Programming Guide

UNIX System

This dokument was prepared with specific references to use of the UNIX system
on a particular processer, the Western Electric 3B20S, which is not presently
available except for internal use within the Bell System. However, the informa-
tion contained herein is generally applicable to use of the UNIX system on vari-
ous processors which are available in the general trade.

Trademarks:
MUNIX, CADMUS for PCS
UNIX for Bell Laboratories
DEC, PDP, VAX for DEC
MASSBUS, UNIBUS

KODAK, EKTAMATIC for Eastman Kodak Company
Mohrflow, Mohrdry, for Mohr Lino-Saw Comp.

Mohrchem

TEKTRONIX for Tektronik, Inc.
TELETYPE for Teletype Corporation
TRENDATA 4000A°® for Trendata Corporatien
Versatec for Versatec Corporation
DIABLO for Xerox Corporation

Copyright 1984 by
PCS GmbH, Pfalzer-Wald-Strasse 36, D-B000 Minchen 90, tel. (089) 67604-0

The information contained herein is the property of PCS and shall neither be reproduced in
whole or in part without PCS’s prior written approval nor be imphed to grant any license to
make, use or sell equipment manufactured herewith.

PCS reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages (including consequential)
caused by reliance on the materials presented.

1/83

"ADD ISSUE 1

PROGRAMMING GUIDE
UNIX SYSTEM

CONTENTS

1. INTRODUCTION

2. AN INTRODUCTION TO SHELL

INTRODUCTION

SIMPLE COMMANDS

A.

H.

Background Commands
Inpet/Output Redirection
Pipelines and Filters

File Name Generation
Queting

Prompting by the Shell
The Shell and Login

Summary

SHELL PROCEDURES

Control Flow—"‘for"’ e e e

Control Flow—""case’’

Here Documents

Shell Variables

The “test’” Command

Control Flow—"'while"’

Control Flow—"'if"

PROGRAMMING GUIDE

PAGE

Page

1"
1
1
n
12
12
13
14
14
14
15
15
16
17
18
19
21
21

22

1

PROGRAMMING GUIDE ISSUE 1 6/82

CONTENTS PAGE
H. Debugging Shell Procedures B 7.
I The “man”’ Command e L
KEYWORD PARAMETERS e e e e e e e e .. 26
A. Parameter Transmission e e e e e e e e e 1)
B. Parameter Substitution L L L L 0L 0.0 s . 27
C. Command Substitution 0L 000 . L. 27
D. Evaluation and Quoting 1
E. Error Handling - { ¢
F. Fault Handling - A
G. Command Execution B K
H. Invoking the Shell <]’
THESHELL TUTORIAL« . « « « « o v v v v e e e e e e e . 37
INTRODUCTION o v v v v v e v e e e d e d e e e e e e 37
OVERVIEW OF THE UNIX SYSTEM ENVIRONMENT - Y
A. FileSystem 0 v e e e e e e e e e e e e e e e e e, 37
B. UNIXSystemProcesses « + « + + + 4 « 4 v« & o . . 38
SHELWLBASICS e e e e e e e e e e e e e e e e e s
A. Commands T T T |
B. How the ShellFindsCommands 40
C. Generation of Argument Lists 1)
D. Shell Variables A O
E. Quoting Mechanisms Y 1]
F. Redirection of Input and Output e X
G. Command lines and Pipelines Y ¥ 4
H. Examples e ¥ £

N Changing of the Shell and .profile State v+« 4B

Page 2

6/82

ISSUE 1

CONTENTS

USING THE SHELL AS A COMMAND: SHELL PROCEDURES

A.

C

F.

G.

A Command’s Environment

Invoking the Shell

Passing Arguments to the Shell—"shift"" . .
Control Commands
Special Shell Commands

Creation and Organization of Shell Procedures

More about Execution Flags

MISCELLANEOUS SUPPORTING COMMANDS AND FEATURES

H.

Conditional Evaluation—*test’’

R;oding a line—"line’’

Simple Output—"‘echo’’ e e e e e e
Expression Evaluation—""expr’’

“true’’ and “false”
Input/Output Redirection Using File Descriptors
Conditional Substitution e e e e e

lnvecationFlags

EXAMPLES OF SHELL PROCEDURES

EFFECTIVE AND EFFICIENT SHELL PROGRAMMING

A.

Overall Approach

Approximate Measures of Resource Consumption

C. Efficient Organization

REFERENCES

3. THE C PROGRAMMING LANGUAGE e e e e e e

INTRODUCTION

C LANGUAGE

PROGRAMMING GUIDE

PAGE
49
49
49
50
51
59
60
61
61
61
62
62
63
63
63
64
65

65
72
72
72
73
74
75
75

76

Page 3

PROGRAMMING GUIDE ISSUE 1 6/82

CONTENTS PAGE
LEXICALCONVENTIONS « . 0 v v i v v v e e e i i v . 76
A. Comments L 0 v 0 e e e e e e e e e e e e e e e e e .76
B. Identifiers (Names) ¢ i 0 i e w e e e e e e e e e e . 76
C. Keywords . . . « . . . L 0o e s e e e e e e e e e e e e e e e 78
D. Comstants L0 0 e e e e e e e e e e e e e e e e . 76
E. Strings L L o0 e e e e e e e e e e N £ 4
F. Hardware Characteristies 00 e e e e .. 17
SYNTAX NOTATION T £
OBJECTS AND LVALUES e 4/
CONVERSIONS T £/
A. Characters and Integers e [
B. FloatandDouble+ v e s B8O
C. Floating and Integrol e [
D. Pointers and Integers e [
E. Unmsigned« . .t it v e i e e e e e e e s .. 80
F. ArithmeticConversions « « .« o v v« v o o . . 80
G. Void s e s s e e e e e s e e e e s s
EXPRESSIONS + « « v v v v v v e e e e e e e e e e e e e e
A. PrimaryExpressions L. 0 0 0 0 0w e e s e e e e e B
B. UnaryOperators « « v v v « v e e e e e e e e e e .. B2
C. Muiltiplicative Operators .
D. AdditiveOperators v ¢ 4« 4 4 v e 4 e e 4 e e e e e . . B84

. E. Shift Operators B 1
F. Relational Operators e -1

G. EqualityOperaters o v 4 v+ B85

Page 4

6/82

ISSUE 1 PROGRAMMING GUIDE

CONTENTS PAGE

H. Bitwise AND Operator 85
1. Bitwise Exclusive OR Operator 86
J. Bitwise Inclusive OR Operator 86
K. Llogical AND Operater 86
L. Logical OR Operator 86
M. Conditional Operator 86
N. Assignment Operators 87
0. Comma Operator 87
DECLARATIONS 87
A. Storage Cluss. Specifiers . 88
B. Type Specifiers 88
C. Declarators 89
D. Meaning of Declarators 89
E. Structure, Union, and Enumeration Declarations 2
F. Initialization 93
G. Type Names ‘ 95
H. Typedef 95
STATEMENTS 96
A. Expression Statement 96
B. Compound Statement or Block 96

C. Conditional Statement 96
D. While Statement 97

E. Do Statement 97

F. For Statement 97

G. Switch Statement 97

H. Break Statement 98

Page 5

PROGRAMMING GUIDE ISSUE 1 6/82

CONTENTS PAGE
I Continve Statement i v e o8
4. Return Statement e 1]
K. GotoStatement 0 0 e s e e e e e s, 99
L. lobeled Statemento e i 99
M. Null Statement 1)
EXTERNAL DEFINITIONS]
A. External Function Definitions 99
B. External Data Definitions .00
SCOPERULES « .+ « v v v v v v v et e e e e e e e e e o100
A. lexicalScope o o s s e e e e e e e e s o 00
B. Scope of Externals e o)
COMPILER CONTROLLINES10
A. TokenReplacement 00 e e e d sy sy 1)
B. Filelnclusion L 00 0 0 0 s e e e e e e s e . 02
C. Conditional Compilation O e b J
D. Line Control O 1 ¢]
IMPLICIT DECLARATIONS « . .« v v v o« v o « v v v v v .03
TYPES REVISITED e o K
A. Structuresand Unions03
B. Functions B [
C. Arrays, Pointers, and Subseripting .04
D. Explicit Pointer Conversions e 1 £
CONSTANTEXPRESSIONS *« . v v v o v v v v o . .06
PORTABILITY CONSIDERATIONS T e T3
ANACHRONISMS e 1+ Y4

SYNTAX SUMMARY« « & « « v v v v v v v v v v v 208

Page 6

6/82

ISSUE 1
CONTENTS
A. Expressions
B. Declaratiens
C. Statements
D. External Definitions
E. Preprocessor
UBRARIES
A. Generdl
B. The C Library
C. The Obiject File Library
D. The Math Library
THE “‘cc’” COMMAND
A. General
B. Usage
A C PROGRAM CHECKER—"lint""

A. General

B. Types of Messages

C. Portability

A SYMBOLIC DEBUGGING PROGRAM—"'sdb"’
‘A. General

B. Usage

C. Source File Display and Manipulation

D. A Controlled Environment for Program Testi;ag
E. Machine language Debugging

F. Other Commands

FORTRAN

INTRODUCTION

PROGRAMMING GUIDE

PAGE
108
109
m
112
112
113

113

127
129
1N

131

1N
132
132
133
13¢9
140
140
140
143
145

147
147
149

149

Poge 7

PROGRAMMING GUIDE

CONTENTS
FORTRAN 77
A. General
B. langvage Extensions
C. Violations of the Standard
D. Interprocedure Interface

E. File Formats

ISSUE 1

A RATIONAL FORTRAN PREPROCESSOR —*‘ratfor’’

A. General

B. Usage

C. ~Statement Grouping

D. The “'if-else’’ Construction

E. The “switch’ Statement

F. The “do” Statement

G. The “break’’ and “next’’ Statements
H. The “‘while’” Statement

. The “for"” Statement

J. The “‘repeat-until” Statement
K. The "return’’ Statement

L. The “define’” Statement

M. The “include’’ Statement

N. Free-Form Input

O. Translations

P. Warnings

Page 8

6/82

PAGE

149

149

150

153

154

156

157

157

157

158

159

160

160

161

161

162

163

163

163

164

164

164

165

6/82 ISSUE 1 PROGRAMMING GUIDE

1. INTRODUCTION

This volume describes the three main programming languages supported on the UNIX operating system.
These languages are:

e Shell—The shell language is both a command language (which handles commands entered from a
terminal) and a programming language (where commands are spécified in a file and the file is executed).

o CLanguage—A medium-level programming language which was used to write most of the UNIX operat-
ing system. This volume describes the grammar and usage of C language, the libraries that provide addi-
tional routines, the cc(l) command, and two programs that are useful for checking/debugging C
programs.

o Fortr&n—Fortran 77 and a rational Fortran preprocessor (ratfor) are available. This volume describes
how Fortran 77 is implemented in terms of the variations from the American National Standard and
the interfaces to the UNIX operating system. The ratfor preprocessor provides a means by which
Fortrhn 77 can be written in a fashion similar to C language. This preprocessor provides (among other
things) simplified control-flow statements.

Throughout this volume, each reference of the form name(1M), name(7), or name(8) refers to entries in
the UNIX Sydtem Administrator’s Manual, All other references to entries of the form name(N), where “N”
is a number (1 through 6) possibly followed by a letter, refer to entry name in section N of the UNIX System
User’s Manual.

Page 9

PROGRAMMING GUIDE ISSUE 1 6/82

NOTES

Page 10

6/82 ISSUE 1 PROGRAMMING GUIDE

2. AN INTRODUCTION TO SHELL
INTRODUCTION

The shell is a command programming language that provides an interface to the UNIX operating system.
Its features include control-flow primitives, parameter passing, variables, and string substitution. Constructs
such as while, if then else, case, and for are available. Two-way communication is possible between the shell
and commands. String-valued parameters, typically file names or flags, may be passed to a command. A return
code is set by commands that may be used to determine control-flow, and the standard output from a command
may be used as shell input.

The shell can modify the environment in which commands run. Input and output can be redirected to files,
and processes that communicate through pipes can be invoked. Commands are found by searching directories
in the file system in a sequence that can be defined by the user. Commands ¢an be read either from the terminal
or from a file which allows command procedures to be stored for later use.

-The shell is both a command language and a programming language that provides an interface to the UNIX
operating system. This volume describes, with examples, the UNIX operating system shell. The “SIMPLE
COMMANDS" part of this section covers most of the everyday requirements of terminal users. Some familiarity
with the UNIX operating system is an advantage when reading this section; refer to section “BASICS FOR BE-
GINNERS"” in the UNIX System User's Guide. The “SHELL PROCEDURES" part of this section describes
those features of the shell primarily intended for use within shell commands or procedures. These include the
control-flow primitives and string-valued variables provided by the shell. A knowledge of a programming lan-
guage would also be helpful when reading this section. The last part, “‘KEYWORD PARAMETERS”, describes
the more advanced features of the shell. See Table 2.A for a defined listing of grammar words used in this sec-
tion.

Throughout this section, each reference of the form name(1M), name(7), or name(8) refers to entries in
the UNIX System Administrator’s Manual. All other references to entries of the form name(N), where “N”
is a number (1 through 6) possibly followed by a letter, refer to entry name in section N of the UNIX System
User’s Manual.

SIMPLE COMMANDS

Simple commands consist of one or more words separated by blanks. The first word is the name of the com-
mand to be executed; any remaining words are passed as arguments to the command. For example,

who
is a command that prints the names of users logged in. The command
Is -1

prints a list of files in the current directory. The argument —/tells 1s(1) to print status information, size, and
the creation date for each file.

A. Background Commands

To execute a command, the shell normally creates a new process and waits for it to finish. A command may
be run without waiting for it to finish. For example,

cc pgm.c &

calls the C compiler to compile the file pgm.c. The trailing “&” is an operator that instructs the shell not to
wait for the command to finish. To help keep track of such a process, the shell reports its process number fol-
lowing its creation. A list of currently active processes may be obtained using the ps(1) command.

Page 11

PROGRAMMING GUIDE ISSUE 1 6/82

8. Input/Output Redirection

Most commands produce output to the standard output that is initially connected to the terminal. This out-
put may be directed to a file by using the notation “>", for example:

Is =1 >file
The notation >fileis interpreted by the shell and is not passed as an argument to Is(1). If file does not exist,
the shell creates it; otherwise, the original contents of file are replaced with the output from 1s(1). Output may
be appended to a file using the notation “>>" as follows:

Is =1 > >file

In this case, file is also created if it does not already exist.

The standard input of a command may be taken from a file instead of the terminal by using the notation
“<", for example:

we <file

The command we(1) reads its standard input (in this case redirected from file) and prints the number of charac-
ters, words, and lines found. If only the number of lines is required, then

we =] <file
can be used.
C. Pipelines and Filters

The standard output of one command may be connected to the standard input of another by writing the
“pipe” operator, indicated by |, between commands as in

Is =11 we
Two or more commands connected in this way constitute a pipeline, and the overall effect is the same as

Is =1 >file; we <file
except that no fileis used. Instead the two processes are connected by a pipe [see pipe(2)]) and are run in parallel.
Pipes are unidirectional, and synchronization is achieved by halting wc(1) when there is nothing to read and
halting 1s(1) when the pipe is full.

A filter is a command that reads its standard input, transforms it in some way, and prints the result as
output. One such filter, grep(1) selects from its input those lines that contain some specified string. For exam-
ple,

1s | grep old

prints those lines, if any, of the output from Is that contain the string “old”. Another useful filter is sort(1).
For example,

who | sort

will print an alphabetically sorted list of logged-in users.

Page 12

6/82 | lSUE 1 PROGRAMMING GUIDE

|
A pipeline may consist of more than two commands, for example,
ls 1 grep old | we -1
prints only the number of file names in the current directory containing the string “old”.
D. File Nome Generation
Many commands accept arguments which are file names. For example,
ls =1 main.c

prints only information relating to the file main.c The “ls —1" command alone prints the same information
about all files in the current directory.

The shell provides a mechanism for generating a list of file names that match a pattern. For example,
Is =1 "¢

generates as arguments to Is(1) all file names in the current directory that end in .c. The character “*” is a
pattern that will match any string including the null string. In general, patterns are specified as follows:

. Matches any string of characters including the null string.
? Matches any single character.
[«] Matches any one of the characters enclosed. A pair of characters separated by a minus will

match any character lexically between the pair.
For example,

[a=—z]*

. -

matches all names in the current directory beginning with one of the letters a through z. The input

/usr/fred/test/?

matches all names in the directory /usr/fred/test that consist of a single character. If no file name is found
that matches the pattern then the pattern is passed, unchanged, as an argument.

This mechanism is useful both to save typing and to select names according to some pattern. It may also
be used to find files. For example,

echo /usr/fred/*/core

finds and prints the names of all corefiles in subdirectories of /usr/fred. [The echo(1) command is a standard
UNIX operating system command that prints its arguments, separated by blanks.] This last feature can be ex-
pensive requiring a scan of all subdirectories of /usr/fred.

There is one exception to the general rules given for patterns. The character “.” at the start of a file name
must be explicitly matched. The input

echo *
will therefore echo all file names in the current directory not beginning with “.”. The input

echo .*

Page 13

PROGRAMMING GUIDE ISSUE 1 6/82

will echo all those file names that begin with *.". This avoids inadvertent matching of the names *.” and “.."
which mean “the current directory” and “the parent directory”, respectively. [Notice that 1s(1) suppresses infor-
mation for the files “.” and “.".]
E. Queting

Characters that have a special meaning to the shell, such as

< > * 71 &

are called metacharacters. A complete list of metacharacters is given in Table 2.B. Any character preceded by
a \ is quoted and loses its special meaning, if any. The \ is elided so that

echo \?
will echo a single ?, and
echo \\

will echo a single \. To allow long strings to be continued over more than one line, the sequence \new-line (or
RETURN) is ignored. The \ is convenient for quoting single characters. When more than one character needs
quoting, the above mechanism is clumsy and error prone. A string of characters may be quoted by enclosing
the string between single quotes. For example,

echo xx"****' xx
will echo
xx..‘.xx

The quoted string may not contain a single quote but may contain new-lines which are preserved. This quoting
mechanism is the most simple and is recommended for casual use. A third quoting mechanism using double
quotes is also available and prevents interpretation of some but not all metacharacters. Details of quoting are
described under “D. Evaluation and Quoting” in part “KEYWORD PARAMETERS".

F. Prompting by the Shell

When the shell is used from a terminal, it will issue a prompt to the terminal user indicating it is ready
to read a command from the terminal. By default, this prompt is “$ ”. The prompt may be changed by entering,

PS1=newprompt

which sets the prompt to be the string " newprompt” . If a new-line is typed and further input is needed, the
shell will issue the prompt “> . Sometimes this can be caused by mistyping a quote mark. If it is unexpected,
then an interrupt (DEL) will return the shell to read another command. The other prompt (>) may be changed
(for example) by entering:

PS2=more
G. The Shell and Legin
Following the user’s login(1), the shell is called to read and execute commands typed at the terminal. If

the user's login directory contains the file .profile, then it is assumed to contain commands and is read immedi-
ately by the shell before reading any commands from the terminal.

Page 14

6/82 ISSUE 1 PROGRAMMING GUIDE

H.. Summary

1s
Prints the names of files in the current directory.

Is >file
Puts the output from ls into file.

Isl we -1
Prints the number of files in the current directory.

Is | grep old
Prints those file names containing the string “old”.

1s! grepold | we -1
Prints the number of files whose name contains the string “old".

cc pgm.c &
Runs ce in the background.

SHELL PROCEDURES
The shell may be used to read and execute commands contained in a file. For example, the following call
sh file [args ...]
calls the shell to read commands from file Such a file call is called a “command procedure” or “shell proce-

dure”. Arguments may be supplied with the call and are referred to in file usmg the positional parameters $1,
$2, ... For example, if the file wg contains

who | grep $1
then the cali
sh wg fred
is equivalent to
who | grep fred
All UNIX operating system files have three independent attributes (often called “permissions”), read,
write, and execute (rwx). The UNIX operating system command chmod(1) may be used to make a file execut-
able. For example,
chmod +x wg
will ensure that the file wg has execute status (permission). Following this, the command
wg fred
is equivalent to the call

sh wg fred

This allows shell procedures and programs to be used interchangeably. In either case, a new process is created
to execute the command.

Page 15

PROGRAMMING GUIDE - ISSUE 1 6/82

As well as providing names for the positional parameters, the number of positional parameters in the call
is available as $#. The name of the file being executed is available as $0.

A special shell parameter $* is used to substitute for all positional parameters except $0. A typical use
of this is to provide some default arguments, as in,

nroff —T450 —em $*
which simply prepends some arguments to those already given.

A. Control Flow—"for"’

A frequent use of shell procedures is to loop through the arguments ($1, $2, ...) executing commands once
for each argument. An example of such a procedure is tel that searches the file /usr/lib/telnos that contains
lines of the form

fred mh0123
bert mh0789

The text of telis

for i
do

grep $i /usr/lib/telnos
done

The command
tel fred
prints those lines in /usr/lib/telnos that contain the string “fred”.
The command
tel fred bert
prints those lines containing “fred” followed by those for “bert".
The for loop notation is recognized by the shell and has the general form
for namein wl w2
do
command-list
done
A command-list is a sequence of one or more simple commands separated or terminated by a new-line or a
semicolon. Furthermore, reserved words like do and done are only recognized following a new-line or semico-
lon. A nameis a shell variable that is set to the words wl w2...in turn each time the command-list following
do is executed. If “in wl w2 ...” is omitted, then the loop is executed once for each positional parameter; that
is, in $* is assumed.
Another example of the use of the for loop is the create command whose text is

for i do > %i; done

Page 16

6/82 ISSUE 1 PROGRAMMING GUIDE

The command
create alpha beta

ensures that two empty files alpha and beta exist and are empty. The notation >file may be used on its own
to create or clear the contents of a file. Notice also that a semicolon (or new-line) is required before done.

B. Control Flow—"case’’
A multiple way (choice) branch is provided for by the case notation. For example,
case $f in
1) cat >>%1;;
2) cat >>9%$2 <3%1;,
*) echo 'usage: append [from] to’ ;;
esac

is an append command. (Note the use of semicolons to delimit the cases.) When called with one argument as
in

append file

$# is the string “1”. The standard input is appended (copied) onto the end of file using the cat(1) command,
and

append filel file2

appends the contents of filel onto file2 If the number of arguments supplied to append is other than 1 or 2,
then a message is printed indicating proper usage.

The general form of the case command is

case word in
pattern) command-list 5

esac

The shell attempts to match word with each pattern in the order in which the patterns appear. If a match is
found, the associated command-list is executed and execution of the case is complete. Since * is the pattern
that matches any string, it can be used for the default case.

Caution: No check is made to ensure that only one pattern matches the case argument.

The first match found defines the set of commands to be executed. In the example below, the commands follow-
ing the second “*” will never be executed since the first “*” executes everything it receives.

case $# in
*) s
*) s

esac

Page 17

PROGRAMMING GUIDE ISSUE 1 6/82

Another example of the use of the case construction is to distinguish between different forms of an argu-
ment. The following example is a fragment of a ce(1) command.

for i
do
case $i in
—[oes] ..
-*) echo 'unknown flag $i' ;;
*c) /1ib/c0 $i ... ;;
*) echo 'unexpected argument $i' ;;
esac
done

To allow the same commands to be associated with more than one pattern, the case command provides for
alternative patterns separated by al. For example,

case $i in
-xl-y) —
esac
is equivalent to
case $i in
=[xy))
esac
The usual quoting conventions apply so that

case $i in

\?M)
will match the character 2.
C. Here Documents
The shell procedure tel described in subpart “A. Control Flow—for" uses the file /usr/lib/telnos to supply

the data for grep(1). An alternative is to include this data within the shell procedure as a here document, as
in,

fori

do
grep $i <<!
fred mh0123
bert mh0789

!

done

In this example, the shell takes the lines between <<! and ! as the standard input for grep(1). The string *!”
is arbitrary. The document is being terminated by a line that consists of the string following <<.

Poge 18

6/82 ISSUE 1 PROGRAMMING GUIDE

Parameters are substituted in the document before it is made available to grep(1) as illustrated by the fol-
lowing procedure called edg.

ed $3 <<%
g/%1/s//%2/g

w
%

The call
edg stringl string2 file
is then equivalent to the command

ed file <<%
g/stringl/s//string2/g
w

%

and changes all occurrences of “stringl” in file to “string2”. Substitution can be prevented using \ to quote the
special character $ as in

ed $3 <<+
1,\$s/$1/%2/g
w

+

(This version of edgis equivalent to the first except that ed(1) will print a ? if there are no occurrences of the
string $1.] Substitution within a here document may be prevented entirely by quoting the terminating string,
for example,

grep $i <<\#

The document is presented without modification to grep. If parameter substitution is not required in a here
document, this latter form is more efficient.

D. Shell Variables

The shell provides string-valued variables. Variable names begin with a letter and consist of letters, digits,
and underscores. Variables may be given values by writing

user=fred box=m000 acct=mh0000
which assigns values to the variables user, box, and acct. A variable may be set to the null string by entering
null=

The value of a variable is substituted by preceding its name with $; for example,
echo $user
will echo fred
Vari;bles may be used interactively to provide abbreviations for frequently used strings. For example,

b=/usr/fred/bin
mv file $b

Page 19

PROGRAMMING GUIDE ISSUE 1 6/82

will move the filefrom the current directory to the directory /usr/fred/bin. A more general notation is available
for parameter (or variable) substitution, as in,

echo ${user}
which is equivalent to
echo $user
and is used when the parameter name is followed by a letter or digit. For example,

tmp=/tmp/ps
ps a >${tmpja

will direct the output of ps(1) to the file /tmp/psa, whereas,
ps a >$tmpa
would cause the value of the variable tmpa to be substituted.
Excei:t for $7, the following are set initially by the shell. The $? is set after executing each command.

$? The exit status (return code) of the last command executed as a decimal string. Most com-
mands return a zero exit status if they complete successfully; otherwise, a nonzero exit sta-
tus is returned. Testing the value of return codes is dealt with later under if and while
commands.

$# The number of positional parameters (in decimal). The $# is used, for example, in the ap-
pend command to check the number of parameters.

$$ The process number of this shell (in decimal). Since process numbers are unique among
all existing processes, this string is frequently used to generate unique temporary file
names. For example,

ps a >/tmp/ps$$

rm /tmp/ps$$
! The process number of the last process run in the background (in decimal).
$—) The current shell flags, such as —x and —v.

Some variables have a special meaning to the shell and should be avoided for general use.

$MAIL When used interactively, the shell looks at the file specified by this variable before it is-
sues a prompt. If the specified file has been modified since it was last looked at, the shell
prints the message “you have mail” before prompting for the next command. This variable
is typically set in the file .profile in the user’s login directory. For example:

MAIL=/usr/mail/fred
$ HOME The default argument for the cd(1) command. The current directory is used to resolve file

name references that do not begin with a / and is changed using the ¢d command. For ex-
ample,

cd /usr/fred/bin

Page 20

6/82 ISSUE 1 PROGRAMMING GUIDE

makes the current directory /usr/fred/bin. Then
cat wn

will print on the terminal the file wn in this directory. The command e¢d(1) with no argu-
ment is equivalent to

cd SHOME

This variable is also typically set in the user’s login profile.

$PATH A list of directories containing commands (the search path). Each time a command is exe-
cuted by the shell, a list of directories is searched for an executable file. If $ PATH is not
set, the current directory, /bin, and /usr/bin are searched by default. Otherwise, $ PATH
consists of directory names separated by a colon (:). For example,

PATH=:/usr/fred/bin:/bin:/usr/bin

specifies that the current directory (the null string before the first :), /usr/fred/bin, /bin,
and /usr/bin are to be searched in that order. In this way, individua! users can have their
own “private” commands that are accessible independently of the current directory. If the
command name contains a /, this directory search is not used; a single attempt is made to
execute the command.

$ PS1 The primary shell prompt string, by default, “$ ".

$PS2 The shell prompt when further input is needed, by default, “> ".

$IFS The set of characters used by blank interpretation (See “D. Evaluation and Quoting” in
part “KEYWORD PARAMETERS".). :

E. The “test’” Command
The test command is intended for use by shell programs. For example,
* test —f file
returns zero exit status if file exists and nonzero exit status otherwise. In general, test evaluates a predicate

and returns the result as its exit status. Some of the more frequently used test arguments are given below [see
test(1l) for a complete specification). .

test s true if the argument sis
not the null string

test —f file true if file exists

test —r file true if file is readable

test —w file true if file is writable

test —d file true if file is a directory

F. Control Flow—"while’’

The actions of the for loop and the case branch are determined by data available to the shell. A while
or until loop and an if then else branch are also provided whose actions are determined by the exit status re-
turned by commands. A while loop has the general form

while command-listl
do
command-list2
done
. A

Page 21

PROGRAMMING GUIDE {SSUE 1 6/82

The value tested by the while command is the exit status of the last simple command following while. Each
time around the loop, command-listl is executed; if a zero exit status is returned, then command-list2is execut-
ed; otherwise, the loop terminates. For example,

while test $1
do

shift
done

is equivalent to

for i
do

done

The shift command is a shell command that renames the positional parameters $2, $3, .. as $1, $2, ... and
loses $1.

Another kind of use for the while/until loop is to wait until some external event occurs and then run some
commands. In an until loop, the termination condition is reversed. For example,

until test —f file
do

sleep 300
done
commands

will loop until file exists. Each time around the loop, it waits for 5 minutes (300 seconds) before trying again.
(Presumably, another process will eventually create the file.)

G. Control Flow—"it"’
Also available is a general conditional branch of the form,

if command-list
then
command-list
else '
command-list
fi

that tests the value returned by the last simple command following if.

The if command may be used in conjunction with the test command to test for the existence of a file as
in

if test —f file.

then

process file
else

do something else
fi

Page 22

6/82 ISSUE 1 PROGRAMMING GUIDE

An example of the use of if, case, and for constructions is given in “I. The Man Command” in part “SHELL
PROCEDURES".

A multiple test if command of the form

if ...
then
else
if ...
then
else
if ...
fi
fi
fi

may be written using an extension of the if notation as,
if ...
then
elif ...
then

elif ...

fi

The touch command changes the “last modified” time for a list of files. The command may be used in con-
junction with make(1) to force recompilation of a list of files. The following example is the touch command:

flag=
for i
do
case $i in
-c) flag=N ;;
*) if test —f $i
then
In $i junk$$
rm junk$$
elif test $flag
then
echo file \'$i\’' does not exist
else
>$i
fi;
esac :
done

Page 23

PROGRAMMING GUIDE ISSUE 1 6/82

T}.le -c flgg is used in this- command to force subsequent files to be created if they do not already exist. Other-
wise, if the file does not exist, an error message is printed. The shell variable flagis set to some non-null string
if the —c argument is encountered. The commands

In..;rm..
make a link to the file and then remove it.

The sequence

if commandl
then command2
fi

may be written

commandl && command2
Conversely,

commandl {| command2

executes command2 only if command]l fails. In each case, the value returned is that of the last simple com-
mand executed.

Command Grouping
Commands may be grouped in two ways,
{ command-list; }
and
(command-list)

The first form, command-list, is simply executed. The second form executes command-list as a separate pro-
cess. For example,

(ed x; rm junk)
executes rm junk in the directory x without changing the current directory of the invoking shell.
The commands
cd x; rm junk
have the same effect but leave the invoking shell in the directory x

H. Debugging Shell Procedures

The shell provides two tracing mechanisms to help when debugging shell procedures. The first is invoked
within the procedure as

set —v

Page 24

6/82 ISSUE 1 PROGRAMMING GUIDE

(v for verbose) and causes linesof the procedure to be printed as they are read. It is useful to help isolate syntax
errors. It may be invoked without modifying the procedure by entering

sh =v proc ...

where proc is the name of the shell procedure. This flag may be used in conjunction with the —n flag which
prevents execution of subsequent commands. (Note that typing “set —n" at a terminal will render the terminal
useless until an end-of-file is typed.)

The command
set —x

will produce an execution trace with flag —x. Following parameter substitution, each command is printed as
it is executed. (Try the above at the terminal to see what effect they have.) Both flags may be turned off by typ-
ing

set —
and the current setting of the shell flags is available as $—~.
. The “man’” Command

The following is the man command which is used to print sections of the UNIX System User's Manual. It
is called by entering

man sh
man -t ed
man 2 fork

In the first call, the manual section for sh is printed. Since no section is specified, Section 1 is used. The second
call will typeset (—t option) the manual section for ed. The last call prints the fork manual page from Section
2 of the manual.)

A version of the man command follows:
cd /usr/man

: "colon is the comment command’
: "default is nroff ($N). section 1 ($s)’ °*

N=n g=]
for i
do
case $i in
[1-9]*) s=$i;
—-t) N=t;
-n) N=n;

—*) echo unknown flag \'$i\’ ;;
*) if test —f man$s/%i.$s
then
${N}roff man0/${N}jaa man$s/$i.$s
else
: "look through all manual sections’

Paoge 25

PROGRAMMING GUIDE ISSUE 1 6/82

found=no

forjin123456789

do
if test —f man$;j/$i.$j
then man $j $i

found=yes

fi

done

case $found in
no) echo '$i: manual page not found'

esac

fi;
esac
done
KEYWORD PARAMETERS

Shell variables may be given values by assignment or when a shell procedure is invoked. An argument to
a shell procedure of the form name=valuethat precedes the command name causes valueto be assigned to name
before execution of the procedure begins. The value of namein the invoking shell is not affected. For example,

user=fred command

will execute command with userset to fred The —k flag causes arguments of the form name=valueto be inter-
preted in this way anywhere in the argument list. Such names are sometimes called keyword parameters. If
any arguments remain, they are available as positional parameters $1, $2,

The set command may also be used to set positional parameters from within a procedure. For example,

set — *

will set $1 to the first file name in the current directory, $2 to the next, etc. Note that the first argument, ~,
ensures correct treatment when the first file name begins with a —.

A. Parameter Transmission

When a shell procedure is invoked, both positional and keyword parameters may be supplied with the call.
Keyword parameters are also made available implicitly to a shell procedure by specifying in advance that such
parameters are to be exported. For example,

export user box

marks the variables user and box for export. When a shell procedure is invoked, copies are made of all export-
able variables for use within the invoked procedure. Modification of such variables within the procedure does
not affect the values in the invoking shell. It is generally true of a shell procedure that it may not modify the

state of its caller without explicit request on the part of the caller. (Shared file descriptors are an exception
to this rule.)

Names whose value is intended to remain constant may be declared Teadonly. The form of this command
is the same as that of the export command,

readonly name ...

Subsequent attempts to set readonly variables are illegal.

Page 26

6/82- ISSUE 1 PROGRAMMING GUIDE

B. Parameter Substitution

If a shell parameter is not set, then the null string is substituted for it. For example, if the variable dis
not set,

echo $d

or
echo ${d}

will echo nothing. A default string may be given as in
echo ${d—}

which will echo the value of the variable d if it is set and *.” otherwise. The default string is evaluated using
the usual quoting conventions so that

echo ${d— "*’}
will echo * if the variable d is not set. Similarly,
echo ${d-$1}

will echo the value of dif it is set and the value (if any) of $1 otherwise. A variable may be assigned a default
value using the notation

echo ${d=.} ,
which substitutes the same string as
echo ${d—.}

and if d were not previously set, it will be set to the string “.”. (The notation ${...=...} is not available for posi-
tional parameters.)

If there is no sensible default, the notation
echo ${d?message}
will echo the value of the variable d if it has one; otherwise, message is printed by the shell and execution of
the shell procedure is abandoned. If message is absent, a standard message is printed. A shell procedure that

requires some parameters to be set might start as follows:

: ${user?} ${acct?} ${bin?}

Colon (:) is a command built in to the shell and does nothing once its arguments have been evaluated. If any
of the variables user, acct, or bin are not set, the shell will abandon execution of the procedure.

C. Command Substitution

The standard output from a command can be substituted in a similar way to parameters. The command
pwd(l) prints on its standard output the name of the current directory. For example, if the current directory
is /usr/fred/bin, the command

d="pwd

Page 27

PROGRAMMING GUIDE ISSUE 1 6/82

is equivalent to

d=/usr/fred/bin

The entire string between ('...") is taken as the command to be executed and is replaced with the output from

the command. The command is written using the usual quoting conventions except that a * must be escaped using
a \. For example,

ls ‘echo " $1"°
is equivalent to

Is $1
Command substitution occurs in all contexts where parameter substitution occurs (including here documents),
and the treatment of the resulting text is the same in both cases. This mechanism allows string processing com-
mands to be used within shell procedures. An example of such a command is basename which removes a speci-
fied suffix from a string. For example,

basename main.c .c
will print the string “main”. Its use is illustrated by the following fragment from a cc¢(1) command.

case $4 in

_ "c) B='basename $A .c'

esac

that sets B to the part of $A with the suffix .c stripped.
Here are some composite examples.
e foriin'ls -t do ..
The variable Jis set

to the names of files in time order,
most recent first.

e set ‘date'; echo $6 $2 $3, $4

will print, e.g.,
1977 Nov 1, 23:59:59

D. Evaluation and Quoting

The shell is a macro processor that provides parameter substitution, command substitution, and file name
generation for the arguments to commands. This section discusses the order in which these evaluations occur
and the effects of the various quoting mechanisms.

Commands are parsed initially according to the grammar given in Table 2.A. Before a command is executed,
the following substitutions occur:

1. parameter substitution, e.g., $user

Page 28

6/82 ISSUE 1 PROGRAMMING GUIDE

2. command substitution, e.g., ‘pwd*
Only one evaluation occurs so that if, for example, the value of the variable Xis the string “$y” then
echo $X
will echo “$y”.
3. blank interpretation

Following the above substitutions, the resulting characters are broken into nonblank words (biank
interpretation). For this purpose, “blanks” are the characters of the string “$IFS”. By default, this string
consists of blank, tab, and new-line. The null string is not regarded as a word unless it is quoted. For ex-
ample,

echo’’
will pass on the null string as the first argument to echo, whereas
echo $null
will call echo with no arguments if the variable null is not set or set to the null string.
4. file name generation

Each word is then scanned for the file pattern characters *, ?, and [...]}; and an alphabetical list of file
names is generated to replace the word. Each such file name is a separate argument. :

The evaluations just described also occur in the list of words associated with a for loop. Only substitution
occurs in the word used for a case branch.

As well as the quoting mechanisms described earlier using \ and ’..’, a third quoting mechanism is provided
using double quotes. Within double quotes, parameter and command substitution occurs; but file name genera-
tion and the interpretation of blanks does not. The following characters have a special meaning within double
quotes and may be quoted using \.

S ‘parameter substitution
' command substitution
ends the quoted string
\ quotes the special characters $* " \

For example,
echo " $x"

will pass the value of the variable x as a single argument to echo. Similarly,
echo " §*

will pass the positional parameters as a single argument and is equivalent to

echo " $1. $2.."

Page 29

PROGRAMMING GUIDE ISSUE | 6/82

The notation $@ is the same as $* except when it is quoted. Inputting
echo " $@"

will pass the positional parameters, unevaluated, to echo and is equivalent to
echo " $1" " $2" ..

