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I. EINLEITUNG

Das Konstruieren optischer Systeme ist durch den Einsatz der
programmgesteuerten Rechenanlagen in den letzten zwei Jahr-
zehnten in eine neue Phase eingetreten. Das klassische Re-
chenverfahren hat sich bei Berechnungen mit der Rechenanla-
ge geandert.

Bei komplizierten optischen Systemen ist beim Konstruieren
der Rechenaufwand zur Erzielung eines Optimums fiir das be-
treffende System sehr grof3. Bisher war der Optiker bestrebt,
die Zahl der Variationen beim Korrigieren sowie die Zahl der
Strahlen bel der Berechnung so klein wie mdglich zu halten.

Die programmgesteuerten Rechenanlagen erlauben weitgehend
Iterationen anzuwenden, weil wegen der groBen Rechengeschwin-
digkeit im Vergleich zur Papier-Bleistift-Methode die Zahl
der Iterationsschritte nicht so sehr maBgebend ist. Der Re-
chenablauf mit Entscheidungen auf Grund der Kennzeichnung und
der Abfragen wahrend der Berechnung ist den Automaten ilber-
lassen. Der Mensch wurde dadurch entlastet.

Der Rechner mit klassischen Rechenhilfsmitteln und die Re-
chenanlage konnen sich fiir die LOsung mathematischer FProvle-
me nur teilweise vergleichen. Der Rechenautomat ist nur den
physikalisch-technischen Bedingungen unterworfen, der Mensch
dagegen den biologischen Gesetzen. Der Rechenautomat ist theo-
retisch nach diesem Vergleich zu jeder Zeit verwendbar und,

da er die PFdhigkeiten besitzt, mit groBer Geschwindigkeit ein-
zelne arithmetische Operationen und logische Entscheidungen
durchzufiihren, ist es mdglich geworden, die Probleme, die vor
kurzem nicht 1losbar waren, zu bewdltigen. Durch diese Tatsa-
che ergaben sich in der Optik Moglichkeiten, neue Verfahren
beim Konstruieren optischer Systeme zu entwickeln.

GroBen Zeitaufwand verlangt bei Losung wissenschaftlich-tech-
nischer Probleme die Herstellung der Rechenpléne, die den Re-
chenablauf steuern. Man ist jetzt nicht nur bestrebt, einen
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automatischen Rechenablauf flir eine bestimmte Rechenanlage
zZu programmieren, sondern Strukturdiagramme und algorithmi-
sche Darstellung so aufzustellen, daB sie mit relativ klei-
nem Zeitaufwand fir Rechenanlagen verschiedener Herkunft
programmiert werden kdnnen. Der Fortschritt geht hier noch
weiter und zwar so, daB die Programme auch von anderen &hn-
lichen Rechenautomaten mit Hilfe eines Programmumsetzers
eingelesen, und die Probleme selbst dann auf dieser lMaschi-
ne berechnet werden kdnnen. Die Maschinensprache "Algol 60"
ist dafiir sehr geeignet und wird nach Uberwindung der An-
fangsschwierigkeiten auch in der Optik grole Verwendung fin-
den.

Die Rechenanlage Z11 gestattet infolge ihres Aufbaus und ih-
rer Befehlsliste solche universelle Programme nicht aufzu-
stellen. Deswegen sind in dieser Abhandlung die Rechenpro-
gramme flir das Korrigieren amorpher optischer Systeme, vor
allem um Verkiirgungen zu ermdglichen, in erster Linie fiir
diese Rechenanlage bearbeitet.

Die Schnelligkeit und das Speichervermdgen eines Rechenau-
tomaten diktieren, welche Methoden filir die Berechnungen und
das Korrigieren optischer Systeme geeignet sind. Fur die Re-
chenanlage 7Z11 ist das Korrigieren des amorphen Systems giin-
stig, da hier der Rechenaufwand nicht so groB ist wie etwa
beim Korrigieren mit Hilfe der Differentialkoeffizienten 1).
Trotzdem bietet die Z11, wenn das Konstruieren in einzelne
Etappen eingeteilt ist, die Mdglichkeit optische Systeme
automatisch zu konstruieren.

In der Optik haben sich die Methoden der Matrixberechnungen
und das Korrigieren durch Differentiale sowie Iterationsver-

1) Als weitere DGK-Verdffentlichung ist vorgesehen: " Das
automatische Korrigieren optischer Systeme auf der Re-
chenanlage ZUSE Z 2% ".
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fahren weitgehend entwickelt und beil der Maschinenberechnung
bewdhrt. Fur das Konstruieren auf Rechenautomaten ist auch
wichtig, solche Methoden zu verwenden, die eine Hidufung von
Rechenfehlern nicht gestattet bzw. diese in einem llindestmal
halten.

Die verschiedenen lethoden fiir das maschinelle Konstruieren
sind in den letzten 12 Jahren zahlreich im Jl.opt.Soc.Amer.
sowlie teilwelise in der Revue d'optique vercffentlicht worden.
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IT. DIE RECHENANLAGE ZUSE 7Z 11

Die programmgesteuerte Relais-Rechenanlage Z11 ist ein digi-
taler Rechenautomat, der in seiner urspriinglichen Form vor
allem fiir den Gebrauch in der Geoddsie und der Optik mit fest
verdrahteten Programmen gebaut wurde. Die Verwendbarkeit hat
sich erweitert, als die Bandsteuerung dazu entwickelt wurde.
Der Rechenautomat wird mit festem oder gleitendem Komma her-
gestellt. -

Der Aufbau der Maschine ist nach bekannter Gliederung fiir Re-
chenautomaten in:

Eingabewerk
Befehlswerk
Rechenwerk

Speicherwerk

Ausgabewerk

zusammengesetzt. Die Anlage arbeitet im reinen Bin&rsystem
auf der Basis: Relais angezogen oder abgefallen. Der Rechen-
vorgang in der Maschine ist durch logische Verkniipfungen nach
der Schaltungsalgebra ermdglicht.

Das feste Maschinenkomma (MK) liegt intern hinter der zweiten
Bindrstelle. Extern sind die ganzen Dezimalzahlen, in Bezug
auf das MK, im Bereich - 4<a<+ 4 darstellbar. Die 25 biniren
Stellen hinter dem MK ergeben 7,53 dezimale Stellen. Durch Be-
riicksichtigung beim Programmieren 148t sich die Kommalage bis
auf 7 Stellen vom MK nach rechts verschieben.

