I«
Copp I
¥

4

TEKTRONID¢

- excellence in
information display

REONHO

TERMINAL CONTROL SYSTEM
USER'S MANUAL .

INFORMATION DISPLAY PRODUCTS

Tektronix, Inc. e P.O. Box 500 e Beaverton, Oregon 97005 ® Phone 644-0161

Document No. 062-1474-00

The Tektronix PLOT-10 Terminal Control System is the sole property of Tektronix, Inc.
The System, or any part thereof, may not be reproduced or used outside the Buyer's
organization in any manner without the express written consent of Tektronix, Inc.

Copyright()1972, Tektronix, Inc., Beaverton, Oregon. Printed in the United States
of America. A1l rights reserved. Contents of this publication may not be
reproduced in any form without permission of the copyright owner.

U.S.A. and foreign Tektronix products covered by U.S. and foreign patents and/or
patents pending.

User's Manual Number 062-1474-00 supports the following
Terminal Control Systems. Please specify the above
number when ordering additional copies of reference
material.

Please place all orders through your Tektronix
Application Engineer.

Standard Fortran Subroutine Package-4002A (Release #2)

Paper Source Tape 062-1464-01
Source Card Deck 062-1464-02

Standard Fortran Subroutine Package-4010 (Release #2)

Paper Source Tape 062-1474-01
Source Card Deck 062-1474-02

Implementation for IBM with TSO (Release #2)

Source Card Deck 062-1495-02

Implementation for PDP-11 with DOS (Release #2)

Paper Source Tape 062-1529-01
Magnetic Tape 062-1529-03

APRIL 24, 1973

1.0

2.0

3.0

4.0

TERMINAL CONTROL SYSTEM USER'S MANUAL

CONTENTS

INTRODUCTION

1.1 Software, Standards, and the User
1.2 The Tektronix Terminals
1.3 Terminal Control System Overview

FUNCTION CONTROL ROUTINES

Initialization
Termination

Erasing the Screen
Bell or Audible Output
Hard Copy Generation

NN NN
P wnrn —

VIRTUAL GRAPHICS

3.1 The Virtual Display
3.2 Windowing
3.2.1 Setting the Virtual Window
3.2.2 Setting the Screen Window
3.3 Absolute Vectors
3.3.1 Draw
3.3.2 Move
3.3.3 Point Plot
3.4 Dash
3.4 lative Vectors
4.1 Draw
4.2 Move
4.3 Point Plot
4.4 Dash
aling and Rotating
5.1 Setting the Scale
3.5.2 Setting the Rotation
3.6 Virtual Cursor

3.
Re
3.
3.
3.
3.
3.5 Sc
3.

DIRECT GRAPHICS

4.1 The Screen

4.2 Absolute Vectors
4.2.1 Draw
4.2.2 Move
4.2.3 Point Plot
4.2.4 Dash

PAGE

(8,] NN —

(Vo] [e)Ne) We Wé, NE,]

5.0

6.0

7.0
8.0

9.0

4.3

OCOoONOOUTBWN —

—
o

OOV OTOTOTOITOTCTTO1TO1T T On
—_—
—

—_—
w N

TABS
6.1

(o2 e N e))
oW

tive Vectors
1 Draw

2 Move

3 Point Plot
4 Dash

ts of Length

1 Inches

2 Centimeters
irect Cursor Input
Incremental Plotting

ela
4.3.
4.3.
4.3,
4.3.
Uni
4.4,
4.4,
D

OUTPUT

Entering A/N Mode
A/N Character Output
New Line

Carriage Return
Line Feed
Backspace

Home

New Page

Italic Mode
Italic Mode Reset
Double Size Mode
Normal Size Mode
Character Size

AND MARGINS

Tab Setting
6.1.1 Set Tab Routine

6.1.2 Setting Through COMMON

Tab Resetting

6.2.1 Reset Single Tab
6.2.2 Reset A1l Tabs
Horizontal Tab

Vertical Tab

Margins

6.5.1 Left Margin
6.5.2 Right Margin

A/N INPUT

TERMINAL STATUS

8.1
8.2

Save Status
Restore Status

SCRATCHPAD SUPPORT

WO W WO
BN —

Enter Scratchpad Mode
Clear Scratchpad

Enter Local Compose Mode
Enter Local Edit Mode

ii

Appendix A: Terminal Control System Common
(Global) Variables

Terminal Status Area

COMMON Layout

General Variable

A/N Variables

Direct Graphic Variables

Virtual Graphic Variables

Variable Names in Alphabetical Order

PrI>I>I>X>>
NOUTR W —

Appendix B: Other Terminal Control System Routines
B.1 General
B.2 Basic I/0 Routines
B.3 Mode Control Routines
B.4 Graphic Transform Routines
Appendix C: Terminal Control System Glossary
Appendix D: ASCII Charts

D.1 4pp2A ASCII Chart
D.2 4p1p ASCII Chart

Appendix E: Terminal Control System Index

—

TERMINAL CONTROL SYSTEM
USER'S MANUAL

1.0 INTRODUCTION

1

.

Software, Standards, and the User

One of the major difficulties in the development of Computer
Graphics has been the lack of standard basic graphic soft-
ware. As a result there has been a tendency to re-develop
the basic software for each installation and, in some cases,
for each application. In the past this software has often
been oriented towards one system, applicable to only one
type of terminal, and frequently had peculiar features
facilitating a particular application and precluding others.

The software thus developed was often too complex for the
occasional user to use conveniently and frequently too
inflexible for the needs of the sophisticated programmer.
As a result, graphic application software using such a
base tended to have limited use and 1ife.

To meet the need of the different users and the multiplicity
of systems, Tektronix has developed the Terminal Control
System. The Terminal Control System is a comprehensive set
of functionally modular subroutines which allows essentially
terminal-independent programming. The user needs only to
select the proper modules at load time. The desfgn is
basically system and computer independent and allows the
experienced programmer to work at the basic terminal level
and also provides the facilities for the occasional user to
operate easily at the conceptual level. The PLOT-19 version
of the Terminal Control System consists of those modules
which support the Tektronix 4@19 Computer Display Terminal.
Properly written programs using the PLOT-1@/Terminal Control
System should function with Tittle or no modification on
another model terminal (e.g. the Tektronix 4002A Graphic
Computer Terminal) when loaded with the modules supporting
that device.’ . '

The Terminal Control System will be used as a base for the
future development of Tektronix Application Software and

it is hoped that it will serve as an industry-wide standard
for basic software for interactive graphic terminals.

1.2 The Tektronix Terminals

Both the 4@P2A and the 4p1P Tektronix Computer Display
Terminals are capable of displaying both alphanumeric
characters and vectors. The display remains visible once
written and until erased. It is not necessary to contin-
ually regenerate the output data or to refresh the screen.

The display area of the 4@Pp2A Terminal is 8 1/4 inches by

6 3/8 inches (21 centimeters by 16.3 centimeters) and con-
tains 1024 by 1924 addressable points, of which 1924 by 760
are in the viewable area of the screen. The terminal can
display 39 lines of 85 characters each. There are 96 upper
and lower case characters, numbers and special symbols and
two sizes of characters (italicizations are permitted). The
4PP2A provides absolute vector plotting capability, incre-
mental plotting capability and point plot capability.
Positional data may be input with an accessory if desired.

The 4019 Terminal has a display area of 7.5 inches by 5.6
inches (19.P centimeters by 14.3 centimeters) and also
contains 1024 by 1024 addressable points, of which 1924 by
781 are in the viewable area* of the screen. In the alpha-

numeric mode, the terminal can display 35 lines of 72 characters

each. There are 63 printable characters plus the space char-
acter. Graphic data may be displayed using the vector mode.
Positional data may be input with a thumbwheel-controlled
graphic cursor.

The Terminal Control System expands upon these basic hardware
functions to provide more sophisticated means of handling the
interactive capabilities of the terminal and frees the user
from a number of basic "housekeeping" chores.

1.3 Terminal Control System Overview

The idea that the Terminal Control System strives for is to
make the terminal as easy to use as a pencil and a piece of
paper. The detailed programming and general I/0 handling
are contained within the Terminal Control System. The basic
terminal capabilities are expanded upon and made available
to the user in a natural and practical manner.

The Terminal Control System modules communicate with each
other primarily through the Terminal Status Area, a set of

*Vectors just above 780 on the Y-axis may be visible but marginal in
quality. For the purposes of this manual such vectors are considered
part of the unviewable area.

-2 -

1.3 Terminal Control System Overview (continued)

common variables which continuously represent the current
state of the terminal and maintain the data and flags neces-
sary to generate output according to the user's current level
of usage. Terminal status will be Tost whenever output to
the terminal is generated other than through the appropriate
Terminal Control System routine, or whenever the user changes
status Tocally (e.g. uses the Page or Reset key). Terminal
status should be saved before allowing these events to occur
and should be restored afterwards (see Section 8.0).

-2.1 -

1.3 Terminal Control System Overview (continued)

As most users conceive of their graphic data as existing on
a sheet of paper of arbitrary size, the Terminal Control
‘System allows them to maintain this concept within their
program through the use of a Virtual Display. The Virtual
Display is a two-dimensional surface of indeterminable size,
Timited only by the numeric processing capability of the
computer. A1l or a portion of the Virtual Display may be
viewed at any time. The user is only responsible for de-
fining what portion he wishes to have displayed. This is
done by establishing a window which specifies the portion
of the Virtual Display to be viewed and where on the terminal
screen it is to be placed. The Terminal Control System will
handle the conversions and details.

The Virtual Display is in contrast to the terminal screen
(Figure 1.0). The user may address the terminal screen
directly in Screen Coordinates or he may use the inch and
centimeter conversion functions. By referring directly to
the screen, the user can easily and naturally control the
layout of his display.

The operations which are applied to the screen are called
Direct Graphics while the operations which are applied to
the Virtual Display are known as Virtual Graphics. The
user is able to switch freely between Virtual Graphics
and Direct Graphics according to his requirements.

Along with graphical data handling, the Terminal Control
- System also aids in the output of alphanumeric data. The
user is able to set and reset both horizontal and vertical
tabs and may dynamically define left and right margins. The
Terminal Control System automatically monitors alphanumeric
output and the alphanumeric control commands.

Q)
‘BaJe 9|(JEMB3IA 3y} Ul SI
SIXY- A 343 UO 08 My 0 Ajuo inq
‘SIXY- A 843 UO £20L Pue 0 Aq pue
sIXy-X 3y uo €201 pue 0 Aq papunog

N3I3HOS TVNIWYIL

(0 ‘0)

v3dv
379VM3IIA

(08 ‘ezoL) v3dv I7aVMIIANN

(€zZoL ‘szolL) \‘r

"0'L B4

(e)
-sbued jutod Buneoyy uoisidald
a|buis ays Aq Ajuo papunog

AV1dSia TVNLHIA

>I

}

(o’-0)

X+ &

A+

e

2.0 FUNCTION CONTROL ROUTINES .

2.1

2.2

Injtialization

Initialization of the terminal and the Terminal Status Area
must be accomplished as the initial step in using the Terminal
Control System. This may be done quickly and eas11y by calling
the initialization routine, INITT. When INITT is called, the
following events occur:

a. The screen is erased and the cursor moves to the HOME
position (upper left hand corner).

b. Alphanumeric mode is entered.

c. The margin variables are set to the left and right screen
extremes.

d. The window is defined so that the portion of the Virtual
Display which is equivalent in coordinates with the screen
will be displayed [i.e. (275.,763.) in Virtual Coordinates
is equivalent to (275,763) in screen coordinates].

e. The relative vector scaling is set to unity and the rela-
tive vector rotation to zero.

