RECHENZENTRUM TH MUNCHEN
ARBEITSGRUPPE BETRIEBSSYSTEME

INTERNSCHRIFT Nr. 19

THEMA:

~ Zur Rechnerkernvergabe in einem Mehrprozessorsystem

VERFASSER: . DATUM:

Jiurgens 28.08.1§69

FORM DER ABFASSUNG SACHLICHE VERBINDLICHKEIT
ENTWURF ALLGEMEINE INFORMATION

DISKUSSIONSGRUNDLAGE

x FERARBEITETER VORSCHLAG
VERBINDLICHE MITTEILUNG
VERALTET

)(AUSARBEITUNG
ENDFORM

ANDERUNGSZUSTAND

BEZUG AUF BISHERIGE INTERNSCHRIFTEN

Vorkenntnisse aus: Internschrift 16
"Erweiterung von:

Ersatz fir:

BEZUG AUF KUNFTIGE INTERNSCHRIFTEN
Vorkenntnisse zu:
Erweiterung in:

Ersetzt durch:

ANDERWEITIGE LITERATUR

19/280869/J1 -1 -

Zur Rechnerkernverga e in einem Mehrprozessorsystem

Inhalt

1. Einleitung

2. Einige Begriffe

3., Akteurliste und Akteurlistendienst
. Konsistenz
. Zwel LSsungswege

. Der Inkonsistenzgrad

Zur RKV in einem Gesamtschritt

4
5
6
7. Reaktionsgeschwindigkeit von AKD und RKV
8
9. Zur RKV in Einzelschritten

0

. Verhalten der RKV gegeniiber Unterbrechungen

N B~

12
13
15

17

20
22

11. PluBdiagramm der RKV (reaktionsschneller Typ) 24

12, Die "trage" RKV
13. Zusammenfassung

14 . Index

28
28
29

19/280869/Ji -2 - 1

1.

Einleitung

Wir setzen eine Rechenanlage voraus, die mehrere gleichartige
Rechnerkerne (RK-e) hat und die als Multitasking-Maschine be-
trieben wird. - Multitasking involviert Scheduling: die Betriebs-

mittel der Anlage miissen unter mehrere Auftridge verteilt werden,
fiir diese Verteilung miissen Strategien und Algorithmen bestehen.

1.1 Insbesondere miissen die Rechnerkerne der Anlage verteilt werden.

Im Folgenden verstehen wir unter Scheduling: Planung und Voll-
zug der Rechnerkernverteilung.

Da es kaum moglich scheint, aus einer bestimmten Strategie in
jeder konkreten Einzelsituation direkt und schnell die ent-
sprechende Entscheidung abzuleiten, setzen wir eine mehrstufige
Organisation des Programmkomplexes "Scheduling" voraus:

(1.1.1) Gewisse Programme werden aus der Gesamtsituation und
der bei der Konstruktion des Systems gewdhlten Strate-
gie taktische Richtlinien bestimmen.

(1.1.1ii) Eine andere Gruppe von Programmen wird aus den takti-
schen Richtlinien Eingangsdaten fiir die konkrete Ent-
scheidung ableiten.

(1.1.1iii) SchlieBlich wird es einen Programmkomplex geben, der
in einer konkreten Situstion aufgrund einfacher Para-
meter schnell eine Entscheidung trifft und die Zu-
ordnung eines bestimmten Rechnerkernes an ein be-
stimmtes Programm vollzieht. ("local scheduling"
oder auch "Rechnerkernvergabe")

Wihrend die unter (1.1.1i) und (1.1.1i) angefiihrten "liberge-
ordneten Scheduler" stark von der GroBe und Kompliziertheit
eines Systems abhingen und im Extremfall ganz fehlen konnen,
muB eine Rechnerkernvergabe (RKV) stets existieren. (Denn wenn
z.B., ein Programm durch eine Hardware-Unterbrechung unter-
brochen wurde, und wenn die Unterbrechung abgehandelt ist,

muB entschieden werden, was weiter mit dem betreffenden RK

/o3

geschehen soll.)

19/280869/Ju -3 - 1

1.2

1.3

Die vorliegende Arbeit beschdftigt sich nur mit der Rechner-
kernvergabe im Sinne von (1.1.1iii) ("local scheduling").

Pir die "ibergeordneten Scheduler" aus (1.1.1i) und (1.71.1i1)
ist i.a. nur die Tatsache relevant, daB man Multitasking be-
treibt. Ob fir dieses Multitasking mehrere reale RK-e zur Ver-
fiigung stehen oder nur eipn RK, der im Zeitmultiplex betrieben
wird, macht hier keinen Unterschied.

Nicht so auf der Ebene der RKV. Hier ergeben sich einschneiden-
de Konsequenzen aus der Anzahl der realen RE-e. Wir setzen
einerseits voraus, daB die Anzahl der RK-e grdBer als 1 ist,
und wir beschrénken uns andererseits auf den Fall, dafl es nur
"wenige" RK-e gibt (etwa 2 Dbis 4).

Die Objekte der RKV werden vor allem Benutzerauftrége sein.
Dabei ist jedoch nicht vorausgesetzt, daB ein Benut:erauftrag
sich direkt um einen RK bewirbt; vielmehr lassen wir den Fall
zu, wo ein oder mehrere Benutzerauftrige zu einer Gruppe zu-
sammengefaBt werden, die durch einen "Bearbeiter™ gegeniber dem
BS repréasentiert wird. AuBerdem wird zugelassen, daB auch ge-
wisse Systemteile als Objekte der RKV auftreten (und dabei ggf.
durch "Bearbeiter" reprédsentiert werden), genauso, als ob sie
Benutzerauftriage warern.

Andererseits wird es in jedem System Moduln geben, die unab-
hingig von der RKV einen RK erhalten kOnnen; dies kann ge-
schehen:

(1.%.1) durch Hardware-Unterbrechung (kurz: Unterbrechung1))

(1.%.1i) durch direkten Ansprung von einem anderen Programm
aus, das nicht zur RKV gehodrt.

1) In dieser Arbeit wird das Wort "Unterbrechung" nur im Sinne
von Hardware-Unterbrechung gebraucht.

/o4

19/280869/J1 -4 - 1.3

Wir setzen explizit voraus, daB alle Programm-Moduln, die
nicht nach (1.3.i) oder (1.3.ii) einen RK erhalten, durch
ein und dasselbe Programm mit RK-en versorgt werden. Dieses
Programm bezeichnen wir als die RKV.

Die Objekte der RKV werden Akteure genannt. Es wird ange—

nommen, daB ein Akteur jeweils hSchstens einen RK haben

kann. (Das ist keine Annahme iiber Parallelzweige in Pro-

grammen.)

