File System Checking

This document is part of the ADMINISTRATOR'S GUIDE. Therefore the
pagenumbers don't begin with 1.

Trademarks:
MUNIX, CADMUS for PCS
DEC, PDP for DEC
UNIX for Bell Laboratories

Copyright 1984 by
PCS GmbH, Plalzer-Wald-Strasse 36, D-8000 MGnchen 80, tel (089) 67804-0

The information contained herein Is the property of PCS and shall neither be reproduced in
whole or in part without PCS’s prior written approval nor be implied to grant any license to
make, use or sell equipment manufactured herewith.

PCS reserves the right to make changes without notice in the specifications and materials
contained herein and sheall not be responsible for any damages (including consequential)

caused by reliance on the materials presented.

6/82 ISSUE 1 ADMINISTRATOR’S GUIDE

8. FILE SYSTEM CHECKING

The File System Check Program (fsck) is an interactive file system check and repair program. Fsck uses
the redundant structural information in the UNIX file system to perform several consistency checks. If an in-
consistency is detected, it is reported to the operator, who may elect to fix or ignore each inconsistency. These
inconsistencies result from the permanent interruption of the file system updates, which are performed every
time a file is modified. Fsck is frequently able to repair corrupted file systems using procedures based upon
the order in which the UNIX system honors these file system update requests.

The purpose of this section is to describe the normal updating of the file system, to discuss the possible
causes of file system corruption, and to present the corrective actions implemented by fsck. Both the program
and the interaction between the program and the operator are described.

Appendix 8.1 contains the fsck error conditions. The meaning of the various error conditions, possible re-
sponses, and related error conditions are explained.

GENERAL

When a UNIX operating system is brought up, a consistency check of the file systems should always be per-
formed. This precautionary measure helps to ensure a reliable environment for file storage on disk. If an incon-
sistency is discovered, corrective action must be taken. .

The purpose of this section is to dispel the mystique surrounding file system inconsistencies. The section
describes the 5.0 file system, the updating of the file system, and then describes file system corruption. Finally,
the set of heuristically sound corrective actions used by fsck are presented.

THE 5.0 FILE SYSTEM

A. Introduction

The 5.0 file system features a larger internal block size. The block size increased from 512 bytes to 1024 bytes
and increased the performance of 170 bound applications. The size of the internal system buffers also increased
to 1024 bytes. For a 1024-byte block file system, data transfers to/from disk are in 1024-byte operations.

B. Desaiption

A 512-byte block file system is still supported by the operating system and file system related commands.
Both file system sizes are allowed to coexist by detecting the file system type as set in the superblock. At file
system mounting time, the operating system checks the magic number and type fields in the superblock. This
magic number is unique in the sense that it is unlikely to be matched by an old 512-byte file system. A magic
number mismatch assumes an original 512-byte block. New 1024-byte block file systems should have the special
magic number set in the superblock and type field specifying a 1024-byte block. These fields are set at file system
creation time (/ete/mkfs). Also, new file systems with 512-byte blocks may be created. These will have the spe-
cial magic number set and type field indicating a 512-byte block. These fields in the superblock are set at cre-
ation time (/etc/omkfs). Labelit will report the file system type.

No functional changes should be perceived by the user. File system related commands have changed inter-
nally to handle both types of file systems. These changes are transparent to the user; the user interface remains
unchanged. Most commands still report in 512-byte block units.

The root file system will be distributed as a 1024-byte block file system. Users are encouraged to convert
their old file systems to the larger size block. However, 512-byte block file systems are still acceptable.

Page 121

ADMINISTRATOR’S GUIDE ISSUE 1 6/82

C. System Administrator Advice

Remember that system buffers are now 1024 bytes. When configuring the operating system, take into con-
sideration that the same number of buffers as before will use more main memory. Weigh this against reducing
the number of buffers, which reduces the cache hit ratio and degrades performance.

UPDATE OF THE FILE SYSTEM

Every working day hundreds of files are created, modified, and removed. Every time a file is modified, the
UNIX operating system performs a series of file system updates. These updates, when written on disk, yield
a consistent file system. To understand what happens in the event of a permanent interruption in this sequence,
it is important to understand the order in which the update requests were probably being honored. Knowing
which pieces of information were probably written to the file system first, heuristic procedures can be developed
to repair a corrupted file system.

There are five types of file system updates. These involve the superblock, inodes, indirect blocks, data blocks
(directories and files), and free-list blocks.

A. Superblock

The superblock contains information about the size of the file system, the size of the inode list, part of the
free-block list, the count of free blocks, the count of free inodes, and part of the free-inode list.

The superblock of a mounted file system (the root file system is always mounted) is written to the file system
whenever the file system is unmounted or a sync command is issued.

B. Inodes

An inode contains information about the type of inode (directory, data, or special), the number of directory
entries linked to the inode, the list of blocks claimed by the inode, and the size of the inode.

An inode is written to the file system upon closure of the file associated with the inode. (All “in” core blocks
are also written to the file system upon issue of a sync system call.)

C. Indirect Blocks

There are three types of indirect blocks—single indirect, double indirect, and triple indirect. A single-
indirect block contains a list of some of the block numbers claimed by an inode. Each one of the 128 entries in
an indirect block is a data-block number. A double-indirect block contains a list of single-indirect block num-
bers. A triple-indirect block contains a list of double-indirect block numbers.

