

Thank you for buying the Sharp Personal Computer MZ-80 series FDOS.

To make the best use of the FDOS, read the instruction manual thoroughly and perform the opera-

tions described correctly; this will enable you to make most effective use of the system.

— Reserving 48K bytes of RAM for FDOS will allow a larger effective memory configuration for

operation of the text editor and the relocating loader.

— The master diskette cannot be replaced after it is purchased; therefore, be sure to use the COPY

commandto create a submaster diskette for normaluse.

— It is particularly important to read and understand the explanations of the following commands

before using FDOS.

e FORMAT command (page 49 ofthe System Command manual).

Before using FDOS with a new diskette, it must be formatted and initialized for FDOS. Thefile

contents of diskettes initialized for use with other systems (e.g., SP-6015 or SP-6115) will be

destroyed if used with this system. Likewise, diskettes initialized with FDOS cannot be used with

other systems.

e COPY command (page 43 of the System Command manual).

This commandallows creation of submaster diskettes from the master diskette and of backup

diskettes for slave diskettes.
wt

— Since the FDOS operating instructions are divided into several parts, a guide is included to enable

easy reference as needed. Full understanding of FDOSis not a prerequisite to makingactive use of

it; refer to the guide as needed and your knowledge of the system will grow as youuseit.

S-1

The following materials are included in this group of products.

‘System, Command'' Instruction Manual

"Text Editor'' Instruction Manual

‘'Z-80 Assembler'' Instruction Manual

‘Symbolic Debugger'' Instruction Manual

‘Relocating Loader'' Instruction Manual

‘Programming Utility'' Instruction Manual

'"PROM Formatter'' Instruction Manual

‘'Example of Plotter Control Application''

'*Library/Package'" Instruction Manual

"Appendix'

‘"FDOS Master Diskette''

for details.

Also, the following files are included in FDOS Master Diskette. Refer to the various instruction manuals

File name Applicable command or manual

Function

ASM . SYS
ASSIGN . SYS
BASIC (OPTION) . SYS
COPY . SYS
DEB. SYS
DEBUG . SYS
EDIT . SYS
FDOS . ASC
FDOS. LIB
FORMAT. SYS
LIBRARY . SYS
LIMIT . SYS
LINK . SYS
LOAD . SYS
MON. ASC
MON. LIB
PLOTTER. ASC
PROM . SYS
RELO . LIB
SIGN . SYS
STATUS . SYS
VERIFY . SYS
X-YDEMO . ASC

ASM

ASSIGN

BASIC

COPY

DEBUG

DEBUG

EDIT

Library/Package"’

‘Library/Package’’

FORMAT

LIBRARY

LIMIT

LINK

LOAD

Library/Package’’

"Library/Package™

Programming Utility ©

PROM

“ Library/Package

SIGN

STATUS

VERIFY

“Programming Utility’

Z-80 Assembler

Device definition

BASIC compiler (sold separately)

Copying diskettes

Symbolic debugging

Symbolic debugging

Text editing

FDOSlibrary sourcefile

Library file for the above

Formatting diskettes

Creating library files

FDOS managementarea declaration

Relocating loader

Loading objectfiles

MONITORlibrary source file

Library file for the above

X-Y plotter control subroutines

PROM formatter

BASIC compiler library file

Passwordregistration for diskettes

Device status control

Comparison offiles

X-Y plotter BASIC demonstration program

S-2

Want to knowthe basics of FDOSand the

system programs?

‘Want to run the computer immediately?

Want to run programs generated by a

cassette tape based system under FDOS?

Want to develop programs using only

standard devices supported by FDOS?

Want to use user-supplied devices in addi-
tion to standard devices?

Want to develop programs using FDOS

libraries?

Want to link with programs generated by

the optional BASIC compiler?

Want to develop object programs using a

PROMwriter?

Wantto refer to system error messages*

| Start

—Guide to Use of These Publications——

no

C=

5

yes

See: the explanations under “SYSTEM
PROGRAM & FDOS ORGANIZATION”
in System Command.

See the explanations under “‘COPY” and

“FORMAT”in System Command.

See the explanations under “Converting
Cassette Based System Programs’ in
Appendix.

See the explanations under ““FDOS
Commands” in System Command and the

following reference manuals:
Text Editor

Z-80 Assembler
Relocating Loader

Symbolic Debugger

See the explanations under ‘User Coded
I/O Routines” in Appendix in addition
to the above manuals.

See the explanations under “Linking As-
sembly Programs with FDOS” in Ap-
pendix and Library/Package in addition

to the above manuals,

See “CONVBTX” in System Command.

“Example of Plotter Control Application”
in Programming Utility and BASIC com-
piler, as weil as the references indicated
in 4 above.

See the explanations under ‘PROM For-

matter” in Programming Utility.

See “System Error Messages” in System

Command,

Optional FDOS Program Products——

1. BASIC Compiler, SP-771 5:(Ereviously.released)
woos t . aoe ro i Ty rs oo

, * ot

tas oe a, <, y .

Te ee GDae 7esic — *if é 2 7 a 5

Requirements: FDOSand 48K bytes of RAM

Major features: *Fast execution

*FDOS commands can be invoked from BASIC programs.

ee *Canbe.Jinked toassembly,language:programs.

Compilation: Compiles a source file (source program) and generates a relocatable file (RB file)

_ which can belinked and loaded with the FDOS LINK command.

Compatibility: _ Programs. developed 4y.SP-5900 series or SP-6015 must be converted to the FDOS

z “fofmat by the FDOS|‘CONVBTX command before. compilation. Some BASIC

| “é6mmands (file handling.commands) may. differ in syntax. Excessively large pro-

grams maynot be compilable(source programs are limited about to 10K bytes).

Packaging: -The»BASIC. compiler iS available.on- cassette’tape with a reference manual. The

| compiler should be copied onto the submasterdiskette so that it can be run under

__~ om oe
ae ~ Boot :

© - 7 a r ae e fF ee —~Sentae - woe “- ~ -

2. Serial I/O Ports (to be released in.the,nearfuture)

Requirements: FDOS and 48K bytes of RAM© . ee

Major features:AATwOI8251 QttatlinfErfRe-ESEAEAReE~ CREF

reBaudtate is.gwitca-sclectable. DLJ-yuoRe Sa
eet gn

| _*Two RS232C I/O channels,.one of which maybe. used for a current loop circuit.

PackagifA “ROne interface board,its control programs(on cassette tape) and areference

pe TeCuy SraTCREGLEORL PAT TCK % Kae Seco Te
: 1 T.. RK OSLEewaET SS Tt= oS a 7mTjSG 7-7 MT gq adede: qT =

| ORTHe controlprograms should be copied onto the submaster diskette so that they

can be run under FDOScontrol. .

L¥2@LnbyLbae vw @6 KEAt

S-4

=aeT:1

SHARP

NOTICE

The MZ-80 series of sophisticated personal computers is manufactured by the

SHARP CORPORATION. Hardware and software specifications are subject to

change without prior notice; therefore, you are requested to pay special attention to

version numbers of the monitor (supplied in the form of ROM) and the system

software (supplied in the form of cassette tape or mini-floppydiskfiles).

This manual is for reference only and the SHARP CORPORATION will not be

responsible for difficulties arising out of inconsistencies caused by version changes,

typographical errors or omissions in the descriptions.

This manual is based on the monitor SP-1002 and the SP-7000series FDOS.

Want to know the basics of

tape-based system programs?

Want to know the basic

principles of the assembler,

text editor, relocating loader

and symbolic debugger?

Want to know the basic

principle and specifications of

the MZ-80K FDOS?

Want to run the computer

immediately?

Want to develop programs

under FDOS?

Want to link with programs

generated by the optional

BASIC compiler?

Want to add new commands

to an FDOSlibrary?

Want to define user-supplied

I/O devices in FDOS?

‘Want to refer to the system

error messages?

A

_W
See Sections 1 and 2 (pages 1—17).

(Readers may skip these sections.)

See Sections 1 and 2 (pages 1—17).

(Readers may skip these sections.)

qv

See Section 3 (pages 18—28).

(Readers mayskip this section.)

 =

See Section 4 (pages 43, 49). Read the explanations

about the FORMATand COPY commands.

+

!

Read Section 4 (pages 29—65) throughly.

C Start +

yes

no

_ yes

no

yes

no

yes

no

yes

-_

no

yes

mn

_ ; y
Read Section 4 (pages 29—65) throughly, as well as the

_ following:

“BASIC Compiler’

Library/Package ©

gramming Utility”

 /

yes

5

Read Section 4 (pages 29—65) throughly, as well as

Library/Package | and Linking Assembly Programs

with FDOSin Appendix.

no \ !

Read Section 4 (pages 29—65) throughly (especially the

explanations about the LIMIT, ASSIGN, LOAD and

STATUS commands). Read ‘user coded I/O routines’

in Appendix.

End L
Y

4

See System Error Messages"’ in this manual.

SYS-i

——CONTENTS——

THE MEANING OF “CLEAN COMPUTER”]

SYSTEM PROGRAM ORGANIZATION (TAPE BASE) 2

2.1 Assembly Procedures 00.0... eee ee ees 4

2.2 Text Editor Functions0.0. 000.000. cece eee ees 11

2.3 Relocating Loader 0... 0... 0c ccees 12

2.4 Symbolic Debugger 0.00...ceees 14

2.5 PROM Formatter 0.000.000 0. ceee ees 16

FDOS ORGANIZATION000 0.00.00. 20.ee 18

3.1 File References....... 0.0.0.0. 00.eee eee eee 19

3.2 FDOS CommandSummary00 2.0.0.0. 0 ce eee 21

3.3 Boot Linker....... 2.000...eens 26

3.4 IOCS 2...eeeee eee eens 26

3.5 Dynamic Segmentation 000.0... 0c cece cee eee 28

FDOS COMMAND USAGE............00 2000.00.00. ee eee 29

4.1 Program Development Under FDOS0.... 29

4.2 FDOS Command Coding Rules0.........00. 30

Command line format........ 0.0.0... 0c cee ee ee 30

File name .. 0...eeeens 30

File modes 0... 0.00 0ceeeee eee 31

File attributes... 2...eeeee 31

File typeS .. 0... 0cceteen eee eens 32

Wildcard characters 0.0.0... cccee eae 32

Drive number and volume numberee eee 33

Device name «ow...eeee ee ene 33

Switches 2.2.0...eeee eens 34

Default assumptionsLecce eee ce eee eee teen eee 36

Arguments 2... 0... cceeeee eae 37

Suspending or stopping program execution 37

4.3 Using FDOS Commands 0... 00.00. ce ee ee 38

ASM2.eeee eee nee nee 38

ASSIGN 2.00.0.neene nen eens.. 39

BASIC 2...eeee nee eee en ees 40

BYE 2.eeee eee ne eee nee 41

CHATR 2.0... 0...eeeee eee eens 4]

CONVBTX .. 0...eeeeens 42

COPY 2...eeee ee eee ee eee ees 43

SYS-ii

DEBUGeeee ee een as 45

DELETE 0... 0.ceee eae 46

DIR 2...eeeee eee ee ee ees AT

EDIT 2...eeeee ee ee nae 48

EXEC oooeeee eee eee ee ee nas 48

FORMAT 0.000...ceeee ee eee 49

FREE 2...eeeeee eee eee eee 5]

HCOPY2...eeeee eee eee ene 51

LIBRARY 2...ccee eee eens 52

LIMIT...ceeee 53

LINK 2...ecee ee eens 54

LOAD...eeeee ees 55

PAGE 1...eeeeee eae 56

PROM... . 0...eeeee eee ee eens 56

RENAME 2000000000000. ccc ee ee ne eee 57

RUN...eeeeee eee 58

SIGN Loceeee eee eee eee tees 59

STATUS 2.0...ccee ee eee 59

TIME 2.0.eeeee ee eens 60

TYPE oooeenee ee eee eee eens 6]

VERIFY 0.0...eeee es 62

XPERoode eee eee ee eevee eeeeeeee. 62
4.4 SystemError Messages........... 000 cece eee cece eeeuees 64

SYS-iii

1. THE MEANING OF “CLEAN COMPUTER”

Three important developments accompanied the shift from the boom in microcomputer kits to

the entrance of personal computers.

(1) Mass production reduced the cost of RAM and ROMdevices so that they became readily available.

This development eliminated the need to devote great amounts of time and effort to compressing

system functions to the maximum extent possible to conserve valuable memory for user programs.

Now it is more important that system programs be written and managed in a structured manner and

that their overall usefulness be raised. It is more and more apparent that what the user comes in

contact with is not so much a unit of hardware as a software reinforced computer.

(2) Compact, reliable external memory units with large storage capacities becameavailable.

Floppy disks and fixed disks are currently the basis for system configurations, but sooner orlater

charge’ coupled devices and magnetic bubble memories will be used in this capacity. This suggests

that there will be increasing stratification of programs culminating in operating systems, and that the

efficiency of systems will also increase. From the user’s point of view, this means that a wide variety

of programswill be readily available for use.

(3) The development of various peripheral circuit LSIs has made possible realization of efficient inter-

faces with high performance terminals.

This means the main concern of the user in the future will be with how many functions are provided

in a system and how useful they are. In terms of the contents of the system, the main concern will

be in developing operating systems capable of organically combining terminals and program proces-

sing with a minimum of effort on the part of the user. It is even possible that real time processing of

multiple tasks and jobs on a level approaching that of minicomputers will become possible with the

operating systems of microcomputers.

As is apparent, it is extremely difficuit to predict the extent to which computers will evolve as

integrated circuit technology and program language theory become widely dispersed. This tends to

undermine the belief which some people have that rapid changes in hardwareresult in good compu-

ters.

clean in principle. As the field of personal computers opens, the concept of embedding a single

language, BASIC, in ROM has become a hindrance to use of full computer capacity. Out of con-

sideration for the many different types of service which will be required by users as yet-to-be

SYS-1

developed technology comes into use in the future, it will be necessary to preserve the cleanliness of

the computer to the maximum degree possible to minimize constraints placed on its use. The ultimate

ends to which computers are applied will be determined by the junction of technological possibilities

and user requirements; the only other limits imposed are those which are inherent in the fact that the

computer is nothing more than a machine. In order for computers and users to get along well

together, it is necessary that computers be designed with a minimum of constraints so that

they can be suited to user requirements, rather than the other way around. In other words, the

usefulness of the computer and the efficiency of the service it provide depends on howcleanit is.

The explanations in these publications are intended to show howflexible the MZ-80 series of com-

puters is in terms of system development.

A tape-based program development system is provided to enable inexpensive development of small

programs; the floppy disk operating system (FDOS) was developed to assist with the creation of large

programs which require large quantities of memory. The functions and configuration of FDOSare

suited to a range of applications approaching those provided by a low level minicomputer. We think

that the software technology and utilization procedures applied in this system will open a new world

of possibilities for personal computers.

2. SYSTEM PROGAM ORGANIZATION (TAPE BASE)

SHARP MZ-80K system programs include an assembler, a text editor, a relocating loader and a

symbolic debugger. They are organized to execute a sequence of assembly phases.

Text editor > Assembler _ Relocating loader

Source program editin < A bl Program relocation

ee eo scm and linkage

Symbolic debugger
Object program

Debugging eee PINE

Fig. 1 Assembly phases

Figure | shows the assembly process, which consists of creating source programs, assembling them,

relocating and linking the assembly output and debugging them.

One cycle of the phasesin the left half of the figure makes up a program creation state. The programmer

prepares a source program with the text editor and creates a sourcefile, then inputs it to the assembler.

The assembler analyzes and interprets the syntax of the source program and assembly language instruc-

tions into relocatable binary code. When the assembler detects errors, it issues error messages. The

programmerthen corrects the errors in the source program with the text editor.

SYS-2

After all assembler errors are corrected, the programmer inputs the relocatable binary file(RB file)

output by the assembler to the symbolic debugger.

The symbolic debugger reads the relocatable binary file into the link area in an executable form and runs

the program. During the debugging phase, the programmer can set breakpoints in the program to start,

suspend and resume program execution, and to display and alter registers and memory contents for

debugging purposes. If program logic errors and execution inefficiency are detected during the

debugging phases, the programmerreedits the source program using the text editor.

After all bugs are removed from the source program, the programmer loads (and links) the program

unit(s) in the relocatable file(s) and creates an object program in executable form with the relocating

loader.

Each system program always generates an output file for use in other system programs. Figure 2

showsthe interrelationship of the system programs.

As shown above, the program development phases are executed by four independent system

programs.

By assigning the system functions to separate programs, the MZ-80K can accomodate large-scale,

serious application programs, thus enhancing its program development capabilities.

SHARPalso supplies sytem backup software called the “editor assembler” which simplifies the very first

stage of program development for relatively small source programs. A ‘PROM formatter’ is also pro-

vided which punches object programs into paper tape in several formats for use with various PROM

writers now on the market.

Table | lists the system program commands.

Editor assembler

(optional)

R command W command PASS4

PASS1

(2,3,4)

TICE Assembier

L or N command
W command

, Relocating
PASS4 loader

Text editor

 “

“ § command —
a“ L or N command

et Y command
os N nT \

a

R command
, / ?

Machine lan- ~ Y
LOAD command

guage program /
~ /

Symbolic

debugger

~ ——

SY command Y command

™~ ~ _LOAD command 7

SAVE command
~

LOAD command

BASIC

“___

LOAD command

ASCII sourcefile

+—— Relocatable file

Y command

+ —- Object file (machine-language program)

Gems Debug-modeobjectfile (object file with symboltable)

@— BASIC text program

@e File medium(cassette tape)

Fig. 2 Relationship of tape based system programs

SYS-3

 | Field1 || Field2 | | Field3 | |Field4||Fields|

Fig. 3 Assembler coding format

2.1 Assembly Procedures

As the programmer becomes familiar with the Z-80O instructions, he is able to construct programs

more easily, even though he mayfeel difficulty in grasping the structure of large programs. At this stage,

it is not hard for the programmer to handle other microprocessors such as the M6800 and the F-8 with

the help of good reference manuals. One of the major reasonsfor this is that the operating principles and

architecture of most computers tend to be alike. It is therefore possible to develop a general-purpose

assembler for such microprocessors. In this section, the technique employed in the MZ-80 assembleris

described. This will serve as a model for designing general-purpose assemblers.

The basic operation of any assembleris the interpretation of statements. It is therefore important to

establish a proper statement coding format. Figure 3 shows an example of a coding format, used in the

MZ-80 assembler, which is familiar to humans and whichis easy for the computerto interpret.

Scanning the statements in this format, the assembler:

(1) Recognizes labels and stores them into the labeltable,

(2) Recognizes fields and assembles object codes

(3) Generates an assembly listing, and

(4) Generates relocatable binary code.

Step (2) differs from one processor to another. The assembler constitutes a general-purpose assemblerif

it can perform this step flexibly. As the nucleus of the process for step 2, an instruction list (figure 4)

and a 2-dimensional operation table (Table 2) are introduced.

The symbol # in the instruction list represents a register and the symbol $ represents a numeric value

or a label. The assembler identifies each instruction by matching the read assembly statement withthis

listing.

As a result of this match, the assembler produces the major portion of the op-code, the byte length of

the instruction and its atom type. An atom typeis one of the numbers identifying the instruction groups

of the Z-&0 instruction set. As is seen from Table 2, there are 48 atom types, these are sufficient for

newly defined instructions.

SYS-4

The operations to be performed for each atom type are designated by a 16-bit flag field. For atom

type O01, for example, flag bits 0, 3 and 4 are set, indicating that the operations identified by these bits

are to be performed in that order. The control words identified by the set flag bits specify the actual

operations to be performed. Flag 3 indicates that this instruction must be a 1-byte instruction, thatit

must shift the data to the left 3 bits, and that the size of the field must be 3 bits or less. Similarly, flag 4

indicates that this atom type represents the LD r, r’ operation.

Let us examine atom type 18. Theset flag bits are 0, 1 and A. The control word for flag 1 is all

zeros, Which means no operation. Flag A indicates that the instruction requries address modification

(address procedure) and that the address field must be not longer than 16 bits (size of the field). Thus,

atom type 18 represents instructions such as JP nn’and JP NZ, nn’. |

The above assembly operating procedure is summarizedin Figure 5. Most of the assembly opera-

tions involve table references. In fact, the assembler uses a register table, a separator table and a label

table during the assembly process, in addition to the instruction list and the 2-dimensional operation

table. If these tables are redefined to conform to a new instruction set the assembler may also be used as

a cross assembler. The MZ-80K assembler is currently being used not only as a Z-80 self-assembler but

also as cross assemblers for the Intel 8080A, Fujitsu MB8840 series (4-bit microprocessors), and NEC

uCOM4Oseries (4-bit microprocessors).

Table 1 System program commands

(a) Assembler

|Reads a source file and creates a symbol table. Since assembly is carried out in two

/ modes, the programmer must specify one of the following modes during pass 1:

- CASSETTE: The source program is read into memory during eachpass.

RAM: The source program is read into the RAM area during pass 1; it is not read in

the other passes.

-o Displays the assembly listing on the CRT screen. Display of the listing may be suspended and

S 1 ith the SPACE bev
oS resumed With tne Wk SANa TAY Yy-

Outputs the assembly listing to the printer.

: Outputs the relocatable binary code to the output file with a file name. In the CASSETTE

_|mode, the assembler readsthe sourcefile to generate relocatable binary code in the RAM area

before outputting it to a relocatablefile.

Returns control to the monitor. The assembler is reentered by GOTO$2200 (cold start) or

_|GOTO$222B (warmstart).

SYS-5

(b) Text editor

commands_

CPmove
commands—S

Modify

: Special —
/

Clears the edit buffer and inputs the input file specified by the file

R (Readfile) name.

A (Appendfile) Appends the input file specified by the file name to the program in

RAM atthe position indicated by CP.

T (Type) Types the entire contents of the edit buffer.

nT Types n lines from the CP position.

B (Begin) Moves the CP to the beginning of the edit buffer.

nJ (Jump) Moves the CP to the beginning of line numbern.

nL (Line) Moves the CP to the beginning of the line n lines away from the line

containing the CP. n maybe a negative number.

L Same as the nL command with n = 0; that is, moves the CP to the

beginning of the currentline.

nM (Move) Moves the CP n characters forward (n > 0) or backward (n < 0).

Z Movesthe CP to the end of the edit buffer.

C (Change) Searches for string 1 starting at the CP and, if found, substitutes it for

string 2.

Q (Queue) Repeats the C command starting at the CP position and continuing

until the end of the edit buffer is reached.

I (Insert) Inserts a string at the CP position. The string is delimited by —> marks.

nK (Kill) Deletes n lines from the edit buffer starting at the line containing the

CP.

nD (Delete) Deletes n characters from the edit buffer starting at the CP position.

Searches for a string. After the string is found, the CP is relocated to
S (Search)

the end ofit.

Outputs the contents of the edit buffer to the output file specified by
W (Write)

the file name.

Compares the contents of the file specified by the file name with the
V (Verify)

contents of the edit buffer.

= Displays the total numberof characters (including spaces and carriage

returns) in the edit buffer.

Displays the line numberof the line containing the CP.

& (Clear) Deletes the contents of the edit buffer.

Switches the printer listing mode.

! (Goto Monitor) Transfers control to the monitor. The editor is reentered by GOTO$1200 (cold start) or GOTO$1260 (warm start).
SYS-6

(c) Relocating loader

L (Linking Load)

N (Nextfile)

H (Height)

T (Table dump)

Given the assembly bias and loading address, loads a program unit from

a relocatable file and generates absolute binary code in the link area.

Appends (inks) the program unit in the next relocatable file to the

absolute binary codein the link area.

Displays the current assembly bias and loading address.

Displays the contents of the symboltable.

Outputs the absolute binary code in the link area and the execution and

S (Save)

data addresses to a namedfile.

V (Verify) Compares the contents of the saved file and the contents of the link

area.

*K (Clear) Clears the contents of the symbol table and sets the assembly bias and

loading address to 0000.

Switches the printer list mode.

! (Goto Monitor) Transfers control to the monitor. The relocating loader is reentered by

GOTO$1200 (cold start) or GOTO$1260 (warm start).

(d) Symbolic debugger

: B (Break point)

: & (Clear B.P.)

: M (Memory dump)

: D (memorylist Dump)

/ W (data Write)

| G (Goto)

| I (Indicative start)

A (Accumulator)

C (Complementary)

P (Program counter)

R (Register)

X (data TRANSfer)

Sets a breakpoint and a break count.

The programmercan set a maxi-

mum of 9 breakpoints and a maximum count value of E in hexadeci-

mal.

Clears all breakpoints.

Displays the contents of the specified memory block in the link area in

hexadecimal representation. The command also permits memory

alteration.

Displays the contents of the specified block in the link area in hexa-

decimal representatio wit one on nn a
wwdid ALGLIVE VWaay .h instrucitVail wd. a liniv

Writes data into the link area starting at the specified address.

Executes the program at the specified address.

Executes the program with the CPU registers loaded with the register

buffer data, starting at the address designated by PC.

Displays the contents of register pairs AF, BC, DE and HL. The

command allowsregister data alteration.

Displays the contents of register pairs AF’, BC’, DE’ and HL’.

commandallowsregister data alteration.

Displays the contentsof special registers PC, SP, IX, TY and I. The

commandallowsregister data alteration.

The

Displays the contentsofall registers.

Transfers the contents of the specified memory block to the specified

memory area.

SYS-7

O1

02

03

04

O5

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

0000

0000

0000

0000

0000

0004

0006

0007

0008

0009

000D

0011

0013

0014

0016

0017

0018

001C

0020

0022

0023

0025

0026

0027

002B

002F

0031

0032

0034

0035

S (Save)

V (Verify)

Y (Yank)

Saves the absolute binary code in the link area in the output file

specified by the file name.

Compares the contents of the file specified by the file name with the

contents of the link area.

Loads the program unit in the debug mode form from the specified object file.

4C442023

2C23

Fl

40

Ol

4C442023

2C284958

2429

F3

DD46

00

03

4C442023

2C284959

2429

F3

FD46

00

03

4C442028

49582429

2C23

F3

DD70

00

04

In addition to the above commands, the symbolic debugger includes the same link and load

commandsandspecial commandsasthe relocating loader.

INSTRUCTION LIST

SYMP: ENT

DFFM "LD #, #' ; LIKE LD B, C

DFFB F1H F delimits the instruction pattern. 1 indicates

the length of the instruction in bytes.

DFFB 40H Main portion of the mnemonic code

DFFB 01H Atom type

DFFM ‘LD #, (IX$) ' ; LIKE LD A, IX + 15)

DFFB F3H 3 indicates the length of the instruction in bytes

DFFW 46DDH I DD4600is the main portion of the
DFFB OOH mnemonic code.

DFFB 03H Atom type

DFFM “LD #, (IY$) , ; LIKE LD B,(IY + AFC)

DFFB F3H

DFFW 46FDH

DFFB OOH

DFFB 03H

DFFM ‘LD (XS), #’ ; LIKE LD (IX + 23), A

DFFB F3H

DFFW 70DDH

DFFB OOH

DFFB 04H

Fig. 4 Instructionlist (part)

SYS-8

Table 2 Two-dimensional operation table

Reserved

LD #, #

LD #, $

LD #, (TX+$) LD #, (IY + $)

LD (X+$),# LD dY+$),#

LD (IX +$),$§ LD (IY +$), $

LD A, ($)

LD ($), A

LD BC,$ etc.

LD IX, $.LD IY, $

LD HL,($)

LD BC,($) etc,

LD ($), HL

LD ($), BC etc.

ADD A, # etc.

ADD A, $ etc,

ADD A, (IX + $) etc.

INC #etc.

INC (IX + $) etc.

RLC #etc.

RLC (IX + $) etc.

BIT $, #etc.

BIT $, (HL) etc.

BIT $, IX + $) etc.

JP NZ, $ etc.

JR C, $ ete.

JR $ DINZ $

SUB #etc.

SUB § etc.

SUB (IX + $) etc.

RST $

IN A, ($)

IN #, (C)

UT ($),A

UT (©), # P
m
e
e
e
e

e
R

R
f
e
e

Pe
p

e
f

e
e

e
f

e
t

e
t

R
e

r
e

e
l

R
e

e
e

p
e

Pe
t

e
p

l
e
R
p

|
e
e

e
e

f
e

fe
e

SYS-9

(START)

@) [LOC<+0O | LOC (location counter)

Read statement |

END statement?

Wait next pass

Reference instruc-

tion list

Extract flags

Store label into
label table

no
Address processing?

Reference instruc-

tion list

 Perform register/table
reference, pattern con-
version, shift and other
operationsas specified
by the control words

| Instruction length | Label reference?

Address modification
: (decimal-to-binary-

I] Reference label table|] conversion)
(hexadecimal-to-

- binary conversion)

Assemble object code |

| Instruction length |

!|Construct CRT listing|} Construct printer Convert object code to

listing relocatable binary format

O

Fig. 5 General assembly flow (excluding assembler directive processing)

SYS-10

2.2 Text Editor Functions

The major functions of a text editor are to insert, delete and modify characters, word and/or lines. If

the editor does not allow the programmer to use these functions interactively and easily, he will have to

devote more effort to editing and modifying programs than to executing them. To alleviate this prob-

lem, SHARP uses a command format which is almost perfectly compatible with that of the NOVA mini-

computerseries from the Data General Corp.; this has been refined through the support of manyusers.

The most important concern of the programmerin conjunction with the text editor is the concept of

the character pointer (CP) and its usage.

During line-base editing, the CP is situated not on a line but between two consecutive lines, as shown

in Figure 6. Therefore, the location to/from which a line is to be inserted/deleted can be uniquely

identified. If the CP was located somewhere on a line, two locations would be possible; that is, before

and after the CP. The J and L in CP move commandsare representative commands which usesthis inter-

line pointer concept (see Table | (b)).

During character-base editing, the CP is situated not on a character but between two consecutive

characters. This permits close editing. The programmer will become accustomed to the text editor

quickly if he is aware of what commandsuse the interline CP and what commanduse the intercharacter

CP concept.

During normal editing sessions, several commands are combined to carry out an intended task. Such

commands can be placed on a line separated by separators so that the programmerlists them as they

comeinto his head.

The MZ-80K system also provides an editor-assembler (cassette based) which combines the features

of the text editor and the assembler. Using the X command, the programmer can transfer to either

program; this considerably reduces overhead time during the debugging session.

B-©5M~3J7 [CR]

t

Two or more commands can

be specified by separating
mn OAanentn‘+h +h aethem withthe separator > ,

~~|) Top ofthe edit buffer

CS (beginning of the text)

RIXeC?7S3 ICR

Search for ADDstarting at the |
beginning of the edit buffer.

B+SADD*L®2T [CR oo

—————4 > Line 3

/

Fig. 6 Character pointer movement

SYS-11

2.3 Relocating Loader

The relocating loader loads and links two or more program units using external symbol referencing

instructions from relocatable files and generates absolute binary codein thelink area and savesit into an

objectfile.

The relocatable files contain control frames and external symbol information. The relocating loader

resolves external symbol references and relocated the program units as described below.

(1) External symbol reference resolution

The relocating loader refers to the symbol table when resolving external symbol references (see

Figure 7). The symbol table contains a 9-byte symbol table entry for each external symbol. A symbol

table entry consists of a 6-byte field containing the symbol name, a 1-byte field containing the definition

status, and a 2-byte field containing an absolute address with which the symbolis defined or referenced.

When the loader encounters an external symbol reference while loading the program unit from re-

locatable file, it checks to determine whether the symbol has been cataloged in the symboltable.

(1) If it has not been cataloged, the loader enters it into the symbol table as a new undefined symbol,

loads the reference address into the symbol table entry and loads code FFFFHinto the operand

address of the instruction in memory.

(2) If it has been cataloged and defined, the loader loads the defined absolute address into the operand

address in memory.

(3) If it has been cataloged but not defined, the loader moves the old reference address in the symbol

table entry to the operand address in memory and loads the new reference address into the symbol

table entry.

Thus, the loader chains undefined references to each symbol and, when the symbol is defined,

replaces all reference addresses with the defined absolute address.

In other words, when an external symbol defined by the ENT assembler directive appears in the

control frame, the loader enters the symbol into the symboltable as a defined symbol and replacesall

preceding operand addresses chained in memory (terminated by FFFFH) with the absolute address

defined. The programmer can examine the definition status of the symbols using the table dump

command.

An example of external symbol reference resolution follows. Assume that three program units are to

be linked and that each unit references subroutine SUB1 in the third program unit (see Figure 9).

Whenthefirst CALL SUB1 instruction is encountered in program unit 1, the loader enters SUB1 into

the symbol table as an undefined symbol, loads the operand address (referenced address 5001H in this

case) into which the value of the symbol is to be loaded into the 2-byte value field of the symboltable

entry and loads the code FFFFH into the operand address in memory (see Figure 9 (a)).

SYS-12

When the CALL SUB1 instruction is encountered twice in program unit 2, the loader chains together

their operand addresses which reference SUB1 (see Figure 9 (b)). When SUB1 is defined in program unit

3, the loader designates SUB1 as a defined symbol and loads all operand addresses referencing SUB1 with

the defining absolute address. The end of the operand address chain is identified by the code FFFFH.

Figure 9 (c) shows that SUB] is defined by absolute address 5544H. When the loader subsequently

encounters a CALL SUB instruction, it immediately loads 5544H into the operand address of the

instruction since symbol SUB 1 has been defined.

0000} Monitor |

1200

area *

3000——=—SSS«d Symbol
|S|| table area

OPPFb

DOOO; Video RAM area

E000] Terminal control

area

It is assumed that a 36K bytes (48K bytes
maximum) of RAM areinstalled, and that the

starting address of the symboltable is set to
8000H.

Fig. 7 Memory mapforthe relocating loader

 - ee

Symbol name Definition Address

status (value)

Fig. 8 Symbol table entry format

This code indicates that the symbolis undefined.

Program unit 1

Identifies the
location refe-

rencing an
undefined

symbol for
the first time

(serving as an
end mark).

 SUB1
table entry

(a)

Program unit 2

‘CALLSUBI_
Operand ad-
dresses refe-
rencing the
symbol are
chained to-
gether.

"SUBLENT_
SORA

5544 AF

 (c) ———

This code indicates that the symbolis defined.

Fig. 9 Example of external symbol reference chaining

SYS-13

(2) Program relocation

The loader relocates instructions referencing external symbols while linking the programs. For

instructions which reference internal symbols and for which relocation addresses are generated by the

assembler, however, the loader produces absolute addresses for the symbols by adding bias to the re-

location addresses.

Thus, the loader generates absolute binary code in the link area in an executable format which is

dependent on the bias specified by the programmer when the program unit is loaded. When creating an

object file, the loader saves the absolute binary code from the link area in the file together with its

loading address and execution address.

2.4 Symbolic Debugger

The symbolic debugger inputs relocatable files under the same input conditions as the relocating

loader except that it presumes that absolutable binary code is loaded into the link area in an immediately

executable form. The symbolic debugger permits the programmer to debug his program while runningit.

With the symbolic debugger, the programmer can run a program, interrupts its execution at specified

locations and check the system status at these points. The programmer specifies the breakpoints at

which program execution is interrupted. When a breakpoint is encountered, the symbolic debugger saves

the operation code at the address set as the breakpoint in the break table and replaces it with an RST 7

instruction (FFH) (see Figure 10).

The RST 7 instruction is a l-byte call instruction to address 38H in hexadecimal. Its operation is as

follows:

(SP—1) <—PCy, (SP —2)<—PC,

PC <=—0038H

Hexadecimal address 38H (in monitor ROM) contains a JP 1038H instruction which transfers control to

the breakpoint control routine in the debugger.

Each breakpoint is associated with a break counter. A break is actually taken when the breakpointis

reached the number of times specified by the break counter. Before the break count is reached, exe-

cution is continued with the original operation code saved.

When a break occurs, the debugger saves the contents of the CPU registers in the register buffer and

displays them in the screen. When the program is restarted, the debugger restores the contents of the

register buffer to the CPU registers and pops the break address.

The programmer can specify a maximum of nine breakpoints and a maximum break count of 14 in

decimal.

SYS-14

eee JS Replace

Breakpoint address oN
(label symbol) | « Breakpointis

set

Break count Variable count
Break table entry

Object program

Fig. 10 Breakpoint setting and breakpoint table format

The symbolic debugger has indicative start and

memory list dump commands in addition to the

breakpoint setting command, execution command, ca
nd

ON
L
O
B
6

U
a

o
o

ar
es

“
O
t

memory dumpcommandandregister command. The

L
i

c
a
s

ee
)

DL
)
k
o

“
t
o
t
o

indicative start (1) command displays the contents of

= a
Par

a
a
!

ye
ew

el
le

’
O
e

A
I
T
A
T

O
sE

n
f

"
I
e

the CPU registers with which the program is to be

executed for confirmation before actually transfer-

ring control to the address designated by the program counter (PC) displayed. For example, when an I J |
The above display shows that the program is to be

commandis entered, the display shown in Figure 11 gtarted at address 3000 (hex) with the CPU register
values shown.appears on the screen. When the programmerpresses

Fig. 11. I command example
[CRI after confirming the CPU register contents, the

debugger initiates an indicative starts as shown in

Figure 12.

Register buffer

The debugger restores the contents of
tha gnananral vnuernnaa registe
ule £ECnCrai-Ppurpose Tegiscers and special-

purpose registers SP, IX, TY andI @,
then the value of the PC @) andiniti-
ates program execution.

e
omar

General-purpose AF BC DE HL
registers

Special-purpose SP IX IY I

registers

Fig. 12 J commandoperation

The memory list dump (D) command displays the machine code in the specified memory block with

One instruction on eachline.

The symbolic debugger permits the programmer to symbolically specify addresses as shown in Figure

13. With symbolic addresses, the programmer can specify any addresses in the program wherever the

program is located in memory.

SYS-15

The programmer can specify the following types of addresses symbolically:

(1) Addresses represented by a symbol

(2) The address of an instruction | to 99 lines away from the address represented by the symbol

(3) The address of an instruction | to FF (hexadecimal) lines away from the address represented by

the symbol |

(4) An address +1 to 99 bytes away from the address represented by the symbol

(S) An address +1 to FF (hexadecimal) bytes away from the address represented by the symbol of

course, the programmer can also specify memory locations with absolute addresses.

For example, if the program unit whose source program is shown at the left of Figure 13 is loaded

into memory by the debugger starting at hexadecimal address 3000, execution of a D commandwill

display a dump of the memory block as shownat the right in Figure 13.

START. : ENT

LD SP, START

CALL MSTP
oSpe MAINGXOR A et 2] 515) 34
ases 0

LD (?TABP), A SaaS ae
LD BA !

MAINO :ENT

LD A, OFH

 Fig. 13. D command

2.5 PROM Formatter

The PROM formatter generates formatted absolute binary code and stores it into paper tape under

PTP control. It is system backup software used to transfer object programs to the PROM writer.

Currently, the following paper tape output formats are supported (see Figure 14):

(1) BNPF format: Brightronics, Intel and Takeda

(2) BIOF format: Takeda

(3) Hexadecimal format: Brightronics, Takeda, Minato Electronics

(4) Binary format: Brightronics |

The variety of tape formats supported by the SHARP PROM formatter extends the application range

of programmable ROMs. |

AT COMMANDED TABLE

nS|BOC ROl ae ace
ADEC IMAL

o
a
r

w
e
f
T

O
e

rt
w
a

— a
e
d r

iateseta
n
e
n
e CINTEL MBSSOe) _. | Fig. 14 Paper tape output formats

0
a
a
d

ie =)
a
:E
eo
ea}

a
a

a
f
T

p
o
n

_
"
s

e
l

wa
te

oot
Ma

y
ie

ot

SYS-16

The PROM formatter is made up of a symbolic debugger and format, PTP and PTR controls (see

Figure 15.) The programmer can perform debugging and format conversion simultaneously.

The formatter checks parity in one of three modes (even parity, odd parity or no parity) when

reading paper tape. In the formats using ASCII code (BNPF, BIOF and hexadecimal), the most signifi-

cant bit is assigned even or odd parity. When even parity is used, for example, ASCII code “A”(41

hexadecimal) is punched as is, whereas ““C’’ (43 hexadecimal) is converted to C3 in hexadecimal before

being punched by setting its MSB. The parity mode can be changed using the FC (parity Form Change)

command.

This PROM formatter assumes that the PTP/PTR interface is compatible with the RP-600 puncher/-

reader from the Nada Electronics Laboratory. It can contro] RP-600 directly using the general-purpose

I/O card (MZ-80I1/0-1). It can also control other models, such as the DPT26A paper tape punch from

Anritsu, if I/O conforming to the punch specifications can be implemented on the general-purpose I/O

card.

PROM formatter

Relocatable

binary pro-

gram unit

 Paper tape punch

Paper tape reader
Fig. 15 PROM formatter configuration

SYS-17

3d. FDOS ORGANIZATION

Figure 16 shows the files which are run under control of the SHARP MZ-80K FDOS. The FDOS

has the following features:

(1) Multistatement processing

(2) Default argument processing

(3) Allows wildcard characters in file references.

(4) File-oriented processing extended to I/O devices

—— Boot/linker | Reads and links system commands

I
Cc

ormatter

com
Include DIR, XFER,etc. (see Table 4)

Fig. 16 FDOSfile organization

Include LIBRARY, VERIFY, etc. (see Table 5)

Monitor

Figure 17 shows the memory map for the above 0000

. , 1000
system resources. FDOS is made up of a resident

section and an overlay section. The resident section

includes:

(1) A commandline interpreter which interpretes and

executes system commands.

(2) A boot linker which reads and links command

files from the FDOSdiskette.

(3) A supervisor call procedure which manages

system resources, includingfiles.

(4) An I/O control system (IOCS)

(5) A file management program which manages the

diskette allocation map, file table and other infor-

mation. Doool

Monitor work area

Video RAMarea

The standard devices include disks, tape units, keyboard, display unit, line printer,

paper tape punch and papertape reader.

Sourcefiles, relocatable files and object files created with this system

rResident area

» Overlay area

(transient

area)

Terminal control area

 IPL

Fig. 17 FDOS memory map

SYS-18

The overlay area contains a command unit into which command programs are read by the boot

linker. The work segment area is used to store 20 segment variables for dynamic segmentation and

linkage.

3.1 File References

A file reference consists of a file name field and an extension field called the file mode as exemplified

below.

ABCDEFGHIJKLMNOP.ASC |

The file name must be 16 characters or less and the file mode must be three characters or less. The

file mode is controlled by the FDOS main program. Thelegal file modesare listed in Table 3.

The following I/O device namesare reserved by the FDOS main program:

S$FD1 through $FD4: Floppy disk units 1—4

$LPT: Line printer

S$CMT: System cassette unit

$CRT: System display unit

SKB: System keyboard

$PTR: Paper tape reader

$PTP: Paper tape punch

$SIA: Serial input port A

SSIB: Serial input port B

$SOA: Serial output port A

SSOB: Serial output port B

$USR1 through $USR4: —User devices 1—4

Table 3. File modes

‘SYS Relocatable binary systemfiles under FDOScontrol

.ASC Source files (ASCH files) created by the text editor

.RB Relocatable files generated by the assembler or compiler

OBJ Objectfiles

.LIB Library files created by FDOS

FDOSallows I/O devices to be treated as if they were separate files, the programmer can

operate them in the same manneras logical files without switching running devices and giving detailed

control commands.

Generally speaking, the file name and file mode must be explicitly defined. In particular, definition

of I/O device files is mandatory. For convenience, the wildcard characters ? and>« are provided for use

when specifying groups of files. The symbol ? matches any character of a file name in the position in

SYS-19

which it is located. This is highly convenient when searching the directory for a file or when matching

files. For example, A?C?.ASC is interpreted as explicitly defined file names ABCD.ASC, AXCY.ASC,

etc.

The symbol > matches an arbitrary number of ? wildcard characters. Some examples are given

below.

*K.ASC <> ABCD.ASC

2227,ASC

XY*K.RB <>» XYZ.RB

XYZ012.RB

ABC. <-> ABC.ASC

ABC.RB

Commands and file names may be followed by switches. These are used to supplement or modify

the command or file name. A switch must immediately follow a commandorfile name and be se-

parated from it by a slash (‘‘/’’). Switches used with commandsare called global switches and those used

with file names, local switches. Examples of the use of switches are given in Figure 18.

ASM ABC J

Invokes the assembler, inputs source file ABC, and generates
relocatable file ABC.RB.

ASM ABC, XYZ/O, $LPT/L J
r

LOutputs an assembly listing to LPT.

— Generates relocatable file XYZ.RB.

 —— Inputs from source file ABC.ASC.

ASM/N ABC, $CRT/E J
“4

L Outputs an errorlisting to CRT.

— Inputs from source file ABC.ASC.

 — Suppresses generation of relocatable file ABC.RB.

Fig. 18 Examples of switches

SYS-20

3.2. FDOS Command Summary

The FDOS commandsare broadly divided into built-in commands (Table 4) and transient commands

(Table 5).

Transient commands are implemented in relocatable file form on the FDOS diskette. They are loaded

into the transient area in main memory by the boot linker and linked to the FDOS main program as

required.

In the command formatin Table 4, the items enclosed in brackets are optional.

Table 4 Built-in commands

DIR.[SFDn]«or‘[filename] .__.-a : a: a2,oe

~~ Displaysfile information inthe= directory specified by$FDnor ofthe filespecifiedbyfilename on the screen.

Global switch/P: Specifies that the file information is to be output to LPT. The file information is displayed

on the screen when -nis switch is not specified.

Examples: DIR J : Displaysall file information in the current directory on the screen.

DIR/P $FD2— : Outputs all FD2 file names to LPT and switches the currently logged

disk to FD2. |

DIR $ FD2; ABC.K~ : Displays the file information offiles in FD2 identified by ABC.
|TYPEfilename1LL.2-.,filenameN7 - :oo :a-a7: .S7cS S——— a:77 |S| :oo :4:ix0

~~ Lists the contents of the file(s) identified byFilename) oon1thesscreenoron7 LPT.rs

Global switch/P: Lists the file contents on LPT.

Examples: TYPE ABC, DEF : Displays the contents of files ABC and DEF on the screen.

TYPE/P $FD3; XYZ ~—_ Lists the contents of file XYZ in FD3 on LPT.

TYPE $PTR J : Reads paper tape data from PTR and displays it on the screen.
-RENAMEoldname1,newnameis

Renamesthefile specifiedtby sidnamento:newname.

Examples: RENAME ABC, XYZ >: ABC to XYZ.

RENAME ABC, DEF, UVW, XYZ~ ~~: ABC to DEF and UVW to XYZ.

:_DELETEfilename1ft.cee,,filenameN] -7 _.|a _.oo]/ 2_ |.ow)

Deletes the file(s) specified by filename(s). — OO oO oo

Global switch/C: Specifies that each file name is to be displayed on the screen for verification. The programmer

must enter Y to delete it or N to suppress deletion.

Examples: DELETE ABC. >* J : Deletesall files identified by ABC. >«.

DELETE/C AX. x2 : Displays files identified by A>K.>Kon the screen for verification

before deletion.

ABC.ASC : DELETED : Indicates that the file is deleted since “Y’’ is entered.

ABC. RB : Indicates that the file is not deleted since “N”is entered.

AXY.OBJ : PERMANENT Indicates that the file is not deleted because it is assigned the

PERMANENTfile attribute.

SYS-21

Matches the password’s sign and changesthefile aitribute(s) of the matching file(s) identified by filename to

attribute(s). P: Permanentfile R: Read inhibit

0: No protection W: Write inhibit

Examples: CHATR KEY, ABC, 0, XYZ, P~ : Deletes the file attribute of file ABC and changesthe file

attribute of file XYZ to PERMANENTif matches occur with

the password KEY.

CHATR KEY, $FD2 ; UVW,R~ : Changes the file attribute of file UVW in FD2 to READ

INHIBITif a match occurs with the password KEY.

CHATR # : This allows the programmer to interactively specify the

password,file name andattribute.
./_XFERsourcefile1, destinationfile 2 [........, sourcefile N, destinationfile N] A7,>K only for source file) -

Transfers thesource file(s) to the destination file(s). |

Examples: XFER ABC, XYZ 2 : Copies file ABC to XYZ.

XFER $PTR, DEF ~ : Transfers the file at PTR to file DEF.

XFER XYZ, $PTP/PE~’ : Transfers file XYZ to PTP with even parity in ASCII code.

. Eroman -——~ the objeat =—ibyonZ_a~—SBPmodk = .

Example: RUN ABC~

_

:Executes the program in file ABC, assuming it to be ABC.OBJ.

_FREE[SFDn] oe lee
Lists statistical information about the disk identified by $FDnon thescreen or onLPT.

Global switch/P : Outputs statistical information on LPT

Example: FREE $FD2 —

$FD2 MASTER LEFT: XXXX USED: YYYY

: Indicates that the diskette on FD2 is a master diskette, that the number of

unused sectors is XXXX and that the numberof usedsectors isTn __

DATA[MM/DD/YY]_ ‘ ee
Displays the current date orsetss the specified data in month, date, year“format. The:sett informationjisusedas

file information when newfiles are created.

Global switch/P: Specifies that the date is to be printed on LPT.

Examples: DATE/P 2 : Lists the current date on LPT.

DATE 12/23/80 ~ Sets the current date to| December 25, 1980.

TIME[HH:MM:SS]__ oo —

“Displays the current ‘time orT sets specified timein aorminute,— format. This informationksis used aass file

information when newfiles are created. The current time is set to 00:00:00 upon system start.

Global switch/P: Specifies that the current timeis to be listed on LPT.

Examples: TIME/P : Lists the current time on LPT.

TIME 16 30 30 .J: Sets the current time to 16 : 30: 30.

 - Executestthe——the fileigaieeby“filename:as OO

Example: EXEC ABC.ASC ~

Sequentiallyexecutes the PDOS commandsiin tile ABC.

Lists the information saresiasceas—withthe specified message.—

Example: HCOPY —
SYS-22

“Performs a form feed operation on the output device identified by output-device.

Example: PAGE: Moves the printer form to the homeposition.

Terminates FDOSprocessing and returns control to the monitor.

Example: BYE

Table 5 Transient commands

Loads the text editor and readsin the file if specified. The file must be an ASC modefile.

Examples: EDIT J : Loads the text editor and waits for an editor command.

EDIT $FD2 ; ABC ~ : Loads the text editor and readsin file ABC from FD2.

Assembles the source file identified by filename and producesa relocatable file and an assemblylisting.

Global switch (none) : Specifies that the relocatable file is to be output.

Global switch/N : Suppresses generation of the relocatable file.

Local switch/O : Specifies that the relocatable file is to be output with the specified file name.

Local switch/E : Specifies that error statements are to be output to the specifiedfile.

Local switch/L : Specifies that the listing is to be directed to the specifiedfile.

Examples: ASM ABC 2 : Assembles source file ABC and generates relocatable file

ABC.RB.

ASM/N ABC, $CRT/E : Assembles source file ABC and displays error statements

on the screen (no relocatable file is created).

ASM ABC, XYZ/O, $LPT/L 2 : Assembles source file ABC and generates relocatable file

XYZ.RB and an assembly listing on LPT.

ASM ABC, $FD2; XYZ/L, $LPT/E~ : Assembles source file ABC, outputs the assemblylisting to

file XYZ.ASC in FD2 and outputs error statements on ©

LPT.

"Links relocatablefiles identified by filename 1throughfilenameNandoutp
listing. |

Global switch/T: Specifies that the symbol table information it to be listed.

