Task-to-Task Kommunikation

mit
Ethernet

Dokumentations-Nr.: D830072H3-1085

Dieses Papier stellt die in der Betriebssystemversion MUNIX V.2/05 enthaltenen

Moglichkeiten der Task-to-Task-Kommunikation mit Ethernet vor.

grammbeispiele sind angegeben.

Best.-Nr.: D930072H3-1085
DF: task task.text
Autoren-Kennzeichen: NS

Eingetragene Warenzeichen:
MUNIX, CADMUS von PCS
DEC, PDP von DEC
UNIX von Bell Laboratories

Copyright 1985 by

PCS GmbH, Pfalzer-Wald-Strasse 36, D-8000 Miinchen 90, Tel. (089) 68004-0

Pro-

Die Vervielfdltigung des vorliegenden Textes, auch auszugsweise ist nur mit ausdricklicher

schriftlicher Genehmigung der PCS erlaubt.

Wir sind bestrebt, immer auf dem neuesten Stand der Technologie zu bleiben. Aus diesem

Grunde behalten wir uns Anderungen vor.

Task-to-Task-Kommunikation mit Ethernet PCS GmbH

Inhalt Inhalt
Inhalt
1. Einleitung ... e ettt e e raee e 1
2. Gemeinsame Merkmale der Schnittstellen ... 2
3. MUNIX/NET - Schnittstelle ..o 3
3.1. FunktionSprinZip oo.oooiiiiiiii e e 3
3.2. Paketformat ..o e 4
3.3. Programmbeispiele ... e 5
3.3.1. Vom Port empfangencccoiuiiiiiiiiiii e 5
3.3.2. AN POt SENAEN oo e e 6
4. Basic Block Port (BBP) - Schnittstelleccooiiiiiiiiii e 7
4.1. Funktionsprinzip e e e ettt e e e e e s 7
4.2. Paketformat .o e 8
4.3. Programmbeispiele ... 9
4.3.1. Vom Port empfangenccoooiiiiiiiiie e 9
4.3.2. An Port senden ... 10
5. Ethernet Port (ETHPT) - Schnittstellecccccoociiiiiiiiiiiiiieee 11
5.1. FURKUONSPIINZID i e 11
5.2. Paketformatccoooiiiiiiiiiiiiiii e U 12
5.3. Programmbeispiele ... 13
5.3.1. Vom Port empfangen ..o 13
5.3.2. AN Port SENAen ..o 14
5.3.3. Erofinen eines freien Ports ...occocoiiiiiiiiiii e 15
* % % 8
28. Oktober 1985 1

Task-to-Task-Kommunikation mit Ethernet PCS GmbH

Abschnitt 1 Einleitung

1. Einleitung

Diese Beschreibung stellt die Schnittstellen zum Ethernet vor, mit denen eine
Task-to- Task- Kommunikation aufgebaut werden kann.

Es gibt drei Varianten:
- MUNIX/NET - Schnittstelle
- Basic Block Port - Schnittstelle

- Ethernet Port - Schnittstelle

Zur Nutzung der einzelnen Schnittstellen mussen die entsprechenden Treiber
im Betriebssystemkern generiert sein. Es ist fir

- MUNIX/NET der MUNIX/NET-Treiber

- Basic Block Port der NEWCASTLE-Treiber

- Ethernet Port der NEWCASTLE-Treiber

im Systemkern der Version MUNIX V.2/05 nétig.

Im néchsten Kapitel werden die Gemeinsamkeiten der drei Schnittstellen
beschrieben. In den folgenden Abschnitten werden die einzelnen Schnittstellen
vorgestellt. Zuerst wird das Prinzip jeder Schnittstelle erlautert. Dann wird zu

den einzelnen Protokollen das Paketformat angegeben und die Benutzung der
jeweiligen Schnittstelle durch die Angabe von Beispielprogrammen erlautert.