2. Binige Begriffe

2.1 Ein Akteur ist stets in genau einem der folgenden drei Zu-

stande:

(2.1.1) rechnend (r): der Akteur hat einen RK

2)

(2.1.1i1) rechenwillig (rw): der Akteur ist in der Lage zu

rechnen und bewirbt sich um einen RKS)

(2.1.1i11) blockiert (b): der Akteur ist momentan nicht in

der Lage, (in sinnvoller Weise) zu rechnen, - er
soll bei der Vergabe von RK-en nicht beriicksichtigt

werden.

Es sind folgende Uberginge moglich:

TW- r->b-srw, r=>1rw, *w > b

2)

3)

Im allgemeinen stellt ein BS gewisse Programmoduln bereit,
die von Akteuren aus angesprungen werden konnen und die

fir die Akteure dhnliches leisten wie eigene Unterpro-
gramme. Lauft ein solches Programm auf dem RK k, nach-
dem es vom Akteur a angesprungen wurde, so sagen wir eben-
falls: der Akteur a ist rechnend (auf dem RK k). :

Fiir diese Arbeit machen wir die Voraussetzung, daB alle
RK-e des Systems bezliglich der RKV gleichwertig sind. (Ins-
besondere hédtte es also keinen Sinn zu sagen, daB ein Akteur
sich um einen ganz begtimmten RK bewirbt.) - Diese Voraus-
setzung erscheint z.B. dann problematisch, wenn die Unter-
brechungen nicht gleichmdBig auf alle RK-e verteilt werden.
Wir werden guf diesen Punkt in einer spdteren Internschrift
zurlickkommen.,

0/. 5

19/280869/J1 -5 - 2.2

2.2

2.2.2

2.3

Ein Paar (a, k), bestehend aus einem Akteur a und einem RK k,
ist stets in genau einem der folgenden drei Zustidnde:

(2.2.1) liiert: a ist rechnend auf dem RK k

(2.2.i1) bekannt: der RK k beabsichtigt, a demnichst zu
rechnen oder: der letzte Akteur, der von k gerechnet
wurde, war a, und k hat noch nicht entschieden,
welchen Akteur er demmichst zu rechnen beabsichtigt.

(2.2.i11i) fremd: k und a stehen in keiner Verbindung zueinander.

Es kOnnen folgende\Ubergénge vorkommen:

fremd — bekannt
bekannt — liiert
liiert — bekannt
bekannt — fremd

Statt "Das Paar (a, k) ist liiert (bekannt, fremd)" werden wir
auch sagen: "Der Akteur a ist mit dem RK k liiert (dem RK k be-
kannt, fremd)" oder: "Der RK k ist mit dem Akteur a liiert

(dem Akteur a bekannt, fremd)". Mit der Formulierung: "Der RK k
ist liiert" wird ausgesagt, daB es einen Akteur gibt, der auf
dem RK k rechnet.

Zu jedem Zeitpunkt ist einem RK genau ein Akteur nicht fremd,
wéhrend ein Akteur mehreren RK-en "nicht fremd" sein kann.

Das Paar (a, k) ist bekannt genau dann, wenn fiir alle Akteure b
mit b¥a gilt "(b, k) fremd" und wenn (a, k) icht liiert.

Wir fassen alle Programmstiicke des Systems, die nicht zu
Akteuren gehdren, zusammen unter dem Begriff "Bereich der

Nicht-Akteure". Entsprechend reden wir vom "Akteur-Bereich".

Dann konnen wir sagen: Ein RK pendelt dauernd zwischen dem
Bereich der Nicht-Akteure und dem Akteurbereich hin und her.
Er ist im Akteurbereich genau dann, wenn er liiert ist. Er
verl&dBt den Bereich der Nicht-Akteure stets iiber die RKYV.

/. 6

19/280869/Jii -6 - 2.4

2.4 BEs gibt gewisse Unterbrechungen (z.B. Alarme aufgrund fehler-

hafter Rechenwerks-Operationen), auf die nur dadurch sinnvoll
reagiert werden kann, dafB dem unterbrochenen Programm direkt
der RK zurlickgegeben wird, auf dem es unterbrochen wurde
(i.a. Uber einen speziellen Eingang).

Um dies zu gewdhrleisten, modifzieren wir die obigen Defini-
tionen, indem wir sagen: der Akteur a ist rechnend auf dem

RK k (liiert mit dem RK k) auch dann, wenn der RK gerade mit
der Anfangsbehandlung einer Unterbrechung des o.a. Typs be-
schéftigt ist. Wir fordern dann, daB der RK nach dieser An-
fangsbehandlung automatisch (d.h. ohne die RKV zu durchlaufen)
zu dem unterbrochenen Akteur zuriickkehrt.

3. Akteurliste und Akteurlistendienst

3.1

3.1.2

Die Akteurliste

Die Gesamtheit der Ablageplidtze filir die Eingangsinformation
der RKV bezeichnen wir als Akteurliste (AKL). 0.B.d.A
setzen wir folgendes vorauss

Die AKL enthdlt flir jeden Akteur ein Element; dort ist ver-
zeichnet:

eine unverdnderliche Kennzelchnung filir den Akteur;

eine Aussage dariiber, ob der Akteur r, rw oder b ist.

Die AKL enthilt flir jeden RK ein Element. Dort ist verzeichnet,
ob auf dem RK ein Akteur rechnet, und

wenn ja, welcher Akteur auf dem RK rechnet,

wenn nein, welcher Akteur dem RK bekannt ist.

Die AKL enth<, neben dem in %.1.1 gzitierten, fiir jeden
Akteur ein weiteres Element. Falls der Akteur nicht gerade
rechnet, ist dort all die Information abgelegt, die die RKV
benotigt, um dem Akteur einen RK zuzuweisen. Diese Information
wird immer gewisse Registerstinde und Steuerbits umfassen.

ST

19/280869/Ji -7 - 3.1.4

5.1.4 Wie gesagt (vgl. Anmerkung 3) in 2.1), sctzen wir hier alle
RK-e als gleichartig und gleichberechtigt voraus. - Dagegen
wird fiir die Akteure eine lineare Ordnung vorausgesetzt,
d.h. jeder Akteur hat eine Nummer, die wir als seine
Prioritdtsnummer bezeichnen (und die in der AKL eingetragen
ist). Die Prioritidtsnummer g1ibt die Wichtigkeit an, die ein
Akteur bei der RK-Zuteilung haben soll, und zwar ist die
Wichtigkeit desto groBer, je kleiner die Nummer ist
(hohe Prioritdt? niedrige Prioritdtsnummer).

Dies bedeutet keineswegs, daB wir eine "lineare" Scheduling-
Strategie voraussetzen. Nach welchen Gesichtspunkten die iiber-
geordneten Scheduler vorgehen, bleibt offen; hier wird ledig-
lich angenommen, daB sie fiir die lokale Entscheidung eine
lireare Liste der Akteure liefern. Insbesondere wird die
Prioritdtsnummer eines Akteurs nicht als konstant vorausge-
setzt (vgl, 3.2.1).

