

UNIX System

Activity Package

This document is part of the ADMINISTRATOR'S GUIDE. Therefore the pagenumbers don't begin with 1.

Trademarks:

MUNIX, CADMUS	for PCS
DEC, PDP	for DEC
UNIX	for Bell Laboratories

Copyright 1984 by
PCS GmbH, Pfälzer-Wald-Strasse 38, D-8000 München 90, tel (089) 67804-0

The information contained herein is the property of PCS and shall neither be reproduced in whole or in part without PCS's prior written approval nor be implied to grant any license to make, use or sell equipment manufactured herewith.

PCS reserves the right to make changes without notice in the specifications and materials contained herein and shall not be responsible for any damages (including consequential) caused by reliance on the materials presented.

11. UNIX SYSTEM ACTIVITY PACKAGE

General

This section describes the design and implementation of the UNIX System Activity Package. The UNIX operating system contains a number of counters that are incremented as various system actions occur. The system activity package reports UNIX system-wide measurements including Central Processing Unit(CPU) utilization, disk and tape Input/Output(I/O) activities, terminal device activity, buffer usage, system calls, system switching and swapping, file-access activity, queue activity, and message and semaphore activities. The package provides four commands that generate various types of reports. Procedures that automatically generate daily reports are also included. The five functions of the activity package are:

- **sar(1)** command—allows a user to generate system activity reports in real-time and to save system activities in a file for later usage.
- **sag(1G)** command—displays system activity in a graphical form.
- **sadp(1)** command—samples disk activity once every second during a specified time interval and reports disk usage and seek distance in either tabular or histogram form.
- **timex(1)**—a modified **time(1)** command that times a command and also reports concurrent system activity.
- **system activity daily reports**—procedures are provided for sampling and saving system activities in a data file periodically and for generating the daily report from the data file.

The system activity information reported by this package is derived from a set of system counters located in the operation system kernel. These system counters are described in the part "System Activity Counters". The part "System Activity Commands" describes the commands provided by this package. The procedure for generating daily reports is given in "Daily Report Generation". A description for each of the files used by the system activity package can be found in Attachment 11.1.

System Activity Counters

The UNIX operating system manages a number of counters that record various activities and provide the basis for the system activity reporting system. The data structure for most of these counters is defined in the **sysinfo** structure (see Attachment 11.2) in **/usr/include/sys/sysinfo.h**. The system table overflow counters are kept in the **_syserr** structure. The device activity counters are extracted from the device status tables. In this version, the I/O activity of the following devices is recorded: RP06, RM05, RS04, RF11, RK05, RP03, RL02, TM03, and TM11.

In the following paragraphs, the system activity counters that are sampled by the system activity package are described.

Cpu time counters: There are four time counters that may be incremented at each clock interrupt 60 times per second. Exactly one of the **cpu[]** counters is incremented on each interrupt, according to the mode the CPU is in at the interrupt; idle, user, kernel, and wait for I/O completion.

Lread and lwrite: The **lread** and **lwrite** counters are used to count logical read and write requests issued by the system to block devices.

Bread and bwrite: The **bread** and **bwrite** counters are used to count the number of times data is transferred between the system buffers and the block devices. These actual I/Os are triggered by logical I/Os that

cannot be satisfied by the current contents of the buffers. The ratio of block I/O to logical I/O is a common measure of the effectiveness of the system buffering.

Phread and phwrite: The *phread* and *phwrite* counters count read and write requests issued by the system to raw devices.

Swapin and swapout: The *swapin* and *swapout* counters are incremented for each system request initiating a transfer from or to the swap device. More than one request is usually involved in bringing a process into memory, or out, because text and data are handled separately. Frequently used programs are kept on the swap device and are swapped in rather than loaded from the file system. The *swapin* counter reflects these initial loading operations as well as resumptions of activity, while the *swapout* counter reveals the level of actual "swapping." The amount of data transferred between the swap device and memory are measured in blocks and counted by *bswapin* and *bswapout*.

Pswitch and syscall: These counters are related to the management of multiprogramming. *Syscall* is incremented every time a system call is invoked. The numbers of invocations of *read(2)*, *write(2)*, *fork(2)*, and *exec(2)* system calls are kept in counters *sysread*, *syswrite*, *sysfork*, and *sysexec*, respectively. *Pswitch* counts the times the switcher was invoked, which occurs when:

- a. a system call resulted in a road block
- b. an interrupt occurred resulting in awakening a higher priority process
- c. 1-second clock interrupt

Iget, namei, and dirblk: These counters apply to file-access operations. *Iget* and *namei*, in particular, are the names of UNIX operating system routines. The counters record the number of times that the respective routines are called. *Namei* is the routine that performs file system path searches. It searches the various directory files to get the associated i-number of a file corresponding to a special path. *Iget* is a routine called to locate the inode entry of a file (i-number). It first searches the in-core inode table. If the inode entry is not in the table, routine *iget* will get the inode from the file system where the file resides and make an entry in the in-core inode table for the file. *Iget* returns a pointer to this entry. *Namei* calls *iget*, but other file access routines also call *iget*. Therefore, counter *iget* is always greater than counter *namei*.

Counter *dirblk* records the number of directory block reads issued by the system. It is noted that the directory blocks read divided by the number of *namei* calls estimates the average path length of files.

Runque, runocc, swpque, and swpocc: These counters are used to record queue activities. They are implemented in the *clock.c* routine. At every 1 second interval, the clock routine examines the process table to see whether any processes are in core and in ready state. If so, the counter *runocc* is incremented and the number of such processes are added to counter *runque*. While examining the process table, the clock routine also checks whether any processes in the swap device are in ready state. The counter *swpocc* is incremented if the swap queue is occupied, and the number of processes in swap queue is added to counter *swpque*.

Readch and writech: The *readch* and *writech* counters record the total number of bytes (characters) transferred by the read and write system calls, respectively.

Monitoring terminal device activities: There are six counters monitoring terminal device activities. *Revint*, *xmtint*, and *mdmint* are counters measuring hardware interrupt occurrences for receiver, transmitter, and modem individually. *Rawch*, *canch*, and *outch* count number of characters in the raw queue, canonical queue, and output queue. Characters generated by devices operating in the *cooked* mode, such as terminals, are counted in both *rawch* and (as edited) in *canch*, but characters from raw devices, such as communication processors, are counted only in *rawch*.

Msg and sema counters: These counters record message sending and receiving activities and semaphore operations, respectively.

Monitoring I/O activities: As to the I/O activity for a disk or tape device, four counters are kept for each disk or tape drive in the device status table. Counter *io_ops* is incremented when an I/O operation has occurred on the device. It includes block I/O, swap I/O, and physical I/O. *Io_bcnt* counts the amount of data transferred between the device and memory in 512 byte units. *Io_act* and *io_resp* measure the active time and response time of a device in time ticks summed over all I/O requests that have completed for each device. The device active time includes the device seeking, rotating and data transferring times, while the response time of an I/O operation is from the time the I/O request is queued to the device to the time when the I/O completes.

Inodeovf, fileovf, textovf, and procovf: These counters are extracted from *_syserr* structure. When an overflow occurs in any of the inode, file, text and process tables, the corresponding overflow counter is incremented.

System Activity Commands

The system activity package provides three commands for generating various system activity reports and one command for profiling disk activities. These tools facilitate observation of system activity during

- a controlled stand-alone test of a large system
- an uncontrolled run of a program to observe the operating environment
- normal production operation.

Commands **sar** and **sag** permit the user to specify a sampling interval and number of intervals for examining system activity and then to display the observed level of activity in tabular or graphical form. The **timex** command reports the amount of system activity that occurred during the precise period of execution of a timed command. The **sadp** command allows the user to establish a sampling period during which access location and seek distance on specified disks are recorded and later displayed as a tabular summary or as a histogram.

The "sar" command

The **sar** command can be used in the following ways:

- When the frequency arguments **t** and **n** are specified, it invokes the data collection program **sadc** to sample the system activity counters in the operating system every **t** seconds for **n** intervals and generates system activity reports in real-time. Generally, it is desirable to include the option to save the sampled data in a file for later examination. The format of the data file is shown in **sar(8)**. In addition to the system counters, a time stamp is also included. It gives the time at which the sample was taken.
- If no frequency arguments are supplied, it generates system activity reports for a specified time interval from an existing data file that was created by **sar** at an earlier time.

A convenient usage is to run **sar** as a background process, saving its samples in a temporary file but sending its standard output to **/dev/null**. Then an experiment is conducted after which the system activity is extracted from the temporary file. The **sar(1)** manual entry describes the usage and lists various types of reports. Attachment 11.3 gives formula for deriving each reported item.

The "sag" command

Sag displays system activity data graphically. It relies on the data file produced by a prior run of **sar** after which any column of data or the combination of columns of data of the **sar** report can be plotted. A fairly simple but powerful command syntax allows the specification of cross plots or time plots. Data items are selected using the **sar** column header names. The **sar(1G)** manual entry describes its options and usage. The system activity

graphical program invokes **graphics(1G)** and **tplot(1G)** commands to have the graphical output displayed on any of the terminal types supported by **tplot**.

The "timex" command

The **timex** command is an extension of the **time(1)** command. Without options, **timex** behaves exactly like **time**. In addition to giving the time information, it also prints a system activity report derived from the system counters. The manual entry **timex(1)** explains its usage. It should be emphasized that the user and sys times reported in the second and third lines are for the measured process itself including all its children while the remaining data (including the cpu user % and cpu sys %) are for the entire system.

While the normal use of **timex** will probably be to measure a single command, multiple commands can also be timed; either by combining them in an executable file and timing it, or more concisely, by typing:

```
timex sh -c "cmd1; cmd2; ... ;"
```

This establishes the necessary parent-child relationships to correctly extract the user and system times consumed by cmd1,cmd2, ... (and the shell).

The "sadp" command

Sadp is a user level program that can be invoked independently by any user. It requires no storage or extra code in the operating system and allows the user to specify the disks to be monitored. The program is reawakened every second, reads system tables from **/dev/kmem**, and extracts the required information. Because of the 1 second sampling, only a small fraction of disk requests are observed; however, comparative studies have shown that the statistical determination of disk locality is adequate when sufficient samples are collected.

In the operating system, there is an *jobuf* for each disk drive. It contains two pointers which are head and tail of the I/O active queue for the device. The actual requests in the queue may be found in three buffer header pools—system buffer headers for block I/O requests, physical buffer headers for physical I/O requests, and swap buffer headers for swap I/O. Each buffer header has a forward pointer which points to the next request in the I/O active queue and a backward pointer which points to the previous request.

Sadp snapshots the *jobuf* of the monitored device and the three buffer header pools once every second during the monitoring period. It then traces the requests in the I/O queue, records the disk access location, and seeks distance in buckets of 8 cylinder increments. At the end of monitoring period, it prints out the sampled data. The output of **sadp** can be used to balance load among disk drives and to rearrange the layout of a particular disk pack. The usage of this command is described in manual entry **sadp(1)**.

Daily Report Generation

The previous part described the commands available to users to initiate activity observations. It is probably desirable for each installation to routinely monitor and record system activity in a standard way for historical analysis. This part describes the steps that a system administrator may follow to automatically produce a standard daily report of system activity.

Facilities

- **sadc**—The executable module of **sadc.c** (see Attachment 11.1) which reads system counters from **/dev/kmem** and records them to a file. In addition to the file argument, two frequency arguments are usually specified to indicate the sampling interval and number of samples to be taken. In case no frequency arguments are given, it writes a dummy record in the file to indicate a system restart.
- **sal**—The shell procedure that invokes **sadc** to write system counters in the daily data file **/usr/adm/sa** dd where dd represents the day of the month. It may be invoked with sampling interval and iterations as arguments.

- **sa2**—The shell procedure that invokes the **sar** command to generate daily report **/usr/adm/sa/sar dd** from the daily data file **/usr/adm/sa/sadd**. It also removes daily data files and report files after 7 days. The starting and ending times and all report options of **sar** are applicable to **sa2**.

Suggested Operational Setup

10/10/1981 10:23

It is suggested that the **cron(1M)** control the normal data collection and report generation operations. For example, the sample entries in **/usr/lib/crontab**:

```
0 * * * 0,6 su sys -c "/usr/lib/sa/sal"
0 18- * * 1-5 su sys -c "/usr/lib/sa/sal"
0 8-17 * * 1-5 su sys -c "/usr/lib/sa/sal 1200 3"
```

would cause the data collection program **sadc** to be invoked every hour on the hour. Moreover, depending on the arguments presented, it writes data to the data file one to three times at every 20 minutes. Therefore, under the control of **cron(1M)**, the data file is written every 20 minutes between 8:00 and 18:00 on weekdays and hourly at other times.

Note that data samples are taken more frequently during prime time on weekdays to make them available for a finer and more detailed graphical display. It is suggested that **sal** be invoked hourly rather than invoking it once every day; this ensures that if the system crashes data collection will be resumed within an hour after the system is restarted.

Because system activity counters restart from zero when the system is restarted, a special record is written on the data file to reflect this situation. This process is accomplished by invoking **sadc** with no frequency arguments within **/etc/rc** when going to multiuser state:

```
su adm -c "/usr/lib/sa/sadc /usr/adm/sa/sa'date +%d'"
```

Cron(1M) also controls the invocation of **sar** to generate the daily report via shell procedure **sa2**. One may choose the time period the daily report is to cover and the groups of system activity to be reported. For instance, if:

```
0 20 * * 1-5 su sys -c "/usr/lib/sa/sa2 -s 8:00 -e 18:00 -i 3600 -uybd"
```

is an entry in **/usr/lib/crontab**, **cron** will execute the **sar** command to generate daily reports from the daily data file at 20:00 on weekdays. The daily report reports the CPU utilization, terminal device activity, buffer usage, and device activity every hour from 8:00 to 18:00.

In case of a shortage of the disk space or for any other reason, these data files and report files can be removed by the superuser. The manual entry **sar(8)** describes the daily report generation procedure.

ATTACHMENT 11.1

The source files and shell programs of the system activity package are in directory `/usr/src/cmd/sa`.

