3€//290969

Als Internschrift Nr. 5

TIME SHARING SUPERVISOR PROGRAMS

-

Michael T. Alexander
The University of Michigan
Computing Center

. w

May, 1965

-~

{”/

ABSTRACT

Tne structure of supervisor programs for time shared or
multiple access operating Systems 1is described. Those
functions of the supervisor that are concerned With
scneduling and resource allocation are enphasized. The four
time snaring systems that are described are Control Progranm
67 (Cp/67), Time Sharing Systen (IS5/360) , and University of
dichigan dulti-Programming Supervisor (UMMPS) for the 1IBH
Systema 360 Model 67 and Multics for the General Electric
645. The emphasis is on describing and comparing the -
various supervisor programs, rather than recommending any
specific approach. In general those aspects of the
supervisor programs that are the direci result of sonme
peculiarity of the hardware used are not included.’ o

-

~KZY WORDS

fime Sharing
Supervisor Progranms
Scheduling Algorithms . .
Resource Allocation ’ ‘ ' : o
Multi-Programming : b T
Multi-Processing

LTINS oo

TABLE OF CONTENTS
Introauction e cceccrccccscconeccecscceccsnscsessces 1
Basic Concepts'........"'...'...'.......‘.. 2

ardware Considerations cee ccccccccecaceccos s oo
«1 Interrupts cecscccoceccsococeoccco000 00
.2 Relocation Hardware cecseeccscccesocasoscnnc e
3 Protection Mechanisnm ©cccsmoceccscscoceocoeeos
.4 Monitoring of Main Storage ACCESSES cosmcecocsn
5 dultiple Input/Output PAathS eeeeeceescccaceenn

Supervisor Services “ceccccecccoccccscnocecaccanneas I

4.1 Inter-Task Protection ceececcceccscenceccecccs O
4.2 Resource Allocation cccccesececesccccscccooacesll
4.3 Task Oriented Services in UKMPS e B
1 Scheduling of Input/Qutput Resources ...11
b.3.2 Processor Maragement ec.cceecceecoccacooaell
4.3.3 Task Interrupts I)
4.3.4 Inter-Task Comnunication ceseccoeccscccos 12
4.3.5
4.3.6 Miscellaneous Ffunctions cecesosccesseacs 12
4.4 Interrupt Handling ®cccccscescocccceccscocecess 3
4.5 Task-Supervisor Interface ©eocecccccscccsascsce]l

Structure of the Supervisors ccceccccecccesnacsceaslb
5.1 Attributes of the SUPEILVISOL cv.ececsvocececan.lb
5.2 Organization of Each SUPELVISOLr cceocceccanaaal?
5.2.1 TISS Supervisor ®ecocosencsececocscssccns]l
5.2.2 UMMPS ®ecccccccccereecccscscccccsccencesl8
5.2.3 Cp/67 cecceccceccesccecescsacoscecsceceasl8
5.2.4 Multics Supervisor cececscccccscsccecccs B

Storage Scheduling "ccccssccccscenccccscscocccnsacell
6.1 UMMPS Faging Algorithm ccccecceccecesccsoccesell
6.2 Multics Paging ALlGOLithN weeeeeeceoueenen.....26
6.3
6.4

TSS Paging Algorithm a..w'os.o.00-...0...--...28

0CeSSOL SChedUliNg sececucrecoccencncanacennnness30
1 Cp/67 R T T 10
2 Multics ®eecccceccccccc0ccccccccscscococscsceocsll
.3 UMMPS GPec e eccc 000 0seccccacanc00000 0060 00eno oo
4 :
5

TSS ® © o 5 ¢ ©0 00 0 @ 0 ...O....Q.o...t...0000000'00037

Comparison of Processor Scheduling Algorithms 40

- Input/Output Processing Pecseccecesnccccccccscconsssll]
8.1 Organization of Input/Cutput Hardware e..eoo..41

8.2 Task Input/Output Control ©ececccscccccscnsocsckld3
8.3 Supervisor Input/Output CONtrol eveeeecscecs. .45

Multi-Processor CONS1derationsS cececeeeccconceccneald
9.1 Organization of Multi~Processor SUPPOLt eeecoeoo 49

9.2 Hardware Consideration ©ecscococcencecscscscsed)
9.3 Multi-Processor Support in UMMPS cececccescccadl
9.9 - Inter-Processor Interference cbesocsscscscenecD?

DONEE= &

Storage Management ceeeeececoocecocconessl?

CP/67 Paging Algorithm @0eccscescocoscscccccacll

FIGURES
Two Level Address TranslatioOn escececcescscscscscssce O

TSS Processor Scheduling LiStsS ceeccecccccccceccsooasl’d

Simple Input/Output Configuration U 1S T

Time Sharing Supervisor Programs ' 1

1. INTRODUCTION

These notes consider superviscr programs for several
curreat time-sharing systems, where "time-sharing systen" is
used to indicate a system allowing simultaneous, on-line,
conversational access by several users (who may be
interractive terminals, small computers, or special devices)
in competition for system resources, and the "supervisor
programns" are those parts of the +time-sharing system that
control allocaticn of system resources to various users.
The four separate time-sharing systems that have been
selected for main consideration are Control Program/67
(Cps67), the University of Michigan Multi-programming
Supervisor (UMMPS), Time Sharing System/360 (TSS/360), and
Multics. These do not by any means represent an exhaustive
list of current time-sharing systems, but rather were chosen
because they represent several different approaches to
supervisor programs for time-sharing. It will be seen that
although the organization of the fcur supervisors considered
is quite diverse, there is a quite considerable similarity
among the algorithms used for controlling the use of these
resources.

Introduction

2 Time Sharing Supervisor Progranms

2. BASIC CCNCEPTS

Since terminology in computing in general and time
Sharing in particular is not well established, a few ternms
will be defined. These are not the only terms used for
these «concepts, in fact the four systems considered do not
alli use them, but to avoid confusion, they will be used
consistently throughout these notes.

The central concept of each of the four systems, and

indeed orf nearly all time-sharing systems, is the concept of
a task (sometimes called a Brocess or a job) which is the

execution of a set of programs and subroutines. That is, a-

program is a (static) set of instructions and data while a
task 1is the (dynamic) execution of a set of instructions
operating on data. In a time-sharing system a task will
usually have some specific purpose such as providing
computing service for one user or controlling some specific
portion of the input/output equipment, and each user of the
System will have at least one task which is primarily
responsible for providing service for that user. Sonme
important attributes of tasks are (a) independence (they do
not interract directly except in fixed stylized ways), (b)
Parallel execution (each task executes in parallel with all
other tasks), and (c) competition for System resources (in
general there are not enough resources such as storage or
processor time to give each task all it would take).

The entity which executes a program in behalf of a task

'1s known as a processor (or a central processing unit or

CPU). Many large time-sharing systems have more than one
processor, creating interesting problems for the Supervisor
since two or more programs may be executing simultaneously.
In particular the supervisor itself may be executing on more

_than one processor at a time. Some of the problens
- Lesulting from this will be considered in section 9.

Any medium for storing information so that it is
available to the computing system on a randonm (or nearly
random) access basis is referred to by the generic ternm
storage. This normally includes Some amount of main storage
usually core storage in addition toc a larger amount of
slower auxiliary storage such as magnetic disks and drums or

' slower core storage. Usually (but not always) a processor

is not capable of executing a program or referring directly
to data stored anywhere but in main storage. In a tinme-
sharing system a certain amount of the auxiliary storage is
generally used to contain pnamed private or shared
collections of data (called files or data_sets) for the
various potential users of the System. This use of storage
will not De explicitly considered here since it is not

~Jenerally the gdjirect responsibility of the supervisor

Basic Concepts

Time Sharing Supervisor Programs 3

program.

Any portion of the computing system hardware which is
primarily used for the transmission of information from one

type ot storage to another

external world 1is known

nearly every case this

tran

or between

storage and the

as input/output equipment. In

smission 1s

asynchronous with

respect to processors and takes place between core storage
(usually main storage) and something else (e.g., a disk, a
card reader, or a teletype).

Basic Concepts

4 ~Time Sharing Supervisor Programs

3. HARDWARE CONSIDERATIONS

Several aspects of the hardware used ror time-sharing
System are important and will be described briefly here.
This description applies primarily to the 1IBM System 360
Model 67 (on which CP/67, 15S/360, and UMMPS all run) and to
the General Electric 645 (on which Multics runs), but

several other computing system for time-sharing have similar

features.

Whenever any event occurs which may be important to the
supervisor, the hardware notifies the supervisor by means of
an interrupt. An interrupt is simply a forced call of a
predetermined subroutine along with a change in the state of
the processor. 1The Supervisor must provide subroutines to
service each of the various types of interrupts which may

occur.

The possible interrupts are generally divided into two

categories: those due to some event external to the
processor and those caused by some abnormal occurrence
within the processor. The most common type in the first

category indicates a change is the state of the input/output
equipment, while the most common type in the second category

'~ 1s used by a task to request service of some kind from the
_supervisor. :

Interrupts are the nmost important tool of - the

~supervisor in cfperforming its various functions in a time-

sharing system and in a busy system the number of interrupts

processed will be very large. For this reason it is.

necessary that the basic code used to process interrupts be
efficient. It is estimated that removing one micro-second
from each interrupt handler in UMMPS running on a large
360/67 could save as much as 20 seconds a day in processor
time spent in the supervisor. » -

“ 3.2 Relocation Hardware

The best kpown time-sharing hardware feature is the

‘relocation hardware which, among other things, allows moving

of programs in main storage without changing then. This

- facility is similar in general outline on the 360,67 and the

645, although the details are completely different. On both
machines the address used by a program to refer to main

~storage (the virtual or dogical address) is divided into

three fields: the segment number, the page number, and the
offset within the page. This division of the logical

dardwvare Features

LSRR e

' Hardware Features

Time Sharing Supervisor Programs } ,S»

address into three fields leads to the division of the
logical address space referenced by a program into segments

~and pages within segments. There are as many possible

segments as can be addressed by the segment number (although-
only a few will be active at any time) each of which can
(but won't) be as big as can be addressed by the page and
offset portions of the address. The division of the logical
address into segments and pages is fixed in the 360/67, but

in the 645 it may be changed among several possible ones by‘ ”

tne supervisor; in fact the division of segments into pages
can be disabled and the page and offset can be comblned 1nto§m»

a single guantity.

The segment number, page number, and offset are used ééi

follows: the segment number is used as an index into a table
in main storage (called the segment table or . descriptor =
.segment) to obtain a value which gives the status of the -

corresponding segment and the location of a page table = for =
the segment.. The status information may indicate that the’
segment is not available, in which case an interrupt occurs °

~to notify the supervisor that some task attempted to access

an unavailable segment; but if the segment is available then

the page number is used as an index into the page table

indicated by the segment table entry to obtain a page table
entry. (This step may be skipped on the 645.) This entry

- again contains a status field and a pointer, which (if the _
" status field indicates the page is available) points to the

actual main storage address of the page. Again if the page

~ is not available the supervisor is notified by an interrupt.
© The origin of the page is added to the offset given in the

-~ address to give the real main storage address. lMore
precisely, since the page must start on an address that is a

multiple of the page size, the offset is simply concatenated
to the high order part of the page origin. See Figure 1 for

- a diagram of this process. This very superficial

- description leaves out many of the details of the
implementation, most of which are included for efficiency.

. In particular it does not do justice to the complexity of
. the 645 in which the virtual addresses are not simply single
unantltles divided into three fields, but rather the segmentfi

. number is stored separately.‘ : G)

~

6 . Time Sharing Supervisor Programs

f ¢ R] | LE K
| Segment Table] : | Segment | | Page | |0ffset
R Base I - |Number ||Number 11 L .
L 4 | - ’ v - 3 s) L——'——-—J. .
| ™/ | | (-
L b——— | # | ———d | |
Segment R | |
Table L e | l |
| S l N R
I | | v |
IR A + : >t o
I e 1 Table Interrupt | o
| o | ' pmem——— o | R
+—t oy ' | R e
I S += + | A
b L | | | |-
L } +< J v
i [PRYEE (I . } >|— - R
: +————t [e e
| ° | Interrupt’ -~ Real Address
-+ +
B l
L

. Figure 1: Two Level Address Translation

i It is extremely important to note that this mapping
- from virtual addresses to real addresses (or interrupts) can
pe made different for each task operating in the system at

" any time Dby giving each task its own segment and/or page 3; 7

.~ tables. This has several implications of importance. First

it means that a given virtual address may have different

" -_meanings in different tasks. Also it means that information

 private to a task (i.e., existing only in that task's =

::~v;rtual address space) sxmply does not exist as far as other
tasks are concerned, giving complete lnter-task protectlon]

. of prlvate data.

