PREFACE

Thank you for buying the Sharp Personal Computer MZ-80 series FDOS.
To make the best use of the FDOS, read the instruction manual thoroughly and perform the opera-

tions described correctly ; this will enable you to make most effective use of the system.

— Reserving 48K bytes of RAM for FDOS will allow a larger effective memory configuration for
operatio;n of the text editor and the relocating loader.

— The master diskette cannot be replaced after it is purchased; therefore, be sure to use the COPY
command to create a submaster diskette for normal use.

— It is particularly important to read and understand the explanations of the following commands
before using FDOS.

e FORMAT command (page 49 of the System Command manual).
Before using FDOS with a new diskette, it must be formatted and initialized for FDOS. The file
contents of diskettes initialized for use with other systems (e.g., SP-6015 or SP-6115) will be
destroyed if used with this system. Likewise, diskettes initialized with FDOS cannot be used with
other systems.

e COPY command (page 43 of the System Command manual).
This command allows creation of submaster diskettes from the master diskette and of backup

diskettes for slave diskettes.)

— Since the FDOS operating instructions are divided into several parts, a guide is included to enable
easy reference as needed. Full understanding of FDOS is not a prerequisite to making active use of

it; refer to the guide as needed and your knowledge of the system will grow as you use it.

S-1

PRODUCT GUIDE

-

The foilowing materials are included in this group of products.

"'System. Command'’ Instruction Manual

""Text Editor'' Instruction Manual

''Z-80 Assembler'' Instruction Manual

"'Symbolic Debugger'' Instruction Manual

"'Relocating Loader'’ Instruction Manual

"Programming Utility'" Instruction Manual

""PROM Formatter'' Instruction Manual

""Example of Plotter Control Application'’

"'Library/Package'" Instruction Manual

"'Appendix"’

""FDOS Master Diskette''

for details.

Also, the following files are included in FDOS Master Diskette. Refer to the various instruction manuals

File name Applicable command or manual Function
ASM . SYS ASM Z-80 Assembler
ASSIGN . SYS ASSIGN Device definition
BASIC (OPTION) . SYS BASIC BASIC compiler (sold separately)
COPY . SYS COPY Copying diskettes
DEB. SYS DEBUG Symbolic debugging
DEBUG . SYS DEBUG Symbolic debugging
EDIT . SYS EDIT Text editing
FDOS . ASC ""Library/Package "’ FDOS library source file
FDOS . LIB “‘Library/Package " Library file for the above
FORMAT . SYS FORMAT Formatting diskettes
LIBRARY . SYS LIBRARY Creating library files
LIMIT . SYS LIMIT FDOS management area declaration
LINK . SYS LINK Relocating loader
LOAD . SYS LOAD Loading object files
MON . ASC ""Library/Package " MONITOR library source file
MON . LIB ""Library/Package'” Library file for the above
PLOTTER . ASC ""Programming Utility " X-Y plotter control subroutines
PROM . SYS PROM PROM formatter
RELO . LIB "Library/Package” BASIC compiler library file
SIGN . SYS SIGN Password registration for diskettes
STATUS . SYS STATUS Device status control
VERIFY . SYS VERIFY Comparison of files
X-YDEMO . ASC "Programming Utility " X-Y plotter BASIC demonstration program

S-2

Want to know the basics of FDOS and the
system programs?

‘Want to run the computer immediately?

Want to run programs generated by a
cassette tape based system under FDOS?

Want to develop programs using only
standard devices supported by FDOS?

Want to use user-supplied devices in addi-
tion to standard devices?

Want to develop programs using FDOS
libraries?

Want to link with programs generated by
the optional BASIC compiler?

Want to develop object programs using a
PROM writer?

Want to refer to system error messages s

——Guide to Use of These Publications ——

Start

~

~

;

no

no

/

no

/

no

;

no

;

no

no

o]

no

no

C End

_/

S-3

yes

yes

See. the explanations under “SYSTEM
PROGRAM & FDOS ORGANIZATION™
in System Command.

See the explanations under “COPY” and
“FORMAT” in System Command.

See the explanations under “Converting
Cassette Based System Programs” in
Appendix.

See the explanations under “FDOS
Commands” in System Command and the
following reference manuals:

Text Editor

Z-80 Assembler

Relocating Loader

Symbolic Debugger

See the explanations under “User Coded

I/O Routines” in Appendix in addition
to the above manuals.

See the explanations under “Linking As-
sembly Programs with FDOS” in Ap-
pendix and Library/Package in addition
to the above manuals.

See “CONVBTX” in System Command.
“Example of Plotter Control Application™
in Programming Utility and BASIC com-
piler, as well as the references indicated
in 4 above.

See the explanations under “PROM For-
matter” in Programming Utility.

See “System Error Messages” in System
Command,

—Optional FDOS Program Products ——

1. BASIC Compller SP-771 Sﬂérevrously released)

T S v".'&i,‘?,.?ul.' & T aE T e
; YR o

Requirements: FDOS and 48K bytes of RAM

B

Major features > Fast execut1on
*FDOS commands can be invoked from BASIC programs
g *Can be Jmked to assembly languagesprograms.
Compilatior_r:c Comp1les a source file (source program) and generates a relocatable file (RB file)
] which can be linked and loaded with the FDOS LINK command.
Comp)atibility“' Prqgrams develoged by SP-5000 series or SP-6015 must be converted to the FDOS
- "'forfmat by the FDOS C@NVBTX command before compilation. Some BASIC
: ' commands (file handlmg commands) may. dlffer in syntax. Excessively large pro-
grams may not be compllable (source programs are limited about to 10K bytes).
Paokagirihg“;:ﬁ_r The _,BASIC compller is available, on. cassette tape with a reference manual. The
- o compiler should be copied onto the submaster diskette so that it can be run under

FDOS control.- .- - v v oo 5e v

~ e b [-

ey - N

2. Serial I/O Ports (to be relleas{e._d’ il_r_ot;.he‘ﬁnearfuture)

; - o A o- o 3 : o -
AL AT A

Requirements: FDOS and 48K bytes of RAM i T
Major features: HT w1828 @Huthin GrERe-ESFarvdAtes CFst 7+ =
i'q(Baud, ratg isgyitchsglectaple. nys-ynonc wwa

w2
ST N

*Two RS232C 1/0 channels, one of which may be used for a current loop circuit.
Packagrﬁg’ : °*One interface board, its control programs (on cassette tape) and a reference
sroetesy BRAMIALTCUE 6REORLT~ITOHT (7 Khe s3] i
LS= e CIRASLIE T MTEg dsder g7 Q6% TRLEFRLTOT
- The control programs should be copied onto the submaster diskette so that they
can be run under FDOS control.

I¥v2LYLAK 1S 80 KEZXz:

S-4

System Command El

SHARP

NOTICE

The MZ-80 series of sophisticated personal computers is manufactured by the
SHARP CORPORATION. Hardware and software specifications are subject to
change without prior notice; therefore, you are requested to pay special attention to
version numbers of the monitor (supplied in the form of ROM) and the system
software (supplied in the form of cassette tape or mini-floppy disk files).

This manual is for reference only and the SHARP CORPORATION will not be
responsible for difficulties arising out of inconsistencies caused by version changes,
typographical errors or omissions in the descriptions.

This manual is based on the monitor SP-1002 and the SP-7000 series FDOS.

GUIDE TO USE OF THIS MANUAL

Want to know the basics of
tape-based system programs?

Want to know the basic
principles of the assembler,
text editor, relocating loader
and symbolic debugger?

Want to know the basic
principle and specifications of
the MZ-80K FDOS?

Want to run the computer
immediately?

Want to develop programs
under FDOS?

Want to link with programs
generated by the optional
BASIC compiler?

Want to add new commands
to an FDOS library?

Want to define user-supplied
1/0 devices in FDOS?

‘Want to refer to the system

error messages?

C

)

Start

K |
See Sections 1 and 2 (pages 1—17).
(Readers may skip these sections.)

See Sections 1 and 2 (pages 1—17).
(Readers may skip these sections.)

v

See Section 3 (pages 18—28).
(Readers may skip this section.)

1

See Section 4 (pages 43, 49). Read the explanations
about the FORMAT and COPY commands.

¥

Read Section 4 (pages 29—65) throughly.

Read Section 4 (pages 29—25) throughly, as well as the
following:

"BASIC Compiler"

“Library/Package "’

“"Example of Plotter Control Application” in
gramming Utility "

"Pro-

¥

Read Section 4 (pages 29—65) throughly, as well as
"Library/Package and ”Linking Assembly Programs
with FDOS"" in Appendix.

K

Read Section 4 (pages 29—65) throughly (especially the
explanations about the LIMIT, ASSIGN, LOAD and
STATUS commands). Read "user coded I/O routines”
in Appendix.

yes

no
yes

no
Nes

no

t

See "'System Error Messages'* in this manual.

SYS.-i

——CONTENTS —

THE MEANING OF “CLEAN COMPUTER” 1
SYSTEM PROGRAM ORGANIZATION (TAPE BASE) 2
2.1 Assembly Procedures 4
2.2 Text Editor Functions 11
2.3 Relocating Loader, 12
2.4 Symbolic Debugger 14
2.5 PROM Formatter, 16
FDOS ORGANIZATION 18
3.1 File References. i 19
3.2 FDOS Command Summaryouiiuieo.... 21
3.3 BootLinker. 26
3.4 TOCS ..o 26
3.5 Dynamic Segmentation 28
FDOS COMMAND USAGE 29
4.1 Program Development Under FDOS 29
4.2 FDOS Command CodingRules 30
Command line format. 30
Filename i 30
Filemodes e 31
File attributes e 31
File types e 32
Wildcard characterst 32
Drive number and volume number 33
Devicename e 33
Switches 34
Default assumptions e 36
Arguments 37
Suspending or stopping program execution 37
4.3 Using FDOS Commandsc.uinnnnnnnn. 38
ASM L 38
ASSIGN .. e 39
BASIC e 40
BYE . e 41
CHATR .. et e e 41
CONVBT X .. e 42
COPY . o 43

SYS-ii

DEBUG ... e 45
DELETE e 46
DIR .. e 47
EDIT ... e 48
EXEC .. e 48
FORMAT e 49
FREE . .. 51
HCOPY . .. e 51
LIBRARY ... e 52
LIMIT . .. 53
LINK 54
LOAD e 55
PAGE . . e 56
PROM . .. 56
RENAME e 57
RUN .. e 58
SIGN 59
STATUS . .. 59
TIME . . e 60
TY PE . e 61
VERIFY . . e 62
XFERot 62
4.4 System Error Messages oo vt v 64

SYS-iii

1. THE MEANING OF “CLEAN COMPUTER”

Three important developments accompanied the shift from the boom in microcomputer Kits to

the entrance of personal computers.

(1) Mass production reduced the cost of RAM and ROM devices so that they became readily available.
This development eliminated the need to devote great amounts of time and effort to compressing
system functions to the maximum extent possible to conserve valuable memory for user programs.
Now it is more important that system programs be written and managed in a structured manner and
that their overall usefulness be raised. It is more and more apparent that what the user comes in

contact with is not so much a unit of hardware as a software reinforced computer.

(2) Compact, reliable external memory units with large storage capacities became available.

Floppy disks and fixed disks are currently the basis for system configurations, but sooner or later
charge’ coupled devices and magnetic bubble memories will be used in this capacity. This suggests
that there will be increasing stratification of programs culminating in operating systems, and that the

efficiency of systems will also increase. From the user’s point of view, this means that a wide variety

of programs will be readily available for use.

(3) The development of various peripheral circuit LSIs has made possible realization of efficient inter-
faces with high performance terminals.
This means the main concern of the user in the future will be with how many functions are provided
in a system and how useful they are. In terms of the contents of the system, the main concern will
be in developing operating systems capable of organically combining terminals and program proces-
sing with a minimum of effort on the part of the user. It is even possible that real time processing of
multiple tasks and jobs on a level approaching that of minicomputers will become possible with the
operating systems of microcomputers.
As is apparent, it is extremely difficult to predict the extent to which computers will evolve as
integrated circuit technology and program language theory become widely disperse(f. This tends to
undermine the belief which some people have that rapid changes in hardware result in good compu-

ters.

”]

Although the name “clean computer” has been given to the MZ-80 series, computers are basically
Although th 1 omputer” has b g tc the MZ-80 , put b n
clean in principle. As the field of personal computers opens, the concept of embedding a single
language, BASIC, in ROM has become a hindrance to use of full computer capacity. Out of con-

sideration for the many different types of service which will be required by users as yet-to-be

SYS-1

developed technology comes into use in the future, it will be necessary to preserve the cleanliness of
the computer to the maximum degree possible to minimize constraints placed on its use. The ultimate
ends to which computers are applied will be determined by the junction of technological possibilities
and user requirements; the only other limits imposed are those which are inherent in the fact that the
computer is nothing more than a machine. In order for computers and users to get along well
together, it is necessary that computers be designed with a minimum of constraints so that
they can be suited to user requirements, rather than the other way around. In other words, the
usefulness of the computer and the efficiency of the service it provide depends on how clean it is.
The explanations in these publications are intended to show how flexible the MZ-80 series of com-
puters is in terms of system development.
A tape-based program development system is provided to enable inexpensive development of small
programs; the floppy disk operating system (FDOS) was developed to assist with the creation of large
programs which require large quantities of memory. The functions and configuration of FDOS are
suited to a range of applications approaching those provided by a low level minicomputer. We think
that the software technology and utilization procedures applied in this system will open a new world

of possibilities for personal computers.

2. SYSTEM PROGAM ORGANIZATION (TAPE BASE)

SHARP MZ-80K system programs include an assembler, a text editor, a relocating loader and a

symbolic debugger. They are organized to execute a sequence of assembly phases.

Relocating loader
Program relocation
and linkage

Text editor Assembler
Source program editing Assembly

Symbolic debugger

Object program
Debugging Ject Prog

Fig. 1 Assembly phases

Figure 1 shows the assembly process, which consists of creating source programs, assembling them,
relocating and linking the assembly output and debugging them.
One cycle of the phases in the left half of the figure makes up a program creation state. The programmer
prepares a source program with the text editor and creates a source file, then inputs it to the assembler.
The assembler analyzes and interprets the syntax of the source program and assembly language instruc-
tions into relocatable binary code. When the assembler detects errors, it issues error messages. The

programmer then corrects the errors in the source program with the text editor.

SYS-2

After all assembler errors are corrected, the programmer inputs the relocatable binary file(RB file)

output by the assembler to the symbolic debugger.
The symbolic debugger reads the relocatable binary file into the link area in an executable form and runs
the program. During the debugging phase, the programmer can set breakpoints in the program to start,
suspend and resume program execution, and to display and alter registers and memory contents for
debugging purposes. If program logic errors and execution inefficiency are detected during the
debugging phases, the programmer reedits the source program using the text editor.

After all bugs are removed from the source program, the programmer loads (and links) the program
unit(s) in the relocatable file(s) and creates an object program in executable form with the relocating
loader.

Each system program always generates an output file for use in other system programs. Figure 2
shows the interrelationship of the system programs.

As shown above, the program development phases are executed by four independent system
programs.

By assigning the system functions to separate programs, the MZ-80K can accomodate large-scale,

serious application programs, thus enhancing its program development capabilities.
SHARP also supplies sytem backup software called the “editor assembler’ which simplifies the very first
stage of program development for relatively small source programs. A “PROM formatter” is also pro-
vided which punches object programs into paper tape in several formats for use with various PROM
writers now on the market.

Table 1 lists the system program commands.

Editor assembler
(optional)

R command W command

/\W command (2.3,4)

Text editor |

L or N command
Relocating
loader

Assembier

ommund/_\ ve ' - L or N command
Rcommand __ — = =5 . u)mmdnd/ "
Machine lan- - //
., § LOAD command
N guage program / Symbolic
~—— %
Y command Y command debugger

> o _LOAD command , d

SAVE command

LOAD command
Y command

LOAD command

<1 ASClI source file
<+— Relocatable file
= —- Object file (machine-language program)

@mm Debug-mode object file (object file with symbol table)
<«— BASIC text program

. File medium (cassette tape)

Fig. 2 Relationship of tape based system programs

SYS-3

. Label !:anemanic —| Operand 1 |,| Operand 2 | ;| Comment I-f}

] ~d ‘ , -
Field 1 Field 2 Field 3 Field 4 Field 5

Fig. 3 Assembler coding format

2.1 Assembly Procedures

As the programmer becomes familiar with the Z-80 instructions, he is able to construct programs
more easily, even though he may feel difficulty in grasping the structure of large programs. At this stage,
it is not hard for the programmer to handle other microprocessors such as the M6800 and the F-8 with
the help of good reference manuals. One of the major reasons for this is that the operating principles and
architecture of most computers tend to be alike. It is therefore possible to develop a general-purpose
assembler for such microprocessors. In this section, the technique employed in the MZ-80 assembler is
described. This will serve as a model for designing general-purpose assemblers.

The basic operation of any assembler is the interpretation of statements. It is therefore important to
establish a proper statement coding format. Figure 3 shows an example of a coding format, used in the
MZ-80 assembler, which is familiar to humans and which is easy for the computer to interpret.

Scanning the statements in this format, the assembler:

(1) Recognizes labels and stores them into the label table,

(2) Recognizes fields and assembles object codes

(3) Generates an assembly listing, and

(4) Generates relocatable binary code.

Step (2) differs from one processor to another. The assembler constitutes a general-purpose assembler if
it can perform this step flexibly. As the nucleus of the process for step 2, an instruction list (figure 4)
and a 2-dimensional operation table (Table 2) are introduced.

The symbol # in the instruction list represents a register and the symbol $ represents a numeric value
or a label. The assembler identifies each instruction by matching the read assembly statement with this
listing.

As a result of this match, the assembler produces the major portion of the op-code, the byte length of
the instruction and its atom type. An atom type is one of the numbers identifying the instruction groups
of the Z-80 instruction set. As is seen from Table 2, there are 48 atom types, these are sufficient for

newly defined instructions.

SYs-4

The operations to be performed for each atom type are designated by a 16-bit flag field. For atom
type 01, for example, flag bits 0, 3 and 4 are set, indicating that the operations identified by these bits
are to be performed in that order. The control words identified by the set flag bits specify the actual
operations to be performed. Flag 3 indicates that this instruction must be a 1-byte instruction, that it
must shift the data to the left 3 bits, and that the size of the field must be 3 bits or less. Similarly, flag 4
indicates that this atom type represents the LD r, r’ operation.

Let us examine atom type 18. The set flag bits are 0, 1 and A. The control word for flag 1 is all
zeros, which means no operation. Flag A indicates that the instruction requries address modification
(address procedure) and that the address field must be not longer than 16 bits (size of the field). Thus,
atom type 18 represents instructions such as JP nn’and JP NZ, nn'.

The above assembly operating procedure is summarized in Figure 5. Most of the assembly opera-
tions involve table references. In fact, the assembler uses a register table, a separator table and a label
table during the assembly process, in addition to the instruction list and the 2-dimensional operation
table. If these tables are redefined to conform to a new instruction set the assembler may also be used as
a cross assembler. The MZ-80K assembler is currently being used not only as a Z-80 self-assembler but
also as cross assemblers for the Intel 8080A, Fujitsu MB8840 series (4-bit microprocessors), and NEC
wCOM40 series (4-bit microprocessors).

Table 1 System program commands

(a) Assembler

Reads a source file and creates a symbol table. Since assembly is carried out in two
modes, the programmer must specify one of the following modes during pass 1:

PASS 1 |CASSETTE: The source program is read into memory during each pass.

RAM: The source program is read into the RAM area during pass 1; it is not read in

the other passes.

Displays the assembly listing on the CRT screen. Display of the listing may be suspended and

PASS . resumed with the SPACE key.
PASS3 Outputs the assembly listing to the printer.
; ~ |Outputs the relocatable binary code to the output file with a file name. In the CASSETTE
PASS 4 ‘ mode, the assembler reads the source file to generate relocatable binary code in the RAM area

before outputting it to a relocatable file.

Returns control to the monitor. The assembler is reentered by GOTO$2200 (cold start) or
GOTO$222B (warm start).

SYS-5

(b) Text editor

Clears the edit buffer and inputs the input file specified by the file

Input R (Read file) name.
commands A (Append file) Appends the input file specified by the file name to the program in
RAM at the position indicated by CP.
Type T (Type) Types the entire contents of the edit buffer.
commands nT Types n lines from the CP position.
B (Begin) Moves the CP to the beginning of the edit buffer.
nJ (Jump) Moves the CP to the beginning of line number n.
P nL (Line) Moves the CP to the beginning of the line n lines away from the line
containing the CP. n may be a negative number.
somma L Same as the nL. command with n = 0; that is, moves the CP to the
beginning of the current line.
nM (Move) Moves the CP n characters forward (n > 0) or backward (n <0).
Z) Moves the CP to the end of the edit buffer.
C (Change) Searches for string 1 starting at the CP and, if found, substitutes it for
string 2.
Q (Queue) Repeats the C command starting at the CP position and continuing
Mooty until the end of the edit buffer is reached.
Saimands I (Insert) Inserts a string at the CP position. The string is delimited by —» marks.
nK (Kill) Deletes n lines from the edit buffer starting at the line containing the
CP.
nD (Delete) Deletes n characters from the edit buffer starting at the CP position.
Search Searches for a string. After the string is found, the CP is relocated to
S (Search) .
command the end of it.
Output . Outputs the contents of the edit buffer to the output file specified by
W (Write)
command the file name.
Compare V (Verify) Compares the contents of the file specified by the file name with the
command contents of the edit buffer.
= Displays the total number of characters (including spaces and carriage
returns) in the edit buffer.
. . Displays the line number of the line containing the CP.
Speenl & (Clear) Deletes the contents of the edit buffer.
comng: # Switches the printer listing mode.
! (Goto Monitor) Transfers control to the monitor. The editor is reentered by

GOTO0$1200 (cold start) or GOTO$1260 (warm start).

SYS-6

(c) Relocating loader

- L (Linking Load) Given the assembly bias and loading address, loads a program unit from
Ll nk ‘ah d . a relocatable file and generates absolute binary code in the link area.
ldad”“ - N (Next file) Appends (links) the program unit in the next relocatable file to the
énmmahds‘ absoiute binary code in the link area.
. ‘ H (Height) Displays the current assembly bias and loading address.
T (Table dump) Displays the contents of the symbol table.
,‘Ouippt S (Save) Outputs the absolute binary code in the link area and the execution and
command data addresses to a named file.
Compare - V (Verify) Compares the contents of the saved file and the contents of the link
command area.
: > (Clear) Clears the contents of the symbol table and sets the assembly bias and
loading address to 0000.
Special)))
Coniina dS # Switches the printer list mode.
. ! (Goto Monitor) Transfers control to the monitor. The relocating loader is reentered by
GOTO0$1200 (cold start) or GOTO$1260 (warm start).

(d) Symbolic debugger

Debugging

commands

B (Break point)

& (Clear B.P.)

M (Memory dump)

D (memory list Dump)
W (data Write)

G (Goto)

I (Indicative start)

A (Accumulator)

C (Complementary)

P (Program counter)

R (Register)
X (data TRANSfer)

Sets a breakpoint and a break count. The programmer can set a maxi-
mum of 9 breakpoints and a maximum count value of E in hexadeci-
mal.

Clears all breakpoints.

Displays the contents of the specified memory block in the link area in
hexadecimal representation. The command also permits memory
alteration.

Displays the contents of the specified block in the link area in hexa-
decimal representation with one instruciton on a line.

Writes data into the link area starting at the specified address.

Executes the program at the specified address.

Executes the program with the CPU registers loaded with the register
buffer data, starting at the address designated by PC.

Displays the contents of register pairs AF, BC, DE and HL. The
command allows register data alteration.

Displays the contents of register pairs AF’, BC’, DE’ and HL'. The
command allows register data alteration.

Displays the contents of special registers PC, SP, IX, IY and I. The
command allows register data alteration.

Displays the contents of all registers.

Transfers the contents of the specified memory block to the specified
memory area.

SYS-7

S (Save) Saves the absolute binary code in the link area in the output file
specified by the file name.

V (Verify) Compares the contents of the file specified by the file name with the
contents of the link area.

Y (Yank) Loads the program unit in the debug mode form from the specified

object file.

In addition to the above commands, the symbolic debugger includes the same link and load
commands and special commands as the relocating loader.

01 0000 :

02 0000 : INSTRUCTION LIST

03 0000 :

04 0000 SYMP: ENT

05 0000 4C442023 DFFM "LD #,#' ; LIKE LD B, C

06 0004 2C23

07 0006 F1 DFFB F1H F delimits the instruction pattern. 1 indicates
the length of the instruction in bytes.

08 0007 40 DFFB 40H Main portion of the mnemonic code

09 0008 01 DFFB 01H Atom type

10 0009 4C442023 DFFM "LD #, (IX$) * ; LIKE LD A, (IX +15)

11 000D 2C284958

12 0011 2429

13 0013 F3 DFFB F3H 3 indicates the length of the instruction in bytes

14 0014 DD46 DFFW 46DDH } DD4600 is the main portion of the

15 0016 00 DFFB 00H mnemonic code.

16 0017 03 DFFB 03H Atom type

17 0018 4C442023 DFFM "1LD #, (I‘Y$) ’ ; LIKE LD B, (IY + AFC)

18 001C 2C284959
19 0020 2429

20 0022 F3 DFFB F3H

21 0023 FD46 DFFW 46FDH

22 0025 00 DFFB 00H

23 0026 03 DFFB 03H

24 0027 4C442028 DFFM ‘LD (IX$), #° ; LIKE LD (IX +23), A

25 002B 49582429
26 002F 2C23

27 0031 F3 DFFB F3H
28 0032 DD70 DFFW 70DDH
29 0034 00 DFFB 00H
30 0035 04 DFFB 04H

Fig. 4 Instruction list (part)

SYS-8

Table 2 Two-dimensional operation table

Atom

Flags (analyzed and processed in ascending flag bit number order)

type Do o 1 2 3 4 5 6 17 8 9 A B C D E F
00 Reserved
01 |LD #, # 1 1]1
02 |LD # § 1 1 1
03 |LD # (IX+$) LD # (IY+$) 1 111 1
04 |LD (IX+$),# LD (IY+$), # 1|1 1)1
05 |LD (IX+$),$ LD (IY+$),$ 1|1 1)1
06 |LD A, ($) 1|1 1
07 |[LD (%), A 1 1
08 |LD BC, $ etc. 1 1 1
09 |[LD IX,$.LDY,$ 1|1 1
0A [LD HL, (%) 1 1 1
0B |LD BC,($) etc. 1|1 1
0C |[LD ($),HL 1 1
0D |LD ($), BC etc. 1 1
OE |ADD A, #etc. 1|1 1
OF |ADD A, $ etc. 1 1 1
10 |ADD A, (IX +$) etc. 1|1 1 1
11 [INC #etc. 1 1
12 [INC (IX +$) etc. 1|1 1
13 |RLC #etc. 1 1
14 |RLC (IX +$) etc. 1|1 1
15 |BIT §, #etc. 1 1 1
16 |BIT §, (HL) etc. 1 1
17 |BIT §, (IX +$) etc. 1 1 1] 1
18 |JP NZ,$ etc. 1|1 1
19 [JR C,$ etc. 1|1 1
1A [JR'$ DINZ $ 1 1
1B SUB # etc. 1 1
1IC [SUB §$ etc. 1 1
1D [SUB (IX + $) etc. 1 1 1
1IE |RST § 1 1
1IF |IN A, (%) 1 1 1
20 [IN # (O 1 1
21 |OUT (%), A 1 1
22 |OUT (), # 1|1 1
23
24 — =
e T~ L =
— Q-A/Q/
2E
2F
L ~ ADDRESS PROCEDURE 1 o 101 11
~ MUST BE SINGLE 101 111 111 1
| MUST BE ADR-2 1
c : 1] 1 1
g , ; ; 11 1
1 LEFT SHIFT POSITION T ; T
0 .
L DON’T CARE
w EQUATION PROCEDURE 1 1(1 |
Y R 1
g : e i
SIZE OF FIELD
11 ; 1

SYSs-9

(START)

I LOC (location counter)

[LOC «0

[Read statement

]

END statement?

Wait next pass

no

Store label into
label table

Reference instruc-
tion list

L Instruction length J

Reference instruc-
tion list

Extract flags

Label reference?

no

ddress processing?

Perform register/table
reference, pattern con-
version, shift and other
operations as specified
by the control words

“ Reference label table"

Address moditication
(decimal-to-binary-
conversion)
(hexadecimal-to-
binary conversion)

[Assemble object code l

l Instruction length I

" Construct CRT listing"

Construct printer

listing

O

Fig. 5 General assembly flow (excluding assembler directive processing)

SYS-10

Convert object code to
relocatable binary format

2.2 Text Editor Functions

The major functions of a text editor are to insert, delete and modify characters, word and/or lines. If
the editor does not allow the programmer to use these functions interactively and easily, he will have to
devote more effort to editing and modifying programs than to executing them. To alleviate this prob-
lem, SHARP uses a command format which is almost perfectly compatible with that of the NOVA mini-
computer series from the Data General Corp.; this has been refined through the support of many users.

The most important concern of the programmer in conjunction with the text editor is the concept of
the character pointer (CP) and its usage.

During line-base editing, the CP is situated not on a line but between two consecutive lines, as shown

in Figure 6. Therefore, the location to/from which a line is to be inserted/deleted can be uniquely
identified. If the CP was located somewhere on a line, two locations would be possible; that is, before
and after the CP. The J and L in CP move commands are representative commands which uses this inter-

line pointer concept (see Table 1 (b)).

During character-base editing, the CP is situated not on a character but between two consecutive
characters. This permits close editing. The programmer will become accustomed to the text editor
quickly if he is aware of what commands use the interline CP and what command use the intercharacter
CP concept.

During normal editing sessions, several commands are combined to carry out an intended task. Such
commands can be placed on a line separated by separators so that the programmer lists them as they
come into his head.

The MZ-80K system alsc provides an editor-assembler (cassette based) which combines the features
of the text editor and the assembler. Using the X command, the programmer can transfer to either

program; this considerably reduces overhead time during the debugging session.

B—=5M=+3J [CR|

S CP>—F—\" Top of the edit buffer
Two or more commands can / D (beginning of the text)
. . 5M (SP)
be specified by separating \ %
them with the separator -, oNE 1 Line 1
4
EH
2J+C7-+3 [CR] [CRJ
[€P> T
3J L
(SP)
e B |¢Line2 .. . e
[o Edit buffer
Search for ADD starting at the | e 7
.. . CR|
beginning of the edit buffer. cp =
~— ~_L D
B-+SADD=L+2T [CR| —= D
(SP) .
=7 Line 3
B
CR

Fig. 6 Character pointer movement

SYSs-11

2.3 Relocating Loader

The relocating loader loads and links two or more program units using external symbol referencing
instructions from relocatable files and generates absolute binary code in the link area and saves it into an
object file.

The relocatable files contain control frames and external symbol information. The relocating loader

resolves external symbol references and relocated the program units as described below.

(1) External symbol reference resolution
The relocating loader refers to the symbol table when resolving external symbol references (see
Figure 7). The symbol table contains a 9-byte symbol table entry for each external symbol. A symbol
table entry consists of a 6-byte field containing the symbol name, a 1-byte field containing the definition
status, and a 2-byte field containing an absolute address with which the symbol is defined or referenced.
When the loader encounters an external symbol reference while loading the program unit from a re-

locatable file, it checks to determine whether the symbol has been cataloged in the symbol table.

(1) If it has not been cataloged, the loader enters it into the symbol table as a new undefined symbol,
loads the reference address into the symbol table entry and loads code FFFFH into the operand
address of the instruction in memory.

(2) If it has been cataloged and defined, the loader loads the defined absolute address into the operand
address in memory.

(3) If it has been cataloged but not defined, the loader moves the old reference address in the symbol
table entry to the operand address in memory and loads the new reference address into the symbol

table entry.

Thus, the loader chains undefined references to each symbol and, when the symbol is defined,
replaces all reference addresses with the defined absolute address,

In other words, when an external symbol defined by the ENT assembler directive appears in the
control frame, the loader enters the symbol into the symbol table as a defined symbol and replaces all
preceding operand addresses chained in memory (terminated by FFFFH) with the absolute address
defined. The programmer can examine the definition status of the symbols using the table dump
command.

An example of external symbol reference resolution follows. Assume that three program units are to
be linked and that each unit references subroutine SUBI in the third program unit (see Figure 9).

When the first CALL SUB1 instruction is encountered in program unit 1, the loader enters SUB1 into
the symbol table as an undefined symbol, loads the operand address (referenced address S001H in this
case) into which the value of the symbol is to be loaded into the 2-byte value field of the symbol table
entry and loads the code FFFFH into the operand address in memory (see Figure 9 (a)).

SYS-12

When the CALL SUBI instruction is encountered twice in program unit 2, the loader chains together
their operand addresses which reference SUB1 (see Figure 9 (b)). When SUBI1 is defined in program unit
3, the loader designates SUBI as a defined symbol and loads all operand addresses referencing SUB1 with
the defining absolute address. The end of the operand address chain is identified by the code FFFFH.
Figure 9 (c) shows that SUBI is defined by absolute address 5544H. When the loader subsequently
encounters a CALL SUBI instruction, it immediately loads 5544H into the operand address of the

instruction since symbol SUB 1 has been defined.

Program unit 1 §

{ F' 5000

0000[Monitor |
1200 '

« [dentifies the
location refe-
$ rencing an
undefined

| Loading symbol for
Link area the first time
(serving as an
end mark).

area) S

8000 ; } Symbol END
table area
\ 9FFF

— SUBI
J| table entry

This code indicates that the symbol is undefined.

L

D00O| Video RAM area (@)
EO00| Terminal control)
- Program unit 2
area S
It is assumed that a 36K bytes (48K bytes
maximum) of RAM are installed, and that the CALL SUBI
starting address of the symbol table is set to S
8000H. Operand ad-
Fig. 7 Memory map for the relocating loader CALL SUBI1 dres§es refe-
$ rencing the
§ symbol are
END chained to-
gether.

dlo el el

N —
Symbol name Definition Address Program unit 3
status (value)
Fig. 8 Symbol table entry format |
SUB1:ENT M
XOR A [
f
END 5544
(©

This code indicates that the symbol is defined.
Fig. 9 Example of external symbol reference chaining

SYS-13

(2) Program relocation

The loader relocates instructions referencing external symbols while linking the programs. For
instructions which reference internal symbols and for which relocation addresses are generated by the
assembler, however, the loader produces absolute addresses for the symbols by adding bias to the re-

location addresses.

Thus, the loader generates absolute binary code in the link area in an executable format which is
dependent on the bias specified by the programmer when the program unit is loaded. When creating an
object file, the loader saves the absolute binary code from the link area in the file together with its

loading address and execution address.

2.4 Symbolic Debugger

The symbolic debugger inputs relocatable files under the same input conditions as the relocating
loader except that it presumes that absolutable binary code is loaded into the link area in an immediately
executable form. The symbolic debugger permits the programmer to debug his program while running it.

With the symbolic debugger, the programmer can run a program, interrupts its execution at specified
locations and check the system status at these points. The programmer specifies the breakpoints at
which program execution is interrupted. When a breakpoint is encountered, the symbolic debugger saves
the operation code at the address set as the breakpoint in the break table and replaces it with an RST 7
instruction (FFH) (see Figure 10).

The RST 7 instruction is a 1-byte call instruction to address 38H in hexadecimal. Its operation is as

follows:
(SP—-1) «<—PCq, (SP—-2)<—PC_
PC <«—0038H

Hexadecimal address 38H (in monitor ROM) contains a JP 1038H instruction which transfers control to
the breakpoint control routine in the debugger.

Each breakpoint is associated with a break counter. A break is actually taken when the breakpoint is
reached the number of times specified by the break counter. Before the break count is reached, exe-
cution is continued with the original operation code saved.

When a break occurs, the debugger saves the contents of the CPU registers in the register buffer and
displays them in the screen. When the program is restarted, the debugger restores the contents of the
register buffer to the CPU registers and pops the break address.

The programmer can specify a maximum of nine breakpoints and a maximum break count of 14 in

decimal.

SyYs-14

Saved oP ,codéf . ‘f,] Replace |

Breakpoint address

(label symbol) <+ Breakpoint is

set

Break count Variable count 5

Break table entry

Object program

Fig. 10 Breakpoint setting and breakpoint table format

The symbolic debugger has indicative start and
memory list dump commands in addition to the
breakpoint setting command, execution command,
memory dump command and register command. The
indicative start (I) command displays the contents of
the CPU registers with which the program is to be
executed for confirmation before actually transfer-

ring control to the address designated by the program

counter (PC) displayed. For example, when an I
. . . . The above display shows that the program is to be
command is entered, the display shown in Figure 11 ga1ted at address 3000 (hex) with the CPU register

values shown.

appears on the screen. When the programmer presses :
Fig. 11 I command example

CR| after confirming the CPU register contents, the
debugger initiates an indicative starts as shown in

Figure 12.

Register buffer

The debugger restores the contents of

+ho gonaral niirnace ragi re arnd enanial

uil Euuvxal'pux‘yuac lss;stela and Spe€ciai-
purpose registers SP, IX, IY and I),
then the value of the PC Q) and initi-
ates program execution.

—d

[

"
"

7

General-purpose AF BC

registers

==
=
Sl

T
s

oy

Special-purpose SPIXIYI
registers

Fig. 12 I command operation

The memory list dump (D) command displays the machine code in the specified memory block with
one instruction on each line.

The symbolic debugger permits the programmer to symbolically specify addresses as shown in Figure
13. With symbolic addresses, the programmer can specify any addresses in the program wherever the

program is located in memory.

SYS-15

The programmer can specify the following types of addresses symbolically:

(1) Addresses represented by a symbol

(2) The address of an instruction 1 to 99 lines away from the address represented by the symbol

(3) The address of an instruction 1 to FF (hexadecimal) lines away from the address represented by
the symbol

(4) An address =1 to 99 bytes away from the address represented by the symbol

(5) An address £1 to FF (hexadecimal) bytes away from the address represented by the symbol of
course, the programmer can also specify memory locations with absolute addresses.

For example, if the program unit whose source program is shown at the left of Figure 13 is loaded

into memory by the debugger starting at hexadecimal address 3000, execution of a D command will

display a dump of the memory block as shown at the right in Figure 13.

START : ENT
LD SP,START
CALL MSTP
XOR A
LD (?TABP), A
LD BA
MAINO : ENT
LD A, OFH

Fig. 13 D command
2.5 PROM Formatter

The PROM formatter generates formatted absolute binary code and stores it into paper tape under
PTP control. It is system backup software used to transfer object programs to the PROM writer.
Currently, the following paper tape output formats are supported (see Figure 14):

(1) BNPF format: Brightronics, Intel and Takeda

(2) B1OF format: Takeda

(3) Hexadecimal format: Brightronics, Takeda, Minato Electronics

(4) Binary format: Brightronics

The variety of tape formats supported by the SHARP PROM formatter extends the application range
of programmable ROM:s.

Fig. 14 Paper tape output formats

SYS-16

The PROM formatter is made up of a symbolic debugger and format, PTP and PTR controls (see
Figure 15.) The programmer can perform debugging and format conversion simultaneously.

The formatter checks parity in one of three modes (even parity, odd parity or no parity) when
reading paper tape. In the formats using ASCII code (BNPF, B10F and hexadecimal), the most signifi-
cant bit is assigned even or odd parity. When even parity is used, for example, ASCII code “A” (41
hexadecimal) is punched as is, whereas “C’’ (43 hexadecimal) is converted to C3 in hexadecimal before
being punched by setting its MSB. The parity mode can be changed using the FC (parity Form Change)
command.

This PROM formatter assumes that the PTP/PTR interface is compatible with the RP-600 puncher/-
reader from the Nada Electronics Laboratory. It can control RP-600 directly using the general-purpose
I/O card (MZ-801/0-1). It can also control other models, such as the DPT26A paper tape punch from
Anritsu, if I/O conforming to the punch specifications can be implemented on the general-purpose 1/O

card.

PROM formatte;

Relocatable By noatic . Formatter section k
binary pro- | debugger section ‘
gram unit - ; ;
Debugging operations Format control | > Paper tape punch
[program execution| j<— [format conversion
breakpoint setting output to punch

data alteration input from reader \

Fig. 15 PROM formatter configuration

Paper tape reader

SYS-17

3. FDOS ORGANIZATION

Figure 16 shows the files which are run under control of the SHARP MZ-80K FDOS. The FDOS
has the following features:
(1) Multistatement processing
(2) Default argument processing
(3) Allows wildcard characters in file references.

(4) File-oriented processing extended to I/O devices

b] Boot/linker | Reads and links system commands
The standard devices include disks, tape units, keyboard, display unit, line printer,
10CS I paper tape punch and paper tape reader.
— Text editor]
— 7-80 assembler |
E— Relocating loader]
FDOS —] Symbolic debugger |
— PROM formatter]
BASIC compiler]
—— Other transient commands] Include LIBRARY, VERIFY, etc. (see Table 5)
—— Built-in commands] Include DIR, XFER, etc. (see Table 4)
] User programs] Source files, relocatable files and object files created with this system
Fig. 16 FDOS file organization
Figure 17 shows the memory map for the above 0000 Monitor
. . 1000 - 7
system resources. FDOS is made up of a resident Monitor work area
.)] 11D0} FDOS main section ,
section and an overlay section. The resident section ~ command mte:rpreter ~‘
~ boot linker , .
includes: ~ supervisor call pwcedure L Resident area
o o __work utilities .
(1) A command line interpreter which interpretes and IOCS e Cm .
IOCS table

executes system commands. file managamm‘

(2) A boot linker which reads and links command TPA“;} - 7o
files from the FDOS diskette. |

(3) A supervisor call procedure which manages
system resources, including files.

(4) An I/O control system (IOCS)

(5) A file management program which manages the

» Overlay area
(transient
area)

diskette allocation map, file table and other infor-

mation. D000
Video RAM area
E000
Terminal control area
F000
IPL

Fig. 17 FDOS memory map

SYS-18

The overlay area contains a command unit into which command programs are read by the boot
linker. The work segment area is used to store 20 segment variables for dynamic segmentation and

linkage.

3.1 File References
A file reference consists of a file name field and an extension field called the file mode as exemplified

below.
ABCDEFGHIJKLMNOP.ASC

The file name must be 16 characters or less and the file mode must be three characters or less. The
file mode is controlled by the FDOS main program. The legal file modes are listed in Table 3.

The following I/O device names are reserved by the FDOS main program:

$FD1 through $FD4: Floppy disk units 1—4
SLPT: Line printer

SCMT: System cassette unit
$CRT: ’ System display unit
$KB: System keyboard
$PTR: Paper tape reader
$PTP: Paper tape punch
$SIA: Serial input port A
$SIB: Serial input port B
$SOA: Serial output port A
$SOB: Serial output port B

$USR1 through $USR4: User devices 1—4

Table 3 File modes

Mode ‘ . ‘Meaning =
SYS Relocatable binary system fileS under FDOS control

ASC Source files (ASCII files) created by the text editor

.RB Relocatable files generated by the assembler or compiler

.OBJ Object files

.LIB Library files created by FDOS

Since the FDOS allows I/O devices to be treated as if they were separate files, the programmer can
operate them in the same manner as logical files without switching running devices and giving detailed
control commands.

Generally speaking, the file name and file mode must be explicitly defined. In particular, definition
of 1/O device files is mandatory. For convenience, the wildcard characters ? and > are provided for use

when specifying groups of files. The symbol ? matches any character of a file name in the position in

SYS-19

which it is located. This is highly convenient when searching the directory for a file or when matching
files. For example, A?C?.ASC is interpreted as explicitly defined file names ABCD.ASC, AXCY.ASC,

etc.

The symbol > matches an arbitrary number of ? wildcard characters. Some examples are given

below.
*.ASC < ABCD.ASC
27777.ASC
XY>* .RB <~ XYZ.RB
XYZ012.RB
ABC.x <> ABC.ASC
ABC.RB

Commands and file names may be followed by switches. These are used to supplement or modify
the command or file name. A switch must immediately follow a command or file name and be se-
parated from it by a slash (**/’). Switches used with commands are called global switches and those used

with file names, local switches. Examples of the use of switches are given in Figure 18.

ASM ABC U
t

Invokes the assembler, inputs source file ABC, and generates
relocatable file ABC.RB.

ASM ABC, XYZ/O, SLPT/L U

T——Outputs an assembly listing to LPT.

— Generates relocatable file XYZ.RB.

— Inputs from source file ABC.ASC.

ASM/N ABC, S$CRT/E o

Outputs an error listing to CRT.
— Inputs from source file ABC.ASC.
Suppresses generation of relocatable file ABC.RB.

Fig. 18 Examples of switches

SYS-20

3.2 FDOS Command Summary

The FDOS commands are broadly divided into built-in commands (Table 4) and transient commands

(Table 5).
Transient commands are implemented in relocatable file form on the FDOS diskette. They are loaded

into the transient area in main memory by the boot linker and linked to the FDOS main program as

required.

In the command format in Table 4, the items enclosed in brackets are optional.

Table 4 Built-in commands

DIR [$FDn] or [filename] k . . ~ (2. *)

Displays file information in the directory specified by $FDn or of the file specified by filename on the screen.
Global switch/P: Specifies that the file information is to be output to LPT. The file information is displayed
on the screen when .nis switch is not specified.

Examples: DIR o : Displays all file information in the current directory on the screen.
DIR/P $FD2< : Outputs all FD2 file names to LPT and switches the currently logged
disk to FD2.

DIR § FD2; ABC.>x.) : Displays the file information of files in FD2 identified by ABC.>

TYPE filename I [,, filename N] - « e

Lists the contents of the file(s) identified by filename(s) on the screen or on LPT.
Global switch/P: Lists the file contents on LPT.

Examples: TYPE ABC, DEF o : Displays the contents of files ABC and DEF on the screen.
TYPE/P $FD3; XYZ ~ : Lists the contents of file XYZ in FD3 on LPT.
TYPE $PTR o : Reads paper tape data from PTR and displays it on the screen.

RENAME oldnéme‘l ,newname 1 [,, oldname N, newname N]

Renames the file specified by oldname to newname.
Examples: RENAME ABC, XYZ -/ 1 ABC to XYZ.
RENAME ABC, DEF, UVW, XYZ.' : ABC to DEF and UVW to XYZ.

DELETE filename 1 [,, filename N] ‘ - ‘ O

Deletes the file(s) specified by ﬁlename(é).
Global switch/C: Specifies that each file name is to be displayed on the screen for verification. The programmer
must enter Y to delete it or N to suppress deletion.

rr-

Examples: DELETE ABC.> . . Deletes all files identified by ABC. >*
DELETE/C A . %k </ : Displays files identified by A>.>on the screen for verification
before deletion.
ABC.ASC : DELETED : Indicates that the file is deleted since “Y”” is entered.
ABC.RB : Indicates that the file is not deleted since “N” is entered.

AXY.OBJ : PERMANENT :Indicates that the file is not deleted because it is assigned the
PERMANENT file attribute.

SYS-21

| CHATR sign, filename 1 attnbute [, ..., filename N. attnbute]

Matches the password’s sign and changes the file attribute(s) of the matchmg file(s) 1dent1f1ed by ﬁlename to
attribute(s). P: Permanent file R: Read inhibit
0: No protection W: Write inhibit
Examples: CHATR KEY, ABC, 0, XYZ, P : Deletes the file attribute of file ABC and changes the file
attribute of file XYZ to PERMANENT if matches occur with
the password KEY.
CHATR KEY, $FD2 ; UVW, R+ : Changes the file attribute of file UVW in FD2 to READ
INHIBIT if a match occurs with the password KEY.
CHATR <~ : This allows the programmer to interactively specify the
password, file name and attribute.

XFER sourcefilel, destinationfile 2 [,......., sourcefile N, destinationfile N] (7, >k only for source file)
Transfers the source file(s) to the destination file(s).
Examples: XFER ABC, XYZ o : Copies file ABC to XYZ.

XFER $PTR, DEF -~ : Transfers the file at PTR to file DEF.
XFER XYZ, $PTP/PE < : Transfers file XYZ to PTP with even parity in ASCII code.

~ RUN filename

Executes the program in the object file identified by filename. The file must be an OBJ mode file.
Example: RUN ABC< : Executes the program in file ABC, assuming it to be ABC.OBJ.

FREE [$FDn]

Lists statistical information about the disk identified by $FDn on the screen or on LPT.
Global switch/P : Outputs statistical information on LPT
Example: FREE $FD2
$FD2 MASTER LEFT: XXXX USED: YYYY
: Indicates that the diskette on FD2 is a master diskette, that the number of
unused sectors is XXXX and that the number of used sectorsis YYYY.

DATA [MM/DD/YY]

|

Displays the current date or sets the specified data in month, date, year format. The set information is used as
file information when new files are created.
Global switch/P: Specifies that the date is to be printed on LPT.
Examples: DATE/P . : Lists the current date on LPT.
DATE 12/25/80+’ : Sets the current date to December 25. 1980.

