Support Tools Guide

UNIX System



Trademarks:
MUNIX, CADMUS *for PCS
UNKX for Bell Laboratories
DEC, PDP, VAX for DEC
MASSBUS, UNIBUS
KODAK, EKTAMATIC for Eastman Kodak Company
Mohrfiow, Mohrdry, for Mohr Lino-Saw Comp.

Mohrchem

TEKTRONIX for Tektronik, Inc.
TELETYPE for Teletype Corporation
TRENDATA 4000A® for Trendata Corporation
Versatec for Versatec Corporation
DIABLO for Xerox Corporation

Copyright 1984 by
PCS GmbH, Pfilzer-Wald-Strasse 36, D-8000 MGnchen 90, tel. (089) 87804-0

The information contained herein is the property of PCS and shall neither be reproduced in
whole or In part without PCS’s prior written approval nor be implied to grant any license to
make, use or sell equipment manufactured herewith.

PCS reserves the right to make changes without notice in the specifications and materials
contained herein and shall not be responsible for any damages (including consequential)

caused by reliance on the materials presented.



1/83 ADD ISSUE 1

SUPPORT TOOLS GUIDE

UNIX SYSTEM

CONTENTS
1. INTRODUCTION . . . . . . . . . .« . . « «
2. A PROGRAM FOR MAINTAINING COMPUTER PROGRAMS (make)
GENERAL
BASIC FEATURES
DESCRIPTION FILES AND SUBSTITUTIONS
COMMANDUSAGE . . . . . . . . .
SUFFIXES AND TRANSFORMATION RULES
IMPUCITRULES . . . . . . . . . .
SUGGESTIONS AND WARNINGS
3. AUGMENTED VERSION OF MAKE
GENERAL . . . .
THE ENVIRONMENT VARIABLES . .
RECURSIVE MAKEFILES . . . . .
FORMAT OF SHELL COMMANDS WITHIN make
ARCHIVE UBRARIES . . . . . . .
SOURCE CODE CONTROL SYSTEM FILE NAMES: THE TILDE
THENUWSUFAIX . . . . . . . . « . . . .
INCLUDE FILES
INVISIBLE SCCS MAKEFILES

DYNAMIC DEPENDENCY PARAMETERS

SUPPORT TOOLS

PAGE

Page

N

n

13

15

16

17

18

19

pa

21

21

22

23

23

24

25

26

26

26

1



SUPPORT TOOLS

EXTENSIONS OF $*, $@, AND $<

CONTENTS

OUTPUT TRANSLATIONS .

ISSUE 1}

4. SOURCE CODE CONTROL SYSTEM USER’S GUIDE

GENERAL . . . . . . .

SCCS FOR BEGINNERS . .

A.

F.

Terminology

Creating an SCCS File via “admin’’

Retrieving a File via “'get”’

Recording Changes via “‘delta”

Additional Information About “‘get’’

The “help’’ Command

DELTA NUMBERING

SCCS COMMAND CONVENTIONS

SCCS COMMANDS . . . .
A. The “get’’ Command

B. The “delta” Cornr_nund
C. The “admin” Command
D. The “‘prs"”’ Command

E. The “help’” Command

F. The “rrndel’f Command
G. The “edc”” Command

H. The “what’” Command
.  The “scadiff’” Command
J.  The “comb’ Command
K. The “val”’ Command
SCCS FILES

Page 2

*»

6/82

PAGE
27
27
41
41
41
42
42
42
43
44
45
45
47
48
49
35
57
59
61
61
62
62
63

63
64

64



6/82

A.

(o8

CONTENTS
Protection
Formatting . . .

Auditing e e

AN SCCS INTERFACE PROGRAM

A.

of

D.

General . . .
Function
A Basic Program

linking and Use .

THE M4 MACRO PROCESSOR

GENERAL . . . . .

DEFINING MACROS . .

ARGUMENTS . . . .

ARITHMETIC BUILT-INS

FILE MANIPULATION .

SYSTEM COMMAND .

CONDITIONALS .

STRING MANIPULATION

PRINTING . . .

THE “awk’’ PROGRAMMING LANGUAGE

GENERAL . . . . .
A. Usage . e e
B. Program Structure

C.  Records and Fields

D. Printing .
PATTERNS . . .

A. “BEGIN" and “END"

ISSUE 1

SUPPORT TOOLS

PAGE
64

65

66
67
67

71

n

74

75

75

81

81

82

83

83

Page 3



SUPPORT TOOLS ISSUE 1

CONTENTS
B. Regular Expressions
C. Relational Expressions

D. Combinations of Patterns . . . . . . .

E. Pattern Ranges e e e e e e e e e
ACTIONS .. . . . . . .
A. BuiltsiinFunctions . . . . . . . . . .

B. Variables, Expressions, and Assignments

C. Field Variables e e e e e e e e e
D. String Concatenation

E. Arays e e e e e e e e e e e e e e
F. Flow-of-Control Statements . . . . . . . . .

7. ARBITRARY PRECISION DESK CALCULATOR LANGUAGE (BC)

GENERAL . . .+ + v v v v v e e e e e
SIMPLE COMPUTATIONS WITH INTERGERS . . . . . .
BASES . . . . . e e e e e e e e e e
SCAUNG . . + v v v v e e e e e
FUNCTIONS . . . « « v v v e v v e e e u

SUBSCRIPTED VARIABLES . . . .

" CONTROLSTATEMENTS . . . . . . . . . . .

ADDITIONAL FEATURES . . . . . . . . . . . .
8. INTERACTIVE DESK CALCULATOR (DC)

GENERAL . . . . . . . . .

DCCOMMANDS . . . . . . . . . . ..

INTERNAL REPRESENTATION OF NUMBERS

THE ALOCATOR . . . .

INTERNAL ARITHMETIC

Page 4

6/82

PAGE
84
85
85
85
86
86
86
87
88
88
89
91
9N
91
92
93
%
.95
95
97

105
105
105
107
107

108



6/82

9.

CONTENTS

ADDITION AND SUBTRACTION .

MULTIPUCATION e e e e e e e
DIVISION . . . . . . . . . . .
REMAINDER . . . . . . . . .
SQUAREROOT . . . . . . . .
EXPONENTIATION

INPUT CONVERSION AND BASE R
OUTPUT COMMANDS . . . .

OUTPUT FORMAT AND BASE o e e .
INTERNAL REGISTERS

STACK COMMANDS e e e e e e e
SUBROUTINE DEFINITIONS AND CALLS
INTERNAL REGISTERS—PROGRAMMING DC
PUSHDOWN REGISTERS AND ARRAYS .
MISCELLANEOUS COMMANDS . . .
DESIGN CHO_ICES e e e e e e

LEXICAL ANALYZER GENERATOR (LEX) .

GENERAL . . . . . . . . . . .
LEXSOURCE . . . . . . . .

LEX REGULAR EXPRESSIONS . . . .

A. Operatos . . . . . . . . .
B. Character Clusses" e e e .

C. ArbitraryCharacter . . . . . ,
D. Optional Expressions e e e e s
E. Repeated Expressions . . . . .

f. Alternation and Grouping

ISSUE 1

SUPPORT TOOLS

PAGE

e e+ 4 4« « 4 4« « .« . . 108
T [ 1]
e+ « « <« « . . 108
T [
109

e e e e e . . . 109

109

D e A 1
L A 1)
T R [

E R R [

L R [

D R 1

T B &
D B
S R £
S R
e A

T A 1

Page 5



SUPPORT TOOLS

CONTENTS
G. Context Sensitivity
H. Repetitions and Definitions
LEX ACTIONS

AMBIGUOUS SOURCE RULES

LEX SOURCE DEFINITIONS

USAGE . .

LEX AND YACC

EXAMPLES .

LEFT CONTEXT SENSITIVITY

CHARACTER SET

SUMMARY OF SOURCE FORMAT
- CAVEATS AND BUGS

10. YET ANOTHER COMPLIER—COMPLIER (yacc)

GENERAL . . . .
. BASIC SPECIFICATIONS

ACTIONS

LEXICAL ANALYSIS

PARSER OPERATION

AMBIGUITY AND CONFLCTS

PRECEDENCE

ERROR HANDUNG

THE “‘yacc”” ENVIRONMENT

X3

HINTS FOR PREPARING SPECIFICATIONS

A

C.

Page 6

Input Style .
Left Recursion

Lexical Tie-ins

ISSUE 1

6/82

PAGE
18
e
119
121
123
124
124
125

126

. 128
128

. 129

131

. 131

133
134
137
138
141

145

. 147

149

. 150

. 150

. 150

151



6/82

CONTENTS
D. ReservedWords . . . . . . .
ADVANCEDTOPICS . . . . . . . .
A. Simulating Error and Accept in Actions
B. Accessing Values in Enclosing Rules
C.  Support for Arbitrary Value Types

ISSUE 1

SUPPORT TOOLS

PAGE
152
152
152
D F- V)

S

Page 7



SUPPORT TOOLS ISSUE 1 6/82

NOTES

Page 8



6/82 ISSUE 1 SUPPORT TOOLS

1. INTRODUCTION

The SUPPORT TOOLS volume is a description of the various software “tools” which may aid the UNIX op-
erating system user. The following paragraphs contain a brief description of each section.

The section A PROGRAM FOR MAINTAINING COMPUTER PROGRAMS (make) describes a software tool
for maintaining, updating, and regenerating groups of computer programs. The many activities of program de-
velopment and maintenance are made simplier by the make program.

The section AUGMENTED VERSION OF “make” describes the modifications made to handle many of the
problems within the original make program.

The section SOURCE CODE CONTROL SYSTEM USER'S GUIDE describes the collection of SCCS pro-
grams under the UNIX operating system. The SCCS programs act as a “custodian” over the UNIX system files.

The section THE M4 MACRO PROCESSOR describes the front end for rational Fortran and C programming
language.

The section THE “awk” PROGRAMMING LANGUAGE describes a software tool designed to make many
common information retrieval and text manipulation tasks easy to state and to perform.

The section ARBITRARY PRECISION DESK CALCULATOR LANGUAGE (BC) describes a compiler for
doing arbitrary precision arithmetic on the UNIX operating system.

The section INTERACTIVE DESK CALCULATOR (DC) describes a program implemented on the UNIX
operating system to do arbitrary-precision integer arithmetic.

The section LEXICAL ANALYZER GENERATOR (Lex) describes a software tool designed for lexical pro-
cessing of character input streams.

The section YET ANOTHER COMPILER —COMPILER (yacc) describes the yacc program. The yace pro-
gram provides a general tool for imposing structure on the input to a computer program.

The support tools provide an added dimension to the basic UNIX software commands. The “tools” deseribed
will enable the user to fully utilize the UNIX operating system.

Page 9
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2. A PROGRAM FOR MAINTAINING COMPUTER PROGRAMS (make)
GENERAL

In a programming project, a common practice is to divide large programs into smaller pieces that are more
manageable. The pieces may require several different treatments such as being processed by a macro processor
or sophisticated program generators (e.g., Yacc or Lex). The project continues to become more complex as the
output of these generators may be compiled with special options and with certain definitions and declarations.
A sequence of code transformations develops which is difficult to remember. The resulting code may need fur-
ther transformation by loading the code with certain libraries under control of special options. Related mainte-
nance activities also complicate the process further by running test scripts and installing validated modules.
Another activity which complicates program development is a long editing session. A programmer may lose
track of the files changed and the object modules still valid especially when a change to a declaration can make
a dozen other files obsolete. The programmer must also remember to compile a routine that has been changed
or that uses changed declarations.

A programmer can easily forget which files depend on which other files, which files have been modified re-
cently, which files need to be reprocessed or recompiled after a change in some part of the source, and the exact
sequence of operations needed to make or exercise a new version of the program. The many activities of program
development and maintenance are made simpler by the make program. The make program is used to main-
tain, update, and regenerate groups of computer programs.

The make program provides a method for maintaining up-to-date versions of programs that result from
many operations on a number of files. The make program can keep track of the sequence of commands that
create certain files and the list of files that require other files to be current before the operations can be done.
Whenever a change is made in any part of a program, the make command will create the proper. files simply,
correctly, and with a minimum amount of effort. The make program also provides a simple macro substitution
facility and the ability to encapsulate commands in a single file for convenient administration.

The basic operation of make is to find the name of a needed target file in the description, ensure that all
of the files on which it depends exist and are up to date, and then create the target file if it has not been modified
since its generators were. The descriptor file really defines the graph of dependencies. The make program de-
termines the necessary work by performing a depth-first search of the graph of dependencies.

If the information on interfile dependences and command sequences is stored in a file, the simple command
make

is frequently sufficient to update the interesting files regardless of the number edited since the last make. In
most cases, the description file is easy to write and changes infrequently. It is usually easier to type the make
command than to issue even one of the needed operations, so the typical cycle of program development opera-
tions becomes:

think - edit - make - test ...

The make program is most useful for medium-sized programming projects. The make program does not
solve the problems of maintaining multiple source versions or of describing huge programs.

As an example of the use of make, the description file used to maintain the make command is given. The
code for make is spread over a number of C language source files and a Yace grammar. The description file
contains:

# Description file for the Make command

P=und -3 | opr -r2 f send to be printed
FILES = Makefile version.c defs main.c doname.c¢ misc.c files.c dosys.c
gram.y lex.c geos.c
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OBJECTS = version.c main.o doname.o misc.o files.o dosys.o gram.o

LIBES= -IS
LINT = lint =p
CFLAGS = -0

make:  $(OBJECTS)

ce $(CFLAGS) $(OBJECTS) $(LIBES) —o make
size make

$(OBJECTS): defs
gram.0: lex.c

cleanup:

-rm *.0 gram.c
-du

install:
@size make /usr/bin/make
-cp make /usr/bin/make ; rm make

printt $(FILES) f print recently changed files
pr $7 1 $P
touch print

test:

make —dp | grep —v TIME >1lzap
/usr/bin/make —dp | grep —v TIME >2zap
diff lzap 2zap

rm lzap 2zap

lint: dosys.c doname.c files.c main.c misc.c version.c gram.c
$(LINT) dosys.c doname.c files.c main.c misc.c version.c gram.c
rm gram.c

arch:
ar uv /sys/source/s2/make.a $(FILES)

The make program usually prints oﬁt each command before issuing it.

The following output results from typing the simple command make in a directory containing only the
source and description file:

cc —0 —c version.c

cc —0 —c main.c

cc —0 —c doname.c

cc —0 —c misc.c

cc —0 —cfiles.c

c¢c —O0 —c dosys.c

yacc gram.y

mv y.tab.c gram.c

cc —0 —c gram.c

cc version.o main.o doname.o misc.o files.o dosys.o
gram.o -—|S —o make

13188+334843044 = 19580b = 046174b
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Although none of the source files or grammars were mentioned by name in the description file, make found
them using its suffix rules and issued the needed commands. The string of digits results from the size make
command. The printing of the command line itself was suppressed by an @ sign. The @ sign on the size com-
mand in the description file suppressed the printing of the command, so only the sizes are written.

The last few entries in the description file are useful maintenance sequences. The “print” entry prints only
the files changed since the last make print command. A zero-length file print is maintained to keep track of
the time of the printing. The $? macro in the command line then picks up only the names of the files changed
since printwas touched. The printed output can be sent to a different printer or to a file by changing the defini-
tion of the P macro as follows:

make print " P = opr —sp "
or
make print " P= cat >zap"
BASIC FEATURES

The basic operation of make is to update a target file by ensuring that all of the files on which the target
file depends exist and are up-to-date. The target file is created if it has not been modified since the dependents
were. The make program does a depth-first search of the graph of dependences. The operation of the command
depends on the ability to find the date and time that a file was last modified.

To illustrate, consider a simple example in which a program named prog is made by compiling and loading
three C language files x.¢, y.c, and z.cwith the IS library. By convention, the output of the C language compila-
tions will be found in files named x.0, y.0, and zo. Assume that the files x.c and y.c share some declarations in
a file named defs, but that zc¢ does not. That is, x.c and y.c have the line:

finclude "defs"
The following text describes the relationships and operations:

prog: X.0 y.0 z.0
. ¢c Xx.0 y.0 z.0 —IS —o prog

x0 y.0: defs
If this information were stored in a file named makefile, the command

make

would perform the operations needed to recreate prog after any changes had been made to any of the four
source files x.c, y.¢ z.¢ or defs

The make program operates using the following three sources of information:
o a user-supplied description file
e file names and “last-modified” times from the file system
¢ built-in rules to bridge some of the gaps.

In our example, the first line states that prog depends on three “.0” files. Once these object files are current,
the second line describes how to load them to create prog. The third line states that x.0 and y.0 depend on the
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file defs. From the file system, make discovers that there are three “.¢’ files corresponding to the needed “.0”
files and uses built-in information on how to generate an object from a source file (i.e., issue a “cc —¢” command).

Not taking advantage of make’s innate knowledge results in the following longer description file using the
same example:

prog : x.0 y.0 2.0
cc Xx.0 y.0 z.0 —-1S —o prog
x.0: x.c defs

ec —C Xx.c
y.0: y.c defs
cc —¢ Y.
2.0. Z.C
cc —C z.C

If none of the source or object files had changed since the last time prog was made, all of the files would
be current, and the command

make

would just announce this fact and stop. If, however, the defsfile had been edited, x.cand y.c (but not z.c) would
be recompiled; and then prog would be created from the new “.0” files. If only the file y.c had changed, only
it would be recompiled; but it would still be necessary to reload prog. If no target name is given on the make
command line, the first target mentioned in the description is created; otherwise, the specified targets are made.
The command

make x.0
would recompile x.o if x.c or defs had changed.

If the file exists after the commands are executed, the file’s time of last modification is used in further deci-
sions. If the file does not exist after the commands are executed, the current time is used in making futher deci-
sions. Often a method useful to programmers is to include rules with mnemonic names and commands that do
not actually produce a file with that name. These entries can take advantage of make's ability to generate files
and substitute macros. Thus, an entry “save” might be included to copy a certain set of files, or an entry “clean-
up” might be used to throw away unneeded intermediate files. In other cases, one may maintain a zero-length
file purely to keep track of the time at which certain actions were performed. This technique is useful for main-
taining remote archives and listings.

The make program has a simple macro mechanism for substituting in dependency lines and command
strings. Macros are defined by command arguments or description file lines with embedded equal signs. A macro
is invoked by preceding the name by a dollar sign. Macro names longer than one character must be parenthe-
sized. The name of the macro is either the single character after the dollar sign or a name inside parentheses.
The following are valid macro invocations:

$(CFLAGS)
$2

$(xy)

$Z

$(2)

The last two invocations are identical. A $$ is a dollar sign.

The $*, $@, $?, and $< are four special macros which change values during the execution of the command.
(These four macros are described in the part “DESCRIPTION FILES AND SUBSTITUTIONS".) The following
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fragment shows assignment and use of some macros:

OBJECTS = x.0 y.0 z.0
LIBES = -IS§
prog. $(OBJECTS)
cc $(OBJECTS) $(LIBES) —o prog

The make command loads the three object files with the 1S library. The command
make " LIBES= -1l -IS"

loads them with both the Lex (—Il) and the standard (—IS) libraries since macro definitions on the command
line override definitions in the description. Remember to quote arguments with embedded blanks in UNIX soft-
ware commands.

DESCRIPTION FILES AND SUBSTITUTIONS
A description file contains the following information:
e macro definitions
e dependency information
e executable commands.

The comment convention is that a sharp (f) and all characters on the same line after a sharp are ignored. Blank
lines and lines beginning with a sharp () are totally ignored. If a noncomment line is too long, the line can be
continued by using a backslash. If the last character of a line is a backslash, then the backslash, the new line,
and all following blanks and tabs are replaced by a single blank.

A macro definition is a line containing an equal sign not preceded by a colon or a tab. The name (string of
letters and digits) to the left of the equal sign (trailing blanks and tabs are stripped) is assigned the string of
characters following the equal sign (leading blanks and tabs are stripped). The following are valid macro defini-
tions:

2= xyz
abe = ~1l —ly =IS
LIBES =

The last definition assigns LIBES the null string. A macro that is never explicitly defined has the null string
as the macro’s value.

Macro definitions may also appear on the make command line while other lines give information about
target files. The general form of an entry is:

targetl [target2..) :[:] [dependentl..) [; commands] [f..)
{(tab) commands] (f...]

Items inside brackets may be omitted. Targets and dependents are strings of letters, digits, periods, and slashes.
Shell metacharacters such as “*” and “?” are expanded. Commands may appear either after a semicolon on a
dependency line or on lines beginning with a tab immediately following a dependency line. A command is any
string of characters not including a sharp (#) except when the sharp is in quotes or not including a new line.
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A dependency line may have either a single or a double colon. A target name may appear on more than one
dependency line, but all of those lines must be of the same (single or double colon) type. For the usual single-
colon case, 2 command sequence may be associated with at most one dependency line. If the target is out of date
with any of the dependents on any of the lines and a command sequence is specified (even a null one following
a semicolon or tab); it is executed; otherwise, a default creation rule may be invoked. In the double-colon case,
a command sequence may be associated with each dependency line; if the target is out of date with any of the
fileson a partlcular line, the associated commands are executed. A built-in rule may also be executed This de-
tailed form is of particular value in updating archive-type files.

If a target must be created, the sequence of commands is executed. Normally, each command line is printed
and then passed to a separate invocation of the shell after substituting for macros. The printing is suppressed
in the silent mode or if the command line begins with an @ sign. Make normally stops if any command signals
an error by returning a nonzero error code. Errors are ignored if the —i flags has been specified on the make
command line, if the fake target name “.JGNORE" appears in the description file, or if the command string in
the description file begins with a hyphen. Some UNIX software commands return meaningless status. Because
each command line is passed to a separate invocation of the shell, care must be taken with certain commands
(e.g., cd and shell control commands) that have meaning only within a single shell process. These results are
forgotten before the next line is executed.

Before issuing any command, certain internally maintained macros are set. The $@ macro is set to the full
target name of the current target. The $@ macro is evaluated only for explicitly named dependencies. The $?
macro is set to the string of names that were found to be younger than the target. The $? macro is evaluated
when explicit rules from the makefile are evaluated. If the command was generated by an implicit rule, the $<
macro is the name of the related file that caused the action; and the $* macro is the prefix shared by the cur-
rent and the dependent file names. If a file must be made but there are no explicit commands or relevant built-in
rules, the commands associated with the name “.DEFAULT" are used. If there is no such name, make prints
a message and stops.

COMMAND USAGE

The make command takes macro definitions, flags, description file names, and target file names as argu-
ments in the form:

make [ flags ) [ macro definitions ] [ targets ]
The following summary of command operations explains how these arguments are interpreted.

First, all macro definition arguments (arguments with embedded equal signs) are analyzed and the assign-
ments made. Command-line macros override corresponding definitions found in the description files. Next, the
flag arguments are examined. The permissible flags are:

-i Ignore error codes returned by invoked commands. This mode is entered if the fake target
name “JGNORE" appears in the description file.

-5 Silent mode. Do not print command lines before executing. This mode is also entered if the
fake target name “.SILENT” appears in the description file.

-r Do not use the built-in rules.

-n No execute mode. Print commands, but do not execute them. Even lines beginning with an
“@" sign are printed.

-t Touch the target files (causing them to be up to date) rather than issue the usual com-
mands.

-q Question. The make command returns a zero or nonzero status code depending on whether

the target file is or is not up to date.
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-p Print out the complete set of macro definitions and target descriptions.

-d Debug mode. Print out detailed information on files and times examined.

-f Description file name. The next argument is assumed to be the name of a description file.
A file name of “~" denotes the standard input. If there are no.“~f "arguments, the file

named makefile or Makefile in the current directory is read. The contents of the descrip-
tion files override the built-in rules if they are present.

Finally, the remaining arguments are assumed to be the names of targets to be made, and the arguments
are done in left to right order. If there are no such arguments, the first name in the description files that does
not begin with a period is “made”.

SUFFIXES AND TRANSFORMATION RULES

The make program does not know what file name suffixes are interesting or how to transform a file with
one suffix into a file with another suffix. This information is stored in an internal table that has the form of
a description file. If the —r flag is used, the internal table is not used.

The list of suffixes is actually the dependency list for the name “.SUFFIXES". The make program searches
for a file with any of the suffixes on the list. If such a file exists and if there is a transformation rule for that
combination, make transforms a file with one suffix into a file with another suffix. The transformation rule
names are the concatenation of the two suffixes. The name of the rule to transform a .rfile to a .o file is thus
.r.o. If the rule is present and no explicit command sequence has been given in the user’s description files, the
command sequence for the rule .r.o is used. If a command is generated by using one of these suffixing rules,
the macro $* is given the value of the stem (everything but the suffix) of the name of the file to be made; and
the macro $< is the name of the dependent that caused the action.

The order of the suffix list is significant since the list is scanned from left to right. The first name formed
that has both a file and a rule associated with it is used. If new names are to be appended, the user can add
an entry for “.SUFFIXES” in his own description file. The dependents will be added to the usual list. A “.SUF-
FIXES” line without any dependents deletes the current list. It is necessary to clear the current list if the order
of names is to be changed. The following is an excerpt from the default rules file:

SUFFIXES: 0.c.er f.y.yr.ye.l.s
YACC = yacc
YACCR = yacc —r
YACCE = yacc —e
YFLAGS =
LEX = lex
LFLAGS =
CC = cc
AS = as —
CFLAGS =
RC = ec
RFLAGS =
EC=ec
EFLAGS =
FFlags =
.c0:
$(CC) $(CFLAGS) —c $<
.e.0.ro.fo:
$(EC) $(RFLAGS) $(EFLAGS) $(FFLAGS) —c $<
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5.0

$(AS) -0 $@ $<

.y.o:
$(YACC) $(YFLAGS) $<
$(CC) $(CFLAGS) —c y.tab.c
rm y.tab.c
mv y.tab.o $@

Jy.e:
$(YACC) $(YFLAGS) $<
mv y.tab.c $@

IMPUCIT RULES

The make program uses a table of interesting suffixes and a set of transformation rules to supply default
dependency information and implied commands. The. default suffix list is:

.0 Object file

.c C source file

.e Efl source file

.r Ratfor source file

S Fortran source file

.S Assembler source file

.y Yacc-C source grammar

yr Yacc-Ratfor source grammar
.ye Yace-Efl source grammar

A Lex source grammar

Figure 2.1 summarizes the default transformation paths. If there are two paths connecting a pair of suffixes,
the longer one is used only if the intermediate file exists or is named in the description.

If the file x.owere needed and there were an x.cin the description or directory, the x.ofile would be compiled.
If there were also an x.], that grammar would be run through Lex before compiling the result. However, if there

were no x.cbut there were an x.Il make would discard the intermediate C language file and use the direct link
as shown in Fig. 2.1.

It is possible to change the names of some of the compilers used in the default or the flag arguments with

which they are invoked by knowing the macro names used. The compiler names are the macros AS, CC, RC,
EC, YACC, YACCR, YACCE, and LEX. _The command

make CC=newce

will cause the newcc command to be used instead of the usual C language compiler. The macros CFLAGS,
RFLAGS, EFLAGS, YFLAGS, and LFLAGS may be set to cause these commands to be issued with optional
flags. Thus

make " CFLAGS=-0"
causes the optimizing C language compiler to be used.
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.r .e . .s .y .yr.ye .1 .d

|

Fig. 2.1 — Summary of Default Transfermation Path

1 .yr .ye

SUGGESTIONS AND WARNINGS
The most common difficulties arise from make’s specific meaning of dependency. If file x.c has a “finclude
" defs" ” line, then the object file x.0 depends on defs; the source file x.c does not. If defs is changed, nothing
is done to the file x.¢c while file x.0 must be recreated.
To discover what make would do, the —n option is very useful. The command
make —n
orders make to print out the commands which make would issue without actually taking the time to execute
them. If a change to a file is absolutely certain to be mild in character (e.g., adding a new definition to an include
file), the —t (touch) option can save a lot of time. Instead of issuing a large number of superfluous
recompilations, make updates the modification times on the affected file. Thus, the command
make —ts

“touch silently” causes the relevant files to appear up to date. Obvious care is necessary since this mode of opera-
tion subverts the intention of make and destroys all memory of the previous relationships.

The debugging flag (—d) causes make to print out a very detailed description of what it is doing including
the file times. The output is verbose and recommended only as a last resort.
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3. AUGMENTED VERSION OF MAKE
GENERAL

This section describes an augmented version of the make command of the UNIX operating system. The
augmented version is upward compatible with the old version. This section describes and gives examples of only
the additional features. Further possible developments for make are also discussed. Some justification will be
given for the chosen implementation, and examples will demonstrate the additional features.

The make command was perceived as an excellent program administrative tool and has been used exten-
sively in at least one project for over 2 years. However, make had the following shortcomings:

¢ handling of libraries was tedious
¢ handling of the Source Code Control System (SCCS) file name format was difficult or impossible
o environment variables were completely ignored by make
o the general lack of ability to maintain files in a remote directory.
These shortcomings hindered large scale use of make as a program support tool.

The make program has been modified to handle the problems above. The additional features are within
the original syntactic framework of make and few if any new syntactical entities have been introduced. A nota-
ble exception is the include file capability. Further, most of the additions result in a “Don’t know how to make
..."" message from the old version of make.

The following paragraphs describe with examples the additional features of the make program. In general,
the examples are taken from existing makefiles. Also, the tables are examples of working makefiles

THE ENVIRONMENT VARIABLES ..

Environment variables are read and added to the macro definitions each time make executes. Precedence
is a prime consideration in doing this properly. The following describes make’s interaction with the environ-
ment. A new macro, MAKEFLAGS, is maintained by make. The new macro is defined as the collection of
all input flag arguments into a string (without minus signs). The new macro is exported and thus accessible
to further invocations of make. Command line flags and assignments in the makefileupdate MAKEFLAGS.
Thus, to describe how the environment interacts with make, the MAKEFLAGS macro (environment variable)
must be considered.

When executed, make assigns macro definitions in the following order:

1. Read the MAKEFLAGS environment variable. If it is not present or null, the internal make variable
MAKEFLAGS is set to the null string. Otherwise, each letter in MAKEFLAGS is assumed to be an
input flag argument and is processed as such. (The only exceptions are the —f, —p, and —r flags.)

2. Read and set the input flags from the command line. The command line adds to the previous settings from
the MAKEFLAGS environment variable.

3. Read macro definitions from the command line. These are made not resettable. Thus, any further assign-
ments to these names are ignored.

4. Read the internal list of macro definitions. These are found in the file rules.c of the source for make.
(See Table 3.A for the complete makefile which represents the internally defined macros and rules of the
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current version of make. Thus, if make —r .. is typed and a makefile includes the makefile in Table
3.A, the results would be identical to excluding the —r option and the include line in the makefile. The
Table 3.A output can be reproduced by the following:

make —fp — < /dev/null 2>/dev/null

The output will appear on the standard output.) They give default definitions for the C language compiler
(CC=cc), the assembler (AS=as), etc.

5. Read the environment. The environment variables are treated as macro definitions and marked as
exported (in the shell sense). (Note: MAKEFLAGS will be read and set again.) However, since
MAKEFLAGS is not an internally defined variable (in rules.c), this has the effect of doing the same
assignment twice. The exception to this is when MAKEFLAGS is assigned on the command line. (The
reason it was read previously was to turn the debug flag on before anything else was done.)

6. Read the makefile(s). The assignments in the makefile(s) will override the environment. This order was
chosen so when a makefileis read and executed the user knows what to expect. That is, the user gets what
is seen unless the —e flag is used. The —e is an additional command line flag which tells make to have
the environment override the makefile assignments. Thus, if make —e ... is typed, the variables in the
environment override the definitions in the makefile. (Note: There is no way to override the command
line assignments.) Also note that MAKEFLAGS will override the environment if assigned. (This would
be useful for further invocations of make from the current makefile.)

It may be clearer to list the precedence of assignments. Thus, in order from least binding to most binding,
the precedence of assignments is as follows:

1. internal definitions (from rules.c)

2. environment

3. makefile(s)

4. command line.

The —e flag has the effect of changing the order to:
1. internal definitions (from rules.c)

2. makefile(s)

3. environment

4. command line.

This order is general enough to allow a programmer to define a makefile or set of makefiles whose parameters
are dynamically definable.

RECURSIVE MAKEFILES
Another feature was added to make concerning the environment and recursive invocations. If the sequence
“$(MAKE)"” appears anywhere in a shell command line, the line will be executed even if the —n flag is set. Since

the —n flag is exported across invocations of make (through the MAKEFLAGS variable), the only thing
which will actually get executed is the make command itself. This feature is useful when a hierarchy of
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makefile(s)describes a set of software subsystems. For testing purposes, make ~n ... can be executed and every-
thing that would have been done will get printed out including output from lower level invocations of make.

FORMAT OF SHELL COMMANDS WITHIN make

The make program remembers embedded new lines and tabs in shell command sequences. Thus, if the pro-
grammer puts a for loop in the makefile with indentation, when make prints it out, it retains the indentation

and backslashes. The output can still be piped to the shell and is readable. This is obviously a cosmetic change;
no new function is gained.

ARCHIVE LIBRARIES =

The make program has an improved interface to archive libraries. Due to a lack of documentation, most
people are probably not aware of the current syntax of addressing members of archive libraries. The previous
version of make allows a user to name a member of a library in the following manner:

lib(object.o)
or

lib((_localtime))

where the second method actually refers to an entry point of an object file within the library. (Make looks
through the library, locates the entry point, and translates it to the correct object file name.)

To use this procedure to maintain an archive library, the following type of makefile is required:

Iib:: lib(ctime.o)

$(CC) —c —O ctime.c

ar rv lib ctime.o

rm ctime.o
lib:: lib(fopen.o)

$(CC) —c -0 fopen.c

ar rv lib fopen.o

rm fopen.o :
...and so on for each object ...

This is tedious and error prone. Obviously, the command sequences for adding a C language file to a library are
the same for each invocation; the file name being the only difference each time. (This is true in most cases.)

