1/83

II.

ADD ISSUE 1
DOCUMENT PROCESSING GUIDE
UNIX SYSTEM
CONTENTS
INTRODUCTION
DOCUMENT PREPARATION

ADVANCED EDITING
1. Introduction
2. Special Characters
2.1 Print and List Commands
2.2 Subﬂ.itufo Command
2.3 Undo Command
2.4 Metacharacters
3. Operating On lines
3.1 Substituting Newline Characters
3.2 Joining Lines
3.3 Rearranging Lines
4, Lline Addressing in Editor
4.1 Address Arithmetic
4.2 Repeated Searches
4.3 Defavit Line Numbenrs
4.4 Semicolon
4.5 Interrupting the Editor

5. Glebal Commaeands

DOCUMENT PROCESSING GUIDE

PAGE

Page

13

15

15

15

15

15

16

17

17

25

25

26

26

26

27

28

28

30

3

N

1

DOCUMENT PROCESSING GUIDE

>age

CONTENTS

51Basic

5.2 Myltiline oL L,
,Cl;l.’l ond rosto e e e e e e e
61 Com;'ncnd Functions e e e e
6.2 ont‘ Editor Functions

6.3 Tomporo;y Escape

SuppertingTools
7.1 Global Printing From a Set of Files (grep)

7.2 Editing Scripts . .

STREAMEDITOR

1.

2.

2

Introduction

Overall Operation

2.1 Command line Flags
2.2 Order of Application of Editing Commond;

2.3 Pattern Space e e e e e e e

24Examples

Selecting Lines for Editing
3.1 Line Number Addresses " ‘
3.2 Context Addresses

3.3 Number of Addresses

Functions

4.1 Whole line Oriented Functions Summary
4.2 Substitute Function

4.3 Input/Output Functions

4.4 Multiple input Line Functions

4.5 Hold and Get Functions

ISSUE 1

Ve ari i e b

6/82

PAGE

N
33
33
34
36
39
39
39
40
a4
a
41
41
42
42
42
42
42

43

44

46
47
48

49

6/82

ISSUE 1

CONTENTS

4.6 Fow of Control Functions

4.7 Miscellaneous Functions

MISCELLANEOUS FACIUTIES

111. FORMATTING FACQUTIES

NROFF AND TROFF USER’'S MANUAL

2.

e

Introduction

Usage

NROFF/TROFF Reference Manval

3.1 General éxplanution .

3.2 Font and Character Size Control

3.3 Page Control .

3.4 Text Filling, Adjusting, and Centering

3.5 Vertical Spacing

3'.6 Line Length and Indenting
3.7 Maaos, Strings, Diversions, uﬁd l"osition Traps
3.8 Number Registers

3.9 Tabs, Leaders, and Fields

3.10 Input/Output Conventions and Character Translations

. 3.11 Local Horizontal/Vertical Motion and Width Function

3.12 Ovenstrike, Zero-Width, Bracket, and Line Drawing Functions
3.13 Hyphenation

3.14 Three-Part Titles

3.15 Output Line Numbering

3.16 Conditional Acceptance of Input

3.17 Environment Switching

3.18 Insertions From Standard Input

DOCUMENT PROCESSING GUIDE.

o My

PAGE

49

50

51

53

53

53

53

57

57

59

S

61
61

62

65
66
67
68
70
70
70
70
A

71

Poge 3

DOCUMENT PROCESSING GUIDE ISSUE 1 6/82

CONTENTS PAGE

3.19 Input/Output File Switching n
320 Miscellanesus L L L L L L0 0L L L s s e e e T2
3.21 Output and Error Messages e ¢
322Compacted Macros e e e e e e e s . T2
4. TROFF Tutorial Y 4]
41 0verview oo o e e e e e e e e s e s s e e s . 74
‘4.2 Point Sizes and Line Spacing T £
4.3 Fonts and Special Characters e B
4.4 Indents and Line Lengths Y U
4.5 Tabs P £
4.6 Local Metions e £
4.7_Sfrings 1
48 introduction fo Maaros 82
4.9 Titles, Pages, and Numbering 8
4.10 Number Registers and Arithmetic . L
4.11 Mocaos With Arguments O 7
'4.12 Conditionals e -1/
413 Environments L . L L v s e e e e e e e e e e e e e e . 90
414 Diversions o e e e e e e e e e e e e e .. 90
5. NROFF/TROFF Tutorial Examples e A
5.1 Page Margins e A
5.2 Paragraphs and Headings e &
5.3 Multiple Column Outputo .. 94
5.4 Footnote Processing P]
S55lastPage L . o 00w o e e e e e .. .

TABLE FORMATTING PROGRAM 74

Poge 4

6/82

G
e

4.

S.

ISSUE 1

CONTENTS
Introduction
Usage
input Commands
3.1 Global Options
3.2 Format Section
3.3 Dato To Be Printed
Additional Command Lines

Examples

MATHEMATICS TYPESETTING PROGRAM

Intreduction o e e e
Usage

langvage

3.1 Design

3.2 Structure

3.3 Mode of Operation

User’s Guide

4.1 Delimiters

4.2 Spaces and New Lines

4.3 Symbols, Special Names, and Greek Alphabet
4.4 Subsaipts and Superscripts
4.5 Braces

-4.6 Fractions

4.7 Square Roots

4.8 Summations, Integrals, and Similar Constructions

4.9 Size and Font Changes

4.10 Diacritical Marks

,,,,,,,,

DOCUMENT PROCESSING GUIDE

98

99

102
103
103
105
105
105
106
106
107
107
107
107
108
108
!09
(RR
m
112
112
13

114

Page 35

DOCUMENT PROCESSING GUIDE ISSUE 1 6/82

CONTENTS PAGE
6.6O0therKeywords < . . < 188
6.7 Memorandum Types L . . e e e e e e e e e e e 189
6.8 Date Changes e |
6.9 Alternate Fust-Page Formet « . . 190
610Example 0 v v e e e e s e e e90
611 Endof Memorondum Macres L 0. . e .. N
6.12 One-Page Letter e L

7. Displays 4 e w93

7.1 Static Displays e L &

7.2 Floating Disploys e L
73Tables L o e e e s e e e e e e e e e e e e . 198
TJAEquations v e e e e e e e e e e e e e e e e e e Y97
7.5 Figure, Tobie, Equc;tion, ond Exhibit Titles 198
7.6 List of Figures, Tables, Equations, ond Exhibits e 1]
8. Footnotes T L 4
8.1 Automatic Numh.nring of Footnotes e 14
8.2 Delimiting Footnote Text 199
8.3 Format Styleof Footnote Text .19
8.4 Spacing Between Footnote Entries . 200
9. Page Headers and Footers e o)
9.1 Default Headers and Footers T L+ B
9.2Headerand Footer Macres 0 v e e e e e e 2
9.3 Default Header and Footer With Section-Poge Numbering 202
9.4 Strings and Registers in Header and Footer Macres 202
9.5 Header and FooterExample . 203

9.6 Generglized Top-of-Page Processing P { s

Poge 8

6/82

12,

13.

ISSUE 1

CONTENTS
9.7 Generalized Bottom-of-Page Processing
9.8 Top and Bottom (Vertical) Margins
9.9 Propristary Marking e e e e
9.10 Private Documents
Table of Contents and Cover Sheet
10.1 Table of Contol';n
10.2 Cover Sheet
References
11.1 Avtomatic Numbering of References
11.2 Delimiting Reference Text
11.3 Subsequent References
11.4 Reference Page
Miscellaneous Features
12.1 Bold, ltalic, and Roman Fonts
12.2 Justification of Right Margin
12.3 SCCS Release Identification
12.4 Two-Column Output
12.5 Column Headings for Two-Column Output
12,6 Vertical Spacing
12.7 Skipping Pages
12.8 Forcing an Odd Page
12.9 Setting Point Size and Vertical Spacing
12.10 Producing Accents
12.11 Inserting Text Interactively
Errors and Debugging

13.1 Error Terminations

DOCUMENT PROCESSING GUIDE

PAGE
. 204
. 204
. 204
. 205
. 205
205
207
. 207
. 207
207
. 208
. 208
208
. 208
. 209
. 210
210
.M
.m
.21
. 212
. 212
. 213
213
. 214

. 214

Page 9

DOCUMENT PROCESSING GUIDE

14,

15.

CONTENTS
13.2 Disappeorance of Output
Extending and Modifying MM Macros
14.1 Naoming Conventions
14.2 Somple Extensions

Summary

V. VIEWGRAPHS AND SUDES MACROS

1.

2.

Page 10

introduction

Examples

2.1 Trivial Example

2.2 Less Trivial Example

2.3 Other Examples

Macros

3.1 Foil-Start Macres ~ . .7 . . .
3.2 Level Macros

3.3 Titles

3.4 Globalindents
3.5 Point Sixes and Line Lengths

3.6 Default Fonts

3.7 Default Vertical Space

3.8 Underlining

3.9 Synonyms

3.10 Breaks

3.11 Text Filling, Adjusting, and Hyphenation
The troff Preprocessors

4.1 Tables

4.2 Mathematical Expressions

ISSUE 1

6/82

PAGE

214

215

215

216

218

237

237

237

. 237

238

238

242

242

243

245

245

245

245

246

246

246

2446

247

247

247

247

6/82 ISSUE 1 DOCUMENT PROCESSING GUIDE:

CONTENTS PAGE

4.3 Constant-Width Program Examples e 2. %4

5. The Finished Product e . 247
5.1 Phototypesetter Output L. e e e e e e .24

5.2 Output Approximation on a Terminal e e e e e e e e e e e . . 248

5.3 Making Actval Viewgraphsand Slides 248

6. SuggestiensForUse« . .+ . 0 v e e e e e e ... 248
7. Warnings - 3- 1o
7.1 Use of troff Formatter Requests S 11

7.2 Reserved Names L 111

7.3 Miscellaneous O 11 ¢}

8. DimensionalDetails« 4 e e e e e e e e e e .. 250

Page 11/12

6/82 ISSUE 1 DOCUMENT PROCESSING GUIDE

1. INTRODUCTION

An important feature of the UNIX operating system is to provide a method of document preparation and
generation. The Document Preparation section (Section II) contains three parts:

o Advanced Editing
e Stream Editor
o Miscellaneous Facilities.