Ausfiihrliche Beschreibungen des Rechengerites sind aus /4/ ,
/12/, /19/, /25/ zu entnehmen. Die Rechenbesonderheiten der
711 fiir Probleme aus der praktischen Optik sind in /12/, /13/
beschrieben und werden teilweise auch in dieser Arbeit ange-
wendet,
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ITII. DIE PROGRAMMIERUNG

Teilweise miissen filir das Konstruieren optischer Systeme auf
den Rechenanlagen neue Verfahren entwickelt werden. Die Ver-
fahren sind von Aufbau und Befehlsliste der betreffenden Ma-
schine abhéngig.

Der Gang fiir die Vorbereitung der Rechenpline ist in /10/ aus-
fihrlich angegeben und eingeteilt in:

- Mathematische Formulierung: Dieser erste Schritt der Vor-

bereitungen verlangt gute Kenntnisse des Problems sowie die
Kenntnis des Programmierens und der Rechenanlage selbst. In
der Optik ist die mathematische Formulierung als Synthese fiir
die Berechnungen auf der Rechenanlage aufzufassen.

- Bereitstellung numerischer Verfahren: Hier sind die be-

kannten Verfahren zu verwenden oder neue Verfahren zu ent-
wickeln., Die Aufgabe ist vom Standpunkt der praktischen Mathe-
matik zu lOsen.

~ Herstellung des Rechenprogramms: Das Problem, das in sta-
tischer Form gegeben ist, soll in eine dynamische Form umge-
wandelt werden. Das Rechenprogramm mufl die arithmetischen und
logischen Operationen verkniipfen. Dies ist die algorithmische
Darstellung des Programms.

Wenn das Rechenprogramm schwierig durchzufiihren ist, bietet
die geometrische Darstellung des Rechenablaufes, die als
Strukturdiagramm (FluB8- , Ablauf- oder Blockdiagramm) /22/
bezeichnet wird, eine grofBe Hilfe.

In der Literatur besteht eine Trennung der algortithmischen
Darstellung und des Strukturdiagramms von der Befehlsreihe
der betreffenden Maschine. Bei der Herstellung der algorith-
mischen Darstellung und des Strukturdiagramms ist es mit
Riicksicht auf die Z11 sehr vorteilhaft, sich etwas an die
Eigenschaften dieser Maschine zu lehnen.



Die algorithmische Darstellung wird bei grofen und kompli-
zierten Programmen

L der nur

stellung in einer grd
charakteristische Formeln arnzug denen die

Hilfsformeln und -Ausdricke schon inbegrif 1 sind

- Aufstellen der Befehlsreihe: Das Strukturdiagramm und

die algorithmische Darstellung sind als allgemeine und abge-
kiirzte Formen des Programms anzusehen. Die Aufstellung der
Befehlsreihen ist sehr zeitraubend und umfangreich. Die Pro-
gramme selbst werden in Befehlsreihen selten veroffentlicht;
wenn diese fir eine bestimmte Rechenanlage verdffentlicht

werden, ist die algorithmische Darstellung iiberfliissig.

1. Darstellung von Befehlen.

reihen fiir die 7211

93]

Die Kriterien zur Aufstellung der Befehl

1

ver, 1n dieser Abhandlung

sind eingehend in /14/ sy
[e] 4

ist die Beschreibung der Letfehle, er Befehlsliste der

for R

211, im ganzen ausgelassen,

2. Die Symbole der Logik.

Die in den Strukturdiagrammen und algorithmischen Darstellun-
gen auftretenden Symbole der Logik dieser Arbeit sind folgen-
de:

<m> Inhalt der Speicherzelle, die durch die Adresse m
aufgerufen werden kann.

<m>—> n Der Inhalt m geht in den Variablenspeicher n.

.. => ., Ergibt - Zeichen bedeutet die operative Uberfilhrung
der linken in die rechte Seite der Plangleichung.
Das Zeichen ist von K. Zuse /22/ eingefiihrt worden.

/N Konjunktion ( &); es ist als "und - auch" zu ver-

stehen., Z.B., aAb<c bedeutet a<c sowie b<ce .
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Vv Disjunktion "oder (und)", umfaBt mehrere Bedin-
gungen, wovon wenigstens eine wahr sein mufl. Z.B.
avb<c Dbedeutet a<ec oder (und) b<c .

0 symbolisiert "entweder - oder" und vereinigt meh-
rere Bedingungen zusammen, von denen nur eine er-
fillt sein muB.

(:N Sprungbefehl innerhalb des OP bzw. UP in algorith-
mischer Darstellung /2/ , /22/ .

(v ee...dN Sprungbefenl vom 0P ins UP und umgekehrt.

(a > 0) ? Bedingung in algorithmischer Darstellung; wenn die
Bedingung nicht erfillt ist, wird der folgende Be-
fehl ausgefiihrt.

a<0? Abfrage oder Bedingung im Strukiturdiagraom,
nein

3, Erliuterungen.

Bei der algorithmischen Darstellung sind nach /4/ noch folgen-
de Symbole eingefiihrt:

—> (Ri) Relaisbedingung wird gebracht.
(Ri) —> Losung der Relaisbedingung
( i ) Symbol fiir "entweder - oder" unter Beriicksichti-

gung der Bedingung (i); verbindet zwei Rechen-
operationen, von denen nur eine ausgefihrt wer-
den muf.

In Strukturdiagrammen und algorithmischen Darstellungen sind
Relaisbedingungen der Z11 wie folgt bezeichnet:

Die Steuerposition LF als Q1
Die Steuerposition KF als Q2

Die Relaisbedingungen Gs, F F F F4 als Ro, R1,R2,R3,R4

11 2’ 3’
Die automatischen Z&hlungen, die in Programmen ausgefiihrt wer-
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den, sind durch Kennzeichnung mittels einer von beiden Steuer-
positionen Q1 oder Q2 ermdglicht.

Eine Bereichsiiberschreitung kann widhrend der Berechnung nur
vorkommen wenn :

Ispl , I=al I=B] , |=rMl, I=ZE > 400 oder
Iqql | > 40 wusw. ist.