. TIME [HH:MM:SS]

Displays the current time or sets specified time in hour, minute, second format This 1nformat10n is used as ﬁle

information when new files are created. The current time is set to 00:00:00 upon system start.
Global switch/P: Specifies that the current time is to be listed on LPT.
Examples: TIME/P : Lists the current time on LPT.

TIME 16 :30:30 ./ : Sets the current time to 16 : 30 : 30.

- EXEC filename

Executes the contents of the file identified by filename as FDOS commands.

Example: EXEC ABC.ASC
Sequentially executes the FDOS commands in ﬁle ABC.

«‘ _f HCOPY {message]

Lists the information currently dlsplayed on the screen on LPT with the spemﬁed message.
Example: HCOPY &

SYS-22

PAGE [output-devnce]

Performs a form feed operatlon on the output dev1ce 1dent1f1ed by‘ output'devme;
Example: PAGE < : Moves the printer form to the home position.

BYE

Terminates FDOS proceésing and te‘turns contyrolto the monitor. V
Example: BYE </

Table 5 Transient commands

 EDIT [fllename]

Loads the text edltor and reads in the f11e 1f spec1ﬁed 'The f11e must be an ASC mode file.
Examples: EDIT & : Loads the text editor and waits for an editor command.
EDIT $FD2 ; ABC o : Loads the text editor and reads in file ABC from FD2.

ASM filename , f
Assembles the source fﬂe 1dent1f1ed by ﬁlename and produces a relocatable ﬁle and an assembly listing.
Global switch (none) : Specifies that the relocatable file is to be output.
Global switch/N : Suppresses generation of the relocatable file. \
Local switch/O : Specifies that the relocatable file is to be output with the specified file name.
Local switch/E : Specifies that error statements are to be output to the specified file.
Local switch/L : Specifies that the listing is to be directed to the specified file.
Examples: ASM ABC ./ : Assembles source file ABC and generates relocatable file
ABC.RB.
ASM/N ABC, $CRT/E ~ : Assembles source file ABC and displays error statements
on the screen (no relocatable file is created).
ASM ABC, XYZ/0, $LPT/L < : Assembles source file ABC and generates relocatable file
XYZ.RB and an assembly listing on LPT.
ASM ABC, $FD2; XYZ/L, $SLPT/E ~ : Assembles source file ABC, outputs the assembly listing to
file XYZ.ASC in FD2 and outputs error statements on
LPT.
LINK filename 1 [...... filename N]

Links relocatable files identified by fllename 1 through filename N and outputs an oblect'f e with a link table

listing.

Global switch/T: Specifies that the symbol table information it to be listed.

Global switch/P: Specifies that the listing is to be directed to LPT (the listing is displayed on the screen if the

switch is omitted).

Examples: LINK ABC, DEF +/ : Links relocatable files ABC and DEF and outputs object file

ABC. OBJ
LINK/T/P ABC, DEF, XYZ/O < : Links relocatable files ABC and DEF and outputs object file

XYZ. OBJ with the link table information on LPT.

SYs-23

“Invokes the ym'f))o]jc‘ de ggerandlmksa d“lbad‘svfétlocatzvibjle ﬁle(s)
Global switch/T: Specifies that the symbol table information is to be output.
Global switch/P: Specifies that the listing is to be directed to LPT (the listing is displayed on the screen if
omitted).
Local switch/O: Specifies that the object file is to be generated with the specified file name.
Example: = DEBUG ABC, DEF < : Invokes the symbolic debugger, links and loads relocatable files ABC
and DEF and waits for a symbolic debugger command.

PROM ; e
Generates formatted absolute binary code on the paper tape punch from an object file. Applicable PROM writers
are those which are supplied by Brightronics, Intel, Takeda and Minato Electronics.

Example: PROMJ/.

~ BASIC filename . ‘ ..

Invokes the BASIC compiler to compile the source program identified by filename.

Example: BASIC XYZ.’ :Invokes the BASIC compiler, compiles source file XYZ. ASC and generates re-
locatble file XYZ. RB.

| LIBRARY filename 1 [, ..., filenameN]

" Links specified file(s) into a library file.

Global switch (none): Specifies that the link information is to be displayed on the screen.

Global switch/P: Specifies that the link information is to be printed on LPT.

Examples: LIBRARY ABC, DEF < : Links relocatable files ABC and DEF and stores their contents
into library file ABC. LIB.

LIBRARY ABC, DEF, XYZ/O «</: Links relocatable files ABC and DEF and stores their contents

into library file XYZ. LIB.

| VERIFY filename 1, filename 2 [, ..., filename N-1, filename N] (2, onlyforfilenamél . filens

[Compares the contents of files filename 1 through filename N.

Global switch/P: Specifies that the results of the comparison are to be listed on LPT.

Example: ~ VERIFY $CMT, $FD2 ; ABC . : Compares the first file on the cassette tape with source file ABC
in FD2.

~ SIGN [SFDn] .
Changes the password of the diskette in $FDn.
During a diskette copy or formatting operation, the system checks the programmer-specified password with that

stored in the diskette directory for a match and carries out the specified operation only when a match occurs.
Example: ~ SIGN ./ : Changes the password of the diskette currently logged on.

. COPY . . e i
Copies the files on the diskette designated by the source disk number to the diskette designated by the
destination disk number. The system matches the passwords in these diskettes before carrying out a copy

operation.
Example: COPY -/

SYS-24

~ FORMAT [$FDn]

mltlallzes the dlskette in $FDn to the system format The password set by the SIGN command is checked before
execution.

Examples: FORMATJ : Initializes the currently logged-on diskette.
FORMAT $FD2 -’ : Initializes the diskette in FD2.

- ASSIGN devxcename address

Sets the address of a user devwe drive routine.
Example: ASSIGN $USRI, § B00O+ . Sets the drive routine address of user device SUSR1 to B00O
(hexadecimal).

! kmcename, status

Sets the ystatus of the I/O dev1ce 1dent1f1ed by devmename to status
Example: STATUS $SIA, $1234 </ : Sets the control status of serial input port A to 1234 (hexadecimal).

Sets or changes the end address of the memory area managed by FDOS.
Examples: LIMIT $B000 _ : Sets the FDOS area to BOOO (hexadecimal).
LIMIT MAX o : Sets the FDOS area to the maximum available address.

LOAD fllename .

Loads the object file 1dent1f1ed by fllename 1nto the area immediately following the established by the LIMIT
command.
Example: T1.OAD ABC.OBJ ' : Loads object file ABC.OBJ into memory.

SYS-25

3.3 Boot Linker

The FDOS transient commands (whose file mode is .SYS) are not resident in memory, but are stored
in relocatable files on the system diskette. These programs exist not in absolute form but in relocatable
form. When they are invoked, boot linker relocates them and specifies their loading addresses (see
Figure 19).

These relocatable system files differ from relocatable files generated by the assembler in the way in
which they are loaded into memory. The external symbol references of the system files have been
resolved: these are just relocated by the boot linker. Accordingly, the control frame associated with each
statement of the system programs contains only a field identifying the statement as having a relative
address or absolute data and containing the byte count of the statement. When a relative address is

indicated in the control frame, the system adds loading bias to the relative address to form an absolute

address. -
Monitor
FDOS
I
Relocate!
|
v > Absolute binary code
¢ Transient area (FDOS
FDOS transient commands may be
commands loaded in arbitrary
locations within this
area)
Relocatable files
(identified by the .SYS file mode)
Fig. 19 Loading FDOS transient commands with the FDOS boot linker
3.4 10CS

I0CS in FDOS provides control over the display unit, cassette unit, floppy disk units, printer, PTP,
PTR and other user I/O devices. The programmer can define other I/O devices using the ASSIGN
command. Control programs for such user I/O devices can be stored in external files and their names can
be cataloged in the IOCS table. They are invoked and executed by IOCS as required.

The actual file management programs form a hierarchical structure as shown in Figure 20. In the
MZ-80K system, routines from the macro command programs to the device control programs are
collectively called the input/output control system (IOCS). Being of modular construction, these pro-
grams are as independent of each other as possible. By hiding controls unique to I/O devices, such as
device address management and buffering, IOCS permits the programmer to handle these programs as
logical files and to control the I/O devices as general files.

The alternate start/stop feature is enabled during IOCS operations. The system temporarily suspends
the read operation when an alternate stop is effected during a data read. At this point, the programmer
can switch to the FDOS command mode or continue the suspended IOCS operation by effecting an
alternate start.

SYS-26

jun Aerdsip

PILOQASY WISAS

yound ade} 1adeg

Iopear ade} 1odey -

19yurxd aurg

jiun adey

j1un ysip Addofq

wolIsAS 9]19SSBO WIISAS
N——" N——"
901AQP Ias) O/1 Terreg $901A (T
13[]013U0D I9[[O1U0D I9[[013U0D 19[[0T1U0D E:w%ﬂ%m Io[[OIIU0D Ia[[011U0D I0[[OTIU0D B:ouw%m obcwwcwwwwﬂ
90TAQD 1980} 0/1 Ip1I0S jun Aefdsiq pIe0qA9y] ode 1odeg 1opeat ode) 1odeq To3und oury ade) enassed Addor g ! ’

(uonIuIyop pue UOIIRIa)[E SSAIPPE [EIISO[/[EIISAU]) |

—

PUBWIWOD OIOR

weIidord
[onnuod SOOI
[auuey)

swerdord

swergord

Juowageurw JI,{

SPUBUIWOD JUSISUBI]

1011dwoo DISVY

Ia)1eWIoy WOUd

Iopeo| 3urjedofey

1233nqap o1foqUIAS

Jopoe 1xo,

Io[quIasse (0g-7

weidord
waIsAg

swerdoxd juowaSeueuwr 3[I§ Jo aIn3dNAS [OIYOIRIAY (7 S

SYS-27

3.5 Dynamic Segmentation

Memory segmentation and relocation can be accomplished easily if a hardware relocation register is

used. However, no presently available 8-bit microprocessor has such a register.

Consequently, methods of simulating this function are commonly used. The boot linker previously

mentioned can be thought of as a variation of such simulations. Here, a method of memory segment-

ation and assignment which leaves the memory image unchanged is described.

Two subroutines are used for memory segmentation as shown in Figure 21 and 22. These two sub-

routines and segment variables are maintained in fixed locations in the FDOS main program area. They

are accessible to all programs.

The 20 segment variables are initialized during preprocessing for each

command and assigned values so that no memory segment exists. They are redefined as required during

processing of each command, thus creating memory segments.

Fig. 21 Extending a specified segment
e e eyttt e e e et Beu e Rt ol tog B
! A2 ; Segment No. (0—19) !
¢ BC+-500 ; 500 bytes :
:_ CALL DOPEN ; DYNAMIC OPE)
Segment No. Segment variables Results
0 ZWORK 0: 5000 ZWORK 0: 5000
1 ZWORK 1: 5500 ZWORK 1: 5500
2 ZWORK 2: 6000+(500) ZWORK 2: 6500
3 ZWORK 3: 6500+(500) ZWORK 3: 7000
4 ZWORK 4: 7000+(500) ZWORK 4: 7500
5 ZWORK 5: 7500+(500) ZWORK 5: 8000
6 ZWORK 6: 8000+(500) ZWORK 6: 8500
7 ZWORK 7: 8500+(500) ZWORK 7: 9000
18 ZWORK18:29000+(500) ZWORK18:29500
19 ZWORK19:29500+(500) ZWORK19:30000
(ZWORK 0) (ZWORK 0)
(ZWORK 1) (ZWORK 1)
(ZWORK 2)
— "
(ZWORK18) [(ZWORK 2)
‘ ————
(ZWORK19) B (ZWORK18)[
(ZWORK19)[

Segment No.

(ZWORK 0)

(ZWORK 1)

(ZWORK 2)

(ZWORK18)

(ZWORK19)

SYS-28

18
19

BC <500
CALL DDELET

_ N N AW N = O

Segment variables

ZWORK 0:
ZWORK 1:
ZWORK 2:
ZWORK 3:
ZWORK 4:
ZWORK 5:
ZWORK 6:
ZWORK 7:

5000

5500

6000—(500)
6500—(500)
7000—(500)
7500-(500)
8000—(500)
8500—(500)

ZWORK18:29000-(500)
ZWORK19:29500-(500)

Fig. 22 Deleting a specified segment

; Segment No. (0-19) |
; 500 bytes |
. DYNAMIC DELETE ,

Results

ZWORK 0:
ZWORK 1:
ZWORK 2:
ZWORK 3:
ZWORK 4:
ZWORK 5:
ZWORK 6:
ZWORK 7:

5000
5500
5500
6000
6500
7000
7500
8000

ZWORK18:28500
ZWORK19:29000

(ZWORK 0)

(ZWORK 1)
(ZWORK 2)

= (ZWORK 3)

(ZWORK19) F_/

4. FDOS COMMAND USAGE

4.1 Program Development Under FDOS

Source file

Source file

Text editor

w XFER O EDIT Source creation
° and editing
XFER U
$ CMT $ FD1 ~§ FD4
Source file
ASM
BASIC
Assembler BASIC compiler
$PTR, $PTP, etc.
" . Assembly . Compilation
ssembly listing Compilation listing

Relocatable files

SCRT, SLPT, etc.

$CRT, $LPT, etc.

Library file

LIBRARY

LINK

Relocating loader

Relocating
and
Linking

Object file

O

Object file

QO

 XFER

Symbolic debugger

Debugging

Link in-
formation

BNPF, HEXADECIMAL, BINARY formats

T

PROM

0e

RUN

§ CMT

v

(Execution)

L |

$PTR, $PTP, etc.

SYS-29

4.2 FDOS Command Coding Rules

This section describes the coding rules for FDOS commands.

— Command line format —

In the command mode, FDOS prompts for command entry with a number and the symbol “>".

Enter a command followed by arguments (described later), if necessary, press@’key and the FDOS will

execute the command.
Example 1: 2> EDIT_.TEST

%% %

l‘ L Command T-Argument denotes a space.

Prompt
Default drive number (described later)

The first number (1—4) indicated the default drive, namely, the currently logged-on disk drive.

Some commands may require two or more arguments.

Example 2: 2> XFER_TEST, SCMT [CR
! t t

Command Argument 1 Argument 2

The command and arguments must be separated by commas and/or spaces.

(Legal) 2> _XFER__TEST_$CMT
(Legal) 2> XFER, TEST , $CMT [CR]
(Illegal) 2> XF ER TEST,, SCMT

No space is allowed. T‘Only one comma is allowed.
Two or more commands may be specified on one logical line by separating them with colons (““:’*)
A line containing two or more commands is called a multistatement line. A logical line may contain any

number of commands but it must not exceed three physical (screen) lines.
Example 3: 2> DELETE TEST: RENAME AAA, TEST : ASM TEST [CR]

— File name —

All program and data files on a diskette are given file names. The programmer must specify a file
name when storing a program or data file on a diskette and when reading it. A file name must be from 1

to 16 alphanumeric characters and/or special characters as shown below.
'# 2 & ()t —->=<@[]]1 <«

No two files on a diskette can have the same file name and file mode (described later). Files with the

same file name and mode may exist on different diskettes.

SYS-30

— File modes —

The file mode identifies the type of the file. It is usually used with a file name. The MZ-80K file

modes are listed below.

Fllemode | - e

.OBJ Identifies an object file which contains Z80 machine code.

ASC Identifies a source file, such as one created by the text editor, which contains a stream of ASCII

characters.

RB Identifies a relocatable file which contains pseudo-machine language code (relocatable binary code) -
generated by the assembler or compiler.

.LIB Identifies a library file consisting of two or more relocatable files.

SYS Identifies a file containing a system program which runs under FDOS, such as the text editor and

assembler.

— File attributes —
File attributes are information pertaining to file protection. There are four file attributes: 0, R, W

and P. File attribute O indicates that a file is not protected. The other file attributes inhibit the use of

specific commands as listed below.

; , TYPE A TYPE
~ Inhibited FDOS XFER XFER
commands EDIT EDIT
ASM ASM
LINK LINK
DEBUG DEBUG
PROM PROM
BASIC BASIC
DELETE DELETE
RENAME RENAME
ROPEN ROPEN
Inhibited BASIC INPUT #() INPUT #()
commands PRINT #() PRINT #()

SYS-31

— File types —

A file type indicates the file access method. There are two file types: sequential (S) and random (X).
FDOS normally handles only sequential files. Random files can be accessed only by the DELETE,
RENAME and CHATR commands. An optional BASIC compiler is required to create, write to and read

from random files.

— Wildcard characters —

The programmer can specify two or more files at a time by specifying wildcard characters in the file
name and file mode. The wildcard characters ““?”” and ‘>’ are used for file names and “.>’’is used for

file modes.

Wildcard character “?”J

“?” represents any one character. For example, assume that files ABC.ASC, ABC3.ASC, ABCD.RB,
XYZ.ASC and ADCN.ASC exist on the currently logged-on disk. When the command

TYPEA ?C? .ASC
is entered, the contents of the files ABC3.ASC and ADCN.ASC will be displayed.

Wildcard character “x”’

“¥’ represents 0 or more characters.

A>: Represents file names beginning with “A.” e.g., A, A2, ABC
>*2: Represents file names ending with “2.” e.g., TEST2, SAMPLE?2
P>5: Represents file names beginning with “P”” and ending with “5”. e.g., PROGRAMS, PM5

rWildcard characters *“x”

“>represents all file modes.

Examples:
DELETE PROG1.%* Deletes all files whose file name is PROG1.
XFER >.ASC, $PTP Punches all files whose file mode is .ASC.
DELETE > . Deletes all files on the diskette.

SYS-32

— Drive number and volume number —

A drive number refers to the drive number of a floppy disk drive (MZ-80FD or MZ-80FDK). Drive
numbers 1 through 4 are assigned device names $SFD1 through $FD4 respectively.

A volume number (1-255) is a number identifying a diskette. FDOS checks this number for validity

each time it accesses a file.

— Device name -

FDOS can handle the following I/O devices:

$KB: MZ-80K system keyboard

$CRT: MZ-80K system display unit

$FD1:

$FD2:

$FD3:

$FD4:

$CMT: System cassette unit

$LPT: System printer (MZ-80P3)

$MEM: A part of main memory regarded as an I/O resource. The system automatically reserves an
unused area as SMEM. This area is released by the DELETE $MEM command or when an

Floppy disk drives (MZ-80FD or MZ-80FDK)

eITOT OCCUTrs.
$PTR:) Paper tape reader and punch. The user must prepare an interface circuit for these using a
$PTP: } universal interface card. The system contains their control programs, however. Refer to
“Paper tape Punch and Reader Interface ” in Appendix for details.
$SIA: Serial input port A
o] The interface card and control program for these I/O ports are
$SIB: Serial input port B |
$SOA: Serial output port A
$SOB: Serial output port B
$USRI1:
$USR2: 1 These device names are provided for user-supplied I/O devices. The control program must
$USR3: J be supplied by the user.

$USR4:

options which will become available in the near future. The con-

trol program occupies addresses $C800 to SCFFF.

SYS-33

Notes

1. Any file input from the keyboard ($KB) is terminated by pressing the [SHIFT]| and [BREAK |keys

simultaneously. For example, execution of the command
1 > XFER $KB, XYZ
is terminated when the programmer presses theLSHIFTlandLBREAIﬂ keys simultaneously.
2. The auto repeat interval can be changed by the STATUS $KB, $00nn command (standard nn value is
10).
3. The end of files from $PTR is identified by the null code (O0H) following the data area (null codes in

the feed area are ignored).
4. $CMT and $MEM can be accessed only by the built-in commands and programs compiled by the

BASIC compiler. When they are used by other programs, the error message.

NO USABLE DEVICE

is issued.
5. $CMT can handle only .ASC and .OBJ mode files. $KB, $CRT, $LPT, $PTR and $PTP can handle

only .ASC mode files (error message IL FILE MODE is issued if an illegal file mode file is used with

one of these devices).

6. $PTP and $PTR automatically skip the tape feed portions.

—Switches—

Switches follow command names or arguments and specify optional command functions. There are

three types of switches.

IGlobal switches|

Global switches are appended to command names and specify the mode in which the command is to

be executed. Two or more switches may be specified for a command as shown in example 5. In such

cases they may be placed in any order.

Example 4: 1 > DAiIlI:Z/Pv /P denotes LPT.
Co:;;nand élobal switch
Example 5: 1> LINKM . TEST /P denotes LPT.
L Global switch /T denotes the symbol table.
Invalid: 1>LINK ./P_/ T __TEST

) N, N, N \ space may appear in these positions.

SYS-34

|Local switches]

Local switches are appended to arguments and specify the use of the arguments.

Example 6:

Device switches

Device switches are appended to device names. Their format is identical to that of local switches.

The legal device switches are /PE, /PO, /PN and /LF. These switches can be appended only to

1 > ASM TEST, $LPT/L, XYZ/O

devices $PTR, $PTP, $SIA, $SIB, $SOA and $SOB.

The meanings of the device switches are listed below.

assembly listing is to be output.

/L specifies the device on which the

/O specifies the relocatable output file.

Switch Input Output

/PE Specifies that data is to be checked for Specifies that even parity is (Note)
even parity. to be used.

/PO Specifies that data is to be checked for Specifies that odd parity is to be (Note)
odd parity. used.

/PN Specifies that bit 7 (MSB) of input data (Note)
is to be set to 0.

/LF Invalid Specifies that CR is to be followed

by LF.

Note: An error is generated (IL DATA) if the MSB of the data is set to 1 from the beginning (e.g., graphic

characters).

Any switch following the first argument of the RUN command is treated as a global switch.

Example: 1> RUN._ ASM48/P__TEST ,XYZ/O

[Global switch I—Local switch

The meanings of the individual global switches are described in the related command descriptions.

SYS-35

—Default assumptions —

The general format of a file specification (valid for §FD1—-$FD4 and $CMT) is given below.

[Device name] ; [File name] . [File mode]

Example 8: $FD2 ; PROG2 .ASC $CMT; TEST2 .OBJ
Device game Filefname File mode Device name File ;ame Fi}e mode

The programmer can omit portions of the complete file specification as explained below.

Default drive

The device name may be omitted as exemplified below.
Example 9: 2> LINK TESTI1, $FD3; TEST2, TEST3

In the above example, the system assumes the name of the currently logged-on disk (identified by
“2”) before TEST1 and TEST3. Consequently, the above command line is equivalent to the

following:
2> LINK $FD2; TESTI1, $FD3; TEST2, $FD2; TEST3
The default drive can be changed by:

1. Executing the DIR command, or

2. Moving the cursor to the left of the prompt ‘> ” and changing the drive number (e.g., changing
“2 >$, to 4‘1 >”).

Default file name1

The file name may be omitted when reading files from the cassette tape unit (SCMT). When a file
name is omitted in the XFER command or other similar command (see example 10), the system

assumes an appropriate file name.

Example 10: XFER $FDI1 ; ABC.ASC, SFD2

The system assumes $FD2 ; ABC.ASC.

u)efault file mode

When file mode is omitted, the system makes an appropriate default assumption according to the

command. See the individual command descriptions.

Notes |

1. Both device name and file name cannot be omitted simultaneously.

2. No file name can be assigned to devices other than $FD1 through $FD4 and $CMT.

SYS-36

—Arguments—

There are several argument formats.

1. Device name + File name + File mode
Examples: $FD1 ; ABC.ASC $ CMT ; XYZ.0BJ SFD2 ;% . x

2. Device name + File name. The file mode is omitted (default file mode)
Examples: $ FDI1 ; ABC $ FD2 ; Ak $ CMT ; TEST

3. File name + File mode. The device name is omitted (default drive).
Examples: TEST3.RB X, ASC PROG? . RB

4. Device name

a. when the file name and mode are omitted or when the device name proper is to be specified.

Examples: $ FDI § CMT
b. When neither file name nor mode can be specified.
Examples: $ PTR $ CRT $ LPT

5. Hexadecimal constant
Examples: § 1200 $ C000

6. Special arguments
Examples: TIME 9 : 30 : 00

t Command T— Argument

LIMIT MAX

1\—Command Argument
— Suspending or stopping program execution —

Execution of an FDOS command may be suspended or terminated with the following keys:

SHIFT| + |BREAK The system terminates the current program, issues the message
“BREAK’’ and waits for entry of an FDOS command. This break

can be detected by the “ON BRKEY GOTO” statement of BASIC.
[SP| When the [SP| key is held down for a while, the system suspends ex-

ecution of the current program. The phrase ‘“‘for a while” here refers
to the period of time until a carriage return is output during output
to the CRT screen or printer. At this point, the programmer can
take one of the following actions:

'TSHIFT! + [BREAK{ The system reacts as described above.

° Processing is continued at the point of the

suspension.

SYS-37

4.3 Using FDOS Commands

—ASM—
Transient

i

Format|
ASM filename

Function

The ASM command assembles the source program in the source file specified by the argument,

outputs the result to a relocatable file and outputs an assembly listing to the specified file or device.

[Default file moda
.RB when local switch /O is specified; otherwise, .ASC.

Global switches:
None: A relocatable file is generated.

/N: No relocatable file is generated.

Local switches:
None: Specifies that the specified source file is to be assembled.
/O: Specifies that the relocatable code is to be output to a file under the selected name.
/E: Specifies that only error statements are to be output to the selected file or device.

/L: Specifies that the assembly listing is to be output to the selected file or device.

F‘Nildcard characters
Not allowed.

(1) ASM TEST
Assembles source file TEST.ASC and generates relocatable file TEST.RB.

(2) ASM TEST, SLPT/L, XYZ/O
Assembles source file TEST.ASC, generates relocatable file XYZ.RB and outputs the assembly
listing to LPT.

(3) ASM/N TEST, SCRT/E, $SOA/L

Assembles source file TEST .ASC while displaying error statements (including external symbol

references) and outputting the assembly listing to SOA. No relocatable file is generated.

(4) ASM TEST, $FD2; TEST 1/L, $FD2;TEST 1. RB/O
Assembles source file TEST .ASC and saves relocatable file TEST1. RB and assembly listing
TEST1 .ASC on FD2.

SYS-38

— ASSIGN — Transient

Format

[Format]

ASSIGN devicename 1, $nnnn, , devicenameN, $nnnn

Function

The ASSIGN command assigns logical device names to user-supplied I/O control routines.

Switches

None.

lWildcard characters]

Not allowed.

(D

(2)

3

ASSIGN $USRI1, $C000

Assigns device name $USI1 to the user I/O control rouitne at address $C000.

ASSIGN $USR2, $C200, $USR3, $C400

Assigns $USR2 to the routine at address $C200 and $USR3 to the routine at address $C400.
ASSIGN §$PTP, $C600

Assigns $PTP to the new PTP routine at address $C600 in place of the PTP control routine in
FDOS.

1.
2.

When a device name is assigned more than once, the last assignment is taken.

To cancel an assignment, set the address operand to $FFFF.

Example: ASSIGN §USRI1, SFFFF This command cancels $SUSR1.

When an I/O control routine is destroyed by execution of a new LIMIT or LOAD command it is

necessary to cancel the device assignment for that routine using the above procedure.

SYS-39

— BASIC — Transient

BASIC filename

Function

The BASIC command compiles the source program (written in BASIC language) identified by the
argument and outputs the BASIC listing.

|Default file moda
.RB when local switch /O is specified; .ASC otherwise.

Global switches
/N: Specifies that no relocatable file is to be generated.
/C: Specifies that the BASIC listing is to be displayed on CRT.
/P: Specifies that the BASIC listing is to be printed on LPT.

(Note that switches /C and /P cannot be specified simultaneously.)

Local switches
None: Specifies that the specified source file is to be compiled.
/O: Specifies that the relocatable code is to be output to the selected file.
fWildcard characters |
Not allowed.

Examplesl

(1) BASIC TEST
Compiles source file TEST .ASC and generates relocatable file TEST .RB.
(2) BASIC/C TEST, XYZ/O
Compiles source file TEST .ASC, generates relocatable file XYZ.RB and displays the BASIC
listing on CRT.
(3) BASIC/N/P TEST
Compiles source file TEST .ASC and prints the BASIC listing on LPT. No relocatable file is

generated.

Programming notesj

1. The compiler terminates generation of the relocatable file when it detects an error during com-
pilation.
2. The BASIC compiler is available as an option.

SYS-40

— BYE — Built-in

1

Format
BYE

Function

The BYE command returns control to the monitor.

— CHATR — Built-in
mat
CHATR sign, filenamel, attributel, , filenameN;, attributeN

S|
)
=

Function

The CHATR command changes the attributes of a specified file.

IDefault file mode|
.ASC

witches

i

None.

!Wildcard characters]
Not allowed.

File attributes

0: None
R: Read-protected file
W: Write-protected file

P: Permanent file

Examples

(1) CHATR KEY, TEST, R
Assigns the password “KEY”’ to file TEST .ASC and declares the file as a read-protected file.
(2) CHATR SECRET, TEST. OBJ, 0
Deletes the file attributes of file TEST .OBJ. The specified password, “SECRET”, is matched
with the password specified for the file before the command is actually executed.
(3) CHATR
Allows the programmer to interactively specify the sign, file name and attribute in that order.
(4) CHATR sign
Aliows the programmer to interactively specify the file name and attribute in that order.

|Programming note, @ ..
The interrelationship of the file attributes is shown below. / n \
S— Set sign.
— Check sign. \ @ /

..... - Does not check sign.

SYS-41

— CONVBTX — Transient

CONVBTX filename

Function
The CONVBTX command copies BASIC text files generated with the SP-5000 series BASIC inter-

preter or D-BASIC SP-6015 onto a diskette in the FDOS compatible format.
The BASIC text files are input from the cassette tape unit.

[Default file moda
ASC

Switches

None.

IWildcard charactersJ
Not allowed.

(1) CONVBTX TEST
¥ PLAY
FOUND XYZ.BTX
LOADING XYZ.BTX
Reads a BASIC text file from the cassette tape unit and creates file TEST .ASC in the ASCII

format.

Programming notes
1. To use a file created and stored with D-BASIC under FDOS, save the text file on cassette tape

through D-BASIC, then execute the FDOS CONVBTX command.
Never intermix D-BASIC format diskettes and FDOS format diskettes. Otherwise, disk contents
may be destroyed.

2. Since the syntax of D-BASIC and that of the BASIC compiler differ slightly, there are some cases
in which programs converted with the CONVBTX command cannot be compiled by the BASIC
compiler without some modification. Use the text editor to modify such programs before com-

piling them with the BASIC compiler.

SYS-42

— COPY — Transient

COoPY

Function

The

COPY command copies the contents of the source diskette to the destination diskette. The

programmer can specify only predetermined types of diskettes as the destination and source diskettes

as summarized in the table below.

Source Destination Allowed/disallowed ‘ Remarks
(Any diskette) Master Disallowed
Master Submaster Allowed
Master Slave Allowed The destination diskette becomes a submaster diskette.
Submaster Submaster Disallowed
Submaster Slave Disallowed
Slave Submaster Allowed The destination diskette becomes a slave diskette.
Slave Slave Allowed

It is desirable to create a submaster diskette from the master diskette using the COPY command and

to use this submaster diskette during normal operation. It is also desirable to make copies at appro-

priate times when the original diskette is updated to prevent errors due to physical defects in the disk

or software errors or inadvertent use of the DELETE command.

l Default file mode]

None.

Switches

None.

LWildcard characters

None.

Examples

(1)

FDOS always copies from $FD1 to $FD?2 when the system has two or more floppy disk units.
2 > COPY

DESTINATION DISKETTE’S SIGN ? BACKUP <—Proceeds to the next step if the pass-
words match.
INSERT SOURCE INTO SFD 1 <—Insert the source diskette in drive FDI.
DESTINATION INTO S$FD 2, ¥ SPACE KEY <—Insert the destination diskette in drive
FD2, then press the@ key.

2> Copying is completed.

SYS-43

— DATE — ‘ Built-in

DATE mm/dd/yy

The DATE command sets or displays the system calender date in the month/date/year format.
This information is assigned to each file when it is saved on a diskette. The date is not automatically

updated, however.

[Default file model

None.

Global switch /P: Specifies that the date is to be printed on LPT.

IWildcard charactersl
Not allowed.

(1) DATE 11/20/81

Sets the system calender date to November 20th, 1981.
(2) DATE

Displays the current date on CRT.
(3) DATE/P

Prints the current date on LPT.

SYs-44

— DEBUG — Transient

DEBUG filenamel, , filenameN

Function

The DEBUG command links and loads relocatable files specified by the arguments to form an object

program into mémory for debugging.

[Eefault file mode]
.OBJ when local switch /O is specified; .RB otherwise.

Global switches
None: Specifies that only the link information is to be displayed on CRT.
/T: Specifies that the symbol table information is to be output (on CRT unless global switch /P
is specified).
/P: Specifies that the link and symbol table information is to be printed on LPT.
Local switch

/O: Specifies that the object file is to be created under the selected file name.

[Wild card characters]
Not allowed.

(1) DEBUG TESTi, TEST2
Links and loads relocatable files TEST1.RB and TEST2.RB and waits for a debugger command.
The link information is displayed on CRT.

(2) DEBUG/T/P TEST, TEST/O
Loads relocatable file TEST.RB, prints the link and symbol table information on LPT and
generates object file TEST.OBJ.

(3) DEBUG TESTI1, $1000, TEST2, TBL $20
Links and loads relocatable files TEST1.RB and TEST2.RB and reserves $1000 bytes of free
area in memory between them. The symbol table size is set to $2000 (approximately 8K
bytes). When the table size is not specified, the debugger automatically allocates 6K bytes for
it.

(4) DEBUG

Invokes the symbolic debugger and enters the command mode.

SYS-45

— DELETE — Built-in

DELETE filenamel, , filenameN

Function

The DELETE command deletes the files specified by the arguments except those with the W or P file

attribute.

ﬁ)efault file mode|

. ASC

Global switches
/C: When this switch is specified, the system displays each file on CRT for confirmation. The file

is deleted when the programmer presses the-Y key and skipped when he presses the N key.

/N: Specifies that no deleted file is to be displayed. (The programmer must not specify /N and /C

simultaneously.)

WVildcard characters]

Allowed.

(D

(2)

(3)

4

DELETE TEST.*

Deletes all files whose file name is TEST.

DELETE/C > .OBJ

Displays all files with a file mode of .OBJ on CRT for confirmation before deleting them.
DELETE $FD2;> . >

Deletes all files on FD?2 except those with the file attribute P or W. To delete file-protected file,
it is necessary to cancel the file protect attributes with the CHATR command.

DELETE $MEM

Deletes pseudo-file SMEM.

SYS-46

— DIR — Built-in

Format

DIR devicename (filename)

Function

Displays the contents of the directory specified by devicename or filename. ‘“devicename” must

refer to a floppy disk unit.

[Default file mode

- K

Switches]

Global switch

/P:

Specifies that the directory is to be printed on LPT.

[Wildcard

characters

Allowed.

(D

(2)

(3)

4

DIR $FD2

Displays the file information of all files on the diskette in FD2 on CRT. FD2 is designated as
the default drive.

DIR/P

Prints the file information of all files on the diskette in the current default drive on LPT. The
default drive remains unchanged.

DIR TEST

Displays on CRT the file information of all files on the diskette in the current defauit drive
whose file name is TEST.

DIR $FD2;>*.ASC

Displays the file information of all source files on the diskette in FD2 on CRT. FD2 is

designated as the default drive.

ﬁ’rogramming notesl

SECT AT FILENAME MM/DD/YY

2>10 RS TESTASC /102580

o [oo T

l Nu;nber Ofd . lle name -File mode Date of creation (October 25th, 1980)
sectors use File type (sequential file) (2?/7?/?? appears if unknown)

Drive number File attribute (read protected)

SYS-47

— EDIT — Transient

EDIT filename

Function

The EDIT command invokes the text editor to create a new source file or edit an existing source file.

[Default file mode|
.ASC

Switches

None.

LWildcard charactersJ
Not allowed.

(1) EDIT
Invokes the text editor and enters the command mode.
(2) EDIT TEST

Invokes the text editor, reads source file TEST.ASC and enters the command mode.

— EXEC — Built-in

Format

EXEC filename
The EXEC command executes the contents of the file specified by the argument as FDOS com-
mands. A device name may be specified in place of filename. Files containing FDOS commands are

called EXEC files.

lDefault file modﬂ
.ASC

None.

LWildcard characters
Not allowed.

SYS-48

Examples

(1) EXEC MACRO
Executes the contents of source file MACRO.ASC assuming that the file consists of FDOS
commands. When the file MACRO.ASC contains the command lines shown below, the system
executes the commands in sequence from the top to the bottom.
ASM $FD2; TEST
LINK/T/P SFD2; TEST, FDOS.LIB
CHATR KEY, SFD2;TEST. OBI. W
RUN $FD2; TEST
3> FREE Display the number of used sectors on the diskette in FD3.
DIR/P $FD2 Print the contents of the FD2 directory on LPT and designate FD2 as the
current default drive.
(2) EXEC MYDEVICE

Sequentially executes the command lines contained in source file MYDEVICE.

LIMIT $C000 Limit the FDOS area to $C000.

LOAD MYPRINTER Set the loading and execution addresses to $C000.

LOAD MYLIGHTPEN Set the loading and execution addresses to $C800.

ASSIGN $USR1,,$COOO, $USR2, $C800 Assign user I/O names to user programs.

ASM TEST, $USR1/L Assemble relocatable file TEST and output the assembly listing
on the user-defined printer.

XFER $USR2, XYZ Transfer data obtained with a light pen to file XYZ.

Programming notesl

1. Since the EXEC command executes the commands specified in a file as macro commands, it
cannot be specified on a multistatement line as shown below.
EXEC MACRO: TYPE MACRO
2. The specified file may have the file attribute R, W or P. However, execution of files with the
attribute Ror P is not displayed.
3. When an error occurs during execution of an EXEC file, the system immediately terminates pro-

cessing and waits for entry of a new FDOS command from the keyboard.

— FORMAT — Transient

FORMAT $FDn

Function
The FORMAT command formats (initializes) a new diskette.

The user must always format new diskettes before using them.

SYS-49

[Default file mode]

None.

None.

] Wildcard characters

Not allowed.

Examples

(D

(2)

FORMAT S$FD2
FDOS DISKETTE FORMATTING

INSERT DISKETTE INTO $FD2, % SPACE KEY
NEW SIGN ? SHARP

VOLUME NO. ? 50

END

INSERT DISKETTE INTO $FD2, ¥ SPACE KEY

BREAK <—Press the[SHIFT[and[BREAIﬂ keys simultaneously to return to FDOS.

The above interaction shows an example of formatting a completely new diskette. “SIGN”
prompts for a password to be given to the diskette. When this diskette is resubmitted for
formatting, the system checks for a password match before actually reformatting the diskette.
“VOLUME NO.” prompts for a volume number to be assigned to the diskette. The programmer

can specify any number from 1 to 255. The volume number should be unique.

FORMAT

FDOS DISKETTE FORMATTING

INSERT DISKETTE INTO $FDI, ¥ SPACE KEY

OLD SIGN ?SHARP <«—The system matches the password entered with that stored on the
diskette and proceeds to the next step if they match.

NEW SIGN ? MZ-80 <—Set a new password.

VOLUME NO. ? 128

END

INSERT DISKETTE INTO $FDI, ¥ SPACEKEY

BREAK <«——Press the|SHIFT|and| BREAK |keys simultaneously to return to FDOS.

The above interaction shows an example of reformatting a previously formatted diskette. The

meanings of “SIGN™ and “VOLUME NO." are identical to those in example (1).

SYS-50

— FREE — Built-in

Format

FREE $FDn

Function

The FREE command displays the number of used sectors, the number of unused sectors, and/or the

volume number of the diskette in the specified floppy disk unit.

}Default file mode]

None.

Switches

Global /P: Specifies that the disk usage information is to be printed on LPT.

I Wildcard charactegl
Not allowed.

(1) FREE $FD2
$SFD2 VOL :128 LEFT: 1056 USED: 64
(2) FREE/P
Prints the same information as given in example (1) on LPT, execpt that the information

pertains to the diskette in the default drive.

LProgramming note

A diskette comprises 1120 sectors (each consisting of 128 bytes). Of 1120 sectors, however, 64
sectors are reserved by the system as FDOS areas. Consequently, USED: 64 is indicated for new

diskettes.

— HCOPY — Built-in

Format
HCOPY message

Function

HCOPY prints the contents of the CRT screen from the upper left position to the current cursor

position on LPT as is with a message.

SYS-51

I Default file mode|

None.

None.

lWildcard characterq
Not allowed.

(1) HCOPY
Prints a copy of the CRT screen on LPT.
(2) HCOPY @ SHARP-FDOS <«—— The key is pressed with the cursor over the character:
since double quotation marks (') would be printed as is.

Prints a copy of the CRT screen on LPT after outputting a form feed and the specified message.

IProgramming note

(1) Characters which can be used for messages are ASCII codes 00H-7FH, except for /" and

HCOPY "abcde” <«——Not allowed
(2) The following are LPT mode control codes.
Paging: Feeds the paper to the position where power has been turned on.
Suppressed spacing: Used for graphic display, etc.
Double size characters: Used for titles, etc.
Clear: Clears the Fland @ functions.

and g, B are ignored.

— LIBRARY — Transient

LIBRARY filenamel, , filenameN

The LIBRARY command reads the relocatable files specified by the arguments to form a library file.

[Default file mode |
.LIB when local switch /O is specified; .RB otherwise.

SYS-52

Switches

Global switches
None: Link information pertaining to the relocatable files is displayed on CRT.
/P: Specifies that the link information is to be printed on LPT.

Local switches
None: The first filename specified is used as the name of the library file.

/O: Specifies that the library file is to be created with the selected file name.

‘Wildcard characterﬂ
Not allowed.

(1) LIBRARY TESTI1, TEST2
Reads relocatable files TEST1.RB and TEST2.RB to generate library file TEST1.LIB. The link
information is displayed on CRT.

(2) LIBRARY/P TESTI.LIB, TEST2, XYZ/O
Reads relocatable files TEST1.LIB and TEST2.RB and generates a library file named XYZ.LIB.

The link information is printed on LPT.

— LIMIT — Transient

LIMIT $nnnn

Function

The LIMIT command sets the FDOS area boundary at address $nnnn.

3
¢

]Defauit file mode

]
i

None.

None.

lWildcard characters|

None.

SYS-53

(1) LIMIT $CO000
Limits the FDOS area to $C000 and frees the higher area.
(2) LIMIT MAX

Sets the FDOS area to the maximum available address.

l Programming note

The LIMIT command cannot be specified in a multistatement as shown below.
Illegal: LIMIT $B000 : DIR $FD2

— LINK — Transient

LINK filenamel, , filenameN

Function

The LINK command links the relocatable files specified by the arguments to generate an object file.

| Default file model

.OBJ when local switch /O is specified; .RB otherwise.

Global switches
None: Only the link information is displayed on CRT.

/T: Specifies that the symbol table is to be output (on CRT unless global switch /P is
specified)
/P: Specifies that the link and symbol table information is to be output to LPT.

Local switches
None: The first filename specified is used as the name of the object file.

/O: Specifies that the object file is to be created under the specified file name.

[Wildcard characters
Not allowed.

SYS-54

(1)

(2)

(3)

4

LINK TESTI1, TEST2

Links relocatable files TEST1.RB and TEST2.RB and generates an object file named TEST.
OBJ. The loading and execution addresses of the object file are automatically set to the beginn-
ing address managed by FDOS. The link information is displayed on CRT.

LINK/T/P TESTI1, TEST2, XYZ/O

Links relocatable files TEST1.RB and TEST2.RB and generates object file XYZ.OBJ. The
loading and execution addresses of the object file are set to the beginning address managed by
FDOS. The link and symbol table information is output to LPT.

LINK $C000, TEST, FDOS.LIB, EXEC $C100

Links TEST.RB and FDOS.LIB and generates object file TEST.OBJ, specifying $C000 as the

loading address. The execution address of the object file is $C100.

LINK TESTI1, $1000, TEST2, TBL $20

Links file TEST1.RB (specifying the beginning of the FDOS area as the loading address), then
links and loads file TEST2.RB, reserving $1000 bytes of free area between the two files.

The symbol table size is set to 8K ($2000) bytes).

— LOAD — Transient

LOAD filenamel, , filenameN

Function

[Function]

The LOAD command loads the object files specified by the arguments in areas outside the area

managed by FDOS.

| Switches

None.

[Wildcard characters]

None.

SYS-55

(1) LOAD TESTI1, TEST2
Loads object files TEST1.0BJ and TEST2.0BJ into memory areas outside the area managed by

FDOS. The programmer must create object files so that they are to be loaded in appropriate

addresses.

— PAGE — Built-in

PAGE output-device

The PAGE command carries out a paging operation on the output device specified by output-device.

[Default file mode[

None.

None.

Mildcard charactea

None.

(1) PAGE or PAGE §$LPT
Carries out a form feed on LPT.

(2) PAGE S$PTP, $SOA, SUSRI1
Produces a feeder tape on PTP and outputs the code defined with the STATUS command to
SOA and USRI1.

— PROM — Transient

Formzj_t

PROM

Function

The PROM command converts the format of the object file to an appropriate PROM writer format.

SYS-56

[Default file model

None.

None.

[Wildcard characters—l
None.

(1) PROM
Invokes the PROM formatter program and enters the command mode. Refer to the “PROM

Formatter’” manual for further information.

— RENAME — Built-in

RENAME oldnamel, newnamel, , oldnameN, newnameN

Function

The RENAME command renames specified files.

[Default file mode]
ASC

Switches

None.

[Wildcard characters[
None.

(1) RENAME TESTI1, TEST2
Renames TEST1.ASC to TEST2.ASC.

(2) RENAME $FD2; TESTI1.0BJ, TEST2, TEST3 .RB, TEST4
Renames TEST1.0BJ on the diskette in FD2 to TEST2.0BJ and TEST3.RB on the diskette in
the default drive to TEST4.RB.

SYS-57

Programming notes|

1. Files with the file attribute W or P cannot be renamed.

2. The command RENAME $FD2; TESTI1, $FD2; TEST2 cannot be executed since $FDn specified
for the old name applies to the new name, which is illegal.

3. The command RENAME TESTI1.LIB, TEST2.RB cannot be executed since the file modes of the
old and new names disagree.

4. The command RENAME TEST.LIB, TEST2 can be executed normally. The new name is assign-

ed the file mode of the old name.

— RUN — Built-in

|]
Format.

Run filename

Function

The RUN command executes the program in the object file specified by the argument.

| Default file mode|
.OBJ

None for normal use. Using switches, see the explanations under “Linking Assembly Programs with
FDOS” in Appendix and “FDOS Subroutines” in Library/Package.

Wildcard charactersJ

None.

Example

(1) RUN TEST
Executes the program TEST.OBJ. When its loading address is such that it overwrites the FDOS
area, the system issues the message
DESTROY FDOS?
on the CRT. When the programmer presses the @ key, the system loads the program, over-
writing the FDOS area and executing it. When the programmer presses thekey, the system
issues the error message “MEMORY PROTECTION”’ and waits for a new FDOS command.

SYS-58

— SIGN — Transient

Format

SIGN $FDn

Function

The SIGN command defines or changes the password and/or volume number of the diskette in the

specified drive.

| Default file mode|

None.

None.

IWildcard charactelgl

None.

(1) SIGN '
OLD SIGN ?SHARP Proceeds to the next step if the password entered matches the old

password.
NEW SIGN ?MZ-80
NEW VOLUME NO ?79
The above interaction changes the password from ‘“SHARP” to “MZ-80” and defines the

volume serial nunber as 79.

==
-t
]

— STATUS — nsient

Format

STATUS devicename, $nnnn

Function

The STATUS command displays or sets the control status of the specified device. The control status
information is used to initialize the 1/O controllers. Refer to “User Coded 1/O Routines *“in

Appendix for details.

ﬁ)efault file mocﬁ’

None.

SYS-59

None.

LWildcard charactersJ

None.

(1) STATUS $SOA, §1234

Sets the SOA control status to 1234 (hexadecimal).
(2) STATUS $USRI1

Displays the control status of USR1 on CRT.

u’rogramming note[
This command is available for the serial I/O devices ($SIA, $SIB, $SOA and $SOB), and user devices

(SUSR1 to $USR4).

— TIME — Built-in

TIME mm:dd:ss

Function

The TIME command sets or displays the time of the system clock.

| Default file mode]|

None.

Switches|

Global switch /P: Specifies that the time is to be printed on LPT.

[Wildcard characters]

None.

SYS-60

(D

(2)

(3

TIME 20:30:40

Set the system clock to 20 hours, 30 minutes and 40 seconds.
TIME

Displays the current time on CRT.

TIME/P

Prints the current time on LPT.

— TYPE — Built-in

TYPE filenamel, , filenameN

Function

The TYPE command outputs the contents of the files specified by the arguments on the CRT or LPT

device.

H)efault file mode

.ASC

Switches

Global switch /P: Specifies that the file contents are to be printed on the LPT device.

rWildcard characters[

Allowed.