The Advanced Editing part describes text editing functions which include special characters, line addressing,
global commands, commands for cut and paste operations, and text editor-based programs. The Stream Editor
part describes the noninteractive context editor, and the Miscellaneous Facilities part outlines some other facili-
ties that aid in document preparation.

The Formatting Facilities section (Section III) contains three parts:
e NROFF and TROFF User's Manual
e Table Formatting Program
o, Mat.h‘ematics Typesetting Program.

The NROFF and TROFF User’s Manual part presents information to enable the user to do simple formatting
tasks and to make incremental changes to existing packages of troff formatter commands. The UNIX operating
system formatter, nroff, is identical to the troff formatter in most respects. The Table Formatting Program
part describes the tbl program and the input commands used to generate documents that contain tables. The
Mathematies Typesetting Program part describes the program usage and language for obtaining text with
mathematical expressions. The language interfaces directly with the troff processor so mathematical expres-
sions can be embedded in the running text of a manuscript and the entire document produced in one process.

The Memorandum Macros section (SectionIV)is a user’s guide and reference manual for the Memorandum
Macros (MM). These macros provide a general purpose package of text formatting macros used with the nroff
and troff formatters. The macros provide users of the UNIX operating system a unified, consistent, and flexible
tool for producing many common types of documents. Although the UNIX operating system provides other
macro packages for various specialized formats, MM is the standard general purpose macro package for most
documents such as letters, reports, technical memoranda, released papers, manuals, books, design proposals,
and user guides. Uses of MM range from single-page letters to documents of several hundred pages in length.

The Viewgraphs and Slides Macros section (Section V) describes the MV package of macros. These macros

provide users a method of preparing viewgraphs and slides using the troff formatter. Included is a discussion
on the use of the macros and a philosophy of how a viewgraph or slide should appear.

Page 13/14

1/83 ADD ISSUE 1 DOCUMENT PROCESSING GUIDE

I1I. DOCUMENT PREPARATION
ADVANCED EDITING
1. Introduction

The advanced editing part is meant to help UNIX operating system users (secretaries, typists, program-
mers, etc.) make effective use of facilities for preparing and editing documents, text, programs, files, etc. It pro-
vides explanations and examples of: :

o special characters, line addressing, and global commands in the text editor (ed)

e commands for “cut and paste” operations on files and parts of files, including mv, ¢p, cat, and rm com-
mands, and r, w, m, and ¢ commands of the text editor

o editing scripts and text editor-based programs like grep and sed.

Although this document is written for nonprogrammers, new UNIX operating system users with any back-
ground should find helpful hints on how to get their jobs done more easily. The UNIX operating system provides
effective tools for text editing, but that by itself is no guarantee that everyone will automatically make the most
effective use of them. In particular, users who are not computer specialists (typists, secretaries, casual users)
often use the UNIX operating system less effectively than they could. The reader should be familiar with the
materialin the “Basics For Beginners” section of the User’s Guide— UNIX Operating System before using the
text editor. Further information on all commands discussed here can be found in the User’s Manual—UNIX
Operating System.

Examples are based on experience and observations of users and the difficulties encountered. Topics covered
include special characters in searches and substitute commands, line addressing, the global commands, and line
moving and copying. There are also brief discussions on the effective use of related tools, e.g., those for file ma-
nipulation and those based on ed.

The next paragraphs discuss shortcuts and labor-saving devices. Not all wil] be instantly useful (some will)
and others should provide ideas for future use. Until these things are used to build confidence, they will remain
theoretical knowledge.

Note: A document like this should provide ideas about what to try. There is only one way to learn to
use something, and that is to use it. Reading a description is no substitute for hands-on use.

2. Spedal Characters

The ed program is the primary interface to the system, so it is worthwhile to know how to get the most
out of it with the least effort.

2.1 Print and List Commands

Two commands are provided for printing contents of lines being edited. Most users are familiar with tke
print command (p) in combinations like

1,$p
to print all lines that are being edited, or
s/abe/def/p

to change “abe” to “def’” on the current line and to print the results. Less familiar is the list command (1) which
gives slightly more information than p. In particular, 1 makes visible characters that are normally invisibie,

Page 15

DOCUMENT PROCESSING GUIDE ISSUE 1 6/82

such as tabs and backspaces. If a line listed contains some of these, 1 will print each tab as ‘>” and each

backspace as “<”. This makes it easier to correct typing mistakes that insert extra spaces adjacent to tabs or
a backspace followed by a space.

The] command also “folds” long lines for printing. Any line that exceeds 72 characters is printed on multiple
lines. Each printed line except the last is automatically terminated by a backslash (\) to indicate that the line
was folded. A “$" character is appended to the real end of line. This is useful for printing long lines on terminals
having output line capability of only 72 characters per line.

Occasionally, the 1 command will print in a line a string of numbers preceded by a backslash, such as \07
or \16. These combinations are used to make visible characters that normally do not print, e.g., form feed, verti-
cal tab, or bell. Each such combination is interpreted as a single character. When such characters are detected,
they may have surprising meanings when printed on some terminals. Often their presence means that a finger
slipped while typing.

2.2 Substitute Command

The substitute command (s) is used for changing the contents of individual lines. It is probably the most
complex and effective of any ed command.

The meaning of a trailing global command after a substitute command is illustrated in the next two com-
mands:

s/this/that/
and

s/this/that/g
The first form replaces the first “this” on the line with “that”. If there is more than one occurrence of “this”
on the line, the second form (with the trailing g) changes all of them. Either of the two forms of the s command
can be followed by p or 1 to print or list the contents of the line:

s/this/that/p

s/this/that/]

s/this/that/gp

s/this/that/gl
All are legal and have slightly different meanings.

An s command can be preceded by one or two line numbers to specify that the substitution is to take place
on a group of lines specified by the line numbers. Thus:

1,$s/mispell/misspell/

changes the first occurrence of “mispell” to “misspell” on every line of the file. The following command changes
every occurrence in every line:

1,$s/mispell/misspell/g

By adding a p or 1 to the end of any of these substitute commands, only the last line that was changed will
be printed, not all lines. How to print all the lines that were changed is described later.

Page 16

6/82 ISSUE 1 DOCUMENT PROCESSING GUIDE

Any character can be used to delimit pieces of an s command. There is nothing sacred about slashes (but
slashes must be used for context searching). For instance, for a line that contains a lot of slashes already, e.g

//exec //sys.fort.go //etc...
a colon could be used as the delimiter. To delete all the slashes, the command is
s/:/:g
2.3 Undo Command
Occasionally, an erroneous substitution will be made in a line. The undo command (u) negates the last com-
mand so that data is restored to its previous state. This command is useful after executing a global command
if it is discovered the command did things that are undesirable.

2.4 Metacharacters

When usmg ed, certain characters have unexpected meanings when they occur in the left side of a substxtute
command or in a search for a particular line. These are called “metacharacters” which are:

e Period
e Backslash \
e Dolilar Sign $

e Circumflex A
o Star ¥
o Brackets [1
e Ampersand. 3

Even though metacharacters are discussed separately in the following text, they can be combined. An example
is given in the paragraph on “Circumflex” (2.4.4).

2.4.1 Period

The period (.) on the left side.of a substitute command or in a search with //, stands for any single charac-
ter. Thus the search

/xy/

“u "

finds any line where “x” and “y” occur separated by a single character, as in

x+y
x=y
X<Sp>y
x.y
The <sp> stands for a space whenever needed to make it visible.

Since the period matches any single character, a way to deal with the “invisible” characters printed by 1
is available. For instance, if there is a line that when printed with the 1 command, appears as

Page 17

DOCUMENT PROCESSING GUIDE ISSUE 1 6/82

... th\0Tis . ..
and it is desired to get rid of the *“\07” (the bell character), the most obvious solution is to try

s/\07//
This will fail. The brute force solution, which is to retype the entire line, is a reasonable tactic if the line in ques-
tion is not too long. However, for a very long line, retyping could result in additional errors. Since “\07" really
represents a single character, the command

s/th.is/this/
gets the job done. The period matches the mysterious character between the “h"” and the “i”, whatever it is.

Since the period matches any single character, the command
s/./,/

converts the first character on a line into a *,”.

As is true of many characters in ed, the period has several meanings depending on its context. This line
shows all three:

s/././
o The first period is the line number of the line being edited, which is called *“dot”.

e The second period is a metacharacter that matches any single character on that line (in this instance
the first character of the line).

o The third period is the only one that really is an honest literal period. On the right side of a substitution,
the period is not special.

2.4.2 Backslash

Since a period means “any character”, the question arises of what to do when a period is really needed. For
example, to convert the line:

Now is the time.
into

Now is the time?
the backslash (\) is used. A backslash turns off any special meaning that the next character might have. In par-
ticular, \.. converts the period from a “match anything” into a “match the period” statement. The \. pair of char-
acters is considered by ed to be a single literal period. To replace the period with a question mark, the following
command is used:

s/\./1/

The backslash can also be used when searching for lines that contain a special character. If a search is made
to look for a line that contains ’

.PP

Page 18

6/82 ISSUE 1 DOCUMENT PROCESSING GUIDE

the search
/.PP/

is not adequate. It will find a line like
THE APPLICATION OF ...

The period matches the letter “A”. But if the command
N\.PP/

is used, only the lines that contain “.PP” are found.

