‘The' MUNIX- ‘documentation Js divided in 3 main parts, which ‘are currently pro-

N ““\nde

Ty - in

dﬂﬂn 4 bmdars

MUNIX]

MUNIX] a
(binder 1)

MUNIX1b
(binder 2)

MUNIX 11
(binder 3)

'ﬂ’ie cor,resppndmg binder fst sho\m ln -bold face below

L,

COMMANDS, PROGRAMMING, SPECIALS, MAINTENANCE

COMMANDS 2
Introduction

Release-Notes

How to get started

Table of contents

Permuted Index

Commands and Application Programms

in alphabetic order

PROGRAMMING, SPECIALS, MAINTENANCE
System calls

Subroutines By]

Special files AT e S

File Formats. R '

Games

Miscellaneous Facilities iy “1 A

Maintenance. oA T e L

s .:r-: * L

TUTORIALS

USER'S GUIDE

PROGRAMMING GUIDE C e o
. SUPPORT TOOLS GUIDE: =u% -7 1., <& v 1. 7

DOCUMENT PROCESSING GUIDE 5 == =~ . e

UNIX System V Jnit- and Getty A St R TR

UUCP Tutorial .- 50 0t :‘1?;" T

UUCP Administrator’s Manual RN S

UNIX System Accounting ‘ o

File System Checklng e cooEaty o TiE

LP Spooling System " s ~ - SRR e S NP

UNIX System Remote. Job Enu:y RN T

MUNIX

PROGRAMMING,
SPECIALS, MAINTENANCE
VOLUME I b

D930100V1be04B4 Version 1.5/02

_ Information in this document is subject to change without notice and does not
' Fepresent a commitment on the’ part of. Penphere Computer Systeme GmbH.
The software described in this docurnent is furnished under a license agree-
ment. The software may be used or copied only in accordance with the terms of
the agreement.

Doc.-No.: D930100Vibe0484

Trademarks: MUNIX for PCS
DEC, PDP for DEC
UNIX for Bell Laboratories

Copyright 1984 by

PCS GmbH, Pfaelzer-Wald-Strasse 36, D-8000 Muenchen 80, tel. 089/ 67804-0
The information contained herein is the property of PCS and shall neither
be reproduced in whole or in part without PCS's prior written approval nor
be implied to grant any licence to make use, or sell equipment nanufactured
in accordance herewith.

PCS reserves the right to make changes without notice in the specifications
and materials contained herein and shall not be responsible for any damages
(including consequential) caused by reliance on the materials presented.

Copyright 1979, Bell Telephone Laboratories, Incorporated.

Holders of a UNIX™ software license are permitted to copy this document, or
any portion of it, as necessary for licensed use of the software, provided this
copyright notice and statement of permission are included.

The MUNIX- documentation is divided in 3 main parts, which are currently pro-
vxded in 4 binders The corresponding binder ist shown in bold face below '

(AR

MUNIX |

MUNIX1a
(binder 1)

MUNIX1Db
(binder 2)

MUNKX 11
(binder 3)

COMMANDS, PROGRAMMING, SPECIALS, MAINTENANCE

COMMANDS

Introduction

Release-Notes

How to get started

Table of contents

Permuted Index

Commands and Application Programms
in alphabetic order

PROGRAMAMING, SPECIALS, MAINTENANCE
System calls

Subroutines

Special files

File Formats

Games

Miscellaneous Facilities

Maintenance

TUTORIALS

USER'S GUIDE

PROGRAMMING GUIDE
SUPPORT TOOLS GUIDE
DOCUMENT PROCESSING GUIDE
UNIX System V Init and Getty
UUCP Tutorial

UUCP Administrator's Manual {
UNIX System Accounting

File System Checking

LP Spooling System

UNIX System Remote Job Entry

MUNIX 111
(binder 4)

Options:

BASICS, OPTIONS

Current MUNIX Commands - Summary
Setting up MUNIX V1.5

UNIX Programming

Assembler Reference Manual

Assembler 68000 User's Guide - outdated
A Portable Fortran 77 Compiler

A Tutorial Introduction to ADB

CADMUS Testmonitor V1.0

Bad Block Behandlung / Bad Sector Handling
Typing Documents on the UNIX System
Using the -MS Macros

The UNIX Time-Sharing System

UNIX Implementaion

The UNIX 170 System

Display Editing with V1l

Edit: A Tutorial

Ex Reference Manual

MED, PASCAL

Berkeley Extension Package

MUNIXIDb Permutted Index

System calls

L Q]

Subroutines

€

Special Files

File Formats and Conventions

Games

Miscellaneous Facilities

Systemn Maintenance Procedures

1(

INTRO(

NAME

2) MUNIX INTRO(2)

intro — introduction to system calls and error numbers

SYNOPSIS

finclude <errno.h>

DESCRIPTION

Page 1

This section describes all of the system calls. Most of these calls have
one or more error returns. An error condition is indicated by an other-
wise impossible returned value. This is almost always —1; the individual
descriptions specify the details. An error number is also made available
in the external variable errno. E¥rrno is not cleared on successful calls,
so it should be tested only after an error has been indicated.

All of the possible error numbers are not listed in each system call
description because many errors are possible for most of the calls. The
following is a complete list of the error numbers and their names as
defined in <errno.h>.

1 EPERM Not owner
Typically this error indicates an attempt to modify a file in some
way forbidden except to its owner or super-user. It is also
returned for attempts by ordinary users to do things allowed only
to the super-user.

2 ENOENT No such-file or directory
This error occurs when a flle name is specified and the flle should
exist but doesn’t, or when one of the directories in a path name
does not exist.

3 ESRCH No such process
No process can be found corresponding to that specified by pid in
kill or ptrace.

4 EINTR Interrupted system call
An asynchronous signal (such as interrupt or quit), which the user
has elected to catch, occurred during a system call. If execution
is resumed after processing the signal, it will appear as if the
interrupted system call returned this error condition.

5 EIO 170 error
Some physical 1/0 error. This error may in some cases occur on a
call following the one to which it actually applies.

6 ENXIO No such device or address
170 on a special file refers to a subdevice which does not exist, or
beyond the limits of the device. It may also occur when, for exam-
ple, a tape drive is not on-line or no disk pack is loaded on a drive.

7 E2BIG Arg list too long
An argument list longer than 5, 120 bytes is presented to a member
of the ezec family.

8 ENOEXEC Exec format error
A request is made to execute a file which, although it has the
appropriate permissions, does not start with a valid magic number
(see a.out(5)).

February 20, 1984

INTRO(2) MUNIX .INTRO(2)

DEFINITIONS
Process ID
Each active process in the system {s uniquely identified by a positive
integer called a process ID. The range of this ID is from 0 to 30,000.

Parent Process ID
A new process is created by a currently active process; see fork(2). The
parent process ID of a process is the process ID of its creator.

Process Group ID
Each active process is a member of a process group that is identified by a
positive integer called the process group ID. This ID is the process ID of
the group leader. This grouping permits the signaling of related
processes; see kill(2).

Tty Group ID
Each active process can be a member of a terminal group that is
identified by a positive Integer called the tty group ID. This grouping is
used to terminate a group of related process upon termination of one of
the processes in the group; see exit(2) and signal(2).

Real User ID and Real Group ID
Each user allowed on the system is identified by a positive integer called
a real user ID.

Each user is also a member of a group. The group is identified by a posi-
tive integer called the real group ID.

An active process has a real user ID and real group ID that are set to the
real user ID and real group ID, respectively, of the user responsible for
the creation of the process.

Effective User ID and Effective Group ID
An active process has an effective user ID and an effective group ID that
are used to determine flle access permissions (see below). The effective
user ID and effective group ID are equal to the process’s real user ID and
real group ID respectively, unless the process or one of its ancestors
evolvet)i from a flle that had the set-user-ID bit or set-group ID bit set; see
ezec(2).

Super-user
A process is recognized as a super-user process and is granted special
privileges if its efTective user ID is 0.

Special Processes
The processes with a process ID of 0 and a process ID of 1 are special
processes and are referred to as proc0 and procl.

Proc0 is the scheduler. Proc! is the initialization process (init). Procl is
the ancestor of every other process in the system and is used to control
the process structure.

File Name.
Neames consisting of 1 to 14 characters may be used to name an ordinary
file, special file or directory.

These characters may be selected from the set of all character values
excluding \ 0 (null) and the ASCII code for 7 (slash).

February 20, 1984 Page 4

INTRO(2) MUNIX INTRO(2)

Note that it is generally unwise to use ®, ?, [, or] as part of fille names
because of the special meaning attached to these characters by the
shell. See sh(1). Although permitted, it is advisable to avoid the use of
unprintable characters in file names.

Path Name and Path Prefix .
A path name is a null-terminated character string starting with an
optional slash (/), followed by zero or more directory names separated
by slashes, optionally followed by a flle name.

More precisely, a path name is a null-terminated character string con-
structed as follows:

<path-name>:=z<flle-name>|<path-prefix><file-name>|/
<path-prefix>::=<rtprefix>|/<rtprefix>
<rtpreflx>::=<dirname>/|<rtprefix><dirname>/

where <file-name> is a string of 1 to 14 characters other than the ASCII
slash and null, and <dirname> is a string of 1 to 14 characters (other
than the ASCII slash and null) that names a directory.

If a path name begins with a slash, the path search begins at the root
directory. Otherwise, the search begins from the current working direc-
tory.

A slash by itself names the root directory.

Unless specifically stated otherwise, the null path name is treated as if it
named a non-existent file.

Directory.
Directory entries are called links. By convention, a directory contains at
least two links, . and .., referred to as dot and dot-dot respectively. Dot
refers to the directory itself and dot-dot refers to its parent directory.

Root Directory and Current Working Directory.
Each process has associated with it a concept of a root directory and a
current working directory for the purpose of resolving path name
searches. A process's root directory need not be the root directory of
the root file system.

File Access Permissions.
Read, write, and execute/search permissions on a file are granted to a
process if one or more of the following are true:

The process’s effective user ID is super-user.

The process's effective user ID matches the user ID of the owner of
the file and the appropriate access bit of the *“owner’ portion
(0700) of the file mode is set.

The process’s effective user ID does not match the user ID of the
owner of the flle, and the process’s effective group ID matches the
group of the file and the appropriate access bit of the “group"”
portion (070) of the file mode is set.

The process’'s eflective user ID does not match the user ID of the
owner of the file, and the process's effective group ID does not
match the group ID of the file, and the appropriate access bit of
the “other" portion (07) of the file mode is set.

Page 5 February 20, 1984

INTRO(2) MUNIX INTRO(2)

Otherwise, the corresponding permissions are denied.

Message Queue Identifier
A message queue identifier (msqid) is a unique positive integer created
by a msgget(2) systemn call. Each msqid has a message queue and a data
structure associated with it. The data structure is referred to as
msqid_ds and contains the following members:

struct ipc_perm msg_perm;/¢ operation permission struct ¢/

ushort msg_qnum; /* number of msgs on q */

ushort msg_gqbytes; /* max number of bytes on q ¢/
ushort msg_lspid; /+ pid of last msgsnd operation */
ushort msg _lrpid; /¢ pid of last msgrev operation ¢/
time_t mdg_stime; /¢ last msgsnd time ¢/

time_t mdg_rtime; /* last msgrcv time ¢/

time_t mdg_ctime; /+* last change time ¢/

7+ Times measured in secs since */
/¢ 00:00:00 GMT, Jan. 1, 1970 ¢/

Msg_perm is a ipc_pdrm structure that specifies the message operation
permission (see below). This structure includes the following members:

ushort cuid; /¢ creator user id ¢/
ushort cgid; /* creator group id */
ushort uid; /* userid ¢/

ushort gid; /% group id ¢/

ushort mdde; /*r/w permission ¢/

Msg_qnum is the number of messages currently on the queue.
Msg_qbytes is the maximurmm number of bytes allowed on the queue.
Msg_lIspid is the process id of the last process that performed a msgsnd
operation. Msg Jrpid is the process id of the last process that performed
a msgrcv operation. Msg_stime is the time of the last msgsnd operation,
msg_rtime is the time of the last msgrev operation, and msg__ctime is the
time of the last msgctl(2) operation that changed a member of the above
structure.

Message Operation Permissions.
In the msgop(2) and msgctl(2) system call descriptions, the permission
required for an operation is given as "{token|", where "token" is the type
of permission needed interpreted as follows:

00400 Read by user
00200 Write by user
00060 Read, Write by group
00006 Read, Write by others

Read and Write permissions on a msqid are granted to a process if one or
more of the following are true:

The process’s effective user ID is su;;er-user.

The process's effective user ID matches msg _perm|[c]uid in the
data structure associated with msqid and the appropriate bit of
the "'user’ portion (0600) of msg perin.mode is set.

The process's effective user ID does not match msg perm.[c]uid
and the process's eflective group ID matches msg_perm[clgid and

February 20, 1964 Page 8

INTRO(R) MUNIX INTRO(2)

the appropriate bit of the ‘group” portion (060) of
msg__permnmode is set.

The process's effective user ID does not match msg _perm|cluid
and the process's effective group ID does not match
msg _perm.[c]gid and the appropriate bit of the “other” portion
(06) of msg_perm.mode is set.

Otherwise, the cort:uponding permissions are denjed.

Semaphore ldentifier
A sernaphore identifier (semid) is a unique positive integer created by a
semget(2) system call. Each semid has a set of semaphores and a data
structure associated with it. The data structure is referred to as
semid_ds and contains the following members:

struct ipc_perm sem_perm;/® operation permission struct ¢/

ushort sem_nsems; /* number of sems in set ¢/
time_t sem_otime; /¢ last operation time ¢/
time_t sem_ctime; /¢ last change time ¢/

/°* Times measured in secs since ¢/
/* 00:00:00 GMT, Jan. 1, 1870 ¢/

Sem_perm i¢ & ipc_perm structure that specifies the semaphore opera-
tion permission (se¢ below). This structure includes the following

members:
ushort cuid; /e creator user id ¢/
ushort cgid; /¢ creator group id ¢/
ushort uid; /¢ userid ¢/
ushort gid; /¢ group id ¢/
ushort rmode; /*r/a perrhission ¢/

The value of serh_nsems is equal to the number of semaphores in the set.
Each semaphoret in the set is reférenced by a‘positive integer referred to
as a sem_num. Sem_num values run sequentially from O to the value of
sermn_nsems minus {. Sem_otime is the time of the last semop(2) opera-
tion, and sem_ctime is the time of the last semctl(2) operation that
changed a methber of the above structure.

A semaphore is a data structure that contains the following members:

ushort semval; /% semaphore value ¢/

short sempid; /¢ pid of last operation ¢/
ushort semncnt; /¢ § awaiting semval > cval ¢/
ushort semzent; /¢ § awaiting semval = 0 ¢/

Semval is a non-negative integer. Sempid is equal to the process ID of
the last process that performed a semaphore operation on this sema-
phore. Semnent is a count of the number of processes that are currently
suspended awaiting this semaphore’s semval to become greater than its
current value. Semzcnt is a count of the number of processes that are
currently suspended awaiting this semaphore’'s semval to become zero.

Semaphore Operation Permissions.
In the semop(2) and semctl(2) system call descriptions, the permission
required for an operation is given as "{token|”, where “token” is the type
of permission needed interpreted as follows:

Page 7 February 20, 1984

INTRO(2) MUNIX INTRO(2)

00400 Read by user
00200 Alter by user
00060 Read, Alter by group
00008 Read, Alter by others

Read and Alter permissions on a semid are granted to a process if one or
more of the following are true:)

The process's effective user ID is super-user.

The process’'s effective user ID rhatches sem_perm[c]uid in the
data structure associated with semid and the appropriate bit of
the "'user’ portion (0600) of sem_perm mode is set.

The process's effective user ID does not match sem_perm.[c]uid
and the process's effective group ID matches sem_perm [c]gid and
the appropriate bit of the ‘group” portion (060) of
sern_permmdde is set.

The protess's effective user ID does not match sem_perm.[c]uid
and the process's effective group ID does not rhatch

sem_pérm [c]gid and the apptopriate bit of the “other” peortion
(08) of sem_perm mode is set.

Otherwise, the correspénding permissions are denled.

Shared Merhory lderitifier
A shared merhéry identifier (shmid) is a unique positive integer created
by a shmget(d) sydtem call. Each shmid has a segment of memory
(referred to as a shhred memory segment) and a data structure associ-
ated with it. The data structure is referted to as shmid_ds and contains
the following fiémbers:

struct ipc_perm shm_perm;/* operation permission struct ¢/

int shm_ségsz; /¢ site of segment ¢/

ushort shm_c¢pid; /¢ creator pid ¢/

ushort shm_lpid; 7+ pid of last operation ¢/

short shm_nattch; /¢ number of current attaches ¢/
time_t shm_atime; /¢ last attach time ¢/

time_t shin_dtime; /¢ last detach time ¢/

time_t shm_e¢time; 7+ last change time ¢/

/* Times measured in secs since ¢/
7+ 00:00:00 GMT, Jan. 1, 1970 ¢/

Shm_perm is & ipc_perm structure that specifies the shared memory
operation permission (see below). This structure includes the following

members:
ushort cuid; /* creator user id ¢/
ushort cgid; /* creator group id */
ushort uid; /* userid ¢/
ushort gid; /¢ group id ¢/
ushort tode; /* r/w permission ¢/

Shm_segsz specifies the size of the shared memory segment. Shm_cpid
is the process id of the process that created the shared memory
identifier. Shm_1pid is the process id of the last process that performed
a shmop(2) operation. Shm_nattch is the number of processes that

February 20, 1984 Page 8

INTRO(2) MUNIX INTRO(2)

currently have this segment attached. Shm_atime is the time of the last
shmat operation, shm_dtime is the time of the last shmdt operation, and
shm_ctime is the time of the last shmctl(2) operation that changed one
of the members of the above structure.

Shared Memory Operation Permissions.
In the shmop(2) and shmctl(2) system call descriptions, the permission
required for an operation is given as "“{token|”, where ""token” is the type
of permission needed interpreted as follows:

00400 Read by user
00200 Write by user
00060 Read, Write by group
00006 Read, Write by others

Read and Write permissions on a shmid are granted to a process if one or
more of the following are true:

The process's eflective user ID is super-user.

The process's effective user ID matches shm_perm/[c]uid in the
data structure associated with shmid and the appropriate bit of
the "'user'’ portion (0600) of shrn_perm mode is set.

The process’s effective user ID does not match shm_perm.[c]uid
and the process's eflective group ID matches shm_perm.[c]gid and
the appropriate bit of the ‘*group” portion (060) of
shm_perm.mode is set. o

The process's eflective user ID does not match shm_perm.[c]uid
and the process's effective group ID does not match
shm_perm.[c]gid and the appropriate bit of the *‘other” portion
(06) of shm_perm.mode is set.

Otherwise, the corresponding permissions are denied.

SEE ALSO
intro(3).

Page 9 February 20, 1984

ACCESS(2) MUNIX ACCESS(2)

NAME
access — determine accessibility of a file

SYNOPSIS
int access (path, amode)
char epath;
int amode;

DESCRIPTION
Path points to a path name naming a file. Access checks the named file
for accessibility according to the bit pattern contained in amode, using
the real user ID in place of the effective user ID and the real group ID in
place of the eflective group ID. The bit pattern contained in amode is
constructed as follows:

04 read

02 write

01 execute (search)

00 check existence of file

Access to the file is denied if one or more of the following are true:
A component of the path prefix is not a directory. [ENOTDIR]

Read, write, or execute (search) permission is requested for a null
path name. [ENOENT]

The named file does not exist. [ENOENT]

Search permission is denied on a component of the path prefix.
[EACCES]

Write access is requested for a file on a read-only file system.
[EROFS]

Write access is requested for a pure procedure (shared text) file
that is being executed. [ETXTBSY]

Permission bits of the file mode do not permit the requested
access.. [EACCES]

Path points outside the process’'s allocated address space.
[EFAULT]

The owner of a file has permission checked with respect to the “owner”
read, write, and execute mode bits, members of the file's group other
than the owner have permissions checked with respect to the *“group”
mode bits, and all others have permissions checked with respect to the
“other' mode bits.

RETURN VALUE
If the requested access is permitted, a value of 0 is returned. Otherwise,
a value of —1 is returned and errno is set to indicate the error.

SEE ALSO
chmod(2), stat(2).

Page 1 February 20, 1984

ACCT(2) MUNIX ACCT(2)

NAME
acct — enable or disable process accounting

SYNOPSIS
int acct (path)
char e¢path;

DESCRIPTION
Acct is used to enable or disable the system's process accounting rou-
tine. If the routine is enabled, an accounting record will be written on an
accounting file for each process that terminates. Termination can be
caused by one of two things: an ezit call or a signal; see exit(2) and sig-
nal(2). The effective user ID of the calling process must be super-user to
use this call. -

Path points to a path name naming the accounting file. The accounting
file format is given in acct(5).

The accounting routine is enabled if path is non-zero and no errors
occur during the system call. It is disabled if path is zero and no errors
occur during the system call.

Acct will fail if one or more of the following are true:

The eflective user ID of the calling process is not super-user.
[EPERM])

An attempt is being made to enable accounting when it is already
enabled. [EBUSY]

A component of the path prefix is not a directory. [ENOTDIR]

One or more components of the accounting flle’s path name do not
exist. [ENOENT)]

A component of the path prefix denies search permission.
[EACCES]

The file named by path is not an ordinary file. [EACCES]

Mode permission is denied for the named accounting file. [EACCES)
The named file is a directory. [EISDIR]

The named file resides on a read-only file systern. [EROFS]

Path points to an illegal address. [EFAULT]

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value
of —1 is returned and errno is set to indicate the error.

SEE ALSO
acct(5).

Page 1 February 20, 1984

ALARM (2) MUNIX ALARM (2)

NANE
alarm — set a process’s alarm clock
SYNOPSIS
unsigned alarm (sec)
unsigned sec;
DESCRIPTION
Alarm instructs the calling process’s alarm clock to send the signal

SIGALRM to the calling process after the number of real time seconds
specified by sec have elapsed; see signal(2).

Alarm requests are not stacked: successive calls reset the calling
process's alarm clock.
If sec is 0, any previously made alarm request is canceled.

RETURN VALUE .

Alarm returns the amount of time previously remaining in the calling
process's alarm clock.

SEE ALSO
pause(2), signal(2).

Page 1 February 20, 1984

BRK(2) MUNIX BRK(2)

NAME

brk, sbrk — change data segment space allocation
SYNOPSIS

int brk (endds)

char *endds;

char *sbrk (incr)

int incr;
DESCRIPTION

PBrk and sbrk are used to change dynamically the amount of space allo-
cated for the calling process's data segment; see ezec(2). The change is
made by resetting the process's break value and allocating the appropri-
ate amount of space. The break value is the address of the first location
beyond the end of the data segment. The amount of allocated space
increases as the break value increases. The newly allocated space is set
to zero.

Brk sets the break value to endds and changes the allocated space
accordingly.

Sbrk adds incr bytes to the break value and changes the allocated space
accordingly. fncr can be negative, in which case the amount of allocated
space is decreased.

DBrk and sbrk will fail without making any change in the allocated space if
one or more of the following are true:

Such a change would result in more space being allocated than is
allowed by a system-imposed maximum (see ulimit(2)). [ENOMEM]

Such a change would result in the break value being greater than
or equal to the start address of any attached shared memory seg-
ment (see shmop(2)).

RETURN VALUE

Upon successful completion, drk returns a value of 0 and sbrk returns
the old break value. Otherwise, a value of —1 is returned and errno is set
to indicate the error.

SEE ALSO

exec(2).

Page 1 February 20, 1984

CHDIR(2) MUNIX CHDIR(2)

NAME
chdir - change working directory

SYNOPSIS
int chdir (path)
char epath;
DESCRIPTION :
Path points to the path name of a directory. Chdir causes the named

directory to become the current working directory, the starting point for
path searches for path names not beginning with /.

Chdir will fail and the current working directory will be unchanged if one
or more of the following are true:

A component of the path name is not a directory. [ENOTDIR]
The named directory does not exist. [ENOENT]

Search permission is denied for any component of the path name.
[EACCES)

Path points outside the process's allocated address space.
[EFAULT]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value
of —1 is returned and errno is set to indicate the error.

SEE ALSO
chroot(2).

Page 1 February 20, 1984

CHNOD(2) MUNIX CHMOD(2)

NAME
chmod — change mode of flle
SYNOPSIS
int chmod (path, mode)
char *path;
int mode;

DESCRIPTION
Path points to a path name naming a fille. Chmod sets the access permis-
sion portion of the named flle’s mode according to the bit pattern con-
tained in mode.

Access permission bits are interpreted as follows:

04000 Set user ID on execution.

02000 Set group ID on execution.

01000 Save text image after execution

00400 Read by owner

00200 Write by owner

00100 Execute (or search if a directory) by owner
00070 Read, write, execute (search) by group
00007 Read, write, execute (search) by others

The effective user ID of the process must match the owner of the file or
be super-user to change the mode of a file.

If the effective user ID of the process is not super-user, mode bit 01000
(save text image on execution) is cleared.

If the eflective user ID of the process is not super-user or the eflective
group ID of the process does not match the group ID of the file, mode bit
02000 (set group ID on execution) is cleared.

If an executable file is prepared for sharing then mode bit 01000
prevents the systermn from abandoning the swap-space image of the
program-text portion of the file when its last user terminates. Thus,
when the next user of the file executes it, the text need not be read from
the file system but can simply be swapped in, saving time.

Chmod will fail and the file mode will be unchanged if one or more of the
following are true:

A component of the path prefix is not a directory. [ENOTDIR]
The named file does not exist. [ENOENT]

Search permission is denied on a component of the path prefix.
[EACCES]

The effective user ID does not match the owner of the file and the
eflective user ID is not super-user. [EPERM]

The named file resides on a read-only file system. [EROFS]

Path points outside the process's allocated address space.
[EFAULT)

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value
of —1 is returned and errno is set to indicate the error.

Page 1 February 20, 1984

CHMOD(2) MUNIX CHMOD(2)

SEE ALSO
chown(2), mknod(2).

February 20, 1984 Page 2

CHOWN(2) MUNIX CHOWN (2)

NAME
chown — change owner and group of a file

SYNOPSIS
int chown (path, owner, group)
char ¢path;
int owner, group:;

DESCRIPTION
Path points to a path name naming a file. The owner ID and group ID of
the named file are set to the numeric values contained in owner and
group respectively.

Only processes with effective user ID equal to the flle owner or super-user
may change the ownership of a file.

If chown is invoked by other than the super-user, the set-user-ID and
set-group-ID bits of the file mode, 04000 and 02000 respectively, will be
cleared.

Chouwn will fail and the owner and group of the named file will remain
unchanged if one or more of the following are true:

A component of the path prefix is not a directory. [ENOTDIR]
The named file does not exist. [ENOENT)]

Search permission is denied on a component of the path prefix.
[EACCES]

The eflfective user ID does not match the owner of the file and the
effective user ID is not super-user. [EPERM]

The named file resides on a read-only file system. [EROFS]

Path points outside the process's allocated address space.
(EFAULT)

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value
of —1 is returned and errno is set to indicate the error.

SEE ALSO
chmod(2).

Page 1 February 20, 1984

CHROOT(2) MUNIX CHROOT(2)

NAME

chroot — change root directory

SYNOPSIS

int chroot (path)
char epath;

DESCRIPTION

Path points to a path name naming a directory. Chroot causes the
named directory to become the root directory, the starting point for
path searches for path names beginning with /.

The effective user ID of the process must be super-user to change the
root directory.

Whereas standard Unix always interprets /.. to refer to the same direc-
tory as /, MUNIX really goes one directory up for /.., i.e. after a
chroot(/bin/usr) /.. will be the same as /bin before the chroot. This has
been done to allow a virtual superroot for the Newcastle Connection.

Chroot will fail and the root directory will remain unchanged if one or
more of the following are true:

Any component of the path name is not a directory. [ENOTDIR]
The named directory does not exist. [ENOENT]
The effective user ID is not super-user. [EPERM]

Path points outside the process's allocated address space.
[EFAULT]

RETURN VALUE

Upon successful completion, a value of O is returned. Otherwise, a value
of —1 is returned and errno is set to indicate the error.

SEE ALSO

Page 1

chdir(2).

February 20, 1984

CLOSE(2) MUNIX CLOSE(2)

NAME
close — close a file descriptor

SYNOPSIS
int close (fildes)
int fildes;

DESCRIPTION
Fildes is a file descriptor obtained from a creat, open, dup, fcntl, or pipe
system call. Close closes the flle descriptor indicated by fildes.
Close will fail if fildes is not a valid open file descriptor. [EBADF]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value
of —1 is returned and errno is set to indicate the error.

SEE ALSO
creat(2), dup(2), exec(2), fcntl(2). open(2), pipe(2).

Page 1 February 20, 1984

CREAT(2) MUNIX CREAT(2)

NAME
creat — create a new file or rewrite an existing one

SYNOPSIS
int creat (path, mode)
char *path;
int mode;
DESCRIPTION
Creat creates a new ordinary flle or prepares to rewrite an existing file
named by the path name pointed to by path.

If the file exists, the length is truncated to 0 and the mode and owner are
unchanged. Otherwise, the file's owner ID is set to the process’s effective
user ID. the flle's group ID is set to the process's effective group ID. and
the low-order 12 bits of the flle mode are set to the value of mode
modified as follows: .

All bits set in the process's flle mode creation mask are cleared.
See umask(3).

The ''savé text image after execution bit" of the mode is cleared.
See chmod(2).

Upon successful completion, & non-negdtive integer, namely the file
descriptor, is returned and thé file is openi for writing, even if the mode
does not permit writing. The flle pointer is set to the beginning of the
flle. The file debcriptor is set to rerhain open across exec system calls.
See fcnti(2). No process may have more than 20 files open simultane-
ously. A new fll¢ may be created with a mode that forbids writing.

Creat will fail if one or more of the following are true:
A component of the path prefix is not a directory. [ENOTDIR]
A comnponent of the path prefix does not exist. [ENOENT]

Search perrhission is denied on a component of the path prefix.
{EACCES]

The path name is null. [ENOENT]

The file does not exist and the directory in which the file is to be
created does not permit writing. {EACCES)

The named flle resides or would reside on a read-only file system.
[EROFS]

The file is a pure procedure (shared text) file that is being exe-
cuted. [ETXTBSY]

The file exists and write permission is denied. [EACCES]
The named flle is an existing directory. [EISDIR]
Twenty (20) file descriptors are currently open. [EMFILE]

Path points outside the process's allocated address space.
[EFAULT]

RETURN VALUE
Upon successful completion, a non-negative integer, namely the file
descriptor, is returned. Otherwise, a value of —1 is returned and ermmo is

Page 1 February 20, 1984

CREAT(2) MUNIX CREAT(2)

set to indicate the error.

SEE ALSO
close(2), dup(2), Iseek(2), open(2), read(2), umask(2), write(2).

February 20, 1984 Page 2

DUP(2) MUNIX DUP(2)

NAME

dup — duplicate an open file descriptor

SYNOPSIS

int dup (fildes)
int fildes;

DESCRIPTION

Fildes is a file descriptor obtained from a creat, open, dup, fcntl, or pipe
system call. Dup returns a new file descriptor having thec following in
common with the original:

Same open file (or pipe).

Same file pointer. (i.e., both file descriptors share one file
pointer.)

Same access mode (read, write or read/write).

The new file descriptor is set to remain open across ezec system calls.
See fentl(2).

The file descriptor returned is the lowest one available.

Dup will fail if one or more of the following are true:
Fildes is not a valid open file descriptor. [EBADF]
Twenty (20) file descriptors are currently open. [EMFILE]

RETURN VALUE

SEE AL

Page 1

Upon successful completion a non-negative integer, namely the file
descriptor, is returned. Otherwise, a value of —1 is returned and errno is
set to indicate the error.

SO

creat(2), close(2), exec(2), fcntl(2), open(2), pipe(2).

February 20, 1984

EXEC(2) MUNIX EXEC(2)

NAME .

execl, execv, execle, execve, execlp, execvp — execute a file
SYNOPSIS

int execl (path, arg0, argl, ..., argn, (char *)0)

char ¢path, *arg0, ®argl, ..., *argn;

int execv (path, argv)
char *path, *argv]];

int execle (path, arg0, argl, ..., argn, (char *)0, envp)
char epath, *arg0, *argl, ..., *argn, *envp| J;

int execve (path, argv, envp)
char epath, *argv]], *envp[]

int execlp (file, arg0, argl, ..., argn, (char *)0)
char e*flle, *arg0, *argl, ..., ®*argn;

int execvp (file, argv
char efile, *argv{];

DESCRIPTION

Ezec in all its forms transforms the calling process into a new process.
The new process is constructed from an ordinary, executable file called
the new process file. This file consists of a header (see a.out(5)), a text
segment, and a data segment. The data segment contains an initialized
portion and an uninitialized portion (bss). There can be no return from a
successful ezec because the calling process is overlaid by the new pro-
cess.

When a C program is executed, it is called as follows:

main (argc, argv, envp)
int arge;
char **argv, **envp;

where argc is the argument count and argv is an array of character
pointers to the arguments themselves. As indicated, argc is convention-
ally at least one and the first member of the array points to a string con-
taining the name of the file. .

Path points to a path name that identifies the new process flle.

File points to the new process file. The path prefix for this flle is
obtained by a search of the directories passed as the environment line
"PATH =" (see environ(7)). The environment is supplied by the shell (see
sh(1)).

Arg0, argl, ..., argn are pointers to null-terminated character strings.
These strings constitute the argument list available to the new process.
By convention, at least arg0 must be present and point to a string that is
the same as path (or its last component).

Argv is an array of character pointers to null-terminated strings. These
strings constitute the argument list available to the new process. By
convention, argv must have at least one member, and it must point to a
string that is the same as path (or its last component). Argv is ter-
minated by a null pointer.

Page 1 February 20, 1984

EXEC(2) MUNIX EXEC(2)

Envp is an array of character pointers to null-terminated strings. These
strings constitute the environment for the new process. Envp is ter-
minated by a null pointer. For ezecl and ezecv, the C run-time start-off
routine places a pointer to the calling process’s environment in the glo-
bal cell:
extern char **environ;

and it is used to pass the calling process's environment to the new pro-
cess.

File descriptors open in the calling process remain open in the new pro-
cess, except for those whose close-on-exec flag is set; see fcntl(2). For
those file descriptors that remain open, the flle pointer is unchanged.

Signals set to terminate the calling process will be set to terminate the
new process. Signals set to be ignored by the calling process will be set
to be ignored by the new process. Signals set to be caught by the calling
process will be set to terminate new process; see signal(2).

If the set-user-ID mode bit of the new process file is set (see cAmod(2)),
exec sets the effective user ID of the new process to the owner ID of the
new process file. Similarly, if the set-group-ID mode bit of the new pro-
cess file is set, the effective group ID of the new process is set to the
group ID of the new process file. The real user ID and real group ID of the
new process remain the same as those of the calling process.

The shared memory segments attached to the calling process will not be
attached to the new process (see shmop(2)).

Profiling is disabled for the new process; see profil(2).

The new process also inherits the following attributes from the calling
process:

nice value (see nice(2))

process ID

parent process’1D

process group ID

semadj values, when implemented (see semop(2))
tty group ID (see ezit(2) and signal(2))

trace flag (see ptrace(2) request 0)

time left until an alarm clock signal (see alarm(2))
current working directory

root directory

file mode creation mask (see umask(2))

file size limit (see wlimit(2))

utime, stime, cutime, and cstime (see times(2))

Ezec will fail and return to the calling process if one or more of the {ol-
lowing are true:

One or more components of the new process file's path name do
not exist. [ENOENT]

A component of the new process file's path prefix is not a direc-
tory. [ENOTDIR]

Search permission is denied for a directory listed in the new pro-
cess file’'s path prefix. [EACCES]

February 20, 1984 Page 2

EXEC(2)

MUNIX EXEC(2)

The new process file is not an ordinary file. [EACCES]
The new process file mode denies execution permission. [EACCES]

The exec is not an ezeclp or ezecvp, and the new process file has
the appropriate access permission but an invalid magic number in
its header. [ENOEXEC]

The new process file is a pure procedure (shared text) file that is
currently open for writing by some process. [ETXTBSY]

The new process requires more memory than is allowed by the
system-imposed maximum MAXMEM. [ENOMEM])

The number of bytes in the new process’s argument list is greater
than the system-imposed limit of 5120 bytes. [E2BIG]

The new process file is not as long as indicated by the size values
in its header. [EFAULT)

Path, argv, or envp point to an illegal address. [EFAULT]

RETURN VALUE

If exec returns to the calling process an error has occurred; the return
value will be —1 and errno will be set to indicate the error.

SEE ALSO

exit(2), fork(2), environ(7).

Page 3

February 20, 1984

EXIT(2) MUNIX EXIT(2)

NAME
exit, _exit — terminate process

SYNOPSIS .
void exit (status)
int status;
void _exit (status)
int status;

DESCRIPTION
Exit terminates the calling process with the following consequences:

All of the file descriptors open in the calling process are closed.

If the parent process of the calling process is executing a wait, it
is notified of the calling process’'s termination and the low order
eight bits (i.e., bits 0377) of status are made available to it; see
wait(2).

If the parent process of the calling process is not executing a
wait, the calling process is transformed into a zombie process. A
zombie process is a process that only occupies a slot in the pro-
cess table, it has no other space allocated either in user or kernel
space. The process table slot that it occupies is partially overlaid

with time accounting information (see <sys/proc.h>) to be used
by times.

The parent process ID of all of the calling process’s existing child
processes and zombie processes is set to 1. This means the ini-
tialization process (see intro(2)) inherits each of these processes.

Each attached shared memory segment is detached and the value
of shm_nattach in the data structure associated with its shared
memory identifier is decremented by 1.

For each semaphore for which the calling process has set a semadj
value (see semop(2)), that semadj value is added to the semval of
the specified semaphore.

If the process has a process, text, or data lock, an unlock is per-
formed (see plock(2)).

An accounting record is written on the accounting file if the
system’'s accounting routine is enabled; see acct (2).

If the process ID. tty group ID. and process group ID of the calling
process are equal, the SIGHUP signal is sent to each processes that
has a process group ID equal to that of the calling process.

The C function ezit may cause cleanup actions before the process exits.
The function _ezit circumvents all cleanup.

SEE ALSO
signal(2), wait(2).

WARNING
See WARNING in signal(2).

Page 1 February 20, 1984

FCNTL(2) MUNIX FCNTL(2)

NANE
fcntl — flle control

SYNOPSIS
finclude <fcntl.h>
int fcntl (fildes, cmd, arg)
int fildes, cmd, arg;

DESCRIPTION
Fentl provides for control over open flles. Fildes is an open flle descrip-
tor obtained from a creat, open, dup, fcntl, or pipe system call.

The emds available are:

F_DUPFD
Return a new file descriptor as follows:

Lowest numbered available flle descriptor greater than or equal
toarg.

Same open file (or pipe) as the original file.

Same file pointer as the original file (i.e., both file descriptors
share one file pointer).

Same access mode (read, write or read/write).

Same file status flags (i.e., both file descriptors share the same
file status flags).

The close-on-exec ﬁag associated with the new file descriptor is
set to remain open across ezec(2) system calls.
F_GETFD
Get the close-on-exec flag associated with the file descriptor
fildes. If the low-order bit is 0 the file will remain open across
ezec, otherwise the flle will be closed upon execution of ezec.
F_SETFD .
Set the close-on-exec flag associated with ftldes to the low-order
bit of.arg (0 or 1 as above).

F_GETFL
Get file status flags.

F_SETFL
Set file status flags to arg. Only certain flags can be set; see

Jentl(7).
Fentl will fail if one or more of the following are true:
Fildes is not a valid open file descriptor. [EBADF]

Omd is F_DUPFD and 20 file descriptors are currently open.
[EMFILE]
Omd is F_DUPFD and arg is negative or greater than 20. [EINVAL]

RETURN VALUE
Upon successful completion, the value returned depends on ¢md as fol-
lows:
F_DUPFD
A new file descriptor.

Page 1 February 20, 1984

FCNTL(2) MUNIX FCNTL(2)

F_GETFD
Value of flag (only the low-order bit is defined).
F_SETFD
Value other than —1.
F_GETFL
Value of flle flags.
F_SETFL
Value other than —-1.
Otherwise, a value of —1 is returned and errno is set to indicate the
error.

SEE ALSO
¢lose(2), exec(2), open(2), fentl(7).

February 20, 1984 Page 2

FORK(2) MUNIX FORK(2)

NAME
fork — create a new process

SYNOPSIS
int fork ()

DESCRIPTION
Fork causes creation of a new process. The new process (child process)
is an exact copy of the calling process (parent process). This means the
child process inherits the following attributes from the parent process:

environment

close-on-exec flag (see ezec(2))

signal handling settings (i.e., SIG_DFL, SIG_IGN, function address)
set-user-ID mode bit

set-group-ID mode bit

profiling on/off status

nice value (see nice(2))

all attached shared memory segments, when implemented (see
shmop(2))

process group ID :

tty group ID (see ¢zit(2) and signal(2))

trace flag (see ptrace(2) request 0)

time left until an alarm clock signal (see alarm(2))

current working directory

root directory

file mode creation mask (see umask(2))

file size limit (see ulimit(2))

The child process differs from the parent process in the following ways:
The child process has a unique process ID.

The child process has a different parent process ID (i.e., the pro-
cess ID of the parent process).

The child process has its own copy of the parent’s flle descriptors.
Each of the child’'s flle descriptors shares a common flle pointer
with the corresponding file descriptor of the parent.

When implemented, all semadj values are cleared (see semop(2)).

Process locks, text locks and data locks are not inherited by the
child (see plock(2)).

The child process’s utime, stima, cutime, and cstime are set to 0.

Fork will fail and no child process will be created if one or more of the
following are true:

The system-imposed limit on the total number of processes under
execution would be exceeded. [EAGAIN]

The system-imposed limit on the total number of processes under
execution by a single user would be exceeded. [EAGAIN]

RETURN VALUE
Upon successful completion, fork returns a value of O to the child pro-
cess and returns the process ID of the child process to the parent pro-
cess. Otherwise, a value of —1 is returned to the parent process, no child

Page 1 February 20, 1984

FORK(2) MUNIX FORK(2)

process is created, and ermo is set to indicate the error.

SEE ALSO
exec(2), times(2), wait(2).

February 20, 1984 Page 2

GETPID(2) MUNIX GETPID(2)

NANE

getpid, getpgrp. getppid — get process, process group, and parent pro-
cess IDs

SYNOPSIS
int getpid ()
int getpgrp ()
int getppid ()

DESCRIPTION
Getpid returns the precess ID of the calling process.

Getpgrp returns the process group ID of the calling process.
Getppid returns the parent process ID of the calling process.

SEE ALSO
exec(2), fork(2), intro(2), setpgrp(2), signal(2).

Page 1 February 20, 1984

GETUID(2) MUNIX GETUID(2)

NAME

getuid, geteuid, getgid, getegid — get real user, effective user, real group,
and effective group IDs

SYNOPSIS
int getuid ()

int geteuid ()
int getgid ()
int getegid ()

DESCRIPTION »
Getuid returns the real user ID of the calling process.

Geteuid returns the effective user ID of the calling process.
Getgid returns the real group ID of the calling process.

Getegid returns the eflective group ID of the calling process.

SEE ALSO
intro(2), setuid(2).

Page 1 February 20, 19684

HERTZ(2) MUNIX HERTZ(2)

NAME
hertz — get the line frequency on the current machine

SYNOPSIS
int hertz ()

DESCRIPTION
Hertz returns either 50 or 60, depending on the line frequency. The sys-
tem call returns the value of the definition of HERTZ in /usr/sys/conf.h,
which must have been set up properly at system generation time.

CAUTION
This system call is nonstandard. It is however necessary if programs like
time (1) must give identical results on both sides of the Atlantic.

Page 1 February 20, 19684

IOCTL(2) MUNIX IOCTL(2)

NAME
ioctl — control device

SYNOPSIS
ioctl (fildes, request, arg)
char *arg;

DESCRIPTION
loctl performs a variety of functions on character special files (devices).
The writeups of various devices in Section 7 discuss how ioctl applies to
them.

Joctl will fail if one or more of the following are true:
Fildes is not a valid open file descriptor. [EBADF)
Fildes is not associated with a character special device. [ENOTTY)
Request or arg is not valid. See Section 7. [EINVAL]

RETURN VALUE
If an error has occurred, a value of —1 is returned and errno is set to
indicate the error.

SEE ALSO
termio(4)

Page 1 February 20, 1984

KILL(2

NAME

) MUNIX KILL(2)

kill - send a signal to a process or a group of processes

SYNOPSIS

int kill (pid, sig) -
int pid, sig;

DESCRIPTION

RETUR

Kill sends a signal to a process or a group of processes. The process or
group of processes to which the signal is to be sent is specified by pid.
The signal that is to be sent is specified by sig and is either one from the
list given in signal(2), or 0. If sig is O (the null signal), error checking is
performed but no signal is actually sent. This can be used to check the
validity of pid.

The real or eflective user ID of the sending process must match the real

or eflective user ID of the receiving process unless, the eflective user ID of
the sending process is super-user.

The processes with a process ID of 0 and a process ID of 1 are special
processes (see intro(2)) and will be referred to below as proc0 and proci
respectively. .

If pid is greater than zero, sig will be sent to the process whose process
ID is equal to pid. Pid may equal 1.

If pid is 0, sig will be sent to all processes excluding proc0 and proc!
whose process group ID is equal to the process group ID of the sender.

If pid is —1 and the effective user ID of the sender is not super-user, sig
will be sent to all processes excluding proc0 and proc! whose real user ID
is equal to the effective user ID of the sender.

If pid is —1 and the effective user ID of the sender is super-user, sig will
be sent to all processes excluding proc0 and proc1i.

If pid is negative but not —1, sig will be sent to all processes whose pro-
cess group ID is equal to the absolute value of pid.

Kill will fail and no signal will be sent if one or more of the following are
true:

Sig is not a valid signal number. [EINVAL)

No process can be found corresponding to that specified by pid.
[ESRCH]

The user ID of the sending process is not super-user, and its real
or effective user ID does not match the real or eflective user ID of
the receiving process. [EPERM]

N VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value
of —1 is returned and errno is set to indicate the error.

SEE ALSO

Page 1

kill(1), getpid(2), setpgrp(2), signal(2).

February 20, 1984

LINK(2) MUNIX LINK(2)

NAME
link — link to a file

SYNOPSIS
int link (pathl, path2)
char e¢pathl, *path2;

DESCRIPTION
Path1 points to a path name naming an existing file. Path2 points to a
path name naming the new directory entry to be created. Link creates a
new link (directory entry) for the existing file.

Link will fail and no link will be created if one or more of the following
are true:

A component of either path prefix is not a directory. [ENOTDIR]
A component of either path prefix does not exist. [ENOENT]

A component of either path prefix denies search permission.
[EACCES]

The file named by path! does not exist. [ENOENT]
The link named by path2 exists. [EEXIST]

The file named by path1 is a directory and the eflective user ID is
not super-user. [EPERM]

The link named by path2 and the file named by path! are on
different logical devices (file systems). [EXDEV]

Path2 points to a null path name. [ENOENT)

The requested link requires writing in a directory with a mode that
denies write permission. [EACCES)

The requested link requires writing in a directory on a read-only
file system. [EROFS]

Path points outside the process’'s allocated address space.
[EFAULT)

RETURN VALUE
Upon successful completion, a value of O is returned. Otherwise, a value
of —1 is returned and errno is set to indicate the error.

SEE ALSO
unlink(2).

Page 1 February 20, 1984

LONG (2) MUNIX LONG (2)

NAME
long — system calls modified for long arguments

SYNOPSIS
long lread (fildes, buf, nbyte)
int fildes;
char ¢buf;
long nbyte;
long lwrite (fildes, buf, nbyte)
int fildes;
char e*buf;
long nbyte;
char °lsbrk (incr)
long incr;

DESCRIPTION

These systemn calls are the same as their “non-1" counterparts except
that they have a long instead of an int argument. They are available only
in the two byte integer standard library.

Page 1 ; February 20, 1984

LSEEK(2) MUNIX LSEEK(2)

NAME
Iseek — move read/write file pointer

SYNOPSIS
long Iseek (fildes, offset, whence)
int fildes;
long offset;
int whence;

DESCRIPTION
Fildes is a file descriptor returned from a creat, open, dup, or fcntl sys-
tern call. Lseek sets the file pointer associated with fildes as follows:

If whence is O, the pointer is set to offset bytes.
If whence is 1, the pointer is set to its current location plus offset.
If whence is 2, the pointer is set to the size of the file plus offset.

Upon successful completion, the resulting pointer location as measured
in bytes from the beginning of the file is returned.

Lseek will fail and the file pointer will remain unchanged if one or more of
the following are true:

Fildes is not an open file descriptor. [EBADF)

Fildes is associated with a pipe or fifo. [ESPIPE]
Fhence is not 0, 1 or 2. [EINVAL and SIGSYS signal]
The resulting file pointer would be negative. [EINVAL]

Some devices are incapable of seeking. The value of the file pointer asso-
ciated with such a device is undefined.

RETURN VALUE
Upon successful completion, a non-negative integer indicating the file
pointer value is returned. Otherwise, a value of —1 is returned and ermo
is set to indicate the error.

SEE ALSO
creat(2), dup(2), fcntl(2), open(2).

Page 1 February 20, 1984

MKNOD(2) MUNIX MKNOD(2)

NAME
mknod — make a directory, or a special or ordinary file

SYNOPSIS
int mknod (path, mode, dev)
char *path;
int mode, dev;

DESCRIPTION
Mknod creates a new file named by the path name pointed to by path.
The mode of the new file is initialized from mode. Where the value of
mode is interpreted as follows:
0170000 file type; one of the following:
0010000 fifo special
0020000 character special
0040000 directory
0060000 block special
0100000 or 0000000 ordinary file
0004000 set user ID on execution
0002000 set group ID on execution
0001000 save text image after execution
0000777 access permissions; constructed from the following
0000400 read by owner '
0000200 write by owner
0000100 execute (search on directory) by owner
0000070 read, write, execute (search) by group
0000007 read, write, execute (search) by others

The file's owner ID is set to the process's effective user ID. The file's group
ID is set to the process's effective group ID.

Values of mode other than those above are undefined and should not be
used. The low-order 9 bits of mode are modified by the process’s file
mode creation mask: all bits set in the process's file mode creation mask
are cleared. See umask(2). If mode indicates a block or character spe-
cial file, dev is a configuration dependent specification of a character or
block 170 device. If mode does not indicate a block special or character
special device, dev is ignored.

Mknod may be invoked only by the super-user for file types other than
FIFO special.

Mknod will fail and the new file will not be created if one or more of the
following are true:

The process's eflective user ID is not super-user. [EPERM]
A component of the path prefix is not a directory. [ENOTDIR]
A component of the path prefix does not exist. [ENOENT]

The directory in which the file is to be created is located on a
read-only file system. [EROFS]

The named file exists. [EEXIST]

Path points outside the process's allocated address space.
(EFAULT]

Page 1 February 20, 1984

February 20, 1984 Page 2

MOUNT(2) MUNIX MOUNT(2)

NAME
mount — mount a file system

SYNOPSIS
int mount (spec, dir, rwflag)
char *spec, *dir;
int rwflag;
DESCRIPTION
Mount requests that a removable file system contained on the block spe-

cial file identified by spec be mounted on the directory identified by dir.
Spec and dir are pointers to path names.

Upon successful completion, references to the file dir will refer to the
root directory on the mounted file system.

The low-order bit of rwflag is used to control write permission on the
mounted file system; if 1, writing is forbidden, otherwise writing is per-
mitted according to individual file accessibility.

Mount may be invoked only by the super-user.

Mount will fail if one or more of the following are true:
The effective user ID is not super-user. [EPERM]
Any of the named files does not exist. [ENOENT]
A component of a path prefix is not a directory. [ENOTDIR]
Spec is not a block special device. [ENOTBLK]
The device associated with spec does not exist. [ENXIO]
Dir is not a directory. [ENOTDIR]

Spec or dir points outside the process's allocated address space.
[EFAULT]

Dir is currently mounted on, is someone’'s current working direc-
tory or is otherwise busy. [EBUSY]
The device associated with spec is currently mounted. [EBUSY]

RETURN VALUE

Upon successful completion a value of 0 is returned. Otherwise, a value
of —1 is returned and errno is set to indicate the error.

SEE ALSO
umount(2).

Page 1 February 20, 1984

NICE(2) MUNIX NICE(2)

NAME
nice — change priority of a process
SYNOPSIS
int nice (incr)
int incr;
DESCRIPTION
NMNice adds the value of incr to the nice value of the calling process. A

process’'s nice value is a positive number for which a more positive value
results in lower CPU priority.

A maximum nice value of 39 and a minimum nice value of 0 are imposed
by the system. Requests for values above or below these limits result in
the nice value being set to the corresponding limit.

Nice will fail and not change the nice value if incr is negative and the
effective user ID of the calling process is not super-user. [EPERM]

RETURN VALUE
Upon successful completion, nice returns the new nice value minus 20.
Otherwise, a value of —1 is returned and errno is set to indicate the
error.

SEE ALSO
nice(1), exec(2).

Page 1 February 20, 1984

OPEN(2) MUNIX OPEN(2)

NAME
open — open for reading or writing

SYNOPSIS
#include <fcntl.h>
int open (path, oflag [, mode])
char epath;
int oflag, mode;

DESCRIPTION
Path points to a path name naming a file. Open opens a file descriptor
for the named file and sets the file status flags according to the value of
oflag. Oftag values are constructed by or-ing flags from the following list
(only one of the first three flags below may be used):

O_RDONLY
Open for reading only.

O_WRONLY
Open for writing only.
O_RDWR Open for reading and writing.
O_NDELAY
This flag may affect subsequent reads and writes. See read(2)
and write(2).
When opening a FIFO with O_RDONLY or O_WRONLY set:
1f O_NDELAY is set:

An open for reading-only will return without delay. An
open for writing-only will return an error if no process
currently has the file open for reading.

If O.NDELAY is clear:

An open for reading-only will block until a process opens
the file for writing. An open for writing-only will block
until a process opens the file for reading.

When opening a file associated with a communication line:
If O_NDELAY is set:

The open will return without waiting for carrier.
If O_NDELAY is clear:

The open will block until carrier is present.

O_APPEND
If set, the file pointer will be set to the end of the file prior to
each write.

O_CREAT If the file exists, this flag has no eflect. Otherwise, the file's
owner ID is set to the process’s eflective user ID, the file's group
ID is set to the process's eflective group ID, and the low-order
12 bits of the file mode are set to the value of mode modified as
follows (see creat(2)):

All bits set in the process’s file mode creation mask are
cleared. See umask(2).

Page 1 February 20, 1984

OPEN(2) MUNIX OPEN(2)

The “save text image after execution bit" of the mode is
cleared. See chmod(2).

O_TRUNC If the file exists, its length is truncated to 0 and the mode and
owner are unchanged.

O_EXCL If O_EXCL and O_CREAT are set, open will fail if the file exists.

Upon successful completion a non-negative integer, the file descriptor, is
returned.

The file pointer used to mark the current position within the file is set to
the beginning of the file.

The new file descriptor is set to remain open across ezec system calls.
See fentl(2).

No process may have more than 20 file descriptors open simultaneously.
The named file is opened unless one or more of the following are true:
A component of the path prefix is not a directory. [ENOTDIR]
O_CREAT is not set and the named file does not exist. [ENOENT)

A component of the path prefix denies search permission.
(EACCES]

Oftag permission is denied for the named file. [EACCES)]

The named file is a directory and oflag is write or read/write.
[EISDIR]

The named file resides on a read-only file system and oflag is write
or read/write. [EROFS]

Twenty (20) file descriptors are currently open. [EMFILE]

The named file is a character special or block special file, and the
device associated with this special file does not exist. [ENXIO]

The file is a pure procedure (shared text) file that is being exe-
cuted and oflag is write or read/write. [ETXTBSY)

Path points outside the process's allocated address space.
[EFAULT]

O_CREAT and O_EXCL are set, and the named file exists. [EEXIST]
O_NDELAY is set, the named file is a FIFO, O_WRONLY is set, and no
process has the file open for reading. [ENXIO]

RETURN VALUE
Upon successful completion, a non-negative integer, namely a file
descriptor, is returned. Otherwise, a value of —1 is returned and errno is
set to indicate the error.

SEE ALSO
close(2), creat(2), dup(2), fentl(2), Iseek(2), read(2), write(2).

February 20, 1984 Page 2

PAUSE(2) MUNIX PAUSE(2)

NAME

pause — suspend process until signal
SYNOPSIS

pause ()
DESCRIPTION

Pause suspends the calling process until it receives a signal. The signal
must be one that is not currently set to be ignored by the calling pro-
cess.

1f the signal causes termination of the calling process, pause will not
return.

If the signal is caught by the calling process and control is returned from
the signal catching-function (see signal(2)), the calling process resumes
execution from the point of suspension; with a return value of —1 from
pause and errno set to EINTR.

SEE ALSO
alarm(2), kill(2), signal(2), wait(2).

Page 1 February 20, 1984

PHYS(2) MUNIX ((NONVIRTUAL)) PHYS(2)

NAME
phys — map physical memory

SYNOPSIS
char ¢ phys(physaddr,size)
char *physaddr;
long size;

DESCRIPTION :
Physaddr {is a physical address greater than TOPMEM (see
/usr/sys/conf.h, newconf(8)) and less than 0x400000. Size is a long
integer greater than 0 and less than 0x100000. Phys returns a logical
address logaddr. The physical address range from physeddr to
physaddr+size is mapped into the logical address range from logaddr to
logaddr+size. At most three phys calls may be made in a program. You
can reset the foregoing phys calls with the call phys(OL,0L).

RETURN VALUE
Upon successful completion a logical address is returned that is mapped
to the given physical address. Otherwise, a —1 is returned and errno is
set to EINVAL.

Page 1 March 21, 1984

PIPE(2) MUNIX PIPE(2)

NAME
pipe — create an interprocess channel
SYNOPSIS
int pipe (fildes)
int fildes{2];
DESCRIPTION
Pipe creates an 1/0 mechanism called a pipe and returns two file

descriptors, fildes[0] and fildes[1]. Fildes[0] is opened for reading and
fildes[1] is opened for writing.

Writes up to 5120 bytes of data are buffered by the pipe before the writ-
ing process is blocked. A read on file descriptor fildes[0] accesses the
data written to fildes[1] on a first-in-first-out basis.

No process may have more than 20 flle descriptors open simultaneously.
Pipe will fail if 19 or more file descriptors are currently open. {EMFILE]

RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value
of —1 is returned and errno is set to indicate the error.

SEE ALSO
sh(1), read(2), write(2).

Page 1 February 20, 1984

PLOCK(2) MUNIX PLOCK(2)

NAME
plock — lock process, text, or data in memory

SYNOPSIS '
#include <sys/lock.h>
int plock (op)
int op;

DESCRIPTION
Plock allows the calling process to lock its text segment (text lock), its
data segment (data lock), or both its text and data segments (process
lock) into memory. Locked segments are immune to all routine swap-
ping. Plock also allows these segments to be unlocked. The eflective user

ID of the calling process must be super-user to use this call. Op specifies
the following:

PROCLOCK — lock text & data segments into memory (process
lock)

TXTLOCK - lock text segment into memory (text lock)

DATLOCK — lock data segment into memory (data lock)
UNLOCK - remove locks

Plock will fail and not perform the requested operation if one or more of
the following are true:

The eflective user ID of the calling process is not super-user.
{EPERM]

Op is equal to PROCLOCK and a process lock, a text lock, or a data
lock already exists on the calling process. [EINVAL]

Op is equal to TXTLOCK and a text lock, or a process lock already
exists on the calling process. [EINVAL]

Op is equal to DATLOCK and a data lock, or a process lock already
exists on the calling process. [EINVAL]

Op is equal to UNLOCK and no type of lock exists on the calling pro-
cess. [EINVAL]
RETURN VALUE
Upon successful completion, a value of 0 is returned to the calling pro-

cess. Otherwise, a value of —1 is returned and errno is set to indicate the
error.

SEE ALSO
exec(2), exit(2), fork(2).

Page 1 February 20, 1984

PROFIL(2) MUNIX PROFIL(2)

NAME
profil — execution time profile

SYNOPSIS
void profil (buff, bufsiz, offset, scale)
char *buff;
long bufsiz, offset;
unsigned scale;

DESCRIPTION
Buff points to an area of memory whose length (in bytes) is given by buf-
siz. After this call, the user's program counter (pc) is examined each
clock tick (50th or 60th second); offset is subtracted from it, and the
result shifted right by scale. If the resulting number corresponds to a
word (2 bytes) inside duff, that word is incremented.

Profiling is turned off by giving a scale of 0. It is rendered ineffective by
giving a bufsiz of 0. Profiling is turned off when an ezxec is executed, but
remains on in child and parent both after a fork. Profil will return -1,
errno EINVAL if an update in duff would cause a memory fault.

RETURN VALUE
0 if ok, -1 if error.

SEE ALSO
prof(1), monitor(3C).

Page 1 February 20, 1984

PTRACE(2) MUNIX PTRACE((2)

NAME
ptrace — process trace

SYNOPSIS
int ptrace (request, pid, addr, data);
int request, pid;
int ¢ addr;
long data;

DESCRIPTION (

Ptrace provides a means by which a parent process may control the exe-
cution of a child process. Its primary use is for the implementation of
breakpoint debugging; see add(1). The child process behaves normally
until it encounters a signal (see signal(2) for the list), at which time it
enters a stopped state and its parent is notified via wait(2). When the
child is in the stopped state, its parent can examine and modify its “core
image' using ptrace. Also, the parent can cause the child either to ter-
minate or continue, with the possibility of ignoring the signal that caused
it to stop.

. The request argument determines the precise action to be taken by
ptrace and is one of the following:

0 This request must be issued by the child process if it is to be
traced by its parent. It turns on the child’'s trace flag that
stipulates that the child should be left in a stopped state
upon receipt of a signal rather than the state specified by
Junc; see signal(2). The pid, addr, and data arguments are
ignored, and a return value is not defined for this request.
Peculiar results will ensue if the parent does not expect to
trace the child.

The remainder of the requests can only be used by the parent process.
For each, pid is the process ID of the child. The child must be in a
stopped state before these requests are made.

1, 2 VWith these requests, the word at location addr in the address

space of the child is returned to the parent process. Request

1 returns a word from | space, and request 2 returns a word

from D space. The data argument is ignored. These two

. requests will fail if addr is not the start address of a word, in

which case a value of —1 is returned to the parent process
and the parent's errno is set to ENXIO.

3 Vith this request, the word at location addr in the child’'s
USER area in the system's address space (see <sys/user.h>) is
returned to the parent process. Addresses in this area range
from 0 to 3072 on the Cadmus 8000 and O to 2048 on the 3B20S
and VAX. The data argument is ignored. This request will fail
if addr is not the start address of a word or is outside the
USER area, in which case a value of —1 is returned to the
parent process and the parent’s errno is set to EIO.

4,5 VWith these requests, the low word of the value given by the
data argument is written into the address space of the child
at location addr. Request 4 writes a word into I space, and
request 5 writes a word into D space. Upon successful

Pagel February 20, 1984

PTRACE(2)

MUNIX PTRACE(2)

completion, the value written into the address space of the
child is returned to the parent. These two requests will fail if
addr is a location in a pure procedure space and another pro-
cess is executing in that space, or addr is not the start
address of a word. Upon failure a value of —1 is returned to
the parent process and the parent's errno is set to EIO.

With this request, a few entries in the child's USER area can be
written. Data gives the value that is to be written and addr is
the location of the entry. The few entries that can be written
are:

the general registers A7/D0-A6 on the Motorola 68000
(addr = 0..15),

the program counter PC (addr = 20),

and the low byte of the Processor Status Word PS (addr
= 19).

For addrs 0..15 and 20, the whole long value of data is written, for
addr = 19 only the least significant byte.

7

10

This request causes the child to resume execution. If the
data argument is 0, all pending signals including the one that
caused the child to stop are canceled before it resumes exe-
cution. If the data argument is a valid signal number, the
child resumes execution as if it had incurred that signal and
any other pending signals are canceled. If the addr argument
is odd for this request, the program continues where it halted
before. Otherwise, addr is made the new program counter.
Upon successful completion, the value of data is returned to
the parent.

This request causes the child to terminate with the same
consequences as ezit(2).

This request sets the trace bit in the Processor Status Word of
the child (i.e., bit 0x8000 on the Motorola 68000) and then
executes the same steps as listed above for request 7. The
trace bit causes an interrupt upon completion of one machine
instruction. This eflectively allows single stepping of the
child.

This request writes the user registers to addr as a record of
the form struct exvec with variant ex2o0. VECSIZE bytes will
be transferred. See susr/include/sys/reg.h.

To forestall possible fraud, ptrace inhibits the set-user-id facility on sub-
sequent ezec(2) calls. If a traced process calls ezec, it will stop before
executing the first instruction of the new image showing signal SIGTRAP.

GENERAL ERRORS

Ptrace will in general fail if one or more of the following are true:
Request is an illegal number. [EIO]

Pid identifies a child that does not exist or has not executed a
ptrace with request 0. [ESRCH]

February 20, 1984 Page 2

PTRACE(2) MUNIX PTRACE(2)

SEE ALSO
adb(1), exec(2), signal(2), wait(2).

Page 3 February 20, 1984

READ(2) MUNIX READ(2)

NAME
read — read from file

SYNOPSIS
int read (fildes, buf, nbyte)
int fildes;
char *buf;
unsigned nbyte;
DESCRIPTION
Fildes is a file descriptor obtained from a creat, open, dup, fcntl, or pipe
system call.

Read attempts to read nbdyte bytes from the file associated with fildes
into the buffer pointed to by buf.

On devices capable of seeking, the read starts at a position in the file
given by the file pointer associated with fildes. Upon return from read,
the file pointer is incremented by the number of bytes actually read.

Devices that are incapable of seeking always read from the current posi-
tion. The value of a file pointer associated with such a file is undefined.

Upon successful completion, read returns the number of bytes actually
read and placed in the buffer; this number may be less than nbyte if the
file is associated with a communication line (see ioctl(2) and termio(4)),
or if the number of bytes left in the file is less than nbyte bytes. A value
of 0 is returned when an end-of-file has been reached.

When attempting to read from an empty pipe (or FIFO):
If O_NDELAY is set, the read will return a 0.

If O_NDELAY is clear, the read will block until data is written to the
file or the file is no longer open for writing.

When attempting to read a file assocmted with a tty that has no data
currently available:

If O_NDELAY is set, the read will return a 0.

If O_NDELAY is clear, the read will block until data becomes avail-
able.

Read will fail if one or more of the following are true:
Fildes is not a valid file descriptor open for reading. [EBADF]
Buf points outside the allocated address space. [EFAULT]

RETURN VALUE
Upon successful completion a non-negative integer is returned indicating
the number of bytes actually read. Otherwise, a =1 is returned and errno
is set to indicate the error.

SEE ALSO
creat(2), dup(2), fentl(2), ioctl(2), open(2), pipe(2), termio(4).

Page 1 February 20, 1984

SETPGRP(2) MUNIX SETPGRP(2)

NAME

setpgrp — set process group ID
SYNOPSIS

int setpgrp ()
DESCRIPTION

Setpgrp sets the process group ID of the calling process to the process ID
of the calling process and returns the new process group ID.

RETURN VALUE
Setpgrp returns the value of the new process group ID.

SEE ALSO
exec(2), fork(2), getpid(2), intro(2), kill(2), signal(2).

Page 1 February 20, 1984

SETUID(2) MUNIX SETUID(2)

NAME _
setuid, setgid — set user and group IDs

SYNOPSIS
int setuid (uid)
int uid;
int setgid (gid)
int gid;
DESCRIPTION
Setuid (setgid) is used to set the real user (group) ID and effective user
(group) ID of the calling process.

If the effective user ID of the calling process is super-user, the real user
(group) ID and effective user (group) ID are set to uid (gid).

If the eflective user ID of the calling process is not super-user, but its

real user (group) ID is equal to uid (gid), the effective user (group) ID is

set to uid (gid).

Setuid (setgid) will fail if the real user (group) ID of the calling process is

not equal to uid (gid) and its effective user ID is not super-user. [EPERM)
RETURN VALUE

Upon successful completion, a value of 0 is returned. Otherwise, a value

of —1 is returned and errno is set to indicate the error:

SEE ALSO
getuid(2), intro(2).

Page 1 February 20, 1984

SIGNAL(2) MUNIX SIGNAL(2)

NAME
signal — specify what to do upon receipt of a signal

SYNOPSIS
#include <sys/signal.h>’

int (esignal (sig, func))()
int sig;
int (*func)();
DESCRIPTION
Signal allows the calling process to choose one of three ways in which it

is possible to handle the receipt of a specific signal. Sig specifies the sig-
nal and func specifies the choice.

Sig can be assigned any one of the following except SIGKILL:

SIGHUP 01 hangup

SIGINT 02 interrupt

SIGQUIT 03* quit

SIGILL 04* illegal instruction (not reset when caught)
SIGTRAP 05* trace trap (not reset when caught)
SIGIOT 06* 10T instruction

SIGEMT 07¢ EMT instruction

SIGFPE 08* floating point exception

SIGKILL 09 kill (cannot be caught or ignored)
SIGBUS 10* buserror

SIGSEGY 11* segmentation violation

SIGSYS 12* bad argument to system call

SIGPIPE 13 write on a pipe with no one to read it
SIGALRN 14 alarm clock

SIGTERM 15 software termination signal

SIGZERO 17 zero divide

SIGCHK 18 check error

SIGOVER 19 arithmetic overflow

SIGPRIV 20 privilege violation

SIGUSR1 21 user defined signal 1

SIGUSR2 22 user defined signal 2

SIGCLD 23 death of a child (see FARNING below)
SIGPWR 24 power fail (see WARNING below)

See below for the significance of the asterisk (*) in the above list.

~ Func is assigned one of three values: SIG_DFL, SIG_IGN, or a function
address. The actions prescribed by these values of are as follows:

SIG_DFL — terminate process upon receipt of a signal _
Upon receipt of the signal sig, the receiving process is to be ter-
minated with all of the consequences outlined in ezi?(2) plus a
“core image" will be made in the current working directory of
the receiving process if sig is one for which an asterisk appears
in the above list and the following conditions are met:

The effective user ID and the real user ID of the receiving
process are equal.

An ordinary file named core exists and is writable or can
be created. If the file must be created, it will have the

Page 1] February 20, 1984

SIGNAL(2) MUNIX SIGNAL(2)

following properties:

a mode of 0666 modified by the file creation
mask (see umask(2))

a file owner ID that is the same as the effective
user ID of the receiving process

a file group ID that is the same as the effective
group ID of the receiving process

SIG_IGN — ignore signal
The signal sig is to be ignored.

Note: the signal SIGKILL cannot be ignored.

Sfunction address — catch signal
Upon receipt of the signal stg, the receiving process is to execute
the signal-catching function pointed to by jfunc. The signal
number sig will be passed as the only argument to the signal-
catching function. Before entering the signal-catching function,
the value of func for the caught signal will be set to SIG_DFL
unless the signal is SIGILL, SIGTRAP, or SIGPWR.

Upon return from the signal-catching function, the receiving pro-
cess will resume execution at the point it was interrupted.

When a signal that is to be caught occurs during a read, a write,
an open, or an ioctl system call on a slow device (like a terminal;
but not a file), during a pause system call, or during a wait sys-
tem call that does not return immediately due to the existence of
a previously stopped or zombie process, the signal catching func-
tion will be executed and then the interrupted system call will
return a —1 to the calling process with errno set to EINTR.

Note: the signal SIGKILL cannot be caught.

A call to signal cancels a pending signal sig except for a pending SIGKILL
signal. ’

Signal will fail if one or more of the following are true:
Sig is an illegal signal number, including SIGKILL. [EINVAL)
Func points to an illegal address. [EFAULT]

RETURN VALUE
Upon successful completion, signal returns the previous value of func
for the specified signal sig. Otherwise, a value of —1 is returned and
erTno is set to indicate the error.

SEE ALSO
kill(1), kill(2), pause(2), ptrace(2), wait(2), setjmp(3C).

WARNING

Two other signals that behave differently than the signals described
above exist in this release of the system; they are:

.SIGCLD 23 death of a child (reset when caught)
SIGPWR 24 power fail (not reset when caught)

There is no guarantee that, in future releases of the UNIX System, these
signals will continue to behave as described below; they are included only

February 20, 1984 Page 2

SIGNAL(2)

MUNIX SIGNAL(2)

for compatibility with other versions of the UNIX System. Their use in
new programs is strongly discouraged. Note: signal SIGPWR is not yet
supported on the Cadmus 9000.

For these signals, func is assigned one of three values: SIG_DFL, SIG_IGN,
or a function address . The actions
prescribed by these values of are as follows:

SIG_DFL - ignore signal

Page 3

The signal is to be ignored.

SIG_IGN - ignore signal

The signal is to be ignored. Also, if stg is SIGCLD, the calling
process’'s child processes will not create zombie processes when
they terminate; see ezit(2).

Junction address - catch signal

If the signal is SIGPWR, the action to be taken is the same as
that described above for func equal to function address. The
same is true if the signal is SIGCLD except, that while the pro-
cess is executing the signal-catching function any received
SIGCLD signals will be queued and the signal-catching function
will be continually reentered until the queue is empty.

The SIGCLD affects two other system calls (wait(2), and ezit(2)) in the
following ways:

wait

exit

If the func value of SIGCLD is set to SIG_IGN and a wait is exe-
cuted, the wait will block until all of the calling process's child
processes terminate; it will then return a value of -1 with errno
set to ECHILD.

If in the exiting process's parent process the func value of
SIGCLD is set to SIG_IGN, the exiting process will not create a
zombie process.

When processing a pipeline, the shell makes the last process in the
pipeline the parent of the proceeding processes. A process that may be
piped into in this manner (and thus become the parent of other
processes) should take care not to set SIGCLD to be caught.

February 20, 1984

STAT(2) MUNIX STAT(2)

stat, fstat — get file status

SYNOPSIS

#include <ys/types.h>
finclude <sys/stat.h>
int stat (path, bulf)
char spath;

struct stat suf;

int fstat (flides, buf)
int fildes;

struct stat sbuf;

DESCRIPTION

Path points to a path name naming a file. Read, write or execute permis-
sion of the named file is not required, but all directories listed in the
path name leading to the file must be searchable. Stat obtains informa-
tion about the named file.

Similarly, fstat obtains information about an open file known by the file
descriptor fildes, obtained from a successful open, creat, dup, fentl, or
pipe system call.

Buf is a pointer to a stat structure into which information is placed con-
cerning the file.

The contents of the structure pointed to by duf include the following
members:

ushort st_mode; /s File mode; see mknod (2) =/
ino_t et_ino; /= [node mumber =/
dev_t ot_dev; /= 1D of device centaining s/
/= a directory entry for this flle &/
dev_t st_rdev; /= 1D of device »/

/% This entry le defined only for »/
/% character special or block speclal flles &/

short st_plink; /% Number of links =/

ushort set_uid; /% User 10 of the file's ouner &/
ushort st_gid; /= Group ID of the file's group =/
off_t et size; /s File aize In bytes =/

time_t eot_atime; /% Time of last sccess &/

time_t st_mtime; /% Time of last data modification &/
time_t st_ctime; /% Time of last flle status changs =/

/% Times measured in seconds since »/
/= B0:82:08 GHT, Jan. 1, 1978 =/

st_atime Time when file data was last accessed. Changed by the following
system calls: creat(2), mknod(2), pipe(2), utime(2), and read(2).

st_mtime Time when data was last modified. Changed by the following
system calls: creat(2), mknod(2), pipe(2), utime(2), and
write(2).

st_ctime Time when file status was last changed. Changed by the follow-
ing system calls: chmod(2), chown(2), creat(2), link(2),
mknod(2), pipe(2), unlink(2), utime(2), and write (2).

Page 1 February 20, 1984

STAT(2) MUNIX STAT(2)

Stat will fail if one or more of the following are true:
A component of the path prefix is not a directory. [ENOTDIR]
The named file does not exist. [ENOENT]

Search permission is denied for a component of the path prefix.
[EACCES]

Buf or path points to an invalid address. [EFAULT)

Fstat will fail if one or more of the following are true:
Fildes is not a valid open flle descriptor. [EBADF]
Buf points to an invalid address. [EFAULT]

RETURN VALUE
Upon successful completion a value of 0 is returned. Otherwise, a value
of —1 is returned and errno is set to indicate the error.

SEE ALSO
chmod(2), chown(2), creat(2), link(2), mknod(2), time(2), unlink(2).

February 20, 1984 Page 2

STIME(2) MUNIX STIME(2)

NAME
stime — set time
SYNOPSIS
int stime (tp)
long e<tp;
DESCRIPTION
Stime sets the system's idea of the time and date. Tp points to the value
of time as measured in seconds from 00:00:00 GMT January 1, 1970.

Stime will fail if the efTective user ID of the calling process is not super-
user. [EPERM]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value
of —1 is returned and errno is set to indicate the error.

SEE ALSO
time(2).

Page 1 February 20, 1984

SYNC(2) MUNIX SYNC(2)

NAME
sync — update super-block
SYNOPSIS
void sync ()
DESCRIPTION
Sync causes all information in memory that should be on disk to be writ-

ten out. This includes modified super blocks, modified i-nodes, and
delayed block 170.

It should be used by programs which examine a file system, for example
Jsck, df, etc. It is mandatory before a boot.

The writing, although scheduled, is not necessarily complete upon return
from sync.

Page 1 February 20, 1984

TIME(2) MUNIX TIME(2)

NAME

time — get time
SYNOPSIS

long time ((long °*) 0)

long time (tloc)

long stloc;
DESCRIPTION

Time returns the value of time in seconds since 00:00:00 GMT, January 1,
1970.

1f tloc (taken as an integer) is non-zero, the return value is also stored in
the location to which tloc points.

Time will fail if tloc points to an illegal address. [EFAULT]

RETURN VALUE
Upon successful completion, time returns the value of time. Otherwise, a
value of —1 is returned and ermno is set to indicate the error.

SEE ALSO
stime(2).

Page 1 February 20, 1984

TIMES(2) MUNIX TIMES(2)

NAME

times — get process and child process times

SYNOPSIS

finclude <sys/types.h>
finclude <sys/times.h>
long times (buffer)

struct tms xbuffer;

DESCRIPTION

Times fills the structure pointed to by duffer with time-accounting infor-
mation. The following is this contents of the structure:

struct tme |

time_t tms_utime;

time_t tms_stime;

time_t tms_cutine;
’ time_t tms_cstime;
This information comes from the calling process and each of its ter-
minated child processes for which it has executed a wait. All times are
in 60ths of a second on DEC processors, 100ths of a second on WECo pro-
cessors.

Tms__utime is the CPU time used while executing instructions in the user
space of the calling process. '

T'ms_stime is the CPU time used by the system on behalf of the calling
process.

Tms_cutime is the sum of the tms_utimes and tms_cutimes of the child
processes.

Tms_cstime is the sum of the tms_stimes and tms_cstimes of the child
processes. .

Times will fail if buffer points to an illegal address. [EFAULT)

RETURN VALUE

Upon successful completion, times returns the elapsed real time, in
60ths (100ths) of a second, since an arbitrary point in the past (e.g., sys-
tem start-up time). This point does not change from one invocation of
times to another. If times fails, a —1 is returned and errno’is set to indi-
cate the error.

SEE ALSO

Page 1

exec(2), fork(2), time(2), wait(2).

February 20, 1984

ULIMIT(2) MUNIX ULIMIT(2)

NAME
ulimit — get and set user limits

SYNOPSIS
long ulimit (cmd, newlimit)
int cmd;
long newlimit;

DESCRIPTION
This function provides for control over process limits. The emd values

available are:

1 Get the process's file size limit. The limit is in units of 5§12-byte
blocks and is inherited by child processes. Files of any size can be
read.

2 Set the process’s file size limit to the value of newlimit. Any process
may decrease this limit, but only a process with an effective user ID
of super-user may increase the limit. limit will fail and the limit
will be unchanged if a process with an eflective user ID other than
super-user attempts to increase its file size limit. [EPERM]

3 Get the maximum possible break value. See brk(2).

RETURN VALUE
Upon successful completion, a non-negative value is returned. Other-
wise, a value of —1 is returned and ermo is set to indicate the error.

SEE ALSO
brk(2), write(2).

Page 1 February 20, 1984

UMASK(2) MUNIX UMASK(2)

NAME
umask — set and get file creation mask

SYNOPSIS
int umask (cmask)
int cmask;

DESCRIPTION
Umask sets the process’s file mode creation mask to cmask and returns
the previous value of the mask. Only the low-order 9 bits of cmask and
the file mode creation mask are used.

RETURN VALUE
The previous value of the file mode creation mask is returned.

SEE ALSO
mkdir(1), sh(1), chmod(2), creat(2), mknod(2), open(2).

Page 1 February 20, 1984

UMOUNT(2) MUNIX UMOUNT(2)

NAME
umount — unmount a file system

SYNOPSIS
int umount (spec)
char espec;

DESCRIPTION

Umount requests that a previously mounted file system contained on the
block special device identified by spec be unmounted. Spec is a pointer
to a path name. After unmounting the file system, the directory upon
which the file system was mounted reverts to its ordinary interpretation.