(D

(2)

TYPE TEST

Displays the contents of source file TEST.ASC on CRT.

TYPE/P TESTI1, TEST2

Prints the contents of source files TEST1.ASC and TEST2.ASC on LPT.

SYS-61

— VERIFY — Transient

VERIFY sourcefilel, destinationfilel, , sourcefileN, destinationfileN

Function

The VERIFY command compares the contents of the source and destination files specified by the
arguments and displays any mismatching contents on a line basis (if their file mode is .ASC) or on a
byte basis (if the file mode is other than .ASC).

[Default file model
.ASC

Switches

Global switch /P: Specifies that the matching results are to be printed on LPT.

\Wildcard characters]

Allowed for source files (see example (4) below).

Examples

(1) VERIFY TESTI1, TEST2
Matches source files TEST1.ASC and TEST2.ASC and displays mismatching lines on CRT.
(2) VERIFY/P $CMT ; XYZ, $FD2 ; TEST
Matches source file XYZ.ASC on CMT with source file TEST.ASC on the diskette in FD2
and prints the results on LPT.
(3) VERIFY $CMT, $FD2
Matches the first file on CMT with the file on the diskette in FD2 which has the same name as
the file on CMT. An error is generated if file on CMT has no file name.
(4) VERIFY $CMT ; TEST>, $FD2
Matches the first file on CMT whose name matches TEST>kwith the file with that name on the
diskette in FD2. Note that only the first file whose file name matches TEST>K is taken.

— XFER — Built-in

‘ Format

XFER sourcefilel, destinationfilel, ..., sourcefileN, destinationfileN

Function

The XFER command transfers the contents of the source files to the destination files.

I Default file modeJ
ASC

SYS-62

Switches|

None.

LWildcard characters]

Allowed for the source files (see example (5) below).

(1

(2)

(3)

(4)

&)

(6)

(7

(8)

XFER TEST1, TEST2

Transfers the contentsof source file TEST1.ASC to TEST2.ASC.

XFER §PTR, SLPT

Reads the file on PTR and prints it on LPT.

XFER §CMT;XYZ.0BJ, $SFD2

Reads object file XYZ.OBJ from CMT and creates object file XYZ.OBJ on $FD2.

XFER $CMT, $FD2

Reads in the first file on CMT and creates a file with that file name on the dikette in FD2. An
error is generated if file on CMT has no file name.

XFER $CMT;TEST>, $FD2

Reads in the first file on CMT whose file name matches file name TEST>and creates a file with
the same name on the diskette in FD2. Note that only the first source file on CMT whose file
name matches TEST * s taken.

XFER $KB, TEST

Reads a file from the system keyboard and creates source fiel TEST.ASC. The file read from
the keyboard is terminated by pressing the BHIFT] and]BREAK] keys simultaneously.

XFER §FD2;%.ASC, $FD3

Transfers all source files on the diskette in FD2 to that in FD3. The source drive must not

contain files with the fil¢ attribute R or P.

XFER >k, SFD2
Transfers all files on the diskette in the current default drive to that in FD2. The source drive

must not contain files which have the file attribute R or P.

SYS-63

4.4 System Error Messages

There are four system error message formats.

— ERR: error message

Pertains mainly to coding errors. Issued when invalid commands are detected.

— ERR: filename (device name): error message

— ERR: logical number: error message

Indicates errors pertaining to file or device specifications.

Indicates errors pertaining to logical number specifications.

— ERR: logical number file name (device name): error message

The system error messages are listed below.

O 00 0 O\ Ut AW N =

[N T N S O S e T T SO SO G W U
D= O 0 0032 L AW = O

37
38
39

50
51
52

SYNTAX

IL COMMAND

IL ARGUMENT

IL GLOBAL SWITCH

IL DATA

IL ATTRIBUTE
DIFFERENT FILE MODE
IL LOCAL SWITCH

IL DEVICE SWITCH

NO USABLE DEVICE
DOUBLE DEVICE
DIRECTORY IN USE

NOT ENOUGH ARGUMENTS

TOO MANY ARGUMENT

NO MEMORY SPACE
MEMORY PROTECTION
END ?

BREAK
SYSTEM ID
SYSTEM ERROR

NOT FOUND
TOO LONG FILE
ALREADY EXIST

Indicates errors pertaining to logical number specifications and file (or device) specifications.

; lllegal file attribute found.

; Device unavailable.

; Diskette not conforming to FDOS format.
; System malfunction, user program error, diskette replaced
improperly, etc.

; File size exceeds 65535 bytes.

SYS-64

53
54
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

ALREADY OPENED
NOT OPENED
READ PROTECTED
WRITE PROTECTED
PERMANENT

END OF FILE

NO BYTE FILE
NOT READY

TOO MANY FILES

DISK VOLUME

NO FILE SPACE
UNFORMAT

FD HARD ERROR
IL DATA

NO USABLE DISKETTE
(SUB) MASTER DISKETTE
MISMATCH SIGN

IL FILE NAME

IL FILE ATTRIBUTE
IL FILE TYPE

IL FILE MODE

IL LU#

NOT READY
ALARM

PAPER EMPTY
TIME OUT

PARITY

CHECK SUM
FLAMING

OVER RUN
INTERCONNECT
FULL BUFFER
UNCONTROLLABLE
INTERFACE

LESS DATA

MUCH DATA

LU TABLE OVERFLOW
SOURCE ?
DESTINATION ?
CAN'T XOPEN

TOO LONG LINE

: Number of files on a diskette exceeds 96, or opened too

many files simultaneously.
; Diskette replaced improperly.
; Diskette has no free space.
; Diskette unformatted.
: Hardware related disk error

; Master, submaster and/or slave diskette is misused.

; Invalid file name

; Invalid file attribute

; Invalid file type

; Invalid file mode

; Invalid logical number

} Printer error

} Paper tape reader or punch error

> IEEE-488 related errors (o be implemented later)

)

Serial I/O errors (to be implemented later)

; Attempt made to open too many files.

; Line exceeding 128 bytes.

SYS-65

Text Editor ==

NOTICE

The MZ-80 series of sophisticated personal computers is manufactured by the
SHARP CORPORATION. Hardware and software specifications are subject to
change without prior notice; therefore, you are requested to pay special attention to
version numbers of the monitor (supplied in the form of ROM) and the system
software (supplied in the form of cassette tape or mini-floppy disk files).

This manual is for reference only and the SHARP CORPORATION will not be
responsible for difficulties arising out of inconsistencies caused by version changes,
typographical errors or omissions in the descriptions.

This manual is based on the monitor SP-1002 and the SP-7000 series FDOS.

—— CONTENTS —

OUTLINE e e e 1
ACTIVATING THE EDITOR 1
EDITOR COMMAND TABLE 2

CHARACTER POINTER AND DELIMITER 3

TEXT EDITOR COMMANDS 4
INPUT COMMANDS e e i e e e 4

R(Read file) Command iiiiinnenn.. 4
A (Append file) Commandvu.n.. 5
OUTPUT COMMAND e e i 6
W (Write) Command i 6
PAGE PROCESSING COMMANDS 7
TYPE COMMAND e i 9
T (Type)Commandc00iiiiiniineennnn. 9
CP POSITIONING COMMANDS i 10
B (Begin)Command iiiiinnnrnnn 10
ZCommand e 10
JJump)Commandt 10
L@Line)Command0 iiinnnenn. 11
M Move)Command 11
CORRECTION COMMANDS e 12
C (Change) Commandt iiiiinnennnn. 12
Q(Queue)Commandttt 12
I(Insert) Command0 e, 13
K (Kill) Command 14
D (Delete) Command 15
SEARCH COMMAND e 16
S(Search) Command0u .. 16
SPECTIAL COMMANDS i 17
=Command e e 17
LCommand 17
&Commandt 17
#FCommand 18
PCommand i 18
ERRORMESSAGE 19

EDIT

CHARACTER POINTER AND DELIMITER

The character pointer (CP) is positioned at the boundary between two adjacent characters or the

beginning or end of the text. It does not point directly at any character.

Movement of the CP is explained below based on the assumption that the following text is stored

in the edit buffer.

The beginning of the edit buffer

(the beginning of text)
CcP)
1 LD A, 14H L
2 LD B,7 D
3 ADD A,B [SP]
4 DAA A
Command 1L ,
(Line numbers are not 1
stored in the edit buiter.) Command B
4 ¢ Edit buffer
H
[CR]
CP—
L
D
Command 5M [SP]
B
cP— :
C d 3J ’
omman
[CR]
}—> The beginning of line3 CP "
D
D

The B command moves the CP to the beginning of the edit buffer, the J] command to the top of the
specified line and the L command to the beginning of the n lines from the line at which it is currently

located; the top of the specified line is the boundary following the code of a preceding line.
Delimiters are used as separators between editor commands. Entering several editor commands and
separating them with delimiters allows them to be executed consecutively by pressing the key.

The I (Insert) command must be followed by a delimiter because it uses codes as character codes
for the source text. The following example replaces ADD on line 3 in the above program with ADC.

3J+2M—1D—IC—[CR] or B—=CADD—ADC

EDIT-3

TEXT EDITOR COMMANDS et

——INPUT COMMANDS——
R (Read file) Command

This command clears the edit buffer area, then loads it with the source file (ASCII file) specified by the
filename; loading starts at the beginning of the edit buffer. The CP is positioned at the beginning of the

edit buffer after execution of this command.

> RFORMULA # 1 Reads file FORMULA#1 into the edit buffer.

— Enter R followed by the file name while in the command wait state.
— The editor searches for the file and reads it.
— The file is stored starting at the beginning of the edit buffer as shown below.

— The CP is positioned to the beginning of the edit buffer after reading.

CP ‘ < The beginning of
FORMULA #1 R command the edit buffer
Source file FORMULA #1 Edit buffer

— The message "FULL BUFFER" is displayed when the edit buftcr becomes full. In this case, only
part of the input file is stored in the edit buffer.

— " is displayed to indicate that the system is the command wait state.

EDIT-4

A (Append file) Command
This command appends the file specified by the filename to the contents of the edit buffer. The CP

position is not changed.

* AFORMULA #2 , ; ‘~ ; Appends the source kfile FORMULA#2 to the con-
... _ ~ tents of the edit buffer. ‘ ' -

— Enter A followed by the file name while in the command wait state.

— The editor searches for the specified file and reads it.

— The file is stored in the area following the end of the last text in the edit buffer. The figure below
shows a case in which the file FORMULA#?2 is appended to the file FORMULA#1.

1 < The beginning of
the edit buffer

FORMULA #1 Edit buffer
~ FORMULA #2

- FORMULA #2

— The message 'FULL BUFFER" is displayed when the edit buffer becomes full. In this case, only part
of the specified file is stored in the edit buffer and the contents of the edit buffer must be reedited

to store the entire file.

EDIT-5

—OUTPUT COMMAND——
W (Write) Command

This command outputs the entire contents of the edit buffer to the file specified by the filename

regardless of the CP position.

> WFORMULA#3 ' Outputs the contents of the edit buffer to fil‘e‘}‘l
; FORMULA#3 in the active drive. o -
XWSFD2;FORMULA#3 Outputs the contents of the edit buffer to file

FORMULA#3 in floppy disk drive 2 ($FD2).

— Enter W followed by the file name while in the command wait state.
— The editor waits for entry of another command after the edit buffer contents have been output. The

file generated is a source file.

The beginning of Editor
the edit buffer —(W command

Text
\ FORMULA #3

filename "FORMULA #3" Source file

Edit buffer J

— The CP position is not changed by execution of the W command.

EDIT-6

——PAGE PROCESSING COMMANDS——

These commands are used in cases where the total size of files to be edited exceeds the size of the edit

buffer, as shown in the following examples.

If the diskette is replaced with a new one during page processing, the contents of the diskette may be

destroyed. Be sure to terminate page processing before replacing the diskette.

1. When the file to be edited is larger than the edit buffer:

© <PRABC
Note:

@>PWDEF

Reads file "ABC "into the edit buffer until the buffer is full.

Omission of the file name in the first page processing command will result in an

error.

Outputs the contents of the edit buffer to file'DEF after editing is completed.

Note: *XPW Results in an error. An error results when editing increases the size of

file in the edit buffer so that it exceeds the size of the edit buffer.

©>%PR Reads the remainder of a file specified by a preceding PR command into the edit
buffer. In this example, the command reads the remainder of file"ABC into the
edit buffer.
Note: A file name remains valid after it is specified in a PR command until a new file
is specified.
O xPW Outputs the contents of the edit buffer and appends it to the file specified by the
preceding PW command after editing is completed. In this example, the command
appends the contents of the edit buffer to file”DEF .
O X PC Terminates page processing. (This command is mandatory).
File ' DEF" Edit buffer File ABC"
1)
PRI
3]

(Floppy disk)

Edit buffer

(Floppy disk)

(R A M)

EDIT-7

2. When the file to be edited first is larger than the edit buffer and another file is to be edited and

appended to the first edited file:

© <PRABC
@ <PWDEF

© PR
O XPW

© XPRGHI

G xPW
@ xpC

Note:

Reads file' ABC “into the edit buffer until the buffer is full.

Outputs the contents of the edit buffer to file' DEF after editing is completed.
Reads the remainder of file '"ABC "into the edit buffer.

Appends the contents of the edit buffer to file” DEF "after editing is completed.
Reads file"GHI ‘into the edit buffer.

If this case, specifying >xPR will not be valid if the end of file "ABC "has been
reached.

Appends the contents of the edit buffer to file DEF “after editing is completed.

Terminates page processing. (This command is mandatory).

3. When several files are to be edited and the resulting file is larger than edit buffer:
@ <PRABC
O xPADEF

Note:

© xPWGHI

O xPR

O xpw
@ xPC

Note:

Reads file "ABC "into the edit buffer.

Reads file 'DEF " and appends it to the contents of the edit buffer until the
buffer is full.

If > PRDEF is entered, the contents of file "ABC" stored in the edit buffer
are cleared and file "DEF " is loaded in the edit buffer from its beginning.

Outputs the contents of the edit buffer to file "GHI " after editing is completed.
Reads the remaindef of file 'DEF " into the edit buffer.

The input file was changed at step 2 (ABC" — "DEF).

Appends the contents of the edit buffer to file "GHI " after editing is completed.

Terminates page processing.

File ' GHI "~ Edit buffer File"ABC "

(Floppy disk)

File 'DEF "~

(Floppy disk)

(R AM)

EDIT-8

—TYPE COMMAND—

T (Type) Command
This command displays all or part of the contents of the edit buffer. The CP position is not changed.

- *T Dzsplays alI of the contents of the edlt buffer w1th Ime numbers attached -
*nT [CR] ~ Dlsplays the n hnes foiiowmg the CP (Same as the above when n=0

— Key in the number of lines, n followed by T (Type) while in the command wait state.

— Press to display the contents of the edit buffer.

— The following are special cases of nT.

n=0:thesameasT
n < 0 : results in the error message 777",

n 2 m, where m is the number of lines from the one at which the CP is located to the end of the

buffer contents: only m lines are displayed.

— The current CP position can be determined with the nT command, since display starts with the cha-
racter following the boundary at which the CP is located.

— Press the|SHIFT |and | BREAK]| keys simultaneously to terminate T command execution. Press the
kay to suspend T command execution, and press it again to resume it.

— The photograph at right shows the relationship

between the type command and the CP for the

following text.

alas
MSTF SIC
LETHL HEH

1 START : ENT

2 LD SP, START

3 CALL MSTP; MUSIC STOP
4 CALL LETNL:NEW LINE
5 END

— The error message 'LARGE" is displayed when
n exceeds 65535.

EDIT-9

——CP POSITIONING COMMADS——
B (Begin) Command

XB ~ Positions the CP to the beginning of the edit buffer.

— Key in B while in the command wait state.

— Press

— The B command is executed to position the CP to the beginning of the edit buffer.

— nB performs the same function.

7Z Command

*xZ Positions the CP to the end of the contents of the edit buffer.

— Key in Z while in the command wait state.
— Press

— The Z command is executed to position the CP to the end of the contents of the edit buffer.

— nZ performs the same function.

J (Jump) Command

*nJ Positions the CP to the beginning of line n.

— Key in line number n and J while in the command wait state.

— Press

— The nJ command is executed to position the CP to the biginning of line n.

— The following are special cases.

n=0or 1 or nis omitted: the command performs the same function as the B command.
n <0 : results in the error message " 777",
n > m (where m is the number of lines of the edit buffer contents): the command performs the

same function as the Z command.

EDIT-10

L (Line) Command

This command moves the CP forward or backward the specified number of lines. The CP is positioned

at the beginning of the specified line after execution.

- *nL ;‘ . Moves the CP to the begmmng of the nth lme fr m the ine t whlch it
*L Moves the CP to the begmnmg of the lme' at whlc

— Key in number of lines, n and L while in the command wait state.

— Press .

— The CP is positioned at the beginning of the specified line when the nL. command is executed.

— The following are special cases:
n = 0 : the command functions in the same manner as the L command.
n > m (where m is the number of lines from the line on which the CP is located to the end of the
edit buffer contents) : the command functions in the same manner as the Z command.

n <0 : the CP is moved | nllines toward the beginning of the edit buffer.
In| >2 — 1 (where ¢ is the number of the line at which the CP is currently located) : the

command functions in the same manner as the B command.

M (Move) Command
This command moves the CP forward or backward by the specified number of characters. Spaces and

carriage returns are counted as characters, but line numbers are not.

knM Moves the CP to the position which is n characters from its current posi-

tion.

— Key in number of characters, n and M while in the command wait state.

— Press .

— Executing the nM command moves the CP to the specified boundary between characters.

— When n <0, the CP is moved backward by | n | characters.

— The CP position is not changed when n = 0 or if it is omitted.

EDIT-11

——CORRECTION COMMANDS—
C (Change) Command

This command replaces a string in the edit buffer with another string. The search for the specified
string starts at the current CP position and proceeds toward the end of the edit buffer; the string is re-

placed when it is found and the CP is positioned at the end of the string replaced.

. : i;istnngZWhenltxsfound e
*Cstring1 [CR] e]Deletes the character string spemﬁed by stnng 1.

— Key in C while in the command wait state.
— Key in the string to be located followed by a delimiter.
— Key in the string which is to replace the one located.
— Press and a search is made for the first string. Only the first occurrence of the string is replaced.
The line including the string replaced is displayed and the CP is positioned at the end of that string.
— The message 'NOT FOUND" is displayed if the specified string is not found and the CP is positioned
to the beginning of the edit buffer.

Q (Queue) Command

This command repeates the function of the C command each time the specified character string is
found until the end of the edit buffer is reached. The CP is repositioned to the end of the string last re-
placed.

| *Qstring 1 string 2 Causes the function of the C command to be executed re-

- peatedly. ~ -
*Qstrmg 1fCRl ‘ Deletes all occurrences of the character stiring spec:lfled ’by .

— Key in Q while in the command wait state.

=
m—

— The remainder of the operation is the same as for

the C command.

— The photograph at right shows the result of
execution of the Q command on the following

text.

1 LD BC, (TEMPO)
2 LD (TEMPO), DE
3 JP 1200H

4 TEMPO : DEFS 2

¥
i

;':‘1
*E
i

l

%

1
z
7
*

EDIT-12

I (Insert) Command
This command inserts the specified string at the CP position. A carriage return is performed on the CRT

screen if one is included in the string.
Line numbers are updated automatically when a new line is inserted. The CP is repositioned to the end

of the string inserted.

* *Istrmg - ea | :Inserts the spec:1fied string at the CP position. . o
- *Istrlngl - Inserts the hnes spemfled by strmg 1 strmg 3 and strmg 3 at

.- : ‘ the CP posmon

j;'sttﬁlgl IRl ' k -

VJ,VStri‘rigii. e . ; .

... - . A [CR m is treated asa character by the I command ;
~ Therefore, a delimiter must be keyed in before s press- .

ed to execute the command

— Key in I while in the command wait state.

— Key in the string to be inserted.

— Strings keyed in are inserted at the CP position and the contents of the edit buffer following the CP
are automatically shifted toward the end of the edit buffer.

— When a is keyed in, it is inserted as a carriage return code.

— Key is a delimiter (—) after all the strings have been keyed in.

— Press key to execute the I command.

— The photograph at right shows an example of

using the I command.
Text:

1 START : ENT

2 LD SP,START

3 CALL MSTP;MUSIC STOP
4 CALL XTEMP;SET TEMPO
5 END

LD A, 5 ;TEMPO 5§ is inserted between lines 3
and 4 of the above text.

EDIT-13

K (Kill) Command

This command deletes the n lines preceding or following the CP from the edit buffer.

>nK Deletes the n lines preceding or following the CP from the edit .
. k buffer. ‘ o
A line is not deleted if the CP is located within it, since charaéters_ k
, preceding or following the CP are not deleted. .
*xK Deletes characters preceding the CP position until a CP is detected. “

The is not deleted.

— Key in the number of lines, n and K while in the command wait state.
— Press to execute the K command.

— Operation differs according to the value of n as follows.

n > 0 : Deletes all characters following the CP until n codes are detected.
[CR]codes detected are also deleted. Command execution ends after the last code
has been deleted.

n <0 : Deletes all characters preceding the CP until I n| + lcodes are detected. The (I n| +
Dth code is not deleted.

n=0 Deletes all characters preceding the CP until a [CR]code is detected.
(s);elclz(i)ftie g That is, it deletes the part of the line in front of the CP. The code detected is

not deleted.

— Line numbers are automatically updated after
deletion.

— The CP position is not changed.

— The photograph at right shows an example of
the result of execution of the K command with

the following text. (This text is presented only

for the purpose of illustration; it has no mean- 1
ings in assembly language. i ' e
% GGHHJIJEELL
1 AABBCC
2 DDEEFF
3 GGHHII
4 JJKKLL

EDIT-14

D (Delete) Command

This command deletes the specified number of characters from the edit buffer, starting at the CP posi-

tion.
*nD IcRl Deletes the spemﬁed number of characters from the edlt buffer startmg
. g cp position. - .
. ~ A[CR]code is counted as a character.”
- *D - (No operation res‘ults.) . -

— Key in the number of character (n) and D.

— Press [CR]to execute the command.

— Operation differs according to the value of n as follows.

n >0 Deletes the n characters following the CP from the edit buffer. A code is counted as a
character.

n <0 Deletes the | n | characters preceding the CP from the edit buffer. A [CR]code is counted
as a character.

n=0 No operation results.
or not
specified

— Line numbers are automatically updated if necessary.

— The CP position is not changed.

— The photograph at right shows an example of

the result of execution of the D command with ¥
the following text. (This text is presented only C{
for the purpose of this illustration; it has no i 24T iM=ZD=T
meaning in assembly language). 1 '
1 ABCD -E
2 EFGH .
3 IJKL
4 MNOP

EDIT-15

—SEARCH COMMAND——

S (Search) Command

¢ This command searches for the specified character string in the contents of the edit buffer.

Xk S string Searches for the specified character string, starting at thfé current CP
position; the CP is repositibned to the end of the character string when

it is found.

— Key in S.
— Key in the string to be located.
— Press to execute the S command.

— The search starts at the current CP position and proceeds toward the end of the buffer.

— When the specified string is found, the line which includes it is displayed and the CP is positioned to
the end of the character string.

— If the specified string cannot be found, the message "'NOT FOUND" is displayed and the CP is re-
positioned to the beginning of the edit buffer.

— The photograph at right shows the result of a search for the character string "LETNL" in the follow-
ing text. The line including "'LETNL is displayed following the S command. The 2T command
indicates that the CP is positioned to the end of the string.

START : ENT
LD SP, START

CALL MSTP;MUSIC STOP
CALL LETNL;NEW LINE

LD A, 04H

CALL XTEMP;TEMPO < — — 4
END

N O b DY~

3
'
4
¥
3
F

EDIT-16

——SPECIAL COMMANDS—

= Command

~ x=[CR] Dlsplays the total number of characters (mcludmg spaces and CRs) stored
. ~ inthe ed1tbuffer -

— Press[CR] ; the total number of characters stored in the edit buffer is displayed.

. Command

& [CR] Displays the number of the line on which the CP is located.

— Key in . (period) while in the command wait state.
— Press ; the line number on which the CP is located is displayed.

& Command

 *&[CR] Clearsthe contents of the edit buffer. -

— Key in & (ampersand) while in the command wait state.

— Press ; the contents of the edit buffer are then cleared.

EDIT-17

Command

*# i l Changes the printer list mode.

— Key in # (sharp symbol) while in the command wait state.
— Press ; the printer list mode is then changed.

— The printer list mode is disabled when the text editor is started. It is enabled when the # com-

mand is executed once; executing it again disables it, and so on.

— The following shows a listing obtained by executing the T command when the printer list mode

is enabled.

e

sakk EDITOR LIST SAMPLE okk

-
3

START:ENT

MAIN1:ENT

LD SP.START 3 INITIAL STACK POINTER
CALL MSTP :MUSIC STOP

LD R:S

3 CALL XTEMP :SET TEMPO TO S5

1@ CALL CLTBL 3sCLERR TRBLE

11 XOR R

12 LD (?TRBP)>>A :INITIAL I-0 #1

13 MSTP:EQU B@47H 3;MUSIC STOP (MONITOR)
14 ?TABP:DEFS 1

15 END

DD IO L AR -

! Command

*! ; Returns control to FDOS.

— Key in ! (exclamation mark) while in the command wait state.
— Press ; control is then returned to FDOS.

EDIT-18

—ERROR MESSAGE——

The editor buffer is full. R, A,PR,PA

n <0in the nT or nJ command. T,J

. T,J,L,M, K,
n greater than 65535 was specified. D.B.Z
The string specified in the command was not found. S,C,Q

Other than an editor command was entered or an incorrect format

was used.
Ex) >H : There is no H command.
xS : A string should be specified.

Any case

The file to be subjected to page processing is not defined

(or is not opened). PR, PA,PW, PC

Note: Refer to the System Error Messages in the System Command manual for other system errors.
Display of the message "ALREADY OPENED" during execution of W command indicates

that there are some page processing command(s) which have not been closed.

EDIT-19

SHARP

NOTICE

The MZ-80 series of sophisticated personal computers is manufactured by the
SHARP CORPORATION. Hardware and software specifications are subject to
change without prior notice; therefore, you are requested to pay special attention to
version numbers of the monitor (supplied in the form of ROM) and the system
software (supplied in the form of cassette tape or mini-floppy disk files).

This manual is for reference only and the SHARP CORPORATION will not be
responsible for difficulties arising out of inconsistencies caused by version changes,
typographical errors or omissions in the descriptions.

This manual is based on the monitor SP-1002 and the SP-7000 series FDOS.

— CONTENTS —

OUTLINE OF ASSEMBLER 1
ASSEMBLY LANGUAGE RULES 3
CHARACTERS ... e 4
LINE .. 5
LABEL SYMBOLS i 5
CONSTANTS .. e 6
ASSEMBLY LISTING AND ASSEMBLER MESSAGES 7
DEFINITION CONDITION MESSAGES 8
ERROR MESSAGES 8
ASSEMBLER PSEUDO STATEMENT 10
ENT (entry) . ..o e e 10
EQU (equate)ot e 11
DEFBn(definebyte) 12
DEFB's', DEFB s "(define byte) 12
DEFW nn' (defineword) 13
DEFM 's’, DEFM "s" (define message) 13
DEFS nn'(define storage)c.oiiiiiin.. 14
SKP n (skipnlines)0 i nnn.. 15
SKPH(skiphome) e, 15
END (end)o e 15
MESSAGE TABLE 16

ASM

OUTLINE OF ASSEMBLER

The assembler translates a source file written in assembly language to generate a relocatable binary
file; the source file is one which has been generated and edited by the text editor, and the relocatable
binary file is an intermediate file between the source file and object file. It is possible to link several
relocatable files by the relocating loader.

The assembly source file js coded in assembly language. It consists of labels, mnemonic operations
codes, pseudo-instructions, comments and an end statement; these are arranged according to the rules
of the assembler. The source file edited by the editor is written in ASCII code, The assembler trans-
lates the source file to generate a relocatable file and outputs messages which indicate definition
conditions and syntax errors. These messages are included in the assembly listing which is displayed
on the CRT or printed on the printer.

The following FDOS commands activate the assembler.
e ASM SAMPLE
Activates the assembler. The assembler translates source file SAMPLE.ASC and generates re-
locatable file SAMPLE.RB.

e ASM SAMPLE, SLPT/L, $SCRT/E
Activates the assembler. The assembler translates source file SAMPLE.ASC, generates relocatable
file SAMPLE.RB, prints the assembly listing on the printer and displays only erroneous lines on
the CRT screen.

e ASM/N SAMPLE, $SOA/L
Activates the assembler. The assembler translates source file SAMPLE.ASC and outputs the
assembly listing to serial output port A (§SOA), but does not generate a relocatable file since global

switch /N is specified.

e ASM SAMPLE, $SFD3;SAMLIST/L
Activates the assembler. The assembler translates source file SAMPLE.ASC, generates relocatable
file SAMPLE.RB and outputs the assembly listing in the same form as that printed on the printer
to SAMLIST.ASC on FD3 in ASCII code.

ASM-1

The assembler basically uses a 2-pass system. A pass is the process in which the assembler reads
a source file from its beginning to end. The following shows operation of the assembler with the

2-pass system.

During pass 1, the assembler stores label

Assembler

; PASS 1 , symbols according to the assembler rules in the
source file . ; ‘
(ASCII) — : symbolic label table. Label symbols help the
Symbol table ‘operator to read and understand the program
easily.

$

Assembler PASS 2 , During pass 2, the assembler generates a re-
source file |——> Assemble locatable file with reference to the symbol table
ASCII) generated during pass 1, then outputs the as-

(Symbol table sembly listing (on the CRT or printer).
Relocatable The relocatable file and the assembly listing do
file not occupy space in RAM, which is only used by
(RB) the symbol table. Therefore, the size of the

source file to be assembled is not limited by the
CRT screen amount of RAM.
or printer

The following program list will help you understand the function of the assembler. This program

is only for reference and has no meaning.

*> 780 ASSEMBLER SP-7101 PAGE 01 >

01 0000 ;
02 0000 ; SAMPLE LIST
03 0000 ;
04 0000 3E33 LD A, "3
05 0002 FE43 CP 43 H
06 0004 FE43 CP 'C
07 0006 FE15 CP RH] ; Cursor control keys are enclosed in double quotation marks.
08 0008 22 DEFB "'
09 0009 27 DEFB '
10 000A. 43 DEFB ' C
11 000B 12 DEFB & .
12 000C 16151211 DEFM H] 14]>]]
13 0010 1314
14 0012 7E LD A, (HL)
15 0013 7E LD AM ; M may be used in place of (HL).
16 0014 ;
17 0014 ;
18 0014 P XYZ: EQU 10
19 0014 C32100 JP ABC + XYZ ; Relocatable address + EQU defined symbol value.
20 0017 C30A00 ABC: JP XYZ
21 001A C31400 JP ABC-3
22 001D C30A00 JP 10 ; Absolute address 10
23 0020 C32A00 JP +10 ; Relative address 2AH (20H + 10)
24 0023 2100D0O LD HL, D000 ; Handled as a hexadecimal number.
25 0026 213930 LD HL, 12345
26 0029 212100 LD HL, ABC + XYZ
27 002C 3EOD LD A XYZ+3 ; EQU defined label value * numeric data
28 002E 3EFF LD A, —1 ; Negative value is converted into one’s complement.
29 0030 21FFFF LD HL, -1
30 0033 21FOFF LD HL, —-10H
31 0036 C33500 JP -1
32 0039 END
> Z80 ASSEMBLER SP-7101 PAGE 02 > x
ABC 0017 XYZ 000A ; Indicates the contents of the symbol table.

ASM-2

ASSEMBLY LANGUAGE RULES

The source program must be coded according to assembly language rules. This paragraph describes
the structure of the source program and the assembly language rules.

The assembly source program consists of the following.
Z80 instruction mnemonic codes
Label symbols
Comments
Definition statements
Assembler directives En-try statements
Skip statements

End statement

Comments may be used as nceded by the programmer; they have no effect on execution of the
program and are not included in the relocatable file.
All assembly source programs must be end with the pseudo instruction END.

Z80 instruction mnemonic codes form the body ot the assembly source program. These are ex-
plained in a separate volume.

A mnemonic code consists of an op-code of up to 4 characters, separators (space, comma, etc.)
and operands.

A label symbol represents an address or data symbolically. A label symbol is either placed in the
label column and separated from the following instruction with a colon (:), or is placed in an operand.

The first 6 characters of a label symbol are significant and the 7th and following characters (if used)
are ignored. Therefore, ABCDEFG and ABCDEFH are treated as the same label symbol.

Alphanumerics are generally used for label symbols, but any characters other than those used for
separators and special symbols may be used.

Comments are written between the separator ";" and a [CR] code; these have no influence on
program execution.

Pseudo instructions will be explained later in this manual. These are written in the same column
as the Z80 instruction mnemonic codes.

An END statement is one of the pseudo instructions; all assembly source programs must end with

this statement.

ASM-3

——CHARACTERS——

Characters which are used in an assembly source program are alphanumerics, special symbols and
other characters. The special symbols have functional meanings. (Separators, [CR], , etc.)

1) Alphabetic characters: ABCDEFGHIJKLMNOPQRSTUVWXYZ
These characters are used to represent symbols and instruction mnemonic codes. A ~ F are also
used for representing hexadecimal values. Further, D is used to indicate decimal and H is used to
indicate hexadecimal.

2) Numerics: 0123456789
These are used to represent constants and symbols. Whether a constant is a hexadecimal number
or a decimal number is determined according to the rule of constant.

3) Space
Spaces are treated as separators except when they are used in comments. They perform the
tabulation function on the assembly listing when they are placed between op-code and operand or

between operand and comment as shown below.

Example: OR[SP]FOH[SP];A < —X0
XYZ: PUSH[SP] AF Editor list
ADD HL, BC ;BC=COUNT
4
OR FOH - A<-X0
XYZ: PUSH AF Assembly listing
ADD HL, BC ;BC=COUNT
0)

Tab set Tab set
4) Colon
A colon behaves as a separator when it is placed between a label symbol and an instruction. It
performs the tabulation function on the assembly listing.

Example: START: LD SP, START
MAIN: ENT
1 1

Tab set Tab set
An address is assigned to the label symbol even if no instruction follows. (See the paragraph on
symbols).
Example: ENTRY: < "ENTRY " is assigned the same address as "TOPO".
TOPO: PUSH HL
5) Semicolon ;"
A semicolon represents the beginning of a comment. None of the characters between a semicolon
and a CR code have any influence on execution of the program. The semicolon is placed at the
top of a line or the beginning of a comment column.
Example: ;
; SAMPLE PROGRAM All lines are comments.

CMMNT: ENT ; COMMENT

Comment column

ASM-4

6) Carriage return [CR
A carriage return code represents the end of a line.
7) Other special symbols: + — * () ,
All these are special symbols used in instruction statements.
8) Other symbols
Other characters are not generally used, although they may be used as symbol labels or in the
comment column.

—LINE—

Each line of a source program is formed of alphanumerics and symbols, and is ended with a carriage
return. Except for comments, each line includes only one of the Z80 instructions, a pseudo instruction,
an end statement or an empty statement for a skip.

Components on each line are arranged according to the tab settings when it is listed. (See the
assembly listing on page 7).

—LABEL SYMBOLS——

All characters other than special symbols may be used for label symbols, but generally alpha-
numerics are used. Each label symbol can consist of up to 6 characters; the 7th and following
characters, if used, are ignored by the assembler.

Example: Correct ABC START BUFFER 50STEP
Incorrect (ABCO) JHL IY +3 XYZ + 3 < Special characters are used.
The following labels are treated as the same label symbol ("COMPAR ™).

COMPAREO

COMPAREI
Pseudo statement EQU defines data (1 byte or 2 bytes) for a label symbol and assigns it to the label.
Example: ABC: EQU 3

CR: EQU ODH

VRAMO: EQU DOOOH

Pseudo statement ENT defines a label symbol as a global symbol. A colon (:) placed between a label
symbol and a following instruction defines the label symbol as a relocatable instruction address.

Example: RLDR: ENT

RLDRO: PUSH HL

When a label symbol is referenced (that is, when it is used as an operand), the assembler first
searches the symbol table for the specified label symbol; if it is not found, the assembler treats it as
hexadecimal data. For example, when CALL ABC is encountered, the assembler searches the symbol
table for “ABC"; if it is not found, the assembler treats it as OABCH and calls address OABC.

A label symbol used as an operand must be defined in the assembly source program unit in which
it is used or must be defined as a global symbol in another assembly source program unit. Otherwise,
it is coverted into binary and left undefined.

A label symbol which has been defined once cannot be defined again.

ASM5

Multiple label symbols may be defined as relocatable instruction addresses as follows.

Example: ABCD: ENT Label symbols ABCD, EFGH and IJK are all de-
EFGH: ENT fined as relocatable addresses of LD A,B. ABCD
IJK: LD A,B and EFGH are also defined as global symbols.

ABCD:
EFGH:
JK: LD A,B

Same as the above, except that ABCD and EFGH
are not global symbols.

——CONSTANTS——

There are two types of constants: decimal and hexadecimal + and — signs can be attached to these.
A character string which is defined as a label symbol is treated as a label symbol even if it satisfies the
requirements for a constant.

The assembler treats a constant as a decimal constant when it consists of numerics only or it consists

of numerics followed by D.
Example: 23 999 +3 —-62 16D 0003D

16 3

The assembler treats a constant as a hexadecimal constant when it consists of 0 ~ 9, A, B,C, D, E
and/or F followed by H.

Example: 2AH CDH +0lH —-BH O0010H OOADH O0OOH

A constant used in the operand of a JP, JR, DINZ or CALL instruction represents an absolute

address when it has no sign and a location relative to the current address when it has a sign. In other

cases, constants without signs and those with a + sign represent numerics, while those with a — sign
are converted into two’s complement.

ASM-6

ASSEMBLY LISTING AND ASSEMBLER MESSAGES

The assembly listing is output to the CRT screen or printer when an FDOS system command ASM
is executed with SCRT/L or $LPT/L specified as an argument. Examining the assembly listing is one
of the most important procedures in assembly programming since this is when a check is made for
errors in the source program.

The assembler translates the specified source program and outputs the assembly listing, which in-
cludes line numbers, relative addresses, relocatable binary codes, assembler messages and the source
program list (including label symbols, Z80 instruction mnemonic codes and comments). The assembly
listing is pages every 50 lines.

The assembly listing format is shown below. Tabs are set at the beginnings of labels, op-codes,

operands and comment columns.

zl};é?gsvse Assembler message
Line l R_elocatable l
number binary code Label Op-code Operand Comment
il il REEml 1 1
- k> 780 ASSEMBLER SP—7'10,1 PAGE 01 >> JThis message is output at the top of each page.
blogde . e
02 0000 ~ ;ASSEMBLER LIST SAMPLE
-0 ...
040000 P LETNL: EQU 0006H
050000 P MSG: EQU 00ISH
Droops: - -
w0 Gdpy e ;ENTRY FROM UNIT#I .
BB OOOO. . MAIN: ENT ;ENTRY FROM UNIT #2
109 0000 310000-__, LD SP,START :INITIAL STACK POINTER
10 0003 210000 E LD HL, TEMPO e
11 0006 DD210000 E LD IX, TEMPI -
- 12 000A DD360000 EE MAINO: LD (IX+CONSTO) CONSTI
: ~:~13, 00013 | L 8 XoA A A 05
,;47_,005A‘1A, . WA D A,(DE)‘
: 43_9@53;37 - S “QRJ:A'; .
49 005C 2000 V . R NZCOMP o ~ .
50 OOSE_ EB - MAIN8 EX DEHL EXCHANGE DE HL |
** ZSO ASSEMBLER SP—?IOI PAGE 02 **jA new page is started when the number of hnes
;;;;; ~ on the preceding page reaches 50.

ASM-7

Errors detected during assembly and definition conditions are indicated with assembler messages.

——DEFINITION CONDITION MESSAGES—

E (External)

This message indicates that an external symbol reference is being made; i.e., the label symbol by
the operand is not defined in the assembly source program unit assembled.

The label symbol indicated must be defined as a global symbol in another assembly program unit
for linkage with the current unit by the relocating loader. (See "'Pseudo Instruction ENT "~ on page 10).

An undefined byte of data is treated as "00", 2 undefined bytes of data (or an address) are
uncertain.

Example: E LD B, CONSTO

L The byte of data "CONSTO" is not defined in the program unit.
E CALL SORT
t_ Address SORT is not defined in the program unit.
E E BIT TOP, (IY + FLAG)
t_ The byte of data "FLAG" is not defined in the program unit.
L The byte of data "TOP" is not defined in the program unit.

P (Phase)

This message indicates that the label symbol is defined by an EQU statement with a constant value
assigned. A label symbol indicated by this message can be referenced from an external file. In this case,
however, the program unit including the EQU statement must be loaded before the other program
units which are to be linked with it.

The P message is also displayed when a label symbol different from those stored in the symbol table
during PASS 1 is found.

Example: P LETNL: EQU 0006H
P DATAIl: EQU 3
t Indicates that LETNL and DATA 1 are defined by EQU.

The P message is displayed in the relocatable binary code column rather than in the
assembler message column.

——ERROR MESSAGES——

C (illegal Character error)

This message indicates that an illegal character has been used as an operand.
Example: C JP +1000-3

F (Format error)

This message indicates that the instruction format is incorrect.

ASM-8

N (Non label error)

This message indicates that ENT or EQU has no label symbol.
Example: N EQU 0012H

No label symbol

L (erroneous Label error)

This message indicates that an illegal label symbol is used.
Example: L JR XYZ

t_ XYZis not defined in the current source program.

No externally defined global symbol can be used as an operand of the JR or DJINZ
commands. The L message is displayed if such a label symbol is specified.

M (Multiple label error)

This message indicates that a label symbol is defined two or more times.
Example: M ABC: LD DE, BUFFER

¢

M ABC: ENT

* _ Indicates that ABC is defined more than once.

O (erroneous Operand)
This message indicates that an illegal operand has been specified.

Q (Questionable mnemonic)

This message indicates that a mnemonic code is incorrect.
Example: Q CAL XYZ

[—

CALL XYZ is correct.
Q PSHB

—_—

PUSH BC is correct.

S (String error)

This message indicates that single quotation mark(s) are omitted from a DEFM statement
Example: S DEFM GAME OVER

DEFM 'GAME OVER'is correct.
V (Value over)

This message indicates that the value of the operand is out of the prescribed range.
Example: V LD A, FF8H

vV SET §,A
vV JR —130

ASM-9

ASSEMBLER PSEUDO STATEMENT

Pseudo statements control assembly, but are not converted into machine language. However, in
DEFB, DEFW and DEFM statements, their operands are sometimes converted into machine language.

——ENT (entry)—————

This pseudo statement defines a label symbol as a global symbol. Label symbols which are refer-
enced by two or more programs when multiple programs are linked must be defined by the entry
statement.

Label symbols defined by the entry statement are included in the relocatable file so that the
relocating loader can identify them. The symbolic debugger can perform symbolic addressing using
these label symbols.

Label symbols which are not defined by the entry statement contribute only to assembly of the
current source program unit, and are not included in the relocatable file output by the assembler.
However, labels defined by the EQU statement are exceptions since they are defined as global symbols

and entry definition is not necessary.

The example below shows label symbols being referenced between program units GAUSS-MAIN

and GAUSS-SR.
The E message in the assembler message column indicates that a label symbol which is not defined

in the current program unit is being referenced externally.

; GAUSS-MAIN
MAINO: ENT < Entry definition of label symbol
Program unit 1 Address : MAINO
"GAUSS-MAIN" | undefined CALL CMPLX
CDO0O000 E
E message CALL CMPLX+2 <« No offset can be added to a label sym-
: bol which is defined externally.
END < END is always required at the end of
a program unit.
; GAUSS-SR
Program unit 2 Addres§ CMPLX: ENT < Entry definition of label symbol
"GAUSS-SR" undefined : CMPLX
C30000 ? RET
E message ;
JP MAINO
END

ASM-10

——EQU (equate)—

This pseudo statement defines a label symbol with a numeric value (or address) assigned. The
numeric value must be a decimal or hexadecimal constant. Any numeric value can be added to or
subtracted from a label symbol once it is defined with a numeric value assigned; this allows a new

label symbol to be defined.

The label symbol used as an address in the operand is generally treated as a relative address. How-
ever, when a specific address is assigned to the label symbol with an EQU statement, the address is not

changed during assembly.

The EQU statement also defines a label symbol as a global symbol. A label defined by the EQU
statement can be referenced by an external program unit. However, program units including such

statements must be loaded before other program units to be linked.

The following example illustrates use of the EQU statement to define label symbols as monitor
subroutine addresses and I/O port numbers for a specific device. The P messages indicate that the EQU
statements define the label symbols as global symbols.

%> 780 ASSEMBLER SP-7101 PAGE 01 >k

01 0000 :

02 0000 ; MONITOR SUBROUTINE

03 0000 ;

04 0000 P PRNT: EQU 0012H

05 0000 P PRNTS: EQU 000CH

06 0000 P NL: EQU 0009H

07 0000 P LETNL: EQU 0006H

08 0000 P MSG: EQU 0015H

09 0000 P GETL: EQU 0003H

10 0000 P GETKY: EQU 001BH

11 0000 P BRKEY: EQU 001EH

12 0000 SKP 3

16 0000 ;

17 0000 : ; SET PORT# : PRINTER

18 0000 ;

19 0000 P POTFE: EQU FEH

20 0000 P POTFF: EQU POTFE+1 ; POTFF is defined with FF (hexadecimal)
21 0000 ; assigned.
22 0000 P CONI : EQU 1

23 0000 P CON2 : EQU 2

24 0000 P CON3 : EQU CONI1+CON?2 ; This results in assigned of 3 to CON3.

In this case, CON1 and CON2 must be
defined in advance.

ASM-11

——DEFB n (define byte)——

This statement sets constant n (1 byte) in the address of the line on which the statement is specified.

A label symbol defined with a constant (1 byte) assigned may be used in place of n.

This statement (as well as DEFW and DEFM.) is used to form message data or a graphic data group

for a code conversion table or other table.

The following example forms the message "ERROR" in ASCII code. Since it uses 0D as an end

mark, monitor subroutine 0015H can be used to output the message.

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

1FF3
1FF4
1FF7
1FFA
1FFD
2000
2000
2000
2000
2000
2000
2001
2002
2003
2004
2005

B7

CA0000 E
110020
CD1500
C30000 E

45
52
52
4F
52
0D

MSG :

>

; MESSAGE GROUP

MESGO :

OR

JP

LD
CALL
JP
EQU

ENT

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

A
Z,READY
DE, MESGO
MSG
MAIN2
0015H

; "ERROR™
45H
52H
52H
4FH
52H
ODH

——DEFB 'S’, DEFB "S" (define byte)—

This statement sets an ASCII code corresponding to the character enclosed in single or double

quotation marks in the address of the line on which the statement is specified.
Cursor control codes () must be enclosed in double quotation marks.
Since this statement converts characters to ASCII code, the above example can be rewritten as

follows.

21
22
23
24
25
26
27
28
29
30

2000
2000
2001
2002
2003
2004
2005
2006
2007
2008

45
52
52
4F
52
0D
16
13
0D

MESGO :

ENT

DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB
DEFB

ASM-12

; "ERROR™

——DEFW nn’' (define word) ——

This statement sets n’ in the address of the line on which the statement is specified and n in the

following address; in other words, it sets two bytes of data. A label symbol may be used in place of nn'.

39
40
41
42
43
44
45
46
47
48
49

SFF1
SFF1
S5FF2
5SFF4
SFF5
SFF7
SFF8
SFFA
SFFB

41
0053
42
1ES3
53

0000 E

0D

CMDT:

CONSTO :

CONST1 :

ENT

DEFB
DEFW
DEFB
DEFW
DEFB
DEFW

; COMMAND TABLE

41H

CMDA

42H

CMDB + 3

53H

CMDS

ODH

010FH

——DEFM 'S’, DEFM "'S" (define message)——

This statement sets the character string enclosed in single or double quotation marks in ASCII code

in addresses starting at that of the line on which the statement is specified. The number of characters

must be within the range from 1 to 64. On the assembly listing, codes for 4 characters are output on

each line. Double quotation marks are used to enclose cursor control codes ().

The example on the preceding page can be written as follows with this statement.

21 2000
22 2000
23 2004
24 2005
25 2006

26

200A

4552524F
52
0D
16134142
0D

MESGO :

ENT
DEFM

DEFB

DEFM
DEFB

ASM-13

; "ERROR"™
'ERROR’

ODH
"EGERAB”
ODH

——DEFS nn’ (define storage)——

This statement reserves nn’ bytes of memory area starting at the address of the line on which the

statement is specified.

This statement adds nn’ to the reference counter contents; the contents of addresses skipped are not

defined.

The following example reserves buffer areas.

