UNIX Sytem V

Init and Getty

Trademarks:
MUNIX, CADMUS for PCS
DEC, PDP for DEC
UNIX for Bell Laboratories

Copyright 1984 by
PCS GmbH, Pfalzer-Wald-Strasse 38, D-8000 Manchen 90, tel (089) 87804-0

The information contained herein is the property of PCS and shall neither be reproduced in
whole or in part without PCS’s prior written approval nor be implied to grant any license to
make, use or sell equipment manufactured herewith.

PCS reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages (including consequential)
caused by reliance on the materials presented.

UNIX™ System V Init and Getty

1. Introduction

In the UNIX* system environment, the initial process spawning is controlled and overseen by the
first process forked by the UNIX operating system as it comes up at boot time. This process is
known as inir. One of the major jobs of init is to fork processes which will become the getty-login-
sh sequence. This sequence of processes allows users to login and takes care of setting up the initial
conditions on the outgoing terminal lines so that the speed and the other terminal related states are
correct. [nit and these other processes also keep an accounting file /ete/wtmp that is available to
processes on the system. With these files it is possible to determine the state of each process that
init bas spawned, and if it is a terminal line, who the current user is. One program in particular,
who (1), provides a means of examining these files.

This document describes the capabilities of each program used in this new implementation, the
databases involved, and how to create and maintain these databases. In addition, the debugging
features designed into both inir and getty are described in the event remedial action is required or
modifications are attempted.

2. Init

Ini1 is driven by a database, its previous internal level, its current internal level, and events which
cause it to wake up.

2.1 The Database: /etc/inittab

Init’s database, kept in the file /etc/inittab, consists of any number of separate entries, each with the
form:

id:level:type:process

id The id is a one to four letter identifier which is used by inizr internally to label entries in
its process table. It is also placed in the dynamic record file, /etc/utmp, and the history
file, /etc/wtmp. The id should be unique.

level The level specifies at which levels init should be concerned with this entry. Level is a
string of characters consisting of [0-6a-c]. Anytime that init’s internal level matches a
level specified by level, this entry is active. If init’s internal level does not match any of
the levels specified, then inir makes certain that the process is not running. If the level
field is empty it is equivalent to the string "0123456".

type The type specifies some further condition required for or by the execution of an entry.
off The entry is not to run even if the levels match.
once The entry is to be run only if init is entering a level. This means if init

has been awakened by powerfail or because a child died this entry will not
be activated. Only when a user signal requests a change of init's internal
state to a state which is different from its current state, and this new state
is one in which this entry should be active, will this entry be activated.

UNIX 1s a Trademark of Bell Telephone Laboratories, Incorporated.

process

wait Wait has all the characteristics of once, plus it causes inir to wait until the
process spawned dies before reading anymore entries from its database.
This allows for initialization actions to be performed and completed before
allowing other processes which might be affected to start running. It is
common in the OSS environment for shared memory segments to be
initialized this way and semaphores to be conditioned.

respawn Respawn requests that this entry continue to run as long as init is running
in a level which is in this entry’s level field. Most processes spawned by
init fall into this category. All gefty processes are marked as respawn.
Whenever init detects the death of a process that was marked respawn, it
spawns a new process to take its place.

boot Boot entries have the execution behavior of once entries. They are started
only when inir is switching to a numeric run state for the first time. Most
commonly boot entries have an empty level string, meaning that no matter
which level init switches to the first time, the boor entry will be run.
Should there be a more specific level string, for example "01°, then the
boor entry would only be run if inir switched to either the 0 or 1 run state
as its first numeric level.

bootwait Bootwait entries have the execution behavior of wair entries and they, like
boot entries, are only run as inir switches to a numeric level for the first
time.

power Power entries act like once entries and are activated if inir receives a
SIGPWR signal (19) and is in a state which matches the active states for
the entry.

powerwait Powerwair entries act like wair entries and are activated if inir receives a
SIGPWR signal and is in a state which matches the active states for the
entry.

initdefault Initdefaulr is a non-standard entry in that it does not specify some process
to be spawned. Instead it only specifies which level init is to go to initially
when it is coming up at boot time. This allows the system to be rebooted
without an operator having to make entries at the system console if so
desired. If there is no initdefault entry, then init will ask at the system
console, /dev/syscon, for the initial run state. In addition to specifying the
numbered states, the single-user state [s} may also be specified.