3.1.5 Die AKL enthdlt i.a. weitere Information, sowohl iiber die
Akteure als auch iiber den Zustand des gesamten Systems. e
unsere Betrachtungen geniigen Jedoch zundchst die o.a. Voraus—
setzungen.

3.2 Der Akteurlistendienst

Wir bezeichnen die Menge aller Programmteile, die auf die AKTL
zugreifen, als den Akteurlistendienst (AKD). Von einem Pro-
gramm, in dessen Verlauf auf die AKL zugegriffen wird, sagen
wir demnach: es ruft den AKD auf. Solche Programme sind:

3.2.1 Die der RKV Ubergeordneten Scheduler. Sie k&nnen aufgrund der
Gesamtsituation des Systems mittels ihrer Strategie

neue Auftridge zu Akteuren machen
Akteure zus der AKL streichen
die Prioritidten der Akteure neu festsetzen.

/. 8

19/280869/J1i : -8 - 3.2.1

3.2,2

3.2.3

3.2.4

3.2.5

3.2.6

Sobald also die iibergeordneten Scheduler auf die AKL zugreifen,
wird die Liste der Akteure durch eine grundsidtzlich neue er-
setzt.

Programme, die arbeiten, nachdem ein RK einen Akteur verloren
hat (= aufgehdrt hat, ihn zu rechnen) und bevor er die RKV
anspringt. Zum Beispiel kann ein blockierter Akteur aufgrund
einer Unterbrechung rechenwillig werden. Dies muB dann in der
AKL verzeichnet werden.

Die RKV. Sie ruft den AKD auf, um zu lesen, 1l4Bt aber auch Ein-
tragungen liber die von ihr verursachten Anderungen machen.

Grundsétzlich sollten auch Akteure die Moglichkeit haben, den
AKD aufzurufen. Es scheint jedoch keine wesentliche Einschrin-
kung der Allgemeinheit zu sein, wenn man voraussetzt, dall ein
Akteur nur dann den AKD aufruft, wenn er dabei seinen RK ab-
gibt. Wir machen diese Voraussetzung und konnen damit sagen:
Der AKD arbeitet nur dann, wenn der RK (auf dem er arbeitet)
im Bereich der Nicht-Akteure ist.

T.a. f&llt ein Breignis zeitlich nicht mit der entsprechenden
Eintragung in der AKL zusammen, d.h. die AKL ist i.a. nicht

aktuell. Es ist sugar denkbar, daB man absichtlich die Ein-

tragung einer Zustandsidnderung verzdgert (vgl. 7.2). Wir unter-
scheiden daher Aussagen wie "a ist blockiert" und "a ist als
blockiert verzeichnet” oder "a wird als blockiert geflihrt",

Ls besteht die Mdglichkeit, daB der AKD auf einem RK aufgerufen
wird, wihrend er auf einem anderen RK bereits lauft. Eine der-—
artige Simultanarbeit auf der AXL ist i.a. unzuléssig, und es
muB daher ein Koordinierungs-Mechanismus geschaffen werden.

Wir beschreiben uier nur eine recht einfache Methode:

Es wird eine Boolesche Variable geschaffen, die wie cin Sema-
phor nach Dijkstra benutzt wird, und die die gesamte AKL fir
alle Arten von Zugriffen sperrt (mit Ausnahme der Variablen,
die uberhaupt nicht geschiitzt zu werden brauchen, - falls

19/280869/Ji - 9 - 3.2.6

¢s solche gibt. Die in 3.1.1 bis 3.1.4 genannten Eintrige
missen auf jeden Fall geschiitzt werden). Diese Variable
heiBt AKL-Semaphor.

Wie bei Dijkstra missen die P- und V-Operationen auf diesen
Semaphor Elementarschritte sein im Sinne von Ununterbrechbar-
keit durch Hardware~Unterbrechungen.

Da auf diesen Semaphor von mehreren RK-en aus zugegriffen
wird, ergibt sirh dariiberhinaus noch folgende Porderung:

Eine P- oder V-Operation, die auf einem RK ablauft, darf
durch andere RK-e nicht gestdrt werden. (Dies impliziert eine

Forderung an die Hardware.)

4., Xonsistenz

Grob gesprochen hat die RKV die Aufgabe, den jeweils wichtigsten
rechenwilligen Akteuren die verfigbaren RK-e zuzuweisen. Ist
diese Aufgabe erfillt, so sprechen wir von Konsistenz.

4.1 Bel genauerer Betrachtung ergeven sich verschiedene
Konsigtenzbegriffe:

4.1.1 Wir sagen "Das System ist (zum Zeltpunkt to) konsistent vom
Typ A", wenn die 1 RK-e, die zu diesen Zeitpunkt im Akteurbe-
reich sind, die 1 wichtigsten unter den nicht blockierten
Akteuren rechnen.

4.1.2 Wir sprechen von Konsistenz vom Typ B, wenn die liierten
RK-e die wichtigsten der Akteure rechnen, die als nicht
blockiert verzeichnet sind.

4.1.3 Wir bezeichnen das System als konsistent vom Typ C, wenn die
Akteure, die als liiert (= rechnend) verzeichnet sind, unter
den als nicht blockiert verzeichneten die wichtigsten sind.

./. 10

-19/280869/J1 | - 10 - 4,1.4

4.1.4

4.2

Wir nennen das System konsistent vom Typ D, wenn die Akteure,
die den n RK-en des Systems (n = Anzahl der RK-e des Systems)
nicht fremd sind, die n wichtigsten nicht blockierten Akteure
sind.

Hierzu zwel Anmerkungen: Wir gehen davon aus, daB ein Akteur
einem RK nicht fremd ist, wenn und nur wenn er als solcher
eingetragen ist.

Man beachte, daB ein Akteur sehr wohl einem RK bekannt und
gleichzeitig blockiert sein kann.

Wir sagen: "Das System ist konsistent vom Typ B", wenn die
Akteure, die den n RK-en des Systems nicht fremd sind, die
wichtigsten als nicht blockiert verzeichneten Akteure sind.

Wir nennen das System konsistent vom Typ ¥, wenn es konsistent
vom Typ E ist, und wenn hdchstens ein RK nicht als 1liiert ver—
zelchnet ist.