Global switch/P: Specifies that the listing is to be directed to LPT (thelisting is displayed on the screen if the

switch is omitted).

Examples: LINK ABC, DEF 2 : Links relocatable files ABC and DEF and outputs objectfile

ABC. OBS.

LINK/T/P ABC, DEF, XYZ/O~ : Links relocatable files ABC and DEF and outputs object file

XYZ. OBJ with the link table information on LPT.

SYS-23

Invokes thesymbolic debuggerand links and loadsrelocatablefile(s).

Global switch/T: Specifies that the symboltable information is to be output.

Global switch/P: Specifies that the listing is to be directed to LPT (thelisting is displayed on the screen if

omitted).

Local switch/O: Specifies that the object file is to be generated with the specified file name.

Example: DEBUG ABC, DEF 2 : Invokes the symbolic debugger, links and loads relocatable files ABC

and DEF and waits for a symbolic debugger command.

~ Generatesformattedabsolutebinaryccodeoonnthe paper tape punch from an objectfile. Applicable PROM writers

are those which are supplied by Brightronics, Intel, Takeda and Minato Electronics.

Example: PROM.

InvokestheBASICcompilertto5 compile the source program identified by filename.

Example: BASIC XYZ: Invokes the BASIC compiler, compiles source file XYZ. ASC and generatesre-

locatble file XYZ. RB.

Linkssspecified file(s) intoya lilibraryfile

Global switch (none): Specifies that the link information is to be displayed on the screen.

Global switch/P: Specifies that the link information is to be printed on LPT.

Examples: LIBRARY ABC, DEF ~ : Links relocatable files ABC and DEFandstores their contents

into library file ABC. LIB.

LIBRARY ABC, DEF, XYZ/O~: Links relocatable files ABC and DEF andstores their contents

into library file XYZ. LIB.
FY filename1,filename2L....,filenam : 1

Compares the contents offiles filename 1 through filename N.

Global switch/P: Specifies that the results of the comparison are to be listed on LPT.

Example: VERIFY $CMT,$FD2 ; ABC ~ : Comparesthe first file on the cassette tape with source file ABC

in FD2.

a Changes the password ofthe diskettejinn $FDn.

During a diskette copy or formatting operation, the system checks the programmer-specified password with that
stored in the diskette directory for a match andcarries out the specified operation only when a match occurs.
Example: SIGN~ : Changes the password of the diskette currently logged on.

Copies the files on the diskette designated by the source disk number to the diskette designated by the
destination disk number. The system matches the passwords in these diskettes before carrying out a copy
operation.

Example: COPY —

SYS-24

Initializes the diskette in $FDntothesystem format. Thepassword setby theSIGN command ischeckedbefore

execution.

Examples: FORMATS : Initializes the currently logged-on diskette.

FORMAT $FD2~ Initializes the diskette in FD2.

 — hesoreets—

Example: ASSIGN $USRI1, $ BOOO~ : Sets the drive routine address of user device $USR1 to BOOO

(hexadecimal).

Sets the status of the I/O device identified by devicename to status.—

Example: STATUS $SIA, $1234’ : Sets the control status of serial input port A to 1234 (hexadecimal).
Sets or changes the end address of the memory areamanaged

Examples: LIMIT $BO00 . : Sets the FDOSarea to BOOO (hexadecimal).

LIMIT MAX~ : Sets the FDOSarea to the maximum available address.

Loads the object file identified by filename into the area immediately following the established by the LIMIT

command.

Example: LOAD ABC.OBJ ~ : Loads object file ABC.OBJ into memory.

SYS-25

3.3. Boot Linker

The FDOStransient commands (whose file mode is .SYS) are not resident in memory, butare stored

in relocatable files on the system diskette. These programs exist not in absolute form but in relocatable

form. When they are invoked, boot linker relocates them and specifies their loading addresses (see

Figure 19).

These relocatable system files differ from relocatable files generated by the assembler in the way in

which they are loaded into memory. The external symbol references of the system files have been

resolved; these are just relocated by the boot linker. Accordingly, the control frame associated with each

statement of the system programs contains only a field identifying the statement as having a relative

address or absolute data and containing the byte count of the statement. When a relative address is

indicated in the control frame, the system adds loading bias to the relative address to form an absolute

 address.

Monitor

FDOS
poo

Relocate!

y Absolute binary code

: | ? Transient area (FDOS
FDOStransient commands may be
commands loaded in arbitrary

locations within this
* area)

Relocatable files
(identified by the .SYSfile mode):

Fig. 19 Loading FDOStransient commands with the FDOSbootlinker

3.4 IOCS

IOCS in FDOSprovides control over the display unit, cassette unit, floppy disk units, printer, PTP,

PTR and other user I/O devices. The programmer can define other I/O devices using the ASSIGN

command. Control programs for such user I/O devices can be stored in external files and their names can

be cataloged in the IOCS table. They are invoked and executed by IOCSas required.

The actual file management programs form a hierarchical structure as shown in Figure 20. In the

MZ-80K system, routines from the macro command programs to the device control programs are

collectively called the input/output control system (IOCS). Being of modular construction, these pro-

grams are as independent of each other as possible. By hiding controls unique to I/O devices, such as

device address management and buffering, [OCS permits the programmer to handle these programs as

logical files and to control the I/O devices as generalfiles.

The alternate start/stop feature is enabled during IOCS operations. The system temporarily suspends

the read operation when an alternate stop is effected during a data read. At this point, the programmer

can switch to the FDOS command mode or continue the suspended IOCS operation by effecting an

alternatestart.

SYS-26

y
u
n
A
P
C
S

preogdéay
w
a
i
s
h
S

 yound
ade}

Jodeg
srapear

ode}
rodeg

-
Jajulid

a
u
r

W
a
s

AS

$
 6CUG

TSC
U
T
C

QOIAMpP
Ias/)

O
/
]
[
e
l
e
s

Co
Ia[]oNUOo

-

|
Ig[Jor}U0S

-
qeyJoru0s.

Ze
Tay[orju09-

T
o
[
f
o
r
u
o
0
s

s
u
d

8
royjorju0s

Ta[joruo0s
P
e
e
p
|

|O
B
E
S

|
|

w
u
n
A
m
d
s
d

|
|p
e
q
t
o
n
-

5ads,
Toprolade)

Indu)
|

foiutid
o
u
r

|
o
d
e
z
i
o
d
e
g
|

(
U
O
I
}
U
L
j
o
p

puke
UOT}

e
I
o
}
e
S
s
o
I
p
p
e

[POIZO]/[eoIS
A
Y
)

jtun
a
d
e
}

9
1
}
9
S
S
B
D
W
I
9
}
S
A
S

e
m
e
e
e
e
e
e
e
e
e

e
e
e

—
e
e
e
e
t
e
e
e

wee
e
e
e

e
e
e

-
~
—
-
—

—
4
3
u
l
s
s
a
0
0
i
1
d
j
s
o
d

3ft
J

s
u
l
s
s
o
o
0
i
d
a
i
d

ajt.7
UOT}I[ApP

I
I
4

S
U
I
W
I
E
U
S
I

OIL
4

_—gejforyuco
adeyayyasse)

|
phonass
-

ysIp

:
A
d
d
o
j
y

y
u
n

ystp
A
d
d
o
y
7

SoolANd

s
u
e
i
z
0
i
d

[
O
1
]
U
O
D
d
d
I
A
D
q

w
e
i
s
o
i
d

[
o
1
u
0
s
S
O
O
T

j
o
u
u
e
y
)

s
u
l
e
i
s
o
i
d

P
U
P
L
U
L
U
O
D
O
D
P

—
e
e
e

e
e
e

m
e
e
e
e
e
e

s
u
l
e
i
s
0
i
d

J
U
I
U
I
O
S
e
U
P
U

Of
-
]

 SPUBUWIWIOD
JUAISUPI

|
Ia[Idwiod

D
I
S
V
q

I9}]8WIO}J
W
O
U
d

I
o
p
e
o
]
SUIVeIOTA

Y
Iassnqgoap

I
I
T
O
Q
U
I
A
S

T
O
U
P
S

1X9].
Td[QuIASse

08-7

u
r
e
i
s
o
i
d

w
o
}
s
A
S

SUIvISOId
JUSWIISCULUT

IIIT}
JO

VINJONAJS
[BOIYOIVIDI,

«QZ
“
B
Y

SYS-27

3.5 Dynamic Segmentation

Memory segmentation and relocation can be accomplished easily if a hardware relocation register is

used. However, no presently available 8-bit microprocessor has such a register.

Consequently, methods of simulating this function are commonly used. The boot linker previously

mentioned can be thought of as a variation of such simulations. Here, a method of memory segment-

ation and assignment which leaves the memory image unchangedis described.

Two subroutines are used for memory segmentation as shown in Figure 2] and 22. These two sub-

routines and segment variables are maintained in fixed locations in the FDOS main program area. They

are accessible to all programs. The 20 segment variables are initialized during preprocessing for each

command and assigned values so that no memory segment exists. They are redefined as required during

processing of each command, thus creating memory segments.

Fig. 21 Extending a specified segment

CTTTeTITTIT7
A<—2 ; Segment No. (O—19)

| BC<=—500 ; 500 bytes

CALL DOPEN ; DYNAMIC OPE ;

Segment No. Segment variables Results

0 ZWORK 0: 5000 ZWORK0: 5000

1 ZWORK 1: 5500 ZWORK 1: 5500

2 ZWORK 2: 6000+(500) ZWORK 2: 6500

3 ZWORK3: 6500+(500) ZWORK 3: 7000

4 ZWORK 4: 7000+(500) ZWORK 4: 7500

5 ZWORK 5: 7500+(500) ZWORK 5: 8000

6 ZWORK6: 8000+(500) ZWORK 6: 8500

7 ZWORK 7: 8500+(500) ZWORK 7: 9000

18 ZWORK18:29000+(500) ZWORK18:29500

19 ZWORK19:29500+(500) ZWORK19:30000

(ZWORK 0) (ZWORK0)

(ZWORK 1) (ZWORK1)

(ZWORK2)

———__| »>
a (ZWORK2)

(ZWORK18)
et

(ZWORK19) [- (ZWORK18)[

(ZWORK19)f

Fig. 22 Deleting a specified segment

r A<— 2 ; Segment No. (0-19) 4

| BC<-500 500byies

|CALLDDELET_;DYNAMICDELETE
Segment No. Segment variables Results

0. ZWORK 0: 5000 ZWORK 0: 5000
1 ZWORK1: 5500 ZWORK 1: 5500
2 ZWORK2: 6000—(500) ZWORK 2: 5500
3 ZWORK3: 6500—(500) ZWORK 3: 6000
4 ZWORK4: 7000—(500) ZWORK 4: 6500
5 ZWORK5: 7500—(500) ZWORK 5: 7000
6 ZWORK6: 8000—(500) ZWORK 6: 7500
1 ZWORK 7: 8500—(500) ZWORK 7: 8000

18 ZWORK18:29000—(500) ZWORK18:28500
19 ZWORK19:29500—(500) ZWORK19:29000

(ZWORK QO)

(ZWORK1)

(ZWORK2)

(ZWORKI18)

SYS-28

—_

=

(ZWORK19){_

(ZWORK 0)

(ZWORK1)]

(ZWORK2)

=> (ZWORKCd

(ZWORK]19)

4. FDOS COMMAND USAGE

4.1 Program Development Under FDOS

Sourcefile Text editor
Source file CC

XFER

$ CMT

Sourcefile
$ FD1 ~ $ FD4

ASM

BASIC

Assembler

BASIC compiler

$PTR, $PTP,etc.

Assembly
listing

Compilation
listing

 Compilation

 $CRT, $LPT,etc. $CRT, $LPT,etc.

 V
Relocatable files Library file

OC) LIBRARY ~ C)

LINK

LINK DEBUG
Relocating loader Symbolic debugger

aLinking

| Link in-

formation

Object file
Objectfile BNPF, HEXADECIMAL, BINARYformats

0° a
_™

$ CMT RUN $PTR, $PTP,etc.

4 V

v

(Execution }

SYS-29

4.2 FDOS Command Coding Rules

This section describes the coding rules for FDOS commands.

— Commandline format—

In the command mode, FDOS prompts for command entry with a number and the symbol “>”’.

Enter a command followed by arguments (described later), if necessary, press|CR| key and the FDOSwill

execute the command.

Example 1: 2> EDITW.TEST
NLNLINIO™

{command Largument __i denotes a space,

Prompt

Default drive number(describedlater)

The first number (1—4) indicated the default drive, namely, the currently logged-on disk drive.

Some commands may require two or more arguments.

Example 2: 2> XFER.TEST, $CMT [CR
1

Command Argument 1 Argument 2

The command and arguments must be separated by commas and/or spaces.

(Legal) 2> _.XFERW._TEST._.$CMT

(Legal) 2> XFER, TEST , $CMT [CRI

(Illegal) 2> ER TEST, $CMT
I
No spaceis allowed. ~Only one commais allowed.

Two or more commands may be specified on one logical line by separating them with colons (“:’’)

A line containing two or more commandsis called a multistatement line. A logical line may contain any

number of commands but it must not exceed three physical (screen) lines.

Example 3: 2> DELETE TEST: RENAME AAA, TEST : ASM TEST [CRI

— File name —

All program and data files on a diskette are given file names. The programmer must specify a file

name whenstoring a program ordata file on a diskette and when reading it. A file name must be from 1

to 16 alphanumeric characters and/or special characters as shown below.

'# Ek? ()+t-—->=< @[/] te

No two files on a diskette can have the same file name and file mode (described later). Files with the

same file name and mode may exist on different diskettes.

SYS-30

—— File modes —

The file mode identifies the type of the file. It is usually used with a file name. The MZ-80Kfile

modesare listed below.

OBJ Identifies an object file which contains Z80 machine code.

ASC Identifies a source file, such as one created by the text editor, which contains a stream of ASCII

characters.

RB Identifies a relocatable file which contains pseudo-machine language code(relocatable binary code):

generated by the assembler or compiler.

.LIB Identifies a library file consisting of two or morerelocatablefiles.

sys Identifies a file containing a system program which runs under FDOS,such as the text editor and assembler.

— File attributes —

File attributes are information pertaining to file protection. There are four file attributes: 0, R, W

and P. File attribute O indicates that a file is not protected. The otherfile attributes inhibit the use of

specific commandsaslisted below.

 TYPE TYPE

XFER XFER

EDIT EDIT

ASM ASM

LINK LINK

DEBUG DEBUG
ABeRNY NU 7 BAS AF NY NS

PROM PROM

BASIC BASIC

DELETE DELETE

RENAME RENAME

_commands

_InhibitedBASIC—| INPUT #() INPUT #()

commands PRINT #() PRINT #()

SYS-31

— File types —

A file type indicates the file access method. There are twofile types: sequential (S) and random (X).

FDOS normally handles only sequential files. Random files can be accessed only by the DELETE,

RENAME and CHATR commands. An optional BASIC compileris required to create, write to and read

from randomfiles.

— Wildcard characters —

The programmer can specify two or morefiles at a time by specifying wildcard characters in thefile

name and file mode. The wildcard characters ‘‘?” and “‘>k’’ are used for file names and ‘‘.>K’’is used for

file modes.

Wildcard character “977|

“2” represents any one character. For example, assume that files ABC.ASC, ABC3.ASC, ABCD.RB,

XYZ.ASC and ADCN.ASC exist on the currently logged-on disk. When the command

TYPE A? C? ASC

is entered, the contents of the files ABC3.ASC and ADCN.ASCwill be displayed.

Wildcard character “’’

‘Ss’? represents 0 or more characters.

A>: Represents file names beginning with “‘A.” e.g., A, A2, ABC

*2: Represents file names ending with “2.” e.g., TEST2, SAMPLE2

P*5: Represents file names beginning with “‘P’’ and ending with ‘5’. e.g., PROGRAMS, PMS

|Wildcard characters °**>«”’

“OK ’represents all file modes.

Examples:

DELETE PROGI.*« Deletesall files whose file name is PROGI.

XFER >*.ASC,$PTP Punchesall files whose file mode is .ASC.

DELETE >k .>k Deletesall files on the diskette.

SYS-32

— Drive number and volume number —

A drive numberrefers to the drive number of a floppy disk drive (MZ-80FD or MZ-80FDK). Drive

numbers | through 4 are assigned device names $FD1 through $FD4respectively.

A volume number (1-255) is a numberidentifying a diskette. FDOS checks this numberforvalidity

each timeit accessesa file.

— Device name —

FDOScan handle the following I/O devices:

SKB: MZ-80K system keyboard

$CRT: MZ-80K system display unit

$FD1:

$FD2:

$FD3:

$FD4:

$CMT: System cassette unit

$LPT: System printer (MZ-80P3)

$MEM: A part of main memory regarded as an I/O resource. The system automatically reserves an

unused area as $MEM. This area is released by the DELETE $MEM commandor when an

Floppy disk drives (MZ-80FD or MZ-80FDK)

error OCCcuUTrS.

SPTR: Paper tape reader and punch. The user must prepare an interface circuit for these using a

$PTP: universal interface card. The system contains their control programs, however. Refer to

‘Paper tape Punch and Reader Interface” in Appendix for details.

$SIA: Serial input port A

CTR: Serial nnittn
WrIRBS s a ALLL

The interface card and control program for these I/O ports are

| options which will become available in the near future. The con-
nr
ortt

S

$SOA: Serial output port A

$SOB: Serial output port B

$USRI1:

$USR2: | These device namesare provided for user-supplied I/O devices. The control program must

S$USR3: | be supplied by the user.

SUSR4: |

trol program occupies addresses $C800 to $CFFF.

SYS-33

Notes |

1. Any file input from the keyboard ($KB) is terminated by pressing the SHIFT} and|BREAK |keys

simultaneously. For example, execution of the command

1> XFER $KB, XYZ

is terminated when the programmerpresses the|SHIFT]and/BREAK]keys simultaneously.

2. The auto repeat interval can be changed by the STATUS $KB, $00nn command(standard nn value is

10).

3. The end offiles from $PTR is identified by the null code (OOH) following the data area (null codes in

the feed area are ignored).

4. $CMT and $MEM can be accessed only by the built-in commands and programs compiled by the

BASIC compiler. When they are used by other programs, the error message.

NO USABLE DEVICE

is issued.

5. $CMT can handle only .ASC and .OBJ modefiles. $KB, $CRT, $LPT, $PTR and $PTP can handle

only .ASC modefiles (error message IL FILE MODEisissued if an illegal file modefile is used with

one of these devices).

6. $PTP and $PTR automatically skip the tape feed portions.

— Switches —

Switches follow command names or arguments and specify optional command functions. There are

three types of switches.

Global switches]

Global switches are appended to command namesandspecify the mode in which the commandis to

be executed. Two or more switches may be specified for a command as shown in example 5. In such

cases they may beplaced in any order.

Example 4: 1 > DATE/P /P denotes LPT.

Command Global switch

Example 5: 1 > LINK/P/TW— TEST /P denotes LPT.

“Globalswitch /T denotes the symboltable.

A No space may appear in these positions.

SYS-34

|Local switches]

Local switches are appended to arguments and specify the use of the arguments.

Example 6: 1 > ASM TEST, $LPT/L, XYZ/O /L specifies the device on which the

assembly listing is to be output.

/O specifies the relocatable outputfile.

| Device switches

Device switches are appended to device names. Their format is identical to that of local switches.

The legal device switches are /PE, /PO, /PN and /LF. These switches can be appended only to

devices $PTR, $PTP, $SIA, $SIB, $SOA and $SOB.

The meanings of the device switches are listed below.

Specifies that data is to be checked for Specifies that even parity is (Note)

even parity. to be used.

/PO - Specifies that data is to be checked for Specifies that odd parity is to be (Note)

odd parity. used.

/PN Specifies that bit 7 (MSB) of input data (Note)

is to be set to O. |

/LF Invalid Specifies that CR is to be followed

by LF.

Note: An error is generated (IL DATA) if the MSB of the data is set to 1 from the beginning (e.g., graphic

characters).

Any switch following the first argument of the RUN commandis treated as a global switch.

Example: 1 > RUN, ASM48/P_,TEST ,XYZ/O
Or
ONL NA

| Global switch Local switch

The meanings of the individual global switches are described in the related commanddescriptions.

SYS-35

—Default assumptions —

The general format of a file specification (valid for $FD1—$FD4 and $CMT)is given below.

[Device name] ; [Filename] . [File mode]

Example 8: $FD2 ; PROG2 .ASC $CMT ;TEST2 .OBJ

Device tame Filename File mode Devicename File ame File mode

The programmer can omit portions of the complete file specification as explained below.

Default drive|

The device name may be omitted as exemplified below.

Example 9: 2> LINK TEST], $FD3; TEST2, TEST3

In the above example, the system assumes the name of the currently logged-on disk (identified by

2”) before TESTI] and TEST3. Consequently, the above command line is equivalent to the

following:

2> LINK $FD2; TEST1, $FD3; TEST2, $FD2; TEST3

The default drive can be changed by:

1. Executing the DIR command, or

2. Moving the cursor to the left of the prompt “> ” and changing the drive number(e.g., changing

ce) >” to ‘*] >’),

|Default file name!

The file name may be omitted when reading files from the cassette tape unit ($CMT). When file

name is omitted in the XFER command or other similar command (see example 10), the system

assumes an appropriate file name.

Example 10: XFER $FD1 ; ABC.ASC, $FD2

Lthe system assumes $FD2 ; ABC.ASC.

[Default file mode

When file mode is omitted, the system makes an appropriate default assumption according to the

command. See the individual command descriptions.

Notes |

1. Both device name and file name cannot be omitted simultaneously.

2. No file name can be assigned to devices other than $FD1 through $FD4 and $CMT.

SYS-36

—Arguments—

There are several argument formats.

1. Device name + File name + File mode

Examples: $FDI1;ABC.ASC §$ CMT ; XYZ.OBJ $FD2 :>K . xk

2. Device name + File name. The file mode is omitted (default file mode)

Examples: $FDI1;ABC $ FD2 ; A& $ CMT ; TEST

3. File name + File mode. The device name is omitted (default drive).

Examples: TEST3.RB *K, ASC PROG? . RB

4. Device name

a. when the file name and mode are omitted or when the device nameproperis to be specified.

Examples: $FDI1 $ CMT

b. When neither file name nor modecan bespecified.

Examples: $PTR $ CRT $ LPT

5. Hexadecimal constant

Examples: $ 1200 $ COOO

6. Special arguments

Examples: TIME 9_:30:00SNS

L Command L Argument

LIMIT MAX
t Command Argument

— Suspending or stopping program execution —

Execution of an FDOS command may be suspended or terminated with the following keys:

ISHIFT| + IBREAK| The system terminates the current program, issues the message

“BREAK” and waits for entry of an FDOS command. This break

can be detected by the “ON BRKEY GOTO”statement of BASIC.

SP When the [SP] key is held down for a while, the system suspends ex-

ecution of the current program. The phrase “‘for a while”’ here refers

to the period of time until a carriage return is output during output

to the CRT screen or printer. At this point, the programmer can

take one of the following actions:

e SHIFT| + |BREAK The system reacts as described above.

e Processing is continued at the point of the

suspension.

SYS-37

4.3. Using FDOS Commands

—ASM—

IFormat |

ASM filename

Function

The ASM command assembles the source program in the source file specified by the argument,

Transient

outputs the result to a relocatable file and outputs an assembly listing to the specified file or device.

[Default file mode|

-.RB when local switch /O is specified; otherwise, .ASC.

Global switches:

None: A relocatablefile is generated.

IN: No relocatable file is generated.

Local switches:

None: Specifies that the specified source file is to be assembled.

/O: Specifies that the relocatable code is to be output to a file under the selected name.

/E: Specifies that only error statements are to be output to the selected file or device.

/L: Specifies that the assembly listing is to be output to the selected file or device.

Wildcard characters

Not allowed.

(1) ASM TEST

Assembles source file TEST.ASC and generates relocatable file TEST.RB.

(2) ASM TEST, $LPT/L, XYZ/O

Assembles source file TEST.ASC, generates relocatable file XYZ.RB and outputs the assembly

listing to LPT.

(3) ASM/N TEST, $CRT/E, $SOA/L

Assembles source file TEST .ASC while displaying error statements (including external symbol

references) and outputting the assembly listing to SOA. No relocatable file is generated.

(4) ASM TEST, $FD2; TEST 1/L, $FD2;TEST 1. RB/O

Assembles source file TEST .ASC and saves relocatable file TEST1. RB and assembly listing

TEST1 .ASC on FD2.

SYS-38

— ASSIGN — Transient

[Format |

ASSIGN devicename1, $nnnn,...... , devicenameN, $nnnn

Function

The ASSIGN commandassigns logical device names to user-supplied I/O control routines.

[Switches

None.

Wildcard characters|

Not allowed.

(1)

(2)

ASSIGN $USR1, $COOO

Assigns device name $US1 to the user I/O control rouitne at address $COOO.

ASSIGN $USR2, $C200, S$USR3, $C400

Assigns $USR2 to the routine at address $C200 and $USR3 to the routine at address $C400.

ASSIGN $PTP, $C600

Assigns $PTP to the new PTP routine at address $C600 in place of the PTP control routine in

FDOS.

Programming notes|

l.

2.

When a device nameis assigned more than once, the last assignment is taken.

To cancel an assignment, set the address operand to $FFFF.

Example: ASSIGN $USR1, $FFFF

When an I/O control routine is destroyed by execution of a new LIMIT or LOAD commanditis

bececueas This command cancels $USR1.

KVRIMMADQOA SUT cn se rVa®w re inecessary to cancel the device assignment for that routine using the above procedure.

SYS-39

— BASIC — Transient

BASIC filename

Function

The BASIC command compiles the source program (written in BASIC language) identified by the

argument and outputs the BASIClisting.

|Default file mode|

-RB whenlocal switch /O is specified; .ASC otherwise.

Global switches

/N: Specifies that no relocatable file is to be generated.

/C: Specifies that the BASIC listing is to be displayed on CRT.

/P: Specifies that the BASIClisting is to be printed on LPT.

(Note that switches /C and /P cannotbe specified simultaneously.)

Local switches

None: Specifies that the specified sourcefile is to be compiled.

/O: Specifies that the relocatable code is to be output to the selectedfile.

|Wildcard characters |

Not allowed.

| Examples|

(1) BASIC TEST

Compiles source file TEST .ASC and generates relocatable file TEST .RB.

(2) BASIC/C TEST, XYZ/O

Compiles source file TEST .ASC, generates relocatable file XYZ.RB and displays the BASIC

listing on CRT.

(3) BASIC/N/P TEST

Compiles source file TEST .ASC and prints the BASIC listing on LPT. No relocatable file is

generated.

Programming notes|

1. The compiler terminates generation of the relocatable file when it detects an error during com-

pilation.

2. The BASIC compiler is available as an option.

SYS-40

— BYE — Built-in

iFormat

BYE

Function

The BYE commandreturns control to the monitor.

— CHATR — Built-in

Format

CHATRsign, filenamel, attribute], , filenameN, attributeN

Function

The CHATR command changesthe attributes of a specifiedfile.

fa
l

[Default file mode|

.ASC

witchesN

Z, © S ©

|Wildcard characters|

Not allowed.

w
e
a
n

File attributes|

O: None

R: Read-protected file

W: Write-protected file

P: PermanentfileiExamples

(1) CHATR KEY, TEST, R

Assigns the password “KEY” to file TEST .ASC and declares the file as a read-protectedfile.

(2) CHATR SECRET, TEST. OBJ, 0
Deletes the file attributes of file TEST .OBJ. The specified password, ““SECRET’’, is matched

with the passwordspecified for the file before the commandis actually executed.

(3) CHATR
Allows the programmerto interactively specify the sign, file name and attribute in that order.

(4) CHATR sign
Allowsthe programmerto interactively specify the file name and attribute in that order.

| Programming note

The interrelationship of the file attributes is shown below. a noN

—) Set sign. , a

— Check sign. NNCr)a

Leeeee Does not checksign.

SYS-41

— CONVBTX — Transient

[Format

CONVBTX filename

Function

The CONVBTX command copies BASIC text files generated with the SP-5000 series BASIC inter-

preter or D-BASIC SP-6015 onto a diskette in the FDOS compatible format.

The BASIC text files are input from the cassette tape unit.

|Default file mode|

ASC

| Switches

None.

| Wildcard characters|

Not allowed.

(1) CONVBTX TEST

+ PLAY

FOUND XYZ.BTX

LOADING XYZ.BTX

Reads a BASIC text file from the cassette tape unit and creates file TEST .ASC in the ASCII

format.

Programming notes

1. To use a file created and stored with D-BASIC under FDOS,save the text file on cassette tape

through D-BASIC, then execute the FDOS CONVBTX command.

Never intermix D-BASIC format diskettes and FDOS format diskettes. Otherwise, disk contents

may be destroyed.

2. Since the syntax of D-BASIC and that of the BASIC compiler differ slightly, there are some cases

in which programs converted with the CONVBTX command cannot be compiled by the BASIC

compiler without some modification. Use the text editor to modify such programs before com-

piling them with the BASIC compiler.

SYS-42

— COPY — Transient

COPY

IFunction |

The COPY command copies the contents of the source diskette to the destination diskette. The

programmercan specify only predetermined types of diskettes as the destination and source diskettes

as summarized in the table below.

 Source__|Destination|Allowed/disallowed|Remarks
(Any diskette) Master Disallowed

Master Submaster Allowed

Master Slave Allowed The destination diskette becomes a submasterdiskette.

Submaster Submaster Disallowed

Submaster Slave Disallowed

Slave Submaster Allowed The destination diskette becomesa slave diskette.

Slave Slave Allowed
It is desirable to create a submaster diskette from the master diskette using the COPY command and

to use this submaster diskette during normal operation. It is also desirable to make copies at appro-

priate times when the original diskette is updated to prevent errors due to physical defects in the disk

or software errors or inadvertent use of the DELETE command.

|Default file mode}

None.

Switches|

None.

| Wildcard characters

None.

| Examples|

(1) FDOSalways copies from $FD1 to $FD2 when the system has two or more floppy disk units.

DESTINATION DISKETTE’S SIGN ? BACKUP <— Proceeds to the next step if the pass-

words match.

INSERT SOURCE INTO $FD1 <—Insert the source diskette in drive FD1.

DESTINATION INTO $FD2, .#SPACE KEY <-Insert the destination diskette in drive

FD2, then press the ISP| key.

2> Copying is completed.

SYS-43

— DATE — Oe Built-in

[Format|

DATE mm/dd/yy

Function

The DATE commandsets or displays the system calender date in the month/date/year format.

This information is assigned to each file when it is saved on a diskette. The date is not automatically

updated, however.

[Default file mode|

None.

Global switch /P: Specifies that the date is to be printed on LPT.

Wildcard characters|

Not allowed.

Examples|

(1) DATE 11/20/81

Sets the system calender date to November 20th, 1981.

(2) DATE

Displays the current date on CRT.

(3) DATE/P

Prints the current date on LPT.

SYS-44

— DEBUG — Transient

DEBUG filenamel, , filenameN

Function

The DEBUG commandlinks and loads relocatablefiles specified by the arguments to form an object

program into mémory for debugging.

Default file mode

OBJ when local switch /O is specified; .RB otherwise.

Global switches

None: Specifies that only the link information is to be displayed on CRT.

/T: Specifies that the symbol table information is to be output (on CRT unless global switch /P

is specified).

/P: Specifies that the link and symboltable information is to be printed on LPT.

Local switch

/O: Specifies that the object file is to be created under the selected file name.

Wildcard characters|

Not allowed.

(1) DEBUG TESTI, TEST2

Links and loads relocatable files TEST1.RB and TEST2.RB and waits for a debugger command.

The link information is displayed on CRT.

(2) DEBUG/T/P TEST, TEST/O

Loads relocatable file TEST.RB, prints the link and symbol table information on LPT and

generates object file TEST.OBJ.

(3) DEBUG TEST1, $1000, TEST2, TBL $20

Links and loads relocatable files TEST1.RB and TEST2.RB and reserves $1000 bytes of free

area in memory between them. The symbol table size is set to $2000 (approximately 8K

bytes). When the table size is not specified, the debugger automatically allocates 6K bytes for

it.

(4) DEBUG

Invokes the symbolic debugger and enters the command mode.

SYS-45

— DELETE — Built-in

DELETE filenamel, , filenameN

Function

The DELETE command deletesthe files specified by the arguments except those with the W or file

attribute.

Default file mode]

. ASC

Global switches

IC:

/N:

When this switch is specified, the system displays each file on CRT for confirmation. Thefile

is deleted when the programmerpresses the:Y key and skipped whenhepresses the N key.

Specifies that no deletedfile is to be displayed. (The programmer must not specify /Nand /C

simultaneously.)

Wildcard characters|

Allowed.

(1)

(2)

(3)

(4)

DELETE TEST.

Deletes all files whose file name is TEST.

DELETE/C ~* .OBJ

Displaysall files with a file mode of .OBJ on CRT for confirmation before deleting them.

DELETE $FD2;> . *

Deletesall files on FD2 except those with the file attribute P or W. To delete file-protected file,

it is necessary to cancel the file protect attributes with the CHATR command.

DELETE $MEM

Deletes pseudo-file $MEM.

SYS-46

— DIR — Built-in

[Format|

DIR devicename(filename)

Function

Displays the contents of the directory specified by devicename or filename. “devicename” must

refer to a floppy disk unit.

 Default file mode

. K

| Switches|

Global switch

/P: Specifies that the directory is to be printed on LPT.

|Wildcard characters

Allowed.

(1) DIR $FD2

Displays the file information of all files on the diskette in FD2 on CRT. FD2 is designated as

the default drive.

(2) DIR/P

Prints the file information ofall files on the diskette in the current default drive on LPT. The

default drive remains unchanged.

(3) DIR TEST

icniave nn CRT tha
Lisplay S Wail AN DL LIL

2 1 o £ 4+

ie inrOormdtrion

)

f all files on the diskette in the current default drive¢

whose file name is TEST.

(4) DIR $FD2;*.ASC

Displays the file information of all source files on the diskette in FD2 on CRT. FD2 is

designated as the default drive.

[Programming notes|

SECT AT FILENAME MM/DD/YY

2>10 -RS_TEST.ASC /10/25/80OBL

i

Date of creation (October 25th, 1980)
File type (sequential file) (22/22/92? appears if unknown)

Drive number File attribute (read protected)

t t 4 t
Number of File name “ File mode
sectors used

SYS-47

— EDIT — Transient

EDIT filename

Function

The EDIT commandinvokes the text editor to create a new sourcefile or edit an existing sourcefile.

Default file mode|

ASC

[Switches

None.

Wildcard characters|
Not allowed.

(1) EDIT

Invokes the text editor and enters the command mode.

(2) EDIT TEST

Invokes the text editor, reads source file TEST.ASC and enters the command mode.

— EXEC — Built-in

Format|

EXEC filename

The EXEC command executes the contents of the file specified by the argument as FDOS com-

mands. A device name may bespecified in place of filename. Files containing FDOS commandsare

called EXECfiles.

4

| Default file mode|

ASC

None.

|Wildcard characters|

Not allowed.

SYS-48

Examples |

(1) EXEC MACRO

Executes the contents of source file MACRO.ASC assuming that the file consists of FDOS

commands. When the file MACRO.ASC contains the command lines shown below,the system

executes the commands in sequence from the top to the bottom.

ASM $FD2; TEST

LINK/T/P SFD2: TEST, FDOS.LIB

CHATR KEY, $FD2;TEST. OBJ. W

RUN $FD2; TEST

3 > FREE Display the numberof used sectors on the diskette in FD3.

DIR/P $FD2 Print the contents of the FD2 directory on LPT and designate FD2 as the

current default drive.

(2) EXEC MYDEVICE

Sequentially executes the commandlines contained in source file MYDEVICE.

LIMIT $CO00 Limit the FDOSarea to $COO0.

LOAD MYPRINTER Set the loading and execution addresses to $COO0.

LOAD MYLIGHTPEN Set the loading and execution addresses to $C800.

ASSIGN $USRI1 - $C000, $USR2, $C800 Assign user I/O names to user programs.

ASM TEST , $USR1/L Assemble relocatable file TEST and output the assembly listing

on the user-defined printer.

XFER $USR2, XYZ Transfer data obtained with a light pento file XYZ.

Programming notes|

1. Since the EXEC command executes the commandsspecified in a file as macro commands,it

cannotbe specified on a multistatement line as shown below.

EXEC MACRO: TYPE MACRO

2. The specified file may have the file attribute R, W or P. However, execution of files with the

attribute RorP is not displayed.

3. When an error occurs during execution of an EXECfile, the system immediately terminates pro-

cessing and waits for entry of anew FDOS command from the keyboard.

— FORMAT — Transient

| Format|

FORMAT $FDn

Function

The FORMAT command formats (initializes) a new diskette.

The user must always format new diskettes before using them.

SYS-49

| Default file mode|

None.

None.

| Wildcard characters|

Not allowed.

Examples|

(1)

(2)

FORMAT $FD2

FDOS DISKETTE FORMATTING

INSERT DISKETTE INTO $FD2, % SPACE KEY

NEW SIGN ? SHARP

VOLUME NO. ? 50

END

INSERT DISKETTE INTO $FD2, % SPACE KEY

BREAK <——~Press the|SHIFT| and BREAK keys simultaneously to return to FDOS.

The above interaction shows an example of formatting a completely new diskette. “SIGN”

prompts for a password to be given to the diskette. When this diskette is resubmitted for

formatting, the system checks for a password match before actually reformatting the diskette.

““VOLUME NO.” prompts for a volume numberto beassigned to the diskette. The programmer

can specify any number from | to 255. The volume number should be unique.

FORMAT

FDOS DISKETTE FORMATTING

INSERT DISKETTE INTO $FD1, % SPACE KEY

OLD SIGN ?SHARP <—The system matches the password entered with that stored on the

diskette and proceeds to the next step if they match.

NEW SIGN ? MZ-80 <—~-Set a new password.

VOLUME NO. ? 128

END

INSERT DISKETTE INTO $FD1, ¥% SPACE KEY

BREAK <«——Press the|SHIFT]and| BREAK|keys simultaneously to return to FDOS.

The above interaction shows an example of reformatting a previously formatted diskette. The

meanings of “SIGN” and “VOLUME NO.”are identical to those in example (1).

SYS-50

— FREE — Built-in

Format|

FREE $FDn

Function |

The FREE commanddisplays the number of used sectors, the number of unused sectors, and/or the

volume numberof the diskette in the specified floppy disk unit.

| Default file mode|

None.

Switches |

Global /P: Specifies that the disk usage information is to be printed on LPT.

| Wildcard characters

Not allowed.

[Exampres
(1) FREE $FD2

$FD2 VOL:128 LEFT: 1056 USED: 64

(2) FREE/P

Prints the same information as given in example (1) on LPT, execpt that the information

pertains to the diskette in the default drive.

|Programming note|

A diskette comprises 1120 sectors (each consisting of 128 bytes). Of 1120 sectors, however, 64

sectors are reserved by the system as FDOS areas. Consequently, USED: 64is indicated for new

diskettes.

— HCOPY — Built-in

| Format |

HCOPY message

Function

HCOPY prints the contents of the CRT screen from the upper left position to the current cursor

position on LPT as is with a message.

SYS-51

| Default file mode|

None.

None.

te

| Wildcard characters|

Not allowed.

(1) HCOPY

Prints a copy of the CRT screen on LPT.

(2) HCOPY Gf SHARP-FDOS <—— The key is pressed with the cursor over the character:

since double quotation marks ('') would be printed asis.

Prints a copy of the CRT screen on LPT after outputting a form feed and the specified message.

Programming note

| (1) Characters which can be used for messages are ASCII codes OOH-7FH, except for ‘'/'’ and

HCOPY ‘abcde’ <——\Notallowed

(2) The following are LPT mode control codes.

Paging: Feeds the paper to the position where power has been turned on.

Suppressed spacing: Used for graphic display,etc.

Double size characters: Used fortitles, etc.

Clear: Clears the Eland g functions.

and J, &Jare ignored.

— LIBRARY — Transient

LIBRARYfilename], , filenameN

Function i

The LIBRARY commandreads the relocatable files specified by the arguments to form a libraryfile.

| Default file mode|

.LIB whenlocal switch /O is specified; .RB otherwise.

SYS-52

Switches

Global switches

i
None: Link information pertaining to the relocatable files is displayed on CRT.

/P: Specifies that the link information is to be printed on LPT.

Local switches

None: Thefirst filename specified is used as the nameofthe libraryfile.

/O: Specifies that the library file is to be created with the selected file name.

Wildcard characters

Not allowed.

(1) LIBRARY TESTI, TEST2

Reads relocatable files TEST1.RB and TEST2.RB to generate library file TEST1.LIB. The link

information is displayed on CRT.

(2) LIBRARY/P TEST1.LIB, TEST2, XYZ/O

Reads relocatable files TEST1.LIB and TEST2.RB and generatesa library file named XYZ.LIB.

The link information is printed on LPT.

— LIMIT — Transient

LIMIT $nnnn

Function

The LIMIT command sets the FDOS area boundary at address $nnnn.

o
h

m
b

None.

None.

(Wildcard characters|

None.

SYS-53

(1) LIMIT $COO00

Limits the FDOS area to $CO00 andfrees the higherarea.

(2) LIMIT MAX

Sets the FDOSarea to the maximum available address.

|Programming note

The LIMIT command cannot be specified in a multistatement as shown below.

Illegal: LIMIT $BO00: DIR $FD2

— LINK — Transient

| Format|

LINK filename], seas , filenameN

Function

The LINK commandlinks the relocatable files specified by the arguments to generate an objectfile.

| Default file mode|

OBJ when local switch /O is specified; .RB otherwise.

Global switches

None: Only the link information is displayed on CRT.

/T: Specifies that the symbol table is to be output (on CRT unless global switch /P is

specified)

/P: Specifies that the link and symboltable information is to be output to LPT.

Local switches

None: Thefirst filename specified is used as the name of the objectfile.

/O: Specifies that the object file is to be created underthe specified file name.

| Wildcard characters

Not allowed.

SYS-54

(1)

(2)

(3)

(4)

LINK TEST1, TEST2

Links relocatable files TEST1.RB and TEST2.RB and generates an object file named TEST.

OBJ. The loading and execution addresses of the object file are automatically set to the beginn-

ing address managed by FDOS. Thelink information is displayed on CRT.

LINK/T/P TEST1, TEST2, XYZ/O

Links relocatable files TEST1.RB and TEST2.RB and generates object file XYZ.OBJ. The

loading and execution addresses of the object file are set to the beginning address managed by

FDOS. The link and symbol table information is output to LPT.

LINK $C0O00, TEST, FDOS.LIB, EXEC $C100

Links TEST.RB and FDOS.LIB and generates object file TEST.OBJ, specifying $CO00 as the

loading address. The execution address of the object file is $C100.

LINK TEST1, $1000, TEST2, TBL $20

Links file TEST1.RB (specifying the beginning of the FDOS area as the loading address), then

links and loads file TEST2.RB, reserving $1000 bytes of free area between the twofiles.

The symboltable size is set to 8K ($2000) bytes).

— LOAD — Transient

LOAD filename1, , filenameN

| Function|

The LOAD commandloads the object files specified by the arguments in areas outside the area

managed by FDOS.

2m| Default file modepo

OBJ

| Switches]

None.

Wildcard characters|

None.

SYS-55

(1) LOAD TEST1, TEST2

Loads object files TEST1.OBJ and TEST2.OBJ into memoryareas outside the area managed by

FDOS. The programmer must create object files so that they are to be loaded in appropriate

addresses.

— PAGE — Built-in

PAGEoutput-device

Function

The PAGE commandcarries out a paging operation on the output device specified by output-device.

Default file mode|

None.

None.

Wildcard characters|

None.

(1) PAGE or PAGE $LPT

Carries out a form feed on LPT.

(2) PAGE $PTP, $SOA, $USR1

Produces a feeder tape on PTP and outputs the code defined with the STATUS command to

SOA and USRI.

— PROM — Transient

[Format]

PROM

Function

The PROM command converts the format of the object file to an appropriate PROM writer format.

SYS-56

|Default file mode}

None.

None.

[Wildcard characters|

None.

(1) PROM

Invokes the PROM formatter program and enters the command mode. Refer to the “PROM

Formatter’’ manual for further information.

— RENAME — Built-in

RENAME oldnamel, newnamel, , oldnameN, newnameN

| Function|

The RENAME command renamesspecified files.

Default file mode|

ASC

| Switches]

None.

|Wildcard characters|

None.

| Examples|

(1) RENAME TEST1, TEST2

Renames TEST1.ASC to TEST2.ASC.

(2) RENAME $FD2; TEST1.OBJ, TEST2, TEST3 .RB, TEST4

Renames TEST1.OBJ on the diskette in FD2 to TEST2.OBJ and TEST3.RB on the diskette in

the default drive to TEST4.RB.

SYS-57

Programming notes

1. Files with the file attribute W or P cannot be renamed.

2. The command RENAME $FD2; TEST1, $FD2;TEST2 cannot be executed since $FDn specified

for the old name applies to the new name, whichisillegal.

3. The command RENAME TEST1.LIB, TEST2.RB cannot be executed since the file modesof the

old and new namesdisagree.

4. The command RENAME TEST.LIB, TEST2 can be executed normally. The new nameisassign-

ed the file mode of the old name.

— RUN — Built-in

tF |
| ormat

Run filename

Function|

The RUN command executes the program in the object file specified by the argument.

'Default file mode!

OBJ

None for normal use. Using switches, see the explanations under “‘Linking Assembly Programs with

FDOS”in Appendix and ““FDOS Subroutines” in Library/Package.

Wildcard characters

None.

[Example]

(1) RUN TEST

Executes the program TEST.OBJ. Whenits loading addressis such that it overwrites the FDOS

area, the system issues the message

DESTROY FDOS?

on the CRT. When the programmerpresses the lY| key, the system loads the program, over-

writing the FDOS area and executing it. When the programmerpresses the|N|key, the system

issues the error message “MEMORY PROTECTION”and waits for a new FDOS command.

SYS-58

— SIGN — Transient

Format

SIGN $FDn

Function]

The SIGN command defines or changes the password and/or volume number of the diskette in the

specified drive.

‘Default file mode|

None.

None.

[Wildcard characters |

None.

(1) SIGN |

OLD SIGN ?SHARP Proceeds to the next step if the password entered matches the old

password.

NEW SIGN ?MZ-80

NEW VOLUME NO ?79

The above interaction changes the password from “SHARP” to ‘“MZ-80” and defines the

volumeserial nunber as 79.

Format |

STATUS devicename, $nnnn

|Function|

The STATUS command displays or sets the control status of the specified device. The control status

information is used to initialize the I/O controllers. Refer to “User Coded 1/O Routines “in

Appendix for details.

Default file mode

None.

SYS-59

| Switches|

None.

Wildcard characters|

None.

(1) STATUS $SOA, $1234

Sets the SOA control status to 1234 (hexadecimal).

(2) STATUS $USR1

Displays the control status of USR1 on CRT.

|Programming note|

This commandis available for the serial I/O devices ($SIA, $SIB, $SOA and $SOB), and user devices

(SUSRI1 to $USR4).

— TIME — Built-in

TIME mm:dd:ss

Function

The TIME commandsets or displays the time of the system clock.

| Default file mode|

None.

Switches

Global switch /P: Specifies that the time is to be printed on LPT.

Wildcard characters|

None.

SYS-60

(1) TIME 20: 30: 40

Set the system clock to 20 hours, 30 minutes and 40 seconds.

(2) TIME

Displays the current time on CRT.

(3) TIME/P

Prints the current time on LPT.

— TYPE — Built-in

TYPE filenamel, , filenameN

| Function|

The TYPE command outputs the contents of the files specified by the arguments on the CRT or LPT

device.

|Default file mode|

.ASC

| Switches

Global switch /P: Specifies that the file contents are to be printed on the LPT device.

|Wildcard characters|

Allowed.

(1) TYPE '

Displays the contents of source file TEST.ASC on CRT.

(2) TYPE/P TEST1, TEST2

Prints the contents of source files TEST1.ASC and TEST2.ASC on LPT.

|
i
w Te qQ ry

Otni a

SYS-61

— VERIFY — Transient

VERIFY sourcefilel, destinationfilel, , sourcefileN, destinationfileN

Function

The VERIFY command compares the contents of the source and destination files specified by the

arguments and displays any mismatching contents on a line basis (if their file mode is .ASC) or on a

byte basis (if the file mode is other than .ASC).

| Default file mode|

ASC

| Switches|

Global switch /P: Specifies that the matching results are to be printed on LPT.

| Wildcard characters|

Allowed for source files (see example (4) below).

Examples)

(1) VERIFY TEST1, TEST2

Matches source files TEST1.ASC and TEST2.ASC and displays mismatching lines on CRT.

(2) VERIFY/P $CMT ; XYZ, $FD2 ; TEST

Matches source file XYZ.ASC on CMT with source file TEST.ASC on the diskette in FD2

and prints the results on LPT.

(3) VERIFY $CMT, $FD2

Matchesthefirst file on CMT with the file on the diskette in FD2 which has the same nameas

the file on CMT. Anerroris generatedif file on CMT has nofile name.

(4) VERIFY $CMT ; TEST, $FD2

Matches the first file on CMT whose name matches TEST>kwith the file with that name on the

diskette in FD2. Note that only thefirst file whose file name matches TEST>k is taken.

— XFER — Built-in

| Format

XFERsourcefilel, destinationfilel, ..., sourcefileN, destinationfileN

Function |

The XFER command transfers the contents of the source files to the destination files.

| Default file mode|

ASC

SYS-62

| Switches|

None.

Wildcard characters|

Allowed for the source files (see example (5) below).

(1)

(2)

(3)

(4)

(S)

(6)

(7)

(8)

XFER TEST1, TEST2

Transfers the contents of source file TEST1.ASC to TEST2.ASC.

XFER $PTR, $LPT

Readsthe file on PTR andprints it on LPT.

XFER $CMT;XYZ.OBJ, $FD2

Reads object file XYZ.OBJ from CMT andcreates object file XYZ.OBJ on $FD2.

XFER $CMT, $FD2

Reads in the first file on CMT and creates a file with that file name on the dikette in FD2. An

error is generated if file on CMT has nofile name.

XFER $CMT;STEST*, $FD2

Reads in the first file on CMT whose file name matches file name TEST>Kand creates a file with

the same name on the diskette in FD2. Note that only the first source file on CMT whosefile

name matches TESTis taken.

XFER $KB, TEST

Reads a file from the system keyboard and creates source fiel TEST.ASC. The file read from

the keyboard is terminated by pressing the 'SHIFT|and|BREAK] keys simultaneously.

XFER $FD2;*.ASC, S$FD3

Transfers all source files on the diskette in FD2 to that in FD3. The source drive must not

contain files with the file attribute R or P.

XFER *&oK, SFD2

Transfers all files on the diskette in the current default drive to that in FD2. The source drive

must not contain files which have the file attribute R or P.

SYS-63

4.4 System Error Messages

There are four system error message formats.

— ERR: error message

Pertains mainly to coding errors. Issued when invalid commandsare detected.

— ERR: filename (device name): error message

Indicates errors pertaining to file or device specifications.

— ERR: logical number: error message

Indicates errors pertaining to logical numberspecifications.