The process field is the action that inir will ask a sh to perform whenever the entry is
activated. The string in the process field is given a prefix of "exec " so that each entry
will only generate onc process initially. /nir then forks and execs

sh -c "exec process”

This means that the process string can take full advantage of all sh syntax. The only
peculiarities arise from the string “exec °, which was prefixed to the string, and because
initially there is no standard input, output, or error output. The addi‘ion of “exec " to
the string means that if the user wants to have a single entry generate more than one
process, for example making a list of the people on the system at the time of a powerf(ail
and mailing it to root by the command "who | mail root", it would have to be put in as

pfi:powerwait:sh -¢ "who | mail root"

to work. If it was put in simply as "who | mail root”, it would be executed as "exec who |
mail root”, and only the who process would be created before the sk disappeared. The

lack of standard input and output channels must be addressed by explicitly specifying
them. An example is the blog program that many OSS’s run as a bootwait entry as the
system comes up. Since it requires the operator to supply input, it appears as

bl::bootwait:/etc/blog </dev/syscon > /dev/syscon 2> &1
in /etc/inittab.
2.2 Levels

A level is one of seven numeric levels, denoted 0, 1, 2, 3, 4, 5, or 6, three temporary levels, denoted
a, b, or ¢, or the single-user level, s. Normally init runs in a numeric level. Precisely how a
particular level is used depends entirely on the database and the system administrator. The
temporary levels allow certain entries to be started on demand without affecting any processes that
were started at a particular level. The temporary levels immediately revert to the previous numeric
level once all entries in the database have been scanned to see if they should be started at the
temporary level. When an entry is started by a switch to a temporary level, it becomes independent
of future level changes by init, except a change to the single-user level. The only way to kill a
process that was started as a respawnable demand process, without going to the single-user level, is
to modify the database, declaring the entry to be of.

The single-user level is the one level independent of the database. For this reason it is not a level in
the normal sense. In the single-user level init spawns off a su process on the system console, and
that is the only process that it maintains while at the single-user level. The single-user level can be -
entered at two different places in inir. If it is entered at boot time it allows the operator to look
over the file systems without having inir attempt to do any file 1/0, which might cause further
problems. [Init will not attempt to recreate /etc/utmp or access /etc/wtmp until after it has left this
initial single-user level. If the single-user level is entered at any other time, init does do the
bookkeepping in the record files. .

The system administrator requests init to change levels by running a secondary copy of init itself.
/etc/init is linked to /bin/telinit, and it is usually through the relinit name that this is accomplished.
Init can only be run by root or a privileged group. Whenever init starts running and finds that its
process id is not 1, it assumes that it is a user initiated copy, which is supposed to send a signal to
the real init. The usage is:

telinit [0123456sSqQabcl

and the single character argument specifies the signal to be sent to init. If the request is to switch
to the single-user level, ‘S’ or ‘s’, then inir also relinks /dev/syscon to the terminal originating the
request so that it becomes the virtual system console, thus insuring that future messages from inir
will be directed to the terminal where the operator is located. When it does this relinking it also
sends a message to /dev/systty, saying that the console is being relinked to some other terminal so
that there is a record of the fact at the physical system console.

2.3 Waking Events

There are four events which will wake inir: boot, a powerfail, death of a child process, or a user
signal.

boot Init operates in the boot state until it has entered a numeric state for the first time.
It is not possible for init to reenter the boot state a second time. Commands labeled
boor and bootwair are executed when changing to a numeric state for the first time,
if the levels match.

powerfail Any time power fails, the operating system sends a SIGPWR signal to all processes.
Init will execute commands with types of power and power/ail.

child death Any time a child process of init dies, init receives a SIGCLD signal (18). The dead
child process may be one of two types, a direct decendent of init, or a process whose
own parent process died before it did. The parent of a process automatically

becomes init, if its real parent should dic before it does. /Jnit determines
immediately if the defunct process was one of its own children or an orphan. If it
was one of its own, it performs the necessary bookkeepping on its internal process
table to note that the process died. If init was busy at the time it received the
SIGCLD signal, it then returns to complete whatever action it was performing. If
init was asleep, it then scans its database to determine if any other actions should be
taken, such as respawning the process.

user signal Init catches all signals that it is possible for a process to catch. Most signals have
specific meaning to init, usually requesting it to change its current state in some
way. There is onc signal, the ‘Q’ signal, which is used just to waken init and cause
it to scan its database. This is often issued after a change has been made to the
database so that inir will put the new change into effect immediately. If this was
not done, the change would not become effective until inir had wakened for some
other reason. Other than during the initialization phase, it is solely with signals
that the system administrator controls the internal level at which inir is running.