The current version gives the user access to a rule for building libraries. The handle for the rule is the “.a”
suffix. Thus, a “.c.a” rule is the rule for compiling a C language source file, adding it to the library, and removing
the *“.0” cadaver. Similarly, the “.y.a"”, the *“.s.2”, and the “.l.a” rules rebuild YACC, assembler, and LEX files,
respectively. The current archive rules defined internally are “.c.a”, “.c~.a"”, and “.s-~.a". (The tilde ( -) syntax

will be described shortly.) The user may define in makefile other rules needed.
The above 2-member library is then maintained with the following shorter makefile:

lib: lib(ctime.o) lib(fopen.o)
echo lib up-to-date.

The internal rules are already defined to complete the preceding library maintenance. The actual “.c.a” rules
are as follows:

ca
$(CC) —c $(CFLAGS) $<

arrv $@ $*.0
rm —f $*.0
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Thus, the $@ macro is the “.a" target (lib); the $< and $* macros are set to the out-of-date C language file; and
the file name scans the suffix, respectively (ctime.cand ctime). The $ < macro (in the preceding rule) could have
been changed to $*.c.

It might be useful to go into some detail about exactly what make does when it sees the construction:

lib: lib (ctime.o)
@echo lib up-to-date

Assume the object in the library is out of date with respect to ctime.c. Also, there is no ctime.o file.

1. Do lib.

2. To do lib, do each dependent of lib.

3. Do lib (ctime.o).

4. To do lib(ctime.0), do each dependent of lib (ctime.o). (There are none.)

5. Use internal rules to try to build lib(ctime.o). (There is no explicit rule.) Note that lib(ctime.o) has a pa-
renthesis in the name so identify the target suffix as “.a"”. This is the key. There is no explicit “.a” at the
end of the lib library name. The parenthesis forces the “.a" suffix. In this sense, the “.a"” is hard-wired
into make.

6. Break the name lib(ctime.o)yup into lib and ctime.o. Define two macros, $@ (=Iib) and $* (=ctime).

7. Look for a rule “.X.a"” and a file $*.X. The first “.X" (in the .SUFFIXES list) which fulfills these condi-
tions is “.c"” so the rule is “.c.a” and the file is ctime.c Set $< to be ctime.c and execute the rule. (In fact,
make must then do ctime.c. However, the search of the current directory yields no other candidates,
whence, the search ends.)

8. The library has been updated. Do the rule associated with the “lib:” dependency; namely:

echo lib up-to-date

It should be noted that to let ctime.o have dependencies, the following syntax is required:
lib(ctime.o): $(INCDIR)/stdio.h

Thus, explicit references to .o files.are unnecessary. There is also a new macro for referencing the archive mem-
ber name when this form is used. The $% macro is evaluated each time $@ is evaluated. If there is no current
archive member, $% is null. If an archive member exists, then $% evaluates to the expression between the pa-
renthesis.

An example makefile for a larger library is given in Table 3.B. The reader will note also that there are no
lingering “*.0" files left around. The result is a library maintained directly from the source files (or more gener-
ally from the SCCS files).

SOURCE CODE CONTROL SYSTEM FILE NAMES: THE TILDE
The syntax of make does not directly permit referencing of prefixes. For most types of files on UNIX oper-

ating system machines, this is acceptable since nearly everyone uses a suffix to distinguish different types of
files. The SCCS files are the exception. Here, “s.” precedes the file name part of the complete pathname.
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To allow make easy access to the prefix “s.” requires either a redefinition of the rule naming syntax of
make or a trick. The trick is to use the tilde (- ) as an identifier of SCCS files. Hence, “.c- .0"” refers to the rule
which transforms an SCCS C language source file into an object. Specifically, the internal rule is:

" .0
$(GET) $(GFLAGS) —p $< > $*.c
$(CC) $(CFLAGS) —c $*.c

-rm —f $*.c

Thus, the tilde appended to any suffix transforms the file search into an SCCS file name search with the
actual suffix named by the dot-and all characters up to (but not including) the tilde.

The following SCCS suffixes are internally defined:

.-
y-
5
.sh-
b

The following rules involving SCCS transformations are internally defined:

.sh*:

ub~<3—"<mh

©.0:
-0
.00
00
-G
e :
a

hh.

Obviously, the user can define other rﬂes and suffixes which may prove useful. The tilde gives him a handle
on the SCCS file name format so that this is possible.

THE NULL SUFFIX

In the UNIX system source code, there are many commands which consist of a single source file. It was
wasteful to maintain an object of such files for make’s pleasure. The current implementation supports single
suffix rules (a null suffix). Thus, to maintain the program cat, a rule in the makefile of the following form is
needed:

$(CC) -n -0 $< -0 3@

In fact, this “.c:” rule is internally defined so no makefile is necessary at all. The user only needs to type:
make cat dd echo date

(these are notable single file programs) and all four C language source files are passed through the above shell
command line associated with the “.c:” rule. The internally defined single suffix rules are:

.c
e
.sh:
.sh-:
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Others may be added in the makefile by the user.
INCLUDE FILES

The make program has an include file capability. If the string include appears as the first seven letters
of a line in a makefile and is followed by a blank or a tab, the following string is assumed to be a file name which
the current invocation of make will read. The file descriptors are stacked for reading include files so no more
than about 16 levels of nested includes are supported.

INVISIBLE SCCS MAKEFILES

The SCCS makefiles are invisible to make. That is, if make is typed and only a file named s.makefileexists,
make will do a get on the file, then read and remove the file. Using the —f, make will get, read, and remove
arguments and include files.

DYNAMIC DEPENDENCY PARAMETERS

A new dependency parameter has been defined. The parameter has meaning only on the dependency line
in a makefile. The $$@ refers to the current “thing” to the left of the colon (which is $@). Also the form $$
(@F) exists which allows access to the file part of $@. Thus, in the following:

cat: 3$3@.c

the dependency is translated at execution time to the string “cat.c”. This is useful for building a large number
of executable files, each of which has only one source file. For instance, the UNIX software command directory
could have a makefile like:

CMDS = cat dd echo date cc emp comm ar 1d chown

$(CMDS): $3@.c
$(CC) -0 $? -0 5@

Obviously, this is a subset of all the single file programs. For multiple file programs, a directory is usually
allocated and a separate makefile is made. For any particular file which has a peculiar compilation procedure,
a specific entry must be made in the makefile

The second useful form of the dependency parameter is $$(@F). It represents the file name part of $$@.
Again, it is evaluated at execution time. Its usefulness becomes evident when trying to maintain the
/usr/includedirectory from a makefile in the /usr/sre/headdirectory. Thus, the /usr/sre/head/makefile would
look like:

INCDIR = /usr/include

INCLUDES = \ .
$(INCDIR)/stdio.h \
$(INCDIR)/pwd.h \
$(INCIDR)/dir.h \
$(INCDIR)/a.out.h

$(INCLUDES): $3%(@F)

cp $? $@
chmod 0444 $@
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This would completely maintain the /usr/include directory whenever one of the above files in /usr/src/head
was updated.

EXTENSIONS OF $*, $@, AND $<

The internally generated macros $*, $@, and $< are useful generic terms for current targets and out-of-
date relatives. To thislist has been added the following related macros: $(*D),$(*F),$(<D),and $(<F). The “D”
referstothedirectory part of the single letter macro.The “F” refers tothe filenamepart of the single letter macro.
These additions are useful when building hierarchical makefiles. They allow access to directory names for pur-
poses of using the cd command of the shell. Thus, a shell command can be:

cd $(<D); $(MAKE) $(<F)

An interesting example of the use of these features can be found in the set of makefiles in Table 3.C. Each
makefile is named ‘“70.mk". The following command forces_ a complete rebuild of the operating system:

FRC=FRC make —f 70.mk

where the current directory is uch. The FRC.is a convention for FoRCing make to completely rebuild a target
starting from scratch.

OUTPUT TRANSLATIONS
Macros in shell commands can now be translated when evaluated. The form is as follows:
$(macro:stringl=string2)

The meaning of $(macro) is evaluated. For-each appearance of stringl in the evaluated macro, string2 is substi-
tuted. The meaning of finding stringl in $(macro) is that the evaluated $(macro) is considered as a bunch
of strings each delimited by white space (blanks or tabs). Thus, the occurrence of stringl in $(macro) means
that a regular expression of the following form has been found:

*«stringl > [TABIBLANK]

This particular form was chosen because make usually concerns itself with suffixes. A more general regu-
lar expression match could be implemented if the need arises. The usefulness of this type of translation occurs
when maintaining archive libraries. Now, all that is necessary is to accumulate the out-of-date members and
write a shell script which can handle all the C language programs (i.e., those files ending in “.c”"). Thus, the fol-
lowing fragment will optimize the executions of make for maintaining an archive library:

$(LIB): $(LIB)(a.0) $(LIB)(b.o) $(LIB)c.0)
$(CC) —c $(CFLAGS) $(%.0=.¢)
ar rv $(LIB) $?
rm $?

A dependency of the preceding form would be necessary for each of the different types of source files (suf-

fices) which define the archive library. These translations are added in-an effort to make more general use of
the wealth of information which make generates.
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TABLE 3.A

EXAMPLE OF INTERNAL DEFINITIONS

MAKE=make
YACC=yacc
YFLAGS=
LEX=lex
LFLAGS=
LD=Id
LDFLAGS=
CC=ce
CFLAGS=-0
AS=as
ASFLAGS=
GET=get
GFLAGS=

.sh:
.sh-:

LIST OF SUFFIXES

SUFFIXES: 0 .¢c .c~ .y .y~ .1 .- s .s~ .sh .sh~ .h .h-

PRESET VARIABLES

SINGLE SUFFIX RULES

$(CC) ~n -0 $< -0 $@

$(GET) $(GFLAGS) -p $< > $*.c
$(CC) —n =0 $*.c -0 $°

-rm ~-f $*.c
cp $< $@
$(GET) $(GFLAGS) -p $< > $*.sh

cp $*.sh §*
-rm -f $*.sh
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TABLE 3.A (Contd)

EXAMPLE OF INTERNAL DEFINITIONS

SUPPORT TOOLS

.C.0.

y.o:

Jo:

g o

.~.00

y- .o

DOUBLE SUFFIX RULES

$(CC) $(CFLAGS) -c $<

$(GET) $(GFLAGS) -p $< > $*.c

$(CC) $(CFLAGS) —c $*.c

-rm -f $*.c

$(GET) $(GFLAGS) -p $< > $*.c

$(AS) $(ASFLAGS) -0 $@ $<

$(GET) $(GFLAGS) -p $< > $*s

$(AS) $(ASFLAGS) -0 $*.0 $*s
-rm -f $*s

$(YACC) $(YFLAGS) $<
$(CC) $(CFLAGS) -¢ y.tab.c
rm y.tab.c

mv y.tab.o $@

$(GET) $(GFLAGS) -p $< > $*y

$(YACC) $(YFLAGS) $*.y
$(CC) $(CFLAGS) - y.tab.c
rm -f y.tab.c $".y

mv y.tab.o $*.0

$(LEX) $(LFLAGS) $<
$(CC) $(CFLAGS) —c lex.yy.c
rm lex.yy.c

mv lex.yy.o $@

$(GET) $(GFLAGS) -p $< > $*.1
$(LEX) $(LFLAGS) $*.1

$(CC) $(CFLAGS) -c lex.yy.c

rm —f lex.yy.c $*.1

mv lex.yy.o $*.0
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TABLE 3.A (Contd)

EXAMPLE OF INTERNAL DEFINITIONS

y.c

.c.al

.he b

$(YACC) $(YFLAGS) $<
mv y.tab.c $@

$(GET) $(GFLAGS) -p $< > $*y
$(YACC) $(YFLAGS) $*.y

mv y.tab.c $*.c

-rm -f §*.y

$(LEX) $<
mv lex.yy.c $@

$(CC) -c $(CFLAGS) $<
arrv $@ $*.0
rm ~f $*.0

$(GET) $(GFLAGS) -p $< > 3*.c
$(CC) —c $(CFLAGS) $*.c

arrv S@ $*o0

rm ~f $*.[co]

$(GET) $(GFLAGS) -p $< > $*s
$(AS) $(ASFLAGS) -0 $*.0 $*.s
arrv $@ $'.0

-rm -f $*.[so0) '

$(GET) $(GFLAGS) -p $< > $*.h
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TABLE 3.B

EXAMPLE OF LIBRARY MAKEFILE

f @(#)/usr/src/emd/make/make.tm 3.2

LIB = Isxlib -

PR = vpr -b LSX

INSDIR = /r1/flop0/

INS = eval
lsx: $(LIB) low.o mch.o
ld -x low.o mch.o $(LIB)
mv a.out lsx
@size lsx
# Here, $(INS) as either " or “eval”.
lsx:
$(INS) ’cp Isx $(INSDIR)Isx . .
strip $(INSDIR)Isx . .
Is =1 $(INSDIR)lsx’
print:

$(PR) header.s low.s mch.s *.h *.c Makefile
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TABLE 3.B (Contd)

EXAMPLE OF LIBRARY MAKEFILE

$(LIB):

5.0

0.4l

S.al

PRECIOUS:

$(LIB (clock.o;
$(LIB)(main.o
$(LIB)(tty.o)
$(LIB)(trap.o)
$(LIB)(sysent.o0)
$(LIB)(sys2.0
$§LIB sysd.o
$(LIB)(sys4.0
$(LIB)(sysl.o
$§LIB 51g.0)
$(LIB)(fio.0)
$§LIB kl.o)
$(LIB)(alloc.0)
$(LIB)(nami.o)
$(LIB $iget.o)
$(LIB)(rdwri.0)
$(LIB ?subr.o)
$(LIB)(bio.o
$(LIB)(decfd.o)
S(LIB§ slp.o)

$(LIB)(space.o)
$(LIB)(puts.o)
@echo $(LIB) now up-to-

as —o $*.0 header.s $*s

arrv $@ $<

rm ~f $<

as —o $*.0 header.s $*s

arrv $@ $%.0
rm ~f $*.0

$(LIB)

date.
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TABLE 32.C

RECURSIVE USE OF MAKEFILES (EXAMPLE)

Jucb makefile

] @(#)/usr/src/cmd/make/make.tm 3.2
] ucb/ ~0.mk makefile
VERSION = -0
DEPS =

0s/low.$(VERSION).o

os/mch.$(VERSION).o

os/conf.$(VERSION).o

0s/1ibl.$(VERSION).a

io/1ib2.$(VERSION).a
/ This makefile will reload the UNIX system file
f/ unix.$(VERSION) if any of the $(DEPS) is out-of-date
! {wrt unix.$(VERSION)]. (Note: It will not go out and
/ check each member of the libraries. To do this, the FRC
] macro must be defined.)
/

unix.$(VERSION): $(DEPS) $(FRC)

load -s $(VERSION)

$(DEPS): ~ $(FRC)
cd $(@D); S(MAKE) ~f $(VERSION).mk $(@F)

all: unix.$(VERSION)
@echo unix.$(VERSION) up-to-date.

SUPPORT TOOLS
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TABLE 3.C (Contd)

RECURSIVE USE OF MAKEFILES (EXAMPLE)

includes:

cd head/sys; $(MAKE) ~f $(VERSION).mk
FRC: includes;

! @(f)/usr/src/emd/make/make.tm 3.2
! ucb/os/ ~0.mk makefile

VERSION = ~0

LIB = libl.$(VERSION).a

COMPOOL =

LIBOBJS =

$(LIB)(main.o)
$(LIB)(alloc.o)
$(LIB)(iget.0)
$(LIB)(prf.0)
$(LIB)(rdwri.o)
$(LIB)(slp.o)
$(LIB)(subr.o)
$(LIB)(text.0)
$(LIB)(trap.o)
$(LIB)(sig.0)
$(LIB)(sysent.o)
$(LIB)(sysl.o)
$(LIB)(sys2.0)
$(LIB)(sys3.0)
$(LIB)(sys4d.o0)
$(LIB)(sys5.0)
$(LIB)(syscb.o)
$(LIB)(maus.o0)
$(LIB)(messag.o)
$(LIB)(nami.o)
$(LIB)(fio.0)
$(LIB)(clock.o)
$(LIB)(acct.0)
$(LIB)(errlog.0)

6/82



6/82

ISSUE 1

TABLE 3.C (Contd)

RECURSIVE USE OF MAKEFILES (EXAMPLE)

VERSION = *0

LIB = 1ib2.$(VERSION).a

COMPOOL =

LIB20BJS =

$(LIB)(mxl.0)
$(LIB)(mx2.0)
$(LIB)(bio.o)
$(LIB)(tty.o)
$(LIB)(malloc.o)
$(LIB)(pipe.o)
$(LIB)(dhdm.o)
$(LIB)(dh.o)
$(LIB)(dhfdm.o)
$(LIB)(dj.o0)
$(LIB)(dn.o)
$(LIB)(ds40.0)
$(LIB)(dz.0)
$(LIB)(alarm.o)
$(LIB)(hf.0)
$(LIB)(hps.o)
$(LIB)(hpmap.o)
$(LIB)(hp45.0)
$(LIB)(hs.o0)
$(LIB)(ht.0)
$(LIB)(jy.o)
$(LIB)(kl.o)
$(LIB)(1fh.o)
$(LIB)(lp.o)
$(LIB)(mem.o)
$(LIB)(nmpipe.o)
$(LIB)(rf.0)
$(LIB)(rk.o)
$(LIB)(rp.0)
$(LIB)(rx.0)
$(LIB)(sys.0)
$(LIB)(trans.o)
$(LIB)(ttdma.o)
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TABLE 3.C (Contd)

RECURSIVE USE OF MAKEFILES (EXAMPLE)

ALL =
conf.$(VERSION).o
low.$(VERSION).o
mch.$(VERSION).o
$(LIB)

all: $(ALL)

@echo ‘$(ALL) now up-to-date.

$(LIB): $(LIBOBJS) -
$(LIBOBJS): $(FRC);
FRC:
rm ~f $(LIB)
clobber: cleanup
-rm —f $(LIB) .

clean cleanup:;

install: all;
.PRECIOUS: $(LIB)
! @(#)/usr/src/emd/make/make.tm 3.2

ucb/io/ ~0.mk makefile
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TABLE 3.C (Contd)

RECURSIVE USE OF MAKEFILES (EXAMPLE)

all:

$(LIB)(tec.o0)
$(LIB)(tex.0)
$(LIB)(tm.o)
$(LIB)(vp.o)
$(LIB)(vs.0)
$(LIB)(vtlp.o)
$(LIB)(vtll.o)
$(LIB)(fakevtlp.o)
$(LIB)(vt61.0)
$(LIB)(vt100.0)
$(LIB)(vtmon.o)
$(LIB)(vtdb§.o)
$(LIB)(vtutil.o)
$(LIB)(vtast.o)
$(LIB)(partab.o)
$(LIB)(rh.o)
$(LIB)(devstart.o)
$(LIB)(dmell.o)
$(LIB)(rop.o)
$(LI1B)(ioctl.0)
$(LIB)(fakemx.0)

$(LIB)
@echo $(LIB) 1s now up-to-date.

$(LIB): $(LIB20BJS)
$(LIB20BJS): $(FRC)
FRC:

rm —f $(LIB)
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TABLE 3.C (Contd)

RECURSIVE USE OF MAKEFILES (EXAMPLE)

clobber: cleanuP
-rm -f $(LIB) .0

clean cleanup;;

install: all;
.PRECIOUS: $(LIB)
s.a

$(AS) $(ASFLAGS) -0 $°.0 $<
ar rev $@ $%.0
rm $*0

[ @(F)/usr/src/emd/make/make.tm
/ ucb/head/sys/ ~ 0.mk makefile

COMPOOL = /usr/include/sys

HEADERS =

$(COMPOOL)/buf.h
$(COMPOOL)/bufx.h
$(COMPOOL)/conf.h
$(COMPOOL)/confx.h
$(COMPOOL)/crtetl.h

3.2
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TABLE 3.C {Contd)

RECURSIVE USE OF MAKEFILES (EXAMPLE)

$(COMPOOL)/dir.h
$(COMPOOL)/dm11.h
$(COMPOOL)/elog.h
$(COMPOOL)/file.h
$(COMPOOL)/filex.h
$(COMPOOL)/filsys.h
$(COMPOOL)/ino.h
$(COMPOOL)/inode.h
$(COMPOOL)Y/inodex.h
$(COMPOOL)/ioctl.h
$(COMPOOL)/ipcomm.h
$(COMPOOL)/ipcommx.h
$(COMPOOL)/1fsh.h
$(COMPOOL)/lock.h
$(COMPOOL)/maus.h
$(COMPOOL)/mx.h
$(COMPOOL)/param.h
$(COMPOOL)/proc.h
$(COMPOOL)/procx.h
$(COMPOOL)/reg.h
$(COMPOOL)/seg.h
$(COMPOOL)/sgtty.h
$(COMPOOLY)/sigdef.h
$(COMPOOL)/sprof.h
$(COMPOOL)/sprofx.h
$(COMPOOL)/stat.h
$(COMPOOL)/syserr.h
$(COMPOQOOL)/sysmes.h
$(COMPOOL)/sysmesx.h
$(COMPOQOOL)/systm.h
$(COMPOOL)/text.h
$(COMPOOL)/textx.h
$(COMPOOL)/timeb.h
$(COMPOOL)/trans.h
$(COMPOOL)/tty.h
$(COMPOOL)/ttyx.h
$(COMPOOL)/types.h
$(COMPOOL)/user.h
$(COMPOOL)/userx.h
$(COMPOOL)/version.h
$(COMPOOL)/votrax.h
$(COMPOOL)/vt11l.h
$(COMPOOL)/vtmn.h
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TABLE 3.C (Contd)

RECURSIVE USE OF MAKEFILES (EXAMPLE)

all: $(FRC) $(HEADERS)
@echo Headers are now up to date.

$(HEADERS): s.$3(@F)
$(GET) -s -p $(GFLAGS) $? > xtemp
move xtemp 444 src sys $@

FRC:

rm -f $(HEADERS)
.PRECIOUS: $(HEADERS)
.h7lhe

get —s $<
.DEFAULT:

cpmv $7 444 src sys $@
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4. SOURCE CODE CONTROL SYSTEM USER’S GUIDE

GENERAL

The Source Code Control System (SCCS) is a collection of the UNIX software commands which help individ-
uals or projects control and account for changes to files of text. The source code and documentation of software
systems are typical examples of files of text to be changed. The SCCS is a collection of programs that run under
the UNIX operating system. It is convenient to conceive of SCCS as a tustodian of files. The SCCS provides facili-
ties for the following:

o Storing files of text

¢ Retrieving particular versions of the files

¢ Controlling updating privileges to files

o Identifying the version of a retrieved file

o Recording when, where, and why the change was. made and who made each change to a file.

These types of facilities are important when programs and documentation undergo frequent changes be-
cause of maintenance and/or enhancement work. It is often desirable to regenerate the version of a program
or document as it existed before changes were applied to it. This can be done by keeping copies (on paper or
other media), but this method quickly becomes unmanageable and wasteful as the number of programs and doc-
uments increases. The SCCS provides an attractive solution because the original file is stored on disk. Whenever

changes are made to the file, the SCCS stores only the changes. Each set of changes is called a “delta”.

This section, together with relevant portions of the UNIX System User’s Manual is a complete user’s guide
to SCCS. The following topics are covered:

e SCCS for Beginners: How to make an SCCS file, how to update it, and how to retrieve a version thereof.

e How Deltas Are Numbered: How versions of SCCS files are numbered and named.

¢ SCCS Command Conventions: Conventions and rules generally applicable to all SCCS commands.

¢ SCCS Commands: Explanation of all SCCS commands, with discussions of the more useful arguments.

e SCCS Files: Protection, format, and auditing of SCCS files including a discussion of the differences be-
tween using SCCS as an individual and using it as a member of a group or project. The role of a “project
SCCS administrator” is introduced.

Neither the implementation of SCCS nor the installation procedure for SCCS are described in this section.

Throughout this section, each reference of the form name(1M), name(7), or name(8) refers to entries in
the UNIX System Administrator’s Manual. All other references to entries of the form name(N), where “N”

is a number (1 through 6) possibly followed by a letter, refer to entry name in section N of thé UNIX System
User's Manual.

SCCS FOR BEGINNERS

It is assumed that the reader knows how to log onto a UNIX system, create files, and use the text editor.
A number of terminal-session fragments are presented. All of them should be tried since the best way to learn
SCCS is to use it.
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To supplement the material in this section, the detailed SCCS command descriptions in the UNIX System
User’s Manual should be consulted.

A. Terminclogy

Each SCCS file is composed of one or more sets of changes applied to the null (empty) version of the file,
with each set of changes usually depending on all previous sets. Each set of changes is called a “delta” and is
assigned a name, called the SCCS IDentification string (SID). The SID is composed of at most four components.
The first two components are the “release” and “level” numbers which are separated by a period. Hence, the
first delta (for the original file) is called “1.1”, the second “1.2", the third “1.3”, etc. The release number can
also be changed allowing, for example, deltas “2.1”, “3.1”, etc. The change in the release number usually indicates
a major change to the file.

Each delta of an SCCS file defines a particular version of the file. For example, delta 1.5 defines version
1.5 of the SCCS file, obtained by applying to the null (empty) version of the file the changes that constitute deltas
1.1, 1.2, etc., up to and including delta 1.5 itself, in that order.

B. Creating an SCCS File via ‘‘admin”’
Consider, for example, a file called Jang that contains a list of programming languages:
c
pVi
fortran

cobol
algol .

Custody of the Jang file can be given to SCCS. The following admin command (used to “administer” SCCS
files) creates an SCCS file and initializes delta 1.1 from the file lang

admin —ilang s.Jang

All SCCS files must have names that begin with “s.”, hence, s.lang. The —i keyletter, together with its value
lang, indicates that admin is to create a new SCCS file and “initialize” the new SCCS file with the contents
of the file Jang This initial version is a set of changes (delta 1.1) applied to the null SCCS file.

The admin command replies
No id keywords (cm7)

This is a warning message (which may also be issued by other SCCS commands) that is to be ignored for the
purposes of this section. Its significance is described under the get command in the part “SCCS COMMANDS".
In the following examples, this warning message is not shown, although it may actually be issued by the various
commands. The file Jang should now be removed (because it can be easily reconstructed using the get command)
as follows:

rm lang
C. Rehieving a File via “‘get”’
The lang file can be reconstructed by using the following get command:

get s.lang
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The command causes the creation (retrieval) of the latest version of file s.Jang and prints the following mes-
sages:

1.1
5 lines

This means that get retrieved version 1.1 of the file, which is made up of five lines of text. The retrieved text

is placed in a file whose name is formed by deleting the “s.” prefix from the name of the SCCS file. Hence, the
file lang is created.

The “get s.lang” command simply creates the file Jang (read-only) and keeps no information regarding its
creation. On the other hand, in order to be able to subsequently apply changes to an SCCS file with the delta
command, the get command must be informed of your intention to do so. This is done as follows:

get —e s.lang

The —e keyletter causes get to create a file lang for both reading and writing (so it may be edited) and places
certain information about the SCCS file in another new file. The new file, called the p-file, will be read by the
delta command. The get command prints the same messages as before except that the SID of the version to
be created through the use of delta is also issued. For example:

get —e s.lang
11

new delta 1.2
5 lines

The file Jang may now be changed, for example, by:
ed lang
27
$a

snobol
ratfor

opge

D. Recording Changes via “‘delta”

In order to record within the SCCS file the changes that have been applied to lang, execute the following
command:

delta s.lang
Delta prompts with:
comments?
the response to which should be a description of why the changes were made. For example:
comments? added more languages
The delta command then reads the p-fileand determines what changes were made to the file lang. The

delta command does this by doing its own get to retrieve the original version and by applying the diff(1) com-
mand to the original version and the edited version.
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When this process is complete, at which point the changes to Jang have been stored in s.lang, delta outputs:

1.2

2 inserted

0 deleted

5 unchanged

The number “1.2” is the name of the delta just created, and the next three lines of output refer to the number
of lines in the file s.lang.

E. Additional Information About “'get’’
As shown in the previous example, the command
get s.lang

retrieves the latest version (now 1.2) of the file s.lang. This is done by starting with the original version of the
file and successively applying deltas (the changes) in order until all have been applied.

In the example chosen, the following commands are all equivalent:

get s.lang
get —rl slang
get —r1.2 s.lang

The numbers following the —r keyletter are SIDs. Note that omitting the level number of the SID (as in “get
—rl s.lang”) is equivalent to specifying the highest level number that exists within the specified release. Thus,
the second command requests the retrieval of the latest version in release 1, namely 1.2. The third command
specifically requests the retrieval of a particular version, in this case, also 1.2.

Whenever a truly major change is made to a file, the significance of that change is usually indicated by
changing the release number (first component of the SID) of the delta being made. Since normal automatic num-
bering of deltas proceeds by incrementing the level number (second component of the SID), the user must indi-
cate to SCCS the need to change the release number. This is done with the get command:

get —e —r2 s.lang

Because release 2 does not exist, get retrieves the latest version before release 2. The get command also inter-
prets this as a request to change the release number of the delta the user desires to create to 2, thereby causing
it to be named 2.1, rather than 1.3. This information is conveyed to delta via the p-file. The get command then
outputs

12
new deltz 2.1
7 lines

which indicates that version 1.2 has been retrieved and that 2.1 is the version delta will create. If the file is
now edited, for example, by:

ed lang
41 .
/cobol/d
- /
35

q
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and delta executed:

delta s.lang
comments? deleted cobol from list of languages

the user will see by delta’s output that version 2.1 is indeed created:

21

0 inserted

1 deleted

6 unchanged

Deltas may now be created in release 2 (deltas 2.2, 2.3, etc.), or another new release may be created in a similar
manner. This process may be continued as desired.

F. The “help” Command
If the command:
get abe
is executed, the following message will be output:
ERROR [abe]): not an SCCS file (col)

The string “col” is a code for the diagnostic message and may be used to obtain a fuller explanation of that
message by use of the help command:

help col
_This produces the following output:

col:

" not an SCCS file "

A file that you think is an SCCS file
does not begin with the characters “s.".

Thus, help is a useful command to use whenever there is any doubt about the meaning of an SCCS message.
Detailed explanations of almost all SCCS messages may be found in this manner.

DELTA NUMBERING

It is convenient to conceive of the deltas applied to an SCCS file as the nodes of a tree in which the root
is the initial version of the file. The root delta (node) is normally named “1.1” and successor deltas (nodes) are
named “1.2”, “1.3", etc. The components of the names of the deltas are called the “release” and the “level” num-
bers, respectively. Thus, normal naming of successor deltas proceeds by incrementing the level number, which
is performed automatically by SCCS whenever a delta is made. In addition, the user may wish to change the
release number when making a delta to indicate that a major change is being made. When this is done, the re-
lease number also applies to all successor deltas unless specifically changed again. Thus, the evolution of a par-
ticular file may be represented as in Fig. 4.1.
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1.1 1.2 1.3 2.1 2.2

Q () () () l ()
- (S

1.4
RELEASE 1 : RELEASE 2

Fig. 4.1— Evolution of an SCCS File

Such a structure may be termed the “trunk” of the SCCS tree. Figure 4.1 represents the normal sequential
development of an SCCS file in which changes that are part of any given delta are dependent upon all the preced-
ing deltas.

However, there are situations in which it is necessary to cause a branching in the tree in that changes ap-
plied as part of a given delta are not dependent upon all previous deltas. As an example, consider a program
which is in production use at version 1.3 and for which development work on release 2 is already in progress.
Thus, release 2 may already have some deltas precisely as shown in Fig. 4.1. Assume that a production user re-
ports a problem in version 1.3 and that the nature of the problem is such that it cannot wait to be repaired in
release 2. The changes necessary to repair the trouble will be applied as a delta to version 1.3 (the version in
production use). This creates a new version that will then be released to the user but will not affect the changes
being applied for release 2 (i.e., deltas 1.4, 2.1, 2.2, etc.).

The new delta is a node on a branch of the tree, and its name consists of four components; the release and
level numbers, as with trunk deltas, plus the “branch” and “sequence” numbers. The delta name will appear
as follows:

release.level.branch.sequence

The branch number is assigned to each branch that is a descendant of a particular trunk delta with the first
such branch being 1, the next one 2, etc. The sequence number is assigned, in order, to each delta on a particular
branch. Thus, 1.3.1.2 identifies the second delta of the first branch that derives from delta 1.3. This is shown
in Fig. 42

1.3.1.2
BRANCH 1

O () )
S / J S
1.1 1.2 1.3 1.4 2.1 2.2

Fig. 4.2 — Tree Structure With Branch Deltas

The concept of branching may be extended to any delta in the tree. The naming of the resulting deltas pro-
ceeds in the manner just illustrated.

Two observations are of importance with regard to naming deltas. First, the names of trunk deltas contain
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exactly two components, and the names of branch deltas contain exactly four components. Second, the first two
components of the name of branch deltas are always those of the ancestral trunk delta, and the branch compo-
nent is assigned in the order of creation of the branch independently of its location relative to the trunk delta.
Thus, a branch delta may always be identified as such from its name. Although the ancestral trunk delta may
be identified from the branch delta’s name, it is not possible to determine the entire path leading from the trunk
delta to the branch delta. For example, if delta 1.3 has one branch emanating from it, all deltas on that branch
will be named 1.3.1.n. If a delta on this branch then has another branch emanating from it, all deltas on the
new branch will be named 1.3.2.n (see Fig. 4.3). The only information that may be derived from the name of delta
1.3.22 is that it is the chronologically second delta on the chronologically second branch whose trunk ancestor
is delta 1.3. In particular, it is not possible to determine from the name of delta 1.3.2.2 all the deltas between
it and trunk ancestor 1.3.

1.3.1.2
BRANCH 1

Fig. 4.3 — Extending the Branching Concept

It is obvious that the concept of branch deltas allows the generation of arbitrarily complex tree structures. Al-
though this capability has been provided for certain specialized uses, it is strongly recommended that the SCCS
tree be kept as simple as possible because comprehension of its structure becomes extremely difficult as the
tree becomes more complex.

SCCS COMMAND CONVENTIONS

This part discusses the conventions and rules that apply to SCCS commands. These rules and conventions
are generally applicable to all SCCS commands with exceptions indicated. The SCCS commands accept two types
of arguments:

o keyletter arguments
o file arguments.