- .sa.h** The system activity header file defines the structure of data file and device information for measured devices. It is included in **sadc.c**, **sar.c**, and **timex.c**.
- sadc.c** The data collection program that accesses `/dev/kmem` to read the system activity counters and writes data either on standard output or on a binary data file. It is invoked by the **sar** command generating a real-time report. It is also invoked indirectly by entries in `/usr/lib/crontab` to collect system activity data.
- sar.c** The report generation program invokes **sadc** to examine system activity data, generates reports in real-time, and saves the data to a file for later usage. It may also generate system activity reports from an existing data file. It is invoked indirectly by **cron** to generate daily reports.
- saghdr.h** The header file for **saga.c** and **sagb.c**. It contains data structures and variables used by **saga.c** and **sagb.c**.
- saga.c & sagb.c** The graph generation program that first invokes **sar** to format the data of a data file in a tabular form and then displays the **sar** data in graphical form.
- sal.sh** The shell procedure that invokes **sadc** to write data file records. It is activated by entries in `/usr/lib/crontab`.
- sa2.sh** The shell procedure that invokes **sar** to generate the report. It also removes the daily data files and daily report files after a week. It is activated by an entry in `/usr/lib/crontab` on weekdays.
- timex.c** The program that times a command and generates a system activity report.
- sadp.c** The program that samples and reports disk activities.

LP Spooling System

This document is part of the ADMINISTRATOR'S GUIDE. Therefore the pagenumbers don't begin with 1.

Trademarks:

MUNIX, CADMUS	for PCS
DEC, PDP	for DEC
UNIX	for Bell Laboratories

Copyright 1984 by
PCS GmbH, Pfälzer-Wald-Strasse 36, D-8000 München 90, tel. (089) 67804-0

The information contained herein is the property of PCS and shall neither be reproduced in whole or in part without PCS's prior written approval nor be implied to grant any license to make, use or sell equipment manufactured herewith.

PCS reserves the right to make changes without notice in the specifications and materials contained herein and shall not be responsible for any damages (including consequential) caused by reliance on the materials presented.

9. LP SPOOLING SYSTEM

GENERAL

The LP program is a system of commands which performs diverse spooling functions under the UNIX operating system. Since the primary LP application is off-line printing, this document focuses mainly on spooling to line printers. LP allows administrators to customize the system to spool to a collection of line printers of any type and to group printers into logical classes in order to maximize the throughput of the devices. Users are provided the capabilities of queuing and canceling print requests, preventing and allowing queuing to and printing on devices, starting and stopping LP from processing requests, changing configuration of printers and finding status of the LP system. This section describes the role of an LP Administrator in performing restricted functions and overseeing the smooth operation of LP.

Throughout this section, each reference of the form `name(1M)`, `name(7)`, or `name(8)` refers to entries in the UNIX System Administrator's Manual. All other references to entries of the form `name(N)`, where "N" is a number (1 through 6) possibly followed by a letter, refers to entry `name` in Section "N" of the UNIX System User's Manual.

OVERVIEW OF LP FEATURES

A. Definitions

Several terms must be defined before presenting a brief summary of LP commands. The LP was designed with the flexibility to meet the needs of users on different UNIX systems. Changes to the LP configuration are performed by the `lpadmin(1M)` command.

LP makes a distinction between printers and printing devices. A *device* is a physical peripheral device or a file and is represented by a full UNIX system pathname. A *printer* is a logical name that represents a device. At different points in time, a printer may be associated with different devices. A *class* is a name given to an ordered list of printers. Every class must contain at least one printer. Each printer may be a member of zero or more classes. A *destination* is a printer or a class. One destination may be designated as the *system default destination*. The `lp(1)` command will direct all output to this destination unless the user specifies otherwise. Output that is routed to a printer will be printed only by that printer, whereas output directed to a class will be printed by the first available class member.

Each invocation of `lp` creates an output request that consists of the files to be printed and options from the `lp` command line. An interface program which formats requests must be supplied for each printer. The LP scheduler, `lpsched(1M)`, services requests for all destinations by routing requests to interface programs to do the printing on devices. An LP configuration for a system consists of devices, destinations, and interface programs.

B. Commands

Commands for General Use

The `lp(1)` command is used to request the printing of files. It creates an output request and returns a request id of the form

`dest-seqno`

to the user, where `seqno` is a unique sequence number across the entire LP system, and `dest` is the destination where the request was routed.

`Cancel` is used to cancel output requests. The user supplies request ids as returned by `lp` or printer names, in which case the currently printing requests on those printers are canceled.

Disable prevents **lpsched** from routing output requests to printers.

Enable(1) allows **lpsched** to route output requests to printers.

Commands for LP Administrators

Each LP system must designate a person or persons as LP administrator to perform the restricted functions listed below. Either the superuser or any user who is logged into the UNIX system as **lp** qualifies as an LP Administrator. All LP files and commands are owned by **lp**, except for **lpadmin** and **lpsched** which are owned by root. The following commands will be described in more detail later in this section.

Lpadmin(1M)	Modifies LP configuration. Many features of this command cannot be used when lpsched is running.
Lpsched(1M)	Routes output requests to interface programs which do the printing on devices.
Lpshut	Stops lpsched from running. All printing activity is halted, but other LP commands may still be used.
Accept(1M)	Allows lp to accept output requests for destinations.
Reject	Prevents lp from accepting requests for destinations.
Lpmove	Moves output requests from one destination to another. Whole destinations may be moved at once. This command cannot be used when lpsched is running.

BUILDING LP

All LP commands are built from source code that resides in the **/usr/src/cmd/lp** directory including the make file, **lp.mk**. Unless some of the definitions in **lp.mk** are changed, LP may be installed only by the superuser. Before installing a new LP system, make sure there is a login called **lp** on your system and that the spool directory, **/usr/spool/lp**, does not exist. To install LP, perform the following:

```
cd /usr/src/cmd/lp
make -f lp.mk install
```

This builds all LP commands and creates an initial LP configuration consisting of no printers, classes, or default destination. LP must be configured by an LP administrator using the **lpadmin** command in order to create a useful spooler.

In addition, add the following code to **/etc/rc**:

```
rm -f /usr/spool/lp/SCHEDLOCK
/usr/lib/lpsched
echo " LP scheduler started "
```

This starts the LP scheduler each time that the UNIX system is restarted.

Several variables in **lp.mk** may be changed before installing LP to customize the system:

Variable	Default Value	Meaning
SPOOL	/usr/spool/lp	spool directory
ADMIN	lp	logname of LP Administrator

GROUP	<i>bin</i>	group owning LP commands/data
ADMDIR	<i>/usr/lib</i>	commands of administrator
USRDIR	<i>/usr/bin</i>	user commands reside here

If an existing LP spool directory is corrupted (but not the LP programs) or if it needs to be rebuilt from scratch, make sure that *lpsched* is not running and perform the following as superuser:

1. Make copies of any interface programs that are not standard LP software. DO NOT make these copies underneath the spool directory. The pathname for printer "p" is */usr/spool/lp/interface/p*.
2. *rm -fr /usr/spool/lp*
3. Make *-f lp.mk* new. (This recreates the bare LP configuration described above.)

PRECAUTIONS:

1. Some LP commands invoke other LP commands. Moving them after they are built will cause some commands to fail.
2. The files under the SPOOL directory should be modified only by LP commands.
3. All LP commands require set-user-id permission. If this is removed, the commands will fail.

CONFIGURING LP—THE "lpadmin" COMMAND

Changes to the LP configuration should be made by using the *lpadmin* command and not by hand. *Lpadmin* will not attempt to alter the LP configuration when *lpsched* is running, except where explicitly noted below.

A. Introducing New Destinations

The following information must be supplied to *lpadmin* when introducing a new printer:

1. The printer name (*-p printer*) is an arbitrary name which must conform to the following rules:
 - It must be no longer than 14 characters.
 - It must consist solely of alphanumeric characters and underscores.
 - It must not be the name of an existing LP destination (printer or class).
2. The device associated with the printer (*-v device*). This is the pathname of a hardwired printer, a login terminal, or other file that is writable by *lp*.
3. The printer interface program. This may be specified in one of three ways:
 - It may be selected from a list of model interfaces supplied with LP (*-m model*).
 - It may be the same interface that an existing printer uses (*-e printer*).
 - It may be a program supplied by the LP administrator (*-i interface*).

Information which need not always be supplied when creating a new printer includes:

1. The user may specify *-h* to indicate that the device for the printer is hardwired or the device is the name of a file (this is assumed by default). If, on the other hand, the device is the pathname of a login terminal,

then **-l** must be included on the command line. This indicates to *lpsched* that it must automatically disable this printer each time *lpsched* starts running. This fact is reported by *lpstat* when it indicates printer status:

```
$ lpstat -pa
printer a (login terminal) disabled Oct 31 11:15-
disabled by scheduler: login terminal
```

This is done because device names for login terminals can be (and usually are) associated with different physical devices from day to day. If the scheduler did not take this action, somebody might log in and be surprised that LP is spooling to his/her terminal!

2. The new printer may be added to an existing class or added to a new class (**-cclass**). New class names must conform to the same rules for new printer names.

EXAMPLES

The following examples will be referenced by further examples in later sections.

1. Create a printer called **pr1** whose device is **/dev/printer** and whose interface program is the model **hp** interface:

```
$ /usr/lib/lpadmin -ppr1 -v/dev/printer -mhp
```

2. Add a printer called **pr2** whose device is **/dev/tty22** and whose interface is a variation of the model **prx** interface. It is also a login terminal:

```
$ cp /usr/spool/lp/model/prx xxx
< edit xxx >
$ /usr/lib/lpadmin -ppr2 -v/dev/tty22 -ixxx -l
```

3. Create a printer called **pr3** whose device is **/dev/tty23**. The **pr3** will be added to a new class called **cl1** and will use the same interface as printer **pr2**

```
$ /usr/lib/lpadmin -ppr3 -v/dev/tty23 -epr2 -ccl1
```

B. Modifying Existing Destinations

Modifications to existing destinations must always be made with respect to a printer name (**-p printer**). The modifications may be one or more of the following:

1. The device for the printer may be changed (**-v device**). If this is the only modification, then this may be done even while *lpsched* is running. This facilitates changing devices for login terminals.
2. The printer interface program may be changed (**-m model**, **-e printer**, **-i interface**).
3. The printer may be specified as hardwired (**-h**) or as a login terminal (**-l**).
4. The printer may be added to a new or existing class (**-cclass**).
5. The printer may be removed from an existing class (**-r class**). Removing the last remaining member of a class causes the class to be deleted. No destination may be removed if it has pending requests. In that case, *lpmove* or *cancel* should be used to move or delete the pending requests.

EXAMPLES

These examples are based on the LP configuration created by those in the previous section.

1. Add printer pr2 to class cl1:

```
$ /usr/lib/lpadmin -ppr2 -ccl1
```

2. Change pr2's interface program to the model prx interface, change its device to /dev/tty24, and add it to a new class called cl2:

```
$ /usr/lib/lpadmin -ppr2 -mprx -v/dev/tty24 -ccl2
```

Note that printers pr2 and pr3 now use different interface programs even though pr3 was originally created with the same interface as pr2. Printer pr2 is now a member of two classes.

3. Specify printer pr2 as a hardwired printer:

```
$ /usr/lib/lpadmin -ppr2 -h
```

4. Add printer pr1 to class cl2:

```
$ /usr/lib/lpadmin -ppr1 -ccl2
```

The members of class cl2 are now pr2 and pr1, in that order. Requests routed to class cl2 will be serviced by pr2 if both pr2 and pr1 are ready to print; otherwise, they will be printed by the one which is next ready to print.

5. Remove printers pr2 and pr3 from class cl1:

```
$ /usr/lib/lpadmin -ppr2 -rcl1  
$ /usr/lib/lpadmin -ppr3 -rcl1
```

Since pr3 was the last remaining member of class cl1, the class is removed.

6. Add pr3 to a new class called cl3.

```
$ /usr/lib/lpadmin -ppr3 -ccl3
```

C. Specifying the System Default Destination

The system default destination may be changed even when **lpsched** is running.

EXAMPLES

1. Establish class cl1 as the system default destination:

```
$ /usr/lib/lpadmin -dcl1
```

2. Establish no default destination:

```
$ /usr/lib/lpadmin -d
```

D. Removing Destinations

Classes and printers may be removed only if there are no pending requests that were routed to them. Pending requests must either be canceled using **cancel** or moved to other destinations using **lpmove** before destinations may be removed. If the removed destination is the system default destination, then the system will have

no default destination until the default destination is respecified. When the last remaining member of a class is removed, then the class is also removed. The removal of a class never implies the removal of printers.

EXAMPLES

1. Make printer pr1 the system default destination:

```
$ /usr/lib/lpadmin -dpr1
```

Remove printer pr1:

```
$ /usr/lib/lpadmin -xpr1
```

Now there is no system default destination.

2. Remove printer pr2:

```
$ /usr/lib/lpadmin -xpr2
```

Class cl2 is also removed since pr2 was its only member.

3. Remove class cl3:

```
$ /usr/lib/lpadmin -xcl3
```

Class cl3 is removed, but printer pr3 remains.

MAKING AN OUTPUT REQUEST—THE "lp" COMMAND

Once LP destinations have been created, users may request output by using the lp command. The request id that is returned may be used to see if the request has been printed or to cancel the request.

The LP program determines the destination of a request by checking the following list in order:

- If the user specifies **-d dest** on the command line, then the request is routed to **dest**
- If the environment variable **LPDEST** is set, the request is routed to the value of **LPDEST**.
- If there is a system default destination, then the request is routed there.
- Otherwise, the request is rejected.

EXAMPLES

1. There are at least four ways to print the password file on the system default destination:

```
lp /etc/passwd
lp < /etc/passwd
cat /etc/passwd | lp
lp -c /etc/passwd
```

The last three ways cause copies of the file to be printed, whereas the first way prints the file directly. Thus, if the file is modified between the time the request is made and the time it is actually printed, then the changes will be reflected in the output.

2. Print two copies of file abc on printer xyz and title the output "my file":

```
pr abc | lp -dxyz -n2 -t " my file "
```

3. Print file xxx on a Diablo* 1640 printer called zoo in 12-pitch and write to the user's terminal when printing has completed:

```
lp -dzoo -o12 -w xxx
```

In this example, "12" is an option that is meaningful to the model Diablo 1640 interface program that prints output in 12-pitch mode [see **lpadmin(1M)**].

FINDING LP STATUS—LPSTAT

The **lpstat** command is used to find status information about LP requests, destinations, and the scheduler.

EXAMPLES

1. List the status of all pending output requests made by this user:

```
lpstat
```

The status information for a request includes the request id, the logname of the user, the total number of characters to be printed, and the date and time the request was made.

2. List the status of printers p1 and p2:

```
lpstat -pp1,p2
```

CANCELING REQUESTS—CANCEL

The LP requests may be canceled using the **cancel** command. Two kinds of arguments may be given to the command—request ids and printer names. The requests named by the request ids are canceled and requests that are currently printing on the named printers are canceled. Both types of arguments may be intermixed.

