UNIX System

Activity Package

This document is part of the ADMINISTRATOR'S GUIDE. Therefore the
pagenumbers don't begin with 1.

Trademarks:
MUNIX, CADMUS for PCS
DEC, PDP for DEC
UNIX for Bell Laboratories

Copyright 1984 by
PCS GmbH, Plfalzer-Wald-Strasse 38, D-8000 Miinchen 80, tel (089) 87804-0

The information contained herein is the property of PCS and shall neither be reproduced in
whole or in part without PCS's prior written approval nor be implied to grant any license to
make, use or sell equipment manufactured herewith.

PCS reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages (including consequential)

caused by reliance on Lthe materials presented.

6/82 ISSUE 1 ADMINISTRATOR’'S GUIDE

11. UNIX SYSTEM ACTIVITY PACKAGE
General

This section describes the design and implementation of the UNIX System Activity Package. The UNIX op-
erating system contains a number of counters that are incremented as various system actions occur. The system
activity package reports UNIX system-wide measurements including Central Processing Unit(CPU) utilization,
disk and tape Input/Output(l/0) activities, terminal device activity, buffer usage, system calls, system switch-
ing and swapping, file-access activity, queue activity, and message and semaphore activities. The package pro-
vides four commands that generate various types of reports. Procedures that automatically generate daily
reports are also included. The five functions of the activity package are:

¢ sar(l) command—allows a user to generate system activity reports in real-time and to save system ac-
tivities in a file for later usage.

o sag(1G) command—displays system activity in a graphical form.

e sadp(l) command—samples disk activity once every second during a specified time interval and reports
disk usage and seek distance in either tabular or histogram form.

e timex(l)—a modified time(1) command that times a command and also reports concurrent system ac-
tivity.

e system activity daily reports—procedures are provided for sampling and saving system activities in a
data file periodically and for generating the daily report from the data file.

The system activity information reported by this package is derived from a set of system counters located
in the operation system kernel. These system counters are described in the part “System Activity Counters”.
The part “System Activity Commands” describes the commands provided by this package. The procedure for
generating daily reports is given in “Daily Report Generation”. A description for each of the files used by the
system activity package can be found in Attachment 11.1.

System Activity Counters

The UNIX operating system manages a number of counters that record various activities and provide the
basis for the system activity reporting system. The data structure for most of these counters is defined in the
sysinfo structure (see Attachment 11.2) in /usr/include/sys/sysinfo.h. The system table overflow counters are
kept in the _syserr structure. The device activity counters are extracted from the device status tables. In this
version, the I70 activity of the following devices is recorded: RP06, RM05, RS04, RF11, RK05, RP03, RL02, TMO03,
and TM11. .

In the following paragraphs, the system activity counters that are sampled by the system activity package
are described.

Cpu time counters: There are four time counters that may be incremented at each clock interrupt 60 times
per second. Exactly one of the cpul] counters is incremented on each interrupt, according to the mode the CPU
is in at the interrupt; idle, user, kernal, and wait for I/0 completion.

Lread and Iwrite: The Iread and Iwrite counters are used tocount logical read and write requests issued
by the system to block devices.

Bread and bwrite: The bread and bwrite counters are used to count the number of times data is trans-
ferred between the system buffers and the block devices. These actual I/0s are triggered by logical I/0s that

Page 177

REV

P i

ADMINISTRATOR'S GUIDE ISSUE 1 6/82

cannot be satisfied by the current contents of the buffers. The ratio of block 1/0 to logical 170 is a common mea-

‘'sure of the effectiveness of the system buffering.

‘Phread and phwrite: The phread and phwrite counters count read and write requests issued by the
system to raw devices.

Swapin and swapout: The swapinand swapout counters are incremented for each system request initiat-

‘ing a transfer from or to the swap device. More than one request is usually involved in bringing a process into
. memory, or out, because text and data are handled separately. Frequently used programs are kept on the swap

device and are swapped in rather than loaded from the file system. The swapin counter reflects these initial
loading operations as well as resumptions of activity, while the swapout counter reveals the level of actual
“swapping.” The amount of data transferred between the swap device and memory are measured in blocks and
counted by bswapin and bswapout.

. Pswncb and syscall: These counters are related to the management of multiprogramming. Syscall is in-
cremented every time a system call is invoked. The numbers of invocations of read(2), write(2), fork(2), and

exec(2) system calls are kept in counters sysread, syswrite, sysfork, and sysexec, respectively. Pswitch counts
the times the switcher was invoked, which occurs when:

a. a system call resulted in a road block
b. an interrupt occurred resulting in awakening a higher priority process
c. 1-second clock interrupt.

Iget, namei, and dirblk: These counters apply to file-accessoperations. Iget and namei, in particular, are
the names of UNIX operating system routines. The counters record the number of times that the respective rou-
tines are called. Nameiis the routine that performs file system path searches. It searches the various directory
files to get the associated i-number of a file corresponding to a special path. Iget is a routine called to locate
the inode entry of a file (i-number). It first searches the in-core inode table. If the inode entry is not in the table,
routine jget will get the inode from the file system where the file resides and make an entry in the in-core inode
table for the file. Iget returns a pointer to this entry. Namei calls iget, but other file access routines also call
iget Therefore, counter iget is always greater than counter namei.

Counter dirblk records the number of directory block reads issued by the system. It is noted that the direc-
tory blocks read divided by the number of namei calls estimates the average path length of files.

- Runque, runocc, swpque, and swpocc: These countersare used to record queue activities. They are im-
plemented in the clock.croutine. At every 1 second interval, the clock routine examines the process table to see
whether any processes are in core and in ready state. If so, the counter runocc is incremented and the number

" of such processes are added to counter runque. While examining the process table, the clock routine also checks

whether any processes in the swap device are in ready state. The counter swpocc is incremented if the swap
nueue is occupied, and the number of processes in swap queue is added to counter swpque.

Readch and writech: The readch and writech counters record the total number of bytes (characters)
transferred by the read and write system calls, respectively.

Monitoring terminal device activities: There are six counters monitoring terminal device activities.
Revint, xmtint, and mdmint are counters measuring hardware interrupt occurrences for receiver, transmitter,
and modem individually. Rawch, canch, and outch count number of characters in the raw queue, canonical
queue, and output queue. Characters generated by devices operating in the cooked mode, such as terminals, are
counted in both rawchand (as edited) in eanch, but characters from raw devices, such as communication proces-
sors, are counted only in rawch

Msg and sema counters: These counters record message sending and receiving activities and semaphore
operations, respectively.

Page 178

6/82 ISSVE 1 ADMINISTRATOR’S GUIDE

AL R

Monitoring I/0 activities: As to the [/0 activity for a disk or tape device, four counters are kept for each
disk or tape drive in the device status table. Counter fo_opsis incremented when an 1/0 operation has occurred
on the device. It includes block 1/0, swap 1/0, and physical I/0. fo_bent counts the amount of data transferred
between the device and memory in 512 byte units. Jo_act and io_resp measure the active time and response time
of a device in time ticks summed over all 1/0 requests that have completed for each device. The device active
time includes the device seeking, rotating and data transferring times, while the response time of an.I/0 opera-
tion is from the time the I/0 request is queued to the device to the time when the I/O completes '

Inodeovf, fileovf, textovf, and procovf: These counters are extracted from _syserr structure When an
overflow occurs in any of the inode, file, text and process tables, the correspoending overﬂow counter'is incre-
mented. b

System Activity Commands

The system activity package provides three commands for generating various system activity reports and
one command for profiling disk activities. These tools facilitate observation of system actmty durmg

e a controlled stand-alone test of a large system
o an uncontrolled run of a program to observe the operating environment
e normal production operation.

Commands sar and sag permit the user to specify a sampling interval and number of intervals for examin-
ing system activity and then to display the observed level of activity in tabular or graphical form. The timex
command reports the amount of system activity that occurred during the precise period of executlén of a timed
command. The sadp command allows the user to establish a sampling period dunng which access location and
seek distance on specified disks are recorded and later displayed as a tabular summary or as a histogram.

The “sar’’ command
The sar command can be used in the following ways:

e When the frequency arguments t and n are specified, it invokes the data collection program sade to
sample the system activity counters in the operating system every t seconds for n intervals and gener-
ates system activity reports in real-time. Generally, it is desirable to include the option to save the sam-
pled data in a file for later examination. The format of the data file is shown in sar(8). In addition to
the system counters, a time stamp is also included. It gives the time at which the sample was taken.

e If nofrequency arguments are supplied, it generates system activity reports for a specified time interval
from an existing data file that was created by sar at an earlier time.

A convenient usage is to run sar as a background process, saving its samples in a temporary file but sending
its standard output to /dev/null Then an experiment is conducted after which the system activity is extracted
from the temporary file. The sar(1) manual entry describes the usage and lists various types of reports. Attach-
ment 11.3 gives formula for deriving each reported item.

The “'sag” command
Sag displays system activity data graphically. It relies on the data file produced by a prior run of sar after
which any column of data or the combination of columns of data of the sar report can be plotted. A fairly simple

but powerful command syntax allows the specification of cross plots or time plots. Data items are selected using
the sar column header names. The sar(1G) manual entry describes its options and usage. The system activity

Page 179

e Tlu “wﬂp" comrnand

ADMINISTRATOR'S GUIDE ISSUE 6/82

gfahhicil progi'am invokes graphics(1G) and tplot(1G) commands to have the graphical output displayed on
any of the terminal types supported by tplot.

The “‘timex’ command

_The timex command is an extension.of the time(1) command. Without options, timex behaves exactly like
time. In addition to giving the time information, it also prints a system activity report derived from the system
counters. The manual entry timex(1) explains its usage. It should be emphasized that the user and sys times
reported in the second and third lines are for the measured process itself including all its children while the
remaining data (including the cpu user % and cpu sys %) are for the entire system.

While the normal use of timex will probably be to measure a sin'gle command, multiple commands can also
be umed elther by comblmng them i in an executable file and tlmmg it, or more concisely, by typing:

i tlmex sh —¢ cmdl cmd2;
This éstablishe‘s the necessary parent-child relationships to correctly extract the user and system times con-
sumed by emdl,emd2, . .. (and the shell).

B

PR

. Sadp'is'a user]evel ‘program that can be invoked mdependently by any user It requires no storage or extra
code in the operating system and allows the user to specify the disks to be monitored. The program is reawak-
ened every second, reads system tables from /dev/kmem, and extracts the required information. Because of the
- 1 second sampling, only'a small fraction of disk requests are observed; however, comparative studies have shown
" that the statistical determinatior’ of disk locality is adequate when sufficient samples are collected.

In the operating system, there is an jobuf for each disk drive. It contains two pointers which are head and
tail of the 170 active queue for the device. The actual requests in the queue may be found in three buffer header
pools—system buffer headers for block 1/0 requests, physical buffer headers for physical 1/0 requests, and
swap, buffer headers for swap 1/0. Each buffer header has a forward pomter which points to the next request
.in_the 1/0 active-queue-and a backward pointer which points to the previous request.

Sadp snapshots the iobufof the monitored device and the three buffer header pools once every second dur-
ing the monitoring period. It then traces the requests in the I/0 queue, records the disk access location, and
seeks distance in buckets of 8 cylinder increments. At the end of monitoring period, it prints out the sampled

data. The output of sadp can be used to balance load among disk drives and to rearrange the layout of a particu-
'v._'lar disk pack. The usage of this command is descrlbed in manual entrv sadp(l)

Daily Report Generation

The previous part descnbed the commands available to users to initiate actmty observations. It is probably
desirablé for each installation to routinely monitor and record system activity in a standard way for historical

analysis. This part describes the steps that a system administrator may follow to automatically produce a stan-
dard daily report of system activity.

Facilities

o sadc—The executable module of sadc.c (see Attachment 11.1) which reads system counters from /dev/
kmem and records them to a file. In addition to the file argument, two frequency arguments are usually
specified to indicate the sampling interval and number of samples to be taken. In case no frequency ar-
guments are given, it writes a dumnmy record in the file to indicate a system restart.

e sal—The shell procedure that invokes sade to write system counters in the daily data file /usr/

adm/sa dd where dd represents the day of the month. It may be invoked with sampling interval and
iterations as arguments.

Page 180

6/82 ISSUE 1 ADMINISTRATOR'S GUIDE

e sa2—The shell procedure that invokes the sar command to generate daily report /usr/adm/sa/sardd
from the daily data file /usr/adm/sa/sa dd. It also removes daily data files and report ﬁles after 7 days.
The starting and ending times and all report options of sar are applicable to sa2..