"{ Harduare5Features>~

Time Sharing Supervisor Programs

Since the segment tables of several tasks may contain
~entries pointing to the same page table, it is easy to share
-~ 1nformation between tasks, either with the same virtual:

address 1in each task or with a different segment number.
Since the segment number of shared information may be
difrerent in different tasks, it is not possible for shared
~_segments (which must have the same contents in all tasks) to.
~contain pointers to other shared segments (or private
- segments of course). e ~ s e

_ In general the division of the virtual address into
'segments 1s used to divide the programs and data used by a
‘given task into logically separate segments of information,
- while the division of segments into pages is transparent to’
the tasks and is used by the supervisor to efficiently
manage main storage. The general area of proper use of
segmentation is an extremely interesting and complex one but
- it will not be covered in these notes; for our purposes we'
..~ will consider the virtual address space of a tasks to be
~aivided into pages and consider how this division is used by
the supervisor. See [1] and [3] for discussions of ways
‘segmentation may be used. ' ~ S : i :

 !,3.3“'Protection Mechanism

- Another area of the hardware which is <closely related
.-to relocation is the area of protection. As mentioned
above, the relocation itself gives inter-task protection for
. private data; however, some mechanism is required to provide
- protection for sensitive data within a task and to ensure
~ that the supervisor maintains controcl of the machine. ‘

i The first requirement is met Zby assigning an access -
'right to every reference by a program to a virtual storage
- location. The access right is determined by the attributes
. of- both the program making the access and the data in
- question. On the 360/67 this mechanism is essentially the
standard System 360 storage protect mechanism which assigns
- a "key" (which can be set by the supervisor) to both the
- program being executed and tc all blocks of main storage.
' If the keys of ,the current program and the data being
- accessed are not the same, access is restricted either to:
. read only or to no access. On the 645 each segment for each
¢ task has a mode indicating whether it can be read as data,
- changed, or executed by the task. If it can be executed the
mode is further subdivided to indicate the priviledge of the
- program contained in the segment. The mode of a segment is
. indicated in the segment table entry for the segment and to -
~~ change the mode of any or all segments, the supervisor need . .
. only change the segment table pointer to point to a
- different segment table. This means that in Multics, each

' Hardware Features

8 _ Time Sharing Superviscr Progranms

‘task may 1in fact have several different segment tables for -
different levels cf protection.

In order to guarantee that the supervisor maintains
~ control of the machine certain instructions which change the =
state of the machine in some basic way must be made e

unavailable to the tasks. Hence both machines (and in fact
most current computers) have a non-priviledged mode
(sometimes called user mode, slave mode, OT problem program
mode) in which «certain instructions cause interrupts if
executed, and all tasks operate in this mode. The

' inpstructions which are not allowed are those which affect
(™ . the relocation or protection mechanisms or the input/output i
state. : : L

i

3.4 Monitoring of Main Storage Accesses

A minor point which should be mentioned in connection @
‘with hardware features is the automatic monitoring of every
reference by any component of hardware to every block of
main storage. Whenever a component of the hardware (a
processor, an input/output unit, or anything else) refers to
a block of main storage, a bit associated with that block is . .+
set. In addition if the block is <changed a second bity i
~ associated with the block is set. These bits (which are v .
~ associated with the storage key on the 360/67 and the page
. table entry on the 645) can be tested and reset by the-

_supervisor, allowing it to find out which pages of main
' storage have been referenced and changed since the bits were
~ last reset. = s

ais,

3.5 Multiple Input/Output Paths

it Another feature of the 360,67 which is much more

important on it, although present to a limited extent in

. other models of the System 360, dis the availablity -of
- 'several ‘“paths" fromn main storage to an input/output unit. -
It is possible to have up to eight possible sets of - il

- egquipment (including chanrnel control units, data channels,
and control units) which can Dbe separately assigned to

~ transmit data Dbetween a particular set of input/output

_equipment and main storage. 1 : P o e

' Hardware Features

Time Sharing Supervisor Programs S 9

4. SUPERVISOR SERVICES

@here are several functions that the supervisor of a
 time-sharing system performs. AS mentioned above, the tasks

in a time-sharing system are independent and protected fron

one another and the enforcement cf this rests largely Hith‘ j?>

the supervisor and is one of its more important functions.
A second function of the supervisor is to provide an
interface between the tasks and the hardware of the

computing system. Modern computing hardware is designed to,n_f“

"be flexible and efficient rather than easy to use,
particularly the area of input/output equipment. For this
' reason most supervisor programs provide a modified interface

to the hardware for the tasks under their control. Also to

obtain best use of a large computing system it is essential

that some program be responsible for allocating portions of
the system to various uses in an intelligent manner. This

function of the supervisor is closely related to its job of 3
acting as an arbitrator to the tasks in their «competition ..

for system resources.

N

4.1 Inter-Task Protection

The job of;protecting the tasks from each other is madeij
somewhat easier by the special hardware mentioned above —

particularly the relocation hardware and the storage protect’f~3

‘mechanism; but in spite of this much care and consideration
‘must be given to this problen. g

one point that seems almost too obvious to be

mentioned, but which is often overlooked anyway, is that allrx”
information which is necessary for the proper functioning of

the supervisor must be maintained in storage that isi”l f
protected from the tasks. A11 of the systems considered =

here do a fairly good job of this, although the completeness’;iﬁ

of the safeguards vary from system to system.

. In particular it is essential that all information .
necessary to remove a task from the system, and reclaim all
"of the system resources of which it was the owner, 1is

naintained in storage which can be guaranteed to be safe.

Then it is possible to assure that no matter what haprens to

the task, at 1least it 1is possible to remove it from the

system without causing any permanent damage. This +is very “*

impértant for a system which may expect to run continuously
for many hours. If when a task crashes it were necessary to
loose system resources until the next system shutdown, the

systen performance might be seriously degraded. As a result =

. of this consideration it is necessary that all allocation of
i, system resources to a task be done by the supervisor so that .
it will have a complete record of the current allocation to

_Supervisor Services

10 Time Sharing Supervisor Programs

each task.

‘When the supervisor allocates a syStem resource to a
task it must be sure to maintain ultimate control of the

° _ resource so that it can revoke the allocation later; it must

. with less hardware. The job of deciding when to allocate-; ffJ
each resource to each task requesting it falls in the realm

ﬁi,requlres use of processor time, input/output equipment time,

and 'main and auxiliary storage. Hence it is sometimes
~ advisable to require a taskg to wait longer than the minimum
- possible time for a resource in order to reduce the number
- of times it is switched from one task to another. - Since =
. time-sharing systems generally are interracting with human

- never unconditionally allocate part of the system to a task.
For instance when a processor is given to a task it must be e
certain that an interrupt will eventually occur to give -

control of the processor back to the supervisor. In . the

~case of less important —resources, such as input/output -
devices, it may only be necessary to assure that it is
possible to get them back if necessary (for 1nstance if

!;(f%;; .

requested to do so by the systenm operator)

u.ZIAResourCe Allocation .

~ In most computing environments it is not possible to

 \give each task all of the resources it needs all of the
~time. In ract if this is always possible, then the systenm

is probably not fully loaded and the work could be handled

of the supervisor because it is the only part of the system

' waich nmaintains a giobal enough view of the situation to be

abple to do this intelligently. In fact nearly every

- function of the supervisor falls into the general area of

 scheduling the allocation of resources. The requirements of =

- . the tasks for system resources fall into three general
. categories: processor time, storage use, and input/output - ,;

_equipment. The methods wused by the supervisor to control =

- the allocation of each of these forms the topic of a section =

'jof these notes. ~ : : e

e In‘performlng this basic function of controlling the =
~allocation of system resources to the tasks requesting use -
- of them, the supervisor program could operate with two

somewhat contradictory goals: to minimize the total time

tasks must wait for requested resources, and to maximize the =

utilization of ‘'all system resources. These goals are

contradictory because to switch control of a resource from

one task to another always requires use of some resources.

A?‘For’example to switch control of a block of main storage :
_from one task to another wusually requires saving the

information in the main storage and restoring the
information needed by the new user of it, and this procedure

- Supervisor Services

Tinme Sharing‘Supervisor Progranms ; 11

users, any waiting time which 1is comparable with human
reaction time 1is usually considered adequate. The biggest
exception to this is tasks which are providing some system

related function and which require faster service for this

reason.

4.3 Task Oriented Services_in_ UMMES

, The supervisor in a sense never initiates any work in
the system; when no tasks are active, the system is idle
even if the supervisor is active. Hence the primary purpose
~of the supervisor is to provide services for the tasks. The
~ services provided by the UMMPS supervisor to the tasks it
controls fall into several general categories: :

4.3.1 Scheduling cf_ Input/OQutput Resources

This function requires the largest amount of code in
the supervisor, not so much because it is extremely

difficult, but rather because of the multitude of special if,bn1
Cases required. The tasks are able to request use of .

specific input/ouput devices (such as card readers,'7iv
printers, telerhone 1lines, etc.), and when they have

received permission to use one of them they can queue

requests for input/output operations on it. The supervisor €1"”

~will execute these operations as facilities become available
and will notify the task when the operations are complete.
~In the case of some abnormal event in connection with the
input/output operation the task will be notified and further
operations on that device will be inhibited until the task
takes some corrective action. + For this purpose several
supervisor functions are provided. (This aspect of the
supervisor is described in Section 8.)

—

4.3.2 Processor_Management

The UMMPS supervisor provides a mechanism by which a

task can wait for some event to occur, where an event is

~defined to be a certain set of bits in some byte in the
task's virtual storage being all zero. The task - can

indicate whether the event will also result in a signal

beimg transmitted to the waiting task or whether a periodic
check should be made to see if the event is complete. It is

- also possible for a task to voluntarily relinquish a

processor to another task that needs it (if any exists). 1In

CP and 1TSS a task can wait only for any interrupt, not for a |
~ specific event. Sy o

 Supervisor Services

12 - Time Sharing Supervisor Progranms

4.3.3 Task Interrupts

Certain events (such as the completion of an

input/output operation) may cause an interrupt to the task
to be generated, that is the current status of the task will

~ be saved and it will be forced to execute at a certain

predetermined location. The supervisor provides facilities
which allow the management of this mechanism such as a way
to set up certain interrupts, a way to return to the point

at which the interrupt occurred, and a way to delete saved

return information.

~4.3.4 Inter-Task_Communication

Although tasks are generally completely independent, it

~is sometimes necessary for some communication to take place .
between them. There are facilities provided by which a task

may send a signal to another task or get or receive
information from another task. Also there are a set 'of

supervisor subroutines that can be used to synchronize
several tasks by causing them to wait until some resource is

available.

4.3.5 Storage Management

- Subroutines are provided to allocate and release

 virtual storage for the tasks. Note that what is beingvf*'a
- allocated in yvirtual storage not real storage; only the

address space is being allocated and the actual storage will
not be allocated until it is needed as described in Section

6 below. This is an area in which UMMPS is not so general j"*7=*

" as Multics or TSS: in TSS it is possible for several tasks .

to allocate storage that is shared between them; while in
Multics it is possible to specify that the storage allocated
is to be effectively preset with the contents of some data
set that has been stored in the system previously. The data
set is actually read into main storage only as the parts of

it are referenced, not when it is allocated. As in TSS it

is possible to allocate shared storage, now with the added

7;;vcomplication that it may also be "preset."

. e S S s TS " S S S —— - S ——— .

 The supervisor is also responsible for providing

1 '¢ertain small housekeeping functions such as maintainance of
- the time of day. Also it is of course responsible - for the
- creation and destruction of tasks. S £ v

Supervisor Services

Time Sharing Supervisor Progranms 13 e

4.4 Interrupt_ Handling

The basic tcol of the supervisor in performing all of '7

these diverse functions is the interrupt mechanism. 1In cp,
TSS, and UMMPS (but not in Multics) this is the only way in

which the supervisor can be entered; it is never entered
- from a task except by way of an interrupt. :

The possible causes of interrupts on the 360/67'aré‘5
1. Change in the state of input/output equipment
2. signal from another processor :
3. Signal from the operator

4. Expiration cf a preset time interval

5. Malfunction detected in some component of the
g hardware

6. Abnormal condition in the program being executed

7. Specific request for an interrupt by the progranm :f?[g-w

being executed

 Interrupt types 1 through 5 are due to conditions external
~to the program teing executed, while types 6 and 7 are due

to that program and are sometimes called faults instead of
interrupts. , :

In ISS and UMMPS interrupt type 7 (called a supervisor

call or SVC) is wusually used to request some srecific

supervisor service, while interrupt type 6 (called a program

- interrupt) generally indicates a progran error, except that
missing page interrupts are categorized as program

interrupts. However in CP SVC's are never processed by the

- supervisor and program interrupts are used for all requests

for service by the tasks (more will be said on this below) .

