SIGNETICS
2650 MICROPROCESSOR

HARDWARE
SPECIFICATIONS

2650
HARDWARE SPECIFICATIONS MANUAL

PREFACE

This manual contains the complete specifications for
the Signetics 2650 processor. It describes the instruc-
tion set, interface signals, the internal organization,
and the electrical characteristics. Examples of mem-
ory and I/O system organizations that may be used
with the processor are discussed.

CONTENTS

| INTRODUCTION5
GENERAL FEATURES7
APPLICATIONS . T
1 INTERNAL ORGANIZATION9
INTERNAL REGISTERSM
PROGRAM STATUSWORD12
MEMORY ORGANIZATION.17
Il INTERFACE19
SIGNALS o
SIGNALTIMING26
Memory Read Timing26
Memory Write Timing27
Input/Output Timing28
Critical Times . . . *28
ELECTRICAL CHARACTERISTICS29
INTERFACE SIGNALS31
PIN CONFIGURATION31
IV FEATURES33
INPUT/OUTPUT FACILITIES3
Flagand Sensel/O35
Non-Extended /O35
Extendedl/O36
Memory I/O36
INTERRUPT MECHANISM37
SUBROUTINE LINKAGE39
CONDITIONCODEUSAGE39
START-UPPROCEDURE40
\" INSTRUCTIONS4;4
ADDRESSINGMODES43
Register Addressing43
Immediate Addressing43
Relative Addressing44
Absolute Addressing for Non- Branch Instructlons44
Absolute Addressing for Branch Instructions45
Indirect Addressing46
Instruction Format Exceptions46
INSTRUCTION FORMATS . . . P ¥ 4
DETAILED PROCESSOR INSTRUCTIONS48
APPENDIX A MEMORY INTERFACE EXAMPLE 124
APPENDIX B I/O INTERFACE EXAMPLE . . . 125
APPENDIX C INSTRUCTIONS, ADDITIONAL INFORMATION 126
APPENDIX D INSTRUCTION SUMMARY 128
ALPHABETICLISTING 128
NUMERICLISTING 131
ORGANIZED BY FUNCTION 134

Copyright April 1975 Signetics Corporation

Signetics Corporation reserves the right to make changes in the products described in this book in order to improve design or
performance.

Signetics Corporation assumes no responsibility for the use of any circuits described herein and makes no representations that
they are free from patent infringement.

LY
N

R

CHAPTER |

FraY VYl Vet ol Waa)

ODUCTION

FEATURES

GENERAL PURPOSE PROCESSOR
SINGLE CHIP

FIXED INSTRUCTION SET

PARALLEL 8-BIT BINARY OPERATIONS
40 PIN DUAL IN-LINE PACKAGE

N-CHANNEL SILICON GATE MOS TECHNOLOGY
TTL COMPATIBLE INPUTS AND OUTPUTS
SINGLE POWER SUPPLY OF +5 VOLTS

SEVEN GENERAL PURPOSE REGISTERS
RETURN ADDRESS STACK, 8 DEEP, ON CHIP

32K BYTE ADDRESSING RANGE

SEPARATE ADDRESS AND DATA LINES

VARIABLE LENGTH INSTRUCTIONS OF 1, 2, OR 3 BYTES
75 INSTRUCTIONS

MACHINE CYCLE TIME OF 2.4pusec

AT CLOCK FREQUENCY OF 1.25 MHz

DIRECT INSTRUCTIONS TAKE 2, 3 or 4 CYCLES
SINGLE PHASE TTL LEVEL CLOCK INPUT
STATIC LOGIC

TRI-STATE OUTPUT BUSSES

REGISTER, IMMEDIATE, RELATIVE, ABSOLUTE
INDIRECT, AND INDEXED ADDRESSING MODES
VECTOR INTERRUPT FORMAT

GENERAL FEATURES

The 2650 processor is a general purpose, single chip, fixed instruction set,
parallel 8-bit binary processor. A general purpose processor can perform any
data manipulations through execution of a stored sequence of machine in-
structions. The processor has been designed to closely resemble conventional
binary computers, but executes variable length instructions of one to three
bytes in length. BCD Arithmetic is made possible through use of a special
“DAR” machine instruction.

The 2650 is manufactured using Signetics’ N-channel silicon gate MOS
technology. N-channel provides high carrier mobility for increased speed and
also allows the use of a single 5 volt power supply. Silicon gate provides for
better density and speed. Standard 40 pin dual in-line packages are used for
the processor.

The 2650 contains a total of seven general purpose registers, each eight
bits long. They may be used as source or destination for arithmetic opera-
tions, as index registers, and for I/O transfers.

The processor can address up to 32,768 bytes of memory in four pages of
8,192 bytes each. The processor instructions are one, two, or three bytes
long, depending on the instruction. Variable length instructions tend to con-
serve memory space since a one-or two-byte instruction may often be used
rather than a three byte instruction. The first byte of each instruction always
specifies the operation to be performed and the addressing mode to be used.
Most instructions use six of the first eight bits for this purpose, with the
remaining two bits forming the register field. Some instructions use the full
eight bits as an operation code.

The most complex direct instruction is three bytes long and takes 9.6
microseconds to execute. This figure assumes that the processor is running at
its maximum clock rate, and has an associated memory with cycle and access
times of one microsecond or less. The fastest instruction executes in 4.8
microseconds.

The clock input to the processor is a single phase pulse train and uses only
one interface pin. It requires a normal TTL voltage swing, so no special clock
driver is required.

The Data Bus and Address signals are tri-state to provide convenience in
system design. Memory and I/O interface signals are asynchronous so that
Direct Memory Access (DMA) and multiprocessor operations are easy to
implement.

The 2650 has a versatile set of addressing modes used for locating oper-
ands for operations. They are described in detail in the INSTRUCTIONS
section of this manual.

The interrupt mechanism is implemented as a single level, address vector-
ing type. Address vectoring means that an interrupting device can force the
processor to execute code at a device determined location in memory. The
interrupt mechanism is described in detail in the FEATURES section of this
manual.

APPLICATIONS

The ability of the semi-conductor industry to manufacture complete gen-
eral purpose processors on single chips represents a significant technological
advance which should prove to be of great benefit to digital systems manu-
facturers. In terms of chip size and density of transistors, the processors are
simply extensions of the continually evolving MOS technology. But in terms
of function provided, a significant threshold has been crossed.

By allowing designers to convert from hardware logic to programmed
logic, the integrated processor provides several important advantages.

1. Logic functions may be implemented in memory bits instead of logic gates. The user
then has greater access to the advantages of memory circuits. Memories use patterned
circuitry and thus provide greater density and therefore greater economy.

2. Random logic implementations of complex functions are highly specialized and cannot
be used in other applications. They are not often used in large volume. Programmed
logic, on the other hand, relies on general purpose processor and memory circuits that
are used in many applications. Thus, economies of volume are available for both the
user and the manufacturer.

3. Because the functional specialization resides in the user’s program rather than the
hardware logic, changes, corrections and additions can be much easier to make and can
be accomplished in a much shorter time.

1. With the programmed logic approach it is often possible to add new features and

create new products simply by writing new programs.

. The design cycle of a system using programmed logic can be significantly shorter than

a similar system that attempts to use custom random logic. The debugging cycle is also
greatly compressed.

()]

A general purpose processor designed to implement programmed logic has
many characteristics that allow it to do conventional computer operations as
well. Many applications will specialize in programmed logic or in data pro-
cessing, but some will take advantage of both areas. In a line printer applica-
tion, for example, a processor can act primarily as a controller handling the
housekeeping duties, control sequencing and data interfacing for the printer.
[t also might buffer the data or do some code conversions, but that is not its
primary duty. On the other hand, in a text editing intelligent terminal, the
processor is mainly concerned with data manipulation since it handles code
translations, display paging, insertions, deletions, line justification, hyphena-
tion, etc.

A point-of-sale type of terminal represents an application that combines
both control and data processing activities for the processor. Coordinating
the activities of the various devices and displays that make up the terminal is
an important part of the job, as are the calculations that are essential to the
operation of the machine.

CHAPTER I

INTERNAL ORGANIZATION

INTERNAL REGISTERS

The block diagram for the 2650 shows the major internal components and
the data paths that interconnect them. In order for the processor to execute
an instruction, it performs the following general steps:

1. The Instruction Address Register provides an address for memory.

2. The first byte of an instruction is fetched from memory and stored in the Instruction
Register.

3. The Instruction Register is decoded to determine the type of instruction and the
addressing mode.

4. If an operand from memory is required, the operand address is resolved and loaded

into the Operand Address Register.
. The operand is fetched from memory and the operation is executed.
6. The first byte of the next instruction is fetched.

ot

The Instruction Register (IR) holds the first byte of each instruction and
directs the subsequent operations required to execute each instruction. The
IR contents are decoded and used in conjunction with the timing informa-
tion to control the activation and sequencing of all the other elements on the
chip. The Holding Register (HR) is used in some multiple-byte instructions
to contain further instruction information and partial absolute addresses.

The Arithmetic Logic Unit (ALU) is used to perform all of the data
manipulation operations, including Load, Store, Add, Subtract, And, Inclu-
sive Or, Exclusive Or, Compare, Rotate, Increment and Decrement. It con-
tains and controls the Carry bit, the Overflow bit, the Interdigit Carry and
the Condition Code Register.

The Register Stack contains six registers that are organized into two
banks of three registers each. The Register Select bit (RS) picks one of the
two banks to be accessed by instructions. In order to accomodate the regis-
ter-to-register instructions, register zero (RO) is outside the array. Thus,
register zero is always available along with one set of three registers.

The Address Adder (AA) is used to increment the instruction address and
to calculate relative and indexed addresses.

The Instruction Address Register (IAR) holds the address of the next
instruction byte to be accessed. The Operand Address Register (OAR) stores
operand addresses and sometimes contains intermediate results during effec-
tive address calculations.

The Return Address Stack (RAS) is an eight level, Last In, First Out
(LIFO) storage which receives the return address whenever a Branch-to-Sub-
routine instruction is executed. When a Return instruction is executed, the
RAS provides the last return address for the processor’s IAR. The stack
contains eight levels of storage so that subroutines may be nested up to eight
levels deep. The Stack Pointer (SP) is a three bit wraparound counter that
indicates the next available level in the stack. It always points to the current
address.

I

REGISTER

PROGRAM
STACK - STATUS ﬁ

RO WORD

SUBROUTINE RETURN
ADDRESS STACK

STACK POINTER

MULTIPLEXER

[—‘a ALU
2
o
&
z
ADDRESS Is}
S N h
BUs 2 +/ CONDITION CODE
2 :) AND
é FNSTRUCYION ADDRESS REGlS‘ER] ’—_:VN BRANCH LOGIC
OPERAND ADDRESS REGISTER §
T =3
b
« c:bmu BUS
9
j a
<
ADDRESS ADDER INTERRUPT ﬂ JL e g
REQUEST NTERRUPT HOLDING REGISTER raER
LOGIC
INTERRUPT ﬁ
7[7r l ACKNOWLEDGE 5 L
A
b N Al L'chcn(
contaal ines come km—/ DECODING AND CONTROL LOGIC TIMING LOGIC
]
Figure 11-1 SIGNETICS 2650 BLOCK DIAGRAM

The Program Status Word (PSW) is a special purpose register within the
processor that contains status and control bits. It is 16 bits long and is
divided into two bytes called the Program Status Upper (PSU) and the
Program Status Lower (PSL).

The PSW bits may be tested, loaded, stored, preset or cleared using the
instructions which effect the PSW. The sense bit, however, cannot be set or
cleared because it is directly connected to pin #1.

PSU 7 6 5 4 3 2 1 0
Not Not
P
S F II Used Used SP2 SP1 SPO
S Sense
F Flag

II Interrupt Inhibit
SP2 Stack Pointer Two
SP1 Stack Pointer One
SPO Stack Pointer Zero

PSL 7 6 5 4 3 2 1

cc1 cco IDC RS wC | OVF | COM Cc

|
b
Xi
1

CCl1 Condition Code One
CCO Condition Code Zero
IDC Interdigit Carry
RS Register Bank Select
WC With/Without Carry
OVF Overflow
COM Logical/Arithmetic Compare
C Carry/Borrow

SENSE (S)

The Sense bit in the PSU reflects the logic state of the sense input to the
processor at pin #1. The sense bit is not affected by the LPSU, PPSU, or
CPSU instructions. When the PSU is tested (TPSU) or stored into register
zero (SPSU), bit #7 reflects the state of the sense pin at the time of the
instruction execution.

FLAG (F)
The Flag bit is a simple latch that drives the Flag output (pin #40) on the
processor.

INTERRUPT INHIBIT (II)

When the Interrupt Inhibit (II) bit is set, the processor will not recognize
an incoming interrupt. When interrupts are enabled (II=0), and an interrupt
signal occurs, the inhibit bit in the PSU is then automatically set. When a
Return-and-Enable instruction is executed, the inhibit bit is automatically
cleared.

STACK POINTER (SP)

The three Stack Pointer bits are used to address locations in the Return
Address Stack (RAS). The SP designates the stack level which contains the
current return address. The three SP bits are organized as a binary counter
which is automatically incremented with execution of Branch-to-Subroutine
instructions, and decremented with execution of Return instructions.

CONDITION CODE (CcC)

The Condition Code is a two bit register which is set by the processor
whenever a general purpose register is loaded or modified by the execution
of an instruction. Additionally, the CC is set to reflect the relative value of
two bytes whenever a compare instruction is executed.

The following table indicates the setting of the Condition Code whenever
data is set into a general purpose register. The data byte is interpreted as an 8-
bit, two’s complement number.

Register Contents CcC1 CCo

Positive 0 1
Zero
Negative 1

For compare instructions the following table summarizes the setting of
the CC. The data is compared as two 8-bit absolute numbers if bit #1, the
COM bit, of the Program Status Lower byte is set to indicate ‘“‘logical”
compare (COM=1). If the COM bit indicates “‘arithmetic” (COM=0), the
comparison instructions interpret the data bytes as two 8-bit two’s com-
plement binary numbers.

Register to Storage Register to Register
Compare Instruction Compare Instruction cCi1 CCo
Reg X Greater Than Storage Reg O Greater Than Reg X 0 1
Reg X Equal to Storage Reg 0 Equal to Reg X
Reg X Less Than Storage Reg 0 Less Than Reg X 1

13

The CC is never set to 11 by normal processor operations, but it may be
explicitly set to 11 through LPSL or PPSL instruction execution.

INTERDIGIT CARRY (DC)

For BCD arithmetic operations it is sometimes essential to know if there
was a carry from bit #3 to bit #4 during the execution of an arithmetic
instruction.

The IDC reflects the value of the Interdigit Carry from the previous add or
subtract instruction. After any add or subtract instruction execution, the
IDC contains the carry or borrow out of bit #3.

The IDC is also set upon execution of Rotate instructions when the WC
bit in the PSW is set. The IDC will reflect the same information as bit #5 of
the operand register after the rotate is executed. See figure I1-2.

3
&y}

REGISTER SELECT (RS

There are two banks of general purpose registers with three registers in
each bank. The register select bit is used to specify which set of three general
purpose registers will be currently used. Register zero is common and is
always available to the program. An individual instruction may address only
four registers, but the bank select feature effectively expands the available
on-chip registers to seven. When the Register Select Bit is ““0”’, registers 1, 2,
& 3 in register bank #0 will be accessable, and when the bit is “‘1”’, registers

1, 2, & 3 in register bank #1 will be accessable.

WITFH ITHOUT CARRY (WC)

This bit controls the execution of the add, the subtract and the rotate in-
structions.

Whenever an add or a subtract instruction executes, the following bits are
either set or cleared: Carry/Borrow (C), Overflow (OVF), and Interdigit Carry
(IDC). These bits are set or reset without regard to the value of the WC bit.
However, when WC=1, the final value of the carry bit affects the result of an
add or a subtract instruction, i.e., the carry bit is either added (add instruc-
tion) or subtracted (subtract instruction) from the ALU.

Whenever a rotate instruction executes with WC=0, only the eight bits of
the rotated register are affected. However, when WC=1, the following bits
are also affected: Carry/Borrow (C), Overflow (OVF) and Interdigit Carry
(IDC). The carry/borrow bit is combined with the 8-bit register to make a
nine-bit rotate (see Figure II-2). The overflow bit is set whenever the sign
bit (bit 7) of the rotated register changes its value, i.e., from a zero (0) to a
one (1) or from a one (1) to a zero (0). The interdigit carry bit is set to the
new value of bit 5 of the rotated register.

The overflow bit is set during add or subtract instruction executions
whenever the two initial operands have the same sign but the result has a
different sign. Operands with different signs cannot cause overflow. Ex-
ample: A binary +124 (01111100) added to a binary +64 (01000000) pro-
duces a result of (10111100) which is interpreted in two’s complement form
as a —68. The true answer would be 188, but that answer cannot be con-
tained in the set of 8-bit, two’s complement numbers used by the processor,
so the OVF bit is set.

Rotate instructions also cause OVF to be set whenever the sign of the
rotated byte changes.

G L P L LT
e —> —»
7 6 5 4 3 2 1 0
TER RIGHT WITH CARRY
(NOT CHANGED)
-T> -1 1> 1>
—1 — —1
(NOT CHANGED)
7 6 5 4 3 2 1 0
IOTATE REGIS
IDC
-1 \ -« -
< N
-} -] — -]
7 6 5 4 3 2 1 0
ROTATE REGISTER LEFT WITH CARRY

(NOT CHANGED)

< <

-

—

-

(NOT CHANGED)

~N

6 5

Figure 11-2

COMPARE {COM)

The compare control bit determines the type of comparison that is ex-
ecuted with the Compare instructions. Either logical or arithmetic com-
parisons may be made. The arithmetic compare assumes that the comparison
is between 8-bit, two’s complement numbers. The logical compare assumes
that the comparison is between 8-bit positive binary numbers. When COM is
set to 1, the comparisons will be logical, and when COM is set to 0, the

4

3

2

ROTATE REGISTER LEFT WITHOUT CARRY

comparisons will be arithmetic. See Condition Code (CC).

15

CARRY (C)

The Carry bit is set by the execution of any add or subtract instruction
that results in a carry or borrow out 'of the high order bit of the ALU. The
carry bit is set to 1 by an add instruction that generates a carry, and a
subtract instruction that does not generate a borrow. Inversely, an add that
does not generate a carry causes the C bit to be cleared, and a subtract
instruction that generates a borrow also clears the carry bit.

Even though a borrow is indicated by a zero in the Carry bit, the pro-
cessor will correctly interpret the zero during subtract with borrow opera-
tions as in the following table.

Low Order bit Low Order bit Carry bit
Minuend Subtrahend Borrow bit Low Order Bit Result
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

The carry bit may also be set or cleared by rotate instructions as described
earlier under “With/Without Carry”.

To perform an Add with Carry or a Subtract with Borrow, the WC bit
must be set.

16

MEMORY ORGANIZATION

The 2650 has a maximum memory addressing capability of 04q
—32,76710 locations. As may be seen in the INSTRUCTIONS section of this
manual, most direct addressing instructions have thirteen bits allocated for
the direct address. Since thirteen bits can only address locations 010
—8,19110, a paging system was implemented to accomodate the entire
address range.

The memory may be thought of as being divided into four pages of 8,192
bytes each. The addresses in each page range as in the following chart:

START ADDRESS ,
page 0 | 000000000000000 001111111111111| 0,,—81914¢
page 1 010000000000000 0111111111111 819210—16,383 10
page 2 | 100000000000000 101111111111111 | 16,384 19—24,575 19
page3 110000000000000 {1"1"1"1‘1’“1"’111'111”111 . 24,57610—32,767 10

END ADDRESS.

The low order 13-bits in every page range through the same set of num-
bers. These 13-bits are the same 13-bits addressed by non-branch instructions
and are also the same 13-bits which are brought out of the 2650 on the
address lines ADRO — ADR12.

The high order two bits of the 15-bit address are known as the page bits.
The page bits when examined by themselves also represent, in binary, the
number of the memory page. Thus, the address 010000001101101 is known
as address location 10919 in page 1. The page bits, corresponding to
ADRI13 and ADR14 are brought out of the 2650 on pins 19 & 18. These bits
may be used for memory access when more than 8,192 bytes of memory are
connected.

There are no instructions to explicitly set the page bits. They may be set
through execution of direct or indirect, branch or branch-to-subroutine in-
structions. It may be seen that these instructions (see INSTRUCTION
Section) have 15-bits allocated for address and when such an instruction is
executed, the two high order address bits are set into the page bit latches in
the 2650 processor and will appear on ADR13 and ADR14 during memory
accesses until they are specifically changed.

For memory access from non-branch instructions, the 13-bit direct add-
ress will address the corresponding location within the current page only.
However, the non-branch memory access instruction may access any byte in
any page through indirect addressing which provides the full 15-bit address.
In the case of non-branch instructions, the page bits are only temporarily
changed to correspond to the high order two bits of the 15-bit indirect add-
ress used to fetch the argument byte. Immediately after the memory access,
ADR13 & ADR14 will revert to their previous value.

The consequences of this page address system may be summarized by the
following statements.

1. The RESET signal clears both page latches, i.e., ADR13 & ADR14 are cleared to zero.

2. All non-branch, direct memory access instructions address memory within the current
page.

3. All non-branch, memory access instructions may access any byte of addressable mem-
ory through use of indirect addressing which temporarily changes the page bits for the
argument access, but which revert back to their previous state immediately following
instruction execution.

4. All direct and indirect addressing branch instructions set the page bits to correspond to

the high order two bits of the 15 bit address.

. Programs may not flow across page boundaries, they must branch to set the page bits.

. Interrupts always drive the processor to page zero.

S ot

CHAPTER Il

INTERFACE

19

SIGNALS

RESET

The RESET signal is used to cause the 2650 to begin processing from a
known state. RESET will normally be used to initialize the processor after
power-up or to restart a program. RESET clears the Interrupt Inhibit control
bit, clears the internal interrupt-waiting signal, and initializes the IAR to zero.
RESET is normally low during program execution, and must be driven high
to activate the RESET function. The leading and trailing edges may be
asynchronous with respect to the clock. The RESET signal must be at least
three clock periods long. If RESET alone is used to initiate processing, the
first instruction will be fetched from memory location page zero byte zero
after the RESET signal is removed. Any instruction may be programmed for
this location including a Branch to some program located elsewhere.

Processing can also be initiated by combining an interrupt with a reset. In
this case, the first instruction to be executed will be at the interrupt address.

CLOCK

The clock signal is a positive-going pulse train that determines the instruc-
tion execution rate. Three clock periods comprise a processor cycle. Direct
instructions are 2, 3, or 4 processor cycles long, depending on the specific
type of instruction. Indirect addressing adds two processor cycles to the
direct instruction times.

PAUSE

The PAUSE input provides a means for temporarily stopping the execu-
tion of a program. When PAUSE is driven low, the 2650 finishes the instruc-
tion in progress and then enters the WAIT state. When PAUSE goes high,
program execution continues with the next instruction. If PAUSE is turned
on then off again before the last cycle of the current instruction begins,
program execution continues without pause. If both PAUSE and INTREQ
occur prior to the last cycle of the current instruction, the interrupt will be
recognized, and an INTACK will be generated immediately following release
of the PAUSE. The next instruction to be executed will be a ZBSR to ser-
vice the interrupt.

If an INTREQ occurs while the 2650 is in a WAIT state due to a PAUSE,
the interrupt will be acknowledged and serviced after the execution of the
next normal instruction following release of the PAUSE.

INTREQ

The Interrupt Request input (normally high) is a means for external
devices to change the flow of program execution. When the processor recog-
nizes an INTREQ, i.e., INTREQ is driven low, it finishes the instruction in
progress, inserts a ZBSR instruction into the IR, turns on the Interrupt
Inhibit bit in the PSU, and then responds with INTACK and OPREQ signals.
Upon receipt of INTACK, the interrupting device may raise the INTREQ
line and present a data byte to the processor on the DBUS. The required
byte takes the same form as the second byte of a ZBSR instruction. Thus,
the interrupt initiated Branch-to-Subroutine instruction may have a relative
target address anywhere within the first or last 64 bytes of memory page 0.
If indirect addressing is specified, a branch to any location in addressable
memory is possible.

21

For devices that do not need the flexibility of the multiple target address-
es, a byte of eight zeroes may be presented and will cause a direct subroutine
branch to memory location zero in page zero. The relative address presented
by the interrupting device is handled with a normal I/O read sequence using
the usual interface control signals. The addition of the INTACK signal distin-
guishes the interrupt address operation from other operations that may take
place as part of the execution of the interrupted instruction. At the same
time that it acknowledges the INTREQ, the processor automatically sets the
bit that inhibits recognition of further interrupts. The Interrupt Inhibit bit
may be cleared anytime during the interrupt service routine, or a Re-
turn-and-Enable instruction may be used to enable interrupts upon leaving
the routine. If an INTREQ is waiting when the Interrupt Inhibit bit is
cleared, it will be recognized and processed immediately without the execu-
tion of an intervening instruction.

The Operation Acknowledge signal is a reply from external memory or
I/O devices as a response to the Operation Request signal from the processor.
OPREQ is used to initiate an external operation. The affected external de-
vice indicates to the processor that the operation is complete by turning on
the OPACK signal. This procedure allows asynchronous functioning of exter-
nal devices.

If a Memory operation is initiated by the processor, the memory system
will provide an OPACK when the requested memory data is valid on the
Data Bus. If an I/O operation is initiated by the processor, the addressed 1/0
device may respond with an OPACK as soon as the write data is accepted
from the Data Bus, or after the read operation is completed. However, in
order to avoid slowing down the processor when using memories or I/0
devices that are just fast enough to keep the processor operating at full speed
the OPACK signal must be returned before the external operation is com-
pleted. Any OPACK that is returned within 600 nsec. following an OPREQ
will not delay the processor. Data from a read operation can return up to
1000 nsec. after an OPREQ is sent and still be accepted by the processor
without causing delays. If all devices will always respond within these time
limits, the OPACK line may be permanently connected in the ON (low)
state. Whenever an OPACK is not available within that time, the processor
will delay instruction execution until the first clock following receipt of the
OPACK. All output line conditions remain unchanged during the delay and
the processor does not enter the WAIT state. OPACK is true in the low state
and false in the high state.

SENSE

The SENSE line provides an input line to the 2650 that is independent of
the normal 1/0 Bus structures. The SENSE signal is connected directly to one
of the bits in the Program Status Word. It may be stored or tested by an
executing program. When a store (SPSU) or test (TPSU) instruction is exe-
cuted, the SENSE line is sampled during the last cycle of the instruction.

Through proper programming techniques the SENSE signal may be used
to implement a direct serial data input channel, or it may be used to present
any bit of information that the designer chooses.

The SENSE input and FLAG output facilities provide the simplest method
of communicating data in or out of the 2650 Processor as neither address
decoding nor synchronization with other processor signals is necessary.

......

ADREN

The Address Enable signal allows external control of the tri-state address
outputs (ADRO-ADR12). When ADREN is driven high, the address lines are
switched to their third state and show a high output impedance. This feature
allows wired-OR connections with other signals. The ADR13 and ADR14
lines which are multiplexed with other signals are not affected by this signal.

When a system is not designed to utilize the feature, the ADREN input
may be connected permanently to a low signal source.

DBUSEN

The Data Bus Enable signal allows external control of the tri-state Data
Bus output drivers. When DBUSEN is driven high, the Data Bus will exhibit a
high output impedance. This allows wired-OR connection with other signals.

When a system is not designed to utilize this feature, the DBUSEN input
may be permanently connected to a low signal source.

DRUS

The Data Bus signals form an 8-bit bi-directional data path in and out of
the processor. Memory and I/0 operations use the Data Bus to transfer the
write or read data to or from memory.

The direction of the data flow on the Data Bus is indicated by the state of
the R/W line. For Write operations, the output buffers in the processor out -
put data to the bus for use by memory or by external devices. For Read
operations, the buffers are disabled and the data condition of the bus is
sensed by the processor. The output buffers may also be disabled by the
DBUSEN signal.

The signals on the data bus are true signals, i.e., a one is a high level and a
zero is low.

ADR

The Address signals form a 15 bit path out of the processor, and are used
primarily to supply memory addresses during memory operations. The ad-
dresses remain valid as long as OPREQ is on so that no external address
register is required. For extended I/O operations, the low order eight bits of
the ADR lines are used to output the immediate byte of the instruction
which typically is interpreted as a device address.

The 13 low order lines of the address are used only for address informa-
tion. The two high order address lines are multiplexed with 1/O control
information. During memory operations, the lines serve as memory address-
es. During I/O operations they serve as the D/C and E/NE control lines.
Demultiplexing is accomplished through use of the Memory/IO Control line.

The line ADRO carries the low order address bit, and ADR12 carries the
high order address bit. The output drivers may be disabled by the ADREN
signal.

The signals on the address bus are true, i.e., a one is a high level and a zero
is low.

OPREQ

The Operation Request output is the coordinating signal for all external
operations. The M/IO, R/W, E/NE, D/C and INTACK lines are operation
control signals that describe the nature of the external operation when the
OPREQ line is true. The DBUS and ADR bus also should not be considered

valid except when OPREQ is in the high, or on state.

No output signals from the processor will change as long as OPREQ is on,
with the exception of WRP. OPREQ will stay on until the external operation
is complete, as indicated by the OPACK input. The processor delays all
internal activity following an OPREQ until the OPACK signal is received.

The Interrupt Acknowledge signal is used by the processor to respond to
an external interrupt. When an INTREQ is received, the current instruction
is completed before the interrupt is serviced. When the processor is ready to
accept the interrupt it sets the INTACK to the high, or on, state along with
OPREQ. The interrupting device then presents a relative address byte to the
DBUS and responds with an OPACK signal. INTREQ may be turned off
anytime following INTACK. INTACK will fall after the processor receives
the OPACK signal.

The Memory/IO output is one of the operation control signals that de-
fines external operations. M/IO indicates whether anoperation is memory or
I/O and should be used to gate Read or Write signals between memory or 1/O
devices.

The state of M/IO will not change while OPREQ is high.

The high state corresponds to Memory operation, and the low state cor-
responds to an I/O operation.

The Read/Write output is one of the operation control signals that defines
external operations. R/W indicates whether an operation is Read or Write. It
controls the nature of the external operation and indicates in which direc-
tion the DBUS is pointing. R/W should not be considered valid until OPREQ
is on and the state of the R/W line does not change as long as OPREQ is on.

The high state corresponds to the Write operation, and the low state
corresponds to the Read operation.

The Data/Control Output is an I/O signal which is used to discriminate
between the execution of the two types of one byte I/O instructions. There
are four one byte I/O instructions; WRTC, WRTD, REDC, REDD. When
Read Control or Write Control is executed, the D/C line takes on the low
state which indicates Control (C). When Read Data or Write Data is exe-
cuted, the D/C line takes on the high state, indicating Data (D).

D/C should not be considered valid until (a) OPREQ is on and (b) M/IO
indicates an I/O operation and (c) E/NE indicates a non-extended (one byte)
operation. D/C is multiplexed with a high order address line. When the M/IO
line is in the I/O state, the ADR14-D/C line should be interpreted as
“D/C”. (When the M/IO line is in the M state , the ADR14-D/C line should
be interpreted as memory address line #14.)

The Extended/Non-Extended output is the operation control signal that
is used to discriminate between two byte and one byte I/O operations. Thus,
E/NE indicates the presence or absence of valid information on the eight low

order address lines during I/O operations.

E/NE should not be considered valid until (a) OPREQ is on and (b) M/IO
indicates an I/O operation. E/NE is multiplexed with a high order address
line. When the M/IO line is in the I/O state, the ADR13-E/NE line should be
interpreted as “E/NE”. (When the M/IO line is in the M state, the
ADR13-E/NE line should be interpreted as memory address bit #13.)

There are six I/O instructions; REDE, WRTE, REDC, REDD, WRTC,
WRTD. When either of the two byte I/O instructions is executed (REDE,
WRTE), the E/NE line takes on the high state or “Extended’ indication.
When any of the one byte I/O instructions is executed, the line takes on the
low state or ‘‘non-extended’ indication.

J/WAIT

The RUN/WAIT output signal indicates the Run/Wait Status of the pro-
cessor. The WAIT state may be entered by executing a HALT instruction or
by turning on the PAUSE input. At any other time the processor will be in a
RUN state.

When the processor is executing instructions, the line is in the high or
RUN state; when in the WAIT state, the line is held low.

The HALT initiated WAIT condition can be changed to RUN by a RE-
SET or an interrupt. The PAUSE initiated WAIT condition can be changed
to RUN by removing the PAUSE input.

If a RESET occurs during a PAUSE initiated WAIT state and the PAUSE
remains low; the processor will be reset, fetch one instruction from page zero
byte zero and return to the WAIT state. When the PAUSE is eventually
removed, the previously fetched instruction will be executed.

The FLAG output indicates the state of the Flag bit in the PSW. Any
change in the Flag bit is reflected by a change in the FLAG output. A one
bit in the Flag will give a high level on the FLAG output pin. The LPSU,
PPSU, and CPSU instructions can change the state of the Flag bit.The FLAG
output is always a valid indication of the state of the Flag bit without regard
for the status of the processor or control signals. Changes in the Flag bit are
synchronized with the last cycle of the changing instruction.

WRP

The Write Pulse output is a timing signal from the processor that provides
a positive-going pulse in the middle of each requested write operation
(memory or I/O) and a high level during read operations. The WRP is
designed to be used with Signetics 2606 R/W memory circuits to provide a
timed Chip Enable signal. For use with memory, it may be gated with the
M/IO signal to generate a Memory Write Pulse.

Because the WRP pulse occurs during any write operation, it may also be
used with I/O write operations where convenient.

SIGNAL TIMING

The Clock input to the 2650 provides the basic timing information that
the processor uses for all its internal and external operations. The clock rate
determines the instruction execution rate, except to the extent that external
memories and devices slow down the processor. Each internal processor
cycle is composed of three clock periods as shown in Figure I1I-3, GENERAL
TIMING.

OPREQ is the master control signal that coordinates all operations
external to the processor. Many of the other signal interactions are related to
OPREQ. The timing diagram assumes that the clock periods are constant and
that OPACK is returned in time to avoid delaying instruction execution. In
that case, OPREQ will be high for 1.5 clock periods (1/2 of tpc) and then
will be low for another 1.5 clock periods.

The interface control signals have been designed to implement asynchro-
nous interfaces for both memory and input/output devices. The control
signals are relatively simple and provide the following advantages: no
external synchronizing is necessary, external devices may run at any data
rate up to the processor’s maximum I/O data rate, and because data signals
are furnished with guard signals the external devices are often relieved of the
necessity of latching information such as memory address.

MEMORY READ TIMING
The following signals are involved in the processor’s memory read
sequence, as shown in Figure III-1.

OPREQ = Operation Request
DBUSO-DBUST7* = Data Bus
ADRO-ADR12 = Address Bus

ADR13 = Address bit 13

ADR14 = Address bit 14

M/IO = Memory /Input-Output
R/W = Read/Write

OPACK* = Operation Acknowledge

The signals marked with an asterisk are sent from the memory device to
the processor. The other signals are developed by the processor.

OPREQ is a guard signal which must be valid (high) for the other signals
to have meaning. When reading main memory the 2650 simultaneously
switches OPREQ to a high state, M/TO to M (memory), R/W to R (Read),
and places the memory address on lines ADRO-ADR14. Remember that
ADR13 & ADR14 are multiplexed with other signals and must be logically
ANDed with OPREQ and M to be interpreted. Of course, ADR13 & ADR14
may be ignored if only page zero (8,192 bytes) is used.

Once the memory logic has determined the simultaneous existance of the
signals mentioned above, it places the true data corresponding to the given
address location on the data bus (DBUSO to DBUS7), and returns an OPACK
signal to the processor. The processor, recognizing the OPACK, strobes the
data into the receiving register and lowers the OPREQ. This completes the
memory read sequence.

T0
cLock
2650 OUTPUTS:
opREG INTERNAL INTERNAL
DELAY ~500nS, DELAY ~500nS
CONTROL|[OUTPUTS AND
ADDRESSES|VALID
ADRO-ADR 14 r —————— —_——
I - —
wevoryio FoF=====—====~- - —_~——
R e m - - - J PR -
- O F----- i [- —
READ/WRITE
i - - - —
FROM ACCESSED MEMORY:
OPACK ~goons AT_\ Y
2.4uS CYCLE |

DATA IN

2650 CYCLE TIME
=3 CLOCK PERIODS=2.4uS MINIMUM

NOTES: (1) OPACK must go low at least 100 nS before the trailing edge of T2 in order not to slow down the 2650.
(2) DATA IN signals must be valid for 50nS after the trailing edge of OPREQ.

(3) Allowable memory access time is 1us with 2.4us cycle time.

Figure 111-1 MEMORY READ SEQUENCE

If the OPACK signal is delayed by the memory device, the processor waits
until it is received. OPREQ is lowered only after the receipt of OPACK. The
memory device should raise OPACK after OPREQ falls.

MEMORY WRITE TIMING

The signals involved with the processor’s memory write sequence are
similar to those used in the memory read sequence with the following
exceptions: 1) the R/W signal is in the W state and, 2) the WRP signal
provides a positive going pulse during the write sequence which may be used
as a chip enable, write pulse, etc.

Figure I11-2 demonstrates the signals that occur during a memory write.

cLock

2650 DUTPUTS

INTERNAL INTERNAL
OPREQ DELAY 500nS DELAY 500nS

CONTROL | OUTPUTS, DATA
AND ADDRESS [VALID

ADRO ADR14

_________:X _Z
N LA

READWRITE

DBUSO-DBUS

300nS I

. —f —— — — e — |
FROM ACCESSED

MEMORY

OPACK N
m
600nS \,
AT 2.4JSEC /
CYCLE TiME ,\

2650 CYCLE TIME
3 CLOCK PERIODS = 2.4USEC MINIMUM

NOTES: (1) OPACK must go low at ieast 100nS before the trailing edge of T2 in order not to slow down the 2650

Figure 111-2 MEMORY WRITE SEQUENCE

|

INPUT/OQUTPUT TIMING

The signal exchanges for I/O with external devices is very similar to the
signaling for memory read/write. See the Features Section, INPUT/OUT
PUT FACILITIES.

CRITICAL TIMES
The following timing diagram describes the timing relationship between
the various interface signals. The critical times are labeled and defined in the

table of AC characteristics.

L n tpc —1
cp
'cr-t-k-t_a

cLoCK NS A AN A AY [\ [\ [\

e tcor—— | or
|
OPREQ ———0nD | ’\———-——J -
A

_ |<-‘0AH
OPACK | | [____/—-——

‘DnD—*—.‘DlH—L—)I

IN
DBUS) «f-SIGNALS VALID
t |

DBUS OUT —»”(» DOA i

| SIGNALS VALIDI

- fetcsa |
CONTROL
SIGNALS L-SIGNALS VALID
(M/10, R/W, WPD*W. PW,'
E/NE, D/C) go- o=
WRP _—_]
GENLRAL TIMING
LAST CYCLE R, -
OF CURRENT __ L N
INSTRUCTION
CLOCK TO T1 T2 TO T1 T2 TO T1
OPREQ ‘ /T
- — l(*'ms
INTREQ) f
INTACK _)'/ L | S—
YRH
INTERRUPT TIMING
ADREN \ f
—aI i(—‘ABD —-)| |(— tABD
HIGH IMPEDANCE HIGH IMPEDANCE

ADR STATE SIGNALS VALID x STATE

—| ltoRT

T [/
-” |<-‘DBD —)I Il—tDBD

pBUs HIGH IMPEDANCE SIGNALS VALID X HIGH Y RTe N CE

=i ['oRT
TRI-STATE BUS TIMING

Figure 111-3 2650 TIMING DIAGRAMS

PRELIMINARY AC CHARACTERISTICS

TA=0°C to 70°C V(=5V15% unless otherwise specified, see notes 1,2,3 & 4.

LIMITS
SYMBOL PARAMETER i VIAX UNITS
tcH Clock High Phase 400 10,000 nsec
tcL Clock Low Phase 400 o nsec
tcp Clock Period 800 oo nsec
tpc6 Processor Cycle Time 2,400 0 nsec
tOR OPREQ Pulse Width 2tcq +tep -100 oo nsec
tcoRr Clock to OPREQ Time 100 700 nsec
toap’ OPACK Delay Time 0 o0 nsec
toAH OPACK Hold Time 0 o nsec
tcsa Control Signal Available 50 nsec
tpoa Data Out Available 50 nsec
tpip8 Data in Delay 0 1000(8) nsec
tpiH9 Data in Hold 150 nsec
twpD Write Pulse Delay te-100 tc-50 nsec
twpw Write Pulse Width tol teL nsec
tABD Address Bus Delay 80 nsec
tpeD Data Bus Delay 120 nsec
t|rstO INTREQ Set up Time 0 nsec
tyruyt10 INTREQ Hold Time 0 nsec
torT® Output Buffer Rise Time 150 nsec

NOTES ON AC CHARACTERISTICS

NoarwN -

. See preceding timing diagrams for definition of timing terms.
. Input levels swing between 0.65 volt and 2.2 volts.

Input signal transition times are 20ns.
Timing reference level is 1.5 volts.

Load is -100uA at 20pF.

A Processor Cycle time consists of three clock periods.

In order to avoid slowing down the processor, OPACK must be lowered 100ns before the trailing edge of
T2 clock, if OPACK is delayed past this point, the processor will wait in the T2 state and sample OPACK
on each subsequent negative clock edge until OPACK is lowered.

In order to avoid slowing the processor down, input data must be returned to the processor in Tus or

less time from the OPREQ edge, at a cycle time of 2.4Ms.

Input data must be held until 50ns after OPREQ falls.

. In order to interrupt the current instruction, INTREQ must fall prior to the first clock of the last cycle

of the current instruction. INTREQ must remain low until INTACK goes high.

29

ELECTRICAL CHARACTERISTICS

MAXIMUM GUARANTEED RATINGS(1)

Operating Ambient Temperature 0°C to +70°C
Storage Temperature -65°C to + 150°C
All Input, Output, and Supply Voltages

with respect to ground pin(3) 05V to +6V
Package Power Dissipation(2)=IWPkg. 1.6W

PRELIMINARY 2650 DC ELECTRICAL CHARACTERISTICS

LIMITS
SYMBOL PARAMETER TEST CONDITIONS MIN MAX UNIT
I Input Load Current ViN = 0 to 5.25V 10 LA
ILOH Output Leakage Current ADREN, DBUSEN = 2.2V, VouT = 4V 10 uA
Lo Output Leakage Current ADREN, DBUSEN = 2.2V, VouT = 0.45V 10 uA
lcc Power Supply Current Vee = 5.25V, Ta = 0°c 100 mA
ViL Input Low -0.6 0.8 \%
VIiH Input High 2.2 Vce \%
VoL Output Low loL = 1.6 mA 0.0 0.45 \
VOH Output High loH = -100 A 2.4 Vcc-0.6 \%
CiN Input Capacitance VIN = OV 10 pF
CouT Output Capacitance VouTt = 0V 10 pF

Conditions: Tp = 0°C to 70°C, Vgg = 5V +5%

NOTES:

1. Stresses above those listed under “Maximum Guaranteed Ratings’’ may cause permanent damage to the device. This is a stress rating
only and functional operation of the device at these or at any other condition above those indicated in the operation sections of this
specification is not implied.

2. For operating at elevated temperatures the device must be derated based on a +1509C maximum junction temperature and a thermal
resistance of 509C/W junction to ambient (40 pin IW package).

3. This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive

static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying any voltages larger than the rated maxima.

Parameter valid over operating temperature range unless otherwise specified.

. All voltage measurements are referenced to ground.

Manufacturer reserves the right to make design and process changes and improvements.

Typical values are at +25°C, nominal supply voltages, and nominal processing parameters.

N o O b

30

SIGNETICS 2650 PROCESSOR
INTERFACE SIGNALS

TYPE PINS ABBREVIATION FUNCTION SIGNAL SENSE
INPUT 1 GND Ground GND=0
INPUT 1 Vee +5 Volts £5% Vee=1
INPUT 1 RESET Chip Reset RESET=1 (pulse), causes reset
INPUT 1 CLOCK Chip Clock
INPUT 1 PAUSE Temp. Halt execution PAUSE=0, temporarily halts execution
INPUT 1 INTREQ Interrupt Request INTREQ=0, requests interrupt
INPUT 1 OPACK Operation Acknowledge OPACK=0, acknowledges operation
INPUT 1 SENSE Sense SENSE=0 (low) or SENSE=1 (high)
INPUT 1 ADREN Address Enable ADREN=1 drives into third state
INPUT 1 DBUSEN Data Bus Enable DBUSEN=1 drives into third state
INSOUT 8 DBUSO-DBUS? Data Bus DBUSN=0 (low), DBUSn=1 (high)
OUTPUT 13 ADRO-ADR12 Address 0 through 12 ADRnN=0 (low), ADRn=1 (high)
OUTPUT 1 ADR13 or E/NE Address 13 or
Extended/Non-Extended | Non-Extended=0, Extended=1
OuTPUT 1 ADR14 0r D/C Address 14 or
Data Control Control=0, Data 1
OUTPUT 1 OPREQ Operation Request OPREQ-=1, requests operation
QUTPUT 1 M./ 10 Memory/10 10=0, M=1
SuTPUT 1 RW Read/Write R=0, W=1
OUTPUT 1 FLAG Flag Output FLAG=1 (high), FLAG=0 (low)
QUTPUT 1 INTACK Interrupt Acknowledge INTACK=1, acknowledges interrupt
OUTPUT 1 RUN/WAIT Run/Wait Indicator RUN=1, WAIT=0
QUTPUT 1 WRP Write Pulse WRP=1 (pulse), causes writing
PIN CONFIGURATION

SENSE 1 U 40 FLAG

ADR 12 2 39 Vee

ADR 11 3 38 CLOCK

ADR 10 4 37 PAUSE

ADR 9 5 36 OPACK

ADR 8 6 35 RUN/WAIT

ADR7 7 34 INTACK

ADR 6 8 33 DBUS 0

ADR 5 9 2650 32 DBUS 1

ADR 4 10 31 DBUS 2

ADR3 n 30 DBUS 3

ADR 2 12 29 DBUS 4

ADR 1 13 28 DBUS 5

ADRO 14 27 DBUS 6

ADREN 15 26 DBUS 7

RESET 16 25 DBUSEN

INTREQ 17 24 OPREQ

ADR 14-D/C 18 23 RW

ADR 13-E/NE 19 22 WRP

m/io 20 21 GND

TOP VIEW

31

o~

o

CHAPTER IV

33

INPUT/OUTPUT FACILITIES

The 2650 processor provides several mechanisms for performing input/
output functions. They are flag and sense, non-extended I/O instructions,
extended I/O instructions, and memory I/O. These four facilities are
described below.

FLAG & SENSE I/0
The 2650 has the ability to directly output one bit of data without
additional address decoding or synchronizing signals.

The bit labeled “Flag” in the Program Status Word is connected through a
TTL compatible driver to the chipoutput at pin #40. The Flag output always
reflects the value in the Flag bit.

When a program changes the Flag bit through execution of an LPSU,
PPSU, or CPSU, the bit will be set or cleared during the last cycle of the
instruction that changes it.

The Flag bit may be used conveniently for many different purposes. The
following is a list of some possible uses:
1. Aserial output channel
2. An additional address bit to increase addressing range.
3. A switch or toggle output to control external logic.
4. The origin of a pulse for polling chains of devices.

The Sense bit performs the complementary function of the Flag and is a
single bit direct input to the 2650. The Sense input, pin #1 is connected to a
TTL compatible receiver and is then routed directly to a bit position in the
Program Status Word. The bit in the PSW always represents the value of the
external signal. It may be sampled anytime through use of the TPSU or
SPSU instructions.

This simple input to the processor may be used in many ways. The
following is a list of some possible uses:
1. A serial input channel
2. A sense switch input

3. A break signal to a processing program
4. An input for yes/no signaling from external devices.

NON-EXTENDED /0

There are four one byte I/O instructions; REDC, REDD, WRTC, and
WRTD. They are all referred to as non-extended because they can
communicate only one byte of data, either into or out of the 2650.

REDC and REDD causes the input transfer of one byte of data. They are
identical except for the fact that the D/C Signal is in the D state for REDD
and in the C state for REDC. Similarly, the instructions WRTC and WRTD
cause an output transfer of one byte of data. The D/C line discrim-
inates between the two pairs of input/output instructions. The D/C line
can be used as a 1-bit device address in simple systems.

The read and write timing sequences for the one byte I/O instructions are
the same as the memory read and write sequences with the following
exceptions: the M/IO signal is switched to 1O, the D/C line becomes valid,

E/NE is switched to NE (non-extended), .and the Address bus contains no
valid information.

€.5
Lad

The NE signal informs the devices outside the 2650 that a one byte I/O
instruction is being executed. The D/C line indicates which pair of the one
byte 1/O instructions are being executed; D implies either WRTD or REDD,
and C implies either WRTC or REDC. Finally, to determine whether it is a
read or a write, examine the R/W signal level.

Table IV-1 illustrates the sense of the interface signals. The ‘“‘Signal
Timing” section should be referenced for the exact timing relationships. It
should be remembered that the control signals are not to be considered valid
except when the OPREQ signal is valid.

Table 1V-1 I/0 INTERFACE SIGNALS
OPREQ | M/IO | R/W | ADR13-E/NE | ADR14-D/C
MEMORY READ T M R ADR13 ADR14
MEMORY WRITE T M w ADR13 ADR14
2BYTE READ T 10 | R E Don't Care
2BYTE WRITE T 10 w E Don't Care
1BYTE CONTROL READ T 0 | R NE C
1 BYTE CONTROL WRITE T To) W NE c
1BYTE DATA READ T 0 | R NE D
1BYTE DATA READ T 10 W NE D

EXTENDED /O

There are two, two byte I/O instructions; REDE and WRTE. They are
referred to as extended because they can communicate two bytes of data
when they are executed. The REDE causes the second byte of the
instruction to be output on the low order address lines, ADRO-ADR7, which
is intended to be used as a device address while the byte of data then on the
Data Bus will be strobed into the register specified in the instruction. The
WRTE also presents the second byte of the instruction on the Address Bus,
but a byte of data from the register specified in the instruction is
simultaneously output on the Data Bus.

The two byte I/O instructions are similar to the one byte I/O instructions
except: the D/C line is not considered, and the data from the second byte of
the I/O instruction appears on the Address Bus all during the time that
OPREQ is valid. The data on the Address Bus is intended to convey a device
address, but may be utilized for any purpose.

Table IV-1 illustrates the sense of the interface signals for extended I/O
instructions. Refer to ““Signal Timing”’ section for exact timing relationships.

The 2650 user may choose to transfer data into or out of the processor
using the memory control signals. The advantage to this technique is that the
data can be read or written by the program through ordinary instruction
execution and data may be directly operated upon with the arithmetic

instructions.

To make use of this technique, the designer has to assign memory
addresses to devices and design the device interfaces to generate the same
signals as memory.

A disadvantage to this method is that it may be necessary to decode more
address lines to determine the device address than with other I/O facilities.

INTERRUPT MECHANISM

The 2650 has been implemented with a conventional, single level, address
vectoring interrupt mechanism. There is one interrupt input pin. When an
external device generates an interrupt signal (INTREQ), the processor is
forced to transfer control to any of 128 possible memory locations as
determined by an 8-bit vector supplied by the interrupting device.

Of special interest is that the device may return a relative indirect address
signal which causes the processor to enter an indirect addressing sequence
upon receipt of an interrupt. This enables a device to direct the processor to
execute code anywhere within addressable memory.

Upon recognizing the interrupt signal, the processor automatically sets the
Interrupt Inhibit bit in the Program Status Word. This inhibits further
interrupts from being recognized until the interrupt routine is finished
executing and a Return-and-Enable instruction is executed or the inhibit bit
is explicitly cleared.

When the inhibit bit in the PSW is set, the processor will not recognize an
interrupt input. The Interrupt Inhibit bit may be set under program control
(LPSU, PPSU) and is automatically set whenever the processor accepts an
interrupt. The inhibit bit may be cleared in three ways:

1. By a RESET operation
2. By execution of an appropriate clear or load PSU instruction; (CPSU, LPSU)
3. By execution of a Return-and-Enable instruction.

The sequence of events for a normal interrupt operation is as follows:

1. An executing program enables interrupts.

2. External device initiates interrupt with the INTREQ line.

3. Processor finishes executing current instruction.

4. Processor sets inhibit bit.

5. Processor inserts the first byte of ZBSR (Zero Branch-to-Subroutine, Relative)
instruction into the instruction register instead of what would have been the next
sequential instruction.

6. Processor accesses the data bus to fetch the second byte of the ZBSR instruction.

7. Interrupting device responds to the Processor generated INTACK (Interrupt Acknow-

ledge) by supplying the requested second byte.

8. The processor executes the Zero Branch-to-Subroutine instruction, saving the address
of the instruction following the interrupted instruction in the RAS, and proceeds to
execute the instruction at page 0, byte 0, or the address relative to page 0, byte 0 as
given by the interrupting device.

9. When the interrupt routine is complete, a return instruction (RETC, RETE) pulls the
address from the RAS and execution of the interrupted program resumes.

Since the interrupting device specifies the interrupt subroutine address in
the standard relative address format, it has considerable flexibility with
regard to the interrupt procedure. It can point to any location that is within
+63 or —64 bytes of page zero, byte zero of memory. (Negative relative
addresses wrap around the memory, modulo 8,19219 bytes.) The inter-
rupting device also may specify whether the subroutine address is direct or
indirect by providing a zero or one to DBUS #7 (pin #26). If the external
device is not complex enough to exercise these options, it may respond to
the INTACK operation with a byte of all zeroes. In such a case, the
processor will execute a direct Branch-to-Subroutine to page zero, byte zero
of memory.

37

The timing diagram in Figure IV-2 will help explain how the interrupt
system works in the processor. The execution of the instruction labeled “A”
has been proceeding before the start of this diagram. The last cycle of
instruction ‘““A” is shown. Notice that, as in all external operations, the
OPREQ output eventually causes an OPACK input, which in turn allows
OPREQ to be turned off. The arrows show this sequence of events. The last
cycle of instruction ‘““A” fetches the first byte of instruction “B” from
Memory and inserts it into the Instruction Register.

Assume that instruction ‘“B’’ is a two cycle, two byte instruction with no
operand fetch (e.g., ADDI). Since the first byte has already been fetched by
instruction ““A”’, the first cycle of instruction “B’’ is used to fetch the second
byte of instruction ‘“B”’. Had instruction “B”’ not been interrupted, it would
have fetched the first byte of the next sequential instruction during its
second (last) cycle. The dotted lines indicate that operation.

Since instruction ‘““B”’ is interrupted, however, the last cycle of “B’’ is used
to insert the interrupt instruction (ZBSR) into the instruction register.
Notice that the INTREQ® input can arrive at any time. Instruction B is in-
terrupted since INTREQ occured prior to the last (2nd) cycle of execution.

Instead of being the next sequential instruction following “B”’, instruction
“C” is the completion of the interrupt. The first cycle of “C” is used to
fetch the second byte of the ZBSR instruction from the DBUS as provided
by the interrupting device. This fact is indicated by the presence of the
INTACK control signal. The INTREQ may then be removed. When the
device responds with the requested byte, it uses a standard operation
acknowledge procedure (OPACK) to so indicate to the processor. During the
second cycle of instruction ¢“C”’ the processor executes the ZBSR instruction,
and fetches the first byte of instruction “D” which is located at the
subroutine address.

INST INST INST INST

Sl c e

D
LAST CYCLE,P CYCLE T ovolEZ T oYCLET ; CYCLE2 ~1" CYCLE 1

DBUS

INTREQ
L /
INTACK [_1

OPREQ ’r_ “. I j / \ / \
\ / o VO s VY e W
1"_""\ N

A" L\ [\ / \
T L__’i

N et) W
1ST BYTE 2ND BYTE * *x 1ST BYTE
NST B INSTB INST D

* PROCESSOR INSERTS 1ST BYTE OF ZBSR INSTRUCTION. ADDRESS
OF 1ST BYTE OF INSTC IS PUSHED INTO RETURN ADDRESS STACK.

** 2ND BYTE OF ZBSR (INTERRUPT VECTOR)

Figure IV - 2 INTERRUPT TIMING

38

SUBROUTINE LINKAGE

The on-chip stack, along with the Branch-to-Subroutine and Return
instructions provide the facility to transfer control to a subroutine.The
subroutine can return control to the program that branched to it via a
Return instruction.

The stack is eight levels deep which means that a routine may branch to a
subroutine, which may branch to another subroutine, etc., eight times before
any Return instructions are executed.

When designing a system that utilizes interrupts, it should be remembered
that the processor jams a ZBSR into the IR and then executes it. This will
cause an entry to be pushed into the on-chip stack like any other
Branch-to-Subroutine instruction and may limit the stack depth available in
certain programs.

When branching to a subroutine, the following sequence of events occurs:

1. The address in the IAR is used to fetch the Branch-to-Subroutine instruction and is
then incremented in the Address Adder so that it points to the instruction following
the subroutine branch.

2. The Stack Pointer is incremented by one so that it points to the next Return Address
Stack location.

3. The contents of the IAR are stored in the stack at the location designated by the Stack
Pointer.

4. The operand address contained in the Branch-to-Subroutine instruction (the address of
the first instruction of the subroutine) is inserted into the IAR.

When returning from a subroutine, this sequence of events occurs:

1. The address in the IAR is used to fetch the return (RETC, RETE) instruction from
memory.
2. When the return instruction is recognized by the processor, the contents of the stack
entry pointed to by the Stack Pointer is placed into the IAR.
. The Stack Pointer is decremented by one.
4. Instruction execution continues at the address now in the IAR.

w

CONDITION CODE USAGE

The two-bit register, called the Condition Code, is incorporated in the
Program Status Word. It may be seen in the description of the 2650
instructions, that the Condition Code (CC) is specifically set by every
instruction that causes data to be transferred into a general purpose register
and it is also set by compare instructions.

The reason for this design feature is that after an instruction executes, the
CC contains a modest amount of information about the byte of data which
has just been manipulated. For example, a program loads register one with a
byte of unknown data and the Condition Code setting indicates that the
byte is positive, negative or zero. The negative indication implies that bit #7
is set to one.

Consequently, a data manipulation operation when followed by a
conditional branch is often sufficient to determine desired information
without resorting to a specific test, thus saving instructions and memory
space.

39

In the following example, the Condition Code is used to test the parity of
a byte of data which is stored at symbolic memory location CHAR.

EQ EQU 0 THE EQUAL CONDITION CODE
CHAR DATA 2 UNKNOWN DATA BYTE
wC EQU H'04' THE WITH CARRY BIT
NEG EQU 2 CC MASK
CPSL wC CLEAR CARRY BIT
LODI,R2 -8 SET UP COUNTER
SUBZ RO CLEAR REG 0
LODR,R1 CHAR GET THE CHARACTER (cc is set)
LOOP BCFRNEG GO1 IF NOT SET, DON'T COUNT (cc is
tested)
ADDI,RO +1 COUNT THE BIT
G01 RRL,R1 MOVE BITS LEFT (cc is set)
BIRR,R2 LOOP LOOP TILL DONE
* FINISHED,TEST IF REG 0 HAS A ONE IN LOW ORDER
* IF BIT #0 = 1, ODD PARITY. IF BIT #0 = 0, THEN EVEN.
TMI,RO H'01'

BCTR,EQ ODD
EVEN HALT
ODD HALT

START-UP PROCEDURE

The 2650 processor, having no internal start-up procedure must be started
in an orderly fashion to assure that the internal control logic begins in a
known state.

Assuming power is applied to the chip and the clock input is running, the
easiest way to start is to apply a Reset signal for at least three clock periods.
When the RESET signal is removed the processor will fetch the instruction at
page 0, byte 0 and commence ordinary instruction execution.

To start processing at a specific address, a more complex start-up proce-
dure may be employed. If an Interrupt signal is applied initially along
with the Reset, processing will commence at the address provided by the
interrupting device. Recall that the address provided may include a bit to
specify indirect addressing and therefore the first instruction executed may
be anywhere within addressable memory. The Reset and Interrupt signal
may be applied simultaneously and when the Reset is removed, the processor
will execute the usual interrupt signal sequence as described in INTERRUPT
MECHANISM. There is an example of a start-up technique in the System
Application Notes.

40

CHAPTER V

® @ 8 s om S ® e

INSTRUCTIONS

ADDRESSING MODES

An addressing mode is a method the processor uses for developing
argument addresses for machine instructions.

The 2650 processor can develop addresses in eight ways:
Register addressing

Immediate addressing

Relative addressing

Relative, indirect addressing

Absolute addressing

Absolute, indirect addressing

Absolute, indexed addressing

Absolute, indirect, indexed addressing

However, of these eight addressing modes, only four of them are basic.
The others are variations due to indexing and indirection. The basic
addressing mode of each instruction is indicated in parentheses in the first
line of each detailed instruction description. The following text describes
how effective addresses are developed by the processor.

REGISTER ADDRESSING
All register-to-register instructions are one byte in length. Instructions
utilizing this addressing mode appear in this general format.

Operation Code Register

76543210

Since there are only two bits designated to specify a register, register zero
always contains one of the operands while the other operand is in one of the
three registers in the currently selected bank. Register zero may also be
specified as the explicit operand giving instructions such as: LODZ RO.

In one byte register addressing instructions which have just one operand,
any of the currently selected general purpose registers or register zero may
be specified, e.g., RRL,RO.

IMMEDIATE ADDRESSING

All immediate addressing instructions are two bytes in length. The first
byte contains the operation code and register designation, while the second
byte contains data used as the argument during instruction execution.

Two's complement binary number
Operation Code Register or 8-bitllogic mask

NN

76543210 76543210

Byte O Byte 1
The second byte, the data byte, may contain a binary number or a logic
mask depending on the particular instruction being executed. Any register
may be designated in the first byte.

€3

RELATIVE ADDRESSING

Relative addressing instructions are all two bytes in length and are
memory reference instructions.One argument of the instruction is a register
and the other argument is the contents of a memory location. The format of
relative addressing instructions is:

Operation Code Register | Relative Displacement

N A : ~\

76543210 76543210
Byte O Byte 1

The first byte contains the operation code and register designation, while
the second byte contains the relative address. Bits 0—6, byte 1, contain a 7-
bit two’s complement binary number which can range from —64 to +63. This
number is used by the processor to calculate the effective address. The
effective address is calculated by adding the address of the first byte
following a relative addressing instruction to the relative displacement in the
second byte of the instruction.

If bit 7, byte 1 is set to ““1”°, the processor will enter an indirect addressing
cycle, where the actual operand address will be accessed from the effective
address location. See Indirect Addressing.

Two of the branch instructions (ZBSR, ZBRR) allow addressing relative
to page zero, byte O of memory. In this case, values up to +63 reference the
first 63 bytes of page zero and values up to - 64 reference the last 64 bytes
of page zero.

ABSOLUTE ADDRESSING FOR NON-BRANCH INSTRUCTIONS

Absolute addressing instructions are all three bytes in length and are
memory reference instructions. One argument of the instruction is a register,
designated in bits 1 and 0, byte 0; the other argument is the contents of a
memory location. The format of absolute addressing instructions is:

Index
Register
or
Argument |ndex High-Order
Operation Code Register | Control Adc:ress Low-OrdFr Address
N/ N\

76543210 76543210 76543210
Byte O Byte 1 Byte 2

Bits 4—0, byte 1 and 7—0, byte 2 contain the absolute address and can
address any byte within the same page that the instruction appears.

The index control bits, bits #6 and #5, byte 1 determine how the
effective address will be calculated and possibly which register will be the
argument during instruction execution. The index control bits have the
following interpretation:

Index Control

Bit 6 Bit 5 Meaning
0 0 Non-indexed address
0 1 Indexed with auto-increment
1 0 Indexed with auto-decrement
1 1 Indexed only

When the index control bits are 0 & 0, bits #1 and #0 in byte O contain
the argument register designation and bits O to 4, byte 1 and bits 0 to 7, byte
2 contain the effective address. Indirect addressing may be specified by
setting bit #7, byte 1 to a one.

When the index control bits are 1 & 1, bits #1 and #0 in byte O designate
the index register and the argument register implicitly becomes register zero.
The effective address is calculated by adding the contents of the index
register (8-bit absolute integer) to the address field. If indirect addressing is
specified, the indirect address is accessed and then the value in the index
register is added to the indirect address. This is commonly called post
indexing.

When the index control bits contain 0 & 1, the address is calculated by the
processor exactly as when the control bits contain 1 & 1 except a binary 1 is
added to the contents of the selected index register before the calculation of
the effective address proceeds. Similarly, when the index control bits contain
1& 0, a binary 1 is subtracted from the contents of the selected index register
before the effective address is calculated.

ABSOLUTE ADDRESSING FOR BRANCH INSTRUCTIONS
The three byte, absolute addressing, branch instructions deviate slightly in
format from ordinary absolute addressing instructions as shown below:

Register
or
Condition
Code
Operation Code Mask | High-Ordelr Addressing Low—OrderlAddressing
N/

76543210 76 543210 76543210
Byte 0 Byte 1 Byte 2

The notable difference is that bits 6 and 5, byte 1, are no longer
interpreted as Index Control bits, but instead are interpreted as the high
order bits of the address field. This means that there is no indexing allowed
on most absolute addressing branch instructions, but indexed branches are
possible through use of the BXA and BSXA instructions. The bits #6 and
#5, byte 1, are used to set the current page register, thus enabling programs
to directly transfer control to another page.

See the MEMORY ORGANIZATION, BXA and BSXA instructions, and
INDIRECT ADDRESSING.

INDIRECT ADDRESSING
Indirect addressing means that the argument address of an instruction is

not specified by the instruction itself, but rather the argument address will
be found in the two bytes pointed to by the address field or relative address
field, of absolute or relative addressing instructions. In the case of absolute
addressing, the value of the index register is added to the indirect address not
to the value in the address field of the instruction. In both cases, the
processor will enter the indirect addressing state when the bit designated
“I”” is set to one. Entering the indirect addressing sequence adds two cycles
(6 clock periods) to the execution time of an instruction.

Indirect addresses are 15-bit addresses stored right justified in two
contiguous bytes of memory. As such, an indirect address may specify any
location in addressable memory (0—32,767). The high order bit of the two
byte indirect address is not used by the processor.

Only single level indirect addressing is implemented. The following
examples demonstrate indirect addressing.
Example 1.

[booo1110[1roo000000[01T01000 1]LODAR2 «H'S1

Address 101g 1116 1216
[boooo0o00 10010100 0]ACON H'128"
Address 5116 5216
[o1 1001 11] DATA H'67'
Address 12816

The LODA instruction in memory locations 10, 11, and 12 specifies
indirect addressing (bit 7, byte 1, is set). Therefore, when the instruction is
executed, the processor takes the address field value, H' 51', and uses it to
access the two byte indirect address at 51 and 52. Then using the contents of
51 and 52 as the effective address, the data byte containing H' 67" is loaded
into register 2.

Example 2.
Pooot1o010[tooo00101] LODR,R2 xH"17'
Address 101¢ 1116

loooooo00 10010100 0] ACON H'128'

Address 1716 1816
[C1 7170071 11 DATA H'e7'
Address 12816

In a fashion similar to the previous example, the relative address is used to
access the indirect address which points to the data byte. When the LODR
instruction is executed, the data byte contents, H' 67', will be loaded into
register 2.

INSTRUCTION F(TIHONS

There are several instructions which are detected by decoding the entire 8
bits of the first byte of the instruction. These instructions are unique and
may be noticed in the instruction descriptions. Examples are: HALT, CPSU,

CPSL.

Of this type of instruction, two operation codes were taken from
otherwise complete sets thus eliminating certain possible operations. The
cases are as follows:

(NOT OKAY) STRZ 0 Storing register zero into register zero is not imple-
| mented, the operation code is used for NOP (no
(OKAY) NOP nted, p (
operation).
]
(NOT OKAY) ANDZ O AND of register zero with register zero is not im-
(OKAY) HALT plemented, the operation code is used for HALT.
INSTRUCTION FORMATS
OPERATION CODE R/V
1 1
(Z) REGISTER SYMBOLS:
ADDRESSING R - REGISTER NUMBER
V - VALUE OR CONDITION
7 6 5 4 3 2 1 0 X - INDEX REGISTER NUMBER
I - INDIRECT BIT
OPERATION CODE R DATA MASK OR BINARY VALUE
1 P 1
(1) IMMEDIATE
ADDRESSING
15 14 13 12 1n 10 9 8 7 6 5 4 3 2 1 0
RELATIVE DISPLACEMENT
OPERATION CODE R/IV I -64<DISPLACEMENT<+63
(R) RELATIVE
ADDRESSING
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1)
*INDEX
OPERATION CODE R/X I CONTROL HIGHER ORDER ADDRESS LOWER ORDER ADDRESS
I\ Il A 1 1 1
(A) ABSOLUTE
ADDRESSING
(NON-BRANCH 23 22 2120 19 18 17 16 15 14 13 12 1 10 9 8 7 6 5 4 3 2
|NSTRUCT|ONS) HIGHER ORIDER ADDRESS
OPERATION CODE R/V | PAGE LOWER ORDER ADDRESS
X A A !
(B) ABSOLUTE
ADDRESSING
(BRANCH 23 22 21 20 19 18 17 16 15 14 13 12 n 10 9 8 7 6 5 4 3 2
INSTRUCTIONS) HIGHER oszR ADDRESS
UNUSED PAGE LOWER ORDER ADDRESS
N L
INDIRECT
ADDRESSING
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
OPERATION CODE
1 *INDEX CONTROL:
00 = NON-INDEXED
(E) 982 INDEXED WITH AUTO-DECREMENT
llv'l\jggsblé#NoEous 11= INDEXED ONLY
IONS
7 6 5 4 3 2 1 (1]

DETAILED PROCESSOR INSTRUCTIONS

LOAD REGISTER ZERO (Register Addressing)
Mnemonic LODZ r
Binary Coding

o|ofofojojof r

1
76543210
Execution Time 2 cycles (6 clock periods)

Description

This one-byte instruction transfers the contents of the specified register, r,
into register zero. The previous contents of register zero are lost. The
contents of register r remain unchanged.

When the specified register, r, equals 0, the operation code is changed to 6016
by the assembler. The instruction, 00000000, yields indeterminate results.

Processor Registers Affected CcC

Condition Code Setting Register Zero CC1 CCO
Positive 0 1
Zero 0 0
Negative 1 0

LOAD IMMEDIATE (Immediate Addressing)
Mnemonic LODI,r v

Binary Coding

T T 11T T 171
0jojojojoj1] T
76543210 76543210
Execution Time 2 cycles (6 clock periods)
Description

This two-byte instruction transfers the second byte of the instruction; v,
into the specified register, r. The previous contents of r are lost.

