probably preferred sincs it is reasonably accurate at the

lower grades and it is safer to preseat text that is a litde too easy than a little too hard.

If a document has particularly difficult technical content, espedially if it includes a lot of
mathematics. it is probably best to make the text very easy to read. i.e. a lower readability index
by shortening the seatencss and words. This will allow the reader to concantrate on the techni-
cal content and not the long sentencss. The user should remember that these indicss are esti-
mators; they should not be taken as absolute numbers. STYLE alled with **=r aumber’” will
print all sentencss with an Automnated Readability Index equal to or greater than “‘number’”.

2.3. Sentence leagth and structure

The next two sectons of STYLE output deal with sentencs length and structure. Almost
all books on writing style or efective writing emphasize the importance of variety in seatencs
leagth and structure for good writing. Ewing's first rule in discussing style in the book Writing
Jor Resuiss (9] is:

“Vary the seatence structure and length of your senteacss.”

Leggetr, Mead and Charvat brezak this rule into 3 in Prentice-Hail Hanabook for Writers (10] as
follows:

**34a. Avoid the overuse of short simple sentences.”
**34b, Avoid the overuse of long compound sentences.’™
**34c. Use various sentencs swuctures to avoid monotony and increase efectveness.”

Although experts agree that these rules are important, rot all writers follow them. Sample
technical documents have been found with almost no sentence length or type variability. One
document had 90% of its sentenc=s about the same length as the average; another was made up
almost eatirely of simple sentencss (80%).

The output sections labeled “*sentence info’" and ‘‘sentence types’” give both length and
structnure measures. STYLE reports on the aqumber and average length of both sentences and
words, and number of questons and imperative seatzncas (those eading in **/."*). The meas-
ur=s of non-{funcdon words are an attempt to look at the content words iz the document [n
English non-function words are nouns, adjecdves, adverts, and non-auxiliary verbds: function
words are prepositions, conjunctions, articles, and auxiliary verbs. Sincs most function words
are short, they tend 1o lower the average word length. The average length of non-function
words may be a more useful measure {or comparing word choics of difer=nt writers than the
total average word length. The percentages of short and long sentenc=s measure sentencs
length variability. Short sentences are those at least § words less than the average: long sen-
tences are those at least 10 words longer than the average. Last in the sentence information
secdon is the leagth and locaton of the longest and shortest seatences. If the flag **—I
aumber’ is used, STYLE will print all senteac=s longer than “‘number’”.

Because of the difficulties in dealing with the many uses of commas and conjuncdons in
English, seantence type definitions vary slighuy from those of standard textbooks. but still meas-
ure the same construcdonal acdviry.

1. A simple sentencs has one verb and no depeadent dause.

2. A complex sentencs has one independent clause and one depeadent clause, each with one
verd. Complex sentenc=s are found by identifying sentences that contain either a subordi-
nate copjuncidon or a clause beginning with words like ‘*that’” or “‘who’’. The precading
sentenc= has such a clausae,

3. A compound sentencs has more than one verb and no dependent clauss. Seatencss
joined by **;"" are also countzed as compound.

4. A compound=complex sentence has either several depeandent clauses or one dependent
clause and a compound verb in either the depeadent or independent cause.

Even using these broader dafinidons, simple sentences dominate many of the technical
documents that have besa tested, but the sxample in Figurs | shows variery in both sentencs

struciure and sentencs length.

2.4. Word Usage

The word usage measures are an attempt to idendfy some other constructional features of
wriung style. There are many different ways in English to say the same thing. The construc-
tions differ from one another in the form of the words used. The following seatencss all con-
vey approximately the same meaning but differ in word usage:

The cxo program is used to perform all communication berwesn the systems.
The cxdo program performs all communications between the systems.

The cxio program is used to communicate berween the systems.

The cxio program comrmunicates betwesn the systems.

All communication berwe=n the systems is performed by the cxo program.

The distribudon of the parts of spe=ch and verb construcdons helps identify overuse of partic-
ular constructions. Although the measures used by STYLE are crude, they do point out prob-
lem areas. For each category, STYLE reports 2 percentage and a raw count. In additon to
looking at the perceatage, the user may find' it useful o compare the raw count with the
number of sentences. If, for exampie, the pumber of infinitives is almost equal to the number
of sentencss, then many of the sentencss in the document are construcied like the first and
third in the preceding example. The user may want to transform some of these sentenc=s into
another form. Some of the implications of the word usage measures are discussed below.

Verds are measured in several different ways 1o oy to determine what types of verb construc-
tons are most frequent in the document. Technical writing tends 10 contain many passive
verb constructions and other usage of the verb ‘1o be'. The category of verbs labeled
‘tobe’” measures both passives and sentences of the form:

subject 10be predicate

In counting verbs, whole verb phrases are counted as one verb. Verb pharases containing
auxiliary verbs are counted in the éategory *‘aux’’. The verdb phrases counted her= are
those whose tease is not simple present or simple past. [t might evenrually be useful to
do more detailed measures of verb tense or mood. Infinitives are listed as **inf"". The
percentages reported for these thres categories are based on the wtal aumber of verb
phrases found. These categories are not mutually exclusive; they cannot be added, sincs.
for example, *‘10 be going'’ counts as both *‘tobe™ and “*inf"*. Use of these three rypes of
verb constructions varies significantly among authors.

STYLE reports passive verbs as a percentage of the finite verbs in the document. Most
style books warn against the overuse of passive verds. Coleman [11] has shown that sea-
tences with active verbs are essier to learn than those with passive verbs. Although the
inverted object-sybject order of the passive voics seems to emphasize the object.
Coleman's experiments showed that there is lirtle difference in retention by word position.
He also showed that the direct object of an actve verd is retained better than the subject
of 1 passive verb, These experiments support the advice of the style books suggesiing
that writers should try to use actve verbs wherever possible. The flag *“—p'" causes
STYLE 1o print all senteacss containing passive verbs.

Pronouns add cohesiveness and connectviry to a document by providing back-refersncs. Taey
are often 2 short-hand notadon for something previously mentioned. and ther=fore czn-
nec: the seatence containing the pronoun with the word to whick the pronoun refers.
Although there are other mechanisms for such connections. documents with no pronouns
tead to be wordy and to have lictle connecdvity.

-6

Adverts can provide transition betweesn senteacss and order in time and spacs. In performing
these [uncuions, adverbs, like pronouns, provide connectivity and cohesiveness.

Conjunctions provide parallelism in a document by connecting two or more equal units. These
units may be whole seatencss, verb phrases, nouns, adjectives, or prepositional phrases.
The compound and comnound-complex senteacss reporied under seateace type are paral-
lel souctures. Other uses of parallel structures are indicated by the degres that the
number of conjunctions reported under word usage exceeds the compound sentencs
measures.

Noums and Adjecrives. A ratio of nouns to adjecdves near unity may indicate the over-use of
modifiers. Some technical writers qualify every noun with one or more adjecuves.
Qualifiers in phrases like “‘simple linear singie-link nerwork modei™ oftza lend more
obscuriry than precision to a text.

Nominalizorions are verbs that are changed 0 nouns by adding one of the sufixes “‘meat’,
‘*apce’", ‘“‘encs’’, or “‘ion". Examples are accomplishment, admittance. adherence, and
abbreviadon. Whea a writer gansforms a aominalized seatence to a adn-nominalized
sentence, she/he increases the efectiveness of the seatencs in several ways. The aoun
becomes an acive verb and {requentdy one complicated dause becomes two- shorter
clauses. For example,

Their incdusion of this provision is admission of the importance of the system.
When they included this provision, they admitted the importancs of the system.

Coleman found that the transformed sentencss were easier (0 leam, even when the
transformation produced sentences that were slightly longer, provided the transformation
broke one clause into two. Writers who find their document contins many nominaliza-
tons may want (o transform some of the sent=uces to use active verbs.

2.5, Seutence openers

Another agresd upon principle of style is variety in sentencs openers. Because STYLE
determines the type of sentence opener by looking at the part of spe=ch of the first word in the
sentencs, the sentencss counted under the heading ‘“‘subject opener’™ may not all really begin
with the subject. However, a large percentage of sentences in this category stll indicates lack
of variety in seatence openers. Other sentences opener measures heip the user determine if
there are transitions between senteaces and whers the subordination occurs. Adverbs and ¢on-
junctions at the beginning of sentencss are mechanisms [or transidon berwes=n sentencss. A
pronoun at the beginning shows a link to something previously mentioned and indicates con-
pecdviry.

The location of subordination can be determined by comparing the number of senteacss
that begin with a subordinator with the aumber of sentences with complex clauses. [f few sen-
tences start with subordinate conjunctions then the subordinaticn is embedded or at the end of
the complex sentenc=s. For variety the writer may want to transform some senteacss !o have
leading subordinadon.

The last category of openers. expletives, is commonly overworked in technical writing.
Expledves are the words *‘it”” and ‘‘there’”, usually with the verb ‘‘to be”, in constructions
where the subject {ollows the verb. For sxample,

There are thres strests used by the traffe.
Ther= are 100 many users on this sysiem.

This consouction tends to emphasize the objes: rather than the subject of the sentence. Tae
flag **—e'" will ause STYLE to print all sentencss that begin with an expletive,

3. DICTION

The program DICTION prints all sentences in a document containing phrases that are
either frequently misused or indicate wordiness. The program, an extension of Aho's FGREP
(12] string matching program, takes as input a file of phrases or patierns to be maiched and a
file of 1ext to be szarched. A data base of about 450 phrases has be=n compiled as a default
pauern file for DICTION. Before attempting to locate phrases, the program maps upper case
lerters to lower case and substitutes blanks for punctuation. Sentence boundaries were desmed
less crideal in DICTION than in STYLE, so abbreviations and other uses of the character **."
are not treated speciaily. DICTION brackets all pantern matches in a sentence with the charac-
ters ("] Although many of the phrases in the default data base are correct in some con-
texts, in others they indicate wordiness. Some examples of the phrases and suggested alterna-
tves are:

Phrase Altermadve
a large number of many
arrive at a degision decide
collect together collect
for this reason L]e]
periaining to about
through the use of by or with
udlize use

with the exception of except

Appendix 2 contains a complete list of the default file. Some of the eatries are short forms of
problem phrases. For example, the phrase ‘‘the fact’™ is found in all of the following and is
sufficient 1o point out the wordiness to the user:

Phrase Alternative
sccounted for by the fact that .caused by
an example of this is the fact that thus
based on the fact that because
despite the fact that although
due to the fact that because
in light of the fact that because
in view of the fact that since
notwithstanding the fact that although

Entries in Appendix 2 preceded by **™" are not matched. See Section 7 for details on the use
of *7,

The user may suppiy her/his own pattern file with the flag **={ parfile™. In this case the
default file will be loaded first, followed by the user file. This mechanism allows users (o
suppress patterns contained in the default file or to include their own pet pesves that are not in
the default file. The flag **=—n"" will exclude the default file altogether. In constructng a pat-
tern file, blanks shouid be used before and after each phrase to avoid matching substrings in
words. For example, to find all occurrencss of the word ‘*the™, the panem ** the ' should be
used. The blanks cause only the word *‘the™ to be matched and not the string **the’” in words
like there, other, and therefore. One side eflec: of surrounding the words with blanks is that
when two phrases octur without intervening words, only the first will be matched

4. EXPLAIN

The last program. EXPLAIN, is an interactive thesaurus for parases found by DICTION.
The user types one of the phrases bracketed by DICTION and EXPLAIN responds with sug-
gested substtutions for the phrase that will improve the diction of the document

-8-

Table 1
Tex: Statistics on 20 Technical Documents
variable minimum maximum mean standard deviation
Readability Kineaid 9.5 16.9 13.3 22
automated 9.0 17.4 133 3
Cole-Liau 10.0 16.0 127 1.8
Flesch 3.9 17.0 14.4 22
sentencs info. av seat leagth 15.5 30.3 21.6 4.0
av word length 4,61 5.63 5.08 .29
av nonfuncdon length 5.72 730 6.52 45
short seat 3% 46% 33% 5.9
long sent T% 20%. 14% 2.9
sentencs (ypes simpie - 3% 1% 49% 11.4
compiex 19% 50% 33% 8.3
compound 2% 14% T% 3.3
compound-compiex 2% 19% 10% 4.3
verd types tobe 26% 64% 44, T% 10.3
auxiliary 10% 40% 1% 8.7
infinitives 3% 24% 15.1% 4.3
passives 12% 50% 29% 9.3
word usage prepositons 10.1% 15.0% 12.3% 1.6
cogjunction 1.8% 4.8% 1.4% .9
adverbs 1.2% 5.0% 3.4% 1.0
gouns 23.6% 31.6% 27.8% 1.7
adjectives 15.4% 27.1% 21.1% 34
pronouns 1.2% 8.4% 2.5% 1.1
nominalizations 2% % 3.3% .8
senlence openers prepositions : 6% 19% 12% 33
adverbs 0% 20% 9% 3.6
subject 56% 85% 70% 8.0
verts’ 0% 4% 1% 1.0
subordinating conj 1% 12% 5% w7
cogjuncdons 0% 4% 0% 1.5
expledves 0% 6% 2% 1.7
5. Resaits
§.1. STYLE

To get baseline stadstcs and check the program's acsuracy, we ran STYLE on 20 tachnical
docurments. There were a total of 3237 sentsnces in the sampie. The shortzst document was
67 senteaces long; the longest 339 sentences. The documents coversd a wide range of subjec:
marter, induding theoretical computing, physics, psychology, enginesring, and afirmative
acdon. Table 1 gives the range, median, and standard deviation of the various style measurss.
As you will note most of the measurernents have a fairly wide range of values across the sam-
ple documents.

As 2 comparison, Table 2 gives the median resuits for two difersnt tschnical authers. a
sample of instucdonal material, and a sample of the Federalist Papers. The two authors show
similar styles, although author 2 uses somewhat shorter seatsncss and longer words than autkor
1. Author 1 uses all types of seatencsas, while author 2 prefers simple and complex seatsncss.
using few compound or compound-complex sentazc=s. The othsr major diferencs in the styles
of these aurthors is the location of subordination. Author 1 sesms to prefsr smbedded or trail-
ing subordination, wiaile author 2 tegins many .senteacss with the subordinate clause. The

-9.

documents tested for both authors | and 2 were technical documents, wrinten for a technical
audiencs. The instructional documents, which are written for craftspeople. vary surprisingly lit-
te from the two technical samples. The sentences and words are a little longer, and they con-
tain many passive and auxiliary verbs, few adverbs, and almost no pronouns. The instructional
documents contain many imperative sentences, so there are many sentence with verb openers.
The sample of Federalist Papers contrasts with the other samples in almost every way.

Table 2
Text Statistics on Single Authors

variable author | author 2 inst. FED
readabiiity Kincaid 11.0 10.3 10.8 16.3
automated 11.0 10.3 11.9 17.8
Coleman-Liau 93 10.1 10.2 12.3
Flesch 103 10.7 10.1 15.0
sentence info av sent length 22.64 19.61 2278 31.85
av word length 4.47 4.66 4.65 4.95
av nonfunction length 5.64 5.92 6.04 6.37
short sent 35% 43% 35% 40%
long sent 18% 15% 16% 21%
sentence types simple 6% 43% 40% 31%
complex 4% 41% IT% 34%
compound 13% 7% 4% 10%
compound-compiex 16% 8% 14% 25%
verb type tobe 42% 43% 45% 37%
auxiliary 17% 19% 32% 32%
infimitives 17% 15% 12% 21%
passives 20% 19% 36% 20%
word usage prepositions 10.0% 10.8% 123% 15.9%
conjunctions 32% 2.4% 3.9% 3.4%
adverbs 5.05% 4.6% 3.5% 3.7T%
gouns 27.7% 26.5% 29.1% 24.9%
adjectives 17.0% 19.0% 15.4% 12.4%
pronouns 53% 4.3% 1% 6.5%
nominalizations 1% 2% 2% 3%
sentencs openers prepositions 11% 14% 6% 5%
adverbs 9% 9% 6% 4%
subject 65% 59% 54% 66%
verb 3% 2% 14% 2%
subordinating conj 8% 14% 11% 3%
conjuncdon 1% 0% 0% 3%
expletives 3% % 0% 3%

5.2. DICTION

In the few wesks that DICTION has been available to users about 35,000 senteacss have
been run with about 5,000 string matches. The authors using the program se=m (o make the
suggested changes about 50-75% of the dme. To date, almost 200 of the 450 suings in the
default file have teen maiched Although most of these phrases are valid and corr=ct in some
contexis. the 50-75% change rate seems to show that the phrases are used much more often
than congse diction warrants.