2.4 Normal Operational Behavior

Init scans /etc/inittab once or twice for each event which wakes it up. If it is in the boor or
powerfail state, it scans the table once, looking for entries of these types, and then switches itself
back to a normal state and scans again.

Its first action in the normal state is to scan /etc/inittab and remove all processes which are
currently active and should not be at the current level. Init employs one of two methods when
killing its child processes depending on whether it is changing levels or not. If init is not changing
levels, it forks a child process for each child that nceds to be killed, and has that child process send
the signals to the process targeted for extinction. Killing a process involves sending it two signals.
First a SIGTERM signal (15), is sent so that it can clean up after itself and die gracefully. After
waiting the amount of time defined as TWARN (the default value is 20 seconds), a SIGKILL signal
(9), is sent, which guarantees that the child will die, if it hasn’t done so already. Forking a child to
do the killing has the advantage that the main init process need not wait for all the processes it is
killing to die before beginning the spawning of new processes. The disadvantage is that if many
processes were being killed this way, there would be a very real chance of the operating system
process table filling up, which causes the fork system call to fail. This in turn would upset inir at
the very least and cause it to have to wait anyway. For this reason, when init is changing levels, it
assumes that it may have many processes to terminate and so it sends the signals itself, waits for the
required 20 seconds, and sends the final termination signals, before continuing. Once the old
processes have been removed, init makes an entry in its accounting files if it is changing levels. At
this point it cither enters the single-user level or rescans its database looking for processes that need
to be spawned at the current level and in the current state. In the normal state of operation inir is
looking for entries whose types are off, once, wait, or respawn.

With the completion of the scan of the database in the normal state, inir is ready to wait for another
event. To ensurc that a user who just logged off has had his or her files updated to the disk and 10
insure that the bookkeepping is also updated to the disk, init performs a sync system call and then
pauses until it is awakened again for some new reason.

If init finds that it is being requested to'switch to the single-user level when it wakens from the
pause, it saves all the ioctl information about the system console in the file ferchoctl.syscon before
proceeding to remove all its other children. It does this so that if the system is being taken down,
the new init process will know how to set up the system console to talk to it. It is a convenient
feature to not have to change the baud rate and terminal specifications if you are rebooting a system
remotely. Because inir preserves the ioctl state of the system console across system reboots,
messages coming out during reboots are legible to the operator, no matter where the system console
happens to be linked.

All written messages from init arc sent to Mev/syscon. In reality, init itsell does not send the
message, but forks a child to send the message. This is because inir must never open a terminal line
or it will be assigned a controlling terminal. Since init has no controlling terminal, it can spawn
getty processes which initially have no controlling terminal. When such a gefry opens its assigned
terminal, the terminal becomes the controlling terminal for it and its children. In the one instance
init needs input from the system administrator during the initialization phase. In this case, the child
process which is asking for the run level opens /devisystzy, which is always the physical system
console, before opening /devisyscon, the virtual system console. This causes /devisystty to be the
child’s controlling terminal. Thus, should the computer be coming up, Mdevisvscon not be linked to
/evisystty, and /devisyscon be down (perhaps because the datalink went down during the reboot), it
is possible for a person at /dev/systty 10 regain control by typing a character. This causes
a SIGINT signal (2) to be sent to the child process, which will relink Mdevisystty to /devisyscon and
ask again for a run level, this time at the physical system console.

2.5 Setting Tunable Variables
Init has several tunable timing constants that can be adjusted when it is compiled.

SLEEPTIME [Init guarantees that it will awaken occasionally even if the system is quite inactive.
It does this by setting an alarm timer before going to sleep. The length of that
timer is defined by SLEEPTIME, and is initially five minutes. Since initr does a
sync system call each time it wakes, this guarantees that there will be a sync at
least once every SLEEPTIME seconds.