Indirect blocks are written to the file system whenever they have been modified and released by the operat-
ing system. More precisely, they are queued for eventual writing. Physical 170 is deferred until the buffer is
needed by the UNIX system or a sync command is issued.

D. Data Blocks

A data block may contain file information or directory entries. Each directory entry consists of a file name
and an inode number:

Data blocks are written to the file system whenever they have been modified and released by the operating
system.

Page 122

6/82 ISSUE 1 ADMINISTRATOR’'S GUIDE

E. First Free-list Block

The superblock contains the first free-list block. The free-list blocks are a list of all blocks that are not allo-
cated to the superblock, inodes, indirect blocks, or data blocks. Each free-list block contains a count of the num-
ber of entries in this free-list block, a pointer to the next free-list block, and a partial list of free blocks in the
file system.

Free-list blocks are written to the file system whenever they have been modified and released by the operat-
ing system.

CORRUPTION OF THE FILE SYSTEM

A file system can become corrupted in a variety of ways. The most common of these ways are improper shut-
down procedures and hardware failures.

A. Improper System Shutdown and Startup

File systems may become corrupted when proper shutdown procedures are not observed, e.g., forgetting to
sync the system prior to halting the CPU, physically write-protecting a mounted file system, or taking a
mounted file system off-line,

File systems may become further corrupted if proper startup procedures are not observed, e.g., not checking
a file system for inconsistencies and not repairing inconsistencies. Allowing a corrupted file system to be used
(and, thus, to be modified further) can be disastrous.

8. Hardware Failure

Any piece of hardware can fail at any time. Failures can be as subtle as a bad block on a disk pack or as
blatant as a nonfunctional disk-controller.

DETECTION AND CORRECTION OF CORRUPTION

A quiescent file system (i.e., an unmounted system and not being written on) may be checked for structural
integrity by performing consistency checks on the redundant data intrinsic to a file system. The redundant data
is either read from the file system or computed from other known values. A quiescent state is important during
the checking of a {ile system because of the multipass nature of the fsck program.

When an inconsistency is discovered, fsck reports the inconsistency for the operator to chose a corrective
action.

Discussed in this part are how to discover inconsistencies (and possible corrective actions) for the
superblock, the inodes, the indirect blocks, the data blocks containing directory entries, and the free-list blocks.
These corrective actions can be performed interactively.by the fsck command under control of the operator.

A. Superblock

One of the most common corrupted items is the superblock. The superblock is prone to corruption because
every change to the file system’s blocks or inodes modifies the superblock.

The superblock and its associated parts are most often corrupted when the computer is halted and the last
command involving output to the file system was not a sync command.

The superblock can be checked for inconsistencies involving file-system size, inode-list size, free-block list,
free-block count, and the free-inode count.

Page 123

ADMINISTRATOR’'S GUIDE ISSUE 1 6/82

File-System Size and Inode-list Size

The file-system size must be larger than the number of blocks used by the superblock and the number of
blocks used by the list of inodes. The number of inodes must be less than 65,535. The file-system size and inode-
list size are critical pieces of information to the fsck program. While there is no way to actually check these
sizes, fsck can check for them being within reasonable bounds. All other checks of the file system depend on
the correctness of these sizes.

Free-Block List

The free-block list starts in the superblock and continues through the free-list blocks of the file system. Each
free-list block can be checked for a list count out of range, for block numbers out of range, and for blocks already
allocated within the file system. A check is made to see that all the blocks in the file system were found.

The first free-block list is in the superblock. Fsck checks the list count for a value of less than 0 or greater
than 50. It also checks each block number for a value of less than the first data block in the file system or greater
than the last block in the file system. Then it compares each block number to a list of already allocated blocks.
If the free-list block pointer is nonzero, the next free-list block is read in and the process is repeated.

When all the blocks have been accounted for, a check is made to see if the number of blocks used by the
free-block list plus the number of blocks claimed by the inodes equals the total number of blocks in the file sys-
tem.

If anything is wrong with the free-block list, then fsck may rebuild the list, excluding all blocks in the list
of allocated blocks. ‘

Free-Block Count

The superblock contains a count of the total number of free blocks within the file system. Fsck compares
this count to the number of blocks it found free within the file system. If the counts do not agree, then fsck
may replace the count in the superblock by the actual free-block count.

Free-Inode Count

The superblock contains a count of the total number of free inodes within the file system. Fsck compares
this count to the number of inodes it found free within the file system. If the counts do not agree, then fsck
may replace the count in the superblock by the actual free-inode count.

B. Inodes

Anindividual inode is not as likely to be corrupted as the superblock. However, because of the great number
of active inodes, there is almost as likely a chance for corruption in the inode list as in the superblock.

The list of inodes is checked sequentially starting with inode 1 (there is no inode 0) and going to the last
inode in the file system. Each inode can be checked for inconsistencies involving format and type, link count,
duplicate blocks, bad blocks, and inode size.

Format and Type.

Each inode contains a mode word. This mode word describes the type and state of the inode. Inodes may
be one of four types:

e regular

e directory

Page 124

6/82 ISSUE 1 ADMINISTRATOR’S GUIDE

e special block
e special character.

If an inode is not one of these types, then the inode has an illegal type. Inodes may be found in one of three
states—unallocated, allocated, and neither unallocated nor allocated. This last state indicates an incorrectly for-
matted inode. An inode can get in this state if bad data is written into the inode list through, for example, a
hardware failure. The only possible corrective action is for fsck to clear the inode.