The following illustration gives, for each quoting mechanism, the shell metacharacters that are evaluated.

metacharacter

¥ y n n n n
" y n y n
t = terminator
y = interpreted
n = not interpreted

In cases where more than one evaluation of a string is required, the built-in command eval may be used.
For example, if the variable X has the value “$y” and if y has the value “pqr”, then

eval echo $X
will echo the string “pqr”.

In general, the eval command evaluates its arguments (as do all commands) and treats the result as input
to the shell. The input is read and the resulting command(s) executed. For example,

wg='"eval who ! grep’
$wg fred

is equivalent to
who | grep fred

In this example, eval is required since there is no interpretation of metacharacters, such as!, following substitu-
tion.

E. Error Handling

The treatment of errors detected by the shell depends on the type of error and on whether the shell is being
used interactively. An interactive shell is one whose input and output are connected to a terminal [as deter-
mined by gtty(2)]. A shell invoked with the —i flag is also interactive.

Execution of a command (see also “G. Command Execution”) may fail for any of the following reasons:

e Input/output redirection may fail, e.g., if a file does not exist or cannot be created.

Page 30

6/82 "ISSUE 1 PROGRAMMING GUIDE

e The command itself does not exist or cannot be executed.
e The command terminates abnormally, e.g., with a “bus error” or “memory fault” signal.
e The command terminates normally but returns a nonzero exit status.
In all of these cases, the shell will go on to execute the next command. Except for the last case, an error
message will be printed by the shell. All remaining errors cause the shell to exit from a command procedure.
An interactive shell will return to read another command from the terminal. Such errors include the following:

o Syntax errors, e.g., if ... then ... done

e A signal such as interrupt. The shell waits for the current command, if any, to finish execution and
then either exits or returns to the terminal.

o Failure of any of the built-in commands such as cd(1).

The shell flag —e causes the shell to terminate if any error is detected. The following is a list of the UNIX
operating system signals:

1 hangup

2 interrupt

3* quit

4* illegal instruction

5* trace trap

6* IOT instruction

T EMT instruction

8* floating point exception

9 kill (cannot be caught or ignored)
10* bus error

11* segmentation violation

12* bad argument to system call

13 write on a pipe with no one to read it
14 alarm clock

15 software termination [from kill(1)]

The UNIX operating system signals marked with an asterisk “*"” as shown in the list produce a core dump
if not caught. However, the shell itself ignores quit which is the only external signal that can cause a dump
The signals in this hst of potential interest to shell programs are 1, 2, 3, 14, and 15.

F. Favlt Handling

Shell procedures normally terminate when an interrupt is received from the terminal. The trap command
is used if some cleaning up is required, such as removing temporary files. For example,

trap 'rm /tmp/ps$$; exit’ 2

sets a trap for signal 2 (terminal interrupt); and if this signal is received, it will execute the following commands:
rm /tmp/ps$$; exit

The exit is another built-in comr;and that terminates execution of a shell procedure. The exit is required; oth-

erwise, after the trap has been taken, the shell will resume executing the procedure at the place where it was
interrupted.

Page 31

PROGRAMMING GUIDE ISSUE 1 6/82

UNIX operating system signals can be handled in one of three ways.

1. They can be ignored, in which case the signal is never sent to the process.

2. They can be caught, in which case the process must decide what action to take when the signal is received.
3. They can be left to cause termination of the process without it having to take any further action.

If a signal is being ignored on entry to the shell procedure, for example, by invoking it in the background (see
“G. Command Execution”), trap commands (and the signal) are ignored.

The use of trap is illustrated by this modified version of the touch command illustrated below:

flag=
trap 'rm —f junk$$; exit’' 123 15
for i
do
case $iin
-c) flag=N;
*) if test ~f $i
then
In $i junk$$; rm junk$$
elif test $flag
then
echo file \'$i\’' does not exist
else
>$i
fi;
esac
done

The cleanup action is to remove the file junk$$. The trap command appears before the creation of the tem-
porary file; otherwise, it would be possible for the process to die without removing the file.

Since there is no signal 0 in the UNIX operating system, it is used by the shell to indicate the commands
to be executed on exit from the shell procedure.

A procedure may, itself, elect to ignore signals by specifying the null string as the argument to trap. The
following:

trap’'’12315

is a fragment taken from the nohup(l) command which causes the UNIX operating system HANGUP, INTER-
RUPT, QUIT, and SOFTWARE TERMINATION signals to be ignored both by the procedure and by invoked

commands.
Traps may be reset by entering
trap 23

which resets the traps for signals 2 and 3 to their default values. A list of the current values of traps may be
obtained by writing

trap

Page 32

6/82 . ISSUE 1 PROGRAMMING GUIDE

The scan procedure is an example of the use of trap where there is no exit in the trap command. The scan
takes each directory in the current directory, prompts with its name, and then executes commands typed at the
terminal until an end of file or an interrupt is received. Interrupts are ignored while executing the requested
commands but cause termination when scan is waiting for input. The scan procedure follows:

d='pwd'
foriin *
do
if test —d $d/%i
then
cd $d4/8i
while echo " $i" && trap exit 2 && read x
do
trap: 2
eval $x
done
fi
done

The read x is a built-in command that reads one line from the standard input and places the result in the
variable x. It returns a nonzero exit status if either an end-of-file is read or an interrupt is received.

G. Command Execution

To run a command (other than a built-in), the shell first creates a new process using the system call
fork(2). The execution environment for the command includes input, output, and the states of signals and is
established in the child process before theé command is executed. The built-in command exec is used in rare
cases when no fork is required and simply replaces the shell with a new command. For example, a simple ver-
sion of the nohup command looks like

\
trap’’12315

exec $*

The trap turns off the signals specified so that they are ignored by subsequently created commands, and exec
replaces the shell by the command specified.

Most forms of input/output redirection have already been described. In the following, word is only subject
to parameter and command substitution. No file name generation or blank interpretation takes place so that,
for example,

echo ... >*.c

will write its output into a file whose name is *.c. Input/output specifications are evaluated left to right as they
appear in the command. Some input/output specifications are as follows:

> word The standard output (file descriptor 1) is sent to the file word which is created if it does
not already exist.

>> word The standard output is sent to file word. If the fife exists, then output is appended (by seek-
ing to the end); otherwise, the file is created.

< word The standard input (file descriptor 0) is taken from the file word

<< word The standard input is taken from the lines of shell input that follow up to but not includ-

ing a line consisting only of word If word is quoted, no interpretation of the document oc-
curs. If word is not quoted, parameter and command substitution occur and \ is used to

Page 33

PROGRAMMING GUIDE ISSUE 1 6/82

quote the characters \, $, %, and the first character of word In the latter case, \new-line
is ignored (e.g., quoted strings).

>& digit The file descriptor digit is duplicated using the system call dup(2), and the result is used
as the standard output.

<& digit The standard input is duplicated from file descriptor digit

<&- The standard input is closed.

>&- The standard output is closed.

Any of the above may be preceded by a digit in which case the file descriptor created is that specified by
the digit instead of the default 0 or 1. For example,

o 2>f1le
runs a command with message output (file descriptor 2) directed to file. Another example,
. 2>&1

runs a command with its standard output and message output merged. (Strictly speaking, file descriptor 2 is
created by duplicating file descriptor 1; but the effect is usually to merge the two streams.)

The environment for a command run in the background such as
list *.cllpr &

is modified in two ways. First, the default standard input for such a command is the empty file /dev/null. This
prevents two processes (the shell and the command), which are running in parallel, from trying to read the
same input. Chaos would ensue if this were not the case. For example,

ed file &
would allow both the editor and the shell to read from the same input at the same time.

The other modification to the environment of a background command is to turn off the QUIT and INTER-
RUPT signals so that they are ignored by the command. This allows these signals to be used at the terminal
without causing background commands to terminate. For this reason, the UNIX operating system convention
for a signal is that if-it is set to 1 (ignored) then it is never changed even for a short time. Note that the shell
command trap has no effect for an ignored signal.

H. Invoking the Shell

The following flags are interpreted by the shell when it is invoked. If the first character of argument zero
is a minus, commands are read from the file .profile.

—c¢ string If the —c flag is present, then commands are read from string.

-s . If the —s flag is present or if no arguments remain, commands are read from the standard
input. Shell output is written to file descriptor 2.

- If the —i flag is present or if the shell input and output are attached to a terminal [as told
by getty(8)), this shell is interactive. In this case, TERMINATE is ignored (so that kill
0 does not kill an interactive shell, and INTERRUPT is caught and ignored (so that wait
is interruptible). In all cases, QUIT is ignored by the shell.

Page 34

item:

simple-command:

command:

pipeline:

andor:

command-list:

input-output:

file:

case-part:

pattern:

else-part:

empty:
word:
name:

digit:

ISSUE 1
TABLE 2.A
GRAMMAR
word
input-output

name = value

item
simple-command item

simple-command

(command-list)

{ command-list }

for name do command-list done

for name in word ... do command-list done
while command-list do command-list done
until command-list do command-list done
case word in case-part ... esac

if command-list then command-list else-part fi

command
pipeline\ command

pipeline
andor && pipeline
andor !l pipeline

andor

command-list ;
command-list &
command-list ; andor
command-list & andor

> file
< file

>> word
<< word

word
& digit
& -

pattern) command-list;;

word
pattern | word

elif command-list then command-list else-part
else command-list

empty
a sequence of nonblank characters

PROGRAMMING GUIDE

a sequence of letters, digits, or underscores starting with a letter

0123456789

Page 35

. PROGRAMMING GUIDE

Page 36

(a)

(b)

(c)

(d)

(e)

- ISSUE 1

TABLE 2.8

METACHARACTERS AND RESERVED WORDS

syntactic:
{

&&

”

()

<<

>>

patterns:

?

[..]

substitution:

$i...1

. A
oo

quoting:

reserved words:

if then else elif fi

case in esac

for while until do done
{10 test

pipe symbol

‘andf’ symbol

‘orf’ symbol

command separator

case delimiter

background commands
command grouping

input redirection

input from a here document
output creation

output append

match any character(s) including none
match any single character

match any of the enclosed characters

substitute shell variable

substitute command output

quote the next character

quote the enclosed characters except for '

quote the enclosed characters except for the $, *,\, and "

6/82

6/82 ISSUE 1 PROGRAMMING GUIDE

THE SHELL TUTORIAL
INTRODUCTION

In any programming project, some effort is used to build the end product. The remainder is consumed in
building the supporting tools and procedures used to manage and maintain that end product. The second effort
can far exceed the first, especially in larger projects. A good command language can be an invaluable tool in
such situations. If it is a flexible programming language, it can be used to solve many internal support problems
without requiring compilable programs to be written, debugged, and maintained. The most important advan-
tage of a good command language is the ability to get the job done now. For a perspective on the motivations
for using a command language in this way, see [1,2,3,4]. Throughout this section references of the type [1
through 10] refer to documents listed in part “REFERENCES”.

When users log into a UNIX system, they communicate with an instance of the shell that reads commands
typed at the terminal and arranges for the execution of the commands entered. Thus, the shell’s most important
function is to provide a good interface for human beings. In addition, a sequence of commands may be preserved
for repeated use by saving it in a file, called a shell procedure, command file, or runcom according to local prefer-
ence.

Some UNIX system users need little knowledge of the shell to do their work while others make heavy use
of its programming features. This section may be read in several different ways, depending on the reader’s inter-
ests. A brief discussion of the UNIX system environment is found in part “OVERVIEW OF THE UNIX SYSTEM
ENVIRONMENT". The discussion in part “SHELL BASICS” covers aspects of the shell that are important for
everyone, while all of part “USING THE SHELL AS A COMMAND: SHELL PROCEDURES” and most of part
“MISCELLANEOUS SUPPORTING COMMANDS AND FEATURES" are mainly of interest to those who write
shell procedures. A group of annotated shell procedure examples is given in part “EXAMPLES OF SHELL
PROCEDURES". Finally, a brief discussion of efficiency is offered in part “EFFECTIVE AND EFFICIENT
SHELL PROGRAMMING". The discussion on efficiency is found in its proper place (at the end) and is intended
for those who write especially time-consuming shell procedures.

Complete beginners should not be reading this section, but should work their .way through other available
tutorials first. See [10] for an-appropriate plan of study.

Throughout this section, each reference of the form name(1M), name(7), or name(8) refers to entries in
the UNIX System Administrator’s Manual. All other references to entries of the form name(N), where “N”

is a number (1 through 6) possibly followed by a letter, refer to entry name in section N of the UNIX System
User's Manual.

OVERVIEW OF THE UNIX SYSTEM ENVIRONMENT

"Full understanding of what follows depends on familiarity with the UNIX system; [9] is useful for that, and
it would be helpful to read [5]) and at least one of [6,7]. For completeness, a short overview of the most relevant
concepts are given below.

A. File System

The UNIX system file system's overall structure is that of a rooted tree composed of directories and other
files. A simple file nameis a sequence of characters other than a slash (/). A pathnameis a sequence of directory
names followed by a simple file name, each separated from the previous one by a /. If a pathname begins with
a/, the search for the file begins at the rootof the entire tree; otherwise, it begins at the user's current directory
(also known as the working directory). The first kind of name is often called a full (or absolute) pathname be-
cause it is invariant with regard to the user’s current directory. The latter is often called a relative pathname,
because it specifies a path relative to the current directory. The user may ¢hange the current directory at any

Page 37

PROGRAMMING GUIDE ISSUE 1 6/82

time by using the cd(1) command. In most cases, a file name and its corresponding pathname may be used inter-
changeably. Some sample names are:

/ absolute pathname of the root directory of the entire file structure.
/bin directory containing most of the frequently used public commands.
/al/tf/jtb/bin a full (or absolute) pathname typical of multiperson programming projects. This one hap-

pens to be a private directory of commands belonging to person jtbin project tf; alis the
name of a file system.

bin/x arelative pathname; it names file xin subdirectory bin of the current directory. If the cur-
' rent directory is / it names /bin/x If, on the other hand, the current directory is
/al/tf/jth, it names /al/tf/jtb/bin/x

memox name of a file in the current directory.

The file system for the UNIX operating system provides special'shorthand notations for the current direc-
tory and the parent directory of the current directory: ‘

is the generic name of the current directory. A ./memox names the same file as memox
if such a file exists in the current directory.

- is the generic name of the parent directory of the current directory. If the user types:
cd ..

then the parent directory of your current working directory will become your new current
directory.

B. UNIX System Processes

An imageis a computer execution environment, including contents of memory, register values, name of the
current directory, status of open files, information recorded at login time, and various other items. A process
is the execution of an image. Most UNIX system commands execute as separate processes. One process may
spawn another using the fork(2) system call, which duplicates the image of the original (parent) process. The
new (child) process continues to execute the same program as the parent. The two images are identical, except
that each program can determine whether it is executing as parent or child. Each program may continue execu-
tion of the image or may abandon it by issuing an exec(2) system call, thus initiating execution of another pro-
gram. In any case, each process is free to proceed in parallel with the other, although the parent most commonly
issues a wait(2) system call to suspend execution until a child terminates (exits).

Figure 2.1 illustrates these ideas. Program A is executing (as process 1) and wishes to run program B.
It forks and spawns a child (process 2) that continues to run program A. The child abandons A by execing
B, while the parent goes to sleep until the child exits.

Page 38

6/82 ISSUE 1 PROGRAMMING GUIDE

FORK WAIT
PROCESS 1 PROGRAR A A —— ———— »
PROGRAM A [gxec | PROGRAM B |
PROCESS 2 " . |
EXIT

Fig. 2.1— The Shell Executing a Typical UNIX System Command -

A child inherits its parent’s open files. This mechanism permits processes to share common input streams
in various ways. In particular, an open file possesses a pointerthat indicates a position in the file and is modified
by various operations on the file. The read(2) and write(2) system calls copy a requested number of bytes from
and to a file beginning at the position given by the current value of the pointer. As a side effect, the pointer
is incremented by the number of bytes transferred yielding the effect of sequential I/0. The Iseek(2) system
call can be used to obtain random-access I/0 by setting the pointer to an absolute position within the file or
to a position offset either from the end of the file or from the current pointer position.

When a process terminates, it can set an 8-bit exit status (see $? in “Predefined Special Variables” in
subpart “D. Shell Variables”) that is available to its parent. This code is usually used to indicate success (zero)
or failure (nonzero). .

Signals indicate the occurrence of events that may have some impact on a process. A signal may be sent
to a process by another process from the terminal or by the UNIX system itself. A child process inherits its
parent’s signals. For most signals, a process can arrange to be terminated on receipt of a signal, to ignore it
completely, or to catch it and take appropriate action as described in “Interrupt Handling—trap” in subpart
“D. Control Commands”. For example, an INTERRUPT signal may be sent by depressing an appropriate key
(del, break, or rubout). The action taken depends on the requirements of the specific program being executed:

e The shell invokes most commands in such a way that they immediately die when an interrupt is re-
ceived. For example, the pr(1) (print) command normally dies allowing the user to terminate unwanted
output.

o The shell jtselfignores interrupts when reading from the terminal because it should continue execution
even when the user terminates a command like pr.

e The editor ed(1) chooses to catch interrupts so that it can halt its current action (especially printing)
without being terminated.

SHELL BASICS

The shell {i.e., the sh(1l) command] implements the command language visible to most UNIX system users.
The shell reads input from a terminal or a file and arranges for the execution of the requested commands. It
is a program written in the C language [8]). The shell is not part of the operating system but is an ordinary
user program.

A. Commands

A simple command is a sequence of nonblank arguments separated by blanks or tabs. The first argument
(numbered zero) usually specifies the name of the command to be executed. Any remaining arguments, with
a few exceptions, are passed as arguments to that command. A command may be as simple as:

who

Page 39

PROGRAMMING GUIDE ISSUE 1 6/82

which prints the login names of users who are currently logged into the system. The following line requests the
pr(1) command to print files a, b, and ¢:

prabec

If the first argument of a command names a file that is executable (as indicated by an appropriate set of
permission bits associated with that file) and is actually a compiled program, the shell (as parent) spawns a
new (child) process that immediately executes that program. If the file is marked as being executable but is
not a compiled program, it is assumed to be a shell procedure, i.e., a file of ordinary text containing shell com-
mand lines, as well as possibly lines meant to be read by other programs. In this case, the shell spawns another
instance of itself (a subshell)to read the file and execute the commands included in it. The shell forks to do
this, but no exec call is made. The man(1) command requests that entries in the on-line UNIX System User’s
Manual be printed on the terminal. For example, the section that describes the who and pr commands can be
printed by entering the following:

man who pr

(Incidentally, the man(1) command itself is actually implemented as a shell procedure.) From the user’s
viewpoint, compiled programs and shell procedures are invoked in exactly the same way. The shell determines
which implementation has been used rather than requiring the user to do so. This preserves the uniformity of
invocation and the ease of changing the choice of implementation for a given command. The actions of the shell
in executing any of these commands are illustrated in Fig. 2.1.

B. How the Shell Finds Commands

The shell normally searches for commands in a way that permits them to be found in three distinct loca-
tions in the file structure. The shell first attempts to find the command (as given on the command line) in the
current directory. If this fails, the shell prepends the string /bin to the name and, finally, /usr/bin. The effect
is to search, in order, the current directory, then the directory /bin, and finally, /usr/bin. For example the pr(1)
and man(l) commands are actually the files /bin/pr and /usr/bin/man, respectively. A more complex
pathname may be given either to locate a file relative to the user's current directory or to access a command
via an absolute pathname. If a command name as given begins with a /, J, or ./ (e.g., /bin/sort or ./cmd), the
prepending is not performed. Instead, a single attempt is made to execute the command as given.

This mechanism gives the user a convenient way to execute public commands and commands in or nearthe
current directory as well as the ability to execute any accessible command regardless of its location in the file
structure. Because the current directory is usually searched first, anyone can possess a private version of a pub-
lic command without affecting other users. Similarly, the creation of a new public command will not affect a
user who already has a private command with the same name. The particular sequence of directories searched
may be changed by resetting the PATH variable as described in “User-defined Variables” in subpart “D. Shell
Variables”.

C. Generation of Argument Lists

Command arguments are very often file names. A list of file names can be automatically generated as argu-
ments on a command line by specifying a pattern that the shell matches against the file names in a directory.

Most characters in such a pattern match themselves, but there are also special metacharacters that may
be included in a pattern. These special characters follow:

* Matches any string including the null string

? Matches any one character

6/82 ISSUE 1 PROGRAMMING GUIDE

(o] Matches any sequence of characters enclosed within the square brackets. Be warned that
square brackets are also used to indicate that the enclosed argument is optional. See “A.
Conditional Evaluation—~test” in part “MISCELLANEOUS SUPPORTING COMMANDS
AND FEATURES” for more details.

(1] Any sequence of characters preceded by a ! and enclosed within [...] will match any one
character otherthan one of the enclosed characters. Inside square brackets, a pair of char-
acters separated by a — includes in the set all characters lexically within the inclusive
range of that pair, so that [a-de] is equivalent to [abcde]).

For example, the * matches all file names in the current directory. The *temp* matches all file names con-
taining string " temp" . A [a-f]* matches all file names that begin with a through f£. The [!0-9]) matches all sin-
gle-character names other than the digits, and ®.c matches all file names ending in .c. The /a1/tf/bin/? matches
all single-character file names found in /al/tf/bin. This pattern matching capability saves much typing and,
more importantly, makes it possible to organize information in large collections of small files that are named
in disciplined ways.

Pattern matching has some restrictions. If the first character of a file name is a period (.), it can be matched
only by an argument that literally begins with a period. If a pattern does not match any file names, then the
pattern itself is returned as the result of the match, for example:

echo *.c
will print:
*.c
if the current directory contains no files ending in .c.

Directory names should not contain the characters ®, 2, [, or] because this may cause infinite recursion dur-
ing pattern matching attempts. This may be changed in a future release.

0. Shell Variables

The shell has several mechanisms for creating variables. A variable is a name representing a string value.
Certain variables are usually referred to as parameters. Parameters are the variables which are normally set
only on a command line. There are also positional parameters (see “Positional Parameters”) and keyword
parameters (see “A. A Command's Environment” in part “USING THE SHELL AS A COMMAND: SHELL
PROCEDURES"). Other variables are simply names to which the user or the shell itself may assign string val-
ues.

Positional Parameters: When a shell procedure is invoked, the shell implicitly creates positional pa-
rameters. The argument in position zero on the command line (the name of the shell procedure itself) is called
$0, the first argument is called $1, etc. The shift command (see “Passing Arguments to the Shell —shift” in
part “USING THE SHELL AS A COMMAND: SHELL PROCEDURES") may be used to access arguments in
positions numbered higher than nine.

One can explicitly force values into these positional parameters by using the set command:
set abe def ghi

which assigns stringl(” abc") to the first positional parameter ($1), string2 to the second ($2), and string3 to
the third ($3). For this example, set also unsets $4, $5, etc. even if they were previously set. The $0 may not

Page 41-

PROGRAMMING GUIDE ISSUE 1 6/82

be assigned a value so that it always refers to the name of the shell procedure or to the name of the shell (in
the login shell).

User-defined Variables: The shell also recognizes alphanumeric variables to which string values may
be assigned. Positional parameters may not appear on the left-hand side of an assignment statement. Positional
parameters can only be set as described in *“Positional Parameters”. A simple assignment is of the form:

name =string

Thereafter, $ name will yield the value " string” . A nameis a sequence of letters, digits, and underscores that
begins with a letter or an underscore. Note that no spaces surround the = in an assignment statement.

More than one assignment may appear in an assignment statement, but beware since the shell performs
the assignments from right to left. The following command line results in the variable a acquiring the value
" abc":

a=$b b=abc

The following are examples of simple assignments. Double quotes around the right-hand side allow blanks,
tabs, semicolons, and new-lines to be included in " string” , while also allowing variable substitution (also known
as parameter substitution) to occur. In parameter substitution references to positional parameters and other
variable names that are prefaced by $ are replaced by the corresponding values, if any. Single quotes inhibit
variable substitution. Some examples follow:

MAIL=/usr/mail/gas
var="echo $1 $2 $3 $4"
Stars:.““
asterisks='$stars’

The variable var has as its value the string consisting of the values of the first four positional parameters, sepa-
rated by blanks. No quotes are needed around the string of asterisks being assigned to stars because pattern
matching (expansion of *, 7, [...]) does notapply in this context. Note that the value of $asterisks is the literal
string " $stars", not the string " *****", because the single quotes inhibit substitution.

In assignments, blanks are not reinterpreted after variable substitution, so that the following example re-
sults in $first and $second having the same value:

" first="a string with embedded blanks'
second=9%first

In accessing the value of a variable, one may enclose the variable’s name (or the digit designating the posi-
tional parameter) in braces {} to delimit the variable name from any following string. See “Command
Grouping—Parentheses and Braces” in “D. Control Commands” and “G. Conditional Substitution” in part
“MISCELLANEOUS SUPPORTING COMMANDS AND FEATURES"” for other meanings of braces in the
shell. In particular, if the character immediately following the name is a letter, digit, or underscore (digit only
for positional parameters), then the braces are required:

a="This is a string’ _
echo” ${ajent test”

The following variables are used by the shell. Some of them are set by the shell, and all of them can be
set and reset by the user:

HOME is initialized by the login(1) program to the name of the user’s login directory, i.e., the di-
rectory that becomes the current directory upon completion of a login. The cd command

Page 42

6/82

MAIL

PATH

CDPATH

PS1

pPs2

ISSUE 1 PROGRAMMING GUIDE

without arguments uses $ HOME as the directory to switch to. Using this variable helps
one to keep full pathnames out of shell procedures. This is a big help when the pathname
of your login directory is changed (e.g., to balance disk loads).

is the pathname of a file where your mail is deposited. If MAILis set, then the shell checks
to see if anything has been added to the file it names and announces the arrival of new
mail every time you return to command level (e.g., by leaving the editor). MAIL must be
set by the user. (The presence of mail in the standard mail file is also announced at login,
regardless of whether MAIL is set.)

is the variable that specifies where the shell is to look when it is searthing for commands.
Its value is an ordered list of directory pathnames separated by colons. A null character
anywhere in that list represents the current directory. The shell initializes PATH to the
list :/bin:/usr/bin where, by convention, a null character appears in front of the first colon.
Thus if you wish to search your current directory last, rather than first, you would type:

PATH=/bin:/usr/bin::

where the two colons together represent a colon followed by a null followed by a colon, thus
naming the current directory. A user often has a personal directory of commands (say,
$HOME) and causes it to be searched before the /bin and usr/bin directories by using:

PATH=:$HOME/bin:/bin:/usr/bin

The setting of PATH to other than the default value is normally done in a user’s .profile
file (see “The .profile File” in subpart “I. Changing the State of the shell and the .profile

File”).

is the variable that specifies where the shell is to look when searching for the argument
of the ¢d command whenever that argument is not null and does not begin with /, /, or
./ [see ed(1), “A. File System"” in part “OVERVIEW OF THE UNIX SYSTEM ENVIRON-
MENT”, and “E. Special Shell Commands” in part “USING THE SHELL AS A COM-
MAND: SHELL PROCEDURES"]. The value of CDPATH is an ordered list of directory
pathnames separated by colons. A null character anywhere in that list represents the cur-
rent directory. By convention, if the list begins with a colon, 2 null character is assumed
to precede that colon. Initially, COPATH is unset, resulting in only the current directory
being searched. Thus if you wish the cd command to first search your current directory
and then your home directory, you would type:

CDPATH=:$HOME .

The setting of CDPATH to other than the default value is normally donein a user’s.profile
file (see “The - profile File” in subpart “I. Changing the State of the shell and the . profile
File”). Note that if the cd command changes to a directory that is not a descendent of the
current directory, it writes the full name of the new directory on the diagnostic output
(see"Standard Input and Standard Output” and “Diagnostic and Other Outputs” in
subpart “F. Redirection of Input and Output”).

is the variable that specifies what string is to be used as the primary prompt string. If the
shell is interactive, it prompts with the value of PSI when it expects input. The default
value of PSIis “$” (a $ followed by a blank).

is the variable that specifies the secondary prompt string. If the shell expects more input

when it encounters a new-line in its input, it will prompt with the value of PS2 The default
value of PS2is “>" (a > followed by a blank).

Page 43

PROGRAMMING GUIDE ISSUE 1 6/82

IFS is the variable that specifies which characters are internal field separators. These are the
characters the shell uses during blank interpretation. (If you want to parse some

delimiter-separated data easily, you can set IFSto include that delimiter.) The shell ini-
tially sets IFS to include the blank, tab, and new-line characters.

Command Substitution: Any command line can be placed within grave accents ('...") to capture the output
of the command. This concept is known as command substitution. The command or commands enclosed between
grave accents are first executed by the shell and then their output replaces the whole expression, grave
accents and all. This feature is often combined with shell variables so that

today='date’

assigns the string representing the current date to the variable today (e.g., Tue Nov 27 16:01:09 EST 1979).
The command

users=‘who { we -|'

saves the number of logged-in users in the variable users Any command that writes to the standard output can
be enclosed in grave accents. Grave accents (see “E. Quoting Mechanisms’) may be nested. The inside sets must
be escaped with \. For example:

logmsg="echo Your login directory is\pwd*

Shell variables can also be given values indirectly by using the read(2) command. The read command takes
a line from the standard input (usually your terminal) and assigns consecutive words on that line to any
variables named:

read first init last
will take an input line of the form:
G. A. Snyder
and have the same effect as if you had typed:
first=G. init=A. last=Sﬁyder
The read co;nmand assigns any excess “words” to the last variable.

Predefined Special Variables: Several variables have special meanings. The following are set only by
the shell:

$# records the number of positional arguments passed to the shell, not counting the name
of the shell procedure itself. The variable $# yields the number of the highest-numbered
positional parameter that is set. Thus, sh x a b ¢ sets $# to 3. One of its primary uses is
in checking for the presence of the required number of arguments:

if test $# —It 2
then

echo 'two or more args required’; exit
fi

$? . is the exit status (also referred to as return code, exit code, or value) of the last command
executed. Its value is a decimal string. Most UNIX system commands return O to indicate
successful completion. The shell itself returns the current value of $? as its exit status.

$$ is the process number of the current process. Since process numbers are unique among all
existing processes, this string.of up to five digits is often used to generate unigue names

Page 44

6/82 ISSUE 1 PROGRAMMING GUIDE

for temporary files. The UNIX system provides no mechanism for the automatic creation
and deletion of temporary files. A file exists until it is explicitly removed. Temporary files
are generally undesirable. The UNIX system pipe mechanism is far superior for many ap-
plications. However, the need for uniquely-named temporary files does occasionally occur.
The following example also illustrates the recommended practice of creating temporary
files in a directory used only for that purpose:

temp=$HOME/temp/$$ # use current process number

Is > $temp # to form unique temp file
commands, some of which use $temp, go here

rm $temp ¥ clean up at end

$! is the process number of the last process run in the background (using &—see “D. Control
Commands” in part “USING THE SHELL AS A COMMAND: SHELL PROCEDURES").
Again, this is a string of up to five digits.

$— is a string consisting of names of execution flags (see “Execution Flags—set” in subpart
“F. Redirection of Input and Output” and “G. More about Execution Flags” in part “US-
ING THE SHELL AS A COMMAND: SHELL PROCEDURES") currently turned on in the
shell. The $— variable might have the value xv if you are tracing your output.

E. Quoting Mechanisms

Many characters have a special meaning to the shell which is sometimes necessary to conceal. Single quotes
(") and double quotes (" ") surrounding a string or backslash (\) before a single character provide this function
in somewhat different ways. (Grave accents [* ‘] are sometimes called back quotesbut are used only for command
substitution [see “Command Substitution” in subpart “D. Shell Variables”) in the shell and do not hide special
meanings of any characters.)

Within right single quotes, all characters (except ' itself) are taken literally with any special meaning removed.
Thus:

stuff='echo $? $*; Is * | we’

results only in the string echo $? $*; Is ® | wc being assigned to the variable stuff but not in any other com-
mands being executed.

Within double quotes, the special meaning of certain characters does persist while all other characters are
taken literally. The characters that retain their special meaningare §, ', and " itself. Thus, within double quotes,
variables are expanded and command substitutiontakes place. However, any commands in a command substitu-
tion are not affected by double quotes outside of the grave accents, so that characters such as * retain their spe-
cial meaning.

To hide the special meaning of $,*, and " within double quotes, you can precede these characters with a

- backslash (\). Outside of double quotes, preceding a character with \ is equivalent to placing single quotes

around that character. A \ followed by a new-line causes that new-line to be ignored, thus allowing continuation
of long command lines.

F. Redirection of Input and Output

In general, most commands neither know nor care whether their input (output) is coming from (going to)
a terminal or a file. Thus, a command can be used conveniently either at a terminal or in a pipeline (see subpart

Page 45

PROGRAMMING GUIDE ISSUE 1 6/82

“G.Command Lines and Pipelines”). Depending on the nature of a command's input or output, the actions taken
by a few commands can be varied either for efficiency’s sake or to avoid useless actions (such as attempting
random access I/0 on a terminal).

Standard Input/Output: When a command begins execution, it usually expects that three files are al-
ready open—a standard input,a standard output, and a diagnostic (error) output. A number called a file descrip-
toris associated with each of these files. By convention, the file descriptor O is associated with standard input,
file descriptor 1 with standard output, and file descriptor 2 with diagnostic output. A child process normally
inherits these files from its parent. All three files are initially connected to the terminal (0 to the keyboard,
1 and 2 to the printer or screen). The shell permits them to be redirected elsewhere before control is passed
to an invoked command. An argument to the shell of the form < file or > file opens the specified file as the
standard input or output, respectively (in the case of output, destroying the previous contents of file, if any).
An argument of the form > > filedirects the standard output to the end of file, thus providing a way to append
data to it without destroying its existing contents. In either of the two output cases, the shell creates file if
it does not already exist (thus > output alone on a line creates a zero-length file). The following appends to
file Jog the list of users who are currently logged on:

who >> log

Such redirection arguments are only subject to variable and command substitution. Neither blank interpreta-
tion nor pattern matching of file names occurs after these substitutions. Thus:

echo 'this is a test’ > *.ggg
and:
cat < ?

will produce, respectively, a 1-line file named *.ggg (arather disastrous name for a file) and an error message
(unless you have a file named 2, which is also not a wise choice for a file name—see end of part “C. Generation
of Argument Lists”).

Diagnostic & Other Outputs: Diagnostic output from UNIX system commands is traditionally directed
to the file associated with file descriptor 2. (There is often a need for an error output file that is different from
standard output so that error messages do not get lost down pipelines—see subpart “G. Command Lines and
Pipelines”.) One can redirect this error output to a file by immediately prepending the number of the file de-
scriptor (i.e., 2 in this case) to either output redirection symbol (> or >>). The following line will append error
messages from the cc(1) command to file ERRORS:

ce testfile.c 2>> ERRORS

Note that the file descriptor number must be prepended to the redirection symbol without any intervening
blanks or tabs. Otherwise, the number will be passed as an argument to the command.

This method may be generalized to allow one to redirect output associated with any of the first ten file
descriptors (numbered O through 9) so that, for instance, if emd puts output on file descriptor 9, the following
line will capture that output in file savedatz

cemd 9> savedata
A command often generates standard output and error output and might even have some other output, perhaps
a data file. In this case, one can redirect independently all the different outputs. Suppose that e¢md directs its
standard output to file descriptor 1, its error output to file descriptor 2, and builds a data file on file descriptor
9. The following would direct each of these three outputs to a different file:

emd > standard 2> error 9> data

Page 46

6/82 ISSUE 1 PROGRAMMING GUIDE

Other forms of input/output redirection are described in -“Input/Output Redirection and Control Com-
mands” and “In-line Input Documents” in subpart “D. Control Commands” and “F. Input/Output Redirection
Using File Descriptors” in part “MISCELLANEOUS SUPPORTING COMMANDS AND FEATURES".

G. Cemmand lines and Pipelines

A sequence of one or more commands separated by | (or *) make up a pipeline. In a pipeline consisting of
more than one command, each command is run as a separate process connected to its neighbor(s) by pipes, i.e.,
the output of each command (except the last one) becomes the input of the next command in line. A filteris
a command that reads its standard input, transforms it in some way, then writes it as its standard output. A
pipeline normally consists of a series of filters. Although the processes in a pipeline are permitted to execute
in parallel, they are synchronized to the extent that each program needs to read the output of its predecessor.
Many commands operate on individual lines of text, reading a line, processing it, writing it out, and looping back
for more input. Some must read larger amounts of data before producing output. The sort(1) command is an
example of the extreme case that requires all input to be read before any output is preduced.

The following is an example of a typical pipeline: nroff (see troff in Section 1) is a text formatter whose
output may contain reverse line motions; col(1) converts these motions to a form that can be printed on a termi-
nal lacking reverse-motion capability; greek(l) is used to adapt the output to a specific terminal, here specified
by =Thp. The flag —cm indicates one of the commonly used formatting options, and text is the name of the
file to be formatted:

nroff —cm text | col | greek —Thp
H. Examples

The following examples illustrate the variety of effects that can be obtained by combining a few commands
in the ways described above. It may be helpful to try these examples at a terminal:

who
Prints (on the terminal) the list of logged-in users.

who >> log
Appends the list of logged-in users to the end of file log.

who | we. -1
Prints the number of logged-in users. (The argument to we is minus ell.)

who I pr
Prints a paginated list of logged-in users.

who | sort)
Prints an alphabetized list of logged-in users.

who | grep pw
Prints the list of logged-in users whose login names contain the string " pw".

who | grep pw | sort | pr
Prints an alphabetized, paginated list of logged-in users whose login names contain the string

|lpwl .
{ date; who lwe —I;} >> log

Appends (to file log) the current date followed by the count of logged-in users (see “Command

Grouping—Parentheses and Braces” in subpart “D. Control Commands” for the meaning of ...}
in this context).

Page 47

PROGRAMMING GUIDE ISSUE 1 6/82

who | sed 's/ .*//" | sort | uniq —-d
Prints only the login names of all users who are logged in more than once.

The who command does not by itself provide options to yield all of the results which can be obtained by
combining who with other commands. Note that who just serves as the data source in these examples. As an
exercise, replace who | by < /ete/passwd in the above examples to see how a file can be used as a data source
in the same way. Notice that redirection arguments may appear anywhere on the command line.

I. Changing of the Shell and .profile State

The state of a given instance of the shell includes the values of positional parameters (see “Positional Pa-
rameters” in subpart “D. Shell Variables”), user-defined variables (see “User-defined Variables” in subpart “D.
Shell Variables”), environmental variables (see “A. A Command’s Environment”), modes of execution (see “G.
More about Execution Flags”), and the current working directory.

The state of a shell may be altered in various ways. These include the ed command, several flags that can
be set by the user, and a file in one’s login directory called .profile that is treated specially by the shell.