.10 -

6. Accuracy

6.1. Seatence ldentification

The correctness of the STYLE output on the 20 document sample was checked in detail.
STYLE misidentified 129 sentence fragments as sentzncss and incorrectly joined two or more
seatences 75 times in the 3287 sentencs sample. The problems were usuaily because of non-
standard formatting commands, unknown abbreviations. or lists of non-sentences. An impossi-
bly long sentencs found as the longest sentence in the document usually is the resuit of a long
list of non-sentznces.

62. Senteace Types

Style correctly identified sentencs type on 86.5% of the sentences in the sample. The rype
distribution of the seatencss was 52.5% simple, 29.9% complex, 8.5% compound and 9%
compound-complex. The program reported 49.5% simpte, 51.9% compiex, 8% compound and
10.4% compound-complex. Looking at the errors on the individual documents. the aumber of
simple sentences was under-reported by about 4% and the complex and compound-compiex
were over-reported by 3% and 2%, respectively. The following matrix shows the programs out-
put vs. the actual senteacs fype,

Program Results
simple complex compound comp-complex
Actual simple 1566 132 49 17
Seatencs complex 47 392 6 65
Type compound 40 6 207 pi!
comp-compiex 0 52 § 249

. The system'’s inability to find imperative sentences sesms (o have litle effect on most of
the style smatistics. A document with half of its seatences imperative was run, with and without
the imperative end marker. The results were identical except for the expected errors of aot
finding verbs as seatencs openers, oot counting the imperative sentences, and a slight
differences (1%) in the number of nouns and adjecdves reported.

§3. Word Usage

The accuracy of identifying word types reflests that of PARTS, whaich is about 95%
correc. The largest sourcs of confusion is berwesa nouns and adjectives. The verd counts
were checked on about 20 sentencss [rom each document and found to be about 98% correct.

7. Technical Details

7.1. Finding Senteaces

The formarding commands embedded in the text incr=ase the difficuity of finding sen-
tenczs. Not all text in a document is in seatencs form: there ars headings, tables. equations
and lists. for example. Headings like *‘Finding Sentencss'’’ above should be discarded, not
artached to the next sentence, However, since many of the documeats are formaried to be
phototypeset, and conwin font changes, which usually operate on the most important words in
the document. discarding all formatting commands is not correct. To improve the programs’
ability to dnd sentencs boundaries, the deformatting program. DEROFF (13). has besn given
some knowiedg= of the formarting packages used on the UNTX operating system. DEROFT wiil
now do the following:

1. Suppress all formating macros that are used for utles, Readings, author’s name. 2:¢.

<11 -

2. Suppress the arguments to the macros for titles. headings. author's name. etc.
Suppress displays., tables, footnotes and text that is centerad or in no-fill mode.

Substitute a place holder for equations and check for hidden end markers. The placs
hoider is necessary because many typists and authors use the equation setter to changs
fonts on important words. For this reason. header files containing the definition of the
EQN delimiters must also be included as input to STYLE. End markers are often hidden
when an equation ends a sentences and the period is typed inside the EQN delimiters.

5. Add a " after lists. If the flag —ml is also used. all lists are suppressed. This is a
separate flag because of the variety of ways the list macros are used. Often, lists are sen-
tences that should be included in the analysis, The user must determine how lists ars
used in the document to be analyzed

Both STYLE and DICTION call DEROFF before they look at the text. The user should
supply the =—mi flag if the document contains many lists of non-sentences that should be
skipped.

»

7.2. Details of DICTION

The program DICTION is based on the string martching program FGREP. FGREP takes
as input a file of patterns to be marched and a file 1o be searched and ourputs each line that
contains any of the panerns with no indicadon of which pattern was matched. The following
changes have been added to FGREP:

1. The basic unit that DICTION operates on is a sentence rather than a line. Each sentence
that contains one of the paterns is output.

Upper case letters are mapped to lower case.
Puncruation is replaced by blanks.
All pantern matches in the sentence are found and surrounded with **{™ **]™

A method for suppressing a string match has been added. Any pattern that begins with
= will not be matched. Because the matching algorithm finds the longest substring, the
suppression of 2 match allows words in some corrsct contexts not to be matched while
allowing the word in another contaxt to be found. For example, the word ‘*which' is
often incorrecty used instead of ‘that” in reswictive clauses. However, ‘“‘which™ is usu-
ally correct when preceded by a preposition or **.”". The default pattern file suppresses
the match of the common prepositions or a double blank followed by **which™ and there-
fore matches only the suspect uses. The double blank accounts for the replaced comma.

Mhu'd
. h

8. Conclusions

A system of writing tools that measure some of the objecuve characteristics of writing
style has been developed. The tools are sufficiently general that they may be applied to docu-
ments on any subject with equal accuracy. Although the measuremeants are only of the surfacs
structure of the text, they do point out problem areas. [n addition to helping writers producs
betier documents, these programs may be useful for studying the writing procsss and fAnding
other formulae for measuring readability.

<12 -

References

1.

2

10.

11.

12

13.

L. L. Cherry. “PARTS - A System for Assigning Word Classes to English Text.” submit-
ted Communications of the ACM.

B. W. Kernighan and J. R. Mashey, **The UNIX Programming Eavironment." Software
— Practice & Experience , 9, 1-15 (1979).

G. R Klare, “*Assessing Readability,” Reading Research Quarterly, 1974-1975, 10 . 62-
102,

E. A. Smith and P. Kincaid, ‘*Derivation and validation of the automated readahility index
for use with technical materjais,”” Hwman Facors, 1970, 12, 457-464.

J. P. Kincaid, R. P. Fishburne, R. L. Rogers. and B. S. Chissom. *“Derivation of new rea-
dability formulas (Automated Readability Index, Fog count, and Flesch Reading Ease
Formula) for Navy enlisted personnel.”” Navy Training Command Research Branch
Report 8-75, Feb., 1?75.

M. Coleman and T. L. Liau, **A Computer Readability Formula Designed for Machine
Scoring,”” Journal of Applied Psychology, 1975, 60, 233-234.

R. Flesch, “A New Readability Yardsucek,' Journal of Applied Psychology, 1948, 32, 221-
233.

E. U. Coke, private communication.
D. W. Ewing, Prigng for Resuits, John Wiley & Sons., Inc., New York, N. Y. (1974).

G. Leggett, C. D. Mead and W. Charvat, Prentice-Hall Handbook for Writers, Seventh Edi-
tion, Preatics-Hall Inc., Englewood Qliffs, N. J. (1973).

E. B. Coleman, *‘Leaming of Prose Written in Four Grammatcal Transformations,”™ Jour-
nal of Applied Psychology, 1965, vol 49, no. 5, pp. 332-341.]
A. V. Aho and M. J. Corasick, “Efficient String Matching: an aid to Bibliographic
Search,' Communications of the ACM, 18, (6), 333-340, June 1975.

Bell Laboratories, "UNIX TIME-SHARING SYSTEM: UNIX PROGRAMMER'S
MANUAL, " Seveath Editon, Vol. | (Jaguary 1979).

-13-

Appendix 1

STYLE Abbreviatons

4 grom demd of

s largs masTeer of

s on of

a remgorwy of

» noug (or

s sumeer of

2 sewvecomy wralerence (or
¢ sreterencs {or

s svmil rusvenr of

A teOenCY 1@

=fvem
ulord s

ulof

sicerg 1hm Line
- vvoncouos of

[¥ 3

- or

s sitaionsl
vy oot all
wrrve u s

= o manar of (s

» a mmnod of

= (o0d or tanwr mn
a8 of now

JTTY LD & CONCIRION

5y mes of
oy 17e uis of
SUTY O\l sADETTIEND
cETer wWwoul
symer wouna

- 14

Appeadix 2

Default DICTION Pacterns

cEar portee
(- - BT %

chaxs on-
CAER P aR
aras erowsd
Comp PrOLERTY
colladoree togmowr
oot LoguLhay
RS Loy
- ATY K B

unng the U Lt
-i wd evry

anooonsl (estings

femrvul te
[ew v namer

hows = e grodacion of
L[}

o ng woum

i a il pummite

\a & largs Mmensure
0 & OOBLES 0
o ST

e atverse of
o} agreeme wna
= ad comss

® ez of

a oetef of

n befang

a dervess

a ame

ia ciose prexorety
» condix vk
% comumos v
) COMMRDION Wi
el

0 lares Memmars
™ maay cem

n mon e

i A7y cewuon | e
@ orowr w

" e choms

m referexs ©
m regwd 0

o regerds ©@

@ resuon wah
a oM gy
\a nze

a e of

=N e smount of
= e ase of

1 the owre of
(ke gvan

o e Seidt of

u U (arm of
e reance of
» (g T
o the lam aneiyes
- e manar of
m o nenr (uurs
= the neendornoos of
m e Aex Low domam (wure
n (he orommmy of
1 1 reves of
N ING SAMY way = ENCITONY
@ the samme of
- (g veanity of
- Lt cam
in vrw of i
= vesisoow of
L F)
—ce
mancative of
ALY
-y
v @
e
e of
e 3
imancs aud pareoses
marTangs
rvgrcian
@ Godret a8
& used » comrol
« vaas
o whare
Ly
4 RANES & resacm
o was noued L
O COmPErRLIOn
N GRNTYErEENG
s casctty
une of
how s
lam St AR Lomm
lmar on

g ot of

nk up

Gtus dowes L
lose o on

o of

Mus cassunis
mais 8

s aatmeny 1o
mads an

MAS ApsisILION WO
MaLs comact wwh
maxs mewuon of
mase ow & Kw of
AAke (A9 ETURMTANCE OF
made U sincmsTret

mrenerrvgiud
My U wna
men dowe
malt up

Mmarmes 33 (A 8 poRme
AanOr \MENNAnce
s ous o8

-15-.

marma asyerem —orn whee
mnd § COMTMENEILION wowd of
shart sence of e "y bmtmvwr
shouid of -
e v ° wmen
snmLen ° slowt whach
»aeio ° ofier woucn
son of ° & whact
oeli omt ° breem ehacn
mll conmes vy wwch
mil rerams ° for winch
ASSEman ° froen eaxe
] ° m omon
amcewd w ° o weacn
sagguarve of ‘ of wrach
smanor \nme ° a8 weich
mr on wemcs
Bka sewrORrmLs ° over whacn
e cognaance of ° trougd e
LS W0 COMMMEIEOaR ° 0 wanch
\armed & ° unser ench
\SrTRERme K]
U] ° wuh wiicn
L sasigy ° wihes whh
s suhors “cocxwws
e caee e “Ukswus
e (a3 ° anarens
e (oregourg

wch gy e X 8 Clowr et
RN Uve rasin of pOSROMTY
wnhout furtwer aeisy

Berkeley Font Catalog

October 1980

Trademarks:
MUNIX, CADMUS for PCS
DEC, PDP for DEC
UNIX for Bell Laboratories

Copyright 1984 by
PCS CmbH, Plalzer-Wald-Strasse 38, D-8000 Miinchen 80, tel. (0B89) 67804-0

The information contained herein is the property of PCS and shall neither be reproduced in
whole or in part without PCS's prior written approval nor be implied to grant any license to
make, use or sell equipment manufactured herewith.

PCS reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages (including conseguential)

caused by reliance on the materials presented.

Introduction

This catalog gives samples of the verious fonts available at Berkeley usimg
vtrof on our Versatec and Varian We have them working 4 pages across iz a 3§
inch Versatec, and rotated 50 degrees on & Benson-Varian 11 inch plotter. The
same softwars should be adaptable to an 11 inch Versatec, and in fact {s runninz
at several other sites, however, not having one here, it isn't part of this dist=pu-
tion. Such a driver is available from Tom Ferrin at UCST.

To use these fonts:

(1) Hershey. This is the default font. The Hershey font is curreatly the eniy
complete font, with all 16 point sizes and all the special characters trof
knows about. To get it, use vtroff directly. To illustrate this with the —=s
macro package:

virof —ms paper.nr

(2) Fonts with roman, {talic, and bold, such as nonie. You can load all three
fonts with, for example:

vtref —=F nonie —ms paper.nr

To get just one of these fonts, use (3) below, appending .r, .l or .b to the
font nare to specify which font you want mountad. e.g.. to get italies in
delsgatas,

vtro —2 delegats.i —ms paper.nr

(3) To get a font without a complete set, choose which font (1, 2. er 3) you wart
replaced by the chosen font. For example, to use bocklin as though it wers
bold, since font 3 iz boid, use:

vtroff =3 boeklin —ms= paper.nr
)

To switch between fonts in trof], use
Jt3
to switch to font 3, for example, or use
\I3word\f1

to switch within a lins. For mors information see the Nrof2/Troff Users Manual

Special note: troff thinks it {s talking to a CAT phototypesetter. Thus, it
does all sorts of strange things, such as enforcing restrictions ke 7.54 lmchaes
maximurm width 4 fonts, a certain 18 point sizes, proportional spacing by point
gize, ete.

In particular, the following glyphs will clway= be taksn from the special
font. no matter what font you are using at the time:

°l ’l -I..l .l <l >. \ il ‘. -l -0 md—
This may explain what are otherwise surprising results in some of the subse-
quent pages.
In addition, the following Greek letters bave been decreed by troff as look-

tng so much like their Roman countarparts that the Roman version {(fort !) is
always printed, no matter what font is mountad on font 1 at the time:

ABELEZHILKYNOPTX

(See table I in the back of the Nrof2/Troff Users’'s Manual for details 2bout what
glyphs are in each font and bow to generate the special glypks.)

Foat Layout Positions

=l b

ml RN —e

N R I R A I L I D L L T L A AT
wvvuvvuvuuu«vVuwvvvvuvuuwwwuV..\uvvv«uvV%VVW%«VVVVVVVVVVW« >
1o <M 9 oM ZHOHAINEHEXIAH—-U/,0(|- RO ULUED c UL A3 wOEadldDEXAID S]
<MUAVLOMu s MIdTOLTEND>ERN N — | dosvvewwa~t~HHONTLBEeOIPRNRN —
mmm
.I.. T r, hh-—-u) 0P .0 .a @nﬂu-ﬂsou-ﬂ”w
_% Y55580840208333b3ksLs05L0828088 y I3 3 98138u898:
_“" .:..U. Q".V.\f’llj‘][l]"czﬂ.“ ¢ - > ‘* . -’.--‘&."’. vea
au, K PNy
WVV\mmmuumwwmmwuuu«

APL FONT, 10 POINT ONLY

AxBiCADIEe F_CVHOINJ-K' LOMINTOOP QIRsSIT~UL VUF XY T2Zc 01234 $6789
("F8oe2VvA(roa({)]l]am~_ \NTIQ2<ce/\.>,<

!-.(x-o-&-o-‘-o'(-ov)-oA

ce € b we? o\

:-oS'-ol--oog-o-[-o{]¢}|-o:{ - @

Baskerville font, roman, ibold, ialic 2 paint enly (Called “basker” on line)

ABCDE FCHI] KLMNO PQRST UVWXYZ abcde fghij kimno pqrst uvwxyz 01234 55789
17§82k ()ie-allf]~~\I8';e/?7.>,<

If dme be of all things the most precious, waxing time must be, a3 Poar Richard mys, the greates
prodigality; since, as he elsewhere tells us, loxt tme is never found again; and what we all dme
enough, always proves litie enoughc Let us then up and be doing, and doing to the purpose; 10 by
diligence shall we do mare with less perpiexiry.

