
Sch, pY TELEFUNKEN

| COMPUTER

DBS
Benutzerbeschreibung

 _ SYSTEM TR 440

DBS
Datenbanksystem

für den TR 440

Benutzerbeschreibung

Rückfragen zu dieser Schrift,

Berichtigungen und Ergänzungen

bitte an

TC/VK
ıaH a. - 7 a IA IN INN

walier, Iei,5 IU ZO

Einführung

in Datenbanken und Informationssysteme

Datenbankorganisation

Speicherorganisation
und integrierte Datenhaltung

DBS-Programmierung Ss

FA
aa

rs
|

5

DBS-Übersetzer

DBS-Formatierer

Fehlerausgänge N

8

E35

DBS-Dialogsprache

Anhang

Ma
l

7/

Änderungsstand

In diese Felder sind fortlaufend die Nummern der jeweiligen Änderung einzutragen. Sie können dadurch feststellen, ob Sie

von uns alle Änderungen erhalten haben.

Beispiel:

Sie haben die fortlaufenden Nummern 1 bis 5 unserer Änderungen eingetragen. Bekommen Sie jetzt die Änderung mit der

fortlaufenden Nummer 7, so wissen Sie, daß Ihnen die Änderung Nummer 6 fehlt. Anforderungen bezüglich des Änderungs-

dienstes richten Sie bitte an die untenstehende Adresse , Abt. TC/VS13.

Bestell-Nr.: 440.G2.03
Ausgabe: 0273- TC/VK/Wa

Vervielfältigungen und Nachdruck, auch

auszugsweise, bedürfen unserer Zustimmung.

TELEFUNKEN COMPUTER GMBH

775 Konstanz

Max-Stromeyer-Str. 116

TR

44
0

DB
S-
Ha
nd
bu
ch

Fe
br
.

73

INHALT

VORBEMERKUNGEN

EINFÜHRUNG IN DATENBANKEN

UND INFORMATIONSSYTEME

2. DATENBANKORGANISATION

2.1. Rechnerunabhängige Datenhaltung und Anwendungen

2.2. Gebietskonzept und betriebliche Organisation
2.3. Seitenkonzept
2.4. Integrierte Datenhaltung

2.5. Strukturdefinition
2.6. Datenbank-Organigramm

2.6.1. Darstellung der Daten (Satztypen)
2.6.2. Darstellung der Beziehungen
2.6.3. Hierarchien

2.6.4. Beispiel
2.7. Datenbankbeschreibung und Datenmanipu lation

SPEICHERORGANISATION UND

>

D
a
w
n

ww

nm
wm

w
w

DI
DI

DI

wm
DI

w
w

D
O
N

DD

D
D

D
D

D
D

m
u

m
w
m

u

u

e
o
.

ee

|
ee

8
e
e

e
e

98.

®

V
O
N
O
a
A
U
L
R
W
O
M
N
-
—
.

V
V
B
@
O
D
 -—

d
i

.

O
m
N
M

INTEGRIERTE DATENHALTUNG

Speicherorganisation
Datenbankträger
Elemente der Datenbankspeicherorganisation
Gebietsorganisation

Seitenorganisation

Datensätze

Indexsätze

Adressen

Kettenfelder
Datenteil

Speicherungs- und Verarbeitungsformen
Random (RAN)

DIREKT (DIR)
NAHE
SEQUENTIELL (SEQ)
INDEX-SEQUENTIELL (15Q)
Die Datenintegration

Kettentechniken

Die Kettenordnungen

Kettentabellen

DBS-PROGRAMMIERUNG

P
r
.
.
.

P2
Pr

2r

p
r

p
p

p
D
$
r
R
r
r
R
n
D
n

P
O
O
O
D
D
D
D
D
D
D
D
u

m

B
O
N
 —

N
O
A
O
U
L
R
O
N
D
—

D
M

—

.

Sprachelemente
Übersicht der Systemteile von DBS
DBS-Programmiersprache
DBS-Übersetzer

DBS-Formatierer

Datenbankbeschreibungssprache (DBB)

Formaler Aufbau der DBS-Parameter
Gliederung der DBS-Parameter

Gebietsparameter
Datenparameter

Strukturparameter
DBS-Parameter (Übersicht)

DBS-Parameter

Datenmanipulationssprache (DMS)
Datenbankprozessor
Mnemotechnische BefehIscodes
DBS-Speicherplan

—

O
U

0

PP

2
2
0
D

u

—

2
0
0
0

@8
DX

D
O
P

$
R
O
O
D
N
D
D
D

TR

44
0

 D
BS
-H
an
db
uc
h

Fe
br
.

73

2
2
2
2
2
2
2
»

Oo
o
o

wm
v
»
»

N

B
P
o
D
N

—

Nachrichtenvermittlungsblock (NVB)

Stellvertretersatz (STV)

Argumentlisten
DBS/TAS
DBS/COBOL
DBS/ALGOL
DBS/FORTRAN
DBS-Befehle

DBS-ÜEBERSETZER

DBS-FORMATIERER

N FEHLERAUSGAEN GE

0

N
n
N
n
N
n
N
n

N
B
R
w
D
n
N

—

“

Fehlerbehandlung
Fehlercodes für die DMS
Fehlercodes im Input/Output-Controller
Fehlercodes der DBS-Utilities
Fehlermatrix der Datenmanipulationssprache

DBS-DIALOGSPRACHE

so

0
°

00

0
0

0
0

0
0

0
0

O0

R
o
n
 —

0
8
0
0
0
0
0
0
0
0

00

©

oO

OO

X

OO

OO

©

oO

oO
Oo

Oo

m

m

m

On

OD

X

0

OO

OO

N
O
N

DS
!
O
N
O
O

P
D

Der Aufbau der Dialogsprache
Erstellen der DBS- Datenbank
Der Systemsteuerbereich
Allgemeine Form einer Anfrage

Einfache Anfragen

SUCHEN, Lokalisierung eines Sat zes oder

einer Kette

Komplexe Kettenstrukturen
WENN-Klausel

Die Anweisungen der Dialogsprache
AENDERN
AUSGEBEN
SUMME
ZSUM
ZAEHLEN
RECHNEN
DURCHSCHNITT
INFORMIEREN
LISTE

. ENDE

. Übersicht über die Syntax der Dialogsprache

. Fehlermeldungen

ANHANG

oo

D
O

0
.
0

OO
O
M
D
D
M
N

—

u

.

Maschinenausstattung

DBS-Utilities
DBS- DUMP
Testparameter

Glossary

26
27
27
28
28
28

28

D
D

u

D
O
O
N
D
M
N
D
N
D

—

oo

oo

N
O.

10

11

12

12

12

12

13

13

13

14

16

O
N
D
D
N
D
D
 —_-

TR

44
0

 D
BS

-H
an

db
uc

h

VORBEMERKUNGEN

DBS 440-Datenbanksystem für das Rechensystem TR 440 -
ist ein Produkt der Anwendungsentwicklung bei AEG-
TELEFUNKEN.

Die Systemplanung von DBS 440 wurde von der Anwen-
dungsentwicklung im Jahre 1969 nach umfangreichen

Analysen und Vergleichen der auf dem Markt befindli-
chen Konkurrenz-Systeme und der CODASYL-Vorschläge
(CODASYL = Conference of data system languages) auf-
genommen. Für die Erstellung von DBS 440 wurden drei

Ausbaustufen festgelegt.

Die Systemerstellung der ersten Ausbaustufe von DBS 440
wurde im Februar 1970 abgeschlossen. Ziel dieser Aus-
baustufe war die Erstellung der Kernteile der DBS 440-
Makrobefehle für den Datenverkehr zwischen DBS-Anwen-
derprogrammen (Physischer E/A-Modul) und der Daten-
bank auf der Grundlage der direkten, der starren und
logisch sequentiellen und der index-sequentiellen Spei-
cherungs- und Verarbeitungsformen.

Ziel der zweiten Ausbaustufe, die im März 1970 begon-

nen wurde, war die Erstellung des DBS-Übersetzers, die

automatische Adreßverkettung, der Einbau der Speiche-
rungsform Random, die Erstellung der assoziativen Makros

und der Anschluß von DBS an COBOL und ALGOL. Mit

der zweiten Ausbaustufe von DBS 440 werden die Forde-

rungen der Anwender an DBS 440 in militärischen und zi-

vilen Führungssystemen sowie in Informati onsbereitstel-
lungssystemen an eine leistungsfähige integrierte Daten-
haltung abgedeckt.

Für das bessere Verständnis dieses Handbuches werden

folgende Unterlagen zur Lektüre empfohlen:

e TR 440 Kommandohandbuch

oe TR 440 TAS-Handbuch

e TR 440 COBOL-Handbuch

e TR 440 Systemdienste BS3

Dieses Handbuch ist für den Gebrauch durch Organisato-

ren und Programmierer geschrieben. Für Anregungen und

Kritiken an Form, Inhalt und Benutzbarkeit dieses Hand-

buches sind wir dankbar.

TR

44
0

 D
BS
-H
an
db
uc
h

a
No
v.

1. EINFÜHRUNG IN DATENBANKEN UND
INFORMATIONSSYSTEME

Der Einsatz von Informationssystemen ist hauptsächlich
durch den wachsenden Informationsbedarf notwendig ge-

worden, der nicht zuletzt durch die wirtschaftliche und

technische Entwicklung bedingt ist. Diesem Informations-

bedarf steht ein "Überangebot" an Informationen gegen-

über, und das Hauptproblem ist nicht, diese Informatio-
nen lediglich zu sammeln, sondern aus der Menge der In-

formationen die für den jeweiligen Informationssuchenden
relevanten herauszufinden. Betrachtet man z.B. den be-

triebswirtschaftlichen Bereich, so erkennt man, daß der

Erfolg der Unternehmensführung aufgrund der zunehmen-

den Komplexität der wirtschaftlichen und technologi-
schen Entwicklung und des ebenfalls zunehmenden Kon-

kurrenzkampfes stark von der Qualität und nicht von der
Quantität der Informationen für die Entscheidungsfindung

abhängt und somit das eigentliche Führungsproblem ge-
worden ist.

Aus der pragmatischen Perspektive betrachtet, sind In-
formationssysteme als Datenorganisations- und Datenauf-

bereitungsverfahren auf Rechenanlagen definierbar, die

bestimmte Vorgänge und Abläufe in Kommunikationspro-
zessen unterstützen. Diese Vorgänge und Abläufe müssen,

damit sie überhaupt maschineller Bearbeitung zugänglich
sind, formalisier- und damit automatisierbar sein.

Unter einem Kommunikationsprozeß wird hier grundsätz-

lich ein Vorgang verstanden, in dem Nachrichten zwi-

schen Sender und Empfänger ausgetauscht werden. Kom-

munikationspartner, also Sender und Empfänger, sind in

einem Informationssystem vorzugsweise Mensch und Ma-
schine.

Es gibt Anwendungsbereiche, in denen die Geschwindig-

keit des Kommunikationsvorganges eine entscheidende

Rolle spielt Stellvertretend für solche Informationssysteme
sind die Flugsicherungssysteme. Bei diesen Systemen

werden - bedingt durch die von der Aufgabe her geforder-

te kurze Reaktionszeit - die Daten im Kernspeicher der
Datenverarbeitungsanlage gehalten, so daß Eingabe, Aus-

wertung und Ausgabe nahezu ohne Zeitverlust erfolgen.

Eine Auslagerung der Daten aus dem Kernspeicher auf
einen Sekundärspeicher und die Organisation der Daten
als Datenbank ist für diesen Anwendungsfall nicht die

Norm. Man bezeichnet solche Systeme auch als direkte
Informationssysteme.

Bei den meisten Informationssystemen nimmt jedoch das
Datenvolumen ein so großes Ausmaß an, daß dieses nicht

mehr im Kernspeicher gehalten werden kann, sondern auf

externe Speichermedien ausgelagert werden muß. Bei-

spiele solcher Systeme sind auf der einen Seite Manage-
ment-Informations-Systeme (MIS), Führungssysteme für

industrielle, militärische, verwaltungstechnische oder

wissenschaftliche Zwecke und die Dokumentationssysteme
(Informationsbereitstellungssysteme = IBS) mit ihrem brei-

ten Anwendungsspektrum auf der anderen Seite.Bei all
diesen Systemen ist die Menge der zu verwaltenden Daten

bzw. die Vielfalt der Möglichkeiten, unter denen die
Daten ausgewertet und manipuliert werden können, kri-
tischer als die Geschwindigkeit der Auskunftserteilung
und Informationsauswertung.

Das Auslagern dieser Daten auf periphere Speicher und
das relativ schnelle Bereitstellen einer Teilmenge dieser

Daten zum Zweck spezieller Auswertungen ist erst durch
die neuere Hard- und Softwareentwicklung möglich ge-
worden. Das klassische Konzept der bandorientierten
EDV-Systeme führte die Stammdaten und die zugehörigen

Bewegungen (Änderungen) eines Organisationsbereiches

ablaufbezogen in dezentralen Dateien.

Die Aufteilung des Gesamtvolumens in eine Vielzahl
funktioneller Einzeldateien (Stammbänder) erfolgte im

wesentlichen nach dem Kriterium der Auswertbarkeit,

mit dem Erfolg, daß viele Daten im System mehrfach ge-
halten wurden und dadurch die Datenredundanz und der

damit verbundene aufwendige Änderungsdienst sich nicht

selten zum systembelastenden Faktor entwickelte. Die
Beschreibung der Datengruppen und -elemente erfolgte

ausschließlich in den einzelnen Programmen, die diese
Dateien verarbeiten.

Durch den Einsatz von Magnetplatten- und Trommelspei-
chern kam gegenüber der sequentiellen Magnetbandspei-

cherung der diesen Medien spezifische Vorteil des Di-
rektzugriffs hinzu. Diese Neuerung war ein entscheiden-
der Schritt auf dem Weg zur angestrebten Datenintegra-

tion. Mittels geeigneter Organisationsformen können die

multiplen funktionell organisierten Einzeldateien eines
Unternehmens bzw. einer Organisation zu einem inte-

grierten Datenbestand zusammengefaßt werden. Eine sol-
che Zusammenfassung bezeichnet man als Datenbank. :
Unter einem Datenbanksystem wird demgemäß ein System

verstanden, das zum Führen und Verwalten von großen

Datenmengen auf Direktzugriffsspeichern eingesetzt wird.

Wesentliches Merkmal dabei ist, daß das Kriterium für

den Aufbau dieser Datenbank sich nach den Daten und
ihren Strukturen richtet und die spätere funktionelle
Auswertbarkeit der Daten eine untergeordnete Rolle

spielt. Nur eine solche datenbezogene statt funktions-
bezogene Organisation macht es möglich, daß univer-

selle und vielschichtige Auswertungen dieser Daten vor-
genommen werden können.

Ein Informationssystem (IS) besteht aus den Komponenten

Hardware, Anwendungssoftware und Betriebsorganisation.

Diese Komponenten werden im wesentlichen von den An-
forderungen bestimmt, die an das IS als Informationsver-

sorgungssystem (vorzugsweise für die Entscheidungsfindung)

und als Rechenleistungsversorgungssystem (Rechenzen-
trumsbetrieb) gestellt werden.

Die Hardware - der zentrale Rechner, die der Kommuni-

kation dienenden Datennetze und Endstellengeräte (Fern-
schreiber, Sichtgeräte, Datenstationen) und die Speicher

für den Datenbankbetrieb - ermöglicht seit langem auf-

grund der ausgereiften Grundprogramme für den Teil-

nehmer- und Teilhaberbetrieb den Aufbau von speziellen
Anwendungen wie auch von allgemeinen Informations-

systemen.

TR

44
0

DB
S-
Ha
nd
bu
ch

No
v.

79

Die größten Schwierigkeiten treten ohne Zweifel bei

der Organisation eines dynamischen Unternehmens auf,
hier insbesondere bei der Organisation des Informations-

flusses (Datenerfassung, Datenaufbereitung und Speiche-

rung) und bei dem Aufbau rechnerunabhängiger daten-

bankorientierter Anwendungen.

Die Anwendungssoftware eines rechnerunabhängigen In-

formationssystems besteht organisatorisch aus folgenden
Bausteinen:

1. Systemsteuerung (Monitor)

2. Problemlösende Anwendungsprogramme (Logische Module)

3. Datenbank

Die Logischen Module sind für den jeweiligen Anwen-

dungsfall zu erstellen. Der Monitor und das Datenbank-
system dagegen können aus der Standardversion entspre-
chend den Anforderungen des Anwenders generiert wer-

den.

Der Monitor steuert den Ablauf der Logischen Module,

er selbst wird von dem Betriebssystem des jeweiligen ein-
gesetzten Rechners gesteuert (vgl. Bild 1.1).

Die Datenbank ist die Basis des IS. Die mit Hilfe der
Datenbank erzielte Datenintegration kann als ein Bau-

stein innerhalb eines integrierten Informationssystems
betrachtet werden.

Es ist leicht zu erkennen, daß für eine derartige Daten-
organisation umfangreiche Softwareleistungen benötigt

werden, die diese komplexen Probleme organisatorischer,

datentechnischer und methodischer Art bewältigen.

Informationssystem

MONITOR BETRIEBSSYSTEM _

ut

M
O
D
U
L
 -

1]

M
O
D
U
L

-2

M
O
D
U
L

-
3

M
O
D
U
L

-n

T T

DATENBANK

Bi
ne

—

Bild 1.1 Softwarekomponenten eines IS

TR

44
0

 D
BS
-H
an
db
uc
h

[A

No
v.

2. DATENBANKORGANISATION

2.1. Rechnerunabhängige Datenhaltung und Anwendungen

Der Aufbau einer Datenbank ist ein langwieriger und

kostenintensiver Prozeß. Neben einer umfangreichen be-

trieblichen Organisation des Datenflusses (Wo entstehen
wann welche Daten? Wer braucht welche Daten in wel-
cher Form, zu welcher Zeit und wofür?) treten die noch

immer sehr lohnintensive Datenerfassung und die nur un-

ter der Verantwortung von qualifizierten Spezialisten

(Data Manager, Data Administrator) stehende Datenhal-
tung von Einzeldateien und ganzen Datenbanken auf.

Der Aufbau der Datenbank eines Informationsbereitstel-

lungssystems für die Literaturdokumentation dauert er-
fahrungsgemäß mindestens fünf Jahre. Dabei sind Infor-

mationsbereitstellungssysteme im Vergleich zu Führungs-

systemen die systemtechnisch einfacher aufgebauten In-
formationssysteme (IS). Der Aufwand für den Aufbau der
Datenbank eines industriellen Führungssystems ist natür-
lich abhängig von der Komplexität des jeweiligen Unter-

nehmens. Die Aufbauarbeiten werden aber kaum in einer

Zeit unter sieben Jahren zu leisten sein. Fachberater

Linguisten, Systemberater und Programmierer müssen hart

und zielstrebig an den jeweiligen organisatorischen und

programmiertechnischen Anwendungsproblemen arbeiten,

bis sich der erste Erfolg einstellt.

Für den Aufbau eines Informationssystems sind fünf Jahre
eine kurze Zeit. In dieser Zeit kann der Anwender von

einem Computer-Generationswechsel überrascht werden.
Hohe Aufwendungen entstehen dann bei einem Austausch

von nichtkompatiblen Anlagen, falls die Anwendungen,
also auch das IS, nicht rechnerunabhängig konzipiert

und auch programmiert sind,

Die auf der Datenbank laufenden Anwendungsprogramme

unterliegen einem ständigen Änderungsdienst, der verur-

sacht wird durch organisatorische Änderungen im Betrieb,

durch Einführung neuer Verfahren usw. Es liegt daher im
Interesse des EDV-Anwenders, mit seinen Programmen

möglichst rechnerunabhängig zu sein. Rechnerunabhängige

Programme können leichter dokumentiert und gewartet
werden, sie können bei einer Umstellung aufgrund eines
Maschinenwechsels weitgehendst übernommen werden.

Dem allgemeinen organisatorischen Aufbau der Bibliothek,
des Unternehmens, der Behörde usw. muß der Aufbau des

Informationssystems entsprechen, insbesondere der kon-
tinuvierliche Aufbau der Datenbank und der auf ihr lau-

fenden Anwendungssysteme (IBS, MIS).

DBS ist ein Weg für die rechnerunabhängige, problem-

orientierte Organisation der Daten. Die Anwendungen

können in der Programmiersprache COBOL geschrieben
werden. Der Anschluß an ALGOL und FORTRAN ist für
eine weitere Ausbaustufe vorgesehen.

2.2. Gebietskonzept und betriebliche Organisation

Die Datenbank ist eine Zusammenfassung von Datenbe-

ständen eines oder mehrerer abgeschlossener Organisa-

tionsbereiche. Jeder Datenbestand ist ein Komplex von
Datenelementen eines bestimmten Typs und hat ein eige-

nes Format und eine eigene Struktur.

Die DBS-organisierte Datenbank kann nach Sachgebie-

ten gegliedert werden. Sämtliche Daten eines Sachge-
bietes werden in einem Datenbankspeichergebiet geführt. Sir _

en,

Jedes Gebiet kann in Bereiche unterteilt werden. Das Brad

Sachgebiet VERKEHR z.B. kann in die Bereiche STRASSEN -

VERKEHR, LUFTVERKEHR und SCHIFFÄHRT eingeteilt
werden.

Die Speichergebiete einer Datenbank werden analog zu
den entsprechenden Organisationsgebieten des Anwen-

ders angelegt und gegliedert. Die Zahl der Gebiete einer

Datenbank und die Zahl der Bereiche je Gebiet sind nicht
begrenzt. Als Beispiel wird im Bild 2.1 die mögliche Da-
tenbankaufteilung einer Bibliothek wiedergegeben.

GEBIETE _

VERKEHR MEDIZIN MATHEMATIK

VETERINAR
wi [STRASSEN MEDIZIN

IZI
=| | VERKEHR ALGEBRA
a

en
IUUFTT II 0000000 Jessen.
VERKEHR

\ SCHIFF | ANALYSIS

FAHRT Daw

Bild 2.1 Datenbank und Gebietskonzept

2.3. Seitenkonzept

Jedes Gebiet besteht aus System- und Datenbereichen.

Die Datenbereiche eines Gebietes werden in Seiten ein- Sb k_
geteilt. Die Seiten eines Gebietes haben die gleiche
Länge; die Seitenlänge kann von Gebiet zu Gebiet ver-

schieden sein. Die Seiten eines Gebietes werden auf-
steigend durchnumeriert, beginnend mit der Seitennummer |.

TR

44
0

 D
BS

-H
an

db
uc

h
No

v.

79

2.4. Integrierte Datenhaltung Die Zugriffszeiten der Datenbankspeicher sind im Ver-
hältnis zur Bearbeitungszeit sehr groß, sie betragen z.B.

Um die Reaktion der Datenbank und damit die Qualität beim Wechselplattenspeicher WSP 414 im Durchschnitt
des darauf aufbauenden Informationssystems zu erhöhen, 45 ms, die Verarbeitungszeit dagegen ist aufgrund der

werden die Daten integriert gespeichert, d.h. logisch hohen internen Rechenleistung des Großrechners TR 440

zusammenhängende Daten werden nach Möglichkeit klein. Integrierte Datenspeicherung und kurze Reak-

physikalisch in demselben Speicherblock (Seite) abgelegt, tiongszeiten sind Grundforderungen an ein modernes
damit sie durch nur einen Datentransportvorgang für die rechnerunabhängiges Datenbanksystern.

weitere Bearbeitung zur Verfügung gestellt werden können.

Datenbereich SEITE

1 2? 3 4 5 Seiten-| SEITEN-

= Inummer| ZUSTANDS-

23187 | BESCHREIBUNG

6 7 8 9 10

TEILESTAMMDATEN ER-

ZEUGNISSTRUKTURDATEN

AUFTRÄGE TEXT-

23187 FOLGE FREIE

SPEICHER-

34397 34999 \
KAPAZITÄT

Bild 2.2 Seitenkonzept

Allgemeine Beschreibung der Daten Für die Abschätzung des Datenvolumens eines Bereiches,

eines Gebietes bzw. einer Datenbank, insbesondere aber

In die Speichergebiete der Datenbank werden D le- für die Datenbankprogramme (Datenerfassung, Auswer-
mente geladen. Die Datenelemente können beliebigen tung, Speicherung und Weiterleitung) ist die Festlegung

Typs (Stücklisten; Teilestamm- und Erzeugnisstrukturdaten; des Datenaufbaues unbedingt Voraussetzung.

Arbeitspläne, Aufträge; Patentunterlagen usw.) und be-
liebigen Formats (fester Aufbau und feste Länge der Da- Die Datenbank eines Unternehmens bestehe z.B. aus den
tenfelder, feste Feldfolge eines Datensatzes; variabel im Gebieten UNTERNEHMENSLEITUNG, FERTIGUNG,

Aufbau und Länge) sein. Die Zahl der Datenelemente VERTRIEB und VERWALTUNG. Das Gebiet FERTIGUNG

ist beliebig. wird gegliedert in die Bereiche STUECKLISTEN, ARBEITS-
PLAENE usw.

Produktstruktur

L__P |
|

1x Ä [4x 13x |1x

| go | [LE | I Bs |) [LE |

[3x 12x

[| E | I 5% |

BAUKASTENSTÜCKLISTE

TEILENUMMER : 523

BENENNUNG :P

POS MENGE TEILENUMMER BENENNUNG

01 1 7/70 El
02 4 1583 E2
03 3 1020 Bl
04 1 1740 E3 Bild 2.3 Produktstruktur und Stückliste

TR
4L

O
 D
RS
-H
an
db
uc
h

No
v.

71

Teilestammdaten Erzeugnisstrukturdaten

TEILENUMMER BENENNUNG | DIS |BESTAND

 DIL IE SIT EL IE EL EI LE I I IE I I I L L

POS MENGE

 Ilıl31ı 11

Bild 2.4 Feldaufbau und Feldfolge von Teile-
stamm- und Erzeugnisstrukturdaten

Unter "Teil" wird ein Endprodukt (P), Baugruppe (B),

Einzelteile usw. also allgemein ein Erzeugnis verstanden.

Für jedes Teil wird nur ein einziger Teilestammsatz (TST)

und für jede Stücklistenposition ein Erzeugnisstruktursatz
(EST) angelegt.

Bild 2.3 zeigt als Beispiel für die Beschreibung von Daten

eine Produktstruktur und die daraus resultierende Stück-

liste. Bild 2.4 befaßt sich mit dem Feldaufbau der be-

schreibenden Sätze.

Satztypen und Klassenbildung

Werden nun die Teilestamm- und Erzeugnisstrukturdaten
einer Stückliste und die Arbeitspläne zusammen mit dem
zugehörigen Primärbedarf (Kundenaufträge für das be-

treffende Erzeugnis) und den Fertigungsaufträgen in einer

Seite gepackt gespeichert, dann muß der Datenbankpro-
zessor jederzeit an einem Code erkennen, von welcher
Art (Typ und Format) das Datenelement ist, das er z.Z.

bearbeitet. Denn um z.B. den Lagerbestand in einem

Teilestammsatz (TST) des Schlagbohrers mit der Teilenum-
mer SB 2-400 aufgrund von Lagerzugängen zu ändern,

muß der Prozessor aus einer Folge von beliebigen Daten-

sätzen in einer Seite den bestimmten angeforderten TST

auffinden.

STEUERTEIL DATENTEIL

| I
g- | | TEILE- BENEN -

er | | NUMMER NUNG

N

LEIT- KETTFELDER
WORT

Bild 2.5 Aufbau des Datensatzes

Für die integrierte Datenorganisation wird eine Klassen-

bildung von Daten eingeführt, und zwar für die allgemei-
ie Organisation der Datenbestände und für die Steuerung

und Beschleunigung des Eingabe/Ausgabe -Verkehrs zwi-

schen dem zentralen Arbeitsspeicher und dem Datenbank-
speicher. Die Klasse, zu der ein Satz gehört, wird durch

den sog. Satztyp festgelegt. Der Satztyp ist ein Zahlen-
code. Er wird bei der Datenbeschreibung durch den DBS-
Parameter »SATZIYP= ... definiert und verschlüsselt
im Steuerteil des Datensatzes mitgeführt.

Das Gebietskonzept und die Klassenbildung sind Voraus-
setzungen für die allgemeine und automatische Organi-

sation von Datenbeständen.

Jeder DBS-organisierte Datensatz besteht aus zwei Teilen:

Der Datenteil besteht aus Datenfeldern. Aufbau und

Reihenfolge der Datenfelder bestimmt der DBS-Anwender.

Der Steuerteil wird vom DBS automatisch erstellt, im

Steuerteil wird u.a. der Satztyp geführt.

2.5. Strukturdefinition

Strukturen sind Beziehungen (Relationen) zwischen je

zwei Datenelementen. Unter Strukturdefinition wird die
Beschreibung des Aufbaus einer Datenbank verstanden.

DBS-Ketten

Für DBS werden die Daten in sofort auswertbaren Struk-

turen (Zusammenfassung logisch zusammenhängender Sätze

nach Auswertungsgesichtspunkten) organisiert. Das Hilfs-

mittel für die speicherungstechnische Organisation der- _
arfiger DetenTef die Kette. In einer Kette werden Sätze,
die zueinander in irgendeiner Beziehung stehen, zusam-
mengefaßt. Eine Kette solcher Sätze entsteht, wenn in

jedem Satz einer derartigen Gruppe die Adresse des

nächstfolgenden Satzes dieser Gruppe gespeichert wird.
Im letzten Satz steht das Kettenendezeichen. Der erste

Satz der Kette heißt ANKER, sämtliche sonstige Sätze

der Kette heißen GLIEDER. Die Kette erhält einen Na-

men, durch ihn wird sie idenfifiziert (s. Bild 2.7).

ANKER

1. GLIED 2. GLIED letztes GLIED

Kettenendezeichen

Bild 2.7 Kette

TR

44
0

 D
BS
-H
an
db
uc
h

7
No
v.

Kettengesetze

Für DBS-Ketten gelten folgende Gesetze:

I. Jede Kette enthält stets genau nur_einen Anker. Im
Anker steht die Adresse des ersten Gliedes in dieser

Kette, d.h. der Anker ist stets der erste Satz der

Kette.

2. Jede Kette kann neben dem Anker jede beliebige Anzahl
von Gliedern enthalten. Jedesmal, wenn ein Glied in

eine Kette eingespeichert wird, wird in dem Kettenfeld

des Vorgängers die Adresse des neu eingespeicherten

Gliedes eingesetzt; dieses neu eingespeicherte Ketten-
glied verweist auf seinen Nachfolger, falls es nicht

die Endstelle der Kette ist.

3. Jedesmal, wenn ein Anker gespeichert wird, wird eine

Kette angelegt, wenn ein Anker gelöscht wird, werden

sämtliche Glieder dieser Kette gelöscht.

4. Jede Kette erhält einen Namen.

Der Name muß eindeutig sein, weil durch ihn die Kette

identifiziert wird.

Kettenordnung

Jede Kette kann sortiert werden, d.h. die Glieder einer

Kette werden nach einem Ordnungsbegriff sortiert. Der

Anker bleibt in jedem Fall das 1. Glied der Kette.

2.6. Datenbank-Organigramm

Das Organigramm ist die organisatorische Grundlage für

die programmiertechnische Formulierung des Strukturteils
der Datenbank.

Das Organigramm ist ein Hilfsmittel für Organisatoren

und Systemberatung für die problemorientierte Beschrei-
bung der verschiedenen Datenelemente der Datenbank,

insbesondere für die Beschreibung der Beziehungen, die

zwischen den einzelnen Daten bestehen. Im folgenden

werden die Darstellungsformen des Datenbankorgani-

gramms erläutert.

Netzwerk:

Kunde

1. Auftrag 2. Auftrag

Bild 2.9 Kettenorganigramm und zugehöriges Kettennetzwerk

2.6.1. Darstellung der Daten (Satztypen)

Für jeden Satztyp, der in der Datenbank geführt wird,
wird ein Rechteck gezeichnet; in dieses Rechteck wird

der Satzname eingetragen.

Werden z.B. die bisher konventionell auf Magnetbändern

geführten Kundendateien, bestehend aus den Kunden-

stammsätzen, und die Auftragsdatei, bestehend aus den

Kundenaufträgen, in die Datenbankorganisation einbezo-

gen, dann werden die entsprechenden Daten wie in

Bild 2.8 dargestellt.