EXAMPLE

Cancel the request that is now printing on printer xyz:

```
cancel xyz
```

If the user that is canceling a request is not the same one that made the request, then mail is sent to the owner of the request. LP allows any user to cancel requests in order to eliminate the need for users to find LP administrators when unusual output should be purged from printers.

ALLOWING AND REFUSING REQUESTS—ACCEPT AND REJECT

When a new destination is created, **lp** will reject requests that are routed to it. When the LP administrator is sure that it is set up correctly, he or she should allow **lp** to accept requests for that destination. The **accept** command performs this function.

Sometimes it is necessary to prevent **lp** from routing requests to destinations. If printers have been removed or are waiting to be repaired or if too many requests are building for printers, then it may be desirable to cause

* Trademark of Diablo Systems, Inc.

lp to reject requests for those destinations. The **reject** command performs this function. After the condition that led to the rejection of requests has been remedied, the **accept** command should be used to allow requests to be taken again.

The acceptance status of destinations is reported by the **-a** option of **lpstat**.

EXAMPLES

1. Cause **lp** to reject requests for destination **xyz**:

```
/usr/lib/reject -r "printer xyz needs repair" xyz
```

Any users that try to route requests to **xyz** will encounter the following:

```
$ lp -dxyz file
lp: can not accept requests for destination "xyz"
      -printer xyz needs repair
```

2. Allow **lp** to accept requests routed to destination **xyz**:

```
/usr/lib/accept xyz
```

ALLOWING AND INHIBITING PRINTING—ENABLE AND DISABLE

The **enable** command allows the LP scheduler to print requests on printers. That is, the scheduler routes requests only to the interface programs of enabled printers. Note that it is possible to enable a printer but to prevent further requests from being routed to it.

The **disable** command cancels the effects of the **enable** command. It prevents the scheduler from routing requests to printers, independently of whether or not **lp** is allowing them to accept requests. Printers may be disabled for several reasons including malfunctioning hardware, paper jams, and end of day shutdowns. If a printer is busy at the time it is disabled, then the request that it was printing will be reprinted in its entirety either on another printer (if the request was originally routed to a class of printers) or on the same one when the printer is reenabled. The **-c** option causes the currently printing requests on busy printers to be canceled in addition to disabling the printers. This is useful if strange output is causing a printer to behave abnormally.

EXAMPLE

Disable printer **xyz** because of a paper jam:

```
$ disable -r "paper jam" xyz
printer "xyz" now disabled
```

Find the status of printer **xyz**:

```
$ lpstat -pxyz
printer "xyz" disabled since Jan 5 10:15 -
      paper jam
```

Now, reenable **xyz**:

```
$ enable xyz
printer "xyz" now enabled
```

MOVING REQUESTS BETWEEN DESTINATIONS—LPMOVE

Occasionally, it is useful for LP administrators to move output requests between destinations. For instance, when a printer is down for repairs, it may be desirable to move all of its pending requests to a working printer. This is one way to use the **lpmove** command. The other use of this command is to move specific requests to a different destination. **Lpmove** will refuse to move requests while the LP scheduler is running.

EXAMPLES

1. Move all requests for printer abc to printer xyz:

```
$ /usr/lib/lpmove abc xyz
```

All of the moved requests are renamed from abc-nnn to xyz-nnn. As a side effect, destination abc is no longer accepting further requests.

2. Move requests zoo-543 and abc-1200 to printer xyz:

```
$ /usr/lib/lpmove zoo-543 abc-1200 xyz
```

The two requests are now renamed xyz-543 and xyz-1200.

STOPPING AND STARTING THE SCHEDULER—LPSHUT AND LPSCHED

Lpsched is the program that routes the output requests that were made with **lp** through the appropriate printer interface programs to be printed on line printers. Each time the scheduler routes a request to an interface program, it records an entry in the log file, **/usr/spool/lp/log**. This entry contains the logname of the user that made the request, the request id, the name of the printer that the request is being printed on, and the date and time that printing first started. In the case that a request has been restarted, more than one entry in the log file may refer to the request. The scheduler also records error messages in the log file. When **lpsched** is started, it renames **/usr/spool/lp/log** to **/usr/spool/lp/oldlog** and starts a new log file.

No printing will be performed by the LP system unless **lpsched** is running. Use the command

```
lpstat -r
```

to find the status of the LP scheduler.

Lpsched is normally started by the **/etc/rc** program as described above and continues to run until the UNIX system is shut down. The scheduler operates in the **/usr/spool/lp** directory. When it starts running, it will exit immediately if a file called **SCHEDLOCK** exists. Otherwise, it creates this file in order to prevent more than one scheduler from running at the same time.

Occasionally, it is necessary to shut down the scheduler in order to reconfigure LP or to rebuild the LP software. The command

```
/usr/lib/lpshut
```

causes **lpsched** to stop running and terminates all printing activity. All requests that were in the middle of printing will be reprinted in their entirety when the scheduler is restarted.

To restart the LP scheduler, use the command

```
/usr/lib/lpsched
```

Shortly after this command is entered, **lpstat** should report that the scheduler is running. If not, it is possible that a previous invocation of **lpsched** exited without removing **SCHEDLOCK**, so try the following:

```
rm -f /usr/spool/lp/SCHEDLOCK  
/usr/lib/lpsched
```

The scheduler should be running now.

PRINTER INTERFACE PROGRAMS

Every LP printer must have an interface program which does the actual printing on the device that is currently associated with the printer. Interface programs may be shell procedures, C programs, or any other executable programs. The LP model interfaces are all written as shell procedures and can be found in the **/usr/spool/lp/model** directory. At the time **lpsched** routes an output request to a printer P, the interface program for P is invoked in the directory **/usr/spool/lp** as follows:

```
interface/P id user title copies options file ...  
where  
id is the request id returned by lp  
user is logname of user who made the request  
title is optional title specified by the user  
copies is number of copies requested by user  
options is a blank-separated list of class or  
printer-dependent options specified by user  
file is the full pathname of a file to be printed
```

EXAMPLES

The following examples are requests made by user "smith" with a system default destination of printer "xyz". Each example lists an **lp** command line followed by the corresponding command line generated for printer xyz's interface program:

1. **lp /etc/passwd /etc/group**
interface/xyz xyz-52 smith " " 1 " " /etc/passwd /etc/group
2. **pr /etc/passwd | lp -t " users" -n5**
interface/xyz xyz-53 smith users 5 " "
/usr/spool/lp/request/xyz/d0-53
3. **lp /etc/passwd -oa -ob**
interface/xyz xyz-54 smith " " 1 " a b" /etc/passwd

When the interface program is invoked, its standard input comes from **/dev/null** and both the standard output and standard error output are directed to the printer's device. Devices are opened for reading as well as

writing when file modes permit. In the case where a device is a regular file, all output is appended to the end of the file.

Given the command line arguments and the output directed to a device, interface programs may format their output in any way they choose. Interface programs must ensure that the proper stty modes (terminal characteristics such as baud rate, output options, etc.) are in effect on the output device. This may be done as follows in a shell interface only if the device is opened for reading:

```
stty mode ... <&1
```

That is, take the standard input for the stty command from the device.

When printing has completed, it is the responsibility of the interface program to exit with a code indicative of the success of the print job. Exit codes are interpreted by lpsched as follows:

CODE	MEANING TO LPSCHED
zero	The print job has completed successfully.
1 to 127	A problem was encountered in printing this particular request (e.g., too many nonprintable characters). This problem will not affect future print jobs. Lpsched notifies users by mail that there was an error in printing the request.
greater than 127	These codes are reserved for internal use by lpsched. Interface programs must not exit with codes in this range.

When problems that are likely to affect future print jobs occur (e.g., a device filter program is missing), the interface programs would be wise to disable printers so that print requests are not lost. When a busy printer is disabled, the interface program will be terminated with signal 15.

SETTING UP HARDWIRED DEVICES AND LOGIN TERMINALS AS LP PRINTERS

A. Hardwired Devices

As an example of how to set up a hardwired device for use as an LP printer, let us consider using tty line 15 as printer xyz. As superuser, perform the following:

1. Avoid unwanted output from non-LP processes and ensure that LP can write to the device:

```
$ chown lp /dev/tty15
.      $ chmod 600 /dev/tty15
```

2. Change /etc/inittab so that tty15 is not a login terminal. In other words, ensure that /etc/getty is not trying to log users in at this terminal. Change the entries for line 15 to:

```
1:15:0:
2:15:0:
```

Enter the command:

```
$ init 2
```

If there is currently an invocation of /etc/getty running on tty15, kill it. Now, and when the UNIX system is rebooted, tty15 will be initialized with default stty modes. Thus, it is up to LP interface programs to establish the proper baud rate and other stty modes for correct printing to occur.

3. Introduce printer xyz to LP using the model prx interface program:

```
$ /usr/lib/lpadmin -pxyz -v/dev/tty15 -mprx
```

4. When xyz is created, it will initially be disabled and lp will be rejecting requests routed to it. If it is desired, allow lp to accept requests for xyz:

```
/usr/lib/accept xyz
```

This will allow requests to build up for xyz, and to be printed when it is enabled at a later time.

5. When it is desired for printing to occur, be sure that the printer is ready to receive output. For several printers, this means that the top of form has been adjusted and that the printer is on-line. Enable printing to occur on xyz:

```
enable xyz
```

When requests have been routed to xyz, they will begin printing.

B. Login Terminals

Login terminals may also be used as LP printers. To do this for a Diablo 1640 terminal called abc, perform the following:

1. Introduce printer abc to LP using the model 1640 interface program:

```
$ /usr/lib/lpadmin -pabc -v/dev/null -m1640 -l
```

Note that /dev/null is used as abc's device because we will specify the actual device each time that abc is enabled. This device may be different from day to day. When abc is created, it will initially be disabled; and lp will be rejecting requests routed to it. If it is desired, allow lp to accept requests for abc:

```
/usr/lib/accept abc
```

This will allow requests to build up for abc and to be printed when it is enabled at a later time. It is not advisable to enable abc for printing, however, until the following steps have been taken.

2. Log terminal in if this has not already been done.

3. Assuming the tty(1) command reports that this terminal is /dev/tty02, associate this device with printer abc:

```
$ /usr/lib/lpadmin -pabc -v/dev/tty02
```

Note that lpadmin may be used only by an LPA. If it is desired for other users to routinely perform this step, then an LPA may establish a program owned by lp or by root with set-user-id permission that performs this function.

4. When it is desired for printing to occur, be sure that the printer is ready to receive output. For several printers, this means that the top of form has been adjusted. Enable printing to occur on abc:

```
enable abc
```

When requests have been routed to abc, they will begin printing.

5. When all printing has stopped on abc or when you want it back as a regular login terminal, you may prevent it from printing more output:

```
$ disable abc  
printer "abc" now disabled
```

If abc is enabled when the UNIX system is rebooted or when **lpsched** is restarted, it will be disabled automatically.

SUMMARY

The administrative functions of the LP administrator have been described in detail. These functions include configuring and reconfiguring LP; maintaining printer interface programs; accepting, rejecting, and moving print requests; stopping and starting the LP scheduler; and enabling and disabling printers. LP offers administrators the following advantages over other centrally supported printer packages:

- Printers may be grouped into classes.
- LP may be configured to meet the needs of each site.
- Administrators may supply interface programs to format output in any way desirable.
- LP functions are performed by simple commands and not by hand.

NOTES

UUCP

Administrator's Manual

Trademarks:

MUNIX, CADMUS	for PCS
DEC, PDP	for DEC
UNIX	for Bell Laboratories

**Copyright 1984 by
PCS GmbH, Pfälzer-Wald-Strasse 38, D-8000 München 90, tel. (089) 67804-0**

The information contained herein is the property of PCS and shall neither be reproduced in whole or in part without PCS's prior written approval nor be implied to grant any license to make, use or sell equipment manufactured herewith.

PCS reserves the right to make changes without notice in the specifications and materials contained herein and shall not be responsible for any damages (including consequential) caused by reliance on the materials presented.

CONTENTS

1. Introduction	1
2. Planning	1
2.1 Extent of the Network	1
2.2 Hardware and Line Speeds	1
2.3 Maintenance and Administration	2
3. A Quick Tour of the Uucp Software	2
4. Installation	2
4.1 Object Modules	2
4.2 Password File	2
4.3 Lines File	3
4.4 System File	3
4.5 Dialing Prefixes	5
4.6 USERFILE	5
4.7 Forwarding File	6
5. Administration	7
5.1 Cleanup	7
5.2 Polling Other Systems	7
5.3 Problems	7
6. Debugging	8
7. Conclusion	8

Uucp Administrator's Manual

1. Introduction

Uucp has been the mainstay of UNIX¹ system to UNIX system communication for several years [1, 2]. This document illustrates how a network is set up, the format of control files and administrative procedures. Administrators should be familiar with the *Uucp Users Tutorial* and the manual pages for each of the *uucp* related commands before reading this document.

2. Planning

In setting up a network of UNIX systems there are several considerations that should be taken into account *before* configuring each system on the network. The following sections attempt to outline the most important considerations.

2.1 Extent of the Network

Some basic decisions about *access* to processors in the network must be made before attempting to set up the configuration files. If an administrator has control over only one processor and an existing network is being joined, then the administrator must decide what level of access should be granted to other systems. The other members of the network must make a similar decision for the new system. The UNIX system *password* mechanism is used to grant access to other systems. The file (*usr/lib/uucp/USERFILE*) restricts access by other systems to parts of the filesystem tree and the file *usr/lib/uucp/L.sys* on the local processor determines how many other systems on the network can be reached.

When setting up more than one processor is involved, the administrator has control of a larger fraction of the network and can make more decisions about the setup of the network. For example, the network can be set up as a *private* network where only those machines under the direct control of the administrator can access each other. Granting *no* access to machines outside the network can be done if security is paramount, however, this is usually impractical. Very limited access can be granted to outside machines by each of the systems on the *private* network. Alternatively, access to/from the outside world can be confined to only one processor. This is frequently done to minimize the effort in keeping access information (passwords, phone numbers, login sequences, etc.) updated and to minimize the number of security holes for the private network.

2.2 Hardware and Line Speeds

There are only two supported means of interconnection by *uucp(1)*.

1. Direct connection using a null modem.
2. Connection over the DDD network.

Direct connection over private lines using X.25 is not fully supported in UNIX System V, although with the addition of one program *x25.login* it can be made operational. In choosing hardware, the equipment used by other processors on the network must be considered. For example, if some systems on the network have only 103 type (300 baud) datasets, then communication with them is not possible unless the local system has a 300 baud dataset connected to a calling unit. (Most datasets available on systems are 1200 baud.) If hardwired connections are to be used between systems, then the *distance* between systems must be considered since a null modem cannot be used when the systems are separated by more than several hundred feet (the limit for communication at

¹ UNIX is a Trademark of Bell Telephone Laboratories, Incorporated.