28. Oktober 1985 1

PCS GmbH Task-to-Task-Kommunikation mit Ethernet

Gemeinsame Merkmale der Schnittstellen Abschnitt 2

2. Gemeinsame Merkmale der Schnittstellen

Alle drei Schnittstellen erméglichen Prozessen, die auf verschiedenen Knoten
im Netzwerk ablaufen, miteinander zu kommunizieren. Ein Proze8 kann Nach-
richten von anderen, auf entfernten Rechnern laufenden Prozessen, empfangen
und senden. Nachrichten werden in Form von Paketen Gber Ethernet gesendet.

Die Task-to- Task- Kommunikation mit Ethernet ist ein Datagramm Service. Es ist
nicht sichergestellt, dal ein abgeschicktes Paket den adressierten Prozel
erreicht. Es koénnen Pakete verlorengehen. Die einzelnen Pakete sind
voneinander unabh&ngig. Zwischen den kommunizierenden Prozessen mul
keine direkte Verbindung aufgebaut werden.

Die Adressierung der Prozesse erfolgt nicht direkt, sondern basiert auf dem
Port-Konzept, das allerdings bei jeder Schnittstelle anders realisiert wurde.
Prozesse senden Nachrichten an Ports und kénnen von Ports Nachrichten
empfangen. Um einen Port nutzen zu kénnen, mufl er erdéfinet sein. Es wird
immer nur ein empfangenes Paket am Port zwischengespeichert; fir die rest-
liche Ablaufkontrolle ist der Anwender zustédndig. Kommt ein weiteres Paket am
Port an, ohne daf3 das vorhergehende gelesen wurde, so geht es verloren.

Ports sind im Netz eindeutig durch Rechneradresse und lokale Portnummer
adressierbar. Es gibt statisch bestimmte und dynamische Portnummern. Sta-
tisch bestimmt heift, daB ein Proze(3 einem Port eine vordefinierte Nummer
zuordnet. Dadurch ist es moglich, dal Prozesse mit systemweit bekannten
Portnummern existieren. Dynamisch hei3t, daf ein Prozel einen Port anfordert,
dessen Nummer vom Betriebssystem zum Eréfinungszeitpunkt bestimmt wird.

Die Task-to- Task- Kommunikation erfolgt iber Routinen der Standardbibliothek
oder uber Systemaufrufe. In jedem Fall mull ein Port vor der Benutzung erst
erdfinet und entsprechend konfiguriert werden. Durch die Konfigurierung eines
Ports wird entweder der Adressat einer Nachricht festgelegt oder der Empfang
von Nachrichten gesteuert.

Zu den Daten, die der Anwender als Paket auf das Netz schickt, wird vom
Betriebssystem noch Verwaltungsinformation beigefugt.

2 28. Oktober 1985

Task-to-Task-Kommunikation mit Ethernet PCS GmbH
Abschnitt 3 MUNIX/NET - Schnittstelle

3. MUNIX/NET - Schnittstelle
3.1. Funktionsprinzip

Diese Schnittstelle steht innerhalb von MUNIX/NET zur Verfiigung. MUNIX/NET
verbindet einzelne MUNIX-Systeme (Knoten) Giber Ethernet zu einem virtuellen
MUNIX-System.

Das Port-Konzept wurde tber die MUNIX-Ports implementiert. Ein ProzeB3 muf
nur fur das Empfangen von Nachrichten einen Port besitzen, das Senden ist
auch ohne Port méglich. Es kann immer nur ein Port einem bestimmten Prozef
zugeordnet sein. Eréfinet ein Prozef3 einen weiteren Port, so geht ihm der zuvor
geholte Port verloren. Ports sind innerhalb des Rechners (Knoten) durch ihre
Portnummer, innnerhalb des Netzwerks durch Knotenadresse und Portnummer
bestimmt.

Fiur das Transportieren der Nachrichten tber die Ports stehen die Routinen:

open__uport
read__uport
write__uport
close__uport

| in der Standardbibliothek zur Verfiigung.

Mit open_uport kann ein Port eréfinet werden. Gleichzeitig kann der Sender-
kreis, von dem an diesem Port Nachrichten empfangen werden sollen, bestimmt
werden. Ein Paket wird mit read_uport empfangen und mit write_uport gesen-
det. Close_uport schlie3t einen Port. Naheres uiber die Routinen entnehmen
Sie bitte dem MUNIX Manual 1b (siehe: OPEN_UPORT(3U), READ_UPORT(3U),
WRITE_UPORT(3U), CLOSE_UPORT(3U), UPORT(3U)) Die maximale, fur den
Anwender nutzbare Groe eines Pakets ist 1024 Bytes.