In diesem Fall stoppt die Maschine. Bel Zwischenwerten und End-
resultaten, die verschiedene GroBenordnungen einnehmen konnen,
wird im Maschinenkomma (MK) gerechnet. Wenn |al < 4 ist, wird
eine von beiden Steuerpositionen Q1 oder Q2 veigefligt /13/ .
Wegen Platzersparnis ist dies beil zusammengesetzten Formeln
meistens weggelassen, mull aber bel der Programmierung berlick-

sichtigt werden.
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IV. DAS ANALYTISCHE KORRIGIEREN OPTISCHER SYSTEME.

1. Einflihrung in das Korrigieren.

Das Auffinden der brauchbaren Methoden fiir das Konstruieren
optischer Systeme auf Rechenanlagen soll in einer allgemei-
nen Form dargelegt werden. Das Problem kann weitgehend vom

Standpunkt der praktischen Optik bearbeitet und in anschau-
licher Form dargestellt werden. Wenn aber die Arbeitsweise

der Rechenanlage spezifisch ist, wird es vorteilhaft sein,

sich schon bei der Auffindung und Herstellung der brauchba-
ren Methoden an diese Rechenanlage zu binden.

In dieser Arbeit ist die Darstellung der llethoden sowie die
Herstellung der Rechenprogramme fiir das Korrigieren speziell
fiir die Rechenanlage Z11 durchgefiilhrt. ks ist das analytische
Korrigieren mittels Durchbiegung der Aquivalentlinsen auf
Iterationsbasis bearbeitet. Das Problem des Korrigierens ist
in ausfilhrlicher Form vom Standpunkt der Rechenanlage aus
dargestellt.

Das analytische Korrigieren ist in drei unabhédngigen aber
ghnlichen Arbeitsweisen der einzelnen Systemeinteilungen zu-
sammengefallt. Der Grundgedanke der Durcharbeitung der brauch-
baren Methoden ist bei allen drei Systemeinteilungen dersel-
be. Die Einteilung ist in

- das Simplet
- das Duplet
- das Triplet

und ihre modifizierten Formen durchgefiihrt. Durch diese Auf-
teilung zerfallen die Programme fiir das Korrigieren in drei
unter sich unabhéngige Teile. Dadurch kann das Problem des
Korrigierens in Ubersichtlicher Form dargestellt und in ein-
facher Form geldst werden.

Jedes Glied des Systems kann bis zu drei Aquivalentlinsen
eingliedern, die nach der Umwandlung in das dicke System
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freistehend, total oder nur zu zweien gekittet sein konnen.
Innerhalb dieser Zusammenstellung konnen filir jedes Glied wei-
terhin 7 (beim Simplet 6) Fdlle bestehen. Mit Hilfe der vier
Abtastkopfe der Rechenanlage sowie der dargebotenen Verschach-
telungsmdglichkeiten ist eine solche Aufgliederung auch vom
praktischen Standpunkt ausfiihrbar.

Das Korrigieren und alle damit verbundenen Berechnungen sind
fiir die Objektlage, die im Unendlichen liegt, also fiir

6,4 =0

durchgefiinrt.

Der erste Schritt der Synthese optischer Systeme ist die Vor-
rechnung. In der Literatur ist die Vorrechnung nur selten in
ausfiihrlicher Form bearbeitet, es ist vor allem auf die Ver-
offentlichungen von /1/ , /2/ , /7/ hinzuweisen. Diese Vor-
rechnung, auch Auslegung genannt, ist flur die Konstruktion
der optischen Systeme malBgebend. Das Verfahren des Korrigie-
rens soll dagegen in der Lage sein, alle dargebotenen Kombi-
nationsmoglichkeiten durch Anderungen der einzelnen Gréfen zu
erschopfen., Die Auslegung f&llt aus dem Rahmen dieser Arbeit

und wird flir das Korrigieren vorausgesetzt.

Die Rechenformeln, die bei den einzelnen F&llen als System-
konstanten, Festwerte oder als unverédnderliche Ausdriicke in
dieser Abhandlung flir alle Systemeinteilungen vorkommen, sind
hier angegeben.

Die Charakteristiken der Gldser nach /1/ sind aus folgenden

Ausdriicken

n +2

' - 8,1 (1.1)

A g,1 n .

’ g,1

- ( )

B' - 102
g,1 ng’l—1
n 1+1

Clyq = B — (1.3)
& g,1

zZu gewinnen.
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Die Petzval-Summe ist aus

X
5P, = %:(—gl)l (1.4)

zu bestimmen.

Die Seidelschen Ausgangskoeffizienten fiir die Aquivalentlinsen
der einzelnen Glieder sind:

_ Sl L2 )2
a - A "2 * —.+ 'B 10
g,1 4 / gy1 pg’l \rt;:"l pg’-l- (LF )g91 ( 5)
b, 1
b .= - 8= ~C' . 1.6
g,17 ~ 3 (g, 17%,170g,1) (1.6)
Die Radienkehrwerte sind aus den beiden Formeln in allgemeiner
Form
_ 1 i
gg,l_ 2 (Pg,lJr\)é,lJrng 1—1) (1.7)
b
! a1
fg,1° (U, 1+, 15 =TT) (1.8)

gy1
zu berechnen.

Die Grundform des maschinellen Korrigierens amorpher optischer
Systeme 1in dieser Abhandlung bildet die Monographie von F. I.
Havliéek /7/, der in anschaulicher Form die Methoden des Korri-
gierens bearbeitet. Weiterhin ist auch auf die Arbeiten von /5/,
/9/, /17/ hinzuweisen.

2. Das achromatisierte Simplet.

a) Allgemeines

Unter der Bezeichnung Simplet ist ein optisches System zu ver-
stehen, das sich aus einer oder mehreren Linsen zusammensetzt.

Fiir ein amorphes System sind die einzelnen Abstdnde der Aqui-

valentlinsen zu deren Brennweite so klein, dal man sie vernach-
léassigen kann; demzufolge sind auch w-Quotienten der einzelnen
Aquivalentlinsen unter sich praktisch gleich groB. Weil fiir die
erste Linse w = 1 gewdhlt wird, sind beim Simplet auch fir die
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folgenden Linsen die w gleich eins. Uber das Simplet ist auf
die Versffentlichungen /1/, /2/, /7/ hinzuweisen.