9600 baud is about 800 to 1000 feet although the RS232 specification allows for less than fifty feet). Limited distance modems must be used beyond these distances or if noise on the lines becomes a problem.

2.3 Maintenance and Administration

There is a minimum amount of maintenance that must be provided on each system to keep the access files updated, to insure that the network is running properly and to track down line problems. When more than one system is involved, the job becomes more difficult because there are more files to update and because users are much less patient when failures occur between machines that are under local control.

3. A Quick Tour of the Uucp Software

Figure 1 is an illustration of the daemons used by the *uucp* network to communicate with another system. The *uucp(1)* or *uux(1)* command queues users requests and spawns the *uucico* daemon to call another system. Figure 2 illustrates the structure of *uucico* and the tasks that it performs in communicating with another system. It initiates the call to another system and performs the file transfer. On the receiving side, *uucico* is invoked to receive the transfer. Remote execution jobs are actually done by transferring a command file to the remote system and invoking a daemon (*uuxqt*) to execute that command file and return the results.

4. Installation

The *uucp(1)* package is delivered as part of the standard UNIX system distribution. It resides in its own subdirectory (called *uucp*) in the commands area and has its own make file (*uucp.mk*). The *uucp* package is installed as part of the normal distribution, however, if it must be reinstalled for any reason, then the sequence

make uucp.mk install

should be executed.

4.1 Object Modules

The following object modules are installed as part of the *uucp* make procedure.

1. *Uucp* - The file transfer command.
2. *Uux* - The remote execution command.
3. *Uucico* - The *uucp* network daemon.
4. *Uustat* - Network status command.
5. *Uuclean* - Cleanup command.
6. *Uusub* - The command for monitoring and creating a subnetwork.
7. *Uuxqt* - The remote execution daemon.
8. *Uudemon.day* - A shell procedure that is invoked each day to maintain the network. Shell scripts for execution each week (*uudemon.wk*) and each hour (*uudemon.hr*) are also distributed.

4.2 Password File

To allow remote systems to call the local system, password entries must be made for any *uucp* logins. For example,

nuucp:zaaAA:6:1:45422-UUCP.Admin:/usr/spool/uucppublic:/usr/lib/uucp/uucico

Note that the *uucico* daemon is used for the *shell* and the spool directory is used as the working directory.

4.3 Lines File

The file */usr/lib/uucp/L-devices* contains the list of all lines that are directly connected to other systems or are available for calling other systems. The file contains the attributes of the lines and whether the line is a permanent connection or can call via a dialer. The format of the file is

type line call-device speed protocol

where each field is

<i>type</i>	Two keywords are used to describe whether a line is directly connected to another system (DIR) or uses an automatic calling unit (ACU). An X.25 permanent virtual circuit would use the DIR keyword.
<i>line</i>	This is the device name for the line (e.g., <i>ttyab</i> for a direct line, <i>cui0</i> for a line connected to an ACU).
<i>call-device</i>	If the ACU keyword is specified, this field contains the device name of the automatic calling unit. Otherwise, the field is ignored, however, a placeholder must be used in this field so that the <i>protocol</i> field can be interpreted.
<i>speed</i>	The line speed that the connection is to run at. (The <i>speed</i> field is currently ignored if an X.25 link is used.)
<i>protocol</i>	This is an optional field that needs only be filled in if the connection is for a protocol other than the default terminal protocol. The X.25 protocol is the only other protocol supported and the single character <i>x</i> is used to select this protocol.

The following entries illustrate various types of connections,

DIR *ttyab* 0 9600
ACU *cui0* *cua0* 1200
DIR *x25.s0* 0 300 *x*

The first entry is for a hardwired line running at 9600 baud between two systems. Note that the *acu-device* field is zero. The second entry is for a line with a 1200 baud automatic calling unit. The last entry is for an X.25 synchronous direct connection between systems. Note that the *protocol* field is filled in and that the *acu-device* and *line speed* fields are meaningless.

4.3.1 Naming Conventions It is often useful when naming lines that are directly connected between systems or which are dedicated to calling other systems to choose a naming scheme that conveys the use of the line. In the earlier examples, the name *ttyab* is used for the line that directly connects two systems named *a* and *b*. Similarly, lines associated with calling units are best given names that relate them to the their calling unit (note the names *cui0* and *cua0* to specify the line and calling unit respectively).

4.4 System File

Each entry in this file represents a system that can be called by the local *uucp* programs. More than one line may be present for a particular system. In this case, the additional lines represent alternative communication paths that will be tried in sequential order. The fields are described below.

system name The name of the remote system.

time This is a string that indicates the days-of-week and times-of-day when the system should be called (e.g., MoTuTh0800-1730).

The day portion may be a list containing some of *Su Mo Tu We Th Fr Sa* or it may be *Wk* for any week-day or *Any* for any day. The time should be a range of times (e.g., 0800-1230). If no time portion is specified, any time of day is assumed to be allowed for the call. Note that a time range that spans 0000 is permitted, for example, 0800-0600 means all times are allowed other than times between 6 and 8 am. An optional subfield is available to specify the minimum time (minutes) before a retry following a failed attempt. The subfield separator is a ":" (e.g., Any,9 means call any time but wait at least 9 minutes before retrying the call after a failure has occurred).

device This is either *ACU* or the hard-wired device name to be used for the call. For the hard-wired case, the last part of the special file name is used (e.g., *tty0*).

class This is usually the line speed for the call (e.g., 300).

phone The phone number is made up of an optional alphabetic abbreviation (dialing prefix) and a numeric part. The abbreviation should be one that appears in the *L-dialcodes* file (e.g., *mh5900*, *boston995-9980*). For the hard-wired devices, this field contains the same string as used for the *device* field (e.g., *tty0*, etc.).

login The login information is given as a series of fields and subfields in the format

[*expect* *send*] ...

where *expect* is the string expected to be read and *send* is the string to be sent when the *expect* string is received.

The *expect* field may be made up of subfields of the form

expect[*-send**-expect*] ...

where the *send* is sent if the prior *expect* is *not* successfully read and the *expect* following the *send* is the next expected string. (e.g., *login--login* will expect *login*; if it gets it, the program will go on to the next field; if it does not get *login*, it will send *null* followed by a new line, then expect *login* again.)

There are two special names available to be sent during the login sequence. The string *EOT* will send an EOT character and the string *BREAK* will try to send a *BREAK* character. (The *BREAK* character is simulated using line speed changes and null characters and may not work on all devices and/or systems.) A number from 1 to 9 may follow the *BREAK* for example, *BREAK1*, will will send 1 null character instead of the default of 3. Note that *BREAK1* usually works best for 300/1200 baud lines.

A typical entry in the *L.sys* file would be

sys Any ACU 300 mh7654 login uucp ssword: word

The *expect* algorithm matches all or part of the input string as illustrated in the *password* field above.

4.5 Dialing Prefixes

This file contains the dial-code abbreviations used in the *L.sys* file (e.g., *py*, *mh*, *boston*). The entry format is

abb dial-seq

where

- abb** is the abbreviation,
- dial-seq** is the dial sequence to call that location.

The line

py 165-

would be set up so that entry *py7777* would send 165-7777 to the dial-unit.

4.6 USERFILE

This file contains user accessibility information. It specifies four types of constraint,

- [1] which files can be accessed by a normal user of the local machine,
- [2] which files can be accessed from a remote computer,
- [3] which login name is used by a particular remote computer,
- [4] whether a remote computer should be called back in order to confirm its identity.

Each line in the file has the format

login,sys [c] path-name [path-name] ...

where

- login** is the login name for a user or the remote computer,
- sys** is the system name for a remote computer,
- c** is the optional *call-back required* flag.
- path-name** is a path-name prefix that is acceptable for *sys*.

The constraints are implemented as follows.

- [1] When the program is obeying a command stored on the local machine, the path-names allowed are those given on the first line in the *USERFILE* that has the login name of the user who entered the command. If no such line is found, the first line with a *null* login name is used.
- [2] When the program is responding to a command from a remote machine, the path-names allowed are those given on the first line in the file that has the system name that matches the remote machine. If no such line is found, the first one with a *null* system name is used.
- [3] When a remote computer logs in, the login name that it uses *must* appear in the *USERFILE*. There may be several lines with the same login name but one of

them must either have the name of the remote system or must contain a *null* system name.

[4] If the line matched in ([3]) contains a "c", the remote machine is called back before any transactions take place.

The line

u,m /usr/xyz

allows machine *m* to login with name *u* and request the transfer of files whose names start with "/usr/xyz". The line

you, /usr/you

allows the ordinary user *you* to issue commands for files whose name starts with "/usr/you". (Note that this type restriction is seldom used.) The lines

u,m /usr/xyz /usr/spool
u, /usr/spool

allows *any* remote machine to login with name *u*. If its system name is not *m*, it can only ask to transfer files whose names start with "/usr/spool". If it is system *m*, it can send files from paths "/usr/xyz" as well as "/usr/spool". The lines

root, /
, /usr

allow any user to transfer files beginning with "/usr" but the user with login *root* can transfer any file. (Note that any file that is to be transferred must be readable by anybody.)

4.7 Forwarding File

There are two files that allow restrictions to be placed on the forwarding mechanism. The format of the entries in each file is the same,

system
or
system!user!user2,...

The file *ORIGFILE* (*/usr/lib/uucp/ORIGFILE*) restricts the access of systems that are attempting to forward *through the local system*. The file contains the list of systems (and users) for whom the local system is willing to forward. Each entry refers to the system that was the *source* of the original job and not the name of the last system to forward the file. The second file *FWDFILE* (*/usr/lib/uucp/FWDFILE*) is a list of valid systems that a job can be *forwarded to* (it is not necessarily the name of the destination of a job, but merely the next valid node). This file will be a subset of the *L.sys* file and can be used to prevent forwarding to systems that are very expensive to reach, but to which access by local users is allowed (for example, links to overseas universities). If neither of these files exist, *uucp* will be perfectly happy to forward for any system. As an example, if the entry for system *australia* were in the *ORIGFILE* but not in the *FWDFILE* on system *xnode*, it would mean that system *australia* would be capable of forwarding jobs into the network via system *xnode* however, no systems in the network could forward a job to *australia* via system *xnode*.

5. Administration

The role of the *uucp* administrator depends heavily on the amount of traffic that enters or leaves a system and the quality of the connections that can be made to and from that system. For the average system, only a modest amount of traffic (100-200 files per day) pass through the system and little if any intervention with the *uucp* automatic cleanup functions is necessary. Systems that pass large numbers of files (200-10000) may require more attention when problems occur. The following sections describe the routine administrative tasks that must be performed by the administrator or are automatically performed by the *uucp* package. The section on problems describes what are the most frequent problems and how to effectively deal with them.

5.1 Cleanup

The biggest problem in a dialup network like *uucp* is dealing with the backlog of jobs that cannot be transmitted to other systems. The following cleanup activities should be routinely performed by shell scripts started from *cron(1)*.

5.1.1 Cleanup of Undeliverable Jobs The *uudemon.day* procedure usually contains an invocation of the *uuclean* command to purge any jobs that are older than some fixed time (usually 72 hours). A similar procedure is usually used to purge any *lock* or *status* files. An example invocation of *uuclean(1m)* to remove both job files and old status files every 48 hours is

```
usr/lib/uuclean -pST -pC -n48
```

5.1.2 Cleanup of the Public Area In order to keep the local filesystem from overflowing when files are sent to the public area, the *uudemon.day* procedure is usually set up with a *find* command to remove any files that are older than seven days. This interval may need to be shortened if there is not sufficient space to devote to the public area.

5.1.3 Compaction of Log Files The files *SYSLOG* and *LOGFILE* that contain logging information are compacted daily (using the *pack* command) and should be kept for one week before being overwritten.

5.2 Polling Other Systems

Systems that are passive members of the network must be polled by other systems in order for their files to be sent. This can be arranged by using the *uusub(1)* command as follows,

```
uusub -ccnode
```

which will call *cnode* when it is invoked.

5.3 Problems

The following sections list the most frequent problems that appear on systems that make heavy use of *uucp(1)*.

5.3.1 Out of Space The filesystem used to spool incoming or outgoing jobs can run out of space and prevent jobs from being spawned or much worse received from remote systems. The inability to receive jobs is the worse of the two conditions since when filespace does become available, the system will be flooded with the backlog of traffic.

5.3.2 Bad Acu's and Modems The automatic calling units and incoming modems occasionally cause problems that make it difficult to contact other systems or to receive files. These problems are usually readily identifiable since *LOGFILE* entries will usually point to the bad line. If a bad line is suspected, it is useful to use the *cu(1)* command to try calling another system using the suspected line.

5.3.3 Administrative problems Some *uucp* networks have so many members that it is difficult to keep track of changing passwords, changing phone numbers or changing logins on remote systems. This can be a very costly problem since acu's will be tied up calling a system that cannot be reached.

6. Debugging

In order to verify that a system on the network can be contacted, the *uucico* daemon can be invoked from a user's terminal directly. For example, to verify that *cnode* can be contacted, a job would be queued for that system as follows,

```
uucp -r file cnode!~hom
```

The *-r* option forces the job to be queued but does not invoke the daemon to process the job. The *uucico* command can then be invoked directly,

```
usr/lib/uucp/uucico -rl -x4 -scnode
```

The *-rl* option is necessary to indicate that the daemon is to start up in *master* mode (that is, it is the calling system). The *-x4* specifies the level of debugging that is to be printed. Higher levels of debugging can be printed (greater than 4) but requires familiarity with the internals of *uucico*. If several jobs are queued for the remote system, it is not possible to force *uucico* to send one particular job first. The contents of *LOGFILE* should also be monitored for any error indications that it posts. Frequently, problems can be isolated by examining the entries in *LOGFILE* associated with a particular system. The file *ERRLOG* also contains error indications.

7. Conclusion

This manual has emphasized the format of control files and some of the issues in setting up a *uucp* network.