Keyletter arguments (hereafter called simply “keyletters”) begin with a minus sign (~), followed by a lower-
case alphabetie character, and in some cases, followed by a value. These keyletters control the execution of the
command to which they are supplied.

File arguments (which may be names of files and/or dlrectones) specify the file(s) that the given SCCS com-
mand is to process. Naming a directory is equxvalent to namxng all the SCCS files within the directory. Non-

SCCS. files and unreadable files [because of permission modes via chmod(1)] in the named directories are si-
lently ignored.

In general, file arguments may not begin with a minus sign. However, if the name “~" (a lone minus sign)
is specified as an argument to a command, the command reads the standard input for lines and takes each line
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as the name of an SCCS file to be processed. The standard input is read until end of file. This feature is often
used in pipelines with, for example, the find(1) or 1s(1) commands. Again, names of non-SCCS files and of un-
readable files are silently ignored.

All keyletters specified for a given command apply to all file arguments of that command. All keyletters
are processed before any file arguments with the result that the placement of keyletters is arbitrary (i.e.,
keyletters may be interspersed with file arguments). File arguments, however, are processed left to right. Some-
what different argument conventions apply to the help, what, scesdiff, and val commands.

Certain actions of various SCCS commands are controlled by flags appearing in SCCS files. Some of these
flags are discussd in this part. For a complete description of all such flags, see admin(1) section in the UNIX
System User’s Manual. I

The distinction between the real user [see passwd(1)] and the effective user of a UNIX system is of concern
in discussing various actions of SCCS commands. For the present, it is assumed that both the real user and the
effective user are one and the same (i.e., the user who is logged into a UNIX system). This subject is discussed
further in “SCCS FILES".

All SCCS commands that modify an SCCS file do so by writing a temporary copy, called the x-file, which
ensures that the SCCS file will not be damaged should processing terminate abnormally. The name of the x-file
is formed by replacing the “s.” of the SCCS file name with “x.”. When processing is complete, the old SCCS file
is removed and the x-file is renamed to be the SCCS file. The x-file is created in the directory containing the
SCCS file, given the same mode [see chmod(1)] as the SCCS file, and owned by the effective user.

To prevent simultaneous updates to an SCCS file, commands that modify SCCS files create a Jock-file, called
the z-file, whose name is formed by replacing the “s.” of the SCCS file name with “2.”. The z-file contains the
process number of the command that creates it, and its existence is an indication to other commands that the
SCCS file is being updated. Thus, other commands that modify SCCS files will not process an SCCS file if the
corresponding z-file exists. The z-fileis created with mode 444 (read-only) in the directory containing the SCCS

file and is owned by the effective user. This file exists only for the duration of the execution of the command
that creates it. In general, users can ignore x-files and z-files. The files may be useful in the event of system
crashes or similar situations.

The SCCS commands produce diagnostics (on the diagnostic output) of the form:
ERROR [name-of-file-being-processed): message text (code)

The code in parentheses may be used as an argument to the help command to obtain a further explanation of
the diagnostic message. Detection of a fatal error during the processing of a file causes the SCCS command to
terminate processing of that file and to proceed with the next file, in order, if more than one file has been named.

SCCS COMMANDS

This part describes the major features of all the SCCS commands. Detailed descriptions of the commands
and of all their arguments are given in the UNIX System User’s Manual and should be consulted for further
information. The discussion below covers only the more common arguments of the various SCCS commands.

The commands follow in approximate order of importance. The following is 2 summary of all the SCCS com-
mands and of their major functions:

get Retrieves versions of SCCS files.
delta Applies changes (deltas) to the text of SCCS files, i.e., creates new versions.
admin Creates SCCS files and applies changes to parameters of SCCS files.
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prs Prints portions of an SCCS file in user specified format.

help Gives explanations of diagnostic messages.

rmdel ?imoves a delta from an SCCS file; allows the removal of deltas that were created by mis-
ake.

ede Changes the commentary associated with a delta.

what Searches any UNIX system file(s) for all occurrences of a special pattern and prints out
what follows it; is useful in finding identifying information inserted by the get command.

scesdiff Shows the differences between any two versions of an SCCS file.

comb Combines two or more consecutive deltas of an SCCS file into a single delta; often reduces
the size of the SCCS file.-

val Validates an SCCS file.

A. The “get” Command

The get command creates a text file that contains a particular version of an SCCS file. The particular ver-
sion is retrieved by beginning with the initial version and then applying deltas, in order, until the desired ver-
sion is obtained. The created file is called the g-file. The g-file name is formed by removing the “s.” from the
SCCS file name. The g-fileis created in the current directory and is owned by the real user. The mode assigned
to the g-file depends on how the get command is invoked.

The most common invocation of get is:

get s.abc

which normally retrieves the latest version on the trunk of the SCCS file tree and produces (for example) on
the standard output: .

1.3
67 lines
No id keywords (cm7)

which indicates that
1. Version 1.3 of file “s.abc” was retrieved (1.3 is the latest trunk delta).
2. This version has 67 lines of text.
3. No ID keywords were substituted in the file.

The generated g-file (file “abc”) is given mode 444 (read-only) since this pax:ti'cular way of invoking get is
intended to produce g-files only for inspection, compilation, etc., and not for editing (i.e., not for making deltas).

In the case of several file arguments (or directory-name arguments), similar information is given for each
file processed, but the SCCS file name precedes it. For example:

get s.abc s.def
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produces:

s.abc

1.3

67 lines

No id keywords (cmT7)

s.def:

1.7

85 lines

No id keywords (em7)

ID Keywords

In generating a g-file to be used for compilation, it is useful and informative to record the date and time
of creation, the version retrieved, the module's name, etc. within the g-file, so this information will appear in
a load module when one is eventually created. The SCCS provides a convenient mechanism for doing this auto-
matically. Identification (ID) keywords appearing anywhere in the generated file are replaced by appropriate
values according to the definitions of these ID keywords. The format of an ID keyword is an uppercase letter
enclosed by percent signs (% ). For example:

%1%
is defined as the ID keyword that is replaced by the SID of the retrieved version of a file. Similarly, %H% is
defined as the ID keyword for the current date (in the form “mm/dd/yy"”), and %M% is defined as the name
of the g-file. Thus, executing get on an SCCS file that contains the PL/I declaration:
DCL ID CHAR(100) VAR INIT(%M% %1% %H%');
gives (for example) the following:
DCL ID CHAR(100) VAR INIT(MODNAME 2.3 07/07/77');
When no ID keywords are substituted by get, the following message is issued:

No id keywords (cmT7)

This message is normally treated as a warning by get, although the presence of the i flag in the SCCS file causes
it to be treated as an error. For a complete list of the approximately 20 ID keywords provided, see get(1) in
the UNIX System User’s Manual.

Refrieval of Different Versions

Various keyletters are provided to allow the retrieval of other than the default version of an SCCS file. Nor-
mally, the default version is the most recent delta of the highest-numbered release on the trunk of the SCCS
file tree. However, if the SCCS file being processed has a d (default SID) flag, the SID specified as the value
of this flag is used as a default. The default SID is interpreted in exactly the same way as the value supplied
with the —r keyletter of get.

The —r keyletter is used to specify a SID to be retrieved, in which case the d (default SID) flag (if any) is
ignored. For example:

get —rl.3 s.abe
retrieves version 1.3 of file s.abc and produces (for example) on the standard output:

1.3
64 lines
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A branch delta may be retrieved similarly:
get —rl.5.2.3 s.abc

which produces (for example) on the standard output

1523
234 lines

When a 2- or 4-component SID is specified as a value for the —r keyletter (as above) and the particular version
does not exist in the SCCS file, an error message results. Omission of the level number, as in:

get —r3 s.abe

causes retrieval of the trunk delta with the highest level number within the given release if the given release
exists. Thus, the above command might output

317
213 lines

If the given release does not exist, get rettieves the trunk delta with the highest level number within the
highest-numbered existing release that is lower than the given release. For example, assuming release 9 does
not exist iAn file s.abc and that release 7 is actually the highest-numbered release below 9, execution of:

get —r9 s.abe
might produce:

7.6
420 lines

which indicates that trunk delta 7.6 is the latest version of file s.abc below release 9. Similarly, omission of the
sequence number, as in:

get —r4.3.2 s.abc

results in the retrieval of the branch delta with the highest sequence number on the given branch if it exists.
(If the given branch does not exist, an error message results.) This might result in the following output

43283
89 lines

The —t keyletter is used to retrieve the latest (top) version ih a particular release (i.e., when no —r keyletter
is supplied or when its value is simply a release number). The latest version is defined as that delta which was
produced most recently, independent of its location on the SCCS file tree. Thus, if the most recent delta in re-
lease 3 is 3.5,

get —r3 —t s.abc
might produce:

35
59 lines

However, if branch delta 3.2.1.5 were the latest delta (created after delta 3.5), the same command might produce:

3215
46 lines
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Retrieval With Intent te Moke a Delta

Specification of the —e keyletter to the get command is an indication of the intent to make a delta, and
as such, its use is restricted. The presence of this keyletter causes get to check:

1. The user list (a list of login names and/or group IDs of users allowed to make deltas) to determine if the
login name or group ID of the user executing get is on that list. Note that a null (empty) user list behaves
as if it contained all possible login names.

2. The release (R) of the version being retrieved satisfies the relation:

floor is < or = to R which is
< or = to ceiling

to determine if the release being accessed is a protected release. The “floor” and “ceiling” are specified
as flags in the SCCS file.

3. The release (R) is not locked against editing. The “lock” is specified as a flag in the SCCS file.

4. Whether or not multiple concurrent edits are allowed for the SCCS file as specified by the j flag in the
SCCS file.

A failure of any of the first three conditions causes the processing of the corresponding SCCS file to termi-
nate.

If the above checks succeed, the —e keyletter cAuses the creation of a g-file in the current directory with
mode 644 (readable by everyone, writable only by thé owner) owned by the real user. If a writable g-file already
exists, get terminates with an error. This is to prevent inadvertent destruction of a g-file that already exists
and is being edited for the purpose of making a delta.

Any ID keywords appearing in the g-file are not substituted by gét when the —e keyletter is specified be-
cause the generated g-file is to be subsequently used to create another delta, and replacement of ID keywords
would cause them to be permanently changed within the SCCS file. In view of this, get does not need to check
for the presence of ID keywords within the g-file, o the message

No id keywords (cm7)
is never output when get is invoked with the —e keyletter.

In addition, the —e keyletter causes the creation (or updating) of a p-file which is used to pass information
to the delta command.

The following is an example of the use of the —e keyletter:
get —e s.abe
which produces (for example) on the standard output:
1.3
new delta 1.4

67 lines

If the —r and/or —t keyletters are used together with the —e keyletter, the version retrieved for editing is as
specified by the —r and/or —t keyletters.
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The keyletters —i and —x may be used to specify a list [see get(1) in the UNIX System User’s Manual for
the syntax of such a list] of deltas to be included and excluded, respectively, by get. Including a delta means
forcing the changes that constitute the particular delta to be included in the retrieved version. This is useful
if one wants to apply the same changes to more than one version of the SCCS file. Excluding a delta means fore-
ing it to be not applied. This may be used to undo in the version of the SCCS file to be created the effects of
a previous delta. Whenever deltas are included or excluded, get checks for possible interference between such
deltas and those deltas that are normally used in retrieving the particular version of the SCCS file. Two deltas
can interfere, for example, when each one changes the same line of the retrieved g-file. Any interference is indi-
cated by & warning that shows the range of lines within the retrieved g-file in which the problem may exist.
The user is expected to examine the g-file to determine whether a problem actually exists and to take whatever
corrective measures (if any) are deemed necessary (e.g., edit the file).

Warning: The —i and —x keyletters should be used with extreme care.

The —k keyletter is provided to facilitate regeneration of a g-file that may have been accidentally removed
or ruined subsequent to the execution of get with the —e keyletter or to simply generate a g-file in which the
replacement of ID keywords has been suppressed. Thus, a g-file generated by the —k keyletter is identical to
one produced by get executed with the —e keyletter. However, no processing related to the p-file takes place.

Concurrent Edits of Different SID

The ability to retrieve different versions of an SCCS file allows a number of deltas to be “in progress” at
any given time. This means that a number of get commands with the —e keyletter may be executed on the same
file provided that no two executions retrieve the same version (unless multiple concurrent edits are allowed).

The p-file (created by the get command invoked with the —e keyletter) is named by replacing the “s.” in
the SCCS file name with “p.”. It is created in the directory containing the SCCS file, given mode 644 (readable
by everyone, writable only by the owner), and owned by the effective user. The p-file contains the following in-
formation for each delta that is still “in progress”:

e The SID of the retrieved version.
e The SID that will be given to the new delta when it is created.
o The login name of the real user executing get.

The first execution of get —e causes the creation of the p-file for the corresponding SCCS file. Subsequent
executions only update the p-file with a line containing the above information. Before updating, however, get
checks that no entry already in the p-file specifies as already retrieved the SID of the version to be retrieved
unless multiple concurrent edits are allowed.

If both checks succeed, the user is informed that other deltas are in progress and processing continues. If
either check fails, an error message results. It is important to note that the various executions of get should
be carried out from different directories. Otherwise, only the first execution will succeed since subsequent exe-
cutions would attempt to overwrite a writable g-file, which is an SCCS error condition. In practice, such multiple
executions are performed by different users so that this problem does not arise since each user normally has
a different working directory. See “Protection” under the part “SCCS FILES"” for a discussion of how different
users are permitted to use SCCS commands on the same files.

Table 4.A shows, for the most useful cases, the version of an SCCS file retrieved by get, as well as the SID
of the version to be eventually created by delta, as a function of the SID specified to get.

Concurrent Edits of Same SID

Under normal conditions, gets for editing (—e keyletter is specified) based on the same SID are not permit-
ted to occur concurrently. That is, delta must be executed before a subsequent get for editing is executed at

Page 53



SUPPORT TOOLS ISSUE 1 6/82

the same SID as the previous get. However, multiple concurrent edits (defined to be two or more successive
executions of get for editing based on the same retrieved SID) are allowed if the j flag is set in the SCCS file.
Thus:

get —e s.abe
1.1

new delta 1.2
5 lines

may be immediately followed by:

get —e s.abc

1.1

new delta 1.1.1.1
5 lines

without an intervening execution of delta. In this case, a delta command corresponding to the first get pro-
duces delta 1.2 (assuming 1.1 is the latest (most recent) trunk delta), and the delta command corresponding
to the second get produces delta 1.1.1.1,

Keyletters That Affect Output

Specification of the —p keyletter causes get to write the retrieved text to the standard output rather than
to a g-file. In addition, all output normally directed to the standard output (such as the SID of the version re-
trieved and the number of lines retrieved) is directed instead to the diagnostic output. This may be used, for
example, to create g-files with arbitrary names:

get —p s.abc > arbitrary-file-name

The —p keyletter is particularly useful when used with the “I” or “$” arguments of the send(1C) command.
For example:

send MOD=s.abc REL=3 compile
given that file compile contains: -

//plicomp job job-card-information
//stepl exec plicke
//pli.sysin dd *

--s

*lget —p —rREL MOD
/.
//

will send the highest level of release 3 of file s.abc. Note that the line “~—s", which causes send to make ID
keyword substitutions before detecting and interpreting control lines, is necessary if send is to substitute
“s.abc” for MOD and “3” for REL in the line “~ !get —p —rREL MOD".

The —s keyletter suppresses all output that is normally directed to the standard output. Thus, the SID of
the retrieved version, the number of lines retrieved, etc., are not output. This does not, however, affect messages
to the diagnostic output. This keyletter is used to prevent nondiagnostic messages from appearing on the user’s
terminal and is often used in conjunction with the —p keyletter to “pipe” the output of get, as in:

get —p —s s.abe | nroff
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The —g keyletter is supplied to suppress the actual retrieval of the text of a version of the SCCS file. This
may be useful in a number of ways. For example, to verify the existence of a particular SID in an SCCS file,
one may execute:

get —g —rd4.3 s.abc

This outputs the given SID if it exists in the SCCS file or it generates an error message if it does not. Another
use of the —g keyletter is in regenerating a p-file that may have been accidentally destroyed:

get —e —g s.abc

The —1 keyletter causes the creation of an I-file, which is named by replacing the “s.” of the SCCS file name
with “L”. This file is created in the current directory with mode 444 (read-only) and is owned by the real user.
It contains a table (whose format is described in get(1) in the UNIX System User’s Manual) showing which del-
tas were used in constructing a particular version of the SCCS file. For example:

get —r2.3 -1 s.abc

generates an I-file showing the deltas applied to retrieve version 2.3 of the SCCS file. Specifying a value of “p”
with the —1 keyletter, as in:

get —lp —r2.3 s.abc

causes the generated output to be written to the standard output rather than to the /-file. The —g keyletter may
be used with the —1 keyletter to suppress the actual retrieval of the text.

The —m keyletter is of use in identifying, line by line, the changés applied to an SCCS file. Specification
of this keyletter causes each line of the generated g-file to be preceded by the SID of the delta that caused that
line to be inserted. The SID is separated from the text of the line by a tab character.

The —n keyletter causes each line of the generated g-file to be preceded by the value of the %M% ID
keyword and a tab character. The —n keyletter is most often used in a pipeline with grep(1). For example, to
find all lines that match a given pattern in the latest version of each SCCS file in a directory, the following may
be executed:

get —p —n —s directory l.grep pattern

If both the —m and —n keyletters are specified, each line of the generated g-fileis preceded by the value of the
%M% ID keyword and a tab (this is the effect of the —n keyletter) and followed by the line in the format pro-
duced by the —m keyletter. Because use of the —m keyletter and/or the —n keyletter causes the contents of the
g-file to be modified, such a g-file must not be used for creating a delta. Therefore, neither the —m keyletter
nor the —n keyletter may be specified together with the —e keyletter.

See get(1) in the UNIX System User’s Manual for a full description of additional get keyletters.

8. The “delta’” Command

The delta command is used to incorporate the changes made to a g-file into the corresponding SCCS file,
i.e., to create a delta, and therefore, a new version of the file.

Invocation of the delta command requires the existence of a p-file. The delta command examines the p-file

to verify the presence of an entry containing the user’s login name. If none is found, an error message results.
The delta command also performs the same permission checks that get performs when invoked with the —e
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keyletter. If all checks are successful, delta determines what has been changed in the g-file by comparing it
via diff(1) with its own temporary copy of the g-file as it was before editing. This temporary copy of the g-file
is called the d-file (its name is formed by replacing the “s.” of the SCCS file name with “d.”) and is obtained
by performing an internal get at the SID specified in the p-file entry.

The required p-file entry is the one containing the login name of the user executing delta because the user
who retrieved the g-file must be the one who will create the delta. However, if the login name of the user appears
in more than one entry (i.e., the same user executed get with the —e keyletter more than once on the same SCCS
file), the —r keyletter must be used with delta to specify an SID that uniquely identifies the p-file entry. This
entry is the one used to obtain the SID of the delta to be created.

In practice, the most common invocation of delta is
delta s.abe
which prompts on the standard output (but only if it is a terminal):
comments?

to which the user replies with a description of why the delta is being made, terminating the reply with a new
line character. The user’s response may be up to 512 characters long with new lines, not intended to terminate
the response, escaped by backslash “\”.

If the SCCS file has a v flag, delta first prompis with
MRs?

on the standard output. (Again, this prompt is printed only if the standard output is a terminal.) The standard
input is then read for MR numbers, separated by blanks and/or tabs, terminated in the same manner as the
response to the prompt “comments?”. In a tightly controlled environment, it is expected that deltas are created
only as a result of some trouble report, change request, trouble ticket, etc. (collectively called here Modification
Requests [MRs]) and that it is desirable or necessary to record such MR number(s) within each delta.

The —y and/or —m keyletters may be used to supply the commentary (comments and MR numbers, respec-
tively) on the command line rather than through the standard input:

delta —y " descriptive comment” —m " mrouml mrnum2” s.abe

In this case, the corresponding prompts are not printed, and the standard input is not read. The —m keyletter
is allowed only if the SCCS file has a v flag. These keyletters are useful when delta is executed from within
a shell procedure [see sh(1) in the UNIX System User’s Manual.)

The commentary (comments and/or MR numbers), whether solicited by delta or supplied via keyletters,
is recorded as part of the entry for the delta being created and applies to all SCCS files processed by the same
invocation of delta. This implies that if delta is invoked with more than one file argument and the first file
named has a v flag all files named must have this flag. Similarly, if the first file named does not have this flag,
then none of the files named may have it. Any file that does not conform to these rules is not processed.

When processing is complete, delta outputs (on the standard output) the SID of the created delta (obtained
from the p-file entry) and the counts of lines inserted, deleted, and left unchanged by the delta. Thus, a typical
output might be: )

14
14 inserted

7 deleted
345 unchanged
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It is possible that the counts of lines reported as inserted, deleted, or unchanged by delta do not agree with
the user’s perception of the changes applied to the g-file. The reason for this is that there usually are a number
of ways to describe a set of such changes, especially if lines are moved around in the g-file, and delta is likely
to find a description that differs from the user’s perception. However, the total number of lines of the new delta
(the number inserted plus the number left unchanged) should agree with the number of lines in the edited g-file.

If in the process of making a delta delta finds no ID keywords in the edited g-file, the message
No id keywords (cm7)

is issued after the prompts for commentary but before any other output. This indicates that any ID keywords
that may have existed in the SCCS file have been replaced by their values or deleted during the editing process.
This could be caused by creating a delta from a g-file that was created by a get without the —e keyletter (recall
that ID keywords are replaced by get in that case) or by accidentally deleting or changing the ID keywords dur-
ing the editing of the g-file. Another possibility is that the file may never have had any ID keywords. In any
case, it is left up to the user to determine what remedial action is necessary, but the delta is made, unless there
is an i flag in the SCCS file indicating that this should be treated as a fatal error. In this last case, the delta
is not created.

After processing of an SCCS file is complete, the corresponding p-file entry is removed from the p-file. All
updates to the p-file are made to a temporary copy, the g-file, whose use is similar to the use of the x-file which
is described in the part “SCCS COMMAND CONVENTIONS". If there is only one entry in the p-file, then the
p-file itself is removed.

In addition, delta removes the edited g-flle unless the —n keyletter is specified. Thus:
delta —n s.abc
will keep the g-file upon completion of processing.

The —s (silent) keyletter suppresses all output that is normally directed to the standard output, other than
the prompts “comments?” and “MRs?”. Thus, use of the —s keyletter together with the —y keyletter (and possi-
bly, the —m keyletter) causes delta neither to read the standard input nor to write the standard output.

The differences between the g-file and the d-file (see above), which constitute the delta, may be printed on
the standard output by using the —p keyletter. The format of this output is similar to that produced by diff(1).

C. The “admin” Command

The admin command is used to administer SCCS files, that is, to create new SCCS files and to change pa-
rameters of existing ones. When an SCCS file is created, its parameters are initialized by use of keyletters or
are assigned default values if no keyletters are supplied. The same keyletters are used to change the parameters
of existing files.

Two keyletters are supplied for use in conjunction with detecting and correcting “corrupted” SCCS files.
(Discussed in “Auditing” under the part “SCCS FILES".) Newly created SCCS files are given mode 444 (read-
only) and are owned by the effective user. Only a user with write permission in the directory containing the
SCCS file may use the admin command upon that file.

Creation of SCCS Files
An SCCS file may be created by executing the command

admin —ifirst s.abc
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in which the value “first” of the —i keyletter specifies the name of a file from which the text of the initial delta
of the SCCS file s.abcis to be taken. Omission of the value of the —i keyletter indicates that admin is to read
the standard input for the text of the initial delta. Thus, the command

admin =i s.abc < first
is equivalent to the previous example. If the text of the initial delta does not contain ID keywords, the message
No id keywords (cm7)
is issued by admin as a warning. However, if the same invocation of the command also sets the i flag (not to
be confused with the —i keyletter), the message is treated as an error and the SCCS file is not created. Only
one SCCS file may be created at a time using the —i keyletter.
When an SCCS file is created, the release number assigned to its first delta is normally “1”, and its level
number is always “1”. Thus, the first delta of an SCCS file is normally “1.1". The —r keyletter is used to specify
the release number to be assigned to the first delta. Thus:

admin —ifirst —r3 s.abe

indicates that the first delta should be named *“3.1” rather than “1.1”. Because this keyletter is only meaningful
in creating the first delta, its use is only permitted with the —i keyletter.

Inserting Commentary for the Initial Delta

When an SCCS file is created, the user may choose to supply commentary stating the reason for creation
of the file. This is done by supplying comments (—y keyletter) and/or MR numbers (—m keyletter) in exactly
the same manner as for delta. The creation of an SCCS file may sometimes be the direct result of an MR. If
comments (—y keyletter) are omitted, a comment line of the form

date and time created YY/MM/DD HH:MM:SS by logname
is automatically generated.

If it is desired to supply MR numbers (—m keyletter), the v flag must also be set (using the —f keyletter
described below). The v flag simply determines whether or not MR numbers must be supplied when using any
SCCS command that modifies a “delta commentary” [see scesfile(4) in the UNIX System User’s Manual] in
the SCCS file. Thus: .

admin —ifirst —-mmrnuml —fv s.abc
Note that the —y and —m keyletters are only effective if a new SCCS file is being created.
Initialization and Modification of SCCS File Parameters

The portion of the SCCS file reserved for descriptive text may be initialized or changed through the use of
the —t keyletter. The descriptive text is intended as a summary of the contents and purpose of the SCCS file.

When an SCCS file is being created and the —t keyletfer is supplied, it must be followed by the name of
a file from which the descriptive text is to be taken. For example, the command

admin —ifirst —tdesc s.abc
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specifies that the descriptive text is to be taken from file desc

When processing an existing SCCS file, the —t keyletter specifies that the descriptive text (if any) currently
in the file is to be replaced with the text in the named file. Thus:

admin —tdesc s.abe

specifies that the descriptive text of the SCCS file is to be replaced by the contents of desc; omission of the file
name after the —t keyletter as in

admin —t s.abe
causes the removal of the descriptive text from the SCCS file.

*The flags of an SCCS file may be initialized, changed, or deleted throughthe use of the —=f and —d keyletters,
respectively. The flags of an SCCS file are used to direct certain actions of the various commands. See admin(1)
in the UNIX System User's Manual for a description of all the flags. For example, the i flag specifies that the
warning message stating there are no ID keywords contained in the SCCS file should be treated as an error,
and the d (default SID) flag specifies the default version of the SCCS file to be retrieved by the get command.
The —f keyletter is used to set a flag and, possibly, to set its value. For example:

admin —ifirst —fi ~fmmodname s.abc

sets the i flag and the m (module name) flag. The value “modname” specified for the m flag is the value that
the get command will use to replace the %M % ID keyword. (In the absence of the m flag, the name of the g-file
is used as the replacement for the %M % ID keyword.) Note that several —~f keyletters may be supplied on a
single invocation of admin and that —f keyletters may be supplied whether the command is creating a new
SCCS file or processing an existing one.

The —d keyletter is used to delete a flag from an SCCS file and may only be specified when processing an
existing file. As an example, the command

admin —dm s.abe

removes the m flag from the SCCS file. Several —d keyletters may be supplied on a single invocation of admin
and may be intermixed with —f keyletters.

The SCCS files contain a list (user list) of login names and/or group IDs of users who are allowed to create
deltas. This list is empty by default which implies that anyone may create deltas. To add login names and/or
group IDs to the list, the —a keyletter is used. For example:

admin —axyz —awgl —al234 s.abc

adds the login names “xyz” and “wql” and the group ID “1234” to the list. The —a keyletter may be used whether
admin is creating a new SCCS file or processing an existing one and may appear several times. The —e keyletter
is used in an analogous manner if one wishes to remove (erase) login names or group IDs from the list.

D. The “pry’” Command

The prs command is used.to print on the standard output all or parts of an SCCS file in a format, called
the output “data specification,” supplied by the user via the —d keyletter. The data specification is a string con-
sisting of SCCS file data keywords (not to be confused with get ID keywords) interspersed with optional user
text.

Data keywords are replaced by appropriate values according to their definitions. For example:

:I:
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is defined as the data keyword that is replaced by the SID of a specified delta. Similarly, :F: is defined as the
data keyword for the SCCS file name currently being processed, and :C: is defined as the comment line associ-
ated with a specified delta. All parts of an SCCS file have an associated data keyword. For a complete list of
the data keywords, see prs(1) in the UNIX Svstem User’s Manual.

There is no limit to the number of times a data keyword may appear in a data specification. Thus, for exam-
ple:

prs —d ":I: this is the top delta for :F: :I:" s.abc

may produce on the standard output
2.1 this is the top delta for s.abc 2.1

Information may be obtained from a single delta by specifying the SID of that delta using the —r keyletter. For
example:

prs —d ":F: : :I: comment line is: :C:" -rl4 s.abe

may produce the following output:
s.abe: 1.4 comment line is: THIS IS A COMMENT

If the —r keyletter is not specified, the value of the SID defaults to the most recently created delta.

In addition, information from a range of deltas may be obtained by specifying the —1 or —e keyletters. The
—e keyletter substitutes data keywords for the SID designated via the —r keyletter and all deltas created earli-
er. The —1 keyletter substitutes data keywords for the SID designated via the —r keyletter and all deltas created
later. Thus, the command

prs —d:I: —r1.4 —e s.abe
may output

14
13
1211
12
11

and the command
prs —d:I: —rl1.4 =1 s.abe
may produce

3.3
3.2
3.1
221.1
2.2
21
14
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Substitution of data keywords for all deltas of the SCCS file may be obtained by épecifying both the —e and
—1 keyletters.

E. The “help’”” Command

The help command prints explanations of SCCS commands and of messages that these commands may
print. Arguments to help, zero or more of which may be supplied, are simply the names of SCCS commands
or the code numbers that appear in parentheses after SCCS messages. If no argument is given, help prompts
for one. The help command has no concept of keyletter arguments or file arguments. Explanatory information
related to an argument, if it exists, is printed on the standard output. If no information is found, an error mes-
sage is printed. Note that each argument is processed independently, and an error resulting from one argument
will not terminate the processing of the other arguments.

Explanatory information related to a command is a synopsis of the command. For example:
help ge5 rmdel
produces
ged:
" nonexistent sid "
The specified sid does not exist in the

given file.
Check for typos.

rmdel:
rmdel ~-rSID name ...

f. The “rmdel’’ Command

The rmdel command is provided to allow removal of a delta from an SCCS file. Its use should be reserved
for those cases in which incorrect global changes were made a part of the delta to be removed.

The delta to be removed must be a “leaf” delta. That is, it must be the latest (most recently created) delta
on its branch or on the trunk of the SCCS file tree. In Fig. 4.3, only deltas 1.3.1.2,1.322, and 2.2 can be removed;
once they are removed then deltas 1.3.2.1 and 21 can be removed, etc.

To be allowed to remove a delta, the effective user must have write permission in the directory containing
the SCCS file. In addition, the real user must either be the one who created the delta being removed or be the
owner of the SCCS file and its directory. '

The —r keyletter, which is mandatory, is used to specify the complete SID of the delta to be removed (i.e.,
it must have two components for a trunk delta and four components for a branch delta). Thus:

rmdel —r2.3 s.abe

specifies the removal of (trunk) delta “2.3” of the SCCS file. Before removal of the delta, rmdel checks that
the release number (R) of the given SID satisfies the relation:

floor <= R <= ceiling
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The rmdel command also checks that the SID specified is not that of a version for which a get for editing has
been executed and whose associated delta has not yet been made. In addition, the login name or group ID of
the user must appear in the file’s “user list”, or the “user list” must be empty. Also, the release specified can
not be locked against editing. That is, if the 1 flag is set [see admin(1) in the UNIX System User's Manual],
the release specified mustnot be contained in the list). If these conditions are not satisfied, processing is termi-
nated, and the delta is not removed. After the specified delta has been removed, its type indicator in the “delta
table” of the SCCS file is changed from “D” (delta) to “R"” (removed). '

G. The “c¢dc” Command

The cdc command is used to change a delta's commentary that was supplied when that delta was created.
Its invocation is analogous to that of the rmdel command, except that the delta to be processed is not required
to be a leaf delta. For example:
cdec —r3.4 s.abe
specifies that the commentary of delta “3.4” of the SCCS file is to be changed.

The new commentary is solicited by cdc in the same manner as that of delta. The old commentary associ-
ated with the specified delta is kept, but it is preceded by a comment line indicating that it has been changed
(i.e., superseded), and the new commentary is entered ahead of this comment line. The “inserted” comment line
records the login name of the user executing cdc and the time of its execution.

The cdc command also allows for the deletion of selected MR numbers associated with the specified delta.
This is specified by preceding the selected MR numbers by the character “I". Thus:

cde -rl.4 s.abe
MRs? mrnum3 !mrouml
comments? deleted wrong MR number and inserted correct MR number
inserts “mroum3” and deletes “mrnuml” for delta 1.4.
H. The “whot” Command
The what command is used to find identifying information within any UNIX system file whose name is
given as an argument to what. Directory names and a name of “~" (2 lone minus sign) are not treated specially,

as they are by other SCCS commands, and no keyletters are accepted by the command.

The what command searches the given file(s) for all occurrences of the string “@(#)"”, which is the replace-
ment for the %Z% ID keyword [see get(1)), and prints (on the standard output) what follows that string until
the first double quote (" ), greater than (>), backslash (\), new line, or (nonprinting) NUL character. For exam-
ple, if the SCCS file s.prog.c (a C language program) contains the following line:

charid[}] "%Z%%M%:%1%";
and then the command
get ~r3.4 s.prog.c

is executed, the resulting g-file is compiled to produce “prog.o” and “a.out”. Then the command

what prog.c prog.o a.out
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produces
prog.c
prog.c:3.4
prog.o:
prog.c:3.4
aout:
prog.c:3.4

The string searched for by what need not be inserted via an ID keyword of get; it may be inserted in any
convenient manner.