In general it is possible to think of the supervisor in
CP, TSS, or UMMPS to be simply a set of subroutines for
processing interrupts, although this is not exactly true in
the case of TSsS. Even in the case of Multics interrupts =
play an important part in the operation of the supervisor, -
~although it is designed to hide this fact as much as
~ possible. : . ST i |

Supervisor Services

<

14 _ Time Sharing Supervisor Programs

4.5 Task4Supervisor Interface

The supervisor in each of these systens has a well

~defined interface with the tasks. However the particular

interface chosen varies from one to the next. Logically the

supervisor exists between the tasks and the hardware of the

computing system and can be thought of either as an
extension of the task to deal with the hardware or as an
extension of the hardware to deal with the ‘task. - The
particular approach used by each of the systems is at least
partly determined by the nature of the hardware they use.
On the 360,67 the supervisor programs are entered by
interrupts which either request service or indicate task
errors, while on the 645 the hardware is such that the
supervisor may be entered either by an interrupt or- by a

-~ direct transfer by a task to a new segment. Hence it is

natural for the Multics supervisor to be considered to be
part of the task, in fact just a set of programs and data
bases some of which are sharead among all tasks. On the
other hand the instructions on the 360/67 which cause
interrupts to request supervisor service can easily be

- considered to be ‘"extended machine instructions" and the

supervisor appears to be almost part of the processor the
task 1is running on. In fact in CP/67 and TSS/360 the
programs and data which form the supervisor are not included
in any tasks virtual storage (incidently making them immune
to modification by a task). Note that even in the 645 the

 supervisor is sometimes entered by an interrupt (for
~instance when an unavailable segment or page is referenced),

but that in these cases things are set up so that it appears

. to be running in some task anyway.

The interface between CP and its tasks is the e€asiest
to describe: it is simply and exactly the same as the
interface between the System 360 hardware and a program

~executing on a 360. Hence the instructions normally used to s
call the superviscr in System 360 are not processed by CP at

all but are simply returned to the task as a simulated
interrupt to be processed by whatever '"supervisor" there is
in the task. Also there are tables for each task giving its

virtual machine's status, such as whether it is in

priviledged state (i.e., can execute all machine
instructions) or not. However the real machine is never put
into priviledged state while a task is executing, and any"
priviledged instruction which is executed by a task causes
an interrupt and is simulated by CP if the virtual machine
for that task is in priviledged state, hence those

~interrupts that are used to call the CP supervisor are just

those interrupts that are due to the attempt to execute a
priviledged inmstruction - the same interrupts in any other

of the systems are considered to be an error.

_ Supervisor Services

Time Sharing Supervisor Programs 15

The interface between the tasks and the TSS supervisor o

is similar to the hardware interface on the System 360, but

it has been changed to suit the environment. Instead of‘f;
simulating a virtual machine that looks like a real 360, the

TSS supervisor simulates one that has been altered a bit to
make the interface more efficient. All requests for
supervisor service are the result of supervisor call
interrupts rather than priviledged operation interrupts as
in CP. Furthermore the format and meaning of certain of the

puilt in parts of the virtual machine are different than in

the real 360. For instance the number and meaning of the

- interrupts are slightly different and some of them return

significantly more information than is returned by ' the
corresponding interrupt on the real 360. In spite of these
alterations the interface still looks remarkably- like the
real 360 interface. : ’

The interface between UMMPS and its tasks is even more -
‘removed from the real 360 interface. As in TSS all requests

for supervisor services are the result of supervisor «call

i interrupts, not priviledged operation interrupts. Again

there are interrupts which can be directed to the task, but .
now they are not at all like the interrupts in the real 360.
Furthermore they are not a very important part of the

“interface. The wusual case is for some specific service to =
be requested by the task and if necessary the task will be.

made to wait until the service is completed.

In Multics the interface between the tasks and the

supervisor im a sense does not exist, since the supervisor = -

is simply a set of subroutines in each task. The supervisor
always runs in some task even if it is processing an

‘interrupt. To do this it requires a stack for calls that is

hidden from the task and used only for interrupt processing.

However most requests for service from the tasks are made;‘*;
with ordinary calls. ' : ,

3 —

~ supervisor Services

16 ‘ - Time Sharing Superviscr Progtams

5. STRUCTURE OF TEE SUPERVISORS

The four systems being considered differ widely in the
basic organizaticn of their supervisor programs. In general .

the three systems for the 67 are basically similar in this

respect (but in practically no other) while Multics is
radically different. ‘ :

5.1 Attributes of the Supervisor

’ Certain attributes of a supervisor are important to an
understanding of its organization. .

1. It may or may not run with the . relocation

mechanism described above enabled.

2. It may or may not run entirely in priviledged
state, that is, in the state in which all machine
instructions are legal.

3. It may or may not run with interrupts (from

input/output equipment, etc.) enabled.

It is possible to disable the relocation mechanisnm
mentioned above so that the address used by a program is the

same as the actual main storage address. - This is done while
a task 1is running only in UMMPS and there only for special
. tasks, but TSS, CP, and UMMPS run this way in the

supervisor. On the other hand, since the Multics supervisor
is considered part of the task, it runs with relocation
enabled. The advantages of the Multics approach are that
the supervisor is not fixed in any areas of main storage,

and in fact part of it need not remain in main storage at .

all times, although some portions of it must remain in main

storage to serv1ce missing page interrupts.

The supervisors for TSS, CP, and UMMPS all run in the

‘priviledged mode at all times allowing them complete freedom

to execute any instruction. Again Multics is different in
this respect since most of its supervisor rumns in non-
priviledged mode, although certain portions of it must run
in priviledged mode to execute those instructions not
available in non-priviledged mode. Since most of the
supervisor runs in non-priviledged mode, it is scmewhat
protected form errors in itself. This distinction and the

previous one between Multics and the 360/67 systems is

largely due to the distributed supervisor concept in Multics

that puts the supervisor in each task instead of off by,.r

itself as in other systeums.

Overall Supervisor Structure

Time Sharing Supervisor Programs 17

TSS and Multics supervisors run most of the time with

input/output and other external interrupts enabled. This

means that some mechanism must be maintained to F[frocess
interrupts occurring while other interrupts are being
processed. In Multics the supervisor is recursive and
maintains a stack for this purpose, while in TSS an
interrupt occurring while processing a previous interrupt is
simply queued for later action. This queueing method in TSS
is central to the whole supervisor and will be discussed
below. The supervisors for CP/67 and UMMPS both run with

all interrupts disabled, allowing thenm to complete

processing one interrupt before another one occurs on the
same processor. The biggest disadvantage of this is that no

interrupt can be guaranteed service in less time than it = .

takes to process the longest interrupt. Also, since sone
interrupts can not be completely processed immediately, some
queueing mechanism is needed to handle actions that must be
delayed by the supervisor, even if other interrupts can not
occur. :

5.2 VOrganization of Each Supervisor

It will help in understanding the algorithms used by -

the supervisors to lock at the general organization of each
of them. The algorithms employed by these four supervisors
to implement =scheduling of system resources are similar in

~several cases even though the overall organization is quite
~different in each of then.

5.2.1 TSS Supervisor

.The TSS sufperviscr consists primarily of a mechanisnm
for gqueueing interrupts as they occur, a program to scan
this set of queues looking for work, and a set of programs
which are «called to perform the processing required when a
non-empty queue is found. Most of these programs run Wwith
interrupts enaltkled and all of them run with the machine in
priviledged state and relocation disabled. All entries to
the supervisor are made via interrupts (either task
generated or denerated outside the processor) and the
supervisor . appears in no tasks virtual address space. When

~the queue scanner finds no work for the supervisor to do it

goes to a procedure which will give the processor to a task
requiring it if any exists, using an algorithm which is
described in some detail below. : : :

overall Supervisor Structure

;

18 ~Time Sharing Supervisor Programs

5.2.2 UMMPS

The UMMPS supervisor consists of a set of subroutines
some of which are called as the result of hardware
interrupts and some of which are internal. It runs in
priviledged state, with interrupts disabled, and with
relocation turned off. All interrupts are processed to

~completion as nearly as possible before more interrupts are

allowed, but a queue is maintained for those things which

nust be delayed. All entries to the supervisor are made by

interrupts as in TSS, and when an interrupt is completely
processed (and no work which was delayed can be done) the
supervisor gives the processor to a task if possible. To
the tasks UMMPS appears to be an extension of the 360/67
hardware and the instructions used to call it appear -to be
extended machine instructions. Unlike the other systems,
UMMPS allows some tasks to run with the relocation hardware
disabled. This allows these tasks to refer to any main
storage location without any address translation taking
place. The tasks running this way are all special tasks
providing some sfpecific service such as controlling the unit

~ record equipment.

5.2.3 CPs67

The CP supervisor is essentially the same as the UMMPS

- supervisor at this .gross level except for the meaning of -
- . many of the interrupts. In particular those interrupts.

which are wused in TSS and UMMPS by a task calling thae

. supervisor are not processed at all by the CP supervisor but
~are nmerely passed back to the task by simulating an
~interrupt for the task, and the priviledged operation

interrupts which in TSS and UMMPS are considered task errors

~and passed to a special task subroutine to be handled are

used by a task as the primary method of calling the

. supervisor.

; 5.2.& Multics Supervisor

The Multics supervisor is a set of programs and data

‘wnich are part of all tasks. It always runs as part cf some

task and hence operates with interrupts enabled, relocation
enabled, and in non-priviledged state except when it cannot
do so. The supervisor is recursive to allow it to handle
interrupts occurring within itself. 1In fact in Multics the
entire notion of a supervisor becomes rather ill defined and
nebulous since there is no entity separate from all tasks.

- In spite of this, the functions of resource allocation and
~scheduling must still occur and it is the programs that
~implement these and certain other functions . which are

‘Overall‘Supervisor Structure

Time Sharing Supervisor Programs - 19

referred to as the supervisor and which we will consider
here.

Overall Supervisor Structure

20 Time Sharing Supervisor Programs

6. STORAGE SCHEDULING

The method used by all of these systems to schedule the
use of main and auxiliary storage is usually known as demand
paging. This term is used to describe a system of storage
management in which information is stored partly in main
storage and partly on several types of slower and less
expensive auxiliary storage and in which the information is
moved between these twc (or more) levels of storage in units
smaller than the total storage of one task. To understand
why this method is chosen one must bear in mind two points:
that information must be stored in main storage before a
processor is able to utilize it, and that moving information
between main storage and auxiliary storage is a process that
is relativelly expensive in terms of processor time and
 other system resources. For these reasons among others it

is desirable to store much of the information contained in

the system as a whole on more inexpensive auxiliary storage
and move only that part of it that is <currently required
into main storage. The relocation hardware described
earlier allows this tc be done easily since it is [Fpossible
to have any subset of the pages associated with any task in
main storage at any time, and furthermore these pages may be
located anywhere in main storage.

These considerations alone would justify this
organization of storage, however demand paging has further
advantages above and beyond these in that it is possible for
_the total storage available to a task to be much larger than
actual amount of main storage available in the systen. In
fact by use of the segmentation hardware described earlier .
it is possible to consider all the data stored in the systen
and available to a task to be simply an extension to its
virtual address space as if it were all in some very large
virtual storage. This is done by considering each logical
grouping of data (data set or file) to be "mapped" into one
or more segments in virtual storage. Then the mechanism

o described below is used to move the data - from external

. storage to main storage as it is needed. This approach is
‘used to some extent by TSS and to a much larger extend by
Multics, in which it plays a very important part in the
basic design of the systenm.

