RECHENZENTRUM TH MUNCHEN

ARBEITSGRUPPE BETRIEBSSYSTEME

INTERNSCHRIFT Nr. 15

THEMA:

Simulation

VERFASSER:
v.CONTA

FORM DER ABFASSUNG

ENTWURF
)('AUSARBEITUNG
ENDFORM

ANDERUNGSZUSTAND

DATUM:
WS 68/69

SACHLICHE VERBINDLICHKEIT
><ALLGEMEINE INFORMATION
DISKUSSIONSGRUNDLAGE
ERARBEITETER VORSCHLAG
VERBINDLICHE MITTEILUNG

VERALTET

BEZUG AUF BISHERIGE INTERNSCHRIFTEN

Vorkenntnisse aus:
Erweiterung von:

Ersatz fiir:

BEZUG AUF KUNFTIGE INTERNSCHRIFTEN

Vorkenntnisse zu:
Erweiterung in:

Ersetzt durch:

ANDERWEITIGE LITERATUR

ARBEITSSEMINAR UBER BETRIEBSSYSTEME

WS 1968/69

F. Simulation

(von Conta)

Was versteht man unter Simulation

Von Simulation kann man immer dann sprechen, wenn ein tat-

séchlicher Ablauf anhand eines zugeordneten vereinfachten

Modells untersucht wird. Man sagt dann, der tatsdchliche

(simulierte) Ablauf werde in dem Simulationsmodell simuliert.

S0 verstanden ist fast jede Denktdtigkeit Simulation.

Als Aufgabe filir die Rechenanlage sind z.B. folgende Simula-

tionsvorgiange von praktischer Bedeutung:

a)

Simulation eines Analogrechners:

Di;-ézgééiien Programmteile des betreffenden Simulations-
programms simulieren das Verhalten von Kondensatoren, Wider-
stdnden etc., soweit es fiir das Resultat von Bedeutung ist.
Eigene Simulationssprachen wie z,B. KALDAS oder SLANG fir
die Simulation von Analogrechnern geben Formulierungshilfen,
um Verkniipfungen und Parameterwahl dieser Elemente (wie sie
Steckverbindungen, Potentiometerstellungen etc. am Analog-

rechner entsprechen) im Simulationsmodell zu realisieren.

Simulation eines Kernreaktors:_

Hierbei wird z.B. die Neutronenverteilung im Inneren des
Kernreaktors ermittelt, indem der Weg einzelner Neutronen
mit statistischen Anfangsdaten durch den Kernreaktnr rech-
nerisch verfolgt wird. Eine statistische Uberlagerung vieler
solcher Neutronenbahnen gibt dann ein Bild von der zu er-
wartenden Neutronenverteilung im Inneren des Reaktors z.B.

flir eine bestimmte Stellung der Graphitstidbe.

T S e 0 S N 0 e GO e s B o S o . . e i i, W, o A i . s et e S e T Vot S W e e ot o o e S o s o on? e

Will man den Durchsatz an gerechneten Auftridgen flir ein ge-
gebenes Betriebssystem erhdhen, so hat man zunichst nach auf-
tretenden Engpdssen zu suchen und muB diese dann nach Moglich-
keit beheben, Wenn beispielsweise der Rechner haufig warten

mufB3, bis bendtigte Information von einem Plattenspeicher be-
schafft ist, so konnte man versuchen, die Platte durch ein
schnelleres Speichermedium zu ersetzen oder auch die Organisation
des Plattenverkehrs durch geeignete Abdnderungen leistungs-
fahiger zu machen.

Die Simulation muB hier also Informationen liefern, die den
Ablauf beim Betrieb des simulierten Betriebssystems zu analy-
sieren gestatten und dariiber hingus die Untersuchung ermdglichen,
wie sich z.B. noch nicht gekaufte Zusatzgerdte oder noch nicht
programmierte andersartige Verwaltungsroutinen auswirken wiirden.

Als Formulierungshilfen fiir die Simulation eines Betriebs-
systems eignen sich allgemeinere Simulationssprachen wie
SIMON oder CSL, die sich z.B. von einer speziell fiir die
Simulation von Analogrechnern entwickelten Sprache erheblich
unterscheiden. In solchen allgemeineren Simulationssprachen
lassen sich dann neben der Betriebssystemsimulation auch sehr
viele ganz andersartigen Simulationsprobleme formulieren. |

Zusammenfassend konnen wir sagen: Der Begriff der SIMULATION
als solcher ist viel zu weit gefaBt, als daB man damit frucht-
bar operieren kdnnte. Dagegen ist die Bedeutung spezieller
Simulationsaufgaben wie die der Simulation eines Analog-
rechners, eines Kernreaktors, eines Betriebssystems ohne viele
Erlsuterungen von vorn herein klar.

Simulation wird angewendet, wenn

ok) der simulierte Vorgang nicht real durchgefiihrt werden kann
(weil z.B. kein entsprechender Analogrechner zur Verfligung
steht (a), oder der Kernreaktor beim Experiment explodieren
konnte (b), oder weil wesentliche Anlagenteile im Fall (c)
noch nicht gekauft wurden).

T~ 3

ﬁ) Detailinformation iiber den Ablauf benotigt wird, die
durch unmittelbare Beobachtung desselben nur schwer zu
erhalten ist.. (Wo liegen die Engpidsse im Fall o))

Fir uns ist hauptséchlich interessant, die mit der Simulation
eines Betriebssystems zusammenhingenden Fragen zu untersuchen.
Umn mit dieser Fragestellung vertraut zu werden, betrachten wir
im folgenden zundchst die praktische Arbeit mit dem Simulations-—
modell eines Betriebssystems, wie sie N.R. NIELSEN beschrieben
hat, ohne vorerst ndher auf die Struktur des-Simulations-
systems selbst einzugehen. Dabei wollen wir versuchen, Grund-
aufgaben zu erkennen, die fiir Simulationsprobleme typisch

sind, und fur deren Formulierung in eine Simulationssprache
entsprechende Sprachelemente bereitgestellt werden sollten.

2. ﬁie praktische Arbeit mit Hilfe des Simulationsmodells
fir ein Betriebssystem
(N.R NIELSEN: The simulation of timesharing systems, CACM 10
(1967) p 397 £f)

Geplant war der Ankauf eines IBM 360/67 - Timesharing Systems.
Gesucht war eine optimale Keafiguration: Wieviel Kernspeicher,
Anzahl und Typ der Plattenspeicher und Trommelspeicher, Aus-
fluhrung der Dateniibertragungswege (simplex oder halb-duplex).

Die erste groBe Schwierigkeit fiir die Losung dieser Aufgaben
héngt nicht mit der Struktur des Simulationsmodells zZusammen,
resultiert aber aus den Umstinden, unter denen im allgemeinen
solche Simulationsprobleme geldst werden miissen: Es waren
namlich die bendtigten Informationen iiber Hardware- und Soft-
wareparameter des zu liefernden Systems nur sehr schwer vom
Hersteller zu beschaffen und die schlieBlich angegebenen Werte
erwiesen sich als sehr ungenau. Die mit der Simulation be-
auftragte Arbeitsgruppe erstcelilte in vielen Fillen eigene,
viel unglinstigere Schitzwerte, die sich am Ende immer noch
als zu optimistisch herausstellten.

- 4 -

Die Ahnlichkeit des Simulationssystems mit dem simulierten
System (d.h. die Giite der Simulation) litt unter diesen unge-
nauen Annahmen zwar betrdchtlich, es zeigte sich Jjedoch, daB
die SchluBfolgerungen beziiglich optimaler Konfiguration trotz-
dem richtig waren und das Simulationsmodell trotz allem quali-
tativ brauchbare Resultate lieferte.

In Aussicht genommen war zundchst eine Konfiguration aus

%1 Konsolen

1 CPU

3 Kernspeicher mit je 256 Kbyte
1 Trommelspeicher
1

% fiir paging-Zwecke
groBer Plattenspeicher

1 groBer Plattenspecicher - _
2 kleinere Plattenspeicher % fur file-Verkehr
Bandgerate, Zeitendrucker und Kartenleser wurden vorerst

nicht beriicksichtigt.

—— - — — S — - o —— W oo

Die Simulation der Rechenauftrdge (job-Simulation) erfolgte

in der Weise, daB zundchst eine Reihe von Musterprogrammen
(Jobs) simuliert wurden, die in 10 verschiedene Typen zer-
fielen. Diese Typen unterschieden sich etwa darin vonein-

ander, dafBl bei den zu einem Typ gehdrigen Jobs im wesentlichen
nur Rechnung anfiel, wdhrend die zu einem anderen Typ gehdrigen
Jobs das System im wesentlichen nur mit file-Verkehr belasteten.
Wieder andere Typen wiesen starke Inanspruchnahme des paging-
Mechanismus auf etc. |

Mir jede Konsole wurde nun eine eigene Haufigkeitsverteilung
fiir diese Muster-Jobs vorgegeben und die Reihenfolge der Jobs
an dieser Konsole als Zufallsfolge (unter Beachtung dieser

. Haufigkeitsverteilung) angenommen.

Zu den im folgenden beschriebenen verschiedenen Simulstions-
laufen vergleiche man die folgende Tabelle.

Qoo o
ge} v} o]
P
=g
® o ¥
® o
~ = by
—~~ N —~
O N
e [[(SN
% Nt S g
&
o
o
@
G
>,
\Y4
—d o R d o
O ~J o W -
W
. i . oW o
L onsolverke v > NN V]
5w LLE e
\%
- ~d W R o
¥s) o o N o) i
ot b - o
abtenzanl . PANIIRAS <
vy e . o) o IR N P
1leverkehr» CO
hp
Demnix - . oYW o
Q= _ : ‘ 2 s
~Elattenmahl o ~ -0 = !
latteny
it oviel I/O v
ne paging=-Plattenzahl NeJ (NoREE VAN N

- &

rtes file~-Plattenman:
) b .

srone tte)

,O
: eln att 4 Platten
tes fl¢o~;1avte« ansgement

0

c6

<
1

LG

normales I/0

mrmeln stott 4 r“attew
filw-PlattJLm(1t
Druck=Man:

L

i

aq

N N S T S e s S GO s O O o S G20 v (o S o S ————— T~ — T o, £E o W S o o 260 o 2ron s

Zunédchst dachte man, daB die hohe CPU-Leerzeit von 47 %
darauf zurilickzufiihren sei, daB iiber die langsamen Konsolen
nicht genug Auftrédge angeliefert wiirden, um den Rechner aus-
zulasten. Daher wiederholte man den Lauf mit einem Job-mix
mit stark reduziertem Konsolverkehr. Das Resultat blieb je-
doch im wesentlichen unveridndert, so daB der Grund fir die
hohe CPU-Leerzeit anderswo zu suchen ist.

Einen Hinweis auf die mogliche Ursache gibt die lange paging-
Warteschlange (Warteschlange fiir Ein/Ausgabe im Verkehr mit
den flir paging-Zwecke verwendeten Platten). Bine Uberschlags-
rechnung ergab Mindestwartezeiten fiir jede Seite von iiber

0.8 sec. Um die Annahme zu priifen, ob das paging zum Engpal
wurde, wurde der folgende Lauf gemacht:

b2) Lauf bei Job-mix mit wenig Konsolverkehr und wenig paging

Der Job-mix wurde so gewidhlt, daB er das System kaum fUr pegeng
in Anspruch nahm. Dieser Job-mix ist zwar sehr unrealistisch,
doch kann man so priifen, inwieweit das paging die Schuld triagt
an der hohen CPU-Leerzeit im Lauf b1. Tatsichlich ergab sich
eine um Uber die HHlfte geringere CPU-Leerzeit.

Damit war der paging-Plattenverkehr als EngpaBl nachgewiesen.
Nun galt'es nach Losungen zu suchen, denselben zu beschleuni-
gen, so daB er auch bei realistischem Job-mix eine bessere
CPU~-Ausniitzung gestattet.

Der erste Gedanke war hierzu, die Plattenzahl fiir paging-
Zwecke zu erhodhen.

b3) Lauf bei Job-mix mit wenig Konsolverkehr (sonst realistisch)

——._———.—_—-————-—————-—__—.——.———.-—_—.—-————————————.——————_—-———————..