Umount may be invoked only by the super-user.
Umount will fail if one or more of the following are true:
The process's eflective user ID is not super-user. [EPERM]
Spec does not exist. [ENXIO]
Spec is not a block special device. [ENOTBLK])
Spec is not mounted. [EINVAL]
A file on spec is busy. [EBUSY]

Spec points outside the process’'s allocated address space.
[EFAULT)

RETURN VALUE

Upon successful completion a value of O is returned. Otherwise, a value
of —1 is returned and errno is set to indicate the error.

SEE ALSO
mount(2).

Page 1 February 20, 1984

UNAME(2) MUNIX UNAME(2)

NAME

uname, ethname — get name/ethernet-identification of current UNIX sys-
tem

SYNOPSIS

fJinclude <ays/utsname.h>
int uname (name)

struct utsname mn3ne;
int ethname {(name)

etruct ethname aname;

DESCRIPTION

Uname stores information identifying the current UNIX system in the

.structure pointed to by name.

Uname uses the structure defined in <sys/utsname.h> whose members
are:

char sysname [9) ;

char nodenanme (9]

char release(S);

char version[9l;

Uname returns a null-terminated character string naming the current
UNIX system in the character array sysname. Similarly, nodename con-
tains the name that the system is known by on a communications net-
work. Release and version further identify the operating system.

Ethname stores information identifying the ethernet address and station
number in the structure pointed to by name.

Ethname uses the structure ethname defined in <sys/utsname.h> whose
members are: '
etheradr ethaddr;

shor t stnaddr; _

ethaddr contains the six byte long ethernet address. stnaddr is the sta-
tion number, a small unique integer for each system on the net.

Uname and ethname will fail if name points to an invalid address.
[EFAULT]

RETURN VALUE

Upon successful completion, a non-negative value is returned. Other-
wise, —1 is returned and errno is set to indicate the error.

SEE ALSO

uname(1).

Page 1 February 20, 1984

UNLINK(2) MUNIX UNLINK(2)

NAME
unlink — remove directory entry
SYNOPSIS
int unlink (path)
char ¢*path;
DESCRIPTION
Unlink removes the directory entry named by the path name pointed to
be path.

The named file is unlinked unless one or more of the following are true:
A component of the path prefix is not a directory. [ENOTDIR]
The named file does not exist. [ENOENT)]

Search permission is denied for a component of the path prefix.
[EACCES]

Write permission is denied on the directory containing the link to
be removed. [EACCES]

The named file is a directory and the effective user ID of the pro-
cess is not super-user. [EPERM]

The entry to be unlinked is the mount point for a mounted file sys-
tem. [EBUSY]

The entry to be unlinked is the last link to a pure procedure
(shared text) file that is being executed. [ETXTBSY]

The directory entry to be unlinked is part of a read-only file sys-
tem. [EROFS]

Path points outside the process’s allocated address space.
[EFAULT) '

When all links to a file have been removed and no process has the file
open, the space occupied by the file is freed and the file ceases to exist.
If one or more processes have the file open when the last link is removed,
the removal is postponed until all references to the file have been closed.

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value
of —1 is returned and errno is set to indicate the error.

SEE ALSO
rm(1), close(2), link(2), open(2).

Page 1 February 20, 1984

USTAT(2) MUNIX USTAT(2)

NAME
ustat — get file system statistics

SYNOPSIS
finclude <sys/types.h>

f#inciude <wstat.h>
int ustat (dev, buf)
int devs

struct ustat sbuf;

DESCRIPTION .
Ustat returns information about a mounted file system. Dev is a device
number identifying a device containing a mounted file system. Buf is a
pointer to a ustat structure that includes the following elements:

daddr_t f_tfree; /= Total free blocks &/
ino_t f_tinode; /m Number of free inodes w/
char f_fname [B]; /s Filsys name n/

char ¢_fpack [6]; /= Fileys pack name »/

Ustat will fail if one or more of the following are true:

Dev is not the device number of a device containing a mounted file
system. [EINVAL]

Buf points outside the process's allocated address space. [EFAULT]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value
of —1 is returned and errno is set to indicate the error. g

SEE ALSO
stat(2), fs(4).

Page 1 February 20, 1984

UTIME(2) MUNIX UTIME(2)

NAME
utime — set file access and modification times

SYNOPSIS
Finclude <ays/types.h>

int utime (path, times)
char »path;

struct utimbuf =times;

DESCRIPTION
Path points to a path name naming a file. Utime sets the access and
modification times of the named file.

If times is NULL, the access and modification times of the file are set to
the current time. A process must be the owner of the file or have write
permission to use utime in this manner.

If times is not N1, times is interpreted as a pointer to a utimbduf struc-
ture and the access and modification times are set to the values con-
tained in the designated structure. Only the owner of the file or the
super-user may use utime this way.

The times in the following structure are measured in seconds since
00:00:00 GMT, Jan. 1, 1970.

struct utimbuf §
time_t actime; /% access time &/
; time_t modtime; /% modification time &/

Utime will fail if one or more of the following are true:
The named file does not exist. [ENOENT]
A component of the path prefix is not a directory. {ENOTDIR]

Search permission is denied by a component of the path prefix.
[EACCES)

The eflective user ID is not super-user and not the owner of the file
and times is not NIL [EPERM]

The effective user ID is not super-user and not the owner of the file
and times is NILL and write access is denied. [EACCES]

The file system containing the file is mounted read-only. [EROFS]

Times is not NUL and points outside the process’s allocated
address space. [EFAULT)

Path points outside the process's allocated address space.
(EFAULT]

RETURN VALUE
Upon successful completion, a value of 0 is returned. Otherwise, a value
of —1 is returned and errno is set to indicate the error.

SEE ALSO
stat(2).

Page 1 February 20, 1984

WAIT(2) MUNIX WAIT(2)

NAME
wait — wait for child process to stop or terminate

SYNOPSIS
int wait (stat_loc)
int estat_loc;

int wait ((int *¢)0)

DESCRIPTION
Wait suspends the calling process until it receives a signal that is to be
caught (see signal(2)), or until any one of the calling process's child
processes stops in a trace mode (see ptrace(2)) or terminates. If a child
process stopped or terminated prior to the call on wait, return is
immediate.

If stat_loc (taken as an integer) is non-zero, 16 bits of information called
status are stored in the low order 16 bits of the location pointed to by
stat_loc. Status can be used to differentiate between stopped and ter-
minated child processes and if the child process terminated, status
identifies the cause of termination and pass useful information to the
parent. This is accomplished in the following manner:

If the child process stopped, the high order 8 bits of status will
contain the number of the signal that caused the process to stop
and the low order 8 bits will be set equal to 0177.

If the child process terminated due to an ezit call, the low order 8
bits of status will be zero and the high order 8 bits will contain the
low order 8 bits of the argument that the child process passed to
ezit; see exit(2).

If the child process terminated due to a signal, the high order 8
bits of status will be zero and the low order 8 bits will contain the
number of the signal that caused the termination. In addition, if
the low order seventh bit (i.e., bit 200) is set, a *'core image" will
have been produced; see signal(2).

If a parent process terminates without waiting for its child processes to
terminate, the parent process ID of each child process is set to 1. This
means the initialization process inherits the child processes; see
intro(2).

Fait will fail and return immediately if one or more of the following are
true:

The calling process has no existing unwaited-for child processes.
[ECHILD]

Stat_loc points to an illegal address. [EFAULT]

RETURN VALUE
If wait returns due to the receipt of a signal, a value of —1 is returned to
the calling process and errno is set to EINTR. If wait returns due to a
stopped or terminated child process, the process ID of the child is
returned to the calling process. Otherwise, a value of —1 is returned and
errno is set to indicate the error.

SEE ALSO
exec(2), exit(2), fork(2), pause(2), signal(2).

Page 1 February 20, 1984

WAIT(2) MUNIX WAIT(2)

WARNING
See WARNING in signal(2).

February 20, 1984 Page 2

WRITE(2) MUNIX WRITE(2)

NAME
write — write on a file

SYNOPSIS
int write (fildes, buf, nbyte)
int fildes;
char *buf;
unsigned nbyte;

DESCRIPTION
Fildes is a file descriptor obtained from a creat, open, dup, fcntl, or pipe
system call.

Write attempts to write ndyte bytes from the buffer pointed to by bduf to
the file associated with the fildes.

On devices capable of seeking, the actual writing of data proceeds from
the position in the file indicated by the file pointer. Upon return from
write, the flle pointer is incremented by the number of bytes actually
written. :

On devices incapable of seeking, writing always takes place starting at
the current position. The value of a flle pointer associated with such a
device is undefined.

If the O_APPEND flag of the file status flags is set, the file pointer will be
set to the end of the file prior to each write.

Prite will fail and the file pointer will remain unchanged if one or more of
the following are true:

Fildes is not a valid file descriptor open for writing. [EBADF]

An attempt is made to write to a pipe that is not open for reading
by any process. [EPIPE and SIGPIPE signal]

An attempt was made to write a file that exceeds the process's file
size limit or the maximum file size. See ulimit(2). [EFBIG]

Buf points outside the process's allocated address space. [EFAULT]

If a write requests that more bytes be written than there is room for
(e.g.. the ulimit (see ulimiz(2)) or the physical end of a medium), only as
many bytes as there is room for will be written. For example, suppose
there is space for 20 bytes more in a file before reaching a limit. A write
of 512 bytes will return 20. The next write of a non-zero number of
bytes will give a failure return (except as noted below).

If the file being written is a pipe (or FIF0). no partial writes will be permit-
ted. Thus, the write will fail if a write of nbyte bytes would exceed a limit.

If the file being written is a pipe (or FIFO) and the O_NDELAY flag of the file
flag word is set, then write to a full pipe (or FIFO) will return a count of 0.
Otherwise (O_NDELAY clear), writes to a full pipe (or FIFO) will block until
space becomes available.

RETURN VALUE
Upon successful completion the number of bytes actually written is
returned. Otherwise, —1 is returned and errno is set to indicate the
error.

Page 1 February 20, 1984

WRITE(2) MUNIX

SEE ALSO
creat(2), dup(2), I1seek(2), open(2), pipe(2), ulimit(2).

February 20, 1984

INTRO(3) MUNIX INTRO(3)

NAME

intro — introduction to subroutines and libraries

SYNOPSIS

finclude <stdio.h>
finclude <math.h>

DESCRIPTION

This section describes functions found in various libraries, other than
those functions that directly invoke UNIX system primitives, which are
described in Section 2 of this volume. Certain major collections are
identified by a letter after the section number: ’

(3C) These functions, together with those of Section 2 and those marked
(3S). constitute the Standard C Library libc, which is automatically
loaded by the C compiler, cc(1). The link editor Id(1) searches this
library under the —lc option. Declarations for some of these func-
tions may be obtained from fginclude files indicated on the
appropriate pages. '

(3F) These functions constitute the FORTRAN intrinsic function library,
libF?77. These functions are automatically available to the FORTRAN
programmer and require no special invocation of the compiler.

(3M) These functions constitute the Math Libraries, libffp,lidbmot lidbnsc.
They are automatically loaded as needed by the FORTRAN compiler
J77(1). They are automatically loaded by the C compiler, cc(1); if
the options —f,—~fF, or—fN are given. Declarations for these func-
tions may be obtained from the finclude file <math.h>.

(3S) These functions constitute the ‘standard 1/0 package’” (see
stdio(3S)). These functions are in the library libc, already men-
tioned. Declarations for these functions may be obtained from the
f#include file <stdio.h>.

(3X) Various specialized libraries. The files in which these libraries are
found are given on the appropriate pages.

DEFINITIONS

A character is any bit pattern able to fit into a byte on the machine. The
null character is a character with value 0, represented in the C language
as '\0'. ‘A character array is a sequence of characters. A null-
terminated character array is a sequence of characters, the last of which
is the null character. A string is a designation for a null-terminated
character array. The null string is a character array containing only
the null character. A NULL pointer is the value that is obtained by cast-
ing 0 into a pointer. The C language guarantees that this value will not
match that of any legitimate pointer, so many functions that return
pointers return it to indicate an error. NULL is defined as (char *)0 in
<stdio.h>; the user can include his own definition if he is not using
<stdio.h>.

Many groups of FORTRAN intrinsic functions have generic function names
that do not require explicit or implicit type declaration. The type of the
function will be determined by the type of its argument(s). For example,
the generic function maz will return an integer value if given integer
arguments (maz0), a real value if given real arguments (amazl), or a
double-precision value if given double-precision arguments (dmaz1).

Page 1 February 21, 1984

INTRO(3) NUNIX INTRO(3)

FILES
/lib/libc.a
/usr/lib/1ibF77.a
/lib/libffp.a
/lib/libmot.a
/lib/libnsc.a

SEE ALSO
ar(1), ce(1), £77(1), 1d(1), nm(1), intro(2), stdio(3S).

DIAGNOSTICS

Functions in the Math Library (3M) may return the conventional values 0
or HUGE (the largest single-precision floating-point number) when the
function is undefined for the given arguments or when the value is not
representable. In these cases, the external variable errno (see intro(2))
is set to the value EDOM or ERANGE. As many of the FORTRAN intrinsic
functions use the routines found in the Math Library, the same conven-
tions apply.

February 21, 1984 Page 2

AB4L(3C) MUNIX AB4L(3C)

NAME
a64], 164a — convert between long and base-64 ASCII
SYNOPSIS '
long a64l (s)
char °s;
char °164a (1)
long I;
DESCRIPTION
These routines are used to maintain numbers stored in base-64 ASCII.

This is a notation by which long integers can be represented by up to six
characters; each character represents a *'digit” in a radix-64 notation.

The characters used to represent ‘‘digits” are . for 0, /7 for 1, 0 through 9
for 2—-11, A through Z for 12—-37, and a through z for 38—63.

A64l takes a pointer to a null-terminated base-64 representation and
returns a corresponding long value. L64a takes a long argument and
returns a pointer to the corresponding base-64 representation.

BUGS

The value returned by l64a is a pointer into a static buffer, the contents
of which are overwritten by each call.

Page 1 February 20, 19684

ABORT(3C) MUNIX ABORT(3C)

NAME

abort — generate an IOT fault
SYNOPSIS

abort ()
DESCRIPTION

Abort causes an IOT signal to be sent to the process. This usually results
in termination with a core dump.

It is possible for abort to return control if SIGIOT is caught or ignored.
SEE ALSO

adb(1), exit(2), signal(2).
DIAGNOSTICS

Usually “abort — core dumped" from the shell.

Page 1 February 20, 1984

ABORT(3F) MUNIX ABORT(3F)

NAMNE
abort — terminate Fortran program

SYNOPSIS
call abort ()

DESCRIPTION
Abort terminates the program which calls it, closing all open files trun-
cated to the current position of the file pointer.

DIAGNOSTICS

When invoked, abort prints ''Fortran abort routine called' on the stan-
dard error output.

SEE ALSO
abort(3C).

P.age 1 February 20, 1984

ABS(3C) MUNIX ABS(3C)

NAME
abs — integer absolute value
SYNOPSIS
int abs (i)
int i;
DESCRIPTION
Abs returns the absolute value of its integer operand.
SEE ALSO
fabs(3M).

BUGS
You get what the hardware gives on the largest negative integer.

Page 1 February 20, 1984

ABS(3F) MUNIX ABS(3F)

NAME
abs, iabs, dabs, cabs, zabs — Fortran absolute value

SYNOPSIS
integer i1, i2
real r1, r2
double precision dpl, dp2
complex cx1, cx2
double complex dx1, dx2

r2 = abs(rl)
i2 = iabs(il)
i2 = abs(il)

dp2 = dabs(dp1)
dp2 = abs(dpl)

cx2 = cabs(cx1)
cx2 = abs(cx1)

dx2 = zabs(dx1)
dx2 = abs(dx1)

DESCRIPTION
Abs is the family of absolute value functions. Jads returns the integer
absolute value of its integer argument. Dabs returns the double-
precision absolute value of its double-precision argument. Cabs returns
the complex absolute value of its complex argument. Zabs returns the
double-complex absolute value of its double-complex argument. The
generic form abs returns the type of its argument.

SEE ALSO
floor(3M).

Page 1 February 20, 1984

ACOS(3F) MUNIX ACOS(3F)

NAME
acos, dacos — Fortran arccosine intrinsic function

SYNOPSIS
real ri, r2
double precision dpl, dp2

r2 = acos(rl)
dp2 = dacos(dpil)
dp2 = acos(dp1)
DESCRIPTION
Acos returns the real arccosine of its real argument. Dacos returns the
double-precision arccosine of its double-precision argument. The gen-

eric form acos may be used with impunity as its argument will determine
the type of the returned value.

SEE ALSO
trig(3M).

Page 1 February 20, 1984

AINAG (3F) MUNIX AIMAG (3F)

NAME
aimag. dimag — Fortran imaginary part of complex argument

SYNOPSIS
realr
comnplex cxr
double precision dp
double complex cxd

r = aimag(cxr)
dp = dimag(cxd)

DESCRIPTION _
Aimag returns the imaginary part of its single-precision complex argu-
ment. Dimag returns the double-precision imaginary part of its double-
complex argument.

Page 1 February 20, 1984

AINT(3JF) MUNIX AINT(3F)

NAMNE
aint, dint — Fortran integer part intrinsic function

SYNOPSIS
real ri, r2
double precision dpl, dp2

r2 = aint(r1)

dp2 = dint(dp1)
dp2 = aint(dpl)

DESCRIPTION
Aint returns the truncated value of its real argument in a real. Dint
returns the truncated value of its double-precision argument as a
double-precision value. . 4int may be used as a generic function name,
returning either a real or double-precision value depending on the type
of its argument.

Page 1 February 20, 19684

ASIN(3F) MUNIX ASIN(3F)

NAME
asin, dasin — Fortran arcsine intrinsic function
SYNOPSIS
real rl, r2
double precision dpl, dp2
r2 = asin(rl)
dp2 = dasin(dp1)
dp2 = asin(dpl)
DESCRIPTION
Asin returns the real arcsine of its real argument. Dasin returns the
double-precision arcsine of its double-precision argument. The generic

form asin may be used with impunity as it derives its type from that of
its argument.

SEE ALSO)
trig(3M).

Page 1 February 20, 1984

ASSERT(3X) MUNIX ASSERT(3X)

NAME
assert — veri{y program assertion

SYNOPSIS
f#include <assert.h>
assert (expression)
int expression;
DESCRIPTION

This macro is useful for putting diagnostics into programs. When it is
executed, if expression is false (zero), assert prints

“Assertion failed: expression, file zyz, line nnn"

~

on the standard error output and aborts. In the error message, zyz is
the name of the source file and nnn the source line number of the assert
statement.

Compiling with the preprocessor option —DNDEBUG (see cpp (1)), or with
the preprocessor control statement ‘“‘§define NDEBUG" ahead of the
“finclude <assert.h>" statement, will stop assertions from being com-
piled into the program.

SEE ALSO
cpp(1), abort(3C).

Page 1 February 20, 1984

ATAN (3F) MUNIX ATAN(3F)

NANE
atan, datan — Fortran arctangent intrinsic function
SYNOPSIS
real rl, r2
double precision dpl, dp2
r2 = atan(rl)
dp2 = datan(dp1)
dp2 = atan(dp1i)
DESCRIPTION
Atan returns the real arctangent of its real argument. Datan returns
the double-precision arctangent of its double-precision argument. The
generic form atan may be used with a double-precision argument return-
ing a double-precision value.
SEE ALSO

trig(3M).

Page 1 February 20, 1984

ATAN2(3F) MUNIX ATAN2(3F)

NAME
atan2, datan2 — Fortran arctangent intrinsic function
SYNOPSIS

real r1, r2, r3

double precision dpl, dp2, dp3

r3 = atan2(ri, r2)

dp3 = datan2(dpi, dp2)

dp3 = atan2(dp1, dp2)

DESCRIPTION
Atan2 returns the arctangent of argl/arg2 as a real value. Datan?
returns the double-precision arctangent of its double-precision argu-

ments. The generic form atan2 may be used with impunity with double-
precision arguments.

SEE ALSO
trig(3M).

Page 1 February 20, 1984

ATOF (3C) MUNIX ATOF(3C)

NAME
atof, atoi, atol — convert ASCIl to numbers

SYNOPSIS
double atof (nptr)
char e*nptr;
int atoi (nptr)
char °nptr;
long atol (nptr)
char *nptr;

DESCRIPTION .
These functions convert a string pointed to by nptr to floating, integer,
and long integer representation respectively. The first unrecognized
character ends the string.
Atof recognizes an optional string of tabs and spaces, then an optional
sign, then a string of digits optionally containing a decimal point, then an
optional e or E followed by an optionally signed integer.
Atoi and atol recognize an optional string of tabs and spaces, then an
optioneal sign, then a string of digits.

SEE ALSO
scanf(38S).

BUGS

There are no provisions for overflow.

Page 1 February 20, 1984

BESSEL(3N) MUNIX BESSEL(3M)

NAME
jO. j1, jn, y0, y1, yn — Bessel functions

SYNOPSIS
f#include <math.h>

double jO (x)
double x;
double j1 (x)
double x;
double jn (n, x)
int n;

double x;
double y0 (x)
double x;

double y1 (x)
double x;

double yn (n, x)
int n;
double x;

DESCRIPTION
JO and j! return Bessel functions of z of the first kind of orders 0 and 1
respectively. Jn returns the Bessel function of z of the first kind of
order n.

Y0 and y ! return the Bessel functions of z of the second kind of orders 0
and 1 respectively. Yn returns the Bessel function of z of the second
kind of order n. The value of z must be positive.

DIAGNOSTICS
Non-positive arguments cause y0, y!1 and yn to return the value HUGE,
and to set errmo to EDOM. They also cause a message indicating DOMAIN
error to be printed on the standard error output; the process will con-
tinue.

These error-handling procedures may be changed with the function
matherr(3M).

SEE ALSO
matherr(3M).

Page 1 February 20, 1984

BIP(3) MUNIX BIP(3)

NAME
Bip - basic functions for BIP, the PCS bitmap display

SYNOPSIS

Bip can be used either as a normal terminal, /dev/blp, or as a graph-
ics terminal, with the local intelligence described below.

As a normal dumb terminal, Bip emulates a vt180 with 66 lines, 113
columns, and the control sequences given in <blip/vt180.h>,
/etc/termcap and /etc/keycap. The Unix 1.5 versions of med and vi can
run on this /dev/bip. To make bip a normal login tty, see man S Init-
tab.

As a graphics terminal, Bip uses programs in its local M68000 proces-
sor (either ‘'soft prom' or ‘hard prom’) to do the following graphics
functions:

Bdot(x, y. paint) —paint is one of the 16 "painting rules”" below.

Bline(x0, y8, x1, yl, paint)

Becircle(xB, y@, radius, paint, 0) .

Bit(x, y, h, u, xto, yto, paint) — block transfer:

x, Y. h, u are the block’'s upper left corner, height, and width

Bfill(x, y. h, u, paint)

Bget(x, y, h, &, mem) int mem();

Bput(x, y, h, 4, mem, paint)

Burite(buf, len) — vt100 ernulation, as for >/dev/bip

Fputc(ch, x, y. font } Aput a char from Berkeley ‘font (not yet)
Bipinit("/dev/bip”) — call before anything else.

DESCRIPTION
Bit, Bget, Bput ... move blocks on the Bip screen, or between Bip and
main memory. For example, high-quality text is displayed by Bput ting
(say) 12 by 20 bits for each letter, from memory to the screen.

The x coordinate runs 0..1023 left to right, and y runs 0..799 top to bot-
tom. The top left corner is 0, 0, the bottom left is 0, 799. y actually
runs 0..1022, but only the top 800 are displayed; the 223 off-screen rows
can be used for storing e.g. fonts. The last y row 1023 is Bip control
registers; don't write it.

The mem argument for Bput and Bget is a pointer to an array of bits: top
row left-to-right, 2nd row left-to-right, ... mem is w/16 short words wide
by h bits high. That is, if 4 < 16, mem js an array of short s,if 16 < u <
R an array of long s, and so on. The leftmost (most significant) bit in
men(@] is painted at x, y, the next at x+1, y and so on.

Bip can "paint" source over destination in various ways, such as "black"”
or "white"” or “invert” or "source over destination”. There are 18 possible
painting rules or ‘raster ops”, encoded in 4 bits. For example, to ‘or’
source to destination:

Bsource: e o 1 1

Bdest: e 1 8 1

.Bsource [Bdest: 8 1 1 1
is paint 0111 == 7. 0is black and 1 white, so this paint 7 would be used
to 'or’ white letters onto a black screen; to 'or’' black-on-white letters
onto a white background, Bput(... ~ (Bsource | ~ Bdest)) .

Page 1 February 20, 1984

BIP(3) MUNIX BIP(3)

FILES
finclude < bip/ops.h>
#defines the painting rules or "raster ops” Bblack, Buhite, Bdest
and Bsource, as well as Bhi 800 and Buide 1024.
CC oo -|bip
uses the Bip function library (full name /usr/lib/libbip.a). (The
real Bit etc. functions are in prom; the library Blt just moves its
arguments to local 68000 ram, then calls the prom Bit).'
CC ore -|¢ip
has Qbus versions of the functions, which go directly host -+ pixel-
processor, without the local 68000.
Bip system:
QU68000 host

Qbus: host memory <-> Bip memory

Bip: an M68000 with 128k ram, 16k rom, and pixel processor

1024 * 1023 'bit map’ or 2-port memory

..............................

EXAMPLES °
BUl(@, 8 Bhi, Bulde., Buhite); — clear the screen
Bline(8, Bhi-1, Buide-1, 8, Binvert); -~ a diagonal line

REFERENCES
For an introduction to Bit and its use in graphics, see the excellent arti-
cle by D. Ingalls, “The Smalltalk Graphics Kernel”, in August 1881 Byte.

February 20, 1984 Page 2

BOOL(3F) MUNIX BOOL(3F)

NAME

and, or, xor, not, Ishift, rshift — Fortran bitwise boolean functions

SYNOPSIS

integer i, j. k
reala, b, ¢
double precision dpl, dp2, dp3

k = and(i, j)

c = or(a, b)

j = xor(i, a)

j = not(i)

k = Ishift(i, j)

k = rshift(i, j)
DESCRIPTION

NOTE

BUGS

The generic intrinsic boolean functions and, or and zor return the value
of the binary operations on their arguments. Not is a unary operator
returning the one's complement of its argument. Lshift and rshift
return the value of the first argument shifted left or right, respectively,
the number of times specified by the second (integer) argument.

The boolean functions are generic, that is, they are defined for all data
types as arguments and return values. Where required, the compiler will
generate appropriate type conversions.

Although defined for all data types, use of boolean functions on any but
integer data is bizarre and will probably result in unexpected conse-
quences.

The implementation of the shift functions may cause large shift values to
deliver weird results. '

Page 1 February 20, 1984

BSEARCH(3C) MUNIX BSEARCH(3C)

NAME

bsearch — binary search

SYNOPSIS

char *bsearch ((char ¢) key, (char ¢) base, nel, sizeof (*key), compar)
unsigned nel;

int (*compar)();

DESCRIPTION

Bsearch is a binary search routine generalized from Knuth (6.2.1) Algo- -
rithm B. It returns a pointer into a table indicating where a datum may
be found. The table must be previously sorted in increasing order
according to a provided comparison function. Key points to the datum
to be sought in the table. Base points to the element at the base of the
table. Nel is the number of elements in the table. Compar is the name of
the comparison function, which is called with two arguments that point
to the elements being compared. The function must return an integer
less than, equal to, or greater than zero according as the first argument
is to be considered less than, equal to, or greater than the second.

DIAGNOSTICS

NOTES

A NULL pointer is returned if the key cannot be found in the table.

The pointers to the key and the element at the base of the table should
be of type pointer-to-element, and cast to type pointer-to-character.

The comparison function need not compare every byte, so arbitrary data
may be contained in the elements in addition to the values being com-
pared.

Although declared as type pointer-to-character, the value returned
should be cast into type pointer-to-element.

SEE ALSO

Page 1

lsearch(3C), hsearch(3C), gsort(3C), tsearch(3C).

February 20, 1984

CLOCK(3C) MUNIKX CLOCK(3C)

NAME
clock — report CPU time used

SYNOPSIS
long clock ()

DESCRIPTION
Qlock returns the amount of CPU time (in microseconds) used since the
first call to clock. The time reported is the sum of the user and system
times of the calling process and its terminated child processes for which
it has executed wait(2) or system(3S).

The resolution of the clock is 1000/HZ milliseconds, where HZ = 50 or 60
is the line frequency.

SEE ALSO
times(2), wait(2), hertz(2), system(3S).

BUGS)
The value returned by clock is defined in microseconds for compatibility
with systems that have CPU clocks with much higher resolution. Because
of this, the value returned will wrap around after accumulating only 2147
seconds of CPU time (about 36 minutes).

Page 1 February 23, 1984

CONJG(3F) MUNIX CONJG(3F)

NAME
conjg, dconjg — Fortran complex conjugate intrinsic function

SYNOPSIS
complex cx1, cx2
double complex dx1, dx2

cx2 = conjg(cx1)
dx2 = dconjg(dx1)

DESCRIPTION
Conjg returns the complex conjugate of its complex argument. Dconjg
returns the double-complex conjugate of its double-complex argument.

Page 1 February 21, 19684

CONV(3C) MUNIX | CONV(3c)

NAME

toupper, tolower, toascii — character translation

SYNOPSIS

finclude <ctype.h>
int toupper (c)

int c;

int tolower (c)

int c;

-int _toupper (c)

int c;

int _tolower (c)
int c;

int toascii (c)
int ¢;

DESCRIPTION

Toupper and tolower have as domain the range of getc: the integers from
—1 through 255. If the argument of foupper represents a lower-case
letter, the result is the corresponding upper-case letter. If the argument
of tolower represents an upper-case letter, the result is the correspond-
ing lower-case letter. All other arguments in the domain are returned
unchanged.

_toupper and _tolower are macros that accomplish the same thing as
toupper and tolower but have restricted domains and are f{aster.
_toupper requires a lower-case letter as its argument; its result is the
corresponding upper-case letter. _tolower requires an upper-case letter
as its argument; its result is the corresponding lower-case letter. Argu-
ments outside the domain cause garbage results.

Toascii yields its argument with all bits turned off that are not part of a
standard ASCII character; it is intended for compatibility with other sys-
tems.

SEE ALSO

Page 1

ctype(3C).

February 21, 1984

COS(3F) MUNIX COS(3F)

NAME
cos, dcos, ccos — Fortran cosine intrinsic function

SYNOPSIS
realri, r2
double precision dpl, dp2
complex cx1, cx2

r2 = cos(rl)

dp2 = dcos(dpl)
dp2 = cos(dpl)
ex2 = ccos(cxl)
cx2 = cos(cxl)
DESCRIPTION

Cos returns the real cosine of its real argument. Dcos returns the
double-precision cosine of its double-precision argument. Ccos returns
the complex cosine of its complex argument. The generic form cos may
be used with impunity as its returned type is determined by that of its
argument.

SEE ALSO
trig(3M).

Page 1 February 21, 1984

COSH(3F) MUNIX COSH(3F)

NAME
cosh, dcosh — Fortran hyperbolic cosine intrinsic function

SYNOPSIS
real ri, r2
double precision dpl, dp2
r2 = cosh(rl)
dp2 = dcosh(dpl)
dp2 = cosh(dpl)
DESCRIPTION)
Cosh returns the real hyperbolic cosine of its real argument. Dcosh
returns the double-precision hyperbolic cosine of its double-precision

argument. The generic form cosh may be used to return the hyperbolic
cosine in the type of its argument.

SEE ALSO
sinh(3M).

Page 1 February 21, 1984

CRYPT

(3¢) MUNIX CRYPT(3C)

NAME
crypt, setkey, encrypt — DES encryption

SYNOPSIS
char ecrypt (key, salt)
char *key, *salt;
setkey (key)
char ¢key;
encrypt (block, edflag)
char ¢block;
int edflag;

DESCRIPTION
Crypt is the password encryption routine. It is based on the NBS Data
Encryption Standard (DES), with variations intended (among other
things) to frustrate use of hardware implementations of the DES for key
search.
The first argument to crypt is a user's typed password. The second is a
2-character string chosen from the set [a-zA-Z0-9./]; this salt string is
used to perturb the DES algorithm in one of 4096 different ways, after
which the password is used as the key to encrypt repeatedly a constant
string. The returned value points to the encrypted password, in the same
alphabet as the salt. The first two characters are the salt itself.
The setkey and encrypt entries provide (rather primitive) access to the
actual DES algorithm. The argument of setkey is a character array of
length 64 containing only the characters with numerical value 0 and 1. If
this string is divided into groups of B, the low-order bit in each group is
ignored, leading to a 56-bit key which is set into the machine.
The argument to the encrypt entry is likewise a character array of
length 64 containing O's and 1's. The argument array is modified in place
to a similar array representing the bits of the argument after having
been subjected to the DES algorithm using the key set by setkey. If
edflag is 0, the argument is encrypted; if non-zero, it is decrypted.

SEE ALSO
login(1), passwd(1), getpass(3C), passwd(5).

BUGS
The return value points to static data that are overwritten by each call.

Page 1 February 21, 1984

CTERNID(3S) MUNIX CTERMID(3S)

NANE
ctermid — generate file name for terminal

SYNOPSIS
f#include <stdio.h>
char ectermid(s)
char es;

DESCRIPTION .
Ctermid generates a string that refers to the controlling terminal for the
current process when used as a file name.
If (int)s is zero, the string is stored in an internal static area, the con-
tents of which are overwritten at the next call to ctermid, and the
address of which is returned. If (int)s is non-zero, then s is assumed to
point to a character array of at least I,_ctermid elements; the string is
placed in this array and the value of s is returned. The manifest con-
stant I,_ctermid is defined in <stdio.h>.

NOTES
The difference between cfermid and ttyname(3C) is that tiyname must
be handed a file descriptor and returns the actual name of the terminal
associated with that file descriptor, while ctermid returns a magic string
(/dev/tty) that will refer to the terminal if used as a file name. Thus
ttyname is useless unless the process already has at least one file open
to a terminal.

SEE ALSO

ttyname(3C).

Page 1 February 21, 1984

CTIME (3C) MUNIX CTIME(3C)

NANE

ctime, localtime, gmtime, asctime, tzset - convert date and time to ASCII

SYNOPSIS

char sctime (clock)

long =clock:

finclude <time.h>

struct te =xlocaltime (clock)
long xclocks

struct ta spmtime {(clock)
long =clock;

char sasctime (tm)

struct tm mtm;

tzset ()

DESCRIPTION

Page 1

Ctime converts a time pointed to by clock such as returned by time(2)
into ASCIl and returns a pointer to a 26-character string in the following
form. All the fields have constant width.

Sun Sep 16 01:03:52 1973\ n\ 0

Localtime and gmtiime return pointers to structures containing the
broken-down time. Localtime corrects for the time zone and possible
daylight savings time; gmtime converts directly to GMT, which is the time
the UNIX system uses. Asctime converts a broken-down time to ASCII and
returns a pointer to a 26-character string.

The structure declaration from the include file is:

/= O(gl time.h 1.1 »/
/= 3.8 SID §# 1.2 o/
struct tm § /n see ctive(3) w/

int tm_sec;

int te_min;

int tu_hour

int tm_mday:;

int te_mon;

int ta_year;

int ta_wday;

int te_yday:

int ta_iedst;

.’;tern struct ta sgmtime{), =mlocaltime();

extern char sctime(), masctime();

extern void tzset();

sxtern long timezone;

sxtern int daylight:

extern char xtznamell;
These quantities give the time on a 24-hour clock, day of month (1-31),
month of year (0-11), day of week (Sunday = 0), year — 1900, day of year
(0-365), and a flag that is non-zero if daylight saving time is in effect.

The external long variable timezone contains the difference, in seconds,
between GMT and local standard time (in EST, timezone is 5¢60¢60); the
external variable daylight is non-zero if and only if the standard U.S.A.

February 21, 1984

CTINE(3C) MUNIX CTIME (3C)

Daylight Savings Time conversion should be applied. The program knows
about the peculiarities of this conversion in 1974 and 1975; if necessary,
a table for these years can be extended.

If an environment variable named TZ is present, asctime uses the con-
tents of the variable to override the default time zone. The value of T2
must be a three-letter time zone name, followed by a number represent-
ing the difference between local time and Greenwich time in hours, fol-
lowed by an optional three-letter name for a daylight time zone. For
example, the setting for New Jersey would be ESTSEDT. The effects of set-
ting TZ are thus to change the values of the external variables timezone
and daylight; in addition, the time zone names contained in the external
variable

char xtzname(2) = §'EST", 'EDT"{:
are set from the environment variable. The function tzset sets the exter-

nal variables from TZ; it is called by asctime and may also be called expli-
citly by the user.

SEE ALSO
time(2), getenv(3C), environ(7).

BUGS
The return values point to static data whose content is overwritten by
each call.

February 21, 1984 Page 2

CTYPE(3C) MUNIX CTYPE(3C)

NANE
isalpha, isupper, islower, isdigit, isxdigit, isalnum, isspace, ispunct,
isprint, isgraph, iscntrl, isascii — classify characters

SYNOPSIS
#include <ctype.h>
int isalpha (c)
int c;

DESCRIPTION
These macros classify character-coded integer values by table lookup.
Each is a predicate returning nonzero for true, zero for false. Jsascii is
defined on all integer values; the rest are defined only where isascii is
true and on the single non-ASCII value EOF (-1 — see stdio(3S)).

isalpha ¢ is a letter.

isupper c is an upper-case letter.

islower ¢ is a lower-case letter.

isdigit c is a digit [0-9].

isxdigit c is a hexadecimal digit [0-9], [A-F] or [a-f].

isalnum c is an alphanumeric (letter or digit).

isspace ¢ is a space, tab, carriage return, new-line, vertical tab, or
form-feed.

ispunct ¢ is a punctuation character (neither control nor
alphanumeric).

isprint c is a printing character, code 040 (space) through 0176
(tilde).

isgraph ¢ is a printing character, like isprint except false for
space.

iscntrl ¢ is a delete character (0177) or an ordinary control char-
acter (less than 040).

isascit ¢ is an ASCII character, code less than 0200.

DIAGNOSTICS

If the argument to any of these macros is not in the domain of the func- .
tion, the result is undefined.

SEE ALSO
ascii(7).

Page 1 February 21, 1984

CURSES(3)

NANE

MUNIX

curses — screen functions with "‘optimal’” cursor motion
SYNOPSIS

DESCRIPTION

These routines give the user a method of updating screens with reason-
able optimization. They keep an image of the current screen, and the
user sets up an image of a new one. Then the refresh() tells the routines
to make the current screen look like the new one. In order to initialize
the routines, the routine initscr() must be called before any of the other
routines that deal with windows and screens are used. The routine

cc [flags] files —=lcurses —Itermcap [libraries]

endwin() should be called before exiting.
SEE ALSO

Screen Updating and Cursor Movement Optimization: A Library Package,

Ken Arnold,

ioctl(2), getenv(3), termcap(5)

AUTHOR

Ken Arnold

FUNCTIONS

Page 1

addch(ch)
addstr(str)
box(win,vert,hor)
crmode()

clear()
clearok(scr,boolf)
clrtobot()
clrtoeol()

delch()

deleteln()
delwin(win)

echo()

endwin()

erase()

getch()
getcap(name)
getstr(str)
gettmode()
getyx(win,y,x)
inch()

initser()

insch(c)

insertin()
leaveok(win,boolf)
longname(termbuf,name)
move(y.x)
mvcur(lasty,lastx,newy,newx)

add a character to stdscr
add a string to stdscr

draw a box around a window
set cbreak mode

clear stdscr

set clear flag for scr

clear to bottom on stdser
clear to end of line on stdscr
delete a character

delete a line .

delete win

set echo rmode

end window modes

erase stdscr

get a char through stdscr
get terminal capability name
get a string through stdscr
get tty modes

get (y.x) co-ordinates

get char at current (y.x) co-ordinates

initialize screens

insert a char

insert a line

set leave flag for win

get long name from termbuf
move to (y,x) on stdscr
actually move cursor

newwin(lines,cols,begin_y,begin_x) create a new window

nl()
nocrmode()
noecho()

set newline mapping
unset cbreak mode
unset echo mode

February 20, 1984

CURSES(3)

CURSES(3) MUNIX CURSES(3)

nonl() unset newline mapping
noraw() unset raw mode
overlay(winl,win2) overlay winl on win2
overwrite(winl,win2) overwrite winl on top of win2
printw(fmt.argl,arg2,...) printf on stdscr

raw() set raw mode

refresh() make current screen look like stdscr
resetty() reset tty flags to stored value
savetty() stored current tty flags
scanw(fmt,argl,arg2,...) scanf through stdscr
scroll(win) scroll win one line
scrollok(win,boolf) set scroll flag

setterm(name) set term variables for name
standend() end standout mode
standout() start standout mode
subwin(win lines,cols,begin_y,begin_x) create a subwindow
touchwin(win) change all of win

unctrl{ch) printable version of ch
waddch(win,ch) add char to win
waddstr(win,str) add string to win

wclear(win) ‘clear win

welrtobot(win) clear to bottom of win
wclrtoeol(win) clear to end of line on win
wdelch(win,c) delete char from win
wdeleteln(win) delete line from win
werase(win) erase win

wgetch(win) get a char through win
wgetstr(win,str) get a string through win
winch(win) get char at current (y,x) in win
winsch(win,c) insert char into win
winsertin(win) insert line into win
wmove(win,y.x) set current (y,x) co-ordinates on win
wprintw(win,fmt,argl,arg2....) printf on win

wrefresh(win) make screen look like win
wscanw(win,fmt,argl,arg2,...) scanf through win
wstandend(win) end standout mode on win
wstandout(win) start standout mode on win

February 20, 1984 Page 2

CUSERID(3S) MUNIX CUSERID(3S)

NAMNE
cuserid — character login name of the user

SYNOPSIS
finclude <stdio.h>

char e¢cuserid (s)
char °s;

DESCRIPTION
Cuserid generates a character representation of the login name of the
owner of the current process. If (int)s is zero, this representation is gen-
erated in an internal static area, the address of which is returned. If
(int)s is non-zero, s is assumed to point to an array of at least 1,_cuserid
characters; the representation is left in this array. The manifest con-
stant L_cuserid is defined in <stdio.h>.

DIAGNOSTICS
If the login name cannot be found, cuserid returns NULL; if s is non-zero
in this case, \ 0 will be placed at ¢s.

SEE ALSO
getlogin(3C), getpwuid(3C).

BUGS
Cuserid uses getpumam(3C); thus the results of a user’s call to the latter
will be obliterated by a subsequent call to the former.
The name cuserid is rather a misnomer.

Page 1 February 21, 1984

D(3) MUNIX D(3)

NAME
d — text database functions

DESCRIPTION
d is a set of functions that work on Unix text files with records’ like:
from: Smith to:Jones date:15.5 re: Unix jobs

or:
Title: What is the Title of this Book?
Author: R.M.Smullyan
Year: 1978

Subjects: logic, games, paradox
or Usenet mail, or a software project database like [Knudsen].

d is designed for small text databases like these, where
* the familiar, fast screen editor can edit the data
e Unix tools sort, grep. awk, join ... all work
« the size and cost of a big database system would be overkill.

d line, d record, d get, d form:
d has four subcommands:

d |[line | record | get | form| loptions] (files, or stdin)
line, record, get, form may be abbreviated |, r. g. f.

d line
makes each record into a single ‘'line’, for sort or awk or ...

d record
undoes d line in:

d line afile | Unix-filter | d record

where d line flattens each record to one line,
Unix-filter sorts or awks ... the lines, and
d record makes each line back into a record.

d get aword
gets all records contining ‘aword’, like a fast
dline | fpgrep aword | d record

d form aformfile
puts fields from the data base into a form, such as:
Dear {Name{,
In reply to your {Adjective] letter of {Date],

or simply s.;lect.s some fields:
{Phone] {Name].

EXAMPLES

d get Edinburgh eunet.map
looks in the eunet map for people in Edinburgh.

Page 1 February 20, 1984

D(3) MUNIX D(3)

d line < project | sort '-t|' -r +2 | d rec
sorts project records on field 3.

d record format
A record is a group of lines, followed by a blank line. A field is 'Field-
name: Value', where 'Value' is everything up to the next 'Fieldname’: a
word, a line, or several lines. ‘'Value’ may contain a "', but not right after
a letter or number.

d line separates fields with a '|' field separator (awk FS.' sort -t). d
record then deletes all ‘|'s, so that d line | d record does nothing.

d line also changes newlines in multi-line records to an ersatz newline,
default '\', which d record changes back to \n. To specify your own
field-separator and newline characters (which must not occur in the
data):

dsep="FN'; export dsep .

dsep="|\' is the default.

C interface
d is only a few pages of C code, so it can be easily tailored or extended:

#include "field.h"

typedefs a struct field, which holds pointers to fieldname, field-
val etc.

nf = getFields(charx rec, field f[1)
splits rec into 'fieldname: value’ pairs, filling f[8 .. nf-1].

charx getParal char n!)
returns the next paragraph (lines up to \n\n) from the open file
Paralnfile. The text is buffered inside getPara. Paragraphs may
be no longer than 4096 bytes. \n s are changed to nl.

Possible extensions:
More complicated gets, such as d get ‘Duedate > 15.5° .
Dates.
Iget, interactive get.

References

Knudsen D.B. et al, "A Modification Request Control System”, in Proc,

2nd International Conference on Software Engineering, San Francisco,
1976, pp. 187-192.

Author
Denis Bzowy, April 1983

February 20, 19684 Page 2

D(3) MUNIX D(3)

SEE ALSO
ak(l), cut(l), join(l), sortfl), dbm(3X)

BUGS
Sort, auk etc. may misbehave on records longer than 256 or 512 bytes.

Page 3 February 20, 1984

DATE (3F) MUNIX DATE (3F)

NAME
date,time — Information about date and time

SYNOPSIS
character®*10 day

character®8 clock
call date(day)
call time(clock)

DESCRIPTION
Date returns the day in the format dd.mm.yyyy in day.

Time returns the time in the format hh:mm:ss in clock.

Page 1 April 12, 1984

DBM(3X) MUNIX DBM (3X)

NAME
dbminit, fetch, store, delete, firstkey, nextkey — data base subroutines
SYNOPSIS
typedef struct { char *dptr; int dsize; | datum;
dbminit(file)
char *file;
datum fetch(key)
datum key;
store(key, content)
datum key, content;
delete(key)
datum key;
datum firstkey();
datum nextkey(key);
datum key;
DESCRIPTION
These functions maintain key/content pairs in a data base. The func-
tions will handle very large (a billion blocks) databases and will access a
keyed item in one or two filesystem accesses. The functions are obtained
with the loader option —ldbm.
Keys and contents are described by the daetum typedef. A datum
specifies a string of dsize bytes pointed to by dptr. Arbitrary binary data,
as well as normal ASCII strings, are allowed. The data base is stored in
two files. One file is a directory containing a bit map and has ‘.dir’ as its
suffix. The second file contains all data and has ‘.pag’ as its suffix.
Before a database can be accessed, it must be opened by dbminit. At the
time of this call, the files file.dir and file.pag must exist. (An empty data-
base is created by creating zero-length ‘.dir’ and ‘.pag’ files.)
Once open, the data stored under a key is accessed by fetch and data is
placed under a key by store. A key (and its associated contents) is
deleted by delete. A linear pass through all keys in a database may be
made, in an (apparently) random order, by use of firstkey and neztkey.
Firstkey will return the first key in the database. With any key neztkey
will return the next key in the database. This code will traverse the data
base:
for(key=firstkey(); key.dptr'=NULL; key=nextkey(key))
DIAGNOSTICS
All functions that return an int indicate errors with negative values. A
zero return indicates ok. Routines that return a datum indicate errors
with a null (0) dptr.
BUGS
The ‘.pag' file will contain holes so that its apparent size is about four
times its actual content. Older UNIX systems may create real file blocks
for these holes when touched. These files cannotl be copied by normal
means (cp, cat, tp, tar, ar) without filling in the holes.
Page 1 February 21, 1984

DBM (3X) MUNIX DBM (3X)

Dptr pointers returned by these subroutines point into static storage
that is changed by subsequent calls.

The sum of the sizes of a key/content pair must not exceed the internal
block size (currently 512 bytes). Moreover all key/content pairs that
hash together must fit on a single block. Store will return an error in the
event that a disk block fills with inseparable data.

Delete does not physically reclaim file space, although it does make it
available for reuse.

The crder of keys presented by firstkey and neztkey depends on a hash-
ing function, not on anything interesting.

February 21, 1984 Page 2

DRAND48(3C) MUNIX DRAND48(3C)

NAMNE
drand48, erand48, Irand48, nrand48, mrand48, jrand48, srand48, seed48,
lcong48 — generate uniformly distributed pseudo-random numbers

SYNOPSIS
double drand48 ()

double erand48 (xsubi)
unsigned short xsubi[3];

long lrand48 ()

long nrand48 (xsubi)
unsigned short xsubi[3];

long mrand48 ()

long jrand48 (xsubi)
unsigned short xsubi[3];

void srand48 (seedval)
long seedval;

unsigned short *seed48 (seed16v)
unsigned short seed16v([3];

void lcong48 (param)
unsigned short param{7];

DESCRIPTION
This- family of functions generates pseudo-random numbers using the
well-known linear congruential algorithm and 48-bit integer arithmetic.

Functions drand48 and erand48 return non-negative double-precision
floating-point values uniformly distributed over the interval {0.0, 1.0).

Functions lrand48 and nrand48 return non-negative long integers uni-
formly distributed over the interval [0, 2%).

Functions mrand48 and jrand48 return signed long integers uniformly
distributed over the interval [-2%, 2%!).

Functions srand48, seed48 and lcong48 are initialization entry points,
one of which should be invoked before either drand48, lrand48 or
mrand48 is called. (Although it is not recommended practice, constant
default initializer values will be supplied automatically if drand4é,
lrand48 or mrand48 is called without a prior call to an initialization
entry point.) Functions erand48, nrand48 and jrand48 do not require an
initialization entry point to be called first.

All the routines work by generating a sequence of 48-bit integer values,
X,. according to the linear congruential formula

Xosy =(aXa +C)modm n20.

The parameter m =2'%, hence 48-bit integer arithmetic is performed.
Unless lcong48 has been invoked, the multiplier value a and the addend
value ¢ are given by

a = SDEECEG6D s = 273673163155,
c = Blﬁ =13 8

Page 1 February 21, 1984

DRAND48(3C) MUNIX DRANDA48 (3C)

The value returned by any of the functions drand48, erand48, lrand48,
nrand48, mrand48 or jrand48 is computed by first generating the next
48-bit X, in the sequence. Then the appropriate number of bits, accord-
ing to the type of data item to be returned, are copied from the high-
order (leftmost) bits of X; and transformed into the returned value.

The functions drand48, irand48 and mrand48 store the last 48-bit X
generated in an internal buffer; that is why they must be initialized prior
to being invoked. The functions erand48. nrand48 and jrand48 require
the calling program to provide storage for the successive X; values in the
array specified as an argument when the functions are invoked. That is
why these routines do not have to be initialized; the calling program
merely has to place the desired initial value of X, into the array and pass
it as an argument. By using different arguments, functions erand48,
nrand48 and jrand4§ allow separate modules of a large program to gen-
erate several independent streams of pseudo-random numbers, i.e., the
sequence of numbers in each stream will not depend upon how many
times the routines have been called to generate numbers for the other
streams.

The initializer function srand48 sets the high-order 32 bits of X; to the 32
bits contained in its argument. The low-order 16 bits of X are set to the
arbitrary value 330E,.

The initializer function seed48 sets the value of X to the 48-bit value
specified in the argument array. In addition, the previous value of X is
copied into a 48-bit internal buffer, used only by seed48, and a pointer to
this buffer is the value returned by seed48. This returned pointer, which
can just be ignored if not needed, is useful if a program is to be restarted
from a given point at some future time — use the pointer to get at and
store the last X, value, and then use this value to reinitialize via seed48
when the program is restarted.

The initialization function lcong48 allows the user to specify the initial X;.
the multiplier value a. and the addend value ¢. Argument array elements
param[0-2] specify X. param[3-5] specify the multiplier a. and param/[6]
specifies the 16-bit addend c. After lcong48 has been called, a subse-
quent call to either srand48 or seed48 will restore the ““standard’ multi-
plier and addend values, e and ¢, specified on the previous page.

NOTES

The versions of these routines for the VAX-11 and PDP-11 are coded in
assembly language for maximum speed. It requires approximately 80
usec on a VAX-11/780 and 130 usec on a PDP-11/70 to generate one
pseudo-random number. On other computers, the routines are coded in
portable C. The source code for the portable version can even be used
on computers which do not have floating-point arithmetic. In such a
situation, functions drand48 and erand48 do not exist; instead, they are
replaced by the two new functions below.

long irand48 (m)
unsigned short m;

long krand48 (xsubi, m)
unsigned short xsubi[3], m;

February 21, 1984 Page 2

DRAND48(3C) MUNIX DRAND48(3C)

Functions irand48 and krand48 return non-negative long integers uni-
formly distributed over the interval (0. m -1].

SEE ALSO
rand(3C).

Page 3 February 21, 1984

ECVT(3C) MUNIX ECVT(3C)

NANE
ecvt, fcvt — output conversion

SYNOPSIS
char ¢ecvt (value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;
char ¢fcvt (value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;
char egcwt (value, ndigit, buf)
double value;
char *buf;

DESCRIPTION
Ecvt converts the value to a null-terminated string of ndigit ASCII digits
and returns a pointer thereto. The position of the decimal point relative
to the beginning of the string is stored indirectly through decpt (negative
means to the left of the returned digits). If the sign of the result is nega-
tive, the word pointed to by sign is non-zero, otherwise it is zero. The
low-order digit is rounded.
Fcut is identical to ecvt, except that the correct digit has been rounded
for Fortran F-format output of the number of digits specified by *_ndi-
gits. .
Gevt converts the value to a null-terminated ASCIl string in buf and
returns a pointer to duf. It attempts to produce ndigit significant digits
in Fortran F format if possible, otherwise E format, ready for printing.
Trailing zeros may be suppressed.

SEE ALSO
printf(3S).

BUGS
The return values point to static data whose content is overwritten by
each call.

Page 1 February 21, 1984

END(3C) MUNIX END(3C)

NAME
end, etext, edata — last locations in program

SYNOPSIS
extern end;
extern etext;
extern edata;

DESCRIPTION
These names refer neither to routines nor to locations with interesting
contents. The address of efert is the first address above the program
text, edata above the initialized data region, and end above the uninitial-
ized data region.

When execution begins, the program break coincides with end, but the
program break may be reset by the routines of drk(2), malloc(3C), stan-
dard input/output (stdio(3S)), the profile (—p) option of ce(1), and so on.
Thus, the current value of the program break should be determined by
**sbrk(0)" (see brk(2)).

These symbols are accessible from assembly language if it is remembered
that they should be prefixed by _.

SEE ALSO
brk(2), malloc(3C).

Page 1 February 21, 1984

ERF(3F) MUNIX ERF (3F)

NAMNE
erf, erfc, derf, derfc — error function and complementary error function
SYNOPSIS

function erf(x)
real x

function erfc(x)

real x

double precisionc function derf(x)
double precision x

double precision function derfc(x)
double precision x

DESCRIPTION
Erfsderf returns the error function of z, defined as {2 over sqrt pi} int
fromOtox esup{-tsup?2]dt.

Erfcsderfc, which returns 1.0 — erf(z), is provided because of the
extreme loss of relative accuracy if erf(z) is called for large = and the
result subtracted from 1.0 (e.g. for £ = 5, 12 places are lost).

SEE ALSO
exp(3M), erf(3M).

Page 1 April 12, 1984

ERF(3M) MUNIX ERF(3M)

NAME
er{, erfc — error function and complementary error function

SYNOPSIS
f#include <math.h>

double erf (x)
double x;

double erfc (x)
double x;

DESCRIPTION
- 2_Teut
Erf returns the error function of z, defined as ﬁ{c dt.
Erfc, which returns 1.0 — erf(z), is provided because of the extreme loss

of relative accuracy if erf(z) is called for large z and the result sub-
tracted from 1.0 (e.g. for z = 5, 12 places are lost).

SEE ALSO
exp(3M).

Page 1 February 21, 1984

EXP(3F) MUNIX EXP(3F)

NAME
exp, dexp, cexp — Fortran exponential intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2
complex cx1, ex2

r2 = exp(ril)
dp2 = dexp(dp1)
dp2 = exp(dp1l)
cx2 = clog(cx1)
cx2 = exp(cxl)
DESCRIPTION)

Ezp returns the real exponential function e* of its real argument. Dezp
returns the double-precision exponential function of its double-precision
argument. Cezp returns the complex exponential function of its complex
argument. The generic function exzp becomes a call to dezxp or cerp as
required, depending on the type of its argument.

SEE ALSO
exp(3M).

Page 1 February 21, 1984

EXP (3M) MUNIX EXP(3M)

NAME
exp, log, logl0, pow, sqrt — exponential, logarithm, power, square root
functions
SYNOPSIS
finclude <math.h>
double exp (x)
double x;
double log (x)
double x;
double log10 (x)
double x;
double pow (x, y)
double x, y;
double sqrt (x)
double x;
DESCRIPTION

Ezp returns e®.
Log returns the natural logarithm of z. The value of z must be positive.

Log 10 returns the logarithm base ten of z. The value of z must be posi-
tive.

Pow returns z¥. The values of £ and y may not both be zero. If z is non-
positive, ¥y must be an integer.

Sgrt returns the square root of z. The value of may not be negative.

DIAGNOSTICS .

Ezp returns HUGE when the correct value would overflow, and sets errno
to ERANGE.

Log and log10 return O and set ermmo to EDOM when z is non-positive. An
error message is printed on the standard error output.

Pow returns 0 and sets errno to EDOM when z is non-positive and y is not
an integer, or when z and ¥y are both zero. In these cases a message indi-
cating DOMAIN error is printed on the standard error output. When the
correct value for pow would overflow, pow returns HUGE and sets errno
to ERANGE.

Sgrt returns 0 and sets errmo to EDOM when z is negative. A message
indicating DOMAIN error is printed on the standard error output.

These error-handling procedures may be changed with the function
matherr(3M).

SEE ALSO
hypot(3M), matherr(3M), sinh(3M).

Page 1 February 21, 1984

FCLOSE(3S) MUNIX FCLOSE(3S)

NAME
fclose, fllush — close or flush a stream

SYNOPSIS
finclude <stdio.h>
int fclose (stream)
FILE estream;
int fMush (stream)

. FILE estream;

DESCRIPTION
Fclose causes any buffers for the named stream to be emptied, and the

file to be closed. Buffers allocated by the standard input/output system
are freed.

Fclose is performed automatically upon calling ezit(2).

Fftush causes any buffered data for the named output stream to be writ-
ten to that file. The stream remains open.

These functions return 0 for success, and EOF if any errors were
detected.

SEE ALSO
close(2), fopen(3S), setbuf(3S).

Page 1 February 21, 1984

FERROR(3S) MUNIX FERROR(3S)

NAME
ferror, feof, clearerr, fileno — stream status inquiries
SYNOPSIS
finclude <stdio.h>
int feof (stream)
FILE estream;
int ferror (stream)
FILE estream
clearerr (stream)
FILE estream
fileno(stream)
FILE estream;

DESCRIPTION

Feof returns non-zero when end of file is read on the named input
stream, otherwise zero.

Ferror returns non-zero when error has occurred reading or writing the
named stream, otherwise zero. Unless cleared by clearerr, the error
indication lasts until the stream is closed.

Clearerr resets the error indication on the named stream.

Fileno returns the ini.eger file descriptor associated with the stream, see
open(2).

Feof, ferror, and fileno are implemented as macros; they cannot be re-
declared.

SEE ALSO
open(2), fopen(3S).

Page 1 February 21, 1984

FLOOR(3M) MUNIX FLOOR(3M)

NAME

floor, ceil, fmod, fabs — floor, ceiling, remainder, absolute value functions

SYNOPSIS

finclude <math.h>

double floor (x)
double x;

double ceil (x)
doubdble x;

double fmod (x, y)
double x, y;

double fabs (x)
double x;

DESCRIPTION

Floor returns the largest integer (as a double-precision number) not
greater than z.

Ceil returns the smallest integer not less than z.

Pmod returns z if y is zero, otherwise the number f with the same sign as
x, such that z = iy + f for some integer ¢, and |f| < |y].

Fabs returns |z]|.

SEE ALSO

Page 1

abs(3C).

February 21, 1984

FOPEN(3S) MUNIX FOPEN(3S)

NAME
fopen, freopen, {dopen — open a stream

SYNOPSIS
f#include <stdio.h>

FILE *fopen (file-name, type)
char ¢file-name, *type;
FILE ¢freopen (file-name, type, stream)
char ¢file-name, *type;
FILE estream;
FILE efdopen (fildes, type)
int fildes;
char etype;
DESCRIPTION

Fopen opens the file named by file-name and associates a stream with it.
Fopen returns a pointer to be used to identify the stream in subsequent

operations.
Type is a character string having one of the following values:
"r open for reading
"w' create for writing
"a" .append; open for writing at end of file, or create for writ-
ing
r+" open for update (reading and writing)
"w+" create for update '
"a+" append; open or create for update at end of file

Freopen substitutes the named file in place of the open stream. It
returns the original value of stream. The original stream is closed,
regardless of whether the open ultimately succeeds.

Freopen is typically used to attach the preopened constant names stdin,
stdout, and stderr to specified files. .

Fdopen associates a stream with a file descriptor obtained from open,
dup, creat, or pipe(2). The type of the stream must agree with the mode
of the open file.

When a file is opened for update, both input and output may be done on
the resulting stream. However, output may not be directly followed by
input without an intervening fseek or rewind, and input may not be
directly followed by output without an intervening fseek, reunind, or an
input operation which encounters end of file.

SEE ALSO
open(2), fclose(3S).

DIAGNOSTICS
Fopen and freopen return the pointer NULL if file-name cannot be
accessed.

Page 1 February 21, 1984

FP(3) MUNIX (CADNUS) FP(3)

NAME
fp — Floating Point on the CADMUS

DESCRIPTION
There are currently three types of floating point (FP) available: the
Motorola Fast Floating Point Package (FFP), the Motorola IEEE package,
and FP hardware with the National Semiconductor FP coprocessor (NS).

Code generators for FFP are available in C, Fortran and Pascal, code gen-
erators for Motorola and NSC IEEE in C and Fortran. For both C and For-
tran, the compiler option

-1 will produce code for FFP,

-fF for Motorola IEEE, and

-fN for NSC IEEE.

The options will influence the preprocessor, the compiler passes and the
calling sequence of the loader. The shorthand

cc -f xxx.c
is expanded inside cc (resp. {77) to
cc -c -f -DFFP xxx.c; cc xxx.o -Iffp .

cc -fF xxx.c
is expanded to
cc -c¢ -fF -DIEEE -DMOT_IEEE xxx.c; cc xxx.o -lmot .

cc -fN xxx.c
is expanded to
cc -¢ -{ -DIEEE -DNSC_IJEEE xxx.c; cc xxx.0 -lnsc .

The libraries libfIlp.a, libmot.a and libnsc.a contain code for these types
of floating point, the stdio-routines for reading and printing floating-
point values, and the mathematical routines formerly in libm.a. The
library libm.a is no longer supported. The libraries exist in the 2 and 4
byte integer form, i.e. libflp.a and libLflp.a. The user need not be con-
cerned about this. All he has to do is to specify the type of floating point
he wishes, with -f, -f{F or -fN, and if he wants 4 byte integers, with option
-4

Each program will call a routine fp_init() before it calls main(). The rou-
tine fp_init exists in each of the floating point libraries and in the stan-
dard library. The routine fp_init() in the standard library does nothing,
whereas the routines in the FP libraries execute tasks specific for this
kind of FP. If a program does not use floating point, then the routine in
the standard library will be called, doing nothing. If a program uses float-
ing point, then the corresponding FP library will be loaded before the
standard library, and so the special fp_init routine will be called.

FFP

FFP is only available for 32 bit floating point numbers. The accuracy is
about 7 1/3 digits. In C and Fortran double (resp. double precision) will
be silently handled as float (real). FFP is a very fast software emulation,

Page 1 February 20, 1984

FP(3) MUNIX (CADMUS) FP(3)

but fails if high accuracy or a large range is required.

Motorola IEEE (MOTIEEE)
MOTIEEE supports both single and double precision. Code is generated as
if the instructions fmove, fadd, fmul etc. were part of the 68000 instruc-
tion set. When executed, these instructions will lead to an unimple-
mented instruction exception. The exception will be caught and an FP
emulator invoked. In the case of the future Motorola FP coprocessor, the
instruction will be executed directly by the coprocessor.

Unfortunately, the software emulation is quite slow. This is due to the
emulation overhead and the complexities of the IEEE model. The advan-
tage is that the switch to the Motorola FP coprocessor should be straight
forward.

The MOTIEEE code emulates 8 floating point registers of extended preci-
sion (80 bits), plus some control registers. The C-compiler makes three
FP registers available for register variables, thus the declaration

register doule di,d2,d3;

makes sense. The control registers allow the specification of rounding
modes and the enabling/disabling of floating point traps. Each program
executes at the beginning the routine fp_init(). This routine sets the
rounding mode to round-towards-zero, and enables traps for invalid
operation, overflow, and divide-by-zero. Several routines are available for
the user to read/write the control registers. If a trap occurs, the pro-
gram will be signalled with signal SIGFPE. The precise cause of the excep-
tion can then be inquired by reading the FP status register.

The available special IEEE routines are:

ieee_get_cntri() /=% return the contents. of CNTRL register =/
ieee_put_cntrl (mode) /% urite mode into CNTRL register =/

int mode;

ieee_get_status() /= return the contents of STATUS register »/
ieee_put_status(stat) /= wurite stat into STATUS register =/

int stat;

ieee_get_tmpstat() /% return the contents of TEMPSTAT register =/
ieee_isnan(d) /= return 1 if d is a NaN, B otheruise =/
double d;

ieee_isinf{g) /s return l if d is infinity, B otheruise &/
double d;

ieee_isnorm(d} /= return 1 if d is normalized, B otherwise x/
double d:

The following is a list of /usr/include/mot.ieee.h. It explains the con-
tents and use of the CNTRL, STATUS and TEMPSTAT registers mentioned
above. '

/% defines for the Motorola IEEE package »/
7B 44t A At det ot e e A e e A e e b b X/

/x Status Register (STATUS) =/
15 14 13 12 11 18 9 8

February 20, 1984 Page 2

FP(3)

Page 3

MUNIX (CADMUS)

| s | soeroe | 10P_COCE | aPrce {

— —— —
7 6 5 4 3 2 1 o

——— -—

| oo | soxmm | JOVF | INEX | OZ | UNFL | OVFL | IOP |

—
”-— ——p

foefine 10P_CODE Bx3cB8 /= set 1f I0P set o/

foetine OPCC B8x030@ /= condition codes after fcmp =/
fosfine 10VF 8x80828 /% integer overfiow a/

foetine 1NEX BxB018 /= Inexact result =/

fdetine D2 08288 /x divide by zero »/

foetfine UNFL 0x8804 /= Underflow »/

gaetine OVFL BxP082 /x Overflou =/

foefine 10P Bx@B21 /= invalid operation =/

/=

values for JOP_COCE:

2x8228 No I0P error

OxBP48 Square root of a negative number, inflnity in projective mode.
or a not normalized number

€x0888 (+infinity) + (-infinity) in atfine mode

OxBBcB® Triad to convert NaN to binary Integer

0xB1088 In divieion: 8/8, infinity/infinity or divisor
is not normalized end the dividend is not zero
and is finite

exP142 One of the Input arguments was 8 trapping NaN

9xB188 Unordered condition tested by predicate other than
equal or not-equal!

8xB1c8 Projective closura use of +/- infinity

820208 0 = Infinity

802240 in REM <a> is zero or not normalized or FPn
is infinity

8xP288 Value of 'k’ for BINDEC or ‘p’ for DECBIN is out
of range

8x82c@ Tried to MOV a single denormalized number to a
double destination .

8x8382 Tried to return an unnormalized number to single
or double (invalid result)

BxB340 Illegal instruction

2x8380 unused

BxB3cl unused

values for CIPCC:

Joefine BxEE82 equa!
#doetine BxB1B0 less than
foefine Bx€280 greater than
foetine BxB388 unordered

The bits I0VF to IOP in the status register are set if any

errors have occurred. Note that each bit of these bits sust be reset
by the caller. The FP processor only writes 1 bits and never clears
existing bits. Thie is done so a long computation can be completed
uith the error status checked once at the end.

s/

I8 ettt ettt bt
/= Temporary trap status byte (TEMPSTAT) =/

/=

Same defines as for I0VF to IOP above. The bits in the temporary
status byte represent the status returned from the last flpating-point
operation. They are cleared at the start of each operation. Due to an
apparent error in the Emulator, reading this byte (or STATUS or ONTRL)
after a trap took place takes another trap of the same kind. Disabling
the traps before reading TEMPSTAT is an operation which clears
TETPSTAT! So the only use of TEPSTAT currentiy lies in disadbling all
traps and then checking TEMPSTAT after suspicious operations.

February 20,

FP(3)

1984

FP(3) MUNIX (CADMUS) FP(3)

a/

T ettt bttt b b ittt ettt et =/

/= Control register (CNTRL) »/

15 14 13 12 11 ie 9 8
e o —— -
| moxx | owmexx | PREC | NOR {CLOSUR| ROUND |

7 6) 4 3 2 1)
$mccmcccccccns cna- —
| s | mumxx | IOYF | INEX | OZ | UNFL | OYFL | 1OP |
O e L _—— -

Jaetine PREC 8x3600
#cefine NORM exe820
gdefine CLOSURE Bx8488
foetine ROND ©8x2328
/% 10VF to 10P as above =/

/%

values for PREC:

8x0P00 round to extended
2x1888 round to single
8»2088 round to double
9»3088 unused, reserved

note: C stdic and Fortran demand round-to-zerp 1!1

values for NORM:

OxB8B8 do not normalize denormal ized operands before an
operation (narning mode) .

BxB882 normalize denormalized numbers while converting
to internal format {normalizing mode)

note: Unnormalized numbers are not affected by bit NORM

values for CLOSURE:
2x2828 projective closure
8xB400 affine closure

values for ROND:

@x8088 round to nearest
8x@188 round to zero

Bx8288 round to plus Infinity
9>x8388 round to plus infinity

10YF to 10P:

The programmer may set a one in any blt to snablie a trap
on the corresponding error conditiom

s/

The procedure fp_init executes (among others) the statement
ieee_put_cntrl (BxB10p);

thus setting rounding mode to round-to-zero, and enabling the traps for
DZ, OVFL and IOP. If any of these occur, signal SIGFPE will be sent.

National Semiconductor 1IEEE (NSCIEEE)
This FP code runs with the Cadmus FP board, which contains the NSC
16081 FP coprocessor. This chip is seen from the code generator as con-
taining 4 double precision registers. This is not sufficient to allow regis-
ter variables. During a context switch, the state of the NSC must be
saved. But it would be wasteful to save the context if the process does
not use the NSC at all. So fp_init() will execute a system call, that tells

February 20, 19684 Page 4

FP(3) MUNIX (CADNUS) FP(3)

the kernel to save or restore the context when this process loses or
regains the CPU.

The NSC processor is seen as a piece of memory, 64kb large, accessible in
user memory. FP operations are executed by loading and storing special
addresses in this memory. If the user accesses this memory by himself,
anything can happen.

The procedures (sic)

long sfer(); and
Ifer{8); long a3

are available to load and store the NSC status register.

COMPATIBILITY
It is not permitted to load together modules which have been compiled
for different floating point codes. However, programs compiled for
Motorola or NSC IEEE should behave identically. The compiler use inter-
nally for constant expression evaluation FFP and MOTIEEE only, as the
existence of a NSC board can not be guaranteed.

Motorola distributes the IEEE package with the claim that the code can
be executed by hardware, when the coprocessor is attached. However it
is clear from the specifications of the 68020 and the 68881, that the code
generated for the software emulation is not compatible with the copro-
cessor! The instruction format is different and many instructions are
missing from the software emulation. Still, the software emulation pack-
age is 15kb large! So it can be forseen that even a fourth kind of FP will
be necessary for the 68881, unless Motorola provides software that
exactly emulates the 68881.

Page 5 February 20, 1984

FREAD (3S) MUNIX FREAD(3S)

NAME
fread, fwrite — buffered binary input/output

SYNOPSIS
f#include <stdio.h>

int fread ((char ¢) ptr, sizeof (*ptr), nitems, stream)
FILE estream;

int fwrite ((char ¢) ptr, sizeof (*ptr), nitems, stream)
FILE *strecam;

DESCRIPTION
Fread reads, into a block beginning at ptr, nitems of data of the type of
eptr from the named input stream. It returns the number of items actu-
ally read.

Furite appends at most nitems of data of the type of *ptr beginning at
ptr to the named output stream. It returns the number of items actually
written.

SEE ALSO
read(2), write(2), fopen(3S). gete(3S), putc(3S), gets(3S), puts(3S),
printf(3S), scanf(3S).

Page 1 February 20, 1984

FREXP (3C) MUNIX FREXP (3C)

NAME
frexp, ldexp, modf — split into mantissa and exponent

SYNOPSIS
double frexp (value, eptr)
double value;
int eeptr;
double ldexp (value, exp)
double value;

double modf (value, iptr)
double value, ®iptr;

DESCRIPTION
Frexp returns the mantissa of a double value as a double quantity, z, of
magnitude less than 1 and stores an integer n such that value = z¢2¢*n
indirectly through eptr.

Ldezp returns the quantity valuee*2e¢¢exp.

Modf returns the positive fractional part of value and stores the integer
part indirectly through iptr.

Page 1 February 20, 1984

FSEEK(3S) MUNIX FSEEK(3S)

NAME
{seek, ftel]l, rewind — reposition a stream

SYNOPSIS
f#include <stdio.h>

int fseek (stream, offset, ptrname)
FILE e*stream:

long offsect;

int ptrname;

long ftell (stream)

FILE estream;

rewind(stream)
FILE estream;
DESCRIPTION
Fseek sets the position of the next input. or output operation on the
stream. The new position is at the signed distance offset bytes from the

beginning, the current position, or the end of the file, according as
ptrname has the value 0, 1, or 2.

Fseek undoes any effects of ungetc(3S).

After fseek or rewind, the next operation on an update file may be either
input or output.

Ftell returns the current value of the offset relative to the beginning of
the file associated with the named stream. The offset is measured in
bytes on UNIX 3.0 and UNIX/RT: on some other systems, it is a magic
cookie and is the only foolproof way to obtain an offset for fseek.

Rewind(stream) is equivalent to fseek(stream, OL, 0).

SEE ALSO
Iseek(2), fopen(3S).

DIAGNOSTICS
Fseek returns non-zero for improper seeks, otherwise zero.

Page 1 February 20, 1984

FTW(3C) MUNIX FTW(3C)

NAME

fiw — walk a file tree

SYNOPSIS

finclude <{tw.h>

int ftw (path, fn, depth)
char ®path;

int (*n) ()

int depth;

DESCRIPTION

Ftw recursively descends the directory hierarchy rooted in path. For
each object in the hierarchy, ftw calls fn, passing it a pointer to a null-
terminated character string containing the name of the object, a pointer
to a stat structure (see stat(2)) containg information about the object,
and an integer. Possible values of the integer, defined in the <ftw.h>
header file, are FTW_F for a file, FTW_D for a directory, FTW_DNR for a
directory that cannot be read, and FTW_NS for an object for which stat
could not successfully be executed. If the integer is FTW_DNR, descen-
dants of that directory will not be processed. If the integer is FTW_NS,
the stat structure will contain garbage. An example of an object that
would cause FTW_NS to be passed to fn would be a file in a directory with
read but without execute (search) permission.

Ftw visits a directory before visiting any of its descendants.

The tree traversal continues until the tree is exhausted, an invocation of
Jn returns a nonzero value, or some error is detected within ftw (such as
an 170 error). If the tree is exhausted, ftw returns zero. If fn returns a
nonzero value, ftw stops its tree traversal and returns whatever value
was returned by fn. If ftw detects an error, it returns —1, and sets the
error type in errno.

Ftw uses one file descriptor for each level in the trece. The depth argu-
ment limits the number of file descriptors so used. If depth is zero or
negative, the effect is the same as if it were 1. Depth must not be greater
than the number of file descriptors currently available for use. Ftw will
run more quickly if depth is at least as large as the number of levels in
the tree.

SEE ALSO

BUGS

stat(2), malloc(3C).

Because ftw is recursive, it is possible for it to terminate with a memory
fault when applied to very deep file structures.

It could be made to run faster and use less storage on deep structures at
the cost of considerable complexity.

Ftw uses malloc(3C) to allocate dynamic storage during its operation. If
Jtw is forcibly terminated, such as by longimp being executed by fn or
an interrupt routine, ftw will not have a chance to free that storage, so
it will remain permanently allocated. A safe way to handle interrupts is
to store the fact that an interrupt has occurred, and arrange to have fn
return a nonzero value at its next invocation.

Page 1 February 21, 1984

FTYPE (3F) MUNIX FTYPE(3F)

NAME

int, ifix, idint, real, float, sngl, dble, cmplx, demplx, ichar, char - explicit
Fortran type conversion
SYNOPSIS
integer i, j
realr, s
double precision dp, dq
cornplex cx
double complex dcx
character®! ch

int(r)
int(dp)
int(cx)
int(dcx)

L B L B] Gte pute pure ute Puts puds

nnwnnn

a
[
E

~~
0
»

St

o |

dble(i)
dble(r)
dble(cx)
dble(dex)
croplx(i)
cmplx(i, j)
cmplx(r)
cmplx(r, s)
cmplx(dp)
cmoplx(dp, dq)
cmplx(dex)

dcemplx(i)
demplx(i, j)
dcmplx(r)
dcmoplx(r, s)
dcmplx(dp)
dcx = demplx(dp, dq)
dcx = demplx(cx)

i = ichar{ch)
ch = char(i)
DESCRIPTION
These functions perform conversion from one data type to another.
int converts to integer form its real, double precision, complez, or double
complex argument. If the argument is real or double precision, int

returns the integer whose magnitude is the largest integer that does not
exceed the magnitude of the argument and whose sign is the same as the

A
o
wuuan

0
L]
nmuwununuwun

CX

dcx
dcx
dcx
dcx
dex

Page 1 February 21, 1984

FTYPE(3F) MUNIX FTYPE(3F)

sign of the argument (i.e. truncation). For complex types, the above rule
is applied to the real part. ifix and idint convert only real and double
precision arguments respectively.

real converts to real form an integer, double precision, complez, or dou-
ble complex argument. Ilf the argument is double precision or double
complez, as much precision is kept as is possible. If the argument is one
of the complex types, the real part is returned. float and sngl convert
only integer and double precision arguments respectively.

dble converts any integer, real, complex, or double complez argument to

double precision form. If the argument is of a complex type, the real part
is returned.

crmplx converts its integer, real, double precision, or double complex
argument(s) to complez form.

dcmplx converts to double complez form its integer, real, double preci-
sion, or complez argument(s).

Either one or two arguments may be supplied to cmplx and dcmplx . If
there is only one argument, it is taken as the real part of the complex
type and a imaginary part of zero is supplied. If two arguments are sup-

plied, the first is taken as the real part and the second as the imaginary
part.

ichar converts from a character to an integer depending on the
character's position in the collating sequence.

char returns the character in the ith position in the processor collating
sequence where i is the supplied argument.

For a processor capable of representing n characters,
ichar(char(i)) =ifor 0 <=ij < n, and

char(ichar(ch)) = ch for any representable character ch.

February 21, 1984 Page 2

GAMMNA (3N) MUNIX GAMMA (3M)

NAME
gamma — log gamma function

SYNOPSIS
finclude <math.h>

extern int signgam;

double gamma (x)
double x;

DESCRIPTION
Gamma returns In(|I(z)]), where I'(z) is defined as fc"t"'dt. The sign of
[}

I(z) is returned in the external integer signgam. The argument z may
not be a non-positive integer.

The following C program fragment might be used to calculate I'":
if ((y = gamma(x)) > LOGHUGE)
error();
y = signgam * exp(y):
where LOGHUGE is the least value that causes ezp(3M) to return a range
error.

DIAGNOSTICS ‘
For non-negative integer arguments HUGE is returned, and errno is set to
EDOM. A message indicating DOMAIN error is printed on the standard
error output.

If the correct value would overflow, gammaea returns HUGE and sets errno
to ERANGE.

These error-handling procedures may be changed with the function
matherr(3M).

SEE ALSO .
exp(3M), matherr(3M).

Page 1 February 21, 1984

GETARG(3F) MUNIX GETARG(3F)

NAME
getarg, getar2 — return Fortran cornmand-line argument

SYNOPSIS
character*N c
integer®4 i
integer*2 j
getarg(i, c)
getar2(j, c)

DESCRIPTION

Getarg resp. getar2 returns the i-th command-line argument of the
current process. Thus, if a program were invoked via

foo argl arg2 arg3

getarg(2, c) resp. getar2(2, c) would return the string “‘arg2" in the char-
acter variable c,ifcislongenough. the length of c.

SEE ALSO
getopt(3C).