. The “scaadiff’ Command

The scesdiff command determines (and prints on the standard output) the differences between two speci-
fied versions of one or more SCCS files. The versions to be compared are specified by using the —r keyletter,
whose format is the same as for the get command. The two versions must be specified as the first two arguments
to this command in the order they were created, i.e., the older version is specified first. Any following keyletters
are interpreted as arguments to the pr(1) command (which actually prints the differences) and must appear
before any file names. The SCCS files to be processed are named last. Directory names and a name of “-" (a
lone minus sign) are not acceptable to scesdiff.

The differences are printed in the form generated by diff(1). The following is an example of the invocation
of scesdiff:

scesdiff —r3.4 —r5.6 s.abe
J. The “comb’” Command I

The comb command generates ‘a “shell procedure” [see sh(1) in the UNIX System User’s Manual] which
attempts to reconstruct the named SCCS files so that the reconstructed files are smaller than the originals. The
generated shell procedure is written on the standard output. Named SCCS files are reconstructed by discarding
unwanted deltas and combining other specified deltas. The SCCS files that contain deltas no longer useful
should be discarded. It is not recommended that comb be used as a matter of routine; its use should be restricted
to a very small number of times in the life of an SCCS file.

In the absence of any keyletters, comb preserves only leaf deltas and the minimum number of ancestor del-
tas necessary to preserve the “shape” of the SCCS file tree. The effect of this is to eliminate middle deltas on
the trunk and on all branches of the tree. Thus, in Fig. 4.3, deltas 1.2, 1.3.2.1, 1.4, and 2.1 would be eliminated.
Some of the keyletters are summarized as follows:

The —p keyletter specifies the oldest delta that is to be preserved in the reconstruction. All older deltas
are discarded. :

The —c keyletter specifies a list [see get(1) in the UNIX System User’s Manual for the syntax of such
a list) of deltas to be preserved. All other deltas are discarded.

The —s keyletter causes the generation of a shell procedure, which when run, produces only a report sum-
marizing the percentage space (if any) to be saved by reconstructing each named SCCS file. It is recom-
mended that comb be run with this keyletter (in. addition to any others desired) before any actual
reconstructions.

It should be noted that the shell procedure generated by comb is not guaranteed to save space. In fact, it

is possible for the reconstructed file to be larger than the original. Note, too, that the shape of the SCCS file
tree may be altered by the reconstruction process.
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K. . The “‘val’* Command

The val command is used to determine if a file is an SCCS file meeting the characteristics specified by an
optional list of keyletter arguments. Any characteristics not met are considered errors.

The val command checks for the existence of a particular delta when the SID for that delta is explicitly
specified via the —r keyletter. The string following the —y or —m keyletter is used to check the value set by
the t or m flag, respectively [see admin(1)inthe UNIX System User's Manual for a description of the flags].

The val command treats the special argument differently from other SCCS commands. This argument
allows val to read the argument list from the standard input as opposed to obtaining it from the command line.
The standard input is read until end of file. This capability allows for one invocation of val with different values
for the keyletter and file arguments. For example:

val —
—ye —mabc s.abe

—mxyz —ypll s.xyz

first checks if file s.abc has a value “c” for its “type” flag and value “abc” for the “module name” flag. Once
processing of the first file is completed, val then processes the remaining files, in this case, s.xyz to determine
if they meet the characteristics specified by the keyletter arguments associated with them.

The val command returns an 8-bit code; each bit set indicates the occurrence of a specific error [see val(1)
for a description of possible errors and the codes]. In addition, an appropriate diagnostic is printed unless sup-
pressed by the —s keyletter. A return code of “0” indicates all named files met the characteristics specified.

SCCS FILES

This part discusses several topics that must be considered before extensive use is made of SCCS. These topics
deal with the protection mechanisms relied upon by SCCS, the format of SCCS files, and the recommended pro-
cedures for auditing SCCS files.

A. Protection

The SCCS relies on the capabilities of the UNIX software for most of the protection mechanisms required
to prevent unauthorized changes to SCCS files (i.e., changes made by non-SCCS commands). The only protection
features provided directly by SCCS are the “release lock” flag, the “release floor” and “ceiling” flags, and the
“user list”.

New SCCS files created by the admin command are given mode 444 (read-only). It is recommended that
this mode notbe changed as it prevents any direct modification of the files by non-SCCS commands. It is further
recommended that the directories containing SCCS files be given mode 755 which allows only the owner of the
directory to modify its contents.

The SCCS files should be kept in directories that contain only SCCS files and any temporary files created
by SCCS commands. This simplifies protection and auditing of SCCS files. The contents of directories should
correspond to convenient logical groupings, e.g., subsystems of a large project.

The SCCS files must have only one link (name) because the commands that modify SCCS files do so by creat-
ing a copy of the file (the x-file, see “SCCS COMMAND CONVENTIONS") and, upon completion of processing,
remove the old file and rename the x-file. If the old file has more than one link, this would break such additional
links. Rather than process such files, SCCS commands produce an error message. All SCCS files must have
names that begin with “s.”.
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When only one user uses SCCS, the real and effective user IDs are the same; and the user ID owns the direc-
tories containing SCCS files. Therefore, SCCS may be used directly without any preliminary preparation.

However, in those situations in which several users with unique user IDs are assigned responsibility for
one SCCS file (e.g., in large software development projects), one user (equivalently, one user ID) must be chosen
as the “owner” of the SCCS files and be the one who will “administer” them (e.g., by using the admin com-
mand). This user is termed the “SCCS administrator” for that project. Because other users of SCCS do not have
the same privileges and permissions as the SCCS administrator, they are not able to execute directly those com-
mands that require write permission in the directory containing the SCCS files. Therefore, a project-dependent
program is required to provide an interface to the get, delta, and if desired, rmdel and e¢de commands.

The interface program must be owned by the SCCS administrator and must have the “set user ID on execu-
tion” bit “on” [see chmod(1) in the UNIX System User’s Manual], so that the effective user ID is the user ID
of the administrator. This program invokes the desired SCCS command and causes it to inherit the privileges
of the interface program for the duration of that command’s execution. Thus, the owner of an SCCS file can
modify it at will. Other users whose login names or group IDs are in the “user list” for that file (but are not
the owner) are given the necessary permissions only for the duration of the execution of the interface program.
These other users are thus able to modify the SCCS files only through the use of delta and, possibly, rmdel
and cdc. The project-dependent interface program, as its name implies, must be custom-built for each project.

B. Formatting

The SCCS files are composed of lines of ASCII text arranged in six parts as follows:

Checksum A line containing the “logical” sum of all the characters of the file (not including this
checksum itself).

Delta Table Information about each delta, such as type, SID, date and time of creation, and commen-
tary.

User Names List of login names and/or group IDs of users who are allowed to modify the file by adding
or removing deltas. '

Flags Indicators that control certain actions of various SCCS commands.

Descriptive Text Arbitrary text provided by the user; usually a summary of the contents and purpose of the
file.

Body Actual text that is being administered by SCCS, intermixed with internal SCCS control
lines.

Detailed information about the contents of the various sections of the file may be found in scesfile(5). The
checksum is the only portion of the file which is of interest below.

It is important to note that because SCCS files are ASCII files they may be processed by various UNIX soft-
ware commands, such as ed(1), grep(1), and cat(1). This is very convenient in those instances in which an SCCS
file must be modified manually (e.g., when the time and date of a delta was recorded incorrectly because the
system clock was set incorrectly) or when it is desired to simply look at the file.

* Caution: Extreme care should be exercised when modifying SCCS files with non-SCCS
commands.

C. Auditing

On rare occasions, perhaps due to an operating system or hardware malfunction, an SCCS file or portions
of it (i.e., one or more “blocks”) can be destroyed. The SCCS commands (like most UNIX software commands)
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issue an error message when a file does not exist. In addition, SCCS commands use the checksum stored in the
SCCS file to determine whether a file has been corrupted since it was last accessed [possibly by having lost one
or more blocks or by having been modified with ed(1)]. No SCCS command will process a corrupted SCCS file
except the admin command with the —h or —z keyletters, as described below.

It is recommended that SCCS files be audited for possible corruptions on a regular basis. The simplest and
fastest way to perform an audit is to execute the admin command with the —h keyletter on all SCCS files:

admin —h sfilel s.file2 ...
or
admin —h directoryl directory2 ...

1f the new checksum of any file is not equal to the checksum in the first line of that file, the message
corrupte@ file (co6)

is produced for that file. This process continues until all the files have been examined. When examining directo-
ries (as in the second example above), the process just described will not detect missing files. A simple way to
detect whether any files are missing from a directory is to periodically execute the 1s(1) command on that direc-
tory and compare the outputs of the most current and the previous executions. Any file whose name appears
in the previous output but not in the current one has been removed by some means.

Whenever a file has been corrupted, the manner the file is restored depends upon the extent of the corrup-
tion. If damage is extensive, the best solution is to contact the local UNIX system operations group and request
the file be restored from a backup copy. In the case of minor damage, repair through use of the editor ed(1)
may be possible. In the latter case after such repair, the following command must be executed:

admin —z sfile

The purpose of this is to recompute the checksum to bring it into agreement with the actual contents of the file.
After this command is executed on a file, any corruption that existed in the file will no longer be detectable.

AN SCCS INTERFACE PROGRAM
A. General

In order to permit UNIX system users with different user identification numbers (user IDs) to use SCCS
commands upon the same files, an SCCS interface program is provided to temporarily grant the necessary file
access permissions to these users. This part discusses the creation and use of such an interface program. The
SCCS interface program may also be used as a preprocessor to SCCS commands since it can perform operations
upon its arguments.

B. Function

When only one user uses SCCS, the real and effective user IDs are the same; and that user’s ID owns the
directories containing SCCS files. However, there are situations (e.g., in large software development projects)
in which it is practical to allow more than one user to make changes to the same set of SCCS files. In these cases,
one user must be chosen as the “owner” of the SCCS files and be the one who will “administer” them (e.g., by
using the admin command). This user is termed the “SCCS administrator” for that project. Since other users
of SCCS do not have the same privileges and permissions as the SCCS administrator, the other users are not
able to execute directly those commands that require write permission in the directory containing the SCCS
files. Therefore, a project-dependent program is required to provide an interface to the get, delta, and if de-
sired, rmdel, edc, and unget commands. Other SCCS commands either do not require write permission in the
directory containing SCCS files or are (generally) reserved for use only by the administrator.
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The interface program must be owned by the SCCS administrator, must be executable by nonowners, and
must have the “set user ID on exccution” bit “on” [sce chmod(1) in the UNIX System User’s Manual] so that,
when executed, the effective user ID is the user ID of the administrator. This program’s function is to invoke
the desired SCCS command and to cause it to inherit the privileges of the SCCS administrator for the duration
of that command’s execution. In this manner, the owner of an SCCS file (the administrator) can modify it at
will. Other users whose login names are in the user list for that file (but who are not its owners) are given the
necessary permissions only for the duration of the execution of the interface program. They are thus able to
modify the SCCS files only through the use of delta and, possibly, rmdel and ede.

C. A Basic Program

When a UNIX program is executed, the program is passed as argument 0, which is the name that invoked
the program, and followed by any additional user-supplied arguments. Thus, if a program is given a number
of links (names), the program may alter its processing depending upon which link invokes the program. This
mechanism is used by an SCCS interface program to determine which SCCS command it should subsequently
invoke [see exec(2) in the UNIX System User’s Manual].

A generic interface program (inter.c, written in C language) is shown in Table 4.B. Note the reference to
the (unsupplied) function “filearg”. This is intended to demonstrate that the interfacc program may also be used
as a preprocessor to SCCS commands. For example, function “filearg” could be used to modify file arguments
to be passed to the SCCS command by supplying the full pathname of a file, thus avoiding extraneous typing
by the user. Also, the program could supply any additional (default) keyletter arguments desired.

D. linking and Use

In general, the following demonstrates the steps to be performed by the SCCS administrator to create the
SCCS interface program. It is assumed, for the purposes of the discussion, that the interface program inter.c
resides in directory “/x1/xyz/secs”. Thus, the command sequence

cd /x1/xyz/sces
¢¢ ... inter.c —o inter ...

“w "

compiles inter.c to produce the executable module inter (the “...” represent other arguments that may be re-
quired). The proper mode and the “set user ID on execution” bit are set by executing:

chmod 4755 inter
For example, few links are created by:

In inter get -
In inter delta
1n inter rmdel

The names of the links may be arbitrary provided the interface program is able to determine from them the
names of SCCS commands to be invoked. Subsequently, any user whose shell parameter PATH [see sh(1) in
the UNIX System User’s Manual] specifies directory “/x1/xyz/sccs” as the one to be searched first for execut-
able commands may execute, e.g.:

get —e /x1/xyz/sccs/s.abe

from any directory to invoke the interface program (via its link “get”). The interface program then executes
“/usr/bin/get” (the actual SCCS get command) upon the named file. As previously mentioned, the interface
program could be used to supply the pathname “/x1/xyz/sccs” so that the user would only have to specify

_ get —e s.abc
to achieve the same results.

-
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———
SiD -b KEYLETTER OTHER SID SID OF DELTA
CASE SPECIRED* usent CONDITIONS RETRIEVED TO BE CREATED
1 none} no R defaults to mR mR.mL mR.(mL + 1)
2 nonet yes R defaults to mR mR.mL mR.mL.(mB + 1).1
3 R no R > mR mR.mL R.1§
4 R no R =mR mR.mL mR.(mL + 1)
5 R yes R > mR mR.mL mR.mL.(mB + 1).1
6 R yes R =mR mR.mL mR.mL.(mB + 1).1
7 R - R < mR and hR.mL** hR.mL.(mB + 1).1
R does not exist
8 R - Trunk successor R.mL R.mL.(mB + 1).1
in release > R
and R exists
9 R.L no No trunk successor R.L R(L +1)
10 R.L yes No trunk successor R.L R.L.(mB + 1).1
11 R.L - Trunk successor R.L RL.(mB + 1).1
in release 2 R
12 R.LB no No branch successor RLBmS | RLB.(mS + 1)
13 R.LB yes No branch successor R.L.B.mS R.L.(mB + 1).1
14 R.L.B.S no No branch successor R.L.B.S RLB.(S + 1)
15 R.L.B.S yes No branch successor R.L.B.S RL.(mB + 1).1
16 R.L.B.S - Branch successor R.L.B.S RL.(mB + 1).1
— = =

* “R”, “L”, “B”, and “S” are the “release”, “level”, “branch”, and “sequence” components of the SID,
respectively; “m” means “maximum”. Thus, for example, “R.mL"” means “the maximum leve! num-
ber within release R"”; “R.L.(mB + 1).1” means “the first sequence number on the new branch (i.e.,
maximum branch number plus 1) of level L within release R”. Note that if the SID specified is of
the form “R.L”, “R.L.B", or “R.L.B.S”, each of the specified components must exist.

-1 The -b keyletter is effective only if the b flag [see admin(1)] is present in the file. In this table, an

entry o

means “irrelevant”.

$ This case applies if the d (default SID) flag is not present in the file. If the d flag is present in the
file, the SID obtained from the d flag is interrupted as if it had been specified on the command line.
Thus, one of the other cases in this table applies.

§ This case is used to force the creation of the first delta in a new release.

** “hR" is the highest existing release that is lower than the specified, nonexistent, release R.
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main(arge, argv)
int arge;

char *argv();

{

register int i;
char emdstr[LENGTH]

/#
Process file arguments (those that don’t begin with “-").
*/
for (i = 1;1i < arge; i++)
if (argv[i}(0} != *~'
argv(i] = filearg(argv(i]);

/‘

Get “simple name” of name used to invoke this program
(i.e., strip off directory-name prefix, if any).

‘/ -

argv[0]) = sname(argv{0]);

/‘

Invoke actual SCCS command, passing arguments.
*/

sprintf(emdstr, “/usr/bin/%s", argv([0]);
execv(cmdstr, argv);
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5. THE M4 MACRO PROCESSOR
GENERAL

The M4 macro processor is a front end for rational Fortran (Ratfor) and the C programming languages. The
“fdefine” statement in C language and the analogous “define” in Ratfor are examples of the basic facility pro-
vided by any macro processor.

At the beginning of a program, a symbolic name or symbolic constant can be defined as a particular string
of characters. The compiler will then replace later unquoted occurrences of the symbolic name with the corre-
sponding string. Besides the straightforward replacement of one string of text by another, the M4 macro proces-
sor provides the following features:

e arguments

e arithmetic capabilities

¢ file manipulation

e conditional macro expansion

e string and substring functions.

The basic operation of M4 is to read every alphanumeric token (string of letters and digits) input and deter-
mine if the token is the name of a macro. The name of the macro is replaced by its defining text, and the resulting
string is pushed back onto the input to be rescanned. Macros may be called with arguments, in which case the
arguments are collected and substituted into the right places in the defining text before the defining text is
rescanned. '

A list of 21 built-in macros provided by the M4 macro processor can be found in Table 5.A. The user also
has the capability to define new macros. Built-ins and user-defined macros work exactly the same way except
that some of the built-in macros have side effects on the state of the process. .

To use the M4 macro processor, input the following command:

m4 [optional files]
Each argument file is processed in order. If there are no arguments or if an argument is “—", the standard input
is read at that point. The processed text is written on the standard output which may be captured for subsequent
processing with the following input:
m4 [files]) >outputfile
DEFINING MACROS
The primary built-in function of M4 is define, which is used to define new macros. The following input
define(name, stuff)
causes the string nameto be defined as stuff. All subsequent occurrences of name will be replaced by stuff Name

must be alphanumeric and must begin with a letter (the underscore counts as a letter). Stuff is any text that
contains balanced parentheses. Use of a slash may stretch stuffover multiple lines. Thus, as a typical example:

define(N, 100)
. ifi>N) .
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defines N to be 100 and uses the symbolic constant Nin a later if statement.

The left parenthesis must immediately follow the word define to signal that define has arguments. If a
user-defined macro or built-in name is not followed immediately by “(", it is assumed to have no arguments.
Macro calls have the following general form:

name(argl,arg2,...argn)

A macro name is only recognized as such if it appears surrounded by nonalphanumerics. Using the following
example:

define(N, 100)
if"(NNN > 100)
the variable NNNis absolutely unrelated to the defined macro Neven though the variable contains a lot of Ns.
Macros may be defined in terms of other names. For example,

define(N, 100)
define(M, N)

defines both M and N to be 100. If Nis redefined and subsequently changes, M retains the value of 100 not N,

The M4 macro processor expands macro names’into their defining text as soon as possible. The string N
is immediately replaced by 100. Then the string Mis also immediately replaced by 100. The overall result is the
same as using the following input in the first place:

define(M, 100)
The order of the definitions can be interc__hanged as follows:

define(M, N)
define(N, 100)

Now M is defined to be the string N, so when the value of M is requested later; the result is the value of Nat
that time (because the M will be replaced by N which will be replaced by 100).

The more general solution is to delay the expansion of the arguments of define by quoting them. 'Any text
surrounded by left and right single quotes is not expanded immediately but has the quotes stripped off. The
value of a quoted string is the string stripped of the quotes. If the input is

define(N, 100)

define(M, ‘N’)
the quotes around the N are stripped off as the argument is being collected. The results of using quotes is to
define M as the string N, not 100. The general rule is that M4 always strips off one level of single quotes when-
ever it evaluates somethmg This is true even outside of macros. If the word define is to appear in the output,
the word must be quoted in the input as follows:

‘define’ = 1;
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Another example of using quotes is redefining N. To redefine N, the evaluation must be delayed by quoting:

define(N, 100)
de.;ine(‘N’, 200)

In M4, it is often wise to quote the first argument of a macro. The following example will not redefine M
define(N, 100)
dc;;ine(N. 200)

The Nin the second definition is replaced by 100. The result is equivalent to the following statement:
define(100, 200)

This statement is ignored by M4 since only things that look like names can be defined.

If left and right single quotes are not convenient for some reason, the quote characters can be changed with
the following built-in macro:

changequote([, ])

The built-in changequote makes the new quote characters the left and right brackets. The original characters
can be restored by using changequote without arguments as follows:

changequote

There are two additional built-ins related to define. The undefine macro removes the definition of some
macro or built-in as follows:

undefine(‘N’)

The macro removes the definition of N. Built-ins can be removed with undefine, as follows:
undefine(‘define’)

But once removed, the definition can not be reused.

The built-in ifdef provides a way to determine if a macro is currently defined. In particular, M4 has prede-

fined the names pdplland u3bon the corresponding systems. Depending on the system, a definition appropriate
for the particular machine can be made as follows:

ifdef(‘pdp11’, ‘define(wordsize,16)’)
ifdef(‘u3b’, ‘define(wordsize,32)")

Remember to use the quotes.

The ifdef macro actually permits three arguments. If the first argument is defined, the value of ifdef is
the second argument, otherwise the third. If there is no third argument, the value of ifdef is null. If the name
is undefined, the value of ifdef is then the third argument, as in:

ifdef(‘unix’, on UNIX, not on UNIX)

Page 73



SUPPORT TOOLS ISSUE 1 6/82

ARGUMENTS

So far the simplest form of macro processing has been discussed which is replacing one string by another
(fixed) string. User-defined macros may also have arguments, so different invocations can have different re-
sults. Within the replacement text for a macro (the second argument of its define), any occurrence of $n will
be replaced by the nth argument when the macro is actually used. Thus, the macro bump defined as

define(bump, $1 = $1 + 1)
generates code to increment its argument by 1. The ‘bump(x)’ statement is equivalent to 'x = x + 1.’

A macro can have as many arguments as needed, but only the first nine are accessible ($1 through $9). The
macro name is $0 although that is less commonly used. Arguments that are not supplied are replaced by null
strings, so a macro can be defined which simply concatenates its arguments like this:

define(cat, $1$2$3%4%$53657$8%9)

Thus, ‘cat(x, y, z)’ is equivalent to ‘xyz’. Arguments $4 through $9 are null since no corresponding arguments
were provided. Leading unquoted blanks, tabs, or new lines that occur during argument collection are discarded.
All other white space is retained. Thus:

define(a, b ¢)
defines ‘a’ to be ‘b ¢'.

Arguments are separated by commas, but parentheses are counted properly so a comma protected by paren-
theses does not terminate an argument. For example:

define(a, (b,c))

has only two arguments. The first argument is a. The second is literally (b,c). A bare comma or parenthesis
can be inserted by quoting it.

ARITHMETIC BUILT-INS

The M4 provides three built-in functions for doing arithmetic on integers (only). The simplest is incr which
increments its numeric argument by 1. The built-in decr decrements by 1. Thus to handle the common program-
ming situation where a variable is to be defined as “one more than N, use the following:

define(N, 100)
define(N1, ‘incr(N)’)

Then NI is defined as one more than the current value of N.

The more general mechanism for arithmetic is a built in called eval which is capable of arbitrary arithmetic
on integers. The operators in decreasing order of precedence are:

unary + and —

** or * (exponentiation)
* / % (modulus)

+ -

==l=< <=> >=

! (not)

& or && (logical and)

! or ¥ (logical or).

Page 74



6/82 ISSUE 1 SUPPORT TOOLS

Parentheses may be used to group operations where needed. All the operands of an expression given to eval
must ultimately be numeric. The numeric value of a true relation (like 1>0) is 1, and false is 0. The precision
in eval is 32 bits under the UNIX operating system.

As a simple example, define M to be “2==N+1" using eval as follows:

define(N, 3)
define(M, ‘eval(2==N+1)")

The defining text for a macro should be quoted unless the text is very simple. Quoting the defining text usually
gives the desired result and is a good habit to get into.

FILE MANIPULATION
A new file can be included in the input at any time by the built-in function include. For example:
include(filename)

inserts the contents of filenamein place of the include command. The contents of the file is often a set of defini-
tions. The value of include (include's replacement text) is the contents of the file. If needed, the contents can
be captured in definitions, ete.

A fatal] error occurs if the file named in include cannot be accessed. To get some control over this situation,
the alternate form sinclude can be used. The built-in sinclude (silent include) says nothing and continues if
the file named can not be accessed.

The output of M4 can be diverted to temporary files during processing, and the collected material can be
output upon command. The M4 maintains nine of these diversions, numbered 1 through 9. If the built-in macro

divert(n)

is used, all subsequent output is put onto the end of a temporary file referred to as a Diverting to this file is
stopped by the divert or divert(0) command which resumes the normal output process.

Diverted text is normally output all at once at the end of processing with the diversions output in numerical
order. Diversions can be brought back at any time by appending the new diversion to the current diversion. Qut-
put diverted to a stream other than 0 through 9 is discarded. The built-in undivert brings back all diversions
in numerical order. The built-in undivert with arguments brings back the selected diversions in the order giv-
en. The act of undiverting discards the diverted text as does diverting into a diversion whose number is not be-
tween 0 and 9, inclusive.

The value of undivert is not the diverted text. Furthermore, the diverted material is not rescanned for
macros. The built-in divaum returns the number of the currently active diversion. The current output stream
is zero during normal processing.

SYSTEM COMMAND
Any program in the local operating system can be run by using the syscmd built-in. For example:

-syscmd(date)

on the UNIX system runs the date command. Normally, sysecmd would be used to create a file for a subsequent
include.
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To facilitate making unique file names, the built-in maketemp is provided with specifications jdentical
to the system function mktemp. The maketemp macro fills in a string of XXXXX in the argument with the
process id of the current process.

CONDITIONALS
Arbitrary conditional testing is performed via built-in ifelse. In the simplest form
ifelse(a, b, ¢, d)
compares the two strings a and b. If a and b are identical, ifelse returns the string ¢. Otherwise, string d is
returned. Thus, 2 macro called compare can be defined as one which compares two strings and returns “yes"”
or “no” if they are the same or different as follows:

" define(compare, ‘ifelse($1, $2, yes, no)")

Note the quotes which prevents evaluation of ifelse occurring too early. If the fourth argument is missing, it
is treated as empty.

The built-in ifelse can actually have any number of arguments and provides a limited form of multiway
decision capability. In the input:

ifelse(a, b, ¢, d, e, f, g)

if the string a matches the string b, the result is ¢ Otherwise, if dis the same as e, the result is £ Otherwise,
the result is g If the final argument is omitted, the result is null, so

ifelse(a, b, ¢)
is ¢if a matches b, and null otherwise.
STRING MANIPULATION
The built-in len returns the length of the string (number of characters) that makes up its argument. Thus:
| len(abcdef)
is 6, and len((a,b)) is 5.

The built-in substr can be used to produce substrings of strings. Using input, substr(s, i, n) returns the
substring of s that starts at the ith position (origin zero) and is n characters long. If n is omitted, the rest of
the string is returned. Inputting

substr(‘now is the time',1)
returns the following string:
ow is the time.

If ior nare out of range, various actions occur.

The built-in index(s1, s2) returns the index (position) in sI where the string s2occurs or ~1 if it doesn’t
occur. As with substr, the origin for strings is 0.
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The built-in translit performs character transliteration and has the general form
translit(s, f, t)

which modifies s by replacing any character found in f by the corresponding character of t Using input
translit(s, aeiou, 12345)

replaces the vowels by the corresponding digits. If ¢ is shorter than f, characters which do not havé an entry
in t are deleted. As a limiting case, if tis not present at all, characters from f are deleted from s. So

translit(s, aeiou)
would delete vowels from s.

There is also a built-in called dnl which deletes all characters that follow it up to and including the next
new line. The dnl macro is useful mainly for throwing away empty lines that otherwise tend to clutter up M4
output. Using input

define(N, 100)

define(M, 200)

define(L, 300)
results in a new line at the end of each line that is not part of the definition. So the new line is copied into the
output where it may not be wanted. If the built-in dnl is added to each of these lines, the new lines will disap-

pear. Another method of achieving the same results is to input

divert(—1)
define(...)

di;rert.
PRINTING
The built-in errprint writes its arguments out on the standard error file. An example would be:
errprint (‘fatal error’)
The built-in dumpdef is a debugging aid which dumps the current names and definitions of items named

as arguments. If no arguments are given, then all current names and definitions are printed Do not forget to
quote the names.
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TABLE 5.A

BUILT-IN MACROS

MACRO NAME FUNCTION

changequote Restores original characters or makes new quote characters the left and
right brackets

changecom Changes left and right comment markers from the default # and new line

decr Returns the value of its argument decremented by 1

define Defines new macros

defn Returns the quoted definition of its argument(s)

divert Diverts output to one-of-ten diversions

divhum Returns the number of the currently active diversion

dnl Reads and discards characters up to and including the next new line

dumpdef Dumps the current names and definitions of items named as arguments

errprint Prints its arguments on the standard error file

eval Performs arbitrary arithmetic on integers

ifdef Determines if a macro is currently defined

ifelse Performs arbitrary conditional testing

include Returns the contents of the file named in the argument. A fatal error occurs
if the file named can not be accessed.

incr Returns the value of its argument incremented by 1

index Returns the position where the second argument begins in the first argu-
ment of index

len Returns the number of characters that makes up its argument

mdexit Causes immediate exit from M4

méwrap Pushes the exit code back at final EOF

maketemp Facilitates making unique file names

popdef Removes current definition of its argument(s) exposing any previous defin-

tion
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TABLE 5.A (Contd)

BUILT-IN MACROS

MACRO NAME FUNCTION
pushdef Defines new macros, but saves any previous definition
shift Returns all arguments of shift except the first argument
sinclude Returns.the contents of the file named in the arguments. The macro remains

silent and continues if the file is inaccessible.

substr Produces substrings of strings

sysecmd . | Executes the UNIX system command given in the first argument
traceoff Turns macro trace off

traceon Turns the macro trace on

translit Performs character transliteration

undefine Removes user-defined or built-in macro defintions

undivert Discards the diverted text
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6. THE “awk’’ PROGRAMMING LANGUAGE

GENERAL

The awk programming language is designed to scan a set of files for lines that match any of a set of pat-
terns which the user has specified. For each pattern, an action can be specified. The specified action will be per-
formed on each line or fields of lines that match the pattern. The awk language is designed to make many
common information retrieval and text manipulation tasks easy to state and to perform.

Readers familiar with the program grep will recognize the approach, although in awk the patterns may
be more general than in grep, and the actions allowed are more involved than printing the matching line. For
example, the awk program

{print $3, $2}
prints the third and second columns of a table in that order. The program
$2 - /AIBIC/
prints all input lines with an A, B, or C in the second field. The program
$1 != prev { print; prev = $1}

prints all lines in which the first field is different from the previous first field.

A. Usage
The command
awk program [files]

scans each input file, or on the standard input if there are no files, for lines that match any of a set of patterns
specified in program. With each pattern in program, there may be an associated action that will be performed
when a line of the input matches the pattern. The awk commands may appear literally in program, or the state-
ments can also be placed in a file pfile and executed by the command:

awk —f pfile [files]
B. Program Structure
An awk program is a sequence of statements of the form:

pattern ' { action }
pattern { action }

Each line of input is matched against each of the patterns in succession. For each pattern that matches, the
associated action is executed. When all the patterns have been tested, the next line of input is fetched and the
matching process starts over.

Either the pattern or the action may be omitted, but not both. If there is no action for a pattern, the match-
ing line is simply copied to the output. (A line which matches several patterns can be printed several times.)
If there is no pattern for an action, then the action is performed for every input line. A line which does not match
a pattern is ignored.
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Since patternz or actions may be omitted, actions must be enclosed in braces to distinguish them from pat-
terns in the program.

The awk patterns may include arbitrary boolean combinations of regular expressions and of relational op-
erators on strings, numbers, fields, variables, and array elements. Actions may include the same pattern-
matching constructions as in patterns, as well as arithmetic and string expressions and assignments, if-else,
while, for statements, and multiple output streams.

C. Records and Fields

The variable FILENAME contains the name of the current input file. The input to awk is divided into
“records” terminated by a record separator. The default record separator is a newline. However, the input re-
cord separator may be changed; so by default, awk processes its input a line at a time. The number of the cur-
rent record is available in a variable named NR

Each input record is considered to be divided into “fields”. The default field separator is white space (blanks
or tabs); however, the input field separator may be changed. Fields are referred to as $1, $2, etc. where $1 is
the first ficld, and £0 is the entire input record. Fields may be assigned to a2 numeric or string value. The number
of fields in the current record is available in the variable NF.

The variables FS and RSrefer to the input field and record separators, respectively; they may be changed
at any time to any single character. The optional command-line argument —Fc¢ may also be used to set FSto
the character ¢

If the record separator is empty, an empty input line is taken as the record separator; and blanks, tabs, and
newlines are treated as field separators.

D. Printing

When there is no pattern for an action, the action is executed for all lines. The simplest action is to print
some or al} of a record; this is accomplished by the awk command print. The awk program

{ print }

prints each record copying the input to the output. A more useful program is to print a field or fields from each
record. For instance,

print $2, $1
prints the first two fields in reverse order. Items separated by a comma in the print statement will be separated
by the current output field separator, referenced by the variable OFS, when output. Items not separated by com-
mas will be concztenated, so
print $1 $2
prints the first and second fields together.
The predefined variables NF and NR can be used in the print command; for example:

{ print NR, NF, $0}

prints each record preceded by the record number and the number of fields in the record.
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Output may be diverted'to multiple files; the progfam
{ print $1 >" fool” ; print $2> "foo2"}
writes the first field, $1, on file fool, and the second field on file foo2 The >> notati.on can also be used:
print $1 >> "foo "

appends the first field, $1, to file foo. (In each case, the output files are created if necessary.) The file name can
be a variable, a field, or a constant; for example:

print $1 >$2
uses the contents of field 2 as a file name.
There is a limit on the number of output files; currently the limit is 10.
Similarly, output can be piped into another process (on the UNIX operating system only); for instance:
print ! ® mail bwk "

mails the output to bwk.

The variables OFS and ORS may be used to change the current output field separator and output record
separator. The default output field separator is a blank, and the default output record separator i5 a newline.
The output record separator is appended-to the output of the print statement.

The awk language also provides the printf statement for output formatting:

printf fprmat expr, expr, ...

formats the expressions in the list according to the specification in format and prints them. The statement

printf " %8.2f %10ld\n" , $1, $2

prints the first field, $1, as a floating point number eight digits wide with two after the decimal point and prints
the second field, $2, as a 10-digit long decimal number; followed by a new line. No output separators are produced
automatically. In this example, the two fields will be separated by the current output field separator. The ver-
sion of printf used in the awk programming language is identical to that used in the C programming language.