One pitfall which must be avoided at all <costs (which
has not always been the case) is the error of considering
this vast virtual storage as if it were all real storage,
each portion of which is directly addressable in an equally
short time. This 4is not the <case and programs which
indiscriminately reference a very large virtual storage will
suffer the consequences of requiring many transfers of pages
~ between auxiliary storage and main storage at an excessive

penalty in terms of system overhead. This effect is

Storage Scheduling

Time Sharing Supervisor Programs 21

tesponsible for a large part of the poor reputation which
demand paging systems enjoy today. However when properly

used the mecnanism of treating all of the data available to

a program as an extension of virtual storage is an extremely
powerful one. -

The methods used to control the transfer of pages
between main and auxiliary storage in CP, UMMPS, and Multics
are similar and the UMMPS method will be described followed

by a summary of differences. The TSS method is quite

different and will be discussed separately.

In all of these systems (including TSS) a page must be
in main storage to be used by a task and if an attempt is

.made to use a page which is not in main storage an interrupt

will occur to notify the supervisor of this event. When
this type of interrupt occurs the supervisor must £find an
available main storage page to hcld the requested page and
either move the page from auxiliary storage if it is stored
there or allocate the page to the task if it is a new page.
In any case the decision of which fages are to be moved to
main storage is not generally very ditfficult since each
request is handled when it occurs. ~

There are two cases in which Fages must be moved to

main storage even though they were not explicit#ly requested

by a task. This can occur if certain pages must be in main

. storage before a task can even be started on a processor or .
1if the supervisor attenmpts to "pre-read" certain pages to

reduce the time a task must wait for the moving of pages.

"None of the systems make extensive use of 'pre-reading" but

both TSS and Multics require certain pages to be in main
storage before a task can be started. These request are
handled much as if they were page request interrupts which

occur when a task is considered for the use of a processor

—

and hence do not affect the algorithm much.

In UMMPS the function of moving pages between main
storage and auxiliary storage is divided between the
supervisor and one special task (called the Paging Drum

. Processor or PDP) running under control of the supervisor.

The auxiliary storage medium used by UMMPS is one oOr more
drums (disks are not «currently used because they are too
slow). These drums are under complete control of the PDP
which handles the function cf constructing channel rrograms
to read and write pages on the drums (which are essentially

~fast input/output devices) and which notifies the supervisor

when a page has been read or written. In this context
"reading® a page means moving it in to main storage and

:Stbrage Scheduling

22 Time Sharing Supervisor Programs

"yriting" it means moving it to the auxiliary storage
medium, i.e., the drums. The choice of which pages are to
be read or written is completely ur to the supervisor while

the actually reading and wri%ﬁing is up to the PDP.

The basic unit of information wused ian communication
between the supervisor and the PDP is the Page Contrcl Block
(PCB) which contains all the information concerning the
status of a single page. All PCB's contain a main and

auxiliary storage address for the page, status bits

indicating the state of the page, scratch area for use while
moving the page, and a pointer field that is used to chain
the PCB's on various queues. '

To control the interraction Lbetween the supervisor and
the PDP there are five supervisor subroutines called only by
the PDP and four queues of PCB's used to pass information

" between the supervisor and the PDE. The four queues are:

1. Page In Queue (PIQ) - contains PCB's for all pages

which have been requested to be read into main
storage but which the PDF has not started reading
yet.

2. Page In Complete Queue (PICQ) - contains PCB's for
all pages which the PDP has completed reading (or
allocating if no reading was necessary) Lut of
which the supervisor has not been notified.

3. Page Out Queue (POQ) - <contains PCB's for all
: pages which are in main storage and which could be

removed if necessary to make space for more pages.

4. Release Page Queue (RPQ) - contains PCB's for all
pages which have been released by there owning
- tasks but which the PDP has not released yet.

‘The five supervisor calls (SVC's) used only by the PDP are:

1. Get Real Page (GETEP) - used to request a main

storage page into which to read (or allocate) a

page that must be brought to main storage.

2. Free Real Page (FREERP) - wused to notify the
supervisor that a page that was previously
allocated to a PCB is now available for
reallocation. Also used to notify the PDP that a
page was reclaimed while it was belng written.

‘3. Get Write Pages‘(GETwP) - used to request one or
more pages from the Page Out Queue whlch Hlll be
removed from main storage

Storage Scheduling

Time Sharing Supervisor Programs 23

L. PDP Wait (PDPWAIT) - used to notify the supervisor
that the PDP has no more work to do temporarily.

5. Get Queues (GETQS) - used to return the PIQ and
the RPQ to the PDP. :

Perhaps the best way to learn how these are used is to
tollow an example page request through its processing. When
the supervisor determines that a page must be moved tc¢ main
storage it will place the PCB for that page on the end of
the PIQ and start the PDP if it is currently idle. When the
PDP has completed whatever work it is doing at that time it
will call the GETQS subroutine which will return to it the

PCB for the page that was reguested (and any other pages i

which must be brought to main stcrage or released, i.e.,
which are on the FIQ or the RPQ).

At this point the PDP will place each of the PCB's from

the P1Q on local queues which exist for each drum and each.
relative position on the drum. For each drum there are 9
queues corresponding to each of the nine possible locatiorns
for a page around the <circumference of the drunm. This
aivision into nine queues allows more efficient use of the
drum by reading the pages in the same order they appear on
the drunm. ‘

If the page is not currently stored on any drum ‘(i.e.;
it has never been used before) an SVC GETKP will be executed
immediately to attempt to get main storage space for it. If

‘this 1is successful the PCB will be placed on the PICQ to

indicate that it is now available, but if aot it will be
placed on a srecial local queue in the PDP so the call to
GETRP can be repeated later. :

When all PCB's received from GETQS have been processed
(by either placing them in a local queue or calling GETRP)
the PDP will build a channel program to read a page from.
each of the nine positions ('slcts") for which there is an

~outstanding read request on each drum, first calling GETRP
~ to obtain a main storage page to read each page into.

If there is not sufficient main storage available to

~ allocate a page to read into, GETRP will refuse to allocate
a page for the PDP and no more read requests will be added

to the channel program. In this case, since main storage is
almost full, GETWF will return pages to be written and main
storage will become available. This situation occurs very
infrequently in actual operation because a few pages are
removed from main storage whenever it dis in danger of
approacaing this point. ' Co ’

Storage Scheduling

24 :e" ~ Time Sharing Supervisor Progranms

" "When all slots that have read requests have been
filled, the PDP will <call GETWP to attempt to get enough
pages to £ill all remaining =<slots with writes. The
supervisor may decide to not give the PDP as many as it =
asked for if there is enough room in main storage, but
whatever pages are received will be written by the channel
program constructed by the PDP. If a page to be removed

from main storage has not been changed since the last time
it was read from a drum and the copy on the drum is still

! valid, it will not be written again kut instead FKEERP will

d be called immediately to release it and GETWP will be called

A b again to get another one to replace it in the channel

' ' program. '

- When all write requests have been processed, the
. _completed channel program will ke queued for execution on .
. some available path to the correct drum using the standard
.+ .input/output SVC's. When an interrupt occurs indicating
- that the channel program is complete the PDP will scan the
. PCB's used in constructing it and call FREERP to release all
© pages written, while putting all PCB's for pages read on the
~ PICQ. The supervisor will notice that there are pages on
. PICQ the next time it is entered and will restart the tasks
' that were waiting for them. Meanwhile the PDP will repeat =
. the process of getting queues, constructing channel
| programs, and starting them. ' . BN

- Note that the pracess of bullalng channel programs goes
. on in parallel with the process of handling interrupts from .

earlier channel programs and that at any time there will be . - -
'~ page regquests in every stage of completion. : S

s - If a page that is being written on the drum is required =
' in main storage before FREERP is called to release it, the
- copy already in main storage will be used and the PDP will
. be notified when it calls FREERP that the copy on the drum

" is not valid. This saves the time required to read the page .
. into main storage in this case. This should not happen very
 often if the the algorithm used to select pages to be

i written is satisfactory. R o T

SR "“ In summary, a page is transferred to' main St°rage.,inf__7
~ the following manner: .

- The supervisorvplaces the PCB for the page on the
- PIQ. .

. The PDP calls GETQS and obtains that PCB and all
- others which are on the FIQ or RPQ. & e

The PDP places the PCB on a internal queuefs
corresronding to its position on the drunm.

Scheduiing

e .

NG R e R e e

Time Sharing Supervisor Programs | : 25

4. The PDE constructs a channel program to read the
- page together with pages from every position on

the arum for which there is a read request,\‘ ,'r-I

tilling in the other positions with writes.

- 5. The channel program constructed in 4 is executed

: on some available path to the drum by the
supervisor. -

6. When the channel program is completed, the PDP
: places the PCB on the PICC.

7. The supervisor notices that the page is on- the

it.

A page is removed from main storage by the <following rf'97°
- process: a

1. The PDP calls GETWP to request pages to £ill up
holes in a channel program constructed to read

zero to eight pages.

2;'- if mainkstorage is almost full, the supervisor o

will take certaln pages from the POQ and give them =

to the PDP.

3. If the page has not been changed since the 1last
" time it was written on the drum, FREERP will be

called immediately to free the main storage page =

since the copy on the drum is still valid.

4. If the page has been changed since the last tine
it was saved on the drum, the PDP will 1nclude the
page in its channel program.

—~ 5. The channel program will be executed as in 5
above. :

6. When the channel program is completed the PDP will

~call FREERP to release the main storage occupied ?;f~]f

by the page.

An examination or the process above will show that the

,J'critical step in determining overall performance is the
- subroutine GETWP, which must decide which pages to remove
- from main storage. This is the case since it is just those

pages which will have to be read if they are subsequently
needed by some task. - R .

Storage Schéduling

PICQ and restarts the task that was waiting for

26 i Time Sharing Supervisor Prograams

The following algorithm is used for this function:

1. When a paqe is brought to main storage it is

placed on the top of the POQ if it is eligible for :

removal from main storage.

2. When GETWP is called it first checks to see if the

~amount of free main storage exceeds a systenm

parameter, and if so it returns no pages to be

written.

- 3. If there is relatively 1little main storage

" available GETWP starts at the top of the POQ

looking for pages that can be removed from main .

storage.

4. Before it removes a page it tests to see 1if the

bit 1s on which indicates that the page has been_f_fﬁ

referenced and if it 1is (meaning that some -

processor or input/output device has referred to
the page since the bit was last reset), GETWP will
reset the reference bit and put the page on the
bottom of the POQ. Note that when a page is first
"read and rlaced on the top of the POQ it will
- presumakly be referenced immediately and hence

will not be removed by GETWP the first time it is =

- scanned.

lej; 5. If the reference bit is not on, the page 'is 37*

removed from main storage.

6. GETWP will continue looking at pages until it has e
as many as were requested or until there are no =

more on the POQ.

 This use of the information concerning whether a page has

been "referenced allows those pages which are being used to .

be kept in main storage while the ones which are idle will

information in a somewhat different way. This information

- was not originally used by UMMPS (the oldest page in main
~ storage was removed each time) and when it was first

| utilized, the improvement was quite dramatic.

’f{fit6{2. Multlcs_gagl_g Algorlthm

The processing of page requests by Multics is similar =

n spirit to that of UMMPS but different in detail. When a

‘page must be transferred to main storage, a subroutine is

called which first <calls a subroutine to allocate main

storage page to contain the new page and then calls a

. Storage Scheduling

~ be removed. Both CP and Multics make use of the same af'#

Time Sharing Supervisor Programs 27

subroutine similar to the PDP which processes the actual

read request. If the subroutine which mnmust allocate main
storage determines that a page must be removed to make room
available, it will select a page according to an algorithm
nearly the same as the one GETWP in UMMPS uses and then call
a subroutine which will accomplish the removal. The
processing of the actual input/output is handled by a set of
subroutines which run in several tasks and operate much the
same way as the EDP.

There are at least two important differences between _ "

Multics and the other systems being considered. First the

‘auxiliary storage available to Multics is used as the mediunm
of storing all user and system data as well as a mechanism

of relieving main storage. This is done by considering all

~data to be stored in segments which may be attached to any
authorized task. When a segment is removed from main =
storage, the location in auxiliary storage to which it is =

moved 1s permanently recorded by the system so that if the
user requests it again at a later time it can be retrieved

easily. This means that the mechanism for allocating and’

accounting for auxiliary storage is somewhat more
complicated than in any of the other systenms.

The second difference is that a systematic attempt to

keep each seygment contained in auxiliary storage on the type

of device most suited in speed and size to it is made. For

- this purpose there 1is a task running continuously which
~Checks each segment in auxiliary storage to see if it should
be moved to a slower device because cf lack of use; and each -

time a segment is attached to a task a subroutine is called

~to see 1if the segment should be moved to faster or slower e
storage. The moving is accomplished by simply writing the -

pages of the segment to the new device when they are removed

from main storage as part of the normal paging process. The |
lowest level of storage is scme removable medium such as

magnetic tape and this level 1is also used as a backup
mechanism by making periodic copies of ail changed segments
there.

