
S
I
G
N
E
T
I
C
S

2
6
5
0
M
I
C
R
O
P
R
O
C
E
S
S
O
R

H
A
R
D
W
A
R
E

S
P
E
C
I
F
I
C
A
T
I
O
N
S

2650

HARDWARESPECIFICATIONS MANUAL

This manual contains the complete specifications for

the Signetics 2650 processor. It describes the instruc-

tion set, interface signals, the internal organization,

and the electrical characteristics. Examples of mem-

ory and I[/O system organizations that may be used

with the processor are discussed.

I INTRODUCTION Ce ee ee eS

GENERAL FEATURES7

APPLICATIONS. Coe ee ee eke ee LB

HW INTERNAL ORGANIZATION9

INTERNAL REGISTERS. 7

PROGRAM STATUSWORD.12

MEMORY ORGANIZATION. 2 eee TT

ltl INTERFACE.0.0.0.0.020.0. 0.2.19

SIGNALS . . . 2.eeDT

SIGNAL TIMING... . 1. eee DG

Memory Read Timing 26

Memory Write Timing ee DT

Input/Output Timing eee. 28

Critical Times . . . * Coke eee ee. DQ

ELECTRICAL CHARACTERISTICS Coe eee ee ee YG

INTERFACE SIGNALS ee. 7

PINCONFIGURATION ee BY

IV FEATURES .. . Cee ee ee ee BB

INPUT/OUTPUT FACILITIES Cee ee ee ee BH

Flag and Sense 1/O~.~¢2.~¢«4CO 835

Non-Extended 1/O~¢.~22.~. ~~. 35

Extended I/O. ee8B

Memory 1/O 2..., 36

INTERRUPT MECHANISM 37

SUBROUTINE LINKAGE... =.39

CONDITION CODE USAGE. 39

START-UPPROCEDURE40

V INSTRUCTIONS |... . . ee

ADDRESSING MODES48

Register Addressing wee 48

Immediate Addressing ee 48

Relative Addressing toe ee we 4G

Absolute Addressing for Non-Branch Instructions 44

Absolute Addressing for Branch Instructions45

Indirect Addressing eee AB

Instruction Format Exceptions46

INSTRUCTION FORMATS toe ew we AT

DETAILED PROCESSOR INSTRUCTIONS toe ew ew ee 48

APPENDIX A MEMORY INTERFACE EXAMPLE... .. 124

APPENDIX B I/OINTERFACE EXAMPLE... . . 125

APPENDIX C INSTRUCTIONS, ADDITIONAL INFORMATION 126

APPENDIX D INSTRUCTION SUMMARY... 128

ALPHABETIC LISTING 128

NUMERIC LISTING «131

ORGANIZED BY FUNCTION 134

Copyright April 1975 Signetics Corporation

Signetics Corporation reserves the right to make changes in the products described in this book in order to improve design or

performance.

Signetics Corporation assumes no responsibility for the use of any circuits described herein and makes no representations that

they are free from patent infringement.

4
fi

FEATURES

GENERAL PURPOSE PROCESSOR

SINGLE CHIP

FIXED INSTRUCTION SET

PARALLEL 8-BIT BINARY OPERATIONS

40 PIN DUAL IN-LINE PACKAGE

N-CHANNEL SILICON GATE MOS TECHNOLOGY

TTL COMPATIBLE INPUTS AND OUTPUTS

SINGLE POWER SUPPLY OF +5 VOLTS

SEVEN GENERAL PURPOSE REGISTERS

RETURN ADDRESS STACK, 8 DEEP, ON CHIP

3d2K BYTE ADDRESSING RANGE

SEPARATE ADDRESS AND DATA LINES

VARIABLE LENGTH INSTRUCTIONS OF 1, 2, OR 3 BYTES

79 INSTRUCTIONS

MACHINE CYCLE TIME OF 2.4usec

AT CLOCK FREQUENCY OF 1.25 MHz

DIRECT INSTRUCTIONS TAKE 2, 3 or 4 CYCLES

SINGLE PHASE TTL LEVEL CLOCK INPUT

STATIC LOGIC

TRI-STATE OUTPUT BUSSES

REGISTER, IMMEDIATE, RELATIVE, ABSOLUTE

INDIRECT, AND INDEXED ADDRESSING MODES

VECTOR INTERRUPT FORMAT

GENERAL FEATURES

The 2650 processor is a general purpose, single chip, fixed instructionset,

parallel 8-bit binary processor. A general purpose processor can perform any

data manipulations through execution of a stored sequence of machine in-

structions. The processor has been designed to closely resemble conventional

binary computers, but executes variable length instructions of one to three

bytes in length. BCD Arithmetic is made possible through use of a special

““~DAR” machineinstruction.

The 2650 is manufactured using Signetics’ N-channel silicon gate MOS

technology. N-channel provides high carrier mobility for increased speed and

also allows the use of a single 5 volt power supply. Silicon gate provides for

better density and speed. Standard 40 pin dual in-line packages are used for

the processor.

The 2650 contains a total of seven general purpose registers, each eight

bits long. They may be used as source or destination for arithmetic opera-

tions, as index registers, and for I/O transfers.

The processor can address up to 32,768 bytes of memory in four pages of

8,192 bytes each. The processor instructions are one, two, or three bytes

long, depending on the instruction. Variable length instructions tend to con-

serve memory space since a one-or two-byte instruction may often be used

rather than a three byte instruction. Thefirst byte of each instruction always

specifies the operation to be performed and the addressing modeto be used.

Most instructions use six of the first eight bits for this purpose, with the

remaining two bits forming the register field. Some instructions use thefull

eight bits as an operation code.

The most complex direct instruction is three bytes long and takes 9.6

microseconds to execute. This figure assumes that the processoris runningat

its maximum clock rate, and has an associated memory with cycle and access

times of one microsecond or less. The fastest instruction executes in 4.8

microseconds.

The clock input to the processoris a single phase pulse train and uses only

one interface pin. It requires a normal TTL voltage swing, so no special clock

driver is required.

The Data Bus and Address signals are tri-state to provide convenience in

system design. Memory and I/O interface signals are asynchronous so that

Direct Memory Access (DMA) and multiprocessor operations are easy to

implement. _

The 2650 has a versatile set of addressing modes used for locating oper-

ands for operations. They are described in detail in the INSTRUCTIONS

section of this manual.

The interrupt mechanism is implemented as a single level, address vector-

ing type. Address vectoring means that an interrupting device can force the

processor to execute code at a device determined location in memory. The

interrupt mechanism is described in detail in the FEATURESsection of this

manual.

APPLICATIONS

The ability of the semi-conductor industry to manufacture complete gen-

eral purpose processors on single chips represents a significant technological

advance which should prove to be of great benefit to digital systems manu-

facturers. In terms of chip size and density of transistors, the processors are

simply extensions of the continually evolving MOS technology. But in terms

of function provided, a significant threshold has been crossed.

By allowing designers to convert from hardware logic to programmed

logic, the integrated processor provides several important advantages.

1. Logic functions may be implemented in memory bits instead of logic gates. The user

then has greater access to the advantages of memory circuits. Memories use patterned

circuitry and thus provide greater density and therefore greater economy.

2. Random logic implementations of complex functions are highly specialized and cannot

be used in other applications. They are not often used in large volume. Programmed

logic, on the other hand, relies on general purpose processor and memorycircuits that

are used in many applications. Thus, economies of volumeare available for both the

user and the manufacturer.

3. Because the functional specialization resides in the user’s program rather than the

hardware logic, changes, corrections and additions can be mucheasier to make and can

be accomplished in a much shorter time.

4. With the programmed logic approach it is often possible to add new features and

create new products simply by writing new programs. |

5. The design cycle of a system using programmedlogic can besignificantly shorter than ©

a similar system that attempts to use custom random logic. The debugging cycle is also

greatly compressed.

‘A general purpose processor designed to implement programmed logic has

many characteristics that allow it to do conventional computer operations as

well. Many applications will specialize in programmed logic or in data pro-

cessing, but some will take advantage of both areas. In a line printer applica-

tion, for example, a processor can act primarily as a controller handling the

housekeeping duties, control sequencing and data interfacing for the printer.

It also might buffer the data or do some code conversions, but that is not its

primary duty. On the other hand, in a text editing intelligent terminal, the

processor is mainly concerned with data manipulation since it handles code

translations, display paging, insertions, deletions, line justification, hyphena-

tion, ete.

A point-of-sale type of terminal represents an application that combines

both control and data processing activities for the processor. Coordinating

the activities of the various devices and displays that make up the terminal is

an important part of the job, as are the calculations that are essential to the

operation of the machine.

6 ‘

 O
r

 D
r
o
n
e
s
?

;

S
R
O

8

INTERNAL REGISTERS

The block diagram for the 2650 shows the major internal components and

the data paths that interconnect them. In order for the processor to execute

an instruction, it performs the following generalsteps:

1. The Instruction Address Register provides an address for memory.

2. The first byte of an instruction is fetched from memory andstored in the Instruction

Register.

3. The Instruction Register is decoded to determine the type of instruction and the

addressing mode.

4. If an operand from memory is required, the operand addressis resolved and loaded

into the Operand Address Register.

. The operandis fetched from memoryandthe operation is executed.

6. Thefirst byte of the next instruction is fetched.

o
n

The Instruction Register (IR) holds the first byte of each instruction and

directs the subsequent operations required to execute each instruction. The

IR contents are decoded and used in conjunction with the timing informa-

tion to control the activation and sequencing ofall the other elements on the

chip. The Holding Register (HR) is used in some multiple-byte instructions

to contain further instruction information and partial absolute addresses.

The Arithmetic Logic Unit (ALU) is used to perform all of the data

manipulation operations, including Load, Store, Add, Subtract, And, Inclu-

sive Or, Exclusive Or, Compare, Rotate, Increment and Decrement. It con-

tains and controls the Carry bit, the Overflow bit, the Interdigit Carry and

the Condition Code Register.

The Register Stack contains six registers that are organized into two

banks of three registers each. The Register Select bit (RS) picks one of the

two banks to be accessed by instructions. In order to accomodate theregis-

ter-to-register instructions, register zero (RO) is outside the array. Thus,

register zero is always available along with oneset of three registers.

The Address Adder (AA)is used to increment the instruction address and

to calculate relative and indexed addresses.

The Instruction Address Register (LAR) holds the address of the next

instruction byte to be accessed. The Operand Address Register (OAR) stores

operand addresses and sometimes contains intermediate results during effec-

tive address calculations.

The Return Address Stack (RAS) is an eight level, Last In, First Out

(LIFO) storage which receives the return address whenever a Branch-to-Sub-

routine instruction is executed. When a Return instruction is executed, the

RAS provides the last return address for the processor’s [AR. The stack

contains eight levels of storage so that subroutines may be nested up to eight

levels deep. The Stack Pointer (SP) is a three bit wraparound counter that

indicates the next available level in the stack. It always points to the current

address.

 REGISTER
STACK

SUBROUTINE RETURN

ADDRESS STACK

PROGRAM
STATUS
WORD

S
T
A
C
K
P
O
I
N
T
E
R

MULTIPLEXER

CONDITION CODE

INSTRUCTION ADDRESS REGISTER

BRANCH LOGIC

O
U
T
P
U
T
C
O
N
T
R
O
L

OPERAND ADDRESS REGISTER

A BUS

D
A
T
A
B
U
S
R
E
G
I
S
T
E
R

ADDRESS ADDER

INTERRUPT
REQUEST

HOLDING

INTERRUPT

LOGIC

 INTERRUPT
ACKNOWLEDGE

CLOCK

1/0
CONTROL LINES

 DECODING AND CONTROLLOGIC TIMING LOGIC

Figure I!-1 SIGNETICS 2650 BLOCK DIAGRAM

PROGRAM STATUS WORD

The Program Status Word (PSW)is a special purpose register within the

processor that contains status and control bits. It is 16 bits long and is
divided into two bytes called the Program Status Upper (PSU) and the

Program Status Lower(PSL).

The PSW bits may be tested, loaded, stored, preset or cleared using the

instructions which effect the PSW. The sense bit, however, cannot be set or

cleared becauseit is directly connected to pin #1.

PSU 7 6 5 4 3 2 1 0

Not Not
P P1 SPO

. F i Used Used SP 2 °

S Sense

F Flag

II Interrupt Inhibit

SP2 Stack Pointer Two

SP1 Stack Pointer One

SPO Stack Pointer Zero

PSL 7 6 5 4 3 2 1

CCI CCO IDC RS WC OVF COM C

CC1 Condition Code One

CCO Condition Code Zero
IDC Interdigit Carry
RS Register Bank Select

WC With/Without Carry

OVF Overflow

COM _Logical/Arithmetic Compare
C Carry/Borrow

SENSE(S)

The Sense bit in the PSU reflects the logic state of the sense input to the

processor at pin #1. The sense bit is not affected by the LPSU, PPSU,or

CPSU instructions. When the PSU is tested (TPSU) or stored into register

zero (SPSU), bit #7 reflects the state of the sense pin at the time of the

instruction execution.

FLAG (F)

The Flag bit is a simple latch that drives the Flag output (pin #40) on the

processor.

INTERRUPT INHIBIT (1)

Whenthe Interrupt Inhibit (II) bit is set, the processor will not recognize

an incoming interrupt. When interrupts are enabled (I[=0), and an interrupt

signal occurs, the inhibit bit in the PSU is then automatically set. When a

Return-and-Enable instruction is executed, the inhibit bit is automatically

cleared.

STACK POINTER (SP)

The three Stack Pointer bits are used to address locations in the Return

Address Stack (RAS). The SP designates the stack level which contains the

current return address. The three SP bits are organized as a binary counter
which is automatically incremented with execution of Branch-to-Subroutine

instructions, and decremented with execution of Return instructions.

CONDITION CODE (CC)

The Condition Code is a two bit register which is set by the processor

whenever ageneral purpose register is loaded or modified by the execution

of an instruction. Additionally, the CC is set to reflect the relative value of

two bytes whenever a compareinstruction is executed.

The following table indicates the setting of the Condition Code whenever

data is set into a general purposeregister. The data byte is interpreted as an 8

bit, two’s complement number.

Register Contents CC1 CCO

Positive 0 1

Zero

Negative 1
For compare instructions the following table summarizes the setting of

the CC. The data is compared as two 8-bit absolute numbers if bit #1, the

COM bit, of the Program Status Lower byte is set to indicate “‘logical’’

compare (COM=1). If the COM bit indicates “‘arithmetic’’ (COM=0), the
comparison instructions interpret the data bytes as two 8-bit two’s com-

plement binary numbers.

Register to Storage Register to Register

Compare Instruction Compare Instruction CCl CCO

Reg X Greater Than Storage Reg O Greater Than Reg X 0 1

Reg X Equal to Storage Reg O Equal to Reg X

Reg X Less Than Storage Reg 0 Less Than Reg X 1

The CC is never set to 11 by normal processor operations, but it may be

explicitly set to 11 through LPSL or PPSL instruction execution.

For BCD anthmetic operations it is sometimes essential to know if there

was a carry from bit #3 to bit #4 during the execution of an arithmetic

instruction.

The IDC reflects the value of the Interdigit Carry from the previous add or

subtract instruction. After any add or subtract instruction execution, the

IDC contains the carry or borrow out of bit #3.

The IDC is also set upon execution of Rotate instructions when the WC

bit in the PSW is set. The IDC will reflect the same information as bit #5 of

the operand register after the rotate is executed. See figure II-2.

REGISTER SELECT (RS)

There are two banks of general purpose registers with three registers in

each bank. Theregister select bit is used to specify which set of three general

purpose registers wil be currently used. Register zero is common and is

always available to the program. An individual instruction may address only

four registers, but the bank select feature effectively expands the available

on-chip registers to seven. When the Register Select Bit is ‘‘O’’, registers 1, 2,

& 3 in register bank #0 will be accessable, and whenthebit is ‘‘1’’, registers

1, 2, & 3 in register bank #1 will be accessable.

This bit controls the execution of the add, the subtract and the rotatein-

structions.

Whenever an add or a subtract instruction executes, the following bits are

either set or cleared: Carry/Borrow (C), Overflow (OVF), and Interdigit Carry

(IDC). These bits are set or reset without regard to the value of the WC bit.

However, when WC=1, the final value of the carry bit affects the result of an

add or a subtract instruction, i.e., the carry bit is either added (add instruc-

tion) or subtracted (subtract instruction) from the ALU.

Whenever a rotate instruction executes with WC=0, only the eight bits of

the rotated register are affected. However, when WC=1, the following bits

are also affected: Carry/Borrow (C), Overflow (OVF) and Interdigit Carry

(IDC). The carry/borrow bit is combined with the 8-bit register to make a

nine-bit rotate (see Figure II-2). The overflow bit is set whenever the sign

bit (bit 7) of the rotated register changes its value, i.e., from a zero (0) toa

one (1) or from a one (1) to a zero (0). The interdigit carry bit is set to the

new value of bit 5 of the rotated register.

The overflow bit is set during add or subtract instruction executions

whenever the two initial operands have the same sign but the result has a

different sign. Operands with different signs cannot cause overflow. Ex-

ample: A binary +124 (01111100) added to a binary +64 (01000000) pro-

duces a result of (10111100) which is interpreted in two’s complement form

as a —68. The true answer would be 188, but that answer cannot be con-

tained in the set of 8-bit, two’s complement numbers used by the processor,

so the OVFbit is set.

Rotate instructions also cause OVF to be set whenever the sign of the

rotated byte changes.

=“ |. >
—

4 3 2 1 0

7 6

ROTATE REGISTER RIGHT WITH CARRY

(NOT CHANGED)

Priel -> +> —1 |

 (NOT CHANGED)

7 6 5 4 3 2 1 0

[ECR ST ACPO ROR er er r reree AES Lifes. ar re 3 0 47ROTATE REGISTER RIGHT WITHOUT CARRY

: <—- <—_
<b

7 6 5 4 3 2 1 0

ROTATE REGISTER LEFT WITH CARRY

(NOT CHANGED)

 <— —— ~<_-

<-— - <_— ——

7 6 5 4 3 2 1 0

 (NOT CHANGED)

Figure II-2 ROTATE REGISTER LEFT WITHOUT CARRY

COMPARE (COM)

The compare control bit determines the type of comparison that is ex-

ecuted with the Compare instructions. Either logical or arithmetic com-

parisons may be made. The arithmetic compare assumes that the comparison

is between 8-bit, two’s complement numbers. The logical compare assumes

that the comparison is between 8-bit positive binary numbers. When COM is

set to 1, the comparisons will be logical, and when COM is set to 0, the

comparisons will be arithmetic. See Condition Code (CC).

The Carry bit is set by the execution of any add or subtract instruction

that results in a carry or borrow out‘of the high order bit of the ALU. The

carry bit is set to 1 by an add instruction that generates a carry, and a

subtract instruction that does not generate a borrow. Inversely, an add that

does not generate a carry causes the C bit to be cleared, and a subtract

instruction that generates a borrowalso clears the carry bit.

Even though a borrow isindicated by a zero in the Carry bit, the pro-

cessor will correctly interpret the zero during subtract with borrow opera-

tions as in the followingtable.

Low Orderbit Low Orderbit Carry bit

Minuend Subtrahend Borrow bit Low Order Bit Result

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 0

The carry bit may also be set or cleared by rotate instructions as described

earlier under “‘With/Without Carry”’.

To perform an Add with Carry or a Subtract with Borrow, the WC bit

must beset.

e
x
a
c
t

MEMORY ORGANIZATION

The 2650 has a maximum memory addressing capability of O19

—82,76710 locations. As may be seen in the INSTRUCTIONSsection of this

manual, most direct addressing instructions have thirteen bits allocated for

the direct address. Since thirteen bits can only address locations Q10
—8,19110, a paging system was implemented to accomodate the entire

address range.

The memory may be thought of as being divided into four pages of 8,192

bytes each. The addresses in each page rangeas in the followingchart:

START ADDRESS _END ADDRESS

pageQ QOO0000000000000 001111111111111 Oyq—819149

page 1 010000000000000 011111111111111. 819249—16,38319

page 2 100000000000000 101111111111111 16,384 ;9—24,575 19
page 3 110000000000000 111111111111111 24,576 19 —32,767 10

The low order 13-bits in every page range through the sameset of num-

bers. These 13-bits are the same 13-bits addressed by non-branch instructions

and are also the same 138-bits which are brought out of the 2650 on the

address lines ADRO — ADR12.

The high order two bits of the 15-bit address are knownasthepagebits.

The page bits when examined by themselves also represent, in binary, the

number of the memory page. Thus, the address 010000001101101 is known

as address location 10910 in page 1. The page bits, corresponding to

ADR13 and ADR14 are brought out of the 2650 on pins 19 & 18. These bits

may be used for memory access when more than 8,192 bytes of memory are

connected.

There are no instructions to explicitly set the page bits. They may beset

through execution of direct or indirect, branch or branch-to-subroutine in-

structions. It may be seen that these instructions (see INSTRUCTION

Section) have 15-bits allocated for address and when such an instruction is
executed, the two high order address bits are set into the page bit latchesin

the 2650 processor and will appear on ADR13 and ADR14 during memory

accesses until they are specifically changed.

For memory access from non-branch instructions, the 13-bit direct add-

ress will address the corresponding location within the current page only.

However, the non-branch memory access instruction may access any byte in

any page through indirect addressing which provides the full 15-bit address.

In the case of non-branch instructions, the page bits are only temporarily

changed to correspond to the high order two bits of the 15-bit indirect add-

ress used to fetch the argument byte. Immediately after the memory access,

ADR13 & ADR14 will revert to their previous value.

The consequences of this page address system may be summarized by the

following statements.

1.
2.

3.

o
r

The RESETsignal clears both page latches, i.e., ADR13 & ADR14 are cleared to zero.

All non-branch, direct memoryaccess instructions address memory within the current

page.

All non-branch, memory access instructions may access any byte of addressable mem-

ory through use of indirect addressing which temporarily changes the page bits for the

argument access, but which revert back to their previous state immediately following

instruction execution.

. All direct and indirect addressing branch instructions set the page bits to correspond to

the high order two bits of the 15 bit address.

. Programs may not flow across page boundaries, they must branch to set the pagebits.

. Interrupts always drive the processor to page zero.

e
y

S
G

SIGNALS

RESET

The RESET signal is used to cause the 2650 to begin processing from a

known state. RESET will normally be used to initialize the processor after

power-up orto restart a program. RESET clears the Interrupt Inhibit control

bit, clears the internal interrupt-waiting signal, and initializes the [AR to zero.

RESET is normally low during program execution, and must be driven high

to activate the RESET function. The leading and trailing edges may be

asynchronous with respect to the clock. The RESET signal must be at least

three clock periods long. If RESETalone is used to initiate processing, the

first instruction will be fetched from memory location page zero byte zero

after the RESET signal is removed. Any instruction may be programmed for

this location including a Branch to some program located elsewhere.

Processing can also be initiated by combining an interrupt with a reset. In

this case, the first instruction to be executed will be at the interrupt address.

The clock signal is a positive-going pulse train that determines the instruc-

tion execution rate. Three clock periods comprise a processor cycle. Direct

instructions are 2, 3, or 4 processor cycles long, depending on the specific

type of instruction. Indirect addressing adds two processor cycles to the

direct instruction times.

\USE

The PAUSE input provides a means for temporarily stopping the execu-

tion of a program. When PAUSEis driven low, the 2650 finishes the instruc-

tion in progress and then enters the WAIT state. When PAUSEgoeshigh,

program execution continues with the next instruction. If PAUSEis turned

on then off again before the last cycle of the current instruction begins,

program execution continues without pause. If both PAUSE and INTREQ

occur prior to the last cycle of the current instruction, the interrupt will be

recognized, and an INTACK will be generated immediately following release

of the PAUSE. The next instruction to be executed will be a ZBSRtoser-

vice the interrupt.

If an INTREQ occurs while the 2650 is in a WAIT state due to a PAUSE,

the interrupt will be acknowledged andserviced after the execution of the

next normal instruction following release of the PAUSE.

INTREO

The Interrupt Request input (normally high) is a means for external

devices to change the flow of program execution. When the processor recog-

nizes an INTREQ,i.e., INTREQ is driven low,it finishes the instruction in

progress, inserts a ZBSR instruction into the IR, turns on the Interrupt

Inhibit bit in the PSU, and then responds with INTACK and OPREQsignals.

Upon receipt of INTACK, the interrupting device may raise the INTREQ

line and present a data byte to the processor on the DBUS. The required

byte takes the same form as the second byte of a ZBSR instruction. Thus,

the interrupt initiated Branch-to-Subroutine instruction may have a relative

target address anywhere within the first or last 64 bytes of memory page 0.

If indirect addressing is specified, a branch to any location in addressable

memoryis possible.

For devices that do not need the flexibility of the multiple target address-

es, a byte of eight zeroes may be presented and will cause a direct subroutine

branch to memory location zero in page zero. The relative address presented

by the interrupting device is handled with a normal I/O read sequence using

the usual interface control signals. The addition of the INTACKsignal distin-

guishes the interrupt address operation from other operations that may take

place as part of the execution of the interrupted instruction. At the same

time that it acknowledges the INTREQ,the processor automatically sets the

bit that inhibits recognition of further interrupts. The Interrupt Inhibit bit

may be cleared anytime during the interrupt service routine, or a Re-

turn-and-Enable instruction may be used to enable interrupts upon leaving

the routine. If an INTREQ is waiting when the Interrupt Inhibit bit is

cleared, it will be recognized and processed immediately without the execu-

tion of an intervening instruction.

The Operation Acknowledge signal is a reply from external memory or

I/O devices as a response to the Operation Request signal from the processor.

OPREQ is used to initiate an external operation. The affected external de-

vice indicates to the processor that the operation is complete by turning on

the OPACKsignal. This procedure allows asynchronous functioning of exter-

nal devices.

If a Memory operation is initiated by the processor, the memory system

will provide an OPACK when the requested memory data is valid on the

Data Bus. If an I/O operation is initiated by the processor, the addressed I/0

device may respond with an OPACK as soon as the write data is accepted

from the Data Bus, or after the read operation is completed. However, in

order to avoid slowing down the processor when using memories or I/0

devices that are just fast enough to Keep the processor operating at full speed

the OPACK signal must be returned before the external operation is com-

pleted. Any OPACKthat is returned within 600 nsec. following an OPREQ

will not delay the processor. Data from a read operation can return up to

1000 nsec. after an OPREQ is sent and still be accepted by the processor

without causing delays. If all devices will always respond within these time

limits, the OPACK line may be permanently connected in the ON (low)

state. Whenever an OPACKis not available within that time, the processor

will delay instruction execution until the first clock followingreceipt of the

OPACK.All output line conditions remain unchanged during the delay and

the processor does not enter the WAIT state. OPACKis true in the low state

and false in the high state.

SENSE
The SENSE line provides an input line to the 2650 that is independent of

the normal I/O Bus structures. The SENSE signal is connected directly to one

of the bits in the Program Status Word. It may be stored or tested by an

_ executing program. When a store (SPSU) or test (TPSU) instruction is exe-

cuted, the SENSE line is sampled during the last cycle of the instruction.

Through proper programming techniques the SENSE signal may be used

to implement a direct serial data input channel, or it may be used to present

any bit of information that the designer chooses.

The SENSE input and FLAG output facilities provide the simplest method

of communicating data in or out of the 2650 Processor as neither address

decoding nor synchronization with other processor signals is necessary.

The Address Enable signal allows external control of the tri-state address

outputs (ADRO-ADR12). When ADRENis driven high, the addresslines are

switched to their third state and show a high output impedance. This feature

allows wired-OR connections with other signals. The ADR13 and ADR14

lines which are multiplexed with other signals are not affected by this signal.

When a system is not designed to utilize the feature, the ADREN input

may be connected permanently to a low signal source.

The Data Bus Enable signal allows external control of the tri-state Data
Bus output drivers. When DBUSENisdriven high, the Data Buswill exhibit a
high output impedance. This allows wired-OR connection with othersignals.

Whena system is not designed to utilize this feature, the DBUSEN input

may be permanently connected to a low signal source.

DBUS

The Data Bus signals form an 8-bit bi-directional data path in and out of

the processor. Memory and I/0 operations use the Data Bus to transfer the

write or read data to or from memory.

The direction of the data flow on the Data Busis indicated by thestate of

the R/W line. For Write operations, the output buffers in the processor out-

put data to the bus for use by memory or by external devices. For Read

operations, the buffers are disabled and the data condition of the busis

sensed by the processor. The output buffers may also be disabled by the

DBUSENsignal.

The signals on the data bus aretrue signals, i.e., a one is a high level and a

zero is low.

The Address signals form a 15 bit path out of the processor, and are used

primarily to supply memory addresses during memory operations. The ad-

dresses remain valid as long as OPREQ is on so that no external address

register is required. For extended I/O operations, the low ordereight bits of

the ADR lines are used to output the immediate byte of the instruction

which typically is interpreted as a device address.

The 13 low order lines of the address are used only for address informa-

tion. The two high order address lines are multiplexed with I/O control

information. During memory operations, the lines serve as memory address-

es. During I/O operations they serve as the D/C and E/NE control lines.

Demultiplexing is accomplished through use of the Memory/IO Controlline.

The line ADRO carries the low order address bit, and ADR12 carries the

high order address bit. The output drivers may be disabled by the ADREN

signal.

The signals on the address busare true, 1.e., a one is a high level and a zero

is low.

OPREO

The Operation Request output is the coordinating signal for all external

operations. The M/IO, R/W, E/NE, D/C and INTACKlines are operation
control signals that describe the nature of the external operation when the

OPREQ line is true. The DBUS and ADRbusalso should not be considered

23

valid except when OPREQis in the high, or onstate.

No output signals from the processor will change as long as OPREQ is on,

with the exception of WRP. OPREQ will stay on until the external operation

is complete, as indicated by the OPACK input. The processor delays all

internal activity following an OPREQ until the OPACKsignal is received.

ef, 8 Pll 7
aoe

The Interrupt Acknowledge signal is used by the processor to respond to

an external interrupt. When an INTREQ is received, the current instruction

is completed before the interrupt is serviced. When the processoris ready to

accept the interrupt it sets the INTACKto the high, or on, state along with

OPREQ. The interrupting device then presents a relative address byte to the

DBUS and responds with an OPACK signal. INTREQ may be turned off

anytime following INTACK. INTACK will fall after the processor receives

the OPACKsignal.

The Memory/IO output is one of the operation control signals that de-

fines external operations. M/IO indicates whether anoperation is memory or

I/O and should be used to gate Read or Write signals between memory or I/O

devices.

The state of M/IO will not change while OPREQis high.

The high state corresponds to Memory operation, and the low state cor-

respondsto an I/O operation.

The Read/Write output is one of the operation control signals that defines

external operations. R/W indicates whether an operation is Read or Write. It

controls the nature of the external operation and indicates in which direc-

tion the DBUSis pointing. R/W should not be considered valid until OPREQ

is on and thestate of the R/W line does not change as long as OPREQ is on.

The high state corresponds to the Write operation, and the low state

corresponds to the Read operation.

The Data/Control Output is an I/O signal which is used to discriminate

between the execution of the two types of one byte I/O instructions. There

are four one byte I/O instructions; WRTC, WRTD, REDC, REDD. When

Read Control or Write Control is executed, the D/C line takes on the low

state which indicates Control (C). When Read Data or Write Data is exe-

cuted, the D/C line takes on the high state, indicating Data (D).

D/C should not be considered valid until (a) OPREQ is on and (b) M/IO

indicates an I/O operation and (c) E/NE indicates a non-extended (one byte)

operation. D/C is multiplexed with a high order address line. When the M/IO

line is in the I/O state, the ADR14-D/C line should be interpreted as
“D/C”. (When the M/IO line is in the M state , the ADR14-D/Cline should
be interpreted as memory address line #14.)

The Extended/Non-Extended output is the operation control signal that

is used to discriminate between two byte and one byte I/O operations. Thus,

E/NE indicates the presence or absence of valid information on the eight low

order address lines during I/O operations.

E/NE should not be considered valid until (a) OPREQ is on and (b) M/IO
indicates an I/O operation. E/NE is multiplexed with a high order address

line. When the M/TO lineis in the I/O state , the ADR13-E/NE line should be

interpreted as ‘“E/NE’’. (When the M/IO line is in the M state, the
ADR138-E/NE line should be interpreted as memory address bit #13.)

There are six I/O instructions; REDE, WRTE, REDC, REDD, WRTC,

WRTD. When either of the two byte I/O instructions is executed (REDE,

WRTE), the E/NE line takes on the high state or “Extended”’ indication.

When any of the one byte I/O instructions is executed, the line takes on the

low state or “‘non-extended”’ indication.

The RUN/WAIT output signal indicates the Run/Wait Status of the pro-

cessor. The WAIT state may be entered by executing a HALTinstruction or

by turning on the PAUSE input. At any other time the processor will be ina

RUNstate.

When the processor is executing instructions, the line is in the high or

RUNstate; when in the WAITstate, the line is held low.

The HALT initiated WAIT condition can be changed to RUN by a RE-

SET or an interrupt. The PAUSEinitiated WAIT condition can be changed
to RUN by removing the PAUSEinput.

If a RESET occurs during a PAUSE initiated WAIT state and the PAUSE

remains low; the processor will be reset, fetch one instruction from page zero

byte zero and return to the WAIT state. When the PAUSE is eventually

removed, the previously fetched instruction will be executed.

FLAG

The FLAG output indicates the state of the Flag bit in the PSW. Any

change in the Flag bit is reflected by a change in the FLAG output. A one

bit in the Flag will give a high level on the FLAG output pin. The LPSU,

PPSU, and CPSUinstructions can changethe state of the Flag bit. The FLAG
output is alwaysa valid indication of the state of the Flag bit without regard

for the status of the processor or control signals. Changes in the Flag bit are

synchronized with the last cycle of the changing instruction.

oeWRI

The Write Pulse outputis a timing signal from the processor that provides

a positive-going pulse in the middle of each requested write operation

(memory or I/O) and a high level during read operations. The WRPis

designed to be used with Signetics 2606 R/W memory circuits to provide a

timed Chip Enable signal. For use with memory, it may be gated with the

M/IO signal to generate a Memory Write Pulse.

Because the WRP pulse occurs during any write operation, it may also be

used with I/O write operations where convenient.

SIGNAL TIMING

The Clock input to the 2650 provides the basic timing information that
the processor uses for all its internal and external operations. The clock rate

determines the instruction execution rate, except to the extent that external

memories and devices slow down the processor. Each internal processor

cycle is composed of three clock periods as shownin Figure III-3, GENERAL

TIMING.

OPREQ is the master control signal that coordinates all operations

external to the processor. Many of the other signal interactionsare related to

OPREQ. The timing diagram assumesthat the clock periods are constant and

that OPACKis returned in time to avoid delaying instruction execution. In

that case, OPREQ will be high for 1.5 clock periods (1/2 of tpc) and then

will be low for another 1.5 clock periods.

The interface control signals have been designed to implement asynchro-

nous interfaces for both memory and input/output devices. The control

signals are relatively simple and provide the following advantages: no

external synchronizing is necessary, external devices may run at any data

rate up to the processor’s maximum I/O data rate, and because data signals

are furnished with guard signals the external devices are often relieved of the

necessity of latching information such as memory address.

MEMORY READ TIMING
The following signals are involved in the processor’s memory read

sequence, as shownin FigureIII-1.

OPREQ = Operation Request

DBUSO-DBUS7* = Data Bus

ADRO-ADR12 = Address Bus

ADR13 = Address bit 13

ADR14 = Address bit 14

M/IO = Memory/Input-Output

R/W = Read/Write
OPACK* = Operation Acknowledge

The signals marked with an asterisk are sent from the memory device to

the processor. The other signals are developed by the processor.

OPREQ is a guard signal which must be valid (high) for the othersignals

to have meaning. When reading main memory the 2650 simultaneously

switches OPREQ to a high state, M/IO to M (memory), R/W to R (Read),
and places the memory address on lines ADRO-ADR14. Remember that

ADR13 & ADR14 are multiplexed with other signals and must be logically

ANDed with OPREQ and M to beinterpreted. Of course, ADR13 & ADR14

may be ignored if only page zero (8,192 bytes) is used.

Once the memory logic has determined the simultaneous existance of the

signals mentioned above, it places the true data corresponding to the given

address location on the data bus (DBUSO to DBUS7), and returns an OPACK
signal to the processor. The processor, recognizing the OPACK,strobes the

data into the receiving register and lowers the OPREQ. This completes the

memory read sequence.

CLOCK

2650 OUTPUTS:

INTERNAL INTERNAL
DELAY ~500n§ ~DELAY ~500nS_

CONTROLIOUTPUTS AND
ADDRESSES/VALID -

 OPREQ

 A

ADRO-ADR14 r

mMemory/io fo [| 7 7 7 TTTT ™ -

mee femeee enml eee ee —

ReaDwarte PP 77 TT TT TTT nn qrTTT
fame fee orem meme _/ Ne eee

FROM ACCESSED MEMORY:

OPACK — ~600ns at \
2.4uS CYCLE)\

DATAIN |

2650 CYCLE TIME

=3 CLOCK PERIODS=2.4uS MINIMUM

NOTES: (1) OPACK must go low at least 100 nS before the trailing edge of T2 in order not to slow downthe 2650.

(2) DATA IN signals must be valid for 50nS after the trailing edge of OPREO.

{3) Allowable memory access time is 1us with 2.4us cycle time.

Figure III-1 MEMORY READ SEQUENCE

If the OPACKsignal is delayed by the memory device, the processor waits

until it is received. OPREQ is lowered only after the receipt of OPACK. The

memory device should raise OPACK after OPREQ falls.

MEMORY WRITE TIMING

The signals involved with the processor’s memory write sequence are

similar to those used in the memory read sequence with the following

exceptions: 1) the R/W signal is in the W state and, 2) the WRPsignal
provides a positive going pulse during the write sequence which may be used

as a chip enable, write pulse, etc.

Figure III-2 demonstrates the signals that occur during a memory write.

CLOCK

2650 OUTPUTS

INTERNAL INTERNAL

OPREQ DELAY 500nS DELAY 500nS

CONTROL {OUTPUTS DATA

AND ADDRESS} VALID

ADRO ADR14

memorvh6

| |

aD m b oO WRITE

DBUSO-DBUS

300nS

WRP

FROM ACCESSED
MEMORY

OPACK

600nS

AT 2.4USEC
CYCLE TIMe

2650 CYCLE TIME 3 CLOCK PERIODS = 2.4uUSEC MINIMUM

NOTES: (1) OPACK must go tow at least 100nS before the trailing edge of T2 in order not to slow down the 2650.

Figure I11-2 MEMORY WRITE SEQUENCE

21

INPUT/OUTPUT TIMING
The signal exchanges for I/O with external devices is very similar to the

signaling for memory read/write. See the Features Section, INPUT/OUT

PUT FACILITIES.

CRITICAL TIMES
The following timing diagram describes the timing relationship between

the various interface signals. The critical times are labeled and defined in the

table of AC naractenisues.

toc _J
Fatal‘cp |
tcHte

conron

OPREQ _OAD : oan | \

 oPaCK Li os

tp1iDaear
DBUSIN

) ~«ESIGNALS VALID

DBUS OUT 71 fe"DOA |
SIGNALS VALIOK_

> <tCSA |
CONTROL
SIGNALS trot VALID

(M/1O, RW, twepwWwPw
E/NE, D/C) <— [

LAST CYCLE pee ee eee ee eee ee 4
OF CURRENT____ 7 Mk
INSTRUCTION

CLOCK TO T1 T2 TO TT T2 To T1

OPREQ __/ \
a a kK tias
INTREQ —

INTACK LW

INTERRUPT TIMIN

ADREN \ [

” k- taeo | k~ ‘ABD
HIGH IMPEDANCE HIGH IMPEDANCE

—I k-tort

DBUSEN \ |

4 k-tpep + k-toep

DBUS HIGH[MPEDANCE SIGNALS VALID \ HIGH IMPEDANCE

—> ItoRT
TRI-STATE BUS TIM

Figure II1-3 2650 TIMING DIAGRAMS

PRELIMINARY AC CHARACTERISTICS
T4=0°C to 70°C Vac =5V15% unless otherwise specified, see notes 1,2,3 & 4.

LIMITS
SYMBOL PARAMETER MIN MAX UNITS

tCH Clock High Phase 400 10,000 nsec

tc. Clock Low Phase 400 oo nsec

tcp Clock Period 800 oo nsec

tpcé Processor Cycle Time 2,400 oo nsec

tor OPREO Pulse Width 2tcH + tc_ —100 co nsec

tcor Clock to OPREQ Time 100 700 nsec

toapd’ OPACK Delay Time 0 oo nsec

tOAH OPACK Hold Time 0 oo nsec

tcsa Control Signal Available 50 nsec

tDoA Data Out Available 50 nsec

t pip® Data in Delay 0 1000(8) nsec

tpi? Data in Hold 150 nsec

twep Write Pulse Delay t¢,-100 tc,-50 nsec

twew Write Pulse Width tor tei nsec

tABD Address Bus Delay 80 nsec

tpspp Data Bus Delay 120 nsec

ti Rs10 INTREO Set up Time 0 nsec

ty R10 INTREO Hold Time 0 nsec
tortd Output Buffer Rise Time 150 nsec

NOTES ON AC CHARACTERISTICS

N
O
O
M
A
R
W
N
S. See preceding timing diagramsfor definition of timing terms.

Input levels swing between 0.65 volt and 2.2 volts.

Input signal transition times are 2Ons.

Timing reference level is 1.5 volts.

Load is -100uA at 20pF.

A Processor Cycle time consists of three clock periods.

In order to avoidslowing downthe processor, OPACK must be lowered 100nsbefore the trailing edge of

T2 clock, if OPACK is delayed past this point,theprocessor will wait in the Ve state and sample OPACK

on each subsequent negative clock edge until OPACKis lowered.

In order to avoid slowing the processor down, input data must be returned to the processor in 1ys or

less time from the OPREQ edge,at a cycle time of 2.4Us.

Input data must be held until 50ns after OPREO falls.

. In order to interrupt the current instruction, INTREQ mustfall prior to the first clock of the last cycle

of the current instruction. INTREQ must remain low until INTACK goes high.

29

ELECTRICAL CHARACTERISTICS

MAXIMUM GUARANTEED RATINGS!1)

Operating Ambient Temperature 0°C to +70°C
Storage Temperature -65°C to + 150°C
All Input, Output, and Supply Voltages

with respect to ground pin'3) O.5V to +6V

Package Power Dissipation!2)=IWPkg. 1.6W

PRELIMINARY 2650 DC ELECTRICAL CHARACTERISTICS

LIMITS

SYMBOL PARAMETER TEST CONDITIONS MIN MAX UNIT

lt Input Load Current VIN = 0 to 5.25V 10 LA

lLOH Output Leakage Current ADREN, DBUSEN = 2.2V, VouT = 4V 10 uA

LOL Output Leakage Current ADREN, DBUSEN = 2.2V, VouT = 0.45V 10 uA

Ice Power Supply Current Vcc = 5.25V, Ta = O°C 100 mA

Vib Input Low -0.6 0.8 V

VW Input High 2.2 Vcc V

VOL Output Low lol = 1.6 mA 0.0 0.45 V

VOH Output High IOH = -100 LA 2.4 Vec-0.5 V

CIN Input Capacitance Vin = OV 10 pF

CouT Output Capacitance VouT = OV 10 pF |

Conditions: Ta = O'C to 70°C, Vee = 5V 45%

NOTES:

1. Stresses above those listed under ‘Maximum Guaranteed Ratings’’ may cause permanent damageto the device. This is a stress rating

only and functional operation of the device at these or at any other condition above those indicated in the operation sections of this

specification is not implied.

2. For operating at elevated temperatures the device must be derated based on a+1509C maximum junction temperature and a thermal

resistance of 50°C/W junction to ambient (40 pin IW package).

3. This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive

static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying any voltages larger than the rated maxima.

Parameter valid over operating temperature range unless otherwise specified.

All voltage measurements are referenced to ground.

Manufacturer reserves the right to make design and process changes and improvements.

. Typical values are at +25°9C, nominal supply voltages, and nominal processing parameters.N
O
O
O

A

SIGNETICS 2650 PROCESSOR

INTERFACE SIGNALS

TYPE PINS ABBREVIATION FUNCTION SIGNAL SENSE

INPUT 1 GND Ground GND=0

INPUT] Vcc +5 Volts +5% Vcc=l

INPUT 1 RESET Chip Reset RESET=1 (pulse), causes reset

INPUT 1 CLOCK Chip Clack

INPUT 1 PAUSE Temp. Halt execution PAUSE=0, temporarily halts execution

INPUT 1 INTREQ Interrupt Request INTREQ=0, requests interrupt

INPUT 1 OPACK Operation Acknowledge OPACK=0, acknowledges operation

INPUT 1 SENSE Sense SENSE=0 (low) or SENSE=1 (high)

INPUT] ADREN Address Enable ADREN=1 drives into third state

INPUT 1 DBUSEN Data Bus Enable DBUSEN=1 drives into third state

IN/OUT 8 DBUSO-DBUS7 Data Bus DBUSn=0 (low), DBUSn=1 (high)

OUTPUT 13 ADRO-ADR12 Address 0 through 12 ADRn=0 (low), ADRn=1 (high)

OUTPUT 1 ADR13 or E/NE Address 13 or

Extended/Non-Extended Non-Extended=0, Extended=1

OUTPUT 1 ADR14 or D/C Address 14 or
Data Control Control=0, Data 1

OUTPUT 1 OPREQ Operation Request OPREQ=1, requests operation

OUTPUT 1 M,1O Memory/lO 10=0, M=1

OUTPUT 1 RW Read/Write R=0, W=1
OUTPUT 1 FLAG Flag Output FLAG=1 (high), FLAG=0 (low)

OUTPUT 1 INTACK Interrupt Acknowledge INTACK=1, acknowledges interrupt

OUTPUT] RUN, WAIT Run/Wait Indicator RUN=1, WAIT=0

OUTPUT 1 WRP Write Pulse WRP=1 (pulse), causes writing

PIN CONFIGURATION

SENSE 1 ay, 40 FLAG

ADR 12 2 39 Vec

ADR 11 3 38 CLOCK

ADR 10 4 37 PAUSE

ADR9Y 5 36 OPACK

ADR 8 6 35 RUN/WAIT

ADR?7 7 34 INTACK

ADR 6 8 33 DBUS 0

ADR 5 9 2650 32 DBUS1

ADR 4 10 31 DBUS 2

ADR3 11 30 DBUS 3

ADR 2 12 29 DBUS 4

ADR 1 13 28 DBUS 5

ADR O 14 27 DBUS 6

ADREN 15 26 DBUS 7

RESET 16 25 DBUSEN

INTREQ 17 24 OPREQ

ADR 14-D/C 18 23 R/w

ADR 13-E/NE 19 22 WRP

M/1O 20 21 _GND

TOP VIEW

atte,

8
G
y

r
e
te

CHAPTER IV

—o
o

INPUT/OUTPUT FACILITIES

The 2650 processor provides several mechanisms for performing input/

output functions. They are flag and sense, non-extended I/O instructions,

extended I/O instructions, and memory I/O. These four facilities are

described below.

FLAG & SENSE I/O

The 2650 has the ability to directly output one bit of data without

additional address decoding or synchronizingsignals.

The bit labeled “Flag’’ in the Program Status Word is connected through a

TTL compatible driver to the chip output at pin #40. The Flag output always

reflects the value in the Flag bit.

When a program changes the Flag bit through execution of an LPSU,

PPSU, or CPSU, the bit will be set or cleared during the last cycle of the

instruction that changesit.

The Flag bit may be used conveniently for many different purposes. The

followingis a list of some possible uses:

1. Aserial output channel
2. An additional address bit to increase addressing range.

3. A switch or toggle output to control external logic.
4. The origin of a pulse for polling chains of devices.

The Sense bit performs the complementary function of the Flag and isa

single bit direct input to the 2650. The Sense input, pin #1 is connected toa

TTL compatible receiver and is then routed directly to a bit position in the

Program Status Word. The bit in the PSW always represents the value of the

external signal. It may be sampled anytime through use of the TPSU or

SPSU instructions.

This simple input to the processor may be used in many ways. The

followingis a list of somepossible uses:

1. A serial input channel

2. A sense switch input

3. A break signal to a processing program

4. An input for yes/no signaling from external devices.

NON-EXTENDED 1[/O

There are four one byte I/O instructions; REDC, REDD, WRTC, and

WRTD. They are all referred to as non-extended because they can

communicate only one byte of data, either into or out of the 2650.

REDC and REDD causes the input transfer of one byte of data. They are

identical except for the fact that the D/C Signal is in the D state for REDD

and in the C state for REDC. Similarly, the instructions WRTC and WRTD

cause an output transfer of one byte of data. The D/C line discrim-

inates between the two pairs of input/output instructions. The D/C line

can be used as a 1-bit device address in simple systems.

The read and write timing sequencesfor the one byte I/O instructions are

the same as the memory read and writesequenceswith the following
exceptions: the M/IO signal is switched to IO, the D/C line becomesvalid,

E/NE is switched to NE (non-extended), and the Address bus contains no
valid information.

o
u

The NE signal informs the devices outside the 2650 that a one byte I/O
instruction is being executed. The D/C line indicates which pair of the one

byte I/O instructions are being executed; D implies either WRTD or REDD,

and C implies either WRTC or REDC.Finally, to determine whetherit is a

read or a write, examinethe R/W signal level.

Table IV-1 illustrates the sense of the interface signals. The ‘Signal
Timing”? section should be referenced for the exact timing relationships. It

should be remembered that the control signals are not to be considered valid

except when the OPREQ signal is valid.

Table IV-1 i/O INTERFACE SIGNALS

OPREQ M/IO R/W ADR13-E/NE ADR14-D/C

MEMORY READ T M R ADR13 ADR14

MEMORY WRITE T M W ADR13 ADR14
2 BYTE READ T 10 R E Don't Care

2 BYTE WRITE T lO W E Don’t Care
1 BYTE CONTROL READ T iO oR NE Cc

1BYTE CONTROL WRITE; T lO W NE Cc

1 BYTE DATA READ T lO R NE D
1 BYTE DATA READ T lO W NE D
EXTENDED I/O

There are two, two byte I/O instructions; REDE and WRTE. They are

referred to as extended because they can communicate two bytes of data

when they are executed. The REDE causes the second byte of the

instruction to be output on the low order address lines, ADRO-ADR7, which

is intended to be used as a device address while the byte of data then on the

Data Bus will be strobed into the register specified in the instruction. The

WRTE also presents the second byte of the instruction on the Address Bus,

but a byte of data from the register specified in the instruction is

simultaneously output on the Data Bus.

The two byte I/O instructions are similar to the one byte I/O instructions

except: the D/C line is not considered, and the data from the secondbyte of

the I/O instruction appears on the Address Bus all during the time that

OPREQis valid. The data on the Address Busis intended to convey a device

address, but may be utilized for any purpose.

Table IV-1 illustrates the sense of the interface signals for extended I/O

instructions. Refer to “Signal Timing”’ section for exact timingrelationships.

aaa a a | %

The 2650 user may choose to transfer data into or out of the processor

using the memory control signals. The advantage to this techniqueis that the

data can be read or written by the program through ordinary instruction

execution and data may be directly operated upon with the arithmetic

instructions.

ig

To make use of this technique, the designer has to assign memory

addresses to devices and design the device interfaces to generate the same

signals as memory.

A disadvantage to this methodis that it may be necessary to decode more

address lines to determine the device address than with other I/O facilities.

INTERRUPT MECHANISM

The 2650 has been implemented with a conventional, single level, address

vectoring interrupt mechanism. There is one interrupt input pin. When an

external device generates an interrupt signal (INTREQ), the processor is

forced to transfer control to any of 128 possible memory locations as

determined by an 8-bit vector supplied by the interrupting device.

Of special interest is that the device may return a relative indirect address

signal which causes the processor to enter an indirect addressing sequence

upon receipt of an interrupt. This enables a device to direct the processor to

execute code anywhere within addressable memory.

Upon recognizing the interrupt signal, the processor automatically sets the

Interrupt Inhibit bit in the Program Status Word. This inhibits further

interrupts from being recognized until the interrupt routine is finished

executing and a Return-and-Enable instruction is executed or the inhibit bit

is explicitly cleared

Whenthe inhibit bit in the PSWis set, the processor will not recognize an

interrupt input. The Interrupt Inhibit bit may be set under program control

(LPSU, PPSU) and is automatically set whenever the processor accepts an

interrupt. The inhibit bit may be cleared in three ways:

1. By a RESET operation

2. By execution of an appropriate clear or load PSU instruction; (CPSU, LPSU)

3. By execution of a Return-and-Enable instruction.

The sequence of events for a normal interrupt operationis as follows:

. An executing program enables interrupts.

. External device initiates interrupt with the INTREQ line.

. Processor finishes executing current instruction.

. Processorsets inhibit bit.

. Processor inserts the first byte of ZBSR (Zero Branch-to-Subroutine, Relative)

instruction into the instruction register instead of what would have been the next

sequential instruction.
. Processor accesses the data bus to fetch the second byte of the ZBSRinstruction.

. Interrupting device responds to the Processor generated INTACK(Interrupt Acknow-

ledge) by supplying the requested second byte.

8. The processor executes the Zero Branch-to-Subroutine instruction, saving the address
of the instruction following the interrupted instruction in the RAS, and proceeds to
execute the instruction at page 0, byte 0, or the address relative to page 0, byte 0 as

given by the interrupting device.

9. Whentheinterrupt routine is complete, a return instruction (RETC, RETE)pulls the
address from the RAS and execution of the interrupted program resumes.

O
P
D
D
N

~
1
&

Since the interrupting device specifies the interrupt subroutine address in

the standard relative address format, it has considerable flexibility with

regard to the interrupt procedure. It can point to any location that is within

+63 or —64 bytes of page zero, byte zero of memory. (Negative relative

addresses wrap around the memory, modulo 8,19219 bytes.) The inter-

rupting device also may specify whether the subroutine address is direct or

indirect by providing a zero or one to DBUS #7 (pin #26). If the external

device is not complex enough to exercise these options, it may respond to

the INTACK operation with a byte of all zeroes. In such a case, the

processor will execute a direct Branch-to-Subroutine to page zero, byte zero

of memory. |

ba
d

R
a
n
e

The timing diagram in Figure IV-2 will help explain how the interrupt

system worksin the processor. The execution of the instruction labeled “‘A”’

has been proceeding before the start of this diagram. The last cycle of

instruction ‘‘A’’ is shown. Notice that, as in all external operations, the

OPREQ output eventually causes an OPACK input, which in turn allows

OPREQ to be turned off. The arrows show this sequence of events. The last.

cycle of instruction “‘A’”’ fetches the first byte of instruction “B”’ from

Memory andinsertsit into the Instruction Register.

Assume that instruction ‘B”’ is a two cycle, two byte instruction with no

operand fetch (e.g., ADDI). Since thefirst byte has already been fetched by

instruction “‘A’’, the first cycle of instruction “‘B’’ is used to fetch the second

byte of instruction “‘B’’. Had instruction “B”’ not been interrupted, it would

have fetched the first byte of the next sequential instruction during its
second(last) cycle. The dotted lines indicate that operation.

Since instruction “‘B”’ is interrupted, however, the last cycle of ‘‘B”’ is used

to insert the interrupt instruction (ZBSR) into the instruction register.

Notice that the INTREQ input can arrive at any time. Instruction is in-

terrupted since INTREQ occured prior to the last (2nd) cycle of execution.

Instead of being the next sequential instruction following “‘B’’, instruction

‘““C”? is the completion of the interrupt. The first cycle of “C”’ is used to

fetch the second byte of the ZBSR instruction from the DBUSas provided

by the interrupting device. This fact is indicated by the presence of the

INTACK control signal. The INTREQ may then be removed. When the

device responds with the requested byte, it uses a standard operation

acknowledge procedure (OPACK)to so indicate to the processor. During the

second cycle of instruction “‘C”’ the processor executes the ZBSRinstruction,

and fetches the first byte of instruction “D’’ which is located at the

subroutineaddress.

INST INST INST INST
A > B se C se

LASTCYCLE CYCLE1! CYCLE2!' CYCLE1 1 CYCLE2 “!~ CYCLE 1

OPREQ i .

Leeeo

DBUS {\) DN Finan | [\ fL\
_/ LT “een Le Le LTSISTBYTE 2NDBYTE ~*~ r iST BYTE
INSTB —sINSTB INST D

 INTREQ

kL |
INTACK fo

* PROCESSOR INSERTS 1ST BYTE OF ZBSR INSTRUCTION. ADDRESS

OF 1ST BYTE OF INSTC IS PUSHED INTO RETURN ADDRESS STACK.

** 2ND BYTE OF ZBSR (INTERRUPT VECTOR)

Figure IV - 2 INTERRUPTTIMING

SUBROUTINE LINKAGE

The on-chip stack, along with the Branch-to-Subroutine and Return

instructions provide the facility to transfer control to a subroutine. The

subroutine can return control to the program that branched to it via a

Return instruction.

The stack is eight levels deep which means that a routine may branch to a

subroutine, which may branch to another subroutine, etc., eight times before

any Return instructions are executed.

When designing a system that utilizes interrupts, it should be remembered

that the processor jams a ZBSR into the IR and then executes it. This will

cause an entry to be pushed into the on-chip stack like any other

Branch-to-Subroutine instruction and may limit the stack depth available in

certain programs.

When branching to a subroutine, the following sequence of events occurs:

The address in the IAR is used to fetch the Branch-to-Subroutine instruction and is

then incremented in the Address Adder so that it points to the instruction following

the subroutine branch.

2. The Stack Pointer is incremented by oneso that it points to the next Return Address

Stack location.

3. The contents of the [AR are stored in the stack at the location designated by the Stack

Pointer.

4. The operand address contained in the Branch-to-Subroutine instruction (the address of

the first instruction of the subroutine) is inserted into the IAR.

po
nd

When returning from a subroutine, this sequence of events occurs:

1. The address in the IAR is used to fetch the return (RETC, RETE) instruction from
memory.

2. When the return instruction is recognized by the processor, the contents of the stack

entry pointed to by the Stack Pointeris placed into the IAR.

. The Stack Pointer is decremented by one.

4, Instruction execution continues at the address now in the IAR.

Q
o

CONDITION CODE USAGE

The two-bit register, called the Condition Code, is incorporated in the

Program Status Word. It may be seen in the description of the 2650

instructions, that the Condition Code (CC) is specifically set by every

instruction that causes data to be transferred into a general purposeregister

and it is also set by compareinstructions.

The reason for this design feature is that after an instruction executes, the

CC contains a modest amount of information about the byte of data which

has just been manipulated. For example, a program loads register one with a

byte of unknown data and the Condition Code setting indicates that the

byte is positive, negative or zero. The negative indication implies that bit #7

is set to one.

Consequently, a data manipulation operation when followed by a

conditional branch is often sufficient to determine desired information

without resorting to a specific test, thus saving instructions and memory

space.

39

In the following example, the Condition Codeis used to test the parity of

a byte of data which is stored at symbolic memory location CHAR.