“CD’': The ed(1) command changes the current directory to the one specified as its argument. This can (and
should) be used to change to a convenient place in the directory structure. The ed command is often combined
with () to cause a subshell to change to a different directory and execute a group of commands without affecting
the original shell. The first sequence below extracts the component files of the archive file /a1/tf/q.a and places
them in whatever directory is the current one. The second sequence of commands places them in directory /al/
tf.

ar x /al/tf/q.a
(cd /al/tf; ar x q.a)

The .profile File: When l'ou log in, the shell is invoked to read your commands. First, however, the shell
checks to see if a file name /etc/profile exists on your UNIX system and, if it does, commands are read from
it. The /etc/profile is used by system administrators to set up variables needed by all users. Type

cat /etc/profile

to see what your system administrator has already done for you: After this, the shell proceeds to see if you
have a file named .profile in your login directory. If so, commands are read and executed from it. For a sample
.profile, see profile(5). Finally, the shell is ready to read commands from your standard input—usually the
terminal.

The Execution Flags—*“set”: The set command provides the capability of altering several aspects of the
behavior of the shell by setting certain shell flags. In particular, the x and v flags may be useful from the termi-
nal. Flags may be set by typing, for example:

set —xv
(to turn on flags x and v). The same flags may be turned off by typing
set +xv
These two flags have the following meaning:

-v Input lines are printed as they are read by the shell. This flag is particularly useful for
isolating syntax errors. The commands on each input line are executed after that input line
is printed.

6/82 ISSUE 1 PROGRAMMING GUIDE

-x Commands and their arguments are printed as they are executed. (Shell control com-
mands, such as for, while, etc., are not printed, however.) Note that —x causes a trace
of only those commands that are actually executed, whereas —v prints each line of input
until a syntax error is detected.

The set command is also used to set these and other flags within shell procedures (see “G. More about Exe-
cution Flags”).

USING THE SHELL AS A COMMAND: SHELL PROCEDURES
A. A Command’s Environment

All the variables (with their associated'values) that are known to a command at the beginning of execution
of that command constitute its environment. This environment includes variables that the command inherits
from its parent process and variables specified as keyword parameters on the command line that invokes the
command.

The variables that a shell passes to its child processes are those that have been named as arguments to
the export (see sh) command. The export command places the named variables in the environments of both
the shell and all its future child processes.

Keyword parameters are variable-value pairs that appear in the form of assignments, normally before the
procedure name on a command line (see also —k flag in “G. More about Execution Flags”). Such variables are
placed in the environment of the procedure being invoked. For example:

f key_command
echo $a $b

is a simple procedure that echoes the values of two variables. If it is invoked as:
a=keyl b=key2 key_command

then the output is:
keyl key2

A procedure’s keyword parameters are not included in the argument count $# (see ‘Predefined Special
Variables” in “D. Shell Variables").

A procedure may access the value of any variable in its environment. However, if changes are made to the
value of a variable, these changes are not reflected in the environment. The changes are local to the procedure
in question. In order for these changes to be placed in the environment that the procedure passes to its child
processes, the variable must be named as an argument to the export command within that procedure (see “B.
Invoking the Shell”). To obtain a list of variables that have been made exportable from the current shell, type:

export

(You will also get a list of variables that have been made readonly—see “E. Special Shell Commands”.) To
get a list of name-value pairs in the current environment, type:

env

Page 49

PROGRAMMING GUIDE ISSUE 1 6/82

B. Invoking the Shell
The shell is an ordinary command and may be invoked in the same way as other commands:

sh proc [arg..] A new instance of the shell is explicity invoked to read proc. Arguments, if any, can b
manipulated as described in “C. Passing Arguments to the Shell; shift”.

sh —v proc[arg..] Thisis equivalent to putting set—v at the beginning of proc Similarly for the x, e, u, ar.
n flags (see “Execution Flags—set" in subpart “I. Changing the State of the Shell and tk
profile File” and “G. More about Execution Flags").

proc [arg..] If procis marked executable and is not a compiled, executable program, the effect is-simi-
lar to that of sh proc [args...]. An advantage of this form is that proc may be found by
the search procedure described in “B. How the Shell Finds Commands” and “User-defined
Variables” in subpart “D. Shell Variables”. Also, variables that have been exported in
the shell will still. be exported from proc when this form is used (because the shell onl:
forks to read commands from proc). Thus any changes made within proc to the values of
exported variables will be passed on to subsequent commands invoked from within proc

C. Passing Arguments to the Shell—"shift"

When a command line is scanned, any character sequence of the form $nis replaced by the oth argument
to the shell counting the name of the shell procedure itself as $0. This notation permits direct reference to
the procedure name and to as many as nine positional parameters (see “Positional Parameters” in subpart “D.
Shell Variables™). Additional arguments can be processed using the shift command or by using a for loop (see
“Looping over a List—for” in subpart “D. Control Commands”).

The shift command shifts arguments to the left; i.e., the value of $1 is thrown away, $2 replaces $1, $3
replaces $2, etc.. The highest-numbered positional parameter becomes unset ($0 is never shifted.) The com-
mand shift ois a shorthand notation for n consecutive shifts. A shift O does nothing. For example, consider
the shell procedure ripple below. The echo command writes its arguments to the standard output. The while
command is discussed in “Conditional Looping—while and until” in subpart “D. Control Commands". The
lines that begin with # are comments.

4 ripple command
while test $# 1= 0
do

echo $1 $2 $3 $4 $5 $6 $7 $8 $9
shift
done

If the procedure were invoked by
rippleabe
it would print

abe
be
c

The notation $* causes substitution of all positional parameters except $0. Thus, the echo linein the ripple
example above could be written more compactly as:

< echo $*

These two echo commands are not equivalent. The first prints at most nine positional parameters. The sec-
ond prints all of the current positional parameters. The $* notation is more concise and less error-prone. One

Page 50

6/82 ISSUE 1 PROGRAMMING GUIDE

obvious application is in'passing an arbitrary number of arguments to a command such as the nroff text
formatter:

nroff —h —rw120 -T450 —cm $*

It is important to understand the sequence of actions used by the shell in scanning command lines and sub-
stituting arguments. The shell first reads input up to a new-line or semicolon and then parses that much of
the input. Variables are replaced by their values and then command substitution (via grave accents) is attempt-
ed. 170 redirection arguments are detected, acted upon, and deleted from the command line. Next the shell
scans the resulting command line for internal field separators, that is, for any characters specified by IFS to
break the command line into distinct arguments. Any explicit null arguments (specified by "" or ’’) are re-
tained, while implicitnull arguments resulting from evaluation of variables that are null or not set are removed.
Then file name generation occurs, with all metacharacters being expanded. The resulting command line is exe-
cuted by the shell.

Sometimes, one builds command lines inside a shell procedure. In this case one might want to have the
shell rescan the command line after all the initial substitutions and expansions are done. The special command
eval is available for this purpose. The eval command takes a command line as its argument and simply rescans
the line performing any variable or command substitutions that are specified. Consider the following (simpli-
fied) situation:

command=who
output="1 we -’
eval $command $output

This segment of code results in the pipeline who | wc —1 being executed.
The output of eval cannot be redirected. The uses of eval can, however, be nested.
D. Control Commands

The shell provides several flow-of-control commands that are useful in creating shell procedures. To ex-
plain them, we first need a few definitions.

A simple command is defined in “A. Commands”. Input/Output redirection arguments can appear in a
simple command line and are passed to the shell, not to the command.

. A command is a simple command or any of the shell control commands described below. A pipeline is
a sequence of one or more commands separated by I. (For historical reasons, ~ is a synonym for ! in this context.)
The standard output of each command but the last in a pipeline is connected [by a pipe(2)) to the standard input
of the next command. Each command in a pipeline is run separately. The shell waits for the last command to
finish. The exit status of a pipeline is nonzero if the exit status of either the first or last process in the pipeline
is nonzero. (This is a bit weird and may be changed in the future.)

A command listis a sequence of one or more pipelines separated by ;, &, &&, or |, and optionally termi-
nated by ; or &. A semicolon (;) causes sequential execution of the previous pipeline (i.e., the shell waits for
the pipeline to finish before reading the next pipeline), while & causes asynchronous execution of the preceding
pipeline. Both sequential and asynchronous execution are thus allowed. An asynchronous pipeline continues
execution until it terminates voluntarily or until its processes are killed. Figure 2.2 shows the actions of the
shell involved in executing these two command lists:

who >log; date
who >log& date&

For the first command list in Fig. 2.2, the shell executes who, waits for it to terminate, then executes date
and waits for it to terminate. For the second command list in Fig. 2.2, the shell invokes both commands in order
but does not wait for either one to finish.

Page 51

PROGRAMMING GUIDE ISSUE 1 6/82

SH FORK WAIT FORK MWAIT
—_——— —————
= —isiee) . = =i .
2.3 EXEC | WHO | EXEC | DATE
' WHO | DATE
EXIT EXIT
SH FORK FORK (FREE TO DO OTHER COMMANDS)
Y
EXEC DATE |
3 DATE |
EXIT
2 EXEC KHO |
WHO - |

EXIT

Fig. 2.2—The Shell Executing Typical Command Lists

More typical uses of & include off-line printing, background compilation, and generation of jobs to be sent
to other computers. For example, if you type)

nohup cc prog.c&

you may continue working while the C compiler runs in the background. A command line ending with & is im-
mune to interrupts and quits, but it is wise to make it immune to hang-ups as well. The nohup command is
used for this purpose. Without nohup, if you hang up while cc in the above example is still executing, cc will
be killed and your output will disappear.

Note: The & operator should be used with restraint, especially on heavily-loaded systems. Other users
will not consider you a good citizen if you start up a-large number of simultaneous, asynchronous processes
without a compelling reason for doing so.

The && and !l operators, which are of equal precedence (but lower than & and!), cause conditional execution
of pipelines. In emd1 |! ¢cmd2, emdl is executed and its exit status examined. Only if cmd1 fails (i.e., has a
nonzero exit status) is emd2 executed. This is thus a more terse notation for:

if cmdl
test $7!=0
then
cmd2
fi

See writemail in part “EXAMPLES OF SHELL PROCEDURES” for an example of use of ii.

The && operator yields the complementary test: in ecmdl && cmd2, the second command is executed only
if the first succeeds (has a zero exit status). In the sequence below, each command is executed in order until
one fails:

- emdl && cmd2 && cmd3 && ... && emdn

Page 52

6/82 ISSUE 1 PROGRAMMING GUIDE

A simple command in a pipeline may be replaced by a command list enclosed in either parentheses or braces.
The output of all the commands so enclosed is combined into one stream that becomes the input to the next com-
mand in the pipeline. The following line prints twoseparate documents in a way similar to that shown in a previ-
ous example (see “G. Command Lines and Pipelines”):

{ nroff —cm textl; nroff —cm text2; } | col | greek —Thp

See “Command Grouping—Parentheses and Braces” in subpart “D. Control Commands” for further details on
command grouping.

All of the following commands are formally described in sh(l).

Structured Conditional—“if”: The shell provides an if command. The simplest form of the if command
is:

if command list
then

command list
fi

The command list following if is executed. If the last command in this list has a zero exit status, then the com-
mand list that follows then is executed. The fi indicates the end of the if command.

In order to cause an alternative set of commands to be executed in the case where the command list following

if has a nonzero exit status, one may add an else clause to the form given above. This results in the following
structure:

. if command list
then
command list
else
command list
fi

Multiple tests can be achieved in an if command by using the elif clause. For example:

if test —f" $1" # is $1 a file?
then '

pr $1
elif test —d " $1° ¥ else, is $1 a directory?
then

(cd $1; pr *)
else

echo $1 is neither a file nor a directory
fi

The above example is executed as follows. If the value of the first positional parameter is a file name, then print
that file. If not, then check to see if it is the name of a directory. If so, change to that directory and print all
the files there. Otherwise, echo the error message.

The if command may be nested (but be sure to end each one with an fi). The new-lines in the above examples
of if may be replaced by semicolons.

The exit status of the if command is the exit status of the last command executed in any then clause or
else clause. If no such command was executed, if returns a zero exit status.

Page 53

PROGRAMMING GUIDE ISSUE 1 6/82

Multiway Branch—“case”: A multiple way branch is provided by the case command. The basic format
of case is:

case stringin
pattern) command list ;;

pattern) command list ;;
esac

The shell tries to match string against each pattern in turn, using the same pattern-matching conventions as
in file-name generation (“‘C. Generation of Argument Lists"). If a match is found, the command list following
the matched pattern is executed. The ;; serves as a break out of the case and is required after each command
list except the last. Note that only one pattern is ever matched and that matches are attempted in order, so that
if * is the first pattern in as case, no other patterns will ever be looked at.

More than one pattern may be associated with a given command list by specifying alternate patterns sepa-
rated by L For example:

case $i in

*.c) cc $i

* hi*.sh)) f do nothing

*) gcho " $i of unknown type"
esac "

In the above example, no action is taken for the second set of patterns because the null command is specified.
The * is used as a default pattern because it matches any word.

The exit status of case is the exit status of the last command executed in the case command. If no com-
mands were executed, then case has a zero exit status.

Conditional Looping—*“while” and “until”; A while command has the general form:

while command list
do

command list
done

The commands in the first command list are executed; and if the exit status of the last command in that list
is zero, then the commands in the second list are executed. This sequence is repeated as long as the exit status
of the first command list is zero. A loop can be executed as long as the first command list returns a nonzero
exit status by replacing while with until.

Any new-line in the above example may be replaced by a semicolon. The exit status of a while (until) com-
mand is the exit status of the last command executed in the second command list. If no such command is execut-
ed, while (until) has exit status zero.

Looping over a List—*“for"”: Often, one wishes to perform some set of operations for each in a set of files
or execute some command once for each of several arguments. The for command can be used to accomplish this.

Page 54

6/82 ISSUE 1 PROGRAMMING GUIDE

The for command has the format:

for variable in word list
do

command list
done

where word list is a list of strings separated by blanks. The commands in the command list are executed once
for each word in word list Variable takes on as its value each word from word list, in turn, word list is fixed
after it is evaluated the first time. For example, the following for loop will cause each of the C source files xec.c,
emd.c, and word.c in the current directory to be diffed with a file of the same name in the directory
/usr/sre/cmd/sk

for cfile in xec cmd word
do

diff $cfile.c /usr/src/emd/sh/$cfile.c
done

One can omit the “in word list’ part of a for command. This will cause the current set of positional parame-
ters to be used in place of word list This is very convenient when one wishes to write a command that performs
the same set of commands for each of an unknown number of arguments. See null in part “Examples of Shell
Procedures” for an example of this feature.

Loop Control—*“break” and “continue”: The break command can be used to terminate execution of
a while, until, or a for loop. The continue command requests the execution of the next iteration of the loop.
These commands are effective only when they appear between do and done.

The break command terminates execution of the smallest (i.e., innermost) enclosing loop causing execution
to resume after the nearest following unmatched done. Exit from n levels is obtained by break n

The continue command causes execution to resume at the nearest enclosing while, until, or for, i.e., the
one that begins the innermost loop containing the continue. One can also specify an argument nto continue
and execution will resume at the nth enclosing loop:

This procedure is interactive; ‘break’ and 'continue’
f commands are used to allow the user to control data entry.

while true
do
echo " Please enter data"
read response
case " $response” in
" done") break # no more data
") continue
.) »
process the data here
esac
done

End-of-file and “exit”: When the shell reaches end-of-file, it terminates execution, returning to its par-
ent the exit status of the last command executed prior to the end-of-file. The exit command simply reads to
the end-of-file and returns, setting the exit status to the value of its argument, if any. Thus, a procedure can
be terminated “normally” by using exit O.

Command Grouping—Parentheses/Braces: There are two methods for grouping commands in the
shell. As mentioned in “Cd” in subpart 1. Changing the State of the Shell and the .profile File”, parentheses

Page 55

PROGRAMMING GUIDE ISSUE 1 6/82

() cause the shell to spawn a subshell that reads the enclosed commands. Both the right and left parentheses
are recognized wherever they appear in a command line. The left and right parentheses can appear as literal
parentheses only by being quoted. For example, if you type garble(stuff), the shell interprets this as four
separate words: garble, (, stuff, and).

This subshell capability is useful if one wishes to perform some operations without affecting the values of
variables in the current shell or to temporarily change directory and execute some commands in the new direc-
tory without having to explicitly return to the current directory. The current environment is passed to the
subshell and variables that are exported in the current shell are also exported in the subshell. Thus;.

current="pwd"; ed /usr/docs/sh_tut;
nohup mm —Tlp sc_? { Ipr& cd $current

and
(cd /usr/docs/sh_tut; nohup mm —Tlp sc_? | Ipr&)

accomplish the same result. Both examples are used to print a copy of a document on the line printer. However,
the second example automatically puts you back in your original working directory. In the second example
above, blanks or new-lines surrounding the parentheses are allowed but not necessary. The shell will prompt
with $PS2is expected. See also the example in “Cd” in subpart “I. Changing the State of the Shell and the
.profile File”.

Braces {} may also be used to group commands together. See “User-defined Variables” in subpart “D. Shell
Variables” and “G. Conditional Substitution” for other meanings of braces in the shell. Both the left and the
right brace are recognized only if they appear as the first (unquoted) word of a command. The opening brace
{ may be followed by a new-line (in which case the shell will prompt for more input). Unlike the case involving
parentheses, no subshell is spawned for braces. The enclosed commands are simply read by the shell. The braces
are convenient when you wish to use the (sequential) output of several commands as input to one command.
See the last example in “D. Control Commands".

The exit status of a set of commands grouped by either parentheses or braces is the exit status of the last
enclosed executed command. -

1/0 Redirection and Control Commands: The shell normally does not fork when it recognizes the
control commands (other than parentheses) described above. However, each command in a pipeline is run as
a separate process in order to direct input (output) to (from) each command. Also, when redirection of input/
output is specified explicitly for a control command, a separate process is spaivned to execute that command.
Thus, when if, while, until, case, or for is used in a pipeline consisting of more than one command, the shell
forks and a subshell runs the control command. This has certain implications. The most noticeable one is that
any changes made to variables within the control command are not effective once that control command finishes
(similar to the effect of using parentheses to group commands). The control commands run slightly slower when
redirection is specified.

Beginners should skip to “E. Special Shell Commands” on first reading.
In-line Input Documents: Upon seeing a command line of the form:
command < < eofstring

where eofstring is any arbitrary string, the shell will take the subsequent lines as the standard input of com-
mand until a line is read consisting only of eofstring (possibly preceded by one or more tab characters). By ap-
pending a minus (—) to <<, leading tab characters are deleted from each line of the input document before the
shell passes the line to command.

Page 56

6/82 ISSQE 1 PROGRAMMING GUIDE

The shell creates a temporary file containing the input document and performs variable and command sub-
stitution (“Command Substitution” in subpart “D. Shell Variables”) on its contents before passing it to the com-
mand. Pattern matching on file names is performed on the arguments of command lines in command
substitutions. In order to prohibit all substitutions, one may quote any character of eofstring:

command << \eofstring
Typically eofstring consists of a single chararcter like ! which is often used for this purpose.

The in-line input document feature is especially useful for small amounts of input data (e.g., an editor
“script”), where it is more convenient to place the data in the shell procedure than to keep it in a separate file.
For instance, one could type: '

cat <<— Xxyz
This message will be printed on the
terminal with leading tabs removed.
Xyz

This in-line input document feature is most useful in shell procedures. See edfind, edlast, and mmt in part
“EXAMPLES OF SHELL PROCEDURES". Note that in-line input documents may not appear within grave ac-
cents. This is an implementation bug that may be changed in the future.

Transfer to Another File and Back via Dot (.): A command line of the form
. proc

causes the shell to read commands from proc without spawning a new process. Changes made to variables in
procare in effect after the dot command finishes. This is thus a good way to gather a number of shell variable
initializations into one file. Note that an exit command in a file executed in this manner will cause an exit from
your current shell. If you are at login level, you will be logged out.

Interrupt Handling—*“trap”: As noted in “B. UNIX System Processes”, a program may choose to catch
an interrupt from the terminal, ignore it completely, or be terminated by it. Shell procedures can use the trap
command to obtain the same effects.

trap arg signal-list

is the form of the trap command, where argis a string to be interpreted as a command list and signal-list con-
sists of one or more signal numbers {as described in signal(2)]. The commands in argare scanned at least once
when the shell first encounters the trap command. Because of this, it is usually wise to use single rather than
double quotes to surround these commands. The single quotes inhibit immediate command and variable substi-
tution. This becomes important, for instance, when one wishes to remove temporary files and the names of those
files have not yet been determined when the trap command is first read by the shell. The following procedure
will print the name of the current directory on the file errdirect when it is interrupted, thus giving the user
information as to how much of the job was done:

trap ‘echo ‘pwd* >errdirect’' 2 3 15
for i in /bin /usr/bin /usr/gas/bin
do
cd $i
commands to be executed in directory $i here
done

while the same procedure with double (rather than single) quotes trap "echo'pwd'>errdirect” 2 3 15 will,
instead, print the name of the directory from which the procedure was executed.

Page 57

PROGRAMMING GUIDE ISSUE 1 6/82

Signal 11 (SEGMENTATION VIOLATION) may never be trapped because the shell itself needs to catch
it to deal with memory allocation. Zero is not a UNIX system signal but is effectively interpreted by the trap
command as a signal generated by exiting from a shell (either via an exit command or by “falling through”
the end of a procedure). If argis not specified, then the action taken upon receipt of any of the signals in signal-
listis reset to the default system action. If argis an explicit null string ("or" "), then thesignalsin signal-list
are ignored by the shell.

The most frequent use of trap is to assure removal of temporary files upon termination of a procedure. The
second example of “Predefined Special Variables” in subpart “D. Shell Variables” would be written more typi-
cally as follows:

temp=$HOME/temp/$$
trap 'rm $temp; trap 0; exit’' 0123 15
Is > $temp
commands, some of which use $temp, go here

In this example whenever signals 1 (HANGUP), 2 (INTERRUPT), 3 (QUIT), or 15 (SOFTWARE TERMINA-
TION) are received by the shell procedure or whenever the shell procedure is about to exit, the commands en-
closed between the single quotes will be executed. The exit command must be included or else the shell
continues reading commands where it left off when the signal was received. The trap O turns off the original
trap on exits from the shell so that the exit command does not reactivate the execution of the trap commands.

Sometimes it is useful to take advantage of the fact that the shell continues reading commands after exe-
cuting the trap commands. The following procedure takes each directory in the current directory, changes to
it, prompts with its name, and executes commands typed at the terminal until an end-of-file (control-d) or an
interrupt is received. An end-of-file causes the read command to return a nonzero exit status, thus terminating
the while loop and restarting the cycle for the next directory. The entire procedure is terminated if interrupted
when waiting for input; but during the exccution of a command, an interrupt terminates only that command:

dir="pwd"
foriin*
do
if test —d $dir/$i
then
cd $dir/$i
while echo " $i:"
trap exit 2
read x
do
trap: 2 # ignore interrupts
eval $x
done
fi
done

Several traps may be in effect at the same time. If multiple signals are received simultaneously, they are
serviced in ascending order. To check what traps are currently set, type:

trap

It is important to understand some things about the way in which the shell implements the trap command
in order not to be surprised. When a signal (other than 11) is received by the shel), it is passed on to whatever

Page 58

6/82 ISSUE 1 PROGRAMMING GUIDE

child processes are currently executing. When those (synchronous) processes terminate, normally or abnormal-
ly, the shell then polls any traps that happen to be set and executes the appropriate trap commands. This pro-
cess is straightforward except in the case of traps set at the command (outermost or login) level. In this case,
it is possible that no child process is running, so the shell waits for the termination of the first process spawned
after the signal is received before it polls the traps.

For internal commands, the shell normally polls traps on completion of the command. An exception to this
rule is made for the read command, for which traps are serviced immediately, so that read can be interrupted
while waiting for input.

E. Special Shell Commands

There are several special commands that are internal to the shell (some of which have already been men-
tioned). These commands should be used in preference to other UNIX system commands whenever possible be-
cause they are faster and more efficient. The shell does not fork to execute these commands, so no additional
processes are spawned. The trade-off for this efficiency is that redirection of input/output is not allowed for
most of these special commands.

Several of the special commands have already been described in “D. Control Commands” because they affect
the flow of control. They are break, continue, exit, dot (.), and trap. The set command described in “Posi-
tional Parameters” in subpart “D. Shell Variables” and “Execution Flags—set” in subpart “I. Changing the
State of the Shell and the .profile File” is also a special command. Descriptions of the remaining special com-
mands [see sh(1)) are given here:

The null command does nothing. The exit status is zero (true). Beware: any arguments to
the null command are parsed for syntactic correctness; when in doubt, quote such argu-
ments. Parameter substitution takes place just as in other commands.

cd arg Make argthe current directory. If argdoes not begin with /, ./, or ../, cd uses the CDPATH
shell variable (“User-defined Variables” in subpart “D. Shell Variables”) to locate a par-
ent directory that contains the directory arg. If argis not a directory or the user is not
authorized to access it, a nonzero exit status is returned. Specifying ed with no argis equiv-
alent to typing cd $SHOME.

exec arg .. If argis a command, then the shell executes it without forking. No new process is created.
Input/output redirection arguments are allowed on the command line. If only input/
output redirection arguments appear, then the input/output of the shell itself is modified
accordingly. See merge in part “Examples of Shell Procedures” for an example of this use
of exec.

Dewgrp arg ... The newgrp(1l) command is executed replacing the shell. The newgrp command in turn
spawns a new shell. Beware: Only variables in the environment will be known in the shell
that is spawned by the newgrp command. Any variables that were exported will no lon-
ger be marked as such.

read var.. One line (up to a new-line) is read from standard input and the first word is assigned to
the first variable, the second word to the second variable, etc. All leftover words are as-
signed to the Jast variable. The exit status of read is zero unless an end-of-file is read.

readonly var.. The specified variables are made readonly so that no subsequent assignmenis may be
made to them. If no arguments are given, a list of all readonly and of all exported
variables is given.

test A conditional expressxon is evaluated. More details are gnen in “A. Conditional
. Evaluation—test".

Page 59

PROGRAMMING GUIDE ISSUE 1 6/82

times The accumulated user and system times for processes run from the current shell are print-
ed.
umask nnn The user file creation mask is set to nnn. See umask(2) for details. If nnnis omitted, then

the current value of the mask is printed.

ulimit n This command imposes a limit of n blocks on the size of files written by the shell and its
child processes (files of any size may be read). If nis omitted, the current value of this limit
is printed. The default value for n varies from one installation to another.

wait n The shell waits for the child process whose process number is nto terminate. The exit sta-
tus of the wait command is that of the process waited on. If nis omitted or is not a child
of the current shell, then all currently active processes are waited for and the return code
of the wait command is zero.

F. Creation and Organization of Shell Procedures
A shell procedure can be created in two simple steps:
1. Build an ordinary text file.
2. Change the file’'s mode to make it executable.

Changing the mode allows a shell procedure to be invoked by proc argsrather than by sh proc args. The second
step may be omitted for a procedure to be used once or twice and then discarded but is recommended for longer-
lived ones. Here is the entire input needed to set up a simple procedure (the executable part of draft in part
“Examples of Shell Procedures”):

ed
a
nroff —rC3 —T450-12 —cm $*

'w draft

q
chmod +x draft

It may then be invoked as draft filel file2. Note that shell procedures must always be at least readable so
that the shell itself can read commands from the file.

If draft were thus created in a directory whose name appears in the user's PATH variable, the user could
change working directories and still invoke the draft command.

Shell procedures may be created dynamically. A procedure may generate a file of commands, invoke another
instance of the shell to execute that file, and then remove it. An alternate approach is that of using the dot
command (.) to make the current shell read commands from the new file, allowing use of existing shell
variables, and avoiding the spawning of an additional process for another shell.

Many users prefer to write shell procedures instead of C programs. First, it is easy to create and maintain
a shell procedure because it is only a file of ordinary text. Second, it has no corresponding object program that
must be generated and maintained. Third, it is easy to create a procedure on the fly, use it a few times, and then
remove it. Finally, because shell procedures are usually short in length, written in a high-level programming
language, and kept only in their source-language form, they are generally easy to find, understand, and modify.

By convention, directories that contain only commands and/or shell procedures are usually named bin. Most
groups of users sharing common interests have one or more bin directories set up to hold common procedures.

Page 60

/82 ISSUE 1 PROGRAMMING GUIDE

Some users have their PATH variable list several such directories. Although you can have a number of suc:
directories, it is unwise to go overboard. It may become difficult to keep track of your environment, and effi-
ciency may suffer (see “C. Efficient Organization”).

G. Moere abeut Execution Flags

There are several execution flags available in the shell that can be useful in shell procedures:

-e The shell will exit immediately if any command that it executes exits with a nonzero exit
status.
-u When this flag is set, the shell treats the use of an unset variable as an error. This flag

can be used to perform a global check on variables.

-t The shell exits after reading and executing the commands on the remainder of the current
input line.

-n This is a don’t execute flag. On occasion, one may want to check a procedure for syntax
errors but not to execute the commands in the procedure. Writing set —nv at the begin-
ning of the file will accomplish this.

-k All arguments of the form variable=value are treated as keyword parameters. When this
flag is not set, only such arguments that appear before the command name are treated as
keyword parameters. :

MISCELLANEOUS SUPPORTING COMMANDS AND FEATURES
Shell procedures can make use of any UNIX system command. The commands described in this part are

either used especially frequently in shell procedures or are explicitly designed for such use. More detailed de-
scriptions of each of these commands can be found in Section 1 of the UNIX System User’s Manual.

A. Cenditienal Evaluation—"‘test’’

The test(1) éommand evaluates the expression specified by its arguments and, if the expression is true, re-
turns a zero exit status. Otherwise, a nonzero (false) exit status is returned. The test command also returns
a nonzero exit status if it has no arguments. Often it is convenient to use the test command as the first com-
mand in the command list following an if or a while. Shell variables used in test expressions should be enclosed
in double quotes if there is any chance of their being null or not set.

On some UNIX systems, the square brackets ([]) may be used as an alias for test; e.g., [expression] has the
same effect as test expression.

The following is a partial list of the primaries that can be used to construct a conditional expression:

-r file true if the named file exists-and is readable by the user.

-w file true if the named file exists and is writable by the user.

-x file true if the named file exists and is executable by the user.
-s file true if the named file exists and has a size greater than zero.
—d file true if the named file exists and is a directory.

—f file true if the named file exists and is an ordinary file.

Page 61

PROGRAMMING GUIDE ISSUE 1 6/82

-p file true if the named file exists and is a named pipe (fifo). ’

-z sl true if the length of string " s1" is zero.

-n sl true if the length of the string “ s1" is nonzero.

-t fildes true if the open file whose file descriptor number is fildes is associated with a terminal

device. If fildes is not specified, file descriptor 1 is used by default.

sl=s2 true if strings " s1" and " s2' are identical.

sli= s2 true if strings " s1" and " s2' are not identical.

sl trueif " s1" is not the null string.

nl —eq n2 trueif the integers nl and n2are algebraically equal. Other algebraic comparisons are in-

dicated by —ne, —gt, —ge, —1t, and —le.

These primaries may be combined with the following operators:

! unary negation operator.

-a binary logical and operator.

-0 binary logical or operator. The —o has lower precedence than —a.

(expr) parentheses for grouping; they must be escaped to remove their significance to the shell.

When parentheses are absent the evaluation proceeds from left to right.
Note that all primaries, operators, file names, ete. are separate arguments to test.
B. Reading a Line—"line"

The line(1) command takes one line from standard input and prints it on standard output. This is useful
when you need to read a line from a file or capture the line in a variable. The functions of line and of the read
command that is internal to the shell differ in that input/output redirection is possible only with line. If the
user does not require input/output redirection, read is faster and more efficient. An example of a usage of line
for which read would not suffice is:

firstline='line < somefile'
C. Simple Output—"echo”

The echo(1) command, invoked as echo [arg...], copies its arguments to the standard output, each followed
by a single space except for the last argument which is normally followed by a new-line. Often, echo is used
to prompt the user for input to issue diagnostics in shell procedures or to add a few lines to an output stream
in the middle of a pipeline. Another use is to verify the argument list generation process before issuing a com-
mand that does something drastic. The command Is is often replaced by echo * because the latter is faster and
prints fewer lines of output.

The echo command recognizes several escape sequences. A \n yields a2 new-line character. A \c removes
the new-line from the end of the echoed line. The following prompts the user, allowing one to type on the same
line as the prompt:

echo 'enter name:\c¢’
read name

Page 62

6/82 ISSUE 1 PROGRAMMING GUIDE

The echo command also recognizes octal escape sequences for allcharacters whether printable or not. An echo
"\0O07" typed at a terminal will cause the bell on that terminal to ring.

D. Expression Evaluation—"‘expr’’

The expr(1) command provides arithmetic and logical operations on integers and some pattern matching
facilities on its arguments. It evaluates a single expression and writes the result on the standard output. The
expr command can be used inside grave accents to set a variable. Typical examples are:

! increment $a

a='expr $a +1'

4 put third through last characters of
f $1 into substring

substring="expr " $1" :".\(.*\)"

obtain length of $1

c='expr " $1" :'.*"

The most common uses of expr are in counting iterations of a loop and in using its pattern matching capability
to pick apart strings. See expr(l) for more details.

E. ‘“true’” and “false’”

The true(l) and false [see true(l)] commands perform the obvious functions of exiting with zero and non-
zero exit status, respectively. The true command is often used to implement an unconditional loop.

F. Input/Output Redirection Using File Descriptors

Beginners should skip this subpart on first reading. A command occasionally directs output to some file as-
sociated with a file descriptor other than 1 or 2 (see “Diagnostic and Other Outputs” in subpart “F. Redirection
of Input and Standard Output”). In languages such as C, one can associate output with any file descriptor by
using the write(2) system call. The shell provides its own mechanism for creating an output file associated
with a particular file descriptor. By typing

fd1>&fd2

where fdl and fd2are valid file descriptors, one can direct output that would normally be associated with file
descriptor fdI onto the file associated with fd2 The default value for fdI and fd2is 1. If, at execution time, no
file is associated with fd2, then the redirection is void. The most common use of this mechanism is that of direct-
ing standard error output to the same file as standard output. This is accomplished by typing

command 2> &1
If one wanted to redirect both standard output and standard error output to the same file, one would type
command 1> file 2> &1
The order here is significant First, file descriptor 1 is associated with file. Then file descriptor 2 is associated
with the same file that is currently associated with file descriptor 1. If the order of the redirections were re-
versed, standard error output would go to the terminal, and standard output would go to file because at the time
of the error output redirection file descriptor 1 still would have been associated with the terminal.

This mechanism can also be generalized to the redirection of standard input One could type

fda<&fdb

Page 63

PROGRAMMING GUIDE ISSUE 1 - 6/82

to cause both file descriptors fda and fdb to be associated with the same input file. If fda or fdbis not specified,
file descriptor O is assumed. Such input redirection is useful for commands that use two or more input sources.
Another use of this notation is for sequential reading and processing of a file. See merge in part “EXAMPLES
OF SHELL PROCEDURES"” for an example of use of this feature.

G. Conditional Substitution

Normally, the shell replaces occurrences of $ variable by the string value assigned to variable, if any. How-
ever, there exists a special notation to allow conditional substitution depending upon whether the variable is
set and/or not null. By definition, a variable is setif it has ever been assigned a value. The value of a variable
can be the null string which may be assigned to a variable in any one of the following ways:

A=
bed=""

Ef_g=""
set''""

The first three of these examples assign the null string to each of the corresponding shell varizables. The last
example sets the first and second positional parametersto the null string and unsetsall other positional param-
eters.

The following conditional expressions depend upon whether a variable is set and not null (Note that, in
these expressions, variable refers to either a digit or a variable name and the meaning of braces differs from
that described in “User-defined Variables” in subpart “D. Shell Variables” and “Command Grouping—Paren-
theses and Braces” in subpart “D. Control Commands™.)
${variable :—string}

If variable is set and is non-null, then substitute the value $variable in place of this ex-
pression. Otherwise, replace the expression with string. Note that the value of variable
is not changed by the evaluation of this expression.

${variable :=string}

If variableis set and is non-null, then substitute the value $ variable in place of this ex-
pression. Otherwise, set variable to string, and then substitute the value $variable in

place of this expression. Positional parameters may not be assigned values in this fash-
ion,

${variable :?string}

If variableis set and is non-null, then substitute the value of variable for the expression.
Otherwise, print a message of the form

variable ; string

and exit from the current shell. (If the shell is the login shell, it is not exited.) If string
is omitted in this form, then the message

variable: parameter null or not set
is printed instead.
${variable :+string]
If variable is set and is non-null, then substitute string for this expression; otherwise,

substitute the null string. Note that the value of variableis not altered by the evaluation
of this expression.

Page 64

6/82 ISSUE 1 PROGRAMMING GUIDE

These expressions may also be used without the colon (:), in which case the shell does not check whether
variable is null or not. It only checks whether variable has ever been set.

The two examples below illustrate the use of this facility:

1. If PATH has ever been set and is not null, then keep its current value. Otherwise, set it to the string
:/bin:/usr/bin. Note that one needs an explicit assignment to set PATH in this form:

PATH=${PATH:-":/bin:/usr/bin'}

2. If HOME s set and is not null, then change directory to it; otherwise, set it to the given value and change
directory to it. Note that HOME is automatically assigned a value in this case:

cd ${HOME:='/usr/gas'’}
H. Invocation Flags

There are four flags that may be specified on the command line invoking the shell. These flags may not
be turned on via the set command:

=i If this flag is specified or if the shell’s input and output are both attached to a terminal,
the shell is interactive. In such a shell, INTERRUPT (signal 2) is caught and ignored,
while QUIT (signal 3) and SOFTWARE TERMINATION (signal 15) are ignored.

-s If this flag is specified or if no input/output redirection arguments are given, the shell
reads commands from standard input. Shell output is written to file descriptor 2. The shell
you get upon logging into the system effectively has the —s flag turned on.

-c When this flag is turned on, the shell reads commands from the first string following the
flag. Remaining arguments are ignored. Double quotes should be used to enclose a
multiword string in order to allow for variable substitution.

-r When this flag is specified on invocation, then the restricted shellis invoked. This is a ver-
sion of the shell in which certain actions are disallowed. In particular, the ed command

produces an error message, and the user cannot set PATH, See sh(1) for a more detailed
description.