Fur das automatische Korrigieren des Simplets auf der Rechen-
anlage soll das Programm KS (Korrektur des Simplets) folgende
Fdlle umfassen und bearbeiten:

I. Gruppe:
- Fall A
- Pall B

gekitteter Zweilinser

gekitteter Dreilinser

II. Gruppe:

- Fall C - Dreilinser nicht gekittet
III.Gruppe:
- Fall D - Zwellinser nicht gekittet
- Fall E - Dreilinser davon 1. und 2. Linse gekittet
- Fall F - Dreilinser hier 2. und 3. Linse gekittet

b) Die Rechenformeln

Die Grundlage bilden die Durchbiegungsformeln, die durch Weiter-
entwicklung brauchbare Ausdriicke geben, die fir das Korrigieren
des Simplets notwendig sind.

Die Formeln filir das Simplet lauten allgemein:

B, =3

a
1=1 1
k
2B =X b
v 1=1 1 ) (2.1)
> ég L
v 1=1 1
2E_ = o
v

Die letzte Formel gilt nur, wenn die Blende praktisch im System
liegt.

Es ist zweckm&Big, die Formeln in bezug auf die einzelnen Grup-
pen und die F&dlle anzugeben.
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I. Gruppe:
- Fall A -

Die Charakteristiken V& fiir den verkitteten Zweilinser sind:

1,1 =94

’ ’

(2.2)
Yr,0 = 21+ N0
Die erste Durchbiegungsformel ist
A, = ay 9+ 2 5 (2.3)

Weil das System nach Umwandlung in dicke Linsen verkittet wer-

den soll, ist der Funktionswert u durch die Verkittungsbe-

1,2
dingung
Poo =P~ %0 (2.4)
zu ersetzen, worin
ty,0= By 1 - B o (2.5)

ist.
Nach Berlicksichtigung der Verkittungsbedingung ist der zweite
Koeffizient durch
2
1,1‘t1,2)
2 o)

-2 Ry gty (BTN L/ te.e)

1,2

Ao,
8y o = /A Hp

zu ersetzen. Der Koeffizient a ergibt sich aus der Formel

1,1
(1.5). Nach Einsetzung in die Formel (2.3) und Zusammenfassung
ergibt sich zur Bestimmung der Argentieri-Parameter nu, ; die

c 9

Gleichung 2. Grades:

Kjepq 7KL R g Ky = 0 (2.7)

Die abgeleiteten Koeffizienten sind:

2

k) = —— > (far) (2.8)
2

K =/ TN faren)y o (2.8)"

!

1

~
= Mo
L

SR O RIC U IS S SO P (2.8)m
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KA = kx' - ZAV (2.8)

Zur Bestimmung der Wurzeln uj , und By sind die Koeffizienten
’ ’

kA , kz und KA in die quadratische Gleichung (2.7) einzusetzen.

Die zweite Durchbiegungsformel lautet

2By = by 4+ by (2.9)
Der Koeffizient b1’1 ist aus (1,6) 'nd der zweite Koeffizient
aus dem Ausdruck

R Y R R S % (2.10)

1,2 2 1,271,217 2

zu berechnen.

- Pall B -

Beim verkitteten Triplet sind die Charakteristiken‘*i der Aqui-
valentlinsen durch die Ausdriicke

Li/1,1=q71,1
Wi, 29 4 +9 o

= 2 +
Y,5= 29 o 9, CP1,3

zu bestimmen.

(2.11)

Pir die 1. und 2. Linse ist die erste Verkittungsbedingung (2.4)
und flir die 2. und 3. Linse die zweite:

P193 P1,1 1,3 ( )
anzuwenden, worin
— 1 . . ! ° .
ty,3= By, o) +2B) oo o*B) 50 h 3 (2.13)
ist.

Auch in diesem Fall soll das erste Parameterpaar durch LoOsung
der quadratischen Gleichung bestimmt werden. Die erste Durch-
biegungsformel lautet dann

Zh, = 819 % 8y ot 8y 3 (2.14)

Der Koeffizient a4 ist aus der Formel (1.5) zu berechnen. Bei
b

Berilicksichtigung der beiden Verkittungsbedingungen ergibt sich
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der Koeffizient a, , aus (2.6) und der dritte ist dann aus
b

_ ¢ 30 2 ' 2
81,3 = 7 /A 3178 3002 5y oy ) (BTN 5/
zu bestimmen. (2.15)

Nach Einsetzung in die Formel (2.14) und Umformung ergibt sich
die quadratische Gleichung:

1 ° 2 =
kB p1,1 + k% . p1’1 + KB = 0 (2.16)
Die einzelnen Koeffizienten lauten:
3
R A !
ki = = :zLV_:gCFA )1 S (2.17)
kn = =L/ % P+ S (Pea'et),/ | (2.17)"
R AT LA 1 '
3 3 3
Ky = /5 (32.@) s 3 (@artd) 42 S @ye)/ (207
1=1 1=2 1=2
KB = kg' - ZAV | (2.17)

Wie im Fall A ist es moglich, aus Ky 4 und Ky 4 zwel Systeme zu
) ]

berechnen. Die Funktionswerte P fir die 2. und 3. Linse sind aus

den Formeln (2.4) und (2.12) zu ermitteln.

Entsprechend wird dann die ZBV aus
ZBV= b1,1_+ b1,2 + b1’3 (2.18)
berechnet.

Die Koeffizienten b1’1 , }31’2 und b1,3 sind aus der Formel
(1.6), die in allgemeiner Form gegeben ist, zu bestimmen. In
beiden Fédllen A und B wird die Iteration durch Variation der
XAV nach der Formel

Zhiyyier = ZAy & MA (2.19)
durchgefiihrt.
II. Gruppe
- Fall C -

In diesem Fall sind die W&—Werte aus den Formeln (2.11) zu be-
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rechnen, Um den Korrektionsablauf zu vereinfachen, ist in der
ersten Néherung wie beim gekitteten Dreilinser im Fall B vor-
zugehen. Durch Beriicksichtigung der beiden Verkittungsbedin-
gungen ergeben sich die beiden Wurzeln des Parameters p1’1
durch Losung der quadratischen Gleichung (2.16). Die Koeffi-
zienten ké , ke und KC sind aus den Formeln (2.17)', (2.17)"
und (2.17) zu berechnen. Die Parameter P12 und p1’3 lassen
sich danach aus (2.4) und (2.12) bestimmen. Die ZBV und die
darin enthaltetenen Koeffizienten sind aus den Formeln wie im

Fall B zu ermitteln.