Wir sprechen von Inkonsistenz eines bestimmten Typs genau dann,

wenn Konsistenz dieses Typs nicht vorliegt.
Wenn anhand der AKL gepriift wird, ob Konsistenz oder In-
konsistenz eines bestimmten Typs vorliegt, so sprechen wir

von einer Kongistenzpriifung diecses Typs. Es sind nur Konsistengz-
prufungen vom Typ C, E oder F moglich,

Us ist offensichtlich, daB es das Ziel der RKV sein mifite,
Konsistenz vom Typ A herzustellen. Realisieren 148t sich je=-
doch hochstens Konsistenz vom Typ B, so daB sich die Forderung
gibt, am Anfang einer jeden RKV eine moglichst aktuelle :KL

zu haben. Setzt man voraus, daf dic Zeit, wdhrend derer ein
Akteur einem RX ununterbrochen bekannt ist, Jjewellg nur kurz
ist, so kann man statt Typ A auch Typ D bzw. statt Typ B auch
Typ E fordern.

/11

19/280869/Jii - 11 - : 4.2

Zusammenfassend konnen wir sagens:

(4.2.1) Der AKD bzw. die ihn aufrufenden Programme miissen so
arbeiten, dal zu Beginn einer jeden RKV die AKL so
aktuell wie méglich ist.

(4.2.i1) Die RKV hat die Aufgabe, Konsistenz vom Typ B her-
zustellen.

4.3 Damit.ist zundchst klar, dall RKV gsich grundsdtzlich nicht auf
einen einzelinen RK bezieht, sondern auf das ganze System.
Auch wenn einmal Konsistenz (vom Typ A) erreicht ist, genugt
es zur Aufrechterhgltung der Konsistenz i.a. nicht, daB ein
RK, der seinen Akteur verloren hat (= aufgehdrt hat, ihn zu
rechnen), beim Verlassen déé Bereichs der Nicht-ikteure durch
die EKV nur fiir sich selbst einen neuen Akteur bestimmt und
zuteilt. Hierflir gibt es folgende Griinde:

4.%3.1 Der Verlust des Akteurs kann bereits zu einer Inkonsistenz
(vom Typ A) fiihren; er filhrt immer dann zur Inkonsistenz, wenn
der betroffene Akteur vom Zustand r in den Zustand rw ilibergeht
und wenn dabei mindestens ein weniger wichtiger Akteur im
Zustand r bleibt.
Hat das Ereignis, das den Verlust des Akteurs bewirkte, auBer-
dem Zustandsidnderungen des Typs b—srw zur folge, so 1liBt sich
Uber die Anzahl der RK-e, die umbesetzt werden mussen, generell

nichts mehr aussagen.

4.3.2 Der Verlust eines Akteurs kann mit einer Zustandsidnderung fir
mehrere Akteure einhergehen (z.B. gleichzeitiges "Wecken"
mehrerer Akteure).

4.%.3 Zwischen dem Verlust eines Akteurs und der darauifolgenden RKV
kann eine Unterbrechung geschehen, die ihrerseits Zustands-
dnderungen bei Akteuren zur Folge hat.

19/280869/J1 - 12 - 4.3.4

4.%.4 Nachdem ein {ibergeordneter Scheduler die AKL veridndert hat,

4.4

4’:4.1

5.

mulBl prinzipiell die Besetzung aller RK-e neu vorgenommen

werden.

Wir haben bisher stets vorausgesetzt, daB die Prioritidts-
numnern der Akteure Steuerungsparameter sind, deren sich die
lUbergeordneten Scheduler bewulit und gezielt bedienen. Prag-
wilrdig wird diese Voraussetzung dann, wenn gewisse Gruppen von
Akteuren untereinander oder gar alle Akteure mehr oder weniger
gleichartig sind.

Im Extremfall konnte dann die Aufgabe der RKV lauten:

(4.4.1) auf méglichst einfache Weise dafiir zu sorgen, daB ein
RK, der seinen Akteur verloren hat, so schnell wie
moglich in den Akteurbereich zuriickkehrt.

In diesem PPall h&tten die Prioritdtsnummern nur noch den Sinn,
die Entscheidung, welcher von den gleichberechtigten Akteuren
als nédchster zu rechnen sei, zu vereinfachen. Konsistenz
wirde dann keine Rolle spielen.

DaB alle Akteure gleichartig sind, scheint fir ein groBeres
Rechensystem eine unrealistische Annahme zu sein. Sie setzt
voraus, daB Akteure nur Benutzerauftrige vertreten, und dafB
alle diese Benutzerauftrige gleichartig und gleichwichtig
sind. - Dagegen scheint es realistisch anzunehmen, daB es
Gruppen von Auftridgen gibt, die gleichartig und gleichberech-
tigt sind, z.B. gewisse Konsol-Auftrdge in einem time-sharing-
System. Wir vernachlédssigen hier diesen Aspekt, zumal er nicht
notwendig die XEbene der RKV betrifft.

Zwel Losungswege

In 4. hat sich gezeigt, daB jede RKV das Gesamt-System beriick-
sichtigen und ggf. zur Umbesetzung mehrerer RK-e fithren muB.
Dies kann auf zwel Weisen erreicht werden:

/.13

19/28086

5.1

5.2

6.
6.1

9/Ji - 1% = 5.1

In Finzelschritten (Einzelschrittverfahren):

Der RK, der die R¥V anspringt, "bedient sich zunidchst an der
AKL", d.h. er sucht den wichtigsten rechenwilligen Akteur fiir
sich heraus und reserviert ihn sich. AnschlieBend prift er,
ob nach Ansprung dieses Akteurs Konsistenz vorliegen wiirde
und benachrichtigt gzf. einen geeigneten anderen RK dariiber,
daB dies nicht der Tall ist. Danach springt er den ausgesuch-
ten Akteur an und rechnet ihn, wihrend der benschrichtigte

RK seinerseits die oben beschriebenc RKV durchliuft.

In einem Gesamtschritt (Gesamtschrittverfahren):

Der RK, der die RKV anspringt, bestimmt aufgrund der Eintragun-
gen in der AKL, welche RK-e mit welchen Akteuren neu zu be-
setzen sind, damit Konsistenz vorliege, und damit er selbst
einen Akteur erhalte. Hr bereitet flilr jeden der betroffenen

RX~e eine entsprechende Nachriciht vor (auch fir sich selbst)

und schickt alle Nachrichten gleichzeitig ab. Daraufhin springen
alle benachrichtigten RK-e den ihnen jJeweils mitgeteilten

Akteur an.

Beide Vorschlige machen davon Gebrauch, daB die RK-e des
Systems eine Moglichkeit besitzen, einander aktiv zu benach-
richtigen. Wir setzen eine entsprechende Eigenschaft der Hard-

ware voraus.

Der Inkonsistenzgrad

In Zusammenhang mit der RKV in Binzelschritten (5.1) erscheint
es wlnschenswert, ein MaB flir den Grad der Inkonsistenz zu
haben. Wir bezelichnen als Inkonsistenzgrad des Systems die An-

zahl der Bingzelschritte, die notwendig wdren, damit das System
konsistent vom Typ B wiirde. (Vorausgesetzt, daB diese Einzel-
schritte die Zeit O bendtigen wiirden).