TWARN TWARN is the number of seconds between the SIGTERM signal and the SIGKILL
signal, when init is removing processes. It should be set long enough so that all
processes who want to, can dic gracefully on receipt of the SIGTERM signal. It is
initially 20 seconds.

NPROC This is the size of the internal process table init uses to keep track of its child
processes. It currently defaults to 100, though it can be passed in during
compilation with the -D option. I recommend you set it to the size of the system’s
process table.

WARNFREQUENCY To prevent init from flooding the system console with error messages when it
own internal process table is full, inir only generates an error message once each
WARNFREQUENCY times that it is unable to find a slot. Proper sizing of the
internal process table should prevent this condition from ever occurring.

Init cannot directly tell if there is something wrong when it tries to fork and exec a command. It
assumes that there is something wrong if it has to respawn a particular entry too often. There are
three related defines controlling this feature, SPAWN_LIMIT, SPAWN_INTERVAL, and INHIBIT.

SPAWN_LIMIT SPAWN_LIMIT is the number of times a process may respawn in a certain interval
of time before further respawns are inhibited.

SPAWN_INTERVAL SPAWN_INTERVAL is the interval of time in seconds that SPAWN_LIMIT
number of respawns must occur to cause inhibition of an entry. If an entry should
respawn too often, a message is generated on the system console indicating which
line in /etc/inittab is at fault.

INHIBIT INHIBIT is the number of seconds of inhibition that will be applied to a process
which has respawned too often.

SPAWN_LIMIT and SPAWN_INTERVAL should be set so that it is possible for init to respawn a
process fast enough to cause inhibition, but not so low that it is possible to have a legal death of a
process happen so rapidly that it is inhibited. The current limits are ten respawns in two minutes.
The real problem is that when something like gerty disappears, init becomes active trying to respawn
many processes and never gets to respawn a single process often enough to set off the alarm. The
INHIBIT limit is five minutes. Once an entry is inhibited, it is possible 1o restart it sooner than

INHIBIT seconds later by sending init the *Q’ signal. The normal problem is a typo in /etc/inittab,
and the normal procedure is to correct the typo and then do a “telinit Q" to cause inir to attempt the
spawning entry again. ’

2.6 Debugging Features

Init has some debugging features built in. There are three conditional debug flags, which allow
various flavors of debugging to be enabled.

UDEBUG This flag causes init to be compiled in a form that can be run as a normal user process
instead of as process 1. This allows a person to use sdb on it in a normal fashion and to
not disturb the rest of the system while debugging or modifications are made and tested.
There are differences in this user version of inir. It assumes that utmp, wtmp, inittab,
joctl.syscon, and debug are all in the local directory instcad of /etc. It also writes to
/dev/sysconx and /dev/systtyx, instead of /dev/syscon and /dev/systty. It does not
process all signals in the same fashion that the real inir does. Signals SIGINT, SIGQUIT,
SIGIOT, and SIGTERM, which correspond to the signals to change to levels 2, 3, 4, and
ignore are left in their default modes, so that it is possible to terminate the user "init”
from a terminal. Signals SIGUSRI and SIGUSR2, which are normally ignored by the
real init are set to cause an abort for capturing cores of the debug init. The UDEBUG
flag automatically sets the DEBUG flag, meaning that the first level of debug will be
generated by the inir and written into the file debug in the current directory.

DEBUG This flag causes a version of inir to be produced that can be run as the real init, but
which pgenerates diagnostic messages about process removal, level changes, and
accounting and writes them in the file /etc/debug.

DEBUG! DEBUG! causes the diagnostic output gencrated by DEBUGI to be increased
substantially. Specifically it produces messages about each process being spawned from
initrab.

3. Getry

Gerty is responsible for making appropriate setting of terminal characteristics and baud rate so that
a user can communicate with the UNIX system. The most important of those features is the choice
of a baud rate so that input and output make sense. In the old version of gerry, there was a
hardwired table in getty which controlled the search for the correct speed. The starting point in the
search is specified by the arguments passed to gerry. If there was some reason to change the baud
rate search, gerty had to be modified itself, and recompiled. In the new gerty, the search is
controlled by an ascii file, /etc/gettydefs, and changing or augmenting the search behavior only
requires that the file be edited.