28. Oktober 1985 3

PCS GmbH

Paketformat

Task-to-Task-Kommunikation mit Ethernet

Abschnitt 3.2

3.2. Paketformat

Ein mit write_uport gesendetes Paket wird im folgenden Format iiber Ethernet

ubertragen:

14 Bytes:
6 Bytes Zieladresse
6 Bytes Absender
2 Bytes Protokoll-Typ
0x0800
xx Bytes:
MUNIX/NET
Header
0 - 1024 Bytes:
Frei

fur den Benutzer

Die 14 Bytes des Ethernet-Headers und des MUNIX/NET-Headers wird vom
Betriebssystem den Benutzerdaten vorangestellt.

28. Oktober 1985

Task-to-Task-Kommunikation mit Ethernet

PCS GmbH

Abschnitt 3.2 i Paketformat
3.3. Programmbeispiele
3.3.1. Vom Port empfangen
include <sys/types.h>
include <sys/unison.h>
include <sys/uport.h>
- main()
int i;
char buf[512];
ipnetaddr srcaddr; /* Platz fuer Absender */
int srcptno; /* Platz fuer Senderport */
/* EroefInet den Port mit der Nummer 111 */
/* und akzeptiert Pakete von ueberall; */
/* durch die Angabe SETDYN anstelle von */
/* der Nummer 111 erhaelt man einen */
/* dynamischen Port */
i = open_uport(111,ANYPORT,ANYADDR,0);
if (1==-1){
printf("Port kann nicht eroefinet werden\ n");
exit(-1);
/* Liest ein Paket von dem Port */
/* Nach dem Lesen steht die Sender-*/
/* adresse */
/* in srcaddr und die */
/* zugehoerige Portnummer */
/* in srcptno */
/* das Paket befindet sich in buf */
/* i enthaelt die Anzahl der */
/* uebertragenen Bytes */
/* nb enthaelt die maximale Anzahl */
/* Bytes die gelesen werden kénnen*/
1 = read_uport(buf,sizeof(buf),&srcaddr,&srcptno);
if (i==-1){
printf("Fehler beim Lesen des Ports\n");
exit(-1);
/* Schliesst den Port */
close_uport();
28. Oktober 1985

PCS GmbH Task-to-Task-Kommunikation mit Ethernet

Programmbeispiele Abschnitt 3.3

3.3.2. An Port senden

include <errno.h>

include <sys/types.h>
include <sys/unison.h>
include <sys/uport.h>

char buf[] = "Hallo";

main()

{

inti;
ipnetaddr destaddr;
int destptno,srcptno;

/* Sendet ein Paket an den Port 111 auf dem Rechner */
/* mit der IP - Adresse 0xc00¢c8001 */
/* das Paket befindet sich in buf s/

| = write_uport(buf,sizeof(buf),(ipnetaddr)0xc00¢c8001 1 11,0);
if (i==-1){
printf("Port kann nicht beschrieben werden\n'');
exit(-1);

6 28. Oktober 1985

Task-to-Task-Kommunikation mit Ethernet PCS GmbH

Abschnitt 4 Basic Block Port (BBP) - Schnittstelle

4. Basic Block Port (BBP) - Schnittstelle
4.1. Funktionsprinzip

Die BBP - Schnittstelle wurde urspringlich fur den Cambridge Ring entwickelt
und von PCS an Ethernet angepafBt. Mit BBP ist es méglich, daB verschiedene
Prozesse auf unterschiedlichen Rechnern (oder auf dem gleichen) sich Nach-
richten schicken. Ein Port ist gekennzeichnet durch die Struktur portinfo aus
susr /include /sys /port.h:

struct portinfo §
short pi_type; /*type of port, unused for Ethernet */
unsigned short pi_inport; /* bb_port number by which this port
* is addressed by other stations
*/
short pi_station;/* destination ring station */
unsigned short pi_outport;/* destination bb_port number */
unsigned short pi_accept; /* acceptable source station number */
etheradr pi_ethadr; /* destination ethernet address */
{;
Indem eine der Dateien /dev/bbp0, /dev . /bbp1 usw. erdffinet wird, kann ein Port
geholt werden. Die maximale Anzahl der Ports im jeweiligen System steht in der
Konstanten MAXPORTS in der Datei /usr/include/sys/param.h. Die Anzahl der
Ports, die ein Proze3 besitzen kann, ist auf die Anzahl der Dateien, die ein
Proze3 erdfinen kann, begrenzt. Nach dem Eréflnen muf3 der Port durch ein
ioctl-Kommando konfiguriert werden. Damit kann der Senderkreis, von dem
emfangen werden soll, eingeschrdnkt werden. Nach dem Offnen und dem
Konfigurieren kann mit dem Port gearbeitet werden.

Der Datentransfer geschieht mit den read -und write -Systemaufrufen. Die ma-

ximale, fir den Anwender nutzbare PaketgréfBe ist 1490 Bytes. Naheres siehe
MUNIX Manual (BBP(4)).

28. Oktober 1985 7

PCS GmbH

Paketformat

Task-to-Task-Kommunikation mit Ethernet

Abschnitt 4.2

4.2. Paketformat

Ein mit dem write -Systemaufruf gesendetes Paket hat folgendes Format:

14 Bytes:
6 Bytes Zieladdresse
6 Bytes Absender
2 Bytes Protokoll-Typ
0x4242

10 Bytes: '
2 Bytes Sendestation
2 Bytes Zielstation
2 Bytes Absender-Port
2 Bytes Ziel-Port
2 Bytes Gréfle der Daten
0 - 1490 Bytes:

Frei fir den

Benutzer

Die 24 Bytes Header versorgt das Betriebssystem.

28. Oktober 1985

Task-to-Task-Kommunikation mit Ethernet

Abschnitt 4.2

PCS GmbH

Paketformat

4.3. Programmbeispiele

4.3.1. Vom Port empfangen

include <sys/port.h>
include <fcntl.h>

/* Auf dem Rechner mit der Stationsnummer 1 liest das */
/* Programm Pakete auf Port 18, die von Port 19 des ¢/
/* gleichen Knotens gesendet werden */

struct portinfo aport = i0,18.1,19,1,f0x0800,0x2700,0x8001§{;
main()

char buf[512];
int fd,i;

/* Eroefinen des Ports */

fd = open("/dev/bpr",O_RDWR);

if (fd ==-1) §
print{("Fehler beim Eroeffnen\ n");
exit(-1);

/* Setzen des Ports wie oben angegeben */

i= ioctl(fd.BBPSET,&aport);
if (i==-1){
printf("Fehler beim Setzen\ n");
exit(-1);

/* Lesen eines Pakets */
/* das Paket befindet */
/* sich danach in buf */

i= read(fd,&buf,sizeof(buf));

if(i==-1){
printf("Fehler beim Lesen\ n"), .
exit(-1);

/* Schliessen des Ports */

close(fd);

28. Oktober 1985

PCS GmbH Task—to~'l‘ask—l(ommunikation mit Ethernet

Programmbeispiele Abschnitt 4.3

4.3.2. An Port senden

include <sys/port.h>
include <fcntl.h>

/* Auf dem Rechner mit der Stationsnummer 1 schreibt das */
/* Programm Pakete von Port 19 nach Port 18 des gleichen Knotens */

struct portinfo aport = {0,19,1,18,1,{0x0800,0x2700,0x8001}};
char buf[] = " Nachricht 1 ;
main()
int fd,i;
/* Eroeffnen des Ports */

fd = open("/dev/bbp1",0_RDWR);

if (fd ==-1) {
printf("Fehler beim Eroefinen\n");
exit(-1);

/* Setzen des Ports wie oben angegeben */

i = ioctl(fd, BBPSET,&aport);

if (i==-1){
printf("Fehler beim Setzen\n"');
exit(-1); ,
J

/* Senden eines Pakets */
/* das Paket befindet */
/* sich in buf */

i = write(fd,&buf,sizeof(buf));

if (i==-1)
printf("Fehler beim Schreiben des Ports\ n");
exit(-1);
]