EQ EQU 0 THE EQUAL CONDITION CODE

CHAR DATA 2 UNKNOWN DATA BYTE

WC EQU H'04' THE WITH CARRYBIT

NEG EQU 2 CC MASK

CPSL WC CLEAR CARRYBIT

LODI,R2 —8 SET UP COUNTER

SUBZ RO CLEAR REG 0

LODR,R1 CHAR GET THE CHARACTER(ccis set)

LOOP BCFR,NEG GOI IF NOT SET, DON’T COUNT(ccis

tested)

ADDI,RO +1 COUNT THE BIT

GOl RRL,R1 MOVE BITS LEFT(ccis set)

BIRR,R2 LOOP LOOP TILL DONE

FINISHED,TEST IF REG 0 HAS A ONE IN LOW ORDER

* IF BIT #0 = 1, ODD PARITY. IF BIT #0 = 0, THEN EVEN.

TMI,RO H'01'
BCTR,EQ ODD

EVEN HALT
ODD HALT

START-UP PROCEDURE

The 2650 processor, having no internal start-up procedure must be started

in an orderly fashion to assure that the internal control logic begins in a

knownstate.

Assuming poweris applied to the chip and the clock inputis running, the

easiest way to start is to apply a Reset signal for at least three clock periods. —

When the RESETsignal is removed the processor will fetch the instruction at

page O, byte 0 and commenceordinary instruction execution.

To start processing at a specific address, a more complex start-up proce-

dure may be employed. If an Interrupt signal is applied initially along

with the Reset, processing will commence at the address provided by the

interrupting device. Recall that the address provided may includea bit to

specify indirect addressing and therefore the first instruction executed may

be anywhere within addressable memory. The Reset and Interrupt signal

may be applied simultaneously and when the Reset is removed, the processor

will execute the usual interrupt signal sequenceas described in INTERRUPT

MECHANISM. There is an example of a start-up technique in the System

Application Notes.

C

APTER V

oheh

ADDRESSING MODES

An addressing mode is a method the processor uses for developing

argument addresses for machine instructions.

The 2650 processor can develop addresses in eight ways:

Register addressing

Immediate addressing

Relative addressing

Relative, indirect addressing

Absolute addressing

Absolute, indirect addressing

Absolute, indexed addressing

Absolute, indirect, indexed addressing

However, of these eight addressing modes, only four of them are basic.

The others are variations due to indexing and indirection. The basic

addressing mode of each instruction is indicated in parentheses in the first

line of each detailed instruction description. The following text describes

how effective addresses are developed by the processor.

REGISTER ADDRESSING :
All register-to-register instructions are one byte in length. Instructions

utilizing this addressing mode appearin this general format.

Operation Code Register

7

765 43 2 1 0

Since there are only two bits designated to specify a register, register zero

always contains one of the operands while the other operandis in one of the
three registers in the currently selected bank. Register zero may also be

specified as the explicit operand giving instructions such as: LODZ RO.

In one byte register addressing instructions which have just one operand,

any of the currently selected general purpose registers or register zero may

be specified, e.g., RRL,RO.

IMMEDIATE ADDRESSING
All immediate addressing instructions are two bytes in length. The first

byte contains the operation code and register designation, while the second

byte contains data used as the argument during instruction execution.

Two’s complement binary number

Operation Code Register or 8-bit logic mask
1

7 LN \

76543 210 765 43 2 1 0

Byte O Byte 1

The second byte, the data byte, may contain a binary numberor logic

mask depending on the particular instruction being executed. Any register

may be designated in thefirst byte.

w
e
t

Got
ted

l

Relative addressing instructions are all two bytes in length and are

memory reference instructions.One argument of the instruction is a register

and the other argumentis the contents of a memory location. The format of

relative addressing instructionsis:

Operation Code Register | Relative Displacement
7 L VR A, i ~

765 43 2 1 +0 76543 210

Byte O Byte 1

The first byte contains the operation code and register designation, while

the second byte contains the relative address. Bits O—6, byte 1, contain a 7-

bit two’s complement binary number which can range from —64 to +63. This

number is used by the processor to calculate the effective address. The

effective address is calculated by adding the address of the first byte

following a relative addressing instruction to the relative displacement in the

second byte of the instruction.

If bit 7, byte 1 is set to “‘1’’, the processor will enter an indirect addressing

cycle, where the actual operand address will be accessed from the effective

address location. See Indirect Addressing.

Two of the branch instructions (ZBSR, ZBRR) allow addressing relative

to page zero, byte 0 of memory. In this case, values up to +63 reference the

first 63 bytes of page zero and values up to —- 64 reference the last 64 bytes

of page zero.

ABSOLUTE ADDRESSING FOR NON-BRANCHINSTRUCTIONS

Absolute addressing instructions are all three bytes in length and are

memory reference instructions. One argumentof the instructionis a register,

designated in bits 1 and O, byte O; the other argumentis the contents of a

memory location. The format of absolute addressing instructionsis:

Index

Register

or

Argument Index High-Order
Operation Code Register |! Control Address Low-Order Address

4 YN / \

76543 2 10 765 43 2 1 0 76543210

Byte O Byte 1 Byte 2

Bits 4—0, byte 1 and 7—0O, byte 2 contain the absolute address and can

address any byte within the same page that the instruction appears.

The index control bits, bits #6 and #5, byte 1 determine how the

effective address will be calculated and possibly which register will be the

argument during instruction execution. The index control bits have the

following interpretation:

Index Control

Bit 6 Bit 5 Meaning

0 0 Non-indexed address

0 1 Indexed with auto-increment

1 0 Indexed with auto-decrement

1 1 Indexed only

Whenthe index control bits are 0 & 0, bits #1 and #0 in byte O contain

the argument register designation and bits 0 to 4, byte 1 and bits 0 to 7, byte

2 contain the effective address. Indirect addressing may be specified by

setting bit #7, byte 1 to a one.

When the index control bits are 1 & 1, bits #1 and #0 in byte O designate

the index register and the argumentregister implicitly becomes register zero.

The effective address is calculated by adding the contents of the index

register (8-bit absolute integer) to the addressfield. If indirect addressingis

specified, the indirect address is accessed and then the value in the index

register is added to the indirect address. This is commonly called post

indexing.

When the index control bits contain 0 & 1, the address is calculated by the

processor exactly as when the control bits contain 1 & 1 except a binary is

added to the contents of the selected index register before the calculation of

the effective address proceeds. Similarly, when the index control bits contain

1&0, a binary 1 is subtracted from the contents of the selected index register

before the effective addressis calculated.

The three byte, absolute‘addressing, branch isnstructions Jloviate slightly in

format from ordinary absolute addressing instructions as shown below:

Register
or
Condition
Code

Operation Code Mask | High-Order Addressing Low-OrderAddressing

/ Wo OH \ 7 \

76543210 76543 210 76543 2 1 0

Byte O Byte 1 Byte 2

The notable difference is that bits 6 and 5, byte 1, are no longer
interpreted as Index Control bits, but instead are interpreted as the high

order bits of the address field. This means that there is no indexing allowed

on most absolute addressing branch instructions, but indexed branches are

possible through use of the BXA and BSXAinstructions. The bits #6 and

#5, byte 1, are used to set the current page register, thus enabling programs

to directly transfer control to another page.

See the MEMORY ORGANIZATION, BXA and BSXA instructions, and

INDIRECT ADDRESSING.

A5

RECT ADDRESSING
Indirect addressing means that the argument address of an instruction is

not specified by the instruction itself, but rather the argument address will

be found in the two bytes pointed to by the address field or relative address

field, of absolute or relative addressing instructions. In the case of absolute

addressing, the value of the index register is added to the indirect address not

to the value in the address field of the instruction. In both cases, the

processor will enter the indirect addressing state when the bit designated

“IT”? is set to one. Entering the indirect addressing sequence adds two cycles

(6 clock periods) to the execution time of an instruction.

Indirect addresses are 15-bit addresses stored right justified in two

contiguous bytes of memory. As such, an indirect address may specify any

location in addressable memory (0—32,767). The high order bit of the two

byte indirect address is not used by the processor.

Only single level indirect addressing is implemented. The following

examples demonstrate indirect addressing.

Example 1.

i00001110/10000000/01010001) LODA,R2 «H'51'

Address 1016 1116 1246

(0000000 1/0 0101000} ACON H'128'

Address 5146 5216

fo1 10011 1] DATA H'67'

Address 12816

The LODA instruction in memory locations 10, 11, and 12 specifies

indirect addressing (bit 7, byte 1, is set). Therefore, when the instructionis

executed, the processor takes the address field value, H' 51', and usesit to

access the two byte indirect address at 51 and 52. Then using the contents of

Ol and 52 as the effective address, the data byte containing H'67' is loaded

into register 2.

Example 2.

f00001010{[1000010 1] LODR,R2 *H'17'

Address 1016 1146

fo000000 1\[0 010100 0} ACON H'128'

Address 1716 1846

foi1710011 4] DATA H'67'

Address 12816

In a fashion similar to the previous example, the relative address is used to

access the indirect address which points to the data byte. When the LODR

instruction is executed, the data byte contents, H' 67', will be loaded into

register 2.

INSTRUCTION FORMAT EXCEPTIONS
There are several instructions which are detected by decoding the entire 8

bits of the first byte of the instruction. These instructions are unique and

may be noticed in the instruction descriptions. Examples are: HALT, CPSU,

CPSL.

Of this type of instruction, two operation codes were taken from

otherwise complete sets thus eliminating certain possible operations. The

cases are as follows:

(NOT OKAY) STRZ 0 Storing register zero into register zero is not imple-
| mented. the operation code is used for NOP (no

(OKAY) NOP ” P (
operation).

(NOT OKAY) ANDZ 0 AND of register zero with register zero is not im-

(OKAY) HALT plemented, the operation code is used for HALT.

INSTRUCTION FORMATS

OPERATION CODE R/V

van Vet

(Z) REGISTER SYMBOLS:
R- REGISTER NUMBER

ADDRESSING V~- VALUE OR CONDITION

7 6 5 4 3 2 1 0 X - INDEX REGISTER NUMBER

t - INDIRECT BIT

OPERATION CODE R DATA MASK OR BINARY VALUE

/ i ——

~\

y A \ LS l ~

(1) IMMEDIATE
ADDRESSING

18 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RELATIVE DISPLACEMENT

OPERATION CODE R/V | -64<DISPLACEMENTS<+63

/ * NPN nr A —,

(R) RELATIVE
ADDRESSING

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

*INDEX
OPERATION CODE R/X I CONTROL HIGHER ORDER ADDRESS LOWER ORDER ADDRESS

Lf | St, pvpotlN \ \

(A) ABSOLUTE
ADDRESSING

(NON-BRANCH 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 6 5 4 3 2 1 0
HIGHER ORDER ADDRESS

INSTRUCTIONS) S 1 ~

OPERATION CODE R/V | PAGE LOWER ORDER ADDRESS

/ * N 74 N 4 oN ~

(B) ABSOLUTE
ADDRESSING

(BRANCH 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 6 5 4 3 2 1 0

INSTRUCTIONS) HIGHER ORDER ADDRESS

/ \
UNUSED PAGE LOWER ORDER ADDRESS

; A \ 4 1. —~,

INDIRECT

ADDRESSING

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OPERATION CODE

fo
™N

*INDEX CONTROL:

00= NON-INDEXED

O1= INDEXED WITH AUTO-INCREMENT

(E) MISCELLANEOUS 10= INDEXED WITHAUTO-DECREMENT
INSTRUCTIONS

7 6 5 4 3 2 1 0

47

DETAILED PROCESSOR INSTRUCTIONS

LOAD REGISTER ZERO (Register Addressing)

Mnemonic LODZ r

Binary Coding

O;/O;O0;O;0;0] r
j

76543210

Execution Time 2 cycles (6 clock periods)

Description

This one-byte instruction transfers the contents of the specified register,r,

into register zero. The previous contents of register zero are lost. The

contents of register r remain unchanged.

Whenthespecified register, r, equals 0, the operation codeis changed to 6016

by the assembler. The instruction, O0O000000, yields indeterminate results.

Processor Registers Affected CC

Condition Code Setting Register Zero CC1 CCO

Positive 0 1

Zero 0 0

Negative 1 0

(Immediate Addressing)

Mnemonic LODI,r Vv

Binary Coding

T rer oT fF t ft o

O}O;o;ojolty © arr
76543210 765432 10
Execution Time 2 cycles (6 clock periods)

Description

This two-byte instruction transfers the second byte of the instruction; v,

into the specified register, r. The previous contents of r are lost.

Processor Registers Affected CC

Condition Code Setting Register r CC1 CCO

Positive 0 1

Zero 0 0

Negative 1 0

(Relative Addressing)

Mnemonic LODR,r (*)a

Binary Coding

T T_T T_T_T_1T
0O;O;O;O;171/O] °F | a

76543210 765432 10

Execution Time 3 cycles (9 clock periods)

Description

This two-byte instruction transfers a byte of data from memoryinto the

specified register, r. The data byte is found at the effective address formed

by the addition of the a field and the address of the byte following this

instruction. The previous contents of register r are lost. Indirect addressing

may be specified.

Processor Registers Affected CC

Condition Code Setting Register r CC1 CCO

Positive 0 1

Zero 0 0

Negative 1 0

LOAD ABSOLUTE (Absolute Addressing)

Mnemonic LODA,r («)a(,X)

Binary Coding

 PPP P ry (ees) (nee
765 43 2 1 0 765 43 2 1 0 76543 2 10

Execution Time 4 cycles (12 clock periods)

Description

This three-byte instruction transfers a byte of data from memory into the

specified register, r. The data byte is found at the effective address. If

indexing is specified, bits 1 and O, byte O, indicate the index register and the

destination of the operation implicitly becomes register zero. The previous

contents of register r are lost.

Indirect addressing and/or indexing may bespecified.

Processor Registers Affected CC

Condition Code Setting Register r CC1 CCO

Positive 0 1

Zero 0 0

Negative 1 0

(Register Addressing)

Mnemonic STRZ r

Binary Code

1
1} 17/O;O]/O];O] F&F

i.

76543 2 10

Execution Time 2 cycles (6 clock periods)

Description

This one-byte instruction transfers the contents of register zero into the
specified register r. The previous contents of register r are lost. The contents

of register zero remain unchanged.

Note: Register r may not be specified as zero. This operation code,

‘11000000’, is reserved for NOP.

Processor Registers Affected CC

Condition Code Setting Register r CCl CCO

Positive 0 1

Zero 0 0

Negative 1 0

he
t

STORE RELATIVE (Relative Addressing)

Mnemonic STRR,r (*)a

Binary Code

sfofofrjof tJ Ep ay
765432 10 765 43 2 1 0

Execution Time 3 cycles (9 clock periods)

Description

This two-byte instruction transfers a byte of data from the specified

register, r, into the byte of memory pointed to by the effective address. The

contents of register r remain unchanged and the contents of the memory

byte are replaced.

Indirect addressing may be specified.

Processor Registers Affected None

Condition Code Setting N/A

STORE ABSOLUTE (Absolute Addressing)

Mnemonic STRA,r (*)a(,X)

Binary Code

 TTT rn

1/1/0;0]1771 | IC a high order _ a low order
1
r

L 1

76543 2 1 0 76543 2 1 0 76543 2 1 0

4

Execution Time cycles (12 clock periods)

Description

This three-byte instruction transfers a byte of data from the specified

register, r, into the byte of memory pointed to by the effective address. The

contents of register r remain unchanged and the contents of the memory

byte are replaced.

Indirect addressing and/or indexing may bespecified. If indexingis speci-

fied, bits 1 and O, byte O, indicate the index register and the destination of

the operation implicitly becomesregister zero.

Processor Registers Affected None

Condition Code Setting N/A

P
e
s

c
e
)
“

e
s

ADD TO REGISTER ZERO
Mnemonic ADDZ r

(Register Addressing)

Binary Code

1;0};O0;0;0/0] r

765432 1 0

Execution Time 2 cycles (6 clock periods)

Description

This one-byte instruction causes the contents of the specified register,r,

and the contents of register zero to be added togetherin a true binary adder.

The 8-bit sum of the addition replaces the contents of register zero. The

contents of register r remain unchanged.

Note: Add with Carry may be effected. See Carry bit.

Processor Registers Affected C, CC, |IDC, OVF

Condition Code Setting Register Zero CC1 CCO

Positive 0 1

Zero 0 0

Negative 1 0

55

(Immediate Addressing)

Mnemonic Vv

Binary Coding

T TT_T_T_T_TT
1;0;0/O010] 1 r Vv

] j ji] l]

76543210 76543 2 1 +0

Execution Time 2 cycles (6 clock periods)

Description

This two-byte instruction causes the contents of register r and the contents

of the second byte of this instruction to be added together in a true binary

adder. The eight-bit sum replaces the contents of registerr.

Note: Add with Carry may be effected. See Carry bit.

Processor Registers Affected C,CC, IDC, OVF

Condition Code Setting Register r CC1 CCO

Positive 0 1

Zero 0 0

Negative 1 0

(Relative Addressing)

Mnemonic ADDR,r («)a

Binary Coding

‘fojojo}ijof r fifo a
76543210 765432 10

Execution Time 3 cycles (9 clock periods)

Description

This two-byte instruction causes the contents of register r and the contents

of the byte of memory pointed to by the effective address to be added to-

gether in a true binary adder. The eight-bit sum replaces the contents of

register r.

Indirect addressing maybespecified.

Note: Add with Carry may be effected. See Carry bit.

Processor Registers Affected C,CC, IDC, OVF

Condition Code Setting Register r CCl CCO

Positive 0 7

Zero 0 0

Negative 1 0

G
e
R
g

(Absolute Addressing)

Mnemonic ADDA,r (*)a(,X)

Binary Coding

' TTT

1;0;0;0)1]1 | IC a high order ; '

765432 10 76543 2 1 0 76543 2 1 0

if Tt oT | T T |

a low order
i] L L l

Execution Time 4 cycles (12 clock periods)

Description

This three-byte instruction causes the contents of register r and the

contents of the byte of memory pointed to by the effective address to be

added together in a true binary adder. The eight-bit sum replaces the

contents of register r.

Indirect addressing and/or indexing may be specified. If indexing is speci-

fied, bits 1 and O, byte O, indicate the index register and the destination of

the operation implicitly becomesregister zero.

Note: Add with Carry may be effected. See Carry bit.

Processor Registers Affected C,CC, IDC, OVF

Condition Code Setting Registerr CCI CCO

Positive 0 1

Zero 0 O

Negative 1 0

SUBTRACTFI
Mnemonic

(Register Addressing)

Binary Coding

1;0}7;0}0; 0] r

76543 2 1 0

Execution Time 2 cycle (6 clock periods)

Description

This one-byte instruction causes the contents of the specified register r to

be subtracted from the contents of register zero. The result of the subtraction

replaces the contents of register zero.

The subtraction is performed by taking the binary two’s complement of

the contents of register r and adding that result to the contents of register

zero. The contents of register r remain unchanged.

Note: Subtract with Borrow may be effected. See Carry bit.

Processor Registers Affected C,CC, IDC, OVF

Condition Code Setting Register Zero CC1 CCO

Positive 0 1

Zero 0 0

Negative 1 0

e
a
u

(Immediate Addressing)

Mnemonic SUBI,r Vv

Binary Code

T 0 ee ee ee |
17;0}171/1/0] 0} 1 r Vv

l] LL] l l l

765 43 2 1 0 765 43 2 1 0

Execution Time 2 cycles (6 clock periods)

Description

This two-byte instruction causes the contents of the second byte of this —

instruction to be subtracted from the contents of register r. The result of the

subtraction replaces the contents of registerr.

The subtraction is performed by taking the binary two’s complement of

the contents of the second instruction byte and adding that result to the

contents of registerr.

Note: Subtract with Borrow may be effected. See Carry bit.

Processor Registers Affected C,CC, IDC, OVF
X

Condition Code Setting Register r CC1 CCO

Positive 0 1

Zero 0 0

Negative 1 0

SUBTRACT RELATIVE (Relative Addressing)

Mnemonic SUBR,r (x)a

Binary Code

vfo}ifo}ifo} + boa

765432 10 765 43 2 1 0

Execution Time 3 cycles (9 clock periods)

Description

This two-byte instruction causes the contents of the byte of memory

pointed to by the effective address to be subtracted from the contents of

register r. The result of the subtraction replaces the contents of registerr.

The subtraction is performed by taking the binary two’s complementof

the contents of the byte of memory and adding that result to the contents of

register r.

Indirect addressing may be specified.

Note: Subtract with Borrow maybe effected. See Carry bit.

Processor Registers Affected C,CC, IDC, OVF

Condition Code Setting Register r CCl CCO

Positive 0 1

Zero 0 0

Negative 1 0

SUBTRACT ABSOLUTE (Absolute Addressing)

Mnemonic SUBA,r (*)a(,X)

Binary Code

T —T TT TT TTT TOT T_T
1/0/71{0]1)1 r 1} IC a high order a low order

j_ 1 _j ot l I 1 L 1 I J 4 1

765 43 2 1 0 765 43 2 1 0 765 43 2 1 0

Execution Time 4 cycles (12 clock periods)

Description

This three-byte instruction causes the contents of the byte of memory

pointed to by the effective address to be subtracted from the contents of

register r. The result of the subtraction replaces the contents of registerr.

The subtraction is performed by taking the binary two’s complement of

the contents of the memory byte and adding that result to the contents of

register r.

Indirect addressing and/or indexing may bespecified. If indexingis speci-

fied, bits 1 and O, byte O, indicate the index register and the destination of

the operation implicitly becomesregister zero.

Note: Subtract with Borrow may be effected. See Carry bit.

Processor Registers Affected C,CC, IDC, OVF

Condition Code Setting Register r CC1 CCO

Positive O 1

Zero O O

Negative 1 O

Ge
e

S
e
e

AND TO REGISTER ZERO (Register Addressing)

Mnemonic ANDZ r

Binary Code

0}1);0};0};0;0 r

765 43 2 1 0

Execution Time 2 cycles (6 clock periods)

Description

This one-byte instruction causes the contents of the specified register, r,

to be logically ANDed with the contents of register zero. The result of the

operation replaces the contents of register zero. The contents of register r

remain unchanged.

The AND operation treats each bit of the argument bytes as in the truth

table below:

Bit (0-7) Bit (0-7) AND Result
0 0 0
0 i 0
1 1 1
1 0 0

Note: Register r may not be specified as zero. This operation code,

‘O1000000’, is reserved for HALT.

Processor Registers Affected CC

Condition Code Setting Register Zero CC1 CCO

Positive 0 1

Zero 0 0

Negative 1 0

63

(Immediate Addressing)

Mnemonic ANDI,r V

Binary Code

T TT TT T_Tt
O}1;/0/0;/0} 1] F V

ij 1 1 I] | I 1

7 65 43 2 1 =0 7 65 43 2 1 0

Execution Time 2 cycles (6 clock periods)

Description

This two-byte instruction causes the contents of the specified register r to

be logically ANDed with the contents of the second byte of this instruction.

The result of this operation replaces the contents of registerr.

The AND operation treats each bit of the argument bytes as in the truth

table below:

Bit (0-7) Bit (0-7) | | AND Result

0 O 0

0 1 0

1 1 1

1 O O

Processor Registers Affected CC

Condition Code Setting Register Zero CC1 CCO

Positive 0 1

Zero 0 0

Negative 1 0

64

(Relative Addressing)

Mnemonic ANDR,r (x)a

Binary Code

[a

 o
m
e

0;1/0;0;1]0

765 43 2 1 0 765 43 2 1 0

Execution Time 3 cycles (9 clock periods)

Description

This two-byte instruction causes the contents of the specified register r to
be logically ANDed with the contents of the memory byte pointed to by the

effective address. The result of this operation replaces the contents of

registerr.

The AND operation treats each bit of the argument bytes as in the truth

table below:

Bit (0-7) Bit (0-7) ANDResultL
0

1
0S

H
e
H

C
O
©

O
r

C
O
©

Processor Registers Affected CC

Condition Code Setting Register Zero CC1 CCO

—
,Positive

zero

Negative -—
-
O
©

O
o

AND ABSOLUTE

(Absolute Addressing)

Minemonic ANDA,r (*)a(,X)

Binary Code

T q a a ee TT TTT T

O;1;/010] 111 r {| IC a high order a low order
j i I 1 fd I | I I 1 1. J

765 43 2 1:0 7 65 43 2 1 0 7 65 4 3 2 1 OQ

Execution Time 4 cycles (12 clock periods)

Description

This three-byte instruction causes the contents of Register r to be logically

ANDed with the contents of memory byte pointed to by the effective

address. The result of the operation replaces the contents of register r.

The AND operation treats each bit of the argument bytes as in the truth

table below:

Bit (0-7) Bit (0-7) AND Result
0 0 0
0 1 0
1 1 1
1 0 0

Indirect addressing and/or indexing may be specified. If indexing is speci-

fied, bits 1 and O, byte O, indicate the index register and the destination of

the operation implicitly becomesregister zero.

Processor Registers Affected

Condition Code Setting

CC

Register Zero CC1 CCO

Positive 0 1

Zero 0 O

Negative 1 O

INCLUSIVE OR TO REGISTER ZERO (Register Addressing)

Mnemonic lIORZ r

Binary Code

|
O11/1};0};0];0 r

765 43 2 1 0

Execution Time 2 cycles (6 clock periods)

Description

This one-byte instruction causes the contents of the specified register,r,

to be logically Inclusive ORed with the contents of register zero. The result

of this operation replaces the contents of register zero. The contents of

register r remain unchanged.

The Inclusive OR operation treats each bit of the argument bytes as in the

truth table below:

Bit (0-7) Bit (0-7) Inclusive OR Result

0 0 0

0 1 1

1 1 1

1 0 1

Processor Registers Affected CC

Condition Code Setting Register Zero CC1 CCO

Positive 0 1

Zero 0 0

Negative 1 0

INCLUSIVE OR (Immediate Addressing)

Mnemonic Vv

Binary Code

T tf T— T —T tT fT tT
O'1/1{/0]0}1 r Vv

1 1] Jj Jj | od i
7 65 43 2 1 =0 7/65 43 2 1 0

Execution Time 2 cycles (6 clock periods)

Description

This two-byte instruction causes the contents of the specified register r to

be logically Inclusive ORed with the contents of the second byte of this

instruction. The result of this operation replaces the contents of registerr.

The Inclusive OR operation treats each bit of the argument bytes as in the

truth table below:

Bit (0-7) Bit (0-7) Inclusive OR Result

O O 0

O 1 1

1 1 1

1 O 1

Processor Registers Affected CC

Condition Code Setting Register r CC1 CCO

Positive 0 1

Zero 0 0

Negative 1 0

o
e

NCLUSIVE OR RR STIVE (Relative Addressing)

Mnemonic IORR,r (*)a

Binary Code

T TT?Ttd?TtT

0 1 { 0 { 0 A | l l 3, l L
765 43 2 1 0 765 43 2 1 0

Execution Time 3 cycles (9 clock periods)

Description

This two-byte instruction causes the contents of the specified register r to

be logically Inclusive ORed with the contents of the memory byte pointed

to by the effective address. The result of this operation replaces the previous

contents of registerr.

Indirect addressing may bespecified.

The Inclusive OR operation treats each bit of the argumentbyte as in the
truth table below:

Bit (0-7) Bit (0-7) Inclusive OR Result

0 0 0

0 1 1

1 1 1

1 0 1

Processor Registers Affected CC

Condition Code Setting Register r CC1 CCO

Positive 0 1

Zero 0 0

Negative 1 0

INCLUSIVI (Absolute Addressing)

Mnemonic IORA,r (*)a(,X)

Binary Code

| T 11-7 TT T_T OT TT
O;1/110]1] 1 r 1) IC a high order a low order

] 1 1 1 1 1 1 i 1 1 1 i J

765 43 2 1 0 765 4 3 2 1 0 765 43 2 1 0

Execution Time 4 cycles (12 clock periods)

Description

This three-byte instruction causes the contents of register r to be logically

Inclusive ORed with the contents of the memory byte pointed to by the

effective address. The result of the operation replaces the previous contents

of register r.

Indirect addressing and/or indexing may be specified. If indexing is speci-

fied, bits 1 and O, byte O, indicate the index register and the destination of

the operation implicitly becomesregister zero.

The Inclusive OR operation treats each bit of the argument bytes as in the

truth table below:

Bit (0-7) Bit (0-7) | | Inclusive OR Result

O O O

QO 1 1

1 1 1

1 O 1

Processor Registers Affected CC

Condition Code Setting Register Zero CCI CCO

Positive 0 1

Zero O 0

Negative 1 O

EXCLUSIVE OR TO REGISTER ZERO (Register Addressing)

Mnemonic EORZ r

Binary Code

0}0;71;0;0);0

765 43 2 1 0
 —

Execution Time 2 cycles (6 clock periods)

Description

This one-byte instruction causes the contents of the specified register r to

be logically Exclusive ORed with the contents of register zero. The result of

this operation replaces the contents of register zero. The contents of register

yr remain unchanged.

The Exclusive OR operation treats each bit of the argument bytes as in

the truth table below:

Bit (0-7) Bit (0-7) | | Exclusive OR Result

QO 0 0

O 1 1

1 1 O

1 0 1

Processor Registers Affected CC

Condition Code Setting Register Zero CCl CCO

Positive 0 1

Zero 0 0

Negative 1 0

71

(Immediate Addressing)

Mnemonic

Binary Code

 -
—
=
—

- V

OFO JT }O} OF! Jj jf Jj J] Jj J

7-6 5 43 2 1 °0 765 43 2 1 0

Execution Time 2 cycles (6 clock periods)

Description

This two-byte instruction causes the contents of the specified register r to

be logically Exclusive ORed with the contents of the second byte of this

instruction. The result of this operation replaces the previous contents of

register r.

The Exclusive OR operation treats each bit of the argument bytes as in

the truth table below:

Bit (0-7) Bit (0-7) Exclusive OR Result

O O 0

O 1 1

1 1 0

1 . 0 1

Processor Registers Affected CC

Condition Code Setting Registerr CCl CCO

Positive 0 1

Zero 0 0

Negative 1 0

)

EXCLUSIVE OR RELATIVE (Relative Addressing)

Mnemonic EORR,r (x)a

Binary Code

Jololilolajo} + fr ri tt
| | tf tf |

76543 2 1 0 76543 2 10

Execution Time 3 cycles (9 clock periods)

Description

This two-byte instruction causes the contents of the specified register r to

be logically Exclusive ORed with the contents of the memory byte pointed

to by the effective address. The result of this operation replaces the previous

contents of registerr.

Indirect addressing may be specified.

The Exclusive OR operation treats each bit of the argument bytes as in

the truth table below:

Bit (0-7) Bit (0-7) | | Exclusive OR Result

0 0 0

0 1 1

1 1 0

1 0 1

Processor Registers Affected CC

Condition Code Setting Registerr CCl CCO

Positive 0 1

Zero 0 0

Negative 1 0

CLUSIVE OR (Absolute Addressing)

Mnemonic (*)a(,X)

Binary Code

q | r t T T T T T T T T T

O}O;1/0;/1]1 r 1} IC |ahigh order a low order
| 1 po J} i Jt jf ft | ft

765 43 2 1 0 765 43 2 1 0 765432 10

Execution Time 4 cycles (12 clock periods)

Description

This three-byte instruction causes the contents of register r to be

Exclusive ORed with the contents of the memory byte pointed to by the

effective address. The result of the operation replaces the previous contents

of registerr.

Indirect addressing and/or indexing may be specified. If indexing is speci-

fied, bits 1 and O, byte O, indicate the index register and the destination of

the operation implicitly becomesregister zero.

The Exclusive OR operation treats each bit of the argument bytes as in

the truth table below:

Bit (0-7) Bit (0-7) Exclusive OR Result

O O O

0 1 1

1 1 0

1 O 1

Processor Registers Affected CC

Condition Code Setting Register r CCl CCO

Positive O 1

Zero O O

Negative 1 6)

14

(Register Addressing)

COMPARETO REGISTER ZERO
Mnemonic COMZ r

Binary Code

1] 1} 1/0;0/0) ©

765 43 2 1 0

Execution Time 2 cycles (6 clock periods)

Description

This one-byte instruction causes the contents of the specified register r

to be compared to the contents of register zero. The comparison will be

performed in either ‘‘arithmetic”’ or “‘logical’? mode depending on thesetting

of the COM bit in the Program Status Word.

When COM=1 (logical mode) the values will be interpreted as 8-bit

positive binary numbers; when COM=0,the values will be interpreted as 8-bit

two’s complement numbers.

The execution of this instruction only causes the Condition Codeto beset
as in the following table.

Processor Registers Affected CC

Condition Code Setting CC1 CCO

Register zero greater than Register r 0 1

Register zero equal to Register r 0 0

Register zero less than Register r 1 0

‘t
pl

G
o
l

COMPARE IMM (Immediate Addressing)

Mnemonic Vv

Binary Code

! ToT oF fF F 7
1/17; 71;O0];O; 1] + Vv

i L i I | lt

765 43 2 1 0 765 43 2 1 0

Execution Time 2 cycles (6 clock periods)

Description

This two-byte instruction causes the contents of the specified register r to

be compared to the contents of the second byte of this instruction. The

comparison will be performed in either the ‘“‘arithmetic”’ or “‘logical’’ mode

depending on the setting of the COM bit in the Program Status Word.

When COM=1 (logical mode), the values will be treated as 8-bit positive

binary numbers; when COM=0, the values will be treated as 8-bit two’s

complement numbers.

The execution of this instruction only causes the Condition Code to be set

as in the followingtable.

Processor Registers Affected CC

Condition Code Setting CCi CCO

Register r greater than v 0 1

Register r equal to v 0 0

1 0Register r less than v

(Relative Addressing)

Mnemonic COMR,r (*)a

Binary Code

] TTT 11fitilolialol + a | |
| | I l l Lj

76543 2 1 0 76543 2 1 0

Execution Time 3 cycles (9 clock periods)

Description

This two-byte instruction causes the contents of the specified register r to

be compared to the contents of the memory byte pointed to by the effective

address. The comparison will be performed in either the ‘‘arithmetic’”’ or

‘“‘logical’?’ mode depending upon thesetting of the COM bit in the Program

Status Word.

When COM=1 (logical mode), the values will be treated as 8-bit positive

binary numbers; when COM=0, the values will be treated as 8-bit, two’s

complement numbers.

The execution of this instruction only causes the Condition Code to be set

as in the followingtable.

Processor Registers Affected CC

Condition Code Setting CC1 CCO

Register r greater than memory byte 0

Register r equal to memory byte 0

Register r less than memory byte 1 o
o

=

COMPARE ABSOLUTE (Absolute Addressing)

Mnemonic COMA,r (x)a(,X)

Binary Code

| T TY TT TT T_T
1/17 7/0}1]1 r |} tC a high order a low order

| I 1 i i ft J i ft | | | ff

765 43 2 1 0 7/65 43 2 1 0 / 65 43 2 1 0

Execution Time 4 cycles (12 clock periods)

Description

This three-byte instruction causes the contents of register r to be

compared to the contents of the memory byte pointed to by the effective

address. The comparison will be performed in either the ‘‘arithmetic” or

‘logical’? mode depending on the setting of the COM bit in the Program

Status Word.

Where COM=1 (logical mode), the values will be treated as 8-bit, positive

binary numbers; when COM=O (arithmetic mode), the values will be treated

as 8-bit, two’s complement numbers.

Indirect addressing and/or indexing may be specified. If indexing is speci-

fied, bits 1 and O, byte O, indicate the index register and the destination of

the operation implicitly becomesregister zero.

The execution of this instruction only causes the Condition Code to be set

as in the following table.

Processor Registers Affected CC

Condition Code Setting CCI CCO

Register r greater than memory byte O |

Register r equal to memory byte O O

Register r less than memory byte | O

78

ROTATE REGISTER LEFT (Register Addressing)

Mnemonic RRL,r

Binary Code

1;71;0;1]0]0

765 43 2 10
 b-

—
a

Execution Time 2 cycles (6 clock periods)

Description

This one-byte instruction causes the contents of the specified register r to

be shifted left one bit. If the WC bit in the Program Status Word is set to

zero, bit #7 of register r flows into bit #0; if WC=1, then bit #7 flows into
the Carry bit and the Carry bit flowsinto bit #0.

Register bit #4 flows into the IDC if WC=1.

ioc} (NOT CHANGED)

—— — —

IDC

<<— ~<- <-+—

7 6 5 4 3 2 1 0

Note: Whenever a rotate causes bit #7 of the specified register to change

polarity, the OVF bit is set in the PSL.

Processor Registers Affected C,CC, IDC, OVF

Condition Code Setting Register r CC1 CCO

Positive 0 1

Zero 0 0

Negative 1 0

79

ROTATE REGISTER RIGHT (Register Addressing)

Mnemonic RRR,r

Binary Code

=

O,;1}O;1/0;0) F&F

/ 6543 2 1 0

Execution Time 2 cycles (6 clock periods)

Description

This one-byte instruction causes the contents of the specified register r to

be shifted right one bit. If the WC bit in the Program Status Word is set to

zero, bit #0 of the register r flows into bit #7; if WC=1, then bit #0 of the
register r flows into the Carry bit and the Carry bit flows into bit #7.

Register bit #6 flows into the IDC if WC=1.

(NOT CHANGED)

> . _ t WC=0
7 65 4 3. ~~ 1 0

IDC

a — —

ZL _] e= WC=1
7 6 5 4 3.~«O«O 1 0

Note: Whenever a rotate causes bit #7 of the specified register to change

polarity, the OVFbit is set in the PSL.

Processor Registers Affected C,CC, 1DC, OVF

Condition Code Setting Register r CC1 CCO

Positive 0 1

Zero 0 0

Negative 1 0

Mnemonic LPSU

Binary Code

1;0/0}71};0;0;1] 0

765 43 2 1 0

Execution Time 2 cycles (6 clock periods)

Description

This one-byte instruction causes the current contents of the Upper

Program Status Byte to be replaced with the contents of register zero.

See Program Status Word description for bit assignments. Bits #4 and #3

of the PSU are unassigned and will always be regarded as containing zeroes.

Processor Registers Affected F, 11, SP

Condition Code Setting N/A

LOAD PROGRAMSTATUS, LOWER

Mnemonic LPSL

Binary Code

1/0/0/1};0;0]1] 1

765 43 2 10

Execution Time 2 cycles (6 clock periods)

Description

This one-byte instruction causes the current contents of the Lower

Program Status Byte to be replaced with the contents of register zero.

See Program Status Word description for bit assignments.

Processor Registers Affected CC, IDC, RS, WC, OVF, COM, C

Condition Code Setting

The CC will take on the value in bits #7 and #6of register zero.

STORE PROGRAMSTATUS, UPPER

Mnemonic SPSU

Binary Code

O;0/0}1/0;0] 1] 0

7 65 43 2 1 0

Execution Time 2 cycles (6 clock periods)

Description

This one-byte instruction causes the contents of the Upper Program Status

Byte to be transferred into register zero.

See Program Status Word description for bit assignments. Bits #4 and #3

which are unassigned will always be stored as zeroes.

Processor Registers Affected CC

Condition Code Setting Register Zero CCl CCO

Positive 0 1

Zero O 0

Negative 1 0

STORE PROGRAMSTATUS,
Mnemonic SPSL

Binary Code

O;O0;0};1;0;/0] 1] 1

765 43 2 1 0

Execution Time 2 cycles (6 clock periods)

Description

This one-byte instruction causes the contents of the Lower Program

Status Byte to be transferred into register zero.

See Program Status Word description for bit assignments.

Processor Registers Affected CC

Condition Code Setting Register Zero CC1 CCO

Positive 0 1

Zero 0 0

Negative 1 0

 UPPER, SELECTIVE (Immediate Addressing)

Mnemonic PPSU Vv

Binary Code

rTtsftdStTdt
O11]},7/ 7/01 11110 ; Vv

i j l] l l

765 43 2 1 0 765432 10

Execution Time 3 cycles (9 clock periods)

Description

This two-byte instruction causes individual bits in the Upper Program

Status Byte to be selectively set to binary one. Whenthis instruction is

executed, each bit in the v field of the second byte of this instruction is

tested for the presence of a one andif a particular bit in the v field contains

a one, the corresponding bit in the status byte is set to binary one. Anybits

in the status byte which are not selected are not modified.

Processor Registers Affected Fit, SP

Condition Code Setting N/A

85

PRESET PROGRAM STATUS LOWER, SELECTIVE (Immediate Addressing)

Mnemonic PPSL Vv

Binary Code

TT TTT Td
O71; 1) 1) o; 17141 V

i a A A.

765 43 2 1 0 765 43 2 1 0

Execution Time 3 cycles (9 clock periods)

Description

This two-byte instruction causes individual bits in the Lower Program

Status Byte to be selectively set to binary one. When this instruction is

executed, each bit in the v field of the second byte of this instruction is

tested for the presence of a one and if a particular bit in the v field contains

a one, the corresponding bit in the status byte is set to binary one. Any bits

in the status byte which are not selected are not modified.

Processor Registers Affected CC, IDC, RS, WC, OVF, COM, C

Condition Code Setting

The CC bits may be set by the execution of this instruction.

&6

CLEAR PROGRAMSTATUS UPPER, SELECTIVE (Immediate Addressing)

Mnemonic CPSU V

Binary Code

TTT TT
O} 7111710] 1] 0]0 V

76543 2 10 765 43 2 1 0

Execution Time 3 cycles (9 clock periods)

Description

This two-byte instruction causes individual bits in the Upper Program

Status Byte to be selectively cleared. When this instruction is executed, each

bit in the v field of the second byte of this instruction is tested for the

presence of a one and if a particular bit in the v field contains a one, the

corresponding bit in the status byte is cleared to zero. Anybits in the status

byte which are not selected are not modified.

Processor Registers Affected F Il, SP

Condition Code Setting N/A

87

STATUS LO} (Immediate Addressing)

Mnemonic CPSL Vv

Binary Code

| qT T t t Tt

0 | | | 0 | 0 1 j ij. ve i A

76543 2 1 0 765 43 2 1 0

Execution Time 3 cycles (9 clock periods)

Description

This two-byte instruction causes individual bits in the Lower Program

Status Byte to be selectively cleared. When this instruction is executed, each

bit in the v field of the second byte of this instruction is tested for the

presence of a one andif a particular bit in the v field contains a one, the

corresponding bit in the status byte is cleared to zero. Anybits in the status

byte which are not selected are not modified.

Processor Registers Affected CC, IDC, RS, WC, OVF, COM, C

Condition Code Setting

The CC bits may be cleared by the execution of this instruction.

88

(Immediate Addressing)

Mnemonic TPSU Vv

Binary Code

1fol1}1/ol1lolo By

765432 10 765432 10

Execution Time 3 cycles (9 clock periods)

Description

This two-byte instruction tests individual bits in the Upper Program Status

Byte to determine if they are set to binary one. When this instruction is

executed, each bit in the v field of this instruction is tested for the presence

of a one, and if a particular bit in the v field contains a one, the corresponding

bit in the status byte is tested for a one or zero. The Condition Codeis set

to reflect the result of this operation.

If a bit in the v field is zero, the corresponding bit in the status byte is

not tested.

Processor Registers Affected CC

Condition Code Setting CC1 CCO

All of the selected bits in PSU are 1s 0 0

Not all of the selected bits in PSU are 1s 1 0

89

TEST PROGRAMSTATUSLOWER, SELECTIVE (Immediate Addressing)

Mnemonic TPSL V

Binary Code

 tT ¢f€ FFT q ae |

170}71}1)0}1;0)1

76543 2 1 0 765 43 2 1 0

Execution Time 3 cycles (9 clock periods)

Description

This two-byte instruction tests individual bits in the Lower Program

Status Byte to determine if they are set to binary one. When this instruction

is executed, each bit in the v field of this instruction is tested for a one, and

if a particular bit in the v field contains a one, the corresponding bit in the

status byte is tested for a one or zero. The Condition Code is set to reflect

the result of this operation.

Processor Registers Affected CC

Condition Code Setting CCl CCO

All of the selected bits in PSL are 1s 0 O

Not all of the selected bits in PSL are 1s] O

(Relative Addressing)

Mnemonic ZBRR (*)a

Binary Code

Tot 1 1 ae |

1;0/0/171}17/0]1] 1 | | 2

76543 2 1 ~°0 765 43 2 1 0

Execution Time 3 cycles (9 clock periods)

Description

This two-byte unconditional relative branch instruction directs the

processor to calculate the effective address differently than the usual

calculation for the Relative Addressing mode.

‘The specified value, a, is interpreted as a relative displacement from page

zero, byte zero. Therefore, displacement may be specified from - 64 to +638

bytes. The address calculation is modulo 8192,,, so the negative dis-

placement actually will develop addresses at the end of page zero. For

example, ZBRR -8, will develop an effective address of 818419, and a

ZBRR +52 will develop an effective address of 5249.

This instruction causes the processor to clear, address bits 13 and 14, the

page address bits; and to replace the contents of the Instruction Address

Register with the effective address of the instruction. This instruction may

be executed anywhere within addressable memory.

Indirect addressing may bespecified.

Processor Registers Affected None

Condition Code Setting N/A

(Relative Addressing)

Mnemonic (*)a

Binary Code

Solo iope fp
76543210 765 43 2 1 0

Execution Time 3 cycles (9 clock periods)

Description

This two-byte conditional branch instruction causes the processor to fetch

the next instruction to be executed from the memory location pointed to by

the effective address only if the two-bit v field matches the current

Condition Code field (CC) in the Program Status Word.

If the v field and CC field do not match, the next instruction is fetched

from the location following the second byte of this instruction.

Indirect addressing may bespecified.

If the v field is set to 3,g, an unconditional branch is effected.

Processor Registers Affected None

Condition Code Setting N/A

BRANCH ON CONDITION TRUE, ABSOLUTE (Absolute Addressing)

Mnemonic BCTA,v (*)a

Binary Code

T t ! 1 | T T

a low order
L L i I i

t qT . T t ' I

a high order
j i j] 1 j b

m

O; 0; OF 1,141 4

76543 2 1 0 76543 2 1 0 765 43 2 1 0

Execution Time 3 cycles (9 clock periods)

Description

This three-byte conditional branch instruction causes the processor to
fetch the next instruction to be executed from the memory location pointed

to by the effective address only if the two-bit v field matches the two-bit

Condition Codefield (CC) in the Program Status Word.

If the v field and CC field do not match, the next instruction is fetched

from the location following the second byte of this instruction.

Indirect addressing may be specified.

If the v field is set to 34g, an unconditional branchis effected.

Processor Registers Affected None

Condition Code Setting N/A

(Relative Addressing)

Mnemonic BCFR,v

Binary Code

T ee ee ee

HOPOP Toy Toa Pg

765 43 2 1 0 765 43 2 1 0

Execution Time 3 cycles (9 clock periods)

Description

This two-byte branch instruction causes the processor to fetch the next

instruction to be executed from the memory location pointed to by the

effective address only if the two-bit v field does not match the two-bit

Condition Code field (CC) in the Program Status Word.If there is no match,

the contents of the Instruction Address Register are replaced by the

effective address.

If the v field and CC field match, the next instruction is fetched from the

location following the second byte of this instruction.

Indirect addressing may be specified.

The v field may not be set to 346 as this bit combination is used for the

ZBRR operation code.

Processor Registers Affected None

Condition Code Setting N/A

BRANCH ON CONDITION FALSE, ABSOLUTE (Absolute Addressing)

Mnemonic BCFA,v (x)a

Binary Code

T TT T1117 a A
1}O0;/O0};1})1]1 V | a high order a low order

765 43 2 1 0 765 43 2 1 0 76543 2 1 0

Execution Time 3 cycles (9 clock periods)

Description

This three-byte instruction causes the processor to fetch the next

instruction to be executed from the memory location pointed to by the

effective address only if the two-bit v field does not match the two-bit

Condition Code field (CC) in the Program Status Word. If there is no match,

the contents of the Instruction Address Register are replaced by the

effective address.

If the v field and CC field match, the next instruction is fetched from the

location following the second byte of this instruction.

Indirect addressing may be specified.

The v field may not be set to 34g as this bit combination is used for the
BXA operation code.

Processor Registers Affected None

Condition Code Setting N/A

95

VE(Relative Addressing)

Mnemonic BIRR,r (*)a

Binary Code

1 q 1 tT t t T

T/1/O/71/110] & | a
I j L. l] 1

76543 2 1 0 765432 10

Execution Time 3 cycles (9 clock periods)

Description

This two-byte branch instruction causes the processor to increment the

contents of the specified register by one. If the new value in the register is

non-zero, the next instruction to be executed is taken from the memory

location pointed to by the effective address, i.e., the effective address

replaces the previous contents of the Instruction Address Register. If the

new value in register r is zero, the next instruction to be executed follows

the second byte of this instruction.

Indirect addressing may be specified.

Processor Registers Affected None

Condition Code Setting N/A

(Absolute Addressing)

Mnemonic BIRA,r (x)a

Binary Code

T a | t qt T q t I t qT TOF T

1;,1;O0/1]/1]1 r | a high order a low order

76543 2 1 0 76543 2 1 0 765 43 2 1 0

Execution Time 3 cycles (9 clock periods)

Description

This three-byte branch instruction causes the processor to increment the

contents of the specified register by one. If the new value in the registeris

non-zero, the next instruction to be executed is taken from the memory

location pointed to by the effective address, i.e., the effective address

replaces the previous contents of the Instruction Address Register. If the

new value of register r is zero, the next instruction to be executed follows

the second byte of this instruction.

Indirect addressing may be specified.

Processor Registers Affected None

Condition Code Setting N/A

(Relative Addressing)

Mnemonic BDRR,r (*)a

Binary Code

' rF Ff &€ ff f Ff

1713737117170 r | a
j 1 ey |; gy yy ff

76543 2 10 765 43 2 1 0

Execution Time 3 cycles (9 clock periods)

Description

This two-byte branch instruction causes the processor to decrement the

contents of the specified register by one. If the new value in the register is

non-zero, the next instruction to be executed is taken from the memory

location pointed to by the effective address, i.e., the effective address

replaces the previous contents of the Instruction Address Register. If the

new value in register r is zero, the next instruction to be executed follows

the second byte of this instruction.

Indirect addressing may be specified.

Processor Registers Affected None

Condition Code Setting N/A

BRANCH ON DECREMENTING REGISTER, (Absolute Addressing)

ABSOLUTE

Mnemonic BDRA,r (x)a

Binary Code

I q tot q q tT 1 t rT of | |e

T}1; 1; 1} 1] rc || a high order a low. order
4 14 1 i a | L Ll 1 i i

765 43 2 1 0 765 43 2 1 0 765 43 2 1 0

Execution Time 3 cycles (9 clock periods)

Description

This three-byte instruction causes the processor to decrement the contents

of the specified register by one. If the new value in the register is non-zero,

the next instruction to be executed is taken from the memory location

pointed to by the effective address, i.e., the effective address replaces the

previous contents of the Instruction Address Register. If the new addressin

register r is zero, the next instruction to be executed follows the second byte

of this instruction.

Indirect addressing may bespecified.

Processor Registers Affected None

Condition Code Setting N/A

9g

(Relative Addressing)

Mnemonic BRNR,r (*)a

Binary Code

T TT T TY TT TY OT

O;1;/O0;7}17]/0] vr | a
L Ld

765 43 2 1 0 76543 2 1 0

Execution Time 3 cycles (9 clock periods)

Description

This two-byte branch instruction causes the contents of the specified

register r to be tested for a non-zero value. If the register contains a non-zero

value, the next instruction to be executed is taken from the location pointed

to by the effective address, i.e., the effective address replaces the current

contents of the Instruction Address Register.

If the specified register contains a zero value, the next instruction is

fetched from the location following the second byte of this instruction.

Indirect addressing may bespecified.

Processor Registers Affected None

Condition Code Setting N/A

Mnemonic BRNA,r (*)a

SOLUTE (Absolute Addressing)

Binary Code

re a |oe
0;1;0;171/11]1 a low. order

76543 2 1 0 765432 10 765 43 2 1 0

rTTrrert T
a high order
i i i i l i p

a
n
S
E

o
o
m

Execution Time 3 cycles (9 clock periods)

Description

- The three-byte branch instruction causes the contents of the specified

register r to be tested for a non-zero value. If the register contains a non-zero

value, the next instruction to be executed is taken from the location pointed

to by the effective address,i.e., the effective address replaces the contents of

the Instruction Address Register.

If the specified register contains a zero value, the next instruction is

fetched from the location following the third byte of this instruction.

Indirect addressing may be specified.

Processor Registers Affected None

Condition Code Setting N/A

(Absolute Addressing)

Mnemonic

Binary Code

a ee ee ee
TIOlOIT; 1, 71141 | a high order a low order |

765 43 2 1 0 76543210 765 43 2 1 0

Execution Time 3 cycles (9 clock periods)

Description

This three-byte branch instruction causes the processor to perform an

unconditional branch. Indexing is required and register #3 must be specified

as the index register because the entire first byte of this instruction is

decoded by the processor. When executed, the content of the Instruction

Address Register (IAR) is replaced by the effective address.

If indirect addressing is specified, the value in the index register is added

to the indirect address to calculate the effective branch address.

Processor Registers Affected None

Condition Code Setting N/A

ZERO BRANCH TO SUBROUTINE, RELATIVE (Relative Addressing)

Mnemonic ZBSR (*)a

Binary Code

1;O;1)7)1]0;1741 I} a

765 43 2 1 0 765 43 2 1 0

Execution Time 3 cycles (9 clock periods)

Description

This two-byte unconditional subroutine branch instruction directs the

processor to calculate the effective address differently than the usual

calculation for the Relative Addressing mode.

The specified value a is interpreted as a relative displacement from page

zero, byte zero. Therefore, displacement may be specified from - 64 to +63

bytes. The address calculation is modulo 819249, so the negative displace-

ment will develop addresses at the end of page zero. For example, ZBSR

-10, will develop an effective address of 81829, and ZBSR 381 will develop

an effective address of 31jo.

This instruction causes the processorto clear the page address bits, address

bits 14 and 13, and may be executed anywhere within addressable memory.

Indirect addressing may bespecified.

When executed, this instruction causes the Stack Pointer to be incre-

mented by one, the address of the byte following this instruction is pushed

into the Return Address Stack (RAS), and control is transferred to the

effective address.

Processor Registers Affected SP

Condition Code Setting N/A

103

(Relative Addressing)

Mnemonic BSTR,v (*)a

Binary Code

TT Trereeet
O;O;1]1]1 0 Vv |

] j | l l l
76543 2 1 0 76543 2 1 0

Execution Time 3 cycles (9 clock periods)

Description

This two-byte conditional subroutine branch instruction causes the

processor to perform a subroutine branch only if the two-bit v field matches

the current Condition Code field (CC) in the Program Status Word.If the

fields match, the Stack Pointer is incremented by one and the current

contents of the Instruction Address Register, which points to the byte

following this instruction, is pushed into the Return Address Stack. The

effective address replaces the previous contents of the [AR.

If the v field and CC field do not match, the next instruction is fetched

from the location following the second byte of this instruction and the SPis

unaffected.

Indirect addressing may bespecified.

If v is set to 34g, the BSTR instruction branches unconditionally.

Processor Registers Affected SP

Condition CodeSetting N/A

(Absolute Addressing)

Mnemonic BSTA,v (x)a

Binary Code

T rtgeget TTT? STT FT

O}O}1)1 ty L | a high porder | 2 low, order |

76543 2 1 0 76543 2 1 0 76543 2 1 0

Execution Time 3 cycles (9 clock periods)

Description

This three-byte conditional subroutine branch instruction causes the

processor to perform a subroutine branch only if the two-bit v field matches

the current Condition Code Field (CC) in the Program Status Word. If the

fields match, the Stack Pointer is incremented by one and the current

contents of the Instruction Address Register, which points to the byte

following this instruction is pushed into the Return Address Stack. The

effective address replaces the previous contents of the IAR.

If the v field and the CC field do not match, the next instruction is

fetched from the location following the third byte of this instruction and the

Stack Pointer is unaffected.

Indirect addressing may bespecified.

If v is set to 34g, the BSTA instruction branches unconditionally.

Processor Registers Affected SP

Condition Code Setting N/A

ceELE ae

(Relative Addressing)

Mnemonic BSFR,v (x)a

Binary Code

Hloltl11 110 T | TT YS TTT

j l l jj | i

76543 2 1 0 76543 2 1 0

Execution Time 3 cycles (9 clock periods)

Description

This two-byte conditional subroutine branch instruction causes the

processor to perform a subroutine branch only if the two-bit v field does not

match the current Condition Code field (CC) in the Program Status Word.If

the fields do not match, the Stack Pointer is incremented by one and the

current content of the Instruction Address Register, which points to the

location following this instruction, is pushed into the Return Address Stack.

The effective address replaces the previous contents of the IAR.

If the v field and the CC match, the next instruction is fetched from the

location following this instruction and the SP is unaffected.

Indirect addressing may be specified.

The v field may not be coded as 31g because this combination is used for

the ZBSR operation code.

Processor Registers Affected | SP

Condition Code Setting N/A

(Absolute Addressing)

Mnemonic BSFA,v (x)a

Binary Code

To T tot t ft ' of qT qT qT t | 4

T}O} 1,777,717] v |} a high order a low. order
a 1 j i] i l j i i i l

765 43 2 1 0 76543 2 1 0 76543 2 1 0

Execution Time 3 cycles (9 clock periods)

Description

This three- byte conditional subroutine branch instruction causes the

processor to perform a subroutine branch only if the two-bit v field does not

match the current Condition Code (CC) in the Program Status Word. If the

fields do not match, the Stack Pointer is incremented by one and the current
content of the Instruction Address Register, which points to the location

following this instruction, is pushed into the Return Address Stack. The

effective address replaces the previous contents of the IAR.

If the v field and the CC match, the next instruction is fetched from the

location following this instruction and the SPis unaffected.

Indirect addressing may be specified.

The v field may not be coded as 34g as this combination is used for the
BSXA operation code.

Processor Registers Affected SP

Condition Code Setting N/A

(Relative Addressing)

Mnemonic BSNR,r (*)a

Binary Code

O;1}1})1]117]0 | a
ft i yt

76543 2 1 0 76543 2 10
J

Execution Time 3 cycles (9 clock periods)

Description

This two- byte subroutine branch instruction causes the contents of the

specified register r to be tested for a non-zero value. If the register contains a

non-zero value, the next instruction to be executed is taken from the

location pointed to by the effective address. Before replacing the contents of

the Instruction Address Register with the effective address, the Stack Pointer

(SP) is incremented by one and the address of the byte following the

instruction is pushed into the Return Address Stack (RAS).

If the specified register contains a zero value, the next instruction is

fetched from the location following this instruction.

Indirect addressing may bespecified.

Processor Registers Affected SP

Condition Code Setting N/A

(Absolute Addressing)

Mnemonic (*)a

Binary Code

T T_T tT TT “TTT T_T TT
O;1111/1]1]1 r || @ high order a low. order

i } Tl j i a | jet]]]]
765432 10 76543 2 1 0 765432 10

Execution Time 3 cycles (9 clock periods)

Description

This three-byte subroutine branch instruction causes the contents of the

specified register r to be tested for a non-zero value. If the register contains a

non-zero value, the next instruction to be executed is taken from the
location pointed to by the effective address. Before replacing the current

contents of the Instruction Address Register (IAR) with the effective

address, the Stack Pointer (SP) is incremented by one and the address of the

byte followingtheinstruction is pushed into the Return Address Stack (RAS).

