Solace Debugger

While Solace is running, if the user hits <F5> (function key 5), the following debugger window
will pop up. In the diagram below, each of the subwindows of the debugger is labeled, and will
be described in more detail in subsequent sections. The five subwindows are

reqister subwindow
stack subwindow
disassembler subwindow
log subwindow
command subwindow

O O O O ©

At the end there is a brief note on breakpoints.

The scrollbars that appear in three of the subwindows behave like normal Win32 scrollbars,
except as noted. The thumb of a scrollbar can be dragged to reposition the window contents;
clicking on the up/down arrows of a scrollbar scrolls the window by one line; clicking above or
below the scrollbar thumb causes the window contents to scroll up or down by a screenful. If a
given subwindow has input focus, achieved performing some mouse command (such as
clicking) in the window, the keyboard interface to the scrollbar also works. That is, the up/down
arrows scroll the window by one line; the page up/page down keys scroll the subwindow by one

page.

Note that although the entire window can be resized, the only window divider than can be moved
is the one between the disassembler subwindow and the log subwindow.

Register subwindow

Disassembler subwindow

I 5ol Debug
A=834131 COz% 8% ADD L ﬂ
F=8 COZA E&F Mov LA
BEC=3EMF=151Z7 ® COZB C3 27 CZz JMP Czz7h
LE=0000=00000 COZE DDE FA IN Fih
HL=DOOO=53z482 coz0 EZF CHMA
ZP=CEF2 CO31l Ee 01 ANT Olh
PC=C0O20 CO33 C8 BE
TICE=0000000a0 O C024 DE FC IN FCh
coz&e C2 BET
CEDF: 7676 ﬂ Coz7 00 NOoP
CEEl: 7676 co3g C3 01 Cco JMP Codlh _J
CEE=R: 7576 CO3ZE EE& PUOSH H
CEEE: 7576 CO2C 1 9% CE LI H, CzZz9Zh
CEE7: 7676 CO3F C3 Z& CO JMP CozZeh
CEES: C139 co4z DE FS IN Fioh
CEEE- COF? 044 E& 40 ANI 40k _ILI
CBED: Cl4i LIC_T K
CEEF: COGE DW <start_address> [<end address>] -- _:J
CEFl: COSE
CEF3: COGE The Dump Words command produces a listing of l&k hex
CEFLS: ZEFF byte pairs in the inclusive memory range specified.
CEF7: COZE If the optional second address isn't supplied, it assumes
CEF2: CLE7 the walue of the first argqument, and only one word is
CEFE: ClDA4 printed.
CEFD: 0044
CEFF: 20768 Note that words are printed in little endian order.
CCoOl: zOzZo
CCO3: Z0Z0 Eight words are printed per line.
CCOL: grozo bpc c0Zh
CCO7:-ggnen _| 0K. Ereakpoint #1 defined.
CCog: [Z0E0 bpc c034
CCOE: fE0Z0 0E. Breakpoint #Z defined.
CCOD: EDED bdisshle Z j
CCOF: EOED nE. -
CCll: EOZ0

Stack subwindow

ccilz- Eozo ﬂlh‘alp brb \
I “..L-;“h“

Command subwindow Log subwindow

Register subwindow

A=83=131

F=230=8
BC=2EFF=1c1:2"7
DE=0000=00000
HL=D000=53245
SP=CEF2
PC=C0O320
TICE=00000000

The register subwindow shows the current state of all the 8080 registers any
time the emulation is halted. It is automatically updated after each single
step or other state change. This subwindow is grayed out while the emulator
is running the 8080 processor.

The value for each register is given in two forms. The first form lists the
register contents in hex (either 8b or 16b), the second form after the second
'="1is the value in decimal. The flags register is somewhat different, in that
the second form shows which flags are set mnemonically: S=sign, Z=zero,
H=half carry, C=carry, P=parity.

Tick

is the current emulated 8080 cycle count; it currently is not working.

This window is read-only. To modify the contents of a register, use the SET
command via the command subwindow.