Processor Registers Affected CcC

Condition Code Setting Register r CC1 CCO
Positive 0 1
Zero 0 0
Negative 1 0

LOAD RELATIVE (Relative Addressing)
Mnemonic LODR,r (*)a
Binary Coding

0j0jo0fjo|1]0 | a

76543210 76543210

b~ —

Execution Time 3 cycles (9 clock periods)

Description

This two-byte instruction transfers a byte of data from memory into the
specified register, r. The data byte is found at the effective address formed
by the addition of the a field and the address of the byte following this
instruction. The previous contents of register r are lost. Indirect addressing
may be specified.

Processor Registers Affected CcC

Condition Code Setting Register r CC1 CCO
Positive 0 1
Zero 0 0
Negative 1 0

LOAD ABSOLUTE (Absolute Addressing)
Mnemonic LODA («)a(,X)
Binary Coding

T T T T 71 T T T T T7
olo|olo|1|1|rorX 1| IC [a high order a low order

1 i 1 1 11 1 1 1 b1
76543210 76543210 76543210
Execution Time 4 cycles (12 clock periods)
Description

This three-byte instruction transfers a byte of data from memory into the
specified register, r. The data byte is found at the effective address. If
indexing is specified, bits 1 and 0, byte 0, indicate the index register and the
destination of the operation implicitly becomes register zero. The previous
contents of register r are lost.

Indirect addressing and/or indexing may be specified.

Processor Registers Affected CcC

Condition Code Setting Register r CcC1 CCO
Positive 0 1
Zero 0 0
Negative 1 0

STORE REGISTER ZERO (Register Addressing)
Mnemonic STRZ r
Binary Code

I
1]1|ofofo]o]| r

76543210
Execution Time 2 cycles (6 clock periods)

Description
This one-byte instruction transfers the contents of register zero into the
specified register r. The previous contents of register r are lost. The contents

of register zero remain unchanged.

Note: Register r may not be specified as zero. This operation code,
‘11000000’ is reserved for NOP.

Processor Registers Affected CC

Condition Code Setting Register r CCi1 CCo
Positive 0 1
Zero 0 0
Negative 1 0

STORE RELATIVE (Relative Addressing)

Mnemonic STRR,r (*)a
Binary Code

T T T 1T T T 1
if1jojof1]jo| r | L8
76543210 76543210
Execution Time 3 cycles (9 clock periods)
Description

This two-byte instruction transfers a byte of data from the specified
register, r, into the byte of memory pointed to by the effective address. The
contents of register r remain unchanged and the contents of the memory
byte are replaced.

Indirect addressing may be specified.

Processor Registers Affected None

Condition Code Setting N/A

STORE ABSOLUTE (Absolute Addressing)

Mnemonic STRA,r (x)a(,X)
Binary Code

T T T T 1 | S S S L A AL
1(1]10]0]11 r 1] IC almhigh order . a low order,

1
76543210 76543210 76543210

Execution Time 4 cycles (12 clock periods)

Description

This three-byte instruction transfers a byte of data from the specified
register, r, into the byte of memory pointed to by the effective address. The
contents of register r remain unchanged and the contents of the memory
byte are replaced.

Indirect addressing and/or indexing may be specified. If indexing is speci-
fied, bits 1 and 0, byte 0, indicate the index register and the destination of
the operation implicitly becomes register zero.

Processor Registers Affected None

Condition Code Setting N/A

54

ADD TO REGISTER ZERO (Register Addressing)
Mnemonic ADDZ r
Binary Code

1
1{ojofojof0] r

76543210

Execution Time 2 cycles (6 clock periods)

Description

This one-byte instruction causes the contents of the specified register, r,
and the contents of register zero to be added together in a true binary adder.
The 8-bit sum of the addition replaces the contents of register zero. The
contents of register r remain unchanged.

Note: Add with Carry may be effected. See Carry bit.

Processor Registers Affected C,CC, IDC, OVF

Condition Code Setting Register Zero CC1 CCO
Positive 0 1
Zero 0 0
Negative 1 0

55

ADD IMMEDIATE (Immediate Addressing)
Mnemonic ADDI r v
Binary Coding

T T T T 1 17
1]jolojofo1| r

76543210 76543210

Execution Time 2 cycles (6 clock periods)

Description

This two-byte instruction causes the contents of register r and the contents
of the second byte of this instruction to be added together in a true binary
adder. The eight-bit sum replaces the contents of register r.

Note: Add with Carry may be effected. See Carry bit.

Processor Registers Affected C,CC, IDC, OVF

Condition Code Setting Register r CC1 CCo
Positive 0 1
Zero 0 0
Negative 1 0

ADD RELATIVE (Relative Addressing)
Mnemonic ADDR,r (x)a
Binary Coding

110]0]0|1]0 | a

76543210 76543210

- — —

Execution Time 3 cycles (9 clock periods)

Description

This two-byte instruction causes the contents of register r and the contents
of the byte of memory pointed to by the effective address to be added to-
gether in a true binary adder. The eight-bit sum replaces the contents of
register r.

Indirect addressing may be specified.
Note: Add with Carry may be effected. See Carry bit.

Processor Registers Affected C,CC, IDC, OVF

Condition Code Setting Register r CC1 CCo
Positive 0 1
Zero 0 0
Negative 1 0

ADD ABS UTE (Absolute Addressing)
Mnemonic ADDAr (*)a(,X)

Binary Coding

T T T T 71

T T T T 1 T 1
1{o0jofof11|1 r 1] IC a high order a low order
- . 1 1 1 F - 1 1 1 1 1 1

76543210 76543210 76543210

Execution Time 4 cycles (12 clock periods)

Description

This three-byte instruction causes the contents of register r and the
contents of the byte of memory pointed to by the effective address to be
added together in a true binary adder. The eight-bit sum replaces the
contents of register r.

Indirect addressing and/or indexing may be specified. If indexing is speci-
fied, bits 1 and O, byte 0, indicate the index register and the destination of
the operation implicitly becomes register zero.

Note: Add with Carry may be effected. See Carry bit.

Processor Registers Affected C,CC, IDC, OVF

Condition Code Setting Register r CC1 CCo
Positive 0 1
Zero 0 0
Negative 1 0

SUBTRACT FROM REGISTER ZERO (Register Addressing)
Mnemonic SUBZ r
Binary Coding

T
1{ojt1j0j0j0}| r

1

76543210

Execution Time 2 cycles (6 clock periods)

Description

This one-byte instruction causes the contents of the specified register r to
be subtracted from the contents of register zero. The result of the subtraction
replaces the contents of register zero.

The subtraction is performed by taking the binary two’s complement of
the contents of register r and adding that result to the contents of register
zero. The contents of register r remain unchanged.

Note: Subtract with Borrow may be effected. See Carry bit.

Processor Registers Affected C,CC, IDC, OVF

Condition Code Setting Register Zero CC1 CCo
Positive 0 1
Zero 0 0
Negative 1 0

&

SUBTRACT IMMEDIATE (Immediate Addressing)
Mnemonic SUBI,r v

Binary Code

T T T T 1T T1
11011]{0]|0|1| r v
TR R N N A N |

76543210 76543210

Execution Time 2 cycles (6 clock periods)

Description

This two-byte instruction causes the contents of the second byte of this
instruction to be subtracted from the contents of register r. The result of the
subtraction replaces the contents of register r.

The subtraction is performed by taking the binary two’s complement of
the contents of the second instruction byte and adding that result to the
contents of register r.

Note: Subtract with Borrow may be effected. See Carry bit.

Processor Registers Affected . C,CC, IDC, OVF

Condition Code Setting Register r CC1 CCo
Positive 0 1
Zero 0 0
Negative 1 0

SUBTRACT RELATIVE (Relative Addressing)

Mnemonic SUBR,r (+)a
Binary Code

1]o]1]o]1]o] 1IN0
76543210 76543210
Execution Time 3 cycles (9 clock periods)
Description

This two-byte instruction causes the contents of the byte of memory
pointed to by the effective address to be subtracted from the contents of
register r. The result of the subtraction replaces the contents of register r.

The subtraction is performed by taking the binary two’s complement of
the contents of the byte of memory and adding that result to the contents of
register r.

Indirect addressing may be specified.

Note: Subtract with Borrow may be effected. See Carry bit.

Processor Registers Affected C, CC, IDC, OVF

Condition Code Setting Register r CcC1 CCo
Positive 0 1
Zero 0 0
Negative 1 0

61

SUBTRACT ABSOLUTE (Absolute Addressing)

Mnemonic SUBAr (x)a(,X)
Binary Code

T T L T T T T T 1
11o0f{1{0]1 1 r 11 IC |a high order a low order

1 1 11 1 1 1 1 1 1 1 1 1
76543210 76 5 43210 76543210
Execution Time 4 cycles (12 clock periods)

Description

This three-byte instruction causes the contents of the byte of memory
pointed to by the effective address to be subtracted from the contents of
register r. The result of the subtraction replaces the contents of register r.

The subtraction is performed by taking the binary two’s complement of
the contents of the memory byte and adding that result to the contents of
register r.

Indirect addressing and/or indexing may be specified. If indexing is speci-
fied, bits 1 and O, byte 0, indicate the index register and the destination of
the operation implicitly becomes register zero.

Note: Subtract with Borrow may be effected. See Carry bit.

Processor Registers Affected C,CC, IDC, OVF

Condition Code Setting Register r CC1 CCO
Positive 0 1
Zero 0 0
Negative 1 0

=
=7]

AND TO REGISTER ZERO (Register Addressing)
Mnemonic ANDZ r
Binary Code

T
0{1]0(0}0}0] r

1

76543210

Execution Time 2 cycles (6 clock periods)
Description

This one-byte instruction causes the contents of the specified register, r,
to be logically ANDed with the contents of register zero. The result of the
operation replaces the contents of register zero. The contents of register r
remain unchanged.

The AND operation treats each bit of the argument bytes as in the truth
table below:

Bit (0-7) Bit (0-7) || AND Result
0 0 0
0 i 0
1 1 1
1 0 0

Note: Register r may not be specified as zero. This operation code,
‘01000000°, is reserved for HALT.

Processor Registers Affected CcC

Condition Code Setting Register Zero CC1 CCO
Positive 0 1
Zero 0 0
Negative 1 0

63

AND IMMEDIATE

Mnemonic ANDI,r v
Binary Code

T T T 1
0[1]0]0(0]|1 r v

1 1 1 1 1

76 543210 76543210

Execution Time 2 cycles (6 clock periods)

Description

(Immediate Addressing)

This two-byte instruction causes the contents of the specified register r to
be logically ANDed with the contents of the second byte of this instruction.
The result of this operation replaces the contents of register r.

The AND operation treats each bit of the argument bytes as in the truth

table below:

Bit (0-7) Bit (0-7) l l AND Result
0 0 0
0 1 0
1 1 1
1 0 0
Processor Registers Affected CcC
Condition Code Setting Register Zero CC1 CCO
Positive 0 1
Zero 0 0
Negative 1 0

AND RELATIVE (Relative Addressing)

Mnemonic ANDR,r (*)a
Binary Code

T T T T T T T
oj{1(0{0|1]0 r | a

1 1 1 1 1 1

76543210 76543210

Execution Time 3 cycles (9 clock periods)
Description

This two-byte instruction causes the contents of the specified register r to
be logically ANDed with the contents of the memory byte pointed to by the
effective address. The result of this operation replaces the contents of
register r.

The AND operation treats each bit of the argument bytes as in the truth
table below:

Bit (0-7) Bit (0-7) | | AND Result
0 0 0
0 1 0
1 1 1
1 0 0
Processor Registers Affected CcC
Condition Code Setting Register Zero CcC1 CCo
Positive 0 1
Zero 0 0
Negative 1 0

AND ABSOLUTE (Absolute Addressing)

Mnemonic ANDA r (x)a(,X)
Binary Code

T 1 LI T T T T T T T T T
oj1]0l0]|1|1 r I | 1C [a high order a low order

1 1 | S S S I W G N SR SR |

76543210 76543210 76 543210

Execution Time 4 cycles (12 clock periods)
Description

This three-byte instruction causes the contents of Register r to be logically
ANDed with the contents of memory byte pointed to by the effective
address. The result of the operation replaces the contents of register r.

The AND operation treats each bit of the argument bytes as in the truth
table below:

Bit (0-7) Bit (0-7) || AND Result
0 0 0
0 1 0
1 1 1
1 0 0

Indirect addressing and/or indexing may be specified. If indexing is speci-
fied, bits 1 and O, byte 0, indicate the index register and the destination of
the operation implicitly becomes register zero.

Processor Registers Affected CcC

Condition Code Setting Register Zero Ccc1 CCOo
Positive 0 1
Zero 0 0
Negative 1 0

66

INCLUSIVE OR TO REGISTER ZERO (Register Addressing)
Mnemonic IORZ r
Binary Code

1
o|1|{1({0{0{0 r
76543210

Execution Time 2 cycles (6 clock periods)

Description

This one-byte instruction causes the contents of the specified register, r,
to be logically Inclusive ORed with the contents of register zero. The result
of this operation replaces the contents of register zero. The contents of

register r remain unchanged.

The Inclusive OR operation treats each bit of the argument bytes as in the
truth table below:

Bit (0-7) Bit (0-7) | | Inclusive OR Result
0 0 0
0 1 1
1 1 1
1 0 1
Processor Registers Affected cC
Condition Code Setting Register Zero CC1 CCo
Positive 0 1
Zero 0 0
Negative 1 0

INCLUSIVE OR IMMEDIATE (Immediate Addressing)
Mnemonic I0RI,r v

Binary Code

T T 1T 1T 1T 1T 1T 1
o{1{1|{ofof1r] r v

1 1 1 1 1 1 1 1

76543210 76543210

Execution Time 2 cycles (6 clock periods)
Description

This two-byte instruction causes the contents of the specified register r to
be logically Inclusive ORed with the contents of the second byte of this
instruction. The result of this operation replaces the contents of register r.

The Inclusive OR operation treats each bit of the argument bytes as in the
truth table below:

Bit (0-7) Bit (0-7) | | Inclusive OR Result
0 0 0
0 1 1
1 1 1
1 0 1
Processor Registers Affected CcC
Condition Code Setting Register r CcC1 CCO
Positive 0 1
Zero 0 0
Negative 1 0

68

INCLUSIVE OR RELATIVE (Relative Addressing)

Mnemonic I0RR,r (*)a
Binary Code

T T 1T 1T T T 1
0 1 1 0 1 0 r I 1 A la L 1 1
76543210 76543210
Execution Time 3 cycles (9 clock periods)
Description

This two-byte instruction causes the contents of the specified register r to
be logically Inclusive ORed with the contents of the memory byte pointed
to by the effective address. The result of this operation replaces the previous

contents of register r.

Indirect addressing may be specified.

The Inclusive OR operation treats each bit of the argument byte as in the
truth table below:

Bit (0-7) Bit (0-7) I I Inclusive OR Result
0 0 0
0 1 1
1 1 1
1 0 1
Processor Registers Affected CcC
Condition Code Setting Register r CC1 CCo
Positive 0 1
Zero 0 0
Negative 1 0

INCLUSIVE OR ABSOLUTE (Absolute Addressing)

Mnemonic IORA,r (+)a(,X)
Binary Code
T T T T T T T T T T
oft|1r|oj1|1| r I'| IC |a high order a low order
1 1 1 1 1 1 1 1 1 1 1 1

1
76543210 76543210 76543210

Execution Time 4 cycles (12 clock periods)

Description

This three-byte instruction causes the contents of register r to be logically
Inclusive ORed with the contents of the memory byte pointed to by the
effective address. The result of the operation replaces the previous contents
of register r.

Indirect addressing and/or indexing may be specified. If indexing is speci-
fied, bits 1 and 0, byte 0, indicate the index register and the destination of
the operation implicitly becomes register zero.

The Inclusive OR operation treats each bit of the argument bytes as in the
truth table below:

Bit (0-7) Bit (0-7) | | Inclusive OR Result
0 0 0
0 1 1
1 1 1
1 0 1
Processor Registers Affected CcC
Condition Code Setting Register Zero CC1 CCO
Positive 0 1
Zero 0 0
Negative 1 0

70

EXCLUSIVE OR TO REGISTER ZERO (Register Addressing)
Mnemonic EORZ r
Binary Code

T
0|0|1{0(0{0 r
76543210

Execution Time 2 cycles (6 clock periods)

Description

This one-byte instruction causes the contents of the specified register r to
be logically Exclusive ORed with the contents of register zero. The result of
this operation replaces the contents of register zero. The contents of register
r remain unchanged.

The Exclusive OR operation treats each bit of the argument bytes as in
the truth table below:

Bit (0-7) Bit (0-7) | I Exclusive OR Result
0 0 0
0 1 1
1 1 0
1 0 1
Processor Registers Affected cC
Condition Code Setting Register Zero CC1 CCo
Positive 0 1
Zero 0 0
Negative 1 0

71

EXCLUSIVE OR IMMEDIATE (Immediate Addressing)

Mnemonic EORI,r v

Binary Code

: : T T T \I/ T 1
0j0]1]0jo i RN AR
7-6 54 3210 76543210
Execution Time 2 cycles (6 clock periods)

Description

This two-byte instruction causes the contents of the specified register r to
be logically Exclusive ORed with the contents of the second byte of this
instruction. The result of this operation replaces the previous contents of

register r.

The Exclusive OR operation treats each bit of the argument bytes as in
the truth table below:

Bit (0-7) Bit (0-7) [Exclusive OR Result
0 0 0
0 1 1
1 1 0
1 0 1
Processor Registers Affected CC
Condition Code Setting Register r CcC1 CCO
Positive 0 1
Zero 0 0
Negative 1 0

EXCLUSIVE OR RELATIVE (Relative Addressing)

Mnemonic EORR,r («)a
Binary Code

olof1]o]1jo] T [dal T
76543210 76543210
Execution Time 3 cycles (9 clock periods)
Description

This two-byte instruction causes the contents of the specified register r to
be logically Exclusive ORed with the contents of the memory byte pointed
to by the effective address. The result of this operation replaces the previous
contents of register r.

Indirect addressing may be specified.

The Exclusive OR operation treats each bit of the argument bytes as in
the truth table below:

Bit (0-7) Bit (0-7) | l Exclusive OR Result
0 0 0
0 1 1
1 1 0
1 0 1
Processor Registers Affected cC
Condition Code Setting Register r CC1 CCO
Positive 0 1
Zero 0 0
Negative 1 0

EXCLUSIVE OR ABSOLUTE (Absolute Addressing)

Mnemonic EORAr (*)a(,X)
Binary Code

T T T T LN | T T T T 7
olo|1f{o] 1)1 r || IC |ahigh order a low order

I 1 | Y S G W S W T U U |
76543210 76543210 76543210
Execution Time 4 cycles (12 clock periods)
Description

This three-byte instruction causes the contents of register r to be
Exclusive ORed with the contents of the memory byte pointed to by the
effective address. The result of the operation replaces the previous contents
of register r.

Indirect addressing and/or indexing may be specified. If indexing is speci-
fied, bits 1 and 0, byte 0, indicate the index register and the destination of
the operation implicitly becomes register zero.

The Exclusive OR operation treats each bit of the argument bytes as in
the truth table below:

Bit (0-7) Bit (0-7) Exclusive OR Result
0 0 0
0 1 1
1 1 0
1 0 1
Processor Registers Affected CcC
Condition Code Setting Register r CC1 CCO
Positive 0 1
Zero 0 0
Negative 1 0

14

COMPARE TO REGISTER ZERO (Register Addressing)
Mnemonic comz r

Binary Code

111000:‘
76543210

Execution Time 2 cycles (6 clock periods)
Description

This one-byte instruction causes the contents of the specified register r
to be compared to the contents of register zero. The comparison will be
performed in either ‘‘arithmetic’ or “logical”” mode depending on the setting
of the COM bit in the Program Status Word.

When COM=1 (logical mode) the values will be interpreted as 8-bit
positive binary numbers; when COM=0, the values will be interpreted as 8-bit
two’s complement numbers.

The execution of this instruction only causes the Condition Code to be set
as in the following table.

Processor Registers Affected CcC

Condition Code Setting CC1 CCo
Register zero greater than Register r 0 1
Register zero equal to Register r 0 0
Register zero less than Register r 1 0

COMPARE IMMEDIATE (Immediate Addressing)
Mnemonic COMI,r v

Binary Code

T T T T T T°1
1111 110[{0]1] r Y

1 1 1 1 11 1 1
76543210 76543210
Execution Time 2 cycles (6 clock periods)

Description

This two-byte instruction causes the contents of the specified register r to
be compared to the contents of the second byte of this instruction. The
comparison will be performed in either the ‘“‘arithmetic” or “logical” mode
depending on the setting of the COM bit in the Program Status Word.

When COM=1 (logical mode), the values will be treated as 8-bit positive
binary numbers; when COM=0, the values will be treated as 8-bit two’s
complement numbers.

The execution of this instruction only causes the Condition Code to be set
as in the following table.

Processor Registers Affected CC
Condition Code Setting CC1 CCOo
Register r greater than v 0 1
Register r equal to v 0 0
1 0

Register r less than v

COMPARE RELATIVE (Relative Addressing)

Mnemonic COMR,r (*)a
Binary Code
T T 1
111{1]o]1]0] r | Tl 1T
1 1 1 11 1 1

76543210 76543210

Execution Time 3 cycles (9 clock periods)

Description

This two-byte instruction causes the contents of the specified register r to
be compared to the contents of the memory byte pointed to by the effective
address. The comparison will be performed in either the ‘‘arithmetic’ or
“logical” mode depending upon the setting of the COM bit in the Program
Status Word.

When COM=1 (logical mode), the values will be treated as 8-bit positive
binary numbers; when COM=0, the values will be treated as 8-bit, two’s
complement numbers.

The execution of this instruction only causes the Condition Code to be set
as in the following table.

Processor Registers Affected CcC

Condition Code Setting CC1 CCo
Register r greater than memory byte 0 1
Register r equal to memory byte 0 0
Register r less than memory byte 1 0

117

COMPARE ABSOLUTE (Absolute Addressing)

Mnemonic COMA,r («)a(,X)
Binary Code
T T T T T T T T T T 7
T{r{1fol1|1| r Il 1C |a high order a low order
1 I R S | N W U S T

76543210 76543210 /76543210

Execution Time 4 cycles (12 clock periods)
Description

This three-byte instruction causes the contents of register r to be
compared to the contents of the memory byte pointed to by the effective
address. The comparison will be performed in either the “arithmetic” or
“logical” mode depending on the setting of the COM bit in the Program
Status Word.

Where COM=1 (logical mode), the values will be treated as 8-bit, positive
binary numbers; when COM=0 (arithmetic mode), the values will be treated
as 8-bit, two’s complement numbers.

Indirect addressing and/or indexing may be specified. If indexing is speci-
fied, bits 1 and 0O, byte O, indicate the index register and the destination of
the operation implicitly becomes register zero.

The execution of this instruction only causes the Condition Code to be set
as in the following table.

Processor Registers Affected cC

Condition Code Setting CcC1 CCO
Register r greater than memory byte 0 1
Register r equal to memory byte 0 0
Register r less than memory byte 1 0

78

ROTATE REGISTER LEFT (Register Addressing)
Mnemonic RRL,r

Binary Code

T

1{1{o[1|0fOo| r
76543210

Execution Time 2 cycles (6 clock periods)

Description

This one-byte instruction causes the contents of the specified register r to
be shifted left one bit. If the WC bit in the Program Status Word is set to
zero, bit #7 of register r flows into bit #0; if WC=1, then bit #7 flows into
the Carry bit and the Carry bit flows into bit #0.

Register bit #4 flows into the IDC if WC=1.

(NOT CHANGED)

- - e
- 1 - wC=0
7 6 5 4 3

-
- - e wC =1

7 6 5 4 3

N
-
o

N
-
o

Note: Whenever a rotate causes bit #7 of the specified register to change
polarity, the OVF bit is set in the PSL.

Processor Registers Affected C,CC, IDC, OVF

Condition Code Setting Register r CC1 CCO
Positive 0 1
Zero 0 0]
Negative 1 0

79

ROTATE REGISTER RIGHT (Register Addressing)
Mnemonic RRR,r

Binary Code

T
0101001r

/7 6543210

Execution Time 2 cycles (6 clock periods)

Description

This one-byte instruction causes the contents of the specified register r to
be shifted right one bit. If the WC bit in the Program Status Word is set to
zero, bit #0 of the register r flows into bit #7; if WC=1, then bit #0 of the
register r flows into the Carry bit and the Carry bit flows into bit #7.

Register bit #6 flows into the IDC if WC=1.

(NOT CHANGED)

—4> -1 — >
> L,

. ™ - WC=0

7 6 5 4 3 2 1 0

ID

. —t { —4 > >
- . we=1

7 6 5 4 3 2 1 0

Note: Whenever a rotate causes bit #7 of the specified register to change
polarity, the OVF bit is set in the PSL.

Processor Registers Affected C, CC, IDC, OVF

Condition Code Setting Register r CC1 CCO
Positive 0 1
Zero 0 0
Negative 1 0

80

LOAD PROGRAM STATUS, UPPER
Mnemonic LPSU
Binary Code

110(0]1]0{0|1]|0
76543210

Execution Time 2 cycles (6 clock periods)

Description
This one-byte instruction causes the current contents of the Upper
Program Status Byte to be replaced with the contents of register zero.

See Program Status Word description for bit assignments. Bits #4 and #3
of the PSU are unassigned and will always be regarded as containing zeroes.

Processor Registers Affected F, I, SP
Condition Code Setting N/A

LOAD PROGRAM STAT
Mnemonic LPSL

Binary Code

110]10(1|0f0]1|1
76543210

Execution Time 2 cycles (6 clock periods)

Description
This one-byte instruction causes the current contents of the Lower
Program Status Byte to be replaced with the contents of register zero.

See Program Status Word description for bit assignments.

Processor Registers Affected CC, IDC, RS, WC, OVF, COM, C

Condition Code Setting
The CC will take on the value in bits #7 and #6 of register zero.

STORE PROGRAM STATUS, UPPER
Mnemonic SPSU
Binary Code

0j0|0f1]0|0f1|0
76543210

Execution Time 2 cycles (6 clock periods)

Description
This one-byte instruction causes the contents of the Upper Program Status
Byte to be transferred into register zero.

See Program Status Word description for bit assignments. Bits #4 and #3
which are unassigned will always be stored as zeroes.

Processor Registers Affected CC

Condition Code Setting Register Zero CC1 CCO
Positive 0 1
Zero 0 0
Negative 1 0

83

STORE PROGRAM STATUS, LOWER
Mnemonic SPSL
Binary Code

ojojof{rjofo|1|1
76543210

Execution Time 2 cycles (6 clock periods)

Description
This one-byte instruction causes the contents of the Lower Program
Status Byte to be transferred into register zero.

See Program Status Word description for bit assignments.

Processor Registers Affected CcC

Condition Code Setting Register Zero CC1 CCO
Positive 0 1
Zero 0 0
Negative 1 0

PRESET PROGRAM STATUS UPPER, SELECTIVE (Immediate Addressing)
Mnemonic PPSU v
Binary Code

o{1{1|1{o|1}1]0 L v
76543210 76

1

T N
543210

Execution Time 3 cycles (9 clock periods)

Description

This two-byte instruction causes individual bits in the Upper Program
Status Byte to be selectively set to binary one. When this instruction is
executed, each bit in the v field of the second byte of this instruction is
tested for the presence of a one and if a particular bit in the v field contains
a one, the corresponding bit in the status byte is set to binary one. Any bits
in the status byte which are not selected are not modified.

Processor Registers Affected F, Il,SP
Condition Code Setting N/A

85

PRESET PROGRAM STATUS LOWER, SELECTIVE (Immediate Addressing)

Mnemonic PPSL v
Binary Code

T T T T T 1
of1({1{1]1011[1]1 v

76543210 76543210

Execution Time 3 cycles (9 clock periods)

Description

This two-byte instruction causes individual bits in the Lower Program
Status Byte to be selectively set to binary one. When this instruction is
executed, each bit in the v field of the second byte of this instruction is
tested for the presence of a one and if a particular bit in the v field contains
a one, the corresponding bit in the status byte is set to binary one. Any bits
in the status byte which are not selected are not modified.

Processor Registers Affected CC, IDC, RS, WC, OVF, COM, C

Condition Code Setting
The CC bits may be set by the execution of this instruction.

86

CLEAR PROGRAM STATUS UPPER, SELECTIVE (Immediate Addressing)
Mnemonic CPSU v
Binary Code

oj1y111]0|1|0]0
76543210 76543210

Execution Time 3 cycles (9 clock periods)

Description

This two-byte instruction causes individual bits in the Upper Program
Status Byte to be selectively cleared. When this instruction is executed, each
bit in the v field of the second byte of this instruction is tested for the
presence of a one and if a particular bit in the v field contains a one, the
corresponding bit in the status byte is cleared to zero. Any bits in the status
byte which are not selected are not modified.

Processor Registers Affected F,11,SP
Condition Code Setting N/A

87

CLEAR PROGRAM STATUS LOWER, SELECTIVE (Immediate Addressing)

Mnemonic CPSL v
Binary Code

LS T T T T T
of1f1|{1]o0f1]0]1 v

— 1 1 L L L Il

76543210 76543210

Execution Time 3 cycles (9 clock periods)

Description

This two-byte instruction causes individual bits in the Lower Program
Status Byte to be selectively cleared. When this instruction is executed, each
bit in the v field of the second byte of this instruction is tested for the
presence of a one and if a particular bit in the v field contains a one, the
corresponding bit in the status byte is cleared to zero. Any bits in the status
byte which are not selected are not modified.

Processor Registers Affected CC, IDC, RS, WC, OVF, COM, C

Condition Code Setting
The CC bits may be cleared by the execution of this instruction.

TEST PROGRAM STATUS UPPER, SELECTIVE (Immediate Addressing)

Mnemonic TPSU v
Binary Code

1fo[1][1[of1]olo] | = = " v T
76543210 7l6l5l413‘2l110
Execution Time 3 cycles (9 clock periods)
Description

This two-byte instruction tests individual bits in the Upper Program Status
Byte to determine if they are set to binary one. When this instruction is
executed, each bit in the v field of this instruction is tested for the presence
of a one, and if a particular bit in the v field contains a one, the corresponding
bit in the status byte is tested for a one or zero. The Condition Code is set
to reflect the result of this operation.

If a bit in the v field is zero, the corresponding bit in the status byte is
not tested.

Processor Registers Affected CcC

Condition Code Setting CC1 CcCo
All of the selected bits in PSU are 1s 0 0
Not all of the selected bits in PSU are 1s 1 0

89

TEST PROGRAM STATUS LOWER, SELECTIVE (Immediate Addressing)

Mnemonic TPSL v
Binary Code

T T T T T T T
110]1[1[{0]|1]0]1 v

76543210 76543210
Execution Time 3 cycles (9 clock periods)

Description

This two-byte instruction tests individual bits in the Lower Program
Status Byte to determine if they are set to binary one. When this instruction
is executed, each bit in the v field of this instruction is tested for a one, and
if a particular bit in the v field contains a one, the corresponding bit in the
status byte is tested for a one or zero. The Condition Code is set to reflect
the result of this operation.

Processor Registers Affected CcC

Condition Code Setting cC1 CCO
All of the selected bits in PSL are 1s 0 0
Not all of the selected bits in PSL are 1s 1 0

ZERO BRANCH RELATIVE (Relative Addressing)

Mnemonic ZBRR (*)a
Binary Code

I I 1 1 L]
1{ojof1]1]0]1]1 | L, 2

76543210 76543210
Execution Time 3 cycles (9 clock periods)

Description

This two-byte unconditional relative branch instruction directs the
processor to calculate the effective address differently than the usual
calculation for the Relative Addressing mode.

‘I'he specified value, a, is interpreted as a relative displacement from page
zero, byte zero. Therefore, displacement may be specified from - 64 to +63
bytes. The address calculation is modulo 8192;,, so the negative dis-
placement actually will develop addresses at the end of page zero. For
example, ZBRR -8, will develop an effective address of 818445, and a
ZBRR +52 will develop an effective address of 524¢.

This instruction causes the processor to clear, address bits 13 and 14, the
page address bits; and to replace the contents of the Instruction Address
Register with the effective address of the instruction. This instruction may
be executed anywhere within addressable memory.

Indirect addressing may be specified.
Processor Registers Affected None

Condition Code Setting N/A

BRANCH ON CONDITION TRUE, RELATIVE (Relative Addressing)

Mnemonic BCTR,v (*)a
Binary Code

ofojoj1]|1]0 v | b : a
76543216 7615l4342L10
Execution Time 3 cycles (9 clock periods)
Description

This two-byte conditional branch instruction causes the processor to fetch
the next instruction to be executed from the memory location pointed to by
the effective address only if the two -bit v field matches the current
Condition Code field (CC) in the Program Status Word.

If the v field and CC field do not match, the next instruction is fetched
from the location following the second byte of this instruction.

Indirect addressing may be specified.
If the v field is set to 34¢, an unconditional branch is effected.

Processor Registers Affected None

Condition Code Setting N/A

BRANCH ON CONDITION TRUE, ABSOLUTE (Absolute Addressing)

Mnemonic BCTA v (*)a
Binary Code
T T l.lil T T T T T T T T T
ojofoj1|r(|1]| v I| a high order a low order
1 1 1 1 1 1 1 1 1 1 1 1 1

1
76543210 76543210 76543210

Execution Time 3 cycles (9 clock periods)

Description

This three-byte conditional branch instruction causes the processor to
fetch the next instruction to be executed from the memory location pointed
to by the effective address only if the two-bit v field matches the two-bit
Condition Code field (CC) in the Program Status Word.

If the v field and CC field do not match, the next instruction is fetched
from the location following the second byte of this instruction.

Indirect addressing may be specified.

If the v field is set to 3¢, an unconditional branch is effected.
Processor Registers Affected None
Condition Code Setting N/A

93

BRANCH ON CONDITION FALSE, RELATIVE (Relative Addressing)

Mnemonic BCFR,v (+)a
Binary Code

T T T T T
100110\{ llllalLl
76543210 76543210
Execution Time 3 cycles (9 clock periods)
Descriptidn

This two-byte branch instruction causes the processor to fetch the next
instruction to be executed from the memory location pointed to by the
effective address only if the two-bit v field does not match the two-bit
Condition Code field (CC) in the Program Status Word. If there is no match,
the contents of the Instruction Address Register are replaced by the
effective address.

If the v field and CC field match, the next instruction is fetched from the
location following the second byte of this instruction.

Indirect addressing may be specified.

The v field may not be set to 31 as this bit combination is used for the
ZBRR operation code.

Processor Registers Affected None

Condition Code Setting N/A

94

BRAMNCH ON CONDITION FALSE, ABSOLUTE (Absolute Addressing)

Mnemonic BCFA,v (x)a
Binary Code
T T T T T 71 T T T 17 1771
1T1ojof1|1(1] v | a high order a low order
1 1 1 J— L i 1 L 1 1 AL)

76543210 76543210 76543210

Execution Time 3 cycles (9 clock periods)

Description

This three-byte instruction causes the processor to fetch the next
instruction to be executed from the memory location pointed to by the
effective address only if the two-bit v field does not match the two-bit
Condition Code field (CC) in the Program Status Word. If there is no match,
the contents of the Instruction Address Register are replaced by the
effective address.

If the v field and CC field match, the next instruction is fetched from the
location following the second byte of this instruction.

Indirect addressing may be specified.

The v field may not be set to 31 as this bit combination is used for the
BXA operation code.

Processor Registers Affected None

Condition Code Setting N/A

95

BRANCH ON INCREMENTING REGISTER, RELATIVE (Relative Addressing)

Mnemonic BIRR,r (*)a
Binary Code

T 1 | 1 1 1 1
1{1{o[1|1j0] r | a

1 1 1 1 1 L

76543210 76543210
Execution Time 3 cycles (9 clock periods)
Description

This two-byte branch instruction causes the processor to increment the
contents of the specified register by one. If the new value in the register is
non-zero, the next instruction to be executed is taken from the memory
location pointed to by the effective address, i.e., the effective address
replaces the previous contents of the Instruction Address Register. If the
new value in register r is zero, the next instruction to be executed follows

the second byte of this instruction.
Indirect addressing may be specified.
Processor Registers Affected None

Condition Code Setting N/A

96

BRANCH ON INCREMENTING REGISTER, (Absolute Addressing)
ABSOLUTE

Mnemonic BIRA,r («)a
Binary Code

T T T T T T 1 T L T T T
1{1]0f(1]1(1 | a high order a low order

76543210 76543210 76543210

- =

Execution Time 3 cycles (9 clock periods)
Description

This three-byte branch instruction causes the processor to increment the
contents of the specified register by one. If the new value in the register is
non-zero, the next instruction to be executed is taken from the memory
location pointed to by the effective address, i.e., the effective address
replaces the previous contents of the Instruction Address Register. If the
new value of register r is zero, the next instruction to be executed follows
the second byte of this instruction.

Indirect addressing may be specified.
Processor Registers Affected None

Condition Code Setting N/A

BRANCH ON DECREMENTING REGISTER, (Relative Addressing)
RELATIVE

Mnemonic BDRR,r (*)a
Binary Code

{11110 r | a

1 | W W S N S

76543210 76543210

Execution Time 3 cycles (9 clock periods)
Description

This two-byte branch instruction causes the processor to decrement the
contents of the specified register by one. If the new value in the register is
non-zero, the next instruction to be executed is taken from the memory
location pointed to by the effective address, i.e., the effective address
replaces the previous contents of the Instruction Address Register. If the
new value in register r is zero, the next instruction to be executed follows
the second byte of this instruction.

Indirect addressing may be specified.
Processor Registers Affected None

Condition Code Setting N/A

98

BRANCH ON DECREMENTING REGISTER, (Absolute Addressing)

ABSOLUTE

Mnemonic BDRA,r («)a
Binary Code
1 1 I'l 1 1 1 T I 1 1 LA
(1)1 r I| a high order a low order
1) L 1 ' 1 1 1 L 1 1 1

76543210 76543210 76543210

Execution Time 3 cycles (9 clock periods)
Description

This three-byte instruction causes the processor to decrement the contents
of the specified register by one. If the new value in the register is non-zero,
the next instruction to be executed is taken from the memory location
pointed to by the effective address, i.e., the effective address replaces the
previous contents of the Instruction Address Register. If the new address in
register r is zero, the next instruction to be executed follows the second byte
of this instruction.

Indirect addressing may be specified.
Processor Registers Affected None

Condition Code Setting N/A

99

BRANCH ON REGISTER NON-ZERO, RELATIVE (Relative Addressing)

Mnemonic BRNR,r (*)a
Binary Code

T T T 1T 71 T
of1jo]1}1]0| r | a

L | 'l i i W

76543210 76543210

Execution Time 3 cycles (9 clock periods)

Description

This two-byte branch instruction causes the contents of the specified
register r to be tested for a non-zero value. If the register contains a non-zero
value, the next instruction to be executed is taken from the location pointed
to by the effective address, i.e., the effective address replaces the current

contents of the Instruction Address Register.

If the specified register contains a zero value, the next instruction is
fetched from the location following the second byte of this instruction.

Indirect addressing may be specified.
Prdcessor Registers Affected None
Condition Code Setting N/A

BRANCH ON REGISTER NON-ZERO, ABSOLUTE (Absolute Addressing)
Mnemonic BRNA,r (*)a
Binary Code

T 1T 1T 7

1 1
a low order

rrrr1r 17T
0]1]011{1]1 a high order

76543210 76543210 76543210

- =

Execution Time 3 cycles (9 clock periods)

Description

The three-byte branch instruction causes the contents of the specified
register r to be tested for a non-zero value. If the register contains a non-zero
value, the next instruction to be executed is taken from the location pointed
to by the effective address, i.e., the effective address replaces the contents of
the Instruction Address Register.

If the specified register contains a zero value, the next instruction is
fetched from the location following the third byte of this instruction.

Indirect addressing may be specified.
Processor Registers Affected None

Condition Code Setting N/A

BRANCH INDEXED, ABSOLUTE (Absolute Addressing)

Mnemonic BXA (*)a,X
Binary Code
1 T T T T T T | T T T T T
1T{of(of1{1{111{1 | a high order a low order
1 1 1 L i A A A 1 A 1 1

76543210 76543210 76543210

Execution Time 3 cycles (9 clock periods)
Description

This three-byte branch instruction causes the processor to perform an
unconditional branch. Indexing is required and register #3 must be specified
as the index register because the entire first byte of this instruction is
decoded by the processor. When executed, the content of the Instruction
Address Register (IAR) is replaced by the effective address.

If indirect addressing is specified, the value in the index register is added
to the indirect address to calculate the effective branch address.

Processor Registers Affected None

Condition Code Setting N/A

102

ZERO BRANCH TO SUBROUTINE, RELATIVE (Relative Addressing)
Mnemonic ZBSR (*)a
Binary Code

L

110(1|1]1]0f1]1 | a
1 1 L1 1 1
76543210 76543210

Execution Time 3 cycles (9 clock periods)

Description

This two-byte unconditional subroutine branch instruction directs the
processor to calculate the effective address differently than the usual
calculation for the Relative Addressing mode.

The specified value a is interpreted as a relative displacement from page
zero, byte zero. Therefore, displacement may be specified from - 64 to +63
bytes. The address calculation is modulo 8192,g, so the negative displace-
ment will develop addresses at the end of page zero. For example, ZBSR
-10, will develop an effective address of 818249, and ZBSR 31 will develop
an effective address of 314g.

This instruction causes the processor to clear the page address bits, address
bits 14 and 13, and may be executed anywhere within addressable memory.

Indirect addressing may be specified.

When executed, this instruction causes the Stack Pointer to be incre-
mented by one, the address of the byte following this instruction is pushed
into the Return Address Stack (RAS), and control is transferred to the
effective address.

Processor Registers Affected SP
Condition Code Setting N/A

103

BRANCH TO SUBROUTINE ON CONDITION TRUE, (Relative Addressing)
RELATIVE

Mnemonic BSTR,v (+)a
Binary Code
T T T 1 1 11
ojo|1]1]1 O‘ v | a
1 1 11 1

1
76543210 76543210

Execution Time 3 cycles (9 clock periods)

Description

This two - byte conditional subroutine branch instruction causes the
processor to perform a subroutine branch only if the two-bit v field matches
the current Condition Code field (CC) in the Program Status Word. If the
fields match, the Stack Pointer is incremented by one and the current
contents of the Instruction Address Register, which points to the byte
following this instruction, is pushed into the Return Address Stack. The
effective address replaces the previous contents of the TAR.

If the v field and CC field do not match, the next instruction is fetched
from the location following the second byte of this instruction and the SP is
unaffected.

Indirect addressing may be specified.

If v is set to 34, the BSTR instruction branches unconditionally.
Processor Registers Affected SP
Condition Code Setting N/A

104

(Absolute Addressing)

Mnemonic BSTA,v (x)a

Binary Code

ofoj1[1]1¢1 \:/ | %1 :higrh :oréer: :a: I:ow: (Y)rd:ert
76543210 76543210 76543210
Execution Time 3 cycles (9 clock periods)

Description

This three-byte conditional subroutine branch instruction causes the
processor to perform a subroutine branch only if the two-bit v field matches
the current Condition Code Field (CC) in the Program Status Word. If the
fields match, the Stack Pointer is incremented by one and the current
contents of the Instruction Address Register, which points to the byte
following this instruction is pushed into the Return Address Stack. The
effective address replaces the previous contents of the IAR.

If the v field and the CC field do not match, the next instruction is

fetched from the location following the third byte of this instruction and the
Stack Pointer is unaffected.

Indirect addressing may be specified.

If v is set to 31, the BSTA instruction branches unconditionally.
Processor Registers Affected SP

Condition Code Setting N/A

(Relative Addressing)

Mnemonic BSFR,v (x)a

Binary Code
I I T 1 T 1 1 1
1 0 1 1 1 0 \l, 1 1 la 1 L1

76543210 76543210

Execution Time 3 cycles (9 clock periods)
Description

This two - byte conditional subroutine branch instruction causes the
processor to perform a subroutine branch only if the two-bit v field does not
match the current Condition Code field (CC) in the Program Status Word. If
the fields do not match, the Stack Pointer is incremented by one and the
current content of the Instruction Address Register, which points to the
location following this instruction, is pushed into the Return Address Stack.
The effective address replaces the previous contents of the IAR.

If the v field and the CC match, the next instruction is fetched from the
location following this instruction and the SP is unaffected.
Indirect addressing may be specified.

The v field may not be coded as 31 because this combination is used for
the ZBSR operation code.

Processor Registers Affected SP
Condition Code Setting N/A

(Absolute Addressing)

Mnemonic BSFA,v (+)a
Binary Code

T T T 1 1 T 17T 17T 17T 1T 11
1o 1{1{111] v I{ a high order a low order
A — A1 1 1 1 1 1 i 1 L L L

76543210 76543210 76543210

Execution Time 3 cycles (9 clock periods)
Description

This three-byte conditional subroutine branch instruction causes the
processor to perform a subroutine branch only if the two-bit v field does not
match the current Condition Code (CC) in the Program Status Word. If the
fields do not match, the Stack Pointer is incremented by one and the current
content of the Instruction Address Register, which points to the location
following this instruction, is pushed into the Return Address Stack. The
effective address replaces the previous contents of the IAR.

If the v field and the CC match, the next instruction is fetched from the
location following this instruction and the SP is unaffected.

Indirect addressing may be specified.

The v field may not be coded as 34 as this combination is used for the
BSXA operation code.

Processor Registers Affected SP
Condition Code Setting N/A

(Relative Addressing)

Mnemonic BSNR,r (*)a
Binary Code

of1]1(1]1]0 | a
TR T B N B

76543210 76543210

- —

Execution Time 3 cycles (9 clock periods)

Description

This two-byte subroutine branch instruction causes the contents of the
specified register r to be tested for a non-zero value. If the register contains a
non-zero value, the next instruction to be executed is taken from the
location pointed to by the effective address. Before replacing the contents of
the Instruction Address Register with the effective address, the Stack Pointer
(SP) is incremented by one and the address of the byte following the
instruction is pushed into the Return Address Stack (RAS).

If the specified register contains a zero value, the next instruction is
fetched from the location following this instruction.

Indirect addressing may be specified.
Processor Registers Affected SP
Condition Code Setting N/A

(Absolute Addressing)
R, ¢

Mnemonic BSNA,r (*)a
Binary que

T T 1 1 1 1 T T 1 | 1
oj1{1|1]1]1 r a high order a low order
1 1 1 1 1 1 1 11 1 1 1 1 1

76543210 76543210 76543210

Execution Time 3 cycles (9 clock periods)

Description

This three-byte subroutine branch instruction causes the contents of the
specified register r to be tested for a non-zero value. If the register contains a
non-zero value, the next instruction to be executed is taken from the
location pointed to by the effective address. Before replacing the current
contents of the Instruction Address Register (IAR) with the effective
address, the Stack Pointer (SP) is incremented by one and the address of the
byte following the instruction is pushed into the Return Address Stack (RAS).

If the specified register contains a zero value, the next instruction is
fetched from the location following this instruction.

Indirect addressing may be specified.
Processor Registers Affected SP
Condition Code Setting N/A

(Absolute Addressing)

Mnemonic BSXA (*)a,X

Binary Code

1lo|1|1[1]1]1]1] || a high order a low order
76543210 76543210 76543210
Execution Time 3 cycles (9 clock periods)

Description

This three-byte instruction causes the processor to perform an uncondi-
tional subroutine branch. Indexing is required and register #3 must be
specified as the index register because the entire first byte of this instruction
is decoded by the processor.

Execution of this instruction causes the Stack Pointer (SP) to be
incremented by one, the address of the byte following this instruction is
pushed into the Return Address Stack (RAS), and the effective address
replaces the contents of the Instruction Address Register.

If indirect addressing is specified, the value in the index register is added
to the indirect address to calculate the effective address.

Processor Registers Affected SP
Condition Code Setting N/A

RETURN FROM SUBROUTINE, CONDITIONAL
Mnemonic RETC,v
Binary Code

000101\{

76543210

Execution Time 3 cycles (9 clock periods)

Description

This one-byte instruction is used by a subroutine to conditionally effect a
return of control to the program which last issued a subroutine branch
instruction.

If the two-bit v field in the instruction matches the Condition Code field
(CC) in the Program Status Word, the following action is taken: The address
contained in the top of the Return Address Stack replaces the previous
contents of the Instruction Address Register (IAR), and the Stack Pointer is
decremented by one.

If the v field does not match CC, the return is not effected and the next
instruction to be executed is taken from the location following this

instruction.

If v is specified as 34¢, the return is executed unconditionally.
Processor Registers Affected SP
Condition Code Setting N/A

Mnemonic RETE,v
Binary Code

T
ojo|1|1fo|1} v

1

76543210

Execution Time 3 cycles (9 clock periods)

Description

This one-byte instruction is used by a subroutine to conditionally effect a
return of control to the program which last issued a subroutine branch
Instruction. Additionally, if the return is effected, the Interrupt Inhibit (II)
bit in the Program Status Word is cleared to zero, thus enabling interrupts.
This instruction is mainly intended to be used by an interrupt handling
routine because receipt of an interrupt causes a subroutine branch to be
effected and the Interrupt Inhibit bit to be set to 1. The interrupt handling
routine must be able to return and enable simultaneously so that the
interrupt routine cannot be interrupt unless that is specifically desired.

If the two-bit v field in the instruction matches the Condition Code field
(CC) in the Program Status Word, the following action is taken: The address
contained in the top of the Return Address Stack (RAS) replaces the
previous contents of the Instruction Address Register (IAR), the Stack
Pointer is decremented by one and the II bit is cleared to zero.

If the v field does not match CC, the return is not effected and the next
instruction to be executed is taken from the location following this instruction.

If v is specified as 34¢, the return is executed unconditionally.
Processor Registers Affected SP I
Condition Code Setting N/A

£ (Register Addressing)

Mnemonic REDD,r
Binary Code

T
oj1)1j1{ojof r

76543210

Execution Time 2 cycles (6 clock periods)

Description
This one-byte input instruction causes a byte of data to be transferred

from the data bus into register r. Signals on the data bus are considered to be
true signals, i.e., a high level will be set into the register as a one.

When executing this instruction, the processor raises the Operation
Request (OPREQ) line, simultaneously switching the M/IO line to IO and
the R/W to R (Read). Also, during the 1e OPREQ signal, the D/C line switches
to D (Data) and the E/NE switches to NE (Non-extended).

See Input/Output section of this manual.

Processor Registers Affected cC

Condition Code Setting Register r CC1 CCo
Positive 0 1
Zero 0 0
Negative 1 0

(Register Addressing)

Mnemonic REDC,r

Binary Code

ofo|1]1]o]o] r

765 4321 AO

Execution Time 2 cycles (6 clock periods)
Description

This one-byte input instruction causes a byte of data to be transferred
from the data bus into register r. Signals on the data bus are considered to be
true signals, i.e., a high level will be set into the register as a one.

When executing this instruction, the processor raises the Operation
Request (OPREQ) line, simultaneously switching the M/IO line to IO, the
R/W line to R (Read), the D/C line to C (Control), and the E/NE line to NE
(Non-extended).

See Input/Output section of this manual.

Processor Registers Affected CC

Condition Code Setting Register r CC1 CCo
Positive 0 1
Zero 0 0

Negative 1 0

(Immediate Addressing)

Mnemonic REDE,r v
Binary Code

T T T T T T 1
oj1joj1jo0f1| r v

1 1 N U S 1

76543210 76543210

Execution Time 3 cycles (9 clock periods)

Description

This two-byte input instruction causes a byte of data to be transferred
from the data bus into register r. During the execution of this instruction,
the content of the second byte of this instruction is made available on the
address bus. Signals on the data bus are true signals, i.e., a high level is
interpreted as a one.

During execution, the processor raises the Operation Request (OPREQ)
line, simultaneously placing the contents of the second byte of the
instruction on the address bus. During the OPREQ signal, the M/TIO line is
switched to [O,the R/W line to R (Read), line and the E/NE line to E
(Extended).

See Input/Output section of this manual.

Processor Registers Affected CcC

Condition Code Setting Register r CC1 CCO
Positive 0 1
Zero 0 0
Negative 1 0

WRITE DATA (Register Addressing)
Mnemonic WRTD,r
Binary Code

T
1{1{1r|1{ojof| r

76543210

Execution Time 2 cycles (6 clock periods)

Description

This one-byte output instruction causes a byte of data to be made
available to an external device. The byte to be output is taken from register r
and made available on the data bus. Signals on the data bus are true signals,

i.e., high levels are ones.

When executing this instruction, the processor raises the Operation Request
(OPREQ) line and simultaneously places the data on the Data Bus. Along
with the OPREQ, the M/IO line is switched to 10, the R/W signal is switched
to W (Write), and a Write Pulse (WRP) is generated. Also, during the valid
OPREQ signals, the D/C line is switched to D (Data) and the E/NE line is
switched toc NE (Non-extended).

See Input/Output section of this manual.
Processor Registers Affected None

Condition Code Setting N/A

(Register Addressing)
Mnemonic WRTC,r
Binary Code

T
1{o{1{1]0f0}| r

1

76543210

Execution Time 2 cycles (6 clock periods)
Description

This one-byte output instruction causes a byte of data to be made
available to an external device.

The byte to be output is taken from register r and made available on the
data bus. Signals on the data bus are true signals, i.e., high levels are ones

When executing this instruction, the processor raises the Operation
Request (OPREQ) line and simultaneously places the data on the Data Bus.
Along with the OPREQ signal, the M/IO line is switched to [O, the R/W
signal is switched to W (Write), the D/C line is switched to C (Control), the
E/NE is switched to NE (Non-extended), and a Write Pulse (WRP) is
generated.

See the Input/Output section of this manual.
Processor Registers Affected None

Condition Code Setting N/A

(Immediate Addressing)

Mnemonic WRTE,r v
Binary Code

T T T T T T 7T
111{0f(1]0)1] r v

1 i 1 1 - 1 1 1

76543210 76543210

Execution Time 3 cycles (9 clock periods)

Description

This two-byte output instruction causes a byte of data to be made
available to an external device. The byte to be output is taken from register r
and is made available on the data bus. Simultaneously, the data in the second
byte of this instruction is made available on the address bus. The second
byte, v, may be interpreted as a device address.

Signals on the busses are true levels, i.e., high levels are ones.

When executing this instruction, the processor raises the Operation
Request (OPREQ) line and simultaneously places the data from register r on
the data bus and the data from the second byte of this instruction on the
address bus. Along with OPREQ, the M/IO line is switched to 10, the R/W
line is switched to W (Write), the E/NE line is switched to E (Extended), and
a Write Pulse (WRP) is generated.

See the Input/Output section of this manual.
Processor Registers Affected None

Condition Code Setting N/A

NO OPERATION
Mnemonic NOP
Binary Code

111]0f0f0|0|0fO
76543210

Execution Time 2 cycles (6 clock periods)

Description

This one-byte instruction causes the processor to take no action upon
decoding it. No registers are changed, but fetching and executing a NOP
instruction requires two processor cycles.

Processor Registers Affected None

Condition Code Setting N/A

119

TEST UNDE MMEDEA (Immediate Addressing)

Mnemonic v
Binary Code

T T T T T
1 1 ! 1 0 1 L 1 1 lvl 1 1 1
76543210 76543210
Execution Time 3 cycles (9 clock periods)
Description

This two-byte instruction tests individual bits in the specified register r to
determine if they are set to binary one. During execution, each bit in the v
field of the instruction is tested for a one, and if a particular bit in the v field
contains a one, the corresponding bit in register r is tested for a one or zero.
The condition code is set to reflect the result of the operation.

If a bit in the v field is zero, the corresponding bit in register r is not tested.
Processor Registers Affected CcC

Condition Code Setting
All of the selected bits are 1s 0
Not all of the selected bits are 1s 1 0

(Register Addressing)

Mnemonic DAR,r
Binary Code

10101 1j0(1| T

1

76543210

Execution Time 3 cycles (9 clock periods)
Description

This one-byte instruction conditionally adds a decimal ten (two’s
complement negative six in a four-bit binary number system) to either the
high order 4 bits and/or the low order 4 bits of the specified register r.

The truth table below indicates the logical operation performed. The
operation proceeds based on the contents of the Carry (C) and Interdigit
Carry (IDC) bits in the Program Status Word. The C and IDC remain
unchanged by the execution of this instruction.

This instruction allows BCD sign magnitude arithmetic to be performed on
packed digits by the following procedure.

BCD Addition: add 6641 to augend

1.
2. perform addition of addend and augend
3. perform DAR instruction

BCD Subtraction: 1. perform subtraction (2’s complement of subtra-
hend is added to the minuend)
2. perform DAR instruction

Since this operation is on sign-magnitude numbers, it is necessary to establish
the sign of the result prior to executing in order to properly control the defi-
nition of the subtrahend and minuend.

Interdigit Added to
Carry Carry ' l Register r
0 0 AAqg
0 1 A0 46
1 1 00 16
1 0 0A 16
Processor Registers Affected CcC

Condition Code Setting
The Condition Code is set to a meaningless value.

HALT, ENTER WAIT STATE
Mnemonic HALT
Binary Code

oj1]j0|0jojofofo
76543210

Execution Time 2 cycles (6 clock periods)

Description
This one-byte instruction causes the processor to stop executing instruc-

tions and enter the WAIT state. The RUN/WALIT line is set to the WAIT state.

The only way to enter the RUN state after a HALT has been executed, is
to reset the 2650 or to interrupt the processor.

Processor Registers Affected None

Condition Code Setting N/A

123

MEMORY INTERFACE

Figure A-1 shows a complete interface between the 2650 and a 256 x 8
R/W random access memory. Since the memory chips are MOS they can be
driven directly by the address lines and the control lines. The gates shown
are assumed to be standard 7400 series TTL so that some signal buffering is
assumed to be necessary. If CMOS or 74LS gates are used, some of the
buffering inverters may not be necessary. The same is true of the data bus.
Depending on the number and nature of the I/O devices being interfaced, it
may or may not be necessary to buffer the data bus.

Because the data in and data out signals for the memory chips are bussed
together, care must be taken to avoid overlap of drivers on the data bus. In
this example, the problem is solved by using the write pulse into the memory
as the chip select input instead of using the R/W line as is conventionally
done. The R/W output from the processor is a level and is valid when
Operation Request is true. Write Pulse from the processor is gated with the
OPREQ and M/IO signals to assure proper operation.

For a large memory the next address line (ADRS&) could be gated into the
chain that generates the chip select signals, with similar write pulse
generation for the higher order memory.

The OPACK signal is assumed to be false for the duration of all memory
operations. This eliminates some gating from that control input. No
problems will be encountered with this approach as long as the memories are
fast enough for the clock speed being used with the processor. At a cycle
time of 2.4us, data must be returned to the processor by lus or less time
from the OPREQ leading edge.

ADR 7 A7 2606
-) 256x4
R/W RAM
ADDRESS ¢
OUTPUTS)
ARO
ADR 0 R/W
*1Ce
R/W ———>|>0
DATA 1/0
WRP
A7 2606)
256x4 YYYY
oprea—>0 R/W RAM
M0 >0t
2650 PROCESSOR - :m
CE
DATA I/0O
S DB 7 N 6‘ Yy
DATA >
BUS <
>
>
DB O >
\ b/C
, 2 OPACK
L %
3 2
< q b 444444
Il yvy Yyvy |

'II—. GND
Q=g +5V

V |CLOCK

RESET

Figure A-1

APPEN

I/0 INTERFACE

Figure B-1 shows one of many possible methods for buffering the data bus
and interfacing it to several devices. There are advantages to be gained by
using the Signetics 8T26. It has a PNP input buffer that keeps its low input
level current at 200uA instead of 1.6mA. This lightens the load on the
processor bus drivers and allows the processor to interface to several 8T26’s
if necessary. The 8T26 has four complete driver/receiver pairs in a package,
so two packages can fully buffer the 8-bit data bus.

The control signals generated for use with I/O interfaces are very
straightforward. Combining M/IO with OPREQ generates a signal that can
often be used conveniently at the I/O devices instead of having each device
derive the signal individually. In the figure it is gated with the Read/Write
information in order to control the bus buffer.

Each I/O device must handle four basic processor interface functions:
(a) bus interface
(b) data transfer logic
(c) device selection logic
(d) transfer acknowledge logic

Depending on the nature of the complete system and the particular I/O
device, these functions can be either extremely simple or fairly complex.

) ADDRESS LINES TO MEMORY

DBUS 0

TO
MEMORY
BUS

DBUS 7
DRIVER I 8726 8726
OPREQ _@_‘ ENABLE =1 }
W ar=D YAl

o~ D e 5 n
. <
b/Cc RECEIVER
ERE ENABLE
2650 DATA BUS
1/0 OPERATION 10
ADDITIONAL
1/0 DEVICES
o
A R R IR N s
| ! { 8726 — 87126 !
|
| L !
! DATA |
vy +—4 ACKNOWLEDGE | TRANSFER ™ H |
N = === TT1] I D I I O
ADR 0) C 1 I I I T I T —=F— "
= DEVICE [| | 1 | T |
= SELECTION DATA = I .
= LOGIC ouTt . : ! - !
(
ADR 7 vd EXTERNAL DEVICE !
-
L e e e e e e et e m e e e e e e o ————

Figure B-1

APPENDIX C

INSTRUCTIONS, ADDITIONAL INFORMATION

The 2650 uses variable length instructions that are one, two or three
bytes long. The instruction length is determined by the nature of the
operation being performed and the addressing mode being used. Thus, the
instruction can be expressed in one byte when no memory operand
addressing is necessary, as with register-to-register or rotate instructions. On
the other hand, for direct addressing instructions, three bytes are allocated.
The relative and immediate addressing modes allow two-byte instructions to
be implemented.

The 2650 uses explicit operand addressing; that is, each instruction
specifies the operand address. The first byte of each 2650 instruction is
divided into three fields and specifies the operation to be performed, the
addressing mode to be used and, where appropriate, the register or condition
code mask to be used.

Function Class Register
Field Field Field
— A

76543210

The CLASS field specifies the instruction group, the major address mode
and the number of processor cycles required for each instruction. The
CLASS field also specifies, with one exception, the number of bytes in the
instruction. The following table shows the specifications for each class.

CLASS INSTRUCTION ADDRESS BYTE DIRECT
FIELD GROUP REGISTER LENGTH CYCLES

0 Arithmetic Register 1 2

1 Arithmetic Immediate 2 2

2 Arithmetic Relative 2 3

3 Arithmetic Absolute 3 4

4 Control (inc. rotate) 1 2

5 Control 1-2 3

6 Branch Relative 2 3

7 Branch Absolute 3 3

Within the arithmetic groups (classes 0, 1, 2, and 3) the function field
specifies one of the eight operations as follows:

FUNCTION ARITHMETIC
FIELD OPERATION

0 LOAD
1 EXCLUSIVE OR
2 AND
3 INCLUSIVE OR
4 ADD
5 SUBTRACT
6 STORE
7 COMPARE

Within the branch group (classes 6 and 7) the function field specifies one
of eight operations as follows:

FUNCTION BRANCH
FIELD OPERATION
0 Branch On Condition True
1 Branch To Subroutine On Condition True
2 Branch On Register Non-Zero
3 Branch To Subroutine On Register Non-Zero
4 Branch On Condition False
5 Branch To Subroutine On Condition False
6 Branch On Incrementing Register
7 Branch On Decrementing Register

There is very little pattern to the use of the function field within the
control group (classes 4 and 5).

The register field is used to specify the index register, to specify the
operand source register, to specify the destination register, or a condition
code mask. For the register-to-register and the indexed instructions, register
zero is implicitly assumed to be the source or the destination of the
instruction. For all other instructions that involve a register, the register field
allows any of four registers to be specified, except for indexed branch
instructions which require that register 3 be specified.

Conditional branch instructions utilize the 2-bit register field as a
condition code mask field. A few instructions use the register field as part of
the operation code and consequently allow no variation in register usage.

HEX

8C
8D
8E
8F

opP
ADDA

84
85
86
87

ADDI

88
89
8A
8B

ADDR

80
81
82
83

ADDZ

4C
4D
4E
4F

ANDA

44
45
46
47

ANDI

48
49
4A
4B

ANDR

41
42
43

ANDZ

9C
9D
9E

BCFA

Pg.
58

56

57

55

66

64

65

63

95

INSTRUCTION SUMMARY
SIGNETICS 2650 PROCESSOR

HEX

98
99
9A

oP
BCFR

1C
1D
1E
1F

BCTA

18
19
1A
1B

BCTR

FC
FD
FE
FF

BDRA

F8
F9
FA
FB

BDRR

DC
DD
DE
DF

BIRA

D8
D9
DA
DB

BIRR

5C
5D
5E
5F

Pg.

94

93

92

99

98

97

96

BRNA 101

58
59
5A
5B

BRNR 100

HEX

BC
BD
BE

op
BSFA

Pg.
107

B8
B9
BA

BSFR

7C
7D
7E
7F

BSNA

106

109

78
79
7A
7B

BSNR

108

3C
3D
3E
3F

BSTA

105

38
39
3A

3B

BSTR

104

BF

BSXA

110

9F

BXA

102

EC
ED
EE
EF

CEMA

78

HEX opP Pg. HEX opP Pg. HEX opP Pg.

E4 cgmi 76 40 HALT 122 93 LPSL 82
E5
E6 92 LPSU 81
E7
ES C@MR 77 6C IgRA 70 co Ngp 119
E9 6D
EA 6E
EB 6F
EO cgvz 75 64 I@RI 68 77 PPSL 86
E1 65
E2 66 76 PPSU 85
E3 67
o= CPoL 88 68 IZRR 69 30 REDC 114
69 31
74 CPSU 87 6A 32
68 33
94 DAR 121 60 IgrRZ 67 70 REDD 113
95 61 71
96 62 72
97 63 73
2C EFRA 74 oc LPDA &1 54 REDE 115
2D oD 55
2E OE 56
2F OF 57
24 EgRI 72 04 L@gDI 49 14 RETC 111
25 05 15
26 06 16
27 07 17
28 EGRR 73 08 L@DR 60 34 RETE 112
29 09 35
2A 0A 36
2B 0B 37
20 EGRZ 71 00 L@DZ 48 DO RRL 79
21 01 D1
22 02 D2

23 03 D3

HEX

50
51
52
53

op

RRR

13

SPSL

12

SPSU

cC
CD
CE
CF

STRA

C8
Cc9
CA
cB

STRR

C1
Cc2
C3

STRZ

AC
AD
AE
AF

SUBA

A4
Ab
A6
A7

SUBI

A8
A9
AA
AB

SUBR

A0
Al
A2
A3

SUBZ

Pg.

80

84
83

53

52

62

60

61

59

HEX
Fa
F5
F6
F7
B5
B4

op Pg.
™1 120

TPSL 90
TPSU 89

BO
B1
B2
B3
FO
F1
F2
F3

WRTC 117

WRTD 116

D4
D5
D6
D7

WRTE 118

9B
BB

ZBRR 91
ZBSR 103

SIGNETICS 2650 PROCESSOR

NUMERIC LISTING

HEX OP Pg. HEX OP Pg. HEX OP Pg.
00 LZDZ 48 24 EGRI 72 44 ANDI 64
01 25 45
02 26 46
03 27 47
04 L@DI 49 28 EGRR 73 48 ANDR 65
05 29 49
06 2A 4A
07 2B 4B
08 L@DR 50 2C EGRA 74 4c ANDA 66
09 2D 4D
0A 2E 4E
08 2F 4F
oC LFDA 51 30 REDC 114 50 RRR 80
oD 31 51
)= 32 52
OF 33 53
12 SPSU 83 34 RETE 112 54 REDE 115
35 55
13 SPSL 84 36 56
37 57
14 RETC 111 38 BSTR 104 58 BRNR 100
15 39 59
16 3A 5A
17 3B 5B
18 BCTR 92 3C BSTA 105 5C BRNA 101
19 3D 5D
1A 3E 5E
1B 3F 5F
1C BCTA 93 40 HALT 122 60 IBRZ 67
1D 61
1E 62
1F - 63
20 EFARZ 71 41 ANDZ 63 64 IGRI 68
21 42 65
22 43 66
23 67

131

HEX

68
69
6A
6B

opP

I@RR

6C
6D
6E
6F

IZRA

70
71
72
73

REDD

74

CPSU

75

CPSL

76

PPSU

77

PPSL

78
79
7A
7B

BSNR

7C
7D
7E
7F

BSNA

80
81
82
83

ADDZ

84
85
86
87

ADDI

Pg.

69

70

113

87

88

85

86

108

109

55

56

HEX

88
89
8A
8B

opP
ADDR

8C
8D
8E
8F

ADDA

92

LPSU

93

LPSL

94
95
96
97

DAR

98
99
9A

BCFR

9B

ZBRR

9C
9D
9E

BCFA

9F

BXA

A0
A1l
A2
A3

SuBZ

Pg.

57

58

81

82

121

94

91

95

102

59

HEX

A4
A5
A6
A7
A8
A9
AA
AB
AC
AD
AE
AF

BO
B1
B2
B3

B4

B5

B8
B9
BA

BB

BC
BD
BE

BF

oP Pg.
SUBI 60
SUBR 61
SUBA 62
WRTC 117
TPSU 89
TPSL 90
BSFR 106
ZBSR 103
BSFA 107
BSXA 110

HEX

co

opP

N@P

C1
C2
C3

STRZ

C8
C9o
CA
CB

STRR

CC
CD
CE
CF

STRA

DO
D1
D2
D3

RRL

D4
D5
D6
D7

WRTE

D8
D9
DA
DB

BIRR

DC
DD
DE
DF

BIRA

EO
E1
E2
E3

comz

Pg.

119

52

53

54

79

118

96

97

HEX

E4
E5
E6
E7

opP

cgmi

E8
E9
EA
EB

C@MR

EC
ED
EE
EF

COMA

FO
F1
F2
F3

WRTD

F4
F5
F6
F7

™I

F8
F9
FA
FB

BDRR

FC
FD
FE
FF

BDRA

Pg.

77

78

116

120

98

99

ORGANIZED BY FUNCTION

LOAD/STORE

00
01

02

03
04
05
06
07

08
09
0A
0B

ocC
oD
OE
OF
C1
Cc2
C3

c8
C9
CA
cB
CcC
CcD
CE
CF

L@gDZ

L@DI

L@DR

L@DA

STRZ

STRR

STRA

Pg.

48

49

50

51

52

53

54

ARITHMETIC

80
81
82
83

ADDZ

84
85
86
87

ADDI

88
89
8A
8B

ADDR

8C
8D
8E
8F

ADDA

A0
A1
A2
A3

suBz

A4
A5
A6
A7

SUBI

A8
A9
AA
AB

SUBR

AC
AD
AE
AF

SUBA

60
61
62
63

IBRZ

64
65
66

BRI

2650 INSTRUCTIONS

55

56

58

59

60

61

62

ARITHMETIC

68
69
6A
6B

IBRR

6C
6D
6E
6F

IPRA

20
21
22
23

EZRZ

24
25
26
27

E@RI

28
29
2A
2B

EARR

2C
2D
2E
2F

EARA

41
42
43

ANDZ

44
45
46
47

ANDI

48
49
4A
4B

ANDR

4C
4D
4E
4F

ANDA

Pg.
69

70

71

72

73

74

63

64

65

66

134

BRANCH Pg.