Page 1 April 11, 1984

GETC(3S) MUNIX GETC(35S)

NAME
getc, getchar, fgetc, getw — get character or word from stream
SYNOPSIS
f#include <stdio.h>
int getc (stream)
FILE estream;
int getchar ()
int fgetc (stream)
FILE sstream;
int getw (stream)
FILE estream;
DESCRIPTION
Getc returns the next character from the named input stream.
Getchar() is identical to getc(stdin).
Fgetc behaves like getc, but is a genuine function, not a macro; it may
therefore be used as an argument. Fgetc runs more slowly than getc, but
takes less space per invocation.
Getw returns the next word from the named input stream. It returns the
constant EOF upon end of file or error, but since that is a valid integer
value, feof and ferror(3S) should be used to check the success of getw.
Getw assumes no special alignment in the file.
SEE ALSO
ferror(3S), fopen(3S), fread(3S), gets(3S), pute(3S), scanf(3S).
DIAGNOSTICS
These functions return the integer constant EOF at end of file or upon
read error.
A stop with message ""Reading bad file"” means that an attempt has been
made to read from a stream that has not been opened for reading by
Jopen,
BUGS

Page

Getc and its variant getchar return EOF on end of file; this is wiser than,
but incompatible with, the older getchar(3S).

Because it is implemented as a macro, getc treats incorrectly a stream
argument with side eflects. In particular, getc(*f++); doesn’'t work sensi-
bly.

1 FeSruary 21, 1984

GETCWD(3C) MUNIX GETCWD(3C)

NAME
getcwd — get path-name of current working directory
SYNOPSIS
char egetcwd (buf, size)
char ebuf;
int size;
DESCRIPTION
Getcwd returns a pointer to the current directory path-name. The value
of size must be at least two greater than the length of the path-name to
be returned.
If dbuf is a NULL pointer, getcwd will obtain size bytes of space using
malloc(3C). In this case, the pointer returned by getcwd may be used as
the argument in a subsequent call to free.
The function is implemented by using popen(3S) to pipe the output of the
pwd(1l) command into the specified string space.
EXAMPLE
char ecwd, sgetcwd();
if ((cwd = getcwd((char *)NULL, 64)) == NULL) {
perror(“pwd");
exit(1);
printf(*Zs\n", cwd);
SEE ALSO
pwd(1), malloc(3C), popen(3S).
DIAGNOSTICS

Returns NULL with errno set if size is not large enough, or if an error
ocurrs in a lower-level function.

Page 1 February 21, 1984

GETENY(3C) MUNIX GETENV(3C)

NAME
getenv — value for environment name

SYNOPSIS
char *getenv (name)
char *name;
DESCRIPTION
Getenv searches the environment list (see environ(7)) for a string of the

form name=value and returns value if such a string is present, other-
wise 0 (NULL).

SEE ALSO
environ(7).

Page 1 February 21, 1984

GETENV(3F) MUNIX GETENV(3F)

NAME
getenv — return Fortran environment variable

SYNOPSIS
character*N ¢

getenv("TMPDIR", ¢)

DESCRIPTION
Getenv returns the character-string value of the environment variable
represented by its first argument into the character variable of its
second argument. If no such environment variable exists, all blanks will
be returned.

SEE ALSO
getenv(3C), environ(7).

Page 1 February 21, 1984

GETGRENT(3C) MUNIX GETGRENT (3C)

NAME .
getgrent, getgrgid, getgrnam, setgrent, endgrent — get group file entry
SYNOPSIS
finclude <grp.h>
struct group egetgrent ();
struct group °getgrgid (gid)
int gid;
struct group *getgrnam (name)
char *name;
int setgrent ():
int endgrent ();
DESCRIPTION
Getgrent, getgrgid and getgrnam each return pointers to an object with
the following structure containing the broken-out fields of a line in the
group file.
struct group { /® see getgrent(3) ¢/
char®gr_name;
char®gr_passwd;
int gr_gid;
char®**gr_mem:;
J:
struct group *getgrent();
. struct group *getgrgid();
struct group *getgrnam();
The members of this structure are:
gr_name The name of the group.
gr_passwd The encrypted password of the group.
gr—gid The numerical group ID.
gr_mem Null-terminated vector of pointers to the individual
member names.
Getgrent reads the next line of the file, so successive calls may be used
to search the entire file. Getgrgid and getgrnam search from the begin-
ning of the file until a matching gid or name is found, or EOF is encoun-
tered.
A call to setgrent has the eflect of rewinding the group file to allow
repeated searches. Endgrent may be called to close the group file when
processing is complete.
FILES
/etc/group
SEE ALSO
getlogin(3C), getpwent(3C), group(5).
DIAGNOSTICS
A null pointer (0) is returned on EOF or error.
BUGS

All information is contained in a static area so it must be copied if it is to

Page 1 February 21, 1984

GETGRENT(3C) MUNIX GETGRENT(3C)

be saved.

February 21, 1984 Page 2

GETLOGIN(3C) MUNIX GETLOGIN(3C)

NAME

getlogin — get login name
SYNOPSIS

char egetlogin ();
DESCRIPTION

Getlogin returns a pointer to the login name as found in /etc/utmp. It
may be used in conjunction with getpunam to locate the correct pass-
word file entry when the same user ID is shared by several login names.

If getlogin is called within a process that is not attached to a typewriter,
it returns NULL The correct procedure for determining the login name is
to call cuserid, or to call getlogin and if it fails, to call getpwuid.

FILES
/etc/utmp

SEE ALSO

cuserid(3S), getgrent(3C), getpwent(3C), utmp(5s).
DIAGNOSTICS

Returns NULL if name not found.

BUGS
The return values point to static data whose content is overwritten by

each call.

Page 1 February 21, 1984

GETOPT(3C) MUNIX GETOPT(3C)

NAME
getopt — get option letter from argv

SYNOPSIS
int getopt (argc, argv, optstring)
int argc;
char e¢cargv,
char e*optstring;
extern char ¢optarg;
extern int optind;

DESCRIPTION
Getopt returns the next option letter in argv that matches a letter in
optstring. Optstring is a string of recognized option letters; if a letter is
followed by a colon, the option is expected to have an argument that may
or may not be separated from it by white space. Optarg is set to point to
the start of the option argument on return from getopt.

Getopt places in optind the argv index of the next argument to be pro-
cessed. Because optind is external, it is normally initialized to zero
automatically before the first call to getopt.

When all options have been processed (i.e., up to the first non-option

argument), getopt returns EOF. The special option — may be used to
delimit the end of the options; EOF will be returned, and — will be
skipped.

DIAGNOSTICS

Getopt prints an error message on stderr and returns a question mark
(?) when it encounters an option letter not included in optstring.

EXAMPLE
The following code fragment shows how one might process the arguments
for a command that can take the mutually exclusive options a and b, and
the options { and o, both of which require arguments:

main (argc, argv)
int argc;
. char esargv;

int c;
extern int optind;
extern char *optarg;

while ((c = getopt (arge, argv, "abf:0:")) != EOF)
switch (c) |{

case ‘'a’:
if (bflg)
errflg++;
else
aflg++,;
break;
case 'b":
if (aflg)
errfig++;
else

Page 1 February 21, 1984

GETOPT(3C) MUNIX

bproc():

break;

case 'f"
ifile = optarg;:
break;

case 'o"
ofile = optarg:
bufsiza = 512;
break;

case '?":
errflg++;

J

if (errfig) |
fprintf{ (stderr, "usage: ... ");
exit (2);

for(; optind < argc; optind++) |
if (access (argv[optind], 4)) {

February 21, 1984

GETOPT(3C)

Page 2°

GETPASS(3C) MUNIX GETPASS (3C)

NAME
getpass — read a password

SYNOPSIS
char ¢getpass (prompt)
char *prompt,;

DESCRIPTION
Getpass reads a password from the file /dev/tty, or if that cannot be
opened, from the standard input, after prompting with the null-
terminated string prompt and disabling echoing. A pointer is returned to
a null-terminated string of at most 8 characters.

FILES
/dev/tty

SEE ALSO
crypt(3C).

BUGS
The return value points to static data whose content is overwritten by
each call.

Page 1 February 21, 1984

GETPW(3C) MUNIX GETPW (3C)

NANE
getpw — get name from UID
SYNOPSIS
getpw (uid, buf)
int uid;
char *buf;
DESCRIPTION
Getpw searches the password file for the (numerical) uid, and fills in buyf
with the corresponding line; it returns non-zero if uid could not be
found. The line is null-terminated.
This routine is included only for compatibility with prior systems and
should not be used; see getpwent(3C) for routines to use instead.
FILES
/etc/passwd
SEE ALSO
getpwent(3C), passwd(5).
DIAGNOSTICS

Non-zero return on error.

Page 1 February 21, 1984

GETPWENT(3C) MUNIX GETPWENT(3C)

NAME

getpwent, getpwuid, getpwnam, setpwent, endpwent — get password file
entry

SYNOPSIS

finclude Qud.h>

struct passud sgetpuent {)3
struct passud sgetpwuid (uid)
int uid;

struct passud sgetpunan {name)
char sname;

int setpuent ()3

int endpuent ();

DESCRIPTION

FILES

Getpwent, getpwuid and getpunam each returns a pointer to an object
with the following structure containing the broken-out fields of a line in
the password file.

struct passud

char ®pu_name;
char =u_passwd:
int pu_uids
int pu_gids:
char p_3age;
char »pu_comment;
char pu_gecos;
char *pu_dirs

; char spu_shell;

[

struct comment §
char sc_dept;
char *c_name;
char =C_acct:
char »c_bin;

i

struct passud sgetpuent ();
struct passud sgetpuwuld();
struct passud sgetpunan();

The pw_comment field is unused; the others have meanings described in
passwd(5).

Getpwent reads the next line in the file, so successive calls can be used
to search the entire file. Getpwuid and getpumam search from the
beginning of the file until a matching uid or name is found, or HKF is
encountered.

A call to setpwent has the effect of rewinding the password file to allow
repeated searches. Endpwent may be called to close the password file
when processing is complete.

/etc/passwd

Page 1 February 21, 1984

GETPWENT(3C) MUNIX GETPWENT(3C)

SEE ALSO
getlogin(3C), getgrent(3C), passwd(5).

DIAGNOSTICS
Null pointer (0) returned on ECF or error.

BUGS
All information is contained in a static area so it must be copied if it is to
be saved.

February 21, 1984 Page 2

GETS(3S) MUNIX GETS(3S)

NAME
gets, fgets — get a string from a stream

SYNOPSIS
finclude <stdio.h>

char egets (s)
char °s;

char ¢fgets (s, n, stream)
char °s;
int n;
FILE estream;
DESCRIPTION
Gets reads a string into s from the standard.input stream stdin. The
string is terminated by a new-line character, which is replaced in s by a
null character. Gets returns its argument.

Fgets reads n—1 characters, or up to a new-line character (which is
retained), whichever comes first, from the stream into the string s. The
last character read into s is followed by a null character. Fgets returns
its first argument.

SEE ALSO
ferror(3S), fopen(3S), fread(3S), getc(3S), puts(3S), scanf(3S).

DIAGNOSTICS
Gets and fgets return the constant pointer NULL upon end-of-file or
error.

NOTE
Gets deletes the new-line ending its input, but fgets keeps it.

Page 1 February 21, 1984

GETUT(3C) MUNIX GETUT(3C)

NAME

getutent, getutid, getutline, pututline, setutent, endutent, utmpname -
access utmp file entry

SYNOPSIS
fincliude Qtmp.h>

struct utmp sgetutent ()

struct utmp =mgetutid (id)
struct utmp =id;

struct utmp mgetutling (line)
struct utmp =line;

void pututline (utmp)
struct utmp =utmp;

void esstutent ()
void endutent ()

void utmpname (file)
char =file;

DESCRIPTION
Getutent, getutid and getutiine each return a pointer to a structure of
the following type:

struct utmp |

char ut_user [8]; /% User logln name »/
char ut_id(4); /= /etc/inittad Id (usually line) =/
char ut_linel12); /= device name (console, Imod =/
short ut_pid; /% process id &/
short ut_type: /& typs of entry =/
struct exit_status |

short e_termination; /= Process termination status =/

short e_exit; : /% Process exit status =/
 ut_exit: /3 The exit status of a process

& marked as CEAD_PROCESS. »/

time_t ut_time; /= time entry was made &/

i
Getutent reads in the next entry from a utmp-like file. If the file is not
already open, it opens it. If it reaches the end of the file, it fails.

Getutid searches forward from the current point in the utmp file until it
finds an entry with a ut_type matching id—>ut_type if the type specified
is RUN_LVL, BOOT_TIME. OLD_TIME or NEW_TIME. If the type specified in id
is INIT_PROCESS. LOGIN_PROCESS. USER_PROCESS or DEAD_PROCESS. then
getutid will return a pointer to the first entry whose type is one of these
four and whose ut_id field matches td->ut_id. If the end of file is
reached without a match, it fails.

Getutline searches forward from the current point in the utmp file until
it finds an entry of the type LOGIN_PROCESS or USER_PROCESS which also
has a ut_line string matching the line—=>ut_line string. If the end of file
is reached without a match, it fails.

Pututline writes out the supplied utmp structure into the utmp file. It
uses getutid to search forward for the proper place if it finds that it is
not already at the proper place. It is expected that normally the user of
pututline will have searched for the proper entry using one of the getut
routines. If so, pututline will not search. If pututline does not find a

Page 1 . February 21, 1984

GETUT(3C) MUNIX GETUT(3C)

FILES

matching slot for the new entry, it will add a new entry to the end of the
file.

Setutent resets the input stream to the beginning of the file. This should
be done before each search for a new entry if it is desired that the entire
file be examined.

Endutent closes the currently open file.

Utmpname allows the user to change the name of the file examined, from
/etc/utmp to any other file. It is most often expected that this other file
will be /etc/utmp. If the file doesn't exist, this will not be apparent until
the first attempt to reference the file is made. Utmpname does not open
the file. It just closes the old file if it is currently open and saves the new
file name.

/etc/utmp
/etc/wtmp

SEE ALSO

ttyslot(3C), utmp(5).

DIAGNOSTICS

A NUL pointer is returned upon failure to read, whether for permissions
or having reached the end of file, or upon failure to write.

COMMENTS

The most current entry is saved in a static structure. Multiple accesses
require that it be copied before further accesses are made. Each call to
either getutid or getutline sees the routine examine the static structure
before performing more [/0. If the contents of the static structure match
what it is searching for, it looks no further. For this reason to use getut-
line to search for multiple occurences, it would be necessary to zero out
the static after each success, or getutline would just return the same
pointer over and over again. There is one exception to the rule about
removing the structure before further reads are done. The implicit read
done by pututline if it finds that it isn’t already at the correct place in
the file will not hurt the contents of the static structure returned by the
getutent, getutid or getutline routines, if the user has just modified
those contents and passed the pointer back to pututline.

These routines use buffered standard 170 for input, but pututline uses an
unbuffered non-standard write to avoid race conditions between
processes trying to modify the utmp and wtmp files.

February 21, 1984 Page 2

HSEARCH(3C) MUNIX HSEARCH(3C)

NAME
hsearch, hcreate, hdestroy — manage hash search tables

SYNOPSIS
finclude <search.h>

ENTRY *hsearch (item, action)
ENTRY item;
ACTION action;

int hcreate (nel)
unsigned nel;

void hdestroy ()

DESCRIPTION

Hsearch is a hash-table search routine generalized from Knuth (6.4)
Algorithm D. It returns a pointer into a hash table indicating the loca-
tion at which an entry can be found. fem is a structure of type ENTRY
(defined in the <search.h> header file) containing two pointers: item.key
points to the comparison key, and item.data points to any other data to
be associated with that key. (Pointers to types other than character
should be cast to pointer-to-character.) Action is a member of an
enumeration type ACTION indicating the disposition of the entry if it can-
not be found in the table. ENTER indicates that the item should be
inserted in the table at an appropriate point. FIND indicates that no
entry should be made. Unsuccessful resolution is indicated by the return
of a NULL pointer.

Hcreate allocates suflicient space for the table, and must be called
before hsearch is used. nel is an estimate of the maximum number of
entries that the table will contain. This number may be adjusted upward
by the algorithm in order to obtain certain mathematically favorable cir-
cumstances.

Hdestroy destroys the search table, and may be followed by another call
to hcreate.

NOTES
Hsearch uses open addressing with a multiplicative hash function. How-
ever, its source code has many other options available which the user
may select by compiling the hsearch source with the following symbols
defined to the preprocessor:

DIV Use the remainder modulo table size as the hash func-
tion instead of the multiplicative algorithm.

USCR Use a User Supplied Comparison Routine for ascertaining

table membership. The routine should be named hcom-

! par and should behave in a mannner similar to stremp
(see string(3C)).

CHAINED Use a linked list to resolve collisions. If this option is
selected, the following other options become available.

START Place new entries at the beginning of the
linked list (default is at the end).

SORTUP Keep the linked list sorted by key in ascending
order.

Page 1 February 21, 1984

HSEARCH(3C) MUNIX HSEARCH(3C)

SORTDOWN Keep the linked list sorted by key in descend-
ing order.

Additionally, there are preprocessor flags for obtaining debugging prin-
tout (—DDEBUG) and for including a test driver in the calling routine
(—DDRIVER). The source code should be consulted for further details.

SEE ALSO
bsearch(3C), Isearch(3C), string(3C), tsearch(3C).
- DIAGNOSTICS
Hsearch returns a NULL pointer if either the action is FIND and the item
could not be found or the action is ENTER and the table is full.
Hcreate returns zero if it cannot allocate sufficient space for the table.
BUGS
Only one hash search table may be active at any given time.

February 21, 1984 Page 2

HYPOT (3M) MUNIX

NAME
hypot — Euclidean distance function

SYNOPSIS ?
finclude <math.h>

double hypot (x, y)
double x, y;

DESCRIPTION
Hypot returns

sqrt(x ex +yey),

taking precautions against unwarranted overflows.

DIAGNOSTICS

HYPOT(3M)

When the correct value would overflow, Aypot returns HUGE and sets

errno to ERANGE.

These error-handling procedures may be changed with the function

matherr(3M).

SEE ALSO
matherr(3M), sqrt(3F).

Page 1

February 21, 1984

IARGC(3F) MUNIX IARGC(3F)

NAME
jarge = Number of command-line arguments

SYNOPSIS
integer |

i = jarge()

DESCRIPTION
largc returns the number of arguments in the command-line (zero for no
arguments except the program-name). If a program were invoked via

foo argl arg2 arg3
iarge () would return 3.

SEE ALSO
getopt(3C), getarg(3f).

Page 1 February 21, 1984

INDEX(3F) MUNIX INDEX(3F)

NANE
index — return location of Fortran substring

SYNOPSIS
character*N1 chl
character*N2 ch2
integer i

i = index(chl, ch2)

DESCRIPTION
Mndexz returns the location of substring chA2 in string chl. The value
returned is the position at which substring ch2 starts, or 0 is it is not
present in string chl.

Page 1 February 21, 1984

INT2(3F) MUNIX INT2(3F)

NAME
int2 — convert 4-Byte Integer to 2-Byte Integer

SYNOPSIS
integer®4 long
integer*2 short
short = int2(long)

DESCRIPTION

Int2 converts a 4-Byte Integer to 2-Byte Integer (truncation of the 2
MSBytes of the 4-Byte Integer).

Page 1 April 12, 1984

INT4 (3F) MUNIX

NAME
int4 — convert 2-Byte Integer to 4-Byte Integer

SYNOPSIS
integer®4 long
integer*2 short
long = int4(ghort)
DESCRIPTION

Int4 converts a 2-Byte Integer to 4-Byte Integer.

Page 1

INT4 (3F)

April 12, 1984

L3TOL(3C) MUNIX L3TOL(3C)

NAME
13tol, 1tol3 — convert between 3-byte integers and long integers

SYNOPSIS
13tol (Ip, cp. n)
long elp;
char e°cp;
int n;
Itol3 (cp. lp. n)
char ecp;
long °lp;
int n;
DESCRIPTION
L3tol converts a list of n three-byte integers packed into a character
string pointed to by ¢p into a list of long integers pointed to by Ip.

Ltol3 performs the reverse conversion from long integers (lp) to three-
byte integers (cp).

These functions are useful for file-system maintenance where the block
numbers are three bytes long.

SEE ALSO
fs(5).

Page 1 . February 21, 1984

LEN(3F) MUNIX

NAME
len — return length of Fortran string

SYNOPSIS
character*N ch
integer i
i = len(ch)
DESCRIPTION
Len returns the length of string ch.

Page 1

LEN(3F)

February 21, 1984

LOG (3F) MUNIX LOG(3F)

NANE
log. alog, dlog, clog — Fortran natural logarithm intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2
complex exl1, cx2

r2 = alog(rl)
r2 = log(rl)

dp2 = dlog(dpl)
dp2 = log(dp1)

cx2 = clog(cxl)
cx2 = log(cx1)

DESCRIPTION
Alog returns the real natural logarithm of its real argument. Dlog
returns the double-precision natural logarithm of its double-precision
argument. Clog returns the complex logarithm of its complex argument.
The generic function log becomes a call to alog, dlog, or clog depending
on the type of its argument.

SEE ALSO
exp(3M).

Page 1 February 21, 1984

LOG10(3F) MUNIX LOG10(3F)

NAME
logl0, alogl0, dlogl0 = Fortran common logarithm intrinsic function
SYNOPSIS *
real rl, r2
double precision dpl, dp2
r2 = alogl0(rl)
r2 = log10(r1)
dp2 = dlogl10(dp1)
dp2 = log10(dp1)
DESCRIPTION
Alog10 returns the real common logarithm of its real argument. Dlog
returns the double-precision common logarithm of its double-precision

argument. The generic function log becomes a call to alog or dlog
depending on the type of its argument.

SEE ALSO
exp(3M).

Page 1 February 21, 1984

LOGNAME (3X) MUNIX LOGNAME (3X)

NAME
logname — login name of user

SYNOPSIS
char *logname();

DESCRIPTION

Logname returns a pointer to the null-terminated login name; it extracts
the SLOGNAME variable from the user’'s environment.

This routine is kept in /lib/libPW.a.

FILES
/etc/profile

SEE ALSO
env(1), login(1), profile(5), environ(7).

Page 1 February 21, 1984

LONG (3C) MUNIX LONG(3C)

NANME
long — standard procedures modified for long arguments

SYNOPSIS
char *lmalloc (size) long size;
char °lrealloc (ptr, size)
char *ptr;
long size;
DESCRIPTION
Lmalloc and lrealloc are the same routines as malloc and realloc (see
malloc(3¢c)) except that they have long arguments. They are only avail-
able in the 2 byte integer standard library.

Page 1 February 21, 1984

LSEARCH (3C) MUNIX LSEARCH (3€)

NANME

Isearch — linear search and update

SYNOPSIS

char ¢lsearch ((char *)key, (char ¢)base, nelp, sizeof(*key). compar)
unsigned °nelp;
int (*compar)();

DESCRIPTION

NOTES

Lsearch is a linear search routine generalized from Knuth (6.1) Algorithm
S. It returns a pointer into a table indicating where a datum may be
found. If the datum does not occur, it is added at the end of the table.
Key points to the datum to be sought in the table. Base points to the
first element in the table. MNelp points to an integer containing the
current number of elements in the table. The integer is incremented if
the datum is added to the table. Compar is the name of the comparison
function which the user must supply (stremp, for example). It is called
with two arguments that point to the elements being compared. The
function must return zero if the elements are equal and non-zero other-
wise.

The pointers to the key and the element at the base of the table should
be of type pointer-to-element, and cast to type pointer-to-character.
The comparison function need not compare every byte, so arbitrary data
may be contained in the elements in addition to the values being com-
pared.

Although declared as type pointer-to-character, the value returned
should be cast into type pointer-to-element.

SEE ALSO

BUGS

bsearch(3C), hsearch(3C), tsearch(3C).

Undefined results can occur if there is not enough room in the table to
add a new item.

Page 1 February 21, 1984

MALLOC(3C) MUNIX MALLOC(3C)

NAME
malloc, free, realloc, calloc — main memory allocator

SYNOPSIS
char *malloc (size) unsigned size;

free (ptr)
char eptr;

char erealloc (ptr, size)
char eptr;
unsigned size;

char ecalloc (nelem, elsize)
unsigned elem, elsize;

DESCRIPTION)
Malloc and free provide a simple general-purpose memory allocation
package. Malloc returns a pointer to a block of at least size bytes begin-
ning on a word boundary.

The argument to free is a pointer to a block previously allocated by mal-
loc; this space is made available for further allocation, but its contents
are left undisturbed.

Needless to say, grave disorder will result if the space assigned by malloc
is overrun or if some random number is handed to free.

Malloc allocates the first big enough contiguous reach of free space
found in a circular search from the last block allocated or {freed, coalesc-
ing adjacent free blocks as it searches. It calls sbrk (see brk(2)) to get
more memory from the system when there is no suitable space already
free. '

Realloc changes the size of the block pointed to by ptr to size bytes and
returns a pointer to the (possibly moved) block. The contents will be
unchanged up to the lesser of the new and old sizes.

Realloc also works if ptr points to a block freed since the last call of mal-
loc, realloc, or calloc; thus sequences of free, malloc and realloc can
exploit the search strategy of malloc to do storage compaction.

Calloc allocates space for an array of nelem elements of size elsize. The
space is initialized to zeros.

Each of the allocation routines returns a pointer to space suitably
aligned (after possible pointer coercion) for storage of any type of
object.

DIAGNOSTICS
Malloc, realloc and calloc return a null pointer (0) if there is no available
memory or if the arena has been detectably corrupted by storing outside
the bounds of a block. When realloc returns 0, the block pointed to by
ptr may be destroyed.

Page 1 February 21, 19684

MATHERR(3N) MUNIX MATHERR(3N)

NANE
matherr — error-handling function
SYNOPSIS
finclude <math.h>
int matherr (x)
struct exception *x;
DESCRIPTION
Matherr is invoked by functions in the Math Library when errors are
detected. Users may define their own procedures for handling errors by
including a function named matherr in their programs. Matherr must be
of the form described above. A pointer to the exception structure z will
be passed to the user-supplied matherr function when an error occurs.
This structure, which is defined in the <math.h> header file, is as follows:
struct exception {
int type;
char *name;
double argl, arg2, retval;
J:
The element type is an integer describing the type of error that has
occurred, from the following list of constants (defined in the header file):
DOMAIN domain error
SING - singularity
OVERFLOW overflow
UNDERFLOW underflow
TLOSS total loss of significance
PLOSS partial loss of significance
The element name points to a string containing the name of the function
that had the error. The variables argl! and arg2 are the arguments to
the function that had the error. Retval is a double that is returned by
the function having the error. If it supplies a return value, the user's
matherr must return non-zero. If the default error value is to be
returned, the user's matherr must return 0.
If matherr is not supplied by the user, the default error-handling pro-
cedures, described with the math functions involved, will be invoked upon
error. These procedures are also summarized in the table below. In
every case, errno is set to non-zero and the program continues.
EXAMPLE
matherr(x)
register struct exception *x;
f
switch (x=>type) {
case DOMAIN: -
case SING: /¢ print message and abort ¢/
fprintf(stderr, "domain error in %Zs\ n”, x=>name);
abort();
case OVERFLOW:
if ('stremp(”exp”, x—>name)) {
/+* if exp, print message, return the argument ¢/
Page 1 February 21, 1984

MATHERR(3N)

MUNIX MATHERR(3M)

fprint{(stderr, "exp of ZI\ n", x=>argl);
x—>retval = x—>argl;
| else if ('stremp("sinh”, x=>name)) {
/¢ if sinh, set errno, return 0 ¢/
errno = ERANGE;
x—>retval = 0;
| else
/¢ otherwise, return HUGE ¢/
x—>retval = HUGE;
break;
case UNDERFLOW:
return (0); 7* execute default procedure */
case TLOSS:
case PLOSS:
/¢ print message and return 0 ¢/
fprintf(stderr, "loss of significance in Zs\ n", x—=>name);
x—>retval = 0;

break;
return (1);
J
DEFAULT ERROR HANDLING PROCEDURES
Types of Errors
DOMAIN | SING | OVERFLOW [UNDERFLOW | TLOSS | PLOSS
BESSEL: - - H 0 -]
y0, yl.yn M, -H - - - - -
(neg. no.)
EXP: - - H 0 -
POW: - - H 0 - -
(neg.)**(non- M, 0 - - - - -
int.), 0**0
LOG:
log(0): - M, -H - - - -
log(neg.): M, -H - - - - -
SQRT: M, 0 - - - - -
GAMMA: - M, H - - - -
HYPOT: - - H - - -
SINH, COSH: - - H - - -
SIN, COS: - - - - M. 0 M, e
TAN: - - H - 0 .
ACOS, ASIN: M, 0 - — - - -
ABBREVIATIONS
. As much as possible of the value is returned.

M Message is printed.

H HUGE is returned.

-—H —=HUGE is returned.

0 0O is returned.

February 21, 1984

Page 2

NAX(3F) MUNIX MAX (3F)

NAME

max, max0, amax0, maxl, amaxl, dmaxl — Fortran maximum-value func-
tions

SYNOPSIS
integer i, j, k, 1
reala, b, e, d
double precision dpl, dp2, dp3

= max(i, j, k)

= max(a, b)

p = max(a, b, ¢)
max0(i, j)

armax0(i, j, k)
max1(a, b)
amaxli(a, b, c)

dp3 = dmax1(dpl, dp2)

DESCRIPTION

The maximum-value functions return the largest of their arguments (of
which there may be any number). Maz is the generic form which can be
used for all data types and takes its return type from that of its argu-
ments (which must all be of the same type). Maz0 returns the integer
form of the maximum value of its integer arguments; amaz0, the real
form of its integer arguments; mazl, the integer form of its real argu-
ments; amaz!, the real form of its real arguments; and dmazl, the
double-precision form of its double-precision arguments.

SEE ALSO
min(3F).

Qe xan ™~

Page 1 February 21, 1984

NCLOCK(3F) MUNIX MCLOCK(3F)

NANE
mclock — return Fortran time accounting

SYNOPSIS
integer i
i = mclock()
DESCRIPTION
Mclock returns time accounting information about the current process

and its child processes. The value returned is the sum of the current
process's user time and the user and system times of all child processes.

SEE ALSO
times(2), clock(3C), system(3F).

Page 1 February 21, 1984

MIN (3F) MUNIX MIN(3F)

NAME
min, min0, amin0, minl, aminl, dminl -~ Fortran minimum-value funec-
tions

SYNOPSIS
integer i, j, k, 1
reala, b, e, d
double precision dpl, dp2, dp3
= min(i, j, k)
= min(a, b)

dp3 = dminl(dp1, dp2)

DESCRIPTION

The minimum-value functions return the minimum of their arguments (of
which there may be any number). Min is the generic form which can be
used for all data types and takes its return type from that of its argu-
ments (which must all be of the same type). Min0 returns the integer
_.form of the minimum value of its integer arguments; amin0, the real
form of its integer arguments; minl!, the integer form of its real argu-
ments; aminl, the real form of its real arguments: and dminl, the
double-precision form of its double-precision arguments.

SEE ALSO
max(3F).

Page 1 February 21, 1984

MKTEMP (3C) MUNIX MKTEMP (3C)

NAME
mktemp — make a unique file name

SYNOPSIS
char *mktermnp (template)
char *template;

DESCRIPTION
Mktemp replaces template by a unique file name, and returns the
address of the template. The template should look like a file name with
six trailing Xs, which will be replaced with a letter and the current pro-
cess ID. The letter will be chosen so that the resulting name does not
duplicate an existing file.

SEE ALSO
getpid(2).

BUGS
It is possible to run out of letters.

Page 1 February 21, 1984

MOD(3F) MUNIX MOD(3F)

NANE

mod, amod, dmod — Fortran remaindering intrinsic functions
SYNOPSIS

integer i, j, k

realri, r2, r3

double precision dpl, dp2, dp3

k = mod(i, j)

r3 = amod(ri, r2)

r3 = mod(ri, r2)

dp3 = dmod(dpl, dp2)

dp3 = mod(dpl, dp2)
DESCRIPTION

Mod returns the integer remainder of its first argument divided by its
second argument. Amod and dmod return, respectively, the real and
double-precision whole number remainder of the integer division of their
two arguments. The generic version mod will return the data type of its
arguments.

Page 1 February 21, 1984

MONITOR(3C) MUNIX MONITOR(3C)

NAME
monitor — prepare execution profile
SYNOPSIS
monitor (lowpc, highpc, buffer, bufsize, nfunc)
int (*lowpc)(). (*highpe)()
short buffer| };
lonig bufsize;
int nfunc;
DESCRIPTION
An executable program created by cc —p automatically includes calls for
monitor with default parameters; monitor needn't be called explicitly
except to gain fine control over profiling.
Monitor is an interface to profil(2). Lowpc and highpc are the addresses
of two functions; dbuffer is the address of a (user supplied) array of buf-
size short integers. Monitor arranges to record a histogram of periodi-
cally sampled values of the program counter, and of counts of calls of
certain functions, in the bufler. The lowest address sampled is that of
lowpc and the highest is just below highpc. At most nfunc call counts
can be kept; only calls of functions comnpiled with the profiling option —p
of cc(1) are recorded. For the results to be significant, especially where
there are small, heavily used routines, it is suggested that the buffer be
no more than a few times smaller than the range of locations sampled.
To profile the entire program, it is sufficient to use
extern etext(), _entry();
.r.r.lonitor(&_entry. etext, buf, bufsize, nfunc);
Etezt lies just above all the program text, see end(3C).
To stop execution monitoring and write the results on the file mon.out,
use
monitor((int *)0);
prof(1) can then be used to examine the results.
FILES
mon.out
SEE ALSO
cc(1), prof(1), profil(2).
Page 1 February 21, 1984

NFCONMMENT(3) MUNIX (University of Illinois) NFCOMMENT(3)

NAME

nfcomment — a user interface to the notesfile system

SYNOPSIS

nfcomment (notesfile, text, title, dirflag, anonﬂng)
char °nfname, *text, ¢title;

DESCRIPTION

FILES

nfcomment provides user programs with the ability to insert notes into a
notesfile.

The note is inserted into the notesfile specified by nfname. Text is the
address of the body of the note; this must be null-terminated. If text is
NULL, the note is gathered from standard input until an EOF is encoun-
tered. The note is entered with the title specified by the title parameter.
If the dirflag or anonflag parameters are non-zero, the director message
is enabled or the note is entered anonymously. These take effect only if
the user has the appropriate priviledges in the notesfile.

Nfpipe is used to make the actual insertion of the text.

/usr/lib/libnfcom.a -Infcom library

SEE ALSO

notes(1), notes(8), popen(3S), system(3S),
The Notesfile Reference Manual

AUTHORS

Page 1

Ray Essick (uiucdes'essick, uiucdes'notes)
Rob Kolstad (uiucdestkolstad)
Department of Computer Science

222 Digital Computer Laboratory
University of lllinois at Urbana-Champaign
1304 West Springfield Ave.

Urbana, IL 61801

February 21, 1984

NLIST(

3C) MUNIX NLIST(3C)

NANE
nlist — get entries from name list

SYNOPSIS
finclude <a.out.h>
nlist (file-name, nl)
char ¢file-name;
struct nlist nif];

DESCRIPTION
Nlist examines the name list in the given exectutable output file and
selectively extracts a list of values. The name list consists of an array of
structures containing names, types and values. The list is terminated
with a null name. Each name is looked up in the name list of the file. If
the name is found, the type and value of the name are inserted in the
next two fields. If the name is not found, both entries are set to 0. See
a.out(5) for a discussion of the symbol table structure.
This subroutine is useful for examining the system name list kept in the
file 7unix. In this way programs can obtain system addresses that are up
to date. .

SEE ALSO
a.out(5).

DIAGNOSTICS)
Al] type entries are set to O if the flle cannot be found or if it is not a
valid namelist.

Page 1 February 21, 1984

PERROR(3C) MUNIX PERROR(3C)

NAME

perror, sys_errlist, sys_nerr, errno — system error messages

SYNOPSIS

perror (s)
char °s;

int sys_nerr;
char esys_errlist[]:

int ermrmo;

DESCRIPTION

Perror produces a short error message on the standard error, describing
the last error encountered during a system call from a C program. First
the argument string s is printed, then a colon, then the message and a
new-line. To be of most use, the argument string should be the name of
the program that incurred the error. The error number is taken from
the external variable errno, which is set when errors occur and cleared
when non-erroneous calls are made.

To simplify variant formatting of messages, the vector of message strings

sys_errlist is provided; errmo can be used as an index in this table to get

the message string without the new-line. Sys_nerr is the largest mes-

sage number provided for in the table; it should be checked because new

error codes may be added to the system before they are added to the’
table.

SEE ALSO

Page 1

intro(2).

February 21, 1984

PLOT(3X) MUNIX

NANE

plot — graphics interface subroutines

SYNOPSIS

openpl ()
erase ()
label (s)

char °s;

line (x1, y1, x2, y2)
circle (x, y. r)

arc (x, y. x0, y0, x1,
move (x, y)

cont (x, y)

point (x, y)

linemod (s)
char °s;

space (x0, y0, x1, yl)
closepl ()

DESCRIPTION

These subroutines generate graphic output in a relatively device-
independent manner. See plot(5) for a description of their effect.
Openpl must be used before any of the others to open the device for

FILES

writing. CQlosepl flushes the output.

A

PLOT (3X)

String arguments to label and linemod are terminated by nulls and do

not contain new-lines.

The library files listed below provide several flavors of these routines.

susr/lib/libplot.a produces output for tplot(1G) filters

/usr/lib/1ib300.a for DASI 300
/usr/lib/1ib300s.a for DAS] 300s
/7usr/lib/1ib450.a for DASI 450
/usr/lib/1ib4014.a for Tektronix 4014

SEE ALSO

Page 1

graph(1G), tplot(1G), plot(5).

February 21, 1984

POPEN

NAME

(3S) MUNIX POPEN(3S)

popen, pclose — initiate 170 to/from a process

SYNOPSIS

finclude <stdio.h>

FILE *popen (command, type)
char *command, *type;

int pclose (stream)

FILE estream;

DESCRIPTION

The arguments to popen are pointers to null-terminated strings contain-
ing, respectively, a shell command line and an 1/0 mode, either r for
reading or w for writing. Popen creates a pipe between the calling pro-
cess and the command to be executed. The value returned is a stream
pointer that can be used (as appropriate) to write to the standard input
of the command or read from its standard output.

A stream opened by popen should be closed by pclose, which waits for the
associated process to terminate and returns the exit status of the com-
mand.

Because open files are shared, a type r command may be used as an
input filter, and a type w as an output filter.

SEE ALSO

pipe(2), wait(2), fclose(3S), fopen(3S), system(3S).

DIAGNOSTICS

BUGS

Page 1

Popen returns a null pointer if files or processes cannot be created, or if
the shell cannot be accessed.

Pclose returns -1 if stream is not associated with a “popened” com-
mand.

Only one stream opened by popen can be in use at once.

Buffered reading before opening an input filter may leave the standard
input of that filter mispositioned. Similar problems with an output filter
may be forestalled by careful buffer flushing, e.g. with fflush; see
Jclose(3S). '

February 21, 1984

PRINTF(3S) MUNIX PRINTF (3S)

NAME
print{, fprint{, sprintf — output formatters

SYNOPSIS
finclude <stdio.h>

int printf (format [,arg] ...)
char ¢format;

int fprintf (stream, format [,arg] ...)
FILE °stream;
char *format;

int sprintf (s, format [,arg] ...)
char *s, format;

DESCRIPTION

Printf places output on the standard output stream stdout. Fprintf
places output on the named output stream. Sprintf places “output', fol-
lowed by the null character (\ 0) in consecutive bytes starting at *s; it is
the user’'s responsibility to ensure that enough storage is available. Each
function returns the number of characters transmitted (not including
the \ 0 in the case of sprintf), or a negative value if an output error was
encountered.

Each of these functions converts, formats, and prints its args under con-
trol of the format. The format is a character string that contains two
types of objects: plain characters, which are simply copied to the output
stream, and conversion specifications, each of which results in fetching
‘'of zero or more args. The results are undefined if there are insufficient
args for the format. If the format is exhausted while args remain, the
excess args are simply ignored.

Each conversion specification is introduced by the character %. After
the X, the following appear in sequence:

Zero or more flags, which modify the meaning of the conversion
specification.

An optional decimal digit string specifying a minimum fleld width.
1f the converted value has fewer characters than the fleld width, it
will be padded on the left (or right, if the left-adjustment flag (see
below) has been given) to the field width;

A precision that gives the minimum number of digits to appear for
the d, o, u, x, or X conversions, the number of digits to appear
after the decimal point for the e and f conversions, the maximum
number of significant digits for the g conversion, or the maximum
number of characters to be printed from a string in s conversion.
The precision takes the form of a period (.) followed by a decimal
digit string: a null digit string is treated as zero.

An optional 1 specifying that a following d, o, u, x, or X conversion
character applies to a long integer arg.

A character that indicates the type of conversion to be applied.

A field width or precision may be indicated by an asterisk (*) instead of a
digit string. In this case, an integer arg supplies the field width or preci-
sion. The arg that is actually converted is not fetched until the

Page 1 February 21, 1984

PRINTF(3S)

MUNIX PRINTF(3S)

conversion letter is seen, so the args specifying fleld width or precision
must appear before the arg (if any) to be converted.

The flag characters and their meanings are:

+

blank

The result of the conversion will be left-justified within the field.
The result of a signed conversion will always begin with a sign (+
or —).

If the first character of a signed conversion is not a sign, a
blank will be prepended to the result. This implies that if the
blank and + flags both appear, the blank flag will be ignored.
This flag specifies that the value is to be converted to an “alter-
nate form.” For e, d, s, and u conversions, the flag has no
eflect. For o conversion, it increases the precision to force the
first digit of the result to be a zero. For x (X) conversion, a
non-zero result will have Ox (0X) prepended to it. For e, E. I, g,
and G conversions, the result will always contain a decimal
point, even if no digits follow the point (normally, a decimal
point appears in the result of these conversions only if a digit
follows it). For g and G conversions, trailing zeroes will not be
removed from the result (which they normally are).

The conversion characters and their meanings are:

d.o,u,x,X The integer arg is converted to signed decimal, unsigned octal,

e,E

e.G

decimal, or hexadecimal notation (x and X), respectively; the
letters abedef are used for x conversion and the letters ABCDEF
for X conversion. The precision specifies the minimum number
of digits to appear; if the value being converted can be
represented in fewer digits, it will be expanded with leading
zeroes. The default precision is 1. The result of converting. a
zero value with a precision of zero is a null string (unless the
conversion is o, x, or X and the § flag is present).

The float or double arg is converted to decimal notation in the
style *'[-]ddd.ddd"”, where the number of digits after the
decimal point is equal to the precision specification. If the pre-
cision is missing, 6 digits are output; if the precision is explicitly
0, no decimal point appears.

The float or double arg is converted in the style
*[=]d.dddexdd"”, where there is one digit before the decimal
point and the number of digits after it is equal to the precision;
when the precision is missing, 6 digits are produced; if the pre-
cision is zero, no decimal point appears. The E format code will
produce a number with E instead of e introducing the exponent.
The exponent always contains exactly two digits.

The float or double arg is printed in style f or e (or in style E in
the case of a G format code), with the precision specifying the
number of significant digits. The style used depends on the
value converted: style e will be used only if the exponent result-
ing from the conversion is less than —4 or greater than the pre-
cision. Trailing zeroes are removed from the result; a decimal
point appears only if it is followed by a digit.

The character arg is printed.

The arg is taken to be a string (character pointer) and charac-
ters from the string are printed until a null character (\0) is

February 21, 1884 Page 2

PRINTF(3S) MUNIX PRINTF (3S)

encountered or the number of characters indicated by the pre-
cision specification is reached. If the precision is missing, it is
taken to be infinite, so all characters up to the first null char-
acter are printed.

= Print a X; no argument is converted.

In no case does a non-existent or small field width cause truncation of a
field; if the result of a conversion is wider than the field width, the field is
simply expanded to contain the conversion result. Characters generated
by printf and fprintf are printed as if putchar had been called (see
putc(3S)).

EXAMPLES
To print a date and time in the form “Sunday, July 3, 10:02", where week-
day and month are pointers to null-terminated strings:

printf("%s, %s %d, %.2d:%.2d", weekday, month, day, hour, min);
To print m to 5 decimal places:
printf("pi = %.51", 4°atan(1.0));

SEE ALSO
ecvt(3C), putc(3S), scanf(3S), stdio(3S).

Page 3 February 21, 1984

PUTC(3S) MUNIX PUTC(3S)

NAMNE
putc, putchar, fputc, putw — put character or word on a stream
SYNOPSIS
finclude <stdio.h>
int pute (c, stream)
char c;
FILE estream:;
putchar (c)
fputec (c, stream)
FILE estream;
putw (w, stream)
int w;
FILE sstream;
DESCRIPTION
Putc appends the character ¢ to the named output stream. It returns
the character written.
Putchar(c) is defined as putc(c, stdout).
Fputc behaves like putc, but is a genuine function rather than a macro;
it may therefore be used as an argument. Fputc runs more slowly than
putc, but takes less space per invocation.
Putw appends the word (i.e., integer) w to the output stream. Putw nei-
ther assumes nor causes special alignment in the file.
The standard stream stdout is normally buffered if and only if the output
does not refer to a terminal; this default may be changed by setbuf(3S).
The standard stream stderr is by default unbuffered unconditionally, but
use of freopen(3S) will cause it to become unbuffered; setduf, again, will
set the state to whatever is desired. When an output stream is
unbuflered information appears on the destination file or terminal as
soon as written; when it is buffered many characters are saved up and
written as a block. See also fflush(3S).
SEE ALSO
ferror(3S), fopen(3S), fwrite(3S), getc(3S). print{(3S). puts(3S).
DIAGNOSTICS
These functions return the constant EOF upon error. Since this is a good
integer, ferror(3S) should be used to detect putw errors.
BUGS

Because it is implemented as a macro, putc treats incorrectly a stream
argument with side eflects. In particular, putc(c., *f++); doesn't work
sensibly.

Page 1 February 21, 1984

PUTPWENT(3C) MUNIX PUTPWENT (3C)

NAME
putpwent — write password file entry

SYNOPSIS
finclude <pwd.h>

int putpwent (p. f)
struct passwd °*p;
FILE °f;
DESCRIPTION
Putpwent is the inverse of getpwent(3C). Given a pointer to a passwd
structure created by gefpwent (or getpwuid(3C) or getpunam(3C)),

putpwuid writes a line on the stream f which matches the format of
/etc/passwd.

DIAGNOSTICS
Putpwent returns non-zero if an error was detected during its operation,
otherwise zero.

Page 1 February 21, 1984

PUTS(3S) MUNIX PUTS(3S)

NAMNE
puts, fputs — put a string on a stream

SYNOPSIS
finclude <stdio.h>

int puts (s)
char °s;

int fputs (s, stream)
char °s;
FILE e¢stream;

DESCRIPTION
Puts copies the null-terminated string s to the standard output stream
stdout and appends a new-line character.

Fputs copies the null-terminated string s to the named output stream.
Neither routine copies the terminating null character.

DIAGNOSTICS
Both routines return EOF on error.

SEE ALSO
ferror(3S), fopen(3S), fwrite(3S), gets(3S), print{(3S), putc(3S).

NOTES
Puts appends a new-line, fputs does not.

Page 1 February 21, 1984

QSORT(3C) NUNIX QSORT(3C)

NANE
gsort — quicker sort

SYNOPSIS
qsort (base, nel, width, compar)
char ¢base;
int nel, width;
int (*compar)();

DESCRIPTION
Qsort is an implementation of the quicker-sort algorithm. The first argu-
ment is a pointer to the base of the data; the second is the number of
elements; the third is the width of an element in bytes; the last is the
name of the comparison routine. It is called with two arguments which
are pointers to the elements being compared. The routine must return
an integer less than, equal to, or greater than O according as the first
argument is to be considered less than, equal to, or greater than the
second.

SEE ALSO
sort(1), bsearch(3C), Isearch(3C), stremp(3C).

Page 1 February 21, 1984

RAND(3C) MUNIX RAND(3C)

NAME
rand, srand — random number generator

SYNOPSIS
srand (seed)
unsigned seed;

rand ()

DESCRIPTION
Rand uses a multiplicative congruential random number generator with
period 2% to return successive pseudo-random numbers in the range
from 0 to 2'°-1.

The generator is reinitialized by calling srand with 1 as argument. It can
be set Lo a random starting point by calling srand with whatever you like
as argument.

Page 1 February 21, 1984

RAND (3F) MUNIX RAND(3F)

NANE
rand, srand — Fortran uniform random-number generator

SYNOPSIS
integer i, j
call srand(i)
j = rand()
DESCRIPTION

Srand takes its integer argument as the seed of a random-number gen-
erator, the values of which are returned through successive invocations
of rand.

SEE ALSO
rand(3C).

Page 1 February 21, 1984

REGEX(3X) MUNIX REGEX (3X)

NAME

regex, regcmp — regular expression compile/execute

SYNOPSIS

char *regcmp(string1(,string2, ...],(char *)0);
char estringl, *stringe, ...;

char *regex(re,subject|,ret0, ...]);

char °*re, *subject, °retO, ...;

DESCRIPTION

Page 1

Regcmp compiles a regular expression and returns a pointer to the com-
piled form. Malloc(3C) is used to create space for the vector. It is the
user's responsibility to free unneeded space so allocated. A zero return
from regcmp indicates an incorrect argument. Regemp(1) has been writ-
ten to generally preclude the need for this routine at execution time.
Regez executes a compiled pattern against the subject string. Additional
arguments are passed to receive values back. Kegez returns zero on
failure or a pointer to the next unmatched character on success. A glo-
bal character pointer _loc! points to where the match began. Regcmp
and regez were mostly borrowed from the editor, ed(1) however, the syn-
tax and semantics have been changed slightly. The following are the
valid symbols and their associated meanings.

[]J*.~ These symbols retain their current meaning.
3 Matches the end of the string, \ n matches the new-line.

- Within brackets the minus means through. For example, [a~z] is
equivalent to [abcd...xyz]). The — can appear as itself only if
used as the last or first character. For example, the character
class expression []—] matches the characters] and —.

+ A regular expression followed by + means one or more times. For
example, [0—8]+ is equivalent to [0—8][0—9]°.

{mj {r.} {m,u}

Integer values enclosed in {}] indicate the number of times the
preceding regular expression is to be applied. m is the minimum
number and u is a number, less than 256, which is the maximum.
If only m is present (e.g.. {m]), it indicates the exact number of
times the regular expression is to be applied. {m,} is analogous
to {m.infinity}. The plus (+) and star (®) operations are
equivalent to {1,} and {0,] respectively.

(...)8n The value of the enclosed regular expression is to be returned.
The value will be stored in the (n+1)th argument following the
subject argument. At present, at most ten enclosed regular
expressions are allowed. Kegezx makes its assignments uncondi-
tionally.

(...) Parentheses are used for grouping. An operator, e.g. * +, {{,
can work on a single character or a regular expression enclosed
in parenthesis. For example, (a*(cb+)*)S0.

By necessity, all the above defined symbols are special. They must,
therefore, be escaped to be used as themselves.

February 21, 1984

REGEX(3X) MUNIX REGEX(3X)

EXAMPLES

Example 1:
char *cursor, *newcursor, *ptr;

newcux:s.c.:r = regex((ptr=regcmp(“~\n".(char *)0)).cursor);
free(ptr);

This example will match a leading new-line in the subject string pointed
at by cursor.

Example 2:
char ret0[9];
char *newcursor, *name;

name =..r.'egcrnp("([A—Za—z][A—za—zO—S_]{0,7{)80".(char *)0);
newcursor = regex(name,”"123Testing321",ret0);
This example will match through the string “Testing3" and will return the

address of the character after the last matched character (cursor+11).
The string "Testing3" will be copied to the character array ret0.

Example 3:
g#include "file.i”
char string, *newcursor;

newcursor = regex(name,string);

This example applies a precompiled regular expression in file.i (see
regcmp(1)) against string.

This routine is kept in /1lib/libPW.a.

SEE ALSO

BUGS

ed(1), regemp(1), free(3C), malloc(3C).

The user program may run out of memory if regcmp is called iteratively
without freeing the vectors no longer required. The following user-
supplied replacement for malloc(3C) re-uses the same vector saving time
and space:

/¢ user's program */
mallocir.n.) {

static int rebuf[256];
return &rebuf;
J

February 21, 1984 Page 2

ROUND(3F) MUNIX ROUND(3F)

NANE

anint, dnint, nint, idnint — Fortran nearest integer functions

SYNQPSIS

integer i

real rl, r2

double precision dpi, dp2
r2 = anint(ril)

i = nint(r1)

dp2 = anint(dp1l)

dp2 = dnint(dp1)

i = nint(dp1)
i = idnint(dp1)

DESCRIPTION

Page 1

Anint returns the nearest whole real number to its real argument (i.e.,
int(a+0.5) if a = 0, int(a=0.5) otherwise). Dnint does the same for its
double-precision argment. Nint returns the nearest integer to its real
argument. Jdnint is the double-precision version. Anint is the generic
form of anint and dnint , performing the same operation and returning
the data type of its argument. Mnt is also the generic form of idnint.

February 21, 1984

SCANF (35) MUNIX SCANF(3S)

NAME

scan{, {scanf, sscan{ — formatted input conversion

SYNOPSIS

finclude <stdio.h>
scanf (format [, pointer] ...)
char °format;

fscanf (stream, format [, pointer] ...)
FILE estream;

char *format;

sscanf (s, format [, pointer] ...)
char °¢s, *format;

DESCRIPTION

Page 1

Scanf reads from the standard input stream stdin. Fscanf reads from
the named input stream. Sscanf reads from the character string s.
Each function reads characters, interprets them according to a format,
and stores the results in its arguments. Each expects, as arguments, a
control string format described below, and a set of pointer arguments
indicating where the converted input should be stored.

The control string usually contains conversion specifications, which are
used to direct interpretation of input sequences. The control string may
contain:

1. Blanks, tabs, or new-lines, which cause input to be read up to the next
non-white-space character.

2. An ordinary character (not %), which must match the next character
of the input stream.

3. Conversion specifications, consisting of the character %, an optional
assignment suppressing character ¢, an optional numerical maximum
field width, and a conversion character.

A conversion specification directs the conversion of the next input field;
the result is placed in the variable pointed to by the corresponding argu-
ment, unless assignment suppression was indicated by *. An input field is
defined as a string of non-space characters; it extends to the next inap-
propriate character or until the field width, if specified, is exhausted.

The conversion character indicates the interpretation of the input field;
the corresponding pointer argument must usually be of a restricted type.
The following conversion characters are legal:

% a single 7% is expected in the input at this point; no assignment is
done.

d a decimal integer is expected; the corresponding argument should
be an integer pointer.

o an octal integer is expected; the corresponding argument should
be an integer pointer.

x a hexadecimal integer is expected; the corresponding argument
should be an integer pointer. '

s a character string is expected; the corresponding argument

should be a character pointer pointing to an array of characters
large enough to accept the string and a terminating \ 0, which will
be added automatically. The input field is terminated by a space

February 21, 1984

SCANF(3S) MUNIX SCANF(3S)

56789 0123 56a72

will assign 56 to i, 788.0 to z, skip 0123, and place the string 56\ 0 in
name. The next call to getchar (see getc(3S)) will return a.

SEE ALSO .
atof(3C), getc(3S), printf(3S).

NOTE
Trailing white space (including a new-line) is left unread unless matched
in the control string.

DIAGNOSTICS)
These functions return EOF on end of input and a short count for missing
or illegal data items.

BUGS
The success of literal matches and suppressed assignments is not
directly determinable.

Page 3 February 21, 1984

SETBU

F(3S) MUNIX SETBUF(3S)

NAME
setbuf — assign buffering to a stream

SYNOPSIS
finclude <stdio.h>
setbuf (stream, buf)
FILE °*stream;
char *buf;

DESCRIPTION
Setbuf is used after a stream has been opened but before it is read or
written. It causes the character array buf to be used instead of an
automatically allocated bufler. If duf is the constant pointer NULL,
input/output will be completely unbuffered.
A manifest constant BUFSIZ tells how big an array is needed:

char buf[BUFSIZ];

A buffer is normally obtained from malloc(3C) upon the first getc or
putc(3S) on the file, except that output streams directed to terminals,
and the standard error stream stderr are normally not buffered.
A common source of error is allocation of buffer space as an “automatic"
variable in a code block, and then failing to close the stream in the same
block.

SEE ALSO
fopen(3S), gete(3S). malloc(3C), pute(3S).

Page 1 February 21, 1984

SETIMP(3C) MUNIX SETIMP(3C)

NAME
setjmp, longjmp — non-local goto

SYNOPSIS
finclude <setjmp.h>
int setjmp (env)
jmp_buf env;
longjmp (env, val)
jmp_bul env;

DESCRIPTION
These routines are useful for dealing with errors and interrupts encoun-
tered in a low-level subroutine of a program.
Setjmp saves its stack environment in env for later use by longimp. It
returns value 0.
Longjmp restores the environment saved by the last call of setjimp. It
then returns in such a way that execution continues as if the call of
setjymp had just returned the value val to the corresponding call to
setjmp, which must not itself have returned in the interim. Longjmp
cannot return the value 0. If longjmp is invoked with a second argument
of O, it will return 1. All accessible data have values as of the time
longjmp was called.

SEE ALSO
signal(2).

Page 1 February 21, 1984

SIGN(3F) MUNIX SIGN(3F)

NAME
sign, isign, dsign — Fortran transfer-of-sign intrinsic function
SYNOPSIS
integer i, j. k
realrl, r2, r3
double precision dpl, dp2, dp3
k = isign(i. j)
k = =ign(i, §)
r3 = gign(rl, r2)
dp3 = dsign(dp1, dp2)
dp3 = sign(dp1, dp2) .
DESCRIPTION .
Isign returns the magnitude of its first argument with the sign of its
second argument. Sign and dsign are its real and double-precision

counterparts, respectively. The generic version is sign and will devolve
to the appropriate type depending on its arguments.

Page 1 February 21, 1984

SIGNAL(3F) MUNIX SIGNAL(3F)

NANE
signal — specify Fortran action on receipt of a system signal

SYNOPSIS
integer i
external integer intfnc
call signal(i, intfnc)

DESCRIPTION .
Signal allows a process to specify a function to be invoked upon receipt
of a specific signal. The first argument specifies which fault or exception,
the second argument the function to be invoked.

SEE ALSO
kill(2), signal(2).

Page 1 February 21, 1984

SIN(3F) MUNIX SIN(3F)

NAME
sin, dsin, ¢sin — Fortran sine intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2
complex cx1, cx2

r2 = sin(r1)

dp2 = dsin(dp1)
dp2 = sin(dp1)

cx2 = csin{cx1)
cx2 = sin(cx1)

DESCRIPTION _
Sin returns the real sine of its real argument. Dsin returns the double-

precision sine of its double-precision argument. Csin returns the com-
plex sine of its complex arguemnt. The generic sin function becomes
dsin or csin as required by argument type.

SEE ALSO
trig(3M).

Page 1 February 21, 1984

SINH(3F) MUNIX SINH(3F)

NAME
sinh, dsinh = Fortran hyperbolic sine intrinsic function

SYNOPSIS
real rl, r2
double precision dpl, dp2

r2 = sinh(rl)

dp2 = dsinh(dp1)
dp2 = sinh(dp1)

DESCRIPTION
Sinh returns the real hyperbolic sine of its real argument. Dsinh returns
the double-precision hyperbolic sine of its double-precision argument.
The generic form sinh may be used to return a double-precision value
given a double-precision argument.

SEE ALSO
sinh(3M).

Page 1 February 21, 1984

SINH(3NM) MUNIX

NAME
sinh, cosh, tanh — hyperbolic functions

SYNOPSIS
finclude <math.h>

double sinh (x)
double x;

double cosh (x)
double x;

double tanh (x)
double x;

DESCRIPTION

SINH(3N)

Sinh, cosh and tanh return respectively the hyberbolic sine, cosine and

tangent of their argument.
DIAGNOSTICS

Sinh and cosh return HUGE when the correct value would overflow, and

set errTno to ERANGE.

These error-handling procedures may be changed with the function

matherr(3M).

SEE ALSO
matherr(3M).

Page 1

February 21, 1984

SLEEP(3C) MUNIX SLEEP(3C)

NAME
sleep — suspend execution for interval

SYNOPSIS
unsigned sleep (seconds)
unsigned seconds;

DESCRIPTION

The current process is suspended from execution for the number of
seconds specified by the argument. The actual suspension time may be
less than that requested for two reasons: (1) Because scheduled wakeups
occur at fixed 1-second intervals, and (2) because any caught signal will
terminate the sleep following execution of that signal’s catching routine.
Also, the suspension time may be longer than requested by an arbitrary
amount due to the scheduling of other activity in the system. The value
returned by sleep will be the "unslept” amount (the requested time
minus the time actually slept) in case the caller had an alarm set to go
ofl earlier than the end of the requested sleep time, or premature
arousal due to another caught signal. '

The routine is implemented by setting an alarm signal and pausing until
it (or some other signal) occurs. The previous state of the alarm signal is
saved and restored. The calling program may have set up an alarm signal
before calling sleep; if the sleep time exceeds the time till such alarm
signal, the process sleeps only until the alarm signal would have
occurred, and the caller’'s alarm catch routine is executed just before
the sleep routine returns, but if the sleep time is less than the time till
such alarm, the prior alarm time is reset to go off at the same time it
would have without the intervening sleep.

SEE ALSO
alarm(2), pause(2), signal(2).

Page 1 February 21, 1984

SQRT(3F) MUNIX SQRT(3F)

NAMNE
sqrt, dsqrt, csqrt — Fortran square root intrinsic function

SYNOPSIS
real ri, r2
double precision dpl, dp2
complex cx1, cx2

r2 = sqrt(rl)

dp2 = dsqrt(dpl)
dp2 = sqrt(dp1) .
cx2 = csqrt(cx1)
cx2 = sqrt(cxl)

DESCRIPTION
Sgrt returns the real square root of its real argument. Dsqrt returns the
double-precision square root of its double-precision arguement. Csgrt
returns the complex square root of its complex argument. Sqgrt, the gen-
eric form, will become dsqrt or csqrt as required by its argument type.

SEE ALSO
exp(3M).

Page 1 February 21, 1984

SSIGNAL(3C) MUNIX SSIGNAL(3C)

NAME

ssignal, gsignal — software signals

SYNOPSIS

#include <signal.h>

int (*ssignal (sig, action))()
int sig, (eaction)();

int gsignal (sig)

int sig;

DESCRIPTION

NOTES

Ssignal and gsignal implement a software facility similar to signal(2).
This facility is used by the Standard C Library to enable the user to indi-
cate the disposition of ‘error conditions, and is also made available to the
user for his own purposes.

Software signals made available to users are associated with integers in
the inclusive range 1 through 15. An action for a software signal is esta-
blished by a call to ssignal, and a software signal is raised by a call to
gsignal. Raising a software signal causes the action established for that
signal to be taken.

The first argument to ssignal is a number identifying the type of signal
for which an action is to be established. The second argument defines the
action; it is either the name of a (user defined) action function or one of
the manifest constants SIG_DFL (default) or SIG_IGN (ignore). Ssignal
returns the action previously established for that signal type; if no
action has been established or the signal number is illegal, ssignal
returns SIG_DFL.

Gsignal raises the signal identified by its argument, sig:

If an action function has been established for sig, then that action is
reset to SIG_DFL and the action function is entered with argument
sig. Gsignal returns the value returned to it by the action function.

If the action for sig is SIG_IGN, gsignal returns the value 1 and takes
no other action.

If the action for sig is SIG_DFL, gsignal returns the value 0 and takes
no other action.

If sig has an illegal value or no action was ever specified for sig,
gsignal returns the value 0 and takes no other action.

There are some additional signals with numbers outside the range 1
through 15 which are used by the Standard C Library to indicate error
conditions. Thus, some signal numbers outside the range 1 through 15
are legal, although their use may interfere with the operation of the
Standard C Library.

Page 1 February 21, 1984

STDIO(3S) MUNIX STDIO(3S)

NANE

stdio — standard buffered input/output package

SYNOPSIS

finclude <stdio.h>
FILE e*stdin, *stdout, ¢stderr;

DESCRIPTION

The functions described in the entries of sub-class 3S of this manual
constitute an eflicient, user-level 170 buffering scheme. The in-line mac-
ros getc(3S) and putc(3S) handle characters quickly. The macros
getchar, putchar, end the higher-level routines fgetc, fgets, fprintf,
Jputc, fputs, fread, fscanf, fwrite, gets, getw, printf, puts, putw, and
scanf all use getc and putc; they can be freely intermixed.

A file with associated buflering is called a stream and is declared to be a
pointer to a defined type FILE. Fopen(3S) creates certain descriptive
data for a stream and returns a pointer to designate the stream in all
further transactions. Normally, there are 3 open streams with constant
pointers declared in the "include"” file and associated with the standard
open files:

stdin standard input file:
stdout standard output file
stderr standard error file.

A constant “pointer’” NULL ((char *)0) designates the null stream.

An integer constant EOF (—1) is returned upon end-of-file or error by
most integer functions that deal with streams (see the individual descrip-
tions for details).

Any program that uses this package must include the header file of per-
tinent macro definitions, as follows:

#include <stdio.h>

The functions and constants mentioned in the entries of sub-class 3S of
this manual are declared in that *“include" file and need no further
declaration. The constants and the following ‘‘functions” are imple-
mented as macros (redeclaration of these names is perilous): getc,
getchar, putc, putchar, feof, ferror, and fileno.

SEE ALSO

open(2), close(2), read(2), write(2), ctermid(3S), cuserid(3S), fclose(3S),
ferror(3S), fopen(3S), fread(3S), fseek(3S), getc(3S), gets(3S), popen(3S),
printf(3S), putc(3S), puts(3S), scanf(3S), setbuf(3S), system(3S),
tmpnam(3S).

DIAGNOSTICS

Invalid stream pointers will usually cause grave disorder, possibly includ-
ing program termination. Individual function descriptions describe the
possible error conditions.

Page 1 February 21, 1984

STDOUT(3F) MUNIX STDOUT(3F)

NAME
stdout — Write unformatted data to stdout

SYNOPSIS
character®N string

call stdout(string)

DESCRIPTION
Stdout writes the entire string to the stdout-unit (no. 6 in {77-programs)

Page 1 April 12, 1984

STRING (3C) MUNIX STRING(3C)

NAME

strcat, strncat, strcmp, strnemp, strcpy. strncpy, strlen, strchr, strrchr,

strpbrk, strspn, strcspn, strtok — string operations
SYNOPSIS

char estrcat (s1, s2)

char °sl1, *s2;

char °strncat (si1, s2, n)

char ¢sl, *s2;

int n;

int stremp (s1, s2)

char esl1, *s2;

int strncmp (s1, s2, n)

char °*sl, s2;

int n;

char estrcpy (s1, s2)

char esl, *s2;

char estrncpy (sl, s2, n)

char *s1, *s2;

int n;

int strlen (s)

char °s;

char estrchr (s, c)

char °s, c;

char estrrchr (s, ¢)

char °s, c;

char estrpbrk (s1, s2)

char *sl, *s2;

int strspn (s1, s2)

char *sl, *s2;

int strespn (s1, s2)

char °sl, *s2;

char estrtok (si1, s2)

char ¢s], *s2;
DESCRIPTION

These functions operate on null-terminated strings. They do not check
for overflow of any receiving string.

Strcat appends a copy of string s2 to the end of string sI1. Strncat
copies at most n characters. Both return a pointer to the null-
terminated result.

Stremp compares its arguments and returns an integer greater than,
equal to, or less than 0, according as s is lexicographically greater than,
equal to, or less than s2. Stmemp makes the same comparison but looks
at at most n characters.

Strcpy copies string s2 to s1, stopping after the null character has been
moved. Strncpy copies exactly n characters, truncating or null-padding

Page 1 February 21, 1984

STRING(3C) MUNIX STRING (3C)

BUGS

s2, the target may not be null-terminated if the length of s2 is n or
more. Both returnsi.

Strien returns the number of non-null characters in s.

Strchr (strrchr) returns a pointer to the first (last) occurrence of char-
acter c¢ in string s, or NULL if ¢ does not occur in the string. The null
character terminating a string is considered to be part of the string.

Strpbrk returns a pointer to the first occurrence in string s! of any
character from string s2, or NULL if no character from s2 exists in s1.

Strspn (strcspn) returns the length of the initial segment of string s
which consists entirely of characters from (not from) string s2.

Strtok considers the string s! to consist of a sequence of zero or more
text tokens separated by spans of one or more characters from the
separator string s2. The first call (with pointer s specified) returns a
pointer to the first character of the first token, and will have written a
NULL character into s1 immediately following the returned token. Subse-
quent calls with zero for the first argument, will work through the string
s1 in this way until no tokens remain. The separator string s2 may be
different from call to call. When no token remains in s, a NULL is
returned.

Strcmp uses native character comparison, which is signed on PDP-11s or
CADMUS-9000s, unsigned on other machines.

All string movement is performed character by character starting at the
left. Thus overlapping moves toward the left will work as expected, but
overlapping moves to the right may yield surprises.

February 21, 1984 Page 2

SWAB(3C) MUNIX

NANE
swab — swap bytes

SYNOPSIS
swab (from, to, nbytes)
char *from, °to;
int nbytes;

DESCRIPTION

SWAB(3C)

Swabd copies nbytes bytes pointed to by from to the position pointed to
by to, exchanging adjacent even and odd bytes. It is useful for carrying
binary data between PDP-11s and other machines. Abytes should be even.

Page 1

February 21, 1984

SYSTEMN (3F) MUNIX SYSTEM(3F)

NAME
system — issue a shell command from Fortran

SYNOPSIS
character*N ¢
call system(c)

DESCRIPTION
System causes its character argument to be given to sh(1) as input, as if
the string had been typed at a terminal. The current process waits until
the shell has completed.

SEE ALSO
sh(1), exec(2), system(3S).

Page 1 February 21, 1984

SYSTEM (3S) MUNIX SYSTEM(3S)

NAME
system — issue a shell command

SYNOPSIS
finclude <stdio.h>

int system (string)
char estring;
DESCRIPTION
System causes the string to be given to sh(1) as input as if the string

had been typed as a command at a terminal. The current process waits
until the shell has completed, then returns the exit status of the shell.

SEE ALSO
sh(1), exec(2).

DIAGNOSTICS
System stops if it can’t execute sh(1).

Page 1 February 21, 1984

TAN (3F) MUNIX TAN(3F)

NAME
tan, dtan — Fortran tangent intrinsic function

SYNOPSIS
real ri, r2
double precision dpl, dp2
r2 = tan(rl)
dp2 = dtan(dpl)
dp2 = tan(dpl)
DESCRIPTION
Tan returns the real tangent of its real argument. Dian returns the
double-precision tangent of its double-precision argument. The generic

tan function becomes dtan as required with a double-precision argu-
ment.

SEE ALSO
trig(3M).

Page 1 February 21, 1984

TANH (3F) MUNIX TANH(3F)

NANE

tanh, dtanh — Fortran hyperbolic tangent intrinsic function
SYNOPSIS

real rl, r2

double precision dpl, dp2

r2 = tanh(ri)

dp2 = dtanh(dp1)

dp2 = tanh(dpl)
DESCRIPTION

Tanh returns the real hyperbolic tangent of its real argument. Dtanh
returns the double-precision hyperbolic tangent of its double precision
argument. The generic form tanh may be used to return a double-
precision value given a double-precision argument.

SEE ALSO
sinh(3M).

Page 1 February 21, 1984

TERNCAP(3) MUNIX TERMCAP(3)

NAME

tgetent, tgetnum, tgetflag. tgetstr, tgoto, tputs — terminal independent
operation routines

SYNOPSIS

char PC;
char °*BC;
char *UP;
short ospeed;

tgetent(bp, name)
char *bp, *name;

tgetnum(id)
char *id;
tgetflag(id)
char ®*id;

char *
tgetstr(id, area)
char ®id, *®*area;

char *
tgoto(cm, destcol, destline)
char ®*cm;

tputs(cp, affcnt, outc)
register char ®cp; P
int affent;

int (*outc)();

DESCRIPTION

Page 1

These functions extract and use capabilities from the terminal capability
data base termcap(5). These are low level routines; see curses(3) for a
higher level package.

Tgetent extracts the entry for terminal name into the buffer at dbp. Bp
should be a character buffer of size 1024 and must be retained through
all subsequent calls to tgetnum, tgetflag, and tgetstr. Tgetent returns —1
if it cannot open the termcap file, O if the terminal name given does not
have an entry, and 1 if all goes well. It will look in the environment for a
TERMCAP variable. If found, and the value does not begin with a slash,
and the terminal type name is the same as the environment string TERM,
the TERMCAP string is used instead of reading the termcap file. If it does
begin with a slash, the string is used as a path name rather than
setc/termcap. This can speed up entry into programs that call tgetent,
as well as to help debug new terminal descriptions or to make one for
your terminal if you can’t write the file /etc /termcap.

Tgetnum gets the numeric value of capability id, returning —1 if is not
given for the terminal. 7getflag returns 1 if the specified capability is
present in the terminal's entry, 0 if it is not. 7getstr gets the string value
of capability id, placing it in the buffer at area, advancing the area
pointer. It decodes the abbreviations for this field described in
termcap(5), except for cursor addressing and padding information.

February 21, 1984

TERMCAP(3) MUNIX TERMCAP(3)

Tgoto returns a cursor addressing string decoded from ¢m to go to
column destcol in line destline. It uses the external variables UP (from
the up capability) and BC (if bc is given rather than bs) if necessary to
avoid placing \'n, ~D or ~® in the returned string. (Programs which call
tgolo should be sure to turn off the XTABS bit(s), since tgoto may now
output a tab. Note that programs using termcap should in general turn
ofl XTABS anyway since some terminals use control I for other functions,
such as nondestructive space.) If a % sequence is given which is not
understood, then tgoto returns OOPS.

Tputs decodes the leading padding information of the string cp, affcnt
gives the number of lines affected by the operation, or 1 if this is not
applicable, outc is a routine which is called with each character in turn.
The external variable ospeed should contain the output speed of the ter-
minal as encoded by toctl (2). The external variable PC should contain a
pad character to be used (from the pc capability) if a null (~@) is inap-
propriate.

FILES
/usr/lib/libtermcap.a —Itermcap library
/etc/termcap data base
SEE ALSO
ex(1). curses(3), termcap(5)
AUTHOR
William Joy
BUGS

February 21, 1984 Page 2

TMPFILE (3S) MUNIX TMPFILE(3S)

NAME
tmpfile — create a temporary file

SYNOPSIS
#include <stdio.h>’

FILE etmpfile ()

DESCRIPTION
Pmpfile creates a temporary file and returns a corresponding FILE
pointer. Arrangements are made so that the file will automatically be
deleted when the process using it terminates. The file is opened for
update.

SEE ALSO
creat(2), unlink(2), fopen(3S), mktemp(3C), tmpnam(3S).

Page 1 February 21, 1984

TMPNAN(3S) MUNIX TMPNAM (3S)

NAME
tmpnam ~ create a name for a temporary file

SYNOPSIS
finclude <stdio.h>
char *tmpnam (s)
char °s;

DESCRIPTION
Tmpnam generates a file name that can safely be used for a temporary
file. If (int)s is zero, tmpnam leaves its result in an internal static area
and returns a pointer to that area. The next call to tmpnam will destroy
the contents of the area. If (int)s is nonzero, s is assumed to be the
address of an array of at least L_tmpnam bytes; tmpnam places its
result in that array and returns s as its value.
Tmpnam generates a different file name each time it is called.
Files created using tmpnam and either fopen or creat are only tem-
porary in the sense that they reside in a directory intended for tem-
porary use, and their names are unique. It is the user’s responsibility to
use unlink (2) to remove the file when its use is ended.

SEE ALSO
creat(2), unlink(2), fopen(3S), mktemp(3C).

BUGS

If called more than 17,576 times in a single process, tmpnam will start
recycling previously used names.

Between the time a file name is created and the file is opened, it is possi-
ble for some other process to create a file with the same name. This can
never happen if that other process is using tmpnam or mkiemp, and the
file names are chosen so as to render duplication by other means
unlikely.

Page 1 February 21, 1984

TRIG (3M) MUNIX TRIG(3M)

NAME
sin, cos, tan, asin, acos, atan, atan2 — trigonometric functions
SYNOPSIS
finclude <math.h>
double sin (x)
double x;
double cos (x)
double x;
double tan (x)
double x;
double asin (x)
double x;
double acos (x)
double x;
double atan (x)
double x;
double atan2 (y, x)
double x, y;
DESCRIPTION
Sin, cos and tan return respectively the sine, cosine and tangent of their
argument, which is in radians.
Asin returns the arcsine of z, in the range —n/2 to n/2.
Acos returns the arccosine of z, in the range 0 to m.
Atan returns the arctangent of z, in the range —n/2 to n/2.
Atan2 returns the arctangent of y/z, in the range —n to m, using the
signs of both arguments to determine the quadrant of the return value.
DIAGNOSTICS
Sin, cos and tan lose accuracy when their argument is far from zero.
For arguments sufliciently large, these functions return 0 when there
would otherwise be a complete loss of significance. In this case a mes-
sage indicating TLOSS error is printed on the standard error output. For
less extreme arguments, a PLOSS error is generated but no message is
printed. In both cases, errno is set to ERANGE.
Tan returns HUGE for an argument which is near an odd multiple of n/2
when the correct value would overfiow, and sets errno to ERANGE.
Arguments of magnitude greater than 1.0 cause asin and acos to return
0 and to set errmo to EDOM. In addition, a message indicating DOMAIN
error is printed on the standard error output.
These error-handling procedures may be changed with the function
matherr(3M).
SEE ALSO

matherr(3M).

Page 1 February 21, 1984

TSEARCH(3C) MUNIX TSEARCH(3C)

NAME

tsearch, tdelete, twalk — manage binary search trees

SYNOPSIS

finclude <search.h>

char *tsearch ((char °*) key, (char *¢) rootp, compar)
int (*compar)();

char etdelete ((char *) key, (char ¢¢) rootp, compar)
int (ecompar)(); :

void twalk ((char ¢) root, action)
void (*action)();

DESCRIPTION

NOTES

Tsearch is a binary tree search routine generalized from Knuth (6.2.2)
Algorithm T. It returns a pointer into a tree indicating where a datum
may be found. If the datum does not occur, it is added at an appropriate
point in the tree. Key points to the datum to be sought in the tree.
Rootp points to a variable that points to the root of the tree. A NULL
pointer value for the variable denotes an empty tree; in this case, the
variable will be set to point to the datum at the root of the new tree.
Compar is the name of the comparison function. It is called with two
arguments that point to the elements being compared. The function
must return an integer less than, equal to, or greater than zeto accord-
ing as the first argument is to be considered less than, equal to, or
greater than the second.

Tdelete deletes a node from a binary search tree. It is generalized from
Knuth (6.2.2) algorithm D. The arguments are the same as for tsearch.
The variable pointed to by rootp will be changed if the deleted node was
the root of the tree. 7delete returns a pointer to the parent of the
deleted node, or a NULL pointer if the node is not found.

Twalk traverses a binary search tree. Root is the root of the tree to be
traversed. (Any node in a tree may be used as the root for a walk below
that node.) Action is the name of a routine to be invoked at each node.
This routine is, in turn, called with three arguments. The first argument
is the address of the node being visited. The second argument is a value
from an enumeration data type typedef enum { preorder, postorder,
endorder, leaf | VISIT: (defined in the <search.h> header file), depending
on whether this is the first, second or third time that the node has been
visited (during a depth-first, left-to-right traversal of the tree), or
whether the node is a leaf. The third argument is the level of the node in
the tree, with the root being level zero.

The pointers to the key and the root of the tree should be of type
pointer-to-element, and cast to type pointer-to-character.

The comparison function need not compare every byte, so arbitrary data
may be contained in the elements in addition to the values being com-
pared.

Although declared as type pointer-to-character, the value returned
should be cast into type pointer-to-element.

Warning: the root argument to twalk is one level of indirection less than
the rootp arguments to tsearch and tdelete.

Page 1 February 21, 1984

TSEARCH(3C) MUNIX TSEARCH (3C)

DIAGNOSTICS

A NULL pointer is returned by tsearch if there is not enough space avail-
able to create a new node.

A NULL pointer is returned by tsearch and tdelete if rootp is NULL on
entry.

SEE ALSO
bsearch(3C), hsearch(3C), Isearch(3C).

BUGS

Awful things can happen if the calling function alters the pointer to the
root.

February 21, 1984 Page 2

TTYNAME (3C) MUNIX TTYNANE(3C)

NAME
ttyname, isatty — find name of a terminal

SYNOPSIS
char ettyname (fildes)

int isatty (fildes)

DESCRIPTION
Ttyname returns a pointer to the null-terminated path name of the ter-
minal device associated with file descriptor fildes.
Isatty returns 1 if fildes is associated with a terminal device, 0 otherwise.
FILES
/dev/e
DIAGNOSTICS

Ttyname returns a null pointer (0) if fildes does not describe a terminal
device in directory /dev.

BUGS
The return value points to static data whose content is overwritten by
each call.

Page 1 February 21, 1984

TTYSLOT(3C) MUNIX TTYSLOT(3C)

NAME
ttyslot — find the slot in the utmp file of the current user

SYNOPSIS
int ttyslot ()

DESCRIPTION
Ttyslot returns the index of the current user's entry in the /etc/utmp
file. This is accomplished by actually scanning the file /etc/inittab for
the name of the terminal associated with the standard input, the stan-
dard output, or the error output (0, 1 or 2).