Bisher: Dateien

| Aufträge
DBS-Organisation: Satztypen

Kunde Auftrag

Bild 2.8 Satztypen

2.6.2. Darstellung der Beziehungen

Besteht zwischen zwei verschiedenen Satztypen eine
(auswertbare) Beziehung bzw. Abhängigkeit derart, daß

ein Datensatz des einen Typs Grundinformationen enthält,
die für eine Gruppe von Sätzen des anderen Typs gelten,

dann ist dieser Satztyp der Anker der Kette, deren Glie-
der sind von ihm "abhängige" Sätze.

Organigramm:

Kunde

n-ter Auftrag KA
7

/ " Auftrag

Diese Beziehung wird folgendermaßen dargestellt:

Vom Rechteck, das den Kettenanker repräsentiert, geht
ein Pfeil in Richtung des Rechteckes, das die Glieder

repräsentiert.

Der Kettenname wird neben dem Pfeil eingetragen
(s. Bild 2.9). Die zulässigen Strukturen sind Bild 2.10

zu entnehmen.

1. Lineare Strukturen:

2. Querbeziehungen:

3. Listenordnung und Ordnung des Verwendungsnachweises

Folgende Ringstruktur ist verboten:

Vo

 BNEEEEEEEEEEE
Bild 2.10 Zulässige und verbotene Strukturen

2.6.3. Hierarchien

Für alle Strukturen gilt, daß die Zahl der Stufen (Hier-
archien) beliebig ist und daß alle Formen untereinander

in einem Organigramm verknüpft werden können.

Am Abschluß der organisatorischen Vorarbeiten für den

Aufbau einer Datenbank oder eines Teiles von ihr steht

das Datenbankorganigramm,

2.6.4. Beispiel

Die Erzeugnisstrukturdaten einer Baukastenstückliste wer-

den in der Stücklistenkette (STL), aufsteigend sortiert

nach Positionsnummern (POS) NAHE dem Kettenanker

gespeichert. Kettenanker ist der Teilestammsatz, von dem

die Stücklistenkette ausgeht (e. Bild 2.11).

Der Teileverwendungsnachweis (TVN) wird über die

TVN -Kette geführt. Anker der TVN-Keitte ist der Teile-

stammsatz des untergeordneten Teiles (sog. Komponente).

TR

44
0

DB
S-

Ha
nd

bu
ch

No
v.

71

TST

STL

EST EST EST EST
FRESZUESEESSSHELSSEHTG TEN

 STL

EST | EST

01/3 =] 02/2

TVN TVN

TST TST

E1 E4

Bild 2.11 Kettennetzwerke der Stückliste aus Bild 2.3

Anstelle des ausführlichen Kettennetzwerkes steht folgen-

des Organigramm:

TST

STL TVN

EST

=

Fr
ed

2.7. Datenbankbeschreibung und Datenmanipulation

Charakteristisches Merkmal operierender Datenbank-
systeme ist ihr Aufbau auf der Grundlage einer problem-
orientierten Programmiersprache als Basissprache, die
dem Benutzer den verfahrensorientierten Rahmen bietet,

eine Verarbeitung der Daten im Arbeitsspeicher durch-
zuführen.

01/1 02/4 =] 03/3 0,

TVN TVN TVN

TST TST TST

E2

Allen als Basissprache in Betracht kommenden Höheren
Programmiersprachen sind zwei Nachteile gemeinsam,
Sie besitzen keine leistungsfähigen Statements für die

Datenbankbeschreibung und für die Datenbankmanipula-

tion.

Es ist demzufolge naheliegend, die Basissprachen mit
spezifischen datenbeschreibenden und datenmanipula-
tiven Statements für ein problemorientiertes, rechner-

unabhängiges Arbeiten auf Feld-, Satz- und Dateiebene

zu erweitern. Diese Ergänzungsteile zur standardisierten .

Form der jeweiligen Basissprache sind bei DBS die Da-
tenbankbeschreibungssprache (DBB) und die Datenmani-

pulationssprache (DMS).

Sämtliche Dienstleistungen, die sowohl Daten vom Ar-

beitsspeicherbereich in die Datenbank (SPEICHERN) als
auch von der Datenbank in den Arbeitsspeicherbereich
transferieren (HOLEN), werden als Datentransporte be-

zeichnet.

Weitere Beispiele solcher Dienstleistungen sind:

Sustemdienste: Datenbankgebiet

EEE OEFFNEN, ABSCHLIESSEN

Anderunasdienste: Feldwerte AENDERN,

en * Datensätze LOESCHEN.

DBS wurde so konzipiert, daß als Basissprache alle gängi-
gen Höheren Programmiersprachen verwendet werden kön-
nen. Dies sind insbesondere die international anerkannten
und‘ genormten Sprachen ALGOL, COBOL und FORTRAN.
Der Anschluß an ALGOL und FORTRAN wird zu einem
späteren Zeitpunkt realisiert.

Die Beziehungen zwischen den Datenbeschreibungs- und

Datenmanipulationssprachen und den Basissprachen zeigt
Bild 2.12.

KOMMUNIKATIONSEBENE

SICHTGERÄT LOCHSTREIFEN
LOCHKARTE DRUCKER

ALGOL
BASISSPRACHEN COBOL

FORTRAN

DATENBESCHREIBUNGSSPRACHE (DBB)

DATENMANIPULATIONSSPRACHE (DMS)

f

DATENBANK

Bild 2.12 Stellung der Sprachteile

TR

44
0

 D
BS
-H
an
db
uc
h

Ma
i

72

3. SPEICHERORGANISATION UND INTEGRIERTE

DATENHALTUNG

3.1. Speicherorganisation 3.1.2. Elemente der Datenbankspeicherorganisation

3.1.1. Datenbankträger Grundlage der Speicherorganisation ist das Gebiets-
und das Seitenkonzept.

Als Datenbankträger werden Direktzugriffsspeicher einge-

setzt. Die an den TR 440 angeschlossenen Direktzugriffs- Jede Datenbank besteht aus mindestens einem Gebiet.

speicher sind: Die Zahl der Gebiete einer Datenbank ist beliebig.

WSP 414 (Wechselplattenspeicher) Die Elemente der rechnerunabhängigen Speicherorgani-

PSP 600 (Festplattenspeicher). sation sind:

e Gebiete

Jedes Datenbankgebiet muß vollständig auf einem Geräte-
typ liegen; "gemischte" Speicher als Träger eines Gebie-
tes sind nicht zugelassen. Die verschiedenen Gebiete ei- e Bereiche

ner Datenbank dagegen können durchaus auf verschiede-

nen Gerätetypen liegen.

e Teilgebiete

e Seiten

Einen Überblick gibt Bild 3.1. Im folgenden werden die-
se Elemente ausführlich beschrieben.

Datenbank | Datenbank

, Gebiet = Gebiet = N Gebiet =
Gebiete

Gebietsname- | Gebietsname-2 | Gebietsname-n

Teilgebiete Systemteil Datenteil Indexteil

Bereich Systembe- | Bereich = N Bereich = | Primär-
erEICHE reich LBereichsname-1 Bereichsname-n] index

Seiten | |

u Datenseiten > LIndexseiten=|

Bild 3.1 Organisatorischer Aufbau der Datenbank

3.1.3. Gebietsorganisation

Systeminterner Aufbau der Speichergebiete

Jede Datenbank besteht aus mindestens einem Gebiet.
Jedes Speichergebiet einer Datenbank wird systemintern
in mindestens zwei, höchstens aber in drei Teilgebiete
gegliedert (s. Bild 3.2).

Teilgebiet 1

Teilgebiet 3

Werden im Speichergebiet Datensätze index-sequentiell
gespeichert, dann definiert der DBS-Übersetzer automa-
tisch Indexbereiche, deren Länge und Aufbau (Anzahl
der Indexstufen usw.) er aus der Anzahl der index-

sequentiell zu speichernden Datensätze und der zuge-
hörigen Schlüssellänge errechnet.

Die Indexbereiche werden vom DBS-Formatierer einge-
richtet.

Jede Gebietsbeschreibung wird in dem vom DBS-Über-
setzer automatisch definierten und angelegten 1. Teil-
gebiet am Anfang des Speichergebietes als Quellcode

Jedes Speichergebiet einer Datenbank wird also mindestens
in zwei, höchstens in drei Teilgebiete unterteilt. Bild 3.3
gibt einen Überblick über die Speichergebiete der Daten-

TR

44
0

DB
S-
Ha
nd
bu
ch

Ma
i

72

und in Form von Steuertabellen für den Datenbankpro-
zessor abgelegt.

Teilgebiet 2

Es wird mindestens ein Datenbereich im Gebietsteil der

Datenbankbeschreibung vom DBS-Anwender definiert

und vom DBS-Formatierer eingerichtet. Die Datenberei-

che dienen der Speicherung der Datenbestände.

bank einer Bibliothek (vgl. auch Bild 2.1, Absch. 2.2).

GEBIET = Gebietsname.

1. Teilgebiet

SYSBER
Systembereich

, Gebietsbeschreibung
Steuertabellen

BEREICH = Bereichsname-]

BEREICH = Bereichsname-2
 2. Teilgebiet

? Datenbereiche

BEREICH = Bereichsname-n

N
L

INDEXBEREICH

Indexbereiche

3. Teilgebiet STV-Bereich

Bild 3.2 Stellung der Teilgebiete und Bereiche in einem Gebiet

TR

44
0

DB
S-
Ha
nd
bu
ch

Ma
i

72

Teilgebiet 2 Teilgebiet I |

= Gebiet = Verkehr

Gebiet = Medizin u

eo lv 88T [Tree ee

on 93 Je 00 00 0 0 08T Tree

 = Gebiet = Mathematik

.»m ee 0

. 000

Bild 3.3 Speichergebiete einer Bibliotheks-Datenbank

Gebietslänge

Die Gebietslänge ist die Summe der Längen der Teilge-

biete, gemessen in Seiten. Sie wird vom DBS-Übersetzer

automatisch errechnet.

Systembereich

Im Systembereich liegen die vom DBS-Übersetzer er-
stellten Steuertabellen.
Der Systembereich wird auf volle Seitenlänge gerundet.

Länge Teilgebiet 2

Die Länge von Teilgebiet 2 wird vom DBS-Anwender -

durch den höchsten Wert des Parameters x LAGE = VON

SN-1 BIS SN-1 festgelegt.

Teilgebiet 2 muß mindestens eine Seite lang und darf
höchstens 21° -2 Seiten lang sein. Die Seitenlänge und
die Seitenzahl bestimmen im wesentlichen die Gebiets-

länge.

\ Teilgebiet 3

un
—

_

Länge Teilgebiet 3

Teilgebiet 3 kann fehlen. Dies ist stets dann der Fall,
wenn in das betreffende Gebiet kein Satztyp index-
sequentiell gespeichert wird. Die Länge von Teilgebiet 3,

gemessen in Seiten, errechnet der DBS-Übersetzer aus

der Anzahl der index-sequentiell zu speichernden Daten-
sätze und der Schlüssellängen.

3.1.4. Seitenorganisation

Die Daten- und Indexbereiche eines jeden Datenbankge-
bietes werden durch den DBS-Formatierer in Seiten glei-
cher Länge eingeteilt. Die Länge einer Seite ist zweck-

mäßigerweise ein ganzzahliges Vielfaches einer Sektor-
länge des eingesetzten Direktzugriffsspeichers, auf dem

das Datenbankgebiet während des Programmlaufes liegt.

Ein Sektor ist die kleinste hardwaremäfßig adressierbare
Einheit des Direktzugriffsspeichers. Die Sektoren der in
TR 440-Installationen eingesetzten Direktzugriffsspei -
cher haben eine Länge von 128 TR 440 GW, dies sind

768 Bytes.

TR

44
0

 D
BS

-H
an

db
uc

h
Ma

i
72

Die Seitenlänge kann mit dem Parameter
SEITENLAENGE= .„.. vom Anwender vorgeschrieben

werden.

Die minimale Seitenlänge ist 768 Bytes € 128 GW), die
maximale Seitenlänge kann 6144 Bytes (= 1024 GW) be-
tragen. Fehlt der Parameter SEITENLAENGE= ... in der

Datenbankbeschreibung, dann wird automatisch die Seiten-

länge auf 1536 Bytes (= 256 GW) eingestellt.

Die Seiten des Daten- und Indexbereiches werden auf-

steigend beginnend mit der Seitennummer 000 001, durch-

numeriert. Je Datenbankgebiet sind höchstens 27° -2=262
142 Datenseiten zugelassen.

Datenseiten

Jede Datenseite enthält ihren Seitenkennsatz und kann
bis zu 64 Datensätze verschiedenen Typs und verschiede-
nen Formats als sog. Linien aufnehmen. Die Liniennummern

(LN) laufen von 00 bis 63 einschließlich (Bild 3.4).

Seitenkennsatz (SKS)

I | I
LNO! |LN? | Iuns:

I %
I T

LN8! Iuns!

[! . 1

| LNI ILN4!

Bild 3,4 Datenseite

Seitenkennsatz

Der Seitenkennsatz (SKS) wird vom DBS -Formatierer auf-
gebaut und in die ersten drei GW der Seite eingetragen.

Der SKS gibt sowohl Auskunft über die Belegung der Sei-
te als auch über die in ihr z.Z. freie Speicherkapazität.

Auf den Seitenkennsatz folgen unmittelbar die Daten-

sätze und der freie Platz bei nicht vollständiger Seiten-
belegung. Bei Einspeicherung eines Satzes in eine Seite

wird zunächst geprüft,

e ob noch genügend Platz in der Seite

e und eine freie Liniennummer vorhanden ist.

Werden beide Bedingungen erfüllt, wird der Satz - ver-

sehen mit der kleinsten freien Liniennummer - in die
Seite eingespeichert. Andernfalls wird die nächste Seite
untersucht usw., bis ein freier Platz gefunden ist, auf

den dieser Satz gespeichert werden kann.

Wird ein Satz aus einer Seite gelöscht, dann wird diese

Seite in der Weise reorganisiert, daß der freie Speicher-

platz immer am Ende der Seite liegt. Durch diese Orga-
nisation ist das Problem der freien Speicherplatzverwal-
tung gelöst.

TK}1 =

1 «> 18]19] 20

1. GW]2 SN A

B

1 <- >

2. GWI2 SB

2!

3. GWI2 ANKRAN

Bild 3.5 Aufbau des SKS für Datenseiten

Der Seitenkennsatz für die Datenseiten hat eine Länge

von 3 GW. Die Typenkennung dieser drei GW ist mit
TK=2 festgelegt.

TR
44

0
 D
BS
-H
an
db
uc
h

Ma
i

72

Symbole:

Seitennummer - SN:

18 Bit; Bit 1- 18/1. GW
Die im SKS eingetragene Seitennummer ist eine logische
Seitennummer; die Adressierung ist gebietsrelativ. Aus

der logischen Seitennummer wird vom DBS I/O-Controller
die physische Plattenadresse errechnet.
Die Seitennummer ist binär verschlüsselt.
Die logischen Seitennummern beginnen mit 000 001 und
enden mit der Seitennummer 262 142.

Abspeicherbit - AB:

1 Bit; Bit 19 / 1. GW
Das Abspeicherbit gibt Auskunft darüber, ob auf eine im
zentralen Arbeitsspeicher befindliche Seite schreibend
zugegriffen wurde.

(SPEICHERN ..., AENDERN..., LOESCHEN).

AB =]:

Auf die Seite wurde schreibend zugegriffen. Die Seite

muß aufgrund einer durchgeführten Anderung ihres In-
halts in die Datenbank zurückgeschrieben werden.

Das AB-Bit wird beim Zurückschreiben auf die Platte

gelöscht.

AB=0:

Auf die Seite wurde nur lesend zugegriffen. Eine Verän-
derung des Seiteninhalts wurde nicht vorgenommen. Ein

Rücktransport dieser Seite in die Datenbank ist unnötig.

Wird der Arbeitsspeicher, der durch diese Seite belegt
ist, angefordert, so kann die Seite überschrieben werden.

Seitenbelegung - SB:

64 Bit; Bit 20-48 / 1. GW
Bit 1-35/2. GW

Die Seitenbelegung gibt Auskunft darüber, welche Linien-
nummern einer Seite belegt sind und welche Liniennum-
mern noch frei sind.

Die Bits, deren zugehörige Linien noch frei sind, stehen

auf O, die Bits belegter Linien stehen auf I. Wird ein

Datensatz in eine Seite geladen, dann wird ihm die der-

zeitig kleinste freie Liniennummer zugeteilt. Diese Num-
mer wird im Leitwort (LTW) des Satzes eingetragen, und

das entsprechende Seitenbelegungsbit wird auf I gesetzt.

Wird ein Satz aus einer Seite gelöscht, dann wird das
Seitenbelegungsbit auf O gesetzt, die Linie kann durch
einen neu einzuspeichernden Satz wieder belegt werden.

Kapazität in der Seite - KIS:

10 Bit; Bit 36 -45 / 2. GW
In dieses Feld wird durch den DBS-Formatierer die maxima-

le Speicherkapazität der Seite, gemessen in GW, einge-

tragen.

Die maximale Speicherkapazität ergibt sich aus der durch
den Parameter SEITENLAENGE = .„.. definierten Seiten-
länge minus 3 GW für den Seitenkennsatz.

Das Feld KIS unterliegt einer ständigen Veränderung
während eines Programmlaufes.

Wird ein Satz in eine Seite geladen, dann wird KIS um
die eingespeicherte Satzlänge reduziert; wird ein Satz
aus der Seite gelöscht, dann wird KIS um die gelöschte
Satzlänge erhöht. |

Ankeradresse der Randomkette - ANKRAN:

24 Bit; Bit 1-24 /3. GW
In das Feld ANKRAN wird die Satzadresse des ersten
randomgespeicherten Satzes eingetragen, der logisch zu
dieser Seite gehört. |
Müßte dieser Satz aufgrund eines Seitenüberlaufs in ei-

ner anderen Seite abgelegt werden, dann steht in
ANKRAN die Adresse dieses Satzes in der neuen Seite.

Satzzähler - SZ

10 Bit, Bit 24 - 32 /3. GW

SZ wird vom DBS-Formatierer mit dem Wert der Parameter-

angabe ’VERTEILUNG = Zahl-1’ vorbesetzt.
Wird ein Satz gespeichert, auf den sich der Parameter

"VERTEILUNG bezieht, dann wird der Inhalt dieses Fel-

des um den Wert] vermindert. Ist der Wert des Feldes 5Z

= 0, dann kann kein weiterer Satz mehr in diese Seite ge-

laden werden, auf den sich der Verteilungsparameter be-
zieht.

Freie Satzadresse - FSA:

16 Bit; Bit 25 - 48 / 3. GW
FSA ist vom DBS-Formatierer mit dem Wert drei vorbe-

setzt. Dieses Feld unterliegt während eines Programm-
laufs einer ständigen Veränderung.

Der Inhalt des Feldes FSA zeigt an, ab welchem GW
innerhalb der Seite ein neuer Satz geladen werden kann.

Der Wert des Feldes dient gleichzeitig als Abbruchkrite-
rium beim Durchsuchen einer Seite.

Die Felder AB, SB und ANKRAN werden durch den

DBS-Formatierer standardmäßig mit Null besetzt.

Indexbereich

Der Indexbereich dient dem schnellen logisch sequen-
tiellen Abspeichern und Wiederauffinden von Infor-
mationen.

Vom Formatierer wird in Abhängigkeit von Länge der

Schlüssel und Anzahl der Datensätze die maximal mög-
liche Anzahl der Indexstufen ermittelt.

DBS-440 arbeitet mit einem einstufigen (Master- und Stell-
vertreterliste) bis vierstufigen Index (Master, Index 1,

Index 2, Index3, Stellvertreterliste). Beim Neuaufbau der

Datenbank wird zunächst mit einem einstufigen Index ge-

arbeitet. Die weiteren Indexstufen werden bei Bedarf

automatisch angelegt.
Im Master und im Index werden Indexsätze eingetragen.

Jeder Indexsatz repräsentiert eine Seite. Bei zwei Index-
stufen gibt es so viele Indexseiten, wie im Master Index-

eintragungen möglich sind und so viele Stellvertretersei-

ten, wie es Indexeintragungen in allen Seiten der Index-

stufen gibt.

Der Indexbereich ist in Seiten gleicher Länge eingestellt.

Die Länge der Seiten entspricht der Länge der Datenseiten.

Die Seiten werden fortlaufend numeriert, beginnend mit

Seitennummer 1 bis Seitennummer 262142 (2 18.2).

Die Seitennummer 1 wird durch den Master belegt.

TR

44
0

DB
S-

Ha
nd

bu
ch

Ma
i

72

Seitenaufbau

Die Seiten des Indexbereiches haben einen einheitlichen

Aufbau.

Das 1. GW der Seite wird durch den Indexseitenkennsatz

belegt. Die restliche Kapazität der Seite dient der Auf-
nahme der Index- bzw. Stellvertretersätze.

Aufbau Indexseitenkennsatz

SN = Seitennummer der Index- bzw. Stellvertreterseite

AB = Abspeicherbit (siehe Seitenkennsatz f. Datenseiten)
FSN = Freie Seitennummer enthält die nächste freie Sei-

tennummer in der jeweiligen Indexstufe.

Aufbau Indexsatz

[* | SN FSN

TYPSCHLÜSSEL

[3 SCHLÜSSEL KAP SN B 24|25

TYP = enthält den Typ des Satzes, zu dem
der Schlüssel gehört (1 Byte).

SCHLUESSEL =] - 29 Byte

Im SCHLUESSEL ist der höchste

Ordnungsbegriff der Seite eingetragen,

der im Feld SN steht.

KAP = 24 Bit, Bit 1 - 24

enthält die Anzahl freier Plätze der

in SN angegebenen Index- bzw. STV -

Seite.

SN = 18 Bit, Bit 25 - 42

enthält die Seitennummer für die die

Schlüsseleintragung gilt.

Aufbau Stellvertretersatz

TYPSCHLÜSSEL
e N —a

I} sch. ÜSSEL _ m ke SAD |
ÜL. U: C 24125 hE

TYP = enthält den Typ des Satzes, zu dem

der Schlüssel gehört (1 Byte).

SCHLUESSEL = 1 - 29 Byte
In SCHLUESSEL wird der Ordnungsbe-
griff des Datensatzes eingetragen.

SAD = I HW
enthält die Satzadresse des zugehörigen
Datensatzes.

TR
44
0

 D
BS
-H
an
db
uc
h

Ma
i

72

Datenseitentransport

Für den Datentransport zwischen Datenbankträger und
Kernspeicher wird im Kernspeicher eine zentrale Arbeits-
zone, die DBS-Pufferzone, angelegt. Diese Pufferzone

ist in Seiten gleicher Länge eingeteilt, die Länge der

Pufferseiten entspricht der Länge der Datenseiten. Die
Zahl der Pufferseiten, kann der DBS-Anwender für den
jeweiligen Operatorlauf in Feld PUFFERZAHL des NVB’s
angeben (2 = PUFFERZAHL = 100; Voreinstellung = 4).

Der Datentransport zwischen dem Datenbankträger und
den DBS-Puffern erfolgt immer seitenweise. Da innerhalb
einer Seite mehrere Datensätze geführt werden, wird mit

einem einzigen Datentransport ein Zugriff auf mehrere
Datensätze erzielt. Der Vorteil dieses Konzepts wirkt
sich dann voll aus, wenn Sätze, die gemeinsam bzw.

nacheinander verarbeitet werden sollen, sich in derselben

Seite befinden.

Der Datentransport zwischen Kernspeicher und Datenbank-
speicher wird normalerweise durch einen der Transportbe-
fehle HOLEN ... bzw. SPEICHERN eingeleitet, wobei

sich diese Befehle grundsätzlich auf jeweils einen Daten-
satz beziehen, systemintern dagegen nur Seiten transpor-

tiert werden.

Der DBS-Anwender arbeitet bezüglich der Eingabe/Aus-
gabe auf der sogenannten logischen Stufe, der DBS Input/
Output-Controller dagegen arbeitet auf der sogenannten

physischen Stufe (vgl. Bild 3.6).

Der Datenaustausch zwischen DBS-Puffern und dem
Arbeitsspeicher des DBS-Anwendungsprogramms erfolgt
automatisch.

Direktzugriffsspeicher Kernspeicher

N 7 Programm-
speicher

| | Datensatz Arbeits-

speicher

Puffer-

zone

N 7

Bild 3.6 Logische und physische Eingabe/Ausgabe

TR

44
0

DB
S-

Ha
nd

bu
ch

No
v.

71

Puffersteuerung

Zur DBS-Pufferzone wird eine Puffergewichtstabelle an-
gelegt, die der Steuerung der DBS-Pufferseiten dient. Für
jede reservierte Pufferseite wird 1 GW in der Pufferge-
wichtstabelle angelegt. Die Position des GW innerhalb
der Puffergewichtstabelle entspricht der Position der
Pufferseite innerhalb der DBS-Pufferzone, so daß eine

eindeutige Zuordnung zwischen der Pufferseite und dem

GW in der Puffergewichtstabelle besteht.

In das reservierte GW für die Puffergewichtstabelle wird
im linken Teil ein Puffergewicht und im rechten Teil die
Kernspeicheradresse der zugehörigen Pufferseite einge-

tragen (s. Bild 3.7).

Das Puffergewicht gibt Auskunft über die Aktivität der
Seite in der DBS-Pufferzone.

 |;

Bild 3.7 Puffergewichtstabelle

Die Seite mit dem niedrigsten Puffergewicht ist die
aktive Pufferseite, die Seite mit dem höchsten Pufferge-

wicht ist die Seite, auf die am längsten nicht mehr zu-

gegriffen wurde. Bei jedem Datenseitentransport wird

zuerst die Pufferzone daraufhin untersucht, ob sich diese

angeforderte Seite nicht schon im Puffer befindet. Muß

die neue Seite zugeladen werden, so wird sie in die Puf-
ferzone transportiert, wobei die am längsten nicht mehr
bewegte Seite in der Pufferzone entweder überlesen wer-

den kann (bei AB = 0) oder zuvor auf dem Datenbankträ-
ger zurückgespeichert werden muß, weil das Abspeicher-
bit AB im Seitenkennsatz auf 1 gesetzt ist.

3.1.5. Datensätze

Bis zu 127 verschiedene Satztypen können für ein Daten-
bankgebiet definiert werden.

Das Format eines Satzes kann dabei

- fest (ohne Speicheroptimierung)

- variabel (mit Speicheroptimierung)

sein.

Satzaufbau

Jeder Satz besteht immer aus zwei Teilen:

- Steuerteil

- Doatenteil

I; 1 I |
LTW|I KETTENFELDER DATENFELDER

| Lo 4 |
N — ı\ — s

Steuerteil Datenteil

Bild 3.8 Aufbau des Datensatzes

Der Steuerteil, der vom System automatisch aufgebaut und
ausgewertet wird, beginnt stets mit einem Leitwort (LTW),

dem bis zu 63 Kettenfelder für die Aufnahme von logischen
Satzadressen folgen können (s. Bild 3.8).

Der DBS-Anwender hat keinen Zugriff auf den Steuerteil
eines Datensatzes.

Leitwort

Das Leitwort wird beim Speichern eines Satzes aufgebaut
und dient der Steuerung des Satzes.

Das Leitwort hat eine Länge von 24 Bit = 1 TR 440 HW
(s. Bild 3.9).

LN TYP LNG

L
A

N

7 1 ——6 8 e—————>14 15 «& —————24

Bild 3.9 Aufbau des Leitwortes

TR

44
0

DB
S-
Ha
nd
bu
ch

Ma
i

72

Dabei gilt:

LN = Liniennummer
Sie dient der Adressierung des Satzes innerhalb

einer Seite.

LAN = Löschanzeiger

Er gibt Auskunft darüber, ob der Datenteil die-
ses Satzes noch verarbeitet werden kann

(LAN = 0) oder aber bereits logisch gelöscht ist

(LAN = 1).

TYP= Bezeichnet den Typ des jeweiligen Satzes.
Den Typ definiert der DBS-Anwender durch den
Datenparameter SATZTYP =

LNG = Länge des Satzes.
Die Länge des Satzes ergibt sich aus der Länge

des Steuerteils plus der Länge des Datenteils.
Die Gesamtlänge des Satzes darf die Seiten-

länge minus 3 GW für den SKS nicht überschrei-
ten.

3.1.6. Indexsätze

Der Aufbau des Index- bzw. Stellvertretersatzes ist fest.

Jeder Satz besteht aus einem eins- bis fünf GW langen

Schlüsselfeld und einem 1 GW langen Steuerfeld. Die Ge-
samtlänge der Index- bzw. Stellvertretersätze ergibt sich
aus Länge Schlüsselfeld plus 1 GW für das Steuerfeld.
Die Stellvertretersätze unterscheiden sich von den Index-

sätzen nur durch den unterschiedlichen Aufbau des Steuer-

feldes.

3.1.7. Adressen

Die Satzadresse ist das Identifizierungsmittel, mit dessen

Hilfe vom Datenbankprozessor ein Datensatz in der Da-
tenbank eingespeichert und in ihr auch wieder aufgefunden
werden kann.

Eine einmal für einen Satz vergebene Satzadresse hat
für den Satz solange Gültigkeit, wie der Satz in der
Datenbank geführt wird.

Die Satzadresse wird intern auf eine 24 Bit-Adresse ab-

gebildet, wobei die ersten 18 Bit die Seitennummer, die

restlichen 6 Bit die Liniennummer innerhalb der Seite an-

geben (s. Bild 3.10).

TI HW

SN LN

 1 > 18199 - — 24

Bild 3.10 Aufbau der Satzadresse

Dabei gilt:

SN = Seitennummer

Mit den für die Seitennummer reservierten 18

Bits können 2" °-2 Seiten (=262142 Seiten)

adressiert werden.

LN = Liniennummer

Mit den 6 Bits für die Liniennummern können

64 Sätze pro Seite adressiert werden.

Die Satzadresse ist eine logische Adresse. Mit Hilfe eines

Umrechnungsverfahrens wird aus der logischen Satzadres-
se eine physikalische Plattenadresse errechnet.

3.1.8. Kettenfelder

Die Anzahl der Kettenfelder eines Satztyps ist abhängig
von der Stellung dieses Satztyps in der Datenbankstruk-
fur.

Ein Satztyp muß nicht unbedingt Element einer Ketten-
struktur sein, er kann auch völlig "isoliert" existieren.
DBS läßt je Satztyp bis zu 63 Kettenfelder zu; eine Ver-
kettung in diesem Umfang dürfte praktisch nicht vorkommen.

Jedes Kettenfeld ist 24 Bit lang. In einem Kettenfeld

steht die Satzadresse des logischen Nachfolgers bzw.
Vorgängers eines Kettenelements bzw. die Adresse des

Kettenankers (s. Bild 3.11).

Anker

 7

Aktuelles

Kettenelement

Vorgänger Nachfolger

Bild 3.11 Verkettung

TR

44
0

DB
S-

Ha
nd

bu
ch

No
v.

79

3.1.9. Datenteil

Der Datenteil des Satzes ist eine Zusammenfassung von

Datenfeldern, der die jeweils zu speichernde Information
enthält.
Aufbau, Inhalt und Länge des Datenteils werden in der
Datenbeschreibung festgelegt.

Die Länge des Datenteils ist normalerweise von Satztyp
zu Satztyp verschieden, jedoch innerhalb eines Satztyps
konstant, falls nicht durch den Kompressor eine Daten-
verdichtung durchgeführt wird.

3.2. Speicherungs- und Verarbeitungsformen

Für die Datenorganisation und für die Verarbeitung der

Daten mit DBS stehen dem Anwender fünf Speicherungs-
und Verarbeitungsformen zur Verfügung.

- RANDOM
- DIREKT
- NAHE
- SEQUENTIELL
- INDEX-SEQUENTIELL

Die verschiedenen Speicherungsformen erlauben es - zu-
sammen mit der Verkettungstechnik - Daten entsprechend
der späteren Verarbeitung zu speichern und somit günstige

Durchlaufzeiten zu erzielen.

Die Speicherungsformen werden definiert durch den
Parameter ABLAGE = ..., der im Falle der Speicherungs-
form RANDOM bzw. INDEX-SEQUENTIELL ergänzt
wird durch den Parameter SCHLUESSEL =... .

SKSI | ANKRAN | SKS[| ANKRAN |

Bild 3.12 Randomkette

10

3.2.1. Random (RAN)

Aus dem für den Satztyp vorgegebenen Ordnungsbegr iff

SCHLUESSEL errechnet der Randomgenerator die Seiten-

adresse, der der Satz aufgrund seines Ordnungsbegr iffes

angehört. Alle RANDOM zu speichernden Sätze, die
logisch zu einer Seite gehören, werden miteinander ver-
kettet. Die Kette wird als Randomkette bezeichnet und
wird bei der Speicherungsform RANDOM automatisch vom
System angelegt, sie wird also nicht im Strukturteil der
Datenbankbeschreibung definiert.