18
19

1A
18
1C
1D
1E
1F
98

99
9A

BCTR 92

BCTA 93

BCFR 94

9C
9D
9E

BCFA 95

58
59
5A
5B

BRNR 100

5C
5D
5E
5F

BRNA 101

D8
D9
DA
DB

BIRR 96

DC
DD
DE
DF

BIRA 97

F8
F9
FA
FB

BDRR 98

FC
FD
FE
FF

BDRA 99

9F

BXA 102

9B

ZBRR 91

SUBROUTINE BRANCH Pg.

38
39
3A
3B

BSTR

3C
3D
3E
3F

BSTA

B8
B9
BA

BSFR

BC
BD
BE

BSFA

78
79
7A
7B

BSNR

7C
7D
7E
7F

BSNA

BF

BSXA

BB

SUBROUTINE RETURN

14
15
16
17

ZBSR

RETC

34
35
36
37

RETE

104

105

106

107

108

109

110

103

111

112

COMPARE Pg.

EO cgmMz 75
E1
E2
E3

E4 CoMI 76
E5
EG
E7

ES CAMR 77
E9
EA
EB

EC COMA 78
ED
EE
EF

INPUT/OUTPUT

30 REDC 114
31
32
33

70 REDD 113
71
72
73

BO WRTC 117
B1
B2
B3

FO WRTD 116
F1
F2
F3

54 REDE 115
55
56
57

D4 WRTE 118
D5
D6
D7

PROGRAM STATUS

MANIPULATION Pqg. MISCELLANEOUS Pg.
92 LPSU 81 co N@P 119
93 LPSL 82
12 SPSU 83 40 HALT 122
13 SPSL 84
74 CPSU 87 F4 ™I 120
F5
75 CPSL 88 F6
F7
76 PPSU 85 94 DAR 121
95
77 PPSL 86 96
97
B4 TPSU 89
B5 TPSL 90

ROTATE INSTRUCTIONS

DO RRL 79
D1
D2
D3

50 RRR 80
51
52
53

SIGNETICS ASSEMBLER
2650 MICROPROCESSOR LANGUAGE

2650
ASSEMBLER LANGUAGE

MANUAL
CONTENTS
| INTRODUCTION . .)
Il LANGUAGE ELEMENTS 6
CHARACTERS 6
SYMBOLS 6
CONSTANTS 6
MULTIPLE CONSTANT SPECIFICATIONS . 8
EXPRESSIONS s
SPECIAL OPERATORS. o v s i i i i 9
L SYNTAX. .« o o o o 10
FIELDS . . « o o o o0
SYMBOLS . . .« o o
SYMBOLIC REFERENCES 1
SYMBOLIC ADDRESSING o o o o
IV PROCESSOR INSTRUCTIONS14
V DIRECTIVES TO THE 2650 ASSEMBLER15
VI THE ASSEMBLY PROCESS o i it 27
ASSEMBLY LISTING o o30
APPENDIX A SUMMARY OF 2650 INSTRUCTION MNEMONICS32
APPENDIX B NOTES ABOUT THE 2650 PROCESSOR.34
APPENDIXC ASC II AND EBCDICCODES35
APPENDIXD COMPLETE ASCII CHARACTERSET36
APPENDIXE POWERS OF TWO TABLE37
APPENDIX F HEXADECIMAL-DECIMAL CONVERSION TABLES38

Copyright April 1975, Signetics Corporation
Signetics Corporation reserves the right to make changes in the products described in this book in order to improve design or performance.

The assembly language described in this document is a symbolic language
designed specifically to facilitate the writing of programs: for the Signetics
2650 processor. The 2650 Assembler is a program which accepts symbolic
source code as input and produces a listing and/or an object module as output.

The assembler is written in standard FORTRAN IV and is available either
through a timesharing service or in batch form directly from Signetics. This
is done to assure compatibility and ease of installation on a user’s own
computer equipment. It is modular and may be executed in an overlay
mode should memory restrictions make that necessary. The program is approx-
imately 1,250 FORTRAN card images in length.

An attempt was made in the design of the language to make it similar to
other contemporary assembler languages because it was felt that such
similarity would reduce the learning time necessary to become proficient in
this language. The 2650 assembler features forward references, self-defining
constants, free format source code, symbolic addressing, syntax error
checking, load module generation, and source statement listing.

In order to understand the 2650 instruction set, architecture, timing, inter-
face requirements and electrical characteristics, the reader is referred to the
Signetics 2650 Hardware Specification section.

The assembler is a two pass program that builds a symbol table, issues
helpful error messages, produces an easily readable program listing and
outputs a computer readable object (load) module.

The assembler features symbolic and relative addressing, forward refer-
ences, complex expression evaluations and a versatile set of Pseudo-
Operations. These features aid the programmer/engineer in producing well-
documented, working programs in a minimum of time. Additionally, the
assembler is capable of generating data in several number based systems as
well as both ASCII and EBCDIC character codes.

ler Languat

The assembler language provides a means to create a computer program.
The features of the Assembler are designed to meet the following goals:

@ Programs should be easy to create

Programs should be easy to modify

Programs should be easy to read and understand

A machine readable, machine language module to be output

This assembler language has been developed with the following features:

Symbolic machine operation codes (op-codes, mnemonics)
Symbolic address assignment and references

Relative addressing

Data creation statements

Storage reservation statements

Assembly listing control statements

Addresses can be generated as constants

Character codes may be specified as ASCII or EBCDIC
Comments and remarks may be encoded for documentation

As Assembly language program is a program written in symbolic machine
language. It is comprised of statements. A statement is either a symbolic
machine instruction, a pseudo-operation statement, or a comment.

The symbolic machine instruction is a written specification for a particu-
lar machine operation expressed by symbolic operation codes and some-
times symbolic addresses or operands. For example:

LOC2 STRR, RO SAV

Where:

LOC2 is a symbol which will represent the memory address of the
instruction.

STRR is a symbolic op-code which represents the bit pattern of the

‘“store relative’ instruction.

RO 1s a symbol which has been defined as register 0 by the
“EQU pseudo-op”’.

SAV is a symbol which represents the memory location into
which the contents of register O are to be stored.

A pseudo-operation statement is a statement which is not translated into
a machine instruction, but rather is interpreted as a directive to the
assembler program. Example:

SCHD ACON REDY
Where:
ACON is a pseudo-op which directs the assembler program to

allocate two bytes of memory.

REDY is a symbol, representing an address. The assembler is directed
to place the equivalent memory address into the byte
allocated space.

SCHD is a symbol. The assembler is to assign the memory address
of the first byte of the two allocated to this symbol.

Statements

Statements are always written in a particular format. The format is
depicted below:

LABEL FIELD OPERATION FIELD OPERAND FIELD COMMENT FIELD

The statement is always assumed to be written on an 80 column data
processing card or an 80 column card image.

The Label Field is provided to assign symbolic names to bytes of memory.
If present, the Label Field must begin in logical column one.

The Operation Field is provided to specify a symbolic operation code or
a pseudo-operation code. If present, the Operation Field must either begin
past column one or be separated from logical column one by one or more
blanks.

The Operand Field is provided to specify arguments for the operation in
the Operation Field. The Operand Field, if present, is separated from the
Operation Field by one or more blanks.

The Comment Field is provided to enable the assembly language program-
mer to optionally place an English message stating the purpose or intent
of a statement or a group of statements. The Comment Field must be
separated from the preceding field by one or more blanks.

Comment Statement

A Comment Statement is a statement that is not processed by the
assembler program. It is merely reproduced on the assembly listing. A
Comment Statement is indicated by encoding an asterisk in logic column
one. Example:

*THIS IS A COMMENT STATEMENT

Logical columns 72-80 are never processed by the assembler, they are
always reproduced on the assembly listing without processing. This field
is a good place for sequence numbers, if desired.

Symbolic Addressing

When writing statements in symbolic machine language, i.e., assembler
language, the machine operation code is usually expressed symbolically.
For example, the machine instruction that stores data from register 0 into a
memory location named SAV, may be expressed as:

STRA,RO SAV

The assembler, when translating this symbolic operation code and its
arguments into machine language for the 2650, defines three bytes contain-
ing H'CC0020’, where '0020' is the value of SAV.

The address of the translated bytes is known because the Assembly
Program Counter is always set to the address of the next byte to be assembled.

The user can attach a label to an instruction:
SAVR STRR,RO SAV

The assembler, upon seeing a valid symbol in the label field, assigns the
equivalent address to the label. In the given example, if the STRR instruction
is to be stored in the address H'0127, then the symbol SAVR would be made
equivalent to the value H'0127' for the duration of the assembly.

The symbol could then be used anywhere in the source program to refer
to the address value or, more typically, it could be used to refer to the
instruction location. The important concept is that the address of the instruc-
tion need not be known; only the symbol need to be used to refer to the
instruction location. Thus, when branching to the STRR instruction, one
could write:

BCTA,3 SAVR

When the three byte branch instruction is translated by the assembler,

the address of the STRR instruction is placed in the address field of the
branch instruction.

It is also possible to use symbolic addresses which are near other locations
to refer to those locations without defining new labels. For example:

BCTR,3 BEG
BCTR,0 BEG+4
ANDZ 3
BSTR,3 S+48

BEG LODA,2 PAL
HALT
SUBI, 2 3

In the above example, the instruction “BCTR,3 BEG” refers to the

LODA,2 PAL instruction. The instruction “BCTR,0 BEG+4” refers
to the SUBI,2 3 instruction.

BEG+4 means the address BEG plus four bytes. This type of expression is
called relative symbolic addressing and given a symbolic address; it can be
used as a landmark to express several bytes before or after the symbolic
address. Examples:

BCTR,3 PAL+23
BSTA,O0 STT-18

The arguments are evaluated like any other expression and cannot exceed
in value the maximum number that can be contained in a FORTRAN
integer constant.

Program Counter

During the assembly process the assembler maintains a FORTRAN Integer
cell that always contains the address of the next memory location to be
assembled. This cell is called the Program Counter. It is used by the assembler
to assign addresses to assembled bytes, but it is also available to the
programmer.

The character “$” is the only valid symbol containing a special character
that the assembler recognizes without error. “$” is the symbolic name of the
Program Counter. It may be used like any other symbol, but it may not
appear in the label field.

When using the “$”’, the programmer may think of it as expressing the idea
“$” = “address of myself”’. For example,

108, BCTR,3 $

This branch instruction is in location 108,,. The instruction directs the
microprocessor to ‘“branch to myself”’. The Program Counter in this
example contains the value 108, 4.

Il LANGUAGE ELEMENTS

Input to the assembler consists of a sequence of characters combined to
form assembly language elements. These language elements include symbols,
instruction mnemonics, constants and expressions which make up the
individual program statements that comprise a source program.

CHARACTERS

Alphabetic: A through Z
Numeric: 0 through 9
Special characters: blank
(left parenthesis
) right parenthesis
+ add or positive value
- subtract or negative value
* asterisk
' single quote
, comma
| slash
$ dollar sign
< less than sign
> greater than sign

SYMBOLS

Symbols are formed from combination of characters. Symbols provide a
convenient means of identifying program elements so they can be referenced
by other elements.

1. Symbols may consist of 1 to 4 alphanumeric characters: A through Z,
0 through 9.

2. Symbols must begin with an alphabetic character.

3. The character $ is a special symbol which may be used in the argument
field of a statement to represent the current value of the Location
Counter.

4. The character * is a special symbol which is used as an indirect address
indicator.

5. The characters + and - are also used as auto-increment/auto-decrement
indicators.

The following are examples of valid symbols:

DOP1 RAV3
AA TEMZ

The following are examples of invalid symbols:

1LAR begins with numeric
PA N imbedded blank

CONSTANTS

A constant is a self-defining language element. Unlike a symbol, the value
of a constant is its own ‘‘face” value and is invariant. Internal numbers are
represented in 2’s complement notation. There are two forms in which
constants may be written: the Self-Defining Constant and the General
Constant.

Self-Defining (

The self-defining constant is a form of constant which is written directly
in an instruction and defines a decimal value. For example:

LODA,R3 BUFF+65

In this example, 65 is a self-defining constant. The maximum value of the
integer constant expressed by a self-defining constant is that which, when
expressed in binary, will fit within the basic arithmetic unit of the host
computer (typically 1 word).

The general constant is also written directly in an instruction, but the
interpretation of its value is dictated by a code character and delimited by
quotation marks.

LODA,R3 BUFF+H'3E’

In this example, the code letter H specifies that 3E is a hexadecimal con-
stant equivalent to decimal value 62.

The maximum size of a number generated by a general constant form
(B, O, D, H) may be no larger than the size of the FORTR AN integer cell of the
host computer. However, the most important concept to understand when
using constant forms is that the final value of a resolved expression must fit
the constraints of the actual field destined to contain the value. For example:

LODA,R2 PAL+H'3EE2'- H'3EEQ’

In this case, the argument, when resolved, must fit into the 13 bits in the
actual machine instruction. Even though each of the two hexadecimal
constants are larger than can fit into 13 bits, the final value of the expression
i1s containable in 13 bits and therefore the constants are permitted. Similarly,
the statement DATA H'3FE’ is not allowed, as the DATA statement defines
one byte quantities and H'3FE’ specifies more than 8 bits. Summarily, the
size of the evaluated expressions must be less than or equal to their corre-
sponding data fields. There are 6 types of General Constants:

Code Type

Binary Constant

Octal Constant

Decimal Constant
Hexadecimal Constant
EBCDIC Character Constant
ASCII Character Constant

>EHIOOW

inary w.onstant

A binary constant consists of an optionally signed binary number of up to
8 bits enclosed in single quotes and preceded by the letter B, e.g., B'1011011".
Binary information is stored right justified.

An octal constant consists of an optionally signed octal number enclosed

by single quotation marks and preceded by the letter O, e.g., 0'352'. The
value will be right justified.

D: Decimal Constant

A decimal constant consists of an optionally signed decimal number
enclosed by single quotation marks and preceded by the letter D, e.g.,
D'249’. The value will be right justified.

H: Hexadecimal Constant

A hexadecimal constant consists of an optionally signed hexadecimal
number enclosed in single quotation marks and preceded by the letter H,
e.g., H'3F'. The value will be right justified.

E: EBCDIC Character Constant

An EBCDIC character consists of a string of EBCDIC characters enclosed
by single quotation marks and preceded by the letter E, e.g., E'ARE YOU
THERE?'. Each character will be encoded in 8-bit EBCDIC and stored in
successive bytes. The maximum number of characters which may be
specified in one character string constant is 16.

A: ASCII Character Constant

An ASCII character constant consists of a string of ASCII characters
enclosed by quotation marks and preceded by the letter A. For example:
A'HELLO THERE'. Each character will be encoded in 7-bit ASCII and
stored in successive bytes. The high order bit is always set to zero in each
allocated byte. Up to 16 characters may be specified in one statement.

Note: See Appendix C for permissible characters and their equivalent ASCII and
EBCDIC codes. To specify a single quotation mark as a character constant
it must appear twice in the character string, e.g., A'TYPE' '"HELP' 'NOW’
will appear in storage as TYPE'HELP'NOW.

MULTIPLE CONSTANT SPECIFICATIONS

General constant forms, except A and E, allow multiple specifications
within the constant expression. For example: D'52, 21, 208, 27'. A comma
separates each byte specification and successive specifications determine
successive bytes of storage. Only 16 bytes of information may be specified
in any one general constant form and each byte may be optionally signed.
For example:

H'03,-F2,+11,-8,33,0
0'271,133'.

EXPRESSIONS

An expression is an assembly language element that represents a value.
It consists of a single term or a combination of terms separated by arithmetic
operators. A term may be a valid symbolic reference, a self-defining constant
or a general constant.

It is important to understand that although individual terms in a expression
may exceed the number size restriction of the 2650 (one or two bytes), they
may not cause the number size of the host computer’s integer FORTRAN
constant to be exceeded.

Examples of valid expressions:

LOOP PAL-$
LOOP+5 $-PAL+3
SAM+3-LOOP BIT-3+H'3A’

Note: The special symbol '$' represents the current value of the location
counter.

SPECIAL OPERATORS

There are two special operators that are recognized by the assembler.
They are:

< less than sign
> greater than sign

The assembler interprets these operators in a special way:

< perform a modulo 256 divide (use high order byte)
> perform a divide by 256 (use low order byte)

These operators, when used, must appear as the first character in the
argument field. If they are imbedded in an expression, the results are
unpredictable.

These special operators are intended to be used to access a two byte
address in one byte parts using a minimum of storage. For example, if it is
desired to get the high order bits of an address (ADDB) into register 2 and the
low order bits into register 1 it could be done as follows:

LODR,R2 APAL
LODR,R1 APAL+1
® o o

APAL ACON ADDB
or, by utilizing the special operators, it could be done as follows:

LODLR2 <ADDB
LODLR1 >ADDB

The first method uses 6 bytes to accomplish what the second method can do
in 4 bytes.

The special operators care most often used to facilitate the passing of an
address in registers.

9

Il SYNTAX

Assembly language elements may be combined to symbolically express
both 2650 instructions and assembler directives. There are specific rules for
writing these instructions. This set of rules is known as the Syntax of the
symbolic assembler language. The following description assumes a logical
input of an 80-column data processing card, but since the host assembler is
written in Fortran, the input media may be magnetic tape, magnetic disk,
paper tape, etc. Only the format statement for input need be changed to
accommodate the various input media.

FIELDS

A statement prepared for processing by the assembler is logically divided
into four fields: the Name Field, the Operation Field, the Argument Field
and the Comment Field. Each field is separated by at least one blank
character. No continuation cards are allowed, and only logical columns
1 through 72 are scanned by the assembler. Logical columns 73 through
80 inclusive may be used for any desired purpose.

Name Field

The name (or label) field optionally contains a symbolic name which the
assembler assigns to the instruction specified in the remaining part of the
line. If a name is specified, it must begin in logical column 1. The assembler
assumes that there is no name if logical column 1 is blank. The name field,
if present, rnust contain only a valid symbol.

Operation Field

The operation field contains a mnemonic code which represents a 2650
processor operation or an assembly directive. The operation field must be
present in every non-comment line. See Appendix A for a list of the valid
mnemonic codes. Additionally, depending on the instruction type, the
operation field may also specify a general purpose register or a condition
code. .

Argument Field

The argument field contains one or more symbols, constants or expres-
sions separated by commas. The argument field specifies storage locations,
constants, register specifications and any other information necessary to
completely specify a machine operation or an assembler directive. Embedded
blanks are not permitted as they are considered field terminators.

Comment Field

The comment field contains any valid characters in any combination.
The comment field is not processed by the assembler, but is merely repro-
duced on the listing next to the accompanying instruction. It is usually
used to explain the purpose or intention of a particular instruction or
group of instructions.

An entire 72 column line may be utilized to print comments by coding
an asterisk (*) in column 1. This entire card is merely reproduced on the
assembly listing without processing by the assembler.

SYMBOLS

Symbols are used in the name field of a symbolic machine instruction
to identify that particular instruction and to represent its address. Symbols
may be used for other purposes, such as the symbolic representation of
some memory address, the symbolic representation of a constant, the
symbolic representation of a register, etc.

No matter how the symbol is used, it must be defined. A symbol is defined
when the assembler knows what value the symbol represents. There is only
one way to define a symbol. The symbol nmust at some time appear either
in the name field of an instruction or of an assembler directive. The symbol
will be assigned the current value of the Location Counter when it appears
in the name field of a machine instruction, or it may be assigned some other
value through use of the EQU assembler directive. A symbol may not appear
in the name field more than once in a program, because this would cause the
assembler to try to redefine an already defined label. The assembler will
not do this and will flag the second appearance of a particular label as an
error.

SYMBOLIC REFERENCES

Symbols may be used to refer to storage designations, register assignments,
constants, etc. For example:

Address Name Operation Argument
101 MAZE DATA H'F5'
102 LODA,3 MAZE

The symbolic label “MAZE” represents thie address 101. It is used in the
machine instruction at address 102 to tell the assembler to build an instruc-
tion LODA,3 101. The symbolic label, in this case, is a way for the
programmer to specify an address without knowing exactly what the address
should be when he writes the program. In this example, assume there was a
need to modify this sequence of code: a data statement was inserted between
the original two statements.

Address Name Operation Argument
99 MAZE DATA H'F5"
9A,9B DATA H'FE,3A’
9C LODA,3 MAZE

Even though there was a program change which caused the data at MAZE
to be located at address 99, the load instruction referencing the data didn’t
have to be rewritten because the assembler could provide the proper physical
address for the symbolic address MAZE. The instruction at address 9C will
be assembled as LODA,3 99.

SYMBOLIC ADDRESSING

When writing instructions in the symbolic assembler language for the
2650, the addresses may be expressed through symbolic equivalents. The
assembler will translate the symbolic address to its numeric equivalent
during the assembly process.

It is good programming practice to make all address references symbolic,

as this greatly eases the programmer’s job in producing a working program.
To make the register specification symbolic, one could equate a symbol to
the register number:

RG3 EQU 3
o o o
o o o0
e o o

LODA,RG3 MAZE

Forward References

A previously defined symbol is one which has appeared in the name field
before it is referenced (as above). In contrast, a forward reference is a
symbolic reference to a line of code when the symbol has not yet appeared
in the name field. For example:

ADDA,2 COEF
o o o
COEF DATA D'123'

Forward references may be used anywhere in a program with the following
exceptions:

1. The register/condition field.
2. The symbolic argument fields of EQU, RES, ORG and DATA statements.

Relative Addressing

The programmer may reference a memory cell either directly or via
relative addressing. To refer directly to a memory cell of symbolic address
MAIN, one has merely to use the name MAIN in the argument field of the
referencing instruction. For example:

BIRA,R2 MAIN

It is also possible to express the address of a memory cell symbolically
if some nearby cell is symbolically assigned. For example, to load the
memory cell which is 5 cells higher in memory than the cell named MAIN,
one need only to refer to it as MAIN+5:

LODA,2 MAIN+5

This later method is called relative addressing, and the relative count may be
given as + or -~ the maximum value which can be held in one integer variable
of the host computer’s FORTRAN compiler.

The Location Counter and Symbol “'$"”

There is one symbolic name, “$”, which is automatically defined by the
assembler. This single character name is always symbolically equated to the
assembler’s Location Counter. Since the Location Counter is used by the
assembler during the assembly process and is usually equated to the address

of the next byte to be assembled, it represents the address of the instruction
or data currently being specified. For example: BCTR,3 $+5. The branch
address will be interpreted by the assembler to be the address of the first
byte of the branch instruction plus 5 bytes.

Hardware Relative Addressing

When using instructions which use ‘“‘hardware relative addressing” (as
distinguished from relative addressing discussed earlier in this section), it is
important to realize the assembler will not only evaluate the expression
which is given as an operand address, but will convert it to a hardware
relative address (see the Hardware Specifications manual for a description of
the addressing modes). For example:

Address Name Operation Argument
100 SAM LODA,R2 PAL
103 SUBL,R2 -3
1056 BIRR,R3 SAM
107 next instruction

In this code, the BIRR instruction specifies hardware relative addressing.
Even though the equivalent value of the symbolic address SAM is 100, the
relative addressing instruction requires a displacement relative to the address
of the next sequential instruction. Therefore, the operand SAM will be
evaluated as = - (current location counter+length of BIRR instruction-SAM)
= -(105+2-100) = - (+7) = -7. Remember, where the hardware instruction
calls for ‘“hardware relative addressing”’, the expression in the operand field
will be evaluated as the displacement from the address of the next sequential
instruction. The value of this displacement may range from -64 to +63.

Indirect Addressing
The symbol “*”’ is used to specify indirect addressing. For example:

BCTA,3 *SAM
SAM ACON SUBR

In this code, the BCTA instruction specifies indirect addressing. The
assembler will set the indirect bit (byte #1, bit #7) for this instruction.

Auto-Increment and Auto-Decrement

The symbol “+’” and ‘-’ are used to specify auto-increment and auto-
decrement, respectively. For example:

LODA,RO BUF,R3,+

In this code, which specifies auto-increment, the assembler sets bits
#6 and #5 of byte #1 to “01” for this instruction. This option is specified
in the instruction set tables as (,X).

13

IV PROCESSOR INSTRUCTIONS

2650 machine instructions may be written in symbolic code. All features
provided by the assembler such as symbolic addressing and constant genera-
tion may be used. The fields described below are free form and are separated
by at least one blank character. The name, however, if present, must begin
in logical column 1.

LABEL OPERATION OPERAND COMMENTS
name opcode operand(s)
Where:

LABEL FIELD contains an optional label which the assembler will
assign as the symbolic address of the first byte of the

instruction.
OPERATION contains any of the 2650 processor mnemonic operation
FIELD codes as detailed in Appendix A, or any Assembler

Directive. This field may include an expression which
specifies a register or value as required by the instruction.
All symbols used in this field must have been previously
defined, i.e., no symbolic forward references are allowed.

OPERAND contains one or more operand elements such as indirect

FIELD address indicator, operand expression, index register
specification, auto-increment/auto-decrement indicator,
constant specification, etc., depending on the require-
ments of the particular instruction.

COMMENTS any characters following the argument field will be

FIELD reproduced in the assembly listing without processing.
The Comments Field must be separated from the argu-
ment field by at least one blank.

Note: Refer to Appendix A for a summary of the mnemonic op-codes and see
2650 Hardware Specification manual.

14

V DIRECTIVES TO THE 2650 ASSEMBLER

There are eleven directives which the assembler will recognize. These
assembler directives, although written much like processor instructions, are
simply commands to the assembler instead of to the processor. They direct
the assembler to perform specific tasks during the assembly process, but
have no meaning to the 2650 processor. These assembler directives are:

ORG
EQU
ACON
DATA
RES
END
EJE
PRT
SPC
TITL
PCH

ORG SET LOCATION COUNTER

The ORG directive sets the assembly Location Counter to the location
specified. The assembler assumes an ORG 0 at the beginning of the program
if no ORG statement is given.

LABEL

OPERATION OPERAND

{name),

ORG expression

Where:

name

expression

Examples:

LARR
STAR

optionally provides a symbol whose value will be
equated to the specified location.

when evaluated, results in a positive integer value. This
value will replace the contents of the location counter,
and bytes, subsequently assembled will be assigned
sequential memory addresses beginning with this value.
Any symbols which appear in the argument must have
been previously defined.

YORD
H'100’

16

EQU SPECIFY A SYMBOL EQUIVALENCE

The EQU directive tells the assembler to equate the symbol in the name
field with the evaluatable expression in the argument field.

LABEL OPERATION OPERAND

name EQU expression
Where:
name is the symbol which is to be assigned some value by the

execution of this directive.

expression may be resolved to zero or some integer value which is
containable in the host computer’s FORTRAN integer cell.
If a symbol is used in the argument, it must have been
previously defined.

Examples:

PAL EQU H'10F’

LOP2 EQU PAL

RAMP EQU SLOP-3+PAL

REG1 EQU 1

ACON DEFINE ADDRESS CONSTANT

The ACON directive tells the assembler to allocate two successive bytes of
storage. The evaluated argument will be stored in the two bytes, the low order
8 bits in the second byte and the high order bits in the first byte. This
directive is mainly intended to provide a double byte containing an address
for use as the indirect address for any instruction executing in the indirect
addressing mode.

LABEL OPERATION OPERAND
{ name } ACON expression
Where:
name is an optional label. If specified, the name becomes the
symbolic address of the first byte allocated.
expression is some expression which must resolve to a positive
value or zero. If positive, the value should be no larger
than that which can be contained in two bytes.
Example:

ASUB ACON SUBR

DATA DEFINES MEMORY DATA

The DATA directive tells the assembler to allocate the exact number
of bytes required to hold the data specified in the argument field of this
directive. Up to 16 bytes can be specified with one DATA directive, but
the argument field may not extend past logical column 72.

LABEL OPERATION OPERAND

{ name } ! DATA expression
Where:
name is an optional label. If used, the name becomes the
symbolic address of the first byte allocated by the
directive.
expression is a general constant, a self-defining constant or a
symbolic address. If a symbol is specified, it must have
been previously defined. A multiple constant specifica-
tion in the argument field will cause a corresponding
number of bytes to be allocated. Any other expression
that can be resolved to a single value will result in one
byte being allocated.
Examples:
PAL DATA LOGP
DATA H'03,22,FC,A1’
DATA +127
DATA D'28'

Note: If the expression evaluates to a value between 0 and 255 the result is an
eight bit absolute binary number. DATA +127 results in H'7F'". Also,
if the expression evaluates to a value which is less than O the result
is a 2’s complement, binary number. DATA H'- 5 results in H'FB'.

RES RESERVE MEMORY STORAGE

The RES directive tells the assembler to reserve contiguous bytes of
storage. The number of bytes so reserved is determined by the argument.
The reserved bytes are not set to a known value, but rather the effect of this
directive is to increment the location counter.

LABEL OPERATION OPERAND
{name} RES expression
Where:
name is an optional label. If used, the name becomes the
symbolic address of the first byte allocated.
expression is some evaluatable expression which must resolve to
some positive integer or zero. The value of this expres-
sion may not exceed the maximum positive value
containableina FORTR AN cell of the host computer. If a
symbol is specified, it must have been previously defined.
Example:
LOR RES 23
MASK RES LOR+5

RES H'1A’

END END OF ASSEMBLY

The END directive informs the assembler that the last statement to be
assembled has been input and the assembler may proceed with the assembly.
The END directive causes the assembler to communicate the program start

address to the object module.

LABEL OPERATION OPERAND
END expression
Where:
expression may be resolved to the starting address of the program.

If this parameter is not specified, the start address is set

to zero.

21

EJE EJECT THE LISTING PAGE

The EJE directive tells the assembler to advance the listing to the top of
the next page regardless of the line position on the current listing page.

The directive is used primarily to organize listing for documentation
purposes and does not appear in the listing.

T S - : ey

| L
LABEL OPERATION OPERAND i

EJE

PRT PRINTER CONTROL

The PRT directive tells the assembler to resume or discontinue printing
of the assembled program.

This directive is used primarily to shorten assembly time by listing only that
portion of the program which the user needs to see. Only the PRT OFF will
appear in the listing.

LABEL OPERATION OPERAND
PRT on
off

Note: PRT is set ON at the beginning of an assembly of the assembler.

SPC SPACE CONTROL

The SPC directive tells the assembler to skip or space a number of lines.

This directive is used primarily to organize listings for documentation
purposes and does not appear in the listing.

LABEL OPERATION OPERAND
SPC expression
Where:
expression is some evaluatable expression which must resolve to
some positive integer. If the value of this expression is
equal to, or greater than, the number of lines remaining
on the page, the effect is the same as the EJE directive.
Example:

SPC

24

TITL TITLE

The TITL directive tells the assembler to skip to the top of the next page
and insert a given title into the main header.

This directive is used primarily for documentation purposes and does not
appear in the listing.

LABEL OPERATION OPERAND
TITL expression
Where:
expression is the title information not to exceed forty character
positions.
Example:
TITL MAIN PROGRAM SUBROUTINE

PCH PUNCH CONTROL

The PCH directive tells the assembler to selectively resume or discontinue
the output of the load module.

This directive is used primarily to shorten assembly time when a load
module is not desired or when only a portion of the load module is desired.

LABEL i OPERATION OPERAND

PCH on
i off

Note: PCH is set ON at the beginning of an assembly by the assembler.
When PCH OFF is specified, any prior load module data is output.

VI THE ASSEM

LY PROCESS

The 2650 assembler translates symbolic source code into machine language
instructions. The assembler examines every source statement for syntactic
validity and produces the equivalent machine code for the 2650 processor.

This is a two pass assembler, which means, the entire source code is
scanned twice by the assembler. On the first pass, all defined labels and their
equivalent values are stored in a symbol table, the first byte of every instruc-
tion is fully determined, and some errors may be detected. During pass 2,
symbolic address references are replaced by their values, errors may be
detected, and a listing and load/object module is generated.

Symbol Table

The assembler builds and maintains a symbol table during the assembly
process. The symbol table contains an entry for each symbol in the assembled
program. The entry consists of the symbol itself and its value. Up to 400
symbols may be used in each program assembled. If a symbol, which
appears in the argument field of an instruction has never been defined
(never appeared in the NAME field), the assembler will generate an error
code on the listing because it is unable to resolve an undefined symbol and
will place zero as the unresolved value in the object module.

Location Counter

The assembler maintains a memory cell which it uses as a Location
Counter. This Location Counter keeps track of the address of the next
byte of storage to be allocated by the assembler. During coding, the
programmer may think of the Location Counter as containing the address
of the first byte of the instruction being written. In this assembler, the
Location Counter is also used to provide load information. This means
that the addresses displayed on an assembly listing are the actual addresses
which are to contain the corresponding information upon loading of the
object program.

Error Detection

During an assembly, the source program is checked for syntax errors.
If errors are found, appropriate notification is given and the assembly
proceeds. Although an assembled program containing errors generally will
not run properly, it is considered good practice to complete the assembly
to locate all errors at one time, rather than terminate it when an error
is encountered.

Error Codes

As shown in the listing illustration, there are three columns on the
listing in which an error indication may appear. An error displayed, in the
first column usually indicates that the error was in the Name Field, the
second column corresponds to the Operation Field, and the third corresponds
to the Argument Field. Sometimes because an error causes the assembler
to view the next field incorrectly, a valid field may be flagged as an error.
This is a consequence of the free format source language. A good rule is to
fix errors in a particular line of code as they are discovered. In this way,
erroneously flagged program errors may then be passed as valid.

&

7

The following alphabetic characters are printed in the error indicator
columns and imply the corresponding message.

L — Label error. The label contains too many characters, contains invalid
characters, has been previously defined, or is an invalid symbol.

O — Op-code error. The op-code mnemonic has not been recognized as a
valid mnemonic.

R — Register field error. The register field expression could not be evaluated,
or when evaluated, was less than O or greater than 3, or the register
field was not found.

S — Syntax error. The instruction has violated some syntax rule.

U — Undefined symbol. There is a symbol in the argument field which has not
been previously defined.

A — Argument error. The argument has been coded in such a way that it
cannot be resolved to a unique value.

P — Paging error. A memory access instruction has attempted to address
across a page boundary.

W — Warning. The assembler has detected a syntactically correct but unusual
construction. The error will not be counted and will not inhibit the
production of the object module.

Using the Assembler

The program is prepared by punching it into cards or otherwise trans-
ferring the program statements into a logical card image file. An ORG
statement usually occurs early in the program. If no ORG appears, the
assembler assumes an ORG 0 to occur before the first assembled statement.
An END statement must occur as the last statement. A program written in
the 2650 Symbolic Assembler Language should be preceded and possibly
followed by control cards for the particular computer system which is
being used. Illustration VI-1 shows the control cards for an IBM/370 DOS
system. Although the control cards may vary from system to system, the
format of the actual 2650 source program will be the same in the system.

The object module produced by the Assembler during pass 2 is directed
to the FORTRAN standard device #2, in this instance the card punch. The
source program is read by the assembler at standard device #1, the card
reader. In some systems the device assignments may be altered if desired,
through assign cards. In other systems, however, the assembler must be
recompiled with the device numbers desired being set in the main program
module.

28

ILLUSTRATION VI-1

ey
SUL X
x’ > R

ﬁaé’(’ ’?f ﬁ ...
anfa?ﬁﬂﬁz? o .

*512);1‘08‘;0&;8#13330) .

G
Q

2
4
%
7
7

ot svsgoe.siseor
%?3%‘3'@%:34%g’%?g@éﬁé'%ﬁ-%zaww
XEC PX§¥§A2M"” r16

2650 SOURCE PROGRAM

Object Module

The format of the object module is: The first card or card image is always
all 9’s.

bb999999999999999

The second and all subsequent data cards are in the following format. Logical
columns (1-5) contain the load address in decimal. Each three columns (6-71)
contain the data to be loaded in decimal. Each three columns represent a
byte of data; columns (6-8), (9-11), (12-14), etc. Beginning at the address
indicated in columns (1-5) each sequential data byte is to be loaded into
sequentially ascending addresses in memory. If a ‘999’ appears in a particular
data byte position, that byte of information is to be ignored by the loader
and the contents of the corresponding location is not modified.

Because there is address and data on every card image, each card image is
independent. Therefore, the order of the data cards is unimportant and
patch cards may be prepared manually by preparing a data card in the object
module format.

The last two card images each serve a special purpose. The next to last
card contains a series of '~1’ punches. This card is used to signal the end of
load information and has no other function.

The last card, which follows the -1’ card, contains either the start
address (specified in assembler END statement) or zero in columns (1-5),
the remainder of the card contains -1’ punches which have no meaning.

29

ASSEMBLY LISTING

Illustration VI-2 is a sample of a program listing produced by the 2650

Assembler. The following explanations are keyed to the listing.

1.

Page heading — which displays the current version and level of the 2650
Assembler.

. Line number — every assembled line is assigned a line number for the

programmer’s convenience.

. Address column — The numbers in this column are equal to the value

of the assembly Location Counter and indicate the address at which the
first byte (B1) is to be loaded.

. Label column — If there is a symbol in the Label Field of a line of code,

the value of the label will appear in this column. For example, in line
number 17 the value of the label SORT is H'0007".

. Data field — This field describes the data bytes which are to be stored

sequentially starting at the address in the Address Column.

. Error columns — These columns may contain the error codes as detailed

elsewhere in this chapter.

. Source code — This area of the listing reproduces the source code as it was

read by the assembler.

8. Page number — Every page of the listing is numbered sequentially.

. Cumulative errors — This field indicates the total of errors detected by the

assembler during the assembly process. Warning messages (W) are not
included in this total.

ILLUSTRATION VI-2

0 %;mimwmmmw%m :

- , : 1418 aN3
- Mzawwamm;mmsm»;@wmmnmzzigfggmw;;;eigmmm;iaw@s s 5300 6300

_mwwwmm 34 0L ¥333N€ 40 HLONIT st viva N37 : 4C 8300 8300 &
002 9¥3 - 8300 8¢

%&&t}x%&é\o«is?%i&&g A i

.‘.aﬁququ aNDIIS N

XIvY8 4001 d031 NN*¥1d8 {9 91
WON mwﬁx«q:wum$mfg;mwwuaw;;n«nnmhmﬁaée;ezsz\z;;:i. 53 &

- 0 93% C1 ¥38WNN ¥39uV1 3IAOW 14 740
- ;xmmwwugd 15814 NI d3EWON 83TIWWS 3Y0LS 24*T-4n3 OHvyis

0 938 QINI %38WON ¥3ITIVWS Jv0] 2ut4ng o¥evan
. 1 93¥ D) MIUNON ¥IOUYT IAON 14 7d1S
¥IVE8 d007T *CGNODI3S = 40 47 1SHl 4 41 d0071 1943404 vl 6%
oo HIHWON ONGDJ3S HIEIM YVdWOD +%c¥‘dng Owtvwdd g5 e 47
QM«Q INIZHND 40 83 8WNAN 1S¥14 0vO1 Zet4ng o%vgod 53 09 30
\ o304 . K ‘
31314W03 NIILIVH3 LI ¢Tvny3 41 IN3 2¥'vw3d <dood 10 00 33 5100 meQ \
zz§§§§§s§§§§§§§gs;mmmmwww&mmw:mwmmmwiw;wwu O0u32 23'v001 190§ G0 00 30 2100 2160 %
wwmaﬁm xwm@w&p NOTLvY¥3Ll 3NO ONIWd04¥3d 404 aNTLINDAZENS = : £2 ‘
* . if
; ‘ , 1H . oy 1100 1z
awwu« % V8 40071 *0d3Z 1IN 41 1208 €' uNyg 3600 peg
3ANILIOC¥ENS 1IYD 40¥37 10N 41 164NS €u*ynsa

- 3000 mﬂm
«%é:%ﬁé&ési%%aﬁ&hxmmu 40071 3¥01s

o e e il K%f%&sfgii%xi\z%xii&

¥3INNODD 4007 IN3W3I¥I3Q 1 ed‘lans 1wos 10 v 7000 000 11
14 axwmsuM%qxwamxzwmm 138 ... 18d3 = 205 L

o mwxm H1ON3T mmmmbm Qﬂou ~ N31 €¥*V0D7 1¥is - 83 00 40
\ WYHO0Ud NIVH 3 .

IINNOTD d INJD edtwuis . 1000 47 _ 5p00

Q&NN

z.:il ZTittksr\ ;;i;:s!;xi;f,. xzxmwmi

APPENDIX A

SUMMARY OF 2650 INSTRUCTION MNEMONICS

In these tables parentheses are used to indicate options. In no case are they
coded in any instruction. The following abbreviations are used:

— register expression, must evaluate to 0 <r < 3.

— value expression

— indirect indicator

— address expression

— index register expression

— index register expression with optional auto-increment or auto-
decrement

NOTE:
— the use of the indirect indicator is always optional.
— when an index register expression is specified, it can be followed by ', + or

, — which indicates use of auto-increment or auto-decrement of the index
register. Example:

MM xR

LODA, 0 DPR,R3,+

BXA, BSXA are exceptions and do not permit auto-increment or auto-decrement.

— even though an address expression is specified in a hardware relative addressing
instruction, the assembler develops it into a value of (-64 < V < +63).

— a memory reference instruction which requires indexing may use only register
0 as the destination of the operation.

— if an index register expression is used with either the BXA or BSXA instruc-
tions it must specify index register #3 (either register bank) for indexing. Any
other value in the index field will produce an error during assembly. However,
it is not necessary to use an index register expression with these instructions;
a blank in this field will default to register 3.

LOAD/STORE INSTRUCTIONS Length (bytes)
LODZ r Load Register Zero 1
LODI,r v Load Immediate 2
LODR,r (*)a Load Relative 2
LODA,r (*)a(,X) Load Absolute 3
STRZ r Store Register Zero 1
STRR,r (%)a Store Relative 2
STRA,r (*)a(,X) Store Absolute 3

ARITHMETIC INSTRUCTIONS

ADDZ r Add to Register Zero 1
ADDI,r v Add Immediate 2
ADDR,r (%*)a Add Relative 2
ADDAr (*)a(,X) Add Absolute 3
SUBZ r Subtract from Register Zero 1
SUBI,r v Subtract Immediate 2
SUBR,x (*)a Subtract Relative 2
SUBA,r (*)a(,X) Subtract Absolute 3
LOGICAL INSTRUCTIONS

ANDZ r And to Register Zero 1
ANDI,r v And Immediate 2
ANDR,r (*)a And Relative 2
ANDAr (#%)a(,X) And Absolute 3
IORZ r Inclusive or to Register Zero 1
IORI,x v Inclusive or Immediate 2
IORR,r (%*)a Inclusive or Relative 2
IORA) (*)a(,X) Inclusive or Absolute 3
EORZ r Exclusive or to Register Zero 1
EORI,r v Exclusive or Immediate 2
EORR,r (%*)a Exclusive or Relative 2
EORA,x (#)a(,X) Exclusive or Absolute 3
COMPARISON INSTRUCTIONS

COMZ r Compare to Register Zero 1
COMI,x % Compare Immediate 2
COMR,r (%*)a Compare Relative 2
COMA,r (*)a(,X) Compare Absolute 3

32

ROTATE INSTRUCTIONS Length (bytes)

RRR,r Rotate Register Right 1

RRL,r Rotate Register Left 1

BRANCH INSTRUCTIONS

BCTR,v (*)a Branch on Condition True Relative 2

BCFR,v (%*)a Branch on Condition False Relative 2

BCTA,v (%)a Branch on Condition True Absolute 3

BCFAyv (%)a Branch on Condition False Absolute 3

BRNR,r (%)a Branch on Register Non-Zero Relative 2

BRNA (x)a Branch on Register Non-Zero Absolute 3

BIRR,r (%)a Branch on Incrementing Register Relative 2

BIRA;r (*)a Branch on Incrementing Register Absolute 3

BDRR,r (*)a Branch on Decrementing Register Relative 2

BDRAx (*)a Branch on Decrementing Register Absolute 3

BXA (*)a(,x) Branch Indexed Absolute, Unconditional 3

ZBRR (*)a Zero Branch Relative, Unconditional 2

SUBROUTINE BRANCH/RETURN INSTRUCTIONS

BSTR,v (*)a Branch to Subroutine on Condition 2
True, Relative

BSFR,v (%x)a Branch to Subroutine on Condition 2
False, Relative

BSTA,v (*)a Branch to Subroutine on Condition 3
True, Absolute

BSFA,v (%)a Branch to Subroutine on Condition 3
False, Absolute

BSNR,r (%)a Branch to Subroutine on Non-Zero 2
Register, Relative

BSNA;r (*)a Branch to Subroutine on Non-Zero 3

Register, Absolute
BSXA (*)a(,x) Branch to Subroutine, Indexed, Unconditional 3

RETC,v Return From Subroutine, Conditional 1

RETE,v Return From Subroutine and Enable 1
Interrupt, Conditional

ZBSR (*),a Zero Branch to Subroutine 2

Relative, Unconditional

PROGRAM STATUS INSTRUCTIONS

LPSU Load Program Status, Upper 1
LPSL Load Program Status, Lower 1
SPSU Store Program Status, Upper 1
SPSL Store Program Status, Lower 1
CPSU v Clear Program Status, Upper, Selective 2
CPSL \ Clear Program Status, Lower, Selective 2
PPSU v Preset Program Status, Upper, Selective 2
PPSL v Preset Program Status, Lower, Selective 2
TPSU v Test Program Status, Upper, Selective 2
TPSL v Test Program Status Lower, Selective 2
INPUT/OUTPUT INSTRUCTIONS

WRTD,r Write Data 1
REDD,r Read Data 1
WRTC,r Write Control 1
REDC,r Read Control 1
WRTE,r v Write Extended 2
REDE,r v Read Extended 2
MISCELLANEOUS INSTRUCTIONS

HALT Halt, Enter Wait State 1
DAR,x Decimal Adjust Register 1
TMILx v Test Under Mask Immediate 2
NOP No Operation 1

APPENDIX B

NOTES ABOUT THE 2650 PROCESSOR

1.

AUTO-INCREMENT, DECREMENT of index register. This feature is
optional on any instruction which uses indexing with the exception of
BXA and BSXA. The increment or decrement occurs before the index
register is added to the displacement in the instruction.

. The contents of registers when used for indexing are considered to be

unsigned absolute numbers. Consequently, index registers can contain
values from 0 to 255. They ‘“‘wrap-around” so that the number following
255 is 0.

3. Only absolute addressing instructions can be indexed.

. The Branch on Incrementing Register or Decrementing Register instruc-

tions perform the increment or decrement before testing for zero. The
only time the branch address is not taken, is when the register contains
Zero.

. All hardware relative addressing is implemented as modulo 8K and there-

fore relative addressing across the top of a page boundary will result in a
physical address near the bottom of the page being accessed. For example:

1FFC,4 LODR,R2 $+16

This instruction results, during execution, in accessing the byte at location
000C in the same page as the instruction. Similarly, negative relative
addresses from near the bottom of a page may result in an effective
address near the top of the page.

. Page boundaries cannot be indexed across.

7. Data can always be accessed across a page boundary through use of

relative indirect or absolute indirect addressing modes.

8. The only way to transfer control to a program in some other page is to
branch absolute or branch indirectly to the new page. Program execution
cannot flow across a page boundary.

9. Unconditional branch or branch to subroutine instructions are coded by
specifying a value of 3 in the register/value field of BSTA, BSTR, BCTA
or BCTR. Example:

UN EQU 3

® o0

o 0o o0

® o o

BSTA,UN PAL
BCTR,3 LOOP

Unconditional branches on conditions false (BCFA, BCFR) are not allowed.

34

APPENDIX C

ASC II AND EBCDIC CODES

This table presents the only characters that the assembler will recognize
in an A or E type constant and their equivalent codes in hexadecimal.

VALID EBCDIC
CHARACTERS CODE
FO
F1
F2
F3
F4
F5
F6
F7
F8
F9
C1
C2
C3
C4
C5
Co6
Cc1
C8
C9
D1
D2
D3
D4
D5
D6
D7
D8
D9
E2
E3
E4

CHROOUVOZZON RS TIQHEHOQOWR» ©0-090 0 b whorFOo

ASCII
CODE
30
31
32
33
34
35
36
37
38
39
41
42
43
44
45
46
417
48
49
4A
4B
4C
4D
4E
4F
50
51
52
53
54
55

VALID
CHARACTERS

O v — *'Gﬁ-go——«.*./-\

|

|

~

-

R

—or «

EBCDIC ASCII

CODE
E5
E6
E7
E8
E9
40
4B
4D
4E
4F
50
5A
5B
5C
5D
5E
5F
60
61
6B
6C
6D
6E
6F
TA
7B
7C
7D
TE
7F
4C

*may have different graphic symbols on different computer systems

CODE
56
57
58
59
5A
20
2E
28
2B
7C
26
21
24
2A
29
3B
TE*
2D
2F
2C
25
S5F*
3E
3F
3A
23
40
21
3D
22
3C

35

COMPLETE ASCIICHARACTER SET

APPENDIX D

(MSB) by 0 1
bg 1 1
s | o 1

bg bs by (b
0 0 0 0 Sp P
0 0 0 1 ! qa
0 0 1 0 " r
0 0 1 1 # s
0 1 0 0 $ t
0 1 0 1 % u
0 1 1 0 & v
0 1 1 1 ! w
1 0 0 0 { x
1 0 0 1) y
1 0 1 0 * z
1 0 1 1 + {
1 1 0 0 ' |
1 1 0 1 - }
1 1 1 0 ~
1 1 1 1 / DEL

68
137
274
549

1 099

[IF SIS

16
33
67
134

268
536
073
147

294
589
179
359

719
438
877
755

511

65
131
262
524

048
097
194
388

777
554
108
217

435
870
741
483

967
934
869
738

476
953
906
813

627

21’\

oo~ -

16

64
128

256
512
024
048

096
192
384
768

536
072
144
288

576
152
304
608

216
432
864
728

456
912
824
648

296
592
184
368

736
472
944
888

776

wNhNH=O 3

Nown s

2"['\

1.0
0.5
0.25
0.125

0.062
0.031
0.015
0.007

0.003
0.001
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000

25
625
812

906
953
976
488

244
122
061
030

015
007
003
001

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

000

25

125
562
281

140
070
035
517

258
629
814
907

953
476
238
119

059
029
014
007

003
001
000
000

000
000
000
000

000
000
000
000

000

[SNV,]

625
312
156
578

789
394
697
348

674
837
418
209

604
802
901
450

725
862
931
465

232
116
058
029

014
007
003
001

000

25
125

062
531
265
632

316
158
579
289

644
322
161
580

290
645
322
661

830
415
207
103

551
275
637
818

909

APPENDIX E

POWERS OF TWO TABLE

5
25
625
812

406
203
101
550

775
387
193
596

298
149
574
287

643
321
660
830

915
957
978
989

494

25

125
562
781

390
695
847
923

461
230
615
307

653
826
913
456

228
614
807
403

701

625
312
656
828

914
957
478
739

865
934
467
733

366
183
091
545

772

25
125

062
031
515
257

628
814
407
703

851
425
712
856

928

45
625
812

906
453
226
613

806
903
951

475

237

25

125
562
281

640
320
660

830

915

625
312
156

078

039

25
125

062 5

37

APPENDIX F

HEXADECIMAL-DECIMAL CONVERSION TABLES

From hex: locate each hex digit in its corresponding column position and note
the decimal equivalents. Add these to obtain the decimal value.

From decimal: (1) locate the largest decimal value in the table that will fit into
the decimal number to be converted, and (2) note its hex equivalent and hex
column position. (3) Find the decimal remainder. Repeat the process on this and
subsequent remainders.

Note: Decimal, hexadecimal, (and binary) equivalents of all
numbers from O to 255 are listed on panels 9 - 12.

HEXADECIMAL COLUMNS

6 5 4 3 2 1
HEX = DEC |HEX = DEC |HEX = DEC |HEX = DEC | HEX = DEC | HEX = DEC
0 oo oo 0|0 o 0 o 0 O
1 1,048576 |1 65536 |1 409 | 1 256 | 1 16 | 1 1
2 2,097,152 |2 131072 (2 8192 2 512 2 32 | 2 2
3 3,145,728 |3 196,608 |3 12,288 /3 768 | 3 48 | 3 3
4 4194304 |4 262,144 (4 16,384 | 4 1024 | 4 64 | 4 4
5 5,242,880 |5 327,680 |5 20480 |5 1280 |5 8 | 5 &
6 6,291,456 |6 393,216 |6 24576 | 6 1536 | 6 96 | 6 6
7 7,340,032 |7 458,752 |7 28672 | 7 1792 | 7 112 | 7 7
8 8388608 8 524288 8 32,768 8 2048 | 8 128 | 8 8
9 9,437,184 |9 589824 |9 36864 9 2304 9 144 | 9 9
A 10,485,760 | A 655,360 | A 40,960 | A 2560 | A 160 | A 10
B 11,534,336 |B 720,896 B 45056 B 2816 B 176 | B 11
C 12,582,912 |C 786,432 | C 49,152 | C 3,072 | C 192 | C 12
D 13,631,488 |D 851968 D 53,248 D 3328 | D 208 | D 13
E 14,680,064 E 917,504 E 57,344 E 3584 E 224 | E 14
F 15,728,640 F 983,040 F 61,440 | F 3840 | F 240 | F 15

0123 4567 0123 : 4567 0123 4567

BYTE BYTE BYTE

The table provides for direct conversion of hexadecimal and decimal
numbers in these ranges:

Hexadecimal Decimal
000 to FFF 0000 to 4095

In the table, the decimal value appears at the intersection of the row
representing the most significant hexadecimal digits (162 and 16!) and
the column representing the least significant hexadecimal digit (16°).

Example: C21,4 = 3105,

HEX 0 1 2

Cco 3072 3073 3074
C1 3088 3089 3090
C2 3104 3105 3106
C3 3120 3121 3122

APPENDIX F Cont'd.

0000
0016
0032
0048
0064
0080
0096
0112
0128
0144
0160
0176
0192
0208
0224
0240

0256
0272
0288
0304
0320
0336
0352
0368
0384
0400
0416
0432
0448
0464
0480
0496

0512
0528
0544
0560
0576
0592
0608
0624
0640
0656
0672
0688
0704
0720
0736
0752

u768
0784
0800
0816
0832
0848
0864
0880
0896
0912
0928
0944
0960
0976
0992
1008

0001
0017
0033
0049
0065
0081
0097
0113
0129
0145
0161
0177
0193
0209
0225
0241

0257
0273
0289
0305
0321
0337
0353
0369
0385
0401
0417
0433
0449
0465
0481
0497

0513
0529
0545
0561
0577
0593
0609
0625
0641
0657
0673
0689
0705
0721
0737
0753

0769
0785
0801
0817
0833
0849
0865
0881
0897
0913
0929
0945
0961
0977
0993
1009

0002
0018
0034
0050
0066
0082
0098
0ll4
0130
0146
0162
0178
0194
0210
0226
0242

0258
0274
0290
0306
0322
0338
0354
0370
0386
0402
0418
0434
0450
0466
0482
0498

~

0514
0530
0546
0562
0578
0594
0610
0626
0642
0658
0674
0690
0706
0722
0738
0754

0770
0786
0802
081e
0834
0850
0866
0882
0898
0914
0930
0946
0962
0978
0994
1010

0003
0019
0035
0051
0067
0083
0099
0115
0131
0147
0163
0179
0195
0211
0227
0243

0259
0275
0291
0307
0323
0339
0355
0371
0387
0403
0419
0435
0451
0467
0483
0499

0515
0531
0547
0563
0579
0595
0611
0627
0643
0659
0675
0691
0707
0723
0739
0755

0771
0787
0803
0819
0835
0851
0867
0883
0899
0915
0931
0947
0963
0979
0995
1011

0004
0020
0036
0052
0068
0084
0100
0116
0132
0148
0164
0180
0196
0212
0228
0244

0260
0276
0292
0308
0324
0340
356
0372
0388
0404
0420
0435
0452
0468
0484
0500

0516
0532
0548
0564
0580
0596
0612
0628
0644
0660
0676
0692
0708
0724
0740
0756

0772
0788
0804
0820
0836
0852
0868
0884
0900
0916
0932
0948
0964
0980
0996
1012

0005
0021
0037
0053
0069
0085
0101
0117
0133
0149
0165
0181
0197
0213
0229
0245

0261
0277
0293
0309
0325
0341
0357
0373
0389
0405
0421
0437
0453
0469
0485
0501

0517
0533
0549
0565
0581
0597
0613
0629
0645
0661
0677
0693
0709
0725
0741
0757

0773
0789
0805
0821
0837
0853
0869
0885
0901
0917
0933
0949
0965
0981
0997
1013

0006
0022
0038
0054
0070
0086
0102
0118
0134
0150
0166
0182
0198
0214
0230
0246

0262
0278
0294
0310
0326
0342
0358
0374
0390
0406
0422
0438
0454
0470
0486
0502

0518
0534
0550
0566
0582
0598
0614
0630
0646
0662
0678
0694
0710
0726
0742
0758

0774
0790
0806
0822
0838
0854
0870
0886
0902
0918
0934
0950
0966
0982
0998
1014

0007
0023
0039
0055
0071
0087
0103
0119
0135
0151
0167
0183
0199
0215
0231
0247

0263
0279
0295
0311
0327
0343
0359
0375
0391
0407
0423
0439
0455
0471
0487
0503

0519
0535
0551
0567
0583
0599
0615
0631
0647
0663
0679
0695
0711
0727
0743
0759

0775
0791
0807
0823
0839
0855
0871
0887
0903
0919
0935
0951
0967
0983
0999
1015

8

0008
0024
0040
0056
0072
0088
0104
0120
0136
0152
0168
0184
0200
0216
0232
0248

0264
0280
0296
0312
0328
0344
0360
0376
0392
0408
0424
0440
0456
0472
0488
0504

0520
0536
0552
0568
0584
0600
0616
0632
0648
0664
0680
0696
0712
0728
0744
0760

0776
0792
0808
0824
0840
0856
0872
0888
0904
0920
0936
0952
0968
0984
1000
1016

9

0009
0025
0041
0057
0073
0089
0105
0121
0137
0153
0169
0185
0201
0217
0233
0249

0265
0281
0297
0313
0329
0345
0361
0377
0393
0409
0425
0441
0457
0473
0489
0505

0521
0537
0553
0569
0585
0601
0617
0633
0649
0665
0681
0697
0713
0729
0745
0761

0777
0793
0809
0825
0841
0857
0873
0889
0905
0921
0937
0953
0969
0985
1001
1017

A

0610
0026
0042
0058
0074
0090
0106
0122
0138
0154
0170
0186
0202
0218
0234
0250

0266
0282
0298
0314
0330
0346
0362
0378
0394
0410
0426
0442
0458
0474
0490
0506

0522
0538
0554
0570
0586
0602
0618
0634
0650
0666
0682
0698
0714
0730
0746
0762

0778
0794
0810
0826
0842
0858
0874
0890
0906
0922
0938
0954
0970
0986
1002
1018

0011
0027
0043
0059
0075
0091
0107
0123
0139
0155
0171
0187
0203
0219
0235
0251

0267
0283
0299
0315
0331
0347
0363
0379
0395
0411
0427
0443
0459
0475
0491
0507

0523
0539
0555
0571
0587
0603
0619
0635
0651
0667
0683
0699
0715
0731
0747
0763

0779
0795
0811
0827
0843
0859
0875
0891
0907
0923
0939
0955
0971
0987
1003
1019

C

0012
0028
0044
0060
0076
0092
0108
0124
0140
0156
0172
0188
0204
0220
0236
0252

0268
0284
0300
0316
0332
0348
0364
0380
0396
0412
0428
0444
0460
0476
0492
0508

0524
0540
0556
0572
0588
0604
0620
0636
0652
0668
0684
0700
0716
0732
0748
0764

0780
0796
0812
0828
0844
0860
0876
0892
0908
0924
0940
0956
0972
0988
1004
1020

D

0013
0029
0045
0061
0077
0093
0109
0125
0141
0157
0173
0189
0205
0221
0237
0253

0269
0285
0301
0317
0333
0349
0365

0381
0397

0413
0429
0445
0461
0477
0493
0509

0525
0541
0557
0573
0589
0605
0621
0637
0653
0669
0685
0701
0717
0733
0749
0765

0781
0797
0813
0829
0845
0861
0877
0893
0909
0925
0941
0957
0973
0989
1005
1021

E

0014
0030
0046
0062
0078
0094
0110
0126
0142
0158
0174
0190
0206
0222
0238
0254

0270
0286
0302
0318
0334
0350
0366
0382
0398
0414
0430
0446
0462
0478
0494
0510

0526
0542
0558
0574
0590
0606
0622
0638
0654
0670
0686
0702
0718
0734
0750
0766

0782
0798
0814
0830
0846
0862
0878
0894
0910
0926
0942
0958
0974
0990
1006
1022

F

0015
0031
0047
0063
0079
0095
0111
0127
0143
0159
0175
0191
0207
0223
0239
0255

0271
0287
0303
0319
0335
0351
0367
0383
0399
0415
0431
0447
0463
0479
0495
0511

0527
0543
0559
0575
0591
0607
0623
0639
0655
0671
0687
0703
0719
0735
0751
0767

0783
0799
0815
0831
0847
0863
0879
0895
0911
0927
0943
0959
0975
0991
1007
1023

39

APPENDIX F Cont'd.

1024
1040
1056
1072
1088
1104
1120
1136
1152
1168
1184
1200
1216
1232
1248
1264

1280
1296
1312
1328
1344
1360
1376
1392
1408
1424
1440
1456
1472
1488
1504
1520

1536
1552
1568
1584
1600
1616
1632
1648
1664
1680
1696
1712
1728
1744
1760
1776

1792
1808
1824
1840
1856
1872
1888
1904
1920
1936
1952
1968
1984
2000
2016
2032

1025
1041
1057
1073
1089
1105
1121
1137
1153
1169
1185
1201
1217
1233
1249
1265

1281
1297
1313
1329
1345
1361
1377
1393
1409
1425
1441
1457
1473
1489
1505
1521

1537
1553
1569
1585
1601
1617
1633
1649
1665
1681
1697
1713
1729
1745
1761
1777

1793
1809
1825
1841
1857
1873
1889
1905
1921
1937
1953
1969
1985
2001
2017
2033

1026
1042
1058
1074
1090
1106
1122
1138
1154
1170
1186
1202
1218
1234
1250
1266

1282
1298
1314
1330
1346
1362
1378
1394
1410
1426
1442
1458
1474
1490
1506
1522

1538
1554
1570
1586
1602
1618
1634
1650
1666
1682
1698
1714
1730
1746
1762
1778

1794
1810
1826
1842
1858
1874
1890
1906
1922
1938
1954
1970
1985
2002
2018
2034

1027
1043
1059
1075
1091
1107
1123

1139 .

1155
1171
1187
1203
1219
1235
1251
1267

1283
1299
1315
1331
1347
1363
1379
1395
1411
1427
1443
1459
1475
1491
1507
1523

1539
1555
1571
1587
1603
1619
1635
1651
1667
1683
1699
1715
1731
1747
1763
1779

1795
1811
1827
1843
1859
1875
1891
1907
1923
1939
1955
1971
1987
2003
2019
2035

1028
1044
1060
1076
1092
1108
1124
1140
1156
1172
1188
1204
1220
1236
1252
1268

1284
1300
1316
1332
1348
1364
1380
1396
1412
1428
1444
1460
1476
1492
1508
1524

1540
1556
1572
1588
1604
1620
1636
1652
1668
1684
1700
1716
1732
1748
1764
1780

1796
1812
1828
1844
1860
1876
1892
1908
1924
1940
1956
1972
1988
2004
2020
2036

1029
1045
1061
1077
1093
1109
1125
1141
1157
1173
1189
1205
1221
1237
1253
1269

1285
1301
1317
1333
1349
1365
1381
1397
1413
1429
1445
1461
1477
1493
1509
1525

1541
1557
1573
1589
1605
1621
1637
1653
1669
1685
1701
1717
1733
1749
1765
1781

1797
1813
1829
1845
1861
1877
1893
1909
1925
1941
1957
1973
1989,
2005
2021
2037

1030
1046
1062
1078
1094
1110
1126
1142
1158
1174
1190
1206
1222
1238
1254
1270

1286
1302
1318
1334
1350
1366
1382
1398
1414
1430
1446
1462
1478
1494
1510
1526

1542
1558
1574
1590
1606
1622
1638
1654
1670
1686
1702
1718
1734
1750
1766
1782

1798
1814
1830
1846
1862
1878
1894
1910
1926
1942
1958
1974
1990
2006
2022
2038

1031
1047
1063
1079
1095
1111
1127
1143
1159
1175
1191
1207
1223
1239
1255
1271

1287
1303
1319
1335
1351
1367
1383
1399
1415
1431
1447
1463
1479
1495
1511
1527

1543
1559
1575
1591
1607
1623
1639
1655
1671
1687
1703
1719
1735
1751
1767
1783

1799
1815

1831

1847
1863
1879
1895
1911
1927
1943
1959
1975
1991
2007
2023
2039

1032
1048
1064
1080
1096
1112
1128
1144
1160
1176
1192
1208
1224
1240
1256
1272

1288
1304
1320
1336
1352
1368
1384
1400
1416
1432
1448
1464
1480
1496
1512
1528

1544
1560
1576
1592
1608
1624
1640
1656
1672
1688
1704
1720
1736
1752
1768
1784

1800
1816
1832
1848
1864
1880
1896
1912
1928
1944
1960
1976
1992
2008
2024
2040

1033
1049
1065
1081
1097
1113
1129
1145
1161
1177
1193
1209
1225
1241
1257
1273

1289
1305
1321
1337
1353
1369
1385
1401
1417
1433
1449
1465
1481
1497
1513
1529

1545
1561
1577
1593
1609
1625
1641
1657
1673
1689
1705
1721
1737
1753
1769
1785

1801
1817
1833
1849
1865
1881
1897
1913
1929
1945
1961
1977
1993
2009
2025
2041

1034
1050
1066
1082
1098
1114
1130
1146
1162
1178
1194
1210
1226
1242
1258
1274

1290
1306
1322
1338
1354
1370
1386
1402
1418
1434
1450
1466
1482
1498
1514
1530

1546
1562
1578
1594
1610
1626
1642
1658
1674
1690
1706
1722
1738
1754
1770
1786

1802
1818
1834
1850
1866
1882
1898
1914
1930
1946
1962
1978
1994
2010
2026
2042

1035
1051
1067
1083
1099
1115
1131
1147
1163
1179
1195
1211
1227
1243
1259
1275

1291
1307
1323
1339
1355
1371
1387
1403
1419
1435
1451
1467
1483
1499
1515
1531

1547
1563
1579
1595
1611
1627
1643
1659
1675
1691
1707
1723
1739
1755
1771
1787

1803
1819
1835
1851
1867
1883
1899
1915
1931
1947
1963
1979
1995
2011
2027
2043

1036
1052
1068
1084
1100
1116
1132
1148
1164
1180
1196
1212
1228
1244
1260
1276

1292
1308
1324
1340
1356
1372
1388
1404
1420
1436
1452
1468
1484
1500
1516
1532

1548
1564
1580
1596
1612
1628
1644
1660
1676
1692
1708
1724
1740
1756
1772
1788

1804
1820
1836
1852
1868
1884
1900
1916
1932
1948
1964
1980
1996
2012
2028
2044

1037
1053
1069
1085
1101
1117
1133
1149
1165
1181
1197
1213
1229
1245
1261
1277

1293
1309
1325
1341
1357
1373
1389
1405
1421
1437
1453
1469
1485
1501
1517
1533

1549
1565
1581
1597
1613
1629
1645
1661
1677
1693
1769
1725
1741
1757
1773
1789

1805
1821
1837
1853
1869
1885
1901
1917
1933
1949
1965
1981
1997
2013
2029
2045

1038
1054
1070
1085
1102
1118
1134
1150
1166
1182
1198
1214
1230
1246
1262
1278

1294
1310
1326
1342
1358
1374
1390
1406
1422
1438
1454
1470
1486
1502
1518
1534

1550
1566
1582
1598
1614
1630
1646
1662
1678
1694
1710
1726
1742
1758
1774
1790

1806
1822
1838
1854
1870
1886
1902
1918
1934
1950
1966
1982
1998
2014
2030
2046

1039
1055
1071
1087
1103
1119
1135
1151
1167
1183
1199
1215
1231
1247
1263
1279

1295
1311
1327
1343
1359
1375
1391
1407
1423
1439
1455
1471
1487
1503
1519
1535

1551
1567
1583
1599
1615
1631
1647
1663
1679
1695
1711
1727
1743
1759
1775
1791

1807
1823
1839
1855
1871
1887
1903
1919
1935
1951
1967
1983
1999
2015
2031
2047

40

APPENDIX F Cont'd.

