NEWCASTLE CONNECTION

Release 1,0 on the
QU68000

D930061e

Document-No. D930061e

Trademarks:
MUNIX for PCS
DEC, PDP for DEC
UNIX for Bell Laboratories

Copyright 1983 by

PCS GmbH, Pfalzer-Wald-Strasse 36, D-8000 Miinchen 90, tel. 089/ 6780-4

The information contained herein is the property of PCS and shall neither be
reproduced in whole or in part without PCS’s prior written approval nor be
implied to grant any licence to make, use, or sell equipment manufactured in

accordance herewith.

PCS reserves the right to make changes without notice in the specifications and
materials contained herein and shall not be responsible for any damages
(including consequential) caused by reliance on the materials presented.

Copyright 1979, Bell Telephone Laboratories, Incorporated.
Holders of a UNIX™ software license are permitted to copy this document, or
any portion of it, as necessary for licensed use of the software, provided this
copyright notice and statement of permission are included.

The Newcastle Connection — Release 1.0 on the
QuU68000
Installation Guide and QU68000 - Specifics

PCS
Pfaelzer-Wald-Str. 36
D-8000 Muenchen 90

ABSTRACT

This document describes how to install Release 1.0 of the
Newcastle Connection on the QU6B000 and some specific points
for that implementation.

1. Reading in the Tape

The software is in tar format on a magnetic tape or several floppies.
When it is read in, it will create several files in /usr/doc, /usr/man, /etc,
/usr/NCbin and /usr/NClib. Especially /usr/NCbin is very voluminous and
you should take precautions against disk overflow! We have chosen not to
overwrite existing programs in /bin, /usr/bin or /usr/ucb, but to have spe-
cial directories for the Newcastle Connection programs. The reasons were

a) We deliver the Newcastle Connection as an add on to Munix, not as an
integral part of the basic software.

b) There is a certain overhead involved with programs that are linked with
the Newcastle Connection code, and we do not want users without net-
work to share this overhead.

But if you think the programs use too much space in this way, you can
simply copy programs from /usr/NCbin over their non-connected counter-
parts in /usr/bin et al. After that, you must link /usr/NCbin to /usr/bin, by
executing the program link, or issuing the system call
link("/usr/bin"," 7/usr/NCbin").

The second choice you must make is, whether you want to be able to
access remote systems always (with overhead if you are working local) or
whether you want to switch the NC on or off, as is your need. In the first case,
edit /etc/passwd to replace your login shell with /usr/NCbin/NCsetup. In
the second case, leave your login shell as it is, and call NCon before you want
to access a remote system. NCon is a small shell script in /usr/bin which sets
some environment variables and then executes NCsetup. For a description of
NCsetup see setup (8NC).

On the tape is a new standard library /usr/lib/libcnc.a and a new C com-
piler interface ccN. As :

cc *o
is equivalent to

1d /lib/crt0.o *.o0 -lc,
so ccN *o
is equivalent to

1d /lib/nc.crt0.o *.0 -lcnc.

This means, if you have a C program which you want to execute remotely or
which shall access remote files, use ccN instead of cc to compile and link it. If

you compile with ccN, the condition
#ifdef NEWCASTLE_CONNECTION
is true.
The directory /etc contains some tables, plus the spawner /etc/usam
and the file server /etc/usrv of the NC. You should include a line
/etc/startnc
in the file Zetc/rc, so that the spawner is always started when the system
goes up multi-user. The tables /etc/utab, /etc/pwmap, /etc/groupmap and
/etc/map_port_eadr should be empty or nonexistent in the beginning. They
are created and filled by mksys (1NC) and unite (1NC).

The next choice is, whether you want the directory tree as described in
the NC documentation or not. Newcastle suggests to create a directory
/nodename and then to move everything under / into this directory. A new
/etc/init will then execute at the beginning the system calls

uname(&utsname); /* get nodename of this system */

chroot(utsname.nodename); /*chroot to /nodename */

The old / is now accessible as /.. . It can be used to store names of other sys-
temns, which can then be accessed as /../systeml etc. This is a very clean
method to keep other systems logically separated from the own. But there
are some drawbacks, which, as our experience shows, can confuse novice
users or system administrators. One is, that the system will not reboot, if at
system generation time the contents of /usr/sys/name.c are not consistent
with the name of the new root directory. The chroot() will then fail and leave
the system unable to find /bin/sh, /dev/console etc. One other drawback is,
that the minitor still sees the file tree as it is. Instead of loading /sa/restor,
the standalone restor program, one would now have to load
/nodename /sa/restor.

The Newcastle Connection code does not really demand the directory
tree to be set up as mentioned. You could as well access other systems as e.g.)
/system1. If you choose the first method, you must first c¢d to /NCetc, exe-
cute the procedure buildtree, and then execute

/etc/mksys /../system ...
for each remote system. Otherwise you just execute

/etc/mksys /system ...

2. Inclusion of the ethernet driver

The ethernet driver is in the file /usr/sys/ether.o. You should first put
this module into the library with the other device drivers:

cd /usr/sys

ar rv lib2 ether.o

Be careful to correctly fill in the entries in /usr/sys/name.c. Now gen-
erate a new unix (newconf). After the configuration, the file conf.h must con-
tain

#define ETHER 1
and

#define ETHADDR ...
somewhere. Since /usr/include/sys/ether.h defines MAXPORTS to be 50, you

can now create 50 special files in /dev for the basic block ports (see bbp (4).
The following code should be appended to /dev/makefile:
bbp: :rm-f bbp*
foriin01234567889,; \
do /etc/mknod bbp88i c 22 88i; \
done

foriin0123456789\
do\
forjin12 34\
do /etc/mknod bbp88j88i c 22 $8j88i; \
done \
done
chmod 0666 bbp*
The call "make bbp"” will then create /dev/bbp0 to /dev/bbp489.

3. Final comments

We linked many programs together with the new standard library
libenc.a, but could not possibly test them all yet. Most likely cause of a crash
will be insufficient stack size. All of the connected programs have at least 8kb
of stack size, but it may be that some of them require more. Programs like
write which open /dev/tty will not work. If you are missing some programs
that you urgently need to be connected, we can easily link them too with the
NC code. We are somewhat dependent here on the knowledge of your needs.
You can often achieve the desired purpose by writing a small shell procedure,
which copys a remote file to your system, executes the program locally and
copys the result back.

The Newcastle Connection — Release 1.0
Overview and Installation Guide

Computing Laboratory
University of Newcastle Upon Tyne
Claremont Tower, Claremont Road,

Newcastle Upon Tyne,
U.K. NE1 7RU

ABSTRACT

This document describes how to install Release 1.0 of the
Newcastle Connection. It has been tested for PDP-11s running
UNIXt Version 7; installation on other systems will most probably
not go as smoothly as this document suggests. The main part of
this document, describing the installation procedure, is broken
into five sections: reading the distribution software, customising
the Newcastle Connection software for your system, basic instal-
lation, verification, and releasing the Newcastle Connection and
"connected” programs for general use. The document also
includes sections on administering the Newcastle Connection
and on bugs and features peculiar to Release 1.0.

1. Introduction

This document should accompany the tape (or other physical medium)
on which your copy of the Newcastle Connection Release 1.0 has been distri-
buted. Whatever the distribution medium, the software has been written on it
in UNIX Version 7 "tar" format. Check the label on the tape for density and
blocking specifications.

It should be noted that these instructions are intended for installation
starting "from scratch” with a standard Bell Version 7 UNIX, and that distri-
butors of the Newcastle Connection would do much of this installation before
distribution in order to distribute an integrated system.