. 6.3 CP/67 Paging Algorithm

The processing of page requests by CP is similar to but

more limited than both UMMPS and Multics. As in Multics the

main storage is allocated at the time the request is g
~generated and the subroutine that does this will also

initiate writes if necessary. Unlike UMMPS or Multics, CP

will 1limit the numker of reads that may be outstanding at gj 1-,L
any time and if more are requested they will be defered to -
keep from overloading the systen. : :

Storage Scheddling

28 ' " Time Sharing Supervisor Programs

One of the differences between CP and UMMPS or MNultics

: is the method of choosing which page to remove from main
storage. The pages of main storage are scanned looking for
' a page to remove in the following order of priority:

1. Vacant page
2. Unreferenced and unchanged‘page
' 3. Unreferenced and changed rage
4. Referenced and unchanged page
5. Referenced and changed rage
In addition each main storage page has a "FIFO" flag’ whiéh

is set when it is allocated, and no page with this flag on
will be removed. If all pages have the FIFO flag on, they

 ’will all be turned off and the scan repeated. The flag is

an attempt to keep from allocating a main storage page to a
task and then immediately releasing it to another task, a
function which is served in UMMPS and Multics by having the
pages eligible zfor removal on a queue ordered in part by
when a page was allocated.

Another important difference between CP and the other
three superv1sors is that the auxiliary storage address of a
page in CP is fixed (as are the number of pages assigned to
each task) when the task is created. This means that when a
page is removed from main storage it is always written back
in the same place and no optimization of drum or disk

transfer can be made by filling in write requests around
- reads. Similarly each read in CP is handled as a separate
request and no ordering on the basis of rotational position
“on the drum or disk is done. ,

. A further distinction is that there is no task involved

f in the process; all the work imncluding actual 1nput/output ‘
operations is dcne in the sugpervisor. « '

6.4 TSS_Paging Algorithm

Thg algorithm used to contrcl paging in TSS is almost
completely different than in any of the other system. The

- most important difference is that unshared pages are removed
. from main storage only when the task owning them is removed
. from consideration for use of a prccessor, that is, when it
reaches a point know as Time Slice End. This may occur

because the task has used up its allotment of processor time
or for any of several other reasons to be described in

. Section 7.4. At this time the pages belonging to the task _:.%v

~

' Storage SCheduling

'\{;ﬂf;~storage Scheduling

Time Sharing Supervisor Programs 29

which are in main storage are written to auxiliary storage

(Lf they have been changed since the last time they were
written) and the main storage is made '"pending". This means

that if another rage needs the main storage it will be B
released for the use of the new page, but if the original

task makes a request for the same page again before the

storage has been reused then it will be reallocated to ite
In actual practice there are several pending 1lists for
different categories of pages so that the ones most likely

to be reclaimed will be left around.

, If a page is requested that can not be found on a
pending 1list, the request is first passed by the queue

scanner to a subroutine that attempts to find main 'storage"“'

for the page. This subroutine first looks for an.unassigned

: - page, then for a pending page in each of the categories. If
‘there is too little main storage available, it will call a =
subroutine that will write out some pages that are shared .

between two or more tasks and which have not been
referenced, or if this does not prcduce enough storage it

will write shared pages which have been referenced. If this

fails it will then attempt to force a time slice end for

- some other task, thereby tforcing its pages to be removed =
from main storage; or if this is not possible it will force
a time slice end for the task requesting the new page, thus ;
torcing it to give up some of its own pages for the new one.

This method ties the scheduling of Fpage transfers

‘closely with the scheduling of processor time since the = _
primary reason for writing pages is that the task owning the .. =

pages has temporarily lost its access to a processor. This

~ is the only case among the four systems in which there is a

close connection between page scheduling and processor

. scheduling although there is some connection in each of L

them, if only implicitly.

-~ TSS recognizes two levels of auxiliary storage and will‘ ;fEQ:

attempt to assign each page written to the catagory most
appropriate to it. If the faster and smaller storage (drum
storage) becomes nearly full, the subroutine responsiktle for
allocating auxiliary storage will select an inactive task

' tor “migration," which means that its pages which are on the

drum will be moved to slower (disk) auxiliary storage. The

- pages of a task that waits for a console interraction will, 55
- automatically be migrated at that time. . G A

30 - Time Sharing Supervisor Programs

7. PROCESSOR SCHEDULING

The method used by these systems to schedule the use of

‘processors differs radically from system to system. In

spite of this, all of the systems have certain goals in
conmon with regard to processor scheduling. Stated in the
nost general terms these are to allow the task requiring a
small amount of processor time to ke serviced quickly while
requiring that all tasks with the same status get about the
same amount of time. A secondary consideration in all the
systems is to make sure that no tasks waiting for processor
time must wait too long for it. The algorithms used by each
of the systems to achieve these gcals will be discussed,
with the simplest being considered first. One thing common
to all of them is that there is no fixed priority among
tasks such as is found in systems (e.g. 0S/360) which cater

" to batch or real time operation.

7.1 Cpy61

The algorithm used by CP to schedule the processor (CP

is wunique among these systems in that it will handle only

one processor) is the simplest and most standard — as much
as any scheduling algorithm can Le considered standard.

This algorithm is quite similar to the one used by the
Compatible Time Sharing System [9] of Project MAC and MIT.

A task running under CP can be in cne of three states with
. respect to processor scheduling:

1. Running - task is the one currently running.

2. Ready - task could be‘running if no other task was'

running. -

All tasks are on one of several queues weach of which
‘represents a level of priority in the race for a processor.

The maximum level queue a task may occupy is set when the

task is created and the task is put on top of this level

whenever it completes an interraction with a console. This

‘attempts to assure that a task which is interracting with a

console will get processor service fast enough to keep the
user happy. :
| Whenever the processor is to be given to a task, the
queues are scanned from highest priority to lowest looking
for a ready task. Within any queue the scan is round-robin;

'~ that is, the task next considered is the one after the task

last considered. If a ready task is found it is given the

- processor after first setting up a timer interrupt which

' ,~Pro¢essor Scheduling

3. Waiting — task is waiting for some event to occur.

Time Sharing Supervisor Programs 31

will occur arfter an amount of time depending on the queue
which the task is in and the amount of processor time it has
already used while in that queue.

When the tasks allowed time in a queue has expired, the
task is moved to the next lower queue if it is not in the
lowest queue already. Hence, the more time the task uses
the lower its priority. To make sure that no task gets
conmpletely left out for a long time, a scan of all queues is
made every tifteen seconds looking for a ready task which
has not received any processor time since the last scan. If
such a task is found it is moved to the next higher queue
unless it is in the highest queue allowed for that task.

There is some feed-back from processor scheduling to “

storage scheduling in CP: periodically (every minute) the
percent of the time the processor was idle while at least
one task was waiting for page transfers to be completed is
computad. If this number is too small, the maximum allowed
nunber of simultaneous page reads is increased; if it is too

large, the maximum number is decreased unless it is already

"at a set minimunm. This is an attempt to keep the systenm

trom becoming completely page bound.

It is easy to see which aspects of this algorithm

attempt to meet each of the goals set forth above. A task
completing an interraction with a console is placed in a
queue in which it will receive a relatively small amount of

moved to a lower priority queue where it will not interfere

processor time quickly, but if it needs more time it will be =

with other tasks needing a small amount of time. Any given
gueue is scanned round-robin which dttempts to guarantee

equal service to all tasks in that queue. Furthermore any
task which gets no processor time at all for fifteen seconds
has its priority increased so it will have a Dbetter chance
the next fifteen seconds. :

7.2 Multics

The processor scheduling algorithm of Multics is
similar to that of CP, but it is somewhat more complex. As
in CP there are a set of queues which contain tasks which
could use a processor if one were available, and a task
enters at a high priority queue and works down to a lowver
priority queue as it uses more time. However, two new
concepts are added to this: a task may or may not be loaded
and it may or may not be eligikle. The first condition
pertains to whether the pages needed to run 'the task are

present in main storage and is really only an incidental

detail as far as processor scheduling is concerned. The

eligibility of a task is very dimportant £for precessor

Processor Scheduling

 Processor Scheduling

32 Time Sharing Supervisor Programs

scheduling and will be considered below.

1. Running — task is currently using a processor.

2. Ready — task could use a processor if one were

available.

3. Waiting — task is waiting for some event for which

notitication will be broadcast.

Y. Blocked - task is waiting for specific"

notification of some event.

5. Stopped — task is no longer in competition for a
processor and is in a state in which it can be
removed from the system.

~ In addition there are three loading states

1. Loaded — task has enough information in main

storage to be run.

2. Being 1loaded/unloaded - task 1is either\ being

loaded or being unloaded.

3. Unloaded — task has none of the required pages in

main storage.
Finally there are two eligibility states

1. Eligible - task is to be considered for a
processor.

2. Ineligible — task 'is not be coansidered for a
processor because there are too many tasks already
vying for then.

. It is important to note the relationship between these

states: the execution states and loading states are
independent except that a running process amust be loaded,
and the eligibility state aprlies only to running, ready, or
waiting tasks. There is an upper bound enforced for both

 the number of loaded and the number of eligible tasks.

“NEAllvready tasks are kept on a set of gqueues which are

used in the same way as in CE. A task is put on a high
priority queue after an interraction with a console and.
~ moves to 1lower priority gqueues as it uses more processor
. time. The amount of processor time allowed on each queue is

, A task in Multics may be in any one of five execution
states: ‘

Time Sharing Superviscr Programs - 33

a factor of two greater than the amount of time allowed on
the immediately higher priority queue. (The amount of
processor time allowed a task on the highest priority queue
is called a '"quantum" so the amount of time allowed on queue

'n is 2%*n times a quantum.) Each task has a lowest and

nighest allowed queue number which establish its general
range of service. \

The most important difference between this scheduling
algorithm and that of CP is the concept of eligibility. The
nunber of eligible tasks in the system is limited to a fixed

maximum to reduce the contention for main storage. A task

will be made eligible if it is the highest priority ready,

ineligible task and the number of eligible tasks is less-

than the maximum. It will maintain its eligibility wuntil
(1) it wuses a specified amount of processor time, (2) it
enters the blocked or stopped (but not wait) state, or (3)
it is pre-empted (see below).

When a task is made eligible it will be loaded if it is

‘_not loaded already, hence the number of loaded tasks is o
always at least as large as the number of eligible tasks. A i

task will be unloaded if an eligible task must be loaded and
there are the maximum numnber of loaded tasks. Finally a
task 1is selected for use of a processor only if it is the
highest priority ready, eligible, and loaded task.

Since there is a rather high overhead associated with
switching a processor to a new task, once a task has been
given a processor it is allowed to keep it until it has used

‘a certain minimum amount of time. A task will be pre-empted

(removed from the running state before it has used its
alloted time) if a higher priority task is made ready and
the running task has used more time than the higher prlorlty
task will be allowed to have.

—

7.3 UMMPS

The processor scheduling algorithm of UMMPS is somewhat
similar to that of CP and Multics but is different in
several significant details. Instead of the multifple queues
for ready tasks only one queue is used and it may contain

~tasks in any of several states. The basic states that a
task may occupy in UMMPS are: :

1. Running — currently running on some processor.

2. Ready - «could use a processor if one _ were
available. ' B o

3. Wait — waiting on some event.

Processor Scheduling

34 ‘ Time Sharing Supervisor Programs

4. Page wait — waiting for a page to be brought to
main storage.

All tasks which are running or ready and some tasks which
are waiting will be on the processor gqueue.

In UMMPS a task may be put into wait state either until

| any interrupt is directed to the task or until certain bits

in some byte of its virtual storage are zero. In the first
case ana in the second case when it dis known that an
interrupt will cause the task to be added to the processor
queue when the wait is complete, the task is removed fronm
the processor queue during the wait; but if the task will
not be notified when the wait is done, it is left on the
processor queue and treated as if it were a ready task
except that it is not given a processor. This would occur
if, for instance, the task is waiting for sonme byte in
shared storage to be reset to zero and whichever task will
clear that byte will not notify the task(s) waiting for it
to be <cleared that it has been cleared. The task will be
removed from the processor gqueue during a wait in the
following cases:

1. The wait was initiated by the supervisor itself

for an input/output operation or a page read.

2. The byte defining the wait is in the tasks private
virtual storage.

- 3. The tasks specifically requests to be removed froﬁ.-

the queue during the wait.