Stack subwindow

CED'F:
CEEL:
CEE3:
CEEE:
CEE7:
CEES:
CEEE:
CEED:
CEEF:
CEFl:
CEF3:
CEFE:
CEF7:
CEF3:
CEFE:
CEFD:
CEFF:
CCol:
CCO3:
CCOE:
CCo7:
CCoa:
CCOE:
CCOoD:
CCOF:
CCLll:
CCLl3:

TETE
TETE
TETE
TETE
TETE
C1z3
COF7?
Cl4h
COGE
COSE
COEE
2EFF
COZE
C1E7
C1DA
o044
2076
Z0E0
Z0E0
Z0E0
2020
Z0E0
Z0E0
Z0E0
2020
Z0E0
Z0E0

[

The stack subwindow shows the region of memory surrounding the stack
pointer, SP. The display shows 16-bit words, all even/odd aligned with the
current SP value. The entry that corresponds to the top of stack (TOS) is
shows highlighted in yellow. This subwindow is grayed out while the
emulator is running the 8080 processor.

The region of memory being viewed can be manipulated in the usual ways
via the scrollbar, or if the window has input focus, by the standard keyboard
interface. As an extension of normal behavior, the HOME key can be used
to scroll the window such that the TOS is visible.

Although this window automatically centers the display on the current TOS
when the debugger is invoked, the window can be scrolled to any location in
the 64K memory space. To make the scrolling fast, when the thumb is
dragged, the window isn't updated; instead a small 4-digit hex number is
shown, and the display is updated when the thumb is released.

The window is read-only. To modify the contents of the stack, or more
generally any memory location, use the ENTER, EB, or EA commands via
the command subwindow.

Disassembly subwindow

Cozs a5 ADD L o
COzZh SF MOV LA
®COZE C3 27 C2 JHP CZ27h
COZE DE Fi IN Fih
Coz0 ZF CML
Cozl Es 0Ol ANT 0lh
Cozs Co BZ
O CO034 DE FC IN FCh
CO36 C9 BET
Coz7 00 NOF
CO3S C3 0l CO JMP COOlh _J
COZE ES PUSH H
CO3C 21 92 C2 LXI H,C29%h
CO3F C3 26 CO JHP COZgh
Co42 DE Fa IN Fih
044 E6 40 ANI 40h _Iﬂ
4i i 3

The disassembly subwindow is used to display the program in memory using standard Intel 8080
mnemonics. If the instruction corresponding to the current PC is in the window, it is displayed with yellow
highlighting, as shown above. This subwindow is grayed out while the emulator is running the 8080 processor.

Using standard windows scrollbar behavior, the user can change the region being displayed in the window. As
an extension of normal windows scrollbar behavior, if the window has input focus, hitting the HOME key
causes the display to scroll such that the line containing the current PC is positioned in the window.

Because updating the display is slow, dragging the thumb on the vertical scrollbar doesn't immediately scroll
the display. Instead, a four-digit hex display is shown of which area of memory will be displayed when the
thumb is released.

Note that scrolling backwards or jumping to an arbitrary starting location is problematic. This is because 8080
instructions can be one, two, or three bytes long. For example, when scrolling back one line, going back one
byte might be a valid one byte opcode, or it might be the immediate data of a two-byte or three-byte
instruction. Solace uses a heuristic to try and get a reliable "sync"; it goes back 10 instructions or so and
disassembles forward. If the address of interest falls in the middle of an instruction in the resulting stream, it is
assumed that the immediately preceding instruction start is the true instruction boundary. Although it works is
most cases, the heuristic isn't foolproof, so be warned that this may happen if the disassembly seems goofy.

Note that two of the instructions have a red circle in the left column. A solid red circle (at $C02B, above)
means that there is an active breakpoint on that instruction. A hollow red circle (at $C034, above) means that
there is a disabled breakpoint on that instruction.

Breakpoints can be entered, listed, and manipulated via the command line interface, but this window provides a
few shortcuts as well.

« Holding down the CTRL key and left-clicking on a line causes a breakpoint to be set on
that line. If there is already an active breakpoint on the line, it is disabled; if there is
already a disabled breakpoint on that line, the breakpoint is killed (deleted).

o Double left clicking on a line causes a temporary breakpoint to be set on the line and
8080 execution is resumed until the line is reached or another breakpoint is encountered,
whichever comes first.

« Right clicking on a line causes a pop-up menu to appear with a few choices; some
choices will be grayed-out based on context:

Add breakpoint
Disable breakpoint
Enable breakpoint
Kill breakpoint
Run to PC

Home current PC

O O OO0 o o

The integrated Solace 8080 debugger supports source code overlays. These are simply the .PRN files that are
output by the standard CP/M ASM and MAC assemblers. Whenever a .ENT or .HEX file is loaded from the
main menu, Solace looks in the same directory for a file with the same root name but with a .PRN suffix. Ifitis
found, it is "autoloaded™ as a source code overlay. Optionally, a user can manually load a source code overlay
via the debugger command line interface via the "OVerlay” command. In either case, the OVerlay command
has many forms which can be used to control how overlay information is managed and used.