Das endglultige System 1laBt sich aus einer Ngherungsldsung durch
iterieren der Parameter u bestimmen. Bei der Iteration werden
der Reihe nach die Parameter By,2 0 Re g oder Kq,3 variiert.
Die einzelnen Uménderungen der Parameter pu sind jewells nach
einem von folgenden Ausdricken

Ber,1)ie1 = B0 £ 8R4 (2.20)"
P(1,2)i+1 =P, 2 £5P1,2 (2.20)"
P1,3)ie1 = P13 2 DRy 3 (2.20m

durchzufiihren. Jeweils sind ZAV aus der Formel (2.14) und deren
Koeffizienten aus (1.5) zu berechnen. Nach der Iteration erfolgt
ZBV aus der Formel (2.18). Die Koeffizienten b1,1 R b1,2 und
b1,3 sind aus (1.6) 2zu bestimmen. Nach Bedarf kann fiir die Iter-
ation auch ZAV nach der Formel (2.19) variiert werden. Der gan-
ze Rechenablauf wird dann mit einer neuen Ndherungsldsung nach
oben angegebenen Formeln wiederholt.

III. Gruppe :

Im Gegensatz zu den Gruppen I und II sind in dieser Gruppe beim
ersten Rechenablauf die bestimmten.P—Werte zu wéhlen,
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- Fall D -

Fir den nicht verkitteten Zweilinser s1nd‘1’1 1 und Yq 5 aus
den Formeln (2.2) zu berechnen. Bei voraus gewahlten Funktlons—
werten p1 ] und p1 > lassen sich die ZA und ZB aus (2.3) und

(2.9) sowie die Koeffizienten a b und b aus

1,10 29,2 7 P19 1,2
den allgemeinen Formeln (1.5) und (1.6) berechnen.

a

Die Iteration wird durch die Variation des Parameters p1 . und
danach P12 mittels der Formel (2.20)' oder (2.20)" durchge-
fihrt. Wahrend und nach der Iteration sind ZA( ) und 2B

v)i+1 (v)i+1
aus den oben angegebenen Formeln zu bestimmen.

- Fall E -

Beim Dreilinser mit verkitteter 1. und 2. Linse werden,%a—Wer-
te, wie im Fall B, aus (2.11) berechnet. In diesem Fall sind
fiir den ersten Rechengang die Parameter p1,1 und p1,3 zu wah-
len.

Die ¥A, ist nach der Formel (2.14) zu berechnen. Die dazuge-
htrigen Koeffizienten a, , , a, 3 ergeben sich aus (1.5) und
b

1
aus der Formel (2 63
1,3

Die ZBV wird aus der Formel (2.18) bestimmt. Die Koeffizienten

b1,1 und b1,3 ergeben sich aus (1.6). Der Koeffizient b, ,
b
188t sich aus
Cﬁ 4,2 ,
by o= /N 0 - S o Ry g -ty 0)/ (2.21)
berechnen.

Flir die Iteration sind BF(1,1)1+1 und p(1 3)i41 Jewells aus
(2.20)' und (2.20)™ zu ermitteln. Nach Jedem Iterationsschritt
berechnet man ZA(v)i+1 und ZB(v)i+1 wie fir ZAV und ZBV oben
beschrieben wurde. Nach der Iteration ergibt sich der Parame-
ter Bq,p aus der Formel (2.4).

- Fall F -

Die‘fl—Werte sind in diesem Fall aus (2.11) zu berechnen. Es
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sind fir den ersten Rechenablauf die Parameter p1,1 und p1’2
zu wadhlen., Hier ist ZAV und ZBV aus den Formeln wie im Fall

E zu bestimmen. Die Koeffizienten a1’1 , a1’2 ergeben sich aus
der allgemeinen Formel (1.5); ferner wird

&4 3 2 2
= —t ! -t ! - —t ! R 4

ay 3= /A1 50 pg o=t 5) =2 Sy -t (BT 5/
wenn (2.22)

1 R . 1 . :
8], 5= By oo h o+ B) 52h) 5 (2.23)
ist. Flur die BV sind b1

Aquivalentlinse aus

®1,37 -Cﬁ? 3/\1/1,3'01',3(}11,2*1',3)/ (2.24)

zu ermitteln.

, b nach (1.6) und fur die dritte
. 1,2

oder p( +1 jeweils nach der

1,1)i+1 1,2)i
2.20)" zu variieren. Nach jedem Iterations-

und ¥ B .
+1 (v)i+1
im verlangten Intervall liegt, ist der dritte Parameter aus der

Formel

Beim Iterieren ist p
Formel (2.20)' oder §

schritt wird ZA(v)i wie oben berechnet. WennZAV

Pi,5= Piy2 = %103 (2.25)

zu berechnen

Im weiteren Verlauf des Korrigierens ist in einzelnen Fédllen des
Simplets die asymmetriefehlerfreie Blendenlage aus

ZBV
Z.] =EA';; (2.26)
bzw. ihr Kehrwert aus
A,
1/z1 = —fﬁ;— (2.27)

zu bestimmen. Gleichzeitig soll das System bei beseitigtem Asym-
metriefehler noch einen zweiten Bildfehler eliminieren. Zur Be-
seitigung des zweiten Bildfehlers sollen in das Programm KS, von
mehreren moglichen, folgende drei Bedingungen eingegliedert wer-
den:

a - Bedingung: Bildfeldkriimmungsfreiheit

(ZBV)2 - K, * TA, =0 (2.28)
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worin KV=ZF§+1/BZPV und ZPV sich aus der Formel (1.4) ergibt.

b - Bedingung: Astigmatismusfreiheit

2
(TB,)" - T4, -2, =0 (2.29)

¢ - Bedingung: Verzeichnungsfreiheit
zy =0 (2.30)

Auch durch Variation des Bildfehlerkoeffizienten ZAV kann das
System korrigiert werden. Hier wird die ZAV nach der Formel
(2.19) sukzessive gedndert.