19/280869/J1 - 14 = 6.2

6.2

6.3

6.4

Fir den Inkonsistenzgrad zur Zeit t schreiben wir
(%)

Bs gilt fur alle t: 0£I(t)<Anzahl der RK-e des Systems.

Es gilt (auch bei zwei RK-en) nicht:

I(t) = Max (Anzahl der RK-e¢ des Systems,
Anzahl der rw Akteure, die wichtiger sind als der
unwichtigste r Akteur)

Ebensowenig gilt: I(t) = Max (Anzahl der RK-e des Systems,
Anzahl der Zwischenrdume zwischen zwei benach-

barten r Akteuren, in denen ein rw Akteur liegt).

Diese Bemerkungen zeigen, daB die Fortschreibung des In-
konsistenzgrades einen nicht-trivialen Algorithmus erfordern
wiirde (auf dessen Darstellung hier verzichtet wird). Praktische
Bedeutung fiir die RKV in Einzelschritten hitte der Inkonsistenz-

grad, wenn man
(6.%.1) ihn nach jeder AKL-inderung fortschreiben wiirde oder

(6.%3.11i) ihn zu Beginn eincr jeden RKV berechnen und dann her-

unterzéhlen wirde.

Bedenkt man, daB der AKD z.B. wihrend der Anfangsbehandlung
einer Unterbrechung aufgerufen werden konnte, so erscheint
(6.3.1) als zu aufwendig. (6.3.ii) dagegen hat nur dann Sinn,
wenn zwischen zwei RKV-Einzelschritten der AKD die RKV nicht
verandert, so dall man einen einmal berechneten Inkonsistenz-
grad schrittweise auf Null herunterzihlen kann. Das vorauszu-

setzen scheint jedoch nicht sinnvoll.

Wir kommen zu dem ScoluBl, daB der Inkonsistenzgrad fiir die

Praxis keinen Wert hat.

19/280869/J1 - 15 - 7

7. Reaktionsgeschwindigkeit von AKD und RKV

7.1

7.2

Zustandsénderungen von Akteuren, zusammen mit der Prioritits-
Ordnung der Akteure, streben danach, ohne Zeitverzdgerung be-
ricksichtigt zu werden. In einem realen System gibt es Zeitver-
zO0gerungen aus drel Grinden:

(7.1.1) Bs vergeht eine gewisse Zeit, bis der AKD die Anderung
in der AKL eingetragen hat.

(7.1.11) Bevor die RKV angesprungen werden kann, werden i.a.
noch gewisse andere Tdtigkeiten im Bereich der
Nicht-Akteure ausgefiihrt. (Die Nicht-Akteure sind
wichtiger als alle Akteure.)

(7.1.11i) Die RKV bendtigt eine endliche Zeit, bis sie den
néachsten zu rechnenden Akteur findet und anspringen
kann.

Da die Eintragungen in der AKL erst ausgewertet werden, wenn
die nédchste RKV oder die nidchste Konsistenzprifung stattfindet,
ist die Reaktionsgeschwindigkeit des AKD belanglos, Solange
nur bei jeder RKV und bel jeder Konsistenzpriifung eine
moglichst aktuelle AKL zur Verfiigung steht. Hier sollen nur
zwel extreme Miglichkeiten angedeutet werden, den AKD zu
organisieren:

(7.2.1) Sobald es einem Nicht-Akteur moglich ist, den AKD auf-
zurufen, tut er dies. Dabei muBl i.a. der AKL-Semaphor
betatigt werden, und falls dieser gesperrt ist, muB
der RK vor ihm in eine Abfrageschleife gehen.

(7.2.1i1) Sobald es einem Nicht-Akteur méglich ist, Infor-
mationen filir den AKD bereitzustellen, schreibt er
diese in einen "Abhol-Bereich", Der AXD selbst wird
der RKV starr vorgeschaltet und holt vor jeder RKV
alle Information aus derartigen Abhol-Bereichen, um

sie in der AKL einzutragen. Hierbei entstehen ver-

/. 16

19/280869/J1i - 16 - 7.2

1.3

Ted o1

schiedene Organisationsprobleme, - u.a. muB gewdhr-
leistet sein, dalB mehrere bereitgestellte Infor-
mationen einander nicht widersprechen, baw. daB
unter sich widersprechenden Informetionen eine als
giltig ausgezeichnet ist.

Hier wird nur vorausgesetzt, daB die AKL aktuell ist, sooft
ein RK in die RKV oder in eine Konsistenzpriifung eintritt.

Wir formulieren noch einmal explizit die Voraussetzung:
"Jeder Nicht-Akteur ist wichtiger als jeder Akteur.?

Unter dieser Voraussetzung liegt die Reaktionsgeschwindigkeit
der RKV fest, solange das System nur einen RK hat. In einem
Mehrprozessorsystem ergibt sich dagegen folgende Mdglichkeits

Hat eiy, RK, z.B. RK 1, eine Zustandsénderung erkannt, die eine
Inkonsistenz bewirkt, so braucht er mit dem Ansprung der RKV
nicht zu warten, bis er selbst den Bereich der Nicht-Akteure
verldBt. Vielmehr kann er (normalerweise) sofort einen anderen
RK benachrichtigen mit der Aufforderung, Konsistenz herzu-~
stellen. Dieser, z.B. RK 2, durchlduft dann die RKV, wihrend
RK 1 noch im Bereich der Nicht-Akteure ist.

Wir nennen die RKV trdge, wenn von dieser Moglichkeit nicht Ge-
brauch gemacht wird, d.h. wenn die Benachrichtigung eines

RK-es durch einen anderen RK, verbunden mit der Aufforderung,
die RKV zu durchlaufen, hochstens dann geschieht, wenn der Ab-

sender der Nachricht seinerseits gerade die RKV durchliuft.

Wir nennen die RKV reaktionsschnell, wenn sie nicht trige ist,

d.h., wenn auch von anderen Nicht-Akteuren als von der RKV aus
ein RK einen anderen RK zur RKV auffordern kann. - Dies be-
deutet nicht unbedingt, daB ein RK im Bereich der Nicht-Akteure
sobald wie mbglich die Konsistenz des Systems priift, um dann
ggf. einen anderen RK zu benachrichtigen.

/e 1T

19/280869/J1 - 17 - - 7.4.%

T.4.% Es sel noch bemerkt, daB die Sprechweise: die RKV ist
"trage" - "reasktionsschnell" eigentlich nicht korrekt ist
insofern, als diese Bigenschaften jeweils der gesamten Bereich
der Nicht-Akteure gzukommen. |

7.5 Je lianger ein RK im Mittel im Bereich der Nicht-Akteure ver-
wellt, und je groBer das Gefdlle in der Wichtigkeit der
Akteure ist, desto mehr wird man dazu neigen, eine reaktions-
schnelle RKV zu wihlen,

Andererseits ist eine reaktionsschnelle RKV mit erhdhtem
Organisationsaufwand verbunden, vor allem dadurch, daB zu-

sgtzliche Konsistenzprifungen vorgenommen werden miissen.