Suggested Operational Setup s me v

It is suggested that the cron(lM) control the normal data collectlon and report generatlon operatlons For
example, the sample entries in /usr/l:b/crontab ‘ o
0**"* 0,6 su sys —- " /usr/hb/sa/sal " ant
0 18- * * 1-5 su sys —¢ " /usr/lib/sa/sal” ..
08-17 * * 1-5 su sys —¢ " /usr/lib/sa/sal 1200 3"

would cause the data collection program sadc to be invoked every hour on the hour. Moreover, depending on
the arguments presented, it writes data to the data file one to three times at every 20 minutes. Therefore, under
the control of cron(1M), the data file is wntten every 20 mlnutes between 8.00 and 18 00 on weekdays and hourly
at other times: B C

‘Note that data samples are taken more frequently durmg prime time on weekdays to make them available
for a finer and more detailed graphical display. It is suggested that sal be invoked hourly rather than invoking
it once every day; this ensures that lf the system crashes data collection mll be resumed w1thm an hour after

" the system is restarted e -

" "Because system actmty counters restart from zero when th.. system is restarted a speclal record is written
on the data file to reflect this sntuatlon This process is accompllshed by invoking sade with no frequency argu-
ments within'/etc/rc when gomg to multxuser state
oL T

su adm " /usr/hb/sa/sadc /usr/adm/sa/sa'date +%d' R

_ Cron(lM) also controls the mvocatlon of sar to generate the dally report via shell procedure sa2 One may
choose the tlme perxod the daily report is to cover and the groups of system activity to-be'reported. For instance,
if:

ST

0 20 . *1- 5. su sys b /usr/lxb/sa/sa2 -3 8 00 —e 1800 ~-i 3600 —uybd -

is an entry in /usr/hb/crontab cron wnll execute the sar command to generate ‘daily reports from the daily
data file at 20:00 on weekdays. The daily report reports the CPU utilization, terminal device activity; buffer us-
age, and device activity every hour from 8:00 to 18:00. - ol

In-case of a shortage of the disk space or for any other reason, these data files and report files can be re-
moved by the superuser The manual entry sar(B) describes the dally report generatlon procedure

Page 181

ADMINISTRATOR’S GUIDE ISSUE 1 6/82

ATTACHMENT 11.1

The source files and shell programs of the system activity package are in directory /usr/sre/cmd/sa.

sa.h

‘sadc.¢

sar.c

saghdr.h
saga.c & sagb.c
sal.sh

sa2.§h

timex.c "

sadp.c

Page 182

The system activity header file defines the structure of.data file and device information
for measured devices.:It is included in sadc.c, sar.c,.and timex.c.

The data collection program that accesses /dev/kmem to read the system activity counters
and writes data either on standard output or on a*binary data file. It is invoked by the sar
command generating a real-time report. It is also.invoked indirectly by entries in /usr/lib/
crontab to collect system activity data.

The report generation program invokes sadc¢ to.examine system activity data, generates
reports in real-time, and saves the data to a file for later usage. It:may also generate sys-
tem activity reports from an existing data file. It is invoked indirectly by cron'to generate
daily reports.

The'header fiie:for saga.c and sagb.c. It contains dita structures and variables used by

.saga.c.and svagb.c.

The graph generation program that first'invokes sar to format the dat» of a da*a (ile in
a tabular form and then displays the sar data in graphical form.

The shell procedure that invokes sade to write data file records. It is activated by u.‘ltrfes
in /usr/lib/crontab. . '

"The shell procedure that invokes sar to generate the report. It also removes the cai, ;'t‘ ste

files and daily report files after a week. It is activated by:an entry in /usr/lib/cro...ab on
weekdays.

The program that times a command and éé;émms a s&stem activity report.

The program that:samples and reports disk at;ti\'rities_,w

LP Spooling System

This document is part of the ADMINISTRATOR'S GUIDE. Therefore the
pagenumbers don’'t begin with 1.

Trademarks:
MUNIX, CADMUS for PCS
DEC, PDP for DEC
UNIX for Bell Laboratories

Copyright 1884 by
PCS GmbH, Pfalzer-Wald-Strasse 38, D-8000 Miinchen B0, tel. (089) 67804-0

The information contained herein is the property of PCS and shall neither be reproduced in
whole or in part without PCS's prior written approval nor be implied to grant any license to
make, use or sell equipment manufactured herewith.

PCS reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages (including consequential)

caused by reliance on the materials presented.

6/82 ISSUE 1 ADMINISTRATOR’'S GUIDE

9. LP SPOOUNG SYSTEM

GENERAL

The LP program is a system of commands which performs diverse spooling functions under the UNIX oper-
ating system. Since the primary LP application is off-line printing, this document focuses mainly on spooling
to line printers. LP allows administrators to customize the system to spool to a collection of line printers of any
type and to group printers into logical classes in order to maximize the throughput of the devices. Users are
provided the capabilities of queuing and canceling print requests, preventing and allowing queuing to and print-
ing on devices, starting and stopping LP from processing requests, changing configuration of printers and find-
ing status of the LP system. This section describes the role of an LP Administrator in performing restricted
functions and overseeing the smooth operation of LP.

Throughout this section, each reference of the form name(1M), name(7), or name(8) refers to entries in
the UNIX System Administrator’s Manual. All other references to entries of the form name(N), where “N”

is a number (1 through 6) possibly followed by a letter, refers to entry name in Section “N” of the UNIX System
User's Manual.

OVERVIEW OF LP FEATURES
A. Definitions

Several terms must be defined before presenting a brief summary of LP commands. The LP was designed
with the flexibility to meet the needs of users on different UNIX systems. Changes to the LP configuration are
performed by the lpadmin(1M) command.

LP makes a distinction between printers and printing devices. A device is a physical peripheral device or
a file and is represented by a full UNIX system pathname. A printeris a logical name that represents a device.
At different points in time, a printer may be associated with different devices. A class is a name given to an
ordered list of printers. Every class must contain at least one printer. Each printer may be a member of zero
or more classes. A destinationis a printer or a class. One destination may be designated as the system default
destination. The 1p(1) command will direct all output to this destination unless the user specifies otherwise.
Output that is routed to a printer will be printed only by that printer, whereas output directed to a class will
be printed by the first available class member.

Each invocation of 1p creates an output request that consists of the files to be printed and options from the
lpcommand line. An interface program which formats requests must be supplied for each printer. The LP sched-
uler, Ipsched(1M), services requests for all destinations by routing requests to interface programs to do the
printing on devices. An LP configuration for a system consists of devices, destinations, and interface programs.
B. Commonds

Commands for General Use

The Ip(1) command is used to request the printing of files. It creates an output request and returns a request
id of the form

dest-seqno

to the user, where seqno is a unique sequence number across the entire LP system, and dest is the destination
where the request was routed.

Cancel is used to cancel output requests. The user supplies request ids as returned by lp or printer names,
in which case the currently printing requests on those printers are canceled.

Page 141

ADMINISTRATOR'S GUIDE ISSUE 1 6/82

Disable prevents Ipsched from routing output requests to printers.
Enable(1) allows Ipsched to route output requests to printers.

Commands for LP Administrators

Each LP system must designate a person or persons as LP administrator to perform the restricted functions
listed below. Either the superuser or any user who is logged into the UNIX system as Ip qualifies as an LP Ad-
ministrator. All LP files and commands are owned by 1p, except for lJpadmin and lpsched which are owned
by root. The following commands will be described in more detail later in this section.

Lpadmin(1M) Modifies LP configuration. Many features of this command cannot be used when lpsched
is running.

Lpsched(1M) Routes output requests to interface programs which do the printing on devices.

Lpshut Stops 1psched from running. All printing activity is halted, but other LP commands may
still be used.

Accept(1M) Allows Ip to accept output requests for destinations.

Reject Prevents lp from accepting requests for destinations.

Lpmove Moves output requests from one destination to another. Whole destinations may be moved

at once. This command cannot be used when Ipsched is running.

BUILDING LP

All LP commands are built from source code that resides in the /usr/sre/emd/Ip directory including the
make file, Jp.mk Unless some of the definitions in Jp.mk are changed, LP may be installed only by the superuser.
Before installing a new LP system, make sure there is a login called Ipon your system and that the spool directo-
ry, /usr/spool/Ip, does not exist. To install LP, perform the following:

cd /usr/sre/emd/1p
make —f Ip.mk install

This builds all LP commands and creates an initial LP configuration consisting of no printers, classes, or default
destination. LP must be configured by an LP administrator using the lpadmin command in order to create a
useful spooler.
Ix; addition, add the following code to /ete/re:
rm —f /usr/spool/lp/SCHEDLOCK
/usr/lib/lpsched
echo " LP scheduler started ”
This starts the LP scheduler each time that the UNIX system is restarted.

Several variables in Ip.mk may be changed before installing LP to customize the system:

Variable Default Value Meaning
SPOOL /usr/spool/Ip spool directory
ADMIN Ip logname of LP Administrator

Page 142

6/82 ISSUE 1 ADMINISTRATOR’'S GUIDE

GROUP bin group owning LP commands/data
ADMDIR Zusr/lib commands of administrator
USRDIR /usr/bin user commands reside here

If an existing LP spool directory is corrupted (but not the LP programs) or if it needs to be rebuilt from
scratch, make sure that lpsched is not running and perform the following as superuser:

1. Make copies of any interface programs that are not standard LP software. DO NOT make these copies
underneath the spool directory. The pathname for printer “p” is /usr/spool/lp/interface/p.

2. rm —{r /usr/spool/lp
3. Make —f Ip.mk new. (This recreates the bare LP configuration described above.)

PRECAUTIONS:

1. Some LP commands invoke other LP commands. Moving them after they are built will cause some com-
mands to fail.

2. The files under the SPOOL directory should be modified only by LP commands.
3. All LP commands require set-user-id permission. If this is removed, the commands will fail.

CONFIGURING LP—THE “lpadmin’”’ COMMAND

Changes to the LP configuration should be made by using the lpadmin command and not by hand.
Lpadmin will not attempt to alter the LP configuration when lpsched is running, except where explicitly
noted below.

A. Introducing New Destinations
The following information must be supplied to lpadmin when introducing a new printer:
1. The printer name (—p printer) is an arbitrary name which must conform to the following rules:
o It must be no longer than 14 characters.
e It must consist solely of alphanumeric characters and underscores.

e It must not be the name of an existing LP destination (printer or class).

2. The device associated with the printer (—v device). This is the pathname of a hardwired printer, a login
terminal, or other file that is writable by lp.

3. The printer interface program. This may be specified in one of three ways:
e It may be selected from a list of model interfaces supplied with LP (—m model).
e It may be the same interface that an existing printer uses (~e printer).
o It may be a program supplied by the LP administrator (—i interface).
Information which need not always be supplied when creating a new printer includes:

1. The user may specify —h to indicate that the device for the printer is hardwired or the device is the name
of a file (this is assumed by default). If, on the other hand, the device is the pathname of a login terminal,

Page 143

ADMINISTRATOR’S GUIDE ISSUE 1 6/82

then —] must be included on the command line. This indicates to Ipsched that it must automatically dis-
able this printer each time Ipsched starts running. This factis reported by Ipstat when it indicates printer
status:

$ Ipstat —pa

printer a (login terminal) disabled Oct 31 11:15—

disabled by scheduler: login terminal

This is done because device names for login terminals can be (and usually are) associated with different
physical devices from day to day. If the scheduler did not take this action, somebody might log in and
be surprised that LP is spooling to his/her terminal!

2. The new printer may be added to an existing class or added to a new class (—cclass). New class names
must conform to the same rules for new printer names.

EXAMPLES
The following examples will be referenced by further examples in later sections.

1. Create a printer called prl whose device is /dev/printer and whose interface program is the model hp
interface:

$ /usr/lib/lpadmin —pprl —v/dev/printer —mhp

2. Add a printer called pr2 whose device is /dev/tty22 and whose interface is a variation of the model prx
interface. It is also a login terminal:

$ cp /usr/spool/lp/model/prx xxx
< edit xxx >
$ /usr/lib/lpadmin —ppr2 —v/dev/tty22 —ixxx -1

3. Create a printer called pr3 whose device is /dev/tty23. The pr3 will be added to a new class called cl1 and
will use the same interface as printer pr2

$ /usr/lib/lpadmin —ppr3 —v/dev/tty23 —epr2 —ccll
B. Modifying Existing Destinations

Modifications to existing destinations must always be made with respect to a printer name (—p printer).
The modifications may be one or more of the following:

1. The device for the printer may be changed (—v device). If this is the only modification, then this may
be done even while Ipsched is running. This facilitates changing devices for login terminals.

2. The printer interface program may be changed (—m model, —e printer, —i interface).

3. The printer may be specified as hardwired (=h) or as a login terminal (-1).

4. The printer may be added to a new or existing class (—cclass).

5. The printer may be removed from an existing elass (—r class). Removing the last remaining member of

a class causes the class to be deleted. No destination may be removed if it has pending requests. In that
case, Ipmove or cancel should be used to move or delete the pending requests.

Page 144

6/82 ISSUE 1 ADMINISTRATOR'’S GUIDE
EXAMPLES
These examples are based on the LP configuration created by those in the previous section.
1. Add printer pr2 to class cli:
$ /usr/lib/lpadmin —ppr2 —cell

2. Change pr2's interface program to the model prx interface, change its device to /dev/tty24, and add it
to a new class called c]2

$ /usr/lib/lpadmin —ppr2 —mprx —v/dev/tty24 —ccl2

Note that printers pr2 and pr3 now use different interface programs even though pr3 was originally cre-
ated with the same interface as pr2. Printer pr2 is now a member of two classes.