Unter Berlicksichtigung des betreffenden Falles sind die Radien-
kehrwerte der Aquivalentlinsen des Systems nach den Formeln
(1.7) und (1.8) zu berechnen.

c¢) Das Programm KS

Um das automatische Korrigieren des Simplets zu ermdglichen, ist
das Programm KS in ein Oberprogramm sowie in bezug auf die drei
Gruppen in drei Unterprogramme eingeteilt. Durch Kennzeichnung
der Gruppe und auch des Falles wird das Korrigieren im entspre-
chenden Unterprogramm gesteuert.

Die einzelnen F&dlle sind wie folgt in Unterprogrammen vereinigt:

- Unterprogramm I ; umfaBt die Fdlle A und B
- Unterprogramm II ; umfaBlt den Fall C
- Unterprogramm III; umfaBt die Fdlle D , E und F

Die Kennzeichnung der Unterprogramme I, II und III sowie einzel-
ner Falle ist durch Bedingungsschalter und die beiden Steuerpo-
sitionen ermdglicht, und zwar

~ P1*30 eingeschaltet - Fall A
und mit gespeicherter Steuerposition Q1— Fall B
oder " gespeicherter Steuerposition QZ_ Fall C

- P1%¥3%1 eingeschaltet - Fall D
und mit gespeicherter Steuerposition Q1- Fall E
oder " gespeicherter Steuerposition Q2— Fall F
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Auch die Kennzeichnung der Bedingungen a, b und c¢ ist durch

die Bedingungsschalter ermdglicht, und zwar

- P1¥3%32 eingeschaltet: es wird der Ausdruck fiir die Bildfeld-

krimmungsfreiheit berechnet.

- P1*33% eingeschaltet: es wird der Ausdruck flir Astigmatismus-

freiheit berechnet.

- P1*32 und P1*¥%3% nicht eingeschaltet: es ist die Bedingung

fiir Verzeichnungsfreiheit da.

Die Lochstreifen mit den Iingabewerten sind in die beiden KOp-

fe des Bin&rabtasters einzulegen. Nach den Berechnungen im Ober-
programm ist eine Auswechslung des Streifens im Vorderkopf er-
forderlich, und zwar durch den zyklischen Streifen, der widhrend
der Rechnung gelocht wurde. Der hintere Abtastkopf ist fiir die
Eingabe der Grenzwerte der Bedingungen vorgesehen. Auch dieser
Lochstreifen ist zyklisch einzulegen. Flir die Berechnungen mit
doppelter Zahlenlénge der Konstanten 0,01 und 0,001 sind in bei-
de Kopfe des Dezimalabtasters die zyklischen Streifen mit den
Unterteilen der Zahlen 0,01 und 0,001 einzulegen, siehe auch /13/.

Die Ausgabe erfolgt durch elektrisch gesteuerte Schreibmaschine.
Die Tabulierung hat folgende Form:

Lfv = Zl_v
(P
1,1 n1,l
XPV ZAV ZBV z4 Z(T)X

£1,1 £'1,1

Wenn sich fir ein achromatisiertes Simplet mit denselben System-
konstanten‘fi und ny durch das Iterieren beim Korrigieren mehre-
re Systeme ergeben, werden diese herausgeschrieben ohne wieder-
holte Ausgabe der Systemkonstanten.

- Programmablauf -

Das Oberprogramm ist beim ersten Rechenablauf als
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linearer Teil des Programms aufzufassen. Wenn sich dagegen durch
das Korrigieren mehrere Systeme ergeben, ist es im Programm als
kombinierter Zyklus anzusehen. Es liest vom vorderen Bindrab-
taster die Systemkonstanten q& und die Brechungsindices nq ein.
Gleichzeitig werden die Brechkrdfte gelocht. Nach Berechnung der
Charakteristiken.ﬁa.und Al , B!

1 1 und Ci werden die Werte Ci ge-
locht.

Wenn die erste Bedingung zur Beseitigung des zweiten Bildfehlers
zu erfilillen ist, wird Kv berechnet. Falls die dritte Bedingung
zu erfiillen ist, wird entsprechendif& bestimmt (Zr§ =),

Der weitere Rechengang wird in bezug auf die einzelnen Fidlle
durchgefihrt. In beiden Fdllen A und B sind die Koeffizienten
k', k" , k"'und t1,2 zu berechnen und zu lochen. Weilter ist
EAV zu lochen, danach erfolgt der Sprung ins Unterprogramm I.
Beim Fall C ist vor Lochung von ZAV noch t1’3 zu berechnen und
zu lochen, dann folgt der Sprung ins Unterprogramm II.

Bevor nach dem Fall D abgefragt wird, ist B9 einzulesen und
mit Steuerposition Q, zu speichern. Beim Fall D und F ist p1’2
und beim Fall E P13 einzulesen. In allen drel Féllen wird dann
auf verschiedenen Wegen ZAV berechnet. Danach Sprung ins Unter-

programm IIT.

Die Systemkonstanten ¢, q3 und n,y werden wadhrend der Berechnung
herausgeschrieben.

Nach Ablauf des Oberprogramms stoppt die Maschine. Die gelochten
Werte sind dann als Zyklus in den vorderen Abtastkopf einzulegen.
Durch Betadtigung der Taste "Weiterfahren'" wird die Rechnung fort-
gesetzt.
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Die algorithmische Darstellung des OP hat folgendes Aussehen:

1. AAA
2. Null => ZPV
3., Einlesen und Druck CP
4, Einlesen und Druck qa sy g
5. (1.1) , (1.2) , (1.3) => Ai R Bi , Ci
6. Lochen: qa', Cy
7. 9 /n, = %P,
ki1 1
8. P +ZP1 = ZfPV
1=0 o}

9. (k>1) 2 (N
10 ()

1. (2.2) v (2.11) =]
12. Druck ZPV
13. (4) da ? @)
4. (Bvc)da? (0
15. KEinlesen pjrqfx Q2
16. (D) da @ (@4)
17. (&) da 7 @)
18. Einlesen Py oo
19, (2.14) = T4
0. @)
21. Einlesen pu, 3

b
22. (2.14) => XA

v

25. @9l
24. Einlesen pn, ,

9
25. (2.3) = ZA,
26. ((Up_TIIT )|
27. (2.8)' , (2.8)" , (2.8)" = kA , kz , kX
28. Lochen kA s kx , kx‘
9. @)
30, (2.17)',(2.47)", (2 7)) => kioo v Kyg o LU
%31. Lochen kévC y kﬁvC , kﬂvc
32. (2.5) = t

1,2

3%, Lochen 1t

1,2
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34. (C) da 2  67)

35. Lochen ZAV

36. (U2_I)I
37. (2.13) => ty
38. Lochen t1,3 , ZA.V

39. (COP_TIIO)

Das Unterprogramm I ist ein kombinierter Zyklus,
der die automatische Steuerung des Korrigierens in Gruppe I
ibernimmt.