/* Schliessen des Ports */

close(fd);
§

10 28. Oktober 1985

Task-to-Task-Kommunikation mit Ethernet PCS GmbH

Abschnitt 5 Ethernet Port (ETHPT) - Schnittstelle

5. Ethernet Port (ETHPT) - Schnittstelle
5.1. Funktionsprinzip

ETHPT ist eine einfache Schnittstelle zum Ethernet. Sie erlaubt die Anwendung
von verschiedenen Protokollen und die Vernetzung von inhomogenen Rechnern.
Die Kommunikation kann auch zwischen Prozessen stattfinden, die sich auf dem
gleichen Rechner befinden.

Es kénnen nur write-only oder read-only Ports erdfinet werden. Ein Port ist
gekennzeichnet durch die Struktur ethptinfo aus /usr/include /sys /ethpt.h:

struct ethptinfo |
unsigned short ei_proto; /*Ethernet protocol type */

char ei_swapflag;/* swap bytes in Ethernet packets */
char ei_rfuflag; /* reserved for future use */
etheradr ei_remadr; /* address of remote Ethernet station

* write-only port: destination address
* read-only port: source address of
* last packet received
*/
etheradr ei_locadr; /*address of this Ethernet station
* write-only port: local address
* read-only port: destination address

* of
* last packet received
*/

;

In der Variablen ei_proto wird der Ethernet Protokolltyp festgelegt. Die Uber-
mittlung von Nachrichten erfolgt nur zwischen Ports, die das gleiche Protokoll
haben. Die Protokollarten 0x0800 und 0x0806 sind fir MUNIX/NET und O bzw.
0x4242 fur BBP reserviert. Die Identifikation auf dem Netz bilden die Ethernet-
Adresse und der Protokolltyp. Es besteht keine Méglichkeit festzulegen, von wel-
chen Ports man empfangen will. Ein Port kann aufgemacht werden, indem eine
der Dateien /dev~/ethpt/0, rsdev/ethpt/1 usw. erdfinet wird. Die maximale
Anzahl der Ports ist auf 20 begrenzt. Nach dem Eréfinen der Datei, ist der Port
mit dem Systemaufruf ioctl zu setzen. Hierbei darf der angegebene Protokolltyp
auf dem Rechner noch bei keinem andern Port, mit dem gleichen
Offnungsmodus (read- oder write-only), gesetzt sein.

Die Variable ei_swapflag beriicksichtigt die Datenrepriasentation der einzelnen

Rechner. Die Werte SWAP bzw. NOSWAP geben an, ob die Bytes der Benutzer-
daten vertauscht werden sollen.

28. Oktober 1985 : 11

PCS GmbH Task-to-Task-Kommunikation mit Ethernet

Funktionsprinzip Abschnitt 5.1

Der Datentransfer geschieht mit den read -und wn'té -Systemcalls. Die maxi-
male, fur den Anwender nutzbare Paketgré0e betragt 1500 Bytes, die minimale
46. Die Ethpt - Schnittstelle ist im MUNIX Manual unter ethpt(4) néaher

beschrieben.

5.2. Paketformat

Ein mit dem write -Systemaufruf gesendetes Paket hat folgendes Format:

14 Bytes:

6 Bytes Zieladresse
6 Bytes Absender
2 Bytes Protokolltyp

46 - 1500 Bytes:
Frei
fiir den Anwender

Dem Paket wird vor dem Senden vom Betriebssystem die 14 Bytes Header-
Information mitgegeben.