Below appears three snippits of the disassembler window with different overlay modes enabled. In the "on"
mode, whenever Solace needs to disassemble at a given instruction, it checks to see if there is a source code
overlay matching that address. If there is a match, then the source code file is displayed. If there is no match,
the line is just mechanically disassembled. In the "off" mode, it is as if there is no overlay in memory. In the
"both” mode, if there is a source code overlay for a given address, it is displayed (but in gray) and the line is
also mechanically disassembled.

In either "on" or "both” modes, the bytes of memory corresponding to the source line are compared against the
actual memory contents. If they don't match, the source line is still printed, but it appears as red text instead of
black.

CZET BB Mov H.HN ;HI ADDER ;I
CZZh 6F Mov L,a ;HL MNOW COMPLETE
DIZPl: EQU H ;HERE TO GO OFF TO HL
CZEZR E2 HTHL ;HCHC HL W/HL ON STACE
CZEZC 7D Mow AL JALS0 COPY HERE FOR ZET3
CZZD €2 RET JAND GO OFF TO THE RTN
H THIS ROUTINE SEARCHES THROUGH A4 TAELE, POINTED

; BY 'DE', FOR A DOUEBLE CHARACTEER MATCH OF THE 'HL'
; MEMORY CONTEMT. IF NO MATCH IS FOUMD THE SCAN ENDE
; WITH HL POINTING TO ORIGINAL VALUE AND ZEROD FLAG 3ET.

EFE 1132CCH2 FDCOU: LI I.CUTAE :HERE T0O SCAN CUSTOM TEL DHL?_I:J
4i i 2

Above: "overlay on"

CZZ9 66 MOV H,M -]
Czzh &F MOV LA

CezB E3 XTHL

CezC 70 MOV &,L

CzzD C3 BET

CzzE 113CCH LXI D,C33Ch

czal 1 LDAY D

Ce3z BY7 OPA A

Cce3a cs EZ

Cz34 ES PUSH H

CZ35 BE cMP M [
Cz36 13 IN{ D

CE37 Cez43cz JNZ CZ43h

Ce3h 23 IN< H

CZIE 1A LDAX D hd

Above: "overlay off"

CzzZh &F MOV LA -]
DISPl: EQU 3 ;HERE TO G0 OFF TO HL
®THL ;MCHG HL WAHL ON STACH
CZZE E3 HTHL
Mov i, L ;ALE0 COPY HERE FOR SETS
CZzC 7D MOV A, L
BET ;AND GO OFF TO THE RTH
CZZD 03 BET
g THIZ BOUTINE SEARCHES THEOUGH A4 TAELE, POINTED

; BY 'DE', FOR A DOUEBLE CHAPACTER MATCH OF THE 'HL'
; MEMORY CONTENWNT. IF MO MATCH IS FOUND THE 3CAN ENDS
2 J0TTH HL POTHMTING TO OBTCTMATL WALITE AND FEERO FTLALG SiiI:J

ol »

Above: "overlay both"

More than one overlay can be in memory at one time. If one address has a match in more than one overlay, the
most recently loaded or refreshed overlay is the one shown. In the cause of autoloaded overlays (i.e., those
loaded implictly as the result of loading a .hex or .ent file from the main menu), the overlay system can elect to
dispose of an overlay if too little of the overlay is meaningful. Manually loaded overlays stay in memory until
explicitly purged.

The overlay command takes many form so it is best to type "help overlay" in the debugger to get the rundown.

Log subwindow

DW <start_address= [<end addresss] -- _:J

The Dnmp Words command produces a listing of 16k hex

byte pairs in the inclusive memory rahnge specified.

If the optional second address isn't supplied, it assumes
the walue of the first argument, and only one word is
printed.

Note that words are printed in little endian order.

Eight words are printed per line.
bpec c0zb
OE. EBreakpoint #l1 defined.
bpec c034
0E. EBreakpoint #z defined.

bdisahle Z j

OK. -
The log subwindow shows a history of commands that the user has typed in and the debugger responses. The
user input is echoed with a grayed background to help distinguish commands from responses.

500 lines of history are maintained; lines older than that simply vanish. There is currently no way to log the
output to a file, nor to copy a selection from the window.