—— ERR: logical numberfile name (device name): error message

Indicates errors pertaining to logical numberspecifications and file (or device) specifications.

The system error messagesare listed below.

ERR- 1 SYNTAX

2 IL COMMAND

3 IL ARGUMENT

4 IL GLOBAL SWITCH

5 IL DATA

6 IL ATTRIBUTE ; Illegal file attribute found.

7 DIFFERENT FILE MODE

8 IL LOCAL SWITCH

9 IL DEVICE SWITCH

10

11 NO USABLE DEVICE ; Device unavailable.

12 DOUBLE DEVICE

13 DIRECTORY IN USE

14

15

16 NOT ENOUGH ARGUMENTS

17 TOO MANY ARGUMENT

18

19

20 NO MEMORY SPACE

21 MEMORY PROTECTION

22 END ?

37 BREAK

38 SYSTEM ID ; Diskette not conforming to FDOSformat.

39 SYSTEM ERROR ; System malfunction, user program error, diskette replaced

improperly,etc.

50 NOT FOUND

51 TOO LONG FILE ; File size exceeds 65535 bytes.

52 ALREADY EXIST

SYS-64

ALREADY OPENED

NOT OPENED

READ PROTECTED

WRITE PROTECTED

PERMANENT

END OF FILE

NO BYTE FILE

NOT READY

TOO MANY FILES

DISK VOLUME
NO FILE SPACE
UNFORMAT
FD HARD ERROR
IL DATA
NO USABLE DISKETTE
(SUB) MASTER DISKETTE
MISMATCH SIGN

IL FILE NAME

IL FILE ATTRIBUTE

IL FILE TYPE

IL FILE MODE

IL LU#

NOT READY

ALARM

PAPER EMPTY

TIME OUT

PARITY

CHECK SUM

FLAMING

OVER RUN

INTERCONNECT

FULL BUFFER

UNCONTROLLABLE

INTERFACE

LESS DATA

MUCH DATA

LU TABLE OVERFLOW

SOURCE?

DESTINATION ?

CAN’T XOPEN

TOO LONG LINE

- Numberoffiles on a diskette exceeds 96, or opened too

many files simultaneously.

; Diskette replaced improperly.

; Diskette has no free space.

; Diskette unformatted.

- Hardware related disk error

- Master, submaster and/or slave diskette is misused.

; Invalid file name

: Invalid file attribute

; Invalid file type

; Invalid file mode

; Invalid logical number

Printer error

Paper tape reader or punch error

| Serial I/O errors (to be implementedlater)

)

; Attempt made to open too manyfiles.

; Line exceeding 128 bytes.

SYS-65

Text Editor i

NOTICE

The MZ-80 series of sophisticated personal computers is manufactured by the

SHARP CORPORATION. Hardware and software specifications are subject to

change without prior notice; therefore, you are requested to pay special attention to

version numbers of the monitor (supplied in the form of ROM) and the system

software (supplied in the form of cassette tape or mini-floppydiskfiles).

This manual is for reference only and the SHARP CORPORATION will not be

responsible for difficulties arising out of inconsistencies caused by version changes,

typographical errors or omissions in the descriptions.

This manual is based on the monitor SP-1002 and the SP-7000series FDOS.

—— CONTENTS ——

OUTLINE 2.0.cceeeee nee ene e ene]

ACTIVATING THE EDITOR 0.0.0... cece ee ee ees]

EDITOR COMMAND TABLE. 2.020000: ce eee cece eee 2

CHARACTER POINTER AND DELIMITER 3

TEXT EDITOR COMMANDS.........0. 0.0.0.0... cc cc ee nee 4

INPUT COMMANDS....... 2.0.0... cccee eens4

R (Read file) Command 0... 0... c ee ee ee 4

A (Append file) Command 0... 0... 0. ccc ens 5

OUTPUT COMMAND 0...eeenn ns 6

W (Write) Command.eeee ee ee eee 6

PAGE PROCESSING COMMANDS........0. 0.0.0... 000 ee eee 7

TYPE COMMANDcceeenen 9

T (Type) Commandeeee eee 9

CP POSITIONING COMMANDS............ 0.0.0... cee eee 10

B (Begin) Commandeeee ene 10

ZCommand 0...eeene ene nee 10

J (Jump) Command 0. cccee eee 10

L (Line) Command... 2...te ee es 1]

M (Move) Command 0.0.0... cee ee ee 11

CORRECTION COMMANDS0. 00.0. 00 2c cc ce ee eee 12

C (Change) Command 0.0. ceee eee 12

Q (Queue) Command 0... ee ce ee ee ee eee 12

I Unsert) Command 0.0... 0. ccc ee eee 13

K (Kill) Command 0.0.0... ce eee eee ee 14

D (Delete) Command 0... ceee eee 15

SEARCH COMMAND 0... 0.0.00 ccc ee tenes 16

S (Search) Command 0... . cece eee ee ae 16

SPECIAL COMMANDS 0.0.0.0 02cete 17

=Command 2... . cccce ee eee eee en neee 17

~Command .. 1...eeee ee ee ees 17

& Commandeeeee tee eens 17

Command eeeeee eee teen eee 18

Command . oo...ee ee ee ee eee 18

ERROR MESSAGE 2...eeee eee eens 19

EDIT

The character pointer (CP) is positioned at the boundary between two adjacent characters or the

beginning or end of the text. It does not point directly at any character.

Movement of the CP is explained below based on the assumption that the following text is stored

in the edit buffer.

The beginning of the edit buffer

(the beginning of text)

1 LD A, 14H re L)

2 LD B,7 D

3 ADD A,B [S P]

4 DAA A

Command 1L

(Line numbers are not

stored in the edit hu'ter.) Command B

| Edit buffer

Command 5M

 CP — Command3J “=

The beginning of line 3 CP +|+__=

rt "7 4 a7 LXTr 4... 41. 1. .*...-'2.. — — aL ~ om ASL L..ff.. 41a T oR ARR AAA 1M | tn tha rt. ms mn

The B command moves the CF to the beginning oF tne edit puller, tne s COmMaANna to tie top ¢ f the

specified line and the L command to the beginning of the n lines from the line at which it is currently

located; the top of the specified line is the boundary following the code of a precedingline.

Delimiters are used as separators between editor commands. Entering several editor commands and

separating them with delimiters allows them to be executed consecutively by pressing the [CR] key.

The I (Insert) command must be followed by a delimiter because it uses codes as character codes

for the source text. The following example replaces ADD on line 3 in the above program with ADC.

3J->2M—-1D-IC—>/[CR] or B-CADD-ADC

EDIT-3

——INPUT COMMANDS——

R (Read file) Command

This command clears the edit buffer area, then loads it with the source file (ASCII file) specified by the

filename; loading starts at the beginning of the edit buffer. The CP is positioned at the beginning of the

edit buffer after execution of this command.

* RFORMULA # 1 Reads file FORMULA#1 into the edit buffer.

— Enter R followed by the file name while in the command wait state.

— The editor searches for the file and readsit.

— Thefile is stored starting at the beginning of the edit buffer as shown below.

— The CP is positioned to the beginning of the edit buffer after reading.

| CP <The beginning of

FORMULA #1 | R command | | | the edit buffer

Source file FORMULA #1 Edit buffer

 —
— The message FULL BUFFER’is displayed when the edit buftcr becomes full. In this case, only

part of the inputfile is stored in the edit buffer. |

— ">" is displayed to indicate that the system is the commandwaitstate.

EDIT-4

A (Appendfile) Command

This command appendsthe file specified by the filename to the contents of the edit buffer. The CP

position is not changed.

— Enter A followed bythe file name while in the command waitstate.

— The editor searches for the specified file and readsit.

— The file is stored in the area following the end of the last text in the edit buffer. The figure below

showsa case in which the file FORMULA#2is appended to the file FORMULA# 1.

) <The beginning of

the edit buffer

FORMULA#1 > Edit buffer

 Sourcefile A commane

— The message _FULL BUFFER’is displayed when the edit buffer becomesfull. In this case, only part

of the specified file is stored in the edit buffer and the contents of the edit buffer must be reedited

to store the entire file.

EDIT-5

——OQUTPUT COMMAND——

W (Write) Command

This command outputs the entire contents of the edit buffer to the file specified by the filename

regardless of the CP position.

|Glnin‘thecontents:obtheeditbufferto:ic

rr 8 -FORMULA#3iin the: active drive. .

: / : >WSFD2:FORMULA#3 [CR] ee . Outputs the contents of the. editbufferto

oe Q a -FORMULA#3 in floppy disk drive2 (SFD2)

— Enter W followed by the file name while in the command waitstate.

— The editor waits for entry of another command after the edit buffer contents have been output. The

file generated is a sourcefile.

The beginning of Editor

the edit buffer —(— W command

ee FORMULABco

Edit buffer <
filename "FORMULA #3" [| aVice file a

— The CP position is not changed by execution of the W command.

EDIT-6

—PAGE PROCESSING COMMANDS——

These commands are used in cases where the total size of files to be edited exceeds the size of the edit

buffer, as shown in the following examples.

If the diskette is replaced with a new one during page processing, the contents of the diskette may be

destroyed. Be sure to terminate page processing before replacing the diskette.

1. Whenthefile to be edited is larger than the edit buffer:

0*PRABC

Note:

@*PWDEF

Readsfile ‘ABC ‘into the edit buffer until the buffer is full.

Omission of the file name in the first page processing command will result in an

Crror.

Outputs the contents of the edit buffer to file’DEFafter editing is completed.

Note: *PW Results in an error. An error results when editing increases the size of

©*PR [CR]

Note:

O*PW

©* PC [CR]

File DEF”
(Floppydisk)

file in the edit buffer so that it exceeds the size of the edit buffer.

Reads the remainderof a file specified by a preceding PR commandintotheedit

buffer. In this example, the command reads the remainderoffileABCinto the

edit buffer.

A file name remains valid after it is specified in a PR command until a newfile

is specified.

Outputs the contents of the edit buffer and appendsit to the file specified by the

preceding PW commandafter editing is completed. In this example, the command

appendsthe contents of the edit buffer to file DEF”.

Terminates page processing. (This commandis mandatory).

Edit buffer

| Q :
eh

o Edit buffer ©
(Floppy disk)

(R AM)

EDIT-7

2. When the file to be edited first is larger than the edit buffer and anotherfile is to be edited and

appendedto thefirst edited file:

@ *PRABC

@ *PWDEF

©PR

@>*PW

© *PRGHI

@*PW

@>*PC

Note:

Readsfile ABC into the edit buffer until the bufferis full.

Outputs the contents of the edit buffer to file DEFafter editing is completed.

Reads the remainderof file ABC into the edit buffer.

Appends the contents of the edit buffer to file DEF after editing is completed.

Reads file’ GHI into the edit buffer.

If this case, specifying *PR [CR | will not be valid if the end offile “ABC ‘has been

reached.

Appends the contents of the edit buffer to file DEF after editing is completed.

Terminates page processing. (This commandis mandatory).

3. Whenseveral files are to be edited and the resulting file is larger than edit buffer:

@>*KPRABC

@ *PADEF

Note:

©*PWGHI

O>*PR

0 *«PW

@ KPC

Note:

Readsfile “ABC into the edit buffer.

Reads file DEFand appends it to the contents of the edit buffer until the

buffer is full.

If* PRDEF is entered, the contents of file ABC’ stored in the edit buffer

are cleared and file DEF” is loaded in the edit buffer from its beginning.

Outputs the contents of the edit buffer to fileHIafter editing is completed.

Reads the remainderoffile ‘DEF’ into the edit buffer.

The input file was changed at step 2(ABC’ —+> DEF).

Appends the contents of the edit buffer to file GHI' after editing is completed.

Terminates page processing.

File’ GHI"' Edit buffer File “ABC

(Floppy disk)

 oe File’ DEF °
Edit buffer

(Floppy disk)

(R AM)

EDIT-8

——TYPE COMMAND—

T (Type) Command

This command displays all or part of the contents of the edit buffer. The CP position is not changed.

— Key in the numberoflines, n followed by T (Type) while in the command wait state.

— Press to display the contentsof the edit buffer.

— The following are special cases of nT.

n=0: the same as T

n <0: results in the error message "???”,

n 2 m, where m is the numberof lines from the one at which the CP is located to the end of the

buffer contents: only m lines are displayed.

— The current CP position can be determined with the nT command,since display starts with the cha-

racter following the boundary at which the CP is located.

— Press the[SHIFT]and[BREAK] keys simultaneously to terminate T command execution. Press the

kay to suspend T command execution, and press it again to resumeit.

— The photograph at right shows the relationship ae
i

between the type command and the CP for the ; j eer

followingtext. She
4 CALL LET
wae ae
el

1 START : ENT ne
rnae2 LD SP,START Brett

5 CALL MSTP; MUSIC STOP =eoe eee ee

4 CALL LETNL;NEW LINE eee

5 END |
— The error message "LARGE"is displayed when

n exceeds 65535.

EDIT-9

—CP POSITIONING COMMADS——

B (Begin) Command

— Key in B while in the commandwaitstate.

— Press

— The B commandis executed to position the CP to the beginning of the edit buffer.

— nB performsthe same function.

Z Command

e Positions theCPto the endof the contentsof the edit buffer. ce

— Key in Z while in the command wait state.

— Press

— The Z commandis executed to position the CP to the end of the contents of the edit buffer.

—— nZ performs the same function.

J (Jump) Command

PositionstheCPtothebeginningoflinen._

— Key in line number n and J while in the command wait state.

— Press

—— The nJ commandis executed to position the CP to the biginning ofline n.

—— The following are special cases.

n=Oor 1 orn is omitted: the command performs the same function as the B command.

n <0: results in the error message ''???"’.

n > m (where m is the numberof lines of the edit buffer contents): the command performs the

same function as the Z command.

EDIT-10

L (Line) Command

This command moves the CP forward or backward the specified numberof lines. The CP is positioned

at the beginning of the specified line after execution.

— Key in numberoflines, n and L while in the commandwaitstate.

— Press ,

— The CPis positioned at the beginning of the specified line when the nL commandis executed.

— The following are special cases:

n= 0: the command functions in the same manneras the L command.

n > (where m is the numberof lines from the line on which the CP is located to the end of the

edit buffer contents) : the command functions in the same manner as the Z command.

n<0: the CP is moved!n| lines toward the beginning of the edit buffer.

in| > — 1 (where & is the numberof the line at which the CPis currently located) : the

commandfunctions in the same manner as the B command.

M (Move) Command

This command moves the CP forward or backward by the specified number of characters. Spaces and

carriage returns are counted as characters, but line numbersare not.

—— Key in numberof characters, n and M while in the commandwait state.

— Press [CR] .

— Executing the nM command movesthe CP to the specified boundary between characters.

—— When n< 0,the CP is moved backward by | n! characters.

— The CP position is not changed when n = 0 orif it is omitted.

EDIT-11

—CORRECTION COMMANDS——

C (Change) Command

This command replaces a string in the edit buffer with another string. The search for the specified

string starts at the current CP position and proceeds toward the end of the edit buffer; the string is re-

placed whenit is found and the CP is positioned at the end of the string replaced.

— Key in C while in the commandwait state.

—— Key in thestring to be located followed by a delimiter.

— Keyin the string which is to replace the one located.

— Press and a search is madeforthe first string. Only the first occurrence of the string is replaced.

The line including the string replaced is displayed and the CP is positioned at the end of that string.

— The message NOT FOUND"is displayed if the specified string is not found andthe CPis positioned

to the beginning of the edit buffer.

Q (Queue) Command

This command repeates the function of the C command each time the specified character string is

found until the end of the edit buffer is reached. The CP is repositioned to the end of thestring last re-

placed.

— Keyin Q while in the commandwait state.

*
#

—
4

— The remainder of the operation is the same as for

the C command.

L
.
ij
i

m
r
i
e

E
— The photograph at right shows the result of

execution of the Q command on the following

text.

1 LD BC, (TEMPO)
2 LD (TEMPO), DE

3 JP 1200H
4 TEMPO: DEFS 2

t
t

E
ri

i

1
ri
+

sl

-
Pr

EDIT-12

I (Insert) Command

This commandinserts the specified string at the CP position. A carriage return is performed on the CRT

screen if one is included in the string.

Line numbers are updated automatically when a newlineis inserted. The CP is repositioned to the end

of the string inserted.

— Key in I while in the command wait state.

— Keyin thestring to be inserted.

— Strings keyed in are inserted at the CP position and the contents of the edit buffer following the CP

are automatically shifted toward the end of the edit buffer.

— When a is keyedin, it is inserted as a carriage return code.

— Keyis a delimiter (~) after all the strings have been keyedin.

— Press key to execute the I command.

— The photograph at right shows an example of

using the I command.

*

Text:

1 START: ENT
2 LD SP, START
3 CALL MSTP;MUSIC STOP
4 CALL XTEMP:SET TEMPO
5 END

p

+

E

#LD A, 5 ;TEMPO is inserted between lines 3

and 4 of the abovetext.
EDIT-13

K (Kill) Command

This commanddeletes the n lines preceding or following the CP from the edit buffer.

-oooeoa-oQ-2-a. aoe: --|_:— : :iaea—
Alineisnot.deleted‘thece isocatedwithinit,‘since‘characte

aprecedingor followingtheCP.arenotdeleted.

SR(CR. 3 eaecharacters preceding. the ce positionuntilaroois detecte

 lisnot deleted.

— Keyin the numberoflines, n and K while in the command waitstate.

— Press to execute the K command.

— Operation differs according to the value of n as follows.

n> QO: Deletes all characters following the CP until n codes are detected.

|CR]| codes detected are also deleted. Command execution ends after the last code

has been deleted.

n<Q: Deletes all characters preceding the CP until | n| + 1| CR|codes are detected. The (| n| +

1)th code is not deleted.

n=0 Deletes all characters preceding the CP until a code is detected.

specified That is, it deletes the part of the line in front of the CP. The code detected is

not deleted.

—— Line numbers are automatically updated after

, Pai
deletion. AFt 5 as

—— The CP position is not changed. 5 ate
cA

— The photograph at right shows an example of ree Ce

the result of execution of the K command with i AGEBS
; , , 3 SGHH.

the following text. (This text is presented only eee

for the purpose of illustration; it has no mean- i AE

ings in assembly language. re

5
¥

1 AABBCC

2 DDEEFF

3 GGHHII

4 JJKKLL

EDIT-14

D (Delete) Command

This command deletes the specified number of characters from the edit buffer, starting at the CP posi-

tion.

— Key in the numberof character (n) and D.

— Press [CR]to execute the command.

— Operation differs according to the value of n as follows.

n>0O Deletes the n characters following the CP from the edit buffer. A code is counted as a

character.

n<0O Deletes the | n/ characters preceding the CP from the edit buffer. A |CR]code is counted

as a character.

n=Q0O Nooperation results.
or not

specified

—— Line numbersare automatically updated if necessary.

— The CP position is not changed.

— The photograph at right shows an example of

+ a

the result of execution of the D command with

the following text. (This text is presented only : a

for the purpose of this illustration; it has no ; eeteesre

meaning in assembly language). if ae a

1 ABCD ;

2 EFGH ;

3 IJKL

4 MNOP

EDIT-15

——SEARCH COMMAND—

S (Search) Command

* This commandsearchesfor the specified character string in the contents of the edit buffer.

“Seerches for.‘thespecified characterstring, tr ingatt

oo "position; the CP is repositioned to.the:endofthecharacterr string

ittiS found.

— Key in S.

— Key in the string to be located.

— Press to execute the S command.

— Thesearch starts at the current CP position and proceeds toward the end of the buffer.

— Whenthespecified string is found, the line which includesit is displayed and the CPis positioned to

the end of the character string.

— If the specified string cannot be found, the message NOT FOUND"is displayed and the CP is re-

positioned to the beginning of the edit buffer.

— The photograph at right shows the result of a search for the character string ‘LETNL in the follow-

ing text. The line including _LETNL is displayed following the S command. The 2T command

indicates that the CP is positioned to the end of the string.

1 START : ENT
2 LD SP, START
3 CALL MSTP;MUSIC STOP te
4 CALL LETNL;NEW LINE STiia
5 LD A, 04H Sen aeee
6 CALL XTEMP;TEMPO<-— —4 3
7 END aa eae

EDIT-16

——SPECIAL COMMANDS——

= Command

— Key in "=" (equal) while in the command waitstate.

— Press - the total number of characters stored in the edit buffer is displayed.

. Command

— Keyin. (period) while in the command wait state.

— Press|CR | ; the line number on which the CPis located is displayed.

& Command

— Key in & (ampersand) while in the command waitstate.

— Press - the contents of the edit buffer are then cleared.

EDIT-17

+t Command

— Key in # (sharp symbol) while in the command wait state.

— Press : the printer list mode is then changed.

— The printer list mode is disabled when the text editor is started. It is enabled when the # com-

mand is executed once; executing it again disables it, and so on.

— The following showsa listing obtained by executing the T command whentheprinterlist mode

is enabled.

4
a

w
e

sate ==EDITOR LIST SAMPLE =#4

“
o
e

START: ENT
MAIN1: ENT
LD SP.START s INITIAL STACK POINTER
CALL MSTP ;MUSIC STOP
LD ALS

a CALL XTEMP :SET TEMPO TO 5
1@ CALL CLTBL sCLEAR TABLE
11 OR A
12 LD ¢C?TABP),A sINITIAL 170 #1
13 MSTP:EQU @@47H ;MUSIC STOP CMONITOR)
14 ?TABP:DEFS 1
15 END

D
M
~
1
O

ON
&
O
b

' Command

— Key in ! (exclamation mark) while in the command waitstate.

— Press - control is then returned to FDOS.

EDIT-18

——ERROR MESSAGE——

The editor bufferis full. R, A, PR, PA

n <Oin the nT or nJ command. T, J

: T, J, L, M, K,n greater than 65535 wasspecified. D.B,Z

The string specified in the commandwasnot found. S,C,Q

Other than an editor command was entered or an incorrect format

was used.

Ex) >*KH : There is no H command. Any case
KS : A string should be specified.

The file to be subjected to page processing is not defined PR, PA, PW, PC

(or is not opened).

Note: Refer to the System Error Messages in the System Command manual for other system errors.

Display of the message —ALREADY OPENED" during execution of W command indicates

that there are some page processing command(s) which have not been closed.

EDIT-19

Z-80 Assembler

SHARP _

NOTICE

The MZ-80 series of sophisticated personal computers is manufactured by the

SHARP CORPORATION. Hardware and software specifications are subject to

change without prior notice; therefore, you are requested to pay special attention to

version numbers of the monitor (supplied in the form of ROM) and the system

software (supplied in the form of cassette tape or mini-floppydiskfiles).

This manual is for reference only and the SHARP CORPORATION will not be

responsible for difficulties arising out of inconsistencies caused by version changes,

typographical errors or omissions in the descriptions.

This manual is based on the monitor SP-1002 and the SP-7000series FDOS.

—— CONTENTS—

OUTLINE OF ASSEMBLER.............. 0... 0.0.00 eee 1

ASSEMBLY LANGUAGE RULES 3

CHARACTERS 0.0... eeeeeene 4

LINE 2.0...ceee eee ene eens 5

LABEL SYMBOLS 0... cccees 5

CONSTANTS 2.0.0...ceenets 6

ASSEMBLY LISTING AND ASSEMBLER MESSAGES 7

DEFINITION CONDITION MESSAGES 8

ERROR MESSAGES 0.0.2.2ee 8

ASSEMBLER PSEUDO STATEMENT.....................4.. 10

ENT (entry) 2.0...ceeeee eee eee 10

EQU (equate) 0...eeeens 11

DEFB n (define byte) 0... 0. ceeeee12

DEFB's', DEFB 's (define byte) 12

DEFW nn’ (define word) 0... 0. cee eee eee eee 13

DEFM's', DEFM "'s"' (define message) 13

DEFS nn' (define storage) 0.0... cee ee eens 14

SKP n (skip nlines) 0.0.0... ccc eee ee eee 15

SKP H (skip home) 0... 0. cece eee eee eee eee nena 15

END (end) 20.0... 2 cc ee eee eee eee eens 15

MESSAGE TABLE 0.0... 0c ccc cece eee 16

ASM

The assembler translates a source file written in assembly language to generate a relocatable binary

file; the source file is one which has been generated and edited by the text editor, and the relocatable

binary file is an intermediate file between the source file and object file. It is possible to link several

relocatable files by the relocating loader.

The assembly source file is coded in assembly language. It consists of labels, mnemonic operations

codes, pseudo-instructions, comments and an end statement; these are arranged according to the rules

of the assembler. The source file edited by the editor is written in ASCII code, The assembler trans-

lates the source file to generate a relocatable file and outputs messages which indicate definition

conditions and syntax errors. These messages are included in the assembly listing which is displayed

on the CRT or printed on the printer.

The following FDOS commandsactivate the assembler.

e ASM SAMPLE

Activates the assembler. The assembler translates source file SAMPLE.ASC and generatesre-

locatable file SAMPLE.RB.

e ASM SAMPLE, $LPT/L, $CRT/E

Activates the assembler. The assembler translates source file SAMPLE.ASC, generates relocatable

file SAMPLE.RB, prints the assembly listing on the printer and displays only erroneous lines on

the CRT screen.

e ASM/N SAMPLE, $SOA/L

Activates the assembler. The assembler translates source file SAMPLE.ASC and outputs the

assembly listing to serial output port A (SSOA), but does not generate a relocatable file since global

switch/N is specified.

e ASM SAMPLE, $FD3;SAMLIST/L

Activates the assembler. The assembler translates source file SAMPLE.ASC,generates relocatable

file SAMPLE.RB and outputs the assembly listing in the same form as that printed on the printer

to SAMLIST.ASC on FD3 in ASCII code.

ASM-1

The assembler basically uses a 2-pass system. A pass is the process in which the assembler reads

a source file from its beginning to end. The following shows operation of the assembler with the

2-pass system.

During pass 1, the assembler stores label

symbols according to the assembler rules in the

symbolic label table. Label symbols help the

Operator to read and understand the program

easily. 7

Assembler
sourcefile
— (ASCID-

 Symboltable

Assembler During pass 2, the assembler generates a re-

source file Assemble locatable file with reference to the symboltable
(ASCII) aaay generated during pass 1, then outputs the as-

evaporite semblylisting (on the CRTorprinter).
Relocatable Therelocatable file and the assembly listing do
file not occupy space in RAM, which is only used by

(RB) the symbol table. Therefore, the size of the

source file to be assembled is not limited by the

amount of RAM.| CRTscreen
or printer

The following program list will help you understand the function of the assembler. This program

is only for reference and has no meaning.

K>K e780 ASSEMBLER SP-7101 PAGE O01 >kx
01 0000
02 0000 > SAMPLE LIST
03 0000 .
04 0000 3E33 LD A, 3.
05 0002 FE43 CP 43H
06 0004 FE43 CP ‘Co
07 0006 FE15 CP “Tl : Cursor control keys are encl i j08 0008 93 DEFER ysa closed in double quotation marks.

09 0009 27 DEFB °
10 OOOA 43 DEFB .C |
11 OOOB 12 DEFB .
12 000C 16151211 DEFM @GRMEE
13 0010 1314
14 0012 7E LD A, (HL)
15 0013 7E LD A,M ; M maybe usedin place of (HL).
16 0014
17 0014 ;
18 0014 P XYZ: EQU 10
19 0014 C32100 JP ABC + XYZ ; Relocatable address + EQU defined symbolvalue.
20 0017 C30A00 ABC: JP XYZ
21 OOI1A C31400 JP ABC—3
22 0O01D C30A00 JP 10 ; Absolute address 10
23 0020 C32A00 JP +10 ; Relative address 2AH (20H + 10)
24 0023 2100D0 LD HL, DOOO ; Handled as a hexadecimal number.
25 0026 213930 LD HL, 12345
26 0029 212100 LD HL, ABC + XYZ
27 002C 3EOD LD A, XYZ + 3 ; EQU defined label value + numeric data
28 OO2E 3EFF LD A, —1 ; Negative value is converted into one’s complement.
29 0030 21FFFF LD HL, —1
30 0033 21FOFF LD HL, —10H
31 0036 C33500 JP —|
32 0039 END

*>K ZS80 ASSEMBLER SP-7101 PAGE 02 >>

ABC 0017 XYZ OOOA ; Indicates the contents of the symboltable.

ASM-2

The source program must be coded according to assembly language rules. This paragraph describes

the structure of the source program and the assembly languagerules.

The assembly source program consists of the following.

Z80 instruction mnemonic codes

Label symbols

Comments

Definition statements

Assembler directives Entry statements
Skip statements

End statement

Comments may be used as needed by the programmer; they have no effect on execution of the

program and are not included in the relocatablefile.

All assembly source programs must be end with the pseudoinstruction END.

Z80 instruction mnemonic codes form the body ot the assembly source program. These are ex-

plained in a separate volume.

A mnemonic code consists of an op-code of up to 4 characters, separators (space, comma,etc.)

and operands.

A label symbol represents an address or data symbolically. A label symbol is either placed in the

label column and separated from the following instruction with a colon (:), or is placed in an operand.

The first 6 characters of a label symbol are significant and the 7th and following characters (if used)

are ignored. Therefore, ABCDEFG and ABCDEFHare treated as the same label symbol.

Alphanumerics are generally used for label symbols, but any characters other than those used for

separators and special symbols may be used.

Comments are written between the separator "';"' and a[CR]code; these have no influence on

program execution.

Pseudo instructions will be explained later in this manual. These are written in the same column

as the Z8O instruction mnemonic codes.

An ENDstatement is one of the pseudo instructions; all assembly source programs must end with

this statement.

ASM-3

—CHARACTERS——

Characters which are used in an assembly source program are alphanumerics, special symbols and

other characters. The special symbols have functional meanings. (Separators, |CR], [SPACE], etc.)

1) Alphabetic characters: ABCDEFGHIJKLMNOPORSTUVWXYZ

These characters are used to represent symbols and instruction mnemonic codes. A ~ are also

used for representing hexadecimal values. Further, D is used to indicate decimal and H is used to

indicate hexadecimal.

2) Numerics:0123456789

These are used to represent constants and symbols. Whether a constant is a hexadecimal number

or a decimal numberis determined according to the rule of constant.

3) Space

Spaces are treated as separators except when they are used in comments. They perform the

tabulation function on the assembly listing when they are placed between op-code and operand or

between operand and comment as shown below.

Example: OR[SP] FOH [SP];A < —X0O

XYZ: PUSH[SP] AF Editorlist
ADD [SP]HL, BC [SP];BC=COUNT

¥

OR FOH ~ :A<—X0
XYZ: PUSH AF Assembly listing

ADD HL, BC ;BC=COUNT
t t
Tab set Tab set

4) Colon

A colon behaves as a separator whenit is placed between a label symbol and an instruction.It

performs the tabulation function on the assemblylisting.

Example: START: LD SP, START

MAIN: ENT

t t
Tab set Tab set

An address is assigned to the label symbol even if no instruction follows. (See the paragraph on

symbols).

Example: ENTRY: < "ENTRY"is assigned the same address as "TOPO".

TOPO: PUSH HL

5) Semicolon ~ ;"

A semicolon represents the beginning of a comment. None of the characters between a semicolon

and a CR code have any influence on execution of the program. The semicolon is placed at the

top of a line or the beginning of a comment column.

Example: ;

; SAMPLE PROGRAM All lines are comments.

CMMNT: ENT ; COMMENT
Nees ommmumuetnmnemme”

~~

Comment column

ASM-4

6) Carriage return [CRI

A carriage return code represents the end of a line.

7) Other specialsymbols:+— ' (),

All these are special symbols used in instruction statements.

8) Other symbols

Other characters are not generally used, although they may be used as symbol labels or in the

comment column.

——LINE——

Each line of a source program is formed of alphanumerics and symbols, and is ended with a carriage

return. Except for comments, each line includes only one of the Z80 instructions, a pseudo instruction,

an end statement or an empty statementfor a skip.

Components on each line are arranged according to the tab settings when it is listed. (See the

assembly listing on page 7).

—LABEL SYMBOLS——

All characters other than special symbols may be used for label symbols, but generally alpha-

numerics are used. Each label symbol can consist of up to 6 characters; the 7th and following

characters, if used, are ignored by the assembler.

Example: Correct ABC START BUFFER SOSTEP

Incorrect (ABC) HL IY +3 XYZ + 3 «Special characters are used.

The following labels are treated as the same label symbol (’'COMPAR’’).

COMPAREO

COMPARE 1

Pseudo statement EQU defines data (1 byte or 2 bytes) for a label symbol andassignsit to the label.

Example: ABC: EQU 3

CR: EQU ODH

VRAMO: EQU DOOOH

Pseudo statement ENT defines a label symbol as a global symbol. A colon (:) placed betweena label

symbol and a following instruction defines the label symbolas a relocatable instruction address.

Example: RLDR: ENT

RLDRO: PUSH HL

When a label symbol is referenced (that is, when it is used as an operand), the assemblerfirst

searches the symbol table for the specified label symbol; if it is not found, the assembler treats it as

hexadecimal data. For example, when CALL ABCis encountered, the assembler searches the symbol

table for -ABC"’; if it is not found, the assembler treats it as OABCH andcalls address OABC.

A label symbol used as an operand must be defined in the assembly source program unit in which

it is used or must be defined as a global symbol in another assembly source program unit. Otherwise,

it is coverted into binary and left undefined.

A label symbol which has been defined once cannot be defined again.

ASM-5

Multiple label symbols may be defined as relocatable instruction addresses as follows.

Example: ABCD: ENT Label symbols ABCD, EFGH and IJK are all de-

EFGH: ENT fined as relocatable addresses of LD A,B. ABCD

IJK: LD A, B and EFGHare also defined as global symbols.

ABCD:

EFGH:

IJK: LD A,B

Same as the above, except that ABCD and EFGH

are not global symbols.

——CONSTANTS—

There are two types of constants: decimal and hexadecimal + and — signs can be attached to these.

A character string which is defined as a label symbolis treated as a label symboleven ifit satisfies the

requirements for a constant.

The assembler treats a constant as a decimal constant when it consists of numerics only or it consists

of numerics followed by D.

Example: 23 999 +3 -62 16D 0003D

16 3

The assembler treats a constant as a hexadecimal constant when it consists of 0 ~ 9, A, B, C, D, E

and/or F followed by H.

Example: 2AH CDH +0I1IH —BH OOIOH OOADH OOH

A constant used in the operand of a JP, JR, DJNZ or CALL instruction represents an absolute

address when it has no sign and a location relative to the current address whenit has a sign. In other

cases, constants without signs and those with a + sign represent numerics, while those with a — sign

are converted into two’s complement.

ASM-6

The assembly listing is output to the CRT screen or printer when an FDOS system command ASM

is executed with $CRT/L or $LPT/L specified as an argument. Examining the assembly listing is one
of the most important procedures in assembly programming since this is when a check is made for

errors in the source program.

The assembler translates the specified source program and outputs the assembly listing, which in-

cludes line numbers, relative addresses, relocatable binary codes, assembler messages and the source

programlist (including label symbols, Z80 instruction mnemonic codes and comments). The assembly

listing is pages every 50 lines.

The assembly listing format is shown below. Tabs are set at the beginnings of labels, op-codes,

operands and comment columns.

Relative Assembler message
address |

Line | Relocatable
number binary code Label Op-code Operand Comment

pT eeee __

 [STZ80ASSEMBLERsP-7 |Thisme.sag:: is outputatth: top0feach‘pagoe

ASM-7

Errors detected during assembly and definition conditions are indicated with assembler messages.

——DEFINITION CONDITION MESSAGES——

E (External)

This message indicates that an external symbol reference is being made; i.e., the label symbol by

the operandis not defined in the assembly source program unit assembled.

The label symbol indicated must be defined as a global symbol in another assembly program unit

for linkage with the current unit by the relocating loader. (See ‘Pseudo Instruction ENT’on page 10).

An undefined byte of data is treated as “00°, 2 undefined bytes of data (or an address) are

uncertain.

Example: E LD B, CONSTO

The byte of data "CONSTO™is not defined in the program unit.

E CALL SORT

t_ Address SORT is not defined in the program unit.

EE BIT TOP, CY + FLAG)

t_ The byte of data “FLAG” is not defined in the program unit.

The byte of data TOP’is not defined in the program unit.

P (Phase)

This message indicates that the label symbol is defined by an EQU statement with a constant value

assigned. A label symbol indicated by this message can be referenced from an externalfile. In this case,

however, the program unit including the EQU statement must be loaded before the other program

units which are to be linked withit.

The P messageis also displayed when a label symbol different from those stored in the symboltable

during PASS 1 is found.

Example: P LETNL: EQU OQ0O06H

P DATAI: EQU 3

t. Indicates that LETNL and DATA1 are defined by EQU.
arene”

The P message is displayed in the relocatable binary code column rather than in the

assembler message column.

——ERROR MESSAGES—

C (illegal Character error)

This message indicates that an illegal character has been used as an operand.

Example: C JP +1000—3

F (Format error)

This message indicates that the instruction formatis incorrect.

ASM-8

N (Non label error)

This message indicates that ENT or EQU has no label symbol.

Example: N EQU 0012H
see”

No label symbol

L (erroneous Label error)

This message indicates that an illegal label symbol is used.

Example: L JR XYZ

t. XYZ is not defined in the current source program.

No externally defined global symbol can be used as an operand of the JR or DJNZ

commands. The L message is displayed if such a label symbolis specified.

M (Multiple label error)

This message indicates that a label symbol is defined two or more times.

Example: M ABC: LD DE, BUFFER

é

M ABC: ENT

t Indicates that ABC is defined more than once.

O (erroneous Operand)

This message indicates that an illegal operand has been specified.

Q (Questionable mnemonic)

This message indicates that a mnemonic codeIs incorrect.

Example: Q CAL XYZ
nd

CALL XYZ is correct.

Q PSH B
neem,

PUSH BCis correct.

S (String error)

This message indicates that single quotation mark(s) are omitted from a DEFM statement

Example: S DEFM GAME OVER

DEFM 'GAME OVER.is correct.

V (Value over)

This message indicates that the value of the operandis out of the prescribed range.

Example: V LD A, FF8H

V SET 8,A

V JR —130

ASM-9

Pseudo statements control assembly, but are not converted into machine language. However, in

DEFB, DEFW and DEFMstatements, their operands are sometimes converted into machine language.

——ENT (entry)————_

This pseudo statement defines a label symbol as a global symbol. Label symbols which are refer-

enced by two or more programs when multiple programs are linked must be defined by the entry

statement.

Label symbols defined by the entry statement are included in the relocatable file so that the

relocating loader can identify them. The symbolic debugger can perform symbolic addressing using

these label symbols.

Label symbols which are not defined by the entry statement contribute only to assembly of the

current source program unit, and are not included in the relocatable file output by the assembler.

However, labels defined by the EQU statement are exceptions since they are defined as global symbols

and entry definition is not necessary.

The example below shows label symbols being referenced between program units GAUSS-MAIN

and GAUSS-SR.

The E message in the assembler message column indicates that a label symbol which is not defined

in the current program unit is being referenced externally.

; GAUSS-MAIN _

MAINO: ENT oe =Entry definition at labelsymbol
Program unit | Address _ | MAINO

“GAUSS-MAIN" Undefined a CALL CMPLX
CDO0000 E | a

E message CALL CMPLX+2 < No offset canbe added to alabelsyn |

: . ___ bol whichis defined externally. :

END oe ENDiis always required at theendofof
a program unit. .

; GAUSS-SR _

Program unit 2 Address _ _ CMPLX: ENT oodefinitionoflabelsymboli
“GAUSS-SR”’ undefined oe — a o . : _CMPLX =”

Soea
i

Emessage —

ASM-10

 ——EQU (equate)

This pseudo statement defines a label symbol with a numeric value (or address) assigned. The

numeric value must be a decimal or hexadecimal constant. Any numeric value can be added to or

subtracted from a label symbol once it is defined with a numeric value assigned; this allows a new

label symbol to be defined.

The label symbol used as an address in the operand is generally treated as a relative address. How-

ever, when a specific address is assigned to the label symbol with an EQU statement, the address is not

changed during assembly.

The EQU statement also defines a label symbol as a global symbol. A label defined by the EQU

statement can be referenced by an external program unit. However, program units including such

Statements must be loaded before other program units to be linked.

The following example illustrates use of the EQU statement to define label symbols as monitor

subroutine addresses and I/O port numbers for a specific device. The P messages indicate that the EQU

statements define the label symbols as global symbols.

* K Z80 ASSEMBLER SP-7101 PAGE 01 *>

01 QO000

02 0000 ; MONITOR SUBROUTINE

03 O000

04 0000 P PRNT: EQU 0012H

05 0000 P PRNTS: EQU 000CH

06 0000 P NL: EQU 0009H

07 OOOO P LETNL: EQU Q006H

08 QO0QQ P MSG: EFQU OOI5H

09 0000 P GETL: EQU =0003H

10 0000 =P GETKY: EQU 001BH

11 Q0OOO P BRKEY: EQU 001EH

12 Q000 SKP 3

16 0000 ;

17 OOOO ; SET PORT# : PRINTER

18 QO000

19 QOOO- =P POTFE: EQU_ FEH

20 0000 P POTFFE: EQU POTFE+1 > POTFFis defined with FF (hexadecimal)

21 0000 ; assigned.

22 0000 P CON1 : EQU 1

23 0000 P CON? : EQU 2

24 0000 +P CON3: EQU CONI1+CON2 ; This results in assigned of 3 to CON3.

In this case, CON] and CON2 must be

defined in advance.

ASM-11

—DEFB n (define byte)}——

This statement sets constant n(1 byte) in the address of the line on which the statementis specified.

A label symbol defined with a constant (1 byte) assigned may be used in place of n.

This statement (as well as DEFW and DEFM.)is used to form message data or a graphic data group

for a code conversion table or othertable.

The following example forms the message "ERROR" in ASCII code. Since it uses OD as an end

mark, monitor subroutine 0015H can be used to output the message.

13

14

15

16

17

18

19

20

2]

22

23

24

25

26

27

28

——DEFB 'S', DEFB "S" (define byte)

1FF3

1FF4

LFF7

IFFA

1FFD

2000

2000

2000

2000

2000

2000

2001

2002

2003

2004

2005

B7

CA0000 E

110020

CD1500

C30000 E

45

52

52

4F

52

QD

MSG :

2

; MESSAGE GROUP

9

MESGO :

OR

JP

LD

CALL

JP

EQU

ENT

DEFB

DEFB

DEFB

DEFB

DEFB

DEFB

A

Z, READY

DE, MESGO

MSG

MAIN2

OO15H

;ERROR™

45H

52H

52H

4FH

52H

ODH

This statement sets an ASCII code corresponding to the character enclosed in single or double

quotation marks in the address of the line on which the statement is specified.

Cursor control codes() must be enclosed in double quotation marks.

Since this statement converts characters to ASCII code, the above example can be rewritten as

follows.

2]

22

23

24

25

26

27

28

29

30

2000

2000

2001

2002

2003

2004

2005

2006

2007

2008

45

52

52

4F

52

OD

16

13

OD

MESGO: ENT

DEFB

DEFB

DEFB

DEFB

DEFB

DEFB

DEFB

DEFB

DEFB

ASM-12

;ERROR’

A
O
A
A
T

ODH
ve ve

ODH

——DEFW nn(define word)——

This statement sets n’ in the address of the line on which the statement is specified and n in the

following address; in other words,it sets two bytes of data. A label symbol maybeused in place of nn’.

39
40
41
42
43
44
45
46
47
48
49

SFF 1

SFF 1

SFF2

SFF4

SFF5S

SFF7

SFF8

SFFA

SFFB

SFFB

4]

0053

42

1ES3

53

QO000 E

OD

CMDT:

CONSTO:

CONSTI :

ENT

DEFB

DEFW

DEFB

DEFW

DEFB

DEFW

; COMMAND TABLE

41H

CMDA

42H

CMDB + 3

53H

CMDS

ODH

—DEFM 'S’, DEFM 'S' (define message)——

This statement sets the character string enclosed in single or double quotation marks in ASCII code

in addresses starting at that of the line on which the statement is specified. The number of characters

must be within the range from | to 64. On the assembly listing, codes for 4 characters are output on

each line. Double quotation marks are used to enclose cursor control codes().

The example on the preceding page can be written as follows with this statement.

21

22

23

24

25

26

2000

2000

2004

2005

2006

200A

45525245

52

OD

16134142

OD

MESGO: ENT

DEFM

DEFB

DEFM

DEFB

ASM-13

; “ERROR”

‘-ERROR

ODH

“(EX AB'

ODH

 ——DEFS nn’ (define storage)

This statement reserves nn’ bytes of memory area starting at the address of the line on which the

statementis specified.

This statement adds nn’ to the reference counter contents; the contents of addresses skipped are not

defined.

The following example reserves bufferareas.

O02 4BB8 TEMPO: ENT ; BUFFER A

O03 4BB8 DEFS |

04 4BB9 TEMP1: ENT ; BUFFER B

OS 4BB9 DEFS 2

06 4BBB TEMP? : ENT ; BUFFER C

O7 4BBB DEFS 2

08 4BBD TEMP3: ENT ; BUFFER D

09 4BBD DEFS 128

10 4C3D BFFR: ENT ; BUFFER E

11 4C3D DEFS A

12 4C47 BUFFER: ENT ; BUFFER F

13) 4C47 DEFS 2
ed

The addresses are increased by amounts corresponding to the values indicated by the respective DEFS

statements.

ASM-14

—SKP n (skip n lines)——

This statement advances the assembly listing by n lines to makethe list easy to read.

30

31

32

33

34

35

3BB8

3BB9

3BBC

3BBF

3BCO

3BCO

3BCO
Anon
YDLVU

3BCO

AF

32B84B

110020

C9

COMMON: ENT ; NORMAL RETURN

XOR A ; A<——00

LD (TEMPO), A ; CLEAR CMD BUFFER

LD DE, MESGO ; “READY”

RET

SKP 3

3 line feeds are made.

; ABNORMAL RETURN

ABNRET: ENT ; SET INVALID MODE

——SKP H (skip home)——

This statement advances the page during output of the assemblylisting.

—END (end)——

This statement declares the end of the source program. All source programs must be ended with

this statement. Assembly operation is not completed if this statement is omitted.

The assembler outputs

END?

when it reads a source file which doesn’t include an END statement.

ASM-15

Indicates that a label symbolis being refer- -

E

enced externally; that is, the label is not t_ The data byte ''CONSTO"’ is undefined.

E defined in the current source program unit. E CALL SORT

(External) t. The address ‘SORT’ is undefined.
E E- BIT TOP,(IY + FLAG)

| t The data byte''FLAG'' is undefined.
_. The data byte ’'TOP’’-is undefined.

Defines a label symbol with a constant as- P LETNL: EQU 0006H

signed. Pp DATAI: EQU 3

F This message is also output when a label t LETNL and DATAare defined by EQU.

(Phase) symbol is encountered during pass 2 which “The P messageis displayed in the relocatable binary code

was not encountered during pass 1. columnrather than in the assembler massage column.

 C (illegal
Charactererror)

Indicates that an illegal character is used in

the operand.
C JP +1000—3

F (Format error)
Indicates that the instruction format is in-

correct.

N
(Non label error)

Indicates that no label symbolis specified

for ENT or EQU.

N EQU 0012H

No label symbol

L
(erroneous Label
error)

Indicates that an illegal label symbolis used. L JR XYZ

t_ XYZ is not defined in the current program.

No externally defined global symbol can be used

as the operand of a JR or DJNZ command.
If such a label symbolis specified, the L message

error)

is displayed.

Indicates that a label symbol is defined two |M ABC: LD DE, BUFFR

M (Multiple label |: more times. M ABC ENT

t_ ABCis defined twice.

O (erroneous Indicates that an illegal operandis specified.

(Value over) of the prescribed range.

Operand)

Q (Questionable Indicates that the mnemonic code is ine Q CAL XYZ

mnemonic) correct. CALL XYZis correct.

S Indicates that single or double quotation |S DEFM GAME OVER

(String error) mark(s) are omitted. DEFM ‘CAME OVER’is correct.

V Indicates that the value of the operand is out V LD A,FF8H V_ SET 8,A

V JR —130

END? Indicates that the END statement is missing

from the source program.
Note: Refer to the System Error Messages in the System Command manual for other system errors.

ASM-16

Symbolic Debugger ==

SHARP.

NOTICE

The MZ-80 series of sophisticated personal computers is manufactured by the

SHARP CORPORATION. Hardware and software specifications are subject to

change without prior notice; therefore, you are requested to pay special attention to

version numbers of the monitor (supplied in the form of ROM) and the system

software (supplied in the form of cassette tape or mini-floppydiskfiles).

This manual is for reference only and the SHARP CORPORATION will not be

responsible for difficulties arising out of inconsistencies caused by version changes,

typographical errors or omissions in the descriptions.

This manual is based on the monitor SP-1002 and the SP-7000series FDOS.

— CONTENTS —

INTRODUCTION 2.000.eeteens l

STARTING THE SYMBOLIC DEBUGGER 2

SYMBOLIC DEBUGGER COMMAND TABLE.................... 3

BREAKPOINTS0..0. 0.0.00 0.0. ccc cee eee eens 4

USING THE DEBUGGER COMMANDS................... 00000: 5

T (Table Dump) Command0005re 5

Message Examples 0... cc cc eee eee eens 6

B (Breakpoint) Command 0... 0. ccc ee cee ee ee eee 7

& (Clear B.P) Command 0.0... 0... eee eee eee 9

M (Memory Dump) Command 0.00... cece eee eee 10

D (Memory List Dump) Command.....................00008. 11

W(Data Write) Command 0... cee ee ee eee 12

G (Goto) Command caeeee ee eee eee 13

I (Indicative Start) Command................. 0... e eee ee eee 14

A (Accumulator) Command 0.0.0... ce eee ee ee eee 15

C (Complementary) Command.......... 0... 0.. 0. cee ee eee 15

P (Program Counter) Command 0.0.0 cea e tees 16

R (Register) Command0. 0... cc ee ee eee eae 16

Using Register Commands A,C,P andR.................... 17

X (Data Transfer) Command 00... eee eee eee 18

S (Save) Command 0.0... 0... cee ee ee ee nee es 19

Y (Yank) Command 00.0... cee ee eee eee ees 20

Command 0.0...cccee eee eee eens 21

'Command 0... eee cee nee eee nen ees 21

ERROR MESSAGES 0.00.0... 0.0 ccc cece ee eas 22

DEB

The SHARP MZ-80K symbolic debugger links and loads one or more program units from relocatable

files to form an object program in memory in an immediately executable form and runs the object pro-

gram for debugging. It provides the programmer with facilities for taking a memory dump of the object

program in the link area, for setting a breakpoint in the program, for displaying and altering the contents

of the CPU internal registers and for starting execution of the program at a given address with the CPU

internal registers set to specified values (indicative start).

: Symbolic debuggerdebugging
operations(programexecution,
breakpointuaeGeta

Debugging with the symbolic debugger

_Relocatableifile

“unitsoD

Program execution

alteration)

The debugger is said to be ‘symbolic’ since it permits the programmerto reference addresses(e.g.,

breakpoints) during debugging not only in absolute hexadecimal representation but with global symbols

declared as entry symbols in the source program with the ENT assembler directive. This releases the pro-

grammer from the burden of remembering relative addresses in relocatable programs and offset values

specified when they are loaded.