0

2048
2064
2080
2096
2112
2128
2144
2160
2176
2192
2208
2224
2240
2256
2272
2288

2304
2320
2336
2352
2368
2384
2400
2416
2432
2448
2464
2480
2496
2512
2528
2544

2560
2576
2592
2608
2624
2640
2656
2672
2688
2704
2720
2736
2752
2768
2784
2800

2816
2832
2848
2864
2880
2896
2912
2928
2944
2960
2976
2992
3008
3024
3040
3056

1

2049
2065
2081
2097
2113
2129
2145
2161
2177
2193
2209
2225
2241

2257
2273
2289

2305
2321
2337
2353
2369
2385
2401
2417
2433
2449
2465
2481
2497
2513
2529
2545

2561
2577
2593
2609
2625
2641
2657
2673
2689
2705
2721
2737
2753
2769
2785
2801

2817
2833
2849
2865
2881
2897
2913
2929
2945
2961
2977
2993
3009
3025
3041
3057

2

2050
2066
2082
2098
2114
2130
2146
2162
2178
2194
2210
2226
2242
2258
2274
2290

2306
2322
2338
2354
2370
2386
2402
2418
2434
2450
2466
2482
2498
2514
2530
2546

2562
2578
2594
2610
2626
2642
2658
2674
2690
2706
2722
2738
2754
2770
2786
2802

2818
2834
2850
2866
2882
2898
2914
2930
2946
2962
2978
2994
3010
3026
3042
3058

3

2051
2067
2083
2099
2115
2131
2147
2163
2179
2195
2211
2227
2243
2259
2275
2291

2307
2323
2339
2355
2371
2387
2403
2419
2435
2451
2467
2483
2499
2515
2531
2547

2563
2579
2595
2611
2627
2643
2659
2675
2691
2707
2723
2739
2755
2771
2787
2803

2819
2835
2851
2867
2883
2899
2915
2931
2947
2963
2979
2995
3011
3027
3043
3059

4

2052
2068
2084
2100
2116
2132
2148
2164
2180
2196
2212
2228
2244
2260
2276
2292

2308
2324
2340
2356
2372
2388
2404
2420
24386
2452
2468
2484
2500
2516
2532
2548

2564
2580
2596
2612
2628
2644
2660
2676
2692
2708
2724
2740
2756
2772
2788
2804

2820
2836
2852
2868
2884
2900
2916
2932
2948
2964
2980
2996
3012
3028
3044
3060

5

2053
2069
2085
2101
2117
2133
2149
2165
2181
2197
2213
2229
2245
2261
2277
2293

2309
2325
2341
2357
2373
2389
2405
2421
2437
2453
2469
2485
2501
2517
2533
2549

2565
2581
2597
2613
2629
2645
2661
2677
2693
2709
2725
2741
2757
2773
2789
2805

2821
2837
2853
2869
2885
2901
2917
2933
2949
2965
2981
2997
3013
3029
3045
3061

6

2054
2070
2086
2102
2118
2134
2150
2166
2182
2198
2214
2230
2246
2262
2278
2294

2310
2326
2342
2358
2374
2390
2406
2422
2438
2454
2470
2486
2502
2518
2534
2550

2566
2582
2598
2614
2630
2646
2662
2678
2694
2710
2726
2742
2758
2774
2790
2806

2822
2838
2854
2870
2886
2902
2918
2934
2950
2966
2982
2998
3014
3030
3046
3062

2055
2071
2087
2103
2119
2135
2151
2167
2183
2199
2215
2231
2247
2263
2279
2295

2311
2327
2343
2359
2375
2391
2407
2423
2439
2455
2471
2487
2503
2519
2535
2551

2567
2583
2599
2615
2631
2647
2663
2679
2695
2711
2727
2743
2759
2775
2791
2807

2823
2839
2855
2871
2887
2903
2919
2935
2951
2967
2983
2999
3015
3031
3047
3063

8

2056
2072
2088
2104
2120
2136
2152
2168
2184
2200
2216
2232
2248
2264
2280
2296

2312
2328
2344
2360
2376
2392
2408
2424
2440
2456
2472
2488
2504
2520
2536
2552

2568
2584
2600
2616
2632
2648
2664
2680
2696
2712
2728
2744
2760
2776
2792
2808

2824
2840
2856
2872
2888
2904
2920
2936
2952
2968
2984
3000
3016
3032
3048
3064

9

2057
2073
2089
2105
2121
2137
2153
2169
2185
2201
2217
2233
2249
2265
2281
2297

2313
2329
2345
2361
2377
2393
2409
2425
2441
2457
2473
2489
2505
2521
2537
2553

25665
2585
2601
2617
2633
2649
2665
2681
2697
2713
2729
2745
2761
2777
2793
2809

2825
2841
2857
2873
2889
2905
2921
2937
2953
2969
2985
3001
3017
3033
3049
3065

A

2058
2074
2090
2106
2122
2138
2154
2170
2186
2202
2218
2234
2250
2266
2282
2298

2314
2330
2346
2362
2378
2394
2410
2426
2442
2458
2474
2490
2506
2522
2538
2554

2570
2586
2602
2618
2634
2650
2666
2682
2698
2714
2730
2746
2762
2778
2794
2810

2826
2842
2858
2874
2890
2906
2922
2938
2954
2970
2986
3002
3018
3034
3050
3066

B

2059
2075
2091
2107
2123
2139
2155
2171
2187
2203
2219
2235
2251

2267
2283
2299

2315
2331
2347
2363
2379
2395
2411
24627
2443
2459
2475
2491
2507
2523
2539
2555

2571
2587
2603
2619
2635
2651
2667
2683
2699
2715
2731
2747
2763
2779
2795
2811

2827
2843
2859
2875
2891
2907
2923
2939
2955
2971
2987
3003
3019
3035
3051
3067

C

2060
2076
2092
2108
2124
2140
2156
2172
2188
2204
2220
2236
2252
2268
2284
2300

2316
2332
2348
2364
2380
2396
2412
2428
2644
2460
2476
2492
2508
2524
2540
2556

2572
2588
2604
2620
2636
2652

2668,

2684
2700
2716
2732
2748
2764
2780
2796
2812

2828
2844
2860
2876
2892
2908
2924
2940
2956
2972
2988
3004
3020
3036
3052
3068

D

2061
2077
2093
2109
2125
2141
2157
2173
2189
2205
2221
2237
2253
2269
2285
2301

2317
2333
2349
2365
2381
2397
2413
2429
2445
2461
2477
2493
2509
2525
2541
2557

2573
2589
2605
2621
2637
2653
2669
2685
2701
2717
2733
2749
2765
2781
2797
2813

E

2062
2078
2094
2110
2126
2142
2158
2174
2190
2206
2222
2238
2254
2270
2286
2302

2318
2334
2350
2366
2382
2398
2414
2430
2446
2462
2478
2494
2510
2526
2542
2558

2574
2590
2606
2622
2638
2654
2670
2686
2702
2718
2734
2750
2766
2782
2798
2814

2830
2846
2862
2878
2894
2910
2926
2942
2958
2974
2990
3006
3022
3038
3054
3070

F

2063
2079
2095
2111
2127
2143
2159
2175
2191
2207
2223
2239
2255
2271
2287
2303

2319
233¢
2351
2367
2383
2399
2415
2431
2447
2463
2479
2495
2511
2527
2543
2559

2575
2591
2607
2623
2639
2655
2671
2687
2703
2719
2735
2751
2767
2783
2799
2815

2831
2847
2863
2879
2895
2911
2927
2943
2959
2975
2991
3007
3023
3039
3055
3071

41

APPENDIX F Cont'd.

DO
D1

D3
D4
D5
D6
D7
D8

DA
DB
DC
DD
DE
DF

FO
F1

F2
F3
F4

F5
F6

F7

F8
F9
FA
FB
FC
FD
FE
FF

J

3072
3088
3104
3120
3136
3152
3168
3184
3200
3216
3232
3248
3264
3280
3296
3312

3328
3344
336G
3376
3392
3408
3424
3440
3456
3472
3488
3504
3520
3536
3552
3568

3584
3660
3616
3632
3648
3664
3680
3696
3712
3728
3744
3760
3776
3792
3808
3824

3840
3856
3872
3888
3904
3920
3936
3952
3968
3984
4000
4016
4032
4048
4064
4080

1

3073
3089
3105
3121
3137
3153
3169
3185
3201
3217
3233
3249
3265
3281

3297
3313

3329
3345
3361
3377
3393
3409
3425
3441
3457
3473
3489
3505
3521
3537
3553
3569

3585
3601
3617
3633
3649
3665
3681
3697
3713
3729
3745
3761
3777
3793
3809
3825

3841
3857
3873
3889
3905
3921
3937
3953
3969
3985
4001
4017
4033
4049
4065
4081

2

3074
3090
3106
3122
3138
3154
3170
3186
3202
3218
3234
3250
3266
3282
3298
3314

3330
3346
3362
3378
3394
3410
3426
3442
3458
3474
3490
3506
3522
3538
3554
3570

3586
3602
3618
3634
3650
3666
3682
3698
3714
3730
3746
3762
3778
3794
3810
3826

3842
3858
3874
3890
3906
3922
3938
3954
3970
3986
4002
4018
4034
4050
4066
4082

3

3075
3091
3107
3123
3139
3155
3171
3187
3203
3219
3235
3251
3267
3283
3299
3315

3331
3347
3363
3379
3395
3411
3427
3443
3459
3475
3491
3507
3523
3539
3555
3571

3587
3603
3619
3635
3651
3667
3683
3699
3715
3731
3747
3763
3779
3795
3811
3827

3843
3859
3875
3891
3907
3923
3939
3955
3971
3987
4003
4019
4035
4051
4067
4083

4

3076
3092
3108
3124
3140
3156
3172
3188
3204
3220
3236
3252
3268
3284
3300
3316

3332
3348
3364
3380
3396
3412
3428
3444
3460
3476
3492
3508
3524
3540
3556
3572

3588
3604
3620
3636
3652
3668
3684
3700
3716
3732
3748
3764
3780
3796
3812
3828

3844
3860
3876
3892
3908
3924
3940
3956
3972
3988
4004
4020
4036
4052
4068
4084

5

3077
3093
3109
3125
3141
3157
3173
3189
3205
3221
3237
3253
3269
3285
3301
3317

3333
3349
3365
3381
3397
3413
3429
3445
3461
3477
3493
3509
3525
3541
3557
3573

3589
3605
3621
3637
3653
3669
3685
3701
3717
3733
3749
3765
3781
3797
3813
3829

3845
3861
3877
3893
3909
3925
3941
3957
3973
3989
4005
4021
4037
4053
4069
4085

6

3078
3094
3110
3126
3142
3158
3174
3190
3206
3222
3238
3254
3270
3286
3302
3318

3334
3350
3366
3382
3398
3414
3430
3446
3462
3478
3494
3510
3526
3542
3558
3574

3590
3606
3622
3638
3654
3670
3686
3702
3718
3734
3750
3766
3782
3798
3814
3830

3846
3862
3878
3894
3910
3926
3942
3958
3974
3990
4006
4022
4038
4054
4070
4086

7

3079
3095
3111
3127
3143
3159
3175
3191
3207
3223
3239
3255
3271
3287
3303
3319

3335
3351
3367
3383
3399
3415
3431
3447
3463
3479
3495
3511
3527
3543
3559
3575

3591
3607
3623
3639
3655
3671
3687
3703
3719
3735
3751
3767
3783
3799
3815
3831

3847
3863
3879
3895
3911
3927
3943
3959
3975
3991
4007
4023
4039
4055
4071
4087

8

3080
3096
3112
3128
3144
3160
3176
3192
3208
3224
3240
3256
3272
3288
3304
3320

3336
3352
3368
3384
3400
3416
3432
3448
3464
3480
3496
3512
3528
3544
3560
3576

3592
3608
3624
3640
3656
3672
3688
3704
3720
3736
3752
3768
3784
3800
3816
3832

3848
3864
3880
3896
3912
3928
3944
3960
3976
3992
4008
4024
4040
4056
4072
4088

9

3081
3097
3113
3129
3145
3161
3177
3193
3209
3225
3241
3257
3273
3289
3305
3321

3337
3353
3369
3385
3401
3417
3433
3449
3465
3481
3497
3513
3529
3545
3561
3577

3593
3609
3625
3641
3657
3673
3689
3705
3721
3737
3753
3769
3785
3801
3817
3833

3849
3865
3881
3897
3913
3929
3945
3961
3977
3993
4009
4025
4041
4057
4073
4089

A

3082
3098
3114
3130
3146
3162
3178
3194
3210
3226
3242
3258
3274
3290
3306
3322

3338
3354
3370
3386
3402
3418
3434
3450
3466
3482
3498
3514
3530
3546
3562
3578

3594
3610
3626
3642
3658
3674
3690
3706
3722
3738
3754
3770
3786
3802
3818
3834

3850
3866
3882
3898
3914
3930
3946
3962
3978
3994
4010
4026
4042
4058
4074
4090

B

3083
3099
3115
3131
3147
3163
3179
3195
3211
3227
3243
3259
3275
3291
3307
3323

3339
3355
3371
3387
3403
3419
3435
3451
3467
3483
3499
3515
3531
3547
3563
3579

3595
3611
3627
3643
3659
3675
3691
3707
3723
3739
3755
3771
3787
3803
3819
3835

3851
3867
3883
3899
3915
3931
3947
3963
3979
3995
4011
4027
4043
4059
4075
4091

C

3084
3100
3116
3132
3148
3164
3180
3196
3212
3228
3244
3260
3276
3292
3308
3324

3340
3356
3372
3388
3404
3420
3436
3452
3468
3484
3500
3516
3532
3548
3564

3580

3596
3612
3628
3644
3660
3676
3692
3708
3724
3740
3756
3772
3788
3804
3820
3836

3852
3868
3884
3900
3916
3932
3948
3964
3980
3996
4012
4028
4044
4060
4076
4092

D

3085
3101
3117
3133
3149
3165
3181
3197
3213
3229
3245
3261
3277
3293
3309
3325

3341
3357
3373
3389
3405
3421
3437
3453
3469
3485
3501
3517
3533
3549
3565

3581

3597
3613
3629
3645
3661
3677
3693
3709
3725
3741
3757
3773
3789
3805
3821
3837

3853
3869
3885
3901
3917
3933
3949
3965
3981
3997
4013
4029
4045
4061
4077
4093

E

3086
3102
3118
3134
3150
3166
3182
3198
3214
3230
3246
3262
3278
3294
3310
3326

3342
3358
3374
3390
3406
3422
3438
3454
3470
3486
3502
3518
3534
3550
3566

3582

3598
3614
3630
3646
3662
3678
3694
3710
3726
3742
3758
3774
3790
3806
3822
3838

3854
3870
3886
3902
3918
3934
3950
3966
3982
3998
4014
4030
4046
4062
4078
4094

F

3087

3103
3119
3135
3151
3167
3183
3199
3215
3231
3247
3263
3279
3295
3311
3327

3343
3359
3375
3391
3407
3423
3439
3455
3471
3487
3503
3519
3535
3551
3567

3583

3599
3615
3631
3647
3663
3679
3695
3711
3727
3743
3759
3775
3791
3807
3823
3839

3855
3871
3887
3903
3919
3935
3951
3967
3983
3999
4015
4031
4047
4063
4079
4095

NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES

NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES

SIGNETICS SOFTWARE
2650 MICROPROCESSOR SIMULATOR

2650 SIMULATOR MANUAL

CONTENTS

| INTRODUCTION .3
i SIMULATOR OPERATION .5
GENERAL e . b
SIMULATED PROCESSOR STATE .5
SIMULATED MEMORY e . b
SIMULATED INPUT/OUTPUT INSTRUCTIONS . . 6
i1 USER COMMANDS .7
GENERAL . .7
COMMAND FORMATS . 8
COMMAND DESCRIPTIONS 11
IV SIMULATOR DISPLAY (LISTING) .27
APPENDIX A COMMAND SUMMARY32
APPENDIX B ERRORMESSAGES 33
APPENDIXC SIMULATOR RESTRICTIONS 3b
APPENDIX D SIMULATOR RUN PREPARATION36

Copyright April 1975 Signetics Corporation
Signetics Corporation reserves the right to make changes in the products described in this book in order to improve design or
performance.

I INTRODUCTION

The 2650 Simulator is a FORTRAN program which allows a user to
simulate the execution of his program without utilizing the 2650 processor.

The Simulator executes a 2650 program by maintaining its own internal
FORTRAN storage registers to describe the 2650 program itself, the micro-
processor registers, the ROM/RAM memory configuration, and the input data
to be read dynamically from I/O devices. Multiple simulations of the same
program may be executed during a single simulation run. In addition,
statistical timing information may be generated. '

The Simulator requires as input both the program object module pro-
duced by the 2650 Assembler and a deck of user commands. It produces
a listing of the user’s commands, executes the program and prints (‘“‘displays”’)
both static and dynamic information as requested by the user’s commands.

JPERAT

Il SIMULATOR

GENERAL
Once the Simulator is loaded and started, it performs the following actions:

® Presets each register in simulated memory to a “HALT” instruction.
Thus, if the user’s program attempts to branch to some undefined area of
memory, the current execution of the simulated program is terminated
and only relevant data is printed.

® Reads and stores the user’s commands. These commands control the
performance of the Simulator during program execution. They are stored
in a simulator table for reference before, during, and after execution.

® [oads the 2650 object module into simulated memory.

® Starts the simulated program. The simulated program is started at the
address specified in the START command. If no START command is
submitted, the program is started in the location specified in the END
statement of the simulated program (see Assembler manual). If no location
is specified in the END statement, the Simulator starts in location O.

® Oversees the execution of each instruction. Before an instruction is
executed, the Simulator checks the address of the instruction and the
address of the referenced memory location to see if either of these
addresses is referenced by any one of the user’s commands. If so, the
command is executed. The Simulator then executes the current instruction,
updates all affected registers and retrieves the next instruction for

execution.

® Terminates the simulated program. The simulation is terminated either
by the execution of a “HALT” instruction, or by having executed a
preset number of instructions or by having satisfied the conditions of the
STOP. command.

® Once the execution of one simulation is complete, the Simulator prints
any statistical timing information requested (STAT), and proceeds with
the next simulation (TEND) or terminates itself (FEND).

SIMULATED PROCESSOR STATE

The Simulator maintains a number of FORTRAN integer cells which are
used to simulate the microprocessor’s state, i.e. the general purpose registers,
the upper and lower program status bytes, the location counter or instruction
address register (IAR), the address of the instruction referenced and the
contents of the location referenced.

These simulated registers and status bits may be displayed dynamically,
(INSTR., REFER., TRACE.) i.e., while the simulated program is executing.
Also the general purpose registers and the status bytes may be altered dyna-
mically (SETR., SETP.).

SIMULATED MEMORY

The Simulator maintains a 2048 cell FORTRAN integer array which is
used to simulate read-write random access memory.

It is possible to configure parts of this memory into a ROM-RAM environ-
ment by using the SROM Command. If part of the simulated memory is set
to Read-Only and an instruction attempts to store data into that memory
segment, the Simulator bypasses storing the data, prints a warning message
and continues with the next program instruction.

Using Simulator commands, the user may change parts of memory before
the program executes (PATCH) and he may display parts of memory
dynamically (DUMP.).

The simulated memory is smaller in many cases than the total memory
size of the user’s physical system. This restriction encourages the construction
of modular programs. Because the simulated memory is smaller than a
2650 page, it is not possible to fully test programs which utilize the 2650
paging system, i.e., programs larger than 8192 bytes.

SIMULATED INPUT/OUTPUT INSTRUCTIONS

The Simulator maintains a 200-byte First In, First Out (FIFO) buffer to
store the data read from a simulated input device. This buffer must be preset
by the user command, INPUT.

When any 2650 input instruction is simulated (REDE, REDC, REDD), the
Simulator accesses the buffer. If there is data in the buffer, the next byte of
data is inserted in the simulated register specified by the input instruction.
If the buffer contents have been exhausted, a warning message is displayed
on the simulator listing.

To simulate the execution of any 2650 output instruction (WRTE, WRTC,
WRTD), the Simulator takes the data byte from the register specified in the
output instruction and displays it along with the address of the output
instruction.

11l USER COMMANDS

GENERAL

The 2650 Simulator accepts commands which specify how the program is
to run and what data is to be recorded.

In any one Simulator run, the user may specify that his program be
executed any number of times. The user submits a new set of commands for
each execution. The final command set is followed by a final end card
(FEND), while all prior command sets are terminated with a temporary end
card (TEND) (Illust. ITI-1).

ILLUSTRATION I11-1
THREE SETS OF COMMANDS

S

COMMAND SET | EXECUTION -3

EXECUTION - 2
COMMAND SET

TEND
— EXECUTION -1
COMMAND SET l

Within any one command set, the user may specify:

® That the program execution start at a specific memory location (START).

® That the execution of the program be complete either when the number of
instructions executed equals a specified number (LIMIT) or when the
instruction at a specific address executes (STOP.) or when the simulated
program itself executes a ‘“‘HALT”’ instruction.

® That statistics be displayed at the end of execution (STAT). The Simulator
accumulates a count of the total number of instructions executed, the
number of each type of instruction executed, and the total number of
2650 machine cycles expended. This information provides a measure of
efficiency by indicating how many 1-, 2-, or 3-byte instructions were
executed and may be used to calculate program timings.

® That certain areas of simulated memory be designated as Read-Only
(SROM) and are therefore inaccessible to any memory write operation.

® That the contents of memory be initialized with specific data (PATCH).

® That a FIFO (First In, First Out) buffer be used to simulate data read from
I/O devices (INPUT).

® That the processor state be recorded whenever a specific memory loca-
tion executes (INSTR.), whenever a specific memory location is referenced
(REFER.), or whenever any instruction executes which lies within a
specified range of memory addresses (TRACE.). The processor state
consists of the location counter, the instruction referenced and its con-
tents, the upper and the lower program status bytes, and the contents of
all the general purpose registers.

—

® That an area of memory be dumped whenever an instruction at a specific
memory location executes (DUMP.).

® That certain general purpose registers (SETR.) or the program status
bytes (SETP.) be set dynamically, i.e., whenever a specific memory
location executes.

® That comments (x*) be interspersed between control cards.

Some of these commands execute dynamically, i.e., when an instruction
at a specific memory location executes or when that location is referenced.
Since the simulator storage capacity limits the total number of locations
which may be retained simultaneously (while a program is executing), a
total of 30 memory locations may be specified on all the “dynamic”
commands submitted for 1y one execution, i.e., in any one command set.
These dynamic commands are identified by a trailing period (.), e.g., “STOP.”.
This period is treated as a field separator, i.e., it is not treated as part of the
command name by the Simulator and is therefore optional. The description
for each dynamic command identifies which of its parameters count toward
the 30 ““dynamic’ command limit, i.e., the limit of 30 memory locations.

In addition, the number of DUMP. commands is limited to five (5); the
number of SETR. commands is limited to four (4); the number of SETP.
commands is limited to two (2); and the number of data read on all INPUT
cards in one command set is limited to 200.

All “dynamic commands” are executed before the simulated instruction
is executed.

For those commands which accept only one set of parameters (LIMIT,
SROM, START) only the last set of parameters encountered is used.

COMMAND FORMATS

Ilustration III-2 contains a list of the commands, their parameters and a
brief description of the commands themselves. In addition, the Simulator
treats as a comment card, any card with two consecutive asterisks (=:)
starting in column 1.

The Simulator accepts information in card image form. The entire card is
read in FORTRAN “A” format. A command must be complete on one card
as continuation cards are not allowed. Comments may appear in any order
within a command set.

The command name starts in column 1 and must appear as shown, except
for the optional period.

The field of characters which lies between the command name and its
parameters or between the parameters themselves is called a field separator.
A field separator may contain any number of characters, but none of these
characters may be hexadecimal characters (0-9, A-F). For the sake of clarity
in all the examples, the following field separators are used to indicate the
following functions:

Einld © g v
Field Separator

blank (s)
()

b

b

The parame

Function

Identifies a command which counts toward the “dynamic”
command limit.

Separate a command from its parameters.
Encloses optional parameters.
Separates one set of parameters from another.

Separates one parameter from another within a set of
parameters.

Indicates that multiple parameters or sets of parameters are
legal. If a period flags a command, each of its parameter sets
counts toward the ‘“dynamic” command limit. E.g., the
following sets of commands are identical:

1. INST. 100
INST. 200
2. INST. 100; 200

ters themselves must be hexadecimal numbers (0-9, A-F).

The following labels identify parameters in Illustration I11-2:

LOC
NO

FWA

LWA

VALUE
RO,R1...R6
PSL

PSU

Location or address of an instruction which is to be
executed or the address of data which is to be referenced.

A number of data, e.g., the total number of instructions
to be executed.

First Word Address of some area of memory.
Last Word Address of some area of memory.
The value to which some location is to be set.
General Purpose Registers 0-6.

Identifies Lower Program Status Byte.
Identifies Upper Program Status Byte.

COMMAND
NAME

DUMP.

FEND

INPUT

INSTR.

LIMIT
PATCH
REFER.

SETP.

SETR.

SROM
START
STAT

STOP.

TEND

TRACE.

ILLUSTRATION 111-2
COMMAND SUMMARY

PARAMETERS
LOC, FWA-LWA (. .

None

VALUE(; . .. ;VALUE)
LOC(; . ..;LOC)

NO

LOC,VALUE(; . .. ;LOC,VALUE)
LOC(. ..;LOC)

LOC(,PSL=VALUE) (,PSU=VALUE)

LOC(,R0=VALUE). . .(R6=VALUE)

FWA-LWA
LOC

None

LOC(; . . . ;LOC)

None

FWA-LWA(; . . . ;FWA-LWA)

.;LOC, FWA-LWA)

DESCRIPTION

Display the area of memory, FWA-LWA, when-
ever the instruction at LOC executes.

Execute the last simulation and terminate the
entire run.

Define the data to be read by simulated I/O
instructions. '

Display the processor registers whenever the
instruction at LOC executes.

Specify the total number of instructions executed.
Initialize each memory location, LOC, to VALUE.

Display the processor register whenever the in
struction at LOC is referenced by another
instruction.

Set the program status byte (lower and/or upper)
to VALUE whenever the instruction at LOC

executes.

Set the general purpose registers to VALUE
whenever the instruction at LOC executes.

Specify the boundaries of Read-Only Memory.
Start the simulated program execution at LOC.

Display instruction statistics at end of program
execution.

Terminate the program execution when the in-
struction at LOC executes.

Execute the last simulation and prepare to read
the User Commands for the next simulatior

Display the processor registers whenever an in-
struction executes, which lies within the area of
memory, FWA-LWA.

10

COMMAND DESCRIPTIONS

The following command descriptions are alphabetized by command name.
As previously discussed all parameters are entered in hexadecimal notation
(0-9, A-F). All address parameters (LOC, FWA, LWA) are limited to the size
of simulated memory.

DUMP. DUMP SIMULATED MEMORY

This command causes the Simulator to display selected portions of
memory whenever the location counter matches LOC.

Each LOC counts as one ‘“‘dynamic” command. The total number of
“dynamic” commands is limited to thirty (30). The total number of LOC’s
submitted in DUMP. commands is limited to five (5).

DUMP. LOC,FWA-LWA(; ... ;LOC,FWA-LWA)

Where: DUMP. is the command name.

LOC 1is the address of the 2650 instruction at which the
dump occurs.

FWA is the first address of the area to be dumped.
LWA is the last address of the area to be dumped. LWA must
be larger than FWA.

Example: DUMP. 5A,0-3FF 100-11A-21A
DUMP. EO-400-4FF

Note: More data may be dumped than was specified since the FWA dumped
always has a least significant digit of 0, e.g. 30, 100, etc. Similarly, LWA
always has a least significant digit of F, e.g. 3F, 10F, etc.

1"

FEND FINAL END COMMAND

This command signals the Simulator that the preceding commands
complete the directives for the final simulator run. After FEND is read, the
Simulator performs the last simulation and comes to its final termination.

FEND
Where: FEND — specifies the command name.
Example: START 1A
TRACE 0,100
TEND
START AA

PATCH 11, C2
FEND

INPUT DEFINE DATA FOR INPUT

This command loads data into a FIFO storage buffer from which the same
data is used to supply I/O instructions with input data. The first data point
specified becomes the first one accessed by a 2650 read instruction. The last
point specified becomes the last one accessed. Should the buffer become

empty during the simulated execution, an error message is printed, the
input register remains unchanged and the simulation continues.

Any number of these command cards may be submitted as long as the
total number of data specified in one run does not exceed the size of the
FIFO storage buffer (200).

INPUT VALUE(...;VALUE)

Where: INPUT — specifies the command name.

VALUE — specifies a 2-digit hexadecimal value.

Example: INPUT 0,1, 2,3,10, 1A, FF

INSTR. INSTRUCTION TRACE

This command sets a break point at the specified.address. When the
instruction at this address executes, the Simulator prints out the internal
state of the simulated processor. The break point occurs before the instruc-
tion is executed.

Each address specified in an INSTR. command counts as one ‘“‘dynamic”
command.

INSTR. LOC(; . .. ;LOC)

Where: INSTR. — specifies the command.

LOC — specifies the address for a break point. The address
must be within simulated memory.

Example: INSTR. 1CE, 1A, 22
INSTR. 123-200-5E
INSTR. 74

LIMIT LIMIT THE NUMBER OF INSTRUCTIONS EXECUTED

This command determines how many instructions will be executed. If the
number given in the LIMIT command is exceeded before the instruction
specified by a STOP. command executes or before a 2650 HALT instruction
is simulated, the Simulator terminates the current program operation.

Without this command, the Simulator assumes a limit of 1000, instruc-
tions. The maximum LIMIT which may be specified is determined by the
maximum integer constant of the FORTR AN compiler used.

LIMIT NO

Where: LIMIT — specifies the command.
NO — isanumber which determines the maximum number of

instructions to be executed.

Example: LIMIT 200
LIMIT 2F

PATCH PATCH SIMULATED MEMORY

This command alters the contents of memory before a simulation run. It
may be used to alter the contents of any byte in memory and overrides load
information in the object module for the duration of one simulation run.

Any number of these commands may be given in a simulator command
stream.

PATCH LOC,VALUE(;...;LOC,VALUE)

Where: PATCH — specifies the command.

LOC — specifies the simulated memory address which is to
be changed.

VALUE — specifies a 2-digit hexadecimal number to be
stored at LOC.

Example: PATCH 0,1F 1,0 2.5E
PATCH 102, EE

REFER. MEMORY REFERENCE TRACE

This command causes a break point to occur whenever one of the specified
addresses is referenced by a simulated instruction. During the break point,
the Simulator prints out the internal state of the simulated processor. The
data byte of immediate addressing instructions is handled like an ordinary
operand address.

Each address specified in a REFER. command counts as one ‘“‘dynamic”
command.

REFER. LOC(;LOC.. . ;LOC)

Where: REFER. — specifies the command.

LOC — specifies the effective operand address for a break
point. The address must be within simulated memory.

Example: REFER. 3FF/21/18E
REFER. 200
REFER. 5, 50, 22F

17

SETP. SET PROGRAM STATUS SYTE

The SETP. command dynamically alters the upper and/or the lower pro-
gram status bytes. The specified program status byte is set when the
address parameter supplied in the command, LOC, equals the location

counter.

A SETP. command must set at least one program status byte. Up to two
SETP. commands may be given in a simulator command stream. Each LOC

submitted counts as one ‘‘dynamic’ command.
The PSL and PSU may be entered in any order.

SETP. LOC(,PSL=VALUE) (,PSU=VALUE)

Where: SETP. — specifies the command.
LOC — specifies the simulated execution address where the
program status byte is to be set.
PSL — specifies that a value is to be entered into PSL.
PSU — specifies that a value is to be entered into PSU.

VALUE — specifies the 2-digit hexadecimal value to be
entered into the program status byte.

Example: SETP. 5A PSL=05
SETP. 10E, PSL=01 PSU=00

SETR. SET GENERAL PURPOSE REGISTER

This command dynamically sets the general purpose registers during
simulated program execution. Using this command, any or all of the general
purpose registers can be set when the location counter value is equal to the
address parameter, LOC, supplied in this command.

A SETR. command without parameters is not permitted. Up to four
SETR. commands may be given in a simulator command stream. Each LOC
counts as one ‘“‘dynamic” command.

Register identifiers may appear in any order.

SETR.

LOC(,R0O=VALUE). . .(,R6=VALUE)

Where: SETR. — specifies the command.

LOC — specifies the simulated execution address where the
registers are to be set.

RO — indicates the general purpose register to be set. RO

R1
R2
R3
R4
R5
R6

always refers to general purpose register 0. R1, R2, and
R3 specify the registers in register bank zero. R4, R5
and R6 specify R1, R2, and R3 in register bank one.

VALUE — specifies the 2-digit hexadecimal value to be stored
in the selected register.

Example: SETR.
SETR.

10A R1=3F, R2=00, R3=5
2F3 RO=FF, R5=00

19

SROM DEFINE THE BOUNDARIES OF READ ONLY MEMORY

This command allows the user to simulate a Read Only/Read Write
Memory environment. Whenever a 2650 instruction attempts to store data
in the area defined as Read Only, a warning message is printed on the simula-
tion listing. The data is not actually stored, but the simulation run continues.

SROM FWA-LWA

Where: SROM — specifies the command.
FWA — specifies the first address of the simulated ROM
area.

LWA — specifies the last address of the simulated ROM area.
LWA must be greater in value than the FWA. The addresses
specified are inclusive.

Example: SROM 100-FF

20

START START SIMULATION

This command specifies the address at which simulated execution begins.
The address specified in the START command supersedes the start address
in the load object module. The start address in the load object module is set
by an END statement during program assembly and is used by the Simulator
if no START command is given (see the 2650 Assembler Language Manual
for the END statement).

START LOC

Where: START — specifies the command.
LOC — specifies a start address for the program to be
simulated.

Example: START 10A
START 2

21

STAT DISPLAY INSTRUCTION STATISTICS

This command causes a list of 2650 instructions with the number of
times each was executed to be printed out at the end of the simulation run.

STAT

Where: STAT — specifies the command.

9 9

STOP. STOP SIMULATED EXECUTION

This command terminates the current simulated instruction execution
when the location counter matches the command argument, LOC.

Each LOC counts as one ‘“‘dynamic’ command.

STOP. LOC(...;LOC)

Where: STOP. — specifies the command.

LOC — specifies the instruction address at which simulated
execution ceases.

TEND TEMPORARY END COMMAND

This command signals the Simulator that the preceding commands com-
plete the directives for a simulator run. After the TEND is read, the
Simulator begins simulated execution of the 2650 program. Because TEND is
a temporary end, the Simulator assumes that there is another command
stream following it. The last command stream in a simulation run must be
terminated with a FEND (final end) command.

TEND
Where: TEND — specifies the command.
Example: PATCH 01,15 OA,FF
TEND
START 100

PATCH 01,E2 OA,FF
FEND

TRACE.

TRACE PROGRAM FLOW

This command causes break points to occur at each instruction within an
area of memory. The user specifies two addresses. If the simulated processor
accesses an instruction at an address that falls between the specified add-
resses, the Simulator prints out the internal state of the simulated processor.

Each set of FWA,LWA counts as one ‘“dynamic’ command.

Where:

Example:

TRACE. FWA-LWAG ... ;FWA-LWA)

TRACE. — specifies the command.
FWA — specifies from what address the trace is in effect.

LWA — specifies to what address the trace is in effect. LWA
must be larger in value than FWA. The addresses specified
are inclusive.

TRACE. 0-15F, 250-3FF
TRACE. 1-A, 3FF-40A
TRACE. 10-1A 50-5A 60-7TA

25

26

IV SIMULATOR DISPLAY (LISTING)

As the Simulator reads each command set, it prints the card images of the
command set and then executes the program. During program execution the
following commands result in some form of display:

DUMP.
INSTR.
REFER.
TRACE.

DUMP. results in the display of an entire area of memory while the last
three commands result in some form of trace, i.e., a display of the processor
state:

Instruction address register (IAR) or location counter
Instruction executed (INST)

Instruction referenced or effected (EADDR)

Contents of the instruction referenced or effected (EADDR)
Program status byte upper (PSU)

Program status byte lower (PSL)

General purpose registers (RO, R1, R2, R3, R4, R5, R6)

Ilustrations IV-1 through IV-4 contain the printout or display output from
one Simulator run. Illustration IV-1 shows the first command set, which
contains commands to:

® Start at location 0 (START))

® Initialize locations 55-5F, locations 61-6B and location 19 (PATCH)

® Dump locations 55-77 whenever either location 0 or location 3 executes
(DUMP)

® Trace locations 14-1A (TRACE)

Ilustrations IV-1 and IV-2 show the results of the first command set:

® A dump of locations 55-77. Note that a larger area is dumped than was
specified.

® 30 traces

® A final dump of locations 55-77

When the program execution for the first command set is complete, the
Simulator reports:

® The number of machine cycles executed
® The number of instructions executed

Illustration 1V-3 shows the second command set. It is exactly the same as
the first command set except that it initializes locations 12 and 33 instead
of location 19.

The output of the second command set is just like the output of the first
command set except that it results in 33 traces, not 30.

27

STARTY
PATCH
PATCH
PATCH
FATCH
PATCH
PATCH
rump
curep
PATCH
TRACF
TENC

20

5540 56,1
58,5 SR, 4
5F.0
6140
62,0 63,0

5742 5842 56,2
5Ce3 50,2 SFy1

Ehyl 65,1 6€,2

ET42 6845 69,8 6A,2 €R,1

,55,177
055,77

19455
lay 1A

COMMANE DUNMP

0050
0060
0070
TRACF
1AR
0014
TRACE
18K
co17
1RACE
1ar
0014A
TEACE
AR
cola
TRACF
18P
0017
TkacCe
1AF
0014
TEACE
1AR
Co14
TRACE
189
2017
TRACE
1K
C01A
TRACK
1AR
0014
TPACE
1ag
0017

TRACE
TAR
0014
TRACH
TAR
0vl4
TRACK
1AR
0017
TRACE
1AR
0014
TRACE
1aR
N014
TPACE
1AR
0017
TRACE
TAR
ColA
TRACE
1AR
0l4
TPACE
[AF
0no1r7
TRACF
TAF
0014
TRACE
AP
0014
TRACE
1AR
0017
TRACF
14R
Go1A
TRACE
T1AR
0014
TRACT
TaRr
co17
TRACF
TAR
001a
TRACF
1AF
0014
TRACE
TAK
0017

17 07 15 18 65 00 C!
oc Ge ce 00
40 40 40 40 4) 40 CO

COMMAND
INST
Lces, 0
CUMMAND
ST
ADCA, D
COMMAND
INST
COMT, 0
CUMMAND
INST
LSCA,0
CoMMAND
INST
ACCA,0
CCMMAND

LCLALG
COMMAND
INST
ARLA,O
COMMAND
INST
CLMT, 0
CCMMAND
INST
Leca,v
COMMAND
INST
ACCA, O

COMMAND
INST
CCVMT,0
COMMAND
INST
LOPALO
CIMMAND
INST
ATDA, O
CLMMAND
INST
COMTL O
COMMAND,
INST
LOCA,O
CNMMAND
INST
ACCA,O
COMMAND
INST
Ml 0
COMMAND

ML,
COMMAND
INST
LCCA, O
CUMMAND
INST
ACDALO
COMMAND
INST
CCMILO0
CCMMAND
INST
LCDA, O
COMMAND
INST
AGLA,O
Cr¥MAND

Leca,0
COMMAND
INST

ACCA, O

ILLUSTRATION IV-1

€2 C2 (3 05 04 C3 02 01 00

0l 01 C2 c2 09 (B 02 01 40 4G 40 40
40 40 4C 43 40 40 40

0061, 2y~

0055, 1

0A

0061y 2,~

0355,1

oA

0061, 3, =

0055,1

on

0061, 3, -

0055,1

oa

00612~

0055,1

0061434~

0055,1

0A

006143, -

0055, L

0a

006143,

0055, 1

oA

0061,y 3, -

0055, 1

0A

0061y 3,

0055, 1

cu 00

FADRDR
CCoRn

FADDR
0C5F

EAC R
COLR

EADDR
CCoHA

EACDR
CChE

EANDR
£els

EACCR
cCcos

FADPR
cesn

FaDCR
ac1n
FADDR
co6e

FADDR
cCse

FADCR
001R

EACDR
co67

EALDR
CC5H

FANCR
CCLA

FADLR
cCo6

EAMDR
cCsa

EADNR
€C1R

EADDR
C065

EANCR
cese

EANCR
ccls

EALCR
cco4

FADDR
Co5¢e
FADPR
cole

FADOR
CC63

FADCR
ccst

EADDR
celp
FACDR
cch2

CAIUR
cCse

{FADCR)
2001

(EADCR)
Jone

(FADDR)
0004A

(EADCR)
J002

(EADDR)
0col

(FADDR)
004

(EADCR)
oooe

(EADDR)
0002

(EADDR)
0004

(EADCR)
000¢S

(EADCR)
0003

(EADCR)
2004

(EADCR)
0002

(EADDR)
€004

(EADDR)
0004

(FADCR)
0003

(EADDR)
0005

(EADCR)
ncoa

(EANDR)
0001

(EADCR)
0003

(EADDR)
JOOA

(EADDR)
oocl

(EADDR)
0002

(EADCR)
000A

(EADDR)
0020

(EADCR)
0002

(EADPR)
0004

(EADCR)
0000

(EADCR}
0001

PSBU
01

PSBU
01

PSBU
o1

PSBU
o1

PSBU
01

PSBU
o1

PSBU
01

PSBU
o1

PSBU
o1

PSBU
01

PSBU
01

[l
01

PSBU
o1

PSBUL
01

PSAU
01

PSBU
01

PSBU
01

PSAU
o1

PSRl
01

PSBU
01

PSBU
01

PSBU
01

PSBU
01

PSBU
N1
PSRU
oL

PSBU
o1

PSBU
01

PSRU
ol

PSRU
01

SHL
co

PSBL
40

PSBL
40

PSBL
80

PSBL
40

PSBL
40

PSRL
30

PSBL
40

PSAL
40

PSBL
21

PSBL
61

PSBL
40

PSBL
&1

PSAL
ol

PSHL
40

PSRL
80

PSEL
40
PSBL
40

PSBL
80

PSRL
40

PSBL
40

PSRL
89

PSBL
40

PSLL
40

PSBL
80

PSHL
00

PSHL
40

PSRL
80

PSAL
20

RO
00

FO
o1

RO
C1

FO
cl

RO
c2

oc
R0
R0
02

RO
c6

RO
01

RO
04

k0
€0

RO
02

R1
OA

R1
0a

R1L
UA

R1
a9

R1
09

R1
09

R1
08

1
08

R1
o8

R1
07

R1
07

R1
07

Rl
06

Rl
Q6

R1
26

R1
0s
R1
05

R1
0y

Rl
04

R1
04

R1
04

R1
03
21
03

R1
03

R1
a2
RL
02

R1
02

R1
o1

Rl
01

R2
00

rR2
20

rR2
00

R2
00

R2
20

R2
00

R2
20

R2
00

R2
00

rR2
00

R2
00

R2
00

R2
00

R2
00

R2
00

R2
00

R2
00

R2
00

R2
00

R2
00

R2
00

R2
00

R2
00

R2
00

R2
00

R2
00

R2
20

R2
00

R2
00

R3
0B

R3
0A

R3
0A

R3
aa

R3
09

R3
09

R3
09

R3
08

R3
08

R3
08

R3
o7

R3
07

R3
o7

R3
o6

R3
06

°3
06

R3
0%

R3
05

R3
04

R3
04
R3
04

R3
03

R3
03
R3
03
R3
02

R4
00

R4
00

R4
00

R4
00

Fa
00

R4
00

R4
00

R4
0o

R4
00

R4
00

R4
00

R4
00

R4
00

o4
00

R4
00

R4
00

R4
00

R4
00

R4
00

R4
00

0
00

R4
00

R4
00

R4
00

R4
00

R4
00

R4
00

P4
00

R4
00

RS
00

RS
0o

RS
00

RS
00

RS
on

RS
00

PS
00

RS
00

RS
00

RS
00

RS
00

RS
00

kS
00

RS
00

FS
00

RS
()

kS
00

RS
00

RS
00

RS
00

RS
00
RS
00

PS
ou

L]
00

Fb
20

RS
00

RS
00

RS
00

R6
00

R6
00

R6
00

R6
09

R6
00
R&
00
RE
09
R6
00

R6
09

R6
00

R6
0o

R6
00

R&
00

R6
00

R6
00

R6
00

RE
00

R&
00

R6
00

R6
00

R6
00

R&
00

R6
00

R6
00

R6
00

R6
27

R6
00

R6
00

R6
09

28

ILLUSTRATION 1V-2

TRACE CCMMAND

TAR INST EAPDR (EADDR) PSBU PSBL RO R1 R2 R3 R4 R5 R6
0014 ccvI,0 0a cc1s 0004 01 40 ¢l 01 00 01 30 Q0 00
CCMMAND CUNMP

0050 17 07 15 1R 65 00 Cl1 02 C2 03 05 04 C3 02 01 00

c060 00 CO 01 02 02 04 C8 C6 C2 CO 03 01 40 40 40 40

0C70 40 40 40 40 40 40 CO CO 00 40 40 4C 40 4C 40 40

NO. CF MACHINE CYCLES EXECUTFD = 232

NO. COF INSTRUCTIONS EXECUTEC = 73

START 09
PATCE 55,0 S,
PATCH 58,5 5R,4

FATCH SF.O
PATCH 61,0
PATCH €2,0 63,0
PATCH €742 68,9
FuMp 3,55,77
DUMP 0455,77

TRACE 4, 1A
PATCH 33,08
FATCR 12,08
FENC

FOMMAND DUMP

0050 17 07 15
2069 00 00 00
0070 40 40 4
TRACE COMMAND
TAR INST
0014 LrCa,0
TRACE COMMAND
TAK INST
0017/ ACDALD
TRACE CUMMAND
TAR INST
0014 COMIL O
TRACE COVMMAND
TAR INST
COl4 LCECA, O
TRACE COMMAND
14R INST
0017 ACDAL O
TRACH CrMMAND
1am

aodla

TRACH

Tar

GOol4

TRACE COMMAND
TAR INST
o017 ACDA 40
TRECE CAMMAND
TAK INST
2014 CoMIL0
TRACE COMMAND
14k INST
wolsa Lera,d
TRACE COMMAND
14R INST
0017 ACCA,D

TRACE CCMMAND

1Ak INST
colsa CCMIL0
TRACE CCMMAND
TAR INST
0014 LeCA L
TRACF CCMMAND
AR INST
0017 ACLA,0
TRACF CGMMAND
AR INST
o0la COMILD
TRAGE CCMMARD
LAR INST
N014 LCCA,D
TRECE CCMMAND
1AR INST
co17 ATEA,O
TRACE COMMAND
AR INST
Gola CovMIL 0
TRACE COMMAND
1AF INGT
COl4 LCLA, O
TRACF CCMMAND
14K INST
0017 ACCALO
TRACE COMMAND
TAF INST
0014 COMIL 0
TRACE CUMMAND
[AR INST
Cola Lora,o
TRECE COMMAND
1AR INST
0017 AC
THACE CCMMAND
1Ak INST
001a COMIL 0
TRACE COMMBND
1AR INST
0014 LA, 0
TRACE CrMMAND
TAR INST
[N ACCAD

TRACE (CMMALD
1AR INST

001A COMLLO
TRACE CRMMANG

TAR INST
2014 LEPALD
TELCE COMMAND

AR INST
0017 ACLALO

5742 58,2
5C,3 50,2

nn

ma

o

G4yl €5,1 66,3
69y 4 €Ay 2 0f, 1

18 65 20 ()
00 01 01 C3

0061y 3~

0954, 1

0

D61y

00%4,1

oA

V061, 3, -

10549, 1

00651, 3~

0)54,1

BES

0001, 3,-

V054, 1

oa

0061, 3,~

005441

01

D061, 2=

US4yl

[o23

061, 2,

0054, 1

0061y 2y~

075451

0a

VOB,

0054, 1

c2

ILLUSTRATION IV-3

C2 €3 05 04 (3 V2 01 00
T8 02 V1 4) 40 40 4C
40 40 42 CO () 0O 40 40 4C 4) 40 40 4C

9

EALDR
CCoh

EADNR
CCsF

FARDR
coln

FALDR
CCoa
EAPDR
CCSF

EALCR
celn

EARER
Cl69

EANDR
cosn

£ANCR
CCIK

£ADDR
clon

CACNR
cese

EAC DR
(%}

©ANDR
coe?
EANOR
cesn
EADDR
cein
EAPDR
Cloe

FALDR
cesa

£ACDR
co1n

SACOR
CCo5

EADCR
€ess

EADDR
001K

EArCR
loa

£ ANCR
cose
£ADDR
oL
FANOR
o6
FArnR
cese
£ANDR
cein
£ADNR
ceo2
FADDR
€C50

(EADCR)
0001

(EADCR)
2000

(FADCR)
1004

(EADDR)
nCa2

(EADCR)
2001

(EADCR)
2004

(EADCR)
0008

(EADDR)
002

(EADCR)
2004

(FADCR)
009

(EADCR)
3003

(EADDR)
0004

(FADCR)
0002

(EADCR)
2004

(EADDR)
0004

(EADECR)
0003

(FADDR)
0005

(EADDR)
0004

(EADDR)
0001

(EADP2)
0003

{EADDR)
0004A

(EADDR)
0001

{EADDR)
0032

(FADCR)
JOOA

(EADCR)
000¢C

(EADDRY
)002

(FADCR)
2004

(FADCR)
0000

(FADC?)
0001

P SRU
ol

PSBU
01
P5BU
ol

PSBl
01

PSBU
o1
PSBY
01

PSBU
01

PSBU
ol

PSBU
01

PSBU
0l

PSBU
01

PSBU
oL

PSR
o1

PSAY
01

PSAL
2%

PSBU
(3%

PSBY
01

PSBU
0l

PSBU
01

PSBU
01
PSBU
01

PSBU
a1

PSBU
01

PSBU
a1

PSBU
ol

PSBU
0l

PSRY
o1
PSBu
[*h%

PSRN
01

PSBL
o8

PSHEL
48

PSRL
a8

PSBL
88

PSRL
4“8

PSRL
48

PSHL
a8

PSBL
48

PSEL
48

PSBL
29

PSBL
69

PSBL
48

PSRL
69

PSRL
69

psaL
48

PSEL
83

PSHL
43

PSEL
48

PSEL
88

PSBL
48

PSRL

b

PSHL
a8

PSRL
48

PSHL
48

DSRL
88
PSAL
on

PSRL
48

PSEL
85
PSAL
o8

RO
08
o1

(8]
01

RO
&0
02

L)
Cc3

RO
03

kO
ca

RO
0A

RO
<D
£O
c3

RO
c2

L)
04

RO
Ca

RO
01

RO
c3

R1
a8

Rl
08

R1
o

R1
oA

R1
oA

R1
oA
K1
09

R1
09

Rl
09

R1
08

R1
08

R1
08

Rl
o7

R1
97

K1
or

R1
Vo

R1
v6

R1
06

R1
25

R1
a5

R1
05
R1
D4

R1
0a

R1
04

R1
V3

R1
03

R1
03
®1
02

R1
02

R2
20

R2
00

R2
09
R2
00

rR2
20

R2
20

R2
20

R2
00

R2
20

R2
N0

R2
09

R2
00

R2
0o

R2
00

rR2
00

R2
20

R2
0o

R2
00

R2
00

R2
30
R2
20

R2
00

P2
00

R2
20

R2
00

R2
00

we
00

R2
00

P3
o8

3

K3

A

R3
oA

R3
09

R3
09

R3
09

R3
08

R3
08

R3
06

R3
o7

R3
ar

K3
07

3
06

R3
06

R3
06

R3
05
R3
05

3
05

[E)
04

3
RE}
#3
03

R3
23

R3
02

R3
02

R3
02

LE}
oL

Qg4
00

P4
00

k4
00

Ra
00

R4
00

R4
a0

R4
20
R4
0u

R4
00

R4
00

R4
00

Ra
00

[
00

R4
00

Ra
00
R4
00
R4
00
R4
00

R4
00

R4
00

ka4
00
R4
00
R4
00
R4
00

R4
00

R4
00

R4
0o

R4
no

R4
00

RS
09

00

RS
00

RS
20

RS
00

RS
0o

RS
00
K5
00

RS
00

RS
Q0
KS
co

S
00

RS
00

RS
00

RS
Q0

Ps
00

K5
00
RS
00

26
20

R6
00

R6
00

RO
00

R6
o0

Rb
o0

R6
00

R6
©o

R6
00

RO
00

Rb
09

a6
J0

R6
0o

RO
20

6

RO

00

R6
00

R6
00

26
00

]6
[Shv}

Ro
20

RE
00

R6
20
R6
00
R6
00

30

TRACE COMMAND
R INST

ILLUSTRATION IV-4

1A EACDR (EADCR) PSBU
cola CCMIL0 04 ccls 0004 01
TRACF CCMMAND

TAR INST EADDR (EADOR) PSBU
Ccol4 Lcea,o 0061, 3y~ ccol 0000 o1
TRACE CCMMAND

TAR INST EADCR (EADCR) PSBU
0017 ACCA+O 005441 €55 cooo 01
TRACE CCMMANC

1AR INST EADCR (EADOR) PSBU
0014 CCMT,0 0A cc1s 000A o1

COMMAND QUMP

0059
€060
0070

17 07 15 1B 65 00 01 02 C2 C3 05 04 03 02 01 00
00 00 Ol 02 03 04 08 C7 €3 CO 03 01 40 40 40 40
40 40 40 40 40 40 CO CO 00 40 40 40 40 40 40 40

N). OF MACHINE CYCLFS EXECUTEC = 252

NO. CF

INSTRUCTIONS EXECUTEC = 79

PSBL
48

PSBL
88

PsSBL
08

PSBL
08

RO
[

RO
o1

kO
co

RO
co

R1
02

R1
ot

R1
o1

R1
0l

R2
00

rR2
00

R2
)

R2
00

R3
01

R3
0l

R3
00

R3
00

R4
00

R4
00

R4
00

R4
00

RS
00

RS
00

RS
00

RS
00

R6&
00

R6
oo

R6
00

R6
00

COMMAND
NAME

DUMP.

FEND

INPUT

INSTR.

LIMIT
PATCH
REFER.

SETP.

SETR.

SROM
START
STAT

STOP.

TEND

TRACE.

APPENDIX A

COMMAND SUMMARY

PARAMETERS
LOC, FWA-LWAG(; .

None
VALUE(; . .. ;VALUE)

LOC(. .. ;LOC)

NO
LOC,VALUE(;. .. ;LOC,VALUE)
LOC(. ..;LOC)

LOC(,PSL=VALUE) (,PSU=VALUE)

LOC(,RO=VALUE). . .(R6=VALUE)

FWA-LWA
LOC

None
LOC(;...;LOC)

None

FWA-LWA(; ... ;FWA-LWA)

..;LOC, FWA-LWA)

DESCRIPTION

Display the area of memory. FWA-LWA, when-
ever the instruction at LOC executes.

Execute the last simulation and terminate the
entire run.

Define the data to be read by simulated I/O
instructions.

Display the processor registers whenever. the
instruction at LOC executes.

Specify the total number of instructions executed.
Initialize each memory location, LOC, to VALUE.

Display the processor register whenever the i’
struction at LOC is referenced by anothe:
instruction.

Set the program status byte (lower and/or upper)
to VALUE whenever the instruction at LOC
executes.

Set the general purpose registers to VALUE
whenever the instruction at LOC executes.

Specify the boundaries of Read-Only Memory.
Start the simulated program execution at LOC.

Display instruction statistics at end of program
execution.

Terminate the program execution when the in-
struction at LOC executes.

Execute the last simulation and prepare to read
the User Commands for the next simulation.

Display the processor registers whenever an iu
struction executes, which lies within the area of
memory, FWA-LWA.

APPENDIX B

ERROR MESSAGES

Whenever the Simulator detects an error in the User Commands, it
prints one of the following error messages:

ERROR IN OBJECT MODULE CARD NUMBER
the 2650 object module is incorrectly formatted.

INPUT DATA TABLE OVERFLOW
an INPUT command attempted to expand the simulated data input

buffer beyond its limit (200 bytes).

PARAMETER OUT OF RANGE
a User Command either contains an address which is outside the
bounds of simulated memory or the command defines a datum which

is larger than one byte (255,).

SIM MEMORY EXCEEDED
a 2650 object module loads into an area which is outside of simulated

memory.

SYNTAX ERROR IN COMMAND
the command parameters are either missing or in error.

TOO MANY COMMANDS
the maximum number of dynamic commands has been exceeded.

TOO MANY DUMP COMMANDS
the maximum number of DUMP commands has been exceeded.

TOO MANY SET REGISTER COMMANDS
the maximum number of SETR. commands has been exceeded.

TOO MANY SET PSB COMMANDS
the maximum number of SETP. commands has been exceeded.

UNRECOGNIZED COMMAND
a command has been read which is unknown to the Simulator.

UNEXPECTED END OF FILE
either the object module or the set of User Commands is missing, or
one of their respective card decks is incorrectly formatted, or the
FEND command is missing.

Whenever the Simulator detects an error while the simulated program is
executing it prints one of the following error messages:

ADDRESS OUT OF RANGE
an instruction attempted to access a location which lies outside of

simulated memory.

INSUFFICIENT INPUT DATA
a I/O instruction attempted to read another datum from the input
data buffer (INPUT) after all the data from the buffer had been read.
The simulated input register remains unchanged i.e., the instruction is
essentially ignored, and program execution continues.

LC= ATTEMPT TO STORE INTO ROM
an instruction attempted to store data into the area designated as

ROM (SROM).

33

LC EXCEEDS MEMORY
the program attempted to execute a memory location which lies
outside of simulated memory.

NO KNOWN OPCODE
the program attempted to execute a memory location which did not
contain a valid instruction. Either the program was modified during
execution or the program is attempting to execute data.

APPENDIX C

SIMULATOR RESTRICTIONS

SIMULATOR RESTRICTIONS

1. The simulated memory reserved by the Simulator for program storage is
limited to 2048 bytes.* Thus, the Simulator will accept only programs or
program segments which fit into this area. This implies that the 2650
paging facility (page size = 8192 bytes) cannot be simulated.

2. Some User Commands are limited in the amount of entries they may

accept.
COMMAND LIMIT
DUMP. 5 LOC’s
SETR. 4 LOC’s
SETP. 2 LOC’s
INPUT 200 VALUE’s
All “dynamic” commands 30 LOC’s (for TRACE. count 1

for each set of FWA-LWA)

*This may be expanded to 8192 bytes if sufficient memory is available.

35

APPENDIX D

SIMULATOR RUN PREPARATION

In order to prepare a program for execution by the Simulator, the
programmer:

1. Codes a program in 2650 Assembly Language.

2. Assembles the program until no assembly errors occur.

3. Obtains the object module and listing for the assembled program.

4. Generates command cards using addresses from the listing of the
assembled program.

5. Submits the object module and the command cards in that order for a
Simulator run. '

SIGNETICS SYSTEM
2650 MICROPROCESSOR APPLICATION NOTES

2650 EVALUATION PRINTED
CIRCUIT BOARD LEVEL
SYSTEM (PC1001)................... SP50

SiNDLCS

2630 EVALUATION PRINTED SP50

CIRCUIT BOARD (PC1001)

GENERAL

The PC1001 is an evaluation and design tool for the 2650
microprocessor. Each PC1001 board has a 2650 micro-
processor, 1k bytes of RAM, 1k bytes of PROM loaded
with PIPBUG®, a crystal clock, and sufficient additional
logic to allow the user to exercise all aspects of the 2650
microprocessor. There is a serial 1/0 port on the board that
can be used to drive a current loop driven terminal or an
RS232 type terminal. The PC1001 provides the system
engineer with a very flexible design tool from which he can
easily develop a pre-production prototype of his product
designed around the 2650 microprocessor.

FEATURES

The PC1001 has many features that make it a valuable
design aid. The most noteworthy features are:

® The Signetics 2650 N-MOS, 8-bit microprocessor
® 1k — bytes of RAM memory

® 1k — bytes of PROM memory

® A 1MHz crystal oscillator

® A serial 1/0 channel

® Two Non-Extended 8-bit parallel input ports

PC 1001 BLOCK DIAGRAM

APPLICATIONS MEMO

® Two Non-Extended 8-bit parallel output ports

® Buffered address, data, and control lines for imple-
menting additional 8-bit parallel 1/0 ports or ex-
panded memory

® Direct Memory Access (DMA) capability, including
the memory on the PC1001 board
® Display indicators on the board for the RUN/WAIT,

OPREQ, M/IO, R/W control lines, and the Non-
Extended output ports

® \/ectored interrupts

® A program debug module (called PIPBUG) written
for use with the 2650

*PIPBUG — a program debug module

DESCRIPTION

The PC1001 is configured as a very flexible, general purpose
microprocessor board to allow the system designer to easily
expand memory, implement input/output functions and
execute programs written for the 2650. A functional des-
cription of the PC1001 is given in this section. A functional
block diagram of the PC1001 is shown in Figure 1.

MEM —J

SELECT
DECODE SEL

SEL
1k X8

RAM

XcC
LC

ADDRESS J

BUFFER

DATA

ABUSO — ABUS14

DBUSO — DBUS7 8/

BUFFER

(1

CONTROL
LINE

NON-
EXTENDED
INPUT
1

NON- NON- NON-
EXTENDED EXTENDED EXTENDED
OUTPUT INPUT OUTPUT

1 2

TO BOARD EDGE CONNECTOR

BUFFERS

CONTROL } o
DECODE / 1

52 A 3

N / | PrrOM 72
5 (32%8)

SERIAL
; 110

7y DRIVER/
RECEIVER

*OPREQ, RUN/WAIT, INTACK, WRP, R/W, M/IO, DMA, PAUSE, INTREQ, RESET, OPACK

FIGURE 1

SIGNETICS 2650 EVALUATION PRINTED CIRCUIT BOARD (PC1001) = SP50

CPU

The 2650 is the heart of the PC1001, executing instruc-
tions from memory and controlling the 1/0 functions. The
address, data, and control lines of the 2650 are buffered
and available at the edge connector of the PC1001. The on-
board bus drivers allow the user to build a microprocessor
system around the PC1001 without additional buffering.
The tri-state function of the 2650 address and data busses
is transferred to the buffer gates which drive the lines used
by the system designer. The address and data bus buffers
are in the tri-state mode whenever the OPREQ line from
the 2650 is a logic ZERO.

MEMORY

The 1024 bytes of read only memory are implemented with
825129 256X4 bipolar PROM's. The PROM'’s are accessed
by addressing the first 1024 bytes of the address space
(locations 01g — 3FF1g). The PROM’s are mounted in
sockets on the PC1001 board and are loaded with the
PIPBUG debug program. The sockets on the PC1001 board
allow the user to put different 825129 PROM'’s in the first
1k bytes of the memory address space when developing
a prototype system.

The 1024 bytes of random access memory are implemented
with 2606 256X4 MOS RAM'’s. The RAM's are accessed by
addressing thie second 1024 bytes of the address space
(locations 40015 — 7FF 1g).

PARALLEL i/0

The buffered address, data, and control lines available to the
user of the PC1001 allow any of the 2650 parallel I/O
modes to be implemented, or to expand memory beyond
the 2k bytes already on the board. The extended 1/0 instruc-
tions provide device select capability for 256 1/O functions
by decoding the least significant 8-bits of the address bus
(ABUS 0 — ABUS 7). The buffered data bus is a bi-
directional tri-state bus so that input devices may use the
data bus by driving it with tri-state drivers.

If the Non-Extended 1/0O instructions are used, two latched
output ports and two gated input ports are already provided
on the PC1001, and no control line decoding is necessary.

When the 2650 executes memory reference instructions or
Non-Extended 1/0 instructions, the control decode PROM
generates the operation acknowledge signal (OPACK) in
response to operation request (OPREQ). When the 2650
executes Extended 1/O instructions, the selected |/O device
must generate OPACK. By requiring the 1/0 device to return
the OPACK signal, the PC1001 gives the user the flexibility
of connecting peripheral functions that may require more
than one microsecond to respond to an |/O request. |f the
Extended 1/0 functions are all faster than one microsecond
they will not slow down the 2650, and OPACK may be
tied to logic ZERO.

SERIAL I/O

The 2650 is equipped with a SENSE input and a FLAG
output. These two functions provide a serial 1/O data path
directly into the 2650. Part of the PIPBUG PROM program

4

is dedicated to implementing an asynchronous serial com-
munications port for the PC1001. The program checks
the SENSE line for a start bit from the serial device to
achieve synchronization. Once a start bit is detected, the
2650 shifts the next eight character bits into register RO.
The PC1001 is designed for full duplex serial I/0, and will
echo the transmitted character back to the serial device
using the FLAG output. The timing loops that determine
when to sample a character bit are written for a ten
character per second serial data rate (110 baud), but the
2650 is capable of handling much higher serial data rates.

The serial 1/0 device used with the PC1001 may be a 20
milliamp current loop device, or it may be RS232 compat-
ible (voltage driven). A current loop driver and receiver,
and an RS232 driver and receiver are on the PC1001
board. The type of driver and receiver is selected with
a wire jumper. |f the RS232 driver and receiver is used,
external *15 volt power supplies are required. If the
current loop driver and receiver is used, the PC1001 re-
quires only a single +5 volt power supply.

The PIPBUG debug program includes a read paper tape
control function. The program sets a bit in the output
register of Non-Extended 1/0 port C (WRTC instruction)
to advance the tape reader one character at a time. This
function can be used by modifying a standard teletype to
include a tape reader control relay and driving it with the
TTY TAPE READER OUT SIGNAL.

It should be pointed out that the tape reader control bit
and bit 7 of the Non-Extended |/O port (OPC7) are the
same and caution should be exercised to avoid a conflict
between the two functions.

CLOCK

The clock circuit on the PC1001 is a hybrid circuit crystal
oscillator that runs at a frequency of 1.000 MHz. Instruc-
tion loops are used to determine bit times and the crystal
controlled clock minimizes errors due to changes in the
system clock.

The clock input to the 2650 that is driven by the crystal
controlled clock (pin 38) is available at the edge connector
of PC1001. If the user chooses to drive the PC1001 with an
external clock he must first remove the crystal clock
circuit. The clock input to the 2650 is fully TTL compatible
and requires no special drive circuitry.

DISPLAYS

Minature LED indicator displays are driven by the three
basic control lines (OPREQ, M/IO, and R/W), and the
Non-Extended output latches. A logic ONE state on the
control lines, or in the output latches, ‘‘lights’’ the corre-
sponding LED. The minature LED’s are mounted on the
PC1001 board and are shown in Figure 2.

SIGNETICS 2650 EVALUATION PRINTED CIRCUIT BOARD (PC1001) = SP50

PRINTED CIRCUIT BOARD LAYOUT

RESET [
“PIPBUG” — CONTROL PROGRAM 1k BYTES RAM
)) e - o [} [} [[}
1V 2 3V 4V 5[] 6 7 8 9V
s1 8 8 8 8 €2
8 2 2 2 2 2 2 2 2 +
T s s s S 6 6 8 8
c1 2 1 1 1 1 0 0 0 0
6| p 2 2 2 2 6 6 6 6
" R 9 9 9 9
T L L] L L L | L | L |
B
3 u
2 i [t) [} [} [[[} <> ABUS
- v E | v 12] 13 14] 15 [16 [~ 17 18 [~ Z
2 S 8 8 8 8 [
& 8 2 2 2 2 2 2 2 2 2
T s s s s 8 6 8 8 3
2 1 1 1 1 0 0 0 0 0
1 |8 2 2 2 2 6 6 6 6 3
DBUS 9 9 9 9 2
% — S— L— L— I L S— E—
5
4 MEMORY CONTROL ADDRESS BUFFERS DATA BUFFERS cLOCK
2 [[} [[23 O [[[o
o |19V 20 V] 21V 22V] 24V 25 [V 26 [V 27
8
3 3 8 8 8 8 g K
3 5 T T T T] 1
0 0 3 3 § § 5 g
L L] L A
1/0
EE— 2650 RUN/WAIT 5 CONTROL
[} [} [[[5] [o =
28 29 30 [31 32 Bl 34 35 [
Rr3| |Rrs 8
7 7 7
3 4 4 8 8 EEH 4 4 2
i g g ; Il : i
0 8 4 9 9 ¢:+ 2
R2 L
- _— — L
R6 R7 - }-D20
- R4 c4
= OUTPUT PORTS INPUT PORTS
[[oKD o) [[[[
36 37 R 38 [39 40 a1 42 43V
TR Bt 8
7 7 KD 7 7 8 8 8 R1
1 4 aral 2 4 T T T T
7 7 7 7 9 9 9 6
5 5 EEIERE 5 5 8 8 8
sl k| Dt e |
it L] L
c3
To
FIGURE 2

DMA

Direct access to memory by an external device (DMA) is
easily accomplished with the PC1001. An input to the
board is provided for direct memory access and the signal
name of that input is DMA (PC1001 pin 14). When DMA is
pulled “low” the 2650 finishes executing the current
instruction and enters the wait state. To avoid interrupting
a memory or 1/O transfer in progress the DMA line should
not be pulled “low” while OPREQ is ‘“high’. When the
RUN/WAIT lines goes ‘“‘low” the external device may drive
the address, data, and control lines (except OPREQ, and
RUN/WAIT) to accomplish the necessary DMA transfer.

An external operation request line (OPEX) is provided for
DMA transfers to the memory on the PC1001 board. Since
OPREQ is only driven by the 2650, and is used in the
memory select decoders, the user must drive OPEX to
access the memory on the PC1001.

Because the DMA function is implemented with the pause
feature of the 2650, and since the 2650 is a static device,
the length of time that the DMA device may be active for
any one transfer is limited only by the other processing
responsibilities of the 2650.

INTERRUPTS

The 2650 has a true vectored interrupt system. The user
must first drive the interrupt line (INTREQ) on the PC1001,
then wait to be acknowledged (INTACK), and finally drive
the data bus with a 7-bit signed displacement relative to
page zero, location zero. The displacement vector may also
indicate indirect addressing, allowing the interrupt service
sub-routine to be located anywhere in the 32k-byte add-
ress space.

5

SIGNETICS 2650 EVALUATION PRINTED CIRCUIT BOARD (PC1001) = SP50

INTERRUPTS (Continued)

The INTREQ line may be driven by several interrupting
devices in a “wired OR" configuration. When a priority
exists between the various interrupting devices, and to
prevent confusion from multiple simultaneous interrupts,
the user must arrange the interrupt hardware to resolve
priority and simultaneity conflicts.

The PC1001 board comes with PIPBUG stored in the first
1k-bytes of .ROM and therefore the user cannot store an
interrupt service subroutine or an indirect address in this
part of the memory address space. But the interrupt dis-
placement vector may be a negative number referring to
the last 64 locations in page zero (1FBFqg to 1FFF4g).
If an indirect address or interrupt service subroutine is
placed in one of the last 64 locations of page zero, the
user must also provide external memory at the locations
used (the PC1001 has only 2k-bytes of memory on the
board).

There is another way to accomplish a “’link” to an interrupt
service subroutine through the ROM on the PC1001. It is
possible that PIPBUG instructions themselves could pro-
vide an indirect address to the second 1k-bytes of RAM on
the PC1001 board. An example of a very useable indirect
address to an interrupt service routine may be found at
locations 81g and 91¢g of PIPBUG. I|f these locations are used
as an indirect address, the program would branch to loca-
tion 47741 where it would expect to find a subroutine to
service the active interrupt.

A timing diagram for interrupt processing is shown in Figure
3, as well as the format for the displacement vector.

LOGIC

The logic on the PC1001 board is uncomplicated and very
general purpose. It includes:

. 2650 CPU and memory

. Address bus, and data bus drivers and receivers
. Control line drivers and receivers

. Control line decode

. Memory select decode

. Serial /O transmitter and receiver

7. Non-Extended parallel 1/0 latches and receivers

DO hA WN =

The PC1001 logic drawing will be referred to during this
description and is shown in Figure 4. The integrated circuit
numbers used in Figure 4 may be cross-correlated to those
used on Figure 2 for locating an integrated circuit on the
PC1001 board.

CPU and MEMORY

CPU — The address bus, and the data bus from the 2650
are buffered for easy system expansion. With the exception
of the address tri-state control line (ADREN) and the data
bus tri-state control line (DBUSEN), all of the control lines
from the 2650 are also buffered. The ADREN and DBUSEN
lines are tied “low’ on the PC1001 board, and the tri-
state function of the address, data, and control lines is
fulfilled by the buffers.