The backslash can also be used to turn off special meanings for characters other than the period. For exam-
ple, to find a line that contains a backslash, the search

N/

will not work because the \ is not a literal backslash, but instead means that the second / no longer delimits
the search. A search can be made for a literal backslash by preceding a backslash with another \:

NV
Similarly, searches can be made for a slash (/) with

N/

The backslash turns off the meaning of the immediately following / so that it does not terminate /../ construc-
tion prematurely.

Some substitute commands, each of which will convert the line

\x\.\y

into the line

\x\y

are

sNA\\\.//
s/x./x/

s/.y/y/

The user's erase character and the line kill character (# and @ by default) must also be used with a
backslash to turn off their special meaning. This is a feature of the UNIX operating system. When adding text
with append (a), insert (i), or change (¢) commands, the backslash is special only for the erase and line kill char-
acters, and only one backslash should be used for each one needed.

2.4.3 Dollar Sign

In the left side of a substitute command or in a search command the dollar sign ($) stands for “the end of
line”. The word “time” is added to the end of the following phrase.

Page 19

DOCUMENT PROCESSING GUIDE ISSUE 1 6/82

Now is the

with the following command:
8/$/<sp>time/

The result is
Now is the time

A space is needed before “time” in the substitute command, otherwise, the following will be printed.
Now is thetime

The second comma in the following line can be replaced with a period without altering the first.
Now is the time, for all good men,

The needed command is
8/,$//

The $ provides context to indicate which specific comma. Without it the s command would operate on the first
comma to produce

‘Now is the time. for all good men,
To convert
Now is the t?me.
into
Now is the time?
that was previously done with the backslash, the following command is used:

s/.$/%
The $ has multiple meanings depending on context. In the line

$s/3/$/
o The first $ refers to the last line of the file.
o The second $ refers to the end of the line.
o The third $ is a literal dollar sign to be added to !;hat line.

2.4.4 Gircumflex

The circumflex (*), alias “hat” or “caret”, stands for the beginning of the line. For example, if a search is
made for a line that begins with “the”, the command

/the/

Page 20

6/82 ISSUE 1 DOCUMENT PROCESSING GUIDE
will in all likelihood find several lines that contain “the” before arriving at the line that was wanted. But the
command
/~the/
narrows the context, and thus arrives at the desired line more easily.
The other use of * is to enable context to be inserted at the beginning of a line.
s/~/<sp>/
places a space at the beginning of the current line.
Metacharacters can be combined. For example, to search for a line that contains only the characters
PP
the command
/~\.PP$/

can be used.

2.4.5 Star \

The star (*) is useful to replace all spaces between xand y with a single space, as in the following example:

text x y text

where text stands for lots of text, and there are an indeterminate number of spaces between x and y. The line
is too long to retype, and there are too many spaces to count.

A regular expression (typically a single character) followed by a star stands for as many consecutive occur-
rences of that regular expression as possible. To refer to all the spaces at once, the following command is used:

8/x<sp>*y/x<sp>y/

The construction <sp>* means “as many spaces as possible”. Thus x<sp>*y means: “an x, followed by as many
spaces as possible, and then a y”.

The star can be used with any character, not just space. If the original example was
text xe—-——-y text
then all “-” characters can be replaced by a single space with the command
s/x-*y/x<sp>y/
If the original line was
text x......... y text
and if the following command was typed:

s/x.*y/x<sp>y/

Page 21

DOCUMENT PROCESSING GUIDE ISSUE 1 6/82

what happens depends upon the occurrence of other x's or y's on the line. If there are no other x's or y’s, then
evervthing works, but it is blind luck, not good management. Since a period matches any single character, then
.* matches as many single characters as possible. Unless the user is careful the star can eat up a lot more of
the line than expected. If the line was

text x text X......... y texty text

then the command will take everything from the first “x" to the last *y”, which, in this example, is undoubtedly
more than wanted. The proper way is to turn off the special meaning of period with \.:

s/x\.*y/x<sp>y/

Now everything works since \'.‘ means “as many periods as possible”.

There are times when the pattern .* is exactly what is wanted. For example, to change

Now is the time for all good men ...

into
Now is the time.

the following deletes everything after the word “time”:
s/<sp>for.*//

There are a couple of additional pitfalls associated with * to be aware of. Most notable is that “as many
as possible” means zero or more. The fact that zero is a legitimate possibility is sometimes rather surprising.
For example, if this line contained

text xy text x y text
and the command is
s/x<sp>*y/x<sp>y/

the first “xy” matches this pattern, for it consists of an “x", zero spaces, and a “y”. The result is that the substi-
tute acts on the first “xy” and does not touch the later one that actually contains some intervening spaces.

The proper way is to specify a pattern like
/x<sp><sp>*y/
which says “an x, a space, as many more spaces as possible, and then a y” (in other words, one or more spaces).

The other startling behavior of * is also related to the zero being a legitimate number of occurrences of some-
thing followed by a star. The command

s/x*/y/g
when applied to the line
abedef

Page 22

6/82 ISSUE 1 DOCUMENT PROCESSING GUIDE
produces
yaybycydyeyfy

which is almost certainly not what was intended. The reason for this behavior is that zero is a legal number
of matches, and there is no “x” at the beginning of the line (so that gets converted into a “y”), nor between the
“a” and the “b"” (so that gets converted into a “y”), etc. The following command:

8/xx*/y/g

where “xx*” is “one or more x's”, when applied to the line
abedefxghi

produces
abedefyghi

2.4.6 Brackets

Should a number that appears at the beginning of all lines of a file need to be deleted, a first thought might
be to perform a series of commands like:

1,$s/~1%//
1,$s/°2%//
1,%s/~3%//

This is going to take forever if the numbers are long. Unless it is desired to repeat the commands over and over
until finally all numbers are gone, the digits can be deleted on one pass. This is the purpose of brackets ([).

The construction
{0123456789)

matches any single digit. The whole thing is called a “character class”. With a character class, the job is easy.
The pattern “[0123456"_189]‘” matches zero or more digits (an entire number), so

1,$s/~[0123456789]*//
deletes all digits from the beginning of all lines.

Any characters can appear within a character class; and just to confuse the issue, there are essentially no
special characters inside the brackets. Even the backslash does not have a special meaning. The following com-
mand searches for special characters within the brackets:

/NS [V
L

Within a character class, the [is not special. To get a] into a character class, it should be placed as the first
character in the class. For example:

/LINSL)/

It is a nuisance to have to spell out the digits. They can be abbreviated as [0-9]; similarly, [a-z] stands for
the lowercase letters and [A-Z] for uppercase letters.

Page 23

DOCUMENT PROCESSING GUIDE ISSUE 6/82

The user can specify a character class that means “none of the following characters”. This is done by begin-
ning the class with a circumflex.

[~0-9]

which stands for “any character except a digit”. The following search finds the first line that does not begin
with a tab or space:

/~[~(space)(tab))/

Within a character class, the circumflex has a special meaning only if it occurs at the beginning. For exam-
ple: /

/)

finds a line that does not begin with a circumflex.

2.4.7 Ampersand

The ampersand (&) is used primarily to save typing. For example, if the following is the original line:

Now is the time

and it needs to be
Now is the best time

the command
s/the/the best/

can be used, but it is unecessary to repeat the “the”. The & is used to eliminate the repetition. On the right-hand
side of a substitute command, the ampersand means “whatever was just matched”, so in the command

s/the/& best/

the & represents “the”. This is not much of a saving if the text matched is just “the”; but if it is something long
or complicated or if it is something (such as .*) which matches a lot of text, the & can save some tedious typing.
There is also much less chance of making a typing error in the replacement text. For example, to parenthesize
a line, regardless of its length:

s/.*/(&)/

The ampersand can occur more than once on the right side.

s/the/& best and & worst/
makes the original line

Now is the best and the worst time

and

s/.*/&? &Y/

Page 24

6/82 ISSUE 1 DOCUMENT PROCESSING GUIDE

converts the original line into
Now is the time? Now is the time!!
To get a literal ampersand, the backslash is used to turn off the special meaning.
s/ampersand/\&/
converts the word into the symbol. The & is not special on the left-hand side of a substitute, only on the right.
3. Operating On Lines |
3.1 Substituting Newline Characters

The ed program provides a facility for splitting a single line into two or more lines by substituting in a
newline character. If a line is unmanageably long because of editing or merely because of the way it is typed,
it can be divided as follows:

text xy text
can be broken between the “x” and the “y” with the following substitute command:

s/xy/x\
y/

This is actually a single command although it is typed on two lines. Bearing in mind that \ turns off special

meanings, it seems relatively intuitive that a \ at the end of a line would make the newline character there no
longer special.

A single line can be made into several lines with this same mechanism. The word “very” in the following
example can be put on a separate line preceded with the nroff formatter underline command (.ul):

text a very big text
The commands

s/<sp>very<sp>/\
al\

very\
/

convert the line into four shorter lines:
texta
.ul
very
big text

The word “very” is preceded by the line containing the “.ul” and spaces around “very” are eliminated at the
same time.

When a new line is substituted in, dot is left pointing at the last line created.

Page 25

DOCUMENT PROCESSING GUIDE ISSUE 1 . 6/82

3.2 Joining lines
Lines may be joined together with the j command. Given the lines

Now is
<sp>the time

and if dot is set to the first line, then the j command joins them together. No spaces are added, which is why
a space is shown at the beginning of the second line.