- S o - g e o v (o Vo S5t — o — — o — v o~ —n

Die Zahl der paging-Platten wurde vervierfacht und alle mit
separaten Datenkandlen ausgestattet. Abgesehen vom redu-
zierten Konsolverkehr{wie im 2. Lauf von b1) wurde nun wieder
mit realistischérem Job-mix gerechnet. Die Verbesserung der
CPU-Leerzeit auf 34 % gegeniiber b1 war deutlich, jedoch nicht
so gut, wie man nach b2 erwartet hatfe.

b4)

b5)

-6 -

Der Verdacht lag (wegen der betreffenden Warteschlangenlinge)
nahe, daB ebenso wie vorher der paging-Plattenverkehr auch
der Plattenverkehr fiir Zwecke der file-Speicherung zu langsam
arbeitet. Zur Priifung dieser Annahme wurde probeweise mit
verschwindender Zugriffszeit flir die file-Verkehr-Platten ge-
rechnet.

O — i — G O — — — W~ ——— T —— T —— ——— i G o ————— — o ————— " ———— T T —— - —— o~ ———— —— _—— —— — — o -
—_— O e " o —— w— ——y T Gy i wn o D - " — ———————— o ———{—— . p——— —— o o — T~ ———— —— v~ — . S ———— ———— - _——— -~

. ——— o t— —_— . " —— - —— - v— — —— T~

Das Verschwinden der CPU-Leerzeit bestidtigte den Verdacht, daB
auch noch der file-Plattenverkehr beschleunigt werden muB, wenn
die CPU besser ausgenutzt werden soll, als in den friiheren

Laufen.

Gleichzeitig klindigt sich jedoch mit dem hohen Anteil von
69 %, den Verwaltungsroutinen an der CPU-Arbeit beanspruchen,
ein neuer Engpal an.

Un einen technisch gangbaren Weg zur file-Verkehrbeschleunigung
zu erproben, wurde nun die im file-Verkehr eingesetzte Platten-
zahl verdoppelt (dhnlich wie frilhcr die paging-Plattenzahl ver-
vierfacht worden war):

Bs ergibt sich, daB dies eine technisch mégliche Losung fiir den
EngpaB wdre, der durch den Plattenverkehr zustande kam. Jedoch
scheidet sie aus finanziellen Griinden aus.

Statt dessen versuchte man eine Beschleunigung des software-
Plattenmanagements zu erreichen. Die Organisation war bisher
so, daB die eingzelnen Plattenmoduln nacheinander jeweils voll-
stédndig aufgefiillt wurden. Das hatte zur Folge, dalBl z.B. das
paging fast ausschlieBlich iiber einen Plattensarm abgewickelt
wurde, was wegen der langsamen Beweglichkeit desselben im Mitte 1
eine maximale Seitentransferrate von 8 Seiten je sec. erlaubte.
Analoges gilt fiir den file~Verkehr.

-7 -

Statt dessen verteilte man nun das paging lber alle Moduln
gleichmaBig. Die entstehenden Licken auf den Platten wurden
entweder filir die file-Speicherung genutzt oder einfach frei
gelassen. Da dies zwangsliufig zu schnellerem Plattenverkehr
fihren muBte, wurde kein Kontrollauf mit vergleichbarem
Job-mix durchgefihrt.

Bei den nun folgenden Laufen wurden nun auch

2 Bandgerdte
1 Drucker
1 Kartenleser
berilicksichtigt. Ferner wurde nun angenommen:
1 Trommelspeicher
4 kleine Plattenspeicher g fir paging-Zwecke
1 groBer Plattenspeicher (mit gedndertem Management) fiir

file-Verkehr.

b6) Lauf mit viel 71/0, paging und file-Verkehr, 1 Trommel + 4 Platten

- ——— T ———— B o2t i o Tior ovan o v o S - — ——— —— —— > - o W " o o —— G ——— —— T~ — ——" - b~ S~ T ——

- e o G o - S St S —_— S —— o G — — o W S ——— T WO " - d—

. Der Job-mix wurde nun so gewghlt, dafl hauptsdchlich die kritischen
Belastungstypen der Anlage auftraten (paging, file-Verkehr, Kon-
solverkehr, ferner Kartenlesen und ~-drucken). Dazu kamen einige
Hintergrundprogramme, auf die das System widhrend der Wartezeiten
zuriickgreifen konnte.

Die Resultate sind wegen des gednderten Job-mix nicht vergleich-
bar mit denen fritherer Laufe. Jedoch war das Resultat ent-
tiuschend mit 19 % CPU-Leerzeit, wobei die restlichen 81 % fast
vollig mit Verwaltungsarbeit (76 %) ausgelastet waren, so daB
nur 5 % der CPU-Zeit der eigentliéhen Rechenarbeit zugute

kamen.,

Da der paging-Plattenverkehr sich als EngpaBl erwiesen hatte,

der nun besonders stark in Anspruch genommen war, und da ferner
nach der Anderung des Plattenmanagements die paging-Platten
schlecht ausgeniitzt waren wegen der vielen lLeerstellen, lag es
nahe, anstelle der 4 paging-Platten eine weitere paging-Trommel
einzusetzen die schneller ist und deren zwar geringere Speicher-
kapazitdt dafiir besser ausgeniitzt werden kann.

- e ——— —— — G —_—— —— e " - e 2 e e 2 e o e o e e v o S o e G S S e S - G OO S S G o G o

- — ——— — - — T Vo — G - T — " o S - o —

Die CPU-Leerzeit von O % stellt eine wesentliche Verbesserung
dar; die der Rechnung zugute kommende CPU-Exekutionszeit hat
sich aber nicht wesentlich verbessert, da der Verwaltungsan-
teil auf 92 % angewachsen ist.

Die Schuld fiir den hohen Verwaltungsaufwand wurde auch zum
Teil der Druckroutine gegeben. Denn diese versuchte eine
optimale Druckerausniitzung zu erreichen, indem sie nur jJje-
weils eine Zeile druckte. Der dann notwendig erfolgende
Interrupt kostete jedesmal 2 ms Verwaltung fur die CPU. Nun
baute man die Druckroutine auf Ausgabe von jeweils

30 - 40 Zeile auf einmal/%%’die Hiufigkeit der notwendigen
Interrupts zu reduzieren, obwohl dies angeblich die Kapazitat
des Zeilendruckers nicht voll auszunutzen gestattete.

In der Tat zeigte ein Kontrollauf ein gunstigeres Bild. Wir
wollen jedoch abschlieBend nur noch einen Louf mit realistischem
Job-mix betrachten, der in etwa mit b1) vergleichbar ist.

b8) Lauf mit realistischem Job-mix, 2 Trommeln fur paging, neues

T o e o o e an s e e e e St e e . S S S i S o o 1 o S S O o S O o S S i S S o o S D e, SED i s o = ==

——————o— " o —— . {— (" T - G2 T o > (7 o Tt W o

Die CPU-Leerzeit von 3 %, die CPU-Verwaltungszeit von 81 % und
CPU-Jobexekutionszeit 16 % konnen als ein gewisser Erfolg der

Bemiihungen angesehen werden.

Nun wurde versucht, den Verwaltungsaufwand kleiner zu machen.
Die entsprecheﬁden Verwaltungsroutinen wurden daraufhin durch-
gegangen, in wiefern sie schneller gemacht werden konnten, und
es wurden dementsprechend kleinere Softwareparameter im Simu-
lationsprogramm angenommen.

Dadurch muBte der Job-Durchsatz an der Anlage groBer werden und
es stellte sich die Frage, ob dann immer noch 2 paging-Trommeln
giinstiger waren als 4 Platten und 1 Trommel. Das Resultat ent-
sprechender Simulationsldufe zeigte, daB dann die 2 Trommeln
noch viel giinstiger als 4 Platten und eine Trommel waren, als
es schon frither der Fall war.

c1)

Weiter wurde die Frage gestellt, ob man von den 3 Kernspeicher-
einheiten eine flir Zwischenspeicherung im Zusammenhang mit
paging reservieren sollte. Es ergab sich aber, daB dann die
tibrigen beiden nicht ausreichen.

SchlieBlich wurde ein Lauf mit sehr unrealistischem Job-mix
mit exzessiver Belastung der Dateniibertragungswege gemacht.
Dabei zeigte sich, daBl die Dateniibertragungsrate sich hierbei
jedenfalls unterhalbbjg6

L opAen

° byte/sec bewegte, so daB es geniigte,
diese Kan#dle in &é?fﬁaiﬁduplexausfuhrung (mit getrenntem
Speicherzugriff fir Datenkandle und CPU) wesentlich billigeren

Simplexausfilhrung zu installieren.

e s Y S 2 s o s o S G e G T G T S o —— — T —— o oo " — o —— — {—— — t— o S0 o o o T T o " -

Nachdem wir im Abschnitt b) die Arbeit mit einem Simulations-
programm kennen gelernt haben, wollen wir uns nun der Frage
zuwenden, was filir Anforderungen sich daraus an das Simulations-
system ergeben.

Mndell fir den internen Ablauf

s — T o T —— — T - ——— — — o o— T ——— o _— toa S T—

In einer Variablen namens

UHR (variable)
wird jeweils der Zeitpunkt eingetragen, bis zu dem die Zeit im
simulierten System fortgeschritten ist.

Als Elemente (entities) des Simulationssystems treten Dinge

auf wie z.B. CPU, Eingabekanal von der Trommel (EKvT), Ausgabe-
kanal auf die Trommel (AKnT), denen neben anderen Eigenschaften
auch eine Ereigniszeit zugeordnet ist, die den Zeitpunkt ar-
gibt, zu dem der dort gerade laufende Vorgang abgeschlossen

ist und ein neuer Vorgang in Angriff genommen werden kann:

Elemente mit Ereigniszeit (z.B. CPU, EKvT, AKnT, etc.)

Man kann sich diese Elemente in einer speziellen Liste

(ZEITLISTE) eingetragen denken. Wenn nun die Simulation zum
néchsten Zeitpunkt im simulierten System fcrtschreiten soll,
zu dem wieder eine neue Situation eintritt, auf die man mit
geelgneten SimulationsmafBnahmen zu reagieren hat, so braucht

nur die ZEITLISTE nach dem Zlement mit der kleinsten Sreignis-—
zeit durchmustert zu werden. Die dabeil ermittelte Ereignis-
zelt wird als neue Zeit in die Variable UHR eingetragen und
die entsprechenden SimulationsmaBnahmen werden getroffen.

wie z.B. die Simulation des nichsten Datentransfers einzu-
leiten, wenn dann gerade ein Datenkanal frei geworden ist.

Als Zlemente (entities) des Simulationssystems treten danchen
auch Dinge auf, wie z.3. ein Prrgrammegtiick, oder c¢in Daten-
satz, cencn zwar kKeine Ereignisceit zugeschrieben wird, wohl
aber [igenschaften wie Linge, Lage auf der Trommel, und bel
gselgnet “imensionierten Programmstiicien der Zeithedar?” bel
Ausiuhrung in der CPU

Llemente ohne Ereigniszeit (z.B. Programmstiickchei,
Datercitze, etc.)

Zin einfacher Ablauf innerhalb des Simulationgsystems lieie
sich nun folgendermaBen vorstellern.

Zur CPU und den Dateniibertragungskanidlen wEKvT, AKnT gahdre
jewells eine Warteschlange der als ndchstes zu bearbeitenden
Slemente (Programmstiicke, Daten ctc.).

Cru EXvT AnT

e e sy s et e
i)

! |
i ' , j
1

.

Nun erfolgt:

3)

In der Zeitliste sei das UHR sz

Element mit der kleinsten

Ereigniszeit die CPU, Diese [CPU

Zeit wird als neuer Zeit Zeitliste< EKvT }

punkt im simulierten |

System, bis zu dem die k ARnT o
Simulation bereits fort- (Ereignis-)Zeit

geschritten ist, in die
Variable UHR eingetragen.

Zu diesem Zeitpunkt also wird die CPU frei fiir einen neuen
Auftrag. Man holt also das nichste Element aus der CPU-Warte-
schlange, wobei es aus dieser entfernt wird. Sein zu er-
wartender CPU-Zeitbedarf (Eigenschaft dieses Programmelements)
wird mit der UHR-Zeit addiert als neue CPU-Ereigniszeit einge-
tragen (vgl. Abb). Falls das Programmelement zu einer Ver-
waltungsroutine gehdrt, so konnte man diesen Zeitbedarf noch
in die Variable hinein addieren, in der der CPU-Verwaltungs-
zeitbedarf berechnet werden soll,

Das Programmstiick verlange nun z.B., daB ein anderes
Programmelement von der Trommel geholt und anschlieBend ge-~
rechnet werden soll., Dann muB also das neu verlangte Programm-
element noch in die EXvT-Warteschlange eingetragen werden.