ABCDE FGHI] KLMNO PQRST UVWXYZ aiede fghif kimno pqrst wowsyz 01234 56789
1" 3828 ' ()iwcaf)] =~_NIQ@';12.>,<

If time be of all things the most precious, wasHng tms wmust be, a3 Poor Richard soys, the greates:
prodigaliry; since, a3 Ae elsewhers tells ws, lost tims Ls naver found oguin; and wAct we call time

encugh, always proves Ustle enough: Let ws then up and be doing, end doing to the purguse; 5o by
diligencs shall we do more with less perpleciey.

ABCDE FGHI] KIMNO PQRST UVWXYZ abcde fghi] kimno pqrst urwxyz 01234 55739

1" BS2&'(Niacnl]f]~~_\|@*1+/2.>,<

If time be of all things the most precious, wasting time must be, as Poor Richard says, the
greatest prodigality; sinee, as he elsewhere tells os, lost time is never found agzin; and what we

all time enough, always proves little enough: Let us then up and be doing, and doing to the
purpose: so by diligence shall we do more with Jess perplexity.

Bochlin lont, 14 and 28 point only.

1} point

ABCDE PAHII KLERE PERIT WVWXTYR abede Ighij Rimne parst uvwxyz
01234 35788

*()z==[1":/2.,

T time be ol all things the most precious, wasting time must be, as Poor
Richard savys. the greatest prodigalitys since, as he e{sewhere tells us,
lost time is never [ound agam: and what we call time encugh, always
proves little encugh: Let us thea up and be doing, and doing te the
purpese; so by di%gencz shall we do more with less perplexity.

28 pO int @ punctuation except period.)

ABCDE FGNIJ KLGE RO PORST
YVWXYZ abede ighij Rlmno pgrst
uvwxyz 01234 56789 .

¥ time be of all things the most
precious wasting time must be as
Poor Richard says the greatest
prodigality since as he elsewhere
tells us lost time is never Iound
again and what we call time enough
always proves litfle enough Let us
then up and be doing and doing to

the purpose so by diligence shall we
do more with less perplexity.

Bodoai font, roman, bold, izalic, 10 point only.

ABCDE FGHL] KLMNO PQRST UVWXYZ abeds frhij klmno pqrst uvwxys 01234 56789
1" 4828 ()ixaallf]a~NI@ " s/0.>,<

If time be of all things the most precious, wastng time must be, as Poor Richard says the preatact
prodigality; sinca, ss he sisawhere talls uq, lost tima is aever found again; and what we call time enough,
alwzys proves little enough: Let us then up and be doing, and doing to the purpose; so by diligence shal we
do more with less perplexity.

ABCDE FCH1J] XILMNO PORST UVW XY Z adcde [ghij kimno pqre uswzys 01234 55789
1"§82&°'():z-w[]f]~~\|B';e/2.>,<

If dmae be of all things the most precious, wasting rime mug be, as Poor Richard says, the greatast
prodi gality; dncs, as M elsewchere tells na, lost titne is never found agairg and whas we call ime

eough elways preves linle emou gic Lot us then up and be doing, and doing te the purpose; so by
diligence shcll we do more with leas perplexity.

ABCDE FCEIJ XLMNO PQEST UVWXYZ abede {ghij kimmo pqrst avwrys 01234 SE6789

1“832&"():xe[]i]o~\[O';+/2.>,<

1
I time be of all things the most precious, vasting time must be, as Poor Richard says, the gresms:
prodigulity; cince, as he elsrwhere talls us, loct time ls never found agazin; end what we call time enough,
alwxys proves little enough: Let as then up and be doing, and doing to the purpose; o by diligencs cdhall we
do more with less parplexity.

.csch 38
to put yourself in constant spacing mode or elss use zero Instead of space. You

Note: Our attempt at compatibility with Stanford was only 99X succesxful. If you use
should also set the vertdeal spacing to 18 points.

a blank space to indicate an empty white square it will come cut narrow due to the

stupidity of troff. Either include the lne

Chess, 18 point only

NG AR B agoe®w 1T N

POBANMRSQLKJTVWHZ

TN aE e

////ﬂ///
/// R

) g N\ % N
////////////,/ //////

g FElglghghy ,,,,/ a/_,//
N EEERERE // ,/,, /A,_&/
94 S p, o R
St ESABNENURR MON NN
HuGAPEPReRB eRp Ruas

Thitsa oatas iz ‘ires TDves.

Clarendon, 14 and 18 point roman only. From SAIL (Paul Martin & Andy
Moorer)

ABCDE FGEIJ ELMNO PQRST UVWXTY abede fghij klmao pgrs:
uwvwxyz 01234 568789

"ESIx(): ~m[) i~~~ N]|@"3+/2.>,<

If time be of all things the most precious, wasting time must be,
as Poor Bichard says, the greatest prodigality; since, as he
elsswhere tells us, lost time is never found again; and what we
call time enough, always proves little enough: Let us then up

and be doing, aznd doing to t;ne purpese; so by diligence shall we
do more with less perplexity.

ABCDE FGHIJ ELMNO PQRST UVWXY abcde
fehij klmno pgrst uvwxyz 01234 56788

TES Tt O ie=[1{]~~NN]@ 54 /2.>, <

If time be of 'all things the most precious, wasting
time must be, as Poor Richard says, the greatest
prodigality; since, as he elsewhere tells us, lost
time is never found again; and what we call time
enough, always proves little enough! Let us then
up and be doing, and doing to the purpose; so by
diligence shall we do more with less perplexity.

Campwsar Medara fywas,r emna, dalic, sad buid.(vy Den XKaush) 47,4 8,10,13,13 peimte (Avuladls » an)

Neta \ha ths czx foxts me lymaded for TXX and dem™s fare ¢0 wuil with tofl The 1pecing is aet preper~
denal by puint sive,and bescs saly eme puiat sise can be tumnd %0 be nixsly spasesh We have tumid 1he 10 puime
sine,dus the § puint lesis smwis crampde

Sars of \be punciustes s Disrisg s 1axmn of \he foxms Xaudh ase uses o sanvcasderd sonien of ASCT,
aid domss somm gypls are available valy with specal symbels suxh as \(13 Othurs cannet e scamed & db

Kousk’s fouss seacwwhss gy thas aermal,sisca e [wtesds ‘\he ertpwdt %0 b redused bmfare primuing
Sacs wa? im o Ustmion of T34 [aahes widih en ewspws, tbhis ls se practicals Hancs,ibhe erignal fowse huwe
es ruladelled with the puint cisze tny sre darent ta witheut reduction, Same fows (6 paiss baid, 7T peioe remas,
2 puixe italle mad baid,? puint baid,and 11 paiss {talic) which weuld Save stharwise been misning wers goeresmd

¥y tiriaking ths mas largar paiss sive of the samn WYl (This gme agniase the (das of salses, vt we we tin
toals ve howed

10 Point Romaa

ASCDE FGHLI KLMNO PQRST UVWICYZ abcde fghi] kimno parst wywxys 01234
8739 FEX () *- {{~~N\N O #.5,¢'Ind,T,010,..4,04,7,0,1,,

Ir tizms De of all things the most precious,wasting tims must be,as Poaor Richard says,the
gruatart prodigality since,as ke esawlhers talls ug,lost timse is never found again and
what wa call time enough,always proves littls enough Let us then up and be doing,and
deing to the purpose 39 by diligence shall we do mors witd less perplexity.

10 Poesnt talic

ABCDE FGHIJ KLMNQ PQRST UVWXYZ abdcda [ghi7 kimna pgret uvw=ys 01284

56'789!"ipdﬂ‘():'-=[}”‘*-\u@';+/?.>,<‘,',L',-,-,E.I‘,#,H,
mhsi o6 4904887558

If time b¢ of all things tha most precious, wasting time must de¢, as Poor Richard sayr,
the grealest prodigalily; nnce, as he eciscwhers teils us, last e 12 never found again;
and what we call time enough, slways proves litils encugh: Lat us then up and be
davng, and doing ta the purpaose; g0 by diligencs ehall we da more unth less perplesite

10 Puing Baid

ABCDE FGHI XLMNO PQRST UVWXYZ abede fghi] Ximno pqrat wrwxys 01234

BV FRRE ' (J1te=[]l]=~N\NBO*;4+/2.>,<,%Z,448, T, 90,
A AT L LY, S

Ir time be of all things the most precious, wasting tims must be, as Poor Rickard sayy,
the greatast prodigailtys; since, as ha elsewhers talls us, lost time is never found again;
and what we call tims eaough, always provas little enough: Lat us then up and be doing,
and doing to the purposes 10 by diligence shall we do more with less perplextty.

1 Pams Raryem, Buid md Dugin

T Poiss 2unan "nid sad Salie

8 Pans Roman 3ald and Jiailis

9 Point Reman Jold, and Jialic

10 Peint Rorman,Bold,and lalte

11 Point Roman, Bald,and [ialie.

12 Point Roman,Boid,and lisglic.

Countdown (22 point, upper case letters only.) From SAIL (Paul Xartin)

REGOE FEH MLTINRD PIRST LUUWAYS

GEUNTACWN KRS R INTEGERS TI GEANRT
QDN WWITH BUT IT GIONIPENSATES BY
BENIG LGV R0 IR1EGIELE

Cyrillie, 12 point only

X33 sz $rx3 zxwED oper yeia

 Txxe Ge o LAX TXUXIT TIR WOCT CPENTYC SCTIED TEMe MYTT Ge o€ oop EXIpX SaiC TR rpesTecs

mmcnmm'nmme:mmmmmemmem
AxmfiC gpoBeC ANTTAR EXTYTI €? Y€ TIeX yu X Ge IDUNT 4RI ZOENT TO TIE gypmoce ¢ Gf InTwreme cxaax e

IO MCPe ETI aect oepuierTd

WX XUl Y+» Z+3 a—« b—+6 d=z e—e f+¢ g=r h—x i+x k=x]+2 m~« n—~x 0~

Po Ip S tar U=y V=3 A Z

Delegate, roman, italie, and beld, 12 poizt enly

ABCDE FGEIJ KIMNO PQRST UVWXYZ abcde £ghi) klmmo pqrst uvwxyz 01234 56789
178388 N:e=allf]la~NI®?;¢/7.>,<

12 tize te of all things the most precious, wasting tize must be, as Poor Rlichard
siys, the greatsst prodigality; since, as he elsewhsre talls us, lostT tize is
pever found again; and vhat ve call time enough, always proves little eaough: Let
us then up and be doing, and doing to the purpose; so by diligeace shall we do more
with less perplexity.

ABCDE FGZIJ ELYNO PQAST UVWXYZ abcde fghi) klmno pqrat wrumyz 01234 56739
1" #3528 ()1t]l]~~N\NIQ® s+/7272 >.,<

17 time De of all tAings the most precious, wusting time muse de, a3 Poor Aiclard saps,
tie greatest prodigality: since, as Ae elsewhrere tells us, lost time is rever found

again;: and ohat we c2ll time encugh, always proves litile emough: Let us tien up and Je
doing, and doizg to tle purpose; 3o by diligence shall we do more with less perplexizy.

ABCIE FGAIJ KXNO PQRST UVEXYZ abcde fghij X1lmno pqrst uvwxyz 01234 56789
1" 4828 V:e=n[]f{]~~N1@?;+/72.>,<

I£ tize be of all things tie most precious, vasting time must be, as Poor Richard
3ays, the greatest prodigality; since, as he elsevhere tells us, lost time is
never found again; and vhat ve call tize eacugh, always proves little enocugh: Let

us then up and be doing, and doing to the purpose; so by diligence shall ve do more
with less perplexity.

Fix fixed wigth font, 6, 3, 18, 12, 14 point

§ e

MDY rOd) G S FUNIT VAQY cmme ‘et bimw s cmape LI TDW

fogsg ' (dr10cellyl*se/?.5. 4

I7 veam W of ol]l Wrow W el Pwicss wrtiag (o et e @ Pur llowy apes Vv peian winlitvs stmme @ " «lamrery

Wwile wie lowk tiam @ sovnr ‘ouny epne) ol whad w0 GBil \ram Grangh: alawe P LIl CEE L6t W VIR @ B9 I8 WA, B antag
BN swrmass @ w dlioonm wull = @ = witn lam areiasviy.

2 peint

ARCAE FSHIJ KLNNG PQRIT UVUIY avude fqni] Kimme parst uvusyzs 81234 33739

1 " 3328 ()1 e6call flo=p\N|Q*7e/72.>, <

11 tise de u? all things the sest precisus, wasting time sust de, 4t Peer Riehery says, the
yrestinst prediqaility; sineaa, 48 he sicswhare tails us, [set time (s never {sund aqeing and

uhat we ¢o8li tiae sasugh, sluays preves |ittis eneugnt Lat us thsn us a2nd bs daing, and deing
ts the purpese; es dy d¢illigenes shall we do Aere uith (esa perpiexmity.

18 point
ABCTE FGHIJ XL'NO PORST UNIXKY apcae fghl) kimno pgeet uvomz 81234 567339
I " 828 (M1 Benl]l flae=_\N]O'1+/72.>,¢

[+ tine Do of 3l| things tha 3ast precious, wasting tise must be, as Pocr Richard
says, the grastast prodigality; sincs, as he elssuere tells us, lost time is never
found againt and whet we call tise emough, elusys proves little emough: Lat us then
€W and be cning, ard Sming to the purposey g by dliligencs shall we co mere with less
perplaxi ty.

12 point

ABCLE FGHIJ KUND PQRST UYWXY abcde fghij kimno pgrst uvexyz 81234
E578S

| §8%&' () =m-allf{j~~_NlG'1+/2 >.%<

1f time be of all things the most preclous, wasting time must be, as
Poor Richard séus. ths greatest prodigality; sinca. as he elseuhere
teils us, lost time is mever found again: and what We call time
enough, aiWays proves little enough: Let us then up and be doing, anc
doing to the purpose: so by diligenca ehall we do more With lass
perplexity.

14 point

ABCTE FGHIJ KLMNO FORST UMUXY abede fghij kimmo porst
uvixyz B1234 55783

v 28%8° () s x==[] fl~~_\N|@*‘;3+/7 >
v <)

If time be of all things the most precious, Wasting time
must be, as Poor Richard ssuys, the greatsst prodigality;
sirce, as he elsadhere tells us, lost time is never found
acain; and What ke call time enough, always proves little
enough: Let us then up ad ke doing, and doing to the
pu-posa; so by diligence shall 1= cdo more with lass
perple&itg.

Cacham, rcean, boid, 1talie, 18 point only .

The gachaz font is aimost indistinguishacie from the fix fcnt.. In.fac:. it has bfen
pointed cut that cur gacham Fgman and rold fonts really are tix. Sign. They are in-
cluced angpuay for canveniencs.

AECCE Forld XU'NO PORST UNMXYZ abcds fohi | kimno porst uviogyz 312346 55738

1 »§828° () saall =~ N\N|C*';+/2.>,K

[# time be of ail things the mast precicus, uasting tise must be. as Poor Richars
says, the greatest prodigal [ty sincs, as he el seuhere talls us, lost tios is never
fouxd again: and what wa call time enough, aiuays proves little enough: Lat us thenm
W and be caing, and doing to the purposes s0 by dilligence shall ua c¢o core uith less
parpiexi ty.