Link Count

Contained in each inode is a count of the total number of directory entries linked to the inode. Fsck verifies
the link count of each inode by traversing down the total directory structure, starting from the root directory,
and calculating an actual link count for each inode.

If the stored link count is nonzero and the actual link count is zero, it means that no directory entry appears
for the inode. If the stored and actual link counts are nonzero and unequal, a directory entry may have been
added or removed without the inode being updated.

If the stored link count is nonzero and the actual link count is zero, fsck may link the disconnected file to
the lost+found directory. If the stored and actual link counts are nonzero and unequal, fsck may replace the
stored link count by the actual link count.

Duplicate Blocks

Contained in each inode is a list or pointers to lists (indirect blocks) of all the blocks claimed by the inode.
Fsck compares each block number claimed by an inode to a list of already allocated blocks. If a block number
is already claimed by another inode, the block number is added to a list of duplicate blocks. Otherwise, the list
of allocated blocks is updated to include the block number. If there are any duplicate blocks, fsck will make
a partial second pass of the inode list to find the inode of the duplicated block. This is necessary because without
examining the files associated with these inodes for correct content there is not enough information available
to decide which inode is corrupted and should be cleared. Most times, the inode with the earliest modify time
is incorrect and should be cleared. This condition can occur by using 3 file system with blocks claimed by both
the free-block list and by other parts of the file system.

If there is a large number of duplicate blocks in an inode, this may be due to an indirect block not being
written to the file system. Fsck will prompt the operator to clear both inodes.

Bad Blocks

Contained in each inode is a list or pointer to lists of all the blocks claimed by the inode. Fsck checks each
block number claimed by an inode for a value lower than that of the first data block or greater than the last
block in the file system. If the block number is outside this range, the block number is a bad block number.

If there is a large number of bad blocks in an inode, this may be due to an indirect block not being written
to the file system. Fsck will prompt the operator to clear both inodes.

Size Checks

Each inode contains a 32 bit (4-byte) size field. This size indicates the number of characters in the file associ-
ated with the inode. This size can be checked for inconsistencies, e.g., directory sizes that are not a multiple of
16 characters or the number of blocks actually used not matching that indicated by the inode size.

A directory inode within the UNIX file system has the directory bit on in the inode mode word. The directory
size must be a multiple of 16 because a directory entry contains 16 bytes (2 bytes for the inode number and 14
bytes for the file or directory name).

Page 125

ADMINISTRATOR'S GUIDE ISSUE 1 6/82

Fsck will warn of such directory misalignment. This is only a warning because not enough information can
be gathered to correct the misalignment.

A rough check of the consistency of the size field of an inode can be performed by computing from the size
field the number of blocks that should be associated with the inode and comparing it to the actual number of
blocks claimed by the inode.

Fsck calculates the number of blocks that there should be in an inode by dividing the number of characters
in an inode by the number of characters per block and rounding up. Fsck adds one block for each indirect block
associated with the inode. If the actual number of blocks does not match the computed number of blocks, fsck
will warn of a possible file-size error. This is only a warning because the UNIX system does not fill in blocks
in files created in random order.

C. Indirect Blocks

Indirect blocks are owned by an inode. Therefore, inconsistencies in indirect blocks directly affect the inode
that owns it.

Inconsistencies that can be checked are blocks already claimed by another inode and block numbers outside
the range of the file system.

For a discussion of detection and correction of the inconsistencies associated with indirect blocks, see the
parts “Duplicate Blocks” and “Bad Blocks".

D. Data Blocks

The two types of data blocks are plain data blocks and directory data blocks. Plain data blocks contain the
information stored in a file. Directory data blocks contain directory entries. Fsck does not attempt to check
the validity of the contents of a plain data block.

Each directory data block can be checked for inconsistencies involving directory inode numbers pointing
to unallocated inodes, directory inode numbers greater than the number of inodes in the file system, incorrect

directory inode numbers for “.” and “."”, and directories which are disconnected from the file system. In addi-
tion, the validity of the contents of a directory’s data block is checked.

If a directory entry inode number points to an unallocated inode, then fsck may remove that directory en-
try. This condition probably occurred because the data blocks containing the directory entries were modified
and written out while the inode was not yet written out.

If a directory entrv inode number is pointing beyond the end of the inode list, fsck may remove that direc-
tory entry. This condition occurs if bad data is written into a directory data block.

The directory inode number entry for “.” should be the first entry in the directory data block. Its value
should be equal to the inode number for the directory data block.

The directory inode number entry for “..” should be the second entry in the directory data block. Its value
should be equal to the inode number for the parent of the directory entry (or the inode number of the directory
data block if the directory is the root directory).

If the directory inode numbers are incorrect, fsck may replace them by the correct values.

Fsck checks the general connectivity of the file system. If directories are found not to be linked into the
file system, fsck will link the directory back into the file system in the Jost+found directory. This condition

Page 126

6/82 ISSUE 1 ADMINISTRATOR’S GUIDE
can be caused by inodes being written to the file system with the corresponding directory data blocks not being
written to the file system.

E. Free-list Blocks

Free-list blocks are owned by the superblock. Therefore, inconsistencies in free-list blocks directly affect
the superblock.