INITT requires the rate of character transmission from the
computer to the terminal as an input argument in order that
appropriate delays may be produced during screen erasure and
hard copy generation. This will prevent loss of data on re-
motely connected terminals during these periods.

CALLING SEQUENCE:
CALL INITT (ICPS)

where: ICPS - the transmission rate in characters per seconds.

ICPS = P implies the terminal is directly con-
nected and no delays are required.

NOTE: For certain systems, additional in-line initialization
may be required. Please check the Terminal Control
System Implementation Notes for your computer and
system.

Termination

When terminating a program which uses the Terminal Control
System, it is necessary that the terminal be returned to
alphanumeric mode and that the beam position be moved to a
point that will not interfere with any previous output.

2.2 Termination (continued)

2.3

2.4

2.5

The Terminal Control System provides the routine FINITT, which
will automatically perform these functions and then terminate
the program. FINITT should be always used in place of the
HALT command or the FORTRAN STOP statement. (NOTE: If FINITT
places the beam above the Screen Y-Coordinate of the Home
position (KHOMEY), the terminal will automatically Tower the
cursor to that Y-position on entry to alphanumeric mode.)

CALLING SEQUENCE:
CALL FINITT (IX, IY)

where: IX - The Screen X-Coordinate of the position to which
the beam is moved before program termination.

IY - The Screen Y-Coordinate of the beam termination
position.

Erasing the Screen

The terminal screen may be erased without changing the mode
or beam position. The Terminal Control System will prevent
generation of additional output until the erase is completed.
CALLING SEQUENCE:

CALL ERASE

Bell or Audible OQutput

An audible tone may be output at any time to call the user's
attention to a particular event. Often a continued audible
output, which may be generated by a series of calls to the
bell routine, is used for an alarm. The "bell" may be sounded
while in any mode and has no affect on terminal status.

CALLING SEQUENCE:
CALL BELL

Hard Copy.Generation

A permanent copy of the current display may be obtained any
time the optional hard copy unit is attached by having the
computer initiate hard copy generation. This may be done

2.5 Hard Copy Generation (continued)

while in any mode and does not affect the Terminal Control
System status. The Terminal Control System will prevent
generation of additional output until the hard copy is com-
pleted.

CALLING SEQUENCE:
CALL HDCOPY

C*** INITIALIZE TERMINAL CONTROL SYSTEM ***
C*** BAUD RATE IS 3@ CHARS/SEC(3@P BAUD) ***
CALL INITT(3p)

C*** ERASE SCREEN ***
CALL ERASE

C**% SOUND BELL ***
CALL BELL

Crx* GENERATé A HARD COPY FASCIMILE OF CURRENT DISPLAY ***
CALL HDCOPY

C*** MOVE BEAM TO CENTER SCREEN AND ***
Ct** TERMINATE PROGRAM ***

CALL FINITT(511,125)

END

Using the Basic Routines

Example 2.0

3.0 VIRTUAL GRAPHICS

3.1 The Virtual Display

The Virtual Display is an imaginary two-dimensional surface
with a range in both the X and Y directions equal to the

range of a single precision floating point number. Using

the Virtual Display the user may construct drawings, pictures,
and graphs of extreme complexity and detail.

Since the unit of measurement of the Virtual Display is arbi-
~ trary, it may be assumed to be representative of any measure-
ment unit from microns to light-years, with all measurements

translated to the assumed unit for the given drawing. For
example, the user decides that the basic unit of the Virtual
Display will represent inches. Then the Virtual Coordinate
(2., P.5) represents a point two inches to the right of the
origin on the X-axis and one half inch up on the Y-axis. To
indicate the point one mile (63,360 inches) to the left of
the origin along the X-axis, the Virtual Coordinate (-63360.0,
p.P) would be used.

The Virtual Display is similar to normal displays and plotting
devices in that there is a movable point which may be thought
of as the writing cursor on the Virtual Display. This point
is called the Imaginary Beam, and its position is the Virtual
Coordinate which represents the location of the writing cursor
as if the Virtual Display were an actual device.

Since only the portions of vectors and the points which 1ie
- within the current window are displayed, the Imaginary Beam
position does not always represent the actual storage beam
position. The actual beam is represented on the Virtual
Display by the Real Beam, which is updated to reflect the
actual output to the terminal. Figure 3.1 illustrates the
differences between the Imaginary Beam and the Real Beam.
When entering Virtual Graphics or whenever the window is
redefined, both the Imaginary Beam and the Real Beam are
set at the Virtual Coordinate representation (according to
the latest window definition) of the actual beam position.

3.2 Windowing

A11 or any portion of the Virtual Display may be viewed at any
time through the technique of windowing. The portion of the
Virtual Display to be shown is defined by rectangular boundaries.
This rectangle is called the Virtual Window, and only those
vectors which pass through the Virtual Window will be displayed.

It is not necessary to use all of the screen for display of the
Virtual Window. The user may define a rectangular section of

‘swieag |eay pue Aseuibew| °)°g ‘Big

*3 ‘yuiod pua o}
10)93A jo Buimesp

Yiim anow uay) ‘q *3 “Jutod pua 103997
‘3dassarul 10193A 01 ‘o “quiod iels
0} g Wouj panropy 40108A W04} Panop ‘3 01 O WO4y uMelIp 10J99A (2

‘g ‘Adepunoq mopuim

yum 3dadsajur 10399A *9 “qutod pua 10399A
0} ‘y “yuiod yiels 0} ‘y ‘wuiod jiels
10199A wWoly paropy 10199A WO} panopy "D 01 Y WOly umesp 101930 (L
Wv3g 1v3d V38 AHVNIOVII : NOILIV
|||.|||.||l||||.|.l||_

SHOLD3A 40
3 NOILHOd 319ISIA v

_

|

|

|

I

_

>m<oz:om_q\i |
MOAQNIm |
I

_

|

I

I

\ /
\ /
/ SHO123A 40
\ NOILHOd 319ISIANI

10

3.2 Windowing (continued)

any size and location on the screen as the area in which the
window will appear. This rectangle is called the Screen Window
and together with the Virtual Window defines the transformation
between the Virtual Display and the screen (Figure 3.2).

Elimination of vectors and portions of vectors which lie out-
side of the window will be done automatically by the Virtual
Graphic routines as well as the scaling and conversion of these
vectors that are contained in or pass through the window.

It should be noted here that the scaling is not related to the
size of the Virtual Display or the screen, but is determined
solely by the window definition. Also, since the X and Y ex-
tents of the window may be separately defined (see 3.2.1, 3.2.2
below), the X and Y scaling are independent. This allows for
the emphasis of either X or Y data values, (Figure 3.3). Care
must be taken that unwanted distortion is not introduced by
erroneous window definitions. The initial window definition

is set so that the portion of the Virtual Display with coordi-
nates equivalent to the screen will be displayed:

Virtual Window Initial Values:

X minimum - @., X extent - 1023.
Y minimum -~ @., Y extent - 780.

Screen Window Initial Values:

X minimum - @, X extent - 1023
Y minimum - P, Y extent - 780

The user utilizes the Virtual Display by first defining his
window and then constructinag his drawing, picture, or graph
with the use of the Virtual Graphic routines.” .The user may
display several portions of the Virtual Display at one time

by redefining the window and reprocessing the Virtual Display
for each (Figure 3.4) or may superimpose data from "several"
Virtual Displays by using a common Screen Window (Figure 3.5).
A11 transformations between the Virtual Display and the Screen
will be based upon the latest window definitions.

3.2.1 Setting the Virtual Window

The portion of the Virtual Display to be viewed is
determined by the Virtual Window. The Virtual Window
is defined by a point which represents its lower left
corner and the extent of the window in the X and Y
directions.

-1 -

‘Buimopuip “z'¢ ‘614

*Ajuo sasodand aAnesnsnjji Jo} aiay
pasn aie Aay] ‘umeusp Ajjeszeworne jou ale
uonisod mopuipy uaaidg ayy Buluijano saul,

N33HOS JHL AVdSIA TVNLHIA

+*MOAQNIM
N3I3HIS —

/
MOANIM N
AVNLHIA —

12

»

N3I3HOS 3IHL

—_—
—_— — |
L —

"Buijeag mopuip A ‘X 3uspuadepu ‘g'g “Big

ONIMTVIS LNIAN3d3IANI HONOHHL
S3ANTVA A IHL ONILHOLSIA AG
Q3ZISVHJINI S34N1v3d viva

AVdSIA TVNLHIA

13

"SMOPUIN\ |e13A9g 30 as) '€ “Bigy

AVdSIA TVNL1YIA

N33HOS JHL

14 -

‘sAe|dsi([EN3JI/\ |BIOASS YIIM MOPUIAL UBBIIS UOWWOY) “G'E

N3I3HOS JHL

LIE P

—

L

—

, J
NN

\
|

_——

o
AV1dsia
IVNLYIA

L#
AVdSia
AVYNLYIA

15 -

3.2.1 Setting the Virtual Window (continued)

CALLING SEQUENCE:
CALL VWINDO (X, XL, Y, YL)

where: X - Minimum X-Coordinate of the Virtual Window.
XL - Extent of the Virtual Window in the X-
direction.
Y - Minimum Y-Coordinate of the Virtual Window.
YL - Extent of the Virtual Window in the Y-

direction.

3.2.2 Setting the Screen Window

The Screen Window defines the section of the screen into
which the Virtual Window will be transformed. Its de-
finition is similar to that of the Virtual Window.

CALLING SEQUENCE:
CALL SWINDO (IX, LX, IY, LY)

where: IX - Minimum Screen X-Coordinate of the Screen

Window.

LX - Extent of the Screen Window in the X-
direction.

IY - Minimum Screen Y-Coordinate of the Screen
Window.

LY - Extent of the Screen Window in the Y-
direction.

3.3 Absolute Vectors

Virtual Graphics allow the user to draw, move, or point-plot-to
any particular point on the Virtual Display with an absolute
vector. An absolute vector extends from the current Imaginary
Beam position to the location specified by the given Virtual
Coordinates, (X,Y). Mode entry and transformation to screen
vectors, including windowing and clipping, is automatic.

3.3.17 Draw

A vector may be drawn from the last point on the Virtual
Display at which the Imaginary Beam was positioned to a
specified point with DRAWA. Only that portion, if any,
of the vector which passes through the Virtual Window
will be visible. On return from this routine, the
Imaginary Beam will be positioned at the given Virtual
Coordinates.

- 16 -

3.3.1

3.3.2

3.3.3

3.3.4

Draw (continued)
CALLING SEQUENCE:
CALL DRAWA (X,Y)

where: X - Virtual X-Coordinate of the point.
Y - Virtual Y-Coordinate of the point.

Move

A move (an invisible vector) to any particular point on
the Virtual Display may be made by calling MOVEA. . On
return from this routine, the Imaginary Beam will be
positioned at the given Virtual Coordinates.

CALLING SEQUENCE:
CALL MOVEA (X,Y)

where: X - Virtual X-Coordinate of the point.
Y - Virtual Y-Coordinate of the point.

Point Plot

A point may be plotted at any location on the Virtual
Display with POINTA. Only if the given Virtual Co-
ordinates are within the Virtual Window will a point
actually be displayed. On return from this routine,
the Imaginary Beam will be positioned at the given
Virtual Coordinates.

CALLING SEQUENCE:
DI

CALL (POINTA (X,Y)
where: X - Virtual X-Coordinate of the point.
Y - Virtual Y-Coordinate of the point.

Dash

A dashed Tine may be drawn from the last point at which
the Imaginary Beam was positioned to a specified point
with DASHA. Only that portion, if any, which passes
through the Virtual Window will be visible. On return
from this routine, the Imaginary Beam will be positioned
at the given Virtual Coordinate.