Nun istvalles getan, zu dem die CPU-Freigabe AnlaB gab und
es erfolgt erneut

Durchmustern der ZEITLISTE.

Jetzt findet man in der Zeitliste z.B. AKnT ais Element mit
kleinster Ereigniszeit, die wieder nach UHR gebracht wird.
Nun kann das ndchste Element aus der zu AKnT gehorigen Warte-—
schlange auf die Trommel gebracht werden.

Aus den Eigenschaften des zu iibertragenden Elements (Lange,
Trommellage) in Verbindung mit der momentanen Trommelstellung
(abhéngig von UHR) wird die Ubertragungszeit berechnet und
auf die AKnT-Ereigniszeit addiert, die dann also den Zeit-

)

- 12 -

punkt angibt, zu dem der Ubertragungsvorgang beendet sein
wird und AKnT wieder frei fiir eine weitere Ubertragung
wird. Das zu Ubertragende Element wird natiirlich nun aus
der Warteschlange entfernt.

Nun ist alles getan, zu dem die AKnT-Freigabe AnlaB gab
und es erfolgt erneut

Durchmustern der ZEITLISTE

——— ——— — — o o T S — T~ — s WOV Gamy e o e " — S —

Jetzt findet man in der Zeitliste z.B. BKvT als Element mit

kleinster Ereigniszeit, die wieder nach UHR gebracht wird.

Das Element, dessen Ubertragung in den Kernspeicher nun
beendef ist, stehe noch als erstes Element der EKvT-Warte-
schlange zur Verfiigung. Seinen Eigenschaften entnehme man
z.B., daB es ein Programmstiick war, das nun gerechnet werden
soll. Dann hat man es nun also in die CPU-Warteschlange ein-
zutragen und aus der EKvT-Warteschlange zu entfernen.

Nun hat man die Simulation der Ubertragung des nichsten
Elementes der EKvT-Warteschlange in Angriff zu nehmen.

Aus seinen Eigenschaften entnehme man die zur Berechnung

der Ubertragungszeit bendtigten Daten (Liénge, Trommellage),
addiere diese auf die EKvT-Ereigniszeit, belasse das Element
aber noch zur weiteren Bearbeitung nach Ankunft im Kern-
speicher in der EXKvIT-Warteschlange.

Nun ist alles getan, zu dem die EKvT-Freigabe AnlaB gab
und es folgt erneut

Durchmustern der ZEITLISTE etc.

Zusammenfassend konnen wir also sagen: Es werden BSLEMENTE

eingefiihrt, denen gewisse EIGENSCHAFTEN zugeschrieben werden.

Diese Elemente werden in verschiedene LISTEN (Warteschlangen,

Zeitliste) eingetragen, wobei die ZEITLISTE der Elemente mit

Ereigniszeit wegen deren hidufiger vollstédndiger Durchmusterung

eine gewisse Sonderrolle spielt. Aus allem ergibt sich, daB

eine Simulationssprache also jedenfalls derartige Listenver-

arbeitung erleichtern sollte.

c3)

- 13 -

— e Ga o ——— o —-A o S " . S G — — S S S ———— S w—

Bei der Simulation eines Betriebssystems muBl man an ver-
schiedenen Stellen aw einer gegebenen Anzahl von Dingen, denen
jeweils eine Haufigkeit ihres Auftretens zugeordnet ist, nach
Zufallsgesetzen eins auswidhlen.

Beispielsweise wurde die Job-Reihenfolge bel gegebenem Job-mix
(= Hiufigkeitsverteilung filir die einzelnen Jobs) so bestimmt.
Will man die Trommelstellung nicht Jjeweils mitrechnen, so
kann man die Trommelzugriffszeit ebenso statistisch einsetzen.
Ferner ist meist die Multiplikation etc. Operandenabhangig;
nachdem aber bei der Simulation die Operanden im allgemeinen
nicht bekannt sind, kann man auch hier statistische werte an-

nehmen.

Daher muBl eine Simulationssprache Moglichkeiten bieten, be-

"quem Wahrscheinlichkeitsverteilungen vorzugeben und danach

eine statistische Auswahl vorzunehmen.

Bei der Arbeit mit dem Simulationssystem fiir ein Betriebs-
system haben wir wichtige Aufschliisse aus Angaben Uber die
Liange der Warteschlangen etc. gewonnen. Man hat also zu ver-
schieden Zeiten jeweils eine derartige GroBe zu kontrollieren
und die dabel festgestellten Werte zu sammeln.

Die Sammlung der Werte einer GroBe zu verschiedenen Zeit-
punkten erfolgt jeweils in einem dieser GroBe zugeordneten
Histogramm, wobei eine Intervalleinteilung des infrage kommen-
den Wertebereiches vorgegeben ist, und bei "Lintragung" eines
Wertes in dieses Histogramm lediglich festgestellt wird, in
welchem dieser Intervalle der Wert liegt. Nun wird mitgezidhlt,
wieviele Eintragungen jewells flir die einzelnen Intervalle er-
folgt sind.

Als Ergebnis liefert das Histogramm daher eine Haufigkeitever-
teilung flir die Eintragungungen {iber die Intervalle des Histo-
gramms.

Haufigkeit T .
der Bintragungen

e}
Wert

3.

.1

- 14 -

Im folgenden betrachten wir nun eine besonders einfache . unter

den allgemeinen Simulationssprachen im einzelnen, um einen Uber-

blick tber die wichtigsten fir Simulationsprobleme bereitzu-
stellenden Hilfsmittel zu gewinnen.

Allgemeine Simulationssprachen

Die allgemeinen Simulationssprachen SIMON und CSL, auf die wir
im folgenden n&her eingehen wollen, sind auf der ATLAS-Anlage
sowie fir die ICT 1900~Serie implementiert und stellen Er-
weiterungen eingefilhrter Programmiersprachen wie ALGOL bzw.
FORTRAN dar. (vgl I.C.T. CONTROL AND SIMULATION MANUAL.)

SIMON
(P.R. HILLS 1964/65 Bristol College of Science and Techrniology)

Die Simulationssprache SIMON besteht aus normalem ALGOL 60, flr
das geeignete CODE-Prozeduren bereit gestellt werden, die den
speziellen Bediirfnissen der Simulation Rechnung tragen. Und zwar
handelt es sich um folgende CODE-Prozeduren.

. - — - o - —— ———— o S— S o~

ENTITY (ent, kennr) iqt eine eigentliche Prozedur und ist er-
kldart fir ein Feld ent und einen Ausdruck
kennr vom T, integer

integer array ent [o:n]

Der Aufruf dieser Prozedur fiihrt ent (o)
als "Element” ein und ent [17, ent [2],

ent] als dessen n "BEigenschaften".

Reprasentizre ent [o] also z.B. ein Schiff,

so kdnnte ent 1] also z.B. in geeigneter

ganzzahliger Verschliisselung angeben, ob es

im Hafen, auf See, oder untergegangen ist,
ent [3]seine Tonnage wiedergeben, etc.

*

- 15 -

Ferner wird dem Element ent [o] die durch
kennr bestimmte ganze Zahl zugeordnet, die
mit Hilfe der spdter zu behandelnden Proze-
dur REFNUM abgefragt werden kann.,

GROUP ENTITY (gent, anz, kennr) ist eine eigentliche Prozedur
und ist erkldrt flir ein Feld gent und Aus-
dricke anz, kennr vom Typ integer
integer array gent l1:anz, o:n]

Der Aufruf dieser Prozedur fihrt die GrdBen
gent M1, o], gentf2, o], ... gent lanz, o]
jeweils als Element ein, wobeli jewelils zum
Element
gent (i, o] (7¢i<anz) die Eigenschaften
gent [i, k] (4¢k<n)
‘gehdren. Man sagt, die Elemente g i, o]
gehoren zur "Elementgruppe" gent.

Allen Elementen dieser Elementgruppe wird
ferner die gleich durch kennr bestimmte
Zahl zugeordnet (die wieder mittels REFNUM
abgefragt werden kann).

[t —

Die folgenden Prozeduren dienen der Listenverarbeitung, wobei nach
a) eingefilhrte "Elemente" als Listenelemente in Frage kommen.

SET (set) ist eine eigentliche Prozedur, ist er-
klart fir eine integer Variable set und
fiihrt diese als Liste (bzw. Warteschlange)

ein.

ADD FIRST (ent) TO: (set) ist jeweils eine eigentliche Prozedur, jgt
ADD LAST (ent) TO: (set) erkldart fiir ein Element (entity) ent

und eine Liste set und fligt das Element

ent 2l1s erstes bzw. letztes Element in

die Liste set ein.

- 16 =

BEHEAD (set) ist jeweils eine eigentliche Prozedur, ist
BETAIL (set) erklart fiir eine Liste set und entfernt das
erste bzw. letzte Element aus der Liste set.

DELETE (ent) FROM: (set) ist jeweils eine eigentliche Prozedur,
DELETE (set1) FROM: (set2) ist erkldrt fiir ein Element ent und
eine Liste set bzw. zwei Listen set1 und
set 2 und bewirkt das Entfernen des Elements
ent bzw. der Elemente die auch set1 ange-
horen aus set bzw. setl.

ROTATE (set, n) ist eine eigentliche Prozedur, ist erklart
filr eine Liste set und einen Ausdruck n
vom Typ integer und bewirkt, dalB n mal

jeweils das erste Element aus set vorn weg-

genommen und hinten wieder angefiigt wird.

HEAD OF (set) ist jeweils eine Funktionsprozedur vom Typ

TAIL OF (set) integer, ist erklart fiir eine Liste set
und liefert als Funktionswert das erste
bzw. letzte Element der Liste set, die
selbst unverandert bleibt.

SIZE OF (set) ist eine Funktionsprozedur vom Typ integer,
ist erkldrt flir eine Liste set und liefert
als Funktionswert die Anzahl der Elemente
in der Liste set

MEMNUM (gent) ist eine Funktionsprozedur vom Typ integer,
ist erklart fir ein Element gent aus einer
Elementgruppe und liefert als Funktionswert
den Gruppenindex des Elements gent, d.h.
den ersten index, der das Element innerhalb
der Elementgruppe bestimmt.

Das ist von Bedeutung, wenn gent nicht
direkt, sondern zB. implizite durch HEAD OF
(set) gegeben ist.

- 17 -

REFNUM (ent) ist eine Funktionsprozedur vom Typ
integer, ist erklért fiir ein blement ent und
liefert als Wert die Kennummer des Elements
ent, die diesemmittels ENTITY oder
GROUPENTITY zugeordnet wurde.

Das ist von Bedeutung, wenn ent implizite
gegeben ist. Oft verwendet man dann die Kenn-
nummer fir den Sprung in einem SWITCH.

—— i — . . o ——— o ——

Besitzt ein Element als Eigenschaft eine Ereigniszeit, so spielt
diese gegeniiber anderen Eigenschaften eine Sonderrolle, vermutlich
auch wegen der Notwendigkeit, die Zeitliste haufig nach der
kleinsten Ereigniszeit zu durchmustern. Das ZuBert sich in

SIMON dartn, daB die Ereigniszeit nicht direkt zuginglich ist,
sondern nur {iber bestimmte Prozeduren.

SEITIME (ent) TO: (Wert) ist eine eigentliche Prozedur, ist er-
klart filir ein Element ent und einen Aus-
druck Wert vom Typ integer, und weist Wert
dem Element ent als Ereigniszeit zu.

TIMEVALUE (ent) ist eine Funktionsprozedur vom Typ integer,
ist erklart fiur ein Element ent und liefert
als Funktionswert die Ereigniszeit des
Elements ent.

SCAN (set) FOR: (member) WITH: (leasttime) ist eine eigentliche
Prozedur und ist erkliart filir eine Liste
set und zwel integer Variablen member und
leasttime als Resultatparameter. Alle
Elemente der Lisle set miissen Ereigniszeiten
Zugewiesen bekommen. haben.
Dann wird die Liste set nach dem Element
mit kleinster Ereigniszeit durchmustert;
der Wert dieser lleinsten Ereigniszeit wird
der Variablen leasttime und das betreffende
Element selbst der Variablen member zuge-—

wiegen.

d) Zufallsverteilungen

g - — - 1320 O —— ——— ———— i - —

- 18 -

Die fdlgenden Prozeduren dienen der mrzeugung von Zufallszahlen

und der Eingabe und Beriicksichtigung vorgegebener Haufigkeits-

verteilungen.