8. Zur RKV in einem Gesamtschritt

Das Gesamtschrittverfahren zerfdllt in zwei Abschnitte:

(8.1) es wird festgesetzt, welche Akteure auf welchen RK-en

recknen sollen,

(8.1ii) fiir jeden RK, dessen neuer Akteur vom alten verschieden
ist, wird der Wechsel deg Akteurs vorbereitet und an-—

gestoben,

8.1 Da meistens nur ein RK neu besetzt werden muB, und da relativ
selten alle RK-e wirklich neue Akteure erhalten miiscen, wird
man bel der Implementierung von (8.1i) cinen Algorithmus des
folgenden Typs wahlen:

19/280869/J1

- 18 -

@ﬂmL&m.w&iﬁyih W
AkhMW'&MLRkLW‘&K

c(z‘xn—o.&:.&;:. RkV dumM%;..l‘k

[I—

Umdam?e*umvw
Mleur b RE bo ae -
%MTAWZA&

L

Bodimeme dam machat —

&&M&errwbﬂ&nmw

&&iGWMLmeUMMﬁiﬁ@JMK
dr bl amdan

jo/.:19

o1

19/280869/J1i - 19 - 8.1

Man wird also auch bei dem Gesamtschrittverfahren die Be-
rechnung der Neuverteilung in Einzelschritten vornehmen.

8.2 Andert ein Akteur wihrend der RKV seinen Zustand, so wird da-
durch die AKL falsch und es ist dann i.a. nicht simnvoll, das
Gesamtschrittverfahren mit der falschen AXL zu Ende zu filhren.

Andererseits ist es auch nicht zweckméBig, die RKV abzubrechen,
die Anderung in die AKL einzutragen und dann von neuem mit
einer RKV nach dem Gesamtschrittverfahren zu beginnen, denn
wenn z.B. gerade der wichtigste rw Akteur einem RK zugecordnet
wurde, so besteht eine hohe Wahrscheinlichkeit, daB nach dem
Bintrag der Anderung diesem Akteur wieder elpn RK zugeordnet

wird.

Winschenswert wire, daf die RKV jeweils nach einem Berechnungs-
schritt die AKL freigibt, def der AKD sie fortschreibt, und daB
die RKV anschlieBend mit der Berechnung fortfiahrt, wobei die
geanderte AKL berlicksichtigt wird und wobei nur dann die vor-
hergehenden Berechnungsschritte riickgingig gemacht werden, wenn
anders keine Kongistenz erreicht werden kann.

Fine derartige Losung durfte verschicdene Organisationsprobleme

aufwerfen,

8.3 Falls nur der RK neu mit e. Akteur zu besctzen ist, der gerade
die RKV durchléduft, besteht kein Unterschied zwischen dem hier
skizzierten Gesamtschrittverfahren und der RKV in Hinzel-
schiritten. Falls mehrere RK-e betroffen sind, kommt eine
kigenschaft des Gesamtschrittverfahrens zum Tragen:

Alle betroffenen RK-e werden erst am Ende der RKV benach-
richtigt, und zwar glecichzeitig.

19/280869/J1 - 20 - 8.%

Hieraus ergeben sich verschiedene Nachteile:

8.4 Wenn flr den wichtigsten rw Akteur schon erkannt ist, daB er
einen RK erhalten soll, muB er dadurch das Ende der Gesamt-RKV
abwarten, bis er diesen RK bekommt.,

8.5 Je nachdem, welchen der in 8.2 angedeuteten Wege man einschliagt,
besteht eine mehr oder weniger groBe Gefahr, daB am Ende der
RKV RK-e benachrichtigt werden, die ihrerseits im Bereich der
Nicht-Akteure sind.

O0ft wird ein solcher RK den AKD aufrufen, so daB er den ihm
zugewiesenen Akteur gar nicht erst iibernimmt, sondern statt
desgen die RKV durchliuft.

Oder aber, wenn er den AKD nicht (mehr) aufzurufen braucht,
wird er mit der Ubernahme des zugewiesenen Akteurs warten, bis
er seine Tatigkeiten im Bereich der Nicht-Akteure abgewickelt
hat; so lange muB dann die AKIL oder zumindest ein Teil der

AKL gesperrt werden.

8.6 Wenn alle betroffenen RK-e gleichzeitig aufgefordert werden,
ihre Akteure zu wechseln, ergeben sich Koordinationsprobleme
auf der AKL.

8.7 Die‘angefuhrten Probleme und Nachteile treten bei der RKV in
BEinzelschritten nicht auf.

Wir werden uns im Folgenden nur noch mit dieser beschiaftigen.

9. Zur RKV in #inzelschritten

9.1 Nach unseren Uberlegungen in 2.%, 5.1 und 7. lassen sich zwei
FPalle unterscheidens:

9.1.1 Ein RK springt die RKV "von sich aus' an, weil er den Bereich
der Nicht-Akteure verlassen will.

a/o 21

19/280869/J1 - 21 - 9.1.2

9.1.2

9.2

9.2‘2

Ein RK springt die RKV an, weil er von einem anderen RX dazu
aufgefordert wurde.

Einer solchen Aufforderung geht i.a. eine Konsistenzprifung
durch den auffordernden RK voraus, bei der bereits festge-
stellt wird, welcher Akteur den aufgeforderten RK zu erhalten
hat.

Wir setzen voraus, daB dem aufgeforderten RK zusammen mit der
Aufforderung, die RKV zu durchlaufen, auch dieser Akteur mitge-
teilt wird. Die RKV besteht dann im Wesentlichen nur darin, daB
der RK den mitgeteilten Akteur lUbernimmt, - wir sprechen von
RKV nach Aufforderung. Der Fall 9.1.1 wird als freiwillige

RKV bezeichnet.

Grunds&dtzlich ist jeder RK, der sich im Bereich der Nicht-
Akteure befindet, flir die Konsistenz des Systems <crantwortlich;
das so0ll heiBen: bevor er den Bereich der Nicht-Akteure ver-—
14Bt, muB er priifen, ob das System konsistent ist (genauer:
konsistent sein wird, nachdem er den Bereich der Nicht-Akteure
verlassen hat) und ggf. einen anderen RK zur RKV auffordern,

d.h. ihm die Verantwortung flir die Konsistenz iibertragen.
Solange Reaktionsschu-lligkeit keine Rolle spielt, geniigt es,
wenn jeweils eip RK die Verantwortung fiir die Konsistenz hat.
Daraus folgt flr die trige RKV:

(9.2.1.1) Stellt eip REK am Bnde einer RKV fest, daB ein anderer
RK im Bereich der Nicht-Akteure ist, so braucht er

sich um die Konsistenz des Systems nicht zu kiimmern.
Pir die reaktionsschnelle RKV ist dies nicht uneingeschrinkt
richtig.
Hier wird man stattdessen sagen:

(9.2.2.1) Wenn ein RK auf die AKL zugreift, hat er die Ver-
antwortung fiir die Konsistenz des Systems.