-17 -

3.3.4 Dash (continued)
CALLING SEQUENCE:
CALL DASHA (X,Y,L)

where: X - Virtual X-Coordinate of the point.
Y - Virtual Y-Coordinate of the point.
L - Dashed line specification.
A dashed line is specified by con-
catenating integers describing the
1ine segment length and visibility.
A11 codes except 9 should have 2 or
more integers.
5 raster units, visible.
5 raster units, invisible.
10 raster units, visible.
10 raster units, invisible.
raster units, visible.
25 raster units, invisible.
50 raster units, visible.
50 raster units, invisible.
alternate bright and dark
between points.

OONOOT-P~WN —
no
o

NOTE: Screen definition does not affect‘v
dash size.

3.4 Relative Vectors

Virtual Graphics also allow the user to define a displacement
of given length and direction on the Virtual Display through
the use of relative vectors. Relative vectors offer the
ability to create similar structures at different positions
on the Virtual Display with one set of display commands. Con-
version of the relative vector to an absolute vector, mode
entry, and transformation to screen vectors, including
windowing and clipping, is automatic. On return from a re-
lative vector routine, the Imaginary Beam will be located at
the point defined by its initial position plus the displace-

ment value.
3.4.1 Draw

A relative vector may be drawn on the Virtual Display
from the current Imaginary Beam location with DRAWR.

The X and Y displacement values which define the length
and direction of the relative vector are input arguments
to DRAWR. Only that portion, if any, of the resultant
vector which passes through the Virtual Window will be
displayed. :

- 18 -

C*** THIS PROGRAMMINé EXAMPLE DEFINES AND ***
Chkx OUTLINES THE WINDOW Fkk

Cx*x*
Ch**

C*** DEFINE VIRTUAL WINDQW ***
CALL VWINDO(19@., 20P., -50., 199.)
C*** DEFINE SCREEN WINDQW ***
CALL SWINDO(60PP, 40P, 409, 209)
C*** MOVE TO LOWER LEFT OF WINDOW *#**
CALL MOVEA(199., -5@.)
C*** QUTLINE WINDOW ***
CALL DRAWA(3P9., -50.)
CALL DRAWA(3@9., 50.)
CALL DRAWA(199., 50.)
CALL DRAWA(199., -50.)
C*** PLOT A POINT IN CENTER OF WINDQW ***
CALL POINTA(209., 9.)
C*** MOVE TO LOWER LEFT OF WINDOW ***
CALL MOVEA(1p9., -50.)
C*** DRAW A DASHED LINE TO THE CENTER OF WINDOW ***
CALL DASHA(2p0., 9., 12)
C*** CONTINUE DASHED LINE TO LOWER RIGHT
CALL DASHA(1pp,, 50., 12)

Window Definition and Virtual Absolute Vectors

Example 3.1

-19 -.

3.4.1 Draw (continued)
CALLING SEQUENCE:
CALL DRAWR (X,Y)

where: X - X-value of the displacement.
Y - Y-value of the displacement.

3.4.2 Move

A‘relative move on the Virtual Display may be generated
by calling MOVER with the X and Y displacements as argu-
ments.

CALLING SEQUENCE:
CALL MOVER (X,Y)

where: - X - X-value of the displacement.
Y - Y-value of the displacement.

3.4.3 Point Plot

Points may also be plotted relative to the current
Imaginary Beam location on the Virtual Display. If
the resultant point is not within the Virtual Window
it will not be displayed.

CALLING SEQUENCE:
CALL POINTR (X,Y)

where: X - X-value of the displacement.
Y - Y-value of the displacement.

3.4.4 Dash

A dashed line may be drawn on the Virtual Display
from the current Imaginary Beam location to a point
displaced by X and Y with DASHR. Only that portion,
if any, of the line which passes through the Virtual
Window will be displayed.

CALLING SEQUENCE:
CALL DASHR (X,Y,L)
where: X - X-value of the displacement.

Y - Y-value of the displacement.
L - Dashed line specification.

- 20 -

C*** THIS EXAMPLE DRAWS TWO TRIANGLES OF ***
Cxx* DIFFERENT SIZE AND ORIENTATION WITH *¥**
CH** THE SAME RELATIVE VECTORS ***

C*** SCALE AND ROTATION FACTORS STILL AT INITIAL VALUE ool
CALL TRIANG(2pp., 209.)

C*** DOUBLE SCALE SIZE ***
TRSCAL = 2.

C*** ROTATE 90 DEGREES ***
TRCOSF = COSD(90.)
TRSINF = SIND(90.)

C*** REDRAW TRIANGLE #***
CALL TRIANG(709., 409.)

SUBROUTINE TRIANG(X,Y)
C*** INPUT IS CENTER OF TRIANGLE, MUST MOVE ABSOLUTE ***
CALL MOVEA(X,Y)
C*** MOVE TO LOWER LEFT VERTEX **x
CALL MOVER(-1pp., -199.)
C*** DRAW .TRIANGLE ***
CALL DRAWR(2p9., 9.)
CALL DRAWR(-1p@., 2¢p.)
CALL DRAWR(-1p9., -20p.)
C*** RETURN TO CENTER AND PLOT POINT ***
CALL POINTR(1p@., 109.)
RETURN

Virtual Graphics Relative Vectors, Scaling and Rotating

Example 3.2

- 21 -

3.4.4 Dash (continued)

A dashed Tine is specified by con-
catenating integers describing the
line segment length and visibility.
A11 codes except 9 should have 2 or
more integers.

5 raster units, visible.

5 raster units, invisible.

10 raster units, visible.

10 raster units, invisible.
raster units, visible.

25 raster units, invisible.

50 raster units, visible.

50 raster units, invisible.
alternate bright and dark be-
tween points.

OCONOOTPRWN —
~nN
(8]

NOTE: Screen definition does not affect dash
size.

3.5 Scaling and Rotating

Relative vectors are used primarily to construct objects or
entities which must be displayed at a number of different
locations on the Virtual Display. However, the size and
orientation of these objects is not always the same. For
this reason, relative vectors are automatically scaled and
rotated by the relative vector routines according to the
scaling factor, TRSCAL, and the rotation factors, TRCOSF and
TRSINF. TRSCAL, TRCOSF, and TRSINF are all Terminal Status
Area variables. A1l input arguments to the relative vector
routines are unscaled and unrotated. The input arguments
define the normal size and orientation for a relative vector.
Scaling and rotation will not effect absolute vectors.

3.5.1 Setting the Scale

The relative vector scale factor, TRSCAL, can be used
to alter the length of a relative vector. All rela-
tive vectors are scaled according to the current value.
For example, if a section of relative vector coding
will construct a given object and you require the
object to be constructed again at twice the normal
size, then set TRSCAL to 2.p and re-execute the code
which will construct the object.

- 22 -

3.5.1 Setting the Scale (continued)

The relative scale factor may be set in the same

fashion that any variable is set. It is necessary
however that the Terminal Status Area be defined as

a set of COMMON variables for reference (see Appendix A).
If no scaling is desired, TRSCAL should be assigned the
value 1.P which is the initial value of TRSCAL set by
INITT.

3.5.2 Setting the Rotation

Relative vectors may also have their direction altered
through the relative vector rotation factors, TRCOSF
and TRSINF. TRCOSF represents the cosine value of the
rotation and TRSINF represents the sine value. It
should be noted that if the sum of the squares of the
cosine and sine values do not equal 1.0, then there
will be a distortion in length.

A11 relative factors are rotated according to the
values of the current rotation factors. If the user
wishes to construct an object defined by relative
vectors at an angle different from the normal orienta-
tion, he sets the rotation factors to the cosine and
sine values of the angle and executes the code for

the object. :

The relative vector scale factors may be set in the
same fashion that any variable is set, as long as the
Terminal Status Area be defined as a set of COMMON
varidbles for reference (see Appendix A). If no rota-
tion from the normal orientation of the relative vector
is desired, the rotation factors should be set to:
TRCOSF = 1.P; TRSINF = @.0. These are also the

initial values set by INITT.

3.6 Virtual Cursor

It is often useful to be able to indicate a point on the Virtual
Display with the graphic cursor. The routine VCURSR allows the
user to do this by enabling the graphic cursor. After the graphic
cursor has been positioned, its Screen Coordinates may be trans-
mitted to the computer by striking a keyboard character. VCURSR
constructs the Virtual Cursor by transforming the input data into
Virtual Coordinates according to the current window definition
(Figure 3.6). The Virtual Cursor does not affect the Imaginary
or Real Beam position.

-22.1 -

3.6 Virtual Cursor (continued)

The transformation assumes that all of the screen is a continu-
ation of the Virtual Display with the scale implied by the
current window. This allows the user to receive valid Virtual
Coordinate data even if the graphic cursor is positioned out-
side the current window. However, in such a case, the general
error flag KERROR is set to one as an aid to the user. If the
graphic cursor is inside the window, KERROR is zero. KERROR

is a Terminal Status Area variable.

The keyboard character which triggers input of the graphic
cursor's position, is also returned as an argument. This
character may be used for command purposes, data identifi-
cation, or ignored.
CALLING SEQUENCE: .

CALL VCURSR (IC,X,Y)
where: IC - Keyboard character, 7-bit ASCII, right adjusted.

X - Virtual X-Coordinate of graphic cursor.
Y - Virtual Y-Coordinate of graphic cursor.

Note: Cursor control requires an accessory for 4002A.

-22.2-

*10SiNY) |eNHA 3Y3 ojul
pawuoysuel] si 10s1n) dydess) ayl yoiym yim
siajaweled ay} sapirosd UOIULAP MOPUIM,

N3I3HOS JHL

H0OSHNO

JIHdVHD _—

" J0s1ng jemuiA syy “g°g biy
AV1dSIA TVNLYHIA

H0SHND
AVNLYIA

/
|

i |~

- 23 -

C*** THIS EXAMPLE DRAWS, MOVES, OR POINT PLOTS ***
Chk* TO THE INPUT VIRTUAL CURSOR POSITIQN %%
109 CALL VCURSR(ICHAR,X,Y)
Cx** D" TMPLIES DRAW ***

IF(ICHAR.NE.68) GO TO 2¢¢

CALL DRAWA(X,Y)

GO TO 4¢9
C*** "M" TMPLIES MOVE ***
209 IF(ICHAR.NE.77) GO TO 3p@

CALL MOVEA(X,Y)

GO TO 4¢P
C*** “p" IMPLIES POINT PLOT, RE-INPUT FOR ANY OTHER CHAR **x
309 IF(ICHAR.NE.8@) GO TO 1¢p

CALL POINTA(X,Y)
400

Virtual Cursor

Example 3.3

- 24 -

4.0 DIRECT GRAPHICS

4.1

4.2

The Screen

The terminal screen is a two-dimensional surface consisting
of a discrete 1024 x 1024 matrix of addressable points, of
which 1024 x 781 of these points lie in the viewable area*
of the terminal screen (Figure 1.0). The origin of the
screen lies at the extreme lower left corner.

Operations on the screen are called Direct Graphics, and
allow the user to relate directly with the visible sur-
face of the terminal. Direct Graphics allow the user to
work at a basic graphic level and avoid the overhead of

the Virtual clipping and transformation: routines. The user
has the responsibility of remaining on screen as all co-

~ordinate input to Direct Graphic routines are interpreted

as MOD 1P24.

Direct Graphics are primarily used with alphanumeric output
and for display layout. The user may freely alternate be-
tween Direct and Virtual graphics. (NOTE: When using a
Virtual Graphic routine after use of Direct Graphics or
alphanumeric output, the Imaginary Beam is considered to

be positioned at the Virtual Coordinate that is equivalent
to the Screen Coordinate of the beam position under the
current window transformation.)