3.1 Usage
Geury is normally started from /etc/inittab by init. Getry takes from one to six arguments:
getty [-h] [-t time] line [speed_labell [term_typel lline_disc]

=h This switch tells gerry that it should not drop the Data Terminal Ready signal
before resetting the line. This switch currently only works in the CB-UNIX system
environment. Normally getty ensures that DTR goes down so that connections 10
the Develcon dataswitch will be disconnected everytime. The E]A protocol requires
that a dataset see DTR drop and be reasserted before answering another call. It is
possible for gerty to come back on a line before all the processes spun off by the
previous user have died and closed their connections to the line. In this case, DTR
would not drop if gerty didn't insure it. This switch is required jor programs like
ct, which initiate a call from the computer to a user (instead of the user calling the
computer), putting a getty on the resulting connected line. Without the -h switch,
the gerty would immediately disconnect the user again.

-t This switch specifies that the getry should die after the specified number of seconds
if nothing is typed. This prevents datasets from being tied up if someone isn't
actually logging in after they've gotten connected.

line Line is the name of the terminal line, which getty is to open and set up. It is

minus /dev/ since getry does a chdir to the /dev directory and expects to find it in
that directory.

speed_label The speed_label is usually something like "1200" or *9600°, which appears to
~ directly specify a baud rate, but in reality can be anything since it really is a label
of an entry in /etc/gettydefs for which getty looks. It specifies the entry gerty will
start with when trying to find an appropriate speed to for the terminal. It defaults
to "300" if there is none given.

term_type The term_type specifies which terminal discipline is to be used. If this is specified,
the virtual terminal protocol becomes immediately effective on the line. Typical
types might be "vt100°, "hp45~, or “tek". Whatever type is specified, it must be a
terminal handler that has been compiled into the operating system to be effective.
This argument is given for lines that are hardwired to the computer.

line_disc The line discipline is the last thing that can be specified. The most common is
*half® or “half_duplex®, when there is a half duplex terminal coming into the

computer. This causes the appropriate line discipline to be associated with the
line.

3.2 The Database: /etc/gettydefs

Whenever gerry is invoked it references its database to determine certain information about how to
set up the line. Each entry in the database has a fixed format.

label# initial flags # final flags # login msg #nextlabel

Gerty matches its speed_label argument against the "label” field. It stops searching when it finds an
entry with a label that matches. The entry specifies how the terminal is supposed to be setup during
the initial phase, the phase when getty prints out the "login msg” and reads in the user’s login name,
and the final phase, when getty exec’s the login program to continue to the login process. The baud
rate is specified as an ioct/ flag in both the initial and final flags fields.

The flags themselves are strings matching the define variables found in /ust/include/termio.h. It
should be noted that these flags may be partially or totally overridden if there is a terminal type
specified. When a terminal type is enabled, it resets various flags to suitable conditions
automatically.

During the initial phase, gesty always puts the terminal into a non-echoing raw mode. This allows it
to take each character as it comes in and infer certain things about the terminal. For instance, if it
sees upper case alphabetic characters, but no lower case, it then assumes that the terminal is upper
case only and sets it up in the final configuration so that the upper to lower case conversions are
made. Also if the speed is wrong it will get a <NULL> character (or <ESC> <NULL>
character if a terminal type is set) if there is a framing or parity error. This means that the speed
is wrong and another speed should be tried.

The typical “initial flags® would only include the speed, for example "B1200 CS7 PARENB HUPCL"..
"CS7 PARENB"® sets the line for 7 bits, even parity characters. "HUPCL sets the line to hangup on
close. Typical final flags would be "B1200 SANE IXANY TAB3". "SANE" is not a real flag found in
the header file, but a collection of ioct! flags used for normal terminal behavior. "IXANY" permits
the use of any character to restart output. "TAB3" says to expand tabs on output.