The vertical scroll bar appears whenever there are enough lines in the command history to warrant it. The
scrollbar responds to the typical scrollbar behavior: the window may be scrolled up/down a line/page at a time
by clicking on the up/down arrows are above/below the thumb; the thumb can be dragged. If the log
subwindow has input focus, which is achieved by clicking in the window or by manipulating the scrollbar, then
the scrollbar responds to standard keyboard scrolling behavior. The up/down arrow keys move the display
up/down one line; the up/down page keys scroll the display a page at a time. Typing the HOME key causes the
window to scroll such that the last entry becomes visible.

Command subwindow

| help brb

The command subwindow accepts debugger commands from the user; a command is interpreted when the
ENTER key (carriage return) is hit.

50 lines of command history are maintained; commands older than this are simply discarded. The user can
access older commands via the up/down arrows; up-arrow corresponds to moving to older commands. To

prevent tediously scrolling past commands which have been repeated, the command history mechanism will
show a given command only once when scrolling up or down through the command history.

Note that some of the mouse command shortcuts in the disassembler subwindow "stuff" phantom commands
into the command subwindow to cause the specified actions to happen.

A brief rundown of the debugger commands can be had at any time in the debugger by typing

help

without any arguments. Here is a key to interpreting the following table of commands:

e <foo> means that foo isn't literal, just descriptive of what the argument is.

e Things in square brackets, like [foo], means it is an optional argument.

o Ellipses (...) means that there can be a number of subsequent arguments.

« Command names can be abbreviated in many cases; below the necessary part is shown in

caps, while the optional part is in lower case and inside parentheses.

o Numeric arguments are hex by default, but this can be overridden to be decimal by
starting the number with a "#" character.
e The command line is case insensitive except for the string arguments to the EA and LA

commands.

Here, then, is the list of commands:
memory commands:
DB <start> [<end>]
DW <start> [<end>]
DA <start> [<end>]
EB <start> aa bb ...
EA <start> abcde...
FILL <start> <end> <bb>

LB <start> <end> aa bb ...

LA <start> <end> abcde. ..
MM <start> <end> <dest>
CM <start> <end> <dest>

SM <start> <end> aa bb ...

DASM <start> [<end>]

LOAD <fname>

SAVE <start> <end> <fname
SAVEH <start> <end> <fname>

execution commands:

RESET

N(ext) [<nnnn>]
S(tep) [<nnnn>]
EX(ecute) [<nnnn>]
C(ont) [<nnnn>]

SET <reg> <nnnn>
INC(lude) <filename>

breakpoint commands:

TO aaaa

BP(c) aaaa

BR(b) aaaa [dd [mm]]

BRW aaaa [dddd [mmmm]]
BW(b) aaaa [dd [mm]]

BW aaaa [dddd [mmmm]]
BI(n) aa [dd [mm]]
BO(ut) aa [dd [mm]]

dump bytes

dump words

dump ascii

enter bytes (also EN(ter))
enter ascii

fill block

locate bytes

locate ascii

move memory

compare memory

show matching bytes
disassemble

load .ent or _hex binary file
save binary to .ent file
save binary to .hex file

reset uP

step over n ops

step in n ops

continue execution

synonym for EX

modify register

perform a file of commands

run to PC=aaaa

break PC=aaaa

break read byte addr=aaaa,
break read word addr=aaaa,
break write byte addr=aaaa,
break write word addr=aaaa,
break in port=aa, data=dd,
break out port=aa, data=dd,

data=dd,
data=dd,

mask=mm
mask=mm

data=dddd,

data=dddd,

mask=mm
mask=mmmm
mask=mm
mask=mmmm

BL(ist) [<nn>] breakpoint list all/nn

BD(isable) [<nn>] breakpoint disable all/nn
BE(nable) [<nn>] breakpoint enable all/nn
BK(ill) [<nn>] breakpoint remove all/nn

misc commands:
OV(erlay) [<Ffile[.prn]>]<id>] [OFF]ON|BOTH]JREFRESH|KILL] source code overlay

KEY <nn> force a keystroke
H(elp) [<cmd>] command summary
EXIT | X(it) close debugger

There is a detailed command description for each debugger command, accessed by typing

help <command>

Brief note on breakpoints

There are two types of breakpoints: PC breakpoints, and data breakpoints (read byte, read word, write byte,
write word, in, and out). It should be noted that PC breakpoints are triggered before the instruction at the
specified address is executed, while data breakpoints occur after the instruction that triggered the breakpoint is
executed.

Back to Solace main page.

Last update: May 1, 2002

	Register subwindow
	Stack subwindow
	Disassembly subwindow
	Log subwindow
	Command subwindow
	Brief note on breakpoints