12 28. Oktober 1985

Task-to-Task-Kommunikation mit Ethernet PCS GmbH

Abschnitt 5.3 Programmbeispiele

5.3. Programmbeispiele

5.3.1. Vom Port empfangen

include <fcntl.h>
include <errno.h>
include <sys/ethpt.h>

/* Empfangsport (read-only) mit Protokoll 0x00ab */

struct ethptinfo aport = {0x00ab,NOSWAP,0,{0x0,0x0,0x0{,
{0x0,0x0,0x0}};

main()

{
int fd,i;
char buf[46];

/* Eroefinen des Ports */

fd = open(”/dev/ethpt/9",0_RDONLY);

if (fd == -1) {
printf("Fehler beim Eroefilnen\ n");
exit(-1);

/* Setzen des Ports */

i = ioctl(fd,ETHPTSET,&aport);

if (i==-1){
printf("Fehler beim Setzen\n");
exit(-1);

/* Lesen eines Pakets */
/* das Paket befindet */ .
/* sich danach in buf */

i = read(fd,buf,486);

if (i==-1) {
printf("Fehler beim Lesen des Ports\ n");
exit(-1);

/* Schliessen des Ports */

close(fd);

28. Oktober 1985 13

PCS GmbH Task-to-Task-Kommunikation mit Ethernet

Programmbeispiele Abschnitt 5.3

5.3.2. An Port senden

include <sys/ethpt.h>

include <errno.h>

include <fcntl.h>

/* Sendeport (write-only) mit Protokoll 0x00ab */

struct ethptinfo aport = {0x00ab,NOSWAP,0,{0x0800,0x2700,0x8001},
{0x0,0x0,0x0}};

char buf[] = "Hallo, hier ist das Paket mit der Nummer 0001";

main()
int fd,i;

/* Eroefilnen des Ports */
/* modus = O_RDONLY oder O_WRONLY */

fd = open("/dev/ethpt/7",0_WRONLY);

if (fd ==-1) ¢{
printf("Fehler beim Eroeffnen\n"");
exit(-1);

/* Setzen des Ports */

i = ioctl(fd, ETHPTSET,&aport);

if (i==-1){
printf("Fehler beim Setzen\ n");
exit(-1);

/* Senden eines Pakets */

i = write(fd,buf,46);

if (i==-1){

printf("Fehler beim Schreiben des Ports\ n");
exit(-1);

/* Schliessen des Ports */

close(fd);

14 28. Oktober 1985

Task-to-Task-Kommunikation mit Ethernet PCS GmbH

Abschnitt 5.3 Programmbeispiele

5.3.3. Eréflnen eines freien Ports

Anstatt einen Port — wie in den vorangegangenen Beispielen — iber einen festen
Dateinamen zu eréfinen, kann mit der Routine dynport dynamisch ein freier
Port gesucht werden.

int dynport(modus)
int modus;

{
int fd,i;

/* Suchen eines freien Ports.*/
/* Als Ergebnis wird der */
/* Dateideskriptor eines */
/* freien Ports oder -1 */

/* (falls alle Ports belegt */
/*sind) zurueckgegeben. */

static char ethpt[] = ""/dev/ethpt/00";
i=0;
ethpt[12] ='\0"; /* Initialisieren des Stringendes */
do

{
if i <10)

ethpt[11]=1i + '0’;
J

else

f ;
ethpt[11]= (i/10)+'0";
ethpt[12]= (i%10)+'0’;
J
i++;
J
while ((fd = OPEN(ethpt, modus)) < 0 && errno == EACCES);

return(fd);

28. Oktober 1985 15

BBP(4) MUNIX (CADMUS) BBP (4)

NAME
bbp — Basic Block Port Interface

SYNOPSIS
#include <sys/port.h>

DESCRIPTION
The Basic Block Port Interface is a simple network interface, originally
.. developed for the Cambridge Ring. and now adapted to Ethernet. The bbp
provides a set of so-called ports, through which processes on different
machines (or on the same) can talk to each other. The port is character-
ized by the structure portinfo in <sys sport.h> :

struct portinfo }{

shor t pi_type: /% port type,unused for Ethernet =/
unsigned int pi_inport; /% bb_port number by which this port
s is addressed by other stations
=/
shor t pi_station; /% destination ring station »/
unsigned int pi_putpor t; /% gestination bb_port number s/
unsigned int pi_accept; /s acceptable source station number s/
etheradr pi_ethadr; /% destination ethernet address =/

{:

The field pi_type is unused for Ethernet. For the Cambridge ring this
field specifies if the data transfers are protected by parity checks or not.
The field pi_inport specifies the input port number, by which this port is
addressed by other stations. Their output port number, pi_outport, must
be equal to pi_inport, if they want to talk to this port. The field
pi_station is a two-byte station number.