Anker der Randomkette ist der Seitenkennsatz der Seite,
dem auch die Sätze mit derselben Randomnummer logisch
zugeordnet sind. Die Adresse des ersten Gliedes der

Randomkette wird in das Feld ANKRAN des Seitenkenn-
satzes eingetragen.

Kann ein Satz wegen Seitenüberlaufs nicht in die vom
Randomgenerator errechnete Seite gespeichert werden,
dann wird dieser Satz physikalisch in die nächste Seite
abgelegt, die über genügend Speicherkapazität verfügt.

Dieser Überlaufsatz wird aber in die Randomkette der

Seite eingefügt, zu der er logisch gehört (s. Bild 3.12).

In der Randomkette können Sätze unterschiedlichen Typs
geführt werden. Die Randomkette ist aufsteigend sortiert

nach Typ und innerhalb des Typs nach Schlüssel. Die
Randomspeicherung läßt keine Duplikate desselben Satz-
typs zu.

3.2.2. DIREKT (DIR)

Charakteristische Eigenschaft der Speicherungsform
DIREKT ist, daß der DIREKT zu speichernde Satz keinen
identifizierenden Feldnamen enthält.

Dem Benutzer wird nach dem Speicherungsvorgang im

Feld DIREKTADRESSE im Nachrichtenvermittlungsblock

(NVB s. 4.4.1) die Adresse des gerade gespeicherten
Satzes bereitgestellt. Es ist Aufgabe des DBS-Anwenders

selbst eine Zuordnung Ordnungskriterium - Satzadresse

in Form einer externen Tabelle zu führen, wenn er diese

Sätze auch DIREKT verarbeiten möchte.

72 Fi

IR

44
0

 D
BS
-H
an
db
uc
h

ANKER

|

n-tes GLIED

NL _— 2. GLIED

.o v0®0 6

Bild 3.13 Speicherungsform NAHE

3.2.3. NAHE

Mit der Speicherungsform NAHE ist es möglich, die

Gliedsätze einer Kette physikalisch möglichst nahe dem
Ankersatz zu speichern. Ob ein Satz jedoch auch in die-
selbe Seite geladen werden kann, in der sich der Anker
befindet, ist abhändig von der freien Speicherkapazität

der Seite.

Der Vorteil dieser Speicherungsform liegt darin, daß mit

dem Wiederauffinden des Ankersatzes die zugehörigen

Gliedsätze zur Verfügung stehen, sofern sie auch physi-
kalisch in der gleichen Seite wie der Anker liegen. Bei
der Bearbeitung der Gliedsätze müssen dann keine zu-

sätzlichen Plattenzugriffe durchgeführt werden. Um die-

sen Vorteil bei der Verarbeitung voll auszunutzen, soll-
ten die Gliedsätze unmittelbar nach dem Anker einge-
speichert werden (s. Bild 3.13).

3.2.4. SEQUENTIELL (SEQ)

Die sequentiell zu speichernden Sätze werden (nach
Satztyp) in einen nur für diesen Satztyp reservierten Be-
reich innerhalb der gesamten Datenbank zusammenge-

faßt. Derartige Bereiche werden auch als SEQ-Dateien

bezeichnet (s. Bild 3.14).

SEQ- SEQ-
INTEGRIERTER DATENBEREICH DATEI DATEI

A B
Bild 3.14 SEQ-Dateien

11

Die SEQ-Dateiorganisation entspricht der Magnetband-
organisation, d.h. die Sätze werden physikalisch hin-
tereinander abgelegt, ohne daß Rücksicht auf einen Ord-
nungsbegriff oder eine bestimmte Sortierfolge genommen

werden muß.

Sequentiell gespeicherte Daten können entweder durch
Absuchen der entsprechenden Datei oder bei der Bear-

beitung als Gliedsätze einer Kette wiederaufgefunden
werden.

3.2.5. INDEX-SEQUENTIELL (ISQ)

Die index-sequentiell zu speichernden Datensätze wer-
den mit Hilfe ihres Ordnungsbegriffes (SCHLUESSEL)
eingespeichert und können mittels dieses Ordnungsbe-
griffes wiederaufgefunden werden. Die index-sequen-

tielle Speicherung ermöglicht neben der gezielten Ver-
arbeitung eines bestimmten Datensatzes auch eine Ver-

arbeitung der Daten in aufsteigender und absteigender

Sortierfolge. Die Daten müssen nicht vorsortiert werden;

ein Vorsortieren der Daten beschleunigt jedoch das Spei-
chern.

Aufgrund des Parameters ABLAGE = INDEX-SEQUENTIELL
wird vom DBS-Übersetzer automatisch ein Indexbereich

angelegt. Dieser Parameter kann ergänzt werden durch
den Parameter VERTEILUNG (siehe 4.16).

Der Indexbereich wird standardmäßig hinter dem Teilge-
biet 2 des Speichergebietes angelegt.

TR

44
0

DB
S-
Ha
nd
bu
ch

Indexbereich

Der Indexbereich nimmt den Master die Indexseiten und

die Stellvertreterlisten auf.
Der Indexbereich ist in Seiten gleicher Länge eingeteilt.

Die Seitenlänge entspricht der definierten Seitenlänge
des Datenbereiches. |

Der gesamte Indexbereich kann auch als Inhaltsverzeich-

nis angesehen werden, mit dessen Hilfe das Wiederauf-

finden gespeicherter Daten beschleunigt wird.

DBS arbeitet mit einem ein- bis vierstufigen Index. Die
Zahl der Indexstufen errechnet der DBS-Übersetzer
automatisch aus der Anzahl der index-sequentiell zu
speichernden Daten (INHALT = ...), der Länge des
Stellvertretersatzes und der definierten Seitenlänge der
Datenbank.

Indexstufen

Für den gesamten Indexbereich wird ein Masterindex
(Hauptindex) angelegt. Der Materindex entspricht der
1. Indexstufe und ist immer vorhanden.

Der Index I (2. Indexstufe), Index 2 (3. Indexstufe) und
Index 3 (4. Indexstufe) wird bei Bedarf vom DBS-Über-
setzer automatisch angelegt.

Stellvertreter (STV)

Der DBS-Befehl SPEICHERN .. erstellt für einen index-
sequentiell zu speichernden Datensatz automatisch einen
Stellvertreter.

3.3. Die Datenintegration

3.3.1. Kettentechniken

Kettendefinition

Mit Hilfe direkt adressierbarer Massenspeicher kann man
Informationen verhältnismäßig schnell speichern und
wiederauffinden, aber eine integrierte Datenhaltung ist

damit noch nicht erreicht. Dazu bedarf es einer beson-

deren Strukturierungstechnik, einer weiteren Datenstufe:
der Kette. Mit ihrer Hilfe ist es möglich, jede funktio-
nelle oder organisatorische Abhängigkeit von Datenbe-

ständen in einem Unternehmen, in einer Verwaltung

sichtbar zu machen mit dem Ergebnis eines einzigen

integrierten Datenbestandes, der nach beliebigen Ge-

sichtspunkten verarbeitet werden kann.

Eine Kette ist eine Folge von logisch zusammengehöri-

gen Sätzen. Sie besteht aus einem einzigen Anker und

keinem oder beliebig vielen Gliedern. Der Ankersatz

erfüllt in einer Kette zwei Funktionen, einmal ist er der

Einsprungspunkt in eine Kette und zum anderen enthält
er Informationen, die für die gesamte Kette gelten. Die

ergänzenden, variablen Informationen stehen in den

Gliedsätzen.

In DBS sind die Ketten nicht geschlossen, d.h. es gibt
keinen Verweis von dem letzten Gliedsatz einer Kette

auf den Ankersatz; dafür enthält der letzte Gliedsatz

ein Kettenendezeichen (s. Bild 3.15).

Ma
i

72

Der Stellvertretersatz nimmt den Satztyp, den Ordnungsbe-
griff und die logische Adresse des zugehörigen Datensatzes

auf. Satztyp und Ordnungsbegriff des Datensatzes ergeben

zusammen den Ordnungsbegriff des Stellvertretersatzes.

ANKERSATZ

Die Stellvertretersätze werden in einer logisch aufsteigen-
den Reihenfolge in die Stellvertreterliste eingeordnet. Die
zugehörigen Datensätze werden im Datenbereich abgelegt.

 GLIEDSATZ 1] \

 Neu hinzukommende Stellvertretersätze werden, wenn sie
logisch zu einer bereits angelegten Stellvertreterseite ge-
hören, in diese eingefügt. Kann ein Stellvertretersatz

aus Kapazitätsgründen nicht mehr in die Seite einge-

ordnet werden, zu der er logisch gehört, dann wird diese

Seite geteilt und der Stellvertretersatz dann eingeordnet.

GLIEDSATZ 2

GLIEDSATZ n

Bild 3.15 Offene Kette mit Ankersatz und Gliedsätzen

12

TR

44
0

 D
BS

-H
an

db
uc

h
No
v.

71

Sinn einer Kette ist es, logisch zusammengehörige Da-

ten miteinander zu verbinden. So kann z.B. ein bestimm-

ter Vergasertyp in verschiedenen Automodellen Verwen-
dung finden. In der Stückliste jedes dieser Modelle
taucht somit derselbe Vergasertyp auf, bei der Einspei-

cherung der Stückliste jedoch erscheint der Vergasertyp
physikalisch gesehen nur einmal, denn DBS baut mit dem
Vergasertyp als Ankersatz eine Teileverwendungskette
auf, deren Gliedsätze darüber Auskunft geben, wo und

mit welcher Stückzahl der Vergasertyp überall vorkommt.
Der Vorteil von DBS zeigt sich hier in reduzierter Re-

dundanz und folglich auch in einem entsprechend ge-
ringeren Anderungsaufwand.

Jeder denkbare Kettenaufbau ist erlaubt, mit der einzi-

gen Einschränkung, daß ein Satz nicht Glied von sich
selbst sein kann, weder direkt noch über mehrere Ketten
(vgl. verbotene Ringstruktur im Datenbankorganigramm,
s. 2.6.2).

Die Kettenfelder

Dem Datenteil eines Satzes gehen, falls der Satz we-
nigstens einer Kette angehört, Kettenfelder voraus. Mit

Hilfe dieser Kettenfelder wird die Verbindung zwischen

dem Ankersatz und seinen Gliedsätzen einerseits und

zwischen den Gliedsätzen andererseits hergestellt. Ein

Kettenfeld enthält die logische Adresse des nächsten

Satzes, und zwar des nächsten in der logischen Folge

einer Kette.

Der Ankersatz enthält obligatorisch ein Nachfolgerfeld,
das für die Aufnahme der logischen Adresse des ersten

Gliedsatzes einer Kette bestimmt ist. Im Gliedsatz kön-
nen bis zu drei Kettenfelder pro Kette angelegt werden.

Auch hier ist für die normale Verarbeitung vom Anker-

satz bis zum letzten Gliedsatz einer Kette ein Nachfol-

gerfeld obligatorisch. Soll die Kette auch in umgekehr-
ter Richtung verarbeitet werden können, also vorgänger-

verarbeitbar sein, dann muß in jedem Gliedsatz zusätz-
lich zum Nachfolgerfeid ein Vorgängerfeld definiert
werden, das die logische Adresse des jeweiligen Vor-

gängersatzes aufnimmt (s. Bild 3.16).

ANKER

RE GLIED 1

A GLIED 2

| I GLIED 3

Bild 3.16 Vorgängerverarbeitbare Kette

13

Darüber hinaus kann der Benutzer vereinbaren, daß eine

Kette ankerverarbeitbar sein soll, d.h. jeder Gliedsatz
soll eine Verweisadresse auf den Ankersatz der Kette
enthalten (s. Bild 3.17).

Die Verkettung zum Ankersatz bietet die Möglichkeit,

von jedem Gliedsatz direkt den Ankersatz zu finden.
Dies wird besonders bei der Stücklistenorganisation be-

nötigt.

Besteht eine Kette nur aus einem Anker, so enthält das

Nachfolgerfeld ein Kettenendezeichen. Dasselbe gilt
für das Nachfolgerfeld des jeweils letzten Gliedsatzes
einer Kette.

7 ANKER

! NL

GLIED 1

, GLIED 2

GLIED 3

Bild 3.17 Ankerverarbeitbare Kette

3.3.2. Die Kettenordnungen

Unter Kettenordnung ist die logische Einordnung von

Gliedern in eine Kette zu verstehen. DBS unterscheidet

zwischen sortierter und unsortierter Kettenordnung. Die

für eine Kette vorgesehene Kettenordnung wird mit dem

Parameter "EINORDNUNG = .„.." definiert.

Sortierte Kette

Bei der sortierten Kette werden die Glieder nach einem

Ordnungsbegriff auf- oder absteigend sortiert. Der Ord-

nungsbegriff muß Bestandteil sämtlicher Glieder sein.

Bei der auf- bzw. absteigenden Sortierung können als

Glieder einer Kette nur Sätze gleichen Typs geführt
werden (vgl. Bild 3.18 und Bild 3.19).

TR

44
0

DB
S-
Ha
nd
bu
ch

No
v.

71

ANKER

— en u)
5 22

Bild 3.18 Kette mit EINORDNUNG = SORTIERT
AUFSTEIGEND NACH Feldname FELD

7 5

Bild 3.19 Kette mit EINORDNUNG = SORTIERT
ABSTEIGEND NACH Feldname FELD

Für die auf- bzw. absteigend sortierte Kette können Du-

plikate verboten bzw. erlaubt sein. Als DBS-Standard
sind Duplikate verboten. Sollen Duplikate in der sor-
tierten Kette geführt werden, dann muß dies mit dem
Parameter "DUPLIKATE = ERLAUBT" angegeben werden.

Für die Kette, in der Glieder unterschiedlichen Typs
geführt werden, besteht die Möglichkeit der Sortierung

nach Typ. Die Sortierung ist grundsätzlich aufsteigend.
Bei der Sortierung nach Typ kann kein weiterer Sortier-
begriff angegeben werden (s. Bild 3.20).

ANKER

02 [os 04 09

Bild 3.20 Kette mit EINORDNUNG = SORTIERT NACH TYP

Einzuordnender

Satz

Unsortierte Kette

In unsortierte Ketten werden die Kettenglieder ohne

Rücksicht auf Sortierbegriff oder bereits bestehende Sor-

tierfolgen in die Kette eingeordnet. Für die unsortierte

Kette bestehen vier Möglichkeiten der Einordnung

(s. Bild 3.21).

EINORDNUNG = AM KETTENANFANG

"Einordnung am Kettenanfang" besagt, daß ein neu hin-

zukommendes Glied immer erstes Glied der Kette wird.

EINORDNUNG = AM KETTENENDE

Neu hinzukommende Glieder werden an das Kettenende

angefügt. Im Anker der Kette wird automatisch ein Ket-

tenfeld angelegt, in das die Adresse des letzten Gliedes

der Kette eingetragen wird.

EINORDNUNG = DAVOR

Ein neu hinzukommendes Glied wird logisch vor das zu-

letzt bearbeitete Glied der Kette (aktuelles Kettenele-

ment) eingefügt. Wird das erste Glied der Kette gela-

den, dann wird es logisch hinter den Anker angefügt.

Bei der Einordnung DAVOR wird automatisch vom Daten-

bankprozessor die Vorgängerverkettung durchgeführt.
Wird zusätzlich die Verkettung mit dem Vorgänger an-
gegeben, dann wird trotzdem nur ein Kettenfeld für die

Vorgängerverkettung angelegt.

EINORDNUNG = DANACH

Ein neu hinzukommendes Glied wird logisch hinter das

zuletzt bearbeitete Glied der Kette (aktuelles Ketten-

element) eingefügt.

ANKER

 €

2

E
R

D
R

Aktuelles Kettenelement

Bild 3.21 Einordnungsmöglichkeiten in eine unsortierte Kette

14

TR
44

0
 D
BS
-H
an
db
uc
h

No
v.

71

Der Vorteil der Einordnung in eine nicht sortierte Kette

liegt in einer schnellen Speicherung von Gliedsätzen,

da jede Art von Sortierung sehr zeitaufwendig ist. Dar-

aus folgt aber nicht, daß in unsortierten Ketten eine

sortierte Speicherung nicht möglich ist. Gibt man bei-
spielsweise bei EINORDNUNG AM KETTENENDE oder
DANACH die Datensätze aufsteigend sortiert ein, so

ist die Kette automatisch aufsteigend sortiert.

3.3.3. Kettentabellen

Kettentabellen werden vom Vorübersetzer angelegt, von

den DBS-Befehlen benutzt und nach Ablauf eines jeden

Befehls auf den neuesten Stand gebracht. Für jede Kette
wird eine Kettentabelle aufgebaut, auf die zwar der Be-

nutzer nicht zugreifen kann, um deren Bedeutung er je-

doch bei der Planung leistungsfähiger Ketten, bei der

ANKERWAHL und beim Absetzen von DBS-Befehlen
wissen muß.

In einer Kettentabelle ist Platz für vier Eintragungen:

für die logische Adresse des Ankersatzes (ANK), des

zuletzt bearbeiteten Satzes der Kette (AKT), des logi-
schen Vorgängers (VOR) und des logischen Nachfolgers

zum aktuellen Satz (NACH). Beim Arbeiten in einer Ket-

te werden diese stets fortgeschrieben.

A Bee aa) Ri: ie Dre I R Bee

205 GLIED 1

1 207 GLIED 2 |

“N 701 GLIED 3 |
Bild 3.22 Kette mit logischen Satzadressen

ANK 100 VOR -

AKT 100 NACH 205

1

ANK 100 VOR 205

AKT 207 NACH 701

3

In jedem der in Bild 3.22 abgebildeten Sätze steht dessen
logische Satzadresse. Der Einsprungspunkt in die Kette
sei der Ankersatz und die Kette nur nachfolgerverarbeit-
bar. Wie sieht die Kettentabelle aus, wenn zuerst der

Ankersatz, dann der erste Gliedsatz usw. gefunden wor-

den ist? Vergleiche folgendes Bild 3.23.

Der Einsprungspunkt in die Kette sei jetzt Glied 3 und
die Kette selbst nur nachfolgerverarbeitbar. Da die Ket-

te weder vorgänger- noch ankerverarbeitbar ist, kann

weder der Anker noch Glied 2 noch Glied I gefunden
werden. Nach dem Zugriff auf Gliedsatz 3 sieht die
Kettentabelle wie in Bild 3.24 aus.

ANK - VOR -

 AKT 701 NACH -
Bild 3.24 Kettentabelle nach Zugriff auf GLIED 3.

Kette nur nachfolgerverarbeitbar.

Der Einsprungspunkt in die Kette sei Glied 2 und die Ket-
te vorgängerverarbeitbar. Jetzt ist das System in der La-

ge, Glied I und von Glied I aus den Anker zu finden.
Wie es in Bild 3.25 gezeigt wird, sieht die Kettentabelle
nach dem Zugriff auf Glied 2 aus. |

ANK - VOR 205

 AKT 207 NACH 701

Bild 3.25 Kettentabelle nach Zugriff auf GLIED 2,
Kette ist vorgängerverarbeitbar.

ANK 100 VOR 100

AKT 205 NACH 207

2

ANK 100 VOR 207

AKT 701 NACH -

A

Bild 3.23 Kettentabelle, wenn ANKER (1), GLIED 1 (2),GLIED 2 (3) und GLIED 3 (4) bearbeitet wird.

TR

44
0

 D
BS

-H
an

db
uc

h
No

v.

71

Der Einsprungspunkt in die Kette sei Glied 3 und die Ket-
te ankerverarbeitbar. Auf den Ankersatz kann somit direkt

zugegriffen werden. Aber auch der Vorgänger zu Glied 3,

nämlich Glied 2, ist über den Anker und Glied 1 zu fin-
den. Nachdem auf Glied 3 zugegriffen worden ist, er-

scheint die Kettentabelle, wie es Bild 3.26 zeigt.

ANK 100 VOR -

AKT 701 NACH -

Bild 3.26 Kettentabelle nach dem Zugriff auf GLIED 3.
| Kette ist ankerverarbeitbar.

Der Einsprungspunkt sei Glied 2 und die Kette vorgänger-
und ankerverarbeitbar. Die Kettentabelle ist nach dem

Zugriff auf Glied 2 wie in Bild 3.27 besetzt.

ANK 100 VOR 205

 AKT 207 NACH 701

Bild 3.27 Kettentabelle nach Zugriff auf GLIED 2.
Kette ist vorgänger- und ankerverarbeitbar.

Zusammenfassend läßt sich sagen: Der Nachfolger des zu-

letzt bearbeiteten Satzes einer Kette ist stets zu finden,

es sei denn, das Kettenende ist erreicht (DBS-Befehl:

HOLEN NACHFOLGER IN Kettenname KETTE).

Der Vorgänger des zuletzt bearbeiteten Satzes einer Ket-

te kann nur dann geholt werden, wenn die Kette anker-
und vorgängerverarbeitbar ist bzw. der aktuelle Satz
über den Vorgänger geholt wurde (DBS-Befehl: HOLEN
VORGAENGER IN Kettenname KETTE). Während bei
Vorgängerverarbeitung der Kette der Vorgänger direkt

ermittelt werden kann, ist bei Ankerverarbeitung der

Vorgänger nur über den Anker - durch Abarbeiten der
Kette vom Anker her - zu finden.

Der Ankersatz der gerade bearbeiteten Kette kann bei

einem Einsprung mitten in die Kette ebenfalls nur gefun-
den werden, wenn die Kette anker- oder vorgängerver-

arbeitbar ist (DBS-Befehl: HOLEN ANKER IN Ketten-

name KETTE), und zwar kann jetzt unmittelbar auf den

Ankersatz zugegriffen werden, wenn die Kette ankerver-
arbeitbar definiert ist. Ist die Kette nur vorgängerverar-

beitbar, so läuft intern ein HOLEN VORGAENGER so

oft ab, bis der Ankersatz gefunden wird.

16

TR

44
0

DB
S-
Ha
nd
bu
ch

Ma
i

72

4. DBS-PROGRAMMIERUNG

4.1. Sprachelemente

4.1.1. Übersicht der Systemteile von DBS

DBS besteht aus folgenden Systemteilen:

a DBS-Programmiersprache

e DBS-Übersetzer

e DBS-Formatierer.

Darüber hinaus gibt es mehrere DBS-Utilities (DBS-Dump,

DBS-Kompressor usw.), die die Einsatzmöglichkeiten von

DBS erweitern und den Betrieb von DBS-Installationen

komfortabler machen. Die DBS-Utilities werden im An-

hang beschrieben.

4.1.2. DBS-Programmiersprache

DBS ist ein allgemein anwendbares System für die Orga-
nisation und Programmierung von DBS-Installationen.

DBS ist derart konzipiert, daß jeder Anwender dieses
Systems mit Parametern genau seinen speziellen Anfor-
derungen an eine Datenbank anpassen kann.

Die DBS-Programmiersprache ist eine Zusammenfassung

folgender Sprachen:

Datenbankbeschreibungssprache (DBB)
Basissprache (z.B. COBOL)

Datenmanipulationssprache (DMS)

Datenbankbeschreibungssprache (DBB)

Die DBB - angewandt bei COBOL - ist eine Erweiterung

des Leistungsumfangs der Statements für die Datensatz-

und Felddefinition der COBOL WORKING-STORAGE
SECTION durch DBS-Parameter für:

e die Gebietsbeschreibung

e die Strukturdefinition

e die Festlegung der Speicherungs- und Verarbeitungs-
formen.

DBB ist dabei keine eigenständige Sprache, sondern ein-

gebettet in die COBOL DATA DIVISION und stellt

eine sprachliche Erweiterung der standardisierten
COBOL-Datenbeschreibung dar.

Basissprachen

Unter der Basissprache wird die Höhere Programmierspra-
che verstanden, die in einem Datenverarbeitungssystem
den verfahrensorientierten Rahmen abgibt, um eine Ver-

arbeitung der Daten im Arbeitsspeicher zu ermöglichen.
Als Basissprachen können neben COBOL auch FORTRAN,
ALGOL eingesetzt werden.

Datenmanipulationssprache (DMS)

DMS ist eine Zusammenfassung aller DBS-Befehle für:

e die Systeminitialisierung

e den Datenverkehr

e den Änderungsdienst

e die Kettenverarbeitung.

4.1.3. DBS-Übersetzer

Aus den DBS-Parametern werden vom DBS-Übersetzer

Steuertabellen generiert, die den Ablauf der DBS-Befehle
steuern.

Eine ausführliche Beschreibung der Steuerkarten für den

Start des DBS-Übersetzers, die Ablaufphasen und die
Ausgaben enthält der Teil 5 dieses Handbuches.

A,.1.4. DBS-Formatierer

Der DBS-Formatierer beschreibt das Datenbankgebiet mit

"leeren" Seiten, er richtet das Datenbankgebiet für eine
DBS-Neuinstallation ein. Seitenlänge und Seitenzahl
werden durch DBS-Parameter in der Gebietsbeschreibung

festgelegt.

Der DBS-Formatierer ist im Teil 6 dieses Handbuches aus-

führlich beschrieben.

TR

44
0

 D
BS
-H
an
db
uc
h

Ma
i

72

4.2. Datenbankbeschreibungssprache (DBB)

Im folgenden werden die DBS-Parameter vorgestellt. In
den Abschnitten 4.2.1 bis einschließlich 4.2.6 wird im
wesentlichen der funktionale Zusammenhang der DBB-
Elemente in dem Umfang beschrieben, wie er für Organi-
satoren und Systemberatung von Interesse ist. Anschließend
folgt eine Anleitung für die DBS-Programmierung.

4.2.1. Formaler Aufbau der DBS-Parameter
ag

Die DBS-Parameter haben folgenden Aufbau:

x PARAMETERNAME [=] PARAMETERWERT [WAHLWORT] {

PARAMETERNAME und PARAMETERWERT sind obliga-

torische Angaben.

Ein Wahlwort kann verwendet werden, um die Lesbarkeit

der Datenbankbeschreibung zu erhöhen. Wahlworte sind:

AM, BIS, FELD, IN, MIT, NACH, SATZ, SAETZE, SEI-

TEN, SORTIERT, VON, ZEICHEN. Damit die Datenbank-

beschreibung bereits als Programmdokumentation dienen

kann, wird empfohlen, von Wahlworten möglichst weit-

gehend Gebrauch zu machen.

Gleichheitszeichen sind optional. Abschlußzeichen

(" ©") ist obligatorisch.

Syntaktisch gelten folgende Regeln:

1. Jeder DBS-Parameter wird eingeleitet durch einen

Stern (*)in Spalte 7 des Ablochformulars.Es darf nicht
über mehrere Karten und nur bis Spalte 72 gelocht werden.
Die DBS-Parameter: DATENBANKBESCHREIBUNG, GE-

BIET, DATEN, STRUKTUREN, DBS-ENDE müssen in der

Area A, alle übrigen in der Area B beginnen.

2. Es muß mindestens | Leerzeichen zwischen den jewei-
ligen Angaben eines vollständig beschriebenen DBS-
Parameters stehen, lediglich das Abschlußzeichen
kann ohne Leerstelle folgen.

Beispiel:

* ANKER = TEILESTAMM SATZ.

* GLIED = ERZEUGNISSTRUKTUR

* TSRDNUNG SORTIERT AUFSTEIGEND NACH
TEILENUM .

4.2.2. Gliederung der DBS-Parameter

Die Datenbankbeschreibung wird eingeleitet durch den
Parameter

DATENBANKBESCHREIBUNG.

und sie wird abgeschlossen durch

* DBS-ENDE.

Zwischen diesen beiden Parametern stehen sämtliche

DBS-Parameter.

Die Datenbank wird gebietsweise beschrieben.

Die Datenbankbeschreibung wird in zwei Abschnitten
durchgeführt:

1. Abschnitt: *$DATENBANKBESCHREIBUNG.

* DATENBANKNAME = Datenbankname.

[* PASSWORT = Datenname]

Das Paßwort kann in der Datenbeschreibung
fehlen, der Datenbankname dagegen ist
unbedingt erforderlich.

2. Abschnitt: x GEBIET = Gebietsname-1.

USW.

* DBS-ENDE.

]

Jede Gebietsbeschreibung besteht aus vier Teilen:

1. Allgemeine Speichergebietsbeschreibung
2. Bereichsorganisation
3. Datenbeschreibung

4. Strukturbeschreibung

Die DBS-Parameter werden entsprechend ihrer Funktion
eingeteilt in:

1. Gebietsparameter

für die allgemeine Speichergebietsbeschreibung
und die Einteilung der Gebiete in Bereiche,

2. Datenparameter

für die Beschreibung der Datensätze und der

Speicherungs- und Verarbeitungsformen,

3. Strukturparameter

für die Beschreibung der Datenbankstruktur

durch Datenketten.

Im folgenden werden die drei DBS-Parametergruppen
global vorgestellt.

TR

44
0

 D
BS
-H
an
db
uc
h

Me
i

72

4.2.3. Gebietsparameter

Die Gebietsparameter werden unterschieden in globale
Gebietsparameter für die allgemeine Speichergebietsbe-
schreibung und lokale Gebietsparameter für die Be-
reichsorganisation.

Mit globalen Gebietsparametern werden Angaben für das
Gesamtgebiet gemacht, mit lokalen Gebietsparametern
(sog. Bereichsparameter) dagegen werden nur Angaben

gemacht, die sich auf einen Bereich beziehen.

Die Gebietsparameter werden eingeleitet durch den Para-
rameter GEBIET und abgeschlossen durch den Parameter
DATEN.

Globale Gebietsparamter

Die globalen Gebietsparameter beginnen mit dem Para-
meter GEBIET =...

Globale Gebietsparameter sind:

GEBIET = Gebietsname.

SEITENLAENGE = Zahl-1 ZEICHEN.

Wird die Phase I des DBS-Übersetzers nicht gestartet, so

müssen noch die Kommunikationszonen NVB und STELL-
VERTRETER zu den globalen Gebietsparametern einge-
fügt werden.

Die Satzzonen haben folgenden Aufabau:

Lokale Gebietsparameter sind:

BEREICH = Bereichsname.

PASSWORT = Datenname.

LAGE = VON Seitennummer-1 BIS Seitennummer-2.

INHALT = Zahl-6 Satzname-1 SAETZE.

INHALT = Zahl-7 Satzname-2 SAETZE.

. ... 1. 1 1 161681 0000081 ‘08 SE Ss 88 8 rer oo

INHALT = Zahl-n Satzname SAETZE.

*GEBIET = FERTIGUNG
* SEITENLAENGE = 2304 ZEICHEN.
* PUFFER = 5,
* BEREICH = STUECKLISTEN,
* PASSWORT = ARBEITSVORBEREITUNG,
* LAGE = VON 1 BIS 10000.
* INHALT = 30000 TST SAETZE.
* INHALT = 95000 EST SAETZE.
* BEREICH = AUFTRAEGE.
* PASSWORT = DISPOSITION.
* LAGE = CON 100001 BIS 25000.
* INHALT = usw.

*DATEN.

#STRUKTUREN.

*GEBIET = VERTRIEB.

* SEITENLAENGE = usw.

“DATEN.

01 NVB.

02 „GEBIETSNAME PIC X(12) VALUE "Gebietsname'.
| FERLERCODE

02 PIC 9(6) USAGE IS COMP [VALUE Zahl-1].
ZUGRIFF

o> [PUFFERZAHL
SATZTYP

ANKER PIC 9(6) USAGE IS COMP. 02
[NORGRENGER| PIC 9(6) USAGE IS COMP.

0< VOR
DIREKTADRESSE
DADER
NACHFOLGER
NACH ‚ PIC 9 (6) USAGE IS COMP.

02 SN-ANFANG PIC 9 (6) USAGE IS COMP.

02 SN-ENDE PIC 9 (6) USAGE IS COMP.

PIC 9(6) USAGE IS COMP.

01 STELLVERTRETER.

02 TYPSCHLUESSEL.
03 TYP PIC X.
03 SCHLUESSEL PIC X(max 29).
02 FILLER PIC X(6).

Die Länge des Feldes TYPSCHLUESSEL sollte gleich der
Länge des größten ISQ-Schlüussels auf G4-Länge aufge-
rundet sein.

Lokale Gebietsparameter

Die lokalen Gebietsparameter werden eingeleitet durch
den Parameter BEREICH = ... und werden abgeschlossen
durch den nächsten Parameter GEBIET= ... bzw. durch

den Parameter DATEN.

PIC 9(6) USAGE IS COMP [VALUE Zahl-2].