The "login msg” field is the message that gerry will print before waiting for the user to enter his or
her login name. It may contain anything desired and getry understands normal special character
conventions so that “\n" mecans <If> as does "\012". On systems that are not using the terminal

handlers and where lines are hardwired, people have been known to make up special entries for
different terminal types, for example: :

vt100-2400# B2400 # B2400 SANE TAB3 79530GIN: #vt100-1200
33[H 33[2JAMACCS System B

where the "login msg” contains the special vt100 characters required to clear the screen. Notice also
that the entry can take more than one line. Entries are delimited by a blank line. Lines that begin
with a pound sign (#) are ignored so that comments may be added to the file.

The "next_label” field tells getty which entry to try next if it gets an indication that the speed is
wrong. In the above example it would look for an entry with the name "vt100-1200" if this one
wasn't at the proper speed. Normally the entries don’t contain terminal specific information, and
the various speed choices are linked together in a closed circle of some sort. For example it is
common to have 9600 -> 4800 -> 2400 -> 1200 -> 300 -> 9600. In this way, no matter where

you enter the circle, sooner or later you should be able to get to the speed that is correct for your
terminal.

To enable the system administrator to check the database for rcadability by gerry, there is a
checking mode in which getry can be run.

getty -c gettydefs_like_file

When gerty is run in this mode, it scans the entire input file specified and deciphers each entry,
printing out the resulting modes that it will set. If it finds a line that it cannot read, it prints an
appropriate message, which allows the administrator to correct the entry. By this mechanism it is
possible to avoid installing a misformatted gettydefs file and have it tiec up the system.

Also as a safety measure, should gerty be unable to find /etc/gettydefs, it does have a one fallback
entry built in. Should gettydefs disappear for some reason, a user could still log in at 300 baud,
since this is the default setting in the built-in entry.

3.3 Operational Behavior .

As has been shown carlier, getry sets up a line as specified by an entry from /etc/gettydefs and from
any additional arguments, outputs the “login msg" field, and then tries to read the user’s login name
from the line. During the input of the login name, getty checks for speed mismatches that the
operating system will report as a <NULL> character. If such a mismatch occurs, gerty tries the
next speed specified by the current entry, and repeats the whole sequence. Also while reading in the
login name, getry makes a guess whether the terminal is upper case only. If it sees some upper case
characters, but no lower case characters, it assumes that the terminal is upper case only and sets the

ioctl state of the line to translate upper case letters to lower case on input, and lower to upper case
on output.

An addition has been made to gerty and login, which allows for environmental variables to be set up
at the time a user enters his or her login name. This allows users to control the behavior of their
profile at the time they specify their login names. Getty exccutes the login program by passing all
the separate words given it in response to the login message as arguments to login. If for example,
the user responded with "jls [T, then gerry would execute "login jls " as its final action. See the
login section to see how this modifies the commands behavior.

4. login

" Unlike init and gerty, login did not require a great deal of modification. The only required change
was that it should write to /etc/utmp and /etc/wtmp in the new format. This change was minor.
At the time this change was made, a change visible to the user was also made: the ability to add to
the environment. This change was added as a convenience. It allows the user to modify the

behavior of his or her .profile by having environmental variables set which the .profile script knows
about.

The basic change was that any additional words provided in response to the basic “login:" query are
placed in the environment of the sh exccuted by login as its last act in the following way. If the
word does not contain an ‘=’, a shell variable of the type "Ln=word" is created. "n" is a number
starting at 0 and for each new environment variable it is incremented by one. If the word does
contain an ‘=’, then the whole string is passed in the environment unchanged. For example,
"TERM=2621" would be placed in the environment unchanged and the shell variable STERM
would be defined as "2621°.

To preserve security, there are a couple of exceptions. It is not possible to change the shell variables
SPATH or SSHELL by this mechanism. That means that a restricted shell will remain restricted
and that the user cannot gain access to commands that might allow him to avoid the usual
restrictions of rsh.

5. who °

Who(1) is the program that reads the history files maintained by init, getty, and login. Since the
format of these files was changed substantially, it was necessary to change who. In the process
some additional features where added to who so that it would convcy more useful mformatnon to
users. The standard usage for who is:

who [-uTlpdbrtas] (lam il or [utmp_like_filel}

u This returns a listing of useful information for all the users. This information includes login
time, activity, pid and comment from inittab file.

T Report the writability state of the terminal for that entry.

—

Report all entries that are living getty processes.
Report all entries for living children of init excluding getty and decendents of getty.