EXAMPLES OF SHELL PROCEDURES

Some examples in this subpart are quite difficult for beginners. For ease of reference, the examples are ar-
ranged alphabetically by name, rather than by degree of difficulty.

copypairs
F usage: copypairs filel file2 ...
f copy filel to file2, file3 to filed, ...
while test " $2" !I=""
do
cp $1 $2
shift; shift
done
if test " $1" lm " "
then

echo " $0: odd number of arguments"
fi

Page 65

PROGRAMMING GUIDE ISSUE 1 6/82

Note: This procedure illustrates the use of a while loop to process a list of positional parameters that
are somehow related to one another. Here a while loop is much better than a for loop because you can
adjust the positional parameters via shift to handle related arguments.

copyto -
| 4 usage: copyto dir file ...
f copy argument files to 'dir’, making sure that at least
¢ two arguments exist and that 'dir’ is a directory
if test $7 —1t 2
then

echo " $0: usage: copyto directory file ...
elif test ! —d $1 .

then
echo " $0: $1 is not a directory";
else
dir=$1; shift
for eachfile
do
cp $eachfile $dir
done
fi

Note: This procedure uses an if command with two tests in order to screen out improper usage. The for
loop at the end of the procedure loops over all-of the arguments to copyto but the first. The original $1
is shifted off.

distinct

2 usage: distinct
! reads standard input and reports list of alphanumeric strings
f " that differ only in case, giving lowercase form of each
tr —cs "[A-Z)[a-2)[0-9])' '[\012*)’ I sort —u |
tr '[A-Z)’ '[a-z])’ | sort uniq —d

Note: This procedure is an example of the kind of process that is created by the left-to-right construc-
tion of a long pipeline. It may not be immediately obvious how this works. [See tr(1), sort(1), and uniq(1)
if vou are completely unfamiliar with these commands.) The tr translates all characters except letters and
digits into new-line characters and then squeezes out repeated new-line characters. This leaves each string
(in this case, any contiguous sequence of letters and digits) on a separate line. The sort command sorts
the lines and emits only one line from any sequence of one or more repeated lines. The next tr converts
everything to lowercase, so that identifiers differing only in case become identical. The output is sorted
again to bring such duplicates together. The uniq —d prints (once) only those lines that occur more than
once yielding the desired list.

The process of building such a pipeline uses the fact that pipes and files can usually be interchanged. The
two lines below are equivalent assuming that sufficient disk space is available:

emdl | emd2 ! emd3
cmdl > templ; < templ cmd2 > temp2; < temp2 cmd3; rm temp[12)

Page 66

6/82 ISSUE 1 PROGRAMMING GUIDE

Starting with a file of test data on the standard input and working from left to right, each command is executed
taking its input from the previous file and putting its output in the next file. The final output is then examined
to make sure that it contains the expected result. The goal is to create a series of transformations that will con-
vert the input to the desired output. As an exercise, try to mimic distinct with such a step-by-step process using
a file of test data containing:

ABC:DEF/DEF
ABC1 ABC
Abc abc

Although pipelines can give a concise notation for complex processes exercise some restraint lest you suc-
cumb to the “one-line syndrome” sometimes found among users of especially concise languages. This syndrome
often yields incomprehensible code.

draft
f usage: draft file(s)
f prints the draft (—rC3) of a document on a DASI 450
f terminal in 12-pitch using memorandum macros (MM).

nroff —rC3 —T450-12 —cm $*

Note: Users often write this kind of procedure for convenience in dealing with commands that require
the use of many distinct flags that cannot be given default values that are reasonable for all (or even most)

users.
edfind
f usage: edfind file arg
f find the last occurrence in 'file’ of a line whose
f beginning matches ‘arg’, then print 3 lines (the one
f ‘before, the line itself, and the one after)
ed — $1 <<!
H S el cae e
?7-$27,—,4+p
!

Note: This procedure illustrates the practice of using editor (ed) in-line input scripts into which the
shell can substitute the values of variables. It is a good idea to turn on the H option of ed when embedding
an ed script in a shell procedure [see ed(1)].

edlast

f usage: edlast file
F prints the last line of file, then deletes that line
ed — $1 <<—\eof # no variable substitutions in " ed" script
H .
$p
$d
w
q

eof
echo Done.

Page 67

PROGRAMMING GUIDE ISSUE 1 6/82

Note: This procedure contains an in-line input document or script (see “In-line Input Documents” in
subpart “D. Control Commands”); it also illustrates the effect of inhibiting substitution by escaping a
character in the eofstring (here, eof) of the input redirection. If this had not been done, $p and $d would
have been treated as shell variables.

fsplit

usage: fsplit filel file2

read standard input and divide it into three parts:
append any line containing at least one letter

to filel, any line containing at least one digit

but no letters to file2, and throw the rest away
total=0 lost=0 :

while read next

e T e Ty e

do
total=""'‘expr $total + 1'"
case " $next" in
[A-Za-z])
echo " $next" >> $1;
[0-9])
echo " $next" »>> $2;
*
)
lost=""‘expr $lost + 1"
esac
done

echo "$total lines read, $lost thrown away"

Note: In this procedure, each iteration of the while loop reads a line from the input and analyzes it.
The loop terminates only when read encounters an end-of-file.

Do not use the shell to read a line at a time unless you must—it can be grotesquely slow (see “Number of
Processes Generated” in subpart “B. Approximate Measures of Resource Consumption”).

initvars

f usage: . initvars
f use carriage return to indicate " no change"
echo " initializations? \¢"
read response
if test " $response” =y
then
echo " PS1=\c"; read temp
PS1=%{temp:—$PS1}
echo " PS2=\¢c " ; read temp
PS2=%{temp:—$PS2}
echo " PATH=\c"; read temp
PATH=${temp:—$PATH]
echo " TERM=\c" ; read temp
TERM=${temp:—$TERM)}
fi
Note: This procedure would be invoked by a user at the terminal or as part of a .profilefile. The assign-
ments are effective even when the procedure is finished because the dot command is used to invoke it. To

Page 68

6/82

ISSUE 1 PROGRAMMING GUIDE

better understand the dot command invoke initvars as indicated above and check the values of PS1, PS2
PATH, and TERM; then make initvars executable, type initvars, assigning different values to the three
variables, and check again the values of these three shell variables after initvars terminates. It is as-
sumed that PS1, PS2 PATH, and TERM have been exported, presumably by your .profile (see “The
.profile File" in subpart “I. Changing the State of the Shell and the .profile File” and “A. A Command’s
Environment”).

merge

usage: merge srcl src2 [dest]

f merge two files, every other line.

¥ the first argument starts off the merge,

4 excess lines of the longer file are appended to

4 the end of the resultant file

exec 4<%1 5<$2

dest=${3—-$1.m} # default destination file is named $1.m
while true

do

alternate reading from the files;
'more’ represents the file descriptor
¥ of the longer file
line <&4 >>%dest 11{ more=5; break ;}
line <&5 >>%dest 11! { more=4; break ;}
done
delete the last line of destination
file, because it is blank.
ed — $dest <<\eof

H
$d
w
q
eof
while line <&$more >> $dest
do :; done # read the remainder of the longer

file—the body of the 'while’ loop

f does nothing; the work of the loop

is done in the command list following

'while’
Note: This procedure illustrates a technique for reading sequential lines from a file or files without cre-
ating any subshells to do so. When the file descriptor is used to access a file, the effect is that of opening
the file and moving a file pointer along until the end of the file is read. If the input redirections used srcl
and src2 explicitly rather than the associated file descriptors, this procedure would never terminate be-
cause the first line of each file would be read over and over again.

mkfiles

f usage: mkfiles pref [quantity]
4 makes ‘quantity’ (default = 5) files, named prefl, pref2, ...
quantity=%${2-5}
i=1
while test " $i" —le " $quantity”
do
> $1%i

i="‘expr $i+ 1'"
done

Page 69

PROGRAMMING GUIDE ISSUE 1 6/82

This procedure uses input/output redirection to create zero-length files. The expr command is

used for counting iterations of the while loop. Compare this procedure with procedure null below.

mmt

Page 70

if test " $" = 0; then cat < <\!
Usage: " mmt [options] files" where " options" are:

-a => output to terminal

—e => preprocess input with eqn

-t => preprocess input with tbl

-Tst => output to STARE phototypesetter

manufactured by Honeywell
—T4014 - => output to 4014 manufactured by Tektronix
-Tvp => output to printer manufactured by Versatec
- =5 use instead of " files". when mmt used
inside a pipeline.
Other options as required by TROFF and the MM macros.
1

exit 1
fi
PATH="/bin:/usr/bin"; O="—g’; o="1 gcat —ph’;
4 Assumes typesetter is accessed via gcat(1)
? If typesetter is on-line, use O=""; o=""
while test —n " $1" —a ! -r " $1"
do
case " $1" in
-a) O='-2a" o=""14
—Tst) O="-g" o='lgcat —st’;;
f Above line for STARE only
—T4014) O='-t"; o="ltc";;
=Tvp) O='-t o="lvpr —t’;,
—e) e='eqn’;;
—-t) f="tbl'";;
- break;;
*) a="$a $1"; -
esac
shift
done
if test —z "$1"
then
echo 'mmt: no input file’
exit 1
fi
if test "$0" ='—¢’
then
x=" —f$1"
fi
d=n stﬂ
if test " $d" ==’
then
shift
x” ?
d=’ L

6/82

aull

phone

writemail

ISSUE 1 PROGRAMMING GUIDE

fi
if test —n "$f"
then
f="tbl $*1"
d=""’
fi
if test —n "$e"
then
if test =n " $f"
then e='eqn |’
else e="eqn $* 1"
d-’l
fi
fi
eval " $f $e troff $O0 —cm $a $d $0 $x"; exit 0

This is a slightly simplified version of an actual UNIX system command (although this is not the

version included in UNIX system Release 4.0). It uses many of the features available in the shell. If you
can follow through it without getting lost, you have a good understanding of shell programming. Pay par-
ticular attention to the process of building a command line from shell variables and then using eval to
execute it.

f usage: null file
f create each of the named files as an empty file
for eachfile
do
> $eachfile
done

This procedure uses the fact that output redirection creates the (empty) output file if that file

does not already exist. Compare this procedure with procedure mkfiles above.

usage: phone initials

f prints the phone number(s) of person with given initials
echo 'inits ext home’

grep " ~$1" <<\!

abce 1234 999-2345

def 2234 583-2245

ghi 3342 988-1010

Xyz 4567 555-1234
! .

Note: This procedure is an example of using an in-line input document or script to maintain a small data

usage: writemail message user
if user is logged in, write message on terminal;
otherwise, mail it to user

echo "$1" 1 { write "$2" 1! mail "$2";}

Page 71

PROGRAMMING GUIDE ISSUE 6/82

Note: This procedure illustrates command grouping. The message specified by $1 is piped to the write
command and, if write fails, to the mail command.

EFFECTIVE AND EFFICIENT SHELL PROGRAMMING
A. Overall Approach

This subpart outlines strategies for writing efficient shell procedures, i.e., ones that do not waste resources
unreasonably in accomplishing their purposes. The primary reason for choosing the shell procedure as the im-
plementation method is to achieve a desired result at a minimum human cost. Emphasis should a/waysbe placed
on simplicity, clarity, and readability; but efficiency can also be gained through awareness of a few design strat-
egies. In many cases, an effective redesign of an existing procedure improves its efficiency by reducing its size
and often increases its comprehensibility. In any case, one should not worry about optimizing shell procedures
unless they are intolerably slow or are known to consume a lot of resources.

The same kind of iteration cycle should be applied to shell procedures as to other programs—write code,
measure it, and optimize only the fewimportant parts. The user should become familiar with the time command
which can be used to measure both entire procedures and parts thereof. Its use is strongly recommended; human
intuition is notoriously unreliable when used to estimate timings of programs even when the style of program-
ming is a familiar one. Each timing test should be run several times because the results are easily disturbed
by, for instance, variations in system load.

B. Approximate Measures of Resource Consumption

Number of Processes Generated: When large numbers of short commands are executed, the actual exe-
cution time of the commands may well be dominated by the overhead of creating processes. The procedures that
incur significant amounts of such overhead are those that perform much looping and those that generate com-
mand sequences to be interpreted by another shell.

If you are worried about efficiency, it is important to know which commands are currently built into the
shell and which are not. Here is the alphabetical list of those that are built-in:

break case cd continue eva exec
exit export for if Dewgrp read
readonly set shift test times trap
ulimit umask until wait while .

: {~)

The (...) command executes as a child process, i.e., the shell does a fork, but no exec. Any command not
in the above list requires both fork and exec.

The user should always have at least a vagué idea of the number of processes generated by a shell proce-
dure. In the bulk of observed procedures, the number of processes spawned (not necessarily simultaneously) can
be described by

processes = k*n + ¢

where k and c are constants, and nis the number of procedure arguments, the number of lines in some input
file, the number of entries in some directory, or some other obvious quantity. Efficiency improvements are most
commonly gained by reducing the value of k, sometimes to zero. Any procedure whose complexity measure in-
cludes n? terms or higher powers of n is likely to be intolerably expensive.

As an example: here is an analysis of procedure fsplit of part “EXAMPLES OF SHELL PROCEDURES".
For each iteration of the loop, there is one expr plus either an echo or another expr. One additional echo

Page 72

6/82 ISSUE 1 PROGRAMMING GUIDE

is executed at the end. If n is the number of lines of input, the number of processes is 2°n + 1. On the other
hand, the number of processes in the following (equivalent) procedure is 12 regardless of the number of lines
of input:

f faster fsplit
trap 'rm temp$$; trap 0; exit' 01 2 3 15
startl=0 start2=(
b='[A-Za-z]’
cat > temp$$ # read standard input into temp file
f save original lengths of $1, $2
if test —s " $1"; then startl='wc =] < $1'; fi
if test —s " $2"; then start2='we -1 < $2'; fi
grep " $b" temp$$ >> §1 # lines with letters onto $1
grep —v" $b" temp$$!grep '[0-9}) >>%$2
lines with only numbers onto $2
total="'‘we¢ -1 < temp$$' "
endl="'wc -] < $1'"
end2=""'‘wec -] < $2"
lost=""expr $total — \($endl — $startl \) — \ ($end2 —Pstart2\)""
echo " $total lines read, $lost thrown away”

This version is often ten times faster than fsplit, and it is even faster for larger input files.

Some types of procedures should not be written using the shell. For example, if one or more processes are
generated for each character in some file, it is a good indication that the procedure should be rewritten in C.

Note: Shell procedures should not be used to scan or build files a character at a time.

Number of Data Bytes Accessed: It is worthwhile considering any action that reduces the number of
bytes read or written. This may be important for those procedures whose time is spent passing data around
among a few processes rather than in creating large numbers of short processes. Some filters shrink their out-
put, others usually increase it. It always pays to put the shrinkers first when the order is irrelevant. Which of
the following is likely to be faster?

sort file | grep pattern
grep pattern file | sort

Directory Searches: Directory searching can consume a great deal of time, especially in those applica-
tions that utilize deep directory structures and long pathnames. Judicious use of ed can help shorten long
pathnames and thus reduce the number of directory searches needed. As an exercise, try the following com-
mands (on a fairly quiet system):

time sh —c¢ 'ls =1 /usr/bin/* >/dev/null’
time sh —e¢ 'ed /usr/bin; Is =1 * >/dev/null’

If you do not understand exactly what is going on in these examples, read Section 7 in the UNIX System User's
Manual.

C. Efficient Organization

Directory-Search Order and PATH Variable: The PATH variable is a convenient mechanism for al-
lowing organization and sharing of procedures. However, it must be used in a sensible fashion; or the result may
be a great increase in system overhead that occurs in a subtle, but avoidable, way.

The process of finding a command involves reading every directory included in every pathname that pre-
cedes the needed pathname in the current PATH variable. As an example, consider the effect of invoking nroff

Page 73

PROGRAMMING GUIDE ADD ISSUE 1 1/83

(i.e., Zusr/bin/nroff) when $PATH is :/bin:/usr/bin. The sequence of directories read is: ., /, /bin, /, Zusr, and
/usr/bin, i.e., a total of six directories. A long path list assigned to PATH can increase this number significantly.

The vast majority of command executions are of commands found in /bin and, to a somewhat lesser extent,
in /usr/bin Careless PATH setup may lead to a great deal of unnecessary searching. The following four exam-
ples are ordered from worst to best (but only with respect to the efficiency of command searches):

:/al/tf/jtb/bin:/usr/1bin:/bin:/usr/bin
:/bin:/al/tf/jtb/bin:/usr/Ibin:/usr/bin
:/bin:/usr/bin:/al/tf/jtb/bin:/usr/lbin
/bin::/usr/bin:/al/tf/jtb/bin:/usr/lbin

The first one above should be avoided. The others are acceptable; the choice among them is dictated by the
rate of change in the set of commands kept in /bin and /usr/bin’

A procedure that is expensive because it invokes many short-lived commands may often be speeded up by
setting the PATH variable inside the procedure such that the fewest possible directories are searched in an
optimum order. The mmt example in part “EXAMPLES OF SHELL PROCEDURES"” does this.

Setting Up Directories: It is wise to avoid directories that are larger than necessary. You should be
aware of several magic sizes. A directory that contains entries for up to 30 files (plus the required . and ..) fits
in a single disk block and can be searched very efficiently. One that has up to 286 entries is still a small file.
Anything larger is usually a disaster when used as a working directory. It is especially important to keep login
directories small, preferably one block at most. Note that, as a rule, directories never shrink.

REFERENCES

[1]—Bianchi, M. H., and Wood, J. L. A User’s Viewpoint on the Programmer's Workbench. Proc. Second
Int. Conf. on Software Engineering, pp. 193-99 (Oct. 13-15, 1976).

{2)—Dolotta, T. A., Haight, R. C., and Mashey, J. R. The Programmer’s Workbench. The Bell System
Technical Journal, Vol. 57, No. 6, Part 2, pp. 2177-200 (July-Aug. 1978).

[3)=Dolotta, T. A., and Mashey, J. R. An Introduction to the Programmer’s Workbench. Proc. Second
Int. Conf. on Software Engineering, pp. 164-68 (Oct. 13-15, 1976).

[4]—Dolotta, T. A., and Mashey, J. R. Using a Command Language as the Primary Programming Tool.
In: Beech, D. (ed.), Command Language Directions (Proc. of the Second IFIP Working Conf. on Command
Languages), pp. 35-55. Amsterdam: North Holland (1980).

[5]—Kernighan, B. W., and Mashey, J. R. The UNIX Programming Environment. COMPUTER, Vol. 14,
No. 4, pp. 12-24 (April 1981); an earlier version of this paper was published in Software-Practice &
Experience, Vol. 9, No. 1, pp. 1-15 (Jan. 1979).

[6)—Kernighan, B. W., and Plauger, P. J. Software Tools. Proc. First Nat. Conf. on Software Engineering,
pp. 8-13 (Sept. 11-12, 1975).

[7)—Kernighan, B. W., and Plauger, P. J. Software Tools. Reading, MA: Addison-Wesley (1976).

[8]—Kernighan, B. W., and Ritchie, D. M. The C Programming Language. Englewood Cliffs, NJ: Prentice-
Hall (1978).

[9]—Ritchie, D. M., and Thompson, K. The UNIX Time-Sharing System. The Bell Svstem Technical
Journal, Vol. 57, No. 6, Part 2, pp. 1905-29 (July-Aug. 1978).

[10}—Snyder, G. A., and Mashey, J. R. UNIX System Documentation Road Map. Bell Laboratories (Janu-
ary 1981).

Page 74

6/82 ISSUE 1 PROGRAMMING GUIDE

3. THE C PROGRAMMING LANGUAGE

INTRODUCTION

This section describes C language as it is implemented and supported on the 3B20S Processor, the PDP*-11,
the VAX*-11/780, the Honeywell 6000, the IBM System/370, and the Interdata 8/32. Where differences exist,
this section concentrates on the PDP-11 but tries to point out implementation-dependent details. With few ex-
ceptions, such dependencies follow directly from the properties of the hardware. The various compilers are gen-
erally quite compatible. This section contains the following subsections:

e C LANGUAGE-—A summary of the grammar and rules of the C programming language.

e LIBRARIES—Descriptions of functions and declarations that support C language and how to use
these functions.

e THE “cc” COMMAND —The command used to compile C language programs, assemble assembly lan-
guage programs, and produce executable programs is briefly described in terms of usage.

¢ ACPROGRAM CHECKER—"“lint”—A program that attempts to detect bugs in C programs during
compilation.

¢ ASYMBOLIC DEBUGGER—%sdb"—A symbolic debugging program that is used to debug compiled
C language programs.

Throughout this section, each reference of the form name(1M), name(7), or name(8) refers to entries in
the UNIX System Administrator's Manual. All other references to entries of the form name(N), where “N”
is a number (1 through 6) possibly followed by a letter, refer to entry name in section N of the UNIX System
User's Manual.

*Trademarks of the Digital Equipment Corporation.

Page 75

PROGRAMMING GUIDE ISSUE 1 6/82

C LANGUAGE
LEXICAL CONVENTIONS

There are six classes of tokens—identifiers, keywords, constants, strings, operators, and other separators.
Blanks, tabs, new-lines, and comments (collectively, “white space”) as described below are ignored except as

they serve to separate tokens. Some white space is required to separate otherwise adjacent identifiers,
keywords, and constants.

If the input stream has been parsed into tokens up to a given character, the next token is taken to include
the longest string of characters which could possibly constitute a token.

A. Comments
The characters /* introduce 2 comment which terminates with the characters */. Comments do not nest.
8. Identifiers (Names)

An identifier is a sequence of letters and digits. The first character must be a letter. The underscore (_)
counts as a letter. Uppercase and lowercase letters are different. No more than the first eight characters are
significant, although more may be used. External identifiers, which are used by various assemblers and loaders,
are more restricted:

PDP-11 7 characters, 2 cases

VAX-11 T characters, 2 cases

Honeywell 6000 6 characters, 1 case

I1BM 360/370 7 characters, 1 case

Interdata 8/32 8 characters, 2 cases

WECo 3B20 8 characters, 2 cases
C. Keywords

The following identifiers are reserved for use as keywords and may not be used otherwise:

auto do float register switch
break double for return typedef
case else goto short union
char entry if sizeof unsigned
continue enum int static void
default extern long struct while

The entry keyword is not currently implemented by any compiler but is reserved for future use. Some
implementations also reserve the words fortran and asm .

D. Constants

There are several kinds of constants. Some of the more important constants are integer, long, character,
floating, and enumeration. Hardware characteristics that affect sizes are summarized in “F. Hardware Charac-
teristics” under part “LEXICAL CONVENTIONS".

integer Constants

An integer constant consisting of a sequence of digits is taken to be octal if it begins with O (digit zero),
decimal otherwise. A sequence of digits preceded by Ox or 0X (digit zero) is taken to be a hexadecimal integer.

Page 76

6/82 ISSUE 1 PROGRAMMING GUIDE

The hexadecimal digits include a or A through f or F with values 10 through 15. A decimal constant whose value
exceeds the largest signed machine integer is taken to be long; an octal or hex constant which exceeds the larg-
est unsigned machine integer is likewise taken to be long.

Explicit Long Constants

A decimal, octal, or hexadecimal integer constant immediately followed by 1 (letter ell) or L is a long con-
stant. As discussed below, on some machines integer and long values may be considered identical.

Character Constants

A character constant is a character enclosed in single quotes, as in 'x’. The value of a character constant
is the numerical value of the character in the machine’s character set.

Certain nongraphic characters, the single quote (') and the backslash (\), may be represented according to
the following table of escape sequences:

new-line NL (LF) \n
horizontal tab HT \t
vertical tab VT \v
backspace BS \b
carriage return CR \r
form feed FF \f
backslash \ \\
single quote ! \
bit pattern ddd \ddd

The escape \ddd consists of the backslash followed by 1, 2, or 3 octal digits which are taken to specify the value
of the desired character. A special case of this construction is \ 0 (not followed by a digit), which indicates the
character NUL. If the character following a backslash is not one of those specified, the backslash is ignored.

Floating Constants

A floating constant consists of an integer part, a decimal point, a fraction part, an e or E, and an optionally
signed integer exponent. The integer and fraction parts both consist of a sequence of digits. Either the integer
part or the fraction part (not both) may be missing. Either the decimal point or the e and the exponent (not
both) may be missing. Every floating constant is taken to be double precision.

Enumeration Constants

Names declared as enumerators (see “E. Structure, Union, and Enumeration Declarations” in part “DEC-
LARATIONS"”) are constants of the corresponding enumeration type. They behave like int constants.

E. Strings

A string is a sequence of characters surrounded by double quotes, as in "...". A string has type “array of
characters” and storage class static (see part “"NAMES") and is initialized with the given characters. All strings,
even when written identically, are distinct. The compiler places a null byte (\0) at the end of each string so
that programs which scan the string can find its end. In a string, the double quote character (") must be pre-

ceded by a \; in addition, the same escapes as described for character constants may be used. Finally, a \ and
the immediately following new-line are ignored.

F. Hardware Characteristics

The following table summarizes cert_:ain hardware properties that vary from machine to machine.

- Page 77

PROGRAMMING GUIDE

ISSUE 1 6/82
TABLE 3.A
HARDWARE CHARACTERISTICS
DEC PDP-11 DEC VAX-11 HONEYWELL 6000 1BM 370 INTERDATA 8/32 WECO 38
Asal Asa AsClt EBCDIC ASCI AsQl

char 8 bits 8 bits 9 bits 8 bits 8 bits 8 bits
int 16 32 36 32 32 32
short 16 16 36 16 16 16
long 32 32 36 32 32 32
float 32 32 36 32 32 32
double 64 64 T2 64 64 64
float range +10+3 £]10+38 +10+% +10=7 +10+7 =10+
double range +£10+% =103 +£10=3 +10+7 +£10+7 £10=38

SYNTAX NOTATION

Syntactic categories are indicated by italic type and literal words and characters in bold type. Alternative
categories are listed on separate lines. An optional terminal or nonterminal symbol is indicated by the subscript
“opt,” so that

{ expression,y '}
indicates an optional expression enclosed in braces. The syntax is summarized in part “SYNTAX SUMMARY".
NAMES
The C language bases the interpretation of an identifier upon two attributes of the identifier—its storage
classand its type. The storage class determines the location and lifetime of the storage associated with an iden-
tifier; the type determines the meaning of the values found in the identifier's storage.
There are four declarable storage classes:
e automatic
e static
e external
e register.
Automatic variables are local to each invocation of a block (see “B. Compound Statement or Block” in part
“STATEMENTS"”) and are discarded upon exit from the block. Static variables are local to a block but retain
their values upon reentry to a block even after control has left the block. External variables exist and retain
their values throughout the execution of the entire program and may be used for communication between func-
tions, even separately compiled functions. Register variables are (if possible) stored in the fast registers of the
machine; like automatic variables they are local to each block and disappear on exit from the block.
The C language supports several fundamental types of objects. Objects declared as characters (char) are
large enough to store any member of the implementation’s character set. If a genuine character from that char-

acter set is stored in a character variable, its value is equivalent to the integer code for that character. Other
quantities may be stored into character variables, but the implementation is machine dependent.

Page 78

6/682 ISSUE 1 PROGRAMMING GUIDE

Up to three sizes of integer, declared short int, int, and long int, are available. Longer integers provide
no less storage than shorter ones, but the implementation may make either short integers or long integers, or
both, equivalent to plain integers. “Plain” integers have the natural size suggested by the host machine architec-
ture. The other sizes are provided to meet special needs.

Each enumeration (see “E. Structure, Union, and Enumeration Declarations” in part “DECLARATIONS")
is conceptually a separate type with its own set of named constants. The properties of an enum type are identi-
cal to those of int type.

Unsigned integers, declared unsigned, obey the laws of arithmetic modulo 2" where nis the number of bits
in the representation. (On the PDP-11, unsigned long quantities are not supported.)

Single-precision floating point (float) and double precision floating point (double) may be synonymous
in some implementations.

Because objects of the foregoing types can usefully be interpreted as numbers, they will be referred to as
arithmetic types. Types char, int of all sizes, and enum will collectively be called integral types. The float
and double types will collectively be called floating types.

The void type specifies an empty set of values. It is used as the type returned by functions that generate
no value.

Besides the fundamental arithmetic types, there is a conceptually infinite class of derived types constructed
from the fundamental types in the following ways:

e arrays of objects of most types
o functions which return objects of a given type
e pointers to objects of a given type
e structures confaining a sequence of objects of various types
e unions capable of containing any one of several objects of various types.
In general these methods of constructing objects can be applied recursively.
OBJECTS AND LVALUES
An objectis a manipulatable region of storage. An Ivalueis an expression referring to an object. An obvious
example of an lvalue expression is an identifier. There are operators which yield lvalues: for example, if E is
an expression of pointer type, then *E is an lvalue expression referring to the object to which E points. The
name “lvalue” comes from the assignment expression E1 = E2 in which the left operand E1 must be an lvalue
expression. The discussion of each operator below indicates whether it expects lvalue operands and whether it
yields an lvalue.
CONVERSIONS
A number of operators may, depending on their operands, cause conversion of the value of an operand from
one type to another. This part explains the result to be expected from such conversions. The conversions de-

manded by most ordinary operators are summarized under “F. Arithmetic Conversions”. The summary will be
supplemented as required by the discussion of each operator.

Page 79

PROGRAMMING GUIDE ISSUE 1 6/82

A. Characters and Integers

A character or a short integer may be used wherever an integer may be used. In all cases the value is con-
verted to an integer. Conversion of a shorter integer to a longer always involves sign extension; integers are
signed quantities. Whether or not sign-extension occurs for characters is machine dependent, but it is guaran-
teed that a member of the standard character set is non-negative. Of the machines treated here, only the PDP-11
and VAX-11 sign-extend. On these machines, char variables range in value from —128 to 127. The more explicit
type unsigned char forces the values to range from 0 to 255.

On machines that treat characters as signed, the characters of the ASCII set are all positive. However, a
character constant specified with an octal escape suffers sign extension and may appear negative; for example,
"\377 has the value —1. ‘

When a longer integer is converted to a shorter or to a char, it is truncated on the left. Excess bits are sim-
ply discarded.

B. Float and Double

All floating arithmetic in C is carried out in double precision. Whenever a float appears in an expression
it is lengthened to double by zero padding its fraction. When a double must be converted to float, for example
by an assignment, the double is rounded before truncation to float length.

C. Fioating and Integral

Conversions of floating values to integral type tend to be rather machine dependent. In particular the direc-
tion of truncation of negative numbers varies from machine to machine. The result is undefined if the value
will not fit in the space provided.

Conversions of integral values to floating type are well behaved. Some loss of precision occurs if the destina-
tion lacks sufficient bits.

D. Pointers and Integers

An expression of integral type may be added to or subtracted from a pointer; in such a case, the first is con-
verted as specified in the discussion of the addition operator. Two pointers to objects of the same type may be
subtracted; in this case, the result is converted to an integer as specified in the discussion of the subtraction
operator.

E. Unsigned

Whenever an unsigned integer and a plain integer are combined, the plain integer is converted to unsigned
and the result is unsigned. The value is the least unsigned integer congruent to the signed integer (modulo
gwertsi=) Tn a 2's complement representation, this conversion is conceptual; and there is no actual change in the
bit pattern.

When an unsigned integer is converted to long, the value of the result is the same numerically as that of
the unsigned integer. Thus the conversion amounts to padding with zeros on the left.

F. Arithmetic Conversions

A great many operators cause conversions and yield result types in a similar way. This pattern will be called
the “usual arithmetic conversions.”

e First, any operands of type char or short are converted to int, and any of type float are converted
to double.

Poge 80

6/82 ISSUE 1 PROGRAMMING GUIDE

e Then, if either operand is double, the other is converted to double and that is the type of the result.
e Otherwise, if either operand is long, the other is converted to long and that is the type of the result.

e Otherwise, if either operand is unsigned, the other is converted to unsigned and that is the type of
the result. :

e Otherwise, both operands must be int, and that is the type of the resuit.
G. Void

The (nonexistent) value of a void object may not be used in any way, and neither explicit nor implicit con-
version may be applied. Because a void expression denotes a nonexistent value, such an expression may be used
only as an expression statement (see “A. Expression Statement” in part “STATEMENTS") or as the left oper-
and of a comma expression (see “Comma Operator” in part “EXPRESSIONS").

An expression may be converted to type void by use of a cast. For example, this makes explicit the discard-
ing of the value of a function call used as an expression statement.

EXPRESSIONS

The precedence of expression operators is the same as the order of the major subsections of this section,
highest precedence first. Thus, for example, the expressions referred to as the operands of + (see “D. Additive
Operators”) are those expressions defined under “A. Primary Expressions”, “B. Unary Operators”, and “C. Mul-
tiplicative Operators”. Within each subpart, the operators have the same precedence. Left- or right-
associativity is specified in each subsection for the operators discussed therein. The precedence and associativity

of all the expression operators is summarized in the grammar of part “SYNTAX SUMMARY".

Otherwise, the order of evaluation of expressions is undefined. In particular the compiler considers itself
free to compute subexpressions in the order it believes most efficient even if the subexpressions involve side
effects. The order in which side effects take place is unspecified. Expressions involving a commutative and asso-
ciative operator (*, +, &, 1, ~) may be rearranged arbitrarily even in the presence of parentheses; to force a par-
ticular order of evaluation, an explicit temporary must be used.

The handling of overflow and divide check in expression evaluation is machine dependent. Most existing
implementations of C ignore integer overflows; treatment of division by 0 and all floating-point exceptions var-
ies between machines and is usually adjustable by a library function.

A. Primary Expressions
Primary expressions involving .,—>, subscripting, and function calls group left to right.

primary-expression:
identifier
constant
string
(expression)
primary-expression [expression |
primary-expression (expression-list,,,)
primary-expression . identifier
primary-expression —> identifier

expression-list:

expression
expression-list , expression

Page 81

PROGRAMMING GUIDE ISSUE 1 6/82

An identifier is a primary expression provided it has been suitably declared as discussed below. Its type is speci-
fied by its declaration. If the type of the identifier is “array of ...”, however, then the value of the identifier ex-
pression is a pointer to the first object in the array; and the type of the expression is “pointer to ..."”. Moreover,
an array identifier is not an lvalue expression. Likewise, an identifier which is declared “function returning ...”,
when used except in the function-name position of a call, is converted to “pointer to function returning ...".

A constant is a primary expression. Its type may be int, long, or double depending on its form. Character
constants have type int and floating constants are double.

A string is a primary expression. Its type is originally “array of char”, but following the same rule given
above for identifiers, this is modified to “pointer to char” and the result is a pointer to the first character in
the string. (There is an exception in certain initializers; see “F. Initialization” in part “DECLARATIONS".)

A parenthesized expression is a primary expression whose type and value are identical to those of the un-
adorned expression. The presence of parentheses does not affect whether the expression is an lvalue.

A primary expression followed by an expression in square brackets is a primary expression. The intuitive
meaning is that of a subscript. Usually, the primary expression has type “pointer to ...”, the subscript expression
is int, and the type of the result is “...". The expression E1[E2] is identical (by definition) to *((E1)+(E2)).
All the clues needed to understand this notation are contained in this subpart together with the discussions in
“B. Unary Operators” and “D. Additive Operators” on identifiers, * and +, respectively. The implications are
summarized under “C. Arrays, Pointers, and Subscripting” in part “TYPES REVISITED".

A function call is a primary expression followed by parentheses containing a possibly empty, comma-
separated list of expressions which constitute the actual arguments to the function. The primary expression
must be of type “function returning ...”, and the result of the function call is of type “..."”. As indicated below,
a hitherto unseen identifier followed immediately by a left parenthesis is contextually declared to represent
a function returning an integer; thus in the most common case, integer-valued functions need not be declared.

Any actual arguments of type float are converted to double before the call. Any of type char or short
are converted to int. Array names are converted to pointers. No other conversions are performed automatically;
in particular, the compiler does not compare the types of actual arguments with those of formal arguments.
If conversion is needed, use a cast; see “B. Unary Operators” and “G. Type Names” in part “DECLARATIONS".

In preparing for the call to a function, a copy is made of each actual parameter. Thus, all argument passing
in C is strictly by value. A function may change the values of its formal parameters, but these changes cannot
affect the values of the actual parameters. It is possible to pass a pointer on the understanding that the function
may change the value of the object to which the pointer points. An array name is a pointer expression. The order
of evaluation of arguments is undefined by the language; take note that the various compilers differ. Recursive
calls to any function are permitted.

A primary expression followed by a dot followed by an identifier is an expression. The first expression must
be a structure or a union, and the identifier must name a member of the structure or union. The value is the
named member of the structure or union, and it is an lvalue if the first expression is an lvalue.

A primary expression followed by an arrow (built from — and >) followed by an identifier is an expressjon.
The first expression must be a pointer to a structure or a union and the identifier must name a member of that
structure or union. The result is an lvalue referring to the named member of the structure or union to which
the pointer expression points. Thus the expression E1->MOS is the same as (*E1).MOS. Structures and
unions are discussed in “E. Structure, Union, and Enumeration Declarations” in part “DECLARATIONS",

B. Unary Operators

Expressions with unary operators group right to left.

Page 82

6/82 ISSUE 1 PROGRAMMING GUIDE

unary-expression:
* expression
& Ivalue
— expression
! expression
~ expression
++ lvalue
—— lvalue
lvalue ++
lvalue ——
(type-name) expression
sizeof expression
sizeof (type-name)

The unary * operator means indirection: the expression must be a pointer, and the result is an lvalue referring
to the object to which the expression points. If the type of the expression is “pointer to...”, the type of the result

is 1] ”

The result of the unary & operator is a pointer to the object referred to by the lvalue. If the type of the lvalue

is “...", the type of the result is “pointer to ...”.

The result of the unary — operator is the negative of its operand. The usual arithmetic conversions are per-
formed. The negative of an unsigned quantity is computed by subtracting its value from 2° where nis the number
of bits in an int. There is no unary + operator.

The result of the logical negation operator ! is 1 if the value of its operand is zero, zero if the value of its
operand is nonzero. The type of the result is int. It is applicable to any arithmetic type or to pointers.

The " operator yields the 1's complement of its operand. The usual arithmetic conversions are performed.
The type of the pperand must be integral.

The object referred to by the lvalue operand of prefix ++ is incremented. The value is the new value of the
operand but is not an lvalue. The expression ++x is equivalent to x+=1. See the discussions “D. Additive Opera-
tors” and “N. Assignment Operators” for information on conversions.

The lvalue operand of prefix —— is decremented analogously to the prefix ++ operator.

When postfix ++ is applied to an lvalue, the result is the value of the object referred to by the lvalue. After
the result is noted, the object is incremented in the same manner as for the prefix ++ operator. The type of
the result is the same as the type of the lvalue expression.

When postfix —— is applied to an lvalue, the result is the value of the object referred to by the lvalue. After
the result is noted, the object is decremented in the manner as for the prefix —— operator. The type of the result
is the same as the type of the lvalue expression.

An expression preceded by the parenthesized name of a data type causes conversion of the value of the ex-
pression to the named type. This construction is called a cast. Type names are described under “G. Type Names"
in part “Declarations”.

The sizeof operator yields the size in bytes of its operand. (A byte is undefined by the language except in
terms of the value of sizeof. However, in all existing implementations, a byte is the space required to hold a
char.) When applied to an array, the result is the total number of bytes in the array. The size is determined
from the declarations of the objects in the expression. This expression is semantically an unsigned constant

Page 83

PROGRAMMING GUIDE ISSUE 1 6/82

and may be used anywhere a constant is required. Its major use is in communication with routines like storage
allocators and /0 systems.

The sizeof operator may also be applied to a parenthesized type name. In that case it yields the size in bytes
of an object of the indicated type.)

The construction sizeof(type) is taken to be a unit, so the expression sizeof(type)—2 is the same as
(sizeof(type))-2.

C. Muiltiplicative Operators
The multiplicative operators *, /, and % group left to right. The usual arithmetic conversions are performed.

multiplicative expression:
expression * expression
expression / expression
expression % expression

The binary ® operator indicates multiplication. The * operator is associative and expressions with several
multiplications at the same level may be rearranged by the compiler.