Die Datenbank eines Unter-

nehmens besteht aus den Ge-

bieten FERTIGUNG, VERTRIEB

und VERWALTUNG. Das Ge-

biet FERTIGUNG wird geglie-
dert in die Bereiche STUECK-

LISTEN, AUFTRAEGE usw.

Bild 4.1 Beispiel für den Parameter GEBIET

4.2.4. Datenparameter

Der Inhalt einer Datenbank umfaßt die aus Datenlemen-

ten aufgebauten Datenbestände (Dateien). Die Datenele-
mente werden als Datensätze in der WORKING-STORAGE

SECTION definiert.

Die Datensätze, die in der Datenbank geführt werden sol-
len, werden zwischen den Parametern DATEN und

STRUKTUREN definiert.

Jede Satzdefinition beginnt mit einem Stufenindikator 01
und dem Satznamen. Die Datenfelder dieses Satzes wer-

den auf den Stufen 02, 03 usw. definiert.

TR

44
0

DB
S-

Ha
nd

bu
ch

Ma
i

72

Unmittelbar hinter jeder COBOL-Satzdefinition stehen
die zu diesem Satz gehörenden Datenparameter. Dies
sind:

SATZTYP = Zahl-8.

DIREKT

SEQUENTIELL

ABLAGE =< INDEX-SEQUENTIELL MIT

NAHE Kettenname-1 KETTE | | VERDICHTUNG

RANDOM

[SCHLUESSEL = Feldname FELD. |

[VERTEILUNG = Zahl-IL , Zahl-2].|

Je Datenbankgebiet können bis zu 127 Satzdefinitionen
gegeben werden, entsprechend den 127 möglichen Satz-

typen je Gebiet.

Die Reihenfolge der Satzdefinitionen ist beliebig.

*DATEN.
01 TST.

02 TEILENUMMER PIC X(12).
02 BENENNUNG PIC X(18).
02 BESTAND PIC SY(L)V99.

* SATZTYP = 20.
* ABLAGE = RANDPM.
* SCHLUESSEL = TEILENUMMER.
01 EST.

02 PS PIC 9(3).
02 STUECK PIC 9(5).

* SATZTYP = 21,
* ABLAGE = NAHE STIL.
01 AUFTRAG.

O2 usw.

%STRUKTUREN.

Unter "Teil" wird allgemein ein
Erzeugnis, Baugruppe, Einzelteil

usw. verstanden. Für jedes Teil
wird nur ein einziger Teilestamm-
satz (TST) und für jede Stücklisten-
position ein Erzeugnisstruktursatz (EST)
angelegt. |

Bild 4.2 Beispiel für den Parameter DATEN.

4.2.5. Strukturparameter

Die Strukturparameter dienen der programmiertechnischen
Formulierung der im Datenbank-Organigramm definierten
Struktur. Die Folge der Strukturparameter wird eingelei-
tet durch x STRUKTUREN und beendet mit # DBS-ENDE
bzw. einem Parameter GEBIET.

Kettenbeschreibungen

Strukturen werden speicherungstechnisch in Form von
Adreßketten realisiert.

Jede Kettenbeschreibung wird eingeleitet durch den
Parameter |

* KETTE = Kettenname.

Hinter diesem Parameter stehen sämtliche Angaben für

diese Kette.

Die Kettenbeschreibung wird abgeschlossen durch einen
Parameter KETTE =... GEBIET = ... bzw. durch den

Parameter DBS-ENDE.

Zu jeder Kette ist nur eine Kettenbeschreibung anzuge-

ben. Sämtliche Kettenbeschreibungen stehen unmittelbar

hintereinander; die Reihenfolge ist beliebig (s. Bild 4.3).

*STRUKTUREN.
* KETTE = STL.
* ANKER = TST.
* GLIED = EST.
* EINORDNUNG = SORTIERT AUFSTEIGEND NACH PZS.
* DUPLIKATE = VERBSTEN.
* ANKERWAHL = MIT SCHLUESSEL.
* VERKETTUNG = MIT VORGAENGER.
* VERKETTUNG = MIT ANKER.
* KETTE = TVN.
* ANKER = TST.
* GLIED = EST.
* EINSRDNUNG = AM KETTENANFANG.
* ANKERWAHL = MIT IN.
* VERKETTUNG = MIT V@RGAENGER.
* VERKETTUNG = MIT ANKER.
01 TN PIC X(12).

*DBS-ENDE.

Die Erzeugnisstrukturdaten einer
Baukastenstückliste werden in der

Stücklistenkette (STL), aufsteigend

sortiert nach Positionsnummer (POS),
NAHE dem Kettenanker gespeichert.

Der Teileverwendungsnachweis wird
über die TVN-Kette geführt.

Bild 4.3 Beispiel für den Parameter STRUKTUREN.

Wird die Phase des DBS-Übersetzers nicht gestartet,
so muß statt

* KETTE=...

die COBOL-Definition:

O1 Kettenname PIC X (12) VALUE "Kettenname" stehen.

4.2.6. DBS-Parameter (Übersicht)

Vollständige Übersicht und Reihenfolge der DBS-Parameter

DATENBANKBESCHREIBUNG.

* DATENBANKNAME = Datenbankname.

[* PASSWORT = Datenname-]]

TR

44
0

DB
S-

Ha
nd

bu
ch

Ma
i

72

* GEBIET = Gebietsname-1.

T*# SEITENLAENGE = Zahl-1 ZEICHEN.

0 NVB.

02 GEBIETSNAME PIC X(12) VALUE ’Gebietsname‘

m EERDODE PIC 9(6) USAGE IS COMP
FU SRIFF [VALUE Zahl-1],

PUFFERZAHL PIC 9(6) USAGE IS COMP

02 SATZTYP IVALUE Zahl-2],
02 ANKER PIC 9(6) USAGE IS COMP.

VORGAENGER 02 vo \ PIC 9(6) USAGE IS COMP.
DIREKTADRESSE se) 02 {pADR PIC 9(6) USAGE IS COMP.
NACHFOLGER 02 (NACH PIC 9(6) USAGE IS COMP.,

02 SN-ANFANG PIC 9(6) USAGE IS COMP.

[02 SN-ENDE PIC 9(6) USAGE IS COMP.

01 STELLVERTRETER.

02 TYPSCHLUESSEL.

03 TYP PIC X.

03 SCHLUESSEL PIC X(max. 29).

02 FILLER PIC X(6).

* BEREICH = Bereichsname-]1.

T* PASSWORT = Datenname-3.]

* LAGE = VON Seitennummer-1 BIS Seitennummer-2.

* INHALT = Zahl-2 Satzname-1 SAETZE.

% INHALT = Zahl-3 Satzname-2 SAETZE.

|#* INHALT = Zahl-n Satzname-n SAETZE.

% BEREICH = Bereichsname-2.

* DATEN.

01 Satzname-1.

02 Feldname-11 PIC

02 Feldname-12 PIC

.—-... .-.. ee er 000m ee 2 8 8 08 8 9 098 0

02 Feldname-In PIC

*

(*

01

SATZTYP = Zahl-4.

DIREKT }

SEQUENTIELL

MIT VER- 4 _ ABLAGE INDEX-SEQUENTIELL Pr

| NAHE Kettenname-1 ANKER

\RANDOM)
 SCHLUESSEL = Feldname-1 FELD.

VERTEILUNG = Zahl-5r , Zahl-8]. |

Satzname-2.

02 Feldname-21 PIC

02 Feldname-22 PIC

.,oeoeee 0 0 1 0 00 0 8 oo oe

02 Feldname-2m PIC

SATZTYP = Zahl-7.

STRUKTUREN.

KETTE = Kettenname-] SATZ.

ANKER = Satzname-1 SATZ.

GLIED = Satzname-2 SATZ.

GLIED = Satzname-3 SATZ.

u... 11 00 0000080 e

. .-.... . . 20. es 0 0 e 21 0 0 8 010 000 0100 0

GLIED = Satzname=-n SATZ.

EINORDNUNG =

f [AUFSTEIGEND
| ABSTEIGEND |

. NACH Feldname-2 FELD

NACH TYP

SORTIERT

| AM KETTENANFANG
AM KETTENENDE

DAVOR
(DANACH

AKTUELL

ANKERWAHL = MIT SCHLUESSEL

MIT Feldname-3 FELD

ERLAUBT

VERBOTEN
DUPLIKATE = .

el

TR
44

0
DB
S-
Ha
nd
bu
ch

Ma
i

72

[* VERKETTUNG = | MITIANKER.]
—_ : a —

[* _ VERKETTUNG = [MIT VORGAENGER.} u nn)

[Ol Feldname-3 PICX (...).]

[* KETTE = Kettenname-2.]
A

* GEBIET = Gebietsname-2

» DBS-ENDE.

FAAA,

4.2.7. DBS-Parameter

Im folgenden wird eine ausführliche Anleitung für den
Gebrauch der DBS-Parameter gegeben.

Die Reihenfolge der Beschreibung der einzelnen Para-

meter entspricht der Gliederung der Datenbankbeschreibung.

TR

44
0

DB
S-

Ha
nd

bu
ch

Ma
i

72

INSTALLATIONSTEIL

Übersicht

* DATENBANKNAME = Datenbankname.

[* PASSWORT = Datenname-1.)

[SYSTEM = B F RESERVIERE [QUELLE] \

TEST.

Erklärungen:

l. Zu jeder Datenbankbeschreibung gehört stets genau

nur ein Installationsteil.

2. Der Installationsteil wird eingeleitet durch den

Systemparameter DATENBANKNAME und abge-
schlossen durch den Parameter x GEBIET.

(DATEN BANKNAME

Funktion

Benennung der Datenbank.

Format
* DATENBANKNAME = Datenbankname

Erklärungen:

Der Datenbankname muß eindeutig sein. Es werden nur

zwölf Zeichen interpretiert. Falls gewünscht, wird unter
diesem Namen in der LFD eine Datei für Versorgungs-

blöcke und quelle angelegt. Der Name darf keinen Binde-
strich enthalten.

TR

44
0

DB
S-
Ha
nd
bu
ch

Ma
i

72

PASSWORT

Funktion

Sicherung der Datenbank vor unberechtigtem Zugriff.

[* PASSWORT = Datenname-1].

Erklärungen:

l. Die Datenbank kann gesichert werden durch:

a) Paßwort für die gesamte Datenbank

b) Paßwort für den Bereich einer Datenbank

c) Paßwort auf Satzebene

2. Datenname-1 ist ein Feld im DBS-Arbeitsspeicher
und nimmt das Kennwort auf.

Anmerkung: Die Implementierung der Paßwortbehandlung

steht noch aus.

\ SYSTEM)

Funktion

Angaben zur Erstellung der Datenbank

Format

* stem TER FRESERVIERE ua).

Erläuterungen:

Es gilt bei SYSTEM NEU:
Bei fehlerfreiem Ablauf des Ü bersetzers wird die

Datenbank erstellt und formatiert; es werden keine

Reservierungen vorgenommen.

Bei SYSTEM = NEU RESERVIERE werden lediglich

die Versorgungsblöcke der GEBIETE in der LFD

abgelegt, um ein späteres Einschleusen zu ver-
einfachen.

Bei SYSTEM = NEU RESERVIERE QUELLE wird
neben den Versorgungsblöcken auch die Daten-

bankbeschreibung (DBS-QUELLE) abgelegt.

Bei SYSTEM = TEST wird nach fehlerfreiem Ablauf

des Übersetzers und Interpretierers der Systembe-

reich binär auf Karten ausgestanzt.

Der Parameter ist mit SYSTEM = NEU vorbesetzt.

TR

44
0

DB
S-
Ha
nd
bu
ch

Ma
i

72

GEBIETSTEIL

Übersicht

* GEBIET = Gebietsname-1.

[* SEITENLAENGE = Zahl-1 ZEICHEN.]

oo NVB.

02 GEBIETSNAME PIC X(12) VALUE ’Gebietsname‘

2 LE LERGODE PIC 9(6) USAGE IS COMP
|VALUE Zahl-1).

DUGRIFF

PUFFERZAHL PIC 9(6) USAGE IS COMP

02 | SATZTYP [VALUE Zahl-2].
02 ANKER PIC 9(6) USAGE IS COMP.

VORGAENGER 02 von \ PIC 9(6) USAGE 18 COMP.
U oaor RESSE \ 02 | HaDR PIC 9(6) USAGE IS COMP.,
NACHFOLGER 02 | NACH \ PIC 9(6) USAGE IS COMP.

02 SN-ANFANG PIC 9(6) USAGE IS COMP.

02 SN-ENDE PIC 9(6) USAGE IS COMP.

01 STELLVERTRETER.

02 TYPSCHLUESSEL.

03 TYP PICX.

03 SCHLUESSEL PIC X(max. 29).

02 FILLER PIC X(6).

* BEREICH = Bereichsname-]1.

T» PASSWORT = Datenname-2.]

* LAGE = VON Seitennummer-] BIS Seitennummer-2.

* INHALT = Zahl-2 Satzname-1 SAETZE.

* INHALT = Zahl-3 Satzname-2 SAETZE. |

* INHALT = Zahl-n Satzname-n SAETZE.

* BEREICH = Bereichsname-2.]

een eeeeenerenenn _

* DATEN

* GEBIET =...

TR
44
0

DB
S-
Ha
nd
bu
ch

Ma
i

72

GEBIET

Funktion

Gliederung der Datenbank in Sachgebiete.

* GEBIET = Gebietsname

Erklärungen:

1. Der Gebietsname muß innerhalb einer Datenbank

eindeutig sein.

2. Es werden nur 12 Zeichen des Gebietsnamen inter-

pretiert. Der Gebietsnamen selbst darf keinen Binde-
strich enthalten.

3. Unter dem Gebietsnamen wird die Datenbank für das
entsprechende Sachgebiet erstellt.

(sEITENLAEN GE)

Funtion

Angabe der Seitenlänge innerhalb eines Gebietes.

Format

* SEITENLAENGE = Zahl-1 ZEICHEN.]

Erklärungen:

1. Die Seitenlänge ist ein ganzzahliges Vielfaches der

Sektorlänge des zugrundegelegten Direktzugriffs-
speichers. Die TR 440-Zugriffsspeicher WSP 414
und PSP 600 haben eine Sektorlänge von 128 TR 440-

Ganzworten, also von 128 x 6 = 768 Zeichen.

Als Seitenlänge sind z.Z. folgende Werte von Zahl-2
zugelassen:

Zahl-1 = 128 x 6x 1 = 768

= 128 x 6x 2 = 1536, (Standard)

128 x 6x 3 = 2304,

= 128x 6x 4 = 3072,

= 128x 6x 5= 3840,

= 128 x 6x 6 = 4608,

128 x 6x 7 = 5376,

= 128x 6x8 = 6144.

Daten- und Indexseiten haben dieselbe Seitenlänge.

Fehlt der Parameter SEITENLAENGE ..., dann wird

automatisch für die Seiten die Standardlänge 1536

Zeichen abgenommen.

TR

44
0

 D
BS
-H
an
db
uc
h

I

:c
C

Ma
i

BEREICH

Funktion

Unterteilung eines Sachgebietes in Teilgebiete

Format

F* BEREICH = Bereichsname-1.]

Erklärungen:

1. Mit dem Parameter BEREICH = ... kann der Daten-
teil des Datenbankgebietes unterteilt werden.

2, Der Bereichsname muß innerhalb eines Gebietes ein-

deutig sein; es werden nur 12 Zeichen interpretiert.

3. Der Parameter BEREICH =... muß für jeden Satz-
namen gegeben werden, für den ABLAGE = SEQUENTIELL
definiert wird.

11

PASSWORT

Funktion

Sicherung der Datenbank vor unberechtigtem Zugriff.

Format

T* PASSWORT = Datenname-1.

Erklärungen:

1. Datenname-I ist ein Feld im DBS-Arbeitsspeicher und
nimmt das Paßwort auf.

2. Wird der Datenteil eines Datenbankgebietes nicht

durch Bereiche unterteilt, dann entfällt auch das Paß-
wort für die Bereichssicherung.

3. Die Datenbank kann gesichert werden durch:

a) Paßwort für die gesamte Datenbank
b) Paßwort für den Bereich einer Datenbank

c) Paßwort auf Satzebene.

TR

44
0

 D
BS
-H
an
db
uc
h

Ma
i

72

Funktion

Angabe der Lage eines Bereichs innerhalb eines Gebietes
durch Bereichsgrenzen.

Format

[* LAGE = VON Seitennummer-1 BIS Seitennummer-2.]

Erklärungen:

1 . Der Parameter LAGE = .„.. ist eine notwendige Er-
gänzung zum Parameter BEREICH =... .

. Die Seitennummern müssen innerhalb von Teilgebiet-2
des DBS-Gebietes liegen.

. Die Bereiche dürfen sich nicht überschneiden; der
Benutzer muß selbst darauf achten, daß keine Lücken
entstehen, da dies ungenützer Platz in der Datenbank
ergeben würde.

12

| INHALT)

Funktion

Angabe des Namens und der Anzahl der Datensätze, die

zu einem Bereich gehören.

Format

T* INHALT = Zahl-2 Satzname-| SAETZE.]

Erklärungen:

1. Für Zahl-2 gilt:

0< Zahl-2 = 16 777 215.

2. Satzname-1 SATZ muß im Datenteil der DATENBANK-

BESCHREIBUNG als Datensatz definiert sein.

3. Wird für Satzname-1 SATZ im Datenteil ABLAGE =

INDEX-SEQUENTIELL mit SCHLUESSEL = .„.. vorge-.

schrieben, dann ermittelt der DBS-Übersetzer aus

Zahl-6 und der Schlüssellänge automatisch die Länge
des Indexbereiches und die Anzahl der Indexstufen.

4. Umgehenst muß jeder Satz vorher im Gebietsteil bei
INHALT angeben worden sein.

5. Jeder Lageangabe muß mindestens eine Parameter

INHALT folgen.

TR

44
0

 D
BS
-H
an
db
uc
h

Ma
i

72

DATENTEIL

Übersicht

* DATEN.

01 Satzname-1.

02 Feldname-11 PIC....

02 Feldname-12 PIC....

CT Tr 100 0

02 Feldname-In PIC....

SATZTYP = Zahl 4.

f DIREKT \

SEQUENTIELL

_ MIT -
ABLAGE = < INDEX-SEQUENTIELL | Mkoichune, .

NAHE Kettenname-1 ANKER

\ RANDOM)

SCHLUESSEL = Feldname-] FELD.]

VERTEILUNG = Zahl-5 [, Zahl-6]. |

O1 Satzname-2.

02 Feldname-21 PIC...

02 Feldname-22 PIC....

see ee 9 ET ee

02 Feldname-2m PIC....

SATZTYP = Zahl-7,

Erklärungen

1. Zu jeder Gebietsbeschreibung gehört stets genau

ein Datenteil.

. Der Parameter DATEN leitet die Datensatzbeschrei-

bung ein.

Die Datensatzbeschreibung enthält mindestens eine,

höchstens 127 Satzdefinitionen je Datenbankgebiet.
Jede Satzdefinition besteht aus zwei Teilen:

a) Definition des Satznamens auf Stufe Ol,

Definition der Datenfelder auf Stufe 02, 03 ff.

b) Definition der Speicherungsform

. Sämtliche Satzdefinitionen pro Gebiet folgen un-
mittelbar hintereinander. Die Reihenfolge der Satz-

definitionen ist beliebig.

. Der Satzname muß eindeutig sein; es werden nur

zwölf Zeichen interpretiert.

. Die Datensatzbeschreibung wird durch den Parameter

STRUKTUREN oder DBS-ENDE abgeschlossen.

13

TR

44
0

 D
BS

-H
an

db
uc

h
Ma
i

72

SATZTYP }

Funktion

Angabe einer Kennzahl, die einem bestimmten Satznamen
zugeordnet wird.

Format

[* SATZTYP = Zahl-7.]

Erklärungen

1. Jedem Satznamen wird ein eindeutiger Satztyp zuge-
ordnet.

2. Der Satztyp ist eine ganze Zahl zwischen I und 127
(1= Zahl-7 = 127).

3. Der Satztyp wird vom Datenbankprozessor im Leitwort
(LTW) des Datensatzes gespeichert und dient zur

Klassifikation der Datensätze eines Datenbankgebietes.

14

ABLAGE

Funktion

Angabe der Speicherungs- und Verarbeitungsform.

Format

DIREKT
SEQUENTIELL MIT

INDEX-SEQUENTIELL | |

NAHE Kettenname ANKER VERDICHTUNG |.

RANDOM

ABLAGE =

Erklärungen

1. ABLAGE DIREKT
Der zu speichernde Datensatz wird in die aktuelle
Seite seines Bereichs, die in der DBS-Pufferzone steht,

abgelegt.

Steht keine Seite dieses Satzbereiches in der DBS-
Pufferzone, dann wird vom Datenbankprozessor die
Ladeadresse von der systeminternen Speicherverwaltung
ausgewählt. Vom DBS-Rahmenprogramm muß die vom
Datenbankprozessor im Feld DIREKTADRESSE nach
fehlerfreiem Ablauf des Befehls SPEICHERN ... hinter-
legte DBS-Adresse gesichert werden, damit sie zu je-
dem beliebigen späteren Zeitpunkt für den Befehl
HOLEN DIREKT wieder in das Feld DIREKTADRESSE
eingesetzt werden kann.

2. ABLAGE SEQUENTIELL

Für jeden starr-sequentiell zu speichernden Satztyp ist
grundsätzlich ein eigener Bereich (sog. sequentieller

Bereich) durch den Parameter BEREICH ... anzulegen.
Der Bereich wird starr-sequentiell aufsteigend geladen;

die Ladeadresse des nächsten freien Speicherplatzes
wird automatisch durch die systeminterne Speicherver-
waltung vorgegeben.

Die Verarbeitungsformen für die Daten eines sequen-
tiellen Bereichs sind sequentiell und assoziativ, falls
der betreffende Satztyp Element einer Kettenstruktur
ist.

3. ABLAGE INDEX-SEQUENTIELL
Für die index-sequentiell zu speichernden Satz-
typen wird ein Indexbereich angelegt; der Daten-
satz selbst wird im Datenbereich gespeichert.

Indexbereich
Für die index-sequentiel! zu speichernden Satz-
typen werden die Stellvertretersätze im Indexbe-
reich und die dazugehörenden Datensätze im Daten-

bereich gespeichert.

TR

44
O

 D
BS
-K
an
db
uc
h

Ma
i

72

Der Parameter ABLAGE = INDEX-SEQUENTIELL wird
ergänzt durch den Parameter SCHLUESSEL

. ABLAGE NAHE

Diese assoziative Speicherungsform bedeutet, daß der
betreffende Satz als Glied der durch den Kettennamen
identifizierten Kette nach Möglichkeit in die physika-
lische Nähe des Kettenankers gespeichert werden soll.

Der Satz muß somit im gleichen Bereich liegen, wie der

Ankersatz mit Kettennamen angegebenen Kette.

Sind die Bereiche verschieden, werden vom System für
diesen Satz die Bereichsgrenzen des Ankers eingesetzt.

. ABLAGE RANDOM
Die DBS-Adresse des betreffenden Satzes wir durch den

DBS-Randomgenerator ermittelt.

Der Randomgenerator errechnet die Adresse aus dem

Inhalt des Feldes, dessen Name der Parameter

SCHLUESSEL ... angibt.

15

(VErDICHTUNG)

Funktion

Kompression eines Datensatzes.

Format

* MIT VERDICHTUNG.]

Erklärungen

T. Der Kompressor verdichtet einen Datensatz vor dem

Speichern und dehnt ihn nach dem Holen unter fol-
genden Bedingungen:

a)

b)

c)

Mindestens vier aufeinanderfolgende, gleiche Zei-
chen müssen entweder Leerstellen (Interncode:

"AFAFAFAF’) oder Nullbytes (Interncode ’ BOBOBOBO’)
oder positive binäre Nullen (”00000000’) oder
negative binäre Nullen ("FFFFFFFF’) haben.

Diese Gruppe gleicher Zeichen wird aus dem Satz
entfernt. Der restliche Teil des Satzes wird zum
Satzanfang hin verdichtet. Für jede dieser Ver-
kürzungen wird ein Hinweis gebildet.

Der durch die Verkürzung gewonnene Platz muß

größer sein als der Platzbedarf für die in Punkt b

erläuterten Hinweise.

. Der Anwender muß in seinem Programm nur den Para-

meter VERDICHTUNG angeben. Zusätzliche Angaben
oder Befehle sind nicht erforderlich.

. Der Parameter VERDICHTUNG sollte nur da gegeben
werden, wo der Gewinn an externem Speicherplatz
die erhöhte Laufzeit rechtfertigt.

TR

44
0

 D
BS

-H
an

db
uc

h
Ma

i
7?

(SCHLUESSEL)

Funktion

Angabe des Datenfeldes, das den Wert für die Satziden-
tifizierung bei index-sequentieller bzw. bei Random-
Speicherung enthält,

Format
u

f* SCHLUESSEL 3 Feldname FELD.

Erklärungen

1. Der Parameter
SCHLUESSEL = Feldname FELD.

ist notwendig, falls für diesen Satztyp
ABLAGE = INDEX-S5EQUENTIELL.

bzw.
ABLAGE = RANDOM.

vorgeschrieben ist.

2. Für sämtliche sonstigen Formen des Parameters
ABLAGE ... hat der Parameter SCHLUESSEL ... keine
Bedeutung.

3. Feldname FELD ist als Datenfeld des betreffenden
Satzes unter Verwendung desselben Namens definiert.

VERTEILUNG Ü

Funktion

Angabe über die Verteilung auf einzelne Seiten der
index-sequentiell zu speichernden Datensätze.

Format

[* VERTEILUNG = Zahl-5[, Zahl-6].|

Erklärungen

1. Der Parameter VERTEILUNG ... ist eine Ergänzung

zur index-sequentiellen Speicherung und hat nur Aus-
wirkung auf einen einzigen index-sequentiell zu
speichernden Satztyp innerhalb eines Bereiches:

2. Zahl-5 gibt an, in welchem Seitenabstand die Daten-

sätze im angegebenen Bereich gespeichert werden sol-

len (Belegungsintervall).

Zahl-6 gibt an, wieviele Datensätze pro Seite ent-
sprechend dem Belegungsintervall gespeichert werden

sollen. Fehlt die Zahl-6, dann wird pro n-te Seite ein
Datensatz gespeichert.

3. Die Verteilung wird automatisch dann abgeschaltet,

wenn durch ’SPEICHERN’ das Bereichsende erreicht

wurde. M

4. Der Parameter VERTEILUNG ist nur dann sinnvoll in der

Anwendung, wenn der Anker einer Kette index-sequen-

tiell gespeichert wird und die Gliedsätze nahe dem
Anker gespeichert werden sollen.

STRUKTURTEIL

Übersicht
* STRUKTUREN.
* KETTE = Kettenname-]1.

ANKER = Satzname-1 SATZ.

GLIED = Satzname-2 SATZ.

GLIED = Satzname-2 SATZ.

GLIED = Satzname-n SATZ |

/

EINORDNUNG-= <

 N
II
 >

1’ DUPLIKATE =

[* _VERKETTUNG =

1 * VERKETTUNG =

ANKERWAHL = |

AUFSTEIGEND

ABSTEIGEND

... NACH

Feldname-2 FELD

NACH TYP

SORTIERT

AM KETTENANFANG

AM KETTENENDE

DAVOR

DANACH

MIT SCHLUESSEL
AKTUELL | |

MIT Feldname-3 FELD

VERBOTEN

ERLAUBT “

MIT ANKER .]

MIT VORGAENGER.]

[O1 Feldname-3 PIC ...]

* KETTE = Kettenname-2

* DBS-ENDE.

16

N

»

TR

44
0

DB
S-
Ha
nd
bu
ch

Ma
i

72

KETTE

Funktion

Kettendefinitionsindikator mit Kettenbenennung,

Format

KETTE = Kettenname.

Erklärungen

1 . Der Kettendefinitionsindikator KETTE =... leitet

die Definition einer DBS-Kette ein.

. Der Kettenname muß eindeutig sein, er darf nicht

länger als 12 Zeichen sein.

. Der DBS-Übersetzer erstellt aus dem Parameter
KETTE = Kettenname.

die COBOL-Eintragung

01 Kettenname PIC X(12) VALUE ’Kettenname’.

. Wird die Phase I des DBS-Übersetzers nicht ge-

startet, so muß der Benutzer selbst die Kettende-

finition durch die COBOL-Eintragung ersetzen.

17

ANKER

Funktion

Benennung des Kettenankers.

T.

2.

Format
ANKER = Satzname-1 SATZ.

Erklärungen

Jede Kette hat stets genau einen Anker.

Der durch Satzname-1 SATZ benannte Satztyp muß
im Datenteil der Datenbankbeschreibung unter dem-
selben Namen auf Stufe Ol definiert sein.

TR
44
0

 D
BS

-H
an

db
uc

h
Ma
i

72

| GLIED)

Funktion

Benennung eines Kettengliedes.

Format

* GLIED = Satzname-2 SATZ.

* GLIED = Satzname-3 SATZ.

* GLIED = Satzname=-n SATZ.

*
Erklärungen

1. Zu jeder Kettendefinition gehört die Benennung von
mindestens einem Satztyp, der die Glieder einer Kette
stellt.

2. Die Satztypen, die durch Satzname-2, Satzname-3, ...,

Satzname-n identifiziert werden, müssen untereinander

und von dem durch Satzname-1 in der ANKER-Erklä-

rung dieser Kettendefinition identifizierten Satztyp ver-
schieden sein. Ansonsten sei auf die im Abschnitt

2.6.2 zulässigen DBS-Strukturen hingewiesen.

Da DBS bis zu 127 Satztypen für ein Gebiet zuläßt,
folgt, daß als Glieder einer Kette höchstens 126
Gliedertypen definiert werden können.

3. Durch Satzname-2, ..., Satzname-n benannten Satz-

typen müssen im Datenteil der Datenbankbeschreibung
definiert sein.

18

EINORDNUNG)
7

Funktion

Angabe, wie ein neu einzuspeichernder Datensatz in eine

Kette einzugliedern ist.

Format,

/ AUFSTEIGEND
ABSTEIGEND

SORTIERT © NACH Feldname-2 FELD

EINORDNUNG= | NACH TYP

Erklärungen

1. EINORDNUNG = SORTIERT |

2.

AM KETTENANFANG
AM KETTENENDE
DAVOR ——

\ DANACH

AUFSTEIGEND
ABSTEIGEND

. NACH Feldname-2 FELD

Bedingungen

1.1. Für die betreffende Kette ist nur ein einziger

Satztyp als Gliedsatz definiert.

1.2. Feldname ist im Arbeitsspeicher als Feld des
Gliedersatzes dieser Kette definiert.

1.3. Für diese Kette wird vom DBS-Übersetzer automa-

tisch

VERKETTUNG = MIT VORGAENGER

definiert.

Diese Form des Parameters EINORDNUNG ...

wird ergänzt durch den Parameter DUPLIKATE

siehe Abschnitt 4.20

EINORDNUNG = SORTIERT NACH TYP

Die Glieder der betreffenden Kette sind Sätze ver-
schiedenen Typs; sie werden nach Satztyp sortiert ein-
gekettet.

Der Satztyp steht im Leitwort eines jeden Datensatzes.

Die Sortierung nach Typ ist grundsätzlich nur aufstei-
gend und schließt eine weitere Sortierung nach Daten-
feld (innerhalb eines Typs) aus.

EINORDNUNG = AM KETTENANFANG.

Der einzuspeichernde Satz wird als erstes Kettenglied,

d.h. unmittelbar hinter dem Kettenanker, eingeglie-
dert.

TR

44
0

 D
BS

-H
an

db
uc

h
m

Ma
i

7?

4, EINORDNUNG = AM KETTENENDE.

Der einzuspeichernde Satz wird am Kettenende, d.h.
als letztes Glied eingekettet.

Für diese Form der Einordnung legt der DBS-Übersetzer

im Kettenanker automatisch ein Kettenfeld an, das auf

das letzte Glied der Kette verweist.

. EINORDNUNG = DAVOR

Der einzuspeichernde Satz wird unmittelbar vor dem
aktuellen Satz dieser Kette als Glied eingefügt.

Ist der aktuelle Satz dieser Kette zufällig der Ketten-
anker, dann verfährt der Datenbankprozessor für diesen
Fall so, als ob

EINORDNUNG = AM KETTENENDE

definiert worden wäre.

Für diese Form der Einordnung definiert der DBS-Über-

setzer automatisch die Verkettung mit dem Vorgänger,

falls für diese Verkettung nicht vom Anwender bereits

vorgegeben wurde.