3. Specify printer pr2 as a hardwired printer:
$ /usr/lib/lpadmin —ppr2 ~h

4. Add printer prl to class cl2
$ /usr/lib/lpadmin —pprl —ccl2

The members of class cl2 are now pr2 and prl, in that order. Requests routed to class ¢l2 will be serviced
by pr2 if both pr2 and prl are ready to print; otherwise, they will be printed by the one which is next
ready to print.

5. Remove printers pr2 and pr3 from class cll:

$ /usr/lib/lpadmin —ppr2 —recll
$ /usr/lib/lpadmin —ppr3 —rell

Since pr3 was the last remaining member of class cll, the class is removed.

6. Add pr3 to a new class called ¢l3.

$ /usr/lib/lpadmin —ppr3 —cel3
C. Specifying the System Default Destination

The system default destination may be changed even when Ipsched is running.
EXAMPLES
1. Establish class cll as the system default destination:
$ /usr/lib/lpadmin —dcll
2. Establish no default destination:

$ /usr/lib/lpadmin —d
D. Removing Destinations
Classes and printers may be removed only if there are no pending requests that were routed to them. Pend-

ing requests must either be canceled using cancel or moved to other destinations using lpmove before destina-
tions may be removed. If the removed destination is the system default destination, then the system will have

Page 145

ADMINISTRATOR’S GUIDE ISSUE 1 6/82

no default destination until the default destination is respecified. When the last remaining member of a class
is removed, then the class is also removed. The removal of a class never implies the removal of printers.

EXAMPLES
1. Make printer prl the system default destination:
$ /usr/lib/lpadmin —dprl
Remove printer prl:
$ /usr/lib/lpadmin —xprl
Now there is no system default destination.
2. Remove printer pr&
$ /usr/lib/lpadmin —xpr2
Class ¢l2 is also removed since pr2 was its only member.
3. Remove class cl3:
$ /usr/lib/lpadmin =xcl3
Class cl3 is removed, but printer pr3 remains.
MAKING AN OUTPUT REQUEST—THE “lp’* COMMAND

Once LP destinations have been created, users may request output by using the lp command. The request
id that is returned may be used to see if the request has been printed or to cancel the request.

The LP program determines the destination of a request by checking the following list in order:
o If the user specifies —d dest on the command line, then the request is routed to dest
e If the environment variable LPDEST is set, the request is routed to the value of LPDEST.
o If there is a system default destination, then the request is routed there.
s Otherwise, the request is rejected.
EXAMPLES
1. There are at least four ways to print the password file on the system default destination:
Ip /ete/passwd
Ip < /ete/passwd
cat /etc/passwd { 1p
Ip —c /ete/passwd
The last three ways cause copies of the file to be printed, whereas the first way prints the file directly.

Thus, if the file is modified between the time the request is made and the time it is actually printed, then
the changes will be reflected in the output. :

Page 146

6/82 ISSUE 1 ADMINISTRATOR’'S GUIDE

2. Print two copies of file abc on printer xyz and title the output “my file™:
pr abe!lp —dxyz —n2 -t " my file"

3. Print file xxx on a Diablo® 1640 printer called zoo in 12-pitch and write to the user’s terminal when print-
ing has completed:

Ip —dzoo —012 —w xxx

In this example, “12” is an option that is meaningful to the model Diablo 1640 interface program that
prints output in 12-pitch mode [see Ipadmin(1M)].

FINDING LP STATUS—LPSTAT

The Ipstat command is used to find status information about LP requests, destinations, and the scheduler.

EXAMPLES

1. List the status of all pending output requests made by this user:

Ipstat

The status information for a request includes the request id, the logname of the user, the total number
of characters to be printed, and the date and time the request was made.

2. List the status of printers pl and p2
Ipstat —ppl,p2

CANCELNG REQUESTS—CANCEL

The LP requests may be canceled using the cancel command. Two kinds of arguments may be given to the
command —request ids and printer names. The requests named by the request ids are canceled and requests that
are currently printing on the named printers are canceled. Both types of arguments may be intermixed.

EXAMPLE
Cancel the request that is now printing on printer xyz
cancel xyz

If the user that is canceling a request is not the same one that made the request, then mail is sent to the owner
of the request. LP allows any user to cancel requests in order to eliminate the need for users to find LP adminis-
trators when unusual output should be purged from printers.

ALLOWING AND REFUSING REQUESTS —ACCEPT AND REJECT

When a new destination is created, Ip will reject requests that are routed to it. When the LP administrator

is sure that it is set up correctly, he or she should allow Ip to accept requests for that destination. The accept
command performs this function.

Sometimes it is necessary to prevent 1p from routing requests to destinations. If printers have been removed
or are waiting to be repaired or if too many requests are building for printers, then it may be desirable to cause

* Trademark of Diablo Systems, Inc.

Page 147

ADMINISTRATOR'S GUIDE ISSUE 1§ 6/82

Ip to reject requests for those destinations. The reject command performs this function. After the condition
that led to the rejection of requests has been remedied, the accept command should be used to allow requests
to be taken again.

The acceptance status of destinations is reported by the —a option of Ipstat.
EXAMPLES
1. Cause lp to reject requests for destination xyz:
/usr/lib/reject —r " printer xyz needs repair " xyz
Any users that try to route requests to xyz will encounter the following:

$ lp —dxyz file
Ip: can not accept requests for destination " xyz "
—printer xyz needs repair

2. Allow Ip to accept requests routed to destination xyz
/usr/lib/accept xyz

ALLOWING AND INHIBITING PRINTING—ENABLE AND DISABLE

The enable command allows the LP scheduler to print requests on printers. That is, the scheduler routes
requests only to the interface programs of enabled printers. Note that it is possible to enable a printer but to
prevent further requests from being routed to it.

The disable command cancels the effects of the enable command. It prevents the scheduler from routing
requests to printers, independently of whether or not 1p is allowing them to accept requests. Printers may be
disabled for several reasons including malfunctioning hardware, paper jams, and end of day shutdowns. If a
printer is busy at the time it is disabled, then the request that it was printing will be reprinted in its entirety
either on another printer (if the request was originally routed to a class of printers) or on the same one when
the printer is reenabled. The —c option causes the currently printing requests on busy printers to be canceled
in addition to disabling the printers. This is useful if strange output is causing a printer to behave abnormally.

EXAMPLE
Disable printer xyz because of a paper jam:

$ disable —r " paper jam " xyz
printer "xyz" now disabled

Find the status of printer xyz:

$ lpstat —pxyz
printer "xyz" disabled since Jan 5 10:15 —
paper jam

Now, reenable xyz:

$ enable xyz
printer " xyz

now enabled

Page 148

6/82 ISSUE 1 ADMINISTRATOR'S GUIDE

MOVING REQUESTS BETWEEN DESTINATIONS —LPMOVE

Occasionally, it is useful for LP administrators to move output requests between destinations. For instance,
when a printer is down for repairs, it may be desirable to move all of its pending requests to a working printer.
This is one way to use the Ipmove command. The other use of this command is to move specific requests to
a different destination. Lpmove will refuse to move requests while the LP scheduler is running.

EXAMPLES
1. Move all requests for printer abc to printer xyz
$ /usr/lib/lpmove abe xyz

All of the moved requests are renamed from abe-nnn to xyz-nnn. As a side effect, destination abe is no
longer accepting further requests.

2 Move requests 200-543 and abc-1200 to printer xyz
$ /usr/lib/Ipmove z00-543 abc-1200 xyz
The two requests are now renamed xyz-543 and xyz-1200.

STOPPING AND STARTING THE SCHEDULER—LPSHUT AND LPSCHED

Lpsched is the program that routes the output requests that were made with 1p through the appropriate
printer interface programs to be printed on line printers. Each time the scheduler routes a request to an inter-
face program, it records an entry in the log file, /usr/spool/Ip/log This entry contains the logname of the user
that made the request, the request id, the name of the printer that the request is being printed on, and the date
and time that printing first started. In the case that a request has been restarted, more than one entry in the
log file may refer to the request. The scheduler also records error messages in the log file. When Ipsched is
started, it renames /usr/spool/Ip/log to /usr/spool/lp/oildlog and starts a new log file.

No printing will be performed by the LP system unless lpsched is running. Use the command
lpstat —r
to find the status of the LP scheduler.

Lpsched is normally started by the /ete/rc program as described above and continues to run until the
UNIX system is shut down. The scheduler operates in the /usr/spool/Ip directory. When it starts running, it
will exit immediately if a file called SCHEDLOCK exists. Otherwise, it creates this file in order to prevent more
than one scheduler from running at the same time.

Occasionally, it is necessary to shut down the scheduler in order to reconfigure LP or to rebuild the LP soft-
ware. The command

/usr/lib/Ipshut

causes Ipsched to stop running and terminates all printing activity. All requests that were in the middle of
printing will be reprinted in their entirety when the scheduler is restarted.

To restart the LP scheduler, use the command

/usr/lib/1psched

Page 149

ADMINISTRATOR’S GUIDE ISSUE 1 6/82

Shortly after this command is entered, lpstat should report that the scheduler is running. If not, it is possible
that a previous invocation of lpsched exited without removing SCHEDLOCK, so try the following:

rm ~f /usr/spool/lp/SCHEDLOCK
/usr/lib/lpsched

The scheduler should be running now.

PRINTER INTERFACE PROGRAMS

Every LP printer must have an interface program which does the actual printing on the device that is cur-
rently associated with the printer. Interface programs may be shell procedures, C programs, or any other exe-
cutable programs. The LP model interfaces are all written as shell procedures and can be found in the /usr/
spool/Ip/model directory. At the time Ipsched routes an output request to a printer P, the interface program
for P is invoked in the directory /usr/spool/Ip as follows:

interface/P id user title copies options file ...
where

id is the request id returned by lp

user is logname of user who made the request
title is optional title specified by the user
copies is number of copies requested by user
options is a blank-separated list of class or
printer-dependent options specified by user
file is the full pathname of a file to be printed

EXAMPLES

The following examples are requests made by user “smith” with a system default destination of printer
“xyz”. Each example lists an lp command line followed by the corresponding command line generated for
printer xyz's interface program:

1. lp /ete/passwd /ete/group
interface/xyz xyz-52 smith * ™ 1 " " /etc/passwd /ete/group

2. pr /etc/passwd ilp ~t" users” —n5
interface/xyz xyz-53 smith users5 = »
/usr/spool/1p/request/xyz/d0-53

3. Ip /ete/passwd —oa —ob
interface/xyz xyz-54 smith = = 1 " ab" /etc/passwd

When the interface program is invoked, its standard input comes from /dev/null and both the standard out-
put and standard error output are directed to the printer’s device. Devices are opened for reading as well as

Page 150

6/82 ISSUE 1 ADMINISTRATOR’S GUIDE

writing when file modes permit. In the case where a dev.ce is a regular file, all output is appended to the end
of the file. .

Given the command line arguments and the output directed to a device, interface programs may format
their output in any way they choose. Interface programs must ensure that the proper stty modes (terminal char-
acteristics such as baud rate, output options, etc.) are in effect on the output device. This may be done as follows
in a shell interface only if the device is opened for reading:

stty mode ... <&l
That is, take the standard input for the stty command from the device.

When printing has completed, it is the responsibility of the interface program to exit with a code indicative
of the success of the print job. Exit codes are interpreted by lpsched as follows:

CODE MEANING TO LPSCHED
zero The print job has completed successfully.
1to 127 A problem was encountered in printing this particular request (e.g., too many nonprintable

characters). This problem will not affect future print jobs. Lpsched notifies users by mail
that there was an error in printing the request.

greater than 127 These codes are reserved for internal use by lpsched. Interface programs must not exit
with codes in this range.

When problems that are likely to affect future print jobs occur (e.g., a device filter program is missing),
the interface programs would be wise to disable printers so that print requests are not lost. When a busy printer
is disabled, the interface program will be terminated. with signal 15.

SETTING UP HARDWIRED DEVICES AND LOGIN TERMINALS AS LP PRINTERS

A. Hardwired Devices

As an example of how to set up a hardwired device for use as an LP printer, let us consider using tty line
15 as printer xyz. As superuser, perform the following:

1. Avoid unwanted output from non-LP processes and ensure that LP can write to the device:

$ chown lIp /dev/ttyl5
. $ chmod 600 /dev/ttyl5

2. Change /etc/inittab so that ttyl5 is not a login terminal. In other words, ensure that /etc/getty is not
trying to log users in at this terminal. Change the entries for line 15 to:

1:15:0:
2:15:0:

Enter the command:
$ init 2
If there is currently an invocation of /etc/getty running on ttyl5, kill it. Now, and when the UNIX system

is rebooted, ttyl5 will be initialized with default stty modes. Thus, it is up to LP interface programs to
establish the proper baud rate and other stty modes for correct printing to occur.