In normal program development process, the programmer debugs each object program unit with the

symbolic debugger and,if he finds errors, he reedits its source program and reassemblesit. After debugging

all object program units, the programmerlinks and loads them with the relocating loader to form thefinal

object program.

Symbolic debugger commands are summarized in the table on page 3. Commands marked with a dagger

permit symbolic operations. The debugger creates the symbol table in the same way asthe relocating

loader.

Relocatable file # 1 1vcommandaR

Objectfile

Relocatablefile #2 S command

Symbolic debuggerfile processing

DEB-1

——STARTING THE SYMBOLIC DEBUGGER—\

The symbolic debugger is started by entering one of the commands below in the FDOS command

mode.

1. DEBUG
The debuggeris invoked and the debugger command wait state entered.

2. DEBUG [filename 1,..... , filename N]

6.

The debugger links and loads program units from relocatable files filename | through filename N and

waits for entry of a debugger command.

. DEBUG/P ABC

The debugger loads the program unit from file ABC. RB and prints the link information shown in

Figure | on the printer.

. DEBUG/P/T ABC

The debugger loads the program unit from file ABC . RB and prints the link and symbol table infor-

mation on the printer.

. DEBUG ABC, XYZ, TBL$20

The debugger links and loads program units from relocatable files ABC. RB and XYZ. RB and waits

for entry of a debugger command.

It also reserves 2000 (hex) bytes (approximately 8K bytes) of space for the symbol table. Approxi-

mately 6K bytes of space are reserved whenthetable size is not specified.

DEBUG ABC, $1000, XYZ, DEF/O

The debugger links and loads program units from relocatable files ABC . RB and XYZ. RB to generate

é

an object program in object program file DEF . OBJ, then waits for entry of a debugger command.

It reserves approximately 4K bytes of free space (offset of 1000 (hex)) between program units ABC and

XYZ.

Note: When the debugger is invoked and the command wait state entered, all files (including those

specified in the DEBUG command)areclosed.

LINKING HEC. RE
TOF HSM. BITRE #7ese
ENG H=M.& THe aaBe

Fig. 1

LINKING AEC. RE
TOF ASM, BIAS #7RSH
EHD HEM. BIAS #°8EP

DEBUGGER AREA *ese—-BrFo

SYMBOL TABLE
CHR 1 C Bers CHES CD BSD CHR C Burs CHR4 C Beit
CHES DO weIC CHF. CO BSC IETEE'Y 0 GB1E MHTR GC Bee
PRINT DBD Bar STACK CD Dae

Fig. 2

DEB-2

T Displays the contents of the symboltable; i.e., the label symbol name, its absolute

address and the definition status for each table entry (Table Dump).

Bi Displays, sets or alters a breakpoint (Breakpoint).

& Clears all breakpoints set (Clear Breakpoints).

Mt Displays the contents of the specified block in the link area in hexadecimal

representation or alters them (Memory Dump).

pt Displays the contents of the specified block in the link area in hexadecimal repre-

sentation with one instruction on a line (Memory List Dump).

wt Writes hexadecimal data, starting at the specified address in the link area (Write).

Gt Executes the program at the specified address (Goto).

I Executes the program at the address designated by PC with the register buffer data

set to the CPU internal registers (Indicative Start).

A Displays the contents of registers A, F, B,C, D, E, H, and L in hexadecimal repre-

sentation or alters them. (Accumulator)

C Displays the contents of complementary registers A’, F', B}C',D‘E',H’ and L

in hexadecimal representation or alters them. (Complementary)

P Displays the contents of registers PC, SP, IX, TY and J in hexadecimal represen-

tation or alters them (Program Counter)

R Displays the contents ofall registers in hexadecimal representation (Register).

xX Transfers the specified memory block to the specified address (Transfer).

S Saves the object program in the link area in an outputfile with the specifiedfile

name.

Y Reads the object program from the object file with the specified file name into

memory (Yank). :

Switches the printer list mode forlisting printout.
 Transfers control to FDOS.

Note: Commands marked by a dagger permit symbolic operations.

DEB-3

A breakpoint is a checkpoint set up in the program at which program execution is stopped and the

contents of the CPU registers are saved into the register buffer. At this point, the programmer can examine

and alter the memory and register contents. He can also restart the program at this point. Thus, break-

points facilitate program checking and debugging.

The symbolic debugger allows a maximum of nine breakpoints. When setting a breakpoint, the

programmer must specify not only its address but also its count. The count specifies the numberof allow-

able passes through the breakpoint in a looping program before a break actually occurs. The maximum

allowable value of the break count is E in hexadecimal (14 in decimal).

Whena breakpoint is set in a program, the debugger saves the operation code at that location (address)

in the break table and replaces it with code FF. The debugger creates one breaktable entry for each break-

point as shown below.

Saved operation code

 Break count Variable count

 Breaktable entry Object program

Hexadecimal code FFis the operation code for RST 7, which initiates a break operation. When the RST

7 instruction, which is a l-byte CALL instruction, is executed, the contents of the program counter are

pushed into the stack and the program counter is loaded with new data O038H;that is, program control

jumps to address 0038H in the monitor, from which point control is immediately passed to the debugger.

The debugger searches the break table for the pertinent breakpoint. If the breakpoint is not found, the

debugger displays error message RST 7? . Thus the RST 7 instruction is used in the system for a specific

purpose and cannot be used by user programs.

When the debugger finds the required breakpoint in the table, it checks the corresponding count and

decrements the variable count (this count is initially set to the break count) by one. If the variable count

reaches zero, the debugger performs break processing; otherwise, it continues program execution.

DEB-4

——T (Table Dump) Command——

The T command displays the contents of the symboltable, that is, the label symbol name, its absolute

address andits definition status.

— Enter a T commandin response to the prompt ">«D".

— The debugger displays the label symbol name, its absolute address (in hexadecimal) and the definition

status for each symbol table entry. The programmer can detect symbol definition errors by checking

the definition status of the displayed label symbols. |

— Messages pertaining to the symbol table definition status are identical to those issued by the relocating

loader. The definition status messagesare listed below, followed by examples.

| Undefined symbol (address or data)

| Multi-defined symbol (address or data)

Cross-defined symbol (address or data)

| Half-defined symbol (data)

Data difinition symbol (data)
tennant 5

m
e
e

No message is attached to symbols for which an address

has been defined. U, M, X and H indicate error con-

ditions.

DEB-5

Message Examples

First program unit to be loaded

TMDLYH: _ HL,START _

LD

COUNT: | ENT :

DEC HL
LD A,H

CP COUNTO

JR NZ, COUNT

LD A,L

CP COUNT1

JR NZ, COUNT

CP COUNT2

JR NZ, COUNT

RET

PEND: ENT

DEFM ‘'TMDLYH’

DEFB ODH

COUNTI: -EQU 00H

COUNTO: EQU 50H

END |

Second program unit to be loaded

TMDLYL: LD HL, START

LOOP: DEC H

LD A,H

CP COUNT

JR NZ, LOOP1

| RET

PEND: ENT

DEFM "TMDLYL’

DEFB ODH

START: | EQU 1000H

COUNT: EQU 00H

END

Third program unit to be loaded

INPUT: CALL 001BH

CALL TMDLYL

CALL 001BH

LD HL, START ©

CP ODH :

oJR Z, END ©
LD (HL), A

INC He
IR. INPUT

END: JP ~ 0000H
AQ

COUNT2: |

“STARTX

START is not defined as an address in the

first program but is defined as data in the

second or subsequent program with the

START: EQUstatement.

Note:

The EQU statement should be placed at

the beginning of the program unit.

'“COUNT2'' H

COUNT2is not defined as data in thefirst

program butis defined as data in the third

program with the COUNT2: EQUstate-

ment.

"COUNTI' D

COUNTis defined as data (D indicates

no error condition).

“COUNTX

COUNTis defined as an address in the

first program and simultaneously as data

in the second program.

'‘PEND''M

PENDis defined as an address in thefirst

program and simultaneously as an address

in the second program (duplicated defini-

tion).

“TMDLYL'' U

TMDLYLis neither defined as an address

nor declared with the ENT assembler

directive in any other external program

unit.

—B (Breakpoint) Command——

The B command sets or changes a breakpoint. A breakpoint occurs after instructions immediately

preceding the breakpoint are executed the numberof times specified in the break counter. Whena break-

point is taken, program executionis interrupted and controlis passed to the debugger. The debugger saves

the contents of the CPU registers into the register buffer and waits for a debugger command. The pro-

grammer can specify the breakpoint with either an absolute hexadecimal address or a label symbol (the

label symbol can be given a displacement of from-65535 to 65535 in decimal).

.+DB- oo oe ‘Sets a breakpoint.

ADDR COUNT >
ot 75302 Thebreakpoint is address 7530 and the breakcountis 2.

— 2 SORT 3_1 Thebreakpoint is the address represented bylabel symbol “soRT3"

oe and the break countis 1. : ia

3 SORT345L_1 The breakpointis the ee of theinstruction 5 lines awayfrom S

: the address represented by label symbol' ‘SORT3"'andthe break

ee countis I. | : | : oe |

4 MAINO-9_.2. The breakpoint is- the address of theinstruction 9 bytes before

oF a the addre%s represented by label symbol “MAINO” andthebreak a
cunt. ee

5B : 2 oo (The breakoutand the breakcount must be separatedaateast aS

one blank (denoted byo).)
— Enter the B commandin response to the prompt ">D".

— The debuggercarries out a new line operation and displays "ADDR COUNT.” It then performs a new

line operation and displays the breakpoint number followed by a space and the cursor to prompt

the programmer to enter a breakpoint address and a break count. |

The programmer may specify a breakpoint address with a 4-digit hexadecimal numberor a global

symbol (see the examples above). In either case, enter an address followed by a space and a break

count. The break count specifies the number of allowable passes through the breakpoint before a

break actually occurs. The programmercan specify a hexadecimal value from 1 to E.

When a break count is entered, the debugger performs a new line operation and displays the next

breakpoint number to promptfor the next breakpoint address.

— When a label symbol is entered as a breakpoint address, the debugger displays message "997" and

waits for a new commandif the pertinent symbolis not defined or if the symbolis a data difining

symbol.

— No breakpoint can be specified for the DJNZ instruction. When a breakpoint is specified for the

DINZ instruction, the debugger displays message "DJNZ?” and waits for entry of a new command.

DEB-7

No breakpoint can be specified for the CALL instruction either. Breakpoints cannot be specified for

any instructions which push the program counter contents into the stack. The debugger will dis-

play the message "CALL?"if such an attempt is made.

To check a CALLinstruction, set a breakpoint at the beginning of the called routine.

To clear a previously set breakpoint, enter that breakpoint address with a break count of O (use the

& commandto clear all breakpoints).

The debugger displays message ''???" and waits for a command when an attempt is madeto clear an

undefined breakpoint.

The programmer can specify a maximum of nine breakpoints.. When the programmerspecifies nine

breakpoints, the debugger displays 'X"' on the next line instead of the next breakpoint number. This

requests the programmerto clear a breakpoint or change a break count, not to set a new breakpoint.

If the programmer attempts to set a new breakpoint, the debugger will not accept it and prompts for

anew command with message "OVER".

When a B commandis entered after breakpoints are set, the debugger displays them; in this case, the

hexadecimal addressis displayed first, followed by the break count format.

The programmer can use the cursor Key while setting breakpoints. When the|CR| key is pressed,

the debugger is returned to the command wait state.

DEB-8

— & (Clear B.P) Command——

— Enter the & command in response to the prompt "*D".

— The debuggerclears all breakpoints set and waits for entry of a new command.

— The photo at right shows anexample of setting

breakpoints. The breakpoints are set with a

* e
s

4-digit hexadecimal number (absolute address),

a global label symbol, a label symbol plus a

line specification and a label symbol plus a byte

A
e
O
n
e
O
D
o
e

o
e

|e
ee
e
e

aoe
beC

ha
e)

displacement.

— The photo at right shows that breakpoint

"“SORT3" has been cleared on theline identified

by "X".
* a
)

~
T
T
-
)
b
o
s

a
C
T
E
a

T
o
T
o
e
y

~
r
e
s

a
a
E
T

|
E
O

C
p

+}

q a
e

a
O
e

a
)

L
b
4
4

p
s
p
>

a
e
d

o
d

L
i
v
e

-
A

ae
2
a

o
e

a
) p
—
-

O
a
e
e
n

~
~

.

-
~
—
.

Cr
t
a
n

_

pt
=
Pe
at

a
am!

L

:

T
I
O
A
I
A
I
C
A
e
e
e

a
c
e
s
e
e
e

|

o
w

TI

a
a

Oe
)

— The photo at right shows an example of display-

ing previously set breakpoints with a B com-

mand. Breakpoints are displayed with hexade-

cimal absolute addresses shown first, followed

by the break counts.
-—— The photo at right shows that a break occurred

immediately when the program was executed

from address 7000 with a G command with a

breakpoint at 7000 and a count of 1. As soon

e
e
e
e
O
D

a o
e

re
H

a
[
i

as a breakpoint was taken, an R command was
-
=

as
F w

e
La

ee
l

L
a

w
n
i
e

GT
hc

n
e

executed to display the status of the CPU re- be
weal oto~

j
T
W

m
e

gisters.
DEB-9

—M (Memory Dump) Command——

The M command displays the contents of the specified memory block in hexadecimal representation.

The memory block may be specified with either absolute hexadecimal addresses or label symbols. The

M commandpermits the programmerto alter data with the cursor.

DM7800 —7850[CR] Displays the contents of the memory block from
es 7800 to 7850. 8

*DM MAIN7_ MAINS Displays the contents of the memory block fromthe

address identified by ''MAIN7"' to the address iden-_
tified by ‘'MAIN9"’

*DM STEPO—9 — STEP3 + 15L[CR] - Displays the contents of the memory blockfrom the

address 9 bytes before the address identified by label - :

symbol ''STEPO"' to the address of the instruction 15.

lines away from label symbol 'STEP3"!

— Enter the M commandin response to the prompt "*D".

— The debugger displays the cursor with a space between the cursor and the letter M and waits for the

programmer to enter the starting and ending addresses of the memory block to be dumped. The

programmer may specify the starting and ending addresses of the memory block with either 4-digit

hexadecimal numbers or global symbols.

— The starting address must be smaller than or equal to the ending address. Otherwise, the debuggerwill

display the message ""?”’.

— When a memoryblock in the link area is specified, the debugger displays a dump of memory contents

on the screen with 8 bytes on a line.

— If the printer is placed in the enable mode, the debugger prints the memory dumponthe printer with

16 bytes on a line.

— The cursor appears on the screen when the memory block dump is completed. The programmer can

then alter byte data in the memory dump by moving the cursor to the desired byte position on the

screen, entering the new byte data and pressing [CR]. The byte data under the cursor is overwritten,

with the new data. The debugger displays the message "ERROR"if the data entered does not match

the byte format.

— When is pressed with the cursor on a memory dumpline, the data on thatline is reentered into

memory. The debugger is returned to the command mode, however, when is pressed with the

cursor at a line containing no data.

— Press the} SPACE} key to suspend display of the memory dump. To resume display, press the; SPACE

key again.

— Press the] SHIFT jand| BREAK |keys simultaneously to force the debugger into the command mode.

DEB-10

—]D (Memory List Dump) Command——

The D command displays the contents of the specified memory block in hexadecimal representation

with one instruction on a line. The memory block may be specified with either absolute hexadecimal

addresses or label symbols. The programmer cannot alter memory contents through cursor manipulation.

--€DD78007850[CR -oe . Displaysthecontents0fthe‘memory/ blockfromaaddresses5 a

 —=——“—OS—s<—s—rrr7850withoneinstructiononaline.
o*pbSTART_MAINO[CR :Displaysthecontents of.‘thememoryblockfromtheo
— :adresidentifiedby""START"totheaaddress.iidentifieJ

[ce]Dinithecontentsofthe‘memoryblockfrom:see C .
-.theklabel1symbol"START"vithone¢instructiononaaln

— Enter the D commandin response to the prompt>KD”.

— The debugger displays the cursor with a space between it and the letter D, then waits for the pro-

grammer to enter the starting and ending addresses of the memory block to be dumped. The pro-

grammer may specify the starting and ending addresses of the memory block either with 4-digit

hexadecimal numbers or global symbols. As with the M command,the starting address must be smaller

than or equal to the ending address.

— Press the key after specifying the required memory block; the debugger then displays an address

and machine language code on eachline.

Consider the source program shown below,

which contains the label symbols ‘START’

and "MAINO". Assume that the corresponding

a
e

aH
)
r
s
h
e
S
a
e
Ba,

=
i

‘ard
i

fae)
i

fae)
i
ra
-
and
"

—_
U
T

AO
N)

U
a
d

object code is loaded in memory starting at

R
O
R
O
T

P
A
T
T
L

+ ‘
u
a
l

address 7500. When a D command is entered,

E
A
A
A
A
C
A

a
a

the debugger displays a dump listing on the

screen as shownin the photo atright.

START: ENT

rn TAR
Vv or, OLAN
 mr

i

~S O ye) >

LD (? TABP), A
LD B,A

MAINO : ENT
LD A, OFH

DEB-11

— It must be noted that the memory block starting address specified in the D command must contain

an operation code. If the starting address contains a data byte, subsequent lines dumped will display

meaningless instructions which read that data byte as an operation code. The same note applies to the

data areas (defined by DEFB and DEFW,etc.) in the memory block.

— Display of the memory dumplisting can be suspended and resumed with the[SPACE |key.

— The D command does not allow memory alteration; after the memory dump is completed, the

debugger is returned to the command wait state.

— Press the SHIFT] and BREAK] keys simultaneously to terminate this command in the middle of a

dump.

—W (Data Write) Command——

The W command writes hexadecimal data, starting at the specified memory address. The memory

address may be either an absolute hexadecimal address or a label symbol.

*DW 8000 - Writes machine language data, startingat addr8000.

*DW DATAI[CR] Writes machine langtage data, starting at theaddressidentifiedtb

. — label symbol “DATAI| 2 : ee

—— Enter the W commandin response to the prompt "*D"’.

— The debugger displays the cursor with a space between it and the letter W, then waits for the pro-

grammerto enter the starting address of the memory area to be written.

The programmer may specify the memory block starting address with a 4-digit hexadecimal number

or a global symbol.

— The memoryarea to be written must be inside the link area.

*KDW 1111

1111 Address 1111 is not in the link area.

22?

— When the programmer presses the key after specifying an address, the debugger displays that

address on the next line to prompt the programmerto enter 2-digit hexadecimal data.

The debugger enters a space each time 2-digit data is entered and performs a new line operation and

displays a new address each timeeight bytes of data are entered.

— To correct the data just entered, press the key

to return the cursor to the byte of data just 1-
.) r
a

E
R
A
N

at
P
T
R

16 oD 12

— fa
ti
cs

a
O
W
i

_
, .

a
D

C

E
E

y
o

e
e — ou

sl
y

a4

pan
eny

T
a
D

— i
aa

fi

entered and correct it. The photo on theright

;
J
i
t
-
.
J
-
.
J
9 al

er

s 16 ob 12

w
e
s

a
d

e
a

‘c
on

te
— Se

em
ed

ag
ee
e

e
e

shows an example.

ma
t

Te
nt

)
—

OR
T
A
s

O
o

f
-
—

'

1% e
d

As the photo shows, when the key is pressed,
i

the cursor is placed on the next line and the

address of the byte of data to which the cursor is movedis displayed.

DEB-12

— To specify a displacement for a JR, DJNZ or other Z80 relative jumpinstruction, enter a period; the

debugger waits for the programmer to enter an absolute address (no label is allowed) with a 4-digit

hexadecimal number as the destination of the jump. When the programmer enters a 4-digit hexa- |

decimal address, the debugger computes the displacement and stores the 1-byte result in the current

byte position.

The seventh and eighth lines in the photo on page 12 show an example of specifying adisplacement.

— After the necessary data has been written, press ; the debugger then returns to the command wait

state.

—G (Goto) Command——

The G commandtransfers program control to the specified address. This commandis also usedtore-

start the program following a breakpoint.

— Enter aG commandin response to the prompt "*D".

— The debugger then waits for entry of an execution address. The programmercan specify the execution

address with either a 4-digit hexadecimal number or a global label symbol defined with the ENT

assemblerdirective.

When using a label symbol, the programmer can specify the execution addresson a line or byte basis.

*DG MAINO Executes the program at address ‘‘MAINO".

*DG MAINO + 3L Executes the program at the address3 lines after ‘'MAINO"'

*DG MAINO — 12 Executes the program at the address 12 bytes before the address iden-

— To restart the program at a breakpoint, enter a G command andpress [CR]. If this operation is ini-

tiated when no breakpoint is taken, the debugger returns to the commandwait state without execut-

ting the program.

The contents of the CPU registers to be restored when the program is restarted are displayed with the

R command. The value in the program counter (PC) is used as the restart address. Since the PC value

can be changed with the P command,it is possible to restart the program at an address other than the

breakpoint.

— Press the and BREAK] keys simultaneously to terminate entry of aG command.

DEB-13

——JI (Indicative Start) Command——

The I command executes the program with the CPU registers loaded with the register buffer contents.

The execution address is designated by the program counter. The contents of the CPU registers can

be specified by the programmerthrough use of the A, C and P commands.

Ar
Ol 23 «45oe

01 23 45
PC SP
78AB 1FEA

67o
67

START OK?

89
D’

89

IX

S5F70

BcDEBL

AB CD EF
EF oH L

AB CD EF

IY I

-SF50 00

 "Executes: theprogram,at.the>ade re }

by the program counter withthedatashown

thescreen ceed|in the CPUregisters.

— Enter the I command in response to the prompt KD",

— Thedebugger displays the 2- and/or 4-digit hexadecimal values to be loaded into the CPUregisters.

These values are stored in the register buffer. They can be displayed with the R command.

—- The debugger then displays message “START OK?’’. To start the program in this environment, press

[CR]. The debugger then executes the program, starting at the address designated in the program

counter.

To change register values or terminate the I command, press the| SHIFT! and BREAK} keys simul-

taneously; the debugger then returns to the command wait state.

— The figure below shows how the CPU registers are set with the I command.

| register set

Generalregister set _ AF BC DE HL

AF’ BC’ DE’ HL’

Special-purpose | SP IX IY I

 PC

The CPU general registers and special-purpose registers SP, IX, IY and I are loaded first; the program

counter is then loaded with the execution address and the program is executed.

— The photo at right shows how the debuggerres-

ponds to the I command and executes the

program (at address 7500 in this example).

A
L

b
e
e
D
E
M

C
A
a
z
t
r

a

on
i
n
a

e
n
a
C
N

7h
e

a
e
e
a

5
e
s

3h
A

a

a
Oa

-

n
e
s
c
c
e
s

e
e

e
t
e

RT
RC
M

,

a
e

‘

m
a

a
l
)

DEB-14

—A (Accumulator) Command—

The contents of the Z80 CPU registers are saved in the register buffer when a breakpoint is taken; the

contents of the primary registers saved can be displayed with the A command. The buffer contents can

also be altered using cursor manipulation.

— Enter the A command in response to the prompt "*D".

— The debugger displays the contents of accumulator A, flag register F and general register pairs BC,

DE and HL with 2-digit hexadecimal numbers. These values represent the contents of the primary

CPU registers set up when a break occurs at a breakpoint. They are stored in the register buffer for

use in subsequent restart operations (see the G commanddescription) at the breakpoint.

— The debugger displays the cursor on the line following the one last displayed. If necessary, the pro-

grammer can alter the register contents. To change a register value, place the cursor on the desiredre-

gister value, overwrite it with a new valtie, and press (the cursor will move the the beginning of

the nextline).

The register values displayed or altered with the A command are those values which will be restored

to the CPU internal registers on a restart at a breakpoint or on an indicative start with the I command.

— Press with the cursor on the new line; the debugger then returns to the commandwaitstate.

——C (Complementary) Command—

The C command displays the contents of the complementary general-purpose registers set up on the

last break. The programmercan alter their contents through cursor manipulation.

— Enter the C command in response to the prompt “*D".

— The debugger displays the contents of accumulator A’, flag register F’ and general-purpose register

pairs BC’, DE’ and HL’ with 2-digit hexadecimal numbers. The contents of the registers and the mean-

ings of the register contents and data altered through cursor manipulation are the same as with the A

command. Theyare used for restart at a breakpoint or with the I command.

— Press the key with the cursor on the new line; the debugger then returns to the command wait

State.

DEB-15

——P (Program Counter) Command——

The P command displays the contents of the special-purpose registers set up on the last break. The

programmercan alter their contents through cursor mainipulation.

— Enter the P commandin response to the prompt | *D".

— The debugger displays the contents of special-purpose registers PC, SP, IX, TY and I with 2- and/or

4-digit hexadecimal numbers. The meanings of the register contents and the data altered through

cursor manipulation are the same as with the A and C commands.

The register values displayed or altered through cursor manipulation are restored into the pertinent

registers upon restart at a breakpoint or upon indicative start with the I command. The program does

not have to restart at the breakpoint; the programmer can specify another restart address by altering

the PC value.

— Press with the cursor on the new line; the debugger then returns to the command waitstate.

——R (Register) Command—

The R command displays the contents of all CPU internal registers set up on the last break or altered

with the A, C or P commands. The programmer cannotalter their contents.

— Enter the R command in response to the prompt " *D",

— The debugger displays the contents of all CPU registers with 2- and/or 4-digit hexadecimal numbers.

The cursor does not appearin the screen, so the programmer cannotalter their values.

The same data is automatically displayed when a break occurs or when an indicative start is initiated

with the I command.

— The debugger enters the command wait state after displaying the all register contents.

DEB-16

Using Register Commands A, C, P and R

Values displayed with register commands (A, C, P and R) are the actual contents of the register buffer

in the debugger. The register buffer in the debugger contains values loaded when breaks occur or when

changes are made through cursor manipulation with the A, C or P command. The values are restored the

CPU registers when a restart is made from a breakpoint or when an indicative start is made.

The figure below shows the relationship between the CPU registers and the register commands; the

photos show examples of use of the register commands.

BREAKPOINT

A command

AF BC DE HL

 DE’

AF’ HL’

BC’ <—-> C command

 PC SP KX VW I P command

RESTART FROM B.P.
OR

INDICATIVE START R command

A command | P command

a
e
e
e

a
a
y
e

A
L

.

ae
L
e
e
n
L
e

a
n

|
a

iat
s
t
)

7

Ch
in
a|
o
s
e

e
a
R
A
T
—
—

c
m

t
e
t

e
a
e
e
e

a
n
t
s

F
“
I

c

r
e

a
E

m
a
e

-
.
]

m
eEye

=
=

h
o
n
e

eo)
a
o
g

o
s

C command R command

DEB-17

——X (Data Transfer) Command—

The X commandtransfers the contents of the specified memory block to the specified memoryarea.

eee

— Enter the X commandin response to the prompt “*D'.

— The debugger displays the message FFROM?” and waits for the programmer to enter the starting

address of the source memory block with a 4-digit hexadecimal number. Whenthestarting addressis

entered, the debugger displays the message “TO?” to prompt the programmerto enter the ending

address of the source memory block with a 4-digit hexadecimal number. When the ending addressis

entered, the debugger displays the message '‘TOP?” to prompt the programmerto enter the starting

address of the destination memory area with a 4-digit hexadecimal number (symbolic addresses are

disallowed).

— When the last address is entered, the debugger starts transferring the memory block. After completing

the transfer, it returns to the command waitstate.

— The source and destination memory blocks must be located within the link area.

— Data transfer is accomplished successfully even if the source and destination memory blocks overlap

as shown below. The memory block shownin the figure at left may be transferred to the memory

block shownin the figure at right and vice versa.

Link areas}ss ; > Link area Symbol table
— The photo at right shows how the debugger

B
O
D
)

W
y
t
h
e

-.
]

~
J
-
.
J
-
.
J
-
-
]

De
u
a
s
O
s
O
s

Ber

i
a | he
e)

transfers the memory block starting at address

7500 and ending at address 7S5OF to the memory 0
r
a
t
h

ON
om6

A
e
|

v
r
y
-
J

V
T
)
-
.
)

t
b
f
t

p
>
p
—

1
— _
—

a
n
a
)
_ ‘om

all
ie:

— —
"
— m
a
l
e

_ o
s

aa
y

t
y

_
_
—

e
a
p
e

ee
e
e
e

a o
a
t “
e
a

f
e

a
a

w
e

7
A
r
e
e
o
O

a
t

L
s

— se
"

|
e
a
d

— i
e
= o
S

o
n

a
w
a o
n
l

L
e
e
n
a

A
l
a
n
l
e
e

L
e
a

Le
an

m
a
a

a
m
y

OA
T)

OU
T
h
k

iT
.

T
R
O
N
S
MD
c
a
e

a

tt "i

a
t

CE
T
R
O

m
T tt

T
k " "

OR
T
R
S

n
tt
s

h
i
e

po
y

o
l
e

pe
au

o
e

— A ~ a
"

a
n
~
s

aen
es

-_
s

a a
N

an
es
a
a

—
_
a
s

ea
e

pr
e

— s _ a
e

a a
s

jan
es
a ~ e
k

an
ny
a

area starting at address 7508.

a
al

o,
a
s

Compare the memory contents displayed with

f

OU
RS

BGA
)

ie
6

oT
Om

vs
—
s

po
ny

S
S

to
on

s
on
al

s
e
e

a
o

oe
al

p
o
r

o
a
n

o
r
— a
S

s
o
e

p
o
r

a
s

o
n
l

—
vs
-

s

s
e os

fo
re

)

o
n
d

i)
r
e2

"
i
iz
za
i
a

(ho
re Om
a

aT
a
C
)

OT
R
O
N

the two M commands.

A

a
l
- we
ek
s

w
o
r
e

o
b
s

7 e
t

W
w
e

a
T
t
t

”

ol
e

b
b

Q
U
p
s
p
e
]

U
S
a
d
S
a

u
a

SO
NU
N
U

n
e
“
T
H
.

o
e

1
a
i
e

‘

ye
aa

D
e
e
s
a
a
a

aT
a
e

t
h
e
n

l
e
a
t

a
C
a
c o
a

a
a
e
t
n
a

a
ow
el
e

a
e

T
e

o
a
n
,

DEB-18

——§ (Save) Command——

The S commandsaves a specified block of the object program in the symbolic debugger link area

into a named outputfile in immediately executable form. The contents ofthis file can be restored to the

link area with the Y command.

— Enter the S command followed by a file name in response to the prompt "*D".

— Press after entering a filename. The debugger displays TBE (Top-Bottom-Execute) message

after verifying that the specified file does not exist on the specified diskette.

— Enter the starting and ending addresses of the block to be saved and the execution address with 4-digit

hexadecimal numbers or symbolic label names. When the execution address is omitted, the debugger

assumesthe block starting address as the execution address.

— The figure below shows how the object program block from addresses 7500 to 8FFF is saved to an

outputfile with the file name “FUNCTION”.

Object file “TEST in

drive FD2

The symbol table is not saved.

DEB-19

——Y (Yank) Command—

The Y commandreads the object file identified by filename into the link area.

— Enter the Y command followed by a file name in response to the prompt “>«kD",

— Press after entering the file name. The debugger then searches for the file named filename. OBJ

and readsit.

— The program in the filename. OBJ file is loaded into the link area block between the starting and end-

ing addresses specified when the file was saved with the S command.

Note: Files opened before the Y commandis issued are all killed.

 Object file created by | Y command

the symbolic debugger |

neces executable a

8 reeprogram |ee

Object file created by

the relocating loader

. *KDY $ FD2 :

Object file SAMPLE. OBJ SAMPLE

in drive FD2 |
 ecdaelyexecutable

_ poieteprogram -

Object file TEST. OBJ

in the default drive *KDYTEST

DEB-20

——t Command—

— Enter the # commandin response to the prompt " *D".

— The debugger then switches the list mode. When the debugger is invoked, the printer list modeis set

to the disable mode. The mode alternates between enable and disable each time a # commandis

entered. In the enable mode,all output is directed to both the screen and the printer (except with the

M command).

——! Command—

— Enter the ! command in response to the prompt '*D".

— Controlis then transferred to FDOS.

DEB-21

The commandoperandfields does not match the 4-digit hexadecimal

f t.en M,D, W, B, G
A symbolic label is missing.

A data defining symbolis used as a label.

An invalid numberof digits was entered whenaltering register or

memory contents, or a key other than O through 9 or A through F

waspressed.

A breakpoint wasset for a DJNZ instruction.

A breakpoint wasset for a CALL instrctuion.

A breakpoint wasset for a RST 7 instruction.

An attempt was madeto set more than 9 breakpoints.

An attemp was madeto access outside the link area.

The starting address is greater than the ending address.

An attempt was madeto clear an undefined breakpoint.

The breakpoint counter was set to F (the maximum permissible value

is E in hexadecimal).
Refer to the “System Command’ manual for other system error messages.

DEB-22

Relocating Loaderss

SHARP

NOTICE

The MZ-80 series of sophisticated personal computers is manufactured by the

SHARP CORPORATION. Hardware and software specifications are subject to

change without prior notice; therefore, you are requested to pay special attention to

version numbers of the monitor (supplied in the form of ROM) and the system

software (supplied in the form of cassette tape or mini-floppydiskfiles).

This manual is for reference only and the SHARP CORPORATION will not be

responsible for difficulties arising out of inconsistencies caused by version changes,

typographical errors or omissions in the descriptions.

This manual is based on the monitor SP-1002 and the SP-7000series FDOS.

INTRODUCTION

LOADING ADDRESS

—— CONTENTS—

«ee © ® e@#& © © e© #& © @© #® #® @® © @© © © © &# © #@® © #® © @ #8 @© @ @ #©# #@# © @ @ @

ee e@ e e@# @# © © © © # @® © e@ © @® © #@ #@©® @# @ © # @ ®@® @ @ @ #& @ @ @ #@ @ @ @

RELATIONSHIP BETWEEN THE EXECUTION ADDRESS

AND LOADING ADDRESS-000-.

OFFSET

SYMBOL TABLE...

LINK/T COMMAND .

eo ¢ e@ © @© # @ @ # @ @# @ @ #® #@# #@® @ @ @ # #© @® @® @© ® @® &@© &® © © @® 8 @® # 8% @

ee © #© © 8» # #@® @© @ @# # © © @ @® © @® @# e© e8 # @# #® @® ® @© #@® @ @ @® @ @© @# #@# 8 @

oe e@ 8@ @ @ @ @© @ © © @® e@ # @ @® © @ # # @® © # © © © @ @# #® @# ® #® © ® @ @

LINK MESSAGE EXAMPLES 002000005

ERROR MESSAGES oo 8*# © @© © @ @ © @ #@# © © © 8&8 © @ ®@® @® @ @# &® @® © @ @ @ 8 @® #@ @® @® @ &# @# @ @

LINK

The relocating loader for the SHARP MZ-80K inputs relocatable files output by the assembler and

outputs object programs(object files).

Relocatable files are not programs which are directly executable by the CPU, but are files which contain

information used to keep programsrelocatable. They also contain global symbols in ASCII code which are

declared to link two or more program units.

The relocating loader fetches relocation information and loads object programs into the link area in

main memory while adding the programmer-specified loading address to the relocatable addresses. When

two or more relocatable program units are loaded, units are appended to the first program unit(file),

if the loading address is specified for the first unit.

The link area is allocated by the relocating loader; it cannot be specified by the programmer. It is used

temporarily by the relocating loader and it does not necessarily conform with the address format of the

object program. The linkage operation itself is described in detail in Section 2.3, Relocating Loaderof

the “System Command” manual. However, the programmer does not need to be aware of details of the

linkage operation details.

When outputting the object program (object file), it is necessary to specify the loading address and the

execution address.

Program unit |

Program unit 2

Relocatable files So

Object file

LINK-1

——LOADING ADDRESS——

The loading address specifies the address at which the object program is to be loaded. When this address

is not specified, FDOS assumesthe starting address which can be managed by FDOSas loading address.

eo esiLinksTESTIand.=and.:assignsthe4
2 address to1200H. -

The figure below showsthe flow of files from the time they are linked by the relocating loader until

they are executed with the RUN command. Numbers @ through () in the figure denote the processing

sequence.

LINK $1200, TEST1, TEST2

0000 Monitor

1200 DOS

_Q TESTI. RB
O DN

Load OF; < The linked object program

Relocatable files _ QO in memory has an address
0 a —_ Sansonvesnonenseewes Save format such that it is loaded

‘CO Linkarea| and executed at address
TEST2. RB 1200 (hexadecimal).

Symbol tablYon eore ® Object file TEST1. OBJ
D000 Video RAM 0
E000 O

Terminal control area

L

RUN TEST1

0000 Monitor

FDOS

The object program is then OC Seem

moved to the area starting at i cuted, the object program is
the loading address. In this 8 .. temporarily loaded into the area

case, the system displays a under control of FDOS.
warning message indicating

that FDOS will be destroyed

and waits for a user response.

When the RUN commandis ex-

D000 Video RAM
E000

Terminal control area

LINK-2

—RELATIONSHIP BETWEEN THE EXECUTION ADDRESS
AND LOADING ADDRESS—

The programmer may specify the execution address as well as the loading address when outputting an

object file through the relocating loader.

The above command links and loads relocatable program unit files TEST] and TEST2 into memory,

specifying a loading address of 8000 (hex) and an execution address of 8200 (hex).

Examples of linkage and loading are given below (numbersin circles in the figures denote the processing

steps). The first example uses a simple RUN command.

Monitor

FDOS @)

Control is transferred to address

8200 after program loadingis

completed.

®@

v 8000———r———e——=*’

Q |Loaded by the RUN command]|

The object program is generated by:

2 Video RAMLINK $8000, TEST1, TEST2, EXEC$8200

Terminal control area
Memory after loading with the FDOS RUNcommand

LINK-3

When the monitor is used to load the object program, its starting address in memory is designated by

the loading address. The program counteris set to the address designated by the execution addressafter

the object program is loaded. The figure below shows how an object program with a loading address of

1200 and an execution address of 2000 is loaded and how controlis transferred.

Loading address 0000 Monitor Execution address

Loaded via monitor o - ueproam / 2000

Object program LOAD $$
@

Execution address = 2000 (hex)

Loading address = 1200 (hex)

The FDOS XFER commandis useful for trans-| D000 ,
ferring the object program to a cassette tape 5000 Video RAM

tile. Terminal control area
Coding example:

LINK $1200, TEST1, TEST2, EXEC$2000 ~

_XFER TEST1. OBJ, $CMT — _ Memoryafter loading with the monitor program

When the object program is loaded by the symbolic debugger or the machine language system com-

mand instead of the monitor, the execution address is ignored and control is retained by the system

program. To execute the program,it is necessary to transfer program control to the required execution

address using the system program G command.

G000 Monitor

Loading address 1200 |

Object program \, :ject prog 5000 |

Read by the Y command Objectprogram

Execution address = 2000 (hex)

Loading address = 2000 (hex)

@
Executed by the

G command

Coding example:

LINK $2000, TEST1, TEST2, EXEC$2000 D000 Video RAM
XFER TEST1. OBJ, $CMT J E000

Terminal control area
Memory after loading with machine language command Y

LINK-4

0000 Monitor

0 1200
FDOS

 Executed with

the G or I command

O >|Objectprogram<filename2>|

DEBUG<filenamel>, <filename 2>

When both loading and execution addresses D000

are omitted, the system assumes system- F000

specified addresses for the loading and execu-

tion.

Video RAM

Terminal control area
Memory after loading with the symbolic debugger

Object programs created with the assembler and BASIC programscreated with the BASIC compiler may

be linked using a library (see the Programming Utility’’ manual) or the BASIC USR statement.

Here, an example is given of linking an object program with a BASIC program using the USR statement.

The figure below shows howan object program is loaded and linked with a BASIC program. The area in

memory which is managed by FDOSis reduced with the FDOS LIMIT command to create a free area.

The object program is loaded into this free area with the BASIC LOAD statement. The BASIC program

can then call the object program as a subroutine using the USR(___+) statement.

0000 Monitor

1200

FDOS

FDOS commandincluded in the

BASIC program which loads

the object program)

U 4=— FDOS commandC000©Ee LIMIT

[Coding example:

Creates a free area

] outside the FDOS

|LINK $C000, TEST1, TEST2 J D000 |" ‘Video RAM
E000

Linked with the BASIC

statement USR ($C000)

[controlled area. J

Terminal control area

Memoryafter loading with an FDOS commandin a BASIC program

LINK-5

——OFFSET——

The programmercan specify an offset to reserve a free area between two object program units.

Execution of the above commandisillustrated below.

0000 Monitor

1200

FDOS QO TESTI. RB
oO

O
Load

Relocatable files

aoJ
C) TEST2. RB

+—Offset (4K bytes)

 V > Link area

 Symboltable

D000 Video RAM
E000

Terminal control area

Note that the loading address and offset are carefully distinguished in the following command:

LINK $1200, TEST1, $1000, TEST2, TBL$20, EXEC$1250

Loading address Offset (4K bytes) Symbol table size Execution address
(approx. 8K bytes)

A 4-digit hexadecimal number preceded by a $ symbolin the first argument position is alwaysinter-

preted as the loading address.

LINK-6

—SYMBOL TABLE——

Information referred to as symbols in the relocating loader and symbolic debugger indicates globally

declared labels (that is, label symbols defined by the ENT or EQU assembler directive) in the source

program. This information is stored in the relocatable file by the assembler for use in linking with other

relocatable programs.

The relocating loader loads label symbols into the symbol table while inputting program units in the re-

locatable files. The symbol table is placed at the end of the link area; its size is set to approximately 6K

bytes by the loader unless otherwise specified by the programmer. The programmercan specify a area of

more than 6K bytes for the symbol table area using the LINK commandasfillows:

LINKTESTI,TEST2,TBLS20.-—————Thiscommandlinks TESTIandTEST2andspeci.
|| -fiesasymbol1table sizeof2000H.{approximately

8Kbytes). : .

TBL$20 in the above commandspecifies that a symbol table of approximately 8K bytesis to be created.

In other words, the programmer can reserve a symbol table area in 256-byte units. As shown in the

memory map, the symboltable is constructed at the end of the link area.

Each symboltable entry is 9 bytes long. The for-

mat of the symbol table entry is shown at right.

Section 2.3, Relocating Loader, in the System

Command manual describes how the loader uses Symbol name Definition Address

this 9-byte information to link relocatable program status

units.

Monitor |

FDOS

> Link area

Symbol table | 6K bytes

D000

EQOO Video RAM E is not

Terminal control area specified
Relocating loader memory map

LINK-7

—LINK/T COMMAND—

The LINK/T commandis used to display the contents of the symbol table after program linking is com-

pleted. It displays a symbol name, its absolute address (in hexadecimal representation) and the definition

status for each symbol table entry. The user can detect symbol definition errors by checking the defini-

tion status.

The LINK/T command has two basic formats:

LINK/T TEST1, TEST2 | Links TEST1 and TEST2 anddisplays the symbol |

table on the CRT screen.

LINK/T/P TEST1, TEST2 : Links TEST1 and TEST2 and ee the“symbol

table on the printer.

— The photo at right shows link and symboltable

information displayed on the CRT screen with P>LINK T UNI T-#1. UNIT T-#2 UNIT T-#2
uaaaeSse ett

n
s

aa
a
aa
e
m
n

W
a
k
ethe LINK/T command for the three program

e
s

a
r
e

[
o
o
m

m
e
r
n

I
units shown on Page 10. Undefined symbols

are labeled 'U .

— Symbol definition messages are listed below.

-
4
|

|

t ‘
n

Pa
te
e
e
e
R
e
e
u

U
r
a
e
i
n
a
t
e
e
e

T
a
n

i}

n
n

di
ne

a
n
e

da
ne

oe

Se
e

di
ne

©
co
k
|

o
e

e
a

r

l
a
n

an
e
6

a =

mab
fag

bi:

ae
Sn ee

atic+
a
man
_?

Rae

a
d
e
d

Undefined symbol (address or data)

Multi-defined symbol (address or data)

Cross-defined symbol (address or data)

Half-defined symbol (data)

Data definition symbol (data)

No message is attached to symbols for which an

address has been defined. U, M, X and H indicate

error conditions.

LINK-8

The listing below showsa print out of link and symbol table information. The symboltable entries

have been sorted as may beseen from thislisting.

LINKING ROPENTEST .RB

TOP ASM.BIAS $5600

HND ASM.BIAS S$56Bl1

LINKING RELO.LIB

TOP ASM.BIAS $56B1

END ASM.BIAS $67 A2

SAVE ROPENTEST . OBJ

LOADING ADDRESS $5600

EXECUTE ADDRESS $5600

BYTEHSIZE 11A2

SYMBOL TABLE

... BRN 6542 .. NSB 6560 . SPO 6554 .T.F S76A

7SHG 639F .. CRLE 63F'6 . FLTO 6772 . INIT 6356D

INTO 5823 - NARY S6AD . NVAR S6AB . SHGH 6564

. SHGB 6565 . TRUE 6529 . VARO 56 A6 . BRCHK 62CE

. CHKSP 62BF - DATAOQ 56A5 . FALSE 652H . FUNCO 6028

. FUNC 6043 - GOO9O 5699 . INPUS 5781 . INPUT 5774

. LOOOA S60B - LOOL14 5623 . LOOLH 5637 . LOORS 564C

. LOOSR D662 . LOOSC 5699 . LINE# 5602 . LOADS 60B3

BOF! O71FE BHR1IL4 644D BRe 6412 HRe4 646B

BRS 641F HRS '7 6482 HR4 642B ER6 643D

HR64 672F BRR £50B FASD SCFC FBNM 5 D9 E

HOCMP2 0 FED HCMP5 SFHD FORARR 67Al1 F’WRKO G@1lADS

ONERAD 655A OPNENC 26B9 OPSP R2S5F OUTDEV 6551

OUTIY 6552 PFALSH 5FCQ PNT 654C PNTDTA 65484&F

PRNT OO12 PSTACK 6556 PTRUE oFC4 PUSHR RR FO

PUT1 CO 2 DS0 PUTCRO 2HOS PUTMO kA DDI1 REVS 5 FBO

RJOB 26 DE ROPHN RZ2D8 SGHTL 28 B'7 SKPBL RRS6

SOUND RARE STACKS 6558 STARHA 6572 $=$(TROB 619F

XOPHN 22 DE A2MAX R6DD

(Note: This listing is not related to the programs on page 10.)

LINK-9

—lLINK MESSAGE EXAMPLES——

First program unit loaded (UNIT-#1)

-TMDLYH: LD

HL ,START |

2DEC. CCE
-LD A,H
CP COUNTO
JR NZ , COUNT
LD | A,L
CP COUNT1
JR NZ , COUNT
CP COUNT2
JR NZ , COUNT
RET

PEND : ENT

7 DEFM =TMDLYH

DEFB ODH
COUNT!: EQU 00H
COUNTO: EQU 50H

END ©

Second program unit loaded (UNIT-#2)

TMDLYL: LD HL , START

LOOP1: DEC H

LD A,H
CP COUNT

JR NZ , LOOP
- RET

PEND: | ENT |

DEFM “TMDLYL |

DEFB ODH

START: EQU 1000H

COUNT: EQU 00H

END

Third program unit loaded (UNIT-#3)

irae

INPUT: CALL 001BH

- CALL TMDLYL

CALL 001BH

LD HL , START
CP ODH
JR Z,END
LD (HL), A

“INC. HL
8IR INPUT

END: JP 0000H

COUNT2: EQU = 12

—END

LINK-10

"STARTX

START is not defined as an addressin the

first program, but is defined as data in the

second or subsequent program with the

START: EQU statement.

NOTE: a a
The EQU statement should be placedat

the beginning of the program unit. —]
''COUNT2"' H

COUNT2 is not defined as data in the

first program, but is defined as data in

the third program with the COUNT?2:

EQUstatement.

“‘COUNT1°'D

COUNT] is defined as data (D indicates

no error condition).

"COUNT" X

COUNTis defined as an address in the

first program while it is simultaneously

defined as data in the second program.

‘'PEND''M

PEND is defined as an address in thefirst

program while it is simultaneously defined

as an address in the second program

(duplicated difinition).

''TMDLYL'' U

TMDLYLis neither defined as an address

nor declared with the ENT directive in

any other external program unit.

—ERROR MESSAGES ——

The error messages issued by the relocating loader are described in the System Command” manual.

Here, only error messages which require particular attention are described.

NO MEMORYSPACE

Indicates that the symboltable is full; that is, that there are too many symbols to be cataloged.

The symbol table size is set to approximately 6K bytes by the relocating loader unless specified by

the programmer. It is necessary to specify the TBL$ argument in the LINK commandto increase

or decrease the symboltable size.

MEMORY PROTECTION

Indicates that the link area is inadequate, that is, that the linked data has reached the symbol table

area located at the end of the link area.

IL DATA

Indicates that the data read from the specified relocatable file has an illegal link format. This condi-

tion may be caused by a hardware read error in the floppy disk drive or by an assembly error in the

SOurce program.

LINK-11

Programming Utility oH

SHARP |

NOTICE

The MZ-80 series of sophisticated personal computers is manufactured by the

SHARP CORPORATION. Hardware and software specifications are subject to

change without prior notice; therefore, you are requested to pay special attention to

version numbers of the monitor (supplied in the form of ROM) and the system

software (supplied in the form of cassette tape or mini-floppydiskfiles).

This manual is for reference only and the SHARP CORPORATION will not be

responsible for difficulties arising out of inconsistencies caused by version changes,

typographical errors or omissions in the descriptions.

This manual is based on the monitor SP-1002 and the SP-7000series FDOS.

—— CONTENTS— U/PROM

PROM FORMATTEReeeeee 1

ACTIVATION OF THE PROM FORMATTER,............... 1

PROM WRITER FORMATS.............0 00.0000 cc cece 3

BNPF 20...eeeee eee e eens 3

130)4

HEXADECIMAL 20.00... cccceee eens 5

BINARY . 0.0...eeee nent eee eens 6

PERFORMANCE BOARDS OF VARIOUS COMPANIES’....... 7

PROM FORMATTER COMMANDS....................000000. 9

FILE INPUT/OUTPUT COMMANDS........................ 9

Y (Yank File) Command...........0 0.00.0... 0.02 eee eee 9

S (Save file) Command02000% wo. @O

FORMATTING COMMANDS..........0.0.0 0.0000. eee 10

P (Punch) Command..........0.0. 000.0 cee eee eee eens ..10

R (Read) Command 20... 0.00. eee ee eee 11

OTHER COMMANDS............0000...beeee 11

M (Memory dump/modify) Command0005. 11

(Change printer mode) Command0000008 12

& (Clear) Command............... 0c cee eee ee ee eee ee eee,12

? (Display free area) Command............ 00: eee eee eee 13

! (Return) Command 0... ee eee eee eee eee‘13

FORMAT COMMANDS.........0...0 00.00013

DIFFERENCES BETWEEN PROM FORMATTERS

SP-7501 AND SP-2501 2.0.0.0...cceee ens 15

PROM FORMATTER (SP-7501) COMMANDS & MESSAGES 16

U/PLOTTER
EXAMPLE OF PLOTTER CONTROL APPLICATION i

INTERFACE CARD0 0.0.0.0...es l

PLOTTER CONTROL PROGRAM.......................04.. 1

1. Conditions for linkage with a BASIC statement 1

2. Linkage conditions when an error occurs 2

3. Use of external subroutines 02.2 eee eee ees 2

4. Plotter control codes 0.0... cece ee eee eee 2

5. Program outline 0.0.0... eee eee eeeeee 3

COMMAND TABLE............ 0. cee eee eee teens 6

OUTLINE OF THE BASIC PROGRAM405. 7

SAMPLE PROGRAM (PLOTTER CONTROL ROUTINES) 10

BASIC MAIN PROGRAM 2.00 cece een ene21

The rapid advances in LSI technology have allowed the functions of a computer’s CPU to

be concentrated onto a single semiconductor chip. These microprocessors are becoming ever more

sophisticated, while at the same time they are becoming less expensive. As a result, the range of fields in

which microprocessors are being utilized is growing rapidly.