Absolute Vectors

. An absolute vector in Direct Graphics is a draw, move, or

point plot from the current beam position to a specified
Screen Coordinate. No windowing or clipping is performed.
Mode entry and appropriate output handling is automatic.

4.2.1 Draw

A Tine may be drawn from the current beam position
to any point on the screen with DRWABS. On return
from this routine, the beam position is at the
given Screen Coordinate.

CALLING SEQUENCE:
CALL DRWABS (IX,IY)

*Yectors just above 780 on the Y-axis may be visible but marginal in

quality.

For the purposes of this manual such vectors are considered

part of the unviewable area.

-25-

4.2.1 Draw (continued)

where: IX - Screen X-Coordinate of the given point.
IY - Screen Y-Coordinate of the given point.

4.2.2 Move

The beam may be moved to any point on the Screen with
MOVABS.

CALLING SEQUENCE:
CALL MOVABS (IX,IY)

where: IX - Screen X-Coordinate of the given point.
IY - Screen Y-Coordinate of the given point.

4.2.3 Point Plot
A point may be plotted at any location on the screen
with PNTABS. On return, the beam position is at the
given Screen Coordinates.
CALLING SEQUENCE:
CALL PNTABS (IX,IY)

where: IX - Screen X-Coordinate of the given point.
IY - Screen Y-Coordinate of the given point.

4.2.4 Dash
A dashed line may be drawn from the current beam position
to any point on the screen with DSHABS. On return from
this routine, the beam position is at the given Screen
Coordinate. '
CALLING SEQUENCE:

CALL DSHABS (IX,IY,L)

where: IX - Screen X-Coordinate of the given point.

IY - Screen Y-Coordinate of the given point.
L - Dashed Tine specification.

-26-

C*** DRAW BOX USING DIRECT GRAPHICS ***
C*** MOVE TO LOWER LEFT OF BOX ***
CALL MOVABS(2p9, 109)

C*** DRAW SIDES ***
CALL DRWABS(8p@, 109)
CALL DRWABS(8pp, 650)
CALL DRWABS(2pp, 650)
CALL DRWABS(20p, 199)
C*** MOVE TO CENTER
CALL MOVABS (5pp,375)
C¥** DRAW DASHED TRIANGLE ***
CALL DSHABS(5@9 ,15p,2325)
CALL DSHABS(3pp,150,2325)
CALL DSHABS(5pp,375,2325)

Direct Absolute Vectors

Example 4.1

- 27 -

4.2.4 Dash (continued)

A dashed line ss specified by con-
catenating integers describing the
line segment length and visibility.
A11 codes except 9 should have 2 or
more integers. :
5 raster units, visible.

5 raster units, invisible.

10 raster units, visible.

10 raster units, invisible.
raster units, visible.

25 raster units, invisible.

50 raster units, visible.

50 raster units, invisible.
alternate bright and dark between
points.

CoONOTOITPWN —
n
o

4.3 Relative Vectors

Relative vectors may also be drawn on the screen. However, no
scaling or rotational transformations are applied to these. Mode
entry and appropriate output handling is automatic. Direct
Graphic relative vectors will cause the beam to move from its
present position to the point specified by the direct displacement.

The user again has the responsibility of remaining on the screen.

A1l resultant vectors will have their coordinates interpreted as
MOD 1p24.

4.3.17 Draw
A relative line may be drawn on the screen from the current
beam position according to a given X and Y displacement
with DRWREL.
CALLING SEQUENCE:
CALL DRWREL (IX,IY)

where: IX - X-Displacement in Screen Coordinates.
IY - Y-Displacement in Screen Coordinates.

4.3.2 Move
A relative move may be generated by MOVREL.
CALLING SEQUENCE:
- CALL MOVREL (IX,IY)

where: IX - X-Displacement in Screen Coordinates.
IY - Y-Displacement in Screen Coordinates.

-28-

C*** THIS EXAMPLE FILLS SCREEN WITH TREES ***
DO 109 IX = @, 999, 109
DO 190 IY = 9, 789, 150
C*** POSITION TREE START ***
CALL MOVABS(IX+20,IY+4@)
CALL TREE
1090 CONTINUE

SUBROUTINE TREE
C*** DRAW TREE BODY ***

CALL DRWREL(60,9)

CALL DRWREL(-39,60)

CALL DRWREL(-30,-60)
C*** DRAW FRUIT *%*

CALL PNTREL(39,40)

CALL PNTREL(-19,-20)

CALL PNTREL(29,p)
C*** DRAW TRUNK ***

CALL MOVREL(-19,-2p)

CALL DRWREL(P,-49)

RETURN

END

Direct Relative Vectors

Example 4.2

- 29 -

4.3.3 Point Plot

A point may be plotted relative to the current beam
position with PNTREL.

CALLING SEQUENCE:
CALL PNTREL(IX,IY)

where: IX - X-Displacement in Screen Coordinates.
IY - Y-Displacement in Screen Coordinates.

- 290] =

4.3.4 Dash

A dashed Tine may be drawn on the Screen relative to
the current beam position according to a given X and

Y displacement with a DSHREL.

CALLING SEQUENCE:

CALL DSHREL (IX,

IY,L)

where: IX - X-Displacement in Screen Coordinates.
IY - Y-Displacement in Screen Coordinates.
L - Dashed line specification.
A dashed Tine is specified by con-
catenating integers describing the
line segment length and visibility.
A11 codes except 9 should have 2 or
more integers.

5 raster
5 raster
10 raster
10 raster
raster
25 raster
50 raster
50 raster
alternate
points.

OCoOoONOTOITERWN —
N
(8]

4.4 Units of Length

units,
units,
units,
units,
units,
units,
units,
units,
bright

visible.
invisible.
visible.
invisible.
visible.
invisible.
visible. -
invisible.

and dark between

‘Direct Graphics allow the specification of points in inches
and centimeters as well as Screen Coordinates through the use

of conversion functions.

put with reference to a familiar length.

4.4.1

Inches

This allows the user to specify out-

The functional routine KIN is used to transform inches

to Screen Coordinates. The input argument is the number
of inches specified as a single precision real variable.
The function then has the integer value of the appropriate

number of Screen Coordinates.

Example:

IX = KIN(3.5)

where: IX would be assigned the number of Screen Co-
ordinates equal to 3.5 inches.

- 30 -

4.5

4.6

4.4.2 Centimeters

The functional routine KCM similarly transforms centi-
meters to Screen Coordinates.

Example:
IX = KCM(3.5)

where: IX would be assigned the number of Screen Co-
ordinates equal to 3.5 centimeters.

Direct Cursor Input

The graphic cursor may be used to specify Screen Coordinates
directly. Calling DCURSR will activate the graphic cursor,
allowing the user to position it. The cursor position is
transmitted to the computer when a keyboard character is
struck. This character along with the position input is
returned as arguments by DCURSR. The graphics cursor position
does not affect the beam position.

CALLING SEQUENCE:
CALL DCURSR (IC,IX,IY)
where: IC - Keyboard character, 7-bit ASCII, right-adjusted.

IX - Screen X-Coordinate of graphic cursor.
IY - Screen Y-Coordinate of graphic cursor.

Incremental Plotting (Réstrictea to 4002A Terminals)

This routine is used to perform incremental plotting. The
user specifies the direction, whether it is to be visible
or invisible, and the number of times he wishes this plot
character to be output.

CALLING SEQUENCE:
CALL INCPLT (IONOFF,IDIR,NO)

where: IONOFF = p; Beam off (invisible).
= 1; Beam on (visible).
IDIR = Direction code (0-7; see below).
NO = Number of times plot character

is to be repeated.

- 30.7 -

4.6 Incremental Plotting (continued)

Direction codes:

Each incremental plot character will move the beam one
raster unit in the given direction.

- 30.2 -

C***
Ck*x*x
Ck**

Ch*x

Ck*x*
Ck**
Ch*x*x

Ck*xx

THIS EXAMPLE DRAWS A 5" X 4" BOX ***
CENTERED ON SCREEN *#**
MOVE TO LOWER LEFT OF BOX ***
. CALL MOVABS(KIN(1.25), KIN(P.8))
DRAW BOX ***
CALL DRWREL (KIN(5.),0)
CALL DRWREL(@,KIN(4.1))
CALL DRWREL(KIN(-5.),0)
CALL DRWREL(@,KIN(-4.))
NOW DRAW 5 CM. by 4 CM. BOX, CENTERED **x
MOVE TO LOWER LEFT OF BOX ***
CALL MOVABS(KCM(7.), KCM(5.15))
DRAW BOX ***
CALL DRWREL (KCM(5.),p
CALL DRWREL(@,KCM(4.)

CALL DRWREL(KCM(-5

)
)

-):0)
CALL DRWREL (@,KCM(-4.))

Units of Length

Example 4.3

- 31 -

C***
C***

109

C***

Cx*x*

200

Ck*x*x

30p
400

THIS EXAMPLE DRAWS, MOVES, OR POINT PLOTS ***
TO THE DIRECT CURSOR INPUT POSITION ***

CALL DCURSR(ICHAR,IX,IY)

"D" IMPLIES DRAW *%**

IF(ICHAR.NE.68) GO TO 2¢p

CALL DRWABS(IX,IY)

GO TO 4pp

"M" IMPLIES MOVE ***

IF(ICHAR.NE.77) GO TO 3pp

CALL MOVABS(IX,IY)

GO TO 4pp :
"P" IMPLIES POINT PLOT, RE-INPUT FOR ANY OTHER CHAR **x
IF(ICHAR.NE.80) GO TO 1pp

CALL PNTABS(X,Y)

Direct Cursor Input

Example 4.4

- 32 -

5.0 A/N OUTPUT

By allowing the Terminal Control System to monitor alphanumeric
output, it is possible to maintain terminal status especially the
tracking of the beam position, which is required for tab and margin
control as well as facilitating the mixture of A/N and vector output.

5.1

5.2

5.3

Entering A/N Mode

At times the user may wish to output A/N data other than
through the Terminal Control System. In such cases it is

the user's responsibility to insure that the terminal is in
A/N mode. This can be done without the output of extraneous
data by using ANMODE. It is not necessary to call ANMODE when
using the Terminal Control System routines as they will auto-
matically enter A/N mode whenever necessary.

CALLING SEQUENCE:
CALL ANMODE,

A/N Character Output

Non-control alphanumeric characters are monitored when output
through ANCHO. A/N mode will be entered if necessary and the
Terminal Status Area representation of the beam position is up-
dated as characters are output. If the outputting of the
character advances the beam beyond the right margin setting,

a new line is automatically generated. This routine does NOT
check the input variable which is assumed to be a 7-bit ASCII
non-control character right-adjusted within an integer word.

Any other input will result in erroneous beam status information.

CALLING SEQUENCE:
CALL ANCHO(ICHAR)

where: ICHAR - 7-bit ASCII non-control character, right-
adjusted.

New Line

A new Tine may be generated with NEWLIN. The alphanumeric mode
will be entered if necessary and the A/N cursor will be moved
to the Teft margin and down one line.

CALLING SEQUENCE:

CALL NEWLIN

- 33 -

C*** MOVE TO CLEAN AREA FOR FORMATTED INPUT ***
CALL MOVABS(6@9, 109)

C*** ENTER A/N MODE ***
CALL ANMODE

C*** REQUEST USER INPUT *#**
TYPE 100

109 FORMAT(' INPUT:')
ACCEPT 2pp, IVAR

209 FORMAT(I5)

C*** GO TO DRAWING AREA ***
CALL MOVABS(IX,IY)

Using A/N Mode for Formatted Input
Example 5.1

- 34 -

5.4

5.5

5.6

5.7

5.8

Carriage Return

The A/N cursor can be moved directly to the left margin with-
out moving down a Tine with CARTN. A/N mode is entered auto-
matically if necessary.