FILES
/etc/inittab
/etc/utmp

SEE ALSO
getut(3C), ttyname(3C).

DIAGNOSTICS
A value of 0 is returned if an error was encountered while searching for
the terminal name or if none of the above file descriptors is associated
with a terminal device.

Page 1 February 21, 1984

UNGETC(3S) MUNIX UNGETC(3S)

NAME
ungetc — push character back into input stream

SYNOPSIS
finclude <stdio.h>

int ungetc (c, stream)
char c;
FILE ssiream,;

DESCRIPTION
Ungetc pushes the character ¢ back on an input stream. That character
will be returned by the next getc call on that stream. Ungetc returnsc.

One character of pushback is guaranteed provided something has been
read from the stream and the stream is actually buffered. Attempts to
push EOF are rejected.

Fseek(3S) erases all memory of pushed back characters.

SEE ALSO
fseek(3S), getc(3S), setbuf(3S).

DIAGNOSTICS
Ungetc returns EOF if it can't push a character back.

Page 1 February 21, 1984

INTRO(4) MUNIX INTRO(4)

NAME
intro — introduction to special files

DESCRIPTION
This section describes various special files that refer to specific hardware
peripherals and UNIX System device drivers. The names of the entries are
generally derived from names for the hardware, as opposed to the names
of the special files themselves. Characteristics of both the hardware dev-
ice and the corresponding UNIX System device driver are discussed where
applicable.

BUGS
While the names of the entries generally refer to vendor hardware
names, in certain cases these names are seemingly arbitrary for various
historical reasons.

Page 1 February 21, 1984

BBP(4) MUNIX (CADMUS) BBP (4)

NAME

bbp — Basic Block Port Interface

SYNOPSIS

finclude <sys/port.h>

DESCRIPTION

The Basic Block Port Interface is a simple network interface, originally
developed for the Cambridge Ring, and now adapted to Ethernet. The bbp
provides a set of so-called ports, through which processes on different
machines (or on the same) can talk to each other. The port is character-
ized by the structure portinfo in <sys/port.h> :

struct portinfo |§

shor t pPi_type: /= port type,unused for Ethernet =/
unsigned int pi_inport; /= bb_port number by which this port
= is addressed by other stations
=/
shor t pi_station; /w destination ring station &/
unsigned int pi_putport; /= destination bb_port number »/
unsigned int pi_accept; /% acceptable source station number &/
etheradr pi_sthadr; /= destination ethernet address s/

The field pi_type is unused for Ethernet. For the Cambridge ring this
field specifies if the data transfers are protected by parity checks or not.
The field pi_inport specifies the input port number, by which this port is
addressed by other stations. Their output port number, pi_outport, must
be equal to pi_inport, if they want to talk to this port. The field
pi_station is a two-byte station number.

A station number is a unique identification of each machine attached to
the net. This station number is more manageable than the six byte Eth-
ernet address contained in the field pi_ethadr. The ethernetl address is
mainly used for the hardware address recognition, whereas the station
number is used by upper level software. Both the station number and
the ethernet address are fixed at system generation time. They are, like
the ascii system name, a unique name of the system. Their values can be
found in the file /usr/sys/name.c and can be gotten by the system call
uname(2).

The fields pi_station, and pi_ethadr together specify the destination
machine; the field pi_outport is the port number on the destination
machine, to which this port wants to talk. The field pi_accept specifies
the machines from which this port is willing to receive. The values
NOONE and ANYONE mean: accept packets from noone or anyone. Any
other number means: accept packets only from the station with this
number.

It is not necessary for a process to specily his own station number and
ethernet address, as the system knows them already and they cannot
change.

The portinfo structure is set by an ioctl system call with command
BBPSET, and read with command BBPGET.

EXAMPLE

Machine alpha has the station number 3 and the ethernet address
333333333333. Machine beta has the station number S and the ethernet
address 555555555555. A process on alpha wishes Lo receive on port

Page 1 February 21, 1984

BBP(4) MUNIX (CADMUS) BBP(4)

number 372. Another process on beta receives on port number 373; The
process on alpha specifies

struct portinfo alphaport = § 8, 372, 5, 373, S, [@x5555,8>8555, Bx5555]1;
ioct! (fa,BBPSET,&atphaport);

whereas the process on beta specifies

struct portinfo betaport = { 8, 373, 3, 372, 3, {Ox3333,8x3333,08x3333}}:
ioct! ($a,B8PSET,&betaport);

Both processes can now talk to each other by normal read and write sys-
tem calls.

A port can be obtained by successively opening the files /dev/bbp0,
/dev/bbpl etc. If the open returns with errno ENXIO, the port does not
exist, if errno is EACCES, the port is already opened. After the open the
port must be configured with the command BBPSET. If the ioct] returns
with errno EACCES, a port with the same pi_inport is already opehn. Just
to get an unused port, number, the ‘value DYNAMIC can be given for
pi_inport. The actual port number can then be gotten with the ioctl-
command BBPGET.

EXAMPLE
struct portinfo aport = | 8, DYNARIC, S, 123, ANYONE, {@x5555, 88555, xE655]|:
ioct! (¢d,BBPSET, &aport);
ioct! (fd,BBPGET,&aport); /= pi_inport contains a free port number =/

Data is transferred with the normal read and write system calls. However,
there is a limitation on the number of bytes that can be transferred with
one write. On the Ethernet, the number 1024 is safe. The data of each
write system call is sent as a packet over the net. The count of the read
system call must be larger or equal than the size of the packet, otherwise
the read returns with error EIO. read returns the size of the received
packet. If the count for read or write is illegal, error EINVAL is returned.

At any time after BBPSET, the ioctl command BBPENQ will return the fol-
lowing structure, defined in <sys/port.h>:

struct portenq |

shor t pn_sender: /x station number

of sender of received block =/
short pn_sendport; /x port number

of sender of received biock =/
char pr_xrsl|t; /= |last block transmission result =/
char pn_blkavail; /= 3 block is available to be read =/
etheradr pn_sendadr; /x ethernet address of sencer x/

{s

The fields pn_sender, pn_sendport, and pn_sendadr specify the station
number, port number, and ethernet address of the sender of a received
packet. The field pn_zrsit contains the result of the last write. This is
normally equal to BB_ACCEPTED on the ethernet, and equal to
BB_ERROR only if excessive jams occurred on the net. The field
pn_blkavail is unequal 0, if a packet has been received, but not yet read.

WARNING
The bbp contains no flow control. Incoming packets are simply discarded
if they are not read fast enough. Protocols are entirely the responsibility
of upper levels. .

SEE ALSO
sbp(4)

February 21, 1984 Page 2

BBP(4) MUNIX (CADMUS) BBP(4)

FILES
/dev/bbp*

Page 3 February 21, 1984

BIP(4) MUNIX BIP(4)

NAME
bip — CADMUS Bitmap Display

DESCRIPTION
The bip can be accessed in two different ways. First, it can be used as a
normal teletype, with only one font set and no graphics, but with a high
number of lines and columns. The interface to this mode consists of the
normal open/close/read/write/ioctl system calls. The second mode
views the bip as a piece of memory of size 256k. Reading and writing of
this memory causes dots on the screen to turn black or white, or it
transfers parameters to a program which executes locally on the bip.

For the first mode, the discussion of typewriter 1/0 given in termio(4)
applies. An additional ioctl call TCBIPADR has been provided in
<sys/termio.h> that returns the starting address of the 256k memory of
the bip.

The bip driver talks to code installed on the ROM of the bip, that partly
emulates a VT52/VT100. The emulation understands the control
sequences described in <bip/vt100.A>. An entry for bip is available in
s/etc/termcap. If the bip is equipped with a keyboard, it can be used as
any other terminal by making an entry for it in /etc /inittab.

EXAMPLE
int bip; char *bipaddr;

bip = open("/dev/ttyb0", 2);
write(bip, "hallo0, 6);

ioctl(bip, TCBIPADR, &bipaddr);
bipaddr{xx] = 0xCC;

A possible entry in /etc/inittab:
tb0:2:respawn: /etc/getty ttyb0O 9600 bip

FILES
/usr/include/bip/*
/dev/ttyb0, /dev/ttybl, ...

SEE ALSO
bip(3), termcap(5). inittab(5)

Page 1 February 21, 1964

CONFINFO(4) MUNTX CONFINFO(4)

NAME
configuration information = table of interrupt vector and device
addresses

SYNOPSIS
cat /usr/sys/confinfo

DESCRIPTION
Confinfo is a table of the interrupt vectors and device addresses used in
MUNIX. Addresses are listed both in octal and hex notation.
Please note that the octal values of interrupt vector addresses have to
be used to switch DEC or DEC-compatible controller boards. The
MC68000 processor assumes them to be interrupt vector numbers and
computes the memory address by multiplying with 4 (resulting in the hex

values).
Configuration Information
Device Interrupt Vec. Device Address max. Units/Lines
octal hex octal hex
console 60 Co 777560 FFFF70 1
ether 100 100 764330 FFE8DS8 rx || 1
104 110 764332 FFEBDA tx
‘ 110 120
1bp 120 140 770000 FFFo00 1
l bip 134 170 0 1
kedqs 770400 FFF100 - 4 Lines
port O 140 180 770440 | FFF120-14F
port 1 144 190 770520 | FFF150-17F
port 2 150 1A0 770600 | FFF180-1AF
port 3 || 154 1BO 770660 | FFF1BO-1FF
| rl 160 1CO 774400 FFF900 4 Drives
hi 164 1D0 774420 FFF910 4 Drives
vp 174 | 1F0 plot || 777400 FFFFO00 1
204 210 print
lp 200 200 777514 FFFF4C 1
hk 210 220 777440 | FFFF20 l 8 Drives
rk 220 240 777400 FFFFOO 4 Drives
tm 224 250 772520 FFF550 8 Drives
ot/ox 230 260 775600 FFFBBO csr 4 Drives
775640 | FFFBAOQO data
st 240 - 280 777600 FFFFBO csr 1 Drive
alter. 777640 | FFFFAOQ data ;

Page 1 February 21, 1984

CONFINFO(4) MUNIX CONFINFO(4)

Configuration Information

Device || Interrupt Vec. Device Address max. Units/Lines
octal hex octal hex
rm 254 2B0 776700 FFFDCO 8 Drives
hp 254 2B0O 776700 FFFDCO 2 Drives
rx2 264 2D0 777170 FFFE78 2 Drives
hx2 270 2E0 777150 FFFE68 2 Drives
st 270 2E0 777600 FFFF80 esr 1 Drive
777640 | FFFFAQ data
tty 8 Lines
1 300 300 776500 FFFD40
2 310 320 776510 FFFD48
3 320 340 776520 FFFD50
4 330 360 776530 FFFD58
5 +340 380 776540 FFFD60
6 “°|j 350 3A0 776550 FFFD6E8
7 360 3Co 776560 FFFD70
8 370 3E0 776570 FFFD78
slu . 7 Lines
0 304 310 776040 FFFC20 and
1 300 300 776000 FFFCO0 Console
2 314 330 || 776140 FFFC60 (port 0)
3 310 320 776100 FFFC40
4 324 | 350 | 776240 | * FFFCAO |
S 320 340 776200 FFFC80 l
6 334 370 776340 FFFCEO I
7 330 360 | 776300 FFFCCO |

dz(v) 32(16) Lines
1st 330 360 760100 FFE040
2nd 340 380 760110 FFEO48
3rd 350 3A0 760120 FFE050
4th 360 3Co 760130 FFEO58

dh 340 380 760020 FFEO10 - 16 Lines

td 370 3E0 777600 FFFFB0 csr 2 Drives
777640 | FFFFAOQ data

FILES
/usr/sys/confinfo

February 21, 1984 Page 2

DZ(4) MUNIX DZ(4)

NAME
dz,. dh = DZ-11, DH-11 asynchronous multiplexers

DESCRIPTION
Each line attached to a DH-11 or DZ-11 communications multiplexer
behaves as described in termio(4). Input and output for each line may
be set to run at any of 16 speeds; see termio(4) for the encoding. (For
DZ-11 lines, output speed is always the same as input speed. The 200
speed and the two externally clocked speeds (exta, extb) are missing on
the DZ-11.)

FILES
/dev/tty??

SEE ALSO
termio(4).

Page 1 February 21, 1984

HK(4) MUNIX (CADMUS) HK(4)

NAME
hk — RK611/RK06, RKO7 moving-head disk

DESCRIPTION
The octal representation of the minor device number is encoded dp,
where d is a physical drive number, and p is a logical unit (subsection)
within a physical unit. The origins and sizes of the logical units on each
drive, counted in cylinders of 66 512-byte blocks and tracks of 22 512-
byte blocks, are:

logical starting length size
unit cylinder (cyl.+tracks) (in blocks)

0 0 14640 9636 (root on RK06/07)
1 146 13540 8910 (swap on RK06/07)
2 281 12742 8426 (rest of RK06)
3 281 531+2 35090 (rest of RK0?7)
4 0 0+0 0 (spare)
5 0 0+0 0 (spare)
6 0 408+2 26972 (all of RK06)
7 0 812+2 53636 (all of RK07)

Systems distributed for these devices use disk O for the root, disk 1 for
swapping, and disk 6 (RK06) or disk 7 (RKO7) for a mounted user file sys-
tem.

The embedded bad sector replacement mechanism assumes a bad sector
file on each disk volume. Before using any disk volums please check them
for bad sectors with the CADMUS disk check program. For the root
filesystem and the swap area we suggest to use only bad-sectorfree
disks. Otherwise the system also works well but it will slow down. If you
have bad sectors in the root filesystem area you cannot boot MUNIX
directly from the Minitor. The Minitor doesn’'t handle bad sectors. In this
case you have to boot from any other device (i.e. floppy, streamer ...).
Only the standalone driver and the MUNIX-driver can handle bad sectors.

The block files access the disk via the system’s normal buffering mechan-
ism and may be read and written without regard to physical disk records.

A ‘raw’ interface provides for direct transmission between the disk and
the user's read or write buffer. A single read or write call results in
exactly one 170 operation and therefore raw 1/0 is considerably more
eflicient when many words are transmitted. The names of the raw files
conventionally begin with an extra ‘r.' In raw 1/0 the buffer must begin
on a word boundary.

Under MUNIX disk volumes may be changed without rebooting the sys-
tem. In standalone mode however you have to restart the standalone pro-
gram after changing a disk volume.

FILES
/dev/hk?, /dev/rhk?

SEE ALSO
format(8), check(8), iopage(7)
Bad Sector Handling (Vol. 2c¢)

DIAGNOSTICS
Sector numbers in error diagnostics are absolute. The sector numbers

Page 1 February 21, 1984

HK(4) MUNIX (CADMUS) HK(4)

range from O to 27126 for an RKO6 and from 0 to 53790 for an RK07. The
last 154 sectors are not visible to the user. They are reserved for bad
sector handling. The message Cannot read bad sector file using a disk
volume is fatal. Do not use this disk any longer. The message No replace
sector available indicates a new bad sector. Use the printed sector
number to update the bad sector information by the disk check program.

February 21, 1984 Page 2

HP(4) MUNIX (CADMUS) HP(4)

NAME
hp — RP04/05/06, RM02/03 moving-head disk

DESCRIPTION
The octal representation of the minor device number is encoded dp.
where d is a physical drive number, and p is a logical unit (subsection)
within a physical unit. The origins and sizes of the logical units on each
drive, counted in cylinders of 418 512-byte blocks, for the RP04/05/06

are:

log. unit start cyl. length size (in blocks)
0 0 23 9614 (root on RP04/05/06)
1 23 21 8778 (swap on RP04/05/06)
2 44 21 8778 (/sys on RP04/05/06)
3 65 345 . 144210 (rest of RP04/05)
4 65 749 313082 (rest of RP06)
5 411 403 168454 (/usr on RP06)
6 0 410 171380 (all of RP04/05)
7 0 814 340252 (all of RP06)

The logical units for the RM02/03 are:
log. unit start cyl. length size (in blocks)

0 0 60 9600 (root on RM02/03)
1 60 55 8800 (swap on RM02/03)
2 115 50 8000 (/sys on RM02/03)
3 165 657 105120 (rest of RM02/03)
4 0 0 0 (spare)

5 0 0 0 (spare)

6 0 0 0 (spare)

7 0 822 131520 (all of RM02/03)

Systems distributed for these devices use disk 0 for the root, disk 1 for
swapping, and disk 3 (RP04/05, RM02/03) or disk 4 (RP06) for a mounted
user file system.

The block files access the disk via the system’'s normal buffering mechan-
ism and may be read and written without regard to physical disk records.

A 'raw’ interface provides for direct transmission between the disk and
the user's read or write buffer. A single read or write call results in
exactly one 170 operation and therefore raw 1/0 is considerably more
eflicient when many words are transmitted. The names of the raw files
conventionally begin with an extra 'r.’ In raw 170 the buffer must begin
on a word boundary.

FILES
/dev/rp?, /dev/rrp?
/dev/rm?, /dev/rrm?

SEE ALSO
format (8)

BUGS :

In raw 170 read and write(2) truncate file offsets to 512-byte block boun-
daries, and write scribbles on the tail of incomplete blocks. Thus, in pro-
grams that are likely to access raw devices, read, write and lseek(2)

Page 1 February 21, 1984

HP(4) MUNIX (CADMUS) HP(4)

should always deal in 512-byte rultiples.

February 21, 1984 Page 2

KL(4)

MUNIX KL(4)

NANE
kl — KL-11 or DL-11 asynchronous interface

DESCRIPTION
The discussion of typewriter 1/0 given in termio(4) applies to these dev-
ices.
KL stands normally for a DLV-11 J, DL for a DLV-11 E. The DL11-E sup-
ports modem control, the KL not. For the DLV-11 J, the console is
attached to port 3. Port 0 to 2 correspond to /dev/ttyl to /dev/tty3.
Make sure that the jumpers which cause a break to issue HALT or INIT on
the Q-Bus are removed.
Attempts to change the speed are ignored.

FILES
/dev/console /dev/tty?

Page 1 February 21, 19684

LBP(4) MUNIX (CADMUS) LBP(4)

NAME

lbp — LBP-10 Laser Beam Printer Interface
SYNOPSIS

#include <sys/lbp.h>
DESCRIPTION

The Laser Printer is controlled by ioct]l system calls. Parameter LBPPUT
sets printer parameters, LBPGET asks for the current printer parame-
ters, and LBPWRITE starts the actual printing. The settable parameters
determine the rectangle on the paper which is to be printed, and whether
the printer should use half resolution. For the purpose of this discussion
we assume that the paper is divided into lines and columns, where the
lines and columns are 0.1 mm apart. The lines and columns cut the
paper into tiny 0.1 mm squares, called pixels. Each pixel on the paper
can be black or white. We print by setting bits in memory to 0 or 1 for
white or black. Lines on the paper correspond to sequential words in
memory. Each line is a multiple of 16 pixels long. The upper left pixel is
the most significant bit in the first word to be printed. Normally we do
not want to print over the whole paper. The controller lets us specify a
margin on the left and upper edge of the paper, and the number of lines
and columns that make up the print area.

LBPPUT and LBPGET use the following structure, defined in <sys/lbp.h>:

struct Ibp {
short nla, nl, npa, np;
short halfres;

I:

The parameter nla is the number of print lines on top of the page to be
left blank, nl is the number of lines to be printed, npa is the number of
columns that constitute the left margin, and np is the length of the lines
(number of columns). npa and np count multiples of 16, that is, npa ==
means 1.6 mm left margin. If halfres is set different from O, the resolu-
tion is changed from 0.1 mm to 0.2 mm.

The following code sets the parameters and asks for them:

finclude <ays/Ibp.h>

int [;

struct Ibp Ibp = § ceeyereyencyeses B
int I;

| « open(”/dev/Iibp",1);
iocti (1, LBPPUT, &ibp); /= set params =/
ioct! (1, LBPGET, &Ibp); /= get params =/

To print a page, a (very large) amount of memory has to be filled with
pixels. The address and length of this area are given to an ioctl call with
parameter LBPWRITE. LBPWRITE uses the following structure, again
defined in <sys/lbp.h>:

struct lbpurite }
short =adr:
long cnt;
i:
The address must be even, the count is the count in words, not bytes!
The call is like those above.

Page 1 February 21, 1984

LBP(4) MUNIX (CADMUS) LBP(4)

Diagnoslics
The system call open(2) returns -1 and errno ENXIO when the printer is
already opened, -1 and errno EIO when the printer is not ready (e.g.
power off). When printing, the state of the printer is checked before and
after printing. Before printing, if the printer is not ready, the driver will
wait until the error condition is removed. If there is an error after print-

ing, one retry will be made. Messages describing the state of the printer
are sent to the system console.

February 21, 1984 Page 2

LP(4)

NAME

MUNIX LP(4)

lp — parallel line printer

DESCRIPTION

Page 1

Lp provides the interface to any standard parallel line printer with Cen-
tronics interface. When it is opened or closed, a suitable number of page
ejects is generated. Bytes written are printed.

In the default mode the driver correctly interprets carriage returns,
backspaces, tabs, and form-feeds. A new-line that extends over the end
of a page is turned into a form-feed. The default line length is 132 char-
acters, indent is 4 characters and lines per page is 66. Lines longer than
the line length minus the indent (i.e. 128 characters, using the above
defaults) are truncated.

The command lpctrl can be used to change the driver mode, line length,
lines per page and indent.

In capital mode lower case letters are turned into upper case and the
characters { | * | ~ are escaped by other symbols. In transparent mode
all bytes written are printed without regarding line length, indent and
page length.

There is an ioctl(2) call applying to the parallel line printer. It uses the
following structure, defined in <sys/lpcmd.h>:

struct lpct {
char aind;
char afig;
int alin;
int aco];
):
The aind, alin, acol and aflg fields describe the indent, page length, line
length and driver mode. Symbolic values for driver modes are defined in
<sys/lpemd.h>:

CAP 020 capital mode
LPTRANS 0200 transparent mode
The toctl call has the form:

finclude <sys/lpcmd.h>

ioctl (fildes, command, arg)
struct lpct ®arg;

The applicable commands are:

LPGET
Fetch the parameters associated with the line printer, and store in
the pointed-to structure.

LPSET Set the parameters according to the pointed-to structure.

February 22, 1984

LP(4)

FILES
/dev/lp
/usr/include/sys/lpcmd.h

SEE ALSO
lpr(1), lpctri(1), ioctl(2).

February 22, 1984

MUNIX

LP(4)

Page 2

MEM (4

) MUNIX (CADMUS) MEN(4)

NAME
mem, kmem — core memory
DESCRIPTION

Mem is a special file that is an image of the physical memory of the com-

puter (excluding the 170-page). Kmem is an imake of the logical memory

including the 1/0- page. Both files may be used, for example, to examine,

and even to patch the system. .

Addresses in mem are interpreted as memory addresses. References to

non-existent locations cause errors to be returned.

The physical memory is the real memory attached to the Q-Bus or S-Bus.

The logical memory is the memory as seen through the memory manage-

ment unit. The 1/0 page is handled specially, and can only be accessed

via /dev/kmem.

Examining and patching device registers is likely to lead to unexpected

results when read-only or write-only bits are present. Of course Unix may

crash if you interfere with the device driver.
LOGICAL MEMORY .

The 68000 generates 24 bit addresses. These are split into a 4 bit seg-

ment number and a 20 bit segment offset. So we have 16 segments of 1

mbyte. User and systemn space share these segments. The segments are

used for the following purpose:

0 Segment 0 (SYSTEXT) contains the exception vectors and the sys-
tem code.

1 Segment 1 (SYSDATA) contains the systems data structures, e.g.
the buffer pool.

2 Segment 2- (SYSUSER) contains the so called u-structure of UNIX
plus the system stack. Whereas SYSTEXT and SYSDATA never
change, segment SYSUSER is changed during each context switch.

3 Segment 3 (SYSRDR) is used by the kernel to map into arbitrary
physical memory for reading.

4 Segment 4 (SYSWRT) is used by the kernel to map into arbitrary
physical memory for writing. E.g. during a fork a process has to be
copied in physical memory. This is done by mapping SYSRDR to the
old process and SYSWRT to the new memory and copying from
SYSRDR to SYSWRT.

5 Segment 5 (SYSSPCL) maps physical 0x300000 - Ox3fIfIf to logical
0x500000 to Ox5fIfIf. Via this segment the bitmap memory (in the
nonvirtual version), the ethernet buffer and the floating point
board are addressed. Unfortunately, this presents a security risk,
because each process can at random overwrite this segment.
Memory put in physical segment 3 could be addressed by all
processes and serve as shared memory for special applications.

6 Segment 6 (USRTEXT) contains the user program's text segment.
The text segment can extend into higher segments.

7 Segment 7 may contain more text.

Page 1 February 21, 1984

MEM (4) MUNIX (CADMUS) MENM (4)

8 Segment 8 (USRDATA) may contain even more text, but normally
contains the user program’'s data segment. The data segment con-
tains the data and bss sections of the program (see a.out(5)).

9 Segment 9 to segment 12 may contain additional user text, or seg-
ment 9 to segment 13 may contain additional user data.

14 Segment 14 contains the user stack. The stack grows downwards
from OxefIfIf and may extend into lower segments.

The rules for user segment allocation are as follows: let btos(x) be a
function that returns for a number of bytes the number of required seg-
ments, i.e. btos(x) = (x + OxfIfif) / 0x100000. Then, btos(user_code) +
btos(user_data) + btos(user_stack) must be <= 9. Additionally,
btos(user_data) + btos(user_stack) must be <= 7. User code starts at
0x600000. User data starts at 0x800000, unless user code is larger than 2
mbytes. Then user data starts at the next segment boundary. User stack
starts at segment 14 and may extend into lower segments, but not into a
segment already occupied by user data.

EXAMPLE
/* read location 400 - 500 of logical memory */
int m = open("/dev/kmem",2);
lseek(m,400L,0);
read(m,buf,100);

/* write a 1 into device register at OxfIfc00 */
short x;
Iseek(m.0xfI{c00,0);
X=1;
write(m,&x,2);
FILES
/dev/mem, /dev/kmem

February 21, 1984 Page 2

NULL(4) MUNIX NULL(4)

NAME
null = the null file

DESCRIPTION
Data written on a null special file is discarded.

Reads from a null special file always return 0 bytes.

FILES
/dev/null

Page 1 February 21, 1984

0T (4) MUNIX (CADMUS) OT(4)

NAME
ot, ox — TM 503/TM 603/TM 703 disk, TM 100-4 floppy disk

DESCRIPTION
The octal representation of the minor device number is encoded dp.
where d is a physical drive number, and p is a logical unit (subsection)
within a physical unit. The origins and sizes of the logical units on each
drive, counted in 512-byte blocks, for the TM 603 are:

log. unit start blo. size (in blocks)

0 0 9600 (root on TM 603)

1 9600 4000 (swap on TM 603)

2 13600 11132 (7usr on TM 603).

3 0 24732 (all of TM 603)

4 0 12366 (172 of TM 603)

S 12366 12366 (1/20f TM 603)

6 0 1280 (all of TM 100-4 floppy 0)
7 0 1280 (all of TM 100-4 floppy 1)

The logicél units for the TM 503 are:

log. unit start blo. size (in blocks)

0 0 9600 (root on TM 503)

1 9600 4000 (swap on TM 503)

2 13600 19340 (#usr on TM 503)

3 0 32940 (all of TM 503)

4 0 16470 (172 of TM 503)

5 16470 16470 (1/20f TM 503)

6 0 1280 (all of TM 100-4 filoppy 0)
7 0 1280 (all of TM 100-4 floppy 1)

The logical units for the TM 703 are:

log. unit start blo. size (in blocks)

0 0 9600 (root on TM 703)

1 9600 4000 (swap on TM 703)

2 13600 38330 (7usr on TM 703)

3 0 51930 (all of TM 703)

4 0 25965 (1/2 of TM 703)

5 25965 25965 (1/20f TM 703)

6 0 1280 (all of TM 100-4 floppy 0)
7 0 1280 (all of TM 100-4 floppy 1)

Systems distributed for these devices use disk O for the root, disk 1 for
swapping, and disk 3 or disk 4 or disk 5 for a mounted user file system.

The block files access the disk via the system’'s normal buffering mechan-
ism and may be read and written without regard to physical disk records.

A ‘raw’ interface provides {or direct transmission between the disk and
the user's read or write bufler. A single read or write call results in
exactly one 1/0 operation and therefore raw 1/0 is considerably more
eflicient when many words are transmitted. The names of the raw files
conventionally begin with an extra 'r.’ In raw 170 the buffer must begin
on a word boundary.

Page 1 February 21, 1984

OT(4)

FILES
/dev/ot?, /dev/rot?
/dev/ox?, /dev/rox?

SEE ALSO
format (8)

February 21, 1984

MUNIX (CADMUS)

OT(4)

Page 2

PIPE(4) MUNIX (CADNUS) PIPE(4)

NAME
pipe — Pipes and named pipes - everything you always wanted to know
about ...

DESCRIPTION

Normal pipes are anonymous. They are created with pipe(2) by a process
which then normally forks. The pipe system call returns two file descrip-
tors, one for read and one for write. These file descriptors are inherited
by the forked processes. Each process normally closes the file descriptor
it will not use. The pipe is only accessible via file descriptors, not names,
thus processes communicating over a pipe need a common ancestor
which created the pipe for them.

Named pipes, on the contrary, are created as filestore files. This is done
with the system call mknod(2) where the first parameter is a file name,
and the second parameter is the mode of the file. The mode must be the
bitwise or of S_IFIFO (defined in <sys/stat.h>) and the access bits, e.g.

mknod(“np0",S_IFIFO | 0666);

The pipe in this example has the name np0 and read and write permis-
sion for owner, group and others. The creation can also be done with the
command mknod(8) like this:

/etc/mknod np0 p

The pipe can now be used like a normal file. The following two commands
have the same effect:

Is | we
Is > np0 & wc < np0

The length of a write to a pipe may not exceed 5120 bytes, otherwise
errno EIO will be returned. A read of a pipe when no process has the pipe
open for writing will return a read count of 0. A write to a pipe when no
process has the pipe open for reading will cause signal SIGPIPE and
return errno EPIPE. A read of a named pipe after an open with parameter
FNDELAY (see open(2)) will not wait if the named pipe is empty, but will
return with a read count of 0 instead.

The command "Is -1" will indicate a named pipe with a p in the first
column. Named pipes can be found with "find <path> -type p ...".

Page 1 February 21, 1984

RK(4) MUNIX RK(4)

NAME
rk — RK-11/RKO03 or RKOS disk

DESCRIPTION
Rk? refers to an entire disk as a single sequentially-addressed file. Its
256-word blocks are numbered 0 to 4871. Minor device numbers are
drive numbers on one controller.

The rk files discussed above access the disk via the system's normal
buffering mechanism and may be read and written without regard to phy-
sical disk records. There is also a ‘raw’ interface which provides for
direct transmission between the disk and the user's read or write buffer.
A single read or write call results in exactly one 1/0 operation and there-
fore raw [/0 is considerably more eflicient when many words are
transmitted. The names of the raw RK files begin with 7k and end with a
number which selects the same disk as the corresponding rk file.

In raw I/0 the buffer must begin on a word boundary, and counts should
be a multiple of 512 bytes (a disk block). Likewise seek calls should
specify a multiple of 512 bytes.

FILES
/dev/rk?, /dev/rrk?

BUGS
In raw I/0 read and write(2) truncate file offsets to 512-byte block boun-
daries, and write scribbles on the tail of incomplete blocks. Thus, in pro-
grams that are likely to access raw devices, read, write and lseek(2)
should always deal in 512-byte multiples.

Page 1 February 21, 1984

RL(4)

NAME

MUNIX (CADMUS) RL(4)

rl, hl — RLO1/RL0O2 moving-head disk

DESCRIPTION

The octal representation of the minor device number is encoded dp,
where d is a physical drive number, and p is a logical unit (subsection)
within a physical unit. The origins and sizes of the logical units on each
drive, counted in cylinders (and heads) of 20 512-byte blocks, are:

log. unit start cyl. length size (in blocks)

0 400 8000 (root on RLO1/02)
400 112 2240 (swap on RLO2)
400 107 2140 (swap on RLO1)

0 512 10240 (first half of RL02)
512 507 10140 (rest of RLO2)

0 1019 20380 (all of RLO2)

0 507 10140 (all of RLO1)

0 0 0 (spare)

Systems distributed for these devices use disk 0 for the root, disk 1 for

swapping, and disk 6 (RLO1) or disk 4 (RLO2) for a mounted user file sys-
tem.

N W~ O

The embedded bad sector replacement mechanism assumes a bad sector-

‘file on each disk pack. Before using any disk packs please check them for

FILES

bad sectors with the CADMUS disk check program. For the root filesys-
tem and the swap area we suggest to use only bad-sector-free disks. Oth-
erwise the system also works well but it will slow down. If you have bad
sectors in the root filesystem area you cannot boot MUNIX directly from
the Minitor. The Minitor doesn’t handle bad sectors. In this case you have
to boot from any other device (i.e. floppy. streamer ...). Only the stan-
dalone driver and the MUNIX-driver can handle bad sectors.

The block files access the disk via the system’s normal buffering mec.han-
ism and may be read and written without regard to physical disk records.

A ‘raw’ interface provides for direct transmission between the disk and
the user's read or write buffer. A single read or write call results in
exactly one 1/0 operation and therefore raw 1/0 is considerably more
eflicient when many words are transmitted. The names of the raw files
conventionally begin with an extra 'r.’ In raw 170 the buffer must begin
on a word boundary.

Under MUNIX disk volumes may be changed without rebooting the sys-
temn. In standalone mode however you have to restart the standalone pro-
gram after changing a disk volume.

/dev/rl?, /dev/rri?
/dev/hl?, /dev/rhl?

SEE ALSO

format(8). check(8), iopage(7)
Bad Sector Handling (Vol. 2¢)

DIAGNOSTICS

Page 1

Sector numbers in error diagnostics are absolute. The sector numbers
range from 0 to 40960 for an RLO2 and from 0 to 20480 for an RLO1. The

February 21, 1984

RL(4) MUNIX (CADMUS) RL(4)

last 200 sectors are not visible to the user. They are reserved for bad
sector handling. The message Cannot read bad sector file using a disk
pack is fatal. Do not use this disk any longer. The message No replace
sector available indicates a new bad sector. Use the printed sector
number to update the bad sector information by the disk check program.

February 21, 1984 Page 2

RM(4) MUNIX (CADMUS) RM(4)

NAME
rm — RM02/03/05 moving-head disk

DESCRIPTION
The octal representation of the minor device number is encoded dp,
where d is a physical drive number, and p is a logical unit (subsection)
within a physical unit. The origins and sizes of the logical units on each
RMO02/03 drive, counted in cylinders of 160 512-byte blocks and tracks of
32 512-byte blocks, are:

logical starting length size
unit cylinder (cyl.+tracks) (in blocks)

0 60+0 9600 (root on RM02/03)
1 60 55+0 8800 (swap on RM02/03)
2 115 50+0 8000 (/sys on RM02/03)
3 165 657+0 105120 (rest of RM02/03)
4 0 0+0 0 (spare)
5 0 0+0 0 (spare)
6 0 0+0 0 (spare)
7 0 822+0 131520 (all of RM02/03)

The origins and sizes of the logical units on each RM05 drive, counted in
cylinders of 608 512-byte blocks and tracks of 32 512-byte blocks, are:

logical starting length size
unit cylinder (cyl.+tracks) (in blocks)

0 0 16+0 9728 (root on RM05)
1 16 1440 8512 (swap on RM05)
2 30 1440 8512 (/sys on RM05)
3 44 778+14 473024 (rest of RM0S)
4 0 41140 249888 (1st part of RM0S)
5 411 206+0 125248 (2nd part of RM05)
6 617 205+14 125088 (last part of RM05)
7 0 822+14 500224 (all of RMOS)

Systems distributed for these devices use disk O for the root, disk 1 for
swapping, and disk 3 for a mounted user file system.

The embedded bad sector replacement mechanism assumes a bad sector
file on each disk volume. Before using any disk volums please check them
for bad sectors with the CADMUS disk check program. For the root
filesystem and the swap area we suggest to use only bad-sector-free
disks. Otherwise the system also works well but it will slow down. If you
have bad sectors in the root filesystem area you cannot boot MUNIX
directly from the Minitor. The Minitor doesn't handle bad sectors. In this
case you have to boot from an other device (i.e. loppy, streamer ...). Only
the standalone driver and the MUNIX-driver can handle bad sectors.

The block files access the disk via the system’s normal buffering mechan-
ism and may be read and written without regard to physical disk records.

A ‘raw’ interface provides for direct transmission between the disk and
the user's read or write buffer. A single read or write call results in
exactly one 1/0 operation and therefore raw 1/0 is considerably more
efTicient when many words are transmitted. The names of the raw files
conventionally begin with an extra 'r.’ In raw 1/0 the bufler must begin

Page 1 February 21, 1984

RM(4) MUNIX (CADMUS) RM(4)

on a word boundary.

Under MUNIX disk volumes may be changed without rebooting the sys-
tem. In standalone mode however you have to restart the standalone pro-
gram after changing a disk volume.

FILES
/dev/rm?, /dev/rrm?

SEE ALSO
hp(4), format(8)

DIAGNOSTICS
Sector numbers in error diagnostics are absolute. The sector numbers
range from 0 to 131680 for RM02/03 and from 0 to 500384 for an RM0S5.
The last 160 sectors are not visible to the user. They are reserved for bad
sector handling. The message Cannot read bad sector file using a disk
volume is fatal. Do not use this disk any longer. The message No replace
sector available indicates a new bad sector. Use the printed sector
number to update the bad sector information by the disk check program.

February 21, 1984 Page 2

RX(4) MUNIX (CADMUS) RX(4)

NAME
rx — RXO01 or RX02 floppy disk

DESCRIPTION
The rz driver supports both double sided (DS) or single sided (SS) drives
and double density (DD) or single density (SD) format.
Rx? refers to an entire disk as a single sequentially-addressed file. Its
256-word blocks are numbered 0 to (number of blocks — 1). For the
number of blocks on a floppy disk see the following table:

500 SS/SD
1000 DS/SD
1001 SS/DD
2002 DS/DD

Rz 0 refer to drive O, single density format, rz1 to drive 1, single density
format, rz2 to drive 0, double density format and rz3 refer to drive 1,
double density format. The names rz4 to rz? would refer to a second
controller, drive 2 and 3, if existent.

The rz files discussed above access the disk via the system's normal
buffering mechanism and may be read and written without regard to phy-
sical disk records. There is also a 'raw’ interface which provides for
direct transmission between the disk and the user's read or write buffer.
A single read or write call results in exactly one 1/0 operation and there-
fore raw 170 is considerably more eflicient when many words are
transmitted. The names of the raw RX files begin with rrzx.

In raw 170 the buffer must begin on a word boundary, and counts should
be a multiple of 512 bytes (a disk block).

An ioctl-command, as described in /usr/include/sys/rxcmd.h, may be
given to reformat a disk, swap bytes, switch sector interleave off, or
modify the way in which the two sides of a double sided disks are
accessed.

FILES
/dev/rx?, /dev/rrx?

SEE ALSO
rxctrl (1), format (8)

Page 1 February 21, 1984

SBP(4) MUNIX (CADMUS) SBP(4)

NAME
sbp — Simplified Basic Block Port Interface

SYNOPSIS
finclude <sys/sbp.h>

DESCRIPTION
The sbp driver is a very simple driver which is derived from the driver for
the Cambridge ring, see bbp(4).

On a ring, it is possible to send data between processes running on any
machine. Specifically it is possible that the processes are running on the
same machine. In this case, the data travels simply around the whole
ring. But using the net for simple interprocess communication between
processes running on one machine is a bit expensive. So the bbp driver
has been simplified to run without net hardware, giving the sbp driver.

The sbp uses the concept of "ports”. A process can open a port and
specify an input and output port number. If the output port number of
process A is equal to the input port number of process B, then A can send
a message via the port to B. All input port numbers must be unique,
whereas several processes may have the same output port number. Addi-
tional ioctl-commands allow a process to see if a message has been
delivered correctly to a port, or to see if a message is waiting to be read,
thus preventing blocking reads.

There exists a limited number of port structures in the kernel, e.g. 50,
and a corresponding number of special files, e.g. /dev/sbp0 to
/dev/sbp49. A port must be opened and then configured to be used. It is
opened by repeated attempts to open /dev/sbp0, /dev/sbpl, ... until the
open succeeds. The following procedure does the job: '

#include <&rrno. h>
sbopen (mode)
int mode;

x
This procedure opens the first simpie block port it can find
available, and returns the file descriptor. The port is opened
using "mode"”. If an error arises -1 will be returned.
The error EACCES indicates that the port is already in use and is
not returned to the user.

static char PORT(] « "/dev/sbp88”;
register int i, fd:
extern int errno;

x/

i = 8;
do

t
if (ide)

PORT(8)=i+'0";
PORT[S)=" °;

PORT(8]= (i/18)+°8’;
PORT(9) = (i%10)+'8";
; PORT(1@)=" °;

P+

Page 1 February 21, 1984

SBP(4) MUNIX (CADMUS) SBP(4)

while {{fd=open(PORT,mode)) < O &8 errno=<EACCES);
returnifd);

}

After the open the port must be configured:
finclude <sys/sbp.h>

struct portinfo pi;
struct portenq pe;

fd = sbopen(2); /x open port for read and write =/
pi.pi_inport = my own_unique_port_number;
pi.pi_putport = his_pun_unique_port_number;

ioct! (fd,BBPSET,&pi);

The system will generate a unique port number if the special value
DYNAMIC is assigned to pi_inport. The generated number can be obtained
with BBPGET:

pi.pi_inport = DYNAMIC;

pi.pi_putport = his_pun_unique_port_number;

ioct! (fd,BBPSET,8pi);

ioct! (fd,BBPGET,&pi);

my_pun_unique_port_number = pi.pi_inport;
Now we can transfer messages. Reading and writing is unbuffered and
tightly interlocked. The read and write count may not exceed the system
buffer size SBUFSIZE (see /usr’/include/sys/param.h). When a write is
done, the driver will grab a buffer from the systems disk buffer pool,
copy the user data to it and hook the buffer to the destination port. If
another block is already hooked to this port, the writing process will be
delayed until the other block has been read. When a read is done, the
read will be delayed until a block is hooked to the port. The data will then
be copied from the system buffer to the user buffer and the block will be
returned to the buffer pool.

The ioctl call BBPENQ returns a structure with three fields:

- The field pn_sendport contains the sender port number of the last
received block.

- The field pn_zrsit contains the value BB_ACCEPTED, if the last
write was successful, BB_ABSENT if the output port number was
not the input port number of any port, or if this port was not open
for reading.

- The field pn_blkavail is non-zero, if a block is waiting to be read
on this port. This allows to implement non-blocking reads.

The following example illustrates reading and writing:
char buf [BUFSIZ]:

ioctl (fd,BBPENQ, &pe);

uhile (!pe.pn blkavail)
sleep(5);

len = read{fd,buf,BUFSIZ};

ioct! (¢d,BBPENQ, &pe);

sender = pe.pn_sendpor t;

write(fd,buf,cnt);

ioctl {fd,BBPENQ, 8pe) ;
if (pe.pn_xrslt == BB_ABSENT)

February 21, 1984 Page 2

SBP(4) MUNIX (CADMUS) SBP(4)

printf(“destination Xd has gone\n”,pi.pi_putport);

Page 3 February 21, 1984

ST(4) MUNIX (CADMUS) ST(4)

NAME
st — SCT11 Streamer interface

DESCRIPTION
The special files rst0, nrst0 refer to the streamer drive 0. The letter r
indicates "raw” device, the letter n indicates "no rewind" when the strea-
mer is closed. For nrst0 the bit 0200 in the minor device number must be
set. To rewind the streamer tape you can say < /dev/rst0.

The raw devices rst0 and nrstO allow transfers of up to 127 512-byte
blocks with a single read or write call. The byte count should always be
an exact multiple of 512.

There is an ioctl(2) call applying to the streamer. The ioctl call has the
form:

#include <sys/stcmd.h>

ioctl (fildes, command)

The applicable commands are:

ERCMD
Erase the contents of the tape and rewind it.

RETCMD
Make a retension of the tape and rewind it.

CBUF Switch the streamer driver to work in double buffer mode. This
mode allows asynchronous 1/0-transfers to and from the strea-
mer. The first read or write call after the ioctl call initiates only
the 1/0-transfer and reports no error. A succeeding read /write
call waits until the current transfer is finished, reports the errors
and initiates the new transfer. A read 7write call with byte count 0
doesn’t initiate a new transfer. It waits only for the end of the pre-
vious one and reports the errors.

While data is transferred to/from the streamer any other opera-
tion can be done asynchronously. For example a second 1/0-
buffer may be filled from the disk and afterwards written to the
streamer.

The double buffer mode is primarily used for physical disk back-up
(stvolcopy, stcp) to keep the tape streaming. A close call switches
back to normal streamer mode.

REMARKS

A physical copy from disk to tape is done very quickly. Using the program
stvolcopy while no other users are on the system, MUNIX feeds the strea-
mer with data at the highest possible speed. Thus the tape keeps stream-
ing.

Unfortunately, when making a logical back-up from disk to tape, the
streamer needs data faster than MUNIX can provide. Therefore, the
streamer over- or underruns its internal buffers and does not stream.
This means that after it has transferred some data, the tape will stop.
When subsequent data arrives, it will rewind a piece of tape, then read
forward to where it stopped, and immediately write the data. This
zigzag-motion of the tape can be very time-consuming. The zig” occurs
when transferring data, and its time is proportional to the amount of

Page 1 February 21, 1984

MUNIX (CADMUS) ST(4)

data transferred. The "zag" is the rewind, and its time is constant. The
ratio of "zig"-time to “zag”-time becomes tolerable, when the amount of
data transferred with one "zig’" gets large.

Three programs have been modified to use larger buffersizes when work-
ing with the streamer: cpio, volcopy and cp. The volcopy for streamer has
been renamed stvolcopy, the cp has been renamed stcp. Both programs
use double buflering. For cpio the option —S sets the blocking factor to
120, but does not invoke double buffering. The standalone program wvol-

Y copyin /sal or /sa2 can copy in tapes written with stvolcopy.
Stcp is intended to write standalone programs onto the streamer tape.
These programs allow you to backup your disks properly. Once in a while
you should make physical copies of your file systems with stvolcopy.
Stvolcopy can then be used to recreate a file system after a catastrophic
failure. The standalone version of volcopy is needed to recreate the root
filesystem.
At least once a day you should make an incremental dump of all files with
cpio. From the cpio-tapes you can easily retrieve single files or whole
directories.
EXAMPLES
incremental dump (last three days, say)
find / -mtime -3 -print | cpio -0S >/dev/rst0
file retrieval:
cpio -ivSmd myfile </dev/rst0
physma] dump: Sprrial frime volime
labelit /dev/rstOrpot tapel -n_ _
stvolcopy root /dev/rhko hk0 7dev/rstO tapel
standalone (only terminal input shown):"*"'"* vtvneZ
/sal/volcopy
[-40)
-S root st(0,0) tapel hk(0,0) root
write standalone programs onto tape
< /dev/rst0
stcp /sa/boot /dev/nrst0
stcp /sa/volcopy /dev/nrst0
stcp /sa/check /dev/rst0
SEE ALSO
volcopy(8B), cpio(1), labelit(8), stetrl(1), cp(1)
ioctl(2), read(2), write(2)
BUGS

Do not care too much for the message streamer error: cannot read
status. In most cases the last streamer operation was completed sucess-
fully.

February 21, 1984 Page 2

TERMIO(4) MUNIX TERMIO(4)

NAME
termio — general terminal interface

DESCRIPTION
All of the asynchronous communications ports use the same general
interface, no matter what hardware is involved. This section discusses
the common features of this interface.

When a terminal file is opened, it normally causes the process to wait
until a connection is established. In practice, users’ programs seldom
open these files; they are opened by getty(8) and become a user's stan-
dard input, output, and error files. The very first terminal file opened by
the process group leader of a terminal file not already associated with a
process group becomes the control terminal for that process group. The
control terminal plays a special role in handling quit and interrupt sig-
nals, as discussed below. The control terminal is inherited by a child pro-
cess during a fork(2). A process can break this association by changing
its process group using setpgrp(2).

A terminal associated with one of these files ordinarily operates in full-
duplex mode. Characters may be typed at any time, even while output is
occurring, and are only lost when the system’s character input buffers
become completely full, which is rare, or when the user has accumulated
the maximum allowed number of input characters that have not yet been
read by some program. Currently, this limit is 256 characters. When the
input limit is reached, all the saved characters are thrown away without
notice.

Normally, terminal input is processed in units of lines. A line is delimited
by a new-line (ASCII LF) character, an end-of-file (ASCII CTRL-Z) character,
or an end-of-line character. This means that a program attempting to
read will be suspended until an entire line has been typed. Also, no
matter how many characters are requested in the read call, at most one
line will be returned. It is not, however, necessary to read a whole line at
once; any number of characters may be requested in a read, even one,
without losing information.

During input, erase and kill processing is normally done. By default, the
character BS or DEL erases the last character typed, except that it will
not erase beyond the beginning of the line. By default, the character
CTRL-X kills (deletes) the entire input line, and optionally outputs a new-
line character. Both these characters operate on a key-stroke basis,
independently of any backspacing or tabbing that may have been done.
Both the erase and kill characters may be entered literally by preceding
them with the escape character (\). In this case the escape character is
not read. The erase and kill characters may be changed.

Certain characters have special functions on input. These functions and
their default character values are summarized as follows:

INTR (Control-c) generates an interrupt signal which is sent to all
processes with the associated control terminal. Normally. each
such process is forced to terminate, but arrangements may be
made either to ignore the signal or to receive a trap to an
agreed-upon location; see signal(2).

Page 1 February 21, 1984

TERMIO(4) MUNIX TERMIO(4)

QUIT (Control-y) generates a quit signal. Its treatment is identical to
the interrupt signal except that, unless a receiving process has
made other-arrangements, it will not only be terminated but a
core image file (called core) will be created in the current work-
ing directory.

ERASE (Backspace or DEL) erases the preceding character. It will not
erase beyond the start of a line, as delimited by a NL. EOF. or EOL
character.

KILL (Control-x) deletes the entire line, as delimited by a NL, EOF, or
EOL character.

EOF (Control-z) may be used to generate an end-of-file from a termi-
nal. When received, all the characters waiting to be read are
immediately passed to the program, without waiting for a new-
line, and the EOF is discarded. Thus, if there are no characters
waiting, which is to say the EOF occurred at the beginning of a
line, zero characters will be passed back, which is the standard
end-of-file indication.

NL (ASCII LF) is the normal line delimiter. It can not be changed or
escaped.

EOL (ASCII NUL) is an additional line delimiter, like NL. It is not nor-
mally used.

STOP (Control-s or ASCII DC3) can be used to temporarily suspend out-
put. It is useful with CRT terminals to prevent output from disap-
pearing before it can be read. While output is suspended, STOP
characters are ignored and not read.

START (Control-q or ASCIH DC1) is used to resume output which has been
suspended by a STOP character. While output is not suspended,
START characters are ignored and not read. The start/stop char-
acters can not be changed or escaped.

The character values for INTR, QUIT. ERASE. KILL. EOF. and EOL may be
changed to suit individual tastes. The ERASE, KILL. and EOF characters
may be escaped by a preceding \ character, in which case no special
function is done.

When the carrier signal from the data-set drops, a hangup signal is sent
to all processes that have this terminal as the control terminal. Unless
other arrangements have been made, this signal causes the processes to
terminate. If the hangup signal is ignored, any subsequent read returns
with an end-of-file indication. Thus programs that read a terminal and
test for end-of-file can terminate appropriately when hung up on.

When one or more characters are written, they are transmitted to the
terminal as soon as previously-written characters have finished typing.
Input characters are echoed by putting them in the output queue as they
arrive. If a process produces characters more rapidly than they can be
typed. it will be suspended when its output queue exceeds some limit.
When the queue has drained down to some threshold, the program is
resumed.

February 21, 1984 Page 2

TERMIO(4) MUNIX TERMIO(4)

Several ioctl(2) system calls apply to terminal files. The primary calls
use the following structure, defined in <termio.h>:

foetine NCC 8

struct termio |
unsigned short c_iflag; /= input modes %/
unsigned short c_pflag: /% output modes =/
unsigned short c_cflag; /= control modes =/
unsigned short c_lflag: /s local modes »/
char c_line: /= line discipline x/
unsigned char c_cclncel; /% contro! chars =/

i
The special control characters are defined by the array c¢_cc. The rela-
tive positions and initial values for each function are as follows:

0 INTR Ctrl-c

1 QUIT Ctrl-y
2 ERASE BS

3 KILL Ctrl-x
4 EOF Ctrl-z
5 EOL NUL

6 reserved

7 reserved
The c_iflag field describes the basic terminal input control:

IGNBRK 0000001 Ignore break condition.

BRKINT - 0000002 Signal interrupt on break.

IGNPAR 0000004 Ignore characters with parity errors.
PARMRK 0000010 Mark parity errors.

INPCK 0000020 Enable input parity check.

ISTRIP 0000040 Strip character.

INLCR 0000100 Map NL to CR on input.

IGNCR 0000200 Ignore CR.

ICRNL 0000400 Map CRto NL on input.

IUCLC 0001000 Map upper-case to lower-case on input.
IXON 0002000 Enable start/stop output control.
IXANY 0004000 Enable any character to restart output.
IXOFF 0010000 Enable start/stop input control.

If IGNBRK is set, the break condition (a character framing error with data
all zeros) is ignored, that is, not put on the input queue and therefore
not read by any process. Otherwise if BRKINT is set, the break condition
will generate an interrupt signal and flush both the input and output
queues. If IGNPAR is set, characters with other framing and parity errors
are ignored.

If PARMRK is set, a character with a framing or parity error which is not
ignored is read as the three character sequence: 0377, 0, X, where X is
the data of the character received in error. To avoid ambiguity in this
case, if ISTRIP is not set, a valid character of 0377 is read as 0377, 0377.
If PARMRK is not set, a framing or parity error which is not ignored is read
as the character NUL (0).

If INPCK is set, input parity checking is enabled. Ilf INPCK is not set, input
parity checking is disabled. This allows output parity generation without
input parity errors.

Page 3 February 21, 1984

TERMIO(4) MUNIX TERMIO(4)

If ISTRIP is set, valid input characters are first stripped to 7-bits, other-
wise all 8-bits are processed.

If INLCR is set, a received NL character is translated into a CR character.
If IGNCR is set, a received CR character is ignored (not read). Otherwise if
ICRNL is set, a received CR character is translated into a NL character.

If IUCLC is set, a received upper-case alphabetic character is translated
into the corresponding lower-case character.

If IXON is set, start/stop output control is enabled. A received STOP char-
acter will suspend output and a received START character will restart
output. All start/stop characters are ignored and not read. If IXANY is
set, any input character, will restart output which has been suspended.

If IXOFF is set, the system will transmit START/STOP characters when the
input queue is nearly empty/full.

The initial input control value is all bits clear.
The c_gflag field specifies the system treatment of output:

OPOST 0000001 Postprocess output.

OLCUC 0000002 Map lower case to upper on output.
ONLCR 0000004 Map NL to CR-NL on output.

OCRNL 0000010 Map CR to NL on output.

ONOCR 0000020 No CR output at column 0.

ONLRET 0000040 NL performs CR function.

OFILL 0000100 Use fill characters for delay.

OFDEL 0000200 Fill is DEL, else NUL.

NLDLY 0000400 Select new-line delays:

NLO 0

NL1 0000400

CRDLY 0003000 Select carriage-return delays:
CRO 0

CR1 0001000

CR2 0002000

CR3 0003000

TABDLY 0014000 Select horizontal-tab delays:
TABO 0

TAB! 0004000

TAB2 0010000

TAB3 0014000 Expand tabs to spaces.
BSDLY 0020000 Select backspace delays:

BSO 0

BS1 0020000

VTDLY 0040000 Select vertical-tab delays:
VTO 0

VT1 0040000

FFDLY 0100000 Select form-feed delays:
-FFO 0

FF1 0100000

If OPOST is set, output characters are post-processed as indicated by the
remaining flags, otherwise characters are transmitted without change.

February 21, 1984 Page 4

TERMIO(4) MUNIX TERMIO (4)

If OLCUC is set, a lower-case alphabetic character is transmitted as the
corresponding upper-case character. This function is often used in con-
junction with IUCLC.

If ONLCR is set, the NL character is transmitted as the CR-NL character
pair. If OCRNL is set, the CR character is transmitted as the NL character.
If ONOCR is set, no CR character is transmitted when at column 0 (first
position). If ONLRET is set, the NL character is assumed to do the
carriage-return function; the column pointer will be set to 0 and the
delays specified for CR will be used. Otherwise the NL character is
assumed to do just the line-feed function; the column pointer will remain
unchanged. The column pointer is also set to 0 if the CR character is
actually transmitted.

The delay bits specify how long transmission stops to allow for mechani-
cal or other movement when certain characters are sent to the termiinal.
In all cases a value of 0 indicates no delay. If OFILL is set, fill characters
will be transmitted for delay instead of a timed delay. This is useful for
high baud rate terminals which need only a minimal delay. If OFDEL is
set, the fill character is DEL. otherwise NUL.

If a form-feed or vertical-tab delay is specified, it lasts for about 2
seconds.

New-line delay lasts about 0.10 seconds. If ONLRET is set, the carriage-
return delays are used instead of the new-line delays. If OFILL is set, two
fill characters will be transmitted.

Carriage-return delay type 1 is dependent on the current column posi-
tion, type 2 is about 0.10 seconds, and type 3 is about 0.15 seconds. If
OFILL is set, delay type 1 transmits two fill characters, and type 2 four fill
characters.

Horizontal-tab delay type 1 is dependent on the current column position.
Type 2 is about 0.10 seconds. Type 3 specifies that tabs are to be
expanded into spaces. If OFILL is set, two fill characters will be transmit-
ted for any delay.

Backspace delay lasts about 0.05 seconds. If OFILL is set, one fill charac-
ter will be transmitted.

The actual delays depend on line speed and system load.

The initial output control value is all bits clear.

The c_cflag field describes the hardware control of the terminal:
CBAUD 0000017 Baud rate:

BO 0 Hang up
BSO 0000001 50 baud
B75 0000002 75 baud

B110 0000003 110 baud
B134 0000004 134.5 baud
B150 0000005 150 baud
B200 0000006 200 baud
B300 0000007 300 baud
B600 0000010 600 baud
B1200 0000011 1200 baud

Page 5 February 21, 1984

TERMIO(4) MUNIX TERMIO(4)

B1800 0000012 1800 baud
B2400 0000013 2400 baud
B4800 0000014 4800 baud
B9600 0000015 9600 baud
EXTA 0000016 External A
EXTB 0000017 External B
CSIZE 0000060 Character size:

CSS 0 S bits
CSé 0000020 6 bits
Cs7 0000040 7 bits
cS8 0000060 8 bits

CSTOPB 0000100 Send two stop bits, else one.
CREAD 0000200 Enable receiver.

PARENB 0000400 Parity enable.

PARODD 0001000 Odd parity, else even.
HUPCL 0002000 Hang up on last close.
CLOCAL 0004000 Local line, else dial-up.

The CBAUD bits specify the baud rate. The zero baud rate, B0, is used to
hang up the connection. lf BO is specified, the data-terminal-ready sig-
nal will not be asserted. Normally, this will disconnect the line. For any
particular hardware, impossible speed changes are ignored.

The CSIZE bits specify the character size in bits for both transmission
and reception. This size does not include the parity bit, if any. 1f CSTOPB
is set, two stop bits are used, otherwise one stop bit. For example, at 110
baud, two stops bits are required.

If PARENB is set, parity generation and detection is enabled and a parity
bit is added to each character. If parity is enabled, the PARODD flag
specifies odd parity if set, otherwise even parity is used.

If CREAD is set, the receiver is enabled. Otherwise no characters will be
received.

If HUPCL is set, the line will be disconnected when the last process with
the line open closes it or terminates. That is, the data-terminal-ready
signal will not be asserted.

If CLOCAL is set, the line is assumed to be a local, direct connection with
no modem control. Otherwise modem control is assumed.

The initial hardware control value after open is B300, CS8, CREAD, HUPCL

The c_lflag field of the argument structure is used by the line discipline

to control terminal functions. The basic line discipline (0) provides the
following:

ISIG 0000001 Enable signals.

ICANON 0000002 Canonical input (erase and kill processing).
XCASE 0000004 Canonical upper/lower presentation.

ECHO 0000010 Enable echo.

ECHOE 0000020 Echo erase character as BS-SP-BS.

ECHOK 0000040 Echo NL after kill character.

ECHONL 0000100 Echo NL.

NOFLSH 0000200 Disable flush after interrupt or quit.

February 21, 1984 Page 6

TERNIO(4) MUNIX ’ TERMIO(4)

If ISIG is set, each input character is checked against the special control
characters INTR and QUIT. If an input character matches one of these
control characters, the function associated with that character is per-
formed. If ISIG is not set, no checking is done. Thus these special input
functions are possible only if ISIG is set. These functions may be disabled
individually by changing the value of the control character to an unlikely
or impossible value (e.g. 0377).

If ICANON is set, canonical processing is enabled. This enables the erase
and kill edit functions, and the assembly of input characters into lines
delimited by NL. EOF, and EOL. If ICANON is not set, read requests are satis-
fied directly from the input queue. A read will not be satisfied until at
least MIN characters have been received or the timeout value TIME has
expired. This allows fast bursts of input to be read efficiently while still
allowing single character input. The MIN and TIME values are stored in
the position for the EOF and EOL characters respectively. The time value
represents tenths of seconds.

If XCASE is set, and if ICANON is set, an upper-case letter is accepted on
input by preceding it with a \ character, and is output preceded by a \
character. In this mode, the following escape sequences are generated
on output and accepted on input:

Jor: use:
A Y

I

{
RN
\ \\

For example, A is input as\a, \n as\\n, and \N as\\\n.
If ECHO is set, characters are echoed as received.

When ICANON is set, the following echo functions are possible. If ECHO and
_ECHOE are set, the erase character is echoed as ASCII BS SP BS. which will
clear the last character from a CRT screen. If ECHOE is set and ECHO is
not set, the erase character is echoed as ASCII SP BS. lf ECHOK is set, the
NL character will be echoed after the kill character to emphasize that
the line will be deleted. Note that an escape character preceding the
erase or kill character removes any special function. If ECHONL is set, the
NL character will be echoed even if ECHO is not set. This is useful for ter-
minals set to local echo (so-called half duplex). Unless escaped, the EOF
character is not echoed. Because EOT is the default EOF character, this
prevents terminals that respond to EOT from hanging up.

If NOFLSH is set, the normal flush of the input and output queues associ-
ated with the quit and interrupt characters will not be done.

The initial line-discipline control value is all bits clear.
The primary ioctl(2) system calls have the form:

ioctl (fildes, command, arg)
struct termio e*arg;

Page 7 February 21, 1984

TERMIO(4)

MUNIX TERMIO(4)

The commands using this form are:

TCGETA

TCSETA
TCSETAW

TCSETAF

Get the parameters associated with the terminal and
store in the termio structure referenced by arg.

Set the parameters associated with the terminal from
the structure referenced by arg. The change is immedi-
ate.

Wait for the output to drain before setting the new
parameters. This form should be used when changing
parameters that will affect output.

Wait for the output to drain, then flush the input queue
and set the new parameters.

Additional toctl(2) calls have the form:
ioctl (fildes, command, arg)

int arg;

The commands using this form are:

TCSBRK
TCXONC
TCFLSH

FILES
/dev/tty
/dev/ttye
/dev/console

SEE ALSO

stty(1), ioctl(2).

February 21, 1984

Wait for the output to drain. If arg is 0, then send a
break (zero bits for 0.25 seconds).

Start/stop control. If arg is 0, suspend output; if 1,
restart suspended output.

If arg is 0, flush the input queue; if 1, lush the output
queue; if 2, lush both the input and output queues.

Page 8

TM(4) MUNIX TM(4)

NAME
tm.ts — TM-11/TU-10 magtape interface, TS-11 magtape interface

DESCRIPTION
The flles mtOnmt0rmtOnrmt0 refer to the DEC TU10/TM11 resp. TS-11
magtape. When closed it can be rewound or not, see below. If it was open
for writing, two end-of-files are written. If the tape is not to be rewound
it is positioned with the head between the two tapemarks.

If the 0200 bit is on in the minor device number the tape is not rewound
when closed. The names for these files begin with the letter n for "no
rewind’: nmtO, nrmtO.

A standard tape (with name mtO or nmt0) consists of a series of 512 byte
records terminated by an end-of-file. To the extent possible, the system
makes it possible, if ineflicient, to treat the tape like any other file.
Seeks have their usual meaning and it is possible to read or write a byte
at a time. Writing in very small units is inadvisable, however, because it
tends to create monstrous record gaps.

The mt files discussed above are useful when it is desired to access the
tape in a way compatible with ordinary files. When foreign tapes are to
be dealt with, and especially when long records are to be read or written,
the ‘raw’ interface is appropriate. The associated files are named rmt0,
nrmt0. Each read or wrile call reads or writes the next record on the
tape. In the write case the record has the same length as the buffer
“given. During a read, the record size is passed back as the number of
bytes read, provided it is no greater than the buffer size; if the record is
long, an error is indicated. In raw tape 1/0, the buffer must begin on a
word boundary and the count must be even. Seeks are ignored. A zero
byte count is returned when a tape mark is read, but another read will
fetch the first record of the new tape file.

It is possible to skip records or files back- and forward. For compatibility
with tapes written on a PDP or VAX it is possible to instruct the driver to
swap the bytes in a word. The command mt(1) can be called for these
operations, or the ioctl call described in rusr/include /sys /mtio.h can be
used from within a program.

Page 1 February 21, 1984

TTY(4) MUNIX TTY(4)

NAME
tty — controlling terminal interface

DESCRIPTION
The file /dev/tty is, in each process, a synonym for the control terminal
associated with the process group of that process, if any. It is useful for
programs or shell sequences that wish to be sure of writing messages on
the terminal no matter how output has been redirected. It can also be
used for programs that demand the name of a file for output, when typed

output is desired and it is tiresome to find out what terminal is currently
in use. :

FILES
/dev/tty

Page 1 February 21, 1984

VP(4)

NAME

MUNIX VP(4)

vp — Versatec printer-plotter

DESCRIPTION

FILES

Page 1

Vp is the interface to a Versatec VB0 printer-plotter with a Versatec Q-
Bus controller. Ordinarily bytes written on it are interpreted as ASCI]
characters and printed. As a printer, it writes 64 lines of 132 characters
each on 11 by 8.5 inch paper. Only some of the ASCII control characters
are interpreted.

NL performs the usual new-line function, i.e. spaces up the paper and
resets to the left margin. It is ignored however following a CR
which ends a non-empty line.

CR is ignored if the current line is empty but is otherwise like NL.
FF resets to the left margin and then to the top of the next page.

EOT resets to the left margin, advances 8 inches, and then performs a
FF.

The ioctl(2) system call described in /usr/include/sys/vemd.h may be
used to change the mode of the device. Only the first word of the 3-word
argument structure is used. The bits mean:

0400 (VPRINTPLOT)

Enter simultaneous print/plot mode.
0200 (VPLOT)

Enter plot mode.
0100 (VPRINT)

Enter print mode (default on open).

On open-a reset, clear, and form-feed are performed automatically.
Notice that the mode bits are not encoded, so that it is required that
exactly one be set.

In plot mode each byte is interpreted as 8 bits of which the high-order is
plotted to the left; a ‘1’ leaves a visible dot. A full line of dots is produced
by 264 bytes; lines are terminated only by count or by a remote ter-
minate function. There are 200 dots per inch both vertically and hor-
izontally.

When simultaneous print-plot mode is entered exactly one line of charac-
ters, terminated by NL, CR, or the remote terminate function, should be
written. Then the device enters plot mode and at least 20 lines of plot-
ting bytes should be sent. As the line of characters (which is 20 dots
high) is printed, the plotting bytes overlay the characters. Notice that it
is impossible to print characters on baselines that differ by fewer than 20
dot-lines.

In print mode lines may be terminated either with an appropriate ASCII
character or by using the remote terminate function.

/dev/vp

February 21, 1984

INTRO(5) MUNIX INTRO (5)

NAME
intro — introduction to file formats

DESCRIPTION
This section outlines the formats of various files. The C struct declara-
tions for the file formats are given where applicable. Usually, these
structures can be found in the directories /usr/include or
/usr/include/sys.

Page 1 February 21, 1984

A.OUT(5) MUNIX A.OUT(5)

NAME
a.out — format of programs and modules

SYNOPSIS
finciude @.out.h>

finclude <ys/seg.h>

DESCRIPTION
A.out is the format of program or module files, as produced by all com-

pilers and the link editor ld(1). Layout information as given in the
include file is:

struct exec | /x a.out header =/

short a_magic; /= magic number x/
long a_text: /= size of text segment x/
long 8_data; /= size of initialized data x/
long a_bas; /% size of unitialized data =/
long a_synms; /e size of symbol table s/
long a_entry: /= entry point =/
long a_stksiz; /% length of stack »/
shor t a_flag: /% relocation info stripped =/
i
foefine A_MAGICl 0487 /= normal »/
faefine A_NAGIC2 0410 /% read-only text =/
fdefine A_NMAGIC3 . 8411 /% eeparated 1&D »/
fdefine A_NAGIC4 8485 /% overlay »/
foefine NCPS 16 /= maximum length of external names »/
struct nlist § /% eymbo! table entry »/
char n_name (NCPS]; /% symbo! name =/
shor t n_type; /% symbol type x/
long n_value; /% value x/

i

/% values of sligth-field =/

fdefine RSIZE 81 /x e.g. for bra.w Ll =/
fdefine WSIZE 02 /= e.g. for jmp.u Ll =/
jdetine LSIZE B4 /= e.g. for jmp.| L1 &/

/= values for type flag x/

fdetine N_UNDF @ /% undefined »/

fdefine N_ABS 01 /% absplute =/

foetine N_TEXT 82 /= text symbol =/

fdefine N_DATA @3 /= data symbol »/

fidetine N_BSS 84 /= bss symbol =%/

Kefine N_TYPE €37

Kefine N_REGC 824 /% register name =/

fdefine N_FN 83?7 /x file name symbol x/
Jdefine N_EXT 848 /= external bit, or’ed in x/

#define FORMAT "%8ix" /% to print a value »/

/% values of relocation bits =/
fetine R_WORD 0l
foefine R_TEXT B2
foefine R_DATA B4
faetine R_BSS % 3
foefine R_LUNDF 010

/=
= Macros uhich take exec structures as arguments and tell whether

= the file has a reasonable magic number or offsets to text|symbols|strings.
=/

fdefine N_BADMAG(x) \
(({x).a_magic)teA_MAGIC1 88 ((x).a_magic)!=A_MAGIC2 &8 \
((x).a_magic) l=A_NMAGIC3 &8 ((x).a_magic)!=A_HMAGIC4)

Page 1 February 21, 1984

A.OUT(5) MUNIX A.QUT(5)

fefine N_TXTOFF(x) sizeof (struct exec)
fdetine N_SYIOFF (x) \

(N_TXTOFF (x) + ({x}a_rflag ? 2 : 1) = (x).a_text+(x).a_data))
Jefine N_STROFF (x) \

(N_SYIOFF (x) + (x)}.a_syms)

The file has siz sections: a header, the program text, the data text, pro-
gram relocation information, data relocation information, and a symbol
table (in that order). The last three may be empty if the program was
loaded with the ‘—s' option of ld or if the symbols and relocation have
been removed by strip(1).

In the header the sizes of each section are given in bytes. but are even.
The size of the header is not included in any of the other sizes.

A module has the magic number 0407 in he header. When all external
references are satisfied, the loader produces a program with the magic
number 0411.

When a program file is loaded into memory for execution, three logical
segments are set up: the text segment, the data segment (with uninitial-
ized data, which starts off as all 0, following initialized), and a stack.
With MUNIX, the text segment is always pure, write protected and shared,
and moreover instruction and data space are separated; the text begins
at location USRTEXT (0x600000) and the data at location USRDATA
(0xB00000), see <sys/seg.h>.

The stack will start below location USRSTCK (0xF00000) growing down-
wards. The stack is automatically extended if possible. It will always be
possible with the Motorola 68010 CPU. With the M68000, only in some
cases will the processor be able to restart an instruction that caused
stack overflow. In the other cases, the stack must be enlarged using
stksiz(1). The data segment is only extended as requested by brk(2).

The start of the text segment in the file is 034(8); the start of the data
segment is 034+S, (the size of the text); the start of the relocation infor-
mation is 034+5,+S;; the start of the symbol table is 034+2(S,+S,) if the
relocation information is present, 034+S5,+5, if not.

The layout of a symbol table entry and the principal flag values that dis-
tinguish symbol types are given in the include file.

If a symbol's type is undefined external, and the value field is non-zero,
the symbol is interpreted by the loader ld as the name of a common
region whose size is indicated by the value of the symbol.

The value of a word in the text or data portions which is not a reference
to an undefined external symbol is exactly that value which will appear
in memory when the file is executed. If a word in the text or data portion
involves a reference to an undefined external symbol, as indicated by the
relocation information for that word, then the value of the word as
stored in the file is an offset from the associated external symbol. When
the file is processed by the link editor and the external symbol becomes
defined, the value of the symbol will be added into the word in the file.

If relocation information is present, it amounts to one word per word of
program text or initialized data. There is no relocation information if
the 'relocation info present’' flag in the header is off. If the code con-
tains a long (32 bit) reference to an undefined external symbol at

February 21, 1984 Page 2

A.OUT(5) MUNIX A.OUT(5)

location x relative to the start of the text, the corresponding relocation
info is in the word x relative to the start of the relocation info, and the
word x+2 is 0.

Bits 3-1 of a relocation word indicate the segment referred to by the text
or data word associated with the relocation word:

0 absolute number
R_TEXT
reference to text segment
R_DATA
reference to initialized data
R_BSS
reference to uninitialized data (bss)

R_UNDF
reference to undefined external symbol

Bit O of the relocation word indicates, if 1, that the reference is relative
to the pc (e.g. 'bra.w x'); if 0, that the reference is to the actual symbol
(e.g.. 'jmp x').

The remainder of the relocation word (bits 15-4) contains a symbol
number in the case of external references, and is unused otherwise. The
first symbol is numbered 0, the second 1, etc.

SEE ALSO
1d(1), nm(1)

Page 3 February 21, 1984

ACCT(5) MUNIX ACCT(5)

NANE
acct — per-process accounting file format

SYNOPSIS
#include <sys/acct.h>

DESCRIPTION

Files produced as a result of calling acct(2) have records in the form
defined by <sys/acct.h>, whose contents are:

typedef ushort comp_t; /= “floating point” =/
/% 13-bit fraction, 3-bit exponent =/

struct acct

char ac_¢flag: /= Accounting flag =/
char ac_stat; /» Exit status =/
ushort ac_uid; /% Accounting user 1D =/
ushort ac_gid; /% Accounting group 1D =/
dev_t ac_tty: /= control typewriter =/
time_t ac_btime; /= Beginning time »/
comp_t ac_utime: /% acctng user time in clock ticks =/
comp_t ac_stime: /% acctng system time in clock ticks x/
comp_t ac_etime; /% acctng elapsed time in clock ticks »/
comp_t ac_mem; /= memory usage =/
comp_t @c_io; /% chars transferred »/
comp_t ac_ru; /= blocks read or written s/
char ac_comm[8) ; /% command name =/
}:
extern struct acct acctbuf;
extern etruct Inode wmacctp; /% inode of accounting file =/
fdefine AFORK @1 /= has executed fork, but no exec »/
#define ASU .74 /% used super-user privileges =/
fKdefine ACCTF 8388 /% record type: 88 = acct »/

In ac_flag, the AFORK flag is turned on by each fork(2) and turned off by
an erxec(2). The ac_comm field is inherited from the parent process and
is reset by any ezxec. Each time the system charges the process with a
clock tick, it also adds to ac_mem the current process size, computed as
follows:

(data size) + (text size) / (number of in-core processes using text)

The value of ac_mem /ac_stime can be viewed as an approximation to
the mean process size, as modified by text-sharing.

"Page 1 February 21, 1984

ACCT(5)

MUNIX

ACCT(5)

The following structure represents the total accounting format used by
the various accounting commands:

struct tacct |

uid_t

char

float

float

float

float

long

unsigned short
unsigned short
unsigned short

ta_uid;
ta_namal8];
ta_cpul(2):
ta_kcore[2]):
ta_con(2]:
ta_du;
ta_pc:
ta_sc;
ta_dc:
ta_fee:

/%
/=
/=
/x
/=
/x
/=
/s
/=
/%

userid =/

login name =/

cum. cpu time, p/np (mins) =/
cum kcore-minutes, p/np x/

cum. connect time, p/np, mins &/
cum. disk usage »/

count of processes x/

count of login sessions =/

count of disk samples =/

fee for special services =/

The float numbers above are in FFP (see fp(3)) format.

SEE ALSO

acct(8), acctcom(l), acct(?).

BUGS

The ac_mem value for a short-lived command gives little information
about the actual size of the command, because ac_mem may be incre-
mented while a different command (e.g., the shell) is being executed by

the process.

February 21, 1984

Page 2

AR(S5) MUNIX AR(5)

NAMNE
ar — archive (library) file format

SYNOPSIS
f#include <ar.h>

DESCRIPTION
The archive command ar is used to combine several files into one.
Archives are used mainly as libraries to be searched by the link-editor ld.

A file produced by ar has a magic number at the start, followed by the
constituent files, each preceded by a file header. The magic number and
header layout as described in the include file are:

#define ARMAG 0177545
struct ar_hdr |
char ar_name[14];
long ar_date;
char ar_uid;
char ar_gid;
short ar_mode;
long ar_size;
i
The name is a null-terminated string; the date is in the form of time(2);
the user ID and group ID are numbers; the mode is a bit pattern per
chmod(2); the size is counted in bytes.

Each file begins on a word boundary; a null byte is inserted between files
if necessary. Nevertheless the size given reflects the actual size of the
file exclusive of padding. '

If the first member in a library has the name ___SYMDEF, the library has
been processed by ranlib(1).

Notice there is no provision for empty areas in an archive file.

SEE ALSO
ar(1), 1d(1), nm(1), ranlib(1)

BUGS
Coding user and group IDs as charactersis a botch.

Page 1 February 21, 1984

CHECKLIST(S) MUNIX CHECKLIST(5)

NAME
checklist — list of file systems processed by {sck
DESCRIPTION

Checklist resides in directory /etc and contains a list of at most 15 spe-
cial file names. Each special file name is contained on a separate line
and corresponds to a file system. Each file system will then be automati-
cally processed by the fsck(8) command.

The name of the root file system should be a block special file, the other

names can be character special files to speed things up, e.g.
/dev/hk0

/dev/rtmp
/dev/rhkil
/dev/rhk2
/dev/rhk3

SEE ALSO
fsck(8).

Page 1

February 21, 1984

CORE(5) MUNIX CORE(5)

NAME
core — format of core image file

DESCRIPTION
UNIX writes out a core image of a terminated process when any of various
errors occur. See signal(2) for the list of reasons; the most common are
memory violations, illegal instructions, bus errors, and user-generated
quit signals. The core image is called ‘core’ and is written in the
process’s working directory (provided it can be; normal access controls
apply).
The first 3072 bytes of the core image are a copy of the system's per-
user data for the process, see /usr/include /sys/user.h for the format of
this area. Then follows an area with the saved registers, in the format
given in susr/include /sys/reg.h where the union exu has always the
form ex2o0, altogether VECSIZE bytes. Then follows the programs data
plus the programs stack. The text segment is not dumped.

In general the debugger adb(1) is suflicient to deal with core images.

SEE ALSO
adb(1), signal(2)

Page 1 February 21, 1984

CPIO(5) MUNIX CPIO(5)

NAME

cpio — format of cpio archive

DESCRI'FTION

he header structure, when the « option of cpio(1) is not used, is:
struct |
short h_magic,
h_dev;
ushort h_ino,
h_mode,
h_uid,
h_gid;
short h_nlink,
h_rdev,
h_mtime (2],
h_pamesize,
h_filesize[2):
; char h_name (h_namesize rounded to word]:
Hdr:

When the « option is used, the header information is described by the
statement below:
sscanf (Chdr ,“X60%50%50%X60X60160X60%60%11 10X60%60%s",
8Hdr.h_maglc,&Hdr .h_dev, 8Hdr.n_ino, 8Hdr.h_mode,
&Hdr.h_uid,&Hdr.h_gid,8Hdr.h_nlink,8Hdr.h_rdev,
& ongtime,&Hdr .h_namesize,8longfile,Hdr.h_name);

Longtime and Longfile are equivalent to Hdrh_mtime and
Hdr.h__filesize, respectively. The contents of each file are recorded in an
element of the array of varying length structures, archive, together with
other items describing the file. Every instance of h_magic contains the
constant 070707 (octal). The items h_dev through h_mtime have mean-
ings explained in stat(2). The length of the null-terminated path name
h_name, including the null byte, is given by h_namesize.

The last record of the archive always contains the name TRAILER!!. Spe-
cial files, directories, and the trailer are recorded with h_filesize equal
to zero.

SEE ALSO

cpio(1), find(1), stat(2).