One subject of great importance to the development of new device applications is that of developing

efficient application programs; it is not too much to say that the quality of the application program

determines the how well a newly developed device performs. On the other hand, developments in LSI

technology have also stimulated efforts to develop low cost, large capacity memory elements (RAM and

ROM). The increased availability of PROMs which are erasable with ultraviolet rays has had a particularly

strong influence on the development of devices which incorporate microprocessors.

The procedure which is most suitable for efficiently developing application programsis to create an

object file from a source file created through assembly programming using an assembly language, then to

finish the program after debugging. The function of the PROM FORMATTER is to load one or more

object programs created with an assembler and relocatable loader, then to output it to a paper tape

punch after converting it to PROM writer format.

User I/O

] - 2 | CF Punch

Yq
Reader

Functions of the PROM FORMATTER

Object file (OBJ) - Format control :

Diskette

It also allows programs which are written in different formats to be input from a reader for storage on

diskette and enables conversion of programs to the required format for output on paper tapeorthelike.

—ACTIVATION OF THE PROM FORMATTER—M

Entering PROM while in the FDOS command entry mode activates the PROM FORMATTER.

Commands may be entered as soon as activation is completed.

U/PROM-1

The following formats are provided for in the PROM formatter:

0000

1. BNPF Monitor

e Britronics

e Intel

e Takeda Riken

2. BIOF

(e Takeda Riken)

Free area

3. HEXADECIMAL

eBritronics feeeeene ee eeeveveeeeeeeeeeees
. Stack

e Takeda Riken D000 Video RAM

e Minato Electronics E000 Terminal control area

4. BINARY PROM formatter memory map
(© Britronics) (with 48K bytes of RAM)

U/PROM-2

PROM writers are provided in many formats by different companies. This section discusses forms

which are converted by the PROM formatter: refer to the individual PROM writer manuals for details.

The examples in the figures include the file name AAA," the address ‘0000, and the data

“5C, “BDand ‘27: The leader section for the start of punched output and thetrailer

section for the end of punched output are created automatically.

 BNPF

Britronics (Format A)

f > > > D
O

I
t

T
W

wo Z U Zz 'U U 'U Zz Zz Ty

U
W

wm uU Zz 'U U 'U ae
)

Z U “r
j

T
W
N

wo Z Zz ~ Z Z U U uU ‘r
y

U
W ow

 File WH5 C BD 27

name Data

—— The file name is punched in ASCII code (if one is specified). (Using the character ''B" as a file

name will result in incorrect identification of the beginning of data.)

—— {CR} and codes are punched in ASCII code.

—— The space code (20H) and the byte of data at the address specified for RAM FROM? are punched in

BNPF format. The address is incremented successively.

—|CR| and [LF] codes are punched after each 6 items of data are punched in the BNPF format.

Punching is performed in BNPF format up to the address specified for TO?

intel (Format D)

—— This is the same as the Britronics format. The BNPF format is one which hasa relatively high

degree of standardization; thus, the PROM formatter can also be used with devices other than

those which are discussed in this manual.

U/PROM-3

Takeda Riken (Format E)

—is/Alalalsle}#}o}olo}./3|BIN| P/N] P|PiP|N|N|F/S/B/P|N|P/P/P|P|N|P|F/3/BIN P/F])

File Address 5 C BD
name Data

—— The ''$" mark, which denotesthe file name, is punched in ASCII code.

—— The file name is punched in ASCII code (if one is specified).

— and codes are punched. The ‘'$” mark is regarded as denoting the beginning of a

comment statement; the end of a comment statement is denoted with an|LF| code.

—— The "#° mark (which indicates the beginning of an address) is punched, followed by thefirst three

digits of the address specified for PROM ADDRESS? The separator between the address and the

data is punched as .’.

——The data item at the address specified for RAMFROM?is punched in BNPF format. The addressis

incremented successively.

——|CR} and [LF codes are punched after each 6 items of data are punched in the BNPF format.

——A tape leader stop mark ("')") is punched after the data has been punched up to the address

specified for TO?

Note) Care must be taken to ensure that characters which act as control characters (B, :, $, #, etc.)

are not used whena file nameis specified. (Otherwise, incorrect operation will result.)

Takeda Riken (Format F)

—(S/AlAlAlglel#fololo|.j8{Blojifoli}ijifofolFlsiBjifolilafalajojalF olF|)

File 5c apL
name Address Data

 Except for the NPsection, this is the same as Takeda Riken’s BNPF format.

——The B1OF format corresponds to the BNPF format in that 1=P and O=N.

U/PROM-4

—HEXADECIMAL——

Britronics (Format B)

C
T

—|AlalalR ie Elsjcls/Bip/8/3/5/p/3/Diplols/s/o/B/p/o/Diplt(sipi1(Blpl2|Dipl2i5 lp
/
A

File 5c/Upp~/\3 5—~/\3 po s/o BY 9 p11 5s 1 Bb 1 pL 5
name Data

—— Thefile name is punched in ASCII code(if one is specified).

—The "CTRL/A" mark (01H) indicating the beginning of data is punched.

——|CR] and codes are punched.

—The data item at the address specified for RAM FROM? is punched as a 2-digit ASCII code, then a

space code is punched.

——ICR] and [LE] codes are punched after 16 bytes of data have been punched.J ~ =

 Data is punched upto the address specified for TO?

Takeda Riken (Format G)

— [slalalalelEl#lofolo}-|Sisic}-|SiBlp|- /Bi3ai5]-/S/3/p/-|B/ol5]- |Blols Di |)

_ File Address 5C BD 35 3D 05
name

Data

——The "$" mark, which denotesthe file name, is punched in ASCII code.

——Thefile name is punched in ASCII code (if one is specified).

——After and [LF codes are punched (followed by the address specification mark ''#" and 3

digits of the address specified for PROM ADDRESS?) Theseparatoris "’."’ is punched.

for RAM FROM? Theseparator "."’ is punched after the data item.

—— |CR} and codes are punched after 16 bytes of data have been punched.

 Data is punched upto the address specified for TO?, at which point the tape leader stop mark ("')’’)

is punched.

U/PROM-5

Minato Electronics (Format H)

— |alalalt]#}ofojolp/sic{piB/DIp/3/518/3|Dislo|5|pio/Bjp/ol/pisi1is/s 2/5])

File Address 5C BD 35 3D 05 0B 0D 15
name Data

—— The file name is punched in ASCII code when filenameis specified.

—— The start-of-data mark (""[") is punched.

—The address designation mark ("'#"’) is punched, followed by a 3-digit ASCII code for the address

specified for PROM ADDRESS?

—— A space code is punched, then the data at the address specified for RAM FROM? is converted to a

2-digit ASCII code and punched.

16 combinations of space codes and data items are punched, then and [LF] codes are punched.

—The end of data mark ("']"') is punched after data has been punched upto the address specified for

TO?

BINARY——
Britronics (format C)

o
n3/3/3/3/1]}/1]; 12; 2 712/12; 1,272,122 72,2172 ¢2 2 pry. ea ly dyad il yiyiyl 1/5 MSD(upper4 bits)

<— |A/|AIA

O;O/O/O;/S5IC/B/D/3/5;/3/D/0/1/5/0;/Bi1l/5/;1/B);1/D/2/5/12/BiD;iD|F/D|2 B/}C/|D]| LSD (lower4 bits)

File Address Data
name Block

—JIn the binary format, the 4-bit mark section and the 4-bit data section are expressed together as one

character (8 bits). The mark section is punched as the upper4 bits of the paper tape, while the data

section is punchedas the lower4 bits.

——The file name is punched in ASCII code (if one is specified). Specifications which result in a 3" in

the upper 4 bits of the ASCII code file name are not permitted. Such specifications will result in

incorrect operation, since incorrect determination that the lower 4 bits of the file name are an

address will result.

—— Three binary digits for the address specified for PROM ADDRESS? are punched in the lower4 bits.

The address designation mark ("3") is punched in the upper4 bits.

—A data mark (‘'1"') is punched in the upper 4 bits and data at the address specified for RAM FROM?

is punched in the lower4 bits.

——Data is punched 4 bits at a time (with the upper and lower 4 bits punched in alternation) up to the

address specified for TO?

—Check sum marks (5) are punched in the upper 4 bits, followed in alternation by check sum data

in the lower 4 bits.

U/PROM-6

— PERFORMANCE BOARDS OF VARIOUS COMPANIES —
(Note: Consult the various manufacturers for details.)

a) Intel

2716

2732

8748/8741

3621, 3602, 3622, 3602A, 3622A, 3604, 3624, 3604A, 3624A, 3605, 3625, 3605A, 3625A ,3628, 3608,
3604AL-6, 3604AL

8702A,“1702A

8708,“8704,“2708,“2704

8755A

b) Britronics

 3602A “22A, 3604A /24A, 3604AL/24L, 3605, 25, 3608,28

Intersil| 5600710, 5603A “23, 5604.24, 5605.25

Fujitsu 7055, 7051, 7052, 7058, 7053, 7059, 7054, 7057

5330,” 6330, 5331.” 6331, 5300.”6300, 5335.” 6335, 5336.”6336, 53086308, 5309,“ 6309,
53934,68134, 5313563135, 5305,6305, 5306.6306, 53137,63137, 53141.”63141,
_Monolithic Memory| 5340/6340, 5341.6341, 5348,6348, 5349.6349, 5350“6350, 5351/6351, 5352,6352,
|5353,76353, 53806380, 5381-6381, 5384,“6384, 5385.“6385, 5386,“ 6386, 5387,” 6387

7602/03, 7610A /11A, 7620A “21A, 7640A “41A, 7640AR “41 AR, 7642, 43,

7644, 7646R “47R, 7648.49, 7608, 7680781, 7680R “81R, 7680P /81P,

7680RP “81RP, 7683, 7684.85, 7684P_“85P, 7686.87, 7686R_87R, 7686P “87P,

7686 RP “87 RP

Fairchild ———s|-«93417./27, 93436736, 9343848, 93452.52

94/74 S 387, 54.748 287, 54.°74S 470, 54,748 471, 54/745570, 54,7458 571,:] .National-| :-.
77. “87S 295, 777878 296, 54,°748 473, 54/748 472, 54748572, . 54./748 573

Nihon Denki(NEC) 403D, 406D

Raytheon~—s|--29660.61, 2960001, 2961213

82S 114,115, 828 126,127, 828 130131, 82S 140/141, 82S 136 “137, 825 180/181,

a | 82S 2708, 825 184,185, 825190191

54/7488A, 54,748 “88, 5474S 288, 54.,748 470, 54/74871, 54774573,
TexasInstruments _
—id)S54/74872, 54174875

c) Minato Electronics

Adaptable to all PROMs.

U/PROM-7

"SpIeOG
BdULWIOJIOd

SUIeS
94}

Y
I
M
P
s
N
a
q
U
d

SoldIIO
UI

SOINSI
o
w
e
s

oyi
Y
I
M

poje}OUUR
s}UDUATT

O

161SZ8
I9I9LNH

O9I9LNH
—
~

P8E9IT
=

8
<XBP0Z

061S28
919ZWH

9e9€
d¥u489LNH

d
’
9
8
9
L
W
H

YUL89LNH
 4989LWH

_
M
L
8
9
L
N
H
_

s8tsze
d
l
8
9
L
N
H

 d989LNH
2618

=
F
XB¥OZ

pslSze
189LWH

989LWH
dS89LNH

d
?
8
9
L
W
H

S89LNH
y89LWH

T-eeres
€89LWH

80LZ2S28
T-L8t9

809LWH
1-98€9

ISPEG
V8Z9E

09024
Levad”

I-S8£9
osees

d
u
I
8
9
4
N
H

d
4
0
8
9
Z
W
H

¥809E
O
s
e
o
u
a
n

O
o
r
a
g
”

Z618=
8

xX2
0
1

18ISZ8
1-¥8€9

YI89LNH
 Y089ZNH

osisz9
I-18€9

dI89LNH
 d089LWH

1-08€9
189LNH

089LWH
1-€S€9

dfv9LNH
d
2
9
9
L
W
H

LelS2e
cESLZNV

1-2S€9
ESPEG

V¥99LINH
¥99LWH

VSZ9E
9Z9SWI

@
s
s
0
e
a
n

@
i
e
e
r
a
d
”

o60F
=
 XPZOT

9E1S28
ZESLZNV

1-1S€9
ZSPE6

VEV9LNH
€¥9LWH

VSO9E
909SWI

+SOLEW
ag9ordd”

1-0S€9
VZ*9LNH

Z¥9LWH

iisee
ZSZAV

Léres
S
e

aneinn
SUPSHNS

92S
L
2
N
V

[-8€9
BPPE6

VLYSHLNS
V9z9e

SZOSWI
a
s
z
v
a
d
”

O
r
I
S
z
8

U
V
I
V
9
I
L
N
H

U
V
O
V
9
L
N
H

©
960%

=
8
<
z
I
S

1-0F€9
BEPC

ELVSPLNS
Vr09E

SO9SWI
a
s
o
r
d
d
”

S
t
I
S
2
z
g

S
I
S
L
Z
N
V

V
I
V
9
L
N
H

I
v
¥
9
Z
W
H

Z
L
Y
S
¥
L
N
S

I
Uve9

VOV9LN
HH

_O¥9LWH
1€1S28

EISLZNV
1-90€9

€196Z
OFPE6

VIZ9LWH
1292WH

ZZ9€
yZ9SWI

@
s
s
o
l
a
n

arog
—

#
X216

og1sze
ZISZZ2NV

1-S0€9
21962

9EvE6
V0Z9LWH

029ZWH
Z09€

yOOSWI
€SOL€W

:

rsetes
629LWH

1-9€€9
10962

ILPSPLNS
rIISZ8

I-S£e9
00962

©
O
L
P
S
P
L
N
S

B8r0Z
=

8
<
9
S
Z

1-609
USZ9LWH

1-809
19962

-
621S28

IZSLZWV
1-10€9

09962
L2VE6

II9LWH
 WII9ZWH

L8ESPLNS
1Z9€

EZ9SWI
LSOLAW

p
z

rf
=

9z1S28
0ZSLZWV

1-00¢9
£9962

LIWE6
OI9LWH

 VOI9LWH
L8ZS¥LNS

109€
VEO9SNI

00.7SW
@
2
s
o
r
a
w

@
a
c
o
r
d
d

veol=
§
x9Gz

29962
P

Ez1S28
6ISLZNV

1-1€€9
€09ZWH

e
e
e
t
i
N
e

OL9SWI
OEL

Y
S

9S0LaW
ose

=
8
xze

ezSz8
SISLZNV

1-0€£9
£0S‘19LWH

Z09LWH
OO9SWI

ISOLaW
~

V88IVLNS
|

a
d
d
]
sejodig

SSZ8

S
0998SN

Z6lg=
8
XFz0l

OESSOWI
/

960%
=

¥
X
2
0
1

)
@
®
S
9
O
W
I

-
960%

=
8
X
Z
I
S

ZEStSWLL
ZELZ

89LcE
=

8
X960F

O@sts@SWl
©

9
2

©9tLz
S
W

©
9
I
s
s
a
w

©91LZ99NH
@adagtlzdd”

®
D
e
z
e
w
W
L

P8E9T=
8
XBFOZ

@
9
I
l
L
Z
S
W
L

BSLZ
@®

8022
@®

s0LZzwv
@®

80/24
@
s
o
l
z
S
w

>
a
e

@®s0lZ
1
S
W

@
s
i
s
s
a
w

@®s0LZ299NH
@dassrada”

@
O
z
z
e
w
n

LL.
@
s
s
L
E
W
S
W

Z618=
8
X#ZOl

@®
v01z

9607
=

8
XZIS

P
O
l
I
W
W
L

Broz=
»
XZIS

DIZUNWLL
V20LI

cISsaw
nf

=
®

vz0olt
@®v20L1WV

®
vzoot

@
z
0
L
l
1
s
w

cOSeaW
@vZ20L1SENH

Obarsvad
8h0Z

8
X9SZ

edd
T
S
O
W

uaylYy
epoyey

(p

U/PROM-8

—— FILE INPUT/OUTPUT COMMANDS——

Y (Yank File) Command

Reads the object (OBJ) file specified by the file nameinto the free area.

_>KYCHARAGEN:[CR 2as .ReadsinCHARAGEN.OBJ| -
_FROM??8000TO:87FF .oo _Specifiesread-infromaddress#000

(read:upto.addressBFE)

 File name can be specified by entering a Y (Yank file command) when ‘> appears to indicate

that commandentry is awaited.

——Specify the starting address of the file to be read in as a 4-digit hexadecimal number. (Reading will

start at the address specified regardless of the actual data address of the objectfile.)

———The last address read is displayed whenfile read-in is completed.

Caution

The address specified for read-in must be in the free area.

S (Save file) Command

Writes the specified program (or data) in the free area onto a diskette.

kSTEST#2(ER) oa27oeprogram(data)toTEST#2.OBJ»

_FROM ? 8400 TO 287E7 .oeOutputPozar(afromaddress8400

EXECUTE21200DATA+21200 :to87E7 oe

ce:eeeaddress1200,dueaddress.1200

 File name can be specified by entering an S (Save file) command when ">" appears to indicate

that commandentry is awaited.

——The addresses of the memory block in the free area which is to be output are specified with 4-digit

hexadecimal numbers.

—The execute address and data address of the object (OBJ) file created are specified with 4-digit

hexadecimal numbers.

The data address is the address to which the program (data) is to be reloaded into memory by a

later RUN or LOAD command.

The execute address is the address from which a program reloaded into memoryis to be executed.

Specify OOOO wheneither of these addresses is not necessary.

U/PROM-9

FORMATTING COMMANDS—

P (Punch) Command

Punches data in the free area in the specified format.

—— Enter the P (Punch) command when "x" appears to indicate that commandentry is awaited.

 Next, the file name is specified. This is not the file name whichis included on the diskette, but the

name which is to be punchedat the beginning of the tape. Refer to the explanations of the various

formats for details. (When no file name is needed, enter only ICRI)

——Next, specify the conversion-format (A-H) and enter ICRI .

——Specify the starting and ending addresses of the memory block in the free area which is to be

output with 4-digit hexadecimal numbers.

Finally, specify the PROM write address. (This step may not be required, depending on the

format.)

The P command described above outputs formatted data to a PTP device. (More precisely, $PTP/LFis

used as the output device.)

The PROM FORMATTERcanalso output converted format data to devices other than PTP (including

user I/O and diskette).

(Ex. 1) *PS$USRI1 Outputs to user I/O

(Ex. 2) *PXYZ Outputs file name XYZ. ASC to the diskette.

(Ex. 3) *P$PTP/PE/LF Adds even parity to data, affixed after and outputs

to a PTP device.

An an application, data may be sent directly to the PROM writer by creating hardware and user

routines for its online interface.

U/PROM-10

R (Read) Command

This command reads in data formatted in the BNPF, HEXADECIMAL formats from a paper tape

reader.

RAM.“FROM.2oeTO.)SPF — Ain‘thefreeareainto> whichdataissto
FILENAMEPROM#2— cc.Chr—

——— Enter the R (Read) command when ""' appears to indicate that command entry is awaited.

 Next, specify the format of the data to be read.

Finally, specify the starting address of the free area into which the data is to be read with a 4-digit

hexadecimal number.

———The last data address and the file name are displayed after the read is completed and entry of the

next commandis awaited.

With this PROM writer format, it may not be possible to read tapes punched using other programs

because of the need to maintain a certain minimum degree of redundancy.

The R command described above reads in formatted data from a PTR device. (More precisely, $PTR

is used as the input device.)

The PROM FORMATTER can also read in converted format data from devices other than PTR

(including user I/O and diskette).

(Ex. 1) 2%*RS$USR2 [CR] Input from user 1/0
(Ex. 2) -KRXYZ [CR] Input from XYZ. ASC onadiskette

(Ex. 3) * RS$PTR/PE[CR|] Inputs data with even parity affixed from PTR.

—OTHER COMMANDS—

M (Memory dump/modify) Command

This commandis used to display and modify the contents of the free area.

kM[ER] . — a — oo. Morne
RAMFROM?7000TO?oi _ Areatobe displayed.

.ies 73 C85F01C65F CD Seasaes
- 7008 6022 D8& CD3E 28 CA 27. ®aSwan

U/PROM-11

——Enter the M (Memory dump/modify) command when "xappears to indicate that command entry

is awaited.

—Next, specify the starting and ending addresses in the free area of the data to be displayed with 4

digit hexadecimal numbers.

——The PROM FORMATTERdivides data in the specified addresses into 8-byte segments and displays

the address (4 hexadecimal digits), the 8 bytes of data (as groups of 2 hexadecimal digits) and the 8

corresponding ASCII characters in that order. However, when the corresponding ASCII character

cannot be displayed, a ‘’.” is displayed in its place. Further, data is printed in 16 byte segments

when the printer is used with the "#°° command.

Execution of the M command can be suspended or resumed bypressing ISPACE| . A switch can be

made to the command entry modebypressing | SHIFT| + IBREAK|.

——If no change is required in data displayed using the M command,just press [CR]. When a changeis

required, move the cursor to the position where the change is to be made and press ICR] after

entering the 2 new hexadecimal digits. (The change is made when ICR| is pressed.) After data

modification is completed, move the cursor to an empty line and press ICR| to return to the

command wait state.

—— Data can also be changed using the cursor when display is suspended with [SPACE] . In this case,

display is resumed when the cursor is moved to an empty line and is pressed.

Caution

Data is only printed when the printer is used with the "#command; modification of data is not

possible in this case.

(Change printer mode) Command

This command starts and stops output to the printer. Printer output is OFF when the PROM

FORMATTER is activated, and is changed from ON to OFF to ON each time the "#' commandis

executed.

Whenprinter output is ON, data is printed almost as it appears on the display screen.

& (Clear) Command

Buries the entire free area in hexadecimal code (FFH).

U/PROM-12

? (Display free area) Command

Displays the free area.

! (Return) Command

Terminates the PROM FORMATTERand returns to FDOS.

—FORMAT COMMANDS—

Format commands are commands entered when “FORMAT?”is displayed during execution of the P

and R commands. Selecting one of these commands during execution of the P command determines

whether data is to be punched in BNPF, HEXADECIMALorother format. Failure to specify the correct

format command during execution of the R commandwill result in failure to correctly read the program

into the free area.

A Command

Used to specify the Britronics BNPF format. The control character B' may not be used when the

file nameis specified.

B Command

 Used to specify the Britronics HEXADECIMALformat.

C Command

 Used to specify the Britronics BINARY format. Numerals and the codes (: ; <=>?) may not be

used whenthefile nameis specified.

——The message "PROM ADDRESS?" is displayed during execution of the P command to request

specification of the PROM loading address; specify it as a 4-digit number.

— Check sumsare written following the data (with the P command).

 Data fromthe address specification to the check sums constitutes one block; if data is to be loaded

into an address which has been skipped, the operation must be divided into two or moreparts. This

also applies when two or more blocks are read in with the R command.

D Command

——This commandis used to specify the Intel BNPF format.

U/PROM-13

—— The character ‘'B’ cannot be used in the file name.

E Command

——This commandis used to specify the Takeda Riken BNPF format. The character ‘'B'' may be used

in the file name.

—— file is a block which begins with '$" and ends with "’)”.

—— The message “PROM ADDRESS?" is displayed during execution of the P command to request

specification of the PROM loading address; specify it as a 4-digit number.

—— If two or more blocks are to be read out or written in, the operation must be divided into two or

more parts.

F Command

——This commandis used to specify the Takeda Riken BIOF format. The character “"B"’ may be used

in the file name.

——A file is a block which begins with $" and ends with ")”.

—— The message "PROM ADDRESS?"is displayed during execution of the P command to request

specification of the PROM Loading address; specify it as a 4-digit number.

———If two or more blocks are to be read out or written in, the operation must be divided into two or

more parts.

G Command

——This commandis used to specify the Takeda Riken HEXADECIMALformat.

——A file is a block which begins with '$° and ends with "’)”.

——The message “PROM ADDRESS?”is displayed during execution of the P command to request

specification of the PROM loading address; specify it as a 4-digit number.

—If two or more blocks are to be read out or written in, the operation must be divided into two or

more parts.

H Command

——This commandis used to specify the Minato Electronics HEXADECIMALformat.

——Thestart-of-data symbol ("‘["') may not be used inthefile name.

——The message "PROM ADDRESS?" is displayed during execution of the R command to request

specification of the PROM loading address; specify it as a 4-digit number.

Denote the end of data with the symbol "|".

U/PROM-14

This manual is written for FDOS PROM formatter SP-7501; the principal differences between this

version and the previous cassette-based version (PROM formatter SP-2501) are described below for

reference.

This version includes a RELOCATING

LOADER (SP-2301) and SYMBOLIC DE-

BUGGER (SP-2401) as well as the PROM

| formatter. These allow input of relocatable

files (RB).

File input/output is from/to cassette tape

only.

The OBJ file must be created using the

FDOS LINK command.

Object file I/O is from/to diskette only.

I/O for converted format files (with the

exception of $MEM and $CMT) is possible

with all FDOS devices.

Paper tape parity is determined with the

>KFPC (Parity Change) command. Non-parity is standard; if a parity speci-

fication is to be made, specify it in the

following manner: >KP$PTP/PE/LF.

Some of the commands and messagesare different.

U/PROM-15

EON

S (Save)

Y (Yank)

Saves the program (data) in the free area on diskette.

Loads a program (data) from the diskette into the free area.

P (Punch)

R (Read)

Punchesthe specified contents of the free area in the specified format.

Reads in a paper tape punchedin the format specified in the command.

& (Clear)

#
?

! (Return)

M (Memory) Displays and modifies data in the free area.

Buriesall data in the free area in hexadecimal code FFH.

Switches the list mode for listing on a printer.

Returns control to FDOS. Displays the starting and ending addressesofthe free area.

MEMORY PROTECTION

IL COMMAND

IL DATA

CHECK SUM

$LPT:NOT READY

$PTP:NOT READY

$PTR:NOT READY

An address outside of the free area was specified.

The command wasnot entered correctly.

The format specified does not match the formatread.

Check sum error

Theprinter is not ready.

The paper tape punchis not ready.

The papertape readeris not ready.

Y,S,P,R,M

Y,S,P,R

R

R

#
P

R

See the ‘System Error Messages’' in System Commandfor other error messages.

Note:

Entry of characters other thannS YPRM&#? or ! will cause a return to the command waitstate after

the commandtable is displayed.

If a character other than A-H is input while FORMAT?is displayed and format entry awaited, the

format table will be displayed, after which the format entry wait state will be reentered. A return can

be made to the commandwait state at this time by pressing fSHIFT| + |BREAK\.

U/PROM-16

Using the eidtor, assembler and BASIC compiler of FDOS, main programs can be written in the

familiar BASIC language without reduction in processing speed if control programs are made for control

hardware. Another benefit is that commands developed by the user can be used as BASIC commands.

——INTERFACE CARD—

The universal interface card MZ-80I/O-1 is used for the interface between the MZ-80 series computer

and the MIPLOT WxX4671 plotter.

The connection conditions are as hown in Figure 1.

_Output port(OFH) | -Inputport(EH)

I/O card Plotter side yO card Plotter side.

0 27 STROBE 117 7O-—Q) ON”

O 26 DB 6 I 16 6.) ON 5(V)

0 25 DB 5 115 Grounded on 5) ON SN7406
> the universal. (output) 220 Q

0 24 DB 4 114 interface card 4(O—O ON Data

O 23 DB 3 113 OO OFF tine° gO SNT4LS125A £3900
0 22 DB 2 112 , 20™0 OFF (input)

0 21 DB 1 111 ERROR 10™O OFF

O 20 DB 0 110 BUSY

a) Connection conditions for all input terminals b) Address switch settings c) Data line termination

Fig. 1 Connection conditions conditions

SN7404 is included as the data driver for the universal interface card, but ICs 14 and 15 only are

changed to SN7406. All data line and status input terminations are made as shownin Figure l-c). A 1.5m

cable can be used for this purpose.

See the universal interface card instructions for details.

—— PLOTTER CONTROL PROGRAM——

This section may skip if you are not interested in assembly subroutines.

1. Conditions for linkage with a BASIC statement

Conditions for linkage with a BASIC statement

(a) Command names must be externally declared with the ENT statement..........SIZE:ENT

(b) The number of parameters must be specified. DEFB 1 (1 parameter)

(c) The parameter type must be specified. vececeeess DEFBO (real number)

(d) Buffers must be specified for parameters.......... SE:DEFS2 (2 bytes reserved)

(e) The RET instruction must be includedat the endof all control routines.

The aboveare the linkage conditions; the processing program is written between items(d) and(e).

U/PLOTTER-1

2. Linkage conditions when an error occurs

(a) A subroutine is used from FDOSlibrary RELO.LIB. CALL BEERR

(b) The error numberis written.......... DEFB 80

(c) The error message is written DEFM 'PLOTTER ERROR’

(d) The terminator is written.......... DEFB ODH

This causes*KER 80: PLOTTER ERRORto be output on the display screen when a plotter error

occurs.

3. Use of external subroutines

This control program uses 4 routines out of the subroutines included in FDOSlibrary RELO. LIB.

One of these is BEERR, which was shown above; the remaining three are as follows:

(a) .INTO

16 bit binary data is set in the HL register with a sign attached when an address with a

parameter is loaded in the HL register and called. All registers except the AF register are

protected in the event of an overflow if the carryflag is set.

(b) CASC’

The unsigned 16-bit binary data from the HL register is converted to ASCII code and

stored in the address indicated in the DE register, then ODHisset.

(c) .MOVE’

When the parameter contains a type | string and an address with data is loaded in the HL

register and called, a type 2 string is set in the address indicated by the DE register and

ODHisset.

See the Library/Package’ instructions for details on all subroutines.

4. Plotter control codes

All data for the MIPLOT WX4671 currently used is in 7-bit ASCII code. Input statuses include the

BUSYsignal and the ERRORsignal. Data output is possible when the BUSY signal goes low, and the

data is taken in on the plotter side when the STROBEsignalis output.

"|"' (that is, 2CH) is used as the data delimiter and 03H-ODHare valid as data terminators. However,

only OAH will be accepted when an error occurs; an error condition is not cleared by any data

terminator other than OAH.

At the port on the MZ-80 side, OEH is used for. the status (that is, as the input for the BUSY and

ERRORsignals) and OFH is used for the data and STROBEsignal output.

U/PLOTTER-2

5. Program outline

Linkage conditions for a BASIC compiler have already been indicated; however, string type becomes

applicable in the parameter type specification with the 80H. Moreover, parameter types and parameter

buffers must be added depending on the number of parameters; the steps described in subparagraphs (c)

and (d) of that section are not required if the number of parameters is zero. See routines CTYPE, SIZE,

PLOT, HOME andso forth of the assembly listing for this.

This is illustrated using the PLOT routine as a representative example. The flowchart is as shown in

Figure 2 (pages 4 and 5).

(a) Data output

Although subroutines: COUT, PLOT1 and DOUTare used, DOUT is the one which actually outputs

the data. With DOUT,the data set in the accumulatoris output to the plotter with the STROBEsignalif

the BUSYsignal of the plotter is LOW. If BUSY is HIGHthe routine repeats a loop.

With COUT and PLOT], the data at the address indicated in the HL register is loaded in the

accumulator and then DOUT is executed; this is repeated until ODH is output. After ODH is output, a

check is made for plotter errors and a jump is made to the error routine if any are found. Note that

continuation of program execution is possible if ON ERROR processing is provided on the BASICside.

(b) Data conversion routine

As was indicated previously, all data must be converted into ASCII code since the plotter will not

accept data in any other form.

Subroutine BTOA uses the RELO.LIB routine in FDOS to convert data to ASCII code. This is as

shown in the flowchart in Figure 2-a) and paragraph 3, “Use of external subroutines’’ ; however, checks

are also madefor positive, negative and overflow data.

(c) PLOT x, y routine

As is shown in the flowchart, the two parameters x and y are specified following the external

declaration. The parameter type is real number and twobytesare set in the parameter buffer for both x

and y.

The pre-conversion data address, the starting address o

conversion and the maximum value of x are loaded in registers H

is called and the data is checked and converted to ASCII code. Afterwards, the data delimiter for the

plotter ("','') is loaded and the process is repeated for y. The starting address of the data converted into

ASCII code is loaded into the HL register, the 44H ("D"') command (which drawsa line on the plotter)is

loaded and COUT is called. With COUT, the contents of the address indicated in the HL register are

output to the plotter following the command.

U/PLOTTER-3

(PLOT | BTOA

—

y
External] INTO |
declaration Data at the

address indicated
in HL converted

Numberof to binary and
parameters set (2) X and y stored in HL

Y
Parameter type set

(real number)

 Overflow?
(CF=1)

X coordinate

2 buffer bytes set
for the data
address (PX)

Y
Parameter type set

(real number)

CKNEG
Check whether
data is positive
or negative;
display an error

message if negative.

/

Se
tt
in
g
o
f
li
nk
ag
e
c
o
n
d
i
t
i
o
n
s

_ y coordinate CKCOD

2 buffer bytes set Check whether

ror the data orsmalienthas
address (PY) the data in BC:

error if larger

HL< addressON real fo
number (x)

DE+Start of the CASC' |
ASCII code buffer _ Binary data
BC+Maximum data indicatedby HL

converted to
value (x) ASCII and store

in the address

| DE saved | indicated by DE.

Y Lo

Y
INS 2C

2CH ("7")

inserted in

place of ODH.

HL« address ofreal
numberly

DE<address follow-
ing 2CH

BC<Maximum data
value (y

!
BTOA

Y
DE~HL

(POP HL)

A*44H (‘'D")
commandfor
drawinga line

COUT
a) ASCII conversion subroutine

Fig. 2 PLOT routine

U/PLOTTER-4

(PLOT1

| COUT

y

DOUT

>
*y

ACC<—(HL)
’

DOUT

v

Mask bit 7

HL<-HL +1

PLOT 1

(Error display)

no

Return

b) Data output subroutine

Fig. 2 PLOT routine

U/PLOTTER-5

no

| DOUT

Save AF

 ——4

Status broughtin
Ready ?

yes

AFrestored

Logical sum of

accumulator and

80H obtained

to set the strobe

Y
Data, strobe

output

aE_——.
Return

—COMMAND TABLE——

Table 1 Plotter control commands

- _ Draws a straight line from the current position of the pen to the coordinates x,y;

| x = 0—3600, y = 0—2540 are the possible range (othervalueswill result in an error).

PLOT Ax, Ay _ oes a Straight line from the current position of the pen for the values of +Ax, +Ay

ee Omly.

Lifts the pen and movesit to the position indicated by coordinates x and y. x = 0-3600,

—] . | y = 0-2540are the possible range (other values will result in an error).

| _IMOVE Ax,Ay a Lifts the pen and movesit by an amountindicated by +Ax, +Ay.

4 | Draws a scale with n divisions on the X axis at intervals indicated by x.

_ | Drawsa scale with n division on the Y axis at intervals indicated by y.

= Prints the character string indicated by A$.

| Specifies that characters are to be written in the size indicated by n;n =0—15.

Specifies that characters are to be written in the size initially set for the plotter (n = is

| output automatically).

Drawsa dotted line over the interval specified by x (x<127).

Drawsa line of dots spaced at intervals of 3 mm.

Clears DOT x or DOTM andreturnsto straight line.

| Pen up (same function as IMOVEO,0)

a7 Pen down (same function as IPLOTO,0)

Rotates characters by the angle (in the counterclockwise direction) specified by n.

n=0—-3 n=0...0° n=1...90° n=2...180° n=3...270°

Writes the mark specified by n.n = 1—6

n=1.... n=2..@ n=3..0 n=4.. 4 n=5..XK% n=6.. 9

Moves the pen to the x, y coordinates it was at when the power was turned on clears the

error lamp and clears plottererrors.

Clears plotter errors when they occur; the error lamp is not cleared, however.

Values indicated by x and are specified as integral multiples of 0.1 mm; for example,

PLOT 100,2000 results in a line being drawn to x= 10 mm and y = 200 mm

U/PLOTTER-6

dQ) External declaration made

to link with commands

used in the plotter

control routine.

’

(2) Draws the FDOStitle.

y

(3) Makes a diamond shaped
pattern.

]

Y

(4) Rotates the character

string ''3D-GRAPH"' and
writesit.

Y

(6) Draws the 3-dimensional
illustration

y

(6) Drawsscales on the X
and Y axes, adds marks

to the data and draws

a graph.

(7) Writes the characterstring
"SHARP" in varying sizes.

Y

Writes representative
characters in normalsize.

9) Draws an outline by

writing solid lines, and

dotted lines with variably

spaced segments.
y
 (10) Pen up and pen downare

tested

|

End

Fig. 3 Flowchart of the BASIC program

—— OUTLINE OF THE BASIC PROGRAM—

As is indicated in the flowchart at left, the program

consists of 10 subroutines.

At @, the EXTERNAL statement is used for linking the

program with the plotter control program commands.

Although it is not necessary to use line numbers with

statements other than GOTO and GOSUB, theyare used in

other locations to make the program easier to understand.

At @,the title of FDOS is drawn from line number 110 to

910. This routine uses the MOVE, IMOVE, PLOT and

IPLOT commands.

At @), a diamond pattern is drawn from line number 920

to 1050. MOVE X, Y is used to return the pen to the

starting point, while IPLOT A, B is used to draw the

pattern.

At @, "3D-GRAPH ' specified by A$ is written at 90°

angles with ANGL I and CTYPE A$ from line number

1090 to 1140.

At ©, repetitions of attenuated SIN (X) and a 3

dimensional graph are drawn from line number 1190 to

1910. The 3 dimensional graph is drawn in dots using the

PUP and PDOWNcommands.

Try changing the program from line number 1500 to 1510

as shown below to draw the graph with solid lines.

1500. IF (A-2)> T THEN 1520

1502 T=A

1504 IF S=0 THEN MOVE DX, DY:GOTO 1508

1506 PLOT DX, DY

1508 PDOWN:S=!1

1510 RETURN

1520 MOVE DX, DY:T=A:S=0:GOTO 1510

With this program, S indicates the pen status: s=O raises

the pen while s=1 lowersit.

U/PLOTTER-7

At ©), scales are drawn on the X and Y axes with the XAXIS and YAXIS commandsand marks are drawn

on the graph with the MARK command; this processing is performed from line 1990 to line 2190. The

dotted line is drawn with the DOTM command, and the LINE commandis used to return to a solid line.

The curve is a drawing of SIN (X)/X. Refer to the commandtable for these commands.

At @, the SIZE command is used from line number 2390 to 2460 to write the word SHARP in

characters of varying sizes. Afterwards, the CSIZE commandis used to return to standard size.

At @®), representative characters of standard size are drawn from line number 2790 to 2820.

At @, the HOME, DOT and LINE commandsare used from line number 3000 to 5010 to draw the

surrounding outline by changing betweensolid lines and dotted lines of varying pitch.

At , pen up and pen downaretested from line number 5100 to END.

If the program is written so that the HOME commandcan be executed if an error occurs with the

plotter, the error can be cleared, the error lamp extinguished and the pen returned to the starting

position. If the ERCLR commandis used (it is not in this program), the error can be cleared without

moving the pen; however, in this case the error lamp is not extinguished.

 —Conclusion

As has been shown above, user-written programs can be easily linked with BASIC. By observing the

conditions for linkage, it is possible to connect many devices other than the plotter. When a main

program is created using the assembler, it may be necessary to output a picture on the display screen.

The BASIC compiler and FDOSare very useful for this purpose. Further, the processing is the same as

with machine language. The photograph on page 9 showsthe result of execution of this program.

U/PLOTTER-8

Hdty¥O-d¢e

3
D
-
G
R
A
P
H

3D-GRAPH

H
d
t
d
O
-
d
¢

x
ee —*e& ~ 2 ——~ ue

\ 4

\ 4

es tl x
\ 4

ri {\,

VU V XAXIS

PEN UP DOWN

w= SsHARP SHARP aL SLD DW DLDe OD On na aaenooee
ee

—— References——

|. Watanabe Manufacturing Co., MIPLOT WX4671 Instruction Manual

2. Sharp Corp., Universal Interface Card Instruction Manual

U/PLOTTER-9

——SAMPLE PROGRAM (PLOTTER CONTROL ROUTINES)—

at
a2
az
84
85
Be

BE
a9
1G
11
12
13
14
15
16
17
is
i9
20
21
22
oe
hon!

24
2a
26
ae!

L
N
b
o
b

M
s
p

‘=

ol
32
32
354
39
Sé
3
38
St
oF

40
41
42
42
44
45
46

46:
4%
we

Hue
HHMaG
6UHG
Beau
Hau
BUH
HWE
bene
HOO
BWEEG
AHGH
6Ha0
G6baGb
GHA
HBG
HObG
BUGu
Baw
AWG
abou
Hee
G6h0
BGGu
bua
HBab
Buna

* 4600
Guy

HHH8
Guan
BbuUGB
Hues
BUH
6uau
ABBY
G460
6Y16
0016
6618
BH1 1
Gu12
6014
6015
Be?
aB17
GW1A
8G1D
Q@B1E
GB2 1
ay24

a
0G

Bb

ZA12He
1ivaue
Do
B111BE
COSCH2
Cb6D82

PAIGE G1 4

a * sa 8 33 RTD HA RH AHWR TH SHSOewt

: PLOTTER CONTROL

3 a

PLOTTER We deri
UMIWERSAL 1-0

: BASIC SUBROUTIM LIMK

4
2
4
5
w
e

CALL ..INTe
WITHOUT AF KEEP
1EeBIT BIHAR’ TO HL

CHLL CHSC ”
WITHQUT HLEHF KEEP
HLCLeBIT BIMHRY 3 TO CE ADDRESS
CDES=ASCII EHD=8GCH

CHLL BEERR
ERROR MSG DSF-OUT

CALL .MOWE ”
CHE TYRE FARAMETER TO ASCIICODE*HL TO CE>

> PORT

FLTS: EGU GEH
FLTD: EQU &FH

: MOWE %,4CREN LP

MBUFFS DEFS +16

MOWE: EMT
DEFB 2
DEFE

Mess DEFS +2
DEFB &

Mis DEFS +2
a
?

LD HL» Mao
LD DE. MEUFF
PUSH DE
Lo BC, WE11H
CALL ETOH
CALL IHS2c

U/PLOTTER-10

SFLOTTER STATUS READ
SFLOTTER PATH OLIT

>NO OF PARAMETER
SREAL HO.

>REAL HO.

te
d

y
s

S
a

m
e

1
Ve
62
O4
B=
BE.
Ur
WS
9
1@
11
“
y
-
SS

14
is
16
17
1s
13
24)
21
22
23
24
20
26

2o
2a
3a
Sl
32

34
oO

37
38
39
40
41
42
43
44
45
46
4?
A

49
Ju

K+:

“G27
HE2ZA
8620
6834
8831
Q623
GB36
GB26
BUS6
6836
6046
8846
6b46
6647
8643
884A
646
664D
664D
68350
6653
6654
8857
665A
885D
OWE
60635
BBE6
6067
Q069
egeC
6g6C
6G6C
eB6EC
B87
BB7C
BBC
687D
QG67E
eese
HOS 1
6083
6883
6686
6689
688A
68D
farcatlafa
Bole

BO93
6B96

23@ HSSEMBLER SF-7181

ZA1Sue
BIEDUS
CbSCk2
Et
SE4D
034201

Bz
Bu

aa
fh?

2A4868
113666
DS
O1116E
Cb4Ca2
Cbé6éDGZ
ZA4SBHG
VIEDES
CP4CH2
Ei
SES2
C34261

“
=

ou

6a

ZAERO
116C06
DS
B1116E
CD3C@2
CAAnas
LYOUUsL

2A3106
O1116E

: INCREASE MOWECPEN UPDw. DY

PAGE G2

LD
LD
CALL
POF
Lo
JF

IMBUFF: DEFS

IMCVE:

IMs

Ir‘:

s
3

ENT
DEFB
DEFB
DEFS
DEFB
DEFS

LD
LD
PUSH
LD
CALL
CALL
LD
LD
CALL
FOF
LD
JF

2 X-AXIS

G@RXBUF: DEFS

SHATS:

OAs

RXS

EMT
DEFB
DEFB
DEFS
DEFB
DEFS

LD
LD
PUSH
LD
CALL
7h 8
LALL.

LD
LD

op: 34:

HL» cfd?
BIC, 89EDH

ETCH
HL
AH: 4DH
COLIT

+16,

+
O

+
G
o
p

f.
8

be
s

-L»<IMes
CE, IMBUFF
DE
BC, BE11H
NSETOR
INS2ZC
HL» cIty>
BC, B9EDH
NSBTOR
HL
A»S2H
COUT

+16

+
@

+
@
b
3

7
h
h

HL; ¢QK)>
bE, QRXBUF
DE
BC, @E11H
ETQA
FT & afm Me™

INSZC
HL» “RX?
BC,@E11H

U/PLOTTER-11

t
s

i
n
. k
m
)

> “M* MOVE CMD

;NO OF PARAMETER
>REAL

;°R° RELATIVE MOVE CM

sNO OF PARAMETER
sREAL

sREAL

33680

49
a

ae

Wed
GBC
BESE
HAG
HOA
GHA
BAL
BEER
BBE
GHEE
ME 1
HUE?
HUBS
BUBS
BOB?
GGB?
GHBR
GHEE
HOBE
GBC 1
Que4

2 OC?
WECA
wHECD
G60
BedZ
605

: BUDS
14]BES:
BUO3
6808
68D8
GBE8
HUES
6BE8
@BE9

* @BER
BEC
HWED
G@YEF
GWEF

: GBF2
OGF5
GGF6
GGF9
OHFC
GOFF
0142
0165
148

ect ASSEMBLER SF-riel

co3acez
3E21
Lene

a2
an

He

ZABLE
11HuWe
Do
GLEDES
LOSCRZ
Cbebw2
<ABSBu
BIEDES
CO3C8Z
SE34
CD2682
El
Loeb

Bz
We

ae

ZHEARG
11D8H06
DS
B111E
CD4CH82
Cbé6éDG2
ZHEDOY
BIEDES
Cb4C8z
El

PAGE a%

CALL
Lo
JR

AMIS

CRVELIF: GEES

NANTES:

=ipitsi re

Rts

ASOT:

THOREASE PLOT S40, \i+D8

ENT
DEFE
DEFE
DEF Ss
CEFE
DEF'S

LO
LO
FUSH
LD
CALL

CALL
LOD
LD
CALL
Lo
CALL
Pir
JF

IPBUEF: DEFS

IPLOT:

IPX:

IP's

EMT
CEFB
CEFE
DEFS
CEFB
DEFS

LD
LD
PUSH
LD
CALL
CHLL
LD
LD
CALL
POF

U/PLOTTER-12

4: 4+:

+
M
i
+

I
E

fe
l

b
t

fe
ct

a =

DE
BC. @9SECH
RTCA

IHS2C
|ae

BI. BSEDH
ETQH
H» UH
AXIS
HL
FLOT 4

+16

+
+
i
h

o
n

o
m

HL.» . IPR?
CE. IFBUFF
DE
BC, WE11H
HSETOH
INE2C
HL>cIFY's

BC. 89SEGH
NSBTOR
HL

Pia tt’

2h

CE, QR'BLIF

sMO OF FPHRAMETER
> REAL

> REAL

12540

s254e

= o
l

>NC OF PARAMETER
> REAL

> REAL

: SbeY

32948

B1
Bz
BS
64
OS
GE.
Br
BE
as
1

13
14
1=
16
1?
18
19
24
21
5
hen chee

Zo
“

“4
Zu
Lo
a
ay

29
Se
31
SZ
3S
34
oO
36
rr
or

38
39
40
41
42
43
44
45
46
47
42
s—_

49
a

ARK

W165
H10B
81D
81@D
4160
816D
B11D
O11D
B11D
W110
B11E
WI1F
G12)
@122
8124
B124
B1Z7
B1i2A
B126
G1ZE
@121
6134
W137
613A
@13D
B13E
6144
8142
W142
b142
8142
6145
6146
8149
6146
@14D
O14F
8150
9152
6152
9152
6152
6154
6156
6157
615A

ww oh “wt

SESS
1E35

2
ae

ve

ZAIFGI
11801
DS
WL LIBE
Cb3CZ
Cboé6éDp82
PAZZOI
B1IEDUS
COoSCazZ
Ei
3E44
1sbu

ch2ca2
rE
CBb2CH2
E67F
FEUD
2383
2
1eF3

DBGE
E662
Ca
CDBaue
26
DO4SC4F54
94455228
45352524F
em
we

286 HESEMBLER SP-Tr1ial

*
3

> PLOT &,

FTBUFF
2

e
3

PLOT:

Px

F :

s
3

> ASCII

COUT:
FLOT1:

s
3

>; ERROR

CKER:

CKER1 :

FAGE G4

Lo
JR

ttan
t

DEFS

EMT
DEFB
DEFB
DEFS
DEFE
DEFS

{fi
LD
FLUSH
Lo
CALL
CALL
Lo
Lo
CALL
Por
LD
JR

COGCE

CALL

LO
CALL

RET
CALL
DEFB
DEFT

a

H: 49H >“I° JHCRERSE CMD
COLT

+16

SHU OF PARAMETER
> REAL

> REAL

t pc8 "1
F NEG V8HL

GE. PTBUFF
DE
BC;@E11H : SEG
ETCOA
INS2C
HL» <PY'>
BIC, @9SEDH 22548
BTOR
HL.
A:44H © -tie
COUT

DRAW CMD

CUT Sue

COUT
M.CHL2
COUT
rFH
HDH
<:CKER
HL
FLUOT 1

A<PLTS2
G2H sSCKERCBIT 1=67>
He
EEERR
SH 7 ou
“PLOTTER ERROR ”

U/PLOTTER-13

a1
a?
az
4
a5
BE

BS
Q2
10
il
12
1%
i4
15
16
i?
ie
13
20
21

23
24
25
26
27
26:
29
3a
31
32
33
34
35
36
37
3g
34
40
41
42
43
44
45)
46

46
49
Sa

B168
6169
W169
W169
6163
6169
@16A
8166
8160
61eD
6178
B173
B14
W176
6173
8178
8173
61/78
B1irD
61°D
617D
GIVE
O17°F
8181
0181
8184
6187
W18A
6180
B1SE
4194
B19Z
6192
W192
8192
6197
6197
8197
6198
0199
619B
619B
O19E
61Al
B1A4
81A?
@1A8
61AA
B1AD
G1iBY

ae ZS ASSEMBLER SF-P11

HD

31
38

ZHEBe
Cbaaua
EE
SESH
1etcH

1
Ou

2A’Fa
11°81
61 16H
CDHSCH2
EE
SESS
18Bu

a1
GG

2A9I961
1197061
18086
Cb3CH2
EB
SE42
CO4261
218CH2
1896

a
3

FRIWT

CTYPE:

TP:

PAIGE

DEFE

ASCII

EWT
CEFE
DEFE
DEFS

LD
CALL
Et
LD
JR

SIGE ALPHH

W
v
e
r
h

mH
OO

N
M
m

c
n

a
a

e
3

DEFS

EMT
CEFB
DEFB
DEF'S

LD
LO
LD
CALL

ERs
Lo
IF

>; DOT LIHE

CBUIF :

DOT:

DT:
s
?