All by itself, a j command joins dot to dot+1. Any contiguous set of lines can be joined by specifying the
starting and ending line numbers. For example:

1,$jp
joins all the lines into a big one and prints it.
3.3 Rearranging Lines

The & metacharacter stands for whatever was matched by the left sideof an s command. Similarly, several
pieces can be captured of what was matched; the only difference is it must be specified on the left side just what
pieces the user is interested in. For instance, if there is a file of lines that consist of names in the form

Smith, A. B.
Jones, C.

etc., and it was intended to have the initials to precede the name, as in:

A. B. Smith
C. Jones

it is possible to do this with a series of tedious and error-prone editing commands. The alternative is to “tag”
the pieces of the pattern (in this case, the last name and the initials) and then rearrange the pieces. On the left
side of a substitution if part of the pattern is enclosed between \(and \), whatever matched that part is remem-
bered and available for use on the right side. On the right side, the symbol \1 refers to whatever matched the
first \(==\) pair, \2 to the second \(..\) pair, etc.

The command
L,$s/~\([*,)*\),<sp>*\(-"\)/\2<sp>\1/
although hard to read, does the job. The first “ \(..\) ” matches the last name, which is any string up

to the comma; this is referred to on the right side with “\1”. The second “\(..\)"” is whatever
follows the comma and any spaces and is referred to as “\2".

With any complicated editing sequence, it is foolhardy to run it and hope. Global commands (see paragraphs
5.1 and 5.2) provide a way to print those lines affected by the substitute command.

4. line Addressing in Editor
Line addressing in ed specifies the lines to be affected by editing commands. Previous constructions like
1,$s/x/y/

were used to specify a change on all lines. Most users are familiar with using a single newline character (or re-
turn) to print the next line and with

Page 26

6/82 ISSUE 1 DOCUMENT PROCESSING GUIDE

/string/ '
to find a line that contains “string”. Less familiar is the use of
?string?

to scan backwards for the previous occurrence of “string”. This is handy when the user realizes that the string
to be operated on is back up the page (file) from the current line being edited.

The slash and question mark are the only characters that can be used to delimit a context search. Essential-
ly, any character can be used as a delimiter in a substitute command.

4.1 Address Arithmetic
The next step is to combine the line numbers like ., $, /../, and ?..? with + and —. Thus:
$-1
is a command to print the next to last line of the current file (i.e., one line before line $). For example:
$-5,%p
prints the last six lines. If there are not six lines, an error message will be indicated.
As another example:
~3,.4+3p

prints from three lines before the current line to three lines after, thus printing a bit of context. The + can be
omitted:

.=3,.3p
is identical in meaning.

Another area in which to save typing effort in specifying lines is by using — and + as line numbers by them-
selves. For instance, a

by itself is a command to move back up one line in the file. Several minus signs can be strung together to move
back up that many lines:

moves up three lines, as does “~3". Thus:
-3,+3p
is also identical to the examples above.

Since is shorter than “.—=1", constructions like

—,.s/bad/good/

Page 27

DOCUMENT PROCESSING GUIDE ISSUE 1 6/82

are useful. This changes the first occurrence of “bad” to “good” on both the previous line and the current line.
The + and ~ can be used in combination with searches using /../, 2...2, and $. The search
/string/——
finds the line containing *“string” and positions dot two lines befo_re it.
4.2 Repeated Searches
When the search command is
/horrible string/

and when the line is printed, it is discovered that it is not the horrible string that was wanted. It is necessary
to repeat the search again, but it is not necessary to retype it. The construction

//

is a shorthand for “the string that was previously searched for”, whatever it was. This can be repeated as many
times as necessary. This also applies to the backwards search

”
which searches for the same string but in the reverse direction.

Not only can the search be repeated, but the // construction can be used on the left side of a substitute com-
mand to mean “the most recent pattern”:

/horrible string/
——— ed prints line with “horrible string”
s//good/p
To go backwards and change a line, the following command is used:
17s//good/
Of course, the & on the right-hand side of a substitute can still be used to stand for whatever got matched:

//s//&<sp>&/p

finds the next occurrence of whatever was searched for last, replaces it by two copies of itself, and then prints
the line just to verify that it worked.

4.3 Detfault Line Numbers
One of the most effective ways to speed editing is by knowing which lines are affected by a command with

no address and where dot will be positioned when a command finishes. Editing without specifying unnecessary
line numbers can save a lot of typing. As the most obvious example, the search command

/string/
puts dot at the next line that contains “string”. No address is required with commands like:

e s to make a substitution on the line

Page 28

6/082 ISSUE 1 DOCUMENT PROCESSING GUIDE

p to print the line

I to list the line

e d to delete the line

a to append text after the line

¢ to change the line
o i to insert text before the line.

If there was no “string”, dot stays on the line where it was. This is also true if it was sitting on the only
“string” when the command was issued. The same rules hold for searches that use ?..?; the only difference is
direction of search.

The delete command (d) leaves dot at the line following the last deleted line. However, dot points to the new
last line when the last line is deleted.

Line-changing commands a, ¢, and i affect (by default) the current line if no line number is specified. They
behave identically in one respect—after appending, changing, or inserting, dot points at the last line entered.
For example, the following can be done without specifying any line number for the substitute command or for
the second append command:

a
——— text
. === botch (minor error)

.s/botch/correct/ (fix botched line)
a

——- more text

The following overwrites the major error and permits continuation of entering information:

a
——= text
——-horrible botch (major error)
¢
——— fixed up line (replace entire line)
—=—= more text

The read command (r) will read a file into the text being edited, either at the end if no address is given or
after the specified line if an address is given. In either case, dot points at the last line read in. The Or commazd
can be used to read in a file at the beginning of the text, and the Oa or 1i commands can be used to start adding
text at the beginning.

The write command (w) writes out the entire file. If the command is preceded by one line number, that line
is written. Preceding the command by two line numbers causes a range of lines to be written. The w command
does not change dot, therefore, the current line remains the same regardless of what lines are written. This is
true even if 2 ‘ommand like

/~\.AB/,/~\.AE/w abstract
is made, which involves a context search. Since the w command is easy to use, the text being edited should be
saved regularly just in case the system crashes or a file being edited is clobbered.

Page 29

DOCUMENT PROCESSING GUIDE ISSUE 6/82

The command with the least intuitive behavior is the s command. The dot remains at the last line that was

changed. If there were no changes, then dot is unchanged. To illustrate, if there are three lines in the buffer
and dot is sitting on the middle one

x1
x2
x3

the command
—,+s/x/y/p

prints the third line, which is the last one changed. But if the three lines had been

and the same command issued while dot pointed at the second line, then the result would be to change and print
only the first line and that is where dot would be set.

4.4 Semicolon

Searches with /../ and ?..? start at the current line and move forward or backward, respectively, until they

either find the p3ttern or get back to the current line. Sometimes this is not what is wanted. Suppose, for exam-
ple, that the buffer contains lines like

ab

Starting at line 1, one would expect that the command

/a/,/b/p

prints all the lines from the “ab” to the “bc”, inclusive. This is not what happens. Both searches (for “a” and
for “b") start from the same point, and thus they both find the line that contains “ab”. The result is to print
a single line. If there had been a line with a “b" in it before the “ab” line, then the print command would be
in error since the second line number would be less than the first; and it is illegal to try to print lines in reverse

order. This is because the comma separator for line numbers does not set dot while each address is processed.
Each search starts from the same place.

In ed, the semicolon (;) can be used just like the comma with the single difference being that use of a semico-
lon forces dot to be set at that point while line numbers are being evaluated. In effect, the semicolon “moves”
dot. Thus, in the example above, the command

/a/3/b/p

Page 30

1/83 ADD ISSUE) DOCUMENT PROCESSING GUIDE

prints the range of lines from “ab” to “bc” because after the “a” is found dot is set to that line, and then “b”
is searched for starting beyond that line. This property is most often useful in a very simple situation. If the
need is to find the second occurrence of “string”, then the commands

/string/
//

print the first occurrence as well as the second. The command
/string/y//

finds the first occurrence of “string” and sets dot there. Then it finds the second occurrence and prints only
that line. '

Searching for the second previous occurrence of “string”, as in
string?;??
is similar. Printing the third, fourth, etc. occurrence in either direction is left as an exercise.

When searching for the first occurrence of a character string in a file where dot is positioned at an arbitrary
place within the file, the command

1;/string/
will fail if “string” occurs on line 1. It is possible to use the command
0;/string/
(one of the few places where 0 is a legal line number) to start the search at line 1.

4.5 Interrupting the Editor

If the user interrupts ed while performing a command (by depressing the BREAK key, the INTERRUPT
key, or the user interrupt character [RUB OUT or DEL CHAR keys by default]), the file is put back together
again. The file state is restored as much as possible to what it was before the command began. Naturally, some
changes are irrevocable. If the file is being read from or written into, substitutions are being made, or lines are
being deleted, these will be stopped in some clean but unpredictable state in the middle of the command execu-
tion (which is why it is not usually wise to stop them). Dot may or may not be changed.

Printing is more clear cut. Dot is not changed until the printing is done. Thus, if a user interrupts ed while
some printing is being done, dot is not sitting on the last printed line or even near it. Dot is returned to where
it was when the p command was started.

5. Global Commands

5.1 Basic

Global commands (g and v) are used to perform one or more editing commands on all lines of a file. The
g command operates on those lines that contain a specified string. As the simplest example, the command

g/THIS/p

prints all lines that contain the string “THIS". The string that goes between the slashes can be anything that
could be used in a line search or in a substitute command; exactly the same rules and limitations apply. As an-
other example:

g/"\/p

Page 31

DOCUMENT PROCESSING GUIDE ADD ISSUE 1 1/83

prints all lines that begin with a period.

The v command (there is no mnemonic significance to the letter “v”) is identical to g, except that it operates
on those lines that do not contain an occurrence of the string. So

v/*\./p
prints the lines that do not begin with a Period.

The command that follows g or v can be almost any command. For example:
g/"\./d
deletes all lines that begin with a period, and
g/~%/d
deletes all empty (blank) lines.

Probably the most useful command that can follow a global command is the substitute command since this
can be used to make a change and print each affected line for verification. For example, to change the word
“This” to “THIS"” everywhere in a file and verify that it really worked, the command is

g/This/s//THIS/gp

The use of // in the substitute command means “the previous pattern”, in this case, “This”. The p command
is done on every line that matches the pattern, not just those on which a substitution took place.