02
03
04
05
06
07
08
09
10
11
12
13

4BB8
4BB8
4BB9
4BB9
4BBB
4BBB
4BBD
4BBD
4C3D
4C3D
4C47

4C47

e —

TEMPO:

TEMP1 :

TEMP2 :

TEMP3 :

BFFR:

BUFFER:

ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS
ENT
DEFS

128

A

2

>

b

>

b

M

>

; BUFFER A

; BUFFER B

; BUFFER C

; BUFFER D

; BUFFER E

; BUFFER F

The addresses are increased by amounts corresponding to the values indicated by the respective DEFS

statements.

ASM-14

——SKP n (skip n lines)

This statement advances the assembly listing by n lines to make the list easy to read.

30
31
32
33
34
35

3BB8&
3BB9
3BBC
3BBF
3BCO

3BCO
3BCO

2NN
JDUCVU

3BCO

AF
32B84B
110020
Cc9

COMMON: ENT
XOR A
LD (TEMPO), A
LD DE, MESGO
RET
SKP 3

3

; ABNORMAL RETURN

ABNRET: ENT

——SKP H (skip home)—

; NORMAL RETURN
; A< —--00
; CLEAR CMD BUFFER

b

; "READY"

3 line feeds are made.

; SET INVALID MODE

This statement advances the page during output of the assembly listing.

——END (end)—

This statement declares the end of the source program. All source programs must be ended with

this statement. Assembly operation is not completed if this statement is omitted.

The assembler outputs

END?

when it reads a source file which doesn’t include an END statement.

ASM-15

~ MESSAGE TABLE

" Definition con- |

dition message |

Indiéates that a label syrﬁbol is being refer-

. - Exa‘ﬁiﬁlé
LD B,CONSTO

E
enced externally; that is, the label is not 1 The data byte ''CONSTO' ' is undefined.
E defined in the current source program unit. E CALL SORT
(Ex ternal) 1 The address''SORT'" is undefined.
E E BIT TOP,(IY + FLAG)
I 1 The data byte"FLAG'" is undefined.
__ The data byte ""TOP'"is undefined.
Defines a label symbol with a constant as- | P LETNL: EQU 0006H
signed. P DATAIL: EQU 3
?Phase) This message is also output when a label ‘Tﬂ_ LETNL and DATA are defined by EQU.
The P message is displayed in the relocatable binary code

symbol is encountered during pass 2 which
was not encountered during pass 1.

column rather than in the assembler massage column.

Error message

Meaning

C (illegal
Character error)

Indicates that an illegal character is used in
the operand.

C JP +1000-3

F (Format error)

Indicates that the instruction format is in-
correct.

N
(Non label error)

Indicates that no label symbol is specified
for ENT or EQU.

N EQU 0012H
No label symbol

L
(erroneous Label
error)

Indicates that an illegal label symbol is used.

L JR XYZ
1 XYZ is not defined in the current program.

No externally defined global symbol can be used
as the operand of a JR or DJNZ command.
If such a label symbol is specified, the L message

(Value over)

is displayed.
ek b Indicates that a label symbol is defined two | M ABC 2 LD DE, BUFFR
M (Multiple I ;
grrﬁr)lp € label | or more times. M ABC: ENT
t_ ABC is defined twice.
O (erroneous Indicates that an illegal operand is specified.
Operand)
Q (Questionable Indicates that the mnemonic code is in- | Q CAL XYZ
mnemonic) correct. CALL XYZ is correct.
S Indicates that single or double quotation | S DEFM GAME OVER
(String error) mark(s) are omitted. DEFM 'GAME OVER' is correct.
A" Indicates that the value of the operandisout | V. LD A,FF8H V SET 8, A

of the prescribed range.

vV JR -130

END?

Indicates that the END statement is missing
from the source program.

Note: Refer to the System Error Messages in the System Command manual for other system errors.

ASM-16

SHARP

NOTICE

The MZ-80 series of sophisticated personal computers is manufactured by the
SHARP CORPORATION. Hardware and software specifications are subject to
change without prior notice; therefore, you are requested to pay special attention to
version numbers of the monitor (supplied in the form of ROM) and the system
software (supplied in the form of cassette tape or mini-floppy disk files).

This manual is for reference only and the SHARP CORPORATION will not be
responsible for difficulties arising out of inconsistencies caused by version changes,
typographical errors or omissions in the descriptions.

This manual is based on the monitor SP-1002 and the SP-7000 series FDOS.

— CONTENTS —

INTRODUCTION e e 1
STARTING THE SYMBOLIC DEBUGGER 2
SYMBOLIC DEBUGGER COMMAND TABLE 3
BREAKPOINTS e e iin 4
USING THE DEBUGGER COMMANDS 5
T (Table Dump) Command00 uuiiiinneen.. 5
Message Examplest 6

B (Breakpoint) Command, 7

& (Clear BP)Command 9

M (Memory Dump) Commandc.couvoo... 10

D (Memory List Dump)Command 11

W (Data Write) Command, 12

G (Goto)Commandco i, 13

I (Indicative Start) Command0 ... 14

A (Accumulator) Command 0., 15

C (Complementary) Command 15

P (Program Counter) Command, 16

R (Register)Command 16
Using Register Commands A,C,P and R.................... 17

X (Data Transfer) Commandc.cuuiuueennn... 18
S(Save) Command 19

Y (Yank)Command, 20
#FCommand 21
PCommand ... 21
ERROR MESSAGES i 22

DEB

- INTRODUCTION

The SHARP MZ-80K symbolic debugger links and loads one or more program units from relocatable
files to form an object program in memory in an immediately executable form and runs the object pro-
gram for debugging. It provides the programmer with facilities for taking a memory dump of the object
program in the link area, for setting a breakpoint in the program, for displaying and altering the contents
of the CPU internal registers and for starting execution of the program at a given address with the CPU

internal registers set to specified values (indicative start).

Linking Symbolic debugger debugging

Relocatable file operations (program execution, p "
units (RB) ~| breakpoint setting, data rogram execution

/ alteration)

Debugging with the symbolic debugger

The debugger is said to be “symbolic" since it permits the programmer to reference addresses (e.g.,
breakpoints) during debugging not only in absolute hexadecimal representation but with global symbols
declared as entry symbols in the source program with the ENT assembler directive. This releases the pro-
grammer from the burden of remembering relative addresses in relocatable programs and offset values
specified when they are loaded.

In normal program development process, the programmer debugs each object program unit with the
symbolic debugger and, if he finds errors, he reedits its source program and reassembles it. After debugging
all object program units, the programmer links and loads them with the relocating loader to form the final
object program.

Symbolic debugger commands are summarized in the table on page 3. Commands marked with a dagger
permit symbolic operations. The debugger creates the symbol table in the same way as the relocating

loader.

FDOS

Relocatable file # 1

-—

Object file

-
S command

Relocatable file #2

Symbolic debugger file processing

DEB-1

——STARTING THE SYMBOLIC DEBUGGER —

The symbolic debugger is started by entering one of the commands below in the FDOS command

mode.
1. DEBUG

The debugger is invoked and the debugger command wait state entered.
2. DEBUG [filename 1, , filename N]

6.

The debugger links and loads program units from relocatable files filename 1 through filename N and

waits for entry of a debugger command.

. DEBUG/P ABC

The debugger loads the program unit from file ABC . RB and prints the link information shown in

Figure 1 on the printer.

. DEBUG/P/T ABC

The debugger loads the program unit from file ABC . RB and prints the link and symbol table infor-

mation on the printer.

.DEBUG ABC, XYZ, TBL$20

The debugger links and loads program units from relocatable files ABC . RB and XYZ . RB and waits
for entry of a debugger command.

It also reserves 2000 (hex) bytes (approximately 8K bytes) of space for the symbol table. Approxi-
mately 6K bytes of space are reserved when the table size is not specified.

DEBUG ABC, $1000, XYZ, DEF/O

The debugger links and loads program units from relocatable files ABC . RB and XYZ . RB to generate
an object program in object program file DEF . OBJ, then waits for entry of a debugger command.
It reserves approximately 4K bytes of free space (offset of 1000 (hex)) between program units ABC and
XYZ.

Note: When the debugger is invoked and the command wait state entered, all files (including those

specified in the DEBUG command) are closed.

LIMKING REC. RE
TOF ASM.EBIRS $£Fazo
EML ASM.EIAS $70OEV
DEBUGSER AREA vaso-EYFD

Fig. 1

LINKING RELC.FRE
TOF RASM. EIQ’ Froo
EMD HEM.EBIRS $7Q0ET
DEBUGGER AREA FB2Q-BFFD
SYMEOL THELE
CHR1 [pare CHEZ D
CHRS [&elc CHREE [
PRINT D oesc STROR D

ARSI CHEZ [Bavs CHFE4 [aail
ARG GETEEY [+ @31k MHTE [+ gEea
AR

-
ot t_.-

Fig. 2

DEB-2

SYMBOLIC DEBUGGER COMMAND TABLE

Symbal iable

; T Displays the contents of the symbol table; i.e., the label symbol name, its absolute
Comand address and the definition status for each table entry (Table Dump).
B Displays, sets or alters a breakpoint (Breakpoint).
& Clears all breakpoints set (Clear Breakpoints).
mt Displays the contents of the specified block in the link area in hexadecimal
representation or alters them (Memory Dump).
pt Displays the contents of the specified block in the link area in hexadecimal repre-
sentation with one instruction on a line (Memory List Dump).
wt Writes hexadecimal data, starting at the specified address in the link area (Write).
Gt Executes the program at the specified address (Goto).
Debugging I Executes the program at the address designated by PC with the register buffer data
commands set to the CPU internal registers (Indicative Start).
A Displays the contents of registers A, F, B, C, D, E, H, and L in hexadecimal repre-
sentation or alters them. (Accumulator)
C Displays the contents of complementary registers A', F', B, C,D,E’,H" and L'
in hexadecimal representation or alters them. (Complementary)
P Displays the contents of registers PC, SP, IX, IY and I in hexadecimal represen-
tation or alters them (Program Counter)
R Displays the contents of all registers in hexadecimal representation (Register).
X Transfers the specified memory block to the specified address (Transfer).
S Saves the object program in the link area in an output file with the specified file
Filelj0 name.
commands
Y Reads the object program from the object file with the specified file name into
memory (Yank).
 Special # Switches the printer list mode for listing printout.
mand
e ! Transfers control to FDOS.

Note: Commands marked by a dagger permit symbolic operations.

DEB-3

BREAKPOINTS

A breakpoint is a checkpoint set up in the program at which program execution is stopped and the
contents of the CPU registers are saved into the register buffer. At this point, the programmer can examine
and alter the memory and register contents. He can also restart the program at this point. Thus, break-

points facilitate program checking and debugging.

The symbolic debugger allows a maximum of nine breakpoints. When setting a breakpoint, the
programmer must specify not only its address but also its count. The count specifies the number of allow-
able passes through the breakpoint in a looping program before a break actually occurs. The maximum

allowable value of the break count is E in hexadecimal (14 in decimal).

When a breakpoint is set in a program, the debugger saves the operation code at that location (address)

in the break table and replaces it with code FF. The debugger creates one breaktable entry for each break-

point as shown below.

Saved operation code

Breakpomt addre’ss

(label ‘s,"ymbolf)'
Break count Variable count !
Breaktable entry Object program

Hexadecimal code FF is the operation code for RST 7, which initiates a break operation. When the RST

7 instruction, which is a 1-byte CALL instruction, is executed, the contents of the program counter are
pushed into the stack and the program counter is loaded with new data 0038H; that is, program control
jumps to address 0038H in the monitor, from which point control is immediately passed to the debugger.
The debugger searches the break table for the pertinent breakpoint. If the breakpoint is not found, the
debugger displays error message RST 7?°". Thus the RST 7 instruction is used in the system for a specific
purpose and cannot be used by user programs.

When the debugger finds the required breakpoint in the table, it checks the corresponding count and
decrements the variable count (this count is initially set to the break count) by one. If the variable count

reaches zero, the debugger performs break processing; otherwise, it continues program execution.

DEB-4

USING THE DEBUGGER COMMANDS

——T (Table Dump) Command——
The T command displays the contents of the symbol table, that is, the label symbol name, its absolute

address and its definition status.

: Dlsplays the contentsof thesymbol table -

— Enter a T command in response to the prompt ">kD".

— The debugger displays the label symbol name, its absolute address (in hexadecimal) and the definition
status for each symbol table entry. The programmer can detect symbol definition errors by checking
the definition status of the displayed label symbols. '

— Messages pertaining to the symbol table definition status are identical to those issued by the relocating

loader. The definition status messages are listed below, followed by examples.

Undefined symbol (address or data)
Multi-defined symbol (address or data)
Cross-defined symbol (address or data)
Half-defined symbol (data)

Data difinition symbol (data)

O x = o

No message is attached to symbols for which an address
has been defined. U, M, X and H indicate error con-

ditions.

DEB-5

Message Examples

First program unit to be loaded

TMDLYH: LD HL, START
COUNT: ENT
DEC HL
LD AH
CP COUNTO
JR NZ, COUNT
LD AL
CpP COUNT1
JR NZ, COUNT
CP COUNT2
JR NZ, COUNT
RET
PEND: ENT
DEFM '"TMDLYH'
DEFB ODH
COUNT1: "EQU 00H
COUNTO: EQU 50H
END
Second program unit to be loaded
TMDLYL: LD HL, START
LOOP1: DEC H
LD AH
CP COUNT
JR NZ, LOOP1
RET
PEND: ENT
DEFM '"TMDLYL’
DEFB ODH
START: EQU 1000H
COUNT: EQU 00H
END
Third program unit to be loaded
INPUT: CALL 001BH
CALL TMDLYL
CALL 001BH
LD HL, START
cpP ODH
JR Z, END
LD (HL), A
INC HL
JR INPUT
END: JP 0000H
COUNT?2: EQU 12
END

DEB-6

"START''X

START is not defined as an address in the
first program but is defined as data in the
second or subsequent program with the
START: EQU statement.

Note:

The EQU statement should be placed at
the beginning of the program unit.
"COUNT2"H

COUNT? is not defined as data in the first
program but is defined as data in the third
program with the COUNT2: EQU state-
ment.

""COUNT1''D

COUNT1 is defined as data (D indicates

no error condition).

"COUNT'' X
COUNT is defined as an address in the
first program and simultaneously as data

in the second program.

“"PEND''M

PEND is defined as an address in the first
program and simultaneously as an address
in the second program (duplicated defini-

tion).

"“"TMDLYL'"' U

TMDLYL is neither defined as an address
nor declared with the ENT assembler
directive in any other external program

unit.

—— B (Breakpoint) Command —

The B command sets or changes a breakpoint. A breakpoint occurs after instructions immediately
preceding the breakpoint are executed the number of times specified in the break counter. When a break-
point is taken, program execution is interrupted and control is passed to the debugger. The debugger saves
the contents of the CPU registers into the register buffer and waits for a debugger command. The pro-
grammer can specify the breakpoint with either an absolute hexadecimal address or a label symbol (the

label symbol can be given a displacement of from-65535 to 65535 in decimal).

*DB Sets a breakpoint.
ADDR COUNT
1 75302 The breakpoint is address 7530 and the break count is 2.
2 SORT 3.1 The breakpoint is the address represented by label symbol'*SORT3"’

and the break count is 1.
3 SORT 3+5L __1 The breakpoint is the address of the instruction 5 lines away from
the address represented by label symbol ''SORT3'" and the break

count is 1.

4 MAINO-9._2 The breakpoint is the address of the instruction 9 bytes before
the address represented by label symbol ''MAINO'" and the break
count is 2.

58 (The breakpoint and the break count must be separated by at least

one blank (denoted by _).)

— Enter the B command in response to the prompt " >kD".

— The debugger carries out a new line operation and displays "ADDR COUNT." It then performs a new
line operation and displays the breakpoint number followed by a space and the cursor to prompt
the programmer to enter a breakpoint address and a break count.

The programmer may specify a breakpoint address with a 4-digit hexadecimal number or a global
symbol (see the examples above). In either case, enter an address followed by a space and a break
count. The break count specifies the number of allowable passes through the breakpoint before a
break actually occurs. The programmer can specify a hexadecimal value from 1 to E.

When a break count is entered, the debugger performs a new line operation and displays the next
breakpoint number to prompt for the next breakpoint address.

— When a label symbol is entered as a breakpojnt address, the debugger displays message "???" and
waits for a new command if the pertinent symbol is not defined or if the symbol is a data difining
symbol.

— No breakpoint can be specified for the DJNZ instruction. When a breakpoint is specified for the

DINZ instruction, the debugger displays message "DINZ?" and waits for entry of a new command.

DEB-7

No breakpoint can be specified for the CALL instruction either. Breakpoints cannot be specified for
any instructions which push the program counter contents into the stack. The debugger will dis-
play the message "CALL?" if such an attempt is made.

To check a CALL instruction, set a breakpoint at the beginning of the called routine.

To clear a previously set breakpoint, enter that breakpoint address with a break count of O (use the
& command to clear all breakpoints).

The debugger displays message "'???" and waits for a command when an attempt is made to clear an
undefined breakpoint.

The programmer can specify a maximum of nine breakpoints.. When the programmer specifies nine
breakpoints, the debugger displays "X" on the next line instead of the next breakpoint number. This
requests the programmer to clear a breakpoint or change a break count, not to set a new breakpoint.
If the programmer attempts to set a new breakpoint, the debugger will not accept it and prompts for
a new command with message "OVER".

When a B command is entered after breakpoints are set, the debugger displays them; in this case, the
hexadecimal address is displayed first, followed by the break count format.

The programmer can use the cursor key while setting breakpoints. When the key is pressed,

the debugger is returned to the command wait state.

DEB-8

—— & (Clear B.P) Command —

*D& Clears all the breakpoints which have been set.

— Enter the & command in response to the prompt " D"

— The debugger clears all breakpoints set and waits for entry of a new command.

— The photo at right shows an example of setting

breakpoints. The breakpoints are set with a

*LE B
ADDE COLNT
1 [

4-digit hexadecimal number (absolute address),
a global label symbol, a label symbol plus a
line specification and a label symbol plus a byte

displacement.

— The photo at right shows that breakpoint
"SORT3" has been cleared on the line identified
by "X".

— The photo at right shows an example of display-
ing previously set breakpoints with a B com-
mand. Breakpoints are displayed with hexade-
cimal absolute addresses shown first, followed

by the break counts.

— The photo at right shows that a break occurred
immediately when the program was executed

from address 7000 with a G command with a

- [

iy Taaa

breakpoint at 7000 and a count of 1. As soon

U ¢

k

ﬁ
)
Fx
.

as a breakpoint was taken, an R command was
executed to display the status of the CPU re-

gisters.

DEB-9

——M (Memory Dump) Command ——

The M command displays the contents of the specified memory block in hexadecimal representation.
The memory block may be specified with either absolute hexadecimal addresses or label symbols. The

M command permits the programmer to alter data with the cursor.

XDM 7800 _..7850 ’ Displays the contents of the memory block from
7800 to 7850.
kDM MAIN7 _ MAIN9 Displays the contents of the memory block from the

address identified by ''MAIN7'' to the address iden-
tified by ''"MAIN9""

*DM STEPO-9 _ STEP3 + 15L Displays the contents of the memory block from the
address 9 bytes before the address identified by label
symbol ''STEPO'’ to the address of the instruction 15
lines away from label symbol ' 'STEP3"".

— Enter the M command in response to the prompt ">kD".

— The debugger displays the cursor with a space between the cursor and the letter M and waits for the
programmer to enter the starting and ending addresses of the memory block to be dumped. The
programmer may specify the starting and ending addresses of the memory block with either 4-digit
hexadecimal numbers or global symbols.

— The starting address must be smaller than or equal to the ending address. Otherwise, the debugger will
display the message "7,

— When a memory block in the link area is specified, the debugger displays a dump of memory contents
on the screen with 8 bytes on a line.

— If the printer is placed in the enable mode, the debugger prints the memory dump on the printer with
16 bytes on a line.

— The cursor appears on the screen when the memory block dump is completed. The programmer can
then alter byte data in the memory dump by moving the cursor to the desired byte position on the
screen, entering the new byte data and pressing [CR]. The byte data under the cursor is overwritten,
with the new data. The debugger displays the message "ERROR " if the data entered does not match
the byte format.

— When is pressed with the cursor on a memory dump line, the data on that line is reentered into
memory. The debugger is returned to the command mode, however, when is pressed with the
cursor at a line containing no data. |

— Press the[SPACE] key to suspend display of the memory dump. To resume display, press the SPACE |
key again.

— Press the| SHIFT |and | BREAK]keys simultaneously to force the debugger into the command mode.

DEB-10

———D (Memory List Dump) Command —

The D command displays the contents of the specified memory block in hexadecimal representation
with one instruction on a line. The memory block may be specified with either absolute hexadecimal

addresses or label symbols. The programmer cannot alter memory contents through cursor manipulation.

>*DD 7800 —7850 Displays the contents of the memory block from addresses
7800 to 7850 with one instruction on a line.
; *DD START eMAINO Displays the contents of the memory block from the

address identified by ''START'' to the address identified
by "MAINO'* with one instruction on a line. |
DD 7500 —START + 12L Displays the contents of the memory block from address
7500 to the address of the instruction 12 lines away from
the label symbol ''START'' with one instruction on a liﬁe, :

— Enter the D command in response to the prompt " >D"".

— The debugger displays the cursor with a space between it and the letter D, then waits for the pro-
grammer to enter the starting and ending addresses of the memory block to be dumped. The pro-
grammer may specify the starting and ending addresses of the memory block either with 4-digit
hexadecimal numbers or global symbols. As with the M command, the étarting address must be smaller
than or equal to the ending address.

— Press the key after specifying the required memory block; the debugger then displays an address

and machine language code on each line.

Consider the source program shown below,
which contains the label symbols "START"
and "MAINO". Assume that the corresponding
object code is loaded in memory starting at
address 7500. When a D command is entered,
the debugger displays a dump listing on the

screen as shown in the photo at right.

START : ENT
LD SP,START
CALL MSTP
XOR A
LD (?TABP), A
LD B,A
MAINO : ENT

LD A, OFH

DEB-11

— It must be noted that the memory block starting address specified in the D command must contain
an operation code. If the starting address contains a data byte, subsequent lines dumped will display
meaningless instructions which read that data byte as an operation code. The same note applies to the
data areas (defined by DEFB and DEFW, etc.) in the memory block.

— Display of the memory dump listing can be suspended and resumed with the[SPACE | key.

— The D command does not allow memory alteration; after the memory dump is completed, the

debugger is returned to the command wait state.

— Press the [SHIFT] and [BREAK] keys simultaneously to terminate this command in the middle of a

dump.

——W (Data Write) Command ——

The W command writes hexadecimal data, starting at the specified memory address. The memory

address may be either an absolute hexadecimal address or a label symbol.

*DW 8000 Writes machine language data, starting at address 8000. .
*DW DATA 1 Writes machine language data, starting at the address identified by

label symbol ''DATAL1"".

— Enter the W command in response to the prompt "“>kD"".
— The debugger displays the cursor with a space between it and the letter W, then waits for the pro-
grammer to enter the starting address of the memory area to be written.
The programmer may specify the memory block starting address with a 4-digit hexadecimal number
or a global symbol.
— The memory area to be written must be inside the link area.
*kDW 1111
1111 Address 1111 is not in the link area.
7272
— When the programmer presses the key after specifying an address, the debugger displays that
address on the next line to prompt the programmer to enter 2-digit hexadecimal data.
The debugger enters a space each time 2-digit data is entered and performs a new line operation and

displays a new address each time eight bytes of data are entered.

— To correct the data just entered, press the B key
to return the cursor to the byte of data just
entered and correct it. The photo on the right
shows an example.

As the photo shows, when the B key is pressed,
the cursor is placed on the next line and the

address of the byte of data to which the cursor

is moved is displayed.

DEB-12

— To specify a displacement for a JR, DINZ or other Z80 relative jump instruction, enter a period; the
debugger waits for the programmer to enter an absolute address (no label is allowed) with a 4-digit
hexadecimal number as the destination of the jump. When the programmer enters a 4-digit hexa-
decimal address, the debugger computes the displacement and stores the 1-byte result in the current
byte position.

The seventh and eighth lines in the photo on page 12 show an example of specifying a displacement.

— After the necessary data has been written, press ; the debugger then returns to the command wait

state.

—— G (Goto) Command —

The G command transfers program control to the specified address. This command is also used to re-

start the program following a breakpoint.

— Enter a G command in response to the prompt "X&D ",

— The debugger then waits for entry of an execution address. The programmer can specify the execution
address with either a 4-digit hexadecimal number or a global label symbol defined with the ENT
assembler directive.

When using a label symbol, the programmer can specify the execution address on a line or byte basis.

DG MAINO Executes the program at address ''MAINO"".
kDG MAINO + 3L Executes the program at the address 3 lines after "'MAINO''
*DG MAINO - 12 Executes the program at the address 12 bytes before the address iden-

tified by "'MAINO"".

— To restart the program at a breakpoint, enter a G command and press . If this operation is ini-
tiated when no breakpoint is taken, the debugger returns to the command wait state without execut-
ting the program.

The contents of the CPU registers to be restored when the program is restarted are displayed with the
R command. The value in the program counter (PC) is used as the restart address. Since the PC value
can be changed with the P command, it is possible to restart the program at an address other than the

breakpoint.

— Press the| SHIFT |and [BREAK] keys simultaneously to terminate entry of a G command.

DEB-13

——1T (Indicative Start) Command —

The I command executes the program with the CPU registers loaded with the register buffer contents.

The execution address is designated by the program counter. The contents of the CPU registers can

be specified by the programmer through use of the A, C and P commands.

*DI

01 23 45 67
A F B C
01 23 45 67
PC SP
78AB 1FEA
START OK?&

89

D’

89
IX
SF70

A F B € b E H |

AB CD EF
EE H L
AB CD EF
IY I
5F50 00

Executes the program at the address demgnated ‘
by the program counter with the data shown_d'rif i{'
the screen loaded in the CPU registers. .

— Enter the I command in response to the prompt “>D".

— The debugger displays the 2- and/or 4-digit hexadecimal values to be loaded into the CPU registers.

These values are stored in the register buffer. They can be displayed with the R command.

— The debugger then displays message ‘“‘START OK?”’. To start the program in this environment, press

. The debugger then executes the program, starting at the address designated in the program

counter.

To change register values or terminate the I command, press the | SHIFT]and [BREAK] keys simul-

taneously; the debugger then returns to the command wait state.

— The figure below shows how the CPU registers are set with the I command.

' Register buffer

General register set

AF BC DE HL
AF" BC' DE’ HL”

Special-purpose
register set

SP IX IY I

Z80 CPU

PC

The CPU general registers and special-purpose registers SP, IX, IY and I are loaded first; the program

counter is then loaded with the execution address and the program is executed.

— The photo at right shows how the debugger res-
ponds to the I command and executes the

program (at address 7500 in this example).

DEB-14

—— A (Accumulator) Command —
The contents of the Z80 CPU registers are saved in the register buffer when a breakpoint is taken; the

contents of the primary registers saved can be displayed with the A command. The buffer contents can

also be altered using cursor manipulation.

— Enter the A command in response to the prompt " >kD".

— The debugger displays the contents of accumulator A, flag register F and general register pairs BC,
DE and HL with 2-digit hexadecimal numbers. These values represent the contents of the primary
CPU registers set up when a break occurs at a breakpoint. They are stored in the register buffer for
use in subsequent restart operations (see the G command description) at the breakpoint.

— The debugger displays the cursor on the line following the one last displayed. If necessary, the pro-
grammer can alter the register contents. To change a register value, place the cursor on the desired re-
gister value, overwrite it with a new vallue, and press (the cursor will move the the beginning of
the next line).

The register values displayed or altered with the A command are those values which will be restored
to the CPU internal registers on a restart at a breakpoint or on an indicative start with the I command.

— Press with the cursor on the new line; the debugger then returns to the command wait state.

——C (Complementary) Command —
The C command displays the contents of the complementary general-purpose registers set up on the

last break. The programmer can alter their contents through cursor manipulation.

— Enter the C command in response to the prompt ">kD".

— The debugger displays the contents of accumulator A’, flag register F' and general-purpose register
pairs BC’, DE' and HL’ with 2-digit hexadecimal numbers. The contents of the registers and the mean-
ings of the register contents and data altered through cursor manipulation are the same as with the A

command. They are used for restart at a breakpoint or with the I command.
— Press the key with the cursor on the new line; the debugger then returns to the command wait
state.

DEB-15

——P (Program Counter) Command —

The P command displays the contents of the special-purpose registers set up on the last break. The

programmer can alter their contents through cursor mainipulation.

- Dzsglays the contents of specsal—purpose re-
it S8 BRIy 1 . glstersP;:; 'SP IX IY andI .
- 78AB 1FEA 5F70 5F50 00 ~

— Enter the P command in response to the prompt =~ kD",

— The debugger displays the contents of special-purpose registers PC, SP, IX, IY and I with 2- and/or
4-digit hexadecimal numbers. The meanings of the register contents and the data altered through
cursor manipulation are the same as with the A and C commands.

The register values displayed or altered through cursor manipulation are restored into the pertinent

registers upon restart at a breakpoint or upon indicative start with the I command. The program does

not have to restart at the breakpoint; the programmer can specify another restart address by altering
the PC value.

— Press with the cursor on the new line; the debugger then returns to the command wait state.

—R (Register) Command —
The R command displays the contents of all CPU internal registers set up on the last break or altered

with the A, C or P commands. The programmer cannot alter their contents.

*DR Displays the contents of all CPU registers.
A F B C D FE
01 23 45 67 8 AB CD EF
A F B C D F
01 23 45 67 89 AB CD EF
- e B X IY ’
~ 78AB IFEA 5F70 5F50 00

— Enter the R command in response to the prompt " >D".

— The debugger displays the contents of all CPU registers with 2- and/or 4-digit hexadecimal numbers.
The cursor does not appear in the screen, so the programmer cannot alter their values.
The same data is automatically displayed when a break occurs or when an indicative start is initiated
with the I command.

— The debugger enters the command wait state after displaying the all register contents.

DEB-16

Using Register Commands A, C, P and R

Values displayed with register commands (A, C, P and R) are the actual contents of the register buffer
in the debugger. The register buffer in the debugger contains values loaded when breaks occur or when
changes are made through cursor manipulation with the A, C or P command. The values are restored the
CPU registers when a restart is made from a breakpoint or when an indicative start is made.

The figure below shows the relationship between the CPU registers and the register commands; the

photos show examples of use of the register commands.

Z80 CPU REGISTER

BREAKPOINT |
MAIN REG SET AF BC DE HL «—— A command
COMPLEMENTARY REG SET AF’ BC' DE’ HL' <—— C command
SPECIAL PURPOSE REG SET PC SP IX IY 1 <— P command
RESTART FROM B.P. 1
OR
INDICATIVE START v R command

Z80 CPU REGISTER

A command P command

C command R command

DEB-17

——X (Data Transfer) Command ——

The X command transfers the contents of the specified memory block to the specified memory area.

=

- Transfers the coht‘énts of the memory block fmm,_;
FROM? 7500 TO? 811F TOP? 9000 addresses 7500 to 811F to 'thé Setiony area
starting at address 9000. - .

— Enter the X command in response to the prompt ">kD"".

— The debugger displays the message "FROM?" and waits for the programmer to enter the starting
address of the source memory block with a 4-digit hexadecimal number. When the starting address is
entered, the debugger displays the message "TO?" to prompt the programmer to enter the ending
address of the source memory block with a 4-digit hexadecimal number. When the ending address is
entered, the debugger displays the message "TOP?" to prompt the programmer to enter the starting
address of the destination memory area with a 4-digit hexadecimal number (symbolic addresses are
disallowed).

— When the last address is entered, the debugger starts transferring the memory block. After completing
the transfer, it returns to the command wait state.

— The source and destination memory blocks must be located within the link area.

— Data transfer is accomplished successfully even if the source and destination memory blocks overlap
as shown below. The memory block shown in the figure at left may be transferred to the memory

block shown in the figure at right and vice versa.

Memory block ‘% . .
Link area < : Memory block + Link area

Symbol table Symbol table

— The photo at right shows how the debugger
transfers the memory block starting at address
7500 and ending at address 750F to the memory
area starting at address 7508.

Compare the memory contents displayed with

the two M commands.

DEB-18

——S (Save) Command —

The S command saves a specified block of the object program in the symbolic debugger link area

into a named output file in immediately executable form. The contents of this file can be restored to the

link area with the Y command.

*DSﬁlename ; . -
TBE _~7500 8FFF 7500 f . from addresses 7500 to 8FFF m the hnk area to

- Saves the 1mmed1ately executable object program .

an object :ﬁlie with a file ,nfame ofi fﬂename._OBL

— Enter the S command followed by a file name in response to the prompt ">kD".
— Press after entering a file name. The debugger displays TBE (Top-Bottom-Execute) message

after verifying that the specified file does not exist on the specified diskette.

— Enter the starting and ending addresses of the block to be saved and the execution address with 4-digit

hexadecimal numbers or symbolic label names. When the execution address is omitted, the debugger

assumes the block starting address as the execution address.

— The figure below shows how the object program block from addresses 7500 to 8FFF is saved to an
output file with the file name "FUNCTION .

7500

8FFF

C000

Object program

>DSFUNCTION Object file "FUNCTION " in

Symbol table

the default drive

Object file “TEST "'in
drive FD2

The symbol table is not saved.

DEB-19

—Y (Yank) Command ——

The Y command reads the object file identified by filename into the link area.

*DYfilenamé]CR

Reads the object file named filename into the link area ’

under loading conditions established when the file was saved.

— Enter the Y command followed by a file name in response to the prompt " >kD",
— Press after entering the file name. The debugger then searches for the file named filename. OBJ

and reads it.

— The program in the filename. OBJ file is loaded into the link area block between the starting and end-

ing addresses specified when the file was saved with the S command.

Note: Files opened before the Y command is issued are all killed.

Object file created by
the symbolic debugger

Y command

Object file created by
the relocating loader

Object file SAMPLE. OBJ
in drive FD2

Immediately executable
object program

*DY § FD2 ;
SAMPLE

Object file TEST. OBJ
in the default drive

immediately executable
object program ‘

*XDYTEST

DEB-20

—# Command——

— Enter the # command in response to the prompt * D",

— The debugger then switches the list mode. When the debugger is invoked, the printer list mode is set
to the disable mode. The mode alternates between enable and disable each time a # command is
entered. In the enable mode, all output is directed to both the screen and the printer (except with the

M command).

—— ! Command ——

— Enter the ! command in response to the prompt “*D",
— Control is then transferred to FDOS.

DEB-21

ERROR MESSAGES |

o The command operand fields does not match the 4-digit hexadecimal
999 . format. ' o M,D,W,B,G
' o A symbolic label is missing.

o A data defining symbol is used as a label.

o An invalid number of digits was entered when altering register or
ERROR memory contents, or a key other than O through 9 or A through F A,C,P,M

was pressed.

DINZ? o A breakpoint was set for a DINZ instruction. B

CALL? o A breakpoint was set for a CALL instrctuion. B

RST 77 o A breakpoint was set for a RST 7 instruction. B

OVER , o An attempt was made to set more than 9 breakpoints. B
o An attemp was made to access outside the link area. M,D,W,B,G, X
o The starting address is greater than the ending address. M,D

. o An attempt was made to clear an undefined breakpoint. B
o The breakpoint counter was set to F (the maximum permissible value B

is E in hexadecimal).

Refer to the "System Command’ manual for other system error messages.

DEB-22

Relocating Loader &&

SHARP

NOTICE

The MZ-80 series of sophisticated personal computers is manufactured by the
SHARP CORPORATION. Hardware and software specifications are subject to
change without prior notice; therefore, you are requested to pay special attention to
version numbers of the monitor (supplied in the form of ROM) and the system
software (supplied in the form of cassette tape or mini-floppy disk files).

This manual is for reference only and the SHARP CORPORATION will not be
responsible for difficulties arising out of inconsistencies caused by version changes,
typographical errors or omissions in the descriptions.

This manual is based on the monitor SP-1002 and the SP-7000 series FDOS.

INTRODUCTION
LOADING ADDRESS

—— CONTENTS —

RELATIONSHIP BETWEEN THE EXECUTION ADDRESS
AND LOADING ADDRESS o i...

OFFSET
SYMBOL TABLE ...
LINK/T COMMAND .

....................................

LINK MESSAGE EXAMPLES

ERROR MESSAGES

LINK

INTRODUCTION

The relocating loader for the SHARP MZ-80K inputs relocatable files output by the assembler and

outputs object programs (object files).

Relocatable files are not programs which are directly executable by the CPU, but are files which contain
information used to keep programs relocatable. They also contain global symbols in ASCII code which are

declared to link two or more program units.

The relocating loader fetches relocation information and loads object programs into the link area in
main memory while adding the programmer-specified loading address to the relocatable addresses. When
two or more relocatable program units are loaded, units are appended to the first program unit (file),
if the loading address is specified for the first unit.

The link area is allocated by the relocating loader; it cannot be specified by the programmer. It is used
temporarily by the relocating loader and it does not necessarily conform with the address format of the
object program. The linkage operation itself is described in detail in Section 2.3, "Relocating Loader of
the "'System Command" manual. However, the programmer does not need to be aware of details of the

linkage operation details.

When outputting the object program (object file), it is necessary to specify the loading address and the

execution address.

RELOCATING LOADER

Program unit 1

Linkage and relocation

/ $: Object program
Program unit 2

Object file

Relocatable files

LINK-1

——LOADING ADDRESS——

The loading address specifies the address at which the object program is to be loaded. When this address
is not specified, FDOS assumes the starting address which can be managed by FDOS as loading address.

Links TESTI and TEST2 and assigns the loading
address to the beginning of the area managed by
FDOS. .

Links TEST1 and TEST2 and assigns the Ioadmg' "
address to 1200H. -

LINK TESTI, TEST2

LINK $1200, TEST1, TEST2

The figure below shows the flow of files from the time they are linked by the relocating loader until

they are executed with the RUN command. Numbers @ through (B in the figure denote the processing

sequence.
LINK $1200, TEST1, TEST2
0000 Monitor
1200
FDOS
0 TESTI1. RB
©
Loid @ < The linked object program
Relocatable files o @ in memory has an address
0 / o . Save format such that it is loaded
°O Link area and executed at address
TEST2. RB 1200 (hexadecimal).
Symbol tabl
L ymbor table Object file TEST1. OBJ
D000 Video RAM 0
E000] O
Terminal control area
/
7
RUN TEST1
0000 Monitor @
1200
® FDOS
The object program is then When the RUN command is ex-
moved to the area starting at cuted, the object program is
the loading address. In this temporarily loaded into the area
case, the system displays a under control of FDOS.
warning message indicating
that FDOS will be destroyed
and waits for a user response.
D000 Video RAM
E000
Terminal control area

LINK-2

——RELATIONSHIP BETWEEN THE EXECUTION ADDRESS
AND LOADING ADDRESS——

The programmer may specify the execution address as well as the loading address when outputting an

object file through the relocating loader.

LINK $8000, TEST1, TEST2, EXEC$8200

The above command links and loads relocatable program unit files TEST1 and TEST2 into memory,

specifying a loading address of 8000 (hex) and an execution address of 8200 (hex).

Examples of linkage and loading are given below (numbers in circles in the figures denote the processing

steps). The first example uses a simple RUN command.

Monitor
FDOS
©
8000 ;
°<O) Loaded by the RUN command Object program
The object program is generated by:
LINK $8000, TEST1, TEST2, EXEC$8200 Video RAM

Terminal control area

@

Control is transferred to address
8200 after program loading is
completed.

{8200

Memory after loading with the FDOS RUN -command

LINK-3

When the monitor is used to load the object program, its starting address in memory is designated by
the loading address. The program counter is set to the address designated by the execution address after
the object program is loaded. The figure below shows how an object program with a loading address of

1200 and an execution address of 2000 is loaded and how control is transferred.

Loading address 0000 Monitor Execution address
oo ® /
Loaded via monitor Object program 2000

Object program LOAD

Execution address = 2000 (hex)
Loading address = 1200 (hex)

The FDOS XFER command is useful for trans-

D000 :
ferring the object program to a cassette tape 000 Video RAM
file .
: 1
Coding example: Terminal control area
LINK $1200, TEST1, TEST2, EXEC$2000
XFER TEST!. OBJ, $CMT < Memory after loading with the monitor program

When the object program is loaded by the symbolic debugger or the machine language system com-
mand instead of the monitor, the execution address is ignored and control is retained by the system
program. To execute the program, it is necessary tq transfer program control to the required execution

address using the system program G command.

0000 Monitor
Loading address 1200
Object program \
jeet e 2000 ®
Read by the Y command Object program Executed by the
CMT G command
@

Execution address = 2000 (hex)

Loading address = 2000 (hex)
Coding example:
LINK $2000, TEST1, TEST2, EXEC$2000 Dooo Video RAM
XFER TESTI. OBJ, $CMT o E000

Terminal control area

Memory after loading with machine language command Y

LINK-4

0000 Monitor

0 1200
FDOS

Executed with
the G or I command

OCO) ® - Object program ®

<filename2> ~

DEBUG <filenamel>, <filename 2>
When both loading and execution addresses D000 -
are omitted, the system assumes system- Video RAM
) . E000

specified addresses for the loading and execu- Terminal control area
tion.

Memory after loading with the symbolic debugger

Object programs created with the assembler and BASIC programs created with the BASIC compiler may
be linked using a library (see the 'Programming Utility" manual) or the BASIC USR statement.
Here, an example is given of linking an object program with a BASIC program using the USR statement.

The figure below shows how an object program is loaded and linked with a BASIC program. The area in
memory which is managed by FDOS is reduced with the FDOS LIMIT command to create a free area.
The object program is loaded into this free area with the BASIC LOAD statement. The BASIC program

can then call the object program as a subroutine using the USR() statement.

0000 Monitor

1200

FDOS

FDOS command included in the
BASIC program which loads
the object program

oO C000 4 =— FDOS command
O \@)‘ . O© Limit
l'Creates a free arez;l

: tside th
[Coding example: | BEE _Z)(l)lnstlroiledealr:elz.os_
LLINK $C000, TEST1, TEST2] oLy Video RAM

® Linked with the BASIC
statement USR ($C000)

Terminal control area

Memory after loading with an FDOS command in a BASIC program

LINK-5

——OFFSET—

The programmer can specify an offset to reserve a free area between two object program units.

- addresses reserved between them.

Execution of the above command is illustrated below.

0000 Monitor

1200

FDOS

O |tESTI.RB

O,
O
Load

Relocatable files

"

0
O |TEST2.RB

<+—Offset (4K bytes)

Y

» Link area

Symbol table

D000 Video RAM
E000

Terminal control area

Note that the loading address and offset are carefully distinguished in the following command:

LINK $1200, TEST1, $1000, TEST2, TBL$20, EXEC$1250

T

Loading address ~ Offset (4K bytes) Symbol table size Execution address
(approx. 8K bytes)

A 4-digit hexadecimal number preceded by a § symbol in the first argument position is always inter-

preted as the loading address.

LINK-6

—SYMBOL TABLE—

Information referred to as symbols in the relocating loader and symbolic debugger indicates globally
declared labels (that is, label symbols defined by the ENT or EQU assembler directive) in the source

program. This information is stored in the relocatable file by the assembler for use in linking with other

relocatable programs.

The relocating loader loads label symbols into the symbol table while inputting program units in the re-
locatable files. The symbol table is placed at the end of the link area; its size is set to approximately 6K
bytes by the loader unless otherwise specified by the programmer. The programmer can specify a area of

more than 6K bytes for the symbol table area using the LINK command as fillows:

LINK TESTI1, TEST2, TBL$20 - This command links TEST1 and TEST2 and speci-
fies a symbol table size of 2000H (approximately

8K bytes).

TBL$20 in the above command specifies that a symbol table of approximately 8K bytes is to be created.
In other words, the programmer can reserve a symbol table area in 256-byte units. As shown in the
memory map, the symbol table is constructed at the end of the link area.

Each symbol table entry is 9 bytes long. The for-
mat of the symbol table entry is shown at right.

Section 2.3, 'Relocating Loader,” in the "System

B E N

o . ~ | S —
Command’ manual describes how the loader uses Symbol name Definition Address
this 9-byte information to link relocatable program status
units.

Monitor
FDOS

Link area
Symbol table J } 6K bytes
When table
D000 ;
E000 Video RAM [size is not]
Terminal control area specified

Relocating loader memory map

LINK-7

——LINK/T COMMAND——

The LINK/T command is used to display the contents of the symbol table after program linking is com-
pleted. It displays a symbol name, its absolute address (in hexadecimal representation) and the definition
status for each symbol table entry. The user can detect symbol definition errors by checking the defini-
tion status.

The LINK/T command has two basic formats:

LINK/T TESTI1, TEST2 Links TEST1 and TEST2 and displays the synib’ol ;

table on the CRT screen.
LINK/T/P TEST1, TEST2 Links TEST1 and TEST2 and prints the symbol

table on the printer.

— The photo at right shows link and symbol table
information displayed on the CRT screen with ISUINE. T UMIT=8#1 UHIT-#2 LHIT-#2

the LINK/T command for the three program

units shown on Page 10. Undefined symbols
are labeled U .

— Symbol definition messages are listed below.

A

Undefined symbol (address or data)
Muiti-defined symbol (address or data)
Cross-defined symbol (address or data)
Half-defined symbol (data)

Data definition symbol (data)

No message is attached to symbols for which an
address has been defined. U, M, X and H indicate

error conditions.

LINK-8

The listing below shows a print out of link and symbol table information. The symbol table entries

have been sorted as may be seen from this listing.

LINKING ROPENTEST .RB
TOP ASM.BIAS $5600
END ASM.BIAS $56B1

LINKING RELO.LIB
TOP ASM.BIAS $56B1
END ASM.BIAS $67A2

SAVE ROPENTEST . OBJ
LOADING ADDRESS $5600
EXECUTE ADDRESS $5600
BYTESIZE 11A2

SYMBOL TABLE

. ERN 6542 ... N$B 6560 ... SPO 6554 ... T.F ©B76A
7SEG 639F .. CRLF 63F6 .. FLTO 6772 .. INIT 636D
. INTO 5823 .. NARY 56AD .. NVAR b56AB .. SEGE 6564
. SEGB 6565 .. TRUE 6529 .. VARO 56 A6 . BRCHK 6R2CE
. CHKSP 62BF . DATAO b56A5 . FALSE 652E . FUNCO 6028
. FUNC1 6043 . GOO90O 5699 . INPUS 5781 . INPUT 5774
. LOOOA ©560B . LOO14 5623 . LOO1E 5637 . LOORS8 564C
. LO0O32 5662 . LOO3C 5699 . LINE# 5602 . LOAD$ 60B3
EOF 571F ER14 644D ERR 6412 ER24 646B
ER3 641F ER37 6482 ER4 642B ER6 « 643D
ER64 672F U ERR 2R30B FASD 5CFC FBNM 5D9 E
FCMPR 5FFD FCMP5 5FED FORARR ©67Al FWREKO 61 Ab5
ONERAD ©655A OPNFNC 26B9 OPSP 2R”23F OUTDEV 6551
OUTIY 65562 PFALSE 5FC9 PNT 654C PNTDTA 654E
PRNT 0012 PSTACK 6556 PTRUE 5FC4 PUSHR 22 FO
PUT1CO 2D30 PUTCRO 2EO3 PUTMO 2DD1 REVS 5 FBO
RJOB 26 DF ROPEN R22D8 SGETL 28 F7 SKPBL 2236
SOUND RR224 STACKS$ 6558 STAREA 6572 TR5B 619F
XOPEN 22 DE ZMAX 26DD

(Note: This listing is not related to the programs on page 10.)

LINK-9

——LINK MESSAGE EXAMPLES——

First program unit loaded (UNIT-#1)

TMDLYH : LD HL , START
COUNT : ENT
DEC HL
LD A,H
Ccp COUNTO
JR NZ , COUNT
LD AL
CpP COUNT1
JR NZ , COUNT
CP COUNT2
JR NZ , COUNT
RET
PEND : ENT
DEFM "TMDLYH'
DEFB ODH
COUNT1 : EQU 00H
COUNTO : EQU 50H
END

Second program unit loaded (UNIT-#2)

TMDLYL : LD HL , START
LOOP] : DEC H
LD A,H
CP COUNT
JR NZ , LOOP
RET
PEND : ENT
DEFM 'TMDLYL'
DEFB ODH
START : EQU 1000H
COUNT : EQU 00H
END

Third program unit loaded (UNIT-#3)

INPUT : CALL 001BH
CALL TMDLYL
CALL 001BH

LD HL , START
CP ODH
JR Z ,END
LD (HL), A
INC HL
JR INPUT
END : JP 0000H
COUNT? : EQU 12
END

LINK-10

"START"' X

START is not defined as an address in the
first program, but is defined as data in the
second or subsequent program with the
START: EQU statement.

NOTE:
The EQU statement should be placed at
the beginning of the program unit.