ABCDE FGHIJ XLMNO PQRST UWXYZ abcde fghi1J klmmo pgrst uwxyz 01234 36789

I " §S3&°():"ca[]t)=~\N]®*;+/2.>,¢

Ir tima ba of all things the 2st pracicus, wasting time must be, as Poor Richard
says, the greatast prodigality; sincz, as hs elsewhere 2alls us, lost tim 1s never
found again; and what wa call tim enough, always proves little enough: Lat us then
up and ba doing, and doing to tha purposa; so by diliganca shall we do more with less
parplexity.

‘ .
ABCIE FGHIJ XUND FORST UMIXYZ aocde fghi] kiano parst uwonyz 81224 5733
1 " 8828 ()2 maa[] fla=_\N|®':+/2.>,¢
[f time be of al! things the most precious, wasting tise must be, 3s Poor Richard
says, the greatest prodigality; sinca, as he eisewhers tsils us, icst time is Never
found again: and what ue c2il tioe -'u.;g\. Aluays proves little enough: Lat us then

up ad be doing, ad doing to the purposes a0 by dilicencs shall we do mors with less
perDiexity.

Greek, 10 point only

This font provides an siternative to the Greek characters on the standard special

font.

ABCDE FGEWJ] XIMNO PQRST UVWXYZ abede fghij kimno

ABXAZ ¢I5le XAMNO OBPIT TRSV¥Z adxie $red v

pqrat grwIy

rvdpere gy

1 nas 5 64 @) rarTe T 00T TMTI0N werry rn auoer 2 ar Joep Pizwasd rave mu vpeereee
rpediTalury ArXt oaF W Urursmpss TS 70 L3e? rLe & MTIp $owd gr@r o wsar v Tul\ M Ry

Saave vyore Mrrds evre Aav w rar e @ & leuy o jeuy e e reprent o S liTerxt read)
s b0 pogn wory Joov Tioviapry

The hlS font includes a3 subset of the hl3's graphic charactor set, plus a
fau logical extensions to allow forms and diagrams to be crawn. The characecrs
are the same as the hl3's graphic interpratation set.

a bcde ¢ 38 tuvsnh i kI
| =44 trrsdtb=-F2elT
The charactcrs ars desigred to overlap.

Exaeple of usage for dlagrams:

, MCe3882 CESIGN MFCOULE:
= 16-bit AU
- s 32X bytes RAM «—>{ Termimai
28 a & bytes monitor ROM
»icrocomputer = Parallel Ports
systen =m 16-0it timers

BX bytss RAM >

B4K bytes RANM

A
Y

Bebrew, 16, 24, and 38 point only

16 paint

Nas=p Bomy shmol soeTm nm ME M SSToER T M4 STEY

tE Y () s LIl AN NT@ iy 2.0, <

T TrTH ST TR N3 STRYTOPSS INTTSP ST TR oUpUTRSTSID. TR oMt T

NTNIENGY 8 ST ONTETE WAREST. IR M e o A EemoaTe. 1 yE ey
n 2787 NS,

x2cs 3y 25ms 2pEe wnv 2

B ODRRS R O TN ROy e o e
DM S BRI B OmRT Bm RTINGENS > 12 xbere
MORTR2S

38 point (rather ragged)
m:‘) Jﬂ y Jjﬂ -1;‘ ~ !&?:D .]rm

Ty

10 point Hershey

ABCDE FGHIJ XLMNO PQRST UVWXYZ abede Ighi] kimno pqrst uvrwxyz 01234 58789 !, 8,
&Gl)un.

\(em = = = = =, \= = = \(bu = \(sq <o \(ru-_\(14=Y \(12 =% \(24 =Y. \{i -
BN =B\ =2 \(Fl=tL \(Fl>m\(de =" \(dg = 1. \(£m = \(ct =\(rg =9
\(co - 8

When you flex your fingers In a coffin, {t can baffe a Zirafe.

ABCDE FGHIJ KLANQ PQRST UVWXYZ abcda fghij kimno pgrst uvucsyz 01234 56789 !.
‘.z.&. ‘.(.).:n .O.l[l]l.l:l /l?l'

\(em = o = @ = \= == \(bu =9 \(3g =2 \(FQ = o \(14 = Y\(12 = %\(3¢ < I\ (& - 11
N8 = N\ = & \(T1 = 1. \(F1 = 1 \(ds = °, \(dg = 1. \(fm = ', \(ct = &\(rg = ®\(c=
- 8

Fhen you flizs your flngers tn a cofin, i can bayfle g girgPe.

mmmolmwmmrmj klmno pqrst uvwxyz 01234 56789 !, S,
&0/,

\(emm = e = = =, \= = = \(bu ==o \(sq = \(Fu = , \(14 =« L\(12 =« ¥\(34 - I\(& - 1,
N = 8 \(ff =& \(F1 > \(Fl =@ \(de = \(dg = 1. \(Im = *, \(ct = $\(rg = ®\(c2
-® .

Yhen you flex your fingers in a colln, it can baffls a giraQe,

From specialfont: " g=f{~~_\|®" ' +><

Special characters: \(pl = +, \(Iml = =, \{eq = =, \(** = o, \(sc = §, \(aa = *, \(ga = *,
(= \(sl=/ . \("a=a,\(*b =8 \(Z=7.\(*d=d. (=2, \(Z=¢ \(T~7.
N(*0 = B, \(*"1 =& \(*k = £, \("1 = A \(*"=3 = \("n=v\(°=¢ \("0=0, \("p=~m,
N(T=p (3= \(ts=. \(t=T.\(U=0 \(T=g \(X=x \(*qg=¥ \(°7W =0,
\N(*A =+ AN BB \(Geol \(*D= & \(E=E.\(Z=Z.\("Y=-H \(*H=8,\("l =1
N(*K=>K\(LaANYM=M \(*N2N\(C*2Z\(0O=«0, \(*P=Tl. \(*R=P.\(*S =T
N T2T \(U=eT \(Fod \(X=X \(Qoo V. \ (W=D \(sr=v.\r2=" \(>o==2
(€= = £, \(5= = u, \(~= =+, \(gp wm \(Iz 2, \(*> == \(C = \(ua~-*\(da -
s \(mu = x, \(d =&, \(+= = = \(cu=uv, \(ca=n \(sb=c \(sp=2 \{b=-z \(ip -
2\l = =, \(pd = 8 \(gr = V.\(Do = =, \(is = /. \(pt = «, \(eq = =, \(no = =, \{br =
\(dd = 3. \(rth == \{lh === \(bs =@ \(or = |, \(ct = Q \(1t <} \(Ib = | \(rt = [, \(zD = .
N = \(rk =}, \(bv = |, \(If = |, \(rf =], \(le = [\(r= =]

If time be of all things the most precious, wasting tiie must be, as Poor Richard says,

the greatest prodigality: since, as he elsewhere tells us, lost time is pever fourd again:

and what we call tirme enough. always proves little enough: Let us then up and be doing,
and deing to the purpese; so by diligezce skall we do more with less perplexity.

Tkis is an es=mple of a sample n various fonts.

Harshey font. This i3 the default font for vtred. Roman /talic and Bold in 6. 7. 3. 9. 10,
11, 12, 14, 18, 1B, 20, 22, 24, 25, and 38 point. The following examples ars 10 poizt.

If time be of all things the moat precious, wastirg time must be, as Poer Richard says,

the greatsst prodigality: since, as he elsewhere tells us, lost timse is never found again:

and what we call timne enough, always proves littls encugh: Lat us thea up and be doing,
and doing to the purpose; 30 by diligence shall we do more with less perplexty.

as FPoor Richord soys, tha greatast pracigalily; since, as As elszrwhere t2ils us, lost time
i3 ngver found aycin, ond what we cald time enough, always proves littls enoughs Lat
us then ud cnd de daing, end doing {0 the purpose; so by diligence shall we do more
with lsss perple=ity.

I time be of all things the mosat precious, wasting time must be, as Poor Richard says,
the greatest prodigality; since, as hs elsewhers tells us, lost time {s pever found
again: and vhat we call time encugh, always proves little enoagh: Let us then up and
be doing, and doing to the purposes; sobydﬂ.lgenca:hann do more with lesy
perplexity.

§ yorat, Raman, Baid wnd adic.

7 patm Soman. Beld and /lnie.

8 paint Raman, Bald, «ad Jalic.

9 paint Aoman, Bald, and [Zalic.

10 point Roman, Beid and [izlic.

11 peint Roman, Bold, and [ialic.
12 point Roman, Bold, and J[izlic.

14 point Roman, Bold, and [ialic.
16 point Romean, Beld, and [talic.

18 point Roman, Bold, and lialic.
20 point Roman, Bold, and lialic.

22 point Roman, Bold, and [{alic.
24 point Roman, Bold, and /talic.

28 point Roman, Bold, and
ltalic.

36 point Roman, Bold,
and /talic

Metear, romazn, bold, Jtalie, 8, 10, 12 paint, 20 12 paint italic

ABCDE FGEiJ’ EIVINO PQRST UVWIYZ abcde fghij klmno pqrst uvwxyz 01234 56789
1" #8% &'()i*=n]f]=~N\N|®'1+/2.>,<

If ttme de of all things the most precious, wasting time must be, as Poor Richard says, the
g-u:stpmdigalimsmcz,ashncbzwhsntan:u.lns:umaunemmmagaimmd.
what we call time engugh, always proves little enough: Lat us then up and be doing, and
doing to the purpose: so by dlligence shall we do more wWith less perplexity.

ABCDE FGRIJ XIMINQO PRQAST UVWITYZ adede fghif Rlmno pqrst urwxyz 01234 58739
1"§S%&'()i"=a[]]=~_\N]O®';+/?72.>,<

If time de of all things the most precious, wasting time mnst de, as Poar Richard says,
the greatest prodigality; since, &s he elsewhere lalls us, lost time Is never found
agaln; mdwhnmcauumcmugb.uwaysp.rwulmlem.gmuzutbenupmd
de doing, and doing to the purpose; so by diligence shall wa do more with less
perplaxity.

ABCYIE FGHIT XIMNO PQRST UVWXYZ abcds fghiJ Ximno pqrst avwxyz 01234
88789

k]

1SR &'():t=s[]i]=~~_\[Q'1+/72.>,<

If dme be of all things the most precious, wastdng time mus? be, as Poor Richard
3ays, the greatest prodigality; since, as he elsawhere tells as, lost time {s never
found again; and what we call time enough, always proves little encugh: Let us

thean up and de doing, and doing to the purposa; so by diligenca ihall we do more
with less perplexity.

Microgramma font, 10 point only

ABCOE FGHLJ KLVNG PRRST UVWXY atcss fghij kimna poret uvwxyz O34 5785
1"38%8'():s-a[]f]=~_N\N|D'1+/7.>,<«

If trve ba of ail things the mcst pracicus, wasting tims must ba, a8 Peor Rickard says, s
Createst predcality; sires, as P eisawhsre tails us, loat time is mever fourd agaim and winat

we cail ime sncugh, aiweys groves fita snougts Lat us then up andt be coing, ard dairng to
s purrcss; sa by dlicence stall we co mere with less carpiexdty.

Ftlona font, 24 point only

ABCDI F8F1 A1LHINO PQRST IUBXOs
abcde fghij klmno pqrst vowxyz 0J234 56789

P"#4$¢87(): - f]l~~_N@; 9.
>, <

Philadelphia is the most pechsniffian of American
citles. and thos probably leads the worl.

- J. 1. Henchen

Nonie, roman, boid, /ta//c, 8, 10, 12 point

§ pont
ASC OE FGHJ KLMNQ PQRST UVWXYZ adcdse fgni| kitmo parat uvwayz 01234 587388

A EEY RNORELYIGINEL FRNE LEL A PR

It time be of ail thngs the most precious. wastng time must 3w, a3 Poar Michard says, the greatest prodigaiity;
since, 83 hs eisewhere tells us, jost time is never found again; and what we call time enough, diwsys proves ittie
enaugh: Lat ua then Up and be daing, and dong te the purpocse; so dy tligence shall we do more with Jlesa
porpannty,

ABCOE FGHIJ RIMNQ PQAST UVWXYZ socue 1Nl [kimmo parst uvwxyz 01234 58788
1°332&°'()i"=af]||==a\N]@ ;o /?.>,<

N tme e of &l MINg3 e MOt prec/owt, wast g time must be, & Poor Alchard ssys, e greawst prodigality, s rew,
& he eisawhere twis Ui, /out me i Mever found agalim and what we call time eroug N, aiweys groves /ITIIe enoug N
Lot uz then up and be doing, and Jaing to the purpose; 80 Oy diligence 1nall we Jo more with jess per plexity.

ABCDE FGHW XLVNO PQAST UVWXYZ abcdas 1ghi] kimne pgrst vwwwayz 01234 56739
1"38% &' ()18l {~\N]|O';*/7.>,¢

1t tme be of 2l Mings e Mmoet preciout, wasting me must de, 46 Poer Richard says, the greatest prodigaiity:
since, 88 he elsswhere Wiz us, lort time s never found sgain; snd what we cali time enocugh, aiways proves
e encugh: Latus hen uwp and be doing, and doing to e purposs 30 by dligenca shall we do more with sss
perpiaxity.

10 point
ABCOE FGHIJ XLMNO PQRST UVWXYZ abecda 1ghi] kimno pqrst yuvwxyz 01234 58789

1"$SR&'():"eca[]fla~N\|®';+/7.>,<

If time be of &l things the most precious, wasting time must be, as Poor Richard says, the
greatest prodigality; since, as he elsewhere talls us, lost time Is never found again; and
what we call time encugh, aiways proves littie enough: Lst us then up and be doing, and
doing to the purpass; 30 by diligencs shall we do more with less perpiexity.

ABCDE FGHIJ KIMNO PQRST UVWXYZ abcde fghi] kimno pqrst uvwxyz 01234 56789
1" §S%&'():"ea[]i]=~_N\N]C';+/?.>.,<

if time be of &/l things the most precious, wasting time must be, as Pocr Richard says, the
greatest prodigality; since, as_he e/sewhere lalls us, lost time is nevar found again; and what
we ca/l time encugh, a/ways proves little sncugh: Let us then up and be doing, ard doing to
e purposs; so by diligence snall we do more with /ess perplexity.

ABCDE FGHIJ KLMNO PCRST UVWXYZ adbede fghi] kimno pqrst uvwxyz 01234 56735
1" $S%&'()ier[]fla~\N]|9';¢/7.>,<

if ime be of all things the most precious, wasting time mus? be, as Poor Richard says,
the grenxtest prodigality; sinca, as he eisewhers teils us, lost time Is never found again;
and what we call time snocugh, always proves littie snough: Let us then up and be coing,
and doing to the purpose; 30 by dlligencs shail we €0 more with less perplexity,

12 peint
ABCDE FGHIJ XLMNGC PQRST UVWXYZ abcde fghi] kimno pqrat uvwxyz 01234
567389

1"#S$%& ' ():r=2[]f]{~~N\]|]@';+/?7.5>,<

It time be of all things the most precious, wasting time must be, as Poor
Richard says, the greatest prodigality; since, as he eisewhere tells us, lost
time Is never found again; and what we call time encugh, always proves little
encugh: Lat us then up and be doing, and doing to the purpcse; sa by
diligenca shall we do meore with less perpiexity.

ABCOE FGHIJ KLMNO PQAST UVWXYZ abcde fghi] kimno pqrst uvwxyz 01234
56789 -

["§8%&"'():1*¥=-a[J{]l~~\]@';+/?2.>,<

if time be of ail things the most precious, wasting time must be, as Pocr
Richard says, the greatast prodigality; since, as he eisewhere ta/is us, lost
time /s never found again; and what we call time encugh, always proves little
anough: Let us then up and be doing, and doing to the purposas; so by
dlligence shail we do more with less perplexity.