Global commands operate by making two passes over the file. On the first pass, all lines that match the
pattern are marked. On the second pass, each marked line in turn is examined, dot is set to that line, and the
command executed. This means that it is possible for the command that follows a g or v to use addresses, set
dot, etc., quite freely. For example:

g/“\.PP/+

prints the line that follows each “.PP” command (the signal for a new paragraph in some formatting packages).
The + means “one line past dot”, and

g/topic/?~\.SH?1

searches for each line that contains “topic”, scans backwards until it finds a line that begins “.SH" (a section

heading) and prints the line that follows, thus showing the section headings under which “topic” is mentioned.
Finally:

g/ \.EQ/+/~\.EN/-p
prints all the lines that lie between lines beginning with the “.EQ” and “.EN" formatting commands.

The g and v commands can aiso be preceded by line numbers‘, in which case the lines searched are only those
in the range specified.

Page 32

6/82 ISSUE 1 DOCUMENT PROCESSING GUIDE

5.2 Muiltiline

It is possible to do more than one command under the control of a global command although the syntax for
expressing the operation is not especially natural or easy. As an example, suppose the task is to change “x” to

“y"” and “a” to “b” on all lines that contain “string”. Then:

g/string/s/x/y/\
s/a/b/

is sufficient. The backslash signals the g command that the set of commands continues on the next line. It termi-
nates on the first line that does not end with \. A substitute command can not be used to insert a newline charac-
ter within a g command.

The command

g/x/s//y/\
s/a/b/

does not work as expected. The remembered pattern is the last pattern that was actually executed, so sometimes
it will be “x” (as expected) and sometimes it will be “a” (not expected). The desired pattern should be spelled
out:

g/x/s/x/y/\
s/a/b/

It is also possible to execute a, ¢, and | commands (append, change, and insert) under a global command.
As with other multiline constructions, all that is needed is to add a \ at the end of each line except the last.
Thus to add a .af and .sp command before each “.EQ” line, the following is typed:

g/~ \.EQ/i\

.of\

5P

There is no need for a final line containing a period to terminate the i command unless there are further com-
mands being done under the global. On the other hand, it does no harm to put it in.

It is good practice, after each global command, to check that the command did only what was desired. Sur-
prises sometimes happen. When they do occur, the u command (undo) is useful to negate what was done by the
last command.

6. Cut and Paste

One editing area in which nonprogrammers do not seem confident is the “cut and paste” operations. There
are two areas in which the operations can be performed. Using the UNIX operating system command functions,
the following can be done:

o Changing the name of a file
e Making a copy of a file somewhere else
o Combining files

e Removing a file.

The text editor (ed) function performs the following operations.

Page 33

DOCUMENT PROCESSING GUIDE ISSUE 1 6/82

e Inserting one file in the middle of another

e Splitting a file into pieces

e Moving a few lines from one place to another in a file
o Copying lines.

Most of these operations are actually quite easy if the task is defined and precautions are taken when entering
the commands.

6.1 Commaond Functions

Changing file names, making copies of files, combining files, and removing files are handled with the UNIX
operating system commands.

6.1.1 Changing Name of Files

If there is a file named oldname and if it needs to be renamed to newname, the move command (mv) will
do the job. It moves the file from one name to another (the target file), for example

mv oldname newname

Note: If there is already a file with the new name, its contents will be overwritten with information
from the other (oldname) file. The one exception is that a file cannot be moved to itself; therefore, the fol-
lowing command is illegal.

mv oldname oldname

6.1.2 Copying Files

Sometimes a copy of a file is needed while retaining the original file. This might be because a file needs to
be worked on and yet have a back-up in case something happens to the file. In any case, the copy is made with

the copy command (cp). To make a copy of a file named good, the following command will place a copy in a file
named savegood :

cp good savegood
Two identical copies of the file good exist. If savegood previously contained something, it is overwritten.
To get the file savegood back to its original filename, good, the following commands are used:
mv savegood good
if savegood is not needed anymore or
cp savegood good
to retain a copy of savegood.

In summary, mv renames a file; cp makes a duplicate copy. Both commands overwrite the target file if one
already exists unless write permission is denied by the mode of the file.

Page 34

6/82 ISSUE 1 DOCUMENT PROCESSING GUIDE

6.1.3 Combining Files

A familiar requirement is that of collecting two or more files into one big file, bigfile. This is needed, for
example, when the author of a paper decides that several sections are to be combined. There are several ways
to do this; the cleanest is a command called cat (not all commands have 2-letter names). The word cat is short
for “concatenate”, which is exactly what is desired. The command

cat file

prints the contents of the file on the terminal. The command
cat filel file2

causes the contents of filel and file2 to be printed on the terminal, in that order, but does not place them in
bigfile.

There is a way to tell the system to put the same information in a file instead of printing on the terminal.
The way to do it is to add to the command line the > character and the name of the file where the output is
to go. The command

cat filel file2 > bigfile

is used and the job is done. As with ¢p and mv, when something is put into bigfile, anything already there is
destroyed. The ability to capture the output of a program can be used with any command that prints on a termi-
nal. Several files can be combined, not just two.

cat filel file2 file3 ... > bigfile
collects many individual files.

Sometimes a file needs to be appended to the end of another file. For example:

cat good goodl > temp
mv temp good

is the most direct way. The following command:
cat good goodl > good

does not work because the > empties good before the cat program begins. The easiest way is to use a variant
of >, called > >. In fact, >> is identical to > except that instead of clobbering the old file it adds something to
the end. Thus the command
cat goodl > > good
adds good1 to the end of good If good does not exist, this makes a copy of goodl called good.
6.1.4 Removing Files
If a file is not needed, it can be removed. The rm command

rm savegood

irrevocably deletes the file called savegood if the user had write permission.

Page 35

DOCUMENT PROCESSING GUIDE ISSUE 1 6/82

6.2 Text Editor Functions

Manipulating pieces of files, individual lines, or groups of lines are handled with the text editor.

6.2.1 File Names

It is important to know the editor (ed) commands for reading and writing files. Equally useful is the edit
command (e). Within ed, the command

e newfile

says “edit a new file called newfile without leaving the text editor”. The e command discards whatever is being
worked on and starts over on newfile. This is the same as if one had quit with the g command and reentered
ed with a new file name except that if a pattern has been remembered, a command like // will still work.

When entering ed with the command

ed file

ed remembers the name of the file, and any subsequent e, r, or w commands that do not contain a file name
will refer to this remembered file. Thus:

ed filel
- (editing)

w (writes back in filel)

e file2 (edit different file, without leaving ed)
- (editing on file2)

w (writes back on file2)

etc., does a series of edits on various files without leaving ed and without typing the name of any file more than
once. By examining the sequence of commands in this example, it can be seen why many operating systems use
e as a synonym for ed.

The current file name can be found at any time with the f command by typing f without a file name. Also,
the name of a remembered file can be changed with f. A useful sequence is

ed precious
f junk
- (editing)

This obtains a copy of the file precious and guarantees that a subsequent w command without a filename will
write to junk and will not overwrite the original file.

6.2.2 Inserting One File Into Another

When a file is to be inserted into another, the r command can be used. For example, if the file table is to
be inserted just after the reference to “Table 1”, the following can be used: -

/Table 1/
Table 1 shows that... (response from ed)
.r table

The critical line is the last one. The .r command reads a file in after dot. An r command without any address
adds lines to the end of the file, so it is equivalent to the $r command.

Page 36

6/82 ISSUE 1 DOCUMENT PROCESSING GUIDE

6.2.3 Writing Out Part of a File

Another feature is writing to another file part of the document that is being edited. For example, it is possi-
ble to split into a separate file the table from the previous example, so it can be formatted or tested separately.
If in the file being edited, there is

—==— text
TS

—=—= lots of stuff
.TE

——= text

(which is the way a table is set up (as explained in Section III) to isolate the table in a separate file called table,
first the start of the table (the .TS line) is found, and then the interesting part is written on file table:

/°\.TS/
.TS (response from ed)
+/"\.TE/w table

The same job can be accomplished with the single command
/*\.TS/;/~\.TE/w table
The point is that the w command can write out a group of lines instead of the whole file. A single line can

be written by using one line number instead of two. For example, if a complicated line was just typed and it
will be needed again, it should be saved and read in later rather than retyped:

a
—~—— lots of stuff
——— stuff to repeat
:w temp
a
——— more stuff
.r temp
a
——— more stuff

6.2.4 Moving Lines Around’

Moving a paragraph from its present position in a paper to the end can be done several ways. For example,
it is assumed that each paragraph in the paper begins with the formatting command “.PP”. The brute force
way (not necessarily bad) is to write the paragraph onto a temporary file, delete it from its current position,

and then read in the temporary file at the end. If dot is at the * PP" command that begins the paragraph, this
is the sequence of commands:

+/*\.PP/=w temp
W /—d
$r temp

This states that from where dot is now until one line before the next “.PP” write onto file temp. The same lines
are deleted and the file temp is read in at the end of the working file.

Page 37

DOCUMENT PROCESSING GUIDE ISSUE 1 6/82

An easier way is to use the move command (m) that ed provides. This does the whole set of operations at
one time without a temporary file. The m command is like many other ed commands in that it takes up to two
line numbers in front to tell which lines are to be affected. It is also followed by a line number that tells where
the lines are to go. Thus:

linel,line2m line3

says “move all the lines from linel through line2 to after line3". Any of “linel”, etc., can be patterns between
.slashes, dollar signs, or other ways to specify lines. If dot is at the first line of the paragraph, the command

o/ “\.PP/—m$
will also accomplish this task.