/. 22

19/28086

/l{\’ﬁ

9/J1 - 22 - 10

Verhalten der RKV gegeniiber Unterbrechungen

10.1

10.2

10.3

Bin groBer Teill der Hardware-Unterbrechungen wird Anderungen
der AXL zur folge hagpen. Daher wire es grundsgtzlich richtig,
eine RKV, wihrend derer eine Unterbrechung geschieht, abzu-
brechen, zun&chst die Unterbrechung abzuhandeln, d.h. insbe-
sondere, die AKL auf den neuesten Stand zu bringen und als-
dann die RKV von vorne zu durchlaufen.

Wir bezeichnen die beschriebene Technik als Riicksetztechnik.
Sie setzt voraus, dal die AKL in jedem Unterbrechungspunkt der
RKV konsistent ist, - wir sagen, die RKV muB dann ricksetzbar

programmiert sein.

Im Palle eines Mehrprozessorsystems scheint die Riicksetztechnik
nicht ginstig: ist flir einen Akteur 1imnm erster RKV-Schritt er-
kannt worden, dal er einen RK erhalten soll, so wird sich daran
durch die “4ustandsdnderungen infolge einer Unterbrechung nicht
unbedingt etwas “ndern (der Akteur wird wahrscheinlich weiter-
hin zu den n wichtigsten nichtblockierten Akteuren gehbren, wenn
n die Anzahl der RK-e ist). Normalerweise wird es geniigen, wenn
die Anderungen erst bei dem nichsten RKV-Schritt beriicksichtigt
werden., - Eg erscheint daher wiinschenswert, AKL-Anderungen °
(insbesondere aufgrund von Unterbrechungen auf den anderen
Rken) und Herdware-Unterbrechungen (auf dem RK, der die RKV
durchlauft), so lange zu sperren, bis ei, RKV-~Schritt beendet
ist und dann,tam Ende eines Schrittes, AKL-Anderungen sowie

Unterbrechungen zuzulassen.

Normalerweise wird jedoch die Hardware des Systems verbieten,
daB Unterbrechungen wihrend der gangen RKV gesperrt werden;
dann bietet sich folgender Hrsatz:

(10.3.1) die RKV wird eingriffsinvariant programmiert. (Das be-
deutet wiederum, dal gewisse Teile der RKV unter Unter-
brechungssperre laufen miisgen.,)

/. 23

19/280869/J1

(10,

- 23 = 10.3

3,11) Unterbrechungen wihrend der RKV werden '"vorbehandelt

' und gekellert”, anschlicBend wird die RKV (= der
RKV-Schritt) fortgesetzt und nach Ende der RKV werden
die Unterbrechungen sowelt weiterbehandelt, dal
Aktualitat der AKL garantiert werden kann.

10.4 Sollte das "vorbehandeln und kellern' einer Unterbrechung nicht

relativ kurz sein im Verhdltnis zur Dauer einer RKV, so wird

dariiber hinaus vorgeschlagens

(10.4.1) Die RKV wird rilicksetzbar programmiert.

(10.

4.ii) Beim Beginn der "Vorbehandlung" wird ein Vermerk ge-

setzt: "RKV wurde unterbrochen, wihrend sie auf
RK k lief'", und der AKL-Semaphor wird entsperrt.

Wenn nun gerade ein anderer RK auf die AKL zugreifen mlcite,

braucht er nicht in yartschleife zu gehen. Sobald er auf die

AK

gugreift, 1ldscht er den o.a. Vermerk und die RKV wird

nicht fortgusetzt (Ricksetztechnik). Ist die Vorbehandlung

beendet, der AKL-Semaphor frei und der o.a. Vermerk noch ge-

setzt, so wird die RKV fortgesctzt.

19/280869/J1 - 24 - 91,

11. PlufBdiagranm der RKV (reaktionsschneller Typ)
(wygw) RV nach
_ Acsllar

L . na.

AL = Somaghem | : Akl - &)«w.f}m

.2
bohommtee
Mt =
it teidkie A
obn v w W[\n
nhem Metoure

1.5,

19/280869/J1

- 25 =

LY T MQJ‘-‘

hiw ol verttsmelen
Mo Lok X

i L ol
\'(,:*izi,ckw\uhnv M:iu_u-
ik

Fordere tha 2arR IV
ol

—

clAnMLtum‘rvv-'

der odn Lok
verie et ink

Sibre don BICL -
Simrknr ua.,l_hfad.“

de, Mo

AL.8 a,

A1.9.%,

4’1."3. c.

A4,

11.11.

"/v 26

11.

19/280869/J1i - 26 - 11

Erlduterungen zum FluBdisgramm

11.1 Vergleiche hierzu 3.2.6! - Wird der Semaphor als gesperrt
vorgefunden, so geht der RK in eine Abfrageschleife, Palls
flir die P-Operation die Unterbrechungssperre gesetzt wird, .
ist diese in der Abfrageschleife wieder zu losen. (Unter-
brechungssperre = die stirkste (zulZdssige) Sperre gegen

Hardware-Unterbrechungen).

11.2 Der Akteur, der dem RK mit der Aufforderung zur RKV mitge-
teilt wurde, wird zu dem Akteur, der dem RK "bekannt® ist
(im Sinne von 2.2). :

«

171.3 Dem RK ist ein Akteur bekannt. Ansprung dieses Akteurs flihrt
gicher dann zu Konsistenz vom Typ C, wenn vorher Konsistenz
vom Typ F vorliegt. Zur technischen Realisierung dieser Ab-

frage vgl., 11.8!
1.4 -

11.5 In der AKL wird Jetzt bercits eingetragen, dal der bekannte
Akteur "liiert" (im Sinne von 2.2) ist miﬁ dem RK, der die
RKV durchl&éuft, d.h. d=8 dieser RK den Akteur rechnet.
(Das ist vorlidufig noch falsch!)

11.6 Die Bedeutuns von "demndchst" ist abhingig vom Grad der
> o
Reaktionsschnelligkeit, den man anstrebdt. Die Abfrage endet
jedenfalls immer dann mit "ja", wenn bereits ein anderer RK

vor dem AKL-Semapnor in einer Abfrageschleife ist.