CALLING SEQUENCE:

CALL CARTN

Line Feed

Similarly the A/N cursor may be moved down a 1ine without re-
turning to the left margin with LINEF.

CALLING SEQUENCE:
CALL LINEF

Backspace

The A/N cursor may be moved back one character Tocation with
the backspace routine. The backspace routine may be used to
move the A/N cursor to the left of a non-zero left margin, but
will cause the cursor to "wrap-around" if the cursor is backed
up beyond the zero X-axis location.

CALLING SEQUENCE:

CALL BAKSP

Home

The HOME routine will move the A/N cursor to the left margin at
the home Y-position without erasing the current display.

CALLING SEQUENCE:
CALL HOME

New Page

The routine NEWPAG will cause the screen to be erased and will
move the A/N cursor to the left margin at the home Y-location.

CALLING SEQUENCE:
CALL NEWPAG

- 35 -

5.9

5.10

5.11

5.13

Italic Mode (Restricted to 4002A Terminals)

This routine will output the proper control character to
enter italic mode. This routine does not enter alphanumeric
mode automatically.
CALLING SEQUENCE:

CALL ITALIC

Italic Mode Reset (Restricted to 4002A Terminals)

Resets to non-italic mode and enters alphanumeric mode.
Double size mode is not affected by this routine.

CALLING SEQUENCE:
CALL ITALIR

Double Size Mode (Restricted to 4002A Terminals)

This routine will output the proper control character to
enter double size mode. This routine does NOT enter alpha-
numeric mode automatically.
CALLING SEQUENCE:

CALL DBLSIZ

Normal Size Mode (Restricted to 4002A Terminals)

Resets to normal size characters and enters alphanumeric mode.
Italic mode is not affected by this routine.

CALLING SEQUENCE:
CALL NRMSIZ
NOTE: Italic and double size modes are set and reset only
by the above routines. Entering graphic, point plot,
or incremental plot modes will not affect these
settings.

Character Size

The subroutine returns the size of the character for use in
label positioning and other operations dependent on character
size. When used, it enables applications and software using
TCS to maintain terminal independence.

CALLING SEQUENCE:
CALL CSIZE (IHORZ,IVERT)

- 35.1 -

5.13 Character Size (continued)

where: IHORZ - Height of the character in screen coordinates.

IVERT - Width of the character in screen coordinates.

- 35.2 -

C*** FILL HEADER(S)
DATA HEADER/68,88,65,77,80,76,69,32/
CALL CSIZE(KHORSZ .KVERSZ)

C*** GET NEW PAGE ***
CALL NEWPAG
C*** GO TO HEADER POSITION #***
CALL MOVREL (KIN(3.),9)
C*** QUTPUT HEADER
DO 1P I = 1,8
109 CALL ANCHO(HEADER(I))
C*** DRAW BOX AROUND HEADER ***
CALL DRWREL(P,KVERSZ)
CALL DRWREL (-9*KHORSZ,p)
CALL DRWREL(P,-KVERSZ-3)
CALL DRWREL (9*KHORSZ,P) :
C*** RETURN TO LEFT MARGIN AND GO DOWN 2 LINES ***
CALL NEWLIN
CALL LINEF

C*** QVERPRINT "0" WITH "X" ***
CALL ANCHO(79)
CALL BAKSP
CALL ANCHO(88)

Cr** RETURN TO LEFT MARGIN, DO NOT GO DOWN A LINE ***
CALL CARTN

C*** RETURN TO HOME POSITION
CALL HOME

NOTE: KHORSZ and KVERSZ are variables containing horizontal
and vertical character size, respectively, in Screen
Coordinates.

A/N Output (mixed with Graphics)

Example 5.2

- 36 -

6.0 TABS_AND MARGINS

The Terminal Control System allows the user to set and reset tabs
and margins to facilitate format layout. The tabs and margin
settings are software generated and as such are only useful for
A/N data output through Terminal Control System routines. ATl
tab and margin values are in Screen Coordinates. :

Both horizontal and vertical tabs and Teft and right margins are
available. Horizontal and vertical tabs are limited to ten po-
sitions each.

6.1 Tab Setting

Tab settings for both horizontal and vertical tabs are kept
in two ten-word integer arrays. The settings are ordered
with ascending Screen X-Coordinates with the first zero
value indicating the end of the settings.

6.1.1 Set Tab Routine

The routine SETTAB takes a given tab setting in Screen
Coordinates and inserts it into the given tab table.
If the tab table is full, the maximum setting will be
lost in order that a lesser tab setting may be in-
serted. When this occurs, the general error flag,
KERROR, is set. Although duplicate tab settings are
not inserted, SETTAB does not generally check the' tab
setting for validity and does not check if the given
tab table is KHORZT or KVERTT, the horizontal and
vertical tab tables respectively.

CALLING SEQUENCE:
CALL SETTAB(ITAB,ITABLE)
where: ITAB - Tab setting in either X or Y Screen
‘Coordinates.

ITABLE - Horizontal or vertical tab table (i.e.
KHORZT, KVERTT).

6.1.2 Setting Through COMMON

Both the horizontal and vertical tab table (KHORZT(10)
and KVERTT(1Q) respectively) can be set directly if the
Terminal Status Area is available as a set of common
variables (see Appendix A). If set directly, the user
must insure that the tabs are in increasing order with
the first zero value following the valid tab settings.
Negative values should never be used.

- 37 -

6.2 Tab Resetting

6.2.1 Reset Single Tab

To selectively reset a tab, its position in Screen Co-
ordinates must be input to the tab resetting routine

~ with the given tab table. Non-zero values which do
not correspond to a current tab setting are ignored.

CALLING SEQUENCE:
CALL RSTTAB(ITAB,ITABLE)

where: ITAB - X or Y Screen Coordinate of tab to be
reset.
ITABLE - Horizontal or vertical tab table. (i.e.
KHORZT ,KVERTT) .

6.2.2 Reset A1l Tabs

An entire tab table may be reset by using a zero for
the tab position to be reset.

CALLING SEQUENCE:
CALL RSTTAB(P,ITABLE)
where: ITABLE - Horizontal or vertical tab table.(i.e.
KHORZT ,KVERTT)

6.3 Horizontal Tab

Calling the horizontal tab routine will cause the alphanumeric
cursor to be moved with a constant Y-value to the position
specified by the first non-zero entry in the horizontal tab
table, KHORZT, which is greater than the current Screen X-Co-
ordinate of the cursor or beam position. If the horizontal
tab table is empty, no action will occur. If the tab table
is not empty and no entry exists which is greater than the
current Screen X-Coordinate of the cursor or beam position,
or if the first non-zero entry greater than the Screen X-
Coordinate is also greater than the right margin setting, a
new line will be generated.

CALLING SEQUENCE:
CALL TABHOR

- 38 -

6.4 Vertical Tab

6.5

Vertical tabbing will cause the alphanumeric cursor to be moved
with a constant X-value to the position specified by the last
non-zero entry in the vertical tab table, KVERTT, which is less
than the current Y-Coordinate of the cursor or beam position.
If no entry in the vertical tab table exists which is non-zero
and yet less than the current Y-Coordinate, then no action

occurs.

CALLING SEQUENCE:

CALL TABVER

Margins

6.5.1

6.5.2

Left Margin

The left margin is the Screen X-Coordinate at which a
line of A/N output starts. The Carriage Return, Home,
and New Page routines cause the A/N cursor to move to
the current left margin.

The left margin setting is contained in the Terminal
Status Area variable, KLMRGN (see Appendix A). KLMRGN
may be set in the same manner as any other variable.
However, its value should always be greater than @

and Tess than the right margin value. The initial
value of the left margin as set by INITT is 0.

Right Margin

The right margin is the rightmost position at which

A/N output may be output. Any attempt to output beyond
the right margin using the A/N output routine will cause
a new line to be generated.

The right margin value is a Screen X-Coordinate and is

contained in the Terminal Status Area variable, KRMRGN.
KRMRGN may be set in the same manner as any other vari-
able.

However, its value should always be less than 1923 and

greater than the left margin variable. The initial value
as set by INITT is 1010.

- 39 -

C*** THIS EXAMPLE ILLUSTRATES TABBING CAPABILITY ***
C*** SET HORIZONTAL TABS USING TAB SETTING ROUTINE ***
DO 19 1 = 1pp, 600, 190
199 CALL SETTAB(I,KHORZT)
C*** SET VERTICAL TABS DIRECTLY THROUGH COMMON
DO 200 I = 1,4
2Pp KVERTT(I) = KHOMEY-(4-I1)*1pp
C*** INSURE UNUSED PORTION OF VERTICAL TAB TABLE IS ZERQ ***
DO 3pp I = 5,19
309 KVERTT(I) = @
C*** QUTPUT CHAR'S **
DO 429 I =
DO 419 J =
C*** QUTPUT 'ABCDE'
DO 499 K = 1,5
409 CALL ANCHO(K+64)
419 CALL TABHOR
CALL TABVER
C*** RETURN TO LEFT MARGIN AT VERTICAL TAB POSITION ***
420 CALL CARTN
C*** RESET EVERY OTHER HORIZONTAL TAB ***
DO 5p9 I = 109, 60P, 20P
- 509 CALL RSTTAB(I,KHORZT)
DO 518 I =1,3
519 CALL NEWLIN
C*** QUTPUT CHAR'S ***
DO 620 I =1,2
DO 619 J = 1,19
C*** QUTPUT 'ABCDE' ***
DO 60Q K = 1,5
60@ CALL ANCHO(K+64)
619 CALL TABHOR
CALL NEWLIN
CALL LINEF

S *
],4
1,1

E *k

/)
*

C*** RESET ALL TABS **x
CALL RSTTAB(@,KHORZT)
CALL RSTTAB(@,KVERTT)

Using the Tab Routines

Example 6.1
- 40 -

C*** THIS EXAMPLE OUTPUTS CHAR'S IN 3 COLUMNS *#**
Crx* EACH COLUMN IS 1P CHARACTERS WIDE ***
DO 2090 I =1,3
C*** SET MARGINS ***
- KLMRGN = 19p+20p*(1I-1)
KRMRGN = KLMRGN+1@*KHORSZ
C*** RETURN TO CURRENT HOME POSITION
CALL HOME
DO 2p@ J = 1,5
DO 19P K = 1,15
100 CALL ANCHO(K+64)
209 CALL NEWLIN

Using Margins

Example 6.2

- 4] -

7.0 A/N INPUT

A/N characters may be input one at a time through the general input
routine, TINPUT, Characters input will be in 7-bit ASCII and right
adjusted. TINPUT will not cause an echo* to be generated and no
beam movement will occur. This allows the user to interact with
his program while in vector mode.

CALLING SEQUENCE:
CALL TINPUT(ICHAR)
where: ICHAR - 7-bit ASCII character right adjusted.
NOTE: If the user wishes to input data other than through the
Terminal Control System routines, he should position the
beam at an appropriate position, and enter A/N mode be-

fore requesting his input. Also he should expect a non-
monitored echo of his input data to occur.

*Check the Terminal Control System Implementation Notes for more infor-
mation regarding this matter.

- 42 -

C*** THIS EXAMPLE INPUTS AN UNPACKED STRING ***
DO 1P@ I =5

C*** INPUT CHARACTER ***
CALL TINPUT(ISTRNG(I))

C*** ECHO INPUT CHARACTER ***

100 CALL ANCHO(ISTRNG(I))

A/N Input

Example 7.0

- 43 -

8.0 TERMINAL STATUS

The Terminal Status Area is a set of variables which are kept in a
common block (see Appendix A) and represent the current state of the
terminal. The Terminal Control System allows the user to save the
current terminal status and return to it at a later time.