Inconsistencies that can be checked are a list count outside of range, block numbers outside of range, and
blocks already associated with the file system. ’

For a discussion of detection and correction of the inconsistencies associated with free-list blocks, see the
part “Free-Block List”.

Page 127

ADMINISTRATOR’S GUIDE ISSUE 1 6/82

APPENDIX 8.1
FSCK ERROR CONDITIONS

A. Conventions

Fsck is a multipass file system check program. Each file system pass invokes a different phase of the fsck
program. After the initial setup, fsck performs successive phases over each file system performing cleanup,
checking blocks and sizes, pathnames, connectivity, reference counts, and the free-block list (possibly rebuilding
it).

When an inconsistency is detected, fsek reports the error condition to the operator. If a response is re-
quired, fsck prints a prompt message and waits for a response. This appendix explains the meaning of each
error condition, the possible responses, and the related error conditions.

The error conditions are organized by the “Phase” of the fsck program in which they can occur. The error
conditions that may occur in more than one phase will be discussed under the part “Initialization”.

B. Initialization

Before a file system check can be performed, certain tables have to be set up and certain files opened. This
part concerns itself with the opening of files and the initialization of tables. Error conditions resulting from
command line options, memory requests, opening of files, status of files, file system size checks, and creation

of the scratch file are listed below.

C option?

C is not a legal option to fsck; legal options are —y, —n, —s, —S, —t, —f, —q, and —D. Fsck terminates on
this error condition. See the fsck(1M) entry in the UNIX System Administrator’s Manual for further details.

Bad —t option

The —t option is not followed by a file name. Fsck terminates on this error condition. See the fsck(1M)
entry in the UNIX Svstem Administrator’s Manual for further details.

Invalid —s argument, defaults assumed

The —s option is not suffixed by 3, 4, or blocks-per-cylinder:blocks-to-skip. Fsck assumes a default value
of 400 blocks-per-cylinder and 7 blocks-to-skip. See the fsck(1M) entryv in the UNIX Svstem Administrator’s
Manual for further details.

incompatible options: —n and —s

It is not possible to salvage the free-block list without modifving the file system. Fsck terminates on this
error condition. See the fsck(1M) entry in the UNIX Svstem Administrator's Manual for further details.

Incompatible options: —n and —q

It is not possible to do automatic removal without modifying the file system. Fsck terminates on this error
condition. See the fsck(1M) entry in the UNIX System Administrator's Manual for further details.

Can not fstat standord input

Fsck's attempt to fstat standard input failed. This should never happen. Fsck terminates on this error
condition.

Page 128

6/82 ISSUE 1 ADMINISTRATOR’S GUIDE

Can not get memory

Fsck's request for memory for its virtual memory tables failed. This should never happen. Fsck terminates
on this error condition.

Can not open checklist file: F

The default file system checklist file F(usually /ete/checklist) can not be opened for reading. Fsck termi-
nates on this error condition. Check access modes of F.

Can not stat root

Fsck's request for statistics about the root directory “/” failed. This should never happen. Fsck terminates
on this error condition.

Can not stat F

Fsck’s request for statistics about the file system F failed. It ignores this file systemand continues checking
the next file system given. Check access modes of F.

FS is a mounted file system, ignored

This is to avoid modifying a mounted file system. It ignores this file system and continues with the next
file system given. :

F is not a block or character device

Fsck has been given a regular file name by mistake. It ignores this file system and continues checking the
next file system given. Check file type of F.

Can not open F

The file system Fcan not be opened for reading. It ignores this file system and continues checking the next
file system given. Check access modes of F.

Size check: Kize X isize Y

More blocks are used for the inode list Y than there are blocks in the file system X, or there are more than
65,535 inodes in the file system. It ignores this file system and continues checking the next file system given.

Can not ceate F

Fsck's request to create a scratch file Ffailed. It ignores this file system and continues checking the next
file system given. Check access modes of F.

CAN NOT SEEK: BLK B (CONTINUE)
Fsck’s request for moving to a specified block number Bin the file system failed. This should never happen.
Possible responses to CONTINUE prompt are:

YES Attempt to continue to run file system check. Often, however, the problem will persist.
This error condition will not allow a complete check of the file system. A second run of

Page 129

ADMINISTRATOR’S GUIDE ISSUE 1 6/82

fsck should be made to recheck this file system. If block was part of the virtual memory
buffer cache, fsck will terminate with the message “Fatal 1/0 error”.

NO Terminate program.

CAN NOT READ: BLX B (CONTINUE)

Fsck's request for reading a specified block number Bin the file system failed. This should never happen.
Possible responses to CONTINUE prompt are:

YES Attempt to continue to run file system check. Often, however, the problem will persist.
This error condition will not allow a complete check of the file system. A second run of
fsck should be made to recheck this file system. If block was part of the virtual memory
buffer cache, fsck will terminate with the message “Fatal I/0 error”.

NO Terminate program.

CAN NOT WRITE: BIX B (CONTINUE)

Fsck's request for writing a specified block number Bin the file system failed. The disk is write-protected.

Possible responses to CONTINUE prompt are:

YES Attempt to continue to run file system check. Often, however, the problem will persist.
This error condition will not allow a complete check of the file system. A second run of
fsck should be made to recheck this file system. If block was part of the virtual memory
buffer cache, fsck will terminate with the message “Fatal 1/0 error”.