Page 151

ADMINISTRATOR'S GUIDE ISSUE 1 6/82

3. Introduce printer xyz to LP using the model prx interface program:
$ /usr/lib/lpadmin —pxyz —v/dev/ttyl5 —mprx

4. When xyz is created, it will initially be disabled and lp will be rejecting requests routed to it. If it is de-
sired, allow lp to accept requests for xyz

/ usr/lib/ac‘cept xyz
This will allow requests to build up for xyz, and to be printed when it is enabled at a later time.

5. When it is desired for printing to occur, be sure that the printer is ready to receive output. For several
printers, this means that the top of form has been adjusted and that the printer is on-line. Enable print-
ing to occur on xyz:

enable xyz
When requests have been routed to xyz, they will begin printing.

B. Login Terminals

Login terminals may also be used as LP printers. To do this for a Diablo 1640 terminal called abc, perform
the following:

1. Introduce printer abc to LP using the model 1640 interface program:
$ /usr/lib/lpadmin —pabc —v/dev/null - m1640 -]

Note that /dev/null is used as abc’s device because we will specify the actual device each time that abe
is enabled. This device may be different from day to day. When abc is created, it will initially be disabled;
and Ip will be rejecting requests routed to it. If it is desired, allow lp to accept requests for abe

/usr/lib/accept abc

This will allow requests to build up for abe and to be printed when it is enabled at a later time. It is not
advisable to enable abc for printing, however, until the following steps have been taken.

2. Log terminal in if this has not already been done.

3. Assuming the tty(1) command reports that this terminal is /dev/tty02 associate this device with printer
abc:

$ /usr/lib/lpadmin —pabc —v/dev/tty02
Note that Ipadmin may be used only by an LPA. If it is desired for other users to routinely perform this
step, then an LPA may establish a program owned by Ip or by root with set-user-id permission that per-

forms this function.

4. When it is desired for printing to occur, be sure that the printer is ready to receive output. For several
printers, this means that the top of form has been adjusted. Enable printing to occur on abc:

enable abc

When requests have been routed to abe, they will begin printing.

Page 152

6/82 ISSUE 1 ADMINISTRATOR’S GUIDE

5. When all printing has stopped on abe or when you want it back as a regular login terminal, you may pre-
vent it from printing more output:

$ disable abc
printer "abc "™ now disabled

If abe is enabled when the UNIX system is rebooted or when Ipsched is restarted, it will be disabled
automatically.

SUMMARY

The administrative functions of the LP administrator have been described in detail. These functions include
configuring and reconfiguring LP; maintaining printer interface programs; accepting, rejecting, and moving
print requests; stopping and starting the LP scheduler; and enabling and disabling printers. LP offers adminis-
trators the following advantages over other centrally supported printer packages:

Printers may be grouped into classes.

LP may be configured to meet the needs of each site.
o Administrators may supply interface programs to format output in any way desirable.

e LP functions are performed by simple commands and not by hand.

Page 153

ADMINISTRATOR’S GUIDE ISSUE 1 6/82

NOTES

Page 154

UUCP

Administrator’s Manual

Trademarks:
MUNIX, CADMUS for PCS
DEC, PDP for DEC
UNIX for Bell Laboratories

Copyright 1984 by
PCS GmbH, Pfilzer-Wald-Strasse 38, D-8000 Minchen 90, tel. (089) 87804-0

The information contained herein is the property of PCS and shall neither be reproduced in
whole or in part without PCS's prior written approval nor be implied to grant any license to
make, use or sell equipment manufactured herewith.

PCS reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages (including consequential)
caused by reliance on the materials presented.

. Introduction

. Planning e e
2.1 Extent of the Nclwork

2.2 Hardware and Linc Speeds .
2.3 Maintenance and Administration

. A Quick Tour of the Uucp Software

. Installation . . o« e .,
4.1 Object Modulcs « e e s
4.2 Password Flle
43 LinesFile
44 SystemFile
4.5 Dialing Prefixes
46 USERFILE.
4.7 Forwarding File

. Administration
5.1 Cleanup . . . o

5.2 Polling Other Systems .

5.3 Problems

. Debugging« .

.Conclusion . . .+ . 4 . .

CONTENTS

—

Uucp Administrator’s Manual

1. Introduction

Uucp has been the mainstay of UNIX' system to UNIX system communication for several years [1,
2]. This document illustrates how a network is set up, the format of control files and administrative
procedures. Administrators should be familiar with the Uucp Users Tutorial and the manual pages
for each of the uucp related commands before reading this document.

2. Planning

In setting up a network of UNIX systems there are several considerations that should be taken into
account before configuring each system on the network. The following sections attempt to outline
the most important considerations.

2.1 Extent of the Network

Some basic decisions about access to processors in the network must be made before atiempting to
set up the configuration files. If an administrator bas control over only one processor and an
existing network is being joined, then the administrator must decide what level of access should be
granted to other systems. The other members of the network must make a similar decision for the
new system. The UNIX system password mechanism is used to grant access to other systems. The
file Gusrflibhiucp/fUSERFILE) testricts access by other systems to parts of the filesystem tree and
the file Ausrflibfuucp/L.sys on the local processor determines how many other systems on the network
can be reached.

When setting up more than one processor is involved, the administrator has control of a larger
fraction of the network and can make more decisions about the setup of the network. For example,
the network can be set up as a private network where only those machines under the direct control
of the-administrator can access each other. Granting no access to machines outside the network can
be done if security is paramount, however, this is usually impractical. Very limited access can be
granted to outside machines by each of the systems on the privare network. Alternatively, access
to/from the outside world can be confined to only one processor. This is frequently done to
minimize the effort in keeping access information (passwords, phone numbers, login sequences, etc.)
updated and to minimize the number of sccurity holes for the private network.

2.2 Hardware and Line Speeds

There are only two supported means of interconnection by uucp (1),
1. Direct connection using a null modem.
2. Connection aver the DDD network.

Direct connection over private lines using X.25 is not fully supported in UNIX System V, although
with the addition of one program x25.login it can be made operational. In choosing hardware, the
cquipment used by other processors on the network must be considered. For example, if some
systems on the network have only 103 type (300 baud) datasets, then communication with them is
not possible unless the local system has a 300 baud dataset connected to a calling unit. (Most
datasets available on systems are 1200 baud.) If bardwired connections are to be used between
systems, then the distance between systems must be considered since a null modem cannot be used
when the systems are separated by more than several hundred feet (the limit for ccmmunication at

®* UNIX is 8 Trademark of Bell Telephone Laboratories, Incorporated.

9600 baud is about 800 to 1000 feet although the RS232 specification allows for less than fifty feet).
Limited distance modems must be used beyond these distances or if noise on the lines becomes a
problem.

2.3 Maintenance and Administration

There is a minimum amount of maintenance that must be provided on each system to keep the
access files updated, to insure that the network is running properly and to track down line problems.
When more than one system is involved, the job becomes more difficult because there are more files
to update and because users are much less patient when failures occur between machines that are
under local control.

3. A Quick Tour of the Uucp Software

Figure 1 is an illustration of the dacmons used by the uucp network to communicate with another
system. The uucp (i) or uux(l) command queues users requests and spawns the uucico daemon to
call another system. Figure 2 illustrates the structure of wucico and the tasks that it performs in
communicating with another system. It initiates the call to another system and performs the file
transfer. On the receiving side, wucico is invoked to receive the transfer. Remote execution jobs are
actually done by transferring a command file to the remote system and invoking a daemon (uuxqt)
to execute that command file and return the results,

4. Installation

The uucp (1) package is delivered as part of the standard UNIX system distribution. It resides in its
own subdirectory (called uucp) in the commands area and has its own make file (uucp.mk). The
uucp package is installed as part of the normal distribution, however, if it must be reinstalled for
any reason, then the sequence

make uucp.mk install

should be executed.

4.1 Object Modules

The following object modules are installed as part of the vucp make procedure,
1. Uucp - The file transfer command.

Uux - The remote execution command.

Uucico - The uucp network daemon.

Uustat - Network status command.

Uuclean - Cleanup command.

Uusub - The command for monitoring and creating a subnetwork.

Uuxgqt - The remote execution dacmon.

® N AW

Uudemon.day - A shell procedure that is invoked each day to maintain the nctwork. Shell
scripts for execution each week (uudemonwk) and each hour (uudemon.hr) are also
distributed.

4.2 Password Flle

To allow remote systems to call the local system, password entrics must be made for any uucp
logins. For example,

nuucp:zaaAA:6:1:45422-UUCP.Admin:/usr/spool/uucppublic:/usr/lib/uucp/uucico

Note that the wucico dacmon is used for the shell and the spool directory is used as the working
directory. .

4.3 Lines Flle

The file Ausrflibhiucp/L-devices contains the list of all lines that are directly connected to other
systems or are available for calling other systems. The file contains the attributes of the lines and
whether the line is a permanent connection or can call via a dialer. The format of the file is

type line call-device speed protocol

where each field is

1ype Two keywords are used to describe whether a line is directly connected to
another system (DIR) or uses an automatic calling unit (ACU). An X.25
permanent virtual circuit would use the DIR keyword.

line This is the device name for the line (e.g., tryab for a direct line, cul0 for a line
connected to an ACU).

call-device If the ACU keyword is specified, this field contains the device name of the
automatic calling unit. Otherwise, the field is ignored, bowever, a placcholder
must be used in this field so that the protocol ficld can be interpreted.

speed The line speed that the connection is to run at. (The speed field is currently
ignored if an X.25 link is used.)

protocol This is an optional field that needs only be filled in if the connection is for a
protoco! other than the default terminal protocol. The X.25 protocol is the only
other protocol supported and the single character x is used to select this
protocol.

The following entries illustrate various types of connections,

DIR ttyab 0 9600
ACU culQ cua0 1200
DIR x25.50 0 300 x

The first entry is for a hardwired line running at 9600 baud between two systems. Note that the
acu-device field is zero. The second entry is for an line with a 1200 baud automatic calling unit.
The last entry is for an X.25 synchronous direct connection between systems. Note that the
protocol field is filled in and that the acu-device and line speed fields are meaningless.

4.3.1 Naming Conventions It is often useful when naming lines that are directly connected between
systems or which are dedicated to calling other systems to choose a naming scheme that conveys the
use of the line. In the earlier examples, the name tfyab is used for the line that directly connects
two systems named a and b. Similarly, lines associated with calling units are best given names that
relate them to the their calling unit (note the names cul0 and cua0 to specify the line and calling
unit respectively).

4.4 System File

Each entry in this file represents a system that can be called by the local wucp programs. More
than one line may be present for a particular system. In this case, the additional lines represent
alternative communication paths that will be tried in sequential order. The ficlds are described
below.

system name The name of the remote system.

time

device

class

phone

login

This is a string that indicates the days-of-week and times-of-day when the
system should be called (e.g.. MoTuTh0800—1730).

The day portion may be a list containing some of Su Mo Tu We Th Fr Sa or
it may be Wk for any week-day or Any for any day. The time should be a
range of times (e.g.. 0800—1230). If no time portion is specified, any time of
day is assumed to be allowed for the call. Note that a time range that spans
0000 is permitted, for example, 0800-0600 means all times are allowed other
than times between 6 and 8 am. An optional subfield is available to specify
the minimum time (minutes) before a retry following a failed attempt. The
subfield separator is a *," (e.g., Any,9 means call any time but wait at least 9
minutes before retrying the call after a failure has occurred).

This is either ACU or the hard-wired device name to be used for the call. For
the hard-wired case, the last part of the special file name is used (e.g., tty0).

This is usually the line speed for the call (e.g., 300).

Tbe pbone number is made up of an optional alphabetic abbreviation (dialing
prefix) and a numeric part. The abbreviation should be one that appears in
the L-dialcodes file (e.g., mh5900, boston995—9980). For the hard-wired
devices, this field contains the same string as used for the device field (c.g.,

tty0, etc.).

The login information is given as a series of fields and subfields in the format
[expect send] ...

where expect is the string expected to be read and send is the string to be sent
when the expect string is received.

The expect field may be made up of subfields of the form
expectl—send—expect] ...

where the send is sent if the prior expect is not successfully read and the
expect following the send is the next expected string. (e.g., login--login will
expect login; if it gets it, the program will go on to the next field; if it does
not get login, it will send null followed by a new line, then expect login
again.)

There are two special names available to be sent during the login sequence.
The string EOT will send an EOT character and the string BREAK will try
to send 2 BREAK character. (The BREAK character is simulated using line
speed changes and null characters and may not work on all devices and/or
systems.) A number from 1 to 9 may follow the BREAK for example,
BREAKI, will will send 1 null character instead of the default of 3. Note
that BREAK! usually works best for 300/1200 baud lines.

A typical entry in the L.sys file would be

sys Any ACU 300 mh7654 login uucp ssword: word

The expect algorithm matches all or part of the input string as illustrated in the password field

above.

4.5 Dialing Prefixes

This file contains the dial-code abbreviations used in the L.sys file (e.g., py, mh, boston). The entry
format is

abb dial-seq

where
abb is the abbreviation,

dial-seq is the dial sequence to call that location.