GOTIR s

DEFS

EMT
DEFEB
DEFB
DEFS

LD
LD
Lo
CALL
Ew
LD
CALL
LD
IR

GDH

+
O
e

r
e
i

x
r

|oe
~ MQWE *
CE. HL
H> SHIH
COUT

“
”te

HL; <SE>

DE, SBUF
Bil, YH1GH
ETCH
DE, HL
A> 53H
COUT

GH

+2

HL» «OTs
DE» DBUF
EC, 8636H
ETOH
CE> HL
A>42H
COUT
HL. DOTMSG
COUT

U/PLOTTER-14

SHO OF PARAMETER
; CHR

SP PRINT CME

>NOQ CF FRARAMETER
> REAL

215

7S" SCALE Cho

;NO OF PARAMETER
> REAL

> °B* LINE GAGE CMD

** ZOG ASSEMBLER SP-71G1 PAGE G6 ++

Wi wWiB2 :
W2 WIBZ COTHMS EMT
US BIBS G& CEFR & SMO FARAMETER
64 BIBS 21issu2 Lo HL, COTMSG
65 G1B6 isSFu JF COTlk
66 BIBS LIHE: EMT
Or BIBS bb CEFB . >HO) FARAMETER
WS BIBS 218602 LO HL.>LTMSG
69 G1IBC 18A IR CHET
i@ GiBE CSIZE: ENT
11 GIBE 66 CEFB & sHO FARAMETER
12 BIBF 218FH2 LD HL; ISMSG
1s B61C2 1804 IR CHCT
14 61C4 ;
15 61C4 > FEN UF
16 B61C4 ;
, 61C4 PLP: ENT
16 GBiC4 6&6 DEFB &@ >H0 FARAMETER
19 @1C5 2192702 LD HL» PUMSG
zu 61CS C34501 CNCT: JF FLOT1
zi B1ICB ;
zz G1ICB > FEH COWN
> B61CB ;

24 BiICB FDOWN: EHT
2 @1CB 66 DEFB & >NO PARAMETER
z2é @iICC 213/72 LO HL» PDMS
Zr GICF 18SF?r JR CHCT
2o @1D1 ;
29 @1D1 ; ERROR CLEAR
36 GiDi ;
S1 @1D1 ERCLR: ENT
3z 81D1 66 CEFB >NC FARAMETER
S° BIDZ ise JR LFOUT
34 G104 ;
3u G104 > HOME
36 61D4 ;
Sr 86104 HOME: EMT
38 6104 v6 CEFR @ sHU FARAMETER
39 @1D5 3E48 LD A>4°5H > “H* HOME
46 G@1D? CD2C82 CALL BOUT
41 @iDA SEA LFOLIT: LD A> AH sER CLEAR CMD
42 GIDC 184E JR COUT
43 GIDE ;
44 @1DE ; ROTATE ALFHH
45 61DE ;
46 GIDE FBUF : DEFS +5
47° GIES $
48 G1E3 ANGL: EMT
49 BIES wl DEFB 1 ;NO OF FARAMETER
54 @1E4 66 CEFB &@ > REAL

U/PLOTTER-15

Bi

BS
64
Bx
VE.
Or
BS
OF
1G
11

13
14
c
wd

16
=

1é
1s
2u

22
2e
24
2o
26
a>
“a?
~“es
“o>
vy —-

obi

31

7%
~

+
~

35
36
37
38
39
46

43
44
45
46
47
46
49
5a

AK

WIES
B1E?
BIE?
G1EH
BIED
B1FB
O1F3
B1F4
W1iFe
Q1F3
@1F3

< @IF9
G1F ‘3
G1FE
G1FE
B1FE
WLFF
B260
B282
H2U2
W265
8263
426B
Q20E
211
6214
B217
B21H
W216
B21D
W226

S O22
8220
H228
G22 1
B223
8226
O227
B22H
O22
B22C
822C
B22C
B22C
622C
G22
B22C
B22C
O22C
822D

est) HSSEMBLER SF-7181

ZAESH1
LiDEB1
W148
CO3CH82
EE
SES 1
C3421

B1
Bu

Z“ABbE2
COBBLE
DALBAG
CDbacaz
b1u7b0
COP?HZ
11F961
COWGna
EB
SESE
C34281

FS
SESE

Cb2C827
Fi
Cb2C82
SEZC

FS
DBGE

AL:

MARK

MBLIF :

MARK:

MKS

w
e

w
e

w
e

s
s

‘d
é

a
a

*
4
8

see anesaca
7997399 2 2

DOUT:
DOUTF

PHBE 8?

GEFs

LD
Lo
Lo
CALL
ER
Lo
JF

aa
3

34: 34:

ae

HL» ©AL 2
CE, PELIF

BC, HG@4H
ETCH
CE, HL
H»S1H
COLT

HL> (Mk 2
»e LTH

C,ERS
CKNEG
BIC, BGWH
CKCODH
CE. MBLUF
TASC ”
CEs HL
H:4EH
COLT

F

Hs SSH
GOUT
HF
DOUT
H> 2H

D
r

PLOTTER CATA CONTROL
H=DATH

PUSH AF
IH H»>¢PLTS:

U/PLOTTER-16

“GQ” ROTATE CMD

SMO OF PARAMETER
> REAL

> “H° MARK CHD

ws” RATS CMB

", ° DELIMITER

** Z8Q ASSEMBLER SF-T1G1 PAGE @3

61 O@22F CB47 BIT HH
62 8221 2HFA JF H2. OOUTP
U2 6233 AF SOR A
a4 H254 OZGF CLIT CPLTD2,4
WS 4236 Fi FOF AF
HWE O23" Fes CIR SBH
r 0239 DSBF CUT CPLTD3.8

WS B23B CF RET >
69 B23C ;
le 823C > BIHAR’ TO ASCII
11 823C ;
12 623C CDBOBH E ETCH: CALL ..IHTe
13 623F DABEBE E JF Cs ERS
14 6242 CO3CB2Z CALL (CKHEG
15 6245 CPrce2 CALL CKCOD
le 6248 CDBbKE E CALL CASI”
y, @24B C3 RET
16 @24C :
13 624C :
24 624C CDHbbG E H'SSBTOR: CALL ..INHT#s
21 B24F DAbbEG E JF C.ER3
2 6252 CDSCH8Z CALL INS20
22 6255 CDPCe2 CALL CKCOD
24 6258 CDHubuu E CALL CASI’
25 @25B C9 RET
26 @25C ;
r 625C > IF HEG... INSERT “-~*
26 @25C ;
239 625C °C IHS2D: LD H:H
34 w2SD CEYF BIT 72
31 B2Z5F Ce RET <
32 862660 SEZE Lo A> 20H
So 8262 12 LD CDE3,8
34 0263 13 INC DE
35 8264 7D LD A>L
36 6265 2F CFL
or OZE6 GF LO L>H
Se O267" °C LD A>H
39 @268 2F : CFL
4@ 6269 6 Lo H:#A
41 G@26A 23 THC HL
2 62Z6B C9 RET

43 @2Z6C ;
44 @26C : SEEK OD. INSERT 2C
45 @26éC ;
46 676C 12 IHC CE
47° @26D 18 INS2@C: LOD A. CDE»
46 @26E FED CF GDH
49 6276 26FRA Jr He, IHS2C-1
S@ @272 3E2C Lo H.»2CH

U/PLOTTER-17

AEE

“a
a=

? az? c

42,76
O27?
0277

> O27?
* O27F

a27°8
B279
27°C
Q27°D
O27
b28H
G283
“784
6285
U28E
O7E6
0286
G286
u7e/’
H283
b289
02893
289
0289
H28A
67EB
G28C
@28C
B828C
6280
H28D
OZSE
OZSF
O2SF
O28F
O28F
82960
0291
G292
6292
W292
6292
0293

> 06294
6295
G296
6297
8297

12
13
Cd

rC
BS
CAbBBA E
ES
BY
ED42
F2600u E
E1
BY?
ee)

4C
3G
WD

3S
3a
BD

4C
31
UE

53
34
BD

vz
3a
2C
38
BD

28@ ASSEMBLER SF-Fr1B1 FHGE 89 eK

Lo (DE2.A
IHC DE
RET

CHECK DATA VALUE

CKCODe: LO AsH
oF oL
IF 7 ERZ

CKCOD: PUSH HL
oR «

CKMAMY: SBC HL-BC
JF FERS
POF HL
oe
RET

LIHE MSG

LINSG: DEFE 4CH -°L° LINE CMD
CEFE 3@H 2B
CEFE aH

: BETWEEN DCT

OOIMSG: GCEFB 33H , 3"
CEFR 3GH Be
DEFER aH

: DOT MSG

DOTMSG: DEFB 4CH s°L° LINE CMD
DEFER 31H a4’
CEFR DH

: IHITIAL SIZE SET

ISMSG: DEFE 53H :Se
DEFER 34H 24’
CEFB &GH

: PEN UF MSG

PUMSG: DEFB 52H :/R° RELATIVE CMD
DEFB 30H 7a’
DEFB 2CH 2647
CEFB 3GH Be
DEFB @GH

> PEN GOWN MSG

U/PLOTTER-18

1
Ba
BS
84
BS
vé

ur

BS
1
11

“a,
<&.

1S
14
{&

eal!

1é,

17
1g
19
20
21
tre hen

W297
er
W298
W299
@29H
B29B
B2Z9C
B29C
B29C
B29C
H29D
B29F
W2ZAB
@2H3
B2A4
62A8
B2ZAL
B2BU
B2E4
62B7’
G2B8
B2B3

236 HSSEMBLER SF-7101

4c POMS:
3a
3C
3G
BD

a
3

> CHECK

rC CKNEG:
CB?F
CS
COMene E CKERZ
ol
JIFSES64F
32404154
24444154
41264552
Jed52
we

PAGE 18

DEFB 45H
DEFER 2H
CEFB ZICH
DEFER 3H
DEFB &DH

DATH SIGH

LD A>H
BIT ?:H
RET 2
CHLL BEERR
DEFB 31H

>I“ INCREASE CMD
s “A s ,

731
DEFM “UNFORMAT DATA ERROR’

DEFB GDH

Ent

U/PLOTTER-19

MK

AL
BTCA
CKER2
CSIZE
baTH
OT
Ih
IFLOT
LIWE
Mh.
PRUF
PLTD
PS
QY
SIZE

es ASSEMBLER SP-rl

O1ES
H22C
He
BIBE
ALB?
w139
848
WES
@1Be
260
B1DE
GG6F
@11F
AWE?
Hi?D

AMGL
CECOD

CKMAS
CTYPE
BOTMS
ERCLR
I l ‘

IF

LTMSG
MOUE

PDMSG
PLTS
piJ

Rs,
TF

WLES
a2FC
WFrE
Hiss
M2Z8C
M1iOl
HOE
HEA
M236
HALA

G
s
C
o
W
a
i

m
a

m
=
O
r
D
h

M
e
m

n
~

T
T
9
2
P
a
w

1 PAGE 11

Halls
CECODe

CKNEG
DEUF
DOTUR
HCIME
IHS2C
IFY
MARK,
ie
PCCM
PTBUFF
GRABLIF
Rt!
MAIS

a228
LFF

azar
A192
B1AS
Bibd
A260
AGE
A1FE
aa 2
G1ICB
ALA
GEC
BABS
Barc

U/PLOTTER-20

ef:

AxIS4
CKER
CHCT
GOIMSs
ColtT

IMBUFF
IHS20
T5356
MELE
hra

FLOT
FUMSG
HEBUF
SBLIF

WAM IS

HeA
My Ee
Hice

WEO4
WeE2C
HAE,
Me5C

B22F

T
l

-
—
,

" L

a
T
a

I
m

S
t
R
l

" _
*

G
n
h
a
S
o
n

T
T
~
J
T
r
g

e
s

e
s

G
i
t

AST
CKER 1
COWIT

CT
COUT Pr

TMOVe
IFEUFF
LFOUT
MBUFF
HSETOH
FLOT 1
PUF
CA
mE

142

m
b
a
r

i
m
i
t

on
li

m
t
p
d

y
t e
h

T
A
M
B
O
m
e
D
e
o
n

oO
-.

-
_

‘w
al

eAIC
AAG
Hed
H14
Bic
Hi
aly

—BASICMAIN PROGRAM—

ASIC COMPILER SP-ris, SATVDEM> FAGE I lo25-58

RMAL PLOT: COTM: IPLOT, MQUE, IMOQUE., PUP, Poon. GOT. MASTS. VASTS, CTYPE
RIMAL Dole-ES SIGE>LIHE; HOME: AHGL. MARE. ERCLE
MIM bli, 2555,E0 Seo
Th Hiss. »BL S33

12

HEF
HEE

WEAF

He.
HeS
MME4

4
5

F
E
E
T
o
M

CME : FS:

RE +FUIs
REM + x:
HOWE SaaS 4He

IFLOT 468,48: [PLOT &,.-158: IPLOT -46
TMUWE28s IFLOUT SHe,8: IPLOT &@.-

iF

4: LIHE
Ho Ss +on

al
:

m
t

t
i

1

WG: TPLOT @,. 158
Sa: IPLOT -3a0,0: IFLOT @.56on

de
m
r
i

o
b
s

~
—
,

 vo
adb

e

bak: 2

MOWE Sob. fire: TPLOT 468.6: IPLOT @,-
IFLOT Ms “eet IFLOT -—ifh.@: TFLOT @,:

THOWE SA.-S IFLOT 30,08: IPLOT 8.,-5
IFLOT -238,8: [PLOT &,-2eh: IJPLOT —-*a,€&
IFLOT &,. 278
REM «+ Do #&
eg esh,. 24H: TPLOT Fi.

SOQ: B=SARI C=S Lama: BCrslie 344

TPLOT -210,8: TPLOT 8,378: IFPLOT 176.8: ITFLOT &,.—-228
H=SlWiB=150:C=21ibe: GOSUB 2a
IFLOT -1e

iS: TPLOT -230.¢
cre

i

bE

=k

ly

mo
r

tf
}

w
e

‘o
me

_
—

S
s
a
a

m
r
e

a

3 a
!rd

B
R
R
R
o
C

o
i
r

T
I
D
E
M
h
N
O
M
A
D
E
M
n
m
M
A

4

m
y

co
nd
e

~
~
,

a)
G
y
e
o
o
r
m

— wo
ud

a
t
e
o
n

a
e

na
lt
s

a)f
e
T
P
g
h

m
p
C
l
e
e
d

Pa
ce
u
l
e

m
t
d

T
=

eo
al

e,

P
e
e
O
d
m
L

f
e
f
e
e
d
E
E

i
i
m
*

R
R
)

e
e
e
e
e
d

c
r

O
s
i
e

Me FE iS Motte TFLOT &,. 1586: IMOWE Se,-Se: TRPLOT lea.
Horo 2S H=s4e: b=2ae C=H=S1lee: GOSUB S46
HOB SS TPLOT -180, Me TPLOT @,278: TFLOT 7.8: TPLOT 8,-228: IPFLUT 68,8
Hesse Sa A=SLA:B=SAR CaP ia: 6OSUE Bae

HEAD SSW TPLOT -isth.w: TPLOT 8.56: GOTO 484
HERES See FOR Te=-eee To wed =TEF aBld
MPii 236 S=ITHTCHtetcos: Tia YeIHTict+eesthe Too
MrAD She FLOT &:{
aPos Sle HET 1
APD SEH RETURH
Q7ES 240 FOR IT=a°2 TO -9w°2 STEP -960= Spe] aHTS C+BeesIMe D3c

a
t

H
i
}

o
t ad
a

pa
ne

n
a
eSoe A=lTHTe HrBeLlios2f.,! '

g
i
n
§

w
t

im
a

J
o
o
e
0 4
-
4

4

ar
e

if
b
i
n

.

f
T

be
a

s
a
o
e

ri
FP
i
m

a T]
[T
]

i=
4 i a

pr
ic

e
mh

I

S
h
a
g

ap
a

m
e
g

a
e ~ ‘n
al

ie
4
1
4

—
™

so
le

1
Ss

FOR [=Gt7 TO itn STEF «Be
S=INTCR+Becos? Dade VeTHT ec

420 3

MoE 3 RESP oo Took

M@SEE 468 Mae: Y=@:h=o:8=8:C=ai b=: MOUE tree, oie
S252 425 A=1460:6=7ae:C=2ibe:D=s3ee: GOSUe t4e
S395 426 TMOWE —S8.8
SSBC 446 A=1468:B=258:C=218e: D258: GOSUE S4e
ASFeE 458 IMOWE —-3a,8
ASE 4b ASidee:Bsieei Car iae:D=2ae: GOSWE S4u

SHES 4dr INOUE —-5e, 4
Spe da{deB=116r Cae ise: b=158: gosue S40

ARCF 4356 MOE LeB40, 2350: BOTO 6hik

mt}
ee,

t
T m
s

a r
t y
d

—
4

y
t

m
i

~~
h
a
d

a

o
p

e
e

i { im

qi

MEGS SPE HET Tios8:6<@sCea:beas isms Yon: RETURH

G02 SaG REM # 3 4
A031 6G FOR I=m TO wtFo6 STEP w “68
ACE S18 S=IHNT¢1S864+1lebecose¢] aoe VelIHT i Ssoe4+leeesthe Too
SbLE S628 PLOT #20: HeEaT Tiss y=e
ADdD SSO A=1S2G:B=11e:C=2H1e: GOSUB oak

ADF sd4@ [PLOT -it2e,8: IPLOT @,.-S8: IFLOT 148.8

U/PLOTTER-21

BDED
BESc
BE SE.
IF2d
WFSE
BFAH
WFIOS
leZl
LHEu
LGB
LHED
Lisl
11°6

p
o
s

= I
~

r
r

C4b
b

b
a
b
o
b

M
T
s
M
m
D
o
r
e

R
a
T
o
p
f
e

C
i
d

P
e
e
e
p
e
e
p

p
t
p
s
p
e

14C0
L4F5
14FB
Lo24
1S54C
LSFE
16HS
16AF
16DE
16F6
17°26
1746
LP?s
17°37
17HF
irci
1842
18246
1836
LES?
1SAB
1804
1SDA
1964
193C
1957
196C
1989
139AS

m T
i

c
n
1 C
1

M
r
h
h
l
e
D
O
O
a
O
R
R
e
O
o

O
e
A
e
e
e
e

da
a
o
C

C
I

Ca
p
C
e
C
e
n
e
e
e
e
C
C
C
e

W
O
O
N
O
N
O
N
D
W
D
0
0
0
0

0
0
0
9
0

G
0
0
0

O0
3
C
0
0
e
d
A

T
o
S
e
e

T
T
T

375
388
382
985
996
395
1680
1616
1620
1625
16368
1046
1656
1696
1166
1116
1115
1128
1138
11408
113u

/ COMPILER SP-P?15 <#-¥DEM> PAGE 2 1262388

H=134u:2B=1lee:C=2eib: GOSUE sk
FOR T=wt?6 TO wtlse138 STEP -»w-6
S=IHMT S6264+ 13540050 Tea vaTHT ce 23ret 1 2sesIHe los
FLUT & 4’
HET It IFLOT -é6b. 8: s=ei'=es IMQUE -2e.45
IFLOT 15.8
FOR [=nw#-9 TO wt?6& STEP wtb
A=IHT* Sh36+es4C0s¢ last VITe 2are+ss4esTHe 12 3
PLOT wet!
HES? Dias@i =e
H=1946:°6=216:C=2416: GUSUB osu
IFLOT -136,.6: IFLOT &,.1S58: IFLOT 1°4.8
H=1920°B=6HC=2h18: GOSUB ode
FOR T=n#/?6 TO wt9S STEP -w6U
A=INTC 1964+) Pe4CUus lo ai VeTHT se S35e4+ 1 Peesdao
PLOT ot
HET ITis=@:'/=a: GOTO 936
REM + SUE A +
FOR T=9"6 TO -wee STEP -wbe
m= IMT ¢ HEBeCOS De otVeIHT C+BeSIH¢ Tao
PLOT es

HEAT Tixens veo: RETURH
REM + SUB B +
FOR T=-9°2 TO w*6 STEP w“60
S=INTOCH+B+COS¢ Toot VeINTCc+BasIHe Io
PLOT &.'
HEAT Tia=ti''=@: RETURN
REM + OIAMOHD +
MOVE 2460, 2056
FOR 2=1 TO 23

A AC ZI=THT 6 S5G4C0S(24k2-15234m23 +308D
B¢2)=TINT <~3504#S TNC Shak C2-1aot2+2058}

3 WERT 2
FOR S=2 TO 11
L=2-5
AFAC2Z332V=BC23)
MOUE &Y
FOR I=1 TO 24
J=L+$
IF J<24¢ THEN 18616
J=J-23
AL=ACJIELEJIVil=aBed)
A=K1-a2BaV1-¥
IPLOT A-E
AaALI YS
NEXT Ii NEXT SS? X=8: Y=05 X1=6:Y1=6:A=6: B=8
MOVE 1650,1326
REM *PRINT " SO-GRAFH"*
A=" 3D-GRAPH"
FOR I=3 TO & STEP -1
MOVE 1654, 1326
ANGL I
CTYFE At
NEXT IT? Ag=""
REM * S3D-GRAPHIC *

U/PLOTTER-22

E
aC7
1SEF
1AZD
1A4F
1A8/
1HES
1AFC
1640
1BAS
ic1i?7
ics
ICBC
ICFs
1026
IDS3
ipes
IDSeé
ICA?
LCE
LOCC
1EGF
1ES2
LEDS
1F52
1F6E
iFBA
2AS1
22D
ZGE4
2aCG
LHC
LuFO
<1it
2125
212F
21s
2130
Z1E9
ele
228D
ares

LaOo

22BS
22CE
22F6
2545
2568
2oeD
3297
dew a” ee”

2385
23DE
2407
2437
246F
24A6

o
n
1

1%
1

EHSIC

11°35)
1206

iz14

i215
1226

1236
iz4u
1254
1266

127

1236

1230

1366
1316

1224

13.36
is4u

1356
268
137

itsG

1336

144a

1414

1426
1436

1446
1456
1469

1474

1475

145

Is4G

izig
17°36
18u6

1816

1626

1836

1s4u
1856

1¢60
1676
1836
1636
1906

191G
1996
AAA

2026
24356
2648
2450
2060
2a7ea

GOSUE

COMPILER SP-Fri Ss SacDEM? PAGE 3 lev2i-3

T=: 5=6
FOR L=@ TO 255
DeO-Lo=-Litci,Lo=-i: MEST L
HOWE 168, 256

FOR ‘'=-1S6 TO 136 STEP 4

FOR s=-186 TO 186 STEP 4

IF (Y=-16e00+#¢8=186> THEN 1666
Ron1 S0+4SOR CA++Ye

£=1604+C05(R9-S64C0S¢S+R3
H=THT Ci 1@4+xe24C16—-Yee oe23

B=IHT¢¢1lé6—-Ye2-29-2593 B=192-6
IF (Hi@a+CAe2559 THEN 1334

IF DCY,A2=-1 THEM 137
IF B<=0¢6,H> THEN 14408
IF Be=Bb¢C1;A> THEN 14é6u

HEAT
IMQUE 6.8: T=: S=@

HEXT |

GUTO 2o6uu

IF A=6 THEN 1436

IF Dc,AH-1)=-1 THEN i430

IF Dc, A+19=-1 THEN 1434

OCG, AI=INT COCOA, A-1 54066, A+1 aoe2)

CeL,AdS=INTO¢cO01,0-154D0¢01,H+1 33-62%

GOSUB id4dée@: GOTO 13348
O¢G,A=B:0¢1,H2=6B: GOSUB 1486: GOTO 1336

1466: D¢8,As=B: IF O¢1,.Ae=-1 THEN Ocl,
GOTQ 1336
GUSUE 1466:0¢1,A)=6:

GOTO 1336
REM +#SUB DATA GUT +

CH= 160+7+H: DY=8+*E

MOVE DY. DY: FDOWN =

RETURH

FEM +«SUB GEHSUI +

FOR K=1 TO S@FECKo=8:

FOR T=1 To Su

ECT=SINCI 4n-12.53

NEXT I
N=15

FOR I=i TO W
D=S#] “N45: G=CH-I+8. Sd-N*4: 0=D%

MOVE OF
FOR J=1 TO 56

C=DN+EC J9464¢56-J 5: P=P+0

FLOT 0O.P
NEXT J: NEXT I: MOVE Dx, DY:

REM + SINGAI-“A *

MOE 2356, 980
MAKIS SF312

MOVE 2576, 7b
VAXIS 200,45:
FOR I=-6 TQ 6

IF I=6 THEN Y=1:x%=8:

N=] tear

Ad =B

IF O¢@,Q2=-1 THEN 01, 83=B

PUF

HET K

>F=D4

GOTO 1258

MOVE 2358, 908
STEP U.88

GOTO Z2u98

U/PLOTTER-23

¥; wa
be

P
o
p
e
e
p
l
c

PT
)
s
g
t

To
r
a

M
E
P
T
T
T
T

a
i
A

N
M
O
S
O
o
B
A
a
p
p
a

WL
i

fe
d

wg
)
f
e

f
T

ei
t
C
o

Pp
.

y
e
u
y

T
T

T
e
g

T
r
L
T

p
e

fT
]

r
o
b

b
o
R
o
b

O
D

h
o
b
o
b
a
b
.

od: .CIF

BAS IC

2A
2H
Zl

2lie
2128
2138

1
~J

at
P
e
l
e
e
m
g

™ ‘o
we
— ‘o

wa
s

fe
lt

pelt
e
e

at
el

y
ay

e
at

t

r
a
m
T
a
m
m

ba
te

it
e
m
e

m
e
a

re

co
ke

b
e
- coc

ks

te
d

te
d
P
e
P
e

pe
lt

ov
e

a
t

awo
ke

T
e
)

u
t
1
)
b
t

p
o

ma
l
I
T
a
t

A!
i
e

+
i

ew
ok

o
e

“ o
m
e

w
t

P
R
P
i
m
o

o
T
L
a

f
e

e
g
p
a

™ =
~

e
e

e
e

e
e

a
l
F
t
W
e

W
e
t

f
a
d
s

a
R
T
L
L
n

a
d
e
d
e
d
A
d
e
d
e
d

e
t
L
O
e
e

e
e
e
e
e
e
e
e
T
Y

P
T
D

ra
fe

ha
d
R
a
e

m
h
o
P
d

4 MOWE SS

ono?” ms8
COMPILER SsP-PFis SacDEM? PAGE 4 L223

STH, 4
reINTES7. Shite So
M+ THT o dete!

FLUT HB
HET I
NOUR 2358, 1388: DOTM = MARE 1
IFLOT if4.8: WARE 2: IPLOT 14. -2He:
IFLOT 174,286: MHEE 3: IPLOT 1?4 2k
LIHWE
MOWeE oss ris

“
w

h
s
r
r

aa

Fis='=

-
.

a
t
=

MHEE 3:
ia: MARE 6:

IFLOT 174;
IFLOT 1?

—-2He: HARE 4
4.8

TPLOT 1ad44,0: IFLOT -1844.4a

He D'S CTYPE HF |

OHGL i: CTYPE G¢: GHGL @:a¢=""

TPLUTHs SHEN
Tek | = Hes"?

ame aE

IFLOT M.-C

Pie ‘

SITE.+

ga"VERTIS":
REM + SHHRE
MOWE 2558. 3A

a Ef="SHARP
a FOR I=1 To 15 STEP oh
SIZE I
CTYPE ES
HEsT [Ti bg=""
CSISe
REM + CHARACTOR
Mle 4h, 158

C=" 12345687S9RHECDEFGHI TELMHOPGRSTOMEYS
CTYPE CF
REM + LIHE TYFE +
HOME = PLOT @, 2588: PLOT 2598. 2588: PLOT S538.4:

SET

HEREC G+—5 oS HOTS"

TMOWEFLOT &.8: 1a;1

W=S4Prhi k=15
_ TO 6H STEF

H=256

FOR I=
COT I
IFLOT @.u: IPLOT Ha
slim24k H=H-24R
HEXT I
HOME = IMOUE
LINE ¢ PLOT a, tls
C="PEM UP DOuM"
MOWE See, 44H

CTYPE DS
TMOWE Se. a
FOR I=1 Tot a:

: LINE : ANGL &:
EMD
FOUND HC ERRORS.

ZH

IPLOT @.-WUi TPLOT -H, 8: IMOUE FF

fet et |

‘IFLOT HeGt IPLOT @.-U IPLOT -H.e

FURF > FOOWH = HET I
HOME

U/PLOTTER-24

Library”Package ae

SHARP

NOTICE

The MZ-80 series of sophisticated personal computers is manufactured by the

SHARP CORPORATION. Hardware and software specifications are subject to

change without prior notice; therefore, you are requested to pay special attention to

version numbers of the monitor (supplied in the form of ROM) and the system

software (supplied in the form of cassette tape or mini-floppydiskfiles).

This manual is for reference only and the SHARP CORPORATION will not be

responsible for difficulties arising out of inconsistencies caused by version changes,

typographical errors or omissions in the descriptions.

This manual is based on the monitor SP-1002 and the SP-7000series FDOS.

——CONTENTS——

USING LIBRARY ROUTINES0...0..0.......00.4. l

MONITOR SUBROUTINES (MON. LIB) 2

FDOS SUBROUTINES (FDOS. LIB)0.....0..00.... 7

Outline...ecee eee eee eee eas7

CLI (CommandLine Interpreter)0.....008. 8

IOCS (Input Output Control System)008. 12

Utility Subroutines................0....Le eee ee eee eee 19

FDOS Common VariablesCece eee eee ee ee ees 27

CLI Intermediate Code Table0...00..00.0...0.....0.0.4. 30

BASIC RELOCATABLE LIBRARY (RELO. LIB)................ 31

Type 1 and Type 2 Character String Formats 35

INDEX OF LIBRARY NAMES.............. 0.0... 2.20 eee ees 36

LIB

USING LIieee ROUTINES— co

The FDOS master diskette contains three libraries (MON. LIB, FDOS. LIB and RELO. LIB).

MON.LIB is a file of monitor subroutine addresses

defined with the EQU statement. Thatis, it contains a
| GHTL: HQU O003 H

LETNL: BHQU OOO06H

PRNTS: -HQU OOOCH

program such as that shown at right which has been

assembled and converted to the library mode.

Monitor subroutines are often used when creating PRNT: EQU 0012H

programs with the assembler; in such cases, they are MSG: EQU OO15H

used as described below. MSGX: EQU OO18H

First, the subroutine names are written asis (with- GETKY: EQU OO1BH

out addresses defined) as external names when the BRKBY-. HQU OO1EH

program is written. These are then assembled with the MELDY. BQU 0050H

assembler. When the assembly listing is reviewed at this

time, the symbol 'E”is affixed to indicate that the
, 1- Part of the contents of MON . ASC

names are external names. Next, the program is

linked; MON. LIB is linked at this time also. For

example, |
2 > LINK GAMEPRGI, $FD1 ;MON.LIB

Program created

MON . LIB must be written last at this time.

FDOS. LIB is a file of subroutine addresses in FDOS which are defined with the EQU statement; it is

used in the same manner as MON . LIB. Since MON. LIB is contained in FDOS . LIB,it is only necessa-

ry to link FDOS . LIB when both monitor and FDOS subroutinesare to be used at the sametime.

RELO . LIB is a library of subroutines for programs created with the BASIC compiler. It contains

subroutines for the four basic arithmetic operations, functional calculations, character string processing,

error message display and many others. In other words, whereas MON . LIB and FDOS. LIB are simple

collections of EQU statements, RELO . LIB contains actual subroutines.

When the relocating loader is used for linkage with RELO LIB, it is possible to select only the

routines required from the manyavailable for linkage.

RELO . LIB is used in the same manner as MON. LIB and FDOS. LIB. Further, the contents of

MOND TID ana BIC TIP ara tnchiidod in DETO TID
WEIN LAID allu Po. LID div HIVIUUCU Lil INDLY . LID,

source programs WEIN, ASL ana Puvus. ADSL are 4ai30 inciuaea On tmne Master GiSKette aiong wWitn

programsto recreate the libraries as necessary.

Note Detailed procedures for using FDOS. LIB are contained in ‘LINKING ASSEMBLY PROGRAM

WITH FDOS™ in Appendix; see "EXAMPLE OF PLOTTER CONTROL APPLICATION"in

Programming Utility for details on RELO. LIB.

LIB-1

| To change the line and set the cursor to the beginning of the nextline.

All registers

except AF

: / CALLNLoo_ Changes the line and sets the cursor to its beginning if the cursor is not
. 2 ((0009H) already located at the beginning ofa line.

All registers

except AF

 - CALLPRNTS

Displays one space only at the cursor position on the display screen.

All registers

except AF

|Handles data in ACC as ASCII code and displays it on the screen, starting
i.eALLPRNTa at the cursor position. However, a carriage return is performed for ODH

L(00120) and the various cursor control operations are performed for 11H-16H~~shen these are included.

All registers

except AF

Displays a message, starting at the cursor position on the screen, The

starting address of the message’ must be specified in the DE register in

advance. The messageis written in ASCII code and must end in ODH. A

carriage return is not executed, however, cursor control codes (1 1 H-16H)

are.

All registers

 : | CALLMSGX_ a | Almost the same as MSG, exceptthat cursor control codesare for reverse
character display.

All registers

 |©@GEn

Sounds a tone (approximately 880 Hz) momentarily.
All registers

except AF

Plays musical data. The starting address of the musical must be specified

inadvance in the DEregister. As with BASIC, the musical interval and

- CALLMELDY| | the duration of notes of the musical data are expressed in that order in

> 2 (0030H).| ASCII code. The end mark must be either ODH or C8H. The melody

| is over if CF is 0 when a return is made; if CF is 1 it indicates that

+ were pressed.
All registers

except AF

| Sets the musical tempo. The tempo data (01 to 07) is set in and called
from ACC.

ee ACC <—01_ Slowest
| CALLXTEMP ACC <—04 Medium speed

 —rr——=B _| Care must be takenhere to ensure that the tempodata is entered in ACC

S in binary code, and not in the ASCII code corresponding to the numbers

| 1 to 7 (31H to 37H).

All registers

| Continuously sounds a note according to a specified division factor. The

division factor nn‘ consists of two bytes of data; n' is stored at address

11A1H and n is stored at address 11A2H. The relationship between the

division factor and the frequency produced is 1 MHz/nn’. BC and DE only

LIB-2

All registers
Discontinues a tone being sounded.

except AF

| Sets the built-in clock. (The clock is activated by this call.) The call

conditionsare: All registers

ACC<—0(AM), ACC <—1 (PM) except AF

DE <— the time in seconds(2 bytes)

: Reads the value of the built-in clock. The conditions upon returnare: All registers

ACC<—0 (AM), ACC<—1 (PM) except AF

DE <—- the time in seconds(2 bytes) and DE

Checks whether |SHIFT] + [BREAK]were pressed. ZFis set if they were All registers

oo pressed, and ZFis reset if they were not. except AF

. Inputs one line entered from the keyboard. The starting address where
the data input is to be stored must be specified in advance in the DE

register. functions as the end mark. 80 is the maximum numberof

- characters which can be input (including the end mark ODH).
:[Key input is displayed on the screen and cursor controlis also accepted.

__| The BREAK code (64H) followed by acarriage return code (ODH)is set

/ . at the beginning of the address specified in the DE register when

| + are pressed.

All registers

| Takes one character only into ACC from the keyboard in ASCII code. A

return is made after OO is set in ACC if no key is pressed when the All registers

subroutine is executed. However, there is no protection against chatter- except AF

| ing and keyinput is not displayed on the screen.

| Codes which are taken into ACC when these special keys are pressed are shown below. Here,

“display code" refers to a code number whichis used to call out a character from within the

character generator.

| iletekenintoacc
DEL C7 60

|imbyGETKY| SML CA 63

LIB-3

 (041FH)

|BER)

— (ODAGH)

Displays the contents of the HL register on the display screen as a 4-digit
hexadecimal number.

All registers
except AF

Displays the contents of the A register on the display screen as a 2 -<digit
hexadecimal number.

All registers
except AF

(CAlLasc Converts the contents of the lower 4 bits of ACC from hexadecimalto
ASCII code and returns after setting the converted data in ACC.

All registers
except AF

- -(03DAH)oe|

Converts the 8 bits of ACC from ASCII code to hexadecimal and returns
after setting the converted data in the lower 4 bits of ACC.

When CF=0 uponreturn ACC <—hexadecimal
When CF=1 upon return ACCis not assured

All registers
except AF

Handles a consecutive string of 4 characters in ASCII code as hexadeci-
mal string data and returns after setting the data in the HL register. The
call and return conditionsare as follows.

DE «starting address of the ASCII string (string “3°°"'1"’
CALL HLHEX L_pE
CF=0 HL <«—hexadecimal number(e.g., HL = 31 A5H)
CF=1 HLis not assured.

“A™"5")
All registers
except AF
and HL

Handles 2 consecutive ASCII strings as hexadecimal strings and returns
after setting the data in ACC. The call and return conditions are as
follows.

DE <—starting address of the ASCII string (e.g., "3" "A")

CALL 2HEX '_DE
CF=0 ACC <—hexadecimal number(e.g., ACC=3AH)
CF=1 ACCis not assured.

All registers
except AF
and DE

 Awaits key input while causing the cursor to flash. When a keyentryis
madeit is converted to display code and set in ACC, then a return is made.

All registers
except AF

Converts an ASCII value to display code. Call and return conditions are
as follows.

ACC <—ASCIIvalue
CALL 2?ADCN
ACC <—display code

All registers
except AF

 Converts a display code to an ASCII value. Call and return conditions
are as follows.

ACC <—display code
CALL ?DACN
ACC <— ASCIIvalue

All registers
except AF

 Checks vertical blanking of the display screen. Waits until the vertical
blanking interval starts and then returns when blanking takes place.

All registers

Controls the display on the display screen. The relationship between
ACCat the time of the call and controlis as follows.

:{ACC Control contents ACC Control contents
| COy Scrolling C6yy |Same function as the [CLR] key

] ' | ©ODDCH)-- | Clq

|

Samefunctionas the

R
d

key CaH |Same function as the [DEL ey

| C2y7| Same function as the filkey C8 py |Same function as the [INST] key

_| C3q |Samefunction as the fadkey C9y |Same function as the [CAP] key
| C4y |Same function as the Hjkey CAqy| Same function as the [SML] key

S C5| Same function as the [HOME] key CDy |Same function as the [CR] key All registers

LIB-4

 Sets the current position of the cursor on the display screen in register

HL. The return conditionsare as follows.

CALL 2?PONT

HL <—cursorposition on the display screen (V-RAM address)

(Note) The X-Y coordinates of the cursor are contained in DSPXY (1171

H). The current position of the cursor is loaded as follows.

LD HL,(DSPXY) ; H<—Y coordinate on the screen

L <— X coordinate on the screen

The cursor position is set as follows.

LD (DSPXY), HL

All registers

except AF

and HL

Writes the current contents of a certain part of the header buffer

(described later) onto the tape, starting at the current tape position.

Return conditions

CF=0 No error occurred.
7 aA TSTNT+4 nt —mMHPrar!1 4

Cr=i The |BREAK | key waspressed.

All registers

except AF

Writes the contents of the specified memory area onto the tape as a CMT

| data block in accordance with the contents of a certain part of the

-CALLWRDAT| header buffer.
Return conditions

CF=0 No error occurred.

CF=1 The [BREAK key waspressed.

All registers

except AF

Reads the first CMT header found starting at the current tape position

| into a certain part of the header buffer.

~ CALLRDINF: — Return conditions

~(0027H)8 CF=0 Noerror occurred.

8 CF=1, ACC=] A check sum error occurred.

CF=1, ACC=2 The key waspressed.

All registers

except AF

Reads in the CMT data block according to the current contents of a

certainpart of the header buffer.

— CALLRDDAT | Return conditions
—(@02AH) CF=0 No error occurred.

Ce CF=1, ACC=1 A check sum error occurred.

CF=1, ACC=2 The key waspressed.

All registers

except AF

Compares the first CMT file found following the currenttape position

with the contents of the memory area indicated by its header.

Return conditions

CF=0 No error occurred.

CF=1, ACC=1 A match wasnot obtained.

CF=1, ACC=2 The |BREAK)} key waspressed. Alii registers

except AF

LIB-5

(Note) The contents of the header buffer at the specific addresses are as follows. The buffer starts at address 1OFOH and

consists of 128 bytes. |

This byte indicates one of the following file modes.

1. Object file (machine language program)

. BASIC text file

. BASIC data file

. Source file (ASCIIfile)

. Relocatable file (relocatable binary file)

AO. PASCALinterpreter text file

Al. PASCALinterpreter data file

m
M
B
W

Y
N

These 17 bytes indicate the file name . However, since ODH is used as the end mark,in

actuality the file nameis limited to 16 bytes.

Example: [S|[A][M][P][L][E]

These two bytes indicate the byte size of the data block which is to follow.

These two bytes indicate the data address of the data block which is to follow. The

loading address of the data block which is to follow is indicated by "CALL RDDAT:The

starting address of the memory area which is to be output as the data blockis indicated

by "CALL WRDAT".

These two bytes indicate the execution address of the data block whichis to follow.

These bytes are used for supplemental information, such as comments.

Example

Address Content

10F0 01 - indicates an object file (machine language program).

10F1 'S° ; the file name is "SAMPLE".
10F2 "A!

10F3 'M'

10F4 "Pp!

10F5 "L’

10F6 'E'

10F7 OD

10F8
1101 Variable

1102 00 : the size of the file is 2000H bytes.

1103 20

1104 00 ; the data address of the file is 1200H.

1105 12

1106 60 > the execution address of the file is 1260H.

1107 12 L1B-6

Co

 —Outline

FDOSsubroutines can be broadly divided into three groups.

That is,

1. CLI (Command Line Interpreter) subroutines

2. IOCS (Input Output Control System) subroutines

3. Utility subroutines

CLI subroutines are used to translate command lines appearing within user programs. That is, when

programsare called in which switches and arguments appear in appended format (such as RUN PROG/P

FILE1, FILE2), these subroutines translate those switches and arguments.

{OCS subroutines are used to open and close files and devices. Utility subroutines are other general

purpose subroutines.

Commandlines are strings of characters (which have been converted to intermediate code) which are

input from the keyboard as FDOS commands or other character strings in the same format. In the

explanation below, except where otherwise indicated, command lines appear in intermediate code. See

the table on page 30 for the intermediate codes.

LIB-7

—— CLI (CommandLine Interpreter)

TRS10

Function: Converts FDOS commandlines written in ASCII code into intermediate code.

Input registers: The HL register contains the starting address of the commandline written in ASCII

code. The DE register contains the starting address of the area storing the command

line converted to intermediate code.

Calling procedure: CALL TRSIO

Output registers: CF=O0 Normal

| CF=1]0..0.. Error (ACC <— error code)

Note: See the “System Error Messages” in System Commandfor details. The same applies below.

Registers preserved: All registers except AF.

¢« CLI (CommandLine Interpreter)

Function: Interprets and executes FDOS
commandlines. Example of use (DATE/P)

Input registers: The HL register contains the LD HL,DATE

commandline pointer. : LD DE.(RJOB)

Calling procedure: LD DE, (RJOB) PUSH DE

PUSH DE CALL .CLI

CALL .CLI POP HL

POP HL LD (RJOB),.HL

LD (RJOB),HL JP C,ERROR

Output registers: CF=O Normal

CF=1 Error -DATE . DEFB B1H eCDATE. code

(ACC <—FFH) -: DEFB 88H

J

for DATE/P

: DEFB ODH

Registers preserved: None

Caution: The LIMIT, RUN, EXEC and DEBUG commandscannot be executed. See page 29 for the

RJOB..

LIB-8

?HEX (Check Hexadecimal)

Function: Converts a four digit, hexadecimal data item starting with ‘$" into sixteen bit,

binary notation.

Input registers: HL contains the pointer; it should specify ''$."

Calling procedure: CALL ?HEX

Output registers: CFHl Not a hexadecimal number.

(ACC <— 3, and HLare preserved)

CF=0 a hexadecimal number.

(DE <— data, HL indicates the address following the hexa-

decimal number)

Registers preserved: All registers except AF, DE and HL.

?SEP (Check Separator)

Function: Checks whether the contents of the address indicated by the HL register are a sepa-

rator (one of the following: |CR}, , , : /).

Input registers: Register HL is the pointer.

Calling procedure: CALL ?SEP

Output registers: CF=] Not a separator. ACC <— 3 (error code) and the HL register

are preserved.

CF=0 A separator.

ACC=2CH The separator is a space or a comma(the HLregister then

points to the address following the separator)

ACC=0DH The separator is [CR] or "/ "

(the HL register points to the separator)

ACC=3AH..... The separater isa colon" : "

(the HL register points to the separator)

Registers preserved: All registers except AF and HL.

LIB-9

?GSW (Check Global Switch)

Function:

Input registers:

Calling procedure:

Output registers:

Determines whether the global switch on the command line is correct and,if so,

stores it in the area within FDOS.

The DE register contains the starting address of the switch table. The HL register

contains the commandline pointer which points to the global switch.

LD DE,SWTBL

CALL ?GSW

SWIBL- DEFB swt | List of items which may be used as global switches
DEFB sw2 |(these are written in intermediate code, from 0 toa

: maximum of 5. See page 30)

DEFB sSwWn

DEFB FFH _End oftable

CF=1] Error (ACC «— error code)

CF=0 Normal. The HL register points to the address following the

global switch.

Registers preserved: All registers except AF, DE and HL.

TESW (Test Global Switch)

Function:

Input registers:

Calling procedure:

Output registers:

Determines the presence or absence of the specified global switch. Subroutine

2?GSW" must be called before this subroutineis used.

None Example: This routine outputs whether or not

global switch /P is present to theline

CALL TESW printer or the CRT.
DEFB global switch

CALL THSW

CF=0 : DEFB 88H ; intermediate code for /P

... The specified global. PUSH AF |
switch is present. CALL C.MSG ; displayed on the CRTif the switch

is not present.
CF=]1 _ : POP AF

Lae ae specitied global car /CF—CF

switch 1s not present. _ printed on theline printer if the
CALL C,PMSG 3 switch is present.

Registers preserved: All registers except AF. JP C,HRROR indicates a line printer error.

LIB-10

?LSW (Check Local Switch)

Function: Used to determine the local switch which is attached to the file name on the com-

mandline.

Input registers: The HL register is the command line pointer which indicates the start of the file

name.

Calling procedure: CALL ?LSW

Outputregisters: CF=1 Error (ACC <— error code)

CF=0 Normal

ZFH1 1.0.00... No local switch. (ACC <—0O)

ZF=0 Local switchis present.

(ACC <—intermediate code for the local switch)

Example: Read-opens (ROPEN)a file with logical number 2 if a local switch is not present; if local

switch /O is present the file is write-opened (WOPEN) with logical number 3; otherwise, an

€rror OCCUrS.

HxX

LD B,4 - dafault file mode .ASC

HXX

CALL ? LSW

JP C,HRROR

JR NZ, Le

LD C,2 :jogical number 2

CALL ROPEN

JR L3

L2: CP 89H - intermediate code for /0

LD A,8 -error code IL LOCAL SWITCH)

JP NZ,HKRROR

LD C,3 - logical number 3

CALL WOPEHN

L3: JP C,BKRROR

LIB-11

——IOCS (Input Output Control System)—

ROPEN(Read Open)

Function: Read-opensa file (including the input/output device).

HL: Pointer which indicates the start of the file name.

6

Input registers:

: Logical number (See note 3)

B : Default file mode (See note 1)

Calling procedure: CALL ROPEN

Output registers: CF=1] Error (ACC <— error code)

CF=0 Normal

HL: Pointer (indicates the next separator)

B’ : File mode (See note 1)

C' : File attribute (See note 2) BL

L’ : Device number

IY : Starting address of the device table

(See note 4)

Registers preserved: Only registers BC, DE and IX.

WOPEN(Write Open)

Function: Write-opensa file (including an input/output device).

Input registers: HL: Pointer which indicates the start of the file name. :

C : Logical number (See note 3)

B’ : Default file mode (See note 1)

Calling procedure: CALL WOPEN

Output registers: CF=] Error (ACC <— error code)

CF=0 Normal

HL: Pointer (Indicates the next separator)

B’ : File mode (See note 1) ‘pTP

C' : File attribute (only for ''0"’)

L’ : Device number

IY : Starting address of the device table

(See note 4)

Registers preserved: Only registers BC, DE and IX.

LIB-12

LD

LD

BxXX

LD

BHXX

CALL

CALL

RET

-DEF'B

DEF'M

DEE'B

LD

LD

HXX

LD

BxXX

CALL

JP

-DEFE'B

DEFB

DEF'B

DEF'B

Example (when $FD1 ; ABC)

HL, FL

C ,2 (logical number)

B,4 (. ASC)

ROPEHN

C, ERR (See page 26)

C

90H ($ FD1)

"; ABC '

ODH

Example ($ PTP/PE/LF)

HL,PTP

C ,3 (logical number)

B,4 (. ASC)

WOPEN

C,ERROR

AlH ($PTP)

8FH (/PE)

8CH (/LF)

ODH

MODECK(Filemode Check)

Function:

Input registers:

Calling procedure:

Outputregisters:

Checks whether the file mode indicated in register B’ for the file opened is correct or

not.

Register B ‘contains the file mode of the openedfile.

CALL MODECK

DEFB file mode number(see page 30 concerning file modes)

CF=0 The file modeis correct.

CFH=1 The file modeis not correct. ACC <— error code

Registers preserved: All registers except AF.

(Note 1) The default file mode is the mode which is assumed when no modeis specified in the com-

mand line. The numbers enclosed in parentheses indicate the file mode number.(see page 30.)

Example

ABC

ABC.

ABC

ABC

es ee
LIB .-RB (5) . LIB (7)

. OBJ (1) . OBJ (1)

.ASC (4) . ASC (4)

(Note 2) Thefile attribute indicates the protection of file access, and is expressed as one ofthe follow-

ing ASCII codes.

“0” a file with no protection.

“R" a file for which reading is inhibited. (Read protectedfile)

v
2 ‘a file for which writing is inhibited. (Write protectedfile)

' a file for which both reading and writing are inhibited. (Permanentfile). However,files

with the attribute ‘'P’’ can be executedif the file mode is OBJ. The EXEC command can

be executed if the file mode is ASC.

Normally, the programmer does not need to be awareoffile attributes since they are managed

by FDOS.

(Note 3) Logical file numbers are numbers within FDOS which have a one-to-one correspondence wtih

physical files opened (including input/output devices). Numbers from | to 249 may be used as

logical numbers; however, since programs within FDOSuse all of the numbers from 128 on,

user programs should use only the numbers from 1 to 127 to avoid conflict.

(Note 4) An explanation of the device table is contained in USER I/O ROUTINE” in Appendix:

however, except for special 1/O operations, the programmer normally does not need to be aware

of the contents of the device table.

LIB-13

GETIL (Get 1 Line)

Function: Reads in one line from the file whose logical numberis specified in the C register.