The binary / operator indicates division. When positive integers are divided, truncation is toward 0; but the
form of truncation is machine-dependent if either operand is negative. On all machines covered by this manual,
the remainder has the same sign as the dividend. It is always true that (a/b)*b + a%b is equal to a (if b is
not 0).

The binary % operator yields the remainder from the division of the first expression by the second. The
usual arithmetic conversions are performed. The operands must not be floating.

D. Additive Operators

The additive operators + and — group left to right. The usual arithmetic conversnons are performed. There
are some additional type possibilities for each operator.

additive-expression:
expression + expression
expression — expression

The result of the + operator is the sum of the operands. A pointer to an object in an array and a value of any
integral type may be added. The latter is in all cases converted to an address offset by multiplying it by the
length of the object to which the pointer points. The result is a pointer of the same type as the original pointer,
and which points to another object in the same array, appropriately offset from the original object. Thus if P
is a pointer to an object in an array, the expression P+1 is a pointer to the next object in the array. No further
type combinations are allowed for pointers.

The + operator is associative and expressions with several additions at the same level may be rearranged
by the compiler.

The result of the — operator is the difference of the operands. The usual arithmetic conversions are per-
formed. Additionally, a value of any integral type may be subtracted from a pointer, and then the same conver-
sions for addition apply.

If two pointers to objects of the same type are subtracted, the result is converted (by division by the length
of the object) to an int representing the number of objects separating the pointed-to objects. This conversion

Poge 84

6/82 ISSUE 1 PROGRAMMING GUIDE

will in general give unexpected results unless the pointers point to objects in the same array, since bointers.
even to objects of the same type, do not necessarily differ by a multiple of the object length.

L. Shift Operators

The shift operators << and >> group left to right. Both perform the usual arithmetic conversions on their
operands, each of which must be integral. Then the right operand is converted to int; the type of the resuit is
that of the left operand. The result is undefined if the right operand is negative or greater than or equal to the
length of the object in bits.

shift-expression:
. 4.
expression << expression
expression >> expression

The value of E1<<E2 is E1 (interpreted as a bit pattern) left-shifted E2 bits. Vacated bits are 0 filled. The
value of E1>>E2 is E1 right-shifted E2 bit positions. The right shift is guaranteed to be logical (0 fill) if E1
is unsigned; otherwise, it may be arithmetic (fill by a copy of the sign bit).

F. Relatienal Operators

The relational operators group left to right. This fact is not very useful; a<b<e¢ does not mean what it seems
to.

relational-expression:
expression < expression
. expression > expression
expression <= expression
expression >= expression

The operators < (less than), > (greater than), <= (less than or equal to), and >= (greater than or equal to) all
yield 0 if the specified relation is false and 1 if it is true. The type of the result is int. The usual arithmetic con-
versions are performed. Two pointers may be compared; the result depends on the relative locations in the ad-
dress space of the pointed-to objects. Pointer comparison is portable only when the pointers point to objects
in the same array.

G. Equality Operaters

equality-expression:
expression == expression
expression != expression

The == (equal to) and the = (not equal to) operators are exactly analogous to the relational operators except
for their lower precedence. (Thus a<b == c¢<d is 1 whenever a<b and ¢<d have the same truth value.)

A pointer may be compared to an integer only if the integer is the constant 0. A pointer to which 0 has been
assigned is guaranteed not to point to any object and will appear to be equal to 0. In conventional usage, such
a pointer is considered to be null.

H. Bitwise AND Operator

and-expression:
expression & expression

The & operator is associative, and expressions involving & may be rearranged. The usual arithmetic conver-

sions are performed. The result is the bitwise AND function of the operands. The operator applies only to inte-
gral operands.

Page 85

PROGRAMMING GUIDE ISSUE 1 6/82

. Bitwise Exclusive OR Operator

exclusive-or-expression:
expression ~ expression

The - operator is associative, and expressions involving ~ may be rearranged. The usual arithmetic conver-
sions are performed; the result is the bitwise exclusive OR function of the operands. The operator applies only
to integral operands.

J. Bitwise Inclusive OR Operator

inclusive-or-expression:
expression ! expression

The | operator is associative, and expressions involving | may be rearranged. The usual arithmetic conver-
sions are performed; the result is the bitwise inclusive OR function of its operands. The operator applies only
to integral operands.

K. Logical AND Operator

logical-and-expression:
expression && expression

The && operator groups left to right. It returns 1 if both its operands are nonzero, 0 otherwise. Unlike &,
&& guarantees left to right evaluation; moreover, the second operand is not evaluated if the first operand is
0.

The operands need not have the same type, but each must have one of the fundamental types or be a pointer.
The result is always int. ’

L. Llogical OR Operator

logical-or-expression:
expression ! expression

The & operator groups left to right. It returns 1 if either of its operands is nonzero, 0 otherwise. Unlike |,
& guarantees left to right evaluation; moreover, the second operand is not evaluated if the value of the first oper-
and is nonzero.

The operands need not have the same type, but each must have one of the fundamental types or be a pointer.
The result is always int.

-

M. Conditional Operator

conditional-expression:
expression ? expression : expression

Conditional expressions group right to left. The first expression is evaluated; and if it is nonzero, the result
is the value of the second expression, otherwise that of third expression. If possible, the usual arithmetic conver-
sions are petformed to bring the second and third expressions to a common type. If both pointers are of the same
type, the result has the common type. Otherwise, one must be a pointer and the other the constant 0, and the
result has the type of the pointer. Only one of the second and third expressions is evaluated.

Page 86

6/82 ISSUE 1 PROGRAMMING GUIDE

N. Assignment Operators

There are a number of assignment operators, all of which group right to left. All require an lvalue as their
left operand, and the type of an assignment expression is that of its left operand. The value is the value stored
in the left operand after the assignment has taken place. The two parts of a compound assignment operator
are separate tokens.

assignment-expression:
lvalue = expression
lvalue += expression
Ivalue —= expression
Ivalue *= expression
Ivalue /= expression
lvalue % = expression
lvalue > >= expression
lvalue <<= expression
Ivalue &= expression
lvalue ~ = expression
Ivalue I= expression

In the simple assignment with =, the value of the expression replaces that of the object referred to by the
Ivalue. If both operands have arithmetic type, the right operand is converted to the type of the left preparatory
to the assignment. Second, both operands may be structures or unions of the same type. Finally, if the left oper-
and is a pointer, the right operand must in general be a pointer of the same type. However, the constant 0 may
be assigned to a pointer; and it is guaranteed that this value will produce a null pointer distinguishable from
a pointer to any object.

The behavior of an expression of the form E1 op = E2 may be inferred by taking it as equivalent to E1
= E1 op (E2); however, E1 is evaluated only once. In += and —=, the left operand may be a pointer; in which
case, the (integral) right operand is converted as explained in “D. Additive Operators”. All right operands and
all nonpointer left operands must have arithmetic type.

0. Comma Operator

comma-expression:
expression , expression

A pair of expressions separated by a comma is evaluated left to right, and the value of the left expression
is discarded. The type and value of the result are the type and value of the right operand. This operator groups
left to right. In contexts where comma is given a special meaning, e.g., in lists of actual arguments to functions
(“A. Primary Expressions”) and lists of initializers (“F. Initialization” in part “Declarations”), the comma oper-
ator as described in this subpart can only appear in parentheses. For example,

f(a, (t=3, t+2), ¢)
has three arguments, the second of which has the value 5.
DECLARATIONS

Declarations are used to specify the interpretation which C gives to each identifier; they do not necessarily
reserve storage associated with the identifier. Declarations have the form

declaration:
decl-specifiers declarator-list,, ;

Page 87

PROGRAMMING GUIDE ISSUE 1 6/82

The declarators in the declarator-list contain the identifiers being declared. The decl-specifiers éonsist of a se-
guence of type and storage class specifiers.

decl-specifiers:
type-specifier decl-specifiers,,
sc-specifier decl-specifiers,,,

The list must be self-consistent in a way described below.
A. Storage Class Specifiers
The sc-specifiers are:

sc-specifier:
auto
static
extern
register
typedef

The typedef specifier does not reserve storage and is called a “storage class specifier” only for syntactic conve-

nience. See “H. Typedef” for more information. The meanings of the various storage classes were discussed in
part “Names”.

The auto, static, and register declarations also serve as definitions in that they cause an appropriate
amount of storage to be reserved. In the extern case, there must be an external definition (see part “External
Definitions”) for the given identifiers somewhere outside the function in which they are declared.

A register declaration is best thought of as an auto declaration, together with a hint to the compiler that
the variables declared will be heavily used. Only the first few such declarations are effective. Moreover, only
variables of certain types will be stored in registers; on the PDP-11, they are int or pointer. One other restriction
applies to register variables: the address-of operator & cannot be applied to them. Smaller, faster programs

can be expected if register declarations are used appropriately, but future improvements in code generation may
render them unnecessary.

At most one sc-specifier may be given in a declaration. If the sc-specifier is missing from a declaration, it
is taken to be auto inside a function, extern outside. Exception: functions are never automatic.

B. Type Specifiers
The type-specifiers are

type-specifier:
char
short
int
long
unsigned
float
double
void
struct-or-union-specifier
typedef-name
enum-specifier

Page 88

6/82 ISSUE 1 PROGRAMMING GUIDE

The words long, short, and unsigned may be thought of as adjectives. The following combinations are accept-
able.

short int

long int
unsigned int
unsigned char
long float

The meaning of the last is the same as double. Otherwise, at most one type-specifier may be given in a declara-
tion. If the type-specifier is missing from a declaration, it is taken to be int.

Specifiers for structures, unions, and enumerations are discussed in “E. Structure, Union, and Enumeration
Declarations”. Declarations with typedef names are discussed in “H. Typedef”.

C. Declarators

The declarator-list appearing in a declaration is a comma-separated sequence of declarators, each of which
may have an initializer.

declarator-list:
init-declarator
init-declarator , declarator-list

init-declarator:
declarator initializer,,,

Initializers are discussed in “F. Initialization”. The specifiers in the declaration indicate the type and storage
class of the objects to which the declarators refer. Declarators have the syntax

declarator:
identifier
(declarator)
* declarator
declarator ()
declarator constant-expression,y)

The grouping is the same as in expressions.
D. Meaning of Declarators

Each declarator is taken to be an assertion that when a construction of the same form as the declarator
appears in an expression, it yields an object of the indicated type and storage class.

Each declarator contains exactly one identifier; it is this identifier that is declared. If an unadorned identi-
fier appears as a declarator, then it has the type indicated by the specifier heading the declaration.

A declarator in parentheses is identical to the unadorned declarator, but the binding of complex declarators
may be altered by parentheses. See the examples below.

Now imagine a declaration
T D1
where T is a type-specifier (like int, etc.) and D1 is a declarator. Suppose this declaration makes the identifier

have type “... T,” where the “...” is empty if D1 is just a plain identifier (so that the type of x in “int x” is just
int). Then if D1 has the form

*D

Page 89

PROGRAMMING GUIDE ISSUE 1 6/82

the type of the contained identifier is “... pointer to T."”
If D1 has the form
D()
then the contained identifier has the type “... function returning T.”
If D1 has the form
D{constant-expression]

or
D()

then the contained identifier has type “... array of T."” In the first case, the constant expression is an expression
whose value is determinable at compile time and whose type is int. (Constant expressions are defined precisely
in part “Constant Expressions”.) When several “array of” specifications are adjacent, a multidimensional array
is created; the constant expressions which specify the bounds of the arrays may be missing only for the first
member of the sequence. This elision is useful when the array is external and the actual definition, which allo-
cates storage, is given elsewhere. The first constant expression may also be omitted when the declarator is fol-
lowed by initialization. In this case the size is calculated from the number of initial elements supplied.

An array may be constructed from one of the basic types, from a pointer, from a structure or union, or from
another array (to generate a multidimensional array).

Not all the possibilities allowed by the syntax above are actually permitted. The restrictions are as follows:
functions may not return arrays or functions although they may return pointers to such things; there are no
arrays of functions although there may be arrays of pointers to functions. Likewise, a structure or union may
not contain a function; but it may contain a pointer to a function.

As an example, the declaration
int i, *ip, (), *fip(), (*pfi)();

declares an integer i, a pointer ip to an integer, a function f returning an integer, a function fip returning a
pointer to an integer, and a pointer pfi to a function which returns an integer. It is especially useful to compare
the last two. The binding of *fip() is *(fip()). The declaration suggests; and the same construction in an expres-
sion requires, the calling of a function fip. Using indirection through the (pointer) result to yield an integer.
In the declarator (*pfi)(), the extra parentheses are necessary, as they are also in an expression, to indicate
that indirection through a pointer to a function yields a function, which is then called; it returns an integer.

As another example,
float fa[17], *afp[17];
declares an array of float numbers and an array of pointers to float numbers. Finally,
static int x3d[3](5][7];

declares a static 3-dimensional array of integers, with rank 3X8X7. In complete detail, X3d is an array of three
‘items; each item is an array of five arrays; each of the latter arrays is an array of seven integers. Any of the

Page 90

6/82 ISSUE 1 PROGRAMMING GUIDE

expressions x3d, x3d[i), x3d[i](j}, X3d[i}(j](k] may reasonably appear in an expression. The firsf three have
type “array,” the last has type int.

E. Structure, Union, and Enumeration Declarations

A structure is an object consisting of a sequence of named members. Each member may have any type. A
union is an object which may, at a given time, contain any one of several members. Structure and union specifi-
ers have the same form. ’

struct-or-union-specifier:
struct-or-union { struct-decl-list }
struct-or-union identifier { struct-decl-list }
struct-or-union identifier

struct-or-union:
struct
union

The struct-decl-list is a sequence of declarations for the members of the structure or union:

struct-decl-list:
struct-declaration
struct-declaration struct-decl-list

struct-declaration:
type-specifier struct-declarator-list ;

struct-declarator-list:
struct-declarator
struct-declarator , struct-declarator-list

In the usual case, a struct-declarator is just a declarator for a member of a structure or union..A structure mem-
ber may also consist of a specified number of bits. Such a member is also called a field; its length is set off from
the field name by a colon.

struct-declarator:
declarator
declarator : constant-expression
: constant-expression

Within a structure, the objects declared have addresses which increase as the declarations are read left to right.
Each nonfield member of a structure begins on an addressing boundary appropriate to its type; therefore, there
may be unnamed holes in a structure. Field members are packed into machine integers; they do not straddle
words. A field which does not fit into the space remaining in a word is put into the next word. No field may
be wider than a word.

Fields are assig;led right to left on the PDP-11 and VAX-11, left to right on other machines.

A struct-declarator with no declarator, only a colon and a width, indicates an unnamed field useful for pad-
ding to conform to externally-imposed layouts. As a special case, an unnamed field with a width of 0 specifies
alignment of the next field at a word boundary. The “next field” presumably is a field, not an ordinary structure
member because in the latter case the alignment would have been automatic.

The language does not restrict the types of things that are declared as fields, but implementations are not
required to support any but integer fields. Moreover, even int fields may be considered to be unsigned. On the

Page 91

PROGRAMMING GUIDE ISSUE 1 6/82

PDP-11, fields are not signed and have only integer values; on the VAX-11, fields declared with int are treated
as containing a sign. For these reasons, it is strongly recommended that fields be declared as unsigned. In all
implementations, there are no arrays of fields, and the address-of operator & may not be applied to them, so
that there are no pointers to fields.

A union may be thought of as a structure all of whose members begin at offset 0 and whose size is sufficient
to contain any of its members. At most one of the members can be stored in a union at any time.

A structure or union specifier of the second form, that is, one of

struct identifier { struct-decl-list)
union identifier { struct-decl-list)

declares the identifier to be the structure tag (or union tag) of the structure specified by the list. A subsequent
declaration may then use the third form of specifier, one of

struct identifier
union identifier

Structure tags allow definition of self-referential structures. Structure tags also permit the long part of the dec-
laration to be given once and used several times. It is illegal to declare a structure or union which contains an
instance of itself, but a structure or union may contain a pointer to an instance of itself.

The names of members and tags do not conflict with each other or with ordinary variables. A particular
name may not be used twice in the same structure, but the same name may be used in several different struc-
tures in the same scope.

A simple example of a structure declaration is

struct tnode

{
char tword [20] ;

int count;
struct tnode *left;
struct tnode *right;

5

which contains an array of 20 characters, an integer, and two pointers to similar structures. Once this declara-
tion has been given, the declaration

struct tnode s, *sp;

declares s to be 2 structure of the given sort and sp to be a pointer to a structure of the given sort. With these
declarations, the expression

sp—>count

refers to the count field of the structure to which sp points;
sleft

refers to the left subtree pointer of the structure s; and

s.right—>tword[0]

Page 92

6/82 ISSUE 1 PROGRAMMING GUIDE

refers to the first character of the tword member of the right subtree of s.

Enumerations are unique types with named constants. However, the current language treats enumeration
variables and constants as being of int type.

enum-specifier:
enum { enum-list }
enum identifier { enum-list }
enum jdentifier
enum-list:
enumerator
enum-list , enumerator
enumerator:
identifier
identifier = constant-expression

The identifiers in an enum-list are declared as constants and may appear wherever constants are required. If
no enumerators with = appear, then the values of the corresponding constants begin at 0 and increase by 1 as
the declaration is read from left to right. An enumerator with = gives the associated identifier the value indicat-
ed; subsequent identifiers continue the progression from the assigned value.

The names of enumerators in the same scope must all be distinct from each other and from those of ordinary
variables.

The role of the identifier in the enum-specifier is entirely 'analogous to that of the structure tag in a struct-
specifier; it names a particular enumeration. For example,

enum color { chartreuse, burgundy, claret=20, winedark };
:num color *cp, col;

col = claret;

cp = &col;

if (*cp == burgundy) ..

makes color the enumeration-tag of a type describing various colors, and then declares ¢p as a pointer to an
object of that type, and col as an object of that type. The possible values are drawn from the set {0,1,20,21}.

F. Initializatien

A declarator may specify an initial value for the identifier being declared. The initializer is preceded by =
and consists of an expression or a list of values nested in braces.

initializer:

= expression

= { initializer-list }

= { initializer-list , }
initializer-list:

expression

initializer-list , initializer-list

{ initializer-list }

All the expressions in an initializer for a static or external variable must be constant expressions, which
are described in part “CONSTANT EXPRESSIONS", or expressions which reduce to the address of a previously

Page 93

PROGRAMMING GUIDE ISSUE 1 6/82

declared variable, possibly offset by a constant expression. Automatic or register variables may be initialized
by arbitrary expressions involving constants and previously declared variables and functions.

Static and external variables which are not initialized are guaranteed to start off as 0. Automatic and regis-
ter variables which are not initialized are guaranteed to start off as garbage.

When an initializer applies to a scalar(a pointer or an object of arithmetic type), it consists of a single ex-
pression, perhaps in braces. The initial value of the object is taken from the expression; the same conversions
as for assignment are performed.

When the declared variable is an aggregate (a structure or array), the initializer consists of a brace-
enclosed, comma-separated list of initializers for the members of the aggregate written in increasing subscript
or member order. If the aggregate contains subaggregates, this rule applies recursively to the members of the
aggregate. If there are fewer initializers in the list than there are members of the aggregate, then the aggregate
is padded with 0's. It is not permitted to initialize unions or automatic aggregates.

Braces may be elided as follows. If the initializer begins with a left brace, then the succeeding comma-
separated list of initializers initializes the members of the aggregate; it is erroneous for there to be more
initializers than members. If, however, the initializer does not begin with a left brace, then only enough elements
from the list are taken to account for the members of the aggregate; any remaining members are left to initialize
the next member of the aggregate of which the current aggregate is a part.

A final abbreviation allows a char array to be initialized by a string. In this case successive characters of
the string initialize the members of the array.

For example,
intx{] ={1,3,5}

declares and initializes x as a 1-dimensional array which has three members, since no size was specified and
there are three initializers.

floaty [4] (3] =
{

e
-

-
-

LN -
o 0
aoo

-

5

is a completely-bracketed initialization: 1, 3, and 5 initialize the first row of the array y[0), namely y[0]{0],
y{0][1], and y[0]{2). Likewise; the next two lines initialize y[1] and y[2]. The initializer ends early and there-
fore y([3] is initialized with 0. Precisely, the same effect could have been achieved by '

. floaty [4] (3] =
{

IR

The initializer for y begins with a left brace but that for y[0] does not; therefore, three elements from the list
are used. Likewise, the next three are taken successively for y[1] and y{2]. Also,

1,3,5,2,4,6,3,5,7

float y [4] [3] =

{1L{2}{3}{4]

Page 94

6/82 ISSUE 1 PROGRAMMING GUIDE

initializes the first column of y (regarded as a 2-dimensional array) and leaves the rest 0.

Finally,

char msg{] ="syntax error on line %s\n";
shows a character array whose members are initialized with a string.

G. Type Names

In two contexts (to specify type conversions explicitly by means of a cast and as an argument of sizeof),
it is desired to supply the name of a data type. This is accomplished using a “type name”, which in essence is
a declaration for an object of that type which omits the name of the object.

type-name:
type-specifier abstract-declarator

abstract-declarator:
empty
(abstract-declarator)
* abstract-declarator
abstract-declarator ()
abstract-declarator [constant-expression,,]

To avoid ambiguity, in the construction
(abstract-declarator)

the abstract-declarator is required to be nonempty. Under this restriction, it is possible to identify uniquely the
location in the abstract-declarator where the identifier would appear if the construction were a declarator in
a declaration. The named type is then the same as the type of the hypothetical identifier. For example,

int

int *

int * [3]
int (*) (3]
int *()

int (*)()

name respectively the types “integer”, “pointer to integer”, “array of 3 pointers to integers”, “pointer to an
array of 3 integers”, “function returning pointer to integer”, and “pointer to function returning an integer”.

H. Typedef

Declarations whose “storage class” is typedef do not define storage but instead define identifiers which
can be used later as if they were type keywords naming fundamental or derived types.

typedef-name:
identifier

Within the scope of a declaration involving typedef, each identifier appearing as part of any declarator therein

becomes syntactically equivalent to the type keyword naming the type associated with the identifier in the way
described in “D. Meaning of Declarators”. For example, after

typedef int MILES, *KLICKSP;
typedef struct { double re, im; } complex;

Page 95

PROGRAMMING GUIDE ISSUE 1 6/82

the constructions

MILES distance;
extern KLICKSP metricp;
complex z, *zp;

are all legal declarations; the type of distance is int, that of metricp is “pointer to int,” and that of z is the
specified structure. The zp is a pointer to such a structure.

The typedef does not introduce brand new types, only synonyms for types which could be specified in an-
other way. Thus in the example above distance is considered to have exactly the same type as any other int
object.

STATEMENTS
Except as indicated, statements are executed in sequence.
A. Expression Statement
Most statements are exﬁression statements, which have the form
expression ;
Usually expression statements are assignments or function calls.
B. Compound Statement or Block

So that several statements can be used where one is expected, the compound statement (also, and equivalent-
ly, called “block”) is provided:

compound-statement:
{ declaration-list,, statement-list,, |

declaration-list: .
declaration
declaration declaration-list

statement-list:
statement
statement statement-list

If any of the identifiers in the declaration-list were previously declared, the outer declaration is pushed down
for the duration of the block, after which it resumes its force.

Any initializations of auto or register variables are performed each time the block is entered at the top.
It is currently possible (but a bad practice) to transfer into a block; in that case the initializations are not per-
formed. Initializations of static variables are performed only once when the program begins execution. Inside
a block, extern declarations do not reserve storage so initialization is not permitted.
C. Conditional Statement

The two forms of the conditional statement are

if (expression) statement
if (expression) statement else statement

Page 96

6/82 ISSUE 1 PROGRAMMING GUIDE

In both cases, the expression is evaluated; and if it is nonzero, the first substatement is executed. In the second
case, the second substatement is executed if the expression is 0. As usual the “else” ambiguity is resolved by
connecting an else with the last encountered else-less if.

D. While Statement
The while statement has the form
while (expression) statement’

The substatement is executed repeatedly so long as the value of the expression remains nonzero. The test takes
place before each execution of the statement.

E. Do Statement
The do statement has the form
do statement while (expression) ;

The substatement is executed repeatedly until the value of the expression becomes 0. The test takes place after
each execution of the statement.

F. For Statement
The for statement has the form:
for (expression-1,, ; expression-2,, ; expression-3,,) statement
This statement is equivalent to

expression-1;
while (expression-2)

{

statement
expression-3 ;

}

Thus the first expression specifies initialization for the loop; the second specifies a test, made before each itera-
tion, such that the loop is exited when the expression becomes 0. The third expression often specifies an
incrementing that is performed after each iteration.

Any or all of the expressions may be dropped. A missing expression-2 makes the implied while clause equiv-
alent to while(1); other missing expressions are simply dropped from the expansion above.

G. Switch Statement

The switch statement causes control to be transferred to one of several statements depending on the value
of an expression. It has the form

switch (expression) statement

The usual arithmetic conversion is performed on the expression, but the result must be int. The statement is
typically compound. Any statement within the statement may be labeled with one or more case prefixes as fol-
lows:

case constant-expression :

Page 97

PROGRAMMING GUIDE ISSUE 6/82
where the constant expression must be int. No two of the case constants in the same switch may have the same
value. Constant expressions are precisely defined in part “CONSTANT EXPRESSIONS".
There may also be at most one statement prefix of the form
default :

When the switch statement is executed, its expression is evaluated and compared with each case constant. If
one of the case constants is equal to the value of the expression, control is passed to the statement following
the matched case prefix. If no case constant matches the expression and if there is a default, prefix, control
passes to the prefixed statement. If no case matches and if there is no default, then none of the statements
in the switch is executed.

The prefixes case and default do not alter the flow of control, which continues unimpeded across such pre-
fixes. To exit from a switch, see “H. Break Statement”.

Usually, the statement that is the subject of a switch is compound. Declarations may appear at the head
of this statement, but initializations of automatic or register variables are ineffective.

H. Break Statement
The statement
break ;

causes termination of the smallest enclosing while, do, for, or switch statement; control passes to the state-
ment following the terminated statement.

1. Continve Statement
The statement
continue ;

causes control to pass to the loop-continuation portion of the smallest enclosing while, do, or for statement;
that is to the end of the loop. More precisely, in each of the statements

while (...) do for (...)
{ { {
contin: ;... contix;.:.; contix.l.:' ;
] } while (...); }

a continue is equivalent to goto contin. (Following the contin: is a null statement, see “M. Null Statement”.)
J. Return Statement
A function returns to its caller by means of the return statement, which has one of the forms

return ;
return expression;

In the first case, the returned value is undefined. In the second case, the value of the expression is returned to
the caller of the function. If required, the expression is converted, as if by assignment, to the type of the function
in which it appears. Flowing off the end of a function is equivalent to a return with no returned value.

Page 98

6/82 ISSUE 1 : PROGRAMMING GUIDE
K. Goto Statement
Control may be. transferred unconditionally by means of the statement
goto identifier;
The identifier must be a label (see “L. Labeled Statement”) located in the current function.
L. labeled Statement
Any statement may be preceded by label prefixes of the form
identifier:

which serve to declare the identifier as a label. The only use of a label is as a target of a goto. The scope of
a label is the current function, excluding any subblocks in which the same identifier has been redeclared. See
part “SCOPE RULES".

M. Null Statement

The null statement has the form

A null statement is useful to carry a label just before the } of a compound statement or to supply 2 null body
to a looping statement such as while.

EXTERNAL DEFINITIONS

A C program consists of a sequence of external definitions. An external definition declares an identifier to
have storage class extern (by default) or perhaps static, and a specified type. The type-specifier (see “B. Type
Specifiers” in part “DECLARATIONS”) may also be empty, in which case the type is taken to be int. The scope
of external definitions persists to the end of the file in which they are declared just as the effect of declarations
persists to the end of a block. The syntax of external definitions is the same as that of all declarations except
that only at this level may the code for functions be given.

A. External Function Definitions
Function definitions have the form

function-definition: .
decl-specifiers,, function-declarator function-body

The only sc-specifiers allowed among the decl-specifiers are extern or static; see “B. Scope of Externals” in
part “SCOPE RULES" for the distinction between them. A function declarator is similar to a declarator for
a “function returning ...” except that it lists the formal parameters of the function being defined.

function-declarator:
declarator (parameter-list,,)

parameter-list:
identifier
identifier , parameter-list

The function-body has the form

function-body:
declaration-list compound-statement

.

Page 99

PROGRAMMING GUIDE ISSUE 1 6/82

The identifiers in the parameter list, and only those identifiers, may be declared in the declaration list. Any
identifiers whose type is not given are taken to be int. The only storage class which may be specified is register;
if it is specified, the corresponding actual parameter will be copied, if possible, into a register at the outset of
the function.

A simple example of a complete function definition is

int max(a, b, ¢)
int a, b, c;
{

int m;
m=(a>b)?a:b;
return((m > ¢) 2 m : ¢);

}

Here int is the type-specifier; max(a, b, c¢) is the function-declarator; int a, b, c; is the declaration-list for the
formal parameters; { ... } is the block giving the code for the statement.

The C program converts all float actual parameters to double, so formal parameters declared float have
their declaration adjusted to read double. Also, since a reference to an array in any context (in particular as
an actual parameter) is taken to mean a pointer to the first element of the array, declarations of formal parame-
ters declared “array of ..."” are adjusted to read “pointer to ...”.

B. External Data Definitions
An external data definition has the form

data-definition:
declaration

The storage class of such data may be extern (which is the default) or static but not auto or register.
SCOPE RULES

A C program need not all be compiled at the same time. The source text of the program may be kept in sev-
eral files, and precompiled routines may be loaded from libraries. Communication among the functions of a pro-
gram may be carried out both through explicit calls and through manipulation of external data.

Therefore, there are two kinds of scope to consider: first, what may be called the lexical scope of an identifi-
er, which is essentially the region of a program during which it may be used without drawing “undefined identi-
fier" diagnostics; and second, the scope associated with external identifiers, which is characterized by the rule
that references to the same external identifier are references to the same object.

A. Lexical Scope

The lexical scope of identifiers declared in external definitions persists from the definition through the end
of the source file in which they appear. The lexical scope of identifiers which are formal parameters persists
through the function with which they are associated. The lexical scope of identifiers declared at the head of a
block persists until the end of the block. The lexical scope of labels is the whole of the function in which they
appear.

In all cases, however, if an identifier is explicitly declared at the head of a block, including the block consti-
tuting a function, any declaration of that identifier outside the block is suspended until the end of the block.

Page 100

6/82 ISSUE 1 PROGRAMMING GUIDE

Remember also (“E. Structure, Union, and Enumeration Declarations” in part “DECLARATIONS”) that
identifiers associated with ordinary variables on the one hand and those associated with structure and union
members and tags on the other form two disjoint classes which do not conflict. Members and tags follow the
same scope rules as other identifiers. The typedef names are in the same class as ordinary identifiers. They
may be redeclared in inner blocks, but an explicit type must be given in the inner declaration:

typedef float distance;

{

auto int distance;

The int must be present in the second declaration, or it would be taken to be a declaration with no declarators
and type distance.

B. Scope of Externals

If a function refers to an identifier declared to be extern, then somewhere among the files or libraries con-
stituting the complete program there must be an external definition for the identifier. All functions in a given
program which refer to the same external identifier refer to the same object, so care must be taken that the
type and size specified in the definition are compatible with those specified by each function which references
the data.

The appearance of the extern keyword in an external definition indicates that storage for the identifiers
being declared will be allocated in another file. Thus in a multifile program, an external data definition without
the extern specifier must appear in exactly one of the files. Any other files which wish to give an external defi-
nition for the identifier must include the extern in the definition. The identifier can be initialized only in the
declaration where storage is allocated.

Identifiers declared statie at the top level in external definitions are not visible in other files. Functions
may be declared static.

COMPILER CONTROL LINES

The C compiler contains a preprocessor capable of macro substitution, conditional compilation, and inclu-
sion of named files. Lines beginning with # communicate with this preprocessor. These lines have syntax inde-
pendent of the rest of the language; they may appear anywhere and have effect which lasts (mdependent of
scope) until the end of the source program file.
A. Token Replacement

A compiler-cdntrol line of the form

#define identifier token-string

causes the preprocessor to replace subsequent instances of the identifier with the given string of tokens. Semico-
lons in or at the end of the token-string are part of that string. A line of the form

#define identifier(identifier, ..., identifier) token-string

where there is no space between the first identifier and the (, is a macro definition with arguments. Subsequent
instances of the first identifier followed by a (, a sequence of tokens delimited by commas, and a) are replaced

Page 101

PROGRAMMING GUIDE ISSUE 1 6/82

by the token string in the definition. Each occurrence of an identifier mentioned in the formal parameter list
of the definition is replaced by the corresponding token string from the call. The actual arguments in the call
are token strings separated by commas; however, commas in quoted strings or protected by parentheses do not
separate arguments. The number of formal and actual parameters must be the same. Strings and character con-
stants in the token-string are scanned for formal parameters, but strings and character constants in the rest
of the program are not scanned for defined identifiers to replacement.

In both forms the replacement string is rescanned for more defined identifiers. In both forms a long defini-
tion may be continued on another line by writing \ at the end 6f the line to be continued.

This facility is most valuable for definition of “manifest constants,” as in

#define TABSIZE 100
int table [TABSIZE];

A control line of the form
#undef identifier
causes the identifier's preprocessor definition to be forgotten.
B. File Inclusion
A compiler control line of the form
#include " filename"
causes the replacement of that line by the entire contents of the file filename. The named file is searched for
first in the directory of the original source file and then in a sequence of specified or standard places. Alterna-
tively, a control line of the form

#include <filename>

searches only the specified or standard places and not the directory of the source file. (How the places are speci-
fied is not part of the language.)

#include’s may be nested.
C. Conditional Compilation
A compiler control line of the form
#if constant-expression
checks whether the constant expression evaluates to nonzero. (Constant expressions are discussed in part “CON-

STANT EXPRESSIONS"; the following additional restriction applies here: the constant expression may not
contain sizeof or an enumeration constant.) A control line of the form

#ifdef identifier

checks whether the identifier is currently defined in the preprocessor; i.e., whether it has been the subject of
a #define control line. A control line of the form

#ifndef identifier

Page 102

6/82 ISSUE 1 PROGRAMMING GUIDE

checks whether the identifier is currently undefined in the prt;processor.
All three forms are followed by an .l:nrbitrary number of lines, possibly containing a control line
#else
and then by a control line
#endif

If the checked condition is true, then any lines between #else and #endif are ignored. If the checked condition
is false, then any lines between the test and a #else or, lacking a #else, the #endif are ignored.

These constructions may be nested.
D. Lline Control
For the benefit of other preprocessors which generate C programs, a line of the form
#line constant" filename"

causes the compiler to believe, for purposes of error diagnostics, that the line number of the next source line
is given by the constant and the current input file is named by the identifier. If the identifier is absent, the re-
membered file name does not change.

IMPUCIT DECLARATIONS

It is not always necessary to specify both the storage class and the type of identifiers in a declaration. The
storage class is supplied by the context in external definitions and in declarations of formal parameters and
structure members. In a declaration inside a function, if a storage class but no type is given, the identifier is
assumed to be int; if a type but no storage class is indicated, the identifier is assumed to be auto. An exception
to the latter rule is made for functions because auto functions do not exist. If the type of an identifier is “func-
tion returning ...", it is implicitly declared to be extern.

In an expression, an identifier followed by (and not already declared is contextually declared to be “function
returning int”.

TYPES REVISITED
This part summarizes the operations which can be performed on objects of certain types.
A. Structures and Unions

Structures and unions may be assigned, passed as arguments to functions, and returned by functions. Other
plausible operators, such as equality comparison and structure casts, are not implemented.

In a reference to a structure or union member, the name on the right must specify a member of the aggregate
named or pointed to by the expression on the left. In general, a member of a union may not be inspected unless
the value of the union has been assigned using that same member. However, one special guarantee is made by
the language in order to simplify the use of unions: if a union contains several structures that share a common

S

Page 103

PROGRAMMING GUIDE ISSUE 1 6/82

initial sequence and if the union currently contains one of these structures, it is permitted to inspect the common
initial part of any of the contained structures. For example, the following is a legal fragment:

union
{
struct
{
int type;
}m;
struct
{
int type;
int intnode;
} nj;
struct
{
int type;
float floatnode;
} nf;
jH

w.nf.type = FLOAT;
u.nf.floatnode = 3.14;

if (u.n.type == FLOAT)
... sin{u.nf.floatnode) ...

B. Functions

There are only two things that can be done with a function—call it or take its address. If the name of a func-
tion appears in an expression not in the function-name position of a call, a pointer to the function is generated.
Thus, to pass one function to another, one might say

int £();

g(f);
Then the definition of g might read

g(funcp)
int (*funcp)();
{

(*funcp)();

}

Notice that f must be declared explicitly in the calling routine since its appearance in g(f) was not followed
by (.

C. Arrays, Pointers, and Subseripting

Every time an identifier of array type appears in an expression, it is converted into a pointer to the first
member of the array. Because of this conversion, arrays are not lvalues. By definition, the subscript operator
[} is interpreted in such a way that E1(E2] is identical to *((E1)+(E2)). Because of the conversion rules which
apply to +, if E1 is an array and E2 an integer, then E1[E2] refers to the E2—th member of E1. Therefore,
despite its asymmetric appearance, subscripting is a commutative operation.

Poge 104

6/82 ISSUE 1 PROGRAMMING GUIDE

A consistent rule is followed in the case of multidimensional arrays. If E is an n-~dimensional array of rank
ixjx-+xk, then E appearing in an expression is converted to a pointer to an (n—1)-dimensional array with rank
jx--xk. If the * operator, either explicitly or implicitly as a result of subscripting, is applied to this pointer,
the result is the pointed-to (n—1)-dimensional array, which itself is immediately converted into a pointer.

If the * operator, either explicitly or implicitly as a result of subscripting, is applied to this pointer, the result
is the pointed-to (n—1)-dimensional array, which itself is immediately converted into a pointer.

For example, consider
int x[3](5];

Here x is a 3%5 array of integers. When x appears in an expression, it is converted to a pointer to (the first
of three) 5-membered arrays of integers. In the expression x(i}, which is equivalent to *(x+1i), x is first con-
verted to a pointer as described; then i is converted to the type of x, which involves multiplying i by the length
the object to which the pointer points, namely 5-integer objects. The results are added and indirection applied
to yield an array (of five integers) which in turn is converted to a pointer to the first of the integers. If there
is another subscript, the same argument applies again; this time the result is an integer.

It follows from all this that arrays in C are stored row-wise (last subscript varies fastest) and that the first
subscript in the declaration helps determine the amount of storage consumed by an array but plays no other
part in subscript calculations.

D. Explicit Pointer Conversions

Certain conversions involving pointers are permitted but have implementation-dependent aspects. They are
all specified by means of an explicit type-conversion operator, see “B. Unary Operators” in part “EXPRES-
SIONS” and “G. Type Names"” in part “DECLARATIONS”.