RANDOM (n)

DISTRI (dname, Kennz)

ist eine Funktionsprozedur vom Typ integer,
ist erkldrt fur einen Ausdruck n vom Typ
integer im Bereich #<n< 10 und liefert
als HFunktionswert eine Zufallszahl aus dem
(gleichverteilten) Bereich 0(1)99 der
ganzen Zahlen,

Falls 1 n <10, so wird die Zufallszahl
aus einem der gehn wnit dem Compiler ge-
gebenen Zufallsgeneratoren Nr n entnommen.
Verschiedene Generatoren sind gweckmiBig,
wenn gegenseitige Unabhéngigkeit von
Zufallszahlen sichergestellt werden soll.

Falls n = o, so wird beim Aufruf von
RANDOM die n&dchste Zahl vom Eingabemedium
eingelesen und als Zufallswert geliefert.

ist eine eigentliche Prozedur, und ist er-
klart fiir einen Ausdruck vom Iyp integer,

dessen vert im Bereich O <Kennz< 10 liegt,
und ein Feld integer array dname L0 : 207.

Beim Aufruf dieser Prozedur wird der Name
dname des Feldes als Hiufigkeitsverteilung
eingefliihrt und dieser die Kennzahl Kenng
zugeordnet, die zu Kontrollzwecken beim
Einlesen verwendet wird und auBerdem bei
der Beriicksichtigung dieser Haufigkeits-
verteilung in der Prozedur SAMPLE ver-
wendet wird.

AuBerdem werden beim Aufruf von DISTRI

21 Zahlen vom Eingabemedium gelesen. die
die betreffende Haufigkeitsverteilung
festlegen. Die erste dieser Zahlen muB

SAMPLE (dname)

mit der Kennzahl Kennz Ubereinstimmen,

um Irrtimer in der Reihenfolge auf dem
Datenstreifen auszuschalten. Die folgenden
zehn Zahlenpaare enthalten jeweils zu
einem Argumentwert (aus dem Bereich 0(1)99)
die zugehdrige Haufigkeit als Summenkurve,
so dalBl der erste dieser Hiufigkeitswerte O,
der letzte 100 sein muB. Beli der Auswer-
tung dieser Haufigkeits-

verteilung durch

Arqu- A
SAMPLE wird zu- mard
nichst mittels vt 3
RANDOM ein gleich- F \\
verteilter Zufalls- ' \
wert aus 0(1)99 \

ermittelt, fest- SHPE

gestellt zu wel-
Dy

| 490 wwﬁy~
dieser Wert als RANIOM Keid

chem Argumentwert

Haufigkeit in

der Haufigkeitsverteilung gehdrt und dieser
Argumentwert schlieBlich als Zufallswert
hergenommen.

Wenn man die Haufigkeiten von Zahlenpaar

zu Zahlenpaar linear in Schritten von je

11 anwachsen 14Bt, so wird jeder einge-
tragene Argumentwert im Mittel in 1/10 der
Falle auftreten. Der gleiche Argumentwert
darf auch mehrfach eingetragen sein, so daB
er entsprechend hdufiger auftreten wird.

ist eine Funktionsprozedur vom Typ integer,
ist erkldrt flir eine Hiaufigkeitsverteilung
dname, und liefert als PFunktionswert einen
Zufallswert im Bereich 0(1)99 unter Be-
ricksichtigung der Hiufigkeitsverteilung
dname. Hierfiir wird als Hilfsprozedur intern
RANDOM aufgerufen und zwar mit der Zennzahl
der Haufigkeitsverteilung dname als Lrgument
n.

-y @ e =y S - -

- 20 -

?

HISTOGRAM (hname, untergrenze, intervall) ist eine eigentliche

ADDTO (hhame, wert)

Prozedur und ist erkliart fiir Ausdriicke
untergrenze, intervall vom Typ integer und
ein Feld integer array hname [0 : 207.

Damit wird hname als Histogramm eingefiihrt.
Dieses Histogramm besitzt 11 Intervalle, auf
die die Eintragungen verteilt werden. Das
erste erstreckt sich von-ecbis untergrenze,
daran anschlieBlend folgen 9 Intervalle der
Breite intervall, das letzte erstreckt sich
daran anschlieBend bis nach+e , Dabei wird
jeweils die linke (untere) Intervallbe-
grenzung mit zum Intervall gerechnet.

ist eine eigentliche Prozedur, und ist er-
kldart flr einen Ausdruck wert vom Typ integer
sowie ein Histogramm hname.

Beim Aufruf dieser Prozedur wird wert in
das Histogramm ‘"eingetragen', indem die
dort gegebene Hiufigkeit der Eintragungen
inﬂﬁem Wert entsprechenden}lntervall um

1 erhoht wird.

WRITEDOWN (hname, string) ist eine eigentliche Prozedur, die er-

]

klart ist flir ein Histogramm hname und einen
String "string". Beim Aufruf dieser Proze-
dur wird auf dem Ausgabemedium die im
Histogramm akkumulierte Hiufigkeitsver-
teilung der Eintragungen in die verschiedenen
Intervalle unter Voranstellung des string

als Uberschrift in folgender Form gedruckt

- 21 =

string

g1 g2 g3 g4 85 g6 g7 g8 gg 810

ny n, n, ne 1, Ny ng N7 Ng Ng N,
MEAN o
VARIANCE s

Dabei sind die g; die Intervallgrenzen und n;
ist jeweils die Hiufigkeit der BEintragungen
in das mit g, beginnende Intervall (go =-02),
AuBerdem wird noch der Mittelwert{ und die
Streuungj} ausgedruckt.

e S5l s e i it e - -~ ———

Vor dem Aufruf der oben beschriebenen SIMON-Prozeduren muB als
erstes die CODE-Prozedur

PLANTMASTER

aufgerufen werden, die die internen Verweisungslisten (Master-
lists) bereitstellt, in denen dann Llemente und Listen‘eingetragen
werden konnen.

Der Datenstreifen fiir ein SINOV-Programm muB3 stets mit einer
ganzen Zahl SSS beginnen, die der Benutzer aus
der Gesamtzahl E der im Programm verwendeten Elemente
der Zahl S der Listen
der Summe M aus den maximal in den Listen Jeweils auftreten
den Elemente
nach
S8S = 2E + S + M
errechnen muBl und aus der der fiir die Verweisungslisten bendtigte
Speicherplatz berechnet werden kann,

- 22 -

Nach den einmaligen Voreinstellungen der Parameter 148+ sich
der Wiederholungsteil eines Simulationsprogramms im allgemeinen
in drei Phasen zerlegen:

A Durchsuchen der Zeitliste nach dem Element mit kleinster
Ereigniszeit und fortschalten der Simulationszeit auf
den gefundenen Wert,

B Vornahme solcher Zustandsdnderungen im Simulationssystem,
die direkte Folge der Zeitfortschaltung sind.

C Vornahme weiterer Zustandsdnderungen, die sich zundchst
aus den Zustandsdnderungen der Phase B ergeben. Diese
konnen ihrerseits weitere Zustandsédnderungen nach sich

‘ziehen, die durch wiederholte Iteration der Phase C vor-
genommen werden, bis schlieBlich die Iteration der Phase C
stationdr wird. Dann wird wieder mit Phase A begonnen.

Das Programm endet schlieBlich mit dem Ausdrucken der ge-
fundenen Resultate. Wir erliutern dies im folgenden Abschnitt
an einem Beispiel.

._.__.__—.—_._.—-_—_——-—.——___...._——-——_——_-—_—_—..—_—

Den Umgang mit dieser Simulationssprache wollen wir nun am
Problem der Simulation eines Friseurladens mit zwei Priseuren
demonstrieren.

Was flir Breignisse haben wir nun dabei zu erwarten?
g1) Neuer Kunde kommt

Bei der Durchmusterung der Zeitliste hat sich also als
Element mit kleinster Breigniszeit ein Element NEUER
KUNDEL o1 ergeben und die Simulationszeit (UHR) hat die Br-
eigniszeit seiner erwarteten Ankunft erreicht. Das Element
NEUER KUNDE[l o1 muB nun also in die Liste WARTESCHLANGE hinten
eingetragen und aus der Zeitliste entfernt werden,

Aus statistischen Gegebenheiten entnehmen wir nun die zu er-
wartende Ankunftszeit eines NACHSTEN KUNDEN[o] und reihen
diesen als Xlement (mit der betreffenden Ereigniszeit ver-
sehen) in die Zeitliste ein.

- 23 =

An den Kunden selbst interessieren uns in diesem Modell
weitere, die Kunden unterscheidende Eigenschaften nicht.
AuBerdem ist es mdglich, das gleiche Element mehrfach in
eine Warteschlange einzutragen. Daher werden wir nicht
jedem Kunden ein besonderes Element zubilligen, sondern
nur ein Element KUNDE lo] einfiihren und mit der Ankunfts-
zelt des n&chsten Kunden als Ereigniszeit versehen.

Dann brauchen wir dabeil nicht Streichung und Neueintrag
in der Zeitliste vornehmen, sondern alles was zu tun
bleibt ist

«) das Element KUNDE [o] in die Liste WARTESCHLANGE

eintragen
£ene
/2) dem Element KUNDE [o] neue Ereigniszeit zuweisen.

Die Berechnung der neuen Ereignisgeit entsprechendlﬁ) er-
folgt statistisch. Wir geben also mittels

DISTRI nebenstehende Haufigkeitsverteilung 1

flir die Ankunftszeit-intervalle der Kunden 5 0
ein, nennen sie ANKUNFT und ordnen ihr o3 M
z.8. die Kennzahl 1 zu. 122
15 33
Wir konnen nun das betreffende Programm- 15 44
stlick schreiben, beriicksichtigen aber 2 5 55
noch, dall ein Kunde unverrichteter 2 5 66
Dinge wieder fortgeht, wenn die Warte- 3 . 77
schlange bei seiner Ankunft mehr als 3 5 88
3 Kunden enthidalt. 45 100

Dann hat man also:

if SIZEOF (WARTESCHLANGE) greater 3
then WRITE ('('KUNDE GEHT WIEDER')')
else ADDLAST (KUNDE [o], WARTESCHLANGE);
SETTIME (KUNDE (o], SAMPLE (ANKUNFT) + UHR)

Das setzt voraus, daB eingangs die Verteilung ANKUNFT
mittels DISTRI(ANKUNFT, 1) eingelesen wurde, daB KUNDE [o]
z.B. mittels ENTITY(KUNDE, 1) als Element und WARTESCHLANGE

-y pa
el J /

- 24 -

mittels SET(WARTESCHLANGE) als Liste eingefihrt wurde, und
weiter, daB vorher die Vereinbarungen

integer WARTESCHLANGE, UHR;
integer array KUNDE [o0:0], ANKUNFT [n:20]

getroffen wurden,

Friseur A bzw. B ist fertig

Wenn das Ereignis eintritt, daB‘z.B. Friseur A fertig ist, so
hat also A FRISEURIo] als Element (mit kleinster Ereigniszeit)
in der Zeitliste gestanden, und die Simulationszeit UHR hat so-
epen die Ereigniszeit seines erwarteten Fertigwerdens erreicht.
Wir haben ihn dann in eine Liste FREIE FRISEURE einzutragen und
aus der Zeitliste zu entfernen.

Das analoge Vorgehen findet statt wenn Friseur B fertig geworden

g ke

i VY

Listenausgleich zwischen WARTESCHLANGE und FREIE FRISEURE

Wehrend die unter g1) und g2) gegebenen Ereignisse nach der

4inteilung von F zur Phase B des Simulationsprogrammes gehoren,

e
v anlpephe + AE N AANIIN A P R e e e e S o e a .
L ouULliicv U OQLLUT L ULl TE vulgeoliivdliell weruerl, ale

QN
t

BN ©
W

I.J

el
direkte Folge de: tfortschaltung sind, gehdrt die folgende
Zustendsinderung zur Phase C, in der Zustandsdnderungen be-
handelt werden, die z1s Folge von anderen Zustandsidnderungen

notwendig werden.