Page 1 February 21, 1984

DIR(5) NMUNIX DIR(5)

NAME
dir — format of directories
SYNOPSIS
ginclude <sys/dir.h>
DESCRIPTION
A directory behaves exactly like an ordinary file, save that no user may
write into a directory. The fact that a file is a directory is indicated by a
bit in the flag word of its i-node entry (see fs(5)). The structure of a
directory entry as given in the include file is:
Jitndet DIRSIZ
Jdefine DIRSIZ 14
fendif
etruct direct
ino_t d_ino;
; char d_nanme [DIRSIZ);
By convention, the first two entries in each directory are for . and ... The
first is an entry for the directory itself. The second is for the parent
directory. The meaning of .. is modified for the root directory of the
master file system; there is no parent, so .. has the same meaning as . .
SEE ALSO

fs(5).

Page 1 February 21, 1984

DUMP(5) MUNIX DUMP(5)

NAME
dump, ddate — incremental dump format

SYNOPSIS
#include <sys/types.h>
f#include <sys/ino.h>
#include <dumprestor.h>

DESCRIPTION
Tapes used by dump(8) and restor(8) contain:

a header record

two groups of bit map records

a group of records describing directories
a group of records describing files

The format of the header record and of the first record of each descrip-
tion as given in the include file <dumprestor.h> is:

#define NTREC 20
§efine MEN 16
foefine MSIZ 42%

foefine TS_TAPE
Jdefine TS_]NOOE
fefine TS_BITS
#define TS_ADOR
foetine TS_END
Joefine TS_CLRI
fdefine MAGIC (int)gesl}
fdefine CHECKSUM {int) 84446
struct spcl

DASWN-

shor t c_type;

time_t c_date;

time_t c_ddate;

short c_volume;

daddr_t c_tapea;

ino_t c_inumber;

short c_magic:

eshor t ¢_checksum;

struct dinode c_dinpde;

shor t c_count;

char c_addr [BSIZE) ;
] spcl;

struct idates

char id_name (16];
char id_incnos
time_t id_ddate;

I: B
NTREC is the number of 512 byte records in a physical tape block. MLEN

is the number of bits in a bit map word. MSI/Z is the number of bit map
words.

The 7S_ entries are used in the c_type field to indicate what sort of
header this is. The types and their meanings are as follows:

TS_TAPE Tape volume label

TS_INODE A file or directory follows. The c_dinode field is a copy of the
disk inode and contains bits telling what sort of file this is.

TS_BITS A bit map follows. This bit map has a one bit for each inode
that was dumped.

Page 1 February 21, 1984

DUMP(5) MUNIX DUMP(5)

FILES

TS_ADDR A subrecord of a file description. See c_addr below.

TS_END End of tape record.

TS_CLRI A bit map follows. This bit map contains a zero bit for all
inodes that were empty on the file system when dumped.

MAGIC All header records have this number in c_magic.

CHECKSUM

Header records checksum to this value.
The fields of the header structure are as follows:

c_type The type of the header.

c_date The date the dump was taken.

c_ddate The date the file system was dumped from.

c_volume The current volume number of the dump.

c_tapea The current number of this (512-byte) record.

c_inumber
The number of the inode being dumped if this is of type
TS_INODE.

c_magic This contains the value MAGIC above, truncated as needed.

c_checksum
This contains whatever value is needed to make the record
sum to CHECKSUM.

c_dinode This is a copy of the inode as it appears on the file system; see
Jilesystem(5).

c_count The count of characters in c_addr.

c_addr An array of characters describing the blocks of the dumped
file. A character is zero if the block associated with that char-
acter was not present on the file system, otherwise the charac-
ter is non-zero. If the block was not present on the file sys-
tem, no block was dumped; the block will be restored as a hole
in the file. If there is not sufficient space in this record to
describe all of the blocks in a file, TS_ADDR records will be
scattered through the file, each one picking up where the last
left ofl.

Each volume except the last ends with a tapemark (read as an end of
file). The last volume ends with a 7S_ENDrecord and then the tapemark.

The structure idates describes an entry of the file setc/ddate where
dump history is kept. The fields of the structure are:

id_name The dumped filesystem is ‘/dev/id_nam’

id_incno The level number of the dump tape; see dump(8).

id_ddate The date of the incremental dump in system format see
types(7).

/etc/ddate

SEE ALSO

dump(8), dumpdir(8), restor(8), filesystem(5), types(7)

February 21, 1984 Page 2

ETHMAP (5N) MUNIX (Newcastle Connection) ETHMAP(5N)

NAME ,
/etc/map_port_eadr — table of ethernet addresses

DESCRIPTION
/etc /map_port_eadr is just a linear table of 6 byte ethernet addresses,
indexed by the station number (sometimes also called identifier). The
address is arbitrary for the 3COM ethernet hardware, but may be
hardwired in other controllers at a later time. At any time. there must be
a one-to-one correspondance between the station numbers and ethernet
addresses of machines connected to the same network.

Page 1 February 21, 1984

FS(5)

NAME

MUNIX FS(5)

fs — file systemn format of system volume

SYNOPSIS

ginclude <sys/fileys.h>
finclude <sys/types.h>
#include <sys/param.h>

DESCRIPTION

Page 1

Every file system storage volume has a common format for certain vital
information. Every such volume is divided into a certain number of 512
byte long sectors. Sector 0 is unused and is available to contain a
bootstrap program or other information.

Sector 1 is the super-block. The format of a super-block is:

/x
% Structure of the euper-block
=/
struct filsys {
unsigned short e_isize; /= size in blocks of i-list =/

daddr_t s_fsize: /% size in blocks of entire volume =/
short e_nfree; /% number of addresses in s_free x/
daddr_t s_free INICFREE);/= free block list =/ .

short e_ninode; /% number of i-nodes in s_inode x/

ino_t e_inode(NICINOD]; /% free i-node tiet =/

char s_flock: /% lock during free list manipulation &/
char s_ilock; /% lock during i-liet manipulation »/
char s_fmod; /¢ super block modified flag =/

char e_roniy: /% mounted read-only flag &/

time_t so_time; /% last super dlock update =/

short e _dinfol4l; /= device information =/

daddr_t s_tfree; /% total free blockswx/

ino_t s_tinode; /% tota! free inodes x/

char s_fname (6] ; /% file system name %/

char s_fpack [6]; /% file system pack name =/

long s_filll1S); /% ADJUST to make sizeof fileys be 512 x/
long s_magic; /% magic number to indicate neu file system »/
long s_type; /% type of file systen =/

Is
#cefine FSMAGIC Oxfd187e20

fdefine Falb 1 /% 512 byte blocks =/
fdetine Fa2b 2 /% 1824 byte blocks x/

S_type indicates the file system type. Currently, two types of file sys-
tems are supported: the original 512-byte oriented and the new improved
1024-byte oriented. S_magic is used to distinguish the original 512-byte
oriented file systems from the newer file systems. If this field is not
equal to the magic number, FSMAGIC, the type is assumed to be F51b, oth-
erwise the s_type field is used. In the following description, a block is
then determined by the type. For the original 512-byte oriented file sys-
temn, a block is 512 bytes. For the 1024-byte oriented file system, a block
is 1024 bytes or two sectors. The operating system takes care of all
conversions from logical block numbers to physical sector numbers.

S_isize is the address of the first data block after the i-list; the i-list
starts just after the super-block, namely in block 2; thus the i-list is
s_1isize—2 blocks long. S_fsize is the first block not potentially available
for allocation to a file. These numbers are used by the system to check
for bad block numbers; if an "'impossible’” block number is allocated from
the free list or is freed, a diagnostic is written on the on-line console.

February 21, 1984

FS(5)

FILES

MUNIX FS(5)

Moreover, the free array is cleared, so as to prevent further allocation
from a presumably corrupted free list.

The free list for each volume is maintained as follows. The s_free array
contains, in s_free[l]. ..., s_free[s_nfree—1], up to 49 numbers of free
blocks. S_free[0] is the block number of the head of a chain of blocks
constituting the free list. The first long in each free-chain block is the
number (up to 50) of free-block numbers listed in the next 50 longs of
this chain member. The first of these 50 blocks is the link to the next
member of the chain. To allocate a block: decrement s_nfree, and the
new block is s_free[s_nfree]. 1f the new block number is O, there are no
blocks left, so give an error. If s_nfree became 0, read in the block
named by the new block number, replace s_nfree by its first word, and
copy the block numbers in the next 50 longs into the s_free array. To
free a block, check if s_nfree is 50; if so, copy s_nfree and the s_free
array into it, write it out, and set s_nfree to 0. In any event set
s_free[s_nfree] to the freed block's number and increment s_nfree.

S_tfree is the total free blocks available in the file system.

S_ninode is the number of free i-numbers in the s_inode array. To allo-
cate an i-node: if s_ninode is greater than 0, decrement it and return
s_inode[s_ninode]. If it was 0, read the i-list and place the numbers of
all free inodes (up to 100) into the s_inode array, then try again. To free
an i-node, provided s_ninode is less than 100, place its number into
s_inode[s_ninode] and increment s_ninode. If s_ninode is already 100,
do not bother to enter the freed i-node into any table. This list of i-
nodes is only to speed up the allocation process; the information as to
whether the inode is really free or not is maintained in the inode itself.

S_tinode is the total free inodes available in the file system.

S_flock and s_ilock are flags maintained in the core copy of the file sys-
tem while it is mounted and their values on disk are immaterial. The
value of s_fmod on disk is likewise immaterial; it is used as a flag to indi-
cate that the super-block has changed and should be copied to the disk
during the next periodic update of file system information.

S_ronly is a read-only flag to indicate write-protection.

S_time is the last time the super-block of the file system was changed,
and is the number of seconds that have elapsed since 00:00 Jan. 1, 1970
(GMT). During a reboot, the s_time of the super-block for the root file
system is used to set the system’s idea of the time. '

S_fname is the name of the file system and s_fpack is the name of the
pack.

I-numbers begin at 1, and the storage for i-nodes begins in block 2. Also,
i-nodes are 64 bytes long. I-node 1 is reserved for future use. I-node 2 is
reserved for the root directory of the file system, but no other i-number
has a built-in meaning. Each i-node represents one file. For the format
of an inode and its flags, see inode(5).

/usr/include/sys/filsys.h
/usr/include/sys/stat.h

February 21, 1984 Page 2

FS(5) MUNIX FS(5)

SEE ALSO
fsck(8), fsdb(8), mkfs(8), inode(5).

Page 3 February 21, 1984

FSPEC(5) MUNIX FSPEC(5)

NAME
fspec — format specification in text files

DESCRIPTION

It is sometimes convenient to maintain text files on the UNIX System with
non-standard tabs, (i.e., tabs which are not set at every eighth column).
Such files must generally be converted to a standard format, frequently
by replacing all tabs with the appropriate number of spaces, before they
can be processed by UNIX Systermn commands. A format specification
occurring in the first line of a text file specifies how tabs are to be
expanded in the remainder of the file.

A format specification consists of a sequence of parameters separated by
blanks and surrounded by the brackets <: and :>. Each parameter con-
sists of a keyletter, possibly followed immediately by a value. The follow-
ing parameters are recognized:

ttadbs The t parameter specifies the tab settings for the file. The
value of tabs must be one of the following:

1. a list of column numbers separated by commas, indicating
tabs set at the specified columns;

2. a — followed immediately by an integer n, indicating tabs
at intervals of n columns;

3. a —followed by the name of a ‘canned’ tab specification.

Standard tabs are specified by t—8, or equivalently,
t1.9,17,25,etc. The canned tabs which are recognized are
defined by the tabs(1) command.

ssize The s parameter specifies a maximum line size. The value of
size must be an integer. Size checking is performed after tabs
have been expanded, but before the margin is prepended.

mmargin
The m parameter specifies a number of spaces to be prepended
to each line. The value of margin must be an integer.

d The d parameter takes no value. Its presence indicates that
the line containing the format specification is to be deleted
from the converted file.

e The e parameter takes no value. Its presence indicates that
the current format is to prevail only until another format
specification is encountered in the file.

Default values, which are assumed for parameters not supplied, are t-8
and m0. If the s parameter is not specified, no size checking is per-
formed. If the first line of a file does not contain a format specification,
the above defaults are assumed for the entire file. The following is an
example of a line containing a format specification:

* <:t5,10,15s72:> .

If a format specification can be disguised as a comment, it is not neces-
sary to code the d parameter.

Several UNIX System commands correctly interpret the format
specification for a file. Among them is gath (see send(1C)) which may be

Page 1 February 21, 1984

FSPEC(5) MUNIX FSPEC(5)

used to convert files to a standard format acceptable to other UNIX Sys-
tem commands.

SEE ALSO
ed(1), send(1C), tabs(1).

February 21, 1984 Page 2

GETTYDEFS(5) MUNIX GETTYDEFS(5)

NAME
gettydefs — speed and terminal settings used by getty

DESCRIPTION
The /etc/gettydefs file contains information used by getty(8) to set up
the speed and terminal settings for a line. It supplies information on
what the login prompt should look like. It also supplies the speed to try

next if the user indicates the current speed is not correct by typing a
<break> character.

Each entry in /etc/gettydefs has the following format:
labelg initial-lags # final-flags # login-prompt #next-label

Each entry is followed by a blank line. Lines that begin with # are
ignored and may be used to comment the file. The various fields can con-
tain quoted characters of the form \b, \'n, \ ¢, etc, as well as \ nnn,
where nnn is the octal value of the desired character. The various fields
are:

label This is the string against which getty tries to match its
second argument. It is often the speed, such as 1200, at
which the terminal is supposed to run, but it needn't be
(see below).

initial-flags These flags are the initial itoctl(2) settings to which the
terminal is to be set if a terminal type is not specified to
getty. Getty understands the symbolic names specified in
/usr/include/sys/termio.h (see termio(4)). Normally
only the speed flag is required in the initial-flags. Getty
automatically sets the terminal to raw input mode and
takes care of most of the other flags. The initial-flag set-
tings remain in eflfect until getty executes login(1).

Sfinal-flags These flags take the same values as the initial-flags and
are set just prior to getty executes login. The speed flag
is again required. The composite flag SANE takes care of
most of the other flags that need to be set so that the pro-
cessor and terminal are communicating in a rational
fashion. The other two commonly specified final-flags are
TAB3. so that tabs are sent to the terminal as spaces, and
HUPCL so that the line is hung up on the finai close.

login-prompt This entire field is printed as the login-prompt. Unlike the
above fields where white space is ignored (a space, tab or
new-line), they are included in the login-prompt field.

nezxt-label This indicates the next label of the entry in the table that
getty should use if the user types a <break> or the input
cannot be read. Usually, a series of speeds are linked
together in this fashion, into a closed set. For instance,
2400 linked to 1200, which in turn is linked to 300, which
finally is linked to 2400.

If getty is called without a second argument, then the first entry of
/etc/gettydefs is used, thus making the first entry of /etc/gettydefs the
default entry. It is also used if getty can't find the specified label. If
/etc/gettydefs itself is missing, there is one entry built into the

Page 1 February 21, 1984

GETTYDEFS(5) MUNIX GETTYDEFS(5)

command which will bring up a terminal at 300 baud.

It is strongly recommended that after making or modifying

/etc/gettydefs, it be run through getty with the check option to be sure
there are no errors.

FILES
/etc/gettydefs
SEE ALSO
getty(8), termio(4)
login(1), ioctl(2).

February 21, 1984 Page 2

GROUP(5) MUNIX GROUP(5)

NAME
group — group file

DESCRIPTION
Group contains for each group the following information:
group name
encrypted password
numerical group ID
a comma separated list of all users allowed in the group
This is an ASCIl file. The fields are separated by colons; Each group is
separated from the next by a new-line. If the password field is null, no
password is demanded.
This file resides in directory /etc. Because of the encrypted passwords,
it can and does have general read permission and can be used, for exam-
ple, to map numerical group ID's to names.

FILES
/etc/group

SEE ALSO

newgrp(1), crypt(3C), passwd(1), passwd(5)

Page 1 February 21, 1984

INITTAB(S) MUNIX INITTAB(5)

NAME
inittab — script for the init process

DESCRIPTION
The inittad file supplies the script to init's role as a general process
dispatcher. The process that constitutes the majority of init's process
dispatching activities is the line process setc/getty that initiates indivi-
dual terminal lines. Other processes typically dispatched by init are dae-
mons and the shell.

The inittad file is composed of entries that are position dependent and
have the following format:

id:rstate:action:process

Each entry is delimited by a newline, however, a backslash (\) preceding
a newline indicates a continuation of the entry. Up to 512 characters
per entry are permitted. Comments may be inserted in the process field
using the sh(l) convention for comments. Comments for lines that
spawn gettys are displayed by the who(1) command. It is expected that
they will contain some information about the line such as the location.
There are no limits (other than maximum entry size) imposed on the
number of entries within the inittad file. The entry fields are:

id This is one to four characters used to uniquely identify an
entry.

rstate This defines the run-level in which this entry is to be processed.
Run-levels eflectively correspond to a configuration of
processes in the system. That is, each process spawned by init
is assigned a run-level or run-levels in which it is allowed to
exist. The run-levels are represented by a number ranging
from 0 through 6. As an example, if the system is in run-level 1,
only those entries having a 1 in the rstate field will be pro-
cessed. When 1init is requested to change run-levels, all
processes which do not have an entry in the rstate field for the
target run-level will be sent the warning signal (SIGTERM) and
allowed a 20 second grace period before being forcibly ter-
minated by a kill signal (SIGKILL). The 7state field can define
multiple run-levels for a process by selecting more than one
run-level in any combination from 0—6. If no run-level is
specified, then action will be taken on this process for all run-
levels 0—6. There are three other values, a, b and ¢, which can
appear in the rstate field, even though they are not true run-
levels. Entries which have these characters in the rstate field
are processed only when the telinit (see init(8)) process
requests them to be run (regardless of the current run-level of
the system). They differ from run-levels in that the system is
only in these states for as long as it takes to execute all the
entries associated with the states. A process started by an a, b
or ¢ command is not killed when init changes levels. They are
only killed if their line in /etc/inittab is marked off in the
action field, their line is deleted entirely from /etc/inittab, or
init goes into the SINGLE USER state.

Page 1 February 21, 1984

INITTAB(S)

MUNIX INITTAB(S)

action Key words in this field tell inif how to treat the process
specified in the process field. The actions recognized by init are

as follows:

respawn

wait

once

boot

bootwait

powerfail

powerwait

off

ondemand

February 21, 1984

If the process does not exist then start the process,
do not wait for its termination (continue scanning
the inittad file), and when it dies restart the pro-
cess. 1If the process currently exists then do noth-
ing and continue scanning the inittad file.

Upon init's entering the run-level that matches the
entry's rstate, start the process and wait for its
termination. All subsequent reads of the inittab
file while init is in the same run-level will cause tnit¢
to ignore this entry.

Upon init's entering a run-level that matches the
entry's rstate, start the process, do not wait for its
termination and when it dies, do not restart the
process. If upon entering a new run-level, where
the process is still running from a previous run-
level change, the program will not be restarted.

The entry is to be processed only at tnit's boot-
time read of the inittad file. fnit is to start the pro-
cess, not wait for its termination, and when it dies,
not restart the process. In order for this instruc-
tion to be meaningful, the rstate should be the
default or it must match init’'s run-level at boot
time. This action is useful for an initialization
function following a hardware reboot of the system.

The entry is to be processed only at init's boot-
time read of the inittad file. Mit is to start the
process, wait for its termination and, when it dies,
not restart the process.

Execute the process associated with this entry only
when init receives a power fail signal (SIGPWR see
signal(2)).

Execute the process associated with this entry only
when init receives a power fail signal (SIGPWR) and
wait until it terminates before continuing any pro-
cessing of inittab.

If the process associated with this entry is
currently running, send the warning signal
(SIGTERM) and wait 20 seconds before forcibly ter-
minating the process via the kill signal (SIGKILL). If
the process is nonexistent, ignore the entry.

This instruction is really a synonym for the
respawn action. It is functionally identical to
respawn but is given a different keyword in order to
divorce its association with run-levels. This is used
only with the a, b or ¢ values described in the

Page 2

INITTAB(S)

process

FILES

initdefault

sysinit

MUNIX INITTAB(S)

rstate field.

An entry with this action is only scanned when init
initially invoked. Mit uses this entry, if it exists, to
determine which run-level to enter initially. It
does this by taking the highest run-level specified
in the rstate field and using that as its initial state.
If the rstate field is empty, this is interpreted as
0123456 and so init will enter run-level 6. Also, the
initdefault entry can use s to specify that init start
in the SINGLE USER state. Additionally, if init
doesn’t find an initdefault entry in /etc/inittab,
then it will request an initial run-level from the
user at reboot time.

Entries of this type are executed before init tries
to access the console.]t is expected that this
entry will be only used to initialize devices on which
init might try to ask the run-level question. These
entries are executed and waited for before con-
tinuing.

This is a sh command to be executed. The entire process field

is prefixed with ezec and passed to a forked sh as sh —c 'exec

command'.

For this reason, any legal sh syntax can appear in

the process field. Comments can be inserted with the §# com-
ment syntax.

/etc/inittab

SEE ALSO

Page 3

getty(8), init(8)

sh(1). who(1), exec(2), open(2), signal(2).

February 21, 1984

INODE(5) MUNIX INODE(5)

NAME
inode — format of an inode
SYNOPSIS

finclude <ys/types.h>
fginclude <sys/ino.h>

DESCRIPTION

An i-node for a plain file or directory in a file system has the following
structure defined by <ys/ino.h>,

/s

s Inode structure as It appears on
s 3 disek biock.
s/

struct dinode

unsigned short di_mode; /= mode and type of file o/
short di_nlinks /% number of linke to file »/
short di_uid; /% ouner’s user id &/
short di_gid; /% ouner's grow Id &/
off_t di_size; /s rumber of bytes In file &/
char di_addr [40] /3 disk block addressss »/
time_t di_atime; /s time last accessed s/
time_t di_mtize; /% time last modified s/

l time_t di_ctime; /s time created s/

H

/s

® the 48 address bytes:

s 39 used; 13 addresses

= of 3 bytes each.

s/

For the meaning of the defined types off_t and time_t see types(7).
FILES
/usr/include/sys/ino.h

SEE ALSO
stat(2), fs(5), types(7).

Page 1 February 22, 1984

ISSUE(5) MUNIX ISSUE(5)

NAME
issue — issue identification file
DESCRIPTION
The file /etc/issue contains the issue or project identification to be

printed as a login prompt. This is an ASCII file which is read by program

getty and then written to any terminal spawned or respawned from the
lines file.

FILES
/etc/issue

SEE ALSO
login(1).

Page 1 February 21, 1984

KEYCAP(5S) MUNIX (May.06.83) KEYCAP(5)

NAME

keycap — keyboard capability data base
SYNOPSIS

/etc/keycap
DESCRIPTION

FILES

Keycap parametrizes keyboard input from diflerent terminals, much as
termcap parametrizes output. For example, the following lines in
setc /keycap

pvlpcsdsg|vt100/52|pcs vt 100:
NED=#8c: /left

describe: the key on a VT100 (VT52 mode). Pressing on the key-
board sends two characters (i.e. <ESC><D>). Keycap decodes the input
stream from the keyboard, and delivers one byte (i.e. 0x8c).

See termcap(5) for the first entry for each specific terminal in the key-
board capability data base. Each further line indicates a byte-sequence
translation. Each translation is enclosed by colons ':'. The source byte-
sequence and the target are separated by an equal sign '=".

The following characters should be escaped by a backslash "\ ":
=:~\#

The usual C-string convention applies to octal.constants and the follow-
ing sequences:
\b \f \n \r \t

Hexadecimal constants start with the character '#'.
A control character is started by a '~' (i.e. ~A means <CTRL A> =\ 001).

Backslash followed by an uppercase E means <ESCAPE> (i.e. \ 033).

/etc/keycap file containing keyboard descriptions

SEE ALSO

termcap(3)

AUTHOR

Dittmar Krall

Page 1 February 21, 1984

MNTTAB(S) MUNIX MNTTAB(S)

NAME
mnttab — mounted file system table

SYNOPSIS
struct mnttab §
char mnt_dev(108];
char nt_filesysl[l0];
short mt_ro_flig:
time_t mt_time;
Is
DESCRIPTION
Mnttab resides in directory /etc and contains a table of devices mounted
by the mount(8) command.

Each entry is 26 bytes in length: the first 10 bytes are the null-padded
name of the place where the special file is mounted; the next 10 bytes
represent the null-padded root name of the mounted special file; the
remaining 6 bytes contain the mounted special file's read/write permis-
sions and the date on which it was mounted.

The maximum number of entries in mnttab is based on the system
parameter NMOUNT located in /usr/sys/conf.h, which defines the number
of allowable mounted special files.

SEE ALSO
mount(8).

Page 1 February 21, 1984

NEWS (5) MUNIX NEWS(5)

NAME
news — USENET network news article, utility files

DESCRIPTION
There are two formats of news articles: A and B. A format is the only for-
mat that version 1 netnews systems can read or write. Systems running
the version 2 netnews can read either format and there are provisions
for the version 2 netnews to write in A format. A format looks like this:

Aarticle-ID
newsgroups
path

date

title

Body of article

Only version 2 netnews systems can read and write B format. B format
contains two extra pieces of information: receival date and expiration
date. The basic structure of a B format file consists of a series of
headers and then the body. A header field is defined as a line with a cap-
ital letter in the 1st column and a colon somewhere on the line.
Unrecognized header fields are ignored. News is stored in the same for-
mat transmitted, see ‘‘Standard for the Interchange of USENET Mes-
sages’ for a full description. The following fields are among-those recog-

nized:
Header Information
From: user@host.domain[.domain ...] (Full Name)

Newsgroups: Newsgroups
Message-ID: <Unique Jdentifier>
Subject: descriptive title
Date: Date Posted
Date-Received:

Date received on local machine
Expires: Ezpiration Date '
Reply-To: Address for mail replies
References: Article ID of article this is
Control: Tezt of a control message
Here is an example of an article:

Relay-Version: B 2.10 2/13/83 cbosgd.UUCP
Posting-Version: B 2.10 2713783 eagle.UUCP
Path: cbosgd!mhuxj'mhuxt!eagle!jerry

From: jerry@eagle.uucp (Jerry Schwarz)
Newsgroups: net.general

Subject: Usenet Etiquette -- Please Read
Message-ID: <642@eagle. UUCP> '

Date: Friday, 19-Nov-82 16:14:55 EST
Followup-To: net.news

Expires: Saturday, 1-Jan-83 00:00:00 EST

Page 1 February 21, 19684

NEWS(5) MUNIX NEWS(5)

Date-Received: Friday, 19-Nov-82 16:59:30 EST
Organization: Bell Labs, Murray Hill

The body of the article comes here, after a blank line.

The files mentioned next all reside in /usr/lib/news. A sys file line has
four fields, each seperated by colons:

system-name:subscriptions flagstransmission command

Of these fields, on the system-name and subscriptions need to be
present.

The system name is the name of the system being sent to. The subscrip-
tions is the list of newsgroups to be transmitted to the system. The flags
are a set of letters describing how the article should be transmitted. The
default is B. Valid flags include A (send in A.-format), B (send in B for-
mat), N (use ihave/sendme protocol), U (use uux -c and the name of the
stored article in a %s string).

The transmission commmand is executed by the shell with the article to be
transmitted as the standard input. The default is wux — —z -r
sysname'rmews. Some examples:

xyz:net.all

oldsys:net.all,fa.all,to.oldsys:A
berksys:net.all,ucb.all::/usr/lib/news/sendnews —b berksys\ :rnews
arpasys:net.all,arpa.all::/usr/lib/news/sendnews —a rnews@arpasys
old2:net.all.fa.all:A:/usr/lib/sendnews —o 0ld2\ :rnews
user:fa.sf-lovers::mail user

Somewhere in a sys file, there must be a line for the host system. This
line has no flags or commands. A # as the first character in a line
denotes a comment.

The history, active, and ngfile files have one line per item.

SEE ALSO
inews(1), postnews(1), sendnews(8), uurec(8), readnews(1)

February 21, 1984 Page 2

NEWSRC(5) MUNIX NEWSRC(5)

NAME
newsrc — information file for readnews(1) and checknews(1)

DESCRIPTION
The .newsrc file contains the list of previously read articles and an
optional options line for readnews(1) and checknews(1). Each newsgroup
that articles have been read from has a line of the form:
newsgroup: range
The range is a list of the articles read. It is basically a list of no.'s
separated by commas with sequential no.’s collapsed with hyphens. For
instance:
general: 1-78,80,85-90
fa.info-cpm: 1-7
net.news: 1
fa.info-vax! 1-5
If the : is replaced with an ! (as in info-vax above) the newsgroup is not
subscribed to and will not be shown to the user.
An options line starts with the word options (left-justified). Then there
are the list of options just as they would be on the command line. For
instance: .
options —n all !fa.sf-lovers !fa.human-nets —r
options —<c -r
A string of lines beginning with a space or tab after the initial options
line will be considered continuation lines.

FILES
~/.newsrc options and list of previously read articles

SEE ALSO
readnews(1), checknews(1)

Page 1 February 21, 1984

PASSWD(5) MUNIX PASSWD(5)

NAME
passwd — password file
DESCRIPTION
Passwd contains for each user the following information:
name (login name, contains no upper case)
encrypted password
numerical user 1D
numerical group ID
Real name of user, office, etc
initial working directory
program to use as Shell
This is an ASCII file. Each field within each user's entry is separated from
the next by a colon. Each user is separated from the next by a new-line.
If the password field is null, no password is demanded; if the Shell field is
null, the Shell itself is used.
This file resides in directory /etc. Because of the encrypted passwords,
it can and does have general read permission and can be used, for exam-
ple, to map numerical user ID's to names.
EXAMPLE
jones:ztIFqQtcoDzINU:14:2:Ed Jones,Big Company,787375: /user/ jones: /bin/sh
FILES
/etc/passwd
SEE ALSO
getpwent(3C), login(1), crypt(3C), passwd(1), group(5)
Page 1 February 21, 1984

PLOT(S) NUNIX PLOT(S)

NAME
plot — graphics interface

DESCRIPTION

Files of this format are produced by routines described in plot(3G), and
are interpreted for various devices by commands described in plot(1G).
A graphics file is a stream of plotting instructions. Each instruction con-
sists of an ASCII letter usually followed by bytes of binary information.
The instructions are executed in order. A point is designated by four
bytes representing the x and y values; each value is a signed integer. The
last designated point in an 1, m, n, or p instruction becomes the ‘current
point’ for the next instruction.

Each of the following descriptions begins with the name of the
corresponding routine in plot(3G).

m move: The next four bytes give a new current point.

n cont: Draw a line from the current point to the point given by the next
four bytes. See plot(1G).

p point: Plot the point given by the next four bytes.

1 line: Draw a line from the point given by the next four bytes to the
point given by the following four bytes.

t label: Place the following ASCII string so that its first character falls
on the current point. The string is terminated by a newline.

a arc: The first four bytes give the center, the next four give the start-
ing point, and the last four give the end point of a circular arc. The
least significant coordinate of the end point is used only to determine
the quadrant. The arc is drawn counter-clockwise.

c circle: The first four bytes give the center of the circle, the next two
the radius.

e erase: Start another frame of output.

f linemod: Take the following string, up to a newline, as the style for
drawing further lines. The styles are ‘'dotted,” ‘solid," ‘longdashed.’
‘shortdashed,' and ‘dotdashed.” Effective only in plot 4014 and plot ver.

s space: The next four bytes give the lower left corner of the plotting
area; the following four give the upper right corner. The plot will be
magnified or reduced to fit the device as closely as possible.

Space settings that exactly fill the plotting area with uhity scaling
appear below for devices supported by the filters of plot(1G). The
upper limit is just outside the plotting area.

4014 space(0, 0, 3120, 3120);
1bp (LBP-10)

space(0, 0, 1696, 2500);
V80 (Versatec)

space(0, 0, 1536, 1536);
300, 300s

space(0, 0, 4096, 4096);
450 space(0, 0, 4096, 4096);

Page 1 February 21, 1984

PLOT(5) MUNIX PLOT(S)

SEE ALSO
plot(1G), plot(3G), graph(1G)

February 21, 1984 Page 2

PROFILE(5) MUNIX PROFILE(S)

NAME
profile — setting up an environment at login time

DESCRIPTION
If your login directory contains a file named .profile, that file will be exe-
cuted (via the shell's exec .profile) before your session begins; .profiles
are handy for setting exported environment variables and terminal
modes. If the file /etc/profile exists, it will be executed for every user
before the .profile. The following example is typical (except for the com-
ments):
Make some environment variables global
export MAIL PATH TERM
Set file creation mask
urnask 22
Tell me when new mail comes in
MAIL=/usr/mail/myname
Add my /bin directory to the shell search sequence
PATH=SPATH:3HOME/bin

FILES
S$HOME/ .profile
/etc/profile

SEE ALSO
env(1l), login(1), mail(1), sh(1), stty(1), su(1), environ(7), term(7).

Page 1 February 21, 1984

PWMAP(5N) MUNIX (Newcastle Connection) PWMAP(5N)

NAME

/etc/pwmap, /etc/groupmap — table of user and group id, mappings for
the Newcastle Connection at this system.

DESCRIPTION

setc/pwmap and /etc/groupmap contain the tables used by the spawner
at this system to determine the user and group ids of servers run on this
systemn on behalf of users of a remote system. The formats of the two
files are identical, and consist of a list of system entries, one for each
remote system for which one or more users has been authorised. Each
systemn entry consists of a header, and a sequence of fixed-length
records for each mapping of a remote id. Each record consists of three
16-bit integers: the first contains flag bits unused in Release 1.0, and the
next two contain the remote numeric id and the local numeric id to
which it is mapped, respectively.

The header for each system consists of a 16-bit integer giving the
number of remote user entries following, a 16-bit length referring to the
string name which follows, and a variable-length string which is the path-
name of the remote system relative to this system’s root. The length
field includes the null byte terminating the string.

SEE ALSO

"FILES

unite (8N), mksys(8N), rmsys(8N).

/etc/pwmap, /etc/groupmap

Page 1 February 21, 1984

SCCSFILE(S) MUNIX SCCSFILE(S)

NAME
sccsfile — format of SCCS file

DESCRIPTION
An SCCS file is an ASCII file. It consists of six logical parts: the checksum,
the delta table (contains information about each delta), user names
(contains login names and/or numerical group IDs of users who may add
deltas), flags (contains definitions of internal keywords), comments (con-
tains arbitrary descriptive information about the file), and the body
(contains the actual text lines intermixed with control lines).

Throughout an SCCS file there are lines which begin with the ASCIl SOH
(start of heading) character (octal 001). This character is hereafter
referred to as the control character and will be represented graphically
as @. Any line described below which is not depicted as beginning with
the control character is prevented from beginning with the control char-
acter.

Entries of the form DDDDD represent a five digit string (a number between
00000 and 99999).

Each logical part of an SCCS file is described in detail below.

Checksum .
The checksum is the first line of an SCCS file. The form of the line
is:

@hDDDDD

The value of the checksum is the sum of all characters, except
those of the first line. The @h provides a magic number of (octal)

064001.
Delta table
The delta table consists of a variable number of entries of the
form:
@s DDDDD/DDDDD/DDDDD
@d <type> <SCCS ID> yr/mo/da hr:mi:se <pgmr> DDDDD DDDD
@i DDDDD ...
@x DDDDD ...
©@g DDDDD ...

@m <MR number>

®c <comments> ...

@.e
The first line (@s) contains the number of lines
inserted/deleted/unchanged respectively. The second line (@d)

contains the type of the delta (currently, normal: D, and removed:
R), the SCCS ID of the delta, the date and time of creation of the

Page 1 February 21, 1984

SCCSFILE(5)

MUNIX SCCSFILE(5)

delta, the login name corresponding to the real user ID at the time
the delta was created, and the serial numbers of the delta and its
predecessor, respectively.

The @i, @x, and @g lines contain the serial numbers of deltas
included, excluded, and ignored, respectively. These lines are
optional.

The @m lines (optional) each contain one MR number associated
with the delta; the @c lines contain comments associated with the
delta.

The @e line ends the delta table entry.

User names

Flags

February 21,

The list of login names and/or numerical group IDs of users who
may add deltas to the file, separated by new-lines. The lines con-
taining these login names and/or numerical group IDs are sur-
rounded by the bracketing lines @u and @U. An empty list allows
anyone to make a delta.

Keywords used internally (see admin(1l) for more information on
their use). Each flag line takes the form:

Gf <flag> <optional text>

The following flags are defined:
@ft <type of program>
@f v <program name>
efi
@f b
@fm <module name>
@ff <floor>
@f ¢ <ceiling>
@fd <default-sid>
@fn
ef j
@f1 <lock-releases>
@f q <user defined>

The t flag defines the replacement for the XYZ identification key-
word. The v flag controls prompting for MR numbers in addition to
comments; if the optional text is present it defines an MR number
validity checking program. The i flag controls the warning/error
aspect of the "No id keywords” message. When the i flag is not
present, this message is only a warning; when the i flag is present,
this message will cause a "fatal'’ error (the file will not be gotten,
or the delta will not be made). When the b flag is present the —b
keyletter may be used on the get command to cause a branch in
the delta tree. The m flag defines the first choice for the replace-
ment text of the ZMX identification keyword. The f flag defines the
“floor" release; the release below which no deltas may be added.

1984 Page 2

SCCSFILE(S) MUNIX SCCSFILE(S)

The c flag defines the ‘‘ceiling’ release; the release above which no
deltas may be added. The d flag defines the default SID to be used
when none is specified on a get command. The n flag causes delta
to insert a "null” delta (a delta that applies no changes) in those
releases that are skipped when a delta is made in a new release
(e.g., when delta 5.1 is made after delta 2.7, releases 3 and 4 are
skipped). The absence of the n flag causes skipped releases to be
completely empty. The j flag causes get to allow concurrent edits
of the same base SID. The 1 flag defines a list of releases that are
locked against editing (get(1) with the —e keyletter). The q flag
defines the replacement for the ZQX% identification keyword.

Comments
Arbitrary text surrounded by the bracketing lines @t and @T. The
comments section typically will contain a description of the file's

purpose.
Body
The body consists of text lines and control lines. Text lines don't
begin with the control character, control lines do. There are three
kinds of control lines: insert, delete, and end, represented by:
@1 DDDDD
©D DDDDD
@E DDDDD
respectively. The digit string is the serial number corresponding
to the delta for the control line.
SEE ALSO

admin(1), delta(1), get(1), prs(1).
Source Code Control System User’s Guide by L. E. Bonanni and C. A.
Salemi.

Page 3 February 21, 1984

STACK(S) MUNIX STACK(5)

NAME
C stack frame layout
DESCRIPTION

This is a typical procedure call compiled from the statement
read(fildes, buf, 1024);

move.u 40, -(a7) push the constant §020 (2 bytes)
pea _but push address of buf (46 bytes)
move.u _fildes,~{(a7) push fildes {2 bytes)
jor _read call _read

addq.u 8,37 pop 8 = 2+4+2 bytes

Parameters are pushed on the stack, the procedure is called, and after
return the parameters are popped again. A typical procedure entry and
exit looks like this:

_read: link ab,§-38 save old a6, reserve 30 bytes
movem. | d6/d7/a5, -24 (ab) save register variables
move.! result,dd result transferred via do
movenm, | -24(a6),d6/d7/a5 restore register variables
unik ab restore old a6, release frame
rts return to caller

The link instruction makes room on the stack for

a) the register saving area. This is a constant 24 byte long area for a
maximum of 6 register variables, 3 each for data and address
registers.

b) a word used for storing the current line number, if the -L option of
cc is used.

c) the local variables.

The first movem saves three registers into the register area. Exactly the
same three registers are restored with the second movem. Only those
registers among a3-a5,d5-d7 are saved, that are modified in the pro-
cedure. If none of these registers is modified, than both movem instruc-
tions are suppressed.

Page 1 February 21, 1984

STACK(5)

MUNIX STACK(5)

A function result is returned in DO (FO for certain floating point formats).
The unlk returns the frame, and the rts returns to the caller.

The stack frame format follows from the given code:

February 21, 1984

| return address |

| (uritten by jsr} | <-

+—- —

| old AB |

| {saved by link) | <=
-

| |
| Register |
| Saving |
| Area |
| |
| (26 = 6 = 4) |
| |
| | «
Frm e e e - —)
| cur. lineno | <
B e &

| local variables |

high address
8(AB)

4 (AB)

(AG})

~24 (AB)
~26 (AB)

lou address

Page 2

TERMCAP(5) MUNIX TERMCAP(5)

NAME
termcap — terminal capability data base
SYNOPSIS
/etc/termcap
DESCRIPTION
Termcap is a data base describing terminals, used, e.g., by vi(1) and
curses(3). Terminals are described in termcap by giving a set of capabili-
ties which they have, and by describing how operations are performed.
Padding requirements and initialization sequences are included in
termcap.
Entries in termcap consist of a number of ‘' separated fields. The first
entry for each terminal gives the names which are known for the termi-
nal, separated by ‘|' characters. The first name is always 2 characters
long and is used by older systems which store the terminal type in a 16
bit word in a systemwide data base. The second name given is the most
common abbreviation for the terminal, and the last name given should be
a long name fully identifying the terminal. The second name should con-
tain no blanks; the last name may well contain blanks for readability.
CAPABILITIES
(P) indicates padding may be specified
(P*) indicates that padding may be based on no. lines affected
Name Type Pad? Description
ae str (P) End alternate character set
al str (P*) Add new blank line
am bool Terminal has automatic margins
as str (P) Start alternate character set
be str Backspace if not ~H
bs bool Terminal can backspace with ~H
bt str (P) Backtab
bw bool Backspace wraps from column 0 to last column
CcC str Command character in prototype if terminal settable
cd str (P*) Clear to end of display
ce str (P) Clear to end of line
ch str (P) Like cm but horizontal motion only, line stays same
cl str (P*) Clear screen
cm str (P) Cursor motion
co num Number of columns in a line
cr str (P*) Carriage return, (default ~M)
cs str (P) Change scrolling region (vt100), like cm
cv str (P) Like ch but vertical only.
da bool Display may be retained above
dB num Number of millisec of bs delay needed
db bool Display may be retained below
dC num Number of millisec of cr delay needed
dc str (P*) Delete character
dF num Number of millisec of fT delay needed
dl str (P*) Delete line
dm str Delete mode (enter)
dN num Number of millisec of nl delay needed
Page 1 February 21, 1984

TERMCAP(5)

do str
dT num
ed str
ei str
eo str
f str
he bool
hd str
ho str
hu str
hz str
ic str
if str
im bool
in bool
ip str
is str
kO-k9 str
kb str
kd str
ke str
kh str
kl str
kn num
ko str
kr str
ks str
ku str
10-19 str
li num
11 str
ma str
mi bool
ml str
ms bool
mu str
ne bool
nd str
nl str
ns bool
oS bool
pc str
pt bool
se str
sf str
sg num
SO str
sr str
ta str
te str-
te str
ti str

February 21, 1984

(P*)

(P)

(P*)

(P*)

MUNIX TERMCAP(5)

Down one line

Number of millisec of tab delay needed
End delete mode .

End insert mode; give :ei=: if ic

Can erase overstrikes with a blank
Hardcopy terminal page eject (default ~L)
Hardcopy terminal

Half-line down (forward 1/2 linefeed)
Home cursor (if no cm)

Half-line up (reverse 1/2 linefeed)
Hazeltine; can’t print ~'s

Insert character

Name of file containing is

Insert mode (enter); give :im=: if ic

Insert mode distinguishes nulls on display
Insert pad after character inserted
Terminal initialization string

Sent by other function keys 0-9

Sent by backspace key

Sent by terminal down arrow key

Out of keypad transmit mode

Sent by home key

Sent by terminal left arrow key

Number of other keys

Termcap entries for other non-function keys
Sent by terminal right arrow key

Put terminal in keypad transmit mode
Sent by terminal up arrow key

Labels on other function keys

Number of lines on screen or page

Last line, first column (if no cm)

Arrow key map, used by vi version 2 only
Safe to move while in insert mode

Memory lock on above cursor.

Safe to move while in standout and underline mode
Memory unlock (turn off memory lock).
No correctly working carriage return (DM2500,H2000)
Non-destructive space (cursor right)
Newline character (default \ n)

Terminal is a CRT but doesn't scroll.
Terminal overstrikes

Pad character (rather than null)

Has hardware tabs (may need to be set with is)
End stand out mode

Scroll forwards

Number of blank chars left by so or se
Begin stand out mode

Scroll reverse (backwards)

Tab (other than ~I or with padding)

Entry of similar terminal - must be last
String to end programs that use cm
String to begin programs that use cm

Page 2

TERMCAP(5) MUNIX TERMCAP(5)

uc str Underscore one char and move past it

ue str End underscore mode

ug num Number of blank chars left by us or ue

ul bool Terminal underlines even though it doesn't overstrike
up str Upline (cursor up)

us str Start underscore mode

vb str Visible bell (may not move cursor)

ve str Sequence to end open/visual mode

vs str Sequence to start open/visual mode

xb bool Beehive (f1=escape, f{2=ctnl C)

Xn bool A newline is ignored after a wrap (Concept)

xr bool Return acts like ce \r \ n (Delta Data)

XS bool Standout not erased by writing over it (HP 264?)
xt bool Tabs are destructive, magic so char (Teleray 1061)

A Sample Entry

The following entry, which describes the Concept—100, is among the more
complex entries in the termcap file as of this writing. (This particular
concept entry is outdated, and is used as an example only.)

c1|c100]concept100:is=\ EU\ Ef\ E7\ E5\ E8\ EI\ ENH\ EK\ E\ 200\ Eo&\ 200:\
:al=3*\E~R:am:bs:cd=16*\ E~C:ce=16\ E~S:c]l=2*~L:cm=\Ea%+ %+
:co#B0:\ :dc=16\ E~A:d]1=3*\E~B:ei=\E\ 200:e0:im=\ E~P:in
:ip=16*li#24:mi:nd=\ E=:\ .

:se=\ Ed\ Ee:so=\ ED\ EE:ta=8\ t:ul:up=\ E;:vb=\ Ek\ EK:xn:

Entries may continue onto multiple lines by giving a \ as the last charac-
ter of a line, and that empty fields may be included for readability (here
between the last field on a line and the first field on the next). Capabili-
ties in termcap are of three types: Boolean capabilities which indicate
that the terminal has some particular feature, numeric capabilities giv-
ing the size of the terminal or the size of particular delays, and string
capabilities, which give a sequence which can be used to perform partic-
ular terminal operations.

Types of Capabilities

All capabilities have two letter codes. For instance, the fact that the
Concept has automatic margins (i.e. an automatic return and linefeed
when the end of a line is reached) is indicated by the capability am
Hence the description of the Concept includes am Numeric capabilities
are followed by the character ‘#' and then the value. Thus co which indi-
cates the number of columns the terminal has gives the value ‘80 for the
Concept.

Finally, string valued capabilities, such as ce (clear to end of line
sequence) are given by the two character code, an ‘=’, and then a string
ending at the next following *:'. A delay in milliseconds may appear after
the ‘=’ in such a capability, and padding characters are supplied by the
editor after the remainder of the string is sent to provide this delay. The
delay can be either a integer, e.g. ‘20, or an integer followed by an '*', i.e.
‘3*". A '* indicates that the padding required is proportional to the
number of lines affected by the operation, and the amount given is the
per-affected-unit padding required. When a ‘*' is specified, it is some-
times useful to give a delay of the form '3.5' to specify a delay per unit to

Page 3 February 21, 1984

TERMCAP(5) MUNIX TERMCAP (5)

tenths of milliseconds.

A number of escape sequences are provided in the string valued capabili-
ties for easy encoding of characters there. A \ E maps to an ESCAPE char-
acter, ~x maps to a control-x for any appropriate x, and the sequences
\n \r \t \b \f give a newline, return, tab, backspace and formfeed.
Finally, characters may be given as three octal digits after a \, and the
characters ~ and \ may be given as \~ and \\. If it is necessary to
place a : in a capability it must be escaped in octal as \072. If it is
necessary to place a null character in a string capability it must be
encoded as \ 200. The routines which deal with termcap use C strings,
and strip the high bits of the output very late so that a \ 200 comes out
as a \ 000 would.

Preparing Descriptions

We now outline how to prepare descriptions of terminals. The most
eflective way to prepare a terminal description is by imitating the
description of a similar terminal in termcap and to build up a description
gradually, using partial descriptions with ez to check that they are
correct. Be aware that a very unusual terminal may expose deficiencies
in the ability of the termcap file to describe it or bugs in ez. To easily test
a new terminal description you can set the environment variable
TERMCAP to a pathname of a file containing the description you are
working on and the editor will look there rather than in setc/termcap.

TERMCAP can also be set to the termcap entry itself to avoid reading the
file when starting up the editor.

Basic capabilities

The number of columns on each line for the terminal is given by the co
numeric capability. If the terminal is a CRT, then the number of lines on
the screen is given by the li capability. If the terminal wraps around to
the beginning of the next line when it reaches the right margin, then it
should have the am capability. If the terminal can clear its screen, then
this is given by the cl string capability. If the terminal can backspace,
then it should have the bs capability, unless a backspace is accomplished
by a character other than ~H in which case you should give this charac-
ter as the bc string capability. If it overstrikes (rather than clearing a
position when a character is struck over) then it should have the os
capability.

A very important point here is that the local cursor motions encoded in
termcap are undefined at the left and top edges of a CRT terminal. The
editor will never altempt to backspace around the left edge, nor will it
attempt to go up locally off the top. The editor assumes that feeding off
the bottom of the screen will cause the screen to scroll up, and the am
capability tells whether the cursor sticks at the right edge of the screen.
If the terminal has switch selectable automatic margins, the termcap file
usually assumes that this is on, i.e. am.

These capabilities suflice to describe hardcopy and glass-tty terminals.
Thus the mode] 33 teletype isdescribed as

t3|33|tty33:co#72:0s

February 21, 1984 Page 4

TERMCAP(5) MUNIX TERMCAP(5)

while the Lear Siegler ADM-3 js described as
cl|adm3|3]lsi adm3:am:bs:cl=~Z:li#24:co§80
Cursor addressing

Cursor addressing in the terminal is described by a em string capability,
with printf(3S) like escapes Z%x in it. These substitute to encodings of
the current line or column position, while other characters are passed
through unchanged. If the cm string is thought of as being a function,
then its arguments are the line and then the column to which motion is
desired, and the % encodings have the following meanings:

%d as in printf, O origin

%2 like %2d

%3 like %3d

%. like Zc

%+x adds zto value, then 7Z.

%>xy if value > x adds y, no output.

zr reverses order of line and column, no output

Zi increments line/column (for 1 origin)

%% gives a single %

%n exclusive or row and column with 0140 (DM2500)
%B BCD (16°*(x/10)) + (x%10), no output.

%D . Reverse coding (x-2*%(x%16)), no output. (Delta Data).

Consider the HP2645, which, to get to row 3 and column 12, needs to be
sent \ E&a12c03Y padded for 6 milliseconds. Note that the order of the
rows and columns is inverted here, and that the row and column are
printed as two digits. Thus its em capability is cm=6\ E&%r%2c%2Y. The
Microterm ACT-IV needs the current row and column sent preceded by a
~T, with the row and column simply encoded in binary, cm=~T%.%.. Ter-
minals which use %. need to be able to backspace the cursor (bs or be),
and to move the cursor up one line on the screen (up introduced below).
This is necessary because it is not always safe to transmit \'t, \n ~D and
\r, as the system may change or discard them.

A final example is-the LSI ADM-3a, which uses row and column offset by a
blank character, thus cm=\E=%+ 7%+ .

Cursor motions

If the terminal can move the cursor one position to the right, leaving the
character at the current position unchanged, then this sequence should
be given as nd (non-destructive space). If it can move the cursor up a
line on the screen in the same column, this should be given as up. If the
terminal has no cursor addressing capability, but can home the cursor
(to very upper left corner of screen) then this can be given as ho; simi-
larly a fast way of getting to the lower left hand corner can be given as I;
this may involve going up with up from the home position, but the editor
will never do this itself (unless 1l does) because it makes no assumption
about the eflect of moving up from the home position.

Area clears

If the terminal can clear from the current position to the end of the line,
leaving the cursor where it is, this should be given as ce. If the terminal
can clear from the current position to the end of the display, then this

Page 5 February 21, 1984

TERMCAP(5) MUNIX TERMCAP(5)

should be given as ed. The editor only uses cd from the first column of a
line.

Insert/delete line

If the terminal can open a new blank line before the line where the cur-
sor is, this should be given as al; this is done only from the first position
of a line. The cursor must then appear on the newly blank line. If the
terminal can delete the line which the cursor is on, then this should be
given as dl; this is done only from the first position on the line to be
deleted. If the terminal can scroll the screen backwards, then this can
be given as sb, but just al suffices. If the terminal can retain display
memory above then the da capability should be given; if display memory
can be retained below then db should be given. These let the editor
understand that deleting a line on the screen may bring non-blank lines
up from below or that scrolling back with sb may bring down non-blank
lines.

Insert/delete character

There are two basic kinds of intelligent terminals with respect to
insert/delete character which can be described using termcap. The most
common insert/delete character operations affect only the characters
on the current line and shift characters oflf the end of the line rigidly.
Other terminals, such as the Concept 100 and the Perkin Elmer Owl],
make a distinction between typed and untyped blanks on ‘the screen,
shifting upon an insert or delete only to an untyped blank on the screen
which is either eliminated, or expanded to two untyped blanks. You can
find out which kind of terminal you have by clearing the screen and then
typing text separated by cursor motions. Type abc def using local cur-
sor motions (not spaces) between the abc and the def. Then position the
cursor before the abc and put the terminal in insert mode. If typing
characters causes the rest of the line to shift rigidly and characters to
fall off the end, then your terminal does not distinguish between blanks
and untyped positions. If the abc shifts over to the def which then move
together around the end of the current line and onto the next as you
insert, you have the second type of terminal, and should give the capabil-
ity in, which stands for insert null. If your terminal does something
different and unusual then you may have to modify the editor to get it to
use the insert mode your terminal defines. We have seen no terminals
which have an insert mode not falling into one of these two classes.

The editor can handle both terminals which have an insert mode, and
terminals which send a simple sequence to open a blank position on the
current line. Give as im the sequence to get into insert mode, or give it
an empty value if your terminal uses a sequence to insert a blank posi-
tion. Give as ei the sequence to leave insert mode (give this, with an
empty value also if you gave im). Now give as ic any sequence needed to
be sent just before sending the character to be inserted. Most terminals
with a true insert mode will not give ic, terminals which send a sequence
to open a screen position should give it here. (Insert mode is preferable
to the sequence to open a position on the screen if your terminal has
both.) If post insert padding is needed, give this as a number of mil-
liseconds in ip (a string option). Any other sequence which may need to
be sent after an insert of a single character may also be given in ip.

February 21, 1984 Page 6

TERMCAP(S5) MUNIX TERMCAP(5)

It is occasionally necessary to move around while in insert mode to
delete characters on the same line (e.g. if there is a tab after the inser-
tion position). If your terminal allows motion while in insert mode you
can give the capability mi to speed up inserting in this case. Omitting mi
will affect only speed. Some terminals (notably Datamedia’s) must not
have mi because of the way their insert mode works.

Finally, you can specify delete mode by giving dm and ed to enter and
exit delete mode, and dc to delete a single character while in delete
mode.

Highlighting, underlining, and visible bells

If your terminal has sequences to enter and exit standout mode these
can be given as so and se respectively. If there are several flavors of
standout mode (such as inverse video, blinking, or underlining — half
bright is not usually an acceptable standout mode unless the terminal is
in inverse video mode constantly) the preferred mode is inverse video by
itself. If the code to change into or out of standout mode leaves one or
even two blank spaces on the screen, as the TVI 912 and Teleray 1061 do,
then ug should be given to tell how many spaces are left.

Codes to begin underlining and end underlining can be given as us and ue
respectively. If the terminal has a code to underline the current charac-
ter and move the cursor one space to the right, such as the Microterm
Mime, this can be given as uc. (If the underline code does not move the
cursor to the right, give the code followed by a nondestructive space.)

Many terminals, such as the HP 2621, automatically leave standout mode
when they move to a new line or the cursor is addressed. Programs using
standout mode should exit standout mode before moving the cursor or
sending a newline.

If the terminal has a way of flashing the screen to indicate an error
quietly (a bell replacement) then this can be given as vb; it must not
move the cursor. If the terminal should be placed in a different mode
during open and visual modes of ez, this can be given as vs and ve, sent
at the start and end of these modes respectively. These can be used to
change, e.g., from a underline to a block cursor and back.

If the terminal needs to be in a special mode when running a program
that addresses the cursor, the codes to enter and exit this mode can be
given as ti and te. This arises, for example, from terminals like the Con-
cept with more than one page of memory. If the terminal has only
memory relative cursor addressing and not screen relative cursor
addressing, a one screen-sized window must be fixed into the terminal for
cursor addressing to work properly.

If your terminal correctly generates underlined characters (with no spe-
cial codes needed) even though it does not overstrike, then you should
give the capability ul. If overstrikes are erasable with a blank, then this
should be indicated by giving eo.

Keypad

If the terminal has a keypad that transmits codes when the keys are
pressed, this information can be given. Note that it is not possible to
handle terminals where the keypad only works in local (this applies, for

Page 7 February 21, 1984

TERMCAP (5) MUNIX TERMCAP(S)

example, to the unshifted HP 2621 keys). If the keypad can be set to
transmit or not transmit, give these codes as ks and ke. Otherwise the
keypad is assumed to always transmit. The codes sent by the left arrow,
right arrow, up arrow, down arrow, and home keys can be given as ki, kr,
ku, kd, and kh respectively. If there are function keys such as 0, {1, ...,
f9, the codes they send can be given as kO, ki, ..., k9. If these keys have
labels other than the default fO through {9, the labels can be given as 10,
11, ..., 19. If there are other keys that transmit the same code as the ter-
minal expects for the corresponding function, such as clear screen, the
termncap 2 letter codes can be given in the ko capability, for example,
:ko=cl ll,sf,sb:, which says that the terminal has clear, home down, scroll
down, and scroll up keys that transmit the same thing as the cl, 1], sf, and
sb entries.

The ma entry is also used to indicate arrow keys on terminals which have
single character arrow keys. It is obsolete but still in use in version 2 of
vi, which must be run on some minicomputers due to memory limitations.
This field is redundant with kl, kr, ku, kd, and kh. It consists of groups of
two characters. In each group, the first character is what an arrow key
sends, the second character is the corresponding vi command. These
commands are h for kl, j for kd, k for ku, 1 for kr, and H for kh. For
example, the mime would be :ma=~Kj~Zk~Xl: indicating arrow keys left
(~H), down (~K), up (~Z), and right (~X). (There is no home key on the
mime.)

Miscellaneous

If the terminal requires other than a null (zero) character as a pad, then
this can be given as pec.

If tabs on the terminal require padding, or if the terminal uses a charac-
ter other than ~Ito tab, then this can be given as ta.

Hazeltine terminals, which don't allow ‘~' characters to be printed should
indicate hz. Datamedia terminals, which echo carriage-return linefeed
for carriage return and then ignore a following linefeed should indicate
nc. Early Concept terminals, which ignore a linefeed immediately after
an am wrap, should indicate xn. If an erase-eol is required to get rid of
standout (instead of merely writing on top of it), xs should be given.
Teleray terminals, where tabs turn all characters moved over to blanks,
should indicate xt. Other specific terminal problems may be corrected
by adding more capabilities of the form xz.

Other capabilities include is, an initialization string for the terminal, and
if, the name of a file containing long initialization strings. These strings
are expected to properly clear and then set the tabs on the terminal, if
the terminal has settable tabs. If both are given, is will be printed before
if. This is useful where if is rusr/lib/tabset /std but is clears the tabs
first.

Similar Terminals

If there are two very similar terminals, one can be defined as being just
like the other with certain exceptions. The string capability tc can be
given with the name of the similar terminal. This capability must be last
and the combined length of the two entries must not exceed 1024. Since
termlib routines search the entry from left to right. and since the tc

February 21, 1984 Page 8

TERMCAP(5) MUNIX TERMCAP (5)

capability is replaced by the corresponding entry, the capabilities given
at the left override the ones in the similar terminal. A capability can be
cancelled with xx@ where xx is the capability. For example, the entry

hn|2621nl:ks@:ke®:tc=2621:

defines a 2621nl that does not have the ks or ke capabilities, and hence
does not turn on the function key labels when in visual mode. This is
useful for different modes for a terminal, or for different user prefer-
ences.

AUTHOR
Termcap is based on software developed by The University of California,
Berkeley California, Computer Science Division, Department of Electrical
Engineering and Computer Science.

FILES .
/etc/termcap file containing terminal descriptions

SEE ALSO
ex(1), vi(1).

CAVEATS AND BUGS
Note termcap will be replaced by terminfo in the next release. Transition
tools will be provided. Ez allows only 256 characters for string capabili-
ties, and the routines in termcap(3) do not check for overflow of this
bufler. The total length of a single entry (excluding only escaped new-
lines) may not exceed 1024.

The ma, vs, and ve entries are specific to the vi program.

Not all programs support all entries. There are entries that are not sup-
ported by any program.

Page 9 February 21, 1984

UTAB(SN) MUNIX (Newcastle Connection) UTAB(5N)

NAME

/etc/utab — table of name neighbour UNIX United systems known to the
Newcastle Connection at this system.

DESCRIPTION

setcsutad contains one entry for each name neighbour of the system on
which it is stored. Each entry consists of a 16-bit identifier (which must
be in the range [0-255) for Release 1.0), a 16-bit length field whose value
is the length of the following string plus one for the null byte, and a
string which specifies the pathname of the name neighbour relative to
the root is this system. The string is stored including the terminating
null byte.

The "identifier” will be passed to your network interface routine ''_neti-
toa()" when required to convert it to a physical address for your network.
The inverse operation is performed by "_netatoi()”, which returns an
identifier given a physical address.

This file is maintained by the programs "mksys(8N)" and "rmsys(8N)",
which can be used to inspect, add, modify, or delete an entry.

The file is used by the Newcastle Connection during "exec” processing to
translate physical addresses (the 16-bit identifiers) into system names.

SEE ALSO

FILES

unite(8N), mksys(8N), rmsys(8N), "The Newcastle Connection -
Release 1.0: Network Interface Installation Guide”

/etc/utab

Page 1 February 21, 1984

UTMP(5) MUNIX UTMP(5)

NAME

utmp, wtmp — utmp and wtmp entry formats
SYNOPSIS

finclude <sys/types.h>

finclude <utmp.h>
DESCRIPTION

These files, which hold user and accounting information for such com-

mands as who(1), write(1), and login(1), have the following structure as
defined by utmp.h>:

/= <ays/types.h> must be Included. n/
fdefine UTMP_FILE */etc/utmp”
#define UTMP_FILE "/etc/utmp”

fdefine ut_name ut_user

struct utmp

char ut_user (8] ; /% User login name &/
char ut_id[4) ; /s /etc/lines id(usually line i =/
char ut_line(12] ; /= device name (console, Inxx) =/
short ut_pid ; /% process id x/
short ut_type ; /= type of entry =/
struct exit_status
short e_termination ; /% Process termination status »/
‘ short e_exit 3 /% Process exit status =/
ut_exit ; /% The exit status of a process
= marked as DEAD_PROCESS.
w/
time_t ut_time ; /x time entry uas made %/
s
/= Definitions for ut_type =/
faetine EIPTY 8
fdefine RUN_LVL 1
fdetine BOOT_TIME 2
fdefine OLD_TIME 3
foefine NEM_TIME 4
fdefine INIT_PROCESS S /% Process spauned by “init” =/
Joetine LOGIN PROCESS 6 /= A "getty" process waiting for login »/
fdefine USER_PROCESS 7 /= A user process »x/
#define DEAD_PROCESS 8
fdefine ACCOUNTING 9
fdefine UTMAXTYPE ACCOUNTING /% Largest legal value of ut_type &/
/= Special etrings or formats used in the “ut_line” field uhen =/
/x accounting for something other than a process. =/
/= No string for the ut_line field can be more than 11 chars + =/
/% a NAL in length. x/
fdefine RUNLVL_NSG “run-level %c"
define BOOT_ISG “system boot”
#define OTIME_NMSG “old time”
faefine NTIRE_NSG "new time"
FILES
/usr/include/utmp.h
/etc/utmp
/etc/wtmp

Page 1 February 21, 1984

UTMP (5) MUNIX UTMP(5)

SEE ALSO
login(1), who(1), write(1), getut(3C).

February 21, 1984 Page 2

YFONT(5) MUNIX YFONT(5)

NAME
viont — font formats for the Benson-Varian or Versatec
SYNOPSIS
/usr/lib/vfont/ e
DESCRIPTION
The fonts for the printer/plotters have the following format. Each file
contains a header, an array of 256 character description structures, and
then the bit maps for the characters themselves. The header has the fol-
lowing format:
struct header |
short wmagics
unsigned short size;
short maxx;
short maxy;
short xtnd;
| header
The magic number is 0436 (octal). The mazz, mazy, and ztnd fields are
not used at the current time. Mazz and mazy are intended to be the
maximum horizontal and vertical size of any glyph in the font, in raster
lines. The size is the size of the bit maps for the characters in bytes.
Before the maps for the characters is an array of 256 structures for each
?f the possible characters in the font. Each element of the array has the
orm:
struct dispatch {
unsigned short addr;
short nbytes;
char uwp;
char downs
char left;
char rights
short width;
Is
The nbytes field is nonzero for characters which actually exist. For such
characters, the addr field is an offset into the rest of the file where the
data for that character begins. There are up+down rows of data for
each character, each of which has left+right bits, rounded up to a
number of bytes. The width field is not used by vcat, although it is to
make width tables for troff. It represents the logical width of the glyph,
in raster lines, and shows where the base point of the next glyph would
be.
FILES
/usr/libsviont/e
SEE ALSO
troff(1), pti(1), vfontinfo(1)
Page 1 February 22, 1984

INTRO(8) MUNIKX INTRO(8)

NAME
intro — introduction to games

DESCRIPTION
This section describes the recreational and educational programs found
in the directory /7usr/games.

Page 1 February 17, 1984

ARITHMETIC(6) MUNIX ARITHMNETIC(6)

NAME

arithmetic — provide drill in number facts

SYNOPSIS

/usr/games/arithmetic [+—x/] [range]

DESCRIPTION

Page 1

Arithmetic types out simple arithmetic problems, and waits for an answer
to be typed in. If the answer is correct, it types back "Right!”, and a new
problem. If the answer is wrong, it replies "What?”, and waits for another
answer. Every twenty problems, it publishes statistics on correctness
and the time required to answer.

To quit the program, type an interrupt (delete).

The first optional argument determines the kind of problem to be gen-
erated; +—x/ respectively cause addition, subtraction, multiplication,
and division problems to be generated. One or more characters can be
given; if more than one is given, the different types of problems will be
mixed in random order; default is +—

Range is a decimal number; all addends, subtrahends, differences, multi-
plicands, divisors, and quotients will be less than or equal to the value of
range. Default range is 10.

At the start, all numbers less than or equal to range are equally likely to
appear. If the respondent makes a mistake, the numbers in the problem
which was missed become more likely to reappear.

As a matter of educational philosophy. the program will not give correct
answers, since the learner should, in principle, be able to calculate them.
Thus the program is intended to provide drill for someone just past the
first learning stage, not to teach number facts de novo. For almost all
users, the relevant statistic should be time per problem, not percent
correct.

February 17, 1984

BACK(6) MUNIX BACK(6)

NAME

back — the game of backgammon

SYNOPSIS

/usr/games/back

DESCRIPTION

FILES

BUGS

Back is a program which provides a partner for the game of backgam-
mon. It is designed to play at three different levels of skill, one of which
you must select. In addition to selecting the opponent's level, you may
also indicate that you would like to roll your own dice during your turns
(for the superstitious players). You will also be given the opportunity to
move first. The practice of each player rolling one die for the first move
is not incorporated.

The points are numbered 1-24, with 1 being white’'s extreme inner table,
24 being brown's inner table, 0 being the bar for removed white pieces
and 25 the bar for brown. For details on how moves are expressed, type
y when back asks “Instructions?” at the beginning of the game. When
back first asks "Move?', type ? to see a list of move options other than
entering your numerical move.

When the game is finished, back will ask you if you want the log. If you
respond with y, back will attempt to append to or create a file back.log in
the current directory.

/usr/games/lib/backrules

rules file
/tmp/be log temp file
back.log log file

The only level really worth playing is “‘expert”, and it only plays the for-
ward game.

Back will complain loudly if you attempt to make too many moves in a
turn, but will become very silent if you make too few.

Doubling is not implemented.

Page 1 February 17, 1984

BACKGAMMON(6) MUNIX BACKGAMMON (6)

NAME
backgammon — the game
SYNOPSIS
/usr/games/backgammon
DESCRIPTION
This program does what you expect. It will ask whether you need instruc-
tions.

Page 1 February 17, 1964

BANNER(6) MUNIX BANNER(6)

NAME

banner — make long posters
SYNOPSIS

/usr/bin/banner
DESCRIPTION

Banner reads the standard input and prints it sideways in huge built-up
letters on the standard output.

Page 1 February 17, 1984

BCD(8) MUNIX BCD(6)

NAMNE
bed, ppt — convert to antique media

SYNOPSIS
/usr/games/bced text

/usr/games/ppt

DESCRIPTION
Bed converts the literal tezt into a form familiar to old-timers.

Ppt converts the standard input into yet another form.

SEE ALSO
dd(1)

Page 1 February 17, 1984

Bl(6)

NAME
bj — the game of black jack
SYNOPSIS
/usr/games/bj
DESCRIPTION
by is a serious attempt at simulating the dealer in the game of black jack
(or twenty-one) as might be found in Reno. The following rules apply:
The bet is 82 every hand.
A player ‘natural' (black jack) pays 83. A dealer natural loses 82.
Both dealer and player naturals is a ‘push’ (no money exchange).
If the dealer has an ace up, the player is allowed to make an
‘insurance’ bet against the chance of a dealer natural. If this bet is
not taken, play resumes as normal. If the bet is taken, it is a side
bet where the player wins 82 if the dealer has a natural and loses $1°
if the dealer does not.
If the player is dealt two cards of the same value, he is allowed to
‘double’. He is allowed to play two hands, each with one of these
cards. (The bet is doubled also; 82 on each hand.)
If a dealt hand has a total of ten or eleven, the player may ‘double
down'. He may double the bet (82 to 84) and receive exactly one
more card on that hand.
Under normal play, the player may ‘hit’ (draw a card) as long as his
total is not over twenty-one. If the player ‘busts’ (goes over twenty-
one), the dealer wins the bet.
When the player 'stands’ (decides not to hit), the dealer hits until he
attains a total of seventeen or more. If the dealer busts, the player
wins the bet.
If both player and dealer stand, the one with the largest total wins.
A tie is a push. '
The machine deals and keeps score. The following questions will be asked
at appropriate times. Each question is answered by y followed by a new
line for ‘yes’, or just new line for 'no’.
? (means, ‘do you want a hit?’)
Insurance?
Double down?
Every time the deck is shuffled, the dealer so states and the ‘action’
(total bet) and ‘standing’ (total won or lost) is printed. To exit, hit the
interrupt key (CTRL-C) and the action and standing will be printed.
Page 1 February 17, 1984

MUNIX BI(8)

CRAPS(6) MUNIX CRAPS(6)

NAME

craps — the game of craps
SYNOPSIS

/usr/games/craps
DESCRIPTION

Craps is a form of the game of craps that is played in Las Vegas. The
program simulates the roller, while the user (the player) places bets.
The player may choose, at any time, to bet with the roller or with the
House. A bet of a negative amount is taken as a bet with the House, any
other bet is a bet with the roller.

The player starts off with a “bankroll’’ of 82,000.
The program prompts with:
bet?

The bet can be all or part of the player's bankroll. Any bet over the total
bankroll is rejected and the program prompts with “bet?" until a proper
bet is made.

Once the bet is accepted, the roller throws the dice. The following rules
apply (the player wins or loses depending on whether the bet is placed
with the roller or with the House; the odds are even). The first roll is the
roll immediately following a bet.

1. On the first roll:
7 or 11 wins for the roller;
2,3,0r12 wins for the House;
any other number is the point, roll again (Rule 2 applies).

2. On subsequent rolls:
point roller wins;
4 House wins;
any other number roll again.

If a player loses the entire bankroll, the House will offer to lend the
player an additional $2,000. The program will prompt: -~

marker?

A "yes" (or "'y") consummates the loan. Any other reply terminates the
game.

If 2 player owes the House money, the House reminds the player, before a
bet is placed, how many markers are outstanding.

1f, at any time, the bankroll of a player who has outstanding markers
exceeds 82,000, the House asks:
Repay marker?

A reply of "‘yes" (or "'y") indicates the player’'s willingness to repay the
loan. If only 1 marker is outstanding, it is immediately repaid. However,
if more than 1 marker are outstanding, the House asks:

Page 1 February 17, 1984

CRAPS(8) MUNIX CRAPS(8)

How many?

markers the player would like to repay. If an invalid number is entered
(or just a carriage return), an appropriate message is printed and the
program will prompt with ‘‘How many?'’ until a valid number is entered.

If a player accumulates 10 markers (a total of 820,000 borrowed from the
House), the program informs the player of the situation and exits.

Should the bankroll of a player who has outstanding markers exceed
850,000, the total amount of money borrowed will be automatically
repaid to the House.

Any player who accumulates 8$100,000 or more breaks the bank. The pro-
gram then prompts:

New game?
to give the House a chance to win back its money.

Any reply other than *yes" is considered ''no” (except in the case of
“bet?” or ‘"How many?"). To exit, send an interrupt (break), DEL, or
control-D. The program will indicate whether the player won, lost, or
broke even.

MISCELLANEOUS
The random number generator for the die numbers uses the seconds
from the time of day. Depending on system usage, these numbers, at
times, may seem strange but occurrences of this type in a real dice
situation are not uncommeon.

February 17, 1984 Page 2

HANGMAN(8) MUNIX HANGMAN (8)

NAME
hangman — guess the word

SYNOPSIS
/usr/games/hangman [arg]

DESCRIPTION
Hangman chooses a word at least seven letters long from a dictionary.
The user is to guess letters one at a time. ’
The optional argument arg names an alternate dictionary.

FILES
/usr/dict/words

BUGS
Hyphenated compounds are run together.

Page 1 February 17, 1984

M0O(8) MUNIX M00(8)

NAME
moo — guessing game

SYNOPSIS
/usr/games/moo

DESCRIPTION
Moo is a guessing game imported from England. The computer picks a
number consisting of four distinct decimal digits. The player guesses
four distinct digits being scored on each guess. A ‘cow’ is a correct digit
in an incorrect position. A ‘'bull’ is a correct digit in a correct position.

The game continues until the player guesses the number (a score of four
bulls).

Page 1 February 17, 1984

QuIZ(6)) MUNIX QUIZ (8)

NAME

quiz — test your knowledge

SYNOPSIS

/usr/games/quiz [~i file] [=t] [categoryl category2]

DESCRIPTION

FILES

BUGS

Quiz gives associative knowledge tests on various subjects. It asks items
chosen from categoryl and expects answers from category2. If no
categories are specified, quiz gives instructions and lists the available
categories.

Quiz tells a correct answer whenever you type a bare newline. At the end
of input, upon interrupt, or when questions run out, quiz reports a score
and terminates. -

The —t flag specifies ‘tutorial' mode, where missed questions are repeated
later, and material is gradually introduced as you learn.

The —i flag causes the named file to be substituted for the default index
file. The lines of these files have the syntax:

line = category newline | category ' line
category = alternate|category '|' alternate
alternate = empty | alternate primary
primary = character|‘[' category ']'|option
option =‘{'category ‘|’

The first category on each line of an index file names an information file.
The remaining categories specify the order and contents of the data in
each line of the information file. Information files have the same syntax.
Backslash ‘\' is used as with sh(1) to quote syntactically significant
characters or to insert transparent newlines into a line. When either a
question or its answer is empty, quiz will refrain from asking it.

/usr/games/quiz.k/*

The construct ‘ajab’ doesn't work in an information file. Use ‘afb}’.

Page 1 February 17, 1984

REVERSI(86) MUNIX REVERSI(6)

NAME
reversi — reversi, a game of dramatic reversals

el [B1[b#)[af][B[
/usr/games/reversi { B [d# IBmv IWmv ifile |
[ofie] Q) [ri#l) [of][T) e] v 1 0sle 10w

DESCRIPTION

Reversi, (a.k.a othello, a.k.a 0z0), is played on an square board, (usually 8
x 8), using tokens which are "white”, (0), on one side, and "black”, (X), on
the other. Each player takes his turn by placing a token with his coloft
up in an empty square. The board initially contains two “0"” and two ‘X"
tokens. With each turn, a player must flip over one or more tokens
displaying his opponent's color. He does this by placing one of his tokens
such that he outflanks one or more of his opponent’s, horizontally, verti-
cally, or diagonally. The outflanked tokens are flipped over and thus can
be re-flipped. If a player cannot outflank his opponent, he must pass
thereby forfeiting his turn. The play continues until both players must
pass.

In this game you move by typing in the column letter and row number at
which you want to place your token. You can also type in:

? to re-draw the board,

~n to retract your last move, (handy for cheating),
pass to acknowledge that you have no legal move,
resign to give up, and

! 7 to escape to the Shell.

Reversi has several flag arguments. Their meanings are:

B The computer plays "“black” and goes first.
b# The board size is set to #x#, (max is 10x10). The default is 8x8.
d# The debug flag is turned on; # indicates how much meaningless

trace information you'd like to be buried under. This flag also
forces the T flag.

IBmv Initialize the square at "mv"’ to hold a black token, where “mv" is
the letter-number of a square on the board. This is useful for
starting a game with an arbitrary board configuration.

IWmv Initialize the square at "mv"’ to hold a white token, as above.

ifoo Take move input from the file named "foo”. Useful for having the
program play against other programs, (this sentence no verb).

1 Set look-ahead level to # initially; look-ahead level is modified
dynamically to try for a given compute time per move, (see the s
flag, below).

ofubar
Send computer moves to the file named “fubar”. The format is the
same as expected for input, (see i flag, above).

Page 1 February 17, 1984

REVERSI(6) MUNIX REVERSI(8)

q Quiet mode. Suppress gratuitous display of the board.

r§ Report on look-ahead results down to level #. This option is simi-
lar, but not identical, to d. This flag also forces the T flag.

s§ Attempt to use # seconds of combined user and system time foF
each computer move. If unspecified the default is 5 seconds.

T The terminal in use either has no cursor addressing or has

different cursor addressing from the standard. Normally, the
playing board is displayed and modified on the screen via cursor
motion commands and the list of moves is scrolled at the bottom
of the screen. This flag indicates that your terminal is function-
ally a teletype and should be treated as such.

DIAGNOSTICS
Fairly reasonable explanations of illegal moves, etc.

February 17, 1984 Page 2

ROGUE(8) MUNIX ROGUE(8)

NAME

rogue — Exploring The Dungeons of Doom
SYNOPSIS

/usr/games/rogue [—r] [save_file] [—s] [d]
DESCRIPTION

Rogue is a computer fantasy game with a new twist. It is crt oriented and
the object of the game is to survive the attacks of various monsters and
get a lot of gold, rather than the puzzle solving orientation of most com-
puter fantasy games.

To get started you really only need to know two commands. The com-
mand ? will give you a list of the available commands and the command /
will identify the things you see on the screen.

To win the game (as opposed to merely playing to beat other people high
scores) you must locate the Amulet of Yendor which is somewhere below
the 20th level of the dungeon and get it out. Nobody has achieved this
yet and if somebody does, they will probably go down in history as a hero
among heros.

When the game ends, either by your death, when you quit, or if you (by
some miracle) manage to win, rogue will give you a list of the top-ten
scorers. The scoring is based entirely upon how much gold you get.
There is a 107 penalty for getting yourself killed.

If save;ﬁle is specified, rogue will be restored from the specified saved
game file. If the —r option is used, the save game file is presumed to be
the default.

The —s option will print out the list of scores.
The —d option will kill you and try to add you to the score file.

For more detailed directions, read the document 4 Guide to the Dungeons
of Doom.

AUTHORS
Michael C. Toy, Kenneth C. R. C. Arnold, Glenn Wichman

FILES .
/usr/games/lib/.rogue_roll Score file
~/.rogue.save Default save file

SEE ALSO .
Michael C. Toy and Kenneth C. R. C. Arnold, 4 guide to the Dungeons of
Doom

BUGS
Probably infinite. However, that Ice Monsters sometimes transfix you
permanently is not a bug. It's a feature.

Page 1 February 17, 1984

STARTREK(6) MUNIX STARTREK(6)

NAME

startrek — THE game based on the t.v. series.
SYNOPSIS

/usr/games/startrek
DESCRIPTION

BUGS

FILES

You are the captain of the starship Enterprise and you have to destroy a
random number of klingons (typically 15-25) in 30 stardates. (A measure
of time in space, think of it as a day.) Full instructions are given if you
reply 'y’ to DO YOU WANT INSTRUCTIONS? A brief list of instructions is
given if you ever type in an illegal command.

If you reply 'p' to PILOT TRAINING OR REAL MISSION? the computer asks
you for a task number. This is used to start the random number genera-
tor so you can play in the same galaxy again if you want to.

Docking at a starbase refuels and rearms the Enterprise. If you stop for
repairs you are delayed one stardate. Waiting for repairs in space might
also cost you time.