If the specified register contains a zero value, the next instruction is

fetched from the location following this instruction.

Indirect addressing maybe specified.

Processor Registers Affected SP

Condition Code Setting N/A

(Absolute Addressing)

Mnemonic BSXA (*)a, X

Binary Code

1olatatatalata |} a high order a low order
j L 4 l 1 i 1 i L l } l 1

76543210 765 43 2 1 0 765 43 2 1 0

Execution Time 3 cycles (9 clock periods)

Description

This three-byte instruction causes the processor to perform an uncondi-

tional subroutine branch. Indexing is required and register #3 must be

specified as the index register because theentire first byte of this instruction

is decoded by the processor.

Execution of this instruction causes the Stack Pointer (SP) to be

incremented by one, the address of the byte following this instruction is

pushed into the Return Address Stack (RAS), and the effective address

replaces the contents of the Instruction Address Register.

If indirect addressing is specified, the value in the index register is added

to the indirect address to calculate the effective address.

Processor Registers Affected SP

Condition Code Setting N/A

RETURN FROM SUBROUTINE, COND

Mnemonic RETC,v

Binary Code

I

O;O/)0/ 1/0} 1) Vv

765 43 2 1 0

Execution Time 3 cycles (9 clock periods)

Description |

This one-byte instruction is used by a subroutine to conditionally effect a
return of control to the program which last issued a subroutine branch

instruction.

If the two-bit v field in the instruction matches the Condition Codefield

(CC) in the Program Status Word, the following action is taken: The address

contained in the top of the Return Address Stack replaces the previous

contents of the Instruction Address Register (LAR), and the Stack Pointeris

decremented by one.

If the v field does not match CC, the return is not effected and the next

instruction to be executed is taken from the location following this

instruction.

If v is specified as 31g, the return is executed unconditionally.

Processor Registers Affected SP

Condition Code Setting N/A

ti
ca
l

Mnemonic RETE,v

Binary Code

q

O;o}!1;/110); 17] Vv
1

765 43 2 1 0

Execution Time 3 cycles (9 clock periods)

Description

This one-byte instruction is used by a subroutineto conditionally effect a

return of control to the program which last issued a subroutine branch

instruction. Additionally, if the return is effected, the Interrupt Inhibit (I])

bit in the Program Status Word is cleared to zero, thus enabling interrupts.

This instruction is mainly intended to be used by an interrupt handling

routine because receipt of an interrupt causes a subroutine branch to be

effected and the Interrupt Inhibit bit to be set to 1. The interrupt handling

routine must be able to return and enable simultaneously so that the

interrupt routine cannot be interrupt unless that is specifically desired.

If the two-bit v field in the instruction matches the Condition Codefield

(CC) in the Program Status Word, the following action is taken: The address

contained in the top of the Return Address Stack (RAS) replaces the

previous contents of the Instruction Address Register (IAR), the Stack

Pointer is decremented by one andtheII bit is cleared to zero.

If the v field does not match CC, the return is not effected and the next

instruction to be executed is taken from the location followingthis instruction.

If v is specified as 34g, the return is executed unconditionally.

Processor Registers Affected SP , II

Condition Code Setting N/A

(Register Addressing)

Mnemonic REDD,r

Binary Code

l
O11;17/1)/010] Fr

76543210

Execution Time 2 cycles (6 clock periods)

Description

This one-byte input instruction causes a byte of data to be transferred

from the data businto register r. Signals on the data bus are considered to be

true signals, i.e., a high level will be set into the register as a one.

When executing this instruction, the processor raises the Operation

Request (OPREQ)line, simultaneously switching the M/1O line to IO and

the R/W to R (Read). Also, during theOPREQsignal, the D/C line switches

to D (Data) and the E/NE switches to NE (Non-extended).

See Input/Output section of this manual.

Processor Registers Affected CC

Condition Code Setting Register r CC1 CCO

Positive 0 1

Zero 0 0

Negative 1 0

Co
ot
e

(Register Addressing)

Mnemonic REDC,r

Binary Code

1

O;}OITI1T{/O0};0] vr

76543 2 1 0

Execution Time 2 cycles (6 clock periods)

Description

This one-byte input instruction causes a byte of data to be transferred

from the data bus into register r. Signals on the data bus are considered to be

true signals, i.e., a high level will be set into the register as a one.

When executing this instruction, the processor raises the Operation

Request (OPREQ) line, simultaneouslyswitching the M/IO line to IO, the

R/W line to R (Read), the D/C line to C (Control), and the E/NE line to NE

(Non-extended).

See Input/Output section of this manual.

Processor Registers Affected CC

Condition Code Setting Register r CCI CCO

Positive O]

Zero O 0

Negative 1 O

READ EXTENDO (Immediate Addressing)

Mnemonic REDE,r V

Binary Code

T TTT TTI
O07; 71}0}1];0}1 r Vv

1]]] j l l i
765 43 2 1 0 765 432 10

Execution Time 3 cycles (9 clock periods)

Description

This two-byte input instruction causes a byte of data to be transferred

from the data bus into register r. During the execution of this instruction,

the content of the second byte of this instruction is made available on the

address bus. Signals on the data bus are true signals, i.e., a high level is

interpreted as a one.

- During execution, the processor raises the Operation Request (OPREQ)

line, simultaneously placing the contents of the second byte of the

instruction on the address bus. During the OPREQsignal, the M/IO lineis

switched to IO,the R/W line to R (Read), line and the E/NE line to E
(Extended).

See Input/Output section of this manual.

Processor Registers Affected CC

Condition Code Setting Register r CCi CCO

Positive O 1

Zero 0 0

Negative 1 0

TAPES Pc MATA . .

WREEE DALLA (Register Addressing)

Mnemonic WRTD,r

Binary Code

+

1);1}7})7})010] r
L.

765 43 2 1 0

Execution Time 2 cycles (6 clock periods)

Description

This one-byte output instruction causes a byte of data to be made

available to an external device. The byte to be outputis taken from registerr

and made available on the data bus. Signals on the data busare true signals,

i1.e., high levels are ones.

When executing this instruction, the processor raises the Operation Request

(OPREQ) line and simultaneously places the data onthe Data Bus. Along
with the OPREQ,the M/IO line is switched to IO, the R/W signal is switched

to W (Write), and a Write Pulse (WRP) is generated. Also, during the valid

OPREQsignals, the D/C line is switched to D (Data) and the E/NE lineis

switched te NE (Non-extended).

See Input/Output section of this manual.

Processor Registers Affected None

Condition Code Setting N/A

(Register Addressing)

Mnemonic WRTC,r

Binary Code

I
1;0}1];1;0];0 r

765 43 2 1 0

Execution Time 2 cycles (6 clock periods)

Description

This one-byte output instruction causes a byte of data to be made

available to an external device.

The byte to be output is taken from register r and madeavailable on the

data bus. Signals on the data bus are true signals, i.e., high levels are ones

When executing this instruction, the processor raises the Operation

Request (OPREQ) line and simultaneously places the data on the Data Bus.

Along with the OPREQ signal, the M/IO line is switched to IO, the R/W
signal is switched to W (Write), the D/Cline is switched to C (Control), the
E/NE is switched to NE (Non-extended), and a Write Pulse (WRP) is
generated.

See the Input/Output section of this manual.

Processor Registers Affected None

Condition Code Setting N/A

a
f

(Immediate Addressing)

Mnemonic WRTE,r Vv

Binary Code

T T_T_T_T—T_T_T
1;1;0]1]0] 1 r Vv

i i i] L i l ~f

765 43 2 1 0 765 43 2 1 0

Execution Time 3 cycles (9 clock periods)

Description

This two-byte output instruction causes a byte of data to be made

available to an external device. The byte to be output is taken from registerr

and is made available on the data bus. Simultaneously, the data in the second

byte of this instruction is made available on the address bus. The second

byte, v, may be interpreted as a device address.

Signals on the busses are true levels, i.e., high levels are ones.

When executing this instruction, the processor raises the Operation

Request (OPREQ) line and simultaneously places the data from register r on

the data bus and the data from the second byte of this instruction on the

address bus. Along with OPREQ, the M/IO line is switched to IO, the R/W
line is switched to W (Write), the E/NE line is switched to E (Extended), and
a Write Pulse (WRP) is generated.

see the Input/Output section of this manual.

Processor Registers Affected None

Condition Code Setting N/A

Mnemonic NOP

Binary Code

1}1}0}0;0;0]0]0

765432 10

Execution Time 2 cycles (6 clock periods)

Description

This one-byte instruction causes the processor to take no action upon

decoding it. No registers are changed, but fetching and executing a NOP

instruction requires two processorcycles.

Processor Registers Affected None

Condition Code Setting N/A

x
n

(Immediate Addressing)

Mnemonic TMI r Vv

Binary Code

q

Way a; Toya F

76543 2 1 0 76543 2 1 0

3

Execution Time cycles (9 clock periods)

Description

This two-byte instruction tests individual bits in the specified register r to

determine if they are set to binary one. During execution, each bit in the v

field of the instruction is tested for a one, and if a particular bit in thev field

contains a one, the corresponding bit in register r is tested for a one or zero.

The condition codeis set to reflect the result of the operation.

If a bit in the v field is zero, the correspondingbit in register r is not tested.

Processor Registers Affected CC

Condition Code Setting CCl CCO

All of the selected bits are 15 0 0

Not all of the selected bits are 1s 1 0

(Register Addressing)

Mnemonic DAR,r

Binary Code

1;0;0}1;O0; 1] ©

765 43 2 1 0

Execution Time 3 cycles (9 clock periods)

Description

This one-byte instruction conditionally adds a decimal ten (two’s

complement negative six in a four-bit binary number system) to either the

high order 4 bits and/or the low order 4 bits of the specified register r.

The truth table below indicates the logical operation performed. The

operation proceeds based on the contents of the Carry (C) and Interdigit

Carry (IDC) bits in the Program Status Word. The C and IDC remain

unchanged by the execution of this instruction.

This instruction allows BCD sign magnitude arithmetic to be performed on

packed digits by the following procedure.

BCD Addition: add 66,¢ to augend1.
2. perform addition of addend and augend

3. perform DAR instruction

BCD Subtraction: 1. perform subtraction (2’s complement of subtra-

hend is added to the minuend)

2. perform DAR instruction

Since this operation is on sign-magnitude numbers, it is necessary to establish

the sign of the result prior to executing in order to properly control the defi-

nition of the subtrahend and minuend.

Interdigit Addedto

Carry Carry Register r

0 0 AAig
0 1 AO 46

1 1 OO 46

1 O OA 416

Processor Registers Affected CC

Condition Code Setting

The Condition Codeis set to a meaningless value.

HALT. ENTER WAIT STATE

Mnemonic HALT

Binary Code

0;1;0}0;0;/0];0)0

76543 2 1 0

Execution Time 2 cycles (6 clock periods)

Description

This one-byte instruction causes the processor to stop executing instruc-

tions and enter the WAIT state. The RUN/WAITline is set to the WAITstate.

The only way to enter the RUNstate after a HALT has been executed, is

to reset the 2650 or to interrupt the processor.

Processor Registers Affected None

Condition Code Setting N/A

MEMORY INTERFACE

Figure A-1 shows a complete interface between the 2650 and a 256 x 8
R/W random access memory. Since the memory chips are MOSthey can be

driven directly by the address lines and the control lines. The gates shown

are assumed to be standard 7400 series TTL so that somesignal bufferingis

assumed to be necessary. If CMOS or 74LS gates are used, some of the

buffering inverters may not be necessary. The sameis true of the data bus.

Depending on the number and nature of the I/O devices being interfaced,it

may or may not be necessary to buffer the data bus.

Because the data in and data out signals for the memory chips are bussed

together, care must be taken to avoid overlap of drivers on the data bus. In

this example, the problem is solved by using the write pulse into the memory

as the chip select input instead of using the R/W line as is conventionally
done. The R/W output from the processor is a level and is valid when

Operation Request is true. Write Pulse from the processor is gated with the

OPREQ and M/IO signals to assure proper operation.

For a large memory the next address line (ADR8) could be gated into the

chain that generates the chip select signals, with similar write pulse

generation for the higher order memory.

The OPACKsignal is assumed to be false for the duration of all memory

operations. This eliminates some gating from that control input. No

problems will be encountered with this approach as long as the memories are

fast enough for the clock speed being used with the processor. At a cycle

time of 2.4us, data must be returned to the processor by lus or less time

from the OPREQ leading edge.

ADDRESS <
OUTPUTS |

DATA I/O

2650 PROCESSOR

DATA i/O

 t
l

D
B
U
S
E
N

+5V |CLOCK

RESET

Figure A-1

1/0 INTERFACE

Figure B-1 shows one of many possible methods for buffering the data bus
and interfacing it to several devices. There are advantages to be gained by
using the Signetics 8T26. It has a PNP input buffer that keepsits low input
level current at 200uA instead of 1.6mA. This lightens the load on the
processor bus drivers and allows the processor to interfaceto several 8T26’s
if necessary. The 8T26 has four complete driver/receiver pairs in a package,
so two packages can fully buffer the 8-bit data bus.

The control signals generated for use with I/O interfaces are very
straightforward. Combining M/IO with OPREQ generates a signal that can

often be used conveniently at the I/O devices instead of having each device
derive the signal individually. In the figure it is gated with the Read/Write

information in order to control the bus buffer.

Each I/O device must handle four basic processor interface functions:

(a) bus interface
(b) data transfer logic
(c) device selection logic
(d) transfer acknowledgelogic

Depending on the nature of the complete system and the particular I/O

device, these functions can beeither extremely simple or fairly complex.

ADDRESS LINES TO MEMORY

DBUS 0

DBUS7

OPREQ

M/iO

Rw

b/c

E/NE ENABLE

2650
1/0 OPERATION

DATA
OPACK ACKNOWLEDGE TRANSFER

LOGIC LOGIC

> o a °

DEVICE

SELECTION DATA

LOGIC OouT

> 0 a N

Figure B-1

 EXTERNAL DEVICE

TO
MEMORY

BUS

DATA BUS
TO

ADDITIONAL

1/0 DEVICES

beee eaeEeeeLe SL EeEEE

INSTRUCTIONS, ADDITIONAL INFORMATION

The 2650 uses variable length instructions that are one, two or three

bytes long. The instruction length is determined by the nature of the

operation being performed and the addressing mode being used. Thus, the

instruction can be expressed in one byte when no memory operand

addressing is necessary, as with register-to-register or rotate instructions. On

the other hand, for direct addressing instructions, three bytes are allocated.

The relative and immediate addressing modes allow two-byte instructions to

be implemented.

The 2650 uses explicit operand addressing; that is, each instruction

specifies the operand address. The first byte of each 2650 instruction is

divided into three fields and specifies the operation to be performed, the

addressing modeto be used and, where appropriate, the register or condition

code mask to be used.

Function Class Register

Field Field Field

/ \ \

76543 2 1 0

The CLASSfield specifies the instruction group, the major address mode

and the number of processor cycles required for each instruction. The

CLASSfield also specifies, with one exception, the number of bytes in the

instruction. The following table showsthe specifications for each class.

CLASS INSTRUCTION ADDRESS BYTE DIRECT

FIELD GROUP REGISTER LENGTH CYCLES

0 Arithmetic Register 1 2
1 Arithmetic Immediate 2 2

2 Arithmetic Relative 2 3

3 Arithmetic Absolute 3 4

4 Control(inc. rotate) 1 2
D Control 1-2 3

6 Branch Relative 2 3

7 Branch Absolute 3 3

Within the arithmetic groups (classes 0, 1, 2, and 3) the function field

specifies one of the eight operations as follows:

FUNCTION ARITHMETIC
FIELD OPERATION

0 LOAD
1 EXCLUSIVE OR
2 AND
3 INCLUSIVE OR
4 ADD
oD SUBTRACT
6 STORE
q COMPARE

&
B

Se
ne

t

w
D

Within the branch group (classes 6 and 7) the function field specifies one

of eight operations as follows:

FUNCTION BRANCH

FIELD OPERATION

0 Branch On Condition True

1 Branch To Subroutine On Condition True

2 Branch On Register Non-Zero

3 Branch To Subroutine On Register Non-Zero

4 Branch On Condition False

9) Branch To Subroutine On Condition False

6 Branch On Incrementing Register
7 Branch On Decrementing Register

There is very little pattern to the use of the function field within the
control group (classes 4 and 5).

The register field is used to specify the index register, to specify the

operand source register, to specify the destination register, or a condition

code mask. Forthe register-to-register and the indexed instructions, register

zero is implicitly assumed to be the source or the destination of the

instruction. For all other instructions that involve a register, the register field
allows any of four registers to be specified, except for indexed branch

instructions which require that register 3 be specified.

Conditional branch instructions utilize the 2-bit register field as a

condition code mask field. A few instructions use the register field as part of

the operation code and consequently allow no variation in register usage.

sa
me

R
a

INSTRUCTION SUMMARY

SIGNETICS 2650 PROCESSOR

HEX oP Pg. HEX OP Pg. HEX OP Pg.

8C ADDA 58 98 BCFR 94 BC BSFA 107
8D 99 BD
BE OA BE
SF

84 ADDI 56 1C BCTA 93 B8 BSFR 106
85 1D B9
86 1E BA
87 1F

88 ADDR 57 18 BCTR 92 7C BSNA 109
89 19 7D
8A 1A 7E
8B 1B 7F

80 ADDZ 55 FC BDRA 99 78 BSNR_ 108
81 FD 79
82 FE 7A
83 FF 7B

AC ANDA 66 FS BDRR 98 3C BSTA 105
AD FO 3D
4E FA 3E

4F FB 3F

44 ANDI 64 DC BIRA 97 38 BSTR 104

45 DD 39

46 DE 3A

4/ DF 3B
48 ANDR~ 65 D8 BIRR 96 BF BSXA 110

4A DA
4B DB

41 ANDZ 63 5C BRNA 101 OF BXA 102
42 BD
43 GE

5F

3C BCFA 95 58 BRNR 100 EC CAMA 78

OE 5A EE

5B EF

HEX

E4

E5

E6

E7

OP

CAMI

E8

E9

EA

EB

CZMR

EO

E1

E2

E3

CYMz

Pg.

75 CPSL 88

74 CPSU

94

95

96

97

DAR

2C

2D

2E

2F

EDRA

24

25

26

2/

ERI

28

29

2A

2B

EGRR

20

21

22

23

EGRZ

87

121

HEX

40

OP Pg.

HALT 122

6C

6D

6E

6F

IDRA

64

65

66

6/

IDRI

68

69

6A

6B

IBRR

60

61

62

63

IDRZ

OC

OD

OE

OF

LODA

04

O05

06

07

LZDI

08

09

OA

OB

LZDR

00

01

02

03

LYDZ

70

68

69

67

49

HEX

93

OP

LPSL

92 LPSU

CO

77 PPSL

76 PPSU

30

31

32

33

REDC

70

71

72

73

REDD

54

55

56

57

REDE

14

15

16

17

RETC

34

35

36

37

RETE

Pg.

82

81

119

86

85

114

113.

115

111

112

DO

D1

D2

D3

RRL 79

a ©

_ Pe
g

HEX

50

51

52

53

OP

RRR

13 SPSL

12 SPSU

CC

CD

CE

CF

STRA

C8

C9

CA

CB

STRR

C1

C2

C3

STRZ

AC

AD

AE

AF

SUBA

A4

AS

A6

A/7

SUBI

A8

AQ

AA

AB

SUBR

AQ
Al

A2

A3

SUBZ

Pg.

80

84
83
54

53

52

62

60

61

59

HEX

F4

F5

F6

F7

OP Pg.

TMI 120

B5 TPSL 90

B4 TPSU 89

BO

B1

B2

B3

WRTC 117

FO

F1

F2

F3

WRTD 116

D4

D5

D6

D7

WRTE 118

9B ZBRR 91

BB ZBSR 103

HEX

00

01

02

03

04

O5

06

Q7

L@DI

08

O9

OA

OB

LZDR

OC

OD

OE

OF

LODA

12 SPSU

13 SPSL

14

15

16

17

RETC

18

19

1A

1B

BCTR

iC

1D

1E

1F

BCTA

20

21

22

23

EDRZ

49

50

51

83

84

111

92

93

71

HEX

24

25

26

2/

OP

EGRI

28

29

2A

2B

E@RR

2C

2D

2E

2F

EZRA

30

31

32

33

REDC

34

35

36

37

RETE

38

39

3A

3B

BSTR

3C

3D

SE

3F

BSTA

40 HALT

41

42

43

ANDZ

SIGNETICS 2650 PROCESSOR

Pg.

72

73

74

114

112

104

105

122

63

HEX

44

45

46

47

OP

ANDI

Pg.

64

48

49

4A

4B

ANDR 65

4C

4D

4E

4F

ANDA

50

51

52

53

RRR 80

54

55

56

5/7

REDE 115

58

59

5A

5B

BRNR 100

5C

5D

5E

5F

BRNA 101

60

61

62

63

IDRZ 67

64

65

66

6/7

IDRI 68

HEX

68

69

6A

6B

OP

IRR

6C

6D

6E

OF

IDRA

70

7
72
73

REDD

74 CPSU

75 CPSL

76 PPSU

77 PPSL

78

79

7A

7B

BSNR

7C

7D

7E

7F

BSNA

80

81

82

83

ADDZ

84

85

86

87

ADDI

Pg.

69

70

113

87

88

85

86

108

109

55

56

HEX

88

89

8A

8B

OP

ADDR

8C

8D

8E

SF

ADDA

92 LPSU

93 LPSL

94

95

96

97

DAR

98

99

9A

BCFR

9B ZBRR

9C

9D

9E

BCFA

OF BXA

AQ

Al

A2

A3

SUBZ

Pg.

57

58

81

82

121

94

91

95

102

59

HEX

A4

Ad

A6

A7

OP

SUBI

A8

AY

AA

AB

SUBR

AC

AD

AE

AF

SUBA

BO

B1

B2

B3

Pg.

60

61

62

WRTC 117

B4 TPSU

B5 TPSL

B8

B9

BA

BSFR

BB

89

90

106

ZBSR 103

BC

BD

BE

BSFA 107

BF BSXA 110

HEX

CO

OP

N@P

C1

C2

C3

STRZ

C8

C9

CA

CB

STRR

CC

CD

CE

CF

STRA

DO

D1

D2

D3

RRL

D4

D5

D6

D7

WRTE

D8

D9

DA

DB

BIRR

DC

DD

DE

DF

BIRA

EO

E1

E2

E3

COMZ

Pg.

119

52

53

54

79

118

96

97

HEX

E4

E5

E6

E7

OP

COMI

E8

E9

EA

EB

CYMR

EC

ED

EE

EF

CEMA

FO

F 1

F2

F3

WRTD

F4
F5
F6
F7

TMI

F8

FQ

FA

FB

BDRR

FC
FD
FE
FF

BDRA

Pg.

77

78

116

120

98

99

fi
se
ad

ORGANIZ

LOAD/STORE

00

01

02

03

LODZ

04

O5

06

07

L@DI

08

09

OA

OB

L@DR

OC

OD

OE

OF

LODA

C1

C2

C3

STRZ

C8

C9

CA

CB

STRR

CC

CD

CE

CF

STRA

Pg.

48

49

50

51

52

53

54

) BY FUNCTION

ARITHMETIC

80

81

82

83

ADDZ

84

85

86

87

ADDI

88

89

8A

8B

ADDR

8C

8D

8E

SF

ADDA

AO

Al

A2

A3

SUBZ

AA
A5
AG
AT

SUBI

A8

AY

AA

AB

SUBR

AC

AD

AE

AF

SUBA

60

61

62

63

IDRZ

64

65

66

IGRI

2650 INSTRUCTIONS

56

57

58

59

60

61

62

67

ARITHMETIC

68

69

6A

6B

IRR

6C

6D

6E

6F

IDRA

20

21

22

23

ESRZ

24

25

26

27

EQRI

28

29

2A

2B

EORR

2C

2D

2E

2F

ESRA

41

42

43

ANDZ

44
45
46
47

ANDI

48

49

4A

4B

ANDR

4C

4D

4E

4F

ANDA

Pg.

69

70

71

72

73 |

74

63

64

65

66

w
e

BRANCH

18

19

1A

1B

BCTR

1C

1D

1E

1F

BCTA

98

99

9A

BCFR

9C

9D

9E

BCFA

58

59

5A

5B

BRNR

5C

5D

5E

5F

BRNA

D8

DQ

DA

DB

BIRR

DC

DD

DE

DF

BIRA

F8

F9

FA

FB

BDRR

FC
FD
FE
FF

BDRA

OF BXA

9B ZBRR

Pg.

92

93

94

95

100

101

96

97

98

99

102

91

SUBROUTINE BRANCH Pg.

38

39

3A

3B

BSTR

3C

3D

SE

3F

BSTA

B8

BY

BA

BSFR

BC

BD

BE

BSFA

78

79

7A

7B

BSNR

7C

7D

7E

7F

BSNA

BF BSXA

BB

SUBROUTINE RETURN

14

15

16

17

ZBSR

RETC

34

35

36

37

RETE

104

105

106

107

108

109

110

103

111

112

COMPARE Pg.

EO COMZ 75
E1
E2
E3

E4 COMI 76

E5

E6

E7

ES CZMR 77
EQ
EA
EB

EC CZMA 78

ED
EE
EF

INPUT/OUTPUT
30 REDC 114

31

32

33

70 REDD 113

71

72

73

BO WRTC 117

B1

B2

B3

FO WRTD 116

F1

F2

F3

54 REDE 115

55

56

57

D4 WRTE 118

D5

D6

D7

PROGRAM STATUS

MANIPULATION Pg. MISCELLANEOUSPg.

92 LPSU 81 CO N@pP 119

93 LPSL 82

12 SPSU 83 40 HALT 122

13 SPSL 84

74 CPSU 87 F4 TMI 120

F5

75 CPSL 88 F6

F7

76 PPSU 85 94 DAR 121

95

77 PPSL 86 96

97

B4 TPSU 89

B5 TPSL 90

ROTATE INSTRUCTIONS

DO RRL 79

D1

D2

D3

50 RRR 80

51

52

53

S
I
G
N
E
T
I
C
S

A
S
S
E
M
B
L
E
R

2
6
5
0
M
I
C
R
O
P
R
O
C
E
S
S
O
R

L
A
N
G
U
A
G
E

2650

ASSEMBLER LANGUAGE

MANUAL

CONTENTS

| INTRODUCTION. 2
I! LANGUAGE ELEMENTS 6

CHARACTERS 6

SYMBOLS . 6
CONSTANTS ee 6
MULTIPLE CONSTANT SPECIFICATIONS . a:
EXPRESSIONS nnee 8
SPECIAL OPERATORS. 22.44.44 9

Hl SYNTAX. 2.0010
FIELDS 2...10
SYMBOLS ... 2.2... 0eT
SYMBOLIC REFERENCES 0.00.41
SYMBOLIC ADDRESSING 00000 0 11

IV PROCESSOR INSTRUCTIONS.14

V__- DIRECTIVES TO THE 2650 ASSEMBLER. 15
VI THE ASSEMBLY PROCESS 4.4.27

ASSEMBLY LISTING 00002222... 30

APPENDIX A SUMMARY OF 2650 INSTRUCTION MNEMONICS32
APPENDIXB NOTES ABOUT THE 2650PROCESSOR.......... .34
APPENDIXC ASCII ANDEBCDICCODES.............. .35
APPENDIX D COMPLETE ASCII CHARACTERSET36
APPENDIXE POWERSOFTWOTABLE37
APPENDIX F HEXADECIMAL-DECIMAL CONVERSION TABLES... . .38

Copyright April 1975, Signetics Corporation

Signetics Corporation reserves the right to make changes in the products described in this book in order to improve design or performance.

The assembly language described in this document is a symbolic language

designed specifically to facilitate the writing of programsfor the Signetics

2650 processor. The 2650 Assembler is a program which accepts symbolic

source code as input and producesa listing and/or an object module as output.

The assembler is written in standard FORTRANIV andis available either

through a timesharing service or in batch form directly from Signetics. This

is done to assure compatibility and ease of installation on a user’s own

computer equipment. It is modular and may be executed in an overlay

mode should memoryrestrictions make that necessary. The program is approx-

imately 1,250 FORTRANcard imagesin length.

An attempt was made in the design of the language to makeit similar to

other contemporary assembler languages because it was felt that such

similarity would reduce the learning time necessary to become proficient in

this language. The 2650 assembler features forward references, self-defining

constants, free format source code, symbolic addressing, syntax error

checking, load module generation, and source statementlisting.

In order to understand the 2650 instruction set, architecture, timing, inter-

face requirements and electrical characteristics, the reader is referred to the

signetics 2650 Hardware Specification section.

The assembler is a two pass program that builds a symbol table, issues

helpful error messages, produces an easily readable program listing and

outputs a computer readable object (load) module. :

The assembler features symbolic and relative addressing, forward refer-

ences, complex expression evaluations and a versatile set of Pseudo-

Operations. These features aid the programmer/engineer in producing well-

documented, working programs in a minimum of time. Additionally, the

assembler is capable of generating data in several number based systems as

well as both ASCII and EBCDIC character codes.

The assembler language provides a means to create a computer program.

The features of the Assembler are designed to meet the following goals:

@ Programs should be easy to create

@® Programs should be easy to modify

® Programs should be easy to read and understand

® A machinereadable, machine language module to be output

This assembler language has been developed with the following features:

®@ Symbolic machine operation codes (op-codes, mnemonics)

® Symbolic address assignment and references

® Relative addressing

@® Data creation statements

® Storage reservation statements

® Assembly listing control statements

@® Addresses can be generated as constants

® Character codes may be specified as ASCII or EBCDIC

® Comments and remarks may be encoded for documentation

As Assembly language program is a program written in symbolic machine

language. It is comprised of statements. A statement is either a symbolic

machine instruction, a pseudo-operation statement, or a comment.

The symbolic machineinstruction is a written specification for a particu-

lar machine operation expressed by symbolic operation codes and some-

times symbolic addresses or operands. For example:

LOC2 STRR, RO SAV

Where:

LOC2 is a symbol which will represent the memory address of the

instruction.

STRR is a symbolic op-code which represents the bit pattern of the

‘“‘store relative” instruction.

RO is a symbol which has been defined as register 0 by the

‘“HQU pseudo-op’’.

SAV is a symbol which represents the memory location into

which the contents of register 0 are to be stored.

A pseudo-operation statement is a statement which is not translated into

a machine instruction, but rather is interpreted as a directive to the

assembler program. Example:

SCHD ACON REDY

Where:

ACON is a pseudo-op which directs the assembler program to

allocate two bytes of memory.

REDY isa symbol, representing an address. The assembleris directed

to place the equivalent memory address into the byte

allocated space.

SCHD is a symbol. The assembler is to assign the memory address

of the first byte of the two allocated to this symbol.

Statements

Statements are always written in a particular format. The format is

depicted below: :

LABEL FIELD OPERATION FIELD OPERAND FIELD COMMENT FIELD

The statement is always assumed to be written on an 80 column data

processing card or an 80 column card image.

The Label Field is provided to assign symbolic names to bytes of memory.

If present, the Label Field must begin in logical column one.

The Operation Field is provided to specify a symbolic operation code or

a pseudo-operation code. If present, the Operation Field must either begin

past column one or be separated from logical column one by one or more

blanks.

The Operand Field is provided to specify arguments for the operation in

the Operation Field. The Operand Field, if present, is separated from the

Operation Field by one or more blanks.

The Comment Field is provided to enable the assembly language program-

mer to optionally place an English message stating the purpose or intent

of a statement or a group of statements. The Comment Field must be

separated from the preceding field by one or more blanks.

Comment Statement

A Comment Statement is a statement that 1s not processed by the

assembler program. It is merely reproduced on the assembly lhsting. A

Comment Statement is indicated by encoding an asterisk in logic column

one. Example:

*THIS IS A COMMENT STATEMENT

Logical columns 72-80 are never processed by the assembler, they are

always reproduced on the assembly listing without processing. This field

is a good place for sequence numbers,if desired.

Symbolic Addressing

When writing statements in symbolic machine language, 1}.e., assembler

language, the machine operation code is usually expressed symbolically.

For example, the machine instruction that stores data from register 0 into a

memory location named SAV, may be expressed as:

STRA, RO SAV

The assembler, when translating this symbolic operation code and its

arguments into machine language for the 2650, defines three bytes contain-

ing H’CC0020', where ‘0020’ is the value of SAV.

The address of the translated bytes is known because the Assembly

Program Counteris alwaysset to the address of the next byte to be assembled.

The user can attach a label to an instruction:

SAVR STRR,RO SAV

The assembler, upon seeing a valid symbol in the label field, assigns the

equivalent address to the label. In the given example, if the STRR instruction

is to be stored in the address H'0127', then the symbol SAVR would be made

equivalent to the value H’0127’ for the duration of the assembly.

The symbol could then be used anywhere in the source program to refer

to the address value or, more typically, it could be used to refer to the

instruction location. The important concept is that the address of the instruc-.

tion need not be known; only the symbol need to be used to refer to the

instruction location. Thus, when branching to the STRR instruction, one

could write:

BCTA,3 SAVR

When the three byte branch instruction is translated by the assembler,

ti
on

the address of the STRR instruction is placed in the address field of the

branch instruction.

It is also possible to use symbolic addresses which are near other locations

to refer to those locations without defining new labels. For example:

BCTR,3 BEG
BCTR,O BEG+4
ANDZ 3
BSTR,8 S+48

BEG LODA,2 PAL
HALT
SUBI,2 3

In the above example, the instruction ‘“‘BCTR,3 BEG”’ refers to the

LODA,2 PAL instruction. The instruction ““BCTR,0O BEG+4”refers

to the SUBI,2 3 instruction.

BEG+4 means the address BEG plus four bytes. This type of expression is

called relative symbolic addressing and given a symbolic address; it can be

used as a landmark to express several bytes before or after the symbolic

address. Examples: |

BCTR,3 PAL+23
BSTA,O STT-18

The arguments are evaluated like any other expression and cannot exceed

in value the maximum number that can be contained in a FORTRAN

integer constant.

Program Counter

During the assembly process the assembler maintains a FORTRAN Integer

cell that always contains the address of the next memory location to be

assembled. This cell is called the Program Counter. It is used by the assembler

to assign addresses to assembied bytes, but it is also available to the

programmer.

The character ‘‘$” is the only valid symbol containing a special character

that the assembler recognizes withouterror. “$”’ is the symbolic name of the

Program Counter. It may be used like any other symbol, but it may not

appearin the label field.

Whenusingthe ‘‘$’’, the programmer maythink of it as expressing the idea

‘*$”’ = “address of myself’’. For example,

108,¢ BCTR,3 $

This branch instruction is in location 108,,. The instruction directs the

microprocessor to “branch to myself’. The Program Counter in this

example contains the value 108, ..

Input to the assembler consists of a sequence of characters combined to

form assembly language elements. These language elements include symbols,

instruction mnemonics, constants and expressions which make up the

individual program statements that comprise a source program.

CHARACTERS

Alphabetic: A through Z

Numeric: O through 9

Special characters: blank

(left parenthesis

) nght parenthesis

+ add or positive value

- subtract or negative value

* asterisk

single quote
, comma

/ slash

$ dollar sign

< less than sign

> greater than sign

SYMBOLS

Symbols are formed from combination of characters. Symbols provide a

convenient means of identifying program elements so they can be referenced

by other elements.

1. Symbols may consist of 1 to 4 alphanumeric characters: A through Z,

O through 9.

2. Symbols must begin with an alphabetic character.

3. The character $ is a special symbol which may be used in the argument

field of a statement to represent the current value of the Location

Counter.

4. The character * is a special symbol which is used as an indirect address

indicator.

o. The characters + and - are also used as auto-increment/auto-decrement

indicators.

The following are examples of valid symbols:

DOP1 RAV3
AA TEMZ

The following are examples of invalid symbols:

LLAR begins with numeric

PA N imbedded blank

CONSTANTS

A constant is a self-defining language element. Unlike a symbol, the value ©

of a constant is its own ‘‘face’”’ value and is invariant. Internal numbers are

represented in 2’s complement notation. There are two forms in which

constants may be written: the Self-Defining Constant and the General

Constant.

Fe EA PY EF Bee, eu BS seem pt & wom &
Se Zhao F PEAT ORR EEE © SRPRE TAPESSer vwerining LoSCCS

The self-defining constant is a form of constant which is written directly

in an instruction and defines a decimal value. For example:

LODA,R3 BUFF+65

In this example, 65 is a self-defining constant. The maximum value of the

integer constant expressed by a self-defining constant is that which, when

expressed in binary, will fit within the basic arithmetic unit of the host

computer (typically 1 word).

é g £% : &
ie SaPUCerP ce F gyP es rerWEENEFa, CONSTAant3 Lgedlo

ad cb

The general constant is also written directly in an instruction, but the

interpretation of its value is dictated by a code character and delimited by

quotation marks.

LODA,R3 BUFF+H3E'

In this example, the code letter H specifies that 3E is a hexadecimal con-

stant equivalent to decimal value 62. |

The maximum size of a number generated by a general constant form

(B, O, D, H) may be no larger than the size of the FORTRANintegercell of the

host computer. However, the most important concept to understand when

using constant formsis that the final value of a resolved expression must fit

the constraints of the actual field destined to contain the value. For example:

LODA,R2 PAL+H’3EE2’- H’3EE0’'

In this case, the argument, when resolved, must fit into the 13 bits in the

actual machine instruction. Even though each of the two hexadecimal

constants are larger than can fit into 13 bits, the final value of the expression

is containable in 13 bits and therefore the constants are permitted. Similarly,

the statement DATA H’3FE'is not allowed, as the DATA statement defines
one byte quantities and H’3FE’ specifies more than 8 bits. Summarily, the

size of the evaluated expressions must be less than or equal to their corre-

sponding data fields. There are 6 types of General Constants:

Code Type

Binary Constant

Octal Constant

Decimal Constant

Hexadecimal Constant

EBCDIC Character Constant

ASCII Character Constantr
P
H
a
c
o
o
w

A binary constant consists of an optionally signed binary numberof up to

8 bits enclosed in single quotes and preceded bytheletter B, e.g., B'1011011'.
Binary informationis stored right justified.

o & 08 8

An octal constant consists of an optionally signed octal number enclosed

by single quotation marks and preceded by the letter O, e.g., O'352'. The

value will be right justified.

D:

Decimal Constant

A decimal constant consists of an optionally signed decimal number

enclosed by single quotation marks and preceded by the letter D, e.g.,

D'249’. The value will be right justified.

H: Hexadecimal Constant

A hexadecimal constant consists of an optionally signed hexadecimal

number enclosed in single quotation marks and preceded by the letter H,

e.g., H'3F’. The value will be right justified.

E: EBCDIC Character Constant

An EBCDIC character consists of a string of EBCDIC characters enclosed

by single quotation marks and preceded by the letter E, e.g., EARE YOU

THERE?’. Each character will be encoded in 8-bit EBCDIC and stored in

successive bytes. The maximum number of characters which may be

specified in one character string constant is 16.

A: ASCII Character Constant

An ASCII character constant consists of a string of ASCII characters

enclosed by quotation marks and preceded by the letter A. For example:

A'HELLO THERE’. Each character will be encoded in 7-bit ASCII and
stored in successive bytes. The high order bit is always set to zero in each

allocated byte. Up to 16 characters may be specified in one statement.

Note: See Appendix C for permissible characters and their equivalent ASCII and

EBCDIC codes. To specify a single quotation mark as a character constant

it must appear twice in the character string, e.g., A’TYPE’ HELP’ ‘NOW
will appear in storage as TYPE’HELPNOW.

MULTIPLE CONSTANT SPECIFICATIONS

General constant forms, except A and E, allow multiple specifications
within the constant expression. For example: D'52, 21, 208, 27’. A comma
separates each byte specification and successive specifications determine
successive bytes of storage. Only 16 bytes of information may be specified
in any one general constant form and each byte may be optionally signed.
For example:

H’'03,- F2,+11,- 8,33,0'
O0'271,133'.

EXPRESSIONS

An expression is an assembly language element that represents a value.

It consists of a single term or a combination of terms separated by arithmetic

operators. A term maybe a valid symbolic reference, a self-defining constant

or a general constant.

It is important to understand that although individual terms in a expression

may exceed the numbersize restriction of the 2650 (one or two bytes), they

may. not cause the numbersize of the host computer’s integer FORTRAN

constant to be exceeded.

Examples of valid expressions:

LOOP PAL-§$
LOOP+5 $-PAL+3
SAM+3-LOOP BIT- 3+H’3A’

Note: The special symbol ‘$’ represents the current value of the location
counter.

SPECIAL OPERATORS

There are two special operators that are recognized by the assembler.

They are: |

< less than sign

> greater than sign >

The assembler interprets these operators in a special way:

< perform a modulo 256divide (use high order byte)
> perform a divide by 256 (use low order byte)

These operators, when used, must appear as the first character in the

argument field. If they are imbedded in an expression, the results are

unpredictable.

These special operators are intended to be used to access a two byte

address in one byte parts using a minimum of storage. For example,if it is

desired to get the high order bits of an address (ADDB)into register 2 and the

low order bits into register 1 it could be doneas follows:

LODR,R2 APAL
LODR,R1 APAL+1

APAL ACON ADDB

or, by utilizing the special operators, it could be doneas follows:

LODI,R2 <ADDB
LODLR1 >ADDB

The first method uses 6 bytes to accomplish what the second method can do

in 4 bytes.

The special operators care most often used to facilitate the passing of an

address in registers.

Assembly language elements may be combined to symbolically express

both 2650 instructions and assembler directives. There are specific rules for

writing these instructions. This set of rules is known as the Syntax of the

symbolic assembler language. The following description assumes a logical

input of an 80-column data processing card, but since the host assembleris

written in Fortran, the input media may be magnetic tape, magnetic disk,

paper tape, etc. Only the format statement for input need be changed to

accommodate the various input media.

FIELDS

A statement prepared for processing by the assembleris logically divided

into four fields: the Name Field, the Operation Field, the Argument Field

and the Comment Field. Each field is separated by at least one blank

character. No continuation cards are allowed, and only logical columns

1 through 72 are scanned by the assembler. Logical columns 73 through

80 inclusive may be used for any desired purpose.

Name Field

The name (or label) field optionally contains a symbolic name which the

assembler assigns to the instruction specified in the remaining part of the

line. If a nameis specified, it must begin in logical column 1. The assembler

assumes that there is no nameif logical column 1 is blank. The namefield,

if present, rnust contain only a valid symbol.

Operation Field

The operation field contains a mnemonic code which represents a 2650

processor operation or an assembly directive. The operation field must be

present in every non-comment line. See Appendix A for a list of the valid

mnemonic codes. Additionally, depending on the instruction type, the

operation field may also specify a general purpose register or a condition

code.

Argument Fiele

The argument field contains one or more symbols, constants or expres-

sions separated by commas. The argument field specifies storage locations,

constants, register specifications and any other information necessary to

completely specify a machine operation or an assembler directive. Embedded

blanks are not permitted as they are considered field terminators.

£* om ay owe cure t beaciclCOmment rien

The comment field contains any valid characters in any combination.

The comment field is not processed by the assembler, but is merely repro-

duced on the listing next to the accompanying instruction. It is usually

used to explain the purpose or intention of a particular instruction or

sroup of instructions.

An entire 72 column line may be utilized to print comments by coding

an asterisk (*) in column 1. This entire card is merely reproduced on the

assembly listing without processing by the assembler.

e
r
s
t

SYMBOLS

Symbols are used in the name field of a symbolic machine instruction

to identify that particular instruction and to represent its address. Symbols

may be used for other purposes, such as the symbolic representation of

some memory address, the symbolic representation of a constant, the

symbolic representation of a register, etc.

No matter how the symbolis used, 1t must be defined. A symbolis defined

when the assembler knows what value the symbol represents. There is only

one way to define a symbol. The symbol must at some time appear either

in the namefield of an instruction or of an assembler directive. The symbol

will be assigned the current value of the Location Counter when it appears

in the name field of a machineinstruction, or it may be assigned someother

value through use of the EQU assembler directive. A symbol may not appear

in the name field more than once in a program, because this would cause the

assembler to try to redefine an already defined label. The assembler will

not do this and will flag the second appearance of a particular label as an

error.

SYMBOLIC REFERENCES

Symbols may be used to refer to storage designations, register assignments,

constants, etc. For example:

Address Name Operation Argument

101 MAZE DATA H'F5'

102 LODA,3 MAZE

The symbolic label ‘“‘MAZE”’ represents the address 101. It is used in the
machine instruction at address 102 to tell the assembler to build an instruc-

tion LODA,3 101. The symbolic label, in this case, is a way for the

programmerto specify an address without knowing exactly what the address

should be when he writes the program. In this example, assume there was a

need to modify this sequence of code: a data statement was inserted between

the original two statements.

Address Name Operation Argument

99 MAZE DATA H'F5”
9A,IB DATA H'FE,3A’

9C LODA,3 MAZE

Even though there was a program change which caused the data atMAZE

to be located at address 99, the load instruction referencing the data didn’t

have to be rewritten because the assembler could provide the proper physical

address for the symbolic address MAZE. The instruction at address 9C will

be assembled as LODA,3 99.

SYMBOLIC ADDRESSING

When writing instructions in the symbolic assembler language for the

2650, the addresses may be expressed through symbolic equivalents. The

assembler will translate the symbolic address to its numeric equivalent

during the assembly process.

It is good programming practice to makeall address references symbolic,

as this greatly eases the programmer’s job in producing a working program.

To make the register specification symbolic, one could equate a symbol to

the register number:

RG3 EQU 3

LODA,RG3 MAZE

Forward References

A previously defined symbol is one which has appeared in the namefield

before it is referenced (as above). In contrast, a forward reference is a

symbolic reference to a line of code when the symbol has not yet appeared

in the namefield. For example:

ADDA,2 COEF

COEF DATA D'123'

Forward references may be used anywhere in a program with the following

exceptions:

1. The register/condition field.

2. The symbolic argument fields of EQU, RES, ORG and DATA statements.

Relative Addressing

The programmer may reference a memory cell either directly or via

relative addressing. To refer directly to a memorycell of symbolic address

MAIN, one has merely to use the name MAIN in the argument field of the

referencing instruction. For example:

BIRA,R2 MAIN

It is also possible to express the address of a memorycell symbolically

if some nearby cell is symbolically assigned. For example, to load the

memory cell which is 5 cells higher in memory than the cell named MAIN,

one need only to refer to it as MAIN+5:

LODA,Z MAIN+5

This later method is called relative addressing, and the relative count may be

given as + or - the maximum value which can be held in one integer variable

of the host computer’s FORTRAN compiler.

Ee my gm roy vy ff™ ex ae 6 gn f & nim ay 2 A PPYhe Location Counter and Symbol “S$

There is one symbolic name, ‘‘$’’, which is automatically defined by the

assembler. This single character name is always symbolically equated to the

assembler’s Location Counter. Since the Location Counter is used by the

assembler during the assembly process and is usually equated to the address

P
e
o

of the next byte to be assembled, it represents the address of the instruction

or data currently being specified. For example: BCTR,3 $+5. The branch

address will be interpreted by the assembler to be the address of the first

byte of the branch instruction plus 5 bytes.

Hardware Relative Addressing

When using instructions which use ‘‘hardware relative addressing”’ (as

distinguished from relative addressing discussed earlier in this section), it is

important to realize the assembler will not only evaluate the expression

which is given as an operand address, but will convert it to a hardware

relative address (see the Hardware Specifications manual for a description of

the addressing modes). For example:

Address Name Operation Argument

100 - SAM LODA,R2 PAL
103 SUBI,R2 -3
105 - BIRR,R3 SAM
107 next instruction

In this code, the BIRR instruction specifies hardware relative addressing.

Even though the equivalent value of the symbolic address SAM is 100, the

relative addressing instruction requires a displacementrelative to the address

of the next sequential instruction. Therefore, the operand SAM will be

evaluated as = - (current location countertlength of BIRR instruction-SAM)

= ~(105+2-100) = -(+7) = -7. Remember, where the hardware instruction

calls for ‘“‘hardware relative addressing’’, the expression in the operandfield

will be evaluated as the displacement from the address of the next sequential

instruction. The value of this displacement may range from -64 to +63.

indirect Addressing

The symbol ‘‘*”’ is used to specify indirect addressing. For example:

BCTA,3 *KSAM

SAM ACON SUBR

In this code, the BCTA instruction specifies indirect addressing. The

assembler will set the indirect bit (byte #1, bit #7) for this instruction.

Auto-Increment and Auto-Decrement

The symbol ‘‘+’’ and ‘‘-’’ are used to specify auto-increment and auto-

decrement, respectively. For example: |

LODA,RO BUF,R3,+

In this code, which specifies auto-increment, the assembler sets bits

#6 and #5 of byte #1 to ‘‘01”’ for this instruction. This option is specified
in the instruction set tables as (,X).

2650 machine instructions may be written in symbolic code. All features

provided by the assembler such as symbolic addressing and constant genera-

tion may be used. Thefields described below are free form and are separated

by at least one blank character. The name, however, if present, must begin

in logical column 1.

LABEL OPERATION OPERAND COMMENTS

name opcode operand(s)

Where:

LABEL FIELD contains an optional label which the assembler will

assign as the symbolic address of the first byte of the

instruction.

OPERATION contains any of the 2650 processor mnemonic operation

FIELD codes as detailed in Appendix A, or any Assembler

Directive. This field may include an expression which

specifies a register or value as required by the instruction.

All symbols used in this field must have been previously

defined, i.e., no symbolic forward references are allowed.

OPERAND contains One or more operand elements such as indirect

FIELD address indicator, operand expression, index register

specification, auto-increment/auto-decrement indicator,

constant specification, etc., depending on the require-

ments of the particular instruction.

COMMENTS any characters following the argument field will be

FIELD reproduced in the assembly listing without processing.

The Comments Field must be separated from the argu-

ment field by at least one blank.

Note: Refer to Appendix A for a summary of the mnemonic op-codes and see

2650 Hardware Specification manual.

There are eleven directives which the assembler will recognize. These

assembler directives, although written much like processor instructions, are

simply commands to the assembler instead of to the processor. They direct

the assembler to perform specific tasks during the assembly process, but

have no meaning to the 2650 processor. These assembler directives are:

ORG
EQU
ACON
DATA
RES
END
EJE
PRT
SPC
TITL
PCH

sa
te
s

Go
l

ORG SET LOCATION COUNTER

The ORG directive sets the assembly Location Counter to the location

specified. The assembler assumes an ORG 0 at the beginning of the program

if no ORG statementis given.

LABEL OPERATION OPERAND

{name} ORG expression

Where:

name

expression

Examples:

LARR
STAR

optionally provides a symbol whose value will be

equated to the specified location.

when evaluated, results in a positive integer value. This

value will replace the contents of the location counter,

and bytes, subsequently assembled will be assigned

sequential memory addresses beginning with this value.

Any symbols which appear in the argument must have

been previously defined.

YORD
H'100’

EQU SPECIFY A SYMBOL EQUIVALENCE

The EQU directive tells the assembler to equate the symbol in the name

field with the evaluatable expression in the argumentfield.

LABEL OPERATION OPERAND

name EQU expression

Where:

name is the symbol which is to be assigned some value by the

execution of this directive.

expression may be resolved to zero or some integer value whichis

containable in the host computer’s FORTRANintegercell.

If a symbol is used in the argument, it must have been

previously defined.

Examples:

PAL EQU H’'10F’

LOP2 EQU PAL

RAMP EQU SLOP- 8+PAL

REG1 EQU 1

ACON DEFINE ADDRESS CONSTANT

The ACON directive tells the assembler to allocate two successive bytes of

storage. The evaluated argumentwill be stored in the two bytes, the low order

8 bits in the second byte and the high order bits in the first byte. This

directive is mainly intended to provide a double byte containing an address

for use as the indirect address for any instruction executing in the indirect

addressing mode.

LABEL OPERATION OPERAND

\ name } ACON expression

Where:

name is an optional label. If specified, the name becomesthe

symbolic address of the first byte allocated.

expression is some expression which must resolve to a positive

value or zero. If positive, the value should be no larger

than that which can be contained in two bytes.

Example:

ASUB ACON SUBR

DATA DEFINES MEMORY DATA

The DATA directive tells the assembler to allocate the exact number

of bytes required to hold the data specified in the argumentfield of this

directive. Up to 16 bytes can be specified with one DATA directive, but

the argument field may not extend past logical column 72.

OPERATION | OPERAND

LABEL

name DATA expression

Where:

name is an optional label. If used, the name becomes the

symbolic address of the first byte allocated by the

directive.

expression is a general constant, a self-defining constant or a

symbolic address. If a symbolis specified, it must have

been previously defined. A multiple constant specifica-

tion in the argument field will cause a corresponding

number of bytes to be allocated. Any other expression

that can be resolved to a single value will result in one

byte being allocated.

Examples:

PAL DATA LOOP

DATA H'03,22,FC,A1’
DATA +127

DATA D’28’

Note: If the expression evaluates to a value between O and 255 the result is an

eight bit absolute binary number. DATA +127 results in H'7F’. Also,
if the expression evaluates to a value which is less than O the result

is a 2’s complement, binary number. DATA H'- 5’ results in H’FB’.

RES RESERVE MEMORY STORAGE

The RES directive tells the assembler to reserve contiguous bytes of

storage. The number of bytes so reserved is determined by the argument.

The reserved bytes are not set to a known value, but rather the effect of this

directive is to increment the location counter.

LABEL OPERATION OPERAND

{name} RES expression

Where:

name is an optional label. If used, the name becomes the

symbolic address of the first byte allocated.

expression is some evaluatable expression which must resolve to

some positive integer or zero. The value of this expres-

sion may not exceed the maximum positive value

containableina FORTRANcell of the host computer. Ifa

symbolis specified, it must have been previously defined.

Example:

LOR RES 23

MASK RES LOR+5

RES H'1A’

yal
be

END END OF ASSEMBLY

The END directive informs the assembler that the last statement to be

assembled has been input and the assembler may proceed with the assembly.

The END directive causes the assembler to communicate the program start

address to the object module.

LABEL OPERATION OPERAND

END expression

Where:

expression may be resolved to the starting address of the program.

If this parameter is not specified, the start addressis set

to zero.

EJE EJECT THE LISTING PAGE

The EJE directive tells the assembler to advance the listing to the top of

the next page regardless of the line position on the current listing page.

The directive is used primarily to organize listing for documentation

purposes and does not appearin the listing.

LABEL OPERATION OPERAND

EJEK

PRT PRINTER CONTROL

The PRT directive tells the assembler to resume or discontinue printing

of the assembled program.

This directive is used primarily to shorten assembly time bylisting only that

portion of the program which the user needs to see. Only the PRT OFFwill

appearin thelisting.

LABEL OPERATION OPERAND

PRT on

off

Note: PRT is set ON at the beginning of an assembly of the assembler.

SPC SPACE CONTROL

The SPC directive tells the assembler to skip or space a numberoflines.

This directive is used primarily to organize listings for documentation

purposes and does not appear in the listing.

LABEL OPERATION OPERAND

SPC expression

Where:

expression is some evaluatable expression which must resolve to

some positive integer. If the value of this expression is

equal to, or greater than, the numberof lines remaining

on the page, the effect is the same as the EJE directive.

Example:

SPC

TITL TITLE

The TITL directive tells the assembler to skip to the top of the next page

and insert a given title into the main header.

This directive is used primarily for documentation purposes and does not

appearin thelisting.

LABEL OPERATION OPERAND

TITL expression

Where:

expression is the title information not to exceed forty character

positions.

Example:

TITL MAIN PROGRAM SUBROUTINE

25

PCH PUNCH CONTROL

The PCH directive tells the assembler to selectively resume or discontinue

the output of the load module.

This directive is used primarily to shorten assembly time when a load

module is not desired or when only a portion of the load module is desired.

LABEL OPERATION OPERAND

PCH

 e

Note: PCH is set ON at the beginning of an assembly by the assembler.
When PCH OFF is specified, any prior load module data is output.

The 2650 assembler translates symbolic source code into machine language

instructions. The assembler examines every source statement for syntactic

validity and produces the equivalent machine code for the 2650 processor.

This is a two pass assembler, which means, the entire source code is

scanned twice by the assembler. On thefirst pass, all defined labels and their

equivalent values are stored in a symbol table, the first byte of every instruc-

tion is fully determined, and some errors may be detected. During pass 2,

symbolic address references are replaced by their values, errors may be

detected, and a listing and load/object module is generated.

Symbol Table

The assembler builds and maintains a symbol table during the assembly

process. The symbol table contains an entry for each symbolin the assembled

program. The entry consists of the symbol itself and its value. Up to 400

symbols may be used in each program assembled. If a symbol, which

appears in the argument field of an instruction has never been defined

(never appeared in the NAMEfield), the assembler will generate an error

code on the listing because it is unable to resolve an undefined symbol and

will place zero as the unresolved value in the object module.

_ocation Counter

The assembler maintains a memory cell which it uses as a Location
Counter. This Location Counter keeps track of the address of the next

byte of storage to be allocated by the assembler. During coding, the

programmer may think of the Location Counter as containing the address

of the first byte of the instruction being written. In this assembler, the

Location Counter is also used to provide load information. This means

that the addresses displayed on an assembly listing are the actual addresses

which are to contain the corresponding information upon loading of the

object program.

Error Detection

During an assembly, the source program is checked for syntax errors.

If errors are found, appropriate notification is given and the assembly

proceeds. Although an assembled program containing errors generally will

not run properly, it is considered good practice to complete the assembly

to locate all errors at one time, rather than terminate it when an error

is encountered.

Error Codes

As shown in the listing illustration, there are three columns on the

listing in which an error indication may appear. An error displayed, in the

first column usually indicates that the error was in the Name Field, the

second column corresponds to the Operation Field, and the third corresponds

to the Argument Field. Sometimes because an error causes the assembler

to view the next field incorrectly, a valid field may be flagged as an error.

This is a consequence of the free format source language. A good rule is to

fix errors in a particular line of code as they are discovered. In this way,

erroneously flagged program errors may then be passedasvalid.

The following alphabetic characters are printed inthe error indicator

columns and imply the corresponding message.

L — Label error. The label contains too many characters, contains invalid

characters, has been previously defined, or is an invalid symbol.

O — Op-code error. The op-code mnemonic has not been recognized as a

valid mnemonic.

R — Register field error. The register field expression could not be evaluated,

or when evaluated, was less than O or greater than 3, or the register

field was not found.

S — Syntax error. The instruction has violated some syntax rule.

U — Undefined symbol. There is asymbol in the argument field which has not

been previously defined.

A — Argument error. The argument has been coded in such a way that it

cannot be resolved to a unique value.

P — Paging error. A memory access instruction has attempted to address

across a page boundary.

W — Warning. The assembler has detected a syntactically correct but unusual

construction. The error will not be counted and will not inhibit the

production of the object module.

Using the Assembler

The program is prepared by punching it into cards or otherwise trans-

ferring the program statements into a logical card image file. An ORG

statement usually occurs early in the program. If no ORG appears, the

assembler assumes an ORG O to occur before the first assembled statement.

An END statement must occur as the last statement. A program written in

the 2650 Symbolic Assembler Language should be preceded and possibly

followed by control cards for the particular computer system which is

being used. Illustration VI-1 shows the control cards for an IBM/370 DOS

system. Although the control cards may vary from system to system, the

format of the actual 2650 source program will be the same in the system.