A station number is a unique identification of each machine attached tc
the net. This station number is more manageable than the six byte Eth-
ernet address contained in the field pi_ethadr. The ethernet address is
mainly used for the hardware address recognition, whereas the station
number is used by upper level software. Both the station number and
the ethernet address are fixed at system generation time. They are, like
the ascii system name, a unique name of the system. Their vaiues can be
found in the file /usr/sys/name.c and can be gotten by the sysiem call
uname(2).

The fields pi_station, and pi_ethadr together specify the destination
machine; the field pi_outport is the port number on the destination
machine, to which this port wants to talk. The field pi_accept specifies
the machines from which this port is willing to receive. The values
NOONE and ANYONE mean: accept packets from noone or anyone. Any
other number means: accept packets only from the station with this
number.

It is not necessary for a process to specify his own station number and
ethernet address, as the system knows them already and they cannot
change.

The portinfo structure is set by an ioctl system call with command
BBPSET. and read with command BBPGET.

EXAMPLE
Machine alpha has the station number 3 and the ethernet address

333333333333. Machine beta has the station number 5 and the ethernet
address 555555555555 A process on alpha wishes to receive on port

Page 1 February 21, 1984

BBP(4) MUNTX (CADMUS) BBP(4)

number 372. Another process on beta receives on port number 373; The

process on alpha specifies
struct portinfo alphaport = § 8, 372, S, 373, S, [Bx5555, #x5555, 8x5555 1 {;
ioct! (¢td,BBPSET, &aiphaport):

whereas the process on beta specifies
struct portinfo betaport « § 8, 373, 3, 372, 3, {Bx3333,8x3333,8x33331{;
ioct! (fd,BEPSET, dbetaport):
Both processes can now talk to each other by normal read and write sys-
tem calls.

A port can be obtained by successively opening the files /dev/bbp0,
/dev/bbpl etc. If the open returns with errno ENXIO, the port does not
exist, if errno is EACCES, the port is already opened. After the open the
port must be configured with the command BBPSET. If the ioctl returns
with errno EACCES, a port with the same pi_inport is already open. Just
to get an unused port. number, the value DYNAMIC can be given for
pi_inport. The actual port number can then be gotten with the ioctl-
command BBPGET.

EXAMPLE

struct portinfo aport = { 8, OYNARIC, 5, 123, ANYONE, {85555, 8h&S555, 8xE5551{;

ioct! (+d,BBPSET,&aport);

ioct! (fd,BBPGET,&aport); /= pi_inport contains a free port numpber =/
Data is transferred with the normal read and write system calls. However,
there is a limitation on the number of bytes that can be transferred with
one write. On the Ethernet, the number 1024 is safe. The data of each
write system call is sent as a packet over the net. The count of the read
system call must be larger cr equal than the size of the packet, otherwise
the read returns with error EIO. read returns the size of the received
packet. If the count for read or write is illegal, error EINVAL is returned.

At any time after BBPSET, the ioctl command BBPENQ will return the fol-
lowing structure, defined in <sys/port.h>:

struct porteng |
shor t pn_sender; /% station number

of sender of recsived block =/
shor ¢ pn_sendpor t; /% port number

of sender of received biock =/
char pn_xrsit; /= last block transmission result =/
char prn_blkavail; /= a block is available to be read x/
etheradr pn_sendadr; /% ethernet address of sender =/

{s

The fields pn_sender, pn_sendport, and pn_sendadr specify the station
number, port number, and ethernet address of the sender of a received
packet. The field pn_zrsit contains the result of the last write. This is
normally equal to BB_ACCEPTED on the ethernet, and equal to
BB_ERROR only if excessive jams occurred on the net. The field
pn_blkavail is unequal 0O, if a packet has been received, but not yet read.

WARNING

The bbp contains no flow control. Incoming packets are simply discarded
if they are not read fast enough. Protocols are entirely the responsibility

of upper levels.

SEE ALSO

sbp (4)

FILES

/dev/bbp*