The calculator returns distances slightly too large for inter-quadrant
travel.

/usr/games/startrek object code
/usr/lib/startrek instructions

AUTHOR

Originally written in Basic by Mike Mayfield, Centreline Engineering and
extended by David Ahl of Creative Computing.
Translated into C and extended by M.J.Bayliss UKC April-October 1977.

Page 1 February 17, 19684

TTT(8) MUNIX TTT(8)

NAME
ttt — tic-tac-toe

SYNOPSIS
/usr/games/ttt

DESCRIPTION
Tit is the X and O game popular in the first grade. This is a learning pro-
gram that never makes the same mistake twice.

Although it learns, it learns slowly. It must lose nearly 80 games to com-
pletely know the game.

FILES
ttt.a learning file

Page 1 February 17, 1984

WUMP(6) MUNIX WUMP(8)

NAME
wump — the game of hunt-the-wumpus

SYNOPSIS
/usr/games/wump

DESCRIPTION
Wump plays the game of ‘Hunt the Wumpus.’ A Wumpus is a creature that
lives in a cave with several rooms connected by tunnels. You wander
among the rooms, trying to shoot the Wumpus with an arrow, meanwhile
avoiding being eaten by the Wumpus and falling into Bottomless Pits.
There are also Super Bats which are likely to pick you up and drop you in
some random room.
The program asks various questions which you answer one per line; it will
give a more detailed description if you want.
This program is based on one described in People’s Computer Company,
2, 2 (November 1973).

BUGS

It will never replace Space War.

Page 1 February 17, 1984

A Gulde to the Dungeons of Doom

1. Introduction

You have Just finished your years as a etudent at the
local fighter's guild. After much practice and sweat you
have finaily completed your training and are ready to embark
uwpon a perilous adventure. As a test of your ekille, the
local gulidmasters have sent you into the Dungeons of Doon.
Your task ls to return with the Amulet of Yendor. Your
renard for the complotion of this task will be a full
menbership in the local guild. In addition, you are allowed
‘to keep all the loot you bring back from the dungeons.

In preparation for your Journey. you are glven an
enchanted mace, a bouW, and a quiver of arrows taken from a
dragon’s hoard in the far off Dark Mountains. You are also
outfitted with elf-crafted armor and given enough food to
reach the dungeons. You say goodbye to family and friends
for what may be the last time and head up the road.

You set out on your way to the dungeons and after
eeveral days of uneventful travel, you sees the anclent ruins
that mark the entrance to the Dungeons of Doom. It is late
at night, eo you make camp at the entrance and epend the
night sleeping under the open skies. In the morning you
gather your weapone, put on your armor, eat what is almost
your last food, and enter the dungeons.

2. Hhat is going on here?

You have Just begun a game of rogue. Your goal 1Iis ¢to
grab as much treasure as you can, find the Amulet of Yendor,
and get out of the Dungeons of Doom alive. 0On the screen, a
map of w«here you have been and what you have seen on the
current dungeon level Is kept. As you explore more of the
level, i1t appears on the screen In front of you.

Rogue differs from most computer fantasy games in that
it is screen oriented. Commands are all one or two keys-
trokes (1] and the results of your commands are displayed
graphically on the screen rather than being explained in
words. [2]

Another major difference between rogue and other com-
puter fantasy games is that once you have solved all the
puzzles in a etandard fantasy game, 1t has lost most of Iits
excitement and it ceases to be fun. Rogus, on the other

[1] As opposed to pseudo English sentences.

{2] A minimum screen size of 24 lines by B8 columns is
required. If the screen is larger, only the 24x80 section
uill be used for the map.

A Guide to the Dungeons of Doom

hand, generates a new dungeon every time you play It and
even the author finds It an entertaining and exciting game.

3. Khat do all those things on the escreen mean?

In order to understand what Is going on in rogue you
have to first get some grasp of what rogue is doing with the
screen. The rogue screen is intended to replace the "You
can eee ..." descriptions of standard fantasy games. Figure

1l ls a sample of what a rogue screen might look |ike.

3.1. The bottom line

At the bottom iine of the screen are a few pieces of
cryptic information describing your current status. Here is
an explanation of what these thingse mean:

Level This number indicates how deep you have gone in the
dungeon. It starts at one and goes up as you go
deeper into the dungeon.

Cold The number of gold pieces you have managed to find
and keep with you so far.

Hp Your current and maximum health points. Health
points Indicate how much damage you can take before
you die. The more you get hit In a fight, the lower
they get. You can regain health points by resting.
The number in parentheses is the maximum number your
health points can reach.

Str Your current strength and maximum ever etrength.
This can be any integer less than or equal! to 31, or

..'.......+
ce@eealoe]

|
I
JeeeeBeeuoo]
!

..... I -,

Level: 1 Gold: @ Hp: 12(12) Str: 16(16) Arm: & Exp: 1/8

Figure 1

A Guide to the Dungeons of Doom

greater than or equal to thres. The higher the
number, the stronger you are. The number In the
parentheses 1s the maximum strength you have attalned
eo far this game.

Arm Your current armor protection. This number indicates
hou effective your armor is In stopping blous from
unfriendly creatures. The higher this number is, the
more effective the armor.

€xp These two numbers give your current experience level
and experisnce points. As you do things, you gain
experience points. At certaln experlience point
totals, you gain an experience Ilevel. The more
exper ienced you are, the better you are able to fight
and to withstand magical attacks.

3.2. The top line

.The top |line of -the screen |8 reserved for printing
messages that describe things that are Impossible to
represent visually., If you see a "--More--" on the top
line, this means that rogue wants to print another message
on the screen, but 1t uwants to make certain that you have
read the one that is there first. To read the next message,
just type a epace.

3.3. The rest of the screen

The rest of the screen is the map of the level as you
have explored it so far. Each esymbol on the escreen
represents something. Here is a list of what the various
symbols mean:

This symbo! represents you, the adventurer.

-] These symbole represent the wallse of rooms.
+ A door to/from a room.

. The floor of a room.

] The floor of a passage betueen rooms.

x A pile or pot of gold.
) A weapon of esome sort.
) A piecs of armor.

| A flask containing a magic potion.

A Guide to the Dungesons of Doom

? A plece of paper, usually 8 maglic ecroll.
- A ring with magic properties

/ A magical staff or wand

~ A trap, watch out for theee.

p 4 A staircase to other levels

: A piece of food.

A-Z The uppercase letters represent the various inhabltants
of the Dungeons of Doom. Hatch out, they can be nasty
and viclous.

4. Commands

Commands are given to rogus by typing one or two char-
acters. flost commands can be preceded by a count to repeat
them (e.g. typing "18s" uWli!l do ten searches). Commands for
which counts make no sense have the count ignored. To can-
cel a count or a prefix, type <ESCAPE>. The list of com-
mands is rather long, but it can be read at any time during
the game with the "?" command. Here It is for reference,
With a short explanation of each command.

? The help command. Asks for a character to give help
on. If you type a =", it will list al! the commands,
otheruiee it will explain what the character you typed
does.

/ This is the "What is that on the screen?" command. A
*/® followed by any character that you ses on the
level, will tell you what that character is. For
instance, typing "/e" will tell you that the "e" symbol
represents you, the player.

h, H, “H

Move left. You move one space to the left. If you use
upper case "h", you will continue to move left until
you run into something. This works for all movement
commands (e.g. "L" means run in direction "!{®) If you
use the "control®” "h", you uill continue moving in the
specified direction unti! you pass something interest-
ing or run into a uall. You should experiment wuith
this, eince It is a very useful command, but very dif-
ficult to describe. Thies also works for all movement
commands.

)] Hove doun,

A Gulde to the Dungeons of Doom

HMove up.

Move right.

Hov; diagonally up and left.
Move diagonalliy up and right.
Move diagonally down and left.
Move diagonally down and right.

Throw an object. This is a prefix command. MWhen fol-
lowed wWith a direction 1t throus an object in the
specified direction. (es.g. type "th® to throu eome-
thing to the left.)

Fight until someone dies. MWhen followed with a direc-
tion this will force you to fight the creature in that
direction until either you or it bites the big ona.

Move onto something without picking it up. This will
move you one space in the direction you specify and, If
there Is an object there you can pick up, it won’t do
lt-

Zap prefix. Point a staff or wand In a3 given direction
and fire 1it. Even non-directional staves must be
pointed in some direction to be used.

ldentify trap command. If a trap is on your map and
you can’t remember what type It is, you can get rogus
to remind you by getting next to It and typing "~" fol-
lowed by the direction that would move you on top of
it.

Search for traps and secret doors. Examine each epace
immediately adjacent to you for the existence of a trap
or secret door. There is a large chance that even if
thers is esomething there, you won't find It, so you
might have to search a while before you find something.

Climb down a staircase to tha next level. Not surprie-
ingly, this can only be done if you are standing on
staircase.

Climb up a staircase to the leve! above. This can’t be
done without the Amulet of Yendor in your possessian.

Rest. This is the "do nothing®" command. This is good
for waiting and heal ing.

A Guide to the Dungsons of Doom

Inventory. List what you are carrying In your pack.

Selective inventory. Tells you what a single item in
your pack is.

Quaff one of the potions you are carrying.
Read one of the scrolls in your pack.
Eat food from your pack.

Hield a weapon. Take a weapon out of your pack and
carry It for use In combat, replacing the one you are
currently using (if any).

Hear armor. You can only Wear one suit of armor at a
time. This takes extra time.

Take armor off. You can't remove armor that ie cursed.
This takes extra time.

Put on a ring. You can wear only two rings at a time
(one on each hand). If you aren’t wearing any rings,
this command Will ask you wWwhich hand you want to wear
it on, otherwise, it Will place It on the unused hand.
The program assumes that you wield your sword in your
right hand.

Remove a ring. If you are only uwearing one ring, thise
command takes it off. [f you are nwearing two, it Will
ask you which one you Wish to remove,

Drop an object. Take somsthing out of your pack and
leave it Iying on the fioor. Only one object can
occupy each space. You cannot drop a cursed object at
all if you are uwielding or wearing it.

Call an object something. lf you have a type of object
in your pack which you wish to remember something
about, you can use the call command to give a name to
that type of object. Thie is usually used when you
figure out what a potion, scroll, ring, or staff Iis
after you pick it up, or when you want to remember
which of those swords in your pack you were WHielding.

Print out wWhich things you've discovered something
about. Thie command will ask you what type of thing
you are interested in. If you type the character for a
given type of object (e.g. "I1" for potion) it will
tel!l you which kinds of that type of object you've
discovered (i.e., figured out what they are)l. This
command works for potions, scrolls, rings, and staves
and wands.

A Gulde to the Dungeons of Doom

o Examine and eset optlons. Thise command Is further
explained in the section on options.

“R Redraus the scresn. Useful I[f epurious messages or
transmission errors have messed up the dieplay.

P Print last message. Useful when a message disappears
before you can read Iit. This only repsats the last
message that was not a mistyped command so that you
don’t loose anything by accidentally typling the wrong
character instead of “P.

<ESCAPE>
Cancel a command, prefix, or count.

| Escape to a shell for some commands.
Q Quit. Leave the pame.

S Save the current game In a file. It will ask you
whather you Wish to use the default save file. Caveat:
Rogue Hon’t let you start up a copy of a saved game,
and it removes the save flle as soon aes you start up a
restored game. This is to prevent people from saving a
game Just before a dangerous position and then restart-
ing It 1f they die. To restore a saved game, glive the
file name as an argument to rogue. As In

% rogue save_file

To restart from the default save file (see below), run
% rogue -r

v Printe the program version number.

) Print the weapon you are currently wielding
] Print the armor you are currently wearing

- Print the rings you are currently wearing

Reprint the status |ine on the message line
S. Roonms

Rooms in the dungeons are either it or dark. If you

walk into a lit room, the entire room will be draun on the
screen as soon as you enter. If you walk Into a dark room,
it will only be displayed as you explore 1t. Upon leaving a

room, all monsters inside the room are erased from the
screen. In the darkness you can only see one space in all
directions around you. A corridor le always dark.

A Guide to the Dungeons of Doom

6. Fignhting

If you see a monster and you wish to fight 1It, Just
attempt to run Into it. HMany times a monster you find will
mind its own business unless you attack it. [t Is often the
case that discretion is the better part of valor.

7. Objects you can find

. When you find something in the dungeon, It Ie common to

want to pick the object up. This Is accomplished In rogue
by walking over the object (unless you use the “"m" prefix,
see abovel. If you ars carrying too many things. the pro-
gram Wwill tell you and it won't pick up the object, other-
wiee It will add It to your pack and tell you what you just
picked up.

flany of the commands that operate on obJects must
prompt you to find out which object you want to use. If you
change your mind and don't want to do that command after
all, just type an <ESCAPE> and the command will bs aborted.

Some obJects, like armor and Weapons, are easily dif-
ferentiated. (Others, like scrolls and potions, are given
labels which vary according to type. During a game, any two
of the same kind of object Wwith the same labs! are the same
type. However, the label!s will vary from game to gamse.

Hhen you use one of these Ilabeled objects, I[f itse

effect is obvious, rogue uwill remember what it is for you.
If it's effect len"t extremely obvious you Will be asked
what you want to scribble on it so you Will recognize it

later, or you can use the "call" command (see above).
7.1. Ueaponrs

Some Wweapons, |ike arrows, come in bunches, but most
come one at a time. In order to use a weapon, you must
uwield it. To fire an arrow out of a3 bow, you must first
Hield the bou, then throw the arrou. You can only uwield one
weapon at a time, but you can’t change weapons 1f the one
you are currently wielding ies cursed. The commands to use

Wweapons are "w" (wield) and *t" (throw).

7.2. Armor

There are various sorts of armor lying around In the
dungeon. Some of it is enchanted, some is cursed, and some
is just normal. Different armor types have different armor
protection. The higher the armor protection, thes more pro-
tection the armor affords against the blous of monsters.
Hers is a list of the various armor types and their normal
armor protection:

A Guide to the Dungeons of Doom

| Type Protection
[None

|Leather armor

|Studded leather / Ring mail
|Scale mall

|Chain mail

|Banded mail /7 Splint mall

|

NS WND

1t a piece of armor is enchanted, its armor protection will
be higher than normal.]f a suit of armor Is cursed, Its
armor protection will be lower, and you Will not be able to
remove It. However, not al! armor With a protection that Is
lower than normal is cursed.

The commands to use weapons are "H" (wear) and *T"
(take off).

7.3. Scrolls

Scrol!ls come with titles In an unknouwn tonguel(3].
After you read a scroll, it disappears from your pack. The
command to use a scroll is "r® (read).

7.4. Potions

Potions are labeled by the color of the |liquid Iinside
the flask. They disappear after being quaffed. The command
to use a scroll is *q" (quaff).

7.5. Staves and Hands

Staves and wands do the same kinds of things. Staves
are identified by a type of wood; wands by a type of metal
or bone. They are generally things you want to do to some-
thing over a long distance, so you must point them at uwhat
you Wish to affect to use then. Some staves are not
affected by the direction they are pointed, though. Staves
come Wwith multiple magic charges, the number being random,
and when they are used up, the staff is Just a piece of wood
or metal.

(3] Actually, it°s a dialect spoken only by the tuenty-
geven members of a tribe in Outer Mongolia, but you're not
supposed to know that.

A Guide to the Dungeons of Doom

The command to use a wand or estaff is "z (zap)
7.6. Rings

Rings are very useful Items, since they are relatively
permanent magic. unllke the wusually fleeting effects of
potions, scrolls, and staves. Of course, the bad rings are
also more powerful. [Most rings aleo cause you to use up
food more raplidly, the rate varying with the type of ring.
Rings are differentiated by thelr stone esttings. Ths com-

mands to use rings are "P" (put on) and "R" (remove).

7.7. Food

Food is necessary to keep you going. I+ you go too
long without eating you will faint, and eventually die of
starvation. The command to use food is "e" (eat).

8. Dptions

Oue to variations In personal tastes and conceptlions of
the way rogue should do things, there are a set of options
you can set that cause rogue to behave In various different
Hays.

B.1. Setting the options

There are two ways to set the options. The first Is
With the ®"o0® command of rogue; the eecond is Wwith the
*RDGUEDOPTS" environment variablel(4].

8.1.1. Using the ‘e’ command

When you type "o" in rogus, it clears the screen and
dieplays the current settings for all the options. It then
places the cursor by the value of the first option and waits
for you to type. You can type a <RETURN> which means to go
to the next option, a "=" which means to go to the previous
option, an <ESCAPE> wWhich means to return to the game, or
you can give the option a value. For boolean options this
merely involves typing "t* for true or "f" for false. For
string options, type the new value followed by a <RETURN>.

8.1.2. Using the ROGUEOPTS variable

The ROGUEDPTS variable ie a string containing a comma
separated list of initial values for the various options.
Boolean variables can be turned on by listing their name or

(4] On Version & systems, there is no equivalent of the
ROGUEDPTS feature.

- 10 -

A Guide to the Dungeaons of Doom

turned off by putting a *no® In front of the name. Thus to

set up an environment variable so that Jump Is on, terse is

off, and the name ls set to "Blue Meanle®, use the command
% setenv ROGUEOPTS ® jump,noterse,name=Blue Mean!e" (5]

8.2. Option Ilst

Here Is a |ist of the options and an ., explanation of
what each one ls for. The default value for each le
enclosad In equares brackets. For character string options,
-input over fifty characters will be lgnored.

terse [notersel
Useful for those who are tired of the sometimes lengthy
messages of rogus. Thies Is a useful option for playing
on slow terminals, so this option defaults to terse 1If
you are on a slon (1280 baud or under) terminal.

Jump [nojumpl
If thies option le set, running moves wKill not be
displayed unti! you reach the end of the move. Thise
saves considerable cpu and display time. This option
defaults to jump If you are using a slou terminal.

flush [noflushl
All typeahead is thrown away after each round of bat-
tle. Thie is useful for those who type far ahead and
then watch in dismay as a Bat kills them.

seefloor [seefloor]
Bisplay the floor around you on the screen as you move
through dark rooms. Due to the amount of characters
generated, this option defaults to noseefloor if you
are using a slou terminal.

passgo {nopassgol
Follow turnings in passageways. If you run In a pas-

sage and you run Into stone or a wall, rogue Will eee
if it can turn to the right or left. If it can only
turn one way, It Wwill turn that way. If It can turn
either or neither, it will stop. This 1s followed

strictly, which can sometimes lead to elightly confus-
ing occurrences (which is why 1t defaults te nopassgo).

tombstone [tombstonel
Print out the tombstone at the end I1f you get killed.

[S) For those of you wxho use the bourne shell, the
commands Would be

$ ROGUEDPTS=" jump,noterse,name=Blus Meanie"

$ export ROGUEOPTS

- 11 -

A Guids to the Dungeons pf Doom

This Is nice but slow, wo you can turn It off If you
| ke,

inven [overurite)

Inventory type. This can have ones of thres values:
overurite, slow, or clear. Hith overurite the top
lines of the map are overuritten with the Ilist w«hen
Inventory |Is requested or when "Hhich Item do you wWish
to . . .7 " questions are ansuered with a "x*. Hou-
over, if the list Is longer than a ecreenful, the
screen Is cleared. With slouw, |istes are displayed one
item at a time on the top of the screen, and with
clear, the screen le cleared, the I|lst Is displayed,
and then the dungeon level is re-displayed. Due to
speed considerations, clear is the default for termi-
nals without clear-to-end-of-1ine capabilities.

name [account namel
This 1s the name of your character. It ie used if you
get on the top ten scorer's list.

fruit [(slime-mold]
This should hold the name of a fruit that you enjoy
eating. It is basically a whimsey that rogue uses in a
couple of places.

file [~/rogue.savel
The default file name for saving the game. If your
phone is hung up by accident, rogue will automatically
cave the game In this file. The file name may start
with the special character "~" which expands to be your
home dirsectory.

9. Scoring

Rogue usually maintains a list of the top scoring peo-
ple or scores on your machine. Depending on houw it is set
up, it can post either the top scores or the top players.
In the latter cass, each account on the machine can post

only one non-Winning score on this list. It you score
higher than someons else on this list, or better your previ-
ous score on the list, you will be inserted in the proper

place under your current name. How many scores are kept can
also be set up by whoever installs It on your machine.

If you quit the game, you get out with all of your gold
intact. 1f, however, you get killed in the Dungeons of
Doom, your body is forwarded to your next-of-kin, along With
89X of your gold; ten percent of your gold is kept by the

-12 -

A Gulide to the Dungeons of Doom

Dungeons® wizard as a feelBl. This should make you consider
whether you wnant to take one last hit at that monster and
possibly live, or quit and thus stop with whatever you have,

I+ you quit, you do get all your gold, but If you suing and
live, you might find more.

It you Just want to see what the current top
playere/games |list le, you can type
4 rogue -s

10.
Acknouledgements

Rogue uas originally conceived of by Glenn Hichman and
Michasl Toy. Ken Arnold and Michae!l Toy then smoothed out
the user Interface, and added }il!lons of neu features. He
would Ilke to thank Bob Arnold, Michelle Busch, Andy
Hatcher, Kipp Hickman, Mark Horton, Danie! Jensen, Bill Joy,
Joe Kalash, Steve Maurer, HNarty McNary, Jan Miller, and
Scott Nelson for their ldeas and asslstance; and also the
teseming multitudes who graciously lgnored work, school, and
social life to play rogue and send us bugs, complaints,
suggestions, and just plain flames. And also Mom.

[B] The Dungeon’'s wizard s named Hally the Honder
Badger. Invocations eshould be accompanied by a slizable
donative.

-13 -

A Guide to the Dungeons of Doom

INTRO(7) MURKIX INTRO(7)

NAME
intro — introduction to miscellany

DESCRIPTION
This section describes miscellaneous facilities such as macro packages,
character set tables, etc.

Page 1 February 17, 1984

ASCII(7)

MUNIX

ASCII(7)

NAME

ascii — map of ASCII character set

SYNOPSIS

cat /usr/pub/ascli

DESCRIPTION

cimal equivalents of each character, to be printed as needed. It con-

Ascii is a map of the ASCII character set, giving both octal and hexade-
tains:

ASCI] hex

m& e AL Z> (- >

& EEEI “HRHBEBRK

MWZ.S-E“U]OHU]‘

nowmo

- = NN <& W Wwr K~

b

:m aao et VO U / TV = ¢ —

SAHSBIXIAIEIR

& np
14d

ASCII octa!

e NN OX |loo a8

NSNS ISISISISININNIS
o4 e et o= vt =4 e =4

O .ALZ> (wrC >
(D D (D (D (O (D WD LD O WO D (O
SREEEZNOTvGN

od vl od o=d o=l o=f =i w={

— e mme wme mmy mme wmt P Emm e wme =

N IWMIWEDe—~O®E J~™

&5%555555%%

W ot ot o=t o=t =t ol =

e'BSSgs!&Sra'037us!

f8.4<DLT\dIt|

=™+ M
OO NEOOOMMMM

MS%WIHQHlen

e UMW O X O

N OO NOSLN

& NESNNINER

311111111

1 842

~—mee-NC—=O> 00— T3
el rkel~Ealelololerdria

%%79123[4587
D ot vt ool o ot o

~-maoo@rax-- cax

DOONOLHOVNOLOODODOD

3
o
("]
@
Mwwmwuumummu

| 880 nul! 801 soh! 802 stx! €03 etx! BO4 eot! 8BS enqg! PBE ack! 887 bel!
1 910 bes ! @11 ht ! 912 nl ! @13 vt 1 P14 rp ! PlS cr ! 016 €0 ! 817 6l !

! 820 dle! €21 dcl! €22 dc2! 023 dc3! 824 dc4! €25 nak! 826 syn! 827 etb!

| 838 can! 031 em ! B32 sm' 833 esc!

FILES

/usr/pub/ascii

February 17, 1984

Page 1

ENVIRON(7)

NAME

MUNIX ENVIRON(7)

environ — user environment

DESCRIPTION

An array of strings called the "environment'’ is made available by exec(2)
when a process begins. By convention, these strings have the form
*‘name=value’. The following names are used by various commands:

PATH

HOME

The sequence of directory prefixes that sh(1), time(1), nice(1),
nohup(1), etc., apply in searching for a file known by an incom-
plete path name. The prefixes are separated by colons (:).
Login(1) sets PATH=:/usr/ucb:/bin:/usr/bin:/usr/local

Name of the user's login directory, set by login(1) from the pass-
word file passwd(5).

The kind of terminal for which output is to be prepared. This
information is used by commands, such as mm(1) or tplot(1G),
which may exploit special capabilities of that terminal.

Time zone information. The format is xxxnzzz where xxx is stan-
dard local time zone abbreviation, n is the difference in hours
from GMT. and zzz is the abbreviation for the daylight-saving local
time zone, if any; for example, ESTSEDT.

Further names may be placed in the environment by the export com-
mand and "'name=value’ arguments in sh(1), or by ezec(2). It is unwise
to conflict with certain shell variables that are frequently exported by
.profile files: MAIL, PS1, PS2, IFS.

SEE ALSO

env(1), login(1), sh(1), exec(2), getenv(3C), profile(5), term(7).

Page 1

February 17, 1984

EQNCHAR(7) MUNIX EQNCHAR(7)

NAME
eqnchar — special character definitions for eqn and neqn

SYNOPSIS
eqn /usr/pub/eqnchar [files] | troff [options]

neqn /usr/pub/eqnchar [files] | nroff [options]

DESCRIPTION :
Egqnchar contains troff(1) and nroff(1) character definitions for con-
structing characters that are not available on the Wang Laboratories,
Inc. C/A/T phototypesetter. These definitions are primarily intended for
use with eqn(1) and neqn(1); egnchar contains definitions for the follow-
ing characters:

ciplus ® 1 [square .
citimes ® langle { circle o
wig ~ rangle > blot -
—wig o hbar Y bullet .
>wig 2 Ppd + prop =
<wig < <> . mpty ¢
=wig s <=> o member €
star ‘o I< 4 nomem £
bigstar » 1> 3 cup v
=dot : ang L cap n
orsign \/ rang - incl C
andsign /N 3dot subset c
=del A thy supset 2
oppA \7 guarter X Subset c
oppE e 3quarter X Supset 2
angstrom & degree °

FILES

/usr/pub/eqnchar
SEE ALSO

eqn(1), trofI(1).

Page 1 February 17, 1984

FCNTL(7) MUNIX

FCNTL(?7)

NAME
fcntl — file control options
SYNOPSIS
finclude <fcntl.h>
DESCRIPTION
The fentl(2) function provides for control over open files. This include
file describes requests and arguments to fcntl and open(2).
/= Flag vatues accessible to open(2) and fentl(2) =/
/= (The first three can only bs sat by open) &/
Jdetine O_RDONLY 8
f#oetine O_LRONLY 1
fcefine O_FOIR 2
foefine O_NDELAY B4 /s Non-blocking 1/0 &/
foetine O_APPEND g18 /s sppend (urltes guaranteed at the end) »/
/= Flag values accessible only to open(2) =/
foetine O_CREAT 80488 /= open With flle create (uses third open arg)s/
foetine O_TRUNC £1888 /s open uwith truncation =/
foefine O_EXCL @2808 /= exclusive open &/
/% fentl (2) requests =/
foefine F_DUPFD 8 /s Duplicate fllides =/
fcdetine F_GETFD 1 /s Get fildes flage »/
fdetine F_SETFD 2 /% Set fildes flegs &/
fdefine F_GETFL 3 /= Get file flage »/
Jdetine F_SETFL 4 /% Set file flags &/
SEE ALSO
fentl(2), open(2).
Page 1

February 17, 1984

FONTNAMES(7) MUNIX 2.0 (QU88000) FONTNAMES(7)

NAME
font names — table of font names in short and long formats
SYNOPSIS
cat /usr/lib/fontinfo/kurz
DESCRIPTION
For the usage of fonts other than the default ones in troff (or ltroff or
vtroff resp.) the names of these fonts must be specified twice. The full
name (see below) is used to control the phototypesetter or the postpro-
cessor (lcat or veat). Troff itself needs the specification of the font
name in a short form for the selection of the corresponding font size
tables in a .fp -command.
long name short name | long name short name
apl ap h19 hn
basker.b bb hebrew hb
basker.i bi meteor.b mb
basker.r br meteor.i mi
bocklin bk meteor.r mr
bodoni.b ob mona mn
bodoni.i oi nonie.b nb
bodoni.r or nonie.i ni
chess ch nonie.r nr
clarendon cl oldenglish oe
cm.b cb Pip PP
cm.i ci playbill pb
cm.r cr script sc
countdown co shadow sh
cyrillic cy sign sg
delegate.b db stare.b sb
delegate.i di stare.i si
delegate.r dr stare.r sr
fix fx times.b tb
gacham.b gb times.i ti
gacham.i gi times.r tr
gacham.r gr times.s ts
graphics ef ugramma m
greek gk
FILES

/usr/lib/fontinfo/kurz

Peage 1 September 7, 1983

FONTS(7) MUNIX 2.0 (QU6B000) FONTS(7)

NAME
font list — table of available fonts and point sizes
DESCRIPTION
font available sizes
R 6 7. 8 9 10 11 12 14 16 18
20 22 24 28 36
B 6 7 8 9 10 11 12 14 16 18
20 22 24 28 36
1 6 7 8 9 10 11 12 14 16 18
20 22 24 28 36
S 6 7 8 9 10 11 12 14 16 18
20 22 24 28 36
apl 10

basker.r 12
basker.b 12

basker.i 12

bocklin 14 28

bodoni.r 10

bodoni.b 10

bodoni.i 10

chess 18

clarendon 14 18

cm.r 6 4 8 9 10 11 12
cmb 6 7 8 9 10 11 12
cm.i 6 7 8 9 10 11 12
countdown 22

cyrillic 12

delegate.r 12

delegate.b 12

delegate.i 12

fix 6 9 10 12 14
gacham.r 10

gacham.b 10

gacham.i 10

graphics 14

greek 10

hi19 10 -
hebrew 16 17 24 36

meteor.r 8 10 12

meteor.b 8 10 12

meteor.i 8 10

mona 24

nonie.r 8 10 12

nonie.b 8 10 12

nonie.i 8 10 12

Page 1 September 7, 1983

FONTS(7)

oldenglish
pip
playbill
script
shadow
sign
stare.r

stare.b
stare.i

times.r
times.b
times.i

times.s

ugramma

September 7, 1983

8

16
10
18
16
22

8
8
8

10
10
10
10

10

MUNIX 2.0 (QUB8000)

18

10
10
10

11
11
11

12
12
12

14
14
14

16
16
16

FONTS(7)

Page 2

GREEK(7) MUNIX GREEK(7)

NAME

greek — graphics for the extended TTY-37 type-box
SYNOPSIS

cat /usr/pub/greek [| greek ~Tterminal]
DESCRIPTION

Greek gives the mapping from ASCII to the “shift-out’ graphics in effect
between SO and SI on TELETYPE® Model 37 terminals equipped with a 128-
character type-box. These are the default greek characters produced by
nroff(1). The filters of greek(1) attempt to print them on various other
terminals. The file contains:

lowercase uppercase

alpha a A omega o C || DELTA A W
beta B B | partial o] GAMMA r G
delta 6 D | phi ¢ U [[LAMBDA A E
epsilon e S |pi n J || OMEGA N Z
eta n N | psi v V || PHI ¢ F
gamma N\ rho p K | Pl I1 P
integral f ~ | sigma o Y || PSI ¥ H
lambda A L tau T 1 SIGMA ¥ R
mu 2 M | theta ¥ O || THETA e T
nabla v [xi ¢ X
not - zeta ¢ Q
nu v @

FILES

/usr/pub/greek
SEE ALSO

300(1), 4014(1), 450(1), greek(1), hp(1), tc(1), trofI(1).

Page 1 February 17, 1984

HIER(7)

NAMNE

DESCRIPTION

Page 1

MUNIX HIER(7)

hier — file system hierarchy

The following outline gives a quick tour through a representative direc-
tory hierarchy.

/

root

/dev/ devices (4)

/bin/

/1libs

/etc/

console

main console, termio(4)
tty®* terminals, termio(4)
lbp laser beam printer lbp(4)
hk* disks, hk, hk(4)
rhk®* raw disks, Ak, Ak(4)

Jt.ility programs, cf /usr/bin/ (1)
as assembler
cc C compiler executive, cf /lib/c[012]

object libraries and other stufl, ¢f /usr/lib/
libc.a system calls, standard 170, etc. (2,3,3S)
libffp.a

math routines fast floating point (3M)
libieee.a

math routines ieee floating point (3M)
libplot.a

plotting routines, plot(3X)

cpp ¢ pre-processor
c[012]
passes of cc(1)

essential data and dangerous maintenance utilities
passwd

password file, passwd(5)
group group file, group(5)
motd message of the day, login(1)
mnttab

mounted file table, mnttad(5)
gettydefs

terminal characteristics, gettydefs(5)
inittab

list of initial processes, inittad(5)
getty part of login, getty(8)
init the father of all processes, init(8)

rc shell program to bring the system up
cron the clock daemon, cron(8)
mount

mount(8)

wall wall(8)

February 17, 1984

HIER(7) MUNIX HIER(7)

/tmp/
temporary files, usually on a fast device, ¢f /usr/tmp/
e* used by ed(1)
ctm* used by cc(1)

/usr/ general-pupose directory, usually a mounted file system
adm/ administrative information
wtmp login history, utmp(5)
pacct process accounting, acct(8)
/usr /bin
utility programs, to keep /bin/ small
tmp/ temporaries, to keep /tmp/ small
dict/ word lists, etc.
words principal word list, used by look(1)
spellhist
history file for spell(1)
games/
bj blackjack
hangman
quiz.k/
what quiz(6) knows
index category index
africa countries'and capitals

include/ -
standard ginclude files
a.out.h
object file layout, a.out(5)
stdio.h
standard 170, stdio(3S)
math.h
- (3M)

:s;'s/ system-defined layouts
acct.h process accounts, acct(5)
buf.h internal system buflers

lib/ object libraries and stufl, to keep /lib/ small
lint[12] :
subprocesses for lint(1)
llib-lc dummy declarations for /lib/libc.a, used by lint(1)
llib-lm
dummy declarations for /lib/libc.m
atrun scheduler for at(1)
struct/
passes of ‘struct(1)
tmac/
macros for troff(1)
libF77ffp.a
Fortran runtime support

February 17, 1984 Page 2

HIER(7) MUNIX HIER(7)

libl77{fp.a
Fortran 1/0
tmac.an
_ macros for man(7)
tmac.s
macros for ms(7)

fonts i.t;nts for troff(1)
R Times Roman
B Times Bold

uucp/
programs and data for uucp(1C)
L.sys remote system names and numbers
uucico
the real copy program

suftab
table of suffixes for hyphenation, used by troff(1)
units conversion tables for units(1)
eign list of English words to be ignored by ptz(1)
/usr/ man/
volume 1 of this manual, man(1)
man0/
general
intro introduction to volume 1, ms(?7) format
XX template for manual page
manl/
chapter 1
as.1
mount.lm

catl/ preprinted pages for manl/
as.1
mount.lm

spool/
delayed execution files
at/ used by at(1)
lpd/ used by lpr(1)
lock present when line printer is active
cf* copy of file to be printed, if necessary
df* daemon control file, {pd(8)
tfe transient control file, while lpr is working
uucp/
work files and staging area for uucp(1C)
LOGFILE
summary log
LOG.* log file for one transaction
mail/ mailboxes for mail(1)
uid mail file for user uid

Page 3 February 17, 1984

HIER(7)

wd

doc/

sys/
SEE ALSO

MUNIX HIER(7)

uid.lock
lock file while uid is receiving mail

-initial working directory of a user, typically wd is the user's

login name
.profile
set environment for sh(1), environ(7)
calendar
user's datebook for calendar(1)
papers, mostly in volume 2 of this manual, typically in
ms(7) format
as/ assembler manual
c C manual

unix system configuration

1s(1), ncheck(8), find(1), grep(1)

BUGS

The position of files is subject to change without notice.

February 17, 1984

Page 4

MAN(7) MUNIX MAN(7)

NAME

man — macros for formatting entries in this manual

SYNOPSIS

nrofl —man files
troff —man [~rs1] files

DESCRIPTION

Page 1

These troff(1) macros are used to lay out the format of the entries of this
manual. A skeleton entry may be found in the file
/usr/man/man0/skeleton. These macros are used by the man(1) com-
mand.

The default page size is 8.5"x11", with a 6.5"x10" text area; the —rsi1
option reduces these dimensions to 6"'x9"” and 4.75"x8.375", respectively;
this option (which is not effective in nroff(1)) also reduces the default
type size from 10-point to 9-point, and the vertical line spacing from 12-
point to 10-point. The —rV2 option may be used to set certain parame-
ters to values appropriate for certain Versatec printers: it sets the line
length to 82 characters, the page length to 84 lines, and it inhibits
underlining; this option should not be confused with the —Tvp option of
the man(1) command, which is available at some UNIX sites.

Any text argument below may be one to six “words'. Double quotes (")
may be used to include blanks in a “word”. If text is empty, the special
treatment is applied to the next line that contains text to be printed.
For example, I may be used to italicize a whole line, or SM followed by B
to make small bold text. By default, hyphenation is turned off for nroff,
but remains on for troff.

Type font and size are reset to default values before each paragraph and .
after processing font- and size-setting macros, e.g., L .RB, SM. Tab stops
are neither used nor set by any macro except DT and .TH

Default units for indents in are ens. When in is omitted, the previous
indent is used. This remembered indent is set to its default value (7.2
ens in troff, 5 ens in nroff—this corresponds to 0.5" in the default page
size) by .TH. .PP. and .RS. and restored by RE

.THtscn Set the title and entry heading; ¢ is the title, s is the section
number, c is extra commentary, e.g., “local”, n is new manual
name. Invokes .DT (see below).

.SH tezxt Place subhead tezt, e.g., SYNOPSIS, here.

.SS text Place sub-subhead tezt, e.g., Options, here.

.B text Make tezt bold.

Jtext Make tezxt italic. _

.SM text Make tezt 1 point smaller than default point size.

Rlabd Concatenate roman a with italic b, and alternate these two

fonts for up to six arguments. Similar macros alternate
between any two of roman, italic, and bold:
JR .RB BR JIB Bl

.P Begin a paragraph with normal font, point size, and indent.
.PP is a synonym for P.

HP in Begin paragraph with hanging indent.

TPin Begin indented paragraph with hanging tag. The next line

that contains text to be printed is taken as the tag. If the tag

February 17, 1984

MAN(7) MUNIX MAN(7)

does not fit, it is printed on a separate line.

JPtin Same as .TP in with tag ¢; often used to get an indented para-
graph without a tag.

RSin Increase relative indent (initially zero). Indent all output an
extra in units from the current left margin.

REk Return to the kth relative indent level (initially, k=1; k=0 is

equivalent to k=1); if & is omitted, return to the most recent
lower indent level.

PMm Produces proprietary markings; where m may be P for
PRIVATE. N for ROTICE. BP for BELL LABORATORIES PROPRIETARY,
or BR for BELL LABORATORIES RESTRICTED.

DT Restore default tab settings (every 7.2 ens in troff, 5 ens in
nroff).
PDv Set the interparagraph distance to v vertical spaces. If v is

omitted, set the interparagraph distance to the default value
(0.4vin troff, 1v in nroff).

The following strings are defined:

\ *R ® in troff (1), (Reg.) in nroff(1).
\ *S Change to default type size.
The following number registers are given default values by .TH:
IN Left margin indent relative to subheads (default is 7.2 ens in
troff, 5 ens in nroff).
LL Line length including IN.
PD Current interparagraph distance.
CAVEATS)

FILES

In addition to the macros, strings, and number registers mentioned
above, there are defined a number of internal macros, strings, and
number registers. Except for names predefined by troff(1) and number
registers d, m, and y, all such internal names are of the form X4, where X
is one of), }, and }, and 4 stands for any alphanumeric character.

If a manual entry needs to be preprocessed by cw(1), eqn(1) (or negn),
and/or tbl(1), it must begin with a special line (described in man(1)),
causing the man command to invoke the appropriate preprocessor(s).

The programs that prepare the Table of Contents and the Permuted
Index for this Manual assume the NAME section of each entry consists of
a single line of input that has the following format:

name[, name, name ...] \ = explanatory text

The macro package increases the inter-word spaces (to eliminate ambi-
guity) in the SYNOPSIS section of each entry.

The macro package itself uses only the roman font (so that one can
replace, for example, the bold font by the constant-width font—see
cw(1)). Of course, if the input text of an entry contains requests for
other fonts (e.g., 1 RB, \ flI), the corresponding fonts must be mounted.

/usr/lib/tmac/tmac.an
/usr/lib/macros/cmp.[nt].[dt].an
/usr/lib/macros/ucmp.[nt].an

February 17, 1984 Page 2

MAN(7) MUNIX MAN(7)

/usr/man/man0/skeleton

SEE ALSO
man(1), nroff(1), trofI(1).

BUGS
If the argument to .TH contains any blanks and is not enclosed by double
quotes ("), there will be bird-dropping-like things on the output.

Page 3 February 17, 1984

ME(7) MUNIX ME(7)

NAME
me — macros {or formatting papers

SYNOPSIS
nroff —me [options] file ...
troff —me [options] file ...

DESCRIPTION \ .
This package of nroff and troff macro definitions provides a canned for-
matting facility for technical papers in various formats. When producing
2-column output on a terminal, filter the output through col(1).

The macro requests are defined below. Many nroff and troff requests are
unsafe in conjunction with this package, however these requests may be
used with impunity after the first .pp:

.bp begin new page

.br break output line here

.spn insert n spacing lines

Asn (line spacing) n=1 single, n=2 double space
.na no alignment of right margin

.cen center next n lines

.uln underline next n lines

.sz +n add n to point size

Output of the egn, negn, refer, and tbl(1) preprocessors for equations
and tables is acceptable as input.
FILES
/usr/lib/tmac/tmac.e
/usr/lib/me/*

SEE ALSO
eqn(1), trofi(1), refer(1), tbl(1)
—me Reference Manual, Eric P. Allman
Writing Papers with Nroff Using —me
REQUESTS
In the following list, initialization refers to the first .pp, .lp, .ip, .np. .sh, or

.uh macro. This list is incomplete; see The —me Reference Manual for
interesting details.

Request Initial Cause Explanation
Value Break

Ac - yes Begin centered block
(d - no Begin delayed text
f - no Begin footnote

1 - yes Begin list

Aq - yes Begin major quote
Ax =z - no Begin indexed item in index =
(z - no Begin floating keep
Je - yes End centered block
.)d - yes End delayed text

) - yes End footnote

) - yes End list

)q - yes End major quote

Jx - yes End index item

Page 1 February 17, 1984

+c T

1c
.2¢c
.EN

EQzvy

.TE

.TH
TSz
.ac AN

bz
.ba +n

.be

.biz

bx =z

ef ‘z'y’z
.eh‘zy'z’
fo‘z'y’2’
.hx

.he ‘z’y’2’
.hl

iz
ipzy

Ip
Jo

.np

.of ‘z’y’z’
.oh ‘z’y’2’
.pd

-PP

.r

.re

.sc

.shnz

.sk

no
no
no

vass
sres

0srse

voss

no
no

no

yes
no

yes

yes

yes

yes
yes

yes
yes
yes
no

no
yes

yes
no
no
no
no

"'no

no

no

yes
no
yes

yes
no

yes
no
no
yes
yes
no
no
no

yes

no

February 17, 1984

MUNIX ME(7)

End floating keep

Define paper section. m defines the part of the paper,
and can be C (chapter), A (appendix), P (preliminary,
e.g., abstract, table of contents, etc.), B (bibliography),
RC (chapters renumbered from page one each chapter),
or RA (appendix renumbered from page one).

Begin chapter (or appendix, etc., as set by .++). Tis the
chapter title.

One column format on a new page.

Two column format.

Space after equation produced by egn or negn.

Precede equation; break out and add space. Equation
number is y. The optional argument z may be / to
indent equation (default), L to left-adjust the equation,
or Cto center the equation.

End table.

End heading section of table.

Begin table; if z is A table has repeated heading.

Set up for ACM style output. Ais the Author's name(s),
N is the total number of pages. Must be given before
the first initialization.

Print z in boldface; if no argument switch to boldface.
Augments the base indent by n. This indent is used to
set the indent on regular text (like paragraphs).

Begin new column

Print z in bold italics (nofill only)

Print z in a box (nofill only).

Set even footertox y 2z

Set even headertox y 2z

Set footertox y 2z

Supress headers and footers on next page.

Set headertox y 2z

Draw a horizontal line

Italicize z; if z missing, italic text follows.

Start indented paragraph, with hanging tag z. Indenta-
tion is y ens (default 5).

Start left-blocked paragraph.

Read in a file of local macros of the form .*z. Must be
given before initialization.

Start numbered paragraph.

Set odd footertox y 2z

Set odd headertox y z

Print delayed text.

Begin paragraph. First line indented.

Roman text follows.

Reset tabs to default values.

Read in a file of special characters and diacritical
marks. Must be given before initialization.

Section head follows, font automatically bold. n is level
of section, z is title of section.

Leave the next page blank. Only one page is remem-
bered ahead.

Page 2

ME(7)

.Sz +n
.th

.ip
uz

.uh
Xp Z

Page 3

10p
no

no

no
no

yes
no
yes
no

MUNIX ' ME(7)

Augment the point size by n points.

Produce the paper in thesis format. Must be given
before initialization.

Begin title page.

Underline argument (even in troff). (Nofill only).

Like .sh but unnumbered.

Print index 2.

February 17, 1984

MM(7) MUNIX MM(7)

NAME mm — the MM macro package for formatting documents
SYNOPSIS

mm [options] [files)

nroff —mm [options] [files]

nrofl —cm [options] [files]

mmt [options] [files]
troff —mm [options] [files]
troff —cm [options] [files]

DESCRIPTION

This package provides a formatting capability for a very wide variety of
documents. It is the standard package used by the BTL typing pools and
documentation centers. The manner in which a document is typed in
and edited is essentially independent of whether the document is to be
eventually formatted at a terminal or is to be phototypeset. See the
references below for further details.

The —mm option causes nroff(1) and troff(1) to use the non-compacted
version of the macro package, while the —cm option results in the use of
the compacted version, thus speeding up the process of loading the
macro package.

FILES
/usr/lib/tmac/tmac.m pointer to the non-compacted ver-
sion of the package
/usr/lib/macros/mm[nt] non-compacted version of the pack-
age
/usr/lib/macros/cmp.[nt].[dt].m compacted version of the package
/usr/lib/macros/ucmp.[nt].m initializers for the compacted version
of the package
SEE ALSO

mm(1), mmt(1), troff(1).
MM—-Memorandum Macros by D. W. Smith and J. R. Mashey.
Typing Documents with MM by D. W. Smith and E. M. Piskorik.

Page 1 February 17, 1984

MOSD(7) MUNIX MOSD(7)

NAME
mosd — the OSDD adapter macro package for formatting documents

SYNOPSIS
osdd [options] [files]

mm —mosd [options] [files]
nroff —mm —mosd [options] [files]
nroff —cm —mosd [options] [files]

mmt —mosd [options] [files]
troff ~mm —mosd [options] [files]
troff —ecm —mosd [options] [files]

DESCRIPTION

The OSDD adapter macro package is a tool used in conjunction with the
MM macro package to prepare Operations Systems Deliverable Documen-
tation. Many of the OSDD Standards are different than the default format
provided by MM. The OSDD adapter package sets the appropriate MM
options for automatic production of the OSDD Standards. The 0SDD
adapter package also generates the correct 0SDD page headers and
footers, heading styles, Table of Contents format, etc.

0SDD document (input) files are prepared with the MM macros. Additional
information which must be given at the beginning of the document file is
specified by the following string definitions:

.ds H1 document-number

.ds H2 section-number

.ds H3 issue-number
.ds H4 date
.ds HS5 rating

The document-number should be of the standard 10 character format.
The words ‘'Section’” and *Issue’ should not be included in the string
definitions; they will be supplied automatically when the document is
printed. For example:

.ds H1 OPA-1P135-01

.dsH2 4

.ds H3 2
automatically produces

OPA-1P135-01

Section 4

Issue 2
as the document page header. Quotation marks are not used in string
definitions.

If certain information is not to be included in a page header, then the
string is defined as null; e.g.,
.ds H2

means that there is no section-number.

The 0SDD Standards require that the Table of Contents be numbered
beginning with Page 1. By default, the first page of text will be numbered
Page 2. 1f the Table of Contents has inore than one page, for example n,

Page 1 February 17, 1984

MOSD(7) MUNIX MOSD(7)

then either —rPn+1 must be included as a command line option or .nr P
n must be included in the document file. For example, if the Table of
Contents is four pages then use —rP5 on the command line or .nrP 4 in
the document file.

The 0SDD Standards require that certain information such as the docu-
ment rating appear on the Document /ndez or on the Table of Contents
page if there is no index. By default, it is assumed that an index has
been prepared separately. If there is no index, the following must be
included in the document file:
.nrDi O

This will ensure that the necessary inforrmation is included on the Table
of Contents page.

The 0SDD Standards require that all numbered figures be placed at the
end of the document. The .Fg macro is used to produce full page figures.
This macro produces a blank page with the appropriate header, footer,
and figure caption. Insertion of the actual figure on the page is a manual
operation. The macro usage is
.Fg page-count "figure caption”

where page-count is the number of pages required for a multi-page figure
(default 1 page).

Figure captions are produced by the .Fg macro using the .BS/.BE macros.
Thus the .BS/.BE macros are also not available for users. The .Fg macro
cannot be used within the document unless the final .Fg in a series of
figures is followed by a .SK macro to force out the last figure page.

The Table of Contents for OSDD documents (see Figure 4 in Section 4.1 of
the OSDD Standards) is produced with:

.Te

System Type

System Name .

Document Type

.Td
The .Tec/.Td macros are used instead of the .TC macro from MM.

By default, the adapter package causes the NOTICE disclosure statement
to be printed. The .PM macro may be used to suppress the NOTICE or to
replace it with the PRIVATE disclosure statement as follows:

.PM none printed
.PMP PRIVATE printed
.PMN NOTICE printed (default)

The .P macro is used for paragraphs. The Np register is set automatically
to indicate the paragraph numbering style. It is very important that the
.P macro be used correctly. All paragraphs (including those immediately
following a .H macro) must use a .P macro. Unless there is a .P macro,
there will not be a number generated for the paragraph. Similarly, the P
macro should not be used for text which is not a paragraph. The .SP
macro may be appropriate for these cases, e.g., for ""paragraphs’ within
a list item.

The page header format is produced automatically in accordance with
the OSDD Standards. The OSDD Adapter macro package uses the .TP
macro for this purpose. Therefore the .TP macro normally available in

February 17, 1984 Page 2

MOSD(7) MUNIX MOSD(7)

MM is not available for users.

FILES
/usr/lib/tmac/tmac.osd

SEE ALSO
mm(1), mmt(1), nroff(1), troff(1), mm(7).
MM—Memorandum Macros by D. W. Smith and J. R. Mashey.
Operations Systems Deliverable Documentation Standards, June 1980.

Page 3 February 17, 1984

MPTX(7) MUNIX MPTX(7)

NAME
mptx — the macro package for formatting a permuted index

SYNOPSIS
nroff —mptx [options] [files]
troff —mptx [options] [files]

DESCRIPTION
This package provides a definition for the xx macro used for formatting
a permuted index as produced by ptz(1). This package does not provide
any other formatting capabilities such as headers and footers. If these
or other capabilities are required, the mptr macro package may be used

in conjuction with the MM macro package. In this case, the —mptx option
must be invoked after the —mm call. For example:

nroff —cm —mptx file

or
mm —mptx file
FILES
/usr/lib/tmac/tmac.ptx pointer to the non-compacted version of the
package
/usr/lib/macros/ptx non-compacted version of the package
SEE ALSO

mm(1), nroff(1), ptx(1), troff(1), mm(7).

Page 1 February 17, 1984

NS(7) MUNIX MS(7)

NAME
ms — macros for formatting manuscripts

SYNOPSIS
nroff —ms [options] file ...
troff —ms [options] file ...
DESCRIPTION
This package of nroff and troff macro definitions provides a canned for-

matting facility for technical papers in various formats. When producing
2-column output on a terminal, filter the output through col(1).

The macro requests are defined below. Many nroff and troff requests are
unsafe in conjunction with this package, however these requests may be
used with impunity after the first .PP:

.bp Dbegin new page

.br break output line here

.sp n insert n spacing lines

dsn (line spacing) n=1 single, n=2 double space
.na no alignment of right margin

Output of the egn, negn, refer, and tbl(1) preprocessors for equations
and tables is acceptable as input.

FILES
/usr/lib/tmac/tmac.s

SEE ALSO
eqn(1), troff(1), refer(1), tbl(1)

REQUESTS
Request Initial Cause Explanation
Value Break

.1C yes yes One column format on a new page.

.2C no yes Two column format.

.AB no yes Begin abstract.

.AE - yes End abstract.

.Al no yes Author's institution follows. Suppressed in TM.

AT no yes Print ‘Attached’ and turn off line filling.

AUz vy no yes Author's name follows. z is location and y is extension,

- ignored except in TM.

Bz no no Print z in boldface; if no argument switch to boldface.

.B1 no yes Begin text to be enclosed in a box.

.B2 no yes End text to be boxed . print it.

.BT date no Bottom title, automatically invoked at foot of page. May
be redefined.

BX =z no no Print zin a box.

CS =z... - yes Cover sheet info if TM format, suppressed otherwise.

Arguments are number of text pages, other pages, total =
pages, figures, tables, references.

.CT no yes Print ‘Copies to' and enter no-fill mode.

DAz nrof no ‘Date line’ at bottomn of page is . Default is today.

.DE - yes End displayed text. Implies KE.

DS z no yes Start of displayed text, to appear verbatim line-by-line.

z=] for indented display (default), z=L for left-justified
on the page, =C for centered, z=B for make left-justified

Page 1 February 17, 1984

NS(7)

.EG

.EN
EQzy

.FE
FS

HO
J=z
IH
IM

JPzy

.KS
LG

.MF

.MH
.MR

.ND date

NHn

.NL
.0K
.PP

PY
.QE

.QS

.RE
.RP

.RS

.SG =

no

no

no

no
yes

troff

no

yes
yes

yes
no

no
no
no
no
yes
yes
yes
yes

no
yes

no

no

yes

no
yes
yes

no
yes
yes
yes
no

yes

yes

yes

February 17, 1984

MUNIX MS(7)

block, then center whole block. Implies .KS.

Print document in BTL format for ‘Engineer's Notes.’ Must
be first.

Space after equation produced by egn or negn.

Precede equation; break out and add space. Equation
number is y. The optional argument £ may be /to indent
equation (default), L to left-adjust the equation, or C to
center the equation.

End footnote.

Start footnote. The note will be moved to the bottom of
the page.

‘Bell Laboratories, Holmdel, New Jersey 07733'.

Italicize z; if £ missing, italic text follows. -
‘Bell Laboratories, Naperville, Illinois 60540*

Print document in BTL format for an internal memoran-
dum. Must be first.

Start indented paragraph, with hanging tag z. Indenta-
tion is ¥ ens (default 5).

End keep. Put kept text on next page if not enough
room.

Start floating keep. If the kept text must be moved to
the next page, float later text back to this page.

Start keeping following text.

Make letters larger.

Start left-blocked paragraph.

Print document in BTL format for ‘Memorandum for File.’
Must be first.

‘Bell Laboratories, Murray Hill, New Jersey 07974".

Print document in BTL format for ‘Memorandum for

Record.’ Must be first.

Use date supplied (if any) only in special BTL format posi-
tions; omit from page footer.

Same as .SH, with section number supplied automatically.
Numbers are multilevel, like 1.2.3, where n tells what level
is wanted (default is 1).

Make letters normal size.

‘Other keywords' for TM cover sheet follow.

Begin paragraph. First line indented.

Page title, automatically invoked at top of page. May be
redefined.

‘Bell Laboratories, Piscataway, New Jersey 08854’

End quoted (indented and shorter) material.

Begin single paragraph which is indented and shorter.
Begin quoted (indented and shorter) material.

Roman text follows.

End relative indent level.

Cover sheet and first page for released paper. Must pre-
cede other requests.

Start level of relative indentation. Following .IP's are
measured from current indentation.

Insert signature(s) of author(s), ignored except in TM. z
is the reference line (initials of author and typist).

Page 2

TRz
IS =
.UL z

.WH

Page 3

_yes

no
no

yes
yes
yes

yes
no
no

no

MUNIX MS(7)

Section head follows, font automatically bold.

Make letters smallcr.

Set tabs in ens. Defaultis 51015 ...

End table.

End heading section of table.

Title follows.

Print document in BTL technical memorandum format.
Arguments are TM number, (quoted list of) case
number(s), and file number. Must precede other
requests.

Print in BTL technical report format; report number is z.
Must be first.

Begin table; if z is Htable has repeated heading.
Underline argument (even in troff).

‘UNIX’; first time used, add footnote ‘UNIX is a trademark
of Bell Laboratories.’

‘Bell Laboratories, Whippany, New Jersey 07981".

February 17, 1984

MV(7) MUNIX MY(7)

NAME _
mv — a macro package for making view graphs

SYNOPSIS
mvt [options] [files]
troff —mv [options] [files]

DESCRIPTION

This package provides an easy-to-use facility for making view graphs and
projection slides in a variety of formats. A dozen or so macros are pro-
vided that accomplish most of the formatting tasks needed in making
transparencies. All of the facilities of troff(1), eqn(1), and tbl(1) are
available for more difficult tasks. The output can be previewed on most
terminals, and, in particular, on the Tektronix 4014 and on the Versatec
printer. See the reference below for further details.

FILES
/usr/lib/tmac/tmac.v

SEE ALSO
eqn(1), mvt(1), tbl(1), trofl(1).
A Macro Package for View Graphs and Slides by T. A. Dolotta and
D. W. Smith (in preparation).

Page 1 February 17, 1984

REGEXP(7)

NAME

MUNIX REGEXP (7)

regexp — regular expression compile and match routines

SYNOPSIS

f§define INIT <declarations>

f§define GETC() <getc code>

f#define PEEKC() <peekc code>
f#define UNGETC(c) <ungetc code>
f§define RETURN(pointer) <return code>
f#define ERROR(val) <error code>

finclude <regexp.h>

char *compile(instring, expbuf, endbuf, eof)
char ¢instring, *expbuf, *endbuf;

int step(string, expbuf)

char e*string, *expbuf;

DESCRIPTION

This page describes general purpose regular expression matching rou-
tines in the form of ed(1), defined in /usr/include/regexp.h. Programs
such as ed(1), sed(1), grep(1), bs(1), expr(1), etc., which perform regular
expression matching use this source file. In this way, only this file need
be changed to maintain regular expression compatibility.

The interface to this file is unpleasantly complex. Programs that include
this file must have the following five macros declared before the
“#include <regexp.h>" statement. These macros are used by the compile

routine.
GETC()

PEEKC()

UNGETC(c)

RETURN(pointer)

ERROR(vat)

Page 1

Return the value of the next character in the regular
expression pattern. Successive calls to GETC() should
return successive characters of the regular expres-
sion.

Return the next character in the regular expression.
Successive calls to PEEKC() should return the same
character (which should also be the next character
returned by GETC()).

Cause the argument c to be returned by the next call
to GETC() (and PEEKC()). No more that one character
of pushback is ever needed and this character is
guaranteed to be the last character read by GETC().
The value of the macro UNGETC(c) is always ignored.

This macro is used on normal exit of the compile rou-
tine. The value of the argument pointer is a pointer to
the character after the last character of the compiled
regular expression. This is useful to programs which
have memory allocation to manage.

This is the abnormal return from the compile routine.
The argument val is an error number (see table below
for meanings). This call should never return.

February 17, 1984

REGEXP (?) MUNIX REGEXP (7)

ERROR MEANING

11 Range endpoint too large.

16 Bad number.

25 *\ digit" out of range.

36 lllegal or missing delimiter.

41 No remembered search string.

42 \ (\) imbalance.

43 Too many \ (.

44 More than 2 numbers given in \ { \}.
45 { expected after \.

46 First number exceeds second in \ §{ \|.
49 [] imbalance.

50 Regular expression overflow.

The syntax of the compile routine is as follows:
compile(instring, expbuf, endbuf, eof)

The first parameter instring is never used explicitly by the compile rou-
tine but is useful for programs that pass down different pointers to input
characters. It is sometimes used in the INIT declaration (see below). Pro-
grams which call functions to input characters or have characters in an
external array can pass down a value of ((char ¢) 0) for this parameter.

The next parameter expbuf is a character pointer. It points to the place
where the compiled regular expression will be placed.

The parameter endbuf is one more that the highest address that the
compiled regular expression may be placed. If the compiled expression
cannot fit in (endbuf—ezpbuf) bytes, a call to ERROR(50) is made.

The parameter eof is the character which marks the end of the regular
expression. For example, in ed(1), this character is usually a /.

Each programs that includes this file must have a fdefine statement for
INIT. This definition will be placed right after the declaration for the
function compile and the opening curly brace ({). It is used for depen-
dent declarations and initializations. Most often it is used to set a regis-
ter variable to point the beginning of the regular expression so that this
register variable can be used in the declarations for GETC(). PEEKC() and
UNGETC(). Otherwise it can be used to declare external variables that
might be used by GETC(), PEEKC() and UNGETC(). See the example below ol
the declarations taken from grep(1).

There are other functions in this file which perform actual regular
expression matching, one of which is the function step. The call to step
is as follows:

step(string, expbuf)

The first parameter to step is a pointer to a string of characters to be
checked for a match. This string should be null terminated.

The second parameter expbuf is the compiled regular expression which
was obtained by a call of the function compile..

The function step returns one, if the given string matches the regular
expression, and zero if the expressions do not match. If there is a
match, two external character pointers are set as a side eflect to the call

February 17, 1984 Page 2

REGEXP(7) MUNIX REGEXP(7)

to step. The variable set in step is locl. This is a pointer to the first
character that matched the regular expression. The variable loc2, which
is set by the function advance, points the character after the last char-
acter that matches the regular expression. Thus if the regular expres-
sion matches the entire line, locl will point to the first character of
string and loc2 will point to the null at the end of string.

Step uses the external variable circf which is set by compile if the regu-
lar expression begins with ~. If this is set then step will only try to match
the regular expression to the beginning of the string. If more than one
regular expression is to be compiled before the the first is executed the
value of circf should be saved for each compiled expression and circf
should be set to that saved value before each call to step.

The function advance is called from step with the same arguments as
step. The purpose of step is to step through the string argument and
call advance until advance returns a one indicating a match or until the
end of string is reached. If one wants to constrain string to the begin-
ning of the line in all cases, step need not be called, simply call advance.

When advance encounters a ® or \{ \} sequence in the regular expres-
sion it will advance its pointer to the string to be matched as far as pos-
sible and will recursively call itself trying to match the rest of the string
to the rest of the regular expression. As long as there is no match,
advance will back up along the string until it finds &8 match or reaches
the point in the string that initially matched the * or \'{ \}. It is some-
times desirable to stop this backing up before the initial point in the
string is reached. If the external character pointer locs is equal to the
point in the string at sometime during the backing up process, advance
will break out of the loop that backs up and will return zero. This is used
be ed(1) and sed(1) for substitutions done globally (not just the first
occurrence, but the whole line) so, for example, expressions like s/y*//g
do not loop forever.

The routines ecmp and getrange are trivial and are called by the routines
previously mentioned.

EXAMPLES
The following is an example of how the regular expression macros and
calls look from grep(1):

#define INIT register char *sp = instring;
#define GETC() (esp++)
#define PEEKC() (*sp)

#define UNGETC(c) (—sp)
#define RETURN(c) return;
#define ERROR(c) regerr()

#include <regexp.h>
compile(*argv, expbuf, &expbuf[ESIZE], '\ 0");

if(step(linebuf, expbuf))
succeed();

FILES
/usr/include/regexp.h

Page 3 February 17, 1984

REGEXP(7) MUNIX REGEXP(7)

SEE ALSO
ed(1), grep(1), sed(1).
BUGS
The handling of circf is kludgy.
The routine ecmp is equivalent to the Standard 1/0 routine strncmp and
should be replaced by that routine.
The actual code is probably easier to understand than this manual page.

February 17, 1984 Page 4

STAT(7)

NAME

MUNIX

stat — data returned by stat system call
SYNOPSIS

finclude <sys/types.h>
f§include <ys/stat.h>

DESCRIPTION
The system calls stat and fstat(2) return data whose structure is defined
by this include file. The encoding of the field st_mode is defined in this

file also.
struct etat
dev_t st_devy
ino_t st_ino:
unsigned short st_mode;
short et_nlink;
short st_uid;
short et_gid;
dev_t st_rdev;
off_t wet_size;
time_t ot_atime;
time_t et_mtime;
time_t sot_ctime;
{:
Jefine S_IFHMT 8172888 /s
fcetfine S_IFDIR es4gese /=
fdefine S_IFCHR g22eee8 /x
etine S_IFBLK 8pceeed /s
foefine S_IFREG 8100088 /=»
fdefine S_IFIFO eslegse /x
foetine S_]SUID 8e8406e8 /=
fdefina S_ISCGID ege2e8a /s
Jdefine S_ISVTX 8281208 /s
foetine S_IREAD 200408 /=
Jefine S_IURITE eoea2es
Jdefine S_IEXEC esee1es /=
FILES
/usr/include/sys/types.h
/usr/include/sys/stat.h
SEE ALSO
stat(2).
Page 1

type of file &/
directory &/
character special &/
block special &/
regular =/
fifo &/
set user id on execution &/
set group id on execution =/
save suapped text even after use »/
read permiesion, ouner &/
/% urite permission, owner »/
exacute/search parmission, ouner s/

STAT(7)

February 17, 1984

TERM (7) MUNIX TERM(7)

NAME
term — conventional names
DESCRIPTION
These names are used by certain commands (e.g.. nrof(1), mm(1),

man(1), tabs(1)) and are maintained as part of the shell environment
(see sh(1), profile(5), and environ(7)) in the variable STERM:

1520 Datamedia 1520

1620 Diablo 1620 and others using the HyType Il printer
1620—-12 same, in 12-pitch mode

2621 Hewlett-Packard HP2621 series

2631 Hewlett-Packard 2631 line printer

2631—c Hewlett-Packard 2631 line printer - compressed mode
2631—e Hewlett-Packard 2631 line printer - expanded mode

2640 Hewlett-Packard HP2640 series

2645 Hewlett-Packard HP264n series (other than the 2640 series)
300 DAS1/DTC/GS1 300 and others using the HyType I printer
300—12 same, in 12-pitch mode

300s DASI/DTC/GSI 300s

382 DTC 382

300s—-12 same, in 12-pitch mode

3045 Datamedia 3045

33 TELETYPE® Model 33 KSR

37 TELETYPE Model 37 KSR

40-2 TELETYPE Model 40/2
4000A Trendata 4000A

4014 Tektronix 4014

43 TELETYPE Model 43 KSR

450 DASI 450 (same as Diablo 1620)

450—12 same, in 12-pitch mode

735 Texas Instruments TI735 and TI725

745 Texas Instruments TI745

dumb generic name for terminals that lack reverse
line-feed and other special escape sequences

hp Hewlett-Packard (same as 2645)

Ip generic name for a line printer

pesdsg C-ITOH 101 used in VI52 mode
tn1200 General Electric TermiNet 1200
tn300 General Electric TermiNet 300
tvio70 Televideo 970

vt100 Dec VT100 or compatible

Up to 8 characters, chosen from [~a-z0-9], make up a basic terminal
name. Terminal sub-models and operational modes are distinguished by
suffixes beginning with a —. Names should generally be based on original
vendors, rather than local distributors. A terminal acquired from one
vendor should not have more than one distinct basic name.

Commands whose behavior depends on the type of terminal should
accept arguments of the forrn —Tterm where term is one of the names
given above; if no such argument is present, such commands should
obtain the terminal type from the environment variable $STERM. which, in
turn, should contain term.

Page 1 February 17, 1984

TERM (7) MUNIX TERM(7)

SEE ALSO
mm(1), nrofI(1), tplot(1G), sh(1). stty(1), tabs(1), profile(5), environ(7).

BUGS
This is a small candle trying to illuminate a large, dark problem. Pro-
grams that ought to adhere to this nomenclature do so somewhat fitfully.

February 17, 1984 Page 2

TYPES(7)

NAME

MUNIX TYPES(7)

types — primitive system data types

SYNOPSIS

ginciude <ys/types.h>

DESCRIPTION

The data types defined in the include file are used in UNIX System code;
some data of these types are accessible to user code:
struct § Int r[1); | ® physadr;

typedef
typedef
typedef
typede?
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef
typedef

struct
long
char =
unsigned int
unsigned short
ushort

shor t

long

long

shor t

long

long

long

long {113 | = Iphyeadr;

dadar_t;
caddr_t;
uint;
ushort;
ino_t;
cnt_t;
time_t;
label_tI[9];

The form daddr_t is used for disk addresses except in an i-node on disk,
see fs(5). Times are encoded in seconds since 00:00:00 GMT, January 1,
1970. The major and minor parts of a device code specify kind and unit
number of a device and are installation-dependent. Offsets are meas-
ured in bytes from the beginning of a file. The label_t variables are used
to save the processor state while another process is running.

SEE ALSO
fs(5).

Page 1

February 17, 1984

INTRO(8) MUNIX INTRO(8)

NAME
intro — introduction to system maintenance procedures
DESCRIPTION
This section outlines certain procedures that will be of interest to those

charged with the task of system maintenance. Included are discussions

on such topics as boot procedures, recovery from crashes, file backups,
etc.

BUGS
No manual can take the place of good, solid experience.

Page 1 February 17, 1984

ACCT(8) MUNIX ACCT(8)

NAME

acctdisk, acctdusg, accton, acctwtmp — overview of accounting and mis-
cellaneous accounting commands

SYNOPSIS
/usr/lib/acct/acctdisk

susr/lib/acct/acctdusg [—u file] [—p file]
/usr/lib/acct/accton [file]
/usr/lib/acct/acctwtmp ‘‘reason”

DESCRIPTION
Accounting software is structured as a set of tools (consisting of both C
programs and shell procedures) that can be used to build accounting
systems. Acctsh(8) describes the set of shell procedures built on top of
the C programs.

Connect time accounting is handled by various programs that write
records into /usr/adm/utmp, as described in utmp(5). The programs
described in acctcon(B) convert this file into session and chargmg
records, which are then summarized by acctmerg(8).

Process accounting is performed by the UNIX System kernel. Upon termi-
nation of a process, one record per process is written to a file (normally
/usr/adm/pacct). The programs in acctprc(8) summarize this data for
charging purposes; acctcms(8) is used to summarize command usage.
Current process data may be examined using acctcom(1).

Process accounting and connect time accounting (or any accounting
records in the format described in acct(5)) can be merged and summar-
ized into total accounting records by acctmerg (see tacct format in
acct(5)). Prtacct (see acctsh(8)) is used to format any or all accounting
records.

Acctdisk reads lines that contain user ID, login name, and number of disk
blocks and converts them to total accounting records that can be
merged with other accounting records.

Acctdusg reads its standard input (usually from find / —print) and com-
putes disk resource consumption (including indirect blocks) by login. If
—u is given, records consisting of those file names for which acctdusg
charges no one are placed in file (a potential source for finding users
trying to avoid disk charges). If —p is given, file is the name of the pass-
word file. This option is not needed if the password file is /etc/passwd.

Accton alone turns process accounting oflf. If file is given, it must be the
name of an existing file, to which the kernel appends process accounting
records (see acct(2) and acct(5)).

Acctwtmp writes a utmp(5) record to its standard output. The record
contains the current time and a string of characters that describe the
reason. A record type of ACCOUNTING is assigned (see utmp(5)). Reason
must be a string of 11 or less characters, numbers, 8, or spaces. For
example, the following are suggestions for use in reboot and shutdown
procedures, respectively:

acctwitmp ‘uname* >> /etc/wimp
acctwtmp “file save” >> /etc/wtmp

Page 1 I:"ebruary 17,1984

ACCT(8) MUNIX ACCT(8)

FILES
/etc/passwd used for login name to user ID conversions
/usr/lib/acct holds all accounting commands listed in
sub-class 8 of this manual
/usr/adm/pacct current process accounting file
/etc/wtmp login/logofT history file
SEE ALSO

acctems(8), acctcom(l), acctcon(8), acctmerg(8), acctprc(8), acctsh(8).
fwitmp(8), runacct(8), acct(2), acct(5), utmp(5).
UNIX System Accounting

February 17, 1984 Page 2

ACCTCMS(8) MUNIX ACCTCMS(8)

NAME
acctems — command summary from per-process accounting records
SYNOPSIS
/usr/lib/acct/acctems [options] files
DESCRIPTION
Acctcms reads one or more flles, normally in the form described in
acct(5). It adds all records for processes that executed identically-
named commands, sorts them, and writes them to the standard output,
normally using an internal summary format. The options are:
—-a Print output in ASCII rather than in the internal summary format.
The output includes command name, number of times executed,
total kcore-minutes, total CPU minutes, total real minutes, mean
size (in K), mean CPU minutes per invocation, and ‘*hog factor”, as
in acctcom(1). Output is normally sorted by total kcore-minutes.
—c Sort by total CPU time, rather than total kcore-minutes.
—j Combine all commands invoked only once under **¢*¢other’.
-n Sort by number of command invocations.
-s Any file names encountered hereafter are already in internal sum-
mary format.
A typical sequence for performing daily command accounting and for
maintaining a running total is:
acctcms file ... >today
cp total previoustotal
acctems —s today previoustotal >total
acctcms —a —s today
SEE ALSO

acct(8), acctcom(l), acctcon(B8), acctmerg(8), acctprc(B8), acctsh(8),
fwtmp(8), runacct(8). acct(2), acct(5), utmp(5).

Page 1 February 17, 1984

ACCTCON(8)

NAME
acctcon

SYNOPSIS

MUNIX ACCTCON(8)

1, acctcon2 — connect-time accounting

/usr/lib/acct/accteonl [options]
/usr/lib/acct/acctcon2

DESCRIPTION

Acctconl converts a sequence of login/logoff records read from its stan-
dard input to a sequence of records, one per login session. Its input
should normally be redirected from /ete/wtmp. Its output is ASCIL giving

device,

user ID, login name, prime connect time (seconds), non-prime

connect time (seconds), session starting time (numeric), and starting
date and time. The options are:

-P
ot 4

—1 file

—o file

Print input only, showing line name, login name, and time (in
both numeric and date/time formats).

Acctconl maintains a list of lines on which users are logged in.
When it reaches the end of its input, it emits a session record for
each line that still appears to be active. It normally assumes
that its input is a current file, so that it uses the current time as
the ending time for each session still in progress. The —t flag
causes it to use, instead, the last time found in its input, thus
assuring reasonable and repeatable numbers for non-current
files.

Fue is created to contain a summary of line usage showing line
name, number of minutes used, percentage of total elapsed time
used, number of sessions charged, number of logins, and number
of logoffs. This file helps track line usage, identify bad lines, and
find software and hardware oddities. Hang-up, termination of
login(l) and terminiation of the login shell generate a logofl
records, so that the number of logofls is often three to four times
the number of sessions. See init(8) and utmp(5).

File is filled with an overall record for the accounting period, giv-
ing starting time, ending time, number of reboots, and number of
date changes.

Acctcon2 expects as input a sequence of login session records and con-

verts th
EXAMPLES

em into total accounting records (see tacct format in acct(5)).

These commands are typically used es shown below. The file ctmp is

created

only for the use of acctprc(8) commands:

acctconl =t =] lineuse —o reboots <wtmp | sort +1n +2 >ctmp
acctcon2 <ctmp | acctmerg >ctacct

FILES

/etc/wtmp

SEE AlSO
acct(8),

acctems(8), acctcom(l), acctmerg(8), acctprc(8), acctsh(8),

fwtmp(8), runacct(8), acct(2), acct(5), utmp(5).

BUGS

The line usage report is confused by date changes. Use wtmpfiz (see
Jwtmp(B)) to correct this situation.

ACCTMERG(8) MUNIX ACCTMERG(8)

NAME

acctmerg — merge or add total accounting files

SYNOPSIS

/usr/lib/acct/acctmerg [options] [file] . . .

DESCRIPTION
Acctmerg reads its standard input and up to nine additional files, all in
the tacct format (see acct(5)), or an ASCIl version thereof. It merges
these inputs by adding records whose keys (normally user ID and name)
are identical, and expects the inputs to be sorted on those keys. Options

are:

-—a
—i
-P
-t
-u
—y

Produce output in ASCII version of tacct.

Input files are in ASCII version of tacct

Print input with no processing.

Produce a single record that totals all input.

Summarize by user ID, rather than user ID and name.

Produce output in verbose ASCII format, with more precise notation
for floating point numbers.

The following sequence is useful for making “repairs’ to any file kept in
this format:

SEE ALSO

acctmerg —v <filel >file2
edit file2 as desired ...
acctmerg —a <file2 >filel

acct(8), acctcms(8), acctcom(l), acctcon(B), acctprc(8), acctsh(8),
fwtmp(8), runacct(8), acet(2), acct(5), utmp(5s).

Page 1

February 17, 1984

ACCTPRC(8) MUNIX ACCTPRC(8)

NAME
acctprcl, acctprc2 — process accounting

SYNOPSIS
/usr/lib/acct/acctprel [ctmp]
7usr/lib/acct/acctprc2

DESCRIPTION)
Acctprc] reads input in the form described by acct(5), adds login names
corresponding to user IDs. then writes for each process an ASCII line giv-
ing user ID, login name, prime CPU time (tics), non-prime CPU time (tics),
and mean memory size (in 64-byte units). If ctmp is given, it is expected
to contain a list of login sessions, in the form described in acctcon(8),
sorted by user ID and login name. If this file is not supplied, it obtains
login names from the password file. The information in ctmp helps it dis-
tinguish among different login names that share the same user ID.
Acctprc2 reads records in the form written by acciprcl, summarizes
them by user ID and name, then writes the sorted summaries to the stan-
dard output as total accounting records.
These commands are typically used as shown below:

acctprcl ctmp </usr/adm/pacct | acctprc2 >ptacct

FILES
/etc/passwd

SEE ALSO
acct(B8), acctcms(8), acctcom(l), acctcon(8), acctmerg(8), acctsh(8),
fwtmp(8), runacct(8), acct(2), acct(5), utmp(5s).

BUGS

Although it is possible to distinguish among login names that share user
IDs for commands run normally, it is diflicult to do this for those com-
mands run from cron(8), for example. More precise conversion can be
done by faking login sessions on the console via the acctwtmp program
in acct(8).

Page 1 February 17, 1984

ACCTSH(8) MUNIX ACCTSH(8)

NAME
chargefee, ckpacct, dodisk, lastlogin, monacct, nulladm, pretmp, prdeily,
prtacct, runacct, shutacct, startup, turnacct — shell procedures for
accounting

SYNOPSIS

/usr/lib/acct/chargefee login-name number
/usr/lib/acct/ckpacct [blocks)]
/usr/lib/acct/dodisk
/usr/lib/acct/lastlogin
/usr/lib/acct/monacct number
/usr/lib/acct/nulladm file
/usr/lib/acct/pretmp

/usr/lib/acct/prdaily [mmdd]
/usr/lib/acct/prtacct file [“heading”]
/usr/lib/acct/runacct [mmdd] [mmdd state]
/usr/lib/acct/shutacct [“reason”
/usr/lib/acct/startup
/usr/lib/acct/turnacct on | off | switch

DESCRIPTION

Page 1

Chargefee can be invoked to charge a number of units to login-name. A
record is written to /usr/adm/fee, to be merged with other accounting
records during the night.

Ckpacct should be initiated via cron(8). It periodically checks the size of
/usr/adm/pacct. If the size exceeds blocks, 1000 by default, turnacct
will be invoked with argument switch. If the number of free disk blocks
in the /usr file system falls below 500, ckpacct will automatically turn off
the collection of process accounting records via the off argument to tur
nacct. When at least this number of blocks is restored, the accounting
will be activated again. This feature is sensitive to the frequency at
which ckpacct is executed, usually by cron.

Dodisk should be invoked by cron to perform the disk accounting func-
tions.

Lastlogin is invoked by runacct to update /usr/adm/acct/sum/loginlog,
which shows the last date on which each person logged in.

Monacct should be invoked once each month or each accounting period.
Number indicates which month or period it is. If number is not given, it
defaults to the current month (01—-12). This default is useful if monacct
is to executed via cron(B8) on the first day of each month. Monacct
creates summary files in /usr/adm/acct/fiscal and restarts summary
files in /usr/adm/acct/sum

Nulladm creates file with mode 664 and insures owner and group are
adm It is called by various accounting shell procedures.

Prctmp can be used to print the session record file (normally
/usr/adm/acct/nite/ctmp created by acctconl! (see acctcan(8)).

February 17, 1984

ACCTSH(8) MUNIX ACCTSH(8)

Prdaily is invoked by runacct to format a report of the previous day's
accounting data. The report resides in /usr/adm/acct/sum/rprtmmdd
where mmdd is the month and day of the report. The current daily
accounting reports may be printed by typing prdaily. Previous days’
accounting reports can be printed by using the mmdd option and speci-
fying the exact report date desired. Previous daily reports are cleaned
up and therefore inaccessible after each invocation of monacct.

Prtacct can be used to format and print any total accounting (tacct) file.