""COUNT2'"H

COUNT?2 is not defined as data in the
first program, but is defined as data in
the third program with the COUNT2:
EQU statement.

"COUNT1" D

COUNT1 is defined as data (D indicates

no error condition).

"COUNT"' X

COUNT is defined as an address in the
first program while it is simultaneously
defined as data in the second program.
"PEND''M

PEND is defined as an address in the first
program while it is simultaneously defined
as an address in the second program

(duplicated difinition).

“"TMDLYL" U
TMDLYL is neither defined as an address
nor declared with the ENT directive in

any other external program unit.

—— ERROR MESSAGES —

The error messages issued by the relocating loader are described in the "System Command manual.

Here, only error messages which require particular attention are described.

NO MEMORY SPACE
Indicates that the symbol table is full; that is, that there are too many symbols to be cataloged.
The symbol table size is set to approximately\6K bytes by the relocating loader unless specified by
the programmer. It is necessary to specify the TBL$ argument in the LINK command to increase

or decrease the symbol table size.

MEMORY PROTECTION
Indicates that the link area is inadequate, that is, that the linked data has reached the symbol table

area located at the end of the link area.

IL DATA
Indicates that the data read from the specified relocatable file has an illegal link format. This condi-
tion may be caused by a hardware read error in the floppy disk drive or by an assembly error in the

source program.

LINK-11

SHARP

NOTICE

The MZ-80 series of sophisticated personal computers is manufactured by the
SHARP CORPORATION. Hardware and software specifications are subject to
change without prior notice; therefore, you are requested to pay special attention to
version numbers of the monitor (supplied in the form of ROM) and the system
software (supplied in the form of cassette tape or mini-floppy disk files).

This manual is for reference only and the SHARP CORPORATION will not be
responsible for difficulties arising out of inconsistencies caused by version changes,
typographical errors or omissions in the descriptions.

This manual is based on the monitor SP-1002 and the SP-7000 series FDOS.

—— CONTENTS —

U/PROM

PROM FORMATTER P 1

ACTIVATION OF THE PROM FORMATTER................ 1

PROM WRITER FORMATS 3

BNPF . . 3

BIOF . e 4

HEXADECIMAL e e 5

BINARY . . 6

PERFORMANCE BOARDS OF VARIOUS COMPANIES'....... 7

PROM FORMATTER COMMANDS 9

FILE INPUT/OUTPUT COMMANDS 9

Y (Yank File) Command. 9

S(Savefile) Command 9

FORMATTING COMMANDS it 10

P(Punch) Command.cou ittt 10

R(Read) Commandcii . 11

OTHER COMMANDS 11

M (Memory dump/modify) Command 11

(Change printer mode) Command 12

&(Clear) Command. oottt 12

? (Display free area) Command. - - - - -« e e v v v v eie i 13

' (Return)Command oo ottt 13

FORMAT COMMANDS. e e 13
DIFFERENCES BETWEEN PROM FORMATTERS

SP-7501 AND SP-2501 15

PROM FORMATTER (SP-7501) COMMANDS & MESSAGES 16

U/PLOTTER

EXAMPLE OF PLOTTER CONTROL APPLICATION i

INTERFACE CARD i 1

PLOTTER CONTROL PROGRAM. 1

1. Conditions for linkage with a BASIC statement 1

2. Linkage conditions when an error occurs 2

3. Use of external subroutines 2

4, Plotter control codesuiiiiinny 2

S5.Programoutline 3

COMMAND TABLE ...t e 6

OUTLINE OF THE BASIC PROGRAM 7

SAMPLE PROGRAM (PLOTTER CONTROL ROUTINES) 10

BASIC MAIN PROGRAM i, 21

~ PROM FORMATTER

The rapid advances in LSI technology have allowed the functions of a computer’s CPU to
be concentrated onto a single semiconductor chip. These microprocessors are becoming ever more
sophisticated, while at the same time they are becoming less expensive. As a result, the range of fields in
which microprocessors are being utilized is growing rapidly.

One subject of great importance to the development of new device applications is that of developing
efficient application programs; it is not too much to say that the quality of the application program
determines the how well a newly developed device performs. On the other hand, developments in LSI
technology have also stimulated efforts to develop low cost, large capacity memory elements (RAM and
ROM). The increased availability of PROMs which are erasable with ultraviolet rays has had a particularly
strong influence on the development of devices which incorporate microprocessors.

The procedure which is most suitable for efficiently developing application programs is to create an
object file from a source file created through assembly programming using an assembly language, then to
finish the program after debugging. The function_ of the PROM FORMATTER is to load one or more
object programs created with an assembler and relocatable loader, then to output it to a paper tape

punch after converting it to PROM writer format.

User I/O
PROM FORMATTER

Object file (OBJ) Format control Punch

Diskette

1

Reader

Functions of the PROM FORMATTER

It also allows programs which are written in different formats to be input from a reader for storage on

diskette and enables conversion of programs to the required format for output on paper tape or the like.

——ACTIVATION OF THE PROM FORMATTER —

Entering PROM while in the FDOS command entry mode activates the PROM FORMATTER.

Commands may be entered as soon as activation is completed.

U/PROM-1

The following formats are provided for in the PROM formatter:

0000
1. BNPF Monitor
e Britronics
« Intel
« Takeda Riken
2. B10F
(e Takeda Riken)
Free area
3. HEXADECIMAL
e Britronics | N
. Stack
o Takeda Riken D000 Video RAM
» Minato Electronics E000 Terminal control area
4. BINARY PROM formatter memory map
(s Britronics) (with 48K bytes of RAM)

U/PROM-2

PROM WRITER FORMATS

PROM writers are provided in many formats by different companies. This section discusses forms

which are converted by the PROM formatter: refer to the individual PROM writer manuals for details.

The examples in the figures include the file name "AAA," the address "0000, 'and the data
"5C,”"BD" and "27." The leader section for the start of punched output and the trailer

section for the end of punched output are created automatically.

BNPF——

Britronics (Format A)

@(SP indicates a space code J

« |alalal€|L|S|B|n|P|N|PP|P|N|N|F|S|B|P|N|PIP|P|P|NIP|F|SiB|N|N|P|N|N|P|P|P|F|3|B
R|F|P P P P
File 5C BD 27
name Data

—— The file name is punched in ASCII code (if one is specified). (Using the character "B as a file

name will result in incorrect identification of the beginning of data.)
—|CR| and codes are punched in ASCII code.

— The space code (20H) and the byte of data at the address specified for RAM FROM? are punched in

BNPF format. The address is incremented successively.
—|CR] and @ codes are punched after each 6 items of data are punched in the BNPF format.

—Punching is performed in BNPF format up to the address specified for TO?

Intel (Format D)

—— This is the same as the Britronics format. The BNPF format is one which has a relatively high
degree of standardization; thus, the PROM formatter can also be used with devices other than

those which are discussed in this manual.

U/PROM-3

Takeda Riken (Format E)

— [s|a|aja|§|kls|0]o]o|.|S|B|[N|P|N|P|P|P|IN|N|F|S|B|P|N|P|P|P|P|N|P|F|S|B|N PIF|)
File Address 5C BD
name Data

—— The " $" mark, which denotes the file name, is punched in ASCII code.
— The file name is punched in ASCII code (if one is specified).

—_— and codes are punched. The "$" mark is regarded as denoting the beginning of a

comment statement; the end of a comment statement is denoted with an[LF code.

——The "#" mark (which indicates the beginning of an address) is punched, followed by the first three
digits of the address specified for PROM ADDRESS? The separator between the address and the

data is punched as ".".

——The data item at the address specified for RAM'FROM? is punched in BNPF format. The address is

incremented successively.
—ICR] and @ codes are punched after each 6 items of data are punched in the BNPF format.

——A tape leader stop mark (")) is punched after the data has been punched up to the address
specified for TO?

Note) Care must be taken to ensure that characters which act as control characters (B, :, $, #, etc.)

are not used when a file name is specified. (Otherwise, incorrect operation will result.)

Takeda Riken (Format F)
— |s|alalal§|E[#lojo|o|.|B|Blo]1]o|1|1|1|o|o|F|S|B|1]o|1]1]1]1]|0|1]|F o|FD
File scC Y A
name Address Data

Except for the NP section, this is the same as Takeda Riken’s BNPF format.

—— The B10F format corresponds to the BNPF format in that 1=P and 0=N.

U/PROM-4

—— HEXADECIMAL——

Britronics (Format B)

C
T
R|C|L S S S S S S S S S S S
(—AAALRF5CPBDP35PSDPOSPOBPODPISPIBPIDPZSP
e
A
File 5C BD 35 3D 05 0B OD—/ 15 1B 1D 25
name Data

— The file name is punched in ASCII code (if one is specified).
——The "CTRL/A" mark (01H) indicating the beginning of data is punched.

—|CRJ and codes are punched.

——The data item at the address specified for RAM FROM? is punched as a 2-digit ASCII code, then a

space code is punched.

——Data is punched up to the address specified for TO?

Takeda Riken (Format G)

« |s|alalalS|k|#|olo]o|-|S|s|c|-|]|B|D|-|p|3|5|-|S|3|p|-|D]o|s|-|B|o|B pl-D
\ File Address 5C BD 35 3D 05
name Data

——The "$" mark, which denotes the file name, is punched in ASCII code.
——The file name is punched in ASCII code (if one is specified).

—— After and @ codes are punched (followed by the address specification mark "#" and 3
digits of the address specified for PROM ADDRESS?) The separator is "'." is punched.

— The space code is punched, followed by the 2-digit ASCII code for the data at the address specified
for RAM FROM? The separator "." is punched after the data item.

—|CR| and codes are punched after 16 bytes of data have been punched.

——Data is punched up to the address specified for TO?, at which point the tape leader stop mark ("))

is punched.

U/PROM-5

Minato Electronics (Format H)

— |alalalr|#]olo|o|p|s|c|p|B|D|B|3|5|E|3|p|B|o|s|Slo|B|S|o|D|S|1]|5]D 2|5/)
\ File Address sc/\Bp/\35/\3p/\ o5/ oS\ opS\ 5
name Data

—— The file name is punched in ASCII code when filename is specified.
— The start-of-data mark ("'["") is punched.

——The address designation mark ("#") is punched, followed by a 3-digit ASCII code for the address
specified for PROM ADDRESS?

—— A space code is punched, then the data at the address specified for RAM FROM? is converted to a
2-digit ASCII code and punched.
16 combinations of space codes and data items are punched, then and codes are punched.

——The end of data mark ('] ") is punched after data has been punched up to the address specified for

TO?
Britronics (format C)
3(3(3(3(1|1j1 1|11 |1frf1f1|r|1f1f1j1jrfr|1frjrf1jrf1f1f1|1j1 1(5|5| MSD (upper 4 bits)
«— [A|A|A
ofolojo|5|C|(B|D|3|5/3|D|0|5|0(B{1|5|1|B|1|(D|(2|5|2|B|{D|D|F|D|2 B|C|D| LSD (lower 4 bits)
File /\ Address Data
name Block

——1In the binary format, the 4-bit mark section and the 4-bit data section are expressed together as one
character (8 bits). The mark section is punched as the upper 4 bits of the paper tape, while the data
section is punched as the lower 4 bits.

——The file name is punched in ASCII code (if one is specified). Specifications which result in a 3" in
the upper 4 bits of the ASCII code file name are not permitted. Such specifications will result in

incorrect operation, since incorrect determination that the lower 4 bits of the file name are an
address will result.

—— Three binary digits for the address specified for PROM ADDRESS? are punched in the lower 4 bits.
The address designation mark ("'3"") is punched in the upper 4 bits.

—— A data mark ("'1") is punched in the upper 4 bits and data at the address specified for RAM FROM?
is punched in the lower 4 bits.

——Data is punched 4 bits at a time (with the upper and lower 4 bits punched in alternation) up to the
address specified for TO?

—— Check sum marks ("'5™) are punched in the upper 4 bits, followed in alternation by check sum data

in the lower 4 bits.

U/PROM-6

— PERFORMANCE BOARDS OF VARIOUS COMPANIES —
(Note: Consult the various manufacturers for details.)

a) Intel
2716
2732
874878741

3621, 3602, 3622, 3602A,3622A,3604, 3624, 3604A, 3624A, 3605, 3625, 3605A,3625A,3628, 3608,
3604AL-6, 3604AL

8702A 71702A
8708,78704,72708,2704
8755A

b) Britronics

Intel 3602A.722A, 3604A.724A, 3604A L “24L, 360525 360828
Intersil 560010, 5603 A .23, 560424, 560525
Fujitsu 7055, 7051, 7052, 7058, 7053, 7059, 7054, 7057

5330.76330, 5331.6331, 5300.6300, 533576335, 5336.6336, 530876308, 530976309,
53134763134, 53135763135, 530576305, 530676306, 53137.763137, 53141763141,

Monolithic Memory | 4,0 6340 53416341, 5348, 6348, 5349, 6349, 53506350, 5351 6351, 53526352,
535376353, 538076380, 5381 6381, 53846384, 53856385, 53866386, 5387, 6387
7602703, 7610A ~11A, 7620A 21 A, 7640A . 41 A, 7640AR 41AR, 764243,
0 7644, 7646R . 47R, 7648749, 7608, 768081, 7680R .81 R, 7680P 81P,
arris
7680RP_“81RP, 7683, 7684 85, 7684P 85P, 7686, 87, 7686R. 87R, 7686P. 87P,
7686 RP .~ 87 RP
Fairchild 93417 727, 93436736, 9343848, 9345252
i Notional 54,74 S387, 54.°74S287, 54 74S470, 54,74 S471, 5474 S570, 54774 S571,
Semiconductor 77./87S295, 77./87S296, 54.74S473, 5474 S472, 54/74S572, 5474 S573

Nihon Denki (NEC) 403D, 406D

Raytheon 29660761, 2960001, 29612.713

8251147115, 82S126.7127, 82S5130.7131, 82S140.7141, 82S 136137, 825180.7181,

Signetics
8252708, 82S184.7185, 82S190.7191

54 77488A, 5474S .88, 54745288, 547745470, 54.774S71, 54 /74573,
54774572, 54774S75

Texas Instruments

¢) Minato Electronics
Adaptable to all PROMs.

U/PROM-7

‘spIeoq souewIOjIad SIS U} YIIM Pasn aq UBD SI[OII0 U SAINSIy owWes oy} Y)Im pajejouue S}uswafg o

fpdd

T61S28 T919NH___ 0919LWH
¥8E9T = 8 X 8Y0Z
061528 919WH 9ese
JUI89LNH_JU98ILNH
WI89LWH _ M9B9ILWH
581528 dL89LAH__d989LWH 2619 = ¥ XSH0Z
81528 189LNH___ 989LWH
JS89LWH __ dY89LWH
S89LWH ___ ¥YBOLWH
[-€e1es £89LWNH
80,2528 1-18¢9 809LWH
1-98£9
" V829g 0902 v d™
1-58£9 MM-MM JUTSOLNH JHOSSLWH V809E @So\.mn @M Mwh“: 2618= 8 x¥201
181S28 1-8€9 Y I89LWH HO89LNH
081S28 1-18€9 d I89LWH dO089LNH
1-08¢9 189LWH___ O089LWH
T-£5¢£9 JEVOLNH d2YOLWH
151528 EESLINY 1-2569 £5v€6 VYPOLWH WWOLWH vsz9g 9Z9SW1 @SoLan @a9erad” o60P= b XPZOT
9e1S28 2ESLIAY 1-15¢€9 25956 VEPOLWH EYOLWH VS09€ 90951 YsoLaW asoradr
1-05€9 VZPOLNH _ ZVOLWH 1
LZSLENV 1-6¥£9 6Y9LWH 8Y9LWH SLYSYINS
1visz8 9IS LZNY 1-g¥E9 WLY9LNH . .
ovisz8 81es WVIreINH uvorewd | ©'SMENS vizoe SZOSWL asavad” 960 = 8 x2IS
T-ores 8£YE6 SLYSYINS vH09E S09SIWT asovad
SlIS2s SISLZNVY VIY9LWH 1Y9LWH ZLVSYINS
1-1re9 VOYQLWH _ OV9LWH
Teisezs EISLZNV 1-90€9 £1962 9rrEe VIZUNH [29ZWH 229 VZOSWI QF0aN v0L— b 2216
01528 2SLZNY 1-50€£9 21962 9£YE6 VOZILWH __ 0Z9LWH 209¢ Y09 £S0LaW
1-sE1€9 -
1-9£€9
10962 1LVSYINS
riises 1-s€€9 00962 ® oustins 8P0Z= 8§ <992
1-60€9 HSZILWH
1-80£9
19962
621528 12S LTV 1-10€9 09962 L2956 1I9LWH VIIOLWH LBESTLNS 129€ £29SW 1T L50L8W
It ” _
921528 02SLZWY 1-00¢€9 £9962 L1res OI9LWH VOI9LWH L8ZSPINS 109¢ VEOISIWI 00L¥SH Dzs0am @atovad eo1= b X952
29962
882SPLNS
£21528 6ISLINV 1-16€9 £09LWH 01951 950L8IW
£2S28 SISLINY 1-06€9 £0STOLWH Z09LWH ﬂ% “Mum 009SW 1 0ELYSW 1S0.9W 95¢= 8 x2¢

uswIny)

SOWN
S5.8 punodwion
S 09Y8SW 2618= 8 X 201
[CIEL 960% = ¥ X bZ01 SOWDO
®YSNT 960% = 8 X 21§
ZESZSWL [89.Z€ = 8 X 960V
W”NM”M ® 9le @ILZTSH [GELE: U @®9ILZINH ®astzad” ®IEZENNL ¥8E9T = 8 X 8H0Z
® 8oL ® 80LZWV ® souzd @BOLZSWL @U ””MM @B0L2TISW @8IS8EN @BOLZIYNH oassrad” @®OTIENNL. @BSLEWSW 2618 = 8 X ¥201 .
® vz 960% = 8 X 215 ,
I-DIZINWL
8¥0Z= ¥ x 21
JDIZINWL et
vaoLl cIS8EW
n =
® vazout @VZOLINV @ vz @20LITSW c0STEN @V2OLISENH odarsrad 8502 =8 X952

odA1 SO

uadry epavel (p

U/PROM-8

PROM FORMATTER COMMANDS

—— FILE INPUT/OUTPUT COMMANDS —
Y (Yank File) Command
Reads the object (OBJ) file specified by the file name into the free area.

*KYCHARAGEN - Reads in CHARAGEN. OBJ
FROM ? 8000 TO 87FF ~ Specifies read-in from address 8000

(read up to address 87FF)

— File name can be specified by entering a Y (Yank file command) when "> appears to indicate

that command entry is awaited.

——Specify the starting address of the file to be read in as a 4-digit hexadecimal number. (Reading will

start at the address specified regardless of the actual data address of the object file.)
—The last address read is displayed when file read-in is completed.

Caution

The address specified for read-in must be in the free area.

S (Save file) Command

Writes the specified program (or data) in the free area onto a diskette.

*STEST # 2 Output program (data) to TEST# 2.0BJ
FROM ? 8400 TO ? 87E7 Output program (data) from address 8400
EXECUTE ? 1200 DATA ? 1200 to87E7 ‘

Execute address 1200, data address 1200

File name can be specified by entering an S (Save file) command when "> appears to indicate

that command entry is awaited.

—The addresses of the memory block in the free area which is to be output are specified with 4-digit

hexadecimal numbers.

—— The execute address and data address of the object (OBJ) file created are specified with 4-digit

hexadecimal numbers.
The data address is the address to which the program (data) is to be reloaded into memory by a

later RUN or LOAD command.

The execute address is the address from which a program reloaded into memory is to be executed.

Specify 0000 when either of these addresses is not necessary.

U/PROM-9

FORMATTING COMMANDS —

P (Punch) Command

Punches data in the free area in the specified format.

—— Enter the P (Punch) command when "> appears to indicate that command entry is awaited.
——Next, the file name is specified. This is not the file name which is included on the diskette, but the
name which is to be punched at the beginning of the tape. Refer to the explanations of the various

formats for details. (When no file name is needed, enter only @)
—Next, specify the conversion-format (A-H) and enter @ .

—Specify the starting and ending addresses of the memory block in the free area which is to be

output with 4-digit hexadecimal numbers.

—Finally, specify the PROM write address. (This step may not be required, depending on the

format.)

The P command described above outputs formatted data to a PTP device. (More precisely, SPTP/LF is
used as the output device.)

The PROM FORMATTER can also output converted format data to devices other than PTP (including
user I/O and diskette).

(Ex. 1) *P$USRI Outputs to user I/O
(Ex. 2) *kPXYZ Outputs file name XYZ. ASC to the diskette.

(Ex. 3) >PS$PTP/PE/LF Adds even parity to data, affixed after and outputs
to a PTP device.

An an application, data may be sent directly to the PROM writer by creating hardware and user

routines for its online interface.

U/PROM-10

R (Read) Command

This command reads in data formatted in the BNPF, HEXADECIMAL formats from a paper tape

reader.
kR Read command
FORMAT ? C Format C
RAM FROM ? 8000 TO 83FF Addresses in the free area into which data is to
FILENAME PROM# 2 be read.

—— Enter the R (Read) command when "x'* appears to indicate that command entry is awaited.

Next, specify the format of the data to be read.

Finally, specify the starting address of the free area into which the data is to be read with a 4-digit

hexadecimal number.

—The last data address and the file name are displayed after the read is completed and entry of the

next command is awaited.

——With this PROM writer format, it may not be possible to read tapes punched using other programs

because of the need to maintain a certain minimum degree of redundancy.

The R command described above reads in formatted data from a PTR device. (More precisely, $PTR

is used as the input device.)
The PROM FORMATTER can also read in converted format data from devices other than PTR

(including user I/O and diskette).

(Ex. 1) >kR$USR2 Input from user 1/0
(Ex.2) *¥RXYZI[CR Input from XYZ. ASC on a diskette
(Ex. 3) >XRS$PTR/PE[CR] Inputs data with even parity affixed from PTR.

——OTHER COMMANDS —

M (Memory dump/modify) Command

This command is used to display and modify the contents of the free area.

M , M command
RAM FROM? 7000 TO? 7014 Area to be displayed.

7000 ED 73 C8 S5F 01 C6 5F CD NEBRELFEM
7008 60 22 D8 CD 3E 28 CA 27 sUABHO000
7010 28 22 DE 26 CD OmaE s

U/PROM-11

——Enter the M (Memory dump/modify) command when "x appears to indicate that command entry

is awaited.

——Next, specify the starting and ending addresses in the free area of the data to be displayed with 4

digit hexadecimal numbers.

—The PROM FORMATTER divides data in the specified addresses into 8-byte segments and displays
the address (4 hexadecimal digits), the 8 bytes of data (as groups of 2 hexadecimal digits) and the 8
corresponding ASCII characters in that order. However, when the corresponding ASCII character
cannot be displayed, a "." is displayed in its place. Further, data is printed in 16 byte segments

when the printer is used with the “"#'" command.

Execution of the M command can be suspended or resumed by pressing [SPACE|. A switch can be
made to the command entry mode by pressing [SHIFT| + [BREAK].

——1If no change is required in data displayed using the M command, just press [CR|. When a change is
required, move the cursor to the position where the change is to be made and press IQ_E] after
entering the 2 new hexadecimal digits. (The change is made when @] is pressed.) After data
modification is completed, move the cursor to an empty line and press @I to return to the

command wait state.

—— Data can also be changed using the cursor when display is suspended with |[SPACE] . In this case,
display is resumed when the cursor is moved to an empty line and is pressed.

Caution

Data is only printed when the printer is used with the "#" command; modification of data is not

possible in this case.

(Change printer mode) Command

This command starts and stops output to the printer. Printer output is OFF when the PROM
FORMATTER is activated, and is changed from ON to OFF to ON each time the "#' command is

executed.
When printer output is ON, data is printed almost as it appears on the display screen.

& (Clear) Command

Buries the entire free area in hexadecimal code (FFH).

U/PROM-12

? (Display free area) Command
Displays the free area.

! (Return) Command

Terminates the PROM FORMATTER and returns to FDOS.

——FORMAT COMMANDS —

Format commands are commands entered when "FORMAT?" is displayed during execution of the P
and R commands. Selecting one of these commands during execution of the P command determines
whether data is to be punched in BNPF, HEXADECIMAL or other format. Failure to specify the correct

format command during execution of the R command will result in failure to correctly read the program

into the free area.

A Command

Used to specify the Britronics BNPF format. The control character "B" may not be used when the

file name is specified.

B Command

Used to specify the Britronics HEXADECIMAL format.

C Command

Used to specify the Britronics BINARY format. Numerals and the codes (: ; < =>7) may not be
used when the file name is specified.

——The message "PROM ADDRESS?" is displayed during execution of the P command to request
specification of the PROM loading address; specify it as a 4-digit number.

—— Check sums are written following the data (with the P command).

Data from the address specification to the check sums constitutes one block; if data is to be loaded
into an address which has been skipped, the operation must be divided into two or more parts. This

also applies when two or more blocks are read in with the R command.

D Command

This command is used to specify the Intel BNPF format.

U/PROM-13

—— The character "B" cannot be used in the file name.

E Command
—— This command is used to specify the Takeda Riken BNPF format. The character "B’ may be used

in the file name.

—— A file is a block which begins with *$'" and ends with ")".

—— The message "PROM ADDRESS?" is displayed during execution of the P command to request
specification of the PROM loading address; specify it as a 4-digit number.

—If two or more blocks are to be read out or written in, the operation must be divided into two or

more parts.

F Command

——This command is used to specify the Takeda Riken B10OF format. The character "B" may be used

in the file name.

——A file is a block which begins with "$" and ends with)"

—— The message "PROM ADDRESS?" is displayed during execution of the P command to request
specification of the PROM Loading address; specify it as a 4-digit number.

—If two or more blocks are to be read out or written in, the operation must be divided into two or

more parts.

G Command

——This command is used to specify the Takeda Riken HEXADECIMAL format.

—— A file is a block which begins with "'$" and ends with "")"".
——The message "PROM ADDRESS? " is displayed during execution of the P command to request
specification of the PROM loading address; specify it as a 4-digit number.

—— If two or more blocks are to be read out or written in, the operation must be divided into two or

more parts.

H Command
—— This command is used to specify the Minato Electronics HEXADECIMAL format.

—— The start-of-data symbol ("'["') may not be used in the file name.

—— The message "PROM ADDRESS?" is displayed during execution of the R command to request
specification of the PROM loading address; specify it as a 4-digit number.
Denote the end of data with the symbol "] ".

U/PROM-14

- DIFFERENCES BETWEEN PROM FORMATTERS SP-7501 AND SP-2501

This manual is written for FDOS PROM formatter SP-7501; the principal differences between this

version and the previous cassette-based version (PROM formatter SP-2501) are described below for

reference.

This version includes a RELOCATING
LOADER (SP-2301) and SYMBOLIC DE-
BUGGER (SP-2401) as well as the PROM
formatter. These allow input of relocatable
files (RB).

File input/output is from/to cassette tape
only.

The OBJ file must be created using the
FDOS LINK command.
Object file I/O is from/to diskette only.
I/O for converted format files (with the
exception of $MEM and $CMT) is possible
with all FDOS devices.

Paper tape parity is determined with the
> FPC (Parity Change) command.

Non-parity is standard; if a parity speci-
fication is to be made, specify it in the
following manner: >KP$PTP/PE/LF.

Some of the commands and messages are different.

U/PROM-15

PROM FORMATTER (SP-7501) COMMANDS & MESSAGES

. Fﬂe Input/ . | s (Save) Saves the program (data) in the free area on diskette.
Output Commands Y (Yank) Loads a program (data) from the diskette into the free area.
Format - | P (Punch) Punches the specified contents of the free area in the specified format.
- commands - 1 R (Read) Reads in a paper tape punched in the format specified in the command.
M (Memory) Displays and modifies data in the free area.
’ | & (Clear) Buries all data in the free area in hexadecimal code FFH.
Other commands | # Switches the list mode for listing on a printer.
‘ = ? Displays the starting and ending addresses of the free area.
! (Return) Returns control to FDOS.

MEMORY PROTECTION An address outside of the free area was specified. Y,S,P,R,M
IL COMMAND The command was not entered correctly. Y,S,P,R
IL DATA The format specified does not match the format read. R

CHECK SUM Check sum error R
$LPT:NOT READY The printer is not ready. #
$PTP:NOT READY The paper tape punch is not ready. P
$PTR:NOT READY The paper tape reader is not ready. R

See the "System Error Messages'' in System Command for other error messages.

Note:

Entry of characters other than SYPRM & # ? or ! will cause a return to the command wait state after
the command table is displayed.

If a character other than A-H is input while FORMAT? is displayed and format entry awaited, the
format table will be displayed, after which the format entry wait state will be reentered. A return can

be made to the command wait state at this time by pressing F SHIFTJ +rBREAKJ.

U/PROM-16

EXAMPLE OF PLOTTER CONTROL APPLICATION

Using the eidtor, assembler and BASIC compiler of FDOS, main programs can be written in the
familiar BASIC language without reduction in processing speed if control programs are made for control

hardware. Another benefit is that commands developed by the user can be used as BASIC commands.

—— INTERFACE CARD —

The universal interface card MZ-80I/O-1 is used for the interface between the MZ-80 series computer
and the MIPLOT WX4671 plotter.

The connection conditions are as hown in Figure 1.

Output port (OFH) Input port (OEH)
1/O card | Plotter side | I/O card Plotter side
0 27 STROBE 117 7CO—O | ON
0 26 DB 6 116 6(O— | ON 5(V)
025 DB 5 115 Grounc}ed on 50— | ON SN7406
the universal. (output) 220 Q
024 DB 4 T14 interface card 4O—0O | ON S5 Data
023 DB 3 113 sO~NO lorr 0 line
- - SN74LS125A = 3900
022 DB 2 112 200 | OFF (input)
021 DB 1 111 ERROR 1O | OFF
020 DB 0 110 BUSY
a) Connection conditions for all input terminals b) Address switch settings c) Data line termination

Fig. 1 Connection conditions conditions

SN7404 is included as the data driver for the universal interface card, but ICs 14 and 15 only are
changed to SN7406. All data line and status input terminations are made as shown in Figure 1-c). A 1.5m
cable can be used for this purpose.

See the universal interface card instructions for details.

—— PLOTTER CONTROL PROGRAM

This section may skip if you are not interested in assembly subroutines.

1. Conditions for linkage with a BASIC statement
Conditions for linkage with a BASIC statement

(a) Command names must be externally declared with the ENT statement SIZE:ENT,
(b) The number of parameters must be specified. DEFB 1 (1 parameter)

(c) The parameter type must be specified. DEFB 0 (real number)

(d) Buffers must be specified for parameters SE:DEFS 2 (2 bytes reserved)

(e) The RET instruction must be included at the end of all control routines.

The above are the linkage conditions; the processing program is written between items (d) and (e).

U/PLOTTER-1

2. Linkage conditions when an error occurs

(a) A subroutine is used from FDOS library RELO. LIB. CALL BEERR
(b) The error number is written DEFB 80

(¢) The error message is written DEFM 'PLOTTER ERROR'

(d) The terminator is written DEFB O0DH

This causes XER 80: PLOTTER ERROR to be output on the display screen when a plotter error

occurs.
3. Use of external subroutines

This control program uses 4 routines out of the subroutines included in FDOS library RELO. LIB.
One of these is BEERR, which was shown above; the remaining three are as follows:

(a) ..INTO
16 bit binary data is set in the HL register with a sign attached when an address with a

parameter is loaded in the HL register and called. All registers except the AF register are
protected in the event of an overflow if the carry flag is set.

(b) CASC’
The unsigned 16-bit binary data from the HL register is converted to ASCII code and
stored in the address indicated in the DE register, then ODH is set.

(¢) .MOVE'
When the parameter contains a type 1 string and an address with data is loaded in the HL

register and called, a type 2 string is set in the address indicated by the DE register and
ODH is set.

See the "Library/Package" instructions for details on all subroutines.

4. Plotter control codes

All data for the MIPLOT WX4671 currently used is in 7-bit ASCII code. Input statuses include the
BUSY signal and the ERROR signal. Data output is possible when the BUSY signal goes low, and the
data is taken in on the plotter side when the STROBE signal is output.

"," (that is, 2CH) is used as the data delimiter and O3H-ODH are valid as data terminators. However,
only OAH will be accepted when an error occurs; an error condition is not cleared by any data

terminator other than OAH.

At the port on the MZ-80 side, OEH is used for the status (that is, as the input for the BUSY and
ERROR signals) and OFH is used for the data and STROBE signal output.

U/PLOTTER-2

5. Program outline

Linkage conditions for a BASIC compiler have already been indicated; however, string type becomes
applicable in the parameter type specification with the 80H. Moreover, parameter types and parameter
buffers must be added depending on the number of parameters; the steps described in subparagraphs (¢)
and (d) of that section are not required if the number of parameters is zero. See routines CTYPE, SIZE,
PLOT, HOME and so forth of the assembly listing for this.

This is illustrated using the PLOT routine as a representative example. The flowchart is as shown in

Figure 2 (pages 4 and 5).

(a) Data output
Although subroutines: COUT, PLOT1 and DOUT are used, DOUT is the one which actually outputs
the data. With DOUT, the data set in the accumulator is output to the plotter with the STROBE signal if
the BUSY signal of the plotter is LOW. If BUSY is HIGH the routine repeats a loop.
With COUT and PLOT1, the data at the address indicated in the HL register is loaded in the
accumulator and then DOUT is executed; this is repeated until ODH is output. After ODH is output, a
check is made for plotter errors and a jump is made to the error routine if any are found. Note that

continuation of program execution is possible if ON ERROR processing is provided on the BASIC side.

(b) Data conversion routine
As was indicated previously, all data must be converted into ASCII code since the plotter will not
accept data in any other form.
Subroutine BTOA uses the RELO.LIB routine in FDOS to convert data to ASCII code. This is as
shown in the flowchart in Figure 2-a) and paragraph 3, "Use of external subroutines'" ; however, checks

are also made for positive, negative and overflow data.

(c) PLOT x, y routine

As is shown in the flowchart, the two parameters x and y are specified following the external
declaration. The parameter type is real number and two bytes are set in the parameter buffer for both x
and y.

The pre-conversion data address, the starting address of the buffer for storage of the data after
conversion and the maximum value of x are loaded in registers HL, DE and BC, respectively, then BTOA
is called and the data is checked and converted to ASCII code. Afterwards, the data delimiter for the
plotter (*',") is loaded and the process is repeated for y. The starting address of the data converted into
ASCII code is loaded into the HL register, the 44H ("'D"") command (which draws a line on the plotter) is
loaded and COUT is called. With COUT, the contents of the address indicated in the HL register are

output to the plotter following the command.

U/PLOTTER-3

PLOT) (BTOA)

/ '
.External .INTO
declaration Data at the
address indicate

in HL converted
to binary and
| stored in HL

Number of
parameters set (2) | X and y

Y

Parameter type set
(real number)

Overflow?
(CF=1)

X coordinate

2 buffer bytes set
for the data
address (PX)

CKNEG
Check whether
data is positive
or negative;
display an error
message if negative

A

y coordinate KCOD

Parameter type set
(real number)

Setting of linkage conditions

C
b Check whether
2 buffer bytes sct the data is larger
,fé’é te};e ?I?;% or smaller than
L the data in BC;
error if larger
HL« address of real r—
number (X) -
DE<Start of the ‘CASC
ASCII code buffer| . Binary data
BC«-Mlaximum data 1ndlcat<taddbty HL
converted to
value (x) ASCII and store

in the address

|
\

v

INS 2C
2CH("",")
inserted in

place of ODH.

HL< address of real
number(y.

DE<address follow-

ing 2CH

BC«<Maximum data
value (y)

Y

BTOA

!

DE—HL
(POP HL)

A<44H (‘D)
command for
drawing a line

CouT
a) ASCII conversion subroutine

Fig. 2 PLOT routine

U/PLOTTER-4

(PLOT1)

(CcouT)

y

DOUT

|
ot

ACC—(HL)

'

DOUT

v

Mask bit 7

HL<—HL +1

PLOT 1

yes

ODH ?

yes

CKER

Input the status

Error?

Error display

b) Data output subroutine

Fig. 2 PLOT routine

U/PLOTTER-5

no

{ DOUT)

Save AF

‘ —]

Status brought in

Ready ?

yes

AF restored

Logical sum of
accumulator and
80H obtained
to set the strobe

v

Data, strobe
output

1 Return }

—— COMMAND TABLE—

Table 1 Plotter control commands

- PLOT x,y Draws a straight line from the current position of the pen to the coordinates X,y;
x =0-3600, y = 0—2540 are the possible range (other values will result in an error).
IPLOT Ax, Ay Draws a straight line from the current position of the pen for the values of +ax, Ay
only.
MOVE x Lifts the pen and moves it to the position indicated by coordinates x and y. x = 0-3600,
1y y = 0-2540 are the possible range (other values will result in an error).
IMOVE Ax, Ay Lifts the pen and moves it by an amount indicated by +Ax, +Ay.
XAXIS x, n Draws a scale with n divisions on the X axis at intervals indicated by x.
YAXIS x,n Draws a scale with n division on the Y axis at intervals indicated by y.
CTYPE AS Prints the character string indicated by AS$.
SIZE n Specifies that characters are to be written in the size indicated by n; n = 0—15.
CSIZE Specifies that characters are to be written in the size initially set for the plotter (n =4 is
output automatically).
DOT x Draws a dotted line over the interval specified by x (x<127).
DOTM Draws a line of dots spaced at intervals of 3 mm.
LINE Clears DOT x or DOTM and returns to a straight line.
PUP Pen up (same function as IMOVEQ, 0)
PDOWN Pen down (same function as IPLOTO, 0)
ANGL n Rotates characters by the angle (in the counterclockwise direction) specified by n.
n=0-3 n=0.0° n=1.90° n=2..180° n=3.270°
MARK n Writes the mark specified by n.n= 1-6
: n=1... n=2.& n=3.0 n=4..4 n=5..X n=6..Q
HOME Moves the pen to the x,y coordinates it was at when the power was turned on clears the
error lamp and clears plotter errors.
ERCLR Clears plotter errors when they occur; the error lamp is not cleared, however.
(Noie) | Values indicated by x and y are specified as integral multiples of 0.1 mm; for example,

PLOT 100,2000 results in a line being drawn to x =10 mm and y =200 mm.

U/PLOTTER-6

@ External declaration made
to link with commands
used in the plotter
control routine.

v

@ Draws the FDOS title.

v

@ Makes a diamond shaped
pattern.

Y

(@) Rotates the character
string "' 3D- GRAPH'" and
writes it.

v

@ Draws the 3-dimensional
illustration

v

(6) Draws scales on the X
and Y axes, adds marks
to the data and draws
a graph.

v

(7) Writes the character string
“SHARP" in varying sizes.

v

Writes representative
characters in normal size.

@ Draws an outline by
writing solid lines, and
dotted lines with variably
spaced segments.

v

(10) Pen up and pen down are
tested

End

Fig. 3 Flowchart of the BASIC program

——OUTLINE OF THE BASIC PROGRAM —

As is indicated in the flowchart at left, the program

consists of 10 subroutines.

At @, the EXTERNAL statement is used for linking the
program with the plotter control program commands.

Although it is not necessary to use line numbers with
statements other than GOTO and GOSUB, they are used in

other locations to make the program easier to understand.

At @, the title of FDOS is drawn from line number 110 to
910. This routine uses the MOVE, IMOVE, PLOT and
IPLOT commands.

At 3@, a diamond pattern is drawn from line number 920
to 1050. MOVE X, Y is used to return the pen to the
starting point, while IPLOT A, B is used to draw the

pattern.

At @, "3D-GRAPH" specified by A$ is written at 90°
angles with ANGL I and CTYPE A$ from line number
1090 to 1140.

At (®, repetitions of attenuated SIN (X) and a 3
dimensional graph are drawn from line number 1190 to
1910. The 3 dimensional graph is drawn in dots using the
PUP and PDOWN commands.
Try changing the program from line number 1500 to 1510
as shown below to draw the graph with solid lines.

1500 IF (A-2)> T THEN 1520

1502 T=A

1504 IF S=0 THEN MOVE DX, DY:GOTO 1508

1506 PLOT DX, DY

1508 PDOWN:S=1

1510 RETURN

1520 MOVE DX, DY:T=A:S=0:GOTO 1510

With this program, S indicates the pen status; s=0 raises

the pen while s=1 lowers it.

U/PLOTTER-7

At (®), scales are drawn on the Xand Y axes with the XAXIS and YAXIS commands and marks are drawn
on the graph with the MARK command; this processing is performed from line 1990 to line 2190. The
dotted line is drawn with the DOTM command, and the LINE command is used to return to a solid line.

The curve is a drawing of SIN (X)/X. Refer to the command table for these commands.

At @, the SIZE command is used from line number 2390 to 2460 to write the word SHARP in

characters of varying sizes. Afterwards, the CSIZE command is used to return to standard size.
At ®, representative characters of standard size are drawn from line number 2790 to 2820.

At @, the HOME, DOT and LINE commands are used from line number 3000 to 5010 to draw the

surrounding outline by changing between solid lines and dotted lines of varying pitch.
At , pen up and pen down are tested from line number 5100 to END.

If the program is written so that the HOME command can be executed if an error occurs with the
plotter, the error can be cleared, the error lamp extinguished and the pen returned to the starting
position. If the ERCLR command is used (it is not in this program), the error can be cleared without

moving the pen; however, in this case the error lamp is not extinguished.

—— Conclusion ——

As has been shown above, user-written programs can be easily linked with BASIC. By observing the
conditions for linkage, it is possible to connect many devices other than the plotter. When a main
program is created using the assembler, it may be necessary to output a picture on the display screen.
The BASIC compiler and FDOS are very useful for this purpose. Further, the processing is the same as

with machine language. The photograph on page 9 shows the result of execution of this program.

U/PLOTTER-8

ol P
| 3
[o 4
|l S
| - . I
1 —) |
:ly Hagya-gs SD-GRAPH L« i o ||:
| 8 \ ’ i
M & AN 7/ Iy
i 3 AR I
I| : - N]I,
| AN AN II:
1 1
”[\¥/ \J/ XAXIS H
J w
1

PEN UP DOWN II'

~sHare SHARP !

I
'll 1234567890ABCDEFGHI JKLMNOPORSTUVWXYZ [#878&8 () +-,./*<>072: II'

—— References ——

1. Watanabe Manufacturing Co., MIPLOT WX4671 Instruction Manual

2. Sharp Corp., Universal Interface Card Instruction Manual

U/PLOTTER-9

——SAMPLE PROGRAM (PLOTTER CONTROL ROUTINES)—

81
8z
az
84
N
Be‘
ac
g9

13

aoen
anee
e0aa
esaa
aves
(512110
asee
Boag
apen
vBee
Llals]s]
6000
%15]c)
alsa]")
aulcle)
aoBoe
(15]5]5]
8300
avoe
aoaa
aoeo
aoeeo
5151510
aeoe
avao

. 8oea

aoaoe
6608
6lc 517
ave8
8000
aoee
80606
avap
aveo
eved
80106
ool
ea10 vz
va1l oe
eal12

mm

: 0014 88

8815

a1y

@17 2A1206
@o1R 110e6a
eaiD DS
@81E B81116E
a2l Ch3caz
avz4 COoDOZ

.
s

PAGE @1 ##

FLOTTER COMTREOL

FLOTTER W 4671
LUHIVERSAL I.-0

i BRSIC SUBROUTIH LIHEK

: CALL ..INT@

CHR T'YFE FARAMETER TO RASCIICODECHL TO [DEX

: MITHOUT AF KEEF

: 16ETT BIMARY TO HL

: CALL CRZC-

: WITHOUT HLEAF KEEP

: HLC1€BIT EIMARYTO DE ADDRESS
: (DE=ASCIT EHD=00H

: CALL BEERR

, ERROR MSG DSP—-OUT

: CALL .MOVE”

. PORT

FLTS: EQU @EH
FLTD: EQU &FH

F MOUE <, CPEM UF2

MBUFF: DEFZ +1¢&
MOVE: EHT
DEFB 2
LEFE @
MK: DEFS +2
DEFE @
M4 DEFS +2

’

LD HL, (M
LD [E. MBUFF
FUZH DE

LC EC.BE11H
CALL ETOA
CAHLL IMES2ZC

U/PLOTTER-10

sPLOTTER STRTUS RERLD
fPLOTTER DATAH OUT

fNO OF FRRAMETER
sREARL HO.

sREAL HO.