The line
py 165—

would be set up so that entry py7777 would send 165—7777 to the dial-unit.
4.6 USERFILE

This file contains user accessibility information. It specifies four types of constraint,

(1] which files can be accessed by a normal user of the local machine,

(2] which files can be accessed from a remote computer,

[3) which login name is used by a particular remote computer,

(4] };hctt.)cr a remote computer s_hould be called back in order to confirm its
identity.

Each line in the file bas the format

login,sys [c] path-name [path-name] ...

where

login is the login name for a user or the remote computer,
sys is the system name for a remote computer,
c is the optional call-back required flag,

path-name is a path-name prefix that is acceptable for sys.

The constraints are implemented as follows.

(1] When the program is obeying a command stored on the local machine, the
path-names allowed are those given on the first line in the USERFILE that has
the login name of the user who entered the command. If no such line is found,
the first line with a null login name is used.

(2] When the program is responding to a command from a remote machine, the
path-names allowed arc those given on the first line in the fils that has the
system name that matches the remote machine. If no such line is found, the
first one with a null system name is used.

(3] When a remote computer logs in, the login name that it uses must appear in the
USERFILE. Therc may be several lines with the same login name but one of

them must either have the name of the remote system or must contain a null
system name.

[4) If the line matched in ([3]) contains a “c”, the remote machine is called back
before any transactions take place.

The line
u,m /usr/xyz

allows machine m to login with name u and request the transfer of files whose names start with
*/usr/xyz”. The line

you, /usr/you

allows the ordinary user you to issue commands for files whose name starts with “/usr/you”. (Note
that this type restriction is seldom used.) The lines

u,m /usr/xyz /usr/spool
u, /usr/spool

allows any remote machine to login with name u. If its system name is not m, it can only ask to
transfer files whose names start with “/usr/spool™. If it is system m, it can send files from paths
“fusr/xyz" as well as */usr/spool”. The lines

root, /
, [lusr

allow any user to transfer files beginning with *“/usr™ but the user with login roor can transfer any
file. (Note that any file that is to be transferred must be readable by anybody.)

4.7 Forwarding File

There are two files that allow restrictions to be placed on the forwarding mechanism. The format of
the entries in each file is the same,

system
or
system!userluser2,...

The file ORIGFILE (fusrfliblaucp/ORIGFILE) restricts the access of systems that are attempting to
forward through the local system. The file contains the list of systems (and users) for whom the
local system-is willing to forward. Each entry refers to the system that was the source of the
original job and not the name of the last system to forward the file. The second file FWDFILE
Cusrflibluucp/FWDFILE) is a list of valid systems that a job can be forwarded to (it is not
necessarily the name of the destination of a job, but merely the next valid node). This file will be a
subset of the Lisys file and can be used to prevent forwarding to systems that are very expensive to
reach, but to which access by local users is allowed (for example, links t0 overseas universities). If
neither of these files exist, uucp will be perfectly happy to forward for any system. As an example,
if the entry for system australia were in the ORIGFILE but not in the FWDFILE on system xnode,
it would mean that system australia would be capable of forwarding jobs into the network via
system xnode however, no systems in the network could forward a job to gustralia via system xnode.

5. Administration

The role of the uucp administrator depends heavily on the amount of traffic that enters or leaves a
system and the quality of the connections that can be made to and from that system. For the
average system, only a modest amount of traffic (100-200 files per day) pass through the sysiem and
little if any intervention with the uucp automatic cleanup functions is necessary. Systems that pass
large numbers of files (200-10000) may require more attention when problems occur. The following
sections describe the routine administrative tasks that must be performed by the administrator or
are automatically performed by the uucp package. TFhe section on problems describes what are the
most frequent problems and how to effectively deal with them.

5.1 Cleanup

The biggest problem in a dialup network like uucp is dealing with the backlog of jobs that cannot be
transmitted to other systems. The following cleanup activities should be routinely performed by
shell scripts started from cron(1).

5.1.1 Cleanup of Undeliverable Jobs The uudemon.day procedure usually contains an invokation
of the uuclean commany to purge any jobs that are older than some fixed time (usually 72 hours).
A similar procedure is usually used to purge any lock or starus files. An example invokation of
uuclean (Im) to remove both job files and old status files every 48 bours is

husrllibluuclean -pST -pC -n48

5.1.2 Cleanup of the Public Area In order to keep the local filesystem from overflowing when files
are sent to the public area, the uudemon.day procedure is usually set up with a find command to
remove any files that are older than seven days. This interval may need to be shortened if there is
not sufficient space to devote to the public area.)

5.1.3 Compaction of Log Files The files SYSLOG and LOGFILE that contain logging information
are compactéd daily (using the pack command) and should be kept for one week before being
overwritten. :

5.2 Polling Other Systems

Systems that are passive members of the network must be polled by other systems in order for their
files to be sent. This can be arranged by using the wusub (1) command as follows,

wusub -ccnode

which will call cnode when it is invoked.
5.3 Problems

The following sections list the most frequent problems that appear on systems that make heavy use
of uucp(1).

5.3.1 Out of Space The filesystem used to spool incoming or outgoing jobs can run out of space
and prevent jobs from being spawned or much worse received from remote systems. The inability to
receive jobs is the worse of the two conditions since when filespace does become available, the
system will be flooded with the backlog of traffic.

5.3.2 Bad Acu's and Modems The automatic calling units and incoming modems occasionally
cause problems that make it difficult to contact other systems or to receive files. These problems are
usually readily identifiable since LOGFILE entries will usually point to the bad line. If a bad line is
suspected, it it useful to use the cu(l) command to try calling another system using the suspected
line.

5.3.3 Adminisirative problems Some uucp networks have so many members that it is difficult to
keep track of changing passwords, changing phone numbers or changing logins on remote systems.
This can be a very costly problem since acu's will be tied up calling a system that cannot be
reached.

6. Debugging

In order to verify that a system on the network can be contacted, the uucico daemon can be invoked
from a user’s terminal directly. For example, to verify that cnode can be contacted, a job would be
queued for that system as follows,

uucp -r file cnode!"hom

The -r option forces the job to be queued but does not invoke the daemon to process the job. The
uucico command can then be invoked directly,

tusrflibluucphuucico -rl -x4 -senode

The -7 option is necessary to indicate that the dacmon is to start up in master mode (that is, it is
the calling system). The -x4 specifies the level of debugging that is to be printed. Higher levels of
debugging can be printed (greater than 4) but requires familiarity with the internals of uucico. If
several jobs are queued for the remote system, it is not possible to force wucico to send one
particular job first. The contents of LOGFILE should also be monitored for any error indications
that it posts. Frequently, problems can be isolated by examining the entries in LOGFILE associated
with a particular system. The file ERRLOG also contains error indications.

7. Conclusion

This manual bas emphasized the format of control files and some of the issues in setting up a uucp
network.

-suowaup Jjomau dann | ndi

VELL v3INV

! 4
00dS VI3 100dS LSITINUOM

B@W3LSAS NOILO3INNOJYILNI V W3ALSAS

AUOMLIN QA0

|

IJUVMQUYH
SO XINN A
NOW3Va 0219NnN
_
10001084 |!| wWvauls
1L3INIVd " 31A8
_
|
dooonony || [Nowo3nno | .
313 It viLing (G2 X)
| 111v1vd Y2043 LN
_ aaa Q0 LN
ONITVIO 39N3ND3S

LSIINIOM

UNIX System Accounting

This document is part of the ADMINISTRATOR'S GUIDE. Therefore the
pagenumbers don't begin with 1.

Trademarks:
MUNIX, CADMUS for PCS
DEC, PDP for DEC
UNIX for Bell Laboratories

Copyright 1884 by
PCS GmbH, Pfalzer-Wald-Strasse 36, D-8000 Minchen 80, tel. (089) 67804-0

The information contained herein is the property of PCS and shall neither be reproduced in
whole or in part without PCS’s prior written spproval nor be implied to grant any license to
make, use or sell equipment manufactured herewith.

PCS reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages (including consequential)

caused by reliance on the materials presented.

6/82 ISSUE 1 ADMINISTRATOR’'S GUIDE

7. UNIX SYSTEM ACCOUNTING

The UNIX System Accounting provides methods to collect per-process resource utilization data, record con-
nect sessions, monitor disk utilization, and charge fees to specific logins. A set of C language programs and shell
procedures is provided to reduce this accounting data into summary files and reports. This section describes
the structure, implementation, and management of this accounting system, as well as a discussion of the reports
generated and the meaning of the columnar data.

GENERAL
The following list is a synopsis of the actions of the accounting system:

e At process termination, the UNIX system kernel writes one record per process in /usr/adm/pacct in
the form of acct.h (See Attachment 7.1 for a description of data files.)

o The login and init programs record connect sessions by writing records into /etc/wtmp. Date changes,
reboots, and shutdowns are also recorded in this file.

o The disk utilization program acctdusg breaks down disk usage by login.
o Fees for file restores, etc., can be charged to specific logins with the chargefee shell procedure.

o Each day the runacct shell procedux"e is executed via cron to reduce accounting data and produce sum-
mary files and reports. (See Attachment 7.2 for a sample report output.)

° 'fhe monacct procedure can be executed on a monthly or fiscal period basis. It saves and restarts sum-
mary files, generates a report, and cleans up the sumdirectory. These saved summary files could be used
to charge users for UNIX system usage.

FILES AND DIRECTORIES

The /usr/lib/acct directory contains all of the C language programs and shell procedures necessary to run
the accounting system. The adm login (currently user ID of four) is used by the accounting system and has the
directory structure shown in Fig. 7.1.

Jusr/ada
acct
o
pite sun fis'cal

Fig. 7.1—Directory Structure of the ‘'adm’ Llogin

The /usr/adm directory contains the active data collection files. (For a complete explanation of the files
used by the accounting system, see Attachment 7.3.) The nite directory contains files that are reused daily by
the runacct procedure. The sum directory contains the cumulative summary files updated by runacct. The
fiscal directory contains periodic summary files created by monacct.

Page 101

ADMINISTRATOR'S GUIDE ISSUE 1 6/82
)

DAILY OPERATION

When the UNIX system is switched into multiluser mode, /usr/lib/acct/startup is executed which does the
following: ,

1. The acctwtmp program adds a “boot” record to /usr/adm/wtmp. This record is signified by using the
system name as the login name in the wtmp record.

2. Process accounting is started via turnacct, Turnacct on executes the accton program with the argu-
ment /usr/adm/pacct.

3. The remove shell procedure is executed to clean up the saved pacct and wtmpfiles left in the sumdirec-
tory by runacct.

The ckpacet procedure is run via cron every hour of the day to check the size of /usr/adm/pacct. If the
file grows past 1000 blocks (default), turnacct switch is executed. While ckpacct is not absolutely necessary,
the advantage of having several smaller pacct files becomes apparent when trying to restart runacet after a
failure processing these records.

The chargefee program can be used to bill users for file restores, ete. It adds records to /usr/adeee

which are picked up and processed by the next execution of runacct and merged into the total accounting
records.

Runacct is executed via cron each night. 'It processes the active accounting files, /usr/adm/pacct,
/usr/adm/wtmp, /usr/adm/acct/nite/disktacct, and /usr/adm/fee. It produces command summaries and usage
summaries by login.

When the system is shut down using shutdown, the shutacct shell procedure is executed. It writes a shut-
down reason record into /usr/adm/wtmp and turns process accounting off.

After the first reboot each morning, the computer operator should execute /usr/lib/acct/prdaily to print
the previous day’s accounting report.

SETTING UP THE ACCOUNTING SYSTEM
In order to automate the operation of this accounting system, several things need to be done:
1. If not already present, add this line to the /etc/rc file in the state 2 section:
/bin/su —adm —ec /usr/lib/acct/startup

2. If not already present, add this line to /ete/shutdown to turn off the accounting before the system is
brought down:

/usr/lib/acct/shutacct

3. For most installations, the following three entries should be made in /usr/lib/crontabso that cron will
automatically run the daily accounting.

"04"**1-6 /bin/su—adm —c " /usr/lib/acet/runacct
2> /usr/adm/acct/nite/fd2log "
02" * 4 /usr/lib/acct/dodisk
5**** /bin/su —adm —c " /usr/lib/acct/ckpacct "

Note that dodisk is invoked with superuser privileges of root so that directory searching is not road
blocked.

Page 102

6/82 ISSUE 1 ADMINISTRATOR'S GUIDE

4. To facilitate monthly merging of accounting data, the following entry in crontab will allow monacect to
clean up all daily reports and daily total accounting files and deposit one monthly total report and one
monthly total accounting file in the fiscal directory.

1551 °* * /bin/su —adm —c /usr/lib/acct/monacct

The above entry takes advantage of the default action of monacct that uses the current month’s date
as the suffix for the file names. Notice that the entry is executed at such a time as to allow runacet suffi-
cient time to complete. This will, on the first day of each month, create monthly accounting files with
the entire month’s data.