A pointer may be converted to any of the integral types large enough to hold it. Whether an int or long
is required is machine dependent. The mapping function is also machine dependent but is intended to be
unsurprising to those who know the addressing structure of the machine. Details for some particular machines
are given below.

An object of integral type may be explicitly converted to a pointer. The mapping always carries an integer
converted from a pointer back to the same pointer but is otherwise machine dependent.

A pointer to one type may be converted to a pointer to another type. The resulting pointer may cause ad-
dressing exceptions upon use if the subject pointer does not refer to an object suitably aligned in storage. It is
guaranteed that a pointer to an object of a given size may be converted to a pointer to an object of a smaller
size and back again without change.

For example, a storage-allocation routine might accept a size (in bytes) of an object to allocate, and return
a char pointer; it might be used in this way.

extern char *alloc();
double *dp;

dp = (double *) alloc(sizeof(double));
*dp = 22.0/7.0;

The alloc must ensure (in a machine-dependent way) that its return value is suitable for conversion to a pointer
to double; then the use of the function is portable.

The pointer representation on the PDP-11 corresponds to a 16-bit integer and measures bytes. The chars
have no alignment requirements; everything else must have an even address.

Page 105

6/82 ISSUE 1 PROGRAMMING GUIDE

On the VAX-11, pointers are 32 bits long and measure bytes. Elementary objects are aligned on a boundary
equal to their length, except that double quantities need be aligned only on even 4-byte boundaries. Aggregates
are aligned on the strictest boundary required by any of their constituents.

On the Honeywell 6000, a pointer corresponds to a 36-bit integer; the word part is in the left 18 bits, and
the two bits that select the character in a word lie just to their right. Thus char pointers measure units of 2'¢
bytes; everything else is measured in units of 2'® machine words. The double quantities and aggregates contain-
ing them must lie on an even word address (0 mod 2.

The IBM 370 and the Interdata 8/32 are similar. On each, pointers are 32-bit quantities that measure bytes;
elementary objects are aligned on a boundary equal to their length, so pointers to short must be 0 mod 2, to
int and float 0 mod 4, and to double 0 mod 8. Aggregates are aligned on the strictest boundary required by
any of their constituents.

The 3B20 and 3B5 Processors characteristics are the same. On each, pointers are 24-bit quantities. Most ob-
jects are aligned on 4-byte boundaries. Shorts are aligned in all cases on 2-byte boundries. Arrays of characters,
all structures, inits, longs, floats, and doubles are aligned on 4-byte boundries; but structure members may
be packed tighter. .

CONSTANT EXPRESSIONS

In several places C requires expressions which evaluate to a constant: after case, as array bounds, and in
initializers. In the first two cases, the expression can involve only integer constants, character constants, enu-
meration constants, and sizeof expressions, possibly connected by the binary operators

+ = * / % & | ~ << >> == Il ¢ > <= >=

or by the unary operators

-

or by the ternary operator

™
Parentheses can be used for grouping but not for function calls.

More latitude is permitted for initializers; besides corstant expressions as discussed above, one can also
apply the unary & operator to external or static objects and to external or static arrays subscripted with a con-
stant expression. The unary & can also be applied implicitly by appearance of unsubscripted arrays and func-
tions. The basic rule is that initializers must evaluate either to a constant or to the address of a previously
declared external or static object plus or minus a constant.

Less latitude is allowed for constant expressions after #if; sizeof expressions and enumeration constants
are not permitted.

PORTABILITY CONSIDERATIONS

Certain parts of C are inherently machine dependent. The following list of potential trouble spots is not
meant to be all-inclusive but to point out the main ones.

Purely hardware issues like word size and the properties of floating point arithmetic and integer division
have proven in practice to be not much of a problem. Other facets of the hardware are reflected in differing

Page 106

6/82 ISSUE 1 PROGRAMMING GUIDE

implementations. Some of these, particularly sign extension (converting a negative character into a negative
integer) and the order in which bytes are placed in a word, are 2 nuisance that must be carefully watched. Most
of the others are only minor problems.

The number of register variables that can actually be placed in registers varies from machine to machine
as does the set of valid types. Nonetheless, the compilers all do things properly for their own machine; excess
or invalid register declarations are ignored.

Some difficulties arise only when dubious coding practices are used. It is exceedingly unwise to write pro-
grams that depend on any of these properties.

The order of evaluation of function arguments is not specified by the language. It is right to left on the
PDP-11 and VAX-11; left to right on the others. The order in which side effects take place is also unspecified.

Since character constants are really objects of type int, multicharacter character constants may be permit-
ted. The specific implementation is very machine dependent because the order in which characters are assigned
to a word varies from one machine to another.

Fields are assigned to words and characters to integers right to left on the PDP-11 and VAX-11 and left
to nght on other machines. These differences are invisible to isolated programs which do not indulge in type
running (e.g., by converting an int pointer to a char pointer and inspecting the pointed-to storage) but must
be accounted for when conforming to externally-imposed storage layouts.

The language accepted by the various compilers differs in minor details. Most notably, the current PDP-11
compiler will not initialize structures containing bit fields and does not accept a few assignment operators in
certain contexts where the value of the assignment is used.

ANACHRONISMS

Because C is an evolving language, certain obsolete constructions may be found in older programs. Although
some versions of the compiler support such anachronisms, they have by and large disappeared leaving only a
portability problem behind.

Earlier versions of C used the form =opinstead of op={for assignment operators. This leads to ambiguities,
typified by

x=—1
which assigns —1 to x, but previously decremented x.

The syntax of initializers has changed. Previously, the equals sxgn that introduces an initializer was not
present, so 1nstead of

int x=1;

one used
int x 1;

The change was made because the initialization
int . f(1)

resembles a function declaration closely enough to confuse the compilers.

Page 107

PROGRAMMING GUIDE ISSUE 1 6/82

A structure or union member reference is a chain of member references (qualifications) that are prefixed
by either a pointer to a structure or union or a structure or union proper. Because each qualification implies
the addition of an offset within an address computation, older compilers (which failed to check for membership
in the appropriate structure or union) allowed omission of those qualifications with an offset of zero. Complete
qualification is now required.

Previous versions of the compiler were lax in detecting mixed assignments involving pointers and arithme-
tic quantities. These are now remarked upon.

SYNTAX SUMMARY

This summary of C syntax is intended more for aiding comprehension than as an exact statement of the
language.

A. Expressions
The basic expressions are:

expression:

primary

* expression

& Ivalue

— expression

! expression

* expression

++ Ivalue

—— lvalue

lvalue ++

Ivalue ——

sizeof expression

(type-name) expression

expression binop expression

expression ? expression : expression

lvalue asgnop expression

expression , expression
primary:

identifier

constant

string

(expression)

primary (expression-list,,)

primary | expression)

primary . identifier

primary —> identifier
lvalue:

identifier

primary [expression]

lvalue . identifier

primary —> identifier

* expression

(lvalue)

The primary-expression operators

O . -

Page 108

6/82 ISSUE 1 PROGRAMMING GUIDE
have highest priority and group left to right. The unary operators

* & - ! ° ++ -—-— sizeof (type-name)
have priority below the primary operators but higher than any binary operator and group right to left. Binary

operators group left to right; they have priority decreasing as indicated below. The conditional operator groups
right to left.

binop:
. / %
+ -—
>> <<
< > <= >=
- !’
&
|
&&

H
2

Assignment operators all have the same priority and all group right to left.

asgnop:
= += — L] /= % = > >m <<= &= = l=

The comma operator has the lowest priority and groups left to right.
B. Declarations

declaration:
decl-specifiers init-declarator-list,, ;

decl-specifiers:
type-specifier decl-specifiers,y,
sc-specifier decl-specifiers,,,

sc-specifier:
auto
static
extern
register
typedef

type-specifier:
char
short
int
long
unsigned
float
double
void
struct-or-union-specifier

typedef-name
enum-specifier

Page 109

PROGRAMMING GUIDE ISSUE 1

enum-specifier:
enum { enum-list }
enum identifier { enum-list }
enum identifier

enum-list:
enumerator
enum-list , enumerator

enumerator:
identifier
identifier = constant-expression

init-declarator-list:
init-declarator
init-declarator, init-declarator-list

init-declarator:
declarator initializer,,

declarator:
identifier
(declarator)
* declarator
declarator ()
declarator [constant-expressionert)

struct-or-union-specifier:
struct { struct-decl-list }
struct identifier { struct-decl-list }
struct identifier
union { struct-decl-list }
union identifier { struct-decl-list }
union identifier

struct-decl-list:
struct-declaration
struct-declaration struct-decl-list

struct-declaration:
type-specifier struct-declarator-list ;

struct-declarator-list:
struct-declarator
struct-declarator , struct-declarator-list

struct-declarator:
declarator
declarator : constant-expression
: constant-expression

Page 110

6/82

ISSUE 1

initializer:

= expression
= [initializer-list }
= { initializer-list , }

initializer-list:
expression
initializer-list , initializer-list
{ initializer-list }

type-name:
type-specifier abstract-declarator

abstract-declarator:
empty
(abstract-declarator)
* abstract-declarator
abstract-declarator ()
abstract-declarator | constant-expression,,)

typedef-name:
identifier

C. Statements

compound-statement:
{ declaration-list,, statement-list,, }

declaration-list:
declaration
declaration declaration-list

statement-list:
statement
statement statement-list

statement:
compound-statement
expression ;
if (expression) statement
if (expression) statement else statement
while (expression) statement
do statement while (expression);

for (expression-1,, ; expression-2,, ; expression-3,,) statement

switch (expression) statement

case constant-expression : statement
default : statement

break ;

continue ;

return ;

return expression ;

goto identifier ;

identifier : statement

PROGRAMMING GUIDE

Page 111

PROGRAMMING GUIDE ISSUE 1 6/82

D. External Definitions

program:
external-definition
external-definition program

external-definition:
function-definition
data-definition

function-definition:
type-specifier,, function-declarator function-body

function-declarator:
declarator (parameter-list,,)

parameter-list:
identifier
identifier , parameter-list

function-body:
declaration-list compound-statement

data-definition:
extern,, type-specifier,, init-declarator-list,, ;
static,, type-specifier,, init-declarator-list,, ;

E. Preprocessor

Page 112

#define identifier token-string
#define identifier (identifier, ., Jdentlf‘ er) token-string
#undef identifier

#include “filename'
#include <filename>

#if constant-expression

#ifdef identifier

#ifndef identifier

#else

#endif

#line constant "filenamé'

6/82 ISSUE 1 PROGRAMMING GUIDE

LIBRARIES
A. General

This part describes the libraries that are supported on the UNIX operating system. A library is a collectior.
of related functions and/or declarations that simplify programming effort. All of the functions described arc
also described in Part 3 of the UNIX System User's Manual. Most of the declarations described are in Part :
of the UNIX System User’s Manual. The three main libraries on the UNIX system are:

C library This is the basic library for C language programs. The C library is composed of functions
and declarations used for file access, string testing and manipulation, character testing
and manipulation, memory allocation, and other functions.

Object file This library provides functions for the access and manipulation of object files.

Math library This library provides exponential, bessel functions, logarithmic, hyperbolic, and trigono-
metric functiomns.

Some libraries consist of two portions—functions and declarations. In some cases, the user must request
that the functions (and/or declarations) of a specific library be included in a program being complied. In other
cases, the functions (and/or declarations) are included automatically.

including Functions

When a program is being complied, the complier will automatically search the C language library to locate
and include functions that are used in the program. This is the case only for the C library and no other library.
In order for the complier to locate and include functions from other libraries, the user must specifiy these li-
braries on the command line for the complier. For example, when using functions of the math library, the user
must request that the math library be searched by including the argument —lm on the command line, such as:

cc file.c ~lm
This method should be used for all functions that are not part of the C language library.
Including Declarations

Some functions require a set of declarations in order to operate properly. The declarations of all libraries
must be included by request of the user. A set of declarations is stored in a file under the /usr/includedirectory.
These files are referred to as header files. In order to include a certain header file, the user must specifiy this
request within the C language program. The request is in the form: '

finclude <file.h>

where fileis the name of the file. Since this request is handled by the preprocessor, header files should appear
at the beginning of the (first) file being complied.

The remainder of this part decribes the functions and header files of the various libraries. The description
of each library begins with the actions required by the user to include the functions and/or header files in a
program being complied (if any). Following the description of the actions required, is information in three col-
umn format of the form:

function reference(N) . Brief description.

The functions are grouped by type while the reference refers to section ‘N’ in the UNIX System User's Manual
Following this, are descriptions of the header files associated with these functions (if any).

Page 11:

PROGRAMMING GUIDE ISSUE 1 6/82

B. The C Library

The C library consists of several types of functions. All the functions of the C library are loaded automati-
cally by the complier. Various declarations must be included by the user as required. The functions of the C li-
brary are divided into the following types:

input/output control

string manipulation

o character manipulation

e time functions

o miscellaneous functions.
Input/Output Control

These functions of the C library are included as needed during the compiling of a C language program auto-
matically. No command line request is needed.

The header file required by the input/output functxons should be included in the program being compiled.
This is accomplished by including the line:

finclude <stdio.h>
near the beginning of the (first) file being compiled.
The input/output functions are grouped into the following categories:
o file access)
o file status
e input
e output

e miscellaneous.

File Access Functions

FUNCTION REFERENCE BRIEF DESCRIPTION

fclose fclose(3S) Close an open stream.

fdopen fopen(3S) Associate stream with an open(2) ed file.

fileno - ferror(3S) Integer associated with an open stream.

fopen fopen(3S) Open a stream with specified permissions. A “stream” is

defined to be what fopen returns.

freopen fopen(3S) Substitute named file in place of open stream.

Page 114

6/82

fseek
pclose

popen

rewind

setbuf

fseek(3S)
popen(3S)

popen(3S)

fseek(3S)
setbuf(3S)

File Status Functions

FUNCTION
clearerr

feof

ferror

ftell

Input Functions
FUNCTION
fgetc

fgets

fread

fscanf

getc

getchar

gets

getw

scanf

sscanf

ungetc

Output Functions
FUNCTION

fflush

REFERENCE
ferror(3S)
ferror(3S)
ferror(3S)
fseek(3S)

REFERENCE
getc(3S)
gets(3S)
fread(3S)
scanf(3S)
getc(3S)
gete(3S)
gets(3S)
gete(3S)
scanf(3S)
scanf(3S)

ungetc(3S)

REFERENCE
fclose(3S)

ISSUE 1

Reposition stream pointer.
Close a stream opened by popen.

Create pipe as a stream between calling process
mand.

Reposition stream pointer at beginning of file.

Assign buffering to stream.

BRIEF DESCRIPTION
Reset error condition on stream.
Test for “end of file” on stream.
Test for error condition on stream.

Return current stream pointer.

BRIEF DESCRIPTION
True function for gete (39). .
Read string from stream.
General buffered read from stream.
Read using format from stream.
Return next character from stream.
Return next character from stdin.
Read string from stdin.
Read word from stream.
Read using format from stdin.
Read using formgt from string.

Put back one character on stream.

BRIEF DESCRIPTION

Write all currently buffered characters from stream.

PROGRAMMING GUIDE

and com-

Page 115

PROGRAMMING GUIDE ISSUE 1 6/82

fprintf printf(3S) Print using format to stream.
fputc putc(3S) True function for pute (3S).
fputs puts(3S) Write string to stream.

fwrite fread(3S) General buffered write to stream.
printf printf(3S) Print using format to stdout.
pute putc(3S) Write next character to stream.
putchar putc(3S) " Write next character to stdout.
puts puts(3S) Write string to stdout.

putw putc(3S) Write word to stream.

spx"intf printf(3S) Write using format to string.

Miscellaneous Functions

FUNCTION REFERENCE BRIEF DESCRIPTION

ctermid ctermid(3S) Return file name for controlling terminal.

cuserid cuserid(3S) Return login name for owner of current process.
system system(3S) Execute system command.

tempnam tmpnam(3S) Create temporary file name using directory and prefix.
tmpnam tmpnam(3S) Create temporary file name.

tmpfile tmpfile(3S) Create temporary file.

Input/Output Header File (stdio.h)

The following listing is the contents of stdio.h for the 3B20S Processor. Note that along with parameters
used by the stdio functions several macros are defined. The following files are open automatically by the system:

stdin standard input file
stdout standard output file
stderr standard error file

Also, note that the functions fopen, fdopen, and freopen are declared as returning a structure of type
FILE: fgets and gets are declared as returning character pointers; and ftell is declared as returning a long
integer.

/* this example is included as */
/* 3 typical illustration of the */
’* header file stdio.h */

iifndef _NFILE

idefine _NFILE 20

dage 116

6/82 ISSUE 1 PROGRAMMING GUIDE

#define BUFSIZ 512
typedef struct {
unsigned char *_ptr;

int _cnt;

unsigned char *_base;
char _flag;

char _file;

} FILE;

#define _IOREAD 01
fdefine _IOWRT 02
#define _IONBF 04
fdefine _IOMYBUF 010
#define _IOEOF 020
fdefine _IOERR 040
#define _IOUNK 0100 /* indicates buffering status unknown */
fdefine _IORW 0200
fifndef NULL

fdefine NULL 0

fendif

#ifndef EOF

#define EOF (-1)

#endif

#define stdin (&_iob[0])
#define stdout (&_iob[1))
#define stderr (&_iob[2))

fifndef lint

fdefine gete(p) ((——(p)—>_cnt) >= 0)?((int) *((p)—>_ptr)++): _filbuf(p))
fendif

#define getchar() getc(stdin)

fifndef lint

#define putce(x,p) ((—=—((p)—>_cnt) >= 0)?((int)) (*((p)—>_ptr)++ = (unsigned char)(x))): \
_flsbuf((unsigned char)(x),p))
fendif
#define putchar(x) putc(x,stdout)
#define feof(p) (((p)—>_flag & _IOEOF) != 0)
#define ferror(p) (((p)—>_flag & _IOERR) != 0)
fdefine fileno(p) p—>file
extern FILE _iob[_NFILE];
extern FILE *fopen();
extern FILE *fdopen();
extern FILE *freopen();
extern long ftell();
extern char *fgets();
extern char *gets();
fdefine L_ctermid 9
fdefine L_cuserid 9
fdefine P_tmpdir “/usr/tmp/"
. #define L_tmpnam 10+sizeof(P_tmpdir)
fendif

String Manipulation Functions

These functions are used to locate characters within a string, copy, concaienate, and compare strings. Th;se
functions are located and loaded during the compling of a C language program automatically. No command line

Page 117

PROGRAMMING GUIDE ISSUE 1 6/82

request is needed since these functions are part of the C library. There are no declarations associated with these
functions.

FUNCTION REFERENCE BRIEF DESCRIPTION

strcat string(3C) Concatenate two strings.

strchr string(3C) Search string for character.

stremp string(3C) Compares two strings.

strepy string(3C) Copy string over string.

strespn string(3C) Length of initial string not containing set of characters.
strlen string(3C) Length of string.

stroncat string(3C) Concatenate two strings with fixed length.

strncmp string(3C) Compares two strings with fixed length.

strocpy string(3C) Copy string over string with fixed length.

strpbrk string(3C) Search string for any set of characters.

strrchr string(3C) Search string backwards for character.

strspn string(3C) Length of initial string containing set of characters.
strtok string(3C) Search string for token separated by any of a set of characters.

Character Munipulation-

The following functions and declarations are used for testing and translating ASCII characters. These func-

tions are located and loaded automatically during the compiling of a C language program. No command line
request is needed since these functions are part of the C library.

The declarations associated with these functions should be included in the program being compiled. This
is accomplished by including the line:

finclude <ctype.h>
near the beginning of the (first) file being compiled.
Character Testing Functions

These functions can be used to identify characters as uppercase or lowercase letters, digits, punctuation,
etc.

FUNCTION REFERENCE BRIEF DESCRIPTION
isalnum ctype(3C) Is character alphanumeric?
isalpha ctype(3C) Is character alphabetic?

Page 118

6/82 ISSUE 1 PROGRAMMING GUIDE

isascii ctype(3C) Is integer ASCII character?

isentrl ctype(3C) Is character a control character?

isdigit ctype(3C) Is character a digit?

isgraph ctype(3C) Is character a printing character?

islower ctype(3C) Is character a lowercase letter?

isprint ctype(3C) Is character a printing character including space?
ispunct ctype(3C) Is character a punctuation character?

isspace ctype(30) Is character a white space character?

isupper ctype(3C) Is character an uppercase letter?

isxdigit ctype(3C) Is character a hex digit?

Character Translation Functions

These functions provide translation of uppercase to lowercase, lowercase to uppercase, and integer to ASCII.

FUNCTION REFERENCE BRIEF DESCRIPTION
toascii conv(3C) " Convert integer to ASCII character.
tolower conv(3C) Convert character to lowercase.
toupper conv(3C) Convert character to uppercase.

Character Header File (ctype.h)

The following listing is the ctype.h file which is located in the /usr/include directory. This file is included
in a program with the line:

finclude <ctype.h>
This file provides a few data declarations and defines the macros.
/* this example is included as */

/* a typical illustration of the */
/* header file ctype.h */

fdefine _U 01
fdefine _L 02
fdefine _N 04
fdefine _S 010
fdefine _P 020
#define _C 040
fdefine _B 0100
fdefine _X 0200

extern char _ctype(];

Page 119

PROGRAMMING GUIDE ISSUE 1 6/82

#define isalpha(c) ({_ctype+1)[c]&(_U_L))
sdefine isupper(c) ((_ctype+1)[c)&_U)

ddefine islower(c) ((_ctype+1){c}&_L)

#define isdigit(c) ((_ctype+1)[c]&_N)

fdefine isxdigit(c) ((_ctype+1)[c])&_X)

fdefine isspace(c) ((_ctype+1)[c]&_S)

#define ispunct(c) ((_ctype+1)[c]&_P)

édefine isalnum(c) ((_ctype+1)[c]&(_ULLI_N))
fdefine isprint(c) ((_etype+1){c)&(_PI_UI_LI_Ni_B))
fdefine isgraph(c) ((_etype+1)[c)&(_PI_UI_LI_N))
fdefine isentrl(c) ((_etype+1)[c]&_C)

#define isascii(c) ((unsigned char)(c)<=0177)
#define _toupper(c) ((c)-'a'+'A’)

ddefine _tolower(c) ((c)—’A'+'a’)

#define toascii(c) ((c)&0177)

Time Functions

These functions are used for accessing and reformatting the systems idea of the current date and time.
These functions are located and loaded automatically during the compling of a C language program. No com-
mand line request is needed since these functions are part of the C library.

The header file associated with these functions should be included in the program being compiled. This is
accomplished by including the line:

finclude <time.h>
near the beginning of the (first) file being compiled.

These functions (except tzset) convert a time such as returned by time(2).

FUNCTION REFERENCE BRIEF DESCRIPTION

asctime ctime(3C) Return string representation of date and time.

ctime ctime(3C) Return string representation of date and time, given integer
form.

gmtime ctime(3C) Return Greenwich Mean Time.

localtime ctime(3C) Return local time.

tzset ctime(3C) Set time zone field from environment variable.

Time Header File (time.h)

The following listing is the time.h file which is located in the /usr/include directory. The tm structure is
the type of structure returned by gmtime and localtime. Note that the gmtime and localtime functions are
declared as returning pointers to structures of type tmand ctime and asctime are declared as returning char-
acter pointers.

The long timezone variable contains the difference (in seconds) between GMT and local standard time. For
EST, this difference is 18,000 seconds. The daylight variable is nonzero if Daylight Savings Time conversion

Page 120

6/82 ISSUE 1 PROGRAMMING GUIDE

should be applied. The tzname variable defines the time zone names. For EST, the declaration would be char
*tzname [2] =" EST',” EDT";

If the environment variable TZis present, asctime uses the contents of the variable to override the default
time zone. The value of TZ must be a 3-letter time zone name, followed by a number representing the difference
between GMT and local time (in hours) Following the time difference is an optional 3-letter name for a daylight
time zone. For example, for users in EST, the value of TZ would be ESTSEDT. By setting the TZ variable, the
values of timezone, daylight, and tzname are changed accordingly.

/* this example is included as */

/* a typical illustration of the */

/* header file time.h */

struct tm f§

int tm_sec;

int tm_min;

int tm_hour; /* hour of day (0 to 24) */

int tm_mday; /* day of month (1 to 31) */
int tm_mon; /* month of year (0 to 11) */
int tm_year; /* last two digits of current year */
int tm_wday; /* day of week (Sunday = Q) */
int tm_yday; /* day of year {0 to 365) */

int tm_isdst; /* nonzero if DST in effect */
k

extern struct tm *gmtime(), *localtime();
extern char *ctime(), *asctime();

extern void tzset();

extern long timezone;

extern int daylight;

extern char *tzname(};

Miscellaneous Functions

These functions support a wide variety of operations. Some of these are numerical conversion, password file
and group file access, memory allocation, random number generation, and table management. These functions
are located and included in a program being complied automatically. No command line request is needed since
these functions are part of the C library.

Some of these functions require declarations to be included. These are described following the descriptions
of the functions.

Numerical Conversion

The following functions perform numerical conversion.

FUNCTION REFERENCE BRIEF DESCRIPTION

a641 a641(3C) Convert string to base 64 ASCII.

atof atof(3C) Convert string to floating.

atoi atof(3C) Convert string to integer.

atol atof(3C) Convert string to long.

frexp frexp(3C) Split floating into mantissa and exponent.

Page 121

PROGRAMMING GUIDE ISSUE 1 6/82

13;01 13t01(3C) Convert 3-byte integer to long.

1tol3 ll3tol(3C) Convert long to 3-byte integer.

ldexp frexp(3C) Combine m;tntissa and exponent.

164a a641(3C) Convert base 64 ASCII to string.

modf frexp(3C) Split mantissa into integer and fraction.

DES Algorithm Access

The following functions allow access to the DES algorithm used on the UNIX operating system. The DES
algorithm is implemented with variations to frustrate use of hardware implementations of the DES for key
search.

FUNCTION REFERENCE BRIEF DESCRIPTION

crypt crypt(3C) Encode string using salt.

encrypt crypt(3C) Encode/decode string of 0's and 1's.
setkey crypt(3C) Initialize for subsequent use of encrypt.

Group File Access

The following functions are used to obtain entries from the group file. Declarations for these functions must
be included in the program being compiled with the line:

finclude <grp.h>

FUNCTION REFERENCE BRIEF DESCRIPTION
endgrent " getgrent(3C) Close group file being processed.
getgrent getgrent(3C) Get next group file entry.

getgrgid getgrent(3C) Return next group with matching gid.
getgrnam getgrent(3C) Return next group with matching name.
setgrent getgrent(3C) Rewind group file being processed.

Password File Access

These functions are used to search and access information stored in the password file (/ete/passwd). Some
functions require declarations that can be included in the program being compiled by adding the line:

finclude <pwd.h>

FUNCTION REFEREN CE BRIEF DESCRIPTION
endpwent getpwent(3C) Close password file being processed.
getpw getpw(3C) Search password file for uid.

Page 122

6/82 ISSUE 1 PROGRAMMING GUIDE

getpwent getpwent(3C) Get next password file entry.
getpwnam getpwent(3C) Return next entry with matching name.
getpwuid getpwent(3C) Return next entry with matching uid.
putpwent butpwent(3C) Write entry on stream.

setpwent getpwent(3C) Rewind password file being accessed.

Parameter Access

The following functions provide access to several different types of paramenters. None require any declara-
tions.

FUNCTION REFERENCE BRIEF DESCRIPTION

getopt getopt(3C) Get next option from option list.

getcwd getcwd(3C) Return string representation of current working directory.
getenv getenv(3C) Return string value associated with environment variable.
getpass getpass(3C) Read string from terminal without echoing.

Hash Table Management

The following functions are used to manage hash search tables.

FUNCTION REFERENCE BRIEF DESCRIPTION
hcreate hsearch(3C) Create hash table.

hdestroy hsearch(3C) Destroy hash table.

hsearch hsearch(3C) Search hash table for entry.

Binary Tree Management

The following functions are used to manage a binary tree.

FUNCTION REFERENCE BRIEF DESCRIPTION
tdelete tsearch(3C) Deletes nodes from binary tree.
tsearch tsearch(3C) Search binary tree.

twalk tsearch(3C) Walk binary tree.

Table Management

The following functions are used to manage a table. The “table” is basically a 2-dimensional character array.
The first subscript defines the maximum number of entries in the table. The second subscript defines the width

Page 123

PROGRAMMING GUIDE ISSUE 6/82

(or length) of a single entry. Since none of these functions allocate storage, sufficient memory must be allocated
before using these functions.

FUNCTION REFERENCE BRIEF DESCRIPTION
bsearch bsearch(3C) Search table using binary search.
Isearch lsearch(3C) Search table using linear search.

gsort gsort(3C) Sort table using quicker-sort algorithm.

Memory AHocation

The following functions provide a means by which memory can be dynamically allocated or freed.

FUNCTION REFERENCE BRIEF DESCRIPTION
calloe malloc(3C) Allocate zeroed storage.

free malloc(3C) Free previously allocated storage.
malloc malloc(3C) Allocate storage.

realloc malloc(3C) Change size of allocated storage.

Pseudorandom Number Generation

The following functions are used to generate pseudorandom numbers. The functions that end with 48 are
a family of interfaces to a pseudorandom number generator based upon the linear congruential algorithm and
48-bit integer arithmetic. The rand and srand functions provide an interface to a multiplicative congruential
random number generator with period of 232.

F:UN CTION REFERENCE BRIEF DESCRIPTION

drand48 drand48(3C) Random double over the interval [0 to 1).

lcong48 drand48(3C) Set parameters for drand48, lrand48,and mrand48.
lrand48 drand48(3C) Random long over the interval [0 to 2%).

mrand48 drand48(3C) Random long over the interval [—2% to 2%).

rand rand(3C) Random integer over the _interval [0 to 214).

seed48 drand48(3C) Seed the generator for drand48, lIrand48, and mrand48.
srand rand(3C) Seed the generator for rand.

srand48 drand48(3C) Seed the generator for drand48, lrand48, and mrand48

using a long.

Page 124

6/82 ISSUE 1 PROGRAMMING GUIDE

Signal Handling Functions

The functions gsignal and ssignal implement a software facility similar to signal(2) in the UNIX System
User's Manual. This facility enables users to indicate the disposition of error conditions and allows users to han-
dle signals for their own purposes. The declarations associated with these functions can be included in the pro-

gram being complied by the line
finclude <signal.h>

These declarations define ASCII names for the 15 software signals.

FUNCTION REFERENCE BRIEF DESCRIPTION

gsinal ssignal(3C) Send a software signal.

ssignal s.signal(3C) Arrange for handling of software signals.
Miscellaneous .

The following functions do not fall into any previously described category.

FUNCTION REFERENCE BRIEF DESCRIPTION

abort abort(3C) Cause an IOT signal to be sent to the process.

abs abs(3C) Return the absolute integer value.

ecvt ecvt(3C) Convert double to string.

fevt ecvt(3C) - Convert double to string using Fortran format.

gevt ecvt(3C) Convert double to string using Fortran F or E format.

isatty ttyname(3C) Teft whether integer file descriptor is associated with a termi-
nal.

mktemp mktemp(3C) Create file using template.

monitor monitor(3C) (Eiause process to record a histogram of program counter loca-

on.

swab swab(3C) Swap and copy bytes.

ttyname ttyname(3C) Return pathname of terminal associated with integer file
descriptor.

Group File Header File (grp.h)

The grp.h file provides the structure used by several group file functions. This file can be included in a pro-
gram by adding the line:

finclude <grp.h>

Page 125

PROGRAMMING GUIDE ISSUE 1 6/82

/* this example is included as */

/* a typical illustration of the */

/* header file grp.h */

struct group {

char *gr_name; /* group name */

char *gr_passwd; /* group password */

int gr_gid; /* groupid */

char **gr_mem; /* list of pointers to group members */

b
Password File Header File (pwd.h)

The following listing describes the contents of pwd.h which is used by several of the password file functions.
This file can be included in the program with the line:

finclude <pwd.h>
The pw_comment field is actually a structure of type comment.

/* this example is included as */

/* a typical illustration of the */

/* header file pwd.h */

struct passwd {

char *pw_name; /* login name */

char *pw_passwd; /* password */

int pw_uid; /* user id */

int pw_gid; /* group id */

char *pw_age; /* age of password */

char *pw_comment; /* comments */

char *pw_gecos; /* optional GCOS user id */
char *pw_dir; /* login directory */

char *pw_shell; /*shellused by this login */
b

struct comment {

char *c_dept; /* user’s department */

char *c_name; /* user’s name */

char *c_acct; /* user's account number */
char *c_bin; /* user's mail bin */

)
Sigpnal Handling Header File (signal.h)

The following listing describes the signal.h file which is under the /usr/include directory. This file can be
included by adding the line:

finclude <signal.h>

The signal h file contains the declarations used by the functions that handle signals. Most of this file defines
names to each numerical signal.

/* this example is‘included as */
/* a typical illustration of the */

Page 126

6/82 ISSUE 1 PROGRAMMING GUIDE

/* header file signal.h */

#define SIGHUP 1 /* hangup */

#define SIGINT 2 /* interrupt (rubout) */

fdefine SIGQUIT 3 /* quit (ASCII FS) */

fdefine SIGILL 4 /* illegal instruction (not reset when caught)*/
#define SIGTRAP 5 /* trace trap (not reset when caught) */
#define SIGIOT 6 /* 10T instruction */

fdefine SIGEMT 7 /* EMT instruction */

#define SIGFPE 8 /* floating point exception */

fdefine SIGKILL 9 /* kill (cannot be caught or ignored) */
#define SIGBUS 10 /* bus error */

#define SIGSEGV 11 /* segmentation violation */

fdefine SIGSYS 12 /* bad argument to system call */

#define SIGPIPE 13 /* write on a pipe with no one to read it */
#define SIGALRM 14 /* alarm clock */

fdefine SIGTERM 15 /* software termination signal from kill */
#define SIGUSR1 16 /* user defined signal 1 */

fdefine SIGUSR2 17 /* user defined signal 2 */

#define SIGCLD 18 /* death of a child */

fdefine SIGPWR 19 /* power-fail restart */

#define NSIG 20

#define SIG_DFL (int (*)())0

Fif lint .

#define SIG_IGN (int (*)())0

felse

#define SIG_IGN (int (*)()1

fendif

extern (*signal())();

C. The Object File Library

The object file library provides functions to access object files. The functions allow access closing to single
object files or object files that are part of an archive. Some functions locate portions of an object file such as
the symbol table, the file header, sections, and lines within functions. Other functions read these types of entries
into memory.

This library consists of several portions. The functions reside in /usr/lib/libld.a and are located and loaded
during the compiling of a C language program by a command line request. The form of this request is:

cc file —11d
which causes the link editor to search the object file library.
In addition, various header files must be included. This is accomplished by including the line:
finclude <sgs/file>

where file is the name of the appropriate header file. The header files required for each function are defined
at the beginning of each function description. Following the descriptions of the functions is a description of the
header files. The HEADER macro returns a pointer to the HEADER field of the LDFILE structure pointed
to by Idptr. The HEADER field is the file header structure of the object file. The IOPTR macro returns the
contents of the JOPTR field of the LDFILE structure pointed to by ldptr. The IOPTR field contains a file pointer
returned by fopen and used by the input/output functions of the C library. The TYPE macro returns the TYPE

Page 127

PROGRAMMING GUIDE ISSUE 1 6/82

field of the LDFILE structure pointed to by Idptr. The TYPE field contains the file magic number which is used
to distinguish between archive members and simple object files. '

FUNCTION REFERENCE BRIEF DESCRIPTION

ldaclose ldclose(3X) Close object file being processed.

ldahread ldahread(3X) Read archive header.

ldaopen ldopen(3X) Open object file for reading.

ldclose ldclose(3X) Close object file being processed.

ldfhread ldfhread(3X) Read file header of object file being processed.

1dlinit ldlread(3X) Prepare object file for reading line number entries via ldlitem.

ldlitem ldiread(3X) Read line number entry from object file after 1dlinit.

ldlread ldlread(3X) Read line number entry from object file.

ldlseek ldlseek(3X) Seeks to the line number entries of the object file being pro-
cessed.

ldnlseek ldlseek(3X) Seeks to the line number entries of the object file being pro-
cessed given name.

ldnrseek ldrseek(3X) Seeks to the relocation entries of the object file being processed
given name.

l\dnshread ldshread(3X) Read section header of the named section of the object file
being processed.

ldnsseek ldsseek(3X) Seeks to the section of the object file being processed given

T name. :

ldohseek ldohseelk(3X) Seeks to the optional file header of the object file being pro-
cessed.

ldopen Idopen(3X) Open object file for reading.

ldrseek ldrseek(3X) Seeks to the relocation entries of the object file being pro-
cessed. '

ldshread ldshread(3X) Read section header of an object file being processed.

ldsseek 1dsseek(3X) Seeks to the section of the object file being processed.

ldtbindex 1dtbindex(3X) Returns the long index of the symbol table entry at the current
position of the object file being processed.

ldtbread ldtbread(3X) Reads the symbol table entry specified by symindex of the ob-

. ject file being processed.
ldtbseek ldtbseek(3X) Seeks to the symbol table of the object file being processed.

Page 128

6/82 ISSUE 1 PROGRAMMING GUIDE

D. The Math Library

The math library consists of functions and a header file. The functions are located and loaded during the
compiling of a C language program by a command line request. The form of this request is:

cc file =lm

which causes the link editor to search the math library. In addition to the request to loa:d the functions, the
header file of the math library should be included in the program being compiled. This is accomplished by in-
cluding the line:
finclude <math.h>
near the beginning of the (first) file being compiled.
The functions are groupéd into the following categories:

e trigonometric functions

e bessel functions

e hyperbolic functions

¢ miscellaneous functions.

Trigonometric Functions

These functions are used to compute angles (in decimal radian measure), sines, cosines, and tangents. All
of these values are expressed in double precision and should always be declared as such.

FUNCTION REFERENCE BRIEF DESCRIPTION

acos ,_ trig(3M) Return arc cosine.

asin trig(3M) Return are sine.

atan trig(3M) Return arc tangent.

atan2 trig(3M) Return arc tangent of a ratio.

cos trig(3M) Return cosine.

hypot hypot(3M) Return the square root of the sum of the squares of two num-
bers.

sin trig(3M). Return sine.

tan trig(3M) Return tangent.

Bessel Functions

These functions calculate bessel functions of the first and second kinds of several orders for real values. The
bessel functions are jO, j1, jn, y0, y1, and yn. The functions are located in section bessel(3M).

Page 129

PROGRAMMING GUIDE ISSUE 1 6/82

Hyperbolic Functions

These functions are used to compute the hyperbolic sine, cosine, and tangent for real values.

FUNCTION REFERENCE BRIEF DESCRIPTION
cosh sinh(3M) Return hyperbolic cosine.

sinh sinh(3M) Return hyperbolic sine.

tanh sinh(3M) Return hyperbolic tangent.

Miscellaneous Functions

These functions cover a wide variety of operations, such as natural logarithm, exponential, and absolute val-
ue. In addition, several are provided to truncate the decimal portion of double precision numbers.