EINORDNUNG = DAVOR

schließt die Parameterformen

MIT SCHLUESSEL

MIT Feldname-3 FELD

-

ANKERWAHL = |

Qus.

. EINORDNUNG = DANACH

Der einzuspeichernde Glieder satz wird unmittelbar
hinter dem aktuellen Satz dieser Kette als Glied ein-
gefügt.

EINORDNUNG = DANACH

schließt die Parameterformen

MIT SCHLUESSEL }
ANKERWAHL = | MIT Feldname-3 FELD

aus.

19

ANKERWAHL

Funktion

Angabe, wie der Anker einer Kette zu finden ist, damit

in diese Kette Glieder eingekettet werden können.

Format

AKTUELL |
* ANKERWAHL = | MIT SCHLUESSEL

MIT Feldname-3 FELD

Erklärungen

1. Die Angabe

ANKERWAHL = AKTUELL

bedeutet, daß vor dem Speichern eines Kettengliedes
der Anker dieser Kette als letzter Satz seines Typs
vom Rahmenprogramm bearbeitet worden ist, d.h. die
Ankeradresse in der Kettentabelle ist aktuell, diese

Kette kann also verarbeitet werden.

Die Angabe

ANKERWAHL = AKTUELL

muß vorliegen, wenn für den Anker

ABLAGE = DIREKT, SEQUENTIELL oder NAHE Ketten-

name ANKER

vorgeschrieben worden ist.

2. Die Angabe

ANKERWAHL = MIT SCHLUESSEL

bedeutet, daß vom Datenbankprozessor zunächst der
Kettenanker wiederaufgefunden werden muß, bevor ein

Gliedsatz in die zugehörige Kette eingebaut werden

kann.

Für den betreffenden Anker muß

ABLAGE = INDEX-SEQUENTIELL.

SCHLUESSEL = Feldname-1 FELD.

bzw.

ABLAGE = RANDOM.

SCHLUESSEL = Feldname-1 FELD.

vorgeschrieben sein.

Der Schlüssel für die Ankeridentifizierung muß in dem
Feld stehen, das durch den Parameter

SCHLUESSEL = Feldname-1 FELD.

benannt wurde.

3. Die Angabe

ANKERWAHL = MIT Feldname-3 FELD.

bedeutet, daß unmittelbar vor dem Speichern eines

Kettengliedes vom Datenbankprozessor automatisch der
zugehörige Kettenanker wiederaufgefunden werden

muß.

Für den betreffenden Anker muß

ABLAGE = INDEX-SEQUENTIELL.

SCHLUESSEL = Feldname-1 FELD.

bzw.

TR

44
0

 D
BS
-H
an
db
uc
h

Ma
i

72

ABLAGE = RANDOM,

SCHLUESSEL = Feldname-1 FELD.

vorgeschrieben sein.

Der Schlüssel für die Ankeridentifizierung muß in das
Feld mit dem Namen Feldname-3 eingesetzt werden.
Dieses Feld ist ein beliebiges, unmittelbar vor der
nächsten Kettendefinition im Arbeitsspeicher ange-

. gebenes Feld, das genau der Feldbeschreibung des
Schlüsselfeldes entsprechen muß.

Feldname-1 und Feldname-3 müssen verschieden sein

und dürfen sich nicht überlagern (z.B. durch Redefi-
nitionen).

Die Angabe

ANKERWAHL = MIT Feldname-3 FELD

ist nur bei folgender Struktur erforderlich

Satzname-]

Kettenname-] Keitenname-2

Satzname-2

Für Kettenname-1 gilt

ANKERWAHL = MIT SCHLUESSEL,

für Kettenname-2 gilt

ANKERWAHL = MIT Feldname-3 FELD.

20

(DUPLIKATE)

Funktion

Vorschrift für die Behandlung von Duplikaten in sortier-
ten Ketten.

Format

ERLAUBT
° DUPLIKATE SR}

Erklärungen:

1. Der Parameter DUPLIKATE ... ist eine Ergänzung zum

Parameter EINORDNUNG = SORTIERT NACH Feldname

FELD

Für sämtliche sonstige Formen des Parameters EIN-

ORDNUNG ... hat der Parameter DUPLIKATE ...

keine Bedeutung.

‚ Wenn Duplikate in einer sortierten Kette verboten

sind, erfolgt eine Fehlermeldung, falls versucht wird,

ein Duplikat in diese Kette einzufügen; der betreffende
Satz wird nicht gespeichert. Im Feld FEHLERCODE des
Nachrichtenvermittlungsblocks steht der Fehlercode

als Fehlermeldung für die Auswertung durch das Rahmen-

programm, z.B. für die Erstellung eines Fehlerproto-
kolls (vgl. Fehlercodes im Abschnitt 7).

. Wenn der Parameter DUPLIKATE ... fehlt, wird auto-

matisch ein Duplikateverbot angenommen.

TR
44
0

 D
BS
-H
an
db
uc
h

Ma
i

72

(VERKETTUNG)

Funktion

Angabe, ob zusätzlich zu der Verkettungsgrundform (Ver-
kettung Nachfolger) jedes Kettenglied zusätzlich un-
mittelbar mit dem Keftenanker (Verkettung Anker) und/
oder seinem Vorgänger (Verkettung Vorgänger) verkettet

werden soll.

Format

T* VERKETTUNG = MIT ANKER.]
"x VERKETTUNG = MIT VORGAENGER.]

Erklärungen

1. Diese Zusatzverkettungen erleichtern und beschleu-
nigen die Kettenverarbeitung.

2. Aufgrund des Parameters

VERKETTUNG = MIT ANKER

wird in jedem Kettenglied ein Kettenfeld angelegt, in
dem die Adresse des zugehörigen Kettenankers steht.

Für die Kettenverarbeitung bedeutet dies, daß von

jedem Kettenglied her der Kettenanker direkt erreich-
bar ist.

3. Aufgrund des Parameters

VERKETTUNG = MIT VORGAENGER

wird in jedem Kettenglied ein Kettenfeld angelegt, in

dem die Adresse seines Vorgängers steht. Für die Ket-
tenverarbeitung bedeutet dies, daß die Kette von je-

dem Glied aus nicht nur "vorwärts" (im Sinne der Ver-

kettung Nachfolger) sondern auch "rückwärts" (im

Sinne der Verkettung Vorgänger) verarbeitet werden

kann.

21

4.3. Datenmanipulationssprache (DMS)

4.3.1. Datenbankprozessor

Nachdem der Formatierer ein Datenbankgebiet einge-
richtet hat, lädt der DBS-Anwender seine Datensätze in

dieses Gebiet. Auf dieses Gebiet laufen die DBS-Anwen-

dungen, die die gespeicherten Daten abfragen, verändern,

löschen und neue Daten aufbereiten und in das Daten-

bankgebiet speichern. Dieser Auskunfts- und Änderungs-

dienst kann im Teilnehmer- oder im Stapelbetrieb erfol-
gen.

Der DBS-Anwender hat keinen unmittelbaren Zugriff auf

die Datenbankgebiete. Er fordert vom Datenbankprozessor
durch die Angabe eines DBS-Befehls folgende Dienstlei-

stungen an:

1. Systeminitialisierung und -abschluß

OEFFNEN NVB.
ABSCHLIESSEN NVB.

2. Datentransporte

SPEICHERN Satzname SATZ.

f DIREKT \

Satzname SATZ
STELLVERTRETER

s‘

VORGAENGER
\ NACHFOLGER

AKTUELLER Satzname SATZ

DATENBEREICH }

HOLEN { IN Kettenname KETTE |.

| VoReo

INDEXBEREICH

NACHFOLGER IN {

VORGAENGER IN INDEXBEREICH

\ KETTENTABELLE AUS Kettennamen

3. Änderungsdienste

Feldname FELD

AENDERN $ Kettenname KETTE »

Satzname SATZ

LOESCHEN Satzname SATZ,

Die DBS-Befehle sind als Assembler-Unterprogramme
(Makros) realisiert. Sie bilden insgesamt die Routinen im
Datenbankprozessor, die die Eingabe/Ausgabe auf der

logischen Stufe vorbereiten. Der DBS-Anwender arbeitet

also voll rechnerunabhängig. Die Eingabe/Ausgabe auf
der physikalischen Stufe führt der DBS-Input/Output-
Controller (IOC) gemeinsam mit dem Betriebssystem durch.

Die Beziehungen zwischen DBS-Anwendungsprogramm

(sog. Rahmenprogramm), Datenbankprozessor und Betriebs-
system zeigt Bild 4.4.

TR

44
0

DB
S-
Ha
nd
bu
ch

No
v.

71

DATENBANKPROZESSOR
 DBS-ANWENDUNG

(RAHMENPROGRAMM)

LOGISCHE DBS-MODULE

4 { I j I L_

| OEFFNEN ABSCHLIESSE SPEICHERN HOLEN AENDERN LOESCHEN

| f T Ä T { T

{ I \ y Y

DIR SEQ ISQ RAN ASS

3 h f N A

forsuemCEEEn (MEI GÜÜBMEEEEEEESEEN din GEMEELANEEIREN SEMNMUTHEE ÄMGCHMAMRMHEHNNE si IUSEÄEEEMETEIED ARMEE GABEN AEEEETEDETCErEEGEE

 Y
EINGABE/AUSGABE-VERMITTLER

(BETRIEBSSYSTEM)

Bild 4.4 Informationsfluß während des DBS - Programmlaufs

22

TR
44
0

 D
BS
-H
an
db
uc
h

No
v.

71

Aus Bild 4.5 ist die Kettung der Versorgungsblöcke er-

sichtlich, deren Aufgabe darin besteht, eine Verbindung
zu schaffen, sowohl zwischen dem Benutzerprogramm und
dem Datenbankprozessor (NVB) als auch zwischen der

DMS und dem IOC (SYSNWB).

Anwendungsprogramm BETRIEBSSYSTEM

SATZ er TEN: | PHYSISCHE E/A KETTEN
ZONEN
22727 (NV ESIII2 "

22727 [PIV] E22 7 | 7

DATENBANKPROZESSOR

DMS IOC

| |

|
SYSNVB | \WV

| PUFFER-
Ä | ZONE

|
| |

Bild 4.5 Stellung der Versorgungsblöcke

23

TR

44
0

 D
BS

-H
an

db
uc

h
No
v.

71

Der Datenaustausch zwischen dem Arbeitsspeicher des Eine Seite nimmt eine Gruppe von Sätzen auf. Der erste

Rahmenprogramms und dem Datenbankspeicher verläuft Satz einer Seite ist stets der sog. Seitenkennsatz (SKS),

nach Bild 4,6 er enthält neben der Seitennummer und Angaben über die

Seitenbelegung Hinweise auf mögliche Überläufe usw.

Der Datenaustausch zwischen einem DB5S-Anwenderpro-

gramm im zentralen Arbeitsspeicher und der Datenbank Sämtliche sonstigen Sätze in einer Seite sind Datensätze.
erfolgt immer seitenweise. Die Seiten eines Datenbank- In einer Seite können bis zu 64 Datensätze gespeichert
gebietes haben stets die gleiche Länge. werden.

DB5 DATENBANK- DATENBANK-
ANWENDUNG PROZESSOR SPEICHER

PROGRAMM-
nennen SPEICHER STEUER-

N \ TABELLEN

HOLENDIREKT ET MS
N3.7 u

a HOLDIR

\ 2 N3.,7

fermIEt Em GHEEETEENG ARE SEFEEHEEFURRHED <EMUTEEEEEEEHE SIUMAEEAETEEE AORERTEE EEE fs uneeCHEEE MEMANLELEEGED AUCHKUERFEEEEE SEEHETESCHIEEENE GAME CIMENCHSEENNED SEÄmEHCHENGEEE STESSEEREEEEEE

ARBEITS- IöC
SPEICHER IE

IN3.7... ıK I[N3 7.]

Bild 4.6 Datenaustausch zwischen Rahmenprogramm und Datenbankspeicher

24

TR
44
0

DB
S-
Ha
nd
bu
ch

Ma
i

72

4.3.2. Mnemotechnische Befehlscodes NVB (s. Abschnitt 4.4.1)

Für die Datenbankbsschreibungssprache ist COBOL als = STV (s. Abschnitt 4.4.2)
Basissprache gewählt worden. - Datensätze (s. Abschnitt 4.2.5 mit Ausnahme

der mit * versehenen Eintragungen, die
Für die Datenmanipulationssprache dagegen können als nur für die Erstellung der DBS- Datenbank
Basissprachen TAS, COBOL, ALGOL und FORTRAN ein- und nicht mehr für weitere Programmläufe

gesetzt werden. benötigt werden).

Um den Befehlsaufruf und die Befehlsversorgung zu verein- - Kettenname (s. Abschnitt 4.2.5, für die mit *
heitlichen, wird die ausführliche Befehlsform ersetzt durch versehenen Eintragungen gilt oben be-
einen mnemotechnischen Code. schriebenes).

zu 2: Hier müssen die für das jeweilige Benutzerprogramm

ABSCHL = ABSCHLIESSEN NVB relevanten Arbeitsfelder definiert werden.

AENFLD = AENDERN Feldname FELD en en a
AENKTN = AENDERN Kettenname Kette -- En Se
AENSTZ = AENDERN Satzname SATZ

HOLAKT = HOLEN AKTUELLER Satzname SATZ
“"HOLÄNK = HOLEN ANKER IN Kettenname KETTE

HOLDAT = HOLEN NACHFOLGER IN DATENBEREICH = .

HOLDIR = HOLEN DIREKT ee
HOLEN. = HOLEN Satzname SATZ a
HOLIND = HOLEN NACHFOLGER IN INDEXBEREICH AT NW
HOLKET = HOLEN Kettentabelle AUS Kettennamen \ = rn

HOLNAC = HOLEN NACHFOLGER IN Kettenname) re een er

HOVOIN = HOLEN VORGAENGER IN INDEX- 2 a
BEREICH ”

HOLVOR = HOLEN VORGAENGER IN Kettenname
KETTE

LOESCH = LOESCHEN Satzname SATZ NVB = Nachrichtenvermitt--

OEFFNE = OEFFNEN NVB elle MYN lungsblock
SPEICH = SPEICHERN Satzname SATZ

STV = Stellvertretersatz
Die Befehle werden eingehend in Abschnitt 4.6 beschrie-

ben.

Ve Datensätze
Te Für alle An- Satzname-]

F; , wendungs- Satzname-2

2 | | programme "

pe: el rl | d / gültiger Bereich Satzname=n

' er 4 £ f ’

een en QM N “ \ . Kettennamen

2 | ii | Kettenname-2

/ Kettenname-n

4.4. DBS-Speicherplan Vom Anwendungs-
programm ab-

Der für einen DBS-Benutzer notwendige Kernspeicher hängiger Bereich
gliedert sich in zwei Teile:

T. In einen für alle Anwendungsprogramme gültigen Be-
reich.

. m Te nn nd

2. In einen vom Anwendungsprogramm abhängigen Bereich.

zu I: In diesem Bereich werden entsprechend der in der Y
DBS-Beschreibung festgelegten Reihenfolge die
einzelnen Zonen abgelegt (siehe Bild 4.7). Bild 4.7 DBS - Speicherplan

25

TR
44
0

 D
BS
-H
an
db
uc
h

Ma
i

72

4.4.1. Nachrichtenvermittlungsblock (NVB)

Der NVB dient der Kommunikation zwischen Rahmenpro-

gramm und Datenbankprozessor. Der NVB wird im Arbeits-
speicher des Rahmenprogramms definiert. Namen, Format

und Reihenfolge sind vorgeschrieben (s. Bild 4.8).

Welche Felder für die einzelnen Makros benötigt werden,

ist bei der Beschreibung dieser Makros angegeben.

NVB

+0 GEBIETSNAME

+2

HA ZUGRIFF bzw. ı PUFFERZAHL bzw.
FEHLERCODE __SATZTYP

+6 ANKER | VORGAENGER

+8 DIREKTADRESSE | NACHFOLGER

+ 10 SN - ANFANG | SN - ENDE

Bild 4.8 Nachrichtenvermittlungsblock

Beschreibung des NVB

NVB Symbolischer Name des Nachrichtenvermitt-
lungsblocks

ereennnne GEBIETSNAME
Dieses Feld nimmt linksbündig den Namen desä

DBS-Gebietes auf. Der Gebietsname darf nicht

NVB+O:

länger alszwölf Bytes sein und keinen Bindestrich
enthalten.

ereennnne ZUGRIFF
eeenennn FEHLERCODE

Der Benutzer definiert im Rahmenprogramm das Feld :
FEHLERCODE (bzw. FC als mnemotechnische Abkürzung).

Das Feld FEHLERCODE muß beim Vielfachzugriff mit der
Anzahl der gleichzeitig mit der Datenbank arbeitenden
Teilnehmern für OEFFNEN vorbesetzt sein. Für diese spe-

zielle Funktion kann er das Fled FEHLERCODE auch mit
ZUGRIFF benennen.

Das Feld FEHLERCODE wird grundsätzlich vom Datenbank-

prozessor unmittelbar vor dem Rücksprung in das Rahmen-
programm besetzt, um dem DBS-Anwender mitzuteilen, ob

der letzte DBS-Befehl normal abgelaufen ist oder ob ein

Fehler entdeckt worden ist.

Normalausgang: FEHLERCODE = 0

Fehlerausgang: FEHLERCODE # 0.

Die möglichen Fehlerschlüssel sind im Abschnitt 7 dieses
Handbuches beschrieben.

26

en PUFFERZAHL
nn SATZTYP

Wird das Feld PUFFERZAHL nicht mit einem Wert vorbe-

setzt, so wird vom Datenbankprozessor die standardisier-

te Pufferzahl 4 eingetragen. Will der Benutzer davon ab-

weichend weniger oder mehr DBS-Puffer angeben, so muß

das Feld PUFFERZAHL mit dem entsprechenden Wert vorbe-
setzt sein. Der DBS-Befehl OEFFNEN stellt dann die Puf-

fer für das Opjektprogramm zur Verfügung.

Nach Ablauf von OEFFNEN trägt der Datenbankprozessor
in dieses Feld den SATZTYP des zuletzt bearbeitenden
Satzes ein.

Nach Ablauf der Befehle

DIREKT
HOLEN ! VORGAENGER

NACHFOLGER

ist der Name des betreffenden Satzes nicht von vornherein

bekannt. Das Rahmenprogramm muß daher in Abhängigkeit
vom Inhalt des Feldes Satztyp verzweigen, z.B. durch

GO TO UPI, UP2, UP3, ...

DEPENDING ON SATZTYP

falls als Satztyp die Zahlen 1, 2, 3, ... definiert sind.
Ist dies nicht der Fall, dann verzweigt das Rahmenprogramm
zweckmäfßigerweise mit

IF...GO TO...

In dieses Feld wird vom DBS-Prozessor die

Adresse des Ankers der aktuell barbeitenden

Kette eingetragen.

NVB+ 7: eeeeeccen VORGAENGER

Vom DBS-Prozessor wird in dieses Feld die

Vorgängerdaresse des aktuell bearbeitenden

Satzes eingetragen.

NVB+ 8: „.orercn.. DIREKTADRESSE
In dieses Feld trägt der Datenbankprozessor
die DBS-Adresse des zuletzt geholten bzw.
gespeicherten Satzes ein.

Lediglich vor dem Absetzen des Befehls

HOLEN DIREKT

setzt das Rahmenprogramm die DBS-Adresse

ein.

ererennnn NACHFOLGER |

Vom DBS-Prozessor wird in dieses Feld die

Nachfolgeradresse des aktuell bearbeitenden

Satztes eingetragen.

NVB+H10: voeeeesce. SN-ANFANG

In dieses Feld muß der Benutzer die Seiten-

nummer der Seite eintragen, mit der das Ent-

laden beginnen soll. Das Feld wird von HOLEN
DATEN ausgewertet.

Ma
i

77

errrerune SN-ENDE

In dieses Feld muß vom Benutzer das Abbruch-

kriterium für den Befehl HOLEN DATEN einge-

tragen werden (natürl. Zahl von 1= DATEND).

NVB+ 11:

4.4.2. Stellvertretersatz (STV)

Der Stellvertretersatz muß nur dann im Arbeitsspeicher des
Rahmenprogramms angelegt werden, falls für mindestens

einen Satztyp die Speicherungsform index-sequentiell
definiert worden ist.

STV

TYPSCHLUESSEL

SCHLUESSEL

+0 I TYP |

+2

+4

+4

+8
+10

Bild 4.9 Aufbau des STV

Beschreibung des STV

STV+0: oereerenen TYPSCHLUESSEL
Der Typschlüssel ist der Ordnungsbegriff, der

die Sortierfolge der Stellvertretersätze in der
Stellvertreterliste definiert. Der Typschlüssel
besteht aus zwei Teilen:

1, TYP

Der Typ des Datensatzes, zu dem der Stellver-

tretersatz gehört.

Der Typ besteht im ersten Zeichen des Feldes
TYPSCHLUESSEL, ist also der oberste Sortier-
begriff. Daraus folgt, daß die Stellvertreter
sätze sämtlicher Datensätze eines Typs logisch
unmittelbar aufeinander folgen.

2. SCHLUESSEL

Schlüssel des Datensatzes, zu dem der Stell-

vertretersatz gehört.

Das Schlüsselfeld eines index-sequentiell zu
speichernden Satztyps wird durch den Para-
meter SCHLUESSEL ... festgelegt.

Die maximale Länge des Feldes SCHLUESSEL
ist 29 Zeichen.

27

4.5 Argumentlisten

Die Routinen der DMS, die die Dienstleistungen erbringen

sollen, die vom Rahmenprogramm angefordert werden, sind

in TAS (Telefunken-Assembler-Sprache) programmiert.
Unabhängig davon, ob das Rahmenprogramm in COBOL,

ALGOL, FORTRAN oder TAS geschrieben ist, sind die

Befehlsroutinen einheitlich mit Argumenten zu versorgen.

In DB5/COBOL werden die DBS-Befehle über ENTER...

aufgerufen und mit USING ... versorgt.

In DBS/ALGOL werden die DBS-Befehle und die Argumen-

te als Codeprozeduren vereinbart.

In DB5S/FORTRAN werden die DBS-Befehle über CALL

Befehlsname (Argument) aufgerufen.

TR

44
0

DB
S-
Ha
nd
bu
ch

Ma
i

72

4.5.1. DBS/TAS

Der Aufruf von DBS-Befehlen in DBS/TAS erfolgt durch
einen einfachen Sprungbefehl (SFB) auf die jeweils an-
geforderte Routine im Datenbankprozessor.

4.5.2. DBS/COBOL

Die DBS-Befehle stehen in der PROCEDURE DIVISION
des DBS/COBOL-Programms mitten unter den COBOL-
Befehlen, und zwar in der Befehlsfolge an genau den
Stellen, an denen die zu lösende Aufgabe den Verkehr
mit der Datenbank erforderlich macht.

Den Übergang von COBOL nach DBS markiert die Ein-
tragung ENTER TAS.

Die Versorgung der DBS-Befehle erfolgt mit USING ...
(vgl. TR 440-COBOL-Handbuch und Bild 4.10).

PROCEDURE DIVISION.

ENTER TAS

OEFFNE USING NVB.

IF FEHLERCODE NOT EQUAL ZERO

GO TO ABBRUCH.

ENTER TAS

HOLEN USING TST.

IF FEHLERCODE NOT EQUAL ZERO

GO TO FEHLERAUSGANG.

ENTER TAS

ABSCHL USING NVB.

IF FEHLERCODE NOT EQUAL ZERO

GO TO FEHLERAUSGANG.

Bild 4.10 Aufruf aus COBOL

Nach jedem abgesetzen DBS-Befehl muß das Feld FEHLER-
CODE im NVB abgefragt werden.

4.5.3. DBS/ALGOL

Ausführliche Beschreibung folgt.

4.5.4. DBS/FORTRAN

Ausführliche Beschreibung folgt.

28

4.6 DBS-Befehle

Im folgenden werden in alphabetischer Reihenfolge
die DBS-Befehle beschrieben.

TR

44
0

 D
BS
-H
an
db
uc
h

Ma
i

72

ABSCHLIESSEN

Funktion

Alle Seiten, die nach dem Holen im Kernspeicher ver-
ändert worden sind und noch im Kernspeicher stehen,

werden auf den Datenbankträger zurückgeschrieben.

Format

ABSCHL USING NVB.

1

Erklärungen

. Der Befehl ABSCHL muß als letzter DBS-Befehl eines

jeden DBS-Programms ausgeführt werden.

. Der NVB muß in den ersten zwölf Zeichen den Gebiets-

namen enthalten.

29

AENDERN

Übersicht
Funktion

Andern von einzelnen Feldern oder eines ganzen Satzes

bzw. umketten eines Satzes an einen anderen Anker.

Format

FLD Feldname-1I [, Feldname-2]
AEN <STZ }USING <Satzname

KTN Kettenname

Erklärungen

1. Ändern bezieht sich auf den unmittelbar zuletzt be-

arbeiteten Datensatz ,

2. Tritt beim Ändern ein Fehler auf, so wird dieser

Fehler dem Benutzer im Feld FEHLERCODE im NVB

mitgeteilt und der alte Zustand wiederhergestellt.

TR

44
0

DB
S-

Ha
nd

bu
ch

Ma
i

72

(AENDERN FELDNAME)

Funktion

Ändern von Feldinhalten des aktuellen Datensatzes.

Format

AENFLD USING Feldname-1 [, Feldname-2].

Erklärungen

1 . Feldname-1, Feldname-2 ... müssen innerhalb des

zuletzt bearbeiteten Satzes definiert sein.

. Der Inhalt des angegebenen Feldes im Arbeitsspei-
cher wird in das entsprechende Feld in der DBS-
Pufferzone eingesetzt.

. Feldname-1, Feldname-2 ... können Sortierfelder,

Schlüsselfelder oder beides zugleich sein.

. Ist das zu ändernde Feld ein Sortierfeld, dann wird

der Satz aus der alten Sortierfolge herausgenommen
und entsprechend dem neuen Sortierbegriff in seine
Kette wieder eingegliedert.

. Ist das zu ändernde Feld ein Schlüsselfeld, dann wird

in Abhängigkeit von der Speicherungsform random

bzw. index-sequentiell der Satz entsprechend dem
neuen Ordnungsbegriff in eine neue Randomkette ein-

gehängt bzw. es werden im Indexbereich entsprechen-

de Änderungen durchgeführt.

30

(Aen DERN SAT ZNAME)

Funktion

Ändern des aktuellen Datensatzes.

Format

AENSTZ USING Satzname.

1.

Erklärungen

Der Satzname muß auf der Stufe Ol im Datenteil der

Datenbankbeschreibung definiert worden sein.

. Der alte Satz wird durch den im Arbeitsspeicher be-
reitgestellten neuen Satz überschrieben.

. Sind die Inhalte von Sortier- und Schlüsselfeldern

in dem Satz geändert worden, dann wird der Satz

aus der alten Sortierfolge ausgekettet und entspre-

chend dem neuen Sortierbegriff wieder eingeordnet

bzw. der Satz wird in Abhängigkeit von der Spei-
cherungsform entsprechend dem neuen Ordnungsbe-

griff in eine neue Randomkette eingekettet bzw.

es werden im Indexbereich entsprechende Änderun-

gen durchgeführt.

Jp
uc
h

DE
S

a7

IR

44
0

\ AENDERN KETTEN NAME)

Funktion

Umketten eines Satzes zu einem anderen Anker der Kette

gleichen Namens.

Format

AENKTN USING Kettenname.

Erklärungen

l. Der Kettenname muß im Strukturteil der Datenbankbe-

schreibung definiert worden sein.

2. Es wird der zuletzt bearbeitete Satz aus seiner alten

Kette herausgelöst und in eine andere Kette des glei-

chen Kettennamens wieder eingekettet.

3. Ist die Kette nur nachfolgerverarbeitbar, muß der Satz,

um ihn ausketten zu können, über den logischen Vor-

gänger der Kette (d.h. praktisch über den Anker der

Kette) wiederaufgefunden worden sein.

4. Hat der Anker der Kette die ABLAGE = RANDOM bzw.
INDEX-SEQUENTIEL, erwartet DBS in dem entspre-
chenden Schlüsselfeld des Arbeitsspeichers den Ordnungs-
begriff des neuen Ankers, in dessen Kette der aktuelle
Satz eingekettet werden soll.

5. Hat der Anker der Kette eine andere Speicherungsform,
dann muß die DBS-Adresse des neuen Ankers im Feld

DIREKTADRESSE des NVB bereitgestellt werden.

31

TR

44
0

 D
BS

-H
an

db
uc

h
Ma
i

72

HOLEN

Übersicht

Funktion

Wiederauffinden eines Satzes aus der Datenbank und Be-

reitstellen im Arbeitsspeicher.

HOLENS

f DIREKT

SATZ
Satzname ‘ STELLVERTRETER

ANKER

VORGAENGER > IN Kettenname KETTE

NACHFOLGER

AKTUELLER Satzname SATZ

INDEXBEREICH

DATENBEREICH

VORGAENGER IN INDEXBEREICH HOVOIN

\ KETTENTABELLE AUS Kettennamen HOÖLKET

NACHFOLGER IN

Erklärungen

ü. Die Satznamen müssen auf der Stufe Ol im Datenteil

der Datenbankbeschreibung definiert sein.

. Der Kettenname muß im Strukturteil der Datenbankbe-

schreibung definiert sein.

. Nach erfolgreichem Suchvorgang wird
- der Satz in den Arbeitsspeicher übertragen
- der Typ des gefundenen Satzes im Feld SATZTYP

und seine logische Adresse im Feld DIREKTADRESSE
des Nachrichtenvermittlungsblocks eingetragen.

- die Kettentabellen werden auf den neuesten Stand.
gebracht.

. Der zur Verfügung gestellte Datensatz ist der aktuelle

Satz seines Typs und jeder Kette, in der er Anker oder

Gliedsatz ist.

. Wenn ein Satz nicht gefunden werden kann, wird ein

Fehler im Feld FEHLERCODE des Nachrichtenvermitt-

lungsblocks gemeldet.

HOLDIR

HOLEN (Satzname)

HOLSTV (Satzname)

HOLANK (Kettenname)

HOLVOR (Kettenname)

HOLNAC (Kettenname)

HOLAKT (Satzname)

HOLIND

HOLDAT

32

DB
S-
Ha
nd
bu
ch

TR
4L
0

No
v.

79

(HOLEN AKTUELL)

Funktion

Holen des zuletzt verarbeiteten Satzes vom angegebenen

Typ.

Format

HOLAKT USING Satzname.

Tl.

Erklärungen

Der zur Verfügung gestellte Satz ist der zuletzt ver-

arbeitete Satz des durch den Satznamen bezeichneten

Satztyps.

. Wurde kein Satz dieses Satznamens verarbeitet oder

wurde der zuletzt bearbeitete Satz mit diesem Satz-

namen gelöscht, wird ein Fehler im Feld FEHLERCODE
gemeldet.

. Nach erfolgreichem Suchvorgang wird
- der Satz in den Arbeitsspeicher übertragen

- der Typ des gefundenen Satzes im Feld SATZTYP
und seine logische Adresse im Feld DIREKTADRESSE

des Nachrichtenvermittlungsblocks eingetragen.

- die Kettentabellen werden auf den neuesten Stand
gebracht.

33

(no LEN ANK er)

Funktion

Holen eines Ankersatzes einer Kette.

Format

HOLANK USING Kettenname,

Erklärungen

Dieser Befehl kann nur benutz! werden, wenn für die

Kette VERKETTUNG MIT ANKER oder MIT VORGAENGER

definiert und bereits irgendein Sutz der angegebenen Kette

verarbeitet worden ist oder wenn früher während der Ver-

arbeitung dieser Kette auf den Anker zugegriffen worden

ist und seither kein Ankerwechsel erfolgt ist.

TR

44
0

DB
S-

Ha
nd

bu
ch

Ma

i
72

(HOLEN IN DATENBEREICH)

Funktion

Entladen einer Folge von Datenseiten.

Format

HOLDAT,

Erklärungen

1. Die Seitennummer der Seite, mit der das Entladen be-

ginnen soll, ist in SN-ANFANG anzugeben. Die
Seitennummer der Seite, mit der das Entladen der Da-

tensätze enden soll, ist in SN-ENDE zu übergeben.

Die Datensätze werden ab SN-ANFANG bis ein-
schließlich SN-ENDE zur Verfügung gestellt.

SN-ANFANG und SN-ENDE sind Felder im Nach-

richtenvermittlungsblock.