5. The PATH shell variable should be set in /usr/adm/.profile to:
PATH=/usr/lib/acet:/bin:/usr/bin
RUNACCT

Runacect is the main daily accounting shell procedure. It is normally initiated via eron during nonprime
time hours. Runacct processes connect, fee, disk, and process accounting files. It also prepares daily and cumu-
lative summary files for use by prdaily or for billing purposes. The following files produced by runacet are
of particular interest:

nite/lineuse Produced by acctecon, which reads the wtmp file, and produces usage statistics for each
terminal line on the system. This report is especially useful for detecting bad lines. If the
ratio between the number of logoffs to logins exceeds about 3/1, there is a good possibility
that the line is failing.

nite/dayacct This file is the total accounting file for the previous day in tacct.h format.

sum/tacct This file is the accumulation of each day’s nite/daytacct which can be used for billing pur-
poses. It is restarted each month or fiscal period by the monacect procedure.

sum/daycms Produced by the acetems program, it contains the daily command summary. The ASCII
version of this file is nite/daycms.

sum/ems The accumulation of each day’s command summaries. It is restarted by the execution of
monacct. The ASCII version is nite/cms

sum/loginlog Produced by the lastlogin shell procedure, it maintains a record of the last time each login
was used.

sum/rprt. MMDD Each execution of runacct saves a coby of the output of prdaily.

Runacct takes care not to damage files in the event of errors. A series of protection mechanisms are used
that attempt to recognize an error, provide intelligent diagnostics, and terminate processing in such a way that
runacct can be restarted with minimal intervention. It records its progress by writing descriptive messages
into the file active (Files used by runacct are assumed to be in the nite directory unless otherwise noted.) All
diagnostics output during the execution of runacct is written into fd2log. To prevent multiple invocations, in
the event of two crons or other problems, runacct will complain if the files Jock and lockl exist when invoked.
The lastdate file contains the month and day runacect was last invoked and is used to prevent more than one
execution per day. If runacct detects an error, a message is written to /dev/console, mail is sent to root and
adm, the locks are removed, diagnostic files are saved, and execution is terminated.

In order to allow runacct to be restartable, processing is broken down into separate reentrant states. This
is accomplished by using a case statement inside an endless while loop. Each state is one case of the case

‘Page 103

ADMINISTRATOR’S GUIDE

ISSUE 1 6/82

statement. A file is used to remember the last state completed. When each state completes, statefile is updated
to reflect the next state. In the next loop through the while, statefileis read and the case falls through to the
next state. When runacct reaches the CLEANUP state, it removes the locks and terminates. States are exe-

cuted as follows:

SETUP

WTMPFIX

CONNECT1

CONNECT2

PROCESS

MERGE

FEES
DISK
MERGETACCT

CMS

USEREXIT
CLEANUP

The command turnacet switch is executed. The process accounting files,
/usr/adm/pacct?, are moved to /usr/adm/Spacct?. MMDD. The /usr/adm/wtmp file is
moved to /usr/adm/acct/nite/wtmp.MMDD with the current time added on the end.

The wtmp file in the nite directory is checked for correctness by the wtmpfix program.
Some date changes will cause accteonl to fail, so wtmpfix attempts to adjust the time
stamps in the wtmp file if a date change record appears.

Connect session records are written to ctmpin the form of ctmp.h. The Jineusefile is cre-
ated, and the reboots file is created showing all of the boot records found in the wtmpfile.

Ctmp is converted to ctacct MMDD which are connect accounting records. (Accounting
records are in tacct.h format.)

The acctprel and acctpre2 programs are used to convert the process accounting files,
/usr/adm/Spacct?. MMDD, into total accpunting records in ptacct?. MMDD, The Spacct
and ptacct files are correlated by number so that if runacct fails, the unnecessary
reprocessing of Spacctfiles will not occur. One precaution should be noted; when restarting
runacct in this state, remove the last ptacct file because it will not be complete.

Merge the process accounting records with the connect accounting records to form
daytacct

Merge in any ASCII tacct records from the file fee into daytacct
On the day after the sdisk procedure runs, merge disktacct with daytacct.
Merge daytacct with sum/tacct, the cumulative total accounting file. Each day, daytacct

is saved in sum/tacctMMDD, so that sum/tacct can be recreated in the event it becomes
corrupted or lost.

Merge in today's command summary with the cumulative command summary file
sum/cms. Produce ASCII and internal format command summary files.

Any installation dependent (local) accounting programs can be included here.

Clean up temporary files, run prdaily and save its output in sum/rprtMMDD, remove the
locks, then exit.

RECOVERING FROM FAILURE

The runacct procedure can fail for a variety of reasons; usually due to a system crash, /usr running out
of space, or a corrupted wtmpfile. If the activeMMDD(file exists, check it first for error messages. If the active

file and lock files exist, check fd2log for any mysterious messages. The following are error messages produced
by runacct, and the recommended recovery actions:

ERROR: locks found, run aborted

The files lock and Jockl were found. These files must be removed before runacct can restart.

Page 104

6/82 ISSUE 1 ADMINISTRATOR’S GUIDE

ERROR: acctg already run for date: check /usr/adm/acct/nite/lastdate
The date in Jastdate and today's date are the same. Remove lastdate.

ERROR: turnacct switch returned re=?

Check the integrity of turnacct and accton. The accton program must be owned by root and
have the setuid bit set.

ERROR: Spacet?. MMDD already exists

File setups probably already run. Check status of files, then run setups manually.
ERROR: /usr/adm/acct/nite/wtmp. MMDD already exists, run setup manually

Self-explanatory.
ERROR: wtmpfix errors see /usr/adm/acct/nite/wtmperror

Wtmpfix detected a corrupted wtmp file. Use fwtmp to correct the corrupted file.
ERROR: connect acctg failed: check /usr/adm/acct/nite/log

The acctconl program encountered a bad wtmp file. Use fwtmp to correct the bad file.
ERROR: Invalid state, check /usr/adm/acct/nite/active

The file statefile is probably corrupted. Check statefile and read active before restarting.

RESTARTING RUNACCT

Runacect called without arguments assumes that this is the first invocation of the day. The argument
MMDDis necessary if runacect is being restarted and specifies the month and day for which runacet will rerun
the accounting. The entry point for processing is based on the contents of statefile. To override statefile, include
the desired state on the command line. For example:

To start runacct:

nohup runacct 2> /usr/adm/acct/nite/fd2log&

To restart runacct:

nohup runacct 0601 2> /usr/adm/acct/nite/fd2log&

To restart runacct at a specific state:

nohup runacct 0601 WTMPFIX 2> /usr/adm/acct/nite/fd2log&

FIXING CORRUPTED FILES

Unfortunately, this accounting system is not entirely fool proof. Occasionally, a file will become corrupted
or lost. Some of the files can simply be ignored or restored from the file save backup. However, certain files
must be fixed in order to maintain the integrity of the accounting system.

Page 105

ADMINISTRATOR’S GUIDE ISSUE 1 6/82

A. Fixing WTMP Errors

The wtmpfiles seem to cause the most problems in the day to day operation of the accounting system. When
the date is changed and the UNIX system is in multiuser mode, a set of date change records is written into
/usr/adm/wtmp. The wtmpfix program is designed to adjust the time stamps in the wtmprecords when a date
change is encountered. Some combinations of date changes and reboots, however, will slip through wtmpfix
and cause accteonl to fail. The following steps show how to patch up a wtmp file.

cd /usr/adm/acct/nite
fwtmp < wtmp.MMDD > xwtmp
ed xwtmp
delete corrupted records or
delete all records from beginning up to the date change
fwtmp —ic < xwtmp > wtmp.MMDD

If the wtmp file is beyond repair, create a null wtmp file. This will prevent any charging of connect time.
Acctprel will not be able to determine which login owned a particular process, but it will be charged to the
login that is first in the password file for that user id.

B. Fixing TACCT Errors

If the installation is using the accounting system to charge users for system resources, the integrity of
sum/tacct is quite important. Occasionally, mysterious tacct records will appear with negative numbers, dupli-
cate user IDs, or a user ID of 65,535. First check sum/tacctprev with prtacct. If it looks all right, the latest
sum/tacct. MMDD should be patched up, then sum/tacct recreated. A simple patchup procedure would be:

cd /usr/adm/acct/sum
acctmerg —v < tacct. MMDD > xtacct
ed xtacct

remove the bad records

write duplicate uid records to another file
acctmerg —i < xtacct > tacct. MMDD
acctmerg tacctprev < tacct. MMDD > tacct

Remember that the monacet procedure removes all the tacct. MMDD files; therefore, sum/tacct can be rec-
reated by merging these files together.

UPDATING PNPSPUT

The pnpsplit subroutine is used by acctconl and acetprel to determine the difference between prime
and nonprime time. Prime time is defaulted from 9:00 am to 5:00 pm, Monday through Friday. Nonprime time
is considered to be all other hours and the entire day for those days listed in the holidays structure in
pnpsplit.c. The holidays listed are accurate for Bell Laboratories New Jersey locations for the year the operating
system was released. Every year on the day after Christmas (the last holiday of the calendar year), the following
message will be printed on the system console terminal and appear in log

*** RECOMPILE pnpsplit WITH NEW HOLIDAYS ***

This message will continue to be sent each time the accounting is run until pnpsplit, acetconl, and
acctprel are recompiled. The following steps should be taken to successfully recompile these programs.

1. Edit pnpsplit.cto change the thisyear variable to the new year. Update the holidays structure to reflect

the new holidays. The numeric entry in the structure is the day of the year, less one. For example, New
Year's Day (January 1) is entered as 0. Pnpsplit.cis in /usr/src/cmd/acct/Iib.

Page 106

6/82 ISSUE 1 ADMINISTRATOR’'S GUIDE

2. Update the accounting library a.a and recompile acctprel, and accteonl by:

superuser to root

ARGS= " acctconl acctprel ® /usr/src/:mkemd acct

DAILY REPORTS

Runacct generates five basic reports upon each invocation. Samples of these reports are shown in Attach-
ment 7.2. They cover the areas of connect accounting, usage by person on a daily basis, command usage reported
by daily and monthly totals, and a report of the last time users were logged in.

The following paragraphs describe the reports and the meanings of their tabulated data.

A. Daily Report

In the first part of the report, the from/to banner should alert the administrator to the period reported
on. The times are the time the last accounting report was generated until the time the current accounting report
was generated. It is followed by a log of system reboots, shutdowns, power fail recoveries, and any other record
dumped into /usr/adm/wtmp by the acctwtmp program [see acct(1M) in the UNIX System Administrator’s

Manual].

The second part of the report is a breakdown of line utilization. The TOTAL DURATION tells how long the
system was in multiuser state (able to be accessed through the terminal lines). The columns are:

LINE The terminal line or access port.

MINUTES The total number of minutes that line was in use during the accounting period.
PERCENT The total number of MINUTES the line was in use divided into the TOTAL DURATION.
f SESS The number of times this port was accessed for a login(1) session.

f ON This column does not have much meaning anymore. It used to give the number of times

that the port was used to log a user on; but since login(1) can no longer be executed explic-
itly to log a new user in, this column should be identical with SESS.

f OFF This column reflects not just the number of times a user logged off but also any interrupts
that occur on that line. Generally, interrupts occur on a port when the getty(8) is first
invoked when the system is brought to multiuser state. These interrupts occur at a rate
of about two per event; therefore, it is not uncommon to see in excess of twice the amount
of OFF than ON or SESS. Where this column does come into play is when the # OFF
exceeds the # ON by a large factor. This usually indicates that the multiplexer, modem or
cable is going bad, or there is a bad connection somewhere. The most common cause of this
is an unconnected cable dangling from the multiplexer.

During real time, /usr/adm/wtmp should be monitored as this is the file that the connect accounting is
geared from. If it grows rapidly, execute acctconl to see which tty line is the most noisy. If the interrupting
is occurring at a furious rate, general system performance will be effected.

B. Daily Usage Report

This report gives a by-user breakdown of system resource utilization. Its data consists of:

UID The user ID.

Page 107

ADMINISTRATOR'S GUIDE ISSUE 1 6/82

LOGIN NAME The login name of the user; there can be more than one login name for a single user ID,
this identifies which one.

CPU (MINS) This represents the amount of time the user’s process used the central processing unit.
This category is broken down into PRIME and NPRIME (nonprime) utilization. The ac-
counting system’s idea of this breakdown is located in the accounting library function
popsplit where the holidays array, which also determines nonprime time, is also de-
fined. As delivered, prime time is defined to be 0900-1700 hours. The holidays array is
correct for Bell Laboratories New Jersey locations for the year of the release.

KCORE-MINS This represents a cummulative measure of the amount of memory a process uses while run-

ning. The amount shown reflects kilobyte segments of memory used per minute. This mea-
surement is also broken down into PRIME and NPRIME amounts.

CONNECT (MINS) This identifies “Real Time" used. What this column really identifies is the amount of time
that a user was logged into the system. If this time is rather high and the later column
called # OF PROCS is low, this user is what is called a “line hog". That is, this person logs
in first thing in the morning and does not hardly touch the terminal the rest of the day.
Watch out for these kind of users. This column is also subdivided into PRIME and
NPRIME utilization.