F 3680

a1

az
a4
a5
23]

&k

aezy
88zH
eezD
624
8031
aez3
eaze
apze
8aie
8836
8046
8846
(51501
8847
8048
ee4n
va4B
ee4D
804D
eese
8853
0054
85’
aasA
aesD
0veo
0863
aee6
0Be 7
eve9
eaeC
886C
886C
8e6C
earC
eavC
ea7C
eervD
%15 g 2
eoge
aee1
0083
ees3
8086
0089
eesA
easD

[rTelw]
L 4L b

0093
8096

2ZA158a
a1EDO2
Cch3cez
E1l
JE4D
C34z01

ez
514

20

2R4860@
113600
DS
01116E
CcD4Ca2
ChebB2
2A4E00
81EDGY
Ch4CB2
E1l
3ES2
C34201

e
<

ea
oa

2R7EBG
116C00
DS

81116E
cD3Ccoz

~re ~
uuoDﬁc

2A8100
81116E

238 HASSEMBLER SFP-7181 PAGE 62

L
LD
CHLL
FOF
Lo
IF

MEUFF: DEFS

MOUE: ENT
DEFE
LEFE

IMK: DEFS
DEFBE

IMy': DEFS

LD
LD
PUSH
LD
CARLL
CALL
LD
LD
CALL
FOF
LD
JP

bt 48 ey U cam am

R-AX1S
GRMBUF: DEFS

» s ua

KAKIS: ENT
DEFB
DEFB

QR: DEFS
DEFB

RX: DEFS

LD
LD
PUSH
LD
CALL
CARLL
LD
LD

E o

HL, <MY
BLC,0%EDH
ETOR

HL

A, 4DH
couT

ITHCREASE MOUECPEM UPOINE. DY

+16é

HL CIMx
[E. IMBUFF
DE
BC.BE11H
NSETOH
INS2C
HL, CIMY
BC,B9EDH
MSBTOR
HL

A,S2H
couT

+1¢&

+ O+ OM
)

N

HL, <QXD
DE, QRKBUF
DE
BC.BE11H
ETOR

T LA,

INSZC
HL . (RX)
BC,VE11H

U/PLOTTER-11

[]
n
H
o

M7 MOUE CMD

fHO OF PRRAMETER
fREAL

fREAL

: “R“ RELATIVE MOUE CMD

sNO OF PARERMETER
sREAL

sREAL

33600

01
az

94
oS
86
a7
0&:
B3
16
1
1z
13
14
15
1€
15
15
s

21

23
24
25
26
T
2€
29
3@
31
3z
%7
24
35
{2
x>

38
39
46
41
42
43
44
45
46
4
4%

56

R

@993
aaac

" BE9E

QaRG
aoRA
(5]u]sg)
[a[u/s]s]
151%/5]y)
8BED
aaEd
woE 1
@age2
0oB4
515/ 53]
o172
@8R7
03EBR
BoBD
BORE
aoc1
aac4
8acy
BACA
aacDh
ee0o
oaDz
aaoDs
o8abs
aans
@803
8003
8803

. BVES

@vES
GPES
@BEY
0B8ER
AuEC
@oED
@oEF
OBEF
@0F2
BOFS
B0F6
@0F9
@oFC
BeFF
e1a2
a1es
@103

CO3CHz
JE3L

1 DT

CeoLl

9z
a6

aa

2AB200
11AB30
DS
O1EDOS
ChL3caz
Chebaz
ZABSH@
O1EDES
Ch3Cez
JE3@
Chzeaz
El

1&eb

oz
(516

515

2HERGE
11D8v6
DS

01118E
Ch4Coz
chebo2
ZAEDB8
O1EDB9
ch4Ccoz
El

288 ASSEMELER SP-7141 FPAGE @3 #

CALL ETOR
LD A.-Z1H
JE H=0UT

Y-HKIS

GRVEUF: DEFS +1€
YAXIS: ENT
DEFE
DEFE @
[DEFS +2
DEFE @
R DEFS +2

Lo HL ., O

LD [E, GRYELF

FUSH [E

Le BEC. @2ELH

CALL BTOR

CALL THsZC

LD HL . (R4

LD BC. B2EDH

CALL ETOA

LD H> ZBH
A=0UT: CALL ARIS

FOF HL

JR FLOTY

INCREASE PLOT M40, WW+0Y
IFEUFF: DEFS +1&
IFLOT: EMT

DEFE 2
DEFE @

IPX: DEFS +2
DEFE &

+3

IPY': DEFS

LD HL. (IF:)
LD [E. IFBUFF
PUSH [E

LD BC,B8E11H
CALL H3ETOA
CALL IHNsZC

LD HL, CIFY
LD BC, @9EDH
CALL MNSBTOR
FOP HL

U/PLOTTER-12

sMO OF FRFERAMETER
sFERL

*REAL

12540

[Sh]
o
£
[x]

-~
L

N0 OF PARAMETER
sREAL

sREAL

$ 3608

$2548

a1
az
a3
04
as
8¢,
ar
ag
a9
1a
11
12
13
14
1S
1é
17
18
19
2e
21
22

-
-t

24

=
25

26
26
29
3@
31
32
33
34
35
36

7
38
39
46
41
4z
43
44
45
46
47
48
49
Se

Aok

aips
aleB
eiap
a1aD
aiap
a1eD
811D
a11D
811D
a1in
G11E
O11F
a1z1
a122
0124
@124
8127
a12R
812B
g1zE
a1z
0134
a13v
a12n
a13p
813k
aida
8142
8142
8142

8142 C

8145
a146
8149
814B
@14D
814F
8158
8152
8152
0152
8152
8154
0156
8157
815A
815B

= Ay

>
&~

3E49
1835

(o))
o

oa

ZA1FB1
11apal
DS
91118k
Ch3cvz
ChéDB2
2ZRZZ281
81EDB?
ch3coz
El
3E44
1gaa

DBBE

E6B2

cae

Choaoe E
=15

S@4C4F54
54455220
4552524F

S5z

860 HSSEMELER SP-T181 PAGE 64

LD
IR

POPLOT =08
FTEUFF: DEFS

3

FLOT: EMT
DEFRB
LEFB
Fie LEFS
LEFE
P LEFS=

LD
LD
FLSH
LD
CALL
CALL
LD
LD
CALL
FOF
LD
IR

3 ASCII CODE

CouT: CALL

FLOT1: LD
CALL
AHL
CF
JR
IHC
JR

3 ERROR CHECK

CKER: IH
AND
RET

CKER1: CALL
DEFB
DEFHM

H»43H
couT

+1€

+ @R+ S
[N

[N

e
mmi—

» (P
- PTBUFF

BC.BE11H
ETOR
INS2C
HL . (PYD
EC. 89EDH
BTOR

HL

As43H
couT

™

L]

ouT SUE

LOuT

A CHL
LouT
TFH
apH
ZsCKER
HL
FLOT1

A, (PLTS
azH

HZ
BEERE
S8H

‘PLOTTER ERROR -

U/PLOTTER-13

:°I7 JHCRERSE CMD

fHO OF PARAMETER
*REAL

fREAL

:°0 DRAW CMD

$CKERCBIT 1=@87%>

ER=]

91
82
03
94
8s
9€
o7
85
89
10
11
12
13
14
15
16
17
15
19
2@
21
23
24
25
26
27
25
29
3a
31
32
33
34
35
36
37
38
39
46
41
42
43
44
45
46
47
45
49
56

% Z0R ASSEMBLER SP-7181

81¢8
81e9
@169
a1e9
8169
8163
a1¢€An
a1¢eb
aleb
81D
a17e
8173
0174
ai1ve
01738
aivs
8178
a1vs
aivD
@1vD
817D

* B1VE

a17F
ai81
a1s1
8184
0187
a18A
ai1eD
B818E
@19
@192
8192
8192
8192
8197
a197
8197
8198
81939
a19B
8198
819
B1A1
a1A4
81R7Y
aips
81AA
@1[D
aieo

ar

a1
8a

2ReBAl
Chaava E
EE

3ESH

18CH

81
oa

2A7Fal
11vg81
81 18868
CD3C82
EE
3ES3
1eB@

81
20

2A9961
119281
81300806
Cch3Ccaz
EE
3E42
ch42061
213Co2
196

.
3

: FRINT
CTYFE:

TP:

FRGE 65

EFE

ASCII
EHT
LEFE
DEFE
DEFS

LD
CALL
ExX
LD
IR

: ZIZE ALPHA

DOCETIE €3 B LI
= m
N
m m

wm
m

.
3

LEFS

EMT

DEFBE
LEFB
DEFS

LD
LL
LD
CALL
Ex
LD
JR

i DOT LIME

DBUF:
DOT:

DT:

.
2

DOTWR:

DEFS

ENT

DEFE
DEFB
DEFS

LD
LD
L
CHLL
Ex
LD
CHLL
LD
JR

acH

+ 00—
| A
I

HL. (TFX
. MOVE <
DE-HL
H»SaH
couT

1
5}
+

!

t

HL» 'sSE)
LE, SBUF
BEC.pa1iaH
BTOH
DE>HL
H.53H
couT

a
+2

HL, DT>
0E, DBUF
EC, BB36H
BTOA
DE-HL
H:42H
couT

HL . DOTMSG
cout

U/PLOTTER-14

MO OF PRARRMETER
s CHE

PP FRIMT CHL

#NO OF FPRRAMETER
fREAL

“ SCALE CHMO

I'J',;

$NO OF PARAMETER
s REAL

: ‘B7 LINE GRSE CMD

a1
gz
a3
a4
85
06
ar

a9
1@
11
13
14
15
16

-

1e
19
28
21
23
24
25
26’
27
28
29
38
31
32
33
34

35

37
38
39
40
41
42
43
44
45
46
47
48

58

aiB2
aipz
aiBz

a1e3 =

a1Bsé
eiBs
81B8
a1B9
aiBC
@1BE
@1BE
a1BF
e1c2
81C4
81C4
e1c4
a1c4
@1C4
81Ccs
aics
aice
81CB
81CcB
8i1CB
aice
e1cc
81CF
01D1
a1D1
8101
e1b1
a1D1
eiD2
2104
8104
a1h4
2104
8104
8105
aib?
81DA
e10C
61DE
81DE
81DE
010E
B1E3
A1E3
O1E3
81E4

80 ASSEMELER SP-7161

oa
218F82
18084

6]9)
219282
C34501

< 15)
219782
18F7

5]5]
1866

06
3E48
Ch2Cez2
3EBH
184E

o1
51%]

PAGE @6

]
s

LOTH: EHT
DEFE
L
JR

LIHE: ENT
LEFE
LD
JR

CSIZE: ENT
LEFE
LD
JR

i FEN UF

FUP: ENT
DEFB
LD

CNCT: JF

: PEM DOWN

FDOWN: EHT
DEFB
Lo
IR

ERROR CLEAR
RCLR: ENT

DEFE
JR

1] wo os e

-
3

; HOME

HOME: EHT
LEFE
LD
CALL

LFOUT: LD
JR

ROTHTE ALFHA

FBUF: DEFS

ANGL : EMT
DEFB
LEFB

3

a
HL, DOTIMEE
COTUE

a.
HL. LTMSGE
CHCT

a
HL, ISMEG
CHCT

a
HL, PUMZG
FLOT1

@
HL, PDMS5E
CHCT

2]
LFOUT

A, 45H
pouT
A, BRH
DouT

+5

U/PLOTTER-15

SHD FARAMETER

$HO PRARAMETER

$MO PRARAMETER

#HO PARAMETER

PARAMETER

=
[

N0 PARAMETER

sHD PARAMETER
: “H’ HOME

sER CLEAR CMD

:NO OF PRARAMETER

sREAL

ok 7850 ASSEMBLER SP-7181 PAGE 87

81 B1ES AL: DEF= 2

82 B1EV :

83 B1E? 2RESH1 LD HL. CAL >

84 O1ER 11DEBI LE E, PELUF

A% @1ED v10488 LD BEC, Ba@4H

v¢ BiF® CL3CHZ CHLL ETOR

ar B1F3 EE Ex LEs HL

88 B1F4 3IESI L A-S1H 26 ROTATE CMD
8% BlFe C34201 JF couT

la @1F9 :

11 B1F3 i MARE

12 @iF9 ;

13 a1F3 MBLIF: DEFS +5

14 B1FE :

15 B1FE MARE:: EMNT

16 B1FE ©1 DEFE 1 fHO OF FRRAMETER
v a1FF 9@ LEFE @ sREAL

1& 8208 Mk DEFS +Z

19 8ze2 H

20 @zez 2ABBB2 L HL . CMK2

21 6285 Choove E CALL ..IHT®

22 8283 DROBLO E JP C,ERZ

23 8zeB CD3COz CALL CKHEG

24 @Z0E 810700 LD B, BaavH

25 @211 ChLyrez CALL CKcope

26 0214 11F981 L [DE, MEUF

27 8217 Chesoa E CALL CRSC-

28 921A EB Ex DE- HL

2% 821B 3E4E L A.4EH 7MY MARK CHD
J8 621D C34:z81 JF CouT

31 @2ze H

32 8:229 i H=IS SUB

33 8228 ;

34 6228 FS ISES ¢ FUSH RF

35 8221 3ESE LD H.S3H e ARIS CMD
36 8223 CDh2C02 CALL DOuUT

37 8226 F1 FOF AF

38 8227 CDhzCw2 CALL [OUT

3% 022R 3E2C AXIS1: LD H.2CH % 7 DELIMITER
46 822 :

41 B22C ;

42 022C 33353353355

43 @22C H

44 822C 3 PLOTTER DATA COMTROL

45 ezzC H H=DATH

46 622C 3

47 ©Bz2zC 3333353333533

48 82zC H

49 022C FS DOUT: PUSH AF

5@ 822D DBBE DOUTFP: IHN A. CPLTS>

U/PLOTTER-16

% 280 ASSEMBLER SP-F181 FAGE @3 %

01 B2ZF CbB47 BEIT &.H

gz 9231 26FR JE HZ, DOUTP
9z 8233 AF ®OR A

84 8234 DIOF ouT CPLTDX.H
95 0236 F1 FOF AF

Be 0237 Fesa OR &0H

¥ 8239 D3IBF ouT CPLTDI:-R
vg @23B C9 FET*

09 a2c H

16 8z3C 3 BIMRRY TO RSCII

11 823C ;

12 823C CDhooos E BTOA: CALL ..IHMTS
13 823F DRovae E JF C.ERZ

14 6242 CD3C82 CALL CKHEG

1S 8245 CDyCe2 CALL CKCoD

1& 8243 CDhOBeba E CHLL CRHREC”

1¥ @z4B C2 RET

1& 824C ;

12 824C :

28 024C CD@B0O0 E H3BTOAH: CALL ..IHT®
21 B24F DRE@BVO E JF C-ERZ

22 8252 CDhSC8z CHLL IMES2D
23 8255 CDhPrez2 CALL CKCOD

24 08258 CDoaow E CALL CRSC”
25 @258 C9 RET

26 825C ;

27 625C : IF MEG... IMSERT ‘-~
28 @25C ;

22 ez2sC 7C IMZzD: LD A-H

3@ 823D CEVF BEIT 7R

31 BZSF CE RET £

32 8260 3EZD LL A, 20H

33 8262 12 Lo (DE3;H
34 82e3 13 INC DE

35 8264 7D LD A-L

36 8265 2F CFL

37 82e6 6F L L-A

38 8267 7C LD A-H

39 @268 2F CFL

48 8269 67 LC H-H

41 @2€R 23 IHC HL

42 B2¢B C9 FET

43 @626C :

44 @26C : SEEK @D.INSERT ZC

45 @z¢eC :

46 B26C 12 INC [E

47 826D 1A INS2C: LD A, (DEX
48 @2¢E FEBD CF abH

49 0278 20FA JR HZs IMS2C-1
Se 8272 3EzZC L A.2CH

U/PLOTTER-17

L3 3

274
@z7s
a27e
@277
@277

8:=v7?

Q27T

Py
az78
82759
@27C
az?
027E
v2ev
8283
0284
0285
08¢
aze6
8286
0286
vze?
@223
8289
8289
@289
0289
a28nA
a2¢eB
828C
a28c
a28C
az8c
az8D
028E
028F
028F

28F

28F
8290
8291
8292
8232
8292
0292
8293
8294
829S
8296
8297
8297

28@ ASSEMBLER SF-71d1

1z
12

Cco

7C
BS
CHE886 E
ES

BY

ED4Z

F28800 E
El

BE?

c9

4C
3a
b

33

3@
(58]

4C
31

ar

53
34

[5]¥]

52
3@
2C
3e
ab

FAGE @3

Lo
IHC
RET

CHECE
CHCODE: LD
]
JF
CKCODs PUSH
OR
CKMARM: SBC
JFP
POF
OR
RET
5 LIHE M55
LTMSG: DEFE
DEFE
DEFE
3 BETWEEN DOT
LOIMSE: DEFR
CEFE
LEFE
' DOT MSG
6UTMSG: DEFB
DEFE
LEFB

.
?

*k

tDEX.H

LE

k. DATAH UALUE

A-H

L
Z-ERZ
HL

H
HL.BC
F.ERZ
HL

H

4CH
J8H
alH

33H
ZBH
abH

4CH
31H
aDH

: INITIAL SIZE SET

I5MSG: DEFE
LEFE

LEFB
: PEM UF MSG
FUMSG: [EFB
DEFE
DEFB
DEFB
DEFB

.
s

: PEM DOWH MSG

U/PLOTTER-18

S3H
J4H
acH

S52H
ZBH
2CH
JaH
abH

7L’ LINE CMD:

.
3

48 cam
~

- a B

©

- LIHE CHMD

,.“
oo

~a

TET

‘R* RELATIVE CMD

R4
.

21
gz
a3
o4
%]
o€
a7

89
i@
11
12
1z
14
15
16‘
v
18
19
20
21
22

K

8297
8297
9298
@299
829A
9298
8z29C
a29C
az2eC
e29Cc
@29D

29F
@2H8
a2[3
a2R4
azAg
G2AC
azeo
a2B4
62B7
02B8
0:2B3

vC

CB?F

C8
Chaeoa
51
SS4E464F
524D4154
20444154
41284552
S24F52
et

280 HSSEMBLER SF-7181

E

FOMSG:

a
3

: CHECK
CKNEG:

CKERZ:

LL A:H
BIT 7
RET £
CALL EEEERR
DEFE S1H
DEFM

PHGE 10

DEFEB 4%5H
DEFE Z8H
DEFB 2CH
DEFE 3&H
DEFB ©DH

DATA SIGH

DEFE @CH
EML:

U/PLOTTER-19

s ."I <
. .«'B s,

$81
“UMFORMAT DATA ERROR -

IHCREASE CMD

¥k

AL
BTOA
CKER2
CS1ZE
DOTH
DT
M
IFLOT
LINE
MK
PEUF
PLTD
PY

ay
SIZE

280 A

a1ES
Q220c
azAe
81BE
aip2
9139
0043
GOES
aiBa
a2e0
81DE
0ooF
a11F
ape2
17D

SSEMBLER SP-71ai

AMHGL
CECoD
CHMA:
CTYPE
DOTHMSE
ERCLE
Iy
1P
LTMSG
MOUE
FDMSG
PLTS
P "l'l

R

TP

B1EZ
@z7c
Qz7

19
azac
3101
aa4e

AXIS
CECobo
CKHEG
DEUF
DOTWR
HOME
IHZ2C
IFY
MRARK
M
FLOH
FTBUFF
FR=BLUF
RY

MAXIS

PAGE 11 #+

pZza AXIS1
277 CKER
@zac CHCT
a19z DOIMSS
BlAZ DOUT
#@1b4 IMBEUFF
gzel THSZD
aoeED ISMEG6
@1FE HMEUF
gatz MY
ai1CcB FLOT
a1alr FUMSG
aaec QRVBUF
HEOES SBUF
BaTC VAXKIS

U/PLOTTER-20

G2z
@152
Bios

gzge

N
!

GO T T

H=ouT
CKER1
couT
LoT
LOUTR
IMOVE
IFEUFF
LFOUT
MBUFF
HEBETOA
FLOT1
EUP

i

ZE

£
1T

ML @D oI D =g k)

T G
[

TS CD T

A
=T = T T

T B

[sl

—— BASIC MAIN PROGRAM —

SP-TT

COMPILER

ERSIC cen=YDEME PAGE 1

ERCLE

SSIZES LIHE- HIOME. AHEL - MARE .
K E(SB}

B HOME @ 31 E‘g"nHGL G: LINE

FEM
FEM
MOLIE
IFLOT 484

SHEUGE*

= t_l * yagm

+FO0S HO
::F::

)]
A,

[x]

=,
_I

IFLOT -4@& IFLOT

1o T T 0D T O T 0

D M- DM O M- S

— =T :Eaj |3-| 1‘_i1 m |§l D 'ﬂ o=

|;| [R A R D S R
I l"l

WD DD T TIMT

- 131 LI A]

1 e
2 1. & 156 &, @, 158
I8 IMOUVE S@.-5G6: IFLHT E,E IFLOT @.-S@: IPLOT -Z68.68:2
48 MOLUE “BG~;1 @ IPLOT 4LE39 IFLOT &.-1%8: IPLOT -236.
27D 43 IFLOT 8. -2208: IPLOT -178.8: IFLOT 8,370
ZEZ 38 IMOVE 358.-5@: IPLOT Ze@,o: IFLOT &.-56
K 22 IFLOT -238.8: IPLOT &,-228: IPLOT -VE.8
K @ TFLOT U,L.B

REM % [#
MOVE €38, 2
H=2di: E"
IFLOT
A=21@: E=
IFLOT
F=2da: E—L

aas IPLOT 2
: 218aa 3
IFLOT

=210

08 34
IFLOT 178

ook

IMOVE
4G

. "Tn: IFLOT &.-2
EOSUE

ﬁ 1En:

PEsk

Ta

T G0 T 0T T T S O

!

i3

SE, -SE et

IFLOT

)

‘_
AN

@ IFLOT -1é@.8: IPLOT TFLOT 7Pd. 8y IFLOT &, -2

il A=218: B=2na: C=2100: o e
EF IFPLOT e IPLOT @.50: G0To 406
HEE FOR I=s-n-2 T2 2 ZTEF »- g8
97 AEIHTCA+BE+COZ T e Y =THT C+BsSIH Lo
ayAD A FLOT &,
[18 HE=T I
Ay 28 RETUEN
-5 1 FOR I=sa-2 TO -2 STEP —aoc28
JK AEIHTOA+B+COSC I p n e Y= THT CC+E+SIHCT 00

DN
e

FEM + 0 =+
A=@r=arA=a B=nr o=@ D=0 MOUE 1768, 2100
z A=1440:B=300:C=2100: =208 G0SUE 548
@ THMOVE -5&. 8
s A=14e0:B=250: 0=2188: =250: GOSUE S4a
B IMOVE -28.48
aF A=l4em:B=160:C=2108: D=2a@ GOSUE 340
o IMOLE -56.8
5 A=14g6: E=11 GOSUR S48

ot

MIVE 1248.2
FORF I=8+.y Tll
A= INT CR+BE+COES]
FLOT W%

HE=T

T
[l

T us e THT ¢ O+l S IHO T3

,..__
RN

o
R

T T
L)

FOR I=sa 70 #7085

g Ve THTE 1958+ 1 20+0 HT 02358+ 1 2a+ S TH d
able & FLOT H.% HEWT 1 1

apdh & 192A:B=1 18 C=201a: R

aksF S48 IPLOT -124.8: IF IPLOT 148.8

U/PLOTTER-21

» DOTH: TRFLOT - MOUE. TMOUE, PUP POOWH, COT, SASTS, WASTS

IFLOT &.5&

- 8

IFLOT £3, 8

oCED
BEZE
BE 26
BF23
BF ZE
BF AR
GFiCcS
1621
1ap@
1gck
16ED
1121
1176
11AA
1za1
1283
12A4
ZCC
{202
131A
13RZ
138D
13ES
13EE
142R
14BZ2
14C0
14FS
14FE
152

154C
1SFE
1&6A3
1&AF
16DE
16F0
172B
1746
1773
1787
17AF
1vC1
18a2
1820
1838
1857
18RAB
1804
1&DR
1984
193C
1957
19¢6C
1982
19AS

—
SIS
[a)

E

I
w
—
[

B I B N I RN RN N I T e OO s s O v e

B3 S 00 = U Ged B3 el A3 —d (A
QOO @I DT ODoE DS o S

H
[xx]

COMPILER SP-771S <Hi-YDEM: FRGE =2 1223~

A=124@:B=1c0: C=2B18: GOSUEB 220
FOR I=w#7- 6 TO n#136-1830 STEF - 60
: ITHCOSCT s W=THT C23VO+1 3545 THCT o s

FLOT .Y
HE=T I: IFLOT —-€8,8:x=08:%=0: IMOUE -32.4%5
IFLOT 158.0

FUP I=n#2-3 TO 4476 STEF w60

—IHT-~ J@+85*603r1":“-IHT(237 +3S4SIHC Lo s
FLUT

HE=T I k—G)

A=124d:B=210:C=2018: GOSUE &30

IFLOT -13@,08: IFLOT &,1S@: IFLOT 176,08
A=1928:B=00: C=2810: GOszUEB S29

FOR I=a#7-56 TO o%8-3 STEFP —-w- 60
A=INTC1968+1FE+COSCI 00 s Y=IHNT 2350+ 179+ SIH (T2
PLOT =4

HEXT I:x=@:Y=a: GOTO 93@

REM + SUB A *

FDR I=zw-6 TO —ws2 STEP -n- 5@

w=IHTY H+5#COSEIBD=V=IHT(C+B*SIH(I}D

PLUT ey

HE®T I X @iy=0: RETURH

3 REM # SUE B *

FOR I=-w-2 TO w6 STEF ~- €8
A=INTCRA+B4COSC T 0 Y=INT(C+B#SIHCI) 2

3 PLOT =.Y
3 HEXT I:x=@:=0: RETURM

REM # DIAMOMD *
MOUE 24869, 2850
FUR 2=1 T0 23
) I“T(«."SG”CU 24‘«"“((_"1)/Zq+ﬂ ;‘)“’ UUU'
B(Z) IHT\—’SB* INC2%n ¥ (2—1 0 /234w 2242050

8 HEXT £

16068
iol6
1620
1825
1636
1046
1856
1696
1106
1118
1115
1128
1138
1148
1198

3 FOR S$=2 TO 11

L=2-S5
K=H(235:1¥Y=B(23)
MOUE .Y
FOR I=1 TO z4
J=L+§
IF J{Z4 THEN 1810
J=J-23
X¥1=RACJiL=J:1=BCT)
A=X1-K:B="1-Y
IPLOT H:E
n=nlati=t
NEXT I: NEXT S:X=0:Y=0:X1=0:Y1=8:A=8:B=8
MOVE 1€58,132
REM «#PRINT " 3D-GRAPH"*
A$=" 30-GRAPH"
FOR I=3 TO ©@ STEF -1
MOVE 165@.1320
ANGL I
CTYFE A%
NEXT I:Rg=""
REM + 3D-GRAFHIC *

U/PLOTTER-22

[x<]

19AE
12C7
19EF
1A2ZD
1A4F
1AS7
1ABS
1AFC
1B40D
1EA8
1C17
1cet
1CBC
1CFZ
1D26
1053
106S
1D26
10R2
10AE
1DCC
1EGF
1ES2
1EDZ
1F52
1FEE
1FBA
2031
282D
20E4
26Ca
28Ce
20F0
2110
2129
212F
2175
2130
21E®
21FS
228D
2235
22B3
22CE
22F6
2345
2360
238D
2793

-t

2785
23DE
2497
2437
246F
24RA¢6

ERSIC

1135
1286
121@
1215
1226
123a
1248
1254
1260
127
1228
1236
1388
1318
1Z26
133a
13408
1356
K115
137
1280
1398
14Ba
141@
1428
1438
1448
1458
14608
1476
14!\.’
143848
15496
iSig
1738
108
1818
16206
1828
1340
1856
1864
1878
1838
1&98a
1986
191ia
ig9a
2000
2628
2638
26408
2858
2866
2078

COMFILER SP-FF1S5 {<-YDEM:> PRAGE 3 12237

l'.l'J

T=8:5=0

FOR L @ TO 255

Dld.Loy=-1:D{1.Lr=—-1t MEXT L
MOVE 188, 258

FOR “=-188 TO 138 STEP 4

FOR \-—186 TO 136 STEFP 4

IF Y=-1881+(4=188> THEHN 1508

R=w.”1 BEHSHR O+)
—lﬁu*ED;fR‘—ﬁ@*Cqu7¥Ri

A=IHT (1 10+X-2+(162020
B=IHT((116-~'* Z2-20:1B=192-B

IF {R<LO+CAXZS55) THEN 13360

IF DC3,RA»=-1 THEH 1370

IF B<=D(@.A> THEN 1448

IF B»=D¢1.A> THEMN 1468

HEXT

IMOUE 8,0:T=0:5=8

HEXT

GOTO 20896

IF R=8 THEH 1430

IF D(a,A-1)>=-1 THEN 1430

IF D(O,A+1)=-1 THEN 1438

DCB-RA=INTCD (@, A-12+D(B, A+1 s 272D

DOl AD=INTCCDCL.A-10+D0L, A+ D 0722
GOSUE 1428: GOTO 133@
[<@,A»=B:D{1,A»=E: GOSUB 148@: GOTO 133G

'13 |‘-‘|

GOSUE 14€8:D¢a,A>=B: IF D<1:.A»=-1 THEN [<1,AY=E

GOTO 133@

GOSUE 14g8:D{1,R»=B: IF [<@.R»=-1 THEN [{1,A»=B
GOTO 133@

REM #SUB DRATR QUT *

Dn=180+7+H: DY=8%E

MOUE D¥.DY: FDOWH @ PUF

RETURH

REM #SUB GEHSUI

FOR k=1 TO S@:ECK»=8: HEXT K

FOrR I=1 TO Sa

ECI»=5SIMCI#n"12.9

MEXT 1

N=15

FOR I=1 TO H

D=S+] - N+5:G=(H-1+8, 51 N+4: 0=D:: P=DY
MOUVE U F

FOR J=1 TO 56
U‘DV+E(TJ*G4(49—J)=P=P+D

FLOT O,P

NEXT J: NEXT I: MOUE DX,DY%: GOTO 1258
REM # SIM(K»-¥ *

MOUE 2356, 9080

AAXIS 87,12

MOUE 2874G,700

YAXIS 20868,4: MOUVE 2358, 908

FOR I=-5 TO & STEP @.98

IF I=0 THEN VY=1:X=8: GOTO Zz@99
R=I%ey

U/PLOTTER-23

o COMFILER SF-7713 #=%DEM: PAGE 4 1~'Lf”“ﬂ

BASIC

Lﬂ1+It4T 4Lu1+"-

FLIT H.B
HE=T 1

MOUE 2356, 1306 DOTH @ MARE 1
IFLOT 174, 8: MARK Z: IFLOT 174.-2@@: MARK 2: IPLOT 174, -208: MARK 4
IFLOT 174.286: MARE S: IFLOT 174.288: MARK &: IPLOT 174.0

1 LIHE
MOLE L’
3 MOUE 3
3-_“l|H :
FEH * ZHH

: IFLOT 1@44,@: IFLOT @.-280: IFLOT -1844.0
HARIS": CTYFE A$ °
At AMGL 1: CTYPE A$: AMGL G:Ag=""

Fif= " SHARE
FOR I=1 TO 1S STEF

SIZE 1

4 CTYFE B

3 OHEHT I:pg=""

& CSIZE

REM # CHARACTOR SET #

MOUE 463, 158

C#="12345ETEIORBCOEFGHT TKLMHOPORETUUMNYE D #ERE] b=, L b 50713
CTYFE O

FEM # LIME TWFE

HOME @ PLOT @, 25@@: PLOT 3596.2580: FLOT I598.8: FLOT @.08: IMOUE 1S.1

H=ZSe0: =247 RiE=15
FOR I=28 TO &8 STER 24
LOT I
IFLOT @, IFLOT H.&: IPLOT @.-We IFLOT -H.8: IMOUE E.F
U=lt=24k s H=H-2+F
HEST 1 .
HOME @ IMOUE 8,88
LIME & IPLOT @.0b: IFPLOT H.8: IFPLOT &,-U: IPLOT -H.8
LE="PEH UF [DOWH"
MOLE 2/568,. 488
CTYFE [#
IMOUVE S@. a3
FOR I=1 T S: PUFR @ FPLOWH : HEST I
! LIME @ AHGL @ HOME
EHD
FOUHG HO ERRORS.

.,...
!
i A

F' .Ll L e B S
¥ R]
RN

Mo -4
Jpm

SIL 195
w4 COMF

U/PLOTTER-24

Library/Package EE

SHARP

NOTICE

The MZ-80 series of sophisticated personal computers is manufactured by the
SHARP CORPORATION. Hardware and software specifications are subject to
change without prior notice; therefore, you are requested to pay special attention to
version numbers of the monitor (supplied in the form of ROM) and the system
software (supplied in the form of cassette tape or mini-floppy disk files).

This manual is for reference only and the SHARP CORPORATION will not be
responsible for difficulties arising out of inconsistencies caused by version changes,
typographical errors or omissions in the descriptions.

This manual is based on the monitor SP-1002 and the SP-7000 series FDOS.

—CONTENTS—

USING LIBRARY ROUTINES 1
MONITOR SUBROUTINES (MON. LIB) 2
FDOS SUBROUTINES (FDOS. LIB)iii.... 7
Outline e 7
CLI (Command Line Interpreter), 8
I0CS (Input Output Control System) 12
Utility SUbroutinesottt 19
FDOS Common Variables e 27
CLI Intermediate Code Table 30
BASIC RELOCATABLE LIBRARY (RELO. LIB)................ 31
Type 1 and Type 2 Character String Formats 35
INDEX OF LIBRARY NAMES 36

LiB

USING LIBRARY ROUTINES

The FDOS master diskette contains three libraries (MON. LIB, FDOS. LIB and RELO. LIB).
MON. LIB is a file of monitor subroutine addresses

defined with the EQU statement. That is, it contains a
GETL: EQU OO0O3 H

LETNL: EQU 0006 H
PRNTS: -EQU OOOCH

program such as that shown at right which has been

assembled and converted to the library mode.

Monitor subroutines are often used when creating PRNT : EQU 0012 H
programs with the assembler; in such cases, they are MSG EQU 0015H
used as described below. MSGX: EQU O0018H

First, the subroutine names are written as is (with- GETKY: EQU OOl1BH
out addresses defined) as external names when the BRKEY ! EQU OOlEH

program is written. These are then assembled with the MELDY : EQU OO30H

assembler. When the assembly listing is reviewed at this
time, the symbol "E" is affixed to indicate that the
. . 1- Part of the contents of MON . ASC
names are external names. Next, the program is
linked; MON. LIB is linked at this time also. For

examplie,
2> LINK GAMEPRGI, $FD1 ; MON. LIB

Program created

MON . LIB must be written last at this time.

FDOS . LIB is a file of subroutine addresses in FDOS which are defined with the EQU statement; it is
used in the same manner as MON . LIB. Since MON . LIB is contained in FDOS . LIB, it is only necessa-
ry to link FDOS . LIB when both monitor and FDOS subroutines are to be used at the same time.

RELO . LIB is a library of subroutines for programs created with the BASIC compiler. It contains
subroutines for the four basic arithmetic operations, functional calculations, character string processing,
error message display and many others. In other words, whereas MON . LIB and FDOS . LIB are simple
collections of EQU statements, RELO . LIB contains actual subroutines.

When the relocating loader is used for linkage with RELO . LIB, it is possible to select only the
routines required from the many available for linkage.

RELO . LIB is used in the same manner as MON . LIB and FDOS . LIB. Further, the contents of

Source programs MON . ASC and FDOS . ASC are a:so included on the master diskette along with
MON . LIB and FDOS . LIB. It is possible to modify and add to the libraries by regenerating the source

programs to recreate the libraries as necessary.

Note Detailed procedures for using FDOS . LIB are contained in "LINKING ASSEMBLY PROGRAM
WITH FDOS" in Appendix; see "EXAMPLE OF PLOTTER CONTROL APPLICATION" in
Programming Utility for details on RELO . LIB.

LIB-1

MONITOR SUBROUTINES (MON. LIB)

(oodam)

CALLLETNL , o ' All registers
. (0006H) To change the line and set the cursor to the beginning of the next line. except AF
CALL NL Changes the line and sets the cursor to its beginning if the cursor is not All registers
(0009H) already located at the beginning of a line. except AF
CALL PRNTS . " . All registers
(000CH) Displays one space only at the cursor position on the display screen. except AF
Handles data in ACC as ASCII code and displays it on the screen, starting
CALL PRNT at the cursor position. However, a carriage return is performed for 0DH All registers
(0012H) and the various cursor control operations are performed for 11H-16H except AF
‘ when these are included.
Displays a message, starting at the cursor position on the screen. The
CALL MSG starting address of the message must be specified in the DE register in
0015H advance. The message is written in ASCII code and must end in ODH. A All registers
() carriage return is not executed, however, cursor control codes (11H-16H)
are. '
CALL MSGX Almost the same as MSG, except that cursor control codes are for reversé ,
. All registers
(0018H) character display.
CALL BELL . . All registers
(003EH) Sounds a tone (approximately 880 Hz) momentarily. except AF
Plays musical data. The starting address of the musical must be specified
in advance in the DE register. As with BASIC, the musical interval and
CALL MELDY the duration of notes of the musical data are expressed in that order in | All registers
(0030H) ASCII code. The end mark must be either ODH or C8H. The melody except AF
. is over if CF is O when a return is made; if CF is 1 it indicates that
[SHIFT] + [BREAK] were pressed.
Sets the musical tempo. The tempo data (01 to 07)is set in and called
from ACC.
ACC «<—01 Slowest
CALL XTEMP ACC <—04 Medium speed All regist
(0041H) ACC «<—07 Fastest registers
- Care must be taken here to ensure that the tempo data is entered in ACC
in binary code, and not in the ASCII code corresponding to the numbers
1to7 (31H to 37H).
; : . Continuously sounds a note according to a specified division factor. The
CALL MSTA . division factor nn’ consists of two bytes of data; n" is stored at address BC and DE onl
: 11A1H and n is stored at address 11A2H. The relationship between the an © 4y

division factor and the frequency produced is 1 MHz/nn".

LIB-2

. CALL ML Discontinues a tone being sounded All registers
- (0047H) ’ except AF
. ‘ Sets the built-in clock. (The clock is activated by this call.) The call
CALL TIMST conditions are: All registers
~ (0033H) ACC<«—0 (AM), ACC<—1 (PM) except AF
- DE <«— the time in seconds (2 bytes)
; - Reads the value of the built-in clock. The conditions upon return are: All registers
CA?;(';%I;D ACC+—0 (AM), ACC<«—1 (PM) except AF
- ~ DE «<— the time in seconds (2 bytes) and DE
CALL BRKEY Checks whether [SHIFT] + BREAK] were pressed. ZF is set if they were All registers
~ (001EH) pressed, and ZF is reset if they were not. except AF
Inputs one line entered from the keyboard. The starting address where
the data input is to be stored must be specified in advance in the DE
. register. functions as the end mark. 80 is the maximum number of
CALL GETL characters which can be input (including the end mark ODH). .
~ (0003H) Key input is displayed on the screen and cursor control is also accepted. All registers
. The BREAK code (64H) followed by a carriage return code (ODH) is set
at the beginning of the address specified in the DE register when
+ are pressed.
Takes one character only into ACC from the keyboard in ASCII code. A
return is made after 00 is set in ACC if no key is pressed when the All registers
subroutine is executed. However, there is no protection against chatter- except AF
~ , ing and key input is not displayed on the screen.
ALl CETRY Codes which are taken into ACC when these special keys are pressed are shown below. Here,
(001BH) oS . s o
~ display code’" refers to a code number which is used to call out a character from within the
character generator.
Code taken into ACC
Special key Display code :
: ~ SP-1002
DEL C7 60
: INST Cc8 61
Special keys taken CAP Cc9 62
~ in by GETKY SML CA 63
BREAK CB 64
CR CD 66

LIB-3

CALL PRTHL Displays the contents of the HL register on the display screen as a 4-digit All registers
(03BAH) hexadecimal number. except AF
VCALL’PRTHX Displays the contents of the A register on the display screen as a 2-digit All registers
- (03C3H) hexadecimal number. except AF
CALL ASC Converts the contents of the lower 4 bits of ACC from hexadecimal to All registers
(03DAH) ASCII code and returns after setting the converted data in ACC. except AF
k Converts the 8 bits of ACC from ASCII code to hexadecimal and returns
CALL HEX after setting the converted data in the lower 4 bits of ACC. All registers
(03F9H) When CF=0 upon return ACC «—hexadecimal except AF
~ When CF=1 upon return ACC is not assured
Handles a consecutive string of 4 characters in ASCII code as hexadeci-
mal string data and returns after setting the data in the HL register. The
call and return conditions are as follows. All registers
CAL&?;“I?E > DE «—starting address of the ASCII string (string "3 "1 A" "'5"") | except AF
() CALL HLHEX LDE and HL
CF=0 HL <—hexadecimal number (e.g., HL = 31A5H)
CF=1 HL is not assured.
Handles 2 consecutive ASCII strings as hexadecimal strings and returns
after setting the data in ACC. The call and return conditions are as
follows. All registers
CAL&%EIEX DE «——starting address of the ASCII string (e.g., "3 ""A"") except AF
() CALL 2HEX L—DE and DE
CF=0 ACC «—hexadecimal number (e.g., ACC=3AH)
CF=1 ACC is not assured.
CALL 77KEY Awaits key input while causing the cursor to flash. When a key entry is All registers
(09B3H) made it is converted to display code and set in ACC, then a return is made. except AF
Converts an ASCII value to display code. Call and return conditions are
CALL?ADCN | @sfollows. All registers
(0Bi§9ﬂ) ACC <—ASCII value ent AF
CALL ?ADCN excep
ACC <—display code
Converts a display code to an ASCII value. Call and return conditions
CALL ?DACN e O ey cod All registers
~ (OBCEH) asplay code except AF
(CALL ?DACN
ACC «<—ASCII value
CALL ?BLNK Checks vertical blanking of the display screen. Waits until the vertical All registers
(ODAGH) blanking interval starts and then returns when blanking takes place. &
Controls the display on the display screen. The relationship between
ACC at the time of the call and control is as follows.
ACC Control contents ACC Control contents
: COy | Scrolling Céy |Same function as the [CLR| key
9
CA](";"Dﬁ)gg')T Cly | Same function as the K key C7y |Same function as the [DEL] key | All registers
‘ C2y | Same function as the kll key C8y |Same function as the [INST| key
: ‘ C3y | Same function as the kud key C9y |Same function as the |[CAP| key
C4yg | Same function as the B key CApy | Same function as the [SML| key
| C5y | Same function as the [HOME] key CDg | Same function as the key

LiB-4

Sets the current position of the cursor on the display screen in register
HL. The return conditions are as follows.

CALL ?PONT
HL «<— cursor position on the display screen (V-RAM address)

CALL 7PONT (Note) The X-Y coordinates of the cursor are contained in DSPXY (1171 All registers
(OFB1H) H). The current position of the cursor is loaded as follows. except AF
LD HL, (DSPXY) ; H<—Y coordinate on the screen and HL
L «<— X coordinate on the screen
The cursor position is set as follows.
LD (DSPXY), HL
Writes the current contents of a certain part of the header buffer
(described later) onto the tape, starting at the current tape position.
CALL WRINF Return conditions All registers
(0021H) CF=0 No error occurred. except AF
CF=1 The BREAK | key was pressed.
Writes the contents of the specified memory area onto the tape asa CMT
' o data block in accordance with the contents of a certain part of the
CALL WRDAT header buffer. All registers
(0024H) Return conditions except AF
CF=0 No error occurred.
CF=1 The key was pressed.
Reads the first CMT header found starting at the current tape position
into a certain part of the header buffer.
CALL RDINF - Return conditions All registers
(0027H) CF=0 No error occurred. except AF
CF=1,ACC=1 A check sum error occurred.
CF=1,ACC=2 The key was pressed.
Reads in the CMT data block according to the current contents of a
certain part of the header buffer.
CALL RDDAT Return conditions All registers
(002AH) CF=0 No error occurred. except AF

CF=1,ACC=1 A check sum error occurred.
CF=1, ACC=2 The |BREAK | key was pressed.

mer

AMAY ¥ XTEITN
CALL VERFY

(002DH)

Compares the first CMT file found following the current tape position

CF=0 No error occurred.

CF=1, ACC=1 A match was not obtained.
CF=1, ACC=2 The |BREAK| key was pressed.

All registers
except AF

LiB-5

(Note) The contents of the header buffer at the specific addresses are as follows. The buffer starts at address 10FOH and
consists of 128 bytes. '

This byte indicates one of the following file modes.
1. Object file (machine language program)
. . 2. BASIC text file
IBUFE 3. BASIC data file
(10FOH) 4. Source file (ASCII file)
5. Relocatable file (relocatable binary file)
AO. PASCAL interpreter text file
Al. PASCAL interpreter data file
o These 17 bytes indicate the file name . However, since ODH is used as the end mark, in
IO‘F‘IIIiBUIIVIGIH actuality the file name is limited to 16 bytes.
e ne Example: [S][A][M][P][L][E] [0D]
[’~IBU18 | These two bytes indicate the byte size of the data block which is to foll
(1102H~ 1103H) ese two bytes indicate the byte size o ata block which is to follow.
: - These two bytes indicate the data address of the data block which is to follow. The
. BU20 loading address of the data block which is to follow is indicated by **CALL RDDAT." The
(1104H ~ 1105H) starting address of the memory area which is to be output as the data block is indicated
. by "CALL WRDAT"".
F ‘:k IBU22 k’ These two bytes indicate th tion add f the data block which is to foll
(1106H~1107H) ese two bytes indicate the execution address of the data block which is to follow.
- These byt df lemental informati h
(1108H ~ oy ese bytes are used for supplemental information, such as comments.
Example
Address Content
10FO0 01 ; indicates an object file (machine language program).
10F1 'S’ ; the file name is "SAMPLE"",
10F2 A
10F3 "M’
10F4 P
10F5 "L
10F6 'EC
10F7 0D
10F8
Variable
1101
1102 00 ; the size of the file is 2000H bytes.
1103 20
1104 00 ; the data address of the file is 1200H.
1105 12
1106 60 ; the execution address of the file is 1260H.

1107 12 LB

FDOS SUBROUTINES (FDOS. LIB)

—— Outline——

FDOS subroutines can be broadly divided into three groups.
That is,

1. CLI (Command Line Interpreter) subroutines
2. I0CS (Input Output Control System) subroutines
3. Utility subroutines

CLI subroutines are used to translate command lines appearing within user programs. That is, when

programs are called in which switches and arguments appear in appended format (such as RUN PROG/P
FILE1, FILE2), these subroutines translate those switches and arguments.

10CS subroutines are used to open and close files and devices. Utility subroutines are other generai

purpose subroutines.

Command lines are strings of characters (which have been converted to intermediate code) which are
input from the keyboard as FDOS commands or other character strings in the same format. In the
explanation below, except where otherwise indicated, command lines appear in intermediate code. See

the table on page 3Q for the intermediate codes.

LIB-7

— CLI (Command Line Interpreter)

TRS10
Function: Converts FDOS command lines written in ASCII code into intermediate code.
Input registers: The HL register contains the starting address of the command line written in ASCII

code. The DE register contains the starting address of the area storing the command

line converted to intermediate code.
Calling procedure: CALL TRS10

Output registers: CF=0 Normal
CF=1 Error (ACC «— error code)

Note: See the "System Error Messages' in System Command for details. The same applies below.

Registers preserved: All registers except AF.

« CLI (Command Line Interpreter)

Function: Interprets and executes FDOS

command lines. Example of use (DATE/P)

Input registers: The HL register contains the LD HL ,DATE
command line pointer. : LD DE,(RJOB)
Calling procedure: LD DE, (RJOB) PUSH DE
PUSH DE CALL .CLI
CALL .CLI POP HL

LD (RJOB),HL
JP C,ERROR

POP HL
LD (RJOB),HL

Output registers: CF=0 Normal : :
CF=1 Error :DATE : DEFB B1H }Intermediate code
(ACC<~—FFH) DEFB 88H)for DATE/P
. DEFB ODH

Registers preserved: None

Caution: The LIMIT, RUN, EXEC and DEBUG commands cannot be executed. See page 29 for the
RJOB.

LIB-8

7HEX (Check Hexadecimal)

Function:

Input registers:
Calling procedure:

Output registers:

Converts a four digit, hexadecimal data item starting with "$" into sixteen bit,

binary notation.

HL contains the pointer;it should specify " $."

CALL ?HEX
CF=1l Not a hexadecimal number.

(ACC «— 3, and HL are preserved)
CF=0 a hexadecimal number.

(DE «— data, HL indicates the address following the hexa-

decimal number)

Registers preserved: All registers except AF, DE and HL.

?SEP (Check Separator)

Function:

Input registers:
Calling procedure:

Output registers:

Checks whether the contents of the address indicated by the HL register are a sepa-

rator (one of the following: {CR} . , : [/).

Register HL is the pointer.

CALL ?SEP
CF=1 Not a separator. ACC <— 3 (error code) and the HL register
are preserved.
CF=0 A separator.
ACC=2CH The separator is a space or a comma (the HL register then

points to the address following the separator)
ACC=0DH The separator is or" /"

(the HL register points to the separator)
ACC=3AH..... The separater isa colon ™" : *

(the HL register points to the separator)

Registers preserved: All registers except AF and HL.

LiB-9

7GSW (Check Global Switch)

Function:

Input registers:

Calling procedure:

Output registers:

Determines whether the global switch on the command line is correct and, if so,

stores it in the area within FDOS.

The DE register contains the starting address of the switch table. The HL register

contains the command line pointer which points to the global switch.

LD DE,SWTBL
CALL ?GSW

SWTBL : DEFB swi] List of items which may be used as global switches

DEFB sw2 | (these are written in intermediate code, from 0 to a
: maximum of 5. See page 30)
DEFB swn

DEFB FFH End of table

CF=1 Error (ACC «<—error code)
CF=0 Normal. The HL register points to the address following the
global switch.

Registers preserved: All registers except AF, DE and HL.

TESW (Test Global Switch)

Function:

Input registers:

Calling procedure:

Output registers:

Determines the presence or absence of the specified global switch. Subroutine

"?GSW' must be called before this subroutine is used.

None Example: This routine outputs whether or not
: global switch /P is present to the line
CALL TESW printer or the CRT.

DEFB global switch
CALL TESW

CF=0 . DEFB 88H ; intermediate code for /P
... The specified global : PUSH AF _
switch is present. : CALL C.MSG ; displayed on the CRT if the switch
: ’ is not present.
CF=1 - : POP AF
.. Th’i sllzgaﬁed global GGF . CF—CF
switch s not present. . _printed on the line printer if the

CALL GC,PMSG > switch is present.

Registers preserved: All registers except AF. : JP C,ERROR ;indicates a line printer error.

LiB-10

?7LSW (Check Local Switch)

Function: Used to determine the local switch which is attached to the file name on the com-
mand line.

Input registers: The HL register is the command line pointer which indicates the start of the file
name.

Calling procedure: CALL ?LSW

Output registers: CF=1 Error (ACC «—error code)
CF=0 Normal
ZF=1 No local switch. (ACC <—0)
ZF=0 Local switch is present.

(ACC «<—intermediate code for the local switch)
Registers preserved: All registers except AF.

Example: Read-opens (ROPEN) a file with logical number 2 if a local switch is not present; if local
switch /O is present the file is write-opened (WOPEN) with logical number 3; otherwise, an

€ITOr OcCcurs.

EXX

LD B,4 ; dafault file mode .ASC
EXX

CALL ?7LSW

JP C,ERROR

JR Nz,LR2

LD C,2 ; logical number 2
CALL ROPEN
JR L3
L2: CP 89H ; intermediate code for /O
LD A,8 ;error code (IL LOCAL SWITCH)
JP NZ,ERROR
LD C,3 ; logical number 3

CALL WOPEN
IL3: JP C,ERROR

LIB-11

——I0CS (Input Output Control System)——
ROPEN (Read Open)
Function: Read-opens a file (including the input/output device). Example (when $FD1 ; ABC)

ore: HL: Pointer which indi the file name.
Input registers: HL: Pointer which indicates the start of the file name : LD HL . FL

C : Logical number (See note 3) LD C 2 (logical number)
B' : Default file mode (See note 1) EXX
Calli dure: CA LD B,4 (.ASC)
alling procedure: LL ROPEN EXX
Output registers: CF=1 Error (ACC «— error code) CALL ROPEN
CF=0 Normal CALL C,ERR (See page 26)
. . RET C
HL: Pointer (indicates the next separator) .
B’ : File mode (See note 1)
C' : File attribute (See note 2) . L .DEFB 90H ($FDI1)
L' : Device number : DEFM ";ABGC®
. ' DEFB ODH
IY : Starting address of the device table
(See note 4)
Registers preserved: Only registers BC, DE and IX.
WOPEN (Write Open)
Function: Write-opens a file (including an input/output device). Example ($ PTP/PE/LF)

Input registers: HL: Pointer which indicates the start of the file name. :
. LD HL,PTP

ogical number (See note 3) LD C,3 (logical number)

B’ : Default file mode (See note 1)

EXX
Calling procedure: CALL WOPEN LD B.4 (.ASC)
: EXX
Output registers: CF=1 Error (ACC «— error code) CALL WOPEN
CF=0 Normal : JP C,ERROR
HL: Pointer (Indicates the next separator)
B’ : File mode (See note 1) 'EPTP ‘DEFB Al1H ($PTP)
C' : File attribute (only for "0"") : DEFB 8FH (/PE)
L’ : Device number DEFB 8CH (/LF)

IY : Starting address of the device table DEFB ODH
(See note 4)

Registers preserved: Only registers BC, DE and IX.