As another example of a frequent operation, the order of two adjacent lines can be reversed by moving the
first one after the second. If dot is positioned at the first line, then

m+

does it. It says to move the line to after the dot. If dot is positioned on the second line:
m——

does the interchange.

The m command is more concise and direct than writing, deleting, and rereading. The main difficulty with
the m command is that if patterns are used to specify both the line being moved and the target line, they must
be specified properly or the wrong lines may be moved. The result of a botched m command can be a costly mis-
take. Doing the job a step at a time makes it easier to verify that each step accomplished what was wanted.
It is also a good idea to issue a w command before doing anything complicated; then if an error is made, it is.
easy to back up.

6.2.5 Copying Lines

The ed program provides a transfer command (t)for making a copy of a group of one or more lines at any
point. This is often easier than writing and reading. The t command is identical to the m command except in-
stead of moving lines it duplicates them at the place referenced. Thus:

1,5t$

duplicates the entire contents that is being edited. A more common use for t is creating a series of lines that
differ only slightly. For example:

a

——— long line of stuff
.t.. (make a copy)
s/x/y/ (change it a bit)
t. (make third copy)
s/y/z/ (change it a bit)

6.2.6 Morks
The ed program provides for marking a line with a particular name so that the line can be referenced later

by its name regardless of its line number. This can be useful for moving lines and for keeping track of them
as they move. The mark command is k. The mark name must be a single lowercase letter. The command

Page 38

6/82 ISSUE 1 DOCUMENT PROCESSING GUIDE

kx

marks the current line with the name “x”. If a line number precedes the k, that line is marked. The marked
line can then be referred to with the address

'x .

Marks are most useful for moving things around. The first line of the block to be moved is found and marked
with ka. Then the last line is found and marked with kb. Dot is then positioned at the place where the lines
are to go and the following command is performed:

"a,’bm.
Note: Only one line can have a particular mark name associated with it at any given time.

6.3 Temporary Escape

Sometimes it is convenient to temporarily escape from the text editor to do some UNIX operating system
command without leaving the text editor. The escape command (!) provides a way to do this. If the command

!<any UNIX operating system command>

is entered, the current editing state is suspended; and the command asked for is executed. When the command
finishes, ed will return a signal by printing another ! and editing can be resumed.

Any UNIX operating system command may be performed including another ed (this is quite common). In
this case, another ! can be done.

7. Supporting Tools

There are several related tools and techniques which are relatively easy to learn after ed has been learned
because they are based on ed. This section gives some cursory examples of these tools, more to indicate tzeir
existence than to provide a complete tutorial.

7.1 Global Printing From a Set of Files (grep)

Sometimes all occurrences of some word or pattern in a set of files need to be found in order to edit them
or perhaps to verify their presence or absence. It may be possible to edit each file separately and look for the
pattern of interest. If there are many files, this can be tedious; and if the files are really big, it may be impossible
because of limits in ed.

The grep program was written to get around these limitations. Search patterns described in this section
are often called “regular expressions”, and “grep” stands for

g/re/p
This describes what grep does—it prints every line in a set of files that contains a particular pattern. Tzus:
grep ‘string’ filel file2 file3 ...

finds “string” wherever it occurs in any of the files filel, file2 etc. The grep program also indicates the {ile
in which the line was found, so it can be edited later if needed.

The pattern represented by “string” can be any pattern that can be used in the text editor since grep and
ed use the same mechanism for pattern searching. It is wisest to enclose the pattern in single quotes ("™ if

Page 39

DOCUMENT PROCESSING GUIDE ADD ISSUE 1 1/83

it contains any nonalphabetic characters since many such characters also mean something special to the UNIX
operating system command interpreter (the “shell”). Without 'single quotes, the command interpreter will try
to interpret them before grep has the opportunity.

There is also a way to find lines that do not contain a pattern:
grep —v 'string’ filel file2 ...
finds all lines that do not contain “string”. The —v must occur in the position shown. Given grep and grep

—v, it is possible to select all lines that contain some combination of patterns. For example, to obtain all lines
that contain “x” but not “y":

grep x file...lgrep -vy
The pipe notation (i) causes the output of the first command to be used as input to the second command.

7.2 Editing Scripts

If a fairly complicated set of editing operations is to be performed on an entire set of files, the easiest
thing to do is to make a script file, i.e., a file that contains the operations to be performed and then apply
this script to each file in turn. For example, if every instance of “This” needs to be changed to “THIS” and
every instance of “That” needs to be changed to “THAT"” in a large number of files, a file script is made
with the following contents:

g/This/s//THIS/g
g/That/s//THAT/g

w
q

The following is done:
ed filel <script
ed file2 <script
This causes ed to take its commands from the prepared script. The whole job has to be planned in advance.

By using the UNIX operating system command interpreter [sh(1)], a set of files can be cycled automatically
with varying degrees of ease.

Page 40

6/82 ISSUE 1 DOCUMENT PROCESSING GUIDE

STREAM EDITOR
1. Introduction

The stream editor (sed) is a noninteractive context editor that runs on the UNIX operating system. The
sed software is designed to be especially useful in the following cases:

e When editing files too large for comfortable interactive editing

e When editing any size file when the sequence of editing commands is too complicated to be comfortably
typed in interactive mode

e When performing multiple global editing functions efficiently in one pass through the input file.

Because only a few lines of the input file reside in memory at one time and no temporary files are used, the
effective size of a file that can be edited is limited only by the requirement that the i mput and output files fit
simultaneously into available secondary storage.

Complicated editing scripts can be created separately and given to the sed program as a command file. For
complex edits, this saves considerable typing and attendant errors. The sed program running from a command
file is much more efficient than an interactive editor even if that editor can be driven by a prewritten seript.

The principal loss of functions, if compared to an interactive editor, are lack of relative addressing (because
of the line-at-a-time operation) and the lack of immediate verification that a command has done what was in-
tended.

The sed program is a lineal descendant of the text editor, ed. Because of the differences between interactive
and noninteractive operations, considerable changes have been made between ed and sed.

2. Overall Operation

The sed program by default copies the standard input to the standard output, perhaps performing one or
more editing commands on each line before writing it to the output. This behavior may be modified by flags
on the command line. (See Command Line Flags, paragraph 2.1.)

The general format of an editing command is

{addressl,address2] function [arguments]

One or both addresses may be omitted. Any number of blanks or tabs may separate the addresses from the func-
tion. The function must be present. Arguments may be required or optional according to the function given. Tab
characters and spaces at the beginning of lines are ignored.

2.1 Command Line Flags

Three flags are recognized on the command line:

-n tells the sed program not to copy all lines, but only those specified by p (print) functions or
p flags after s (substitute) functions

—~e tells the sed program to take the next argument as an editing command

—f tells the sed program to take the next argument as a file name; the file should contain editing

commands—one to a line.

Page 41

DOCUMENT PROCESSING GUIDE ISSUE 1 6/82

2.2 Order of Application of Editing Commands

Before any input file is opened, all editing commands are compiled into a form which will be moderately
efficient during the execution phase (when the commands are actually applied to lines of the input file).

o Commands are compiled in the order encountered; generally, the order they will be attempted at execu-
tion time.

e Commands are applied one at a time; the input to each command is the output of all preceding com-
mands.

The default linear order of application of editing commands can be changed by the t (test substitution) and
b (branch) flow-of-control commands. When the order of application is changed by these commands, it remains
true that the input line to any command is the output of any previously applied command.

2.3 Pottern Space

The range of pattern matches is called the pattern space. Ordinarily, the pattern space is one line of the
input text, but more than one line can be read into the pattern space by using the next command (N).

2.4 Examples

Examples scattered throughout the following paragraphs use the following standard input text, except
where noted:

In Xanadu did Kubla Khan

A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

The command

2q

will copy the first two lines of the input and quit. The output will be

In Xanadu did Kubla Khan
A stately pleasure dome decree:

3. Selecting lines for Editing

Input file lines that editing commands are to be applied to can be selected by addresses. Addresses may be
either line numbers or context addresses.

The application of a group of commands can be controlled by one address (or address pair) by grouping com-
mands with curly braces ({ }).

3.1 Line Number Addresses

A line number is a decimal integer. As each line is read from the input, a line number counter is increment-
ed. A line number address matches (selects) the input line causing the internal counter to equal the address
line number. The counter runs cumulatively through multiple input files. It is not reset when a new input file
is opened. As a special case, the $ character matches the last line of the last input file.

Page 42

6/82

ISSUE 1 DOCUMENT PROCESSING GUIDE

3.2 Context Addresses

-

A context address is a pattern (a regular expression) enclosed in slashes (/.../). Regular expressions recog-
nized by the sed program are constructed as follows:

An ordinary character is a regular expression and matches that character.

A circumflex (~) at the beginning of a regular expression matches the null characterat thebeginning
of a line.

A dollar sign ($) at the end of a regular expression matches the null character at the end of a line.

The characters (\n) match an embedded newline character but not the newline character at the end
of the pattern space.

A period (.), sometimes called dot, matches any character except the terminal newline character of the
pattern space.

A regular expression followed by an asterisk (*) matches any number (including 0) of adjacent occur-
rences of the regular expression it follows.

A string of characters in square brackets ([]) matches any character in the string and no others. If, how-
ever, the first character of the string is a circumflex (*), the regular expression matches any character
except the characters in the string and the terminal newline character of the pattern space. The circum-
flex is the only metacharacter recognized within the square brackets. If] needs to be in the set of square
brackets, it should be the first nonmetacharacter. For example:

{1].] Includes]
{~})..] Does not include]

A concatenation of regular expressions is a regular expression which matches the concatenation of
strings matched by the components of the regular expression.

A regular expression between the sequences \(and \) is identical in effect to the unadorned regular
expression but has side effects which are described under the s command (substitute function) below.