~In case (3) it is up to the task to insure that it is

properly notified when the wait is complete. For this
purpose there is a supervisor subroutine which may be called
by any task and vwhich will fplace some other task on the
processor queue if it is not already there. (The task 1is
not otherwise affected.) There is an overhead associated
with leaving a waiting task on the processor queue (because

- the task must be periodically checked to see if its wait is

up) and for this reason all of the more common waits are
such that the task is removed from the queue.

Whenever a task is added to the processor queue for any
reason it is added to the top of the queue, thus making it
the next task to be given a processor. This means that very
quick service is wusually given to interrupts and to tasks
which have just had a page brought to main storage. It has

~'been observed that a task requesting a page will often

request another one soon, and if it is given a processor
right away it will select quickly which page is next to be
read. A disadvantage of this is that several tasks which

 Processor Scheduling'

Time Sharing Supervisor Programs | | 35

each want many pages available in main storage will force

the system to continually read and re-read the pages thney 4,_
- need. This effect is largely overcome by the priviledged

task mechanism descritked below.

Another desirable result of putting new tasks on top of~ii_t,
the processor gqueue is that it is possible for ordinary

tasks to control input/output devices fairly efficiently

even though this requires rapid interrupt response. An i
extreme example of this is the PDP which controls the paging

drums as described in section 6.1. This task does not

- receive any special treatment as far as processor scheduling =
is concerned, yet it can easily keep up with the interrupts

from the paging drums.

‘ - Each task is alloted a certain amount of processor time”~*
~(a time slice) and when this time is used up the task is

taken from wherever it is on the processor queue and placed
on the bottom, after it has been given a new time slice. It

- 1s very important to note that this is the only ‘time the
'~ task is given a new time slice; it is not given a new one if -

it goes into wait state for any reason, hence no matter ‘how
many times it goes on and off the processor queue it will

eventually run out of time and relinquish its place to
~another task. It is possible for a task to request that it
- be prematurely forced to the end of the processor queue and o
given a new time slice, but any waits or page waits by the

task do not affect the time slice in progress.

; . This mechanism obviously partly defeats the advantages ,f
mentioned above which allow efficient input/output . .

management by ordinary tasks. This dces not seem to be a

‘major problem, but if it were, certain tasks which are known

to be input/output limited by their nature (for example the

z tasks wused to drive card readers and printers or the PDP)
.- could be given a very large time slice so they would never
~ be~forced to the bottom of the queue. '

There is only one other operation which 4is ever

iperformed on the processor queue: a ready task which follows

a waiting task will be moved ahead of all such waiting

~ tasks. This is done primarily to reduce the overhead
- required to test for the completion of waits for tasks that
~are left on the processor queue. Since this category of

tasks is purposely kept small in normal operation, this

~mechanism does not have much effect on processor scheduling.

o A further aspect of processor scheduling in UMMPS which =
~ was alluded to above is the priviledged/non-priviledged task

. mechanism. (The choice of names for this is somewhat .
 misleading since it has nothing to do with what the task is

allowed to do, but rather only affects how nmuch processor

- Processor Scheduling

36 - Time Sharing Supervisor Programs

- time amd paging the task is alloweda.) This mechanism is
~ designed to do what the eligibility mechanism of Multics or
~ the maximum number of concurrent read requests in CP is :
-~ designed to do; namely, to reduce tte possibility of having

~ too many tasks vying Ifor a processor and main storage. This =

" mechanism works as follows in UMMES: ‘

“i1. . Whenever a task is initially added to the

processor gqueue it is added as a "neutral"® task. j”&**

This means that no assumption is initially made
~ concerning whether the task will require many
- pages in main storage or not.

2. When a task accumulates more than a certain number
.~ of pages of main storage it reaches a decision
- point. The next time it requests a main storage

page it is either made non-priviledged or
priviledged, depending c¢n other tasks in the
~systen. ' L

3. If the task reaches this decision point and there o
+are fewer priviledged tasks in the system than the

~ done:
(a) The task is made priviledged, meaning that it
storage as it wants.

’ k\(b) The task is given an extra long time slice
' ~ equal to four times the basic time slice
"~ multiplied by the number of additional

one. :
ﬁﬁ,~ ff f(c) The threshold at which to make the decision
R T -~ concerning : priviledge or non-priviledge is
ey lowered so that the next task to accumulate
. many main storage pages undergoes /this

decision process sooner. a ;

 1*a;¢‘ If, when the task reaches the decision Point, fW*
 ‘there are already the maximum numnber of -

priviledged. This means that the task is not

~ priviledged task leaves that state.

it uses up its (extended) time slice, it

queue, or it enters wait state except page wait.

. Processor Scheduling

 paxinum allowed then the following things are5ki3

'is allowed to get as many pages of main

priviledged tasks allowed, including this

priviledged tasks then this task is made non- fffiﬁﬁ
allowed to have a processor again until_'some,T~*
5. A task that is priviledged remains so until either

voluntarily asks to be placed at the end o¢f the

Time Sharing Supervisor Programs - 37

When a task leaves priviledged state it is made f]}ﬁ~,f

neutral.
6. When a task leaves priviledged state, the
threshold is increased again. Also a non-=

priviledged task can now be made priviledged.

7. A non-priviledged task paintains its place on the

processor queue relative to other non-pr1v1ledged
tasks, and when it is started again it is made
priviledged, not neutral. - ‘

' The pmaximum number of priviledged tasks and the initial
threshold are set depending cn the amount of main storage

available.

_ In addition to the queue mentioned above which ccntrols
which tasks may use a processor at any time, there are two
queues for each task which ccntrol that task's use of a
processor: the local processor gqueue and the wait queue.
The local processor queue is used to control task interrupts
and each entry contains information about the tasks status

at some point in its execution. Each time an interrupt is y
passed to a task, this queue is pushed down and a new entry

is added to the top, and when a task is given a processor

the information in the top entry is used to start the task

executing. The wait queue parallels this 1local processor
queue and contains one entry for each level of the queue at

"which a wait condition is outstanding. This means that a

task can wait on some event, be interrupted for something
else, can wait on something at that level, and when it
returns to the original level the first wait will still be

'in force. There are supervisor subroutines callable by the i

tasks to remove the topr entry from the local processor queue

(return to the point c¢f an interrupt) and to remove all o

levels below the top (throw away return information). It

should be noted that these queues do not play any part in

the scheduling cf processors to tasks, but only what happens
when a task gets a processor. S _ “AY

7.4 ISS

TSS is the only one of these systems to have ~a_ _ table
driven processor scheduling algorithm. The state of each
task relative to processor scheduling is detfined by an entry
in a table called the schedule_table. Since there can be up

‘“4 to 256 entries in the schedule table any task can be in any
of up to 256 states. A schedule table entry contains

several types of information summarized below.

. Processor Scheduling

38 : Time Sharing Supervisor Progranms

1. - The priority of the task in this state. This is
- used c¢nly for assigning a priority in processor
- scheduling. ‘

2 ' The processor time allowed before time slice end,
expressed as a quantum length and the number of
.quanta. :

3. A quantity known as “delta to run" which is
essentially the time the task will wait for a

processor without being considered behind
schedule. ‘

4. A flag indicating whether the task may be pre-

empted.

5. ' The maximum number of main storage pages and ’page«”
reads allowed before the task is forced to time -

slice end.

6. The maximum time a task is allowed to wait fdr an

interrupt before it is forced to time slice end.

7. The maximum number of page reads that camn occur in
- a gquantum before the task is considered paging
bound. : :

8. The next schedule table entry to be used in each
of several cases.

As perhaps can be seen already, the <concept of time

. slice end is very important in processor scheduling in TSS.

This term refers to any event which forces the task to be

- removed temporarily from consideration for a processor, such

as using too much processor time (called normal time slice

B end), too many pages requests (see 5 above), waiting too
~long for an interrupt, waiting for console interraction, too
little main storage available (see Section 6.4 above), etc.

'When a task reaches time slice end its pages which ‘are

in main storage will be written onto auxiliary storage
unless so few tasks are in the system that this one is run

" again immediately. In addition if the time slice end is due
. to a wait on a console interraction, the pages of the task
which are on fast auxiliary storage (drum) will be moved to

slow auxiliary storage (disk). Since time slice end will

~ free up some main storage, it is used as described in

Section 6.4 by the subroutine which allocates main storage
when too little of it is available. : e

; Fdr the purposes of processor scheduling three lists or St
queues are maintained by 1TSS: the dispatchable list, the S

. Processor Scheduling ':f:‘,;d W: LR 'f‘V?.k e Y

Time Sharing Supervisor Programs 39

eligible list, and the inactive list. The dispatchable list

~contains those tasks that are authorized to use a processor;
the eligible list contains those tasks that are waiting to
get onto the dispatchable 1list; and the inactive list
contains those tasks that are waiting for an interrupt. '

, The task will be moved from the dispatchable 1list to =
the inactive 1list when a time slice end due to (1) request
by the task, (2) waiting on console interraction, or (3) S e
o waiting too 1long for an interrupt. The task will be moved , -
e from the dispatchable list to the eligible 1list for any L
}w(ﬁf- . other time slice end. A task will be moved from the -
. - inactive 1list the eligible 1list when it receives . an
o = interrupt. Finally a task will be moved from the eligible
list to the dispatchable list when there are few enough
~ tasks on the dispatchable 1list, enough main storage is
~ available to hold the pages used by the task last time
'slice, and the task is the highest behind schedule task on = .
the eligible list. If there is a behind schedule task on .
the eligible list which can not be moved to the dispatchable Sk 'W;uJ
- list (because too little main storage is available <c¢r too P
many tasks are on the dispatchable list), an attempt will be .
- made to find a lower priority pre-emptable task on the
. aispatchable list and if one is found it will be forced to
~time slice end. : e R :

Y } L} Ll
' Console Wait, etc. |Dispatchable |
o » +List I .
| Time Slice End o ‘ 4
R e pie , e
- e w0 I I ;
| . Few Enough | | Normal
N Dispatchable] | Time
b Tasks | | Slice
| 4 | | End
| I
v | v
[

S) [y

- | Inactive + >| Eligible
| List | Task | List
L. 4 Interrupt

be ome oo ol

Figure 2: 1SS Processor Scheduling Lists

: The orderb.of the tasks on the eligible 1list is
. determined by the priority from the schedule table entry and

""Wﬁ*fj érocessor‘Scheduling

N
S

40 Time Sharing Supervisor Prograns

a quantity known as the scheduled start time, which is

computed ‘from the delta to run in the schedule table entry.’

The order on the dispatchable list is paging bound tasks

~first followed by compute bound tasks. The task to get an

available processor is the first one on the dispatchable
list that is not waiting for an interrupt and has no
outstanding page requests.

7.5 Comparison_of Processor Scheduling Algorithnms

Although the processor scheduling algorithms wused by

these three systems are quite dissimilar, they do have a

number of things in ccmmon.

All of them except UMMPS use a number of queues of

decreasing priority and increasing processor time fcr jobs

that need a great deal of processor time (assuming that the

TSS schedule table has been set wup this way). UMMPS
achieves somewhat the same effect Ly accumulatlng processor

time over wait periods as well as running and ready perlods,KV

although this is not quite the same thing.

, TSS is the only cne of the systems that has a close.
- connection between storage scheduling and processor
- scheduling, the rest of them are willing to let each area

take care of itself as much as possible. 1In spite of this
all the systems have some mechanism to keep from getting too

~many tasks .in main storage at once. Multics does this by
limiting the number of eligible tasks to a fixed maximunm,

~while TSS makes a number of tests on each individual task as
- well as attempting to avoid starting a task wunless enough

storage is available to hold all the pages the task used the

last time it ran. CP simply takes the direct approach of

limiting the number of pages that «can be read
simultaneously, an approach that was once tried in UMMPS and

abandoned in favor of attempting to detect those relatively

 'few tasks that were using an excessively large number of
- pages and limiting the number of them that can run
sxmultaneously. ' '

The scheduling algorithm of ISS is the most general

‘i since by properly constructing the schedule table, any of a

wide variety of ‘algorithms could be implemented, including
the ones used by Multics or CP and. perhaps the one used by
: o R

- gMMPS.

‘All in all it can be seen that the parallels between,

these systems in the area of processor scheduling, while not

"“as, great as in the area of storage scheduling, are

 Processor Scheduling

‘- significant.