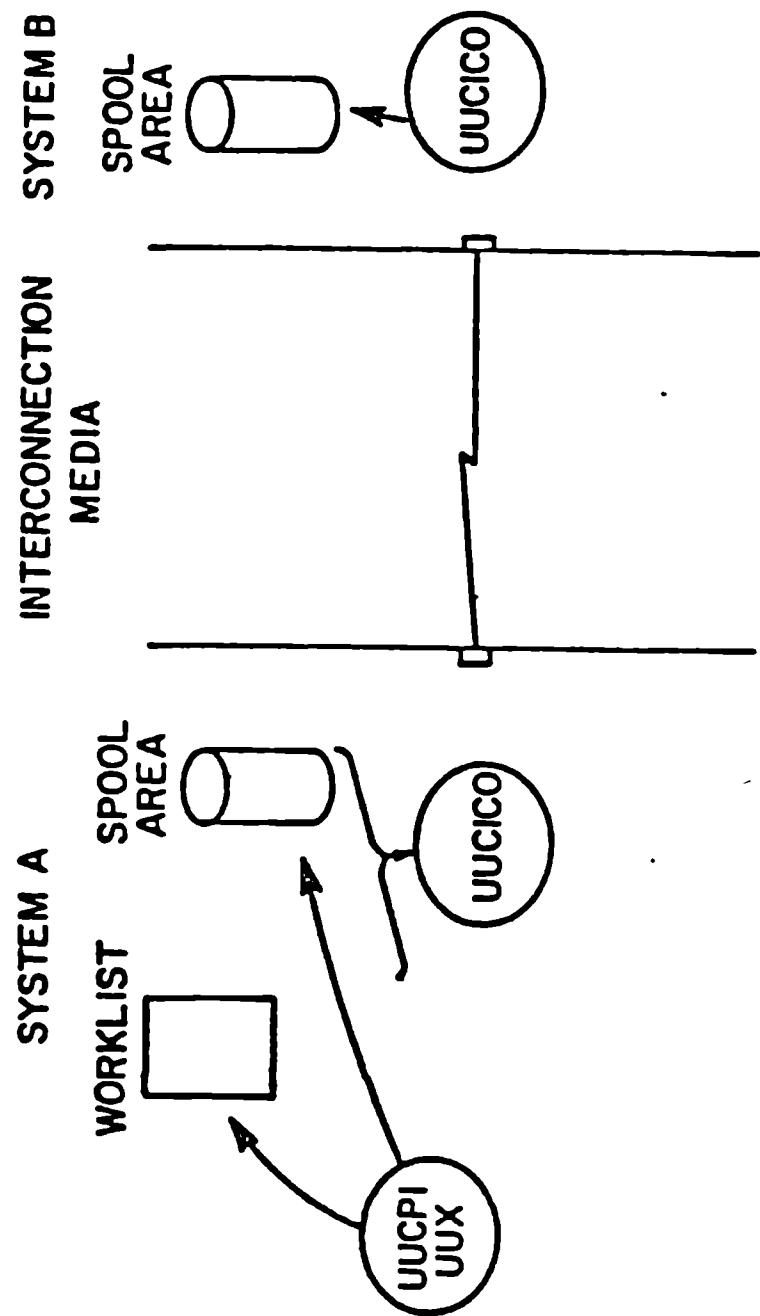
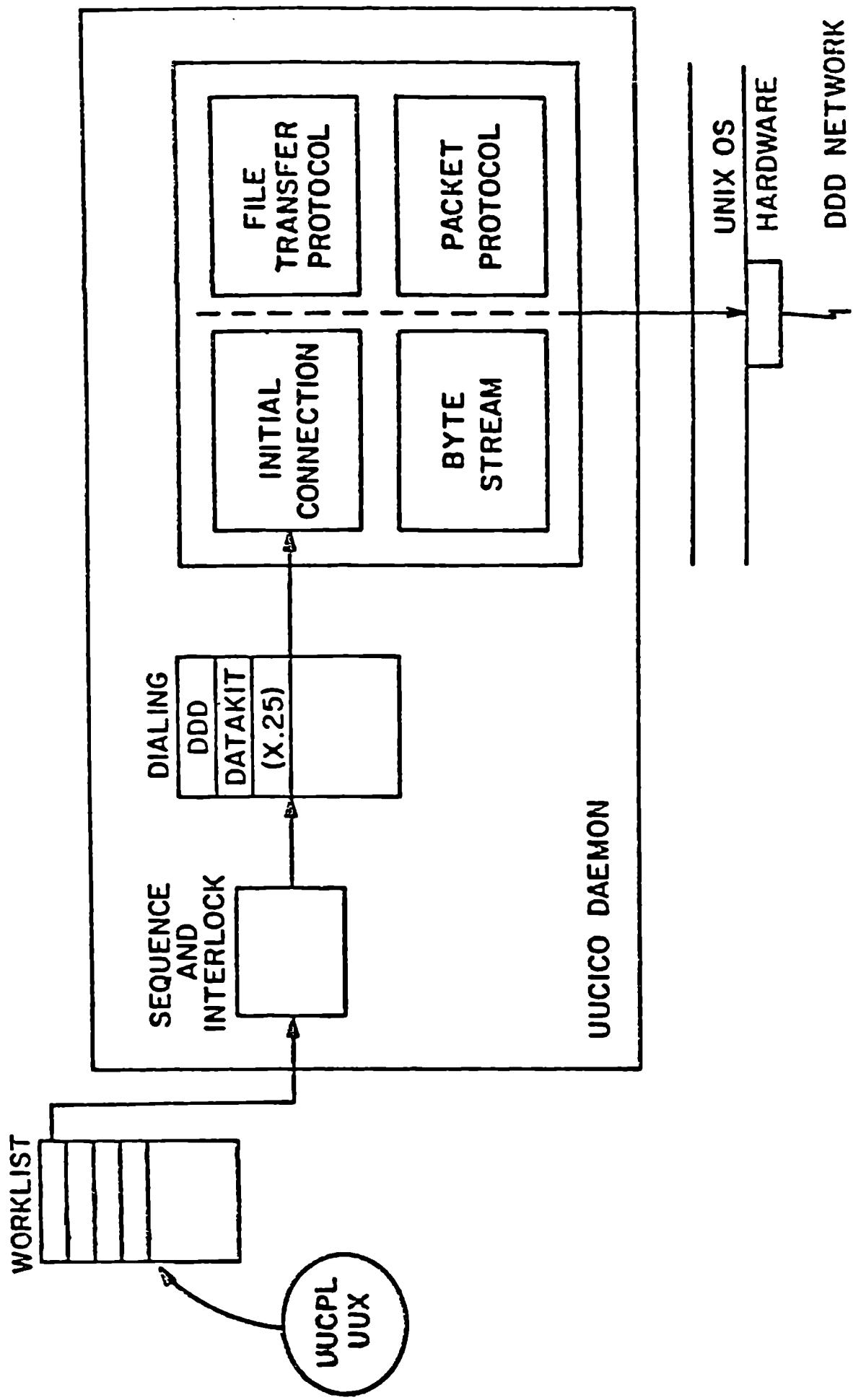



Figure 1 Uucp network daemons.

UNIX System Accounting

This document is part of the ADMINISTRATOR'S GUIDE. Therefore the pagenumbers don't begin with 1.

Trademarks:

MUNIX, CADMUS	for PCS
DEC, PDP	for DEC
UNIX	for Bell Laboratories

Copyright 1984 by
PCS GmbH, Pfälzer-Wald-Strasse 36, D-8000 München 90, tel. (089) 67804-0

The information contained herein is the property of PCS and shall neither be reproduced in whole or in part without PCS's prior written approval nor be implied to grant any license to make, use or sell equipment manufactured herewith.

PCS reserves the right to make changes without notice in the specifications and materials contained herein and shall not be responsible for any damages (including consequential) caused by reliance on the materials presented.

7. UNIX SYSTEM ACCOUNTING

The UNIX System Accounting provides methods to collect per-process resource utilization data, record connect sessions, monitor disk utilization, and charge fees to specific logins. A set of C language programs and shell procedures is provided to reduce this accounting data into summary files and reports. This section describes the structure, implementation, and management of this accounting system, as well as a discussion of the reports generated and the meaning of the columnar data.

GENERAL

The following list is a synopsis of the actions of the accounting system:

- At process termination, the UNIX system kernel writes one record per process in */usr/adm/pacct* in the form of *acct.h* (See Attachment 7.1 for a description of data files.)
- The *login* and *init* programs record connect sessions by writing records into */etc/wtmp*. Date changes, reboots, and shutdowns are also recorded in this file.
- The disk utilization program *acctdusg* breaks down disk usage by login.
- Fees for file restores, etc., can be charged to specific logins with the *chargefee* shell procedure.
- Each day the *runacct* shell procedure is executed via *cron* to reduce accounting data and produce summary files and reports. (See Attachment 7.2 for a sample report output.)
- The *monacct* procedure can be executed on a monthly or fiscal period basis. It saves and restarts summary files, generates a report, and cleans up the *sum* directory. These saved summary files could be used to charge users for UNIX system usage.

FILES AND DIRECTORIES

The */usr/lib/acct* directory contains all of the C language programs and shell procedures necessary to run the accounting system. The *adm* login (currently user ID of four) is used by the accounting system and has the directory structure shown in Fig. 7.1.

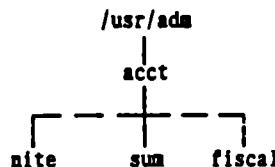


Fig. 7.1—Directory Structure of the "adm" Login

The */usr/adm* directory contains the active data collection files. (For a complete explanation of the files used by the accounting system, see Attachment 7.3.) The *nite* directory contains files that are reused daily by the *runacct* procedure. The *sum* directory contains the cumulative summary files updated by *runacct*. The *fiscal* directory contains periodic summary files created by *monacct*.

DAILY OPERATION

When the UNIX system is switched into multiuser mode, */usr/lib/acct/startup* is executed which does the following:

1. The *acctwtmp* program adds a "boot" record to */usr/adm/wtmp*. This record is signified by using the system name as the login name in the *wtmp* record.
2. Process accounting is started via *turnacct*. *Turnacct* on executes the *accton* program with the argument */usr/adm/pacct*.
3. The *remove* shell procedure is executed to clean up the saved *pacct* and *wtmp* files left in the *sum* directory by *runacct*.

The *ckpacct* procedure is run via *cron* every hour of the day to check the size of */usr/adm/pacct*. If the file grows past 1000 blocks (default), *turnacct* switch is executed. While *ckpacct* is not absolutely necessary, the advantage of having several smaller *pacct* files becomes apparent when trying to restart *runacct* after a failure processing these records.

The *chargefee* program can be used to bill users for file restores, etc. It adds records to */usr/adm/fee* which are picked up and processed by the next execution of *runacct* and merged into the total accounting records.

Runacct is executed via *cron* each night. It processes the active accounting files, */usr/adm/pacct*, */usr/adm/wtmp*, */usr/adm/acct/nite/disktacct*, and */usr/adm/fee*. It produces command summaries and usage summaries by login.

When the system is shut down using *shutdown*, the *shutacct* shell procedure is executed. It writes a shutdown reason record into */usr/adm/wtmp* and turns process accounting off.

After the first reboot each morning, the computer operator should execute */usr/lib/acct/prdaily* to print the previous day's accounting report.

SETTING UP THE ACCOUNTING SYSTEM

In order to automate the operation of this accounting system, several things need to be done:

1. If not already present, add this line to the */etc/rc* file in the state 2 section:

```
/bin/su - adm -c /usr/lib/acct/startup
```

2. If not already present, add this line to */etc/shutdown* to turn off the accounting before the system is brought down:

```
/usr/lib/acct/shutacct
```

3. For most installations, the following three entries should be made in */usr/lib/crontab* so that *cron* will automatically run the daily accounting.

```
" 0 4 * * 1-6 /bin/su -adm -c " /usr/lib/acct/runacct
2>   /usr/adm/acct/nite/fd2log "
0 2 * * 4 /usr/lib/acct/dodisk
5 * * * * /bin/su -adm -c " /usr/lib/acct/ckpacct "
```

Note that *dodisk* is invoked with superuser privileges of *root* so that directory searching is not road blocked.

4. To facilitate monthly merging of accounting data, the following entry in *crontab* will allow *monacct* to clean up all daily reports and daily total accounting files and deposit one monthly total report and one monthly total accounting file in the *fiscal* directory.

```
15 5 1 * * /bin/su -adm -c /usr/lib/acct/monacct
```

The above entry takes advantage of the default action of *monacct* that uses the current month's date as the suffix for the file names. Notice that the entry is executed at such a time as to allow *runacct* sufficient time to complete. This will, on the first day of each month, create monthly accounting files with the entire month's data.

5. The *PATH* shell variable should be set in */usr/adm/.profile* to:

```
PATH=/usr/lib/acct:/bin:/usr/bin
```

RUNACCT

Runacct is the main daily accounting shell procedure. It is normally initiated via **cron** during nonprime time hours. **Runacct** processes connect, fee, disk, and process accounting files. It also prepares daily and cumulative summary files for use by **prdaily** or for billing purposes. The following files produced by **runacct** are of particular interest:

<i>nite/lineuse</i>	Produced by <i>acctcon</i> , which reads the <i>wtmp</i> file, and produces usage statistics for each terminal line on the system. This report is especially useful for detecting bad lines. If the ratio between the number of logoffs to logins exceeds about 3/1, there is a good possibility that the line is failing.
<i>nite/dayacct</i>	This file is the total accounting file for the previous day in <i>tacct.h</i> format.
<i>sum/tacct</i>	This file is the accumulation of each day's <i>nite/dayacct</i> which can be used for billing purposes. It is restarted each month or fiscal period by the <i>monacct</i> procedure.
<i>sum/daycms</i>	Produced by the <i>acctcms</i> program, it contains the daily command summary. The ASCII version of this file is <i>nite/daycms</i> .
<i>sum/cms</i>	The accumulation of each day's command summaries. It is restarted by the execution of <i>monacct</i> . The ASCII version is <i>nite/cms</i> .
<i>sum/loginlog</i>	Produced by the <i>lastlogin</i> shell procedure, it maintains a record of the last time each login was used.
<i>sum/rprt.MMDD</i>	Each execution of runacct saves a copy of the output of prdaily .

Runacct takes care not to damage files in the event of errors. A series of protection mechanisms are used that attempt to recognize an error, provide intelligent diagnostics, and terminate processing in such a way that **runacct** can be restarted with minimal intervention. It records its progress by writing descriptive messages into the file *active*. (Files used by **runacct** are assumed to be in the *nite* directory unless otherwise noted.) All diagnostics output during the execution of **runacct** is written into *fd2log*. To prevent multiple invocations, in the event of two **crons** or other problems, **runacct** will complain if the files *lock* and *lock1* exist when invoked. The *lastdate* file contains the month and day **runacct** was last invoked and is used to prevent more than one execution per day. If **runacct** detects an error, a message is written to */dev/console*, mail is sent to *root* and *adm*, the locks are removed, diagnostic files are saved, and execution is terminated.