Although it does not save the displayed data, this facility does
allow the user to interrupt his processing, move to another lo-

cation, do other processing there or interact with the user, and
then return to his original processing.

Since the user allocates the save areas, he may easily save more

than one Tevel of status and may restore any of his saved states
at any time.

8.1 Save Status
The current state of the terminal may be saved by providing the
status saving routine with a 6@-word real array in which the
current Terminal Status Area may be stored. V
CALLING SEQUENCE:
CALL SVSTAT(ARRAY)

where: ARRAY - 6@-word real array.

8.2 Restore Status
The terminal may be restored to any previously saved state at
any time by providing the status restoring routine with the
6@-word real array in which the previous Terminal Status Area
was stored.
CALLING SEQUENCE:
CALL RESTATEARRAY)

where: ARRAY - 6@-word real array containing previously stored
terminal state.

- 44 -

Ch*x*
Cx*x*

C***

Ch*x

100
200

Crix

THIS EXAMPLE SAVES STATUS DURING FORMATTED I/0Q ***
AND THEN RESTORES STATUS ***

DIMENSION SAVE1(6@)

SAVE CURRENT TERMINAL STATUS ***
CALL SVSTAT(SAVE1)

MOVE TO UNUSED AREA OF SCREEN ***
CALL MOVABS(IX,IY)

CALL ANMODE

TYPE 100

FORMAT('INPUT DATA:')
ACCEPT 20p, IVAR1, IVAR2
FORMAT(215) .

§ (Interpret Input)

RESTORE STATUS
CALL RESTAT(SAVEI)

: (Continue Graphic Processing)

Use of Status Routines

Example 8.0

- 45 -

9.0 SCRATCHPAD SUPPORT (Restricted to 4002A Terminals)

One of the major features of the 4002A terminal is the computer-
addressable scratchpad. Some basic routines are included in the
4002A version of the Terminal Control System to assist in the
use of the scratchpad. These are described below.

NOTE: It is firmly recommended that status be saved before using
the scratchpad and restored after use.

9.1 Enter Scratchpad Mode

This routine enters scratchpad mode. Future output will be
directed to the scratchpad until this mode is left. Display
of data output to the scratchpad will not occur until scratch-
pad mode is exited (see ENLCM and EDITSP below).
CALLING SEQUENCE:

CALL ENSPM

9.2 C(Clear Scratchpad

The scratchpad is cleared and the scratchpad cursor is set to
the beginning of the buffer.

CALLING SEQUENCE:
CALL CLRSP

9.3 Enter Local Compose Mode

Scratchpad mode is exited, the scratchpad data is displayed,
and local compose mode is entered. The user may now modify
the output or clear and enter his own data. When he presses
the SEND button while still in Tocal compose mode, the entire
buffer will be sent to the computer. After calling this
routine, the program should be set for input as all output
will be ignored until a reply from the user has been received.

CALLING SEQUENCE:
CALL ENCLM

- 46 -

9.4 Enter Local Edit Mode

The scratchpad mode is exited, the output data is displayed,
(with a terminating question mark), and lTocal edit mode is
entered. The user may now enter his own data. If he remains
in local edit mode and presses the SEND button, only the data
entered after the computer output will be returned to the
computer. After calling this routine, the program should

be set for input as all output will be ignored until a reply
has been received.

CALLING SEQUENCE:
CALL EDITSP

- 47 -

A

A.2

APPENDIX A

Terminal Control System Common (Global) Variables

TERMINAL STATUS AREA

The Terminal Control System maintains a representation of the
current state of the terminal and the user's output mode and
level with a set of common (or global) variables referred to

as the Terminal Status Area. The Terminal Status Area should
be set up in each implementation of the Terminal Control System
as a block of common storage, easily accessible to all user
routines.

Some of the information contained within the Terminal Status
Area, such as character width (KHORSZ) and height (KVERSZ),
provide a significant aid for all and increase the ability to
program in a terminal independent fashion. Other variables,

such as the relative vector scale (TRSCAL) and rotation factors
(TRCOSF, TRSINF), and the margin variables (KLMRGN, KRMRGN), must

be available to the routines which require use of these facilities.

The sophisticated user of the Terminal Control System will also
find that the information in, and the appropriate use of, the
other variables will significantly increase his programming
capability.

A11 of the Terminal Status Area variables are not used in all
implementations. However, in order to retain consistency and
increase the ease of transference of application software from

.one system to another, it is required that the standard Terminal

System Area layout indicated below be used by all.

Two names have been assigned to each Terminal Status Area vari-
able and appear in the upper left of the description paragraph.
The first is the normal 6-character name. The second is a 4-
character name to be used for those implementations which do
not permit a full 6-character name. In all Terminal Control
System documentation, the Terminal Status Area variables will
be referenced by the 6-character name.

COMMON LAYOUT

The Terminal Status Area is defined below as a labeled COMMON
block as used in FORTRAN IV implementations. The name of the
COMMON block is TKTRNX for all such implementations. The order
of the variables in the COMMON block for all implementations is
the same as that described in the Floating Point COMMON below,
with the only difference being that which exists for Fixed Point
COMMON, also described below.

- Al -

A.2 COMMON LAYOUT (continued)

A1l Terminal Status Area variables for implementation which
utilize floating point will be integer or real according to the
implicit FORTRAN definition associated with their names. Al-
though, the same names will be retained (with the exception of
TRSCAL), all Terminal Status Area variables will be integers
for those implementations with processing restricted to integer
arithmetic.

Floating Point COMMON:

COMMON /TKTRNX/ KBAUDR,KERROR,KGRAFL ,KHOMEY ,KKMODE,
KHORSZ ,KVERSZ ,KITALC,KSIZEF ,KLMRGN, KRMRGN,

KTBLSZ ,KHORZT(1p) ,KVERTT(19),

KBEAMX ,KBEAMY ,KMOVEF ,KPCHAR(4) ,KDASHT,
KMINSX,KMINSY ,KMAXSX ,KMAXSY ,TMINVX, TMINVY , TMAXVX , TMAXVY,
TREALX,TREALY ,TIMAGX,TIMAGY,TRCOSF,TRSINF,TRSCAL

P WN —

Fixed Point COMMON:

Same as Floating Point COMMON (with all variables defined

as integers) except for 1ine 5:

5 TREALX,TREALY,TIMAGX,TIMAGY,TRCOSF,TRSINF,KUPSCA,KDWNSC

where the two-variable integer scale factor replaces the real single

variable scale factor.

A.3 GENERAL VARIABLES

The following varijables are generally used throughout the Terminal

Control System.
A.3.1 Baud Rate KBAUDR, KBDR
The number of characters per second which can be trans-

mitted to the terminal. For directly connected terminals,
this variable will have a zero value.

A.3.2 General Error Flag

The flag set or reset by various Terminal Control System
routines to indicate whether or not certain anomalistic
conditions occurred.

- A2 -

A.4

A.3.3

A.3.4

A.3.5

Graphic Level Flag KGRAFL, KGFL

Flag which indicates the user is currently in Virtual Graphics
mode when set. When reset, user is assumed to be at Direct
Graphic Level.

Home Y-Value KHOMEY, KHMY

Screen Y-Coordinate of the terminal home position.
Mode KKMODE, KMOD
Status variable indicating current terminal mode:

P - Alphanumeric
- Vector
2 - Point Plot
3 - Incremental Plot*
4 - Dash

A/N VARIABLES

The following variables are used primarily in the processing of
A/N data of the Terminal Control System.

A.4.1

A.4.2

A.4.3

A.4.4

*

Character Horizontal Size 'KHORSZ, KHSZ

Number of Screen Coordinates that the beam is horizontally
displaced when a hardware-generated character is output.

Character Vertical Size ' KVERSZ, KVSZ

Number of Screen Coordinates that the beam is vertically
displaced when a hardware-generated line feed is output.

Italic Flag* KITALC, KITL
Flag set to indicate the enabling of italic output.
Size Flag* KSIZEF, KSIZ

Flag set to indicate the enabling of double size alpha-
numeric output.

%

*Used with implementations supporting the Tektronix 4002A Graphic
Computer Terminal.

- A3 -

A.5

A.4.5 Left Margin KLMRGN, KLMG

A.4.6

A.4.7

A.4.8

A.4.9

Left margin setting as a Screen X-Coordinate.

Right Margin KRMRGN, KRMG

Right margin setting as a Screen X-Coordinate.

Tab Table Size KTBLSZ, KTBS

The number of words in each of the tab tables.

Horizontal Tab Table KHORZT, KHOT

Ten word integer array containing the current horizontal
tab settings. The entries must be Screen X-Coordinate
values in ascending order. The first zero value is used
to indicate the end of the tab settings.

Vertical Tab Table KVERTT, KVET

Ten word integer array containing current vertical tab
settings. The entries must be Screen Y-Coordinate values
in ascending order. The first zero value is used to in-
dicate the end of the tab settings.

DIRECT GRAPHIC VARIABLES

The following variables are used at the basic graphic output Tlevel.

A.5.1 Beam X-Coordinate KBEAMX, KBMX
The Screen X-Coordinate of the current storage beam position.
Updated whenever beam is moved through output to the terminal.
A.5.2 Beam Y-Coordinate KBEAMY, KBMY
The Screen X-Coordinate of the current storage beam position.
Updated whenever beam is moved through output to the terminal.
A.5.3 Move Flag ' KMOVEF, KMVF

Flag set to indicate terminal is primed for a blank vector
when in vector mode.

- A4 -

A.6

A.5.4

A.5.5

Previous Plot Characters KPCHAR, KPCH

Four word integer array containing the plot characters which
define the last vector or point plot output.

Dashed Line Specification KDASHT, KDST

Defines the Tengths of the visible and invisible portions
of a dashed line. :

VIRTUAL GRAPHIC VARIABLES

The fol
output.

A.6.1

A.6.2

A.6.3

A.6.4

A.6.5

A.6.6

A.6.7

A.6.8

lowing variables are used in conjunction with Direct Graphic

Screen Window Minimum X V KMINSX, KSX1

Minimum Screen X-Coordinate of the current Screen Window.

Screen Window Minimum Y KMINSY, KSY1

Minimum Screen Y-Coordinate of the current Screen Window.

Screen Window Maximum X KMAXSX, KSX2

Maximum Screen X-Coordinate of the current Screen Window.

Screen Window Maximum Y KMAXSY, KSY2

Maximum Screen Y-Coordinate of the current Screen Window.

Virtual Window Minimum X TMINVX, TVX1

Minimum Virtual X-Coordinate of the current Virtual Window.

Virtual Window Minimum Y TMINVY, TVY1

Minimum Virtual Y-Coordinate of the current Virtual Window.

Virtual Window Maximum X TMAXVX, TVX2

Maximum Virtual X-Coordinate of the current Virtual Window.

Virtual Window Maximum Y TMAXVY, TVY2

Maximum Virtual Y-Coordinate of the Virtual Window.

- A5 -

A.6.9

A.6.

A.6.

A.6.

A.6.

A.6.

A.6.

A.6.

A.6.

10

15a

15b

Real Beam X TREALX, TRLX

Virtual X-Coordinate of the current Real Beam position.

Real Beam Y TREALY, TRLY

Virtual Y-Coordinate of the current Real Beam position.

Imaginary Beam X TIMAGX, TIMX

Virtual X-Coordinate of the current Imaginary Beam position;

Imaginary Beam Y TIMAGY, TIMY

Virtual Y-Coordinate of the current Imaginary Beam position.

Relative Vector Cosine Factor TRCOSF, TRCF

Cosine value used for rotation of relative vectors on the
Virtual Display.