The remainder of this section gives a brief overview of how the Newcastle
Connection is implemented for Release 1.0, and how it should be installed.
This is followed by the actual installation guide, a section on how the Newcas-
tle Connection can be used and controlled by the system administrator, and
some bugs (or features) of Release 1.0.

The Newcastle Connection is a transparent layer of software which makes
several UNIX systems appear as one. Such a combination of several systems
is termed a UNIX United system. It consists of a single global file store which -
appears to contain only files and directories. In fact, the Newcastle Connec-
tion "tags” certain directories as referring to remote UNIX systems, and inter-
cepts all system calls referring to objects on remote systems. Intercepted
system calls are then packed into protocol messages which are transmitted to
and executed on the remote system, and the values returned are then
transmitted back to the originating system. As user identifiers (userids) on

{UNIX is a Trademark of Bell Laboratories.

-2-

UNIX are fixed-length integers, they cannot so easily be extended. The New-
castle Connection thus arranges that all operations on a remote system are
carried out with a userid valid for that system.

In order to intercept UNIX system calls, every program which uses the
network is linked with a Newcastle Connection subroutine library. Routines in
this library use the same names as the standard C language interface rou-
tines to the UNIX kernel. The true interface routines to the kernel are
renamed for use only by the Newcastle Connection. (Programs not linked
with the Newcastle Connection library continue to operate normally on their
local system, and receive standard UNIX error when they attempt to perform
remote accesses.) When a system call is to be carried out on a remote system,
the Newcastle Connection forwards the encoded form of the call to a "UNIX
server” on that system which has previously been created for the calling pro-
cess. (The code for the UNIX server lives in the file "/etc/usrv’'.) In order to
create UNIX servers when necessary, every UNIX system in a UNIX United sys-
tem has a Newcastle Connection "spawner” process which always runs at a
known network address. (The code for the spawner, or "UNIX server activa-
tion manager’, lives in the file "/etc /usam’’.)

Release 1.0 of the Newcastle Connection supports a single name neigh-
bour space in the UNIX United naming tree, and a single physical network for
intercommunication between the various UNIX systems. (A name neighbour
space is a set of "system” directories in the UNIX United tree where the paths
between the directories are either direct, or consist only of paths through
true directories.)The directory structure between name neighbours is repli-
cated on each system. Each system thus stores only its own local files and
directories, plus its copy of the shared structure, including specially tagged
"system" directories for its name neighbours. Future releases of the Newcas-
tle Connection will allow multiple networks, and more arbitrary placing of
"systems" in the global UNIX United naming tree.

Networking with the Newcastle Connection is based on the idea of an
address space, which is an abstract communication medium supplied to the
Newcastle Connection by underlying software. Hosts on a address space are
known by "station addresses”, and processes on a host by "port numbers".
The allocation of port numbers to processes is dynamic, except that spawner
processes always use the same port number on a given address space. Com-
munication on an address space is by means of Remote Procedure Call (RPC)
messages, which can be implemented on top of any process-to-process com-
munications facility.

More information on the overall design of UNIX United and the Newcastle
Connection can be found in "The Newcastle Connection, or UNIXes of the
World Unite!”, by D.R.Brownbridge, L.F.Marshall, and B. Randell, in
Software-- Practice and Experience, vol. 12, ppl 147-1162, 1982. More infor-
mation on the remote procedure call protocol used between UNIX systems in
a Newcastle Connection Release 1.0 UNIX United system can be found in the
document "Newcastle Connection Remote Procedure Call Protocol”, which is
included in "nrofl -ms” format in the files "doc/protocol/[1-4]protocol” on
the distribution tape.

The first step in the installation is to read the tape (or other medium)
onto a UNIX system. Once this has been done, parts of the code must be
modified to reflect the peculiarities of the hardware, software and networks
supporting the Newcastle Connection. This is described in Section 3 of this
installation guide.

-3-

Once the code has been customised, an attempt should be made to exe-
cute the command file "install’. This creates the Newcastle Connection
library, including a new C setup routine, a new "/etc/init” program, a "cc” C
compiler which recognises a “-N" option for linking with the Newcastle Con-
nection, the spawner and UNIX servers, and various other programs used to
set up and maintain the Newcastle Connection. “Install” is described in Sec-
tion 4.

Once "install” appears to have succeeded, very careful preliminary test-
ing should be done to ensure that the Newcastle Connection is functioning
properly. This should include loop-back testing if permitted by the network
driver, or limited testing between two systems. This verification step is
described in Section 5.

Once the Newcastle Connection appears to be functioning properly, its
"installation” can begin in earnest. This involves describing the parts of the
UNIX United file tree stored on this system to the Newcastle Connection,
creating the appropriate tables indicating the local user and group ids of
UNIX servers initiated for users on other systems, and relinking (or recompil-
ing) all programs which should be able to make use of the overall UNIX United
tree. As this may well point up problems with the Newcastle Connection which
did not appear during the preceding step, single programs should be relinked
and tested before spending a lot of time doing them all. Good starting candi-
dates are the shell ("sh”) and list ("ls”) commands. This final stage of instal-
lation is described in Section 6.

Finally, Section 7 describes the administrative controls available to a
system administrator for regulating both incoming and outgoing access to
the rest of the UNIX United system. Section 8 details known bugs, restric-
tions, and other exotica peculiar to Release 1.0; some of these will be
attended to in future releases.

2. Reading the Tape

The tape (or other medium) you have received is in UNIX "tar” format, and
the density is as specified on the label on the tape box. In order to install the
Newcastle Connection you must first make a directory for the source, for

example :-
mkdir /usr/src/nc
You must then make this your current directory and read the tape, thus -

cd /usr/src/nc
tar x

The file "READ_ME_FIRST"' describes what the various directories
extracted from the tape contain; all of the directories have a "READ_ME" file
with more detailed information in it.

3. Preparing the Newcastle Connection Code

The source code which you have been given assumes that you are using
standard Bell UNIX Version 7 on a PDP-11, and that the network interface
available to the Newcastle Connection is identical to that of the Rutherford
Appleton Laboratories Basic Block Protocol driver. The more your system
differs from that assumed, the more modifications you will have to make to
the code and installation procedure.

Whenever the Newcastle Connection wishes to make a true UNIX system
call, it uses one of the macros defined in the file "h/syscallh”. These macros

-4 -

define the new names of the system calls; for PDP-11 Version 7, these are usu-
ally the old names prefixed with an underscore ("_"). For the standard Bell
distribution, renaming these kernel interface routines is accomplished by
applying an editor script (supplied with the Newcastle Connection) to the
assembler source code distributed by Bell, and assembling the result. These
editor scripts are in the directory "sys” of the distribution. The names used
by the editor scripts must be consistent with those in "h/syscallh”. For UNIX
(look-alike) systems, this renaming process may have to be performed in
some other manner. If you are not using the standard Bell Version 7 distribu-
tion, the editor scripts may not produce the desired result.

In order to ensure proper initialisation of the Newcastle Connection code
in a process, the C language startup routine must be modified to call the
function ""_ncinit()"” before control is passed to the user program. The stan-
dard Newcastle Connection distribution includes editor scripts which may be
applied against the standard Bell Version 7 distribution source code to pro-
duce modified assembler versions of the various C startup routines. These
editor scripts are in the directory "csu” on the distribution.