The object module produced by the Assembler during pass 2 is directed

to the FORTRANstandard device #2, in this instance the card punch. The

source program is read by the assembler at standard device #1, the card

reader. In some systems the device assignments may be altered if desired,

through assign cards. In other systems, however, the assembler must be

recompiled with the device numbers desired being set in the main program

module.

ILLUSTRATION VI-1

Object Module

The format of the object module is: The first card or card image is always

all 9’s.

bb999999999999999

The second andall subsequent data cards are in the following format. Logical

columns(1-5) contain the load address in decimal. Each three columns(6-71)

contain the data to be loaded in decimal. Each three columns represent a

byte of data; columns (6-8), (9-11), (12-14), etc. Beginning at the address

indicated in columns (1-5) each sequential data byte is to be loaded into

sequentially ascending addresses in memory.If a 999’ appears in a particular
data byte position, that byte of information is to be ignored by the loader

and the contents of the corresponding location is not modified.

Because there is address and data on every card image, each card imageis

independent. Therefore, the order of the data cards is unimportant and

patch cards may be prepared manually by preparing a data card in the object

module format.

The last two card images each serve a special purpose. The next to last

card contains a series of '-1’ punches. This card is used to signal the end of

load information and has no other function.

The last card, which follows the '-1’ card, contains either the start
address (specified in assembler END statement) or zero in columns (1-5),

the remainder of the card contains '-1' punches which have no meaning.

29

ASSEMBLYLISTING

INustration VI-2 is a sample of a program listing produced by the 2650

Assembler. The following explanations are keyed to thelisting.

1. Page heading — which displays the current version and level of the 2650

Assembler.

. Line number — every assembled line is assigned a line number for the

programmer’s convenience.

. Address column — The numbers in this column are equal to the value

of the assembly Location Counter and indicate the address at which the

first byte (B1) is to be loaded.

. Label column — If there is a symbol in the Label Field of a line of code,

the value of the label will appear in this column. For example, in line

number 17 the value of the label SORT is H’0007’.

. Data field — This field describes the data bytes which are to be stored

sequentially starting at the address in the Address Column.

. Error columns — These columns may contain the error codes as detailed

elsewhere in this chapter.

. Source code — This area of the listing reproduces the source codeas it was

read by the assembler.

8. Page number — Every page of the listing is numbered sequentially.

9. Cumulative errors — This field indicates the total of errors detected by the

assembler during the assembly process. Warning messages (W) are not

included in this total. |

i Co
nd

ILLUSTRATION VI-2

31

O
U
R
A
N

A
I
O
E

P
O
O
P
E
D

RAREP
E
E
E
N
O
L
,

S
e
e
e
l
e
l
t
n
a
n
c
a
n
a
n
n
n
i
n
o
n
n
a
n
a
n

Se

SUMMARYOF 2650 INSTRUCTION MNEMONICS

In these tables parentheses are used to indicate options. In no case are they

coded in any instruction. The following abbreviations are used:

— register expression, must evaluate to O <r<3.

— value expression

— indirect indicator

— address expression

— index register expression

— index register expression with optional auto-increment or auto-

decrement

NOTE:

— the use of the indirect indicator is always optional.

— when an index register expression is specified, it can be followed by ', +’ or

, ~ which indicates use of auto-increment or auto-decrement of the index
register. Example:

M
x

MW
*
¥
<

LODA, 0 DPR,R3,+

BXA, BSXA are exceptions and do not permit auto-increment or auto-decrement.
— even though an address expression is specified in a hardwarerelative addressing

instruction, the assembler develops it into a value of (-64 < V < +638).

— amemory reference instruction which requires indexing may use only register

O as the destinationof the operation.

— if an index register expression is used with either the BXA or BSXA instruc-

tions it must specify index register #3 (either register bank) for indexing. Any

other value in the index field will produce an error during assembly. However,

it is not necessary to use an index register expression with these instructions;

a blank in this field will default to register 3.

LOAD/STORE INSTRUCTIONS Length (bytes)
LODZ r Load Register Zero 1

LODLr V Load Immediate 2

LODR,r (+*)a Load Relative 2

LODA,r (*)a(,X) Load Absolute 3

STRZ r Store Register Zero 1

STRR,r (*)a Store Relative 2

STRA,r (*)a(,X) Store Absolute 3

ARITHMETIC INSTRUCTIONS

ADDZ r Add to Register Zero 1

ADDI,r Vv Add Immediate 2

ADDR,r (*)a Add Relative 2

ADDA,r (*)a(,X) Add Absolute 3

SUBZ r Subtract from Register Zero 1

SUBI,r Vv Subtract Immediate 2

SUBR,r (*)a Subtract Relative 2

SUBA,r (*)a(,X) Subtract Absolute 3

LOGICAL INSTRUCTIONS

ANDZ r And to Register Zero 1

ANDLr Vv And Immediate 2

ANDR,r (*)a And Relative 2

ANDA,r (*)a(,X) And Absolute 3

IORZ r Inclusive or to Register Zero 1

IORLr V Inclusive or Immediate 2

IORR,r (*)a Inclusive or Relative 2

IORA,r (*)a(,X) Inclusive or Absolute 3

EORZ r Exclusive or to Register Zero 1

EORLr V Exclusive or Immediate 2

EORR,r (*)a Exclusive or Relative 2

EORA,r (*)a(,X) Exclusive or Absolute 3

COMPARISON INSTRUCTIONS

COMZ r Compare to Register Zero 1

COML,r V Compare Immediate 2

COMR,r (*)a Compare Relative 2

COMA,r (*)a(,X) Compare Absolute 3

ROTATE INSTRUCTIONS

RRR,r

RRL,

Rotate Register Right

Rotate Register Left

BRANCH INSTRUCTIONS

BCTR,v

BCFR,v

BCTA,v

BCFA,v

BRNR,r

BRNA,r

BIRR,r

BIRA,r

BDRR,r

BDRA,r

BXA

ZBRR

(*)a
(*)a
(*)a
(*)a
(*)a
(*)a
(*)a
(*)a
(*)a
(*)a
(*)a(,x)
(*)a

Branch on Condition True Relative

Branch on Condition False Relative

Branch on Condition True Absolute

Branch on Condition False Absolute

Branch on Register Non-Zero Relative

Branch on Register Non-Zero Absolute

Branch on Incrementing Register Relative

Branch on Incrementing Register Absolute

Branch on Decrementing Register Relative

Branch on Decrementing Register Absolute

Branch Indexed Absolute, Unconditional

Zero Branch Relative, Unconditional

SUBROUTINE BRANCH/RETURN INSTRUCTIONS

BSTR,v

BSFR,v

BSTA,v

BSFA,v

BSNR,r

BSNA,r

BSXA
RETC,v
RETE,v

ZBSR

(*)a

(*)a

(*)a

(*)a

(*)a

(*)a

(*)a(,x)

(*),a

Branch to Subroutine on Condition

True, Relative

Branch to Subroutine on Condition

False, Relative

Branch to Subroutine on Condition

True, Absolute

Branch to Subroutine on Condition

False, Absolute

Branch to Subroutine on Non-Zero

Register, Relative

Branch to Subroutine on Non-Zero

Register, Absolute

Branch to Subroutine, Indexed, Unconditional

Return From Subroutine, Conditional

Return From Subroutine and Enable

Interrupt, Conditional

Zero Branch to Subroutine

Relative, Unconditional

PROGRAM STATUS INSTRUCTIONS

LPSU
LPSL
SPSU
SPSL
CPSU
CPSL
PPSU
PPSL
TPSU
TPSL <

<
<

<
<

<

Load Program Status, Upper

Load Program Status, Lower

Store Program Status, Upper

Store Program Status, Lower

Clear Program Status, Upper, Selective

Clear Program Status, Lower, Selective

Preset Program Status, Upper, Selective

Preset Program Status, Lower, Selective

Test Program Status, Upper, Selective

Test Program Status Lower, Selective

INPUT/OUTPUT INSTRUCTIONS

WRTD,r

REDD,r

WRTC,r

REDC,r

WRTE,r

REDE,r

Write Data

Read Data

Write Control

Read Control

Write Extended

Read Extended

MISCELLANEOUS INSTRUCTIONS

HALT

DAR,r

TMLr

NOP

Halt, Enter Wait State

Decimal Adjust Register

Test Under Mask Immediate

No Operation

Length (bytes)

1

1

N
O
W
W
N
W
N
W
N
W
w
W
D

b
P

N
N
M
N
M
N
N
N
N
R
F
F
P

D
h
H
e
e

BE
M
h
R
H

33

NOTES ABOUT THE 2650 PROCESSOR

1. AUTO-INCREMENT, DECREMENT of index register. This feature is

optional on any instruction which uses indexing with the exception of

BXA and BSXA. The increment or decrement occurs before the index
register is added to the displacementin theinstruction.

. The contents of registers when used for indexing are considered to be

unsigned absolute numbers. Consequently, index registers can contain

values from 0 to 255. They ‘“‘wrap-around”’ so that the number following

255 is O.

3. Only absolute addressing instructions can be indexed.

. The Branch on Incrementing Register or Decrementing Register instruc-

tions perform the increment or decrement before testing for zero. The

only time the branch address is not taken, is when the register contains

zero.

. All hardware relative addressing is implemented as modulo 8K and there-

fore relative addressing across the top of a page boundary will result in a

physical address near the bottom of the page being accessed. For example:

1FFC,, LODR,R2 $+16

This instruction results, during execution,in accessing the byte at location

OOOC in the same page as the instruction. Similarly, negative relative

addresses from near the bottom of a page may result in an effective

address near the top of the page.

. Page boundaries cannot be indexed across.

7. Data can always be accessed across a page boundary through use of

relative indirect or absolute indirect addressing modes.

. The only way to transfer control to a program in some other pageis to

branch absolute or branch indirectly to the new page. Program execution

cannot flow across a page boundary.

. Unconditional branch or branch to subroutine instructions are coded by

specifying a value of 3 in theregister/value field of BSTA, BSTR, BCTA

or BCTR. Example:

UN EQU 3

BSTA,UN PAL
BCTR,3 LOOP

Unconditional branches on conditions false (BCFA, BCFR)are not allowed.

34

This table presents the only characters that the assembler will recognize

in an A or E type constant and their equivalent codes in hexadecimal.

VALID EBCDIC

CHARACTERS CODE

FO
F1
F2
F3
F4
FS
F6
F7
F8
F9
Cl
C2
C3
C4
C5
C6
C7
C8
C9
D1
D2
D3
D4
Dd
D6
D7
D8
D9
E2
E3
E4C

H
A
D
W
D
H
V
O
A
H
M
A
C
™
"
A
O
Q
D
A
V
A
O
m
W
v
P
o
O
M
I
N
o
a
n
h
R
H
W
w
W
n
N
n
r
o

ASC IT

CODE

30
ol
32
33
34
35
36
37
38
39
4]
42
43
44
45
46
47
48
49
4A
4B
AC
4D
4E
AF
00
ol
O2
O3
o4
DO

VALID

CHARACTERS

EBCDIC ASCII

CODE

E5
E6
E7
E8&
E9
40
4B
AD
AE
AF
50
DA
OB
oC
oD
oF
oF
60
61
6B
6C
6D
6
6F
TA
7B
TC
7D
TE
TF
AC

*may have different graphic symbols on different computer systems

CODE
56
57
58
59
5A
20
2E
28
2B
7C
26
21
24
2A
29
3B
7TE*
2D
2F
2C
25
5F*
3E
3F
3A
23
40
27
3D
22
3C

35

COMPLETE ASCIT CHARACTERSET

(MSB) b7 0 1

be 1 1

°s 0 1
bg b3 bo [by

0 0 0 0 SP p

0 0 0 1 | q

0 0 1 0 " r

0 0 1 1 # S

0 1 0 0 $ t

0 1 0 1 % u

0 1 1 0 & V

0 1 1 1 Ww

1 0 0 0 x

1 0 0 1) y

1 0 1 0 * z

1 0 1 1 + \

1 1 0 0 |

1 1 0 1 - |

1 1 1 0 ~

1 1 1 1 / DEL

68
137
274
549

1 099

c
o
f
N
r

33

67
134

268
536
073

147

294
589
179
359

719
438
877
755

511

65
131
262
524

048

097
194
388

777
554

108
217

435

870
741
483

967
934
869
738

476
953
906
813

627

o
f
r
n
r

16

64

128

256

512
024

048

096
192
384
768

536
072
144
288

576

152
304
608

216
432

864
728

456

912
824
648

296
592
184
368

736
472
944
888

776

W
N
H
r

o
O

5
N
O
M
S

gun

1.0
0.5
0.25

0.125

0.062
0.031

0.015

0.007

0.003

0.001
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000

0.000
0.000
0.000

0.000
0.000

0.000
0.000

0.000

0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000

25

625

812

906
953
976
488

244
122
061
030

O15
007
003
001

000

000
000
000

000
000

000
000

000
000
000
000

000
000
000
000

000
000
000

O00

000

25

125
562

281

140
070
035
517

258
629
814

907

953

476
238
119

059
029

014
007

003
001
000
000

000
000
000
000

000
000
000

000

Q00

p
o

W
w

625
312
156
578

789

394
697

348

674
837
418
209

604
802

901
450

725
862
931
465

232
116
058
029

014
007
003

001

O00

25
125

062
531
265

632

316
158
579
289

644
322

161
580

290
645
322
661

830

415
207
103

551
275
637

818

909

POWERS OF TWO TABLE

25
625
812

406

203
101
550

775
387
193
596

298
149
574
287

643

321
660
830

915
957
978

989

494

25
125
562
781

390
695

847
923

461

230
615
307

653
826
913
456

228
614
807

403

7Q1

625
312

656
828

914
957
478
739

869
934
467
733

366
183
O91

545

772

25
125

062

031
515
257

628
814
407
703

851

425
712

856

928

45
625

812

906
453
226
613

806

903
951

475

237

25
125
562
281

640

320
660

830

915

5
25

625

312 5
156 25

078 125

039 062 5

37

HEXADECIMAL-DECIMAL CONVERSION TABLES

From hex: \ocate each hex digit in its corresponding column position and note

the decimal equivalents. Add these to obtain the decimal value.

From decimal: (1) locate the largest decimal value in the table that will fit into
the decimal number to be converted, and (2) note its hex equivalent and hex
coiumn position. (3) Find the decimal remainder. Repeat the process on this and
subsequent remainders.

Note: Decimal, hexadecimal, (and binary) equivalents ofall

numbers from O to 255 arelisted on panels 9 - 12.

HEXADECIMAL COLUMNS

6 5 4 3 2 1
HEX = DEC HEX = DEC j|HEX = DEC |HEX = DEC HEX=DEC HEX =DEC
O 0/0 0 |0 0/10 O 0 O 0 O
1 1,048,576 |1 65536 |1 4096/1 256) 1 16/1 1
2 2,097,152 |2 131,072 |2 8192/2 512} 2 32,2 2
3 3,145,728 |3 196,608 |_3 12,288; 3 768| 3 48 3 3
4 4,194,304 |4 262,144 4 16,384) 4 1024 4 64) 4 4
5 5,242,880 |5 327,680 5 20,480 5 1,280} 5 80) 5 5
6 6,291,456 |6 393,216 |6 24576/6 1536/6 96. 6 6
7 7,340,032 |7 458,752 |7 28,672) 7 1,792; 7 112, 7 7
8 8,388,608 |8 524288 8 32,768 8 2,048 8 128 8 8
9 9,437,184 9 589,824 9 36,864| 9 2,304 9 144 9 9g
A 10,485,760 A 655,360 A 40,960 A 2,560 A 160 A 10
B 11,534,336 |B 720,896 |B 45,056 B 2816) B 176 B 11
C 12,582,912 |C 786,432 |C 49,152 C 3,072 C 192 C 12
D 13,631,488 D 851,968 D 53,248 D 3,328; D 208. D 13
E 14,680,064 E 917,504 E 57,344 E 3,584/ E 224 E 14
F 15,728,640 |F 983,040 F 61,4401 F 3,840| F 240. F 15

0123 4567 0123 4567 0123 4567

BYTE BYTE BYTE
The table provides for direct conversion of hexadecimal and decimal

numbers in these ranges:

Hexadecimal Decimal

000 to FFF 0000 to 4095

In the table, the decimal value appears at the intersection of the row

representing the most significant hexadecimal digits (167 and 16!) and

the column representing the least significant hexadecimal digit (16°).

Example: C2116 = 3105, 9

HEX 0 1 2

CO 38072 3073 3074
Cl 3088 3089 3090
C2 3104 3105 3106
C3 3120 3121 3122

38

APPENDIX F Cont'd.

10
Ll
12
13

14
15
16
17

19
LA
1B
LC
1D
LE
LF

0000
0016
0032
0048
0064
0080
0096
0112
0128
0144
0160
0176
0192
0208
0224
0240

0256
0272
0288
0304

0320
0336
0352
0368
0384
0400
0416
0432
0448
0464
0480
0496

O512
0528
0544
0560
0576
0592
0608
0624
0640
0656
0672
0688

0704
0720
0736
G752

U768
0784
0800
0816
0832
0848
0864
0880
0896
0912
0928
0944
0960
0976
0992
1008

0001
0017
0033
0049
0065
0081
0097
0113
0129
0145
0161
0177
0193
0209
0225
0241

0257
0273
0289
0305
0321
0337
0353
0369
0385
0401
O417
0433
0449
0465
0481
0497

0513
0529
0545
O561

0577
0593
0609
0625
0641
0657
0673
0689

0705
0721
0737
0753

0769
0785
0801
O817
0833
0849
0865
0881
0897
0913
0929
0945
0961
0977
0993
1009

0002
0018
0034
0050
0066
0082
0098
0114
0130
0146
0162
0178
0194
0210
0226
0242

0258
0274
0290
0306
0322
0338
0354
0370
0386
0402
0418
0434
0450
0466
0482
0498

0514
0530
0546
0562

0578
0594
0610
0676
0642
0658
0674
0690

0706
0722
0738
0754

0770
0786
0802
0818
0834
0850
0866
0882
0898
0914
0930
0946
0962
0978
0994
1010

0003
0019
0035
0051
0067
0083
0099
O1l1LS
O131
0147
0163
0179
0195
O211
0227
0243

0259
0275
O291
0307
0323
0339
0355
0371
0387
0403
0419
0435
0451
0467
0483
0499

O51i5
0531
0547
0563

0579
0595
0611
0627
0643
0659
0675
0691

0707
0723
0739
0755

O771
0787
0803
0819
0835
0851
0867
0883
0899
0915
0931
0947
0963
0979
0995
1011

0004
0020
0036
0052
0068
0084
0100
0116
0132
0148
0164
0180
0196
0212
0228
0244

0260
0276
0292
0308
0324
0340
J356
0372
0388
0404
0420
0435
0452
0468
0484
0500

0516
0532
0548
0564

0580
0596
0612
0628
0644
0660
0676
0692

0708
0724
0740
0756

0772
0788
0804
0820
0836
0852
0868
0884
0900
0916
0932
0948
0964
0980
0996
1012

0005
0021
0037
0053
0069
0085
O1O1
O11?
0133
0149
0165
0181
0197
0213
0229
0245

0261
0277
0293
0309
0325
0341
0357
0373
0389
0405
0421
0437
0453
0469
0485
O501

i
n

0517
0533
0549
0565

0581
0597
0613
0629
0645
0661
0677
0693

0799
0725
0741
0757

0773
0789
0805
0821
0837
0853
0869
0885
0901
0917
0933
0949
0965
0981
0997
1013

0006
0022
0038
0054
0070
0086
0102
0118
0134
0150
0166
0182
0198
0214
0230
0246

0262
0278
0294
0310
0326
0342
0358
0374
0390
0406
0422
0438
0454
0470
0486
0502

0518
0534
0550
0566

0582
0598
0614
0630
0646
0662
0678
0694

0710
0726
0742
0758

0774
0790
0806
0822
0838
0854
0870
0886
0902
0918
0934
0950
0966
0982
0998
1014

0007
0023
0039
0055
0071
0087
0103
0119
0135
O151
0167
0183
0199
0215
0231
0247

0263
0279
0295
0311
0327
0343
0359
0375
0391
0407
0423
0439
0455,
0471
0487
0503

0519
0535
O551
0567

0583
0599
0615
0631
0647
0663
0679
0695

O711
0727
0743
0759

0775
0791
0807
0823
0839
0855
0871
0887
0903
0919
0935
0951
0967
0983
0999
1015

0008
0024
0040
0056
0072
0088
0104
0120
0136
0152
0168
0184
0200
0216
0232
0248

0264
0280
0296
0312
0328
0344
0360
0376
0392
0408
0424
0440
0456
0472
0488
0504

0520
0536
0552
0568
0584
0600
0616
0632
0648
0664
0680
0696
0712
0728
0744
0760

0776
0792
0808
0824
0840
0856
0872
0888
0904
0920
0936
0952
0968
0984
1000
1016

0009
0025
0041
0057
0073
0089
0105
0121
0137
0153
0169
0185
0201
0217
0233
0249

0265
0281
0297
0313
0329
0345
0361
0377
0393
0409
0425
0441
0457
0473
0489
0505

0521
0537
0553
0569
0585
0601
0617
0633
0649
0665
0681
0697
0713
0729
0745
0761

0777
0793
0809
0825
0841
0857
0873
0889
0905
0921
0937
0953
0969
0985
1001
1017

A

OG10
0026
0042
0058
0074
0090
0106
0122
0138
0154
0170
0186
0202
0218
0234
0250

0266
0282
0298
0314
0330
0346
0362
0378
0394
0410
0426
0442
0458
0474
0490
0506

0522
0538
0554
0570
0586
0602
0618
0634
0650
0666
0682
0698
0714
0730
0746
0762

0778
0794
0810
0826
0842
0858
0874
0890
0906
0922
0938
0954
0970
0986
1002
1018

B

0011
0027
0043
0059
0075
0091
0107
0123
0139
0155
0171
0187
0203
0219
0235
0251

0267
0283
0299
0315
0331
0347
0363
0379
0395
0411
0427
0443
0459
0475
0491
0507

0523
0539
O555
0571
0587
0603
0619
0635
0651
0667
0683
0699
O715
0731
0747
0763

0779
0795
0811
0827
0843
0859
0875
0891
0907
0923
0939
0955
0971
0987
1003
1019

C

0012
0028
0044
0060
0076
0092
0108
0124
0140
0156
0172
0188
0204
0220
0236
0252

0268
0284
0300
0316
0332
0348
0364
0380
0396
0412
0428
0444
0466
0476
0492
0508

0524
0540
0556
0572
0588
0604
0620
0636
0652
0668
0684
0700
0716
0732
0748
0764

0780
0796
0812
0828
0844
0860
0876
0892
0908
0924
0940
0956
0972
0988
1004
1020

D

0013
0029
0045
0061
0077
0093
0109
0125
0141
0157
0173
0189
0205
0221
0237
0253

0269
0285
0301
0317
0333
0349
0365
0381
0397
0413
0429
0445
0461
0477
0493
0509

0525
0541
0557
0573
0589
0605
0621
0637
0653
0669
0685
0701
0717
0733
0749
0765

0781
0797
0813
0829
0845
0861
0877
0893
0909
0925
0941
0957
0973
0989
1005
1021

E

0014
0030
0046
0062
0078
0094
0110
0126
0142
0158
0174
0190
0206
0222
0238
0254

0270
0286
0302
0318
0334
0350
0366
0382
0398
0414
0430
0446
0462
0478
0494
0510

0526
0542
0558
0574
0590
0606
0622
0638
0654
0670
0686
0702
0718
0734
0750
0766

0782
0798
0814
0830
0846
0862
0878
0894
0910
0926.
0942
0958
0974
0990
1006
1022

F

0015
0031
0647
0063
0079
0095
0111
0127
0143
0159
0175
0191
0207
0223
0239
0255

C271
0287
0303
0319
0335
0351
0367
0383
0399
0415
G431
0447
0463
0479
0495
O511

0527
0543
0559
0575
0591
0607
0623
0639
0655
0671
0687
0703
0719
0735
0751
0767

0783
0799
0815
0831
0847
0863
6879
0895
0911
0927
0943
0959
0975
0991
1007
1023

39

APPENDIX F Cont'd.

1024
1040
1056
1072
1088
1104
1120
1136
1152
1168
1184
1200
1216
1232
1248
1264

1280
1296
1312
1328
1344
1360
1376
1392
1408
1424
1440
1456
1472
1488
1504
1520

1536
1552
1568
1584

16006
1616
1632
1648
1664
1680
1696
1712
1728
1744
176U
1776

1792
1808
1824
1840

1856
1872
1888
1904

1920
1936
1952
1968
1984
2000
2016
2032

1025
1041
1057
1073
1089
1105
1121
1137
1153
1169
1185
1201
1217
1233
1249
1265

1281
1297
1313
1329
1345
1361
1377
1393
1409
1425
1441
1457
1473
1489
1505
1521

1537
1553
1569
1585
1601
1617
1633
1649
1665
1681
1697
1713
1729
1745
1761
1777

1793
1809
1825
1841

1857
1873
1889
1905

1921
1937
1953
1969

1985
2001
2017
2033

1026
1042
1058
1074
1090
1106
1122
1138
1154
1170
1186
1202
1218
1234
1250
1266

1282
1298
1314
1330
1346
1362
1378
1394
1410
1426
1442
1458
1474
1490
1506
1522

1538
1554
1570
1586
1602
1618
1634
1650
1666
1682
1698
1714
1730
1746
1762
1778

1794
1810
1826
1842

1858
1874
1890
1906

1922
1938
1954
1970

1985
2002
2018
2034

1027
1043
1059
1075
1091
1107
1123
1139 .
1155
1171
1187
1203
1219
1235
1251
1267

1283
1299
1315
1331

1347
1363
1379
1395
1411
1427
1443
1459
1475
1491
1507
1523

1539
1555
1571
1587
1603
1619
1635
1651
1667
1683
1699
1715
1731
1747
1763
1779

1795
1811
1827
1843

1859
1875
1891
1907

1923
1939
1955
1971

1987
2003
2019
2035

1028
1044
1060
1076
1092
1108
1124
1140
1156
1172
1188
1204
1220
1236
1252
1268

1284
1300
1316
1332

1348
1364
1380
1396
1412
1428
1444
1460
1476
1492
1508
1524

1540
1556
1572
1588
1604
1620
1636
1652
1668
1684
1700
1716
1732
1748
1764
1780

1796
1812
1828
1844

1860
1876
1892
1908

1924
1940
1956
1972

1988
2004
2020
2036

1029
1045
1061
1077
1093
1109
1125
1141
1157
1173
1189
1205
1221
1237
1253
1269

1285
1301
1317
1333

1349
1365
1381
1397
1413
1429
1445
1461
1477
1493
1509
1525

1541
1557
1573
1589
1605
1621
1637
1653
1669
1685
1701
1717

1733
1749
1765
1781

1797
1813
1829
1845

1861
1877
1893
1909

1925
1941
1957
1973

1989,
2005
2021
2037

1030
1046
1062
1078
1094
1110
1126
1142
1158
1174
1190
1206
1222
1238
1254
1270

1286
1302
1318
1334

1350
1366
1382
1398
1414
1430
1446
1462
1478
1494
1510
1526

1542
1558
1574
1590
1606
1622
1638
1654
1670
1686
1702
1718

1734
1750
1766
1782

1798
1814
1830
1846

1862
1878
1894
1910

1926
1942
1958
1974

1990
2006
2022
2038

1031
1047
1063
1079
1095
1111
1127
1143
1159
1175
1191
1207
1223
1239
1255
1271

1287
1303
1319
1335

1351
1367
1383
1399
1415
1431
1447
1463
1479
1495
L511
1527

1543
1559
1575
1591
1607
1623
1639
1655
1671
1687
1703
1719

1735
1751
1767
1783

1799
1815
1831.
1847

1863
1879
1895
1911

1927
1943
1959
1975

1991
2007
2023
2039

1032
1048
1064
1080
1096
1112
1128
1144
1160
1176
1192
1208
1224
1240
1256
1272

1288
1304
1320
1336

1352
1368
1384
1400
1416
1432
1448
1464
1480
1496
1512
1528

1544
1560
1576
1592
1608
1624
1640
1656

1672
1688
1704
1720

1736
1752
1768
1784

1800
1816
1832
1848

1864
1880
1896
1912

1928
1944
1960
1976

1992
2008
2024
2040

1033
1049
1065
1081
1097
1113
1129
1145
1161
1177
1193
1209
1225
1241
1257
1273

1289
1305
1321
1337

1353
1369
1385
1401
1417
1433
1449
1465
1481
1497
1513
1529

1545
1561
1577
1593
1609
1625
1641
1657

1673
1689
1705
1721

1737
1753
1769
1785

1801
1817
1833
1849
1865
1881
1897
1913
1929
1945
1961
1977
1993
2009
2025
2041

1034
1050
1066
1082
1098
1114
1130
1146

1162
1178
1194
1210
1226
1242
1258
1274

1290
1306
1322
1338

1354
1370
1386
1402
1418
1434
1450
1466

1482
1498
1514
1530

1546
1562
1578
1594
1610
1626
1642
1658

1674
1690
1706
1722

1738
1754
1770
1786

1802
1818
1834
1850

1866
1882
1898
1914

1930
1946
1962
1978

1994
2010
2026
2042

1035
1051
1067
1083
1099
1115
1131
1147
1163
1179
1195
1211
1227
1243
1259
1275

1291
1307
1323
1339

1355
1371
1387
1403
1419
1435
1451
1467

1483
1499
1515
1531

1547
1563
1579
1595
1611
1627
1643
1659

1675
1691
1707
1723

1739
1755
1771
1787

1803
1819
1835
1851

1867
1883
1899
1915

1931
1947
1963
1979

1995
2011
2027
2043

1036
1052
1068
1084
1100
1116
1132
1148

1164
1180
1196
1212
1228
1244
1260
1276

1292
1308
1324
1340

1356
1372
1388
1404
1420
1436
1452
1468

1484
1500
1516
1532

1548
1564
1580
1596
1612
1628
1644
1660

1676
1692
1708
1724

1740
1756
1772
1788

1804
1820
1836
1852
1868
1884
1900
1916

1932
1948
1964
1980

1996
2012
2028
2044

1037
1053
1069
1085
1101
1117
1133
1149

1165
1181
1197
1213
1229
1245
1261
1277

1293
1309
1325
1341

1357
1373
1389
1405
1421
1437
1453
1469

1485
1501
L517
1533

1549
1565
1581
1597
1613
1629
1645
1661

1677
1693
1769
1725

1741
1757
1773
1789

1805
1821
1837
1853
1869
1885
1901
1917

1933
1949
1965
1981

1997
2013
2029
2045

1038
1054
1070
1086
1102
1118
1134
1150
1166
1182
1198
1214
1230
1246
1262
1278

1294
1310
1326
1342

1358
1374
1390
1406
1422
1438
1454
1479

1486
1502
1518
1534

1550
1566
1582
1598
1614
16306
1646
1662

1678
1694
1710
1726

1742
1758
1774
1790

1806
1822
1838
1854
1870
1886
1902
1918

1934
1956
1966
1982

1998
2014
2030
2046

1039
1055
1071
1087
1103
1119
1135
1151
1167
1183
1199
1215
1231
1247
1263
1279

1295
1311
1327
1343

1359
1375
1391
1407
1423
1439
1455
1471

1487
1503
1519
1535

1551
1567
1583
1599
1615
1631
1647
1663

1679
1695
1711
1727

1743
1759
1775
1791

1807
1823
1839
1855
1871
1887
1903
1919

1935
1951
1967
1983

1999
2015
2031
2047

APPENDIX F Cont'd.

0 l 2 3 4 5 6 7 8 9 A B C D E F

80 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
81 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
82 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
83 2096 20697 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111
84 21120 2113) 2114 «2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
85 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
86 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
87 2160 2161 2162 71623 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 «2174 2175
88 2176 2177) 2178 #2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
89 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
8A 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
8B 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
8C 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
8D 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
8E 2272 2273 2274 2275 2276 2277) 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
8F 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303

90 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
91 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 «2335
92 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
93 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
94 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
95 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
96 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415
97 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
98 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
99 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
9A 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
9B 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
9C 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
9D 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527
9E 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
OF 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

AO 2560 2561 2562 2563 2564 2565 2566 2567 2568 2565 2570 2571 2572 2573 2574 2575
Al 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
A2 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
A3 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
AG 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
A5 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
A6 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
A7 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
A8 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
AY 2704 2705 2706 2707 2708 2709 2710 2711 #2712 2713 2714 2715 2716 2717 2718 2719
AA 2720 2721 2722 2723 2724 2725 2726 2727) 2728 2729 2730) 2731 2732 2733 2734 2735
AB 2736 2737 2738 2739 2740 2741) 2742 2743 2744) 2745 2746 2747) 2748 2749 2750) 2751
ACO 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
ADO 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777) 2778 «2779 2780 2781 2782 2783
AEO 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
AFO 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815

BO 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
Bl 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
B2 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
B3 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
BS 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
B5 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
B6 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 292?
B7 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
B8 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
B9 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
BA 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
BB 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
BC 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
BD 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
BE 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
BF 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071

APPENDIX F Cont'd.

CO
Cl

C3
C4
C5
C6
C7

C9
CA
CB
CC
CD
CE
CF

DO
D1
D2
D3

D4
D5
D6
D7

D8
D9
DA
DB

DC
DD
DE
DF

EO
El
Ee
E3

E5
E6
E7
E8
E9
EA
EB

EC
ED
EE
EF

FO
Fl
F2
F3
F4
FS
F6
F7
F&
FS9
FA
FB

FC
FD
FE

FF

J

3072
3088
3104
3120
3136
3152
3168
3184
3200
3216
3232
3248
3264
3280
3296
3312

3328
3344
3366
3376

3392
3408
3424
3440

3456
3472
3488
3504

3520
3536
3552
3568

3584
3600
3616
3632
3648
3664
3680
3696
3712
3728
3744
3760

3776
3792
3808
3824

3840
3856
3872
3888
3904
3920
3936
3952
3968
3984
4000
4016

4032
4048
4064

4080

l

3073
3089
3105
3121
3137
3153
3169
3185
3201
3217
3233
3249
3265
328)
3297
3313

3329
3345
3361
3377

3393
3409
3425
3441

3457
3473
3489
3505
3521
3537
3553
3569

3585
3601
3617
3633
3649
3665
3681
3697
3713
3729
3745
3761

3777
3793
3809
3825

3841
3857
3873
3889
3905
3921
3937
3953
3969
3985
4001
4017
4033
4049
4065

4081

2

3074
3090
3106
3122
3138
3154
3170
3186
3202
3218
3234
3250
3266
3282
3298
3314

3330
3346
3362
3378

3394
3410
3426
3442

3458
3474
3490
3506

3522
3538
3554
3570

3586
3602
3618
3634
3650
3666
3682
3698
3714
3730
3746
3762

3778
3794
3810
3826

3842
3858
3874
3890
3906
3922
3938
3954
3970
3986
4002
4018
4034
4050
4066

4082

3

3075
3091
3107
3123
3139
3155
3171
3187
3203
3219
3235
3251
3267
3283
3299
3315

3331
3347
3363
3379

3395
3411
3427
3443

3459
3475
3491
3507

3523
3539
3555
3571

3587
3603
3619
3635
3651
3667
3683
3699
3715
3731
3747
3763

3779
3795
3811
3827

3843
3859
3875
389)
3907
3923
3939
3955
3971
3987
4003
4019
4035
4051
4067

4083

4

3076
3092
3108
3124

3140
3156
3172
3188
3204
3220
3236
3252
3268
3284
3300
3316

3332
3348
3364
3380

3396
3412
3428
3444

3460
3476
3492
3508

3524
3540
3556

3572

3588
3604
3620
3636
3652
3668
3684
3700
3716
3732
3748
3764

3780
3796
3812
3828

3844
3860
3876
3892
3908
3924
3940
3956
3972
3988
4004
4020
4036
4052
4068

4084

5

3077
3093
3109
3125

3141
3157
3173
3189
3205
3221
3237
3253
3269
3285
3301
3317

3333
3349
3365
3381

3397
3413
3429
3445

3461
3477
3493
3509

3525
3541
3557

3573

3589
3605
3621
3637
3653
3669
3685
3701
3717
3733
3749
3765

3781
3797
3813
3829

3845
3861
3877
3893
3909
3925
3941
3957
3973
3989
4005
4021
4037
4053
4069

4085

6

3078
3094
3110
3126

3142
3158
3174
3190
3206
3222
3238
3254
3270
3286
3302
3318

3334
3350
3366
3382

3398
3414
3436
3446

3462
3478
3494
3510

3526
3542
3558

3574

3590
3606
3622
3638
3654
3670
3686
3702
3718
3734
3750
3766

3782
3798
3814
3830

3846
3862
3878
3894
3910
3926
3942
3958
3974
3990
4006
4022
4038
4054
4070

4086

3079
3095
3111
3127

3143
3159
3175
3191
3207
3223
3239
3255
3271
3287
3303
3319

3335
3351
3367
3383

3399
3415
3431
3447

3463
3479
3495
3511

3527
3543
3559

3575

3591
3607
3623
3639

3655
3671
3687
3703
3719
3735
3751
3767

3783
3799
3815
3831

3847
3863
3879
3895
3911
3927
3943
3959
3975
3991
4007
4023
4039
4055
4071

4087

8

3080
3096
3112
3128

3144
3160
3176
3192
3208
3224
3240
3256
3272
3288
3304
3320

3336
3352
3368
3384

3400
3416
3432
3448

3464
3480
3496
3512
3528
3544
3560

3576

3592
3608
3624
3640
3656
3672
3688
3704
3720
3736
3752
3768

3784
3800
3816
3832

3848
3864
3880
3896
3912
3928
3944
3960
3976
3992
4008
4024
4040
4056
4072
4088

9

3081
3097
3113
3129

3145
3161
3177
3193
3209
3225
3241
3257
3273
3289
3305
3321

3337
3353
3369
3385

3401
3417
3433
3449

3465
3481
3497
3513
3529
3545
3561

3577

3593
3609
3625
3641

3657
3673
3689
3705
3721
3737
3753
3769

3785
3801
3817
3833

3849
3865
3881
3897

3913
3929
3945
3961
3977
3993
4009
4025
4041
4057
4073

4089

A

3082
3098
3114
3130

3146
3162
3178
3194
3210
3226
3242
3258
3274
3290
3306
3322

3338
3354
3370
3386

3402
3418
3434
3450

3466
3482
3498
3514

3530
3546
3562

3578

3594
3610
3626
3642
3658
3674
3690
3706
3722
3738
3754
3770

3786
3802
3818
3834

3850
3866
3882
3898
3914
3930
3946
3962
3978
3994
4010
4026
4042
4058
4074

4090

B

3083
3099
3115
3131

3147
3163
3179
3195
3211
3227
3243
3259
3275
3291
3307
3323

3339
3355
3371
3387

3403
3419
3435
3451

3467
3483
3499
3515

3531
3547
3563

3579

3595
3611
3627
3643
3659
3675
3691
3707
3723
3739
3755
3771

3787
3803
3819
3835

3851
3867
3883
3899
3915
3931
3947
3963
3979
3995
4011
4027
4043
4059
4075

4091

C

3084
3100
3116
3132

3148
3164
3180
3196
3212
3228
3244
3260
3276
3292
3308
3324

3340
3356
3372
3388
3404
3420
3436
3452
3468
3484
3500
3516
3532
3548
3564
3580

3596
3612
3628
3644
3660
3676
3692
3708
3724
3740
3756
3772
3788
3804
3820
3836

3852
3868
3884
3900
3916
3932
3948
3964
3980
3996
4012
4028
4044
4060
4076

4092

D

3085
3101
3117
3133

3149
3165
3181
3197
3213
3229
3245
3261
3277
3293
3309
3325

3341
3357
3373
3389
3405
3421
3437
3453
3469
3485
3501
3517
3533
3549
3565

3581

3597
3613
3629
3645
3661
3677
3693
3709
3725
3741
3757
3773
3789
3805
3821
3837

3853
3869
3885
3901
3917
3933
3949
3965
3981
3997
4013
4029
4045
4061
4077

4093

E

3086
3102
3118
3134

3150
3166
3182
3198
3214
3230
3246
3262
3278
3294
3310
3326

3342
3358
3374
3390
3406
3422
3438
3454
3470
3486
3502
3518
3534
3550
3566

3582

3598
3614
3630
3646
3662
3678
3694
3710
3726
3742
3758
3774
3790
3806
3822
3838

3854
3870
3886
3902
3918
3934
3950
3966
3982
3998
4014
4030
4046
4062
4078
4094

F

3087
3103
3119
3135
3151
3167
3183
3199
3215
3231
3247
3263
3279
3295
3311
3327

3343
3359
3375
3391
3407
3423
3439
3455
3471
3487
3503
3519
3535
3551
3567

3583

3599
3615
3631
3647
3663
3679
3695
3711
3727
3743
3759
3775
3791
3807
3823
3839

3855
3871
3887
3903
3919
3935
3951
3967
3983
3999
4015
4031
4047
4063
4079
4095

P
e
d

NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES

NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES NOTES

44

S
I
G
N
E
T
I
C
S

S
O
F
T
W
A
R
E

2
6
5
0
M
I
C
R
O
P
R
O
C
E
S
S
O
R

S
I
M
U
L
A
T
O
R

2650 SIMULATOR MANUAL

CONTENTS

l INTRODUCTION 3

i SIMULATOR OPERATION . 5

GENERAL toe eee 5

SIMULATED PROCESSOR STATE . 5

SIMULATED MEMORY re . 5

SIMULATED INPUT/OUTPUT INSTRUCTIONS. . 6

Hi USER COMMANDS 7

GENERAL . if

COMMAND FORMATS . 8

COMMAND DESCRIPTIONS 11

IV) =SIMULATORDISPLAY(LISTING) 2]

APPENDIX A COMMANDSUMMARY82

APPENDIX B ERROR MESSAGES 2. ~~. «33

APPENDIX C SIMULATOR RESTRICTIONS 8

APPENDIXD SIMULATOR RUN PREPARATION...36

Copyright April 1975 Signetics Corporation

Signetics Corporation reserves the right to make changes in the products described in this book in order to improve design or

performance.

The 2650 Simulator is a FORTRAN program which allows a user to

simulate the execution of his program without utilizing the 2650 processor.

The Simulator executes a 2650 program by maintaining its own internal

FORTRANstorage registers to describe the 2650 program itself, the micro-

processorregisters, the ROM/RAM memory configuration, and the input data

to be read dynamically from I/O devices. Multiple simulations of the same

program may be executed during a single simulation run. In addition,

statistical timing information may be generated. |

The Simulator requires as input both the program object module pro-

duced by the 2650 Assembler and a deck of user commands. It produces

a listing of the user’s commands, executes the program andprints (“‘displays’’)

both static and dynamic information as requested by the user’s commands.

GENERAL

Once the Simulatoris loaded and started, it performs the following actions:

@ Presets each register in simulated memory to a ““HALT”’ instruction.

Thus, if the user’s program attempts to branch to some undefined area of

memory, the current execution of the simulated program is terminated

and only relevant data is printed.

@ Reads and stores the user’s commands. These commands control the

performance of the Simulator during program execution. They are stored

in a simulator table for reference before, during, and after execution.

@ Loads the 2650 object module into simulated memory.

@ Starts the simulated program. The simulated program is started at the

address specified in the START command. If no START commandis

submitted, the program is started in the location specified in the END

statement of the simulated program (see Assembler manual). If no location

is specified in the END statement, the Simulator starts in location 0.

@ Oversees the execution of each instruction. Before an instruction is

executed, the Simulator checks the address of the instruction and the

address of the referenced memory location to see if either of these

addresses is referenced by any one of the user’s commands. If so, the

commandis executed. The Simulator then executes the current instruction,

updates all affected registers and retrieves the next instruction for

execution.

@ Terminates the simulated program. The simulation is terminated either

by the execution of a “HALT” instruction, or by having executed a

preset number of instructions or by having satisfied the conditions of the

STOP. command.

® Once the execution of one simulation is complete, the Simulator prints

any statistical timing information requested (STAT), and proceeds with

the next simulation (TEND) or terminatesitself (FEND).

SIMULATED PROCESSOR STATE

The Simulator maintains a number of FORTRAN integer cells which are

used to simulate the microprocessor’s state, 1.e. the general purpose registers,

the upper and lower program status bytes, the location counter or instruction

address register (IAR), the address of the instruction referenced and the

contents of the location referenced.

These simulated registers and status bits may be displayed dynamically,

(INSTR., REFER., TRACE.) i.e., while the simulated program is executing.

Also the general purpose registers and the status bytes may be altered dyna-

mically (SETR., SETP.).

SIMULATED MEMORY

The Simulator maintains a 2048 cell FORTRAN integer array which is

used to simulate read-write random access memory.

It is possible to configure parts of this memory into a ROM-RAM environ-

ment by using the SROM Command. If part of the simulated memoryisset

to Read-Only and an instruction attempts to store data into that memory

segment, the Simulator bypasses storing the data, prints a warning message

and continues with the next program instruction.

Using Simulator commands, the user may change parts of memory before

the program executes (PATCH) and he may display parts of memory

dynamically (DUMP.).

The simulated memory is smaller in many cases than the total memory

size of the user’s physical system. This restriction encourages the construction

of modular programs. Because the simulated memory is smaller than a

2650 page, it is not possible to fully test programs which utilize the 2650

paging system, 1.e., programs larger than 8192 bytes.

SIMULATED INPUT/OUTPUT INSTRUCTIONS

The Simulator maintains a 200-byte First In, First Out (FIFO) buffer to

store the data read from a simulated input device. This buffer must be preset

by the user command, INPUT.

When any 2650 input instruction is simulated (REDE, REDC, REDD), the

Simulator accesses the buffer. If there is data in the buffer, the next byte of

data is inserted in the simulated register specified by the input instruction.

If the buffer contents have been exhausted, a warning message is displayed

on the simulator listing.

To simulate the execution of any 2650 output instruction (WRTE, WRTC,

WRTD), the Simulator takes the data byte from the register specified in the

output instruction and displays it along with the address of the output

instruction.

GENERAL

The 2650 Simulator accepts commands which specify how the program is

to run and whatdata is to be recorded.

In any one Simulator run, the user may specify that his program be

executed any number of times. The user submits a new set of commandsfor

each execution. The final command set is followed by a final end card

(FEND), while all prior command sets are terminated with a temporary end

card (TEND) (Illust. III-1).

RATION I1I-1

EXECUTION- 3

COMMANDSET

TEND |

EXECUTION - 2
COMMANDSET

TEND |

EXECUTION- 1

COMMANDSET

Within any one commandset, the user may specify:

® That the program execution start at a specific memory location (START).

@ That the execution of the program be complete either when the numberof

instructions executed equals a specified number (LIMIT) or when the

instruction at a specific address executes (STOP.) or when the simulated

program itself executes a ‘““SHALT”’ instruction.

@ That statistics be displayed at the end of execution (STAT). The Simulator

accumulates a count of the total number of instructions executed, the

number of each type of instruction executed, and the total number of

2650 machine cycles expended. This information provides a measure of

efficiency by indicating how many 1-, 2-, or 3-byte instructions were

executed and may be used to calculate program timings.

® That certain areas of simulated memory be designated as Read-Only

(SROM) and are therefore inaccessible to any memory write operation.

@ That the contents of memory be initialized with specific data (PATCH).

@ That a FIFO (First In, First Out) buffer be used to simulate data read from

I/O devices (INPUT).

_@ That the processor state be recorded whenever a specific memory loca-

tion executes (INSTR.), whenever a specific memory location is referenced

(REFER.), or whenever any instruction executes which lies within a

specified range of memory addresses (TRACE.). The processor state

consists of the location counter, the instruction referenced and its con-

tents, the upper and the lower program status bytes, and the contents of

all the general purpose registers.

aoe

/

@ That an area of memory be dumped wheneveran instruction at a specific

memory location executes (DUMP.).

@® That certain general purpose registers (SETR.) or the program status

bytes (SETP.) be set dynamically, i.e., whenever a specific memory

location executes.

@ That comments (*x*) be interspersed between control cards.

Some of these commands execute dynamically, 1.e., when an instruction

at a specific memory location executes or when that location is referenced.

Since the simulator storage capacity limits the total number of locations

which may be retained simultaneously (while a program is executing), a

total of 80 memory locations may be specified on all the “dynamic”

commands submitted for wy one execution, 1.e., In any One commandset.

‘These dynamic commandsare identified by a trailing period (.), e.g., “STOP.”’.

This period is treated as a field separator, i.e., it is not treated as part of the

command name by the Simulator and is therefore optional. The description

for each dynamic commandidentifies which of its parameters count toward

the 380 “‘dynamic’’ command limit, 1.e., the limit of 80 memory locations.

In addition, the number of DUMP. commandsis limited to five (5); the

number of SETR. commandsis limited to four (4); the number of SETP.

commandsis limited to two (2); and the number of data read on all INPUT

cards in one commandsetis limited to 200.

All ““dynamic commands”’ are executed before the simulated instruction

is executed.

For those commands which accept only one set of parameters (LIMIT,

SROM, START) only the last set of parameters encountered is used.

COMMAND FORMATS

Illustration III-2 contains a list of the commands, their parameters and a

brief description of the commands themselves. In addition, the Simulator

treats as a comment card, any card with two consecutive asterisks (+)

starting in column 1.

The Simulator accepts information in card image form. The entire cardis

read in FORTRAN “A” format. A command must be complete on one card

as continuation cards are not allowed. Comments may appear in any order

within a commandset.

The command namestarts in column 1 and must appear as shown, except

for the optional period.

The field of characters which lies between the command name andits

parameters or between the parameters themselvesis called a field separator.

A field separator may contain any numberof characters, but none of these

characters may be hexadecimal characters (0-9, A-F). For the sake of clarity

in all the examples, the following field separators are used to indicate the

following functions:

blank (s)

()

?

Function

Identifies a command which counts toward the ‘‘dynamic’”’

command limit.

Separate a command from its parameters.

Encloses optional parameters.

Separates one set of parameters from another.

Separates one parameter from another within a set of

parameters.

Indicates that multiple parameters or sets of parameters are

legal. If a period flags a command, each of its parameter sets

counts toward the ‘“‘dynamic’’ command limit. E.g., the

following sets of commandsare identical:

1. INST. 100
INST. 200

2. INST. 100; 200

The parameters themselves must be hexadecimal numbers (0-9, A-F).

The followinglabels identify parametersin Illustration III-2:

LOC

NO

FWA

LWA

VALUE

RO, R1... R6

PSL

PSU

Location or address of an instruction which is to be

executed or the address of data whichis to be referenced.

A number of data, e.g., the total number of instructions

to be executed.

First Word Address of some area of memory.

Last Word Address of some area of memory.

The value to which somelocationis to be set.

General Purpose Registers 0-6.

Identifies Lower Program Status Byte.

Identifies Upper Program Status Byte.

COMMAND

NAME

DUMP.

FEND

INPUT

INSTR.

LIMIT

PATCH

REFER.

SETP.

SETR.

SROM

START

STAT

STOP.

TEND

TRACE.

PARAMETERS

LOC, FWA-LWA(;... ;LOC, FWA-LWA)

None

VALUE(;... ;VALUE)

LOC(;... ;LOC)

NO

LOC,VALUE(;.. . ;LOC,VALUE)

LOC(;...;LOC)

LOC(,PSL=VALUE) (,PSU=VALUE)

LOC(,RO=VALUE). . .(R6=VALUE)

FWA-LWA

LOC

None

LOC(;...;LOC)

None

FWA-LWA(;... ;FWA-LWA)

ILLUSTRATION II1-2
OMMAND SUMMAR2Y

DESCRIPTION

Display the area of memory, FWA-LWA, when-

ever the instruction at LOC executes.

Execute the last simulation and terminate the

entire run.

Define the data to be read by simulated I/O

instructions. |

Display the processor registers whenever the

instruction at LOC executes.

Specify the total numberof instructions executed.

Initialize each memory location, LOC, to VALUE.

Display the processor register whenever the in

struction at LOC is referenced by another

instruction.

Set the program status byte (lower and/or upper)

to VALUE whenever the instruction at LOC

executes.

Set the general purpose registers to VALUE

wheneverthe instruction at LOC executes.

Specify the boundaries of Read-Only Memory.

start the simulated program execution at LOC.

Display instruction statistics at end of program

execution.

Terminate the program execution when the in-

struction at LOC executes.

Execute the last simulation and prepare to read

the User Commands for the next simulatior

Display the processor registers whenever an in-

struction executes, which lies within the area of

memory, FWA-LWA.

COMMAND DESCRIPTIONS

The following commanddescriptions are alphabetized by command name.

As previously discussed all parameters are entered in hexadecimal notation

(0-9, A-F). All address parameters (LOC, FWA, LWA) are limited to the size

of simulated memory.

DUMP. DUMP SIMULATED MEMORY

This command causes the Simulator to display selected portions of

memory wheneverthe location counter matches LOC.

Each LOC counts as one “‘dynamic’’ command. The total number of

‘““dynamic’’ commandsis limited to thirty (30). The total number of LOC’s

submitted in DUMP. commandsis limited to five (5).

DUMP. LOC,FWA-LWA(;... ;LOC,FWA-LWA)

Where: DUMP.is the command name.

LOC is the address of the 2650 instruction at which the

dump occurs.

FWAis the first address of the area to be dumped.

LWAis the last address of the area to be dumped. LWA must

be larger than FWA.

Example: DUMP. DA,0-3FF 100-11A-21A

DUMP. EO-400-4FF

Note: More data may be dumped than was specified since the FWA dumped

always has a least significant digit of 0, e.g. 380, 100, etc. Similarly, LWA

always has a least significant digit of F, e.g. 3F, 10F, etc.

11

FEND FINAL END COMMAND

This command signals the Simulator that the preceding commands

complete the directives for the final simulator run. After FENDis read, the

Simulator performs the last simulation and comesto its fina] termination.

FEND

Where: FEND — specifies the command name.

Example: START 1A

TRACE QO, 100

TEND

START AA

PATCH 11, C2

FEND

B fen

INPUT DEFINE DATA FOR INPUT

This command loads data into a FIFO storage buffer from which the same

data is used to supply I/O instructions with input data. Thefirst data point

specified becomes the first one accessed by a 2650 read instruction. The last

point specified becomes the last one accessed. Should the buffer become

empty during the simulated execution, an error message is printed, the

input register remains unchanged and the simulation continues.

Any number of these command cards may be submitted as long as the

total number of data specified in one run does not exceed the size of the

FIFO storage buffer (200).

INPUT VALUE(;...;VALUE)

Where: INPUT — specifies the command name.

VALUE — specifies a 2-digit hexadecimal value.

Example: INPUT 0,1, 2, 8,10, 1A, FF

INSTR. INSTRUCTION TRACE

This command sets a break point at the specified.address. When the

instruction at this address executes, the Simulator prints out the internal

state of the simulated processor. The break point occurs before the instruc-

tion is executed.

Each address specified in an INSTR. command counts as one “‘dynamic”’

command.

INSTR. LOC(;... ;LOC)

Where: INSTR. — specifies the command.

LOC — specifies the address for a break point. The address

must be within simulated memory.

Example: INSTR. 1CE, 1A, 22

INSTR. 123-200-5E

INSTR. 74

LIMIT LIMIT THE NUMBER OF INSTRUCTIONS EXECUTED

This command determines how many instructi»ns will be executed. If the

number given in the LIMIT command is exceeded before the instruction

specified by a STOP. command executes or before a 2650 HALT instruction

is simulated, the Simulator terminates the current program operation.

Without this command, the Simulator assumes a limit of 1000, , instruc-

tions. The maximum LIMIT which may be specified is determined by the

maximum integer constant of the FORTRAN compiler used.

LIMIT NO

Where: LIMIT — specifies the command.

NO —isanumber which determines the maximum number of

instructions to be executed.

Example: LIMIT 200
LIMIT 2F

Go
l

PATCH PATCH SIMULATED MEMORY

This command alters the contents of memory before a simulation run.It

may be used to alter the contents of any byte in memory and overrides load

information in the object module for the duration of one simulation run.

Any number of these commands may be given in a simulator command

stream.

PATCH LOC,VALUE(;... ;LOC,VALUE)

Where: PATCH — specifies the command.

LOC — specifies the simulated memory address which is to

be changed.

VALUE — specifies a 2-digit hexadecimal number to be

stored at LOC.

Example: PATCH O,1F 1,0 2.5E

PATCH 102, EE

REFER. MEMORY REFERENCE TRACE

This command causes a break point to occur whenever one of the specified

addresses is referenced by a simulated instruction. During the break point,

the Simulator prints out the internal state of the simulated processor. The

data byte of immediate addressing instructions is handled like an ordinary

operand address.

Each address specified in a REFER. command counts as one “dynamic”

command.

REFER. LOC(;LOC. . . ;LOC)

Where: REFER. — specifies the command.

LOC — specifies the effective operand address for a break

point. The address must be within simulated memory.

Example: REFER. SFF/21/18E
REFER. 200
REFER. 0, 50, 22F

SETP. SET PROGRAM STATUS SYTE

The SETP. command dynamically alters the upper and/or the lower pro-

sram status bytes. The specified program status byte is set when the

address parameter supplied in the command, LOC, equals the location

counter.

A SETP. command must set at least one program status byte. Up to two

SETP. commands may be given in a simulator command stream. Each LOC

submitted counts as one ‘‘dynamic’’ command.

The PSL and PSU maybeentered in any order.

SETP. LOC(,PSL=VALUE) (,PSU=VALUE)

Where: SETP. — specifies the command.

LOC — specifies the simulated execution address where the

program status byte is to beset.

PSL — specifies that a value is to be entered into PSL.

PSU — specifies that a value is to be entered into PSU.

VALUE — specifies the 2-digit hexadecimal value to be

entered into the program status byte.

Example: SETP. DA PSL=05

SETP. 1OE, PSL=01 PSU=00

18

SETR. SET GENERAL PURPOSE REGISTER

This command dynamically sets the general purpose registers during

simulated program execution. Using this command,anyorall of the general

purpose registers can be set when the location counter value is equal to the

address parameter, LOC, supplied in this command.

A SETR. command without parameters is not permitted. Up to four

SETR. commands may be given in a simulator command stream. Each LOC

counts as one “‘dynamic’”’ command.

Register identifiers may appear in any order.

SETR. LOC(,RO=VALUE).. .(,R6=VALUE)

Where: SETR. — specifies the command.

LOC — specifies the simulated execution address where the

registers are to be set.

RO — indicates the general purpose register to be set. RO

R1
R2
R3
R4
Ro
R6

alwaysrefers to general purpose register 0. R1, R2, and

R3 specify the registers in register bank zero. R4, R5

and R6 specify R1, R2, and R38in register bank one.

VALUE specifies the 2-digit hexadecimal value to be stored

in the selected register.

Example: SETR.

SETR.

LOA R1=38F, R2=00, R3=5
2F3 RO=FF, R5=00

SROM DEFINE THE BOUNDARIES OF READ ONLY MEMORY

This command allows the user to simulate a Read Only/Read Write

Memory environment. Whenever a 2650 instruction attempts to store data

in the area defined as Read Only, a warning messageis printed on the simula-

tion listing. The data is not actually stored, but the simulation run continues.