Nach Einlesung von Festwerten und Koeffizienten durch den vor-
deren Bin&rabtaster wird der dritte Koeffizient KA der quadra-
tischen Gleichung berechnet. Nach Berechnung der Diskriminante
wird durch Abfrage der Maschine die Anweisung gegeben, ob die
guadratische oder die lineare Gleichung zu l0sen ist. Wenn die
Wurzeln komplexe Zahlen sind, wird die Iteration durch Variation
der ZAV durchgefiihrt usw. Bei Abfrage nach dem Fall sind im Fall
A My oo und im Fall B zus&tzlich noch Ry 3 sowie in beiden F&dl-
len ZBV zu berechnen. Dann wird die komafreie Blendenlage z4
bzw. 1/z1 oder 1/z1 mit Q, berechnet. Wenn 1/z1 mit Q, da ist
1,miﬁ£z1sz1,max oder 1/z1,min-<-1/z1-§/z1,max
nicht erfiillt ist (hier sind Z1,min und ZT,max die beiden Grenz-
werte) wird ZAV durch A2A vergroBert bzw. bei Xﬁv durch AZA ver-

kleinert und mit neuberechnetem Wert Ki+

oder die Bedingung 2z

1 die quadratische Glei-
chung geldst. Dies wird so oft wiederholt, bis die Bedingung

< " st .
ZA(v)min—zz(v)i+1 V IAG)141S%A (y)pay TTULLE 1st. Wenn nicht,
stoppt die Maschine. Es ist eine neue Auslegung erforderlich. Bei

Erfiillung der Bedingung filir z, bzw. 1/z1 wird der Ausdruck Z(1)x

1
bzw. 1/2(1)x fir die Bedingung a bzw. c berechnet. Wenn bei der
b-Bedingung z, im verlangten Intervall liegt, ist die Bedingung
1 g

z1,min erfillt. Dagegen wenn Z(1)x nicht erfiillt ist, oder

nicht da ist, dann die Iteration durch Variation der EAV
(v)i+1 erfiillt wird.
Wenn aber durch Iteration die Bedingung fiir ZA(V)1+1 bzw. ZA(v)i+1

nicht erfilillt wird, dann stoppt die Maschine; hier ist eine neue

z .
1,min
soiange wiederholen, bis die Bedingung fir 2A
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Auslegung durchzufiihren. Bevor in allen drei oben beschriebe-
nen Fdllen die liaschine stoppt, schreibt sie in Rotdruck eine
Null mit Q1 heraus.

Die Grenzwerte fiir die einzelnen Bedingungen werden vom hinte-
ren Bindrabstaster laufend eingelesen., Wenn die verlangten Be-
dingungen erflillt sind, werden die EAV ’ EBV , und Z(1)x her-
ausgeschrieben. Danach werden die Radienkehrwerte fir den Fall
A bzw. B berechnet und ausgedruckt.

Derselbe Rechenzyklus erfolgt dann mit pq,1 (wenn da ist). So
entsteht das zweite amorphe System, dessen Daten auch herausge-
schrieben werden. Danach wird die Iteration fir EAV fortgesetzt.
Auf diese Welse entstehen mehrere Systeme. Man kann den weite-
ren Rechengang nach jedem herausgeschriebenen System unterbre-
chen oder nach Betatigung der Taste "Welterfahren'" das néchste
System berechnen lassen usw., bis alle koglichkeiten erschopft
sind und die lMaschine vom Programm her gestoppt wird.

Bei allen herausgeschriebenen Systemen ist es leicht, sich zu
entschlieBen, welches je nach Verwendungszweck am besten filr
die Umwandlung in das dicke System entspricht.

Im weiteren ist durch das Strukturdiagramm eine grobe und durch
algorithmische Darstellung eine genaue Verfolgung des Korrigie-
rens angegeben.



Strukturdiagramm des UP I,

Einsprung vom

oP

Festwerten und Koeffizienten

Einlesung von

ja

1

[Berechnung von EAJ

ja
D, <0 7

141 => 1 I

o

[iruck von NullAQ{]

Ja

nein

—s—nein
<Ry%1"

1

D=
nein

Losung der
linearen Gleichung

I

Losung der
quadratischen Gleichung

1
[ R =17

A

Fall A da ?
nein

lBerechnung von til |Berechnung von B, ]

[

)y

ERdaR

~——a—————{ a-Bedin,

]Berechnuné von z, ]

a
VZ1A QJ da ?

nein

By ]-—-»
a

la =
——{ 2Anin IR, LY zA 1+1~<-2Amax?)