PATTERNS

The “pattern”which precedes an “action” in an awk program acts as a selector to determine whether the
action is to be executed. A variety of expressions may be used as patterns: regular expressions, arithmetic rela-
tional expressions, string-valued expressions, and arbitrary boolean combinations of these.

A. “BEGIN” and “END”

The special pattern BEGIN matches the beginning of the input before the first record is read. The pattern
END matches the end of the input after the last record has been processed. BEGIN and END provides a way
to gain control of the program before and after processing.
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As an example, using the variable FS, the field separator can be set to a colon by

BEGIN {FS=":" }
... rest of program ...

or, using the variable NR, the input lines may be counted by
END {print NR}
If BEGIN is present, it must be the first pattern; if END is present, it must be the last pattern in the program.
B. Regular Expressions
The simplest regular expression is a literal string of characters enclosed in slashes, for example:
© /smith/

This is a complete awk program that prints all lines which contain any occurrence of the name “smith”. If a
line contains “smith” as part of a larger word, it will also be printed, as in

blacksmithing

The awk regular expressions include the regular expression forms found in the UNIX text editor ed and
grep (without back referencing). In addition, awk allows parentheses for grouping, | for alternatives, + for
“one or more", and ? for “zero or one”, all as in the lex programming language. Character classes may be abbre-
viated as {a-zA-Z0-9} to represent the set of all letters and digits. As an example, the awk program

/[Aa)hol[Ww]einbergeri[Kk]ernighan/

prints all lines containing any of the names “Aho”, “Weinberger”, or “Kernighan”, whether capitalized or not.
Regular expressions (with the extensions listed above) must be enclosed in slashes, just as in the programs
ed and sed. Within a regular expression, blanks and the regular expression metacharacters are significant. To
turn off the special meaning of one of the regular expression characters, precede it with a backslash. An example
is the pattern:
N/ *\//

which matches any string of characters enclosed in slashes.

Any field or variable can be specified to match (or not match) a regular expression with the operators -
and !~. The program

$1 - /[jJ)ohn/

prints all lines where the first field matches *john” or “John”. Notice that the program will also match “John-

son”, “St. Johnsbury”, etc. To restrict the program to match lines or fields that contain only “[jJ)ohn”, use

$1- /~[HJ)ohn$/

The caret “~" refers to the beginning of a line or field; the dollar sign $ refers to the end of a line or field.
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C. Relational Expressions

An awk pattern can be a relational expression involving the usual relational operators
<, <=, == l= 5= and >. An example is

$2 > $1 + 100

which selects lines where the second field is at least 100 greater than the first field. Similarly,
NF % 2==0

prints lines that contain an even number of fields.

In relational tests if neither operand is numeric, a string comparison is made; otherwise, the operand is
numeric. Thus:

$1>="g"

selects lines that begin with an "s”, “t”, “u”, etc. In the absence of any other information, fields are treated as
strings; therefore, the program

$1 > $2
will perform a string comparison.
D. Combinations of Patterns

A pattern can be any boolean combination of patterns, using the operators & (or), && (and), and ! (not). For
example:

$1 >="3" && 1< “t” && 31 !I= “smith”
selects lines where the first field begins with “s’; but is not “smith”. The && and § guarantee that the operands
will be evaluated from left to right; evaluation stops when the truth or falsehood is determined.
E. Pattern Ranges

A “pattern” may consist of two patterns separated by a comma,; in this case, the action is performed for
all lines between an occurrence of the first pattern and the next occurrence of the second. For instance,

patl, pat2{ ...}

will perform the action for each line between an occurrence of “patl” and the next occurrence of “pat2” (inclu-
sive). An example is:

/start/, /stop/
which prints all lines between the patterns “start” and “stop”, while:
NR == 100, NR == 200 { ... }

performs the action for lines 100 through 200 of the input.
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ACTIONS

An awk action is a sequence of action statements terminated by newlines or semicolons. These action state-
ments can be used for a variety of bookkeeping and string manipulating tasks.

A. Built-in Functions

The awk language provides a “length” function to compute the length of a string of characters. The follow-
ing program prints each record preceded by its length:

{print length, $0}
The function length is a “pseudo-variable” which yields the length of the current record; length(argument)
is a function which yields the length of its argument. The argument may be any expression. The following is
equivalent to the previous program:

{print length($0), $0}

Also provided by awk are the arithmetic functions sqrt, log, exp, and int for square root, base e loga-
rithm, exponential, and integer part of their respective arguments.

The name of one of these built-in functions, without argument or parentheses, stands for the value of the
function on the entire record. The program

length < 10 & length > 20
prints lines whose length is less than 10 or greater than 20.

The function fBbstr(s, m, n) produces the substring of “s” that begins at position “m" (origin 1) and is

at most “n” characters long. If “n” is omitted, the substring goes to the end of “s”. The function index(s1, s2)

returns the position where the string “s2"” occurs in “sl1” or zero if it does not.

The function sprintf(f, el, e2, ..) produces the value of the expressions “el”, “e2", etc., in the printf for-
mat specified by “I"". For example

x = sprintf( " %8.2f %10ld" , $1, $2)

sets x to the string produced by formatting the values of the first field, $1, and the second field, $2.

B. Voriables, Expressions, and Assignments

The awk variables take on numeric (floating point) or string values according to context. For example, in:

x=1

x is clearly a number, while in:
x = "smith"

xis clearly a string. Strings are converted to numbers and vice versa whenever context demands it. For instance:
x="3" +"4"

assigns 7 to x Strings which cannot be interpreted as numbers in a numerical context will generally have nu-

meric value zero. To force an expression to be treated as a number, add 0 (zero) to it; to force an expression to
be treated as a string, concatenate the null string (" " ) to it.
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By default, variables (other than built-ins) are initialized to the null string, which has numerical value zero;
this eliminates the need for most BEGIN sections. For example, the sums of the first two fields can be com-
puted by: '

[s] +=$1; 32 += $2
END { print s1, s2 }

Arithmetic is done internally in floating point. The arithmetic operators are +, —, *, /, and % (mod). The
C language increment ++ and decrement —— operators are available; also the assignment operators +=, —=,
*= /= and %= are available. These operators may all be used in expressions.

C. Field Variables

Fields in awk share essentially all of the properties of variables—they may be used in arithmetic or string
operations and may be assigned to a numeric or string value. One can replace the first field with a sequence
number with:

{ $1 = NR; print }
or accumulate two fields into a third:

{ $1 = $2 + $3; print $0 }
or assign a string to a field:

{ if ($3 > 1000)

$3 = "too big"
print
}

which replaces the third field with “too big” when the third field is greater than 1000 and prints the record.

Field references may be numerical expressions, as in:
{ print $i, $(i+1), $(i+n) }
Whether a field is numeric or string depends on context; in ambiguous cases like
if ($1 == $2) ...
fields are treated as strings.

Each input line is split into fields automatically as necessary. It is also possible to split any variable or string
into fields; )

n = split(s, array, sep)

splits the string “s” into “array(l], ..., array[n]”. The number of elements found is returned. If the “'sep” argu-
ment is provided, it is used as the field separator; otherwise, the field separator is that which is referenced by
the variable FS.
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D. String Concatenation
Strings may be concatenated. For example:
length($1 $2 $3)
returns the length of the first three fields; or in a print statement,
print $1 " is " $2
prints the two fields separated by “is”. Variables and numeric expressions may also appear in concatenations.
E. Arays

Array elements are not declared; the elements are initialized when mentioned. Subscripts may have any
non-null value including non-numeric strings. As an example of a conventional numeric subscript, the statement

x[NR] = $0

assigns the current input record to the NR-th element of the array x. In fact, it is possible in principle (though
perhaps slow) to process the entire input in a random order with the awk program

{ x[NR] = $0 }
END {.. program ... }

The first action records each input line in the array x

Array elements may be named by non-numeric values, which gives awk a capability rather like the associa-
tive memory of Snobol tables. Suppose the input contains fields with values like “apple”, “orange”, etc. Then
the program

/apple/  {x["apple" ]++}
/orange/ |{x["orange" ]++ } _
END { print x[ " apple” ], x[ "orange"” ] }
increments counts for the named array elements and prints them at the end of the input.
Any expression can be used as a subscript in an array reference. Thus:
x[$1]) = $2
uses the first field of a record (as a string) to index the array x

Suppose each line of input contains two fields — a name and a nonzero value. Names may be repeated; the
task is to print a list of each unique name followed by the sum of all the values for that name. This can be done
with the program

{ amount[$1] += $2 }
END { for (name in amount)
print name, amount{name) }
To sort the output, replace the last line by

print name, amount[name] { " sort"
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F. Flow=-of-Control Statements

The awk language also provides the basic flow-of-control statements if-else, while, for, and statement
grouping with braces, as in the C programming language. The if-else statement is exactly like that of the C
language and was previously shown in the subpart “Field Variables”. The condition in parentheses of an if-else
statement is evaluated; if it is true, the statement following the if is performed. The else part is optional

The while statement is exactly like that of the C language. For example, to print all input fields one per
line:

i=1

while (i <= NF) {
print $i
+<+i

}
The for statement is also like that of the C language;

for (i=1;1 <= NF; i++)
print $i

performs the same task as the while statement above.

There is an alternate form of the for statefnent which is suited for accessing the elements of an associative
array:

for (i in array)
statement

does statement with iset in turn to each element of array. The elements are accessed in an apﬁarently random
order. Confusion will develop if i is altered or if any new elements are accessed during the loop.

The expression in the condition part of an if, while, or for can include relational operators like <, <=, >,
>=, == (equal to), and != (not equal to); regular expression matches with the match operators - and !-; the
logical operators B, &&, and !; and parentheses for grouping.

The break statement causes an immediate exit from an enclosing while or for loop; the continue state-
ment causes the next iteration of the enclosing loop to begin.

The statement next causes the awk program to skip immediately to the next record and begin scanning
the patterns from the top. The statement exit causes the program to behave as if the end of the input had oe-
curred.

Comments may be placed in awk programs, but they must begin with the character # and terminate with
the end of the line, for example:

print x, y ¥# this is a comment
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7. ARBITRARY PRECISION DESK CALCULATOR LANGUAGE (BC)
GENERAL

The arbitrary precision desk calculator language (BC) is a language and compiler for doing arbitrary preci-
sion arithmetic under the UNIX operating system. The output of the compiler is interpreted and executed by
a collection of routines which can input, output, and do arithmetic on infinitely large integers and on scaled
fixed-point numbers. These routines are based on a dynamic storage allocator. Overflow does not occur until
all available core storage is exhausted.

The BC language has a complete control structure as well as immediate-mode operation. Functions can be
defined and saved for later execution. A small collection of library functions is also available, including sin, cos,
arctan, log, exponential, and Bessel functions of integer order.

The BC compiler was written to make conveniently available a collection of routines (called DC) which are
capable of doing arithmetic on integers of arbitrary size. The compiler is not intended to provide a complete
programming language. It is a minimal language facility.

Some of the uses of this compiler are
e to do computation with large intergers
e to do computation accurate to many decimal places

e conversion of numbers from one base to another base.

There is a scaling provision that permits the use of decimal point notation. Provision is also made for input
and output in bases other than decimal. Numbers can be converted from decimal to octal by simply setting the
output base to equal eight.

The actual limit on the number of digits that can be handled depends on the amount of core storage avail-
able. Manipulation of numbers with many hundreds of digits is possible even on the smallest versions of the
UNIX operating system. .

The syntax of BC is very similar to that of the C language. This enables users who are familiar with C lan-
guage to easily work with BC.

SIMPLE COMPUTATIONS WITH INTERGERS

The simplest kind of statement is an arithmetic expression on a line by itself. For instance, if you type in
the addition of two numbers (with the + operator) such as

142857 + 285T14
the program responds immediately with the sum
428571.
The operators —, *, /, %, and ~ can also be used. They indicate subtraction, multiplication, division, remain-
dering, and exponentiation, respectively. Division of integers produces an integer result truncated toward zero.

Division by zero produces an error comment.

Any term in an expression may be prefixed by a minus sign to indicate that it is to be negated (the unary
minus sign). The expression

T+-3
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is interpreted to mean that —3 is to be added to 7.

More complex expressions with several operators and with parentheses are interpreted just as in Fortran,
with ~ having the greatest binding power, then *, %, and /, and finally, + and —. Contents of parentheses are
evaluated before material outside the parentheses. Exponentiations are performed from right to left and the
other operators from left to right. The two expressions

a~b~c and a~(b~c)
are equivalent as are the two expressions
a*b*c and (a*b)*c.
However, BC shares with Fortran and C language the undesirable convention that

a/b*c is equivalent to (a/b)*c.

Internal storage registers to hold numbers have single lowercase letter names. The value of an expression
can be assigned to a register in the usual way. The statement .

x=x+3
has the effect of increasing by three the value of the contents of the register named x When, as in this case,

the outermost operator is an “=", the assignment is performed; but the result is not printed. Only 26 of these
named storage registers are available.

There is a built-in square root function whose result is truncated to an integer (see the part on “SCALING").
Entering the lines

x = sqrt(191)
x

produces the printed result

13.

BASES

There are two special internal quantities; ibase (input base) and obase (output base). The contents of
ibase, initially set to 10 (decimal), determines the base used for interpreting numbers read in. For example,
the input lines

ibase = 8
11

will produce the output line
9

and the system is ready to do octal to decimal conversions. Beware, however, of trying to change the input base
back to decimal by typing

ibase = 10
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Because the number 10 is interpreted as octal, this statement will have no effect. For dealing in hexadecimal
notation, the characters A through F are permitted in numbers (regardless of what base is in effect) and are
interpreted as digits having values 10 through 15, respectively. The statement

ibase = A

will change the base to decimal regardless of what the current input base is. Negative and large positive input
bases are permitted but are useless. No mechanism has been provided for the input of arbitrary numbers in
bases less than 1 and greater than 16.

The content of obase, initially 10 (decimal), is used as the base for output numbers. The input lines

obase = 16
1000

will produce the output line
3E8

which is to be interpreted as a 3-digit hexadecimal number. Very large output bases are permitted and are some-
times useful. For example, large numbers can be output in groups of five digits by setting obase to 100000.
Strange output bases (i.e.,, 1, 0, or negative) are handled appropriately.

Very large numbers are split across lines with 70 characters per line. Lines which are continued end with
a backslash (\). Decimal output conversion is practically instantaneous, but output of very large numbers (i.e.,
more than 100 digits) with other bases is rather slow. Nondecimal output conversion of a 100-digit number takes
about 3 seconds.

The ibase and obase have no effect on the course of internal computation or on the evaluation of expres-
sions. They only affect input and output conversions, respectively.

SCALNG

A third special internal quantity called scale is used to determine the scale of calculated quantities. The
number of digits after the decimal point of a number is referred to as its scale. Numbers may have up to 99 deci-
mal digits after the decimal point. This fractional part is retained in further computations.

The contents of scale must be no greater than 99 and no less than 0. It is initially set to 0. However, appro-
priate scaling can be arranged when more than 99 fraction digits are required.

When two scaled numbers are combined by means of one of the arithmetic operations, the result has a scale
determined by the following rules:

¢ Addition and subtraction—The scale of the result is the larger of the scales of the two operands. In this
case, there is never any truncation of the result.

o Multiplication—The scale of the result is never less than the maximum of the two scales of the operands
and never more than the sum of the scales of the operands. Subject to those two restrictions, the scale
of the result is set equal to the contents of the internal quantity scale.

o Division—The scale of a quotient is the contents of the internal quantity scale. The scale of a remainder
is the sum of the scales of the quotient and the divisor.

e Exponentiation—The result of an exponentiation is scaled as if the implied multiplications were per-
formed. An exponent must be an integer.
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e Square root—The scale of a square root is set to the maximum of the scale of the argument and the con-
tents of scale.

All of the internal operations are actually carried out in terms of integers with digits being discarded when’
necessary. In every case where digits are discarded, truncation and not rounding is performed.

The internal quantities scale, ibase, and obase can be used in expressions just like other variables. The
input line

scale = scale + 1

increases the value of scale by one, and the input line
scale

causes the current value of scale to be printed.

The value of scale retains its meaning as a number of decimal digits to be retained in internal computation
even when ibase or obase are not equal to 10. The internal computations (which are still conducted in decimal
regardless of the bases) are performed to the specified number of decimal digits, never hexadecimal, octal, or
any other kind of digits.

FUNCTIONS

The name of a function is a single lowercase letter. Function names are permitted to coincide with simple
variable names. Twenty-six different defined functions are permitted in addition to the 26 variable names. The
input line

define a(x)f

begins the definition of a function with one argument. This line must be followed by one or more statements
which make up the body of the function ending with a right brace ( } ). The general form of a function is

define a(x) {
return
}

Return of control from a function occurs when a return statement is executed or when the end of the func-
tion is reached. The return statement can take either of the two forms:

return
return(x)

In the first case, the value of the function is 0; and in the second, the value of the function is the expression
in parentheses.

Variables used in the function can be declared as automatic by a statement of the form:
auto x,y,2
There can be only one auto statement in a function, and it must be the first statement in the definition. These

automatic variables are allocated space and initialized to zero on entry to the function and thrown away on re-
turn (exit). The values of any variables with the same names outside the function are not disturbed. Functions
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may be called recursively and the automatic variables at each level of call are protected. The parameters named
in a function definition are treated in the same way as the automatic variables of that function with the single
exception that they are given a value on entry to the function. An example of a function definition is

define a(x,y}
auto z
z=x"y
return(z)

}

The value of this function a, when called, will be the product of its two arguments, “x” and “y".

A function is called by the appearance of its name followed by a string of arguments enclosed in parentheses
and separated by commas. The result is unpredictable if the wrong number of arguments is used.

Functions with no arguments are defined and called using parentheses with nothing between them: b().
If the function a above has been defined, then the line
a(7,3.14)
would cause the result 21.98 to be printed, and the line
z = a(a(3,4),5)
would cause the result 60 to be printed.
SUBSCRIPTED VARIABLES

A single lowercase letter variable name followed by an expression in brackets is called a subscripted vari-
able (an array element). The variable name is called the array name, and the expression in brackets is called
the subscript. Only 1-dimensional arrays are permitted. The names of arrays are permitted to coincide with the
names of simple variables and function names. Any fractional part of a subscript is discarded before use.
Subscripts must be greater than or equal to 0 and less than or equal to 2047.

Subscripted variables may be used in expressions, in function calls, and in return statements.

An array name may be used as an argument to a function or may be declared as automatic in a function
definition by the use of empty brackets:

f(a(l)
define f(a[])
auto a[]

When an array name is so used, the whole contents of the array are copied for the use of the function and thrown
away on exit from the function. Array names that refer to whole arrays cannot be used in any other contexts.

CONTROL STATEMENTS
The if, while, and for statements may be used to alter the flow within programs or to cause iteration. The
range of each of them is a statement or a compound statement consisting of a collection of statements enclosed

in braces. They are written in the following way:

_if(relation) statement
while(relation) statement
for(expressionl; relation; expression2) statement

- .
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or

if(relation) {statements}
while(relation) {statements])
for(expressionl; relation; expression2) {statements)

A relation in one of the control statements is an expression of the form:
x>y

where two expressions are related by one of the following six relational operators:

< less than

> greater than

<= less than or equal to
>= greater than or equal to
== equal to

1= not equal to

Beware of using “=" instead of “=="as a relational operator. Unfortunately, both of these are legal, so
there will be no diagnostic message, but “=" will not do a comparison.

The if statement causes execution of its range if and only if the relation is true. Then control passes to the
next statement in sequence.

The while statement causes execution of its range repeatedly as long as the relation is true. The relation
is tested before each execution of its range; and if the relation is false, control passes to the next statement be-
yond the range of the while statement.

The for statement begins by executing expressionl. Then the relation is tested; and, if true, the state-
ments in the range of the for are executed. Then expression2 is executed. The relation is then tested, etc. The
typical use of the for statement is for a controlled iteration, as in the statement:

for(i=1; i<=10; i=i+1) i
which will print the integers from one to ten. Following are some examples of the use of the control statements:

define f(n){

auto i, x

x=1

for(i=1; i<=n; i=i+1) x=x"*i

return(x)

} -
The input line

f(a)
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will print “a"” factorial if “a” is a positive integer. The following is the definition of a function which will com-
pute values of the binomial coefficient (m and n are assumed to be positive integers):

define b(n,m){

auto x, j

x=1

for(j=1; j<=m; j=j+1) x=x*(n—j+1)/j
return(x)

}

The following function computes values of the exponential function by summing the appropriate series without
regard for possible truncation errors:

scale = 20
define e(x)
autoa, b, ¢, d, n

a=]

b=1

c=1

d=0

n=1

while(1==1){
a=a’x
b= b*n
c=c+ab
n=n+1
if(c==d) return(c) .
d=¢c

}

ADDITIONAL FEATURES
There are some additional language features that every user should know.

Normally, statements are typed one to a line. It is also permissible, however, to type several statements on
a line by separating the statements by semicolons.

If an assignment statement is parenthesized, it then has a value; and it can be used anywhere that an expres-
sion can. For example, the input line

(x=y+17)

not only makes the indicated assignment, but also prints the resulting value.

Following is an example of a use of the value of an assignment statement even when it is not parenthesized.
The input line

x = afi=i+1)

causes 8 value to be assigned to x and also increments J before it is used as a subscript.
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The following constructs work in BC in exactly the same manner as they do in the C language. Refer to Ap-
pendix 7.1 or the C language programming documents for more details.

x=y=z Is the same as x=(y=z)

xX=+ty " X = x+y

X ==y " X = x—y
x=*y " X = x*y
x=/y " X =x/y
x=%y " Xx=x%y
x="y " X=x"y
x++ " (x=x+1)~1
x—- " (x=x—-1)+1
++x " X =x+1
- " x=x-1

Warning: Insome of these constructions, spaces are significant. There is a real difference
between x=-y and x= —y. The first replaces x by x—y and the second by -y.

The following are three important things to remember when using BC programs:
e To exit a BC program, type quit.

o There is a cornment convention identical to that of the C language. Comments begin with /* and end
with */.

e There is a library of math functions which may be obtained by typing at command level:
be -1
This command will load a set of library functions which includes sine (s), cosine (¢), arctangent (a), natu-

ral logarithm (1), exponential (e), and Bessel functions of integer order [j(n,x)}. The library sets the scale
to 20, but it can be reset to another value.

If you type
be file ...

the BC program will read and execute the named file or files before accepting commands from the keyboard.
In this way, programs and function definitions may be loaded.

Page 98



6/82 ISSUE 1 SUPPORT TOOLS

APPENDIX 7.1

NOTATION

In the following pages, syntactic categories are in italics and literals are in bold. Material in brackets “{)”
is optional.

TOKENS

Tokens consist of keywords, identifiers, constants, operators, and separators. Token separators may be
blanks, tabs, or comments. New-line characters or semicolons separate statements.

A. Comments
Comments are introduced by the characters /* and terminated by */.
B. Identifiers

There are three kinds of identifiers; ordinary, array, and function. All three types consist of single lowercase
letters. Array identifiers are followed by square brackets, possibly enclosing an expression describing a sub-
script. Arrays are singly dimensioned and may contain up to 2048 elements. Indexing begins at zero so an array
may be indexed from 0 to 2047. Subscripts are truncated to integers. Function identifiers are followed by paren-
theses, possibly enclosing arguments. The three types of identifiers do not conflict. A program can have a vari-
able named x, an array named x, and a function named x; all of which are separate and distinct.

C. Keywords

The following are reserved keywords:

ibase if
obase break
scale define
sqrt auto
length return
while quit
for

D. Constants

Constants consist of arbitrarily long numbers with an optional decimal point. The hexadecimal digits A
through F are also recognized as digits with values 10 through 15, respectively.

EXPRESSIONS

The value of an expression is printed unless the main operator is an assignment. Precedence is the same
as the order of presentation here with highest appearing first. Left or right associativity, where applicable, is
discussed with each operator.
A. Primative Expressions

Named Expressions

Named expressions are places where values are stored. Simply stated, named expressions are legal on the
left side of an assignment. The value of a named expression is the value stored in the place named.
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identifiers

Simple identifiers are named expressions. They have an initial value of zero.
array-namef[expression]

Array elements are named expressions. They have an initial value of zero.
scale, ibase, and obase

The internal registers scale, ibase, and obase are all named expressions. The scale register is the num-
ber of digits after the decimal point to be retained in arithmetic operations. It has an initial value of zero. The
ibase and obase registers are the input and output number radix, respectively. Both ibase and obase have
initial values of ten.

Function Calls
function-name([expression[,expression..]])

A function call consists of a function name followed by parentheses containing a comma-separated list cf
expressions, which are the function arguments. A whole array passed as an argument is specified by the array
name followed by empty square brackets. All function arguments are passed by value. As a result, changes made
to the formal parameters have no effect on the actual arguments. If the function terminates by executing a
return statement, the value of the function is the value of the expression in the parentheses of the return
statement or is zero if no expression is provided or if there is no return statement.

sqrt(expression)

The result is the square root of the expression. The result is truncated in the least significant decimal place.
The scale of the result is the scale of the expression or the value of scale, whichever is larger.

length(expression)
The result is the total number of significant decimal digits in the expression. The scale of the result is zero.
scale(expression)
The result is the scale of the expression. The scale of the result is zero.
Constants
Constants are primitive expressions.
Parentheses

An expression surrounded by parentheses is a primitive expression. The parentheses are used to alter the
normal precedence.

B. Unary Operators
The unary operators bind right to left.
—expression

The result is the negative of the expression.
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++named—expression

The named expression is incremented by one. The result is the value of the named expression after
incrementing.

——named—expression

The named expression is decremented by one. The result is the value of the named expression after
. decrementing.

named—expression++

The named expression is incremented by one. The result is the value of the.named expression before
incrementing. '

named—expression——

The named expression is decremented by one. The result is the value of the named expression before
decrementing.

C. Exponentiation Operator

The exponentiation operator binds right to left.
expression ~ expression

The result is the first expression raised to the power of the second expression. The second expression must
be an integer. If a is the scale of the left expression and b is the absolute value of the right expression, then
the scale of the result is

min(axb,max(scale,a))

D. Multiplicative Operators

The operators *, /, and % bind left to right.

expression * expression

The result is the product of the two expressions. If 3 and b are the scales of the two expressions, then the
scale of the result is

min(a+b,max(scale,a,b))
expression / expression
The result is the quotient of the two expressions. The scale of the result is the valﬁe of scale.
expression % expression

The % operator produces the remainder of the division of the two expressions. More precisely, a% b is
a-a/b*b.

The scale of the result is the sum of the scale of the divisor and the value of scale.
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E. Additive Operators
The additive operators bind left to right.
expression + expression

The result is the sum of the two expressions. The scale of the result is the maximum of the scales of the
expressions.

expression — expression

The result is the difference of the two expressions. The scale of the result is the maximum of the scales of
the expressions.

F. Assignment Operators
The assignment operators bind right to left.
named —expression = expression

This expression results in assigning the value of the expression on the right to the named expression on the
left.

named—expression =+ expression
named—expression =— expression
named—expression =* expression
named—expression =/ expression
named—expression =% expression
named—expression =* expression

The result of the above expressions is equivalent to “named expression = named expression OP expression”,
where OP is the operator after the = sign.

RELATIONAL OPERATORS

Unlike all other operators, the relational operators are only valid as the object of an if or while statement
or inside a for statement.

expression < expression
expression > expression
expression <= expression
expression >= expression
expression == expression
expression '= expression

STORAGE CLASSES

There are only two storage classes in BC—global and automatic (local). Only identifiers that are to be local
to a function need be declared with the auto command. The arguments to a function are local to the function.
All other identifiers are assumed to be global and available to all functions. All identifiers, global and local,
have initial values of zero. Identifiers declared as auto are allocated on entry to the function and released on
returning from the function. They therefore do not retain values between function calls. The auto arrays are
specified by the array name followed by empty square brackets.

-~
.
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Automatic variables in BC do not work in exactly the same way as in C language. On entry to a function,
the old values of the names that appear as parameters and as automatic variables are pushed onto a stack. Until
return is made from the function, reference to these names refers only to the new values.

STATEMENTS

Statements must be separated by semicolon or new line. Except where altered by control statements, execu-
tion is sequential.

A. Expression Statements

When a statement is an expression unless the main operator is an assignment, the value of the expression
is printed, followed by a new-line character.

8. Compound Statements

Statements may be grouped together and used when one statement is expected by surrounding them with
braces {}. .

C.  Quoted String Statements
The following statement prints the string inside the quotes.
" any string "
D. The “'if’ Statement
if(relation)statement
The substatement is executed if the relation is true.
E. The “while’’ Statement
while(relation)statement

The while statement is executed while the relation is true. The test occurs before each execution of the
statement.

F. The “for’’ Statement
for(expressiom, relatiom expression)statement

The for statement is the same as

first-expression
while(relation) {

Statement
last-expression
}

All three expressions must be present.
G. The “‘break’’ Statement

break
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The break statement causes termination of a for or while statement.
H., The “auto’ Statement
auto jdentifier{,identifier)
The auto statement causes the values of the identifiers to be pushed down. The identifiers can be ordinary
identifiers or array identifiers. Array identifiers are specified by following the array name by empty square
brackets. The auto statement must be the first statement in a function definition.

l. The “define’’ Statement

define([parameter{,parameter...)])}{

statements|

The define statement defines a function. The parameters mey be ordinary identifiers or array names.
Array names must be followed by empty square brackets.

-J.  The “return’’ Statement

return
return(expression)

The return statement causes termination of a function, popping of its auto variables on the stack, and speci-
fies the result of the function. The first form is equivalent to return(0). The result of the function is the result
of the expression in parentheses.

K. The “quit’’ Statement

The quit statement stops execution of a BC program and returns control to the UNIX software when it is
first encountered. Because it is not treated as an executable statement, it cannot be used in a function definition
or in an if, for, or while statement.
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8. INTERACTIVE DESK CALCULATOR (DC)

GENERAL

The DC program is an interactive desk calculator program implemented on the UNIX operating system to
do arbitrary-precision integer arithmetic. It has provisions for manipulating scaled fixed-point numbers and
for input and output in bases other than decimal.

The size of numbers that can be manipulated by DC is limited only by available core storage. On typical
implementations of the UNIX system, the size of numbers that can be handled varies from several hundred on
the smallest systems to several thousand on the largest.

The DC program works like a stacking calculator using reverse Polish notation. Ordinarily, DC operates
on decimal integers; but an input base, output base, and a number of fractional digits to be maintained can be
specified.

A language called BC has been developed which accepts programs written in the familiar style of higher-
level programming languages and compiles the output which is interpreted by DC. Some of the commands de-
scribed below were designed for the compiler interface and are not easy for a human user to manipulate.

Numbers that are typed into DC are put on a pushdown stack. The DC commands work by taking the top
number or two off the stack, performing the desired operation, and pushing the result on the stack. If an argu-
ment is given, input is taken from that file until its end, then from the standard input.

DC COMMANDS

Any number of commands are permitted on a line. Blanks and new-line characters are ignored except within
numbers and in places where a register name is expected.

The following constructions are recognized:
number

The value of the number is pushed onto the main stack. A number is an unbroken string of digits 0 through
9 and uppercase letters A through F (treated as digits with values 10 through 15, respectively). The number may
be preceded by an underscore ( _ ) to input a negative number. Numbers may contain decimal points.

+-=*/% "

The top two values on the stack are added (+), subtracted (—), multiplied (*), divided (/), remaindered (%), or
exponentiated (~). The two entries are popped off the stack, and the result is pushed on the stack in their place.
The result of a division is an integer truncated toward zero. An exponent must not have any digits after the
decimal point.

sx
The top of the main stack is popped and stored into a register named x, where x may be any character. If s is
uppercase, x is treated as a stack; and the value is pushed onto it. Any character, even blank or new line, is a
valid register name.

1x
The value in register x is pushed onto the stack. The register x is not altered. If 1 is uppercase, register xis

treated as a stack, and its top value is popped onto the main stack. All registers start with empty value which
is treated as a zero by the command 1 and is treated as an error by the command L.
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d
The top value on the stack is duplicated.

P

The top value on the stack is printed. The top value remains unchanged.

t /
All values on the stack and in registers are printed.

x

Treats the top element of the stack as a character string, removes it from the stack, and executes it as a string
of DC commands.

[..]
Puts the bracketed character string onto the top of the stack.

q

Exits the program. If executing a string, the recursion level is popped by two. If q is uppercase, the top value
on the stack is popped; and the string execution level is popped by that value.

<x >x =x l<x I>x l=x

The top two elements of the stack are popped and compared. Register xis executed if they obey the stated rela-
tion. Exclamation point is negation.

v

Replaces the top element on the stack by its square root. The square root of an integer is truncated to an integer.

Interprets the rest of the line as a UNIX software command. Control returns to DC when the command termi-
nates.

c
All values on the stack are popped; the stack becomes empty.
i
The top value on the stack is popped and used as the number radix for further input. If i is uppercase, the value
of the input base is pushed onto the stack. No mechanism has been provided for the input of arbitrary numbers
in bases less than 1 or greater. than 16.

(o]

The top value on the stack is popped and used as the number radix for further output. If o is uppercase, the
_value of the output base is pushed onto the stack.
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k

The top of the stack is popped, and that value is used as a scale factor that influences the number of decimal
places that are maintained during multiplication, division, and exponentiation. The scale factor must be greater
than or equal to zero and less than 100. If k is uppercase, the value of the scale factor is pushed onto the stack.

z

The value of the stack level is pushed onto the stack.

?
A line of input is taken from the input source (usually the console) and executed.
INTERNAL REPRESENTATION OF NUMBERS

Numbers are stored internally using a dynamic storage allocator. Numbers are kept in the form of a string
of digits to the base 100 stored one digit per byte (centennial digits). The string is stored with the low-order
digit at the beginning of the string. For example, the representation of 157 is 57,1. After any arithmetic opera-
tion on a number, care is taken that all digits are in the range 0 to 99 and that the number has no leading zeros.
The number zero is represented by the empty string.