NO Terminate program.

C. PHASE 1: CHECK BLOCKS AND SIZES

This phase concerns itself with the inode list. This part lists error conditions resulting from checking inode
types, setting up the zero-link-count table, examining inode block numbers for bad or duplicate blocks, checking
inode size, and checking inode format.

UNKNOWN FILE TYPE I=1 (CLEAR)

The mode word of the inode I indicates that the inode is not a special character inode, special character
inode, regular inode, or directory inode. See the part “Format and Types” for more information.

Possible responses to CLEAR prompt are:

YES Deallocate inode I by zeroing its contents. This will always invoke the UNALLOCATED
error condition in Phase 2 for each directory entry pointing to this inode.

NO Ignore this error condition.

UNK COUNT TABLE OVERFLOW (CONTINUE)

An internal table for fsck containing allocated inodes with a link count of zero has no more room. Recompile
fsck with a larger value of MAXLNCNT.

Page 130

6/82 ISSUE 1 ADMINISTRATOR'S GUIDE

Possible responses to CONTINUE prompt are:

YES Continue with program. This error condition will not allow a complete check of the file sys-
tem. A second run of fsck should be made to recheck this file system. If another allocated
inode with a zero link count is found, this error condition is repeated.

NO Terminate program.
B BAD I=I

Inode I contains block number B with a number lower than the number of the first data block in the file
system or greater than the number of the last block in the file system. This error condition may invoke the EX-
CESSIVE BAD BLKS error condition in Phase 1 if inode I has too many block numbers outside the file system
range. This error condition will always invoke the BAD/DUP error condition in Phase 2 and Phase 4. See the
part “Bad Blocks” for more information.

EXCESSIVE BAD BLKS I=] (CONTINUE)

There is more than a tolerable number (usually 10) of blocks with a number lower than the number of the
first data block in the file system or greater than the number of last block in the file system associated with
inode L See the part “Bad Blocks” for more information.

Possible responses to CONTINUE prompt are:

YES Ignore the rest of the blocks in this inode and continue checking with next inode in the file
system. This error condition will not allow a complete check of the file system. A second
run of fsck should be made to recheck this file system.

NO Terminate program.

B DUP I=|

Inode Icontains block number Bwhich is already claimed by another inode. This error condition may invoke
the EXCESSIVE DUP BLKS error condition in Phase 1 if inode Ihas too many block numbers claimed by other
inodes. This error condition will always invoke Phase 1b and the BAD/DUP error condition in Phase 2and Phase
4. See the part “Duplicate Blocks” for more information.

EXCESSIVE DUP BLKS 1=1 (CONTINUE)

There is more than a tolerable number (usually 10) of blocks claimed by other inodes. See the part “Dupli-
cate Blocks” for more information.

“Possible responses to CONTINUE prompt are:

YES Ignore the rest of the blocks in this inode and continue checking with next inode in the file
system. This error condition will not allow a complete check of the file system. A second
run of fsck should be made to recheck this file system.

NO Terminate program.

DUP TABLE OVERFLOW (CONTINUE)

An internal table in fsck containing duplicate block numbers has no more room. Recompile fsck with a
larger value of DUPTBLSIZE.

Page 131

ADMINISTRATOR’S GUIDE ISSUE 1 6/82

Possible responses to CONTINUE prompt are:

YES Continue with program. This error condition will not allow a complete check of the file sys-
tem. A second run of fsck should be made to recheck this file system. If another duplicate
block is found, this error condition will repeat.

NO Terminate program.
POSSIBLE FILE SIZE ERROR I=I

The inode Isize does not match the actual number of blocks used by the inode. This is only a warning. (See
the part “Size Checks”.) If the —q option is used, this message is not printed.

DIRECTORY MISAUGNED I=I|

The size of a directory inode is not 2 multiple of the size of a directory entry (usually 16). This is only a warn-
ing. (See the part “Size Checks”.) If the —q option is used, this message is not printed.

PARTIALLY ALLOCATED INODE I=] (CLEAR)
Inode Iis neither allocated nor unallocated. See the part “Fc;rmat and Types” for more information.
Possible responses to CLEAR prompt are:

YES Deallocate ‘inode I by zeroing its contents.

NO Ignore this error condition.

D. PHASE 1B: RESCAN FOR MORE DUPS

When a duplicate block is found in the file system, the file system is rescanned to find the inode which previ-
ously claimed that block. This part lists the error condition when the duplicate block is found.

B DUP =1

Inode I contains block number Bwhich is already claimed by another inode. This error condition will always
invoke the BAD/DUP error condition in Phase 2. Inodes with overlapping blocks may be determined by examin-
ing this error condition and the DUP error condition in Phase 1. See the part “Duplicate Blocks” for more infor-
mation.

E. PHASE 2: CHECK PATHNAMES

This phase concerns itself with removing directory entries pointing to error conditioned inodes from Phase
1 and Phase 1b. This part lists error conditions resulting from root inode mode and status, directory inode point-
ers in range, and directory entries pointing to bad inodes.

ROOT INODE UNALLOCATED. TERMINATING

The root inode (always inode number 2) has no allocate mode bits. This should never happen. The program
will terminate. See the part “Format and Types” for more information.

ROOT INODE NOT DIRECTORY (FIX)

The root inode (usually inode number 2) is not directory inode type.