LIB-12

MODECK (Filemode Check)

Function: Checks whether the file mode indicated in register B’ for the file opened is correct or
not.
Input registers: Register B ' contains the file mode of the opened file.

Calling procedure: CALL MODECK

DEFB file mode number (see page 30 concerning file modes)

Output registers: CF=0 The file mode is correct.

CF=1 The file mode is not correct. ACC «— error code
Registers preserved: All registers except AF.

(Note 1) The default file mode is the mode which is assumed when no mode is specified in the com-

mand line. The numbers enclosed in parentheses indicate the file mode number. (see page 30.)

Example
Commandline | Default file mode | Actual file mode
ABC . ASC .ASC (4) .ASC (4)
ABC . LIB .RB (5) .LIB (7)
ABC .0OBJ (1) .OBJ (1)
ABC .ASC (4) .ASC (4)

(Note 2) The file attribute indicates the protection of file access, and is expressed as one of the follow-
ing ASCII codes.

"0" a file with no protection.

"R" a file for which reading is inhibited. (Read protected file)

"W a file for which writing is inhibited. (Write protected file)

"P" a file for which both reading and writing are inhibited. (Permanent file). However, files
with the attribute "P" can be executed if the file mode is OBJ. The EXEC command can
be executed if the file mode is ASC.

Normally, the programmer does not need to be aware of file attributes since they are managed

by FDOS.

(Note 3) Logical file numbers are numbers within FDOS which have a one-to-one correspondence wtih
physical files opened (including input/output devices). Numbers from 1 to 249 may be used as
logical numbers; however, since programs within FDOS use all of the numbers from 128 on,
user programs should use only the numbers from 1 to 127 to avoid conflict. _

(Note 4) An explanation of the device table is contained in "USER I/O ROUTINE" in Appendix;
however, except for special /O operations, the programmer normally does not need to be aware

of the contents of the device table.

LIB-13

GETI1L (Get 1 Line)

Function: Reads in one line from the file whose logical number is specified in the C register.
The line read is one which is terminated with ODH. The data read is stored in the
area indicated by the address in the DE register. The length of the line, including
ODH, must be no more than 128 bytes.

Input registers: The C register contains the logical number. The DE register contains the address of

the area in which the data is stored.

Calling procedure: CALL GETIL

Output registers: CF=0 Normal
CF=1,ACC=0..... File end
CF=1,ACC#0. Error (ACC «— error code)

IY: Starting address of the device table (see note 4 on page 13)

Registers preserved: Only registers BC, DE, HL and IX.

GET1C(Get 1 Charcter)
Function: Reads one byte from the file whose logical number is specified in the C register.
Input registers: The C register contains the logical number.

Calling procedure: CALL GETIC

Output registers: CF=0 Normal (ACC «— data read)
CF=1,ACC=0..... File end
CF=1,ACC#0.. ... Error (ACC «— error code)

IY: Starting address of the device table (see note 4 on page 13)

Registers preserved: Only registers BC, DE, HL and IX.

GETBL (Get Block)

Function: Reads data into the address indicated in the DE register from the file whose logical
number is specified in the C register; only the number of bytes of data indicated in

the HL register are read in.

Input registers: The C register contains the logical number. The DE register contains the address in
which the data is to be stored. The HL register contains the number of bytes of data

to be read.

LIB-14

Calling procedure:

Output registers:

CALL GETBL

CF=0 Normal DE «—address of the next block of data to be read
CF=1,ACC=0..... File end) HL<— number of bytes of data actually read
CF=1,ACC#0. Error (ACC <— error code)

IY: Starting address of the device table (see note 4 on page 13)

Registers preserved: Only registers BC and IX.

7EOF (Check End-of-file)

Function:

Input registers:
Calling procedure:

Output registers:

Checks for the end of a read-opened file. ZF becomes "1 when an attempt is made

to read beyond the end of data.
The C register contains the logical number.

CALL ?EOF

CF=1............ Error (ACC <« error code)
CF=0,ZF=1....... Not file end
CF=0,ZF=0 File end

IY: Starting address of the device table (see note 4 on page 13)

Registers preserved: Only registers BC, DE, HL and IX.

PUTI1C (Put 1 Character)

Function:

Input registers:

Calling procedure:

Output registers:

Outputs one byte of data to the file whose logical number is specified in the C

register.

The C register contains the logical number. The ACC register contains the data to

be output.

CALL PUTIC

CF=0............ Normal
CF=1............ Error (ACC <—error code)

IY: Starting address of the device table (see note 4 on page 13)

Registers preserved: Only registers BC, DE, HL and IX.

LIB-15

PUTIL (Put 1 Line)

Function: Outputs the line starting at the address specified in the DE register to the file whose

logical number is specified in the C register. Outputs the ending carriage return.

Input registers: The C register contains the logical number. The DE register contains the starting

address of the data to be output.
Calling procedure: CALL PUTIL

Output registers: CF=0............ Normal
CF=1............ Error (ACC <—error code)
IY: Starting address of the device table (see note 4 on page 13)
Registers preserved: Only registers BC, DE, HL and IX.

PUTBL (Put Block)

Function: Outputs the number of bytes of data indicated in the HL register to the file whose
logical number is specified in the C register, starting at the address indicated in the

DE register.

Input registers: The C register contains the logical number. The DE register contians the starting
address of the data to be output. The HL register contains the number of bytes of
data to be output.

Calling procedure: CALL PUTBL

Output registers: CF=0 Normal (DE <—the address following the end of the block output)
CF=1 Error (ACC «——error code)
IY: Starting address of the device table (see note 4 on page 13)

Registers preserved: Only registers BC and 1X. (Register HL is also preserved if CF=0)

PUTCR (Put Carriage Return)

Function: Outputs a carriage return to the file whose logical number is specified in the C
register.
Input registers: The C register contains the logical number.

Calling procedure: CALL PUTCR

Output registers: CF=0 Normal
CF=1 Error (ACC «—error code)
IY: Starting address of the device table (see note 4 on page 13)

Registers preserved: Only registers BC, DE, HL and IX.

LIB-16

PUTM (Put Message)

PUTMX

Function: Outputs the line starting at the address indicated in register DE to the file whose
logical number is specified in the C register. PUTM and PUTMX operate in the same
manner except for their handling of $CRT and $LPT. Cursor control codes (& , &,
etc.) are executed only when PUTM is used; when PUTMX is used, they are only
display or printed as reverse characters. The end code (ODH) is not output.

Input registers: The C register contains the logical number. The DE register contains the starting

address of the data to be output.

Calling procedure: CALL PUTM or CALL PUTMX

Output registers: CF=0 Normal
CF=1 Error (ACC «— error code)

IY: Starting address of the device table (see note 4 on page 13)

Registers preserved: Only registers BC, DE, HL and IX.

CLOSE (Close File)
KILL (Kill File)

Function: Closes or kills the file whose logical number is specified in the C register. If this
subroutine is called when the C register contains 0, all currently opened files will be

closed or killed. (This excludes files which were opened by FDOS itself.)

Input registers: The C register contains O or a logical number.

Calling procedure: CALL CLOSE or CALL KILL

Output registers: CF=0 Normal
CF=1 Error (ACC<«— error code)
IY: Starting address of the device table (see note 4 on page 13)

Registers preserved: Only registers BC, DE, HL and IX.

LIB-17

LUCHK (LU Number Check)
Function: Checks whether a logical number (contained in the C register) has been defined.
Input registers: The C register contains the logical number.

Calling procedure: CALL LUCHK

Output registers: CF=1 The logical number has not been defined.
CF=0 The logical number has been defined.
L'« device number (see page 30 concerning device numbers)

I'Y < starting address of the device table. (see note 4 on page 13)
Registers preserved: All registers except AF, HL,IY, D and L.

Example: LD C,5 ; logical number
CALL LUCHK
JP C,NOTUSE

EXX _
LD A,L ; device number
EXX

CP 4

JP C,FD

DVINIT (Device Initialize)

Funciton: Initializes the write-opened device whose logical number is specified in the C register
as follows.
Device Operation

$ CRT:----- line feed

$ PTP:------ form feed
$ LPT-- form feed

$ SOA normally output OFH; this may be arbitrarily changed with the
STATUS statement of FDOS.

$ FDn
$ CMT output a form feed code (OFH).

$ MEM

Output registers: The C register contains the logical number.
Calling procedure: CALL DVINIT

Output registers: CF=0 Normal
CF=1 Error (ACC «—error code)
IY: Starting address of the device table (see note 4 on page 13)

Registers preserved: Only registers BC, DE, HL and IX.

LIB-18

—— Utility Subroutines——

MTOFF (Motor Off)

Function: Stops the motor of the floppy disk drive.

(The drive motor is activated automatically when necessary.)
Calling procedure: CALL MTOFF

Registers preserved: All registers except AF.

BREAK (Check Break Key)

Function: Checks whether [SHIFT]+ [BREAK] have been pressed.

Input registers: None

Calling procedure: CALL BREAK

Output registers: CF=0.......... Not pressed.
CF=1.......... Pressed. (In this event, ACC =— 37 . 37 is the error code.)

Registers preserved: All registers except AF.

HALT (Halt Action with Break Action)

Function: Checks the keyboard and, if the space key is pressed, stops execution until the space
key is pressed again. If [SHIFT] + [BREAK] are both pressed, ACC+—37 and
CF<«—1. (37 is the error code.)

Input registers: None
Call procedure: CALL HALT

Output registers: CF=0 Normal
CF=1 [SHIFT| + BREAK]| were pressed. (In this event, ACC<«—37.)

Registers preserved: All registers except AF.

LIB-19

SGETL (Screen Get Line)

Function: Inputs one line from the keyboard. The keyboard is equipped for auto repeat. The
line which is actually input is the line in which the cursor is located when is
pressed (the data may occupy two lines on the display screen). Afterwards, the
mode is changed from the CAP/SML mode to the CAP mode.

Input registers: The DE register contains the starting address of the area (80 bytes required) in
which the data is to be stored.

Calling procedure: CALL SGETL

Output registers: CF=0 Normal

Registers preserved: All registers except AF.
LTPNL (Let Printer New Line)

PMSGX (Printer Message X)

PMSG (Printer Message)

PPRNT (Printer Print)

PPAGE (Printer Page)

Function: These are printer control routines. These routines perform the same function for

the printer as do the monitor subroutines shown below for the CRT.

CRT
A+5¥ — LTPNL (line feed) LETNL
ff”/} ~ PMSGX MSGX
15 - PMSG MSG
410 = " PPRNT PRNT

" PPAGE (form feed)

Output registers: CF=0 Normal
CF=1 Error (ACC+— error code)

Registers preserved: All registers except AF and IY.

LiB-20

C& L1
&NL
&PRNT
&NMSG
&MSG
&1L

Function:

Output registers:

Registers preserved:

Directs output to the printer or CRT depending on the presence or absence of the
global switch ™ /P_J. &NL, &NMSG and &1L include the HALT function (see page
19 for the HALT function).

Prepares either the printer or the CRT.

This routine must be called before any other routines are used. Further, “?GSW”
must be called before this routine is called.

Performs the same function as LETNL.

. Performs the same function as PRNT.
. Performs the same function as MSG.
. Executes &NL, then executes &MSG.

Executes &MSG, then executes &NL.

All registers except AF and IY.

See "LINKING ASSEMBLY PROGRAM WITH FDOS " in Appendix for an example of use.

LiB-21

PUSHR
PUSHR 2 (Push Register)

Function: This subroutine is used to PUSH registers IX, HL, DE and BC. (Only registers IX, HL
and BC are pushed with PUSHR2.) The RET instruction at the end of this sub-

routine then automatically POPs these registers.

Calling procedure: SUBR : CALL PUSHR ; PUSH REGISTERS

RET Z ; POP and RET if ZF=1

RET ; POP and RET

Registers preserved: All registers except IX.

The program list shown below illustrates the function of this routine.

PUSHR @ ENT

EX (SP) , IX

PUSH HL

PUSH BC

PUSH DE

PUSH HL

LD HL ,POPR

EX (SP) , HL

JP (IX)
PUSHRR2 : ENT

EX (SP) , IX

PUSH HL

PUSH BC

PUSH HL

LD HL ,POPR2

EX (SP) ,HL

JP (IX)
POPR : POP DE
POPR2 : POP BC

POP HL

POP IX

RET

LIB-22

CHKACC (Check Acc)

Function:
Input registers:

Calling procedure:

Output registers:

Registers preserved:

MULT (Multiply)

Function:

Input registers:
Calling procedure:

Output registers:

Registers preserved:

Checks whether the contents of ACC match any of several different given data items.
ACC contains the data items to be checked.

CALL CHEKACC
DEFB n ;number of data items (1-255)
DEFB datal

DEFB data?2)
n items of data to be compared

DEFB data3 ,
. DEFM'may be used with ASCIIL.
DEFB datan
ZF=1 One of the data items matches the contents of ACC.
ZF=0 No match was found.

All registers except the flags.

Multiplies the contents of the DE register and the HL register (handling them as

16-bit unsigned integers) and places the result in the DE register.

DE and HL

CALL MULT

CF=1 Overflow (result cannot be expressed in 16 bits)

CF=0 Normal. The DE register contains the result of the calculation.

All registers except AF, DE and HL.

SOUND (Warning Sound)

Function:

Calling procedure:

Registers preserved:

Produces the sound "AO] ARA [AR" to indicate that an error has occurred.

CALL SOUND

All registers.

LiB-23

BINARY (Convert ASCII to Binary)

Function:
Input registers:
Calling procedure:

Output registers:

Registers preserved:

Example:

Converts an ASCII numeric string into a 16-bit unsigned integer.
The HL register contains the starting address of the ASCII numeric string.

CALL BINARY

CF=1 Overflow (cannot be expressed within 16 bits)

CF=0........... Normal. The DE register contains the converted data. The HL
register contains the address following the end of the numeric
string.

If the ASCII characters indicated by HL are not a numeric string, CF «—0 and DE

—0.

All registers except AF, DE and HL.
LD HL,BUFFER
CALL BINARY
JP C,ERROR ; if CF=0, DE becomes 400H.

: HL points to ODH.
BUFFER : DEFM ' 1024°

DEFB ODH ; must be an ASCII code for other than ‘0’ ~ 9’

CASCII (Convert Binary to ASCII)

Function:

Input registers:

Calling procedure:
Output registers:

Registers preserved:

Example:

Converts a 16-bit unsigned integer into an ASCII numeric string.

The HL register contains the 16-bit unsigned integer. The DE register contians the

address of the area in which the ASCII numeric string is to be stored.
CALL CASCII
The DE register contains the ending address of the ASCII numeric string obtained.

All registers except AF and DE.

LD HL,6 1024
LD DE, BUFFER
CALL CASCII

BUFFER : DEFS 10 ;after conversion the ASCII numeric string'1024" is stored.

LiB-24

CLEAR (Clear Area)

Function: Loads a continuous area in the memory with zeros. (The memory area must be 255

bytes or less.)
Input registers: None

Calling procedure: CALL CLEAR
DEFB length ;number of bytes to be cleared
DEFW address ; the memory is cleared starting at this address.

Output registers: None

Registers preserved: All registers.

CHLDE (Compare HL, DE)

Function: Compares the contents of the HL register with the contents of the DE register.
Input registers: HL and DE

Calling procedure: CALL CHLDE

Output registers: FLAG < HL-DE;thatis CF=0,ZF =10 HL>DE
CF=1,ZF=0----- HL<DE
CF=0,ZF=1------ HL=DE

Registers preserved: All registers except AF.

LCHK (Limit Check)

Function: Compares the last usable memory area (the address indicated by the stack pointer

minus 256) with the contents of the HL register.
Input registers: HL
Calling procedure: CALL LCHK

Output registers: CF=0------ HL<=SP-—256
CF=1:"--- HL>SP—-256
At this time, ACC «<—21. 21 is an error code. (memory protect error)

Registers preserved: All registers except AF.

LIB-25

ERR (Display Error Message)

Function: Displays an error message (see the System Error Messages in System Command for
details). The contents of the C register and the IY register must be preserved from
the time the error occurs until this routine is called. Further, the close or kill routine
must not be called during that time (otherwise, the contents of the error message

may be incorrect).

Input registers: The ACC register contains the error code (no error message is output if the error
code is FFH).
The C register contains the logical
number. These may not be necessary depending
The IY register contains the starting on the type of error.
address of the device table (see note (see note 4 on page 13)

4 on page 13)

Calling procedure: CALL ERR Example:

CALL SGETL (page 20)
CALL NC,&1L (page 21)
JR NC,—- 6

CALL C,ERR

Output registers: ACC<—FFH
CF+«—1

Registers preserved: All registers except AF.

RET C
ERRX
Function: This function displays a colon ":", followed by the contents of the area from the
address following a specified ODH until the next ODH;the specified ODH is the one
which is the (ACC-1)th from the address indicated in the DE register.
Input registers: The DE register contains the starting address of the message block.
The ACC register contains a number (1-255).
. Example:
Calling procedure: CALL ERRX : ERMSG: DEFM ' SYNTAX '
Output registers: ACC<«—FFH DEFB ODH
DEFM ‘'OVERFLOW '
CF<—1
DEFB ODH
Registers preserved: All registers except AF. DEFM 'IL DATA'’
DEFB ODH
LD A,2

LD DE, ERMSG
CALL ERRX

This displays' : OVERFLOW .

LIB-26

ERWAIT (Display Error Message and Wait Space Key)

Function: 1. Calls subroutine ERR if ACC#0.
2. Displays the contents of the area starting with the address indicated in thé DE
register until ODH.
Displays " , § SPACE KEY " if ACC=0.
Waits until [SPACE] or [SHIFT]+ [BREAK] is pressed.

Input registers: ACC and DE
Calling procedure: CALL ERWAIT

Output registers: CF=0 SPACE| was pressed.
CF=1 [SHIFT] + [BREAK]were pressed. (ACC <—37)

Registers preserved: All registers except AF.

—— FDOS Common Variables——
LIMIT (Limit of Memory)
Number of bytes: 2

Meaning: Contains the last address plus one of RAM mounted.

ISTACK (Initial Stack Pointer)

Number of bytes: 2

Meaning: Contains the last address plus one of the memory area which is available to FDOS.
This data is used by FDOS for initialization of the stack pointer. The contents of
ISTACK may be changed by the FDOS LIMIT instruction. The contents of
ISTACK must not be changed by any other means.

LiB-27

ZMAX

Number of bytes: 2

Meaning: Contains the last address of the area being used by FDOS (excluding the stack). The
contents of ZMAX may be changed depending on the next subroutine called.
(ROPEN, WOPEN, CLOSE, KILL, .CLI)

Caution: The area which may be used within the user program as free area is as follows.

1. [Lowest address] = [value contained in ZMAX when the user program was entered]
+ [number of files which are simultaneously opened (ROPEN

or WOPEN)] x 350
+ [number of files which are simultaneously write-opened] x

72
+ [number of floppy disk units used] x 128

[Maximum address] = [stack pointer (SP)]—a, a is approximately 256.
2. From ISTACK to LIMIT-1.
3. Areareserved by the DEFS statement within the assembly program.

.DNAME (Default File Name)

Number of bytes: 17

Meaning: The file name and succeeding ODH contained in this area will be used as the default
file name when the file name is omitted. For example, when this area contains

"ABCD " "$FD3" appearing on the command line will be interpreted as
"$FD3 ; ABCD".

MDRIVE (Master Boot Drive)

Number of bytes: 1

Meaning: Contains the drive number minus one (0 ~ 3) of the drive containing the master

diskette.

BDRIVE (Boot Drive)

Number of bytes: 1

Meaning: Contains the default drive number minus 1 (0O ~ 3). The default drive number is the

number which appears to the left of the prompt " > " when FDOS is in the command

wait state.

LiB-28

MAXDVR (Maximum Drive)
Number of bytes: 1

Meaning: Contains the number of floppy disk drives connected (1 ~ 4).

TODAY
Number of bytes: 7

Meaning: Contains the month, day and year followed by ODH; each element of the date is
indicated with a two-digit ASCII code.

RJOB (Running Job Pointer)
Number of bytes: 2

Meaning: Area which indicates how far command line interpretation has proceeded. When
command lines are interpreted in a user program, the address following that of the

last command line interpreted must be placed in RJOB.

LiB-29

—CLI Intermediate Code Table—

ASCII Intermediate code ASCII Device number Intermediate code| ASCII Device number Intermediate code
80 H $ FD1 0 90 H $LPT 16 AOH
/D 81 H $ FD2 1 91 H $ PTP 17 A1 H
/ C 82 H $ FD3 2 92 H $ CRT 18 A2 H
/S E 83 H $ FD4 3 93 H 19 A3 H
/G 84 H $ CMT 4 94 H $ SOA 20 A4 H
/L &5 H $ MEM 5 95 H $ SOB 21 A5 H
/N 86 H 6 96 H 22 A6 H
/'S 87 H 7 97 H 23 A7TH
/P 88 H 8 98 H $ USR1 24 A8 H
/0 89 H 9 99 H $ USR2 25 A9H
/T 8AH $ PTR 10 9AH $ USR3 26 AAH
SBH 11 9BH $ USR4 27 ABH
/' LF RCH $ KB 12 9CH 28 ACH
/PN 8DH $ SIA 13 9DH 29 ADH
/PO 8EH $ SIB 14 9EH 30 AEH
/ PE 8FH 15 9FH 31 AFH
[Built-in commands]
ASCII Intermediate code ASCII File mode number Intermediate code
RUN BOH S 255 FOH
DATE B1H F1H
XFER B2H .0OBJ 1 F2H
DIR B3H .BTX 2 F3H
PAGE B4H 3 F4H
RENAME B5H .ASC 4 F5H
DELETE B6H .RB 5 F6H
TYPE B7H 6 F7H
CHATR B&H .LIB 7 F8H
FREE B9H 8 F9H
BYE BAH 9 FAH
TIME BBH .SYS 10 FBH
EXEC BCH 11 FCH
HCOPY BDH 12 FDH
BEH 13 FEH
14 FFH

Other Codes other than those shown in this table are expressed as is in ASCII code. However, this
applies only to O01H-7FH. The codes for some small characters and graphic characters are
the same as CLI intermediate codes; therefore, they cannot be used.

LIB-30

BASIC RELOCATABLE LIBRARY (RELO. LIB)

The BASIC relocatable library contains a collection of subroutines which are required by programs
created using the BASIC compiler. These routines are useful when BASIC program subroutines (external

functions, external commands, etc.) are created using the assembler.
Routines contained in RELO. LIB can only be used as BASIC subroutines; they cannot be executed as

independent assembly programs.
..INTO

.INT 1
.. INT 2 (Convert Floating to Fixed)

Function: Converts a real number expressed in 5 bytes into a 16-bit integer. The absolute

value of any decimal fraction is discarded.

(Examples: 1.5 —1 27— =-2)"
INTO Ll The input range is from —32768 ~ 32767
R 0\ L The input reange is from 0 ~ 255
JINT2 oL The input range is from —32768 ~ 65535
Input registers: The HL register contains the starting address of the 5 byte real number.

Calling procedure: CALL ..INTO CALL ..INT! CALL .. INT2

Output registers: HL <— integer

Error processing: ..INTO Upon overflow, CF«—1.
JNT T o Upon overflow, JP_ER3.
JUNT 2 oo Upon overflow, CF<—1.

Registers preserved: All registers except AF and HL.
Note: The .. FLTO and CONST subroutines (described below) are used to create the 5-byte real

number.

.. FLT 0 (Convert Fixed to Floating)
Function: Converts a 16-bit signed integer into a 5-byte real number.

Input registers: The HL register contains the 16-bit signed integer. The DE register contains the

starting address of the area in which the real number is stored.
Calling procedure: CALL .. FLTO

Registers preserved: All registers except AF, DE and HL.

LIB-31

CASC' (Change ASCII)

Function:

Input registers:

Calling procedure:

Converts a 16-bit unsigned integer into an ASCII character string and appends ODH
to the end of it.

The HL register contains the 16-bit unsigned integer. The DE register contains the

starting address of the area in which the ASCII character string is stored.

CALL CASC’

Registers preserved: All registers except AF.

MSGS (High Speed Message)

Function:

Performs the same function as the monitor subroutine MSG, but at high speed.

Registers preserved: All registers except AF.

.MOVE '(Move String)

Function:

Input registers:
Calling procedure:

Output registers:

Converts a character string from type 1 to type 2. The converted character string is
stored in an area called .WORD. (The type 1 and type 2 character string formats are
explained on page 35.)

The HL register contains the starting address of the character string (in type 1.)
CALL .MOVE'

The DE register contains the starting address of the converted character string. (The
address of . WORD)

Registers preserved: All registers except AF, BC, DE and HL.

FASCX (Convert Floating to ASCII)

Function:

Input registers:

Calling procedure:

Converts a 5-byte real number into an ASCII character string and appends ODH to

the end of it.

The HL register contains the starting address of the real number. The DE register

contains the starting address of the area in which the ASCII character string is stored.

CALL FASCX

Registers preserved: None

LIB-32

CONST (Convert ASCII to Const)
Function: Converts a constant expressed in ASCII code into a 5-byte real number.

Input registers: The HL register contains the starting address of the constant expressed in ASCII
code. The DE register contains the starting address of the area in which the result is

stored.
Calling procedure: CALL CONST
Output registers: The HL register contains the first address following the constant converted.
Registers preserved: None

Error processing: JP ER3

CHCOND (Character Condition)
Function: Compares the two character strings (in type 1).

Input registers: The HL and DE registers contain the starting addresses of each of the two character

strings being compared.

Calling procedure: CALL CHCOND
Output registers: FLAG< (DE) — (HL)

that is,

CF=0,ZF=0:------ (DE) > (HL)
CF=1,ZF=0------ (DE) < (HL)
CF=0,ZF=1:---- (DE) = (HL)

Registers preserved. All registers except AF, BC, DE and HL.

ER1 ER13
ER2 ER14
ER3 ER21
ER4 ER24
ERS ER37
ER6 ER64
Function: Error message display routine used during BASIC program execution. See the Error

Message table in the BASIC compiler instruction manual (available separately).

Calling procedure: JP ERI1 (SYNTAX ERROR), etc.

LIB-33

BEERR (Basic Executing Error)

Function:

Calling procedure:

Error message dispaly routine used during BASIC program execution.

CALL BEERR

DEFB error code (error number in BASIC)
DEFM 'ERROR MESSAGE’

DEFB ODH

— No return made.

BABORT (Basic Abort)

Function:

Input registers:

Calling procedure:

Example:

Caution:

. .STOP

Function:

Calling procedure:

When a system error occurs during. BASIC program execution, this routine displays

the applicable error message and interrupts execution.

The ACC register contains the error code (system error number).

The C register is the logical number.

The IY register contains the starting May not be required depending upon the
address of the device table (see note type of error.

4 on page 13).

JP BABORT

LD C,R
CALL GETI1C
JP C,BABORT

BEERR is a routine which displays %ER nn: message in linenumber (where nn is
the error number in BASIC) when an error occurs in BASIC program; BABORT is
a routine which displays —ERR message in linenumber when an error occurs at the

FDOS level. ON ERROR processing will be performed in both cases, if specified.

Stops BASIC program execution. (Corresponds to the STOP instruction of the
BASIC compiler.)

JP . .STOP

LiB-34

..END

Function: Terminates BASIC program execution. (This corresponds to the END instruction of

the BASIC compiler.)

Calling procedure: JP ...END

.WORD

Function: 257-byte general purpose area.

——Type 1 and Type 2 Character String Formats——

There are two types of character strings which are handled by B/ :IC; these should be used as

appropriate.

Type 1
DEFB length (character string length: 0 ~ 255)
DEFM

Type 2
DEFM
DEFB 0DH

LiB-35

INDEX OF LIBRARY NAMES

Name ~ Type Page Name Type Page - Name Type Page |
&1L UTYL 21 CONST RELO 33 MODECK 10CS 13
&MSG " 21 DVINIT I0CS 18 MSG MON 2
&NMSG " 21 ER1 RELO 33 MSGS RELO 32
&NL " 21 ER2 " 33 MSGX MON 2
& PRNT " 21 ER3 " 33 MSTA " 2
...END RELO 35 ER4 " 33 MSTP " 3
..FLTo ” 31 ER5 " 33 MTOFF UTYL 19
.. INTO " 31 ER6 " 33 MULT ” 23
..INT1 " 31 ER13 " 33 NL MON 2
.. INT2 " 31 ER14 " 33 PMSG UTYL 20
_.STOP " 34 ER21 " 33 PMSGX ” 20
.CLI CLI 8 ER24 n 33 PPAGE " 20
. DNAME VAR 28 ER37 " 33 PPRNT " 20
.MOVE’ RELO 32 ER64 " 33 PRNT MON 2
.WORD " 35 ERR UTYL 26 PRNTS " 2
2HEX MON 4 ERRX " 26 PRTHL " 4
?7?7KEY " 4 ERWAIT ” 27 PRTHX z 4
?ADCN " 4 FASCX RELO 32 PUSHR UTYL 22
?BLNK " 4 GETI1C I0CS 14 PUSHR2 " 22
?DACN " 4 GETIL ” 14 PUTI1C 1I0CS 15
?DPCT " 4 GETBL " 14 PUTIL " 16
?EOF 10CS 15 GETL MON 3 PUTBL " 16
7GSW CLI 10 GETKY " 3 PUTCR " 16
7LSW " 11 HALT UTYL 19 PUTM " 17
?HEX " 9 HEX MON 4 PUTMX " 17
?PONT MON 5 HLHEX " 4 RDDAT MON S
?SEP CLI 9 IBU1 ” 6 RDINF n 5
ASC MON 4 IBU18 ” 6 RJOB VAR 29
BABORT RELO 34 IBU20 " 6 ROPEN I0CS 12
BEERR " 34 IBU22 " 6 SGETL UTYL 20
BELL MON 2 IBU24 " 6 SOUND " 23
BDRIVE VAR 28 IBUFE " 6 TESW CLI 10
BINARY UTYL 24 ISTACK VAR 27 TIMRD MON
BREAK " 19 KILL I0CS 17 TIMST "

BRKEY MON 3 LCHK UTYL 25 TODAY VAR 29
C&L1 UTYL 21 LETNL MON 2 TRS10 CLI 8
CASC’ RELO 32 LIMIT VAR 27 VERFY MON 5
CASCII UTYL 24 LTPNL UTYL 20 WOPEN 10CS 12
CHCOND RELO 33 LUCHK 10CS 18 WRDAT MON 5
CHKACC UTYL 23 MAXDVR | VAR 29 WRINF " 5
CHLDE " 25 MDRIVE " 28 XTEMP "
CLEAR " 25 MELDY MON 2 ZMAX VAR 28
CLOSE I0CS 17
Type: MON Monitor subroutine

CLI Related to CLI

oyl G

VAR FDOS common variable

RELO BASIC relocatable library

LIB-36

SHARP

NOTICE

The MZ-80 series of sophisticated personal computers is manufactured by the
SHARP CORPORATION. Hardware and software specifications are subject to
change without prior notice; therefore, you are requested to pay special attention to
version numbers of the monitor (supplied in the form of ROM) and the system
software (supplied in the form of cassette tape or mini-floppy disk files).

This manual is for reference only and the SHARP CORPORATION will not be
responsible for difficulties arising out of inconsistencies caused by version changes,
typographical errors or omissions in the descriptions.

This manual is based on the monitor SP-1002 and the SP-7000 series FDOS.

— CONTENTS ——

LINKING ASSEMBLY PROGRAM WITH FDOS 1
USER CODED I/O ROUTINES 4
CONVERSION OF CASSETTE BASED SYSTEM PROGRAMS 10=
MEMORY EXPANSION i 11
I/O MAP .. 12
MEMORY MAPPED /O i 13
MEMORY MAPPED I/O CHARTcoouun. 14
NOTES FOR USE OF INTERRUPT 15
HARDWARE RESET i 16
PAPER TAPE PUNCH AND READER INTERFACE 17
BUILDING MONITOR PROGRAMS AND CHARACTER

GENERATORS 21
MZ-80K CIRCUIT DIAGRAMS 23
UNIVERSAL I/O CARD CIRCUIT DIAGRAM 37
ASCII CODE TABLE 38
DISPLAY CODE TABLE oo, 39

APPENDIX

LINKING ASSEMBLY PROGRAM WITH FDOS

An object program generated with the FDOS editor, assembler and relocating loader can be executed

with the RUN command.

Example 1 1> RUN GALAXY [CR]

This command loads GALAXY.OBJ into memory from the floppy disk and executes it. Execution
of a RET statement in the object program returns control to FDOS. The contents of the stack pointer
must be restored to the value contained when the object program was called before the RET statement is
executed. CF must be reset before control is returned because an error message will be output on the

assumption that the ACC contains a system error code if CF is set.

Global switches and/or arguments can be assigned after the file name in the RUN command as
shown below.

Example 2 2> RUN ASMZ8/P CONTROL-A [CR|

T
Argument
Global switch

In this case, FDOS converts the entire command line into intermediate codes (refer to the Libra-
ry/Package Manual), and loads ASMZ8.0BJ into memory from the floppy disk, then executes it.
At this time, the HL register points to the intermediate code corresponding to /P (88H). The RJOB area

in FDOS has the same value as the HL register.
Switches and arguments following the file name (ASMZ8) must be decoded by user object program.

They can be decoded using FDOS subroutines. When the last character (":" or 0DH) is decoded, the HL

register contents must be stored in RJOB. To return control to FDOS, execute a RET statement in the

object program.

wn

The sample program listed on the following pages illustrates command line decoding. It outputs an

ASCII file to the CRT display or printer. This program operates in a manner similar to the FDOS TYPE

command. The file name of this program is TYPE’. Thus, executing
Example 3 2> RUN TYPE’ ABC

Outputs file ABC.ASC to the CRT display and executing
Example 4 2> RUN TYPE'/P ABC

Outputs ABC.ASC to the printer.
All external labels (indicated by the E message) in this program list are defined in FDOS.LIB.

APPENDIX-1

—SAMPLE PROGRAM (COMMAND)—

Do
—

DoURE W Tt e VO) I O I O Wl %) 'II Iflsl :j (-T‘:. lj) .i: o4

[i e e e N T G S N o A T A I B A BN)

L e o] e

XN a3

o Lo L
PO e T 0000

FBE ASSEMELER SP-F161

...
L
=
vacke’
=

DX
e
kX

..
'—h
)
)
-
L

,.
=
!
-
N
—

=
i
=

%)

U R Y
L o)

=
X
—
XX

=1

1T

Doyl oy

ol
'}
't
-
2!

MU
i

DDA NN]

Dol

—
DU

SRR
DU
- =
LU

N
!
!

!

i1
Ch
[e
INE
D

'}

~
XN

N
!

2!

Dot It o ot I U I CUI U I ot I ot ot on
=,

'
)

JOURLNA

)
= =
DADAIHAI DA I DA IA R DR)

Do R o o x|

DoCRam o R R I R a0
[
Dx)

AR RN u i CAN AN s IS | XN

MUY
)
DU Bt o]

=TT MO0) d L R T D T T e
[
£

e’
Bl bt bt b b et b e e b (D) 1

't

sl Rl
[
]
%
xl
]
)
]

N

I T T ST

—
Do o
i
Lan B v]
AR
s\
v
X
=
]

p—

. o
T T

_.
-
[xx]

DAY
™ r:l fary
R R R S N 2

!
—
[n]

ot

e
s
2!
T

WX
o

=
MU
R

i

i D
DX Bt I Aoy N <

= e
U
[w O I
]
]

!
1™
!

n
(g1}
=

)
o

=
Dok

DB RN]

=
=y
!
!

)

)
!
= =
DU
-
LU R

D]

')
N

Mmoo
i

O o)

g
!

R -~
DR o N kn]

= oe s
DA DA AN IO N

4
4
4
4
14
4
4
4

1T .

!
peed
!
Ty
-

U]

D R e SR e 5 e B Wy

n onCn o
o0 = J o

15 ealalsls
5/} Eslsle

mm

mim

: TYFE COMMAHD

. THFE:

TYRER:

TVPE 16

TYFEZE:

TYFEER:

FHGE &1

EHWT
LI
CALL
FET
CALL
CHLL
FET
=
LI
SCF
FET
CHLL
FET
LI
SCF
FET
Lk
E
LDk
Ese
CHLL
FET
CALL
JE
CHLL
DEFE
CCF
CHLL
IR
CALL
DEFE
LL
CHLL
CALL
IR
ML
JF

CHLL
CHLL
FET
CF
JE
L[
mOR
FET
CHLL
CALL

B3

LE. SWTEL

TEEN

b oI O T TR N O

i1

R
DR e mr
T o

i
=
11

Ce128
E.d

FOFEH

C

EHL
CﬁT?PEER
TESL

L. FPAGE
L TYFEEFR
MODECE

4

['E . BUFFEFR
HC.GETIL
HE - &1L0
HES TYRELS
]

Ha > TYFEER

CLOSE
TZEF

[

ZICH
Z?TTPEB
CRIOE . HL
] .

ERF
EILL

APPENDIX-2

v DE:=SWITCH THELE
1 CHECE GLOBRAL SMITCH

SELECT CET QR LFT
CHECE ZEFARATER

SEFARATER="." 7
I 1% EREE CORE

t MO, ERE RETUREH
i CHECE LOCAL =SWITOH

= IS ERR CODE

ERFOR. L3W EXIST
L =122

DEFAULT MOLE=ASC

i RERD-0OFEM

TEST GLOBAL =WITCH
LFT PRGIHG
FILEMODE CHECE

o Homl

i GET 1 LIHE
P DISF OR FPRIMT 1 LIME

HO ERFOFE

ERFDR
EHMD-0OF-FILE
CLOSE FILE
CHECE SEFARATER

ZEFAFEATER="." *
YEZ. TYFE MEXT FILE
SAVE CLI FPOIMTER

ERFEOR QCCUE
KILL FILE =128

ek ZEE ASSEMELER SF-T181 FAGE G2 e

iT SCF ¥ SET ERROR FLAG
ZEFF LD P ALEERDY DISF ERRE MSGE
o FET

VT 1
I
-
il
xI

s LN On

I
y EHD OF SWTEL
122 BYTE BUFFER

l_ '

=e =WTEL: [EFE

FF DEFE

BLFFER: [EFZ
EHD

]

VT T T T T
— T} 0
[y]
L i

o T S T T
e R I R i R

)
X
R

A AR]

-,
m

E
F
!
4
4

o
I,

#% TS0 ASSEMELER SP-F181 PAGE 63

(X
-
I
—
m
—
[xx]
X
]
-
]

. THFE & BUFFER &Bcd SWTERL GBcz TYPED 86

BEGE
T“FE’ﬁ pEds TYRFEER BoSg

APPENDIX-3

USER CODED I/0 ROUTINES

FDOS supports control programs not only for the floppy disk drive but for the printer (§LPT) and
the paper tape reader ($PTR), etc. Other I/O devices can be operated under the control of FDOS by

means of user coded control programs.

——USER 1I/0 ROUTINE—

A user I/O routine consists of the following sections.
A. Device table (57 bytes)
B. ROPEN or WOPEN procedure
C. Data transfer program
D. CLOSE and KILL procedures
These sections are explained below using the FDOS paper tape reader control program ($PTR) as an

example.

A. Device Table (lines 2 through 20, bytes O through 56)

*FDOS uses bytes 0 through 2 (FLAGO — FLAG?2).
This area must be written exactly as it is shown.

X Byte 3 (flag 3) represents the attribute of the I/O device.
Bit7: 0
Bit 6 : 1 indicates that tabulation is possible. This bit is set to 1 for the printer. See note 1 on

page 7.)

Bit 5 : 1 indicates that parity specification (§PTR/PE, etc.) can be made.
Bit 4: 1 indicates that only .ASC-mode files can be transferred.
Bit3: O
Bit2: 0
Bit 1: 1 indicates that WOPEN is possible. (See note 2 on page 7).
Bit O : 1 indicates that ROPEN is possible. (See note 2 on page 7).

*Byte 4 indicates the data transfer format. (described later)

> Bytes 5 and 6 are the starting address of the subroutine to be called during ROPEN execution.

*Bytes 7 and 8 are the starting address of the subroutine to be called during WOPEN execution.
(WOPEN is not executed for $PTR so DEFW 0 is specified in this program.)

>*Bytes 9 and 10 are data by the FDOS STATUS command. (Not used for $PTR).

>*Bytes 11 through 14 are starting addresses of the subroutines for CLOSE and KILL processing.
>*kBytes 15 through 22 (Procedures 1 through 4) are data transfer routine addresses. The data

transfer procedure differs according to the transfer format.

APPENDIX-4

ROPEN

Procedure 1 Input 1 character Input 1 line (From the address
; (ACC < data) indicated by DE to a CR code.)
Procedures 2 ~ 4 Unused Unused
WOPEN
Procedure 1 Unused Carriage return
Procedure 2 Output 1 character Output 1 character
(ACC : data) (ACC : data)
On.ASC mode, ODH | On . ASC mode, ODH means
means carriage return | carriage return and OCH means
and OCH means form | form feed.
feed.
Procedure 3 Unused Output 1 line (Corresponds to
; monitor subroutine MSG)
Procedure 4 Unused Output 1 line (Corresponds to
monitor subroutine MSGX)

X Bytes 23 and 24 are used by FDOS.
X Byte 25 is used only when bit 6 of FLAG 3 is 1, in which case it must be loaded with the number

of characters of the line which have been output by I/O routine.
X Byte 26 is loaded with the file mode by FDOS.

X Bytes 27 through 56 are the device name (up to 16 characters); the rest area must be reserved

with DEFS.

*kWhen the transfer format is 4, a buffer area for 1 line is reserved after the byte 56 with

DEFS.

B. ROPEN or WOPEN procedure (lines 22 through 30)
Only ROPEN is needed for the paper tape reader ($PTR). The tape feeder is skipped by this

procedure. WOPEN is also used to start a new page during output of an assembly listing.

C. Data transfer program (lines 32 through 63)

Program which performs actual transfer of data.

D. CLOSE and KILL procedures (lines 65 through 66)

No function with $PTR.

To return control to FDOS from the ROPEN, WOPEN, Procedure 1—4, CLOSE or KILL routines, set
registers as follows before executing the RET statement.
Normal :CF <— 0
Error :CF <— 1, ACC «— error code (refer to the System Error Messages in the System
Command Manual.)
Fileend :CF <« 1,ACC < 0

The contents of the IY, BC’, DE’ .and HL' registers must be saved in any case.

APPENDIX-5

——RELOCATING USER I/0 ROUTINES—

First, assemble the program coded (the program name DVM is used below).
Example 1: 2> ASM DVM, $LPT/L

Next, relocate the file to generate the object program. A higher loading address must be specified at
this time because of factors related to the LIMIT command described later. Take care to ensure that
addresses do not over lap when two or more user I/O programs are used. If necessary, link MON.LIB or
FDOS.LIB with the user I/O programs.

Example 2 : 2> LINK $C000, DVM
Example 2’ : 2 LINK $C400, CDISP, $FD1; FDOS.LIB [CR

——LINKING USER I/0 ROUTINES WITH FDOS —

User I/0O routines must be linked with FDOS I/O controller every time FDOS is activated.
First, use the LIMIT command to reserve an area in memory for loading the object program (DVM.
OBJ).

Example 3 : 2> LIMIT $C000
Next, load the object program.

Example 4: 2> LOAD DVM [CR]

Finally, link the routine to the FDOS I/O controller. $USR1 through 4 are provided in FDOS as

device names for user I/O routines; assign the user I/O control routine to one of these device names.
Example 5: 2> ASSIGN $USRI, $C000 [CR]

Now the user program is linked with FDOS and can be called by specifying $USR1 (—4). It is
convenient to prepare EXEC files which include LIMIT, LOAD and ASSIGN commands such as those
shown above. (Refer to the System Command Manual).

User I/O programs are called as shown below.

Example of use by FDOS commands

2> TYPE $USRI
2> XFER DATA4, $USR2

APPENDIX-6

Example of use by BASIC compiler

10
20
30
40

999

Note 1:

Note 2:

ROPEN #2, "$USR1"
INPUT #2, AS

IF EOF (#2) THEN 100
PRINT AS§

CLOSE #2

Bit 6 determines the functions of BASIC statements PRINT # and INPUT #.

When bit 6 = 1, data is treated in the same manner as with PRINT and INPUT statements.
When bit 6 = 0, separators ("', and ;") in the PRINT # statement are replaced with |C_—§l
and commas included in the input character string for the INPUT # statement are treated .
as data; only is regarded as a data separator. (This is the same as with the PRINT #
statement supported by SP-6015 and the PRINT/T statement supported by SP-5025.)
Both ROPEN and WOPEN are possible, when both bit 1 and bit O are set, but they cannot

be executed simultaneously.

APPENDIX-7

——SAMPLE PROGRAM (I/0 DRIVER)—
w4 TI0 ASSEMELER SF-T101 FAGE 81

FFTR: EMT
DEFW

,_,..
MU
My

TN o i B
1T

ol RN

[x(]

=
=
el
[on)
T
=
-
)

oy
1

,..
Lt
=
=L

y FLAG
LEFE FLAG
:EFE i FLAG =2
LEFE 1 ! TRAHSFER FORMAT
CEFW 5 ROFEH
AR DEFW WOFEH
EFW STATUS
CEFL CLO=E
DEFU EILL
DEFH FROCEDURE
DEF FROCEDURE
DEFL FROCEDURE
[EFW FROCEDUIRE
DEF=
5 DEFE THE

@ [:EFE 3 FILEMODE
F4EES45 T DEFM “%¥FTE - + FILEHAME
= ; DEFE BDH
1 PR DEFS 25

|

0 v
1T

=
[l

=
=
ADADARR
]

A P2

(RN)
L = T T
SR
SUR AR

ba
i
I

!
—
!

,.. ,.
DRI R

-

DA DA IR

e i

.,.
k!
-
N

1

A}

=
T
=
k%
T T
=
m
-
=

D
1,
i,
1

-

7
!
—
L
=
2!
-
2}
—
2
A
!

-
ed e T 0 D0 -
=
]
g
Y

!
=
it = S e S W I A R R B

=T

L)
o
AN

-
L

=
11T T T

1Yo
Y
Lose B B A N)
—
o T T

T

-
—
D}

Ty e e e
DRIV AN AU MY
=

LI o N R

AR
(A0

Lo}
R
!

=
!
RBA RN DADA R

e
Doy
)

o Bt IR hon T S N B e

o L b

M
- =
DU o R |

%
")
'

T T
T T
-

...
]
Do acn]

R
XA
=

Doy oL I O A Y I

..,..,..,..
DA AR
0 AR
DA
Rt
il

..
Ay
Dot ou}
o

CLS460 PDPEH: CALL FTEIH sROFEH
=] FET C
LD H
FHD A

A

—

Do B I Aot I X0

o T T T T T T
SRR R Ry) I U RS R CRRS R ORI Y OO SR e
Tobe Lo A P I DT T) T RS e T

TR
LI
ToTFAG LG CDHETH» - H
HF AN H

] FET

AR

e re e -
b ATy AT T T sy S T T T

ot 1

FTR1C: CALL FTEIH
LD Ha E
FET o
LI HL -
LD HaM
LD I
AML H
FET

'}
ke

2!
ALY

o

-
P R

I

FTEIM: LD - EFH
QT tE1HY A

FTRZ: IH H: CE1H?
EIT S

JE HZyFTRE
EIT H
IR

FTEZ: IH
EIT

TS T T T T T T T T

$u
[

; '31 Do)
_n i
T

BN S
J el b
T

U AU X)
nen

T
IR C
U

-d.‘ I-L

DT T

- J T

Dol
I
UK

2 H
SFTREZ
~E1H
+H

T T R N

[1 I I R R N

$o
=}
T T
=,
1T T T
T
[
AnEAR NN xpanlan
T [T 3 [}
— 1T

Ja

S
VT T
=

=

SH GHEE THE IR HZ.FTRS

APPENDIX-8

#4220 ASSEMELER SP-T181 FAGE B2+

1 El 4. A
AF Jr HZ . F
B IH 4

]
1T Ty

AR N]
4 P -
DA

il ol el e el el A I A I A N

RS IR e I [N I SIS o TS B R Rl S IO R O O
X U A
10

A

Y

%)

[

X

D e w]
g S
mom

A o N T T R I o S

I o

!

]
ot Bt It B acr

A
2F CRL
“+ LI E
A

RN
o

3 TIm e
i

DU R]
SR | N W N
Lo W T P I e
¥ g
- m
-n

L
T
FET
FTRE: LD A.F
LIEL ouT CEd
a7 SOF

Lh A, &a sHOT REALY
RET

s
T
LA

=
h k)

a

A
A

,_. .,_,..
T T T T
]

,.
i ='=I 1
D]

Do or I ot B I

DOCI B I B Bt

X
!