ABCDE FGHW KLVNO PQRST UVWXYZ abede fghlj kimno pqrst uvwxyz
01234 5673839

1"#8% &' ():*=a[J{l~~_\|@';5+/2.>,<

If time be of all things the most precious, wasting time must be, as Poor
Richard says, the greatast prodigality; sincs, as hs eisswhers tails us,
lost time Is never found again; and what we call time snough, always
proves little encugh: Let us then up and be doing, and doing to the
purposa; so by diligence shall we do more with less perplexity.

@13 Englizsh, 8, 14, and I8 point enly. {This font = called
""oldenglish’' on ine.)

1 ot
MBTEE J6K)I FLANC PERST HE EXT shrde Loy becme popst crge (12 5758

“f fl==aN 0% .3.¢

bre e of all threms e et precioos, b brre ot be, grealest prdtoeli s,
i-hl'-nhﬂ- Hhin&rfmﬁuuﬁ?ﬂhﬂha‘l’m ;:d-liﬂh_g%ﬁu&nuu:‘dh
detmn, e dowm bs hmhh@lﬁlhhmhﬁhﬂm -)

14 poort

SRCHE FGHI KTNFQ PORST TYWXY xbcde Ighil Ko
parst avexuz 01234 56788

v # : flea~N@: .>.K<

Y timme he of ull things the st precioox, wasting fime muxt be, 2% Poar
Richard suys, the grestest prodigalifysince, ax he elsenhere tells ow, loxt
tirrre s never lound mgeiniend ahat we aall tme encagh, alnmyw proves
ittle enoogh:T et ow then op znd be doing, and doing tp the porpms=isa by
aiﬁgem-hnn“aamnr_trﬂhhﬂmh:ﬂn.

I8 pourt

ABCHE FGHLI XKIUNO PORST TYWXYZ
abcde Ighi] kimno par=t uvoxyz 01234 536787

“F () - f{s~~-\ T.>.<

3% time be of =il thing= the muost prercious, wasting time
must be, a< Poor Richard says, the greastest prodigality
=<inte, a=< he elszwhere tells u=s, lo=t time = nver found
again and what we call time enough, always proves htte
enough and 3 think T'm wasting time fyping all this stuif

PIP FONT, W& PUINT OHLY, NO LOWER CAsc

ABCDE FGHIJ KLMNO PURST UUWKYZ OT234 53739
1"E ()i []A~_N @Y 7.>,<

T COULD PROBAELY BE SHOIN BY FACTS AND FIGURES THAT THERE IS NO
RISTINCTLY MATIVE AMERICAN CRIMINAL CLASS EXCZPT CIONGAESS.

- MARR TWAIN

Rinil fmt. 1§ pixt aly

A3t IREL! TR PDAST TUVXTZ absds fehi{ Maas jorst aweme O
1" #3128 0):%<e[f] =~ \NQ:0/2.5.<

D tms 1o of 1 t4ags ths anst prreims vastisg tas nast b as P lihird mrn 18 gmatist iy sdus, u b

nvlan talls er bt tims (s uwr fauad sqais s viat wocall Uas nusmgh dwars prrws Uit omgk Lt as thn g aad b

(dag, 1d ddag ts 1t puevess @ by dlgoes gall ve {a =y et} Lz prglazity,

Script, 18 point only. This font appears to be almost identical to the
**Coronet’ font from SAIL, except that the period and one other glyph
of Coronet are missing a row, and Caronet is supposed to be 16 point.

(They are both reaily the same size.)

ABCDE ICUIY KLMNO PQRST UVWXYZ bed.

Jehij Llane pyrst wewsys 01238 56789
" # tj~~-\ @ >, <

) time be of all things the mest precisms, wasting lime mast bo, as [P oar
Richard ways, the greatest prodigality; sincs, as he ddiewbhere tlls as, lost time is
never found again: and ohat we call time emongh, always proves littls imengh: oL ot
ws then up and be duing, and deing ta the purpese; 1o by diligomer s'all we do
more witk less penplasity,

ECERED, 46 FEIKT EXLY, CF LEECER BRSE

CEEEE FELLY REHRE CEEET CYERYE gLazs EE7ES
grg * s BEf]~~ N @3¢ ,>,<

= (3 sCELLELRY = ::-:g[,:@m
SEE ECEREN FERY (€ G CUEELLERT EOGLE L
CEEFEIRE FEESIETIELRE, 07 CEE GOE CRVERYEEE B
EEIGE CLEEST CECECREELE.

¢¢ GOERERS

SIGN, 22 POINT ONLY

ABCDE FGHIJ KLMNO PQRST
UVWXYZ *< 0123456783

174 ' txe= (Jan_@:/ .>,<

THISFONT WAS INVENTED BY A
DRAFTSMAN WHO HAD LOST HIS
FRENCH CURVE. =50 IT GOES <

LOWERCASE LIS # LOWER CASLE
RIS <.

Stzre berabey fozt. This fort by idactionl to the herzhey font except that the poiznt sizes are oae poice
saaller, and the width tahies are thcss used for the real typesecar. Hencoe, this font is useful whe=
eviewing doci=ents that azre (o be sent (0 a typesetier o =ake sure ks spacng, paging and 3o on is
rght There are Roman [ioiic and Baldin 8, §, 10, 11, 12, 14, aod 18 pcint. Tlhe following exacples
aw 10 point

AECDE FGHII KLY NQ PQRST UVW XYZ abcde fghij idrong parst urwxyz 01234 55789
1 *f3x k()= [Jll=~=N\|€@:+ /7.5,

I7 ime be of all thingy the most recious, westing tirme st be, & Poor Rickard sayx, the Teatest
prodigelity; sicce, a3 he elsewhsre lalls us, [ost tmse is 2ever fournd agzis; and what we call e
ecegh, always proves littls epough: Lat v then up and be doirg, ard doing to the purpose: %o by
diligarce sbnll we do more with less perplaxity.

ABCDE FGHIJ XLUNO PQRST UV¥ XYZ abcla vy kirro pgrst wwump 01224 56785
"gsx & ()= [ll]=~N\[@ ;e 2.5, <

[ftrrm be of all Yringy the o Frecowz, unsting Yrw must be, &Y Fior A soyr. fu greakst procdipukss
e, @ A dsrudure als w«x, ot Sre T newrr pund agoy ond wAR ur call Sre erough, clums Towes.
Y ooy Lat 3 $um up and be dotryg, and dotng © the e o0 by diigvree shall us & more udh lasy
peTplazty

ABCDE FGELI XLENO PQRST UVYXYZ abcde fghi] kimmo parst uvwxyz 01234 55789
13z ()= [JI]=-~N\]|@:+ 72.>.¢

If tUme be of all things the mant precioos, yasting tims most be, ey Poor Rickard says, the grentest
prodigulity; since, a3 he dsewhers tells o3, oot time is never found again; and what wva call tire
enaugh, always proves littls encogic Let o then up and be doing, and daing to the purpose; 30 by
dligence skall wa do mare with less parplexity.

S paimy Remun, Beld md Jimie

9 poix Joxm. Sald &=d [k

10 poict Rorman, Bald end e

11 point Rarzan, Bdd and fizkc.

12 point Ro=an, Bald and Jinés
14 point Ecman, Bold and [imée
16 point Roman, Bold, and [izli.

Times fonm, roman, italic, and bold 10 point only.

These fonts chowed up in a directory labelled “timecroman™ along with three-other fonts which turmed out
10 be nonie, metacr, and news gothic They are probably not really times fonts, but seem to be pretzy close.
Notice the top of the "2" for a clear difference from a real Times Roman feat

It is our desire to have a real, digitized version of the times fonts from the phototypesstier. Ve eventually
plao to do this. At that point, the times font will probably replace the herzbey font as the default Such 2
Times font is already available from Johns Hopkins Univerxzity for s fes, but we couldn’t redicsrribute i, 50
we plan do digitize them oursalves.

10 Point

ABCDE FGHLI XIMNO PQRST UV WXTIZ abede frhij klmao pqrsz avwxyz 01234 56789
1“28%8&°():xea[]il=o~a\[®'1+/2.>,<
'q‘-"-‘s’t'o.vnn“n“aksnnnﬂvﬁnﬂn.vf""t“

ABCDE FCHI1J] KLMNO PQRST UVW XY Z abcde fghij kimno pqrst svwryz 01234 56789
1" §32&°():xem[Jf 2~ \|®';¢/2.>,<
'o.u.-'t'o'o..nsokt‘S‘Bﬁ!ﬂ!’oﬁﬂ.ofs'o'-“

ABCDE FGCHELI XIMNO PQRST UV VXIYZ sbede [ghij kimoo pyrsz averys 01234 56789
1 F¥&T ()]~ (054 /2.>,<
's'o"p‘l',_'l_.).'niﬁ“!‘hﬁonvlomnﬂw.:fl'!'l“

FONTNAMES(7) MUNIX 2.0 (QUE8B000) FONTNAMES(7)

NAME

font names — table of font names in short and long formats
SYNOPSIS

cat /usr/lib/fontinfo/kurz
DESCRIPTION

For the usage of fonts other than the default ones in troff (or ltroff or
viroff resp.) the names of these fonts must be specified twice. The full
name (see below) is used to control the phototypesetter or the postpro-
cessor (lcat or vcat). Troff itself needs the specification of the font
name in a short form for the selection of the corresponding font size
tables in a fp -command.

long name short name | long name short name
apl ap h19 hn
basker.b bb hebrew hb
basker.i bi meteor.b mb
basker.r br meteor.i mi
bocklin bk meteor.r mr
bodoni.b ob mona mn
bodoni.i oi nonie.b nb
bodoni.r or nonie.j ni
chess ch nonie.r nr
clarendon cl oldenglish oe
cm.b cb pip PP
cm.i ci playbill pb
cm.r cr script sc
countdown co shadow sh
cyrillic cy sign sg
delegate.b db stare.b sb
delegate.i di stare.i si
delegate.r dr stare.r sr
fix fx times.b tb
gacham.b gb times.i ti
gacham.i gi times.r tr
gacham.r gr times.s ts
graphics gf ugramma m
greek gk

FILES
/usr/lib/fontinfo/kurz

Page 1 September 7, 1983

FONTS(7) MUNIX 2.0 (QU6B000) FONTS(7)

NAME
font list — table of available fonts and point sizes
DESCRIPTION

font available sizes

R 6 7. 8 9 10 11 12 14 16 18
20 22 24 28 36

B 6 7 8 9 10 11 12 14 16 18
20 22 24 28 36

1 6 7 8 9 10 11 12 14 16 18
20 22 24 28 36

S 6 7 8 9 10 11 12 14 16 18
20 22 24 28 36

apl 10

basker.r 12

basker.b 12

basker.i 12

bocklin 14 28

bodoni.r 10

bodoni.b 10

bodoni.i 10

chess 18

clarendon 14 18

cm.r 6 7 8 9 10 11 12

cm.b 6 7 8 9 10 11 12

cm.i 6 7 8 9 10 11 12

countdown 22

cyrillic 12

delegate.r 12

delegate.b 12

delegate.i 12

fix 6 9 10 12 14

gachamr 10

gacham.b 10

gacham.i 10

graphics 14

greek 10

h19 10 -

hebrew 16 17 24 36

meteor.r 8 10 12

meteor.b 8 10 12

meteor.i 8 10

mona 24

nonie.r 8 10 12

nonie.b 8 10 12

nonie.i 8 10 12

Page 1 September 7, 1983

FONTS(7)

oldenglish
pip
playbill
script
shadow
sign
stare.r

stare.b
stare.i

times.r
times.b
times.i

times.s

ugramma

September 7, 1983

8

16
10
18
16
22

10
10
10
10

14

0w o

MUNIX 2.0 (QU68B000)

18

10
10
10

11
11
11

12
12
12

14
14
14

16
16
16

FONTS(7)

Page 2

Screen Updating and
Cursor Movement Optimization:

A Library Package

This document describes a package of C library functions which allow the user
to:

update a screen with reasonable optimization,
get input from the terminal in a screen-oriented fashion, and

independent from the above, move the cursor optimally from one point to
another.

These routines all use the /etc/termcap database to describe the capabilities
of the terminal.

Acknowledgements

This package would not exist without the work of Bill Joy, who, in writing his edi-
tor, created the capability to generally describe terminals, wrote the routines
which read this database, and, most importantly, those which implement
optimal cursor movement, which routines I have simply lifted nearly intact.
Doug Merrit and Kurt Shoens also were extremely important, as were both wil-
ling to waste time listing to me rant and rave. The help and/or support of Ken
Abrams, Alan Char, Mark Horton, and Joe Kalash, was, and is, also greatly appre-
ciated.

Kenneth C. R. C. Arnold

Computer Science Division
Department of Electrical Engeneering and Computer Science
University of California, Berkeley
Berkeley, California 84720

Trademarks:
MUNIX, CADMUS for PCS
DEC, PDP for DEC
UNIX for Bell Laboratories

Copyright 1984 by
PCS GmbH. Pfalzer-Wald-Strasse 38, D-8000 Miinchen 90, tel. (089) 67804-0

The information contained herein is the property of PCS and shall neither be reproduced in
whole or in part without PCS’s prior written approval nor be implied to grant any license to
make, use or sell equipment manufactured herewith.

PCS reserves the right to make changes without notice in the speciflications and materials
contained herein and shall not be responsible for any damages (including consequential)

caused by reliance on the materials presented.

Screen Package

Contenss

1.3 Screen UPdatngeeeecememeeeeeeeereenenncecsanes

1.4 Naming Conventions

2 Variabies .

3 Usage

3.1 Suarting up

3.2 The Nitty-Gritty

3.2.1 Output
3.2.2 Input ..

3.2.3 Miscellaneous

3.5 Finishing up

4 Cursor Motion Optimization: Standing Alone

4.1 Terminal Information
4.2 Movement Optimizations, or, Getting Over Yonder

S The Functions
5.1 Output Functions

5.2 Input FUNCUOMNS .ccmireenrnionirasscncsiencascnscsonsesosasesesssannes

5.3 Miscsllaneous Functions

5.4 Deuails

Appendixes

Appendix A
1 Capabilities from termeap !

1.1 Disclaimer

1.2 Overview
1.3 Variables Set By settermQ

1.4 Variables Set By gertmode()

Appendix B

1 The WINDOW structure

Appendix C
1 Examples

2 Screen Updating
21 Twinkle

2.2 Life

3 Motion optimization

3.1 Twinkie

P N P TV R P I Y e N R N R O T e

R O S 1

L O O O O\ W

P e

4
-

14
14
14
14
15
16
16
17
17

17

17
19
22

Screen Package

1. Overview

In making available the generalized terminal descriptions in /etc/termcap. much informa-
ton was made available to the programmer, but little work was taken out of one’s hands. The
purpose of this package is to allow the C programmer to do the most common type of terminal
dependeat functions, those of movement optimization and optimal scresn updating, without do-
ing any of the dirty work, and (bopefully) with nearly as much ease as is necessary to simply
print or read things.

The package is split into three parts: (1) Screen updating: (2) Scresn updating with user
input; and (3) Cursor motion optimization.
It is possible to use the motion optimization without using either of the other two. and

screen updating and input can be done without any programmer knowledge of the motion op-
tumization, or indeed the database itseif.

1.1. Terminology (or, Words You Can Say to. Sound Brilliant)
In this document, the following terminology is kept to with reasonable «nsistency:

window. An internal representation containing an image of what a section of the terminal scraen
may look like at some point in time. This subsection can either encompass the entire ter-
minal screen, or any srnaller portion down to a single characier within that scre=n.

terrunal Sometimes called terminal screen. The package's idea of what the terminal’s screen
currently looks like, i.e., what the user sees now. This is a special screerr

screer This is a subset of windows which are as large as the terminal scresn. i.e., they start at
the upper left hand corner and encomnpass the lower right hand comer. One of these,
adscr, is automatically provided {or the programmer.