The clock input is driven directly from the K1100A clock
circuit (IC #27). The clock output is available off-board on
PC1001 pin 23 (the signal name is CLOCK). The K1100
clock circuit has a frequency stability of £.01% and will
drive 10 standard TTL (7400 series) unit loads. The 2650

INTERRUPT TIMING

LAST CYCLE o — — — — — — — —

OF CURRENT — — —/ -~ _

INSTRUCTION
CcLOCK To ™ T2 TO T T2 To P
OPREQ } [\
N

\ A

INTACK

DBUS

—

INDIRECT BIT—-] ["*
I

T N\

USER
" SUPPLIED
DISPLACEMENT

_SIGNED DISPLACEMENT
(+63 TO -64)

VAN
| 7

LLL

FIGURE 3

1T}

SIGNETICS 2650 EVALUATION PRINTED CIRCUIT BOARD (PC1001) = SP50

PC1001 LOGIC DIAGRAM

2
8
g =%
~ g
PR P
Do dfils
2
| dops
foe Lo
° ~ R
. o
L] I PRy
FCT T
: oI~
o
o £
¢ ~ LR
. o
e
— Nk
:0(—— ~
N~ .
B o
g iny
<« Y Bk
e !
o8l csaame o
S ERRREREs
Mé];?é]g‘én@‘é

Y
0 E >
4 k-
=
0
o
~
[
i
|’ ©

T © w w t o [3)) <

FIGURE 4

SIGNETICS 2650 EVALUATION PRINTED CIRCUIT BOARD (PC1001) = SP50

CPU and MEMORY (Continued)

is the only load the clock must drive on the PC1001, using
only 10 pamps of its drive capability.

Memory — The memories are of two types: 825129 256X4
PROMs, and 2606 256X4 RAMs. All 16 memory IC's
(IC's 2-9, and 11-18) are addressed by the least significant
8-bits of the buffered address bus. The memories drive
and receive the data bus through 8T26 tri-state transceivers
to prevent an expanded system from presenting too great
a capacitive load for the MOS memories.

The PROM memories (IC's 2-5, and IC's 11-14) are plugged
into sockets and come programmed with PIPBUG. Any
user's program may be stored in these PROM locations
if PIPBUG is not required.

When the PC1001 is used to develop programs, and PIPBUG
is resident in the first 1k-bytes of memory space, all of the
1k-bytes of RAM memory is available for use except the
first 64 bytes (4001 to 43F1g). The 64 locations are used
by PIPBUG for temporary storage.

ADDRESS AND DATA BUS DRIVERS AND RECEIVERS

The data bus (DBUSO - DBUS?7) is buffered with 8T26 quad
tri-state transceivers (IC's 24 and 25). These transceivers
are inverting, and therefore the data bus transferred off of
the PC1001 board is negative true (DBUSO - DBUS7). The
tri-state transceivers are controlled by RE1 (receiver con-
trol) and DE1 (driver control) from the control decode
PROM (IC 35). The receiver control RE1 is a negative true
signal (active “low’’) and has the following logic equation:

RE1=0OPREQ e R/W

The driver control DE1 is a positive true signal and has the
following logic equation:

DE1=0PREQe R/W

The logic equations reflect the fact that the 2650 drives the
external data bus (DBUSO - DBUS7) during all write opera-
tions (memory or 1/0), and receives the external data bus
during all read operations. But, when OPREQ is not a
"high’ the external data bus transceivers are in the tri-
state mode.

The memory on the PC1001 board is buffered from the
user's data bus (DBUSO - DBUS7) with 8T26 quad tri-
state transceivers. These transceivers are inverting so that
information stored in memory is not complimented relative
to the 2650. These transceivers are controlled by RE2
(receiver control) and DE2 (driver control) from the
memory select decode logic. The logic for these control
lines is shown below IC 20 (IC’s 28 and 29) in Figure 4
and they have the following logic equations:

RE2 = MEMSEL ¢ R/W
DE1=MEMSEL ¢ R/W

The RE2 control line is a negative true signal and is active
when the memory on the PC1001 is selected to be written
into. The DE1 control line is positive true and active when
the memory on the PC1001 is selected to be read from.

The address bus is buffered with 8T97 tri-state buffers
(IC's 21, 22, and 31). These buffers are in the tri-state
mode whenever OPREQ is inactive.

CONTROL LINE DRIVERS AND RECEIVERS

The two control lines OPREQ and RUN/WAIT are buffered
with 8T97 tri-state buffers (IC 32), but are never placed in
the tri-state mode.

The control lines INTACK, WRP, R/W, and M/10O are also
driven by 8T97 tri-state buffers (IC 32), and are switched to
the tri-state mode when the DMA line is pulled “‘low”. The
pause input to the 2650 may be activated by driving the
DMA line (PCi001 pin 14) or the PAUSE line (PC1001
pin 27) “low".

The interrupt request line and the reset line to the 2650 are
buffered by TTL AND gates (IC 33). The reset switch on
the PC1001 (upper left corner of Figure 2) is ““wire ORed"’
with the RESET line to the PC1001 board (PC1001
pin 25).

The operation acknowledge line to the 2650 (OPACK) is
buffered with a TTL AND gate (IC 33), and has as its
inputs an external acknowledge (OPACK, PC1001 pin 22)
and an internal acknowledge (OPK). The internal acknow-
ledge is generated for all memory access cycles and Non-
Extended I/O cycles initiated by the 2650. For Extended
1/0 cycles the external device must generate the external
operation acknowledge (OPACK).

CONTROL LINE DECODE

A control line decoder is implemented with a 32X8 PROM
(825123) to generate secondary control lines used by the
logic supporting the 2650. The primary control lines from
the 2650 (R/W, OPREQ, M/I0 E/NE, and D/C) are used to
address the PROM, and each address represents one combi-
nation of the primary control lines. Stored at each memory
location are eight bits, each one of which represents the
logical state of a secondary control line. There are five
address inputs to the PROM, and the 32 (25) possible
addresses exhaust all of the logical combination of the
primary control lines. The secondary control lines, their
logic equations, and their functions are given in Table 1.
Table 2 shows the contents of each of the 32 locations of
the PROM. The control line decode PROM is shown in
Figure 4 (IC 35).

MEMORY SELECT DECODE

The memory select decode logic is shown in Figure 4
(IC's 19, 20, 28, 29, 30 and 34). The 2k-bytes of memory
are implemented with 256X4 bit memory chips. The
memory chips are arranged into eight 256-byte sections.

SIGNETICS 2650 EVALUATION PRINTED CIRCUIT BOARD (PC1001) = SP50

The ninth, tenth, and eleventh bits of the address bus
(ABUS8-ABUS10) are decoded to select one of the eight
256-byte sections of memory. The one-of-eight decoder
(IC 20) is enabled by MEMSEL, which has the following
logic equations:

MEMSEL = (OPREQ + OPEX)
e M/10 @ ABUST1 @ ABUST2 ABUS13 ® ABUS14

The MEMSEL line is also used to enable the 8T26 quad
tri-state transceivers that buffer the memory on the PC1001
from the external data bus (DBUSO-DBUS?7).

SERIAL I/O TRANSMITTER AND RECEIVER

A serial 1/O port is implemented on the PC1001 with the
flag and sense line of the 2650. The PIPBUG program han-
dles the serial 1/O using software timing loops to sample

CONTROL LINE DECODE PROM DESCRIPTION

the SENSE input and build eight bit ASCII characters. The
PC1001 is capable of interfacing to a current loop type
terminal, or an RS232 compatible terminal.

The current loop driver uses an open collector NAND gate
(IC 34) as the switching element. The 20 milliamp source
is a 220£2 resistor connected to +5 volts on the PC1001
(PC1001 pin S), and the open collector NAND gate either
provides a return path for the 20 milliamps (NAND output
“on") or it does not (NAND output “off’). The current
loop receiver is a CMOS hex inverter (IC 30) with the input
pulled to +5 volts through a 2.7k§2 resistor (PC1001 pin P).
The teletype transmitter is a contact closure and connects
the input of the CMQOS inverter to the receiver return line
(PC1001 pin R), which is tied to ground on the PC1001
board.

The RS232 driver is an 8T15 EIA Line Driver (IC 26),
and the RS232 receiver is an 8T16 EIA Line Receiver
(IC 43). The 8T 15 is the only chip on the PC1001 that does
not operate on the +5 volt power supply, and 15 volt
power supplies are specified for this driver.

SIGNAL | & i rpuT | PIN # LOGIC EQUATION FUNCTION

NAME

WOPD BO 1 WOPD = OPREQ ¢ M/IO o e D/C e« R/W | LOADS NON-EXTENDED OUTPUT
LATCH, PORT D

EIPD* B1 2 EIPD = OPREQ e M/IO o E/NE « D/C « R/W | ENABLES NON-EXTENDED INPUT
GATES, PORT D

EIPC* B2 3 EIPC = OPREQ e M/1O & E/NE « D/C « R/W | ENABLES NON-EXTENDED INPUT
GATES, PORT C

WOPC B3 4 WOPC = OPREQ e M/IO e E/NE e D/C « R/W | LOADS NON-EXTENDED QUTPUT
LATCH, PORT C

OoPK* B4 5 OPK = OPREQ [(M/IO) + (M/10 E/NE)] RETURNS OPACK FOR ALL OPREQ
EXCEPT EXTENDED 1/0

R/W BS 6 R/W = R/W INVERTS R/W

DE1 B6 DE1=OPREQ e R/W DRIVES EXTERNAL DATA BUS (DBUSO
— DBUS?)

RE1* B7 9 RE1=0OPREQ s R/W ENABLES RECEIVERS OF EXTERNAL
DATA BUS (DBUSO — DBUS7)

*NEGATIVE TRUE SIGNALS

TABLE 1

SIGNETICS 2650 EVALUATION PRINTED CIRCUIT BOARD (PC1001) = SP50

CONTROL LINE DECODE PROM

” &
w =
a8 INPUT OUTPUT &
2 A4 A3 A2 A1 A0 7 6 5 4 3 2 1 0 3
0 0 0 0 0 0 1 0 1 1 0 1 1 0 B6
1 0 0 0 0 1 1 0 0 1 0 1 1 0 96
2 0 0 0 1 0 0 0 1 0 0 0 1 0 22
3 0 0 0 1 1 1 1 0 0 1 1 1 0 CE
4 0 0 1 0 0 1 0 1 1 0 1 1 0 B6
5 0 0 1 0 1 1 0 0 1 0 1 1 0 96
6 0 0 1 1 0 0 0 1 0 0 1 0 0 24
7 0 0 1 1 1 1 1 0 0 0 1 1 1 c7
8 0 1 0 0 0 1 0 1 1 0 1 1 0 B6
9 0 1 0 0 1 1 0 0 1 0 1 1 0 96
10 0 1 0 1 0 0 0 1 1 0 1 1 0 36
1 0 1 0 1 1 1 1 0 1 0 1 1 0 D6
12 0 1 1 0 0 1 0 1 1 0 1 1 0 B6
13 0 1 1 0 1 1 0 0 1 0 1 1 0 96
14 0 1 1 1 0 0 0 1 1 0 1 1 0 36
15 0 1 1 1 1 1 1 0 1 0 1 1 0 D6
16 1 0 0 0 0 1 0 1 1 0 1 1 0 B6
17 1 0 0 0 1 1 0 0 1 0 1 1 0 96
18 1 0 0 1 0 0 0 1 0 0 1 1 0 26
19 1 0 0 1 1 1 1 0 0 0 1 1 0 C6
20 1 0 1 0 1 1 0 0 1 0 1 1 0 B6
21 1 0 1 0 1 1 0 0 1 0 1 1 0 96
22 1 0 1 1 0 0 0 1 0 0 1 1 0 26
23 1 0 1 1 1 1 1 0 0 0 1 1 0 C6
24 1 1 0 0 0 1 0 1 1 0 1 1 0 B6
25 1 1 0 0 1 1 0 0 1 0 1 1 0 96
26 1 1 0 1 0 0 0 1 0 0 1 1 0 26
27 1 1 0 1 1 1 1 0 0 0 1 1 0 C6
28 1 1 1 0 0 1 0 1 1 0 1 1 0 B6
29 1 1 1 0 1 1 0 0 1 0 1 1 0 96
30 1 1 1 1 0 0 0 1 0 0 1 1 0 26
31 1 1 1 1 1 1 1 0 0 0 1 1 0 C6
M/I0 E/NE D/C 0 R/W REI DEI R/W O w E E w
P P 0 I I 0
R K P P P P
E C C D D
Q

TABLE 2

The current loop driver/receiver pair or the RS232 driver/
receiver pair is selected by a hardwire jumper on the PC1001
board. The connection of these jumpers is described in
Table 3, and shown in Figure 4 (2650 pin 40/FLAG,
2650 pin 1/SENSE).

SERIAL 1/0 DRIVER/RECEIVER MODE

2650

FUNCTION JUMPER DESCRIPTION
FLAG A-B CURRENT LOOP DRIVER
FLAG A-C RS232 DRIVER
SENSE E-D CURRENT LOOP RECEIVER
SENSE F-D RS232 RECEIVER

TABLE 3
10

PARALLEL 1/O LATCHES AND RECEIVERS

The logic used to implement the two parallel I/O ports on the
PC1001 is identical. The output ports are 7475 quad
bistable latches (IC's 36, 37, 38, and 39), and are loaded
when a Non-Extended write 1/O instruction is executed
(WRTC, WRTD). The input ports use 8T98 tri-state high
speed hex inverters (IC's 40, 41, and 42), and are gated on
the external data bus (DBUSO - DBUS7) when a Non-
Extended read |/O instruction is executed (REDC, REDD).

The control signals used to activate the tri-state gates (EIPD,
and EIPC) are generated by the control line decode PROM
(IC 35).

SIGNETICS 2650 EVALUATION PRINTED CIRCUIT BOARD (PC1001) = SP50

The control signals used to load the output latches are desig- The output latches drive LED’s on the PC1001 board. A
nated COPC and COPD, and have the following logic logic ONE from the 2650 lights the corresponding LED.
equations: The output latches are loaded from the external data bus

COPD = WRP e« WOPD
COPC =WRP e« WOPC

The WRP signal is the “write pulse’” from the 2650, while
the WOPD and WOPC signals are generated by the control
line decode PROM (IC 35).

APPENDIX
WRITE TIMING

(DBUSO - DBUS?7), and to obtain the required inversion at
the latch output (OPDO - OPD7, and OPCO - OPC7) the
Q pin is used.

OPREQ

=N

- |

AW X X__:

WRP /7
et

ABUS ——W VALID ADDRESS (MEMORY ONLY) W— z
z

DE1 zz;(/ \\ \\N

RE1 }

OBUS - T VALID DATA m -

[
- /
m/io D¢) G
DE2 - W
/ ——

RE2 \\N 4 >
o
(=]

o AN /gl

MRW /7 \

M/iG - X X _—° 5
Q

WOPC, WOPD /// wopc ~pic = Low WOPD ~ D/C = HIGH \\\ g E
Xz

COPC, COPD y/4 A\ §‘ Q

EINE -X) GRE

TcLock = 800 nsec

11

SIGNETICS 2650 EVALUATION PRINTED CIRCUIT BOARD (PC1001) = SP50

READ TIMING

OPREQ
oPK
A D N / A
/[
WRP 2
— - ow
HI-Z *
ABUS VALID ADDRESS (MEMORY ONLY))oow-
DE1 - \ -
RE1 W } 77—
/
- [/
M/i0 X / y G
DE2 /// / N\ NI
w
N
RE2 _ -~ 3
(:
ce AN /7 z
DBUS WOOO(VALID DATA W
wio - X X__—
Q
w
EIPD, EIPC &\ EIPD = D/C = HIGH EIPC = D/C = LOW %g
- gj < _— k&
DBUS _ = M VALID DATA *)0(-~
<]
—_— —— — 2
EINE °X X___
TcLock = 800 nsec
EXTENDED 1/0 TIMING
OPREQ _7’2)E
ABUS ———W VALID DEVICE SELECT (ABUS0 — ABUS 7) W—
OPACK \ /—— e
Wi X X___
EINE X X__—
R/W : X X: : : :
o TZZZIZIZZIITITTICC B Gy e——
________ S
— — T
DE1
RE1 \\N V//
A X X __—
DBUS __év [—W : : : w
=
DE1 774 @ E
RE1
WRP \ / \ /

12

SIGNETICS 2650 EVALUATION PRINTED CIRCUIT BOARD (PC1001) = SP50

POWER REQUIREMENTS

+5 VOLT POWER SUPPLY: +15 VOLT POWER SUPPLIES:
LINE REGULATION — 0.1% LINE REGULATION — 0.1%
LOAD REGULATION — 0.1% LOAD REGULATION — 0.1%
RIPPLE — 10 millivolts (MAX) RIPPLE — 10 millivolts (MAX)
RESPONSE — 30usec (MAX) RESPONSE — 30usec (MAX)
CURRENT — 2 amps CURRENT — 50 milliamps
PARTS LIST
IC# PART # TYPE QTY
28 7400 QUAD 2-INPUT NAND 1
29, 33 7408 QUAD 2-INPUT AND 2
19 7430 8-INPUT NAND 1
34 7438 QUAD 2-INPUT NAND OPEN COLLECTOR 1
36, 37, 38, 39 7475 QUAD BISTABLE LATCH 4
26 8T15 E1A DRIVER (RS232) 1
43 8T16 E1A RECEIVER (RS232) 1
1,10 8726 QUAD BUS DRIVER/RECEIVER 4
24, 25
40, 41, 42 8798 HEX HIGH SPEED INVERTER 3
20 8250 1 OF 8 DECODER 1
6,7,8,9 2606 256X4 NMOS RAM 8
15,16, 17, 18
30 4049 HEX INVERTER (CMOS) 1
35 825123 32X8 BIPOLAR PROM 1
2 825129 PIPBUG PROM CK267 1
11 825129 PIPBUG PROM CK268 1
3 825129 PIPBUG PROM CK269 1
12 825129 PIPBUG PROM CK270 1
4 825129 PIPBUG PROM CK271 1
13 825129 PIPBUG PROM CK272 1
5 825129 PIPBUG PROM CK273 1
14 825129 PIPBUG PROM CK274 1
23 2650 MICROPROCESSOR 1
27 MOTOROLA XTAL OSCILLATOR 1
K1100A
D20 IN914 DIODE 1
D1-D19 DIALCO LED INDICATOR 19
555-3007
S1 GREYHILL MINIATURE, PUSH BUTTON SWITCH 1
39-201
(IC 23)* VERMON 40-PIN DIP SOCKET 1
H23-20302
(IC2,3 AMPHENOL 16-PIN DIP SOCKET 8
4,5,11,12, 821-25011-164
13, 14)

*#'s in parenthesis indicate the IC’s that are plugged into the listed socket.

13

SIGNETICS 2650 EVALUATION PRINTED CIRCUIT BOARD (PC1001) = SP50

PARTS LIST (Continued)

IC# PART #

(1Ic 27) AMPHENOL
821-25011-144

C1,C2 230-1250-004-230

Cc3

- EMCON
5021ES50RD104M

ca

R4 230-0910-332-230

R3

R7

R5, R6 230-0910-297-230

R1, R2 230-0910-282-230
AMPHENOL
225-804-50

RS232C STANDARD CONNECTOR

The RS232 Electronic Industries Association (EIA) standard
for “interface between terminals and communications
equipment using serial binary data interchange’’ describes
a commonly used signal definition and connector pin
assignment. The table below lists the pin numbers and
signal names most frequently used by. data terminals.

PIN # DESCRIPTION

PROTECTIVE GROUND
TRANSMITTED DATA
RECEIVED DATA

CLEAR TO SEND

DATA SET READY

SIGNAL GROUND

RECEIVED LINE SIGNAL DETECTOR

20 DATA TERMINAL READY

WO WN =

Transmitted Data (pin 2) is received by the PC1001, there-
fore pin 2 of the RS232 connector is routed to the SENSE
input of the 2650. Received Data (pin 3) is transmitted
from the PC1001, therefore pin 3 of the RS232 is routed
to the FLAG output of the 2650.

The signals on pins 5, 6, 8, and 20 are used between data
terminals and communications MODEM:s. Since the PC1001
does not provide these ‘“handshake’” lines they can be
simulated by shorting them all together. In this configura-
tion the Data Terminal Ready line drives the other 3 lines
to the proper state for enabling the communication channel.

14

TYPE QTty
14-PIN DIP SOCKET 1
4.7uFARAD CAP 3
0.1u FARAD CAP 45
0.047u FARAD CAP 1
B1Kr, %2 WATT RES 1
10Kr, % WATT RES 1
7.4Kr, % WATT REST 1
1Kr, % WATT RES 1
220r, % WATT RES 2
100 PIN P.C. EDGE CONNECTOR 1

This is not required for all data terminals (not teletypes),
but is required for some.

Further information on RS232C specifications can be
obtained from the EIA RS-232-C Standard available from
the Electronic Industries Association in Washington D.C.

The type of connector commonly used for RS232 compat-
ible data terminals is a 25-pin TRW Cinch type connector
of the DB25 series.

TELETYPE CONNECTION

Connection to a teletype may be made at the terminal strip
inside of the teletype. The pin numbers and signal names
are listed in the table below.

PIN # DESCRIPTION
6 RECEIVER -
(TTY SERIAL IN -)
7 RECEIVER +
(TTY SERIAL IN +)
3 TRANSMITTER -
(TTY SERIAL OUT -)
4 TRANSMITTER +
(TTY SERIAL OUT +)

The teletype is a 20 milliamp current loop type of receiver
and a contact closure type of transmitter. The PIPBUG
debug program on the PC1001 board communicates with
the teletype in a full duplex mode, echoing characters as
they are received.

SIGNETICS 2650 EVALUATION PRINTED CIRCUIT BOARD (PC1001) = SP50

EDGE CONNECTOR SIGNAL LIST

PIN #

00 N O WN =

QD DDEDDEDLEDDDDDDDIDDWWWWWWWWWWNNRNNNNNNNN=S S = @ @00
C WO NOODA,WN_LOOONOOODOPAL,WUN—,LOOONOOOPDRLWN=—=O0OONOOGTDA,WN-=O0OCO®

*NC = NO CONNECTION

FUNCTION

GND
GND
NC*
DBUSO
DBUST
DBUS?2
DBUS3
DBUS4
DBUS5H
DBUS6
DBUS7
EIPD
/C
DMA
E/NE
INTACK
R/W
WRP
RUN/WAIT
OPREQ
M/10
OPACK

o

|| O|lO
> Zim|3T|
cl|dlwnlmo
| B M| x|l O
m8—| a

NC*

NC*

ABUS 11
ABUS 13
ABUS 12
ABUS 14
ABUS 9
ABUS 10
ABUS 8
ABUS 7
ABUS 6
ABUS 5
ABUS 3
ABUS 0
ABUS 1
ABUS 4
ABUS 2
+15V

-15V

+5V

PIN #

TABLE 4

*lololololplN < X $ <€ +® T 33X T TQ@ 00T N<LSXSES<CANPNITIOVZIrACITMOO®>

FUNCTION

GND

GND

NC

OPDO

OPD 1

OPD 2

OPD 3

OPD 4

OPD 5

OPD 6

OPD 7

COPD

TTY SERIAL IN +
TTY SERIAL IN -
TTY SERIAL OUT +
TTY SERIAL OUT -
RS232 GROUND
RS232 OUTPUT

TTY TAPE READER OUT -
TTY TAPE READER OUT +

RS232 INPUT
COPC
OPC O
OPC 1
OPC 2
OPC 3
OPC 4
OPC 5
OPC 6
OPC 7
EIPC
IPDO
IPD 1
IPD 2
IPD 3
IPD 4
IPD 5
IPD 6
IPD 7
IPCO
IPC 1
IPC 2
IPC 3
IPC 4
IPC5
IPC 6
IPC7
+15V
-15V
+5V

15

n terial

from a world-wide Group of Companies

EUROPEAN SALES OFFICES

Austria: Osterreichische Philips, Bauelemente Industrie G.m.b.H., Zieglergasse 6, Tel. 93 26 11, A-1072 WIEN.
Belgium: M.B.L.E., 80, rue des Deux Gares, Tel. 523 00 00, B-1070 BRUXELLES.

Denmark: Miniwatt A/S, Emdrupvej 115A, Tel. (01) 69 16 22, DK-2400 KOBENHAVN NV.

Finland: Oy Philips Ab, Elcoma Division, Kaivokatu 8, Tel. 172 71, SF-00100 HELSINKI 10.

France: R.T.C., La Radiotechnique-Compelec, 130 Avenue Ledru Rollin, Tel. 355-44-99, F-75540 PARIS 11.
Germany: Valvo, UB Bauelemente der Philips G.m.b.H., Valvo Haus, Burchardstrasse 19, Tel. (040) 3296-1, D-2 HAMBURG 1.
Greece: Philips S.A. Hellénique, Elcoma Division, 52, Av. Syngrou, Tel. 915 311, ATHENS.

Ireland: Philips Electrical (Ireland) Ltd., Newstead, Clonskeagh, Tel. 69 33 55, DUBLIN 14.

Italy: Philips S.p.A., Sezione Elcoma, Piazza IV Novembre 3, Tel. 2-6994, 1-20124 MILANO.

Netherlands: Philips Nederland B.V., Afd. Elonco, Boschdijk 525, Tel. (040) 79 33 33, NL-4510 EINDHOVEN.
Norway: Electronica A.S., Vitaminveien 11, Tel. (02) 15 05 90, P. O. Box 29, Grefsen, OSLO 4.

Portugal: Philips Portuguesa S.A.R.L., Av. Eng. Duharte Pacheco 6, Tel. 68 31 21, LISBOA 1.

Spain: COPRESA S.A., Balmes 22, Tel. 301 63 12 BARCELONA 7.

Sweden: ELCOMA A.B., Lidingévagen 50, Tel. 08/67 97 80, S-10 250 STOCKHOLM 27.

Switzerland: Philips A.G., Elcoma Dept., Edenstrasse 20, Tel. 01/44 22 11, CH-8027 ZURICH.

Turkey: Tirk Philips Ticaret A.S., EMET Department, Glmussuyu Cad. 78-80, Tel. 45.32.50, Beyogld, ISTANBUL.
United Kingdom: Mullard Ltd., Mullard House, Torrington Place, Tel. 01-580 6633, LONDON WC1E 7HD.

©N.V. Philips’ Gloeilampenfabrieken
This information is furnished for guidance, and with no guarantees as to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor

does the publisher assume liability for any consequence of its use; specifications and availability of goods mentioned in it are subject to change without notice; it is not to be
reproduced in any way, in whole or in part, without the written consent of the publisher

Printed in The Netherlands 2-76 9399 509 52161

SiljNELCS

PIPBUG 3350

INTRODUCTION

The PIPBUG program is provided as part of the 2650
PC1001 so that the user has immediately available to him
the tools necessary to run programs on the 2650 micro-
processor. Features include support of a user terminal,
papertape load and dump, memory examine and alter, and
breakpoints. The 2650 PC1001 card itself is described in
detail in applications note SP 50.

DESCRIPTION

The PIPBUG program is started by pressing the reset
button on the card. It outputs the user prompt character
of ‘¥, A command is then entered, starting with an alpha
character indicating the operation wanted, followed by any
required parameters separated by spaces, and all terminated
by a carriage return. The parameters must be given as
hexadecimal numbers. Leading zeros are unnecessary. For
example, ‘008F’ and ‘8F’ are the same address. The error
message for an illegal command or parameter is ‘?’, after
which the user can enter a new command line. The delete
key can be used to delete the previous character.

The program fits in the first 1K bytes of memory in the
PROM. Also, the 63 bytes of RAM from location 1024 to
1087 are required for buffers and temporary storage.
Locations 0 to 63 are part of the interrupt vector. To fit
within 1K bytes the program uses subroutines with a
maximum nested depth of three.

In the explanations of the commands CR means the
carriage return key and LF means the line feed key. The
symbol i means there must be at least one space.

COMMANDS

I Alter Memory Aaaaa CR
Action: Outputs aaaalbcc where ‘aaaa’ is a memory
location and ‘cc’ is its content. User can
respond with:
1) CR which ends the command
2) LF which will display the next memory
location
3) nnCR which will replace ‘cc’ by ‘nn’
at location ‘aaaa’ and end the command
4) nn LF which will replace ‘cc’ by ‘nn’
and then display the next location.

Il. Load from Papertape L CR
Action: Will start reading papertape expecting blocks
of data in the hex object format. In case of
illegal characters, a BCC error, or a length
error, the papertape will be stopped and the
command ended with the standard error
message.

2650 MICROPROCESSOR
APPLICATIONS MEMO

At the end of a successful load, control
is passed to the address in the EOF block.
This would usually be back to the PIPBUG
program.

I11. Dump to Papertape Dssssiheeee CR
Action: Will punch a leader of 50 blanks and then
output the contents of locations ‘ssss’ to
‘eeee’, inclusive, in hex object format. When
done, the EOF block and a trailer of 50

blanks are punched.

1V. See and Set the Microprocessor Sn CR
Registers
Action: The parameter ‘n’ is in the range O to 8 and

selects a particular register;

0 = register O

1 = register 1 bank #0

2 = register 2 bank #0

3 = register 3 bank #0

4 = register 1 bank # 1

5 = register 2 bank # 1

6 = register 3 bank # 1

7 = PSW upper

8 = PSW lower

The contents will be displayed. The user can

respond with:

1) CR which ends the command

2) LF which displays the next register's
content

3) nn CR which resets the register to ‘nn’
and ends the command

4) nn LF which resets the register to ‘nn’
and displays the next register’s content

V. GoTo Gaaaa CR
Action: Control will be transferred to location ‘aaaa’
after restoring the register contents.

VI. Clear Breakpoints Ci CR
Action: Will clear the ith breakpoint. |f the ith break-
point is not set, gives error message.

VII. Set Breakpoints Bihaaaa CR
Action: Will set the ith breakpoint at the address
‘aaaa’. The current firmware supports two
breakpoints.

BREAKPOINTS

Breakpoints are a way to get a snapshot of the program
and microprocessor’s status immediately prior to executing
at the breakpoint address. PIPBUG allows two breakpoints
to be set. So i equals 1 or 2 in the breakpoint commands.

1

SIGNETICS PIPBUG = SS50

BREAKPOINTS (Continued)

Setting a breakpoint at location ‘1053’ with the command
‘B1 1053’ causes the two bytes of program at ‘1053’ and
‘1054’ to be stored in a table in PIPBUG’s RAM area.
They are replaced by the two byte instruction ‘ZBRR
*BKP1’. At location ‘BKP1’ in the interrupt vector is the
address of the 1st breakpoint handling routine. There is a
separate routine for the 2nd breakpoint.

When the user program executes the instruction at location
‘1053', the ZBRR instruction jumps to the breakpoint
routine. This routine first saves the microprocessor registers,
then restores the two bytes of user program to locations
‘1053' and ‘1054', prints the breakpoint address ‘1053’,
and finally jumps to PIPBUG. Now the user can use the
See command to examine the microprocessor registers.

Since the breakpoints are software implemented and are
cleared when reached, there will not be another break-
point when the user program is re-executed. It must be
explicitly re-set with the Breakpoint command. Break-
points will remain in memory until executed or explicitly
cleared with the Clear command.

SUGGESTIONS ON USING

Having written and assembled a program, the user has a
papertape containing the object code for the program. The
Load command is used to read the code into the RAM of

the 2650 PC1001 card. In the operand field of the END
directive of the program, the user should put blanks or a
zero, so that after reading the tape PIPBUG restarts itself.

Most commonly the loaded program is still under develop-
ment. The user wants to run and test only parts of the
program. He can use the Goto and Breakpoint commands
to isolate the particular code sequence. The two break-
points can be set at the normal and error exits of the code.
Using the Goto command the user then transfers control
to the starting address of the code. Remember that the
microprocessor’s registers can be pre-set using the See
command.

If there is a bug, the user can make machine language
patches to the program with the Alter command. Great
care should be taken when doing this, since assemblers are
more methodical than people. The Dump command can
be used to save on papertape the program and all patches
so that the debugging can be continued at some later time.

SUMMARY

Alter memory

Set Breakpoint

Clear Breakpoint

Dump memory to papertape
Goto address

Load memory from papertape
See and alter registers

Or-rooo0ow>

SIGNETICS PIPBUG = SS50

APPENDIX

PIP ASSEMELER WERSION 3 LEWEL 1 PAGE 1
LINE ADDR B! B2 BZ B4 ERR SOURCE

P EQU
M EQU
z EQu
LCOM ECH H*@z" LOGICAL COMPARE
CRE gl H*@1” CRRRY

SEMS EQU H*a@a® SEHSE

FLAG EQ H* a8 FLAG

11 EQU H" 28" INTERRUPT IMHIE
InC El H*zi@” IMTER DIGIT CAFR
oWF EQ H* B4 OWEFFLOL

F@ Edu &

F1 EQU

1
3 EQU 2

(LS I

3 EQL

I ECL ;
2] EQL 5]
T Eou 2
T EQL 1
L ECL H*
(=] ECI H* 18"
SPAC ECiL H* 28"
EMA= ECL 1
DELE EGL H*FF"
CR ECIL 3

LF ECL 18
ELEHM ECL 28
STHR EGL At

e O Lo e P 5000 00 ™ O L D O N e

P () e et b b e b et s e e

1§
i

W L0

M3. BKPTS - 1

=d O s il

[un]
x

RN}

ORG 5]
Ay Z2F IHET LODT.R3 =) ZERD MARE YECTOR AMD O
F&

=
=
[
[xx]
=

EORZ =]
Ba AIMI STRA.RB COM.R3. -
& 5B 7B ERMRE.R3 RINI
2 B4 vy LonI.Ra H*?7”
A
L

el I G I PO I PO PO D

nobad P e

(1]

1 CC B4 B89 STRA.RA HEOT LOAD THE RAM CODE TO S
) B4 1B LODT.REB H*1B"

A
A
A
A

1

R R U

£
&}
5]
A
A

i

F CC A4 AR STRA.RA
= e LODT . A

i

XG0
e

Lo Led Cob Dol Cab D o) Do)

= (31 L0

BREAKFOIMT “ECTOR

o

HAMNDLER
« R BT EREOR RETUEM FORE ALL F

COMMART
E .1

START OF CHD LOOP. RES

DOMT CARE IF THERE IS

SIGNETICS PIPBUG = SS50

ASZEMBELER YERSION 3

ADDE EL B2 BE

B4 ERR

o

T o O LT O
Pt = 02 L0

Ty Ty Oy Oy O

Ty 0

T

L

RN R
P
i

it I 1Y SN
=

Y

i

LI e B Bt B B R ! B e A By

T O O e Gl Pl e G0 LCO OO0] O O o ed P 33000 OO0 T 0T G

P O

[N

Ty D 0 DT T

O T e Pl P TI TIEa L

T30 e 031 0y 050 050 00y)

[xn}

[Ex RSN
e T3

LEVEL 1
SOURCE

STRA.RA
LOD&e.RA
CoMi.rRe
ECTA.ER
COMIL.RA
BCTA.EQ
COMI.RE
BCTH.EQ
COMI.RA
BCTA.ER
COMI - RE
BLCTR.ED
CoMI.RA
BCTA.ED
COMI.RA
BCTA.EQ
BCTHE. LM

PAGE

BFTR
EUFF
Eh N
ALTE
e
BEFT
I:tljl::’
CLE
‘:l)‘]:]l
NI
HOGT
EOTO
[
LOAT
SR
SREG
EBLIG

* IMPUT @& CHMD LIME IMTO BUFFER

#* CODE
LIME

LETH

AL TH
ELIM
CLIH
B IM

CRLF

15 1=CR
LODI.RE
STEA.RS
COMI.R3E
BCTR.ER
BESTH. LM
COMI.RE
BLFR.ED
COMI.RE
BCTR.ED
LODwA. BB
PE TR L LM

SUB1.R3

2=LF

I=MSG+CR 4=MSGHLF

-1

BRTR
BLEM
ELTH

EHIN GET CHAR

-1 ECHO AND BACK PTH

WFHEL

O+ BUFFER OVERFLOW FOR

STROE CHAR AMT ECHO

SIGNETICS PIPBUG = SS50

PIF ASSEMBELER VERSION 2 LEVEL 1 PAGE 3

LINE RIDDRE B1 B2 B3

185 @apd CD 84 an
187 BEAY CE B4 BE
185 8RR 17

118 8aaB 3F Bz DE
111 BERE 2B 7
2 pepa 3F 8z &9
3 PREE 8D Bd BE
4 BEREe 3F B2 &9
S BAERS 3F A3 SE
& BEBC @D 24 an
7 3
=] IF B3 SR

Uy]
Y o O Y
]

AR R

AN
[
e}

=

e B T 0 A T O A S

Dx I T R

IRy I RN
—
m

U oy B

7 0 OO L) T3 TTED 0D LN P 0 e O
fact)
[
)

i

=
m
[R¥aat
i
E4
= [l
Pt oo TP Lo O Do PO P G PO Ju O fu I
=yl
[¥

[y sy]

==
il

=
]
=

]

i

R Y B

ET

]
1M
i

g Oy L0 o Gl T e 0 L0

(O s R)
m
I
oy

als FC a8 22

T O

(R un]

L mm
Al R

4 O O
T

I AR Y S Y I
AN
O OO0CR Ja o 02 L [u [

XL I)

AL

ba)

D
L
E
E
E
E
E
E
E
=

A

AR

— T
=}
LA

[R s

=

AE

o

i

Cad Lo el Cef ol Ced Cob el God T P33 PO P B0 T0 PO P T Pl e e e et b s

e el e e e e T e S S e e e e e e e alanl el

s
R
1S
R RY}
b
s

(r
L
[

L

1y
Py
Lo S OOD

.._. ,_.
(el Pt — 30
R A R)
i o
[y}
[QPSR
[|

—
I
ot
Bl

(IRl

1 (T3 00

,_.

[
i

< T
Ry

H
n
fax g

R A I I

et Bt s g

B4 ERR S0OURCE

SIBR THAT STORES DOUBLE PRECISION INTO TEMP
STRT STRA.RI TEMP
STRA.RZ TEMP+1
RETC . UM
* DISPLAY AND ALTER MEMORY
ALTE BSTA.UH GHUM
LALT ESTR. UM STET
BSTA.UN BOUT
LODFA.R1 TEMP-+1
BSTH. UN BT
BSTH. UM FORM
LODA.RL H#TEMP DISFLAY CONTENT
S TR UM BT
S TH . M FORM
BETH. LM LIME
LODA . RE CODE
CoMI.RA z
BCTA.LT MEUE
BCTR.EQ LALT
CALT STRA.RA TEMR
ESTH.UN GHLUF
STRA.RE FTEMF UPDATE COMTEMTS
LODA.RA TEMR
COMI . RE)
BCFA.EQ MBUG
DALT LODI.R2 1
ALDA.R2 TEMP-+1
LODI.R1 5l
FRSL [
ADDA.R1 TEMP
CRSL (AN
BOTH. LM LALT
SELECTIVELY DISPLAY AMD ALTER REGISTERS
SREG BSTE . LM GEHUM GET IMDEx 0OF REG
LESFE COMI.RZ 2 CHELCE FAMGE
BCTR.GT EBLG
STRA.R2 TEMR

IMCR CURREMT ADDBRESS

LODA. A COM. R2 DISPLAY COMTEMTS
STRE B

BETRA. UM BOUT

STH. UM FLORM

RERE UPDATE CON

MUST URDATE FESL LOWER

SIGNETICS PIPBUG = SS50

FIF ASSEMBELER WERSION 3 LEVEL 1 FRGE 4

—
—t
—_

{E ADDE B1 B2 EZ B4 ERR SCOURCE

-4

BCFR.EQ
5[} STRA .
ar BSEE LODA . RE
COMI.RE

0o

(N}
2 R B B I e R)
e [TV 0L

S N
i Oy L

R ST N e R e N R |
SR R il

P R e oy I ey R B s s
e [n 0500 [[(M

A
i 22 BCTE.EQD
e HE 11 CSRE LODA.RS]
163 A a5 FDDT . R2 ‘
H13E 1F F7 BCTH.

H.
1T
REN

F® GOTO ADDRESS
IR EOTO BSTE. UM G
Fi S TE . LM STET PUT RDDRE IN RAM
i LODE . RE COM+7
PS5

AR K]

T T

BaME ZERD

e

facx] [y
Lo Lz

ey

|

I
o

park OME

e

LHDH R
LODA. RS

X B R |
xa

Do o fu

FAR Y R
T T

i

I

[T
m

AND BCTH.UM STEMP
o
HEREAKPOINT RUNTIME CODE

Bra1l STRA.RE cor EMTRY FOR BKFT-1 ¥IA W

154
5
5

COr+a
HEOT+1 IN EAM FOR REGR RESTORE
BEPT IMDE®

[Rai

LHPI P
BCTR . UM

[RE)

B BlE2 STREA. RE EMTREY FOR BEKPT-2
=]

IM EAM FOR REG RESTORE
EREM

L0 LT L T OO
Tl o= |

“d T s

b bt b bt b bt bk e b b fek b e

LMD LT L

FORCE TO BANK ZERD
K
|
!
§
|

PRINT EKPT ADDR]

SIGNETICS PIPBUG = SS50

FIF ASSEMELER YERSION 3 LEWEL 1 FRGE 3
LIME ADDRE Bl BZ B3 B4 ERR SOURCE

289 aiAs EF 62 ST, UM EHUT

218 AiAs IF B8 Fl'H M

211 # SUBR TO CLERR A LIKE tAHY SUBR HAS FEL ADIR
R IR B} o

CLEK

TEMF
LADE.F2
TEMP+1
HOAT.F2
FTEMP
LEAT.R2

o

LUDH

i

.73:1 A "'D ?U A3

LHDI, 3 1
SRE H#TEMP . FH2
R

+ BREAK PHIfT [HOICATES IF SET
HADR +LADR IS EPFT HDL HOAT + LT IS TWO BYTE
CLE b-TP,U FCIE

Rz CLERR IT IF SET

HH [

ERLG

MELIG
RINES GEHLE CHECK RAMGE OM BEPT HUMB

AERT
BHAN
ABRT

EFT SET BKPT AHD CLE AMHY E

i

=T T

CLEAR EXISTIMNG

GET BKFT ALDR
SRR TO STORE RI-RFZ2 IM

NG — T T T

7
B
o
5l

[
5] SAWE COMTEMTS

ISP

SIGNETICS PIPBUG = SS50

ASSEMELER VERSION 3 LEVEL 1

BTDE

Bl B2

3 B4 ERER =DURCE

DATA YWECHH" 86" +2
IMPUT TLO HEX CHARS AMD FORM
BIN BESTAL UM CHIH
LEUR

ESTR.UH
FRL.FE3
FRL.EZ
REL.RE3
FRL.FE3
STEA.RZ
1S TH .

TEMS
Lk CHIM
STR . LN LELP
ORA.EZ EMS
RE
F1

TR . UM CHRCC
FET',UH
* CALCULATE THE BCC CHAR.
CRLC LOnZ B

EHP BLCC

BCC

s LM
Il CHAR
LF3

=
LOOKUP
LEUP LODI
ALK C

IM
15

AMST.R3. -

L 0OF

LEHE

o U ! FOSSIT
RERT LODA. RE ComM+?
I0RT.E@ H* 5"

HREU
BCTA.
DATA

1JH EBLG

ArA1234585

IN R1 OUTPUT {H HE X

PRGE

AS BYTE IM R!

EOR AMD THEM ROTATE LEFT

HEX WALUE TRELE

SUBR

BLE BKPT PROG USING IT

FEIABCDEF

SIGNETICS PIPBUG = SS50

FIF ASSEMBLER WERSION 3 LEWVEL 1 FAGE 7
? B3 EBd ERR SOURCE

r
b
m
s
L)
=
Y
fax
—
)

AzEs 3F B2 B4 BSTA. LN couT

AZEn 17 FETC. UH

118 BAUD IMPUT FOR PAPERTAGPE AMD CHAR IMHZ CLOCK
5 CHIM FFSL 35

=Tl LODI.RA Hega® EMAELE THPE REALDER
WRETC . RO

Al LODI.R1 © A

As LODI.R2 =]

ACHI SPSU

[an Bl
ol

i

=

o e e N S o SN 1 I acud
=
iy

CHIM LOOk FOR START BIT

RN B e e e Sy
[acORR i xS Y O SRS I SV IS Y

v Cnl el Gl L] Oad Ced O8] el Cnl 6] 0

DISABLE TAFPE RERDER

d T —

nLAY MAIT TO MIDDLE OF DATA

He &8s MOWE BIT ¥ OF R IMTO

F1
Fl
i BCHI
a1 S TR .UM DAY
5 7F AHDI.RI H*FF* DELETE FPARITY EIT
1 Long i

T L e
R e Y

AN

4

ig CPSL RS+LIC

—

RETEC. UM
DELAY FOR ONE BIT TIME
nLAY EORT RA
rE BLRR.RE j
i EDRR.RB
oLy BLRE.RE
LODT . FE H ES*
7 EDRR.RA %

RETC . UH

(RN

T TS

e
~f T)
]

— T
—J o

kS

CoOuT PFSL RS
FPSL FLAG
STREZ B2
LODI.RI =)

A5 TR .UM DAY

SIGNETICS PIPBUG = SS50

FIP ASSEMELER VERSION 3 LEWEL 1
LIME ADRDE E1 E2 BZ B4 ERR SOURCE
*

ZA DU

fn]
AN
Y Y
I
I

[ENE RS RS Y

GMUM

S JEINY SR oy B B py QRN o g B oy B Y

xx}
T
I
I
I

LEN R I

[

[N
[SO CA LA Y
s}

ar LHidH

s TIT fa T TS

Rk
b TS [

Ol ed 8] 0k]

s} el

BEMLIM
CHUM

TS
iy

¥

I
1

(n] ed Ual Ced ©8] D) 0

wl

s}

el ad el Da} Oad 08} ed

* DUMP
nygrF

FT

10

+ FET A MNUMBER

LODAR.EA
BCTR. Z
FETC. LN

L RA
LODE.RE
COMALRE
RETC.EN
LODA.RB
STHA.RA
COMI.Ra
BCTR.ED

s
"t

AMDE
EREL.REI
FEREL.E1
EREL.FL
RREL.F1
AMDT.E]
AHDT.RE
I0RE

STREZ
LODT.RA

STRA.RA
. LM

T
I:: TF" - |_,| H
TE .M
11

LE2

FAGE 2

FROM THE BUFFER INTD RI - R2
CODE
LHLUIM

RE
Rl

SKIF SPACES UNTIL REAC
OF SPACE EMDIMG HUMBER

CHEC# FOR E O B

GET CHARR

Fl=RE R2=ID

H F@*
HYFE*
Rl

1

3
R2
Rz Fi1=BC R2=DW

1
COTE
LB

Ro=C R1=B8 RZ=Dd

X3=Y

PAPER TAPE IM OBJECT FORMAT

STHET ADDREESS
SUBR TO STORE Rl-Rz2 IM

MRrEE EMD ADDE NOT THCL

FUMCH FOR CRE-LF AHD ST

SIGNETICS PIPBUG = SS50

<1

(Rt NN AT { I SN Y R I v

e L T

BRI

;!:II “‘.{‘ HbLEP

ADDE

AR

i

X

ST

£

Bl

B2 B3

RANKY I
(TR R

5]
—
bl

IR Sl O iy B oy QO B o B Y B A)
iy
i

28 Bt O N S T O O %

i
oy
i
3%

R RN

B

L0 T P e

-

C T

ARy

RN

o .[: P fu B0 s o T

U

PR R Y
I

EORE R

o e

)

YERSION 3

B4 ERR

LEVEL 1
SOURCE

CTM

BSTA. UM
EORE
STRA, RD
LODH,rl
LODE. RS
SUERL.RZ
PP%L
JERL.EL
LPQL
BCTE.H
ECTR.F
BRME.F
LODI.R2
BETH. UM
EDPP 2
BESTRE . UM
BCTH .UM

=
s

CouT
F&

=N
TEMA
TEMI+1
TEMP+1
(A
TEMP
LIC
EBLG
Ed
BTdr
)
BOUT
CorM
GAP
FMELG

* SUBRS FOR HHTPUTTIH& BLANKS

FORM

GAP
MEAP

BTN
BIiir

T

LODI.RS
BLTR . L
LODI.RE
LODI.REA
S5 TH . UM
BDER.R3

RETC. UH

LOTT .
STRA. RS
LODA.RL
BSTH. LN
LODF.RT
BETH. UM
LODR.R1
ESTA. UM
LODA.RI
EJTH HH

.rjn]ﬁlqrjw_
b

3

ngP
SPAC
CouT
AGRP

MCHT
TEMP
BEOUT
TEMF+1

BOLT

MCHT

A‘”:ls
]

B

T

T

HT
#TEMP.R3. +
THT

T

I

i
|

i
dl

PAGE 9

GET BYTE COUNT

START >
CHT
THIS
EOF.

EMD ALDE
HORMAL BLOCK 51
IS5 SHORT BLOCK
FUMCH ZERD BLE

STARTING ADDRESS

COUMT OF DATA BYTES IM

UTFUT BCC

11

SIGNETICS PIPBUG = SS50

FIF ASSEMBLER WERSIOM 3 LEYEL 1 PRGE 14
LIME ADDRE Bl BZ B3 B4 ERR SOURCE

dE6 RAZEZ IF B BCTA.UH FIidmM

d67 # LOAD FROM PAPERTOFE INM OBJECT FORMAT

455 A3 3 =T LOAD BSTH. UM CHIM LOOK FOR STRET CHAR
459 F COMI.RE STHR

AT E BCFR.ED LOAD

47 1 Fi

[
e}
(K%
on

—f) T
L O

472 B Boo

ATE

BIM REAL ADDR AMDY COUNMT IH

473
474§ STRA.RL TEMF
475 BSTR. UM BIH
47 G [STRA.R1 TEMP+1
7 24 STH. LN EIH

BREMHRE.RT FLOA CHT = B MEAMS EOF
1] BCTH.UH ®TEMP
20 ALOA STRER.R1 FMOHT
: ETH . UH EIM CHECK ECC OM IMFORMATI
LODA.RA BCC
BCFR.E EEUG
F3 READ DATHE
CHT
Ik

CHT

Tl T3 L T
=

(R W

[y
il
T

[n

BLOA

T

COMA.RE
BCTR.ER CLOA HAYE REARD BCC
Lone F1
g FTEMP.RA STORE LATA

: ELOA
a4 20 CLOA LODE. RA BCC
@ o1n BCFALE EBLG
2 oBS BCTHE .M LOED

P EEED
596 E3IEF
BaFE

)

T 0 T e

[e

ORG H* 4m@
RAM DEFIMITIONS

RES g

PPSL

)

* MUST PREDEEIr THE TEMP

+
ki

P o i

s Jrerp—

m
=z

ERPTE
MEMT
T

et e peet et

12

R

nig tenal

from a world-wide Group of Companies

EUROPEAN SALES OFFICES

Austria: Osterreichische Philips, Bauelemente Industrie G.m.b.H., Zieglergasse 6, Tel. 93 26 11, A-1072 WIEN.
Belgium: M.B.L.E., 80, rue des Deux Gares, Tel. 523 00 00, B-1070 BRUXELLES.

Denmark: Miniwatt A/S, Emdrupvej 115A, Tel. (01) 69 16 22, DK-2400 KOBENHAVN NV.

Finland: Oy Philips Ab, Eilcoma Division, Kaivokatu 8, Tel. 1 72 71, SF-00100 HELSINKI 10.

France: R.T.C., La Radiotechnique-Compelec, 130 Avenue Ledru Rollin, Tel. 355-44-99, F-75540 PARIS 11.
Germany: Valvo, UB Bauelemente der Philips G.m.b.H., Valvo Haus, Burchardstrasse 19, Tel. (040) 3296-1, D-2 HAMBURG 1.
Greece: Philips S.A. Hellénique, Elcoma Division, 52, Av. Syngrou, Tel. 915311, ATHENS.

Ireland: Philips Electrical (Ireland) Ltd., Newstead, Clonskeagh, Tel. 69 33 55, DUBLIN 14.

Italy: Philips S.p.A., Sezione Elcoma, Piazza |V Novembre 3, Tel. 2-6994, 1-20124 MILANO.

Netherlands: Philips Nederland B.V., Afd. Elonco, Boschdijk 525, Tel. (040) 79 33 33, NL-4510 EINDHOVEN.
Norway: Electronica A.S., Vitaminveien 11, Tel. (02) 15 05 90, P. O. Box 29, Grefsen, OSLO 4.

Portugal: Philips Portuguesa S.A.R.L., Av. Eng. Duharte Pacheco 6, Tel. 68 31 21, LISBOA 1.

Spain: COPRESA S.A., Balmes 22, Tel. 301 63 12 BARCELONA 7.

Sweden: ELCOMA A.B., Lidingovéagen 50, Tel. 08/67 97 80, S-10 250 STOCKHOLM 27.

Switzerland: Philips A.G., Elcoma Dept., Edenstrasse 20, Tel. 01/44 22 11, CH-8027 ZURICH.

Turkey: Tlrk Philips Ticaret A.S., EMET Department, Glimdussuyu Cad. 78-80, Tel. 45.32.50, Beyogli, ISTANBUL.
United Kingdom: Mullard Ltd., Mullard House, Torrington Place, Tel. 01-580 6633, LONDON WC1E 7HD.

©N.V. Philips’ Gloeilampenfabrieken
This information is furnished for guidance, and with no guarantees as to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor

does the publisher assume liability for any consequence of its use; specifications and availability of goods mentioned in it are subject to change without notice; it is not to be
reproduced in any way, in whole or in part, without the written consent of the publisher.

Printed in The Netherlands 2-76 9399 509 52261

MICROPROCESSOR

©

SERIAL INPUT/OUTPUT................ AS50

SilINELiCS

SERIAL INPUT/OUTPUT AS 50

INTRODUCTION

The Sense/Flag capability of the Signetics 2650 micro-
processor can be used for serial 1/0O interfaces. The Sense
input pin is directly connected to a bit in the micro-
processor’s Program Status Word. A high level on the
Sense pin appears as a binary one while a low level appears
as a binary zero. The Sense bit in the PSW can be stored or
tested by the program. The Flag bit in the PSW is a simple
latch that drives the Flag output pin. A program can set
the Flag bit to a binary one, which causes a high level, one
TTL load on the flag output pin. Setting the Flag bit to
binary zero causes a low level on the Flag output pin.

APPLICATIONS

The most common use for the Sense/Flag capability would
be in interfacing to a keyboard based terminal where the
data is received or transmitted as bit serial. All bit manipu-
lation and timings such as 8-bit serial-to-parallel conversion
can be done by software running on the 2650. The software
works by storing or setting the two bits in the Program
Status Word which reflect or control the levels at the pins
of the chip. External hardware is required simply to
interface with line levels. No clock synchronization or
address decoding hardware is necessary, since the Sense
and Flag pins are independent of the normal /O bus
structure.

Two examples of device interfaces and software are given
below; for a 1200 baud RS232-type CRT terminal and for
a 110 baud Teletype. Figure 1 shows the RS232 interface.
Half of the Signetics 8T 15 dual line driver is used to trans-
mit to the terminal from the Flag pin, while half of a

+12v

2650 o s
FLAG TO I/0 DEVICE RECEIVER
%(BT15) =
Vee OPEN
12V HYSTERESIS| o\
I OM 1/0 DEVICE DRIVER
SENSE MiL-
%(8T16)
STROBE =
+5 =
-/

RS-232 INTERFACE

2650 MICROPROCESSOR
APPLICATION MEMO

Signetics 8T16 dual line receiver is used to receive from
the device into the Sense pin. The interface to a Teletype
model 33 is shown in Figure II. A TTL open collector gate
is used to provide the 20 milli-amp loop to the TTY

+5

2200
2650

* 20MIL TTY RECEIVER
FLAG ——J:Do———-

% 7403

SENSE * TTY DRIVER

FIGURE Il
TTY MODEL 33 INTERFACE FULL DUPLEX

receiver. For receiving from the TTY a CMOS gate is used
to provide the necessary noise immunity.

SOFTWARE

All definitions of baud rate, character formats, and line
characteristics are done in the software. For these examples,
communication is asynchronous bit-serial over a full duplex
line. Figure |l shows the format of a 8-bit character (seven
bits plus parity) headed by a start bit and followed by stop
bits. The line levels are:

low = start bit or binary zero

high = stop bit or binary one

[stoeaits
STARTBIT—l —
r--r--r-Sr-SrTSroTrTTrTo
' 1 [! 1 ' 1 | 1
N S S S Ep
\u J
~—
8BITS OF DATA
FIGURE Il1

PIP ASSEMBLEK VERSION 2 LEVEL 1 PAGE 1
LINE ADDR LABL B8] B2 B3 B4 FRRUR SOURCE

\ .
2 P EQU 1
2 7 £dy 8
g LCUM EQU H1Q2! LOGICAL COMPARE
CAK EQU H'Ol" CARRY
AN Y PEags
1‘1’A Euﬂ vaov INTERRUPT INHIBIT
10C EQU H'20" INTER DIGIT CARRY
OVF £QU HY04" OVEFFLOW
RO EQU 0
K1 EQU L
4 Rr2 EQU
5 K3 £QU 3
UN EQU 3
£Q EQU)
LY EQU 2
6T EQU 1
wC EQY HY08!
RS GRe HETER
0 0500 76 40 CHIO gl;gu CFLAG INPUT WITH A BIT BY BIT ECHO
75 08 W
g g Dg 00 LQD‘f.Rl 0
6 06 08 LODIsRe 8
8 0508 12 70 TEST 32%3 o TEST LOOP TESTS FOR THE START BI1T
g _1!? 05 29 gg;G:UN DIFZAG HALF A DELAY TO MIDDLE OF BIT
L3
S 0510 .;I? Og en BIT ngAvUN oLAY DELAY, THEN KEAD THE NEXT BIT
3 Z llog 80 AND?Q“O LA- T
4 [} 51 RRRyR1
4 &1 <955 B
9 1} 04 BCTRWLT ZEROQ ECHO THE 3IT
=3 74 40 CPSU FLAG
0 18 02 BCTRyUN NEXT
4 F 051F 76 40 ZERV PPSU FLAG
4 1 0521 FA 6D NEXT BDRReRg BIT
& 3 3F 05 20 BSTAsUN DLAY
4 6 45 TF ANDIsR1 HYTF Y
44 8 17 N RETCsUN
2 A BL ”MrgD?EkSV FORH%ggg BAUD RS232 TERMINAL
4 Y
: ggg 0529 ?B 32 B(.TR:UN DL1
4 520 052D 04 %9 OLAY LODIsRO HY59"
5 Sef 052F FE7§ TE bLY EE?E;S& %
g 31 ! # TIMING DéLAY FOR 110 BAUD TELETYPE
PIP ASSEMBLER VERSION 2 LEVEL 1 PAGE 2
LINE ADDR LABL Bl b2 B3 B4 ERROR SOURCE
TOLA OURZ RO
22 0235 °%%% R e BORE.eo %
55 0535 F8 7t BORR RO %
56 0537 0537 F8 Tt TOLY BURRRO $
57 0539 04 ES LODIsROY HYES?
35 0330 A S T
2 3 ! END
TOTAL ASSEMELER ERRORS = 0
The internal logic of the program shown in Figure |V (the that controls the loop to get only eight bits. Figure V is a
program listing) is to sense each incoming bit of the picture of the levels and timings when echoing a ‘U’

character and to output the bit in turn for the full duplex
line. The Sense input is tested in the loop at “TEST’ for the

transition to zero indicating the start bit. The program then The bit timing is done by a subroutine which simply
delays one half of a bit time to the center of the start bit. counts cycles for the appropriate baud rate. The example
At this point the echoing of the character starts by clearing program shows both a 1200 baud delay at ‘DLAY’ and a
the Flag bit which outputs the start bit transition. At ‘BIT’ 110 baud delay at ‘TLAY’. The conversion from instruction
the program then delays one full bit time to the center of cycles to milliseconds is based on a TMHz clock rate. Clock
the data bit. The Sense line is tested and that bit value stability is only moderately important since each character
is rotated into register one. The bit value is then used to set involves only nine sample times and each start bit redefines
or clear the Flag bit for the echo. At ‘NEXT' is the test the base line for all timings.

STOP BITS

a
2
&
w
o
=
»
9
>
]
3
*
1
-]
-~
>
: >
P
—————

FLAG BIT

J LSTOP BITS

START alT—f

DATA BITS

FIGURE V

AN

nts terial

from a world-wide Group of Companies

EUROPEAN SALES OFFICES

Austria: Osterreichische Philips, Bauelemente Industrie G.m.b.H., Zieglergasse 6, Tel. 93 26 11, A-1072 WIEN.
Belgium: M.B.L.E., 80, rue des Deux Gares, Tel. 523 00 00, B-1070 BRUXELLES.

Denmark: Miniwatt A/S, Emdrupvej 115A, Tel. (01) 69 16 22, DK-2400 KOBENHAVN NV.

Finland: Oy Philips Ab, Elcoma Division, Kaivokatu 8, Tel. 172 71, SF-00100 HELSINKI 10.

France: R.T.C., La Radiotechnique-Compelec, 130 Avenue Ledru Rollin, Tel. 355-44-99, F-75540 PARIS 11.
Germany: Valvo, UB Bauelemente der Philips G.m.b.H., Valvo Haus, Burchardstrasse 19, Tel. (040) 3296-1, D-2 HAMBURG 1.
Greece: Philips S.A. Hellénique, Elcoma Division, 52, Av. Syngrou, Tel. 915311, ATHENS.

Ireland: Philips Electrical (Ireland) Ltd., Newstead, Clonskeagh, Tel. 69 33 55, DUBLIN 14.

Italy: Philips S.p.A., Sezione Elcoma, Piazza IV Novembre 3, Tel. 2-6994, 1-20124 MILANO.

Netherlands: Philips Nederland B.V., Afd. Elonco, Boschdijk 525, Tel. (040) 79 33 33, NL-4510 EINDHOVEN.
Norway: Electronica A.S., Vitaminveien 11, Tel. (02) 15 05 90, P. O. Box 29, Grefsen, OSLO 4.

Portugal: Philips Portuguesa S.A.R.L., Av. Eng. Duharte Pacheco 6, Tel. 68 31 21, LISBOA 1.

Spain: COPRESA S.A., Balmes 22, Tel. 301 63 12 BARCELONA 7.

Sweden: ELCOMA A B., Liding6vagen 50, Tel. 08/67 97 80, S-10 250 STOCKHOLM 27.

Switzerland: Philips A.G., Elcoma Dept., Edenstrasse 20, Tel. 01/44 22 11, CH-8027 ZURICH.

Turkey: Tlrk Philips Ticaret A.S., EMET Department, Giimussuyu Cad. 78-80, Tel. 45.32.50, Beyogli, ISTANBUL.
United Kingdom: Mullard Ltd., Mullard House, Torrington Place, Tel. 01-580 6633, LONDON WC1E 7HD.

©N.V. Philips’ Gloeilampenfabrieken
This information is furnished for guidance, and with no guarantees as to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor

does the publisher assume liability for any consequence of its use; specifications and availability of goods mentioned in it are subject to change without notice; it is not to be
reproduced in any way, in whole or in part, without the written consent of the publisher.

Printed in The Netherlands 2-76 9399 509 52461

Introducing the Signetics 2651 PCI

Terminology, formats and operation modes

Data exchange between microprocessors and peripherals

is normally performed in the parallel mode, using the data
bus. This means that the data is transferred along a number
of parallel connections, all bits of the data word being
transferred simultaneously. However, when a peripheral

is remote from the microcomputer system, it is usually more
economical and sometimes obligatory to communicate via a
single data line. This means that the parallel data within the
microcomputer must be converted into a serial form before
transmission and vice versa.

The conversion between serial and parallel data can be done
either by hardware or software, but the hardware solution
must usually be used as the software conversion puts too
great a load on the microprocessor. The Signetics 2651
Programmable Communications Interface (PCI) has been
developed to perform this task of parallel/serial conversion:
it is a single chip providing the complete hardware for
virtually any mode of serial data communication. Figure 1
shows two typical applications of serial data interfaces to
microcomputers. Note that for communication over a
telephone line, a modulator/demodulator (modem) is
required.

M —+| SERIAL
MICRO— <
. INTERFACE |e— + MODEM fe—s [elePhone
COMPUTER [¥ ine
—> (PCI)
+ > SERIAL SERIAL
MICRO— pu
« INTERFACE [¢—— e
COMPUTER [¥ > X
* > (PCI) DEVICE

7274724

Fig. 1 Typical applications of serial data interfaces to microcomputers.

Silnotics

Serial data communication formats

Figure 2 shows the serial bit stream equivalent to three
eight-bit data words. Whereas parallel data bits can be
recognized at a receiver by their separate connections, serial
data bits can only by distinguished by their separation in
time. The receiver must therefore be supplied with timing
information. Framing information is necessary to be able
to recover the original data words from the serial bit

stream

Timing information enables the receiver to distinguish
between consecutive bits of the serial data stream, while
framing information enables the receiver to recognize the
start and finish of each data word.

Figure 3 shows the use of timing information to recover the
original data. Each bit of the serial data stream must be
transmitted for a fixed duration, called the unit interval.

parallel

0
1
1
0
data words 0
1
0
1

- 00 = = =0 =
—0o0ooco -0 -

bit stream 101110017101 10010110100001
7274725

Iig. 2 Relation between the parallel data words and the serial bit
stream transmitted or received.

data to be ,‘ 1 T
transmitted 0O 1 o0 0 ! 0
transmitter

clock

serial 1 1 1 1
data 0 0 0 0

receiver
clock
i
data | 1 [
received 0 10 0 “ 0

7274726

I'ig. 3 Use of a receiver clock to recover data from the serial bit
stream.

The receiver clock must be synchronized to the frequency
of the transmitter clock, with a fixed phase delay, to allow
sampling of the serial data waveform at the same time in
each unit interval. The maximum rate at which information
can be sent over the data line is known as the baud rate; it

is equal to the number of unit intervals per second. Thus for
a unit interval of 20 ms, the baud rate is 50 baud. Commonly
used baud rates range from 50 baud up to 19,2 kbaud.

A standard teletype uses 110 baud.

To recover the original data, the timing information must
contain:

— the baud rate;

— bit synchronization information.

To reform the original data words, the framing information
must contain:

— 1identification of the first bit of a data word;
— the number of bits per word;
— the sequence in which the bits are sent (msb or Isb first).

Of these, the baud rate, the number of bits per word and

the sequence in which the bits are sent, are usually fixed
and already known by the receiver before the transmission
of data. Thus the data signal must contain the bit
synchronization and first-bit identification information.
Several serial data communication formats have been devised
for this purpose. The two basic formats are synchronous

and asynchronous, while a mixture of the two is called
isochronous.

Asynchronous format

When using the asynchronous format, the transmitter
transmits each word separately. Each word is preceded by
one start bit and followed by a parity bit and 1, 1% or 2
stop bits. This format is illustrated in Fig. 4.

When the data line is quiet, the signal is a one. The start bit
is a zero, which tells the receiver that a data word is coming.
Since the start bit can occur at any moment, synchronization
of the receiver clock to the data signal must be repeated for
each data word. Therefore, the receiver clock runs at a
multiple (usually 16x or 64x) of the actual baud rate.
Figure 5 shows the synchronization principle with a clock
running at 16 times the baud rate. The receiver clock is
derived from this 16x clock by means of a divide-by-16
circuit, which starts at the moment a start bit is detected
(falling edge of the previously quiet line).

] |
start bit 5 — 8 data bits
| |

parity bit stop bit | or bits :

[—— |

7274727

I'ig. 4 The asynchronous serial data format.

—>‘I
i) 0
ge 0
2% = 0 2
.6'35 1data =
87§ 1 g
ao % 0 %
1
) SRR
10 11

1000110

| |

| asynchronous format word size l
7274729

_

Fig. 6 Example of an asynchronous data format using eight data bits
and two stop bits.

After eight pulses of the 16x clock, the data line is sampled
again and if the line is still a zero, the start bit is accepted.
After eight more pulses, the first data bit appears on the
line and is sensed 16 pulses after the start bit was accepted.
This means that the bit is sensed at the middle of the bit-
-time to avoid switching transients. Each following group of
16 clock pulses will represent a unit interval, after which a
new bit is sensed.

16 x clock

o 1 2 3 4 5 6 7 8 9 10

1

The maximum inaccuracy resulting from this method of
synchronization is initially one sixteenth (in the case of a
64x clock, 1/64th) of a bit-time. The accuracy of synchron-
ization of the following data bits depends on the equality of
the transmitter and receiver clock frequencies. However,
since the next data word will provide a new start bit, this
synchronization only has to last for the duration of one
data word.

From the foregoing description, it is clear that all the bits
transmitted, including the start bit, must be exactly one unit
interval long, and that the time between two consecutive
data words need not be an integral number of unit intervals.
To ensure correct detection of the next start bit (data word)
the line must be forced to the quiet state at the end of the
data bits of every word. This is done by adding the stop bit
or bits onto the end of the word, which, being logical one,
provide the quiet state. Thus the receiver will always see a
clear falling edge at the beginning of the start bit of the next
data word, even if the receiver clock runs slightly slower
than the transmitter clock. Figure 6 shows an example of an
asynchronous data format with eight data bits and two stop
bits.

12 13 14 15 0 1 2 3 4 5 6 7 8 9

Uyurivvivyyiivirrrriuiuud e

|
—

serial data

receive clock

start bit
detected

start bit
accepted

| 7274728

first
data bit

Fig. 5 Synchronization principle for the asynchronous format, here

using 16x clock.

Synchronous format

In the synchronous format, data words are grouped into
blocks before transmission. This provides a continuous
stream of valid data bits, one per unit interval. Once the
transmitter and receiver clocks are synchronized, the receiver
looks for framing information. This is done in the hunt mode
in which it continually checks the received bit sequence for
synchronization characters.

Each block is preceded by one or more synchronization
words, of a fixed character, see Fig. 7. The sync words are
called SYN (in the case of one sync word) or SYN1 and
SYN?2 in the case of two sync words. The bit patterns
corresponding to these characters must not occur in the
data to be transmitted.

When a bit sequence conforming to the sync character(s) is
recognized, the receiver switches to the data mode: the first
bit following the sync character(s) is the first bit of the first
data word. Figure 8 shows the bit sequence of a data block
in synchronous format with two sync characters and five
bits per word.

If, during transmission of a data block, the microprocessor
fails to supply a new data word for transmission, the trans-
mitter automatically inserts sync characters (SYN or SYNI-
SYN2 pairs as appropriate) to prevent a gap occurring.
Sync characters are inserted until a new data word is avail-
able. These sync characters can be automatically discarded
by the receiver, while providing both framing and timing
synchronization.

Since synchronization of the receiver and transmitter
clocks must be maintained over a long stream of data, the
timing information is usually continuously extracted from
the data signal. Sometimes, however, a synchronization
signal is sent to the receiver separately.

Isochronous format

In order to recover the data words from the serial data stream,
the isochronous method employs the framing of the
asynchronous format (start and stop bits) and the timing of
the synchronous method (clock frequency equal to the

baud rate). The asynchronous framing permits gaps in the
data, although these must now be an integral number of unit
intervals so that the timing can remain synchronized.