In order to allow **runacct** to be restartable, processing is broken down into separate reentrant states. This is accomplished by using a **case** statement inside an endless **while** loop. Each state is one case of the **case**

statement. A file is used to remember the last state completed. When each state completes, *statefile* is updated to reflect the next state. In the next loop through the **while**, *statefile* is read and the case falls through to the next state. When **runacct** reaches the **CLEANUP** state, it removes the locks and terminates. States are executed as follows:

SETUP	The command turnacct switch is executed. The process accounting files, <i>/usr/adm/pacct?</i> , are moved to <i>/usr/adm/Spacct?.MMDD</i> . The <i>/usr/adm/wtmp</i> file is moved to <i>/usr/adm/acct/nite/wtmp.MMDD</i> with the current time added on the end.
WTMPFIX	The <i>wtmp</i> file in the <i>nite</i> directory is checked for correctness by the wtmpfix program. Some date changes will cause acctcon1 to fail, so wtmpfix attempts to adjust the time stamps in the <i>wtmp</i> file if a date change record appears.
CONNECT1	Connect session records are written to <i>ctmp</i> in the form of <i>ctmp.h</i> . The <i>lineuse</i> file is created, and the <i>reboots</i> file is created showing all of the boot records found in the <i>wtmp</i> file.
CONNECT2	<i>Ctmp</i> is converted to <i>ctacct.MMDD</i> which are connect accounting records. (Accounting records are in <i>tacct.h</i> format.)
PROCESS	The acctprc1 and acctprc2 programs are used to convert the process accounting files, <i>/usr/adm/Spacct?.MMDD</i> , into total accounting records in <i>ptacct?.MMDD</i> . The <i>Spacct</i> and <i>ptacct</i> files are correlated by number so that if runacct fails, the unnecessary reprocessing of <i>Spacct</i> files will not occur. One precaution should be noted; when restarting runacct in this state, remove the last <i>ptacct</i> file because it will not be complete.
MERGE	Merge the process accounting records with the connect accounting records to form <i>daytacct</i> .
FEES	Merge in any ASCII <i>tacct</i> records from the file <i>fee</i> into <i>daytacct</i> .
DISK	On the day after the sdisk procedure runs, merge <i>disktacct</i> with <i>daytacct</i> .
MERGETACCT	Merge <i>daytacct</i> with <i>sum/tacct</i> , the cumulative total accounting file. Each day, <i>daytacct</i> is saved in <i>sum/tacctMMDD</i> , so that <i>sum/tacct</i> can be recreated in the event it becomes corrupted or lost.
CMS	Merge in today's command summary with the cumulative command summary file <i>sum/cms</i> . Produce ASCII and internal format command summary files.
USEREXIT	Any installation dependent (local) accounting programs can be included here.
CLEANUP	Clean up temporary files, run prdaily and save its output in <i>sum/rprtMMDD</i> , remove the locks, then exit.

RECOVERING FROM FAILURE

The **runacct** procedure can fail for a variety of reasons; usually due to a system crash, */usr* running out of space, or a corrupted *wtmp* file. If the *activeMMDD* file exists, check it first for error messages. If the *active* file and lock files exist, check *fd2log* for any mysterious messages. The following are error messages produced by **runacct**, and the recommended recovery actions:

ERROR: locks found, run aborted

The files *lock* and *lock1* were found. These files must be removed before **runacct** can restart.

ERROR: acctg already run for date: check /usr/adm/acct/nite/lastdate

The date in *lastdate* and today's date are the same. Remove *lastdate*.

ERROR: turnacct switch returned rc=?

Check the integrity of *turnacct* and *accton*. The *accton* program must be owned by *root* and have the *setuid* bit set.

ERROR: Spacct?.MMDD already exists

File setups probably already run. Check status of files, then run setups manually.

ERROR: /usr/adm/acct/nite/wtmp.MMDD already exists, run setup manually

Self-explanatory.

ERROR: wtmpfix errors see /usr/adm/acct/nite/wtmperror

Wtmpfix detected a corrupted *wtmp* file. Use *fwttmp* to correct the corrupted file.

ERROR: connect acctg failed: check /usr/adm/acct/nite/log

The *acctcon1* program encountered a bad *wtmp* file. Use *fwttmp* to correct the bad file.

ERROR: Invalid state, check /usr/adm/acct/nite/active

The file *statefile* is probably corrupted. Check *statefile* and read *active* before restarting.

RESTARTING RUNACCT

Runacct called without arguments assumes that this is the first invocation of the day. The argument *MMDD* is necessary if *runacct* is being restarted and specifies the month and day for which *runacct* will rerun the accounting. The entry point for processing is based on the contents of *statefile*. To override *statefile*, include the desired state on the command line. For example:

To start *runacct*:

```
nohup runacct 2> /usr/adm/acct/nite/fd2log&
```

To restart *runacct*:

```
nohup runacct 0601 2> /usr/adm/acct/nite/fd2log&
```

To restart *runacct* at a specific state:

```
nohup runacct 0601 WTMPFIX 2> /usr/adm/acct/nite/fd2log&
```

FIXING CORRUPTED FILES

Unfortunately, this accounting system is not entirely fool proof. Occasionally, a file will become corrupted or lost. Some of the files can simply be ignored or restored from the file save backup. However, certain files must be fixed in order to maintain the integrity of the accounting system.

A. Fixing Wtmp Errors

The *wtmp* files seem to cause the most problems in the day to day operation of the accounting system. When the date is changed and the UNIX system is in multiuser mode, a set of date change records is written into */usr/adm/wtmp*. The *wtmpfix* program is designed to adjust the time stamps in the *wtmp* records when a date change is encountered. Some combinations of date changes and reboots, however, will slip through *wtmpfix* and cause *acctcon1* to fail. The following steps show how to patch up a *wtmp* file.

```
cd /usr/adm/acct/nite
fwttmp < wtmp.MMDD > xwtmp
ed xwtmp
    delete corrupted records or
    delete all records from beginning up to the date change
fwttmp -ic < xwtmp > wtmp.MMDD
```

If the *wtmp* file is beyond repair, create a null *wtmp* file. This will prevent any charging of connect time. *Acctprcl* will not be able to determine which login owned a particular process, but it will be charged to the login that is first in the password file for that user id.

B. Fixing TACCT Errors

If the installation is using the accounting system to charge users for system resources, the integrity of *sum/tacct* is quite important. Occasionally, mysterious *tacct* records will appear with negative numbers, duplicate user IDs, or a user ID of 65,535. First check *sum/tacctprev* with *prtacct*. If it looks all right, the latest *sum/tacct.MMDD* should be patched up, then *sum/tacct* recreated. A simple patchup procedure would be:

```
cd /usr/adm/acct/sum
acctmerg -v < tacct.MMDD > xtacct
ed xtacct
    remove the bad records
    write duplicate uid records to another file
acctmerg -i < xtacct > tacct.MMDD
acctmerg tacctprev < tacct.MMDD > tacct
```

Remember that the *monacct* procedure removes all the *tacct.MMDD* files; therefore, *sum/tacct* can be recreated by merging these files together.

UPDATING PNPSPLIT

The *pnpsplit* subroutine is used by *acctcon1* and *acctprcl* to determine the difference between prime and nonprime time. Prime time is defaulted from 9:00 am to 5:00 pm, Monday through Friday. Nonprime time is considered to be all other hours and the entire day for those days listed in the *holidays* structure in *pnpsplit.c*. The holidays listed are accurate for Bell Laboratories New Jersey locations for the year the operating system was released. Every year on the day after Christmas (the last holiday of the calendar year), the following message will be printed on the system console terminal and appear in *log*.

*** RECOMPILE pnpsplit WITH NEW HOLIDAYS ***

This message will continue to be sent each time the accounting is run until *pnpsplit*, *acctcon1*, and *acctprcl* are recompiled. The following steps should be taken to successfully recompile these programs.

1. Edit *pnpsplit.c* to change the *thisyear* variable to the new year. Update the *holidays* structure to reflect the new holidays. The numeric entry in the structure is the day of the year, less one. For example, New Year's Day (January 1) is entered as 0. *Pnpsplit.c* is in */usr/src/cmd/acct/lib*.

2. Update the accounting library `a.a` and recompile `acctprcl`, and `acctconl` by:

superuser to root

`ARGS= "acctconl acctprcl" /usr/src:/mkcmd acct`

DAILY REPORTS

Runacct generates five basic reports upon each invocation. Samples of these reports are shown in Attachment 7.2. They cover the areas of connect accounting, usage by person on a daily basis, command usage reported by daily and monthly totals, and a report of the last time users were logged in.

The following paragraphs describe the reports and the meanings of their tabulated data.

A. Daily Report

In the first part of the report, the `from/to` banner should alert the administrator to the period reported on. The times are the time the last accounting report was generated until the time the current accounting report was generated. It is followed by a log of system reboots, shutdowns, power fail recoveries, and any other record dumped into `/usr/adm/wtmp` by the `acctwtmp` program [see `acct(1M)` in the UNIX System Administrator's Manual].

The second part of the report is a breakdown of line utilization. The **TOTAL DURATION** tells how long the system was in multiuser state (able to be accessed through the terminal lines). The columns are:

LINE	The terminal line or access port.
MINUTES	The total number of minutes that line was in use during the accounting period.
PERCENT	The total number of MINUTES the line was in use divided into the TOTAL DURATION.
# SESS	The number of times this port was accessed for a <code>login(1)</code> session.
# ON	This column does not have much meaning anymore. It used to give the number of times that the port was used to log a user on; but since <code>login(1)</code> can no longer be executed explicitly to log a new user in, this column should be identical with SESS.
# OFF	This column reflects not just the number of times a user logged off but also any interrupts that occur on that line. Generally, interrupts occur on a port when the <code>getty(8)</code> is first invoked when the system is brought to multiuser state. These interrupts occur at a rate of about two per event; therefore, it is not uncommon to see in excess of twice the amount of OFF than ON or SESS. Where this column does come into play is when the # OFF exceeds the # ON by a large factor. This usually indicates that the multiplexer, modem or cable is going bad, or there is a bad connection somewhere. The most common cause of this is an unconnected cable dangling from the multiplexer.

During real time, `/usr/adm/wtmp` should be monitored as this is the file that the connect accounting is geared from. If it grows rapidly, execute `acctconl` to see which tty line is the most noisy. If the interrupting is occurring at a furious rate, general system performance will be effected.

B. Daily Usage Report

This report gives a by-user breakdown of system resource utilization. Its data consists of:

UID	The user ID.
-----	--------------

LOGIN NAME	The login name of the user; there can be more than one login name for a single user ID, this identifies which one.
CPU (MINS)	This represents the amount of time the user's process used the central processing unit. This category is broken down into PRIME and NPRIME (nonprime) utilization. The accounting system's idea of this breakdown is located in the accounting library function <code>pnpssplit</code> where the <code>holidays</code> array, which also determines nonprime time, is also defined. As delivered, prime time is defined to be 0900-1700 hours. The <code>holidays</code> array is correct for Bell Laboratories New Jersey locations for the year of the release.
KCORE-MINS	This represents a cumulative measure of the amount of memory a process uses while running. The amount shown reflects kilobyte segments of memory used per minute. This measurement is also broken down into PRIME and NPRIME amounts.
CONNECT (MINS)	This identifies "Real Time" used. What this column really identifies is the amount of time that a user was logged into the system. If this time is rather high and the later column called # OF PROCS is low, this user is what is called a "line hog". That is, this person logs in first thing in the morning and does not hardly touch the terminal the rest of the day. Watch out for these kind of users. This column is also subdivided into PRIME and NPRIME utilization.
DISK BLOCKS	When the disk accounting programs have been run, their output is merged into the total accounting record (<code>tacct.h</code>) and shows up in this column. This disk accounting is accomplished by the program <code>acctdusg</code> .
# OF PROCS	This column reflects the number of processes that was invoked by the user. This is a good column to watch for large numbers indicating that a user may have a shell procedure that runs amock. The most common example of this is for a <code>crontab</code> entry to try to execute a user's <code>.profile</code> via <code>su</code> - that unfortunately prompts for a terminal type and sits in an endless loop trying to read from the terminal (there is not one when <code>cron</code> is executing a process). Preventive coding is encouraged in the <code>.profile</code> .
# OF SESS	This is how many times the user logged onto the system.
# DISK SAMPLES	This indicates how many times the disk accounting was run to obtain the average number of DISK BLOCKS listed earlier.
FEE	An often unused field in the total accounting record, the FEE represents the total accumulation of widgets charged against the user by the <code>chargefee</code> shell procedure [see <code>acctsh(1M)</code>]. The <code>chargefee</code> procedure is used to levy charges against a user for special services performed such as file restores, tape manipulation by operators, etc.

C. Daily Command and Monthly Total Command Summaries

These two reports are virtually the same except that the Daily Command Summary only reports on the current accounting period while the Monthly Total Command Summary tells the story for the start of the fiscal period to the current date. In other words, the monthly report reflects the data accumulated since the last invocation of `monacct`.

The data included in these reports gives an administrator an idea as to the heaviest used commands; and based on those commands' characteristics of system resource utilization, a hint as to what to weigh more heavily when system tuning.

These reports are sorted by TOTAL KCOREMIN which is an arbitrary yardstick, but often a good one for calculating "drain" on a system.

COMMAND NAME This is the name of the command. Unfortunately, all shell procedures are lumped together under the name `sh` since only object modules are reported by the process accounting system. The administrator should monitor the frequency of programs called `a.out` or `core` or any other name that does not seem quite right. Often people like to work on their favorite version of backgammon only they do not want everyone to know about it. `Acctcom` is also a good tool to use for determining who executed a suspiciously named command and also if superuser privileges were used.

NUMBER CMDS This is the total number of invocations of this particular command.

TOTAL KCOREMIN The total cumulative measurement of the amount of kilobyte segments of memory used by a process per minute of run time.

TOTAL CPU-MIN The total processing time this program has accumulated.

TOTAL REAL-MIN The total real-time (wall-clock) minutes this program has accumulated. This total is the actual "waited for" time as opposed to kicking off a process in the background.

MEAN SIZE-K This is the mean of the TOTAL KCOREMIN over the number of invocations reflected by NUMBER CMDS.

MEAN CPU-MIN This is the mean derived between the NUMBER CMDS and TOTAL CPU-MIN.

HOG FACTOR This is a relative measurement of the ratio of system availability to system utilization. It is computed by the formula

$$(\text{total CPU time}) / (\text{elapsed time})$$

This gives a relative measure of the total available CPU time consumed by the process during its execution.