SROM FWA-LWA

Where: SROM — specifies the command.

FWA — specifies the first address of the simulated ROM

area.

LWA — specifies the last address of the simulated ROM area.

LWA must be greater in value than the FWA. The addresses

specified are inclusive.

Example: SROM 100-FF

20

START START SIMULATION

This command specifies the address at which simulated execution begins.

The address specified in the START commandsupersedes the start address

in the load object module. The start address in the load object module is set

by an ENDstatement during program assembly andis used by the Simulator

if no START commandis given (see the 2650 Assembler Language Manual

for the END statement).

START LOC

Where: START — specifies the command.

LOC — specifies a start address for the program to be

simulated. :

Example: START 10A

START 2

STAT DISPLAY INSTRUCTION STATISTICS

This command causes a list of 2650 instructions with the number of

times each was executed to be printed out at the end of the simulation run.

STAT

Where: STAT — specifies the command.

P
a
d

STOP. STOP SIMULATED EXECUTION

This command terminates the current simulated instruction execution

when the location counter matches the command argument, LOC.

Each LOC countsas one ‘‘dynamic’’ command.

STOP. LOC(;...;LOC)

Where: STOP. — specifies the command.

LOC — specifies the instruction address at which simulated

execution ceases. |

TEND TEMPORARY END COMMAND

This command signals the Simulator that the preceding commands com-

plete the directives for a simulator run. After the TEND is read, the

Simulator begins simulated execution of the 2650 program. Because TENDis

a temporary end, the Simulator assumes that there is another command

stream following it. The last command stream in a simulation run must be

terminated with a FEND(final end) command.

TEND

Where: TEND — specifies the command.

Example: PATCH 01,15 OA, FF

TEND

START 100

PATCH 01,E2 OA, FF
FEND

TRACE. TRACE PROGRAM FLOW

This command causes break points to occur at each instruction within an

area of memory. The user specifies two addresses. If the simulated processor

accesses an instruction at an address that falls between the specified add-

resses, the Simulator prints out the internal state of the simulated processor.

Each set of FWA,LWAcounts as one ‘‘dynamic’’ command.

Where:

Example:

TRACE. FWA-LWA(;... ;FWA-LWA)

TRACE. — specifies the command.

FWA — specifies from what address the trace is in effect.

LWA — specifies to what address the trace is in effect. LWA

must be larger in value than FWA. The addresses specified

are inclusive.

TRACE. O-15F, 250-3FF
TRACE. 1-A, 3FF-40A
TRACE. 10-1A 50-5A 60-7A

25

s
—

As the Simulator reads each commandset, it prints the card imagesof the

commandset and then executes the program. During program execution the

following commandsresult in some form ofdisplay:

DUMP.
INSTR.
REFER.
TRACE.

DUMP.results in the display of an entire area of memory while thelast

three commands result in some form oftrace, 1.e., a display of the processor

state:

Instruction address register (IAR) or location counter

Instruction executed (INST)

Instruction referenced or effected (EADDR)

Contents of the instruction referenced or effected (EADDR)

Program status byte upper (PSU)

Program status byte lower (PSL)

General purpose registers (RO, R1, R2, R3, R4, R5, R6)

Illustrations IV-1 through IV-4 contain the printout or display output from

one Simulator run. Illustration IV-1 shows the first command set, which

contains commandsto:

@ Start at location 0 (START)
@ Initialize locations 55-5F, locations 61-6B and location 19 (PATCH)

® Dumplocations 55-77 whenever either location O or location 38 executes

(DUMP)

@ Trace locations 14-1A (TRACE)

Illustrations [V-1 and IV-2 show the results of the first commandset:

@ A dump of locations 55-77. Note that a larger area is dumped than was

specified.

@ 30 traces

@ A final dump of locations 55-77

When the program execution for the first command set is complete, the

Simulator reports:

@ The number of machine cycles executed

@ The numberof instructions executed

Illustration IV-3 shows the second commandset. It is exactly the same as

the first command set except that it initializes locations 12 and 33 instead

of location 19.

The output of the second commandset is just like the output of thefirst

commandset except that it results in 38 traces, not 380.

2]

START

PATCH
PATCH
PATCH
PATCE
PATCH
PATCH
CUMP
CuMP
PATCH
TRACE
TEND

00
55%0

5F 40
61,0
6210 6350 64,1

ET+2 6859 69,8
2,55,77

O,55,77
19,55
14,14

COMMAND Cure
0050

0060
0070

TRACE

IAR
0014

TRACE

TAR

CO17
TRACE

TAR
COLA

TRACE

TAR
CUL4
TRACE

TAP

OO17
TRACE
TAF
OOLA

TEACE

TAR
0014

TRACE

TAR

9017
TRACE

TAk

OO1A
TRACE

TAR

0014
TRACE

TAR

OO17

TRACE
TAR
OOLA

TRACE
TAR

0014

TRACE

0017
TRACE

IAR
OOLA

TRACE
TAR

JO14
TPACFE
TAR

OoolT
TRACE
TAR
COLA
TRACE
TAR

COL4
TRACE
PAR

N07
TRACE
TAR

OOl1A

TRACE
TAR
0014

TRACE
TAR

0017
TRACE
TAF

GOLA
TRACE
TAR

0014
TRACE
TAR

COLT
TRACE
TAR
QOLA
TRACE

TAF

OOL4
TRACE
TAR

0017

17 07 15 18 65
oC GO GC 90
40 40 40 40 4) 40

CCMMAND

LoCA,O
COMMAND

INST
ATCA,O

COMMAND
INST

CCMI,0
COMMAND

INST
LCEA,O

COMMAND

INST
ALTA,O

COMMAND
INST

CCMI,0
CCMMARD

INST
LCCA,YU

CCMMAND
INST

ACCA,O

COMMAND
INST

COMI,O
COMMAND

INST
LEPA,O

CJMMAND
INST

ATDA,O
CCMMAND

INST
CC¥I,0

CCMMAND
INST

LCCA,O
COMMAND

INST

ATCA,O

CCMMANE
INST

CCMI,0O
CGMMAKD

INST
LOCA,9

COMMAND
INST

ACCA,O

CCMMAND
TNST

CCM1,9

COMMAND
INST

LCEA,O
CUMMAND

INST

ACDA,O
COMMAND

INST

CCMI,0O

COMMAND
INST

LCODA,O
COMMAND

INST

ACLA,O

CCMMAND
INST

CCMI,O
COMMANT)

INST

LCCA.O
COMMAND

INST

ACT A,0O

5651 57,2
5A,5 SARy4 5Cy3

2 55,2
SE yd

65,1 6€,23
6A_,? EByl

09 Cl
OL OL C2 C2 09 C8

co Cy 00 40 40

FADOR
0061, 2447 CCOR

FADTR

9055,1 OC5SF

EAC NR

OA COLA

FANDDR

OO6ls3y- CC6A

EAL OR
90355,1 CCH5E

EANDR
OA EC1B

EAC CR
O061,3y- OC&S

FADPER
0055,1 CC5f

FADER

OA OC1B

FANOR

OO61,34- CObe

EADDR
0055,1 cc5c

FADER
OA OO1LB

EACDR
ODO1 +: 397 C067

EAL OR

0955,1 CC5R8

FANCR

OA CCIR

EADCR
ON61,534- CC66

EAT OR

0055,1 CC5A

EADAR
OA CO1A8

EACDR
OD61,39- C065

FANDR
OI55,_1 CC5s¢

EANER

OA cC1s

EACCR

O061,39- CC44

FACDR
0055,1 co5&

FADER

OA COLP

FADOR

O061,39- CC63

FADER
0055,1 ces?

EADDR
OA CoB

EAC OR

OOBLs 397 cC62

FAJUR

0055,1 CC56

ILLUSTRATION IV-1

C2 C2 €3 05 04 €3 O02 01 00
QO2 O01 40 46 40 40

4C 43 40 40 40

{FADCR)

JO01L

(EADER)
JONC

(FADDR)
OOOA

(EADCR)
JO92

(EADDR)
ocal

CFADDR)
QCOA

(EADER)
0008

CEADDR)
0002

CEADDR)I
OCOA

(EADCR)
000s

(EADCR)
0003

(EADCR)
OOO0A

(EADCR)
0002

({E ADDR)
C004

CEADDR)
O004

(FADCR)
0003

(EADDR)
0005

CEADCR)
QCOA

CEANDR)
OoOL

(EADCR)
0003

(EADODR }
JODA

(E ADDR)
ooc}L

(EADOR)
0002

CEADCR)
OOOA

(EANDDR)

9030

CEANCR)

9002

(FADLR)
OQ04

CEADCR)
JGd0

(EADTR}
0001

PSBU

OL

PSBU

OL

PSBU

OL

PSBU
OL

PSBU

OL

PSBU

OL

PSBU

OL

PSBU

ol

PSB8U

OL

PSBU

Ol

PSBU
OL

PSBU

01

PSBU

OL

PSRU

Ol

PSBU

O1

PSBU

OL

PSBU

OL

PSBU
O1

PSRU

Ol

PSBU

Ol

PSBU

Ol

PSBU

OL

PSBU

Ol

PSBU

Ot

PSBU

Ol

PSBU

Ol

PSBU

OL

PSBU

Ol

PSBU

on

PSBL
Co

PSBL
40

PSBL

40

PSBL
80

PSBL
40

PSBL

40

PSRL

80

PSBL
40

PSBL
40

PSBL

21

PSBL
61

PSBL
40

PSBL
61

PSBL
6l

PSBL
40

PSRL
80

PSBL
40

PSBL
40

PSBL

80

PSBL
40

PSBL
40

PSRL

89

PSEL
40

PSBL
40

PSBL

80

PSL

00

PSBE

40

PSRL
80

PSRL
00

RO

00

FO

Ol

RO

Cl

FO
Cl

RO
C2

FO

c3

RO
C3

C8

RO
CA

RO
Qo

RO

Q9

RO

Q2

FO
C6

RO
02

RO

02

RO

co

R1
OA

RL

OA

R1
OA

RE
ag

RL
09

RL
09

R1
08

RL

08

R1
08

Rk
07

R1
o7

R1

O7

Rl
06

Rl

06

RL
06

RL

05

RL
a5

RL

o5

R1
04

RL

04

RL
04%

R1
03

RL
Q3

RL
O3

RR

v2

RI
02

RL
a2

RL

Ol

R1

OL

R2
90

R2

99

R2

OO

R2

00

R2
90

R2
00

R2
30

R2

00

R2

00

R2

90

R2

00

R2

00

R2
90

R2

00

R2
00

R2
00

R2
00

R2

00

R2
00

R2

90

R2

00

R2

00

Re

90

R2
20

R2

00

R2
00

R2
00

R2
00

R2

900

R3
OB

R3

OA

R3

OA

R3
OA

R 3
09

R3

09

R3
o9

R3

08

R3

08

R3

08

R3

OT

R3

O7

R3

OT

R3
06

R3
06

R3
06

R3
05

R3

05

R3
05

R3

04

R3
04

R3

04

R3

03

R3
03

R 3

03

R3
02

R3

02

P3

Ol

RG

00

RS
00

RS
00

Re
00

R4
00

R4
20

RY
00

RY
o0

R4
00

RY
00

R4

00

R4

00

RG

00

a4
00

R4
00

R4
00

R4

00

R4

00

RG

00

R4
a0

R4

00

R4
90

R4

00

R4

00

R4

Qo

R4

00

R4
00

RG

090

R4
a0

R5
00

R5

00

O
w
n

o
n

R5
00

R5

ere)

R5
on

R5
090

R5
00

R5

00

R5

00

R5

00

R5
00

R5

00

KS
00

R5
00

F5
ore)

R5

00

R5

00

R5
00

R5

00

R5
00

R5
00

R5
00

P5
Ou

R5

00

F5

J0

R5

00

R5

00

R5

00

R6
00

R6

00

R6
00

R6

R6

00

R6
00

R6

09

R6
090

R6

09

R6

00

R6

Q0

R6

00

R6
00

R6

90

R6
Q0

R6
Qo

RE
00

R&
00

RG

00

Rb
00

R6

00

R6
00

R6

R6
00

R6

00

R6

39

R6

00

R6
00

R6
00

28

ILLUSTRATION IV-2

TRACE CCMMAND
TAR INST EADDR (EADDR) PSBU PSBL RO R1 R2 RB R44 RSE RO

OO14 cOMT,0 OA Cc1sB OOOA Ol 4 cl a1 00 01 90 00 00

CCMPAKD CUMP
00590 17 07 15 18 65 09 C1 02 C2 03 O05 04 C3 02 01 00
C060 00 CO O1 02 027 04 C# Cé C2 CO 03 01 40 40 40 40
oc70 40 40 40 40 40 40 CO CO O08 40 40 4€C 40 4C 40 40

NO. CF MACHINE CYCLES EXECUTED = 232

KO. CF INSTRUCTIONS EXECUTE = 73

START O€¢

PATCr 55,9 S641
PATCE 54,5 SPy4
FATCR 5FeO
PATCH 6149

PATCH 6240 6370
PATCEK E742 6899

fUMP 355,77

DCDUMP 0,55,77
TRACE 14,14
PATCK 33,08
FATChK 12408
FENC

FCMMAKT) CUMP

0050 17 O7 15
9969 00 VO OO
0070 40 40 4)

TRACE COMMAND
TAR INST
0014 LOCA,O
TRACE COMMAND

TAK INST
OO1L? ACNA,9O
TRACS CUMMAND
TAR INST
OOlA COMI ,9

TRACE COMMAND
TAR INST
CO14 LCOCA,O

TRACE COMMAND
TAR INST
OO17 ACD A,O
TRACE COMMAND

JAR. INST
OOLA COMI,9
TRACE COMMAND

TAR INST
GOLA LOCA,O
TRACE CUCMMAND

TAR INST
OOL? ATDA 40
TRECE COMMARD

TAR INST
QOLA COMI ,9
TRACE COMMAND

TAR INST
goO14 LOCA,9
TRACE COMMAND
TAR INST
OO17 ALCA,O

TRACE COMMAND
TAK INST

COLA CCMI,0
TRACE COMMAND
TAR INST

0014 LCCA,U
TRACE COMMAND
TAR INST
0017 ACC4,0
TRACE COMMAND
TAR INST

OOLA CoMI,9
TRAGF CCMMARD
TAP INST

NOLS LCCA,O
TRACE COMMAND
TAR INST

COL? ANCA,9O
TRACE COMMAND
TAR INST

oOo1A4 COMI ,O
TRACF CCMMAND
TAR INST

0014 LCLEA,O
TRACE COMMAND
TAR INST
0017 ATCA,95
TRACE COMMAND
TAF INST

OO1A COMT,O
TRACE CEMMAND
IAR INST
COOLS LOA ,O

TRECE COMMAND
TAR INST
C017 ACTA,9
TRACE COMMARND
TAR TA\ST

COLA CTMI,0
TRACE COMMAND
TAR INST
OO14 LETA,0

TFACE COMMAND
TAP INST

col? ALCA,9
TRACE CCMMATID
LAP INST
OO1A CCMI,0O

TRACE COMMAND
TAR INST
9014 LCDA,O
TRLCE COMMAND

TAR INST

OO1VT ACD AYO

5742 58,2 5
5Cy 3 55072

64,1
69,4

651
CAv2

1A 65 090 Cl ¢
09 91 OL C2
49 40 49 C9CO

O061s 397

CV54_1

OY

QW6L, 397

JOE 4,1

OO6L,%y-

JI34el

Q081,39-

0)54,1

OOO1ly3e-

0054,1

OA

00614 39-

0054,1

ON

O961: 24-7

VI54,1

OK

O61, 32y-

03541

OA

9061, 2a-

QI6),349-

00541

c2 C3 05 04 C3

C3 C8

ILLUSTRATION IV-3

O02 OL 00
92 901 4) 40 49 4C

00 49 40 4€ 4) 40 40 4C

EACOR

C C6

EADRR
CC5F

FADOR

COLR

FAC OR
CCOA

EAC DR
CCSEF

EADER
COLR

E AMOR

Co6S

FADOR
co5)

EANCR
cC1B

EAYOR
CC68B

EAPOR
CC5C

EAL OR

Cc13

SANDOR

C067

EACOR
CC5B

EADOR
CCLB

E ARNR

CC66é

EAC OR
CCS5SA

EACDR
COLA

EACDR

CC65

EADER
CC5s

EADNR
OLB

EAP CR
CCE4

EANCR

CO5e

EAQOR
COLR

EF ADOR

CCG?

FAP DR

CC57

EAIEOR

CeLr

F ADDR
CC62

FALOR

CC560

(EADCR)
OOOL

CEADCR)
JO00

(FADER)
JOOA

(£ADDR)
YCd2

(EADCR)
9001

(EADCR)
JOOA

CEADCR)
0008

(EADDR)
JO92

(EANELR)
JOOA

(EANER)
009

CEADER)
30903

(EADDR)
QOO0A

(FEADCR)
Q002

CEADDR)
0004

CF ADDR)
QOOA

CEADLR)

0003

CF ADDR)
0995

(EADDR)
OODA

(EADDR)
0001

(FADER }
0093

CEADDR)
OOOA

CE ADDR }
OOOL

{EADDR)
0032

CEADER)
JOOA

(EADER)
oo0c

{EADOR)

J09 2

(FADER)
JOOA

(FADER)
0000

CF ADC)
oleren |

PSBU
Ol

PSBU
ol

PSBU
OL

PSBU
Ol

PSBU
OL

PSBU
91

PSBU
Ol

PSBU
Ol

PSBU
Ol

PSBU

Ol

PSBU
Ol

PSBU
OL

PSBU
OL

PSBYU
Ol

PSBU
Ol

PSBU

Ol

PSBU

OL

PSBU
OL

PSBU

Ol

PSBU

OL

PSBU

OL

PSBU
OL

PSBU

OL

PSBU
O1

PSBU

ol

PSBU

Ol

PSBU

Ql

PSBU

OL

PSA

01

PSBL
08

PSBL
48

PSRBL
48

PSBL
88

PSBL
48

PSBL
48

PSBL
8&8

PSBL
48

PSEL
48

PSBL
29

PSBL
69

PSBL
48

PSBL
69

PSRL
6g

PSRL
48

PSAL
83

PSBL

43

PSBL
48

PSBL

88

PSBL

48

PSBL

46

PSBL
88

PSBL

48

PSBL

48

DO SRL

Be

PSBL
OR

PSPL
48

PSEL

88

PSRBL.
Qa

RO
08

FO

ol

RQ
Ol

ol

£9

02

kO
C3

RO

03

FO
cB

RO
OA

RO
co

c9

RQ
CO

FO

C3

FO

C2

RO

CT

RO

OT

FO
03

C8

FO

08

RO
04

RO

C4

RO

OL

FO
C3

FO

o3

RO

co

RO

Ce

FO

C2

ae)
69

RI]
0B

RL
OB

RL
QB

RL
OA

R1
OA

RL
OA

R1
og

R1
O9

RL
Og

R1

08

RL
08

RL

08

R1
OT

RL
a7

R1
OT

RL

0o

RL
Vo

RI
06

RL

a5

RL
a5

R1

05

RL
U4

RQ}

04

R}
a4

Ri

v3

Ri
O03

RL
O3

RI
02

R1
02

Re
30

R2
00

R2

00

R2
09

R2
a0

Re
90

Re
20

R2
00

R2
90

Re
0

R2
ao

R2
00

R2

OO

R2
00

R2
90

R2
90

R2
00

R2
00

R2

eke)

R2
Jo

R2
90

R2
a0

P2

00

R2

vO

R2

00

Re
00

Re

00

Re

99

P3
OB

F 3

Rk 3
QA

R3
CA

09

R3
09

R3
09

R3
08

R3
08

R3
06

R3

O7

R3
OT

k3
OF

R3
06

R23
06

R3

06

R3

05

R3
o5

23
05

a)
04

04

F 3

a3

FP 3

03

R3

03

R3

02

R3

02

R3

02

R3
Ol

R4
00

P4
00

R4
09

R4
Q0

RS
a0

RS

90

RS
20

R4

OU

R4
00

R4

Q0

R&

00

RS

00

R4
00

R4

00

RG

00

RG

00

RG

00

R4
00

R4
00

R4
00

K4
20

R4
a0

R4
a0

R4
oo

RY
00

R4

00

R4

Qo

R4
90

RG

00

R5
QvU

30

P45
00

RS
0”

R5

09

k5S

00

R5
00

R5
00

RS

00

R5
00

R5

GU

R5
00

R5

00

R5

OQ

R5

00

O
w

k5

OO

R5
Q0

R5
00

R5

Oo

P45

00

R5

00

RS
30

K5
00

RS

00

R6

00

R6
09

R6
00

26
Qo

26
09

R6
09

R6
O00

R6
00

RO
90

R6
00

R6

00

Ro

00

R6

00

RO

090

R6

JO

R6

ore)

R6
JO

26

00

RO
00

R26

00

R6

09

R6
090

R6
00

R6

00

R6

00

R6

00

ILLUSTRATION IV-4

TRACE COMMAND
R INSTTA EACOR (EADEDR) PSBU PSBL PO RL RZ RB R4 RSE RG

COLA CCMI40 OA CC1B8 OCOA OL 48 O01 02 00 01 00 00
TRACE CCMMAND

TAR INST FADOR (EAODOR) PSBU PSBL RO RL R2 RB R4 RS
GO14 LCCA,O 0961+ 39- CC61l 0000 OL 88 Ql OL 00 01 00 00
TRACE CCMMAKD
TAR INST EADCR (EADCR) PSBU PSBL FO RL R2 RB R4 RS
O17 ALCA,0 0054;1 C(55 c000 Oi 08 cO 01 00 00 00 00
TRACE COMMANO
IAR INST EADCR (EADOR) PSBU PSBL RO RL R2 RB RG RS
Oo1A COM140 OA CC1B O00A ol 08 GO 01 00 00 00 00
COMMAND DUMP
0050 17 07 15 1B 65 00 O01 O02 C2 C3 05 04 03 02 01 00
C060 GO 00 01 02 03 04 O& C7 C3 CO 03 O01 40 49 40 40
0070 40 40 40 40 40 40 CO CO O00 40 40 40 40 40 40 40

NO. OF MACHINE CYCLES EXECUTED = 252

KO. CF INSTRUCTIONS EXECUTED = 719

COMMAND

NAME

DUMP.

FEND

INPUT

INSTR.

LIMIT

PATCH

REFER.

SETP.

SETR.

SROM

START

STAT

STOP.

TEND

TRACE.

COMMAND SUMMARY

PARAMETERS

LOC, FWA-LWA(;...;LOC, FWA-LWA)

None

VALUEK(;... ;VALUE)

LOC(;... ;LOC)

NO

LOC,VALUE(;:... ;LOC,VALUE)

LOC(;.. . ;LOC)

LOC(,PSL=VALUE) (,PSU=VALUE)

LOC(,RO=VALUE). . .(R6=VALUE)

FWA-LWA

LOC

None

LOC(;...; LOC)

None

FWA-LWA(;...;FWA-LWA)

DESCRIPTION

Display the area of memory. FWA-LWA, when-

ever the instruction at LOC executes.

Execute the last simulation and terminate the

entire run.

Define the data to be read by simulated I/O

instructions.

Display the processor registers whenever. the

instruction at LOC executes.

Specify the total numberof instructions executed.

Initialize each memory location, LOC, to VALUE.

Display the processor register whenever the 1

struction at LOC is referenced by anothe:

instruction.

Set the program status byte (lower and/or upper)

to VALUE whenever the instruction at LOC

executes.

set the general purpose registers to VALUE

whenever the instruction at LOC executes.

Specify the boundaries of Read-Only Memory.

Start the simulated program execution at LOC.

Display instruction statistics at end of program

execution.

Terminate the program execution when the in-

struction at LOC executes.

Execute the last simulation and prepare to read

the User Commands for the next simulation.

Display the processor registers whenever an in-

struction executes, which hes within the area of

memory, FWA-LWA.

P
e
d

ERROR MESSAGES

Whenever the Simulator detects an error in the User Commands, it

prints one of the following error messages:

ERROR IN OBJECT MODULE CARD NUMBER
the 2650 object module is incorrectly formatted.

INPUT DATA TABLE OVERFLOW

an INPUT command attempted to expand the simulated data input

buffer beyondits limit (200 bytes).

PARAMETER OUT OF RANGE

a User Command either contains an address which is outside the

bounds of simulated memory or the command defines a datum which

is larger than one byte (255, Q).

SIM MEMORY EXCEEDED

a 2650 object module loads into an area which is outside of simulated

memory.

SYNTAX ERROR IN COMMAND

the command parameters are either missing or in error.

TOO MANY COMMANDS

the maximum number of dynamic commandshas been exceeded.

TOO MANY DUMP COMMANDS
the maximum number of DUMP commands has been exceeded.

TOO MANYSET REGISTER COMMANDS

the maximum number of SETR. commandshas been exceeded.

TOO MANY SET PSB COMMANDS

the maximum number of SETP. commandshas been exceeded.

UNRECOGNIZED COMMAND

a command has been read which is unknown to the Simulator.

UNEXPECTED END OF FILE

either the object module or the set of User Commandsis missing, or

one of their respective card decks is incorrectly formatted, or the

FEND commandis missing.

Whenever the Simulator detects an error while the simulated program is

executing it prints one of the following error messages:

ADDRESS OUT OF RANGE

an instruction attempted to access a location which lies outside of

simulated memory.

INSUFFICIENT INPUT DATA

a I/O instruction attempted to read another datum from the input

data buffer (INPUT)after all the data from the buffer had been read.

The simulated input register remains unchangedi.e., the instruction is

essentially ignored, and program execution continues.

LC= ATTEMPT TO STORE INTO ROM

an instruction attempted to store data into the area designated as

ROM (SROM). |

33

LC EXCEEDS MEMORY

the program attempted to execute a memory location which lies

outside of simulated memory.

NO KNOWN OPCODE

the program attempted to execute a memory location which did not

contain a valid instruction. Either the program was modified during

execution or the program is attempting to execute data.

SIMULATOR RESTRICTIONS

SIMULATOR RESTRICTIONS

1. The simulated memory reserved by the Simulator for program storage is

limited to 2048 bytes.* Thus, the Simulator will accept only programs or

program segments which fit into this area. This implies that the 2650

paging facility (page size = 8192 bytes) cannot be simulated.

2. Some User Commands are limited in the amount of entries they may

accept.

COMMAND LIMIT

DUMP. 0 LOC’s
SETR. 4 LOC’s
SETP. 2 LOC’s
INPUT 200 VALUE’s
All “dynamic”? commands 30 LOC’s (for TRACE. count 1

for each set of FWA-LWA)

*This may be expanded to 8192 bytes if sufficient memory is available.

35

SIMULATOR RUN PREPARATION

In order to prepare a program for execution by the Simulator, the

programmer:

1. Codes a program in 2650 Assembly Language.

2. Assembles the program until no assembly errors occur.

3. Obtains the object module and listing for the assembled program.

4. Generates command cards using addresses from the listing of the

assembled program.

o. Submits the object module and the command cards in that order for a

Simulator run. .

S
I
G
N
E
T
I
C
S

S
Y
S
T
E
M

2
6
5
0
M
I
C
R
O
P
R
O
C
E
S
S
O
R

A
P
P
L
I
C
A
T
I
O
N
N
O
T
E
S

2650 EVALUATION PRINTED
CIRCUIT BOARD LEVEL
SYSTEM (PC1001)....ceeSP50

e
e
e

Siqnoties 2690 EVALUATION PRINTED
CIRCUIT BOARD (PC 1001) SP90

GENERAL

The PC1001 is an evaluation and design tool for the 2650

microprocessor. Each PC1001 board has a 2650 micro-

processor, 1k bytes of RAM, 1k bytes of PROM loaded

with PIPBUG“, a crystal clock, and sufficient additional

logic to allow the user to exercise all aspects of the 2650

microprocessor. There is a serial 1/O port on the board that

can be used to drive a current loop driven terminal or an

RS232 type terminal. The PC1001 provides the system

engineer with a very flexible design tool from which he can

easily develop a pre-production prototype of his product

designed around the 2650 microprocessor.

FEATURES

The PC1001 has many features that make it a valuable

design aid. The most noteworthy features are:

@ The Signetics 2650 N-MOS, 8-bit microprocessor

@ 1k — bytes of RAM memory

1k — bytes of PROM memory

A 1MHz crystal oscillator

A serial 1/O channel

Two Non-Extended 8-bit parallel input ports

PC 1001 BLOCK DIAGRAM

 APPLICATIONS MEMO

@® Two Non-Extended 8-bit parallel output ports

@® Buffered address, data, and control lines for imple-

menting additional 8-bit parallel 1/O ports or ex-

panded memory

Direct Memory Access (DMA) capability, including

the memory on the PC1001 board

Display indicators on the board for the RUN/WAIT,

OPREQ, M/IO, R/W control lines, and the Non-

Extended output ports

@® Vectored interrupts

@® A program debug module (called PIPBUG) written

for use with the 2650

*P|PBUG — a program debug module

DESCRIPTION

The PC 1001 is configured as a very flexible, general purpose

microprocessor board to allow the system designer to easily

expand memory, implement input/output functions and

execute programs written for the 2650. A functional des-

cription of the PC1001 is given in this section. A functional

block diagram of the PC 1001 is shownin Figure 1.

MEM
SEL

SELECT SEL 1k X8 1k X8
DECODE > PROM RAM

x C 1 3 A» A ,

y y y50 A 7A26 ‘ C A8 48 As Vs

17.
7

_| ADDRESS] / 15),
*| BUFFER ABUSO — ABUS14 ‘

4
oc

O
jm

O
LL

ee 2
A DATA y DBUSO — DBUS7 , By | S

BUFFER r t— 9

11* uy
v y Q

LJ

| NON. NON- NON- NON. QO
EXTENDED EXTENDED EXTENDED EXTENDED a

CONTROL INPUT OUTPUT INPUT OUTPUT O
LINE 1 1 2 2 ma

BUFFERS) : °
CONTROL Y y } } {
DECODE Ns Sf fe 148 1418 8)

M y »| PROM / 4 8%,f—
5 (32X8) By >

By—L
SERIAL

/ _ 1/O . 47

75 “| DRIVER/ 7 >

RECEIVER
11*/
 *OPREQ, RUN/WAIT, INTACK, WRP, R/W, M/IO, DMA, PAUSE, INTREQ, RESET, OPACK

FIGURE 1

SIGNETICS 2650 EVALUATION PRINTED CIRCUIT BOARD (PC1001) # SP50

CPU

The 2650 is the heart of the PC1001, executing instruc-

tions from memory and controlling the I/O functions. The

address, data, and control lines of the 2650 are buffered

and available at the edge connector of the PC 1001. The on-

board bus drivers allow the user to build a microprocessor

system around the PC1001 without additional buffering.

The tri-state function of the 2650 address and data busses

is transferred to the buffer gates which drive the lines used

by the system designer. The address and data bus buffers

are in the tri-state mode whenever the OPREOline from

the 2650 is a logic ZERO.

MEMORY

The 1024 bytes of read only memory are implemented with

825129 256X4 bipolar PROM’s. The PROM’s are accessed

by addressing the first 1024 bytes of the address space

(locations 04g — 3FF 4g). The PROM’s are mounted in

sockets on the PC1001 board and are loaded with the

PIPBUG debug program. The sockets on the PC 1001 board

allow the user to put different 825129 PROM'sin thefirst

1k bytes of the memory address space when developing

a prototype system.

The 1024 bytes of random access memory are implemented

with 2606 256X4 MOS RAM’s. The RAM’sare accessed by

addressing the second 1024 bytes of the address space

(locations 400;¢6 — 7FF 46).

PARALLELI/O

The buffered address, data, and control lines available to the

user of the PC1001 allow any of the 2650 parallel 1/O

modes to be implemented, or to expand memory beyond

the 2k bytes already on the board. The extended |/O instruc-

tions provide device select capability for 256 I/O functions

by decoding the least significant 8-bits of the address bus

(ABUS 0 — ABUS 7). The buffered data bus is a bi-

directional tri-state bus so that input devices may use the

data bus by driving it with tri-state drivers.

If the Non-Extended |/O instructions are used, two latched

output ports and two gated input ports are already provided

on the PC1001, and no control line decoding is necessary.

When the 2650 executes memory reference instructions or

Non-Extended I/O instructions, the control decode PROM

generates the operation acknowledge signal (OPACK) in
response to operation request (OPREQ). When the 2650

executes Extended |/O instructions, the selected I/O device

must generate OPACK.By requiring the |/O device to return

the OPACK signal, the PC 1001 gives the user theflexibility

of connecting peripheral functions that may require more

than one microsecond to respond to an I/O request. If the

Extended !/O functions are all faster than one microsecond

they will not slow down the 2650, and OPACK may be
tied to logic ZERO.

SERIAL 1/O

The 2650 is equipped with a SENSE input and a FLAG

output. These two functions provide a serial |/O data path

directly into the 2650. Part of the PIPBUG PROM program

4

is dedicated to implementing an asynchronous serial com-

munications port for the PC1001. The program checks

the SENSE line for a start bit from the serial device to

achieve synchronization. Once a start bit is detected, the

2650 shifts the next eight character bits into register RO.

The PC1001 is designed for full duplex serial 1/O, and will

echo the transmitted character back to the serial device

using the FLAG output. The timing loops that determine

when to sample a character bit are written for a ten

character per second serial data rate (110 baud), but the

2650 is capable of handling much higher serial data rates.

The serial 1/O device used with the PC1001 may be a 20

milliamp current loop device, or it may be RS232 compat-

ible (voltage driven). A current loop driver and receiver,

and an RS232 driver and receiver are on the PC1001

board. The type of driver and receiver is selected with

a wire jumper. If the RS232 driver and receiver is used,

external +15 volt power supplies are required. If the

current loop driver and receiver is used, the PC1001 re-

quires only a single +5 volt power supply.

The PIPBUG debug program includes a read paper tape

control function. The program sets a bit in the output

register of Non-Extended I/O port C (WRTCinstruction)

to advance the tape reader one character at a time. This

function can be used by modifying a standard teletype to

include a tape reader control] relay and driving it with the

TTY TAPE READER OUTSIGNAL.

It should be pointed out that the tape reader control bit

and bit 7 of the Non-Extended |/O port (OPC7) are the

same and caution should be exercised to avoid a conflict

between the two functions.

CLOCK

The clock circuit on the PC1001 is a hybrid circuit crystal

oscillator that runs at a frequency of 1.000 MHz. Instruc-

tion loops are used to determine bit times and the crystal

controlled clock minimizes errors due to changes in the

system clock.

The clock input to the 2650 that is driven by the crystal

controlled clock (pin 38) is available at the edge connector

of PC1001. If the user chooses to drive the PC1001 with an

external clock he must first remove the crystal clock

circuit. The clock input to the 2650 is fully TTL compatible

and requires no special drive circuitry.

DISPLAYS

Minature LED indicator displays are driven by the three

basic control lines (OPREQ, M/IO, and R/W), and the

Non-Extended output latches. A logic ONE state on the

control lines, or in the output latches, ‘‘lights’’ the corre-

sponding LED. The minature LED's are mounted on the

PC1001 board and are shownin Figure 2.

SIGNETICS 2650 EVALUATION PRINTED CIRCUIT BOARD (PC1001) = SP50

PRINTED CIRCUIT BOARD LAYOUT

RESET] ©

“PIPBUG” — CONTROL PROGRAM 1k BYTES RAM

<> <> <> <> <> <> <> <> <>

1 2 3 4 5 6 7 8 9
$1 8 8 8 8 C2

8 2 2 2 2 2 2 2 2 +
T S S S S 6 6 6 6

C1 2 1 1 1 1 0 0 0 0
6 |p 2 2 2 2 6 6 6 6

" 2 9 9 9 9
A

A
B

° U
© <> F <> <> <> <> <> <> <> <=> ABUS

© 10 E 1 12 13 14 15 16 17 18 7
iB S 8 8 8 8 5
“I 8 2 2 2 2 2 2 2 2 4

T S Ss S S 6 6 6 6 3
2 1 1 1 1 0 0 0 0 5

Lt 6 2 2 2 2 6 6 6 6 7
DBUS 9 9 9 9 2

7

e
4 MEMORY CONTROL ADDRESS BUFFERS DATA BUFFERS CLOCK

¢ <> <> <> <> 23 <> <> <> <> <>
o 19 20 21 22 [J 24 25 26 27

H 8 8 8 8 8 K2 2
0 0 7 7 6 6 8 °

A

ee Me)
1 2650 RUN/WAIT 3 CONTROL

<> <> <> <> <> <> <> <>
28 29 30 31 32 ht 34 35

| R3| |R5 87 7 7 7

0 0 9 } g SS 0 3 $

R2
—_F-

R6 R7—}-S 1-20
m=" RAO OTAO

OUTPUT PORTS INPUT PORTS
<> <> *| Kt Dt Ye <> <> <> <> <> <>

36 37 LK Dt 38 39 40 41 42 43
2) «4 DE fe 8

7 7 of ke] DE 7 7 8 8 8 R1 T
4 4 ape 4 4 T T T 7
7 7 7 7 9 9 9 6
5 5 of id Dts 5 5 8 8 8

6 tt Dt 6

} «1 Dt 7

| C3

TO
DMA

Direct access to memory by an external device (DMA) is

easily accomplished with the PC1001. An input to the

board is provided for direct memory access and thesignal

name of that input is DMA (PC1001 pin 14). When DMA is

pulled “‘low’’ the 2650 finishes executing the current

instruction and enters the wait state. To avoid interrupting

a memory or I/O transfer in progress the DMA line should

not be pulled ‘‘low’’ while OPREOQis “‘high’’. When the

RUN/WAIT lines goes ‘‘low’’ the external device may drive
the address, data, and control lines (except OPREQ, and

RUN/WAIT) to accomplish the necessary DMA transfer.

An external operation request line (OPEX) is provided for

DMA transfers to the memory on the PC1001 board. Since

OPREO is only driven by the 2650, and is used in the

memory select decoders, the user must drive OPEX to

access the memory on the PC1001.

Because the DMA function is implemented with the pause

feature of the 2650, and since the 2650 is a static device,

the length of time that the DMA device may beactive for

any one transfer is limited only by the other processing

responsibilities of the 2650.

INTERRUPTS

The 2650 has a true vectored interrupt system. The user

mustfirst drive the interrupt line (INTREQ) on the PC1001,

then wait to be acknowledged (INTACK), and finally drive

the data bus with a 7-bit signed displacement relative to

page zero, location zero. The displacement vector may also

indicate indirect addressing, allowing the interrupt service

sub-routine to be located anywhere in the 32k-byte add-

ress space.

5

SIGNETICS 2650 EVALUATION PRINTED CIRCUIT BOARD (PC1001) ™ SP50

INTERRUPTS(Continued)

The INTREQ line may be driven by several interrupting

devices in a “‘wired OR” configuration. When a priority

exists between the various interrupting devices, and to

prevent confusion from multiple simultaneous interrupts,

the user must arrange the interrupt hardware to resolve

priority and simultaneity conflicts.

The PC1001 board comes with PIPBUG stored in thefirst

1k-bytes of .ROM and therefore the user cannot store an

interrupt service subroutine or an indirect address in this

part of the memory address space. But the interrupt dis-

placement vector may be a negative numberreferring to

the last 64 locations in page zero (1FBF yg to 1FFF 4g).

If an indirect address or interrupt service subroutine is

placed in one of the last 64 locations of page zero, the

user must also provide external memory at the locations

used (the PC1001 has only 2k-bytes of memory on the

board).

There is another way to accomplish a “link” to an interrupt

service subroutine through the ROM on the PC1001. It is

possible that PIPBUG instructions themselves could pro-

vide an indirect address to the second 1k-bytes of RAM on

the PC 1001 board. An example of a very useable indirect

address to an interrupt service routine may be found at

locations 81g and 916 of PIPBUG. If these locations are used

as an indirect address, the program would branch to loca-

tion 47746 where it would expect to find a subroutine to

service the active interrupt. :

A timing diagram for interrupt processing is shown in Figure

3, as well as the format for the displacement vector.

INTERRUPT TIMING

LOGIC

The logic on the PC1001 board is uncomplicated and very

general purpose. It includes:

1. 2650 CPU and memory

2. Address bus, and data bus drivers and receivers

3. Control line drivers and receivers

4. Control line decode

5. Memory select decode

6. Serial 1/O transmitter and receiver

7. Non-Extended parallel {/O latches and receivers

The PC1001 logic drawing will be referred to during this

description and is shownin Figure 4. The integrated circuit

numbers used in Figure 4 may becross-correlated to those

used on Figure 2 for locating an integrated circuit on the

PC1001 board.

CPU and MEMORY

CPU — The address bus, and the data bus from the 2650

are buffered for easy system expansion. With the exception

of the address tri-state control line (ADREN) and the data

bus tri-state control line (DBUSEN), all of the controllines

from the 2650 are also buffered. The ADREN and DBUSEN
lines are tied ‘‘low’’ on the PC1001 board, and thetri-

state function of the address, data, and control lines is

fulfilled by the buffers.

The clock input is driven directly from the K1100A clock

circuit (IC #27). The clock outputis available off-board on

PC1001 pin 23 (the signal name is CLOCK). The K1100

clock circuit has a frequency stability of £01% and will

drive 10 standard TTL (7400 series) unit loads. The 2650

LAST CYCLE
OF CURRENT cee seme oe /
INSTRUCTION

TO T1
CLOCK

OPREQ

>| —

Le
INTREQ

INTACK

J

DBUS

INDIRECT BIT——

I

ih
— USER

SUPPLIED
DISPLACEMENT

SIGNED DISPLACEMENT
(+63 TO -64)

|
7 TI

FIGURE 3

3 2 #1

SIGNETICS 2650 EVALUATION PRINTED CIRCUIT BOARD (PC1001) # SP50

PC1001 LOGIC DIAGRAM

:
Yael

10
3
N
O
N
2
9
5

S
2
a
0
1
o
y

|
€
-
8
E
C
-
L
0
-
O
C
O
V

ay
O
N

oma]

a
e

HSIN
x

oes
v

b
C
6
t
B

S
I
I
L
A
N
O
I
S

EF]
‘e
p
g

SvwiNai
v
A

40

O
N

r
e

NOLL
d
W
9S

30

 W
w
a
o
w
e
d
w

 rru
2
eo
ja

om

0
3
O
oO

Prnronde

5
*

Trane
T
5
3
4
5

ASimy
HALO

SS
+

L
D
S
O
.

STONE
TIO,

M
e

ACHAa
1

8
g
6
_
¢
8

Z
E
L
D
A
N
O
S
I
Z

N
a
e

5
3
x
2
3
H
D

4
3

L
é
.
8

W
A
a
H
O
S
A

agnois20
:

+
A

runf
Fe-S-E

B
Y
C
O
W
H
M

waeug,
31

e
2
B

:
1
8

<
v1

L
o
e

wieenw
rave

oy
8

+
1

u
G
i
s4

a
v

itil

Wag ie

D
o
v
e

“a

r
a
t
)

e
o

C
U
S
7
T
B

O
y

L
B
S
BY.

O
F
S

a
u
r
.

rone maa
a5
a
<

N
O
L
e
H
SIO.

n

wo

¢
6

v!
&

B
S
I
P
L

in
T

r
e

+
1

b
C
e
s

p
o
d

r
e

.
L

a
n
e

|

+
1

L
Q
O
k

v
e

6
7
0
9

r
r
r
r

.B
I
A
S

P
R
L

L
B
r
e
d
o
s

W
I
N
S

41
3

P
O
M
S

.
O
S
E

8
Q
N
G

G
i
B
O
L
W
a
y
s

S
s
v
e
r
Q

37
9

a
@

6
%
:
S
7
B

R
o
s
A
B
Q
A
D

B
e
y
S
e
I
A
A
m
y

OT

A
R
O
S

L
N

a
2
6
%
e

e
£

B
a
o

N
I
N
M
O
S

S
a

2
W
E
M
r
e

6
e

iz
C
2
9
7

Q
a
r
d
e
S

B
a
y

s
a
D
A
a
a
W
y

(
U
D
g
1
9
8
S

B
G
I
M
E
R
O

S
G
e
N
T
)

S
A
L
O
N

a
S
i
e

S
t
>

B
D
I
A
R
d

6E 38SNey

S
V
S
o
e
r

I
d
O
M

I
d
O
M2D

L
Y
O
d

S
H
O
A
S
S

~
l
n
o

w
a
s
t

y
a
0
v
3
8

advil
B
d
V
L

A
L
L

A
L
L

rh

nN

wi
a

a
a

3
dure

Q
e

A
D
L

6
a
w
e
g
n
a

B
E

(
3
4
8
0
8

=
2

Ss
B
g

i
n
d
N
n
i

r
a
s
.
)

—
ON

w
e
e
t

b
i
a

+
ote

WWwhyar
add

A
N
g
i
v
c

F
E
R
S

dt

a
n
c
O
M
e

2
e
t
l
e

—
j
e
e

a
w
a
a
n

p
d
a

+
L
C
S
W
e
a

A
I
L

A
S
S
O
N

FIGURE 4

SIGNETICS 2650 EVALUATION PRINTED CIRCUIT BOARD (PC1001) # SP50

CPU and MEMORY (Continued)

is the only load the clock must drive on the PC 1001, using

only 10 ampsof its drive capability.

Memory — The memories are of two types: 82S129 256X4

PROMs, and 2606 256X4 RAMs. All 16 memory IC’s

(IC’s 2-9, and 11-18) are addressed by the least significant

8-bits of the buffered address bus. The memories drive

and receive the data bus through 8T 26tri-state transceivers

to prevent an expanded system from presenting too great

a capacitive load for the MOS memories.

The PROM memories (IC’s 2-5, and IC’s 11-14) are plugged

into sockets and come programmed with PIPBUG. Any

user's program may be stored in these PROM locations

if PIPBUG is not required.

When the PC 1001 is used to develop programs, and PIPBUG

is resident in the first 1k-bytes of memory space,all of the

1k-bytes of RAM memory is available for use except the

first 64 bytes (400,¢ to 43F 16). The 64 locations are used

by PIPBUG for temporary storage.

ADDRESS AND DATA BUS DRIVERS AND RECEIVERS

The data bus (DBUSO - DBUS7) is buffered with 8T26 quad

tri-state transceivers (IC’s 24 and 25). These transceivers

are inverting, and therefore the data bus transferred off of

the PC 1001 board is negative true (DBUSO - DBUS7). The

tri-state transceivers are controlled by RE1 (receiver con-

trol) and DE1 (driver control) from the control decode

PROM (IC 35). The receiver control RE1 is a negative true

signal (active ‘‘low’’) and has the following logic equation:

RE1 = OPREQO e R/W

The driver control DE1 is a positive true signal and has the

following logic equation:

DE1 = OPREQ e R/W

The logic equations reflect the fact that the 2650 drives the

external data bus (DBUSO - DBUS/7) during all write opera-

tions (memory or I/O), and receives the external data bus

during all read operations. But, when OPREO is not a

“high’’ the external data bus transceivers are in the tri-

state mode.

The memory on the PC1001 board is buffered from the

user's data bus (DBUSO - DBUS7) with 8T26 quad tri-

State transceivers. These transceivers are inverting so that

information stored in memory is not complimented relative

to the 2650. These transceivers are controlled by RE2

(receiver control) and DE2 (driver control) from the

memory select decode logic. The logic for these control

lines is shown below IC 20 (IC’s 28 and 29) in Figure 4

and they have the following logic equations:

RE2=MEMSEL e R/W
DE1=MEMSELe R/W

The RE2 control line is a negative true signal and is active

when the memory on the PC1001 is selected to be written

into. The DE1 control line is positive true and active when

the memory on the PC1001 is selected to be read from.

The address bus is buffered with 8197 tri-state buffers

(IC’s 21, 22, and 31). These buffers are in the tri-state

mode whenever OPREOis inactive.

CONTROL LINE DRIVERS AND RECEIVERS

The two control lines OPREO and RUN/WAIT are buffered

with 8197 tri-state buffers (IC 32), but are never placed in

the tri-state mode.

The control lines INTACK, WRP, R/W, and M/IO are also
driven by 8197 tri-state buffers (IC 32), and are switched to

the tri-state mode when the DMA lineis pulled ‘‘low’’. The
pause input to the 2650 may be activated by driving the

DMA line (PC1001 pin 14) or the PAUSE line (PC1001
pin 27) ‘‘low”.

The interrupt request line and the reset line to the 2650 are

buffered by TTL AND gates (IC 33). The reset switch on

the PC 1001 (upper left corner of Figure 2) is ‘“wire ORed”’

with the RESET line to the PC1001 board (PC1001

pin 25).

The operation acknowledge line to the 2650 (OPACK)is

buffered with a TTL AND gate (IC 33), and has as its

inputs an external acknowledge (OPACK, PC1001 pin 22)

and an internal acknowledge (OPK). The internal acknow-

ledge is generated for all memory access cycles and Non-

Extended |/O cycles initiated by the 2650. For Extended

|/O cycles the external device must generate the external

Operation acknowledge (OPACK).

CONTROL LINE DECODE

A control line decoder is implemented with a 32X8 PROM

(825123) to generate secondary control lines used by the

logic supporting the 2650. The primary control lines from

the 2650 (R/W, OPREO, M/IO E/NE,and D/C)are used to

address the PROM, and each address represents one combi-

nation of the primary control lines. Stored at each memory

location are eight bits, each one of which represents the

logical state of a secondary control line. There are five

address inputs to the PROM, and the 32 (25) possible

addresses exhaust all of the logical combination of the

primary control lines. The secondary control lines, their

logic equations, and their functions are given in Table 1.

Table 2 shows the contents of each of the 32 locations of

the PROM. The control line decode PROM is shown in

Figure 4 (IC 35).

MEMORY SELECT DECODE

The memory select decode logic is shown in Figure 4

(IC’s 19, 20, 28, 29, 30 and 34). The 2k-bytes of memory

are implemented with 256X4 bit memory chips. The

memory chips are arranged into eight 256-byte sections.

SIGNETICS 2650 EVALUATION PRINTED CIRCUIT BOARD (PC1001) = SP50

The ninth, tenth, and eleventh bits of the address bus

(ABUS8-ABUS10) are decoded to select one of the eight

256-byte sections of memory. The one-of-eight decoder

(IC 20) is enabled by MEMSEL, which has the following

logic equations:

MEMSEL = (OPREQ + OPEX)

e M/10 e ABUS11 e ABUS12 e ABUS13 e ABUS14

The MEMSEL line is also used to enable the 8T26 quad

tri-state transceivers that buffer the memory on the PC1001

from the external data bus (DBUSO-DBUS7).

SERIAL 1/O TRANSMITTER AND RECEIVER

A serial 1/O port is implemented on the PC 1001 with the

flag and sense line of the 2650. The PIPBUG program han-

dles the serial |/O using software timing loops to sample

CONTROL LINE DECODE PROM DESCRIPTION

the SENSE input and build eight bit ASCII characters. The -

PC1001 is capable of interfacing to a current loop type

terminal, or an RS232 compatible terminal.

The current loop driver uses an open collector NAND gate

(IC 34) as the switching element. The 20 milliamp source

is a 22092 resistor connected to +5 volts on the PC1001

(PC1001 pin S), and the open collector NAND gate either

provides a return path for the 20 milliamps (NAND output

“on’) or it does not (NAND output “off’’). The current

loop receiver is a CMOShex inverter (1C 30) with the input

pulled to +5 volts through a 2.7k§2 resistor (PC1001 pin P).

The teletype transmitter is a contact closure and connects

the input of the CMOSinverter to the receiver return line

(PC 1001 pin R), which is tied to ground on the PC1001

board.

The RS232 driver is an 8115 EIA Line Driver (IC 26),

and the RS232 receiver is an 8T16 EIA Line Receiver

(IC 43). The 8T15 is the only chip on the PC 1001 that does

not operate on the +5 volt power supply, and +15 volt

power supplies are specified for this driver.

SIGNAL output PIN # LOGIC EQUATION FUNCTION
NAME

WOPD BO 1 WOPD = OPREQ e M/I0 « E/NE e D/Ge R/W LOADS NON-EXTENDED OUTPUT
LATCH, PORT D

EIPD* B1 2 EIPD = OPREQe M0 e E/NEe D/Ge B/W ENABLES NON-EXTENDED INPUT
GATES, PORT D

EIPC* B2 3 EIPC = OPREQ e M/lO e E/NE*® D/Ce R/W_ ENABLES NON-EXTENDED INPUT
GATES, PORT C

WOPC B3 4 WOPC = OPREQ e M/IO E/NE e D/Ce R/W LOADS NON-EXTENDED OUTPUT
LATCH, PORT C

OPK* B4 5 OPK = OPREQ [(M/IO) + (M/IO e E/NE)] RETURNS OPACK FOR ALL OPREQ
EXCEPT EXTENDED1/0

R/W B5 6 R/W = R/W INVERTSR/W

DE1 B6 DE1 = OPREO e R/W DRIVES EXTERNAL DATA BUS (DBUSO
— DBUS7)

RE1* B7 9 RE1 = OPREO e R/W ENABLES RECEIVERS OF EXTERNAL
DATA BUS (DBUSO — DBUS7)

*NEGATIVE TRUE SIGNALS

TABLE1

SIGNETICS 2650 EVALUATION PRINTED CIRCUIT BOARD (PC1001) = SP50

CONTROL LINE DECODE PROM

7 2
Po >
5 INPUT OUTPUT o
a A4 A3 A2 Al AO 7 6 5 4 3 2 1 0 5

0 0 0 0 0 0 1 0 1 1 0 1 1 0 B6
1 0 0 0 0 1 1 0 0 1 0 1 1 0 96
2 0 0 0 1 0 0 0 1 0 0 0 1 0 22
3 0 0 0 1 1 1 1 0 0 1 1 1 0 CE
4 0 0 1 0 0 1 0 1 1 0 1 1 0 B6
5 0 0 1 0 1 1 0 0 1 0 1 1 0 96
6 0 0 1 1 0 0 0 1 0 0 1 0 0 24
7 0 0 1 1 1 1 1 0 0 0 1 1 1 C7
8 0 1 0 0 0 1 0 1 1 0 1 1 0 BG
9 0 1 0 0 1 1 0 0 1 0 1 1 0 96
10 0 1 0 1 0 0 0 1 1 0 1 1 0 36
11 0 1 0 1 1 1 1 0 1 0 1 1 0 D6
12 0 1 1 0 0 1 0 1 1 0 1 1 0 B6
13 0 1 1 0 1 1 0 0 1 0 1 1 0 96
14 0 1 1 1 0 0 0 1 1 0 1 1 0 36
15 0 1 1 1 1 1 1 0 1 0 1 1 0 D6
16 1 0 0 0 0 1 0 1 1 0 1 1 0 B6
17 1 0 0 0 1 1 0 0 1 0 1 1 0 96
18 1 0 0 1 0 0 0 1 0 0 1 1 0 26
19 1 0 0 1 1 1 1 0 0 0 1 1 0 C6
20 1 0 1 0 1 1 0 0 1 0 1 1 0 B6
21.| 1 0 1 0 1 1 0 0 1 0 1 1 0 96
22 1 0 1 1 0 0 0 1 0 0 1 1 0 26
23 1 0 1 1 1 1 1 0 0 0 1 1 0 C6
24 1 1 0 0 0 1 0 1 1 0 1 1 0 B6
25 1 1 0 0 1 1 0 0 1 0 1 1 0 96
26 1 1 0 1 0 0 0 1 0 0 1 1 0 26
27 1 1 0 1 1 1 1 0 0 0 1 1 0 C6
28 1 1 1 0 0 1 0 1 1 0 1 1 0 B6
29 1 1 1 0 1 1 0 0 1 0 1 1 0 96
30 1 1 1 1 0 0 0 1 0 0 1 1 0 26
31 1 1 1 1 1 1 1 0 0 0 1 1 0 C6

M/IO E/NE D/C O R/W REl DE! R/W O W E E W
Pp P O | | O
R K p p p p
E Cc }6hOUC DD
O

TABLE 2

The current loop driver/receiver pair or the RS232 driver/

receiver pair is selected by a hardwire jumper on the PC 1001

board. The connection of these jumpers is described in

Table 3, and shown in Figure 4 (2650 pin 40/FLAG,

2650 pin 1/SENSE).

SERIAL I/O DRIVER/RECEIVER MODE

2650
FUNCTION JUMPER DESCRIPTION

FLAG A-B CURRENT LOOP DRIVER
FLAG A-C RS232 DRIVER

SENSE E-D CURRENT LOOP RECEIVER
SENSE F-D RS232 RECEIVER

TABLE 3

10

PARALLEL I/O LATCHES AND RECEIVERS

The logic used to implement the two parallel 1/O ports on the

PC1001 is identical. The output ports are 7475 quad

bistable latches (IC’s 36, 37, 38, and 39), and are loaded

when a Non-Extended write !/O instruction is executed

(WRTC, WRTD). The input ports use 8198 tri-state high

speed hex inverters (IC’s 40, 41, and 42), and are gated on

the external data bus (DBUSO - DBUS7) when a Non-

Extended read |/O instruction is executed (REDC, REDD).

The control signals used to activate the tri-state gates (EIPD,

and EIPC) are generated by the control line decode PROM

(IC 35).

SIGNETICS 2650 EVALUATION PRINTED CIRCUIT BOARD (PC1001) = SP50

The control signals used to load the output latches are desig-

nated COPC and COPD, and have the following logic

equations:

COPD = WRP e WOPD

COPC =WRP e WOPC

The output latches drive LED’s on the PC1001 board. A

logic ONE from the 2650 lights the corresponding LED.

The output latches are loaded from the external data bus

(DBUSO - DBUS7), and to obtain the required inversion at

the latch output (OPDO - OPD7, and OPCO - OPC7) the

QO pin is used.
The WRP signal is the “‘write pulse’’ from the 2650, while

the WOPD and WOPCsignals are generated by the control

line decode PROM (IC 35).