Page 132

6/82 ISSUE ! ADMINISTRATOR’'S GUIDE

Possible responses to FIX prompt are:

YES Replace the root inode’s type to be a directory. If the root inode's data blocks are not direc-
tory blocks, a very large number of error conditions will be produced.

NO Terminate program.

DUPS/BAD IN ROOT INODE (CONTINUE)

Phase 1 or Phase 1b have found duplicate blocks or bad blocks in the root inode (usually inode number 2)
for the file system.

Possible responses to CONTINUE prompt are:

YES Ignore DUPS/BAD error condition in root inode and attempt to continue to run the file
system check. If root inode is not correct, then this may result in a large number of other
error conditions.

NO Terminate program.

| OUT OF RANGE I=| NAME=F (REMOVE)

A directory entry Fhas an inode number I which is greater than the end of the inode list. See the part *Data
Blocks” for more information.

Possible responses to REMOVE prompt are:
YES The directory entry Fis removed.
NO Ignore this error condition.
UNALLOCATED !=| OWNER=0 MODE=M SIZE=S MTIME=T NAME=F (REMOVE)
A directory entry F has an inode I without allocate mode bits. The owner O, mode M, size S, modify time
T, and file name Fare printed. If the file system is not mounted and the —n option was not specified, the entry
will be removed automatically if the inode it points to is character size 0.
Possible responses to REMOVE prompt are:
YES The directory entry Fis removed.
NO Ignore this error condition.

DUP/BAD I=1 OWNER=0 MODE=M SIZE=S MTIME=T DIR=F (REMOVE)

Phase 1 or Phase 1b have found duplicate blocks or bad blocks associated with directory entry F, directory
inode I The owner O, mode M, size S, modify time T, and directory name F are printed.

Possible responses to REMOVE prompt are:
YES The directory entry Fis removed.
NO Ignore this error condition.
DUP/BAD I=1 OWNER=0 MODE=M SIZE=S MTIME=T FILE=F (REMOVE)

Phase 1 or Phase 1b have found duplicate blocks or bad blocks associated with directory entry F, inode L
The owner O, mode M, size S, modify time 7T, and file name F are printed.

Page 133

ADMINISTRATOR'S GUIDE ISSUE 1} 6/82

Possible responses to REMOVE prompt are:
YES The directory entry Fis removed.
NO Ignore this error condition.
BAD BLK B IN DIR I=1 OWNER=0 MODE=M SIZE=S MTIME=T

A bad block was found in DIR inode L This message only occurs when the —q option is used. Error conditions
looked for in directory blocks are nonzero padded entries, inconsistent “.” and “..” entries, and imbedded slashes
in the name field. This error message indicates that the user should at a later time either remove the directory
inode if the entire block looks bad or change (or remove) those directory entries that look bad.

F. PHASE 3: CHECK CONNECTIVITY

This phase concerns itself with the directory connectivity seen in Phase 2 This part lists error conditions
resulting from unreferenced directories and missing or full lost+found directories.

UNREF DIR 1=1| OWNER=0 MODE=M SIZE=S MTIME=T (RECONNECT)

The directory inode I was not connected to a directory entry when the file system was traversed. The owner
O, mode M, size S, and modify time T of directory inode I are printed. Fsck will force the reconnection of a
nonempty directory.

Possible responses to RECONNECT prompt are:

YES Reconnect directory inode I to the file system in directory for lost files (usually lost+
found). This may invoke lost+found error condition in Phase 3 if there are problems con-
necting directory inode J to lost+found This may also invoke CONNECTED error condi-
tion in Phase 3 if link was successful.

NO Ignore this error condition. This will always invoke UNREF error condition in Phase 4.

SORRY. NO lost+found DIRECTORY

There is no Jost+found directory in the root directory of the file system; fsck ig'riores the request to link
a directory in lost+found This will always invoke the UNREF error condition in Phase 4. Check access modes
of lost+found. See fsck(1M) in the UNIX Svstem Administrator’s Manual for further details.

SORRY. NO SPACE IN lost+found DIRECTORY

There is no space to add another entry to the lost+found directory in the root directory of the file system;
fsck ignores the request to link a directory in lost+found This will always invoke the UNREF error condition
in Phase 4. Clean out unnecessary entries in Jost+found or make lost+found larger. See fsck(1M) in the UNIX
System Administrator's Manual for further details.

DIR 1=11 CONNECTED. PARENT WAS 1=]2

This is an advisory message indicating a directory inode II was successfully connected to the lost+found
directory. The parent inode I20f the directory inode I1 is replaced by the inode number of the lost+found direc-
tory. See the parts “Link Count” and “Data Blocks” for more information.

G. PHASE 4: CHECK REFERENCE COUNTS

This phase concerns itself with the link count information seen in Phase 2 and Phase 3. This part lists error
conditions resulting from unreferenced files, missing or full Jost+founddirectory, incorrect link counts for files,

Poge 134

6/82 ISSUE 1 ADMINISTRATOR’S GUIDE

directories, or special files, unreferenced files and directories, bad and duplicate blocks in files and directories,
and incorrect total free-inode counts.

UNREF FILE |=| OWNER=0 MODE=M SIZE=S MTIME=T (RECONNECT)

Inode I was not connected to a directory entry when the file system was traversed. The owner O, mode M,
size S, and modify time T of inode I are printed. (See the part “Link Count”.) If the —n option is not set and
the file system is not mounted, empty files will not be reconnected and will be cleared automatically.