“alls ndmlich als Folge von Phase B die Listen FREIE FRISEURE
und WARTESCHLANGE beide mit Elementen besetzt sind, so muBl nun
der WARTESCHLANGE der nichste Kunde entnommen werden und dem
nichsten Friseur aus der Liste FREIE FRISEURE zugefiihrt werden,
wobei dieser aus der Liste entfernt werden, eine neue Ereignis-
zelt seines erwarteten Fertigwerdens zugewiesen erhalten und

in die ZuITLISTE eingetragen werden muf.

falls dann immer noch beide Listen FREIE FRISEURE und WARTE-
SCHLANGE Phezetst sind, mud der Vorgang ncchmals wiederholt

Wirde .

- 25 -

Zur Phase B des Simulationsprogramms (Ziffern g1 und g2) ist
vielleicht noch nachzutragen, was geschieht, wenn zwei Elemente
der ZEITLISTE die gleiche Ereigniszeit besitzen. Die Durch-
musterung der ZEITLISTE wird dann, wenn diese Ereigniszeit die
kleinste ist, nur eins dieser Elemente liefern, das andere
bleibt in der teilbiiste stehen. Wenn nun die Verarbeitung des
ersten dieser Elemente abgeschlossen ist, so wird die nichste
Durchmusterung der Zeitliste eben nochmals die gleiche
kleinste Lreigniszelt mit dem anderen zugehtrigen Element
liefern unda UnR erhilt nochmals den gleichen Wert zugewiesen.

g4) Das Simulationsprogramm

Im folgenden geoven wir nun das(abgesehen vom duBersten

Block, in dem die Codeprozeduren vereinbart werden} voll-
o : y . mit .

stidndige Simulationsprogremm fiir den Friseurladen zwel

Friseuren wieder.

comment die vorangehenden Codeprozedurvereinbarungen haben
vir nicht aufgeflihrt. Daran schlieBt sich das folgende
Programm;

PLANTHASTER;
begin comuent Vereinbarungen;
integer UHR, ZEITPUNKT, s, ELEMENT, r,
WARTESCHLANGE, FREIE FRISEURE, ZEITLISTE;

integer array KUNDE, A FRISEUR, B FRISEUR [o:0],
ANKUNFT, A FRISIERZEIT, B FRISIER-
ZEIT, WARTENDE [o0:201;

comment Uberschrift filr die Resultate;
WRITE ('('< = UHRZEIT WARTESCHLANGENLANGE <3 2')')5

comment Definition von Elementen IListen, Histogramm
und Verteilungen;
ENTITY (KUNDE,1);
FUTITY (A PRISEUR, 2);

ENTITY (B FRISEUR, 3);

- 26 -

SET (FREIL FRISEURE);
SET (WARTESCHLANGE) ;
SET (ZEITLISTE);

DISTRI (ANKUNFT, 1),
DISTRI (A FRISIERZEIT, 2);
DISTRI (B FRISIERZEIT, 3);

HISTOGRAM (WARTENDE, 1, 1);

comment Anfangsvorbelegung;

ADDFIRST (B FRISEUR[o0], FREIE FRISEURE) ;
ADDFIRST (A FRISEUR[o], FREIE FRISEURE) ;
SETTIME (KUNDElo], SAMPLE (ANKUNFT))
ADDFIRST (KUNDE[o1, ZEITLISTE);
UHR := o

comment Beginn des Simulationszyklus;

phase A: SCAN(ZEITLISTE)FOR:(ELEMENT)WITH:(ZEITPUNKT);

phase B: UHR:=ZEITPUNKT ;

if ELEMENT equal KUNDE[o]
then begin if SIZEOF(WARTESCHLANGE) less 4
then ADDLAST(KUNDE[o1, WARTESCHLANGE)
else WRITE('('< = KUNDE GEUT WIEDER<Z 1)1),
SETTIME(KUNDE 07, SAMPLE(ANKUNFT)+UHR);
£0to phase C

end
elde begin ADDFIRST(ELEMENT, FREIE FRISEURE) ;
DELETE(ELEMENT, ZEITLISTE);
goto phase C

end §

phase C: if SIZEOF(WARTESCHLANGE) greater o ..
and SIZEOF(FREIER FRISEURE) greater o

then begin BEHEAD(WARTESCHLANGE);
r:=HEADOF(FREIE FRISEURE);
if requel AFRISEUR[o]
then s:=3AMPLE (AFRISIERZEIT)

else s:=SAMPLE (BFRISIERZEIT);

- 27 =~

SETTIME (r, s+UHR);
ADDFIRST (r, ZEITLISTE);

goto phase C
end;

comment Nun ist Phase C fertig. Es folgt noch Kontrolldruck, Histo-
| grammeintragung und Entscheidung iiber Fortsetzung der
Simulation;
PRINT (UHR, SIZEOF(WARTESCHLANGE));
ADDTO (WARTENDE, SIZEOF(WARTESCHLANGE));
1f UHR less 34 then goto phase Aj;
TRITEDOWN(WARTENDE, '('HISTOGRAMM DER WARTESCHLANGE')');

g5) Die Eingabedaten zu diesem Programm

GemaB f haben wir zundchst SSS zu errechnen. In diesem
Programm gibt es E=% Elemente und S=3% Listen. Die maximgle
Elementzahl je Liste ist fiir die ZEITLISTE gleich %, fiir die
Liste FREIE FRISEURE gleich 2 und fiir die WARTESCHLANGE gleich
4, so daB sich M=9 und schlieBlich SSS=18 ergibt. Der Daten-
streifen hat dann der Reihe nach SSS und die Verteilungen
ANKUNFT, AFRISIERZEIT, BFRISIERZEIT zu enthalten und lautet

183

19 09 O; 09 11; 1, 22; 1, 33; 1’ 4‘4';
2, 555 2, 665 3, T7; 3, 88; 4, 100;

25 5, 0 8, 11; 9, 22; 9, 33; 10, 44;
10, 555 10, 863 10, 7%, 15, 88; 18, 100;

35 6, 035 6, 115 7, 225 9, 33; 10, 44;
5; 11, 665 12, 77; 13, 88; 20, 100;

- 28 -

g6) Die Resultate dieses Programme

UHRZEIT
0

o

O 3 -1

i

o

11
12
12
15
KUiDE
19
19
19

LUNDE

GLEHT

i GEHT

GEHT

GEHT

; GEHT

GEHT

WARTESCHLANGENLANGE
o

W N WP NN @ s N

WIEDER

W N oW

WIEDER
4
WIEDER
4
WIEDER
4
WIEDER

&~ W WA

WIEDER

- 29 -

HISTOGRAMM DER WARTESCHLANGE

3 3 4 7 1441 0 0 0 0 O 0 0

MEAN 2.714
VARIANCE 1.847

3.2, MOBULA

Uber die Simulationssprache MOBULA liegt mir ein Bericht
von Mirz/Juni 67 vor, der keine Angabe des Verfassers oder
Publikationsortes enthidlt, noch einen Hinweis darauf, ob
diese Sprache irgendwo implementiert ist.

Ich mdchte diese Sprache im AnschluB an SIMON kurz streifen,
da es sich hierbei ebenfalls um eine Erweiterung von ALGOL
handelt, die allerdings sehr viel weiter geht wie SIMON und
ganz neue Sprachelemente einfilhrt. Mein Ziel hierbei ist,
einen ganz oberfldchlichen Eindruck daven zu vermitteln, in
welche Richtung diese Erweiterungen gehen. Mir selbst scheint
MOBULA von der logischen Struktur her sehr viel befriedigender
aufgebaut zu sein als SIMON, ist aber eine eigene,relativ
komplizierte Sprache.

Beispiel: Trifft man in MOBULA z.B. die folgenden Vereinbarungen

class soldiers[1500]; hierdurch werden die
Elemente soldiers[1]
bis soldiers[1500] sowie
die Klasse soldiers ein-
gefihrt.

set soldiers: married, sick; hierdurch werden
Listen married und sick
eingefihrt, die mit
Elementen soldiers(i]
besetzt werden diurfen.

- 30 -

feature income;
integer marriage allowance;
name man;
so kann man spater etwa folgende Laufanweisung schreiben
for man over married unless man in siek do
begin income(man):=income(man)+marriage allowance;

Beispiel: Die Syntax ist in Backus-Notation beschrieben, wofiir
folgende Beispiele gegeben seien:

{member?> :={class>/{set>/<{queue’/{entity> /null
(index expressiond:= {arithmetic expression>/head/tail

Beispiel: DaB MOBULA neben groBeren Moglichkeiten zur Formulierung
auch recht uniibersichtliche Notationen bietet, entnehme man
diesem Beispiel. Trifft man nidmlich die folgenden Verein-

barungen

class soldiers[15007; eine Klasse soldiers und Elemente
soldiersl 1] bis soldiers [1500]
werden hierdurch eingefiihrt.

set class soldiers: platoonsl367; eine Klasse platoons und

Listen platoons[1] bis platoonsl 36]
werden hierdurch eingefithrt, wobei
die Listen mit Elementen soldiersli]
zu besetzen sind.

set_class platoons: squadsl12]:; eine Klasse squads und
Listen squads[1] bis squads[12]
werden hierdurch eingefiithrt, wobei
die Listen fiir die Listenelemente
platoonsii] zugelassen sind.

set class squads: companies(47;

set _class companies: brigadesl3];

3.

3

- 31 -

dann kann spdter im Programm die folgende GroBe hinge-
schrieben werden

Brigades [[[[[213110123115001

die entweder den "Wert" soldier[1500] oder den Wert null
(W rtsymbol) hat, je nachdem ob die mit den eckigen
Klammern implizierten Bedingungen erfiillt sind oder nicht.
Diese Bedingungen verarschaulichen wir an folgendem Bild:

Brigades [T[[7 213]11012%71500]

= xR
3

~ T
T o (W N S
> ﬁ‘\' Sy a W
Ny D b ~d
« o N 2 S
s & < N
RS -t X
F 0% & ¥ <
D < s
R = A
e :
T ~& =
L ‘z o
~ 32 <
~ ~ —
S~y e, - ey
N ! = o
~ ‘Q-’ . Y
T < - kS
e, o T)
AR N 3
-~ > =
-G 3. -3
N RO S
‘\'h--- .- ——— J*‘.
~y [

Die angefiihrten Beispiele mbgen geniigen, um einen fliichtigen
Eindruck von der Art dieser Sprache zu vermitteln, und wir

wollen nicht tiefer eindringen.

CSL

Die Simulationssprache CSL wurde entwickelt von IBM United
Kingdom Ltd. zusammen mit ESSO PETROLEUM Comp. und ist
implementiert fiir die ICT-1900Serie und ATLAS. Die mir vor—
liegende Beschreibung stammt von ICT und ist im Oktober 1966

erschienen,:

CSL ist eine Erweiterung von FORTRAN und der implementierte
CSL-Compiler stellt FORTRAN-Programme her. Gegeniiber FORTRAN
besitzt CSL unter anderem eine groBe Zahl zusdtzlicher
reservierter Namen und viele weitere Besonderheiten wie z.B.
zusammengesetzte Anweisungen, die durch gleichmgBiges Ein-
riicken der betreffenden Teil-irweisungen als zusammengehorig

ausgewiesen werden miissen.

- 32 -

Wir haben frither SIMON behandelt als Beispiel einer besonders
einfach strukturierten Simulationssprache, um an ihr die
wesentlichen Begriffsbildungen und Grundoperationen und deren
Zusammenwirken bei der Simulation an einem einfachen Beispiel
kennen zu lernen. (AuBerdem zeichnet sich SIMON dadurch aus,
daB es allein durch ALGOL-Code Prozeduren realisiert werden
kann.) Wir wollen nun auch auf CSL niher eingehen, da hier
insbesondere die Zeitbehandlung anders vorgenommen ist als
bei SIMON und mehr Grundoperationen fiir die Listenbehandlung
bereitgestellt werden. Mein Ziel ist dabei, durch die Be-
trachtung der Unterschiede zwischen SIMON und CSL die Gemein-
samkeiten als Charakteristika der Simulation um so deutlicher
hervortreten zu lassen urd aufzuzeigen, wo die Erbauer von
CSL hauptsdchlich den Mehraufwand zu investieren fiir sinnvoll
erachteten.

- vt 2 " G e S, T U ot S e o St S b et o St S e B o Sl o T e ot St

ACGTIVITIES Dieses statement kennzeichnet die Stelle des
Programms, an der jeweils der Zeitzyklus be-

ginnt (Phase B). Die Programmdurchfiihrung er-
folgt dann in der Regel jeweils bis zum letzten

END, worauf automatisch die Gesamtheit aller

Ereigniszeiten (Zeitzellen) durchmustert wird.
die Zeitfortschaltung vorgenommen und bei
ACTIVITIES wieder begonnen wird.