2. Ist kein Datensatz mehr vorhanden, so wird dies dem

Benutzer im Feld FEHLERCODE im Nachrichtenvermitt-

lungsblock mitgeteilt.

3, Eine Verarbeitungsphase von HOLDAT, die durch

einen Fehlercode # O0 abgeschlossen wird, darf nicht
durch einen anderen DBS-Befehl unterbrochen werden.

Anwendungsbeipie!

'
SN - ANFAN
SN - ENDE
INSTELLEN

 —

HOLDAT

DATENSATZ
VERARBEITEN

FOLGE
IA ==715ATZ

HOLEN?

NEIN

ENDE

(HOLEN DIREKT)

Funktion

Holen eines Satzes, dessen logische Satzadresse bekannt
ist.

Format

HOLDIR.

Erklärungen

Es wird derjenige Satz zur Verfügung gestellt, dessen
logische Satzadresse der Benutzer im Feld DIREKTADRESSE

des Nachrichtenvermittlungsblockes bereitgestellt hat.

TR

44
0

DB
S-
Ha
nd
bu
ch

 HOLEN (HOLEN KETTENTABELLE) Ä

Funktion Funktion

Holen eines index-sequentiell oder random gespei- Holen der Kettentabelle des angegebenen Kettennamens.

cherten Datensatzes.
Format

Format

HOLKET USING Kettenname.
HOLEN USING Satzname.

Erklärungen
Erklärungen i

l. Die Kettentabelle der mit dem Kettennamen ange-
. Es wird der Satz zur Verfügung gestellt, dessen Ordnungs- gebenen Kette wird in die Felder ANKER, VOR-

begriff in dem durch SCHLUESSEL =... gekennzeichneten GAENGER, DIREKTADRESSE und NACHFOLGER des
Feld des Arbeitsspeichers bereitgestellt wurde. Nachrichtenvermittlungsblocks übertragen.

. Nach erfolgreichem Suchvorgang wird

- der Satz in den Arbeitsspeicher übertragen
- der Typ des gefundenen Satzes im Feld DIREKADRESSE

des Nachrichtenvermittlungsblocks eingetragen.
- die Kettentabellen werden auf den neuesten Stand

gebracht.

35

TR
44
0

DB
S=
Ha
nb
uc
h

Ma
i

72

(HOLEN IN IN DEXBEREICH)

Funktion

Holen einer Folge von Stellvertretersätzen.

Format

HOLIND.

Erklärungen

l. Der erste Satz einer Folge von Stellvertretersätzen ist
durch HOLEN Satzname STELLVERTRETER (HOLSTV) zu
holen. Die Nachfolger dieses Satzes in der Stellvertre-
terliste werden durch HOLEN IN INDEXBEREICH ge-
holt.

.„ Es wird immer der Stellvertretersatz mit dem nächsthö-

heren Ordnungsbegriff im Feld STELLVERTRETER des
Arbeitsspeichers zur Verfügung gestellt. Die logische
Adresse des zugehörigen Datensatzes wird in DIREKT-
ARDESSE übergeben.

. Ist die Stellvertreterliste zu Ende, so wird dies dem

Benutzer im Feld FEHLERCODE durch Fehlerschlüssel

= 006 mitgeteilt.

Dieser Befehl ermöglicht eine logisch-sequentielle Ver-
arbeitung des Datenbestandes ohne vorherige Sortierung.

HOLSTV

Fehlerausgang

Fehlerausgang

Fehlerausgang

FOLGE-
SATZ
HOLEN

Ende der Arbeiten in

der Stellvertreterliste

TR

44
0

 D
BS

-H
an

db
uc

h
Ma
i

72

& LEN NACHFO LGER)

Funktion

Holen des Nachfolgersatzes in einer Kette.

Format

HOLNAC USING Kettenname.

Erklärungen

Es wird in der mit Kettenname bezeichneten Kette der

Nachfolger des gerade bearbeiteten Satzes geholt. Ist

kein Nachfolger vorhanden oder ist das Kettenende er-

reicht, wird dies dem Benutzer durch die Zahl 6 in

FEHLERCODE mitgeteilt.

37

(HOLEN STELLVERTRETER)

Funktion

Holen eines Stellvertretersatzes.

Format

HOLSTV USING Satzname.

Erklärungen

T. HOLEN Satzname STELLVERTRETER kann nur gegeben
werden, wenn für den zugehörigen Datensatz ABLAGE =

INDEX-SEQUENTIELL definiert worden ist.

. Der Ordnungsbegriff des gewünschten Stellvertreter-
satzes ist im Schlüsselfeld des unter Satzname definiert-
en Satzes bereitzustellen. Ist für den angegebenen Ord-
nungsbegriff kein Stellvertreter vorhanden, wird der
Stellvertreter mit dem nächsthöheren Ordnungsbegriff
zur Verfügung gestellt. Diese Form ermöglicht das Wie-

derauffinden von index-sequentiell gespeicherten Sätz-
en ohne den genauen Einsprungspunkt zu kennen.

. Die logische Adresse des zu dem geholten Stellvertre-
tersatz gehörenden Datensatzes wird im Feld DIREKT-
ADRESSE der dazugehörende Satztyp im Feld SATZTYP
des Nachrichtenvermittlungsblocks Ubergeben. Durch
HOLEN DIREKT kann der Datensatz sofort geholt werden.

. Nach dem Befehl HOLEN Satzname STELLVERTRETER

kann eine Folge von Befehlen HOLEN IN INDEXBE-
REICH abgegeben werden.

. Nach erfolreichem Suchvorgang wird

- der Satz in den Arbeitsspeicher übertragen
- der Typ des gefundenen Satzes im Feld SATZTYP

und seine logische Adresse im Feld DIREKTADRESSE

des Nachrichtenvermittlungsblocks eingetragen.

- die Kettentabellen werden auf den neuesten Stand
gebracht.

TR

44
0

 D
BS
-H
an
db
uc
h

Ma
i

72

(HOLEN VORGAENGER)

Funktion

Holen des Vorgängersatzes in einer Kette.

Format

HOLVOR USING Kettenname.

l.

Erklärungen

Dieser Befehl kann nur benutzt werden, wenn

- bereits irgendein Gliedsatz der angegebenen Kette
verarbeitet worden ist und

- für die Kette VERKETTUNG MIT ANKER oder MIT

VORGAENGER definiert worden ist.

‚Ist für die Kette weder VERKETTUNG MIT VOR-

GAENGER noch VERKETTUNG MIT ANKER definiert,

dann kann höchstens nur der zuletzt bearbeitete Vor-

gänger geholt werden.

. Der Vorgänger ist jener Satz, der dem gerade bear-

beiteten Gliedsatz der Kette logisch vorangsht.

. Ist der Vorgänger der Anker in einer Kette, dann wird
der Ankersatz in der entsprechenden Satzzone bereitge-
stellt und Fehlercode 10 im Feld FEHLERCODE über-

geben.

38

(HOLEN VORGAENGER IN INDEXBEREICH)

Funktion

Holen einer Folge von Stellvertretersätzen

Format

HOVOIN.

Erklärungen

1. Der erste Satz einer Folge von Stellvertretersätzen
ist durch HOLEN Satzname STELLVERTRETER (HOLSTV)
zu holen. Die Vorgänger dieses Satzes in der Stellver-
treterliste werden durch HOLEN VORGAENGER IN
INDEXBEREICH geholt.

.„ Es wird immer der Stellvertretersatz mit dem nächst-

niedrigeren Ordnungsbegriff im Arbeitsbereich STELL-
VERTRETER zur Verfügung gsstellt. Der Satztyp wird
nach SATZTYP und die logische Adresse des zuge-
hörigen Datensatzes wird nach DIREKTADRESSE der

Nachrichtenvermittlungszone (NVB) übertragen.

. Ist der Anfang der Stellvertreterliste erreicht, dann
wird dies dem Benutzer dsrch den Fehlerschlüssel =

006 im Feld FEHLERCODE angezeigt.

TR

44
0

DB
S-

Ha
nb

uc
h

Ma
i

72

LOESCHEN

Funktion

Löschen des zuletzt bearbeitenden Satzes und Löschen

aller von ihm abhängiger Gliedersätze. Außerdem wird

der Satz aus allen Ketten entfernt, in denen er Glied-
satz ist.

Format

LOESCH USING Satzname.

Erklärungen

1. Nach der Ausführung des Befehls LOESCHEN ist der
Satz nicht mehr verfügbar. Beim Versuch, auf einen
solchen Satz zuzugreifen, wird ein Fehler im Feld
FEHLERCODE gemeldet.

2. Bei dem Löschvorgang werden mit dem zu löschenden
Satz alle in der Kettenhierarchie unter ihm stehenden
Sätze gelöscht. Angefangen wird auf der untersten

Stufe der Struktur.

N 7

N Wi

01 N 02
IKT K2

\ / \
N 7

03 Fa 04
7” [K3» K4 K5
N f x /

N r N

05 N 06 N
” N K6 ' 7 K7“

N /

N ‚

07 FR
/ N

Beispiel: Löschen eines Satzes vom Typ O1

39

(OEFFNEN)

Funktion

Öffnen eines Datenbankgebietes für ein DBS-Programm.

Format

OEFFNE USING NVB.

Erklärungen

1. Der Befehl OEFFNEN muß als erster DBS-Befehl ge-
geben werden. Der Befehl OEFFNEN lädt aus dem
Systembereich die DBS-Steuertabellen, initialisiert die
Pufferzone usw.

TR

44
0

DB
S-
Ha
nd
bu
ch

Ma
i

72

(SPEICHERN)

Funktion

Der Datensatz wird in die Datenbank eingespeichert, alle

erforderlichen Verkettungen werden durchgeführt.

Format

SPEICH USING Satzname.

Erklärungen

1. Der Satzname muß auf der Stufe O1 im Datenteil der

Datenbankbeschreibung definiert sein.

2. Vor dem Absetzen des Befehls SPEICHERN ist folgen-
des zu beachten:
- Der zu speichernde Satz ist in dem Arbeitsspeicher
aufzubauen.

- Bei ANKERWAHL MIT SCHLUESSEL oder ANKER-
WAHL MIT Feldname FELD sind alle Schlüsse lfelder
jener Arıkersätze, die dem Satz in seiner Ketten-
hierarchie übergeordnet sind, zu initialisieren.

- Bei ANKERWAHL AKTUELL muß vom Benutzer der

entsprechende Ankersatz für den speichernden
Gliedsatz zur Verfügung gestellt werden .

3. Der zu speichernde Satz wird entsprechend den Abla-
gevorschriften in der Satzbeschreibung und der ent-
sprechenden Beschreibung im Strukturteil gespeichert.

4. Nach erfolreicher fehlerfreier Speicherung steht im
Feld DIREKTADRESSE des Nachrichtenvermittlungs-
blockes die logische Adresse des eingespeicherten
Satzes zur Verfügung.

5. Ist beim Speichern ein Fehler aufgetreten, so wird
dieser im Feld FEHLERCODE angeziegt und es wird der
Zustand in der Datenbank hergestellt, der vor dem
Aufruf von SPEICHERN bestand.

40

TR

44
0

 D
BS

-H
an

db
uc

h
Ma
i

72

5. DBS-ÜBERSETZER

Der DBS-Übersetzer arbeitet in zwei Phasen, um die DBS-

Parameter der Datenbankbeschreibungssprache in der
WORKING-STORAGE SECTION des DBS/COBOL-Rah-
menprogramms auszuwerten (vergl. Bild 5.1).

{en f
Die erste Phase wird mit PROGRAMM = PHAI im STARTE- | j ER / SyKWX / / .

Kommando gestartet, hinter der Spezifikation DATEN=/ | d I I Bd m

folgt das COBOL-Programm. . / nn)

Der DBS-Übersetzer fügt in dieser Phase im Installations- |

teil die Versorgungblöcke NVB (Nachrichtenvermittlungs- “
block) und STV (Stellvertreter) ein, die der Kommunika-

tion zwischen dem DBS-Programm und.dem Datenbank-
prozessor dienen. Die Datenfelder dieser Versorgungs-

blöcke können wie alle Felder des Arbeitsspeichers vom
DBS-Programm angesprochen werden.

Weiter werden im Strukturteil die Parameter *KETTE =

Kettenname KETTE ersetzt durch ein elementares Daten-

feld, das folgendes Aussehen hat:

01 Kettenname PIC X (12) VALUE ’Kettenname’ .

Nach Beendigung der Phase] steht die geänderte COBOL-

Quelle in der Datei DBS&QUELLE, die vor dem Start der

Phase2 übersetzt werden muß. In der COBOL-UEBERSETZE-

Karte muß VERSION = DS angegeben sein. Daraufhin er-

stellt der COBOL-Compiler für die zweite Phase des
DBS-Übersetzers eine Datei mit den COBOL-Adreßbüchern.

Mit einer entsprechenden Steuerkarte (s. Bild 6.1) startet
der Benutzer die zweite Phase des DBS-Übersetzers.

Dieser zweite DBS-Übersetzerlauf nimmt die Übersetzung

und Interpretation der DBS-Parameter vor.

Er prüft die Parameter auf Vollständigkeit sowie syntak-
tische und logische Richtigkeit ab und erstellt daraus
die für DBS erforderlichen Systemsteuertabellen.

Ist der Übersetzungsvorgang fehlerfrei abgelaufen, werden
folgende zusätzlichen Berechnungen gemacht:

- Berechnen der Seitennummern (SN) für Anfang und

Ende der Daten und Indexbereiche

- Länge der Systembereiche

- Anzahl der benötigten Indexstufen

- Länge der gesamten Datenbank in Blöcken zu 128 GW
(TR 440-Achtelseiten).

TR

44
0

 D
BS

-H
an

db
uc

h
Ma
i

72

6. DBS-FORMATIERER

Ist der Syntaxlauf des DBS-Übersetzers fehlerfrei abge-
laufen, wird anschließend eine Formatierung der zu er-
stellenden Datenbank vorgenommen, falls der DBS-Para-
meter SYSTEM = NEU vorlieg:. Durch den Formatierer
werden alle Seiten des Daten- und Indexbereiches mit ent-
sprechenden Seitenkennsätzen versehen.

Dabei werden die Index- und Stellvertreterseiten

"FFFFFFFFFFFF’ /3 und die Datenseiten
"AFAF AF’ /3 (Leerstellen) beschrieben.

* SYSTEM=NEURESERVE [QUELLE] |.

Eine Formatierung des Datenbankgebietes wird nur dann

vorgenommen, wenn vom Benutzer SYSTEM = NEU ange-

geben wurde.

Sind auch die weiteren Spezifikationen RESERVIERE und
QUELLE angegeben, so wird eine weitere Datei angelegt,
in der für spätere Datenbankbearbeitungen wichtige
Informationen und die DBS-Datenbankbeschreibung ab-

gelegt wird.

Der Benutzer braucht somit in seinen COBOL-Programmen,

die mit der bereits erstellten Datenbank arbeiten, die

DBS-Datenbankbeschreibung nicht mehr explizit anzuge-
ben, da diese dann automatisch in der ersten Phase des

DBS-Übersetzers von der Datenbank eingelesen und in die

COBOL-Quelle eingefügt wird, wenn dort der Parameter
#* _ DBS-COPY = Datenbankname angegeben wurde
und im Datenbankerstellungslauf die DBS-Datenbankbe-
schreibung wie oben beschrieben abgelegt wurde.

Der Parameter ist mit SYSTEM = NEU

vorbesetzt.

* SYSTEM = TEST (siehe 8.2.2)

Bei der Angabe SYSTEM = TEST werden bei fehlerfreiem

Syntaxlauf die DBS-Steuertabellen nicht in den System-
bereich eingetragen, sondern auf Binärkarten gestanzt.

Der Benutzer braucht in diesem Fall nicht nochmals einen
Übersetzungslauf vorzunehmen.

Soll das DBS/COBOL-Programm gestartet werden, so sind
vor die COBOL-Quelle eine Steuerkarte für den Forma-
tierer (der in diesem Fall als eigener Operatorlauf im
System vorhanden ist) und die Binärkarten zu legen.

Der Formatierer liest die auf Binärkarten vorliegenden

Systemsteuertabellen ein und nimmt eine Formulierung der
Datenbank vor.

Danach kann ein Start des DBS/COBOL-Programms erfol-
gen.

Die Reihenfolge der Steuer- und Quellkarten für das

TR 440-Teilnehmer-Betriebssystem BS3 zeigt Bild 6.1.

TR

44
0

 D
BS
-H
an
db
uc
h

Ma
i

72

DBS/COBOL-

Programm

(1. Abschnitt)
 F

ii
Forma

/

Ursprungs-
kartensatz

COBOL/DBS

DATENBANKBESCHREIBUNG
DBS-Parameterkarten und Satzdefinition

(DBS-Parameter durch *in Spalte 7 gekennzeichnet)

DBS-Vorüber-

setzer 1. Phase

einfügen NVB, STELLVER-

TRETER usw. in die COBOL-

Quelle. Die erweiterte

COBOL-Quelle wird in der

Datei DBS & QUELLE abgelegt.

Die benötigten DBS-Makro-

programme werden mit ENTER
| 145 ... angeschlossen.

Erstellen der Systemsteuer-

co Bol N LLLLL.

Übersetzung

Datei A
Datei B

COBOL- COBOL-

Adreß- Quell

bücher veile

DBS-Vorüber-

setzer 2. Phase

 \

Montieren

COBOL-

Programm

Starten

COBOL- > DBS-Daten-

tabellen. Die 2. Phase wird

mit einer Steuerkarte gestartet.

>

Programm

Bild 5.1 Systemzusammenhang COBOL/DBS

bank

 N _

TR

44
0

DB
S-
Ha
nd
bu
ch

Ma
i

72

Wurde der Systembereich durch die Angabe SYSTEM =
TEST auf Binärkarten gestanzt, so kann man sich in einem
späteren Lauf das nochmalige Starten des DBS-Übersetzers
ersparen durch Einfügen der Binärkarten anstelle der Start-
karte für den DBS-Übersetzer (der Parameter SYSTEM =

TEST muß aus dem Kartensatz nicht entfernt werden). Das

Kartenpaket hat das Aussehen wie in Bild 6.2.

YIXEN oO. Auen

O STARTE, COBOL-Programm 7

& MONTIERE, COBOL en

&STARTE, PHA2 7

/
Ä_

£.
L
Ä

ya CO BOL-Programm

/ HF D8s-Parametekorte u. Satzdefinitionen

QUEBERSETZE, SPR.=COBOL, ... QUELLE=/

 (
Y1XBA (Abschnittsanfang)

Bild 6.1 Kartenstapel für BS 3

TR

44
0

DB
S-

Ha
nd

bu
ch

No
v.

71

YIXEN OÖ. 7

OSTARTE, COBOL-Programm 7

OMONTIERE, COBOL-Programm 7

 QOXUM, COD=KClI =

Systembereich (Binärkarten) /

OXUM, COD=BI ——

OSTARTE, FORMATIER, .. .DATEN=/ 7

B.
“

/ CO BOL-Programm

 N Q UEBERSETZE, SPR.=COBOL, ... QUELLE=/

 < Y1XBA (Abschnittsanfang)

Bild 6.2 Eingabe des Systembereichs über Binärkarten Starten des Formatierers

TR

44
0

 D
BS

-H
an

db
uc

h
No

v.

71

Ist das COBOL-Programm fehlerfrei und will man sich für

das weitere Arbeiten das Einlesen und Übersetzen der auf

Lochkarten vorliegenden COBOL-Quelle ersparen, so
besteht die Möglichkeit, das COBOL-Montageobjekt in die
langfristige Datenhaltung (LFD) zu übernehmen.

Dies erfolgt durch die beiden Steuerkarten:

© LFDATEI, NAME = LFD-datei,
© BINAERAUS, MO = Name COBOL-Mont.. objekt,

GERAET = LFD-datei

Die beiden Karten folgen unmittelbar auf die COBOL-

Quellkarten, in jedem Fall stehen sie vor dem Montiere-
Kommando für das COBOL-Programm. (Siehe auch TR 440-
Kommando-Handbuch)

Will man sich die Montage ebenfalls ersparen, so ist bei
dem BINAERAUS-Kommando der Programmname der

COBOL-Quelle anzugeben und die BINAERAUS-Steuer-

karte muß hinter der Montiere-Steuerkarte liegen.

In Bild 6.3 ist der DBS-Systembereich auf Binärkarten
vorhanden und das Montageobjekt der COBOL-Quelle ist
in der LFD abgelegt.

YIXEN © 7

© STARTE, COBOL-Programm 7

oMONTIERE, COBOL-Programm 7

© BINAEREIN, INF.=LFD-Datei 7

OLFANM., LESEN=LFD-Datei 7

 (
 A

OXUM, COD=KC1

/ Systembereich (Binärkarten)

{ | OÖ XUM, COD=BINAER,

 2 Y1XBA (Abschnittsanfang)

= OÖ STARTE, FORMATIER, ... DATEN=/

Bild 6.3 Das COBOL-Montageobjekt wird mit dem BINAEREIN-Kommando über eine LFD-Datei eingeschleust

TR
44
0

 D
BS
-H
an
db
uc
h

Ma
i

72

7. FEHLERAUSGÄNGE

7.1. Fehlerbehandlung

Grundsätzlich werden zwei Arten von Fehlercodes unter-

schieden:

(1) Fehlercodes auf der Betriebssystemebene

(2) Fehlercodes des DBS

zu (1):

Detallierte Informationen über diese Fehlerbehandlungen
sind in dem Handbuch "TR 440 Systemdienste BS3" be-
schrieben.

zu (2)

Die Fehlerorganisation des DBS wird unterteilt in:

(2.1) Fehlercodes der Datenmanipulationssprache (DMS-

Fehlercodeliste)

(2.2) Fehlercodes des Input/Output-Controllers (IOC-
Fehlercodeliste)

(2.3) Fehlercodes der Datenbank-Utilities (DBU-Fehler-

codeliste)

Durch eine funktionelle Fehlercodeinterpretation ist eine
eindeutige und schnelle Fehlerlokalisierung gewährleistet.
Bei der Programmierung muß nur auf folgendes geachtet

werden:

Nach jedem abgesetzten DBS-Befehl muß unbedingt das
Feld FEHLERCODE abgefragt werden.

Bei FEHLERCODE = 0, wurde vom DMS die ge-

wünschte Leistung erbracht;

bei FEHLERCODE > 0 gelten folgende Modi:

(2.1) O0 <FEHLERCODE = 30

Der Fehler ist in der Datenmanipulationssprache auf-
getreten. Der Benutzer kann nach entsprechender
Fehlerbehandlung in seinem Anwendungsprogramm
fortfahren (siehe DMS-Fehlercodeliste).

(2.2) 3l = FEHLERCODE = 580
Der Fehler ist im Input/Output Controller aufge-
treten. DBS entzieht dem Benutzer die Regie, er-

stellt automatisch Systemdumps und schließt das
Benutzerprogramm ab.

(2.3) 581 = FEHLERCODE = 700
Der Fehler ist in einer der Datenbank-Utilities auf-
getreten. Fehlerbehandlung siehe entsprechende
DBU-Fehlercodeliste.

7.2. Fehlercodes für die DMS

Satzname nicht gefunden

2 _ Kettenname nicht gefunden

3 _ Kettentabelle unbesetzt oder unvollständig besetzt (Anker-
oder Vorgängeradresse fehlen)

4 Kette weder vorgänger- noch ankerverarbeitbar

5 Satz weder indexiert noch random bzw. bei HOLSTV nicht

indexiert gespeichert
6 Nachfolger nicht vorhanden
8 Satz nicht gefunden

9 Feldname nicht in zu änderndem Satz definiert

10 Vorgänger ist Anker
11 Satz ist Duplikat
12 kein Platz im Indexbereich

13 Ankersatz nicht gefunden
15 Direktadresse (NVB) nicht zulässig
16 kein Platz im Datenbereich
17 _ kein zulässiger Schlüssel
18 DBS-Datei ungültig

19 Dateiname ungültig

20 maximale Pufferzahl überschritten
21 Bereichsende erreicht
22 Vor HOL.IND kein HOLSTV abgelaufen
23 Es wurde kein Satz dieses Typs gespeichert oder geholt

oder aber er ist gelöscht worden

25 Seitennummer unzulässig
26 Satz mit Ordnungsbegriff schon vorhanden

27 Kettenname gehört nicht zum aktuellen Satz oder aber

der umzukettende Satz wurde nicht geholt

7.3. Fehlercodes im Input/Output-Controller

31 Schreibfehler
32 Lesefehler
33 Adresse nicht in der Puffergewichtstabelle
34 SN kleiner DATBGN
35 SN größer DATEND

36 SN kleiner BGNSL

37 SN größer INDEND

338 LNnicht belegt
39 LN belegt
40 Stellvertretersatz nicht gefunden
41 Schlüssel nicht in Indexseite
42 Kein Platz in der Seite (KIS < LNG)

43 Satz nicht in der Seite (STEADR = FSAADR)
44 Der GDS gehört nicht in die Kettenkette des ’AKTADS’

TR

44
0

 D
BS

-H
an

db
uc

h
Ma

i
72

45 SN kleiner INDBGN

46 SN größer BGNSL

47 AKTSDS nicht in der TYPTAB

48 TYP (LTW) nicht in der TYPTAB

49% Fehler beiın Lesen eines speicheroptimierten Satzes
50 Fehler beim Zurückschreiben eines speicheropti-

mierten Satzes

51 Fehler beim Zurückschreiben eines speicheropti-
mierten Satzes, wenn der Datenteil ausgelagert
werden muß

52 unbesetzt

53 unbesetzt

54 unbesetzt

55 unbesetzt

56 unbesetzt

57 unbesetzt

58 unbesetzt

59 unbesetzt

60 unbesetzt

61 unbesetzt

62 unbesetzt

63 _ unbesetzt

64 unbesetzt

65 unbesetzt

66 unbesetzt

67 _ unbesetzt

68 _unbesetzt

69 unbesetzt

70 Primärdaten

71 Einzufügende Daten
72 unbesetzt

73 unbesetzt

74 unbesetzt

75 unbesetzt

76 unbesetzt

77 unbesetzt

78 unbesetzt

79 _ unbesetzt

80 unbesetzt

Den angeführten Fehlercodes wird noch eine weitere

Ziffer vorangesetzt, je nach dem, in welchem Makro der

Fehler festgestellt wird.

PUST
QHOL
QLAD
QLOE
QSPE

= QWAF

t
o
n

n
o
r
d

—-
60

o0

|

Beispiele:

31 Schreibfehler: in PUST bei direktem Aufruf

131 Schreibfehler: in PUST und zwar in QHOL

439 LN nicht belegt: in QSPE
570 Primärdaten: in QWAF

7.4. Fehlercodes der DBS-Utilities

Die Fehlermeldungen sind aus der Beschreibung der ent-
sprechenden DBS-Utilities zu entnehmen.

TR

44
0

DB
S-

Ha
nd

bu
ch

7.5 Fehlermatrix der Datenmanipulationssprache

FEHLERCODE Ä

DMS 112]3/415/61718|9| 10/11/12113114 115116|17118)19120|21|122|23]24125126|27128|29130

MODUL

ABSCHL

AE N FL D * 213% Ara 3

AENKTN 2|x * * % %* +

\

AENSTZ “ * wir % 4

HOLAKT

HOLANK

HOLDAT 4 x

HOLDIR

HOLEN % % * *

HOLIND

HOLKET x

HOLNAC *

HOLSTV * * gr *

HOLVOR RI %

HOVOIN x x

LOESCH * x

OEFFNE “| |®
 SPEICH * “| * 1% #1 x 4

Ma
i

72

Bild 7.1 Fehlermatrix der DMS

In den nachfolgenden Tabellen werden die möglichen Fehler -
ursachen der verschiedenen DMS-Befehle aufgelistet.

TR

44
0

DB
S-
Ha
nb
uc
h

Ma
i

72

DMS-

Befehl Fehler- MÖGLICHE FEHLERURSACHEN

code

AENFLD 9 AENFLD bezieht sich immer auf den zuletzt bearbeiteten Satz.
Zumindest einer der nach USING aufgeführten Feldname gehört nicht zu dem zuletzt be-

arbeiteten Satz.

ı Ein Satz mit dem Schlüssel der in dem zu ändernden Satz eingetragen werden soll, ist be-

reits gespeichert. Da Schlüsselduplikate nicht erlaubt sind, muß entweder -sofern möglich-
der bereits gespeicherte Satz gelöscht werden, oder aber für den zu ändernden Satz ein

noch nicht vergebener Schlüssel definiert werden.

16 Für einen Satz für den DATEN VERDICHTUNG definiert wurde, ergibt sich nach der Änderung

eine neue Satzlänge die im Bereich nicht mehr untergebracht werden kann. Da es sich in der

Regel um eine ganz geringe Fehlkapazität handeln wird, empfiehlt es sich den Bereich auf

zu löschende Sätze zu durchsuchen und somit Kapazität für den geänderten Satz zu schaffen.

17 Es wurde als Schlüssel SPACE oder HIGH VALUE angegeben. Diese Eintragung sind für den

IOC reserviert und dürfen nicht vom Benutzer als Schlüssel vergeben werden.

23 Der zu ändernde Satz ist nicht der zuletzt bearbeitete.

26 Es wurde versucht, ein Sortierfeld für eine sortierte Kette, für die Duplikate verboten de-
finiert wurde, zu ändern. Dabei wurde eine in dieser Kette bereits vorhandener Ordnungs-

begriff angegeben.

AENKTN

2 Nach USING wurde kein gültiger DBS-Kettenname angegeben.

3 Der alte Ankersatz kann von DBS nicht gefunden werden, da die Kette weder Vorgänger

noch ankerverarbeitbar definiert wurde und der Benutzer diese Adresse dem DBS nicht mit-

geteilt hat.

Dieser Fehler wird behoben wenn der zu ändernde Gliedsatz über den Anker bereitgestellt

wird.

13 Für den neuen Ankersatz wurde ein Schlüssel eines bisher noch nicht gespeicherten Satzes
angegeben.

15 Die angegebene Direktadresse adressiert

a) nicht den Datenbereich

b) nicht den Bereich des Ankersatzes

c) zwar den Bereich des Ankersatzes aber nicht den Ankersatz.

Die gewünschte DIREKTADRESSE wird wie folgt angegeben

Seitennummer x 64 + Liniennummer

17 Der für den neuen Anker angegebene Schlüssel ist ungültig (SPACE oder HIGH VALUE).

23 Der zu ändernde Satz wurde nicht geholt.

27 Der hinter USING angegebene Kettenname gehört nicht dem aktuellen Satz oder aber der

umzukettende Satz wurde nicht geholt.

AENSTZ

1 Hinter USING wurde kein gültiger Satzname angegeben

I:

16
wie bei AENFLD

17

23

26

TR

44
0

DR
S-
Ha
nd
bu
ch

Ma
i

72

DMS-

Befehl Fehler- MÖGLICHE FEHLERURSACHEN
code

HOLAKT 1 Hinter USING wurde kein gültiger Satzname angegeben.

23 Es wurde noch kein Satz dieses Typs gespeichert bzw. geholt oder aber er ist gelöscht worden.

HOLANK 2 Hinter USING wurde kein gültiger Kettenname angegeben

3 Die Kettentabelle ist unbesetzt es wurde noch kein Satz dieser Kette (weder Anker- noch

Gliedsatz) geholt.

4 Für die angegebene Kette ist nur die Adresse des aktuellen Gliedsatzes u.U. auch die

Adresse eines Nachfolgers bekannt, da die Kette weder Anker noch vorgängervearbeitbar

ist, kann der Anker nicht geholt werden.

HOLDAT 21 Es werden alle Sätze zwischen SN ANFANG und SN-ENDE liegenden Seiten ausgegeben.

Waren zwischen SN-ANFANG und SN-ENDE liegenden Seiten leer, so konnte natürlich

kein Satz ausgegeben werden und es wird die Bearbeitung ebenfalls mit FEHLERCODE 21

beendet.

25 Zumindest eine der in SN-ANFANG oder SN-ENDE angegebenen Seiten, gehört nicht mehr

zum Datenbereich.

15 Die in DIREKTADRESSE angegebene Adresse gehört nicht zum Datenbereich.

Die gewünschte DIREKTADRESSE wird wie folgt angegeben:

SN (Seitennummer) x 64 + Liniennummer).

HOLEN 1 Hinter USING wurde ein ungültiger Satzname angegeben.

5 Mit HOLEN kann nur ein random oder indexiert sequentiell gespeicherter Satz geholt
werden.

Für den hinter USING angegebenen Satznamen wurde weder random noch indexiert sequen-
tiell als Ablageform definiert.