The line read is one which is terminated with ODH. The data read is stored in the

area indicated by the address in the DE register. The length of the line, including

ODH, must be no more than 128 bytes.

Input registers: The C register contains the logical number. The DE register contains the address of

the area in which the data is stored.

Calling procedure: CALL GETIL

Output registers: CF=O Normal

CF=1, ACC=0..... File end

CF=1, ACC40..... Error (ACC— error code)

TY: Starting address of the device table (see note 4 on page 13)

Registers preserved: Only registers BC, DE, HL and IX.

GET1C(Get 1 Charcter)

Function: Reads one byte from the file whose logical numberis specified in the C register.

Input registers: The C register contains the logical number.

Calling procedure: CALL GETIC

Output registers: CF=O0Normal (ACC <— data read)

CF=1, ACC=0..... File end

CF=1, ACC#O..... Error (ACC <— error code)

IY: Starting address of the device table (see note 4 on page 13)

Registers preserved: Only registers BC, DE, HL and IX.

GETBL (Get Block)

Function: Reads data into the address indicated in the DE register from the file whose logical

numberis specified in the C register; only the number of bytes of data indicated in

the HL register are read in.

Input registers: The C register contains the logical number. The DE register contains the address in

which the data is to be stored. The HL register contains the number of bytes of data

to be read.

LIB-14

Calling procedure:

Outputregisters:

CALL GETBL

CF=0 Normal DE<—address of the next block of data to be read

CF=1, ACC=0..... File end) HL<— numberof bytes of data actually read

CF=1, ACC4#0..... Error (ACC <— error code)

TY: Starting address of the device table (see note 4 on page 13)

Registers preserved: Only registers BC and IX.

?EOF (Check End-of-file)

Function:

Input registers:

Calling procedure:

Outputregisters:

Checks for the end of a read-openedfile. ZF becomes ‘'1 when an attempt is made

to read beyond the end ofdata.

The C register contains the logical number.

CF=1............ Error (ACC <— error code)

CF=0, ZF=1....... Notfile end

CF=0, ZF=0 File end

IY: Starting address of the device table (see note 4 on page 13)

Registers preserved: Only registers BC, DE, HL and IX.

PUTIC (Put 1 Character)

Function:

Inputregisters:

Calling procedure:

Outputregisters:

Outputs one byte of data to the file whose logical number is specified in the C

register.

The C register contains the logical number. The ACC register contains the data to

be output.

CALL PUTIC

CF=0............ Normal

CF=1............ Error (ACC <—error code)

IY: Starting address of the device table (see note 4 on page 13)

Registers preserved: Only registers BC, DE, HL and IX.

LIB-15

PUT1L (Put 1 Line)

Function: Outputs the line starting at the address specified in the DE register to the file whose

logical numberis specified in the C register. Outputs the ending carriage return.

Input registers: The C register contains the logical number. The DEregister contains the starting

address of the data to be output.

Calling procedure: CALL PUTIL

Output registers: CF=0............ Normal

CF=1l............ Error (ACC <— error code)

IY: Starting address of the device table (see note 4 on page 13)

Registers preserved: Only registers BC, DE, HL and IX.

PUTBL (Put Block)

Function: Outputs the number of bytes of data indicated in the HL register to the file whose

logical numberis specified in the C register, starting at the address indicated in the

DEregister.

Input registers: The C register contains the logical number. The DE register contians the starting

address of the data to be output. The HL register contains the numberof bytes of

data to be output.

Calling procedure: CALL PUTBL

Output registers: CF=0ONormal (DE<—the address following the end of the block output)

CF=1] Error (ACC <—error code)

TY: Starting address of the device table (see note 4 on page 13)

Registers preserved: Only registers BC and [X. (Register HL is also preserved if CF=0)

PUTCR(Put Carriage Return)

Function: Outputs a carriage return to the file whose logical number is specified in the C

register.

Inputregisters: The C register contains the logical number.

Calling procedure: CALL PUTCR

Output registers: CF=O Normal

CF=1]0... Error (ACC <—error code)

TY: Starting address of the device table (see note 4 on page 13)

Registers preserved: Only registers BC, DE, HL and IX.

LIB-16

PUTM (Put Message)

PUTMX

Function: Outputs the line starting at the address indicated in register DE to the file whose

logical number is specified in the C register. PUTM and PUTMXoperate in the same

manner exceptfor their handling of $CRT and $LPT. Cursor control codes (J , @,

etc.) are executed only when PUTM is used; when PUTMX is used, they are only

display or printed as reverse characters. The end code (OQDH) is not output.

Input registers: The C register contains the logical number. The DE register contains the starting

address of the data to be output.

Calling procedure: CALL PUTM or CALL PUTMX

Output registers: CF=O Normal

CF=1 Error (ACC <— errorcode)

IY: Starting address of the device table (see note 4 on page 13)

Registers preserved: Only registers BC, DE, HL and IX.

CLOSE(Close File)

KILL (Kill File)

Function: Closes or kills the file whose logical numberis specified in the C register. If this

subroutine is called when the C register contains O, all currently opened files will be

closed or killed. (This excludes files which were opened by FDOSitself.)

Input registers: The C register contains 0 or a logical number.

Calling procedure: CALL CLOSE or CALL KILL

Output registers: CF=O0 Normal

CFF]0...... Error (ACC<— error code)

IY: Starting address of the device table (see note 4 on page 13)

Registers preserved: Only registers BC, DE, HL and [X.

LIB-17

LUCHK (LU Number Check)

Function:

Input registers:

Calling procedure:

Output registers:

Registers preserved:

Example:

Checks whether a logical number (contained in the C register) has been defined.

The C register contains the logical number.

CALL LUCHK

CF=10.... The logical numberhas not been defined.

CF=0 The logical number has been defined.
, . ° .

L <—device number(see page 30 concerning device numbers)

TY<— starting address of the device table. (see note 4 on page 13)

All registers except AF, HL, IY, D’andL.

LD C,5 ; logical number

CALL LUCHK

JP C,NOTUSE

EXX |

LD A,L - device number

HXX

CP 4

JP C,FD

DVINIT (Device Initialize)

Funciton:

Outputregisters:

Calling procedure:

Outputregisters:

Registers preserved:

Initializes the write-opened device whose logical numberis specified in the C register

as follows.

Device Operation

$ CRT-::::: line feed

$ PTP::-::- form feed

$ LPT form feed

$SOA normally output OFH; this may be arbitrarily changed with the

STATUSstatement of FDOS.

$ CMT output a form feed code (OFH).

$ MEM

The C register contains the logical number.

CALL DVINIT

CF=0Normal

CF=1Error (ACC «— error code)

IY: Starting address of the device table (see note 4.on page 13)

Only registers BC, DE, HL and IX.

LIB-18

 —Utility Subroutines

MTOFF (MotorOff)

Function: Stops the motor of the floppy disk drive.

(The drive motoris activated automatically when necessary.)

Calling procedure: CALL MTOFF

Registers preserved: All registers except AF.

BREAK(Check Break Key)

Function: Checks whether [SHIFT] + |BREAK] have been pressed.

Input registers: None

Calling procedure: CALL BREAK

Output registers: CF=0.......... Not pressed.

CF=1 Pressed. (In this event, ACC <— 37 . 37 is the error code.)

Registers preserved: All registers except AF.

HALT (Halt Action with Break Action)

Function: Checks the keyboard and,if the space key is pressed, stops execution until the space

key is pressed again. If |SHIFT} + |BREAK| are both pressed, ACC+— 37 and

CF<—1. (37 is the error code.)

Input registers: None

Call procedure: CALL HALT

Output registers: CF=0 Normal

CF=1 1.0.0.0... SHIFT] + |BREAK| werepressed. (In this event, ACC <—37.)

Registers preserved: All registers except AF.

LIB-19

SGETL (Screen Get Line)

Function: Inputs one line from the keyboard. The keyboard is equipped for auto repeat. The

line which is actually input is the line in which the cursor is located when |CR) is

pressed (the data may occupy two lines on the display screen). Afterwards, the

modeis changed from the CAP/SML modeto the CAP mode.

Input registers: The DE register contains the starting address of the area (80 bytes required) in

which the datais to be stored.

Calling procedure: CALL SGETL

Output registers: CF=O Normal

Registers preserved: All registers except AF.

LTPNL (Let Printer New Line)

PMSGX (Printer Message X)

PMSG(Printer Message)

PPRNT(Printer Print)

PPAGE(Printer Page)

Function: These are printer control routines. These routines perform the same function for

the printer as do the monitor subroutines shown below for the CRT.

CRT

i¢o¥8 ~- LTPNL (line feed) LETNL

hy > PMSGX MSGX
14 ~-PMSG MSG

Loe> PPRNT PRNT

~ PPAGE (form feed)

Output registers: CF=O0 Normal

CF=] 2.0.2.0... Error (ACC<— error code)

Registers preserved: All registers except AF and IY.

L1IB-20

C& LI

&NL

&PRNT

&NMSG

&MSG

&1L

Function:

Outputregisters:

Registers preserved:

Directs output to the printer or CRT depending on the presence or absence of the

global switch /P_|. &NL, &NMSG and &1L include the HALT function (see page

19 for the HALTfunction).

Prepares either the printer or the CRT. |

This routine must be called before any other routines are used. Further, “?GSW”

must be called before this routineis called.

Performs the same function as LETNL.

. Performs the same function as PRNT.

. Performs the same function as MSG.

. Executes &NL, then executes &MSG.

Executes &MSG,then executes &NL.

CF=0 Normal

CF=1 Error (ACC<— error code)

All registers except AF and IY.

See LINKING ASSEMBLY PROGRAM WITH FDOS"in Appendix for an example ofuse.

LIB-21

PUSHR

PUSHR 2 (Push Register)

Function: This subroutine is used to PUSH registers IX, HL, DE and BC. (Only registers IX, HL

and BC are pushed with PUSHR2.) The RET instruction at the end of this sub-

routine then automatically POPs these registers.

Calling procedure: SUBR : CALL PUSHR ;PUSH REGISTERS

RHT Z ;>POP and RET if ZF=1

RET >POP and RET

Registers preserved: All registers except IX.

The program list shown belowillustrates the function of this routine.

PUSHR : BENT

EX (SP) , 1X

PUSH HL

PUSH BC

PUSH DE

PUSH HL

LD HL ,POPR

EX (SP) , HL

JP (IX)

PUSHR2 : ENT

BX (SP) , 1X

PUSH HL

PUSH BC

PUSH HL

LD HL ,POPR2

EX (SP) , HL

JP (IX)

POPR > POP ODE

POPR2 : POP BC

POP HL

POP IX

RET

LIB-22

CHKACC (Check Acc)

Function:

Input registers:

Calling procedure:

Outputregisters:

MULT(Multiply)

Function:

Inputregisters:

Calling procedure:

Outputregisters:

Registers preserved:

Checks whether the contents ofACC match anyof several different given data items.

ACC contains the data items to be checked.

CALL CHKACC

DEFB n ; numberof data items (1—255)

DEF'B datal

DEF'B data 2
n items of data to be compared

DEF'B data3

DEFM '....'may be used with ASCII.

DEEF'B datan

ZFH1 One of the data items matches the contents of ACC.

ZF=0 No match was found.

All registers except the flags

Multiplies the contents of the DE register and the HL register (handling them as

16-bit unsigned integers) and places the result in the DE register.

DE and HL

CALL MULT

CF=1 Overflow (result cannot be expressed in 16 bits)

CF=0 Normal. The DE register contains the result of the calculation.

All registers except AF, DE and HL.

SOUND(Warning Sound)

Function:

Calling procedure:

Registers preserved:

Produces the sound "AO [J] ARA [| AR"to indicate that an error has occurred.

CALL SOUND

All registers.

LIB-23

BINARY (Convert ASCII to Binary)

Function:

Input registers:

Calling procedure:

Outputregisters:

Registers preserved:

Example:

Converts an ASCII numeric string into a 16-bit unsigned integer.

The HL register contains the starting address of the ASCII numeric string.

CALL BINARY

CF=] 1... 2.02... Overflow (cannot be expressed within 16 bits)

CF=0........... Normal. The DE register contains the converted data. The HL

register contains the address following the end of the numeric

string. |

If the ASCII characters indicated by HL are not a numeric string, CF <—O and DE

<— 0.

All registers except AF, DE and HL.

LD HL,BUFFEHR

CALL BINARY

JP C,ERROR -if CF=0, DE becomes 400H.

: HL points to ODH.
BUFPFEBR: DHEM ‘ 1024'

DEFB ODH ;must be an ASCII code for other than ‘0’ ~ ‘9’

CASCII (Convert Binary to ASCII)

Function:

Input registers:

Calling procedure:

Output registers:

Registers preserved:

Example:

Converts a 16-bit unsigned integer into an ASCII numericstring.

The HL register contains the 16-bit unsigned integer. The DE register contiansthe

address of the area in which the ASCII numeric string is to be stored.

CALL CASCI

The DEregister contains the ending address of the ASCII numeric string obtained.

All registers except AF and DE.

LD HL, 1024

LD DE, BUFFER

CALL CASCII

BUFFER :DEFS 10

©

;after conversion the ASCII numeric string'1024' 1s stored.

LIB-24

CLEAR(Clear Area)

Function: Loads a continuous area in the memory with zeros. (The memory area must be 255

bytesorless.)

Inputregisters: None

Calling procedure: CALL CLEAR

DEFBlength ;number of bytes to be cleared

DEFW address >the memory is cleared starting at this address.

Output registers: None

Registers preserved: All registers.

CHLDE (Compare HL, DE)

Function: Compares the contents of the HL register with the contents of the DE register.

Input registers: HL and DE

Calling procedure: CALL CHLDE

Outputregisters: FLAG <— HL—DE;thatis CF=0,ZF=0-::::HL>DE

CF=1,ZF=0::::::HL<DE

CF=0;ZF=1::::::HL=DE

Registers preserved: All registers except AF.

LCHK (Limit Check)

Function: Compares the last usable memoryarea (the address indicated by the stack pointer

Input registers: HL

Calling procedure: CALL LCHK

S: CF= 0-::-::: HL<—=—SP-— 256

CF=1-::::-:HL>SP— 256

At this time, ACC <—2]. 21 is an error code. (memory protect error)

Registers preserved: All registers except AF.

LIB-25

ERR (Display Error Message)

Function:

Input registers:

Calling procedure:

Outputregisters:

Registers preserved:

ERRX

Function:

Inputregisters:

Calling procedure:

Outputregisters:

Registers preserved: All registers except AF.

Displays an error message (see the System Error Messages in System Commandfor

details). The contents of the C register and the IY register must be preserved from

the time the error occurs until this routine is called. Further, the close or kill routine

must not be called during that time (otherwise, the contents of the error message

may be incorrect).

The ACC register contains the error code (no error message is output if the error

code is FFH).

The C register contains the logical

number. These may not be necessary depending

The IY register contains the starting on the type of error.

address of the device table (see note (see note 4 on page 13) 4 on page 13)

CALL ERR Example:

ACC<—FFH CALL SGETL (page 20)

CALL NC,&1L (page 21)
CF<+— 1

JR NC,- 6

CALL C,BRR

RET C
All registers except AF.

This function displays a colon:; followed by the contents of the area from the

address following a specified ODH until the next ODH; the specified ODH is the one

which is the (ACC-1)th from the address indicated in the DE register.

The DE register contains the starting address of the message block.

The ACC register contains a number(1-255).

Example:

CALL ERRX - HRMSG: DEFM ' SYNTAX’
: DEFB ODH

DEFM ‘ OVERE'LOW ‘

DEFE'B ODH

DEFM ‘IL DATA‘

DEF'B ODH

ACC <—FFH

CF<—]

LD A,2

LD DE,ERMSG

CALL BERRX

This displays’: OVERFLOW .

LIB-26

ERWAIT(Display Error Message and Wait Space Key)

Function:

Input registers:

Calling procedure:

Outputregisters:

1. Calls subroutine ERR if ACC40.

2. Displays the contents of the area starting with the address indicated in the DE

register until ODH.

3. Displays’* , @ SPACE KEY”if ACC=0.

4. Waits until or |SHIFT|+|BREAK|is pressed.

ACC and DE

CALL ERWAIT

CF=0 SPACE] waspressed.

CF=1 SHIFT] + [BREAK] were pressed. (ACC <—37)

Registers preserved: All registers except AF.

——FDOS Common Variables——

LIMIT (Limit of Memory)

Numberofbytes:

Meaning:

2

Contains the last address plus one of RAM mounted.

ISTACK(Initial Stack Pointer)

Numberof bytes:

Meaning:

2

Contains the last address plus one of the memory area whichis available to FDOS.

This data is used by FDOS for initialization of the stack pointer. The contents of

ISTACK may be changed by the FDOS LIMIT instruction. The contents of

ISTACK must not be changed by any other means.

LIB-27

ZMAX

Number of bytes: 2

Meaning: Contains the last address of the area being used by FDOS(excluding the stack). The

contents of ZMAX may be changed depending on the next subroutine called.

(ROPEN, WOPEN, CLOSE,KILL, .CLI)

Caution: The area which may be used within the user program asfree areais as follows.

1. [Lowest address] = [value contained in ZMAX whenthe user program was entered]

+ [number of files which are simultaneously opened (ROPEN

or WOPEN)] x 350

+ [number of files which are simultaneously write-opened] x

72

+ [numberof floppy disk units used] x 128

[Maximum address] = [stack pointer (SP)]—a, a is approximately 256.

2. From ISTACK to LIMIT—1.

3. Area reserved by the DEFS statement within the assembly program.

eDNAME(Default File Name)

Numberof bytes: 17

Meaning: The file name and succeeding ODH contained in this area will be used as the default

file name when the file name is omitted. For example, when this area contains

“ABCD " “$FD3° appearing on the command line will be interpreted as

“$FD3 ; ABCD”.

MDRIVE(Master Boot Drive)

Number of bytes: 1

Meaning: Contains the drive number minus one (0 ~ 3) of the drive containing the master

diskette.

BDRIVE(Boot Drive)

Number of bytes: 1

Meaning: Contains the default drive number minus | (0 ~ 3). The default drive numberis the

number which appearsto the left of the prompt © >when FDOSis in the command

wait state.

LIB-28

MAXDVR (Maximum Drive)

Number of bytes: 1

Meaning: Contains the numberof floppy disk drives connected (1 ~ 4).

TODAY

Numberof bytes: 7

Meaning: Contains the month, day and year followed by ODH; each element of the date is

indicated with a two-digit ASCII code.

RJOB (Running Job Pointer)

Numberof bytes: 2

Meaning: Area which indicates how far command line interpretation has proceeded. When

command lines are interpreted in a user program, the address following that of the

last command line interpreted must be placed in RJOB.

LIB-29

 —CLI Intermediate Code Table

| Device name|

ASCII Intermediate code ASCII Device number Intermediate code} ASCII Device number Intermediate code

80 H $ FD1 0 90 H $ LPT 16 AOH

/D 81 H $ FD2 1 91 H $PTP 17 A1H

AC 82H $ FD3 2 92H $ CRT 18 A2H

/=E 83H $ FD4 3 93 H 19 A3H

/G 84 H $ CMT 4 94H $ SOA 20 A4H

AOL 8&5 H $ MEM 5 95 H $ SOB 21 A5 H

/N 86 H 6 96 H 22 A6 H

/S 87 H 7 97 H 23 A7H

/P 88 H 8 98 H $USRI1 24 A8 H

4 O 89 H 9 99 H $USR2 25 A9H

LT SAH $ PTR 10 9AH $ USR3 26 AAH

SBH 11 9BH $USR4 27 ABH

/LF RCH $KB 12 9CH 28 ACH

/PN SDH $ SIA 13 9DH 29 ADH

SPO SEH $ SIB 14 9EH 30 AEH

/PE 8FH 15 9FH 31 AFH

| Built-in commands |

ASCII Intermediate code ASCH File mode number [Intermediate code

RUN BOH OK 299 FOH

DATE BiH F1H

XFER B2H . OBJ 1 F2H

DIR B3H . BTX 2 F3H

PAGE B4H 3 F4H

RENAME B5H . ASC 4 F5H

DELETE B6H .RB 5 F6H

TYPE B7H 6 F7H

CHATR B8H .LIB 7 F8H

FREE B9H 8 F9H

BYE BAH 9 FAH

TIME BBH .SYS 10 FBH

EXEC BCH 11 FCH

HCOPY BDH 12 FDH

BEH 13 FEH

14 FFH

Other Codes other than those shown in this table are expressed as is in ASCII code. However, this

applies only to 01H-7FH. The codes for some small characters and graphic characters are

the same as CLI intermediate codes; therefore, they cannot be used.

LIB-30

The BASIC relocatable library contains a collection of subroutines which are required by programs

created using the BASIC compiler. These routines are useful when BASIC program subroutines (external

functions, external commands, etc.) are created using the assembler.

Routines contained in RELO. LIB can only be used as BASIC subroutines; they cannot be executed as

independent assembly programs.

.. INTO

.. INT 1

.. INT 2 (Convert Floating to Fixed)

Function: Converts a real number expressed in 5 bytes into a 16-bit integer. The absolute

value of any decimal fraction is discarded.

(Examples: 1.5 —] —2.]— —2) -

.ANTO The input range is from —32768 ~ 32767

WANT I oo... ... The input reange is from 0 ~ 255

INT 2 0... The input range is from —32768 ~ 65535

Input registers: The HL register contains the starting address of the 5 byte real number.

Calling procedure: CALL ..INTO CALL ..INT1 CALL .. INT2

Output registers: HL<— integer

Error processing: ..INTO........ Upon overflow, CF<— 1.

JINT 1 Upon overflow, JP-—~ER3.

-INT2 Upon overflow, CF<—1.

Registers preserved: All registers except AF and HL.

Note: The .. FLTO and CONST subroutines (described below) are used to create the 5-byte real

number.

.. FLT 0 (Convert Fixed to Floating)

‘unction: Converts a 16-bit signed integer into a 5-byte real number.

Inputregisters: The HL register contains the 16-bit signed integer. The DE register contains the

starting address of the area in which the real numberis stored.

Calling procedure: CALL .. FLTO

Registers preserved: All registers except AF, DE and HL.

LIB-31

CASC ‘(Change ASCII)

Function:

Input registers:

Calling procedure:

Converts a 16-bit unsigned integer into an ASCII character string and appends ODH

to the end ofit.

The HL register contains the 16-bit unsigned integer. The DE register contains the

starting address of the area in which the ASCII characterstring is stored.

CALL CASC’

Registers preserved: All registers except AF.

MSGS(High Speed Message)

Function: Performs the same function as the monitor subroutine MSG, but at high speed.

Registers preserved: All registers except AF.

MOVE‘(MoveString)

Function:

Input registers:

Calling procedure:

Output registers:

Converts a character string from type 1 to type 2. The converted characterstring is

stored in an area called WORD. (The type 1 and type 2 character string formats are

explained on page 35.)

The HL register contains the starting address of the character string (in type 1.)

CALL .MOVE

The DE register contains the starting address of the converted character string. (The

address of .WORD)

Registers preserved: All registers except AF, BC, DE and HL.

FASCX (Convert Floating to ASCII)

Function:

Input registers:

Calling procedure:

Converts a 5-byte real number into an ASCII character string and appends ODH to

the end ofit.

The HL register contains the starting address of the real number. The DEregister

contains the starting address of the areain which the ASCII character string is stored.

CALL FASCX

Registers preserved: None

LIB-32

CONST (Convert ASCII to Const)

Function: Converts a constant expressed in ASCII code into a 5-byte real number.

Input registers: The HL register contains the starting address of the constant expressed in ASCII

code. The DEregister contains the starting address of the area in which the result is

stored.

Calling procedure: CALL CONST

Output registers: The HL register contains the first address following the constant converted.

Registers preserved: None

Error processing: JP ER3

CHCOND(Character Condition)

Function: Compares the two character strings (in type 1).

Input registers: The HL and DEregisters contain the starting addresses of each of the two character

strings being compared.

Calling procedure: CALL CHCOND

Output registers: FLAG< (DE) — (HL)

that is,

CF=0,ZF=0-:::::: (DE) > (HL)

CF=1,ZF=0:::::: (DE) < (HL)

CF=0,ZF=1:::::: (DE) = (HL)

Registers preserved. All registers except AF, BC, DE and HL.

ERI ER13

ER2 ER14

ER3 ER21

ER4 ER24

ERS ER37

ER6 ER64

Function: Error message display routine used during BASIC program execution. See the Error

Message table in the BASIC compiler instruction manual (available separately).

Calling procedure: JP ERI (SYNTAX ERROR),etc.

LIB-33

BEERR (Basic Executing Error)

Function:

Calling procedure:

Error message dispaly routine used during BASIC program execution.

CALL BEERR

DEFB error code (error number in BASIC)

DEFM ‘ERROR MESSAGE’

DEFB ODH

— No return made.

BABORT(Basic Abort)

Function:

Input registers:

Calling procedure:

Example:

Caution:

. STOP

Function:

Calling procedure:

When a system error occurs during BASIC program execution, this routine displays

the applicable error message and interrupts execution.

The ACC register contains the error code (system error number).

The C register is the logical number.

The IY register contains the starting May not be required depending upon the

address of the device table (see note type oferror.

 4 on page 13).

JP BABORT

LD Cy,Ak

CALL GHTI1C

JP C,BABORT

BEERRis a routine which displays *ER nn: message in linenumber (where nn is

the error number in BASIC) when an error occurs in BASIC program; BABORTis

a routine which displays —ERR message in linenumber whenanerror occurs at the

FDOS level. ON ERRORprocessing will be performed in both cases, if specified.

Stops BASIC program execution. (Corresponds to the STOP instruction of the

BASIC compiler.)

JP ..STOP

LiB-34

. END

Function: Terminates BASIC program execution. (This corresponds to the END instruction of

the BASIC compiler.)

Calling procedure: JP ...END

eWORD

Function: 257-byte general purpose area.

 ——Type1l and Type 2 Character String Formats

There are two types of character strings which are handled by B¢ :IC; these should be used as

appropriate.

Type 1

DEFB length (character string length: 0 ~ 255)

DEFM

Type 2

DEFM

DEFB ODH

LiB-35

PSN(Oe oTSensTe

CONST MODECK

&MSG " 21 DVINIT IOCS 18 MSG MON 2

&NMSG " 21 ER1 RELO 33 MSGS RELO 32

&NL " 21 ER2 " 33 MSGX MON 2

&PRNT " 21 ER3 " 33 MSTA i] 2

.. END RELO 35 ER4 " 33 MSTP " 3

.FLTO M 31 ER5 N 33 MTOFF UTYL 19

_INTO N 31 ER6 N 33 MULT " 23

..INT1 N 31 ER13 N 33 NL MON 2

_INT2 N 31 ER14 " 33 PMSG UTYL 20

.. STOP " 34 ER21 " 33 PMSGX " 20

.CLI CLI 8 ER24 N 33 PPAGE N" 20

. DNAME VAR 28 ER37 N 33 PPRNT N" 20

. MOVE’ RELO 32 ER64 N 33 PRNT MON 2

. WORD " 35 ERR UTYL 26 PRNTS MN 2

2HEX MON 4 ERRX N 26 PRTHL ay 4

??KEY N 4 ERWAIT Nu 27 PRTHX I 4

? ADCN N 4 FASCX RELO 32 PUSHR UTYL 22

?BLNK M 4 GETIC IOCS 14 PUSHR2 " 22

?DACN N 4 GET1L N 14 PUTIC IOCS 15

?DPCT N 4 GETBL N 14 PUTIL N 16

? EOF IOCS 15 GETL MON 3 PUTBL N 16

?GSW CLI 10 GETKY N 3 PUTCR N" 16

?LSW " 11 HALT UTYL 19 PUTM N 17

?HEX M 9 HEX MON 4 PUTMX N 17

?PONT MON 5 HLHEX N 4 RDDAT MON 5

?SEP CLI IBU1 N" 6 RDINF " S

ASC MON IBU18 " 6 RJOB VAR 29

BABORT RELO 34 IBU20 " 6 ROPEN IOCS 12

BEERR N" 34 IBU22 N 6 SGETL UTYL 20

BELL MON 2 IBU24 Ny 6 SOUND M" 23

BDRIVE VAR 28 IBUFE N 6 TESW CLI 10

BINARY UTYL 24 ISTACK VAR 27 TIMRD MON

BREAK N 19 KILL IOCS 17 TIMST N

BRKEY MON 3 LCHK UTYL 25 TODAY VAR 29

C&LI1 UTYL 21 LETNL MON 2 TRS10 CLI 8

CASC’ RELO 32 LIMIT VAR 27 VERFY MON 5

CASCII UTYL 24 LTPNL UTYL 20 WOPEN IOCS 12

CHCOND RELO 33 LUCHK IOCS 18 WRDAT MON 5

CHKACC UTYL 23 MAXDVR VAR 29 W RINF N 5

CHLDE ” 25 MDRIVE " 28 XTEMP ” 2

CLEAR " 25 MELDY MON 2 ZMAX VAR 28

CLOSE IOCS 17

Type: MON Monitor subroutine

CLI... ee ee. Related to CLI

JOCS4.. Related to IOCS

UTYL Leeee Utility FDOSsubroutines
VAR eee eee~FDOS commonvariable

RELO BASICrelocatable library

L1IB-36

Appendix ae

SHARP |

NOTICE

The MZ-80 series of sophisticated personal computers is manufactured by the

SHARP CORPORATION. Hardware and software specifications are subject to

change without prior notice; therefore, you are requested to pay special attention to

version numbers of the monitor (supplied in the form of ROM) and the system

software (supplied in the form of cassette tape or mini-floppydiskfiles).

This manual is for reference only and the SHARP CORPORATION will not be

responsible for difficulties arising out of inconsistencies caused by version changes,

typographical errors or omissions in the descriptions.

This manual is based on the monitor SP-1002 and the SP-7000series FDOS.

—— CONTENTS ——

LINKING ASSEMBLY PROGRAM WITH EDOS
USER CODED I/O ROUTINES-00--0--0 2208. 4
CONVERSION OF CASSETTE BASED SYSTEM PROGRAMS...... 10s
MEMORY EXPANSION0ccccecccccccucceececees 1
IO MAP o.oo ccc ccc cece cece ec cccveteeeveteetvetvenee. 12
MEMORY MAPPED I/O0cc0ccccecccecceeeecees 13
MEMORY MAPPED I/O CHART0cccceeeeeeeee 14
NOTES FOR USE OF INTERRUPT0-00ecceceeee 15
HARDWARERESET 0.0. ccc cccecccccsecsecceveeees 16
PAPER TAPE PUNCH AND READER INTERFACE............. 17
BUILDING MONITOR PROGRAMS AND CHARACTER
GENERATORS ... 00.00. cece ccc cccccceecccevetevceveeees 21
MZ-80K CIRCUIT DIAGRAMSbbe cece ceeeeveeees 23
UNIVERSAL I/O CARD CIRCUIT DIAGRAM 37
ASCIL CODE TABLE 0... cece cccccccccccecseeceveeees 38
DISPLAY CODE TABLEbbb b bbb tebteeeeeeeee. 39

APPENDIX

An object program generated with the FDOSeditor, assembler and relocating loader can be executed

with the RUN command.

Example 1 1> RUN GALAXY [CRI

This command loads GALAXY.OBJ into memory from the floppy disk and executes it. Execution

of a RET statement in the object program returns contro] to FDOS. The contents of the stack pointer

must be restored to the value contained when the object program wascalled before the RET statementis

executed. CF must be reset before control is returned because an error message will be output on the

assumption that the ACC contains a system error codeif CFis set.

Global switches and/or arguments can be assigned after the file name in the RUN command as

shownbelow.

Example 2. 2> RUN ASMZ8/P CONTROL-A_ [CRI
t

Argument

Global switch

In this case, FDOS converts the entire command line into intermediate codes (refer to the Libra-

ry/Package Manual), and loads ASMZ8.OBJ into memory from the floppy disk, then executesit.

At this time, the HL register points to the intermediate code corresponding to /P (88H). The RJOBarea

in FDOShas the same value as the HL register.

Switches and arguments following the file name (ASMZ8) must be decoded by user object program.

They can be decoded using FDOS subroutines. When the last character ("":"" or ODH)is decoded, the HL

register contents must be stored in RJOB. To return control to FDOS, execute a RET statement in the

object program.
=The sample program listed on the following pages illustrates command line decoding. It outp_ an -*“D

ASCII file to the CRT display or printer. This program operates in a manner similar to the FDOS TYPE

command. The file name of this program is TYPE’. Thus, executing

Example 3. 2> RUN TYPE’ ABC

Outputs file ABC.ASC to the CRT display and executing

Example 4 2> RUN TYPE’ /P ABC

Outputs ABC.ASCto the printer.

All external labels (indicated by the E message) in this program list are defined in FDOS.LIB.

APPENDIX-1

——SAMPLE PROGRAM (COMMAND)—

e# ZEG ASSEMBLER SP-7101 PAGE G1 +4

a1 anen . TYPE COMMOMD

TYPE: ENTe
y

yt

C
e

on
de

.
*

*
.

ed
Pee

= ‘w
ok
e

Mo RAE

Md BeTies Lf DE. SlTEL
HS AHS CRB E PALL SYiptshi
He waee C. R'E T ("

t
i
m 7 ‘al
le

,

TM
)

ot " ea
d

r
a
m

wo
h

—
,

t
h

1m
t

r
s

‘w
or

lk
s

~
J

m
e
T
I
T

E
S
M
O
T
t
o
f
e

e
d
b
o
)
O
s

CALL CEL4
CALL SSEF

H

t i

h
o
d

fo
)
0
D
t
s

ST
I
e
m

_
—

m
r
t

=
=

Fa
!

La
t

~*
~

ch
e

— ot
e

r
o

.
wa
le

t
a
p
e
e
m
)

T
e

LT
)
f
e
e
g
p
e
l
e
i
a

q
u
e

‘en
ali

e’

~
—

ex
al

le

T
H

M
M
c
n

r
e
s

r
t

FET~ ooa
lbe

’

‘ex
vul

he

L

: (CF =
oe Lo H»S

mF

RET He
TYFER: WALL SL

FET L
Lo Has

=F

RET He

LD Ir. 128

wa
ri

wa
ll

‘a
nd

a’

—
eb

a
t
a
I
t

Ft
— on

de

od
e’

t
e
d J

m
t

an
le

=
, a
t

o
d
e

*

m
e
e
t
a
M
e

M
M
a
t

— wo
s

! !‘e
on
li
e’

T
~

a
e
~
~

eo
ul
s

m
e

c
o
n
d

ea
ub

e
o
e

en
vk
e’

r
a

M
o
y
m
e
i
m

n
e
,

w
a
t

!

— ‘co
sh
, *

1
h
}

ona
tie

'

oa
he

a
t
e
d

te
]

ca
st
e

sa
cl
e

o
a

p
e
t
f
e

fa
ke

P
e
a

e
k
f
e
p
e
b
e
I
T

m
e
e
i
m

S
O
T
a
T
T
a

T
T
i
h
t

i
o
e

—
—
,

t
T
a

e
e
e
e

it
s

a
e
}

‘n
at

e

ox
al

,

O
e
e
e
e
e
e
e
|

a

at
F
a
m
a

fe
t

p
=
.

t
m

i
m

r
i
m w ‘o
on

i f
a

_ m
o

m i
.

‘e
xet t Ne

— ome ome gn mee

RCFE}
FET ".

ae f-{L

I. TYRPEER
TE!shl

DEFE SH
i POF
Caan E MALL oC. FRADE
ce JF Is TYFEER
HAE E PALL NOGDECE

DEFE 4
DE. BUFFER:

TYPED: CALL HE. GETIL
Pade
es TYRES

PF
}

p.
2

ho
e

m
y

m
w

m
l

a
e

t T — r
o

a
t
h

m
e

oa
t,

p
e
r
a
a
s

e
r
e
g

gf m
l

‘
I

wa
t

m
M

m
y

I
T
— o
e

f
t

r
i
m
W
o

i
k

e
e

ke
r
i
e

b
a
b
a

b
a

bo

f
e
l

+4
T
s

im '

y
e

m
i

—_
,

+,
=

Ta
r
p
e
l
e

b.
2

~.
J

‘w
we
’

t
a
d

m
o
M
r

’

I “
a

m
M

m
e

xm
)

a
n

r
m

an
oh

e

_
c
o
o
o
o

w
o
m

m
y

an
te

h
e
d
b
l

b
o
b
.

e
s
,

aa
!

|

'
:

at
ee

Te
hed

Po
le

be
e
A
R
l
e

_- ‘w
as
te

‘an
dle

’

‘on
alh

e'

en
ed

r
p
m
s

‘w
an

ds
’

" ‘co
nti

n’
‘e

mu
le

7
,
e
e
,
e
o
,

P
e
s

t
a
b
i
b

i
a
t
m
a
b

t
e

te
d

ie
d

V
o
g
t

4
m
e
m
p

T
s
a

‘o
wl

m
e
e
M
m

w
i

om
al

ie
’

w
t

co
ns

m
I

mo
r

ft
= ee

l,

b
i
t
r
T

4
h
t
d

o
d
i
d
O
b

b
a

bo
A

f
e
T
T
a
e
d
)

O
t

o
s

1
° i i 4

. t
o . on

1
m

m
i
m

§

a
m

ewa
be!
o
1

ai
e

ac
k

~
~
t
e

—
1

"
r

an
il

:
™ f
a
i
t

P
r
i
m
f
o

i
i
i

a
l
i

“
T
r

b
m

B
O
O
E
R
O

—
_
b
a

r
y

a
J
!
a

r
t

—
o
o

h
O
B

h
e
e
B
o

m
7
T
i
t
e
j

42. TVFEERtT
]

r
i

T
l

m
l

om
e}
7

m
y

‘e
ma
i:

‘e
al

ewa
lle

:

v
4
a ~
—
;

oo
k

a
)

oo
h

E
E
T

E
co
al
s TYPESE: CALL CLOS

c
a
r
e
"

w
i
e
’

T
,

a
t

f
y

w
t

fr.
|

m
a
t

7
‘w

oa
ls
= ‘e

os
li

s

f
b
f
B
d

i
d
i

Le
d

i

t
i
e
t

e
S
e
e

A
C
A
b
h
f
t
f
t

a
A

f
e

m
r
i
T
m
m

—
T
I
T
O
a

o
s

P
T
Y

E
S
a
a

o
S
s

+
:

! 1 3
pe
ls

w
a

“
1
T f
.

o
r

c

Sp
r
t
y
m
y
h
s

e
e =~ ol
i’ASS SSAA E me YRTOES. Hb

Cy~
~ +
4

n
e
n

—-
.

r
p
e
y

h
e
y
h
e

w
e

F
t

l
e

we
al

TYFEER: CALL ERF
MALL EITLLL

A
n
n

P
O
t
r
m
j
t
e

m
o
m

y
i

r
e
a
y

TH
]

1 7

r
e
,

s
h

b
a
d
t
i
t

eo 7
e

°
l
h
,

L
A
f

i
"

ou
d,

7
,

ne
ll
e

a
c
-

a
a
C = w
=
,

~
—

ma
dl
y

ey
or
t

w
o
u
d
l

m
m

APPENDIX-2

DES =SWITCH THELE
CHECK GLOBAL SiITCH

SELECT CRT OF LET

CHECK SEPHRATER:

SEFARHTER=" a
S TS ERP cODE

HO, ERR RETUPH
CHEE LOCAL SWITCH

© 15 ERR CODE

ERROR, Lihl EX TST
pile ra] ss

DEFAULT MODE=HSC

READ-OFEH

TEST GLOBAL ZiWITCH

LFT FHGIHIs

FILEMODE HECE
e Hind

ET 1 LIME
DISP OF FRIWT 1 LINE
HO ERPOF:

ERR CIF
EMO:-OF-FILE
CLOSE FILE
CHEE SEFHRATEF

SEPARATER="."_ 7%
WES, TYPE MENT FILE
SALE CLI POINTER

ERROR OCCU:
EILL FILE «C=1253

ek FER ASSEMBLER SP-Figi PAGE G2 ts
— sa
ai
e

P
i
m

U
T
A

f
a
e
d
f
t
e
e

a
|

—
.
J

SCF >; SET ERROR FLAG
EFF Lo H»FFH > ALREADY DISP ERR MSG

RET
STEEL? GEFE

DEFE:
BLIFFER: DEFS

EMD

_
i
T

t
t

co
ol

a
s

ca
nk
e

mi
t

IT
s
T
y

at
W
h

2Ee

> EMD OF SiTBL
> [ee BYTE BUFFER

i
T

“
T
H
E
T

h
e
d

“
T
]
g
t

a c
o
k
e

T
™
,

1
m

AI
te
i
f
t

Pa
t
i
t
t
a

1
m

fT
]
1
T
s

m
a

a
e
a
m

r
e
T
P

b
e
a
h

m
T

ij
l
P
a
T
M

™
~

ac
l

a
u

wa
h,

+e ZSG ASSEMBLER SP-71e1 PAGE 82 +

we
al
m
1

".m
d
;-TYFE aa

TYPEZE 2G

—
A

He BUFFER feed SWTEBL Bees TYRPER eid TYFEIS
H45 TYRPEER Bene

APPENDIX-3

FDOSsupports control programs not only for the floppy disk drive but for the printer ($LPT) and

the paper tape reader ($PTR), etc. Other I/O devices can be operated under the control of FDOS by

means of user coded control programs.

—USER 1/0 ROUTINE—

A user I/O routine consists of the following sections.

A. Device table (57 bytes)

B. ROPEN or WOPENprocedure

C. Data transfer program

D. CLOSE and KILL procedures

These sections are explained below using the FDOSpaper tape reader control program ($PTR) as an

example.

A. Device Table (lines 2 through 20, bytes 0 through 56)

*FDOSuses bytes 0 through 2 (FLAGO — FLAG2).

This area must be written exactly as it is shown.

*Byte 3 (flag 3) represents the attribute of the I/O device.

Bit 7: O

Bit 6: 1 indicates that tabulation is possible. This bit is set to 1 for the printer. See note 1 on

page 7.)

Bit 5: 1 indicates that parity specification ($PTR/PE,etc.) can be made.

Bit 4: 1 indicates that only .ASC-modefiles can be transferred.

Bit 3: O

Bit 2: O

Bit 1: 1 indicates that WOPENis possible. (See note 2 on page 7).

Bit 0: 1 indicates that ROPENis possible. (See note 2 on page 7).

* Byte 4 indicates the data transfer format. (described later)

*Bytes 5 and 6 are the starting address of the subroutine to be called during ROPEN execution.

*Bytes 7 and 8 are the starting address of the subroutine to be called during WOPEN execution.

(WOPENis not executed for $PTR so DEFW is specified in this program.)

*Bytes 9 and 10 are data by the FDOS STATUS command. (Not used for $PTR).

*Bytes 11 through 14 are starting addresses of the subroutines for CLOSE and KILL processing.

*Bytes 15 through 22 (Procedures 1 through 4) are data transfer routine addresses. The data

transfer procedure differs according to the transfer format.

APPENDIX-4

ROPEN

| Procedure1 | | Input 1 character Input 1 line (From the address|

/ :Procedures2~4 /:7 Unused Unused
WOPEN

 | Procedure1| Unused Carriage return

/ _Procedure2 / Output | character Output 1 character
ss«CACC data) (ACC data)

| On.ASC mode, ODH On. ASC mode, ODH means
| meanscarriage return carriage return and OCH means
| and OCH means form form feed.

feed.

) Unused Output 1 line (Corresponds to

 .
monitor subroutine MSG)

] “Procedure4 . Unused Output | line (Corresponds to
a monitor subroutine MSGX)

* Bytes 23 and 24 are used by FDOS.

* Byte 25 is used only when bit 6 of FLAG 3 is 1, in which case it must be loaded with the number

of characters of the line which have been output by I/O routine.

*Byte 26 is loaded with the file mode by FDOS.

* Bytes 27 through 56 are the device name (up to 16 characters); the rest area must be reserved

with DEFS.

*When the transfer format is 4, a buffer area for 1 line is reserved after the byte 56 with

DEFS.

B. ROPEN or WOPENprocedure (lines 22 through 30)

Only ROPEN is needed for the paper tape reader (S$PTR). The tape feeder is skipped by this

procedure. WOPENis also used to start a new page during output of an assembly listing.

C. Data transfer program (lines 32 through 63)

Program which performs actualtransfer of data.

D. CLOSE and KILL procedures(lines 65 through 66)

No function with $PTR.

To return control to FDOS from the ROPEN, WOPEN,Procedure 1—4, CLOSE or KILL routines- , 4 aA
2 N

e

registers as follows before executing the RET statement.

Normal :CF <— 0

Error -CF <«— 1,ACC <— error code (refer to the System Error Messages in the System

Command Manual.)

Fileend :CF << 1,ACC <0

The contents of the TY, BC’, DE’ .and HL’ registers must be saved in any case.

APPENDIX-5

—RELOCATING USER I/O0 ROUTINES—

First, assemble the program coded (the program name DVMis used below).

Example 1: 2> ASM DVM, $LPT/L

Next, relocate the file to generate the object program. A higher loading address must be specified at

this time because of factors related to the LIMIT command described later. Take care to ensure that

addresses do not over lap when two or more user I/O programsare used. If necessary, link MON.LIB or

FDOS.LIB with the user I/O programs.

Example 2 : 2> LINK $C000, DVM

Example 2’ : 2 LINK $C400, CDISP, $FD1;FDOS.LIB [CR

—LINKING USER I/O ROUTINES WITH FDOS ——

User I/O routines must be linked with FDOS I/O controller every time FDOSis activated.

First, use the LIMIT command to reserve an area in memory for loading the object program (DVM.

OBJ).

Example 3: 2> LIMIT $CO00

Next, load the object program.

Example 4: 2> LOAD DVM [CRI

Finally, link the routine to the FDOS I/O controller. $USR1 through 4 are provided in FDOSas

device namesfor user I/O routines; assign the user I/O control routine to one of these device names.

Example 5: 2> ASSIGN $USR1, $CO00 [CRI

Now the user program is linked with FDOS and can be called by specifying $USR1 (—4). It is

convenient to prepare EXEC files which include LIMIT, LOAD and ASSIGN commands such as those

shown above. (Refer to the System Command Manual).

User I/O programsare called as shown below.

Example of use by FDOS commands

2> TYPE $USR1

2> XFER DATA4, $USR2

APPENDIX-6

Example of use by BASIC compiler

10

20

30

40

999

Note 1:

Note 2:

ROPEN #2, “$USR1"

INPUT #2, A$

IF EOF (#2) THEN 100

PRINT A$

CLOSE #2

Bit 6 determines the functions of BASIC statementsPRINT # and INPUT #.

When bit 6 = 1, data is treated in the same manner as with PRINT and INPUT statements.

When bit 6 = 0, separators ("',"’ and ‘';') in the PRINT # statementare replaced with ICR]

and commasincluded in the input character string for the INPUT # statementare treated .

as data; only is regarded as a data separator. (This is the same as with the PRINT #

statement supported by SP-6015 and the PRINT/T statement supported by SP-5025.)

Both ROPEN and WOPENare possible, when both bit 1 and bit 0 are set, but they cannot

be executed simultaneously.

APPENDIX-7

—— SAMPLE PROGRAM (I/0 DRIVER)——

#40 EEG ASSEMBLER SP-F181 PAGE G1

G1 aaa $FTR: EMT
AS BREA BAe PEFL >; FLAG |
AS FeaS AA DEFER A > FLHG 2

“1 DEFE 21H > FLAG 3
4 DEFE | > TRAHSFER FORMAT
AA DEFLE ROFEM : ROFEH

AP REGS AA DEF & >; WOPEHM
DEF > STATUS
DEF CL > CLOSE
PEFR oC > EILL
DEFhl FROMECURE

DEF hil FROCEDURE
DEF hl PROCEDURE
GCEF hl FROCEDURE
DEPS
DEF THE:
DEFE: > FILENODE

PEFR “$RTR- > FILENAME

DEFE ADH
MEFS SS

H
y

wo
ol

y“
wo

nl
le

at
I
U
e

e
y

co
sh
”

—
“

so
ul

le
é
1
T

‘
c
o
u
d
a

T
s = On
f
e
Cd
R:

op
re

e

we
th
e

y
o

on
de

o
y
e

w
i
.

~
o

wo
es

—
,

wa
nb
e

‘T
r,

sy
su
as

~
~

a

~~
a}

t
t
l

a
h
i

h
t

s
t
i

T
O
e
a
e

w
e
T
E
P
t

L
a
e
e
d

p
e
e
e
g
t
e
t

m
r

i
t

r
i
r
e

1
h —
~

aw
l

poe
eng

ol
e

en
t

st
!
L
i
t

= an
ds

a
t
= ‘w

al
le
=

=
si

f
i
t

b
a
b
i

a
i
m
t

wa
h,

=
—

wa
ke
=
~

aw
ab
e

m
3
O
T

ove — ss
ch
e

= a
t

Sb
= wo

ah
.

m
m

co
ek
e i
t
= w
o
e

= wa
l

|
t “T
h
— a a —

a}
f
a

me
d
m
s

at
o
J

st

m
i
i
m
e

=
r
i
m

mi
t

mi
! _ wo

ah
.

oo
ml

he
=

V
i
m
y

on
de

a
i
t

7
4
4

f
e

te
d

Pe
l
e
e

—
—

e
a
u
l
e

c
o
o
k
s

ov
e

=
on

el
ie

e
o
n
h
e

=
,
e
t
)

o
e

a
t

L
i
t

L
i
d
t
a
t

_ wo
ke

eo
ok
e

ri
m

a
e

,

1 1 i {

a an
ch
e

a

ed
te

d
Pi
l
pe

e
Re

e
e
e

pe
e
e
e

T
P

O
S
T
o
e
d

e
e

O
T
E
T
a

=

w
t

mE
a
t

f
w
l
,

M
t
P
a

e
e

U
R
r
e

wa
t
Hy

!
fo
t

fy
fo

o
a

i

_ a
e
)

t

y
o
r

“mt
Se
me
le

m
i
f
e

Ro
)
f
e
i
M

tL m
t

m
y

f
u

F.
1

e
e

e
m

a
i
L
a
i
t
b
y
l

=
,

a
FO
P
Ra
t

Eo
!

it

a
l =
—

s
b

t
l
y

ROPEH: CALL FTRIK S ROPEH
RET CC
LD 4
AWD 86

A

ea
t
= co
al
s’

r
a

1
, — t
o
i
_ t
a
l

chee towne Ft

m
i

p
T

t
e

OT

1 4

m
l Od

I
t

mr

A
E
P
h
f
h
f

o
i
d
o

~
O
T

f
e

Ay
f
e

I
T

m
p
m
o
h
L
p

e
e
T
H
T

1
f
t

:

i
y
i
~
!