APPENDIX

WRITE TIMING

OPREQ =

OPK ST]

_ |
ew XW.
WRP \\ ff \ /]

ABUS 000 VALID ADDRESS (MEMORY ONLY) —_XXXX)- :

DE1 uh \ WX

RE1 _ |

OBUS _ __ i / VALID DATA _ _

/
L _

M/TO _ xX Xx __

DE2 a / _

RE2 \\\ L /7/ =

oO

08 SOW IT :
MRW L/ NN

M/1O _ xX X _ _ _ a

wOPCc, WOPD HL] WOPC = D/C = LOW WOPD = D/C = HIGH \A\ z E

xs

COPC, COPD V/A \ 28

E/NE “XxX Xe

TcLock = 800 nsec

11

SIGNETICS 2650 EVALUATION PRINTED CIRCUIT BOARD (PC1001) @ SP50

READ TIMING

OPREQ

OPK

R/w » / A

WRP eG
—

— Lut

c
HI-Z

ABUS VALID ADDRESS (MEMORYONLY) XXKX)-

DEI \ ~

REq \\\ } Vb

we XT EIT
DE2 [L/ WN a

} oc
>

RE2 a

re
cE AAA Z/ =

DBUS XOX VALID DATA XOX

mii _ xX XO
. Q

Li

EIPD, EIPC SQ Eipp = D/C = HIGH EIPC = D/C = LOW ip 29
uw

_ cay _ke
DBUS XX VALID DATA —=XX 38

7 —-— 6
_ —_ iar SO

E/NE _Xx Xe

Te LOCK = 800 nsec

OPREO > ‘2

ABUS XXX VALID DEVICE SELECT (ABUSO — ABUS7) xxXy—

OPACK \ f..—”~._— 8

M/iO x x

E/NE x x —

R/W _ xX _

DBUS XKvain DATA XK 4
ir

—_ —c
DE1

REI \\ W//,

RW xX XK

DBUS — >XX_ mM—_— —

LP QEac

DEI 2

RE1

WRP \ / \ /

12

SIGNETICS 2650 EVALUATION PRINTED CIRCUIT BOARD (PC1001) = SP50

POWER REQUIREMENTS

+5 VOLT POWER SUPPLY: +15 VOLT POWER SUPPLIES:
LINE REGULATION — 0.1% LINE REGULATION — 0.1%
LOAD REGULATION — 0.1% LOAD REGULATION — 0.1%
RIPPLE — 10 millivolts (MAX) RIPPLE — 10 millivolts (MAX)
RESPONSE — 30psec (MAX) RESPONSE — 30psec (MAX)
CURRENT — 2 amps CURRENT — 50 milliamps

PARTS LIST

Iic# PART # TYPE QTY

28 7400 QUAD 2-INPUT NAND 1

29, 33 7408 QUAD 2-INPUT AND 2

19 7430 8-INPUT NAND 1

34 7438 QUAD 2-INPUT NAND OPEN COLLECTOR 1

36, 37, 38, 39 7475 ~ QUAD BISTABLE LATCH 4

26 8T15 E1A DRIVER (RS232) 1

43 8T16 E1A RECEIVER (RS232) 1

1, 10 8T26 QUAD BUS DRIVER/RECEIVER 4
24,25

40, 41, 42 8T98 HEX HIGH SPEED INVERTER 3

20 8250 1 OF 8 DECODER 1

6,7, 8,9 2606 256X4 NMOS RAM 8
15, 16, 17, 18

30 4049 HEX INVERTER (CMOS) 1

35 825123 32X8 BIPOLAR PROM 1

2 825129 PIPBUG PROM CK267 1

11 82S129 PIPBUG PROM CK268 1

3 82S129 | PIPBUG PROM CK269 1

12 825129 PIPBUG PROM CK270 1

4 89S129 PIPBUG PROM CK271 1

13 | 82S129 PIPBUG PROM CK272 1

5 82S129 PIPBUG PROM CK273 1

14 825129 PIPBUG PROM CK274 1

23 2650 | MICROPROCESSOR 1

27 MOTOROLA XTAL OSCILLATOR 1
K1100A

D20 IN914 DIODE 1

D1-D19 DIALCO LED INDICATOR 19
555-3007

S1 GREYHILL MINIATURE, PUSH BUTTON SWITCH 1
39-201

(IC 23)* VERMON 40-PIN DIP SOCKET 1
H23-20302

(IC 2,3 AMPHENOL 16-PIN DIP SOCKET 8
45,11, 12, 821-25011-164
13, 14)

*#’s in parenthesis indicate the |C’s that are plugged into the listed socket.

13

SIGNETICS 2650 EVALUATION PRINTED CIRCUIT BOARD (PC1001) = SP50

PARTS LIST (Continued)

IC# PART #

(IC 27) AMPHENOL
821-25011-144

C1,C2 230-1250-004-230
C3

— EMCON
5021ES50RD104M

C4

R4 230-0910-332-230

R3

R7

R5, R6 230-0910-297-230

R1, R2 230-0910-282-230

AMPHENOL
225-804-50

RS232C STANDARD CONNECTOR

The RS232 Electronic Industries Association (ElA) standard

for “‘interface between terminals and communications

equipment using serial binary data interchange’ describes

a commonly used signal definition and connector pin

assignment. The table below lists the pin numbers and

Signal names most frequently used by, data terminals.

PIN # DESCRIPTION

PROTECTIVE GROUND

TRANSMITTED DATA

RECEIVED DATA

CLEAR TO SEND

DATA SET READY

SIGNAL GROUND

RECEIVED LINE SIGNAL DETECTOR

20 DATA TERMINAL READY

C
O
O
N
M
O

W
N

—

Transmitted Data (pin 2) is received by the PC 1001, there-

fore pin 2 of the RS232 connectoris routed to the SENSE

input of the 2650. Received Data (pin 3) is transmitted

from the PC1001, therefore pin 3 of the RS232 is routed

to the FLAG output of the 2650.

The signals on pins 5, 6, 8, and 20 are used between data

terminals and communications MODEMs. Since the PC 1001

does not provide these ‘‘handshake”’ lines they can be

simulated by shorting them all together. In this configura-

tion the Data Terminal Ready line drives the other 3 lines

to the proper state for enabling the communication channel.

14

TYPE QTY

14-PIN DIP SOCKET 1

4.741 FARAD CAP 3

0.141 FARAD CAP 45

0.047u FARAD CAP 1

61Kr, % WATT RES 1

10Kr, % WATT RES 1

7.4Kr, % WATT REST 1

1Kr, % WATT RES 1

220r, % WATT RES 2

100 PIN P.C. EDGE CONNECTOR 1

This is not required for all data terminals (not teletypes),

but is required for some.

Further information on RS232C specifications can be

obtained from the EIA RS-232-C Standard available from

the Electronic Industries Association in Washington D.C.

The type of connector commonly used for RS232 compat-

ible data terminals is a 25-pin TRW Cinch type connector

of the DB25series.

TELETYPE CONNECTION

Connection to a teletype may be made at the terminal strip

inside of the teletype. The pin numbers and signal names

are listed in the table below.

PIN # DESCRIPTION

6 RECEIVER -

(TTY SERIAL IN -)

7 RECEIVER +

(TTY SERIAL IN +)

3 TRANSMITTER -

(TTY SERIAL OUT -)

4 TRANSMITTER +

(TTY SERIAL OUT +)
The teletype is a 20 milliamp current loop type of receiver

and a contact closure type of transmitter. The PIPBUG

debug program on the PC1001 board communicates with

the teletype in a full duplex mode, echoing characters as

they are received.

SIGNETICS 2650 EVALUATION PRINTED CIRCUIT BOARD (PC1001) # SP50

EDGE CONNECTOR SIGNALLIST

PIN #

C
O
N
O
O
B
P
W
N

=
a
p
t
S
P

S
P
P
P
P
P
P
P
W
W
W
W
W
W
W
W
W
W
N
H
N
O
N
N
N
O
N
N
N
O
N
O
N
P
P

r
F
r
r
r
e
e
r
e
e
w
e
=

O
O
A
O
A
N
O
A

H
P
W
N
H

K
H
O
D
A
D
A
N

AD
A
A
A
R
P
W
N
H

H
K
O
A
D
A
A
N

O
A

A
A
T
A
H
A
P
W
N
H
K
H
-
O
A
D
A
N
D
O
F
W
H
]

O
©

*NC = NO CONNECTION

FUNCTION

GND
GND
NC*
DBUSO
DBUS1
DBUS2
DBUS3
DBUS4
DBUS5
DBUS6
DBUS7
EIPD
/C
DMA
E/NE
INTACK
R/W
WRP

O

RUN/WAIT

OPREO
M/1O
OPACK
CLOCK
OPEX
RESET
INTREO
PAUSE
Nc*
NC*
Nc*
NC*
Nc*
ABUS 11
ABUS 13
ABUS 12
ABUS 14
ABUS 9
ABUS 10
ABUS 8
ABUS 7
ABUS 6
ABUS 5
ABUS 3
ABUS 0
ABUS1
ABUS 4
ABUS 2
+15V
—-15V

+5V

PIN #

TABLE 4

+l
ol

Q
f
o
l
o
|
o
I
N
<

x
Ss

<
fC
A
F
T
D
S
R
Z
R
T

TO
E
*
M
A
O
T
H
N
X
X
S
K
C
H
N
M
D
V
Z
Z
H
A
C
I
M
m
M
I
A
D

FUNCTION

GND

GND

NC

OPD 0

OPD 1

OPD 2

OPD 3

OPD 4

OPD 5

OPD 6

OPD 7

COPD

TTY SERIAL IN +

TTY SERIAL IN -

TTY SERIAL OUT +

TTY SERIAL OUT -

RS232 GROUND

RS232 OUTPUT

TTY TAPE READER OUT-

TTY TAPE READER OUT+

RS232 INPUT
COPC
OPC 0
OPC 1
OPC 2
OPC 3
OPC 4
OPC 5
OPC 6
OPC 7
EIPC
IPD O
IPD 1
IPD 2
IPD 3
IPD 4
IPD 5
IPD 6
IPD 7
IPC O
IPC 1
IPC 2
IPC 3
IPC 4
IPC 5
IPC 6
IPC 7
+15V
-15V
+5V

15

from a world-wide Group of Companies

EUROPEAN SALES OFFICES

Austria: Osterreichische Philips, Bauelemente Industrie G.m.b.H., Zieglergasse 6, Tel. 93 26 11, A-1072 WIEN.

Belgium: M.B.L.E., 80, rue des Deux Gares, Tel. 523 00 00, B-1070 BRUXELLES.

Denmark: Miniwatt A/S, Emdrupvej 115A, Tel. (01) 69 16 22, DK-2400 KOBENHAVNNV.

Finland: Oy Philips Ab, Elcoma Division, Kaivokatu 8, Tel. 1 72 71, SF-00100 HELSINKI 10.

France: R.T.C., La Radiotechnique-Compelec, 130 Avenue Ledru Rollin, Tel. 355-44-99, F-75540 PARIS 11.

Germany: Valvo, UB Bauelemente der Philips G.m.b.H., Valvo Haus, Burchardstrasse 19, Tel. (040) 3296-1, D-2 HAMBURG 1.

Greece: Philips S.A. Hellénique, Elcoma Division, 52, Av. Syngrou, Tel. 915 311, ATHENS.

ireland: Philips Electrical (Ireland) Ltd., Newstead, Clonskeagh, Tel. 69 33 55, DUBLIN 14.

Italy: Philips S.p.A., Sezione Elcoma, Piazza iV Novembre 8, Tel. 2-6994, I-20124 MILANO.

Netherlands: Philips Nederland B.V., Afd. Elonco, Boschdijk 525, Tel. (040) 79 33 33, NL-4510 EINDHOVEN.

Norway: Electronica A.S., Vitaminveien 11, Tel. (02) 15 05 90, P. O. Box 29, Grefsen, OSLO 4.

Portugal: Philips Portuguesa S.A.R.L., Av. Eng. Duharte Pacheco 6, Tel. 68 31 21, LISBOA1.

Spain: COPRESAS.A., Balmes 22, Tel. 301 63 12 BARCELONA7.

Sweden: ELCOMAA.B., Lidingévagen 50, Tel. 08/67 97 80, S-10 250 STOCKHOLM 27.

Switzerland: Philips A.G., Elcoma Dept., Edenstrasse 20, Tel. 01/44 22 11, CH-8027 ZURICH.

Turkey: Turk Philips Ticaret A.S., EMET Department, Gimussuyu Cad. 78-80, Tel. 45.32.50, Beyogll, ISTANBUL.

United Kingdom: Mullard Ltd., Mullard House, Torrington Place, Tel. 01-580 6633, LONDON WC1E 7HD.

ON.V. Philips’ Gloeilampenfabrieken

This information is furnished for guidance, and with no guaranteesasto its accuracy or completeness; its publication conveys no licence under any patent or other right, nor

does the publisher assume liability for any consequence of its use; specifications and availability of goods mentioned in it are subject to change without notice: it is not to be

reproduced in any way, in whole or in part, without the written consent of the publisher.

Printed in The Netherlands 2-76 9399 509 52161

S
S
,

SiNGCS PIPBUG S$5l

INTRODUCTION

The PIPBUG program is provided as part of the 2650

PC1001 so that the user has immediately available to him

the tools necessary to run programs on the 2650 micro-

processor. Features include support of a user terminal,

papertape load and dump, memory examine andalter, and

breakpoints. The 2650 PC1001 card itself is described in

detail in applications note SP 50.

DESCRIPTION

The PIPBUG program is started by pressing the reset

button on the card. It outputs the user prompt character

of ‘*’, A command is then entered, starting with an alpha

- character indicating the operation wanted, followed by any

required parameters separated by spaces, and all terminated

by a carriage return. The parameters must be given as

hexadecimal numbers. Leading zeros are unnecessary. For

example, ‘OO8F’ and ‘8F’ are the same address. The error

message for an illegal command or parameter is ‘?’, after

which the user can enter a new commandline. The delete

key can be used to delete the previous character.

The program fits in the first 1K bytes of memoryin the

PROM. Also, the 63 bytes of RAM from location 1024 to

1087 are required for buffers and temporary storage.

Locations 0 to 63 are part of the interrupt vector. To fit

within 1K bytes the program uses subroutines with a

maximum nested depth of three.

In the explanations of the commands CR means the

carriage return key and LF means the line feed key. The

symbol means there must be at least one space.

COMMANDS

lL. Alter Memory Aaaaa CR

Action: Outputs aaaabcc where ‘aaaa’ is a memory

location and ‘cc’ is its content. User can

respond with:

1) CR. which ends the command

2) LF whichwill display the next memory

location

3) nn CR~ which will replace ‘cc’ by ‘nn’

at location ‘aaaa’ and end the command

4) nn LF~ which will replace ‘cc’ by ‘nn’

and then display the next location.

I. Load from Papertape L CR

Action: Will start reading papertape expecting blocks

of data in the hex object format. In case of

illegal characters, a BCC error, or a length

error, the papertape will be stopped and the

command ended with the standard error

message.

2650 MICROPROCESSOR

APPLICATIONS MEMO

At the end of a successful load, control

is passed to the address in the EOF block.

This would usually be back to the PIPBUG

program.

Ill. Dump to Papertape Dssssfeeee CR

Action: Will punch a leader of 50 blanks and then

output the contents of locations ‘ssss’ to

‘eeee’, inclusive, in hex object format. When

done, the EOF block and trailer of 50

blanks are punched.

IV. See and Set the Microprocessor Sn CR

Registers

Action: The parameter ‘n’ is in the range O to 8 and

selects a particular register;

O = register O

1 = register 1 bank #0

2 = register 2 bank #0

3 = register 3 bank #0
4 = register 1 bank #1

5 = register 2 bank #1

6 = register 3 bank #1

7 = PSW upper

8 = PSW lower

The contents will be displayed. The user can

respond with:

1) CR which ends the command

2) LF which displays the next register’s

content

3) nn CR~ which resets the register to ‘nn’

and ends the command

4) nn LF which resets the register to ‘nn’

and displays the next register’s content

V. Go To Gaaaa CR

Action: Control will be transferred to location ‘aaaa’

after restoring the register contents.

Vl. Clear Breakpoints Ci CR

Action: Will clear the ith breakpoint. If the ith break-

point is not set, gives error message.

Vil. Set Breakpoints Bigaaaa CR

Action: Will set the ith breakpoint at the address

‘aaaa’. The current firmware supports two

breakpoints.

BREAKPOINTS

Breakpoints are a way to get a snapshot of the program

and microprocessor’s status immediately prior to executing

at the breakpoint address. PIPBUG allows two breakpoints

to be set. So i equals 1 or 2 in the breakpoint commands.

1

SIGNETICS PIPBUG m# SS50

BREAKPOINTS(Continued)

Setting a breakpoint at location ‘1053’ with the command

‘B1 1053’ causes the two bytes of program at ‘1053’ and

‘1054’ to be stored in a table in PIPBUG’s RAM area.

They are replaced by the two byte instruction ‘ZBRR

*BKP1’. At location ‘BKP1’ in the interrupt vector is the
address of the 1st breakpoint handling routine. There is a

separate routine for the 2nd breakpoint.

When the user program executes the instruction at location

‘1053’, the ZBRR instruction jumps to the breakpoint

routine. This routine first saves the microprocessorregisters,

then restores the two bytes of user program to locations

‘1053’ and ‘1054’, prints the breakpoint address ‘1053’,

and finally jumps to PIPBUG. Now the user can use the

see command to examine the microprocessor registers.

Since the breakpoints are software implemented and are

cleared when reached, there will not be another break-

point when the user program is re-executed. It must be

explicitly re-set with the Breakpoint command. Break-

points will remain in memory until executed or explicitly

cleared with the Clear command.

SUGGESTIONS ON USING

Having written and assembled a program, the user has a

papertape containing the object code for the program. The

Load commandis used to read the code into the RAM of

the 2650 PC1001 card. In the operand field of the END

directive of the program, the user should put blanks or a

zero, so that after reading the tape PIPBUG restarts itself.

Most commonly the loaded program is still under develop-

ment. The user wants to run and test only parts of the

program. He can use the Goto and Breakpoint commands

to isolate the particular code sequence. The two break-

points can be set at the normal and error exits of the code.

Using the Goto command the user then transfers control

to the starting address of the code. Remember that the

microprocessor’s registers can be pre-set using the See

command.

If there is a bug, the user can make machine language

patches to the program with the Alter command. Great

care should be taken when doing this, since assemblers are

more methodical than people. The Dump command can

be used to save on papertape the program and all patches

so that the debugging can be continued at somelater time.

SUMMARY

Alter memory

Set Breakpoint

Clear Breakpoint

Dump memory to papertape

Goto address

Load memory from papertape

See and alter registersY
A
r
m
-
o
n
o
v
d
w

yY
>

SIGNETICS PIPBUG ® SS50

PIP

LINE

M
L

D
.

tA
L
I
N
R

i
C
o
m
F

t
e
d

Pe
lt
p
e

C
o
r
b

i
Te

F
i

or
.

i
c
o
i
,

sb
P
d

P
e
P
a
e
e
R
e

P
e
d
e
r

L
D

J
s
d

P
a

Pa r
t

P
a

ma
l

L
i
e
C
O
A

o
y

Cd
te

d
is

d
te
d

ta
b

Le
d

Ge
b

Ca
l

Ge
l

Ca
l

Ge
l
P
R
P
o
P
e
P
a

H
L
o
o
O
o
O
P

A
.
a
P
e

b
B

Tr
. fs
.

f
e
b
P
b
e
e

ASSEMBLER ¥ERS ION

ADDR Bi Be

a
e
y

a
n
,

a
s mt
P
i

1
m

G
i

e
e
r
,

o
w

Cy
r

(e
i

Ca
t

th
o

ia
r
G
a
i
k

OS
)
c
a

i
A

i i
%
5

i
c
h

r
y

Ss
en
ne
le
’

r
m
a
i
t

f
e

f

m
y
!

i
i
t

i
i

7
“
,

i
s
d

eo
,

a
a

f
o

x

a
a
t
I

T
e

M
T

d
o
u
r

i
"e
me
ne

te”

Pi
P
a
h
a
L
s

1 at
f
f

a
"e

ma
me

nk
e”
=
+
i

*sa
wa

ke

3
t
S

t
t

7
,

ma
na
sa

i
y
}

7
e

Fea
nen

ke

Nen
etl

e®
He

ck
e

* ssa
nct

e’
i

i

mt
P
e
d

P
a
:

Sb
U
S
E

TS
H

p
e
r
t

re
ow
na
ky
”
—

m
i

y
l

‘w
an

e

at
E
l

C
a
l
P
b
e
e

§

o
r
e
,

s"

t
a
l
i

i ‘we
et

iam
b

a
i
t

sh
ot

RAR

A

ARE

aa
a
a on
,
b
b

a
4

ai
T
H

7
s
v
,
e
r
m

ia
l

f
o
b

G
o
M

ff
o
o

“e
or
ee
te
”

T
e
.

te
s

"a
b

iS

a
k
s

a
r
e
,

S
o

“
I
,

“
e
s

”

i
t

L
t
d

LS
r
e
,

ou
nc
te

T
t

“
T
e
,

2
%
.

Se
we

ad
y'

s
t J
y

fi
.
T
b
t
g
T
D
|
m
o

r
y

ro
on

ee
te

”

o
r
,
i

in
f
o
s

E
y
,

a
n

n
s

wt
!

*
be
es

m
F

ir
]

i
d

er
p
N
T

o
o

T
T
Y

‘em
nae

ely
'

t a
t
i

e
n
t
F
uC
h
i

:
a
3

“
b
f
.

ho
T
h
i
i

O
o

O
m
o
l

Ps E

a
t

r
t
.

P
y
i

e
a

m
t
C
e
o
y

P
i

mu

r
e
,

h
e
e

—
—
,

m
S

C
r
m
a

“
I
~
!

ro
t

e
e
e

C
a
}

ds
TO

fs

ce
s

hs
!

b
fi
st

L
a
l

Lo
.

%
C
U

C
o
f
p
T
H
Q
~

~
~

r-

j
s

r
l
y

*e
om

md
e’

r
m
t
s

mb
C
E

a
i
y

ty
d

o
m
,

4
3

r
e
.

i
n
i

-—
—,

i
n

S
t I

se
nt
s

fo
nt
s

fee
een

le
fl

2

i
e
C
I
R
C
m
o
w

o
b
o
h
o

r
o

-
‘o
pe
ns

MS
re

a wt

p
b

‘e
er

oa
e'

we
re

p
e
e

P
T
E
T
F

“
— i

e
r

t
r

pi
p

t

i
i

1
an) Bel ERR

APPENDIX

3 LEVEL 1

SOURCE

P EGH
MH EQU
co EU
LCOM EC
CAR ECU
SENS Er
FLAG EGU
Ti Fru
Te Eri
Cee Emu

FE ELI
Fi EU
al EGIL

Ett

Er
Bl ECL

EEL

EGIL
Ett

Fs EG
Ett

ELI
PELE EG

ECL
fF Emu

Er
E CHL

CRIS

LODT.RS
ENR
STREA.RE
BRNE. RS

LODI,.RA

STRA. RA
LOD. Fa
STREA, RA
LOT. Ra

STREA. RE

AIH

BTR. UA
Ar oh

ae

ae COMMAME HAHDLER

EE [LOT . Re
Ros Pe i

MELE [RS

r
y

fe
d

es
.

Ts
b
e
e
P
o

a
hac

sac
t a

a

co
iy

“a

atk *

‘2g

Ba?

o
r
t
o

m
a
e

ha
na
!

t
St

Le
d

La
l

Po
t
e
e

I fes
wat

te
i

=
e
p
e
e

P
e
l

‘

I
n
d
e
s

K
y

ew
na
ll
s ws

ra
t

a
C
O >

a
g
p “s

E
s

mE
Ce
r

ie
d

os
7
,
|

7

T
e
f
t
e
s

e
e
e
e

o
e

‘s
|

ts "

a
T
,

i
A

i
tr

l
~
O
i
T

OP. RS.
RAIN]
H* Pr
“GOT
4? ee

ABOT+?2

HTS
“GOT+S
MELIG
BEE I
[ala

PP

| THE

PAGE t

LOGICAL
CARRY
SEMSE
FLAG
INTERRUPT INHIB
INTER DIGIT CAF
O-VEFFLOW

COMPARE

NO. BRPTS - 1

cERO MARR VECTOR AND O

LOUAB THE RAM CODE TO 5

BREAKPOINT VECTOR

EREQR RETURM FOR ALL RF

STHE TP OF CMD LOOP. EES

DOMT CARE IF THERE [5

SIGNETICS PIPBUG # SS50

PIP

rm
“
M
E
T

Y
t

fs
.

ta
l

a
n

T
i
o
o

o
n
L
n

O
n
O
r
C
r
o
n

c
a

m
y
o
i
r

P
P
O

OT
f
e

ta
l
B
a
e
u
n

hy
P
y

w
s

o
r
,

at
|

B
t
C
e
P
o

C
I
T
h
e
l
P
o
e

C
e
t
t

P
O
C
O

C
E
m
p
T
P
e
b

TA
P
T
E

Ta
b

TR
E

TA
R
T
e
T
A
L

L
A
f
h

ha
l
P
e
e

(
2

f
T
r
.

at
|

s
o

L
i
p
o
.

L
E
E

L
E
P

L
E
P

L
E
P

L
E
G

E

Ji
t

ID
P
O
Y
)

i 7

P
a

Ta
st

ee
!

ii
}

pT
eset Ena

ee

ASSEMBLER

AyD Tike!

i
m

CS
I

e
r
T
a

r
e

P
s
i
i
i

om
n

ne
ee
ea
l,

i
m
m

m
i

Cu
e

cy
‘
|

ev
en
!

y
e
,

P
o
a

m
e
b
o

P
h
a

T
T

l
j

a
n
,

L
o
t

hi
ts

~
~

t
s

Pe
we

e’
o
o

T
r i

}
o
e

j

{

el
C
e
l

ca
l

C
e
l

f
a
l

t
e
)

[
P
d

ae
l

f
t
s

P
n
B
k

m
t

‘e
we
an
ta
’

f
a

f
o
f
n

0

e
t

L
o

m
o
p
y
l

r
o

Re
ne
e

BS
Meg

a k
e

ap
ne

,

e
v
s

w
h
e
n
s

}

sh
od

“
a
f

i

a
t = ‘m
am

e ri
= ra

ed
’

r
e
i

(y
p

C
b

i
e

L
A
C
A
P
A

Bs

i }
op
in
e,

e
e
e

} is

t
C
,

c
e
d

i

3s
Ph

hl
s

en
ts

ra
s

a
t

i
t
ii i

T
T

a
r
C
h

ry
t
t

i

p
a
y

CT
c
e
o

ay

i
i i

co
re
,

te
s,

wa
n!

L
a
d

“er
,

!

ae
s,

e
o

sa
an

a
e

i i

ARGS

MRE

Fee Ty

AREF

MR

REPS

Bee e

0
8

so
ne

a
o

~
y

Ki
a

A
N

T
y

f
h
e
s

E |

i

f
e
d

1
m

r
a

‘a
mm
al
te
”

Po
a
f
e

M
o
e

T
T
i

a
h

vert, seven

Ee

Hef
ad
Al
Ret

Az
A
“wt

eecaat

Sl

7
ee

jes
teh

s®

—

oak
nan

l,

ied
E
s

“4
Ts
.
p
e

‘w
ow
ee
ke

a

SF
O
f

|

c
i

do
l

5
EE
O
L

— ‘
n
w
a ai

ot
e.

—
_

e
e
e

sf
I

P
t

“
r

fo
sn

ve
ke

!

r
e
i
o
.

o
n
t
o
!

i
“
P
E
P

e
e
e
e
e
e

f
i
B
f
.

T
I

r
y

~.
p

CT
)
i
i

f
e

P
o
B
o
e
T
P
A
T
P
u
e

I
w
o
r
e
,

Py
hl
s

Be

VERSION 3

res
Ee vt

ot

aHa

c
o
y

T
y

i
g
o
:
p
k

r
.
a
e

B4 ERR

LEVEL ft

SQURCE

* INPUT & CMD LIWE

a CODE
LINE

LLIN

AL IM

ELI
CLIN

LIN

CRLF

STRA. RA
LODA. RA
COM. Fa
BC TA. EB

COMT. FA
BOTA.EQ
COMI. Re

BIOTA. El
COMT. Ra
BCTA. ER

COMI. Ra
BOTA. EUW

COP T. RA
BCTA.ER
CoP. RA

BI TA. EG
BCTA. Lt

[IS 1=CR

LODT.RS
STRA. ES
ROMT. RS
BIO TR. EL!
BSS TR. LI

CORD. Re
GITFR. EG
COhMD. kA
ATR. EO

LODA RE
BSTA LIM
SUEDE. ROS
“TR. UI
TORMT. FE
BCR. EL
POTEET
Lope

BCTE. tH
ADD T.R
SPRE Fe]

S TRE. Re

ODT. BA
itt, ”

chin PRs |
es fo | 8 Lt i

PAGE h
o

BFTR
BUF
i ee

AL TE
gt ee

BERT
Amo

CLE
A Tt
DLME
Aa"

GOTO
vee

+
a
e

F S328MSG+CR 4=MSG4+LF

e
n

7
"

“Y
T
n
e

r
o
a

r
e
a

P
T
]
—

—
3

an
at

en
es

r
i
o
t

r
a
r
y

P
o
p
r
o

=
r
T

T
Y

r
m
a

OM BUFFER OVERFLOW FOR
GET CHAR

T
e
r
o
e

r
y

=
4

o
r

ECHO AND BACK PTR

o
e

t
i

;

i
Sa

ma
l

h
t

S
e

a
t
e

1

en
d

fa
n i

‘s (+
.

v
o
,

e
e
v
e
e

3

m
i
o

o
m
e

m
t

a
O
P

=
a
T

i
i
}

a
h p
S

fov
ome

etl
a ei
n
e
n

m
r
t

2
L
E

b
e
t

3

Le
d

i
m
— : i
m
o

e
e

a
l
,

Cope
CAT

7

C
a

m
o 5

Poy

i

fd

WPF sRS.+ STROE CHAR ANT! ECHO

SIGNETICS PIPBUG # SS50

a “T
I

[
7

— oz
.

FT
}

SF
a
C
a

— ‘a
ss
et

ma
p
L
a
t
r

B
o
n
e
t
f
y

P
o
P

O
T
C
B
A

Po
a
e

me
t

L
i
t
0

“
J
T
,
L
f
.

G
b
P
a
e
e

e
o
n
!

r
r

a
L
e

“
=
.

‘oo
wet

be'
O
P
O

L
A

f.
O
l

h
a
e
f

w
o

m
t

f
a
p
e
,

B
J
.
I
.

B
O
O
O
P
I

GD
G
O
)
G
P
G
E
R
o
f
o
R
o
P
o
o
n
e
e
e
e
e
e
e

Fo
nt
s

eeb
aew

ehe
ca
se
d

q. “
S
P
O
T

LI
D
T
R

te
l
P
o
p
e

i

f r
r

d
o
e
P
P

L
G

yo
re

oe
P
t
r
.

CF
E

G
F
P

Ps

Fr
ev

ec
lo

Fr
en

te
foo

een
ste

frr
wea

ts
fon

rem
nde

fo
se

ml
e

re
nn

nl
e

 fe
ren

nat
e.

 Fr
ver

fe
 fo

san
uts

 fo
rer

ae
for

cer
cds

for
emn

fy
 f
or
ae
ns

for
era

le
fe
re
e

Jo
rm
a

foc
ser

tte
fo

ee
un

te
fec

ena
uts

ro
ng
ef
e

fre
nen

cde
fo
re
st
s

fo
rm

al
fo
rm
es

fo
rm

e
Fr
en
te

f
r
u

foe
cee

sfs
h
o
l
y

f
m
s

ffr
mma

le
fan

gre
cls

pr
un
e

fi
na

ls
fr
am
al
y

fe
rr

et
s

pe
nr

nd
y

pe
ne

f
r
e
e
f
a
l
l

 fr
rve

ret
s

po
em
s

le
me
et
le

fr
ee

ly
pe

el
s
p
e
e

fe
se

ee
sh

fo
nt
s

f
a
d

fe
R
a

27
s

A
D
D

L
A
L
P

Js
Soe

wee
nde

ASSEMBLER VERSION

ATDe

AAA ed

AAA

RRAAR

ARAB
BEAE
BEBE
MAB
coe, eeee,

od
s!

o
m
,

en
ts
7
,

i
s
i

i
s

mi
i
i

e
t
,

ea
pe
e,

E
E
S

am
i,

 eo
wwc

de’

le
sn

ea
le

®

a

t
a
l

L
a
p
i
s

C
A
f
g

T
P

O
T

li
n
a
y

r
a
p

Ty
p
i
y
m
e

i

r
a
m
r
a
c
1

T
D
O
m

7

1

c
t

aE
O
r

a
,

er
a’
—

t
e

o
r
,

o
r
e
s
,

P
i
s
h

os
.

mh

L
A
T
a

fo
k
o

O
o

fo
n
a e
at
ea
ts
’

v
t

e
a
e

ocr
a
a
t

*.
§

i
.

}

o
n

i
h
a

aP
o

o
m

be
at

fi
at

i
Ro
b

po
i

re
i
i
c
i
m

Bs e
e
n

t
a
j
i

ja
ea

ta
?

3
oi

j

a
E
,

e
t

Fl
a! a eo
wk

e

a
r
i

i
m
i

*n
ea
ea
te

aE
F
e
]

“c
oe

ee
ke

’

E
h

b
e
i

i

fa
i
T
E

“T
E

PP
E

PP
E

PR
E
P
P

Pr
i
rr

im
]

a
,

o
e
,

L
b
i
o

°
, rt

s
r
e
e

P
i
s
s

i
ne
er
et
,

tt

ca
t

ht
!

r
a

m
e
T
P
>

O
E

OL
)

te
l

ie
r
T
T
)

i i

J}
Ls
.
a
e

‘
t
l _ aa
d

j i
F

cy
l i

D
T
P

CT
E
F
P

CT
)

CT
H

oa
c
y

Yh
al

Po
a
T
P
i
G

Li
p
™
)

fy

‘e,
3

f
b

e
e
t

h
u
!

p
y
a

ri
t,

g
e
r
r
y

S
E
,

w
k
i

fee
cee

ede
 E
ee
mt
e

fe
ee

et
e

Le
on
es

fre
omn

fe
t
e
n
e
t
s

ca
r
e

‘e
oc
et
e’

a
i my

tT
)

Pee
eee

ta®
So
ca
l

r
T

§
a
o

an
ct

nt
Hw

!

l
p
i

‘e
nm
ee

L
i

r
a
r
f
e
i
i

Sa
at

?
F
a
b

L
i
t
e

Cl
un
e

h
o
a

ro
ge
me
,

gt
ag

ee
es

,
te
ge
n,

ea
ge
en
e,

en
ge
me
,

en
ge
we
es

e
e
r
,

ni
P
u
P
o
i
s
d

E
E

P
E

E
E

E
T

3
"

of
sf

b
l
u
E
t
s

Les
cre

nte
So
re
t

Le
an
ee
Be

foa
sne

ty
fen

oom
eta

Eer
ena

de
 Ea

cea
sod

e
on
ea
l

t
e

*
gy

bo
b'

s
fre

ves
ete

few

7
fe
om
ed
T
M

Ob
a
m
e

d
s

g
o
n
g

R
E
E

s
e
t
s

gt
r
m

B 1

“
J
T

E
t

a
a

p
e
e

f
o

T
H
O
T
h
s

oT
],
c
o

m
o
i

ce
l

Ca
f
(
a

h
a
p

L
e
d

C
a
d

r
m

~—a bee
Ooeat

om pe
a

ten seabes

ap
es
,

em
ak
e

pi
p

om
.
P

t
o
m
s

L
p

P
T

p
e
e
|

rl
‘
m
e
e
”

c
=
F

P
e
o

TT
T

is
l

m
y

T
W
i
T

wont Fea”

A
af
i
t

=
e
s

‘o
nm
ad

T
e
,

i
"

b
a
t

th
i

m
E

—
—
,

‘o
oe

ed
e!

a fo
ve
se
ls
!

L
s

B
e
f
s

O
b

Pe
t
f
n
P
o
f
k

Po
t

7
)

Aao
nte

or
m,

“e
om
mb
e

i 5

a
a

Pa
t
B
s

o
p
e
,

e
v
e
!

1
b
s

a

o
s

no
ce
ek
e
— a

os
et

e!

i

o
a

— h
e

m
t

re
ce
de
1 4

— i
™

ce
o

o
T
,
r
m
,

L
o

i
s
h

t
s
i

me
T
a
f
T

w
t

P
E
s
,

p
o
n

p
o
n

I
al

I
E

r
e

o
b
s

ar
,
a y
t

“
—
.
b
i

L
i
t

b
s
.

Pr
.

“
,
t
t

ch
t

for
es
,

e
r
m

S
i
i
p

I
T
S

‘
o
o
n

a
S
t

o
r

a
a

m
t

i
C
o

Pa
l

f
u
n
d
a
s

o
r
;

L
y

a
r
.

LEVEL 1

SOURCE

PAGE ts
]

* SUBRE THAT STORES DOUBLE PRECISION INTO TEMP
STEHT STRA. I

STRA. ke
RETO. UH

Mw DISPLAY AND
ALTE
LAL T

CAL T

DALT

BSTA. UH
ESTE. UM
BaTA. UN

LODA. kl
MSTA. UN

BS TA. UN

LODA. Fl
BSTR. UN
MSTA. LIM
BS TA. UN
LOTA. FE
COP. Ra
BITA»LT
BCTR. Eft
S TRA. RE
BSTA. UM
S TRA. Fe
LOA. RA
COM]. RA
BICF A. EL!
LODT.R2

ADDA. eS
LOTT. 1
PEST

ADDA. Fi
CPL

RC TA. UM

TEMP
TEMF +14

ALTER MEMORY
HLM
STRT
BOUT

TEME +1
BCLF

FChb
xTEMP
BCLT

PORT
LIHE
CODE

MBUG
TALT
TEM
GLP
TEMP
TEMFE
ef
MBUG
|

TEMP +1
Fy

LAC
TEMP
Lic

LALT
* SELECTIVELY DISPLAY AND
SRE [5

LoRE
BESTA. UN
COMI.RS

BOTA. GT
STEA. ee

LOTR. Ra
STre
BS TA. LM

ESTA. UM
Bo TR» LIM
bite Ta
ban Fad LAPT eoBad

COM Te RE
ET e LP
RE Tit ED

S TEA. RE
Ce Pry Lik
LibbP bore lib

Lune

SALUM

m
r
i

“E
t
-
i
T
i
i

“
P
T
,

C
o

C
c
a
3

i
t

See?

“
C
O

e
e

o
T
2

--
|

i 7
bee boa
mat

Bae J e
v
e
n
? 2

DISPLAY CONTENT

UPDATE CONTENTS

INCRE CURRENT ADDRESS

ALTER FEGISTERS
GET INDE OF REG

| RANGE

DISPLAY CONTEHTS

MUST UPDATE PSL LOWER

SIGNETICS PIPBUG @ SS50

PIP

[
~
~

o
o m ADDE & I

L
o
s

k
y
)

cr
i

m
r
i

Po
l

Pa
l
P
d

4
T
m
S

"
e
t
t

1
3
!

— em
re
ei

“
T
E

O
M
,

P
P
P
O
T
f
.

O
T
O
T
o
o

V
L
E

T
i
m
p
o
a

l
i
o

a
T

ae
ro

r
m

r
i
t

o
r
,

p
i
t

ic
.

1
i
i

I r
a
}

t
r
i

i
s
,

is
.
i

I

fr
et

s
Be
nt
e

Pr
ee
ce

pe
a

fe
ce
s

fu
nk

fe
et

Be
e

i
P
s

=
td

e
h
,
0
9

o
r
i
m
i

“S
P

LE
E
T
S
C
T
T

Po
ve
ts

i
.

as
P
P
T
,

CA
D

fs
.

fa
l

Pe
a
ee

i

t
i
,

e
*

Ne
en
be
!

“a
b
T
E

TA
L
O
P

oy
)
o
P

w
a
r

im

Model &

Mie? BE

Hier IF

a 1ar AT
Eilo2 GE
los

AU
T)

L
A

fs
Ge
l
P
a
e
e

I

= BIS PS

T
d
T
a
T
E

p
h
i

a
e

J
o
o
e
n
t
s

c
e

r
m }

Pog

oe

td

Bo RIB CE

oa Higa ls

n
c

c
o
c
t

ss
)
O
h
C
L
E

p
O

i
m

P
r
e
e

T sofa
s!

~
~

C
o
r
t

f
u
r
y
,
f
t

e
e

i
Sa

me
re

le
”

“o
me

ns
!r
e
n

S
P
O
T
S

CP
,
P
y

P
y

o
P

iy
o
P
,

*
afd

bo
s

ae

J
“a
4

D
L

P
a

e
e

PP
P

E
T

r
a
f

Mee
e?

ok

L
O
L

Li
o

li
t

Li
te

li
te

li
te

li
t
o
o
o
n

S
n
,

c
r
,

i
t

Q

e
p

|

w=
,

t
“
4

P
o
p
e
f
o

! A

w
o
r
e
,

se
ep
s,

f
°

b
t

Ne
es

ee
le

”
“
e
e
e

Fev
ere

cts
fee

san
te

Lee
wen

ste
fos

can
te

sa
mm

e,
Exe

eee
ods

 fe
ere

ndl
y

oec
ner

ty,
 fr

ees
ets

fo
gr
ea
ts

fe
ma

le
hre

eni
cle

foo
ven

cte
foo

emn
ts

re
ce
nt
e

fe
me

rt
e

fo
rm
ed
.

 fo
eme

mte
fo
re
ef
e

fov
ece

ste
.

fac
ern

te
—fe

ane
nrl

e
osr

ent
e.

os
nn

en
le

fos
can

te.
 fo

een
eeb

s
 fo

sea
nte

.
 fo

rer
es.

n
e
t
a

fo
ee

ma
ls

for
wen

ts
 fo

sme
als

 fr
nce

utt
e

ov
en

for
wre

chs
fro

men
ly.

ar
re

st
s

foe
era

ty
fre

ren
cla

fe
ma

le
for

wee
sle

fr
ee
e

fe
mm
e

for
emn

te
fre

ere
nle

ro
we

l
fr

ow
rs

te
 fo

ree
nst

e
fe
me
fe

f
e
e

 fl
oer

ele
 fl

evw
eat

s
 Sh

ane
niy

2 gira Co
4 H17D 12
5 @1ire cc
Salas ET

Mie ED

ASSEMBLER

m
0
P
a

.

im
)
C
l

ra
l
C
e
a

ni
fe

l
f
s

fi
.

Ga
l

ce we

m
y

r
e
y

‘o
om

ac
be

'

Py

A
OS
H

S
h
e
e
f
o

i

.
p
o

a

r
y
e
m
a
t

o
T
,

“e
am

”

+5

a
e

a
d

Fo
k

7
s
i

{
i
.
G
o

r
s r
a
i

aa
IZ

re
y
S

P
i
e
r
e
e
C
y
m
y

ma
i

fe
.
f
h

I
h

j
TT
B
s

=
H

hE
TP
i
a

*
“
T
F
F
P

P
e
g

c
e
t
b
e

p
t

e
p

en
e,

“s
no
wy

T

fh i 2i
i
s
l

‘e
av

en
e’

t
e

= m
a
t

Riel ES

Rel AS

I

fo
C
1
f
s
.

Es
t
e

j
i.pr

ot
,

iee
swa

le

A sa a a

Mich Fy

wee fase,

§ oe

VERSION 3

ba ERR

LEWEL 1

ms ryJRC [-

*& EOTO
To

“
a
d

x
m
o

<
r

Fo
ee

ec
te

BCFRL EG
STRA. RE
LODA. Fa
COMT. RA
ATA. EG

LODG. RS
ADD. ke
poate, coon, neegete

BETAUH

ADDRESS
FSTR » LY

3574. UM
LOD. RA

PRS
LOT. fd

LODA. ko
LODA.RS
PRIS L
LOD. Fl

LUDA. RS
[LOD eS
LOD. ee

: rica |

SCTA. LIN

vORESAKPOTAT BU
S TRA. RA
oPSL

S TRA. RE
STEE. RE

LODT. FE
BIT TR. UH
S TRA. RE
SPSL
GS TRA a RE
S TRA. RA
LODT.RE
STEAL. Rel
C7ms||

STEA. PA
ae

ieaT dow i, i

SORE
SGOT+1
TEMO

2
te

“ene!

METS

TEMEi

_ SRE

STR T

ROrM+?

Cops 1

COM+2
PoeAs

fe
Pioby+

Cor

et

Ci

ta
d

[o
o

i
T
;
a
LI+

‘+
ii

|
He FF *
malT

COE
CoM

COM+E

SCT+ 1
fy
BEEN
CoM

COh+S
mGOT+

PLIT ADDR IN

BANK ZERO

BANK ONE

AND BCTA.UN

ENTRY FOR B

IN RAM FOR
BEPT INDEX

ENTRY FOR &

IN BAM FOR

DT BRET Eber
dot Lat id, § {

PAGE 4

RAM

TEMP

EFT= 1 YIA Y

REG RESTORE

KPT2

REG RESTORE

Hobdbe FEE
i PEs. fee baw Ets Lad

ra Ty Tete
i dat ts,t hae’ Eat"

e
e
e

SIGNETICS PIPBUG # SS50

FIF ASSEMBLER

r
c

i
r ADD

“RAS ALAS
“1A ALAS
ail
212 ALAR
SiS Aiac

j 2la @1AF
S15 ALibeS
216 ALES
SF BiPS

, S16 BLiBE
S14 ALBEE
SSR Bild
SEL ite

SSS Bits
seam LCS

oot

See FICS
eer HLCeL

SS8 ALiCk
S29 Bile
SSR Tred
eal biter
SRP ALD
2335 Alb
S3e FIDE
S35 BLE]
236 ABiEd
SEP BLES
2a ALlEF

S29 BLES
Sah ALED
fei ALF
Sd? ALFS
Sad ALPS
feel BLES
ed5 PLPe
eee ALED
2ePF ALFE
2d ABEL
Sel) ASG ad
SSR REAP
Se] ASS

i

rong fee

Beene fase!

a
e

T
T
,

.
:

E
o
e
r

c
a
d

t
a
d

i

J
T
)

O
T

r
r
p
i
G

~
rt

ttToate

O
E

7
aT

T
.

aa
d

ml
L
A
D

J
pat

e’

a
a
d

"

ivi |
mak

po alfe oth

ped

we
toad tend

Mes davce

VERSION 3 LEVEL 1

Bel ERR SOURCE

257A.
BeTy

i
t
t

t
o

i
t
l

>

a p
o

P
O

=
e FORS

STP.
LUDA.

STE.
Loge

RETT

UM
UM

Th ELEAR A

Fa
Ri
FS

» RE

LIM
* BREGK POINT
* HALE +Lane is
LE EsTR o

Lone
myTos
Lhe POD

EeTR

—
_

=
}
a

m
y

ROTA. LIM

MOK aTR |
Ll {in TOLE Ds Re
ETA
OPT.

ETH «
RE TIC «|

REPT ESTE.
LOTR .
BFRa

STRA.

BsTY

4 am™ Tey 3

meer

Looe

mTRE

Lon2

a
a

f
i

T
=

}
“A

P
d

~
~

t
e
e

LI
fet £5

rm
, p
,

nb
O
T
E

fa
l

e
!

eo
rk

em
ee

ew
nk

ea
re

s
P
a

“
i
T

i
m
t

7
a

Tt
g
r
t
,

N
r
,

P
u
i

Ff
‘ac

are
ale

'
"e
ev
ee

VR
a Pe,

re |

f

BOLT
PE LG

BE FT LIKE AMY SUBRF HAS FEL ABR
Bi
MARR. Re
HATE A
TEMP
LADE. ke
TEMP+1
HAT. ke

x=TEMP
DAT. ke

EMP. ES

MARE TMDICATES ITF SET
BRET ADDR. HORT + LEAT TS TOD BYTE

ra LARS

MARK. Re CLEAR IT IF SET
EELS

LEE
MEHI

CHUM CHECK PAMGE GN BEPT NUME

MOK SET BEFT AND CLE ANY E
MARE. Re

CLE MLEAR ES TST THG

GALI BET BEF T Ali
STRT SUAR TO STORE Bi-ke IW

HE Save CONTENTS
i
|

Sep = 2ER

SIGNETICS PIPBUG # SS50

PIP ASSEMBLER VERSTON 4 LEVEL 1

LIME ADDR Bl Be BS 84 ERR

ebl Bees OB

26d AbSd4 SF AS BS
ebS Beer Se ID
S66 ASPS DS
Shy FSSA DS
268 GES8 DS
269 BSeC Ds
ere Heed F

1
i
t

cc

mb
e
o
I

f
e
o

Pl
Is

t

|rit Senta ote toe, oott, auton ene
oe a iq"_ 44

faeces Seowwe fame) Bouman Coens!

wegye ts ag
23 eR

I i

M
i

c
P

i
s
}
“
T
I
T

a

eyed Meal

2FS5 ABS Cl
SPe ASS Se

C
o
e
n
©

r
y
t

po
ms

fPP BESC FP
mS
nc. | Lo

SFa AGED a
ir —_
eck Sse 20
eoi Bedi Denra De

te ra yf

m
a
t

E
o
n

m
2

c
y

os

=
|
r
v

g

m
a
i

a
i

f
—

™ mt * iF1 : L& i "e

C
o

ce f
y

3
r
y

J}
Pd

m
o
i

c
h
y J

r
m
C
a
l

i e
a

hi
d

L
i
d

b
o

li
o

Li
tm
t

yu
me
’

wo
e!

P
E
G
E

T
h
m
E

fs
,

*
d

“
b
E

f
i

p
o
w

p
o
p
e
T
E

L
a
T
p
m
p
T
y

TI ry

BSS BC Be or

Mea Bel
hia coena “

fn
.
O
R

ma
t

Ss
,

i
t

Po
h
a
h
a
P
o
t
P
a

f
a
P
a
a
P
a
ea

P
a

L
r
L
i
o
n

i
i
t
n

m
M

LA
P
E
S
e
d

fh

A256 IF BA ID
HS5o SB Sil Se Sa

4c 25 4G AY
fc 25 4lo ede
4a ode. 4h 46

‘

WL ~
~

‘w
ee
en
de

rs J = — ‘m
te
ne
ta
”

Se
nv

er
eh

e. t

i
s
d

SE iF
a
a
i
Yovent bs

Sd
i

SOURCE

TATA WET+H "BEY +2
of

* THMPUT TLIO HES CHARS AND FORM AS BYTE IN Fi

EIN BOTA. UN CHIH

BS TR. UM LUE

Fret 5

PRL.RS

Perl. eS

RRL ES

STRA.S TEMS

7H. LIN CH If

BSTR. LIN LEIP
IQRA. RS TEMS

Lote RS

SRS Fe |

BSTR. UN PA

RETO. LIM

% CALCULATE THE BCC CHAR. EOR AMD THEN ROTATE LEFT
CAT Lone Fe |

FORA. RE AE
om -
aor oe

< ew Ll

LOGKUP ASCII CHAR TH HEX WALUE TRELE
LKUP LODT.RS 16
ALE COMA. FE ANS TRS.

RETO. EG
COM. RS l
a ALL

* ABORT EXTT FREOM AY LEVEL MF SUBR
* LSE FAS PTR SINCE FPOSSTIBLE BRFPT PROG USING
AERT LODA. RE Poh?

TOR]. FE H* <li?
SES

BIC TA. UM EBLIG
AS I DATA ARATES456PSSRBCDEF

* BYTE IN Fi OUTPUT IN HE
BOLT STEA.F TEMS

Ro TR. UM Cac
PRL « FR}

en
do

Fo
we
ns
ie

ANDI .R I H* BF’
i PM cyLODR. RE

PAGE

SIGNETICS PIPBUG # SS50

P
o
e
e

(
h
t

“
P
O
T

CA
D
B.

te
d
Pe

[
a
w
e
e
e
e

p
e

b
e
e
e

p
e
R
e

R
e
p
e

r
m

P
r

Pa
to

e
e

Co
p

hi
nt

bi
te

)
Ge
l

ta
l
O
e

Ca
l

Ce
l

ta
b

Ce
l

Ca
l

Ce
l

Ca
l

Ce
l

Ca
l

f
o
d _t

c
e
e
S

1 le
as

t!

t
e
]

La
l

t
a
b

[s
lp

e
e

f.
1
,

n
m

i
c
i
c

at
O
L

»
&

Fs
fs

fa
I.

Ob
Ge
l

Ga
b

Ga
l

Ga
l

CA
P

OA
D

GA
D
OD
G
u
o

B
a
e
a
h

Pa
a

ne
C
o
w
b
o
y

LP
LB
.

ta
d

f
e
d

f
e
l

t
e
d

t
a
f

t
e
d

i
a
?

ta
b

f
e
d

fa
d

c
e
d

f
a
b

f
e
d

C
a
l

ts
.

M
f
t
e
b
e

ot
J
P
A

LA
E

CJ
it

t
i
i
h

E
E
E

F
%

}

M
t

$
f S
o
p
o
t

r
e

;
L
E
E

‘s,
e
t

Ft

2
or
t

P
o
E

so
r!

i
y

t
:

Sm
ad

i
Fr
ee
e

§
Fe
no
nt

ta
b

Ga
l

Ce
l

Ca
l

Ge
l

Ca
l

Ge
l

Ca
l

Ce
l

Ga
d

e
e
e
,

t
e

af
OT

s

CT
E

i
F
] t
i

e
t
e
r

Be
!

i
k

i

o
m

or
y

a
,
3

ia
l

ie
d

fa
l

te
d

fo
ot
s
E
G

ASSEMBLER YERFSION 4 LEVEL i PAGE r

ADDR GL Be BS Be ERR SOURCE

r
y

AS Bed ha TA. UN COUT

RE TIC. UM
* Lift BAUD IHPUT FOr FAPERTAPE AND CHAR IMHe ECLOEK
CHIN PRSL FS)

Pont. Pa HS ENABLE TRPE FEADER
WET. FE
Lont.F ©
LODT.FS isl

AH I SPSL

BTR. LT CHIH LOOK FOR START EIT
ENRS Fe

WET. RE DISABLE TAFE FEADER

[
u
t

is
}

— oo
ee
dl
s

i

P
s
t
M
3

f
i
i

ii
l

1 e
e

f
h

m
d

ra
t

e
r
s

na
ch
?

i
c
e i

! Fa
ae

de

.

r
r

ee
wc
te
”

Sv
ea

nd

e
e
e
,

te
em

,
a
n
o
,

B
i
b

Ri
ba

B
a
h

T
y j
J

Ch
i
e
e

C
r

ca
l

i 1
P
e

L
i

Li
d

b
i
g

I
E P
Y

m
o

o
e
,

h
a
l

“

e
t

OT
}

ee
i
t

fe
te

*

na
se
,
4

c
o

—

m
i
W
o

h
a
o
h
L
a
p

~
]

Ls
.

m
i

m
y

b
i
l
l

c
i

i
i
f

S
d

C
o

r
y

Fon
eni

t!
|

r
r

f
2
°

%,
i.

P
A
R
D

B
a
l

O
T
T

‘o
ma

’

b
t

pe
te
E
G

F
e
f
a

P
s

w
o
m

hi
n

ty

t
o
r
r
e
s

or
n
f
o
! T
1
4

mr
i
y

r
‘w
oe

f
s

in
d
P
t

{
: BLA WAIT TO MinDLE OF DATA

p
p

LE
!

os
)

Pe
nh

b
e
h

C
a
r

w
a
l

u
i

T
r
f
t

i
t
o

L
E

i
i

+
+

“a
Y
o

C
o

Pe
d

f

P
a
o

MeoG
ASoe le SFSU
Ae del Ge
ASode Er] Eh. RI] |
ASAT ed Tee Fi

ASST Cl STR FF |
BTR. FS BH I
BS TR. UM DLAY

Sry, AMDT. F I He
ASA Bl LOTS Fe
ASR FE CPS Fesseh

RETE. LIM
* DELAY FOR ONE BIT TIME

HAG 2 DLAY EDR
HZAS FS ADRE,
BAe Fe DIRE.
AZAD Fe DL BDRE
HEAP Ged Lt 2.
HEEL Fe EDER .

aneeey eted sence aetna vent

ol RETO. LM

"ope MOVE BIT * OF Fe INTOi
i
l

c
t

“
i

r
a
t

bo
ne
s

a i
~ o

c
e

a
y

en
pr

ea
tg

gs
eg

ee
s,

ate nehs (teeh, Beneee

MSE FR

AAR AB a
J

c
y
l

T
E
o
n
O
y

passat saws

one

a
*,

o
r
,

i iy i _r
.

'2 Pr
y

a
f

i
f
y

m
a
)

m
4
]
i
y

f
o
n
t
s

c
o

2
‘a

‘2

e
s
e
e
s
e
e

m
i

c
e
i
e

cu
t

E
i

T
t
i
F

i
L
u

tA
A
A

Pr
y
P
E

PT
T

Pr
y

Pr
y

Pe
Es

t

~)
TT

L
ml
m
d

m
f

“kK

COT Be Fr

47 Peo FLAS

ASE CS = TES Ris

Ae Lond. kd I

RST. LI DLAC

BTe. UA DLAY

AZEd FP w
f

|
myr
i

f
i

a
!

O
r
y

1

a Kr,
pe

nt

a ‘
o
m
e

ni
t

TM
i

Cr
L
i

“
o
e
,

‘e
on
ce
ks
'

r
t

P
h
y

m
a

ree gents nes se

ml mL Pals

5 aco ESTE. UN DLeYy

m
a
i

T
i

m
m

i
m

LP
l

T
T
}

r
y
p
o
b
g
y
C
O
G

QDoF AKhoi of

Bell SE

4

i
y

$s
.

Oy
oP

,
oe

rep at mer oT nh iaMots Be fet bet fet, fet et
eTeb Ta el mapPee por ioe

hase Bey Lei ede} mg Poe Lo LE

aLt ame poocaitRet eh thle pd Lala
Castedm mat ap Te Td spt yy
Wb ll ll. ETH BOE RI io l PPoa LUE gE Pd

ro de ONE PPS FLAG
Fo 7S SERO &DRER.R 1 ACO
“i EI Rac PE of ikl Tri tht
ECE ecu EH iy FRLand dite |

“Tf Roi Tb oat
ria che Pie ot els
epee om pegot mr
poo Lr PPO en

o eTLi RE TI. LIN

SIGNETICS PIPBUG ® SS50

10

PIP

[
~

fo
m

ar
ds

T
y

I
h
y

ry
i
y
O
y
h
y

or
y
t
y

“
a
b
,

LA
P
f
n

Ca
b
M
2

m
r

m
y

L
e

A
OF

DL
te
l
B
e

TJ
Tal

TM
TAP

TAL
TA

TA
T
A
T

re
y
c
o

o
m
!

o
o

C
o
m
o

oO
-

T
y
F
P

fs
.

f
e
d

P
a
d
e
s
C
a
h

T
i
c
c

T
o

E
i
d

il
i

io
]

m
o

t
t

o
o

r
e

0
i

p
i
p
p
i
p
a

ae
}
P
i

Be
te

|
i
p

p
a
t

h
i

lu
o

ki
t!

po
d

OF
LA

ES
L
o
L
i

u
r

ma
l
L
O

at
|

m
i
C
y
t

P
k

La
b
P
p
e
e
t

f
n

f
.

f
h

ta
l

D
e
l

t
a
l

f
e
l

C
a
b

C
a
b

ta
b

L
e
d

ta
b

t
e
d

C
a
d

Ca
d

t
e
l

Ca
l

f
e
d

f
a
l
e
b

fa
l

f
e
d

ca
b

t
e
d

C
a
d

t
e
d

C
a
l

(
e
d

ta
l

t
e
d

t
e
d

f
a
b

C
e
)

te
al

t
e
d

t
a
l

t
e
d

t
e
l

t
e
d

ta
l

G
e
]

j
Pr
.

“
p
o

oo
fe

et

a
m
y

ry
.

a

ate

w
e
e
s
,

ge
et

en
e,

ASSEMBLER

ADDR

Rens

Mee

MDA
A2DB
ceTy

ADD
SDE
RE I
Heed
Hee?
RES
MEER

fesee! Doewee

j
w
i

t
e

}

f
e
f

f
e
b

ta
l

t
e
!

r
e
e
,
i

i
l

i
On

fa
a

i
a
r

b
s

i
fs
.

Po
t
O
e

r
l
,

ol
y

Fee
wot

te®
*ee

ant
e!