The expression \d means the same string of characters matched by an expression enclosed in \(and
\) earlier in the same pattern. The dis a single digit; the string specified is that beginning with occur-
rence d of \(counting from the left. For example, the following expression matches a line beginning
with two repeated occurrences of the same string:

“\("W\L

The null regular expression standing alone (e.g., //) is equivalent to the last regular expression com-
piled.

To use one of the special characters (~ $.* []\ /) as a literal character (to match an occurrence of itself
in the input), the special character is preceded by a backslash (\).

For a context address to match, the input requires that the whole pattern within the address match some
portion of the pattern space.

Page 43

DOCUMENT PROCESSING GUIDE ISSUE 1 6/82

3.3 Number of Addresses

Commands in the following paragraphs can have 0, 1, or 2 addresses. Under each command, the maximum
number of allowed addresses is given. For a command to have more addresses than the maximum allowed is
considered an error.

If a command has no addresses, it is applied to every line in the input.

If a command has one address, it is applied to all lines which match that address.

If a command has two addresses, it is applied to the first line which matches the first address and to all
subsequent lines until (and including) the first subsequent line which matches the second address. An attempt

is made on subsequent lines to again match the first address, and the process is repeated. Two addresses are
separated by a comma. Some examples are:

/an/ matches lines 1, 3, and 4 in the sample text
/an.*an/ matches line 1

/~an/ matches no lines

/7 matches all lines

N/ matches line 5

/r*an/ m:cltches iines 1, 3, and 4 (number = 0)

/\(an\)."\1/ matches line 1.
4. Functions

Functions are named by a single alphabetic character. In the following function summaries, the maximum
number of allowable addresses is enclosed in parentheses, followed by the single character function name. Possi-
ble arguments are enclosed in angle brackets (< >), and a description of each function is given. Angle brackets
around arguments are not part of the argument and should not be typed in actual editing commands.

4.1 Whole Line Oriented Functions Summary

(2)d The d function deletes from the file (does not write to the output) those lines matched by
its addresses. It also has the side effect that no further commands are attempted on the
corpse of a deleted line. As soon as the d function is executed, a new line is read from the
input, and the list of editing commands is restarted from the beginning on the new line.

(2)n The n function reads the next line from the input, replacing the current line, and the cur-
rent line is written to the output. The list of editing commands is continued following the
n command.

(1)a\

<text> The a function causes the argument <text> to be written to the output after the line

matched by its address. The a command is inherently multiline; a must appear =t the end
of a line, and <text> may contain any number of lines. To preserve the one-command-to-a-
line fiction, interior newline characters must be hidden by a backslash character (\) imme-
diately preceding the newline character. The <text> is terminated by the first unhidden

Page 44

6/82

(1i\
<text>

(2)e\
<text>

ISSUE 1 DOCUMENT PROCESSING GUIDE

newline character not immediately preceded by a backslash. Once an a function is success-
fully executed, <text> will be written to the output regardless of what later commands
do to the line which triggered it. Even if that line is deleted, <text> will still be written
to the output. The <text> is not scanned for address matches, and no editing commands
are attempted on it. The a function does not cause a change in the line number counter.

The i function behaves identically to the a function except that <text> is written to the
output before the matched line. All ‘other comments about the a function apply to the i
function.

The ¢ function deletes lines selected by its addresses and replaces them with the lines in
<text>. Like a and i, ¢ must be followed by a newline character hidden by a backslash;
interior newline characters in <text> must be hidden by backslashes. The ¢ command may
have two addresses, and therefore select a range of lines. If it does, all lines in the range
are deleted, but only one copy of <text> is written to the output, not one copy per line delet-
ed. As with a and i, <text> is not scanned for address matches, and no editing commands
are attempted on it. It does not change the line number counter. After a line has been de-
leted by a ¢ function, no further commands are attempted on the corpse. If text is appended
after a line by & or r functions and the line is subsequently changed, the text inserted by
the ¢ function will be placed before the text of the a or r functions (the r function is de-
scribed later).

For text put in the output by these functions, leading blanks and tabs will disappear as in sed commands.
To get leading blanks and tabs into the output, the first desired blank or tab is preceded by a backslash: The
backslash will not appear in the output. The list of editing commands for example:

n

a\
XXXX
d

applied to the standard input produces

In Xanadu did Kubla Khan

XXXX

Where Alph, the sacred river, ran

XXX

Down to a sunless sea.

In this particular case, the same effect would be produced by either of the two following command lists:

n
i\
XXXX
d

or

Page 43

DOCUMENT PROCESSING GUIDE ISSUE 1 6/82

n
c\
XXXX

4.2 Substitute Function

One important substitute function that changes parts of lines selected by a context search within the line
is

(2)s<pattern> <replacement> <flags>
The s function replaces the part of a line selected by <pattern> with <replacement>. It can be read

Substitute for <pattern>, <replacement>

4.2.1 Pattern

The <pattern> argumeént contains a pattern exactly like the patterns in addresses. The only difference be-
tween <pattern> and a context address is that the context address must be delimited by slash (/) characters;
<pattern> may be delimited by any character other than space or newline. By default, only the first string
matched by <pattern> is replaced unless the g flag (below) is invoked.

4.2.2 Replacement

The <replacement> argument begins immediately after the second delimiting character of <pattern> and
must be followed immediately by another instance of the delimiting character (thus there are exactly three in-
stances of the delimiting character). The <réplacement> is not a pattern, and the characters which are special
in patterns do not have special meaning in <replacement>. Instead, other characters are special:

\& is replaced by the string matched by <pattern>.

\d isreplaced by substring & (dis a single digit), matched by parts of <pattern>, and enclosed
in \(and \). If nested substrings occur in <pattern>, substring d is determined by count-
ing opening delimiters (\(). As in patterns, special characters may be made literal charac-
ters by preceding them with backslash (\).

4.2.3 Flags
The <flags> argument may contain the following:

g Substitute <replacement> for all nonoverlapping instances of <pattern> in the line. After
a successful substitution, the scan for the next instance of <pattern> begins just after the
end of the inserted characters. Characters put into the line from <replacement> are not
rescanned.

p Print the line if a successful replacement was done. The p flag causes the line to be written
to the output if and only if a substitution was actually made by the s function. If several
s functions, each followed by a p flag, successfully substitute in the same input line, multi-
ple copies of the line will be written to the output—one for each successful substitution.

w <filename> Write the line to a file if a successful replacement was done. The w flag causes lines which
are actually substituted by the s function to be written to a file named by <filename>. If

Page 46

6/82 ISSUE 1 DOCUMENT PROCESSING GUIDE

<filename> exists before sed is run, it is overwritten; if not, it is created. A single space
must separate w and <filename>. The possibilities of multiple, somewhat different copies
of one input line being written are the same as for p. A maximum of ten different file
names may be mentioned after w flags and w functions.
4.2.4 Examples
The command
8/to/by/w changes
applied to the standard input produces on the output
In Xanadu did Kubla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless by man
Down by a sunless sea.
and on the file changes

Through caverns measureless by man
Down by a sunless sea.

If the no-copy option is in effect, the command
s/[.,2)/*P&*/gp
produces
A stately pleasure dome decree*P:*
Where Alph®P,” the sacred river*P,* ran
Down to a sunless sea®P.*
To illustrate the effect of tile g flag, the command
/X/s/an/AN/p
produces (assuming no-copy mode)
In XANadu did Kubla Khan
and the command
/X/s/an/AN/gp
produces
In XANadu did Kubla KhAN
4.3 Input/Output Functions)
(2)p The print function writes addressed lines tp the standard output file. They are written at

the time the p function is encountered regardless of what succeeding editing commands
may do to the lines.

Page 47

DOCUMENT PROCESSING GUIDE ISSUE 1 6/82

(2)w <filename>

(1)r <filename>

The writefunction writes addressed lines to the file named by <filename>. If the file pre-
viously existed, it is overwritten: if not, it is created. The lines are written exactly as they
exist when the write function is encountered for each line regardless of what subsequent
editing commands may do to them. Exactly one space must separate the w and
<filename>. A maximum of ten different files may be mentioned in write functions and
w flags after s functions combined.

The read function reads the contents of <filename> and appends them after the line
matched by the address. The file is read and appended regardless of what subsequent
editing commands do to the line which matched its address. If r and a functions are exe-
cuted on the same line, the text from a functions and r functions is written to the output
in the order that the functions are executed. Exactly one space must separate the r and
<filename>. If a file mentioned by an r function cannot be opened, it is considered a null
file, not an error, and no diagnostic is given.

Note: Since there is a limit to the number of files that can be opened simultaneously, care should be
taken that no more than ten files be mentioned in w functions or flags. That number is reduced by one
if any r functions are present (only one read file is opened at a time).

If the file notel has the following contents

Note: Kubla Khan (more properly Kublai Khan;
1216-1294) was the grandson and most eminent
successor of Genghiz (Chingiz) Khan and founder
of the Mongol dynasty in China.

then the commanad

/Kubla/r notel

produces

In Xanadu did Kubla Khan

Note: Kubla Khan (more properly Kublai Khan;
1216-1294) was the grandson and most eminent
successor of Genghiz (Chingiz) Khan and founder
of the Mongol dynasty in China.

A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

4.4 Multiple Input Line Functions

Three functions, all spelled with capital letters, deal with pattern spaces containing embedded newline char-
acters. They are intended principally to provide pattern matches across lines in the input.

(2N

Page 48

The next input line is appended to the current line in the pattern space. The two input lines
are separated by an embedded newline character. Pattern matches may extend across
embedded newline characters.

6/82

(2)D

(2)P

ISSUE 1 DOCUMENT PROCESSING GUIDE

Delete first part of the pattern space. Delete up to and including the first newline charac-
ter in the current pattern space. If the pattern space becomes empty (the only newline
character was the terminal newline character), read another line from the input. In any
case, begin the list of editing commands again from the beginning.