Depending on the UNIX United naming tree which you choose to imple-
ment, it may be necessary to ensure that processes have their root directory
/" positioned differently from that of the "init” process which is normally
found in "/etc/init”. The root directory /" for the "init” process is set to the
physical root of the boot disk device (block 0). If your UNIX United system
stores a "system’ directory in "'/..", processes other than "init" need to have
their root directory repositioned. To do this, you should ensure that "init"
performs the appropriate true UNIX "chroot(...)" system call. As mentioned,
this will be necessary for any UNIX systems where the UNIX United pathnames
for other systems are logically above the root directory "/".

In order to make it easier to link programs with the Newcastle Connec-
tion, an editor script is provided to add a "-N" option to the standard Bell "cc”
command. This option causes the program to be loaded with the Newcastle
Connection system calls and routines rather than the standard C library
interface to the UNIX kernel. The script is in the file "utility/cc.ed” of the
distribution. It will almost certainly fail to produce the desired result if you
are using a different C compiler.

Customising the network interface is described in a separate document,
"The Newcastle Connection Release 1.0 Network Interface Installation Guide".
This document is available in ‘'nroff -ms" format in the file
"doc/netman/guide”. Briefly, the network interface can be customised to
handle various address formats for your network, and to give control to exit
routines at key points in 'fork” and "exec" processing. This allows some
slight deviation from standard UNIX semantics for file descriptors associated
with network devices. The modifications essentially involve appropriate net-
work address structure declarations, and writing some very short sections of
code for address manipulation.

Finally, you will have to edit the file "h/NClocalh”, which contains all the
system-dependent parameters required by the Newcastle Connection. The
modifications are documented in detail in the file itself. They include byte
order within a short, short order within a long, long/short alignment, and
operating system version. Default values for user and group ids of remote
users of this system may be defined, and "anonymous” user and group ids
MUST be defined. If both default values are defined, the spawner will accept
calls from any remote user. Users without entries in "/etc/pwmap”
("/ete/groupmap”) will have the userid (groupid) of their UNIX server set to

-5-

the default value (see "unite(1NC)"). The anonymous ids will be returned by
the Newcastle Connection in 'stat” and "fstat” calls for the owner user and
group ids of remote files which have no corresponding user/group id on this
system. They may be any otherwise unused values. You may wish to include
names for them in the files '/etc/passwd” and "/etc/group” so that "Is”
prints more meaningful information. You must also define the "magic” device
numbers used by the Newcastle Connection for remote systems and alias dev-
ices. (Alias devices are devices whose pathnames are used on remote systems
rather than on this system. They are useful to avoid having to change pro-
grams like "tar” and "lpr"” when the devices which they should use are actu-
ally on another system.) Finally, "h/NClocalh” contains some macro
definitions used to control conditional compilation of parts of the Newcastle
Connection. See the comments in the file.

In order for the "install” command of the next section to work properly,
you should check the file "NCprofile”, which sets up some shell variables. See
the documentation in the file.

4. Creating the Newcastle Connection Code

Once the Newcastle Connection code has been prepared, you should
attempt the command "install” in the distribution directory. It accepts the

following parameters:

preview - invoke "make” with a -n option to inhibit execution

clean - remove files in preparation for a new "install”

release - copy Newcastle Connection files to public directories
after a successful installation

Invoking "install” without parameters causes it to invoke "make” on the
file "NCmake' in the distribution directory, which successively invokes "make"
on each of the subsidiary directories. The parameter "preview” prints the
commands which would be executed without actually executing them. The
parameter "clean” causes all old files produced by previous (partial) calls to
"install" to be removed in preparation for a new attempt. The parameter
“release” copies files which have been created by "install” to their normal
places in public directories. The command 'release” simply copies the files
without doing an "install” first. You should probably try "install preview”
before actually attempting to make the Newcastle Connection.

Should "install” succeed, all is well. Should it fail, diagnosis and repair of
the problems must be done by you or your distributor. As the problems
encountered can be quite diverse and almost certainly unexpected, no effort
is made to detail them here.

As noted below, it would be wise to do some preliminary verification
between successfully running "install” and running "release”.

5. Verifying the Operation of the Newcastle Connection

Once the runnable versions of Newcastle Connection software and the
new C library have been made, the software should be carefully tested before
releasing it for general use. In particular, note that the consequences of a
Newcastle Connection bug in critical programs such as the shell "sh” can be
quite disastrous. With this in mind, it is a good idea to set up one super-user
login name which does not result in running a "connected” shell.

The first step in verification is to ensure that when the Newcastle Con-
nection code is included in a user program, it is truly transparent for local
operation. This should be true whether or not a Newcastle Connection data

-6-

string (called "__N") is present in the process’ environment. The command
“pretest” in directory "check” of the distribution can be used to perform this
testing. Its single parameter specifies a directory which can be used during
the test. To do this, change the current working directory to check, and sim-

ply invoke it:

cd check
pretest /tmp

This will either print a message saying that the test has succeeded, or a list of
diflerences between the output of the unconnected and connected versions of
the test program "check".

In the normal case, the above test would not have had a ""___N" string in
the process’ environment, as no parent process would have executed the pro-
gram "NCsetup” to create it. This should be done by issuing the shell com-
mand:

exec ../utility /NCsetup

from the directory "check’. Its effect is to create a "___N" string, and to pass
it in the environment to the shell program in "“/bin/sh” which it invokes with
a real UNIX "exec" call.

Having thus created the "___N" string in the environment, run the pretest
command file again. Again, this should not result in any differences between
the connected and unconnected versions of "check”.

At this point, you may consider the Newcastle Connection to be stable
enough to proceed with the overall installation. This is done by the command

release

in the distribution directory.

After the execution of '"release” all of the Newcastle Connection software
will have been copied to its normal locations in the public directories. Among
the files involved are:

/etc/startnc - program to start execution of the spawner
/etc/stopnc - program to stop execution of the spawner
/etc/usam - the spawner program itself
/etc/usrv - the UNIX server program
/etc/setugi - used by the UNIX server to change its
user/group id
/bin/NCsetup - should be entered in /etc/passwd as
the shell program for all users authorised
to use the Newcastle Connection
/lib/libenc.a - the Newcastle Connection library of UNIX
system calls

"

Other files are Newcastle Connection commands from the directory "utility
(see the manual pages for them in directory “man"), the modified "cc” com-
mand, certain data files used by the Newcastle Connection itself, and the
modified C startup routines.

The final phase of verification involves using the so-called wheelkicker in
the command file "perform’ to verify the operation of the Newcastle Connec-
tion in more general cases. In order to do this, you must create an entry in
the file system for a remote system. The easiest way to do this is to create a
system whose network address is the same as the local system (loop-back).

-7-

Otherwise, some Newcastle Connection code (namely '/etc/usam’,
" setc/usrv', '/etc/setugi’) will first have to be installed on the other system.

In either case, the appropriate file system entries are made with the pro-
gram ‘“mksys”, now installed in "/ete”. (See the manual page for
"mksys(1NC)" in the directory "man” of the distribution.) You will also have
to make an entry in the files "/etc/pwmap” and "/etc /group’ so that at least
one remote user to or from the pseudo-remote system can access this system
via the Newcastle Connection. This is done with the program "unite(1NC)".
See the manual page for it.

The final stage of verification is to execute the command file "perform"
from the directory "check”. It takes two arguments: a local directory and a
remote directory. If all is operating correctly, it will report success. When
this occurs, you can prepare the Newcastle Connection for normal use as
described in the next section.