)fﬁ

V:Input/Output Processing

Time Sharing Supervisor Programs 41

8. INPUTI/OUTPUT PROCESSING

This section describes the processing of input/output

requests and applies 1SS and UMMPS since the features of the

supervisor being described apply to the 360/67 rather than = -

~the 645 and CP does not have the same flexibility in this}"f“"“

area.

8.1 Organization_of_ Inputs/Qutput_Hardware

On the 360,67 the input/output equipment is divided .
~into a three (or sometimes four) level heirarchy. The top :
‘level of this heirarchy (if there are three levels) is the =

channels, which are general devices for transmitting data =

between main storage and some external destination. The
. channels are nearly completely independent of the type of

device with which they are ccmmunicating at any time and any :?ﬂf'e>
cnannel may be used to communicate with any device. There

are two general types cf channels which are distinguished by

whether they can handle several simultaneous 1low speed'fx{ilgf
transmissions (multlplexor channels) or only one potentially =

~ . higher speed transmission (selector channels). Typically a.f‘.b,_
~+ 360/67 will nave about four channels (one multiplexor and
~ three selector) per processor. : . ; =

s - The next level in the input/output heirarchy is the
. control unit, which is a unit responsible for interfacing -
.. the various specific input/output devices to the channels. -~
- The control units handle all of the specific peculiarities =
~ of the individual devices =s=o that the channels may be
» independent of these peculiarities. Whereas there are only
. two types of channels on a 360/67 there may be many
' different types c¢f ccntrol units, since a different type is

requlred for each type of device interfaced.

e The lowest level in this helrarchy is the individual
- 'kinput/output devices. There may be as many as 200 of these
.. in a large 360/67 installation and they may be of as many as
~twenty different types. Typical input/output devices are .
- card readers, printers, magnetic tape units, magnetlc dlsks,ﬂg“z_ -
ot 1ntertaces to telephone llnes.., e v e

iR Whenever the state of any of ‘the components of' this
‘heirarchy changes in any significant way, the supervisor is .
- notified by an interrupt indicating the particular channel, -
*;control unit, and device (if any) which is affected by the :
~change and the nature of the change. At this time the
~supervisor can = take whatever action is necessary to notify -
~ " the tasks affected and can also initiate any input/output:
- ‘'requests Wwhich can now be started. The only other reason
- for an input/outgput interrupt is some asynchronous event

L2 Time Sharing Superviscr Prograns

which may be c¢f interest to the supervisor, for example a

- user at a terminal striking an attention key to indicate
- that he wants service of some kind. This kind of interrupt
normally requires no action by the supervisor except

notification of the task involved.

The fourth (and highest) level in this heirarchy, which
is present 1in all multi-processor 67's and in some single

processor 67's, is the channel controcller, which is a unit

which interfaces between the channels and the rest of the
system, allowing the <channels to be independent of the
processors. This unit is not generally significant directly
to the programming of input/output support, except that
without it the problem of input/output control in a multi-

- processor 67 would be much more difficult. This is the case

because without the channel <controller, each individual
channel would interface to a specific processor and only
that processor would be able to control that channel or
receive interrupts from it. 1In fact this is the way the

multi-processor 360/65 1is organized and partly as a result
of this the input/output control for that system is both

more complicated and less general than that of either TSS or
UMMPS. In spite of their importance to input/output

programming in multi-processor 67's, the channel controllers w{ffff'

are almost completely transparent to the supervisor.

It is important to note that any given control unit may -
~be attached to up tc two channels and any given device may -
"be attached to up to four contrcl units. To execute an .
~input/output operaticn on any device requires the use of a
- control unit to which it is attached and a channel to which
- that control unit is attached. Such a combination is called
‘a "path" to the device, and any device can have up to eight

paths to it. 1In the small configuration shown in Figure 3,

‘device D1 has one path, devices D2 and D3 have four paths, :
~and devices D4 and D5 have two paths. The concept of a path_'
is important to an understanding of 1nput/output processing

- 'in UMMPS or TSS.

The 1mportance of the channel controllers can clearly

be seen by considering that without them the specific paths /i

available to a device would depend upon which processor is

processing the input/output request. . This is true since.

without the channel controller only certain channels would

~ be accessible to each processor, and paths to a device

"f;passing~through any other channels would not be available to

e through C3 and C4 would be accessible to only processor 2.

accessible to only processor 1, while the paths passing

~ This means taat processor 1 would have paths to D1, D2, and =
D3 but not to D4 or D5 while processor 2 would have paths to

 /input/output'Processing

 that processor. Referring to Figure 3, without the channel?f4 i‘ﬁ‘
controllers the paths passing through €1 and €2 would be

Time Sharing Supervisor Programs 43

all devices except D1. This sort of situation is not at all -
unlikely to occur without the. channel controllers and
obv;ously compllcates input/output programmlng. : .

| 3 L)
l , |
| Main Storage |
: | |
i | | ’
) | I
o r t 1 r L a3 : :
| : | | | .Channel -
| cc1 l | -~ CC2 | Controllers
SR A 0
| | | I
| | I | S
r—— L 1 r ¢ 1T r L T C)
1 c1 | | c2 1 Cc3 1 ceo Channels
b bq Llqqq-d ey ‘ S
f 4 — | It b
| I — o = |
| I 1 Y | i |
bt bt el ey —l B
1 Ccutl | | CU2 | | CU3 | | CU4 | | CuUS5 | Control
b bqq b qed beqq . L Units
e | I t— I ‘ | t— 11
| I —t— | I —t— |
'f;)” . = | : I 1 Y= | I I Y= | ey
T e Y s TR Sl e I abandd B o Sl el P ’
& DT | | D2 | | D3 | | D4 | | D5 | Devices
[J L J L J] L) L J | . Lo

 Figure 3: Simple Input/Output Configuration

8.2 Task_Input/Qutput_Control

i ~ The basic entity in the programmlng of input/outrut for .
~the 67 is the device, which is the unit that the task deals
~with dlrectly. A device may be allocated to a task' by the
'~ supervisor, either with exclusive control or to be shared =
. Wwith other tasks, and from that time wuntil the device is '
.~ released by the task (either voluntarily or forcibly) the

: ‘f“Input/Output Processing .

Ry ' Time Sharing Supervisor Programs

 task is allowed to control it through calls to appropriate .
supervisor subroutines. In any case nothing will be done to
.~ or with the device unless the task specifically requests it
to be done, and all recovery from abnormal conditions is the
~ responsibility of the task. This contrasts with the action
. of some other systems (for example 0S/360) which include
some of the device error recovery as part of the supervisor.
In UMMPS all input/output is initiated at tne request of the
tasks except for the operator's console; the supervisor -
never initiates other input/output on its own.

~’<73 ' The basic operation of a task with respect to a device
.. it owns 1is the queuing of an input/output request for that
device. This input/output request is defined by a set of
commands to the channel, control unit, and device whic¢h will
. be used to execute the request. The supervisor will
" paintain a gqueue of requests for each device and will
- execute them in the order given when equipment beconmes
available. At any given time the queue will be divided into
two sections: the portion that has been completed but about =
. which the task has not been notified (see below for a -
description of how the task is notified), and the portion
-~ that has not Fkeen completed. In UMMPS the first entry on
" the second portion of the queue is called the "active entry"
_and it represents the input/output request which the actual
 Gevice is working on or is about to work on, while in TSS
- two separate queues are kept. An entry is deleted from the
~ queue by UMMPS when it has been completed with no aknormal
" ‘conditions and the task has been notified of this.

AU The task can be notified by UMMPS of the completion of
. an input/output request in one of two ways depending on the

~ option selected by the task: the task can wait until the

' current top request on the input/output queue for a specific
device is complete or the task can receive an interrupt when
' the next request on the gqueue for a particular device is
-« complete (this is the method used by TSS). 1In -either case =
~ if an abnormal condition is detected with respect to an .
. input/output request, the active entry in the input/output
- queue for that device is prevented zfrom moving further
+ (i.e., further operations on that device are not started)
until the task has been notified of the abnormal condition -
and taken some action with respect to it. The actions open
 to the task at that point in UMMPS are to either ignore the .
' abnormal condition or to save the input/output gqueue while ==~
- some recovery is attempted. After the queue has been saved =~

- the task may do one of several things: ,

1. Execute other input/output requests for the
g device. ' _ : L : Vi : :

~+finpﬁt/0utput Processing

N

TN

N

S

~ other devices.

Time Sharing Sdpervisor Programs 45

2. ketry the request that caused the o;iginalf

problem.

3. Ignore the error after having possibly done other

operaticns on the device.

4. Delete the request that caused the trouble and go' i =

on to the next one.

8.3 Supervisor_Input/Cutput_Control

 The supervisor's main responsibility with regard to
input/output processing is to schedule the operations =

requested by the tasks on the available paths to the
devices. In order to execute an input/output request, the
supervisor must be able to allocate a channel (possibly

- including channel ccntroller) and a control unit to the

request. If the channel used is a selector channel, then

. the device must have exclusive use of the channel and
- control unit; but if a multiplexor channel is used, then it

usually need not have exclusive use of the channel. However
it is necessary to guard against overloading the multiplexor
channel ' by executing too many operations on it
simultaneously, and in some cases a control unit attached to
a multiplexor <channel will not support more than one
operation at a time. Considerations such as these make it

~~ much more complicated to decide when a path to a device is
. free and when it is busy. Also complicating the problem is

the fact that there may be several possible paths to a

device each of which shares equipment with some paths to

o]

In the face of this comfplexity the supervisor's job is :

to make sure that no section of the input/output equipment

sits idle when it could be working and that no input/output

- request waits longer than necessary before being started.
- Some devices require better service than others and if two
- devices are competing for the same channel, the one with the
" higher priority will be given first consideration, while

within a particular priority level the scheduling is round :

- robin to give each device egual service.

?The general strategy used to implement these goals is
to attempt to restart any didle part of the input/output

‘Input/Output Processing

- equipment whenever an interrupt occurs indicating a change
- in its state. However because of the very large number of .
.~ interrupts and the number of devices, it is not practical to =
~ look at each device whenever an interrupt occurs. The
method used to avoid thls will be set forth below. i

4be Time Sharing Supervisor Programs

Before considering - the algorithms involved in

scheduling the input/output equipment it is necessary to be

avare of the tables maintained by the supervisor for this
- purpose. These tables fall into 4 general categories in
. UMMPS (and similar tables exist in TSS):

1. Device oriented tables contain the status of each
device in use by any task, including the
input/output queue for the device. In addition

there is an indication of which channels the paths

to the device start from.

2. Control unit tables (one per control attached to

the machine) contain status of the control unit in
addition to a 1list of the devices which are

attached to the control unit.

3. Channel tables (one per channel attached to the
machine) contain status of the channel and a list

of the control units which are attached to the'v‘

channel.

4. Inteﬂéction tables indicate which paths may

interract with each other, i.e., which paths share
components, so that if an interrupt indicates that
‘A particular channel or control unit is now free,
it is rossible to determine which paths to which
devices may now be free. Included with each such
table is a count of the number of requests for
input/output service that have not been filled yet

- within the group of paths indicated by this table.-f:5

This count is included so that unnecessary scans
of the input/output tables may be avoided, thus
reducing the overhead in the supervisor. f

| Notegthat more than one control unit table may point to a
. given device table and more than cne channel table may po;nt-
. to a glven control unit table.

. When an 1nterrupt occurs in UMMPS lndlcatlng a change
'in the state of the input/output equipment, the first order
of business is to find out which components of the

input/output equipment are now free and update the

appropriate tables to indicate this. Then UMMPS performs
~any functions required to notify the task of the state of
“its input/output requests. When this is completed UMMPS

goes to a section of code vwhich attempts to start any SR
pending input/output requests vwhich were waiting for a

component which is now free. (This is the same section that

is executed whenever a new request is added to a device

‘ ‘queue.) The operation of this section is as follows:

_ Input/Output Processing

7 (\’,‘

7.

~ Input/Output Processing

Time Sharing Supervisor Programs a7

From the interraction tables find the 1list of all

channels which <could have been affected by thisk'

interrupt.

If the count of pending requests on these channelst

is zero quit.

Find the first (next) free channel in this 1list.
If there is none quit. ,

Find the first (next) free control wunit attached T
to the channel under consideration. Go to step 3. =

{f none exists.

Scan for an idle device which has a reguest that

needs to be started and which is attached to this
control unit. This scan is round robin, i.e., it

starts each time with the device after the last
device considered the previous time this control

unit was inspected. If no device needs service,

go to step 4. If a multiplexor channel is being
restarted, there will generally be a specific e
device to restart and only that device will need .

to be considered.