1 0 1
1 0 1
1 0 1
1 0 1
1<—l 0<_l 1<_l
101100101017 11110000011 111
| | | | |
I synt | syn2 | dataword 1 | dataword 2 | dataword 3 |

7274731

Fig. 8 Synchronization at the start of a data block in the synchronous
format. Double sync operation with five bits per data word.

Modem control

Telephone lines are designed for speech transmission and
will only transmit analogue signals in the range 300 Hz to
3400 Hz. Digital signals cannot be transmitted. Thus when
transmitting digital data over telephone lines, a modem
(modulator-demodulator) is required to provide the con-
version to and from analogue signals. In order to regenerate
the modulated data, a synchronous modem must be able to
generate a receiver clock for the conversion of the serial data
into parallel data. Figure 9 shows the use of a modem to
interface digital signals to a telephone line. As can be seen
from the diagram, several control lines are required between
the serial interface and the modem. These are:

— TxC: Transmitter Clock, timing information for
synchronous modem,;

— TxD: Transmit Data in serial form to the modem;

— RTS: Request to Send, request to the modem to prepare

for the transmission;

Data Terminal Ready, request to the modem to
establish the connection to the telephone line and
enter the data mode (as opposed to the dial and
talk modes).

Receiver Clock, for synchronous modem;
Receive Data, from the modem to the serial inter-
face;

Data Set Ready, signals that the modem is
connected to the telephone line and in the data
mode;

Clear to Send, signals that the modem is ready to
accept serial data for transmission;

Data Carrier Detect, signals that the modem is
receiving a signal suitable for demodulation.

— DTR:

— DSR:

— CTS:

— DCD:

SYN1 SYN2 !

data words

7274730

Fig. 7 The synchronous serial data format.

> MODEM
— — — —»] TxC
MICRO— SERIAL TxD telephone
COMPUTER INTERFACE [¢— — — _IRxC line

> (PCl) RxD

b Ownwnx

OF = =

coaxo

3

7274732

Fig. 9 Transmitting digital data over a telephone line by using a
modem, TxC and RxC are required if a synchronous modem is used.

Transparent operation — synchronous mode

Data communication systems commonly employ a seven-
bit, 128-character code, known as seven-bit ISO code, see
Appendix A. This includes alphanumerics, general purpose
control characters and ten transmission control characters
(TCy). Communication control procedures have been
established to provide rules for the use of these transmission
control characters.

In some cases, when it is required to obtain the maximum
throughput of the communication network, data may be
transmitted without using ISO code, in a network that
normally uses ISO code. In this case, data words with the
same bit pattern as the transmission control characters will
be misinterpreted by the system as transmission control
characters.

To overcome this problem, the communication control
procedures have been extended to specify transparent
operation, to allow code-independent data transfer. This
operation is governed by the transmission control
character DLE (Data Link Escape).

The start of code-independent data is preceded by two
transmission control characters DLE and STX (Start of Text).
The end of the sequence is indicated by the characters DLE
and ETB (End of Transmission Block) or DLE and ETX

(End of Text). Between these start and finish character
sequences, all bit patterns except DLE are treated as data.
Control characters can still be used for control purposes if
preceded by the DLE character. Sync characters used to fill
gaps in the synchronous format should also be preceded by
DLE to prevent interpretation of these characters as data. The
exception is the case where the data word has the same bit
pattern as DLE plus parity bit. This is transmitted as DLE
DLE and the second DLE is interpreted as data, not control.

Table 1 shows the interpretation of various character sequences.

Table 1 Transparent operation using the DLE character.

sequence transmitted interpretation
and received data control
DLE ETB ETB
DLE DLE DLE
X ETB X ETB
X ETX X ETX
X SYN X SYN
DLE SYN gap filler
DLE STX STX
DLE DLE DLE ETB DLE ETB
DLE DLE DLE DLE DLE DLE
DLE DLE ETB DLE ETB

Note: X is any character other than DLE.

Error detection

Parity check

Regardless of the transmission medium, the data signal
entering the receiver will contain noise. At times, this noise
content may be sufficient to cause incorrect detection of
data in the receiver.

The parity check provides a simple method of detecting a
single error in a data word; a parity bit is added to each
data word so that the total number of ones in each word is
always even, or always odd. This is called even parity or odd
parity. The receiver can then detect an odd number of
incorrect bits in the data word. An even number of errors
will not be detected.

Framing error

In the asynchronous mode, the receiver may detect the
wrong number of stop bits, called a framing error.

Overrun error

The microprocessor should read any received data words
before the following data word is received. If this is not
done, the contents of the receiver register are overwritten
and the earlier data word lost. This is called an overrun
error.

The Signetics 2651 PCI

The Signetics 2651 Programmable Communications Interface
is a universal synchronous/asynchronous data communications
controller chip. Although designed specifically for use with
the Signetics 2650 microprocessor, the PCI can easily be

used with other CPUs in either polled or interrupt-driven
environments.

The 2651 accepts programmed instructions from the micro-
processor and supports many serial data communication
disciplines in half or full duplex. The PCI supports isochronous,
asynchronous and synchronous operations, including trans-
parent synchronous operation.

The PCI converts the parallel data received from the micro-
processor into a serial data stream, ready for transmission.
At the same time, because of the independent transmit and
receive circuitry, it can receive a serial data stream and
convert this into parallel data for the microprocessor.

The block diagram of the PCI is shown in Fig. 10. All data
and control transfers between the PCI and the microprocessor
are accomplished via the data bus buffer, connecting the
internal data bus to that of the microprocessor.

Overall control of the »CI is by the Chip Enable (CE) signal.
Address lines A0 and A1 allow selection of the required
registers, while the Read/Write (R/W) signal controls the
direction of data flow between the PCI and the micro-
processor.

The operation of the PCI is determined by the contents of
the two mode registers and the command register. The
registers are loaded via the data bus during system
initialization.

DATA BUS BUFFER

data bus <:>

reset —>| OpERATION CONTROL
[¢—>|
Ay —*
Ag —»| | MODE REGISTER 1

A/W—| |CONTROL REGISTER (‘t:{)

STATUS REGISTER

CE —»0f
—
BRCLK BAUD RATE AND 1
CLOCK CONTROL
TxC +—>|

RxC +—»|

MODE REGISTER 2 QEZ%

MODEM
CONTROL

The data in mode register 1 controls:

— the format:
synchronous
isochronous (asynchronous with 1x clock)
asynchronous (with 16x clock)
asynchronous (with 64x clock);
— the data word length:
5,6, 7 or 8 bits per word, }
— the error checking: ﬁ
no checking
odd parity
even parity;
— the number of stop bits for isochronous or asynchronous
operation:
1, 1% or 2 bits;
— the use of SYN and DLE characters:
single sync operation (SYN1)
double sync operation (SYN1 + SYN2)
transparent operation (DLE + SYN).

The data in mode register 2 controls clock selection and the
baud rate when internal clocks are selected:

— receiver clock:
internal or external;
— transmitter clock:
internal or external;
— baud rate:
16 commonly used baud rates in the range 50 baud
to 19200 baud.

SYNC/DLE CONTROL

SYN1 REGISTER

SYN2 REGISTER

DLE REGISTER

TRANSMITTER

HOLDING REGISTER
SHIFT REGISTER

F— TxD

— RECEIVER i

(1‘ — i
o— R v
HOLDING REGISTER xRDY

SHIFT REGISTER

+«— Vce

<+—— GND

7274733

I'ig. 10 Block diagram of the 2651 PCI.

The internal baud rate is derived from an externally generated
5,0688 MHz clock. When both receiver and transmitter
clocks are programmed as external, the 5,0688 MHz clock
is not required. If an internal clock is programmed, the
programmed baud rate clock appears at the corresponding
pin (TxC: transmitter clock; RxC: receiver clock). If an
external clock is programmed, these pins become inputs for
the external clock(s). With an external clock (max. 0,8 MHz)
the baud rate is no longer governed by mode register 2. Thus
the baud rates can be:
— synchronous and isochronous operation:

0 to 800 kbaud;
— asynchronous operation with 16x clock:

0 to 50 kbaud;
— asynchronous operation with 64x clock:

0 to 12,5 kbaud.

The data in the command register controls:
the transmitter:
enable or disable;
— the receiver:
enable or disable;
— the modem control signals DTR and RTS;
— resetting error flags in the status register;
— forced breaks in asynchronous format:
The quiet line signal is a one. Break is a continuous zero
sent by the transmitter which can be detected by the
receiver.
— sending DLE in the synchronous format;
— the operation mode:
® normal operation (Fig. 11a)
® automatic echo mode, asynchronous (Fig. 11b). In
this mode, the receiver controls the transmitter, causing
it to transmit an echo of the received data to the
external device.
® SYN/DLE stripping mode, synchronous.
SYN and DLE characters received by the PCI are not
passed to the microprocessor.
® local loop-back mode (Fig. 11c). The transmitter
output is connected to the receiver input internally to
provide a test facility or the CPU-PCI system.
® remote loop-back mode (Fig. 11d). The receiver output
is internally connected to the transmitter input to
divert the received data to another computer.

The status register provides the microprocessor with
information about the transmitter, the receiver, the modem
control signals DSR and DCD, parity, overrun and framing
errors and the detection of SYN/DLE characters.

The transmitter and receiver are double buffered, allowing
the microprocessor to read/write one data word while
another is being received/transmitted. This allows the
microprocessor one complete serial word transmit/receive
time to read/write the data word

When using synchronous formats, the SYN and DLE characters
are supplied by the microprocessor during the initial-
ization phase of the program and stored in PCI registers.

2651 PCI
|~ TRANSMITTER |
MICRO- / \ exre AL
COMPUTER
SYSTEM \ / DEVICE
™ Recever o]
(a)
2651 PCI
TRANSMITTER
MICRO- \‘
EXTERNAL
COMPUTER
SYSTEM \ DEVICE
RECEIVER | |
(o)
2651 PCI
|~ TRANSMITTER
MICRO—
COMPUTER / EXTERNAL
SYSTEM \ DEVICE
™~ Receiver
(c)
2651 PCI
EXTERNAL
TRANSMITTER f—1— DEVICE 2
MICRO-
COMPUTER
SYSTEM
RECEIVER fe—| | EXTERNAL
DEVICE 1
7274734

(d)

Fig. 11 Operation modes of the 2651 PCI.
(a) Normal operation mode.

(b) Automatic echo mode.

(c) Local loop-back mode.

(d) Remote loop-back mode.

Applications of the 2651 PCI

The 2651 PCI is suitable for almost any application where
parallel source data must be transmitted over a single data
line. Figure 12 shows two typical examples.

address bus

p—)
l | control bus
address bus .
pu— R— | | I data bus
| W— A}
I l control bus I ﬂ
—
j I I I data bus
A \
RxD
;"g TELEPHONE
X
LINE
RxD EIATO TTL 2:;1 T™C SYNC INTERFACE
TxD CONVERTER |— o DCDJO+———— MODEM
2651 CTS foe——
PCI RTS jo———>
/ DSR 7274736
50688 MH? S DTRjlo——— telephone
BRCLK OSCILLATOR. line

VDU 7274735

(a)

Fig. 12 Typical application for the 2651 PCI.
(a) Asynchronous interface to visual display unit.
(b) Synchronous interface to telephone line.

(b)

Appendix A

The international standard (ISO) 7-bit code as defined in
Appendix B ref. 4:

7 6 5 4 3 2 1 7-bit character format.

—————
column row
(0-7) (1-15)
(MS character) (LS character)
I CHARACTER SET
M.S.
CHAR 0 1 2 3 4 5 6 7
CHAR
(TCy)
0 NUL SP 0 @ P '
DLE @ P
(TCp
1 DC ! 1 A
SOH 1 ? ! a
(TCy)
2 DC2 ”» 2 B R b
STX ¢ '
(TC3)
D
3 ETX C3 # 3 C S c S
(TCq)
4 DC 4 D T d t
EOT 4 §
s (TCs) | (TCg) % s E U . u
ENQ NAK
(TCg) | (TC9)
6 & F \% f
ACK SYN 6 '
T
7 per | (TC10) 7 G w g w
ETB
FEq
8 CAN 8 H X h
(BS) (.
FEq .
9 EM 9 I Y
@T)) i y
FEo ;
10 SUB * : J z
(LF) ! ’
FEj3
11 ESC + ; K k
V1) [
FE4 1S4
12 , < L 1
(FF) (FS) \
FEs5 1S3
13 - = M
(CR) (GS) : "
1Sy -
14 SO > N t
(RS) * !
IS
1 SI ? 0 DEL
5 us) / — o

Appendix B

International standards governing serial data communication
can be found in:

1.

CCITT V22 and V22 bis; data signalling rates (standard
baud rates).

. CCITT V21, V23, V26, V26 bis, V27, V30 and V35;

modem standards.

. EIA RS232-C, CCITT V24; interfaces employing serial

binary data interchange.

. ISO 646; 7-bit coded character set.

5. ISO 1177; character structure for start/stop and synchron-

7.

ous transmission.

. ISO 1745; basic mode-control procedures for data

communication systems.*

ISO 2111; code-independent transmission procedures.

CCITT: Comité Consultatif International dé Telegraphie et

du Téléphonie.

EIA: Electronic Industries Association (USA).

ISO: International Standardization Organization.

* Commonly called Communications Control Procedures.

10

Related 2650 publications

no. title summary
AS50 Serial Input/Output Using the Sense/Flag capability of the 2650 for serial I/O interfaces.
ASS1 Bit & Byte Testing Procedures Several methods of testing the contents of the internal registers
in the 2650.
AS52 General Delay Routines Several time delay routines for the 2650, including formulas for
calculating the delay time.
ASS53 Binary Arithmetic Routines Examples for processing binary arithmetic addition, subtraction,
multiplication, and division with the 2650.
AS54 Conversion Routines e FEight-bit unsigned binary to BCD
® Sixteen-bit signed binary to BCD
e Signed BCD to binary
e Signed BCD to ASCII
e ASCII to BCD
® Hexadecimal to ASCII
® ASCII to Hexadecimal
ASSS Fixed Point Decimal Arithmetic Methods of performing addition, subtraction, multiplication and
Routines division of BCD numbers with the 2650.
SP50 2650 Evaluation Printed Circuit Detailed description of the PC1001, an evaluation and design tool
Board (PC1001) for the 2650.
SP51 2650 Demo System Detailed description of the Demo System, a hardware base for use with
the 2650 CPU prototyping board (PC1001 or PC1500).
SP52 Support Software for use with the Step-by-step procedures for generating, editing, assembling, punching,
NCSS Timesharing System and simulating Signetics 2650 programs using the NCSS timesharing
service.
SP53 Simulator, Version 1.2 Features and characteristics of version 1.2 of the 2650 simulator.
SP54 Support Software for use with the Step-by-step procedures for generating, editing, assembling, simulating,
General Electric Mark III Timesharing and punching Signetics 2650 programs using General Electric’s Mark 111
System timesharing system.
SP55 The ABC 1500 Adaptable Board Describes the components and applications of the ABC 1500 system
Computer development card.
SS50 PIPBUG Detailed description of PIPBUG, a monitor program designed for use
with the 2650.
SS51 Absolute Object Format Describes the absolute object code format for the 2650.
MP51 Initialization Procedures for initializing the 2650 microprocessor, memory, and I/O
devices to their required initial states.
MP52 Low-Cost Clock Generator Circuits Several clock generator circuits, based on 7400 series TTL, that may be
used with the 2650. They include RC, LC and crystal oscillator types.
MPS3 Address and Data Bus Interfacing Examples of interfacing the 2650 address and data busses with ROMs
Techniques and RAMs, such as the 2608, 2606 and 2602.
MP54 2650 Input/Output Structures and Examines the use of the 2650’s versatile set of I/O instructions and the
Interfaces interface between the 2650 and I/O ports. A number of application
examples for both serial and parallel I/O are given.
TN 064 Digital cassette interface for a 2650 Interface hardware and software for the Philips DCR digital cassette
microprocessor system drive.
TN 069 2650 Microprocessor keyboard Simple interfaces for low-cost keyboard systems.

interfaces

Electronic components
and materials

for professional, industrial
and consumer uses

o 4
from the world-wide » ..

Philips Group of Companies

Argentina: FAPESA l.y.C., Av. Crovara 2550, Tablada, Prov. de BUENOS AIRES, Tel. 652-7438/7478.

Australia: PHILIPS INDUSTRIES HOLDINGS LTD., Elcoma Division, 67 Mars Road, LANE COVE, 2066, N.S.W., Tel. 427 08 88.

Austria: OSTERREICHISCHE PHILIPS BAUELEMENTE Industrie G.m.b.H., Triester Str. 64, A-1101 WIEN, Tel. 62 91 11.

Belgium: M.B.L.E., 80, rue des Deux Gares, B-1070 BRUXELLES, Tel 523 00 00.

Brazil: IBRAPE, Caixa Postal 7383, Av. Paulista 2073-S/Loja, SAO PAULO, SP, Tel. 284-4511.

Canada: PHILIPS ELECTRONICS LTD., Electron Devices Div., 601 Milner Ave., SCARBOROUGH, Ontario, M1B 1M8, Tel. 292-5161.

Chile: PHILIPS CHILENA S.A., Av. Santa Maria 0760, SANTIAGO, Tel. 39-40 01.

Colombia: SADAPE S.A., P.O. Box 9805, Calle 13, No. 51 + 39, BOGOTA D.E. 1., Tel. 600 600.

Denmark: MINIWATT A/S, Emdrupvej 115A, DK-2400 KOBENHAVN NV., Tel. (01) 69 16 22.

Finland: OY PHILIPS AB, Elcoma Division, Kaivokatu 8, SF-00100 HELSINKI 10, Tel. 172 71.

France: R.T.C. LARADIOTECHNIQUE-COMPELEC, 130 Avenue Ledru Rollin, F-75540 PARIS 11, Tel. 355-44-99.

Germany: VALVO, UB Bauelemente der Philips G.m.b.H., Valvo Haus, Burchardstrasse 19, D-2 HAMBURG 1, Tel. (040) 3296-1.

Greece: PHILIPS S.A. HELLENIQUE, Elcoma Division, 52, Av. Syngrou, ATHENS, Tel. 915311.

Hong Kong: PHILIPS HONG KONG LTD., Comp. Dept., Philips Ind. Bldg., Kung Yip St., K.C.T.L. 289, KWAI CHUNG, N.T. Tel. 12-24 51 21.

India: PHILIPS INDIALTD., Elcoma Div., Band Box House, 254-D, Dr. Annie Besant Rd., Prabhadevi, BOMBAY-25-DD, Tel. 457 311-5.

Indonesia: P.T. PHILIPS-RALIN ELECTRONICS, Elcoma Division, ‘Timah’ Building, JI. Jen. Gatot Subroto, JAKARTA, Tel. 44 163.

Ireland: PHILIPS ELECTRICAL (IRELAND) LTD., Newstead, Clonskeagh, DUBLIN 14, Tel. 69 33 55.

Italy: PHILIPS S.p.A., Sezione Elcoma, Piazza IV Novembre 3, 1-20124 MILANO, Tel. 2-6994.

Japan: NIHON PHILIPS CORP., Shuwa Shinagawa Bldg., 26-33 Takanawa 3-chome, Minato-ku, TOKYO (108), Tel. 448-5611.

(IC Products) SIGNETICS JAPAN, LTD., TOKYO, Tel. (03) 230-1521.

Korea: PHILIPS ELECTRONICS (KOREA) LTD., Philips House, 260-199 Itaewon-dong, Yongsan-ku, C.P.O. Box 3680, SEOQUL, Tel. 44-4202.

Mexico: ELECTRONICA S.A.de C.V., Varsovia No. 36, MEXICO 6, D.F., Tel. 5-33-11-80.

Netherlands: PHILIPS NEDERLAND B.V., Afd. Elonco, Boschdijk 525, NL-4510 EINDHOVEN, Tel. (040) 79 33 33.

New Zealand: Philips Electrical Ind. Ltd., Elcoma Division, 2 Wagener Place, St. Lukes, AUCKLAND, Tel. 867 119.

Norway: ELECTRONICA A/S., Vitaminveien 11, P.O. Box 29, Grefsen, OSLO 4, Tel. (02) 1505 90.

Peru: CADESA, Jr. llo, No. 216, Apartado 10132, LIMA, Tel. 27 7317.

Philippines: ELDAC, Philips Industrial Dev. Inc., 2246 Pasong Tamo, MAKATI-RIZAL, Tel. 86-89-51 to 59.

Portugal PHILIPS PORTUGESA S.A.R.L., Av. Eng. Duharte Pacheco 6, LISBOA 1, Tel. 68 31 21.

Singapore: PHILIPS SINGAPORE PTE LTD., Elcoma Div., POB 340, Toa Payoh CPO, Lorong 1, Toa Payoh, SINGAPORE 12, Tel. 5388 11.

South Africa: EDAC (Pty.) Ltd., South Park Lane, New Doornfontein, JOHANNESBURG 2001, Tel. 24/6701.

Spain: COPRESA S.A., Balmes 22, BARCELONA 7, Tel. 301 63 12.

Sweden: A.B. ELCOMA, Lidingovagen 50, S-10250 STOCKHOLM 27, Tel. 08/67 97 80.

Switzerland: PHILIPS A.G., Elcoma Dept., Edenstrasse 20, CH-8027 ZURICH, Tel. 01/442211.

Taiwan: PHILIPS TAIWAN LTD., 3rd Fl., San Min Building, 57-1, Chung Shan N. Rd, Section 2, P.O. Box 22978, TAIPEI, Tel. 5513101-5.

Turkey: TURK PHILIPS TICARET A.S., EMET Department, Inonu Cad. No. 78-80, ISTANBUL, Tel. 4359 10.

United Kingdom: MULLARD LTD., Mullard House, Torrington Place, LONDON WC1E 7HD, Tel. 01-580 6633.

United States: (Active devices & Materials) AMPEREX SALES CORP., Providence Pike, SLATERSVILLE, R.l. 02876, Tel. (401) 762-9000.
(Passive devices) MEPCO/ELECTRA INC., Columbia Rd., MORRISTOWN, N.J. 07960, Tel. (201) 539-2000.
(IC Products) SIGNETICS CORPORAT|ON, 811 East Arques Avenue, SUNNYVALE, California 94086, Tel. (408) 739-7700.

Uruguay: LUZILECTRON S.A., Rondeau 1567, piso 5, MONTEVIDEO, Tel. 943 21.

Venezuela: IND. VENEZOLANAS PHILIPS S.A., Elcoma Dept., A. Ppal de los Ruices, Edif. Centro Colgate, Apdo 1167, CARACAS, Tel. 36 05 11.

© 1978 N.V. Philips’ Gloeilampenfabrieken
This information is furnished for guidance, and with no guarantees as to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor
does the publisher assume liability for any consequence of its use; specifications and availability of goods mentioned in it are subject to change without notice: it is not to be
reproduced in any way, in whole or in part, without the written consent of the publisher

Printed in The Netherlands Date of release: 9 February 1978 T.D. 9399 500 07201

Sinotics

2630 INITIALIZATION MP5‘|

At power-up the status of the 2650 is undefined. The Reset
signal should be raised for at least three clock periods.
This forces execution of the instruction at location 0. Once
the system is started up, the first program to run is generally
responsible for initializing the microprocessor, memory, and
/O devices to their desired initial states. The type of |/O
initialization is dependent on the particular device. Contents
of RAM are undefined at power-up and must be set to
their desired initial states.

Program status word initialization:

1. Interrupts can be inhibited as a first step in initialization.
The Reset clears the Interrupt Inhibit bit and the internal
Interrupt Waiting signal. After the remainder of the status
bits, the memory, and the 1/0O is initialized, interrupts
can be permitted. This procedure will prevent unwanted
interrupts during system initialization. If the system
does not utilize interrupts, the Interrupt Inhibit bit
can be left set on when system initialization is com-
plete. This approach will assure that a spurrious interrupt
will not occur.

2. The Stack Pointer may be initialized to zero. The Stack
Pointer should not be modified during the execution of
a program. This pointer is under the control of the

APPLICATIONS MEMO

processor. Modification by a program could have un-
wanted results, i.e., to the instruction address register.

. It is generally unnecessary to initialize the Condition

Code, Interdigit Carry, Overflow, and Carry bits. These
bits are normally set by arithmetic and logical operations
before they are tested. However, if the With Carry bit
is set on, then the Carry bit should be initialized
correctly for the first arithmetic instruction.

. The Register Select bit should be set to a known state,

e.g. if bank 1 registers are reserved for interrupt routines,
the register select bit should be initialized to bank O.

. The With Carry bit can be initialized to the state desired

for most arithmetic and rotate operations. Then if a
different state is desired for some operations, the With
Carry bit can be changed and then restored after these
operations.

. The same philosophy used for the With Carry bit also

applies to the Compare bit. Set the Compare bit initially
to the most frequent types of compares made, logical
or arithmetic.

. The Sense bit cannot be modified by a program. The

Flag bit may need to be initialized if there is a device
connected to it such as a TTY which needs stop bits
(binary one) when not receiving data.

©N.V. Philips’ Gloeilampenfabrieken

This information is furnished for guidance, and with no guarantees as to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor
does the publisher assume liability for any consequence of its use; specifications and availability of goods mentioned in it are subject to change without notice; it is not to be

reproduced in any way, in whole or in part, without the written consent of the publisher

Printed in The Netherlands

9399 509 52061

SIMULATOR, VERSION1.2.....SP53

Sinotics

SIMULATOR, VERSION 1.2

SPa3

A new version of the Simulator is available. This version
performs the same functions as Version 1.0 (see Simulator
Manual) with the following additional features:

1.

Hexadecimal Object Module

The Simulator accepts an object module produced by the
Assembler in either decimal or hexadecimal format. The
Simulator assumes that the object module is hexadecimal,
unless the user specifies a decimal module by adding a
fourth parameter, FORMAT, to the “EXECUTE SIMU-
LATOR" command. This command is formatted dif-
ferently depending upon the computer system on which
the Simulator is installed.

. 8K (8192 bytes) Object Module

The Simulator reads and executes an object module
with up to 8192 bytes.

. Decimal Input to LIMIT Command

The LIMIT command expects the number of instruc-
tions to be entered in decimal, not hexadecimal. Thus,
a “LIMIT 40" command causes the program to execute
4019 not 644q instruction. All other commands still
expect their input parameters to be in hexadecimal.

. Stack Wraparound Notification

Whenever a RETC or a RETE is executed with the
stack pointer equal to 0 or whenever a branch to sub-
routine instruction is executed with the stack pointer
equal to 7, the Simulator prints the following message:

STACK WRAPAROUND, IAR=XXXX

APPLICATIONS MEMO

Where XXXX identifies the address at which the wrap-
around occurred.

. Termination Messages

The Simulator prints a message for every kind of
program termination:

TYPE OF TERMINATION SIMULATOR RESPONSE

A trace of the last instruction
executed is printed.

1. STOP. command

2. HALT instruction . A trace of the last instruction

executed is printed.

“LIMIT REACHED=XXXX,
TAR=XXXX"" is printed. A
trace of the last instruction
executed is printed.

"“ADDRESS OUT OF
RANGE, IAR=XXXX""is
printed. A trace of the last
instruction executed is printed.

"“IAR EXCEEDS MEMORY,
IAR=XXXX""is printed.

3. LIMIT command

4. Attempt to access area
outside of memory

5. Attempt to execute
instruction outside
of memory

. Simulator Version Notification

The simulator prints the following message whenever it
starts to execute a program:

2650 SM 1000 “PIPSIM" VERSION X.X

X.X identifies the version of the simulator currently
executing.

©N.V. Philips’ Gloeilampenfabrieken

This information is furnished for guidance, and with no guarantees as to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor
does the publisher assume liability for any consequence of its use; specifications and availability of goods mentioned in it are subject to change without notice; it is not to be
reproduced in any way, in whole or in part, without the written consent of the publisher

Printed in The Netherlands

2-76

9399 509 52561

| MICROPROCESSOR

ABSOLUTE OBJECT FORMAT.....SS51

Sinotics

ABSOLUTE OBJECT FORMAT SS 5"

INTRODUCTION

The format for absolute code produced for the 2650 is
described in this application note.

The absolute object code is formatted into blocks. The
first character of every block is a colon. Inside of a block,
all the characters are hexadecimal, i.e., 0 to 9 or Ato F
inclusive. In the gap between the blocks all characters are
ignored. A CR/LF is used within the interblock gap to
reset the TTY or terminal after each block.

Each block is independent. For example, papertape can be
positioned prior to any block and a load started. The loading
of absolute object code will be halted by:

A BCC error on the address + count fields

A BCC error on the data field

An incorrect block length

A non-hex character within the block
The block length field contains the number of bytes of
actual data which is half the number of hex characters in
the data field. The size of the data field can range from
2 to 510 characters. A block length of zero indicates this
is an EOF block. The address field of an EOF block
contains the start address of the loaded program.

The Block Control Character is 8 bits formed from the
actual bytes and not from the ASCII characters. The bytes
are in turn exclusive or'ed to the BCC byte, and then
the BCC byte is left rotated one bit. |t appears as two

2650 MICROPROCESSOR
APPLICATIONS MEMO

hex characters. Both the address and count fields and the
data field are followed by a BCC character pair. The BCC
prevents storing into memory at an invalid address or
storing bad data.

EXAMPLE An object tape that loads ten bytes starting
at location 500
:05000A3C0455B024F FF01F05040030
:000000

FORMAT

1. Interblock gap of any characters including spaces

2. Start of block character;
a colon

3. Address field;
four hex characters

4, Count field;
two hex characters in range 0 to FF

5. BCC for address and count fields;
two hex characters

6. Data field;
twice the value in the count field which is the number
of memory locations loaded by the current block

7. BCC for the data field;
two hex characters

©N.V. Philips’ Gloeilampentabrieken

This information is furnished for guidance, and with no guarantees as to its accuracy or completeness; its publication conveys no lit_:ence under any patent or othe_r right, nor
does the publisher assume liability for any consequence of its use; specifications and availability of goods mentioned in it are subject to change without notice; it is not to be

reproduced in any way, in whole or in part, without the written consent of the publisher.

Printed in The Netherlands

9399 509 52361

BIT AND BYTE
TESTING
PROCEDURES
ASH1

0 H

BIT AND BYTE TESTING PROCEDURES ASS]

SUMMARY

This applications memo describes several methods of testing
the contents of the internal registers in the Signetics
2650 Microprocessor.

The following test examples are given:
® Specific bit(s) in a register.
® Positive, negative, or zero-contents of a register.

® Contents of a register compared with a value (equals,
greater than, or less than).

® [nterdigit-carry (IDC), overflow (OVF), and carry (C)
flags in the program status word.

INTRODUCTION

As a result of an operation on register(s) of the 2650
register bank, five bits (bits 7, 6, 5, 2, and 0) in the Program
Status Lower (PSL) portion of the Program Status Word
(PSW) register can be affected.

7 6 5 4 3 2 1
CC1 | CCO | IDC | RS | WC | OVF | COM | C

PROGRAM STATUS LOWER (PSL)

These bits are affected as follows:

CC1, CCO: Condition Code Bits

RESULT OF
CONDITION | '} 5Ap/STORE, SELECTIVE
CODE ARITHMETIC, COMPARE | TESTS ON
cc1 | cco LOGICAL INSTRUCTION| BITS (TMI,
INSTRUCTIONS TPSU, & TPSL)
0 0 Zero Equal All bits 1
0 1 Positive Greater Than —_
1 0 Negative Less Than Not all bits 1

IDC: Interdigit Carry/Borrow Bit

The IDC bit is affected by arithmetic operations as well
as rotation.

0 = Interdigit borrow/no interdigit carry
1 = Interdigit carry/no interdigit borrow

OVF: Overflow Bit. Arithmetic Operation
The overflow bit in arithmetic operations is set as follows:

Operand 1 = Operand 2—> Result

2650 MICROPROCESSOR
APPLICATIONS MEMO

SIGN ADD suB
OPERAND 2 RESULT OVF OVF

OPERAND 1

+
+

+ + + +
|
+ 1+ 1+

I
+ +
I
O—-=o0o0o0o0=o0
coo-=-_2000

OVF: Overflow Bit. Rotate Operation

Condition: WC = 1; if WC = 0, the OVF bit is not
affected.

The overflow bit is set as follows:

OPERAND SIGN
BEFORE AFTER
ROTATE ROTATE OVF
+ + 0
+ 1
+ 0
0

C: Carry/Borrow Bit

The Carry bit is affected by arithmetic operations as well
as rotation.

0 = borrow/no carry
1 = carry/no borrow

BIT TESTING PROCEDURES

The bits of a register Rx (register zero Ro or any register
R1, R2 or R3 in the selected register bank) can be tested
as follows:

C
B Y
Y C
T L
E E
S | S
TEST FOR ‘0’ IN BIT 3 OF Rx
TMI, Rx H'08’ 1) 2 3
BCTR,2 LBL *Branch if bit 3 is zero. 2 |3
4 6
or:
ANDI, Rx H'08’ 2) 2 2
BCTR,0 LBL *Branch if bit 3 is zero. 2 | 3
4 5

While the second test is faster, it affects the contents of Rx.

SIGNETICS BIT AND BYTE TESTING PROCEDURES = AS51

BIT TESTING PROCEDURES (Continued)
TEST FOR ‘1’ IN BIT 3 OF Rx

TMI, Rx H'08’ 1) 2 3

BCTR,0 LBL *Branch if bit 3 is one. 2 3
4

or:

ANDI, Rx H'08’ 2)

BCFR,0 LBL *Branch if bit 3 is one.

A INN

2
3
5
While the second test is faster, it affects the contents of Rx.

TEST FOR ‘0’ INBIT 1 ORBIT 30R BIT 6 OF Rx

TMI, Rx H'4A’ 1) 2 3
BCTR, 2 LBL *Branch if one of the 2 3
tested bits is zero. 4 6
TESTFOR‘1T"INBIT1ORBIT30OR BIT 6 OF Rx
ANDI, Rx H'4A’ 2) 2 2
BCFR,0 LBL *Branch if one of the 2 3
tested bits is one. 4 5

TEST FOR ‘0’ INBIT 1 AND BIT 3 AND BIT 6 OF Rx

ANDI, Rx H'4A’ 2) 2 2
BCTR,0 LBL *Branch if all tested 2 3
bits are zero. 4 5

TEST FOR ‘1" INBIT 1 AND BIT 3 AND BIT 6 OF Rx

TMI, Rx H'4A’ 1) 2 3
BCTR,0 LBL *Branch if all tested 2 3
bits are one. 4 6

TEST FOR PATTERN IN Rx; e.g., x10xx01x

x = don’t care

IORI, Rx H'99’ 2) 2 2
COMI, Rx H'DB’ 2 2
BCTR,0 LBL *Branch if pattern 2 3

is true. 6 7

1) Contents of register Rx kept
2) Contents of register Rx lost

BYTE TESTING PROCEDURES

TEST FOR POSITIVE, NEGATIVE AND ZERO

All of the tests described below must be preceded by an
operation on Rx which updates the contents of the
condition register, e.g., by instructions such as LOAD, ADD,
AND, COMPARE, ROTATE, I/0, etc.

CcC I OPERATION
Test for (Rx) =0 00 or 01 BCFR, 2
Test for (Rx) >0 01 BCTR, 1
Test for (Rx) = 0 00 BCTR, O
Test for (Rx) <0 10 BCTR, 2
Test for (Rx) <0 00 or 10 BCFR, 1

TESTS ON THE CONTENTS OF A REGISTER
BY USING COMPARE INSTRUCTIONS

Logical compare: (COM =1 in PSL)

Comparison is made between two 8-bit unsigned binary
numbers.

Arithmetic compare: (COM = 0 in PSL)

Comparison is made between two 8-bit signed numbers.
After execution of the logic or arithmetic compare instruc-
tion, the condition register (CC) is set to a specific value
and tested as follows:

REGISTER-TO-REGISTER COMPARE

Instruction used:

COMZ Rx

RESULT CcC TEST
(Ro) = (Rx) 00 or 01 BCFR, 2
(Ro) > (Rx) 01 BCTR, 1
(Ro) = (Rx) 00 BCTR, O
(Ro) <(Rx) 10 BCTR, 2
(Ro) < (Rx) 00 or 10 BCFR, 1

REGISTER TO CONSTANT OR MEMORY LOCATION

Instructions used:
COMI, Rx DATA

COMR, Rx RELATIVE LOCATION OF DATA
COMA, Rx LOCATION OF DATA

RESULT

V=VALUE cc TEST
(Rx) =V 00 or 01 BCFR, 2
(Rx) >V 01 BCTR, 1
(Rx) = V 00 BCTR, 0
(Rx) <V 10 BCTR, 2
(Rx) <V 00 or 10 BCFR, 1

Whenever a compare instruction is used, the IDC, OVF,
or C bits in the PSL are not affected.

SIGNETICS BIT AND BYTE TESTING PROCEDURES = AS51

TEST ON OVERFLOW (OVF in PSL)

The overflow bit is affected whenever arithmetic or rotate
instructions are executed.

The OVF bit is set during an addition whenever the two
operands have the same sign and the result has a different
sign. During a subtraction, the OVF bit is set when the
operands differ in sign and the result has a different sign
than the first operand.

Examples: (+A) + (+B) = (=C) OVF
(-A) + (-B) = (+C) OVF
(+A) - (-B) = (-C) OVF
(-A) - (+B) = (+C) OVF
Test: TPSL H'04 *OVF test
BCTR,0 LBL *Branch if OVF = set

The OVF bit is set during rotate instructions with WC = 1
whenever the sign changes from positive to negative. If
WC = 0, then rotate instructions do not affect the OVF bit.

Example:
RRR, Rx *Rotate right
TPSL H'04’ *Test OVF bit
BCTR,0 LBL *Branch if OVF = set

TEST ON CARRY (C in PSL)

The carry bit is set to 1 by an add instruction that generates
a carry and a sub-instruction that does not generate
a borrow.

Example:
ADDITION
LODI, Rx H‘88’
ADDI, Rx H'99’
TPSL H'01
BCTR,0 LBL

SUBTRACTION
LODI, Rx H’40’
SUBI, Rx H’'30’
TPSL H'01"
BCTR,0 LBL

*Test carry
*Branch if carry

*Test borrow
*Branch if no borrow

When a rotate instruction is executed with WC = 1, the
carry bit is also ‘affected. Refer to the Signetics 2650
Microprocessor manual for a description of this operation.

© N.V Philips’ Gloeilampentabrieken

This information is turnished for guidance. and with no guarantees as to its accuracy or completeness. its publication conveys no licence under any patent or other right. nor
does the publisher assume liability for any consequence of its use: specifications and availability of goods mentioned in it are subject to change without notice, it is not to be

reproduced in any way. in whole or in part, without the written consent of the publisher

476

9399 509 53661

GENERAL

DELAY
ROUTINES

ASbH2

SiNoLics

GENERAL DELAY ROUTINES | AS52

SUMMARY

In microprocessing applications, delay times are often
required. A typical example is a delay time for a serial
Teletypewriter interface. While delay times can be generated
by counters, monostables, multivibrators, and other hard-
ware, it is often simpler and more economical to use a short
software routine.

This applications memo describes several ways of writing
software delay time routines for the Signetics 2650
microprocessor. Time restrictions and formulas for calcu-
lating the delay time are given for each routine.

DELAY ROUTINES

In general, a delay can be implemented by setting a counter
with a number N and decrementing this number by one
until it is zero. If decrementing the number takes one clock
period, then the total delay time is N clock periods.

In the 2650 microprocessor, the internal registers may be
used as counters. The most useful instructions for decre-
menting are the “‘Branch on Decrementing Register’” (BDRR
and BDRA) instructions, which also test the content of a
register for zero.

Figure 1 illustrates a flowchart of a delay routine. This
routine consists of a setup part and a count loop. The
count loop will be executed n times and the setup only
once. Hence, the delay time is:

g =ty t Nty
It is possible to increase the delay time by increasing n or
by making te; longer. The latter can be done by inserting a

fixed delay such as a No Operation (NOP) instruction in the
count loop.

DELAY ROUTINE FLOWCHART

ENTRY

SET-UP 1

tey | n CNTR |
|
e

[} FIXED DELAY]

I_____l_.._. |

l (CNTR)- 1——> CNTR I

= ome

YES

COUNT LOOP
tet

EXIT

FIGURE 1

2650 MICROPROCESSOR
APPLICATIONS MEMO

The program of the routine shown in Figure 1 is as follows:

LODI, Rx n Load n into 6cp”
register Rx
LOOP NOP No operation; 6 cp
fixed delay
of 6 cp

BDRR, Rx LOOP Decrement Rx; 9cp
branch to loop
if the result is
not zero

*cp = clock periods

With one NOP, the delay time is: tq = (6 + 15-n) cp. Without
the NOP, the delay time is: tq = (6 + 9-n) cp. The maximum
delay time is obtained when Rx is loaded with zero, since
Rx will cycle through all the 256 possible states. When
Rx = RO, the LODI, RO 0 instruction can be replaced by the
EORZ RO instruction, which saves one byte of code.

DELAY ROUTINE WITH FOUR REGISTERS

ENTRY

o — > CNTRO
Ny ——» CNTR1

ng ——» CNTR2

n3 ——— > CNTR3

S—

(CNTRO) - 1 —» CNTRO I

LOOP O

=
o

YES

I (CNTR1) - 1 —» CNTR1 I

-
o
o
°
-
=4
o

YES

[(CNTR2) - 1 —» CNTR2 I

-
o
o
°
N
=4
o

YES

I (CNTR3) - 1—>CNTR3 I

LOOP 3

2
o

YES

EXIT

FIGURE 2

GENERAL DELAY ROUTINES = AS52

Another possible way of increasing the delay time is to
repeat the count loop of Figure 1 several times. This can be
done by repeating the instructions or by counting the repeti-
tions of the count loop in another register. For example,
this latter method can be expanded to include four internal
registers. A flowchart of a delay routine using this technique
is illustrated in Figure 2.

(If Rx is loaded with a zero, then n = 256 in the formula):

Table 1 shows six different delay routine programs along
with specifications for each program. The delay time for
these routines can be computed from the following
equations.

The number of times the processor executes the different Routine Delay Time
loops shown in Figure 2 are:
loop3 n3 a tqy = (6 +9-ng) cp
loop2 ngp+(n3— 1) 256 b tg = (6 + 15:ng) cp
loop 1 nq+(ny—-1) 256+ (n3 - 1) 2562 c tg = (2310 + 9ng) cp
loop 0 ng+(nq=1) 256+ (ny — 1) 2562 + (nz - 1) d td={12+[n0+n1+(n1~1)256]9}cp
2563 e tg={ 18+ [ng +ny + (ny - 1) 256 + ny +
Hence, the delay time of this routine is: (ny = 1) (2562 + 256)] 9 } cp
tg=[(24+{ng+ny+(ng~ 1) 256+ny + (ny - 1) f tg={24+ [ng +ny+(ny - 1) 256+ ny +
(256 + 2562) + n3 + (n3 — 1) (256 + 2562 + 2563)} (np = 1) (2662 + 256) + n3 + (n3 — 1)
9] cp (2563 + 2562 + 256)] 9} cp
TABLE 1
ROUTINE POSSIBLE(':E)LAY TIME DELAY STEP NUMBER NUMBER PROGRAM
id (cp) OF BYTES | OF REGISTERS
MIN* MAX
a 15 2310 9 4 1 LODI, RO ng
LOOP BDRR, RO LOOP
b 21 3846 15 5 1 LODI, RO ng
LOOP NOP
BDRR, RO LOOP
c 2319 4614 9 6 1 LODI, RO ng
LOP 1 BDRR,ROLOP 1
LOP2 BDRR, ROLOP2
d 30 592.140 9 8 2 LODI, RO ng
LODI, R1 ny
LOOP BDRR, RO LOOP
BDRR, R1 LOOP
e 45 =~ 1561.6x 106** 9 12 3 LODI, RO ng
LODI, R1 nq
LODI, R2 ny
LOOP BDRR, RO LOOP
BDRR, R1 LOOP
BDRR, R2 LOOP
f 60 ~38.8x 109*** 9 16 4 LODI, RO ng
LODI, R1 ny
LODI, R2 ny
LODI, R3 n3
LOOP- BDRR, RO LOOP
BDRR, R1 LOOP
BDRR, R2 LOOP
BDRR, R3 LOOP

*

cp = clock period. For TMHz clock 1 cp = 1us.
** For 1TMHz clock this is about 2.5 minutes.
*** For TMHz clock this is about 10.46 hours.

© N.V. Philips' Gloeilampentabrieken

This inlormatipn is Qurnished_'or_ _guidance. and with no guarantees as to its accuracy or completeness: its publication conveys no licence under any patent or other right, nor
does the publisher assume liability for any consequence of its use; specifications and availability of goods mentioned in it are subject to change without notice; it is not to be

reproduced in any way, in whole or in part, without the written consent of the publisher

4-76

9399 509 53761

BINARY ARITHMETIC
ROUTINES.....AS53

SiNOLES

BINARY ARITHMETIC ROUTINES

AS53

INTRODUCTION

Binary arithmetic routines, like addition, subtraction, multi-
plication, and division, are often used in microprocessor-
based systems. This applications memo provides several
suggested examples for processing binary arithmetic routines
on the 2650 microprocessor. These examples include:

® SIGNED BINARY ADDITION/SUBTRACTION
Two-byte operands giving a two-byte result.

® UNSIGNED BINARY MULTIPLICATION
One-byte operands giving a two-byte result.
Two-byte operands giving a four-byte result.

® SIGNED BINARY MULTIPLICATION
One-byte operands giving a two-byte result.
Two-byte operands giving a four-byte result.

® BINARY DIVISION — UNSIGNED AND SIGNED
Two-byte dividend and quotient with one-byte divisor
and remainder.

In these examples, emphasis is placed on minimizing
program memory requirements rather than on processing
speed. The different branch instructions and the indexing
features of the Signetics 2650 proved useful in minimizing
memory requirements.

1. BINARY ADDITION/SUBTRACTION FOR
TWO-BYTE SIGNED INTEGERS

FUNCTION:

Performs the addition or subtraction of two 2-byte signed

integers giving a two-byte result.

(OPR1, OPR1 + 1) +/- (OPR2, OPR2 + 1) ———
RSLT,RSLT +1

PARAMETERS:

OPR1, OPR1 + 1 contains augend/subtrahend
OPR2, OPR2 + 1 contains addend/minuend
COM-flag in PSL indicates addition/subtraction:
COM =0 addition
COM =1 subtraction

RSLT, RSLT + 1 contains sum/difference.

The condition code CC is set to the proper
value of the two byte result.

OPR1, OPR2 and RSLT are MS-bytes.

SPECIAL REQUIREMENTS

Input:

Output:

None

Refer to Figures 1.1 and 1.2 for flowchart and program
listing.

2

2650 MICROPROCESSOR
APPLICATIONS MEMO

Initiahze PSL
® operations with carry
® set carry

NO, ADDITION

CLEAR CARRY

LS byte OPRT » RO

(RO) + LS byte OPR2 + carry
R0, carry

(RO}

MS byte OPR1 = RO

(RO} + MS byte OPR2 + carry
> RO, carry

(RO) = MS byte RSLT

P

= LS byte RSLT

HARDWARE AFFECTED
RO | R1 | R2 | R3 | R1" | R2" | R¥
REGISTERS
X X
F] sP
PSU
CC | IDC| RS | WC | OVF|COM | C
PSL
X X X X
RAM REQUIRED (BYTES): _ 6 _
ROM REQUIRED (BYTES): 45
EXECUTION TIME: _____Variable
MAXIMUM SUBROUTINE
NESTING LEVELS: | None
ASSEMBLER/COMPILER USED: _PIPHASM
Enter Subroutine ADSB
ADSB Operation
{OPR1, OPR1+ 1) +/ - (OPR2, OPR2 + 1)

~—= RSLT, RSLT +1

YES, SUBTRACTION

LS byte OPR1 »R0O

(RO - LS hyte OPR2 - horrow
> RO, borrow

(RO) - » LS byte RSLT

MS byte OPR1--» RO

(RO) - MS byte OPR2 - borrow
* RO, borrow

{RO) - » MS byte RSLT

YES

<>

01— condition code

RETURN

NO RETURN

S RETURN

FIGURE 1-1 Flowchart for Double Precision Addition/Subtraction

SIGNETICS BINARY ARITHMETIC ROUTINES = AS53

i ~ # PD76BR1S
2 FH IR R R R AR R R H R R R R R 1311 43
3 + BINARY DOUBLE PRECISION ADDITION/SUBTRACTION
4 I IR I P R R R R R 1 H R 1 1 548
5 + OPERATION:
b * (OPR1:0OPR1+1)+/- (OPRZ)0PRZ+1)--)RSLT)RSLT+1
7 + OPR1:0PRZ:RSLT ARE MOST SIG BYTES
8 * COM IN PSL IS USED AS ADD/SUB FLAG
9 + COM=@ IS5 ADD} COM=1 IS SUBTRACT
19 + AFTER ADD/SUB THE CC,OVF,AND C BITS IN PSL
11 # ARE VALID FOR THE RESULT
12 +
13 + DEFINITION OF SYMBOLS
14)
15 doo8 R EQU] PROCESSOR REGISTERS
16 #0681 Rt EGU 1
17 8882 R?2 EQU z
18 #6463 R3 EQU 3
19 #8668 CC1 EQu H'68’ PSL: HSB OF CONDITION CODE
28 8848 CCe EQU H'4g? LSB OF CONDITION CODE
2 2808 W EQU H'gs’ 1=N1TH:8=NITHOUT CARRY
i #8892 £oM EQU H#z’ 1=LOGICAL8=ARITH COMP
23 gee1 L EQU H'81’ CARRY/BORROMW
24 [1]]] P]] BRANCH COND: ZERD
235 2083 UN EQU 3 UNCONDITIONAL
26 #8688 ON EQU] ALL BITS ARE 1
27 1
28 ORG HYS588! START OF SUBROUTINE
29 3
38 8568 8588 77 69 ADSB PPSL NC+C ARITH WITH CARRY$SET CARRY
31 #582 85 82 LODIsRY 2 LOAD INDEX REGISTER
37 8544 BS 82 TPSL COM
33 8586 18 #F BCTR/ON LPSB BRANCH IF SUBTRACTION
34 8548 15 81 [E ADDITION,CLEAR CARRY
35 #54A 858A 6D 45 2D LPAD LODA:R# OPRi,R1:- BYTE OF FIRST OPERAND TO R
36 856D 8D 45 2F ADDA:RE OPRZ)RI ADD BYTE OF SECOND OPERAND
37 8518 CD 65 31 STRA'R® RSLT:RI STORE RESULT
38 #513 5% 75 BRNR:R1 LPAD BRANCH IF NOT DONE
39 #5195 1B @B BCTRsUN TEST
4 8517 8517 4D 45 2D LPSB LODA:R® OPR1:R1:- BYTE OF FIRST OPERAND T0 R6
4 851A AD 45 2F SUBA:RE OPRZ:R1 SUB BYTE OF SECOND OPERAND
42 851D £h 45 31 STRARE RSLTHR STORE RESULT
43 9528 59 73 BRNR:R1 LPSB BRANCH IF NOT DONE
44 9522 #522 98 88 TEST BCFR:Z RTRN RETURN IF MS BYTE NOT ZERO
45 #9524 ac 85 32 LODA+RE RSLT+1
4 8527 14 RETCyZ RETURN IF LS BYTE ALSO ZER®
47 8528 75 88 cpst CCt SET CC. TO 81 (POSITIVE)
48 @524 17 44 PPSL CC#
49 #52C @52¢ 17 RTRN RETC,UN
58 +
S 852D OPR1 RES 2 LOCATION OF: FIRST OPERAND
52 #52F OPRZ RES d SECOND OPERAND
53 #531 RSLT RES 2 RESULT
54 END

FIGURE 1-2

SIGNETICS BINARY ARITHMETIC ROUTINES = ASbH3

2. BINARY MULTIPLICATION FOR ONE-BYTE
UNSIGNED INTEGERS

FUNCTION:

One byte by one byte multiplication for unsigned integers,
giving a two-byte result.
(OPR1) X (OPR2)—» RSLT, RSLT + 1

PARAMETERS:

Input OPR1 contains multiplier
OPR2 contains multiplicand

Output: RSLT contains high-order product-byte.
RSLT + 1 contains low-order product-byte.

SPECIAL REQUIREMENTS:
None

Refer to Figures 2.1 and 2.2 for flowchart and program
listing.

HARDWARE AFFECTED
RO| R1| R2| R3| R1'| R2"| R3
REGISTERS
X X X X
F n SP
PSU
cc| IDc| RS | wc|ovF|com| ¢
PSL
X X X X X
RAM REQUIRED (BYTES): 4
ROM REQUIRED (BYTES): 29
EXECUTION TIME: ____ _ Variable
MAXIMUM SUBROUTINE
NESTING LEVELS:] I\l one_
ASSEMBLER/COMPILER USED: _P|IPHASM ________

Vintev Subroutine MULT
Operation:
MULT I {OPR2] X (OPR1)—»RSLT, RSLT + 1

Load R1, R2
with OPR1, OPR2

Py |

Initialize PSL:
® operations with carry

Clear RO
load loopcounter R3 with 8

—-{ Loorp

I Clear carry I

I (RO) + (R2) + carry — RO J

SHIFTI‘—

Rotate RO right:
carry —»MSB of RO
LSB of RO— carry

|

Rotate R1right:
carry-- »MSB of R1
LSB of R1--»carry

I

Decrease loopcounter:
(R3) -1—»R3

No

YES

Store RO, R1
in RSLT, RSLT +1

RETURN

FIGURE 2-1 Flowchart for Unsigned Multiplication
(One-Byte Operands; Two-Byte Result)

SIGNETICS BINARY ARITHMETIC ROUTINES = AS53

1 4 PD768838 $
2 MMM I I R R0 143533 4 2134
3 1 BINARY MULTIPLICATION FOR 2 UNSIGNED INTEGERS

4 FHH I I R R I R R R R R R R 1 R R 52 2 343
) +

[+ MULTIPLIER IS IN OPR!

7 1 MULTIPLICAND IS IN OPR2

8 4 RESULT WILL BE STORED IN RSLT:RSLT+1 (RSLT = HS BYTE)

9 3

18 +

i1 3

12 +

13] SYMBOL DEFINITIONS

14 sded Ré EQY 8

15 #881 R1 EQu {

16 #8e2 RZ EQY z

17 8863 R3 EQu 3

18 g8s1 R4 EQU i

19 86882 RS EQu 2

28 6863 Ré EQU 3

U 843 UN EQU 3 UNCONDITIONAL BRANCHING

22 fooe N EQU §

23 8482 LT EQU 2

24 #6048 1 EQU []

25 #6801 P EQU i

26 #9882 N EQV 2

27 #6688 W EQU 8

28 8981 C EQU i

29 go4d F EQy H'Ag!

30 110 OVF EQy 4

K| 8862 COoM EQU rd

32 +
33 + R/W MEMORY

3 1
35 ORG H'S#B’
3 8508 OPR1 RES 2
37 #5682 OPRZ RES z
38 #5604 RSLY RES 4
39 +
i +
4 i
42 ORG H'488’
43 8608 84688 6D 95 69 RULT LODA:Rt OPRI GET OPERAND IN Rt
44§43 gE 85 82 LODA:RZ OPRZ GET OPERAND IN RZ
45 G686 8486 77 88 HPYY PPSL NC ARITH
4 BLae 28 EORZ R# CLEAR RE
47 8609 87 98 LODIR3 8 LOAD LOOP COUNTER R3
48 #4498 B68B 75 61 LooP CPSL ¢ CLEAR CARRY

49 860D FS 81 THI R1 H'81’
58 S48F 8 # BCFR:ON SHFT SKIP ADDITION IF LSB Ri=g
51 @41t 82 ADDZ R2 ADD MULTIPLICAND TO PARTIAL PROD
52 8612 8612 S8 SHFT RRR+ RS ROTATE PARTIAL PROD AND MULTIPLIER
33 8613 51 RRR:RL

54 8414 FB 75 BDRR:R3 LOOP BRANCH TO LOOP IF NOT READY
35 #b16 CC 85 84 STRA'RS RSLT SAVE RESULT IN RESULT AREA
56 8619 £D 85 84 STRA'RT RSLT+1 SAVE RESULT IN RESULT AREA
37 #61C 17 RETC UN RETURN TO MAIN PROGRAM

FIGURE 2-2

SIGNETICS BINARY ARITHMETIC ROUTINES = AS53

3. BINARY MULTIPLICATION FOR TWO-BYTE
UNSIGNED INTEGERS

FUNCTION:

Two byte by two byte multiplication for unsigned integers,

giving a four byte result.

(OPR2, OPR2 + 1) X (OPR1,OPR1 +1)—»
RSLT, RSLT +1, RSLT + 2, RSLT +3

PARAMETERS:

Input: (OPR1, OPR1 + 1) contains multiplier
(OPR2, OPR2 + 1) contains multiplicand

Output: RSLT, RSLT + 1, RSLT + 2, RSLT + 3 con-
tains product.
OPR1, OPR2, and RSLT are most-significant
bytes.

SPECIAL REQUIREMENTS:
None

Refer to Figures 3.1 and 3.2 for flowchart and program
listing.

HARDWARE AFFECTED
RO| R1| R2| R3[| R1'| R2'| R3
REGISTERS
X | X X
F 1 SpP
PSU
cc| Ibc| Rs| wc| ovF|com| C
PSL
X | X X X X
RAM REQUIRED (BYTES): __ 8
ROM REQUIRED (BYTES): &7
EXECUTION TIME: _____Variable ___________
MAXIMUM SUBROUTINE
NESTING LEVELS: | None
ASSEMBLER/COMPILER USED: PIPHASM

VEMH Subroutine SMPY
SMPY Operation:
(OPR2) X (OPR1)—»RSLT

Initialize PSL
® operation with carry
® clear result area

!

[Load R3 with 16 I

—————’———*LOOO

Rotate Multiplier right
by 1 bit into carry

Loc1

| Add Multiplicand I
NO to result

]

Rotate the
result to right
by 1 bit

Decrement Loop Counter
(R3) -1 »(R3)

RETURN

FIGURE 3-1 Flowchart for Unsigned Multiplication
(Two-Byte Operands; Four-Byte Result)

SIGNETICS BINARY ARITHMETIC ROUTINES = AS53

69 8792
7% #7193
8796
72 8799
73 #798
74 879D
75 #79F
76 8742
77 #7143
78 #8786

81 #748
82 8749
83 67AR
84 #7AC

86 #7AE
87 #8788
86 8783
89 #7B6
%% 6789

93 #7BB
94 #78D
95 8708
96 8701
97 #7C4
98 8706
99 #7C8

#798

#79F

#748E

#788

#78B
#78D

68 8798 #7198 77 88

28

oC 85 M
€C 85 85
87 18

8 FE

75 81

#h o4 82
b1

D 64 82
D% 77

28
Dé
F8 82
1B 6D

85 82
4D 65 83
3D 65 61
£h 65 83
7

85 FC

oD b4 68
58

Ch &4 #8
e 7

FB 53

17

3+ PD748831 #
SRR I I R R R R

+ BINARY MULTIPLICATION FOR Z TWO-BYTE INTEGERS

HH I I A B BT
3

+ MULTIPLIER IS IN OPR1 » OPR1+]

+ MULTIPLICAND IS IN OPRZ ,OPRZ+]

+ RESULT WILL BE IN RSLT (RSLT+1 RSLT+Z sRSLT+3

ORG H'798’
3
SHPY PPSL NC SET MODE
EORZ Ré
STRA+RE RSLY CLEAR RESULT
STRA'RE RSLT+! CLEAR RESULT +1
LODI:R3 14 LOAD COUNT
L0600 LOBE.RL -2 T0 GET 254
CPSL C CLEAR CARRY
LOCO LODA:RE OPR1-256+2:R1 FOR INDEXING INTO OPRI
RRR:RE ROTATE RICHT WITH C
STRA:RS OPR1-256+Z.R1
BIRR:R1 LOCO ROTATE ZND TIME
1 THIS ROTATES MULTIPLIER BY 1 BIT TD GET THE LSB
* INTO CARRY
EORZ Ré CLEAR R#
RRLRE GET CARRY INTD LSB

BDRR:RE LOCI
BCTR:UN LOCA

Loct LODI,Rt 2 GET INDEX

Loc2 LODA'RE RSLT-1.Rt ADD MULTIPLICAND TO PRODUCT
ADDA:RE OPRZ-1:R1
STRA'RE RSLT-1,R1

BDRR:R1 LOC2 FINISH THE ADD
+
*
LOC4 LODI.RL -4 ROTATE THE PRODUCT TO RIGHT
LOCS LODA'RE RSLT-256+4:R1
RRR R ROTATE RESULT

STRA'R# RSLT-256+4:R1

BIRR:RI LOCH

BDRR:R3 LODD FINISH THE LoOP
RETC,UN

FIGURE 3-2

SIGNETICS BINARY ARITHMETIC ROUTINES = AS53

4. BINARY MULTIPLICATION FOR ONE-BYTE
SIGNED INTEGERS

FUNCTION:

One byte by one byte multiplication for signed integers
giving a two-byte result.

(OPR1) X (OPR2)—> RSLT, RSLT + 1

The Booth algorithm is used (see Figure 4.1).

PARAMETERS:

OPR1 contains multiplier
OPR2 contains multiplicand

Input:

RSLT contains high-order product byte.
RSLT + 1 contains low-order product byte.

SPECIAL REQUIREMENTS:

Output:

None

Refer to Figures 4.1 and 4.2 for flowcharts and to Figure
4.3 for program listing.

EXECUTION TIME:

RAM REQUIRED (BYTES):

ROM REQUIRED (BYTES): _

MAXIMUM SUBROUTINE
NESTING LEVELS:

ASSEMBLER/COMPILER USED:

PIPHASM

HARDWARE AFFECTED
RO | R1 R2 R3 R1" | R2" | R3
REGISTERS

X X X X

F 1 SP
PSU

CcC IDC| RS | WC | OVF|CcOM| C
PSL

X X X X

VEH!EV BOOTH — MULTIPLICATION — ROUTINE
clear PRODUCT
I clear FLAG I

LSB of MULTIPLIER YES

= FLAG (previous LSB)?

LSB of MULTIPLIER = 0?

Subtract MULTIPLICAND
from PRODUCT with to PRODUCT with
MSB's aligned MSB's aligned

Store LSB of MULTIPLIER
in FLAG

Shift MULTIPLIER right
one position

|

Shift PRODUCT right
one position, the MSB
remaining the same

All bits of
MULTIPLIER tested

YES

RETURN

Add MULTIPLICAND

Enter Subroutine MPYS
MPYS

OPR1—R1

—»R0
8 —R3 (= loopcounter)

{ MOOP

0—>WC in PSL
(operations without carry)

Operation:

(OPR2) » (OPR1)—RSLT, RSLT +1

MOCO
NO
YES
| (RO) - (R2)—»R0 I (RO) + (R2)—» R0
r 1—»FLAG I 0—»FLAG l

MOC1 |

1—> carry
1—=WC in PSL
(operations with carry)

[0—>carry

MOC2

Shift RO, R1 right
with carry into MSB RO

I

l (R3) - 1—»R3 '

YES

RO—-»RSLT
R1—»RSLT +1

(RETURN)

FIGURE 4-1 Flowchart of Booth Algorithm
Multiplicand X Multiplier — Product

8

FIGURE 4-2 Flowchart for Signed Multiplication Using Booth
Algorithm (One-Byte Operands; Two-Byte Result)

SIGNETICS BINARY ARITHMETIC ROUTINES = AS53

168
161
182
163
164
165
186
147
168
169
1
i
12
113
114
S
116
17
118
119
128
121
122
123
124
125
126
127
128
129
138
131
132
133
134
135
136
137

#odd
#682
#8645
#0648
#64h
#8668
#8640
#80F
#811
#813
#815
#816
#818
#81A
#81C
#81E
#81F
#6821
#823
#8524
8826
#6828
8829
#8248
g#62c
#o2rF
#832

(2]

#8688

#81A

#821

#8628

14 48
8D 85 86
gt 85 82
87 #8
28

75 88
FS 81

96 89
BA 48

18 6C

A2

76 48

1B 87

B4 48

9% 63
82

74 48

77 8%
48

1A 82

75 #

b1

)|

FB 5F

£C 85 84
b 85 85
17

+ PR768832

HEHHHPHHH R H RN
+ BINARY MULTIPLICATION USING BOOTH-ALGORITHM

+ FOR 2 ONE-BYTE SIGNED INTEGERS.

HAFHH B S
+ FIRST OPERAND IS IN OPRI

+ SECOND OPERAND IS IN OPRZ (OPR2) # H'80"

+ PRODUCT WILL BE IN RSLT:RSLIt1
3

ORG H'GHH
NPYS CPSY F CLEAR FLAG IN PSU
LODA:R1 OPRI GET 157 OPERAND
LODAIRZ OPRZ GET ZND OPERAND
LODI,R3 8 LOAD LOOP COUNTER R3
EORZ Ré CLEAR RS
HooP CPSL NC CLEAR WC IN PSL
THI:.R1 W81
BCFR:ON MOCE LSB OF R1 SET?
TPSY F 1ES
BCTR:ON MOCI FLAG =1?
SuBz R2 NO:SUBTRACT WITHOUT BORROW
PPSU F SET FLAG
BCTR:UN MOC1 BRANCH TO DOUBLE SHIFT
MocH TPSU F LSB OF R1 WAS @
BCFR:ON MOCI FLAG =1?
ADDZ R2 YES/ADD WITHOUT CARRY
CPSU F CLEAR FLAG
noct PPSL NC+C SET C AND NC
10RZ Ré
BCTR:N MOCZ HSB OF R SET?
CPSL C NO:CLEAR CARRY
nocz RRR1 R SHIFT R# R1 RICHT
RRR:R1 HSB OF RE 1S SAME
BDRR)R3 MOOP BRANCH TO LOOP IF NOT READY
STRA'RE ROSLT STORE RESULT
STRA'R1 RSLT+1
RETC,UN EXIT SUBROUTINE MPYS

FIGURE 4-3

SIGNETICS BINARY ARITHMETIC ROUTINES = ASbH3

5. BINARY MULTIPLICATION FOR TWO-BYTE
SIGNED INTEGERS

FUNCTION:

Two byte by two byte multiplication for signed integers
giving a four byte result.

(OPR1, OPR1+ 1) X (OPR2, OPR2 + 1)

—RSLT, RSLT + 1, RSLT +2, RSLT + 3.

The Booth algorithm (Figure 4.1) is used.

PARAMETERS:

OPR1, OPR1 + 1 contains multiplicand

OPR2, OPR2 + 1 contains multiplier

RSLT, RSLT + 1, RSLT + 2, RSLT + 3 contains
product.

OPR1, OPR2, and RSLT are most-significant
bytes. ’

SPECIAL REQUIREMENTS

Input:

Output:

None

Refer to Figure 5.1 for flowchart and to Figure 5.2 for
program listing.

HARDWARE AFFECTED
Ro [R1 | R2 | R3 | RT" | R2" | R
REGISTERS
X X X X
F | n | sp
PSU
cc | ibc| Rs | we [ovF|com| ¢
PSL
X X X X X
RAM REQUIRED (BYTES): 8
ROM REQUIRED (BYTES): 71
EXECUTION TIME: __ __ ___\ Variable _
MAXIMUM SUBROUTINE
NESTING LEVELS: None

ASSEMBLER/COMPILER USED: PIPHASM

10

Enter Subroutine SMPY
SSPY

SET OPERATION Operation:
WITH CARRY (OPRTOPR1+ 1) x (OPR2 OPR2 + 2)

| — RSLT, RSLT +1, RSLT + 2, RSLT + 3

0—>R2 (bit buffer)
0—>RSLT MS - bytes
0—RSLT +1 product
16—R3 (loopcounter)

NOOP

Rotate multiplier
OPR2, OPR2 + 1 right into carry

I

Rotate carry into
LSB of RO

YES (LSB multiplier = previous LSB)

No (LSB multiplier changed)

L

Invert LSB of R2 I

LSB of R2— carry |

NO (1—0 transient)

YES (0—1 transient)

Subtract multiplicand
(OPR1,0OPR1 + 1) from
MS — bytes of product

(RSLT,RSLT + 1)

Add multiplicand to
MS - bytes of product

[

NOC 4 |

Copy MSB of product
to carry

I

Rotate product right
into carry
(MSB remains equal)

!

(R3) - —>=R3 J

RETURN

FIGURE

5-1 Flowchart for Signed Multiplication Using Booth
Algorithm (Two-Byte Operands; Four-Byte Result)

SIGNETICS BINARY ARITHMETIC ROUTINES = AS53

138 1 PD768833
139 FEHH IR I I P M A R R H R MR R R 1
148 4+ BINARY MULTIPLICATION FOR TWO BYTE SIGNED INTEGERS
141 FHH I R R R R R I M
142 + MULTIPLICAND IS IN LOCATIONS OPR1,OPRi+l
143 + MULTIPLIER IS IN LOCATIONS OPRZ,0PRZ+1
144 Y
145 4 RESULT WILL BE STORED IN RSLT:RSLT+1:RSLT+Z4RSLT+3
146 3
Ly} 4+ AFTER MULTIPLICATION THE MULTIPLICAND IS UNCHANGED
148 #+ THE MULTIPLIER 1S DESTROYED
149 + THE MULTIPLICAND MUST BE UNEQUAL H'B8##’
156 FHI AR A R
151 8833 833 77 #8 S5PY PPSL N ARITH AND ROTATE NITH €
152 8835 28 EORZ Ré CLEAR R§
153 #8346 €2 STRZ R2 CLEAR R2
154 6837 CC 25 #4 STRA:R# RSLT CLEAR 2 MSBYTES OF PRODUCT
155 6834 cC 85 85 STRA'R8 RSLT+
156 0830 87 18 LODIR3 16 LOAD LOOP COUNTER R3
157 @#83F @83F 45 FE NOOP LODI/RY -2 LOAD INDEX REG WITH 254
158 6841 @841 4D 44 B4 NOCS LODA)R@ OPRZ-254+2:R1 ROTATE MULTIPLIER
159 #8544 58 RRR:RE INTO CARRY
166 8845 Ch 64 44 STRA'RE OPRZ2-256+2,R1
161 9848 D77 BIRR:R1 NOC# BRANCH IF NOT DONE
162 6844 28 EORZ R® CLEAR RE
163 #8848 Do RRL:RE ROTATE CARRY IN LSB OF Ré
164 #84C 22 EORZ Rz LSB OF R BECOMES 1 FOR CHANGE
165 #84D 18 19 BCTRyZ NOCH BRANCH IF NO CHANGE
166 @BAF 22 EORZ RZ INVERT LSB OF R2
167 6858 W STRZ R2 RESTORE NEN R2
168 6851 58 RRR:R8 LSB OF RZ INTO CARRY OR BORROMW
169 9852 85 82 LOBI,RI 2 LOAD INDEX
176 8854 @854 4D 45 g4 NOCH LODA'RE RSLTRI:- LOAD BYTE OF RSLT IN R#
171 8857 Fé 81 THI:RZ 1
172 8859 18 #5 BCTR:ON NOC2 BRANCH TO SUBTRACT IF LSB R2=1
173 8858 8D 45 68 ADDA'RE OPRIR1 ADD BYTE MPLCND TO RSLY
174 885E 1B 83 BCTR:UN NOC3
175 8848 8848 AD 45 69 NOC2 SUBA'RS OPR1.R1 SUB BYTE MPLCND FROM RSLY
176 8843 @863 CD &5 84 NOC3 STRA'R# RSLT:R1 RESTORE INTERMEDIATE RSLY
177 8844 59 4C BRNR:R1 NOCH BRANCH IF ADD SUBTRACT NOT READY
178 3
179 8848 @848 6C 65 84 NOC4 LODAYR® RSLY
186 8848 Dé RRL:RE
181 #84C 84 FC LODIRE -4 LOAD INDEX
182 @86E @B4E 4D 44 88 NOCS LODA'R8 RSLT-254+4:R1 FETCH WS BYTE PRODUCT
183 8871 59 RRR:RE ROTATE RSLT,PROD+1 ETC TO RIGHT
184 @872 CD b4 88 STRA'RE RSLT-256+41R1 KEEPING MSB SAME
185 #875 B9 77 BIRR:R1 NOCS BRANCH IF NOT DONE
186 9877 FB 46 BDRR:R3 NOOP BRANCH IF LOOP NOT READY
187 #8879 17 RETC)UN RETURN TO MAIN PROGRAM
188 END
FIGURE 5-2

11

SIGNETICS BINARY ARITHMETIC ROUTINES = AS53

6. BINARY DIVISION

A.UNSIGNED INTEGERS
TWO-BYTE DIVIDEND; ONE-BYTE DIVISOR

FUNCTION: VE Subroutine DIV

Division of a two byte dividend by a one byte divisor, DIVI

resulting in a two-byte quotient and a one-byte remainder. 'ni:ia")i;:':‘si';;swnh cary

(DVDN, DVDN + 1) DVDN, DVDN + 1 (quotient) 3 logical comparison

(DVSR) R1 (remainder)

PARAMETERS:

Input: DVDN, DVDN + 1 contains dividend
DVSR contains divisor oIvu | q enter subroutine DIVY
DVDN is most-significant byte r#:g; toopeounter]] oot

Output: DVDN, DVDN + 1 contains quotient l (DVDN,DVDN+1)
R1 contains remainder r Clear carry] (oveR
DVDN is most-significant byte. j]Loop R romammdyr | ot
Dividend is destroyed after execution of division. Rotate R1 left:

(carry)—»LSB
(MSB) — carry

SPECIAL REQUIREMENTS:

None

Refer to Figure 6.1 for flowchart and to Figure 6.2 for
program listing.