Possible responses to RECONNECT prompt are:

YES Reconnect inode I to file system in the directory for lost files (usually lost+found). This

may invoke Jost+found error condition in Phase 4 if there are problems connecting inode
Ito lost+found.

NO Ignore this error condition. This will always invoke CLEAR error condition in Phase 4.

SORRY. NO lost+found DIRECTORY

There is no lost+found directory in the root directory of the file system; fsck ignores the request to link
a file in lost+found This will always invoke CLEAR error condition in Phase 4. Check access modes of lost+

found
SORRY. NO SPACE IN lost+found DIRECTORY

There is no space to add another entry to the lost+found directory in the root directory of the file system;
fsck ignores the request to link a file in Jost+found This will always invoke the CLEAR error condition in
Phase 4. Check size and contents of lost+found
(CLEAR)

The inode mentioned in the immediately previous error condition can not be reconnected. See the part “Link
Count” for more information.

Possible responses to CLEAR prompt are:

YES Deallocate inode mentioned in the immediately previous error condition by zeroing its con-
tents.
NO Ignore this error condition.

LINK COUNT FILE 1=! OWNER=0 MODE=M SIZE=S MTIME=T COUNT=X SHOULD BE Y (ADJUST)

The link count for inode I which is a file, is X but should be Y. The owner O, mode M, size S, and modify
time T are printed. See the part “Link Count” for more information.

Possible responses to ADJUST prompt are:
YES Replace link count of file inode I with Y.
NO Ignore this error condition.
UNK COUNT DIR 1=1 OWNER=0 MODE=M SIZE=S MTIME=T COUNT=X SHOULD BE Y (ADJUST)

The link count for inode I, which is a directory, is Xbut should be Y. The owner O, mode M, size S, and modify
time T of directory inode I are printed.

Page 135

ADMINISTRATOR’S GUIDE ISSUE 1 6/82

Possible responses to ADJUST prompt are:
YES Replace link count of directory inode I with Y.
NO Ignore this error condition.
UNK COUNT F I=] OWNER=0 MODE=M SIZE=S MTIME=T COUNT=X SHOULD BE Y (ADJUST)

The link count for Finode Iis X but should be Y. The file name F, owner O, mode M, size S, and modify
time T are printed.

Possible responses to ADJUST prompt are:
YES Replace link count of inode J with Y.
NO Ignore this error condition.

UNREF FILE i=] OWNER=0 MODE=M SIZE=$S MTIME=T (CLEAR)

Inode I which is a file, was not connected to a directory entry when the file system was traversed. The owner
O, mode M, size S, and modify time T of inode I are printed. (See the parts “Link Counts” and “Data Blocks”.)
If the —n option is not set and the file system is not mounted, empty files will be cleared automatically.
Possible responses to CLEAR prompt are:
YES Deallocate inode I by zeroing its contents.
NO Ignore this error condition.

UNREF DIR 1= OWNER=0 MODE=M SIZE=S MTIME=T (CLEAR)

Inode I, which is a directory, was not connected to a directory entry when the file system was traversed.
The owner O, mode M, size S, and modify time T of inode I are printed. If the —n option is not set and the file
system is not mounted, empty directories will be cleared automatically. Nonempty directories will not be
cleared.

Possible responses to CLEAR prompt are:

YES Deallocate inode I by zeroing its contents.
NO Ignore this error condition.

BAD/DUP FILE =] OWNER=0 MODE=M SIZE=S MTIME=T (CLEAR)

Phase 1 or Phase 1b have found duplicate blocks or bad blocks associated with file inode L The owner O,
mode M, size S, and modify time T of inode I are printed. See the parts “Duplicate Blocks” and “Bad Blocks”
for more information.

Possible responses to CLEAR prompt are:
YES Deallocate inode I by zeroing its contents.

NO Ignore this error condition.

Poge 136

6/82 ISSUE 1 ADMINISTRATOR’S GUIDE

BAD/DUP DIR I=| OWNER=O MODE=M SIZE=$S MTIME=T (CLEAR)

Phase 1 or Phase 1b have found duplicate blocks or bad blocks associated with directory inode I The owner
O, mode M, size S, and modify time T of inode [are printed.

Possible responses to CLEAR prompt are:
YES Deallocate inode I by zeroing its contents.
NO Ignore this error condition.
FREE INODE COUNT WRONG IN SUPERBLK (FIX)

The actual count of the free inodes does not match the count in the superblock of the file system. (See the
part “Free-Inode Count”.) If the —q option is specified, the count will be fixed automatically in the superblock.

Possible responses to FIX prompt are:
YES Replace count in superblock by actual count.
NO Ignore this error condition.
H. PHASE 5: CHECK FREE UST

This phase concerns itself with the free-block list. This part lists error conditions resulting from bad blocks
in the free-block list, bad free-blocks count, duplicate blocks in the free-block list, unused blocks from the file
system not in the free-block list, and the total free-block count incorrect.

EXCESSIVE BAD BLKS IN FREE UST (CONTINUE)

The free-block list contains more than a tolerable number (usually 10) of blocks with a value less than the
first data block in the file system or greater than the last block in the file system. See the parts “Free-Block
List” and “Bad Blocks” for more information.