Die Ereigniszeiten der Elemente geben hier
nicht wie bei SIMON Zeitpunkte der Simulations-
zelt an, sondern Zeitdifferenzen bis zum fallig
werden., Die Zeitfortschaltung besteht dann in
der Durchmusterung aller Zeit g ellen nach dem
kleinsten Wert> o. Dieser Wert wird automatisch
auf die Standardvariable CLOCK (=Simulations-
zeit) addiert und auBerdem von allen Zeitzellen
abgezogen, so daB momentan fallige Ereignis-
zeiten stets den Wert o haben. Das hat zur

Folz=, daf jeweils fir die infrage kommenden
Elemente abgefragt werden muB, ob die Ereignis-

- 33 -

z21t den Wert o hat, was dureh Bereitstellung ge-
eigneter Durchmusterungsroutinen ermdglicht wird.

RECYCLE Dies Statement bewirkt die Vormerkung, dafB beim
nachsten Zeitzyklus keine Zeitfortschaltung vor--
genommen werden soll. Werden also beim durchlaufen
des Zeitzyklus nach einer Zeitfortschaltung
(Ynase B) Zustandsédnderungen vorgenommen, die
ihrerseits weitere Zustandsdnderungen nacl: sich
zichen, die infolge der Reihenfolge der Programm-
riederschrift Wiederholung des Zeitzyklus ohne
weitfortschaltung notwendig machen (Phase ©), so
wird dies durch das Statement RECYCLE ermOglicht.

EXIT ITles Statement wird erreicht, wenn die Simulation
ahgebrochen werden soll, und bewirkt das dynamische
Frogrammende durch einen Sprung in das Besriebs-
svstem.

Elementgrupper. (classes) und Listen (sets)

- s - . . s R G ST T o (. - —_—_— o — Wt " - o~ . v -~ —

In CSL werdern nicht einzelne Elemente, sondern immer gleich
ganze Elemericruppen (classes) eingefiihrt. Listen kbnnen allein
in Verbindung mit einer Elementgruppe eingefiihrt werden und
diirfen ausschieBlich mit Elementen aus der zugehorigen Element-
gruppe besetzi werden. Hierin und in der zusitzlichen Forderung,
daB ein Elemcrt nicht mehrfach in eine IListe eingetragen werden
darf, liegt ¢.1e starke Einschrinkung gegeniiber den Moglich-
keiten von S 7CN (vgl., WARTESCHLANGE im Friseur-Beispiel),

die jedoeh c¢ffenbar von den CSL-Erfindern nicht als wesentlich
empfunden wurde, und der an anderer Stelle viel weitergehende
Mggliehkeiten cegeniiber stehen.

c)

- 34 -

Zur Einfilhrung einer Elementgruppe und Listen fir diese
Elemente dient das statement

CLASS TIME cname m (aj, 32"") SET sname1 (n1), sname?2 (nz),...

1\ o ST
Y&T"" Y B RN ﬂl‘
< ¥ Y —
i 3 - nE H P ‘l}
. Ly by R <. *~ .
: L T
$% R R
s~ < &Y ey R
£ 2 Y e Y e B ~ Ly~
e X - ;
it\w B {N\\A - RGNS
e . NS e N U
N TsoLT Y IR
TR 13 L oSy L ~ Iw s
BN SN 8 . DO s X
N SR Dy = b R R
- N & o ™S T ~ T
e N S o Y RN < -
< g v N WM [el
~ . - S e . \I) X — W
- L A N : ;)
& § S . < -~ N4
3 23 i3 vy S
T~ o NS I v X
¥ o~ = < - ~N ~ 3 =
.y -— < N e _— T
s § I8 $TRRTE =5 O
N, Wy - e S0 L S § % 2
~ X Y TN © = S F Yo
N < A - ~
ﬁE}"t ¢ - _‘\.:.4:::: - > ‘t\'
p o RO T —
53 % ST xS iE S
TN <o X LA N, Yo s
s o~ < ~ < N .= -~ iy By ~
T30 S s ¥ T v s ¥ g
Py oo Aol Q e e
it = &) > O ‘-\3 3. 3£ TS
< Vv =

Mit diesem statement werden die Elemente cname,M mit 1€M< m
eingefiihrt, wobei M auch eine Variable sein darf. Jedes
Blement besitzt dann ein Feld von Eigenschaften

cname, M (11, 1,5 «+.) mit 1€1;<a;. Falls in obigem statement
das Wort TIME nicht entfdallt, besitzt jedes Element auBlerdem

als Eigenschaft eine LEreigniszeit T.cname.M, die ih dieser

Form unmittelbar in Ausdriicken und bei Wertzuweisungen zu-

ganglich ist und allein an dem vorangestellten 3uchstaben T
(als Ereigniszeit) erkannt wird.

Die dem obigen statement entsprechenden Prozedurecn in SIMON

wiren ENTITY (ent, kennr), GROUP ENTITY (gent, anz, kennr) und
SET (set).

——" — — —— " S —{——— S —c——— — T o SO o T T S

Einigen statements zur Listenmanipulation, wie z.B. das Ein-
tragen eines Elements in eine Liste 188t sich ein Wahrheitswert
true bzw. false zuordnen, je nach dem ob die Anweisung aus-
fiihrbar war od=sr nicht. Beispielsweise ist die Anweisung zum
Eintrag eines Elements in eine Liste dann erfolglos, wenn das

- 35 -

Element schon in der Liste enthalten ist. Daher haben solche
statements gleichzeitig den Charakter von Bedingungen, deren
Wahrheitswert mittels alternativer Sprungangaben abgefragt

werden kann (Erfolgspriifung).

Diese Sprungangabe kann entfallen. Dann werden automatisch
geeignete Sprungziele eingesetzt und zwar im Erfolgsfall zur
ndchsten Anweisung, im MiBerfolgsféll zum nachsten BEGIN-
statement (bzw. zum Ende des Zeitzyklus falls kein weiteres
BEGIN folgt). Solche BEGIN statements konnen zu diesem Zweck
ins Programm eingestreut werden und gliedern die Folge der An-
weisungen des Programms in Teilfolgen, die man ihrerseits als
Aktivitdten (activities) bezeichnet.

Eine solche Sprungangabe (zur Erfolgspriifung) hat die Gestalt.

%
m1~.2< m2

und bewirkt bei Erfolg den Sprung zur Marke m, andernfalls
zur Marke m, . Entweder m, oder m, oder die ganze Sprungangabe
kann entfallen. Fehlt m,, SO wird automatisch statt dessen
als Sprungziel das nichste statement eingesetzt; fehlt m,

so wird automatisch statt dessen als Sprungziel das n#chste
BEGIN-statement bzw. das letzte END eingesetzt.

Neben den spater 2zu behandelnden komplizierteren (FOR, FIND,
TESTCHAIN-Compound) statements stehen folgende einfacheren
statements zur Listenmanipulation zur Verfigung.

ent HEAD set m1@3 m, bewirkt das bedingte Eintragen des

ent TATL set m1Q§2m2 Elements ent am Anfang bzw. am Ende der

Liste set. Bedingung: ent ist nicht

schon in set eingetragen. Wie bereits
oben generell vorausgeschickt, miissen
ent und set zur gleichen Elementgruppe
(class) gehdren.

[dem entspricht in SIMON:

ADDFIRST(ent)TO:(set) bzw. .y
ADDLAST (ent)T0:(set)]

HEAD 8

TAIL s1

ent FROM set

s, LOSES

So

ZERO s S

1’ 29

LOAD Sqs Sps

Sq

GAINS s
GAINS s,

CONVERRSE s

- 36 -

(ohne Erfolgskontrolle) In der Liste s, werden

vorn bzw. hinten alle Elemente der Liste
S5 eingetragen, die nicht schon in 84
sind.

[hat keine Entsprechung in SIMON]

Das Element ert wird bedingt aus der
Liste set entfernt. Bedingung: ent ist

in set.
[Entsprechend DBLIETB(ent)FROM: (SET)
in SIMON]

(ohne Erfolgskontrolle) Diejenigen Elemente werden

aus der Liste 3, entfernt, die zugleich
“in der Liste So sind.

[Entsprechend DRIETE(s,)FROM:(s,)

in SIMON]

...(ohne Erfolgskontrolle) Lecrmachen der Listen Sy

Soy ees o Hierbei brauchen nicht alle
aufgefiihrten Listen zur gleichen
Elementgruppe gehoren.

[in SIMON realisierbar durch
DELETE(s,)FROM: (=,)]

...(ohne Erfolgskontrolle) ai: Listen s,, sy,

werden Jewells mit allen Elementen der
jeweils zugehdrigen Elementgruppe (class),
besetzt (Voraussetzung ist, daB die
Listen groB genus vereinbart wurden).
Dementsprechend dirfen 815 Spy .-
verschiedenen Elcmentgruppen zugehoren.
[hat keine Entsprechung in SIMON]

(ohne Erfolgskontrolle) Die Liste s, wird neu

besetzt mit allen Llementen der Element-
gruppe (class), die nicht in der Liste
So svenc,

[hat keine Entenrechung in SIMON]

- 37 -

Weil in CSL Listen nur jeweils fiir eine bestimmte Elementgruppe
vereinbart werden konnen, erilbrigen sich Agquivalente zu den
SIMON-Prozeduren REFNUM(ent) und MEMNUM(gent), denn bei der
Durchmusterung einer Liste ist die Elementgruppe sowieso

von vornherein bestimmt und die Durchmusterungsroutinen von
CSL liefern daher automatisch als Resultat den Gruppenindex.

Die SIMON-Prozeduren BEHEAD(set) und BETAIL(set) haben keine
Entsprechung in CSL, denn einerseits hat die Reihenfolge der
Listenelemente hier keine so groBie Bedeutung, nachdem jedes
Element nur einmal in jeder Liste auftreten darf, und anderer-
seits kann man mittels der sehr komfortablen Durchmusterungs-
routinen in CSL leicht das gesuchte Element ent feststellen
und dann mittels entFROMset entfermnen.

Diese komfortéﬁien'CSi—Dﬁréhmusterﬁngsroutinen wie FOR und
FPIND, die wir in den folgenden Abschnitten behandeln werden,
bieten viel weitergehende Moglichkeiten als die SIMON-Proze-
duren HEADOF(set), TAILOF(set), SIZEOF(set) sowie
SCAN(set)POR: (member)WITH:(leasttime), und eriibrigen auch ein
Analogon zu ROTATE(set, n), das in SIMON in Verbindung mit
HEADOPR(set) neben der Durchpyiusterungsroutine SCAN die einzige
Moglichkeit zur Listendurchmusterung bietet.

Diese CSL-Durchmusterungsroutinen gestatten es Bedingungen
anzugeben, die die bei der Durchmusterung in Betracht zu
ziehenden Elemente erfiillen miissen, und Ausdriicke anzugeben,
die bei dem gesuchten Element einen Maximal- bzw. Minimalwert
liefern. Ferner sind FOR-Schleifen iiber set-Elemente moglich.
Diese Komfort-Ausstattung geht weit liber das MaB dessen hin-
aus, das erforderlich wadre, um den Unterschied in der Er-
eigniszeitbehandlung gegeniiber SIMON auszugleichen, der das

i/t
Auffinden aller Elemente s Ereigniszeit O notwendig macht.

SchlieBlich entfdllt auch die Notwendigkeit filr ein
Analogon zu den SIMON-Prozeduren TIMEVALUE(ent) und

SETTIME(ent)TO:(value), da die Ereigniszeit T.ent in CSL wie
eine gewChnliche Variable zugidnglich ist.

- 38 -

Was Histogramme und Wahrscheinlichkeitsverteilungen an-

langt, so ist der Unterschied zu SIMON, abgesehen von der
Moglichkeit, verschiedene Standardzufallsverteilungen unmittel-
bar zu verwenden, nicht sehr groB.

Als Hauptunterschiede vop CSL gegeniiber SIMON hat man somit:

1. Listen sind jeweils nur fir bestimmte Elementgruppen
zugelassen. '

2. Ein Element kann nicht mehrfach in eine Liste einge-
tragen werden.

3, Die Ereigniszeiten werden als Zeitdifferenzen zur
Simulationszeit CLOCK gefuhrt und wie diese am Ende
des Zeitzyklus automatisch fortgeschaltet.