6. Preparing the Newcastle Connection for Use

For Release 1.0 of the Newcastle Connection, it is suggested that you
organise your UNIX United naming tree so that all remote systems are
accessed from any one system by pathnames beginning "7.". In order to do
this, you must reorganise the local version of the UNIX file store so that the
directory or directories in "/.." exist, which involves moving all directories in
the existing directory /" down one level, and then arranging that "/etc/init"”
execute the appropriate "chroot” call so that all other processes execute
with their root set properly.

The command file "buildtree” in the directory "init" of the distribution
will perform this reorganisation of the file system for you. Before executing
it, you should be VERY sure that you understand what it is trying to do, and
that all of its parameters are set properly. As it will tell you when run, you
must execute ""buildtree” as root, with no file systems mounted, and no other
users logged in. It will also check to see that you have placed an object
module called "init" in its directory. This should be the same as your normal
"init" program, modified to execute a true "chroot" UNIX system call as its
first statement. The pathname in the "chroot” must be the same as the
$WHERE argument which you provide to "buildtree”.

Once "buildtree” has been run, you can create entries for remote sys-
tems in the directory '/.". This is done by use of the command
"mksys(1NC)", whose syntax is as follows:

mksys <pathname> <identifier>

The <pathname> argument specifies the file system entry to be created for a
remote UNIX system; it will normally begin with “7.". The <identifier> will be
passed to the network interface routine " _netitoa()”, and must provide it with
sufficient information to create a proper network address for the remote sys-
tem. For Release 1.0, the identifier must be in the range [0..255] inclusive.
Mksys will create a special file at <pathname>, and create an entry in its own
file "/etc/utab”. The contents of the file, which is pairs of system names and
identifiers, may be printed with the "-p” option of "mksys".

mksys -p

For the Newcastle Connection to present a consistent interface to users
on any of the systems making up the UNIX United system, all the directory
structure related to remote systems (the directory "/.." and any others you
choose to create in it) must be replicated on all of the systems. This is

-8-

achieved by executing equivalent sequences of "'mksys” commands on each of
the systems. (In fact, the Newcastle Connection can be made to operate
satisfactorily when the replicated directory (or directories) are inconsistent,
but such operation is at your own risk.)

Having created the local part of the UNIX United tree structure on your
system, you should use the program "unite(1NC)" to inform the Newcastle
Connection of how remote users are to be mapped to users on this system.
See the manual page for more information. For any of your local users whom
you wish to allow to use the Newcastle Connection, you should modify
"/etc/passwd” so that their login shell is "/bin/NCsetup”. As mentioned
above, this simply creates the Newcastle Connection data string ''_N" in the
process’ environment before executing the standard shell in ""/bin/sh".

The final stage in the installation procedure is to relink all programs
which you wish to be able to use the Newcastle Connection with the modified
C library in "/lib/libcnc.a”. This can most easily be done by use of the "-N"
option on the modified "cc'' command.

7. Use and Administration of the Newcastle Connection

The Newcastle Connection is careful to ensure that the administrator or
"super-uses’ of each system in a UNIX United system retains control of his
individual machine. Through the standard UNIX permission and access con-
trol mechanisms, each super-user can control who is allowed access to net-
work devices, which users can run "connected” programs to access remote
machines, and which programs are relinked to enable them to access remote
machines.

At the lowest level, access to the UNIX device associated with the network
is through a normal "open'' system call, and so the userid and groupid of the
calling process are checked against the permission bits of the device inode.

At a higher level, control of the permissions associated with
/lib/libenc.a’” (the Newcastle Connection system call library) determines
whether or not a given program can be (re-)linked to access remote
machines, or to be executed by remote users. For example, if he wished, the
super-user could "connect’” only a very select subset of normal command pro-
grarms.

In order for any particular user to access a remote system, two condi-
tions must be satisfied:

1. The program which is executed must be connected (i.e., linked with

"/lib/libcnc.a”), and
2. the Newcastle Connection data string ''__N" must be correctly initialised

in the environment before the program is executed.

This initialisation of "___N'" is performed by the program "/bin/NCsetup".
Standard UNIX permission checking determines which users may execute that
.program. (For naive users, leaving their login shell set to the default of
"/bin/sh” rather than setting it to "/bin/NCsetup” may well be a close
enough approximation to prohibiting remote access for them.)

For remote users accessing this machine, the Newcastle Connection pro-
vides the system administrator with quite fine control over the privileges with
which such users execute on his machine. When a remote user attempts to
access a file (or execute a program) on this machine, the spawner process is
aware of the remote system identity as well as the remote userid and groupid
of the caller. The files ""/etc/pwmap’ and ''/etc/groupmap’, which are owned
by the super-user, are read by the spawner to determine the local userid and

-9-

groupid to which the remote user id is "mapped”. In order to service all
requests for a remote user process, the spawner creates a UNIX server pro-
cess with the mapped userid and groupid. This ensures that remote users can
only access the local system with privileges under the control of this system’'s
super-user. (In future releases of the Newcastle Connection, it may be possi-
ble to exert even finer control by having the spawner choose one of a number
of UNIX servers having more or less functionality, depending on the identity
of the remote user.)

Note that the mapping from remote to local users may be many-to-one;
there is no requirement that each remote user have a distinct local identity.
The two tables used by the spawner ("/etc/pwmap”, ""/etc/groupmap”) are
maintained by the program "unite(1NC)".

You should be aware that "root” (or super-user) is treated identically to
other userids as far as this mapping is concerned: "root” on another machine
may be mapped onto some other non-privileged userid on this machine. If
several systems are in fact controlled by a single administrator, it may well be
advantageous to map ''root” onto 'root”. In particular, this allows all super-
user functions for the set of systems to be performed by one single login
rather than several. Software updating, disk dumping, process killing (espe-
cially useful when the only terminal line into a small computer hangs up),
etc., can be done very conveniently. However, you should be very wary of
mapping "root” onto “root” if you are even slightly suspicious of other system
administrators.

Administration on a larger scale can be performed by cooperating sys-
tem administrators. As the Newcastle Connection makes an entire UNIX
United system appear to be a single UNIX system, and because the Newcastle
Connection always executes a file on the machine where it is stored, it is pos-
sible to do some rather static load balancing by moving executable programs
from one system to another. By naming a program file on a remote machine,
the program will be run on that machine, in the environment of the caller.
(In this context, "environment’ includes the root directory /", and the
userids, groupids, and process ids visible on the caller’'s system.) Normal shell
conventions for 1/0 redirection are applicable, and all pathnames are inter-
preted relative to the caller's root directory or working directory.

In order to allow controlled escape from the caller's environment, the
Newcastle Connection provides a single new "system’ call and corresponding
program, both called "excr” (execute with changed root). In fact, there is a
family of "excr(2NC)" system calls corresponding to the normal "exec(2)"
family. In terms of the "excr” program, a terminal user causes remote "excr’
execution with a command of the form:

excr <system> <command> <arg> <arg> ...

The eflect of this is to execute the named command on a remote <system>,
passing the indicated arguments. <system> is a pathname referring to a
remote system. The "excr’ program crudely mimics the normal shell search
path: if <command> begins with /", it is sought relative to the root of <sys-
tem>; otherwise, "/bin" and ""/usr/bin" on the remote system are searched.
If the file is marked executable but execution fails, the shell in "/bin/sh" on
the remote system is invoked on the file.

For example, both the command “who” and the command '"ps" produce

their output by reading files specified by root-relative pathnames. Assuming
a remote system named ''/../rem.unix", then the semantics of normal remote

execution imply that both

-10 -

who; ps
and
/../rem.unix/bin/who; /../rem.unix/bin/ps

produce identical results: a list of the users logged in to the local machine,
followed by a list of processes belonging to this user on the local machine.
However,

excr /../rem.unix who

will produce the (presumably) intended result of printing a list of the users
logged on to machine "/../rem.unix".