Possible responses to CONTINUE prompt are:

YES Ignore rest of the free-block list and continue execution of fsck. This error condition will
always invoke “BAD BLKS IN FREE LIST” error condition in Phase 5.

NO Terminate program.
EXCESSIVE DUP BLKS IN FREE LIST (CONTINUE)

The free-block list contains more than a tolerable number (usually 10) of blocks claimed by inodes or earlier
parts of the free-block list.

Possible responses to CONTINUE prompt are:

YES Ignore the rest of the free-block list and continue execution of fsck. This error condition
will always invoke “DUP BLKS IN FREE LIST” error condition in Phase 5.

NO Terminate program.

Page 137

ADMINISTRATOR'S GUIDE ISSUE 1 6/82

BAD FREEBLK COUNT

The count of free blocks in a free-list block is greater than 50 or less than 0. This error condition will always
invoke the “BAD FREE LIST” condition in Phase 5.

X BAD BLKS IN FREE LST

X blocks in the free-block list have a block number lower than the first data block in the file system or
greater than the last block in the file system. This error condition will always invoke the “BAD FREE LIST”
condition in Phase 5. See the parts “Free-Block List” and “Bad Blocks” for more information.

X DUP BLKS IN FREE UST

X blocks claimed by inodes or earlier parts of the free-list block were found in the free-block list. This error
condition will always invoke the “BAD FREE LIST” condition in Phase 5.

X BLK(S) MISSING

X blocks unused by the file system were not found in the free-block list. This error condition will always
invoke the “BAD FREE LIST” condition in Phase 5. See the part “Free-Block List” for more information.

FREE BLK COUNT WRONG IN SUPERBLOCK (FIX)

The actual count of free blocks does not match the count in the superblock of the file system. See the part
“Free-Block Count” for more information.

Possible responses to FIX prompt are:
YES Replace count in superblock by actual count.
NO Ignore this error condition.

BAD FREE UST (SALVAGE)

Phase 5 has found bad blocks in the free-block list, duplicate blocks in the free-block list, or blocks missing
from the file system. If the —q option is specified, the free-block list will be salvaged automatically.

Possible responses to SALVAGE prompt are:

YES Replace actual free-block list with a new free-block list. The new free-block list will be or-
dered to reduce time spent by the disk waiting for the disk to rotate into position.

NO Ignore this error condition.

l. PHASE é: SALVAGE FREE LST

This phase concerns itself with the free-block list reconstruction. This part lists error conditions resulting
from the blocks-to-skip and blocks-per-cylinder values.

Default free-block list spacing assumed

This is an advisory message indicating the blocks-to-skip is greater than the blocks-per-cylinder, the blocks-
to-skip is less than one, the blocks-per-cylinder is less than one, or the blocks-per-cylinder is greater than 1000.

Poge 138

6/82 ISSUE 1 ADMINISTRATOR'S GUIDE

The default values of 7 blocks-to-skip and 400 blocks-per-cylinder are used. See fsck(1M) in the UNIX System
Administrator's Manual for further details.

J. CLEANUP

Once a file system has been checked, a few cleanup functions are performed. This part lists advisory mes-
sages about the file system and modify status of the file system.

X files Y blocks Z free

This is an advisory message indicating that the file system checked contained X files using Y blocks leaving
Z blocks free in the file system.

***** BOOT UNIX (NO SYNCl) *=****

This is an advisory message indicating that a mounted file system or the root file system has been modified
by fsck. If the UNIX system is not rebooted immediately, the work done by fsck may be undone by the in-core
copies of tables the UNIX system keeps.

***** FILE SYSTEM WAS MODIFIED ****"

This is an advisory message indicating that the current file system was modified by fsck. If this file system
is mounted or is the current root file system, fsck should be halted and the UNIX system rebooted. If the UNIX
system is not rebooted immediately, the work done by fsck may be undone by the in-core copies of tables.

ADMINISTRATOR'S GUIDE ISSUE 1 6/82

NOTES

Page 140

	Cadmus_Munix_II_File_system_checking_Seite_01
	Cadmus_Munix_II_File_system_checking_Seite_02
	Cadmus_Munix_II_File_system_checking_Seite_03
	Cadmus_Munix_II_File_system_checking_Seite_04
	Cadmus_Munix_II_File_system_checking_Seite_05
	Cadmus_Munix_II_File_system_checking_Seite_06
	Cadmus_Munix_II_File_system_checking_Seite_07
	Cadmus_Munix_II_File_system_checking_Seite_08
	Cadmus_Munix_II_File_system_checking_Seite_09
	Cadmus_Munix_II_File_system_checking_Seite_10
	Cadmus_Munix_II_File_system_checking_Seite_11
	Cadmus_Munix_II_File_system_checking_Seite_12
	Cadmus_Munix_II_File_system_checking_Seite_13
	Cadmus_Munix_II_File_system_checking_Seite_14
	Cadmus_Munix_II_File_system_checking_Seite_15
	Cadmus_Munix_II_File_system_checking_Seite_16
	Cadmus_Munix_II_File_system_checking_Seite_17
	Cadmus_Munix_II_File_system_checking_Seite_18
	Cadmus_Munix_II_File_system_checking_Seite_19
	Cadmus_Munix_II_File_system_checking_Seite_20
	Cadmus_Munix_II_File_system_checking_Seite_21
	Cadmus_Munix_II_File_system_checking_Seite_22