SEFe IR
Pe Lo
SETFae LO ¢DATAD. A
AF HOR A
cs RET

h
a
f

“j
y
7

a
A A
L
A

co
ol
s’

‘e
ma

Ml
r
t

D
u
p
r
e

>:
a
t

sa
at
7 ‘s
od
,

Ph
dC

a
ba

be
p
i
p

im
a
w
a
t

Pe
d

(e
g
t
e
t

T
r
f
e

te
d
p
e

w
o
e
E
e
O
o

— on
al

e'
=
,

e
k
e CoS4Hy FTRIC!: CALL FTEIH

SFA Lf Hs

De RET i

e1YPae Lo HL» CATH
re Lo As fd
rH Lf hE
Hr HME Hy
a FET

P
h
a
t

h
a
d

t
y

e
o
,

P
t
e
a
l
t
y
t

ft

u
l
e

"
—

e
w
u
h
e

w
m
a

=
Te

f
e
f
e
e
d
P
l
i{ =

r
e

ee
ee
p
e

ma
b

ta
t

ha
t

ta
t

la
t

ba
,

o
e
,
P
m
,

ma
l

Fa
t

ba
t

ta
t

ta
t
ta

ts
_

k
T“EEF FTRIW: LoD »EFH

a LT CELHI,4H-
DBE 1 PTR: TH H» CE 1H:
BEF ETT aia Fl
ZeLy JR Hes PRS
Ete ETT 4.4

»FTRS

e
e

ee
e
s
e
e
e
e

Mr
i

m
j

s
y

o
t

fu
.

fe
.

T m
t

t i m
m 4
m
M

p
.

aw
ak
e
~ o
s

fa r
T

T
s

e
T
,
i
T

m
T
m
n

i
t
y
i
n
i
t

fa
.

te
d

i
T
f
e
p
m
T
e
n

r
y

m
m

i
T |

+
,

s
i

b
a
l

b
a
t

t
t

44

fl — sn
wa
al
e’
—

P
t
W
a
!

'

“
t
t

25FE TP
DBE 1 7 FIRS: 1H » CE1H>
CEA BIT S.A
EMAL! IR He. PTR

aw
ok
e
=

s
t

h
s

y
f

= eo
8

m
y

ce

o
e

oe
oe

“
a
e
e
m
e

r
e

1t i 1 i

APPENDIX-8

T
T

1
c
k

n
e

‘
e
w
e
k
e

i
T
:

wr
it

T
g

A
f
e
e
l
T
P
T

o
T
a
a

a
t

|

a
d

N
y

oo
oh

con
de

e
r
e
e

a
t
y
t

b
y
t
1
)

b
g
t

a
k
e

r
i
m
r
m
a

“
o
r
,

r
o
,

r
m
a

— an
ol
e

on
d,

T
a
t

oo
k,
’

‘o
va
le

"
‘e

ar
l’

a

w
i
M
e
t

o
o
l

m
a
T‘

w
e
l
!

-
p
r
e
p
s
M
t

o
e

so
le

‘m
il
e:
— oo
k,

r
i
m

Tt
f—
, a
t

|
M
p

m
p

my
m
p

m
e
d
me

me
m
e
m
p
mp

me
e
o
o
e

m
T
T
M

— ma
le

e
e

ar
my

r
m

e
e

L
a
t
h
a
t

U
y
)

L
a
t

i
a
t

b
e

‘c
on

te
se
nd
y

=
r
i
e
r
s

y
n

al
e

a
m
y

U
O

aq
ee
e

ca
ne

wa
te

a
e
i
i
f

—
“
t
h
d

]

7
"

ean
lle
o
m
~w
i
i
m
p
c

o
r

f
e

re
d
r
o
e
e
e
w
g
o
m
g

o
e
I

f
e
e
d
p
e

F
r
c

be
nc

h
Pr

ee
s
h

f
e
e

p
r
c

f
e
e
p
e
p
e
b
a
T
E

I
SSEMBLER SP-riel FHGE 82 +e

EIT 4:4

TH Hat
CFL
LE! Ei FY

Lo A
CHAT i

RET
PTR: Lo H»FFH

UT TE LHS;
SF

Lo H.» Gb SHOT READ’
RET

(
T
l

— = ae
T
i

CLC: “OR A
RET

DATA: DEFS 4
EHC

ech ASSEMBLER SP-FPl@i FAGE 82 +

—_
{
T
l

i
4
2
0

a
— CLO FD DATA) oGePFOPTRIC Bed? PTRE GeSE

FIRE 88S PTRIM G84 ROPEH 8aSs

APPENDIX-9

The following cassette based system programs have thusfar been released.

MACHINE LANGUAGE SP-2001

RELOCATABLE LOADER SP-2301

SYMBOLIC DEBUGGER SP-2401

EDITOR-ASSEMBLER SP-2202, SP-2102

These system programsgenerate source files (with file mode .ASC), relocatable files (with file mode

-.RB), object files (with file mode .OBJ) and debug modesavefiles (i.e., object files with symboltables).

Of these, source files and object files can be transferred to FDOSdiskettes.

The procedurefor transferring a cassette file to an FDOSfile is as follows.

Whenthe file name consists of characters which are usable with FDOS:

XFER $CMT,$FDn (n=1 — 4)

When the file name includes characters which are not allowed by FDOS, a newfile name must

be assigned as follows:

XFER $CMT, $FDn; filename (n = 1 — 4)

When an assembly source file is to be transferred, use the following procedures to determine whether

or not pseudo instruction REL is used: load the file with the FDOS text editor and search for REL with

the S command. Delete all REL instructions; this is because FDOS system programs do not require REL.

Next, assemble thefile from which REL instructions have been deleted to generate a relocatable file with

the FDOS assembler. The object file is obtained by relocatingit.

Object files generated by cassette based system programscan be transferred to an FDOSfile and they

can be executed by the following command.

RUN $FDn; filename

The following message is displayed on the CRT screen when the specified object file has a loading

address which results in destruction of the FDOSarea.

DESTROY FDOS?

Pressing the|Y|key at this time performs the transfer operation, destroying the FDOSarea; pressing

the[N| key stops the operation and returns the system to the FDOS commandwait state.

APPENDIX-10

FDOSrequires 36K bytes of RAM

The MZ-80K has three RAM blocks and RAM

chips of up to 16K bytes can be mounted on each

block.

RAM(III) RAM (II) RAM (1)

The following table shows the procedure for

connecting address sectors in the address range for the

RAMarea.

|Eight4KaneRAMchips 1000

on theRAM(I)block — 5
.veoae - SFFF ® 6

: Or «6 9 ®

:Bight4KoeRAMchips 1000
_onbothRAM (II) and : SY
: feRAMeT8blocks:Le. : OFFF @ © @ 6

Bight16Kdynamic&RAMM chips 1000 | OOOs og +
ontheRAMainBlock > /
a. SF SFFF 5656 SO ©

2Eight116K:k dyoaceRAMchipsca 1000 QR NOD © @@ ®
ontheRAMddblockand , L /
: eight4K dynamicRAM chips|_ | OFFER r /
on.theRAMpsblock=| 660 2S ©

Baie16Kdynamic8RAMchips 1000 BHBaaAD OO O® ®@ @®.

onbothRAM(I)and ’) ! / /
RAM(cam):blocks.—

CFFF | ffDEOSODOOD®S OOS ©

In all cases, eight 16K dynamic RAM chips are assumed to be mounted on the RAM (1) block.

APPENDIX-11

I/O ports with addresses equal to or higher than DO, are reserved by the manufacturer for controlof

external devices; those used by FDOSare assigned device names such as $LPT.

D&

EO

E2

FO

F4

F8

FE

 pof—

Reserved for future use

Paper tape punch and reader

($PTP, $PTR)

Reserved for future use

Floppy disk

($FD1 ~ $FD4)
 Printer

($LPT)

APPENDIX-12

Memory addresses EOOOH through EOO3H are assigned to the programmable peripheral interface

(8255) and EO0O4H through EOO8H are assigned to the programmable interval timer (8253).

The monitor program sets the mode for 8255 and 8253 as follows.

Control word

Da De Ds DaD3 D2 Di Do

fifo fo fo]i jo fifo]

8

8255 4

D7—-Do <—"“ C 4a

8
8255 port definition (mode 0)

or

0 0. 0 0 | Output ‘Output : 0 Output

0;0]0 1 Output Output 1 Output

0 |0O}1 0 Output Output 2 Input

0101/1 11 Output Output 3 Input

0 |1 |0 0 Output Input 4/1 Output

0 ;1)|0 {1 Output Input 5 Output

0 }1 11 10 Output Input 6 Input

O }|1 41 1 Output Input 7 Input

1 ;}0 0 0 Input Output 8 Output

1 |}0 {0 1 Input Output 9 Output

1 {0 }1 0 Input Output {10} Input

i |O {1 1 Input Output 11} Input

1 {1 |O 0 Input Input 12} Output

1311041 Input Input 13! Output

1 {1 {1 |0 {Input Input 14| Input

1 {1 1 1 Input Input 15} Input

A -—~*—> PA7—PAo

e+Pc7 —Pc4

>>Pc3 —-Pco

B k———_—PB7—-PBo

 Output

Input

Output

Input

Output

Input

Output

Input

Output

Input

Output

Control word

0 1 0 0 Sets counter 2 to one
second (constant value).

0 0 0 0 Reads counter 2.

 Sets the frequency
division ratio.

GATE| Counter 2

OUT | (used in mode0)

D7 De Ds D4 D3 D2 D1 Do

0 1 1 1

1 0 0 0

0 0 1 1 0 1 0 0

CLK

CLK |
D7—Do

APPENDIX-13

D7

De

GATE Counter 1
OUT | (used in mode 2)

CLK |
GATE |Counter 0

OUT | (used in mode2)
8253 control word format

Ds Da D3 D2 D1 Do

|scr | sco] RLI | RLO | M2 | Mi | Mo| BCD]

Counter 0

0 1 Counter 1

1 0 Counter 2

1 1 Unused

Latch the counter contents

Read/load MSB

Read/load LSB
 —

—
C
L
©

 me
a

O
o
]

|
}
©

Read/load LSB, then MSB

16 bit binary

° counter

1 4 digit BCD

counter

E001”

 ,— Cursor blinking timer reset signal

D3 |

{ |Kevbonr scan row outputsignals

Do

| Do

D,
{ | Keybou scan columninput signals

E002 D, —V-BLANK

D, —Cursor blinking timer status bit

D, — Read data from the cassette tape deck

D,— Record/play key signal from the

cassette tape deck

D3; — Cassette deck motor ON/OFFsignal

D, — CAP/SMLlampselection signal

D, — Write data to the cassette deck

Dy — V-GATE

8255 C port single bit set/reset

CAP (green) lamp—LD A, 05H

LD (E003H), A

SML(red) lamp — LD A, 04H

LD (E003H), A

8253 counter O setting data

The music signal is generated by dividing

the 2MHz clock signal with counter 0 in

the MZ-80K. Monitor subroutine CALL.

MSTAsets the division ratio and controls

the gates.

8253 counter 1 read data 8253 counter | preset data

8253 counter 2 read data 8253 counter 2 preset data

8253 modesetting data
 D,)—Tempotimerstatusbit Do —Music Start (1), Stop (0)

APPENDIX-14

The Z80-CPU INT terminal is connected to the

B-24 terminal of the connector provided on the rear 8253 Z80-CPU

panel as shownat right. It is recommendedthat an NMI

open collector driver be used to feed the INT signal

externally. INT

The non-maskable interrupt terminal (NMI) is SN7406

internally connected to the +5 V line through a |

Connector (terminal B-24)

kQ resistance. O

The MZ-80K monitor program sets the CPU to interrupt response mode] and disables the interrupt.

—— EXECUTION OF TI$ IN BASIC AND TIME IN FDOS—

The BASIC interpreter developed for the MZ-80K supports TI$ and the FDOS supports TIME to

read the built-in timer. The built-in timer uses counters 1 and 2 of 8253. It is set to 00:00:00 when the

BASIC interpreter or FDOSis started. Interrupts are enabled at the same time as the timeris set. The

level at terminal OUT2 of 8253 becomes high every 12 hours to cause an interrupt and make a 24 hour

clock on the program.

When the CPU accepts an interrupt, it automatically executes a restart to location 0038H. Instruc-

tion JP 1038H is stored in 0038H and an instruction causing a jump to the clock updating program is

stored in 1038H. Therefore, an externally applied INT signal cannot be identified andit is also treated as

an interrupt for the built-in clock. Thus, the INT signal cannot be used externally when the BASICinter-

preter or the FDOSis operating unless the clock function is disabled.

In an FDOSuser program, use of the INT signal is optional. The EI instruction must be executed

properly since the monitor program disables the interrupt.

8253 has no reset function, but the equivalent of a reset is performed when a control word is set

without presetting the counter to mask the interrupt from OUT2.

APPENDIX-15

Microcomputer operating conditions are generally indeterminate when the poweris turned on. The

RESETsignal is used to set the microcomputerto a certain initial operating state.

When the RESETsignalis applied, the program counteris set to 0 and the monitor program stored in

locations OOOOH and onis activated to start operation of the MZ-80K.

In the MZ-80K, the reset signal is automatically applied by the circuit shown below when the

poweris turned on.

CPU!

RESET

MZ-80Kreset circuit

sy +5V
+ .

RESETsignal generated by the above circuit

SKS 0.01p
R3 10K 1 Mo

3 PRa A, 74121 CPU

100 a|82 1c. _| >—fro—
C Q O_o_~ RESET

SW 4 i CAEL B 74LS00 7414

)I W777 ~=Rs S1K

+ 5V

Reference circuit for manualreset

The base voltage of Tr is low when the poweris turned on andit is kept low until Cl is charged.

During this interval, Tr is off and its collector level is high. This high level signal is inverted by IC1 to

apply the RESET signal to the CPU.

Tr is turned on when the voltage at point A reaches Vp of Tr plus foward voltage Vp of D2 so that

the RESET signal is turned off. When the poweris turned off, C1 is discharged through D1. Therefore,

the reset circuit operates normally for a few secondsafter the poweris turned off.

It is often necessary to reset the CPU without turning off the power. For example, the system runs

out of control when the POKEstatement is erroneously used in a BASIC program and the BASICinter-

preter is destroyed. The power must be turned off to restart the system; this takes a rather long time

because the data and program must be loaded again.

The above problem can be solved by adding a manual reset circuit; this circuit is shown abvoe. [C2 is

an one-shot multivibrator. When SW is turned on, the voltage at Al and A2 drops to a low level and a

negative pulse is generated at QO. This negative pulse is used for resetting the CPU.

Note that the program error is not corrected by resetting the CPU and so the program may run with-

out control again. This manualreset circuit is provided for reference only.

APPENDIX-16

FDOS has built-in paper tape punch and reader control programs. These are assigned the device

names $PTP and $PTR,respectively. In actuality, however an interface circuit must be established with

a universal interface 1/0 card to connect the paper tape puch and reader with the MZ-80 series micro-

computer. The circuit diagram is shown on page 37.

The method for controlling the paper tape punch and readeris not standardized. A paper tape punch

and reader which can be controlled by FDOS must have the following signal timing system. The signal

names and timing charts shown below are based on the RP-600 paper tape punch and reader manu-

factured by Nada Electronics Laboratory. (For details, refer to the manual included with the paper tape

punch andreader.)

 ——SIGNAL NAME—

Puncher

DT, ~ DT,

ST

TO
(RDY)**

Reader

RD, ~ RD,

STA

SPR

RB

: Data (PTP <— CPU)

: Motor ON/OFFcontrol signal (PTP <— CPU)

- START/STOP control signal (PTP <— CPU)

: Timing signal (PTP —~ CPU)

: Ready state signal (PTP —> CPU)

(This signal is not output from the RP-600 since it can be used in remote opera-

tion. Ground it when the RP-600is used.)

: Data (PTR—~ CPU)

- START/STOP control signal (PTR<«— CPU)

: Sprocket signal (PTR—~ CPU)

: Tape end signal (abnormalstop signal) (PTR—» CPU)

* Do not connect when the motoris not remotely controlled.

%0% The DPT26A manufactured by the Anritsu Electric Co. outputs this signal, but the RP-

+

600 does not.

——I/O PORTS—-

Port EO, is used for data by both the punch and the reader. Port Ely is used for control signals.

See Table 1.

APPENDIX-17

< Punch > < Reader >

O10 O17 I10 li

“DT; DT | DT3| DT4) DTs! DT¢! DT>| DTs| [Data] RD,| RD | RD3| RD,/ RDs| RDe| RD7| RDs|

O20 ; 027 O20 - ~ O27

| MI| ST | | |

=

—_———___|[Control signals]

|=

==STA| | | |

120 127 120 Io7

(RDY)| TO | | Li eeSPR | RB | |]

Table 1 Port allocation

——TIMING CHART—

Punch

MO | |
‘More than:

_ H 2 seconds ~~ see

7 L | Within
oe H 720 msec __

TO L LFLE LILI LE

| (DY) |, |
- |

at MP
: “oy”? “<Q” “oy? “<Q” “oy? “oy

Figure 1 Punch timing chart

* The next data to be punchedis readied while TO is H and maintained while TO is L.

** ST is set to L 2 or more secondsafter the motor has been started, and is set to H afterTO

has risen from L to H for the last data.

| i

STA| L | |

RL Lo
RB{L

RID. L

I
t

“1”? “1”? 1”? “QO” “1”?

Figure 2 Reader timing chart

APPENDIX-18

—PREPARING A PAPER TAPE PUNCH/READER
1/0 CARD——

It is convenient to use a universal I/O card (MZ-80 I/O-1) for preparing a paper tape punch and

reader I/O interface circuit. Markings such as 0y) or 0, in the port allocation table on page 18 match

those on the universal I/O card.

See page 20 for setting the universal I/O card switches to select port addresses EO and E1.

The RP-600 internal interface circuit and input and output pin connections are shown below for

reference. (Fordetails, refer to the manual included with the RP-600).

Punchinternalcircuit MZ-801/O-1

SN74368 <>”
1.2K —__

<p— t—O DATA
SV, 2.2K ;

MC1413 ; 1.2K
<p— t—O STsak ¢

MC1413

oc] t—O MI
5V 4.7K ;

MC1413 g 47K _
>o- ¢ C TO

|

Punch interface circuit

Readerinternal circuit MZ-801/O-1

SN74LS04 SN74368

Io Re OQ DATA

SN74LS04 :

{So ey —O SPR
5V

McC14049 z 2.2K

<p O STA

MC14049 |

f> O BB
Reader interface circuit

Figure 3

o
e

2 MI Motor ON/OFFsignal

ST START/STOPsignal
ae rr

1FG Frame ground

i

Timing signal

ND

Interface circuit (RP-600)

 a
Sprocketsignal

Data
28| STA
29| RBoe _

START/STOPsignal

Operating state signal

Frame ground

Table 2 Connector pin connections

APPENDIX-19

a a

O2@ O27 Ole O17 A1MZ80I0-1 t te

L JL 1 “2

' f | l ! ' ' '

odebObVi~sobabos dobre odoductg eneered god
Oe.aeeeeEOECECT,a FoeEEROEOe OE, ‘O° Teel lez

= $08bmbo bnbo be bg

I t 1 ' ' 1 ' ' REN &eyeeSPOECEOE,°

roSuds32.Lo$0bh94 SOSWOTEMIAH=SOS

wPECECECECP PECKS a PE OKsro PE OH OCOK.”

Cle Icl4 IIs -CI3.__ICI6 ICIZ Cla geeegogsedsbasa.
ECPPEOEROE”

Le a _ i I fT ’ t t '

—- -— >

. ° 2 = Lobb. bmsas— soi&OOOOOtOM? Qo «<

2 ars oaof otk kokoe<

C9 ICIO ICll cio Icl2 Ici3 oc Fe

=F] 2 1#2 2) =piyigyteieinis™ - - 0 mbus—sos nso| © “BsBoEBOSEOE

z> [oT
© C6 5 IC 6 C7 IC7 IC 8 Ic9 C8

whe wd,

> 2 |Jreo | e | =
R | PS

“~MWN-
IC 1 IC2 C4 [C3 IC4 [C5 C5

a whe _L

7 T aa

C3

C2 Ci

4h
~~

30 2D c 15 5 {

Figure 4 Universal I/O card componentlocation (parts)

(1) Number of ports

Input : 2 ports

(2) Port address |

All port addresses can be set. (However, FDOS

uses DO,, and higher locations.)

The input port for Ii ~ I, is set to an even

Output : 2 ports

address.

The input port for I, ~ I, is set to an odd

address.

The output port for Oj

address.

The output port for Or

~ O,, is set to an even

~ Q,, is set to an odd

address.

(3) Port address setting switches (PS)

Numbers marked on the PS switches correspond

to the address bus lines shown below. Turning a

PS switch OFF sets the corresponding address

bit to logical ‘‘l'° and turning it ON to logical

Example) Setting the PS switches as shown below

sets the port address to EOy.

Sy ceeeeseeeeees OFF

S66 ceceseeeecees OFF ssgssss

Ss cece eee ececes OFF 123 45 67

O iq Re O
Sg ceseseeeeeees ON yes

Sy ceseceeeeeees ON UU

Sy ceceeeeeeeees ON

Sy eeceeeeeeeee ON

When the PS switches are set as shown above,

ports EOy and Ely are used for this card.

CAUTION: Installing two or more interface

cards which have the same port

address settings will result in de-

struction of ICs.

Universal I/O card port address setting

APPENDIX-20

A monitor program and character generator which meet the requirements of a particular user system

can be built by the user. However, an expert knowledge of software and hardware is required to build

these because software resources (the BASICinterpreter, system program, application program,etc.) and

hardware resources (printer, disk device, etc.) supplied by the Sharp Corporation may not be used with a

carelessly generated monitor program.

The MZ-80K uses the following LSIs for the monitor and character generator.

Monitor:-XOI7IPAegtowPD2332)x
oo

Mask ROM LSIs wPD2332 and wPD2316E are pin compatible with PROM LSIs TMS2532 and 2716,

respectively. Pin connections are shown below. Be careful not to insert an LSI chip in a wrong socket

since all LSI chips are of the 24-pin DIP type. Place LSI chips in a conductive rubber mat whenstoring

them. (LSI chips destroyed by inproper handling are not guaranteed.)

—PRECAUTIONS FOR HANDLING LSI CHIPS——

e Ground the human body when handling LSI and IC chips. Avoid wearing clothing made of chemical

fiber.

e Hold LSI or IC chips by the plastic resin housing and avoid directly touching the pins.

@ Pay attention to the direction in which LSI and IC chipsare inserted into their sockets.

@ Whenstoring an LSI or IC chip, wrap it in aluminum foil or place it in a conductive rubber holder to

keep all pins at the same potential.

e Do not store LSI and IC chips in extremely wet or dry places. The storage temperature is —20°C ~

+70°C for LSIs and —40°C ~ +125°C for ICs, but store them at a normal temperatureif possible.

e Do not subject LSI and IC chips to shock and do not apply excessive pressure to the pins.

to

o c
ye Be a

Pin

Address input

enable

Output enable

Data

Power down/

program

APPENDIX-21

—MONITOR—\-

FDOS can be used to develop user monitor programs. Refer to published information (various

magazines, guide books, manuals, etc.) for the structure of ordinary monitor programs. The circuit

diagrams included will be useful in the development of user monitor programs.

—CHARACTER GENERATOR—\

A character generator must store 8 x 8 character patterns corresponding to display codes 00H

through FFH. The following sample showsthe relationship between the storage format of a space, A and

B and the assembly listing. Assemble the texts for all desired characters and operate the PROM

formatter to make a character generator.

KK Z80 ASSEMBLER SP-7101 PAGE Ol *Xx

OO00O0 OO DEFB O ; SPACE

OOO1l OO DEFB O

O00R OO DEFB O

0003 OO DBFB O

0004 OO DEFB O

0005 OO DEFB O

O006 OO DEFB O

0007 OO DBEFB O

0008 18 DEFB 18H ;A-PATTERN

O009 24 DBEFB 24H

OOOA 42 DEFB 42H

OOOB 7E DEFB 7HH

OOOC 42 DBEFB 42H

OOOD 4eR DEFB 42H

OOOH 42 DEHFB 42H

OOOF OO DBEEFB O

OO1O 7C DEFB ’CH ;B-PATTERN

OO1ll Re DEFB 22H

OO1l2 RR DEHEFB R2H

00135 SC DBFB SCH

OO14 RA DBFB Rk2H

OO15 RR DBEFB R2H

OO16 7C DEFB 7CH

OO1L7 OO DEFB O

0018 BND

APPENDIX-22

=» CPU Card Component Locations
R
i
4

IC
2
5
R
I
S

RI
7)

>
—
w
—

R
I
S

—
-
w
—

I
c
9

IC
14

IC
19

|

<q NN — NA FY
TO it O dt ze -(— gs

_ Szv iv
~ a

("| is INOco +
by) Oo f—w— . : ZNO 81D ENO bNO

AMA ~~ db GO
GY ¢€O 4k 2y BY

oy Ww —w—- a Qk 90 GQ [o | io]
ac jm&

=% : nm - ~ +. 619 ~ w
O OY —w—- o>» ft Igy oO

Q = N ~ gd —w—- oT A o
° Oo Q zy —ww— SZy 10 —BE- 2 Hs
= = = eZy AA AWN NA oO

e bey we yy Pt o
2h 6c yw, SEY w

wr — — tons 8 ec1) wan 11%

~m oS 4 SIO —w— SEY
~ On 14 9ID 8 t+ O€Ua Q IZO

0 © S 4t LID +

O Q Q nN + OLLA Se Je je jf & 3
4t 4t 4h 4F

Hy eo 69 O1D HD ZID Ir

0B _.
O

oO ~ nN 6 t ! = © o>

AN N N N N
Y oO O © oO te]

J 7 = = = . IVa WO
dt 229

© NU

oO 2 | Degig — — 28 O
a

~ o O° e J
wl wv “ nN rm J SND 3 Mm
Q Q 2 Q Q { — & Faz)© |: Ln LMU +

6Ey
"WW (AGH)

NS | OvHy

~ J zb— (GN9)
> O

o ~
0 ro ra 1 0 © ts (AS-)
2 2 L 3 O oO O

° 2 = a ~ ~ ©

oe ° z6 -

ail 4b
k pzo
61u

5
a.
VO

%
2 % t ¢ ¢ + ¢ ON

L Q oO Q Qo Q o Q OS
Ln Loh

dF ot +h
iby —w— &

S2o Zby —w—

4 + epy
© NS © ur oO La “ aM iv 1 + +}8 FN FS FN FO FR FR =m 7m +19 O

m+
Oo

w — N

= aq z Oo © ©
n a Oo in = = ~
oO ° ~ o =

K OF bz | g 8
vt O ¢ ef OUT 1 > > a

° + + ©

oO _ t —rm t+ uw Ok DO, MO, OLULanunm oO wo
_ OTS tg ts TS FSFE TL TE TZ TR TH TOT w 3+ Oe OF

co)) xh oO
rm

oO * +

8SO dk 660 4b O99 4t 199 4b 290 4b €90 4h ¥99 4k S99 4b de
—— oO

~ bt
Ss | | | ie
a ro t Q 0

* Lg Ld Lk e re o 8 «
oO

Lo Loco Lo} Go . 3 ~ So ass

999 4F 299 4k 89D GF 690 4k OLO fr ZO 4k 220 FOLD A

ml) Al Al (ma) (9 (i = -- [f
s Nh @

5 3 ' Ee
Y OQ

Leo Lb Lb Ld ine =
bZ0 4k SLO 4k 940 4b 220 4k 829 4k 6629 4t 2080 dF) iso dt
oe — £so dF .

E
oO ~

° j P|

a 2 n
O

nd =~

28D 44 «£80 4h PBO4F SBD 4F 6980 4f «62485 4h 88D 4, 68D 4h

oa 10 2a ea ba sa 9a Za

APPENDIX-23

(
-
5
V
)

t Diagram (1)ircul=» CPU C
A
S
+

138348

SN@
W
A
L
S
A
S

G
N
V

N
d
W

pp2S1
A

S
¢
I

vorre=S

Ww2>
>

cre

,

J
1

9°
92

o
y

9
2

5
o
y

6
1
3
9
3
4

~~
ol

Ti
_
—

bl
9

OF
|

A
s
t

{
—
_
—
—

:

Vv
91

b
re]

'¥
2
a

t10°0
2

<
—
—
—
—
_
_
_
_
_
_
_

2A
_
-
_
-
_
_
_
-
o

Vv
al

z
ze]

°Y
A
T

A
s
+

cco
e
u

EY
«
—
—
_
_

€
v

e
Zi

e
e
]

i
o
f

v
Y
<
—
—
—
—
_
_
_
_
_
_
_

v
y

A
S
+

S
ey

be
o|

Oz
SU

—
_
—
—
_
_
_
_
.
_
_
_
_
_

S
S
e

v
=

=|
3V

D
w
i

=
=

W
H

oy
—<

b
b
z
s
1

oy
Ww

W
6
1
D

_
t
y

|
Zl

b
p

d
l

8
9
¢

t
y

j
z

d|
Ee

e
s

6
1
9
8
2
e
z

—
_
—
_
—

p
e

6
7

Ze
u
M
5

cl
S

y
m

+
l
e

L
a

Ge
he

ei
Z

ge
cones,

ay
<
-
—
_
_
|

8
p
g

y
a

5
5a]

°V
one!

wa
5

>
O
O
!

;
6

ev
o
3
4
w

p
l

<
o
y

9i
o

e
e
]

Seer
tél

3
bbe

$4
oI

O38W
A
I
S
y

sgsisi
n
y

p
e

ai
z

op]
°"

Hsdu
e
z
—
3
]

S
9
1

ai
Hsa¥

Seu
flv
~

€
Zi

W
y

E
N
e
a
n

ral

¥
s

b
e
z
si

S|
a
j
”

ely
<
—
—
_
_
—
_
_
_
_
_
_
_

ely
w
y

Z
S
v

D
l

¢
I

€
7

—
—

=
5

=|
rv

A
S
+

S
Y

c
y

92
Ol

I
S

A
N
I

=

le
V

oa

+—_—-®

}

lz

 =
~

[91

92.
91

a
v
e

Ibe
S
e
e

6
i
T
)

O8SO8
fez

]
b
y

0
oO

A
A

a
5

>
bi

a
I
W
N

71
*

Ww—
$
—
—
—
o
7
s

+

Z
El

2
-
4
4
)

|
0

tre
2

ibz
$7

°
sl

S
2

|
9€

91
sv]

a
?

9
1

Zi
=]

42
v
e
E
,

€
[
?

{
©

€

°
Z|"

“
y
e

e
|
*

N
d
D
0
8
2

9
p

D
I

*
Q

e
b

.
f

6
rr

|
z|°o

8
Fa

S
®

S
g

f
Z

el
6]

°
5

IpZzS7
=

e
T

.
S

Gl
Ol

p
91

40
=
42

v2
ag

Z

<

=

= &

>

oD

 leV
®»

—4

APPENDIX-24

(2)t DiagramIrculm CPU C

S
V
O
e
x

6
O
l

7
9
0

S
Q
V

v
a
y

\
£
Q
V
v

c
v

l
a
v

o
a
V
v

pSOl
pSol

S|
Z|

6
2

p
eT

Zl
[6

Z
b

9
A
p

AE
A
@

Al
5

A
p

A
E

A
e

Kl

2
G
1
S

2
G
I
S

23S)
13S903S9

eGot
9S)!

i
|

S
a
b

v
b
9

V
e

4
2

V
e

ga
VI

S
a
b

V
b

G
E

v
e

G
e

v
e

a
vi

a
G

|!
jet

fer
for

it
ja

fs
Je

fe
|

jer
jor

jor
fit

[9
|g

Je
fz

O
£
9
]

2bS1
«

a
E

A
A

i
qd

9
V

S
p
y

s
v

i
v

O
V

6
V

e
v

Iv
z
v

o
v

el
<I

vl
Gl

A
G
t

Ab
y

>
A

AN
A

<
i

oy
ey

ZV
—
b
i

“
¢
e
1
V

“
2
1

02
|iz

2
til

et
pif

st
q
o
4

q
o
a
g
i
g
y

v
I
F
S

>
—
—
_

2
9

e
l
h
-
-
—

a
s
d

o
a
u
n

©!
SI

—
6

o
o

o
l

v
l

e-
2
S
)

O
-

W
y

6
]

2
1
3

s

~
~

»
|

f
MIT)

aso
lvu

Poal''4
a
i
|
'
>

O
F

v
S
9

“
ret

3

T
o
r

6
S
2

a
f
?

O
T
T

z
2
1
%
3

8
f
—

&s2
s
i
l

O
z

Pez]?
T
g

4
3
8
9

Z
s
)

;
2
4

|

bS|
°T7

2
s

21°?
os!

gnolai
Zy0|

S
P
5
—
—
*

¢s9
o
—
—
w

e193
4991

»
|

I
D
A

IbZ
b
r
o

P
S
2

S
p
y

>
b
3

E
f
>
—
—

£
5
9

~
5
4
3

4
3
0
0
0
3
0

s
s
a
y
a
a
v

2
b
h
=
—
z
s

5
1
2
3

GQNV
X
N
W

SS3¥qaqav
W
V
H

|
r
s

S
O

7
1
!
A

L
y

O
o
T

os9
a]°?

i
n
o
m

or]

APPENDIX-25

(3)ircuit Diagrama CPU C

2
1d

s
v
a

S
I
W
V
Y

9
V
_
—

S
O
S
V
P
V
E
V
e
V

I
V

S
V
I
W
N
S
V
P
V
E
V
C
V

IV
O
V

O
I
W
V
Y

6
B
W
V
4

S
i
i
p

410
9
I
l
l
b

1
2
0
6

S
V
O
9
V
S
V
b
Y
E
V
Z
Y

i
v
O
o
V

S
V
o
v
e
V
e
y

I
Vt

A
Y
O
W
A
W

W
V
Y

APPENDIX-26

A
S
+

O
S
D

(4)ircuit Diagram
»

a CPU C

A
Y
O
W
S
W

W
O
Y

O
N
V

1
9
3
7
3
S
W
Y

O
3
a
N

H
S
3
u

b
S
o
l

H
y

o
n
g

6

B
V

L
y
9

s
v

o
y

r
y

“vy
i
v

o
y

|

i
V

@

9
”

hed

s
v

e
v

o
y

o
y

6
y

s
y

r
y

z
y

O
y

i
S
v
y

esvuy

£
S
v
y

APPENDIX-27

» CPU Circuit Diagram (5)

W
V
Y

O
A
G
I
A

O
N
V

Y
O
L
V
Y
S
A
N
S
S

Y
3
L
O
V
Y
V
H
So
q2
0

£
0+
Q

s
Q

3
d

4
0

APPENDIX-28

t Diagram (6)ircul=» CPU C

Adl|t

O
N
S

Q
N
9

O
A
C
I
A

H
O
N
A
S

Q
N
N
O
S

/
\

Vv
Y
O
L
V
H
Y
A
N
A
D

O
J
G
I
A

y
U
K
S
-
H
)

4UDIG-H

—
<
<
E
O

rA|

00
~

bost
el

iN
$
1

—
Ip)

(i6)cy
el

X
U
D
I
G
-
A

Vv
Z
Z

v
o
s

6
A
G
+

Ol}

ra
|

x

p
l
y

A
=I

(IL)Ct)
1
9

_
5
1
>

O
f

s
n

SR)
50

ll
Joist

6
b
h

0
1

S
1
1

8
|
e

o
¢

P
v
O

0Z)|
619i

2OIS
1

2Z01S1
i
y

Ors
6
1

O
F

S
H
d

a
4
9

oly
S|

7
,

7
,

A
G
t
O
—
—
W
y

©
2

|
v

£
a

4
2

a
v
o
q

ev
IY

21H
919!

NI
Taits

¥
>
>
—
—
<

004
AzZit

QN9O
ol

m
v
i
d
a
s

g
<
=

\
O
A

q|
@

oT,
ol

fe
LIQIHNI

9
K
e

zan
IZ

cl
uia-

S1)
49079

p
e

g
a

89!
LZOI

peo)
J
U
D
I
E
?

a
m

L
l

|
6291

A
r
s

<
v
a
n

Z
O
a
r
eN-—O

AG+
4
-
,
~
<

s
a
n

meeo00
Ae?

C
Y

=
H
O

9
h
>
—
<
9
0

H
-
—
—
—
_
_
<
L
A

G9Is7q
9

4UDIG-A

d
L
V
O
“

O
N
S

APPENDIX-29

t Diagram (7)Irculm CPU C
A
S
+

Y
S
L
N
N
O
D

D
N
A
S

 youkS-H

4
8

'|

e
u

|
Z
H
W
O
O
0
O
0
8
B

O
2
2

S
Y

W
e

W
e

4
U
D
I
|
G
-
H

p
o
s
)

L
2
d
l

(1)
(1)

(4)
(6)

(3)
(8)

(P)
(9)

2
9

Is
A
S
+

Q
D
3
0
8
D

2HhD
V
O

\
9

|S
!

Q
D
9
D
8
D
2
H
D

W
O

1
/
9LyHO

L
H
O

6
1
9
i

8
8

s
o

6
d

£
6
S
7
1

Z
e
o
l

(1)

(4)
(yu)

(8)
(3)

(8)
(p)

(9)
ED

20
d

APPENDIX-30

(8)ircuit Diagrama CPU C

O
N
S

A
S

Y
y
O
L
O
W

3
S
N
3
S

a
v
a
u
g

S
L
I
M
M

€
L
E
9
S
2
%

A
S
O
G
V
S
2

A
g
i
/
i
t
e
z

U

Y

L
Z
O

+

A
a

O
N
V

3
L
1
1
3
S
S
V
9

£
x
X
x
E
L
E
o
S
2

£

P
L
O

+

A
G
+

AQI
amo!

m
o
wL
T
A

O
N
S

7 or 0D YO FT YN

A
G
t

9
2

1
3
S
3
u

0
3
$
9

4
0

APPENDIX-31

a CPU Circuit Diagram (9)

O
N
S

A
S
Q
e

 Chol

S
D

aml
+

O41l
I
A

GND

5
[UHL

1
0
s

SSS
)

i
n
o

A
Z
I
S

6Y
7

osia
v
e
r
e

D0/A
i
s
u

O
L
Y
)

8
b

A
g
+
©

A
S
+

d
d

O00!
I

v
o

G
Q
N
N
O
S
O
N
V

Y
H
S
W
i
l

C
L
O
]

b
2
S
7
14
d

7

6
0

Y
d

q
cl

|
7
0
1

—
'
5

n
O
3
L
V
)
D

9
1

Chol
W
z
Z
>
—
—
-
-
0
1
1
9

O
e

sO)
B
O
L
O

esee
B
L
D

5
4

A
S
+
O
—
W
v

1
I
S
L
V
9

o
y

A
S
c
i
c
>

S]
1
4
1
9

ry
1
L
A
O

ey
c
3
L
V
9

oC
a
s

eT
A
1
1
9

<
=

ey
LNI

=<
90

Fg
Tr]

24n0
A
G
t
+

C
o
!

APPENDIX-32

» CPU Circuit Diagram (10)

A B

AI5 | G

Al4 |2 |INT

Al3 |3 G

Al2 |4 |MREQ

All 5 G

Alo 6 IORQ

AQ 7 G

A8 8 RD

A7 9 G

A6 lo |WR

A5 [| G

A4 12 |MI

AZ 3 G

A2 |14 |HALT

Al 15 G

AO i6 RESET

G \7 G

D7 8 G

D6 IS G

D5 20 G

D4 «|2 G

D3 22 CG

D2 |23 G

DI 24 G

[> DO 25 G

(MARK)
BUS CONNECTOR DETAIL

APPENDIX-33

+12V

+5V

 ©

+l2V

+5V

GND

-SV

= Cassette Deck Control Board Component Locations

C3003

R 300! x
—_M— _

WW— R 3004 x q

—AWW—R3003 e _

1 C3002 A Oo! «a ©

° — fe ° ©

or R3006 G a =
—W— O ”

nin R3O0O7 2
Ann R3009 o @ x

R3008 C3004 @.
—W— wo

w —

G @ i
©“¥ dk ¢

Q3003 ~
R3010

c3006 —{-— =

— R3011 AW C3007

Q. R32012 —W— —A\\,—
n R303jay
wo.)

Cw S _F301

© oO

ae r0 “toos
 R3018 AN ee @

R3O0IG6 —_AM— R30I7 R302I_ Ay
R3022 R3019

R3023 —\— R3020
R3024

©3003 C3009
*#°3 Q3004

wo WO

cee:ve. eo @

APPENDIX-34

ircuit Diagram= Cassette Deck Control C

Z
Z
V
d
t
O
0
0

-
D
H
L

»

d
6
S
$
2
0
4

I
W

2
(AOI)

I
C
O
Y

9
x
X
O
G

t
e
2
2

C
l
o
g
e

I
g
@
9
I
D
S
2

N
z
2
”

C
O
O
E
O

Z
I
O
E
Y

[J
s0

Q
V
3
H

8
d
/
2
3
u
y

X
Z
~

d
o
o
d
!

H
O
E
Y

L
O
O
E
D

P
X
G
S
G
G
I
S
I

e
V

Q
V
3
H

a
S
v
V
u
a

A
d
e
9
|
9
S
e

C
O
O
0
E
O

C
4

C
4

C
c

|
|

l
O
O
k
M
S

O
l
e

(
A
Q
)

Le
lOoey

l00£>
+

4
o

e
e
s

T
O
U
L
N
O
D

M
O
A
G

A
d
V
L

J
L
L
A
S
S
V
O

A
0
8
-
Z
W

APPENDIX-35

ircuit Diagram» CRT Display Control C

=
s

=

Z
Z
V
d
t
9
Z
0

4
Q
M
d
O

AQI
(M2/1)

_
(
M
Z
/
I
E
E

c
e

f
o
s
s
a
”

AOO!
(ny)

ASI/
M
O
2
e

evoOzy
z
v
o
z
y

A
9
1
/
0
0
I

c
s

A
(N22

7
L
v
0
2
9

1
Z
0
2
9

2
€
0

zz
Ale

+
a

eeozyu\7
80020

Bv029
|

6
v0Zy

,
vL

A007/
,

(MZ)WZ
Z

A
W

4
4

9
£
0
2

:
—

'
VLl2l02

4NULY
6S00X0-HY

it
6e0eu

PIOH-H
|

nee
$5du08022

A
t
t

i
a

2002
v
v

vil2ooa
1
2
a

;
INX3

3
0
Z
9
0
0
K
0
- H
y

-
-
-
e

s
0
0
z
a

b
e
0
2
)

O
£
0
2
D
6
2
0
2
9

8
9

s
e
e

|
Y
u
r

s
i
o

|
|

v
E
N

6
1
0
2
)

|
|

>
i}

.
7

2
D
E
I
Z
I
I
S

2
10

4
e
9

.
A

WI
<

|
/G10

002/890
pOOZO

z
o
e
y
e
e

zesgS
L
z
o
z
u
>

SEO2
££029

Ss
B
o
e
e
n

+
0
0
2
4

M
O
G
!

2
2
0

e
4
}

osozy
VLLIOOL

2029
(
)

io
|@N)

S
N
D
0
4

\
l
O
O
2
e
L

4
8
9
<

V
b
E
N
i

8
1
0
2
5

WL2Z0.2.8-4AY
=

W
y
o

Wi
A
0
0
2
/
I

S
e
a

v
e
s

6
2
0
2
4

o>
y

2
0
0
2
0

bpozy
L€02)

|
9

4
6
4

o
°
—
+
—
x
4

€002
0

-
=
R
4
0
)

(M2/1)9S
G
C
)

5
I

8
9002q

t
y
)

(12)
vozy

s
a
z

2
)

~
~

w
™
~

€]
b
O
O
X
0
-
H
Y
€

60020
'

o
r
e
s

y
:

gz0zu
>

{
|

L
:

3
Z
I
S
-
A

t
e

-
-

o
k
t

(VL290.441(8)4O2

A00S/I0°
—
—

.
V
L
6
Z
0
0
Z
3
-
2
u

M
2
2

2
6
0
2
2

A
g
G
l

W
V

A
Q
I
/
A
2
Z

P
l
O
Z
H

£
£
0
0

@
|

£1029
2
0
0
2
9

(
5
)

(
2
8
)
—
—

A
£
4

+
e
4
-

.
NX

7
D

v
Las

©
W
w

L
O
L
O

PH 1
2
4

VL
ds
9
0
7
)

8
mI

A
Q
I
M
Z
2

WOl

(
N
L
I
A
G
E
/

A
G
2
/
2
b

6
0
0
2
)

5
A
G
Z

AQ!
/NOOO!

B
0
0
2

/
g
9

(
)

91022
|

®

H
t
0
z
9

+
0

-
A
g
i
/
N
e
z

|
0
1
0
2
2

>
_
.
|

-
(
8
)

H
o
z
y

(Wi
P
O
O
L
W
)

Zi
|901L6

Ro!
5

O
o
s

w
o
r
e

4
M

s
Ket

(A)SEDWSZ
NIT-A

ON
(E

7
(
)
a
e

2
©

=_
vi6z0la

(>)
O
O
O
O

(
Q
C

Ss)
(
a
o
s

L
i
o
z
y

P
I
O
H
-
A

(
(
I
M
2
/
0
G

|
o
r

M
2
4

V
L
G
I
O
O
X
'
-
H
Y

|
o2o0eHy

6
'
¥

8
1
0
2

O
0
2
!

W
G
2
Z
Z
Z
0

+
#4

of
AAA

,
10020

(M2/15
|

<
évaoi|

3
+

MLZ
S
A
G
!

<
$10z9

A
G
L

0
9
1
0
2
8

(O00!
0td>

&
21029

N
8
9

$002
ih

wmziee
$
l
O
z
u

°
i
T

o
w

r
T

$
A
9
I
/
N
O
I
g

S
S
I
N
L
H
O
I
N
E

i
b

6
0
2
9
8

V
L
I
Z
O
L
8
-
Y
A
Y

r
o
o
z
u

MOSl

(
g
y
n
o
s
2
z

W
H
O

2
€

o
l
y

2£002a4
A
g
e
s

8
0
0
2
4

V
A
9
I
-
—
d
O
8
0
0
d
S
A

@
p
0
2

(
M
2
/
H
S

+
-

—
_
—

O
e

@
Q
C

AOSI/NO
S
0
0
2
d

LSVYLNOD
L£v00°

$002)
otose

W2'2
WdG100@-&SAU

p
v
O
2
>

v
o
e
u

9
0
0
2
4

(g)00¢
2
0
0
2
u

-
+

R
E

T
S

A
g
i
/
0
z
z

@
2
)

a
e
G

ok
J
e
r
-
4
e
)

1
0
°

©
*
—
+
t
F

®
v
i
g
i
o
s
2

L
e

y
o
z
o
7

e
v
0
e
2
7

AOO2Z/!
Z
0
0
Z
D

Zz)
1
0
0
2
0

10O0ZH

o
v
o
z
)

6
£
0
2

isozu\i7
A
N
N

eSo0zy
a

=

NOILD3S
A
V
G
S
I
C

4
0
s
-
Z
W

A
d
l
i
+

O
@
P
l
A

a
u
k
S

ul
p
u
n
o
s

APPENDIX-36

0
c
O

1
Z
O

2
z
O

e
c
o

p
2
0

s
z
o

920

£20

QuYVvO
O
/
I

I
V
S
H
S
A
I
N
A

ld

O
g

|
o
a
d

1
2

'
a
d

2
2

i
2
6
a

C
2

|
€
4
G

v
e

|
7
a
a

G
e

|
s
a
a

9
2

|
9
a
d

d
z

|
2
9
8
0

VGdciISt

itd

Zl
|

€!|

c
b
s
|

p
e
s
]

p
o
s
t

2
u
V

£
8
V
v

S
e
v

9
9
2
5
1
.

oO

G
0
0
!

>
=
—
—
—
-
—
—
=
0
8
0

—
~
—

1
8
d

S
£
0
-
0
9
0
-
O
0
0
8
t
1
4
m

Y
O
L
I
A
N
N
O
D

O
7
1

Q
Y
V
O
8

Y
S
H
L
O
W

3
0
1
s
S
i
u
v
a

Vv

GND
O¢]

A
N
D

G
N
D

62|
G
N
®

AG+

|

8Z|
A
G
+

A
G
t

|

22]
A
G
t

92

o
g
v

Gz
jao3ayW

lav
|

2
|

G
4
0
!

eadv
jec|

a
a
y

e
a
v

22}
G
y
m

b
e
v

iz]
S
I
W

s
a
v

02
/@1IVH

9
a
v

61;
G
N
D

2
e
v

gi}
B
L
N
I

s
a
v

|

ZI}
S
N
a
W

6
a
v

|

gi}
£
3
9
3
u

o1gv

|

SI}
O
N
O

l
a
v

|

bl

ziav

|

€l

eiav
|

Zi

play
fi

G
I
a
v

|

o
i

Q
N
9

6

o
g
a

|

8

lag

|

2

2
g
q

|

9
e
e
d

S

vada

|

»

s
a
d
q
i
c

9
a
q

|

2

2
4
8
0

|

q
|

ov

APPENDIX-37

ASCII codes used are listed in the following table. Codes 11H through 16H are cursor control codes.

For example, executing CALL PRNT with 15H stored in ACC does not display “H™ but moves the

cursor to the home position.

W
Y

D
A
G
O
R
O
N
S
U
S
O
U
C
O
D
a
@|a)

A
a

H
H
S
A
N
A

Y
P
O
O
K

IF
A
H
H
T
D

 s|
A)

1
(9)

=)
|
A
S

[el
S
e
l

e
O
e
R
O
X
M
A
C
D
e
O

O
N
D
O
U
S
O
O
N
J
S

I
P
E
A
N
U
S
E
S
E

S
U
E
O
C
A
F
G
R
E
E
R
e
e

S
B
C
A
O
D
O

S
O
B
A
B
e

I
N
A
O
S

G
R
r
H
H
R
U
D
U
O
U
d
D
a
e
e
o

 ‘UA
N
R
X
S
S

G
a
i

S
O
O
V
E

|
LO]

|
}
|
]

[Ql
]

|x

A
d

Hi
l¢
4
&

LA
H
K

is
}
2)

[>

S
M
U

I
N

Ms
)

e
l

fo
lo
d

NI
io

Jo
l

fA

APPENDIX-38

Display codes are used to call character patterns stored in the character generator. To display a

character on the CRTscreen, the corresponding display codeis transferred to video RAM.

Monitor subroutine PRNT (0012H) or MSG (0015H) converts an ASCII code into the corresponding

display code and transfers it to the video RAM location indicated by the cursor. Codes C1H through

C6Hare the cursor control codes.

©0000] 5) POS sa asc| (P| I|oe
1 ool TAN QUALI 4 UL 2).o) SOL) 2
» oo BIRZIOVOMOlonaHoo
3 0011 CUS] L)| mm FE) 0) c))s

|)
RY Ee) NV

4 0100 //DII{T (4/4) (J) S$) Ald

|i

t

|]

Aj] Ba et)A

s 0101 |[E}(U}(5)/(D)(€] @) 96) Le) [I N|N| Gd)

of FVlOleriaizinvigiolee>|e
1 oss (GIMWCZIIC ©!)Noa cao eal
s 1000 |[H}I[X][8]}/E4| Ol] NIC 4) [hy] x] EAVICN

|

A| 4 [a
> 1001] TYIOVLUN? INYO COLE LYWIIN)/ SUNK |

A 1010 J]|[Z]| =|] md |) []| HE) PAL 21/8) & LNs

p 1011 |K))/85)/ =)08) 4) al) BLL |)|) 1) 1)/4<][0] |S
c 1100 Ss CIA tg al || 1) A) S| ae (25) fe

> no MEIC wl loll ole ¥ ic =e
E 1110 \[NV CRY} ad

|

A) 7 ed |] SAT CS]! Z71| S$)

F 1111 OU LAS a SILLA} ol] © we a) Ss

APPENDIX-39