Negative numbers are represented in the 100s complement notation, which is analogous to twos complement
notation for binary numbers. The high-order digit of a negative number is always ~1 and all other digits are
in the range 0 to 99. The digit preceding the high-order —1 digit is never a 99. The representation of —157 is
43,98,—1. This is called the canonical form of a number. The advantage of this kind of representation of negative
numbers is ease of addition. When addition is performed digit by digit, the result is formally correct. The result
need only be modified, if necessary, to put it into canonical form. ’

Because the largest valid digit is 99 and the byte can hold numbers twice that large, addition can be carried
out and the handling of carries done later when it is convenient.

An additional byte is stored with each number beyond the high-order digit to indicate the number of as-
sumed decimal digits after the decimal point. The representation of .001 is 1,3where the scale has been italicized
to emphasize the fact that it is not the high-order digit. The value of this extra byte is called the scale factor
of the number. '

THE ALLOCATOR

The DC program uses a dynamic string storage allocator for all of its internal storage. All reading and writ-
ing of numbers internally is through the allocator. Associated with each string in the allocator is a 4-word
header containing pointers to the beginning of the string, the end of the string, the next place to write, and the
next place to read. Communication between the allocator and DC is via pointers to these headers.

The allocator initially has one large string on a list of free strings. All headers except the one pointing to
this string are on a list of free headers. Requests for strings are made by size. The size of the string actually
supplied is the next higher power of two. When a request for a string is made, the allocator first checks the free
list to see if there is a string of the desired size. If none is found, the allocator finds the next larger free string
and splits it repeatedly until it has a string of the right size. Leftover strings are put on the free list. If there
are no larger strings, the allocator tries to combine smaller free strings into larger ones. Since all strings are
the result of splitting large strings, each string has a neighbor that is next to it in core and, if free, can be com-
bined with it to make a string twice as long.

If a string of the proper length can not be found, the allocator asks the system for more space. The amount
of space on the system is the only limitation on the size and number of strings in DC. If the allocator runs out
of headers at any time in the process of trying to allocate a string, it also asks the system for more space.
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There are routines in the allocator for reading, writing, copying, rewinding, forward spacing, and
backspacing strings. All string manipulation is done using these routines.

The reading and writing routines increment the read pointer or write pointer so that the characters of 2
string are read or written in succession by a series of read or write calls. The write pointer is interpreted as
the end of the information-containing portion of a string and a call to read beyond that point returns an end
of string indication. An attempt to write beyond the end of a string causes the allocator to allocate a larger space
and then copy the old string into the larger block.

INTERNAL ARITHMETIC

All arithmetic operations are done on integers. The operands (or operand) needed for the operation are
popped from the main stack and their scale factors stripped off. Zeros are added or digits removed as necessary
to get a properly scaled result from the internal arithmetic routine. For example, if the scale of the operands
is different and decimal alignment is required, as it is for addition, zeros are appended to the operand with the
smaller scale. After performing the required arithmetic operation, the proper scale factor is appended to the
end of the number before it is pushed on the stack.

A register called scale plays a part in the results of most arithmetic operations. The scale register limits
the number of decimal places retained in arithmetic computations. The scale register may be set to the number
on the top of the stack truncated to an integer with the k command. The K command may be used to push the
value of scale on the stack. The value of scale must be greater than or equal to 0 and less than 100. The descrip-
tions of the individual arithmetic operations will include the exact effect of scale on the computations.

ADDITION AND SUBTRACTION

The scales of the two numbers are compared and trailing zeros are supplied to the number with the lower
scale to give both numbers the same scale. The number with the smaller scale is multiplied by 10 if the difference
of the scales is odd. The scale of the result is then set to the larger of the scales of the two operands.

Subtraction is performed by negating the number to be subtracted and proceeding as in addition.

The addition is performed digit by digit from the low order end of the number. The carries are propagated
in the usual way. The resulting number is brought into canonical form, which may require stripping of leading
zeros, or for negative numbers, replacing the high-order configuration 99,—1 by the digit —1. In any case, digits
which are not in the range 0 through 99 must be brought into that range, propagating any carries or borrows
that result.

MULTIPLICATION

The scales are removed from the two operands and saved. The operands are both made positive. Then multi-
plication is performed in a digit by digit manner that exactly follows the hand method of multiplying. The first
number is multiplied by each digit of the second number, beginning with its low order digit. The intermediate
products are accumulated into a partial sum which becomes the final product. The product is put into the canoni-
cal form and its sign is computed from the signs of the original operands.

The scale of the result is set equal to the sum of the scales of the two operands. If that scale is larger than
the internal register scale and also larger than both of the scales of the two operands, then the scale of the
result is set equal to the largest of these three last quantities.

DIVISION

The scales are removed from the two operands. Zeros are appended, or digits are removed from the dividend
to make the scale of the result of the integer division equal to the internal quantity scale. The signs are removed
and saved.

4
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Division is performed much as it would be done by hand. The difference of the lengths of the two numbers
is computed. If the divisor is longer than the dividend, zero is returned. Otherwise, the top digit of the divisor
is divided into the top two digits of the dividend. The result is used as the first (high-order) digit of the quotient.
If it turns out be one unit too low, the next trial quotient will be larger than 99; and this will be adjusted at
the end of the process. The trial digit is multiplied by the divisor, the result subtracted from the dividend, and
the process is repeated to get additional quotient digits until the remaining dividend is smaller than the divisor.
At the end, the digits of the quotient are put into the canonical form, with propagation of carry as needed. The
sign is set from the sign of the operands.

REMAINDER

The division routine is called and division is performed exactly as described. The quantity returned is the
remains of the dividend at the end of the divide process. Since division truncates toward zero, remainders have
the same sign as the dividend. The scale of the remainder is set to the maximum of the scale of the dividend
and the scale of the quotient plus the scale of the divisor.

SQUARE ROOT

The scale is removed from the operand. Zeros are added if necessary to make the integer result have a scale
that is the larger of the internal quantity scale and the scale of the operand. The method used to compute the
square root is Newton's method with successive approximations by the rule

Y
an = %(X. + —)
X

The initial guess is found by taking the interger square root of the top two digits.
EXPONENTIATION

Only exponents with zero scale factor are handled. If the exponent is zero, then the result is 1. If the expo-
nent is negative, then it is made positive; and the base is divided into one. The scale of the base is removed.

The integer exponent is viewed as a binary number. The base is repeatedly squared, and the result is ob-
tained as a product of those powers of the base that correspond to the positions of the one-bits in the binary
representation of the exponent. Enough digits of the result are removed to make the scale of the result the same
as if the indicated multiplication had been performed. ’

INPUT CONVERSION AND BASE

Numbers are converted to the internal representation as they are read in. The scale stored with a number
is simply the number of fractional digits input. Negative numbers are indicated by preceding the number with
an underscore ( _ ). The hexadecimal digits A through F correspond to the numbers 10 through 15 regardless
of input base. The i command can be used to change the base of the input numbers. This command pops the stack,
truncates the resulting number to an integer, and uses it as the input base for all further input. The input base
(ibase) is initialized to 10 (decimal) but may, for example, be changed to 8 or 16 for octal or hexadecimal to
decimal conversions. The command I will push the value of the input base on the stack.

OUTPUT COMMANDS

The command p causes the top of the stack to be printed. It does not remove the top of the stack. All of the
stack and internal registers can be output by typing the command f. The o command can be used to change the
output base (obase). This command uses the top of the stack, truncated to an integer as the base for all further
output. The output base in initialized to 10 (decimal). It will work correctly for any base. The command O pushes
the value of the output base on the stack.
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OUTPUT FORMAT AND BASE

The input and output bases only affect the interpretation of numbers on input and output; they have no ef-
fect on arithmetic computations. Large numbers are output with 70 characters per line; a backslash ( \ ) indi-
cates a continued line. All choices of input and output bases work correctly, although not all are useful. A
particularly useful output base is 100000, which has the effect of grouping digits in fives. Bases of 8 and 16 can
be used for decimal-octal or decimal-hexadecimal conversions.

INTERNAL REGISTERS

Numbers or strings may be stored in internal registers or loaded on the stack from registers with the com-
mands s and 1. The command sx pops the top of the stack and stores the result in register x The xcan be any
character. The command lxputs the contents of register xon the top of the stack. The ] command has no effect
on the contents of register x The s command, however, is destructive.

STACK COMMANDS

The command ¢ clears the stack. The command d pushes a duplicate of the number on the top of the stack
onto the stack. The command z pushes the stack size on the stack. The command X replaces the number on the
top of the stack with its scale factor. The command Z replaces the top of the stack with its length.

SUBROUTINE DEFINITIONS AND CALLS

Enclosing a string in brackets “[]” pushes the ASCII string on the stack. The g command quits or in execut-
ing a string pops the recursion levels by two.

INTERNAL REGISTERS —PROGRAMMING DC

The load and store commands, together with *“[]” to store strings, the x command to execute, and the testing
commands (<, >, =, !<, I>, I=), can be used to program DC. The x command assumes the top of the stack is
a string of DC commands and executes it. The testing commands compare the top two elements on the stack
and if the relation holds execute the register that follows the relation. For example, to print the numbers 0
through 9: .

[lipl+ si lil0>a]sa
0Osi lax

PUSHDOWN REGISTERS AND ARRAYS

These commands were designed for use by a compiler, not directly by programmers. They involve pushdown
registers and arrays. In addition to the stack that commands work on, DC can be thought of as having individual
stacks for each register. These registers are operated on by the commands § and L. Sx pushes the top value
of the main stack onto the stack for the register x Lx pops the stack for register x and puts the result on the
main stack. The commands s and 1 also work on registers but not as pushdown stacks. The command 1 does not
affect the top of the register stack, but s destroys what was there before.

The commands to work on arrays are : and ;. The command :x pops the stack and uses this value as an index
into the array x The next element on the stack is stored at this index in x. An index must be greater than or
equal to 0 and less than 2048. The command ;x loads the main stack from the array x The value on the top of
the stack is the index into the array x of the value to be loaded.

MISCELLANEOUS COMMANDS

The command ! interprets the rest of the line as a UNIX software command and passes it to the UNIX oper-
ating system to execute. One other compiler command is Q. This command uses the top of the stack as the num-
ber of levels of recursion to skip.
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DESIGN CHOICES

The real reason for the use of a dynamic storage allocator was that a general purpose program could be (and
in fact has been) used for a variety of other tasks. The allocator has some value for input and for compiling (i.e.,
the bracket {...] commands) where it cannot be known in advance how long a string will be. The result was that
at a modest cost in execution time, all considerations of string allocation and sizes of strings were removed from
the remainder of the program and debugging was made easier. The allocation method used wastes approxi-
mately 25 percent of available space.

The choice of 100 as a base for internal arithmetic seemingly has no compelling advantage. Yet the base
cannot exceed 127 because of hardware limitations and at the cost of 5 percent in space, debugging was made
a great deal easier and decimal output was made much faster.

The reason for a stack-type arithmetic design was to permit all DC commands from addition to subroutine
execution to be implemented in essentially the same way. The result was a considerable degree of logical separa-
tion of the final program into modules with very little communication between modules.

The rationale for the lack of interaction between the scale and the bases was to provide an understandable
means of proceeding after a change of base or scale when numbers had already been entered. An earlier imple-
mentation which had global notions of scale and base did not work out well. If the value of scale were to be
interpreted in the current input or output base, then a change of base or scale in the midst of a computation
would cause great confusion in the interpretation of the results. The current scheme has the advantage that
the value of the input and output bases are only used for input and output, respectively, and they are ignored
in all other operations. The value of scale is not used for any essential purpose by any part of the program and
it is used only to prevent the number of decimal places resulting from the arithmetic operations from growing
beyond all bounds.

The design rationale for the choices for the scales of the results of arithmetic were that in no case should
any significant digits be thrown away if, on appearances, the user actually wanted them. Thus, if the user wants
to add the numbers 1.5 and 3.517, it seemed reasonable to give them the result 5.017 without requiring to unnec-
essarily specify rather obvious requirements for precision.

On the other hand, multiplication and exponentiation produce results with many more digits than their op-
erands and it seemed reasonable to give as a minimum the number of decimal places in the operands but not
to give more than that number of digits unless the user asked for them by specifying a value for scale. Square
root can be handled in just the same way as multiplication. The operation of division gives arbitrarily many
decimal places and there is simply no way to guess how many places the user wants. In this case only, the user
must specify a scale to get any decimal places at all.

.The scale of remainder was chosen to make it possible to recreate the dividend from the quotient and re-
mainder. This is easy to implement; no digits are thrown away.
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NOTES
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9. LEXICAL ANALYZER GENERATOR (LEX)
GENERAL

The Lex program generator is designed for lexical processing of character input streams. It accepts a high-
level, problem oriented specification for character string matching and produces a program in a general purpose
language which recognizes regular expressions. The regular expressions are specified by the user in the source
specifications given to Lex. The Lex program generator source is a table of regular expressions and corre-
sponding program fragments. The table is translated to a program which reads an input stream, copies the input
stream to an output stream, and partitions the input into strings which match the given expressions. As each
such string is recognized, the corresponding program fragment is executed. The recognition of the expressions
is performed by a deterministic finite automaton generated by Lex. The program fragments written by the user
are executed in the order in which the corresponding regular expressions occur in the input stream.

The user supplies the additional code beyond expression matching needed to complete the tasks, possibly
including code written by other generators. The program that recognizes the expressions is generated in the
general purpose programming language employed for the user’s program fragments. Thus, a high level expres-
sion language is provided to write the string expressions to be matched while the user’s freedom to write actions
is unimpaired.

The Lex written code is not a complete language, but rather a generator representing a new language fea-
ture which can be added to different programming languages, called “host languages”. Just as general purpose
languages can produce code to run on different computer hardware, Lex can write code in different host lan-
guages. The host language is used for the output code generated by Lex and also for the program fragments
added by the user. Compatible run-time libraries for the different host languages are also provided. This makes
Lex adaptable to different environments and different users. Each application may be directed to the combina-
tion of hardware and host language appropriate to the task, the user’s background, and the properties of local
implementations. At present, the only supported host language is the C language, although FORTRAN (in the
form of Ratfor) has been available in the past. The Lex generator exists on the UNIX operating system, but
the code generated by Lex may be taken anywhere the appropriate compilers exist.

The Lex program generator turns the user’s expressions and actions (called source in this section) into
the host general purpose language; the generated program is named yylex. The yylex program will recognize
expressions in a stream (called input in this section) and perform the specified actions for each expression as
it is detected. See Fig. 9.1.

Source—e | Lex |—e yylex

Input — | yylex | —e Output

Fig. 9.1 — An Overview of Lex

For an example, consider a program to delete from the input all blanks or tabs at the ends of lines:

% %
[\t]+$
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is all that is required. The program contains a2 % % delimiter to mark the beginning of the rules, and one rule.
This rule contains a regular expression which matches one or more instances of the characters blank or tab
(written for visibility, in accordance with the C language convention) which occurs prior to the end of a line.
The brackets indicate the character class made of blank and tab; the + indicates “one or more ...”; and the $
indicates “end of line,” as in QED, No action is specified, so the program generated by Lex yylex() will ignore
these characters. Everything eise will be copied. To change any remaining string of blanks or tabs to a single
blank, add another rule:

%%
[\t)+$
[ \t]+ oprintf(" ")

The coded instructions generated for this source will scan for both rules at once, observing at the termination
of the string of blanks or tabs whether or not there is a new-line character, and executing the desired rule action.
The first rule matches all strings of blanks or tabs at the end of.lines, and the second rule matches all remaining
strings of blanks or tabs.

The Lex program generator can be used alone for simple transformations or for analysis and statistics
gathering on a lexical level. The Lex generator can also be used with a parser generator to perform the lexical
analysis phase; it is particularly easy to interface Lex and yacec. The Lex program recognizes only regular
expressions; yacc writes parsers that accept a large class of context free grammars but require a lower level
analyzer to recognize input tokens. Thus, a combination of Lex and yacc is often appropriate. When used as
a preprocessor for a later parser generator, Lex is used to partition the input stream; and the parser generator
assigns structure to the resulting pieces. The flow of control in such a case is shown in Fig. 9.2 Additional pro-
grams, written by other generators or by hand, can be added easily to programs written by Lex. The yacc com-
piler users will realize that the name yylex is what yacc expects its lexical analyzer to be named, so that the
use of this name by Lex simplifies interfacing.

lexical grammar
rules rules
Lex Yace

! !

Input == | yylex| —= | yyparse | —e Parsed input

Fig. 9.2 — Lex With Yacc

In the program written by Lex, the user’s fragments (representing the actions to be performed as each
regular expression is found) are gathered as cases of a switch. The automaton interpreter directs the control
flow. Opportunity is provided for the user to insert either declarations or additional statements in the routine
containing the actions or to add subroutines outside this action routine.

The Lex program generator is not limited to source which can be interpreted on the basis of one character
look-ahead. For example, if there are two rules, one looking for “ab” and another for “abedefg,” and the input

.
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stream is “abcdefh,” Lex will recognize “ab” and leave the input pointer just before *ed .."”. Such backup is
more costly than the processing of simpler languages.

LEX SOURCE
The general format of Lex source is

{definitions}

% %

{rules}

% %

{user subroutines}

where the definitions and the user subroutines are often omitted. The second % % is optional, but the first %%
is required to mark the beginning of the rules. The absolute minimum Lex program is

% %
(no definitions, no rules) which translates into a program that copies the input to the output unchanged.

In the outline of Lex programs shown above, the rules represent the user’s control decisions; they are a
table, in which the left column contains regular expressions and the right column contains actions, program
fragments to be executed when the expressions are recognized. Thus an individual rule might appear:

integer printf( " found keyword INT ");

to look for the string integer in the input stream and print the message “found keyword INT” whenever it ap-
pears. In this example the host procedural language is C, and the C language library function printf is used
to print the string. The end of the expression is indicated by the first blank or tab character. If the action is
merely a single C language expression, it can just be given on the right side of the line; if it is compound or takes
more than a line, it should be enclosed in braces. As a more useful example, suppose it is desired to change a
number of words from British to American spelling. The Lex rules such as:

colour printf( " color " );
mechanise printf( " mechanize" );
petrol printf( " gas " );

would be a start. These rules are not sufficient since the word “petroleum’” would become “gaseum”.

LEX REGULAR EXPRESSIONS

The definitions of regular expressions are very similar to those in QED. A regular expression specifies a
set of strings to be matched. It contains text characters (which match the corresponding characters in the
strings being compared) and operator characters (which specify repetitions, choices, and other features). The
letters of the alphabet and the digits are always text characters; the regular expression

integer
matches the string “integer” wherever it appears, and the expression

a57TD

looks for the string “.a.57D".
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A. Operators
The operator characters are
"\N[] =7+ ()S/{}) % <>

and if they are to be used as text characters, an escape should be used. The quotation mark operator " indicates
that whatever is contained between a pair of quotes is to be taken as text characters. Thus:

xyz"++"

matches the string “xyz++" when it appears. Note that a part of a string may be quoted. It is harmless, but
unnecessary, to quote an ordinary text character; the expression .

'lxyz++ﬂ

is equivalent to the one above. Thus, by quoting every nonalphanumeric character being used as a text character,
the user can avoid remembering the list above of current operator characters and is safe should further exten-
sions to Lex lengthen the list.

An operator character may also be turned into a text character by preceding it with a backslash (\) as in
xyz\+\+

which is another, less readable, equivalent of the above expressions. Another use of the quoting mechanism is
to get a blank into an expression; normally, as explained above, blanks or tabs end a rule. Any blank character
not contained within [ ] (see below) must be quoted. Several normal C language escapes with \ are recognized:
\n is new line, \t is tab, and \b is backspace. To enter \ itself, use \\. Since new line is illegal in an expression,
\n must be used; it is not required to escape tab and backspace. Every character except blank, tab, new line, and
the list of operator characters above is always a text character.

B. Character Classes

Classes of characters can be specified using the operator pair [ ). The construction [abc] matches a single
character which may be “a”, “b”, or “¢”. Within square brackets, most operator meanings are ignored. Only
three characters are special: these are \, —, and “. The —character indicates ranges. For example:

[a-20-9<>_]

indicates the character class containing all the lowercase letters, the digits, the angle brackets, and underline.
Ranges may be given in either order. Using —between any pair of characters which are not both uppercase let-
ters, both lowercase letters, or both digits is implementation dependent and will get a warning message (e.g.,
(0-z] in ASCII is many more characters than is in EBCDIC). If it is desired to include the character — in a charac-
ter class, it should be first or last; thus:

[=+0-9]
matches all the digits and the two signs.

In character classes, the ~ operator must appear as the first character after the left bracket to indicate that
the resulting string is complemented with respect to the computer character set. Thus:

[~abc)

matches all characters except “a”, “b”, or “¢”, including all special or control characters; or
[~a-zA-Z]
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is any character which is not a letter. The \ character provides the usual escapes within character class brack-
ets.

C. Arbitrary Character

To match almost any character, the operator character (dot)

is the class of all characters except new line. Escaping into octal is possible although nonportable
(\40-\176]
matches all printable ASCII characters, from octal 40 (blank) to octal 176 (tilde).
D. Optional Expressions
The operator ? indicates an optional element of an expression. Thus:
ab?’c
matches either “ac” or “abc”.
E. Repeated Expressions
Repetitions of classes are indicated by the operators * and + for example:
a®
is any number of consecutive “a” characters, including zero; while:
at+
is one or more instances of “a”. For example:
[a-z]+
is all strings of lowercase letters, and:
(A-Za-z][A-Za-20-9]*

indicates all alphanumeric strings with a leading alphabetic character. This is a typical expression for recogniz-
ing identifiers in computer languages.

F. Alternation and Grouping °
The operator | indicates alternation:
(abled) )

matches either “ab” or “cd”. Note that parentheses are used for grouping; although they are not necessary on
the outside level,

abled
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would have sufficed. Parentheses can be used for more complex expressions:

(abled+)?(ef)"*
matches such strings as “abefef”, “efefef”, “cdef”, or “cddd”; but not “abe”, “abed”, or “abedef™.
G. Context Sensitivity

The Lex program will recognize a small amount of surrounding context. The two simplest operators for

this are * and §. If the first character of an expression is *, the expression will only be matched at the beginning
of a line (after 2 new-line character or at the beginning of the input stream). This can never conflict with the
other meaning of ~ (complementation of character classes) since that only applies within the [ ] operators. If the
very last character is $, the expression will only be matched at the end of a line (when immediately followed
by new line). The latter operator is a special case of the / operator character which indicates trailing context.
The expression

ab/cd
matches the string “ab” but only if followed by “cd”. Thus:

ab$
is the same as

ab/\n

Left context is handled in Lex by “start conditions” as explained later. If a rule is only to be executed when
the Lex automaton interpreter is in start condition x, the rule should be prefixed by

<X>

using the angle bracket operator characters. If we considered “being at the beginning of a line” to be start condi-
tion ONE, then the ~ operator would be equivalent to

<ONE>
Start conditions are explained more fully later.
H. Repetitions and Definitions

The operators {} specify either repetitions (if they enclose numbers) or definition expansion (if they enclose
a name). For example:

{digit]

looks for a predefined string named “digit” and inserts it at that point in the expression. The definitions are
given in the first part of the Lex input, before the rules. In contrast,

a{l,5} .
looks for one to five occurrences of “a".

Finally, initial % is special being the separator for Lex source segments.
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LEX ACTIONS

When an expression written as above is matched, Lex executes the corresponding action. This part de-
scribes some features of Lex which aid in writing actions. Note that there is a default action, which consists
of copying the input to the output. This is performed on all strings not otherwise matched. Thus, the Lex user
who wishes to absorb the entire input, without producing any output, must provide rules to match everything.
When Lex is being used with yace, this is the normal situation. One may consider that actions are what is done
instead of copying the input to the output; thus, in general, a rule which merely copies can be omitted. Also,
a character combination which is omitted from the rules and which appears as input is likely to be printed on
the output, thus calling attention to the gap in the rules.

One of the simplest things that can be done is to ignore the input. Specifying a C language null statement,
; as an action causes this result. A frequent rule is

[ \t\n] ;
which causes the three spacing characters (blank, tab, and new line) to be ignored.

Another easy way to avoid writing actions is the action character | which indicates that the action for this
rule is the action for the next rule. The previous example could also have been written

L] ] I
n \t " '
] \n ] :

with the same result although in different style. The quotes around \n and \t are not required.

In more complex actions, the user will often want to know the actual text that matched some expression
like “{a-z]+". The Lex program leaves this text in an external character array. Thus, to print the name found,
a rule like

(a-z]+ printf( " %s" , yytext);

will print the string in yytext[]. The C language function printf accepts a format argument and data to be print-
ed; in this case, the format is “print string” (% indicating data conversion, and s indicating string type), and
the data are the characters in yytext{]. So this places the matched string on the output. This action is so common
that it may be written as ECHO:

[a-z]+ ECHO;

is the same as the above. Since the default action is just to print the characters found, one might ask why give
a rule, like this one, which merely specifies the default action. Such rules are often required to avoid matching
some other rule which is not desired. For example, if there is a rule which matches read, it will normally match
the instances of read contained in bread or readjust; to avoid this, a rule of the form “[a-z]+" is needed. This
is explained further below.

Sometimes it is more convenient to know the end of what has been found; hence Lex also provides a count
yyleng of the number of characters matched. To count both the number of words and the number of characters
in words in the input, the user might write

[a-zA-Z)+ {words++; chars += yyleng;}

which accumulates in chars the number of characters in the words recognized. The last character in the string
matched can be accessed by:

yytext[yyleng—1]
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Occasionally, a Lex action may decide that a rule has not recognized the correct span of characters. Two
routines are provided to aid with this situation. First, yymore() can be called to indicate that the next input
expression recognized is to be tacked on to the end of this input. Normally, the next input string would overwrite
the current entry in yytext Second, yyless(n) may be called to indicate that not all the characters matched by
the currently successful expression are wanted right now. The argument “n” indicates the number of characters
in yytext to be retained. Further characters previously matched are returned to the input. This provides the
same sort of look ahead offered by the / operator but in a different form.

Example: Consider a language which defines a string as a set of characters between quotation (" ) marks
and provides that to include a (" ) in a string it must be preceded by a \. The regular expression which matches
that is somewhat confusing, so that it might be preferable to write

A Sl R |
if (yytext[yyleng—1] == "\\')
yymore();
else

... normal user processing

)

which will, when faced with a string such as * abc\" def " first match the five characters " abc\; then the call
to yymore() will cause the next part of the string, " def to be tacked on the end. Note that the final quote termi-
nating the string should be picked up in the code labeled “normal processing"”.

The function yyless() might be used to reprocess text in various circumstances. Consider the C language
problem of distinguishing the ambiguity of “=—a "”. Suppose it is desired to treat this as “=—a" but print a mes-
sage. A rule might be

=—[a-zA-Z] {
printf( " Operator (=—) ambiguous\n " );
yyless(yyleng—1);
... action for =— ..

}

which prints a message, returns the letter after the operator to the input stream, and treats the operator as
“=—"_ Alternatively, it might be desired to treat this as “=—a ”. To do this, just return the minus sign as well
as the letter to the input;

=—{a-zA-Z] {
printf( " Operator (=—) ambiguous\n " );

yyless(yyleng—-2);
.. action for = ..,

}

will perform the other interpretation. Note that the expressions for the two cases might more easily be written
=—/[A-Za-z]

in the first case, and
=/—[A-Za-z)

in the second; no backup would be required in the rule action. It is not necessary to recognize the whole identifier
to observe the ambiguity. The possibility of “=—3", however, makes

==/[~ \t\n]
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a still better rule.
In addition to these routines, Lex also permits access to the I/0 routines it uses. They are:
1. input() returns the next input character
2. output(c) writes the character “c” on the output
3. unput(c) pushes the character “¢” back onto the input stream to be read later by input().

By default these routines are provided as macro definitions, but the user can override them and supply pri-
vate versions. These routines define the relationship between external files and internal characters and must
all be retained or modified consistently. They may be redefined to cause input or output to be transmitted to
or from strange places including other programs or internal memory. The character set used must be consistent
in all routines, a value of zero returned by input must mean end of file, and the relationship between unput and
input must be retained or the Lex look ahead will not work. The Lex program does not look ahead at all if
it does not have to, but every rule ending in +, ®, ?, or'$ or containing / implies look ahead. Look ahead is also
necessary to match an expression that is a prefix of another expression. See below for a discussion of the charac-
ter set used by Lex. The standard Lex library imposes a 100-character limit on backup.

Another Lex library routine that the user will sometimes want to redefine is yywrap() which is called when-
ever Lex reaches an end of file. If yywrapreturns a 1, Lex continues with the normal wrap up on end of input.
Sometimes, however, it is convenient to arrange for more input to arrive from a new source. In this case, the
user should provide a yywrap which arranges for new input and returns 0. This instructs Lex to continue pro-
cessing. The default yywrap always returns 1.

This routine is also a convenient place to print tables, summaries, etc., at the end of a program. Note that
it is not possible to write a normal rule which recognizes end of file; the only access to this condition is through
yywrap In fact, unless a private version of input() is supplied, a file containing nulls cannot be handled since
a value of 0 returned by input is taken to be end of file.

AMBIGUOUS SOURCE RULES

The Lex program can handle ambiguous specifications. When more than one expression can match the cur-
rent input, Lex chooses as follows:

1. The longest match is preferred.
2. Among rules which matched the same number of characters, the rule given first is preferred.

Thus, suppose the riles

integer keyword action ...;
[a-z)+ identifier action ...;

are to be given in that order. If the input is “integers”, it is taken as an identifier, because *“[a-z]+" matches
eight characters while “integer” matches only seven. If the input is “integer”, both rules match seven charac-
ters, and the keyword rule is selected because it was given first. Anything shorter (e.g., “int”) will not match
the expression “integer” and so the identifier interpretation is used.

The principle of preferring the longest match makes rules containing expressions like .* dangerous. For ex-
ample:
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might seem a good way of recognizing a string in single quotes. But it is an invitation for the program to read
far ahead, looking for a distant single quote. Presented with the input:

first’ quoted string here, ‘second’ here
the above expression will match:

‘first' quoted string here, ‘second’
which is probably not what was wanted. A better rule is of the form:

T\a)*
which, on the above input, will stop after (‘first’). The consequences of errors like this are mitigated by the fact
that the dot (.) operator will not match new line. Thus expressions like .* stop on the current line. Do not try
to defeat this with expressions like [.\n ] + or equivalents; the Lex generated program will try to read the entir
input file causing internal buffer overflows.
Note that Lex is normally partitioning the input stream, not searching for all possible matches of each ex-

pression. This means that each character is accounted for once and only once. For example, suppose it is desired
to count occurrences of both “she” and “he” in an input text. Some Lex rules to do this might be:

she s+4;
he h++;

\n |
where the last two rules ignore everything besides “he” and *she”. Remember that dot (.) does not include new

line. Since “she” includes “he”, Lex will normally not recognize the instances of “he” included in “she” since
once it has passed a “she” those characters are gone.

Sometimes the user would like to override this choice. The action REJECT means “godo thenext alterna-
tive”. It causes whatever rule was second choice after the current rule to be executed. The position of the input
pointer is adjusted accordingly. Suppose the user really wants to count the included instances of “he":

.she {s++; REJECT;}
he {h++; REJECT;}
|

\n
these rules are one way of changing the previous example to accomplish the task. After counting each expres-
sion, it is rejected; whenever appropriate, the other expression will then be counted. In this example, of course,
the user could note that “she” includes “he” but not vice versa and omit the REJECT action on “he”. In other
cases, it would not be possible to state which input characters were in both classes.

Consider the two rules

a{bc)+ { ... ; REJECT}}

af[ed]+ { ... ; REJECT;}
If the input is “ab”, only the first rule matches, and on “ad” only the second matches. The input string “accb”
matches the first rule for four characters and then the second rule for three characters. In contrast, the input
“aced” agrees with the second rule for four characters and then the first rule for three.

In general, REJECT is useful whenever the purpose of Lex is not to partition the input stream but to detect
all examples of some items in the input, and the instances of these items may overlap or include each other.

t
-

N
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Suppose a digram table of the input is desired; normally the digrams overlap, that is the word “the” is consid-
ered to contain both “th” and “he”. Assuming 2 2-dimensional array named digram(] to be incremented, the
appropriate source is:

% %
(a-z)[a-2] {digram(yytext[0]])[yytext[1]]++; REJECT;}
\n :

where the REJECT is necessary to pick up a letter pair beginning at every character rather than at every other
character.

The action REJECT does not rescan the input; instead it remembers the results of the previous scan. This
means that if a rule with trailing context is found and REJECT executed the user must not have used unput
to change the characters forthcoming from the input stream. This is the only restriction on the user’s ability
to manipulate the not-yet-processed input.

LEX SOURCE DEFINITIONS
Recalling the format of the Lex source:

{definitions}
% %
{rules}

% %
{user routines}

So far only the rules have been described. The user needs additional options though to define variables for use
in the program and for use by Lex. Variables can go either in the definitions section or in the rules section.

Remember Lex is generating the rules into a program. Any source not intercepted by Lex is copied into
the generated program. There are three classes of such things.

1. Any line not part of a Lex rule or action that begins with a blank or tab is copied into the Lex generated
program. Such source input prior to the first % % delimiter will be external to any function in the code;
if it appears immediately after the first % %, it appears in an appropriate place for declarations in the
function written by Lex which contains the actions. This material must look like program fragments
and should precede the first Lex rule.

Lines that begin with a blank or tab and that contain a comment are passed through to the generated
program. This can be used to include comments in either the Lex source or the generated code; the com-
ments should follow the host language convention.

2. Anything included between lines containing only %{ and %} is copied out as above. The delimiters are
discarded. This format permits entering text like preprocessor statements that must begin in column 1
or copying lines that do not look like programs.