Finally, as a UNIX United system tends to be significantly larger than a
single UNIX system, it is worthwhile recalling the various pathname abbrevia-
tions supplied in the UNIX shell (and hence supported through the Newcastle
Connection). The working directory is of course one of the most often-used
means of abbreviating pathnames; the Newcastle Connection allows a user
process (or processes) to have working directories on a remote machine. The
shell provides a variable "8PATH" which lists those directories in which it will
search for commands; the Newcastle Connection permits the specification of
remote directories in "$PATH". Similarly, other shell variables may be set to
allow the user to specify remote pathnames more conveniently. For even
more difficult cases, shell command files can be written to further reduce the
apparent length of pathnames or arguments supplied by the terminal user.

8. Restrictions and Known Bugs

The UNIX United architecture implies that UNIX systems may be
"attached” to arbitrary directories in the global UNIX United naming tree. In
future releases of the Newcastle Connection, this generality will be imple-
mented. However, Release 1.0 of the Newcastle Connection implements only a
restricted form of UNIX United.

More specifically, Release 1.0 operates with a single name neighbour
space and a single physical address space or network. As mentioned above,
this implies that all the UNIX systems linked by Release 1.0 must share a
replicated inter-system directory structure. Having one or more directories
which appear "between’” systems allows an arbitrary number of systems to
belong to the same (single) name neighbour space. When there is no shared
directory structure, only two systems belong to the name neighbour space:
one at each end of the path element connecting them. This restriction to a
single name neighbour space will be removed in future.

The restriction in Release 1.0 to a single address space effectively implies
that the Newcastle Connection will not do any internetworking. Note, how-
ever, that the software which presents the address space abstraction at the
network interface to the Newcastle Connection may well be performing arbi-
trary internetworking itself. In future, the Newcastle Connection will itself
perform a simple form of internetworking.

For historical reasons, the UNIX servers as implemented in Release 1.0
are not themselves "connected”. That is, each UNIX server attempts to inter-
pret each pathname presented to it as being on its local system. In future,
UNIX servers will be "transitive”, and will forward system calls to more remote
systems. They will also be ‘reflexive”, in that a server will occasionally report
that a pathname presented to it refers to the caller's system. (This occurs
when the system on which the caller runs is not the same as the system where
his root directory ""/" is located, for example.)

-11 -

The lack of reflexive and transitive UNIX servers restricts the systems
accessible to a running program. If either the root directory "/" or the
current working directory of a process are not on the same system as the
process is running, the remote server for the directory involved cannot
correctly interpret pathnames for any other system. Thus, if /" is remote,
the only root-relative pathnames which are accessible to the process are on
the same system as "/". Similarly, if the working directory is remote, the only
pathnames relative to that directory which are accessible to the process are
on that remote machine.

8.1. Other Restrictions

A "setuid” program allows a program to be run with an effective userid
different from that of the caller. It is used to implement "trusted” programs
such as "mail(1)"" (which needs access to all mailboxes), and to implement
proprietary programs needing access to private data. For philosophical rea-
sons, the Newcastle Connection prohibits normal remote execution of
"setuid” programs. The problem is that the setuid program would perceive
only userids and groupids of the remote machine. For proprietary programs,
these may not be meaningful for its own accounting and/or control purposes.
Note, however, that "excr' execution of "setuid" programs operates as
expected.

The two systems calls "ptrace” and "times" are not intercepted by the
Newcastle Connection. For "ptrace” this reflects a disinclination to allow
remote debugging, rather than an intrinsic impossibility. (As the Newcastle
Connection is transparent to the process being debugged, the debugging
should be done on the local system rather than remotely.) For "times", the
statistics which it returns have no unambiguous interpretation in the New-
castle Connection context. Comments and suggestions on both of these sub-
jects are solicited.

8.2. Known Bugs

The program "pwd” cannot be made to work with the Newcastle Connec-
tion, because of the way it identifies the root directory /" by searching for
an inode which is its own parent. Future releases may provide a new "system”
call to replace ""pwd".

On the standard Bell distribution, the assembler "as” is written in assem-
bler, and hence cannot be “connected”. This implies that the C compiler "cc”,
which calls it, cannot be completely connected. All the components of "cc”
can be successfully connected except the assembler, which implies that you
can do some remote accesses from the compiler. Problems occur if your
working directory is remote, if you specify a remote object module to be
created, or if you attempt remote execution of the compiler.

Executing a “"chroot(2)" system call to a remote system does not work as
one might expect. Using "excr” instead may be of some use.

The system calls “stat” and "fstat” expose "nasty” system-dependent
constants such as inode numbers. Thus, files on different systems may
appear identical (in which case "cp"” refuses to copy), and programs which
depend on inode number tests may not behave correctly. There appears to
be no easy way around these difliculties, although future releases may allow
programs to explicitly test for remoteness of pathnames and file descriptors.
Similar problems arise with other fields in the "stat” buffer; the only ones
which are handled reasonably are the userid and groupid.

-12-

There is a problem in the Newcastle Connection version of "chdir(2)"
which will be fixed in future releases. If the working directory is changed to a
remote system, and then moved part of the way back towards the original
system, so that it should end up in one of the directories between systems,
the current directory the program actually sees is the copy on the remote
system, rather than the one on the original system.

. Programs which use the file "/dev/tty” explicitly in "excr” mode are
likely to fail, as the device actually accessed is the terminal associated with
the spawner on the remote system, rather than that associated with the stan-
dard input or invoker on the original system. Thus, for example,

excr /../rem.unix login

will fail as login tries to turn off echo on the terminal device which is unfor-
tunately accessed relative to the changed root. Suggestions are welcome.
This is a hazy area where semantics of certain files are not enforced by the
kernel, implying that the Newcastle Connection cannot appropriately mimic
those semantics in an elegant fashion. However, if the remote spawner was
initiated by "/etc/init" at system boot, no terminal is associated with it, and
"excr" remote login will succeed. This problem may be fixed in future
releases.

EXCR(1INC) UNIX 3.0 (Newcastle Connection) EXCR(1NC)

NAME

excr —run a program on another system

SYNOPSIS

excr system program arg ...

DESCRIPTION

If the program name begins with a '/’ then the program with that name
on the named system will be run. However, if there is no '/’ then the
directories ''/bin” and then '"/usr/bin”" on the named system are
searched for the program. When it is found, the program is executed as
though its root were on the named file system. If the normal "exec”
returns errno = ENOEXEC, an attempt is made to execute the shell on the
named file.

This provides the user with a different facility to the one provided by
remote execution. Thus the command "/../U5/bin/who" issued on sys-
tem U1 will print out a list of the users on Ul; to obtain a list of the users
on U5 the ezcr command must be used - "excr /../U5 who".

DIAGNOSTICS

FILES

Page 1

An error message is printed if the program does not exist or cannot be
executed.

/bin/excr

July 8, 1983

MAIL(1NC) UNIX 3.0 (Newcastle Connection) MAIL(1NC)

NAME
mail — mail(1) using the Newcastle Connection instead of uucp.