Report all the entries for processes that have died.

o a '

Report the boot time entries that init has made. In /etc/utmp there is only one such entry.

-

Report the run level entries that init has made. In /etc/utmp there is only one such entry, the
current run level entry. The current state, the number of times in that state, and the previous
state are also reported.

t Report the change of date entries that have been made by the dare(1) command when the
clock was reset. These are required in the history file, /etc/wtmp, if accounting is to be done.

a Report all the entries.

s Report information for all users in short form, this is the default.
If no file is specified, then /etc/utmp is assumed. The who am i sequence returns the entry for the
user typing the command.

There are various output formats for the different kinds of entry. In particular, entries for users and
gelty processes list the amount of time since output to the terminal occurred. This is often of
interest since it shows other users whether someone is actually working at a terminal or not. The
comment field at the end of the entry from /etc/inittab is also included, which can conveniently be
set up to be the location of the terminal. Dead entries report the exit status for the process that
died. This can be of use, since it shows whether the process terminated abnormally or not.

6. Other Affected Programs

All programs accessing the accounting files were affected by the new utmp structure. In particular,
date(1) makes two entries indicating the old time and new time, whenever it changes the system
clock. Also affected are the commands in /usr/lib/acct, which produces reports based on the
information in /ete/wtmp.

.10 -

7. utmp format

A major change in going to the new init was that it uses a different format in writing out its records
in /etc/utmp and /etc/wtmp. The new format is:

/* <sys/types.h> must be included. 7
#define UTMP_FILE “/etc/utmp®

#define WTMP_FILE “/etc/wtmp®
#definc ut_name ut_user

struct utmp

{

char ut_user(8] ; /* User login name */
char ut_id[4] ; /* /etc/lines id(usually line #) */
char ut_line[12] ; /* device name (console, Inxx) */
short ut_pid ; /*® process id */
short ut_type ; /* type of entry */
struct exit_status
{
short e_termination ; /*® Process termination status */
short e_exit ; /* Process exit status */
} .
ut_exit ; /* The exit status of a process
* marked as DEAD_PROCESS.
*/
time_t ut_time ; /* time entry was made */
)
/* Definitions for ut_type */
#define EMPTY 0
#define RUN_LVL 1

#define BOOT_TIME 2
#define OLD_TIME 3
#define NEW_TIME 4

#define INIT._PROCESS 5 /* Process spawned by "init® */

#define LOGIN_PROCESS 6 /* A "getty® process waiting for login */
#define USER_PROCESS7 /* A user process */

#define DEAD_PROCESS 8

#define ACCOUNTING 9

#define UTMAXTYPE ACCOUNTING /* Largest legal value of ut_type */

/* Special strings or formats used in the "ut_line" field when */

/" accounting for something other than a process. */
/* No string for the ut_line ficld can be more than 11 chars + */
/* a NULL in length. */

#define RUNLVL_MSG ‘"run-level %c"
#define BOOT_MSG "system boot”
#define OTIME_MSG “old time"
#define NTIME_MSG “new time"

The ur_type field complt-:tcly identifies the type of entry, the ur_id field only contains the "id" as
found in the "id" field of /etc/inittab. The wr_line field was expanded and freed so that it can

-11-

contain things like console or other things that are not of the form /dev/Inxx. Finally ur_exit
contains the exit status of processes that inir has spawned and that have subsequently died.

	Cadmus_Munix_II_Init_and_Getty_Seite_01
	Cadmus_Munix_II_Init_and_Getty_Seite_02
	Cadmus_Munix_II_Init_and_Getty_Seite_03
	Cadmus_Munix_II_Init_and_Getty_Seite_04
	Cadmus_Munix_II_Init_and_Getty_Seite_05
	Cadmus_Munix_II_Init_and_Getty_Seite_06
	Cadmus_Munix_II_Init_and_Getty_Seite_07
	Cadmus_Munix_II_Init_and_Getty_Seite_08
	Cadmus_Munix_II_Init_and_Getty_Seite_09
	Cadmus_Munix_II_Init_and_Getty_Seite_10
	Cadmus_Munix_II_Init_and_Getty_Seite_11
	Cadmus_Munix_II_Init_and_Getty_Seite_12
	Cadmus_Munix_II_Init_and_Getty_Seite_13