8 Es wurde noch kein Satz mit dem arıgegebenen Schlüssel gespeichert.

17 Es wurde ein ungültiger Schlüssel (SPACE oder HIGH VALUE) angegeben.

HOLIND 6 Es gilt keinen Nachfolger im Indexbereich. Der zuletzt zur Verfügung gestellte Stellver-

tretersatz war bereits der Letzte.

22 Vor HOLIND wurde kein HOLSTV aufgerufen. HOLIND wird durch HOLSTV versorgt. Es

ist daher vor dem ersten Aufruf von HOLIND unbedingt HOLSTV aufgerufen.

HOLKET 2 Der hinter USING angegebene Kettenname ist ungültig.

HOLNAC 2 Der hinter USING angegebene Kettenname ist ungültig

6 Es kann kein weiterer Nachfolger der angegebenen Kette bereitgestellt werden, das Ketten-

ende wurde bereits erreicht.

HOLSTV 1 Hinter USING wurde ein ungültiger Satzname angegeben

5 Für den hinter USING angegebenen Satznamen wurde nicht Ablage indexiert sequentiell

definiert.

8 Es wurde noch kein Satz mit dem angegebenen Schlüssel gespeichert und ein Satz

mit einem höheren Schlüssel ist nicht vorhanden.

17 Es wurde ein ungültiger Schlüssel (SPACE oder HIGH VALUE) angegeben.

HOLVOR 2 Hinter USING wurde ein ungültiger Kettenname angegeben.

3 Für die angegebene Kette wurde weder Anker- noch Vorgängerverkettung definiert oder aber es wurde noch kein Satz dieser Kette (weder Anker noch Gliedsatz) geholt.

TR

44
0

DB
S=
-H
an
db
uc
h

Ma
i

72

DMS-

Befehl Fehler- MÖGLICHE FEHLERURSACHEN
code

10 Der zuletzt bereitgestellte Satz ist der Anker der Kette.

HOVOIN 6 Es kann kein Vorgänger im Indexbereich geholt werden.

Der zuletzt zur Verfügung gestellte Stellvertretersatz war der log. 1. Stellvertretersatz.

22 Vor HOVOIN wurde kein HOLSTV aufgerufen. HOVOIN wird durch HOLSTV versorgt.
Es ist daher vor dem ersten Aufruf vom HOVOIN unbedingt HOLSTV aufzurufen.

LOESCH 1 Hinter USING wurde ein ungültiger Satzname angegeben

23 Der zu löschende Satz ist nicht der aktuelle Satz der Datenbank.

OEFFNE 18 Die Datenbank wurde nach der letzten Bearbeitung nicht durch ABSCHL abgeschlossen und
befindet sich somit in einem undefinierten Zustand. Es ist der letzte Lauf (selbstverständlich
mit ABSCHL) zu wiederholen, um die Datenbank in einem definierten Zustand zu versetzen.

19 Hier können folgende Fehler

a) Hinter USING wurde nicht NVB als Versorgung angegeben

b) Im NVB steht nicht der Datenbankname

c) Die Datenbank wurde nicht vor Aufruf von OEFFNE eingeschleust.

20 Die in PUFFERZÄAHL (NVB) angegebene Pufferzahl ist größer 100.

SPEICH 1 Hinter USING wurde ein ungültiger Satzname angegeben

11 Es wurde bereits ein Satz mit dem gleichen Schlüssel des aktuellen Satzes gespeichert.

12 Für einen indexiert sequentiell zu speichernden Satz ist kein Platz mehr im Indexbereich.
Es wurde die in der DBS-Datenbeschreibung angegebene Anzahl Sätze überschritten

16 Der zu diesem Satz gehörende Bereich ist belegt und kann den aktuellen Satz nicht mehr
aufnehmen.

17 Es wurde ein ungültiger Schlüssel (SPACE oder HIGH VALUE) angegeben.

26 Es wurde versucht in eine sortierte Kette, für die Duplikate verboten definiert wurde, einen Satz mit einem in dieser Kette bereits vorhandenen Ordnungsbegriff zu speichern.

TR

LO

DB
S-

Ha
nd

bu
ch

fe
br
.

73

8. DBS-Di ALOGSPRACHE

8.1. Der Aufbau der Dialogsprache

Mit der Datenbank-Dialogsprache steht dem Benutzer
ein wirkungsvolles Mittel zum Abfragen und Verwalten
von Datenbanken zur Verfügung. Die einzelnen Anwei-

sungen (Dialogbefehle) der Dialogsprache ermöglichen
je nach Aufgabenstellung gezielte Anfragen an eine
Datenbank und/oder eine gezielte Änderung derselben.

Die Datenbank-Dialogsprache (DBS-Dialog) kann sich
auf jede beliebige Datenbank aufsetzen und erfüllt die
Funktionen eines Data-Management-Systems (Verwal-

tung der Datenbestände) und eines Informationssystems

(beliebige Fragestellungen an das System, wobei die
Ausführung der einzelnen Anweisungen von komplexen
Bedingungen abhängig gemacht werden kann).

Das Dialogsystem besteht aus einem Dialogprozessor
und einem Datenbankprozessor. Als Datenbankpro-
zessor wird DBS 440 eingesetzt, es ermöglicht Aufbau
und Verwaltung von integrierten Datenbeständen.

Der Sprachumfang des Dialogsystems setzt sich aus
einer Anzahl von Schlüsselworten zusammen, mit

denen der Benutzer seine "Anfragen", hier als Dia-
logprozeduren bezeichnet, formulieren kann (Näheres
siehe Kap. 4).

Unter einer Dialogprozedur wird eine Folge von Dialog-
Anweisungen verstanden, die mit einer SUCHEN-Anwei-

sung beginnt und durch eine ENDE-Anweisung abge-
schlossen wird.

Bei der Eingabe einer Dialogprozedur können diese

Schlüsselworte beliebig verkürzt werden, solange
Eindeutigkeit gewährleistet ist. Bei der Dialoganwei-
sung AUSGEBEN z.B. werden auch die verkürzten
Eingaben AUSGEB, AUSG oder AUS verstanden.

Die Ausführung der einzelnen Dialoganweisungen
werden von sog. Prozessor-Prozeduren übernommen,

im folgenden kurz als Moduln bezeichnet. Für jede
Dialoganweisung existiert ein solcher Modul.

Der Dialogprozessor läßt sich in folgende funktio-
nelle Einheiten gliedern:

a) Zentrale Steuerung

Die Zentrale Steuerung (RAHMEN) ist der zentrale
Programmteil innerhalb des Dialogprozessors.
Seine wesentlichen Aufgaben sind:

- Annahme der eingegebenen Anfragen

- Weiterleitung der Ausgaben an die Konsole

- Aufruf des Dialogentschlüsslers

- Aufruf der benötigten Moduln

b) Dialogentschlüssler

Nach der Eingabe einer Dialogprozedur wird vom
RAHMEN der Dialogentschlüssler aufgerufen.

"Anfrage"

Antwort

Durch den Dialogentschlüssler werden die eingege-

benen Anweisungen übersetzt und für die benötigten
Moduln des Dialogprozessors wird ein entsprechender
Versorgungsblock aufgebaut.

Der Entschlüssler unterzieht eine eingegebene Dialog-
prozedur einer Syntaxprüfung. Syntaktisch fehlerhafte
Dialogprozeduren werden nicht gestartet.

Es kann auf Wunsch ein entsprechendes Fehlerprotokoll
auf der Konsole und im Ablaufprotokoll ausgegeben
werden.

c) Versorgungsblock (VBL)

Der Versorgungsblock stellt eine Abbildung einer über-

setzten Dialogprozedur dar. In ihm sind alle Angaben
enthalten, die zur Ausführung einer Dialoganweisung
und der damit verbundenen Versorgung der entsprechen-
den DBS-Befehle benötigt werden.

Aufgrund der Eintragungen im VBL ruft der RAHMEN
die notwendigen Moduln auf.

d) Moduln (Prozedurteile)

Für jede Dialoganweisung gibt es einen Modul. Aufruf
der Prozeduren erfolgt durch den RAHMEN aufgrund
der Eintragungen im VBL.

Die Prozeduren liegen bereits in startfähiger Form vor.
Sie stellen den eigentlichen Kontakt mit dem Daten-

bankprozessor her durch die entsprechenden DBS-Befehle.
Die dafür erforderlichen Argumente (Parameter) werden

dem VBL entnommen.

Der Vorteil dieser Strategie liegt darin, daß bei der Ent-
schlüsselung der Dialogprozedur keine Codegene-

rierung vorgenommen werden muß, wie etwa bei

kompilativen Dialogsystemen (GIS).

Versorgungs-
-— 1 Dialogentschlüssler -- block

J

e
e

e
e

Modul]

—J

Ze
nt
ra
le
r

St
ev
er
un
gs
be
re
ic
h

Modul 2

__J
—

1 Modul n

] L
_
_
 u

Abb: Dialogprozessor

TR

44
0

DB
S-
Ha
nd
bu
ch

"e
br
.

73

8.2. Erstellen der DBS-Datenbank

Das Erstellen der DBS-Datenbank erfolgt durch COBOL/
DBS-Programme. Die für den DBS-Prozessor erforderlichen
Systemsteuertabellen werden nach der Übersetzung des
COBCOL-Programms aufgrund von DBS-Parametern aufgebaut

und bilden einen Teil der Datenbank.

Soll für eine DBS-Datenbank Dialogverkehr möglich sein,
so wird dies durch einen entsprechenden DBS-Parameter

(*DIALOG =]) beim Aufbau der Datenbank angegeben.
Dadurch wird vom DBS-Vorübersetzer ein erweiterter
Systemsteuerbereich angelegt, der die für einen

Dialogverkehr notwendigen Steuertabellen (Feldta-
bellen) enthält.

Eröffnen des Dialogs:

Will ein Benutzer mit der Datenbank im Dialog verkehren,

muß er den Dialogprozessor durch ein STARTE-Kommando
vom Terminal aus starten. Nachdem sich der Dialogpro-
zessor mit einer Ausgabe gemeldet hat, sind Datenbank-
name und Paßwort einzugeben:

I STARTE, DIALOG, LIT.

* DBS-DIALOG

DATENBANK NAMEI: DBS-DATENI,

PASSWORTEH: PASST.

* EINGABEI:

Mit der Eingabe einer Dialogprozedur kann nun begonnen
werden.

Nach Eingabe des Datenbanknamens wird vom Dialog-
prozessor durch Aufruf des DBS-Befehles OEFFNEN der
Systemsteuerbereich in den Kernspeicher (KSP) geladen.
Über die Paßwortangabe wird geprüft, ob der Zugriff

auf die Datenbank erlaubt ist.
Bei Eingabe eines falschen Datenbanknamens oder eines
falschen Paßwortes wird eine der folgenden Fehlermel-
dungen ausgegeben:

e DATENBANK NICHT VORHANDEN

se PASSWORT FALSCH

e ZUGRIFF NICHT ERLAUBT

Im Dialogprozessor gibt es nur eine Satzzone der Maxi-

mallänge einer DBS-Seite. Sämtliche Satzzonen der |

DBS-Datenbank werden auf diese Satzzone abgebildet,
also immer in denselben Bereich gelesen. Weitere Sätze

werden durch den entsprechenden DBS-Befehl automatisch
nachgeladen.

Diese Satzzone, genauso wie Nachrichtenvermittlungs-
block (NVB) und STELLVERTRETER, sind fest im Dialog-

prozessor einassembliert.
—

Nach Ablauf von OEFFNEN trägt der Dialogprozessor
in die operatorlaufspezifische Tabelle (TYPTAB) für
alle Satzzonen der DBS-Datenbank die operatorlauf-
relative Adresse seiner eigenen Satzzone ein.

8.3. Systemsteuerbereich

Durch Angabe des Parameters "#DIALOG =]" wird der
normale Systemsteuerbereich (Stapelverarbeitung) erweitert
durch Steuertabellen (Feldtabellen), die für einen Dialog-

verkehr nötig sind.

Für jeden in der Datenbank definierten Satztyp wird eine |

Feldtabelle angelegt, in der sämtliche Feldnamen des
Satztyps entsprechend der Reihenfolge der Felder im Satz
stehen, sowie die zugehörigen Feldattribute (Feldlänge,
Feldcharakter, evtl. Masken für formatisierte Ausgaben

usw.). Weiterhin ist vermerkt, ob ein Feld noch in weitere

bezeichnete Unterfelder gegliedert ist.

8.4. Allgemeine Form einer Dialogprozedur

Dem Benutzer stehen zahlreiche Anweisungen zur Verfügung,
mit deren Hilfe er eine Anfrage an die Datenbank formu-

lieren kann. Diese Anweisungen lassen sich aufgrund ihrer
Funktionen in folgende Gruppen einteilen:

- Ausgabe von Sätzen oder Feldinhalten

- Ändern von Feldinhalten

- Rechenoperationen mit Feldinhalten

- Informieren über Ketten- bzw. Satzstrukturen

- Ausgabe von Listen

Die allgemeinste Form einer Anfrage hat folgendes
Aussehen:

SUCHEN <DBS-Bereich>;

LWENN <Bedingung >]

Ops;

Opyi

Opni

ENDE;

Eine Dialogprozedur beginnt mit der Anweisung SUCHEN,

um anzugeben, mit welchem DBS-Bereich gearbeitet werden

soll. Es können dann beliebig viele Dialoganweisungen
erfolgen. Den Abschluß bildet die ENDE-Anweisung.

Die Operationen Op] bis Op, stellen die eigentlichen
Anweisungen der Dialogsprache dar.
Die Anweisung ENDE kennzeichnet das Ende einer Such-
anfrage. Sie entfällt, wenn nach der Operation Op, ein
weiteres SUCHEN gegeben wird.

Soll die Verarbeitung eines Bereiches von Bedingungen
abhängig gemacht werden, muß die WENN-Klausel
benutzt werden; diese muß unmittelbar der SUCHE-Anwei-

sung folgen.
Will ein Benutzer z.B. mit einem durch Satznamen be-

zeichneten Satz arbeiten (im Bereich sequentiell abgelegt),

so wird dies durch folgende Suchanweisung erreicht:

SUCHEN SATZ = <Satzname>;;

TR
44
0

DB
S-
Ha
nd
bu
ch

Fe
br
.

73

Die Eingabebereitschaft für eine Dialogprozedur wird
angezeigt durch die Meldung:

* EINGABEI:

Ist eine Dielogprozedur fehlerfrei und kann sie ausge-
führt werden, so folgt unmittelbar darauf die Ausgabe

der Ergebnisse.
Sind Fehler vorhanden, so wird dies durch die Meldung
"»FEHLERAUSG. ENTSCHLUESSLER" angezeigt.
Darauf folgt die Ausgabe der fehlerhaften Prozedur mit
Ausgabe des Fehlerortes (durch| und folgende ///) und
der Fehlerart.

Nach Beenden der Prozedur, angezeigt durch die Ausgabe

"ENDE PROZEDUR"”, oder nach Ausgabe einer fehler-

haften Prozedur wird durch die Meldung "# WEITER J/Nr:"
angefragt, ob eine neue Prozedur angegeben werden oder

ob der Dialog abgebrochen werden soll.

Alle Ausgaben des Dialogprozessors beginnen mit einem *.

Nüöheres siehe Kapitel 8.6 .

8.9. Einfache Anfragen

Die Syntax der Dialogsprache erlaubt ohne besondere
EDV-Kenntnisse relativ komplexe Anfragen an das System.

Beispiel 1:

SUCHEN KETTE = PERSONAL, SL = N31V4;
SUMME GEHALT;
ENDE;

Durch die obige Prozedur läßt sich sofort das Gehaltsvo-
lumen der spezifizierten Datei (Satztyp) PERSONAL ermitteln,
wenn man weiß, daß durch die Anweisung SUCHEN KETTE =
PERSONAL und der Schlüsselangabe SL = N31V4 die PERSO-
NAL-Datei ermittelt wird und durch die Anweisung SUMME

GEHALT sämtliche Gehaltsfelder aufsummiert werden und
das Ergebnis anschließend vom Dialogprozessor ausgegeben
wird,

Soll das Gehaltsvolumen für eine bestimmte Tarifgruppe
ermittelt werden, so läßt sich dies durch folgende Prozedur
erreichen:

Beispiel 2:

SUCHEN KETTE = PERSONAL, SL = N31V4;
WENN TAGRU GL T3;
SUMME GEHALT;

ENDE;

Der Dialogprozessor gibt anschließend aus:

3 450 673,40

Eine verbesserte Ausgabe wird durch die Prozedur in
Beispiel 3 erreicht:

SUCHEN KETTE = PERSONAL, SL = N31V4;

WENN TAGRU = T3;

SUMME GEHALT (R);

ENDE PERSONAL;

LISTE "SUMME GEHALT TARIFGR. T3:” GEHALT;

ENDE,

Auf dem Terminal erscheint die Ausgabe:

. SUMME GEHALT TARIFGR. T3: 3 450 673,40

Die Spezifikation R CReserviere) hinter dem Feld-
namen GEHALT verhindert, daß direkt nach Abar-

beitung der Kette bei Erkennen des Pseudobefehls

ENDE PERSONAL das Gehaltsvolumen ausgegeben
wird. Der in einem Arbeitsfeld zwischengespeicherte
Wert wird erst durch die Angabe des Feldnamens in
der anschließenden Anweisung LISTE ausgegeben,

Aufbau eines Satzes der PERSONAL-Datei:

NAME | VORNAME IPERNU | KOSTELI GEHALT|TARGU| STEUKLA

Abb: 2

8.6. SUCHEN Lokalisierung eines Satzes oder einer Kette

Jede Dialogprozedur wird durch die Anweisung SUCHEN
eingeleitet. Mit ihr legt der Benutzer fest, mit welchem
Satztyp oder mit welcher Kette der DBS-Datenbank er
arbeiten will.

/
KETTE = <Kettenname> SL = «Wert>

SATZNAME = <Satzname>["| <Feldname>

ANKER
[KETTE = <Kettenname>,] VORGAENGER

NACHFOLGER
\ nn /

Das Schlüsselwort SUCHEN kann bei der Eingabe wegge-
lassen werden. Auch die Angabe K = <Kettenname> und
5 = <Satzname> ist ebenso eindeutig und vereinfacht die

Eingabe am Terminal.
Sind Kettenname und Satzname nicht definiert, so gibt

der Dialogentschlüssler folgende Fehlermeldung:

KETTENNAME NICHT VORHANDEN

oder

N

SUCHEN {

SATZNAME NICHT VORHANDEN

Zum besseren Verständnis der internen Abläufe sind Block-

diagramme an gegebener Stelle eingefügt.

TR
44
0

DB
S=
Ha
nd
bu
ch

Fe
br
.

73

Folgende Fälle sind für SUCHEN zu unterscheiden:

1. SUCHEN K = <Kettenname>, SL = Wert>;;

Es sollen nur die Gliedersätze der angegebenen Kette
bearbeitet werden. Der Ankersatz selbst soll nicht in die
Verarbeitung mit einbezogen werden.
Der Dialogprozessor sucht zuerst den Anker dieser Kette
und positioniert danach sofort auf den ersten Gliedsatz.
Es ergibt sich hieraus folgende Strategie:

Der Dialogprozessor interpretiert (liest) zuerst den System-

steuerbereich bevor der DBS-Prozessor mit einem DBS5-

Befehl versorgt wird.

Durch die Angabe K = <Kettenname> kann im Systemsteuer-
bereich der Satzname des Ankers dieser Kette gefunden
werden. Mit diesem Satznamen wird der DBS-Befehl
"HOLEN <Satzname> SATZ" gegeben.

Der Schlüssel SL = <Wert> wurde vorher in die Satzzone
des Dialogprozessors eingetragen.

Der DBS-Prozessor sucht nun den entsprechenden Satz mit

den Angaben Satzname und Schlüssel und transportiert den
Satz in den aktuellen Puffer und in die entsprechende Satz-
zone, Die Kettentabelle wird dabei aktualisiert.
Durch den internen Aufruf des DBS-Befehl "HOLEN NACH-

FOLGER IN <Kettenname> KETTE" können nun die einzelnen

Gliedersätze der Kette gefunden werden.

Die Angabe SL = <Wert?> setzt voraus, daß der Ankersatz

ISQ oder RANDOM gespeichert ist. Dies wird vom Dialog-
entschlüssler abgeprüft.

2. SUCHEN K = <Kettenname>, <Feldname> = <Wert>;;

Die Operation SUCHEN in dieser Form wird angegeben bei

verketteten, sequentiell gespeicherten Sätzen.

Im Systemsteuerbereich wird abgeprüft, ob für den Satztyp
eine sequentielle Speicherung vorliegt. (Diese Prüfung
erfolgt bereits durch den Dialogentschlüssler.)
Wurde ABLAGE = SEQUENTIELL durch DBS-Parameter

nicht definiert, so wird als Fehlermeldung ausgegeben:

KEIN SEQUENTIELLER SATZTYP. .

Aus dem sequentiellen Bereich werden die Sätze intern mit
dem DBS-Befehl "HOLDAT" nacheinander eingelesen, bis
die Bedingung <Feldname> = <Wert> erfüllt ist.

Der gefundene Satz mit der Bedingung <Feldname> = Wert >

ist Anker der Kette <Kettenname>. Nachfolgend wird

intern der DBS-Befehl "HOLEN NACHFOLGER IN <Kettenname>
KETTE" abgesetzt.

3. SUCHEN S = <Satzname>, SL = <Wert>;

Mit dieser Suchanweisung soll nur ein einziger Satz ange-
sprochen werden (Ablage ISQ oder RANDOM).
Mit dem DBS-Befehl "HOLEN <Satzname> SATZ" wird
auf den bezeichneten Satz positioniert. Der durch die
Angabe SL = <Wert> definierte Schlüssel wurde vorher in
die Satzzone des Dialogprozessors eingetragen. Der Satz

kann sowohl Anker als auch Glied einer Kette sein.

Bei Angabe dieser Suchanweisung ist keine Kettenbarbei-
tung möglich. (Von dem so lokalisierten Satz können,

wenn er der Anker ist, mehrere Ketten ausgehen).

Werden anschließend Dialoganweisungen gegeben, die

sich auf das Bearbeiten einer Kette beziehen, wie etwa

die Operation SUMME, so führt dies zu Fehlern.

Im Laufe der Bearbeitung kann aber durch die Anweisung

ANKER
VORGAENGER ? ;
NACHFOLGER

SUCHEN K = <Kettenname>,

auf eine bestimmte Kette positioniert werden, wenn die
weitere Verarbeitung dies erfordert.

4. SUCHEN $ = <Satzname>, <Feldname> = Wert>;

Bearbeiten von sequentiell gespeicherten Sätzen.

Es wird geprüft, ob eine sequentielle Speicherungsform
vorliegt. Aus dem sequentiellen Bereich werden die Sätze
intern mit dem DBS-Befehl "HOLDAT" nacheinander ein-
gelesen, bis die Bedingung <Feldname> = <Wert> erfüllt
ist.

5. SUCHEN 5 = <Satzname> ;

Diese Suchoperation wird gegeben bei sequentiell bzw.
indexsequentiell (ISQ) gespeicherten Sätzen, wobei eine
evtl. vorhandene Verkettung unberücksichtigt bleiben soll.
Die Entscheidung sequentiell oder ISQ ergibt sich aus
vorangegangener Definition.

a) sequentiell gespeicherte Sätze

Durch die Angabe <Satzname> kann im Systembereich
(SYSBER) geprüft werden, welche Speicherungsform
vorliegt.

b) indexsequentiell gespeicherte Sätze

Es sollen ISQ-gespeicherte Sätze vom niedrigsten Schlüssel
an aufsteigend bis zum höchsten Schlüssel verarbeitet
werden. Dabei müssen auch die Stellvertretersätze sequen-
tiell gelesen werden,

Der erste Satz der Folge von Stellvertretersätzen wird
intern mit dem DBS-Befehl "HOLEN <Satzname>
STELLVERTRETER" gelesen. Die Nachfolger dieses Satzes
in der Stellvertreterliste werden intern durch den Befehl
"HOLEN IN INDEXBEREICH" (HOLIND) gelesen.
Der eigentliche Datensatz kann nun mit dem DBS-Befehl

"HOLDIR" (HOLEN DIREKT) gelesen werden.

TR

44
0

DB
S-
Ha
nd
bu
ch

Fe
br
.

73

In einem Blockdiagramm stellt sich dies, aus DBS-Sicht

gesehen, folgendermaßen dar:

ISQ-Sätze

HOLEN

Satzname

STELLVERTRETER

HOLDIR

(Datensatz)

verarbeiten

Datensatz

|

HOLIND

(nächsten

Stellvertreter.)
 Endebe-

handlung

ANKER

6. SUCHEN [K = <Kettenname>, |] $ VORGAENGER ? ;

NACHFOLGER

Diese Anweisung kann nur dann gegeben werden, wenn

bereits durch ein vorangegangenes SUCHEN der unter
Punkt 1 - 5 beschriebenen Form auf einen Satz innerhalb
einer Kette positioniert wurde (Es muß aber in jedem
Fall eine Verkettung vorliegen),

Beispiel:

SUCHEN K = <Kettenname>, 5L = <Wert?;

Op];

Op2;

SUCHEN K = <Kettenname>, ANKER;

Op3;

Opn;

ENDE;

Die Operation dient hier dazu, um von einem beliebigen
Gliedsatz auf den durch Kettenname definierten Ankersatz

zu kommen.

Kettenname in der Suchanweisung SUCHEN K =
<Kettenname>, ANKER kann auch eine andere
Kette bezeichnen, als die, die zu diesem Glied-

satz geführt hat. Wird der Anker der gleichen

Kette verlangt, so kann K = <Kettenname> weg-
gelassen werden. Die Kette muß in diesem Fall

nicht ankerverarbeitbar sein.

Ist der Kettenname angegeben, so wird geprüft, ob er mit

dem in der vorangegangenen Suchanweisung gegebenen

Kettennamen übereinstimmt.

Sind die Kettennamen verschieden, so bedeutet dies, daß

auf eine neue Kette positioniert werden soll. In diesem
Fall muß der Typ des Gliedsatzes ankerverarbeitbar sein.

Durch die Angabe VORGAENGER bzw. NACHFOLGER
kann zu einem positionierten Satz der Vorgänger- oder

Nachfolgersatz geholt werden.

Anmerkung:

In der 2. Ausbaustufe des Dialogprozessors können bei
den Angaben SUCHEN K = <Kettenname>, <Feldname> =

<Wert> bzw. SUCHEN $ = <Satzname>, <Feldname> =

Wert> auch ISQ-Sätze verarbeitet werden (allerdings

keine RANDOM-Sätze).

Bei ISQ-Sätzen wird mit dem DBS-Befehl HOLSTV,

nachdem 0 als Schlüssel in die Satzzone eingetragen
wurde, der niedrigste Stellvertretersatz gelesen.
Danach wird mit dem DBS-Befehl "HOLDIR" der zuge-

hörige Datensatz gelesen und geprüft, ob er die Bedin-
gung <Feldname> = <Wert> erfüllt. Durch abwechselndes
Absetzen der DBS-Befehle "HOLEN NACHFOLGER IN
STELLVERTRETER" und "HOLDIR" können die ISQ-Sätze
sequentiell gelesen werden.

Beispiel eines Protokolles:

#EINGABEN:
SUCHEN KETTE=ORTSKETTE,SL=KONSTANZ;
„AUSGEBEN NAME, VORNAME, STRASSE, PERSNR1;
NDE;E,

NAME = VCWINKEL
VORNAME : LÜORE
STRASSE s IRGENDWO
PERSNR1 : 999999

NAME 2 NEUMANN
VORNAME = JOSEPH
STRASSE = BCDAN
PERSNR1 = 777777

NAME = KOZDERA
VORNAME = FRANZ
STRASSE = WIEHNER-HOF
PERSNR1 : 414141

NAME =: RCST
VERNAME =» HORST
STRASSE = ALPENPLICK
PERSNR1 s 707070

“ENDE FROZEDUR

TR

44
0

DB
S-
Ha
nd
bu
ch

“e
br
.

73

8.6.1. Komplexe Kettenstrukturen 3. Bearbeitung der Sätze in der Kette K6:

Im folgenden werden einige Suchanfragen für komplexe Un |
Kettenstrukturen beschrieben, ausgehend von der unter j
Punkt 1 beschriebenen einfachsten: D BS-Kettenstruktur:

1. Die Ankersätze sind ISQ gespeichert und die Glieder-
sätze sequentiell (SEQ). -— Kl]

ef Some 26)

SUCHEN K=KI, SL= SI]; K5--/ NK —n)

Opn; SUCHEN K =KI, SL=S];
ENDE; SUCHEN K =K3, FELDI = F3;

SUCHEN K =K4, FELD2 = F4;
SUCHEN K =K6, FELD3 = F6;

 I

2. Bearbeitung der Sätze in der Kette K2:

er

—— 0
ENDE;

| Die vorher erwähnte Anfrage in weniger schreibaufwendiger
200 nK2 Form:

 ORG K=Kl; SL=51;
K=K3; FELDI = F3;

K=K4; FELD2 = F4;
SUCHEN K=KI, SL= 1; K=K6; FELD3 = F&;
SUCHENK =K2, FELD = Fl;

Op;;

Op; .

ö Op,

Pi ENDE;
ENDE;

(Feldi, FELD2, FELD3 sind Feldnamen innerhalb des

jeweiligen Satztyps; F3, F4, F6 sind die Inhalte dieser
Felder.)

4. Nach Bearbeiten einer Kette K1 liegt die Notwen-
digkeit vor, eine Kette 2 zu bearbeiten. Kette 2 kann
nur verarbeitet werden, wenn für sie die Verkettungs-
form "mit ANKER" angegeben ist.

TR

44
0

DB
S-

Ha
nd

bu
ch

Fe
br
.

73

 Kl K

K3

SUCHEN K =K1, SL=S1;
Opy;
. Bearbeitung der Kette K]

Op;;

SUCHENK =K2, ANKER; Übergang auf Kette K2

Opi+l

 Opni

ENDE;

8.7. WENN-Klausel

Die Ausführung von Anweisungen kann von Bedingungen

abhängig gemacht werden. Durch die WENN-Klausel ist
die Möglichkeit gegeben, Bedingungen zu stellen.

. UND . n,
WENN <Bedingung> pr} <Bedingung |)

<Bedingung> : = <Feldname> V <Wert> [,<Wert>] ",

V := ergleichsoperator>
/

ZWISCHEN
GLEICH
GROESSER
KLEINER

FEROESSERR GLEICH
GG

[KLEINER GLEICH
\ KG

<Vergleichsoperator> : N

 ‘

<alphanumerischer String>
<Festkommazahl >
<Gleitkommazahl>
<Bitvariable>

1 Wert? :

Für den Vergleichsoperator ist folgende Darstellung
gleichbedeutend, sofern sich diese Zeichen am Terminal

darstellen lassen:

<Vergleichsoperator> := $

 A
N
A
V
I
 G

A

Beispiele:

I. Wenn Tarifgruppe TI! oder T2 oder T3:

WENN TAGRU = TI, T2, T3;

umständlicher formuliert:

WENN TAGRU = TI ODER TAGRU = T2 ODER TAGRU = T3;

2. Wenn Tarifgruppe T! oder T2 oder T3 und der
Beruf = Programmierer:

WENN TAGRU = Tl, T2, T3 UND BERUF = PROGR;

3. Wenn Gehalt größer 3500 und Beruf = Systemspezialist (SS):

WENN GEHALT> 3500 UND BERUF = SS;

4. Wenn Gehalt größer 3000 und Beruf = Fachberater (FB)

oder Systemspezialist (SS):

WENN GEHALT> 3000 UND BERUF = FB, SS;

Sollen auf den gleichen Satztyp verschiedene WENN-
Klauseln zur Anwendung kommen, so wird dies durch

folgende Anfrage erreicht:

SUCHEN KETTE = <Kettenname>, SL=Wert>;

WENN <Bedingung-1>;

Op;

“

Op;;
WENN <Bedingung-2>;

Opi4i

Opn;

ENDE

Die WENN-Klausel veranlaßt den Dialogprozessor,
jeweils wieder auf den Anfang der Kette zu positio-

nieren. Abhängig von der entsprechenden Bedingung

werden dann die nachfolgenden Anweisungen ausge-

führt.

IR

44
0

D8
BS

-H
an

db
uc

h
Fe
br
.

73
:

Beispiel eines Protokolles: 8.8. Die Anweisungen der Dialogsprache

In , Im folgenden werden die einzelnen Befehle (statements)
#E INGABEIGS
SUCHEN K=-ORTSKETTE,SL=KONSTANZ; der Dialogsprache näher beschrieben.