DISK BLOCKS When the disk accounting programs have been run, their output is merged into the total
accounting record (tacct.h) and shows up in this column. This disk accounting is accom-
plished by the program acctdusg.

OF PROCS This column reflects the number of processes that was invoked by the user. This is a good
column to watch for large numbers indicating that a user may have a shell procedure that
runs amock. The most common example of this is for a crontab entry to try to execute
a user'’s .profiie via su- that unfortunately prompts for a terminal type and sits in an end-
less loop trying to read from the terminal (there is not one when cron is executing a pro-
cess). Preventive coding is encouraged in the .profile.

OF SESS This is how many times the user logged onto the system.

f DISK SAMPLES This indicates how many times the disk accounting was run to obtain the average number
of DISK BLOCKS listed earlier.

FEE An often unused field in the total accounting record, the FEE represents the total accumu-
lation of widgets charged against the user by the chargefee shell procedure [see
acctsh(1M)]. The chargefee procedure is used to levy charges against a user for special
services performed such as file restores, tape manipulation by operators, etc.

C. Daily Command and Monthly Total Command Summaries

These two reports are virtually the same except that the Daily Command Summary only reports on the cur-
rent accounting period while the Monthly Total Command Summary tells the story for the start of the fiscal

period to the current date. In other words, the monthly report reflects the data accumulated since the last invo-
cation of monacct.

The data included in these reports gives an administrator an idea as to the heaviest used commands; and
based on those commands’ characteristics of system resource utilization, a hint as to what to weigh more heavily
when system tuning.

These reports are sorted by TOTAL KCOREMIN which is an arbitrary yardstick, but often a good one for
calculating “drain” on a system.

Page 108

6/82 ISSUE 1 ADMINISTRATOR’S GUIDE

COMMAND NAME This is the name of the command. Unfortunately, all shell procedures are lumped together
under the name sh since only object modules are reported by the process accounting sys-
tem. The administrator should monitor the frequency of programs called a.out or core
or any other name that does not seem quite right. Often people like to work on their favor-
ite version of backgammon only they do not want everyone to know about it. Acctcom is
also a good tool to use for determining who executed a suspiciously named command and
also if superuser privileges were used.

NUMBER CMDS This is the total number of invocations of this particular command.

TOTAL KCOREMIN The total cummulative measurement of the amount of kilobyte segments of memory used
by a process per minute of run time.

TOTAL CPU-MIN The total processing time this program has accurnulated.

TOTAL REAL-MIN The total real-time (wall-clock) minutes this program has accumnulated. This total is the
actual “waited for” time as opposed to kicking off a process in the background.

MEAN SIZE-K This is the mean of the TOTAL KCOREMIN over the number of invocations reflected by
NUMBER CMDS. .

MEAN CPU-MIN This is the mean derived between the NUMBER CMDS and TO’I_‘AL CPU-MIN.

HOG FACTOR This is a relative measurement of the ratio of system availability to system utilization. It
is computed by the formula

(total CPU time) / (elapsed time)

This gives a relative measure of the total available CPU time consumed by the process
during its execution.

CHARS TRNSFD This column, which may go negative, is a total count of the number of characters pushed
around by the read(2) and write(2) system calls.

BLOCKS READ A total count of the physical block reads and writes that a process performed.
D. Lost Login

This report simply gives the date when a particular login was last used. This could be a good source for find-
ing likely eandidates for the tape archives or getting rid of unused logins and login directories.

SUMMARY

The UNIX System Accounting was designed from a UNIX system administrator’s point of view. Every possi-
ble precaution has been taken to ensure that the system will run smoothly and without error. It is important
to become familiar with the C programs and shell procedures. The manual pages should be studied, and it is
advisable to keep a printed copy of the shell procedures handy. The accounting system should be easy to main-
tain, provide valuable information for the administrator, and provide accurate breakdowns of the usage of sys-
temn resources for charging purposes.

Page 109

ADMINISTRATOR'S GUIDE

Format of wimp files (utmp.h):

/.
/.

fdefine
fdefine
fdefine

struct

{

b
Vad

fdefine
#define
#define
#define
§define
fdefine
#define
fdefine
#define
fdefine

#define

/‘
/l
/.
/‘

#define
fdefine
#define
fdefine

% W% */
<sys/types.h> must be included. */
UTMP_FILE “/ete/utmp”
WTMP_FILE “/ete/wtmp”
ut_name ut_user
utmp
char ut_user(8] ; /* User login name */
char ut_id[4] ; /* /etc/lines id(usually line §) */
char ut_line[12)] ; /* device name (console, Inxx) */
short ut_pid ; /* process id */
short ut_type ; /* type of entry */
struct exit_status

short e_termination ; /* Process termination status */

short e_exit ; /* Process exit status */

}
ut_exit ; /* The exit status of a process
* marked as DEAD_PROCESS.
./

time_t ut_time ; /* time entry was made */
Definitions for ut_type */
EMPTY 0
RUN_LVL 1
BOOT_TIME 2
OLD_TIME 3
NEW_TIME 4
INIT_PROCESS 5 /* Process spawned by ”init” */
LOGIN_PROCESS 6 /* A “getty” process waiting for login */
USER_PROCESS 17 /* A user process */
DEAD_PROCESS 8
ACCOUNTING 9
UTMAXTYPE ACCOUNTING /* Largest legal value of ut_type */
Special strings or formats used in the “ut_line” field when ./
accounting for something other than a process. */
No string for the ut_line field can be more than 11 chars + ./

a NULL in length.

ISSUE)

ATTACHMENT 7.}

*/

RUNLVL_MSG “run-level %c”,
BOOT_MSG *system boot”
OTIME_MSG *old time”
NTIME_MSG “new time”

Poge 110

6/82

6/82

Definitions (acctdef.h):

/* %2W% of %G%

/‘

*/

/.

*/

typedef unsigned short uid_t;

#ifdef u3db

fdefine HZ 100
felse

#define HZ 60
fendif

#define LSZ
#define NSZ
fdefine P

fdefine NP

—O 00 =

/.

*/

fdefine SSIZE 1000.
fdefine TSIZE 100 .

fdefine USIZE 500

#define EQN(sl, s2)
#define CPYN(sl, s2)

7define SECSINDAY
fdefine SECS(tics)
#define MINS(secs)
fdefine MINT(tics)

fifdef pdpll

fdefine KCORE(clicks)
fendif

fifdef vax

#define KCORE(clicks)
fendif

fifdef u3b

#define KCORE(clicks)
fendif

acct only typedefs

ISSUE 1 ADMINISTRATOR’S GUIDE

ATTACHMENT 7.1 (Contd)

*/

defines, typedefs, etc. used by acct programs

/* sizeof line name */
/* sizeof login name */
/* prime time */

/* nonprime time */

limits which may have to be increased if systems get larger

/® max number of sessions in 1 acct run */
/* max number of line names in 1 acct run */
/* m4x number of distinct login names in 1 acct run */

(strncmp(sl, 82, sizeof(sl)) == 0)
strncpy(sl, 82, sizeof(sl))

86400L

((double) tics)/HZ
((double) secs)/60
{(double) tics)/(60*HZ)

((double) clicks/16)

((double) clicks/2)

((double) clicks®*2)

Page 111

ADMINISTRATOR’S GUIDE ISSUE 1 6/82

ATTACHMENT 7.1 (Contd)

Format of pocct files (acct.h):

/'
* Accounting structures
*/
typedef ushort comp_t; /* “floating point” */
/* 13-bit fraction, 3-bit exponent */
struct acct
char ac_flag; /*Accounting flag */
char ac_stat; /*Exit status */
ushort ac_uid; /*Accounting user ID */
ushort ac_gid; /* Accounting group ID */
dev_t ac_tty; /*control typewriter */
time_t ac_btime; /*Beginning time */
comp_t ac_utime; /®acctng user time in clock ticks */
comp_t ac_stime; /*acctng system time in clock ticks */
comp_t ac_etime; /*acctng elapsed time in clock ticks */
comp_t ac_mem, /*memory usage */
comp_t ac_io; /*chars transferred */
comp_t ac_rw; /*blocks read or written */

char ac_comm(8]; /*command name */
extern struct acct acctbuf;
extern struct inode *acctp; /*inode of accounting file */

#defineAFORK 01 /*has executed fork, but no exec */
FdefineASU 02 /*used superuser privileges */
fdefineACCTF 0300 /*record type: 00 = acct */
Format of tacct files (tacct.h):
/.
. total acctounting (for acct period), also for day
*/
struct tacct
uid_t ta_uid; /*userid */
char ta_name(8]); /*login name */
float ta_cpu(2]; /*cum. cpu time, p/np (mins) */
float ta_kcore[2]; /*cum kcore-minutes, p/np */
float ta_con[2]; /*cum. connect time, p/np, mins */
float ta_du; /*cum. disk usage */
long ta_pc; /*count of processes */
unsigned short ta_sc; /*count of login sessions */
unsigned short ta_dc; /*count of disk samples */
unsigned short ta_fee; /*fee for special services */

Page 112

6/82 ISSUE 1 ADMINISTRATOR'S GUIDE

ATTACHMENT 7.1 (Contd)

Format of ctmp file (ctmp.h):

/.
. connect time record (various intermediate files)
*/
struct ctmp
dev_t ct_tty; /*major minor */
uid_t ct_uid; /*userid */
char ct_name(8); /*login name */
long ct_con(2]; /*connect time (p/np) secs */
time_t ct_start; /*session start time */

Page 113

ADMINISTRATOR'S GUIDE

Page 114

ISSVE 1

ATTACHMENT 7.2
Jus 8 0414 1979 DAILY REPORT FOR pwba Page)

from Thu Jus 7 06:00:48 1979
w Fri Jua § 040028 1979

2 shotdows

t pm

TOTAL DRATION 1S 1320 MINUTES

LINE MINUTES PERCENT ¢ SESS
tyod mn
tyq? M
ttydd -]
ttyed 6
console 1100
tyas
tty0s
ty0?
wya
tty09
ttylo
tyts
tty2s
ty12
tyl3

-

-

OO ON~ORAPR~ANNONO~ P RADWNEDNLD

1yl?
uyls
ttyl$
[
ty2
tyld
uy®

-G D WO B W

§32385298488848

Bl B BHUNGE ooz INUEREREE RS RGE

g
7

10N

- aw

- -
A O MR~ RRANOOON—TORRRN ~AWNTENO PR NES

-

=
-

uur:neuz::uszsnuauusg

S.suznsERrERER

6/82

ADMINISTRATOR’S GUIDE

ISSUE 1

6/82

ATTACHMENT 7.2 (Contd)

Jun 8 04:14 197 DAILY USAGE REPORT FOR pwhba Page |

FEE

0 9000000000000 000000000000CO0000CO00C0000000000000000C0CO0

¢ DISK

N OO NG TN EEIN T ONNAN T~ N~ m a N BN ~TNRRRBN PR~ =N =N~ —~O

14

(X4
SESS SAMPLES

S TeHCNRERBATER="-RBED

R EEFEEELY FELRLETTELE B

10r
PROCS

000 0000000000000 00000000C000000OCLDOODODO0DO0COOOCODOLDOO

DISX
BLOCKS

NPRIME

EF LR Y PR EEFEE TS LI AET FRET ERLET

CONNECT (MINS)
sl

PRIME

mm

1

2

Eg2_ g, ¢ 3 §.

g bgEiZs%e. 8., 85, sisariskiils mmm“m.wnmmmudmﬂmmmumm EERER
S...eunnac-3nsasnnE R RARANONNEaHAiAdERARARERSRENEEE

Juo 8 0414 1979 DAILY USAGE REPORT FOR pwba Page 2

O Y I I

- -
=

ge-n=ge

181
M
3

PTON—-OMPrOOOC
- -

auooznmw.lﬂl

vTOO0OOOTNOONO
-

Mdnmmmmmmmm
LEEEEREEE L

Page 115

ADMINISTRATOR'S GUIDE

Page 116

ISSUE 1

ATTACHMENT 7.2 (Contd)

Jun 8 0407 1979 DAILY COMMAND SUMMARY Page 1

COMMAND
NAME

TOTALS

nroff
troll
xaroff
aout
«gTep
m2fins
cl

0
m2edil
Id
scctems
2

sh

o
acctprel
du

diff

haspmain

NUMBER
CMDS

16164

ns
%
2
3
185
m
150
165
z
87
17
112
18H4

us

:ﬂEzuH.éq!ugosnuﬁn

2]
@

TOTAL
KCOREMIN

153289

E U
UKD
™0
[<8
[Y% .<]
585.79
519.04
410
34052
L18
D75
2=9.69
21698
=313
mas
nyas
13.53

1410
438
1824
125
us4
109.69
12

[X]
[-XY]
nu

LS
=2
66.10
| 1544

Qs
4549
4152
895

nn
s

n.e
an

TOTAL
CPU-MIN

w0

0n
[S8~}
167¢
1052
1296
.93
1357
.19
4
134
[¥}]
913
- 47§
1446
667
1991

1048

1
281
10

L2

155
208
1.9
109
7

0£2

TOTAL
REAL-MIN

[]
2.7
11105
am
U
185.11
L8
BI6
4827
nae
1418
MEl
2442
289
9.6
508
=7
nx
=23
nos
s
(-3
unn
ass
a2
17
nn
1057