Runacct performs the accumulation of connect, process, fee, and disk
accounting on a daily basis. It also creates summaries of command
usage. For more information, see runacct(8).

Shutacct should be invoked during a system shutdown (usually in
/etc/shutdown) to turn process accounting off and append a “‘reason’
record to /etc/wtmp.

Startup should be called by /etc/rec to turn the accounting on whenever
the system is brought up.

Turnacct is an interface to accton (see acct(8)) to turn process account-
ing on or ofl. The switch argument turns accounting off, moves the
current /usr/adm/pacct to the next free name in /usr/adm/pacctincr
(where incr is a number starting with 1 and incrementing by one for each
additional pacct file), then turns accounting back on again. This pro-
cedure is called by ckpacct and thus can be taken care of by the cron
and used to keep pacct to a reasonable size.

FILES

/usr/adm/fee accummnulator for fees

/usr/adm/pacct current file for per-process accounting

/usr/adm/paccte® used if pacct gets large and during
execution of daily accounting procedure

/etc/wtmp login/]logoff summary

/usr/adm/acct/nite working directory

/usr/libzacct holds all accounting commands listed in

sub-class 8 of this manual
/usr/adm/acct/sum summary directory, should be saved

SEE ALSO

acct(8), acctems(B), acctcom(l), acctcon(8), acctmerg(8), acctpre(8),
fwtmp(8), runacct(8), acct(2), acct(5), utmp(5).

February 17, 1934 Page 2

BCOPY(8) MUNIX (Obsolescent) BCOPY(8)

NAME

bcopy — interactive block copy
SYNOPSIS

/etc/bcopy
DESCRIPTION

Bcopy dates from a time when neither the UNIX System file nor the DEC
disk drives were as reliable as they are now. Bcopy copies from and to
files starting at arbitrary block (512-byte) boundaries.

The following questions are asked:

to: (you name the file or device to be copied to).
offset: (you provide the starting *‘to” block number).
from: (you name the file or device to be copied from).

. offset: (you provide the starting “from'* block number).
count: (you reply with the number of blocks to be copied).

After count is exhausted, the from question is repeated (giving you a
chance to concatenate blocks at the to+offset+count location). If you
answer from with a carriage return, everything starts over.

Two consecutive carriage returns terminate bcopy.

SEE ALSO
cpio(1). dd(1).

Page 1 February 17, 1984

BOOT(8) MUNIX BOOT(8)

NANE
boot — standalone startup program

DESCRIPTION

The Cadmus "minitor” contains drivers for a few disks or tapes only. If
you want to boot a program from another device, you can boot the pro-
gram "boot" first, which includes many more drivers than the minitor,
and use "boot” to boot the desired program from the desired device. To
load boot, the user types on the system console the string "/sal/boot", if
the programs are to be loaded from a 512 byte device, or "/sa2/boot”, if
the device is a 1kb device, followed by a carriage return; the named pro-
gram is retrieved from the file system that starts at block 0 of drive 0 of
the boot device.

When executed (type g after loading), boot sets up memory management,
relocates itself into high memory, and types a *:' on the console. Then it
reads from the console a device specification (see below) followed
immediately by a pathname. Boot finds the corresponding file on the
given device, loads that file into memory location zero, sets up memory
management as required, and calls the program by jumping to location 0.
Normal line editing characters can be used.

Conventionally, the name of the boot program is '/sa[lZ]/boot' and the
name of the current version of the system is '/unix’. Then, the recipe is:

1) Specify to the minitor the device, on which boot resides, if neces-
sary, by typing "rl” or "rw" or "'rs" etc.

2) Type /sal/bootresp/sa2/boot.

3) When the prompt is given, type e.g.

hk(0,0)unix
or

st(0,5)check
depending on whether you are loading from an HK or a streamer
respectively. The first 0 indicates the physical unit number; the
second indicates the block number of the beginning of the logical
file system to be searched, resp. the file number on the tape. (See
below).

Device specifications. A device specification has the following form:
device(unit,offset)

where device is the type of the device to be searched, unit is the unit
number of the device, and offset is the block offset of the file system on a
disk, or the file number on a tape. Device is one of the following

Page 1 February 17, 1984

BOOT(8)

MUNIX
rm RM02/03
rl RLO1/02
hk RK06/07
rp RPO3
hp RP04/5/6
rk RKO5
rx RX01/2
tm TM16
ht TE10
ot 51/4 Win
td 5174 Win
st Streamer

For example, the specification

hp(1,7000)

BOOT(8)

indicates an RP03 disk, unit 1, and the file system found starting at block

7000 (cylinder 35).

It is seldom necessary to use boot, as the programs can often be loaded
directly with the minitor. Boot however must be used to load programs

from a tape.

FILES

/unix — system code

/sal — directory with standalone programs for 512 byte Filesystems
/sa2 — directory with standalone programs for 1024 byte Filesystems

/sa[12]/boot — bootstrap
/sa[12]/mkfs — mkfs

SEE ALSO

standalone(8)

February 17, 19684

Page 2

BRC(8) MUNIX BRC(8)

NAME

bre, becheckre, rc, powerfail — system initialization shell scripts

SYNOPSIS

/etc/bre
/ete/becheckre
/ete/re
/etc/powerfail

DESCRIPTION

BUGS

Except for powerfail, these shell procedures are executed via entries in
setc /Zinittab by init(8) when the system is changed out of SINGLE USER
mode. Powerfail is executed whenever a csystem power failure is
detected. '

The brc procedure clears the mounted file system table, /etc/mnttab
(see mnttad(5)), and loads any programmable micro-processors with
their appropriate scripts.

The bcheckrc procedure performs all the necessary consistency checks
to prepare the system to change into multi-user mode. It will prompt to
set the system date and to check the file systems with fsck(8).

The rc procedure starts all systern daemons before the terminal lines are
enabled for multi-user mode. In addition, flle systems are mounted and
accounting, error logging, system activity logging and the Remote Job
Entry (RJE) system are activated in this procedure.

The powerfail procedure is invoked ‘when the system detects a power
failure condition. Its chief duty is to reload any programmable micro-
processors with their appropriate scripts, if appropriate. It also logs the
fact that a power failure occurred.

These shell procedures, in particular rc may be used for several run-level
states. The who(l) command may be used to get the run-level informa-
tion.

Powerfail signals-are not yet supported on CADMUS.

SEE ALSO

init(8), shutdown(8), who(1), inittab(5).

Page 1 February 17, 1984

CATMAN(8) HUNIX CATMAN(8)

NAME
catman — create the cat files for the manual
SYNOPSIS
/usr/ucb/catman [=p] [=n] [—w] [sections]
DESCRIPTION
Catman creates the preformatted versions of the on-line manual from
the nrofl input files. Each manual page is examined and those whose
preformatted versions are missing or out of date are recreated. If any
changes are made, catman will recreate the /usr/lib/whatis database.
If there is one parameter not starting with a ‘~’, it is take to be a list of
manual sections to look in. For example
catman 123
will cause the updating to only happen to manual sections 1, 2, and 3.
Options:
-n prevents creations of /usr/lib/whatis.
-p prints what would be done instead of doing it.
-w causes only the /usr/lib/whatis database to be created. No
manual reformatting is done.
FILES

/usr/man/man?/** raw (nroff input) manual sections
/usr/man/cat?/** preformatted manual pages
/usr/lib/makewhatis commands to make whatis database

SEE ALSO
man(1), whatis(1)

Page 1 February 17, 1984

CHECK(8)

NAME

MUNIX (CADMUS) CHECK(8)

check — disk checking and formatting

SYNOPSIS

/sal/check
/sa2/check

DESCRIPTION

Check is the Cadmus disk checking program. Additionally it has a for-
matting capability for disks with standard headers. Check tests disks for
the location of bad sectors and writes the bad sector file onto disks. The
bad sector file is a list of all bad sectors found on a disk. MUNIX uses this
information to avoid allocating bad sectors to a user's file. If there is an
error in a header, or if there is a read or write error within one sector,
that sector is defined as a bad sector. If possible the header of this sector
is marked.

The devices in the following table are supported by check. Devices indi-
cated by YES in the column Formatiing uses standard headers and can
be formatted by check. For other devices exists a specific standalone for-
matting program (i.e. riformat).

Supported Devices

Device Name

Disk Type

CSR Address

Formattin g_|

hk
rl
hl

rm

RK06/07

RLO1/02

RLO1/02
RM02/03/05

FFFF20
FFF900
FFF910
FFFDCO

Page 1

Check is a standalone program. Load and start it by the Minitor (see
Minitor-Manual). For example type:

(load from RLO2)
(executable file)
(start the program)

rl
./sa[12]/check

.0

You will get a list of all supported devices (i.e. 7l Al hk rm). Type the
device name and the unit number of the disk to be tested or formatted.
The input format for opening a device is as follows:

devname(unit) [-r] [-p] | exit

where devname is one of the device names from the table above and unit
is the number of the physical drive to be tested. The option -p opens the
disk in preserve-mode, while -r opens the disk in read-only-mode. A miss-
ing option opens the disk in read /write-mode.

Exit stops execution of the check program.

In read /write-mode the contents of the disk is overwritten, bad sectors
are marked, the bad sector file is initialized or modified and formatting is
possible. This is the proper mode for new disks.

In preserve-mode the contents of the disk is left unchanged. Sectors are
tested only by reading, no formatting is done, no sector is marked as bad
and the contents of an existing bad sector file is not modified.

In read-only-mode sectors ar tested only by reading, bad sectors are

February 17, 1984

CHECK(8) MUNIX (CADMUS) CHECK(8)

marked and the bad sector flle is initialized or modified. Formatting is
inhibited.
For example (user input is bold):

type: devname(unit) [-r] [-p] | exit
: rl(0) -r or

: hk(4) or

: exit

If you entered a legal device name you are now in command mode. You
will get a list of available commands. Every command you choose refers
to the previously specified device and unit. To leave the command mode
simply type q. The other commands are explained below. The command
descriptions refer to disks opened in read /write-mode. If you opened a
disk in another mode read the descriptions accordingly:

b Bad Sector Scan:
The complete disk is tested. Sectors are first written in increasing
order and then read in decreasing order. A bad sector file is writ-
ten onto the disk.

s Selected Sector Test:
Consecutive sectors are tested. Choose the starting sector and the
number of sectors to be tested. The sectors are tested alternately:
1st sector, last sector, 2nd sector, ... to the midst of the given inter-
val. The already existing bad sector file is updated.

a Append Bad Sectors:
Bad sectors are appended manually to an existing bad sector file.
Type in the numbers of sectors to be marked as bad sectors. Type
—1 to exit from this command.
This command is extremely helpful if you know any bad sectors
not detected by the check program.

i Inspect Bad Sector File:
List the contents of an existing bad sector file.
r Random Sector Test:

Test disk sectors in random order. Exit from this command by
pushing INIT. An existing bad sector file is destroyed.

f Format Disk:
Write good sector headers and initialize data fields optionally on
the complete disk volume or on single tracks.

? List Commands:
Print a table of all available commanads.

As a proper test strategy for new disks we suggest command b (very fast)
followed by command s with the whole disk as the sector interval (very
slow: you better go for lunch). If there is a new bad sector on an already
used disk test a small range around the bad sector by command s or use
command a to mark the bad sector manually. Used disks should be
checked in read-only-mode.

Each command can be interrupted by pushing INIT. Then you will get the
Minitor prompt. To restart check you have to type g0.
SEE ALSO
rl(4), rm(4), hk(4), iopage(7), format(8), standalone(8)
Bad Sector Handling (Vol. 2¢)

February 17, 1984 Page 2

CHECK(8) MUNIX (CADMUS) CHECK(B)

Minitor-Manual

Page 3 February 17, 1984

CHECKALL(8) MUNIX CHECKALL(8)

NAME

checkall — faster file system checking procedure
SYNOPSIS

/ete/checkall
DESCRIPTION

The checkall procedure is a prototype and must be modified to suit local
conditions. The following will serve as a example:

check the root file system by itself
fsck /dev/hkO

dual fsck of drives O and 1
dfsck /dev/rhk[123] — /dev/rhk[456]

Dfsck is a program that permits an operator to interact with two fsck(8)
programs at once. To aid in this, dfsck will print the file system name for
each message to the operator. When answering a question from dfsck,
the operator must prefix the response with a 1 or a 2 (indicating that the
answer refers to the first or second file system group).

Due to the file system load balancing required for dual checking, the
dfsck command should always be executed through the checkall shell
procedure.

In a practical sense, the file systems are divided up as follows:

dfsck file_systemns_on_drive_0 — file_systems_on_drive__1

dfsck file_systems_on_drive_2 — file_systems_on_drive_3
A three drive system can be handled by this more concrete example
(assumes two large file systems per drive):

dfsck /dev/dsk31 /dev/dsk[14] — /dev/dsk1[14] /dev/dsk34

Note that the first drive 3 file system is first in the filesystems list and is
last in the filesystemsZ2 list assuring that references to that drive will not
overlap at execution time.

WARNINGS
1. Do not use dfsck to check the root file system.

2. On a check that requires a scratch file (see —t above), be careful not
to use the same temporary file for the two groups (this is sure to
scramble the file systems).

3. The dfsck procedure is useful only if the system is set up for multiple
physical 170 buffers.

SEE ALSO
fsck(8).

Page 1 February 17, 1984

CHROOT(8) MUNIX CHROOT(8)

NAME
chroot — change root directory for a command

SYNOPSIS
/etc/chroot newroot command

DESCRIPTION
The given command is executed relative to the new root. The meaning of
any initial slashes (/) in path names is changed for a command and any
of its children to newroot. Furthermore, the initial working directory is
newroot.
Notice that:

chroot newroot command >x

will create the file x relative to the original root, not the new one.
This command is restricted to the super-user.
The new root path name is always relative to the current root: even if a
chroot is currently in effect, the newroot argument is relative to the
current root of the running process.

SEE ALSO
chdir(2).

BUGS

One should exercise extreme caution when referencing special files in
the new root file system.

Page 1 February 17, 1984

CLRI(8) MUNIX CLRI(8)

NAME

clri — clear {-node

SYNOPSIS

/etc/cln file-system i-number ...

DESCRIPTION

Qri writes zeros on the 64 bytes occupied by the i-node numbered i-
number. File-systerm must be a special file name referring to a device
containing a file system. After clri is executed, any blocks in the
afflected file will show up as "missing’ in an fsck(8) of the file-system.
This command should only be used in emergencies and extreme care
should be exercised.

Read and wrile permission is required on the specified file-system device.
The i-node becomes allocatable.

The primary purpose of this routine is to remove a file which for some
reason appears in no directory. If it is used to zap an i-node which does
appear in a directory, care should be taken to track down the entry and
remove it. Otherwise, when the i-node is reallocated to some new file, the
old entry will still point to that file. At that point removing the old entry
will destroy the new file. The new entry will again point to an unallocated
i-node, so the whole cycle is likely to be repeated again and again.

SEE ALSO

BUGS

fsck(8), fsdb(8). ncheck(8), fs(5).

1f the file is open, cirt is likely to be ineffective.

Page 1. February 17, 1984

CRASH(8) MUNIX CRASH(8)

NAME
crash - what to do when the system crashes

DESCRIPTION
System crashes are of course not something we like to discuss. But if you
suffer from crashes, you may appreciate the following hints.

Scenario 1

The system hangs. Users who are not in an editor still get characters
echoed, but no program terminates. The shell may even continue to
prompt, but when the user gives a command, it hangs too. This normally
indicates the loss of a disk interrupt. If only one terminal blocks, this
indicates the loss of a terminal interrupt. See "Q-Bus order” below. What
to do: push the HALT button, type "n" if the system asks you “Continue?
(y.n)". This at least flushes the buffer pool onto the disk and you will have

less corrupted files when you reboot.)

Scenario 2
The system hangs. No terminal echoes. The console shows no crash mes-
sage. The RUN light flickers or is off. Pushing the HALT button shows no
eflect. This indicates a double bus error, which stopped the cpu. Possible
reason: memory error, wrong dma registers, see below. What to do: noth-
ing. Reboot.

Scenario 3
The system crashes, and the console shows a nice crash message. The
message starts with a string “panic: ...”. The most important strings are:

‘1) panic: Timeout table overflow. Increase the constant NCALL in
/usr/sys/conf.h and generate a new unix.

2) * panic: iinit. Could not read the super block of the root file system.
Probably ROOTDEV in /usr/sys/conf.h is wrong, i.e. the system
tries to access the wrong disk.

3) panic: out of swap space. Increase the swap space, i.e. decrease
SWPLO and/or increase NSWAP in /usr/sys/conf.h.

Scenario 4
The system crashes, the console shows a crash message, but no "panic:
.."". First, look at the cause of the crash, e.g. "bus error”, "address

error”, "illegal vector interrupt”, etc..

1) Bus or address error: if the access address is in the 1/0 page, then
the kernel tried to access a non-existent device, or the device
malfunctioned. From the access address try to locate the device
(see confinfo(4)).

If the access address is not in the 170 page, but “makes sense”, i.e.
is not longer than 24 bits and refers to system or user code or
data, then perhaps the memory has an error. Lets assume the
access address is 0x3000{e. The first 4 bit are a 3, so the address
refers to segment 3, offset Oxfe. The crash message shows the
mmu settings, i.e. the physical start of each segment. Lets assume
mmu([3] is set to 0x40200. Then the physical address correspond-
ing to 0x3000fe is 0x40200 + Oxfe = 0x402fe. If another crash has
access address 0x4002fe ‘'and mmu[4] = 0x40000, then again the
physical address is 0x402fe. So there may be a defective memory

Page 1 February 17, 1984

CRASH(8) MUNIX CRASH(8)

chip. Run the program /sal/memtst to check the memory.

If the access address does not make sense, e.g. is Ox{{ff{f{ff, or
0x3c004ab9, then it gets more difficult. Look at the more general
sections below.

2) illegal vector interrupt: There is a device which interrupts to a
vector that has not been generated. Vectors are generated in
/usr/sys/l.s. First try to find the interrupting device. Normally
the message comes “always when ! write to /dev/..”. Next, why
does it jump to the wrong vector? Check the standard vector in
/usr/sys/l.s with the switches on the controller board. If you
think you know where the interrupt actually goes to, make sure.
Lets assume you think the vector goes to O0x1{4, but you are not
sure. Boot unix, but before the minitor “g"”, write an odd number,
e.g. 7, into Ox1{4: 1f4.4 = 7. Then start the system. If you get now
instead of "illegal vector interrupt” the message "“address error,
access address = 7", then you know you were right.

3) exception 24: You have probably a hole in the daisy chain of the
Q-Bus. The exception 24 is the so called spurious interrupt. This is
taken when a bus timeout occurs while the cpu wants to read an
interrupt vector. Most often it indicates an interrupted daisy
chain. All cards in the Q-Bus must be on a zig-zag line in the card
cage, with no holes in between.

4) exception 30: This is the "HALT” exception. It occurs when you
push the HALT button, but may also occur when a DLV11 still has
the HALT or INIT jumper and someone pushes the BREAK key on
the keyboard or switches the terminal off. Remove the jumper(s).

5) zero divide: You overlooked the foregoing "panic: ...” message. See
above. ' '

The crash message
If you have not yet seen a crash message, you are lucky. Don't push your
luck by reading further. Otherwise, if you want to see one just for learn-
ing, go into single user mode, enter “sync” and push the HALT button.
The console will display about half a screenful of lines and ask "“Con-
tinue? (y,n)". Enter "y".

The message starts with the contents of the registers. Then follows the
cause of the crash, e.g. “exception 30" if you pushed the HALT button.
Then come the processor status register and the program counter.

After the state at the time of crash comes a small procedure backtrace.
This is headed by the line "procedure addresses:lineno”. This means that
the backtrace is written as a pair of numbers, where the first number is
the address of the first instruction of the procedure, and the second the
line number the procedure is currently executing. You can always ignore
the second number, as your code is not compiled with the -L option of
the C compiler. It remains the first number. You can identify this address
in the file /usr/sys/unix.sym, which contains the addresses of all global
references in the kernel, sorted by name and by value. Or you enter the
command "adb /unix /dev/kmem"” and enter the address followed by ?i,
e.g. #3fa2?i. You will see something like ""_sleep: link a8,8-28", so you
know O0x3fa2 is the address of the routine sleep. Some of the numbers in

February 17, 1884 Page 2

CRASH(8) MUNIX CRASH(8)

the backtrace can normally not be identified. They generally have the
{ormat xxxx4edx. This procedure was called by an indirect jsr, e.g. jsr
a4).

The service department can do nothing, when called by telephone or sent
mail, with the pure numbers of the stack trace, as they are different from
machine to machine, but gets much better information when you can
give the names of the active procedures.

General causes of crashes
Wrong DMA generation

The most frequent error is the wrong choice of 18 or 22 bit drivers for
certain controllers, or the wrong choice for DMA extension registers
(DER). This error will often not become apparent until either someone
accesses the raw device, or the system starts swapping. In the normal
case, transfer from disk goes only to system buflers in the first 256
kbytes of memory, so that an 18 bit controller has no problems. But dur-
ing swapping or raw device 1/0, DMA may access any memory address. If
your system is only lightly loaded, you read from a raw device, and
immediately the system stops, often not even giving an explanation, then
most probably the DMA transfer took place to a wrong 256k segment in
memory, often the first 256k, overwriting the system code!

Q-Bus order

Contrary to popular belief, the order of cards on the Q-Bus is not imma-
terial. The first Q-Bus specification allowed only level 4 interrupts, and
there are still cards on the market that don't recognize level § or level 6
interrupts coming from devices behind them, like old DLV1i1s. The best
rule today is: put higher level cards into the upper slots, lower level cards
lower, and level 4 cards at the end. If you suspect a certain controller,
put it to the end for a try.

The wrong bus order is sometimes a cause of lost interrupts, or of inter-
rupts coming with the wrong priority. The latter is extremely hard to
diagnose, as it screws up internal pointers, which leads to a crash only
some time later. But observation helps. If you can state e.g. "Always
when I read the tape and at the same time have much output on the DZ,
the system is likely to crash”, and the DZ is in front of the tape con-
troller, reverse the two.

Static electricity
You may find that your system crashes when air humidity goes down.
Don't laugh! Static electricity builds up more in dry rooms. If you can
even feel a spark on your finger tip when you touch the system, then you
must do something about it. We once instelled an air humidifier near a
systemn, but even better is an antistatic rubber mat.

Spikes
Spikes or RFI may leak in via the terminal lines or the power line. We
once had the case that the system crashed nearly every time the clean-
ing lady approached the system with a strong vacuum cleaner! What to
do: don't let her come near!

Page 3 February 17, 1984

CRON(8) MUNIX CRON(8)

NAME
cron — clock daemon

SYNOPSIS
/etc/cron

DESCRIPTION
. Cron executes comrnands at specified dates and times according to the
instructions in the file /usr/lib/crontab. Because cron never exits, it
should be executed only once. This is best done by running cron from
the initialization process through the file Zetc/rc (see init(8)).

The file crontab consists of lines of six flelds each. The fields are
separated by spaces or tabs. The first five are integer patterns that
specify in order:

minute (0-59), '

hour (0-23),

day of the month (1-31),

month of the year (1-12),

and day of the week (0-6, with 0=Sunday).

Each of these patterns may contain:
a number in the (respective) range indicated above;
two numbers separated by a minus (indicating an inclusive range);
a list of numbers separated by commas (meaning all of these
numbers); or
an asterisk (meaning all legal values).

Page 1 February 17, 1984

DCOPY(8) MUNIX DCOPY(8)

NAME
dcopy — copy file systems for optimal access time

SYNOPSIS
/etc/dcopy [—=X] [—an] [—d] [—v] [—Ifsize:isize] inputfs outputfs

DESCRIPTION

Dcopy copies file system inputfs to outputfs. Mhputfs is the existing file
system; outputfs is an appropriately sized file system, to hold the reor-
ganized result. For best results inputfs should be the raw device and
outputfs should be the block device. Dcopy should be run on unmounted
file systems (in the case of the root file system, copy to a new pack). With
no arguments, dcopy copies files from inputfs compressing directories by
removing vacant entries, and spacing consecutive blocks in a file by the
optimal rotational gap. The possible options are

—aX supply device information for creating an optimal organization
of blocks in a file. The forms of Xare the same as the —s option
of fsck(8).

—an place the files not accessed in n days after the free blocks of

the destination file system (default for n is 7). If no n is
specified then no movement occurs.

—d leave order of directory entries as is (default is to move sub-
directories to the beginning of directories).

-v currently reports how many files were processed, and how big
the source and destination freelists are.

~{fsize[:isize]
specify the outputfs file system and inode list sizes (in blocks).
If not given, the values from the inputfs are used.

Dcopy catches interrupts and quits and reports on its progress. To ter-
minate dcopy, send a quit signal and dcopy will no longer catch inter-
rupts or quits. Dcopy also attempts to modify its command line argu-
ments so its progress can be monitored with ps(1).

SEE ALSO
fsck(8), mkfs(8), ps(1).

Page 1 February 17, 1984

DEVNM(8) MUNIX DEVNM(8)

NAMNE
devnm — device name
SYNOPSIS)
/etc/devnm [names] -
DESCRIPTION

Devnmn identifies the special file associated with the mounted file system
where the argument name resides (as a special case, both the block dev-
ice name and the swap device name is printed for the argument name / if
swapping is done on the same disk section as the root file system). Argu-
ment names must be full path names.

This command is most commonly used by /etc/rc (see bcheckrc(8)) to
construct a mount table entry for the root device.

EXANPLE
The command:
/etc/devnm /usr
produces
rpl /usr
if Zusr is mounted on /dev/rpl.

FILES
/etc/mnttadb

SEE ALSO
bcheckre(8), setmnt(8).

Page 1 February 17, 1984

DF(8) MUNIX DF(8)

NAMNE
df — report number of free disk blocks

SYNOPSIS
df [-t] [=1] [file-systems]

DESCRIPTION
Df prints out the number of free blocks and free i-nodes available for
on-line file systems by examining the counts kept in the super-blocks;
file-systems may be specified either by device name (e.g., /dev/rl2) or by
mounted directory name (e.g., /usr). If the file-systems argument is
unspecified, the free space on all of the mounted file systems is printed.
The —t flag causes the total allocated block figures to be reported as well.
If the —f flag is given, only an actual count of the blocks in the free list is
made (free i-nodes are not reported). With this option, df will report on
raw devices.

FILES
/etc/mnttab

SEE ALSO

fs(5), mnttab(5).

Page 1 February 17, 1984

DMESG

(8) MUNIX DMESG (8)

NAME
dmesg — collect system diagnostic messages to form error log

SYNOPSIS
/etc/dmesg [-]

DESCRIPTION
Dmesg looks in a system bufler for recently printed diagnostic messages
and prints them on the standard output. The messages are those printed
by the system when device (hardware) errors occur and (occasionally)
when system tables overflow non-fatally. If the — flag is given, then
dmesg computes (incrementally) the new messages since the last time it
was run and places these on the standard output. This is typically used
with cron(8) to produce the error log /usr/adm/messages by running
the command

/etc/dmesg — >> /usr/adm/messages

every 10 minutes.

FILES
/usr/adm/messages error log (conventional location)
/usr/adm/msgbuf scratch file for memory of — option

BUGS
The system error message buffer is of small finite size. As dmesg is run
only every few minutes, not all error messages are guaranteed to be
logged. This can be construed as a blessing rather than a curse.
Error diagnostics generated immediately before a system crash will never
get logged.

Page 1 February 17, 1984

DUMP(8) MUNIX DUMP (8)

NAME

dump — incremental file system dump
SYNOPSIS

dump [key [argument ...] filesystem }
DESCRIPTION

Dump copies to magnetic tape all files changed after a certain date in
the filesystem. The key specifies the date and other options aboui the
dump. Key consists of characters from the set 01234568789fusd.

f Place the dump on the next argument file instead of the tape.

u If the dump completes successfully, write the date of the beginning
of the dump on file ‘/etc/ddate’. This file records a separate date
for each filesystemn and each dump level.

0—9 This number is the ‘dump level’. All files modified since the last date
stored in the file ‘/etc/ddate’ for the same filesystem at lesser levels
will be dumped. If no date is determined by the level, the beginning
of time is assumed; thus the option 0 causes the entire filesystem to
be dumped.

8 The size of the dump tape is specified in feet. The number of feet is
taken from the next argument. When the specified size is reached,
the dump will wait for reels to be changed. The default size is 2300
feet.

d The density of the tape, expressed in BPI, is taken from the next
argument. This is used in calculating the amount of tape used per
write. The default is 1600.

b The size of the output file (most often a floppy) in 512 byte blocks is
taken from the next argument.

S This option is used to dump onto the streamer. The default output
file is /dev/rst0, and the blocking factor is increased.

If no arguments are given, the key is assumed to be 8u and a default file
system is dumped to the default tape.

Now a short suggestion on how perform dumps. Start with a full level 0
dump
dump Ou

Next, periodic level 9 dumps should be made on an exponential progres-
sion of tapes. (Sometimes called Tower of Hanoi— 1213121 4 ... tape
1 used every other time, tape 2 used every fourth, tape 3 used every
eighth, etc.)

dump Su

When the level 9 incremental approaches a full tape (about 78000 blocks
at 1600 BPI blocked 20), a level 1 dump should be made.

dump 1u

After this, the exponential series should progress as uninterrupted.
These level 9 dumps are based on the level 1 dump which is based on the
level O full dump. This progression of levels of dump can be carried as
far as desired.

Page 1 February 17, 1984

DUMP(8) MUNIX DUMP(8)

FILES
default filesystem and tape vary with installation.
/etc/ddate: record dump dates of filesystem/level.
/bin/dump: dump program for l1kbyte filesystems.
/bin/dump.1b: dump program for 512byte filesystems.
SEE ALSO :
restor(8), dump(5), dumpdir(8)
DIAGNOSTICS

If the dump requires more than one tape, it will ask you to change tapes.
Reply with a new-line when this has been done.

BUGS

Sizes are based on 1600 BPI blocked tape. The raw magtape device has
to be used to approach these densities. Read errors on the filesystem
are ignored. Write errors on the magtape are usually fatal.

February 17, 19684 Page 2

DUMPDIR(8) MUNIX DUNPDIR(8)

NAME
dumpdir — print the names of files on a dump tape

SYNOPSIS
dumpdir [{ filename]

DESCRIPTION
Dumpdir is used to read magtapes dumped with the dump command and
list the names and inode numbers of all the files and directories on the
tape.
The f option causes filename as the name of the tape instead of the
default.

FILES
default tape unit varies with installation
rst*

SEE ALSO
dump(8), restor(8)

DIAGNOSTICS
If the dump extends over more than one tape, it may ask you to change
tapes. Reply with a new-line when the next tape has been mounted.

BUGS

There is redundant information on the tape that could be used in case of
tape reading problems. Unfortunately, dumpdir doesn’t use it.

Page 1 February 17, 1984

EXPIRE(8) MUNIX EXPIRE(8)

NAME

expire — remove outdated news articles

SYNOPSIS

/usr/lib/news/expire [—n newsgroups J [=i J [-1][—v ([levelt]][
—edays) [—a][-r][-h]

DESCRIPTION

Expire is normally started up by cron(8) every night to remove all
expired news. If no newsgroups are specified, the default is to expire all.

Articles whose specified expiration date has already passed are con-
sidered expirable. The —a option causes expire to archive articles in
/usr/spool/oldnews. Otherwise, the articles are unlinked.

The —v option causes expire to be more verbose. It can be given a ver-
bosity level (default 1) as in —v3 for even more output. This is useful if
articles aren't being expired and you want to know why.

The —e flag gives the number of days to use for a default expiration date.
If not given, an installation dependent default (often 2 weeks) is used.

The —i and —I flags tell expire to ignore any expiration date explicitly
given on articles. This can be used when disk space is really tight. The
-] flag will always ignore expiration dates, while the —i flag will only
ignore the date if ignoring it would expire the article sooner. WARNING: If
you have articles archived by giving them expiration dates far into the
future, these options might remove these files anyway.

The —r flag rebuilds the history file without removing any files. In the
process, expire formats the ddbm(3X) format files associated with the his-
tory file.

The —h flag expires articles without using the history file. Both the —r
and —h flags use the active file for newsgroup information rather than
the history file.

SEE ALSO

Page 1

checknews(1), inews(1), readnews(1), recnews(8), sendnews(8), uurec(8)

February 17, 1984

FF(8) MUNIX FF(8)

NAME
fl — list file names and statistics for a file system

SYNOPSIS
/ete/If [options] special

DESCRIPTION
Ff reads the i-list and directories of the special file, assuming it to be a
file system, saving i-node data for files which match the selection cri-
teria. Output consists of the path name for each saved i-node, plus any
other file information requested using the print options below. Output
fields are positional. The output is produced in i-node order; fields are
separated by tabs. The default line produced by ff is:

path-name i-number
With all options enabled, output fields would be:
path-name i-number size uid

The argument n in the option descriptions that follow is used as a
decimal integer (optionally signed), where +n means more than n, -n
means less than n, and n means exactly n. A day is defined as a 24 hour

period.
-1 Do not print the i-node number after each path name.
-1 Generate a supplementary list of all path names for multi-

ply linked files.

—p prefiz The specified prefiz will be added to each generated path
name. The default is ..

-3 Print the flle size, in bytes, after each path name.

—-u Print the owner’'s login name after each path name.

-an Select if the i-node has been accessed in n days.

-mn Select if the i-node has been modified in n days.

—n Select if the i-node has been changed in n days.

—n file Select if the i-node has been modified more recently than

the argument file.
—i i-node-list Generate names for only those i-nodes specified in i-node-
list.
EXAMPLES

To generate a list of the names of all files on a specified file system:
ff —1 /dev/diskroot

To produce an index of files and i-numbers which are on a file system and
have been modified in the last 24 hours:
ff —m —1 /dev/diskusr > /log/incbackup/usr/tuesday

To obtain the path names for i-nodes 451 and 76 on a specified file sys-
tem:

ff —-i 451,76 sdev/rrp?

SEE ALSO
finc(8), find(1), frec(8), ncheck(8).

Page 1 February 17, 1984

FF(8) MUNIX FF(8)

BUGS
Only a single path name out of any possible ones will be generated for a
multiply linked i-node, unless the —l option is specified. When -l is
specified, no selection criteria apply to the names generated. All possible
names for every linked flle on the file system will be included in the out-
put.

On very large file systems, memory may run out before ff does.

February 17, 1984 Page 2

FILESAVE(S8) MUNIX FILESAVE(8)

NAME
filesave, tapesave — daily/weekly UNIX flle system backup

SYNOPSIS
/etc/fllesave.?
/etc/tapesave

DESCRIPTION
These shell scripts are provided as models. They are designed to provide
a simple, interactive operator environment for file backup. Fiesave.? is
for daily disk-to-disk backup and tapesave is for weekly disk-to-tape.

The suffix .? can be used to name another system where two (or more)
machines share disk drives (or tape drives) and one or the other of the
systems is used to perform backup on both.

SEE ALSO
shutdown(8), volcopy(8).

Page 1 February 17, 1984

FORMAT(8) MUNIX (CADMUS) FORMAT(8)

NAME
format — how to format disks

SYNOPSIS
/bin/rxctrl —f
/sa[12])/rxformat
/sa[12]/rlformat P
/sa[12]/rmformat
/sa[12]/emuformat
/sa[12]/xyloformat

DESCRIPTION
Rzctrl formats a 5 1/4" floppy emulating a single sided, double density 8"
floppy with a ANDROMEDA WDC11 controller. For further details see
rzctri(l), the floppy driver manipulation program.

All the other formatting programs are standalone programs. Enter the
Minitor (Type sync, push INIT) and type i.e.:

.rl (load from RL0O2)
./sal /emuformat (executable file)
.g0 (start the program)

Rzformat formats a 8" floppy RX02 compatible. The floppy controller
responses ‘8$'. Type

XD2 (double density) or

XD1 (single density) <cr>
and

XUO (left drive) or

XU1 (right drive) <cr>

Riformat formats a whole TANDON TM603SE drive with a ANDROMEDA
WDC11 controller as a RL0O2. The following arguments are interactively
asked for:

UNIT: 0 (TANDON drive 0)

1 (TANDON drive 1)
INTERLEAVE: 1..31 (odd)

Use 5 to optimize the seek time.

Page 1 February 17, 1984

FORMAT(8) MUNIX (CADMUS) FORMAT(8)

Rmformat formats one or all tracks of a FUJITSU M2312K drive with a
DATARAM SO04/A controller as a RM02. The following arguments are
interactively asked for:

SINGLE TRACK ? 'y’ or <cr>
if yes: HEAD: 0..4
TRACK: 0..822

Emuformat formats a whole FUJITSU M2312K drive with a EMULEX SC02
controller as

Unit 0: RKO7 Unit 3: RK07
Unit 1: RKO7 Unit 4: RKO?7
Unit 2: RKO6 Unit 5: RK06

The following argument is interactively asked for:
UNIT: 0..5

Xyloformat formats one or all tracks of a FUJITSU M2312K drive with a
XYLOGICS 550 controller as

Unit 0: RKO7
Unit 1: RKO?7
Unit 2: RK06

The following arguments are interactively asked for:

UNIT: 0..2
SINGLE TRACK ? 'y' or <cr>
if yes HEAD: 0.2
TRACK: 0..410 for RK06
0..814 for RKO7

SEE ALSO

BUGS

rl(4), rx(4), hp(4), hk(4). mkfs(8)

0ld versions of the Minitor response the loading command with ‘can’t find
file’, if the loaded program is very small. Ignore this message!

February 17, 1984 Page 2

FSBA(8) MUNIX FSBA(8)

NAME
fsba — file system block analyzer

SYNOPSIS
fsba file-system ...

DESCRIPTION
Fsba determines the number of extra sectors (1 sector has 512 bytes)
needed when the file system logical block size is increased from 512
bytes per block to 1024 bytes/block. File-system should be specified by
device name (e.g., /dev/rhk2).

Fsba determines how many sectors are currently allocated for the 512
bytes/block file system, and how many sectors will be required for the
1024 bytes/block converted file systemn. Fsba also prints out the number
of allocated and free i-nodes for each file system.

If the number of free sectors for the 1024 bytes/block file system is
negative, this indicates the file-system is too large to convert to 1024
bytes/block.

SEE ALSO
filesystem(5).

Page 1 February 17, 1984

FSCK(8) MUNIX FSCK(8)

NAME
fsck, dfsck — file system consistency check and interactive repair
SYNOPSIS
/etc/fsck [—y] [-n] [—=X] [—sX] [—t file] [—q] [-D] [—f] [file-systems]
/etc/dfsck [optionsi] filsysl ... — [options2] filsys2 ...
DESCRIPTION
Fsck

Fsck audits and interactively repairs inconsistent conditions for UNIX
Systemn files. If the file system is consistent then the number of files,
number of blocks used, and number of blocks free are reported. If the
file system is inconsistent the operator is prompted for concurrence
before each correction is attempted. It should be noted that most
corrective actions will result in some loss of data. The amount and sever-
ity of data lost may be determined from the diagnostic output. The
default action for each consistency correction is to wait for the operator
to respond yes or no. If the operator does not have write permission fsck
will default to a —n action.

Fsck has more consistency checks than its predecessors check, dcheck,
Jcheck, and icheck combined.

The following options are interpreted by fsck.
—y Assume a yes response to all questions asked by fsck.

—n Assume a no response to all questions asked by fsck; do not open
the file system for writing.

—sX Ignore the actual free list and (unconditionally) reconstruct a new
one by rewriting the super-block of the file system. The file system
should be unmounted while this is done; if this is not possible, care
should be taken that the system is quiescent and that it is rebooted
immediately afterwards. This precaution is necessary so that the
old, bad, in-core copy of the superblock will not continue to be
used, or written on the file system.

The —sX option allows for creating an optimal free-list organization.
The following forms of X are supported for the following devices:

—s3 (RP0O3J)
—s4 (RP04, RP05, RP06)
—sBlocks-per-cylinder:Blocks-to-skip (for anything else)

If X is not given, the values used when the file system was created
are used. If these values were not specified, then the value 400:7 is
used.

—SX Conditionally reconstruct the free list. This option is like —sX above
except that the free list is rebuilt only if there were no discrepan-
cies discovered in the file system. Using —S will force a no' response
to all questions asked by fsck. This option is useful for forcing free
list reorganization on uncontaminated file systems.

~t If fsck cannot obtain enough memory to keep its tables, it uses a
scratch file. If the —t option is specified, the file named in the next
argument is used as the scratch file, if needed. Without the —t flag,

Page 1 February 17, 1984

FSCK(8) MUNIX FSCK(8)

Jsck will prompt the operator for the name of the scratch file. The
file chosen should not be on the file system being checked, and if it
is not a special file or did not already exist, it is removed when fsck
completes.

—q Quiet fsck. Do not print size-check messages in Phase 1. Unrefer-
enced fifos will silently be removed. If fsck requires it, counts in the
superblock will be automatically fixed and the free list salvaged.

—D Directories are checked for bad blocks. Useful after system
crashes.

—f Fast check. Check block and sizes (Phase 1) and check the free list
(Phase 5). The free list will be reconstructed (Phase 6) if it is
necessary.

If no file-systems are specified, fsck will read a list of default file systems
from the file /etc/checklist.

Inconsistencies checked are as follows:
1. Blocks claimed by more than one inode or the free list.
2 Blocks claimed by an inode or the free list outside the range
of the file system.
3. Incorrect link counts.
4 Size checks:
Incorrect number of blocks.
Directory size not 16-byte aligned.
Bad inode format.
Blocks not accounted for anywhere.
Directory checks:
File pointing to unallocated inode.
Inode number out of range.
8. Super Block checks:
More than 65536 inodes.
More blocks for inodes than there are in the file sys-
tem.
9. Bad free block list format.
10. Total free block and/or free inode count incorrect.

NOo O

Orphaned files and directories (allocated but unreferenced) are, with the
operator's concurrence, reconnected by placing them in the lost+found
directory, if the files are nonempty. The user will be notified if the file or
directory is empty or not. If it is empty, fsck will silently remove them.
Fsck will force the reconnection of nonempty directories. The name
assigned is the inode number. The only restriction is that the directory
lost+found must preexist in the root of the file system being checked and
must have empty slots in which entries can be made. This is accom-
plished by making lostt+found, creating a number of files in the directory,
and then removing them (before fsck is executed).

Checking the raw device is almost always faster and should be used with
everything but the root file system.

Dfsck
Dfsck allows two file system checks on two different drives simultane-
ously. optionsl and options2 are used to pass options to fsck for the two
sets of file systems. A —is the separator between the file system groups.

February 17, 1984 Page 2

FSCK(8) HUNIX FSCK(8)

The dfsck program permits an operator to interact with two fsck(8) pro-
grams at once. To aid in this, dfsck will print the file system name for
each message to the operator. When answering a question from dfsck,
the operator must prefix the response with a 1 or a 2 (indicating that the
answer refers to the first or second file system group).

Do not use dfsck to check the root file system.

FILES
/etc/checklist contains default list of file systems to check.
/etc/checkall optimizing dfsck shell file.

SEE ALSO
checkall(8), clri(8), ncheck(B), checklist(5), fs(5).
Setting up the UNIX System

BUGS
Inode numbers for . and .. in each directory should be checked for vali-
dity.

DIAGNOSTICS

The diagnostics produced by fsck are intended to be self-explanatory.

Page 3 February 17, 1984

FSDB(8) MUNIX FSDB(8)

NAME

fsdb - file system debugger
SYNOPSIS

/etc/fsdb special [—] \
DESCRIPTION

Fsdbd can be used to patch up a damaged file system after a crash. It has
conversions to translate block and i-numbers into their corresponding
disk addresses. Also included are mnemonic oflsets to access different
parts of an i-node. These greatly simplify the process of correcting con-
trol block entries or descending the file system tree.

Fsdb contains several error checking routines to verify i-node and block
addresses. These can be disabled if necessary by invoking fsdb with the
optional — argument or by the use of the O symbol. (Fsdb reads the i-
size and f-size entries from the superblock of the file system as the basis
for these checks.)

Numbers are considered decimal by default. Octal numbers must be
prefixed with a zero. During any assignment operation, numbers are
checked for a possible truncation error due to a size mismatch between
source and destination.

Fsdb reads a block at a time and will therefore work with raw as well as
block 170. A bufler management routine is used to retain commonly used
blocks of data in order to reduce the number of read system calls. All
assignment operations result in an immediate write-through of the
corresponding block.

The symbols recognized by fsdb are:

absolute address

convert from i-number to i-node address
convert to block address
directory slot offset

address arithmetic

quit

save, restore an address
numerical assighment
incremental assignment
decremental assignment
character string assignment
error checking flip flop
general print facilities

file print facility

byte mode

word mode

double word mode

escape to shell

A

+

LI NVYO + AT ™%
|

“oH" ™9 O

The print facilities generate a formatted output in various styles. The
current address is normalized to an appropriate boundary before print-
ing begins. It advances with the printing and is left at the address of the
last item printed. The output can be terminated at any time by typing
the delete character. If a number follows the p symbol, that many
entries are printed. A check is made to detect block boundary overflows

Page 1 February 17, 1984

FSDB(8) MUNIX FSDB(8)

since logically sequential blocks are generally not physically sequential.
1f a count of zero is used, all entries to the end of the current block are
prmted The print options available are:

print as i-nodes

print as directories

print as octal words

print as decimal words

print as characters

print as octal bytes

onn6 o™

The f symbol is used to print data blocks associated with the current i-
node. If followed by a number, that block of the file is printed. (Blocks
are numbered from zero.) The desired print option letter follows the
block number, if present, or the f symbol. This print facility works for
small as well as large files. It checks for special devices and that the
block pointers used to find the data are not zero.

Dots, tabs and spaces may be used as function delimiters but are not
necessary. A line with just a new-line character will increment the
current address by the size of the data type last printed. That is, the
address is set to the next byte, word, double word, directory entry or i-
node, allowing the user to step through a region of a file system. Infor-
mation is printed in a format appropriate to the data type. Bytes, words
and double words are displayed with the octal address followed by the
value in octal and decimal. A .Bor .Dis appended to the address for byte
and double word values, respectively. Directories are printed as a direc-
tory slot offset followed by the decimal i-number and the character
representation of the entry name. Inodes are printed with labeled fields
describing each element.

The following mnemonics are used for i-node examination and refer to
the current working i-node:

md mode
In link count
uid user ID number
gid group ID number
sz file size
a# data block numbers (0 — 12)
at access time
mt modification time
maj major device number
min minor device number
EXAMPLES
386i prints i-number 386 in an i-node format. This now
becomes the current working i-node.
In=4 changes the link count for the working i-node to 4.
In=+1 increments the link count by 1.
fc prints, in ASCII, block zero of the file associated with the
working i-node.
2i.fd prints the first 32 directory entries for the root i-node of

this file system.

February 17, 1984 Page 2

FSDB(8)

d5i.fc

512.B.po
2i.a0b.d7=3

d7.nm="name’

a2b.p0d

SEE ALSO
fsck(8), dir(5),

Page 3

MUNIX FSDB(8)

changes the current i-node to that associated with the 5th
directory entry (numbered from zero) found from the
above command. The first logical block of the file is then
printed in ASCII.

prints the superblock of this file system in octal.

changes the i-number for the seventh directory slot in the
root directory to 3. This example also shows how several
operations can be combined on one command line.

changes the name fleld in the directory slot to the given
string. Quotes are optional when used with nm if the first
character is alphabetic.

prints the third block of the current inode as directory
entries.

fs(5).

February 17, 1984

FUSER(8) MUNIX FUSER(8)

NAME
fuser — identify processes using a file or file structure
. SYNOPSIS
/etc/fuser [—ku] files [—] [[—ku] files]
DESCRIPTION

Fuser lists the process IDs of the processes using the files specified as
arguments. For block special devices, all processes using any file on that
device are listed. The process ID is followed by ¢, p or rif the process is
using the file as its current directory, the parent of its current directory
(only when in use by the system), or its root directory, respectively. 1f
the —u option is specified, the login name, in parentheses, also follows
the process ID. In addition, if the —k option is specified, the SIGKILL signal
is sent to each process. Only the super-user can terminate another
user's process (see kill(2)). Options may be respecified between groups
of files. The new set of options replaces the old set, with a lone dash can-
celing any options currently in force.

The process IDs are printed as a single line on the standard output,
separated by spaces and terminated with a single new line. All other out-
put is written on standard error.

EXAMPLES
fuser —ku /dev/hk2
will terminate all processes that are preventing disk drive hk2
from being unmounted if typed by the super-user, listing the pro-
cess ID and login name of each as it is killed.

fuser —u /etc/passwd
will list process IDs and login names of processes that have the
password file open.

fuser —ku /dev/hk2 — —u /etc/passwd
will do both of the above examples in a single command line.

FILES
/unix for namelist
/dev/kmem for system image
/dev/mem also for system image

SEE ALSO
mount(8), ps(1), kill(2), signal(2).

Page 1 February 17, 1984

FWTMP

(8) MUNIX FWTMP(8)

NAME
fwtmp, wtmpfix — manipulate connect accounting records

SYNOPSIS
/usr/lib/acct/fwtmp [—ic]
/usr/lib/acct/wtmpfix [files]

DESCRIPTION

Fwtmp
Fwtmp reads from the standard input and writes to the standard output,
converting binary records of the type found in wtmp to formatted ASCII
records. The ASCIl version is useful to enable editing, via ed(1), bad
records or general purpose maintenance of the file.
The argument —ic is used to denote that input is in ASCII form, and out-
put is to be written in binary form.
Wtmpfix

Wtmpfiz examines the standard input or named files in wtmp format,
corrects the time /date stamps to make the entries consistent, and writes
to the standard output. A — can be used in place of files to indicate the
standard input. If time/date corrections are not performed, acctcon1l
will fault when it encounters certain date change records.
Each time the date is set, a pair of date change records are written to
/etc/wtmp. The first record is the old date denoted by the string old
time placed in the line field and the flag OLD_TIME placed in the type field
of the <utmp.h> structure. The second record specifies the new date
and is denoted by the string new time placed in the line field and the flag
NEW_TIME placed in the type field. Wtmpfiz uses these records to syn-
chronize all time stamps in the file.
In addition to correcting time/date stamps, wtmpfiz will check the vali-
dity of the name field to ensure that it consists solely of alphanumeric
characters, a 8§ or spaces. If it encounters a name that is considered
invalid, it will change the login name to INVALID and write a diagnostic to
the standard error. In this way, wtmpfiz reduces the chance that acct-
con] will fail when processing connect accounting records.

FILES
/etc/wtmp
/usr/include/utmp.h

SEE ALSO
acct(B), acctermns(8), acctcom(l), acctcon(B), acctmerg(8), acctpre(8),
acctsh(8), runacct(B), acct(2), acct(5), utmp(5).

Page 1 February 17, 1984

GETTY(8) MUNIX GETTY(8)

NAME
getty — set terminal type, modes, speed, and line discipline
SYNOPSIS
setc/getty [=h] [—t timeout] line [speed [type [linedisc]]]
/etc/getty —c file
DESCRIPTION

Getty is a program that is invoked by init(8). It is the second process in
the series, (init-getty-login-shell) that ultimately connects a user with
the UNIX System. Initially geity prints the login message field for the
entry it is using from /etc/gettydefs. Gefty reads the user's login name
and invokes the login(1) command with the user's name as argument.
While reading the name, getty attempts to adapt the system to the speed
and type of terminal being used.

Line is the name of a tty line in /dev to which getty is to attach itself.
Getty uses this string as the name of a file in the /dev directory to open
for reading and writing. Unless getty is invoked with the —h flag, getty
will force a hangup on the line by setting the speed to zero before setting
the speed to the default or specified speed. The —t flag plus timeout in
seconds, specifies that getty should exit if the open on the line succeeds
and no one types anything in the specified number of seconds. The
optional second argument, speed, is a label to a speed and tty definition
in the file /etc/gettydefs This definition tells getty what speed to ini-
tially run at, what the login message should look like, what the inital tty
settings are, and what speed to try next should the user indicate that the
speed is inappropriate. (By typing a <break> character.) The default
speed is 300 baud. The third argument, type, is a character string
describing to getty what type of terminal is connected to the line in ques-
tion.

The terminal type must be an entry in /etc/termcap. It is exported as
"TERM=type"” to a subsequent shell. The optional fourth argument,
linedisc, is a character string describing which line discipline to use in
communicating with the terminal. Again the hooks for line disciplines
are available in the operating system but there is only one presently
available, the default line discipline, LDISCO.

When given no optional arguments, getty sets the speed of the interface
to 300 baud, specifies that raw mode is to be used (awaken on every
character), that echo is to be suppressed, either parity allowed, newline
characters will be converted to carriage return-line feed, and tab expan-
sion performed on the standard output. It types the login message
before reading the user's name a character at a time. If a null character
(or framing error) is received, it is assumed to be the result of the user
pushing the “break’ key. This will cause getty to attempt the next speed
in the series. The series that getty tries is determined by what it finds in
/etc/gettydefs.

The user's name is terminated by a new-line or carriage-return charac-
ter. The latter results in the system being set to treat carriage returns
appropriately (see ioctl(2)).

The user's name is scanned to see if it contains any lower-case alpha-
betic characters; if not, and if the name is non-empty, the system is teld

Page 1 February 17, 1984

GETTY(8) MUNIX GETTY(8)

FILES

to map any future upper-case characters into the corresponding lower-
case characters.

Finally, login is called with the user's name as an argument. Additional
arguments may be typed after the login name. These are passed to login,
which will place them in the environment (see login(1)).

A check option is provided. When getty is invoked with the —c option and
file, it scans the file as if it were scanning /etc/gettydefs and prints out
the results to the standard output. If there are any unrecognized modes
or improperly constructed entries, it reports these. If the entries are
correct, it prints out the values of the various flags. See ioctl(2) to inter-
pret the values. Note that some values are added to the flags automati-
cally.

/etc/gettydefs /etc/termcap

SEE ALSO

init(8). login(1), ioctl(2), gettydefs(5), inittab(5), termio(4)

February 17, 1984 Page 2

INIT(8) MUNIX INIT(8)

NAME

init, telinit — process control initialization

SYNOPSIS

/etc/init [0123456SsQq)
/etc/telinit [01234568sSQqabce]

DESCRIPTION

Init

Init is a general process spawner. Its primary role is to create processes
from a script stored in the file /etc/inittab (see tnittad(5)). This file
usually has init spawn getty's on each line that a user may log in on. It
also controls autonomous processes required by any particular system.

Init considers the system to be in a run-level at any given time. A run-
level can be viewed as a software configuration of the system where each
configuration allows only a selected group of processes to exist. The
processes spawned by init for each of these run-levels is defined in the
inittad file. Mit can be in one of eight run-levels, 0—8 and S or 8. The
run-level is changed by having a privileged user run /etc/init (which is
linked to /etc/telinit). This user spawned init sends appropriate signals
to the orginal init spawned by the operating system when the system was
rebooted, telling it which run-level to change to.

kit is invoked inside the UNIX System as the last step in the boot pro-
cedure. The first thing init does is to look for /etc/inittab and see if
there is an entry of the type initdefault (see inittab(5)). If there is, init
uses the run-level specified in that entry as the initial run-level to enter.
If this entry is not in inittad or inittad is not found, init requests that
the user enter a run-level from the virtual system console, /dev/syscon.
If an S (s) is entered, tnit goes into the SINGLE USER level. This is the only
run-level that doesn’t require the existence of a properly formatted init-
tadb file. If /etc/inittab doesn’'t exist, then by default the only legal run-
level that init can enter is the SINGLE USER level. In the SINGLE USER level
the virtual console terminal /dev/syscon is opened for reading and writ-
ing and the command /bin/su is invoked immediately. To exit from the
SINGLE USER run-level one of two options can be elected. First, if the shell
is terminated (via an end-of-file), init will reprompt for a new run-level.
Second, the init or telinit command can signal init and force it to change
the run-level of the system.

When attempting to boot the system, failure of init to prompt for a new
run-level may be due to the fact that the device /dev/syscon is linked to
a device other than the physical system teletype (/dev/systty). If this
occurs, init can be forced to relink /dev/syscon by typing a delete on
the system teletype which is co-located with the processor.

When init prompts for the new run-level, the operator may only enter
one of the digits O through 8 or the letters S or 3. If S is entered init
operates as previously described in SINGLE USER mode with the additional
result that /dev/syscon is linked to the user's terminal line, thus making
it the virtual system console. A message is generated on the physical
console, /dev/systty, saying where the virtual terminal has been relo-
cated.

Page 1 February 17, 1984

INIT(8) MUNIX INIT(8)

When init comes up initially and whenever it switches out of SINGLE USER
state to normal run states, it sets the ioctl(2) states of the virtual con-
sole, /dev/syscon, to those modes saved in the file /etc/ioctl.syscon.
This file is written by init whenever SINGLE USER mode is entered. If this
file doesn't exist when init wants to read it, a warning is printed and
default settings are assumed.

If a 0 through 6 is entered init enters the corresponding run-level. Any
other input will be rejected and the user will be re-prompted. If this is
the first time init has entered a run-level other than SINGLE USER, init
first scans inittab for special entries of the type boot and bootwait.
These entries are performed, providing the run-level entered matches
that of the entry before any normal processing of initiabd takes place. In
this way any special initialization of the operating system,such as mount-
ing file systemns, can take place before users are allowed onto the system.
The inittab file is scanned to find all entries that are to be processed for
that run-level.

Run-level 2 is usually defined by the user to contain all of the terminal
processes and daemons that are spawned in the multi-user environment.

In a multi-user environment, the inittab file is usually set up so that init
will create a process for each terminal on the system.

For terminal processes, ultimately the shell will terminate because of an
end-of-file either typed explicitly or generated as the result of hanging
up. When init receives a child death signal, telling it that a process it
spawned has died, it records the fact and the reason it died in /etc/utmp
and /etc/wtmp if it exists (see who(l)). A history of the processes
spawned is kept in Zetc/wtmp if such a file exists.

To spawn each process in the inittad file, init reads each entry and for
each entry which should be respawned, it forks a child process. After it
has spawned all of the processes specified by the inittabd file, init waits
for one of its descendant processes to die, a powerfail signal, or until init
is signaled by init or telinit to change the system's run-level. When one
of the above three conditions occurs, init re-examines the inittad file.
New entries can be added to the initted file at any time; however, init
still waits for one of the above three conditions to occur. To provide for
an instantaneous response the init Q or init Q command can wake init to
re-examine the inittad file.

If init receives a powerfail signal (S/GPWFR) and is not in SINGLE USER
mode, it scans initfad for special powerfail entries. These entries are
invoked (if the run-levels permit) before any further processing takes
place. In this way init can perform various cleanup and recording func-
tions whenever the operating system experiences a power failure. It is
important to note that the powerfail entries should not use devices that
must first be initialized (e.g. dzb lines) after a power failure has
occurred.

When init is requested to change run-levels (via telinit), init sends the
warning signal (SIGTERM) to all processes that are undefined in the target
run-level. Mmit waits 20 seconds before forcibly terminating these
processes via the kill signal (SIGKILL). -

February 17, 1984 Page 2

INIT(8) MUNIX INIT(8)

Telinit
Telinit, which is linked to /etc /init, is used to direct the actions of tnit.
It takes a one character argument and signals init via the kill system call
to perform the appropriate action. The following arguments serve as
directives to init.

0—-6 tells init to place the system in one of the run-levels 0—8.

a,b.c tells init to process only those /etc/inittadb file entries
having the a, b or ¢ run-level set.

Qq tells init to re-examine the /etc/inittab file.

s.S tells init to enter the single user environment. When this
level change is effected, the virtual system teletype,
/dev/syscon, is changed to the terminal from which the
command was executed.

Telinit can only be run by someone who is super-user or a member of
group sys.
FILES
/etc/inittab
/etc/utmp
/etc/wtmp
/etc/ioctl.syscon
/dev/syscon
/dev/systty

-SEE ALSO
getty(8), login(1), sh(1), who(1), kill(2), inittab(5), utmp(5).

DIAGNOSTICS ,

If init finds that it is continuously respawning an entry from /etc/inittab
more than 10 times in 2 minutes, it will assume that there is an error in
the command string, and generate an error message on the system con-
sole, and refuse to respawn this entry until either 5 minutes has elapsed
or it receives a signal from a user init (telinit). This prevents init from
eating up system resources when someone makes a typographical error
in the inittab file or a program is removed that is referenced in the init-
tabd.

Page 3 February 17, 1984

INSTALL(8) MUNIX INSTALL(O)

NAME
install — install commands

SYNOPSIS)
/etc/install [—c dira] [—f dirb] [—i] [—n dirc] [—o] [-s] file [dirx ...]

DESCRIPTION
Install is a command most commonly used in “makefiles” (see make(1))
to install a file (updated target file) in a specific place within a file sys-
tem. Each file is installed by copying it into the appropriate directory,
thereby retaining the mode and owner of the original command. The
program prints messages telling the user exactly what files it is replacing
or creating and where they are going.

If no options or directories (dirz ...) are given, install will search a set of
defauit directories (/bin, /usr/bin, /etc, /lib, and /usr/lib, in that
order) for a file with the same name as file. When the first occurrence is
founad, install issucs a message saying that it is overwriting that file with
file, and proceeds to do so. If the file is not found, the program states
this and exits without further action.

If one or more directories (dirz ...) are specified after file, those direc-
tories will be searched before the directories specified in the default list.

The meanings of the options are:

—c dira Installs a new command (file) in the directory
specified by dira, only if it is not found. If it is found,
install issues a message saying that the file already
exists, and exits without overwriting it. May be used
alone or with the —s option.

—f dird Forces file to be installed in given directory, whether
or not one already exists. If the file being installed
does not already exist, the mode and owner of the new
file will be set to 755 and bin, respectively. If the file
already exists, the mode and owner will be that of the
already existing file. May be used alone or with the —o
or —s options.

-i Ignores default directory list, searching only through
the given directories (dirz ...). May be used alone or
with any other options other than —c and —f.

—n dirc If file is not found in any of the searched directories,
it is put in the directory specified in dirc. The mode
and owner of the new file will be set to 755 and bin,
respectively. May be used alone or with any other
options other than —c and —{.

—o If file is found, this option saves the “found" file by
copying it to OLDfile in the directory in which it was
found. This option is useful when installing a normally
text busy file such as /bin/sh or /etc/getty, where the
existing file cannot be removed. May be used alone or
with any other options other than —c.

Page 1 February 17, 1884

INSTALL(8) MUNIX INSTALL(8)

—s Suppresses printing of messages other than error
messages. May be used alone or with any other
options.

SEE ALSO
make(1).

February 17, 1984 Page 2

KILLALL(O) HUNIX KILLALL(8)

NAME
killall = kill all active processes

SYNOPSIS
/etcskillall [signal]

DESCRIPTION
Kiulall is is a procedure used by /etc/shutdown to kill all active
processes not directly related to the shut down procedure.
Kulall is chiefly used to terminate all processes with open files so that
the mountcd file systems will be unbusied and can be unmounted.
Killall sends signal (see kill(1)) to all remaining processes not belonging
to the above group of exclusions. If no signal is specified, a default of 8
is used.

FILES
/etc/shutdown

SEE ALSO

fuser(8), kill(1), ps(1), shutdown(8), signal(2).

Page 1 February 17, 1984

LINK(8) MUNIX LINK(8)

NAME
link, unlink — exercise link and unlink system cealls

SYNOPSIS
/ete/link filel file2
/etc/unlink file

DESCRIPTION
Link and unlink perform their respective system calls on their argu-
ments, abandoning all error checking. These commands may only be
executed by the super-user, who (it is hoped) knows what he or she is
doing.

SEE ALSO
rm(1), link(2), unlink(2).

Page 1 February 17, 1984

LPD(8) MUNIX LPD(8)

NAME
lpd — line printer daemon

SYNOPSIS
fusr/lib/]lpd

DESCRIPTION
Lpd is the daemon for the line printer. Lpd uses the directory
susr/spool/ipd. The file lock in that directory is used to prevent two
daemons from becoming active. After the program has successfully set
the lock, it forks and the main path exits, thus spawning the daemon.
The directory is scanned for files beginning with df. Each such file is sub-
mitted as a job. Each line of a job file must begin with a key character to
specify what to do with the remainder of the line.
L specifies that the remainder of the line is to be sent as a literal.
B specifies that the rest of the line is a file name.
F isthe same as B except a formn feed is prepended to the file.
U specifies that the rest of the line is a file name. After the job has

been transmitted, the file is unlinked.
M is followed by a user ID; after the job is sent, a message is mailed to
the user via the mail(1) command to verify the sending of the job.

Any error encountered will cause the daemon to wait and start over. This
means that an improperly constructed df file may cause the same job to
be submitted repeatedly.
Lpd is automnatically initiated by the line printer command, lpr.
To restart lpd (in the case of hardware or software malfunction), it is
necessary to first kill the old daemon (if still alive), and remove the lock
file before initiating the new daemon. This is done automatically when
the system is brought up, by setc/rc, in case there were any jobs left in
the spooling directory when the system last went down.

FILES
/usr/spool/lpd/* spool area for line printer daemon
/etc/passwd to get the user’'s name
/dev/lp line printer device

SEE ALSO
lpr(1)

Page 1 February 17, 1984

MAKEKEY (8) MUNIX MAKEKEY (8)

NAME

makekey — generate encryption key

SYNOPSIS

/usr/lib/makeckey

DESCRIPTION

Makekey improves the usefulness of encryption schemes depending on a
key by increasing the amount of time required to search the key space:
It reads 10 bytes from its standard input, and writes 13 bytes on its stan-
dard output. The output depends on the input in a way intended to be
difficult to compute (i.e. to require a substantial fraction of a second).

The first eight input bytes (the input key) can be arbitrary ASCII charac-
ters. The last two (the salt) are best chosen from the set of digits,
upper- and lower-case letters, and ‘.’ and ‘/’. The salt characters are
repeated as the first two. characters of the output. The remaining 11
output characters are chosen from the same set as the salt and consti-
tute the output key.

The transformation performed is essentially the following: the salt is
used to select one of 4096 cryptographic machines all based on the
National Bureau of Standards DES algorithm, but modified in 4096
different ways. Using the input key as key, a constant string is fed into
the machine and recirculated a number of times. The 64 bits that come
out are distributed into the 66 useful key bits in the result.

Makekey is intended for programs that perform encryption (e.g. ed and
crypt(1)). Usually its input and output will be pipes.

SEE ALSO

Page 1

crypt(1), ed(1)

February 17, 1984

MKALIAS (8N) MUNIX (Newcastle Connection) MKALIAS(8N)

NAME

/etc/mkalias — create an alias to a remote file

SYNOPSIS

/etc/mkalias [-f] name identifier

DESCRIPTION

BUGS

This program facilitates the creation of “aliases’ to remote files. An alias
is a name that appears to be local but in fact refers to a file of the same
name on another system. Thus a system with no line printer could have
a file "/dev/1p” which was an alias for the line printer on another system,
(where it would have to be called “/dev/lp” as well). The operation of an
alias is therefore to take the name provided by the user and attempt to
perform the requested operation on the file of that name on the indi-
cated system. The "identifier” parameter is of the same type as that pro-
vided to mksys(BN): for Release 1.0, it must be an integer in the range
[0..255] inclusive. It will be passed to your network interface to identify
the name neighbour systemm on which the ’"real” version of this file
appears.

Aliased files must always be accessed relative to "/, otherwise they will
not be found.

DIAGNOSTICS

Page 1

Complains if file “name’ exists, unless the "-f"" option is present.

February 17, 1984

MKFS(8) MUNIX MKFS(8)

NAME

mkis — construct a file system

SYNOPSIS

/etc/mids special blocks[:inodes] [gap blocks/cyl]
/etc/mkis special proto [gap blocks/cyl]

DESCRIPTION

Page 1

Mkfs constructs a file system by writing on the special file according to
the directions found in the remainder of the command line. If the
second argument is given as a string of digits, mkfs builds a file system
with a single empty directory on it. The size of the file system is the value
of blocks interpreted as a decimal number. This is the number of physi-
cal disk blocks the file system will occupy. The boot program is left unin-
itialized. If the optional number of inodes is not given, the default is the
number of logical blocks divided by 4.

If the second argument is a file name that can be opened, mkfs assumes
it to be a prototype file proto, and will take its directions from that file.
The prototype file contains tokens separated by spaces or new-lines. The
first token is the name of a file to be copied onto block zero as the
bootstrap program (see boot(8)). The second token is a number specify-
ing the size of the created file system in physical disk blocks. Typically
it will be the number of blocks on the device, perhaps diminished by
space for swapping. The next token is the number of inodes in the file
system. The maximum number of inodes configurable is 65500. The next
set of tokens comprise the specification for the root file. File
specifications consist of tokens giving the mode, the user ID, the group ID,
and the initial contents of the file. The syntax of the contents field
depends on the mode.

The mode token for a file is a 6 character string. The first character
specifies the type of the file. (The characters —bcd specify regular, block
special, character special and directory files respectively.) The second
character of the type is either u or — to specify set-user-id mode or not.
The third is g or — for the set-group-id mode. The rest of the mode is a
three digit octal number giving the owner, group, and other read, write,
execute permissions (see chmod(1)).

Two decimal number tokens come after the mode; they specify the user
and group ID's of the owner of the file.

If the file is a regular file, the next token is a path name whence the con-
tents and size are copied. Ilf the file.is a block or character special file,
two decimal number tokens follow which give the major and minor device
numbers. If the file is a directory, mkfs makes the entries . and .. and
then reads a list of names and (recursively) file specifications for the
entries in the directory. The scan is terminated with the token 8.

A sample prototype specification follows:

/stand/diskboot

4872 110

d—77731

usr d——77731
sh ——756531 /bin/sh
ken d—75561

February 17, 1984

MKFS(8) MUNIX MKFS(8)

3
b0 b—6443100
cO c—6443100

8
S

In both command syntaxes, the rotational gap and the number of
blocks /cyl can be specified. The following values are recommended:

Device Gap Size | Blks/Cyl
RLO1/02 7 40
RPO3 5 200
RP04/05/706 7 418
RPO7 7 400
RMO3 7 160
RMOS 7 608
RMB0 9 434
defaull 7 400

The default will be used if the supplied gap and blocks/cyl are con-
sidered illegal values or if a short argument count occurs.

FILES
/etc/mkis for 1024 byte block filesystem
/etc/mkis.1b for 512 byte block filesystem

SEE ALSO
dir(5), £s(5), boot(8).
BUGS

If a prototype is used, it is not possible to initialize a file larger than 64K
bytes, nor is there a way to specify links.

February 17, 1984 Page 2

MKNOD

(8) MUNIX MKNOD (8)

NAME
mknod — build special file

SYNOPSIS
/etc/mknod name c | b major minor
/etc/mknod name p

DESCRIPTION
Mknod makes a directory entry and corresponding i-node for a special
file. The first argument is the name of the entry. In the first case, the
second is b if the special file is block-type (disks, tape) or c if it is
character-type (other devices). The last two arguments are numbers
specifying the major device type and the minor device (e.g. unit, drive,
or line number), which may be either decimal or octal.
The assignment of major device numbers is specific to each system. They
have to be dug out of the system source file /usr/sys/c.c. The letter b
refers to the array bdevsw, the letter ¢ to the array cdevsw in The major
number is the row number of the corresonding entry.
Mknod can also be used to create fifo's (a.k.a named pipes) (second case
in SYNOPSIS above).

SEE ALSO
mknod(2).

Page 1 February 17, 1984

MKSYS

(BN) MUNIX (Newcastle Connection) MKSYS(8N)

NAME

/etc/mksys — make a remote system node
SYNOPSIS

/etc/mksys [-p] | [[-f] name identifier ethernet-address]
DESCRIPTION

This program is used to create the special directory entries needed to
communicate with remote systemns via the Newcastle Connection. The
first parameter is the name that the new entry is to have, and the second
is the identifier of the system it is to refer to. The identifier must be in
the range [0..255] inclusive for Release 1.0 of the Newcastle Connection.
It will be passed to your network interface via the procedure “_netitoa()”
to be converted into a physical address when required. The inverse func-
tion "_netatoi()" will be called by the Connection to translate a network
address into an identifier. Depending on your network interface, it may
be possible to encode “identifier'” so that it is particularly easy to
transform it to a physical address. For example, “identifier’” can be used
directly as a station address for a Cambridge Ring. The ethernet address
is a 6 byte hexadecimal number, given in 12 characters in the range [0-
9a-f]. The station identifier and the ethernet address of a remote
machine must be consistent with this machines’ declarations in
/usr/sys/name.c

The "-p"” option causes "mksys"” to print the list of name-identifier pairs
known to the local system from the file '/etc/utab”, plus the
corresponding ethernet addresses from the file /etc/map_port_eadr’.

"Mksys” normally complains if "'name’" already exists. This can be over-
ridden by the "-f" option.

FILES

/etc/utab - table of name-identifier pairs

/etc/map_port_eadr - table of ethernet addresses, indexed by identifier
EXAMPLE

with virtual superroot:

/etc/mksys /../alpha 4 12440a1b041e
without virtual superroot:

/etc/mksys /alpha 4 12440a1b041e

SEE ALSO

Page !

"The Newcastle Connection — Release 1.0: Network Interface Installation
Guide", rmsys(8N), utab(5N)

February 17, 1984

MOUNT(8) MUNIX MOUNT(8)

NAME

mount, umount — mount and dismount file system

SYNOPSIS

/etc/mount [special directory [=r]]
/etc/umount special

DESCRIPTION

FILES

Mount announces to the system that a removable file system is present
on the device special. The directory must exist already; it becomes the
name of the root of the newly mounted file system.

These commands rmaintain a table of mounted devices. If invoked with no
arguments, mount prints the table.

The optional last argument indicates that the file is to be mounted read-
only. Physically write-protected and magnetic tape file systems must be
mounted in this way or errors will occur when access times are updated,
whether or not any explicit write is attempted.

Umount announces to the system that the removable file system previ-
ously mounted on device special is to be removed.

/etc/mnttab rmount table

SEE ALSO

setmnt(8). mount(2), mnttab(5).

DIAGNOSTICS

BUGS

Mount issues a warning if the file system té be mounted is currently
mounted under another name.

Umount complains if the special file is not mounted or if it is busy. The
file system is busy il it contains an open file or some user's working
directory.

Some degree of validation is done on the file system, however it is gen-
erally unwise to mount garbage file systems.

Page 1 February 17, 1984

MVDIR(8) MUNIX MVDIR(8)

NAME
mvdir — move a directory

SYNOPSIS
/ete/mvdir dirname name

DESCRIPTION
Mvdir renames directories within a file systemm. Dirname must be a
directory; name must not exist. Neither name may be a sub-set of the
other (/x/y cannot be moved to /x/y/z, nor vice versa).

Only super-user can use mvdir.

SEE ALSO
mkdir(1).

Page 1 February 17, 1984

NCHECK(8) MUNIX NCHECK(8)

NAME
ncheck — generate names from i-numbers

SYNOPSIS
setc/ncheck [—i numbers) [—a] [—s] [file-system]

DESCRIPTION
Ncheck with no argument generates a path name vs. i-number list of all
files on a set of default file systems. Names of directory files are followed
by /.. The —i option reduces the report to only those files whose i-
numbers follow. The —a option allows printing of the names . and ..,
which are ordinarily suppressed. The —s option reduces the report to
special files and files with set-user-ID mode; it is intended to discover
concealed violations of security policy.
A file systermn may be specified.
The report is in no useful order, and probably should be sorted.

SEE ALSO
fsck(8), sort(1).

DIAGNOSTICS
When the file system structure is improper, ?? denotes the “parent” of a
parentless file and a path name beginning with ... denotes a loop.

Page 1 February 17, 1984

NCSETUP(8N) MUNIX (Newcastle Connection) NCSETUP(BN)

NAME
/etc/NCsetup — initialise the Newcastle Connection tables in a process

SYNOPSIS
/uar/NCbin/NCsetup

DESCRIPTION

This program initialises the “_N" environment string used by the New-
castle Connection before executing the shell. It should be named as a
user's shell in the file "/etc/passwd”, for all those users who are to have
immediate access to the Connection. Otherwise, /bin/NCon may be
called, which is a small shell script that calls /usr/NCbin/NCsetup. The
Newcastle Connection can only be used when the “__N" string is in the
environment.

Page 1 February 17, 1984

NEWCONF(8) MUNIX (CADMUS) NEWCONF(8)

NAME

newconf — generate configuration file and reconfigure MUNIX
SYNOPSIS

/etc/newconl
DESCRIPTION

FILES

Page 1

Newconf creates the files conf.h, conf.modul and name.c needed to make
a new MUNIX kernel.

Newconf asks for

— the device drivers to be included
(some drivers are automatically included)

— whether controllers are 18 or 22 bit DMA controllers
— assignation of DMA extension registers to DMA devices
— the type and unit of the root and swap device

— the origin (block number) and size of the swap area

— some other system parameters

Newconf creates the configuration file /usr/sys/conf.h as include file to

the configuration table /usr/sys/c.c and the interrupt vector table
/usr/sys/l.s.

The file /usr/sys/conf.modul contains the names of the driver modules,
which are to be extracted from /usr/sys/libchoice to form the library
/usr/sys/lib3. The library libchoice contains pairs of drivers for 18 and
22 bit DMA devices. E.g. a controller for the RKO7 may come as an (old) 18
bit or a (new) 22 bit wide device. Correspondingly there exist drivers
hk18.0 and hk22.0 in libchoice, one of which must be chosen.

The file /usr/sys/name.c contains the identification of your system. Most
important are the nodename and the ethernet address. Newconf will ask
for them, other fields you have to edit yourself.

It is instructive to read the files /etc/newconf, /usr/sys/c.c,
/usr/sys/l.s, /usr/sys/name.c and /usr/sys/makefile. You should also
look at the header files (in /usr/include/sys) paramh, types.h,
sysmacros.h and space.h.

Reconfiguration of MUNIX is done by invoking “make” in directory
/usr/sys. This will result in compiling /usr/sys/c.c, /usr/sys/name.c,
assembling /usr/sys/l.s and linking /usr/sys/c.o, /usr/sys/l.o,
/usr/sys/name.o, and others, the kernel library /usr/sys/libl and the
driver libraries /usr/sys/lib2 and /usr/sys/lib3 to a new MUNIX kernel
named /nuniz.

/usr/sys/conf.h
/usr/sys/c.*®
/usr/sys/name.*
/usr/sys/l.*
/usr/sys/lib*
/nunix

February 17, 1984

NEWCONF(8) MUNIX (CADMUS) NEWCONF(8)

SEE ALSO
whatconf (8)

February 17, 1984 Page 2

NOTES(8) MUNIX (University of Illinois) NOTES(8)

NAME

mknf, rmn{, nfxmit, nfrev, nfarchive, newsinput, newsoutput — notesfile
utility programs

SYNOPSIS

mknf [—aon] topic | ...]

rmnf topic [...]

nfxmit ~dsite [-r } [-a] [-f file] topic [...]
nfrcv topic fromsystem

pfarchive [-n] [-d] [-f file] topic [...]
newsinput

newsoutput [-a] [-f file] topic [...]

DESCRIPTION

Page 1

mknf, rmnf, nfzmit, nfrcv, nfarchive, newsinput, and newwsoutput are
the utility programs provided with the notesfile system. They provide the
capabilities to create and remove notesfiles, update intersystem
notesfiles, archive old notes, and perform gateway activity between
news(l) and the notesfile system.

mknf and rmnf create and delete notesfiles respectively. The same
parameters apply for each: the ‘topic’ is the name that the notesfile is
known by. As mknf processes its arguments, creating new notesfiles, the
name of each new notesfile is echoed to the terminal. The new notesfiles
are closed and the notesfile owner is made the sole director. He cus-
tomarily turns control over to the user requesting the notesfile by mak-
ing that person a director. The -aon options apply to mknf only. They
signify that the notesfiles created are to permit anonymous notes, be
open, and be networked respectively.

rmnf asks for verification of each notesfile before deleting it. The
notesfile is deleted if the response line begins with a 'y’. Only the
notesfile owner is allowed to run mknf and rmn/f.

Network transmission of notesfiles is accomplished using nfzmit and
nfrcv. Nfzmit sends the specified npotesfiles to site. The -r option specifies
that a request should be queued for the remote site to transmit updates
from its copies of the notesfiles sent. Specify -a to have articles which
originated in news(1) sent. News(1)-originated articles will usually reach
each system via the news program. A timestamp of the last transmission
of each notesfile to each system is maintained. This is used for determin-
ing the notes to send. The -r option is used only if the other site does
not automatically queue updates of the notesfile.

Specify -f myfile on the command line to have nfzmit read myfile for a
list of notesfiles to be sent. This is useful if the number of notesfiles is
too numerous to list on a single command line. The shell meta-
characters % ?, [, and] are recognized in both the topic parameter and
the entries in myfile.

Nfzmit uses uux(l) to invoke nfrcv on the remote system in order to pro-
cess the incoming notes. Non-uucp connections are also supported.

February 17, 1984

NOTES(8) MUNIX (University of Illinois) NOTES(8)

BUGS

FILES

Nfarchive is used to archive notes that have not been modified in a cer-
tain amount of time. The -n parameter gives the number of days that a
note must be unmodified before being eligible for archival. The archived
notes are stored in a ‘generic’' format in a separate directory where they
are available for later retrieval. The -f parameter is similar to that of the
nfrmit parameter of the same name. The -d parameter tells nfarchive
that the eligible notes should be deleted only; they are not placed into
the archives.