Fje
d

ee
ct
?

:

3)
f

$
m

£
5

i t

g
o

b
r
y

iT
}

o
o
r
,
o
t

a
a
n

od ia
l
ta

m
E
P
E

O
P
E

P
i

S
i

i
s

o
i

o
ri

HAE
weoeng

a

Mesos? Sousa on

mete, Weeeg leoee, cvaat,

A

taal
hl

j 5

¢
™

Mea
nea

ks! in
~L

C
O
E
o
T

+
Be
et
le

fe
se

we
te

e
b
O
d

t
r
,

ob
s’

f

P
o
l
e

r
c
;

ft
,

p
o
b
r
s

m
e
p
o
a
e
e

PT
E
T
y

OT
P

T
T

SX
OC
TP
CT
E
[
2

CT
P
C
T
E

S
h
a
s

PO
P
O
T
!

r whe
el
s

“S
w

T
e
a
P
h

T
e
.

C
T
)
o
m

to
rt
U
T

"
a
"

o
w
e
d

o'
"es

dad tee

m
t

e
e

—
_

~
~

Pr
,

.
.

P
e
e
t

e
e
t
e
e
e
e

P
E
T
Y

m
y

o
r

P
Q
a
t
h
;

T
e

LB

r
a
l

Bes
nee

nts
be

au
t

ee
ea
k

o
r
t
,

g
r
e
e
t
,

t
r
i
s
2
.

3

sy
3

Fed
ay

c
a
t

Fs f
o
s

t
a
r
e
s
,

o
r
,

h
i

b
y
.

r
r
e

r
e

ab
t,

fd
:

Santo? Save?

1 is a

WE ™ Sy

oy ym

fl

Fred

pore, prenes

TON 3

‘2 Bd ERR

LEVEL 1

SCURCE

se

* GET A

DALIM
HUMBER FROM

LODA. FA

AIO TR. &

RETO. LIN
EQS
STs
em PRS
S TRA. RE
Lope,

TOMA
RETC
Lobe.

TRA. eS

MOP. Ba :
BO TR. Et
RS TA. UM

LOD]. Fa
BRL. Fle!
pet fe ape“I

PRL. RE
FkRe
AMD

ib L g fet |

fret. Fd
RRL. kd
RRL. RI
AMDT. RI
AMDT. ee
TOE?

SRS
LOT
[ORE
STR
LODT. FA

IsNun

o
m

s
}

LUM
i
o

“H
E
W
T
a
b

fa
}

Pa

OTR. LIM
* DUMP Tr
DUMP BS RUN

«LIM

STR UN

ADDT. EI E

P
a

a
r
r

“T
i
F
I

r
i

7
A

M
O
A

“T
l

CA
T

>

PAPER TAPE
ML
aTT
LI]

THE
RODE

LLM

FE
re |
Ft
Pe
Ge TR
CAT

BUFRF.RA.+

Rie fet

=PR

CMUM
LELIP

HEF *

‘a
n

i
a
l

a
r
t co
me

!

T
P

fa
b
ee
e
e

re
.

P
o
m
e

“TRA. FE COTE

LPL
bd
ij

1
A

Ww
Un Law

|

Top

The PA te 1
Pha Pots

“a

a

BUFFER INTO

t
i

TY
}

1PA

Rio - Re

SEF
OR

SPACES UMTIL REAC
SPACE EMDTIMG NUMBER

CHECK FOR E O 6

GET CHAR

RI=AB Re=Do

RM=C Rlsbe Re=De Rae

RilsBr Pe=t

eeeT

STHET ADDRESS
SUBR TO STORE Ri-R2e IN

MARE END Atte

PUNCH FUR CReLF AND ST

SIGNETICS PIPBUG @ SS50

Ald
415
416
AL?
Aig
419
426

fa
f
h

f
a
t
f
t

[
s
t

fr
en
te

423
dad
425
AZ6
427
Vee

ae wel

a4

jae
Aat
432
433

2]
i
a
t

ES

f
s

Do
—
.

I
.
I

fp
I

fa
S
f
.

Jk
i
b
d

ta
l
G
e
b

.
C
a
r

l
i
t
C
o
o
m
b
s

s
t
e
d

P
b

p
e

fe fh Be

f
e
.

m
y

447

Ab
G
m

O
R
E

co
ne

i

i
e
d

t
e
d

c
a
d

i
=
f

at
ET
A

na
l

fs
}

m
c

St
L
e

a

T
h

pe
d

f
a
d

C
a
b

L
e
d

f
a
p

f
e
d

f
a
b
e
d

C
a
l

nL
ia
}

*
re.

:
.,

‘,
rm

i
wf

ea
et

s
a
d
o
.

se
pt
s

So

p
t
y

ca
b
e
s
F
T

O
O

ZI
n
a
d
e
!

w
f

“J
PT

E
LI

T
a
t

S
P

PP
P

PT
T

E

c
S

—
p
h
a

"
S
s
o
s

c
s

an
at

a

tr
,

3

B
i

— o
m
e
’

wa

pa
t
i
a
d

f
e
l

fa
b

f
e
d

ta
}

P
E
t

pe
nt

i
y

w
f

j
 av

eoc
ke

w
d

‘e
ow
al
!

Pi
sl

iS

ra
l fi

f
,

i
i
.

i
.

B
St

TE
af

ee
tl

e
nf
ne
te

be
et

le
wf
ec
te

4
E
t

O
m
f
e

T
h
e
o
y

wl
t
e
t

a

P
E
P
L
A
E

£
i

a
m

t
e
d

fo

hs 0

r
T

L
i
c
h

i
a

T
y

f
a
g
p
e

o
n

m
i

Cy
l

y
l

e
t

O
y

7
,
F
y

s
t
s
,

c
o
i

i
C
i

i
v
y

oe
.

1

$ ny iT
y

p
f
P
I

i
a
t

fa
l

t
e
d

ta
f

t
e
d

f
e
d

t
e
d

Ca
l

fa
l

t
e
t

Ca
b

fe
d

fe
l

t
e
d

E
s

ef
e
p

T
p

T
s

rt
m

i
i
i

r
e
e
,

sv
ee

ed
e

“d
o

it
:

Pasn
a

h
o
l

r
e
,

c
e

fe
.

m
E

w
e
e

e
e
e

i r
s

e
c
t

ta
t

fo
ca
t

s}
t
w
f

chd
do

ng

“
1
,

ae
as
tt

i

J
os
b

fe
l

f

ao
e Ty

ta
h

i

c
u
i

1
o

Py
)
C
Y

M
e

i
T

e
t

s
t
e
®

 F
es
ab
ee
e!

Fe
ea

tn
n!

ee
ri
e”

*e
nn

ai
be

t
e
r
s

.
B
E

P
e
t

ga
t

db
.

2
oh
RE

hE
fo

b.
f
u
i

i
i

h
e
s

L
b
,

m
y

i
h
m
e

c
e

$i
P
i
e

P
P

R
i
t

¢

f
i
a
t

an
de

ec
t

r

CP
P
f
i

ee
e
T
P
T

ne,
gte

gen
ey

i
g
r
e

yv
ag

rm
e,

—te
gea

ne
e
e

i
y

i
=

te
Se

de
t
e
t

b
t

rl i ted et

SSEMELER VERSION
ra
t

A
S

pa
l

ER
B
B

cE
it

ee
cc
tt

1
A
)

r
y

o
f

.

ra
re

,
te

ge
n

m
i
d

‘
w
r
e

o
f

a
t

ao
fs
.

O
L

p
e
,

va
ne
!

i
oi

i

Oe
e
e

~
,

no
on
e!

s
t
o
m
b

i
s

m
E

OO
Pet
E
a

st
i
i

c
h
y

r
m

_—
i
a
!

to
r
P
e
M
p

Pe
d
P
e
t
e
d

“
5
4
C
y

P
a
l

L
e
e
f

ic
i
t

m
i

C
p

c
y

m
o
f
.

h
s
f
.
7

d
f

do
s

oage
e,

oo
nt
e

MZ
tl
Fo

t
y

Li
t

i P
t

SUBRES FOR

S
y

.

BSTe. LN

EIR
2TRA, Re
Lone,

LOTR. B3
SUBA. ke
PRL

SUA. el

CeSL

BITR. fH
ECTR
ems, reek comes,

RRME. Rc
LODT.RS
BS TA. LN
BURR «RS
BSTE. UM

BIC TA. LIM

LODT.RS

BTR. UH

LODT.FS

LODT. ER

STR JN
ADRRRS

RE TC. Lb
LODT.Re

STEA. Fe

LODA. el

Be TA. LIM

LODA. FI

Be TR. LM

LODA. 1

w
t

a
t
,

STA. LIM
[ODS el

wT LIM

Ponte. Bs

LODS. Fa

CORA. EOS

Ri The. FCI

STRA. RS

OTe S
BS 74. UN
EHD TE. UN

oy Tr Trt fe 4

CPS.
fo Trt ibd
Lat PPE RW ued ¢

MUTPUTTi ris

POUT

FE]
Br

TEME

TEMO+]

TEMP +1

Lr

“aLIG

ADU
eit

zal
erty

COLUM
GAP
MBUG

AGAR

SPAC

iiC fF

“Et i

MENT
TEMP
eT

TEMP +1
Bri T

MCT
itimitmr ,
CU,

fet Pp
cot.

BOLT

CHT

STEMP. ka. +

MICA T

BLANKS

PORE q

GET BYTE COUNT

START > END ADDR
CHT & NORMAL BLOCK $1]
THIS = SHORT BLOCK
EDF . PUNCH ZERO BLE

STARTING ADDRESS

COURT OF DATA BYTES IN

QUTPUT BEE

11

SIGNETICS PIPBUG ® SS50

f
l

(T
I

— fASSEMBLER VERSION 43 LEWEL 1 PAG

a re
s

2
0

e
e
t

m
1

ADDR Bl Be BS Ba ERR SOURCE

i

BCTR. UM FtL
LOAD FROM FPAPERTHFE IN OBJECT FORMAT
A HS TA. LM CHIN LOOK FOR STREET CHAR

COM. Ra TR fe

BCFR. EG Let
“Fl ERS Py

eC STEA.RE BoE
iF 2 eed aes RIM READ ADDR ANT COUNT IH

ef AT STEA. TEMP
SF or BoTR.“IN BIH

AE STRA. Fl TEMP +1

SF Me fel BSTR. UM Br
a4 AS BRM. fet AL Cry CNT = & MEANS EDF
IF gel BD | BTA. LIA aTEMP

a ALLOA STRA.R I MOHT
ar HS De BS TR. LIP EITM CHECK BEE 0

t
r
l

m
H a

f
o
v
o
r
w
e
a
d
e

“T
I

i t
r
}

P
l
h
i

i

p
m
b

OT
s

te
me— se

at
ed

p
e
a

|
n
t

i

fe
l

te
l

Le
b

fs
)

ca
b

Ca
b

fa
d

ri

1
i
s
h

m
m

i
i
F

i
.

a
f
— o
n

iT
}

me
t
L
o

r
m
,

E
s

1
c
o

ig
o

qT
t

te
d

r
i
1

fF
mo

T
y b
t
—

me
ES
.

“
f
p
T
P
E

o
T
O
P
o
P
o
y

we
}

Pa
t

P
r
A

T
R

fu
i
O
T

r
y

E
e

ra
l

ma
d

i
f

Li

a
t
.

iLL i

fe =
]
i
t

s
t

1
T
)

Ca
f
a

m
i

i
i

r
i

m
!

m
i

%,
"~

J

1
LA

p
e
e

‘e
en

ne
ka

'

S
S
:

y
i
f
sf iT
}

mS
E
E
E
C
e

i
t
e
d

is
l

t
e
d

fe
P
f
.

£
b
o
m
p
o
m
p

m
p

oo

L
y

~
~
]

.
im
i

fs
.

pe
nt

IT
E

i

pe
l

f
e
d

Ca
l

te
d

Ca
f

Ce
.

A
O
T
C
T
O
V
m
T

i
J

}
r
o

*,

a

S
m

w
e
p
T
h
e
e
T
E
I

i r
s

d
s*

C
O aa ‘e

ow
ed
a’

O
S
)

Ce
E
r

Oe

ts
]

b
e
n
d

f
o
o
t

Tn
ee
we
ce
d,

MH IHMHFORMATI

fa
l

te
d

cl
o

RD
P
e
o
m
i
t

A el eo PODS. BS ey

ECFA. EBUIp
e
l

i
e
d

Ia
me
mo
et

i m
i

m
e

|

— t
r

j i

a STR2 Ra READ DATA
Fo He} 2a BLOA aTRA» Rs AT
a BOTH» UM ET}

He} 23 LODA. RS CHT
on | COMA. FS MCT

Jc RN HOT. El a

Lone Fi

w
r
,
a

6
B
S

c
o

o
o

Co
c
c

f
e

he
b

Pe
t

m
E

m
m
y
i

i
O
T

re
d

L
a
d

C
a
l

PL
TT
E
T
T

fu
Ph

.
a at

o
m
e I

t
OP,

Sh
f
a

b
e

f ct a
y
L
A

a
a

'
a f
a
l

f

bi

m
o
n Th P
o

{7

e
r
n
o
r

?
.
F
T
E
i
t

c
e
d

HAWE FEAR BCL
i
l

I
J
i

pe
e

ew
an

’

Bo
l

Cf
v
o
w

K
e
v
o
u
e
t

L
i

i

r
e

m
e

T

491 83Fa CF E+ &b ITRA. RE *TEMP. RS STORE DATA
492 Hara De BC BIRR. RS BLO
453 8SF5 8C ge 2c CLOR LUDA. Re BC
454 8SFa SC 88 12 ECFA. & EBLG
495 HSFE -f IF Ba BS BCTA. WM LOAT

any Cire ts MH AR?

a et ef] DEFINT TIONS
Acar Coe

| , eta LET

Li
t

m
o

1
L
E

T
h

u
l

JO
PE

P
PP

E
PT

E
PT
E

PE
P

PP
P

PP
P

rT
P

rr
p
i
m
T
O
I
T

n
e
g

a
,

’

|

1 !

a
t
a
l

i
a

fe
se
at
e

m
7

i)

1
m

b
o
t
s

m
e

P
E
t i
r
i

r
o

1
4
M
i
i

+ P
h«UM a MUST PREDEED THE TEMP

i—
| =

r
y

Pr
an
a

*
i

i

mo
ye
n,

ra
om

te
!

r
r

i
i
“
E
i

i
e

f
o
,

r
i

u
i

pr
et

e
e
e
P
f

M
R
,

t
r

“3/
0
L
S

T
a
.

o
t

eo
ew

at
s®

“
e
w
e
r

fr
.

rs,

Tr
E
T

f
s

he
b
P
b

e
+
E
P

ui
t

f
T _ r
u

P
A

A
l
A

OA

BLEH

i
t

KA
T
L
A
L
P

CA
P
P
D

A
R

L
P

L
P
S
B

<
—

ne
t
o
m
s
)

eoa
ad

% ed
Aa! i r
oo

t

fo
ee
et
e

r
e
r
e

nl HA
N
T
E

2
T

CTP
&
Y
A
T
P

th
T
E

T
E

r
p
m

L
P
P
t
a

P
i
h
a

_
oan

so
pe

ee
s,

tu
ne
r,

en
ge

an
e

 s
re
ge
me
,

 s
er

gr
en

e,
P
P
M
P
P
E

P
a
g
b
e

‘ue
sy

e
e
en

de
”

*w
ee
me
te
®

Sw
pa
ca
be
’

‘e
ve

we
le

'
*

r
f,

m
o
o
t
.

1
a

ab LNT. RES |
mi LE vo fet ee 1
moto 3 rn; Aa

tot hd i ri |

a pra {

12

from a world-wide Group of Companies

EUROPEANSALES OFFICES

Austria: Osterreichische Philips, Bauelemente Industrie G.m.b.H., Zieglergasse 6, Tel. 93 26 11, A-1072 WIEN.

Belgium: M.B.L.E., 80, rue des Deux Gares, Tel. 523 00 00, B-1070 BRUXELLES.

Denmark: Miniwatt A/S, Emdrupvej 115A, Tel. (01) 69 16 22, DK-2400 KOBENHAVN NV.

Finland: Oy Philips Ab, Elcoma Division, Kaivokatu 8, Tel. 1 72 71, SF-00100 HELSINKI 10.

France: R.T.C., La Radiotechnique-Compelec, 130 Avenue Ledru Rollin, Tel. 355-44-99, F-75540 PARIS 11.

Germany: Valvo, UB Bauelemente der Philips G.m.b.H., Valvo Haus, Burchardstrasse 19, Tel. (040) 3296-1, D-2 HAMBURG1.

Greece: Philips S.A. Hellénique, Elcoma Division, 52, Av. Syngrou, Tel. 915 311, ATHENS.

Ireland: Philips Electrical (Ireland) Ltd., Newstead, Clonskeagh, Tel. 69 33 55, DUBLIN 14.

Italy: Philips S.p.A., Sezione Elcoma, Piazza |V Novembre3, Tel. 2-6994, I-20124 MILANO.

Netherlands: Philips Nederland B.V., Afd. Elonco, Boschdijk 525, Tel. (040) 79 33 33, NL-4510 EINDHOVEN.

Norway: Electronica A.S., Vitaminveien 11, Tel. (02) 15 05 90, P. O. Box 29, Grefsen, OSLO 4.

Portugal: Philips Portuguesa S.A.R.L., Av. Eng. Duharte Pacheco6, Tel. 68 31 21, LISBOA 1.

Spain: COPRESAS.A., Balmes22, Tel. 301 63 12 BARCELONA7.

Sweden: ELCOMAA.B., Lidingovagen 50, Tel. 08/67 97 80, S-10 250 STOCKHOLM 27.

Switzerland: Philips A.G., Elcoma Deot., Edenstrasse 20, Tel. 01/44 22 11, CH-8027 ZURICH.

Turkey: Turk Philips Ticaret A.S.,. EMET Department, GUmUssuyu Cad. 78-80, Tel. 45.32.50, Beyoglu, ISTANBUL.

United Kingdom: Mullard Ltd., Mullard House, Torrington Place, Tel. 01-580 6633, LONDON WC1E 7HD.

ON.V. Philips’ Gloeilampenfabrieken

This information is furnished for guidance, and with no guarantees asto its accuracy or completeness; its publication conveys no licence under any patent or other right, nor

does the publisher assumeliability for any consequence of its use; specifications and availability of goods mentionedin it are subject to change without notice; it is not to be
reproducedin any way,in whole or in part, without the written consent of the publisher.

Printed in The Netherlands 2-76 9399 509 52261

SERIAL INPUT/OUTPUT.................ASSO

Sinotics SERIAL INPUT / OUTPUT AS50

INTRODUCTION
The Sense/Flag capability of the Signetics 2650 micro-

processor can be used forserial I/O interfaces. The Sense

Input pin is directly connected to a bit in the micro-

processor’s Program Status Word. A high level on the

Sense pin appears as a binary one while a low level appears

as a binary zero. The Sense bit in the PSW can be stored or

tested by the program. The Flag bit in the PSW is a simple

latch that drives the Flag output pin. A program can set

the Flag bit to a binary one, which causes a high level, one

TTL load on the flag output pin. Setting the Flag bit to

binary zero causes a low level on the Flag output pin.

APPLICATIONS

The most common use for the Sense/Flag capability would

be in interfacing to a keyboard based terminal where the

data is received or transmitted as bit serial. All bit manipu-

lation and timings such as 8-bit serial-to-parallel conversion

can be done by software running on the 2650. The software

works by storing or setting the two bits in the Program

Status Word which reflect or control the levels at the pins

of the chip. External hardware is required simply to

interface with line levels. No clock synchronization or

address decoding hardware is necessary, since the Sense

and Flag pins are independent of the normal I/O bus

structure.

Two examples of device interfaces and software are given

below; for a 1200 baud RS232-type CRT terminal and for

a 110 baud Teletype. Figure 1 shows the RS232 interface.

Half of the Signetics 8115 dual line driver is used to trans-

mit to the terminal from the Flag pin, while half of a

2650 MICROPROCESSOR

APPLICATION MEMO
Signetics 8116 dual line receiver is used to receive from

the device into the Sense pin. The interface to a Teletype

model 33 is shown in Figure Il. A TTL open collector gate

is used to provide the 20 milli-amp loop to the TTY

2202
2650

>> :FLAG

% 7403

$ 5K

SENSE <—<]}- + TTY DRIVER
V6

FIGUREIl

TTY MODEL 33 INTERFACE FULL DUPLEX

+12V

2650 Vec

FLAG TO I/O DEVICE RECEIVER

%4(8T15) =
VEE OPEN

-12V HYSTERESIS FIA

o ES ——— FROM I/O DEVICE DRIVERseucele—e(—<E
%(8T 16)

STROBE —

+5

FIGURE|

RS-232 INTERFACE

receiver. For receiving from the TTY a CMOSgate is used

to provide the necessary noise immunity.

SOFTWARE

All definitions of baud rate, character formats, and line

characteristics are done in the software. For these examples,

communication is asynchronousbit-serial over a full duplex

line. Figure Ill shows the format of a 8-bit character (seven

bits plus parity) headed by a start bit and followed by stop

bits. The line levels are:

low = start bit or binary zero

— high = stop bit or binary one

[> STOP BITS

ey ———.

TTP TTP TTP TTTTPOrc CO
\ I 1 I 1 I I I 1

I | (I I i l | I

\ Jj

8 BITS OF DATA

FIGURE III

PIP ASSEMBLER vERSION 2 LEVEL 1} PAGE 1

LINE ADDR LABL B81 Be B3 B44 FRROR SOURCE

=z

o
n
e

O
D
—
V
O
W
W
N
M
H
O
F
O
O
O
C
O
-
N
O
N
H

T
O

p
P
2
x
e

-
<
<
<
<
<
-

O
N
N
E
S
B
O
O

R
K
O
o
O
O
N
n
e
n
e
a
n
e

F
o
c
o
o
c
e
-
N

a
e
e

X
E
Q
O
M
E
L
A
L
R
A
C
H
M
O
C
N
Z

TU
*&

c
e
e
e
e
c
e
c
o
e
c
c
c
c
e
c
e

N
O
A
A
Z
W
N
P
r
o
c
o
e
T
M
P
p
o
m

P
e
e
e
e
N
O
W
W
N
e
O
T
I
T
I
T
I
I
I

N
I
I
T

P
U
N
O

Q
H
o
o
m

O
o
<
}
-

INPUT WIT A BIT 3Y BIT ECHOo
O x o
m

O
Q

0500

= o
O

LOOP TESTS FOR THE START BIT

HALF A DELAY TO MIDDLE OF BIT

DELAY+ THEN READ THE NEAT BIT

0508 TEST

C
o

n ~

I
C
S
E
N
Z
S
N
D
T
D

FT
O
N
T
A

w
o

Oo
OF
fF
Oo
nw

C
O
°
C
F
f

h
w

p
ON

C

N
o
N
O

M
P
e
w
o

N
h

C
c ao -
_

r
l P
P
D

0510

@ O
o
<
®

ECHO THE 3IT
N ©

B
P
O
T
U
C
O
C
M
H
T
P
N
T
O
D
G
M
N
C
I
O
V
O
M
M

M
Z
N
T
C
O
T
C
O
N
C
L
Z
C
N

C
T
N
H
O
T
O
C
C
T
U
L
E
C
E
C
M
M
T
A
N
M
O
T
T
O
’

A
D
A
H
I
T
N
A
W
A
L
A
R
C
M
A
W
A
A
N
C
O
M
M
O
C
C
C
O
E
C
E
R
L
E
C
C
C
O
C
E
C
O
C
O
C
E
C
O
C
S

e
f
e
f
M
m
a
m

oe
T
I
<
n

N
O
K
L
O
L
S

N
N
C
O
N
O
C
F

 KDWTO
R
O
T
N
A
R
E
W
O
M
T
O
B
R
F
L
W
O

B
D
T
I
N
O
O
D
T
B
e
l
d
L
t
t
O
O
N
I

N
U
S
O
O
F
e
e

B
N
T
E
V
P
N
A
U
D

w
o

Oo

a] — =x m
n

D
> “
<
<

Z
x
o
a
r
a
r
a
2

G
r
o
o
c
e
g

a
A
D
C
H
O

0 BAUD RS232 TERMINAL

' —
N
O
O

w
N
O
W

M
o
n
D

R
H

SC
O
D
N
E
W
N
H
O
C
O
N
W
A
Y
F
U
N

SC
O
D
N
A
M
E
W
O
N
H
M
O
C
E
N
O
M
N
E
W

N
O
E
O
L

C
O
R
K
D
H

O
F
P
X
L
C
T
C
A
N
N
G
—
C
P
C
P
D
C
e
f
C

M
I
M
E
L
E
E
E
R
E
S
E
P
W
W
W
W
W
W
W
W
W
w
l

Y FOR 110 BAUD TELETYPE

PIP ASSEMBLER VERSION 2 LEVEL 1 PAGE e

AUDR LABL 8B] B2 B3 B& ERROR SOURCE

0532 TDLA

"Est

S
I
T
S

M
U
O
A
M
M
m
m
M

i O
o
T ~
<

A
R
T
M
A
Y
P
A
T053e

0533
0535
0537 0537
0539
0538
0530

r _
A
K
M
N
M
N
I
I
I
N
S

2
C
O
D
N
O
M
N
F
W

©

K
e
n
N
O
A
R
M
N

N
E
F
O
O
D
S

M
m
M
x
o
r
_
o
c
o
m

TOTAL ASSEMBLER ERRORS = 0

FIGURE IV

The internal logic of the program shown in Figure IV (the that controls the loop to get only eight bits. Figure V is a

program listing) is to sense each incoming bit of the picture of the levels and timings when echoing a ‘U’.

character and to output the bit in turn for the full duplex

line. The Sense input is tested in the loop at ‘TEST’ for the

transition to zero indicating the start bit. The program then The bit timing is done by a subroutine which simply

delays one half of a bit time to the center of the start bit. counts cycles for the appropriate baud rate. The example

At this point the echoing of the character starts by clearing program shows both a 1200 baud delay at ‘DLAY’ and a

the Flag bit which outputs the start bit transition. At ‘BIT’ 110 baud delay at ‘TLAY’. The conversion from instruction

the program then delays one full bit time to the center of cycles to milliseconds is based on a 1MHz clock rate. Clock

the data bit. The Sense line is tested and that bit value stability is only moderately important since each character

is rotated into register one. The bit value is then used to set involves only nine sample times and eachstart bit redefines

or clear the Flag bit for the echo. At ‘NEXT’ ts the test the baseline for all timings.

DATA BITS

STARTBIT
STOP BITS

SENSE 817 7 Y

“LLPLS,
SAMPLETIMES | 1

| |; <a

'
'

>

|
I | |

I j I

|
|

-
-
-
-
-
>

—
_
—
—

FLAG BIT

| —_— BITS

START art

DATA BITS

FIGURE V

anSS

nts a terial

from a world-wide Group of Companies

EUROPEAN SALES OFFICES

Austria: Osterreichische Philips, Bauelemente Industrie G.m.b.H., Zieglergasse 6, Tel. 93 26 11, A-1072 WIEN.
Belgium: M.B.L.E., 80, rue des Deux Gares, Tel. 523 00 00, B-1070 BRUXELLES.
Denmark: Miniwatt A/S, Emdrupvej 115A, Tel. (01) 69 16 22, DK-2400 KOBENHAVNNV.
Finland: Oy Philips Ab, Elcoma Division, Kaivokatu 8, Tel. 1 72 71, SF-00100 HELSINKI10.
France: R.T.C., La Radiotechnique-Compelec, 130 Avenue Ledru Rollin, Tel. 355-44-99 F-75540 PARIS 11.
Germany: Valvo, UB Bauelemente der Philips G.m.b.H., Valvo Haus, Burchardstrasse 19, Tel. (040) 3296-1, D-2 HAMBURG1.
Greece: Philips S.A. Hellénique, Elcoma Division, 52, Av. Syngrou, Tel. 915 311, ATHENS. |
Ireland: Philips Electrical (Ireland) Ltd... Newstead, Clonskeagh, Tel. 69 33 55, DUBLIN 14.
Italy: Philips S._p.A., Sezione Elcoma, Piazza |V Novembre 3, Tel. 2-6994, I-20124 MILANO.
Netherlands: Philips Nederland B.V., Afd. Elonco, Boschdijk 525, Tel. (040) 79 33 33, NL-4510 EINDHOVEN.
Norway: Electronica A.S., Vitaminveien 11, Tel. (02) 15 05 90, P. O. Box 29, Grefsen, OSLO 4.
Portugal: Philips Portuguesa S.A.R.L., Av. Eng. Duharte Pacheco6,Tel. 68 31 21, LISBOA 1.
Spain: COPRESAS.A., Balmes 22, Tel. 301 63 12 BARCELONA7.
Sweden: ELCOMA A.B., Lidingovagen 50, Tel. 08/67 97 80, S-10 250 STOCKHOLM 27.
Switzerland: Philips A.G., Elcoma Dept., Edenstrasse 20, Tel. 01/44 22 11, CH-8027 ZURICH.
Turkey: Turk Philips Ticaret A.S., EMET Department, Gumussuyu Cad. 78-80, Tel. 45.32.50, Beyoglii, ISTANBUL.
United Kingdom:Mullard Ltd., Mullard House, Torrington Place, Tel. 01-580 6633, LONDON WC1E 7HD.

ON.V.Philips’ Gloeilampentfabrieken

This information is furnished for guidance, and with no guarantees asto its accuracy or completeness; its publication conveys no licence under any patent or other right, nordoes the publisher assumeliability for any consequenceofits use; specifications and availability of goods mentioned in it are subject to change without notice; it is not to bereproducedin any way, in whole orin part, without the written consentof the publisher.

Printed in The Netherlands 2-76 9399 509 52461

Introducing the Signetics 2651 PCI

Terminology, formats and operation modes

Data exchange between microprocessors and peripherals

is normally performed in the parallel mode, using the data

bus. This meansthat the data is transferred along a number

of parallel connections,all bits of the data word being

transferred simultaneously. However, when a peripheral

is remote from the microcomputer system,it is usually more

economical and sometimes obligatory to communicate via a

single data line. This meansthat the parallel data within the

microcomputer must be converted into a serial form before

transmission and vice versa.

The conversion betweenserial and parallel data can be done

either by hardware or software, but the hardware solution

must usually be used as the software conversion puts too

great a load on the microprocessor. The Signetics 2651

Programmable Communications Interface (PCI) has been

developed to perform this task of parallel/serial conversion:

it is a single chip providing the complete hardware for

virtually any modeof serial data communication. Figure 1

shows twotypical applications of serial data interfaces to

microcomputers. Note that for communication over a

telephone line, a modulator/demodulator (modem)is

required.

MICRO—

COMPUTER

SERIAL
MICRO—

INTERFACE
COMPUTER

(PCI)

SERIAL

INTERFACE

(PCI)

telephone

line

SERIAL

1/O

DEVICE

7274724

Fig. 1 Typical applicationsofserial data interfaces to microcomputers.

SiqnOtics

Serial data communication formats

Figure 2 showstheserial bit stream equivalent to three

eight-bit data words. Whereasparallel data bits can be

recognized at a receiver by their separate connections,serial

data bits can only by distinguished by their separation in

time. The receiver must therefore be supplied with timing

information. Framing information is necessary to be able

to recover the original data words from theserial bit

stream

Timing information enables the receiver to distinguish

between consecutive bits of the serial data stream, while

framing information enables the receiver to recognize the

start and finish of each data word.

Figure 3 showsthe use of timing information to recover the

original data. Each bit of the serial data stream must be

transmitted for a fixed duration, called the unit interval.

parallel

—» 0

1

1

0
data words 0

1

0

1-
O
O

+
=
s
O

=

-
o
0
o
o
c
o
o
r
o
-

 serial ’ '

bit stream 10717110031301100101 1010000 1
7274725

Fig. 2 Relation between the parallel data words andtheserial bit

stream transmitted or received.

data to be | 1 1

transmitted QO. | 0 0 0

transmitter

clock | | | | | | | | | | | | | |

’ ’ ’ ’ ’ ! {
serial 1 1 1 1

data 0 0 0 0

{ f f f f f f
receiver | | | | | | | | | | | | | |

clock

data ! 1 1 | 1

received 0 | 0 0 | 0

7274726

Tig. 3 Use of a receiver clock to recover data from theserial bit

stream.

The receiver clock must be synchronized to the frequency

of the transmitter clock, with a fixed phase delay, to allow

sampling of the serial data waveform at the same timein

each unit interval. The maximum rate at which information

can be sent over the data line is known as the baud rate; it

is equal to the numberof unit intervals per second. Thus for

a unit interval of 20 ms, the baudrate is 50 baud. Commonly

used baud rates range from 50 baud upto 19,2 kbaud.

A standard teletype uses 110 baud.

To recover the original data, the timing information must

contain:

— the baud rate;

— bit synchronization information.

To reform the original data words, the framing information

must contain:

— identification of the first bit of a data word;

— the numberof bits per word;

— the sequence in which the bits are sent (msb orIsb first).

Of these, the baud rate, the numberof bits per word and

the sequence in which the bits are sent, are usually fixed

and already knownbythereceiver before the transmission

of data. Thus the data signal must contain the bit

synchronization andfirst-bit identification information.

Several serial data communication formats have been devised

for this purpose. The two basic formats are synchronous

and asynchronous, while a mixture of the twois called

isochronous.

Asynchronousformat

When using the asynchronous format, the transmitter

transmits each word separately. Each word is preceded by

one start bit and followed by a parity bit and 1, 1% or 2

stop bits. This formatis illustrated in Fig. 4.

When the data line is quiet, the signal is a one. The start bit

is a zero, whichtells the receiver that a data word is coming.

Since the start bit can occur at any moment, synchronization

of the receiver clock to the data signal must be repeated for

each data word. Therefore, the receiver clock runs at a

multiple (usually 16x or 64x) of the actual baudrate.

Figure 5 showsthe synchronization principle with a clock

running at 16 times the baudrate. The receiver clockis

derived from this 16x clock by means of a divide-by-16

circuit, which starts at the moment a start bit is detected

(falling edge of the previously quiet line).

’
start bit 5 — 8 data bits

I LL |

| a7

parity bit stop bit or bits

 we em oe ord

7274727

Vig. 4 The asynchronous serial data format.

data

p
r
e
v
i
o
u
s
s
t
o
p

bi
t

or
qu
ie
t

li
ne

—
_

~
<
—
_
—
—

—
_

_
—
_
—

}
s
t
o
p

bi
ts

 y
100011 0o

O
«
-
—
—

s
t
a
r
t
b
i
t

A

asynchronous format wordsize |

7274729

Fig. 6 Example of an asynchronousdata format using eight data bits

and twostop bits.

After eight pulses of the 16x clock, the data line is sampled

again andif thelineis still a zero, the start bit is accepted.

After eight more pulses, the first data bit appears on the

line and is sensed 16 pulses after the start bit was accepted.

This means that the bit is sensed at the middle of the bit-

-time to avoid switching transients. Each following group of

16 clock pulses will represent a unit interval, after which a

newbit is sensed.

16 x clock

0 1 2 3 4 5 6 7 8 9 10 11

serial data

UUUUUHUUUU
—

The maximum inaccuracyresulting from this method of

synchronizationis initially one sixteenth (in the case of a

64x clock, 1/64th) of a bit-time. The accuracy of synchron-

ization of the following data bits depends on the equality of

the transmitter and receiver clock frequencies. However,

since the next data word will provide a newstart bit, this

synchronization only has to last for the duration of one

data word.

From the foregoing description,it is clear that all the bits

transmitted, including the start bit, must be exactly one unit

interval long, and that the time between two consecutive

data words need not be an integral numberof unit intervals.

To ensure correct detection of the next start bit (data word)

the line must be forced to the quiet state at the end of the

data bits of every word. This is done by adding the stopbit

or bits onto the end of the word, which, being logical one,

provide the quiet state. Thus the receiver will always see a

clear falling edge at the beginning ofthe start bit of the next

data word, even if the receiver clock runsslightly slower

than the transmitter clock. Figure 6 shows an exampleof an

asynchronous data format with eight data bits and two stop

bits.

12 13 14 15 0 1 2 3 4 5 6 7 8 9 10

 <

receive clock

Start bit

detected
Start bit

accepted

| 7274728

first

databit

Fig. 5 Synchronization principle for the asynchronous format, here

using 16x clock.

Synchronous format

In the synchronous format, data words are grouped into

blocks before transmission. This provides a continuous

stream of valid data bits, one per unit interval. Once the

transmitter and receiver clocks are synchronized, the receiver

looks for framing information. This is done in the hunt mode

in which it continually checks the received bit sequence for

synchronization characters.

Each block is preceded by one or more synchronization

words, of a fixed character, see Fig. 7. The sync wordsare

called SYN (in the case of one sync word) or SYN1 and

SYN2 in the case of two sync words. The bit patterns

corresponding to these characters must not occurin the

data to be transmitted.

Whena bit sequence conforming to the sync character(s) is

recognized, the receiver switches to the data mode: thefirst

bit following the sync character(s) is the first bit of the first

data word. Figure 8 showsthe bit sequence of a data block

in synchronous format with two sync characters and five

bits per word.

If, during transmission of a data block, the microprocessor

fails to supply a new data word for transmission, the trans-

mitter automatically inserts sync characters (SYN or SYNI1-

SYN2 pairs as appropriate) to prevent a gap occurring.

Sync characters are inserted until a new data wordis avail-

able. These sync characters can be automatically discarded

synchronization.

Since synchronization of the receiver and transmitter

signal is sent to the receiver separately.

Isochronous format

the isochronous method employs the framing of the

the synchronous method (clock frequency equal to the

intervals so that the timing can remain synchronized.

_
-
=

o
S

o
a

o
e

o
o
o
0
0

a
e
e
k

“th dy 4
1011003103107 371 1100000311141

| SYN1 | SYN2 | data word 1 data word 2

wordsdata word 3

7274731

Fig. 8 Synchronization at the start of a data block in the synchronous

format. Double sync operation with five bits per data word.

Modem control

Telephonelines are designed for speech transmission and

will only transmit analogue signals in the range 300 Hz to

3400 Hz. Digital signals cannot be transmitted. Thus when

transmitting digital data over telephonelines, a modem

(modulator-demodulator) is required to provide the con-

version to and from analoguesignals. In order to regenerate

the modulated data, a synchronous modem must be able to

generate a receiver clock for the conversion of the serial data

into parallel data. Figure 9 showsthe use of a modem to

interface digital signals to a telephone line. As can be seen

from the diagram, several control lines are required between

the serial interface and the modem.Theseare:

— TxC: Transmitter Clock, timing information for
by the receiver, while providing both framing and timing synchronous modem;

— TxD: Transmit Data in serial form to the modem;

— RTS: Request to Send, request to the modem to prepare

clocks must be maintained over a long stream of data, the for the transmission;
timing information is usually continuously extracted from ~ DIR: Data Terminal Ready, request to the modem to
the data signal. Sometimes, however, a synchronization establish the connection to the telephoneline and

enter the data mode(as opposed to the dial and

talk modes).

— RxC: Receiver Clock, for synchronous modem;

— RxD: Receive Data, from the modemtotheserial inter-

face;
In order to recover the data words from the serial data stream, — DSR: Data Set Ready,signals that the modemis

connected to the telephone line and in the data
asynchronousformat(start and stop bits) and the timing of mode;

— CTS: Clear to Send, signals that the modem is ready to
baud rate). The asynchronous framing permits gaps in the acceptserial data for transmission;

data, although these must now bean integral numberof unit — DCD: Data Carrier Detect, signals that the modem is

receiving a signal suitable for demodulation.

SYN1 SYN2 + data words ! ! ! >
| _), | | _f/-

7274730

Fig. 7 The synchronousserial data format.

MICRO— SERIAL

COMPUTER

telephone
INTERFACE line

(PCI)

7274732

Fig. 9 Transmitting digital data over a telephone line by using a

modem, TxC and RxCare required if a synchronous modem is used.

Transparent operation — synchronous mode

Data communication systems commonly employ a seven-

bit, 128-character code, known as seven-bit ISO code, see

Appendix A. This includes alphanumerics, general purpose

control characters and ten transmission control characters

(TCy). Communication control procedures have been

established to provide rules for the use of these transmission

control characters.

In some cases, when it is required to obtain the maximum

throughput of the communication network, data may be

transmitted without using ISO code, in a network that

normally uses ISO code. In this case, data words with the

samebit pattern as the transmission control characters will

be misinterpreted by the system as transmission control

characters.

To overcome this problem, the communication control

procedures have been extendedto specify transparent

operation, to allow code-independentdata transfer. This

operation is governed by the transmission control

character DLE (Data Link Escape).

The start of code-independent data is preceded by two

transmission control characters DLE and STX (Start of Text).

The end of the sequenceis indicated by the characters DLE

and ETB (End of Transmission Block) or DLE and ETX

(End of Text). Between these start and finish character

sequences,all bit patterns except DLEare treated as data.

Control characters can still be used for control purposesif

preceded by the DLE character. Sync characters usedtofill

gaps in the synchronous format should also be preceded by

DLEto prevent interpretation of these characters as data. The

exception is the case where the data word has the samebit

pattern as DLEplusparity bit. This is transmitted as DLE

DLEand the second DLEis interpreted as data, not control.

Table 1 shows the interpretation of various character sequences.

Table 1 Transparent operation using the DLE character.

sequence transmitted interpretation
and received data control

DLE ETB ETB

DLE DLE DLE

xX ETB X ETB

X ETX X ETX

xX SYN X SYN

DLE SYN gap filler

DLE STX STX

DLE DLE DLE ETB DLE ETB

DLE DLE DLE DLE DLE DLE

DLE DLE ETB DLE ETB
Note: X is any character other than DLE.

Error detection

Parity check

Regardless of the transmission medium,the data signal

entering the receiver will contain noise. At times, this noise

content may be sufficient to cause incorrect detection of

data in the receiver.

The parity check provides a simple method of detecting a

single error in a data word; a parity bit is added to each

data word so that the total number of ones in each wordis

always even, or always odd. This is called even parity or odd

parity. The receiver can then detect an odd number of

incorrect bits in the data word. An even numberof errors

will not be detected.

Framing error

In the asynchronous mode,the receiver may detect the

wrong numberofstop bits, called a framing error.

Overrun error

The microprocessor should read any received data words

before the following data word is received.If this is not

done, the contents of the receiver register are overwritten

and the earlier data wordlost. This is called an overrun

error.

The Signetics 2651 PCI

The Signetics 2651 Programmable CommunicationsInterface

is a universal synchronous/asynchronous data communications

controller chip. Although designed specifically for use with

the Signetics 2650 microprocessor, the PCI can easily be

used with other CPUs in either polled or interrupt-driven

environments.

The 2651 accepts programmedinstructions from the micro-

processor and supports many serial data communication

disciplines in half or full duplex. The PCI supports isochronous,

asynchronous and synchronousoperations, including trans-

parent synchronous operation.

The PCI converts the parallel data received from the micro-

processorinto a serial data stream, ready for transmission.

At the same time, because of the independent transmit and

receive circuitry, it can receive a serial data stream and

convert this into parallel data for the microprocessor.

The block diagram of the PCI is shown in Fig. 10. All data

and control transfers between the PCI and the microprocessor

are accomplished via the data bus buffer, connecting the

internal data bus to that of the microprocessor.

Overall control of the PCI is by the Chip Enable (CE) signal.

Address lines AO and Al allow selection of the required

registers, while the Read/Write (R/W)signal controls the

direction of data flow between the PCI and the micro-

processor.

The operation of the PCI is determined by the contents of

the two moderegisters and the commandregister. The

registers are loaded via the data bus during system

initialization.

data bus DATA BUS BUFFEReet pS

|

The data in moderegister 1 controls:

— the format:

synchronous

isochronous (asynchronouswith 1x clock)

asynchronous (with 16x clock)

asynchronous (with 64x clock);

— the data word length:

5, 6, 7 or 8 bits per word;

— the error checking: |

no checking

odd parity

even parity;

— the number ofstop bits for isochronous or asynchronous

operation:

1, 1% or 2 bits;

— the use of SYN and DLE characters:

single sync operation (SYN1)

double sync operation (SYN1 + SYN2)

transparent operation (DLE + SYN).

The data in mode register 2 controls clock selection and the

baud rate when internal clocks are selected:

— receiver clock: |

internal or external;

— transmitter clock:

internal or external;

— baud rate:

16 commonly used baudrates in the range 50 baud

to 19 200 baud.

SYNC/DLE CONTROL

SYN1 REGISTER

SYN2 REGISTER

— DLE REGISTER

reset ——®| OPERATION CONTROL

A, —>
A, —> MODE REGISTER 1
0 TRANSMITTER

a/w—-+| |CONTROL REGISTER —

CE —eq,

|

STATUS REGISTER) HOLDING REGISTER

|

[7 '*8OY

<—— > SHIFT REGISTER
iH——»> TxD

BAUD RATE A le |
BRCLK ——> UD ND

|

CLOCK CONTROL _ |

xe —, RECEIVER
RxC «> |MODE REGISTER 2 | <>

— loO—> RxR k
HOLDING REGISTER xRDY

<— > SHIFT REGISTER
—

+— RxD

DSR —+o}

DcD-->o “>

CTS —+o MODEM
Vy

= — <— “ec
RTS «—9O CONTROL

DTR +o
«—— ono

TxEMT/

PSCHG
a

7274733
Fig. 10 Block diagram of the 2651 PCI.

When using synchronous formats, the SYN and DLEcharacters

are supplied by the microprocessor during the initial-

ization phase of the program andstored in PCIregisters.

The internal baud rate is derived from an externally generated

5,0688 MHz clock. When both receiver and transmitter

clocks are programmedas external, the 5,0688 MHz clock

is not required. If an internal clock is programmed,the

programmedbaud rate clock appears at the corresponding

pin (TxC: transmitter clock; RxC: receiver clock). If an

external clock is programmed,these pins becomeinputs for

the external clock(s). With an external clock (max. 0,8 MHz)

the baud rate is no longer governed by moderegister 2. Thus

the baud rates can be:

— synchronousand isochronousoperation:

0 to 800 kbaud;

— asynchronousoperation with 16x clock:

0 to 50 kbaud; 2651 PCI

— asynchronous operation with 64x clock: >} transuirter

Oto 12,5 kbaud. IRON «a pe] EXTERNAL

The data in the commandregister controls: SYSTEM P— |v
. y-—— RECEIVER

— the transmitter:

enable or disable;

— the receiver: (a)

enable or disable;

— the modem controlsignals DTR and RTS; 3651 PCI

— resetting error flags in the status register;

— forced breaks in asynchronous format: TRANSMITTER WK

The quiet line signal is a one. Break is a continuous zero compuTeR -, EXTERNAL

sent by the transmitter which can be detected by the system fo —— DEVICE
receiver. RECEIVER fe

— sending DLEin the synchronous format;

— the operation mode: (b)

® normal operation (Fig. 11a)

® automatic echo mode, asynchronous (Fig. 11b). In 3651 PCI

this mode, the receiver controls the transmitter, causing

it to transmit an echo of the received data to the ToRon _- TRANSMITTER

external device. COMPUTER EXTERNAL

e SYN/DLEstripping mode, synchronous. SYSTEM oS scctiven DEVICE
SYN and DLEcharacters received by the PCI are not

passed to the microprocessor.

® local loop-back mode (Fig. 11c). The transmitter (c)

output is connected to the receiver input internally to

provide a test facility or the CPU-PCI system. 2651 PCI

@ remote loop-back mode (Fig. 11d). The receiver output EXTERNAL

is internally connected to the transmitter input to CRO. TRANSMITTER -————“"]_ Device 2

divert the received data to another computer. COMPUTER

The status register provides the microprocessor with — RECEIVER le}| EXTERNAL

information about the transmitter, the receiver, the modem DEVICE|

control signals DSR and DCD,parity, overrun and framing

errors and the detection of SYN/DLE characters.

The transmitter and receiver are double buffered, allowing

Fig. 11 Operation modes of the 2651 PCI.

(a) Normal operation mode.

(b) Automatic echo mode.

(c) Local loop-back mode.

(d) Remote loop-back mode.

the microprocessor to read/write one data word while
another is being received/transmitted. This allows the

microprocessor one complete serial word transmit/receive

time to read/write the data word

Applications of the 2651 PCI

The 2651 PCI is suitable for almost any application where

parallel source data must be transmitted over a single data

line. Figure 12 shows two typical examples.

address bus

control bus

address bus

TELEPHONE

LINE

EIA TO TTL INTERFACE
CONVERTER

95,0688 MHz

OSCILLATOR

7274736 telephone
line 7274735

(a)

Fig. 12 Typical application for the 2651 PCI.

(a) Asynchronousinterface to visual display unit.

(b) Synchronousinterface to telephoneline.

Appendix A

The international standard (ISO) 7-bit code as defined in

Appendix B ref. 4:

7 6 5 3

a”

column row

(0-7) (1-15)

(MScharacter)

(LS character)

7-bit character format.

CHARACTER SET
MS.

CHAR 0 1 2 3 4 5 7

CHAR

(TC7)
0 NUL SP 0 P

DLE @ P

(TC1)1 DC 1 A
SOH i Q 4

2 TCD ney 2 B R t
STX

(TC3)3 DC 3 C S 5
ETX 3 #

TC
4 (TC4) DC4 t 4 D T t

EOT

C5 (PEs) (TCR) I 5 E U u
ENO NAK

6 (C6) (Co) & 6 F V V
ACK SYN

T
7 BEL (TC10) 7 G W Ww

ETB

FE
8 0 CAN (g H X x

(BS)

FE]
9 EM 9 I Y(HT)) y

FE
10 2 SUB x J Z z

(LF)

FE
11 3 ESC + K

(VT)

FE4 IS4
12 < L

(FF) (FS) \

FE Is
13 5 3 _ - M

(CR) (GS)

IS9 _
14 SO e > N t

(RS)

IS l
15 SI 9 O DEL

(US) -

Appendix B

International standards governing serial data communication

can be foundin:

1. CCITT V22 and V22 bis; data signalling rates (standard

baud rates).

. CCITT V21, V23, V26, V26 bis, V27, V30 and V35;

modem standards.

. EIA RS232-C, CCITT V24; interfaces employingserial

binary data interchange.

. ISO 646; 7-bit coded characterset.

5. ISO 1177; character structure for start/stop and synchron-

7.

ous transmission.

. ISO 1745; basic mode-control procedures for data

communication systems.*

ISO 2111; code-independent transmission procedures.

CCITT: Comite Consultatif International dé Telegraphie et

du Teélephonie.

EIA: Electronic Industries Association (USA).

ISO: International Standardization Organization.

* Commonly called Communications Control Procedures.

10

Related 2650 publications

no. title summary |

ASSO Serial Input/Output Using the Sense/Flag capability of the 2650 for serial I/O interfaces.

ASS1 Bit & Byte Testing Procedures Several methods of testing the contents of the internal registers

in the 2650.

AS52 General Delay Routines Several time delay routines for the 2650, including formulas for

calculating the delay time.

ASS53 Binary Arithmetic Routines Examples for processing binary arithmetic addition, subtraction,

multiplication, and division with the 2650.

AS54 Conversion Routines @ FEight-bit unsigned binary to BCD

® Sixteen-bit signed binary to BCD

e Signed BCDto binary

e@ Signed BCD to ASCII

e ASCII to BCD

@® Hexadecimal to ASCII

@ ASCII to Hexadecimal

ASS5 Fixed Point Decimal Arithmetic Methods of performing addition, subtraction, multiplication and

Routines division of BCD numbers with the 2650.

SP50 2650 Evaluation Printed Circuit Detailed description of the PC1001, an evaluation and design tool

Board (PC1001) for the 2650.

SPS1 2650 Demo System Detailed description of the Demo System, a hardwarebase for use with

the 2650 CPU prototyping board (PC1001 or PC1500).

SP52 Support Software for use with the Step-by-step procedures for generating, editing, assembling, punching,

NCSSTimesharing System and simulating Signetics 2650 programs using the NCSS timesharing

service.

SP53 Simulator, Version 1.2 Features and characteristics of version 1.2 of the 2650 simulator.

SP54 Support Software for use with the Step-by-step proceduresfor generating, editing, assembling, simulating,

General Electric Mark III Timesharing and punching Signetics 2650 programsusing General Electric’s Mark IH]

System timesharing system.

SP55 The ABC 1500 Adaptable Board Describes the components and applications of the ABC 1500 system

Computer developmentcard.

SS50 PIPBUG Detailed description of PIPBUG, a monitor program designed for use

with the 2650.

SS5 1] Absolute Object Format Describes the absolute object code format for the 2650.

MP51 Initialization Procedures for initializing the 2650 microprocessor, memory, and I/O

devices to their required initial states.

MP52 Low-Cost Clock Generator Circuits Several clock generator circuits, based on 7400 series TTL, that may be

used with the 2650. They include RC, LC and crystal oscillator types.

MPS3 Address and Data Bus Interfacing Examples of interfacing the 2650 address and data busses with ROMs

Techniques and RAMs, such as the 2608, 2606 and 2602.

MP54 2650 Input/Output Structures and Examinesthe use of the 2650’s versatile set of I/O instructions and the

Interfaces interface between the 2650 and I/O ports. A numberof application

examples for both serial and parallel I/O are given.

TN 064 Digital cassette interface for a 2650 Interface hardware and software for the Philips DCRdigital cassette

microprocessor system drive.

TN 069 2650 Microprocessor keyboard Simple interfaces for low-cost keyboard systems.

interfaces

Argentina: FAPESA1.y.C., Av. Crovara 2550, Tablada, Prov. de BUENOSAIRES,Tel. 652-7438/ 7478.

Australia: PHILIPS INDUSTRIES HOLDINGS LTD., Elcoma Division, 67 Mars Road, LANE COVE,2066, N.S.W., Tel. 427 08 88.

Austria: OSTERREICHISCHE PHILIPS BAUELEMENTEIndustrie G.m.b.H., Triester Str. 64, A-1101 WIEN, Tel. 62 91 11.

Belgium: M.B.L.E., 80, rue des Deux Gares, B-1070 BRUXELLES,Tel 523 00 00.

Brazil: IBRAPE, Caixa Postal 7383, Av. Paulista 2073-S/Loja, SAO PAULO, SP,Tel. 284-4511.

Canada: PHILIPS ELECTRONICSLTD., Electron Devices Div., 601 Milner Ave., SCARBOROUGH, Ontario, M1B 1M8,Tel. 292-5161.

Chile: PHILIPS CHILENA S.A., Av. Santa Maria 0760, SANTIAGO, Tel. 39-40 01.

Colombia: SADAPES.A., P.O. Box 9805, Calle 13, No. 51+ 39, BOGOTA D.E. 1., Tel. 600 600.

Denmark: MINIWATT A/S, Emdrupvej 115A, DK-2400 KOBENHAVN NV., Tel. (01) 69 16 22.

Finland: OY PHILIPS AB, ElcomaDivision, Kaivokatu 8, SF-00100 HELSINKI 10, Tel. 1 72 71.

France: R.T.C. LA RADIOTECHNIQUE-COMPELEC,130 Avenue Ledru Rollin, F-75540 PARIS 11, Tel. 355-44-99.

Germany: VALVO, UB Bauelemente der Philips G.m.b.H., Valvo Haus, Burchardstrasse 19, D-2 HAMBURG1, Tel. (040) 3296-1.

Greece: PHILIPS S.A. HELLENIQUE,Elcoma Division, 52, Av. Syngrou, ATHENS,Tel. 915 311.

Hong Kong: PHILIPS HONG KONG LTD., Comp. Dept., Philips Ind. Bldg., Kung Yip St., K.C.T.L. 289, KWAI CHUNG, N.T. Tel. 12-24 51 21.

India: PHILIPS INDIA LTD., Elcoma Div., Band Box House,254-D, Dr. Annie Besant Rd., Prabhadevi, BOMBAY-25-DD, Tel. 457 311-5.

Indonesia: P.T. PHILIPS-RALIN ELECTRONICS, Elcoma Division, ‘Timah’ Building, JI. Jen. Gatot Subroto, JAKARTA,Tel. 44 163.

lreland: PHILIPS ELECTRICAL (IRELAND) LTD., Newstead, Clonskeagh, DUBLIN 14, Tel. 69 33 55.

Italy: PHILIPS S.p.A., Sezione Elcoma, Piazza lV Novembre3, I-20124 MILANO, Tel. 2-6994.

Japan: NIHON PHILIPS CORP., Shuwa Shinagawa Bldg., 26-33 Takanawa 3-chome, Minato-ku, TOKYO (108), Tel. 448-5611.

(IC Products) SIGNETICS JAPAN, LTD., TOKYO, Tel. (03) 230-1521.

Korea: PHILIPS ELECTRONICS (KOREA) LTD., Philips House, 260-199 Iltaewon-dong, Yongsan-ku, C.P.O. Box 3680, SEOUL,Tel. 44-4202.

Mexico: ELECTRONICA S.A. deC.V., Varsovia No. 36, MEXICO 6, D.F., Tel. 5-33-11-80.

Netherlands: PHILIPS NEDERLANDB.V., Afd. Elonco, Boschdijk 525, NL-4510 EINDHOVEN, Tel. (040) 79 33 33.

New Zealand:Philips Electrical Ind. Ltd., Eicoma Division, 2 WagenerPlace, St. Lukes, AUCKLAND, Tel. 867 119.

Norway: ELECTRONICAA/S., Vitaminveien 11, P.O. Box 29, Grefsen, OSLO 4, Tel. (02) 15 05 90.

Peru: CADESA,Jr. Ilo, No. 216, Apartado 10132, LIMA,Tel. 27 73 17.

Philippines: ELDAC,Philips Industrial Dev. Inc., 2246 Pasong Tamo, MAKATI-RIZAL,Tel. 86-89-51 to 59.

Portugal PHILIPS PORTUGESAS.A.R.L., Av. Eng. Duharte Pacheco 6, LISBOA1, Tel. 68 31 21.

Singapore: PHILIPS SINGAPORE PTE LTD., Elcoma Div., POB 340, Toa Payoh CPO, Lorong 1, Toa Payoh, SINGAPORE12, Tel. 53 88 11.

South Africa: EDAC (Pty.) Ltd., South Park Lane, New Doornfontein, JOHANNESBURG2001, Tel. 24/6701.

Spain: COPRESAS.A., Balmes 22, BARCELONA7,Tel. 301 63 12.

Sweden: A.B. ELCOMA,Lidingovagen 50, S-10 250 STOCKHOLM27,Tel. 08/67 97 80.

Switzerland: PHILIPS A.G., Eicoma Dept., Edenstrasse 20, CH-8027 ZURICH, Tel. 04/44 22 11.

Taiwan: PHILIPS TAIWAN LTD., 3rd FI., San Min Building, 57-1, Chung ShanN. Rd, Section 2, P.O. Box 22978, TAIPEI, Tel. 5513101-5.

Turkey: TURK PHILIPS TICARET A.S., EMET Department, Inonu Cad. No. 78-80, ISTANBUL,Tel. 43 59 10.

United Kingdom: MULLARD LTD., Mullard House, Torrington Place, LONDON WC1E 7HD, Tel. 01-580 6633.

United States: (Active devices & Materials) AMPEREX SALES CORP., Providence Pike, SLATERSVILLE, R.I. 02876, Tel. (401) 762-9000.