3. Anything after the third % % delimiter, regardless of formats, etc., is copied out after the Lex output.
Definitions intended for Lex are given before the first % % delimiter. Any line in this section not contained

between %{ and %} and beginning in column 1 is assumed to define Lex substitution strings. The format of
such lines is

name translation
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and it causes the string given as a translation to be associated with the name. The name and translation must
be separated by at least one blank or tab, and the name must begin with a letter. The translation can then be
called out by the {(name} syntax in a rule. Using {D} for the digits and {E} for an exponent field, for example,
abbreviate rules to recognize numbers

D [0-9]

E (DEde){=+]?{D}+
% %

{D}+ printf( " integer " );

{D}+*." {DJ*({E)D? !
{D}*~." {DI+({ED? I
{D}+{E} printf( " real " );

Note the first two rules for real numbers; both require a decimal point and contain an optional exponent field
The first requires at least one digit before the decimal point, and the second requires at least one digit after
the decimal point. To correctly handle the problem posed by & Fortran expression such as “35.EQ.I"”, which does
not contain a real number, a context-sensitive rule such as:

[0-9)+/"." EQ printf(" integer" );
could be used in addition to the normal rule for integers.

The definitions section may also contain other commands including the selection of a host language, a char-
acter set table, a list of start conditions, or adjustments to the default size of arrays within Lex itself for larger
source programs. These possibilities are discussed later.

USAGE

There are two steps in compiling a Lex source program. First, the Lex source must be turned into a gener-
ated program in the host general purpose language. Then this program must be compiled and loaded usually
with a library of Lex subroutines. The generated program is on a file named Jlex.yy.c. The I/0 library is defined
in terms of the C language standard library.

On the UNIX operating system, the library is accessed by the loader flag —11. So an appropriate set of com-
mands is :

Jex source
cc lex.yy.c -l

The resulting program is placed on the usual file a.outfor later execution. To use Lex with yace, see part “LEX
AND YACC". Although the default Lex 1/0 routines use the C language standard library, the Lex automata
themselves do not do so; if private versions of input, output, and unput are given, the library can be avoided.

LEX AND YACC -

To use Lex with yacc, note that what Lex writes is a program named yylex(), the name required by yace
for its analyzer. Normally, the default main program on the Lex library calls this routine; but if yace is loaded
and its main program is used, yacc will call yylex(). In this case, each Lex rule should end with

return(token);

where the appropriate token value is returned. An easy way to get access to yacc’s names for tokens is to com-
pile the Lex output file as part of the yace output file by placing the line

finclude "lex.yy.c"
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in the last section of yacc input. Supposing the grammar to be named “good” and the lexical rules to be named
“better”, the UNIX software command sequence can just be

yacc good
lex better
cc y.tab.e —ly -1l

The yacc library (=ly) should be loaded before the Lex library to obtain a main program which invokes the
yacc parser. The generations of Lex and yacc programs can be done in either order.

EXAMPLES

As a problem, consider copying an input file while adding thrce to every positive number divisible by seven.
A suitable Lex source program follows:

% %
int k;

[0-9)+ |
: k = atoi(yytext);
if (k%7 == 0)

printf( " %d " , k+3);
else

printf( " %d " k);
}

The rule “[0-9]+" recognizes strings of digits; atoi() converts the digits to binary and stores the result in “k”.
The operator % (remainder) is used to check whether “k” is divisible by seven; if it is, “k” is incremented by
three as it is written out. It may be objected that this program will alter such input items as “49.63" or “X7".
Furthermore, it increments the absolute value of all negative numbers divisible by seven. To avoid this, add a
few more rules after the active one, as here:

% %
int k;
-2[0-9)+
k = atoi(yytext); .
pl'intf( "%d" ’ k%7 == 0 7 k+3: k);
}

[A-Za-z][A-Za-20-9)+ ECHO;

Numerical strings containing a dot (.) or preceded by a letter will be picked up by one of the last two rules and

not changed. The “if-else” has been replaced by a C language conditional expression to save space; the form
“a?h:¢” means “if a then b else ¢”.
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For an example of statistics gathering, here is a program which histograms the lengths of words, where
a word is defined as a string of letters:

int lengs[100];

% %

[a-z]+ lengs[yyleng]++;
1

-\n '
% %
yywrap()
{
int i;
printf( " Length No. words\n " );
for(i=0; i<100; i++)
if (lengsl[i] > 0)
printf( " %5d%10d\n " ,i,lengs[i});
return(l);

}

This program accumulates the histogram while producing no output. At the end of the input, it prints the table.
The final statement “return(l);” indicates that Lex is to perform wrap up. If yywrap returns zero (false), it
implies that further input is available and the program is to continue reading and processing. To provide a
yywrap that never returns true causes an infinite loop.

LEFT CONTEXT SENSITIVITY

Sometimes it is desirable to have several sets of lexical rules to be applied at different times in the input.
For example, a compiler preprocessor might distinguish preprocessor statements and analyze them differently
from ordinary statements. This requires sensitivity to prior context, and there are several ways of handling such
problems. The ~ operator, for example, is a prior context operator recognizing immediately preceding left con-
text just as $ recognizes immediately following right context. Adjacent left context could be extended to produce
a facility similar to that for adjacent right context, but it is unlikely to be as useful since often the relevant
left context appeared some time earlier such as at the beginning of a line.

This part describes three means of dealing with different environments: a simple use of flags (when only
a few rules change from one environment to another), the use of “start conditions” on rules, and the possibility
of making multiple lexical analyzers all run together. In each case, there are rules that recognize the need to
change the environment in which the following input text is analyzed and that set a parameter to reflect the
change. This may be a flag explicitly tested by the user’s action code; this is the simplest way of dealing with
the problem since Lex is not involved at all. It may be more convenient, however, to have Lex remember the
flags as initial conditions on the rules. Any rule may be associated with a start condition. It will only be recog-
nized when Lex is in that start condition. The current start condition may be changed at any time. Finally,
if the sets of rules for the different environments are very dissimilar, clarity may be best achieved by writing
several distinct lexical analyzers and switching from one to another as desired.

Consider the following problem: copy the input to the output, changing the word “magic” to “first” on every
line which began with the letter “a”, changing “magic” to “second” on every line which began with the letter
“b”, and changing “magic” to “third"” on every line which began with the letter “c”. All other words and all other
lines are left unchanged.

[}
-~
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These rules are so simple that the easiest way to do this job is with a flag:

int flag;

% %

~a ({flag = 'a’; ECHO;}

~b |{flag = 'b"; ECHO;}

~¢c {flag = 'c’; ECHO;}

\n {flag = 0; ECHO;}

magic {
switch (flag)
case ‘a”. printf( " first " ); break;
case ‘b printf( " second " ); break;
case ‘c’s printf( " third " ); break;
default: ECHO; break;

}
}

should be adequate.

To handle the same problem with start conditions, each start condition must be introduced to Lex in the
definitions section with a line reading:

.%Start namel name2 ...

where the conditions may be named in any order. The word “Start” may be abbreviated to “s” or “S”. The condi-
tions may be referenced at the head of a rule with <> brackets;

<namel>expression

is a rule which is only recognized when Lex is in the start condition namel. To enter a start condition, execute
the action statement

BEGIN namel;
which changes the start condition to namel. To resume the normal state
BEGIN 0;
resets the initial condition of the Lei automaton interpreter. A rule may be active in several start conditions

<namel,name2,name3>

is a legal prefix. Any rule not beginning with the <> prefix operator is always active.
The same example as before can be written:

%START AA BB CC

% %

~a {ECHO; BEGIN AA;}
“b {ECHO; BEGIN BB;}
~c {ECHO; BEGIN CC;}
\n {ECHO; BEGIN 03}
<AA>magic printf( " first " );
<BB>magic printf( " second " );
<CC>magic printf( " third " );

where the logic is exactly the same as in the previous method of handling the problem, but Lex does the work
rather than the user’s code.
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CHARACTER SET

The programs generated by Lex handle character 1/0 only through the routines input(), output(), and
unput(). Thus, the character representation provided in these routines is accepted by Lex and used to return
values in yytext(). For internal use, a character is represented as a small integer which, if the standard library
is used, has a value equal to the integer value of the bit pattern representing the character on the host computer.
Normally, the letter a is represented in the same form as the character constant ‘a’. If this interpretation is
changed by providing 1/0 routines that translate the characters, Lex must be given a translation table that
is in the definitions section and must be bracketed by lines containing only %T; the translation table contains
lines of the form:

{integer} {character string}

which indicate the value associated with each character.

SUMMARY OF SOURCE FORMAT
The general form of a Lex source file is
{definitions}
% %
{rules}
% %
{user subroutines}

The definitions section contains a combination of:

1. Definitions in the form “name space translation”.

2. Included code in the form “space code”.

3. Included code in the form:
%{

code
%}

4. Start conditions given in the form:

%S namel name2 ...

5. Character set tables in the form:

%T
number space character-string

%T
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6. Changes to internal array sizes in the form:
% X nnn
where “nnn” is a decimal integer representing an array size and “a” selects the parameter as follows:

Letter Parameter

positions

states

tree nodes

transitions

packed character classes
output array size

o x® o o

Lines in the rules section have the form “expression action” where the action may be continued on
succeeding lines by using braces to delimit it.

Regular expressions in Lex use the following operators:

x the character “x”
"x" an “x”, even if x is an operator.
\x an “x”, even if x is an operator.
(xy] the character x or y.
[x—2] the characters x, y, or z.
[~x] any character but x.
. any character but new line.
X an x at the beginning of a line.
<y>X an x when Lex is in start condition y.
x$ an x at the end of a line.
x? an optional x.
x* 0,1,2, ... instances of x.
x+ 1,2,3, ... instances of x.
xly anxoray.
(x) an x.
x/y an x but only if followed by y.
{xx} the translation of xx from

the definitions section.
x{mn} m through n occurrences of x

CAVEATS AND BUGS -

There are pathological expressions that produce exponential growth of the tables when converted to deter-
ministic machines; fortunately, they are rare.

REJECT does not rescan the input; instead it remembers the results of the previous scan. This means that
if a rule with trailing context is found, and REJECT executed, the user must not have used unput to change
the characters forthcoming from the input stream. This is the only restriction on the user’s ability to manipulate
the not-yet-processed input.
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NOTES
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10. YET ANOTHER COMPLIER—COMPLIER (yacc)
GENERAL

The yacc program provides a general tool for imposing structure on the input to a computer program. The
yacc user prepares a specification of the input process. This includes rules describing the input structure, code
to be invoked when these rules are recognized, and a low-level routine to do the basic input. The yace program
then generates a function to control the input process. This function, called a parser, calls the user-supplied low-
level input routine (the lexical analyzer)to pick up the basic items (called tokens) from the input stream. These
tokens are organized according to the-input structure rules, called grammer rules, When one of these rules has
been recognized, then user code supplied for this rule, an action, is invoked. Actions have the ability to return
values and make use of the values of other actions.

The yacc program is written in a portable dialect of the C language, and the actions and output subroutine
are in the C language as well. Moreover, many of the syntactic conventions of yace follow the C language.

The heart of the input specification is a collection of grammar rules. Each rule describes an allowable struc-
ture and gives it a name. For example, one grammar rule might be

date : month_name day ‘, year ;

where “date”, “month_name”, “day”, and “year” represent structures of interest in the input process; presum-
ably, “month name”, “day”, and “year” are defined elsewhere. The cormma is enclosed in single quotes. This im-
plies that the comma is to appear literally in the input. The colon and semicolon merely serve as punctuation

in the rule and have no significance in controlling the input. With proper definitions, the input
July 4, 1776
might be matched by the rule.

An important part of the input process:is carried out by the lexical analyzer. This user routine reads the
input stream, recognizes the lower-level structures, and communicates these tokens to the parser. For historical
reasons, a structure recognized by the lexical analyzer is called a “terminal symbol”, while the structure recog-
nized by the parser is called a “nonterminal symbol”. To avoid confusion, terminal symbols will usually be re-
ferred to as “tokens”.

There is considerablé leeway in deciding whether to recognize structures using the lexical analyzer or gram-
mar rules. For example, the rules

month_name: ‘J ‘a’ ‘n’;
month_name: ‘F" ‘e’ ‘b’ ;

month_name : ‘D’ ‘e’ ‘¢’ ;

might be used in the above example. The lexical analyzer would only need to recognize individual letters, and
“month name” would be a nonterminal symbol. Such low-level rules tend to waste time and space and may com-
plicate the specification beyond the ability of yacc to deal with it. Usually, the lexical analyzer would recognize
the month names and return an indication that a “month name” was seen. In this case, “month name” would
be a “token”. .

Literal characters such as a comma must also be passed through the lexical analyzer and are also considered
tokens. :
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Specification files are very flexible. It is relatively easy to add to the above example the rule
date : month '/’ day ‘/’ year;
allowing
7/4/1776
as a synonym for
July 4, 1776

on input. In most cases, this new rule could be “slipped in” to a working system with minimal effort and little
danger of disrupting existing input.

The input being read may not conform to the specifications. These input errors are detected as early as is
theoretically possible with a left-to-right scan. Thus, not only is the chance of reading and computing with bad
input data substantially reduced, but the bad data can usually be quickly found. Error handling, provided as
part of the input specifications, permits the reentry of bad data or the continuation of the input process after
skipping over the bad data.

In some cases, yacc fails to produce a parser when given a set of specifications. For example, the specifica-
tions may be self-contradictory, or they may require a more powerful recognition mechanism than that avail-
able to yace. The former cases represent design errors; the latter cases can often be corrected by making the
lexical analyzer more powerful or by rewriting some of the grammar rules. While yacc cannot handle all possi-
ble specifications, its power compares favorably with similar systems. Moreover, the constructions which are
difficult for yace to handle are also frequently difficult for human beings to handle. Some users have reported
that the discipline of formulating valid yacc specifications for their input revealed errors of conception or de-
sign early in the program development.

The yacc program has been extensively used in numerous practical applications, including lint, the Porta-
ble C Compiler, and a system for typesetting mathematics.

The remainder of this document describes the following subjects as they relate to yace.
o Basic process of preparing a yacc specification

e Parser operation

Handling ambiguities

e Handling operator precedences in arithmetic expressions

Error detection and recovery

o The operating environment and special features of the parsers yace produces
o Suggestions to improve the style and efficiency of the specifications

o Advanced topics.

In addition there are four appendicies. Appendix 10.1 is a brief example, and Appendix 10.2 is a summary
of the yacc input syntax. Appendix 10.3 gives an example using some of the more advanced features of yace,

-
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and Appendix 10.4 describes mechanisms and syntax no longer actively supported but provided for historical
continuity with older versions of yacec.

BASIC SPECIFICATIONS

Names refer to either tokens or nonterminal symbols. The yacc program requires token names to be de-
clared as such. In addition, it is often desirable to include the lexical analyzer as part of the specification file.
It may be useful to include other programs as well. Thus, every specification file consists of three sections: the
declarations, (grammar) rules, and programs. The sections are separated by double percent (% %) marks. (The
percent symbol is generally used in yacc specifications as an escape character.)

In other words, a full specification file looks like

declarations
% %

rules

% %
programs

when each section is used.

The declaration section may be empty. Moreover, if the programs section is omitted, the second % % mark
may be omitted also. The smallest legal yacc specification is

%%
rules

since the other two sections may be omitted.

Blanks, tabs, and new lines are ignored except that they may not appear in names or multicharacter re-
served symbols. Comments may appear wherever a name is legal. They are enclosed in /*® .. */, as in C language.

The rules section is made up of one or more grammar rules. A grammar rule has the form
A : BODY;

where “A” represents a nonterminal name, and “BODY"” represents-a sequence of zero or more names and
literals. The colon and the semicolon are yacc punctuation. '

Names may be of arbitrary length and may be made up of letters, dots, underscores, and noninitial digits.
Uppercase and lowercase letters are distinct. The names used in the body of a grammar rule may represent
tokens or nonterminal symbols.

A literal consists of a character enclosed in single quotes (* *). As in C language, the backslash (\) is an es-
cape character within literals, and all the C language escapes are recognized. Thus:

“\n' new-line

‘\r return

‘\' single quote (‘’)
“\\' backslash (\ )
‘\t' tab

“\b’ backspace

‘\f form feed

“\xxx’ “xxx” in octal
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are understood by yacc. For a number of technical reasons, the NUL character (‘\0’ or 0) should never be used
in grammar rules.

If there are several grammar rules with the same left-hand side, the vertical bar (i) can be used to avoid
rewriting the left-hand side. In addition, the semicolon at the end of a rule can be dropped before a vertical bar.
Thus the grammar rules

A : B CD,;
A : E F ,
A : G ;

can be given to yace as

A : B CD
| E F
| G

by using the vertical bar. It is not necessary that all grammar rules with the same left side appear together
in the grammar rules section although it makes the input much more readable and easier to change.

If a nonterminal symbol matches the empty string, this can be indicated by
empty :
which is understood by yacc.
Names representing tokens must be declared. This is tost simply done by writing
%token namel name2

in the declarations section. Every name not defined in the declarations section is assumed to represent a
nonterminal symbol. Every nonterminal symbol must appear on the left side of at least one rule.

Of all the nonterminal symbols, the start symbolhas particular importance. The parser is designed to recog-
nize the start symbol. Thus, this symbol represents the largest, most general structure described by the gram-
mar rules. By default, the start symbol is taken to be the left-hand side of the first grammar rule in the rules
section. It is possible and desirable to declare the start symbol explicitly in the declarations section using the
%start keyword ’ .

%start  symbol
to define the start symbol.

The end of the input to the parser is signaled by a special token, called the endmarker. If the tokens up to,
but not including, the endmarker form a structure which matches the start symbol, the parser function returns
to its caller after the endmarker is seen and accepts the input. If the endmarker is seen in any other context,
it is an error.

It is the job of the user-supplied lexical analyzer to return the endmarker when appropriate. Usually the
end marker represents some reasonably obvious 1/0 status, such as “end of file” or “end of record”.

ACTIONS

With each grammar rule, the user may associate actions to be performed each time the rule is recognized
in the input process. These actions may return values and may obtain the values returned by previous actions.
Moreover, the lexical analyzer can return values for tokens if desired.

R -
-
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An action is an arbitrary C language statement and as such can do input and output, call subprograms, and
alter external vectors and variables. An action is specified by one or more statements enclosed in curly braces
({) and (}). For example:

A : l(! B !)D
'hello( 1, "abc" );
}

and

XXX : YYY ZZZ
{

printf( " a message\n " );
flag = 25;
}

are grammar rules with actions.

To facilitate easy communication between the actions and the parser, the action statements are altered
slightly. The dollar sign symbol ($) is used as a signal to yacc in this context.

To return a value, the action normally sets the pseudo-variable $$ to some value. For example, the action
{$5 =1}
does nothing but return the value of one.
To obtain the values returned by previous actions and the lexical analyzer, the action may use the pseudo-

variables $1, $2, ..., which refer to the values returned by the components of the right side of a rule, reading
from left to right. If the rule is

A:BCD,;
then $2 has the value returned by C, and $3 the value returned by D. The rule

expr : ‘(‘expr’)y

provides a more concrete example. The value returned by this rule is'usually the value of the “expr” in parenthe-
ses. This can be indicated by

expr : ‘(‘expr y
{

$$=9%2;
}

By default, the value of a rule is the value of the first element in it ($1). Thus, grammar rules of the form
A: B,
frequently need not have an explicit action.

In the examples above, all the actions came at the end of rules. Sometimes, it is desirable to get control be-
fore a rule is fully parsed. The yacc permits an actjon to be written in the middle of a rule as well as at the
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end. This rule is assumed to return a value accessible through the usual $ mechanism by the actions to the right
of it. In turn, it may access the values returned by the symbols to its left. Thus, in the rule

A : B
{
$3$ =1,
}
C
{
x=%$2
y=$3

}
the effect is to set xto 1 and y to the value returned by C.

Actions that do not terminate a rule are actually handled by yacc by manufacturing a new nonterminal
symbol name and a new rule matching this name to the empty string. The interior action is the action triggered
off by recognizing this added rule. The yacc program actually treats the above example as if it had been written

$ACT : /* empty */

{
=1
}
A . B S$ACT C
x = $2
y = $§3;

}

where $ACT is an empty action.

In many applications, output is not done directly by the actions. A data structure, such as a parse tree, is
constructed in memory and transformations are applied to it before output is generated. Parse trees are particu-
larly easy to construct given routines to build and maintain the tree structure desired. For example, suppose
there is a C function node written so that the call

node( L, n1, n2)

creates a node with label L, and descendants nl and n2, and returns the index of the newly created node. Then
parse tree can be built by supplying actions such as

expr : expr ‘+’ expr

$$ = node( ‘+’, $1, $3 );
}

in the specification.

The user may define other variables to be used by the actions. Declarations and definitions can appear in
the declarations section enclosed in the marks %{ and %). These declarations and definitions have global scope,
so they are known to the action statements and the lexical analyzer. For example:

%{ int variable = 0; %}
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could be placed in the declarations section making “variable” accessible to all of the actions. The yacc parser
uses only names beginning with yy. The user should avoid such names.

In these examples, all the values are integers. A discussion of values of other types will be found in the part
“ADVANCED TOPICS”.

LEXICAL ANALYSIS

The user must supply a lexical analyzer to read the input stream and communicate tokens (with values, if
desired) to the parser. The lexical analyzer is an integer-valued function called yylex. The function returns an
integer, the token number, representing the kind of token read. If there is a value associated with that token,
it should be assigned to the external variable yylval

The parser and the lexical analyzer must agree on these token numbers in order for communication between
them to take place. The numbers may be chosen by yacc or the user. In either case, the # define mechanism
of C language is used to allow the lexical analyzer to return these numbers symbolically. For example, suppose
that the token name DIGIT has been defined in the declarations section of the yacc specification file. The rele-
vant portion of the lexical analyzer might look like

yylex()

{
extern int yylval;
int ¢;

;.= getchar();

;;vitch( c)
{

case ‘0"
case ‘1"

cas.; ‘9"
yylval = ¢—‘0’;
return( DIGIT );

to return the appropriate token.

The intent is to return a token number of DIGIT and a value equal to the numerical value of the digit. Pro-
vided that the lexical analyzer code is placed in the programs section of the specification file, the identifier
DIGIT will be defined as the token number associated with the token DIGIT.

_ This mechanism leads to clear, easily modified lexical analyzers. The only pitfall is the need to avoid using
any token names in the grammar that are reserved or significant in C language or the parser. For example, the
use of token names if or while will almost certainly cause severe difficulties when the lexical analyzer is com-
piled. The token name error is reserved for error handling and should not be used naively.

As mentioned above, the token numbers may be chosen by yacc or the user. In the default situation, the

numbers are chosen by yace. The default token number for a literal character is the numerical value of the
character in the local character set. Other names are assigned token numbers starting at 257.
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To assign a token number to a token (including literals), the first appearance of the token name or literal
in the declarations section can be immediately followed by a nonnegative integer. This integer is taken to be
the token number of the name or literal. Names and literals not defined by this mechanism retain their default
definition. It is important that all token numbers be distinect.

For historical reasons, the endmarker must have token number 0 or negative. This token number cannot
be redefined by the user. Thus, all lexical analyzers should be prepared to return 0 or negative as a token number
upon reaching the end of their input.

A very useful tool for constructing lexical analyzers is the lex program. These lexical analyzers are designed
to work in close harmony with yacc parsers. The specifications for these lexical analyzers use regular expres-
sions instead of grammar rules. Lex can be easily used to produce quite complicated lexical analyzers, but there
remain some languages (such as FORTRAN) which do not fit any theoretical framework and whose lexical
analyzers must be crafted by hand.

PARSER OPERATION

The yacc program turns the specification file into a C language program, which parses the input according
to the specification given. The algorithm used to go from the specification to the parser is complex and will not
be discussed here. The parser itself, however, is relatively simple and understanding how it works will make
treatment of error recovery and ambiguities much more comprehensible.

" The parser produced by yacc consists of a finite state machine with a stack. The parser is also capable of
reading and remembering the next input token (called the look-ahead token). The current state is always the
one on the top of the stack. The states of the finite state machine are given small integer labels. Initially, the
machine is in state 0, the stack contains only state 0, and no look-ahead token has been read.

The machine has only four actions available— shift, reduce, accept, and error. A step of the parsor is done
as follows:

1. Based on its current state, the parser decides whether it needs a look-ahead token to decide the action
to be taken. If it needs one and does not have one, it calls yylex to obtain the next token.

2. Using the current state and the look-ahead token if needed, the parser decides on its next action and car-
ries it out. This may result in states being pushed onto the stack or popped off of the stack and in the
look-ahead token being processed or left alone.

The shift action is the most common action the parser takes. Whenever a shift action is taken, there is al-
ways a look-ahead token. For example, in state 56 there may be an attion

IF shift 34

which says, in state 56, if the look-ahead token is IF, the current state (56) is pushed down on the stack, and
state 34 becomes the current state (on the top of the stack). The look-ahead token is cleared.

The reduce action keeps the stack from growing without bounds. Reduce actions are appropriate when the
parser has seen the right-hand side of a grammar rule and is prepared to announce that it has seen an instance
of the rule replacing the right-hand side by the left-hand side. It may be necessary to consult the look-ahead
token to decide whether to reduce but usually it is not. In fact, the default action (represented by a dot) is often
a reduce action.

Reduce actions are associated with individual grammar rules. Grammar rules are also given small integer
numbers, and this leads to some confusion. The action

. reduce 18

~
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refers to grammar rule 18, while the action
IF shift 34
refers to state 34.
Suppose the rule
A xyz;

is being reduced. The reduce action depends on the left-hand symbol (A in this case) and the number of symbols
on the right-hand side (three in this case). To reduce, first pop off the top three states from the stack. (In gener-
al, the number of states popped equals the number of symbols on the right side of the rule). In effect, these states
were the ones put on the stack while recognizing x, y, and zand no longer serve any useful purpose. After popping
these states, a state is uncovered which was the state the parser was in before beginning to process the rule.
Using this uncovered state and the symbol on the left side of the rule, perform what is in effect a shift of A.
A new state is obtained, pushed onto the stack, and parsing continues. There are significant differences between
the processing of the left-hand symbol and an ordinary shift of a token, however, so this action is called a goto
action. In particular, the look-ahead token is cleared by a shift but is not affected by a goto. In any case, the
uncovered state contains an entry such as

A goto 20

causing state 20 to be pushed onto the stack and become the current state.

In effect, the reduce action “turns back the clock” in the parse popping the states off the stack to go back
to the state where the right-hand side of the rule was first seen. The parser then behaves as if it had seen the
left side at that time. If the right-hand side of the rule is empty, no states are popped off of the stacks. The un-
covered state is in fact the current state.

The reduce action is also important in the treatment of user-supplied actions and values. When a rule is
reduced, the code supplied with the rule is executed before the stack is adjusted. In addition to the stack holding
the states, another stack running in parallel with it holds the values returned from the lexical analyzer and the
actions. When a shift takes place, the external variable “yylval” is copied onto the value stack. After the return
from the user code, the reduction is carried out. When the goto action is done, the external variable “yyval” is
copied onto the value stack. The pseudo-variables $1, $2, etc., refer to the value stack.

The other two parser actions are conceptually much simpler. The accept action indicates that the entire
input has been seen and that it matches the specification. This dction appears only when the look-ahead token
is the endmarker and indicates that the parser has successfully done its job. The erroraction, on the other hand,
represents a place where the parser can no longer continue parsing according to the specification. The input
tokens it has seen, together with the look-ahead token, cannot be followed by anything that would result in a
legal input. The parser reports an error and attempts to recover the situation and resume parsing. The error
recovery (as opposed to the detection of.error) will be discussed later.

Consider:

%token DING DONG DELL

% %

rhyme sound Dplace
sound - DING DONG
place  : DELL

as a yacc specification.
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When yacc is invoked with the —v option, a file called y.outputis produced with a human-readable descrip-
tion of the parser. The y.output file corresponding to the above grammar (with some statistics stripped off the
end) is

state 0
$accept : _rhyme $end

DING shift 3
. error

rhyme goto 1
sound goto 2

state 1
$accept : rhyme_$end

$end accept
. error

state 2
rhyme : sound_place

DELL shift 5
. error
place goto 4

state 3
sound : DING_DONG

DONG shift 6
. error
state 4
rhyme : sound place_ (1)

. reduce 1

state 5
place : DELL_ (3)

. reduce 3

state 6
sound : DING DONG_ (2)

. reduce 2
where the actions for each state are specified and-there is a description of the parsing rules being processed
in each state. The _ character is used to indicate what has been seen and what is yet to come in each rule. The
following input
DING DONG DELL
can be used to track the operations of the parser. Initially, the current state is state 0. The parser needs to refer

to the input in order to decide between the actions available in state 0, so the first token, DING, is read and
_ becomes the look-ahead token. The action in state 0 on DING is shift 3 state 3 is pushed onto the stack, and
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the look-ahead token is cleared. State 3 becomes the current state. The next token, DONG, is read and becomes
the look-ahead token. The action in state 3 on the token DONG is shift 6, state 6 is pushed onto the stack, and
the look-ahead is cleared. The stack now contains 0, 3, and 6. In state 6 without even consulting the look-ahead,
the parser reduces by

sound : DING DONG

which is rule 2. Two states, 6 and 3, are popped off of the stack uncovering state 0. Consulting the description
of state 0 (looking for a goto on sound),

sound goto 2
is obtained. State 2 is pushed onto the stack and becomes the current state.

In state 2, the next token, DELL, must be read. The action is shift § so state 5 is pushed onto the stack,
which now has 0, 2, and 5 on it, and the look-ahead token is cleared. In state 5, the only action is to reduce by
rule 3. This has one symbol on the right-hand side, so one state, 5, is popped off, and state 2 is uncovered. The
goto in state 2 on place (the left side of rule 3) is state 4. Now, the stack contains 0, 2, and 4. In state 4, the only
action is to reduce by rule 1. There are two symbols on the right, so the top two states are popped off, uncovering
state 0 again. In state 0, there is a goto on rhyme causing the parser to enter state 1. In state 1, the input is
read and the endmarker is obtained, indicated by $end in the y.output file. The action in state 1 when the end
marker is seen is to accept, successfully ending the parse.

The reader is urged to consider how the parser works when confronted with such incorrect strings as DING
DONG DONG, DING DONG, DING DONG DELL DELL, etc. A few minutes spend with this and other simple
examples will probably be repaid when problems arise in more complicated contexts.

AMBIGUITY AND CONFLICTS

A set of grammar rules is ambiguous if there is some input string that can be structured in two or more
different ways. For example, the grammar rule

expr : expr ‘~' expr
is a natural way of expressing the fact that one way of forming an arithmetic expression is to put two other
expressions together with a minus sign between them. Unfortunately, this grammar rule does not completely
specify the way that all complex inputs should be structured. For example, if the input is
expr — expr — expr
the rule allows this input to be structured as either
( expr — expr ) — expr
or as
expr — ( expr — expr )
{The first is called “left association”, the second “right association”.)
The yacc program detects such ambiguities when it is attempting to build the parser. Given the input

expr — expr — expr
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consider the problem that confronts the parser. When the parser has read the second expr, the input seen:
expr — expr
matches the right side of the grammar rule above. The parser could reduce the input by applying this rule. After

applying the rule, the input is reduced to “expr” (the left side of the rule). The parser would then read the final
part of the input:

- expr
and again reduce. The effect of this is to take the left associative interpretation.
Alternatively, when the parser has seen
expr — expr
it could defer the immediate application of the rule and continue reading the input until
expr — expr — expr

has been seen. It could then apply the rule to the rightmost three symbols reducing them to “expr” which results
in

expr — expr

being left. Now the rule can be reduced once more. The effect is to take the right associative interpretation. Thus,
having read

expr — expr

the parser can do two legal things, a shift or a reduction, and has no way of deciding between them. This is called
a “shift/reduce conflict”. It may also happen that the parser has a choice of two legal reductions. This is called
a “reduce/reduce conflict”. Note that there are never any shift/shift conflicts.

When there are shift/reduce or reduce/reduce conflicts, yacc still produces a parser. It does this by select-
ing one of the valid steps wherever it has a choice. A rule describing the choice to make in a given situation
is called a “disambiguating rule".

The yacc program invokes two disambiguating rules by default:

1. In a shift/reduce conflict, the default is to do the shift.

2. In a reduce/reduce conflict, the default is to reduce by the earlier grammar rule (in the input sequence).

Rule 1 implies that reductions are deferred in favor of shifts when there is a choice. Rule 2 gives the user
rather ecrude control over the behavior of the parser in this situation, but reduce/reduce conflicts should be
avoided when possible.

Conflicts may arise because of mistakes in input or logic or because the grammar rules, while consistent,
require a more complex parser than yace can construct. The use of actions within rules can also cause conflicts
if the action must be done before the parser can be sure which rule is being recognized. In these cases, the appli-

cation of disambiguating rules is inappropriate and leads to an incorrect parser. For this reason, yacc always
reports the number of shift/reduce and reduce/reduce conflicts resolved by Rule 1 and Rule 2.
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In general, whenever it is possible to apply disambiguating rules to produce a correct parser, it is also possi-
ble to rewrite the grammar rules so that the same inputs are read but there are no conflicts. For this reason,
most previous parser generators have considered conflicts to be fatal errors. Our experience has suggested that
this rewriting is somewhat unnatural and produces slower parsers. Thus, yace will produce parsers even in the
presence of conflicts.

As an example of the power of disamiguating rules, consider:

stat : IF ‘(* cond ') stat
I IF ‘(* cond ') stat ELSE stat

which is a fragment from a programming language involving an “if-then-else” statement. In these rules, “IF”
and “ELSE"” are tokens, “cond” is a nonterminal symbol describing conditional (logical) expressions, and “stat”

is a nonterminal symbol describing statements. The first rule will be called the “simple-if” rule and the second
the “if-else” rule.