. Qn
s
am
&
250
1149
9Nm
m
20
ues
Mmu
155
-1
19.45
°€ 73
n4so
12444
and
no

MEAN
SIZE-K

us

«@4a
4810
an
802
als

“u9l
nea
39
4541
aw
1035
1150
3467
1102
205
Bu

8
nn
m17
7151
1854

2.0
i1

1718

157
.72

BT
0
nae
ne
108

1953
nu
3541
1410

MEAN
CPU-MIN

07
199
084
(21}
0.08
00
0.m
0.06
ol
0.09
028
0.08
0.01
0.0
2
0.14
012
0.09
019
0.10
143
0.06
0.0

.02

010
(1)

on
0.00

0.01
0.01

0.01
048
0.01
0.02
0.5
004
0.01

HOG
FACTOR

0.01

0.16
018
015
0.07
040
0.06
023
026
0.03
oz
046
026
0.00
0.01

034
051
L~
017
002
001

020
0z
012
04
own

(A}
024
012
008
009
o=
028
0.00
ou

008
[)}

026
0.08
001

020
0.00
0.07
011

0.0]

0.00
0.02
(A1)

CHARS
TRNSFD

514624
2100229

TP ELIY ELEE L

1

6/82

6/82 ISSUE 1 ADMINISTRATOR'S GUIDE

ATTACHMENT 7.2 (Contd)

Jun B 04:07 1979 MONTHLY TOTAL SUMMARY Page 1

COMMAND NUMBER TOTAL TOTAL TOTAL MEAN MEAN HOG CHARS BLOCKS
NAME cMDS KCOREMIN CPU-MIN REAL-MIN SIZE-K CPU-MIN FACTOR TRNSFD READ

TOTALS R T7600.78 10316.09 HIUM n=n 0.02 0.01 24T 2A8N12
nroff e “EBLAS 939 87128 “se 05 017 613403153 1039130
troll 1331 256215 .68 435808 oz 0.9 0.13 413163589 6240
spellpro 6486 172841 4.6 18917 58 0.03 0.1¢ TUSTZHO 353901
m2adit o4 13525.69 164.62 42358 217 0= 0.04 $4M4042% 42792
xarofl o 1040844 M2 14962 1.0 051 0.14 2321419 201967
sort e >y 22501 229805 4.1 0.3 0.10 80108304 385963
] [1+] 849.96 2845 881.09 88 0.04 021 89T 489661
Id 2u 835296 22119 112809 k-2 24 0.07 020 497701995 1278119
aed 831 812871 31388 24178 =80 0.01 0.14 20150633 16927%0
m2find 282 TS 14.18 1698.23 $6.96 0.05 0.08 111330040 49604
0 536 T866.42 18816 ™47 249 0.03 028 TZ595658 /%
od 0083 =278 2590 41098.18 nn 0.02 001 WHBEH 141316
1] 660 TT66.69 11398 245855 16 017 0.05 50760094 287
sh 40476 T499.67 635.00 38ITB6.SI 1181 002 0.00 20525236 211
du 141 67054 88304 a4 1217 028 0.49 20848359 628324
aout 120 [2 12687 1068.87 .60 0.09 0.0 16158675 80260
egrep 4801 857351 13986 48025 k2 0.0 030 6323696 21298
lintl ™m 532.66 ns -1 N 0.0% 0.17 9599001 131592
eat a7 465753 nese 435424 1960 0.01 0.05 239180412 1023965
aectprel @ b~ 8] 11058 BL4 61 264 038 13954136 1122
2 087 1S 14486 Lya -] %28 0.04 030 $7519376 213521
grep an2 3204.88 200.44 142 4 10.67 001 0.11 139340583 2899415
PP U * 3060.72 "2 “.D »s2 0.01 0.18 9147195 459882
getty 35856 540 65353 101107.45 168 002 001 HTUTSL 263866
m2editD) et an »¥184 ua 033 0.08 25202 23949
(-] 6454 2MWAT4 2896 91059 123 a0 024 2306016 T05690
make 1858 244310 “e 43088 N 0.03 0.01 24116259 17554
pe 104 ™4 12829 120787 138 012 011 S87IN 4172
acctems 4 284 L 11608 ol 0.19 048 3124940 80523
wocico 8s ZAT 0e u01 55.08 0.08 0.00 11086105 162558
Is 18876 nmnn 15278 153209 1420 001 al0 32418106 1022
find 1705 s 11435 2.7 LY 0.07 a2 94631199 338600
ged ” 280 234 a1 no 0.40 0.09 1640636 10374
acho oo men 190.14 11324 1061 0.00 17 226992 619200
cplo 27 1956.60 T Dl =40 0.6 020 190822346 296302
maze 8 162042 “s 12225 =17 L6 03s 12039% 212
mail as 14458 nn 1426262 117 0.02 00 2719618 463748
[] 1088 135803 8 N 3613 0.03 016 21540008 178623
accteom 1% 125399 ans B34 264 [F-) 014 57405662 68949
yaee [18117 1838 %90 nan 028 0.42 4096070 12093
eol 1084.40 an 2199.00 nn 0.08 002 2IRISTS 16903
line mM 103803 [81 1Ml 112 0.00 008 925447 26142
aroffl2 > 900.03 171 %697 6133 061 031 11459920 18802
delta 4 90454 207 54.06 d21 0.09 0.09 24219141 87164
"} 175 26.19 574 1897 Ha 018 0.16 1990177 15792
ar 144 87265 687 0907 un 0.04 020 189858731 238m
mdindD 14 [b 1254 3 L) 0.09 0.04 1184947 23576
m 15319 85197 8565 75420 1002 0.01 0.11 4579 433903
acctdusg 1 819.77 330 170.10 288 X [2] 1812480 9714
(Tlpass) 158 ™13 wm 20 1.7 0.0§ 0.7 990027 702
difr ™8 %1 2T 2027 2u 0.04 0.13 22940094 T2

Page 117

ADMINISTRATOR’S GUIDE ISSUE 1 6/82

ATTACHMENT 7.2 (Contd)

Jun 80407 1979 LAST LOGIN Page 1

00-00-00 dii 00-00-00 rudd 79-06-08 adm
00-00-00 absadm 00-00-00 810 T9-06-08 agp
00-00-00 abealr 00-00-00 2 T9-06-08 als
00-00-00 shecas 00-00-00 o 0608 arf
00-00-00 abajew 00-0000 oS 0608 ath
00-00-00 abepvg 00-0000 o6 50608 da
00-00-00 abetbm 00-00-00 o8 79-06-08 dan
00-00-00 adm®4 00-00-00 [} T-06-08 denise
00-00-00 apd 00-00-00 schea ™0608 dp
00-00-00 archive 00-00-00 ajm T5-06-08 dsS2
00-00-00 am 00-00-00 srd 5-06-08 och
00-00-00 badt 00-00-00 o 90608 ocp
00-00-00 1) 00-00-00 (") 90608 eric
00-00-00 bl 00-00-00 ud 9-06-08 nd
00-00-00 bwk 00-00-00 wmac T9-06-08 farepl
00-00-00 chicken 00-00-00 sucpa T9-06-08 games
00-00-00 class 00-00-00 e 90608 graf
00-00-00 cleary 00-00-00 oy ™-06-08 herb
000000 o 00-00-00 wdr T9-06-08 hoot
00-00-00 dbe 00-00-00 wills T9-06-08 hsm
00-00-00 deby 00-00-00 sooma 0608 jac
00-00-00 dec T9-06-04 dws T9-06-08 jew
00-00-00 demo 5-06-04 ewd 90608 el
00-00-00 dit T9-06-04 kas ™06-08 o
00-00-00 dmr 9-06-04 an T-06-08 kol
00-00-00 docs 50504 wucp 0608 krb
00-00-00 deg T-06-05 bem 79-06-08 leap
00-00-00 ellie 79-06-05 Iprem 0608 e
00-00-00 fasrep2 5-08-05 "7 T9-06-08 m2
00-00-00 gas 950605 oo T9-06-08 m2clase
00-00-00 graphic 79-06-06 econv T9-06-08 mfp
00-00-00 hjg 0606 dck 90608 mbd
00-00-00 hlb 50606 dmt 790608 mjr
00-00-00 Ingt 0608 emp 790608 msb
00-00-00 jim 9-06-06 pah 50608 pouep
000000 jrh 90506 gyme 0608 paul
00-00-00 kem 0606 ad 50600 pdw
00-00-00 o -06-07 ams 790608 pris
00-00-00 leara 7%-08-07 bin -06-08 pwbes
00-00-00 Ippdw 9-06-07 dgd 0608 pwbst
00-00-00 krbd 79-06-07 haight 90608 rdj
00-00-00 maj T9-06-07 hasp 79-06-08 reg
00-00-00 mar 90607 g 90608 rem
00-00-00 mash -06-07 leb 79-06-08 rie
00-00-00 meq 950607 Uk 0608 ot
00-00-00 mifi 00607 mep 50608 root
00-00-00 mle 9-06-07 ohg 79-06-08 m
00-00-00 mmr ™-06-07 aws T9-06-08 sl
00-00-00 mpl T9-06-07 qtroff 79-06-08 (%]
00-00-00 plan 9-06-07 thm 0608 otar
00-00-00 plom T9-06-07 train T9-06-08 stock
00-00-00 [] 9-06-07 whe T9-06-08 sysist
00-00-00 rakesh T9-06-07 wwe 79-06-08 teach
00-00-00 rig -06-08 M 79-06-08 text
00-00-00 rie 79-06-08 abs 90608 ue
00-00-00 e T9-06-08 absjrk T9-06-08 vl

Page 118

6/82

Files in the /usr/adm directory:

diskdiag

dtmp

fee

pacct

pacct?
Spacct?.MMDD

wtmp

active

cms

ctacet MMDD
ctmp

daycms
dayacet
disktacet
fd2log

lastdate
lock lockl
lineuse
log
logMMDD
reboots

statefile
tmpwtmp
wtmperror
wtmperrorMMDD
wtmp.MMDD

ISSUE 1 ADMINISTRATOR'S GUIDE

ATTACHMENT 7.3

diagnostic output during the execution of disk accounting programs
output from the acctdusg program

output from the chargefes program, ASCII tacct records

active process accounting file

process accounting files switched via turnacct

process accounting files for MMDD during execution of runacct

active wtmp file for recording connect sessions

Files in the /usr/adm/acct/nite directory:

used by runacct to record progress and print warning and error mes-
sages; active MMDD same as active after runacct detects an error

ASCII total command summary used by prdaily

connect accounting records in tacet.h format

output of acctconl program, connect session records in ctmp.h format
ASCII daily command summary used by prdaily

total accounting records for one day in tacct.h format

disk accounting records in tacct.h format, created by dodisk procedure

diagnostic output during execution of runacct
(see aon entry)

last day runacct executed in date +%m%d format
used to control serial use of runacct

tty line usage report used by prdaily

diagnostic output from acctcon!

same as log after runacet detects an error

contains beginning and ending dates from wtmp, and a listing of
reboots

used to record current state during execution of runacct
wtmp file corrected by wtmpfix

place for wtmpfix error messages

same as wtmperror after runacct detects an error
previous day’s wtmp file

Page 119

ADMINISTRATOR’S GUIDE ISSUE 1

6/82
ATTACHMENT 7.3 (Contd)
Files in the /usr/adm/acct/sum directory:

cms total command summary file for current fiscal in internal summary
format

cmsprev command summary file without latest update

daycms command summary file for yesterday in internal summary format

loginlog created by lastlogin

pacct. MMDD concatenated version of all pacct files for MMDD, removed after
reboot by remove procedure

rprt. MMDD saved output of prdaily program

tacct cumulative total accounting file for current fiscal

tacctprev same as tacct without latest update

tacct. MMDD total accounting file for MMDD

wtmp.MMDD saved copy of wtmp file for MMDD, removed after reboot by remeove
procedure

Files in the /usr/adm/acct/fiscal directory:

cems? total command summary file for fiscal ? in internal summary format

fiscrpt? report similar to prdaily for fiscal ?

tacct? total accounting file for fiscal ?

Page 120

	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_01
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_02
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_03
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_04
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_05
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_06
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_07
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_08
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_09
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_10
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_11
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_12
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_13
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_14
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_15
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_16
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_17
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_18
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_19
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_20
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_21
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_22
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_23
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_24
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_25
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_26
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_27
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_29
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_30
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_31
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_32
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_33
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_34
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_35
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_36
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_37
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_38
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_39
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_40
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_41
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_42
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_43
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_44
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_45
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_46
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_47
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_48
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_49
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_50
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_51
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_52
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_53
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_54
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_55
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_56
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_57
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_58
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_59
	Cadmus_Munix_II_UUCP_Administrators_Manual_Seite_60