WENN NAME=BALIG, BECKER, FROEHLICH
CDER VORNAME=HELMUT,CTTO, MATTHIAS; Ä Es kann zusätzlich noch eine Spezifikation (R) angege-
AUSGEBEN NAME, VERNAME, STRASSE; ben werden. Diese hat nur Bedeutung im Zusammenhang

END;I, mit der Anweisung LISTE und ist nur erlaubt in den Anwei-

NAME 2 BECKER
VORNAME 2 GUSTAV

sungen SUMME, ZSUM, ZAEHLEN und DURCHSCHNITT.

STRASSE = KREUZLASTR. 27

NAME » BALIG

8.8.1. | AENDERN] Ändern von Feldinhalten

VORNAME = LUDWIG
STRASSE ı RUPPANERSTR.22 AENDERN <Wertzuweisung?;

<Wertzuweisung> : = <Feldname>=<Wert>[„ <Feldname>=<Wert>]
NAME s FROEHLICH

yORNATE : BRIGITTE Durch die Anweisung AENDERN können beliebige Feld-
STRASSE » VEILCHENALLEE . . . g

inhalte innerhalb ein und desselben Satzes verändert

NAME 2 FROMM werden. Diese Anweisung bezieht sich nur auf das
VORNAME » HELMUT Ändern von Feldern. Es können keine Sätze neu einge-
STRASSE x MARKGRAFENSTR.3 tragen oder vollständig überschrieben werden.

NAME = GUEGEL-FRANK Mit AENDERN können einfache Felder, Sortierfelder
VORNATE ’ len WALL 2 und Schlüsselfelder geändert werden. AENDERN kann

STRASSE 2 ALTE ” vom Inhalt bestimmter Felder des angesprochenen Satzes

NAME 2 GUMBEL abhängig gemacht werden,

VORNAME 3 MATTHIAS
STRASSE » BRANDESTR, 35 Beispiel 4:

*ENDE PRGZEDUR

In der Datei KFZ-Typen (Satztyp = KFZ-Typ) sollen
für den KFZ-Typ VW1200 die technischen Daten ge-
ändert werden.

Die KFZ-Typen sind in einer KFZ-Typ-Kette miteinan-
der verknüpft. Anker der Kette ist der Satz LAGER =
WOLFSBURG (Satztyp ist LAGER).

Es liegt dabei folgende DBS-Kettenstruktur vor:

nn — KFZ-Typ-Kette

KFZTYP

Ein Satz in der KFZ-Typ-Kette habe z.B. folgenden
Aufbau:

Krz- | Bau- DATEN REIFEN
TYP | JAHR| Ps | LAENGE| BREITE] HOEHE | TYP | DRUCK

Abb. 3

SUCHEN KETTE = KFZTYP, SL = WOLFSBURG;
WENN KFZTYP GL VW1200;
AENDERN PS = 34,
LAENGE = 4070,
BREITE = 1550, HOEHE = 1500;

ENDE;

Der Dialogprozessor setzt intern folgende DBS-Befehle Interner Ablauf der Anweisung AENDERN aus DBS-Sicht
ab (Blockdiagramm): gesehen:

TR

44
0

DB
S-

Ha
nd

bu
ch

Fe
br
.

73

 —

HOLEN NACH- HOLEN NACH-
FOLGERIN L_ FOLGER IN >=
<ettenname> 1 Kettenname KFZTYP <Kettenname>

KETTE KETTE

| AENDERN) _AENDERN)

interpretieren interpretieren
SYSBER SYSBER

| |

HOLEN <Satzname> : = LAGER HOLEN
Satzname> L__ SL= WOLFSBURG <Satzname>

SATZ SATZ

Eintragen Eintragen

neue neue

Feldinhalte Feldinhalte

| |
AENDERN AENDERN

<Feldname> <Feldname>

FELD FELD

TR

44
0

DB
S=
-H
an
db
uc
h

br
.

3

Beispiel eines Protokolles: 8.8.2. AUSGEBEN Ausgeben von Feldinhalten

EINGABE: AUSGEBEN <Feldname> [‚<Feldname>] ML ANZAHL = Wert>]

SUCH K=ORTSKETTE, SL=KONSTANZ; —— SATZ
WENN NAME=FROEHLICH: ‘
AUSGEBEN NAME, VORNAME, STRASSE; .
AENDERN VORNAME=HEIDRUN; Beispiel 5:
AUSGEREN NAME „ VORNAME „STRASSE;

END;I, SUCHEN K=KFZTYP, SL = WOLFSBURG;

NAME s FROEHLICH AUSGEBEN KFZTYP;
VORNAME = SABINE ENDE:
STRASSE s GOTTLIEBERST.18 _—t

NAME 2 FROEHLICH Es werden sämtliche auf dem Lager WOLFSBURG abge-
VORNAME =: HEIDRUN lagerten KFZ-Typen ausgegeben.
STRASSE 2 GETTLIEBERST.18

ENDE PROZEDUR Beispiel 6:

SUCHEN K = KFZTYP, SL = WOLFSBURG;

WENN KFZTYP = VW1200;

“WEITER J/NO:JRO,

#EINGABED:
SUCH K=ORTSKETTE, SL=KONSTANZ; AUSGEBEN PS (R), LAENGE (R), BREITE (R);
WENN NAME=FROEHLICH; m
AUSG NAME, VORNAME, STRASSE; ENDE KFZTYP;
AENDERN VORNAME=BRIGITTE,STRASSE=VEILCHENALLEE; _ -
AUSG NAME, VORNAME,STRASSE; LISTE "LAGER = WOLFSBURG, KFZTYP = VW1200';

END: I, LISTE ’PS:”, PS, "LAENGE:”, LAENGE, ’BREITE:”,
BREI TE;

NAME 3 FROEHLICH ENDE; VORNAME : HEIDRUN =
STRASSE s GOTTLIEBERST.18 Es erscheint folgende Ausgabe auf dem Bildschirm:

NAME 3 FROEHLICH | PS: 34 VORNAME = BRIGITTE
STRASSE : VEILCHENALLEE LAENGE: 4070

“ENDE PROZEDUR BREITE: 1550

Aufbau eines Satztyps KFZTYP:

DATEN

PS | LAENGE | BREITE| HOEHE

 KFZTYP

Beispiel eines Protokolles:

EINGABEN;
SUCHEN KETTE-ORTSKETTE,SL=-RADOLFZELL;
AUSGEBEN NAME, VORNAME, STRASSE;

ENDE;H,

NAME 3 RAEUCHLE
VORNAME s EBERHARD
STRASSE s HEGELPLATZ

NAME = BLANK
VORNAME s KURT
STRASSE s PFAFFSTRASSE

“ENDE PROZEDUR

WEITER J/NOSJN,

#EINGABEH?:
SUCHEN KETTE=ORTSKETTE, SL=KONSTANZ;
WENN VORNAME=EDI TH, LORE, HELLA, BRIGITTE;
AUSGEBEN NAME, VORNAME, STRASSE;

END;n,

NAME = VOWINKEL
VORNAME s LORE
STRASSE sg IRGENDWO

NAME 3 BERGMANN-ENGEL,
VORNAME 3 HELLA
STRASSE = SCHIFFSTR. 24

NAME 3 .FROEHLICH
VORNAME 3 BRIGITTE
STRASSE = VEILCHENALLEE

“ENDE PRÜZEDUR

10

TR

44
0

DB
S-

Ha
nd

bu
ch

Fe
br
.

73

88,3: [SUMME] Summenbildung

SUMME <Feldname> [,<Feldname>] ”

Die Anweisung SUMME organisiert einen Zugriff zu
simtlichen Süötzen einer lokalisierten Keite und summiert
alle Werte eines ungesprochenen Feldes in dieser Kette
auf, Alle Sätze innerhalb der Kette müssen den gleichen
Sutztyp haben. Sind Sütze eines anderen Typs in der Kette,
werden disse bei der Summanbildung ignoriert.

Sind die zu verarbeitenden Sätze sequentiell oder ISQ
gespeichert, so werden sie in aufsteigender Folge gelesen
und das entsprechende Feld aufsummiert.

E; können uuch mehrere Felder innerhalb eines Satzes

angegeban werden, die in einer positionierten Ketie

aufsummiert werden sollen.

Dem nachstehenden Beispiel liegt folgende DBS-Ketten-
struktur zugrunde:

&-
Projektkene / \Personalkette

Beispiel 7:

SUCHEN K = PERSONAL, SL= TC;

SUMME GEHALT;

ENDE

im obigen Beispiel wird das Gehaltsvolumen der PERSONAL-
Kette gebildet (Mitarbeiter der Abteilung TC). Durch die
Anweisung SUMME wird Satz für Satz der angesprochenen
Kette geholt, der entsprechende Feldinhalt aufsummiert
und zwischengespeichert.

Bei Erreichen des Ketten-Ende wird anschließend das

Ergebnis ausgegeben.

Durch die WENN-Klausel kann das Summenbilden von be-
stimmten Feldinhalten abhängig gemacht werden. Es soll
beispielsweise die Summe der Gehaltsfelder nur dann ge-
bildet werden, wenn in dem Feld TAGRU (Tarifgruppe)
der Wert T3 steht:

Beispiel B:

SUCHEN K = PERSONAL, SL = N31V4;

WENN TAGRU = T3;

SUMME GEHALT;

ENDE;

Nach Ablauf der Prozedur wird ausgegeben:

50 420,40

1

Eine ausführliche Ausgabe wird erreicht durch die
folgende Anfrage:

Beispiel 9:

SUCHEN K = PERSONAL, SL = N31V4;
WENN TAGRU = T3;
SUMME GEHALT (R);
ENDE PERSONAL;
LISTE "SUMME GEHALT TAGRU T3:”, GEHALT;

ENDE;

Es wird anschließend ausgegeben:

SUMME GEHALT TAGRU T3: 50 420,40

Das in Klammern eingeschlossene R bei der Anweisung
SUMME besagt, daß das SUMME-Ergebnis reserviert

wird und erst bei expliziter Angabe in der Anweisung
LISTE mit ausgegeben wird.

Beispiel 10:

Das Gehaltsvolumen soll bestimmt werden für die Tarif-
gruppe T3 und Beruf PROGRAMMIERER.

SUCHEN K = PERSONAL, SL = N31V4;

WENN TAGRU = T3 UND BERUF = PROGR;

SUMME GEHALT;

ENDE,
Beispiel 11:

Es soll das Gehaltsvolumen für die Mitarbeiter bestimmt
werden, die Programmierer sind und einer der Tarifgruppen
T2, T3 oder T4 angehören:

SUCHEN K = PERSONAL, SL = N31V4;

WENN TAGRU = T2, T3, T4 UND BERUF = PROGR.;

SUMME GEHALT;

ENDE;

TR

44
0

08
BS

-H
an

db
uc

h
fe
br
.

73

8.8.4. | ZSUM Bilden von Zwischensummen

ZSUM <Feldname>;

Syntax der WENN-Klausel für die Operation ZSUM:

WENN <Feldname>

Die Operation ZSUM ermöglicht das Bilden von Zwischen-
summen in Abhängigkeit des Gruppenwechsels eines be-
stimmten Feldes.

Beispiel 12:

SUCHEN K = PERSONAL, SL = N31V4;

- WENN TAGRU;

ZSUM GEHALT;

ENDE;

Es werden alle Zwischensummen der Gehaltsfelder bei
gleicher Tarifgruppe gebildet. Nach Abarbeitung der
Kette erscheint folgende Ausgabe auf dem Terminal:

TAGRU T3: 105 084 300,40

TAGRU T4: 88 405 500,20

TAGRU 715: 6 430 450,10

(Bei der Ausgabe wird automatisch der Feldname mit

angegeben.)

8.8.5. [ZAEHLEN] Zielgruppenanfrage

ZAEHLEN [<Arbeitsfeldname?] ;

<Arbeitsfeldname> : = Name eines Feldes, das in einer

nachfolgenden LISTE-Anweisung
angesprochen werden kann.

Die Anweisung ZAEHLEN ermöglicht die Feststellung
einer Anzahl von Sätzen in Abhängigkeit vom Inhalt,
sie ist deshalb nur sinnvoll unter Verwendung einer
vorangehenden WENN-Klausel.

Die Anweisung ZAEHLEN kann z.B. bei folgender Frage-

stellung angewendet werden:

Wieviele Einwohner gibt es in der Stadt XYZ, die männ-
lich (M) und unter 21 Jahre alt sind.

Beispiel 13:

SUCHEN K = EINWOHNER, SL = XYZ;

WENN SEX = MUND ALTER < 21;

ZAEHLEN;

ENDE;

Hinter der Anweisung ZAEHLEN kann ein Name zur Be-

zeichnung eines Arbeitsspeicherfeldes stehen, das in einer
nachfolgenden LISTE-Anweisung angesprochen werden kann,

Beispiel 14:

SUCHEN K = EINWOHNER, SL= XYZ;
WENN SEX = MUND ALTER < 2];
ZAEHLEN ZI (R);
ENDE EINWOHNER;
LISTE "ANZAHL EINW., MAENNL. UNTER 21:”, ZI;

ENDE

Ausgabe z.B.:

ANZAHL EINW., MAENNL. UNTER 21: 2701

8.8.6. [RECHNEN] Rechenoperationen

<Feildname> _) <Feldname> <Feldname?>
RECHNEN names 3 . aan N A { Selän

(app) f+)
. . SUB -

.ı. =Gd ._ LI A: arithmetischer Operator? : MULl=N*

DIV /

Mit RECHNEN können beliebige Rechenoperationen aus-
geführt werden. Dabei können verschiedene Felder eines

Satzes in die arithmetischen Operationen mit einbezogen
werden. Die Ergebnisse werden in die Zielfelder einge-
speichert und auf dem Terminal ausgegeben.

SUCHEN K = PERSONAL, SL N31V4;

WENN NAME = MEYER UND KOSTEL = 65];

AUSGEBEN GEHALT;

RECHNEN GEHALT = GEHALT + 250;

ENDE;

Auf dem Terminal erscheinen die Werte

1 450
1700

8.8.7. | DURCHSCHNITT | Berechnen des Durchschnitts

DURCHSCHNITT <Feldname> [‚<Feldname>] ;

Durch die Anweisung DURCHSCHNITT werden von den
angegebenen Feldern die arithmetischen Durchschnitts-
werte gebildet und anschließend ausgegeben.

SUCHEN K = PERSONAL, SI N31V4;

WENN TAGRU = T3; =

DURCHSCHNITTE GEHALT;

ENDE,

8.8.8. [INFORMIEREN | Informieren über Ketten- und

Satzstruktur

Der Benutzer kann sich mit dieser Satzstruktur ausgeben

lassen:

wie oft ein bestimmter Satztyp verkettet ist,
wie dieser Satztyp MASTER oder GLIED einer Kette ist
die ANKERWAHL, wenn der betreffende Satztyp GLIED

8.8.9.| LISTE |Textausgaben

LISTE ’<Text>’<Feldname> [, ’<Text>’<Feldname>] N,

Durch LISTE können die vom Dialogprozessor veran-
laßten Ausgaben kommentiert werden, Dies ist vor
allem dann von Bedeutung, wenn Konsolprotokolle
über längere Zeiträume hinweg als Belege dienen
sollen.

TR

44
0

DB
S-
Ha
nd
bu
ch

‘e
br
.

73

der Kette ist

- die ABLAGE, d.h. ob der Satz DIREKT, SEQUENTIELL,
ISQ, NAHE oder RANDOM gespeichert ist.

LISTE ermöglicht somit formatisierte Ausgaben zur

Erzeugung entsprechender Druckbilder.

Im folgenden Beispiel werden nach der Bearbeitung des
jeweiligen Satztyps die speziellen Ausgabeanweisungen
Op; . 1 - Op, ausgeführt.

Stehen diese Operationen vor dem Pseudobefehl
ENDE <Kettenname>, so werden sie sofort ausgeführt ,

wie die Anweisungen Opj - Op; durchlaufen werden.

INFORMIEREN <Satzname>

Die Angabe sieht dann folgendermaßen aus:

SATZTYP: <Satztyp-Nr.>

NICHT VERKETTET SUCHEN KETTE = <Kettenname>, SL = «Wert;
Ä GLIED

AKTUELL Opn;
ANKERWAHL MIT SCHLUESSEL Opyi

<Feldname> .

DIREKT .

SEQ Op;;

ABLAGE: ISQ
NAHE <Kettenname>

RANDOM

ENDE <Kettenname>,

OPirti

Op,

ENDE

8.8.10. ENDE

<Satzname>

ENDE { Sermame> N],

Durch die Operation ENDE, gefolgt von einem Semi-
kolon, wird das Ende einer Dialogprozedur gekenn-

zeichnet. Steht nach dieser Operation noch der
Satz-/Kettenname der I. zu dieser Dialogprozedur
gehörenden SUCH-Operation, so bedeutet dies, daß

nach der Operation ENDE noch LISTE-Befehle folgen,
die nach Abarbeitung einer Kette oder eines Daten-
bereiches (ein einziges Mal) ausgeführt werden sollen.

Nach dem so spezifizierten ENDE-Befehl dürfen nur
noch LISTE-Befehle folgen.

TR

44
0

DB
S-
Ha
nd
bu
ch

»b
r.

75

8.8.11. Übersicht über die Syntax der Dialogsprache

1. Lokalisieren einer Kette oder eines Datenbereichs

KETTE = <Kettenname> SL

SATZNAME = <Satzname>

SUCHEN < (VoRcı
LKETTE = <Kettenname>, |

<Feldname>
}-

VORGAENGER

<W en

)
NACHFOLGER

2. WENN-Klausel

. UND , n
WENN <Bedingung> (ehe! Bedingung | ;

<Bedingung> = : <Feldname> V <Wert>[‚Wert>]"

= : <Vergleichsoperator>

[ZWISCHEN)
GLEICH
GROESSER

<Vergleichsoperator>= : & KLEINER
GROESSER GLEICH
GG
KLEINER GLEICH

Ike }

N
U
R
?

—
—

<alphanumerischer String>
<Festkommazahl >

<Gleitkommazahl>
<Bitvariable>

Wert> =:

3. AENDERN

AENDERN Wertzuweisung>

<Wertzuweisung> : = <Feldname> = <Wert> [L,<Feldname> = <Wert>]"

A. AUSGEBEN

f

AUSGEBEN \ SArz

5. SUMME

SUMME <Feldname> [,<Feldname>]" ;

6. ZSUM

ZSUM <Feldname>;

7. ZAEHLEN

ZAEHLEN [<Arbeitsfeldname>] ;

8. RECHNEN

<Arbeitsfeldname> Wert>

A : = <arithmetischer Operator>

RECHNEN { Seldname? } _ { Feldname>

9. DURCHSCHNITT

DURCHSCHNITT <Feldname> [‚<Feldname>]" ;

10. INFORMIEREN

INFORMIEREN <Satzname> ;

I

<Feldname> [,<Feldname>]" LANZAHL = «Wert>] |

<Feldname>

Wert>

14

} 4

TR

44
0

DB
S-

Ha
nd

bu
ch

fe
br
.

73

11. LISTE

LISTE "<Text>’<Feldname> [, "<Text>’<Feldname>!" ;

12. ENDE

ENDE (Koremamen],

<Satzname>

15

TR

44
0

9B
S=

-H
an

db
uc

h
Fe
br
.

73

8.8.12. Fehlermeldungen

Im folgenden sind die z.Zt. möglichen Fehlermeldungen

aufgelistet, eine Erläuterung wird später folgen.

e SCHLUESSELWORT FALSCH

e NICHT ERLAUBTE SUCH-OP

e ABBRUCH, ZU VIELE FEHLER
e NICHT ERLAUBTES ZEICHEN

e UNZULAESSIGE ZEICHENFOLGE

e KOMMA FALSCH

e MEHR ALS I BINDESTRICH

e FELDNAME NICHT VORHANDEN

e FELDNAME NICHT ERLAUBT

e MAX. ANZAHL FELDNAMEN UEBERSCHRITTEN

e KETTENNAME NICHT VORHANDEN

e SATZNAME NICHT VORHANDEN

e KEIN SEQUENTIELLER SATZTYP

e KEINE PROZ. VORHANDEN

TR

44
0

 D
BS

-H
an

db
uc

h
br
.

73

9.1.

9%. ANHANG

Maschinenausstattung

KSM

 TR 440 y

 LKL
|

LKS

ZENTRALEINHEIT
64AK

N

bis BS3 -

256K

SDR

 \

SYSTEMRESIDENZ
(SYSRES)
TSP 500
WSP 414

ARCHIV
BAND

N 7

DATENBANK-
SPEICHER
WSP 414
PSP 800

 N 7

TR

44
0

 D
BS
-H
an
db
uc
h

9.2. DBS-Utilities

Dem Benutzer stehen eine Reihe von Utilities zur Verfügung,
die durch ihre Dienstleistungen dazu beitragen, einen

wirtschaftlichen Betrieb zu gewährleisten.

Im einzelnen sind dies:

* DBS-DUMP

* DBS-KOMPRESSOR

* DBS-STATISTIK

* DBS-REORGANISATION

* DBS-REGENERATION

* DBS-SICHERN

#* DBS-LOGBUCH

In der augenblicklichen DBS-Version sind die Utilities:

*# DBS-DUMP
DBS-KOMPRESSOR

in das Gesamtsystem implementiert; an der Realisierung der
0.9. Utilities wird im Augenblick gearbeitet.
Für die Handhabung dieser Utilities stehen speziell An-
wendungsschriften zur Verfügung.

9.2.1. DBS-DUMP

Die Routine DBS-DUMP diagnostiziert auf Grund vorge-

gebener Parameter des Gesamtinhalt oder Teilbereiche
der Datenbank auf dem Schnelldrucker.

Anwendung

Das Programm liegt als zuladbare Service-Routine in der
LfD vor. Die ausführliche Handhabung kann in der Anwen-
dungsbeschreibung nachgelegt werden,

Parameter

Der Benutzer hat zwei Möglichkeiten, die DBS-DUMP-
Routine zu versorgen.

Durch Angabe von:

1. (Seitenbeginn), (Seitenende), A,
werden innerhalb dieses Bereiches die Inhalte aller

Sätze diagnostiziert.

Beispiel:
100, 800, A,

2. (Seitenbeginn), (Seitenende), (Satztypı), (Satztyp2)...
werden innerhalb dieses Bereiches die Inhalte der
durch Satztypı, Satztyp2... spezifizierten Sätze
diagnostiziert.

Beispiel:
100, 800, 3, 5, 21,
Innerhalb der Seitenbereichsangabe 100 bis 800 werden

die Inhalte sämtlicher Sätze definiert, die vom Satztyp
3, 5 oder 2] sind.

9.2.2. Testparameter

Die Testparameter werden am Ende des Installationsteils
der Datenbankbeschreibung, also unmittelbar vor dem Ge-
bietsteil eingetragen.

Die Reihenfolge ist:

* DATENBANKNAME = Datenbankname

* PASSWORT = Datenname

«system | NEU TRESERVIERE TQUELLE]] |,
TEST

JA
* DRUCK = $ NEIN

NUR PARAMETER

* Gebiet.

USW.

SYSTEM

Aufgabe:

Angabe, ob eine neue Datenbank, oder nur
eine Syntaxprüfung der DBS-Parameter vorgenom-
men werden soll.

Aufbau:

* SYSTEM = (

nn
] ES

E

—
i
 |

Z c F RESERVIERE [QUELLE] }H

Erklärungen:

Es bedeutet SYSTEM =

1. NEU:

2. TEST:

Nach Erstellung der DBS-Steuertabellen wird
die Datenbank formatiert und, wenn angegeben
entspr. Reservierungen vorgenommen.

Die System-Steuertabellen werden binär ausge-
stanzt. Standardvorbesetzung ist SYSTEM = NEU

TR

44
0

 D
BS
-H
an
db
uc
h

73
Ce

br
.

Funktion

Angabe, ob und wie die DBS-Parameter während der
Testarbeiten ausgedrückt werden.

Format

[JA
% DRUCK = 2 NEIN

NUR PARAMETER

Erklärungen:

1. Der Parameter darf überall stehen und kann mehrmals

vorkommen, Er gibt die gewünschte Protokollierung
der DBS-Parameter an.

Standardvorbesetzung ist DRUCK = JA

2. DRUCK = JA: Alle Karten zwischen

* DATENBANKBESCHREIBUNG und
#* DBS-ENDE werden ausgedruckt.

DRUCK = NEIN: Nur fehlerhafte Karten werden ge-
druckt.

DRUCK = NUR PARAMETER: Es werden nur die DBS-

Parameter (mit * in Spalte 7) ausge-

druckt.

9.3. Glossary

Adresse

Die Adresse dient zum Wiederauffinden eines Speicher-

platzes, sie kann absolut oder relativ zu einem festen
Bezugspunkt angegeben sein.

Logische Adressen

werden bei Randomspeichern verwendet. Der Platz eines
gespeicherten Satzes wird durch Seitennummer und Linien-
nummer innerhalb der Seite angegeben.

Anker
Als Anker wird der erste Satz in einer Kette bezeichnet.
Da er als Einsprungspunkt in eine Kette dient, soll er
weitgehend Daten enthalten, die sich auf alle Glieder
der zugehörigen Kette beziehen.

Basissprache
Unter der Basissprache wird die Höhere Programmiersprache
verstanden, die in einem Datenbanksystem den verfahrens-
orientierten Rahmen abgibt, um eine Verarbeitung der Da-

ten im Arbeitsspeicher zu ermöglichen.

Block
Ein Satz bzw. eine Gruppe von aufeinanderfolgenden

Sätzen, die als physische Einheit behandelt werden und
die kleinste adressierbare Einheit auf einem peripheren
Speicher darstellt. Ein Block wird auch als physischer
Satz oder Datenträgersatz bezeichnet.

Blocken, Blockungsfaktor, Ladefaktor

Das Zusammenfassen mehrerer logischer Sätze in einem
Block nennt man Blocken. Die Anzahl der Sätze, die zu

einem Block zusammengefaßt werden können, ist aus dem
Blockungsfaktor oder Ladefaktor ablesbar.

Datei

Eine Zusammenfassung logisch zusammengehöriger Sätze
gleichen Typs.

Daten

Allgemeine Bezeichnung für Buchstaben, Ziffern, Symbole,

Kombinationen von diesen bzw. Bezeichnung von Gegen-
ständen, Begriffen, Situationen, Bedingungen und anderen

Faktoren.

Datenbank

Eine Zusammenfassung von Dateien bzw. Datenbeständen,

die die Basis für ein formalisiertes Informationssystem in
einem abgeschlossenen Organisationsbereich abgibt und

die wesentlichste Grundlage für die Informationswieder-
gewinnung (information retrieval) bildet.

Die Dateien, aus denen eine Datenbank aufgebaut ist,

können nach der Struktur der in ihnen vorhandenen Da-

tensätze unterschieden werden. Die Sätze einer Datei

heißen formatiert, wenn sie bezüglich ihres Formates

(Feldaufbau, Feldfolge innerhalb eines Satzes und Länge
des betreffenden Satzes) eindeutig definiert sind. Andern-

falls heißen sie unformatiert.

Datenbankprozessor

All jene Makros, die gewisse Dienstleistungen in einem
Datenbanksystem erbringen. Der Datenbankprozessor ist
zusammengesetzt aus der Datenmanipulationssprache

(DMS) und dem I/O-Controller.

TR

44
0

 D
BS
-H
an
db
uc
h

73
br
.

Datenbeschreibungssprache (DBB)

Die Datenbeschreibungssprache stellt für den Benutzer eine
softwaremäßige Unterstützung zur Erstellung eines Schemas

(Datendefinitionstabelle) des gesamten Datenbestandes dar.

Datenelement

Die kleinste logische Einheit, die sich nicht aus weiteren
logischen Einheiten zusammensetzt.

Datenmanipulationssprache DMS
Die Datenmanipulationssprache stellt in operierenden
Systemen eine Sprache dar, mit deren Hilfe der Program-

mierer eine Transaktion der Daten zwischen Benutzer-

programm und Datenbank durchführt.

Datenverdichtung
Unter Datenverdichtung versteht man das Reduzieren eines
Datenbestandes auf seinen für die Verarbeitung wesent-

lichen Inhalt, also das Entfernen redundanter Informati-

onen. Diese Verdichtung wird einerseits aus speicher-
technischen Gründen angestrebt - um auf Großraum-

speichern Platz zu sparen -, andererseits zur besseren und
konzentrierteren Darstellung von Information bei der Aus-
werfung.

Glied

Anker und Glieder sind Kettenelemente.

Hierarchie der Organisationseinheiten
Bit (bit), Zeichen (character), Datenelement (data

element), Satz (record), Datei (file), Datenbestand (data

base), Datenbank (data bank),

Indizierungsmethode
Ein Zugriff zu einem bekannten Datenelement aufgrund

eines vorgegebenen Ordnungskriteriums setzt jeweils das

Begriffspaar

Ordnungskriterium - Adresse

voraus.

Wird diese Verbindung mit einem Tabellenmechanismus

(Indexliste) erzeugt, so spricht man von einer Indizierung.

Information

Sie ist eine logisch abgeschlossene Einheit, die sich aus
Daten gemäß formaler Regeln zusammensetzt und von

einem Sender (Mensch, Rechner), zu einem Empfänger .

(Mensch, Rechner) fließt. Unterscheidung in

unformatierte Informationen

formatierte Informationen

Bei unformatierten Informationen bestehen die Datenele-

mente aus den Worten der Umgangssprache, die Regeln
ihrer Zusammensetzung aus der grammatikalischen Syntax.

Bei formatierten Informationen sind die Datenelemente

Werte. Die Zusammensetzungsregeln ergeben sich aus

vordefinierten Schemata; die Position der Information
innerhalb eines Datensatzes bestimmt den Informations-

inhalt.

Informationssystem
Informationssysteme sind Datenorganisationsformen auf
Rechenanlagen, die bestimmte Vorgänge und Abläufe im

Kommunikationsprozeß unterstützen. Diese Vorgänge und

Abläufe müssen, damit sie überhaupt maschinell bearbei-
tet werden können, formalisier- oder automatisierbar sein.

Kette

Eine Kette ist eine Gruppe von Sätzen mit folgenden

Eigenschaften

Jede Kette hat stets genau einen Anfang, den soge-

nannten Kettenanker.

Jede Kette kann beliebig viele Glieder haben.

Anker und Glieder heißen allgemein auch Kettenelemente.
Im Anker steht die Adresse des ersten Kettengliedes, in
diesem die Adresse des zweiten Gliedes usw., im letzten

Kettenglied steht das Kettenendzeichen. DBS-Ketten sind
sogenannte offene Ketten.

Maschinenabhängige Datenunterteilung
Bit (bit), Zeichen (character), Wort (word), Block (block),

Datenträger (file),

Paßworte

Kennworte, die bestimmten Benutzern Zugang zu ge-

schützten Bereichen bzw. Daten einer Datenbank ermög-
lichen. Mit Paßwörtern kann auch die Art des Zugriffs

(Lesen, Schreiben, usw.) geregelt werden.

Regeneration

Um zu vermeiden, daß bedingt durch technische Pannen
Datenbestände zerstört werden, müssen sogenannte Re-

generationsverfahren eingesetzt werden. Der gesamte Da-

tenbestand wird z.B. zusätzlich auf einem Magnetband

geführt, das auch ständig aktualisiert sein sollte.

Reorganisation

In gewissen Zeitabständen werden Reorganisationsver-

fahren notwendig werden, die die zwischenzeitlich ver-

änderten Datenbestände der Datenbank bezüglich Speicher-
platz, Zugriffszeit etc. optimieren.

Seite

Das gesamte externe Speichermedium wird in Seiten
gleicher Länge eingeteilt. Eine Seite kann aus einem

oder mehreren Blöcken bestehen.

Speicherungs- und Verarbeitungsformen
Die Speicherungsform gibt an, wie der Bestand auf dem

Datenträger organisiert und abgelegt ist.

Die Verarbeitungsform definiert die Art des Zugriffs auf

diesen Bestand.

Utilities
Hierunter werden Dienstleistungsroutinen verstanden, die

einen wirtschaftlichen Betrieb in einem Datenbanksystem
gewährleisten. Beispiele sind u.a.:

DUMP, KOMPRESSOR, STATISTIK, REORGANISATION,
REGENERATION, ARCHIVIERUNG

Zeichen

Eine Grundeinheit aus einem limitierten, definierten Vor-

rat von Symbolen, der für einen Kommunikationsbereich
deklariert wurde.