These two rules form an ambiguous construction since input of the form
IF (C1 ) IF (C2) S1 ELSE S2

can be structured according to these rules in two ways

IF (C1)
{
IF (C2)
S1
}
ELSE
S2
or
IF (C1)
{
IF (C2)
S1
ELSE
S2
}

where the second interpretatioh is the one given in most programming languages having this construct. Each
“ELSE" is associated with the last preceding “un-ELSE’'d” IF. In this example, consider the situation where
the parser has seen

IF (Cl)IF(C2) S
and is looking at the “ELSE". It can immediately reduce by the simple-if rule to get

IF ( C1 ) stat

and then read the remaining input
ELSE S2
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and reduce
IF ( Cl ) stat ELSE 82

by the if-else rule. This leads to the first of the above groupings of the input.

On the other hand, the “ELSE"” may be shifted, “S2" read, and then the right-hand portion of
IF (C1)IF (C2) S1 ELSE S2
can be reduced by the if-else rule to get
IF (C1) st;t

which can be reduced by the simple-if rule. This leads to the second of the above groupings of the input which
is usually desired. :

Once again the parser can do two-valid things—there is a shift/reduce conflict. The application of
disambiguating rule 1 tells the parser to shift in this case, which leads to the desired grouping.

This shift/reduce conflict arises only when there is a particular current input symbol, “ELSE", and particu-
lar inputs, such as
IF (C1)IF (C2) 81

have already been seen. In general, there may be many conflicts, and each one will be associated with an input
symbol and a set of previously read inputs. The previously read inputs are characterized by the state of the

parser.
The conflict messages of yacc are best ﬁnderstood by examining the verbose (—v) option output file. For
example, the output corresponding to the above conflict state might be
23: shift/reduce conflict (shift 45, reduce 18) on ELSE
state 23

stat : IF ( cond ) stat_ (18)
stat : IF ( cond ) stat_ELSE stat

ELSE shift 45
. reduce 18

where the first line describes the conflict—giving the state and the input symbol. The ordinary state description
gives the grammar rules active in the state and the parser actions. Recall that the underline marks the portion
of the grammar rules which has been seen. Thus in the example, in state 23 the parser has seen input correspond-

ing to
IF ( cond ) stat

and the two grammar rules shown are active at this time. The parser can do two possible things. If the input
symbol is “ELSE”, it is possible to shift into state 45. State 45 will have, as part of its description, the line

stat : IF ( cond ) stat ELSE_stat
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since the “ELSE"” will have been shifted in this state. Back in state 23 the alternative action, described a dot
(), is to be done if the input symbol is not mentioned explicitly in the above actions. In this case if the input
symbol is not “ELSE”, the parser reduces to

stat : IF ‘(‘cond’) stat

by grammer rule 18.

Once again, notice that the numbers following “shift” commands refer to other states, while the numbers
following “reduce” commands refer to grammar rule numbers. In the y.outputfile, the rule numbers are printed
after those rules which can be reduced. In most one states, there will be at most reduce action possible in the
state, and this will be the default command. The user who encounters unexpected shift/reduce conflicts will
probably want to look at the verbose output to decide whether the default actions are appropriate.

PRECEDENCE

There is one common situation where the rules given above for resolving conflicts are not sufficient. This
is in the parsing of arithmetic expressions. Most of the commonly used constructions for arithmetic expressions
can be naturally described by the notion of precedence levels for operators, together with information about
left or right associativity. It turns out that ambiguous grammars with appropriate disambiguating rules can
be used to create parsers that are faster and easier to write than parsers constructed from unambiguous gram-
mars. The basic notion is to write grammar rules of the form

expr : expr OP expr
and

expr : UNARY expr

for all binary and unary operators desired. This creates a very ambiguous grammar with many parsing conflicts.
As disambiguating rules, the user specifies the precedence or binding strength of all the operators and the
associativity of the binary operators. This information is sufficient to allow yacc to resolve the parsing conflicts
in accordance with these rules and construct a parser that realizes the desired precedences and associativities.

The precedences and associativities are attached to tokens in the declarations section. This is done by a se-
ries of lines beginning with a yace keyword: %left, %right, or %nonassoc, followed by a list of tokens. All
of the tokens on the same line are assumed to have the same precedence level and associativity; the lines are
listed in order of increasing precedence or binding strength. Thus:

%left ‘+' ‘-’
%left > ‘/

describes the precedence and associativity of the four arithmetic operators. Plus and minus are left associative
and have lower precedence than star and slash, which are also left associative. The keyword %right is used
to describe right associative operators, and the keyword % nonassoc is used to describe operators, like the oper-
ator .LT. in FORTRAN, that may not associate with themselves. Thus:

A LT. B LT. C

is illegal in FORTRAN and such an operator would be described with the keyword %nonassoc in yacc. As
an example of the behavior of these declarations, the description

%right ‘='
% left ‘+' ‘-’
% left '** ¢/’

% %
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expr :  expr
expr
expr
expr
expr
NAME

might be used to structure the input
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expr
expr
expr
expr
expr

a=b=c¢d —e— g

as follows

a=(b=(((c*d)—e) - (f*g)))

in order to perform the correct precedence of operators. When this mechanism is used, unary operators must,
in general, be given a precedence. Sometimes a unary operator and a binary operator have the same symbolic
representation but different precedences. An example is unary and binary “~". Unary minus may be given the
same strength as multiplication, or even higher, while binary minus has a lower strength than multiplication.
The keyword, %prec, changes the precedence level associated with a particular grammar rule. The keyword
% prec appears immediately after the body of the grammar rule, before the action or closing semicolon, and
is followed by a token name or literal. It causes the precedence of the grammar rule to become that of the follow-
ing token name or literal. For example,-the rules

%left ‘+ -’
%left *** '/

% %

expr : expr +
expr L)
expr -
expr /'
l_’ expr
NAME

expr
expr
expr
expr

% prec

“er

might be used to give unary minus the same precedence as multiplication.

A token declared by %left, %right, and %nonassoc need not be, but may be, declared by %token as well.

The precedences and associativities are used by yacc to resolve parsing conflicts. They give rise to
disambiguating rules. Formally, the rules work as follows:

1. The precedences and associativities are recorded for those tokens and literals that have them.,

2. A precedence and associativity is associated with each grammar rule. It is the precedence and
associativity of the last token or literal in the body of the rule. If the % prec construction is used, it over-
rides this default. Some grammar rules may have no precedence and associativity associated with them.

3. When there is a reduce/reduce conflict or there is a shift/reduce conflict and either the input symbol or
the grammar rule has no precedence and associativity, then the two disambiguating rules given at the
beginning of the section are used, and the conflicts are reported.
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4. If there is a shift/reduce conflict and both the grammar rule and the input character have precedence
and associativity associated with them, then the conflict is resolved in favor of the action (shift or reduce)
associated with the higher precedence. If the precedences are the same, then the associativity is used;
left associative implies reduce, right associative implies shift, and nonassociating implies error.

Conflicts resolved by precedence are not counted in the number of shift/reduce and reduce/reduce conflicts
reported by yacc. This means that mistakes in the specification of precedences may disguise errors in the input
grammar. It is a good idea to be sparing with precedences and use them in an essentially “cookbook” fashion
until some experience has been gained. The y.outputfile is very useful in deciding whether the parser is actually
doing what was intended.

ERROR HANDLUNG

Error handling is an extremely difficult area, and many of the problems are semantic ones. When an error
is found, for example, it may be necessary to reclaim parse tree storage, delete or alter symbol table entries,
and, typically, set switches to avoid generating any further output. ' :

It is seldom acceptable to stop all processing when an error is found. It is more useful to continue scanning
the input to find further syntax errors. This leads to the problem of getting the parser “restarted” after an error.
A general class of algorithms to do this involves discarding a number of tokens from the input string and at-
tempting to adjust the parser so that input can continue.

To allow the user some control over this process, yacc provides a simple, but reasonably general, feature.
The token name “error” is reserved for error handling. This name can be used in grammar rules. In effect, it
suggests places where errors are expected and recovery might take place. The parser pops its stack until it enters
a state where the token “error” is legal. It then behaves as-if the token “error” were the current look-ahead
token and performs the action encountered. The look-ahead token is then reset to the token that caused the er-
ror. If no special error rules have been specified, the processing halts when an error is detected.

In order to prevent a cascade of error messages, the parser, after detecting an error, remains in error state
until three tokens have been successfully read and shifted. If an error is detected when the parser is already
in error state, no message is given, and the input token is quietly deleted.

As an example, a rule of the form
stat : error

would mean that on a syntax error the parser would attempt to skip over the statement in which the error was
seen. More precisely, the parser will scan ahead, looking for three tokens that might legally follow a statement,
and start processing at the first of these, If the beginnings of statements are not sufficiently distinctive, it may
make a false start in the middle of a statement and end up reporting a second error where there is in fact no
error.

Actions may be used with these special error rules. These actions might attempt to reinitialize tables, re-
claim symbol table space, etc.

Error rules such as the above are very general but difficult to control. Rules such as

stat : error

are somewhat easier. Here, when there is an error, the parser attempts to skip over the statement but will do
so by skipping to the next semicolon. All tokens after the error and before the next semicolon cannot be shifted
and are discarded. When the semicolon is seen, this rule will be reduced and any “cleanup” action associated
with it performed.

Page 147



SUPPORT TOOLS ISSUE 1 6/82

Another form of error rule arises in interactive applications where it may be desirable to permit a line to
be reentered after an error. The following example

input : error ‘\n'

printf(" Reenter last line: * );

]

input

$$ =4
)

is one way to do this. There is one potential difficulty with this approach. The parser must correctly process
three input tokens before it admits that it has correctly resynchronized after the error. If the reentered line
contains an error in the first two tokens, the parser deletes the offending tokens and gives no message. This
is clearly unacceptable. For this reason, there is a mechanism that can force the parser to believe that an error
has been fully recovered from. The statement

yyerrok ;
in an action resets the parser to its normal mode. The last example can be rewritten as

input : error \n'
' yyerrok;
printf( " Reenter last line: " ),
%nput
! $$ = %4

which is somewhat better.

As previously mentioned, the token seen immediately after the “error” symbol is the input token at which
the error was discovered. Sometimes, this is inappropriate; for example, an error recovery action might take
upon itself the job of finding the correct place to resume input. In this case, the previous look-ahead token must
be cleared. The statement

yyclearin ;

in an action will have this effect. For example, suppose the action after error were to call some sophisticated
resynchronization routine, supplied by the user, that attempted to advance the input £o0 the beginning of the
next valid statement. After this routine was called, the next token returned by yylex would presumably be the
first token in a legal statement. The old, illegal token must be discarded, and the error state reset. A rule similar
to

stat : error
resynch() ;

yyerrok ;
yyclearin ;
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could perform this.

These mechanisms are admittedly crude but do allow for a simple, fairly effective recovery of the parser
from many errors. Moreover, the user can get control to deal with the error actions required by other portions
of the program.

THE “‘yacc’’ ENVIRONMENT

When the user inputs a specification to yacc, the output is a file of C language programs, called y.tab.c on
most systems. (Due to local file system conventions, the names may differ from installation to installation.) The
function produced by yace is called yyparse(); it is an integer valued function. When it is called, it in turn re-
peatedly calls yylex(), the lexical analyzer supplied by the user (see part “LEXICAL ANALYSIS") to obtain
input tokens. Eventually, either an error is detected, in which case (if no error recovery is possible) yyparse()
returns the value 1, or the lexical analyzer returns the end-marker token and the parser accepts. In this case,
yyparse() returns the value 0.

The user must provide a certain amount of environment for this parser in order to obtain a working pro-
gram. For example, as with every C language program, a program called main() must be defined that eventually
calls yyparse(). In addition, a routine called yyerror() prints a message when a syntax error is detected.

These two routines must be supplied in one form or another by the user. To ease the initial effort of using
yace, a library has been provided with default versions of main() and yyerror(). The name of this library is
system dependent; on many systems, the library is accessed by a —ly argument to the loader. The source code

main()

{
}

return ( yyparse() );

and
f include <stdio.h>

yyerror(s)
char *s;

fprintf( stderr, " %s\n" , s);
}

show the triviality of these default programs. The argument to yyerror()is a string containing an error message,
usually the string “syntax error”. The average application will want to do better than this. Ordinarily, the pro-
gram should keep track of the input line number and print it along with the message when a syntax error is
detected. The external integer variable yychar contains the look-ahead token number at the time the error was
detected. This may be of some interest in giving better diagnostics. Since the main() program is probably sup-
plied by the user (to read arguments, etc.), the yacc library is useful only in small projects or in the earliest
stages of larger ones.

The external integer variable yydebug is normally set to 0. If it is set to a nonzero value, the parser will
output a verbose description of its actions including a discussion of the input symbols read and what the parser
actions are. Depending on the operating environment, it may be possible to set this variable by using a
debugging system.
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HINTS FOR PREPARING SPECIFICATIONS

This part contains miscellaneous hints on preparing efficient, easy to change, and clear specifications. The
individual subsections are more or less independent.

A. Input Style

It is difficult to provide rules with substantial actions and still have a readable specification file. The follow-
ing are a few style hints.

1. Use all uppercase letters for token names and all lowercase letters for nonterminal names. This rule
comes under the heading of “knowing who to blame when things go wrong”.

2 Put grammar rules and actions on separate lines. This allows either to be changed without an automatic
need to change the other.

3. Putall rules with the same left-hand side together. Put the left-hand side in only once and let all following
rules begin with a vertical bar.

4. Put a semicolon only after the last rule with a given left-hand side and put the semicolon on a separate
line. This allows new rules to be easily added.

5. Indent rule bodies by two tab stops and action bodies by three tab stops.

The example in Appendix 10.1 is written following this style, as are the examples in this section (where space
permits). The user must make up his own mind about these stylistic questions. The central problem, however,
is to make the rules visible through the morass of action code.

B. Left Recursion

The algorithm used by the yacc parser encourages so called “left recursive” grammar rules. Rules of the
form

name : name rest_of_rule ;

match this algorithm. These rules such as

list : item
list ‘¢ item

and

seq : item
! seqitem

frequently arise when writing specifications of sequences and lists. In each of these cases, the first rule will be
reduced for the first item only; and the second rule will be reduced for the second and all succeeding items.

With right recursive rules, such as:

seq : item
[]

t item seq
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the parser would be a bit bigger; and the items would be seen and reduced from right to left. More seriously,
an internal stack in the parser would be in danger of overflowing if a very long sequence were read. Thus, the
user should use left recursion wherever reasonable.

It is worth considering whether a sequence with zero elements has any meaning, and if so, consider writing
the sequence specification as

seq : /* empty */
| seq item

.
’

using an empty rule. Once again, the first rule would always be reduced exactly once, before the first item was
read, and then the second rule would be reduced once for each item read. Permitting empty sequences often leads
to increased generality. However, conflicts might arise if yacc is asked to decide which empty sequence it has
seen, when it hasn't seen enough to know!

C. Llexical Tie-ins

Some lexical decisions depend on context. For example, the lexical analyzer might want to delete blanks nor-
mally but not within quoted strings, or names might be entered into a symbol table in declarations but not in
expressions.

One way of handling this situation is to create a global flag that is examined by the lexical analyzer and
set by actions. For example,

%
int dflag;
%}
.. other declarations ... '
% %

prog : decls stats

decls : /* empty */

dflag = 1;

-— g

decls declaration

stats : /* empty */
dflag = 0;

}
| stats statement

.. other rules ...

specifies a program which consists of zero or more declarations followed by zero or more statements. The flag
“dflag” is now 0 when reading statements and 1 when reading declarations, except for the first token in the
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first statement. This token must be seen by the parser before it can tell that the declaration section has ended
and the statements have begun. In many cases, this single token exception does not affect the lexical scan.

This kind of “back-door” approach can be elaborated to a noxious degree. Nevertheless, it represents a way
of doing some things that are difficult, if not impossible, to do otherwise.

D. Reserved Words

Some programming languages permit the user to use words like “if”, which are normally reserved as label
or variable names, provided that such use does not conflict with the legal use of these names in the programming
language. This is extremely hard to do in the framework of yace. It is difficult to pass information to the lexical
analyzer telling it “this instance of if is a keyword and that instance is a variable”. The-user can make a stab
at it using the mechanism described in the last subsection, but it is difficult.

A number of ways of making this easier are under advisement. Until then, it is better that the keywords
be reserved, i.e., be forbidden for use as variable names. There are powerful stylistic reasons for preferring this.

ADVANCED TOPICS

This part discusses a number of advanced features of yacc.
A. Simvulating Error and Accept in Actions

The parsing actions of error and accept can be simulated in an action by use of macros YYACCEPT and
YYERROR. The YYACCEPT macro causes yyparse() to return the value 0; YYERROR causes the parser .
to behave as if the current input symbol had been a syntax error; yyerror() is called, and error recovery takes
place. These mechanisms can be used to simulate parsers with multiple end-markers or context sensitive syntax
checking.

B. Accessing Valves in Enclosing Rules

An action may refer to values returned by actions to the left of the current rule. The mechanism is simply
the same as with ordinary actions, a dollar sign followed by a digit:

sent : adj noun verb adj noun

look at the sentence ...

adj : THE
l $$ = THE;
: YOUNG
{ $$ = YOUNG;
}
noun DOG
{ $$ = DOG;
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CRONE

if( $0 == YOUNG )
printf( “what?/n” );

o
$$= CRONE;

but in this case the digit may be 0 or negative. In the action following the word CRONE, a check is made that
the preceding token shifted was not YOUNG. Obviously, this is only possible when a great deal is known about
what might precede the symbol “noun” in the input. There is also a distinctly unstructured flavor about this.
Nevertheless, at times this mechanism will save a great deal of trouble especially when a few combinations are
to be excluded from an otherwise regular structure.

C. Support for Arbitrary Valve Types

By default, the values returned by actions and the lexical analyzer are integers. The yacc program can also
support values of other types including structures. In addition, yacc keeps track of the types and inserts appro-
priate union member names so that the resulting parser will be strictly type checked. The yace value stack is
declared to be a union of the various types of values desired. The user declares the union and associates union
member names to each token and nonterminal symbol having a value. When the value is referenced through
a $3% or $n construction, yace will automatically insert the appropriate union name, so that no unwanted con-
versions will take place. In addition, type checking commands such as lint will be far more silent.

There are three mechanisms used to provide for this typing. First, there is a way of defining the union. This
must be done by the user since other programs, notably the lexical analyzer, must know about the union member
names. Second, there is a way of associating a union member name with tokens and nonterminals. Finally, there
is a2 mechanism for describing the type of those few values where yacc can not easily determine the type.

To declare the union, the user includes

% union

body of union ...
}

in the declaration section. This declares the yacc value stack and the external variables yyival and yyval to
have type equal to this union. If yace was invoked with the —d option, the union declaration is copied onto
the y.tab.h file. Alternatively, the union may be declared in a header file, and a typedef used to define the vari-
able YYSTYPE to represent this union. Thus, the header file might have said

typedef union

body of union ...
}
YYSTYPE;

instead. The header file must be included in the declarations section by use of %{and %}.
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Once YYSTYPE is defined, the union member names must be associated with the various terminal and
nonterminal names. The construction

< name >

is used to indicate a union member name. If this follows one of the keywords %token, %left, %right, and
%nonassoc, the union member name is associated with the tokens listed. Thus, saying

% left <optype> ‘+' ‘-

will cause any reference to values returned by these two tokens to be tagged with the union member name
optype. Another keyword, %type, is used to associate union member names with nonterminals. Thus, one might
say

%type <nodetype> expr stat
to associate the union member nodetype with the nonterminal symbols “expr” and “stat”.

There remains a couple of cases where these mechanisms are insufficient. If there is an action within a rule,
the value returned by this action has no a priori type. Similarly, reference to left context values (such as $0)
leaves yacc with no easy way of knowing the type. In this case, a type can be imposed on the reference by insert-
ing a union member name between < and > immediately after the first $. The example

rule aaa

{

$<intval>$§ = 3;
}
bbb
{
} .

fun( $<intval>2, $<other>0);

shows this usage. This syntax has little to recommend it, but the situation arises rarely.

A sample specification is given in Appendix 10.3. The facilities in this subsection are not triggered until they
are used. In particular, the use of %type will turn on these mechanisms. When they are used, there is a fairly
strict level of checking. For example, use of $n or $$ to refer to something with no defined type is diagnosed.
If these facilities are not triggered, the yacc value stack is used to hold int’s, as was true historically.
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APPENDIX 10.1

A SIMPLE EXAMPLE

This example gives the complete yacc specification for a small desk calculator; the desk calculator has 26
registers, labeled “a"” through “z”, and accepts arithmetic expressions made up of the operators +, —, *, /, %
(mod operator), & (bitwise and), ! (bitwise or), and assignment. If an expression at the top level is an assignment,
the value is not printed; otherwise, it is. As in C language, an integer that begins with 0 (zero) is assumed to
be octal; otherwise, it is assumed to be decimal.

As an example of a yacc specification, the desk calculator does a reasonable job of showing how precedences
and ambiguities are used and demonstrating simple error recovery. The major oversimplifications are that the
lexical analysis phase is much simpler than for most applications, and the output is produced immediately line
by line. Note the way that decimal and octal integers are read in by the grammar rules; this job is probably
better done by the lexical analyzer.

% {
# include <stdio.h>
# include <ctype.h>

int regs[26];
int base;

%}
% start list
% token DIGIT LETTER

% left *V'

% left ‘&'

% left ‘+' =’

% left ** '/ ‘%’

% left UMINUS /* supplies precedence for unary minus */

% % /* beginning of rules section */
list : /* empty */

list stat \n’
l list error ‘\n’

yyerrok;

stat : expr
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expr

number
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printf( “%dn”, $§1
LETTER ‘=’ expr
regs[$1] = $3;

‘(* expr’)’

§ = §2,
expr ‘+’ expr

$$ = $1 + 8§3;
expr ‘~' expr

$ =351 - 83
expr ‘*' ‘expr

$=31"°83
expr /' expr

$=81/33
expr ‘%' expr

$=3%1% 83
expr ‘&’ expr

$¢ = %1 & $3;
expr ‘I’ expr

$$=81183

‘-' expr % prec UMINUS

¥ =-32
LETTER

$$ = regs[$1);

number

DIGIT

)i

ISSUE 1
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%% /*

yylex( )
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$$ = $1; base = (§1==0) ? 8: 10;

number DIGIT

$$ = bas * §1 + $2

start of programs */

}

!

{

}
/.
/‘
/‘
/t

int c;

lexical analysis routine */
returns LETTER for a lowercase letter, yylval = 0 through 25*/

returns DIGIT for a digit, yylval = 0 through 9 */
all other characters are returned immediately */

/* skip blanks */

while( (c=getchar( ) ) == ‘')

/* ¢ is now nonblank */

}f( islower( ¢ ) )

} .

yylval =¢ -‘a";
return( LETTER );

’%f( isdigit( ¢ ) )

yylval =¢ - ‘0";

return( DIGIT );

return( ¢ );

SUPPORT TOOLS
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APPENDIX 10.2
YACC INPUT SYNTAX

This appendix has a description of the yacc input syntax as a yacc specification. Context dependencies,
etc., are not considered. Ironically, the yacc input specification language is most naturally specified as an LR(2)
grammar; the sticky part comes when an identifier is seen in a rule immediately following an action. If this
identifier is followed by a colon, it is the start of the next rule; otherwise, it is a continuation of the current
rule which just happens to have an action embedded in it. As implemented, the lexical analyzer looks ahead after
seeing an identifier and decides whether the next token (skipping blanks, new lines, comments, etc.) is a colon.
If so, it returns the token C_IDENTIFIER. Otherwise, it returns IDENTIFIER. Literals (quoted strings) are
also returned as IDENTIFIERS but never as part of C_IDENTIFIERs. .

/* grammar for the input to Yace */

/* Dbasic entities */

% token IDENTIFIER /* includes identifiers and literals */
% token C_IDENTIFIER /* identifier (but not literal) followed by colon */
% token NUMBER /* [0-9])+ */

/* reserved words: %type => TYPE, %left => LEFT, etc. */
% token LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION
% token MARK  /* the %% mark */
% token LCURL /* the % { mark */
% token RCURL /* the % } mark */

/* ASCII character literals stand for themselves */

% start spec
% %
spec defs MARK rules tail
tail { MARK
In this action, eat up the rest of the file
? /* empty: the second MARK is optional */
defs : /* empty */
! defs def
def : START IDENTIFIER
{ UNION
{

Copy union definition to output
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.s e == e

ISSUE 1

LCURL

Copy C code to output file
RCURL

ndefs rword tag nlist

TOKEN
LEFT
RIGHT
NONASSOC
TYPE

/* empty: union tag is optional */
‘<’ IDENTIFIER ‘>’

nmno
nlist nmno
nlist *,’ nmno

IDENTIFIER /* Note: literal illegal with % type */
IDENTIFIER NUMBER /* Note: illegal with % type */

/* rules section */

rules

rule

rbody

act

prec

C_IDENTIFIER rbody prec > s
rules rule

C_IDENTIFIER rbody prec
‘1’ rbody prec

./* empty */

rbody IDENTIFIER
rbody act

c{’
{
Copy action, translate $3, etc.

}

/* empty */

PREC IDENTIFIER
PREC IDENTIFIER act
prec

SUPPORT TOOLS
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APPENDIX 10.3
AN ADVANCED EXAMPLE

This appendix gives an example of a grammar using some of the advanced features. The desk calculator ex-
ample in Appendix 10.1 is modified to provide a desk calculator that does floating point interval arithmetic. The
calculator understands floating point constants; the arithmetic operations +, —, *, /, unary —, and = (assign-
ment); and has 26 floating point variables, “a” through “z”. Moreover, it also understands intervals, written

(x,y)

where x is less than or equal to y. There are 26 interval valued variables“A"” through “Z" that may also be used.
The usage is similar to that in Appendix 10.1; assignments return no value and print nothing while expressions
print the (floating or interval) value.

This example explores a number of interesting features of yacc and C language. Intervals are represented
by a structure consisting of the left and right endpoint values stored as double’s. This structure is given a type
name, INTERVAL, by using typedef. The yacc value stack can also contain floating point scalars and integers
(used to index into the arrays holding the variable values). Notice that this entire strategy depends strongly
on being able to assign structures and unions in C language. In fact, many of the actions call functions that re-
turn structures as well.

It is also worth noting the use of YYERROR to handle error conditions—division by an interval containing
0 and an interval presented in the wrong order. The error recovery mechanism of yacc is used to throw away
the rest of the offending line.

In addition to the mixing of types on the value stack, this grammar also demonstrates an interesting use
of syntax to keep track of the type (e.g., scalar or interval) of intermediate expressions. Note that a scalar can
be automatically promoted to an interval if the context demands an interval value. This causes a large number
of conflicts when the grammar is run through yacc—18 Shift/Reduce and 26 Reduce/Reduce. The problem can
be seen by looking at the two input lines

254+ (35-4.)
and
25+(35,4.)

Notice that the 2.5 is to be used in an interval valued expression in the second example, but this fact is not known
until the comma is read. By this time, 2.5 is finished, and the parser cannot go back and change its mind. More
generally, it might be necessary to look ahead an arbitrary number of tokens to decide whether to convert a
scalar to an interval. This problem is evaded by having two rules for each binary interval valued operator—
one when the left operand is a scalar and one when the left operand is an interval. In the second case, the right
operand must be an interval, so the conversion will be applied automatically. Despite this evasion, there are
still many cases where the conversion may be applied or not, leading to the above conflicts. They are resolved
by listing the rules that yield scalars first in the specification file; in this way, the conflicts will be resolved in
the direction of keeping scalar valued expressions scalar valued until they are forced to become intervals.

This way of handling multiple types is very instructive but not very general. If there were many kinds of
expression types instead of just two, the number of rules needed would increase dramatically and the conflicts
even more dramatically. Thus, while this example is instructive, it is better practice in a more normal program-
ming language environment to keep the type information as part of the value and not as part of the grammar.

Finally, a word about the lexical analysis. The only unusual feature is the treatment of floating point con-
stants. The C language library routine atof{) is used to do the actual conversion from a character string to a
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double precision value. If the lexical analyzer detects an error, it responds by returning a token that is illegal
in the grammar provoking a syntax error in the parser and thence error recovery.

%l

# include <stdio.h>
# include <ctype.h>

typedef struct interval

{
double lo, hi;
} INTERVAL;

INTERVAL vmul( ), vdiv( );
double atof( );

double dreg[ 26 ];
INTERVAL vreg[ 26 ];

%}

% start lines

% union
{
int ival;
double dval;
¢ » INTERVAL vval;
}

% token <ival> DREG VREG /* indices into dreg, vreg arrays */

% token <dval> CONST /* floating point constant */
% type <dval> dexp /* expression */
%type <vval> vexp /* interval expression */

/* precedence information about the operators */
% left I S
% left ey
% left UMINUS /* precedence for unary minus */
% %
lines : /* empty ¥/
{ lines line
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line

dexp
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A, Nt - — —

—— gt

— —

e g

dexp ‘\n’
printf( “%15.8f\n", $1 );
vexp ‘\n'
printf( *“(%15.8f , %15.8f )\n", $1.10, $1.hi );
DREG ‘=' dexp ‘\n’
dreg($1] = $3;
VREG ‘=’ vexp ‘\n’
vreg[$l} = $3;
error ‘\n’

yyerrok;

CONST
DREG

$$ = dreg[$1)

dexp ‘+' dexp
$$ = $1+83
dexp ‘-’ dexp
$=3%-8
dexp “*’ dexp
$=9%1"*8
dexp /" dexp
$=951/83
‘=" dexp % prec UMINUS
$$ = - 82
‘(‘ dexp )

$% = %2
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vexpp : dexp
l $8.hi = $3.lo = $1;
‘(* dexp % dexp )’

$3.lo = $2;

$$.hi = $4;
%f( $$.Jo > $3.hi )

printf( “interval out of order n” );

YYERROR;
}
! VREG
{
$$ = vreg($l]
} vexp ‘+' vexp
$3.hi = $1.hi + $3.hi;
$$.Jo = $1.lo + $3.1o
) .
1 dexp ‘+' vexp
{
$$.hi = $1 + $3.hi;
$$.Jo = §1 + $3.lo
;} vexp ‘-’ vexp
{
$3.hi = $1.hi ~ $3.lo;
$$.lo = $1.lo - $3.hi
}
l{ dexp '~' vexp
$$.hi = $1 - $3.lo;
$$.Jo = $1 - $3.hi
}
I{ vexp ‘¥’ vexp
$$ = vmul( $1l.lo, $.hi, $3 )
}
! dexp ‘* vexp
{
$$ = vmul( $1, $1, $3 )
}
! vexp '/’ vexp
{
if( dcheck( $3 ) ) YYERROR;
$$ = vdiv( $l.lo, $1.hi, $3 )
}

| dexp /' vexp

if( dcheck( $3 ) ) YYERROR;
$ = vdiv( §1, 81, $3 )
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;} ‘=’ vexp % prec UMINUS

{ $3.hi = -$2lo; $$.lo = -$2.hi
=} ‘(* vexp ')

; $% = §2

% %
# define BSZ 50 /* buffer size for floating point numbers */
/* lexical analysis */

yylex( )

{
register c;

/* skip over blanks */
while( (c=getchar( ) ) == ‘")

it isupper( ¢ ) )

yylvalival = ¢ - ‘A";
return( VREG );

}
{if( islower( ¢ ) )

yylvalival = ¢ - ‘a’;
return( DREG );
}

/* gobble up digits, points, exponents */
{if( isdigit( ¢ ) {1 c=='")

char buf[BSZ+1], *cp = buf;
int dot = 0, exp = 0;

{for( ; (cp-buf)<BSZ ; ++cp,e=getchar( ) )

*cp = ¢

if( isdigit( ¢ ) )
continue;

ixf( c==")

if( dot++ 11 exp )
return( ‘.’ ); /* will cause syntax error */
continue;

)
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if( ¢ == ‘e’ )

if( exp++ )
return( ‘e’ ); /* will cause syntax error */
continue;

/* end of number */
break;
}
*cp = ‘o,
if( (cp-buf) >= BSZ )
printf( “constant too long: truncated\n” );
else

ungetc( ¢, stdin ); /* push back last char read */
yylval.dval = atof( buf );
return( CONST );

return( ¢ );
)

INTERVAL
hilo( a, b, ¢, d )
{ double a, b, ¢, d;

/* returns the smallest interval containing a, b, ¢, and d */

/* used by *,°/ routines */

INTERVAL v;
if( a>b )
{
vhi = a;
vlo = b;
}
else
{
v.hi = b;
v.lo = a;
}
i{f( c>d )
if( e>v.hi )
v.hi = ¢
if( devlo )
vlo = d;
else
if( d>v.hi )
v.hi = d;
if( ccvlo )
vlo = ¢
}

return( v );
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}
INTERVAL vmul( a, b, v )
double a, b;
INTERVAL v;
{ return( hilo( a*v.hi, a*v.lo, b*v.hi, b*v.lo ) );
}
deheck( v )
INTERVAL v;
{
{if( vhi >=0. && v.lo <= 0. )
printf( “divisor interval contains 0.\n” );
return( 1 );
z'eturn( 0)
{
INTERVAL vdiv( a, b, v )
double a, b;
INTERVAL v;

{
return( hilo( a/v.hi, a/v.lo, b/v.hi, b/v.lo ) );
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APPENDIX 10.4

OLD FEATURES SUPPORTED BUT NOT ENCOURAGED

This appendix mentions synonyms and features which are supported for historical continuity but, for vari-
ous reasons, are not encouraged.

1.

2

Literals may also be delimited by double quotes.

Literals may be more than one character long. If all the characters are alphabetic, numeric, or _, the type
number of the literal is defined just as if the literal did not have the quotes around it. Otherwise, it is
difficult to find the value for such literals.

The use of multicharacter literals is likely to mislead those unfamiliar with yace since it suggests that
yace is doing a job which must be actually done by the lexical analyzer.

Most places where % is legal, backslash “\" may be used. In particular, \\ is the same as % %, \left the
same as % left, etc.

There are a number of other synonyms:
% < 18 the same as % left
% > is the same as %right
%binary and %2 are the same as % nonassoc
%0 and % term are the same as % token
% = is the same as % prec.
Actions may also have the form
= ..}

and the curly braces can be dropped if the action is a single C language statement.

The C language code between %{ and %} use to be permitted at the head of the rules section as well as
in the declaration section.
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