1.2. Compiling Things

In order to use the library, it is necessary to have certam types and variables defined.
Therefore, the programmer must have a line:

#include <curses.h> }

at the top of the program source. The header file <curses.h> needs to include <sgtty.h>,
so the one should not do so oneself!. Also, compilations should have the following form:

e [Aags) file ... —lcurses =|termlib

13. Screen Updating’

In order to update the screen optimnally, it is necessary for the routines to know what the
scce=en currendy looks like and what the programmer wants it to look like next. For this pur-
pose, a data type (structure) named WINDOW is defined which describes 2 window image= o
the routines, including its starting position on the screea (the (y, x) co-ordinates of the upper
left hand comer) and its size. One of these (called curser for currenr screen) is a scre=n image
of what the terminal currentuy looks like. Another screen (called sidscr, for szandard screen) is
provided by defauit to make changes on.

A window is 2 purely internal representation. It is used to build and store a poteatial im-
age of a porton of the terminal. [t doesn't bear any necsssary relation to what is really on the
terminal scresn. It is more like an array of characters on which to make changes.

Whea one has a window which describes what some part the terminal should ook like,
the routine refresa() (or wresresa(if the window is not szdser) is called. refresa() makes the ter-

! The saeen package also uses the Standard [/O library, so <cursev.h> indudes <stdio.h>. [t is redundant
(but harmiess) (or the programmer W do it too.

Screen Package

minal, in the area covered by the window, look like that window. Note, therefore, that chang-
ing something on a window does not change the terminal Actual updates to the terminal screen
are made only by calling refresh() or wresresh(). This allows the programmer 1o maintain
several different ideas of what a portion of the terminal screen should look like. Also, changes
can be made to windows in any order, without regard to motion efiiciency. Then. at will. the
programmer can effectively say *‘make it look like this,” and le: the package worry about the
best way to do ihis.

1.4. Naming Conventions

As hinted above, the routines can use several windows, but two are automatically given:
curscr, which knows what the terminal looks like, and stdser, which is what the programmer
wants the terrminal to look like next. The user should never really access curscr directly.
Changes should be made to the appropriate screen, and then the routine refresa() (or
wresresh()) should be called.

Many functions are set up to deal with sidscr as a defaunlt screen. For exampie, 1o add a
characier to sidscr, one calls addch() with the desired character. If a different window is 1o be
used, the routine waddca() (for window-specific addch()) is provided®. This convention of
prepending function names with 3 “w'* when they are to be applied to specific windows is con-
sistent. The only routines which do ot do this are those to which a window must always be
specified.

In order to move the curreat (y, X) co-ordinates from one point to another, the routines
mmove() and wmove() are provided. However, it is often desirable to first move and then per-
form some 1/O operation. ln order to avoid clumsyness, most /O routines can be precaded by

“the prefix “‘mv" and the desired (y, x) co-ordinates then can be added to the arguments to the
Function. For example, the calls

move(y, x);
addch(ch);

.can be replaced by
mvaddch(y, x, ch):
and

wmove(win, ¥, x);
waddch (win, ch);

can be replaced by
mvwaddch(win, y, x, ch);
Note that the window description pointer (win) comes before the added (y, x) co-ordinates. If
.such pointers are nesd, they are always the first parameters passed.
2. Variables

Many variables which are used to describe the terminal environment are available to the
programmer. They are:

type name description

WINDOW * curscr current version of the screen (terminal scre=n).
WINDOW * stdscr standard screen. Most updates are usually done her=.
char * Def_term default terminal type if type cannot be determined

1 Acually, addea() ts really a “#define’ maco with arguments, as are most of the “functions’ which deal with
adwer as a default

Screen Package

bool My _term use the tertunal specification in De/_term as termunal,
irrelevant of real terminal type

char * trytype full namne of the current terminal.

int LINES number of lines on the termuinal

int COLS number of columns on the terminal

int ERR error (lag returned by routines on a fail.

int oK error flag returned by routines when things go right.

There are also several **#define’ constants and types which are of general usefulness:

reg storage class ‘‘register’ (e.g.. reg inr i;)

bool boolean type, actually a *‘char’ (e.g.. bool doneit:)
TRUE boolean ‘“true’ flag (1).

FALSE boolean *‘false’ flag (0).

3. Usage

This is 2 description of how to actually use the screen package. In it, we assume all up-
dating, reading, etc. is applied to sdscr. All instructions will work on any window, with chang-
ing the funcuon name and parameters as mentioned above.

3.1. Starting up

In order 1o use the screen package, the routines must know about terminal characteristics,
and the spacs for curser and xmdscr must be allocated. These functions are performed by in-
irser(). Since it must allocate space for the windows, it can overilow core when attempting to do
so. On this rather rare occasion, /miser() returns ERR. iniccr() must afways be called before
any of the routines which afect windows are used. If it is.not, the program will core dump as
soon as either curser or sidser are refereaced. However, it is usually best to wait to call it until
after you are sure you will need it, like after checking for startup errors. . Terminal status
changing routines like 7/0 and omode() should be called after misr().

Now that the screen windows have beea allocated, you can set them up for the run. If
you want 1o, say, allow the window to scroll, use scroflok(). If you want the cursor to be left
after the last change, use leaveok(. If this isn't done, refresh() will move the cursor to the
window's current (y, x) co-ordinates after updating it. New windows of your own can be creat-
ed. too, by using the functions aewwin() and suswin(). detwin() will allow you to get rid of oid
windows. [you wish 1o change the official size of the terminal by hand, just set the variables
LINES and COLS to be what you want, and then call iniser(). This is best done before, but can
be done either before or after, the first cil 1o iniser(), as it will always deiste any sxisting sdscr
and/or curscr before creating new ones.

32. The Nitry-Gritty

32.1. Ourput

Now that we have set things up, we will want to actuaily update the terminal. The basic
functions used o change what will go on a window are gddca() and move(). addch() adds a
character at the curreat (y, x) co-ordinates, rerurning ERR if it would cause the window 1o ille-
gally scoll, e, prinung a character in the lower right-hand corner of a terminal which au-
tomatically scrolls if scrolling is oot allowed. move(changes the currear (y, x) co-ordinates to
whatever you want them to be. [t rerurns ERR if you try 1o move of the window whea scrol-
ling is not ailowed. As mentioned above. you can combine the two into mwaddea() to do both
things in one [ell swoop.

Tae other output functions. such as addsz() and priarw(), all cll addcha() 1o add characiers
to the wincow.

Afler you have put on the window wfat you want thers, wihen you want :he portion of
the terminal covered by the window to be made io look like it, you must il refresa(). ln order

-3 -

Screen Package

to optimize finding changes, refresh() assumes that any pant of the window not changsd sincs
the last refresh() of that window has not besn changed on the terrminal, i.e., that you have not
refreshed a portion of the terminal with an overiapping window. If this is not the case, the rou-
tine rouchwin() is provided to make it look like the entire window has been changed, thus mak-
ing refresh() check the whole subsection of the terminal for changes.

If you call wrefresh() with curscr, it will make the scresn look like curscr thinks it looks
like. This is useful for implementing a command which would redraw the scresn in case it ga:
messed up.

3.2.2. Input

Input is essentially a mirror image of output. The complementary function to addch() is
geich() which, if echo is set, will call addca() to echo the character. Sincs the scre=n package
ne=ds to know what is on the terminal at all times. if characiers are t0 be echoed. the tly must
be in raw or cbreak mode. If it is not, gercha() sets it 1o be cbreak. and then reads in the charac-
ter.

3.2.3. Miscellaneous

All sons of fun functions exists for maintaining and changing information about the win-
dows. For the most part, the descriptions in section 5.4. should suffice.

3.3. Finishing up

: In order to do csrain optimizations, and. on some terminals, to work at all, some things
must be done before the screen routines start up. These functions are performed in zerrrmode()
and serrerm(), which are called by inizser(). In order to clean up after the routines. the routine
endwin() is provided. [t restores tty modes to what they were when initscr() was first called.
Thus, anytime after the call to initscr, endwin() should be called before exiting.

4. Carsor Motion Optimization: Standing Alone

It is possible to use the cursor optimization funclions of this scresn package without the
overhead and additional size of the scresn updating functions. The screen updating functions
are designed for uses where parts of the screen are changed, but the overall image remains the
same. This includes such programs as eye and vi’. Cartain other programs will find it difficult
1o use these functions in this manner without considerable unnecessary program overhead. For
such applications, such as some ‘‘crt hacks’™ and optimizing cat(l)-type programs, all thar is
needed is the motion optimizations. This, therefore, is a descripton of what some of what goes
on at the lower levels of this screen package. The descriptions assume a certain amount of
familiarity with programming problems and some finer points of C. Nome of it is terribly
difficult, but you should be forewarned.

4.1. Terminal Information

In order to use a terminal’s features to the best of a program'’s abilities, it must first know

what they are’. The /ete/termcap database describes these, but 2 c=rtain amount of decoding is
necsssary, and there are, of course, both efficient and inefficient ways of reading them in. The
algorithm that the uses is taken from vi and is hideously eficient. It reads them in a tight loop
into a set of variables whose names are two uppercase letters with some mnemonic value. For

J Eye actually uses these functions, vi does oot

¢ Graphic programs designed 10 run on character-oriented terminals. | could name many, but they come and
$0. 30 the list wouid de quickly out of date. Recently, there have besn programs such as rocket and gun.

3 If this comes as any surprise (o you, there's this tower in Parrs they're thinking of junking that | can let you
bave for a song.

Screen Package

example, HO is a string which moves the cursor to the “home" position®. As there are two
types of vaniables involving ttys, there are two routines. The first, gerrmode(), sets some vari-
ables based upon the tty modes accessed by gtty(2) and stty(2) The second, serrerm(), a larger
task by reading in the descriptions from the /etc/termcap database. This is the way these rou-
tines are used by initscr(:

If (isatry(0)) |

gettmode();

if (sp=getenv("TERM"))
) setterm(sp);
eise

serterm (Def _term):
_puts(TD):
_puts(VS);

isarry() checks to see if file descriptor 0 is a terminal’. If it is. gerrmode() sets the terminal
¢escripton modes {rom a gtry(2) gerenv() is thea called to g2t the name of the terminal. and
twat vajue (if there is one) is passed to semerm(), which reads in the variables (rom
/etc/termcap assodated with that terminal. (gerenv() returns a pointer 10 a string containing
the name of the terminal, which we save in the characier pointer sp.) If isamy() returns false,
the default terminal Def_rerm is used. The 77 and V35 sequencss initialize the terminal (_purs()
is 2 macro which uses rpurs() (see termcap(3)) o put out a string). It is these things which
endwin() undoes.

4.2. Movement Optimizations, or, Getting Over Yonder

Now that we have all this useful information. it would be nice to do something with it
The most difficult thing to do properly is motion opumization. When you consider how many
diferent [eatures various terninals have (labs, backiabs, non-destructive spacs. home se-
quences. absolute tabs, ...) you can see that deciding how to get from here to there can be a
decidedly non-trivial task. The editor vi uses many of these features, and the routines it uses
10 do this take up many pages of code. Fortunately, | was able to liberate them with the
author’s permission, and use them Here.

After using gertmode() and serterm() to get the terminal descriptions, the function mveur()
deals with this task. It usage is simple: you simply tell it where you are now and where you
want 10 go. For example

mvcur(0, 0, LINES/2, COLS/2)

would move the cursor from the home position (0, 0) to the middle of the scresn. U you wish
to force absolute addressing, you can use the function .goro() from the termlib(7) routines, or
you can tell mveur() that you are impossibly far away, like Cleveland. For example. to abso-
lutely address the lower left hand comner of the screen {rom anywhere just claim that you are in
the upper right hand corner:

mvcur{0, COLS—1, LINES—1, 0)

¢ These names are identical 10 those variabies used in the /etc/termcap daubase 10 describe each capability. Ses
Appendix A for a compiete list of those read. and termcaap($) {or a iull descnption.

T samy() is defined in the default C library function routines. It does 2 grty(2) on the descniptor and checks the
return value.

t Actually, it can be emotionally fulfllling just 10 get tie informadon. This is usuaily only true. however, if you
have the social life of & kumquat.

Screen Package

§. The Functions

In the following definitions, *‘t'* means that the *‘function’ is really a2 “#define’’ macro
with arguments. This means that it will not show up in stack traces in the debugger, or, in the
case of such functions as addch(), it will show up as it's **w'' counterpart. The arguments are
given to show the order and type of each. Their names are not mandatory. just suggestive.

§.1. Output Functions

addch(ch) ¢
char ch;

waddch{(win, ch)
WINDOW *win;
char chy

Add the character ch on the window at the current (y, x) co-ordinates. If the character is
a newline (\n’) the line will be cleared 10 the end, and the current (y. x) co-ordinates will
be changed to the beginning off the next line if newline mapping is on. or 1o the next line
at the same x co-ordinate if it is off. A return (\r") will move to the™beginning of the
line on the window. Tabs (\t") will. be expanded into spaces in the normal tabstop posi-
tions of every eight characters. This returns ERR if it would cause the screen to scroil
illegally.

addstr(str) ¢t
char str;

;ad,dstr(win. str)
WINDOW ‘“win;
char *str;

Add the string pointed to by str on the window at the current (y, x) co-ordinates. This re-
turns ERR if it would cause the screen to scroll illegally. In this case, it will put on as
much as it can.

box{win, vert, hor)
WINDOW *win;
Lhar vert, hor;

Draws 2 box around the window using verr as the character for drawing the vertical sides,
and hor for drawing the horizontal lines. If scrolling is not allowed, and the window en-
compasses the lower right-hand corner of the terminal, the corners are left blank to avoid
a scroll.

cdearQ ¢

welear(win)
WINDOW ‘*win;

Resets the entire window to blanks. If win is a scv=2n, this se:s the clear flag, which will
cause a clear-scresn sequence o be sent on the next refresh() call. This also moves the
current (y, x) co-ordinates to (0, 0).

Screen Package

clearok (scr, boolf) ¢t
WINDOW ‘scr;
bool boolf;

Sets the clear flag for the scresn scr. If booifis TRUE, this will force a clear-screen 10 be
printed on the next refresh(), or stop it from doing so if doolfis FALSE. This only works
on screens, and. unlike clear(), does not alter the contents of the screen. I scris curser.
the next refresh() call will cause a clear-screen, even if the window passed to refresi() is
not a screan.

cirtobot()

weirtobot(win)
WINDOW ‘*win;:

Wipes the window clear from the current (y, x) co-ordinates to the bottom. This does
not force a clear-scresn sequence oo the next refresh under any circumstancss. This has
no associated ‘‘mvy’’ command.

cirtoecl O ¢

welrtoeol{win)
WINDOW ‘*win;

Wipes the window clear from the curreat (y, x) co-ordinates to the end of the line. This
has no associated *“‘mv’’ command.

delchQ

wdeich(win)
WINDOW *win;

Delete the character at the current (y. x) co-ordinatas. Each character after it on the line
shifts to the left, and the last character becomes blank.

deietelnQ

wdeietein (win)
WINDOW ‘“win;

Delete the current line. Every line below the current one will move up, and the bottom
line will become biank. The current (y, x) co-ordinates will remain unchanged.

erase() ¢

werase(win)
WINDOW ‘win;

Screen Package

Erases the window to blanks without setting the clear flag. This is analagous to clear().
except that it never causes a clear-scresn sequence to be generated on a refresh(). This
has no associated ‘‘mv’’ command.

insch(c)
¢har c

winsch(win, ¢)
WINDOW *win:
char c

Insert ¢ at the current (y, x) co-ordinates Each character after it shifts to the right, and
the last character disappears.

insertin O

winsertin(win)
WINDOW *win;

Insert a line above the current one. Every line below the current line will be shifted
down, and the bottom line will disappear. The current line wili become blank, and the
current (y, x) co-ordinates will remain unchanged.