DESCRIPTION

Changes: in "system'person’, "system” is now recognised as the name of
the root of a system in the Newcastle Connection distributed naming
tree, not a uucp(1) system name (especially, there are no embedded "!'s
in "system").
Mail spawns a single mail process on each remote system to distribute
the mail to all recipients on that system (local mail behaves as usual).
Thus

"mail /../unix1l!dave /../unix2'dave /../unix1!fred’” calls

"mail dave fred” on /../unix1 and

"mail dave’” on /../unix2.

SEE ALSO
mail(1) for a full description of this command.

BUGS
Cannot forward messages to remote systems from within mail.
If execution of mail on a remote system does not succeed, it is difficult to
know what messages have been sent.
Mail expects all "real” mail commands to live in files of the same path-

name on all systems.

Page 1 July 8, 1983

MKALIAS(1NC) UNIX 3.0 (Newcastle Connection) MKALIAS(1NC)

NAME

/etc/mkalias — create an alias to a remote file

SYNOPSIS

/etc/mkalias [-f] name identifier

DESCRIPTION

BUGS

This program facilitates the creation of "aliases” to remote files. An alias
is a name that appears to be local but in fact refers to a file of the same
name on another system. Thus a system with no line printer could have
a file '"/dev/lp"” which was an alias for the line printer on another system,
(where it would have to be called "/dev/Ip" as well). The operation of an
alias is therfore to take the name provided by the user and attempt to
perform the requested operation on the file of that name on the indi-
cated system. The "identifier"” parameter is of the same type as that pro-
vided to "mksys(1NC)": for Release 1.0, it must be an integer in the range
[0..255] inclusive. It will be passed to your network interface to identify
the name neighbour system on which the 'real” version of this file

appears.

Aliased files must always be accessed relative to /", otherwise they will
not be found.

DIAGNOSTICS

Page 1

Complains if file "name' exists, unless the "-f" option is present.

July 8, 1983

MKSYS

NAME

(1INC) UNIX 3.0 (Newcastle Connection) MKSYS(1NC)

/etc/mksys — make a remote system node

SYNOPSIS

/etc/mksys [-p] | [[-f] name identifier ethernet-address]

DESCRIPTION

FILES

This program is used to create the special directory entries needed to
communicate with remote systems via the Newcastle Connection. The
first parameter is the name that the new entry is to have, and the second
is the identifier of the system it is to refer to. The identifier must be in
the range [0..255] inclusive for Release 1.0 of the Newcastle Connection.
It will be passed to your network interface via the procedure "_netitoa()"
to be converted into a physical address when required. The inverse func-
tion "_netatoi()" will be called by the Connection to translate a network
address into an identifier. Depending on your network interface, it may
be possible to encode "identifier"” so that it is particularly easy to
transform it to a physical address. For example, "identifier’” can be used
directly as a station address for a Cambridge Ring. The ethernet address
is a 6 digit hexadecimal number. The station identifier and the ethernet
address of a remote machine must be consistent with this machines’
declarations in /usr/sys/name.c

The "-p" option causes ''mksys” to print the list of name-identifier pairs
known to the local system from the file '/etc/utab”, plus the
corresponding ethernet addresses from the file "/etc/map_port_eadr”.
"Mksys'' normally complains if "'name’ already exists. This can be over-
ridden by the "-f" option.

/etc/utab - table of name-identifier pairs /etc/map_pert_eadr - table
of ethernet addresses, indexed by identifier

SEE ALSO

Page 1

"The Newcastle Connection — Release 1.0: Network Interface Installation
Guide", rmsys(1NC), utab(5NC)

August 31, 1983

RMSYS(1NC) UNIX 3.0 (Newcastle Connection) RMSYS(1NC)

NAME
/etc/rmsys — remove a remote system name
SYNOPSIS
/etc/rmsys name
DESCRIPTION
This program removes the special Newcastle Connection entry given by
name.
FILES
/etc/utab - file of remote system names and identifiers
SEE ALSO

mksys(1NC), utab(5NC)

Page 1 July 8, 1983

UNITE (1NC) UNIX 3.0 (Newcastle Connection) UNITE(1NC)

NAME

unite — enable a remote user to access the local system

SYNOPSIS

unite [-dgprv] [system [remote_id [local_id]]]

DESCRIPTION

FILES

Establishes local_id as the local surrogate for user remote_id on remote
Unix system. e.g.

unite /../unix4 dave david

lets user 'dave’ on system ’/../unix4’' execute processes on the local
machine, as if he had logged in as 'david’. A missing local_id is assumed
to have the same name as the remote user. A missing remote_id is
assumed to mean each user of the remote system is to be mapped to the
local user of the same name. Unite normally refuses to map "root” to
"root’; any user names with userid O are ignored. Unite without parame-
ters prints out the current list of remote and local user pairs.

Option "-d'" deletes the remote system or user named.
Option "-g" applies unite to groups instead of users.

Option "-p" can be used to print a single pair, or the entries for a single
system.

Option "-r"" overrides the default control which will not normally map
"root” (or any user name with userid 0) to local "root". It is only effective
when an entire system is being united, and has no meaning if combined
with '-g’ option.

Option "-v"' announces each item as it is created.

Both remote_id and local_id may be in numeric form. In this case, the
"/etc/passwd” (""/etc/group’) file on the relevant system is not
accessed. This is useful when creating a United system.

/etc/pwmap /etc/groupmap, user and group mappings;

system /etc/passwd

system /etc/group

/etc/passwd /etc/group - local and remote user and
group tables.

/etc/utab - table of systems.

DIAGNOSTICS

Complains about incorrect parameters such as non-existent ids or sys-
tems.

SEE ALSO

Page 1

pwmap(5NC), utab(5NC)

July 8, 1983

BBP (4) UNIX 3.0 BBP (4)

NAME
bbp - Basic Block Port Interface

SYNOPSIS
#include <sys/port.h>

DESCRIPTION
The Basic Block Port Interface is a simple network interface, originally
developed for the Cambridge Ring, and now adapted to Ethernet. The bbp
provides a set of so-called ports, through which processes on different
machines (or on the same) can talk to each other. The port is character-
ized by the structure portinfo in <sys/port.h> :

struct portinfo

shor t pi_type; /% port type,unused for Ethernet x/
unsigned int pi_inport; /% bb_port number by which this port
% is addressed by cther stations
=/
shor t pi_station; /% destination ring station x/
unsigned int pi_outport; /% destination bb_port number %/
unsigned int pi_accept; /% acceptable source station number x/ -
etheradr pi_ethadr; /% destination ethernet address x/

§s

The field pi_type is unused for Ethernet. For the Cambridge ring this
field specifies if the data transfers are protected by parity checks or not.
The field pi_inport specifies the input port number, by which this port is
addressed by other stations. Their output port number, pi_outport, must
be equal to pi_inport, if they want to talk to this port. The field
pi_station is a two-byte station number.

A station number is a unique identification of each machine attached to
the net. This station number is more manageable than the six byte Eth-
ernet address contained in the field pi_ethadr. The ethernet address is
mainly used for the hardware address recognition, whereas the station
number is used by upper level software. Both the station number and
the ethernet address are fixed at system generation time. They are, like
the ascii system name, a unique name of the system. Their values can be
found in the file /usr/sys/nmame.c and can be gotten by the system calls
uname(2) and ethsys(2).

The fields pi_station, and pi_ethadr together specify the destination
machine; the field pi_outport is the port number on the destination
machine, to which this port wants to talk. The field pi_accept specifies
the machines from which this port is willing to receive. The values
NOONE and ANYONE mean: accept packets from noone or anyone. Any
other number means: accept packets only from the station with this
number.

It is not necessary to specify the own station number and ethernet
address, as the system knows them already and they cannot change.