Relative Vector Sine Factor TRSINF, TRSF

Sine value used for rotation of relative vectors on the
Virtual Display.

Relative Vector Scale Factor TRSCAL, TRSC

Value used for the scaling of relative vectors on the
Virtua; Display. (For implementations utilizing floating
point.

Relative Vector Up Scale Factor KUPSCA, KUPS

Numerator value of scaling factor for relative vectors on
The Virtual Display. (For implementations where only inte-
ger arithmetic is available.

Relative Vector Down Scale Factor KDWNSC, KDWN

Denominator value of scaling factor for relative vectors
on the Virtual Display. (For implementations where only
integer arithmetic is available.)

- A6 -

A.7 VARIABLE NAMES IN ALPHABETICAL ORDER

Name Use Description

KBAUDR General Characters per Second

KBEAMX Direct Graphics Beam X-Coordinate

KBEAMY Direct Graphics Beam Y-Coordinate

KDASHT Virtual Graphics Dash Specification

KDWNSC* Virtual Graphics Relative Vector Down Scale Factor
KERROR General General Error Flag

KGRAFL General Graphic Level Flag

KHOMEY General Home Y-Value

KHORSZ A/N Character Horizontal Size
KHORZT A/N Horizontal Tab Table
KITALC** A/N Italic Flag

KKMODE General ' Mode

KLMRGN A/N Left Margin

KMAXSX Virtual Graphics Screen Window Maximum X
KMAXSY Virtual Graphics Screen Window Maximum Y
KMINSX Virtaul Graphics Screen Window Minimum X
KMINSY Virtual Graphics Screen Window Minimum Y
KMOVEF Direct Graphics Move Flag

KPCHAR Direct Graphics Previous Plot Characters
KRMRGN A/N Right Margin

KSIZEF** A/N Size Flag

KTBLSZ A/N Tab Table Size

KUPSCA* Virtual Graphics Relative Vector Up Scale Factor
KVERSZ A/N Character Vertical Size
KVERTT A/N Vertical Tab Table '
TIMAGX Virtual Graphics Imaginary Beam X

TIMAGY Virtual Graphics Imaginary Beam Y

TMAXVX Virtual Graphics Virtual Window Maximum X
TMAXVY Virtual Graphics Virtual Window Maximum Y
TMINVX Virtual Graphics Virtual Window Minimum X
TMINVY Virtual Graphics . Virtual Window Minimum Y
TRCOSF Virtual Graphics Relative Vector Cosine Factor
TREALX Virtual Graphics Real Beam X

TREALY Virtual Graphics Real Beam Y

TRSCAL Virtual Graphics - Relative Vector Scale Factor
TRSINF Virtual Graphics Relative Vector Sine Factor

*Used only for implementation where only integer arithmetic is available.

**Used with implementations supporting the Tektronix 4002A Graphic Computer
Terminal.

- A7 -

APPENDIX B

Other Terminal Control System Routines

B.1 GENERAL

The Terminal Control System consists of a set of highly modular routines
in order that implementation and applicability would cover a number of
terminals, systems, and users. A number of support routines not des-
cribed in the main portion of this manual exist. These routines and

a brief explanation of their function are described below.

B.2 BASIC I/O ROUTINES

B.2.1 OQutput Character

TOUTPT
Sets parity if necessary and outputs given character to
terminal.
B.2.2 X,Y Conversion XYCNYT

Screen X,Y Coordinates are translated to the minimum set
of plot characters required for vector or point plot output.

This routine performs the point plot simulation required
for 4019 implementations.

B.2.3 Forced I/0 Delay

IOWAIT

Timesharing and remote temrinals will lose any output sent
while a hard copy is being generated or the screen is being
erased. The IOWAIT routine forces an appropriate delay in

output to allow these events to occur without loss of infor-
mation.

B.2.4 Output Dashed Line

TKDASH
Draws a dashed line as specified in KDASHT.
B.3 MODE CONTROL ROUTINES
B.3.1 Enter Vector Mode VECMOD

Causes the terminal to enter the vector mode.

- - Bl -

B.4

B.3.2

B.3.3

B.3.4

Enter Point Plot Mode PNTMOD

Signals the X,Y Conversion routine to simulate point plotting
for the 4910.

Enter Dash Mode DSHMOD

Sets the dash type specification and enters dash mode.

Mode Check MODCHK

Determines present system mode.

GRAPHIC TRANSFORM ROUTINES

B.4.1

B.4.2

B.4.3

B.4.4

B.4.5

Virtual Graphics to Screen Transformation V2sT

Transforms a Virtual Display vector or point into output
according to the current window definition. The General
Error Flag is set whenever the given vector or point is

outside the current window, and no output is generated.

This routine maintains the Real Beam and Imaginary Beam

positions in Virtual Graphics.

Clip CLIPT

Clips Virtual Display vectors according to the current
window definition. Returns start and end points of the
visible segment of the vector. If vector does not pass
through the window at all, the General Error Flag is
raised.

Parallel Clip PARCLT

Clips horizontal and vertical vectors on the Virtual Display
according to the current window definition. Assumes vector
passes through window and returns start and end points of
the visible segment of the vector.

Point Clip PCLIPT

Determines if given point is within the current window. Sets
the General Error Flag if point is not within the current
window.

Window Coordinate Transform WINCOT

Scales and outputs a given Virtual Space vector or point ac-
cording to the current window definition.

- B2 -

B.4.6

B.4.7

B.4.8

Reverse Window Coordinate Transform REVCOT

Transforms a given Screen Coordinate into a Virtual Coordinate
according to the current window definition.

Graphic Level Check LVLCHT

Checks the current graphic level. If in Direct Level on entry,
this routine resets the Real and Imaginary Beam and enters
Virtual Graphics.

Relative to Absolute Conversion REL2AB

Scales and rotates relative vectors on the Virtual Display
and converts them to absolute vectors.

- B3 -

APPENDIX C

Terminal Control System

Glossary

ABSOLUTE VECTOR

A directed line segment from a given start point to a given end
point. In DIRECT GRAPHICS, the start point is defined by the
beam position and the end point is an absolute SCREEN COORDINATE
as specified by a DISPLAY COMMAND. In VIRTUAL GRAPHICS, the
start point is defined by the IMAGINARY BEAM POSITION and the
end point is an absolute VIRTUAL COORDINATE as specified by a
DISPLAY COMMAND.

ALPHANUMERIC CURSOR

A rectangular non-stored movable marker which indicates the next
position at which a character will be displayed.

ALPHANUMERIC MODE

The TERMINAL mode in which ASCII OUTPUT will be interpreted as
characters to be displayed.

A/N

Abbreviation for "alphanumeric".

ASCII

American Standard Code for Information Interchange: A standard
code consisting of 7-bit elements for information interchange
among data processing communication systems. This code is
usually broken up into two groups: a control set referred to
as "CONTROL CHARACTERS" and a set which defines the character
output when in ALPHANUMERIC MODE. Sometimes referred to as
ANSCII or USASCII.

CHARACTER GENERATOR

A hardware or software device which draws the appropriate charac-
ter when given a non-control ASCII character.

- Cl -

CLIPPING

The modification of VIRTUAL GRAPHICS Vectors so that the portion
of these vectors which 1ie outside the WINDOW will not be dis-
played on the screen. The end points of such vectors are re-
presented by the IMAGINARY BEAM POSITION so that sequential
vectors defined by a series of end points will not be errone-
ously displayed.

CONTROL CHARACTER

The group of ASCII elements used to change the state of the TERMINAL
or to perform functions other than the display of characters or the
generation of vectors. Control characters are often used as data
delimiters as well.

COORDINATE

CRT

An ordered pair (X,Y) of numbers which uniquely represent a point
on either the screen or the VIRTUAL DISPLAY. The ordered pair of
numbers used in the normal coordinate system (Cartesian Coordinates)
represent the point according to its distance from the ORIGIN along
the X-axis and Y-axis respectively. .

Cathode Ray Tube. A device in which an electron beam emitted by a
cathode strikes a phosphor screen to generate a visible image. The
display surface of the Tektronix terminals is the viewing surface
of a direct view bistable storage CRT.

CURSOR

A movable marker used as a reference.

DIRECT GRAPHICS

The set of DISPLAY COMMANDS which operate directly on the screen.
Direct Graphics do not undergo CLIPPING and WINDOWING transfor-
mations.

DISPLAY COMMAND

A command which affects the display of data. Often an output
command to the TERMINAL.

- C2 -

DRAW

The DISPLAY COMMAND which causes a visible vector to appear. In

DIRECT GRAPHICS, the vector is from the current beam position to

the given SCREEN COORDINATE. In VIRTUAL GRAPHICS, the vector is

from the current IMAGINARY BEAM POSITION to the given VIRTUAL CO-
ORDINATES. Note that in VIRTUAL GRAPHICS only the portion of the
vector which passes through the window will appear.

ERASE

The procedure of clearing the TERMINAL screen.

GRAPHICS

The operations used to display data. Often refers only to the
vector operations.

GRAPHIC CURSOR

A cross-hair CURSOR used to specify positional input.

GRAPHIC INPUT

Positional data consisting of an X- and Y-COORDINATE and specified
by the location of the GRAPHIC CURSOR.

GRAPHIC LEVEL

The level (DIRECT or VIRTUAL) at which a display is being generated.

GRAPHIC TRANSFORM ROUTINES

The routines which transform VIRTUAL GRAPHICS into DIRECT GRAPHICS.

HARD COPY

A permanent copy of a display image. Also the operation which pro-
duces a permanent copy.

HARDWARE CHARACTER

A character displayed by the hardware CHARACTER GENERATOR internal
to the TERMINAL.

- C3 -

HOME POSITION

The location on the screen in the upper-left hand corner at which
the first character of a page is normally printed.

IMAGINARY BEAM POSITION

The VIRTUAL COORDINATE which corresponds to the position at which
the STORAGE BEAM would be located if the entire VIRTUAL DISPLAY
could be viewed.

INPUT
Data sent from the TERMINAL to the computer. Also data provided
to a subroutine.

JOYSTICK
A device used to control the GRAPHIC CURSOR.

KEYBOARD
The portion of the TERMINAL which allows a user to enter A/N data
into the computer.

LEFT MARGIN
The SCREEN X-COORDINATE which represents the starting position of

a line of alphanumeric output.

MOVE

The DISPLAY COMMAND which causes an invisible vector to be generated.

NEW LINE
The operation which causes the ALPHANUMERIC CURSOR to go to the
LEFT MARGIN and down one line.

NEW PAGE

The operation which ERASES the screen and moves the ALPHANUMERIC
CURSOR to the HOME POSITION.

-c4 -

ORIGIN

The COORDINATE represented by (P,0). The origin of the screen
is Tocated at the Tower left-hand corner. The VIRTUAL DISPLAY,
by definition, has its origin at its center.

OUTPUT
Data sent from the computer to the TERMINAL. Also data generated
by a subroutine.

PLOT CHARACTERS

A set of 1 to 4 non-control ASCII elements which represents a
SCREEN COORDINATE to the terminal vector drawing hardware.
Position data transmitted to and from the terminal must be in
Plot Characters.

POINT PLOT
A DISPLAY COMMAND which causes an invisible vector to be generated
and a point to be plotted at the end point of the vector. In BASIC
GRAPHICS, no point will be plotted if the end point is outside the
WINDOW.

POINT PLOT MODE

The TERMINAL mode which causes a set of PLOT CHARACTERS to be inter-
preted as a POINT PLOT vector.

RASTER UNIT

The distance between two adjacent points on the screen. The basic
resolution element of the TERMINAL.

REAL BEAM POSITION

The point which represents the beam position transformed into
VIRTUAL COORDINATES.