HARDWARE AFFECTED

RO | R1 R2 R3 R1" | R2" | R3

X X X X r -]

F | n |sp Loco P—

PSU Rotate DVDN, DVDN + 1 left:
(carry)—LSB of DVDN + 1
(MSB of DVDN) —s-carry

REGISTERS

CcC IDC| RS WC |OVF |[COM | C I
PSL L (R3) - 1—»R3 1
X X X | X X | X
RAM REQUIRED (BYTES): 3 ves
l Clear OVF I
ROM REQUIRED (BYTES): ___ ° 4
EXECUTION TIME: _______Variable
MAXIMUM SUBROUTINE
NESTING LEVELS: None
ASSEMBLER/COMPILER USED:__E'_F'B_A_S._M ________ FIGURE 6-1 Flowchart for Unsigned Division (Dividend or
Quotient: Two-Bytes; Divisor or Remainder: One-Byte)

12

SIGNETICS BINARY ARITHMETIC ROUTINES = AS53

W~ O~ WM -

#508
#5482
#545

#586
#5408
#5064
#56C
856D
#56F
#511
8514
8516
#518
#51B
#51D
#51F
#522
#523
#526
#528
#5264
#52C

(1
#8861
#8662
#8683
8881
#8682
#8643
#683
g8t
gaes
#ed2
#ied
gess
#o81
8862
#6848
gage
#o82

#5608

#5686

#56C

#5146

#51D
#51F

17 8t
oC 86 82
14

45 86
87 11

1" H

)

BS 81

18 85

ED #6 82
18 &7

77 8

AD 86 82
ne
86 82

Ot 46 b8
Dé

CE 66 08
77

FB 62

75 84

17

L

L]

+
3
3
Ré
Ri
R2
R3
R
RS
R6
N
C
ON
LT
z
ta
P
N
WC
OVF
con

DIVI

DIVY

LOOP

SUBT

Locg
LoCt

PD76p48]
HIHIH I R R R
BINARY DIVISIONS FOR INTEGERS

HH I I R R
+ DIVIDEND IS IN DVDN.DVDN+1 14 BITS

+ DIVISOR 1S IN DVSR 8 BITS

QUOTIENT WILL BE IN DVDN:DVDN+1 16 BITS

+ AFTER DIVISION, DIVIDEND WILL BE DESTROYED

4+ R1 WILL HOLD REMAINDER

+ OVF=1 INPLIES OVERFLON

SYMBOL DEFINITIONS

tay)

EQu 1

EQu 4

EQY 3

EQu 1

21 4

(2] 3

(211 3 UNCONDITIONAL BRANCHING
21] 1

1])

Eau 4

EQu L]

Equ ¢

201] 1

2] 4

e 8

2] 4

Equ 2

ORG H! 588’ UNSTGNED DIVISION SUBROUTINE
PPSL NC+OVF+COM ARITH ROTATE NITH CARRY
LODA,RE DVSR FETCH DIVISOR

RETC+2 RETURN WITH OVF =1 IF DVSR =#
LODI,RL 8 CLR R1

LODI.R3 17 LOAD LOOP COUNTER R3

CPSL C CLEAR CARRY

RRL:R1 ROTATE CARRY IN LSB OF Ri
TPSL C

BCTR:ON SUBT G0 TO SUBTRACT IF CARRY =1
COMA:RI DVSR

BCTR:LT LOCS IF RI<DVSR+NO SUBTRACTION
PPSL € CLR BORRON

SUBA:Rt DVSR SUBTR DVSR FROM REMAINDER
PPSL ¢ SET CARRY

LODIRZ 2 LOAD INDEX REGISTERR
LODA:RE DVDN:RZ,- ROTATE QUOTIENT BIT
RRL:RE DVDN,DVDN+1 AND MSB OF
STRA:RE DVDN.RZ DVDN INTO CARRY

BRNR.RZ LOCH BRANCH IF ROTATE NOT READY
BDRR:R3 LOOP BRANCH IF DIVISION NOT READY
CPSL OVF CLEAR OVF IN PSL

RETCUN RETURN TO MAIN PROGRAN

FIGURE 6-2

13

SIGNETICS BINARY ARITHMETIC ROUTINES = AS53

B. SIGNED INTEGERS
TWO-BYTE DIVIDEND; ONE-BYTE DIVISOR

FUNCTION:

Division of a two-byte dividend by a one-byte divisor,
resulting in a two-byte quotient and a one-byte remainder.
(DVDN, DVDN + 1) DVDN, DVDN + 1 (quotient)

(DVSR) R1 (remainder)
PARANETERS:
Input: DVDN, DVDN + 1 contains dividend
DVSR contains divisor

DVDN is most-significant byte.

DVDN, DVDN + 1 contains quotient

R1 contains remainder

DVDN is most-significant byte.

Dividend is destroyed after execution of division;
negative divisor becomes positive

SPECIAL REQUIREMENTS:

Software: Unsigned division subroutine

Output:

Refer to Figure 6.3 for flowchart and to Figure 6.4 for
program listing.

DIVS

Initialize PSL:
® operations with carry
® |ogical comparison
® set OVF; clear borrow

® clear STATUS

HARDWARE AFFECTED
RO| R1 | R2 | R3 | R1'| R2"| R3
REGISTERS
X X X X
F n SP
PSU
cc | IDC| RS | wC | OVF|com| C
PSL
X X X X X [X
RAM REQUIRED (BYTES): __ 4
ROM REQUIRED (BYTES): € et
EXECUTION TIME: __ _ ___ _ Variable
MAXIMUM SUBROUTINE
NESTING LEVELS: r
ASSEMBLER/COMPILER USED: _ PIPHASM ________

L Complement (DVSR) J
I H'40'—> STATUS I

DIvo

(DVDN, YES

Operation:
(DVDN, DVDN + 1)
{DVSR)
DVDN, DVDN + 1 (quot.)
R1 (remainder)
RETURN
o|-|8
sTaTus | 2| 5|2| 5|2
2|8
CODING | S| 2| |5 E
T|(O|W|OT| <
+ [+]00|+ |+
+ | -|a0| - | +
~|+lgo|-]-
-|-col +| -

DVDN + 1)
=0

lComplement (DVDN, DVDN + 1) I

I

| (STATUS) + H'80'—>STATUS |

’._h

I UNSIGNED DIVIDE ‘I

RETURN

Complement R1
(remainder)

RETURN

Complement (DVDN, DVDN + 1)
(quotient)

RETURN

14

FIGURE 6-3 Flowchart for Signed Division (Dividend & Quotient:

2 Bytes; Divisor & Remainder: 1 Byte)

SIGNETICS BINARY ARITHMETIC ROUTINES = AS53

59 3 PI768841
b8 FH R R R R R R R R R 13113443144
61 + SIGNED DIVISION
Y TR A R R R R R R R R R 1118
83 +
b4 4 NEGATIVE DIVIDEND AND OR DIVISOR ARE COMPLEMENTED
85 + PRIOR TO EXECUTION OF DIVISION
b 1
87 # SIONS ARE CODED IN STATUS:
48 + STATUS CODING:DVDN DVSR STAT QUOT RMDR
89 + + + 88+ 4
8 1 R | I
! + -+ o - -
7 3 - - W -
73 + DIVIDEND MWUST BE UNEQUAL H’8888' (NO CORRECT OVF)
L + NEGATIVE SIGN OF DIVISOR 1S LOST AFTER EXECUTION.
75 8520 @520 77 8D DIVS PPSL WCHOVF4C ARITH ROTATE NITH CARRY ETC
76 #52F 26 EORZ RE
77 9538 01 STRZ R1 CLEAR RI
78 9531 9E 86 82 LODA:RZ DVSR FETCH DIVISOR IN R2
79§53 1 RETC)Z RETURN WITH OVF SET IF DVSR= §
88 9535 19 #6 BLTR:P DIVE BRANCH IF DIVISOR)8
81 6537 A2 SUBZ R2 TAKE 25 COMPLEMENT OF DVSR
82 4538 CC 86 82 STRA'RE DVSR RESTORE DIVISOR
83 6538 85 48 LODI:R1 H48? LOAD STATUS IN Ri
B4 653D #53D OE 66 69 DIV LODARZ DVDN FETCH MS BYTE OF DIVIDEND
85 9548 % 64 BCFRIN DIV BRANCH IF DIVIDEND NOT<#
86 9542 3B 18 BSTRIUN CHPL TAKE 25 COMPLEMENT OF DIVIDEND
87 @544 85 89 ADDI:R1 H'B8’ UPDATE STATUS
88 @546 @546 CD 86 63 DIV STRARL STAT SAVE STATUS
89 6549 3F 85 8 BSTAYUN DIVU CALL UNSICNED DIVISION
9 854C oF 86 63 LODAIR3 STAT LOAD STATUS IN R3
91 §54F 14 RETC:Z RETURN IF BOTH DVDN AND DVSR NOT(8
92 8556 19 97 BCTR:P DIV2 BRANCH IF DVDN WAS NOT <B AND DVSR{#
93 6552 77 81 PPSL C CLEAR BORROW
9 554 28 EORZ Ré CLEAR RS
95 8555 Al SUBZ R1 TAKE 2 § COMPLEMENT OF REMAINDER
9% 955 01 STRZ Ri RESTORE REMAINBER IN Ri
97 6557 D3 RRL1R3 SHIFT R3 LEFT
98 §558 16 RETC:N RETURN IF BOTH DVDN:DVSR(H
99 6559 9559 3B 61 DIV2 BSTRIUN CMPL TAKES 26 COMNPL. OF QUOTIENT
198 9558 17 RETCUN RETURN TO MAINPROGRAM
181 +
192 +
163 + SUBROUTINE TO TAKE 25 COMPL
184 + OF (DVDN)DVDN+1)
165 +
186 @550 #55C 77 91 CHPL PPSL ¢ CLEAR BORRON
167 #55E 97 0 LODI:R3 2 LOAD INDEX REG
168 6568 9568 29 NP8 EORZ RE CLR R
199 8561 AF 45 89 SUBAIRE DVDN)R3:- COMPLEMENT BYTE
118 9564 CF 86 86 STRAYRE DVDN:R3 RESTORE RESULT
111 9547 58 77 BRNR:R3 CMPS BRANCH IF NOT DONE
112 8569 17 RETCUN
13 ORG HY 688"
114 (177} DVDN RES 2 DIVIDEND AND QUOTIENT
115 #o82 DVSR RS 1 DIVISOR
116 9683 STAT RES 1 STATUS REG
17 END
FIGURE 6-4

15

Signetics 2650 Microprocessor application memos currently available:

AS50
AS51
ASb52
AS54
SP50
SP51

SP52

SP53
SP54

SS50
SS51
MP51
MP52

Serial Input/Output

Bit and Byte Testing Procedures

General Delay Routines

Conversion Routines

2650 Evaluation Printed Circuit Board Level System (PC1001)
2650 Demo Systems

Support Software for use with the NCSS Timesharing System
Simulator, Version 1.2

Support Software for use with the General Electric Mark |l Timesharing
System

PIPBUG

Absolute Object Format (Revision 1)

2650 Initialization

Low Cost Clock Generator Circuits

© N.V. Philips' Glogilampentabrieken

This information is furnished for guidance, and with no guarantees as to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor
does the publisher assume liability for any consequence of its use; specifications and availability of goods mentioned in it are subject to change without notice; it is not to be
reproduced in any way, in whole or in part, without the written consent of the publisher

4-76

9399 509 53861

CONVERSION ROUTINES.AS54

SiNoLcs

CONVERSION ROUTINES A854

INTRODUCTION

Conversion routines like binary to BCD, BCD to binary, and
BCD to ASCII| are often used in microprocessor based
systems. This applications memo describes routines for
converting:

® Eight-bit unsigned binary to BCD.

® Sixteen-bit signed binary to BCD.

® Signed BCD to binary conversion 1 (using an addition
method).

® Signed BCD to binary conversion 2 (using a multi-

plication method).

Signed BCD to ASCII

ASCII to BCD

Hexadecimal to ASCII

ASCII to Hexadecimal

1. EIGHT-BIT UNSIGNED BINARY-TO-BCD
CONVERSION

FUNCTION:

Converts an unsigned binary number to a BCD number
(3 digits).)

(BINN) Conversion » R0, R1

A multiplication method is used.

PARAMETERS:
Input: BINN contains the binary number (8 bits
unsigned.

Qutput: Registers RO, R1 contain the BCD result
(3 BCD digits).
RO is the most-significant byte.
The maximum BCD result is 256 decimal.

Refer to figures 1.1 and 1.2 for flowchart and program
listing.

HARDWARE AFFECTED
RO | R1 R2 | R3 | R1" | R2" | R3
REGISTERS

X X

F 1 SP
PSU

cc IDC| RS | WC | OVF|COM| C
PSL

X X X X X

2650 MICROPROCESSOR
APPLICATIONS MEMO

RAM REQUIRED (BYTES): 1 o
ROM REQUIRED (BYTES): 28
EXECUTION TIME: _____Variable.
MAXIMUM SUBROUTINE

NESTING LEVELS: 0

ASSEMBLER/COMPILER USED: P|IPHASM

Enter CONV Subroutine

i Operation:

conversion

Initialize PSL: BINN —R0, R1
® Operations with carry (Binary) (BCD)
® Logical compare
® Clear carry

i

I (BINN) binary number —»R0

!

I (RO)—R1

i

Clear MS 4 bits of R1

i

I Decimal Adjust (R1)

!

[Clear LS 4 bits of RO

MS 4 bits
(RO) zero

No

I (RO) Binary Number-H'10’~—>RO]

!

I (R1) + BCD 16 —R1

!

Decimal Adjust R1

1

Add Carry from R1 to RO]

S—

FIGURE 1-1 Flowchart for Eight-Bit Unsigned Binary-to-BCD
Conversion (Multiplication Method)

SIGNETICS CONVERSION ROUTINES

m ASH4

WO O U WD -

32 8548
33 #5682
34 8504
39 8547
36 8548
37 856
38 654

44 056D

42 B58F
43 8511
4 8513
45 8515
4 8517
47 8518
48 514

8 8510

boee
gos1
#888
11174
)
8063
g2

(13

#5688

#58F

#51C

17 84
75 84

ac 86 op
1

45 oF

89 b6
99

A FB

E4 18
1A 89
A4 oF
35 7B
9

84 66
1B 73

4

+ PD760856
e e a et

+ 8 BIT UNSIGNED BINARY TO BCD CONVERSION
TR R R R
]

#THIS ROUTINE CONVERTS AN 8 BIT UNSIGNED BINARY
#NUMBER INTO AN UNSIGNED BCD NUMBER.

+

$BINARY NUMBER IS IN BINN.

#BCD NUMBER (AFTER CONVERSION} IS IN Ré:R1.

+ HUNDREDS IN Ré

+ TENS:UNITS IN Ri.

]

#DEFINITIONS OF SYMBOLS:

]

Ré EGU § PROCESSOR-REGISTERS
Rt EQU 1
WC EGU H'#8’ PSL: 1=MWITH: B=NITHOUT CARRY
COM EQY H'8z! 1=LOGICy #=ARITH.COMPARE
" H'81’ CARRY : BORROW
UN EQU 3 BRANCH COND.: UNCONDITIONAL
LT EQu 2 LESS THAN
3
]
ORG H'6b8’
¥
BINN RES 1 BINARY NUMBER.

3
ORG H'568° START ADDRESS OF ROUTINE,
]

i INITIALISATION:

CONV PPSL NC+COM WITH CARRY:LOGICAL COMPARE
CPSL € CLEAR CARRY FLAG IN PSL.
LODA:R# BINN 8 BIT BIN.NUMBER -) R#.
STRZ Rl {R8) -> R1.

ANDI.R1 H'BF’ CLEAR MS 4 BITS BIN. NUMBER

ADDI:R1 HY 66! PREPARE R1 FOR DECIMAL ADJUST,
DAR:R1

]
ANDI:RE H'F8’ CLEAR LS & BITS,

3

LOOP COMI:R§ H'1B"
BCTR:LT EXIT IF S & BITS ZERO THEN RETRUN.
SUBI.RB H'18'-1 SUBTRACT t FROM MS & BITS
ADDI.R1 H'16'+H'66"-1 ADD BCD 16 AND PREPARE

DAR:R1 FOR DECIMAL ADJUST.
ADDI:RO & ADD CARRY TO MS BCD DIGIT
BCTR.UN LOOP BRANCH AGAIN

#

EXIT HALT END OF CONVERSION.
END

FIGURE 1-2 Program Listing for Eight-Bit Unsigned Binary-to-BCD Conversion

SIGNETICS CONVERSION ROUTINES = AS54

2. SIXTEEN-BIT SIGNED BINARY-TO-BCD
CONVERSION

FUNCTION:

Converts a signed 16-bit binary number to a signed BCD
number.
Subtraction of base numbers is used.

PARAMETERS:
Input: BINN, BINN+1 contain the signed binary
number.

BINN is the most-significant byte.
Binary number is destroyed after conversion.

BCDD, BCDD+1, BCDD+2 contain the BCD
result.

BCDD contains the sign and the most-significant
BCD digit.

The minimum BCD result is -32768 decimal.
The maximum BCD result is +32767 decimal.

Output:

Refer to figures 2.1 and 2.2 for flowchart and program
listing.

Enter BBCD Routine

Y

Initialize PSL:
® Operations with carry
® Clear borrow

!

Clear BCDD, BCDD+1, BCDD+2
~10— R1 (index base register)

Two's complement binary number I

i

H'09’ negative sign)— BCDD+2 I

Operation:

BINN, BINN+1—BCDD, BCDD+1, BCDD+2

(Binary)

LOOP

Shift BCD register left 4 bits
for loading next BCD digit

[

{BCD)

i

Subtract current base number
from Binary number

No

Binary number
negative

Add current base number to
Binary number

i

Set pointer to next base
number: (R1) +2—R1

HARDWARE AFFECTED
RO | R1 | R2 | R3 | R1" | R2" | R3"
REGISTERS
X X X X
F] SP
PSU
cc | ibc| Rs | wc | ovF|com| €
PSL
X X X X X
RAM REQUIRED (BYTES): ___ &6
ROM REQUIRED (BYTES): 106
EXECUTION TIME: ___ _Variable
MAXIMUM SUBROUTINE
NESTING LEVELS: _____ O
ASSEMBLER/COMPILER USED: __ PIPHASM __

Conversion
ready:
(R1) =0,

{BCDD+2) +1-—BCDD+2]

L

FIGURE 2-1

Flowchart for Signed Binary-to-BCD Conversion

SIGNETICS CONVERSION ROUTINES

m ASH4

© DN W N

W 9685
35 887
36 8689
KT]
38 #6

43 9500

% 953

48 #5608
4 05M

51 #56C
52 5%
§3 o511
54 #513
§5 #514
56 #517
§7 #51A
8 #51C
59 #51E

61 8521
62 6523
63 855
&4 8527
65 #524
b6 8528
67 #52
68 954

% #53%
71 8534
72 953
73 9538
74 853
75 95%
76 954
77 8543
78 8543
79 9548
: B AL
81 @54

83 954
84 8554
85 8553
86§55
87 9559
88 #558
89 8550

(L}
962
943
#9898
#961
0z
(][]

[
(1173
#6805

#5685

H11
#513

8521

9525
#527

#532

#538

954
55

27 18
#3 €8
4 o4
8 9
a0

e

i}
783
CF 4 82
58 78
K Fo

9 66 0
9% 18
8 82

20
LY]
CE 66 08
A7

89
CC 06 64

nA

8 ¥
ne

F 46 92
Dé

CF &6 92
S8 77
FA 73

85 82

8 82
78

ot & o
AD &5 #F
CE 66 #9
54 75

1A 9

i 86 84
82

CC 9 84
1B &4

92
[1N]
8D 45 11
CE 66 8
575
85 83
59 42

9% 855 #55F &

Aadadasiiing

+
+ BINARY TO BCD CONVERSION +
]

#THIS ROUTINE COMNVERTS A SIGNED BINARY NUMBER
#{16 BITS) INTO A SICNED BCD MUMBER

#(24 BITS: SIGN + 5 BCD DIGITS).

¥

#THE BINARY NUMBER 1S IN BINN:BINN+1,

#THE BCD NUMBER 1S IN BCDD:BCDD+1,BCDD+2.

#BINN AND BCDD ARE MOST SIGNIFICANT BYTES.

#HS NIBBLE OF BCDD=9 FOR POSITIVE BINARY NUMBERS.
#45 NIBBLE OF BCDD=9 FOR NEGATIVE BINARY NUMBERS.
*

#SUBTRAHENDS ARE PLACED IN REGISTER BASE (18 BYTES)
3

#DEFINITION OF SYMBOLS:
#

R EQU § PROCESSOR-REGISTERS
Rl EQU 1
Rz EQU 2
R3 EQU 3
B EQ H'ge’ PSL: 1=NITH: #=WITHOUT CARRY
C E@ LY CARRY+BORROM
N EQU 2 BRANCH COND.: NECATIVE
N EQU 3 UNCONDITIONALY
*
+
ORG LR START ADDRESS
]
BINN RES 2 BINARY NUMBER MEMORY LOCATION
BCDD RES 3 BCD REGISTER
BASE DATA W'27118' 16889

DATA H'83.E8' 1868
DATA H'8Hi68’ 108
DATA H'8.8A’ 1§
DATA H'881°
LEN EQ $-BASE

ORG HIS#8!

i

LENGTH BASE REGISTER

START ADDR. OF PROGRAM

+

BBCD PPSL NC+C ARITHMETICHROTATE WITH CARRY:

CLEAR BORROW.

EORZ RE INITIALISATION: CLEAR R6.
LODIIR3 3

LOCH STRA:R® BCDD:R3:- CLEAR 3 BYTES OF BCD REGISTER,
BRNR:R3 LOCH

LODIRT -LEN LENGTH OF BASE REGISTER.

LODAsRZ BINN MS 4 BITS BINARY NUMBER.
BCFRIN LOOP IF P0S. GO TO LOOP
COMP LODINRZ 2 LOAD INDEX REGISTER.
LOCY EORZ R# TNO'S COMPLEMENT BY

SUBA:R@ BINN/RZ)- SUBTRACTING FROM ZERD.
STRA:RE BINN)RZ
BRNR1RZ LOCI
LODI+R® H'#9'
STRA'RG BCDDHZ

RETURN IF NOT READY.
NEGATIVE SIGN INDICATION.
SIGN IN LSB OF BCD REGISTER.

+ SHIFT BCD REG. LEFT & TIMES.
LooP CPSL € CLEAR CARRY FOR ROTATE.
LODI/RZ 4 BIT COUNT,

LPZ LODI/R3 3 INDEX BYTE SHIFT.

LP1 LODA+R@ BCDD:R3:- BCD DIGIT INTO RS.
RRL1RS CARRY (PREVIOUS MS BIT)-) LSB
STRA+RS BCDD:R3 AND MS BIT -) CARRY,
BRNR!R3 LP1
BDRR:RZ LP2

+

SUBL ADDI:R? 2 RESTORE BASE INDEX.
LODI/RZ 2 INDEX REGISTER
PPSL C CLEAR BORROW

LOCZ LODA+R® BINN:RZ:- LOAD BINN AND SUBTRACT
SUBA+RS BASE-256+LENIR1»- CORRESPONDING
STRA'RS BINNIRZ BASE DIGIT
BRNR»RZ LOC2

BCTR:N CORR IF BINN NEG. THEN CORRECTION.
LODARS BCDD+2
ADDZ R2 ADD 1 TO LSB OF BCD NUMBER

STRA:R@ BCDD+2 C=1 IN PSL AND (R2):=6
BCTRIUN SUBL

3

CORR LODIIRZ 2 INDEX COUNT

L0C3 LODA:R@ BINN:RZ:- ADD CORRESPOMDING BASE BYTE 10
ADDA'RG BASE-256+LEN+21R11- BINARY NUNBER.

STRA:R@ BINN:RZ

BRNR1RZ LOC3 RETURN IF NOT REARTY

ADDLIRI 3 UPDATE BASE POINTER:C=1IN PSL

BRNR!R1 LOOP RETURN IF CONVERSION NOT READY
EXIT HALT END OF CONVERSION

END

FIGURE 2-2 Program Listing for Signed Binary-to-BCD Conversion

SIGNETICS CONVERSION ROUTINES = AS54

3. SIGNED BCD-TO-BINARY CONVERSION 1

FUNCTION:

Converts a five-digit signed BCD number to a sixteen-bit
signed binary number.

Addition of base numbers is used.

PARAMETERS:

Input: BCDD, BCDD+1, BCDD+2 contain the BCD
number.
BCDD contains the sign plus the most-significant
BCD digit.
The range of BCD numbers is: -32768<BCD
Number<+32767. :
BCDD is destroyed after the conversion.

Output: BINN, BINN+1 contain the signed binary
number.
BINN is the most-significant byte.

Refer to figures 3.1 and 3.2 for flowchart and program
listing.

HARDWARE AFFECTED
RO | R1 | R2 | R3 | R | R2 | R
REGISTERS
X X X X
F n |sp
PSU
cc | Ibc| Rs | we [ovF|com| c
PSL
X X X X
RAM REQUIRED (BYTES): ¢ 5
ROM REQUIRED (BYTES): 86
EXECUTION TIME: _______Variable
MAXIMUM SUBROUTINE
NESTING LEVELS: o0
ASSEMBLER/COMPILER USED: _PIPHASM

Enter BBIN Routine

i Operation:

BCDD, BCDD+1, BCDD+2—BINN, BINN+1
Initialize PSL: (BCD) (Binary)
® Operations with carry

!

00— Binary register
10— R1 (number of base digits)

LOOPl

I Clear carry (o—c in PSL) J
l LS BCD digit—R3 J

BCD digit
zero; (R3) = 0,
No

Add current base number
to binary number
(R3) - 1—R3

BCD digit
zero; (R3) = 0,

Shift BCD register right 4 bits
to point to next BCD digit

:

Set pointer to next base
number: (R1) -2—R1

Yes (Next BCD digit)

Sign
BCD number
negative

I Two’s complement binary number I

Cexit) C &t)

FIGURE 3-1: Flowchart for signed BCD-to-Binary Conversion

SIGNETICS CONVERSION ROUTINES

m ASH4

1 + PD768852

2 BRI IR b4

3 # BCD TO BINARY CONVERSION

4 B H R 44

5 +

[# THIS FOUTINE CONVERTS A SIGNED BCD NUMBER

7 + (24 BITS: SIGN+5 BCD DIGITS) INTO A SIGNED

8 + BINARY NUMBER (16 BITS),

9 # -32768 <BCD NUMBER <+32767

1# + BCD NUMBER IS LOST AFTER CONVERSION.

1]

12 + THE BINARY NUMBER IS IN BINN:BINN+1,

13 # THE BCD NUMBER IS IN BCDD.BCDD+1:BCDD+2 (AS-A4),
14 + THE BASE NUMBERS ARE IN BASE)- -1BASE+? (R#:R4),
15 + BINN AND BCDD ARE MOST SIGNIFICANT BYTES.

16 #

17 # PRINCIPLE OF CONVERSION IS:

18 # BINN = AB.RI+ AL.R1+ AZ,R2+ A3.R3+ M4.R4

19 # AP -A4 = NUMBER OF DIGITS OF BCD NUMBER.

28 #+ RE -R4 = BASE NUMBERS FOR CONVERSION.

2 +

22 + DEFINITIONS OF SYMBOLS:

23 (1] RO EQW § PROCESSOR-REGISTERS

24 081 Rl EW 1

25 [3 R2 EQ 2

26 943 R3 EQU 3

27 #868 NCEQU W88’ PSL: 1=NITH: #=WITHOUT CARRY
28 881 C EQU HW'S1’ CARRY : BORROW

29 [1 B # BRANCH COND: ZERO

38 [1] N EQU # ALL BITS ARE 1
3t [] SICN EQU H'#8’ T0 TEST BCD. NUMBER

32 [[} LEN EQU 19 INDEX NUMBER (LENGTH BASE REG)
33]

3 ORG H' 688’

33)

3 (1] BINN RES 2 BINARY NUMBER

37 #o92 BCDD RES 3 BCD NUMBER

38 G605 9685 27 18 BASE DATA H'27:18' 19008

39 9687 #3 E8 DATA H'93:E8' 1080

L 1Y # 64 DATA W64 18

LI] # 8 DATA H'#f:8A° 19

42 86D 8 61 DATA H'#i81' 1

H“ ORG N 458’ START OF PROGRAM

45 M58 48 77 88 BBIN PPSL NC ARITHMETIC+ROTATE WITH CARRY
4 $452 29 EORZ R# CLEAR RE

LY [hX] com STRA'RE BINN CLEAR BINARY REGISTERS

48 9456 CC 86 1 STRA:RE BINN+1

49 9459 5 # LODI+R1 LEN INDEX FOR BASE DIGITS

58 8458 #45B 75 1 LooP CPSL € CLEAR CARRY

51 M4 " 06 94 LODA:R3 BCDD+2 LOAB LS BCD DIGIT IN R3

S2 #e8 4 ANDIIR3 H'BF’ CLEAR MS & BITS

53 #4462 18 11 BCTR:Z MEXT IF ZERO GO TO NEXT

4 4 BA64 B4 B2 LOCt LODIR2 2 LOAD INDEX

55 8466 B466 BE 46 68 LOC2 LODA+RE BINN:RZ:-

56 8469 8D 46 #5 ADDA:R@ BASE)R1»- ADD BASE DIGIT TO BIN. NUMBER
57 84 CE6b 8 STRA:RS BINN:R2

58 §46F 5475 BRNR:R2 LOCZ

59 #4711 85 §2 ADDIRI 2 RESTORE BASE POINTER

o8 6473 FB &F BDRR:R3 LOCI IF NOT READY RETURN T0 LOC1
41 *

62 BA75 BATS B M NEXT LODI:RZ 4 BIT COUNT

83 8477 #4771 97 FD LPZ LODI4R3 -3 INDEX FOR BYTE COUNT

b4 §479 BA79 BF 65 85 LP1 LODA,R@ BCDD-256+3,R3 BCD DIGIT INTO RS

85 B47C k) RRR:R# CARRY (PREVIOUS LS BIT) -) NSB
66 847D CF 65 85 STRA'RA BCDD-256+31R3 AND LS BIT -) CARRY.
67 484 DB 77 BIRRIR3 LP1 NEXT BCDD BYTE

48 #482 75 8t cPSL €

69 #484 FATM BDRR/RZ LP2 NEXT SHIFT OF BCD REC. BIT
78 #4846 F9 88 BORR:R1 $+2 UPDATE BASE POINTER WITHOUT
71 #488 F9 St BDRR:R1 LOOP AFFECTING C FLAG IN PSL AND
7] GO TO LOOP IF NOT READY
73 #48A F4 88 THI:RE SIGN

74 48C 98 8D BCFR+ON EXIT IF SIGN POS. THEN READY.
75 BABE §ASE 77 81 COMP PPSL € CLEAR BORROW

76 8494 8 82 LODIsRZ 2 NUMBER OF DIGITS

77 8492 492 24 LP3 EORZ RE THO'S COMPLEMENT BY

78 849 AE 46 86 SUBA:R® BINN:RZ:- SUBTRACTION FROM ZERO

79 49 CE 66 68 STRA'RG BINN:RZ

88 8499 54 77 BRNR+R2 LP3

81]

82 4498 6498 A9 EXIT HALT END OF CONVERSION

83 END

FIGURE 3-2 Program Listing for Signed BCD-to-Binary Conversion

SIGNETICS CONVERSION ROUTINES = AS54

4. SIGNED BCD-TO-BINARY CONVERSION 2

FUNCTION: Enter BCDC Routine
Converts a five-digit signed BCD number to a sixteen-bit
signed binary number. 541 BCDD-2
o) Initialize PSL: Beop. (csct;) -Bopor HB';;‘.BE:CIIM
A multlpllcatlon method is used. ® QOperations with carry
PARAMETERS: 0—=BINN, BINN+1
5—A3 (BCD digit count)
Input: BCDD, BCDD+1 contain the BCD number. 1
BCDD contains the sign plus the most-significant r Save sign of BCD number l
BCD digit. _—_.l
The range of BCD numbers is: -32768<BCD I - J
ear carry
Number<+32767 7
Output: BINN, BINN+1 contain the signed binary pr————
(Binary number)
number.
BINN is the most-significant byte. !
|: Rotate (R1, R2) Left twice |
Refer to figures 4.1 and 4.2 for flowchart and program T > Multiplication: binary number x 10
“Stlng' I(m, R2)+(BINN, BINN+1)—=R1, RZI
HARDWARE AFFECTED I Rotate (R1, R2) Left once I
J
!
RO R1 R2 R3 R1’ R2' | R3 —
REGISTERS R R2) o Bitan, B
X X X X T
Shif register i
T EE e e
!
(R3) -1—=R3
(Digit count)
CcC IDC| RS WC | OVF [COM| C

PSL
X X X X X
RAM REQUIRED (BYTES): 6 N
__________________ ign N
nega?tlve >Q——
ROM REQUIRED (BYTES): 8
. I Two's complement binary number I

EXECUTION TIME: Variable

MAXIMUM SUBROUTINE CxrD)

NESTING LEVELS: 0

ASSEMBLER/COMPILER USED: __PIPHASM _________ FIGURE 4-1: Flowchart for signed BCD-to-Binary Conversion

(Multiplication Method).

SIGNETICS CONVERSION ROUTINES

= ASbH4

1 + PD748653

2 BRI I I R 4

3 + BCD TO BINARY CONVERSION +

4 BRI R A

b) [}

4 # THIS ROUTINE CONVERTS A SIGNED BCD NUMBER

7 + (24 BITS: SICN + 5 BCD DIGITS) INTO A SIGNED

8 + BINARY NUMBER (16 BITS).

9 # -32768 < BCD NUMBER { +32767

19 + BCD NUMBER 1S LOST AFTER CONVERSION

i1 +

12 * PRINCIPLE:

13 # BIN=(((LLU(AIM) 4B) #18) +0) #16) +D) #18) +E
14 + ABCDE= BCD NUMBER

15 +

16 # NULTIPLICATION BY 18 1S DONE BY:

17 # LOAD RZ)Rt WITH BIN. NUMBER» SHIFT LEFT TWICE,
18 + ADD BIN. NUMBER TO RZ:R1: SHIFT LEFT ONCE»

19 + STORE RZ:R1 IN BINN:BINN+1 AS RESULT

2] #

21 + DEFINITION OF SYMBOLS:

22 (1) Ré EW [] PROCESSOR-RECISTERS

23 (1] Rl EQU 1

24 (113 RZ EQ 2

25 #9063 R3 EQU 3

26 (]]] W EQ H'88’ PSL: 1=WITH: B=NITHOUT CARRY
27 #981 C EW LYY CARRY : BORROW

28 #9862 N EW 2 COND: NEGATIVE

29 45 NN EQU 5 INDEX FOR NUMBER OF BCD DICITS
3]

3 ORG H' o8’

k14]

33 (3] BINN RES 2 BINARY NUMBER

3 [1114 BCDD RES 3 BCD NUMBER AND SIGN

35 8685 SICN RES 1 SAVE SIGN DIGIT

3]

38]

39 ORG N1 458’ START OF PROGRAM

o)

4 N9 M 7T e BCDC PPSL NC ARITH. :ROTATE WITH CARRY
2 M2 28 EORZ R# CLEAR Re

43 M5 ol ') STRARE BINN CLEAR BINARY NUMBERS
9458 CC 86 61 STRAIRG BINN+L

45 459 #7 65 LODI+R3 NUM BCD INDEX REGISTER

4 +

47 #45B #C 96 82 LODA+RS BCDD SAVE SIGN OF BCD NUMBER IN
48 #4SE CC 86 85 STRA:RE SICN MEWORY LOC. SICN

4 +

58 + MULTIPLY BINARY NUMBER BY 18
St 8461 8461 75 81 LooP CPSL C CLEAR CARRY

52 9463 D 86 89 LODA:R1 BINN LOAD BIN. NUMBER IN R1:R2
53 #hb4 #E 86 61 LODA:RZ BINN+1

54 B4L9 D2 RRL:R2 ROTATE REGISTERS R1:R2 LEFT 2
55 B4 1 RRL+R1

56 B4R D2 RRL1R2

57 B4 D RRL1R1

58 #44D 8E #6 61 ADDAIRZ BINN+1 ADD BIN. NUMBER T0 RI:R2
59 6479 8D 86 88 ADDAR1 BINN

of 8473 D2 RRLR2 SHIFT R1+R2 LEFT ONCE

o1 B474)} RRL:R1

62 L]

83 4

o4 MATS #C 86 82 LODA:R® BCDD LOAD MS BCD DIGIT IN R#
85 8473 H o ANDI+R H'8F’ CLEAR MS 4 BITS

b6 B47A 82 ADDZ R ADD BCD TO BINARY NUMBER
67 #ATB 85 o8 ADDI+R1 8 ADD CARRY TO MS BYTE

68 8470 CD #6 88 STRA'RT BINN STORE RESULT IN BINN:BINN+1
69 f488 CC 86 #1 STRAIRG BINN+1

" + ROTATE BCD NUMBER 4 TIMES LEFT
n 3 TO POINT TO NEXT BCD DIGIT
72 8483 #5 84 LODI/R1 4 BIT COUNT

73 485 9485 @4 83 LP2 LODIWRZ 3 INDEX FOR BYTE COUNT

T4 G487 B487 BE 4 92 LP1 LODA'R@ BCDD:R2,-

75 8484 bé RRL RO SHIFT BCD BYTE LEFT

76 8488 CE 66 82 STRA'RG BCDDRZ

77 BA8E 54 77 BRNR:R2 LP1 NEXT BYTE OF BCD REGISTER
78 849 F9 73 BORR:R1 LP2 NEXT BIT SHIFT

79 #492 FB 4D BDRR+R3 LOOP T0 LOOP IF MULTIPLY NOT READY
89 +

81 8494 o 86 85 LODA+R® SIGN

82 8497 9 6D BCFRIN EXIT IF SIGN POS. THEN READY
83 9499 7n# PPSL C CLEAR CARRY

84 BASE 85 92 LODIsR2 2 INDEX LOADING

85 449D 49D 28 LP3 EORZ R# THO'S COMPLEMENT BY

66 BA9E AE 66 89 SUBA:R# BINNIRZ ~ SUBTRACTING FROM “FP

87 #4AL cC 86 08 STRAIRA BINN

85 BAR4 SA 77 BRNR1RZ LP3

89 3

90 B4A4 BAAL A9 EXIT HALT END OF CONVERSION

N END

FIGURE 4-2 Program Listing for Signed BCD-to-Binary Conversion

SIGNETICS CONVERSION ROUTINES = AS54

b. SIGNED BCD-TO-ASCII CONVERSION
FUNCTION:
Converts n BCD digits plus sign to n + 1 ASCII characters Enter BASC Routine
(sign included). V
PARAMETERS: — BCD Gigit + H 30 —=ASCH
Im:Ialolzi:)aii':ns with carry {Conversion}
Input: BCDD, BCDD+1, ------ BCDD+ (numb - 1) o Cloar carry
BCDD contaihs the sign plus the most-significant |
digit (2 BCD digits/byte). [e of s digis—>rs |
Numb, is the number of BCD bytes. ——Loopl
Output: ASCI,ASCI+1, ------ ,ASCI + (num - 1) contains I LS BCD-Byte—>R0 I
the signed result. |
ASCI contains the sign. I Clear MS 4 bits of RO]
ASCI+1 contains the most-significant byte. |
Refer to figures 5.1 and 5.2 for flowchart and program l (RO} + H 30'—=R0 l
listing. |
(RO)— ASCI indexed (R3)
HARDWARE AFFECTED SHFT |
Shift BCD register right 4 bits
to point to next digit.
RO R1 R2 R3 R1’ R2 R3
REGISTERS l
X X X X (R3) -1—R3
(index counter)
F 1 SP
PSU @
No
CcC IDC| RS WC | OVF|{COM]| C Yes
PSL
X x X x X l Sign digit—R0 I
RAM REQUIRED (BYTEs): __ N Numb, N Num+1
Negative
ROM REQUIRED (BYTES): 5% e | | A —wasCl |
EXECUTION TIME: _______Variable =
MAXIMUM SUBROUTINE
NESTING LEVELS: o
ASSEMBLER/COMPILER USED: _PIPHASM
FIGURE 5-1 Flowchart for BCD-to-ASCIl Conversion (signed)

10

SIGNETICS CONVERSION ROUTINES = AS5H4

O QO O e LD e

42 8564
43 6562

4 85684
47 8589
48 8568
49 @560

51 8516
52 8512
53 8514
54 8517
55 9518
56 #51B
57 851D
58 @51F
59 @521

61 8523
62 8526
63 #9528
o4 #524
63 852D
bb 852F
67 #531

69 8534

8888
#o81
#a62
#9883
6888
#as1
#63
#888

8883
#9885

{211
BAES

#5068

#3686

#5149
8512
#514

#523

#528

#52F

#9534

77 88
n#
#7 85

i 84 E2
4 oF
84 38
CF 64 E3

85 64

#4 FD

BE 63 E3
b

CE 63 E3
DA 77

75 81
e

FB 63

o 84 E2
18 97
84 2D
CC 84 E3
1B &5
#4 2B
CC 84 E3

Ll)

4

+ PD768854
L R d e R e
+ BCD 7O ASCII CONVERSION +

BRI R R R0 44

]

THIS ROUTINE CONVERTS A SIGNED BCD NUMBER

+ INTO ASCIT CHARACTERS (SIGN INCLUDED).

BCD FORMAT: SICN + BCD DIGITS (TWO DIGITS:BYTES)
+ THE NUMBER OF BCD DIGITS -) R3 = NUM

THE NUMBER OF BCD BYTES -)> RZ = NUMB

BCD NUMBER IS IN BCDD:BCDD+1:---1BCDD+(N-1)

+ ASCIT CHARACTERS ARE IN ASCII ASCII+1r---1ASCIT+NUM
] (SIGN) (BCD DIGITS)

]

DEFINITIONS OF SYMBOLS:

¥

Ré EQU ¢
Rt EQU 1
Rz EQU 2
R3 EQU 3
W EQU '@’ PSL: 1=WITH) B=NITHOUT CARRY
[H'81! CARRY : BORROM

UN EQU 3 COND: UNCONDITIONAL

7 EW # ZERD

]

+ IN THIS EXAMPLE THE CONVERSION OF 5 BCD DIGITS
+ 15 PERFORMED.

]

NUMB EQU 3 NUMBER OF BCD BYTES
NUM EQU 5 NUMBER OF BCD DIGITS
#
]
ORG H'4Ep’
]
BCDD RES NUMB RESERVE FOR BCD NUMBER

ASCI RES NUM+1 RESERVE FOR SIGN»ASCII DIGITS

+

ORG H'588’ PROGRAM START HERE

#

BASC PPSL NC ARITHMETIC:ROTATE WITH CARRY
cPSL € CLEAR CARRY
LODI+R3 NUM INDEX REGISTER

]
LOOP LODA:R@ BCDD+NUMB-1 LOAD LS BCD DIGIT IN RS
ANDIIRS H'6F° CLEAR MS & BITS
ADBIRG H'3§’ ASCII CHARACTER
STRA:RE ASCI:R3 STORE ASCII CHARACTER
]
SHFT LODI:R1 4 BIT COUNT
LPZ LOBI:RZ -NUMB INDEX FOR BYTE SHIFT
LP1 LODA:R# BCDD-256+NUMB:RZ
RRR:RE CARRY (PREVIOUS LS BIT) -) MSB
STRA:R@ BCDD-256+NUNB,RZ AND LS BIT -)CARRY
BIRR:RZ LP1
St ¢ CLEAR CARRY
BDRR:R1 LP2
BORR:R3 LOOP IF NOT READY GO TO LOOP
]
SIGN LODA:R® BCDD+NUMB-1 SICN -) RS
BCTR:Z POS
NEG LODI:RG &'-'
STRA:RG ASCI
BCTR:UN EXIT
POS LOBI,RE A'+!
STRA:RE ASCI
#
EXIT HALT END OF CONVERSION
END

FIGURE 5-2 Program Listing for BCD-to-ASCII Conversion (Signed)

11

SIGNETICS CONVERSION ROUTINES ® AS54
6. ASCII-TO-BCD CONVERSION
FUNCTION:
Converts n ASCI | digits to n BCD digits.
ASCI | BCD Enter ASBC Routine
START
PARAMETERS:
Input: ADIG, ADIG+1, -, ADIG+(n - 1) contain mma"z‘:‘g‘:z
ASCII digitS. : g;:::a:;or:\; without carry
The most-significant digit is in ADIG T o
(byte/digit). BCD —>R0
Count
Output: BCDD, BCDD+1, -, BCDD + (n-1) contains —~R2 }
BCD digits. N Sove RO
The most-significant digit is in BCDD 23&'!3 B°°‘£‘“2’
(2 digits/byte). _>IR Add + 1
Refer to figures 6.1 and 6.2 for flowchart and program La‘jf”sc., &Eﬁomz)
listin (R3) digit
g. —=R0
; Ves
HARDWARE AFFECTED P '
RO No
RO R1 R2 R3 R1" | R2” | R3 [
REG'STERS Save
X X x X RO—=R1
|
F 1} SP Save RO
PSU in—>
BCDD (R2)
CcC IDC| RS WC | OVF|COM| C
PSL
X X X X X

nADIG + nBCDD

RAM REQUIRED (BYTES):

ROM REQUIRED (BYTES: 37
EXECUTION TIME: _______Variable
MAXIMUM SUBROUTINE

NESTING LEVELS: c.
ASSEMBLER/COMPILER USED: PIPHASM

Move ASCII
(R3) digit

—=R0

i

Shift RO
left 4

bits

12

FIGURE 6-1 Flowchart for ASCII-to-BCD Conversion

SIGNETICS CONVERSION ROUTINES = AS54

| + PD768855

rd Dy AL toTrYRRTIRNTERTS)
3 # ASCIT TO BCD CONVERSION +
4 D N R P e F e e e v R e 2 s
3 3

b # THIS ROUTINE CONVERTS A STRING OF ASCIHI

7 # DIGITS TO A STRING OF BCD DIGITS.

8 |

9 # ADIG IS NS DIGIT ASCII

18 # BCDD IS MS DIGIT BCD

11]

1z # DEFINITIONS OF SYWBOLS:

13 9808 Ré EQU 8 PROCESSOR-REGISTERS
14 8061 Rt EQU 1

195 8682 Rz EQU 2

16 8863 R3 EQU 3

17 #6468 W EQU H'88’ PSL: 1-NITH» 8-NITHOUT
18 #0861 ¢ EW W1’ CARRY: BORRON

19 8663 UN EQY 3 BR.COND: ALWAYS

28)

21 + IN THIS EXAMPLE THE CONVERSION OF 5

22 # ASCII CHARACTERS IS PERFORMED.

23 F
24 9985 NN EQU)
25 8983 NUMi EBU 3

14 3

28 ORG H!758? RAM DEFINITIONS

29 8758 ADIG RES NUM ASCIT BYTES RESERVED
38 8605 ACNT EQU $-ADIC ASCIT DIGIT COUNT

31 8755 BCDD RES NUML BCD BYTES RESERVED

32 0683 BCNT EQU $-BCDD BCD BYTE COUNT

33 3

34 ORG H'588’ START OF SUBROUTINE
35 8568 75 89 CONV CPSL WC+C ARITH.NITHOUT:ND CARRY
36 8562 86 83 LODIRZ BCNT BCD COUNT -> RZ

37 8504 07 65 LOBI+R3 ACNT ASCIT COUNT -)R3

38 #5646 BF 67 &F LOOP LODA:RS ADIG-1R3 RE HAS ASCII DIGIT

39 8509 A4 38 SUBL/RE H'38’ MAKE 1T BCD

4¢ 8568 1 STRZ Rl Ré -R1

41 856C CE 67 54 STRA:R@ BCDD-1,RZ SAVE 1 BCD DiGIT

A2 B56F FB 83 BDRR:R3 NEXT DECREMEMT -NON ZERO BR
43 8511 1F 85 25 BCTA,UN BYE ,ONVERSION COMPLETE
44 0514 GF 47 &F NEXT LODA:RS ADIG-1:R3 NEXT ASCII DIGIT

45 8517 A 39 SUBL.RE H'3M MAKE 1T BCD

4 9519 D@ RRLIRO SHIFT LEFT 4 BITS

47 651 D8 RRL:RS

48 8515 D8 RRL RS

49 851C D@ RRL RO

58 851D 41 IORZ Rt INCLUSIVE OR LON ORDER
51 #51E CE 47 54 STRA+R® BCDD-1,R2 STORE 2 BCD DIGITS

52 #521 FA 68 BDRR:RZ $+2 DECREMENT BCD COUNT
93 9523 FB &1 BDRR:R3 LOOP DECREMENT-NON ZERO BR.
54 §525 46 BYE " HALT END OF ASCIT -) BCD
59 END

FIGURE 6-2 Program Listing for ASClI-to-BCD Conversion
13

SIGNETICS CONVERSION ROUTINES = AS54

7. HEXADECIMAL-TO-ASCI!I CONVERSION
FUNCTION:
Converts a string of hexadecimal digits to a string of ASCII
dlgltS Enter HASC Routine
START
PARAMETERS:
Input: HEX, HEX+1, -, HEX + (n = 1) — L
HEX is the most-significant digit (2 Hex. o Operations with carry
® Set carry
digit/byte). T NEXTl
Mo_ve HEX
Output: ASCI, ASCI+1, -, ASCI + (n = 1) v psail TR
ASCI is the most-significant digit. *1“3 1
Refer to figures 7.1 and 7.2 for flowchart and program HEX RO—=R1
listing.) 1
l‘— Shift
right 4
HARDWARE AFFECTED B) mlm
—=R0
RO R1 R2 R3 R1’ R2" | R3 l g'g.“"s':ﬁ'
REGISTERS X X X X RO—»R1 I
}
l Get ASCII
F " SP EquaFI“(]Rﬂ
Psu gl s :
l Sasve
CcC IDC| RS WC | OVF|({CcOM| C Get ASCII éhz::rlalcter
PSL Equal (R1) i
X | X X | X X it
‘l (R2)-1—=R2
Save ASCII
Character
RAM REQUIRED (BYTES): ___ NHEX+nASCI
ROM REQUIRED (BYTES): _ 5
EXECUTION TIME: __ _Variable
MAXIMUM SUBROUTINE
NESTING LEVELS: o0
ASSEMBLER/COMPILER USED: PIPHASM

FIGURE 7-1 Flowchart for Hexadecimal-to-ASCI| Conversion

14

SIGNETICS CONVERSION ROUTINES = AS54

O O W

13 éa68

14 881

15 8682

16 8883

17 668

18 661

19 8863

28

21

22

23 8862

24 9683

23

27

28 8688

29 8882

39 sed

31 8883

k72

33

34 8568 77 €9
35 9562 47 83
36 85684 96 62

37 8566 BE &5 FF
38 #5689 C1

39 #56A 45 #F

46 856C 4D 65 2C
41 #568F CF 66 81
42 8512 FB 83

43 8514 1F 65 2B
44 9517 OE &5 FF
45 8514 €1

46 8518 51

47 #51C 51

48 851D 51

49 #51E 51

58 851F 45 #F

51 #521 8D 465 2C
52 8524 CF &6 61
93 8527 FA 68

54 #529 FB 5B

+ PD76#856

FHHHH 4 R b b
+ HEXIDECIMAL TO ASCIT CONVERSION +
FHHHH R R R
]

THIS ROUTINE CONVERTS A STRING OF ASCII
DIGITS TO A STRING OF HEX DIGITS,

55

56 8528 48

57

58 852C 38 31 32 3
3435 36 37
38 39 41 &2
43 4445 4

59

4

#

ASCI IS MS DIGIT ASCII.
HEX IS MS DIGIT HEXIDECIMAL.

]

DEFINITION OF SYMBOLS:

Ré EBU 8
Rl EQU 1
Rz EQY 2
R3 EQU 3
W EQU H'gg’
¢ B H'é1?
UN EQU 3

4

PROCESSOR-REGISTER

ARITHMETIC CARRY
CARRY : BORROW
UNCOND. BRANCH

IN THIS EXAMPLE 3 HEXIDECIMAL
* CHARACTERS ARE CONVERTED.

NUM EQU [
NUML EQU 3
]

ORG H' 688’
HEX RES NUM

HLEN EQU $-HEX
ASCI RES N1
ALEN EQU $-ASCI
3
ORG H'588°
CONV PPSL WC+C
LODI:R3 ALEN
LODIRZ HLEN
CHEX LODA:RS HEX-1:R2
STRZ R
ANDIsR1 HYBF'
LODA:RS ANSI.RI
STRAR8 ASCI-1:R3
BDRR)R3 NEXT
BCTA:UN BYE
NEXT LODA:RE HEX-1.R2
STRZ Ri
RRR:R1
RRR:R1
RRR1R1
RRR:R1
ANDI'R1 HY8F’
LODA+RE ANSI.RI
STRA'R# ASCI-1:R3
BDRR:R2 $42
BDRR)R3 CHEX
]

BYE HALT
¥

HEX BYTE COUNT
ASCIT BYTE COUNT

RAM DEFINITIONS
RESERVES HEX BYTES
LENGTH OF HEX
RESERVES ASCII BYTES
LENGTH OF ASCII

START OF ROUTINE
ARITH.WITH: SET CARRY
R3= ASCI1 LENGTH

R2= HEX LENGTH

GET HEX DIGITS

Ré ->Ri

CLEAR WS & BITS

LOAD ASCII CORRESPONDI
SAVE IT

R3-1» R3{)> BRANCH
END OF CONVERSION

GET HEX DIGITS

Ré -> Rt

SHIFT RIGHT & BITS

CLEAR MS & BITS

LOAD ASCIT CORRESPONDI
SAVE IT

RZ - 1 CONT.

R3-1» R3{)> BRANCH

END OF CONVERSION

ANST DATA A’#1234547B9ABCDEF’

END

FIGURE 7-2 Program Listing for Hexadecimal-to-ASCII Conversion

15

SIGNETICS CONVERSION ROUTINES = AS54

8. ASCII-TO-HEXADECIMAL CONVERSION

FUNCTION:

Converts a string of ASCII digits to a string of hexadecimal
digits. The conversion is done by table look-up. Non-
numeric ASCII halts this routine. It may be changed to
report non-numeric.

PARAMETERS:

Input: ASCI, ASCI+1, -, ASCI + (n = 1)
ASCI is the most-significant digit.

HEX, HEX+1, -, HEX + (n = 1)
HEX is the most-significant digit (2 Hex.
digits/byte)

Output:

Refer to figures 8.1 and 8.2 for flowchart and program
listing.

Enter ASHC Routine

NEXTl

HARDWARE AFFECTED
RO | R1 R2 | R3 | R1" | R2 | R
REGISTERS

X X X X

F 1 SP
PSU

CC | IDC| RS | WC [OVF{COM| C
PSL

X X X X

RAM REQUIRED (BYTES): _ nASClI+nHEX
ROM REQUIRED (BYTES): 68
EXECUTION TIME: __ Variable

MAXIMUM SUBROUTINE
NESTING LEVELS: 1

START
ASCII digit (R3)
—RO
CONV
Initialization LKUP =16—R1
PSL=WC+C
Table look-up ALKU L
l RO—=R1
Compare
R3 = ASCII Length RO—>
R2 = HEX Length Table (R1)
ACON l
ASCII digit (R3) Yes
—>RO Shift left
4 bits RO
[\ l -
Clear LS Cdmpare
Table look-up R1=1
RO—»=R1 4 bits RO
Place low v
order HEX L
in RO
Store low l No
order HEX (R2)
Store 2
HEX (R2) away Halt at table end;

may be changed
to report non-
numeric

FIGURE 8-1

16

Flowchart for ASCIlI-to-Hexadecimal Conversion

SIGNETICS CONVERSION ROUTINES = AS54

1 ¥ PD748857
2 FHE IR R R R R 4
3 + ASCIT 70 HEX CONVERSION +
4 P e 22T R R e T a)
5 +
b # THIS ROUTINE CONVERTS A STRING OF ASCII
7 + DIGITS TO A STRING OF HEXIDECIMAL DIGITS
8 # ASCT IS WS DIGIT ASCEI
9 # HEX IS MS DIGIT HEXIDECIMAL
18 + CONVERSION DIONE BY TABLE LOOKUP
11 + NON NUMERIC ASCII HALT ROUTINE
12 *
13 + DEFINITION OF SYMBOLS:
14 9800 Ré EQU [} REGISTER-PROCESSOR
15 8881 Rt EQU |
16 8862 R2 EQU 2
17 8683 R3 EQU 3
18 9688 WO EQU W'eg! ARITHHETIC CARRY
19 9861 € EQ H'et’ CARRY : BORRON
20 6063 UN EQU 3 BRANCH UNCOND.
21 #e82 LT EQ 2 LESS THAN
22 o898 EQ EQU [} EQUAL
23 #
24 # N THIS EXAMPLE 3 ASCII DIGITS
25 # ARE CONVERTED TO HEXIDECIMAL
2 #
27 8663 NUM EQU 3 ASCIT BYTE COUNT
28 8882 NUNL EQY 2 HEX BYTE COUNT
29 +
3 3
k74 ORG H'688’ RAM DEFINITIONS
33 §ode ASCI RES NN RESERVED ASCII BYTES
34 9863 ALEN EQU $-ASCI LENGTH OF ASCil
35 8683 HEX RES LULH RESERVED HEX BYTES
36 9882 HLEN EQU $-HEX LENGTH OF HEX
kYl 3
38 ORG H'S68* START OF ROUTINE
39 8588 77 89 CONV PPSL NWC+C ARITH.NITH + CARRY SET
40 9582 97 83 LODI+R3 ALEN R3 = ASCIT LENGTH
41 9564 66 82 LODI'RZ HLEN R2 = HEX LENGTH
42 586 BF &5 FF ACON LODA'R® ASCI-1,R3 GET ASCII DIGIT
43 #5689 3B #8 BSTRUN LKUP LOOKUP SUBROUTINE
44 8508 61 Lz Rt Rt -> R#
45 858C CE 66 02 STRA'RB HEX-1,R2 SAVE HEX CORRESPONDING
45 856F FB 1D BDRR/R3 NEXT (R3-1)» R3 <) BRANCH
47 8511 1B 31 BCTR+UN BYE END OF CONVERSION
48 +
49 8513 85 18 LKUP LODIsRI 14 LOOP CONSTANT
58 8515 ED 45 iE ALKU COMAIRB ANSIvR1,»- COMPARE TO TABLE
51 8518 14 RETC.EQ RETURN - MATCH FOUND
52 519 E5 @1 COMIRL 1 TEST END OF TABLE
53 #51B 94 78 BCFR'LT ALKU NO- LOOK AGAIN
54 851D 49 HALT ERROR - NON NUMERIC HE
EH) ¥
56 #51E 38 31 32 33 ANST DATA A’8123456789ABCDEF’
343536 37
B3 H A
43 M 45 &
57 +
38 #52E OF 45 FF NEXT LODA:R® ASCI-1)R3 GET NEXT ASCII DIGIT
59 8531 3B & BSTR+UN LKUP LOOK UP SUBROUTINE
o8 533 91 LopZ Rt Rt -) R$
61 8534 D@ RRL:RE SHIFT LEFT 4 BITS
62 9535 RRL:RE
63 #5346 D8 " RRL:RE
o4 8537 D8 RRL:RE
45 8538 M4 F@ ANDIRO H'F§’ CLEAR LS 4 BITS
bb #53A 4E bb 62 TORA:R® HEX-1.RZ COMBINE LOW ORDER
47 953D CE 66 82 STRA'R® HEX-1:RZ SAVE 2 HEX DIGITS
68 #5468 FA 66 BDRR:RZ 442 (R2-1)» CONTIUNE
49 8542 FB 42 BDRR:R3 ACON {R3-1)+ R3 <) BRANCH
] *
71 05044 48 BYE HALT END OF CONVERSION
7 END

FIGURE 8-2 Program Listing for ASCIl-to-Hexadecimal Conversion
17

NOTES

18

NOTES

19

Signetics 2650 Microprocessor application memos currently available:

AS50
AS51
AS52
AS53
AS54
SP50
SP51

SP52
SP53
SP54

SS50
SS51
MP51
MP52
MP53

Serial Input/Output

Bit and Byte Testing Procedures

General Delay Routines

Binary Arithmetic Routines

Conversion Routines

2650 Evaluation Printed Circuit Board Level System (PC1001)
2650 Demo Systems

Support Software for use with NCSS Timesharing System
Simulator, Version 1.2

Support Software for use with the General Electric Mark Il Timesharing
System

PIPBUG

Absolute Object Format (Revision 1)

2650 Initialization

Low Cost Clock Generator Circuits

Address and Data Bus Interfacing Techniques

© N.V. Philips' Gloeilampentabrieken

This information is furnished for guidance. and with no guarantees as to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor
does the publisher assume liability for any consequence of its use: specifications and availability of goods mentioned in it are subject to change without notice: it is not to be
reproduced in any way, in whole or in part, without the written consent of the publisher

4-76

9399 509 53961

2650 DEMO

SYSTEM

SP51

SiljNELES

2650 DEMO SYSTEM SP5]

GENERAL

The Demo System (DS) is a hardware base for use with the
2650 CPU printed circuit board (PC1001). The DS provides
the user of the 2650 with a convenient “‘lab bench’’ set-up
for exercising the PC1001 CPU board. The user may
expand memory, implement |/O functions, and step through
program instructions one at a time using the DS. When the
DS iscombined with a CPU board (PC1001) and a keyboard
terminal, the user is equipped with everything he needs to
exercise any of the software or hardware features of the
2650. There are two versions of the DS, the DS1000 and
the DS2000. The two Demo Systems are the same except
that the DS2000 has a built-in power supply and therefore
does not have the power supply binding posts.

FEATURES

The DS provides several connectors to aid the user in exer-
cising the PC1001 CPU board including one for the CPU

2650 MICROPROCESSOR
APPLICATIONS MEMO

board itself, one for a memory expansion board, four for
I/0 ports, and two for communicating with the user’s
terminal. There are four sets of LED lamps that display the
information on the address bus, the data bus, and the two
non-extended 1/O ports. Two control switches (RUN/
PAUSE, and STEP) allow the user to place the 2650 in the
WAIT mode and step through program execution one
instruction at a time. A reset button is provided on the DS.
The DS1000 version has five-way binding posts for
connection to external power supplies. The DS2000 has
built-in power supplies and does not have the five-way
binding posts.

CONNECTORS:

2650 CPU Board Edge Connector (J8). The CPU board
connector is an Amphenol dual 50-pin connector (series
225) with 0.125-inch contact centers. The 2650 CPU
board (PC1001) is inserted into J8 to complete the Demo

CPU BOARD AND USER BOARD CONNECTORS

FUNCTION FUNCTION FUNCTION FUNCTION
PIN# | (J7 &J8) | PIN# (J8 ONLY)* PIN#| (J7 & J8) |PIN# (J8 ONLY)*
1 | GND A GND 26 | INTREQ d OoPC 3
2 | GND B GND 27 | PAUSE e OPC 4
3 | NC** C NC 28 | NC f OPC 5
4 | BbBUSO D OPD O 29 [NC g OPC 6
5 | DBUST E OPD 1 30 | NC h OPC 7
6 | DBUS2 F OPD 2 31 | NC i EIPC
7 | DBUS3 H OPD 3 32 | NC k IPD O
8 | DBUSA J OPD 4 33 | ABUS 11 m IPD 1
9 | DBUSE K OPD 5 34 | ABUS 13 n IPD 2
10 | DBUS6 L OPD 6 35 | ABUS 12 P IPD 3
11 | DBUS7 M OPD 7 36 | ABUS 14 r IPD 4
12* | EIPD N COPD 37 | ABUS 9 s IPD 5
13 | D/C P | TTYSERIAL IN + 38 | ABUS 10 t IPD 6
14 | DMA R | TTY SERIAL IN - 39 | ABUS 8 u IPD 7
15 | E/NE S | TTY SERIAL OUT + 40 | ABUS 7 v IPC 0
16 | INTACK T | TTY SERIAL OUT - 41 | ABUS 6 w IPC 1
17 | R/w U | RS232 GROUND 42 | ABUS 5 x IPC 2
18 | WRP vV | RS232 QUTPUT 43 | ABUS 3 y IPC 3
19 | RUN/WAIT| W | TTY TAPE READER OUT - 44 | ABUS 0 z IPC 4
20 | OPREQ X | TTY TAPE READER OUT + 45 | ABUS 1 3 IPC 5
21 | M/i0 Y | RS232 INPUT 46 | ABUS 4 b IPC 6
22 | OPACK Z coPc 47 | ABUS 2 T IPC 7
23 | cLock a OPC 0 48 | +12v d +12V
24 | OPEX b OPC 1 49 | -12v g -12V
25 | RESET c OPC 2 50 | +5V g +5V

*J7 has no connections to these pins..
**NC = No Connection

TABLE 1

SIGNETICS 2650 DEMO SYSTEM = SP51

DEMO SYSTEM LAYOUT

i)
o~ [C D n -©
@ GND wo O

97
o - -©
m 3
I8
s
6
] 1 1 I I I] 1 1 [} I }
Cc C c c c c c c c c c
8 9 10 4 7 3 6 2 1 5 n 12
OO0OO0OO0OOOO0O OO0 OO0 O0OO0O
7 6 5 4 3 2 1 0 B 12 1 10 9 8 7 6 5 4 3 2 1 o
L~ ourputpoRT?1 — S -~ ADDRESS —]
OO0OO0OO0OO0O000 O00O0O O00O0
7 6 5 4 3 2 1 RUN 7 6 5 4 3 2 1 0
- OUTPUT PORT 2 —————] l - D-BUS —
O o
Em“utins STEP PAUSE RUN RESET
L*, - MOPE— J
NOTE:
THE POWER SUPPLY BINDING POSTS ARE ONLY ON THE DS1000, NOT ON THE DS2000.
THE BINDING POSTS ARE SHOWN ON THIS DRAWING AND MARKED +5V, +12V, 12V, AND GND.
FIGURE 1

CONNECTORS (Continued)

System. The correlation between signal names and pin
numbers for J8 is given in Table 1. The location of J8 on
the DS is shown in Figure 1.

User Printed Circuit Board Edge Connector (J7). The user
‘board connector is the same type of connector as J8 (the
CPU board connector), and makes address, data and control
lines available for user-defined interface functions. As
shown in Table 1, the numbered pins of J7 and J8 have the
same signals on them (except pin 12), while the lettered

4

pins of J7 (pins A through g) are not used. The J7 con-
nector is typically used for memory expansion. The location
of J7 on the DS is shown in Figure 1.

Extended Input/Output DIP Sockets (J5 & J6). The
extended 1/O DIP sockets make the signals shown in
Table 2 available to the user of the DS system. With the
signals available on J5 and J6, any type of /O interface to
the 2650 may be implemented. The user of these sockets
must supply the cable between his system and the DS, as
well as the two 18-pin DIP plugs. The location of J5 and J6
is shown in Figure 1.

SIGNETICS 2650 DEMO SYSTEM = SP51

EXTENDED INPUT/OUTPUT DIP SOCKETS

FUNCTION
PIN # J5 J6
1 DBUS 0 ABUS 0
2 DBUS 1 ABUS 1
3 DBUS 2 ABUS 2
4 DBUS 3 ABUS 3
5 DBUS 4 ABUS 4
6 DBUS 5 ABUS 5
7 DBUS 6 ABUS 6
8 DBUS 7 ABUS 7
9 OPACK ABUS 8
10 M/10 ABUS 9
1 OPREQ ABUS 10
12 RUN/WATT ABUS 11
13 WRP ABUS 12
14 R/W ABUS 13
15 INTACK ABUS 14
16 E/NE PAUSE
17 DVA INTREQ
18 D/C CLOCK
TABLE 2

Non-Extended Input/Output DIP Sockets (J3 & J4). Each
non-extended 1/O DIP socket (J3 and J4) makes the signals
shown in Table 3 available to the user of the DS system.
These sockets may be used for data or command transfer
between the 2650 CPU and a user-defined function, but
transfers via these channels are initiated by the CPU only.
The user of these sockets must supply the cable between
his system and the DS, as well as the 18-pin DIP plugs. The
location of J3 and J4 is shown in Figure 1.