FUNCTION REFERENCE BRIEF DESCRIPTION

ceil floor(3M) Returns the smallest integer not less than a given value.

exp exp(3M) Returns the exponential function of a given value.

fabs floor(3M) Returns the absolute value of a given value.

floor floor(3M) Returns the largest integer not greater than a given value.

fmod floor(3M) Returns the remainder produced by the division of two given
values.

gamma gamma(3M) Returns the natural log of gamma as a function of the

absolute value of a given value.

log exp(3M) Returns the natural logarithm of a given value.

pow exp(3M) Returns the result of a given value raised to another given
value.

sqrt exp(3M) Returns the square root of a given value.

Math Header File (math.h)

The following listing is the math.h file which is located in the /usr/include directory. Note that all the math
functions are declared as returning double-precision values. Also note that HUGE is defined as

1.701411733192644270 x 10™

/* this example is included as */

/* a typical illustration of the */

/* math header file (math.h) */

extern double fabs(), floor(), ceil(), fmod(), ldexp();

extern double sqrt(), hypot(), atof();

extern double sin(), cos(), tan(), asin(), acos(), atan(), atan2();

Page 130

6/82 ISSUE 1 PROGRAMMING GUIDE

extern double exp(), log(), logl0(), pow();
extern double sinh(), cosh(), tanh();

extern double gamma();

extern double jO(), j1(), jn(), yO(), y1(), yn();
fdefine HUGE 1.701411733192644270e38

THE “cc’’ COMMAND
A. General
The C compiler cc(1) is used to compile C language programs or assembly language programs into machine

language. This document briefly describes the usage of the C compiler. Most of this information is in the UNIX
System User’s Manual.

B. Usage
The cc command is invoked as:
cc options files
where options control the compiling; files are the files to be compiled.
The following options are interpreted by cc. See 1d(1) for link editor options.

-c Suppresses the link edit phase of the compilation and forces an object file to be produced
even if only one program is compiled.

-Dname=def

—Dname Defines the name to the preprocessor, as if by #define. If no definition is given, the name
is defined as 1.

-E Runs only the macro preprocessor on the named C language programs and sends the result
to the standard output.

-g Arranges for the compiler to produce additional information needed for the use of sdb(1).

-1dir Changes the algorithm for searching for #include files whose names do not begin with
/ to look in dir before looking in the directories on the standard list. Thus, #include files
whose names are enclosed in " ™ will be searched for first in the directory of the file ar-
gument, then in directories named in the —I options, and last in directories on a standard
list. For #include files whose names are enclosed by <...>, the directory of the file argu-
ment is not searched.

-0 Invokes an object-code optimizer. The optimizer will move, merge, and delete code so sym-
bolic debugging with line numbers could be confusing when the optimizer is used.

-p Arranges for the compiler to produce code which counts the number of times each routine
is called. Also, if link editing takes place, replaces the standard startoff routine by one
which automatically calls monitor(3C) at the start and arranges to write out a mon.out
file at normal termination of execution of the object program. An execution profile can be
generated by use of prof(1).

-P Runs only the macro preprocessor on the named C language programs and leaves the result
on corresponding files suffixed .i.

Page 131

PROGRAMMING GUIDE ADD ISSUE 1 1/83

-S Compiles the named C language programs and leaves the assembler-language output on
corresponding files suffixed .s.

-Uname Removes any initial definition of name, where nameis a reserved symbol that is predefined
by the particular preprocessor. The current list of these possibly reserved symbols includes
the operating system [unix (this reserved symbol refers to the UNIX operating system),
gcos, os, tss, or u3?0], the hardware (ibm, interdata, pdpll, u3b, or VAX), and the UNIX
system variant (RES, RT, or mert).

Other options are taken to be either link editor options or C-compatible object programs.
Arguments that end with .c are taken to be C language source programs; they are compiled, and each object
program is left on the file whose name is that of the source with .o substituted for .c. The .o file is normally

deleted.)

In the same way, arguments whose names end with .s are taken to be assembly source programs and are
assembled producing a .o file.

These programs, together with the results of any compilations specified, are linked (in the order given) to
produce an executable program with the name a.out.

A C PROGRAM CHECKER—"'lint"’

A. General

The lint program examines C language source programs detecting a number of bugs and obscurities. It en-
forces the type rules of C language more strictly than the C compiler. It may also be used to enforce a number
of portability restrictions involved in moving programs between different machines and/or operating systems.
Another option detects a number of wasteful or error prone constructions which nevertheless are legal. The lint
program accepts multiple input files and library specifications and checks them for consistency.

Usage
The lint(1) command has the form:
lint [options] files ... library-descriptors ...

where options are optional flags to control lint checking and messages; files are the files to be checked which
end with .c; and library-descriptors are the names of libraries to be used in checking the program.

The options that are currently supported by the lint command are:

-a Suppress messages about assignments of long values to variables that are not long.

-b Suppress messages about break statements that cannot be reached. ‘

-c Suppress messages about casts that have questionable portability.

-h Do not apply heuristics (which attempt to detect bugs, improve style, and reduce waste).
-n Do not check for compatibility with either the standard or the portable lint library.

-p . Attempt to check portability to other dialects of C language (IBM and Honeywell). -

-u Suppress messages about function and external variables used and not defined or defined

and not used.

Page 132

6/82 ISSUE 1 PROGRAMMING GUIDE

-v Suppress messages about unused arguments in functions.
-X Do not report variables referred to by external declarations but never used.
When more than one option is used, they should be combined into a single argument, such as, —ab or —xha.

The names of files that contain C language programs should end with the suffix .c which is mandatory or
lint and the C complier.

The lint program accepts certain arguments, such as:
_ly

These arguments specify libraries that contain functions used in the C language program. The source code is
tested for compatibility with these libraries. This is done by accessing library description files whose names
are constructed from the library arguments. These files all begin with the comment:

/* LINTLIBRARY */

which is followed by a series of dummy function definitions. The critical parts of these definitions are the decla-
ration of the function return type, whether the dummy function returns a value, and the number and types of

arguments to the function. The VARARGS and ARGSUSED comments can be used to specify features of the
library functions.

The lint library files are processed almost exactly like ordinary source'files. The only difference is that func-
tions which are defined on a library file but are not used on a source file do not result in messages. The lint
program does not simulate a full library search algorithm and will print messages if the source files contain
a redefinition of a library routine.

By default, lint checks the programs it is given against a standard library file which contains descriptions
of the programs which are normally loaded when a C language program is run. When the —p option is used,
another file is checked containing descriptions of the standard /0 library routines which are expected to be
portable across various machines. The —n option can be used to suppress all library checking.

B. Types of Messages
The following paragraphs describe the major categories of messages printed by lint.

Unused Variables and Functions

As sets of programs evolve and develop, previously used variables and arguments to functions may become
unused. It is not uncommon for external variables or even entire functions to become unnecessary and yet not
be removed from the source. These types of errors rarely cause working programs to fail, but are a source of
inefficiency and make programs harder to understand and change. Also, information about such unused
variables and functions can occasionally serve to discover bugs.

The lint program prints messages about variables and functions which are defined but not otherwise men-
tioned. An exception is variables which are declared through explicit extern statements but are never refer-
enced; thus the statement

extern float sin();
will evoke no comment if sip is never used. Note that this agrees with the semantics of the C compiler. In some

cases, these unused external declarations might be of some interest and can be discovered by using the —x option
with the lint command.)

Poge 133

PROGRAMMING GUIDE ISSUE 1 6/82

Certain styles of programming require many functions to be written with similar interfaces; frequently,
some of the arguments may be unused in many of the calls. The —v option is available to suppress the printing
of messages about unused arguments. When v is in effect, no messages are produced about unused arguments
except for those arguments which are unused and also declared as register arguments. This can be considered
an active (and preventable) waste of the register resources of the machine.

Messages about unused arguments can be suppressed for one function by adding the comment:

/* ARGSUSED */

to the program before the function. This has the effect of the —v option for only one function. Also, the comment:
/* VARARGS */

can be used to suppress messages about variable number of arguments in calls to a function. The comment
should be added before the function definition. In some cases, it is desirable to check the first several arguments
and leave the later arguments unchecked. This can be done with a digit giving the number of arguments which
should be checked, such as:

/* VARARGS2 */
will cause only the first two arguments to be checked.

There is one case where information about unused or undefined variables is more distracting than helpful.
This is when lint is applied to some but not all files out of a collection which are to be loaded together. In this
case, many of the functions and variables defined may not be used. Conversely, many functions and variables
defined elsewhere may be used. The —u option may be used to suppress the spurious messages which might oth-
erwise appear.

Set/Used Information

The lint program attempts to detect cases where a variable is used before it is set. The lint program detects
local variables (automatic and register storage classes) whose first use appears physically earlier in the input
file than the.first assignment to the variable. It assumes that taking the address of a variable constitutes a
“use”, since the actual use may occur at any later time, in a data dependent fashion.

The restriction to the physical appearance of variables in the file makes the algorithm very simple and quick
to implement since the true flow of control need not be discovered. It does mean that lint can print messages
about some programs which are legal, but these programs would probably be considered bad on stylistic
grounds. Because static and external variables are initialized to zero, no meaningful information can be discov-
ered about their uses. The lint program does deal with initialized automatic variables.

The set/used information also permits recognition of those local variables which are set and never used.
These form a frequent source of inefficiencies and may also be symptomatic of bugs.

Flow of Control

The lint program attempts to detect unreachable portions of the programs which it processes. It will print
messages about unlabeled statements immediately following goto, break, continue, or return statements.
An attempt is made to detect loops which can never be left at the bottom and recognize the special cases
while(1) and for(;;) as infinite loops. The lint program also prints messages about loops which cannot be en-

tered at the top. Some valid programs may have such loops which are considered to be bad style at best and
bugs at worst.

The lint program has no way of detecting functions which are called and never return. Thus, a call to exit
may cause an unreachable code which lint does not detect. The most serious effects of this are in the determina-

tion of returned function values (see “Function Values"). If a particular place in the program cannot be reached

Page 134

6/82 ISSUE 1 PROGRAMMING GUIDE

but it is not apparent to lint, the comment

/* NOTREACHED */

can be added at the appropriate place. This comment will inform lint that a portion of the program cannot be
reached.

The lint program will not print a message about unreachable break statements. Programs generated by
yacc and especially lex may have hundreds of unreachable break statements. The —O option in the C compiler
will often eliminate the resulting object code inefficiency. Thus, these unreached statements are of little impor-
tance. There is typically nothing the user can do about them, and the resulting messages would clutter up the
lint output. If these messages are desired, lint can be invoked with the —b option.

Function Values

Sometimes functions return values which are never used. Sometimes programs incorrectly use function
“values” which have never been returned. The lint program addresses this problem in a number of ways.

Locally, within a function definition, the appearance of both
return(expr);
and
return ;
statements is cause for alarm; the lint program will give the message
function name contains return(e) and return

The most serious difficulty with this is detecting when a function return is implied by flow of control reaching
the end of the function. This can be seen with a simple example:

f(a){
if (a) return (3);
}g();

Notice that, if atests false, fwill call gand then return with no defined return value; this will trigger a message
from lint. If g, like exit, never returns, the message will still be produced when in fact nothing is wrong.

In practice, some potentially serious bugs have been discovered by this feature. It also accounts for a sub-
stantial portion of the redundant messages produced by lint.

On a global scale, lint detects cases where a function returns a value; and this value is sometimes or never
used. When the value is never used, it may constitute an inefficiency in the function definition. When the value
is sometimes unused, it may represent bad style (e.g., not testing for error conditions).

The dual problem, using a function value when the function does not return one, is also detected. This is
a serious problem.

Type Checking

The lint program enforces the type checking rules of C language more strictly than the compilers do. The
additional checking is in four major areas:

e Across certain binary operators and implied assignments

Page 135

PROGRAMMING GUIDE ISSUE 1 6/82

e At the structure selection operators
e Between the definition and uses of functions
e In the use of enumerations.

There are 2 number of operators which have an implied balancing between types of the operands. The as-
signment, conditional (2:), and relational operators have this property. The argument of a return statement
and expressions used in initialization suffer similar conversions. In these operations, char, short, int, long,
unsigned, float, and double types may be freely intermixed. The types of pointers must agree exactly except
that arrays of »’s can, of course, be intermixed with pointers to »’s.

The type checking rules also require that, in structure references, the left operand of the —> be a pointer
to structure, the left operand of the . be a structure, and the right operand of these operators be a member of
the structure implied by the left operand. Similar checking is done for references to unions.

Strict rules apply to function argument and return value matching. The types float and double may be
freely matched, as may the types char, short, int, and unsigned. Also, pointers can be matched with the asso-
ciated arrays. Aside from this, all actual arguments must agree in type with their declared counterparts.

With enumerations, checks are made that enumeration variables or members are not mixed with other
types or other enumerations and that the only operations applied are =, initialization, ==, !=, and function ar-
guments and return values.

If it is desired to turn off strict type checking for an expression, the comment
/* NOSTRICT */

should be added to the program immediately before the expression. This comment will prevent strict type check-
ing for only the next line in the program.

Type Casts

The type cast feature in C language was introduced largely as an aid to producing more portable programs.
Consider the assignment

p=1;

where pis a character pointer. The lint program will print a message as a result of detecting this. Consider
the assignment

p = (char *)1 ;

in which a cast has been used to convert the integer to a character pointer. The programmer obviously had a
strong motivation for doing this and has clearly signaled his/her intentions. It seems harsh for lint to continue
to print messages about this. On the other hand, if this code is moved to another machine, such code should be
looked at carefully. The —c flag controls the printing of comments about casts. When —c is in effect, casts are

treated as though they were assignments subject to messages; otherwise, all legal casts are passed without com-
ment, no matter how strange the type mixing seems to be.

Nonportable Character Use

On some systems, characters are signed quantities with a range from —128 to 127. On other C language
implementations, characters take on only positive values. Thus, lint will print messages about certain compari-
sons and assignments as being illegal or nonportable. For example, the fragment

char c;

if((c = getchar()) < 0) ...

Page 136

6/82 ISSUE 1 PROGRAMMING GUIDE

will work on one machine but will fail on machines where characters always take on positive values. The real
solution is to declare ¢ as an integer since getchar is actually returning integer values. In any case, lint will
print the message “nonportable character comparison”.

A similar issue arises with bit fields. When assignments of constant values are made to bit fields, the field
may be too small to hold the value. This is especially true because on some machines bit fields are considered
as signed quantities. While it may seem logical to consider that a two bit field declared of type int cannot hold
the value 3, the problem disappears if the bit field is declared to have type unsigned.

Assignments of “longs’’ to “ints”

Bugs may arise from the assignment of long to an int, which will truncate the contents. This may happen
in programs which have been incompletely converted to use typedefs. When a typedef variable is changed
from int to long, the program can stop working because some intermediate results may be assigned to ints,
‘which is truncated. Since there are a number of legitimate reasons for assigning longs to ints, the detection
of these assignments is enabled by the —a option.

Strange Constructions
Several perfectly legal, but somewhat strange, constructions are detected by lint. The messages hopefully
encourage better code quality, clearer style, and may even point out bugs. The —h option is used to enable these
checks. For example, in the statement
p++;
the * does nothing. This provokes the mess.age “null effect” from lint. The following program fragment:

unsigned x ;
if(x<0)..

results in a test that will never succeed. Similarly, the test
iflx>0)..

is equivalent to
if(x!=0)

which may not be the intended action. The lint program will print the message “degenerate unsigned compari-
son” in these cases. If a program contains something similar to

if(1!=0)..

lint will print the message “constant in conditional context” since the comparison of 1 with 0 gives a constant
result.

Another construction detected by lint involves operator precedence. Bugs which arise from misunderstand-
ings about the precedence of operators can be accentuated by spacing and formatting making such bugs ex-
tremely hard to find. For example, the statement

if(x&0T7T ==0) ...

Page 137

PROGRAMMING GUIDE ISSUE 1 6/82

or
x<<2 + 40

probably do not do what was intended. The best solution is to parenthesize such expressions, and lint encourages
this by an appropriate message.

Finally, when the —h option has been used, lint prints messages about variables which are redeclared in
inner blocks in a way that conflicts with their use in outer blocks. This is legal but is considered to be bad style,
usually unnecessary, and frequently a bug.

Old Syntax

Several forms of older syntax are now illegal. These fall into two classes—assignment operators and initial-
ization.

The older forms of assignment operators (e.g., =+, =—, ...) could cause ambiguous expressions, such as:
a=-1,;
which could be taken as either
a=-1,;
or
a=-1;
The situation is especially perplexing if this kind of ambiguity arises as the result of a macro substitution. The
newer and preferred operators (e.g., +=, —=, ...) have no such ambiguities. To encourage the abandonment of
the older forms, lint prints messages about these old-fashioned operators.
A similar issue arises with initialization. The older language allowed
intx1;
to initialize x to 1. This also caused syntactic difficulties. For example, the initialization
intx(-1);
looks somewhat like the beginning of a function declaration:
intx (y){-..
and the compiler must read past xin order to determine the correct meaning. Again, the problem is even more
perplexing when the initializer involves a macro. The current syntax places an equals sign between the variable
and the initializer:
intx=-1;
This is free of any possible syntactic ambiguity.

Pointer Alignment’

Certain pointer assignments may be reasonable on some machines and illegal on others due entirely to
alignment restrictions. For example, on the PDP-11, it is reasonable to assign integer pointers to double pointers

Page 138

6/82 ISSUE 1 PROGRAMMING GUIDE

since double-precision values may begin on any integer boundary. On the Honeywell 6000, double-precision val-
ues must begin on even word boundaries. Thus, not all such assignments make sense. The lint program tries
to detect cases where pointers are assigned to other pointers and such alignment problems might arise. The mes-
sage “possible pointer alignment problem” results from this situation whenever either the —p or —h options
are used.

Multiple Uses and Side Effects

In complicated expressions, the best order in which to evaluate subexpressions may be highly machine de-
pendent. For example, on machines (like the PDP-11) in which the stack runs backwards, function arguments
will probably be best evaluated from right to left. On machines with a stack running forward, left to right seems
most attractive. Function calls embedded as arguments of other functions may or may not be treated similarly
to ordinary arguments. Similar issues arise with other operators which have side effects, such as the assignment
operators and the increment and decrement operators.

In order that the efficiency of C language on a particular machine not be unduly compromised, the C lan-
guage leaves the order of evaluation of complicated expressions up to the local compiler. In fact, the various
C compilers have considerable differences in the order in which they will evaluate complicated expressions. In
particular, if any variable is changed by a side effect and also used elsewhere in the same expression, the result
is explicitly undefined.

The lint program checks for the important special case where a simple scalar variable is affected. For exam-
ple, the statement

a[i] = b[i++];
will cause lint to print the message

warning: i evaluation order undefined
in order to call attention to this condition.
C. Portability

C language on the Honeywell and IBM systems is used, in part, to write system code for the host operating
system. This means that the implementation of C language tends to follow local conventions rather than adhere
strictly to UNIX system conventions. Despite these differences, many C language programs have been success-
fully moved to GCOS and the various IBM installations with little effort. This section describes some of the dif-
ferences between the implementations and discusses the lint features which encourage portability.

A related difficulty comes from the amount of information retained about external names during the load-
ing process. On the UNIX system, externally known names have seven significant characters with the uppercase
and lowercase distinction kept. On the IBM systems, there are eight significant characters; but the case distinc-
tion is lost. On GCOS, there are only six characters of a single case. This leads to situations where programs
run on the UNIX system but encounter loader problems on the IBM or GCOS systems. The —p option causes
all externa! symbols to be mapped to one case and truncated to six characters, providing a worst-case analysis.

A number of differences arise ini the area of character handling. Characters in the UNIX system are 8-bit
ASCII, while they are 8-bit EBCDIC on the IBM and 9-bit ASCII on GCOS. Also, character strings go from high-
to low-bit positions “left to right” on GCOS and IBM and low to high “right to left” on the PDP-11. This means
that code attempting to construct strings out of character constants or attempting to use characters as indices
into arrays must be looked at with great suspicion. The lint program is of little help here except to flag
multicharacter character constants.

Of course, the word size differs from machine to machine. This causes less trouble than might be expected
at least when moving from the UNIX system (16-bit words) to the IBM (32-bits) or GCOS (36-bits). The main

Page 139

PROGRAMMING GUIDE ISSUE 1 6/82

problems are likely to arise in shifting or masking. The C language now supports a bit-field facility, which can
be used to write much of this code in a reasonably portable way. Frequently, portability of such code can be
enhanced by slight rearrangements in coding style. Many of the incompatibilities seem to have the flavor of
writing

x &= 0177700 ;

to clear the low order six bits of x. This suffices on the PDP-11 but fails badly on GCOS and IBM. If the bit-field
feature cannot be used, the same effect can be obtained by writing

x &= " 077,
which will work on all these machines.

The right shift operator is arithmetic shift on the PDP-11 and logical shift on most other machines. To ob-
tain a logical shift on all machines, the left operand can be typed unsigned. Characters are considered signed
integers on the PDP-11 and unsigned on the other machines. This persistence of the sign bit may be reasonably
considered a bug in the PDP-11 hardware which has infiltrated itself into the C language. If there were a good
way to discover the programs which would be affected, the C language could be changed. In any case, lint is
no help here.

The previous discussion may have made the problem of portability seem bigger than it is. The issues in-
volved here are rarely subtle or mysterious, at least to the implementor of the program, although they can in-
volve some work to straighten out. The most serious bar to the portability of UNIX system utilities has been
the inability to mimic essential UNIX system functions on the other systems. The inability to seek to a random
character position in a text file or to establish a pipe between processes has involved far more rewriting and
debugging than any of the differences in C compilers. On the other hand, lint has been very helpful in moving
the UNIX operating system and associated utility programs to other machines.

A SYMBOLIC DEBUGGING PROGRAM —"'sdb”’
A. Generol

This part describes the symbolic debugger sdb(1) as implemented for C language and Fortran 77 programs
on the UNIX operating system. The sdb program is useful both for examining “core images"” of aborted pro-
grams and for providing an environment in which execution of a program can be monitored and controlled.

The sdb program allows interaction with a debugged program at the source language level. When debugging
a core image from an aborted program, sdb reports which line in the source program caused the error and al-
lows all variables to be accessed symbolically and to be displayed in the correct format.

Breakpoints may be placed at selected statements or the program may be single stepped on a line-by-line
basis. To facilitate specification of lines in the program without a source listing, sdb provides a mechanism for
examining the source text. Procedures may be called directly from the debugger. This feature is useful both for
testing individual procedures and for calling user-provided routines which provided formatted printout of struc-
tured data.

B. Usage
In order to use sdb to its full capabilities, it is necessary to compile the source program with the —g option.
This causes the compiler to generate additional information about the variables and statements of the compiled

program. When the —g option has been specified, sdb can be used to obtain a trace of the called functions at
the time of the abort and interactively display the values of variables.

Page 140

6/82 ISSUE 1 PROGRAMMING GUIDE

A typical sequence of shell commands for debugging a core image is

$ cc —g prgm.c —o0 prgm

$ prgm

Bus error — core dumped
$ sdb prgm

main:25: x(i] = 0;
L]

The program prgm was compiled with the —g option and then executed. An error occurred which caused
a core dump. The sdb program is then invoked to examine the core dump to determine the cause of the error.
It reports that the bus error occurred in function main at line 25 (line numbers are always relative to the begin-
ning of the file) and outputs the source text of the offending line. The sdb program then prompts the user with
an * indicating that it awaits a command.

It is useful to know that sdb has a notion of current function and current line. In this example, they are
initially set to main and “25", respectively.

In the above example, sdb was called with one argument, prgm. In general, it takes three arguments on
the command line. The first is the name of the executable file which is to be debugged; it defaults to a.out when
not specified. The second is the name of the core file, defaulting to core;and the third is the name of the directory
containing the source of the program being debugged. The sdb program currently requires all source to reside
in a single directory. The default is the working directory. In the example, the second and third arguments de-
faulted to the correct values, so only the first was specified.

It is possible that the error occurred in a function which was not compiled with the —g option. In this case,
sdb prints the function name and the address at which the error occurred. The current line and function are
set to the first executable line in main. The sdb program will print an error message if main was not compiled
with the —g option, but debugging can continue for those routines compiled with the —g option. Figure 3.1 shows
a typical example of sdb usage.

Printing a Stack Trace

It is often useful to obtain a listing of the function calls which led to the error. This is obtained with the
t command. For example:

*t

sub(x=2,y=3) [prgm.c:25]

inter(i=16012) (prgm.c:96)]
main(arge=1,argv=0x7{ff{f54,envp=0xTf{fff5c) [prgm.c:15]

This indicates that the error occurred within the function sub at line 25 in file prgm.c The sub function was
called with the arguments x=2 and y=3 from inter at line 96. The inter function was called from main at line
15. The main function is always called by the shell with three arguments often referred to as arge, argv, and
envp. Note that argv and envp are pointers, so their values are printed in hexadecimal.

Examining Variables

The sdb program can be used to display variables in the stopped program. Variables are displayed by typing
their name followed by a slash, so

*errflag/

causes sdb to display the value of variable errflg. Unless otherwise specified, variables are assumed to be either
local to or accessible from the current function. To specify a different function, use the form

*sub:i/

Page 141

PROGRAMMING GUIDE ISSUE 1 6/82

to display variable iin function sub. F77 users can specify a common block variable in the same manner.

The sdb program supports a limited form of pattern matching for variable and function names. The symbol
* is used to match any sequence of characters of a variable name and ? to match any single character. Consider
the following commands:

x/
*sub:y?/
"/

The first prints the values of all variables beginning with x, the second prints the values of all two letter
variables in function subbeginning with y, and the last prints all variables. In the first and last examples, only
variables accessible from the current function are printed. The command

..:'/
displays the variables for each function on the call stack.
The sdb program normally displays the variable in a format determined by its type as declared in the source

program. To request a different format, a specifier is placed after the slash. The specifier consists of an optional
length specification followed by the format. The length specifiers are:

b One byte
b Two bytes (half word)
| Four bytes (long word).

The lengths are only effective with the formats d, o, x, and u. If no length is specified, the word length of the
host machine is used. A numeric length specifier may be used for the s or a commands. These commands nor-
mally print characters until either a null is reached or 128 characters are printed. The number specifies how
many characters should be printed. There are a number of format specifiers available:

c Character

d Decimal

u Decimal unsigned

o Octal

x Hexadecimal

f 32-bit single-precision floating point

g 64-bit double-precision floating point

s Assume variable is a string pointer and print characters until a null is reached
a Print characters starting at the variable's address until a null is reached
p Pointer to function

i Interpret as a machine-language with addresses printed symbolically

1 Interpret as a machine-language with addresses printed symbolically.

Page 142

6/82 ISSUE 1 PROGRAMMING GUIDE

For example, the variable i can be displayed with
*i/x
which prints out the value of jin hexadecimal.

The sdb ﬁrogram also knows about structures, arrays, and pointers so that all of the following commands
work.

*array([2](3)/
*sym.id/
*psym—>usage/
*xsym|[20].p—>usage/

The only restriction is that array subscripts must be numbers. Depending on your machine, accessing arrays
may be limited to 1-dimensional arrays. Note that as a special case:

*psym—>/d
displays the location pointed to by psym in decimal.
Core locations can also be displayed by specifying their absolute addresses. The command
*1024/

displays location 1024 in decimal. As in C language, numbers may also be specified in octal or hexadecimal so
the above command is equivalent to both

*02000/
*0x400/

It is possible to mix numbers and variables so that
*1000.x/

refers to an element of a structure starting at address 1006, and
*1000—>x/

refers to an element of a structure whose address is at 1000. For commands of the type *1000.x/ and *1000—>x/,
the sdb program uses the structure template of the last structured referenced.

The address of a variable is printed with the = p, so
»=
displays the address of i Another feature whose usefulness will become apparent later is the command
| ./
which displays the last variable typed again.
C. Source File Display and Manipulation

The sdb program has been designed to make it easy to debug a program without constant reference to a
current source listing. Facilities are provided which perform context searches within the source files of the pro-
gram being debugged and to display selected portions of the source files. The commands are similar to those

Page 143

PROGRAMMING GUIDE ISSUE 1 6/82

of the UNIX system text editor ed(1). Like the editor, sdb has a notion of current file and line within the file.
The sdb program also knows how the lines of a file are partitioned into functions, so it also has a notion of cur-
rent function. As noted in other parts of this document, the current function is used by a number of sdb com-
mands.

Displaying the Source File

Four commands exist for displaying lines in the source file. They are useful for perusing the source program
and for determining the context of the current line. The commands are:

p Prints the current line.

w) Window; prints a window of ten lines around the current line.

z Prints ten lines starting at the current line. Advances the current line by ten.
control—d Scrolls; prints the next ten lines and advances the current line by ’ten. This command is

used to cleanly display long segments of the program.

When a line from a file is printed, it is preceded by its line number. This not only gives an indication of its
relative position in the file but is also used as input by some sdb commands.

Changing the Current Source File or Function

The e command is used to change the current source file. Either of the forms

*e function
*e file.c

may be used. The first causes the file containing the named function to become the current file, and the current
line becomes the first line of the function. The other form causes the named file to become current. In this case,
the current line is set to the first line of the named file. Finally, an e command with no argument causes the
current function and file named to be printed.

Changing the Current Line in the Source File

The z and control—d commands have a side effect of changing the current line in the source file. The follow-
ing paragraphs describe other commands that change the current line.

There are two commands for searching for instances of regular expressions in source files. They are

*/regular expression/
*7regular expression?

The first command searches forward through the file for a line containing a string that matches the regular

expression and the second searches backwards. The trailing/ and ? may be omitted from these commands. Regu-
lar expression matching is identical to that of ed(1).

The + and — commands may be used to move the current line forwards or backwards by a specified number
of lines. Typing a new-line advances the current line by one, and typing a number causes that line to become
the current line in the file. These commands may be combined with the display commands so that

*+152

Page 144 °

6/82 ISSUE 1 PROGRAMMING GUIDE

advances the current line by 15 and then prints 10 lines.

D. A Controlled Environment for Program Testing

One very useful feature of sdb is breakpoint debugging. After entering sdb, certain lines in the source pro-
gram may be specified to be breakpoints. The program is then started with a sdb command. Execution of the
program proceeds as normal until it is about to execute one of the lines at which a breakpoint has been set. The
program stops and sdb reports the breakpoint where the program stopped. Now, sdb commands may be used
to display the trace of function calls and the values of variables. If the user is satisfied the program is working
correctly to this point, some breakpoints can be deleted and others set; and then program execution may be con-
tinued from the point where it stopped.

A useful alternative to setting breakpoints is single stepping. The sdb program can be requested to execute
the next line of the program and then stop. This feature is especially useful for testing new programs, so thev
can be verified on a statement-by-statement basis. Note that if an attempt is made to single step through a func-
tion which has not been compiled with the —g option execution proceeds until a statement in a function compiled
with the —g option is reached. It is also possible to have the program execute one machine level instruction zt
a time. This is particularly useful when the program has not been compiled with the —g option.

Setting and Deleting Breakpoints

Breakpoints can be set at any line in a function which contains executable code. The command format is:

*12b
*proc:12b
*proc:b
*b

The first form sets a breakpoint at line 12 in the current file. The line numbers are relative to the beginning
of the file as printed by the source file display commands. The second form sets a breakpoint at line 12 of func-
tion proc, and the third sets a breakpoint at the first line of proc. The last sets a breakpoint at the current line.

Breakpoints are deleted similarly with the commands

*12d
*proc:12d
*proc:d

In addition, if the command d is given alone, the breakpoints are deleted interactively. Each breakpoint location
is printed, and a line is read from the user. If the line begins with a y or d, the breakpoint is deleted.

A list of the current breakpoints is printed in response to a B command, and the D command deletes all
breakpoints. It is sometimes desirable to have sdb automatically perform a sequence of commands at a
breakpoint and then have execution continue. This is achieved with another form of the b command

*12b t;x/

causes both a trace back and the value of x to be printed each time execution gets to line 12. The a command
is a variation of the above command. There are iwo forms:

*proc:a
*proc:12a

The first prints the function name and its arguments each time it is called. and the second prints the source

line each time it is about to be executed. For both forms of the a command, execution continues after the func-
tion name or source line is printed.

Page 145

PROGRAMMING GUIDE ISSUE 1 6/82

Running the Program

The r command is used to begin program execution. It restarts the program as if it were invoked from the
shell. The command

*r args

runs the program with the given arguments as if they had been typed on the shell command line. If no argu-
ments are specified, then the arguments from the last execution of the program are used. To run a program
with no arguments, use the R command.

After the program is started, execution continues until a breakpoint is encountered, a signal such as INTER-
RUPT or QUIT occurs, or the program terminates. In all cases after an appropriate message is printed, control
returns to sdb.

The ¢ command may be used to continue execution of a stopped program. A line number may be specified,
as in: ‘ .

*proc:12¢

This places a temporary breakpoint at the named line. The breakpoint is deleted when the ¢ command finishes.
There is also a C command which continues but passes the signal which stopped the program back to the pro-
gram. This is useful for testing user-written signal handlers. Execution may be continued at a specified line with
the g command. For example:

"17¢g

continues at line 17 of the current function. A use for this command is to avoid executing a section of code which
is known to be bad. The user should not attempt to continue execution in a function different than that of the
breakpoint.

The s command is used to run the program for a single line. It is useful for slowly executing the program
to examine its behavior in detail. An important alternative is the S command. This command is like the s com-
mand but does not stop within called functions. It is often used when one is confident that the called function
works correctly but is interested in testing the calling routine.

The i command is used to run the program one machine level instruction at a time while ignoring the signal
which stopped the program. Its uses are similar to the s command. There is also an I command which causes
the program to execute one machine level instruction at a time, but also passes the signal which stopped the
program back to the program.

Calling Functions

It is possible to call any of the functions of the program from sdb. This feature is useful both for testing
individual functions with different arguments and for calling a function which prints structured data in a nice
way. There are two ways to call a function:

*proc(argl, arg2, ...)
*proc(argl, arg2, ...)/m

The first simply exécutes the function. The second is intended for calling functions (it executes the function and
prints the value that it returns). The value is printed in decimal unless some other format is specified by m.
Arguments to functions may be integer, character or string constants, or values of variables which are accessi-
ble from the current function.

Page 146

6/82 ISSUE 1 PROGRAMMING GUIDE

An unfortunate bug in the current implementation is that if a function is called when the program is not
stopped at a breakpoint (such as when a core image is being debugged) all variables are initialized before the
function is started. This makes it impossible to use a function which formats data from a dump.

E. Machine Language Debugging
The sdb program has facilities for examining programs at the machine language level. It is possible to print
the machine language statements associated with a line in the source and to place breakpoints at arbitrary ad-
dresses. The sdb program can also be used to display or modify the contents of the machine registers.
Displaying Machine Language Statements
To display the machine language statements associated with line 25 in function main, use the command
*main:257
The ? command is identical to the / command except that it displays from text space. The default format for
printing text space is the i format which interprets the machine language instruction. The control-d command
may be used to print the next ten instructions.
Absolute addresses may be specified instead of line numbers by appending a : to them so that
*0x1024:?
displays the contents of address 0x1024 in text space. Note that the command

*0x1024?

displays the instruction corresponding to line 0x1024 in the current function. It is also possible to set or delete
a breakpoint by specifying its absolute address;

*0x1024:b
sets a breakpoint at address 0x1024
Manipulating Registers

The x command ﬁrints the values of all the registers. Also, individual registers may be named instead of
variables by appending a % to their name so that

*r3%
displays the value of register r3
F. Other Commands
To exit sdb, use the q command.
The ! command is identical to that in ed(1) and is used to have the shell execute a command.

It is possible to change the values of variables when the program is stopped at a breakpoint. This is done
with the command

*variablelvalue

Page 147

PROGRAMMING GUIDE ISSUE 1 6/82

which sets the variable to the given value. The value may be a number, character constant, register, or the name
of another variable. If the variable is of type float or double, the value can also be a floating-point constant.

$ cat testdiv2.c
main(arge, argv, envp)
char **argv, **envp; {
int i;
i=div2(-1);
printf(" -1/2 = %d\n" , i);

}

div2(i) {
int j;
j=i>>1;
return(j);

}

$ cc —g testdiv2.c

$ a.out

-1/2=-1

$ sdb

No core image ¢ Warning message from sdb

*/~div2 # Search for function " div2"

7: div2(i) { # It starts on line 7
*z # Print the next few lines

7. div2(i) |

8 int j;

9: j=i>>1;

10: return(j);

11: }

*div2:b f Place a breakpoint at the beginning of " div2"
div29 b # Sdb echoes proc name and line number
*r # Run the function

a.out # Sdb echoes command line executed
Breakpoint at f Executions stops just before line 9
div2:9: j=1i>>1;

*t # Print trace of subroutine calls

div2(i==1) [testdiv2.c:9]
main(arge=1,argv=0x7f{{{{50,envp=0xT{ffff58) (testdiv2.c:4]

*i/ # Print i

-1

*s # Single step

div210: return(j); # Execution stops just before line 10
*j/ # Print j

-1 ’

*9d ¢ Delete the breakpoint

*div2(1)/ # Try running " div2" with different arguments
0

*div2(-2)/

-1

*div2(-3)/

-2

*q

$

Fig. 3.1—Example of sdb Usage

Page 148

6/82 ISSUE 1 PROGRAMMING GUIDE

4. FORTRAN
{INTRODUCTION

This section describes the implementation of the Fortran programming language on the UNIX operating
system. This section contains the following parts: .

e FORTRAN 77 —Describes the implementation of Fortran 77 on the system in terms of the variations
from the American National Standard.

e ARATIONAL FORTRAN PREPROCESSOR—“ratfor”— A preprocessor which provides a means
for writing Fortran in a fashion similar to C language. This preprocessor provides (among other things)
simplified control-flow statements.

Both parts assume that the user is already familiar with Fortran 77.

Throughout this section, each reference of the form name(1M), name(7), or name(8) refers to entries in
the UNIX System Administrator’s Manual. All other references to entries of the form name(N), where “N"
is a number (1 through 6) possibly followed by a letter, refer to entry name in section N of the UNIX System
User's Manual.

FORTRAN 77
A. General

This part describes the compiler and run-time system for Fortran 77 as implemented on the UNIX operating
system. Fortran 77 became an official American National Standard on April 3, 1978. The implementation of
Fortran 77 on the UNIX operating system varies from the American National Standard. This document de-
scribes the difference between the American National Standard and the current implementation. Also, this doc-
ument describes the interfaces between procedures and the file formats assumed by the I/0 system.

Usage
The command to run the compiler is
£77 options file

The £77(1) command is a general purpose command for compiling and loading Fortran and Fortran-related
files. Ratfor source files will be preprocessed before being presented to the Fortran compiler. C language and
assembler source files will be compiled by the appropriate programs. Object files will be loaded. [The f77(1)
and cc(1) commands cause slightly different loading sequences to be generated since Fortran programs need
a few extra libraries and a different startup routine than do C language programs.] The following file name
suffixes are understood:

£ Fortran source file

.r Ratfor source file

.c C.language source file
.S Assembler source file
.0 Object file

Page 149

PROGRAMMING GUIDE ISSUE 1 6/82

The following flags are understood:

=S Generate assembler output for each source file, but do not assemble it. Assembler output
for a source file x.f, x.r, or x.c is put on file x.s.