RELATIVE COSINE FACTOR

The cosine value used to rotate RELATIVE VECTORS.

RELATIVE ROTATION

The rotational transformation applied to RELATIVE VECTORS.

-C5 -

RELATIVE SCALE FACTOR

The value used to scale RELATIVE VECTORS.

RELATIVE SCALING

The Tinear transformation applied to RELATIVE VECTORS.

RELATIVE SINE FACTOR

The sine value used to rotate RELATIVE VECTORS.

RELATIVE VECTOR

A directed displacement used to construct an absolute vector ac-
cording to current beam status. In DIRECT GRAPHICS, the vector
constructed uses the beam position as the start point and the
beam position plus displacement for an end point. In VIRTUAL
GRAPHICS, the IMAGINARY BEAM POSITION provides the start point.
The given displacement is then scaled and rotated before being
added to the IMAGINARY BEAM POSITION to produce the end point.

RIGHT MARGIN

The SCREEN X-COORDINATE which represents the rightmost limit of
alphanumeric output. Any attempt to output beyond the right
margin using the A/N output routine will cause a NEW LINE to

be generated.

screen

The portion of the TERMINAL on which output from the computer is
displayed. The screen has 1024 x 1p24 addressable points, al-
though points with Y-COORDINATES greater than 780 will be off-
screen. The ORIGIN for the screen is the extreme lower left
point. Plotting on the screen without the use of the CLIPPING
and WINDOW functions may be accomplished through the use of
DIRECT GRAPHICS.

SCREEN COORDINATES

The set of points which constitutes the screen. These points
form a discrete two-dimensional space and range from (9,0) to
(1923,1923) inclusive. SCREEN COORDINATES MUST ALWAYS BE IN-
TEGERS.

SCREEN WINDOW

The seétion of the screen into which the VIRTUAL WINDOW is trans-
formed. No VIRTUAL GRAPHIC vectors may be displayed outside the
Screen Window. '

- C6 -

SOFTWARE
The programs and routines used to operate a computer. Also, the

documentation, diagrams, and manuals for these routines, the
computer, and associated peripheral devices.

SOFTWARE CHARACTERS

A character displayed by a software CHARACTER GENERATOR. Software
Characters may be displayed in any size or rotation.

STORAGE BEAM

The electron beam which is directed by the output to draw characters
and vectors on the TERMINAL screen.

STORAGE TUBE

A CRT which will maintain a display, written once, for an indefinite
period until an erasure is made.

TERMINAL
A console which accepts data from or sends data to a computer. Used

here to refer to the Tektronix 4p1p Computer Display Terminal which
consists of a screen to display data and a keyboard to send data.

TERMINAL STATUS

The current state of the TERMINAL.

TERMINAL STATUS AREA

The set of common variables which represent the current TERMINAL
STATUS.

TIMESHARING

The use of a computer to service a number of individuals in an
effectively simultaneous fashion. Communication with a time-
sharing computer is usually through an interactive TERMINAL.

VECTOR MODE

The TERMINAL mode which causes a set of PLOT CHARACTERS to be
interpreted as a MOVE or DRAW vector. The first set of PLOT
CHARACTERS output after entering Vector Mode will cause a MOVE
to occur; sequential sets of PLOT CHARACTERS output without
mode change will cause DRAW's to occur.

- C7 -

VIRTUAL COORDINATE

The set of points which constitute the VIRTUAL DISPLAY. These
points form an effectively continuous two-dimensional space with
a range equivalent to that of single precision floating point.

VIRTUAL CURSOR

The representation of the GRAPHIC CURSOR transformed into VIRTUAL
COORDINATES according to the current WINDOW definition. The
Virtual Cursor is not required to be within the current window.

VIRTUAL DISPLAY

An extensive imaginary display area independent of TERMINAL size
restrictions. Displays may be constructed on the VIRTUAL DISPLAY
using VIRTUAL GRAPHICS and may be inspected in part or totally
through the definition of the WINDOW.

VIRTUAL GRAPHICS

The set of DISPLAY COMMANDS which operate on the VIRTUAL DISPLAY
and perfrom CLIPPING and WINDOWING.

VIRTUAL WINDOW

The portion of the VIRTUAL DISPLAY which is displayed in the area
defined by the SCREEN WINDOW. Only the portion of the VIRTUAL
GRAPHICS vectors on the VIRTUAL DISPLAY which are contained with-
in the Virtual Window will be displayed.

WINDOW
A transformation defined by the VIRTUAL WINDOW and the SCREEN
WINDOW which allows a portion of the VIRTUAL DISPLAY to be
viewed on a section of the screen. The transform itself con-
sists of the elimination of vectors outside of the VIRTUAL
WINDOW and the scaling of those inside to fit the SCREEN WINDOW.
WRAP-AROQUND
The effect where a cursor or vector is moved to one side of the
screen and reappears on the other side.

X-COORDINATE
The first (abscissa) value of a COORDINATE.

Y-COORDINATE

The second (ordinate) value of a COORDINATE.
- C8 -

APPENDIX D
4002A

USASCII CODE FUNCTIONS

HIGH ORDER
X&Y

32 48

SP

CLEAR TAB *
33 49

1

SET TAB *
34 5@

2 B

35 51 C 67

CLEAR
SCRATCH *

36 52 68

D
37 53 69

38 54 79

39 71

49 72

F
G
H

73

77 } 125

ALT MODE 2

126
no

CLEAR TABS
78

N

B lir e 1D I I« X |S &€ |€ (o |d |m. |D D

79 RUB 127

o] our

SEE MANUAL FOR COMPLETE DETAILS GRAPHIC
* PRECEDED BY ESC INPUT
1PRECEDED BY SELECTION OF COMPOSE MODE

2 TTY TRANSMIT ONLY

TEKTRONIX, INC. INFORMATION DISPLAY PRODUCTS
TEKTRDNIX® P.O. Box 500, Beaverton, Oregon 97005

O osmation display (503) 644-0161

- Dl -

4010
USASCII CODE

FUNCTIONS

* CHAR IS PRECEDED BY ESC
CHAR TO PERFORM FUNCTION

@
HIGH ORDER LOW ORDER LOW ORDER
X&Y X Y
32 48 64 8¢ 96 12
SP | @& @ P ‘ p
" 33 49 65 81 97
* 1 A Q a q
34 5@ 66 82 98
| R}
2 B R b r
35 5 67 83 99
3 C S c S
' 36 52 68 84 190
s 9 p | T d t
37 53 69 85 161
o,
% 5 E V) e U
38 54 79 86 162
& |6 F v f v
39 55 7 87 163
V]
7 G | W g w
a9 56 72 88 194
(8 H X h X
4 9 57 73 89 185
) | Y i y
, 42] . 58 74 98 186
* . J Z j z
+ a 75 91 197
’ K L k {
a4 [y 76 92 198
3 =% L \ I I
as| _ e 77 93 199 125
= B M] m ALT MODE
a6 62 78 94 ng 126
0 > N A n v
47 ‘63 79 95 M| pus 27
(o) o ourt

GRAPHIC PRINT IN
INPUT UPPER CASE

TEKTRONIX, INC. INFORMATION DISPLAY PRODUCTS
P.O. Box 500, Beaverton, Oregon 97005
(503) 644-0161

TEKTRONIX

excellence in
information display

- D2 -

P X, ’
TSk C&uﬁi)\ J.J:WJQE.

TSRS Sumewd L TIVAQLL
* [- 53
I o N : i RRER : . Tﬁéﬂ E
b ! i
~7R
s o /
7: ”w,ﬁ ; : . vz
A r@fm: Taoua
1 —at
X
ﬂ.& w.ﬂﬁ xi !
ﬁ(&u N \ Auu\,ar_
lEwea=—e “ on =] J~ <7 9 5
mw,o,uvw : JUxma 0u2:)> w& 104 A IDAvV A

__7 vl T 2] Ve s Tz T = _ M e e
| ; 2y _ [I 1 S | I g
h..a: avL o,jszw | annsT| fae BL , “.. MR \?mdwi w wéIﬂ MT@ZL |
) .) | | . K | .A \Wu . rvw, , _L... e ﬂ.mul.. — Mm ¥
B)) ‘ . 3 N o S A ov] e = T g
Jnsva | Bano\d 2 LN
] 1. R

CALL

ANMODE
ANCHO (ICHAR)

BAKSP
BELL

CARTN
CLRSP
CSIZE (IHORZ,IVERT)

DASHA (X,Y,L)
DASHR (X,Y,L)
DBLSIZ

DCURSR (IC,IX,IY)
DRAWA (X,Y)

DRAWR (X,Y)
DRWABS (IX,IY)
DRWREL (IX,IY)
DSHABS (IX,IY,L)
DSHREL (IX,IY,L)

EDITSP
ENCLM
ENSPM
ERASE

FINITT (IX,IY)

HDCOPY
HOME

INCPLT (IONOFF,IDIR,NO)

INITT (ICPS)
ITALIC
ITALIR

KCM (CENTIMETERS)
KIN (INCHES)

LINEF

MOVABS (IX,IY)
MOVEA

MOVER (X,Y)
MOVREL (IX,IY)

NEWLIN
NEWPAG
NRMSIZ

PNTABS (IX,
PNTREL (IX,
POINTA (X,Y
POINTR (X,Y

APPENDIX E

Index

This is a function
This is a function

-E1-

PAGE NO.

33
33

35
6

35
46
35.1

CALL

RESTAT (ARRAY)
RSTTAB (ITAB,ITABLE)
RSTTAB (@,ITABLE)

SETTAB (ITAB,ITABLE)
SVSTAT (ARRAY)
SWINDO (IX,LX,IY,LY)

TABHOR
TABVER
TINPUT (ICHAR)

VCURSR (IC,X,Y)
VWINDO (X,XL,Y,YL)

- E2 -

PAGE NO.

44
38
38

37
44
16

38
39
42

22
16

READER'S COMMENT FORM

Your comments about this publication may be helpful to us.

If you wish to comment, please use the space provided below, giving
specific page and paragraph reference.

Please do not use this form to ask technical questions about the
equipment or to make requests for copies of publications. Instead,
make such inquiries to your Tektronix Application Engineer.

Reply requested

Yes
No

DOCUMENT NoO.

Name

Job Title

Address

Zip

062-1474-00

. fold .
FIRST CLASS
PERMIT NO. 61
BEAVERTON, OREGON
BUSINESS REPLY MAIL
No postage necessary it mailed in the United States
Postage will be paid by
Software Information Service ——
Information Display Products
Tektronix, Inc.
P. 0. Box 500
Beaverton, Oregon 97005
Del. Sta. 81-899
T T T fc.;/;/- .

YOUR COMMENTS PLEASE

If you have any comments on this publication, please write them on the reverse side of this sheet.

Your comments will help us produce better publications for your use. Each reply will be carefully
reviewed by the persons responsible for writing and publishing this material. All comments and
suggestions become the property of Tektronix.

Note: Please direct any requests for copies of publications, or for assistance in using your
Tektronix equipment to your Tektronix Application Engineer.

TEKTRONIX, INC.

P.0. BOX 500

BEAVERTON, OREGON 97005
US.A.

ATTN: TEKTRONIX USER'S LIBRARY

	1.0 Introduction
	2.0 Function Control Routines
	3.0 Virtual Graphics
	4.0 Direct Graphics
	5.0 A/N Output
	6.0 Tabs and Margins
	7.0 A/N Input
	8.0 Terminal Status
	9.0 Scratchpad Support
	Appendix A: Terminal Control System (Global) Variables
	Appendix B: Other Terminal Control System Routines
	Appendix C: Terminal Control System Summary
	Appendix D: ASCII Charts
	Appendix E: Terminal Control System Index