CHARS TRNSFD This column, which may go negative, is a total count of the number of characters pushed around by the `read(2)` and `write(2)` system calls.

BLOCKS READ A total count of the physical block reads and writes that a process performed.

D. Last Login

This report simply gives the date when a particular login was last used. This could be a good source for finding likely candidates for the tape archives or getting rid of unused logins and login directories.

SUMMARY

The UNIX System Accounting was designed from a UNIX system administrator's point of view. Every possible precaution has been taken to ensure that the system will run smoothly and without error. It is important to become familiar with the C programs and shell procedures. The manual pages should be studied, and it is advisable to keep a printed copy of the shell procedures handy. The accounting system should be easy to maintain, provide valuable information for the administrator, and provide accurate breakdowns of the usage of system resources for charging purposes.

ATTACHMENT 7.1

Format of wtmp files (utmp.h):

```
/*
 * W%
 */
/* <sys/types.h> must be included. */

#define UTMP_FILE      "/etc/utmp"
#define WTMP_FILE      "/etc/wtmp"
#define ut_name ut_user

struct utmp
{
    char ut_user[8] ;           /* User login name */
    char ut_id[4] ;           /* /etc/lines id(usually line #) */
    char ut_line[12] ;         /* device name (console, lnx) */
    short ut_pid ;            /* process id */
    short ut_type ;           /* type of entry */

    struct exit_status
    {
        short e_termination ; /* Process termination status */
        short e_exit ;        /* Process exit status */
    }
    ut_exit ;                 /* The exit status of a process
                                * marked as DEAD_PROCESS.
                                */
    /*,
     * time_t ut_time ;        /* time entry was made */

};

/* Definitions for ut_type */

#define EMPTY          0
#define RUN_LVL        1
#define BOOT_TIME      2
#define OLD_TIME        3
#define NEW_TIME        4
#define INIT_PROCESS    5      /* Process spawned by "init" */
#define LOGIN_PROCESS   6      /* A "getty" process waiting for login */
#define USER_PROCESS    7      /* A user process */
#define DEAD_PROCESS    8
#define ACCOUNTING     9

#define UTMAXTYPE      ACCOUNTING /* Largest legal value of ut_type */

/*
 * Special strings or formats used in the "ut_line" field when
 * accounting for something other than a process.
 */
/*
 * No string for the ut_line field can be more than 11 chars +
 */
/*
 * a NULL in length.
 */

#define RUNLVL_MSG      "run-level %c".
#define BOOT_MSG        "system boot"
#define OTIME_MSG       "old time"
#define NTIME_MSG       "new time"
```

ATTACHMENT 7.1 (Contd)

Definitions (acctdef.h):

```

/*      % W% of % G%      */
/*
*      defines, typedefs, etc. used by acct programs
*/

/*
*      acct only typedefs
*/
typedef unsigned short uid_t;

#ifndef u3b
#define HZ      100
#else
#define HZ      60
#endif

#define LSZ      12      /* sizeof line name */
#define NSZ      8       /* sizeof login name */
#define P        0       /* prime time */
#define NP      -1      /* nonprime time */

/*
*      limits which may have to be increased if systems get larger
*/
#define SSIZE    1000.    /* max number of sessions in 1 acct run */
#define TSIZE    100.     /* max number of line names in 1 acct run */
#define USIZE    500.     /* max number of distinct login names in 1 acct run */

#define EQN(s1, s2)      (strcmp(s1, s2, sizeof(s1)) == 0)
#define CPYN(s1, s2)     strncpy(s1, s2, sizeof(s1))

#define SECSINDAY      86400L
#define SECS(tics)      ((double) tics)/HZ
#define MINS(secs)      ((double) secs)/60
#define MINT(tics)      ((double) tics)/(60*HZ)

#ifndef pdp11
#define KCORE(clicks)  ((double) clicks/16)
#endif
#ifndef vax
#define KCORE(clicks)  ((double) clicks/2)
#endif
#ifndef u3b
#define KCORE(clicks)  ((double) clicks*2)
#endif

```

ATTACHMENT 7.1 (Contd)

Format of **acct** files (acct.h):

```
/*
 * Accounting structures
 */

typedef ushort comp_t;           /* "floating point" */
                           /* 13-bit fraction, 3-bit exponent */

struct acct

    char ac_flag;           /*Accounting flag */
    char ac_stat;           /*Exit status */
    ushort ac_uid;          /*Accounting user ID */
    ushort ac_gid;          /*Accounting group ID */
    dev_t ac_tty;           /*control typewriter */
    time_t ac_btime;        /*Beginning time */
    comp_t ac_utime;        /*acctng user time in clock ticks */
    comp_t ac_stime;        /*acctng system time in clock ticks */
    comp_t ac_etime;        /*acctng elapsed time in clock ticks */
    comp_t ac_mem;          /*memory usage */
    comp_t ac_io;           /*chars transferred */
    comp_t ac_rw;           /*blocks read or written */
    char ac_comm[8];         /*command name */

;

extern struct acct acctbuf;
extern struct inode *acctp; /*inode of accounting file */

#define AFORK 01 /*has executed fork, but no exec */
#define ASU 02 /*used superuser privileges */
#define ACCTF 0300 /*record type: 00 = acct */

```

Format of **tacct** files (tacct.h):

```
/*
 *      total accounting (for acct period), also for day
 */

struct taacct
    uid_t      ta_uid;      /*userid */
    char       ta_name[8];  /*login name */
    float     ta_cpu[2];   /*cum. cpu time, p/np (mins) */
    float     ta_kcore[2]; /*cum kcore-minutes, p/np */
    float     ta_con[2];   /*cum. connect time, p/np, mins */
    float     ta_du;        /*cum. disk usage */
    long      ta_pc;       /*count of processes */
    unsigned short ta_sc;  /*count of login sessions */
    unsigned short ta_dc;  /*count of disk samples */
    unsigned short ta_fee; /*fee for special services */

;
```

ATTACHMENT 7.1 (Contd)

Format of ctmp file (ctmp.h):

```
/*
 *      connect time record (various intermediate files)
 */
struct ctmp
    dev_t  ct_tty;      /*major minor */
    uid_t  ct_uid;      /*userid */
    char   ct_name[8];  /*login name */
    long   ct_con[2];   /*connect time (p/np) secs */
    time_t ct_start;   /*session start time */
;
```

ATTACHMENT 7.2

Jun 8 04:14 1979 DAILY REPORT FOR pws Page 1

from Thu Jun 7 06:00:45 1979

to Fri Jun 8 04:00:28 1979

2 shutdown

2 pws

TOTAL DURATION IS 1320 MINUTES

LINE	MINUTES	PERCENT	# SESS	# ON	# OFF
tty04	479	36	9	9	30
tty47	341	26	4	4	22
tty44	298	22	3	3	22
tty46	336	25	9	9	33
console	1100	83	14	14	21
tty05	448	34	3	3	22
tty06	439	32	9	9	31
tty07	421	32	6	6	24
tty42	53	4	5	5	20
tty09	385	29	11	11	33
tty10	336	25	10	10	31
tty08	664	50	2	2	19
tty26	544	41	6	6	24
tty12	252	19	5	5	25
tty13	258	20	3	3	21
tty14	156	12	6	6	26
tty17	145	11	1	1	16
tty18	39	3	8	5	24
tty15	228	17	5	5	25
tty25	704	53	6	6	25
tty21	0	0	0	0	16
tty19	10	1	1	1	17
tty20	25	2	2	2	18
tty22	0	0	0	0	15
tty23	0	0	0	0	15
tty24	0	0	0	0	16
tty27	451	36	3	3	20
tty28	426	32	5	5	24
tty29	302	23	6	6	25
tty30	257	20	11	11	23
tty40	380	29	5	5	21
tty41	343	26	3	3	21
tty45	0	0	0	0	15
tty11	365	28	7	7	23
tty43	3	0	1	1	17
tty16	213	16	8	8	20
tty31	250	19	4	4	18
tty02	62	5	1	1	3
TOTALS	10544	-	174	174	846

ATTACHMENT 7.2 (Contd)

Jun 8 04:14 1979 DAILY USAGE REPORT FOR pwbs Page 1

UID	LOGIN	CPU (MINS)		KCORE-MINS		CONNECT (MINS)		DISK	# OF	# OF	# DISK	PER
		PRIME	NPRIME	PRIME	NPRIME	PRIME	NPRIME	BLOCKS	PROCS	SESS	SAMPLES	
0	TOTAL	388	163	12414	2934	9251	1056	0	16164	174	0	0
0	root	47	41	1003	924	67	30	0	2380	3	0	0
4	adm	27	19	48	652	0	0	0	842	0	0	0
19	games	0	0	4	0	0	0	0	22	0	0	0
22	mbb	0	0	1	1	1	1	0	14	2	0	0
37	abe	0	0	4	0	0	0	0	3	0	0	0
37	abejrk	14	0	284	0	423	0	0	1588	4	0	0
68	rje	3	3	24	21	0	0	0	179	9	0	0
71	?	0	0	0	0	0	0	0	12	0	0	0
150	jac	7	0	156	5	251	2	0	510	12	0	0
173	?	0	0	0	0	0	0	0	16	4	0	0
180	?	0	0	0	0	0	0	0	4	0	0	0
185	?	0	0	0	0	0	0	0	2	0	0	0
217	denise	0	0	2	0	0	0	0	32	3	0	0
217	hof	0	0	2	0	0	0	0	7	1	0	0
219	?	0	0	0	0	0	0	0	12	0	0	0
1001	ham	5	0	159	0	179	0	0	92	2	0	0
2001	sysstat	0	1	5	25	476	64	0	99	5	0	0
2002	mfp	1	0	7	5	270	62	0	93	3	0	0
2003	als	1	0	23	0	100	0	0	21	1	0	0
2005	eric	0	0	3	0	13	0	0	1	0	0	0
2006	boot	0	0	2	0	16	0	0	0	0	0	0
2009	agp	47	0	2040	0	444	0	0	62	2	0	0
2009	farepl	2	0	60	0	36	0	0	95	1	0	0
2011	pdw	0	0	1	0	4	0	0	11	1	0	0
2012	pwbs	0	0	1	0	28	0	0	9	1	0	0
2014	cath	0	0	1	0	1	0	0	7	1	0	0
2022	rem	32	1	1227	91	576	4	0	228	3	0	0
2023	fd	55	2	2176	862	336	36	0	750	7	0	0
2027	krb	14	2	365	81	547	24	0	372	6	0	0
2028	text	0	0	1	0	3	0	0	13	1	0	0
2030	arif	8	0	258	0	317	0	0	215	3	0	0
2031	dp	12	0	480	3	459	6	0	220	6	0	0
2032	graf	2	0	49	0	23	0	0	118	1	0	0
2033	tcp	3	0	74	0	335	0	0	115	4	0	0
2040	leap	15	0	308	0	513	1	0	508	2	0	0
2041	dan	3	0	33	3	149	2	0	117	3	0	0
2051	ds52	2	2	19	50	275	60	0	611	3	0	0
2055	swcpc	0	0	15	0	17	1	0	10	3	0	0
2057	sch	1	0	28	0	63	0	0	63	2	0	0
2061	jew	4	2	99	70	37	34	0	86	4	0	0
2064	mlr	18	0	443	0	176	0	0	285	3	0	0
2065	rrr	0	0	6	0	7	0	0	1	0	0	0
2068	irc	0	0	7	0	10	0	0	29	1	0	0
2075	herb	29	0	1178	1	384	2	0	223	5	0	0
2096	paul	1	0	14	0	152	0	0	13	1	0	0
2097	pris	0	0	0	10	0	2	0	1	0	0	0
2111	prvcs	2	3	60	25	64	96	0	185	4	0	0
2116	rbj	1	0	16	0	408	0	0	50	2	0	0
2121	teach	0	0	3	0	53	0	0	24	1	0	0
2123	mbb	0	0	3	0	5	0	0	280	3	0	0
2124	rat	2	0	42	0	66	0	0	17	1	0	0
2125	dal	0	0	5	0	121	0	0	602	10	0	0
2127	m2	15	0	496	11	390	2	0				

Jun 8 04:14 1979 DAILY USAGE REPORT FOR pwbs Page 2

2128	jel	14	0	492	9	422	14	0	523	8	0	0
2130	sl	0	0	5	1	16	0	0	42	2	0	0
2130	s3	0	0	0	0	0	2	0	9	1	0	0
2135	jfa	0	1	0	12	0	11	0	33	2	0	0
2136	m2class	0	0	5	0	2	0	0	18	1	0	0
2140	star	4	0	213	12	90	3	0	170	7	0	0
2141	reg	5	0	245	25	470	4	0	181	1	0	0
2199	llc	0	0	1	0	10	0	0	7	1	0	0
2999	stock	0	0	1	0	1	0	0	17	1	0	0
3001	whm	5	0	93	0	253	0	0	414	3	0	0
3332	vjf	0	0	4	0	8	0	0	39	1	0	0

ATTACHMENT 7.2 (Contd)