"‘move(y.)t
int »x

wmove(win, y, X)
WINDOW ‘win;
int r»x

Change the current (y, x) co-ordinates of the window to (y, x). This returns ERR if it
would cause the scresn to scroll illegally.

]

overlay(winl, win2)
WINDOW *winl, *win2;

Overlay winl on win2, The contents of winl, insofar as they fit, are placed on win2 at
their starting (y, x) co-ordinates. This is done non-destructively, i.e., blanks on winl/
leave the contents of the space on win2 untouched.

overwrite{(winl, win2)
WINDOW *winl, *win2:

Overwrite win/ on winl. The contents of winl, insofar as they fit, are placed on win2 at
their starting (y, x) co-ordinates. This is done destructively, i.e., blanks on win] beccme
blank on winl.

ptintw({m1, argl, arg2, ...)
char *fmt;

Screen Package

wprintw (win, fmt, argl, arg2, ...)
WINDOW ‘*win;
char Sfmu;

Performs a pring/T) on the window startng at the current (y, x) co-ordinates. It uses
addsr() 10 add the string on the window. It is often advisabie to use the field width op-
tions of pring/T) to avoid leaving things on the window from earlier calls. This returns
ERR if it would cause the screen to scroll illegally.

refreshQ ¢t

wrefresh(win)
WINDOW ‘*win:

Synchronize the terminal screen with the desired window. If the window is not a screen.
only that pant covered by it is updated. This returns ERR if it would cause the scresn (o
scroll illegally. In this case, it will update whatever it can without causing the scroll.

standout(Q ¢

wstandout(win)
WINDOW “win;

standend O ¢

wstandend(win)
WINDOW “win;:

Start and stop putting characters onto win in standout mode. szandour() causes any charac-
ters added 1o the window to be put in standout mode on the terminal (if it has that capa-
bility). sandend() siops this. The sequences SO and SZ (or US and UE if they are not
defined) are used (ses Appendix A).

5.2. Input Functions

crmodeQ ¢

pocrmode(*
Set or unset the lerminal to/from cbreak mode.

echoO ¢t

noecho() ¢t
Sets the terminal to echo or not echo characters.