I

OF CLC: HIOF:
s RET

AR
UDA DR

DATR: DEFS 1
EHD:

,_,_

LU
=
MU

+# TER ASSEMELER SF-T181 FAGE 62+

FFTE alals : aavFh L
FTRZ gaes FTRES Bevs F

APPENDIX-9

CONVERSION OF CASSETTE BASED SYSTEM PROGRAMS

The following cassette based system programs have thus far been released.

MACHINE LANGUAGE SP-2001
RELOCATABLE LOADER SP-2301
SYMBOLIC DEBUGGER SP-2401
EDITOR-ASSEMBLER SP-2202, SP-2102

These system programs generate source files (with file mode .ASC), relocatable files (with file mode
.RB), object files (with file mode .OBJ) and debug mode save files (i.e., object files with symbol tables).

Of these, source files and object files can be transferred to FDOS diskettes.
The procedure for transferring a cassette file to an FDOS file is as follows.
When the file name consists of characters which are usable with FDOS:
XFER $CMT,$FDn (n=1 —4)

When the file name includes characters which are not allowed by FDOS, a new file name must
be assigned as follows:
XFER CMT, SFDn;filename (n=1 —4)

When an assembly source file is to be transferred, use the following procedures to determine whether
or not pseudo instruction REL is used: load the file with the FDOS text editor and search for REL with
the S command. Delete all REL instructions; this is because FDOS system programs do not require REL.
Next, assemble the file from which REL instructions have been deleted to generate a relocatable file with

the FDOS assembler. The object file is obtained by relocating it.

Object files generated by cassette based system programs can be transferred to an FDOS file and they

can be executed by the following command.
RUN $FDn; filename

The following message is displayed on the CRT screen when the specified object file has a loading

address which results in destruction of the FDOS area.
DESTROY FDOS?

Pressing the@key at this time performs the transfer operation, destroying the FDOS area; pressing
the[N]key stops the operation and returns the system to the FDOS command wait state.

APPENDIX-10

MEMORY EXPANSION

FDOS requires 36K bytes of RAM
The MZ-80K has three RAM blocks and RAM

chips of up to 16K bytes can be mounted on each

block.

RAM (IID)

RAM (ID

RAM (1)

The following table shows the procedure for

connecting address sectors in the address range for the
RAM area.

©) @ ®
Fight 4K dynamic RAM chips 1000
on the RAM (II) block § F F
(MZ-80K standard) SFFF 5 &
‘ DO (CIE)
Eight 4K dynamic RAM chips 1000 ;
on both RAM (1) and § F %
RAM (1) blocks 6FFF G 3 5 ©
Eight 16K dynamic RAM chips 1000 LOBO AU ()
on the RAM (1I) block § F F /
8FFF 560 o0 ©
Eight 16K dynamic RAM chips 1000 BROOO B @ (@)
on the RAM (1) block and (L L /
eight 4K dynamic RAM chips OFFF f t _Z
on the RAM (Il) block @OBDO 2@ ©
Eight 16K dynamic RAM chips 1000 BODRDDRD DO ®B B @
on both RAM (1I') and s 5 ‘ / /
R_A__M (“_T) blOGkS | | /
~ CFEF EEEEERE ©o® 6

In all cases, eight 16K dynamic RAM chips are assumed to be mounted on the RAM (1) block.

APPENDIX-11

I/0 MAP

I/O ports with addresses equal to or higher than DOy are reserved by the manufacturer for control of

external devices; those used by FDOS are assigned device names such as $LPT.

o —
 lsetports
D8
Reserved for future use
EO

Paper tape punch and reader
($PTP, $PTR)

E2
Reserved for future use
FO
F4
F8 Floppy disk
($FD1 ~ $FD4)

FE Printer

(SLPT)

APPENDIX-12

MEMORY MAPPED 1/0 "

Memory addresses EOOOH through EOO3H are assigned to the programmable peripheral interface
(8255) and EQ04H through EOO8H are assigned to the programmable interval timer (8253).

The monitor program sets the mode for 8255 and 8253 as follows.

Control word

Control word

D7 De Ds Da D3 D2 Di Do D7 Dé Ds D4 D3 D2 Di Do
[T [oTo [o1]0] o T T T o [o [o] S,
11000 }0|0]|O Reads counter 2.
o [0 [T [0 [T [0 0] s ene
A _;ﬁPAT_PAO (——w—(C}I/;I"}E Counter 2
8255 4 8253 > OUT | (used in mode 0)
T For s —— CLK
D7-Do «—> C «[: 4 D7-Do «—— GATE | Counter 1
Pcs—Pco ——ouT | (used in mode 2)
8 t—— CLK
B j————PB7-Po Ol e mode 2
8255 port definition (mode 0) 8253 control word format
D7 D¢ Ds Da D3 D2 D1 Do
Port C Port C [sc1 | scol rRur[rio | m2 | M1 [mo | BCD]
Dabsima Dn Boe (upper 4 bits) ronh (lower 4 bits)
00|00 |Output Output 0 | Output Output
00 |0 |1 |Output| Output 1| Output Input 0 0 | Counter0
00|10 |Output| Output |2 | Input Output 0 1 | Counterl
00|11 |Output| Output |3] Input Input 1 0 | Counter 2
0|10 |0 |Output| Input 4 | Output Output 1 1 | Unused
0|10 |1 |Output Input 5 | Output Input
0{1]11]0 |Output Input 6 | Input Output
011 |1 |Output Input 7| Input Input 0 0 Latch the counter contents
1 {000 |Input Output | 8| Output Output 0 1 | Read/load MSB
1100 |1 |Input Output |9 | Output Input 1 0 | Read/load LSB
1{0|1 |0 |Input Output |10| Input Output 1 1 | Read/load LSB, then MSB
1 (0|1 |1 |Input Output |11} Input Input
1|10 |0 |Input Input i2| Output Output
11110 11 }Input Input 13| Output Input o0lolo0
1 {110 |Input Input 14| Input Output 001 Mode 1 0 16 bit binary
1 |1]1 |1 |Input Input 15| Input Input X110 Mode 2 counter
X |11 Mode 3 1 4 digit BCD
1100 | Mode4 counter
1011 Mode §

APPENDIX-13

MEMORY MAPPED I/0 CHART

E000 D, — Cursor blinking timer reset signal
Ds
(}Keyboard scan row output signals
Do
E001 D,
§ }Keyboard scan column input signals
Do
E002 D; —V-BLANK D; — Cassette deck motor ON/OFF signal
D¢ —Cursor blinking timer status bit D, — CAP/SML lamp selection signal
Ds —Read data from the cassette tape deck | D, — Write data to the cassette deck
D, — Record/play key signal from the D, — V-GATE
cassette tape deck
E003 8255 C port single bit set/reset
CAP (green) lamp—LD A, 05H
LD (EOO3H), A
SML (red) lamp — LD A, 04H
LD (EO03H), A
E004 8253 counter O setting data
The music signal is generated by dividing
the 2MHz clock signal with counter O in
the MZ-80K. Monitor subroutine CALL
MSTA sets the division ratio and controls
the gates.
E005 8253 counter 1 read data 8253 counter 1 preset data
E006 8253 counter 2 read data 8253 counter 2 preset data
E007 8253 mode setting data
E008 D, ~—Tempo timer status bit Dy —Music Start (1), Stop (0)

APPENDIX-14

NOTES FOR USE OF INTERRUPT

The Z80-CPU INT terminal is connected to the
B-24 terminal of the connector provided on the rear 8253 Z80-CPU
panel as shown at right. It is recommended that an NMI

open collector driver be used to feed the INT signal

externally. ouUT2 INT

The non-maskable interrupt terminal (NMI) is SN7406

internally connected to the +5 V line through a1 Connector (terminal B-24)

kQ resistance. O—

The MZ-80K monitor program sets the CPU to interrupt response mode 1 and disables the interrupt.
—— EXECUTION OF TI$ IN BASIC AND TIME INFDOS——

The BASIC interpreter developed for the MZ-80K supports TI$ and the FDOS supports TIME to
read the built-in timer. The built-in timer uses counters 1 and 2 of 8253. It is set to 00:00:00 when the
BASIC interpreter or FDOS is started. Interrupts are enabled at the same time as the timer is set. The
level at terminal OUT?2 of 8253 becomes high every 12 hours to cause an interrupt and make a 24 hour
clock on the program.

When the CPU accepts an interrupt, it automatically executes a restart to location 0038H. Instruc-
tion JP 1038H is stored in 0038H and an instruction causing a jump to the clock updating program is
stored in 1038H. Therefore, an externally applied INT signal cannot be identified and it is also treated as
an interrupt for the built-in clock. Thus, the INT signal cannot be used externally when the BASIC inter-

preter or the FDOS is operating unless the clock function is disabled.

—— INTERRUPT BY USER PROGRAM —

In an FDOS user program, use of the INT signal is optional. The EI instruction must be executed
properly since the monitor program disables the interrupt.
8253 has no reset function, but the equivalent of a reset is performed when a control word is set

without presetting the counter to mask the interrupt from OUT?2.

APPENDIX-15

HARDWARE RESET

Microcomputer operating conditions are generally indeterminate when the power is turned on. The
RESET signal is used to set the microcomputer to a certain initial operating state.

When the RESET signal is applied, the program counter is set to 0 and the monitor program stored in
locations 0000H and on is activated to start operation of the MZ-80K.

In the MZ-80K, the reset signal is automatically applied by the circuit shown below when the

power is turned on.

CPUI
RESET
Vs
MZ-80K reset circuit
sv +5V
+
8 RESET signal generated by the above circuit
T SK< . 0.01u
R3 Z 10K Rl
R, 3l A, 74121 CPU
A S\ [
4|92 e
1
108 < s) =g RESET
SW % » Aqr B 74LS00 7414
5
7;E7 77777 Rs £1K
+5V

Reference circuit for manual reset

The base voltage of Tr is low when the power is turned on and it is kept low until C1 is charged.
During this interval, Tr is off and its collector level is high. This high level éignal is inverted by IC1 to
apply the RESET signal to the CPU.

Tr is turned on when the voltage at point A reaches Vg of Tr plus foward voltage Vy, of D2 so that
the RESET signal is turned off. When the power is turned off, C1 is discharged through D1. Therefore,
the reset circuit operates normally for a few seconds after the power is turned off.

It is often necessary to reset the CPU without turning off the power. For example, the system runs
out of control when the POKE statement is erroneously used in a BASIC program and the BASIC inter-
preter is destroyed. The power must be turned off to restart the system; this takes a rather long time
because the data and program must be loaded again.

The above problem can be solved by adding a manual reset circuit; this circuit is shown abvoe. IC2 is
an one-shot multivibrator. When SW is turned on, the voltage at Al and A2 drops to a low level and a
negative pulse is generated at 6 This negative pulse is used for resetting the CPU.

Note that the program error is not corrected by resetting the CPU and so the program may run with-

out control again. This manual reset circuit is provided for reference only.

APPENDIX-16

PAPER TAPE PUNCH AND READER INTERFACE

FDOS has built-in paper tape punch and reader control programs. These are assigned the device
names $PTP and $PTR, respectively. In actuality, however an interface circuit must be established with
a universal interface I/O card to connect the paper tape puch and reader with the MZ-80 series micro-
computer. The circuit diagram is shown on page37.

The method for controlling the paper tape punch and reader is not standardized. A paper tape punch
and reader which can be controlled by FDOS must have the following signal timing system. The signal
names and timing charts shown below are based on the RP-600 paper tape punch and reader manu-
factured by Nada Electronics Laboratory. (For details, refer to the manual included with the paper tape

punch and reader.)

——SIGNAL NAME

Puncher
DT,~ DTs :Data (PTP <— CPU)
MI : Motor ON/OFF control signal (PTP <— CPU)
ST : START/STOP control signal (PTP «<— CPU)
TO : Timing signal (PTP — CPU)

(RDY) : Ready state signal (PTP — CPU)
(This signal is not output from the RP-600 since it can be used in remote opera-

tion. Ground it when the RP-600 is used.)

Reader
RD, ~ RD; :Data (PTR— CPU)
STA : START/STOP control signal (PTR «— CPU)
SPR : Sprocket signal (PTR—> CPU)
RB : Tape end signal (abnormal stop signal) (PTR — CPU)

* Do not connect when the motor is not remotely controlled.

% The DPT26A manufactured by the Anritsu Electric Co. outputs this signal, but the RP-

—1I/0 PORTS —

Port EQy is used for data by both the punch and the reader. Port E1y is used for control signals.
See Table 1.

APPENDIX-17

<Punch > < Reader >

O 017 110 o
(DT, DT, DT;| DT4 DT, DT¢| DT, DIg] [Data] [RD;| RD,| RD;| RD,| RD;s| RDg| RD;| RDg)
O20) 027 020 B - 027
mi[st | | [___—_——— iControlsignals] ——— [sta] | | |
120 127 I20 127
®wTo! [[——] . —— [SR[RB| | |

Table 1 Port allocation

—TIMING CHART—

Punch

M| B | | |
I 2 eConds -
ST L oK i
) e Within
i H L 20 msec o
TO L RN
H
®RDY) | | |
DT L | |
651” “0’7 6‘1” 6‘0’) 6(1” “1,?

sl 54 9

Figure 1 Punch timing chart

* The next data to be punched is readied while TO is H and maintained while TO is L.

ST is set to L 2 or more seconds after the motor has been started, and is set to H after TO

has risen from L to H for the last data.

iRl Nok-|

[N O —

“1’7 “197 “1” “0’7 “1”

Figure 2 Reader timing chart

APPENDIX-18

——PREPARING A PAPER TAPE PUNCH/READER
I/0 CARD—

It is convenient to use a universal I/O card (MZ-80 I/O-1) for preparing a paper tape punch and
reader I/O interface circuit. Markings such as 0,, or 0;, in the port allocation table on page 18 match
those on the universal I/O card.

See page 20 for setting the universal I/O card switches to select port addresses EQ and E1.

The RP-600 internal interface circuit and input and output pin connections are shown below for

reference. (For details, refer to the manual included with the RP-600).

Punch internal circuit MZ-801/0-1 Reader internal circuit MZ-801/0-1
SN74368 %%K SN74LS04 SN74368
P O DATA o K O DATA
5v, 2.2K i
MC1413 %121(SN741S04 (\
<Jb 1 \.) ST TI>C &:ﬁ —) SPR
2.2K i 5V
MC1413 MC14049 32.2K
O ™I <p— O STA
47K i
MC1413 4.7K MC14049 ,
{>c O TO —> O RB
|
Punch interface circuit Reader interface circuit

Figure 3 Interface circuit (RP-600)

1/DT,) 13 1 |RD, 19
2 |DT, 14 2 |RD, 20|
3 | DT, 15 3 |RD; 21
4 |DT, 16 4 |RD, Data 22
5 | DT, Data 17 5 |RDs 23
6 | DT, 18 6 | RDg 24
7 |DT, 19 7 SD_-/ - 25
8 20 8 SPR Sprocket signal 26
9 |DTy — 21 9 |RDg Data 27
10 22|MI Motor ON/OFF signal 10 28 | STA START/STOP signal
11|TO Timing signal 23| ST START/STOP signal 11 29| RB Operating state signal
12| GND 241 ¥G Frame ground 12| GND 30| FG Frame ground
13 31
14 32
15 33
16 34
17 35
18 36

Table 2 Connector pin connections

APPENDIX-19

a a a

a a a

Oz0 Q27 Ol O _
C = 1 AIMZ8010-1 lig 17
obuimini-iolalel oot Lo 3 b L o4 2 1
Qbutminiziolalal ’ : R — |
R e e L e 53 fer
2 5obabobe bobo bel
............... \\\ EogBoBoEBRRs
) SN(&— Loto &m(&t\(\\DS ~ S l,.g Sa 5m(5&| l’:éo}
EVEVRRERTRE) o peemeow o iy
' G
O DS 050 5T 50 ba b
Cl2 IC14 ICIS ClI3 ICI6 ICI7 C|4§2)§‘>§ﬁ)§z)g;?§§ﬁi v
e e b
(@ o (0] O TR I
BegBRpEees
(03°] ICI10 IC 11 ClO ICl2 IC13 Cry e
. J é . b b] _“ b bobo b
- - T uigsmbabl—totobo s
' .' BRERRENG
o ¢ RAI
z> b
o C6 . IC6 Ccr IC7 IC8 IC9 c8
=) | = *
- i T = 0 -
R PS
Y IC1 Ic2 C4 IC3 IC4 IC5 C5
P . -
T - o -
Cc3
c2 Ct
1+ ot
=
30 25 20 15 5 1

Figure 4 Universal 1/O card component location (parts)

(1) Number of ports
Input : 2 ports Output : 2 ports

(2) Port address
All port addresses can be set. (However, FDOS
uses DOy and higher locations.)
The input port foz I, ~ 1;; is set to an even
address.
The input port for I,, ~ I, is set to an odd
address.
The output port for O,, ~ Oy, is set to an even
address.
The output port for O,y ~ O,, is set to an odd
address.

(3) Port address setting switches (PS)
Numbers marked on the PS switches correspond
to the address bus lines shown below. Turning a
PS switch OFF sets the corresponding address

bit to logical 1" and turning it ON to logical

"0,
SwitehNo | 7 [e 15 JaT 3] 2171
Address bit | AB; | AB, |'ABs | AB4| AB;| AB, | AB,

Example) Setting the PS switches as shown below
sets the port address to EOy.

S7 Sé SS S4 S3 S2 Sl
So e, OFF
Se coverrrinnnn. OFF SSSSSSS
Se v, OFF 1234567
0, . 914F 0
Ss ON N{THE%QQQN
S oo on | UL
Ss e, ON
St s ON

When the PS switches are set as shown above,

ports EOy and Ely are ysed for this card.

CAUTION: Installing two or more interface
cards which have the same port
address settings will result in de-

struction of ICs.

Universal I/O card port address setting

APPENDIX-20

BUILDING MONITOR PROGRAMS AND CHARACTER GENERATORS

A monitor program and character generator which meet the requirements of a particular user system

can be built by the user. However, an expert knowledge of software and hardware is required to build
these because software resources (the BASIC interpreter, system program, application program, etc.) and
hardware resources (printer, disk device, etc.) supplied by the Sharp Corporation may not be used with a

carelessly generated monitor program.

The MZ-80K uses the following LSIs for the monitor and character generator.

; - - Mask ROM type
Monitor : X0171PA (equivalent to yPD2332) x 1
C.G : X0172PA (equivalent to uPD2316E) x 1

Mask ROM LSIs uPD2332 and uPD2316E are pin compatible with PROM LSIs TMS2532 and 2716,
respectively. Pin connections are shown below. Be careful not to insert an LSI chip in a wrong socket
since all LSI chips are of the 24-pin DIP type. Place LSI chips in a conductive rubber mat when storing
them. (LSI chips destroyed by inproper handling are not guaranteed.)

——PRECAUTIONS FOR HANDLING LSI CHIPS—

e Ground the human body when handling LSI and IC chips. Avoid wearing clothing made of chemical
fiber.

e Hold LSI or IC chips by the plastic resin housing and avoid directly touching the pins.

e Pay attention to the direction in which LSI and IC chips are inserted into their sockets.

e When storing an LSI or IC chip, wrap it in aluminum foil or place it in a conductive rubber holder to
keep all pins at the same potential.

e Do not store LSI and IC chips in extremely wet or dry places. The storage temperature is —20°C ~
+70°C for LSIs and —40°C ~ +125°C for ICs, but store them at a normal temperature if possible.

® Do not subject LSI and IC chips to shock and do not apply excessive pressure to the pins.

: : 3 1-~4
e Re sure to tur i hier sockets.

Address input
Chip enable
Output enable
Data output

Power down/
program

APPENDIX-21

—— MONITOR—

FDOS can be used to develop user monitor programs. Refer to published information (various
magazines, guide books, manuals, etc.) for the structure of ordinary monitor programs. The circuit

diagrams included will be useful in the development of user monitor programs.

—— CHARACTER GENERATOR —

A character generator must store 8 x 8 character patterns corresponding to display codes O0H
through FFH. The following sample shows the relationship between the storage format of a space, A and
B and the assembly listing. Assemble the texts for all desired characters and operate the PROM

formatter to make a character generator.

kX 780 ASSEMBLER SP-7101 PAGE 01 >

0000 00 DEFB O ; SPACE
0001 OO0 DEFB O

0002 00 DEFB O

0003 00 DEFB O

0004 0O DEFB O

0005 00 DEFB O

0006 00 DEFB O

0007 00 DEFB O

0008 18 DEFB 18H i A-PATTERN
0009 24 DEFB R24H

OOOA 42 DEFB 42H

O0O0OB 7E DEFB 7EH

000C 42 DEFB 42H

000D 4R DEFB 42H

OOOE 42 DEFB 42H

OOOF 00 DEFB O

0010 7C DEFB 7CH ; B-PATTERN
0011 22 DEFB 22H

0012 22 DEFB 22H

0013 3C DEFB 3CH

0014 22 DEFB 22H

0015 RR DEFB 22H

0016 7C DEFB 7CH

0017 00 DEFB O

0018 END

APPENDIX-22

MZ-80K CIRCUIT DIAGRAMS

a CPU Card Component Locations

)

< N - N —AN—

= %“%Uu O 4t £ 28 g @: 18
s2zv v

MeET | s
~ @ I ND +
vy [} &) ‘}’
y Lrd ZND 812 £ND vNO
T e ar ﬂe a9
d €0] y
X WM— W A Qg it 90 te) | W’)] (ﬁ
Ao M J
= 0 —_ - -
610 u
e m o 02y —m— L5 T 1€y Bm
o [} = o = g —w— —mw— O
o) I} Q 22 —wa— S2y 10 —s— gy w
- - - - €28 —wW— W 828 M- —w— g
LN LNl LNe) U by avw: %%—N GZZ% - =3 ﬁwv_gga ©
—AM— . _ Lol oﬂ:‘ 8‘:]5 CAM— <
_ Ny e 2 G r_ JT8¥3 —wy S e e U3
] [] " oy WS . —on— 98Y
@ o= i 910 Qo5 4 Ogd
< 0 ©o ~ - i 210 +
AREANEANE o -
PV PN PY R Y Se e le ¢ &
4k 1+ * 4t 4 1k
2 20 80 62 [olfe] 1o 20 ‘-
SR - — - Lz
o0& s
I] & X N 2 ©
I < b 2 < 2 IVH WOD v
ze Lnd Lne g A
0 N
Q O (o
N - — =
o S __ e | ° ©
o
© @ o E,Y] _
& N ~ § R ! SND 9 “
3 3 © o © | Q x
Lol [@] O Fiazih
Lnel LnJ L] L o
~
@ g WY (AGH)
— — —A—
(] ~ ovy
] ~ z b (aND)
g (8]
S R M I 9 9 5 (As-)
Q © o 9 _M o Y 5
O = =2 =2
L £ e ©
U LN LNel z
z
— s
o v20
61
- .
g
()
3
—_ (Y] ")
3 2 I T < b 3 < N
153 Q 15 5 Q o ﬁj o o g =
- C It ny Ll ™
i by —A— §+ *
g2o 2wy —w—
4 ey —wWA— N
+ o ~ @ o o = o " . ¢ n +
8 #8 8 2R 28 3 &y +3 9 8 gt ®
B+ 4

1c47
z}
(Cs1)
coM RA2
IC48
IC49
IC50
—
[C—
R44
C51 —vwA—-
(M-ROM)
ICSI
IC 52
(+12V)
(+5V)
(GND)
(- 5V)

[- < 0 ©
FLFL LM 4 L0 L9 L2201 L™ B L L L
< < F < < Fo 0 n 0 0
+UTUT$T8 T34 TgTUTOTUTUTUT T38T S8 oT oT oT
& ©
0 g
+

8G0 4k 6G0 4F 090 4k 192 4F 290 4k €90 4k 90 4k S90 A4t
‘ |]
990 4+ 290 4} 89

4F 690 4F 020 4F 120 4F 2.0 4F €4

]
]

¢

RAM (1)
_1
2|
§ Ic55
2|

—

(&}
o —
IC53
)
@ c54

O,

20 4k G20 4k 940 4k 220 4F 820 {F 6.0 k08

O
.
=
)

5t

—ww\— R47
—w— R48

o 4k

~
I'e}

RAM(ID

r g —]
=
R
P
=

]
]
l
l
IC58
(€cs2)

Lo
280 4k €80 4k ¥80 4F_ S8D 4F _ 980 {F 180 {F_880 ., 68D 4F
oa 1a 20 €a +a sa £ 2

APPENDIX-23

t Diagram (1)

ircui

= CPU C

-3
o

a

o
=]

[
o

<
[=}

0
[]

©°
o

~
[=]

AS+ 1353y
SN8 W3LSAS ANV NdW br2s)i
se ol vose Z
evy
w2 ; [2>
ﬂ—\m
ma
mH H_. 9 92
oz ol % 13s38
-— oy
51 3 oF _
—-—————ee]
] v el 'Y %z
-
8l z 23 PAfONS+
-4 €
€ 21 [3 v _H mH
-—]
S 3l ve| Y 51 oz
- ——
7 & = L19H 1 ST L1om
-] It oy W ST e
el vt Ol 8 3 Wiz) 3 W
-— | SEE——
3 I pr3 Wiz S S am
i
Whz =] 7 @
- —&
o B gg| °v bcm%l_ oz] Bl]
-— s S
EL v g °Y 038 I S bb2 s b1 — 034w
-y S — .
81 z T A HS3¥ 5 3 Ge Ol o HS3Y
B ———
5 71 'Y
-
¢ bz 1 <! oY
-]
Z Gb ol 5 3
-—]
E] 8 51"'Y
siy
@ 9z 9l K s
ay
= ANI INI
6 | Lo 8! -
92 ol === 62 S nee
H@ j 0¥SN8 |5 1 zvy
o] AN
s 2 %1]°° LAN |77 z“_‘_ ONS +
7 by
S 1 o
S 1 gl
- 15257
[9€ 0l o .
v Si zi
=2 vel
Alll.ﬂq_ Al £Q
Z T
8 8 ndo 08z
9b Ol
- H 3 z1°
8
ﬁ Z 51°°
- 1wzs
2g 0l s
_ 3 ol
v
A2 L
€ =149
vl
¢ oz ol

FT

AS+
7100
[44¢] AGI
L84
AS +
610 .H
i
£2£082 u~+
id
i<
GaGISs!
3OIZ
p:
:14°]

[cssisi

AS+

APPENDIX-24

(2)

ircuit Diagram

= CPU C

T

5] § 5 & m aqv sav vav S sav 2av 1av oav
$GoI 601
S 2l 6 L b gl 2l 6 L v
9 AY AE A2 Al 9 Ab AE A2 Al
2618 LG1IS
23O 135003 €601 959
mﬂ 2 | S @gb Vb 9¢ Ve &2 vZ &l vl s ab vb @c ve @z vz 8 vl
T o —_m_v_o___wnmm T Je Jor ot it 9 [& |z
0€9d1
2vsT \nl AT
a o> 8 Vv Svu] SY IV oly 6VY 8V IV .Y oV
al €l 14l Sl AG+
vy
Gl I
v oy] 2v
"I v
IV
v
oz |iz 2 1] e v o
a 58V, _ a o2 8 Vv
>—29 gif—— as>
VERTV I S — 6
—_— 25— 282 o—MWY a1 213 S
— 1
mﬂ ey 889 « wy Toz|'"?
al'® Olff— Y82 23
815 €S2 o] ° ¢ zz|63
8e =~ 92 =) S 5] b
LIg ™ 482 2SD T 43
Sl o7 > 982 Z1°? oa anol z,
2601 Shg— ¢s2 o—wWy =193 50
Al A b2
e 82 gy [o] 4300230 SS3Ivaav
S 4t S
2fe— 252 5123 ANV XNW SS3HaAv wvy
Iz 189 13
I 0
o 082 712 lom

APPENDIX-25

(3)

ircuit Diagram

= CPU C

400

9aa

sqaa

+vaa

£0a

2aa

1aa

oaa

1noa 8WVY 1noa 9INVY 1n0a HPZAVY
f——< A2+
g>———Nia NIQ w N1a o w >nﬂ
3M svy SYOV SV bV EV 2V IV OV 3M Ssvy SVD SOGV pVEV 2V IV OV mlh_s.. SVM _ svd Sosv bvev 2v IV oY |6 ~Ae
1noa LAvVY 1noa SINVY 1noa £2NVY
90>— Nig NI NIQ
L T IEENERER RN
1nod SAVY 1nog PIAVY 1noa 22WVY
Sg>————INIC Nia NI
1nog SWVY 1nog SINYY 1noo 1IZWYY
g >——————NIQ NI NIg
1n0a PAVY 1noa ZINVY 1noa 0ZWVY
£0>——————NIQ NiQ Nig
RN L L T
NI |
Lnog VY 1noa 1 TWVY 6INVY
2a>——{Nia NIQ
1noa ZWYY 1noa olwvy 8IWVY
1g>———Nia NI
I NVY 6WVY LIWNVY
sijLnoa] 9lip 40 id 7 e 9l 1o
00V||a||||unz_0 Sl 3 oy 120% 3 3|V oy 1200
3M SV SVO 9V SV vV £V 2V IV OV 3M SN SY2 §0SVbY EV2Y VOV M’ Svy_ SvDE5 SV bY sV 2V IV OV
Ianw_ i o0 2] |z |s Ihm v CREACROREIERMRE h_m v i ferforfrifer]s 2 |s
um
-
< . 4d00I oav
o) av
2sD 2av
? 9 eav
21 1|l +av
_ _ G sav

1svy

sqv

2svy

ESVY

APPENDIX-26

= CPU C

AHOW3WN WOY OGNV 103713S Wvd

€l
2l RE)
87
SS O
Iy oy 6y 8Y Ly 9V SY vy €V ¥ 1Y oY 3 T AD
. 1
510 Ofg——=<s
ud
ol
| el 2 gz |1 2 e b s |9 ¢ & S
Ny oy 6V 8Y v 9V SV vy €V 2¥ 1y Oy ovy
o 100 AS+
9qf5 °aa
SOt sag 282
*0fg »ag
€
vou WoY - W M El aa
e 20 zaa 1Swy
AS + O—AN\—51S0 Ol 1aa
089 >———511S2 oats °aa
€80
1
P E——
$89 5T° T z
> s 9 zsvy
989 I I Tz m
P —
489 T o=
>
880 s ° La
—
680 i S S
20 eSvY
¥$O >———t0 o5 55 3
> 2501
8sd o o7
- 0> 3 [980 >——F10 o1g
M °Q > €l 8
18O 2 <3222 2
$Q > 223222332
m 7z [T 9 < ST 3
|- S—
s *a o1 S
Q> o x %o
S s bb2 s sl e
B ~0V||w_ S (e} Z vy
a a 0S oI AS+
g >
€ eAl S 01 S 01
= °a> 8 z
= o @Vl'oV AT 089
4 S B € 3
m 2
=} 6l s £ |
sz (X
2z

APPENDIX-27

t Diagram (5)

ircui

= CPU C

OE—Q

WVY 030IA ANV
HOLVYINIO Y¥3LOVHVHO

o
[

)
vt N||A A4 4 A4 NlnIA oy
vZl——< sV v —< v
<n__|Aa< <nj|n|Ao< (nﬂlAud
<vﬂ|_.|]Ao< <v2||A~< <v.v|_I|An<
4S181 45187 48187
8¢ Ol 6¢ DI o] o]}
3 Al 8t IlAm (3)]v Al =1} IAm (o)
7 A2 mN|®|ACV 7 A2 mNIWIAAe
e A€ 88 f[gr—<(!) 5] A€ 85— <(®) 51 A€ 8gfs——<(9)
1 A
E] At av m_|A¢v .|N; 4 me_ItIAA.: 57 At av M.llA:&
Sl 9l] | 2 £ -2 P 9 S ﬂm .ﬁm Sl el 21 1 4 £ \4 < 9 S
6y 8y &y Y SV v v 2y v oy L-3e) §0 6v sy &y 8v v k42 £ k44 -2 oy
vz i4ir4
2v Ol 5 -Ze]l
o 1@ 0 @ 3IM o@ 10 d £ 3IM
il €l 2 I ol idl €1 2l al el]
&i| '@
41
9l
)
14l
o €l
e 7
0 Lo
I
8 PA 9 S| b 13 2, | £2 22 6!
v Y €Y L2 4 v w 8Y 6V ey oy
oo>‘|m °qQ
n>j 'a
20— 20
£QA=— =
\
*aA-] *Q 1S2 LON .ﬁ
SQA-—d S
aA] a z28D 57
90A=—5 90 WoY - 90 £50 [=—AM—OAS +
10A=——+—4 40 Al
B [

73

A

~
o

sves
€t Ol

v

sy

Nl
- o
o o

APPENDIX-28

(6)

ircuit Diagram

s CPU C

ACI+
aNo
anos

03dIA
HONAS
annos

(W2)

H4OLVH3INID O3QAIA

youhs-H AuD|g-H
£0
1
2
(16) (1)
ol
ek
£l (@)
M o] »
v oz »co
SR
20157
s
oSV ! £ i
022l 6191
20151 20151
Mg oI v oz
3 MO IM. AD
Ws ()
I 1 - []
v v 3D avol
NI diHs Y [—=<00A
A2i+ NS g o o1 [T7143S 8f5—=<1aA
S =11 o]} _ _w_m)_mﬁ_w u,ﬂllANnS
4 el 891 i af5—=<eaA
o__l_ m 9zo1| 28 A—<an
Feco0t ey tu 2 81 4 b SaA
i _ Wy “ o <
= Ho ol=——<90A
LT
cois1 [
E3 fuoig-A
oLy 3von
ans AG+

APPENDIX-29

(7)

ircuit Diagram

= CPU C

AS+

H3LNNOD ONAS

wZ

:mﬂ
AS+ v__mm
9y 0z91
d 80 |5 NI
9\ S >
€ o] €
RE] RE) aE) ;ﬁ .—. .ﬂ .ﬁ
€ 2 € 2
2UAG -H -] M >
usuhs-H 510 Al 512 T z|2 e (z108 (0¥ @08 (108
J
ole—) o
Zi 2 70 mw_w%_ M T A 8
el a v
i € ° r | M W m_ M_
L0187 20181 E
[e]8e]]} G121
Auoig-H o "
Auo|g-H H
057 L& b
1221
[}
(N (1) (u) (&) (4) (3) (P) (9) BT BE)
14
v.]_
201
% L0
21|z |6 |9 |s [«_vawll_n_ 1 s1 Tl
ap 20 80 2%0 Vo 1/2 Qb 50 8D 2% VO 1/D R o
DOt 150 _ o B £1° ; 6101
8 <
221 L2 SOl i 5201w
ved) €e21 pAR-] 8id
[¢] 2 8 v a) (Q) As+ (D) AS+
I € (o]} 14 [} €
[[P — s
1
y
6
ip
L) ﬁ_ 6 8 02 |6l \d S
v0Z €02 202 102 b0l £01 20l 101
9zf
001
zeol
olf=
»aZ €02 202102 +al_£01_2ai_1ql
9l 1 Il " 2 22 |€ 2

() (1) (u) (6)

(3) (@) (P) (9)

€0 20 1D

PRe]] Lo
ozz
13-}
- W
A8l 09¢
4]
i0F e
22
ZHNO0OB Om M

APPENDIX-30

(8)

ircuit Diagram

s CPU C

€L€082
ASOGVS2

AG+

AZI+
¥1S7
poI
aNo mvu
ne ons >m_\www~|
YOLOW vosz
AAA
3SN3S S oenW
avay
anam| O

anN9o
29

e

L

92
<1353y
mle<
<V
5 <0350
e
<o
pe ~°d
_—
<'c
N
H——<ta
L <t
3 a
<
62 a
5= 90
7z <%0

[©@0000®@00eEREOEEOR@0)] 9 vy
8X %0l
w |08
A3% ONV 3113SSVD |
'8d
oy &1
0z 28d
JH ={ead
1 5|8
l =z]s8d
1 9
51°8d
® A
52|48
o
“ 1
z
B
<
m:_o..ﬁ v StisT
ad] 5" 991
%013 51¢ Vi ovd
L Ley - ° 8 1vd
5 ans SN z vl €
9¢gy s < ore 3 2vd
o
o1~ orl® Az 7]V
besT e
2ol €
AG+
s1° a EFL LT ——
yd
T
R4
i
4M0° l
p1ST vl b1
v v H uoig— .
. HUDIG-A >—
2 .H A9l m—o._-n .ﬂ_
€ vid Z 4ol TIA _GND
SjumL
wvZ mwm 1no
vey
ZJosia
o2 997 oyl 1SY
< 8 |2
cey
o
AS+

APPENDIX-31

(9)

ircuit Diagram

= CPU C

& oo
_ 92
>m®n“ Jo) 2 Hm |
i+ 541 L1A ONO
SaHL
xoﬂw\mm\ 4GS
Lnofs

NEAE

64 7 2sid %o
ye = 29A 1sy
od] 8 v

AG+ O

ANNOS ANV H3WIlL

AG+

1

4d 00! am

vo

aNs Wy 9 90

Al €9l

)

a

T s
#ole

dd

7R
bJe)

44 el

Qol

031VvD
OM7D

X
AA
wy

Ol ol

oLNno €528

8101

ciy bl

131V9

NGe'ie]

XD

€l

9l

8l

11N0

231V9o
[}
21no

F—< oY

L < o0q

®

< 1a

~

< 2d

0

< ¢€d

0

< ¢vd

<

F————< Ga

m

F——< 9d

o

l———< 2Q

€01

APPENDIX-32

m CPU Circuit Diagram (10)

A B
Al5 l G
A4 | 2 | INT
A3 | 3 G
Al2 | 4 | MREQ
All 5 G
AlO | 6 | IORQ
A9 7 G
A8 8 RD
A7 9 G
A6 0| WR
A5 Il G
A4 2 | Ml
A3 |13 G
A2 14 | HALT
Al 15 G
AO 16 | RESET
G 17 G
D7 18 G
D6 |19 G
D5 |20 G
D4 |2l G
D3 |22 G
D2 |23 G
DI 24 G

> DO |25 G
(MARK)

BUS CONNECTOR DETAIL

APPEND!X-33

+12V <

O O O O

+l2v

+5V

GND

-5V

m Cassette Deck Control Board Component Locations

C3003
@ R 300l 9
_“M’—R3004 8 a
—AM\— R3003 Q B
8 c3ooz ol x ')
S TR
i R3006 o« |3
—"VW"‘ o @
R3007 o
A R3009 o @
R3008 C3004 XY
W @
[Te) -
5| ®°
¥ Hdk g
Q3003 ©
R3010
c3006 — -11:

R30Il —Ap— C3007

R3012 —W— —MW—
R30|3

R3OI4
C3008

R3018 AM g o

D3004

[Fo259pP

R3016 __Am— R3017 R302|
R3022 R3019 Wy
__IVW._
R3023 _ R3020
R3024 W
c3003 —W—
5 o C3009
+¢N‘ ® ’ Q3004
‘ n O
.. @~ ® O

APPENDIX-34

ircuit Diagram

m Cassette Deck Control C

465204

2Zvd v 000

ALY 4000
I0gd L0OO0ED

- 04l M

av3H
8d/0 3y

YXGGGISI

AL2910SC
200€0

200£0
(me/sn

2V Qv3H
3svy3

TOHLNOD 3034 3dv1l 3ILL13ISSVI

08-Z

APPENDIX-35

ircuit Diagram

s CRT Display Control C

- - -
ZZVdi9z0 48MdO
xer
w2/
_ (mZ/1)EE 33
AOO! () A9l/ fozZz £902H Z2vozy A91/00!
/m022 7y AL 190204, 12022 €€
85020 ¢ 602y " A00Z/ M (mznzz nmwwcﬁ
98020 6024] WA
i vizioz Muwmm 6€00X0-HY = N PIOH-H NE'E w%x owwNou
, M V11200814 ceozy
p— Lk o A00Z/220 €£€0° 10 a1y @ E .
ATy 302900X0-HY -t Q $€02 0£02) 62023 . s 3 28
20020 Al
! | 8E02ZY L8028 v slo % M
| ! s) 24 61022
| 0 .
2 DEIZIDS2 _om. %8'9 L
A NS
otae 0z8 >
w ‘ omwmo %wwmwoo 0020 202; IS m 02383 120243
i T . [T8
- 4
i ' qﬁo,mw..__” Nw%mu o-_o @
| | L 81025
V| 8l H89 < VYENI
| S6b ¥SZ 620243
65 A I 22 n.i\u.nz vez 1 3 20020
& vicva T) (Mz/n9s N £0020 ’
e N1 19024 N
. <l @
1<
@ _ ogf 5
4 | i 92024 S
(. 321S-A
- - oss (VLZSOLN (81402
; c205m z2024
ARsoss | |_AeET v1620023- 24 wiz
vi02y ££00 ££00
~ 4002 90022 oy
-
~ V1450021 12Y w2l WG 0oL
V10LOHT 1Y 20027 vuowx_ >m_aww 6130 @ €lozy 2102y _ Jroozo
- e A . AN————4
Hz».\,nm\;_w. ASZ/ 0w +
60022
AGZ A91/10001 f + 80020
/189 AJ 91022 i ! A2l L]
21022 b
//% ® - ASI/M2Z
)| Az _ 01025 H
000 H Al
- 1ozy
vaNov2 Y/ m m m ® (V1500L W) 6 o n
3 00€ T
Ol C) s202¥ . L
NIT-A) vi620.8) (A)G6YVSZ
\ ° @@ ﬁu w @@ (8)1%0$ 19vS2
1102y 0020 =
PIOH—A AAA ia
(me/ns s V1S100X 1 -HY H_] Wiy hvess
; 0202y X3 A2 X T iy Meazzo
o %% 60024 | 10020
(mz/ngi ni2 o_m.vnum
PN
Dt - fzo2y 9102y
L33
1024
AN
ALS T Wy il
—V SS3INLHONE e
V1I20.8-8AY
YOS __ (amios2 voozy
wHo 2¢ oiv o H 20024 A8 ooz ’ P
VA91-d0BO0ISA £5022, il A AN
$100
(MZ2/0) M S
+ - >
A091/M01 #0996 goozy < o LSVYLINOD s
£0025 gpozy Wz'Z | vdsioo8-5AY
9002Y (81006
} 20024
133
41 151052 i
A002/1 20022 Z) 0020 1002y
0. __lo AT 2! %01
0¥020 6£023 15024}/ A
£602 Y
- -
NOILD3S AvdSia v__ow -ZW

A2i+

QN9
0apIA
Jukg

uw
punog

APPENDIX-36

ayvd O/1 VSHIAINN

APPENDIX-37

- ©087 $0S7
'Y T 2] ’ 7 oy 18y jiﬂ’ = 1353y
M M H H H H M H é R s € sd ”
o CE LXMEE o o
99) Wy 7
A JJ f ﬂ o1 o! W 3
~ SR Rl a
]
121 o— 3 891 m '8d B b1 i 89 Wy — v
G 2zl o % 5 26a 5 790 " '
A g2l o - - £80 = 5 £80 Wy) o otg
{ R
Yo Y5219 Y6)
H— 9
18v G£0-090-008Y 13X
€1 €
HOLO3NNOD 0/1
- - "
P 28v aqyvo8 ¥3HLOW
jo1 fl]
U vz 1o . . v80 bl 3 e v80 301S SLy¥vy v
C selo =il = s8a Sit 57 = <80 £8v
i <] ‘
92 | o - 621 s s80 oo . . 580 ano |og| ano
R "
L2Zlo 3 5 280 . = 5 .80 aNo | 62 aNY
N vav A+ | 82| As+
. ﬁ vG2isd vszIs "
C bbbbébLd o0 6606 ([T s il A
. € \¥3 sgv 92
7 08v | gz [803un
D A+ Agt om=—d2 Ve 08v v’»%@ﬁm o8y 18v | vz | 8oyl
9
== s I g T
991 S ?|1l| cav |zz |8y
o 8v
AA“ v Bl T '8 vay | 12| 8l
C) 1 sgv |0z [@L1vH
P 1y ik BB Zo &g e 080
= Q80 98v | 61| aNo
] 2vs1 pes 99257
“ 48Y 81| BLNI
II.II 88v | ZI| SNEW
1.5¥ ¥v3n iy
0000000 = 0000 o ! - e6gv | 9l|L13S3
Lo} D012 3 oM =
- olgy Sl ano
0¢o 00y 0100 Z —] o1 aitg <0y 00y 201 oda
1200 a o 3 118Y | ol
< igy o- 1
L o - e 2 OA S ol MM 2o MM 2 ay o ol a0 28v | €
2 o rm— 243 1 {
A v a1 |® 2 i N o= e8v | 2l
€200 €4 el 0o =10 av e}
S 3 S ol < . 1 280 vigy | 11
PObL . 20y 21
<2187 vovL 52187 7O sav | o
L o | 6
gvan yv3n— €0y —————= €80
T T &) <0 oe0 | 8
#2070 [z %5012
6 180 | ¢
v20o 3 ol 9 f——<vly vl 0o =101 Qi fg———<vQy »0y E— Y]
TGl €l 2 g £l [280 | o
|, szo 5 OA o] 02 . 0z fg————= 50y s1o = QA = 0z g5, 02 fp————=<say 1 aa | s
9200 13 08— 90y 91 0o rl. 0f 0¢ f5——< 904 S04 £l S80
I3 G [O 2l [3 _ € ol] 3 6 v80 | v
U 1200— o] {0 <14 u00 o R T [S—
¢80 | €
PLLLLLL vove 84187 vovL BTy 90y <ol 980
980 | 2
480 | !
MHHHHANHH 08 5 T 80 a v
NG+ nG+

ASCII CODE TABLE

ASCII codes used are listed in the following table. Codes 11H through 16H are cursor control codes.

For example, executing CALL PRNT with 15H stored in ACC does not display "H" but moves the

cursor to the home position.

ASCII

D' E

OH|B|e

2/}]l

a]|[B|[4|P] &)

¥ AN

9lA|lBlC

Wi||[m

—

NI X

v

SIE!

8

7

6

1K|/]]

5

S|
U > & & v DO 4

Y] || AL LA (kD) [A]] 17|] [L]

M

1)[AlQ|H| (& | HH|Hi|[a]|]| (B H|)| @

4] DT =2 NI

6| F1 V]| ¥ Lt

13 KIC]|) [o]|&][x

=M|TK] 20y EmNI

s7)|[0]|[@]|[P]] | &R sP]|[@l]|[a] |[n]| 5P} [d| 5| T

IZIGW @)k 5|9] 8] L1101

(| 8IIHIX] S| a8 D[] [G][1] =8 T /o]

X =2 DN Sl Od| N |e

RS M N ET TN o | N I

/2 0l€l=] PN || O

B ["[2)Bl|RII| & |e]|(z]|[0]] |||
B #®3)C[S|xBA

0000/ 0001 0010|0011/0100| 0101|0110/ 0111{1000| 1001| 1010{1011/1100{1101 1110|1111

~) Z
. 0) A
- > VETHO
o o
©)
a o - o - o« - = — o — = o -
o o o o (=} =) o o —- — e - e — — -
a , . ; - .
A o -« ~ o0 st 0 v ~ ® o < /M o 0 m 2

APPENDI1X-38

DISPLAY CODE TABLE ,

Display codes are used to call character patterns stored in the character generator. To display a
character on the CRT screen, the corresponding display code is transferred to video RAM.

Monitor subroutine PRNT (0012H) or MSG (001 5H) converts an ASCII code into the corresponding
display code and transfers it to the video RAM location indicated by the cursor. Codes C1H through

C6H are the cursor control codes.

e ML NEEERE
oo [AQI D@ <10 0| @)=l ||
2 ooro | BRI 2] YT M| o] [r I BN &L |)
oo [ClS 310 m) OO el) Y e
+ o100 |[D]|[T][4]|H|@) TS F|[d]|[]| AN]| K| e | R]
s ovot ([E]|[UNS)|IIL|€ll@] % | e vl S| R B|5¢|[&]
s o110 |[FIV][6]I50|«e]| 7 &)|A|f | [v] &) [@| 4| | ™
o [GIWI 7] @] D [N (9] wl| LA| L2 | Bl | D |]
8 1000H8Q@$(4}EhmaBHEE@@
9 1001 |W]9[[]’?XDED|IIBQ@EKJ@
A 1010 J—;DQ'{‘:JEEQ&WBE@
s 1o K& =R 4| M| PRI I |k (&l [a]| 7] K| [o]| =[]
c oo |[LIY[5|LIIR|Ld| ™| | LU|LA|[0]|]| D! | (] 4 H| [as)
o vvon | MIFT|200 W |0] P 2
e 1o |[N]|[B| = || | H| P || (0] A]Q)] @7 1]S | a8
SESERER (@)= =iEA| N |[Hi{==/ SN TNl

APPENDIX-39