4. Die Listenbehandlungsroutinen in CSL bieten einen ganz
betrschtlich groBeren Komfort, als es in SIMON der Fall
ist.

5. CSL besitzt viele eigene Sprachelemente und kann nicht
wie SIMON durch Erstellung einiger CODE-Prozeduren
implementiert werden.

In den folgenden Abschnitten betrachten wir nun die iiber SIMON
hinausgehenden Moglichkeiten, die CSL zur Listenverarbeitung
bietet.

Als Laufanweisung kennt FORTRAN nur das DO-statement

DO marke var = My, Mo, m3, wobel marke die letzte zum Wieder-
holungsteil gehorige Anweisung markiert und die Laufvariable
3 durchlauft.

Das FOR~statement gibt es in zwei Varianten. Die erste

var die Werte von m1 bis m2 in Schritten von m

Variante leistet das gleiche wie das DO-statement:

FOR var = My, g, m3 Die Laufvariable var durchliuft die Werte

| m1 bis my in Schritten von m Im Unter-

. schied zum DO-statement werdzn hier jedoch
die zum Wiederholungsteil gehorigen Anwei--
sungen durch gleichmidBiges Einriicken kennt-
lich gemacht, was durch das Zeichen (7)

angedeutet sei.

f)

- %29 -

Die Klammerung von zusammengesetzten Anweisungen durch gleich-
mgBiges Einrilicken spielt auch im Folgenden eine wichtige Rolle.
Verschachtelung ist hierbei zuldssig.

Die filir die Listenbehandlung wichtige Form des FOR-statements
lautet

FOR var = set Die Laufvariable var durchliduft hierbei
T die Gruppenindizes derjenigen Elemente,
- die in der Liste set aufgefiihrt sind.
(In den Anweisungen des Wiederholungs-
teils konnen dann GroBen wie cname.var(i)

oder T.cname.var auftreten)

Bedingungen

In den folgenden Durchmusterungsroutinen spielen Bedingungen
eine Rolle. Auf die zusammengesetzten Bedingungsketten werden
wir in Abschnitt i) eingehen. Hier seien einige einfache Be-
dingungen angefiihrt, die in CSL zu den iiblichen Bedingungen
wie Relationen etc., hinzukommen:

ent IN set hat den Wert TRUEIfalls das Element ent in der
Liste set steht.

ent NOTIN set hat den Wert TRUE,falls das Element ent nicht
in der Liste set steht.

S EQUALS Sy hat den Wert TRUE, falls die Liste S, genau
die gleichen Elemente wie die Liste Sy enthialt,
ohne Beachtung ihrer Reihenfolge.

S WITHIN Sy hat den Wert TRUE, falls alle Elemente der
Liste s1 auch in der Liste 32 enthalten sind.

Sqs Spsenn EMPTY hat den Wert TRUE, falls keine der
Listen Sqs Spgeee ein Element enthidlt.

Figt man einer solchen Bedingung wie in Abschnitt c¢) eine
Sprungangabe m1@iim2 bei, so wird sie zum bedingten Sprung. Man
kann diese Bedingungen ohne Sprungangabe ebenso als bedingte
Springe mit vom Ubersetzer automatisch eingesetzten Sprung-
adressen auffassen, was bei der spdteren Behandlung von Be-
dingungsketten deutlich wird.

- 40 -

- et — e S T — — . T W ——— o Tl m_— S — S ——— - ST o S G -~ — O o W ——— —a U —— W — —— - — D oo S—

—— o o —— S o——

Die FIND-statements werden in Verbindung mit sogenannten
Bedingungsketten verwendet, auf deren Aufbau wir in Abschnitt i)
eingehen. BEine Bedingungskette wird aufgebaut aus Bedingungen
und ist selbst eine Bedingung, die den Wahrheitswert TRUE

oder FALSE haben kann. Eine Bedingungskette kann auch leer

sein und hat dann den Wert TRUE. Die eine Bedingungskette
bildenden Bedingungen werden wieder durch gleichmiBiges Ein-

ricken zusammengefalt.

Das FIND-statement dient der Durchmusterung von IListen und
liefert ein Element aus der Liste mit bestimmten Eigenschaften.
Mittels einer Sprungangabe kann die Erfolgsprifung vorge-
nommen werden, ob ein solches Element in der Liste gefunden
wurde (vgl. Ziff. c). Das FIND-statement hat die Gestalt

FIND variable setname criterion m1§§ m,

1
mj (Bedingungskette)

criterion steht flir eins der Worte ANY, FIRST, LAST,

MAX(arth expr), MIN(arith expr) und gibt an, ob unter den die
Bedingungskette erfiillenden Listenelementen ein beliebiges,
das erste, das letzte, oder eins fiir das ein arithmetischer
Ausdruck den groBten bzw. kleinsten Wert annimmt, genommen

werden soll.

Im einzelnen durchliuft variable den Gruppenindex aller
Elemente der Liste setname Beachtet werden nur solche
Elemente, flir die die Bedingungskette den Wert TRUE annimmt.
Unter diesen Elementen wird sodann unter Beriicksichtigung
von criterion eins ausgewdhlt und abschlieBend variable mit
dessen Gruppenindex als Resultatwert besetzt.

T T~

- 41 -

Je nach criterion geschieht dabei folgendes

ANY Aus den beachtcten (Bedingungskette!) Elementen
“wird ein zufidlliges ausgewdhlt. Eine Standard-
zufallsfolge wird hierfiir herangezogen. Soll
eine andere durch den Wert stream niher gekenn-
zeichnete Zufallsauswahl herangezogen werden
(vgl. Ziffer g) so schreibt man an Stelle von
ANY nun ANY(stream).

FIRST Aus den beachteten Elementen wird das erste
in der Liste auftretende ausgewdhlt [wenn die
Bedingungskette leer ist, so entspricht das
der SIMON-Prozedur HEADOF(set)].

LAST Aus den beachteten Elementen wird das letzte
in der Liste auftretende ausgewshlt [ist die Be-
dingungskette leer, so entspricht dies der
SIMON-Prozedur TAILOF(set)],

MAX(arith expr) Filir die beachteten Elemente wird der
arithmetische Ausdruck arith expr berechnet und
auf integer gerundet. Sodann wird unter den
Elementen, fiir die sich hierbei der Maximalwert
ergeben hat, das letzte in der Liste auftretende
ausgewahlt.

MIN(arith expr) Analog MAX wird hier ein Element ausgewahlt,
fir das arith expr nach Integerrundung den
Minimalwert annimmt.
(mit MIN(T.cname.variable) hat man den Gruppen-
index variable des Elements mit kleinster Er—
eigniszeit, was also der SIMON-Prozedur
SCAN(set)FOR: (member)WITH: (leasttime) entspriont]

- 42 -

T e o oo S e o S o o e Uit G o e S B Gon T oo (o P St M S B O B o S o T S o o s N o o o e S 5D e S o

—— . ——— — T — ——— o D — S G~ —— — " T o | o e s M - =

Bedingungsketten konnen analog dem FIND-statement noch mit
folgenden weiteren "Titel'"-Anweisungen verarbeitet werden
(wobei die zu der betreffenden Titelanweisung gehdrige Be-
dingungskette unter derselben folgt und wieder gleichmilBig
eingeriickt wird).

CHAIN m1Q§)m2 Priifung der Bedingungskette: Sprung nach
(Bedingungskette) m,, wenn ihr Wert TRUE ist, andernfalls
Sprung nach m,. Das in c) tliber die Sprung-

2

angabe gesagte gilt auch hier,

ALL variable set m1QDm2 Priift, ob die Bedingungskette stets
137 7 o 7 adi 1 ol

__J(Bedingungskette) erfiillt ist, wenn die variable alle

— Gruppenindices der Elemente in der

Liste set durchlguft; ist dies der

Fall (TRUE), so erfolgt Sprung nach

m, (vgl. wieder c).

EXISTS (integer expr) variable set m1§é>n@
l (Bedingungskette) Priift analog ALL, ob die Bedingungskette

P

fiir mindestens so viele Ilemente der Liste

set erfiillt ist, wie der Ausdruck int.expr
angibt.

-\

UNIQUE (int.expr) variable set m. ({jm,

ety

(Bedingungskette) Priift analog EXISTS, ob die Bedingungskette

flir genau so viele Blemente der Liste set
erfiillt ist, wie int.expr angibt.

AOUNT variable set (keine Sprungangabe!) Zundchst durchliuft

;::](Bedingungskette) variable die Gruppenindices der Elemente
in der Liste set und es wird mitgezahlt,
fliir wieviele der Elemente die Bedingungsketie
den Wert TRUE hatte. AbschliefBend wird
variable die Anzahl dieser Elemente als Re-
sultatwvert zugewiecsen.[Falls die Bedingungs-
kette leer ist, so hat man das Aquivalent zv
der SIMON-Prozedur SIZEOF(set)]

- 43 -

SUM (int.expr) variable=set (keine Sprungangabe!) Zunidchst

d] (Bedingungskette)

!

durchlauft variable die Gruppen-
indices der Elemente in der List:
set, Plir diejenigen Elemente, fi:
die die Bedingungskette erfiillsc
ist, wird der Ausdruck int expr
(vom Typ integer) errechnet und
aufsummiert. SchlieBlich wird
variable als Resultatwert das Ex-
gebnis dieser Summation zugewiegcn,

In der Form
SUM(intheXpr)variable=m1, My, My
ohne Bedingungskette kann die
Summe iiber alle Werte des int expo
berechnet werden, wenn variable
von m, in Schritten von m3 bis I
lauft. AbschlieBend kommt das

Resultat wieder nach variable.

RANK variable set (arith expr) (keine Bedingungskette und

SPLIT variable s

T

l
]

1

(Bedingungskette)

INTO s

> EL

keine Sprungangabe!) Zundchst duz

lauft variable die Gruppenindices

der Elemente in der Liste set. Jo-
weils der Ausdruck arith expr wirl
errechnet und nach dessen Wert in

abnehmender GroBe die Elemente in

der Liste set in neuer Reihen-

folge angeordnet.

SBE Sz

Die Listennamen S5 Spy Sz .missen
flir die gleiche Elementgruppe er-
klart sein. Dann wird zunichst

S5 und Sz leergemacht, sodann
durchl&auft variable die Gruppen-
indices der Elemente in Sq. Er-

gibt die Bedingungskette dabei

- 44 -

jeweils fiir ein Zlement den Wert TRUE, so
wird es in S» eingetra en, anderenfalls
in S '

Die Teile INT032 bzw. ELSES3 kdnnen auch

entfallen; dann wird der betreffende Teil
der SPLIT-Anweisung unterdriickt.

Ersetzt man INTOs, durch INTO HEADS2 bzw.
INTO TAILs2 so wird S, 2u Beginn der
SPLIT-Anweisung nicht leergemacht, sondern
die betreffenden Llemente aus Sq werden
vorn bzw. hinten zusdtzlich zu den bereits
vorhandenen Element in Sy eingetragen, so-
fern sie nicht becreits eingetragen waren.
Analoges gilt bel Ersetzung von ELSEs3
durch ELSE HEADss bzw. ELSE TAILSB.

Als spezielle Bedingung innerhalb der Be-
dingungskette ist beim SPLIT-statement hier

QUALIFY

?(Bedingungskette 2)

zugelassen. Dann werden die Elemente aus
Sq fiir die die Pedingungskette 2 FALSE
ist, libergangen 1.2d weder in S noch in
Sz eingetragen.

Als "Bedingungen", aus denen Bedingungsketten aufgebaut
werden, konnen grundsdtzlich fast alle unbedingten oder be-
dingten Anweisungen herangezogen werden, sofern man bei ihnen
keine Sprungangabe macht (vgl., Ziff. c).

Solche Anweisungen werden beil ihrer Berlicksichtigung als
"Bedingung" normal vollzogen, und ihnen, wenn z.B. keine
Brfolgsprifung und also kein Wahrheitswert fiir sie vorgesehen
ist, der Wahrheitswert TRUE zugecorin-t. Dabel ist jedoch zu
beachten, daB die Prifung einer AND-verknipften Bedingungs-
folge schon beim ersten FALSE abgebrochen wird, weil der |
Wahrheitswert der Folge dann bereite Ieststeht.

i)

- 45 -

Als Bedingungen kommen 2lso neben Relationen insbesondere die
in f) genannten in Frage, aber auch die in e), g) und h)
genannten compound-statements unter Weglassung der Sprung-
angabe, wobei bis zu 20fache Verschachtelung der zusammenge-

setzten Bedingungen ineinander zulidssig ist.