Attempt to start the operation pending on the =

device.

+If the operation started then (a) if this is a
. selector channel go to step 3, or (b) if this is a = .
multiplexor channel then quit if only one device =~
needs to e considered (the usual case) or go to

step 5 if the contrcl wunit supports multiple

operations and step 4 if it does not. The only

time that is is necessary to start more than one

operation on a multiplexor <channel is when thevffﬁ‘*”
channel was gquiesced earlier <for some reason
(e.g., to allow a burst mode operation to be i h

executed) .

'1f the device is busy im spite of what the 'tables e

say (unlikely) then go to step 5.

- If the control unit is busy then go to sfep' Yo
‘This is more likely to happen because the control

units are not very consistent about notifying the

~ supervisor when they are not busy. Also it may be .

~ necessary to repeat this whole process if a
- control unit indicates that it is busy but refuses

. to present an lnterrupt wvhen 1t ;sk‘free again

(something whlch is allowed).

48 ‘Time Sharing Supervisor Programs

10.: If the channel is busy (very unlikely) go to step
) 3 °

11. If nothing is busy, but some status was presented
by one of the components involved, then leave this

section and go process the status as if there had

been an 1nterrupt.

This process is somewhat more complex than indicated to
allow for such things as control units which are connected

to two channels, but which will operate with only one of

~them at a time or control units which are connected to a

multiplexor channel but require the channel to operate in

- burst mode (only one operation at a tinme).

This completes the description of input/output
processing in UMMPS. The processing in TSS is similar in

spirit except that when restarting the input/output system

after an interrupt, it will scan the devices which could

~have been affected by the interrupt and for each one which

has an outstanding request, it will try to find a path on

~ which to execute the request. This is slightly less
efficient since each time a path is needed it is necessary

to start all over again from the top, while in UMMPS the
channel and possibly control unit may already be known.

.. This multiple path mechanism does not exist in Multics or
~ CP; 4in Multics it is not necessary because of the hardware

of the 645 (the actual processing of input/output is quite

- different and less interrupt oriented) and in CP only one
- path to any device is used except in a few 1limited cases.

It is possible to make this simplification in CP since it

- does not (currently) support multi-processor systems and the
" multiple paths are most common in that type of systen.

?i,fIhpﬁt/output Processing

'

-

Time Sharing Supervisor Programs ' 49

- 9. MULTI-PROCESSOR CONSIDERATIONS

All of the systems being considered Lere support

multiple processors except CP. This section will consider

the aspects of the supervisor specifically intended to allow
this.

9.1 Organization of Multi-Processor Support

There are at least three ways in which nulti-processor
support may be implemented: as separate systems for each

processor, as a master-slave relationship between
processors, oOr as a symmetric treatment of all processors.
Each of these organizations has certain thlngs to . recommend

it.

In a separate system organization each task in the

system is assigned to a particular processor and always runs
on that processor. Furthermore all input/output operations

are controlled by the processor assigned to the task making

the request for the operation and all input/output
interrupts are directed to the processor that initiated the
associated inputy/output operation or which controls the task
owning the input/output device. Main storage is shared

: between all of the processors and only one copy of reentrant.a
. programs needs to be in main storage.

'This organization is inefficient since it is possible

‘for omne processor to be overworked while the other ones are

idle. This is ©possible since the work to be done is
assigned in advance to a processor and can not be switched
from one to another as the load shifts. Furthéermore, since

~each processor has its own set of input/output equipment,

there will oanot be a single ©pool of auxiliary storage
available to all tasks in the system unless special code is
included to allow sharing of input/output equipment among
independent systenms. Without +this each user will have to
have a processor assigned to him which will have access to
the data sets Dbelonging to that user. For these reasons

" none of the systems being considered use this organization.

In the master-slave organization, one processor is
assigned the function of <contrclling the system and the

other processors simply execute tasks, i.e., the supervisor
always runs in only one of the processors. This means that
the supervisor need not be reentrant and need not be as
concerned with problems of multiple processors accessing

. common tables simultaneously. It is necessary for the =
processor receiving an interrupt requesting task service
(vhich will always occur in the processor executing the

task's program) to direct . the interrupt to the processor

Input/Output Processing

" necessary for each processor to have a certain amount of -
" private storage which can be used tc contain those things
which are private to that processor. On the 360/67 this is
. done by assigning real page zero (i.e., the page with the -
~real address 0 thru 4095) to a different actual storage -

- Input/Output Processing - -

50 " Time Sharing Supervisor Programs

_executing the supervisor. If there is any idle time in the
control processor, it can also execute task programs then.

This organization has the disadvantage of allocating
only one processor tc the work of the supervisor, which may
require more than one processor to accomplish with
reasonable response time. Normally not more than one
processor is required in the long run for the supervisor,
put it is possible for many interrupts to occur in a short

- time anada temporarily overload one processor. Also the
- processor executing the supervisor is very important to the

system and any failure in that processor will probably bring

the system down. Again this organization is not used by any
- of the systems being considered. ‘

The symmetric processor organization treats all

”processors the same; every interrupt is handled by the

processor on which it occurs and every processor executes

 task prograns when it is not executing the supervisor. On

the 360/67 interrupts associated with a program occur on the

processor executing that Frcgram, while input/output
interrupts occur on the processor that is least busy at the . :
time. This automatically evens out the load on the several —

processors by assuring, for instance, that an input/output

interrupt will ke directed to the processor that is in wa1t 1

state rather than one that is executing.

k. 'The disadvantages of this organization' are that it
" requires the supervisor to be able to execute in several

processors simultaneously and to handle the problem of

~simultaneous access to common tables. In spite of the
difficulties-all of the three syctems use this method of
,mult1~pcocessor support. 1 ‘

9.2 Hardware Cons1derat10ns‘

: Several aspects of the hardware are important to multi-
- processor support. One that has already been discussed is "

tne multiple path input/output configuration of the 360/67.
The important aspect of this for multi-processor operation

is the fact that the input/output programming is independent

of which processor the supervisor is executing on. This may
seem like an obvious thing, but some current multl-processor

 f‘systems do not have this ability.

- In order to make the supervisor reentrant it is

v

Time Sharing Supervisor Programs 51

location for each processor. This assignment of page zero
is independent of the address relccation described above and

‘occurs after it 1is complete. Unlike that -address
‘relocation, it applies to input/output operations as well as

the processors and is fixed rather than specified by tables
in main storage.

In order to assure that only one processor is changing
common tables at any time, it is necessary to have some way
in which the processors can "lock" these tables and assure
that no other processor is accessing them. This is done by
providing instructions that simultaneously (on one storage
cycle) test a storage 1location and set it to .some
predetermined value. Since the testing and the setting is
done on the same storage cycle, it is not possible for
another processor to access the same storage 1lccation

between the two operations. To use this mechanism a storage

location is assigned to each table (or other thing) which
must be locked at some time. When this storage location is
zero, the table is considered to be "unlocked," and if it is
non-zero the table is "locked." 1If a processor needs to
lock the table, it will use the special instruction to test
tnis storage location and "simultaneously" set it. If the

storage location is zero, it will be set to some non-zero

value and the processor will have locked the table, but if
it was already non-zero, the F[rocessor will get an
indication that the table is already locked and can then
either loop until it «can 1lock the table or go on to

- something else.

In rare cases it is necessary for one processor to
directly signal another one. For this purpose there is a

‘method by which a processor can cause an interrupt on

another one and a method by which it can start another one

‘no matter what state it is in. In UMMPS the inter-processor

interrupt is never used and the external start is used only
once for each processor. However there are some cases in

which it might be used, for example, to notify the other

processor that is should switch tc another task for some
reason. : :

9.3 Multi-Processor_ sSupport_in_ UMMPS

UMMPS is unusual in the respect that it was originally

written to use only one processor like CP, but was later

changed to use up to four. (It is rumored that a similar

- change is contemplated for CP.) This section will discuss
,’the changes required to do this. :

Only the supervisor portion of the system need be aware

~ that there is more than one processor. This is true since

‘Input/Output Processing

- 52 Time Sharing Superviscr Programs

no task will run in more than one processor at any given
time, so that from the point of view of a task there is only
one processor — the one on which it is running. In spite of
this, a task may switch from one rrocessor to another very
trequently, in fact whenever an interrupt occurs in that
task. This 1ndepé5ce of tasks frcm multi-processing made
the conversion effor't much easier since no program executed
only by tasks needed to be changed.

The general approach to mnmulti-processor support in
UMMPS was to move all temporary and private locations of the
supervisor to the storage that is private to the processor
and to wuse locks as described above to guarantee the
integrity of any information that needed to be common to all
PLocessors. These 1lccks fall into two general categories:
those that are set for a short time and on which the
supervisor can wait, and those which are set for a long time
and for which a queueing mechanism must be provided. 1In the
first <category are all 1locks that refer to inputy/output
devices and tables and all locks that refer to processor and
storage scheduling tables. 1In the second category are those
locks which refer to a particular task, since these 1locks
are set whenever the task is executing on a processor. It
- wouid have been possible to reset the lock after the task is

‘selected for execution on a processor, but it was decided
- that it would be easier to leave the lock set.

A further distinction among 1locks 1is the type of
. information they refer to. Some locks refer only to an
~individual table entry (e.g., a device table entry) while

~ others refer to a global quantity (e.g., all chains of

PCB's). The global ones must be used in such a way that
~ they are set for as 1little time as possible to avoid
interference between the various frocessors, while this is
not quite so important with the cones referring to only one
- specific quantity. There are about 15 global locks and 200 .
specific locks in UMMPS. '

‘9.4 Ihter—Processor'Interference

The problem of interference ketween processors is an
? 1mportant one and must be considered when designing a multi-
processor system. This problem can take one of at least two
~forms. The first is the lock interference mentioned above,
“while the other is interference in the hardware, primarily
in storage accesses. The additional processors will put a
rather heavy load on the main storage of the system and
unless it is specifically designed to handle thls a serlous
degradation in performance can result. _ ;

- Input/Output Processing

O

Time Sharing Supervisor Programs 53

It is difficult to measure the amount of degradation
due to interference between processors, but judging from
measurements of overall supervisor behavior on a two
processor 360/67, it 1s not a severe problem. In UMMPS
running on such a system the degradation is «certainly less
than a few percent and probably less than one percent.

Any degradation due to interference between processors
is more than offset by the benefits resulting from multi-
processor operation. These benefits are due to the ability

to shift the 1load from one [frocessor to another as its
cnaracteristics <change and to share main storage and
input/output equipment between processors. Experiments have
shown that in many cases it is possible to run effectively
far more than twice as many tasks one a two processor system
than on half of it. This is particularly true of progranms
that require a large amount of main storage.

"~ Input/Output Processing

54

9.

10.

- Time Sharing Superviscr Programs

REFERENCES

Arden, B. W., O'Brien, T. C., and Westervelt, F. H.,
"Program and Addressing Structure in a Time-Sharing
Environment," Journal of the ACM, 13,1 (Jan 1966), 1-16

Bayels, R. U., et al, Contrcl Program-67/Cambridge
Monitor Systen (CP-67/CHS) , Program__Number__360D
05.2.005, Cambridge, Mass, 1968 '

PSSR LR A SR

Dennis, Jack B., "Segmentation and the Design of
Multiprogrammed Computer Systems,'" Journal of the ACM,
12,4 (Oct 1965), 589-602

Dennis, Jack B. And Glaser, Edward L., "The Structure
ot On-Line Information Processing Systems," Proceedings
of tne Second_Congress__on__the_ _Information__Sciences,
November 1964, Washington D. C., 1965, 5-14

Multics_System Programmer's_Manual Project MAC, 1968

IBM Systemy/360_ _Model _67_ Functional Charactg;istiésL‘
Form_A27-2719-0, IBM Corporation, New york, 1967

IBM_ System/360 Time_Sharing System_ Re51dent Supervisor
Program_Logic_Manual, Form_Y28-2012- New York, 1968

Organick, Elliot I., A_Guide to_Multics for Sub-Systen

Writers, Pro;ect MAC, 1S69

Saltzer, J. H., CTISS__Technical_ _Notes, _Project__MAC
Report_ MAC-TR-16, Boston, 1965

Vyssotsky, V. A., Corbato, F. J., and Graham, R. M.,
"Structure of the MULTICS Supervisor," Proceedings of

the AFIPS 1965 Fall Joint Computer Conference, Part I,
Washington D. C., 1965, 203-212

~ References