NON-EXTENDED INPUT/OUTPUT DIP SOCKETS

FUNCTION
PIN # J3 J4
1 OPCO OPD O
2 OPC 1 OPD 1
3 OPC 2 OPD 2
4 OPC 3 OPD 3
5 OPC 4 OPD 4
6 OPC 5 OPD 5
7 OPC6 OPD 6
8 OPC 7 OPD 7
9 CoPC COPD
10 EIPC EIPD
11 IPC 7 IPD 7
12 IPC6 IPD 6
13 IPC 5 IPD 5
14 IPC 4 IPD 4
15 IPC3 IPD 3
16 IPC 2 IPD 2
17 IPC 1 IPD 1
18 IPCO IPD O
TABLE 3

RS232 Interface Connector (J2). The RS232 interface
connector is a TRW 25-pin connector (part #DB25S) for
communicating with RS232-compatible input/output
devices. The pins used on this connector are shown in
Table 4 along with the corresponding signal names. The
RS232 driver and receiver are on the PC1001 circuit
board and are wired to J2 through the DS circuit board.
The location of J2 on the DS board is shown in Figure 1.

RS232 INTERFACE CONNECTOR (J2)

PIN # FUNCTION — J2

RS232 GROUND
RS232 INPUT
RS232 OUTPUT
JUMPER
JUMPER

RS232 GROUND
JUMPER

20 JUMPER

O NO oW N =

TTY INTERFACE DIP SOCKET (J1)

PIN # FUNCTION — J1

TTY SERIAL IN +

TTY SERIAL IN -

TTY TAPE READER OUT -
TTY TAPE READER OUT +
TTL SERIAL OUT -

_ -
A W OoooN -

TTL SERIAL OUT +

TABLE 4

TTY Interface DIP Socket (J1). The TTY interface socket
is a 14-pin DIP socket and is used for communicating with
a current loop serial interface. The pins used on this con-
nector are shown in Table 4 along with the corresponding
signal names. The current loop driver and receiver circuits
are on the PC1001 board and are wired to J1 through the
DS circuit board. The location of J1 on the DS board is
shown in Figure 1.

DISPLAYS:

Address Display LEDs. The address display LEDs reflect
the information on the address bus (ABUS 0-ABUS 14)
when the PC1001 board is plugged into J8. The logic
circuits on the DS board loads the information from the
address bus into D-type latches on the occurrence of every
Operation Request (OPREQ) pulse. Open collector inverters
at the output of the D-type latches drive the LED’'s in a
common anode configuration.

Data Bus Display LEDs. The data bus display LEDs
reflect the information on the data bus (DBUS 0-DBUS 7)
when the PC1001 board is plugged into J8. The informa-
tion on the data bus is stored into D-type latches on every
OPREQ pulse. The LEDs are driven directly from the
D-type latches in a common anode configuration.

SIGNETICS 2650 DEMO SYSTEM = SP51

DISPLAYS (Continued)

Non-Extended Input/Output Channel LEDs. The non-
extended /O channel LEDs are driven by open collector
inverters in a common anode configuration. The inverters
are driven by the output latches of the two non-extended
I/0 ports on the PC1001 printed circuit board. Output
Port 1 (2), bit O corresponds to DBUS 0 and Output Port 1
(2), bit 7 corresponds to DBUS 7. A logic 1"’ output from
the 2650 turns on the LEDs, and a logic ‘0" turns off the
LED.

+5V LED and RUN LED. The +5V LED will glow when a
+5 volt power supply is connected to the Demo System.
The DS1000 requires an external power supply, but the
DS2000 has the +5 volt power supply built into the base.
The RUN LED will glow when the RUN/WAIT line from
the 2650 is in the “’high’’ logic state. The location of these
LED’s is shown in Figure 1.

CONTROLS:

RESET Button. The reset button is a momentary switch
that is tied directly to the Reset input on J8 (pin 25), and
pulls that pin “low’” when the button is pushed. This button
clears the program counter in the 2650 to zero. The loca-
tion of the reset button is shown in Figure 1.

PAUSE Switch and STEP Button. The pause switch and
the step button are used together to cause the 2650
microprocessor to execute one instruction at a time. When
the pause switch is in the RUN position, the step button
does not affect the operation of the microprocessor.

When the pause switch is placed into the PAUSE position,
the PAUSE line on the 2650 is pulled “low’”. When the
execution of the current instruction is completed, the
2650 will enter the WAIT mode and the RUN/WAIT line
will go “low”. If the step button is pressed, the PAUSE
line to the 2650 will be pulled “high’’ until the RUN/
WAIT line goes ‘‘high”’, indicating that the 2650 is in the
RUN mode. As soon as the RUN/WAIT line goes “high”’,
the DS will again pull the PAUSE line “low’. The step
button will allow one instruction to be executed each
time it is pushed as long as the pause switch is in the
PAUSE position. When the pause switch is placed back
onto the RUN position, the PAUSE line will be pulled
“high”” and the 2650 will execute instructions in a con-
tinuous manner. The address and data displayed on the
DS LEDs in the WAIT mode reflect the address and the
first byte of the next instruction to be executed. The
location of the pause and step switches on the DS base is
shown in Figure 1.

LOGIC CIRCUITS

The logic circuits on the DS base are shown in Figure 2.
The logic circuits consist of address bus (ABUS) and data
bus (DBUS) latches, the pause and step logic, LED drivers,
6

and a reset switch. The address and data bus are loaded into
latches on the DS during every OPREQ. The displays for
the address and data bus will flicker while the run LED is
“lighted”, and will display the address and first byte of the
next instruction to be executed when in the step mode (run
LED off). The pause and step logic allows one instruction
to be executed at a time by pushing the step button when
the run/pause switch is in the PAUSE position. The non-
extended output ports are displayed on the DS, and the
reset button provides complete system reset by pushing
the button.

ADDRESS BUS:

The address bus latches are 74174 Hex D-type flip-flops
(IC1, IC2, IC3). Open collector inverters (IC5, I1C6, IC7)
invert the “’positive true’’ levels from the ABUS latches
and drive the address bus LEDs (L1-L15) in a common
anode configuration. A logic ONE on the address bus
“lights” the corresponding LED, and ABUS 0 corresponds
to the ADDRESS bit 0 LED. The ABUS latch is clocked
by the STRB signal which is generated by 4 inverters (IC7,
IC10). The inverters provide the logic function STRB =
OPREQ * CLOCK. The ABUS latches are reset by RESET.

DATA BUS:

The data bus latches are also 74174 Hex D-type flip-flops
(IC3, IC4). Since the DBUS leaves the PC1001 with “nega-
tive true’’ logic levels, the DBUS latches drive the LEDs
directly in a common anode configuration. A logic ONE in
the DBUS latches is a low voltage level and “lights’’ the
corresponding LED. The DBUS bit 0 LED corresponds to
DBUS 0. The DBUS latch is also clocked by the signal
STRB, and reset by RESET.

PAUSE AND STEP:

The pause and step switches are de-bounced with S/R
latches. The step switch uses two NAND gates (IC11),
while the pause switch uses a D-type latch (IC12) to accom-
plish the de-bounce function. When the pause switch is in
the RUN position, SPAUSE is a logic ZERO and the
PAUSE line is held at logic ZERO (de-activated).

When the pause switch is set to the PAUSE position,
SPAUSE is a logic ONE and PAUSE will switch to a logic
ONE. When the PAUSE line switches to a logic ONE, the
2650 will finish executing the current instruction, fetch
the first byte of the next instruction from memory, and
enter the wait state. The RUN/WAITT line goes to a logic
ZERO when the 2650 enters the wait state. If the step
switch is pushed, LSTEP clocks a logic ONE into the
CLSTEP latch (IC12) which sets PAUSE to a logic ZERO.
The 2650 then returns to the run mode, and the RUN/
WAIT line goes to a logic ONE. When the RUN/WAIT
line switches to a logic ONE, the CLSTEP latch is reset and

SIGNETICS 2650 DEMO SYSTEM = SP51

v | 2 |) | v | s | S | <)
T 40 1ms D anav ASSV iX3IN
>wu* on om vos)sz] on3
Z 330914 3 o v JETIIAN
4 Qe (O— Asi- R
WYEOYIQ Di9on oooisd || NANS S N - NOAT 30
Siva| __saunivneis P T T ©e) N e O— ane OBy -2BOS g°H 3¥y $3Q0Q ¢
[onimveo 37vos 1ov og |mwuz<um5» w7 AWOD NOFHWS Lavea Bf
SIVILS YN J0 1S (a3%) ASH (am) O| AGIH UNT SV Sy pooownl by 2
31 OIS0 WaL! T oniew _n>E S.90%L 33Y SYILAIN WY T

NOILIANNOD ON = "ON

B3LE

DS1000 LOGIC DIAGRAM

Q#3 —oi b— 9300
L oag —u ef— L ¢
2 —z =9
< —Je Y —
» —n S v RS
QoY 2E2SY € - P ¢ b 308V < [T 4
H —a =z o] s ¢
HagWar — ' —u 2— o S 2
RN — © adi ~—{s! '— o ado = 5 2 d
lnsine 2e239 — 2 oS £
Laon! 28235 [N ek .4 €
Aner®d zezed Sauin o)
oo — 8! i— o
20
2413 —ot b 940D a5
L ogi —b 8 L 240
FFlroya0v3y 3avt a1y —] L= 2 — = i— 2
prino 330v3Y 3awl AlL — o= B — € 2| s
o — S N —s < P
N —] P < — ¥ 3 I/) b p-biZiel
o™ — € o z —in 4 z b33do 2 L
— 160 II¥3S ALl — 2— —t Twaas ALl | —fu Z— 1Y Liwen /oy L 2
4 10O Iwiwac ALl — VAN T3 il o D4 — 9 't [SEnETe) 430 2 N
A ~/2 < +
i <L Sovie —f <l - €
/3 < 2
i) z
= S/ —9 i =
N — & ost— NS+ As+ —|8 osb— AS+
—2 b— AT = ATV = — 2 brt— ATI- or
—r ge— AT+ AT+ — P es— ATH -
— Lyt— 2 Seev L 28l —3 m— 2 soey
—= Py + 2 —31 w— v |
—Y Shi— S -— e Sy f— '
—& Tp— o > — e Yr— o
—n ert— € € — & cht— €
—x W= S 2 —x s
— 2 R R 4 r— 2
e BN op— IS © Vit —{a OFf— L
— bep— 8 L Qd) —w e 8
—s e— o 2 —+ et ol
—= Lip— & S — le— e
—14 9 hal i —_— 3 % »!
—13 Si— 2 € — 4 R 2
—u FE— < 2 —u vE— <l *
—fu i W Soey \ — W sg— I Soev
— 28— o © _Qd4) — 3 e— oM
—° E— N Qa3 — ¢ 18— Oy
—Y orj— N L 240 —{4 og— O
—® b2p— N m —& bof— O
—¢ 2— N — — O
i O) 5 o A g G
— e o— SZain € — P 22— [SErTRl
e Q2 133y 2 - sz 13539
—q 2p— Y350) —a bz— ¥330 0040 =
P S5o0 © 4o —P wf— REIEe - 350wt
— 7 22— 20ydo ¢00 — % 22— Advdo
—5 12p— ST/ AndNL 2E28Y — A 12— oI/ <315701%y
— ¥ ozf— S0 +Ln0 y30M3Y 3gwl ALL — % ozt— SAYIO e
— ™ bip— Liwen /oy — 1rC 3IGHIY AP ALL — M W Livm /ey L 940
—h i . lnglno 2238 — K el— ™ N
—n It— M/ Y Juocd 2€28% — n— ™M/ Y
—L A Fowin - 10S Jueas AL —{ L 9f— HOVLN Q4o
—s SI— /3 + 100 Wisas AL —1 s Sip— ELYVA
—% if— ¥ — e Al — 3 e ¥wa <40
—d g 2/9 4N A AL — 4wl 579
—n 21— N Q4o — N ab— Qain
—N — L_sosy 2 040 —{ W n— L_soeq $qa0
—1 ot— 9 2 — 1 ofl— 3
— bp— S S — b S
—c o= ¥ Ie —Jr s— ¥ £Q40
—" L= € € — " i— <
— s oF— 2 z — 3 ”’r— 2 7940
—3 of— v — 2 st— i
H_a B O scag © ©do — a »— o smq)V Quo
N S oW Sv— O ff— O~ -
— 8 N_H ane. ang — 9 zf— ane
N —y [ang ano — v i —ans ©dde
g v
L 88 Ast w3 et
S50 [Grav] RO L5530 =]
SNOISIAIL 1
— r
L | 2 ! 5] | t | =] I E] Z ! 8

FIGURE 2

SIGNETICS 2650 DEMO SYSTEM = SP51

PAUSE returns to a logic ONE. This process is repeated
once each time the step button is pushed. When the pause
switch is returned to the RUN position, the PAUSE line is
set to a logic ZERO and the 2650 will return to the run
mode. The step/pause function is implemented with IC11
(NAND gate) and IC12 (D-type latch).

OUTPUT CHANNEL DISPLAYS:

The two non-extended output channels implemented on the
PC1001 board are displayed on the DS. The output bits,
(OPD 0O - OPC 7) are received by open collector inverters
which in turn drive the LEDs. A logic ONE output to port 1
(WRTD instruction) will “light’”” the corresponding OPD
LED, while a logic ONE to port 2 (WRTC instruction) will
“light”” the corresponding OPC LED. Signal OPD 0 cor-
responds to Output Port 1 bit 0, and OPC 0 corresponds to
Output Port 2 bit 0.

RUN AND +5V DISPLAYS:

When the 2650 is in the run mode, the run LED will be
“lighted”’. When +5 volts is applied across the red and
black terminals of the DS1000, the +5V LED will be
“lighted.”” When a.c. power is applied to the DS2000
(internal power supply), the +5V LED will be “‘lighted".

RESET:

The reset switch (S5) pulls the RESET line to a logic ONE
when pushed. The RESET line is tied to the corresponding
pin on the PC1001 board (pin 25) as well as the ABUS and
DBUS latches on the DS.

DEMO SYSTEM PARTS LIST

Item # | Description ID# Mfg. and Part #
1. Base Box - -
2. Printed Circuit Board — —
3. 100-Pin Connector J7,J8 Amphenol, series 225
4. J3, J4 Cambion
18-Pin Dip Socket J6, J6 703-3787-01-04-16
5. 14-Pin Dip Socket J1 Cambion
703-4000-01-04-16
6. SPDT Push Button S4, S5 Alco, MSP105F
Switch
SPDT Toggle Switch S3 Alco, MTA106D
LED L1-L41 | H.P.
5082-4870450
9. 5-Way Binding Post H.H. Smith
10. RS232 Connector J2 TRW Cinch DB25S
11. Carbon Composition R1-R29 | Allan Bradley
Resistors — 2KQ RCO5GF202J
12. Aluminum Standoff H.H. Smith 8352
13. Tinnerman Speed Nuts Tinnerman
C8093-632

POWER SUPPLY SPECIFICATIONS
(DS1000 Only, Power Supply Included With DS2000)

5 Volt Power Supply

+12 Volt Power Supply

Line Regulation 0.1%

Load Regulation 0.1%
Ripple 10m Volts (maximum)
Response Time 30 usec

(maximum)

Output Current 4 amps

(To supply PC1001 only)

Overvoltage Protection
Current Overload Protection

Line Regulation 0.1%

Load Regulation 0.1%
Ripple 10m Volts (maximum)
Response Time 30 usec

(maximum)

Output Current 50 milliamps

(To supply PC1001 only)

Overvoltage Protection
Current Overload Protection

© N.V. Philips’' Gloeilampentabrieken

This information is furnished for guidance, and with no guarantees as to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor
does the publisher assume liability for any consequence of its use; specifications and availability of goods mentioned in it are subject to change without notice; it is not to be
reproduced in any way, in whole or in part, without the written consent of the publisher

9399 509 54061

SUPPORT SOFTWARE
FOR USE WITH THE

NCSS TIMESHARING
SYSTEMSP52

SiliNOLCS

SUPPORT SOFTWARE FOR USE SP52
WITH THE NCSS TIMESHARING SYSTEM

1. INTRODUCTION

A series of programs is described that provide the micro-
processor application’s design engineer with on-line support
for the development of programs to be run on the Signetics
2650 microprocessor. These programs include a cross-
assembler, a cross-simulator, and two utility programs that
convert the object file produced by the assembler into
either one of two tape formats — one suitable for loading
into the 2650 microprocessor and the other suitable for
burning PROMs. The programs are accessed through a com-
munications terminal connected to a National CSS Data
Center via standard telephone lines.

The first few sections describe the available programs and
provide detailed instructions for using them. All available
usage options are included as reference information. A final
section, called ‘“Operating Instructions,”” provides the user
with step-by-step procedures for generating, editing, assem-
bling, punching, and simulating Signetics 2650 programs.
These procedures explain some of the more commonly used
features of both the NCSS and the Signetics facilities and
demonstrate how to use them.

2. USAGE OVERVIEW

The user creates the source file for his assembly language
program by using the EDIT facility available on the NCSS
system, or he may have his program punched onto cards
and read into the system at.a NCSS Data Center. Once the
source file resides on the system, the user executes the
assembler, which translates symbolic source statements
into machine language instructions, and generates both an
assembled listing of the source file and an object file. If
the assembler reports any errors in the source file, the
EDIT facility may again be invoked to correct the source
file. The corrected source file is then resubmitted to the
assembler. Once the assembler reports no errors, the user
may input the object file to the simulator which then
simulates execution of the program. The simulator provides
the following capabilities:

1) Establishes initial program conditions.
2) Monitors execution sequences.
3) Modifies the program until it operates as desired.

Once the program operates correctly, the user may repeat
the entire cycle: correct his source file; reassemble; and test
the new program using the simulator. When the program
is fully tested and debugged, it may be punched onto tape.

2650 MICROPROCESSOR
APPLICATIONS MEMO

3. EXECUTING 2650 SUPPORT PROGRAMS

A. GENERAL

To execute any of the 2650 support programs, the follow-
ing command must be entered:

ATTACH P2650

This causes the P2650 “PROTECT" Exec to execute. It
prints:

P2650 Attached as XXX, (Y) RUN? >
P2650 - Version ““No.” - “Date”

Run on “DATE"”

ENTER COMMAND (e.g., HELP) >

At this point the user may enter any one of the following
commands:

HELP Print Command List

HELP ‘NAME’ Print Command in Retail

QuUIT Exit P2650 (Return to VP/CSS)
NEW Print New Features

PIPHASM Assemble 2650 Program
PIPSIM Simulate 2650 Program
PIPHTAP Punch PIPBUG Tape

PIPSTAP Punch PROM Burning Tape

No other CSS command may be executed while under
control of the P2650 “PROTECT’’ Exec; e.g., you cannot
edit your file until you exit P2650 by typing “QUIT":

ENTER COMMAND > QUIT

B. HELP - AN ON-LINE INFORMATION RESOURCE
FACILITY

To determine what commands are currently available on
P2650, type:

HELP

To obtain information on how to enter any command
except HELP or QUIT, type HELP followed by the name
of the desired command; e.g.,

HELP PIPHASM

A description of the command and its format will be
printed.

4. PROGRAM DESCRIPTIONS

A. PIPHASM - SIGNETICS 2650 PIP ASSEMBLER

SIGNETICS SUPPORT SOFTWARE FOR USE WITH THE NCSS TIMESHARING SYSTEM = SP52

PIPHASM supports the 2650 assembler languages as speci-
fied in the basic manual set (2650 BM 1000). It outputs a
hexadecimal object module in a format acceptable to the
two tape-punching programs, PIPHTAP and PIPSTAP, and
to the simulator, PIPSIM.

Following is the format of the command for executing the
assembler:

PIPHASM SOURCE (DISPLAY) (WIDTH)*

where

PIPHASM causes the assembler to execute.

SOURCE is the name of the user’s source file. This
file has a type of “SYSIN"'.

DISPLAY is an optional parameter specifying that
the listing is to be printed either on the user’s console
(CON) or on the off-line printer (PTR). If this para-
meter is missing, CON is assumed.

WIDTH is an optional parameter specifying the line
width of the user’s console in characters per line—
either 80 characters (1) or 120 characters (0). If no
parameter is specified, 120 characters per line is
assumed. This parameter may be specified only if
CON has been specified by DISPLAY.

The object file produced by the assembler will have the
same file name as the input file with “.OBJ’"’ concatenated
at the end; it will have a filetype of “DATA".

B. SIGNETICS 2650 SIMULATOR

The 2650 simulator, a program written in FORTRAN 1V,
simulates the execution of a program without using the
2650 processor. The simulator executes a 2650 program by
maintaining its own internal FORTRAN storage registers
to describe the program, the microprocessor registers, the
ROM/RAM memory configuration, and the input data to
be read dynamically from 1/O devices. The user may
request traces of the processor status, dumps of the mem-
ory contents, and program timing statistics. Multiple
simulations of the same program with different parameters
may be executed during one simulation run.

The simulator requires as input both the program object
module produced by the 2650 assembler and a file of user
commands. It produces a listing of user commands, exe-
cutes the program, and prints (“displays’’) both static and
dynamic information as requested by the user commands.
The user may direct the input of the simulator either to a
terminal or to a line printer.

PIPSIM SOURCE COMMAND (DISPLAY)
where

PIPSIM causes the simulator to execute.

*Parenthesis indicate an optional parameter with a default value.

4

SOURCE is the name of the source file originally
submitted to the assembler. The simulator concate-
nates .OBJ onto the name of the source file and uses
the designator, SOURCE.Q, to find the file containing
the object module of the program to be executed.
File names are limited to eight characters. This object
module is ordinarily produced by the assembler and
has a filetype of “DATA.”

COMMAND is the name of a file containing the user’s
commands. This file has a filetype of “DATA."”

DISPLAY is an optional parameter specifying the
destination of all printed output either to the user’s
console (CON) or to the off-line printer (PRT). If no
parameter is specified, the user’s console is assumed.

C. PAPER TAPE UTILITIES
1) PIPHTAP

PIPHTAP punches the “hex’’ object file onto tape in a
format acceptable as input to the 2650 Prototyping Card
(2650 PC 1000). See Signetics Applications Memo SS51
for the tape format specification.

The command format for PIPHTAP is:

PIPHTAP SOURCE

where

SOURCE is the name of the source file originally
submitted to the assembler.

When “EXECUTION:" is printed, turn the punch on.
2) PIPSTAP

PIPSTAP punches the “hex’’ object file onto tape in a
form suitable for burning PROMs in SMS format. PIPSTAP
uses the same command format as PIPHTAP; i.e.,

PIPSTAP SOURCE
where

SOURCE is the name of the source file originally
submitted to the assembler.

PIPSTAP responds with a request for the following infor-
mation:

® The name of your object file.

® The value (two hexadecimal digits) representing
the unburned state of your PROM.

® The byte size (four decimal digits) of the PROMs
to be burned.

® Up to eight pairs of START/END addresses (four
hexadecimal digits). Each address pair identifies an
area of code in the object module.

SIGNETICS SUPPORT SOFTWARE FOR USE WITH THE NCSS TIMESHARING SYSTEM = SP52

NOTE: All numbers entered must contain leading zeros;
e.g., when entering the size of a PROM as 256, you must
enter 0256.

A START address larger than 7FFF, e.g., 8000, terminates
the input mode. Once the input mode is terminated, the
punch must be turned on. PIPSTAP punches and prints a
record for each PROM specified.

START/END addresses are rounded down/up to the limits
of the affected PROM. Thus if:

INITIAL PROM VALUE = FF,

PROM SIZE = 0256,

START ADDR = 0040,
and

END ADDR = 0240,

PIPSTAP punches three records: 0000 — OOFF, 0100 —
01FF, and 0200 — 02FF. Each of the records is preceded
by its initial address (0000, 0100, and 0200). This initial
address is punched into the tape so that it is visible. This
enables the tape to be separated into individual strips for
each PROM. The areas 0000 - 003F and 0241 - 02FF are
filled with FFs.

Each record is punched in exactly the order that its
START/END address was entered so that multiple records
may be punched for the same PROM. When PIPSTAP
stops punching, turn the punch off.

5. OPERATING INSTRUCTIONS FOR USING
THE NCSS TIMESHARING SERVICE

A. GENERAL

1. The computer requests the user to type information by
printing a > character at the start of a line.

2. The user terminates each line typed with a carriage
return.

3. The user deletes (tells the computer to ignore) char-
acters that were erroneously typed by typing the @
character. The computer deletes one preceding char-
acter for each @ character typed; e.g., the message
LANE@@@INE corrects the word LANE to LINE. The
[character deletes all characters previously typed on
the line.

4, In all of the following examples, lines typed by the
user are underlined to distinguish them from lines
printed by the computer.

B. LOGGING IN TO CSS

1. Set the terminal to ““LINE" mode.

2. Select the half-duplex mode using the HALF/FULL
duplex switch on your terminal (not required on some
terminals).

3. Dial the NCSS-supplied telephone number.

4. When you hear a high-pitched tone (indicating that you
have established communication with the computer),
place the telephone receiver in the modem coupler.

5. Log on by typing an ‘S’ or a ‘O’ followed by a carriage
return; i.e.,

(when using a 10 cps terminal)
(when using a 30 cps terminal)

S carriage return
O carriage return

In response, the system types

CSS ONLINE — XXXX

to signal that you have reached an NCSS monitor. XXXX
is the name of the NCSS system with which you have
established a connection. The system also types the prompt
character >, indicating that it is ready to accept additional
input from your terminal. In response, you should type:

> L WEST XXXXXX

where XXXXXX is your user ID number.

The system will respond with

PASSWORD
:9:9:4:4:9:4:4.4

providing a blocked-out area in which you enter your
password. Type the password on top of the blocked-out
area and press the carriage return.

When the system responds with
A/C INFO:

press the carriage return. (You may optionally enter some
accounting information if you desire.).

Messages from the NCSS system are printed here.
CSS.211 data

time>

C. USING THE EDITOR TO CREATE A NEW SOURCE
FILE AND/OR TO EDIT AN EXISTING SOURCE
FILE

1) Creating a New Program Source File

a. On NCSS every file has a file name (FN) and a file
type (FT). A file name is the unique name to be
assigned to your program. Assign your program a file
name of 1-to-4 alphanumeric characters beginning
with an alphabetic character. The file type of your
source program is “SYSIN.”” The object file created

5

SIGNETICS SUPPORT SOFTWARE FOR USE WITH THE NCSS TIMESHARING SYSTEM = SP52

by the assembler is your unique file name plus the
.OBJ appendage. The file type of object files is
"“DATA.”

The timesharing computer stores all source and
object files on disk. The user may obtain a directory
of the files stored in his user area by typing the
letter, L, e.g.,

time > L

FILENAME FILETYPE MODE |ITEMS
PROG SYSIN P 40
PROG.OBJ DATA P 5

To create a new program source file, the user calls
the editor program with an indication of the file
name and file type to be created. The editor recog-
nizes that the file name specified is not in the direc-
tory and creates a new file.

time > E filename SYSIN
NEW FILE.
INPUT:

Type your program here. If you make mistakes, use
the @ key or finish typing your program and make
corrections as specified in step d below. Type an
additional carriage return after the last line to exit
the new file input mode. The system responds with:

EDIT:

If you wish to edit your program (i.e., correct any
typing errors or omissions), proceed to step 2b
below. If you do not wish to edit your program at
this time, type "FILE’ to exit the editor.

2) Editing a Program Source File

a.

The edit mode can be entered directly when the
editor is called by specifying a filename-filetype
already on disk; e.g., if PROG SYSIN already exists
on disk, enter:

time > E PROG SYSIN
EDIT:

Enter edit commands.

The system’s editing capabilities are based on the
pointer concept; i.e., any line in a file can be located
by an imaginary pointer. This pointer can be moved
up or down, positioned at the beginning or end of
the file, or positioned at a specific line. The position
of the pointer determines where the next edit
request takes place. The position of the pointer is
referred to as the “‘current line.”

Following is a list of some of the most frequently

used editing commands: (NOTE: Whenever “n” js
indicated in a command, it represents a decimal

number. If “n”" is left off the command, the number
1 is assumed.)

>T Moves the pointer to the first line of
the file.
>DOn Moves the pointer down n lines and

prints the new current line.

>UPn Moves the pointer up n lines and
prints the new current line.

> L/string/ Moves the pointer to the next line
which contains the character string
specified between the slash delimiters.
It then prints that line. It does not
search the current line for the string.
If the character string contains a/,
then some other character, such as the
$, may be used as the delimiter.

>Pn Print n lines starting with the current
line. Also move the pointer to the last
line printed. If n = 1 or is absent, the
current line is printed and the pointer
is not moved.

>DEn Delete n lines starting with the current
line.

>R text Replace the entire line following the
pointer with the text on the R line.
The text is separated from the R by
only 1 blank. Any additional spaces

are considered part of the text.

>C /string 1/ Replace character string 1 in the cur-

string 2/ rent line with character string 2. If
the / character appears in either of the
strings, use some other character, such
as the $, as the string delimiter.

>1 An | followed by a carriage return
INPUT: puts the editor into input mode. This
>, request is issued to insert lines after
> the current line. After the “INPUT:"”
EDIT: message is printed, the user types one

or more lines to be inserted into the
program. The last line typed should
be followed by two carriage returns to
return to EDIT mode. The pointer is
moved to point to the last line in-
serted.

d. Error Messages

Editor error messages are as follows:

? Invalid edit request.

SIGNETICS SUPPORT SOFTWARE FOR USE WITH THE NCSS TIMESHARING SYSTEM = SP52

EOF: The end of file is reached by an edit
request. The request is terminated,
and the pointer is positioned after
the last line of the file.

TRUNCATED The following line was truncated as
shown. Only 72 character lines are
permitted.

e. Exiting the Editor

To exit the editor and save your new file, type:

>FILE

To exit the editor without changing your original
file, type:

>QUIT

D. ASSEMBLING THE PROGRAM SOURCE FILE TO
CREATE A HEXADECIMAL FORMAT OBJECT
FILE FOR PROGRAM SIMULATION AND FOR
PROGRAM DEBUGGING ON THE PROTOTYPING
SYSTEM ‘

time > ATTACH P2650

P2650 ATTACHED AS 192, (T)
P2650 - Version 2.0 - 1/5/76
RUN ON ‘DATE’

P2650 COMMAND (e.g., HELP) > PIPHASM filename
P2650 ASSEMBLER . ..

RUN ... (YES OR NO)? > YES
EXECUTION:

(Your assembly listing will be printed here. Be patient—
there may be a short delay before printing starts.)

TOTAL ASSEMBLER ERRORS = X

E. LOGGING OFF NCSS

Exit P2650, log off the NCSS system, and review your
program for logical and syntactical errors.

ENTER COMMAND > QUIT

time > LOGOUT

XXXX VPU'S,XX CONNECT HRS,XX 1/0

LOGGED OFF AT time ON date

F. CHECKING OUT YOUR PROGRAM USING THE
SIMULATOR

1. Log on the system as described in step B.

2. Using the editor program, create a file containing the
simulator commands. This file is of type DATA. The file
name may be the same as the source file name but with
a . TST appendage:

time > E filename.TST DATA
NEW FILE

INPUT:

NOTE: The directions for using the editor described in
steps C.1 and C.2 apply here also.

Enter commands here.

EDIT:
>FILE

3. Request a simulator run.
time > ATTACH P2650
P2650 ATTACHED AS 192, (T)
P2650 - Version 2.0 - 1/5/76
RUN ON ‘DATE’
P2650 COMMAND; e.g., ‘HELP" > PIPSIM filename
filename.TST
P2650 SIMULATOR . ..
RUN...(YESOR NO)? > YES
EXECUTION:

The simulator listing is printed here.

G. LOGGING OFF

Exit P2650, log off the NCSS system, and review the
simulator listing to determine program correctness.

P2650 COMMAND > QUIT

time > LOGOUT

XXXX VPU’'S XX CONNECT HRS, XX 1/0

LOGGED OFF AT time ON date.

H. PUNCHING A PAPER TAPE FOR DEBUGGING ON
THE PROTOTYPE CARD SYSTEM

Check to ensure that the punch is off. After the “"EXECU-
TION:"” message is printed by the computer, turn the
punch on. Turn the punch off after it stops punching.

P2650 COMMAND > PIPHTAP filename

(NOTE: Do not use the .OBJ extension on the filename.
The punch program assumes this is the .OBJ file and auto-
matically adds this extension.)

EXECUTION:

.OBJ file will be listed here.

P2650 COMMAND > QUIT

Log off the system as in step G above.

I. PUNCHING A PAPER TAPE FOR BURNING PROMS

Check to see that the punch is off, and log into the system
using the procedures outlined in step B.

Execute PIPSTAP:

P2650 COMMAND (e.g., HELP) > PIPSTAP filename
P2650 PIPSTAP . ..
RUN...(YESORNO)?> YES

SIGNETICS SUPPORT SOFTWARE FOR USE WITH THE NCSS TIMESHARING SYSTEM = SP52

PIPSTAP responds with a request for the unburned state of
your PROM. Since PIPSTAP punches data into each loca-
tion of the PROM, if your object module does not fill the
entire PROM, PIPSTAP requires a value that can be used
for the other locations. This value must be entered as two
hexadecimal digits:

INITIAL PROM VALUE? 00

PIPSTAP then asks for the size (in bytes) of your PROM,
which must be entered in four decimal digits. The maximum
allowable size is 1024.

PROM SIZE? 0256

PIPSTAP requests both a START and an END address for
the code to be punched. Use four hexadecimal digits for
each address as shown below. Don’t forget the leading
zeros.

START ADDR? 0000
END ADDR? 000A

PIPSTAP will request up to eight pairs of START/END
addresses. Enter a number larger than 7FFF, e.g., 8000,
when you have completely described the object module:

START ADDR? 8000

When you press
Carriage Return

PIPSTAP punches 50 frames of leader followed by the
PROM record specified by your START and END addresses.
The START address of your PROM, 0000, is punched into
the tape so that it is visible.

When punching is complete, turn the punch off and log off
the system.

6. REFERENCE DOCUMENTS
For additional information, consult the following manuals:

® Signetics 2650 Microprocessor Manual (2650BM 1000)

® VP/CSS Reference Manual (Form 106-3, available
from NCSS)

® VP/CSS Edit Command (Form 108-4, available from
' NCSS)

© N.V. Philips' Gloeilampenfabrieken

This information is turnished for guidance. and with no guarantees as to its accuracy or completeness. its publication conveys no licence undefr any patent or other right, nor
does the publisher assume liability for any consequence of its use: specifications and availability of goods mentioned in it are subject to change without notice: it is not to be

reproduced in any way. in whole or in part, without the written consent of the publisher

4-76

9399 509 54161

SUPPORT SOFTWARE
FOR USE WITH GE’S
MARK Ill TIMESHARING
SYSTEM SP54

Silnotics

SUPPORT SOFTWARE FOR USE WITH GE's SP5 4
MARK 111 TIMESHARING SYSTEM

1. SUMMARY

A series of programs is described that provide the micro-
processor appliéation’s design engineer with on-line support
for the developmént of programs to be run on the Signetics
2650 microprocessor. These programs include a cross-
assembler, a cross-simulator, and two tape utility programs
that convert the object file produced by the assembler into
either a "‘hex” format, suitable for loading into system
memory by “PIPBUG,” or into a format suitable for
burning PROMs. The programs are accessed through a
communications terminal connected to General Electric’s
Mark |1l Timesharing System via standard telephone lines.

2. USAGE OVERVIEW

The user creates the source file for his assembly language
program by using the editing facility or his program may be
punched onto cards and read into the system. Once the
source file resides in the system, the user executes the
assembler, which translates symbolic source statements into
machine language instructions, and generates both an
assembled listing of the source file and an object file. If the
assembler reports any errors in the source file, the user may
again invoke the editing facility to correct the errors. The
corrected source file is then resubmitted to the assembler.
Once the assembler reports no errors, the user may input
the object file to the simulator which simulates execution
of the program.

The simulator provides the following capabilities:

1) Establishes initial program conditions.
2) Monitors execution sequences.
3) Modifies the program until it operates as desired.

Once the program operates correctly, the user may repeat
the entire cycle: correct his source file, reassemble, and test
the new program using the simulator. When the program is
fully tested and debugged, it may be punched onto tape in
a format for loading into system memory and/or for
burning PROMs.

3. PROGRAM DESCRIPTIONS

The next few sections describe the available programs and
provide detailed instructions for using them. All available
usage options are included as reference information. A final
section, called '‘Operating Instructions,” provides step-

1

2650 MICROPROCESSOR
APPLICATIONS MEMO

by-step procedures for generating, editing, assembling,
simulating, and punching Signetics 2650 programs. These
procedures explain some of the more commonly used
features of both the General Electric Timesharing System
and the Signetics facilities and demonstrate how to use
them.

A. PIPHASM — SIGNETICS 2650 PIP ASSEMBLER (HEX
TAPE FORMAT)

PIPHASM supports the 2650 assembler language as speci-
fied in the basic manual set (2650 BM 1000). It outputs a
hexadecimal object module in a format acceptable to the
two tape-punching programs, PIPHTAP and PIPSTAP, and
to the simulator, PIPSIM.

To execute the assembler, enter the command:

/PIPHASM

The assembler will start executing and will request the
following information:

® The name of the input (source) file.

® The name assigned to the assembler-produced object
file. It is suggested that some naming convention be
adopted; e.g., always name the object file with the
first four letters from the name of the source file
followed by “.0OBJ".

® The width of your terminal carriage. Enter 0" if
your terminal carriage has 120 characters; otherwise,
enter 1",

To assemble your program, the assembler creates a scratch
file on your user ID. If the assembly runs to completion,
this file will be purged. But if the assembly is aborted, the
file may remain on your user ID. You may collect up to ten
of these scratch files before the assembler will be unable to
assemble because it cannot find a scratch file name. The
scratch file names that must be purged are referred to as:
A....00,A....01,...,A....00.

B. SIGNETICS 2650 SIMULATOR

The 2650 simulator, a program written in FORTRAN 1V,
simulates the execution of a 2650 program without using
the 2650 processor. The simulator executes a 2650 program
by maintaining its own internal FORTRAN storage registers
to describe the 2650 program, the microprocessor registers,
the ROM/RAM memory configuration, and the input data
to be read dynamically from 1/O devices. The user may

SIGNETICS SUPPORT SOFTWARE FOR USE WITH THE GE TIME SHARING SYSTEM = SP54

request traces of the processor status, dumps of the con-
tents of memory, and program timing statistics. Multiple
simulations of the same program with different parameters
may be executed during one simulation run.

The simulator requires as input both the program object
module produced by the 2650 assembler and a file of user
commands. It produces a listing of the user’'s commands,
executes the program, and prints (“displays’’) both static
and dynamic information as requested by the user’s com-
mands.

The Signetics Basic Manual Set (2650 BM 1000) contains
a description of the user commands and the general opera-
tion of the simulator.

To execute the simulator, enter the command:

/PIPSIM

The simulator starts executing and requests the following
information:

® The name of the object module produced by the
assembler for your program.
® The name of the file of simulator commands.

C. PAPER TAPE UTILITIES

The two paper tape utility programs, PIPHTAP and
PIPSTAP, complete the series of programs discussed in this
memo.

1) PIPHTAP

PIPHTAP punches the “hex’’ object file onto tape in a
format acceptable as input to the 2650 Prototyping Card
(2650 PC 1001). Refer to Signetics Applications Memo
SS51 for the tape format specifications.

To execute PIPHTAP, enter the command:

/PIPHTAP

PIPHTAP responds with a request for the name of your
object (input) file; it then requests that the punch be
turned on and that the carriage return key be depressed.
PIPHTAP punches about 50 frames of leader before it
punches the object module. When the system responds
with “READY," turn the punch off.

2) PIPSTAP

PIPSTAP punches the “’hex’’ object file onto tape in a form
suitable for burning a PROM. To execute PIPSTAP, enter
the following command:

/PIPSTAP

PIPSTAP responds with a request for the following infor-
mation:

® The name of the object file.

® The value (two hexadecimal digits) representing the
unburned state of your PROM.

® The size in bytes (four decimal digits) of the PROMs
to be burned.

® Up to eight pairs of START/END addresses (four
hexadecimal digits). Each address pair identifies an
area of code in the object module.

NOTE: All numbers entered must contain leading zeros;
e.g., when entering the size of a PROM as 256, you must
enter 0256.

A START address larger than 7FFF, e.g., 8000, terminates
the input mode.

Once the input mode is terminated, PIPSTAP requests
that the punch be turned on. It then punches and prints
a record for each PROM specified.

START/END addresses are rounded down/up to the limits
of the affected PROM. Thus if:

INITIAL PROM VALUE = FF,

PROM SIZE = 0256,

START ADDR = 0040
and

END ADDR = 0240,

PIPSTAP punches three records: 0000 - OOFF, 0100 -
01FF, and 0200 - 02FF. Each of the records is preceded
by its initial address (0000, 0100, 0200) punched into the
tape so that it is visible. This enables the tape to be
separated into individual strips for each PROM. The areas
0000 - 003F and 0241 - 02FF are filled with FFs.

Each record is punched in exactly the order in which its
START/END address was entered so that multiple records
may be punched for the same PROM. When the system
types “READY," turn the punch off.

4. OPERATING INSTRUCTIONS

This section provides a synopsis of operating instructions
for using the GE Mark 1l Timesharing Service to generate,
edit, assemble, simulate, and punch Signetics 2650 pro-
grams. For more detailed information on the capabilities of
the GE Mark 11l Timesharing Service, refer to the following
manuals available from General Electric’'s Information
Services Business Division:

1) Command System — Mark 11 Foreground Reference
Manual No. 3501.01J.

2) Editing Commands — Mark 111 Foreground Reference
Manual No. 3400.01F.

When using high-speed terminals (120 cps and up) or in
the event of any difficulty, contact your local General

2

SIGNETICS SUPPORT SOFTWARE FOR USE WITH THE GE TIME SHARING SYSTEM = SP54

Electric Sales Office. A list of General Electric Sales
Offices is provided at the end of this document.

A. LOGGING IN

® Set the terminal to “LINE’" mode.

® Select the half-duplex mode, using the HALF/FULL
duplex switch (if necessary).

® \When you hear the high-pitched tone (indicating that
you have established communication with the com-
puter), place the telephone receiver in the modem
coupler.

NOTE: In the following examples data typed by the user is
underlined to distinguish it from data printed by the com-
puter.

Log in as follows
H carriage return

Depressing the carriage return key terminates all input lines.
Some General Electric personnel recommend that four Hs,
HHHH, be entered instead of one The timesharing system
determines the speed of your terminal from the speed at
which these characters are received

The computer will respond to your H carriage return entry
with

U#=

At this point enter your user ID (3 alphabetic characters
and 5 numeric characters) and press the carriage return:

U#= AAANNNNN

The system responds

PASSWORD
ZXXRXXX

providing a blocked-out area in which you may enter your
password. Type the password on top of the blocked-out
area and press the carriage return. At this point the system
may send an informative message to your terminal. Some
user |Ds are equipped with a short log-on sequence. If this
is true, the system responds with

READY
If this is not true, the system responds with
ID:
This is a request for accounting information. If you do not

wish to enter any accounting information, simply press the
carriage return:

ID: carriage return

The computer will respond with:

SYSTEM:

Specify FORTRAN IV
SYSTEM: FIV

since both the assembler and the simulator are written in
FORTRAN 1V. The system will respond with:

NEW OR OLD

This is the same as the READY message. The system is
now ready to perform any task you request.

B. ERROR RECOVERY

Prior to issuing any commands, it is essential to know how
to delete an unwanted command.

@ Character Delete: To delete the last character typed,
hold down the shift key and depress zero (0) (ASCII
decimal code 95). The ASCIlI decimal code is
included since the actual key used may differ from
terminal to terminal.

® [ine Delete. To abort a line before the carriage
return key 1s depressed, hold down the control key
and depress 'X'" (ASCII decimal code 24).

® Break: To abort a command while it 1s being exe-
cuted (e.g., stop printing a long file), depress the
BREAK or interrupt key twice.

C. CREATING AND/OR EDITING A SOURCE FILE

Both the assembler and the simulator expect you to iden-
tify a source file that you have created. The assembler
expects the 2650 program source file and the simulator
expects the user’'s command source file. To create the
source file, the name of the file must be specified:

NEW FILENAME

This command assigns the name, FILENAME, to the
temporary working file. At this point, the file is empty.
Notice that the file name, FILENAME, is eight characters
long. We recommend that the first four characters be
meaningful. Acceptable file names are 1-to-8 characters
long using only the letters A through Z, numerals O through
9, and the period (.).

At this point enter each line of the source file into the
temporary buffer:

100 *PROCESSOR SYMBOLS

110 RO EQU 0

120 R3 EQU 3

130 *PROGRAM VARIABLE STORAGE

140 ORG H'100’

150 TLEN EQU 3 TABLE LENGTH
160 TBLA RES TLEN TABLE A
170 TBLB RES TLEN TABLE B

180 *MOVE DATA IN TBLA TO TBLB. TLEN MUST
185 *BE LESS THAN 256 BYTES

———

SIGNETICS SUPPORT SOFTWARE FOR USE WITH THE GE TIME SHARING SYSTEM = SP54

190 ORG 0

200 LODI,R3 TLEN
210 LOOP LODA,RO TBA-1,R3
220 STRA,RO TBB-1,R3
226 NOP

228 NOP

230 HALT

240 END

Note that each line starts with a line number followed by a
space and then the source data itself. Lines may be entered
out of order, since the system will sort the source lines by
line number. Once the data is entered, this temporary file
must be saved in permanent storage using the following
command:

SAVE

The system responds with a READY message, and the
temporary file remains intact.

To list the contents of your temporary file, type:

LIST
The system responds by printing your file.

Should you want to change your source file, bear in mind
that the only file that can be modified (or edited) is the
temporary working file. At this point your source program
still resides in the working file; however, if your source
program resided in a permanent rather than a working file,
enter the following command:

OLD FILENAME

The OLD command reads the contents of the permanent
file, named FILENAME, into the temporary file and assigns
the name, FILENAME, to the temporary file.

The source file is now ready for editing.

To add a line, simply type the line with a new line number:

225 BDRR,R1 LOQP

To change a line, retype the line using the same line num-
. ber:

225 BDRR,R3 LOOP

To change all occurrences of the letters “TB” to “TBL"
from lines 210 through line 220, enter the following
command:

CHAVC 210/TB/TBL/220
This command changes the following two source lines:

210 LODA,RO TBLA-1,R3
220 STRA,RO TBLB-1,R3
READY

Lines 226 and 228 may be deleted with either one of the
following two commands: i

EDI DEL 226-228

or
EDI DEL 226,228

The first command deletes lines 226 through 228, while
the second command deletes lines 226 and 228.

List your temporary file and verify all changes:
LIST

The system prints your file here and then prints:
READY

Save your file in the permanent file that was created with
the SAVE command:

REPLACE
READY

The SAVE command creates a permanent file with the
same name as the one assigned to the temporary file. The
REPLACE command takes the content of the temporary
file and stores it in the already existing permanent file that
has the same file name.

NOTE: Most system commands may be shortened to the
first three letters, e.9., REPLACE = REP.

D. ASSEMBLING THE PROGRAM TO CREATE AN
OBJECT MODULE

The editing facility assumes that each line of your source
program has a line number at the beginning. Since neither
the assembler nor the simulator will accept these line num-
bers, the following command must be executed to remove
them:

EDI DES FILENAME
READY

The assembler is now ready to be executed. Enter the
command:

/PIPHASM

The assembler responds with a request for the name of your
source program:

INPUT FILENAME? FILENAME

The assembler then requests the name of your object module:

OBJECT FILENAME? FILE.OBJ

This is a file that the assembler generates. Your file must
be assigned a name. One useful technique is to use the
first four letters of the name of the source program with
.OBJ concatenated onto the end.

4

SIGNETICS SUPPORT SOFTWARE FOR USE WITH THE GE TIME SHARING SYSTEM = SP54

The computer prints:

TYPE ‘0’ FOR WIDE CARRIAGE or
TYPE ‘1" FOR NARROW CARRIAGE 1

If your terminal prints- 120 characters per line, type ‘0’
If your terminal prints less than 120 characters per line,
type ‘1'.

The assembler responds by printing your listing. When the
listing is complete, the system prints:

READY

Now that your listing is complete, you may restore the line
numbers to your file by entering the following command.
This is only necessary if you plan to edit your file.

EDI RES FILENAME

E. LOGGING OFF

Log off the GE Timesharing System and review your pro-
gram for logical and syntactical errors.

BYE
00024.11 CRU 0000.41 TCH 0009.74 KC
OFF AT 16:20PDT 10/15/75

F. USING THE SIMULATOR TO TEST AND DEBUG
YOUR PROGRAM

1. Log onto the system using the procedures outlined in
step A.

2. Create a file containing the simulator commands. As
with the object module, you could name this file by
concatenating .TST onto the first four letters of FILE-
NAME.

NEW FILE.TST

READY

100 PATCH 100,01 101,02 103,03
120 DUMP A, 100 - 105

130 FEND

SAVE

3. Request a simulator run.

First, you must remove the line numbers from the
command file:

EDI DES FILE.TST.
READY

REP

READY

Then execute the simulator by entering the following
command:

[PIPSIM

The simulator responds with a request for the following
information:

OBJECT MODULE NAME? FILE.OBJ

Enter the name of the object module generated by the
assembler.

COMMAND FILE NAME? FILE.TST

Enter the name of the simulator command file.

The simulator prints its output at this time.

Log off the General Electric Timesharing system and
review the simulator listing to determine if any program
corrections are required.

BYE

G. PUNCHING A PAPER TAPE FOR DEBUGGING ON
THE PROTOTYPE CARD SYSTEM

Check to see that the punch is off, and log onto the system
using the procedures outlined in step A.

When the system responds with
READY

enter the command:
/PIPHTAP

PIPHTAP responds with a request for the name of your
input file:

ENTER INPUT FILE NAME? FILE.OBJ

When the input file name is entered, PIPHTAP prints the
following instructional message:

TURN ON PUNCH AND HIT CARRIAGE RETURN.

When the carriage return key is depressed, PIPHT AP punches
50 frames of leader and then punches your object module.
The object module is also printed.

When punching is complete, the system responds with
READY

Turn the punch off, and log off the system.

H. PUNCHING A PAPER TAPE FOR BURNING PROMS
Check to see that the punch is off, and log onto the system
using the procedures outlined in step A.

When the system responds with

READY

enter the command:

/PIPSTAP

SIGNETICS SUPPORT SOFTWARE FOR USE WITH THE GE TIME SHARING SYSTEM = SP54

PIPSTAP responds with a request for the name of your
input file:

ENTER OBJECT FILE NAME? FILE.OBJ
PIPSTAP then requests that you enter the unburned state
of your PROM. (Since PIPSTAP punches data into each
location of the PROM, PIPSTAP requires a value that can
be used for the other locations):

INITIAL PROM VALUE? 00

This value must be entered as two hexadecimal digits.

PIPSTAP then asks for the size of your PROM (in bytes)
which must be entered in four decimal digits. The maximum
allowable size is 1024.

PROM SIZE? 0256

PIPSTAP requests both a START and an END address for
the code you want punched. Use four hexadecimal digits
for each address as shown below. Don’t forget the leading

PIPSTAP will request up to eight pairs of START/END
addresses. Enter a number larger than 7FFF, e.g., 8000,
when you have completely described the object module:

START ADDR? 8000
PIPSTAP prints the following message:

TURN ON PUNCH AND HIT CARRIAGE RETURN

When you press
Carriage Return

PIPSTAP punches 50 frames of leader followed by the
PROM record specified by your START and END addresses.
The START address of your PROM, 0000, is punched into
the tape so that it visible. Part of the object module will
be printed.

When punching is complete, the system responds with:

Zeros.

START ADDR? 0000
END ADDR? 000A

READY

Turn the punch off, and log off the system.

5. GENERAL ELECTRIC SALES OFFICES

CHICAGO
233 South Wacker Drive
Chicago, lllinois 60666
(312) 781-7840

DETROIT
22150 Greenfield Road
Oak Park, Michigan 48237
(313) 968-8100

MINNEAPOLIS
1500 Lilac Drive, South
Minneapolis, Minnesota 55416
(612) 546-0990

MILWAUKEE
615 East Michigan Street
Milwaukee, Wisconsin 53202
(414) 271-7900

CINCINNATI
580 Walnut Street
Cincinnati, Ohio 45202
(513) 559-3660

LOUISVILLE
Citizens Plaza
Louisville, Kentucky 40202
(502) 452-4211

INDIANAPOLIS
Castleview Building
8000 Knue Road
Indianapolis, Indiana 46250
(317) 842-0100

FT. WAYNE
Lakeside |1 Building
2250 Lake Avenue
Ft. Wayne, Indiana 46805
(219) 423-1406

CLEVELAND
1000 Lakeside Avenue, N.E.
Cleveland, Ohio 44114
(216) 523-6251

COLUMBUS
Harrington Building
90 E. Wilson Bridge Road
Worthington, Ohio 43085
(614) 438-2170

PITTSBURGH
Two Gateway Center
Pittsburgh, Pennsylvania 15222
(412) 566-4330

NEW YORK FINANCIAL
Mc-Graw Hill Building
1221 Avenue of the Americas
New York, New York 10020
(212) 997-0317

NEW YORK INDUSTRIAL
Mc-Graw Hill Building
1221 Avenue of the Americas
New York, New York 10020
(212) 997-0351

LONG ISLAND
1 Huntington Quadrangle
Huntington Station
L. I. New York 11746
(516) 694-7636

EAST ORANGE TELEPHONE BRANCH
33 Evergreen Place
East Orange, New Jersey 07018
(201) 672-0700

PHILADELPHIA
1700 Market Street
Philadelphia, Pennsylvania 19103
(215) 864-7474

HARRISBURG
3800 Market Street
Camp Hill, Pennsylvania 17011
(717) 761-1481

SCHENECTADY
650 Granklin Street, 3rd Floor
Schenectady, New York 12305
(518) 372-6436

PITTSFIELD
395 Main Street
Dalton, Massachusetts
(413) 494-4308

BOSTON
98 Galen Street
Watertown, Massachusetts 02172
(617) 926-2911

BUFFALO
3980 Sheridan Drive
Buffalo, New York 14226
(716) 839-5222

SYRACUSE
202 Twin Oaks Drive
Syracuse, New York 13206
(315) 456-1995

ROCHESTER
One Marine Midland Plaza
Rochester, New York 14604
(716) 232-6523

STAMFORD
2777 Summer Street
Stamford, Connecticut 05905
(203) 359-2985

HARTFORD
111 Founders Plaza
East Hartford, Ct. 06108
(203) 289-7941

LOS ANGELES NORTH
3550 Wilshire Blvd.
Los Angeles, California 90010
(213) 388-9626

SAN FRANCISCO TE‘LCO BRANCH
One Embarcadero Center
San Francisco, California 94111
(415) 781-1155 /

SEATTLE j
1218 Bank of California Center
Seattle, Washington 98164
(206) 575-2990

PORTLAND
2154 N. E. Broadway
Portland, Oregon 97232
(503) 288-6916

SAN FRANCISCO
One Embarcadero Center
San Francisco, California 94111
(415) 989-1100.
\

PALO ALTO BRANCH
1120 San Antonio Road
Palo Alto, California 94303
(415) 969-3772

LOS ANGELES SOUTH
3550 Wilshire Boulevard
Los Angeles, California 90010
(213) 385-9411

ATLANTA
2200 Century Parkway, N. E.
Atlanta, Georgia 30345
(404) 325-9889

BIRMINGHAM
300 Office Park Drive
Birmingham, Alabama 35223
(205) 879-1298

NASHVILLE
293 Plus Park Boulevard
Nashville, Tennessee 37217
(615) 259-4570

CHARLOTTE
301 S. McDowel Street

Charlotte, North Carolina 28204

(704) 374-1783

GREENSBORO
604 Green Valley Road
Greensboro, N. C. 27408
(919) 292-7230

GREENVILLE
252 South Pleasantburg Drive
Greenville, S. C. 29607
(803) 233-5335

MIAMI
8410 N.W. 53rd Terrace
Miami, Florida 33166
(305) 592-7610

TAMPA
5420 Bay Center Drive
Tampa, Florida 33609
(813) 877-8294

BETHESDA
4720 Montgomery Lane
Bethesda, Maryland 20014
(301) 654-7061

BALTIMORE
25 South Charles Street
Baltimore, Maryland 21201
(301) 539-6770

© N.V. Philips’ Gloeilampentabrieken

RICHMOND
Willow Oaks Office Building
6767 Forest Hill Avenue
Richmond, Virginia 23235
(804) 320-0192

WASHINGTON
777 - 14th Street, N.W.
Washington, D.C. 20005
(202) 628-4000

ST. LOUIS
1015 Locust Street
St. Louis, Missouri 63101
(314) 342-7780

KANSAS CITY
911 Commerce Tower
Kansas City, Missouri 64199
(816) 842-9745

DALLAS
1341 West Mockingbird Lane
917 East Tower
Dallas, Texas 75247
(214) 631-0910

SHREVEPORT
208-A Beck Building
Shreveport, Louisiana 71102
(318) 425-2476

HOUSTON
601 Jefferson
Houston, Texas 77002
(713) 224-8294

DENVER
201 University Boulevard
Denver, Colorado 80206
(303) 320-3174

PHOENIX
3225 North Central Avenue
Phoenix, Arizona 85004
(602) 264-7881

TULSA
1900 Fourth National Bank Building
Tulsa, Oklahoma 74119
(918) 582-0800

OKLAHOMA CITY
5700 North Portland
Oklahoma City, Oklahoma 73112
(405) 947-2376

This information is furnished for guidance, and with no guarantees as to its accuracy or completeness; its publication conveys no lnpence under any patent or olne(right, nor
does the publisher assume lability for any consequence of its use. specifications and availability of goods mentioned in it are subject to change without notice it is not to be
reproduced in any way. in whole or in part, without the written consent of the publisher

4-76

9399 509 54261

ABSOLUTE
OBJECT
FORMAT

SSH1

(REVISION NO. 1)

SiNDLCS

ABSOLUTE OBJECT FORMAT 335]

REVISION NO. 1

INTRODUCTION

The format for absolute code produced for the 2650 is
described in this application note.

The absolute object code is formatted into blocks. The
first character of every block is a colon. Inside of a block,
all the characters are hexadecimal, i.e., 0 to 9 or A to F,
inclusive. Only non-printing ASCII control characters may
occur within an interblock gap. These are the characters in
the first two columns (columns O and 1) of the ASCII
standard code table. A CR/LF is used within the interblock
gap to reset the TTY or terminal after each block.

Each block is independent. For example, paper tape can be
positioned prior to any block and a load started. The
loading of absolute object code will be halted by:

A BCC error on the address + count fields

A BCC error on the data field

An incorrect block length

A non-hex character within the block

The block length field contains the number of bytes of
actual data which is half the number of hex characters in
the data field. While the size of the data field can range from
2 to 510 characters, a standard size of 60 characters has
been established so that the tape may be easily generated
and read on a variety of terminals and systems. A block
length of zero indicaces an End of File (EOF) block. The
address field of an EOF block contains the start address of
the loaded program.

The Block Control Character is 8 bits formed from the
actual bytes and not from the ASCII characters. The bytes

EXAMPLE OF OBJECT FORMAT

2650 MICROPROCESSOR
APPLICATIONS MEMO

are in turn exclusive or'ed to the BCC byte, and then the
BCC byte is left rotated one bit. It appears as two hex
characters. Both the address and count fields and the data
field are followed by a BCC character pair. The BCC
prevents storing data at an invalid memory address or
storing bad data into memory.

EXAMPLE: An object tape that loads ten bytes starting
at location 500
:05000A3C0455B024FFF01F05040030
:000000

FORMAT

1. Interblock gap of any non-printing characters including
spaces

2. Start of block character;
a colon

3. Address field;
four hex characters

4. Count field;
two hex characters in range O to 1E

5. BCC for address and count fields;
two hex characters

6. Data field;
twice the value in the count field which is the number
of memory locations loaded by the current block

7. BCC for the data field;
two hex characters

:05000A 3C0455B024FFF01F05040030

2 — Start of block character (colon)

3 — Starting address for block (H'0500’)

4 — Number of bytes in block (H'0A" = 10)
5 — BCC byte for fields 3 and 4 (H'3C’)

6 — Data, two characters per byte

7 — BCC byte for field 6 (H'30)

© N.V. Philips’ Gloeilampentabrieken

This information is furnished tor guidance. and with no guarantees as to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor
does the publisher assume liability for any consequence of its use. specifications and availability of goods mentioned in it are subject to change without notice; it is not to be

reproduced in any way. in whole or in part. without the written consent of the publisher

4-76

9399 509 54361

LOW COST CLOCK GENERATOR CIRCUITS MP52

Sinotics

LOW COST CLOCK GENERATOR CIRCUITS

MP52

GENERAL

The clock circuit requirements for microprocessors range
from tightly specified, two-phase, non-overlapping types
to simple single-phase, TTL compatible types. To lower
system cost, the Signetics 2650 Microprocessor was
designed to operate with a single-phase, TTL-level clock
without any special clock driver circuitry. The clock input
specifications for the 2650 are summarized in Table I.

This Applications Memo describes several clock generator
circuits that may be used with the 2650. These circuits
use standard TTL logic elements (7400 series). They
include RC, LC, and crystal oscillator type circuits.

The stability required by the user’s application will deter-
mine the type of clock generator that should be used.
Tables showing the measured frequencies at several temper-
atures and supply voltages are presented.

RC OSCILLATOR

A circuit diagram of an RC oscillator is given in Figure 1.

2650 MICROPROCESSOR

APPLICATIONS MEMO

The first inverter is biased into its linear region by resis-
tor R. The positive feedback capacitor (C) from node (B)
to node (A) causes the circuit to oscillate. The third inverter
acts as a buffer to drive the clock input of the 2650. The
oscillation period is approximately equal to 3 RC. Measure-
ments taken on this circuit showed a 10 ns rise time and a
7 ns fall time.

Table |l shows how the frequency of the RC oscillator is
affected by variations in Vge and ambient temperature.

1.6 nF (1.5 nF parallel with 0.1 nF)
11

1T
(o}

220

R CLOCK OUTPUT
f=1MHz

DA

(Standard 7400 Inverters)

FIGURE 1. RC Clock Generator

TABLE |
2650 CLOCK INPUT SPECIFICATIONS

SYMBOL PARAMETER TEST CONDITIONS MIN. LlMITSMAX' UNIT
'L Input Load Current VN = 0 to 5.25V 10 MA
ViL Input Low Voltage -0.6 0.8
ViH Input High Voltage 2.2 Vee vV
CIN Input Capacitance VN = 0V 10 pF
tcH Clock High Phase 400 10,000 nsec
tcL Clock Low Phase 400 oo nsec
tcp Clock Period 800 o nsec
t, Clock Rise Time 20 nsec
tf Clock Fall Time 20 | nsec

Timing Reference = 1.5V
T = 0°to70°C

Vee = BV £ 5%

SIGNETICS 2650 CLOCK GENERATOR CIRCUITS » MP52

TABLE Il
RC OSCILLATOR STABILITY

Ambient Temperature (Tp)

PR

0°C 25°C 70°C (s\tlil:;“ltz;r:stant)

Vee =4.75V 1044.50 KHz 1028.95 KHz 998.50 KHz +1.51%, -2.96%
Vee = 5.0V 1043.20 KHz 1023.65 KHz 990.45 KHz +1.91%, -3.24%
Ve = 5.25V 1038.80 KHz 1013.63 KHz 979.65 KHz +2.48%, -3.35%
Stabilityy ™ * +0.12% +0.52% +0.20%
(T p = constant) -0.42% -0.98% -1.1%
*Stability with respect to T, = 25°C

**Stability,, with respect to Ve = 5.0V

A second type of RC oscillator uses a monostable multi- where:

vibrator circuit (N74123) as illustrated in Figure 2. The
pulse width of each monostable is determined by the
external resistor and capacitor:

(0] () () (122

tw1 is the pulse width of the first monostable, and
tw2 is the pulse width of the second monostable.

Measurements on frequency stability with a load of one
TTL input are presented in Table 111.

where
Rext is in K§2
Cext Rext cex(Rext
VCC Vcc
Cext is in pF, l_“ I I
and Coxt gm Cext ﬁ;ﬁ; Rext = 12K
a o | Cext = 120pF
tyy isinns. VO a '
= —_ OUTPUT
Q Q 0
In this circuit, the oscillation is caused by the triggering of CLR CLR
each monostable by the other one. The oscillation fre- "‘7‘”23"/2’? : "'7“23‘72’?
quency can be derived from the following equation:
fosc = —+—
tw1 T tw2, FIGURE 2. RC Clock Generator with Monostable Circuit N74123
TABLE I11
MONOSTABLE MULTIVIBRATOR OSCILLATOR
STABILITY
Ambient Temperature (T 5)
Stability*
0°C 25°C 70°C abiityT
(V¢e = constant)
Vee = 4.75V 1063.65 KHz 1046.72 KHz 1041.16 KHz +1.62%, -0.53%
Ve = 5.0V 1063.80 KHz 1042.83 KHz 1032.63 KHz +2.01%, -0.98%
Ve = 5.25V 1063.80 KHz 1039.95 KHz 1024.02 KHz +2.29%, -1.53%
Stabilityy ** +0.00% +0.276% +0.826%
(T = constant) -0.014% -0.373% -0.833%

*Stability with respect to Ta = 25°C
* *Stability, with respect to V¢c = 5.0V

JE—

PR—

SIGNETICS 2650 CLOCK GENERATOR CIRCUITS = MP52

The observed rise and fall times at the output of this

. circuit were 10 ns and 8 ns, respectively. The stability of

this circuit reflected a slight improvement over the stability
of the RC oscillator shown in Figure 1.

LC OSCILLATOR

Figure 3 shows an LC oscillator circuit using standard TTL
inverters.

CLOCK OUTPUT
f=1MHz

(Standard 7400 Inverters)

3nF .
I 2.7 nF parallel with 0.27 nF

FIGURE 3. LC Clock Generator

The first inverter combined with the passive components
forms a Colpitts oscillator. The resistor provides a feedback
path for the first inverter and forces it into its linear region.

The second inverter ‘’squares’’ the oscillator signal and
provides an output buffer. The oscillator frequency can be
derived from the following equation:

1
fosc = -
on \ﬂu (C1) - (C2)
(C1)+(C2)
Measurements from the circuit in Figure 3 showed a 10 ns

rise time and a 7 ns fall time. Measurements on frequency
stability are provided in Table V.

CRYSTAL OSCILLATORS

In 2650 Microprocessor applications requiring a highly
stable clock, a crystal oscillator may be required. Some
examples of crystal oscillator circuits are shown in Figures
4 and 5. The circuit shown in Figure 4 uses a 1.025 MHz
crystal while the circuit shown in Figure 5 uses a low cost
4433618 MHz crystal commonly found in European
manufactured color TV sets. The output of the oscillator
is divided by four to obtain a clock frequency of 1.1 MHz.

1.025 MHz Crystal

I[I |
ul

CLOCK OUTPUT
10 nF = 1.025 MHz

(7404 Inverters)
47 pF

I

FIGURE 4. Clock Generator Using a Non-TV Standard Crystal

4.433618 MHz Crystal

220
L f=1.108 MHz
D Q D Q —O
: L]

CLOCK
OUTPUT

(7404 Inverters)

CIA |
I

%N7474 %N7474

FIGURE 5. Low Cost Color TV Crystal Clock Generator

TABLE IV
LC OSCILLATOR STABILITY

Ambient Temperature (T p)

*Stability with respect to T, = 25°C
* ‘Stabilityv with respect to Vcc = 5.0V

0°c 25°C 70°C Stability*
(V¢c = constant)
Vee =4.75V 1027.14 KHz 1017.75 KHz 1004.46 KHz +0.92%, -1.31%
Ve = 5.0V 1026.62 KHz 1016.99 KHz 1004.11 KHz +0.95%, -1.26%
Ve = 5.25V 1025.82 KHz 1016.30 KHz 1003.73 KHz +0.94%, -1.24%
Stability ** +0.05% +0.07% +0.03%
(T A = constant) ~-0.08% -0.07% -0.04%

SIGNETICS 2650 CLOCK GENERATOR CIRCUITS = MP52

The circuit of Figure 5 can also be used with a 3.5795 MHz
United States color TV crystal to provide an output fre-
quency of 895 KHz.

The stability of the crystal oscillator circuits is mainly
determined by the stability of the crystal used. The circuits
shown in Figures 4 and 5 had a stability of 0.003% over the
0°C to 70°C temperature range and 0.002% over a variation
of power supply voltage from 4.75V to 5.25V.

SUMMARY

Table V is a summary of the stability measurements made
for the oscillator circuits described in this application note.
As the table shows, the crystal circuits exhibit great sta-
bility relative to the RC and LC oscillators, but they suffer
the added expense of the crystal. Any of the oscillator
circuits shown in this application note can be used to drive
the 2650 microprocessor clock input.

TABLE V
SUMMARY OF OSCILLATOR STABILITY
STABILITY
CIRCUIT (4.75V to 5.25V) {0°C to 70°C)
TYPE R
0°c 25°C 70°C 4.75V 5.0V 5.25V
RC +0.12% +0.52% +0.2% +1.51% +1.91% +2.48%
-0.42% -0.98% -1.1% -2.96% -3.24% -3.35%
RC MONO- | +0.00% +0.276% +0.826% +1.62% +2.01% +2.29%
STABLE -0.014% -0.373% -0.833% -0.53% -0.98% -1.53%
LC +0.05% +0.07% +0.03% +0.92% +0.95% +0.94%
-0.08% -0.07% -0.04% -1.31% -1.26% -1.24%
CRYSTAL +0.0003% -0.0001% +0.0002% +0.001% +0.0001% +0.0004%

AS50
AS51
AS52
AS53
AS54
SP50

SP51

SP53
SP54

SS50
$851
MP51
MP52

SP52.

Signetics 2650 Microprocessor application memos currently available:

Serial Input/Output

Bit and Byte Testing Procedures

General Delay Routines

Binary Arithmetic Routines

Conversion Routines

2650 Evaluation Printed Circuit Board Level System
(PC1001)

2650 Demo Systems

Support Software for use with the NCSS Timesharing
System

Simulator, Version 1.2

Support Software for use with the General Electric Mark |11
Timesharing System

PIPBUG

Absolute Object Format (Revision 1)

2650 Initialization

Low Cost Clock Generator Circuits

© N.V. Philips' Gloeilampentfabrieken

This information is furnished for guidance, and with no guarantees as to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor
does the publisher assume liability for any consequence of its use: specifications and availability of goods mentioned in it are subject to change without notice; it is not to be
reproduced in any way. in whole or in part, without the written consent of the publisher

4-76

9399 509 54461

	System Application Notes
	SP51 - 2650 Demo System
	SP52 - Support Software for use with the NCSS Timesharing System
	SP54 - Support Software for use with GE's Mark III Timesharing System
	SS51 - Absolute Object Format
	MP52 - Low Cost Clock Generator Circuits