	Cadmus_Munix_IIII_Seite_001
	Cadmus_Munix_IIII_Seite_002
	Cadmus_Munix_IIII_Seite_003
	Cadmus_Munix_IIII_Seite_005
	Cadmus_Munix_IIII_Seite_009
	Cadmus_Munix_IIII_Seite_010
	Cadmus_Munix_IIII_Seite_011
	Cadmus_Munix_IIII_Seite_012
	Cadmus_Munix_IIII_Seite_013
	Cadmus_Munix_IIII_Seite_014
	Cadmus_Munix_IIII_Seite_015
	Cadmus_Munix_IIII_Seite_016
	Cadmus_Munix_IIII_Seite_017
	Cadmus_Munix_IIII_Seite_018
	Cadmus_Munix_IIII_Seite_019
	Cadmus_Munix_IIII_Seite_020
	Cadmus_Munix_IIII_Seite_021
	Cadmus_Munix_IIII_Seite_022
	Cadmus_Munix_IIII_Seite_023
	Cadmus_Munix_IIII_Seite_024
	Cadmus_Munix_IIII_Seite_025
	Cadmus_Munix_IIII_Seite_026
	Cadmus_Munix_IIII_Seite_027
	Cadmus_Munix_IIII_Seite_028
	Cadmus_Munix_IIII_Seite_029
	Cadmus_Munix_IIII_Seite_030
	Cadmus_Munix_IIII_Seite_031
	Cadmus_Munix_IIII_Seite_035
	Cadmus_Munix_IIII_Seite_036
	Cadmus_Munix_IIII_Seite_037
	Cadmus_Munix_IIII_Seite_038
	Cadmus_Munix_IIII_Seite_039
	Cadmus_Munix_IIII_Seite_040
	Cadmus_Munix_IIII_Seite_041
	Cadmus_Munix_IIII_Seite_042
	Cadmus_Munix_IIII_Seite_043
	Cadmus_Munix_IIII_Seite_044
	Cadmus_Munix_IIII_Seite_045
	Cadmus_Munix_IIII_Seite_046
	Cadmus_Munix_IIII_Seite_049
	Cadmus_Munix_IIII_Seite_050
	Cadmus_Munix_IIII_Seite_051
	Cadmus_Munix_IIII_Seite_052
	Cadmus_Munix_IIII_Seite_053
	Cadmus_Munix_IIII_Seite_054
	Cadmus_Munix_IIII_Seite_055
	Cadmus_Munix_IIII_Seite_056
	Cadmus_Munix_IIII_Seite_057
	Cadmus_Munix_IIII_Seite_058
	Cadmus_Munix_IIII_Seite_059
	Cadmus_Munix_IIII_Seite_060
	Cadmus_Munix_IIII_Seite_061
	Cadmus_Munix_IIII_Seite_062
	Cadmus_Munix_IIII_Seite_063
	Cadmus_Munix_IIII_Seite_064
	Cadmus_Munix_IIII_Seite_065
	Cadmus_Munix_IIII_Seite_066
	Cadmus_Munix_IIII_Seite_067
	Cadmus_Munix_IIII_Seite_068
	Cadmus_Munix_IIII_Seite_069
	Cadmus_Munix_IIII_Seite_070
	Cadmus_Munix_IIII_Seite_071
	Cadmus_Munix_IIII_Seite_075
	Cadmus_Munix_IIII_Seite_076
	Cadmus_Munix_IIII_Seite_077
	Cadmus_Munix_IIII_Seite_078
	Cadmus_Munix_IIII_Seite_079
	Cadmus_Munix_IIII_Seite_080
	Cadmus_Munix_IIII_Seite_081
	Cadmus_Munix_IIII_Seite_082
	Cadmus_Munix_IIII_Seite_083
	Cadmus_Munix_IIII_Seite_084
	Cadmus_Munix_IIII_Seite_085
	Cadmus_Munix_IIII_Seite_086
	Cadmus_Munix_IIII_Seite_087
	Cadmus_Munix_IIII_Seite_088
	Cadmus_Munix_IIII_Seite_089
	Cadmus_Munix_IIII_Seite_090
	Cadmus_Munix_IIII_Seite_091
	Cadmus_Munix_IIII_Seite_092
	Cadmus_Munix_IIII_Seite_093
	Cadmus_Munix_IIII_Seite_094
	Cadmus_Munix_IIII_Seite_095
	Cadmus_Munix_IIII_Seite_096
	Cadmus_Munix_IIII_Seite_097
	Cadmus_Munix_IIII_Seite_099
	Cadmus_Munix_IIII_Seite_101
	Cadmus_Munix_IIII_Seite_102
	Cadmus_Munix_IIII_Seite_103
	Cadmus_Munix_IIII_Seite_104
	Cadmus_Munix_IIII_Seite_105
	Cadmus_Munix_IIII_Seite_106
	Cadmus_Munix_IIII_Seite_107
	Cadmus_Munix_IIII_Seite_108
	Cadmus_Munix_IIII_Seite_109
	Cadmus_Munix_IIII_Seite_110
	Cadmus_Munix_IIII_Seite_111
	Cadmus_Munix_IIII_Seite_112
	Cadmus_Munix_IIII_Seite_113
	Cadmus_Munix_IIII_Seite_114
	Cadmus_Munix_IIII_Seite_115
	Cadmus_Munix_IIII_Seite_116
	Cadmus_Munix_IIII_Seite_117
	Cadmus_Munix_IIII_Seite_118
	Cadmus_Munix_IIII_Seite_119
	Cadmus_Munix_IIII_Seite_120
	Cadmus_Munix_IIII_Seite_121
	Cadmus_Munix_IIII_Seite_122
	Cadmus_Munix_IIII_Seite_123
	Cadmus_Munix_IIII_Seite_124
	Cadmus_Munix_IIII_Seite_127
	Cadmus_Munix_IIII_Seite_129
	Cadmus_Munix_IIII_Seite_131
	Cadmus_Munix_IIII_Seite_133
	Cadmus_Munix_IIII_Seite_135
	Cadmus_Munix_IIII_Seite_137
	Cadmus_Munix_IIII_Seite_139
	Cadmus_Munix_IIII_Seite_141
	Cadmus_Munix_IIII_Seite_142
	Cadmus_Munix_IIII_Seite_143
	Cadmus_Munix_IIII_Seite_144
	Cadmus_Munix_IIII_Seite_145
	Cadmus_Munix_IIII_Seite_146
	Cadmus_Munix_IIII_Seite_147
	Cadmus_Munix_IIII_Seite_148
	Cadmus_Munix_IIII_Seite_149
	Cadmus_Munix_IIII_Seite_150
	Cadmus_Munix_IIII_Seite_151
	Cadmus_Munix_IIII_Seite_152
	Cadmus_Munix_IIII_Seite_153
	Cadmus_Munix_IIII_Seite_154
	Cadmus_Munix_IIII_Seite_155
	Cadmus_Munix_IIII_Seite_156
	Cadmus_Munix_IIII_Seite_157
	Cadmus_Munix_IIII_Seite_158
	Cadmus_Munix_IIII_Seite_159
	Cadmus_Munix_IIII_Seite_160
	Cadmus_Munix_IIII_Seite_161
	Cadmus_Munix_IIII_Seite_165
	Cadmus_Munix_IIII_Seite_166
	Cadmus_Munix_IIII_Seite_167
	Cadmus_Munix_IIII_Seite_168
	Cadmus_Munix_IIII_Seite_169
	Cadmus_Munix_IIII_Seite_170
	Cadmus_Munix_IIII_Seite_171
	Cadmus_Munix_IIII_Seite_172
	Cadmus_Munix_IIII_Seite_173
	Cadmus_Munix_IIII_Seite_174
	Cadmus_Munix_IIII_Seite_175
	Cadmus_Munix_IIII_Seite_176
	Cadmus_Munix_IIII_Seite_177
	Cadmus_Munix_IIII_Seite_178
	Cadmus_Munix_IIII_Seite_179
	Cadmus_Munix_IIII_Seite_180
	Cadmus_Munix_IIII_Seite_181
	Cadmus_Munix_IIII_Seite_182
	Cadmus_Munix_IIII_Seite_183
	Cadmus_Munix_IIII_Seite_184
	Cadmus_Munix_IIII_Seite_185
	Cadmus_Munix_IIII_Seite_186
	Cadmus_Munix_IIII_Seite_187
	Cadmus_Munix_IIII_Seite_188
	Cadmus_Munix_IIII_Seite_189
	Cadmus_Munix_IIII_Seite_190
	Cadmus_Munix_IIII_Seite_191
	Cadmus_Munix_IIII_Seite_192
	Cadmus_Munix_IIII_Seite_193
	Cadmus_Munix_IIII_Seite_195
	Cadmus_Munix_IIII_Seite_197
	Cadmus_Munix_IIII_Seite_199
	Cadmus_Munix_IIII_Seite_201
	Cadmus_Munix_IIII_Seite_203
	Cadmus_Munix_IIII_Seite_205
	Cadmus_Munix_IIII_Seite_207
	Cadmus_Munix_IIII_Seite_209
	Cadmus_Munix_IIII_Seite_213
	Cadmus_Munix_IIII_Seite_214
	Cadmus_Munix_IIII_Seite_215
	Cadmus_Munix_IIII_Seite_217
	Cadmus_Munix_IIII_Seite_219
	Cadmus_Munix_IIII_Seite_220
	Cadmus_Munix_IIII_Seite_221
	Cadmus_Munix_IIII_Seite_222
	Cadmus_Munix_IIII_Seite_223
	Cadmus_Munix_IIII_Seite_224
	Cadmus_Munix_IIII_Seite_225
	Cadmus_Munix_IIII_Seite_226
	Cadmus_Munix_IIII_Seite_227
	Cadmus_Munix_IIII_Seite_229
	Cadmus_Munix_IIII_Seite_231
	Cadmus_Munix_IIII_Seite_232
	Cadmus_Munix_IIII_Seite_233
	Cadmus_Munix_IIII_Seite_234
	Cadmus_Munix_IIII_Seite_235
	Cadmus_Munix_IIII_Seite_236
	Cadmus_Munix_IIII_Seite_237
	Cadmus_Munix_IIII_Seite_239
	Cadmus_Munix_IIII_Seite_241
	Cadmus_Munix_IIII_Seite_243
	Cadmus_Munix_IIII_Seite_245
	Cadmus_Munix_IIII_Seite_246
	Cadmus_Munix_IIII_Seite_247
	Cadmus_Munix_IIII_Seite_248
	Cadmus_Munix_IIII_Seite_249
	Cadmus_Munix_IIII_Seite_250
	Cadmus_Munix_IIII_Seite_251
	Cadmus_Munix_IIII_Seite_253
	Cadmus_Munix_IIII_Seite_254
	Cadmus_Munix_IIII_Seite_255
	Cadmus_Munix_IIII_Seite_257
	Cadmus_Munix_IIII_Seite_259
	Cadmus_Munix_IIII_Seite_260
	Cadmus_Munix_IIII_Seite_261
	Cadmus_Munix_IIII_Seite_262
	Cadmus_Munix_IIII_Seite_263
	Cadmus_Munix_IIII_Seite_264
	Cadmus_Munix_IIII_Seite_265
	Cadmus_Munix_IIII_Seite_266
	Cadmus_Munix_IIII_Seite_267
	Cadmus_Munix_IIII_Seite_268
	Cadmus_Munix_IIII_Seite_269
	Cadmus_Munix_IIII_Seite_270
	Cadmus_Munix_IIII_Seite_271
	Cadmus_Munix_IIII_Seite_272
	Cadmus_Munix_IIII_Seite_273
	Cadmus_Munix_IIII_Seite_274
	Cadmus_Munix_IIII_Seite_275
	Cadmus_Munix_IIII_Seite_277
	Cadmus_Munix_IIII_Seite_278
	Cadmus_Munix_IIII_Seite_279
	Cadmus_Munix_IIII_Seite_281
	Cadmus_Munix_IIII_Seite_282
	Cadmus_Munix_IIII_Seite_283
	Cadmus_Munix_IIII_Seite_284
	Cadmus_Munix_IIII_Seite_285
	Cadmus_Munix_IIII_Seite_286
	Cadmus_Munix_IIII_Seite_287
	Cadmus_Munix_IIII_Seite_288
	Cadmus_Munix_IIII_Seite_289
	Cadmus_Munix_IIII_Seite_291
	Cadmus_Munix_IIII_Seite_292
	Cadmus_Munix_IIII_Seite_293
	Cadmus_Munix_IIII_Seite_294
	Cadmus_Munix_IIII_Seite_295
	Cadmus_Munix_IIII_Seite_296
	Cadmus_Munix_IIII_Seite_297
	Cadmus_Munix_IIII_Seite_298
	Cadmus_Munix_IIII_Seite_299
	Cadmus_Munix_IIII_Seite_300
	Cadmus_Munix_IIII_Seite_301
	Cadmus_Munix_IIII_Seite_303
	Cadmus_Munix_IIII_Seite_305
	Cadmus_Munix_IIII_Seite_306
	Cadmus_Munix_IIII_Seite_307
	Cadmus_Munix_IIII_Seite_309
	Cadmus_Munix_IIII_Seite_310
	Cadmus_Munix_IIII_Seite_311
	Cadmus_Munix_IIII_Seite_312
	Cadmus_Munix_IIII_Seite_313
	Cadmus_Munix_IIII_Seite_315
	Cadmus_Munix_IIII_Seite_316
	Cadmus_Munix_IIII_Seite_317
	Cadmus_Munix_IIII_Seite_318
	Cadmus_Munix_IIII_Seite_319
	Cadmus_Munix_IIII_Seite_321
	Cadmus_Munix_IIII_Seite_322
	Cadmus_Munix_IIII_Seite_323
	Cadmus_Munix_IIII_Seite_324
	Cadmus_Munix_IIII_Seite_325
	Cadmus_Munix_IIII_Seite_327
	Cadmus_Munix_IIII_Seite_328
	Cadmus_Munix_IIII_Seite_329
	Cadmus_Munix_IIII_Seite_331
	Cadmus_Munix_IIII_Seite_332
	Cadmus_Munix_IIII_Seite_333
	Cadmus_Munix_IIII_Seite_334
	Cadmus_Munix_IIII_Seite_335
	Cadmus_Munix_IIII_Seite_336
	Cadmus_Munix_IIII_Seite_337
	Cadmus_Munix_IIII_Seite_338
	Cadmus_Munix_IIII_Seite_339
	Cadmus_Munix_IIII_Seite_340
	Cadmus_Munix_IIII_Seite_341
	Cadmus_Munix_IIII_Seite_342
	Cadmus_Munix_IIII_Seite_343
	Cadmus_Munix_IIII_Seite_344
	Cadmus_Munix_IIII_Seite_345
	Cadmus_Munix_IIII_Seite_346
	Cadmus_Munix_IIII_Seite_347
	Cadmus_Munix_IIII_Seite_349
	Cadmus_Munix_IIII_Seite_350
	Cadmus_Munix_IIII_Seite_351
	Cadmus_Munix_IIII_Seite_352
	Cadmus_Munix_IIII_Seite_353
	Cadmus_Munix_IIII_Seite_354
	Cadmus_Munix_IIII_Seite_355
	Cadmus_Munix_IIII_Seite_356
	Cadmus_Munix_IIII_Seite_357
	Cadmus_Munix_IIII_Seite_358
	Cadmus_Munix_IIII_Seite_359
	Cadmus_Munix_IIII_Seite_360
	Cadmus_Munix_IIII_Seite_361
	Cadmus_Munix_IIII_Seite_362
	Cadmus_Munix_IIII_Seite_363
	Cadmus_Munix_IIII_Seite_364
	Cadmus_Munix_IIII_Seite_365
	Cadmus_Munix_IIII_Seite_366
	Cadmus_Munix_IIII_Seite_367
	Cadmus_Munix_IIII_Seite_368
	Cadmus_Munix_IIII_Seite_369
	Cadmus_Munix_IIII_Seite_370
	Cadmus_Munix_IIII_Seite_371
	Cadmus_Munix_IIII_Seite_372
	Cadmus_Munix_IIII_Seite_373
	Cadmus_Munix_IIII_Seite_374
	Cadmus_Munix_IIII_Seite_375
	Cadmus_Munix_IIII_Seite_376
	Cadmus_Munix_IIII_Seite_377
	Cadmus_Munix_IIII_Seite_378
	Cadmus_Munix_IIII_Seite_379
	Cadmus_Munix_IIII_Seite_380
	Cadmus_Munix_IIII_Seite_381
	Cadmus_Munix_IIII_Seite_382
	Cadmus_Munix_IIII_Seite_383
	Cadmus_Munix_IIII_Seite_384
	Cadmus_Munix_IIII_Seite_385
	Cadmus_Munix_IIII_Seite_386
	Cadmus_Munix_IIII_Seite_387
	Cadmus_Munix_IIII_Seite_388
	Cadmus_Munix_IIII_Seite_389
	Cadmus_Munix_IIII_Seite_390
	Cadmus_Munix_IIII_Seite_391
	Cadmus_Munix_IIII_Seite_392
	Cadmus_Munix_IIII_Seite_393
	Cadmus_Munix_IIII_Seite_394
	Cadmus_Munix_IIII_Seite_395
	Cadmus_Munix_IIII_Seite_396
	Cadmus_Munix_IIII_Seite_397
	Cadmus_Munix_IIII_Seite_398
	Cadmus_Munix_IIII_Seite_399
	Cadmus_Munix_IIII_Seite_400
	Cadmus_Munix_IIII_Seite_401
	Cadmus_Munix_IIII_Seite_403
	Cadmus_Munix_IIII_Seite_404
	Cadmus_Munix_IIII_Seite_405
	Cadmus_Munix_IIII_Seite_406
	Cadmus_Munix_IIII_Seite_407
	Cadmus_Munix_IIII_Seite_408
	Cadmus_Munix_IIII_Seite_409
	Cadmus_Munix_IIII_Seite_410
	Cadmus_Munix_IIII_Seite_411
	Cadmus_Munix_IIII_Seite_412
	Cadmus_Munix_IIII_Seite_413
	Cadmus_Munix_IIII_Seite_414
	Cadmus_Munix_IIII_Seite_415
	Cadmus_Munix_IIII_Seite_416
	Cadmus_Munix_IIII_Seite_417
	Cadmus_Munix_IIII_Seite_418
	Cadmus_Munix_IIII_Seite_419
	Cadmus_Munix_IIII_Seite_420
	Cadmus_Munix_IIII_Seite_421
	Cadmus_Munix_IIII_Seite_422
	Cadmus_Munix_IIII_Seite_423
	Cadmus_Munix_IIII_Seite_424
	Cadmus_Munix_IIII_Seite_425
	Cadmus_Munix_IIII_Seite_426
	Cadmus_Munix_IIII_Seite_427
	Cadmus_Munix_IIII_Seite_428
	Cadmus_Munix_IIII_Seite_429
	Cadmus_Munix_IIII_Seite_430
	Cadmus_Munix_IIII_Seite_431
	Cadmus_Munix_IIII_Seite_432
	Cadmus_Munix_IIII_Seite_433
	Cadmus_Munix_IIII_Seite_434
	Cadmus_Munix_IIII_Seite_435
	Cadmus_Munix_IIII_Seite_436
	Cadmus_Munix_IIII_Seite_437
	Cadmus_Munix_IIII_Seite_438
	Cadmus_Munix_IIII_Seite_439
	Cadmus_Munix_IIII_Seite_440
	Cadmus_Munix_IIII_Seite_441
	Cadmus_Munix_IIII_Seite_442
	Cadmus_Munix_IIII_Seite_443
	Cadmus_Munix_IIII_Seite_444
	Cadmus_Munix_IIII_Seite_445
	Cadmus_Munix_IIII_Seite_446
	Cadmus_Munix_IIII_Seite_447
	Cadmus_Munix_IIII_Seite_448
	Cadmus_Munix_IIII_Seite_449
	Cadmus_Munix_IIII_Seite_450
	Cadmus_Munix_IIII_Seite_451
	Cadmus_Munix_IIII_Seite_452
	Cadmus_Munix_IIII_Seite_453
	Cadmus_Munix_IIII_Seite_454
	Cadmus_Munix_IIII_Seite_455
	Cadmus_Munix_IIII_Seite_456
	Cadmus_Munix_IIII_Seite_457
	Cadmus_Munix_IIII_Seite_459
	Cadmus_Munix_IIII_Seite_460
	Cadmus_Munix_IIII_Seite_461
	Cadmus_Munix_IIII_Seite_462
	Cadmus_Munix_IIII_Seite_463
	Cadmus_Munix_IIII_Seite_464
	Cadmus_Munix_IIII_Seite_465
	Cadmus_Munix_IIII_Seite_466
	Cadmus_Munix_IIII_Seite_467
	Cadmus_Munix_IIII_Seite_468
	Cadmus_Munix_IIII_Seite_469
	Cadmus_Munix_IIII_Seite_470
	Cadmus_Munix_IIII_Seite_471
	Cadmus_Munix_IIII_Seite_472
	Cadmus_Munix_IIII_Seite_473
	Cadmus_Munix_IIII_Seite_474
	Cadmus_Munix_IIII_Seite_475
	Cadmus_Munix_IIII_Seite_476
	Cadmus_Munix_IIII_Seite_477
	Cadmus_Munix_IIII_Seite_478
	Cadmus_Munix_IIII_Seite_479
	Cadmus_Munix_IIII_Seite_481
	Cadmus_Munix_IIII_Seite_482
	Cadmus_Munix_IIII_Seite_483
	Cadmus_Munix_IIII_Seite_485
	Cadmus_Munix_IIII_Seite_486
	Cadmus_Munix_IIII_Seite_487
	Cadmus_Munix_IIII_Seite_488
	Cadmus_Munix_IIII_Seite_489
	Cadmus_Munix_IIII_Seite_490
	Cadmus_Munix_IIII_Seite_491
	Cadmus_Munix_IIII_Seite_492
	Cadmus_Munix_IIII_Seite_493
	Cadmus_Munix_IIII_Seite_495
	Cadmus_Munix_IIII_Seite_497
	Cadmus_Munix_IIII_Seite_498
	Cadmus_Munix_IIII_Seite_499
	Cadmus_Munix_IIII_Seite_500
	Cadmus_Munix_IIII_Seite_501
	Cadmus_Munix_IIII_Seite_502
	Cadmus_Munix_IIII_Seite_503
	Cadmus_Munix_IIII_Seite_504
	Cadmus_Munix_IIII_Seite_505
	Cadmus_Munix_IIII_Seite_506
	Cadmus_Munix_IIII_Seite_507
	Cadmus_Munix_IIII_Seite_508
	Cadmus_Munix_IIII_Seite_509
	Cadmus_Munix_IIII_Seite_510
	Cadmus_Munix_IIII_Seite_511
	Cadmus_Munix_IIII_Seite_512
	Cadmus_Munix_IIII_Seite_513
	Cadmus_Munix_IIII_Seite_514
	Cadmus_Munix_IIII_Seite_515
	Cadmus_Munix_IIII_Seite_516
	Cadmus_Munix_IIII_Seite_517
	Cadmus_Munix_IIII_Seite_518
	Cadmus_Munix_IIII_Seite_519
	Cadmus_Munix_IIII_Seite_520
	Cadmus_Munix_IIII_Seite_521
	Cadmus_Munix_IIII_Seite_522
	Cadmus_Munix_IIII_Seite_523
	Cadmus_Munix_IIII_Seite_524
	Cadmus_Munix_IIII_Seite_525
	Cadmus_Munix_IIII_Seite_526
	Cadmus_Munix_IIII_Seite_527
	Cadmus_Munix_IIII_Seite_528
	Cadmus_Munix_IIII_Seite_529
	Cadmus_Munix_IIII_Seite_530
	Cadmus_Munix_IIII_Seite_531
	Cadmus_Munix_IIII_Seite_532
	Cadmus_Munix_IIII_Seite_533
	Cadmus_Munix_IIII_Seite_534
	Cadmus_Munix_IIII_Seite_535
	Cadmus_Munix_IIII_Seite_536
	Cadmus_Munix_IIII_Seite_537
	Cadmus_Munix_IIII_Seite_538
	Cadmus_Munix_IIII_Seite_539
	Cadmus_Munix_IIII_Seite_540
	Cadmus_Munix_IIII_Seite_541
	Cadmus_Munix_IIII_Seite_543
	Cadmus_Munix_IIII_Seite_544
	Cadmus_Munix_IIII_Seite_545
	Cadmus_Munix_IIII_Seite_546
	Cadmus_Munix_IIII_Seite_547
	Cadmus_Munix_IIII_Seite_548
	Cadmus_Munix_IIII_Seite_549
	Cadmus_Munix_IIII_Seite_550
	Cadmus_Munix_IIII_Seite_551
	Cadmus_Munix_IIII_Seite_552
	Cadmus_Munix_IIII_Seite_553
	Cadmus_Munix_IIII_Seite_554
	Cadmus_Munix_IIII_Seite_555
	Cadmus_Munix_IIII_Seite_556
	Cadmus_Munix_IIII_Seite_557
	Cadmus_Munix_IIII_Seite_558
	Cadmus_Munix_IIII_Seite_559
	Cadmus_Munix_IIII_Seite_560
	Cadmus_Munix_IIII_Seite_561
	Cadmus_Munix_IIII_Seite_562
	Cadmus_Munix_IIII_Seite_563
	Cadmus_Munix_IIII_Seite_564
	Cadmus_Munix_IIII_Seite_565
	Cadmus_Munix_IIII_Seite_566
	Cadmus_Munix_IIII_Seite_567
	Cadmus_Munix_IIII_Seite_568
	Cadmus_Munix_IIII_Seite_569
	Cadmus_Munix_IIII_Seite_570
	Cadmus_Munix_IIII_Seite_571
	Cadmus_Munix_IIII_Seite_572
	Cadmus_Munix_IIII_Seite_573
	Cadmus_Munix_IIII_Seite_574
	Cadmus_Munix_IIII_Seite_575
	Cadmus_Munix_IIII_Seite_576
	Cadmus_Munix_IIII_Seite_577
	Cadmus_Munix_IIII_Seite_578
	Cadmus_Munix_IIII_Seite_579
	Cadmus_Munix_IIII_Seite_581
	Cadmus_Munix_IIII_Seite_582
	Cadmus_Munix_IIII_Seite_583
	Cadmus_Munix_IIII_Seite_584
	Cadmus_Munix_IIII_Seite_585
	Cadmus_Munix_IIII_Seite_586
	Cadmus_Munix_IIII_Seite_587
	Cadmus_Munix_IIII_Seite_588
	Cadmus_Munix_IIII_Seite_589
	Cadmus_Munix_IIII_Seite_590
	Cadmus_Munix_IIII_Seite_591
	Cadmus_Munix_IIII_Seite_592
	Cadmus_Munix_IIII_Seite_593
	Cadmus_Munix_IIII_Seite_594
	Cadmus_Munix_IIII_Seite_595
	Cadmus_Munix_IIII_Seite_596
	Cadmus_Munix_IIII_Seite_597
	Cadmus_Munix_IIII_Seite_599
	Cadmus_Munix_IIII_Seite_600
	Cadmus_Munix_IIII_Seite_601
	Cadmus_Munix_IIII_Seite_603
	Cadmus_Munix_IIII_Seite_605
	Cadmus_Munix_IIII_Seite_606
	Cadmus_Munix_IIII_Seite_607
	Cadmus_Munix_IIII_Seite_608
	Cadmus_Munix_IIII_Seite_609
	Cadmus_Munix_IIII_Seite_610
	Cadmus_Munix_IIII_Seite_611
	Cadmus_Munix_IIII_Seite_612
	Cadmus_Munix_IIII_Seite_613
	Cadmus_Munix_IIII_Seite_614
	Cadmus_Munix_IIII_Seite_615
	Cadmus_Munix_IIII_Seite_616
	Cadmus_Munix_IIII_Seite_617
	Cadmus_Munix_IIII_Seite_618
	Cadmus_Munix_IIII_Seite_619
	Cadmus_Munix_IIII_Seite_620
	Cadmus_Munix_IIII_Seite_621
	Cadmus_Munix_IIII_Seite_622
	Cadmus_Munix_IIII_Seite_623
	Cadmus_Munix_IIII_Seite_624
	Cadmus_Munix_IIII_Seite_625
	Cadmus_Munix_IIII_Seite_626
	Cadmus_Munix_IIII_Seite_627
	Cadmus_Munix_IIII_Seite_629
	Cadmus_Munix_IIII_Seite_631
	Cadmus_Munix_IIII_Seite_632
	Cadmus_Munix_IIII_Seite_633
	Cadmus_Munix_IIII_Seite_634
	Cadmus_Munix_IIII_Seite_635
	Cadmus_Munix_IIII_Seite_637
	Cadmus_Munix_IIII_Seite_638
	Cadmus_Munix_IIII_Seite_639
	Cadmus_Munix_IIII_Seite_640
	Cadmus_Munix_IIII_Seite_641
	Cadmus_Munix_IIII_Seite_642
	Cadmus_Munix_IIII_Seite_643
	Cadmus_Munix_IIII_Seite_644
	Cadmus_Munix_IIII_Seite_645