Endet die Abfrage mit "ja'", so ist sichergestellt, daB
(mindestens) ein anderer RK die Verantwortung fiir die
Konsistenz des Systems hat, und der abfragende RK braucht
sich um die Konsistenz nicht zu kiimmern. Technisch kann diese
Abfrage auf verschiecdene Weisen realisiert werden, 2z.B.

indem man fir jeden RK eine Variable schafft, die angibt,

ob dieser RK demndchst guf die AKL zugreifen will.

/.27

19/280869/J1 - 27 - 1.7

1.7

11.8

11.9

11.10

11.11

11.12

Nachdem nun der Akteur, den der RK zu rechnen beabsichtigt,
bereits als rechnend verzeichnet ist, prift der RK, ob jetzt
Konsistenz vom Typ C vorliegt.

bs ist zweckmiiBig, das positive Ergebnis eincr Konsistenz-
prifung in der AKL zu vermerken. Es wird ein Bit gesetzt mit
der Bedeutung: "Jetzt liegt sicher Kongistenz vom Typ E vor".
Ubergénge der Form bekannt — liiert und liiert—> "bekannt und
rw" dndern nichts an der Richtigkeit dieser Aussage und haben
keinen BinfluBl auf den Vermerk.

Werden jedoch andersartige Zustandsdnderungen in die AKL ein-
getragen, so wird der Vermerk geldscht, - unabhingig davon,
ob weiterhin Konsistenz vom Typ E vorliegt oder nicht.

Dieser Vermerk kann die Abfrage 10.3 wesentlich erleichtern.

Liegt keine Konsistenz vor, so muB ein anderer RK benachrichtigt
und zur RKV aufgefordert werden. Bel der Konsistenzpriifung 11.7
wird die Prioriti+snummer des wichtigsten als rw verzeichneten

Lkteurs mit der des unwichtigsten rechnenden Akteurs verglichen.

Jetzt wird der RK ermittelt, auf dem letzterer rechnet, und
diesem RK wird der schon bekannte wichtigste rw Akteur nitge-
teils.

Hier wird der "Unterbrechungszustand" des anzuspringenden
Akteurs geladen, d.h. insbesondere, es werden Register und
Steuerbits geladen.

Grundsdtzlich gehdrt auch der "Unterbrechungszustand" eines
Akteurs zu der Information, die durch den AKL-Semaphor zu
schiitzen ist. Daher darf der AKL-Semaphor erst wieder auf
"frei" geschaltet werden, wenn auf diese Information nicht
mehr zugegriffen zu werden braucht. (Wormalerweise ist dies
unmoglich, so daB man, je nach der speziellen Situation, zu
Hilfskonstruktionen greifen muB, die entsprechendes leisten).

/. 28

19/280869/Ji - 28 - 12

12. Die trige RKV

Wehrend sich die reaktionsschnelle RKV, wie sie oben be-
schrieben wurde, an der Konsistenz vom Typ C orientiert,
richtet sich die tridge RKV an der Konsistenz vonm Typ E aus.
Dem liegt die Annahme zugrunde, daB ein RK sich immer nur
relativ kurz im Bereich der Nicht-Akteure aufhslt. Intsprechend
gibt es einige Unterschiede zwischen tréager und reaktions-
schneller RKV:
11.3 ist hier zu ersetzen durch: "Konsistenz vom Typ E?M
11.6 ist hier zu ersetzen durch: "Ist ein anderer RK im Be—
reich der Nicht-Akteure?"
11.7 ist hicr zu ersctzen durch: "Konsistenz vonm Typ E?"

13. Zusammenfassung

Es werden Probleme des lokalen Rechnerkern-Scheduling in
einem Mehrprozessor~System diskutiert.

Das Programm "Rechnerkernvergabe" (RKV) wéhlt sus einer vorge-—
gebenen Menge von sich bewerbenden Programm-Moduln (Akteuren)
diejenigen aus, denen die Rechnerkerne des Systems zuzuteilen
sind und vollzieht diese Zuteilung. Dabei wird fir die Akteure
eine- lokal fixe - lineare Ordnung nach Priorititen vorausge-
setzt. |

Aus dieser Prioritédts-Ordnung ergibt sich der Begrifr
"Konsistenz"., Er wird diskutiert, und als Aufgabe der RKV
wird erkannt, Konsistenz in einem bestimmten Sinne herzu~
stellen und zu erhalten.

Es werden zwei Losungsverfahren fiir diese Aufgabe angegeben,
von denen eines als zweckniBiger und leichter zu handhaben
erkannt wird. Dieses Verfahren (Einzelschrittverfahren) wird
in zwel Spielarten (trige - reaktionsschnell) dargestellt,

/.29

19/280869/J1 - 29 - 13

14.

Die Arbeit geht nicht auf Probleme der Datenstruktur fiir die
benutzten Variablen ein. - Uber das Gesamtsystem wird voraus-
gesetzt, dall mehrere Rechnerkerne existieren, die sowohl
hardwaremé&Big gleichartig sind als auch vom Betriebssystem
gleichartig eingesectzt werden. Im iibrigen versucht die Arbeit,
mit einem Minimum an Voraussetzungen iiber die Hardware wie

auch Uber die umgebende Software auszukommen.

Index
AKD = Akteurlistendienst 3.2
AXT = Akteurliste 3.1
AKL-Semaphor 3.2.5
Akteur 1.3
Akteurbereich 2.3
Akteurliste 3.1
Akteurlistendienst 3.2
aktuell (Akteurliste) 3.2.5
b = blockiert 2.1
bekannt , 2.2
Bereich der Nicht-Akteure 2.3
blockiert 2.1
BS = Betriebsystenm
Einzelschrittverfahren = RKV in
Eingelschritten 5.1
freiwillige RKV 9.1.2
fremd : 2.2
Gesamtschrittverfahren = RKV in
einem Gesamtschritt 5.2
Inkongistensz 4.1.7
Inkonsistenzgrad 6.1
kongistent 4.1
Konsistenz 4.1

./. 30

19/280869/Ji - 30 -

-3

Konsistenzpriifung 4.1,
Konsistenz vom Typ A (B...F) 4,1
liiert 2.2
Prioritdtsnummer 3.1.4
r = rechnend 2.1
reaktionsschnell 7.4.2
rechenwillig 2.1
rechnend 2.1
Rechnerkernvergabe 1., 1.3
RK = Rechnerkern

RKV = Rechnerkernvergabe (1.1, 1.3)
RKV in einem Gesamtschritt

= Gesamtschrittverfahren 5.2
RKV in Einzelschritten

= Binzelschrittverfahren 5.1
RKV nach Aufforderung 9.1.2
riucksetzbar 10.1
Rilcksetztechnik 10.1
rw = rechenwillig 2.1
Scheduling 1
trige T.4.1
Unterbrechung 1.3
Wichtigkeit 3.7.4