Print first part of the pattern space. Print up to and including the first newline character
in the pattern space.

The P and D functions are equivalent to their lowercase counterparts if there are no embedded newline
characters in the pattern space.

4.5 Held and Get Functions

Four functions save and retrieve part of the input for possible later use.

(2)h
(2)H
(2g
(2)G

(2)x

Hold pattern space.The h function copies contents of the pattern space into a hold area
destroying previous contents.

Hold pattern space. The H function appends contents of the pattern space to contents of
the hold area. Former and new contents are separated by a newline character.

Get contents of hold area. The g function copies contents of the hold area into the pattern
space destroying previous contents.

Get contents of hold area. The G function appends contents of the hold area to contents
of the pattern space. Former and new contents are separated by a newline character.

Exchange. The exchange command interchanges contents of the pattern space and the hold
area.

The following are examples:

1h
1s/did.*//
1x
G
s\n/ :/

when applied to the standard input text, produce

In Xanadu did Kubla Khan :In Xanadu

A stately pleasure dome decree: :In Xanadu
Where Alph, the sacred river, ran :In Xanadu
Through caverns measureless to man :In Xanadu
Down to a sunless sea. :In Xanadu

4.6 Flow of Control Functions

These functions do no editing on the input lines but control the application of functions to the lines selected

by the address part.

(2)

Don’t
The don’t command causes the next command (written on the same line) to be applied to
those input lines not selected by the address part.

Page 49

DOCUMENT PROCESSING GUIDE ISSUE 6/82

2

(0):<label>

“2Yb<label>

(2)t<label>

Grouping)

The grouping command causes the next set of commands to be applied (or not applied) as
a block to the input lines selected by the addresses of the grouping command. The first of
the commands under control of the grouping may appear on the same line as the { or on
the next line. The group of commands is terminated by a matching } standing on a line by
itself. Groups can be nested.

Place a label

The label function marks a place in the list of editing commands which may be referred
to by b and t functions. The <label> may be any sequence of eight or fewer charzcters.
If two different colon functions have identical labels, a compile time diagnostic will be gen-
erated; and no execution attempted.

Branch to label

The branch function causes the sequence of editing commands being applied to the current
input line to be restarted immediately after the place where a colon function with the same
<label> was encountered. If no colon function with the same label can be found after all
editing commands have been compiled, a compile time diagnostic is produced; and no exe-
cution is attempted. A b function with no <label> is a branch to the end of the list of
editing commands. Whatever should be done with the current input line is done, and an-
other input line is read. The list of editing commands is restarted from the beginning on
the new line.

Test substitutions -

The t function tests whether any successful substitutions have been made on the current
input line; if so, it branches to <label>; if not, it does nothing. The flag which indicates
that a successful substitution has been executed is reset by reading a new input line'and
executing a t function.

4.7 Miscellaneous Functions

(=

{l)q

Page 50

The = function writes to standard output the line number of the line matched by its ad-
dress.

The q function causes the current line to be written to the output (if it should be), any ap-
pended or read text to be written, and execution to be terminated.

6/82 ISSUE 1 DOCUMENT PROCESSING GUIDE

MISCELLANEOUS FACILITIES

Several miscellaneous facilities exist (via UNIX operating system commands) to aid in the development of,
documentation. These facilities are easy to access and are very effective. Their use is beneficial in documentation
development. Some available miscellaneous facilities are described briefly in the following list. The User's
Manual—UNIX Operating System has a more detailed description.

bdiff The bdiff facility is used in a manner analogous to diff to find which lines must be
changed in two files to bring them into agreement. Its purpose is to allow processing of
files which are too large for diff.

cat The cat facility reads each file in sequence and writes it on the standard output. Thus:

cat file

prints the file named file, and
cat filel file2> file3

concatenates filel and file2 and places the result in file3.

cmp The cmp facility compares two files. Under default options, emp makes no comment if the
files are the same; if they differ, it announces the byte and line number at which the differ-
ence occurred.

comm The comm facility selects or rejects lines common to two sorted files. It reads filel and
file2and produces a 3-column output as follows: lines only in filel, lines only in file2 and
lines in both files.

diff The diff facility is a differential file comparator. It tells what lines must be changed in
two files to bring them into agreement.

diff3 The diff3 facility is a 3-way differential file (files up to 64K) comparator. It compares
three versions of a file and publishes disagreeing ranges of text flagged with special codes.

diffmk The diffmk facility marks the differences between files. It compares two versions of a file
and creates a third file that includes “change mark” commands for the nroff or troff
formatter.

grep " Commands of the grep facility search the input files for lines matching a pattern. Normal-

ly, each line found is copied to the standard output. The grep patterns are limited regular
expressions in the style of ed. The egrep patterns are full regular expressions. The fgrep
patterns are fixed strings.

pr The pr facility prints the named files on the standard output. If file is — or if no files are
specified, the standard input is assumed.

sdiff The sdiff facility uses the output of diff(1) to produce a side-by-side listing of two files
indicating those lines that are different. Each line of the two files are printed with a blank
gutter between them if the lines are identical, 2 > in the gutter if the line exists only in
filel, a < in the gutter if the line exists only in file2 and a | for lines that are different.

sort The sort facility sorts lines of all the named files together and writes the results or the
standard output.

Page 51

DOCUMENT PROCESSING GUIDE ISSUE 1 6/82

spell The spell facility collects words from the named files and looks them up in a spelling list.
Words that do not occur in the spelling list nor can be derived from them are printed on
the standard output. The spellin and spellout are two additional subroutines of spell.

split The split facility splits a file into pieces.

typo The typo facility searches through a document for unusual words, typographical errors,
and hapax legomena and prints them on the standard output.

uniq The uniq facility reports repeated lines in a file. It reads the input file comparing adjacent
lines. In the normal case, the second and succeeding copies of repeated lines are removed;
the remainder is written on the output file.

	Cadmus_Munix_II_Document_Processing_Guide-Add1_Seite_01
	Cadmus_Munix_II_Document_Processing_Guide-Add1_Seite_02
	Cadmus_Munix_II_Document_Processing_Guide-Add1_Seite_03
	Cadmus_Munix_II_Document_Processing_Guide-Add1_Seite_04
	Cadmus_Munix_II_Document_Processing_Guide-Add1_Seite_05
	Cadmus_Munix_II_Document_Processing_Guide-Add1_Seite_06
	Cadmus_Munix_II_Document_Processing_Guide-Add1_Seite_07
	Cadmus_Munix_II_Document_Processing_Guide-Add1_Seite_08
	Cadmus_Munix_II_Document_Processing_Guide-Add1_Seite_09
	Cadmus_Munix_II_Document_Processing_Guide-Add1_Seite_11
	Cadmus_Munix_II_Document_Processing_Guide-Add1_Seite_13
	Cadmus_Munix_II_Document_Processing_Guide-Add1_Seite_14
	Cadmus_Munix_II_Document_Processing_Guide-Add1_Seite_15
	Cadmus_Munix_II_Document_Processing_Guide-Add1_Seite_16
	Cadmus_Munix_II_Document_Processing_Guide-Add1_Seite_17
	Cadmus_Munix_II_Document_Processing_Guide-Add1_Seite_18
	Cadmus_Munix_II_Document_Processing_Guide-Add1_Seite_19
	Cadmus_Munix_II_Document_Processing_Guide-Add1_Seite_20
	Cadmus_Munix_II_Document_Processing_Guide-Add1_Seite_21
	Cadmus_Munix_II_Document_Processing_Guide-Add1_Seite_22
	Cadmus_Munix_II_Document_Processing_Guide-Add1_Seite_23
	Cadmus_Munix_II_Document_Processing_Guide-Add1_Seite_24
	Cadmus_Munix_II_Document_Processing_Guide-Add1_Seite_25
	Cadmus_Munix_II_Document_Processing_Guide-Add1_Seite_26
	Cadmus_Munix_II_Document_Processing_Guide-Add1_Seite_27
	Cadmus_Munix_II_Document_Processing_Guide-Add1_Seite_28
	Cadmus_Munix_II_Document_Processing_Guide-Add1_Seite_29
	Cadmus_Munix_II_Document_Processing_Guide-Add1_Seite_30
	Cadmus_Munix_II_Document_Processing_Guide-Add1_Seite_31
	Cadmus_Munix_II_Document_Processing_Guide-Add1_Seite_32
	Cadmus_Munix_II_Document_Processing_Guide-Add1_Seite_33
	Cadmus_Munix_II_Document_Processing_Guide-Add1_Seite_34
	Cadmus_Munix_II_Document_Processing_Guide-Add1_Seite_35
	Cadmus_Munix_II_Document_Processing_Guide-Add1_Seite_36
	Cadmus_Munix_II_Document_Processing_Guide-Add1_Seite_37
	Cadmus_Munix_II_Document_Processing_Guide-Add1_Seite_38
	Cadmus_Munix_II_Document_Processing_Guide-Add1_Seite_39
	Cadmus_Munix_II_Document_Processing_Guide-Add1_Seite_40
	Cadmus_Munix_II_Document_Processing_Guide-Add1_Seite_41
	Cadmus_Munix_II_Document_Processing_Guide-Add1_Seite_42
	Cadmus_Munix_II_Document_Processing_Guide-Add1_Seite_43
	Cadmus_Munix_II_Document_Processing_Guide-Add1_Seite_44
	Cadmus_Munix_II_Document_Processing_Guide-Add1_Seite_45
	Cadmus_Munix_II_Document_Processing_Guide-Add1_Seite_46
	Cadmus_Munix_II_Document_Processing_Guide-Add1_Seite_47
	Cadmus_Munix_II_Document_Processing_Guide-Add1_Seite_48
	Cadmus_Munix_II_Document_Processing_Guide-Add1_Seite_49
	Cadmus_Munix_II_Document_Processing_Guide-Add1_Seite_50