The portinfo structure is set by an ioctl system call with command
BBPSET, and read with command BBPGET.

EXAMPLE
Machine alpha has the station number 3 and the ethernet address

Page 1 August 31, 1983

BBP(4) UNIX 3.0 BBP (4)

333333333333. Machine beta has the station number 5 and the ethernet
address 555555555555. A process on alpha wishes to receive on port
number 372. Another process on beta receives on port number 373; The
process on alpha specifies

struct portinfo alphaport = § 8, 372, 5, 373, 5, {Bx5555,8x5555,8x5555] §;
ioct! (fd,BBPSET, 8alphaport);

whereas the process on beta specifies

struct portinfo betaport = § B, 373, 3, 372, 3, {8x3333,8x3333,8x3333}};
ioct! (fd,BBPSET, 8betaport);

Both processes can now talk to each other by normal read and write sys-
tem calls.

A port can be obtained by successively opening the files /dev/bbp0,
/dev/bbp1l etc. If the open returns with errno ENXIO, the port does not
exist, if errno is EACCES, the port is already opened. After the open the
port must be configured with the command BBPSET. If the ioctl returns
with errno EACCES, a port with the same pi_inport is already open. Just
to get an unused port number, the value DYNAMIC can be given for
pi_inport. The actual port number can then be gotten with the ioctl-
command BBPGET.

EXAMPLE
struct portinfo aport = § 8, DYNAMIC, 5, 123, ANYONE, §8x5555, 8x5555, 8x55551];
ioct! (fd,BBPSET, &aport);
ioctl (fd,BBPGET,&aport); /% pi_inport contains a free port number %/

Data is transferred with the normal read and write system calls. However,
there is a limitation on the number of bytes that can be transferred with
one write. On the Ethernet, the number 1024 is safe. The data of each
write system call is sent as a packet over the net. The count of the read
system call must be larger or equal than the size of the packet, otherwise
the read returns with error EIO. read returns the size of the received
packet. If the count for read or write isillegal, error EINVAL is returned.

At any time after BBPSET, the ioctl command BBPENQ will return the fol-
lowing structure, defined in <sys/port.h>:

struct portenq §

shor t pn_sender; /% station number

of sender of received block %/
shor t pn_sendpor t; /% port number

of sender of received block %/
char pn_xrsit; /% last block transmission result x/
char pn_blkavail; /% a block is available to be read x/
etheradr pn_sendadr; /% ethernet address of sender x/

§s

The fields pn_sender, pn_sendport, and pn_sendadr specify the station
number, port number, and ethernet address of the sender of a received
packet. The field pn_zxrsit contains the result of the last write. This is
normally equal to BB_ACCEPTED on the ethernet, and equal to
BB_ERROR only if excessive jams occurred on the net. The field
pn_blkavail is unequal 0, if a packet has been received, but not yet read.

August 31, 1983 Page 2

BBP(4) UNIX 3.0 BBP (4)

WARNING
The bbp contains no flow control. Incoming packets are simply discarded

if they are not read fast enough. Protocols are entirely the responsibility
of upper levels.
SEE ALSO
sbp(4)
FILES
/dev/bbp*

Page 3 August 31, 1983

ETHMAP (5NC) UNIX 3.0 (Newcastle Connection) ETHMAP(5NC)

NAME

/etc/map_port_eadr — table of ethernet addresses at this system.

DESCRIPTION

Page 1

s/etc /map_port_eadr is just a linear table of 6 byte ethernet addresses,
indexed by the station number (sometimes also called identifier). The
address is arbitrary for the 3COM ethernet hardware, but may be
hardwired in other controllers at a later time. At any time. there must be
a one-to-one correspondance between the station numbers and ethernet
addresses of machines connected to the same network.

August 31, 1983

PWMAP

NAME

(5NC) UNIX 3.0 (Newcastle Connection) PWMAP(5NC)

/etc/pwmap, /etc/groupmap — table of user and group id mappings for
the Newcastle Connection at this system.

DESCRIPTION

/etc /pwmap and /etc/groupmap contain the tables used by the spawner
at this system to determine the user and group ids of servers run on this
system on behalf of users of a remote system. The formats of the two
files are identical, and consist of a list of system entries, one for each
remote system for which one or more users has been authorised. Each
systemm entry consists of a header, and a sequence of fixed-length
records for each mapping of a remote id. Each record consists of three
16-bit integers: the first contains flag bits unused in Release 1.0, and the
next two contain the remote numeric id and the local numeric id to
which it is mapped, respectively.

The header for each system consists of a 16-bit integer giving the
number of remote user entries following, a 16-bit length referring to the
string name which follows, and a variable-length string which is the path-
name of the remote system relative to this system's root. The length
field includes the null byte terminating the string.

SEE ALSO

FILES

Page 1

unite (1NC), mksys(1NC), rmsys(1NC).

/etc/pwmap, /etc/groupmap

July 8, 1983

UTAB(5NC) UNIX 3.0 (Newcastle Connection) UTAB(5NC)

NAME

/etc/utab — table of name neighbour UNIX United systems known to the
Newcastle Connection at this system.

DESCRIPTION

SEE AL

FILES

Page 1

setc /utab contains one entry for each name neighbour of the system on
which it is stored. Each entry consists of a 16-bit identifier (which must
be in the range [0-255] for Release 1.0), a 16-bit length field whose value
is the length of the following string plus one for the null byte, and a
string which specifies the pathname of the name neighbour relative to
the root is this system. The string is stored including the terminating
null byte.

The "identifier" will be passed to your network interface routine '"_neti-
toa()” when required to convert it to a physical address for your network.
The inverse operation is performed by '_netatoi()”, which returns an
identifier given a physical address.

This file is maintained by the programs “"mksys(1NC)" and '"rmsys(1NC)",
which can be used to inspect, add, modify, or delete an entry.

The file is used by the Newcastle Connection during "exec' processing to
translate physical addresses (the 16-bit identifiers) into system names.

SO
unite (INC), mksys(1NC), rmsys(1NC), '"The Newcatle Connection -
Release 1.0: Network Interface Installation Guide"

/etc/utab

July 8, 1983

NCSETUP (8NC) UNIX 3.0 (Newcastle Connection) NCSETUP(8NC)

NAME
/bin/NCsetup - initialise the Newcastle Connection tables in a process
SYNOPSIS
/bin/NCsetup
DESCRIPTION
This program initialises the "_N" environment string used by the New-
castle Connection before executing the shell. It should be named as a
user's shell in the file ""/etc/passwd’”, for all those the users who are to
have access to the Connection.
DIAGNOSTICS

Page 1 July 8, 1983

STARTNC(8NC) UNIX 3.0 (Newcastle Connection) STARTNC(8NC)

NAME
/etc/startnc - starts up the file server spawner
/etc/stopnc - closes down the file server spawner
SYNOPSIS
/etc/startnec [-d]
/etc/stopnc
DESCRIPTION

setc /startnc starts up the UNIX server spawner, in the file "/etc/usam’”,
and stores its process id in the file "/etc/usampid”. If the spawner was
already running, the program will shut it down before starting the new
process. The program also handles new releases of the server software,
which should be placed in the files ""/etc/usrv.new’, "/etc/setugi.new”
and '"/etc/usam.new’ (the Newcastle Connection make files will do this
automatically). The versions being replaced will be moved to the files
""/etc/usrv.old", "/etc/setugi.old” and ""/etc/usam.old”. The option -d is
used to select the version of the spawner held in the file
""/etc/usam.dbg”. This is conventionally a debugging version of the
spawner, and the option should only be used whilst testing the system.

setc /stopnc closes down the UNIX server spawner by sending the signal
SIGTERM to the process whose id is contained in the file "/ etc/usampid”.