To transfer from news(1) to notesfiles, arrange to have the news distribu-
tion program forward articles it receives to newsinput. Newsinput parses
the A news protocol for intersystem transfer. See the Notesfile Reference
Manual for more detail on how to establish this connection.

Newsoutput takes several arguments. The -a option specifies that
notesfile originated articles from other systems can be sent to news; the
default is that only locally written articles are passed to news. Use the -f
option to specify a file which contains a list of notesfiles to process. The
rest of the command line contains notesfiles whose new articles are
spooled to news.

The file '/usr/spool/notes/.utilities/newsgroups’, if present, contains
mapping functions between notesfiles and newsgroups. The mapping per-
mits several newsgroups to be tied to a notesfile. The file format is:

notesfile:newsgroup

More information on this feature can be found in The Notesfile Reference
Manual.

The arciver does not have a matching unarchiver. To recover unarchived
notes, one has to feed the archive into the nfrcv program.

If several systems sharing a common notesfile all decide to run newsout-
put with the -a option for that notesfile, duplicate articles may appear in
the news(1) system.

Newsinput is naive about parsing author names. In particular it gets con-
fused with mixtures of UUCP and ARPA addressing.

The news/notes software puts lines into news articles which start "#".
Some mail programs dislike this, even though it comes after the blank
line which separates the header from the text. Once large numbers of
the sites running news have the release which passes unrecognized
header lines, a change will be made to move the line mto the headers.
This should make many people happier.

/usr/spool/notes/.utilities

where most of these programs live.
/usr/spool/notes/. utilities/newsgroups

mapping between notesfiles and newsgroups
/usr/spool/notes/.utilities/net.how

specifies connection methods between systems
/usr/spool/notes/.utilities/net.alias

directory containing mapping of local and remote

notesfile names

February 17, 1984 Page 2

NOTES(8) MUNIX (University of Illinois) NOTES(8)

SEE ALSO
news(1), notes(1), nfcomment(3), uucp(1C),
The Notesfile Reference Manual

AUTHORS
Ray Essick (uiucdcstessick, uiucdes'notes)
Rob Kolstad (uiucdes'kolstad)
Department of Computer Science
222 Digital Computer Laboratory
University of lllinois at Urbana-Champaign
1304 West Springfield Ave.
Urbana, IL 61801

Page 3 February 17, 1984

PSTAT(8) MUNIX PSTAT(8)
NAME
pstat — print system facts
SYNOPSIS
pstat [—aixptuf] [suboptions] [file]
DESCRIPTION
Pstat interprets the contents of certain system tables. If file is given, the
tables are sought there, otherwise in /dev/mem. The required namelist is
taken from sunix. Options are
—a Under —p, describe all process slots rather than just active ones.
=i Print the inode table with the these headings:
LOC The core location of this table entry.
FLAGS Miscellaneous state variables encoded thus:
L locked
U update time filesystem(5)) must be corrected
A access time must be corrected
M file system is mounted here
w wanted by another process (L flag is on)
T contains a text file
C changed time must be corrected
CNT Number of open file table entries for this inode.
DEVICE
Major and minor device number of file system in which this inode
resides.
INO I-number within the device.
MODE Mode bits, see chmod(2).
NLK Number of links to this inode.
UID User ID of owner.
SIZ/DEV
Number of bytes in an ordinary file, or major and minor device of
special file.
-Xx Print the text table with these headings:
LOC The core location of this table entry.
FLAGS Miscellaneous state variables encoded thus:
T ptrace(2) in effect
v text not yet written on swap device
L loading in progress
K locked
w wanted (L flag is on)
DADDR Disk address in swap, measured in multiples of 512 bytes.
CADDR Core address, measured in multiples of 512 bytes.
SIZE Size of text segment, measured in multiples of 512 bytes.
IPTR Core location of corresponding inode.
CNT Number of processes using this text segment.
CCNT Number of processes in core using this text segment.
-p Print process table for active processes with these headings:
Page 1 February 17, 1984

PSTAT(8) MUNIX PSTAT(8)

LOC The core location of this table entry.
S Run state encoded thus:

0] no process
1 waiting for some event
3 runnable
4 being created
5 being terminated
6 stopped under trace
F Miscellaneous state variables, or-ed together:
01 loaded
02 the scheduler process
04 locked
010 swapped out
020 traced

040 used in tracing

0100 locked in by plock(2).
PRI Scheduling priority, see nice(2).
SIGNAL

Signals received (signals 1-16 coded in bits 0-15),
UID Real user ID.

TIM Time resident in seconds; times over 127 coded as 127.
CPU VWeighted integral of CPU time, for scheduler.
NI Nice level, see nice(2).

PGRP Process number of root of process group (the opener of the con-
trolling terminal).

PID The process ID number.

PPID The process ID of parent process.

ADDR If in core, the physical address of the ‘u-area’ of the process, if
swapped out, the position in the swap area, each time measured
in multiples of 512 bytes. .

SIZE Size of process image in multiples of 512 bytes.

WCHAN Wait channel number of a waiting process.

LINK Link pointer in list of runnable processes.

TEXTP If text is pure, pointer to location of text table entry.

CLKT Countdown for alarm(2) measured in seconds.

—t Print table for terminals with these headings:

RAW Number of characters in raw input queue.

CAN Number of characters in canonicalized input queue.
OUT Number of characters in output queue.

IFLAG See termio(4). The same for OFLAG, CFLAG, LFLAG.
STATE See /usr/include /sys/tty.h(internalstateflags).

DEL Number of delimiters (newlines) in canonicalized input queue.
COL Calculated column position of terminal.

PGRP Process group for which this is controlling terminal.

—u print information about a user process; the next argument is its
address as given by ps(1). The process must be in main memory,
or the file used can be a core image and the address 0.

—f Print the open file table with these headings:
LOC The core location of this table entry.

February 17, 1984 Page 2

PSTAT(8) MUNIX PSTAT(8)

FLG Miscellaneous state variables encoded thus:

R open for reading
w open for writing
P pipe

CNT Number of processes that know this open file.
INO The location of the inode table entry for this file.
OFFS The file offset, see lseek(2).

FILES

/unix namelist

/dev/mem default source of tables
SEE ALSO

ps(1), stat(2), fs(5)
K. Thompson, UN/X /mplementation

Page 3 February 17, 1984

PWCK(8) MUNIX PWCK(8)

NAME
pwck, grpck — password/group file checkers

SYNOPSIS
/etc/pwck [file]
/etc/grpek [file]

DESCRIPTION
Puwck scans the password file and notes any inconsistencies. The checks
include validation of the number of fields, login name, user ID, group ID,
and whether the login directory and optional program name exist. The
default password file is /etc/passwd.

Grpck verifies all entries in the group file. This verification includes a
check of the number of fields, group name, group ID, and whether all

login names appear in the password file. The default group file is
/etc/group.

FILES
/etc/gtoup
/etc/passwd

SEE ALSO
group(8), passwd(5).
Setting up the UNIX System

DIAGNOSTICS
Group éntries in /etc/group with no login names are flagged.

Page 1 February 17, 1984

QUOT(8) MUNIX QuUOT(8)

NAME

quot — summarize file system ownership
SYNOPSIS

quot [option] ... [filesystem]
DESCRIPTION

Quot prints the number of blocks in the named filesystem currently
owned by each user. If no filesystem is named, all mounted filesystems
will be scanned. The following options are available:

-n Cause the pipeline ncheck filesystem | sort +0n | quot ~n filesys-
temn to produce a list of all files and their owners.

—c Print three columns giving file size in blocks, number of files of
that size, and cumulative total of blocks in that size or smaller file.
e § Print count of number of files as well as space owned by each user.
/etc/passwd to get user names
SEE ALSO
1s(1), du(1)
BUGS

Holés in files are counted as if they actually occupied space.

Page 1 February 17, 1984

RECNEWS(8) MUNIX RECNEWS(8)

NAME

recnews — receive unprocessed articles via mail
SYNOPSIS

/usr/lib/news/recnews [newsgroup [sender]]
DESCRIPTION

Recnews reads a letter from the standard input; determines the article
title, sender, and newsgroup; and gives the body to inews with the right
arguments for insertion.

If newsgroup is omitted, the to line of the letter will be used. If sender is
omitted, the sender will be determined from the from line of the letter.
The title is determined from the subject line.

SEE ALSO
inews(1), uurec(8), sendnews(8), readnews(1), checknews(1)

Page 1 February 17, 1984

RENICE(8) MUNIX RENICE(8)

NAME
renice — alter priority of running process by changing nice

SYNOPSIS
/etc/renice pid [priority]

DESCRIPTION
Renice can be used by the super-user to alter the priority of a running
process. By default, the nice of the process is made 19 which means that
it will run only when nothing else in the system wants to. This can be

used to nail long running processes which are interfering with interactive
work.

Renice can be given a second argument to choose a nice other than the
default. Negative nices can be used to make things go very fast.

FILES
/unix
/dev/kmem

SEE ALSO
nice(1)

BUGS
If you make the nice very negative, then the process cannot be inter-
rupted. To regain control you must put the nice back (e.g_. to 0.)

Page 1 February 17, 1984

RESTOR(8)

NAME

MUNIX RESTOR(8)

restor — incremental file system restore

SYNOPSIS
restor

DESCRIPTION

key [argument ...]

Restor is used to read magtapes dumped with the dump command. The
key specifies what is to be done. Key is one of the characters rRxt
optionally combined with {.

{

rorR

Use the first argument as the name of the tape instead of the
default.

The tape is read and loaded into the file system specified in argu-
ment. This should not be done lightly (see below). If the key is R
restor asks which tape of a multi volume set to start on. This
allows restor to be interrupted and then restarted (an icheck
—sorfsck must be done before restart).

Each file on the tape named by an argument is extracted. The file
name has all ‘mount’ prefixes removed; for example, /usr/bin/lpr
is named /bin/lpr on the tape. The file extracted is placed in a
file with a numeric name supplied by restor (actually the inode
number). In order to keep the amount of tape read to a minimum,
the following procedure is recommended:

Mount volume 1 of the set of dump tapes.
Type the restor cornmand.

Restor will announce whether or not it found the files, give the
number it will name the file, and rewind the tape.

It then asks you to ‘mount the desired tape volume’. Type the
number of the volume you choose. On a multivolume dump the
recommended procedure is to mount the last through the first
volume in that order. Kestor checks to see if any of the files
requested are on the mounted tape (or a later tape, thus the
reverse order) and doesn't read through the tape if no files are. If
you are working with a single volume dump or the number of files
being restored is large, respond to the query with ‘1’ and restor
will read the tapes in sequential order.

If you have a hierarchy to restore you can use dumpdir(By) to pro-
duce the list of names and a shell script to move the resulting files
to their homes.

Print the date the tape was written and the date the filesystem
was dumped from.

The r option should only be used to restore a complete dump tape onto a
clear file system or to restore an incremental dump tape onto this. Thus

Page 1

/etc/mkfs /dev/rp0 40600
restor r /dev/rp0

February 17, 1984

RESTOR(8) MUNIX RESTOR(8)

FILES

is a typical sequence to restore a complete dump. Another restor can be
done to get an incremental dump in on top of this.

A dump followed by a mkfs and a restor is used to change the size of a
file system.

default tape unit varies with installation
restor.1b restor for 512byte filesystems
rst*

SEE ALSO

dump(8), mkf{s(8), dumpdir(8)

DIAGNOSTICS

There are various diagnostics involved with reading the tape and writing
the disk. There are also diagnostics if the i-list or the free list of the file
system is not large enough to hold the dump.

If the dump extends over more than one tape, it may ask you to change
tapes. Reply with a new-line when the next tape has been mounted.

RE1024

BUGS

For conversion purposes there exists a program /bin/rel1024, that reads
a tape produced with an old 512 byte block dump resp. the new dump. 1d,
and writes it onto a 1024 byte filesystem.

There is redundant information on the tape that could be used in case of
tape reading problems. Unfortunately, restor doesn’t use it.

February 17, 1984 Page 2

RIE(8) MUNIX RJE(B)

NAME
rje — RIE (Remote Job Entry) to IBM

SYNOPSIS
/usr/rje/rjeinit
/usr/rje/rjehalt
DESCRIPTION
RIJE is the communal name for a collection of programs and a file organi-
zation that allows a CADMUS system, equipped with a KEDQS driver, and

associated KEDQS hardware to communicate with IBM's Job Entry Subsys-
tems by mimicking an IBM 360 remote multileaving work station.

Implementation.

RIJE is initiated by the command rjeinit and is terminated gracefully by
the command rjehalt. While active, RJE runs in the background and
requires no human supervision. It quietly transmits, to the IBM system,
jobs that have been queued by the send(1C) command, and operator
requests that have been entered by the rjestat(1C) command. It
receives, from the IBM system, print and punch data sets and message
output. It enters the data sets into the proper UNIX directory and
notifies the appropriate user of their arrival. It scans the message out-
put to maintain a record on each of its jobs. It also makes these mes-
sages available for public inspection, so that rjestat(1C), in particular,
may extract responses.

Unless otherwise specified, all files and commands described below reside
in directory /usr/rje (first exceptions: send and rjestat).

There are two sources of data to be transmitted by RJE from UNIX to an
IBM System/370. In both cases, the data is organized as files in the
/usr/rje/squeue directory. The first are files named co* which are
created by the enquiry command rjestat(1C). Theé second source, con-
taining the bulk of the data, are files named rd* or sq* which have been
created by send and queued by the program rjeger. On completion of
processing send invokes rjeger. Kjegqer and rjestat inform the program
rjexmit that a file has been queued via the file joblog. Upon successful
transmission of the data to the IBM machine, rjezmit removes the queued
file. As files are transmitted and received, the program rjedisp writes an
entry containing the date, time, file name, logname, and number of
records in the file acctlog, if it exists. This file can be used for local log-
ging or accounting information, but is not used elsewhere by RJE. The
use of this information is up to the RJE administrator.

Each time rjeinit is invoked, the joblog file is truncated and recreated
from the contents of the /usr/rje/squeue directory. During this time,
rjeinit prevents simultaneous updating of the joblog file.

Output from the IBM system is classified as either a print data set, a
punch data set, or message output. Print output is converted to an ASCII
text file, with standard tabs. Form feeds are suppressed, but the last line
of each page is distinguished by the presence of an extraneous trailing
space. Punch output is not converted at all. This classification and the
conversion occur as the output is received. Files are moved or copied
into the appropriate user's directory and assigned the name prnte or
pnche, respectively, or placed into user directories under user-specified

Page 1 February 17, 1984

RJE(8) MUNIX RJE(8)

names, or used as input to programs to be automatically executed, as
specified by the user. This process is driven by the ‘usr=."
specification. RJE retains ownership of these files and permits read-only
access to them. Message output is digested by RJE immediately and is
not retained.

A record is maintained for each job that passes through RIJE. Identifying
information is extracted contextually from files transmitted to and
received from the IBM system. This information is stored and used by the
rjedisp program for IBM job acknowledgements and delivery of output
files.

The IBM system automatically returns an acknowledgement message for
each job it receives. Other status messages are returned in response to
enquiries entered by users. All messages received by RIE are appended
to the resp file. The resp file is automatically truncated when it reaches
70,000 bytes.

While it is active, RIE occupies at least the three process slots that are
appropriated by rjeinit. These slots are used to run rjermit, the
transmitter, rjerecv, the receiver, and rjedisp, the dispatcher. These
three processes are connected by pipes. The function of each is as fol-

lows:

rjezmait
Cycles repetitively, looking for data to transmit to the IBM system.
After transmission, rjexmit passes an event notice to rjedisp. If
rjezmit encounters a stop file, (created by rjehalt), it exits nor-
mally. In the case of error termination, rjezmit reboots RJE by
executing rjeinit.

Tjerecv

Cycles repetitively, looking for data returning from the IBM
machine. Upon receipt of data, rjerecv notifies either rjezmit or
rjedisp of the event (transfer information is sometimes passed to
rjezmit). Fjerecv exits normally at the first appropriate moment
when it encounters the file stop, or exits reluctantly when it
encounters a run of errors.
rjedisp

Follows up event notices by directing output files, updating
records, and notifying users. HKjedisp references the system files
/etc/passwd and /etc/ulmp to correlate user names, numeric ids,
and terminals. Termination of rjerecv causes rjedisp to exit also.

Rjeinit has the capability of dialing any remote IBM system with the
proper hardware and software configuration.

Most RIE files and directories are protected from unauthorized tamper-
ing. The exception is the spool directory. It is used by send(1C) to
create temporary files in the correct file system. HAjeger and rjestat(1C),
the user’s interfaces to RJE, operate in setuid mode to contribute the
necessary permission modes.

Administration.
Some minimal oversight of each RJE subsystem is required. The RJE mail-
box should be inspected and cleaned out periodically. The job directory

February 17, 1984 Page 2

RIJE(8) MUNIX RIE(8)

should also be checked. The only files placed there are output files
whose destination file systemns are out of space. Users should be given a
short period of time (say, a day or two), and then these files should be
removed.

The configuration table Zusr/rje/lines is accessed by all components of
RJE. Each line of the table (rmaximum of 8) defines an RJE connection. Its
seven columns may be labeled host, system, directory, prefiz, device,
peripherals and parameters. These columns are described as follows:

host
The name of a remote IBM computer (e.g., A B C). This string can
be up to 5 characters.

system
The name of a UNIX system. This name should be the same as the

system name from uname(1).

directory
This is the directory name of the servicing RJE subsystem (e.g.,
/usr/rjel).

prefix
This is the string prefixed (redundantly) to several crucial files
and programs in directory (e.g., rjel, rje2, rje3).

device
This is the name of the controlling KEDQS device, with /dev/
excised.

peripherals
This field contains information on the logical devices (readers,
printers, punches) used by RJE. Each subfield is separated by
and is described as follows:

(1) Number of logical readers.
(2) Number of logical printers.
(3) Number of logical punches.

Note: the number of peripherals specified for an RJE subsystem
must agree with the number of peripherals which have been
described on the remote machine for that line.

parameters
This field contains information on the type of connection to make.
Each subfield is separated by :. Any or all fields may be omitted;
however, the fields are positional. All but trailing delimiters must
be present. For example, in
1200:512:::9-555-1212
subfields 3 and 4 are missing, but the delimiters are present. Each
subfield is defined as follows:

(1) space
This subfield specifies the amount of space (S) in blocks
that RJE tries to maintain on file systems it touches. The
default is 0 blocks. Send will not submit jobs and rjeinit
issues a warning when less than 1.55 blocks are available;

Page 3 February 17, 1984

RJE(8)

MUNIX RJE(8)

rjerecv stops accepting output from the host when the
capacity falls to S blocks; RJE becomes dormant, until con-
ditions improve. If the space on the file system specified by
the user on the "usr=" card would be depleted to a point
below S, the file will be put in the job subdirectory of the
connection’'s home directory, rather than in the place that
the user requested.

(2) size
This subfield specifies the size in blocks of the largest file
that can be accepted from the host without truncation tak-
ing place. The default is no truncation.

(3) badjobs

This subfield specifies what to do with undeliverable return-
ing jobs. If an output file is undeliverable for any reason
other than file system space limitations (e.g., missing or
invalid "'usr=" card) and this subfield contains the letter y,
the output will be retained in the job subdirectory of the
home directory. and login rje is notified. If this subfield
contains an n or has any other value, undeliverable output
will be discarded. The default is n.

(4) console
This subfield specifies the status of the interactive status
terminal for this line. If the subfield contains an i, all con-
sole status facilities are inhibited (e.g., rjestat(1C) will not
behave like a status terminal). In all cases, the normal
non-interactive uses of rjestat(1C) will continue to function.
The default is y.
(5) dial-up -
This subfield contains a telephone number to be used to call
a host machine. The telephone number may contain the
digits O thru 9 and the character — which denotes a pause.
If the telephone number is not present, no dialing is
attempted and a leased line is assumed.
Sign-on is controlled by the existence of a signon file in the home direc-
tory. If this file is present, its contents are sent as a sign-on message to
the host system. If this file does not exist, a blank card is sent. Sign-off
is controlled in the same way, except that the signoff file is sent by
rjehalt if it exists. If the signoff file does not exist, a **/*signofT"’ card is
sent. These files should be ASCII text and no more than 80 characters.

Send(1C) and rjestat(1C) select an available connection by indexing on
the host field of the configuration table. RJE programs index on the
prefix field. A subordinate directory, sque, exists in /usr/rje for use by
rjedisp and shqer programs. This directory holds those output files that
have been designated as standard input to some executable file. This
designation is done via the "‘usr=.."" specification. HKjedisp places the
output files here and updates the file log to specify the order of execu-
tion, arguments to be passed, etc. Shger execules the appropriate files.

All RIJE programs are shared text; therefore, if more than one RIE is to be
run on a given UNIX system, simply link (via In(1)) RJE2 program names to

February 17, 1984 Page 4

RJE(®) MUNIX RJE(8)

SEE AL

RJE names in /Zusr.

SO

rjestat(1C), send(1C).,

UNIX Remote Jobd Entry User's Quide by K. A. Kelleman.

UNIX Remote Job Entry Administrative Guide by M. J. Fitton.
Setting Up UNIX.

DIAGNOSTICS

Page 5

Rjeinit provides briel error messages describing obstacles encountered
while bringing up RJE. They can best be understood in the context of the
RJE source code. The most {frequently occurring one is ‘‘cannot open
/dev/vpm?'’. This may occur if another process already has the KEDQS
devige open.

Once RIE has been started, users should assist in monitoring its perfor-
mance, and should notify operations personnel of any perceived need for
remedial action. Rjestat(1C) will aid in diagnosing the current state of
RJE. It can detect, with some reliability, when the far end of the com-
rmunications line has gone dead, and will report in this case that the host
computer is not responding to RJE. It will also attempt to reboot RJE if it
detects a prolonged period of inactivity on the KEDQS.

February 17, 1984

RLDOWN(S8) MUNIX RLDOWN(8)

NAME

rldown — power down sequence for RLO2 disks (WDC11 emulation)
SYNOPSIS

/etc/ridown
DESCRIPTION

BUGS

Page 1

The CADMUS 9212 system uses the ANDROMEDA WDC11 controller to emu-
late RLO2 disks. This controller provides a special command to ensure
that the heads step to the center of the drives and are pulled into the
head protection latches. Performing this command on other controllers
causes a bus error and system crash.

Rldown must be the last command before switching the power off. Other-
wise you risk bad blocks on your disk. First you will be asked if you are
aware of what you are doing. After confirmation it starts a sync, waits
some seconds until all 170 has finished and executes this special com-
mand. When this command is finished, you get a message on the console
and the system hangs. Only reset or power off/on puts you back in con-
trol.

Rldown must be executed in smingle user mode! Any pending 170 can
cause a damage of involved filesystems.

Therefore login as root at the console and type...
finits

[

INIT: New run level: S
INIT: SINGLE USER MODE
ridoun

or...
shutdoun -h +1
Shutdown at ...
ridown

Switch the power ofl.

Problems arise if you use rldown in multi user mode: Only the 1/0 queue
for the RLO2 disks is checked before the heads are stepped to the center
of the disks and the system is shut down.

July 31, 1984

RNSYS(8N) MUNIX (Newcastle Connection) RMSYS(8N)

NAME
/etc/rmsys — remove a remote system name
SYNOPSIS
/etc/rmsys name
DESCRIPTION
This program removes the special Newcastle Connection entry given by
name.

. FILES
: /etc/utab - file of remote system names and identifiers

SEE ALSO
mksys(8N), utab(5SN)

Page 1 February 17, 1984

RUNACCT(8) MUNIX RUNACCT(8)

NAME
runacct — run daily accounting

SYNOPSIS
/usr/lib/acct/runacct [mmdd [state]]

DESCRIPTION
Runacct is the main daily accounting shell procedure. It is normally ini-
tiated via cron(8). Runacct processes connect, fee, disk, and process
accounting files. It also prepares summary files for prdaiy or billing
purposes.

Runacct takes care not to damage active accounting files or summary
files in the event of errors. It records its progress by writing descriptive
diagnostic messages into active. When an error is detected, a message is
written to /dev/console, mail (see mail(l)) is sent to root and adm. and
runacct terminates. Runacct uses a series of lock files Lo protect against
re-invocation. The files lock and lockl are used to prevent simultaneous
invocation, and lastdate is used to prevent more than one invocation per
day.

Runacct breaks its processing into separate, restartable states using
statefile to remember the last state completed. It accomplishes this by
writing the state name into statefile. Runacct then looks in statefile to
see what it has done and to determine what to process next. States are
executed in the following order:

SETUP Move active accounting files into working files.

WTHPFIX
Verify integrity of wtmp file, correcting date changes if
necessary.

CONNECT1
Produce connect session records in ctmp.h format.

CONNECTZ
Convert ctmp.h records into tacct.h format.

PROCESS
Convert process accounting records into tacct.h format.

MERGE Merge the connect and process accounting records.

FEES Convert output of chargefee into tacct.h format and merge
with connect and process accounting records.

DISK Merge disk accounting records with connect, process, and
fee accounting records.

MERGETACCT
Merge the daily total accounting records in daytacct with
the summary total accounting records in

/usr/adm’/acct/sum/tacct.
CMS Produce command summaries.

USEREXIT
Any installation-dependent accounting programs can be
included here.

Page 1 February 17, 1984

RUNACCT(8) MUNIX RUNACCT(8)

CLEANUP
Cleanup temporary files and exit.

To restart runacct after a failure, first check the active file for diagnos-
tics, then fix up any corrupted data files such as pacct or wtmp. The lock
files and lastdate file must be removed before runacct can be restarted.
The argument mmdd is necessary if runacct is being restarted, and
specifies the month and day for which runacct will rerun the accounting.
Entry point for processing is based on the contents of statefile; to over-
ride this, include the desired state on the command line to designate
where processing should begin.

EXAMPLES

FILES

To start runacct.
nohup runacct 2> /usr/adm/acct/nite/{d2log &

To restart runacct.
nohup runacct 0601 2>> /usr/adm/acct/nite/fd2log &

To restart runacct at a specific state.
nohup runacct 0601 MERGE 2>> /usr/adm/acct/nite/fd2log &

/etc/wimp

/usr/adm/paccte
/usr/include/tacct.h
/usr/include/ctmp.h
/usr/adm/acct/nite/active
/usr/adm/acct/nite/daytacct
susr/adm/acct/nite/lock
/usr/adm/acct/nite/]lockl
/usr/adm/acct/niteslastdate
/usr/adm/acct/nite/statefile
/usr/adm/acct/nite/ptaccte.mmdd

SEE ALSO

acct(B8), acctems(8), acctcom(1), acctcon(8), acctmerg(B8), acctpre(8),
acctsh(8), cron(8), fwtmp(8), acct(2), acct(5), utmp(5).
UNIX Accounting System

DIAGNOSTICS

BUGS

The accounting system will start complaining with ®**RECOMPILE pnpsplit
WITH NEW HOLIDAYSeee after the last holiday of the year. See The UNIX Sys-
temm Accounting for more on how to correct this condition. Other diag-
nostics are placed in various error and log files.

Normally it is not a good idea to restart runacct in the SETUP state. Run
SETUP manually and restart via:

runacct mmdd WTMPFIX

If runacct failed in the PROCESS state, remove the last ptacct file because
it will not be complete.

February 17, 1984 Page 2

RXTEST(1) MUNIX RXTEST(1)

NAME

rxtest — test a floppy disk for bad blocks
SYNOPSIS

rxtest [-w] device [blocks]
DESCRIPTION

Rxtest is a floppy disk check program similar to the standealone disk
check program check. Rrtest tests floppies for the location of bad blocks
but does not write any bad block information on the floppy. If there is an
error in a header, or if there is a read, write or compare error within one
block that block is defined as bdad.

There is no way to replace bad blocks by good blocks except to use
another floppy. Rrtest is only provided as a tool for separating a set of
floppies into good ones and bad ones.

Device is the character special flle name of a floppy drive such as
/dev /rrz2 for example. The blocks argument gives the number of 512-
byte blocks to be tested. The default value is 2002, fitting to a double
density, double sided 8 inch floppy. See the table in rz(4) for other floppy
types. For the 5 174 inch floppy we recommend to specify only 980 blocks
as the controller may use the remaining blocks for alignment informa-
tion.

With the —w flag present the contents of the floppy is overwritten. Other-
wise it is preserved during the test.

The teststrategy is as follows:

A fixed number of blocks is read to save the contents, then written
with a testpattern. That number of blocks is read again and com-
pared with the testpattern. Afterwards the previous contents is
restored by a write operation.

The pattern 00ff.0244d,...fc,03.fe 01 is used twice to test a 512-
byte block. If the —w flag is specified the complete floppy is writ-
ten first and then read and compared. Saving and restoring of the
contents is omitted.

Testing a 5 174 inch floppy without preserving the contents takes about
2:20 minutes.

EXAMPLES
rxtest -w /dev/rrx2 980
rxtest /dev/rrx3

DIAGNOSTICS
Rxtest tells about the number of blocks tested, the number of bad blocks
found and whether a block was indicated as bad by a read, write or com-
pare error.
If you start rztest from the system-console you will get intermixed diag-
nostics from the floppy driver and from rztest.

SEE ALSO
rxctrl(1), rx(4), format(8)

BUGS
The number of bad blocks reported is just the sum of read, write and
compare errors detected. So sometimes a block with write and read error
is counted twice.

SA(8)

NANE

MUNIX SA(8)

sa, accton — systemn accounting

SYNOPSIS

/etc/sa [—abedDfijkKinrstuv] [file]
/etc/accton [file]

DESCRIPTION

Page 1

With an argument naming an existing file, accton causes system account-
ing information for every process executed to be placed at the end of the
file. If no argument is given, accounting is turned off.

Sa reports on, cleans up, and generally maintains accounting files.

Sa is able to condense the information in /usr/edm/acct into a sum-
mary file /usr/adm/savacct which contains a count of the number of
times each command was called and the time resources consumed. This
condensation is desirable because on a large system /usr /adm sacct can
grow by 100 blocks per day. The summary file is normally read before
the accounting file, so the reports include all available information.

If a file name is given as the last argument, that file will be treated as the
accounting file; /usr/adm /acct is the default.

Output fields are labelled: cpu for the sum of user+system time (in
minutes), re for real time (also in minutes), k for cpu-time averaged core
usage (in 1k units), avio for average number of i/o operations per execu-
tion. With options fields labelled tio for total i/o operations, k*sec for
cpu storage integral (kilo-core seconds), u and s for user and system cpu
time alone (both in minutes) will sometimes appear.

There are near a googol of options:

a Place all command names containing unprintable characters and
those used only once under the name '***other.’

b Sort output by sum of user and system time divided by number of
calls. Default sort is by sum of user and system times.

c Besides total user, system, and real time for each command print
percentage of total time over all commands.

d Sort by average number of disk i/o operations.

D Print and sort by total number of disk i/o operations.

f Force no interactive threshold compression with —v flag.

i Don't read in summary file.

j Instead of total minutes time for each category, give seconds per
call.

k Sort by cpu-time average memory usage.

K Print and sort by cpu-storage integral.

] Separate system and user time; normally they are combined.

m Print number of processes and number of CPU minutes for each
user.

February 17, 1984

SA(8)

FILES

BUGS

MUNIX SA(8)

Sort by number of calls.
Reverse order of sort.

Merge accounting file into summary file /usr/adm/savacct when
done.

For each command report ratio of real time to the sum of user
and system times.

Superseding all other flags, print for each command in the
accounting file the user ID and command name.

Followed by a number n, types the name of each cornmand used n
times or {ewer. Await a reply from the terminal; if it begins with
'y'., add the command to the category ‘**junk*®*.’ This is used to
strip out garbage.

/usr/adm/acct raw accounting
/usr/adm/savacct summary
/usr/adm/usracct per-user summary

SEE ALSO
acct(2)

The number of options to this program is absurd.

February 17, 1984 Page 2

SAR(8) MUNIX SAR(8)

NAME

sal, sa2, sadc — system activity report package

SYNOPSIS

/usr/lib/sa/sade [t n] {ofile]
/usr/lib/sa/sal [t n]
/usr/lib/sa/sa2 [—ubdycwaqvm] [—s time] [—e time] [—i sec]

DESCRIPTION

Page 1

System activity data can be accessed at the special request of a user
(see sar(1)) and automatically on a routine basis as described here. The
operating system contains a number of counters that are incremented as
various system actions occur. These include CPU utilization counters,
buffer usage counters, disk and tape 1/0 activity counters, TTY device
activity counters, switching and system-call counters, file-access
counters, queue activity counters, and counters for inter-process
communications.

Sadc and shell procedures sal and sa2 are used to sample, save and
process this data.

Sadc, the data collector, samples systemn data n times every t seconds
and writes in binary format to ofile or to standard output. If t and n are
omitted, a special record is written. This facility is used at system boot
time to mark the time at which the counters restart from zero. The
s/etc/rc entry:
su sys —c "“/usr/lib/sa/sadc /usr/adm/sa/sa‘date +7%d&"

writes the special record to the daily data file to mark the system
restart.

The shell script sal, a variant of sadc, is used to collect and store data in
binary file /usr/adm/sa/sadd where dd is the current day. The
arguments t and n cause records to be written n times at an interval of ¢
seconds, or once if omitted. The entries in crontab (see cron(8)):

O ¢ee(06susys—c "/usr/lib/sa/sal”

0B-17 ¢ 1-5susys—c"/usr/lib/sa/satl 1200 3"

0 18—7 ® ¢ 1-5 su sys —c "/usr/lib/sa/sal”
will produce records every 20 minutes during working hours and hourly
otherwise.

The shell script sa2, a variant of sar(1), writes a daily report in file
/usr/adm/sa/sardd. The options are explained in sar(1). The crontab
entry:

518 ¢ 1-5su adm —c ""/usr/lib/sa/sa2 -=s 8:00 —e 18:01 -j 3600 —A"
will report important activities hourly during the working day.

February 17, 1984

SAR(8) MUNIX SAR(8)

The structure of the binary daily data file is:

struct sa |
struct sysinfo si; /°® see /usr/include/sys/sysinfo.h ¢/

int szinode; /¢ current entries of inode table ¢/

int szfile; /¢ current entries of file table ¢/

int sztext; /¢ current entries of text table ¢/

int szproc; /¢ current entries of proc table ¢/

int mszinode; /¢ size of inode table ¢/

int mszfile; /¢ size of file table ¢/

int msztext; /°* size of text table ¢/

int mszproc,; /¢ size of proc table ¢/

long inodeovf; /* cumul. overflows of inode table ¢/

long inodeovf; /* cumul. overflows of file table ¢/

long textovl, /* cumnul. overflows of text table ¢/

long procovf; /* cumnul. overflows of proc table ¢/

time_t ts; /¢ time stamp, seconds */’

long devio[NDEVS][4]; /¢ device info for up to NDEVS units ¢/
#define I0_OPS 0] /® cumul. 1/0 requests ¢/
#define 10_BCNT 1 /* cumul. blocks transferred ¢/
#define 10_ACT 2 /* cumul. drive busy time in ticks ¢/
#define IO_RESP 3 /* curnul. 170 resp time in ticks ¢/

J:

FILES
/usr/adm/sa/sadd daily data file
/usr/adm/sa/sardd daily report file
/tmp/sa.adrfl address file

SEE ALSO
sag(1G), sar(1). timex(1).

February 17, 1984 Page 2

SENDNEWS(8) MUNIX SENDNEWS(8)

NAME
sendnews — send news articles via mail

SYNOPSIS
sendnews [—o] [—a] [=b] [—n newsgroups] destination

DESCRIPTION
sendnews reads an article from it's standard input, performs a set of
changes to it, and gives it to the mail program to mail it to destination.

An ‘N’ is prepended to each line for decoding by uurec(8).
The —o flag handles old format articles.

The —a flag is used for sending articles via the ARPANET. It maps the
article's path from uucphost'zzz to zzz@arpahost.

The —b flag is used for sending articles via the Berknet. It maps the
article's path from uucphost’zzz to berkhost zzz.

The —n flag changes the article’s newsgroup to the specified newsgroup.

SEE ALSO
inews(1), uurec(8), recnews(8), readnews(1), checknews(1)

Page 1 February 17, 1984

SETMNT(8) MUNIX SETMNT(8)

NAME
setmnt — establish mount table

SYNOPSIS
/etc/setmnt

DESCRIPTION
Setrnnt creates the /etc/mnttab table (see mnttad(5)), which is needed
for both the mount(8) and umount commands. Setmnt reads standard
input and creates a mnttad entry for each line. Input lines have the for-
mat:

filesys node

where filesys is the name of the file system's special file (e.g.. "'rp??")
and node is the root name of that file system. Thus fllesys and node
become the first two strings in the mnttab(5) entry.

FILES
/etc/mnttab

SEE ALSO
mnttab(5). devnm(8)

BUGS

Evil things will happen if filesys or node are longer than 10 characters.
Setrnnt silently enforces an upper limit on the maximum number of
mnttad entries.

Page 1 February 17, 1984

SETUGI(8BN) MUNIX (Newcastle Connection) SETUGI(8N)

NAME
/etc/setugi — alter user id of a UNIX server
SYNOPSIS
/etc/setugi
DESCRIPTION
This program is invoked by a UNIX server when its client process carries
out a set user/group id execution. The eflect of executing it is to alter
the user/group id of the server. The program must be setuid to “root”.
SEE ALSO

usrv(8N)

Page 1 February 17, 1984

SHUTDO'N.(B) MUNIX SHUTDOWN(8)

NAME

shutdown — terminate all processing
SYNOPSIS

/etc/shutdown.sh
DESCRIPTION

Shutdown is part of the UNIX operation procedures. Its primary function
is to Lterminate all currently running processes in an orderly and cau-
tious manner. The procedure is designed to interact with the operator
(i.e., the person who invoked shutdown). Shutdown may instruct the
operator to perform some specific tasks, or to supply certain responses
before execution can resume. Shutdown goes through the following
steps:

- All users logged on the system are notified to log off the system by a
broadcasted message. The operator may display his/her own message
at this time. Otherwise, the standard file save message is displayed.

- If the operator wishes to run the file-save procedure, shutdoun
unmounts all file systems.

- All file systems' super blocks are updated before the system is to be
stopped (see sync(B8)). This must be done before re-booting the sys-
tem, to insure file system integrity.

Berkeley shutdown
The program /etc/shutdown from Berkeley is best wused as
setc /shutdoun -h +n, where n is the number of minutes when the system
shall shut down. The fastest way to shut the system down with
notification of users is /etc/shutdoum -h +1 , without notification,
setc/init s. After shutdown, you will be in single user mode. Type sync
and press the INIT-button. Power off.

DIAGNOSTICS
The most common error diagnostic that will occur is device busy. This
diagnostic happens when a particular file system could not be
unmounted. See umount(8).

Page 1 February 17, 1984

STARTNC(BN) MUNIX (Newcastle Connection) STARTNC(BN)

NAME
/etc/startnc, /etc/stopnc — starts up (closes down) the file server
spawner
SYNOPSIS
/etc/startne [-d]
/etlc/stopnc
DESCRIPTION
setc /startnc starts up the UNIX server spawner, in the file "/etc/usam”,
and stores its process id in the file “/etc/usampid”. If the spawner was
already running, the program will shut it down before starting the new
process. The program also handles new releases of the server software,
which should be placed in the files “/etc/usrv.new”, "/etc/setugi.new”
and "/etc/usam.new” (the Newcastle Connection make files will do this
automatically). The versions being replaced will be moved to the files
"/etc/usrv.old”, “/etc/setugi.old” and "/etc/usam.old”. The option -d is
used to select the version of the spawner held in the file
"/etc/usam.dbg”’. This is conventionally a debugging version of the
spawner, and the option should only be used whilst testing the system.
vsetc /stopnc closes down the UNIX server spawner by sending the signal
SIGTERM to the process whose id is contained in the file “/etc/usampid"”.
FILES
/etc/usampid
/etc/usam
/etc/usam.dbg
/etc/usam.new
/etc/setugi
/etc/setugi.new
/etc/setugi.old
/etc/usrv.new
/etc/usrv.old
/etc/usrv.old
SEE ALSO

usrv(8N), setugi(8N), usam(8N)

DIAGNOSTICS

Page 1

A message will be printed when there is a new software release installed.
If the caller is not superuser or if there is a problem with the execution
of the spawner program, an error message will be printed.

February 17, 1984

SYNC(8) MUNIX SYNC(8)

NAME
sync — update the super block

SYNOPSIS
sync

DESCRIPTION
Sync executes the sync system primitive. If the system is to be stopped,
sync must be called to insure file system integrity. See sync(2) for
details.

" SEE ALSO
sync(2)

Page 1 February 17, 1984

UNITE(8N) MUNIX (Newcastle Connection) UNITE(8N)

NAME

unite — enable a remote user to access the local system

SYNOPSIS

unite [-dgprv] [system [remote_id [local_id]]]

DESCRIPTION

FILES

Establishes local_id as the local surrogate for user remote_id on remote
Unix system. e.g. :

unite /..7/unix4 dave david

lets user ‘dave’ on systemn '/../unix4’ execute processes on the local
machine, as if he had logged in as 'david’. A missing local_id is assumed
to have the same name as the remote user. A missing remote_id is
assumed to mean each user of the remote system is to be mapped to the
local user of the same name. Unite normally refuses to map '"root” to
"root”; any user names with userid 0 are ignored. Unite without parame-
ters prints out the current list of remote and local user pairs.

Option "-d"” deletes the remote system or user named.
Option "-g* applies unite to groups instead of users.

Option "-p” can be used to print a single pair, or the entries for a single
system. '

Option "-r” overrides the default control which will not normally map
"root” (or any user name with userid 0) to local “root"”. It is only effective
when an entire system is being united, and has no meaning if combined
with '-g’ option.

Option "-v'' announces each item as it is created.

Both remote_id and local_id may be in numeric form. In this case, the
“"/etc/passwd” ("/etc/group”) file on the relevant system is not
accessed. This is useful when creating a United system.

/etc/pwmap /etc/groupmap, user and group mappings;

system /etc/passwd

system /etc/group

/etc/passwd /etc/group - local and remote user and
group tables.

/etc/utabdb - table of systems.

DIAGNOSTICS

Complains about incorrect parameters such as non-existent ids or sys-
tems.

SEE ALSO

Page 1

pwmap(5N), utab(5N)

February 17, 1984

USAN (BN) MUNIX (Newcastle Connection) USAM(8N)

NAME
/etc/usam — initiate a UNIX server for a remote client

SYNOPSIS
/etc/usam [root directory [working directory]]

DESCRIPTION
This program listens on a fixed port number for an incoming request for
remote service. In response, it initiates a UNIX server on another port
and returns this port number to the client, who now deals directly with
its own UNIX server. The program also performs user/group validation
and mapping for the incoming request, allowing the local system
manager to maintain control of the user population. The parameters
passed to the spawner allow the initiator to control exactly where the
spawner lives in the file store hierarchy, and therefore to control where
incoming users’ UNIX servers live and the image of the file system that
those users see. The default value for both fields is /"
The fixed port number used by all spawners on your network is con-
trolled by the macros "SET_USAM_PORT"” and "USAM_INIT” in the file
"h/netlocal.h” of the distribution directory of the Newcastie Connection.

FILES
/etc/pwmap, /etc/groupmap

SEE ALSO
usrv(8N), unite(8N). startnc(8N), stopnc(8BN), pwmap(5SN), utab(5N), "The
Newcastle Connection — Release 1.0: Network Interface Installation
Guide”

DIAGNOSTICS

Reports will be given on the console in the event of errors.

Page 1 February 17, 1984

USRV(BN) MUNIX (Newcastle Connection) USRV(8N)

NAME
usrv — UNIX server for a remote client

SYNOPSIS
/etc/usrv

DESCRIPTION
This program is spawned in response to incoming requests for service
and provides a remote user with the facilities of the normal UNIX system
file interface.

SEE ALSO
usam(8N)

DIAGNOSTICS
Standard UNIX error return codes are handed back to clients in the
external “errno” of the caller’'s program.

Page 1 February 17, 1984

UUCLEAN(8)

NAME

MUNIX UUCLEAN(8)

uuclean — uucp spool directory clean-up

SYNOPSIS

/usr/lib/uucp/uuclean | options]

DESCRIPTION

Uuclean will scan the spool directory for files with the specified prefix
and delete all those which are older than the specified number of hours.

The following options are available.

—ddirectory Clean directory instead of the spool directory.

—ppre

-ntime

—wfile

—S8sYys

—mfile

Scan for files with pre as the file prefix. Up to 10 —p argu-
ments may be specified. A —p without any pre following will
cause all files older than the specified time to be deleted.

Files whose age is more than fime hours will be deleted if
the prefix test is satisfied. (default time is 72 hours)

The default action for uuclean is to remove files which are
older than a specified time (see —n option). The —w option is
used to find those files older than time hours, however, the
files are not deleted. If the argument file is present the
warning is placed in file, otherwise, the warnings will go to
the standard output.

Only files destined for system sys are examined. Up to 10 —s
arguments may be specified.

The —m option sends mail to the owner of the file when it is
deleted. If a file is specified then an entry is placed in file.

This program is typically started by cron(8).

FILES

/usr/lib/uucp

directory with commands used by uuclean internally

/usr/spool/uucp

SEE ALSO

spool directory

cron(8), uucp(1C), uux(1C).

Page 1

February 17, 1984

UUCP(8) MUNIX UucP(8)

NAME
uucp — uucp installation made easy

DESCRIPTION
Consider the simple case of connecting two systems over a direct per-
manent line, i.e. no modems. The names of the two systems are alpha and
beta. Alphas terminal is called /dev/ttya, betas terminal /dev/ttyb.

An uucp link is asymmetric in nature: one port sends a login message to
the other port. The first port must not have a shell enabled on the line,
the second port must. Let us assume alpha calls beta. So in the file
/etc/inittab for alpha there is no line for ttya, or the entry has a
number different from 2 in the run level field. On beta there must be an
entry in /etc/inittab for ttyb with run level 2. So, if terminals were
attached to ttya and ttyb, you could login at ttyb, but not on ttya. Then
connect ttya and ttyb with a cable that switches TxDATA and RxDATA
(pins 2 and 3 on the Canon RS232 connector). Login on alpha on any ter-
minal as root and execute "cu -t -a /dev/null -1 /dev/ttya”. You must
now be able to login normally on beta. Thus, we proved that the hardware
link is ok.

On each system login as root and give nuucp a password. E.g. on alpha
you enter "passwd nuucp” and then as password thisisalpha, on beta the
password thisisbeta.

Next, establish in alphas and betas /usr/lib/uucp directory the files
L.sys and L-devices. Our L.sys format is an extension of the standard;
read the file /usr/lib/uucp/L.sys.format for a description. Alphas L.sys
will look like this:

beta Any ttya 9600 ttya \r ?login-\r-?login nuucp\r ?ssword:
thisisbeta\r

Alphas L-devices will look like this:
DIR ttya 0 9600
Betas L.sys will look like this:

alpha None ttyb 9600 ttyb \r Zlogin-\r-?login nuucp\r ?ssword:
thisisalpha\r

and its L-devices:

DIR ttyb 0 9600

Note the difference between None and Any: alpha can call at "Any” time,
beta can call at “None" time (i.e. never). Make sure that L.sys and L-
devices have owner uucp, L.sys should have mode 0400.

On alpha. copy a small file to /tmp and enter "uucp -r /tmp/file
beta!/tmp”. The -r option prevents uucp from starting uucico, the actual
transfer program. Go to /usr/spool/uucp and convince yourself that two
files C.* and D.* have been created. Call uucico by hand with a debug

Page 1 February 17, 1984

UUCP(8) MUNIX UUCP(8)

-

option: “/usr/lib/uucp/uucico -ri -sbeta -x6". Watch the messages and
see how uucico tries to login at the other system. After a while both sys-
tems agree that no more files are to be exchanged (message H'Y') and
uucico terminates.

Now try "mail beta'root” and type a small text, followed by CTRL-Z. This
time uucico is called automatically. After a few seconds the mail on beta
will have arrived.

Alpha should now poll beta regularly, so that when beta sends something
to alpha, the delay will not exceed say half an hour. An entry for this has
been prepared in your /usr/lib/crontab file.

Possible causes of error are: missing read and write permissions for ttya
and ttyb; wrong ownership and mode f{or /usr/spool/uucp and
susr/lib/uucp. The following is ok:

drwxr-xr-x uucp /usr/lib/uucp
drwxrwxrwx uucp /usr/spool/uucp

sr-------- uucp /usr/lib/uucp/L.sys
-r-sr-xr-x uucp /usr/lib/uucp/uucico
-r-sr-xr-x uucp /usr/lib/uucp/uuclean
-r-sr-xr-x uucp /usr/lib/uucp/uuxqt

If you have a modem, but no autodialler, then L.sys must also contain the
"None" entry. So that you can be dialled, you will have to enable a login
on the modem port. When you want to dial out, you must first disable the
port. You edit /etc/inittab and change the run level 2 to a 0. Then you
give the command "/etc/init q". This will kill the getty process for this
line. Then you execute uucico with the -t option. This overrides the
“None"” entry in L.sys. A sample shell script for you is provided in
/usr/local/calluucp.

Lets assume you say “uucp /usr/jim/filea beta!/usr/joe/fileb”. On your
machine the directories /, /usr and /usr/jim must have execute permis-
sion for others, and /usr/jim/filea must have read permission for others,
so that uucico can access the file. On beta, again /, /usr and /usr/joe
must have execute permission for others. If fileb exists, it must have
write permission. If it does not exist, then directory /usr/joe must have
write permission! H you think this is annoying, use uupick and uuput to
transfer files.

February 17, 1984 Page 2

UUREC(8) MUNIX UUREC(8)

NAME
uurec — receive processed news articles via mail

SYNOPSIS
uurec

DESCRIPTION
uurec reads news articles on the standard input sent by sendnews(8),
decodes them, and gives them to tnews(!)for insertion.

SEE ALSO
inews(1), readnews(1), recnews(8), sendnews(8), checknews(1)

Page 1 February 17, 1984

UUSUB(8) MUNIX UUSUB(8)

NAME

uusub — monitor uucp network
SYNOPSIS

/usr/lib/uucp/uusubdb [options]
DESCRIPTION

Dusub defines a uucp subnetwork and monitors the connection and

traflic among the members of the subnetwork. The following options are

available:

—asys Add sys to the subnetwork.

—dsys Delete sys from the subnetwork.

-1 Report the statistics on connections.

-r Report the statistics on traffic amount.

ot § Flush the connection statistics.

—uhr Gather the traffic statistics over the past Ar hours.

—csys Exercise the connection to the system sys. If sys is specified as
all, then exercise the connection to all the systems in the subnet-
work.

The meanings of the connections report are:

sys #call #ok time f§dev #login gnack fother

where sys is the remote system name, gcall is the number of times the
local system tries to call sys since the last flush was done, §ok is the
number of successful connections, time is the latest successful connect
time, g#dev is the number of unsuccessful connections because of no
available device (e.g. ACU), #login is the number of unsuccessful connec-
tions because of login failure, #nack is the number of unsuccessful con-
nections because of no response (e.g. line busy, system down), and fother
is the number of unsuccessful connections because of other reasons.

The meanings of the traffic statistics are:
sfile sbyte rfile rbyte

where sfile is the number of files sent and sbyte is the number of bytes

sent over the period of time indicated in the latest uusubd command with

the —uhr option. Similarly, rfile and rbyte are the numbers of files and
bytes received.

The command: .
uusub —c all —u 24

is typically started by cron(8) once a day.

FILES
/usr/spool/uucp/SYSLOG
system log file
/usr/lib/uucp/L_sub
connection statistics
/usr/lib/uucp/R_sub
traffic statistics
SEE ALSO

uucp(1C), uustat(1C).

Page 1 February 17, 1984

VOLCOPY(8) MUNIX VOLCOPY(8)

NAME

volcopy, labelit — copy file systems with label checking

SYNOPSIS W banich

/etc/volcopy [options]) fsname speciall volnamel special2 volname?2

/etc/labelit special [fsname volume [=n]]

DESCRIPTION

)

v

Volcopy makes a literal copy of the file system using a blocksize matched
to the device. The—progrem-stvelcopy—is—the-same-as—velcopy —but-is
modified-for-the-sireamer-to*use-larger-bleck-sizes amdedouble-buflered
170. Options are:

—a invoke a verification sequence requiring a positive operator
response instead of the standard 10 second delay before
the copy is made,

-s (default) invoke the CTRL-C if wrong verification sequence.

Other options are used only with tapes:
—bpidensity bits-per-inch (i.e., 800/1600/6250, or for 3B20S sys-
tems with Kennedy tape drives, 1600k),
—feetsize size of reel in feet (i.e., 1200/2400),
~reelnum beginning reel number for a restarted copy,
—buf use double buflfered 170 (not for stvolcopy).

The program requests length and density information if it is not given on
the command line or is not recorded on an input tape label. If the file
system is too large to fit on one reel, volcopy will prompt for additional
reels. Labels of all reels are checked. Tapes may be mounted alter-
nately on two or more drives.

The fsname argument represents the mounted name (e.g.: root, ul, etc.)
of the filsystem being copied.

The special should be the physical disk section or tape (e.g.: /dev/rhk2,
/dev/rmto, etc.).

‘)) The volname is the physical volume name (e.g.: pk3, t0122, etc.) and

#

FILES

should match the external label sticker. Such label names are limited to
six or fewer characters. Volname may be — to use the existing volume
name.

Special]l and volnamel are the device and volume from which the copy
of the file system is being extracted. Special2 and volnameZ are the tar-
get device and volume.

Fsname and volname are recorded in the last 12 characters of the
superblock (char fsname[6], volname[6];).

Labelit can be used to provide initial labels for unmounted disk or tape
file systems. With the optional arguments omitted, labeli? prints current
label values. The —n option provides for initial labeling of new tapes only
(this destroys previous contents).

/etc/log/filesave.log a record of file systems/volumes copied

Page 1 February 17, 1984

VOLCOPY(8) MUNIX YOLCOPY(8)

SEE ALSO
fs(5).

BUGS

Only device names beginning /dev/rmt,/dev/nrmt or /dev/rst,./dev/nrst
are treated as tapes. Tape record sizes are determined both by density
and by drive type. On CADMUS systems, records are ‘8,120 bytes long at
‘800 and 1600 bits-per-inch, and 25,600 bytes long at 6250 bits-per-inch.
The streamer is written with very large blocks, but a thing like record
length does not really exist on streamers. A streamer can be read and
written with any blocksize, this is only a matter of efficiency.

February 17, 1984 Page 2

WALL(8) MUNIX WALL(8)

NAME
wall — write to all users

SYNOPSIS
/elc/wall

DESCRIPTION
Pall reads its standard input until an end-of-file. It then sends this mes-
sage to all currently logged in users preceded by:

Broadcast Message from...
It is used to warn all users, typically prior to shutting down the system.

The sender must be super-user to override any protections the users
may have invoked (see mesg(1)).

FILES
/dev/ttye®

SEE ALSO
mesg(1), write(1).

DIAGNOSTICS
**Cannot send to ..."" when the open on a user's tty file fails.

Page 1 February 17, 1984

WHATCONF(8) MUNIX (CADMUS) WHATCONF(8)

NAME
whatcon[— what device drivers are in an unix kernel
SYNOPSIS
/etc/whatconf unixkernel
DESCRIPTION
Whatconf tells you what devices the specified unix kernel is configured
for.
EXAMPLE
/etc/whatcon{ /unix
SEE ALSO

newcon{(8)

Page 1 February 17, 1984

WHODO(8) MUNIX WHODO(8)

NAME

whodo — who is doing what
SYNOPSIS

/etc/whodo
DESCRIPTION

Whodo produces merged, reformatted, and dated output from the who(1)
and ps(1) commands.

SEE ALSO
ps(1), who(1), w(1)

Page 1 February 17, 1984

	Cadmus_Munix_Ib_Seite_001
	Cadmus_Munix_Ib_Seite_003
	Cadmus_Munix_Ib_Seite_004
	Cadmus_Munix_Ib_Seite_005
	Cadmus_Munix_Ib_Seite_007
	Cadmus_Munix_Ib_Seite_009
	Cadmus_Munix_Ib_Seite_013
	Cadmus_Munix_Ib_Seite_014
	Cadmus_Munix_Ib_Seite_015
	Cadmus_Munix_Ib_Seite_016
	Cadmus_Munix_Ib_Seite_017
	Cadmus_Munix_Ib_Seite_018
	Cadmus_Munix_Ib_Seite_019
	Cadmus_Munix_Ib_Seite_021
	Cadmus_Munix_Ib_Seite_023
	Cadmus_Munix_Ib_Seite_025
	Cadmus_Munix_Ib_Seite_027
	Cadmus_Munix_Ib_Seite_029
	Cadmus_Munix_Ib_Seite_031
	Cadmus_Munix_Ib_Seite_032
	Cadmus_Munix_Ib_Seite_033
	Cadmus_Munix_Ib_Seite_035
	Cadmus_Munix_Ib_Seite_037
	Cadmus_Munix_Ib_Seite_039
	Cadmus_Munix_Ib_Seite_040
	Cadmus_Munix_Ib_Seite_041
	Cadmus_Munix_Ib_Seite_043
	Cadmus_Munix_Ib_Seite_044
	Cadmus_Munix_Ib_Seite_045
	Cadmus_Munix_Ib_Seite_047
	Cadmus_Munix_Ib_Seite_049
	Cadmus_Munix_Ib_Seite_050
	Cadmus_Munix_Ib_Seite_051
	Cadmus_Munix_Ib_Seite_052
	Cadmus_Munix_Ib_Seite_053
	Cadmus_Munix_Ib_Seite_055
	Cadmus_Munix_Ib_Seite_057
	Cadmus_Munix_Ib_Seite_059
	Cadmus_Munix_Ib_Seite_061
	Cadmus_Munix_Ib_Seite_063
	Cadmus_Munix_Ib_Seite_065
	Cadmus_Munix_Ib_Seite_067
	Cadmus_Munix_Ib_Seite_069
	Cadmus_Munix_Ib_Seite_070
	Cadmus_Munix_Ib_Seite_071
	Cadmus_Munix_Ib_Seite_073
	Cadmus_Munix_Ib_Seite_075
	Cadmus_Munix_Ib_Seite_076
	Cadmus_Munix_Ib_Seite_077
	Cadmus_Munix_Ib_Seite_079
	Cadmus_Munix_Ib_Seite_081
	Cadmus_Munix_Ib_Seite_083
	Cadmus_Munix_Ib_Seite_085
	Cadmus_Munix_Ib_Seite_087
	Cadmus_Munix_Ib_Seite_088
	Cadmus_Munix_Ib_Seite_089
	Cadmus_Munix_Ib_Seite_091
	Cadmus_Munix_Ib_Seite_093
	Cadmus_Munix_Ib_Seite_095
	Cadmus_Munix_Ib_Seite_097
	Cadmus_Munix_Ib_Seite_098
	Cadmus_Munix_Ib_Seite_099
	Cadmus_Munix_Ib_Seite_101
	Cadmus_Munix_Ib_Seite_102
	Cadmus_Munix_Ib_Seite_103
	Cadmus_Munix_Ib_Seite_105
	Cadmus_Munix_Ib_Seite_107
	Cadmus_Munix_Ib_Seite_109
	Cadmus_Munix_Ib_Seite_111
	Cadmus_Munix_Ib_Seite_113
	Cadmus_Munix_Ib_Seite_115
	Cadmus_Munix_Ib_Seite_117
	Cadmus_Munix_Ib_Seite_119
	Cadmus_Munix_Ib_Seite_121
	Cadmus_Munix_Ib_Seite_123
	Cadmus_Munix_Ib_Seite_125
	Cadmus_Munix_Ib_Seite_126
	Cadmus_Munix_Ib_Seite_127
	Cadmus_Munix_Ib_Seite_128
	Cadmus_Munix_Ib_Seite_131
	Cadmus_Munix_Ib_Seite_132
	Cadmus_Munix_Ib_Seite_133
	Cadmus_Munix_Ib_Seite_135
	Cadmus_Munix_Ib_Seite_137
	Cadmus_Munix_Ib_Seite_139
	Cadmus_Munix_Ib_Seite_141
	Cadmus_Munix_Ib_Seite_143
	Cadmus_Munix_Ib_Seite_145
	Cadmus_Munix_Ib_Seite_147
	Cadmus_Munix_Ib_Seite_149
	Cadmus_Munix_Ib_Seite_151
	Cadmus_Munix_Ib_Seite_153
	Cadmus_Munix_Ib_Seite_155
	Cadmus_Munix_Ib_Seite_157
	Cadmus_Munix_Ib_Seite_159
	Cadmus_Munix_Ib_Seite_161
	Cadmus_Munix_Ib_Seite_162
	Cadmus_Munix_Ib_Seite_163
	Cadmus_Munix_Ib_Seite_165
	Cadmus_Munix_Ib_Seite_167
	Cadmus_Munix_Ib_Seite_169
	Cadmus_Munix_Ib_Seite_171
	Cadmus_Munix_Ib_Seite_173
	Cadmus_Munix_Ib_Seite_175
	Cadmus_Munix_Ib_Seite_177
	Cadmus_Munix_Ib_Seite_179
	Cadmus_Munix_Ib_Seite_181
	Cadmus_Munix_Ib_Seite_182
	Cadmus_Munix_Ib_Seite_183
	Cadmus_Munix_Ib_Seite_185
	Cadmus_Munix_Ib_Seite_186
	Cadmus_Munix_Ib_Seite_187
	Cadmus_Munix_Ib_Seite_189
	Cadmus_Munix_Ib_Seite_190
	Cadmus_Munix_Ib_Seite_191
	Cadmus_Munix_Ib_Seite_193
	Cadmus_Munix_Ib_Seite_195
	Cadmus_Munix_Ib_Seite_196
	Cadmus_Munix_Ib_Seite_197
	Cadmus_Munix_Ib_Seite_198
	Cadmus_Munix_Ib_Seite_199
	Cadmus_Munix_Ib_Seite_201
	Cadmus_Munix_Ib_Seite_203
	Cadmus_Munix_Ib_Seite_205
	Cadmus_Munix_Ib_Seite_207
	Cadmus_Munix_Ib_Seite_209
	Cadmus_Munix_Ib_Seite_211
	Cadmus_Munix_Ib_Seite_213
	Cadmus_Munix_Ib_Seite_215
	Cadmus_Munix_Ib_Seite_217
	Cadmus_Munix_Ib_Seite_219
	Cadmus_Munix_Ib_Seite_221
	Cadmus_Munix_Ib_Seite_222
	Cadmus_Munix_Ib_Seite_223
	Cadmus_Munix_Ib_Seite_224
	Cadmus_Munix_Ib_Seite_225
	Cadmus_Munix_Ib_Seite_227
	Cadmus_Munix_Ib_Seite_229
	Cadmus_Munix_Ib_Seite_231
	Cadmus_Munix_Ib_Seite_233
	Cadmus_Munix_Ib_Seite_235
	Cadmus_Munix_Ib_Seite_236
	Cadmus_Munix_Ib_Seite_237
	Cadmus_Munix_Ib_Seite_239
	Cadmus_Munix_Ib_Seite_241
	Cadmus_Munix_Ib_Seite_243
	Cadmus_Munix_Ib_Seite_245
	Cadmus_Munix_Ib_Seite_247
	Cadmus_Munix_Ib_Seite_249
	Cadmus_Munix_Ib_Seite_250
	Cadmus_Munix_Ib_Seite_251
	Cadmus_Munix_Ib_Seite_253
	Cadmus_Munix_Ib_Seite_254
	Cadmus_Munix_Ib_Seite_255
	Cadmus_Munix_Ib_Seite_257
	Cadmus_Munix_Ib_Seite_259
	Cadmus_Munix_Ib_Seite_260
	Cadmus_Munix_Ib_Seite_261
	Cadmus_Munix_Ib_Seite_263
	Cadmus_Munix_Ib_Seite_264
	Cadmus_Munix_Ib_Seite_265
	Cadmus_Munix_Ib_Seite_266
	Cadmus_Munix_Ib_Seite_267
	Cadmus_Munix_Ib_Seite_269
	Cadmus_Munix_Ib_Seite_271
	Cadmus_Munix_Ib_Seite_273
	Cadmus_Munix_Ib_Seite_275
	Cadmus_Munix_Ib_Seite_277
	Cadmus_Munix_Ib_Seite_279
	Cadmus_Munix_Ib_Seite_281
	Cadmus_Munix_Ib_Seite_283
	Cadmus_Munix_Ib_Seite_285
	Cadmus_Munix_Ib_Seite_287
	Cadmus_Munix_Ib_Seite_289
	Cadmus_Munix_Ib_Seite_291
	Cadmus_Munix_Ib_Seite_293
	Cadmus_Munix_Ib_Seite_294
	Cadmus_Munix_Ib_Seite_295
	Cadmus_Munix_Ib_Seite_297
	Cadmus_Munix_Ib_Seite_299
	Cadmus_Munix_Ib_Seite_301
	Cadmus_Munix_Ib_Seite_303
	Cadmus_Munix_Ib_Seite_305
	Cadmus_Munix_Ib_Seite_307
	Cadmus_Munix_Ib_Seite_309
	Cadmus_Munix_Ib_Seite_311
	Cadmus_Munix_Ib_Seite_313
	Cadmus_Munix_Ib_Seite_315
	Cadmus_Munix_Ib_Seite_317
	Cadmus_Munix_Ib_Seite_318
	Cadmus_Munix_Ib_Seite_319
	Cadmus_Munix_Ib_Seite_321
	Cadmus_Munix_Ib_Seite_323
	Cadmus_Munix_Ib_Seite_325
	Cadmus_Munix_Ib_Seite_327
	Cadmus_Munix_Ib_Seite_329
	Cadmus_Munix_Ib_Seite_331
	Cadmus_Munix_Ib_Seite_333
	Cadmus_Munix_Ib_Seite_334
	Cadmus_Munix_Ib_Seite_335
	Cadmus_Munix_Ib_Seite_337
	Cadmus_Munix_Ib_Seite_339
	Cadmus_Munix_Ib_Seite_341
	Cadmus_Munix_Ib_Seite_343
	Cadmus_Munix_Ib_Seite_345
	Cadmus_Munix_Ib_Seite_347
	Cadmus_Munix_Ib_Seite_349
	Cadmus_Munix_Ib_Seite_351
	Cadmus_Munix_Ib_Seite_353
	Cadmus_Munix_Ib_Seite_355
	Cadmus_Munix_Ib_Seite_357
	Cadmus_Munix_Ib_Seite_359
	Cadmus_Munix_Ib_Seite_361
	Cadmus_Munix_Ib_Seite_363
	Cadmus_Munix_Ib_Seite_365
	Cadmus_Munix_Ib_Seite_366
	Cadmus_Munix_Ib_Seite_367
	Cadmus_Munix_Ib_Seite_369
	Cadmus_Munix_Ib_Seite_371
	Cadmus_Munix_Ib_Seite_373
	Cadmus_Munix_Ib_Seite_375
	Cadmus_Munix_Ib_Seite_377
	Cadmus_Munix_Ib_Seite_378
	Cadmus_Munix_Ib_Seite_379
	Cadmus_Munix_Ib_Seite_381
	Cadmus_Munix_Ib_Seite_383
	Cadmus_Munix_Ib_Seite_385
	Cadmus_Munix_Ib_Seite_386
	Cadmus_Munix_Ib_Seite_387
	Cadmus_Munix_Ib_Seite_389
	Cadmus_Munix_Ib_Seite_391
	Cadmus_Munix_Ib_Seite_395
	Cadmus_Munix_Ib_Seite_397
	Cadmus_Munix_Ib_Seite_398
	Cadmus_Munix_Ib_Seite_399
	Cadmus_Munix_Ib_Seite_401
	Cadmus_Munix_Ib_Seite_403
	Cadmus_Munix_Ib_Seite_404
	Cadmus_Munix_Ib_Seite_405
	Cadmus_Munix_Ib_Seite_407
	Cadmus_Munix_Ib_Seite_408
	Cadmus_Munix_Ib_Seite_409
	Cadmus_Munix_Ib_Seite_410
	Cadmus_Munix_Ib_Seite_411
	Cadmus_Munix_Ib_Seite_413
	Cadmus_Munix_Ib_Seite_414
	Cadmus_Munix_Ib_Seite_415
	Cadmus_Munix_Ib_Seite_416
	Cadmus_Munix_Ib_Seite_417
	Cadmus_Munix_Ib_Seite_418
	Cadmus_Munix_Ib_Seite_419
	Cadmus_Munix_Ib_Seite_421
	Cadmus_Munix_Ib_Seite_422
	Cadmus_Munix_Ib_Seite_423
	Cadmus_Munix_Ib_Seite_425
	Cadmus_Munix_Ib_Seite_427
	Cadmus_Munix_Ib_Seite_428
	Cadmus_Munix_Ib_Seite_429
	Cadmus_Munix_Ib_Seite_430
	Cadmus_Munix_Ib_Seite_431
	Cadmus_Munix_Ib_Seite_433
	Cadmus_Munix_Ib_Seite_434
	Cadmus_Munix_Ib_Seite_435
	Cadmus_Munix_Ib_Seite_437
	Cadmus_Munix_Ib_Seite_438
	Cadmus_Munix_Ib_Seite_439
	Cadmus_Munix_Ib_Seite_440
	Cadmus_Munix_Ib_Seite_441
	Cadmus_Munix_Ib_Seite_442
	Cadmus_Munix_Ib_Seite_443
	Cadmus_Munix_Ib_Seite_444
	Cadmus_Munix_Ib_Seite_445
	Cadmus_Munix_Ib_Seite_446
	Cadmus_Munix_Ib_Seite_447
	Cadmus_Munix_Ib_Seite_449
	Cadmus_Munix_Ib_Seite_451
	Cadmus_Munix_Ib_Seite_455
	Cadmus_Munix_Ib_Seite_457
	Cadmus_Munix_Ib_Seite_458
	Cadmus_Munix_Ib_Seite_459
	Cadmus_Munix_Ib_Seite_461
	Cadmus_Munix_Ib_Seite_462
	Cadmus_Munix_Ib_Seite_463
	Cadmus_Munix_Ib_Seite_465
	Cadmus_Munix_Ib_Seite_467
	Cadmus_Munix_Ib_Seite_469
	Cadmus_Munix_Ib_Seite_471
	Cadmus_Munix_Ib_Seite_473
	Cadmus_Munix_Ib_Seite_474
	Cadmus_Munix_Ib_Seite_475
	Cadmus_Munix_Ib_Seite_477
	Cadmus_Munix_Ib_Seite_478
	Cadmus_Munix_Ib_Seite_479
	Cadmus_Munix_Ib_Seite_481
	Cadmus_Munix_Ib_Seite_482
	Cadmus_Munix_Ib_Seite_483
	Cadmus_Munix_Ib_Seite_484
	Cadmus_Munix_Ib_Seite_485
	Cadmus_Munix_Ib_Seite_487
	Cadmus_Munix_Ib_Seite_488
	Cadmus_Munix_Ib_Seite_489
	Cadmus_Munix_Ib_Seite_491
	Cadmus_Munix_Ib_Seite_493
	Cadmus_Munix_Ib_Seite_495
	Cadmus_Munix_Ib_Seite_497
	Cadmus_Munix_Ib_Seite_499
	Cadmus_Munix_Ib_Seite_500
	Cadmus_Munix_Ib_Seite_501
	Cadmus_Munix_Ib_Seite_503
	Cadmus_Munix_Ib_Seite_505
	Cadmus_Munix_Ib_Seite_506
	Cadmus_Munix_Ib_Seite_507
	Cadmus_Munix_Ib_Seite_509
	Cadmus_Munix_Ib_Seite_511
	Cadmus_Munix_Ib_Seite_512
	Cadmus_Munix_Ib_Seite_513
	Cadmus_Munix_Ib_Seite_515
	Cadmus_Munix_Ib_Seite_516
	Cadmus_Munix_Ib_Seite_517
	Cadmus_Munix_Ib_Seite_518
	Cadmus_Munix_Ib_Seite_519
	Cadmus_Munix_Ib_Seite_520
	Cadmus_Munix_Ib_Seite_521
	Cadmus_Munix_Ib_Seite_522
	Cadmus_Munix_Ib_Seite_523
	Cadmus_Munix_Ib_Seite_524
	Cadmus_Munix_Ib_Seite_525
	Cadmus_Munix_Ib_Seite_527
	Cadmus_Munix_Ib_Seite_529
	Cadmus_Munix_Ib_Seite_530
	Cadmus_Munix_Ib_Seite_531
	Cadmus_Munix_Ib_Seite_535
	Cadmus_Munix_Ib_Seite_537
	Cadmus_Munix_Ib_Seite_539
	Cadmus_Munix_Ib_Seite_541
	Cadmus_Munix_Ib_Seite_543
	Cadmus_Munix_Ib_Seite_545
	Cadmus_Munix_Ib_Seite_547
	Cadmus_Munix_Ib_Seite_549
	Cadmus_Munix_Ib_Seite_550
	Cadmus_Munix_Ib_Seite_551
	Cadmus_Munix_Ib_Seite_553
	Cadmus_Munix_Ib_Seite_555
	Cadmus_Munix_Ib_Seite_557
	Cadmus_Munix_Ib_Seite_558
	Cadmus_Munix_Ib_Seite_559
	Cadmus_Munix_Ib_Seite_561
	Cadmus_Munix_Ib_Seite_563
	Cadmus_Munix_Ib_Seite_565
	Cadmus_Munix_Ib_Seite_567
	Cadmus_Munix_Ib_Seite_568
	Cadmus_Munix_Ib_Seite_569
	Cadmus_Munix_Ib_Seite_570
	Cadmus_Munix_Ib_Seite_571
	Cadmus_Munix_Ib_Seite_572
	Cadmus_Munix_Ib_Seite_573
	Cadmus_Munix_Ib_Seite_574
	Cadmus_Munix_Ib_Seite_575
	Cadmus_Munix_Ib_Seite_576
	Cadmus_Munix_Ib_Seite_577
	Cadmus_Munix_Ib_Seite_578
	Cadmus_Munix_Ib_Seite_579
	Cadmus_Munix_Ib_Seite_583
	Cadmus_Munix_Ib_Seite_585
	Cadmus_Munix_Ib_Seite_587
	Cadmus_Munix_Ib_Seite_589
	Cadmus_Munix_Ib_Seite_591
	Cadmus_Munix_Ib_Seite_593
	Cadmus_Munix_Ib_Seite_595
	Cadmus_Munix_Ib_Seite_596
	Cadmus_Munix_Ib_Seite_597
	Cadmus_Munix_Ib_Seite_599
	Cadmus_Munix_Ib_Seite_600
	Cadmus_Munix_Ib_Seite_601
	Cadmus_Munix_Ib_Seite_602
	Cadmus_Munix_Ib_Seite_603
	Cadmus_Munix_Ib_Seite_604
	Cadmus_Munix_Ib_Seite_605
	Cadmus_Munix_Ib_Seite_607
	Cadmus_Munix_Ib_Seite_608
	Cadmus_Munix_Ib_Seite_609
	Cadmus_Munix_Ib_Seite_611
	Cadmus_Munix_Ib_Seite_613
	Cadmus_Munix_Ib_Seite_614
	Cadmus_Munix_Ib_Seite_615
	Cadmus_Munix_Ib_Seite_617
	Cadmus_Munix_Ib_Seite_619
	Cadmus_Munix_Ib_Seite_620
	Cadmus_Munix_Ib_Seite_621
	Cadmus_Munix_Ib_Seite_623
	Cadmus_Munix_Ib_Seite_625
	Cadmus_Munix_Ib_Seite_626
	Cadmus_Munix_Ib_Seite_627
	Cadmus_Munix_Ib_Seite_628
	Cadmus_Munix_Ib_Seite_629
	Cadmus_Munix_Ib_Seite_631
	Cadmus_Munix_Ib_Seite_632
	Cadmus_Munix_Ib_Seite_633
	Cadmus_Munix_Ib_Seite_637
	Cadmus_Munix_Ib_Seite_639
	Cadmus_Munix_Ib_Seite_640
	Cadmus_Munix_Ib_Seite_641
	Cadmus_Munix_Ib_Seite_643
	Cadmus_Munix_Ib_Seite_645
	Cadmus_Munix_Ib_Seite_647
	Cadmus_Munix_Ib_Seite_649
	Cadmus_Munix_Ib_Seite_650
	Cadmus_Munix_Ib_Seite_651
	Cadmus_Munix_Ib_Seite_653
	Cadmus_Munix_Ib_Seite_654
	Cadmus_Munix_Ib_Seite_655
	Cadmus_Munix_Ib_Seite_657
	Cadmus_Munix_Ib_Seite_659
	Cadmus_Munix_Ib_Seite_660
	Cadmus_Munix_Ib_Seite_661
	Cadmus_Munix_Ib_Seite_663
	Cadmus_Munix_Ib_Seite_665
	Cadmus_Munix_Ib_Seite_667
	Cadmus_Munix_Ib_Seite_669
	Cadmus_Munix_Ib_Seite_670
	Cadmus_Munix_Ib_Seite_671
	Cadmus_Munix_Ib_Seite_673
	Cadmus_Munix_Ib_Seite_675
	Cadmus_Munix_Ib_Seite_677
	Cadmus_Munix_Ib_Seite_679
	Cadmus_Munix_Ib_Seite_681
	Cadmus_Munix_Ib_Seite_683
	Cadmus_Munix_Ib_Seite_684
	Cadmus_Munix_Ib_Seite_685
	Cadmus_Munix_Ib_Seite_687
	Cadmus_Munix_Ib_Seite_689
	Cadmus_Munix_Ib_Seite_690
	Cadmus_Munix_Ib_Seite_691
	Cadmus_Munix_Ib_Seite_693
	Cadmus_Munix_Ib_Seite_694
	Cadmus_Munix_Ib_Seite_695
	Cadmus_Munix_Ib_Seite_697
	Cadmus_Munix_Ib_Seite_698
	Cadmus_Munix_Ib_Seite_699
	Cadmus_Munix_Ib_Seite_701
	Cadmus_Munix_Ib_Seite_702
	Cadmus_Munix_Ib_Seite_703
	Cadmus_Munix_Ib_Seite_705
	Cadmus_Munix_Ib_Seite_707
	Cadmus_Munix_Ib_Seite_709
	Cadmus_Munix_Ib_Seite_710
	Cadmus_Munix_Ib_Seite_711
	Cadmus_Munix_Ib_Seite_712
	Cadmus_Munix_Ib_Seite_713
	Cadmus_Munix_Ib_Seite_715
	Cadmus_Munix_Ib_Seite_716
	Cadmus_Munix_Ib_Seite_717
	Cadmus_Munix_Ib_Seite_719
	Cadmus_Munix_Ib_Seite_721
	Cadmus_Munix_Ib_Seite_723
	Cadmus_Munix_Ib_Seite_725
	Cadmus_Munix_Ib_Seite_727
	Cadmus_Munix_Ib_Seite_728
	Cadmus_Munix_Ib_Seite_729
	Cadmus_Munix_Ib_Seite_731
	Cadmus_Munix_Ib_Seite_733
	Cadmus_Munix_Ib_Seite_735
	Cadmus_Munix_Ib_Seite_737
	Cadmus_Munix_Ib_Seite_739
	Cadmus_Munix_Ib_Seite_741
	Cadmus_Munix_Ib_Seite_742
	Cadmus_Munix_Ib_Seite_743
	Cadmus_Munix_Ib_Seite_744
	Cadmus_Munix_Ib_Seite_745
	Cadmus_Munix_Ib_Seite_747
	Cadmus_Munix_Ib_Seite_748
	Cadmus_Munix_Ib_Seite_749
	Cadmus_Munix_Ib_Seite_751
	Cadmus_Munix_Ib_Seite_753
	Cadmus_Munix_Ib_Seite_755
	Cadmus_Munix_Ib_Seite_757
	Cadmus_Munix_Ib_Seite_759
	Cadmus_Munix_Ib_Seite_760
	Cadmus_Munix_Ib_Seite_761
	Cadmus_Munix_Ib_Seite_762
	Cadmus_Munix_Ib_Seite_763
	Cadmus_Munix_Ib_Seite_764
	Cadmus_Munix_Ib_Seite_765
	Cadmus_Munix_Ib_Seite_767
	Cadmus_Munix_Ib_Seite_769
	Cadmus_Munix_Ib_Seite_771
	Cadmus_Munix_Ib_Seite_772
	Cadmus_Munix_Ib_Seite_773
	Cadmus_Munix_Ib_Seite_775
	Cadmus_Munix_Ib_Seite_776
	Cadmus_Munix_Ib_Seite_777
	Cadmus_Munix_Ib_Seite_778
	Cadmus_Munix_Ib_Seite_779
	Cadmus_Munix_Ib_Seite_781
	Cadmus_Munix_Ib_Seite_783
	Cadmus_Munix_Ib_Seite_785
	Cadmus_Munix_Ib_Seite_787
	Cadmus_Munix_Ib_Seite_789
	Cadmus_Munix_Ib_Seite_791
	Cadmus_Munix_Ib_Seite_793
	Cadmus_Munix_Ib_Seite_795
	Cadmus_Munix_Ib_Seite_797
	Cadmus_Munix_Ib_Seite_799
	Cadmus_Munix_Ib_Seite_800
	Cadmus_Munix_Ib_Seite_801
	Cadmus_Munix_Ib_Seite_803
	Cadmus_Munix_Ib_Seite_805
	Cadmus_Munix_Ib_Seite_806
	Cadmus_Munix_Ib_Seite_809
	Cadmus_Munix_Ib_Seite_811
	Cadmus_Munix_Ib_Seite_813