Schreibt man nun eine Folge Bed

solcher Bedingungen gleich- Bed . And-ﬁerknupft
maBig eingerlickt unterein- oo | A
ander, so gelten sie als Bedj

and-verknlpft. Schreibt man OR OR-verkniipft

zwischen jeweils zwei sol-

che in sich and-verkniipften Bed"? ,
Bedingungsteilfolgen das e } And-Verkniip£? ———i-——
Wort e N

OR Bed J
so gelten diese Teilfolgen OR OR—vefknupft
untereinander als or-ver- Bed |

kniipft. Das so entstehende R And-verkniipft l
Gebilde ist eine Bedingungs- Bed {
kette, dem als Resultat '

ein Wahrheitswert zukommt.

In den im folgenden aufgefihrten Zufallsfunktionsprozeduren
kommt jeweils ein Parameter stream vom Typ integer vor, der
mit einer Variablen besetzt sein muB, die einen ganzzahligen
Wert > O haben mufl, Bel jedem Aufruf einecr Zufallsfunktion
wird diesem Parameter ein neuer Wert zugewiesen, wahrend der
alte intern beim Erzeugen der Zufallszahl mit verwendet wird.
Die erhaltene Zufallszahl selbst kann Variablen vom Typ real

oder integer zugewiesen wcrden.

- 46 -

RANDOM (stream, range) . ist eine Funktionsprozedur. Range ist
ein Ausdruck vom Typ integer. Als
FPunktionswert stellt sich eine Zu-
fallszahl im Bereich 7< RANDOM £ range
bei rechteckiger Haufigkeitsverteilung
ein.

DEVIATE (stream, deviation, mean) ist eine Funktionsprozedur;
deviation, mean sind Ausdriicke
vom Typ integer. Als Funktions-
wert stellt sich eine Zufalls-
zahl aus einer Haufigkeits-
Normalverteilung ein, deren
Mittelwert = mean und deren
Streuung = deviation ist.

NEGEXP (stream, mean) ist eine Funktionsprozedur, und mean
ein Ausdruck vom Typ integer. Als
Funktionswert stellt sich eine Zufalls-
zahl aus einer negativen Exponential-
verteilung ein, deren Mittelwert = mean
ist.

POISSON (stream, mean) ist eine Funktionsprozedur, und mean
ein Ausdruck vom Typ integer. Als

Funktionswert stellt sich eine Zufalls-
Viny ¢

-

zahl aus einer POISSON-Verteilung -
Mittelwert = mean ein.

Soll eine vom Programmierer vorzugebende Haufigkeits—erteilung
beil der Erzeugung einer Zufallszahl zugrunde gelegt werden, wo-
bei m Werte ay und die jeweils zugehOrige Hiufigkeit n, des Auf-
tretens von ay angegeben werden sollen, so mufl zundchst ein Feld

ARRAY aname (2, m+1)
vereinbart sein und dieses wie Ublich mit der zu verwendenden

- 47 -

Haufigkeitsverteilung vorbesctzt werden, so daB die einzelnen
Feldkomponenten wie folgt besetzt sind:

2hnt n, n, n3 n_ n, = Haufigkeit des
t=q [Auftretens fiir den
Wert a
m a1 a2 a3 am t

(Hierfiir wird die gewdShnliche Einleseroutine verwendet, wobel
das Einlesen spaltenwcise erfolgt)
Danach kann man das Statement schreiben:

DIST anamel, aname 2, ... Durch dieses Statement werden die Feld=
namen anamel, anamel2, ... als Ver-
teilungsnamen eingefiihrt und die dort
gespeicherten Haufigkeitsverteilungen
umgerechnet in Summenkurven (wobei sich
also die Besetzung dieser Felder &ndert!)

SAMPLE (index, dist1, streamil, dist2, stream?, ...)
ist eine Funktionsprozedurs; disti sind
mittels DIST als Verteilungsnamen ein-
gefiihrte Feldnamen, stream; sind die
jeweils zugehdrigen (eingangs be-
sohriébenen) Parameter stream; index
ist ein Ausdruck vom Typ integer.

Als Funktionswert stellt sich eine Zu-
fallszahl aus derjenigen Verteilung
disti mit dem Parameter streami ein,
die durch 1 = index bestimmt ist.

—— —— S 2 ——— {— o

™

HIST hname1 (n1, ug1,c}1), hname?2 (nZ, gz,cJ;), coe
fihrt Histogramme mit dem Namen
hnamei ein. Nis U8ys 4 sind Ausdriicke
vom Typ integer.

- 48 -

Jeweils das Histogramm hnamei besitzt
dabei 0y Intervalle; das erste dieser
Intervalle erstreckt sich von —&o bis ug;
dann folgen n-2 Intervalle der einheit-
lichen Intervallbreitecfi, an deren
letztes sich das Intervall bis +

anschlieB3t.
1 2 3 . . n"’] n ;
-t‘—-—*m--le;(..'{: e}«cf';_- -—az { (o 'f‘-’”gj
..u'

ADD int expr, hname trédgt den Wert des Ausdruckes int expr
(vom Typ integer) in das Histogramm
hname ein.

OUTPUT hnamel, hname2, ... Druckt auf dem Ausgabemedium die
Histogramme hnamel, hname2, ... jeweils
in der folgenden Gestalt

'm1 TO a, dabei bedeutet jeweils
m, a; T0a, | "» fa. 108y,
» daB m) Eintragungen im
Mz 35 TO ag Bereich von a,,_,
......... ceeceans bis a,, registriert
m, a, TO wurden (dabei gilt

Qopeg = 29, * d)

Uberschriften etc. miissen extra mittels
WKITE ausgegeben werden.

CLEAR hname1, hname2, ... entleert die Histogramme hnameft,
hname2, ...

YIELD (hname, range) ist eine Funktionsprozedur vom Typ
integer; range ist ein Ausdruck vom Typ
integer.

- 49 -

Als Funktionswert stellt sich die Anzahl
der bisherigen Eintragungen in dasjenige
" Intervall des Histogramms hname ein, dem

der Wert range angehort.

——————_— Y - — o —— o ——— o o . S . ——— — 2 —_ S —— " ——— —

CHECK (name?l, name2, . .) druckt bei entsprechender Wahl-

schalterstellung die aufgefiihrten
Variablen in folgender Form aus:

|
| name1 EQUALS Wert |
g name?2 EQUALS Wert

SchluBbemerkung

An der sehr einfachen Simulationsspraohe SIMON, die aus
ALGOL durch Hinzufligen einiger CODE-Prozeduren entsteht,
haben wir gesehen, wes cine Simulationssprache als solche
kennzeichnet. Bei der etwas weiter ausgebauten Simulations-
sprache CSL haben wir gesehen, daB der Mehraufwand dabei
praktisch ausschlieflich den Listenbehandlungsroutinen
zugute kam.

Neben den hier behandelten Simulationssprachen haben die
folgenden noch groBere Bedeutung: SIMSCRIPT, GPSS, SIMULA6GT.
Wieder ist bei jhnen ein wesentliches Merkmal die Einflihrung

von Listenstrukturen als Datentypen. Dariiber hinaus gestattet
SIMULA67 nicht nur z.B. Warteseohlangen als Listen zu etablieren,

sondern implizite konnen auch dig@gu verschiedenen Zeit-
punkten verschiedenen Zustdnden ' einzelnen Variablen je-
weils als zu Listen zusammengefaBt aufgefaBt werden. Uber
die zeitlichen Verdnderungen der einzelnen Variablen wird
automatisch Buch gefiihrt und so kann ein komplizierterer

Simulationsprozess spater nach verschiedenen, sich im Laufe

- 50 -

der Auswertung neu ergebenden Gesichtspunkten, ausgewertet
werden ohne daB eine nochmelige Wiederholung des Simulstions-
vorgangs erforderlich ist.

Die verwendete Simulationssprache ist jedoch nur ein Hilfs-
mittel filir das Problem der Simulation eines Betriebssystemns,
Wir sind haupts8chlich darum auf die Simulationssprachen so
welt eingegangen, um Einblick in die Struktur der Simulation
als solcher zu gewinnen. Das eigentliche Problem bei der
Simulation eines Betriebssystems ist jedoch nicht die ver-
wendete Simulationssprache, sondern die Gewinnung eines ge-
eigneten Simulationsmodells.

Beispielsweise i1st auch die Frage, wie man Engpdsse lokali-
siert und was genau man unter dem Begriff "EngpaB" zu ver-
stehen hat, letzten Endes ungekldrt. Das naive Vorgehen aus
Ziffer 2 hat zwar zu Verbesserungen gefiihrt und das Problem
erahnen lassen, ist jedoch recht unbefriedigend. Da Engpisse
Job-mix abh8ngig sind, kann man die Warteschlangen bzw. die
betreffenden Wartezeiten nur jeweils fir einen bestimmten
Job-mix betrachten. Dabei werden aber auch vor einem EngpaB
die Warteschlangen nicht beliebig anwachsen, sondern es wird
sich eine in etwa stationdre Warteschlangenlange einstellen:
Wenn nadmlich z.B. die Speicherverdrangung zu langsam geht,
so wird der Speicher zu langsam frei fiir neue Transferauf-
trdge in dem Speicher, auf die die CPU wartet. Die Folge ist,
daB dann auch entsprechend weniger Verdréngungsauftrége ge-
geben werden.

Um zu einer Bewertung der Engpdsse zu kommen, kdnnte man

eine Art Gradientenmethode versuchen, indem man fiir jeden
EngpaB isoliert eine beschleunigte Verarbeitungszeit annimmt
und die Auswirkung auf den Durchsatz des Systems an Auftridgen
untersucht. Jedoch muB diese Methode jedenfalls dann versagen,
wenn nur gleichzeitige Beschleunigung von zwei ("gekoppelten")
Engpédssen den Durchsatz erhcht.

- 51 =

Der Begriff "EngpaB" wird weiter beleuchtet durch die Be-
merkung, daB es auch erwiinschte Engpdsse gibt, wie z.B.
den bei der Eingabe, wenn mehr Auftridge gerechnet werden
konnten, als vorliegen. Manche Engpisse sind legitim, wie
der durch die Leistungsfahigkeit des Druckers bestimmte,
wenn der Jobmix ausschlieBlich Druckauftrige gibt.

Im AnschluB an den "VerwaltungsengpaB" aus Ziffer 2, bei dem
die CPU hauptsdchlich mit Verwaltungsroutinen "verstopft"
wurde, erhebt sich die Frage, welche Programmteile hat man
in diesem Sinne zur Verwaltung zu rechnen; und wie findet
man innerhalb der Verwaltungsroutinen diejenigen heraus,
deren Beschleunigung am meisten Gewinn fiir den Durchsatz
bringt.

AbschlieBend wollen wir noch kurz auf den praktischen An-
wendungsfall flir Betriecbssystemsimulation eingehen, der zu-
meist darin besteht, daB ein Betricbssystem entwickelt

werden soll und dafiir Entscheidungen iiber alternative
Strategien bei einzelnen Teilaufgaben zu treffen sind, die

zu einem spateren Zeitpunkt nicht mehr gedndert werden konnen.

Das bedeutet, daB unter starkem Zeitdruck ein Modell fiir

die Simulation dieses Teilkomplexes entwickelt werden muf,
was dadurch erschwert ist, daB fiir groBe Teile des restlichen
Systemsdie Planung noch nicht abgeschlossen ist. Der mit der
Entwicklung des Simulationsmodells Beauftragte wird dann eine
Reihe von "Eingangsparametecrn" fiir sein Simulationsteil-
modell isolieren konnen, die das Simulationsergebnis stark
mitbestimmen und wird nun seinerseits dem beauftragenden
Systemprogrammicrer nahelegen, sich vordringlich mit der Ent-
scheidung iiber diese Eingangsparameter zu befassen, bevor die
urspriingliche Fragestellung mittels Simulation geklart werden
kann.

So werden sich Systemprogrammierung und Simulationsaufgaben
wechselseitig bedingen und eine enge Zusammenarbeit zwischen
den Arbeitsgruppen fiir Systemprogrammicrung und Simulation
erforderlich machen.