FILES
/etc/usampid
/etc/usam
/etc/usam.dbg
/etc/usam.new
/etc/setugi
/etc/setugi.new
/etc/setugi.old
/etc/usrv.new
/etc/usrv.old
/etc/usrv.old

SEE ALSO
usrv(8NC), setugi(BNC), usam(8NC)

DIAGNOSTICS
A message will be printed when there is a new software release installed.
If the caller is not superuser or if there is a problem with the execution
of the spawner program, an error message will be printed.

Page 1 July 8, 1983

USAM (8NC) UNIX 3.0 (Newcastle Connection) USAM(8NC)

NAME

/etc/usam - initiate a UNIX server for a remote client
SYNOPSIS

/etc/usam [root directory [working directory]]
DESCRIPTION

This program listens on a fixed port number for an incoming request for
remote service. In response, it initiates a UNIX server on another port
and returns this port number to the client, who now deals directly with
its own UNIX server. The program also performs user/group validation
and mapping for the incoming request, allowing the local system
manager to maintain control of the user population. The parameters
passed to the spawner allow the initiator to control exactly where the
spawner lives in the file store hierarchy, and therefore to control where
incoming users’ UNIX servers live and the image of the file system that
those users see. The default value for both fieldsis "/’

The fixed port number used by all spawners on your network is con-
trolled by the macros "SET_USAM_PORT” and "USAM_INIT" in the file
"h/netlocal.h’ of the distribution directory of the Newcastle Connection.

FILES
/etc/pwmap, /etc/groupmap

SEE ALSO
usrv(BNC), unite(1NC), startnc(BNC), stopnc(8NC), pwmap(5NC),
utab(5NC), "The Newcastle Connection — Release 1.0: Network Interface
Installation Guide"

DIAGNOSTICS
Reports will be given on the console in the event of errors;

BUGS
No means of quiescing the spawner, without stopping it all together.
Spawners started after boot time create servers which have an associ-
ated terminal (''/dev/tty"). This means that "excr” remote login cannot

succeed.

Page 1 July 8, 1983

USRV(8NC) UNIX 3.0 (Newcastle Connection) USRV(8NC)

NAME
usrv - UNIX server for a remote client

SYNOPSIS
/etc/usrv

DESCRIPTION
This program is spawned in response to incoming requests for service
and provides a remote user with the facilities of the normal UNIX system

file interface.

SEE ALSO
usam(8NC)

DIAGNOSTICS
Standard UNIX error return codes are handed back to clients in the

external "errno” of the caller’s program.

Page 1 July 8, 1983

Newcastle Connection —Rel. 1.0 und CADMUS
Installationsanweisung

PCS
Pfalzer-Wald-Str. 36
D-8000 Miinchen 90

ABSTRACT

Nach dieser Anleitung kénnen Sie eine nachtragliche Instal-
lation der Newcastle Connection auf dem CADMUS 9200 vorneh-

men.

1. Sie benotigen:
1.1. Dokumentation:

EXCR(1NC) MAIL(1NC) MKALIAS(1NC) MKSYS(1NC)
RMSYS(1NC) UNITE(1NC) BBP(4) ETHMAP(5NC)
PWMAP(5NC) UTAB(5NC) NCSETUP STARTNC(8BNC)
USAM(BNC) USRV(8NC)

1.2. Software:

- neue Standard-Library "usr/lib/libcnc.a”, mit der Sie lhre Programme
binden miissen, die Sie “remote” ausfiihren wollen

- neues Compiler-Interface ccN

- bereits neu gebundene Standard-Utilities in /usr/NCbin Sie bendtigen
z.Z. etwa 6500 Blocke auf der Platte. Falls Sie diesen Speicherplatz
minimieren wollen, konsultieren Sie bitte PCS-Dokument D930061e
"Installation Guide and QU68000-Specifics"

Falls Sie Zusatzpakete wie "Berkeley” oder "MED" gewahlt haben, achten Sie
bitte darauf, dass auch diese in einer "NC"-Version vorliegen.

1.3. Hardware:
Sie sollten ihre ETHERNET-Controller eingebaut haben. Anderenfalls kénnen
Sie nicht testen, ob ihre Newcastle-Connection einwandfrei arbeitet.

2.
Fihren Sie nun folgende Schritte auf jedem Rechner aus:

2.1. Software einspielen

22.
Figen Sie mit dem Editor in /etc/rc die Zeile /etc /startnc ein Die Newcastle-
Connection wird so beim Uebergang in den Multi-User-Mode gestartet.

2.3.
Andern Sie /usr/sys/name.c:

#include ""sys/utsname.h’”

struct utsname utsname = §
"cadmus’’,
"pcs’, = Rechnername
"Jan84l'.
"l'sll

J;

struct ethname ethname = {
{ 0x1234 0x5678 Ox9abc|, = ETHERNET-Adresse
0 = Knoten-Nummer

§

Sowohl Rechnername als auch ETHERNET-Adresse und Knoten-Nummer
mussen im Netz eindeutig sein. Ansonsten sind Sie frei in Ihrer Wahl
Beachten Sie aber folgende Grenzen:

Name: 1..6 Buchstaben / Ziffern
Adresse: 12 hex-Ziffern
Nummer: 0..255

Wir empfehlen lhnen aber, eine leicht zu merkende Kombination dieser drei
Parameter zu wahlen, z.B.:

#include "sys/utsname.h”

struct utsname utsname = §
"cadmus’’,
"pcssll.
"Jan84".
"1.501

§:

struct ethname ethname = {
{ 0x5555, 0x5555, 0x55551,
]

Bei alteren Betriebssystem-Versionen nehmen Sie die Anderungen mit
dem Editor vor. In neueren Versionen erfolgen sie wiahrend der Generierung.

2.4.
Generieren und booten Sie nun alle Systeme, die Sie in]hrem Netz benétigen.

2.5.

Auf jedem Rechner wird fur jeden Partner-Rechner die Prozedur /etc/mksys
mit den Parametern des Partner-Rechners aus dessen name.c ausgefihrt.

Beispiel:

Drei Rechner in einem Netzwerk:

Erstes System: Namen in “pcs1”, Adresse in 1111 1111 1111,
Nummer in 1 &ndern

Zweites System: Namen in "pcs2"” , Adresse in 2222 2222 2222,
Nummer in 2 &ndern

Drittes System: Namen in "pcs3”, Adresse in 3333 3333 3333,
Nummer in 3 &ndern

ALLE SYSTEME GENERIEREN .

auf erstem System:

"mksys /pcs2 2 222222222222 " "mksys /pcs3 3 333333333333 "
auf zweitemn System:

"mksys /pcs1 1 111111111111°" "mksys /pcs3 3 333333333333
auf drittem System:

"mksys /pcs1 1 111111111111 " "mksys /pcs2 2 222222222222

2.6.
Mit /dev/makebbp erzeugen Sie nun in /dev die Geréateeintrage fur ETHER-
NET.

Sie kénnen nun die Newcastle-Connection benutzen. Dazu fiihren Sie
susr /bin /NCon aus.

Alle Kommandos aus /usr/NCbin kdénnen Sie "remote’ ausfihren, wobei der
Name des Rechners, auf dem das Kommando ausgefithrt wird, dem Filenamen
voranzustellen ist:

z.B.: Is -l /pes2/usr/lib