Jun 8 04:07 1979 DAILY COMMAND SUMMARY Page 1

COMMAND NAME	NUMBER CMDS	TOTAL KCOREMIN	TOTAL CPU-MIN	TOTAL REAL-MIN	MEAN SIZE-K	MEAN CPU-MIN	HOG FACTOR	CHARS TRNSFD	BLOCKS READ
TOTALS	16164	1532.89	490.72	37483.98	21.25	.003	.01	322163344	1097670
aroff	119	2808.68	93.21	569.83	42.47	0.78	0.16	67070052	130284
troff	26	2453.38	81.63	342.70	48.10	1.99	0.15	37863304	48939
xaroff	20	732.03	16.74	111.05	43.73	0.84	0.15	13885248	22659
a.out	31	623.53	10.52	142.77	59.26	0.34	0.07	382435	2758
egrep	185	874.83	13.96	34.83	41.18	0.08	0.40	170625	8249
m2fins	222	555.79	9.93	155.11	55.96	0.04	0.06	6155937	30994
c1	150	819.04	11.57	48.89	38.25	0.09	0.28	4287724	16032
c0	165	413.10	9.19	35.16	44.93	0.06	0.26	3327309	12170
m2edit	33	340.92	4.63	148.27	72.62	0.14	0.03	1074914	14492
ld	87	217.38	7.94	38.48	39.97	0.09	0.21	17610806	45797
acctcmds	17	294.75	6.49	14.15	45.41	0.38	0.46	2325427	5515
c2	112	239.69	9.13	34.61	31.72	0.08	0.26	3667050	9681
sh	1534	276.98	26.77	2044.24	10.35	0.01	0.00	3496613	71979
ed	524	253.13	14.46	2029.89	17.50	0.03	0.01	18058108	56039
acctprcl	3	231.28	6.67	19.45	34.67	2.22	0.34	2577344	2926
du	145	219.35	19.91	39.08	11.02	0.14	0.51	716389	23695
diff	49	175.53	6.04	25.78	29.05	0.12	0.23	3740887	11351
get	151	152.96	4.28	25.23	35.74	0.03	0.17	3634042	24917
adb	22	148.10	4.07	22.35	26.37	0.19	0.02	2313718	9813
tbl	24	143.43	2.44	21.65	58.71	0.10	0.01	1536210	3433
dd	9	139.34	10.15	81.05	13.72	1.13	0.20	26006848	294
as2	155	122.33	9.82	42.25	12.17	0.06	0.23	10500835	30165
sed	597	115.46	4.19	36.23	27.57	0.01	0.12	783825	24497
ps	81	109.89	8.92	41.85	18.54	0.12	0.14	2278056	8310
make	89	102.94	2.97	203.32	35.81	0.03	0.01	1018461	8664
delta	25	90.23	2.27	17.80	39.70	0.09	0.13	2909289	8321
cpp	172	89.37	2.09	11.82	53.19	0.02	0.24	3519054	12155
fsck	16	86.94	1.80	10.57	66.85	0.06	0.12	27671849	2927
find	32	85.64	8.05	63.87	17.15	0.10	0.08	565125	11161
ls	706	82.47	5.78	62.85	14.28	0.01	0.09	1811882	29659
xck	2	72.44	10.43	47.89	7.57	5.25	0.22	198016	21935
awk	22	70.83	1.37	5.34	57.72	0.06	0.26	355466	3769
uucico	60	75.55	1.42	62.50	53.27	0.02	0.00	3906933	6377
acctcom	9	73.21	2.81	11.49	26.75	0.31	0.24	1223776	8771
echo	2614	66.10	7.08	91.80	9.33	0.00	0.08	168631	24253
ged	3	57.27	0.82	7.81	70.16	0.27	0.11	51832	426
de	284	56.92	2.42	9.43	23.48	0.01	0.26	14283	20329
450	7	45.03	6.80	84.45	7.06	0.97	0.08	279451	1700
cat	749	45.49	8.89	478.54	8.00	0.01	0.01	8859500	27903
std	6	41.52	1.55	7.55	26.87	0.26	0.20	59838	478
mail	212	39.95	2.05	532.98	19.53	0.01	0.00	427217	14377
acctprc2	3	38.35	1.43	19.45	27.24	0.48	0.07	587336	87
sort	94	38.72	1.09	9.73	35.41	0.01	0.11	275876	4433
pr	104	34.89	2.47	214.50	14.10	0.02	0.01	1060989	6572
haspmain	7	33.20	5.28	1244.54	6.29	0.75	0.00	63064	86635
ex	17	31.69	0.62	41.04	50.97	0.04	0.02	514624	3593
grep	213	29.73	2.96	21.01	8.64	0.01	0.14	2100229	14297

ATTACHMENT 7.2 (Contd)

JUN 8 04:07 1979 MONTHLY TOTAL SUMMARY Page 1

COMMAND NAME	NUMBER CMDS	TOTAL KCOREMIN	TOTAL CPU-MIN	TOTAL REAL-MIN	MEAN SIZE-K	MEAN CPU-MIN	HOG FACTOR	CHARS TRNSFD	BLOCKS READ
TOTALS	553286	297698.78	10916.09	742924.94	27.27	0.02	0.01	620472546	26253312
aroff	1687	44681.55	995.92	5737.25	44.86	0.59	0.17	613403153	1089180
troff	1351	25892.15	583.69	4354.05	44.02	0.43	0.13	413163389	646243
spellpro	6466	17298.41	294.16	1893.79	58.81	0.05	0.16	234572640	853901
m2edit	654	13526.69	164.62	4238.58	82.17	0.25	0.04	34940426	427924
xaroff	397	10408.44	203.72	1496.32	81.09	0.51	0.14	215221419	301967
sort	7863	9292.34	226.01	2298.05	41.11	0.03	0.10	80108304	355963
cl	6139	8949.86	238.45	861.09	37.85	0.04	0.27	79897995	489661
ld	3244	6852.96	221.19	1128.09	39.87	0.07	0.20	483701995	1278119
sed	53134	8128.71	313.85	2241.78	25.89	0.01	0.14	23015033	1692990
m2find	2962	7964.45	140.18	1698.25	56.96	0.05	0.08	111330040	449604
c0	6586	7865.42	185.16	725.47	42.49	0.03	0.26	725956555	389426
ed	20053	7822.78	425.90	41898.18	18.37	0.02	0.01	483124634	1541326
tbl	660	7766.69	113.95	2458.55	68.16	0.17	0.05	50760094	33587
sh	40476	7499.67	635.00	382786.53	11.81	0.02	0.00	70325236	1421194
du	1941	6730.54	853.04	1128.44	12.17	0.28	0.49	20848359	623324
a.out	1483	5638.46	126.87	1668.87	44.60	0.09	0.07	16158675	80260
egrep	4801	5573.51	139.86	480.25	39.85	0.03	0.30	6823696	237298
liatl	783	5325.66	71.23	425.57	74.76	0.09	0.17	9659001	131592
cat	21170	4657.53	298.59	4354.24	19.63	0.01	0.05	239180412	1023965
acctprel	42	3837.84	110.88	391.34	34.61	2.64	0.38	43954136	61123
c2	4067	3807.25	144.86	477.23	26.28	0.04	0.30	57519376	213521
grep	21212	3204.86	300.44	3271.87	10.67	0.01	0.11	133340583	899415
cpp	7469	3060.72	94.12	647.79	32.52	0.01	0.15	91471956	459882
getty	35556	2948.71	853.33	101107.45	3.45	0.02	0.01	34704751	263866
m2editD	53	2707.27	25.79	361.84	54.02	0.35	0.08	28522202	33949
ac2	6454	2598.74	218.96	910.59	12.33	0.03	0.24	213336016	705690
make	1858	2449.10	64.69	4388.96	37.86	0.03	0.01	24116259	175544
ps	1034	2384.14	128.29	1207.87	18.58	0.12	0.11	54873792	204172
acctms	294	2228.38	81.99	116.06	44.01	0.18	0.45	36124940	80523
uucico	815	2225.75	40.42	11729.01	55.08	0.06	0.00	11086105	162558
ls	18876	2170.01	152.76	1538.09	14.20	0.01	0.10	32418106	691028
find	1705	2114.18	114.35	920.75	18.49	0.07	0.12	94631199	388600
ged	72	2028.43	28.54	307.21	71.01	0.40	0.09	1648636	10374
echo	84710	2018.23	190.14	1138.49	10.61	0.00	0.17	2928992	649200
cpio	127	1956.60	77.03	391.45	25.40	0.61	0.20	190822346	296302
mane	8	1620.42	44.89	122.25	36.17	5.60	0.35	120399	212
mail	4735	1474.38	78.92	14252.62	19.17	0.02	0.01	25719618	463748
get	1065	1358.03	37.59	234.97	36.13	0.08	0.16	31540008	178623
acctcom	165	1253.99	47.05	339.34	28.64	0.29	0.14	57405662	68949
rscc	58	1187.17	18.35	36.90	77.51	0.28	0.42	4096070	12093
col	638	1064.40	49.01	2199.00	21.72	0.08	0.02	23333395	16903
line	27184	1058.03	83.14	1941.33	11.12	0.00	0.05	925447	296142
aroff1.2	29	908.53	17.71	56.97	51.58	0.61	0.31	11459920	18802
delta	254	904.54	23.07	254.06	39.21	0.09	0.09	24219141	87164
td	175	898.19	25.74	159.73	34.43	0.15	0.16	1990177	15792
ar	1434	872.55	61.87	309.07	14.11	0.04	0.20	189858731	428871
m2findD	144	864.29	12.54	344.13	68.94	0.09	0.04	1184947	25576
rm	15319	857.97	85.65	754.20	10.02	0.01	0.11	453479	433903
acctdung	1	819.77	39.30	170.10	20.86	39.30	0.23	1812480	39744
77pass1	155	779.13	7.97	29.09	97.70	0.05	0.27	990027	34702
diff	788	767.31	32.77	280.27	23.41	0.04	0.13	22940094	97214

ATTACHMENT 7.2 (Contd)

Jun 8 04:07 1979 LAST LOGIN Page 1

00-00-00	di	00-00-00	rudd	79-06-08	adm
00-00-00	ahadim	00-00-00	s10	79-06-08	agp
00-00-00	ahafir	00-00-00	s2	79-06-08	ais
00-00-00	ahocas	00-00-00	s4	79-06-08	arf
00-00-00	ahajcw	00-00-00	s5	79-06-08	exth
00-00-00	ahapycg	00-00-00	s6	79-06-08	dal
00-00-00	ahetben	00-00-00	s8	79-06-08	dan
00-00-00	adm84	00-00-00	s9	79-06-08	denise
00-00-00	apb	00-00-00	acbea	79-06-08	dp
00-00-00	archive	00-00-00	ajm	79-06-08	ds2
00-00-00	asc	00-00-00	arb	79-06-08	ech
00-00-00	bedt	00-00-00	sys	79-06-08	ecp
00-00-00	btb	00-00-00	tgp	79-06-08	eric
00-00-00	bvi	00-00-00	tid	79-06-08	fld
00-00-00	bwt	00-00-00	umc	79-06-08	farepl
00-00-00	chicken	00-00-00	uscpa	79-06-08	games
00-00-00	class	00-00-00	uvac	79-06-08	graf
00-00-00	cleary	00-00-00	vav	79-06-08	herb
00-00-00	ca	00-00-00	wdr	79-06-08	hoot
00-00-00	chs	00-00-00	willia	79-06-08	ham
00-00-00	deby	00-00-00	zoooms	79-06-08	jac
00-00-00	dec	79-06-04	dws	79-06-08	jew
00-00-00	demo	79-06-04	cwb	79-06-08	jet
00-00-00	dit	79-06-04	kas	79-06-08	jfn
00-00-00	dmar	79-06-04	satz	79-06-08	kof
00-00-00	docs	79-06-04	swcp	79-06-08	krb
00-00-00	deg	79-06-05	bcm	79-06-08	leap
00-00-00	ellie	79-06-05	lprem	79-06-08	lk
00-00-00	firep2	79-06-05	s7	79-06-08	m2
00-00-00	gas	79-06-05	soes	79-06-08	m2class
00-00-00	graphics	79-06-05	coev	79-06-08	mfp
00-00-00	hig	79-06-05	ckt	79-06-08	mhb
00-00-00	hbb	79-06-06	dmt	79-06-08	mjr
00-00-00	inst	79-06-06	emp	79-06-08	msb
00-00-00	jfn	79-06-06	pub	79-06-08	swcp
00-00-00	jrk	79-06-06	sync	79-06-08	psal
00-00-00	ken	79-06-06	tad	79-06-08	pdw
00-00-00	ko	79-06-07	ams	79-06-08	pris
00-00-00	learn	79-06-07	bin	79-06-08	pwbs
00-00-00	lppdw	79-06-07	ddg	79-06-08	pwbat
00-00-00	lrbb	79-06-07	haight	79-06-08	rbi
00-00-00	maj	79-06-07	haap	79-06-08	reg
00-00-00	mar	79-06-07	jgw	79-06-08	rem
00-00-00	maash	79-06-07	leb	79-06-08	rje
00-00-00	meq	79-06-07	ljk	79-06-08	rst
00-00-00	misf	79-06-07	mcnp	79-06-08	root
00-00-00	mkc	79-06-07	nhg	79-06-08	rrr
00-00-00	mntr	79-06-07	aws	79-06-08	sl
00-00-00	mpf	79-06-07	qtroff	79-06-08	s3
00-00-00	plan	79-06-07	tbm	79-06-08	star
00-00-00	plaus	79-06-07	train	79-06-08	stock
00-00-00	pvg	79-06-07	whr	79-06-08	systat
00-00-00	rakeah	79-06-07	www	79-06-08	teach
00-00-00	rfg	79-06-08	?	79-06-08	text
00-00-00	rik	79-06-08	abs	79-06-08	trc
00-00-00	rrc	79-06-08	ahajcw	79-06-08	vjf
				79-06-08	whm

ATTACHMENT 7.3

Files in the /usr/adm directory:

diskdiag	diagnostic output during the execution of disk accounting programs
dtmp	output from the acctdusg program
fee	output from the chargefee program, ASCII tacct records
pacct	active process accounting file
pacct?	process accounting files switched via turnacct
Spacct?.MMDD	process accounting files for MMDD during execution of runacct
wtmp	active wtmp file for recording connect sessions

Files in the /usr/adm/acct/nite directory:

active	used by runacct to record progress and print warning and error messages; active MMDD same as active after runacct detects an error
cms	ASCII total command summary used by prdaily
ctacct.MMDD	connect accounting records in tacct.h format
ctmp	output of acctconl program, connect session records in ctmp.h format
daycms	ASCII daily command summary used by prdaily
dayacet	total accounting records for one day in tacct.h format
disktacct	disk accounting records in tacct.h format, created by dodisk procedure
fd2log	diagnostic output during execution of runacct (see cron entry)
lastdate	last day runacct executed in date +%m%d format
lock lock1	used to control serial use of runacct
lineuse	tty line usage report used by prdaily
log	diagnostic output from acctconl
logMMDD	same as log after runacct detects an error
reboots	contains beginning and ending dates from wtmp , and a listing of reboots
statefile	used to record current state during execution of runacct
tmpwtmp	wtmp file corrected by wtmpfix
wtmperror	place for wtmpfix error messages
wtmperrorMMDD	same as wtmperror after runacct detects an error
wtmp.MMDD	previous day's wtmp file

ATTACHMENT 7.3 (Contd)**Files in the /usr/adm/acct/sum directory:**

cms	total command summary file for current fiscal in internal summary format
cmsprev	command summary file without latest update
daycms	command summary file for yesterday in internal summary format
loginlog	created by lastlogin
pacct.MMDD	concatenated version of all pacct files for MMDD, removed after reboot by remove procedure
rprt.MMDD	saved output of prdaily program
tacct	cumulative total accounting file for current fiscal
tacctprev	same as tacct without latest update
tacct.MMDD	total accounting file for MMDD
wtmp.MMDD	saved copy of wtmp file for MMDD, removed after reboot by remove procedure

Files in the /usr/adm/acct/fiscal directory:

cms?	total command summary file for fiscal ? in internal summary format
fiscrpt?	report similar to prdaily for fiscal ?
tacct?	total accounting file for fiscal ?