ATAAQ, =>aTA | (R ==5aTAAQ, |
nein nein T

(R, da7) (®; 387

Anzug
von R3

i+1=-b1l

[zz:-m=m'x' 5 4{ ZA+AZA ==y TA 1:]

nein

WAGIY)

Ja
k217

Y

nein

nein

=z ,miné_zfﬁ ,max )
ja

ung da ? )

nein

ja

( b-Bedingung da 7 }—0

nein

herechnung von z(J)JJ[iBerechnung von z(1)§J(JEJ,mi
L I - ja

- _nein
42—

(::-——~1——————\ nein
'Z(1)§Iﬁfz.2_1

—
f

ja '
[pruck von EA,iB,z1yf1)xl

L;Perechnung von p1,4

nein Fall A da ?
Ja

Berechnu o
[Fereeimone vor 5]

Berechnung und Druck
von Radienkehrwerten

Berechnung und Druck
von Radienkehrwerten

1

f____";:I_‘“___'_—_\

ja

nein

(py 1A Qp da ?)

nein
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Die algorithmische Darstellung des UP I

1. Eingabe: qa, cl, kA, kx, kz, v
2, k" - A = K,

AQ v A

e v,
5. Kyio- 4 k) K}} => D,
4. (p,<0) 2 (8|
5. (D, =0) 2 (9)

_kll —_ ”D

A + 1 n
6. oK == Hq 11 P11

A

Te Ry = BN
)

A

9o~ T M
10. (&) *aa @l
1. (2.18) => 2B
12, (9|

13, (2.9) =>23B,
4. ZB: Zh, (81) ZAV: 3B => z, (91) 1/z1
15. (1/z1f\Q1) da < I

16. Z1,min = 29 = ZT,max : 62&

17, (py ~Qy) da @ 69)

18, (k> 1) 7 (9|

19. 2%%

20. (AZAAQ) da 7 @)

°1. SA_ +AYA => YA

v
22. (Rg) da ? @9}

23, ATA =>NTANQ,

24. (28)
2A

25.

26. (Rg) da ?

27. AZA/\Q1 => AYA

28. 2.A(v)m:'msZA(v)JL+1 v ZA(v)i+1$§A(V)max ?
29. (R
30, —> R5
31. i+1 == 1

32, @0)

(v)i+1
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33, Druck: Null A Q1
34, Stop
35. i+ 1 = i

36, (D

37. (a-Bedingung) l

38, (b- bedlngung)

39.  ¥B,° - zr ———> Z(1)3

40. 12 1

e TBS - TANET, v 3 TR = oz
42 zql<E, 2 (@9

43, (1))

44 1%2(1)min © %(1,min)i-1l < O ? (@)
5. (D)

46, Druck: ZAV,EIBV,
47, (2-4) - P1’2

48. (A ) da v @l
49. (2.12) - B3
50. (1.7), (1.8) = $1,1 1,2 fJ1,3’ P1,9

51. @l ’ ’
52. S0y (18) =20 s P P
53, (,41,1 Nay)  da 2 (D)

54, (19)]

) B 1"

°%- P4 T7 By

56. (19}

Das Unterprogramn 1T ist auch ein kombinierter

Iterationszyklus, der das automatische Korrigieren fiur den Fall
C ermoglicht.

1)1

Nach LOsung der quadratischen Gleichung ergibt sich Pi,1’ pq,
und nach LOsung der linearen Gleichung p1’1. Durch Berechnung
der Parameter p1’2 und P1,3 entsteht ein Ausgangssystem fiir das
Korrigieren. Der Iterationsvorgang soll mit Parameter P1,2 ange-

£ P(1,2)i+1 £ P(1,2)nax
nicht erfillt ist, wird ein neuer VWert p1 geblldet und zwar

durch Addition von Bpy - Im weiteren Verlauf wird EZA(V)1+1

fangen werden. Wenn die Bedingung F(1,2)min
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< < )
berechnet und nach Abfrage.ZA(v)min_ ZAV_'ZA(V)maX der Parameter
p1’2 durch i‘3F2 so oft geédndert, bis P(1,2)min$ P(1,2)i+1 v
ﬁ(1 2)i+1é‘P(1 2 )max nicht mehr erfillt ist. Durch bedingten Sprung
9 b
wird die Iteration mit P11 fortgesetzt. Im ersten Schritt soll
9
A’11 1 dazu addiert werden. Danach zur Mq o die Steuerposition Q2
b 9

beigefiigt, und die beil P1,2 geldscht werden. Dann ist ZA(V)1+1 zu be-

ab: < i W ie Be-
rechnen und abzufragen ob ZA(V)minfg ZAV“ZA(V)max ist. ienn die Be
dingung fur ZAV nicht erfullt ist, soll die Iteration mit Py oo fort-

\ . ’
gesetzt werden, bis ZA(v)mins'ZAVS;ZA(V)maX
P(1,1)miné'P(1,1)i+1é‘P(1,1)max wird. Wenn das letzte der Fall ist,
wird die Iteration mit p1,5 durchgefilhrt, angefangen und fortgesetzt,
wie oben flr By oo beschrieben wurde. Im Falle, daB der Ausgangswert

’

erflillt wird, oder

p1’2 des Naherungssystems nicht im Intervall F(1,2)minﬁéAPO,2ﬁ+§=
P(1,2)max liegt sucht, und dann speichert die liaschine den dem Pa-
rameter P1,2 am ndchsten liegenden Grenzwert. Nach dem bedingten
Sprung wird die Iteration mit dem Parameter p1’3 fortgesetzt. Wenn
auch p1,1 bzw. p1’3 nicht im verlangten Intervall liegen, wird der-
selbe Rechenablauf durchgefiihrt, wie oben fur p1’2 besclirieben. Beil
Nichterfiillung der Bedingung fur Parameter p1’3 ist eine neue

YA

' ilde j : er Formel:
v (i+1) zu bilden, und zwar nach d I

ZA(V)1+1 = ZAV + AXA.

Mit neu berechnetem Wert KA ist die quadratische Gleichung zu lOsern.
So entsteht eine neue Ausgangsldsung des oystems. las Korrigieren
wird wieder nach oben beschriebenem Ablauf durchgefihrt. Wenn auch
Jetzt die Bedingung fur ZAV nicht erfiillt ist, soll von ZAV der
Wert AYA subtrahiert werden usw. Die Iteration ist so oft zu wieder-
holen, bis nach wechselnder Addition und Subtraktion durch AXA sich
ZA.(V)i+1 ergibt, der die Bedingung ZA(v)miné ZA(v)i+1‘s ZA(v)max
nicht mehr geniigt. Wenn das der Fall ist, stoppt die liaschine. Es
ist eine neue Auslegung erforderlich.
Wenn wihrend der Iteration die Bedingung EZA(v)min$=ZA(v)i+1 <
SE:A(v)max einmal erfillt ist, wird ZBV und z, filr die asymmetrie-
fehlerfreie Blendenlage berechnet. Weiterer Ablauf beim Korrigieren
ist derselbe, wie beim UP I beschrieben wurde. '



Strukturdiagramm des UP II.
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