-c Compile but do not load. Output for x.f, x.r, x.c, or x.s is put on file x.0.

~m Apply the M4 macro preprocessor to each Ratfor source file before using the appropriate
compiler.

-f Apply the Ratfor processor to all relevant files and leave the output from x.r on x.f. Do

not compile the resulting Fortran program.

-p Generate code to produce usage profiles.

—of Put executable module on file f. (Default is a.out).

-w Suppress all warning messages.

-w66 Suppress warnings about Fortran 66 features used.

-0 Invoke the C language object code optimizer.

-C Compile code the checks that subscripts are within array bounds.

—onetrip Compile code that performs every do loop at least once.

-U Do not convert uppercase letters to lowercase. The default is to convert Fortran programs

- to lowercase.

-u Make the default type of a variable undefined.

-12 On machines which support short integers, make the default integer constants and
variables short. (—I4 is the standard value of this option.) All logical quantities will be
short.

-R The remaining characters in the argument are used as a Ratfor flag argument.

-F Ratfor and source programs are preprocessed into Fortran files, but those files are not

compiled or removed.

All library names (arguments beginning —1) and other options not ending with one of the special suffixes
are passed to the loader. See f77(1) for additional options.

B. language Extensions

Fortran 77 includes almost all of Fortran 66 as a subset. The most important additions are a character string
data type, file-oriented input/output statements, and random access I/0. Also, the language has been cleaned
up considerably. -

In addition to implementing the language specified in the new Fortran 77 American National Standard, this
compiler implements a few extensions. Most are useful additions to the language. The remainder are extensions
to make it easier to communicate with C language procedures or to permit compilation of old (1966 Standard
Fortran) programs.

Poge 150

6/82 ISSUE PROGRAMMING GUIDE

Double Complex Data Type

The data type double complex is added. Each datum is represented by a pair of double-precision real
variables. A double complex version of every complex built-in function is provided. The specific function names
begin with z instead of c.

Internal Files

The Fortran 77 American National Standard introduces internal files (memory arrays) but restricts their
use to formatted sequential I/0 statements. This I/0 system also permits internal files to be used in direct and
unformatted reads and writes.

Implicit Undefined Statement

Fortran has a fixed rule that the type of a variable that does not appear in a type statement is integer if
its first letter is i, j, k L mor n. Otherwise, it is real. Fortran 77 has an implicit statement for overriding this
rule. An additional type statement, undefined, is permitted. The statement

implicit undefined(a-z)

turns off the automatic data typing mechanism, and the compiler will issue a diagnostic for each variable that
is used but does not appear in a type statement. Specifying the —u compiler option is equivalent to beginning
each procedure with this statement.

Recursion
Procedures may call themselves directly or through a chain of other procedures.
Avtomatic Storage

Two new keywords recognized are static and automatic. These keywords may appear as “types” in type
statements and in implicit statements. Local variables are static by default; there is exactly one copy of the
datum, and its value is retained between calls. There is one copy of each variable declared automatic for each
invocation of the procedure. Automatic variables may not appear in equivalence, data, or save statements.

Variable Length Input Lines

The Fortran 77 American National Standard expects input to the compiler to be in a 72-column format: ex-
cept in comment lines, the first five characters are the statement number, the next is the continuation character,
and the next 66 are the body of the line. (If there are fewer than 72 characters on a line, the compiler pads it
with blanks; characters after the first 72 are ignored.) In order to make it easier to type Fortran programs, this
compiler also accepts input in variable length lines. An ampersand (&) in the first position of a line indicates
a continuation line; the remaining characters form the body of the line. A tab character in one of the first six
positions of a line signals the end of the statement number and continuation part of the line; the remaining char-
acters form the body of the line. A tab elsewhere on the line is treated as another kind of blank by the compiler.

In the Fortran 77 Standard, there are only 26 letters—Fortran is a 1-case language. Consistent with ordi-
nary system usage, the new compiler expects lowercase input. By default, the compiler converts all uppercase
characters to lowercase except those inside character constants. However, if the —=U compiler option is specified,
uppercz'xse letters are not transformed. In this mode, it is possible to specify external names with uppercase let-
ters in them and to have distinct variables differing only in case. Regardless of the setting of the option,
keywords will only be recognized in lowercase.

Page 151

PROGRAMMING GUIDE ISSUE 1 6/82

Include Statement
The statement
include " stuff"
is replaced b\ the contents of the file stuff. Includes may be nested to a reasonable depth, currently ten.
Binary Initializetion Constants

A logical, real, or integer variable may be initialized in a data statement by a binary constant denoted
by a letter followed by 2 quoted string. If the letter is b, the string is binary, and only zeroes and ones are permit-
ted. If the letter is o, the string is octal with digits zero through seven. If the letter is z or x, the string is
hexadecimal with digits zero through nine, a through f. Thus, the statements

integer a(3)
data a/b’1010',0'12',2'a’/

initialize all three elements of a to ten.

Character Strings

For compatibility with C language usage, the following backslash escapes are recognized:

\n new-line

\t tab

\b backspace

\f form feed

\O0 null

\' apostrophe (does not terminate a string)

\" quotation mark (does not terminate a string)
\\ \

\X where x is any other character.

Fortran 77 only has one quoting character—the apostrophe (’). This compiler and I/0 system recognize both
the apostrophe and the double quote ("). If a string begins with one variety of quote mark, the other may be
embedded within it without using the repeated quote or backslash escapes.

Every unequivalenced scalar local character variable and every character string constant is aligned on an
integer word boundary. Each character string constant appearing outside a data statement is followed by a null
character to ease communication with C language routines.

Hollerith

Fortran 77 does not have the old Hollerith (nh) notation though the new Standard recommends implement-
ing the old Hollerith feature in order to improve compatibility with old programs. In this compiler, Hollerith

Page 152

6/82 ISSUE 1 PROGRAMMING GUIDE

data may be used in place of character string constants and may also be used to initialize noncharacter variables
in data statements.

Equivalence Statements

This compiler permits single subscripts in equivalence statements under the interpretation that all miss-
ing subscripts are equal to 1. A warning message is printed for each such incomplete subscript. -

One-Trip DO Loops

The Fortran 77 American National Standard requires that the range of a do loop not be performed if the
initial value is already past the limit value, as in

do10i=2,1

The 1966 Standard stated that the effect of such a statement was undefined, but it was common practice that
the range of a do loop would be performed at least once. In order to accornmodate old programs though they
were in violation of the 1966 Standard, the —onetrip compiler option causes nonstandard loops to be generated.

Commas in Formatted Input

The I/0 system attempts to be more lenient than the Fortran 77 American National Standard when it seems
worthwhile. When doing a formatted read of noncharacter variables, commas may be used as value separators
in the input record overriding the field lengths given in the format statement. Thus, the format

(i10, £20.10, i4)
will read the record

—345,.05¢—3,12
correctly.

Short Integers

On machines that support half word integers, the compiler accepts declarations of type integer*2. (Ordi-
nary integers follow the Fortran rules about occupying the same space as a REAL variable; they are assumed
to be of C language type long int; half word integers are of C language type short int.) An expression involving
only objects of type integer®*2 is of that type. Generic functions return short or long integers depending on
the actual types of their arguments. If a procedure is compiled using the —I2 flag, all small integer constants
will be of type integer*2. If the precision of an integer-valued intrinsic function is not determined by the ge-
neric function rules, one will be chosen that returns the prevailing length (integer*2 when the =12 command
flag is in effect). When the —I2 option is in effect, all quantities of type logical will be short. Note that these
short integer and logical quantities do not obey the standard rules for storage association.

Additional Intrinsic Functions

This compiler supports all of the intrinsic functions specified in the Fortran 77 Standard. In addition, there
are functions for performing bitwise Boolean operations (or, and, xor, and not) and for accessing the command
arguments (getarg and iargc).

€. Violations of the Standard

The following paragraphs describe only three known ways in which the UNIX system implementation of
Fortran 77 violates the new American National Standard.

S

Page 153

PROGRAMMING GUIDE * ISSUE 6/82

Double Precision Alignment

The Fortran 77 American National Standard permits common or equivalence statements to force a dou-
ble precision quantity onto an odd word boundary, as in the following example:

, real a(4)
double precision b,c
equivalence (a(1),b), (a(4),c)

Some machines (e.g., Honeywell 6000, IBM 360) require that double precision quantities be on double word
boundaries; other machines (e.g., IBM 370) run inefficiently if this alignment rule is not observed. It is possible
to tell which equivalenced and common variables suffer from a forced odd alignment, but every double-precision
argument would have to be assumed on a bad boundary. To load such a quantity on some machines, it would
be necessary to use two separate operations. The first operation would be to move the upper and lower halves
into the halves of an aligned temporary. The second would be to load that double-precision temporary. The re-
verse would be needed to store a result. All double-precision real and complex quantities are required to fall
on even word boundaries on machines with corresponding hardware requirements and to issue a diagnostic if
the source code demands a violation of the rule.

Dummy Procedure Arguments

If any argument of a procedure is of type character, all dummy procedure arguments of that procedure must
be declared in an external statement. This requirement arises as a subtle corollary of the way we represent
character string arguments. This requirement arises because of the way character string arguments are repre-
sented and of the 1-pass nature of the compiler. A warning is printed if a dummy procedure is not declared
external. Code is correct if there are no character arguments.)

T and TL Formats

The implementation of the t (absolute tab) and tl (leftward tab) format codes is defective. These codes allow
rereading or rewriting part of the record which has already been processed. The implementation uses “seeks”;
so if the unit is not one which allows seeks (such as a terminal) the program is in error. A benefit of the imple-
mentation chosen is that there is no upper limit on the length of a record nor is it necessary to predeclare any
record lengths except where specifically required by Fortran or the operating system.

D. Interprocedure Interface

To be able to .write C language procedures that call or are called by Fortran procedures, it is necessary to -
know the conventions for procedure names, data representation, return values, and argument lists that the com-
piled code obeys.

Procedure Names

N

On UNI?(systems, the.nal_ne of a common block or a Fortran procedure has an underscore appended to it
by the compller-to distinguish it from a C language procedure or external variable with the same user-assigned
name. Fortran library procedure names have embedded underscores to avoid clashes with user-assigned subrou-
tine names.

Data Representations
The following is a table of corresponding Fortran and C language declarations:
Fortran C Language

integer*2 x short int x;

Page 154

6/82 ISSUE 1 PROGRAMMING GUIDE

integer X long int x; -
logical x long int x;

real x float x;

double precision x double x;

comblex X struct { float r.i; } x;

double complex x struct { double dr, di; } x;
character®6 x char x[6];

By the rules of Fortran, integer, logical, and real data occupy the same amount of memory.

Return Values

A function of type integer, logical, real, or double precision declared as a C language function returns
the corresponding type. A complex or double complex function is equivalent to a C language routine with
an additional initial argument that points to the place where the return value is to be stored. Thus, the following:

complex function f(...)
is equivalent to
f_(temp,...)
struct { float r, i; } *temp;
A character-valued function is equivalent to a C language routine with two extra initial arguments—a data ad-
dress and a length. Thus,
character*15 function g(..:)
is equivalent to
. g_(result, length, . ..)
char result[];
long int length;
and could be invoked in C language by
char chars[15];
g_(chars, 15L,...);
Subroutines are invoked as if they were integer-valued functions whose value specifies which alternate
return to use. Alternate return arguments (statement labels) are not passed to the function but are used to do
an indexed branch in the calling procedure. (If the subroutine has no entry points with alternate return argu-

ments, the returned value is undefined.) The statement

call nret(*1, *2, *3)

Page 155

PROGRAMMING GUIDE ISSUE 1 6/82

is treated exactly as if it were the computed goto
goto (1, 2, 3), nret()
Argument Lists

All Fortran arguments are passed by address. In addition, for every argument that is of type character or
that is a dummy procedure, an argument giving the length of the value is passed. (The string lengths are long
int quantities passed by value.) The order of arguments is then:

Extra arguments for complex and character functions
Address for each datum or function
A long int for each character or procedure argument

Thus, the call in

external
character*7 s
integer b(3)

call sam(f, b(2), s)
is equivalent to that in

int £();
char s[7]; "
long int b[3];

sam_(f, &b[1), s, OL, TL);

Note that the first element of a C language array always has subscript 0, but Fortran arrays begin at 1 by de-
fault. Fortran arrays are stored in column-major order; C.language arrays are stored in row-major order.

E. File Formats

Structure of Fortran Files

Fortran requires four kinds of external files: sequential formatted and unformatted, and direct formatted
and unformatted. On UNIX systems, these are all implemented as ordinary files which are assumed to have the
proper internal structure.

Fortran 1/0 is based on “records”. When a direct file is opened in a Fortran program, the record length of
the records must be given; and this is used by the Fortran 1/0 system to make the file look as if it is made up
of records of the given length. In the special case that the record length is given as 1, the files are not considered
to be divided into records but are treated as byte-addressable byte strings; i.e., as ordinary files on the UNIX
system. (A read or write request on such a file keeps consuming bytes until satisfied rather than being restricted
to a single record.)

The peculiar requirements on sequential unformatted files make it unlikely that they will ever be read or
written by any means except Fortran 170 statements. Each record is preceded and followed by an integer con-
taining the record’s length in bytes.

The Fortran 1/0 system breaks sequential formatted files into records while reading by using each new-line
as a record separator. The result of reading off the end of a record is undefined according to the Fortran 77

Page 156

6/82 ISSUE 1 PROGRAMMING GUIDE

American National Standard. The 1/0 system is permissive and treats the record as being extended by blanks.
On output, the I/0 system will write a new-line at the end of each record. It is also possible for programs to
write new-lines for themselves. This is an error, but the only effect will be that the single record the user
thought was written will be treated as more than one record when being read or backspaced over.

Preconnected Files and File Positions

Units 5, 6, and 0 are preconnected when the program starts. Unit 5 is connected to the standard input, unit
6 is connected to the standard output, and unit 0 is connected to the standard error unit. All are conneeted for
sequential formatted /0.

All the other units are also preconnected when execution begins. Unit nis connected to a file named fort.n.
These files need not exist nor will they be created unless their units are used without first executing an open.
The default connection is for sequential formatted I/0.

The Fortran 77 Standard does not specify where a file which has been explicitly opened for sequential /0
is initially positioned. In fact, the I/0 system attempts to position the file at the end. A write will append to
the file and a read will result in an “end of file” indication. To position a file to its beginning, use a rewind
statement. The preconnected units 0, 5, and 6 are positioned as they come from the parent process.

A RATIONAL FORTRAN PREPROCESSOR—"‘ratfor’’
A. General

This part describes the ratfor(1l) preprocessor. It is assumed that the user is familiar with the current im-
plementation of Fortran 77 on the UNIX operating system.

The ratfor language allows users to write Fortran programs in a fashion similar to C language. The ratfor
program is implemented as a preprocessor that translates this “simplified” language into Fortran. The facilities
provided by ratfor are:

e statement grouping

o if-else and switch for decision making

o while, for, do, and repeat-until for looping
o break and next for controlling loop exits
o free form input such as multiple statements/lines and automatic continuation
e simple comment convention
e translation of >, >=, etc., into .gt., .ge., etc.
e return statement for functions
e define statement for symbolic parameters
o include statement for including source files.
B. Usage
The ratfor program takes either a list of file names or the standard input and writes Fortran on the stan-

dard output. Options include —6x, which uses X as a continuation character in column 6 (the UNIX system uses
& in column 1), and —C, which causes ratfor comments to be copied into the generated Fortran.

Page 157

PROGRAMMING GUIDE ISSUE 1 6/82

The program rc(1M) provides an interface to the ratfor(l) command. This command is similar to ce(1).
Thus:

rc options files

compiles the files specified by files. Files with names ending in .r are ratfor source; other files are assumed
to be for the loader. The options —C and —6x described above are recognized, as are

" —c Compile only; don't load
-~f Save intermediate Fortran .f files
-r Ratfor only; implies —c and —f

-2 Use big Fortran compiler (for large programs)

-U Flag undeclared variables (not universally available).

Other options are passed on to the loader.
C. Statement Grouping

Fortran provides no way to group statements together short of making them into a subroutine. The ratfor
language does provide a statement grouping facility. A group of statements can be treated as a unit by enclosing
them in the braces { and }. For example, the ratfor code

if (x > 100)
{ call error(" x>100"); err = 1; return }

will be translated by the ratfor preprocessor into Fortran equivalent to

if (x .le. 100) goto 10
call error(5hx>100)
err=1
return

10

which should simplify programming effort. By using { and }, a group of statements can be used instead of a single
statement.

Also note in the previous ratfor example that the character > was used instead of .GT. in the if statement.
The ratfor preprocessor translates this C language type operator to the appropriate Fortran operator. More
on relationship operators later.

In addition, many Fortran compilers permit character strings in quotes (like "x> 100"). Quotes are not al-
lowed in ANSI Fortran, so ratfor converts it into the right number of Hs.

The ratfor language is free form. Statements may appear anywhere on 2 line, and several may appear on
one line if they are separated by semicolons. The previous example could also be written as

if (x > 100) §
¢all error("x>100")
err=1
return

Page 158

6/82 ISSUE 1 PROGRAMMING GUIDE

which shows grouped statements spread over several lines. In this case, no semicolon is needed at the end of
each line because ratfor assumes there is one statement per line unless told otherwise.

Of course, if the statement that follows the if is a single statement, no braces are needed.

D. The “if-else’’ Construction

The ratfor language provides an else statement. The syntax of the if-else construction is:

if (legal Fortran condition)
ratfor statement

else :
ratfor statement

where the else part is optional. The legal Fortran condition is anything that can legally go into a Fortran Logi-
cal IF statement. The ratfor preprocessor does not check this clause since it does not know enough Fortran
to know what is permitted. The ratfor statement is any ratfor or Fortran statement or any collection of them
in braces. For example,

if (a <=b)

{ sw = 0; write(6,1) a, b }
else

{sw =1, write(6,1) b, a }

is a valid ratfor if-else construction. This writes out the smaller of 2 and b, then the larger, and sets sw appro-
priately.

As before, if the statement following an if or an else is a single statement, no braces are needed.

Nested “'if’’ Statements

The statement that follows an if or an else can be any ratfor statement including another if or else state-
ment. In general, the structure

if (condition) action
else if (condition) action
else action

provides a way to write a multibranch in ratfor. (The ratfor language also provides a switch statement which
could be used instead, under certain conditions.) The last else handles the “default” condition. If there is no
default action, this final else can be omitted. Thus, only the actions associated with the valid condition are per-
formed. For example: :

if (x < 0)
x=90
else if (x > 100)
x =100
will ensure that x is not less than 0 and not greater than 100.

Nested if and else statements could result in ambiguous code. In ratfor when there is more if statements
than else statements, else statements are associated with the closest previous if statement that currently does

Page 159

PROGRAMMING GUIDE ISSUE 1 6/82

not have an associated else statement. For example:

if (x>0)

if(y > 0)
write(6,1) x, ¥y
else
write(6,2) y

is interpreted by the ratfor preprocessor as

if(x>0)}
if (y > 0)
write(6, 1) x, y
else
write(6, 2) y
}
in which the braces are assumed. If the other association is desired, it must be written as
if (x> 0){
if (y>0)
write(6, 1) x, y
}
else
write(6, 2) y

with the braces specified.
€. The “switch’’ Statemen?

The switch statement provides a way to express multiway branches which branch on the value of some
integer-valued expression. The syntax is

switch (expression) {
case exprl:
Statements
case expr2, expr3:
statements

default:
Statements

}

where each case is followed by an integer expression (or several integer expressions separated by commas).
The switch expression is compared to each case expr until a match is found. Then the statements following
that case are executed. If no cases match expression, then the statements following default are executed.
The default section of 2 switch is optional.

When the statements associated with a case is executed, the entire switch is exited immediately. This is
somewhat different than C language.

F. The “do’’ Statement

The do statement in ratfor is quite similar to the DO statement in Fortran except that it uses no statement
number (braces are used to mark the end of the do instead of a statement number). The syntax of the ratfor

Page 160

6/82 ISSUE 1 PROGRAMMING GUIDE

do statement is

do legal-Fortran-DO-text {
ratfor statements

}

The legal-Fortran-D0O-text must be something that can legally be used in a Fortran DO statement. Thus if a
local version of Fortran allows DO limits to be expressions (which is not currently permitted in ANSI Fortran),
they can be used in a ratfor do statement. The ratfor statements are enclosed in braces; but as with the if,
a single statement need not have braces around it. For example, the following code sets an array to 0:

doi=1n
x(i) = 0.0

and the code

doi=1n

doj=1,n
m(, j) =0
sets the entire array m to zero.
G. The “‘break’” and “next’’ Statements
The ratfor break and next statements provide a means for leaving a loop early and one for beginning

the next iteration. The break causes an immediate exit from the do; in effect, it is a branch to the statement
afterthe do. The next is a branch to the bottom of the loop, so it causes the next iteration to be done. For exam-
ple, this code skips over negative values in an array

doi=1,n{

if (x(i) < 0.0)

next
process postive element

}

The break and next statements will also work in the other ratfor looping constructions and will be discussed
with each looping construction.

The break and next can be followed by an integer to indicate breaking or iterating that level of enclosing
loop. For example:

break 2

exits from two levels of enclosing loops, and
break 1

is equivalent to break. The
next 2

iterates the second enclosing loop.

Page 161

PROGRAMMING GUIDE ISSUE 1 6/82

H. The “while’’ Statement

The ratfor language provides a while statement. The syntax of the while statement is

while (legal-Fortran-condition)
ratfor statement

As with the if, legal-Fortran-conditién is something that can go into a Fortran Logical IF, and ratfor statement
is a single statement which may be multiple statements enclosed in braces.

For example, suppose nextch is a function which returns the next input character both as a function value
and in its argument. Then a while loop to find the first nonblank character could be

while (nextch(ich) == iblank)

where a semicolon by itself is a null statement (which is necessary here to mark the end of the while). If the
semicolon were not present, the while would control the next statement. When the loop is exited, ich contains
the first nonblank.

l. The “‘for’’ Statement

The for statement is another ratfor loop. A for statement allows explicit initialization and increment steps
as part of the statement.

The syntax of the for statement is

for (init; condition; increment)
ratfor statement

where initis any single Fortran statement which is executed once before the loop begins. The increment is any
single Fortran statement that is executed at the end of each pass through the loop before the test. The condition
is again anything that is legal in a Fortran Logical IF. Any of init, condition, and increment may be omitted
although the semicolons must always be present. A nonexistent condition is treated as always true, so

for (;;)

is an infinite loop.
For example, a Fortran DO loop could be written as
fori=l1<=ni=i+1)..
which is equivalent to

i=1
while (i <= n){

i=i+1

}

The initialization and increment of j have been moved into the for statement.

The for and while versions have the advantage that they will be done zero times if nis less than 1. This
is not true of the do. In addition, the break and next statements work in a for loop.

Poge 162

6/82 ISSUE 1 PROGRAMMING GUIDE

The increment in a for need not be an arithmetic progression. The program

sum = 0.0
for (i = first; i > 0; i = ptr(i))
sum = sum + value(i)

steps through a list (stored in an integer array ptr) until a zero pointer is found while adding up elements from
a parallel array of values. Notice that the code also works correctly if the list is empty.

J. The “repeat-until”’ Statement

There are times when a test needs to be performed at the bottom of a loop after one pass through. This facil-
ity is provided by the repeat-until statement. The syntax for the repeat-until statement is

repeat
ratfor statement
until (legal-Fortran-condition)

where ratfor-statement is done once, then the conditionis evaluated. If it is true, the loop is exited; if it is false,
another pass is made.

The until part is optional, so a repeat by itself is an infinite loop. A repeat-until loop can be exited by
the use of a stop, return, or break statement or an implicit stop such as running out of input with a READ
statement.

As stated before, a break statement causes an immediate exit from the enclosing repeat-until loop. A
next statement will cause a skip to the bottom of a repeat-until loop (i.e., to the until part).

K. The “‘return’” Statement

The standard Fortran mechanism for returning a value from a routine uses the name of the routine as a
variable. This variable can be assigned a value. The last value stored in it is the value returned by the function.
For example, in a Fortran routine named equal, the statements

equal =0
return

tause equal to return zero.

The ratfor language provides a return statement similar to the C language return statement. In order
to return a value from any routine, the return statement has the syntax

return (expression)

were expression is the value to be returned.
If there is no parenthesized expression after return, no value is returned.

L: The “‘define’ Statement

The ratfor language provides a define statement similar to the C language version. Any string of alphanu-
meric characters can be defined as a name. Whenever that name occurs in the input (delimited by
nonalphanumerics), it is replaced by the rest of the definition line. (Comments and trailing white spaces are
stripped off.) A defined name can be arbitrarily long and must begin with a letter.

Usually the define statement is used for symbolic parameters. The syntax of the define statement is

define name value

Page 163

PROGRAMMING GUIDE ISSUE 1 6/82
where name is a symbolic name that represents the quantity of value. For example:

define ROWS 100
define CLOS 50
dimension a(ROWS), b(ROWS, COLS)
if i>ROWS | j> COLS)..

causes the p'reprocessor to replace the name ROWS with the value 100 and the name COLS with the value 50.
Alternately, definitions may be written as

define(ROWS, 100)

in which case the defining text is everything after the comma up to the right parenthesis. This allows multiple-
line definitions.

M. The “include’” Statement y

The ratfor language provides an include statement similar to the #include <..> statement in C language.
The syntax for this statement is

include file

which inserts the contents of the named file into the ratfor input file in place of the include statement. The
standard usage is to place COMMON blocks on a file and use the include statement to include the common
code whenever needed.

N. Free-Form Input

In ratfor, statements can be placed anywhere on a line. Long statements are continued automatically as
are long conditions in if, for, and until statements. Blank lines are ignored. Multiple statements may appear
on one line if they are separated by semicolons. No semicolon is needed at the end of a line if ratfor can make
some reasonable guess about whether the statement ends there. Lines ending with any of the characters

= 4+ - * , | &

are assumed to be continued on the next line. Underscores are discarded wherever they occur. All other charac-
ters remain as part of the statement.

Any statement that begins with an all-numeric field is assumed to be a Fortran label and placed in columns
1 through 5 upon output. Thus:

write(6, 100); 100 format("hello")
is converted into

write(6, 100)
100 format(5Shhello)

O. Translations

Text enclosed in matching single or double quotes is converted to nH.. but is otherwise unaltered (except
for formatting—it may get split across card boundaries during the reformatting: process). Within quoted
strings, the backslash (\) serves as an escape character; i.e., the next character is taken literally. This provides
a way to get quotes and the backslash itself into quoted strings. For example:

"\

Page 164

6/82 ISSUE 1 PROGRAMMING GUIDE

is a string containing a backslash and an apostrophe. (This is not the standard convention of doubled quotes,
but it is easier to use and more general.)

Any line that begins with the character % is left absolutely unaltered except for stripping off the % and
moving the line one position to the left. This is useful for inserting control cards and other things that should

not be preprocessed (like an existing Fortran program). Use % only for ordinary statements not for the condi-
tion parts of if, while, etc., or the output may come out in an unexpected place.

The following character translations are made (excépt within single or double quotes or on a line beginning
with a %):

== .eq.
= .ne.
> .gt. ‘
>= .ge.
< At
<= le.
& .and.
! .OT.
! .not.
- .not.

In addition, the following translations are provided for iriput devices with restricted character sets:

[

]

$C

$ |
P. Warnings

The ratfor preprocessor catches certain syntax errors (such as missing braces), else statements without
if statements, and most errors involving missing parentheses in statements.

All other errors are reported by the Fortran compiler. Unfortunately, the Fortran compiler prints messages

in terms of generated Fortran code and not in terms of the ratfor code. This makes it difficult to locate ratfor
statements that contain errors.

~ The keywords are deserved. Using if, else, while, etc., as variable names will cause considerable problems.
Likewise, spaces within keywords and use of the Arithmetic IF will cause problems.

The Fortran nH convention is not recognized by ratfor. Use quotes instead.

Page 165

PROGRAMMING GUIDE ISSUE 1} * 6/82

NOTES

Page 166
166 Pages

	Cadmus_Munix_II_Programming_Guide_Seite_001
	Cadmus_Munix_II_Programming_Guide_Seite_002
	Cadmus_Munix_II_Programming_Guide_Seite_003
	Cadmus_Munix_II_Programming_Guide_Seite_004
	Cadmus_Munix_II_Programming_Guide_Seite_005
	Cadmus_Munix_II_Programming_Guide_Seite_006
	Cadmus_Munix_II_Programming_Guide_Seite_007
	Cadmus_Munix_II_Programming_Guide_Seite_008
	Cadmus_Munix_II_Programming_Guide_Seite_009
	Cadmus_Munix_II_Programming_Guide_Seite_010
	Cadmus_Munix_II_Programming_Guide_Seite_011
	Cadmus_Munix_II_Programming_Guide_Seite_012
	Cadmus_Munix_II_Programming_Guide_Seite_013
	Cadmus_Munix_II_Programming_Guide_Seite_014
	Cadmus_Munix_II_Programming_Guide_Seite_015
	Cadmus_Munix_II_Programming_Guide_Seite_016
	Cadmus_Munix_II_Programming_Guide_Seite_017
	Cadmus_Munix_II_Programming_Guide_Seite_018
	Cadmus_Munix_II_Programming_Guide_Seite_019
	Cadmus_Munix_II_Programming_Guide_Seite_020
	Cadmus_Munix_II_Programming_Guide_Seite_021
	Cadmus_Munix_II_Programming_Guide_Seite_022
	Cadmus_Munix_II_Programming_Guide_Seite_023
	Cadmus_Munix_II_Programming_Guide_Seite_024
	Cadmus_Munix_II_Programming_Guide_Seite_025
	Cadmus_Munix_II_Programming_Guide_Seite_026
	Cadmus_Munix_II_Programming_Guide_Seite_027
	Cadmus_Munix_II_Programming_Guide_Seite_028
	Cadmus_Munix_II_Programming_Guide_Seite_029
	Cadmus_Munix_II_Programming_Guide_Seite_030
	Cadmus_Munix_II_Programming_Guide_Seite_031
	Cadmus_Munix_II_Programming_Guide_Seite_032
	Cadmus_Munix_II_Programming_Guide_Seite_033
	Cadmus_Munix_II_Programming_Guide_Seite_034
	Cadmus_Munix_II_Programming_Guide_Seite_035
	Cadmus_Munix_II_Programming_Guide_Seite_036
	Cadmus_Munix_II_Programming_Guide_Seite_037
	Cadmus_Munix_II_Programming_Guide_Seite_038
	Cadmus_Munix_II_Programming_Guide_Seite_039
	Cadmus_Munix_II_Programming_Guide_Seite_040
	Cadmus_Munix_II_Programming_Guide_Seite_041
	Cadmus_Munix_II_Programming_Guide_Seite_042
	Cadmus_Munix_II_Programming_Guide_Seite_043
	Cadmus_Munix_II_Programming_Guide_Seite_044
	Cadmus_Munix_II_Programming_Guide_Seite_045
	Cadmus_Munix_II_Programming_Guide_Seite_046
	Cadmus_Munix_II_Programming_Guide_Seite_047
	Cadmus_Munix_II_Programming_Guide_Seite_048
	Cadmus_Munix_II_Programming_Guide_Seite_049
	Cadmus_Munix_II_Programming_Guide_Seite_050
	Cadmus_Munix_II_Programming_Guide_Seite_051
	Cadmus_Munix_II_Programming_Guide_Seite_052
	Cadmus_Munix_II_Programming_Guide_Seite_053
	Cadmus_Munix_II_Programming_Guide_Seite_054
	Cadmus_Munix_II_Programming_Guide_Seite_055
	Cadmus_Munix_II_Programming_Guide_Seite_056
	Cadmus_Munix_II_Programming_Guide_Seite_057
	Cadmus_Munix_II_Programming_Guide_Seite_058
	Cadmus_Munix_II_Programming_Guide_Seite_059
	Cadmus_Munix_II_Programming_Guide_Seite_060
	Cadmus_Munix_II_Programming_Guide_Seite_061
	Cadmus_Munix_II_Programming_Guide_Seite_062
	Cadmus_Munix_II_Programming_Guide_Seite_063
	Cadmus_Munix_II_Programming_Guide_Seite_064
	Cadmus_Munix_II_Programming_Guide_Seite_065
	Cadmus_Munix_II_Programming_Guide_Seite_066
	Cadmus_Munix_II_Programming_Guide_Seite_067
	Cadmus_Munix_II_Programming_Guide_Seite_068
	Cadmus_Munix_II_Programming_Guide_Seite_069
	Cadmus_Munix_II_Programming_Guide_Seite_070
	Cadmus_Munix_II_Programming_Guide_Seite_071
	Cadmus_Munix_II_Programming_Guide_Seite_072
	Cadmus_Munix_II_Programming_Guide_Seite_073
	Cadmus_Munix_II_Programming_Guide_Seite_074
	Cadmus_Munix_II_Programming_Guide_Seite_075
	Cadmus_Munix_II_Programming_Guide_Seite_076
	Cadmus_Munix_II_Programming_Guide_Seite_077
	Cadmus_Munix_II_Programming_Guide_Seite_078
	Cadmus_Munix_II_Programming_Guide_Seite_079
	Cadmus_Munix_II_Programming_Guide_Seite_080
	Cadmus_Munix_II_Programming_Guide_Seite_081
	Cadmus_Munix_II_Programming_Guide_Seite_082
	Cadmus_Munix_II_Programming_Guide_Seite_083
	Cadmus_Munix_II_Programming_Guide_Seite_084
	Cadmus_Munix_II_Programming_Guide_Seite_085
	Cadmus_Munix_II_Programming_Guide_Seite_086
	Cadmus_Munix_II_Programming_Guide_Seite_087
	Cadmus_Munix_II_Programming_Guide_Seite_088
	Cadmus_Munix_II_Programming_Guide_Seite_089
	Cadmus_Munix_II_Programming_Guide_Seite_090
	Cadmus_Munix_II_Programming_Guide_Seite_091
	Cadmus_Munix_II_Programming_Guide_Seite_092
	Cadmus_Munix_II_Programming_Guide_Seite_093
	Cadmus_Munix_II_Programming_Guide_Seite_094
	Cadmus_Munix_II_Programming_Guide_Seite_095
	Cadmus_Munix_II_Programming_Guide_Seite_096
	Cadmus_Munix_II_Programming_Guide_Seite_097
	Cadmus_Munix_II_Programming_Guide_Seite_098
	Cadmus_Munix_II_Programming_Guide_Seite_099
	Cadmus_Munix_II_Programming_Guide_Seite_100
	Cadmus_Munix_II_Programming_Guide_Seite_101
	Cadmus_Munix_II_Programming_Guide_Seite_102
	Cadmus_Munix_II_Programming_Guide_Seite_103
	Cadmus_Munix_II_Programming_Guide_Seite_104
	Cadmus_Munix_II_Programming_Guide_Seite_105
	Cadmus_Munix_II_Programming_Guide_Seite_106
	Cadmus_Munix_II_Programming_Guide_Seite_107
	Cadmus_Munix_II_Programming_Guide_Seite_108
	Cadmus_Munix_II_Programming_Guide_Seite_109
	Cadmus_Munix_II_Programming_Guide_Seite_110
	Cadmus_Munix_II_Programming_Guide_Seite_111
	Cadmus_Munix_II_Programming_Guide_Seite_112
	Cadmus_Munix_II_Programming_Guide_Seite_113
	Cadmus_Munix_II_Programming_Guide_Seite_114
	Cadmus_Munix_II_Programming_Guide_Seite_115
	Cadmus_Munix_II_Programming_Guide_Seite_116
	Cadmus_Munix_II_Programming_Guide_Seite_117
	Cadmus_Munix_II_Programming_Guide_Seite_118
	Cadmus_Munix_II_Programming_Guide_Seite_119
	Cadmus_Munix_II_Programming_Guide_Seite_120
	Cadmus_Munix_II_Programming_Guide_Seite_121
	Cadmus_Munix_II_Programming_Guide_Seite_122
	Cadmus_Munix_II_Programming_Guide_Seite_123
	Cadmus_Munix_II_Programming_Guide_Seite_124
	Cadmus_Munix_II_Programming_Guide_Seite_125
	Cadmus_Munix_II_Programming_Guide_Seite_126
	Cadmus_Munix_II_Programming_Guide_Seite_127
	Cadmus_Munix_II_Programming_Guide_Seite_128
	Cadmus_Munix_II_Programming_Guide_Seite_129
	Cadmus_Munix_II_Programming_Guide_Seite_130
	Cadmus_Munix_II_Programming_Guide_Seite_131
	Cadmus_Munix_II_Programming_Guide_Seite_132
	Cadmus_Munix_II_Programming_Guide_Seite_133
	Cadmus_Munix_II_Programming_Guide_Seite_134
	Cadmus_Munix_II_Programming_Guide_Seite_135
	Cadmus_Munix_II_Programming_Guide_Seite_136
	Cadmus_Munix_II_Programming_Guide_Seite_137
	Cadmus_Munix_II_Programming_Guide_Seite_138
	Cadmus_Munix_II_Programming_Guide_Seite_139
	Cadmus_Munix_II_Programming_Guide_Seite_140
	Cadmus_Munix_II_Programming_Guide_Seite_141
	Cadmus_Munix_II_Programming_Guide_Seite_142
	Cadmus_Munix_II_Programming_Guide_Seite_143
	Cadmus_Munix_II_Programming_Guide_Seite_144
	Cadmus_Munix_II_Programming_Guide_Seite_145
	Cadmus_Munix_II_Programming_Guide_Seite_146
	Cadmus_Munix_II_Programming_Guide_Seite_147
	Cadmus_Munix_II_Programming_Guide_Seite_148
	Cadmus_Munix_II_Programming_Guide_Seite_149
	Cadmus_Munix_II_Programming_Guide_Seite_150
	Cadmus_Munix_II_Programming_Guide_Seite_151
	Cadmus_Munix_II_Programming_Guide_Seite_152
	Cadmus_Munix_II_Programming_Guide_Seite_153
	Cadmus_Munix_II_Programming_Guide_Seite_154
	Cadmus_Munix_II_Programming_Guide_Seite_155
	Cadmus_Munix_II_Programming_Guide_Seite_156
	Cadmus_Munix_II_Programming_Guide_Seite_157
	Cadmus_Munix_II_Programming_Guide_Seite_158
	Cadmus_Munix_II_Programming_Guide_Seite_159
	Cadmus_Munix_II_Programming_Guide_Seite_160
	Cadmus_Munix_II_Programming_Guide_Seite_161
	Cadmus_Munix_II_Programming_Guide_Seite_162
	Cadmus_Munix_II_Programming_Guide_Seite_163
	Cadmus_Munix_II_Programming_Guide_Seite_164
	Cadmus_Munix_II_Programming_Guide_Seite_165
	Cadmus_Munix_II_Programming_Guide_Seite_166
	Cadmus_Munix_II_Programming_Guide_Seite_167
	Cadmus_Munix_II_Programming_Guide_Seite_168