(Passive devices) MEPCO/ELECTRAINC., Columbia Rd., MORRISTOWN, N.J. 07960, Tel. (201) 539-2000.

(IC Products) SIGNETICS CORPORATION, 811 East Arques Avenue, SUNNYVALE, California 94086, Tel. (408) 739-7700.

Uruguay: LUZILECTRON S.A., Rondeau 1567, piso 5, MONTEVIDEO, Tel. 9 43 21.

Venezuela: IND. VENEZOLANASPHILIPS S.A., Elcoma Dept., A. Ppal de los Ruices, Edif. Centro Colgate, Apdo 1167, CARACAS, Tel. 36 05 11.

© 1978 N.V. Philips’ Gloeilampenfabrieken

This information is furnished for guidance, and with no guaranteesas to its accuracy or completeness;its publication conveys no licence under any patent or other right, nor

does the publisher assume liability for any consequenceof its use; specifications and availability of goods mentioned in it are subject to change without notice; it is not to be
reproducedin any way, in whole or in part, without the written consent of the publisher.

Printed in The Netherlands Date of release: 9 February 1978 T.D. 9399 500 07201

2650 INITIALIZATION

Siqnotics 2650 INITIALIZATION MP5

At power-up the status of the 2650 is undefined. The Reset

signal should be raised for at least three clock periods.

This forces execution of the instruction at location 0. Once

the system is started up, the first program to run ts generally

responsible for initializing the microprocessor, memory, and

[/O devices to their desired initial states. The type of |/O

initialization is dependent on the particular device. Contents

of RAM are undefined at power-up and must be set to

their desired initial states.

Program status word initialization:

1. Interrupts can be inhibited as a first step in Initialization.

The Reset clears the Interrupt Inhibit bit and the internal

Interrupt Waiting signal. After the remainder of the status

bits, the memory, and the |/O is initialized, interrupts

can be permitted. This procedure will prevent unwanted

interrupts during system initialization. If the system

does not utilize interrupts, the Interrupt Inhibit bit

can be left set on when system initialization is com-

plete. This approach will assure that a spurrious interrupt

will not occur.

2. The Stack Pointer may be initialized to zero. The Stack

Pointer should not be modified during the execution of

a program. This pointer is under the control of the

 APPLICATIONS MEMO

processor. Modification by a program could have un-

wanted results, i.e., to the instruction address register.

. It is generally unnecessary to initialize the Condition

Code, Interdigit Carry, Overflow, and Carry bits. These

bits are normally set by arithmetic and logical operations

before they are tested. However, if the With Carry bit

is set on, then the Carry bit should be initialized

correctly for the first arithmetic instruction.

. The Register Select bit should be set to a knownstate,

e.g. if bank 1 registers are reserved for interrupt routines,

the register select bit should be initialized to bank 0.

. The With Carry bit can be initialized to the state desired

for most arithmetic and rotate operations. Then if a

different state is desired for some operations, the With

Carry bit can be changed and then restored after these

Operations.

. The same philosophy used for the With Carry bit also

applies to the Compare bit. Set the Comparebitinitially

to the most frequent types of compares made, logical

or arithmetic.

. The Sense bit cannot be modified by a program. The

Flag bit may need to be initialized if there is a device

connected to it such as a TTY which needs stop bits

(binary one) when notreceiving data.

ON.V. Philips’ Gloeilampenfabrieken

This information is furnished for guidance, and with no guaranteesas to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor

does the publisher assumeliability for any consequence of its use; specifications and availability of goods mentionedin it are subject to change without notice; it is not to be
reproducedin any way, in whole or in part, without the written consent of the publisher.

Printed in The Netherlands 2-76 9399 509 52061

SIMULATOR,VERSION1.2......SP53

Siqnotics SIMULATOR, VERSION 1.2 SPO3

A new version of the Simulator is available. This version

performs the same functions as Version 1.0 (see Simulator

Manual) with the following additional features:

1, Hexadecimal Object Module

The Simulator accepts an object module produced by the

Assembler in either decimal or hexadecimal format. The

Simulator assumes that the object module is hexadecimal,

unless the user specifies a decimal module by adding a

fourth parameter, FORMAT, to the “EXECUTE SIMU-

LATOR” command. This command is formatted dif-

ferently depending upon the computer system on which

the Simulator is installed.

_ BK (8192 bytes) Object Module

The Simulator reads and executes an object module

with up to 8192 bytes.

. Decimal Input to LIMIT Command

The LIMIT command expects the number of instruc-

tions to be entered in decimal, not hexadecimal. Thus,

a ‘LIMIT 40” command causes the program to execute

40;9 not 6449 instruction. All other commandsstill

expect their input parameters to be in hexadecimal.

. Stack Wraparound Notification

Whenever a RETC or a RETE is executed with the

stack pointer equal to O or whenever a branch to sub-

routine instruction is executed with the stack pointer

equal to 7, the Simulator prints the following message:

STACK WRAPAROUND, IAR=XXXX

 APPLICATIONS MEMO

Where XXXX identifies the address at which the wrap-

around occurred.

. Termination Messages

The Simulator prints a message for every kind of

program termination:

TYPE OF TERMINATION SIMULATOR RESPONSE

1. STOP. command A trace of the last instruction

executed is printed.

2. HALTinstruction. A trace of the last instruction

executed is printed.

“LIMIT REACHED=XXXxX,

IAR=XXXX"' is printed. A

trace of the last instruction

executed is printed.

“ADDRESS OUT OF

RANGE, |[AR=XXXX"is

printed. A trace of the last

instruction executed Is printed.

“IAR EXCEEDS MEMORY,

IAR=XXXX"’is printed.

3. LIMIT command

4. Attempt to access area

outside of memory

5. Attempt to execute

instruction Outside

of memory
. Simulator Version Notification

The simulator prints the following message wheneverit

starts to execute a program:

2650 SM 1000 “*PIPSIM”’ VERSION X.X

X.X identifies the version of the simulator currently

executing.

ON.V. Philips’ Gloeilampenfabrieken

This information is furnished for guidance, and with no guaranteesas to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor

does the publisher assumeliability for any consequence of its use; specifications and availability of goods mentionedin it are subject to change without notice; it is not to be
reproducedin any way, in whole or in part, without the written consent of the publisher.

Printed in The Netherlands 2-76 9399 509 52561

ABSOLUTE OBJECT FORMAT.....SS51

SiqNCtics ABSOLUTE OBJECT FORMAT S9ul

INTRODUCTION

The format for absolute code produced for the 2650 is

described in this application note.

The absolute object code is formatted into blocks. The

first character of every block is a colon. Inside of a block,

all the characters are hexadecimal, i.e., O to 9 or A to F

inclusive. In the gap between the blocksall characters are

ignored. A CR/LF is used within the interblock gap to

reset the TTY or terminal after each block.

Each block is independent. For example, papertape can be

positioned prior to any block and a load started. The loading

of absolute object code will be halted by:

A BCC error on the address + countfields

A BCCerror on the data field

An incorrect block length

A non-hex character within the block

The block length field contains the number of bytes of

actual data which is half the number of hex characters in

the data field. The size of the data field can range from

2 to 510 characters. A block length of zero indicates this

is an EOF block. The address field of an EOF block

contains the start address of the loaded program.

The Block Control Character is 8 bits formed from the

actual bytes and not from the ASCII characters. The bytes

are in turn exclusive or’ed to the BCC byte, and then

the BCC byte is left rotated one bit. It appears as two

2650 MICROPROCESSOR

APPLICATIONS MEMO
hex characters. Both the address and count fields and the

data field are followed by a BCC character pair. The BCC

prevents storing into memory at an invalid address or

storing bad data.

EXAMPLE An object tape that loads ten bytes starting

at location 500

:05000A3C0455B024F FF01F050400 30

:000000

FORMAT

1. Interblock gap of any characters including spaces

2. Start of block character;

a colon

3. Addressfield;

four hex characters

4. Countfield;

two hex characters in range 0 to FF

5. BCC for address and countfields;

two hex characters

6. Data field;

twice the value in the count field which is the number

of memory locations loaded by the current block

7. BCC for the datafield;

two hex characters

©N.V.Philips’ Gloeilampenfabrieken

This information is furnished for guidance, and with no guaranteesas to its accuracy or completeness;its publication conveys no licence under any patent or other right, nor

does the publisher assumeliability for any consequence ofits use; specifications and availability of goods mentionedin it are subject to change without notice; it is not to be

reproducedin any way, in whole orin part, without the written consentof the publisher.

Printed in The Netherlands 2-76 9399 509 52361

BIT AND BYTE

TESTING

PROCEDURES

AS51

Sinntties BIT AND BYTE TESTING PROCEDURES AS5]

SUMMARY

This applications memo describes several methodsof testing

the contents of the internal registers in the Signetics

2650 Microprocessor.

The following test examples are given:

@ Specific bit(s) in a register.

@ Positive, negative, or zero-contents of a register.

@® Contents of a register compared with a value (equals,

greater than, or less than).

@ Interdigit-carry (IDC), overflow (OVF), and carry (C)

flags in the program status word.

INTRODUCTION

As a result of an operation on register(s) of the 2650

register bank, five bits (bits 7, 6, 5, 2, and O) in the Program

Status Lower (PSL) portion of the Program Status Word

(PSW) register can be affected.

7 6 5 4 3 2 1

CC1 CCO IDC RS WC OVF COM C

PROGRAM STATUS LOWER (PSL)

These bits are affected as follows:

CC1, CCO: Condition CodeBits

2650 MICROPROCESSOR

APPLICATIONS MEMO

SIGN ADD SUB

OVF OVF

OPERAND1 OPERAND 2 RESULT

+

+

+
+

+
+

| +
1

+

|
|

+
+ +

| |

o
-
O
0
0
0

~
0

o
o
o
0
0
0

OVF: Overflow Bit. Rotate Operation

Condition: WC = 1; if WC = O, the OVE bit is not

affected.

The overflow bit is set as follows:

RESULT OF

CONDITION |oap/sTORE, SELECTIVE
CODE ARITHMETIC, COMPARE TESTS ON

cc1 cco LOGICAL INSTRUCTION] BITS (TMI,
INSTRUCTIONS TPSU, & TPSL)

0 0 Zero Equal All bits 1

0 1 Positive Greater Than —_——

1 0 Negative Less Than Not all bits 1
IDC: Interdigit Carry/Borrow Bit

The IDC bit is affected by arithmetic operations as well

as rotation.

O = Interdigit borrow/no interdigit carry

1 = Interdigit carry/no interdigit borrow

OVF: Overflow Bit. Arithmetic Operation

The overflow bit in arithmetic operations is set as follows:

Operand 1 + Operand 2 Result

OPERANDSIGN

BEFORE AFTER
ROTATE ROTATE OVF

+ 0
- - 1

+ 0
0

C: Carry/Borrow Bit

The Carry bit is affected by arithmetic operations as well

as rotation.

O = borrow/nocarry

1 = carry/no borrow

BIT TESTING PROCEDURES

The bits of a register Rx (register zero Ro or any register

R1, R2 or R3 in the selected register bank) can be tested

as follows:

\
O
m
a
<
e

l
a
m
r
o
<
o

TEST FOR ‘0’ IN BIT 3 OF Rx

TMI, Rx H’08’ 1) 2 3

BCTR,2 LBL “Branch if bit 3 is zero. 23

4 6

Or:

ANDI, Rx H’‘08’ | 2) 2 2

BCTR,O LBL “Branchif bit 3 is zero. 2 3

4 5

While the secondtest is faster, it affects the contents of Rx.

SIGNETICS BIT AND BYTE TESTING PROCEDURES #8 AS51

BIT TESTING PROCEDURES(Continued)

TEST FOR ‘1’ IN BIT 3 OF Rx

TMI, Rx H‘08’ 1) 2 3

BCTR,O LBL “Branchif bit 3 is one. 2 3

4

or:

ANDI, Rx H’‘08’ 2)

BCFR,O LBL “Branchif bit 3 is one.

a
a

2

3

5

While the secondtestis faster, it affects the contents of Rx.

TEST FOR ‘0’ IN BIT 1 OR BIT 3 OR BIT 6 OF Rx

TMI, Rx H‘4A’ 1) 2 3

BCTR,2 LBL “Branchif one of the 2 3

tested bits is zero.

aa
y

oO
)

TEST FOR ‘1’ IN BIT 1 OR BIT 3 OR BIT 6 OF Rx

ANDI, Rx H’4A’ 2) 2 2

BCFR,O LBL “Branch if one of the 2 3

tested bits is one. 4 5

TEST FOR ‘0’ IN BIT 1 AND BIT 3 AND BIT 6 OF Rx

ANDI, Rx H’‘4A’ 2) 2 2

BCTR,O LBL *Branchif all tested 2 3

bits are zero. 4 5

TEST FOR ‘1’ IN BIT 1 AND BIT 3 ANDBIT 6 OF Rx

TMI, Rx H‘4A’ 1) 2 3

BCTR,O LBL *Branchif all tested 2 3

bits are one. 4 6

TEST FOR PATTERNIN Rx; e.g., x10xx01x

x = don’t care

IORI, Rx H’99' 2) 2 2

COMI, Rx H’DB' 2 2

BCTR,O LBL “Branchif pattern 2 3

is true. 6 7

1) Contents of register Rx kept

2) Contents of register Rx lost

BYTE TESTING PROCEDURES

TEST FOR POSITIVE, NEGATIVE AND ZERO

All of the tests described below must be preceded by an

operation on Rx which updates the contents of the

condition register, e.g., by instructions such as LOAD, ADD,

AND, COMPARE, ROTATE, I/O,etc.

CC OPERATION

Test for (Rx) 20 00 or 01 BCFR, 2

Test for (Rx) >0 01 BCTR, 1

Test for (Rx) =O — 00 BCTR, 0

Test for (Rx) <0 10 BCTR, 2

Test for (Rx) <O 00 or 10 BCFR, 1

TESTS ON THE CONTENTS OF A REGISTER

BY USING COMPARE INSTRUCTIONS

Logical compare: (COM = 1 in PSL)

Comparison is made between two 8-bit unsigned binary

numbers.

Arithmetic compare: (COM = 0 in PSL)

Comparison is made between two 8-bit signed numbers.

After execution of the logic or arithmetic compare instruc-

tion, the condition register (CC) is set to a specific value

and tested as follows:

REGISTER-TO-REGISTER COMPARE

Instruction used:

COMZ Rx

RESULT CC TEST

(Ro) 2 (Rx) 00 or 01 BCFR,2

(Ro) > (Rx) 01 BCTR, 1

(Ro) = (Rx) 00 BCTR, O

(Ro) <(Rx) 10 BCTR,2

(Ro) <(Rx) 00 or 10 BCFR, 1

REGISTER TO CONSTANT OR MEMORY LOCATION

Instructions used:

COMI, Rx DATA

COMR, Rx RELATIVE LOCATION OF DATA
COMA, Rx LOCATION OF DATA :

RESULT
V=VALUE CC TEST

(Rx) 2V OO or 01 BCFR,2

(Rx) >V 01 BCTR, 1
(Rx) =V 00 BCTR, 0
(Rx) <V 10 BCTR, 2
(Rx) SV 00 or 10 BCFR, 1

Whenever a compare instruction is used, the IDC, OVF,

or C bits in the PSL are not affected.

SIGNETICS BIT AND BYTE TESTING PROCEDURES# AS51

TEST ON OVERFLOW(OVFin PSL)

The overflow bit is atfected whenever arithmetic or rotate

instructions are executed.

The OVFbit is set during an addition whenever the two

operands have the samesign and the result has a different

sign. During a subtraction, the OVF bit is set when the

operands differ in sign and the result has a different sign

than the first operand. |

Examples: (+A) + (+B) = (<C) OVF
. (—A) + (-B) = (+C) OVF

(+A) — (-B) = (-C) OVF

(-A) - (+B) = (+C) OVF

Test: TPSL H‘04’ *OVF test

BCTR,O LBL “Branch if OVF = set

The OVF bit is set during rotate instructions with WC = 1

whenever the sign changes from positive to negative. If

WC = 0, then rotate instructions do not affect the OVF bit.

Example:

RRR, Rx “Rotate right

TPSL H‘04’ “Test OVE bit

BCTR,O LBL “Branch if OVF = set

TEST ON CARRY(C in PSL)

The carry bit is set to 1 by an add instruction that generates

a carry and a sub-instruction that does not generate

a borrow.

Example:

ADDITION

LODI, Rx H’‘88'

ADDI, Rx H’99’

TPSL H‘01’ *Test carry

BCTR,O LBL “Branchif carry

SUBTRACTION

LODI, Rx H’40’

SUBI, Rx H’‘30’

TPSL H’01’ “Test borrow

BCTR,O LBL “Branch ifno borrow

When a rotate instruction is executed with WC = 1, the.

carry bit is also ‘affected. Refer to the Signetics 2650

Microprocessor manual for a description of this operation.

© NV. Philips’ Gloeilampentabrieken —

This information is furnished for guidance. and with no guaranteesasto its accuracy or completeness: its publication conveys no licence under any patent or other right. nor
does the publisher assumeliability for any consequenceof its use: specifications and availability of goods mentionedin it are subject to change without notice: it is not to be
reproduced in any way. in whole or in part, without the written consent of the publisher

4-76 9399 509 53661

GENERAL
DELAY

ROUTINES
AS52

Siqnttics GENERAL DELAY ROUTINES AS52

SUMMARY

In microprocessing applications, delay times are often

required. A typical example is a delay time for serial

Teletypewriter interface. While delay times can be generated

by counters, monostables, multivibrators, and other hard- —

ware, it is often simpler and more economical to use a short

software routine.

This applications memo describes several ways of writing

software delay time routines for the Signetics 2650

microprocessor. Time restrictions and formulas for calcu-

lating the delay time are given for each routine.

DELAY ROUTINES

In general, a delay can be implementedby setting a counter

with a number N and decrementing this number by one

until it is zero. If decrementing the number takes one clock

period, then the total delay time is N clock periods.

In the 2650 microprocessor, the internal registers may be

used as counters. The most useful instructions for decre-

menting are the “Branch on Decrementing Register’ (BDRR

and BDRA)instructions, which also test the content of a

register for zero.

Figure 1 illustrates a flowchart of a delay routine. This

routine consists of a setup part and a count loop. The

count loop will be executed n times and the setup only

once. Hence, the delay timeis:

td =tsy + * Tet

It is possible to increase the delay time by increasing n or

by making ty longer. The latter can be done byinserting a

fixed delay such as a No Operation (NOP) instruction in the

count loop.

DELAY ROUTINE FLOWCHART

SET-UP |
tsy E CNTR

1 FIXED DELAY |mame

| (cNTR}- 1——> eNTR |

COUNT LOOP

tot

FIGURE 1

2650 MICROPROCESSOR

APPLICATIONS MEMO
The program of the routine shownin Figure 1 is as follows:

LODI, Rx n Load n into 6 cp”

register Rx

LOOP NOP No operation; 6 cp

fixed delay

of 6 cp

BDRR, Rx LOOP Decrement Rx; 9Qcp

branch to loop

if the result is

not zero

*cp = clock periods

With one NOP,the delay timeis: tg = (6 + 15-n) cp. Without

the NOP, the delay timeis: ty = (6 + 9:n) cp. The maximum

delay time is obtained when Rx is loaded with zero, since

Rx will cycle through all the 256 possible states. When

Rx =RO, the LODI, RO O instruction can be replaced by the

EORZ RO instruction, which saves one byte of code.

DELAY ROUTINE WITH FOUR REGISTERS

ENTRY

ng ——————> CNTRO

ng ——____» CNTR2

 ag ————_> CNTR3

Yt:
>

 v
| (CNTRO) - 1—» CNTRO

LOOP 0

2O

YES

| (CNTR1) —- 1 —-» CNTR1

LOOP 1

2 oO

YES

| (CNTR2) - 1—» CNTR2

LOOP 2

2 Oo

YES

| (CNTR3) - 1—-» CNTR3

LOOP 3

2 Oo

YES

EXIT

FIGURE 2

GENERAL DELAY ROUTINES ® AS52

Another possible way of increasing the delay time is to

repeat the count loop of Figure 1 several times. This can be

done by repeating the instructions or by counting the repeti-

tions of the count loop in another register. For example,

this latter method can be expandedto include four internal

registers. A flowchart of a delay routine using this technique

is Illustrated in Figure 2.

(If Rx is loaded with a zero, then n = 256 in the formula):

Table 1 shows six different delay routine programs along

with specifications for each program. The delay time for

these routines can be computed from the following

equations. |

The number of times the processor executes the different Routine Delay Time

loops shownin Figure 2 are:

loop 3. ng a ty = (6+ 9-no) cp

loop 2.) ng + (ng - 1) 256 b tg = (6+ 15-ng) cp

loop 1. ny + (no - 1) 256 + (ng - 1) 2562 c ty = (2310+ 9-ng) cp

loop 0) =ng + (nq - 1) 256 + (npg — 1) 2562 + (ng - 1) d ty ={ 12+ [no + ny + (ny - 1) 256] 9} cp

2563 e ty ={ 18+ [ng + ny + (ny - 1) 256 + no +
Hence, the delay time of this routineis: (no — 1) (2562 + 256)] 9 | cp

ty = [24+ {ng + ny + (my - 1) 256 + ng t (ng - 1) f ty = {24+ [ng + ny + (ny - 1) 256 + ng +
(256 + 2562) + ng + (ng - 1) (256 + 2562 + 2563) } (ng - 1) (2562 + 256) + ng + (ng - 1)

9] cp (2563 + 2562 + 256)] 9} cp

TABLE1

ROUTINE eeeTIME DELAY STEP NUMBER NUMBER PROGRAM

P (cp) OF BYTES OF REGISTERS
MIN* MAX

a 15 2310 9 4 1 LODI, RO no

LOOP BDRR, RO LOOP

b 21 3846 15 5 1 LODI, RO no

LOOP NOP

BDRR, RO LOOP

Cc 2319 4614 9 6 1 LODI, RO ng

LOP 1 BDRR, RO LOP1

LOP 2 BDRR, ROLOP 2

d 30 592.140 9 8 2 LODI, RO no

LODI, R1 n4

LOOP BDRR, RO LOOP

BDRR, R1 LOOP

e 45 =~ 151.6 x 106** 9 12 3 LODI, RO ng

LODI, R14

LODI, R2 no

LOOP BDRR, ROLOOP

BDRR, R1 LOOP

BDRR, R2 LOOP

f 60 =~ 38.8 x 109*** —@ 16 4 LODI, RO no

. LODI, R1 n,

LODI, R2 no

LODI, R3 n3

LOOP. BDRR, RO LOOP

BDRR, R1 LOOP

BDRR, R2 LOOP

BDRR, R3 LOOP

* cp = clock period. For 1MHz clock 1 cp = 1us.

** For 1MHz clock this is about 2.5 minutes.

*** Eor 1MHz clock this is about 10.46 hours.

© N.V. Philips’ Gloeilampenfabrieken

This information is furnished for guidance, and with no guaranteesasto its accuracy or completeness; its publication conveys no licence under any patent or other right, nor
does the publisher assumeliability for any consequence of its use: specifications and availability of goods mentionedin it are subject to change without notice: it is not to be
reproduced in any way, in whole or in part. without the written consent of the publisher.

4-76 9399 509 53761

BINARY ARITHMETIC

ROUTINES.....AS53

SinOtics BINARY ARITHMETIC ROUTINES NCB2

INTRODUCTION

Binary arithmetic routines, like addition, subtraction, multi-

plication, and division, are often used in microprocessor-

based systems. This applications memo provides several

suggested examples for processing binary arithmetic routines

on the 2650 microprocessor. These examples include:

®@ SIGNED BINARY ADDITION/SUBTRACTION

Two-byte operands giving a two-byte result.

@ UNSIGNED BINARY MULTIPLICATION

One-byte operands giving a two-byteresult.

Two-byte operandsgiving a four-byteresult.

@® SIGNED BINARY MULTIPLICATION

One-byte operands giving a two-byte result.

Two-byte operands giving a four-byte result.

® BINARY DIVISION — UNSIGNED AND SIGNED

Two-byte dividend and quotient with one-byte divisor

and remainder.

In these examples, emphasis is placed on minimizing

program memory requirements rather than on processing

speed. The different branch instructions and the indexing

features of the Signetics 2650 proved useful in minimizing

memory requirements.

1. BINARY ADDITION/SUBTRACTION FOR
TWO-BYTE SIGNED INTEGERS

FUNCTION:

Performs the addition or subtraction of two 2-byte signed

integers giving a two-byteresult.

(OPR1, OPR1 + 1) +/—- (OPR2, OPR2 + 1) ————>

RSLT,RSLT + 1

PARAMETERS:

Input: OPR1, OPR1 + 1 contains augend/subtrahend

OPR2, OPR2 + 1 contains addend/minuend

COM-flag in PSL indicates addition/subtraction:

COM =0 addition

COM =1 subtraction

Output: RSLT, RSLT + 1 contains sum/difference.

The condition code CC is set to the proper

value of the two byteresult.

OPR1, OPR2 and RSLT are MS-bytes.

SPECIAL REQUIREMENTS

None

Refer to Figures 1.1 and 1.2 for flowchart and program

listing.

2

2650 MICROPROCESSOR

APPLICATIONS MEMO

HARDWARE AFFECTED

RO R1 R2 R3 Ri’ R2’ R3’
REGISTERS

X X

F i SP
PSU

Cc IDC] RS WC OVF|COM;| C
PSL

X X X X

RAM REQUIRED (BYTES): 6
eeSSASNeeERce

ROM REQUIRED (BYTES): 45

EXECUTION TIME:___—s—Variable

MAXIMUM SUBROUTINE

NESTING LEVELS: None
eee SE TN ce STE cee cent SO eee ee cee eres ee em me NR cee ate wre SS ee eee

ASSEMBLER/COMPILER USED: PIPHASM
rereeeeeoe

Enter Subroutine ADSB

ADSB Operation:

(OPR1, OPR1 + 1) +/ - (OPR2, OPR2 + 1)
Initialize PSL: ——» RSLT, RSLT +1

® operations with carry

@ set carry

<>YES, SUBTRACTION

NO, ADDITION

CLEAR CARRY |

LS byte OPR1 -» RO | | LS byteOPR1 ™RQ |

i |
(RO+ - LS byte OPR2 ~- borrow

>» RO, borrow

|

r
T
)

f
T

(RO) + LS byte OPR2 + carry
» RO, carry

|no » LS byte RSLT | (RO) -- » LS byte RSLT |

| L
| MS byte OPR1 ™ RO | | MS byte OPR1--» RO

| |
(RO) + MS byte OPR2 + ww| (RO) - MS byte OPR2 - mo|

» RO, carry - » RO, borrow

| |
[(RO) »MS byte RSLT | (RO)» MS byte RSLT

J
TEST

MS byte

RSLT =0
(RETURN)

(RETURN)

| 01-—- condition code |

RETURN

FIGURE 1-1. Flowchart for Double Precision Addition/Subtraction

SIGNETICS BINARY ARITHMETIC ROUTINES #® AS53

0
O
O
A
O
a

w
e
G
T

e
e

9508
9382

O84
8586
B98
858A
8990
9516
9513
#915
#517
851A
#510
$928
$522
$524
8327
9528
892A
99520

8009
6681
6892
8083
9858
864
5888
6882
6091
9698
0883
8868

8388

850A

B17

P22

8920

6920
§52F
8931

77 69
9) 82

BD 82
18 OF

7D 6h
9) 45 2D

8D 45 2F

CD 65 31

39 79

1B 8B

a 45 2D
AD 65 2F

CD 65 31

3? 79
98 88
a #5 32
14
7S 88
7? 4g

17

--# PD76B918
PRAADESRAATASSESEASEREESEEREEEEESSEEEETEERPEEEESEEEEEEEEEE
+ BINARY DOUBLE PRECISION ADDITION/SUBTRACTION
FRASERERAASSSDEAEEETEEPEEEESESEEEREEEREEEEEEEE
+ OPERATION:
+ (OPRLrOPRi+1)+/-(OPRZ2.OPRZ+1)-- RSLT»RSLT+1
+ OPRIrOPRZ+RSLT ARE MOST SIG BYTES
COM IN PSL 1S USED AS ADD/SUB FLAG
+ CON=8 15 ADD} COM=1 IS SUBTRACT
+ AFTER ADD/SUB THE CC+OVFAND C BITS IN PSL
ARE VALID FOR THE RESULT
+
* DEFINITION OF SYMBOLS
+

RB «EAU 8 PROCESSOR REGISTERS
Ri EQU 1
R2 EQU d

R3 EQU 3

CCL QU H' 68?

CC8 EQU H? 46!
Wo EGU H' 88!

COM EQU H}§2!

PSL? HSB OF CONDITION CODE

LSB OF CONDITION CODE
1=WITHi@=WITHOUT CARRY

P=LOGICAL»B=ARITH COMP
F -EQU HO! CARRY / BORROW

£ EQU 6 BRANCH COND: ZERO
UN EQU 3 UNCONDITIONAL
ON EQU § ALL BITS ARE 1
+

ORG H' S88? START OF SUBROUTINE
+

ADSB PPSL WE4 ARITH WITH CARRY?SET CARRY
LODIsRL 2 LOAD INDEX REGISTER
TPSL COM
BCTRION LPSB BRANCH IF SUBTRACTION
CPSL ADDITION /CLEAR CARRY

LPAD LODArR# OPRiyRir- BYTE OF FIRST OPERAND TO RB

ADDArR@ OPRZ2rRi =©ADD BYTE OF SECOND OPERAND
—STRARB RSLTeRL STORE RESULT

BRNRrRi LPAD BRANCH IF NOT DONE
BCTRrUWN TEST

LPSB LODArRB OPRirRi»- BYTE OF FIRST OPERAND TO RO
SUBArRB OPRZ»Ri SUB BYTE OF SECOND OPERAND

STRArR@ RSLTRt STORE RESULT

BRNRRL LPSB BRANCH IF NOT DONE
TEST BCFR+Z RTRN RETURN IF MS BYTE NOT ZERO

LODArR® RSLT+i
RETO 12 RETURN IF LS BYTE ALSO ZERO
CPSL CEA SET CC. TO #1 (POSITIVE)
PPSL CC

RTRN RETC1UN
+

OPR1 RES 2 LOCATION OF: FIRST OPERAND
OPR2 RES 2 SECOND OPERAND
RSLT RES 2 RESULT

END

FIGURE 1-2

SIGNETICS BINARY ARITHMETIC ROUTINES ® AS53

2. BINARY MULTIPLICATION FOR ONE-BYTE
UNSIGNED INTEGERS

FUNCTION:

One byte by one byte multiplication for unsigned integers,

giving a two-byteresult.

(OPR1) X (OPR2)-—— RSLT, RSLT + 1

PARAMETERS:

Input OPR1 contains multiplier

OPR2 contains multiplicand

Output: RSLT contains high-order product-byte.

RSLT +1 contains low-order product-byte.

SPECIAL REQUIREMENTS:

None

Refer to Figures 2.1 and 2.2 for flowchart and program

listing.

HARDWARE AFFECTED

RO| R1} R2/ RB] R1’| R2’ RB’
REGISTERS

x Xx xX Xx

F HW SP
PSU

cc iwc] RS wc] OVE] COM! c
PSL

x x Xx X Xx

RAM REQUIRED (BYTES): 4

ROM REQUIRED (BYTES): 29

EXECUTION TIME:____Variable

MAXIMUM SUBROUTINE

NESTING LEVELS: __None

Vow Subroutine MULT

Operation:
MULT 7 (OPR2) < (OPR1)—»RSLT, RSLT +1

Load R1, R2

with OPR1, OPR2

mpyu|

Initialize PSL:
@ operations with carry

Clear RO
load loopcounter R3 with 8

 | : LOOP

| Clear carry |

| (RO) + (R2) + carry —» RO |

le.
SHIFT

Rotate RO right:
carry —*» MSBof RO
LSB of RO--» carry

|
Rotate R1 right:
carry-- »MSB of R1
LSB of R17 —-»carry

|
Decrease loopcounter:

(R3) -1—»R3

<a>

YES

Store RO, R1

in RSLT, RSLT +1

RETURN

FIGURE 2-1 Flowchart for Unsigned Multiplication

(One-Byte Operands; Two-Byte Result)

SIGNETICS BINARY ARITHMETIC ROUTINES #® AS53

1 4 PD768838 t
? HELSASASESESRASSSEESTESSSEASSESESSSSESSS45 29995999595909455449994493
3 4 BINARY MULTIPLICATION FOR 2 UNSIGNED INTEGERS
4 FREPESSASSARSSEESSEES95999599955599999999999945999999099999992 522944
9 +

b + MULTIPLIER 1S IN OPRi

7 + MULTIPLICAND 1S IN OPR2

8 + RESULT WILL BE STORED IN RSLT+RSLT+1 (RSLT = MS BYTE}
9 +

18 +
Li 3

12 t

13 + SYMBOL DEFINITIONS

14 6668 RE EQU 8
15 9991 Ri £QU 1

16 $882 R2 EQU Z
17 8863 R3 EQU 3

18 6081 R4 EQU i
19 9682 RS EQU Z
28 — 9883 R6 ERY 3

Zi $683 UN EQU 3 UNCONDITIONAL BRANCHING
22 8808 ON EQU §

23 9982 LT EQU t
24 $966 Z EQU §
29 $661 P EQU 1

26 $6982 N EQU Z
2? 8898 WC EQU 8
28 6061 C EQU 1

29 6846 F EQU H? 4p!

38 $864 OVE EQU 4
31 9862 COM EQU 2
32 +
33 4+ R/W MEMORY
34 +

35 ORG H'S68!

36 $566 OPRi RES 2
37 $582 OPRZ RES 2
38 9584 RSLT RES 4
39 +
46 +

4j +
47 ORG H'68e?

43 6608 6686 GD 85 68 MULT LODArRi OPRI GET OPERAND IN Ri
44 6483 GE 85 82 LODArRZ OPR2 GET OPERAND IN R2

45 6686 84686 77 88 MPYU PPSL WC ARITH

44 6688 28 EORZ RB CLEAR R#

47 66689 87 68 LODIeR3 «8B LOAD LOOP COUNTER R3
48 @608 S688 75 61 LOOP CPSL C CLEAR CARRY
49 68D FS #1 THI Rt Hi! |

38 Sé8F 98 #1 BCFR:ON SHFT SKIP ADDITION IF LSB Ri=8
St bil 82 ADDZ RZ ADD MULTIPLICAND TO PARTIAL PROD

32 8612 8612 58 SHFT RRR RO ROTATE PARTIAL PROD AND MULTIPLIER
33 8613 a1 RRR RI

34 6414 FB 75 BBRRrR3 LOOP BRANCH T0 LOOP IF NOT REABY

99 8616 CC 85 #4 STRArR® RSLT SAVE RESULT IN RESULT AREA

96 8419 CD 85 #4 STRArRi RSLT+1 SAVE RESULT IN RESULT AREA
D7 «6861C 1? RETC+UN RETURN TO MAIN PROGRAM

FIGURE 2-2

SIGNETICS BINARY ARITHMETIC ROUTINES #® AS53

3. BINARY MULTIPLICATION FOR TWO-BYTE
UNSIGNED INTEGERS

FUNCTION:

Two byte by two byte multiplication for unsigned integers,

giving a four byte result. |

(OPR2, OPR2 + 1) X (OPR1, OPR1 + 1) —————>

RSLT, RSLT +1, RSLT +2, RSLT +3

PARAMETERS:

Input: (OPR1, OPR1 + 1) contains multiplier

(OPR2, OPR2 + 1) contains multiplicand

Output: RSLT, RSLT + 1, RSLT + 2, RSLT + 3 con-

tains product.

OPR1, OPR2, and RSLT are most-significant

bytes.

SPECIAL REQUIREMENTS:

None

Refer to Figures 3.1 and 3.2 for flowchart and program

listing.

HARDWARE AFFECTED

RO| R1{/ R2{/ RBI RI] R21 RB’
REGISTERS

x x Xx

F HI SP
PSU

cc iwc] RS WC| OVF;/ COM! Cc
PSL

x xX x X x

RAM REQUIRED (BYTES): BS

ROM REQUIRED (BYTES):57

EXECUTION TIME:____—=—Variable

MAXIMUM SUBROUTINE
NESTING LEVELS:_—__fNone

ASSEMBLER/COMPILER USED:PIPHASM>

VeSubroutine SMPY

SMPY Operation:

(OPR2) X (OPR1)—~RSLT

Initialize PSL
@ operation with carry
@ clear result area

!
| Load R3 with 16

in
om

en
ne

mm
ed

 > ¥ L000

Rotate Multiplier right
by 1 bit into carry

LOC1

Add Multiplicand

to result

|

NO

Rotate the

result to right
by 7 bit

|
Decrement Loop Counter

(R3) -1 —+(R3)

RETURN

FIGURE 3-1 Flowchart for Unsigned Multiplication

(Two-Byte Operands; Four-Byte Result)

SIGNETICS BINARY ARITHMETIC ROUTINES #® AS53

38 + PD768631 $
59 FLESSAALSASASSASTTSALSLSLESESSSESESSESSAARSEASESSLESEEEEEESTEEEEEES

69 + BINARY MULTIPLICATION FOR 2 TWO-BYTE INTEGERS
bi EEEPASRSRASSSSSSSSESSESSSSSESSEESSEEEEESREESEEEEEEEE229944444444408

2 4

63 # MULTIPLIER IS IN OPR1 + OPRi+i
4 + HWULTIPLICAND 15 IN OPRZ »OPRZ+1

65 | + RESULT WILL BE IN RSLT +RSLT+1 +RSLT#+2 sRSLT+3

4 | | ORG H'79#?

b7 +
68 8798 8799 77 $8 SMPY PPSL WC SET MODE
69 8792 28 EORZ RG
78 $793 CC 85 84 STRArR@ =RSLT CLEAR RESULT

71 6796 CC #5 #5 STRAR® =RSLT+1 CLEAR RESULT +1
72 «8799 a7 19 LODIyRS 16 LOAD COUNT
73° «$798 =879B 85 FE L600 LODIeRL 8-2 TO GET 254

74 8790 79 #1 CPSL C CLEAR CARRY
75 879F O79F OD 64 82 LOCO LODAsR@ OPR1I-256+2>R1 FOR INDEXING INTO OPRi
76 @7AZ 38 RRRRE | ROTATE RIGHT WITH C

77 $783 CD 64 82 STRAsRB OPR1-256+2 RI

78 87A6 DY 77 BIRR»Ri LOCO ROTATE Z2ND TIME

79 + THIS ROTATES MULTIPLIER BY 1 BIT TO GET THE LSB

88 4 INTO CARRY | |

81 87A8 26 EORZ RG CLEAR R#

82 7A? De RRL» RB GET CARRY INTO LSB
83 @7AA FB 82 BDRRrR# LOC

84 87AC 1B 8D BCTRUN LOC4
85 4

86 B7AE @7AE 85 82 LOCI LODIyRi 92 GET INDEX
87 @7B@ 8788 @D 65 83 LOC2 LODArR@® RSLT-19R} ADD MULTIPLICAND TO PRODUCT

88 8783 8D 65 #1 ADDArR® OPRZ-1irR1
89 §7B6 CD 65 83 STRArR® =-RSLT-19R1

98 8789 F979 BDRR»Ri LOC2 FINISH THE ADD
91 +
92 +

93 @7BB @7BB @5 FC Loc4 LODIyRi 9-4 ROTATE THE PRODUCT TO RIGHT
94 §7BD 87BD OD 44 88 LOCS LODArR@ RSLT-256+4)R1 |
959 8708 38 RRR RG ROTATE RESULT
96 8701 CD 64 88 STRArR@ =RSLT-25644sR1
97 «8704 D9 77 BIRReRE LOCS
98 8706 FB 53 BORR»R3 LOO FINISH THE LOOP
99 $7C8 1? RETC)UN

FIGURE 3-2

SIGNETICS BINARY ARITHMETIC ROUTINES #® AS53

4. BINARY MULTIPLICATION FOR ONE-BYTE
SIGNED INTEGERS

FUNCTION:

One byte by one byte multiplication for signed integers

giving a two-byte result. |

(OPR1) X (OPR2)—— RSLT, RSLT + 1

The Booth algorithm is used (see Figure 4.1).

PARAMETERS:

Input: OPR1 contains multiplier

OPR2 contains multiplicand

Output: RSLT contains high-order product byte.

RSLT + 1 contains low-order product byte.

SPECIAL REQUIREMENTS:

None

Refer to Figures 4.1 and 4.2 for flowcharts and to Figure

4.3 for program listing.

HARDWARE AFFECTED

ro a1! R2/R3! eit r2’ R32’
REGISTERS

X Xx X Xx

F | SP
PSU

cc ioc| Rs wc|ove|com! c
PSL

X xX xX Xx

View BOOTH — MULTIPLICATION — ROUTINE

clear PRODUCT
clear FLAG

|

LSB of MULTIPLIER

= FLAG (previous LSB)?
YES

 YES
 LSB of MULTIPLIER = 0?

Subtract MULTIPLICAND Add MULTIPLICAND
from PRODUCTwith to PRODUCTwith
MSB‘saligned MSB‘s aligned

Store LSB of MULTIPLIER
in FLAG

|
Shift MULTIPLIER right

one position

Shift PRODUCTright
one position, the MSB
remaining the same

All bits of
MULTIPLIER tested

YES

RETURN

RAM REQUIRED (BYTES):4| _

ROM REQUIRED (BYTES):91

EXECUTION TIME: Variable

MAXIMUM SUBROUTINE
NESTING LEVELS:_ssiNone

ASSEMBLER/COMPILER USED:PIPHASM

Enter Subroutine MPYS

Operation:
MPYS (OPR2) x (OPR1)—*RSLT, RSLT +1

OPR1—+R1
OPR2-——-*-R2
0O——» FLAG
0——»RO

8 —-»R3 (= loopcounter)

| | |MOOP

0-——*WCin PSL
{operations without carry)

| (RO) - (R2)—»RO

| 1—-» FLAG |

MOCO

No)

YES

(RO) + (R2)—»RO |

0—>FLAG

Le

moc1|—

1-—~ carry

1—WC in PSL
(operations with carry)

0 carry |

a

moc?

Shift RO, R1 right
with carry into MSB RO

YES

RO—-»RSLT

Ri—»RSLT +1

(RETURN)

FIGURE 4-1 Flowchart of Booth Algorithm

Multiplicand X Multiplier — Product

8

FIGURE 4-2 Flowchart for Signed

Algorithm (One-Byte

Multiplication Using Booth

Operands; Two-Byte Result)

SIGNETICS BINARY ARITHMETIC ROUTINES #® AS53

168
181
182
183
184
165
196
197
168
189
118
itt
112
113
114
Lid
116
1i7
118
119
126
121
122
123
124
129
126
127
128
129
138
131
132
133
134
139
136
137

#688
9682
#899
6898
888A
8888
4D
886F
6811
$813
9815
8816
6818
681A
g8iC
88iE
881F
§821
$823
6824
#826
8828
9829
882A
§62C
682F
$832

8868

#868

geiA

8821

#828

74 49
aD 95 98
GE 85 92
a7 98
26
75 98
FS ot
98 99
BA 4g
18 @C
A?
7 49
1B 87
Ba 49
98 93
92
74 49
77 69
46
1A 92
75 i
5
51
FB SF
CC 85 #4
cb 95 95
17

+ PD7468832
PRRSSSATSASESSSESESESSSSSSESSASSSSSESEESESSESESEESEEESES95990493444

+ BINARY MULTIPLICATION USING BOOTH-ALGORITHH

4 FOR 2 ONE-BYTE SIGNED INTECERS.
PRSESESESEEEESESESEE595-225009990090999409092999999999999999S

FIRST OPERAND IS IN OPRiah
a

+ SECOND OPERAND IS IN OPR2 (OPR2) # H’80'
+ PRODUCT WILL BE IN RSLTRSLI+1
+

ORG HBB!
NPYS CPSU F CLEAR FLAG IN PSU

LODArRi OPR1 GET 1ST OPERAND
LODAR2 OPR2Z GET 2ND OPERAND
LODIyRS =8 LOAD LOOP COUNTER R3
EOR?Z RO CLEAR RB

MOOP CPSL WC CLEAR WO IN PSL
TMIeRL HBL?
BCFRION MOTE LSB OF Ri SET?
TPSU F YES
BETRrON MOC! FLAG =1?
SUBZ R2 NO SUBTRACT WITHOUT BORROW
PPSU F ‘SET FLAC
BCTR»UN =HOCI BRANCH TO DOUBLE SHIFT

Mote TPSU F LSB OF Ri WAS 8
BCFRrON HOC! FLAG =1?
ADDZ RZ YES: ADD WITHOUT CARRY
CPSU F CLEAR FLAG

MOC! PPSL WC+C SET C AND WC
TORZ Rd
BCTReN HOC2 MSB OF RB SET?
CPSL C NOrCLEAR CARRY

NOCZ RRRRS SHIFT RB RI RIGHT
RRRR1 MSB OF RB 1S SANE
BDRR»RS HOOP BRANCH TO LOOP IF NOT READY
STRAR@ RSLT STORE RESULT
STRArRL -RSLT+1
RETC + UN EXIT SUBROUTINE MPYS

FIGURE 4-3

SIGNETICS BINARY ARITHMETIC ROUTINES #® AS53

5. BINARY MULTIPLICATION FOR TWO-BYTE
SIGNED INTEGERS

FUNCTION:

Two byte by two byte multiplication for signed integers

giving a four byte result.

(OPR1, OPR1 +1) X (OPR2, OPR2 + 1)

—RSLT, RSLT +1, RSLT +2, RSLT + 3.

The Booth algorithm (Figure 4.1) is used.

PARAMETERS:

Input: OPR1, OPR1 + 1 contains multiplicand

OPR2, OPR2 + 1 contains multiplier

Output: RSLT, RSLT +1, RSLT + 2, RSLT + 3 contains

product.

OPR1, OPR2, and RSLT are most-significant

bytes.

SPECIAL REQUIREMENTS

None

Refer to Figure 5.1 for flowchart and to Figure 5.2 for

program listing.

HARDWARE AFFECTED

Ro R1 R21 R3{ RIV] R2’ RB’
REGISTERS

Xx Xx X x

F i SP
PSU

cc ioc] RS wc ovF|com|c
PSL

Xx X Xx X X

RAM REQUIRED (BYTES):8

ROM REQUIRED (BYTES):77

EXECUTION TIME:_—_—si\Variable

MAXIMUM SUBROUTINE |
NESTING LEVELS: None

ASSEMBLER/COMPILER USED: PIPHASM

Enter Subroutine SMPY

SSPY

SET OPERATION Operation:
WITH CARRY (OPR71 OPR1+ 1) x (OPR2 OPR2 + 2)

| —» RSLT, RSLT +1, RSLT +2, RSLT +3

O—» R2 (bit buffer)

O—»RSLT MS - bytes
O0—»RSLT +1 product
16—»R3 (loopcounter)

| NOOP

Rotate multiplier

OPR2, OPR2 + 1 right into carry

Rotate carry into

LSB of RO

YES (LSB multiplier = previous LSB)

No (LSB multiplier changed)

i Invert LSB of R2

| LSB of R2-——» carry

NO (1——~0 transient)

YES (0-1 transient)

Subtract multiplicand
(OPR1, OPR1 + 1) from
MS — bytes of product
(RSLT, RSLT + 1)

Add multiplicand to
MS - bytes of product

Lele -Noc 4 |
Copy MSBof product

to carry

|
Rotate product right
into carry

(MSB remains equal)

|
| (R3) - 1—*R3 |

 RETURN

10

FIGURE 5-1 Flowchart for Signed Multiplication Using Booth

Algorithm (Two-Byte Operands; Four-Byte Result)

SIGNETICS BINARY ARITHMETIC ROUTINES ® AS53

138 + PD766833
139 FHPPESSESETESEASELSSSESES ESSE REESES955999949-29594599999945249949449444

149 + BINARY MULTIPLICATION FOR TWO BYTE SIGNED INTEGERS

141 FRESPERSSPSSSSRSSESEEESESSESESESSEES E5520992555449494949945944992993924

142 + MULTIPLICAND IS IN LOCATIONS OPR1,OPRi+t

143 4 MULTIPLIER IS IN LOCATIONS OPRZ:OPRZ+1

144 +
145 4 RESULT WILL BE STORED IN RSLT RSLT+1 sRSLT+2 RSLT+3
144 +

147 + AFTER MULTIPLICATION THE MULTIPLICAND 1S UNCHANGED
148 + THE MULTIPLIER 1S DESTROYED

149 + JHE MULTIPLICAND MUST BE UNEQUAL H’6ae6!
158 HRRSEEEEEESS59599099999999995999995959593999999099999999999909494444

151 8833 8833 77 88 SSPY PPSL We ARITH AND ROTATE WITH C
192 $835 20 EQRZ RS CLEAR RE

153 $836 C2 STRZ RZ CLEAR R2

154 $837 ct #5 g4 STRArR® RSLT CLEAR 2 MSBYTES OF PRODUCT
159 683A CC #9 85 STRAYR@ RSLT+1

156 #838 $7 18 LODIoR3 14 LOAD LOOP COUNTER R3
157 @83F @83F 45 FE NOOP LODEyRi -2 LOAD INDEX REG WITH 254

158 8841 6841 OD 64 64 ROCB LODAR@ OPRZ2-2564+2:R1 ROTATE MULTIPLIER
159 6844 38 RRR RB INTO CARRY

168 8845 CD 64 64 STRAR@ OPRZ-254+27R1
1461 @848 DY 77 BIRR»Ri NOCB BRANCH IF NOT DONE
162 684A 28 EORZ RB CLEAR R#
163 848 DB RRL RB ROTATE CARRY IN LSB OF RB
1464 §84C 22 EORZ RZ LSB OF R@ BECOMES 1 FOR CHANGE
165 #84) 18 19 BCTR»Z NOC4 BRANCH IF NO CHANGE

164 §84F 22 EOR? RZ INVERT LSB OF RZ
167 9858 C2 STRZ RZ RESTORE NEW R2
168 6851 38 RRRrRB LSB OF RZ INTO CARRY OR BORROW

169 8852 85 82 LOBIyRi 2 LOAD INDEX

178 $854 9854 @D 45 64 NOC LODArR@® RSLT»Rir- LOAD BYTE OF RSLT IN RE
171 8857 Fe gi THI RZ !

172 $859 18 85 BUTRrON NOCZ BRANCH TO SUBTRACT IF LSB R2Z=1
173 @85B 8D 65 68 ADDA RS OPRI+RI1 ADD BYTE MPLEND TO RSLT

174 @§85E 1B 83 BCTRrUN NOC3

175 8848 #8848 AD 65 88 NOCZ SUBALR® OPR1rRi SUB BYTE MPLCND FROM RSLT
176 6843 #863 CD 65 64 NOC3 STRArR@ =RSLT+ RI RESTORE INTERMEDIATE RSLT
177 8846 39 4C BRNRrRL =—-NOCI BRANCH IF ADD SUBTRACT NOT READY
178 +

179 8848 #8868 6C 85 64 NOC4 LODArR@ RSLT
186 #848 De RRLRE
181 8B84C 84 FC LODIyR@ -4 LOAD INDEX

182 @86E O86 GD 64 88 NOCS LODArR@® RSLT-2564+4:R1 FETCH MS BYTE PRODUCT

183 #871 38 RRRRE ROTATE RSLT+PROD+1 ETC TO RIGHT
184 §872 CD 64 88 STRArR® RSLT-256+4:R1 KEEPENG ASB SAME

185 #875 DY 77 BIRR Ri =NOCS BRANCH IF NOT DONE

186 6877 FB 44 BDRR+R3 NOOP BRANCH IF LOOP NOT READY
187 8879 1? RETO» UN RETURN TO MAIN PROGRAM

188 END

FIGURE 5-2

11

SIGNETICS BINARY ARITHMETIC ROUTINES ® AS53

6. BINARY DIVISION

A. UNSIGNED INTEGERS
TWO-BYTE DIVIDEND; ONE-BYTE DIVISOR

FUNCTION:

Division of a two byte dividend by a one byte divisor,

resulting in a two-byte quotient and a one-byte remainder.

(DVDN, DVDN + 1) DVDN, DVDN + 1 (quotient) —> ;
(DVSR) R1 (remainder)

PARAMETERS:

Input: DVDN, DVDN+ 1 contains dividend

DVSR contains divisor

-DVDNis most-significant byte

Output: DVDN, DVDN + 1 contains quotient

R1 contains remainder

DVDNis most-significant byte.

Dividend is destroyed after execution of division.

SPECIAL REQUIREMENTS:

None

Refer to Figure 6.1 for flowchart and to Figure 6.2 for

program listing.

Enter Subroutine DIV

DIV)

Initialize PSL:
@ operations with carry
®@ logical comparison
@® set OVF

RETURN

DIVU |

O0—> R11
17—» R3_ (loopcounter)

Clear carry

| = LOOP

Rotate R11 left:

(carry)——_» LSB
(MSB)—carry

<q] enter subroutine DIVU

Operation:
(DVDN, OVDN + 1)

(DVSR)

DVDN, DVDN + 1 (quot.)
Ri (remainder)

HARDWARE AFFECTED

REGISTERS

Xx x x x | Set carry |

F TT SP . LOco k+—
PSU Rotate DVDN, DVDN + left:

(carry)LSB of DVDN + 1

(MSB of DVDN) ——»carry

cc ioc! rs wc love |com|c l
PSL | (R3) - 1—»R3 |

Xx Xx Xx X xX x

“<>
RAM REQUIRED (BYTES):3 “es

| Clear OVF |

ROM REQUIRED (BYTES):40

EXECUTION TIMe:____————sVariable

MAXIMUM SUBROUTINE
NESTING LEVELS:|None

ASSEMBLER/COMPILER USED: PIPHASM FIGURE 6-1 Flowchart for Unsigned Division (Dividend or

Quotient: Two-Bytes; Divisor or Remainder: One-Byte)

12

SIGNETICS BINARY ARITHMETIC ROUTINES #® AS53

i 3 PD760046 ;
2 SSSLATAASFTSESSSSLASALESLATASLSLALSESESTALASSSTESERTISS SESTES953932424444

3 4 BINARY DIVISIONS FOR INTEGERS
4 SRAPSTSSTLSFTTSATLLASESSETSLSSSSAETSSSLALIATEFSSSALADD IATPTFIITTLIL23444

5 4 DIVIDEND 1S IN DVDN:DVDN+1 14 BITS
b + DIVISOR 1S IN BYSR 8 BITS
7 + QUOTIENT WILL BE IN DVDN:DVDN+1 16 BITS
8 + AFTER DIVISION, DIVIDEND WILL BE DESTROYED
9 + R1 WILL HOLD REMAINDER
18 + OVF=1 IMPLIES OVERFLOW
11 +
12 +
13 : SYMBOL DEFINITIONS
14 oad Re Eau 8
15 ga61 Ri EQU i
16 9692 R2 Eau 2
7 9003 R3 Eau 3
18 6001 R4 Eau i
19 $082 RS EQU 2
26 9603 Ro Eau 3
21 $693 WN Eau 3 UNCONDITIONAL BRANCHING
22 6081 c EQU i
23 gaa9 ON Eau §
24 9602 LT EAU 2
25° naa Z EAU §
26 G08 EQ Eau g
27 9001 P EQU {
28 9902 N EAU 2
29 aac WC EQU 8
38 gaa4 OVF Eau 4
31 007 COM EAU 2
32 | 3
33 ORG Hae! UNSIGNED DIVISION SUBROUTINE
34 +

35 6508 8508 77 GE DIVI PPSL WC+OVF+COM ARITH ROTATE WITH CARRY
36 9582 GC 84 82 LODADR8 DVSR FETCH DIVISOR
37-4545 14 RETC12Z RETURN WITH OVF =i IF DVSR =8
38 3
39 9506 6504 95 G¢ DIVE LODIYRI 8 CLR Ri
4g 9548 47 ii LODIOR3 17 LOAD LOOP COUNTER R3
Ai 95@A 75 #1 CPSL C CLEAR CARRY
42 958C @58C D1 LOOP RRL RI ROTATE CARRY IN LSB OF Ri
43 950D B5 gi TPSL C
44 OOF 18 a5 BCTR»ON SUBT GO TO SUBTRACT IF CARRY =1
45 9511 ED G4 82 COMAPR1 DVSR
46 a514 ia 97 BCTRrLT LOCS IF RIXDVSR+NO SUBTRACTION
47 @516 9516 77 of SUBT PPSL c CLR BORROW
48 9518 AD #6 92 SUBAyRL DVSR SUBTR DVSR FROM REMAINDER
49 $518 7 #1 PPSL C SET CARRY
5@ 8510 @51D 94 82 LOCe LODEeR? «2 LOAD INDEX REGISTERR
51: @51F @SiF GE 44 a8 LOC! LODArR@ DVDNyR2y- ROTATE QUOTIENT BIT
52 8522 De RRL» RG —DVDNDVDN+ AND MSB OF
53 9523 CE 46 88 STRADR@ DVDN)R2 DVDN INTO CARRY
54 9526 5A 77 BRNRR2 LOCI BRANCH IF ROTATE NOT READY
55 #528 FB 42 BDRRrR3 LOOP BRANCH IF DIVISION NOT READY
56 528 75 o4 CPSL OVF CLEAR OVF IN PSL |
57 #52C 17 RETC+UN RETURN TO MAIN PROGRAM
38 +

FIGURE 6-2

13

SIGNETICS BINARY ARITHMETIC ROUTINES ® AS53

B. SIGNED INTEGERS
TWO-BYTE DIVIDEND; ONE-BYTE DIVISOR

FUNCTION:

Division of a two-byte dividend by a one-byte divisor,

resulting in a two-byte quotient and a one-byte remainder.

(DVDN, DVDN + 1) DVDN, DVDN +1. (quotient)

(DVSR) R1 (remainder)

PARAMETERS:

Input: DVDN, DVDN + 1 contains dividend

DVSR contains divisor

DVDNis most-significant byte.

DVDN, DVDN + 1 contains quotient

R1 contains remainder

DVDN is most-significant byte.

Dividend is destroyed after execution of division;

negative divisor becomespositive

SPECIAL REQUIREMENTS:

Output:

Software: Unsigned division subroutine

Refer to Figure 6.3 for flowchart and to Figure 6.4 for

program listing.

A

Initialize PSL:
®@ operations with carry

@ logical comparison
@ set OVF; clear borrow @ clear STATUS

p
n

HARDWARE AFFECTED

Ro R1 R2 RB] RI] R2’| RB’
REGISTERS

x Xx x x

F i SP
PSU

cc ipc] RS wc| ovF| com] c
PSL

Xx x x x xX X

RAM REQUIRED (BYTES): 4

ROM REQUIRED (BYTES):_&61

EXECUTION TIME:Variable
MAXIMUM SUBROUTINE
NESTING LEVELS:1

ASSEMBLER/COMPILER USED:PIPHASM
Complement (DVSR)

|
H’40’—» STATUS
DIVO

 “(DVDN,
DVDN+ 1)

>0

NO

Complement (DVDN, DVDN+ 1)

|
STATUS) + H’80’—»STATUS |—

UNSIGNED DIVIDE ‘|

a

i

RETURN

Operation:

(DVDN, DVDN+ 1)
(DVSR)

Re DVDN + 1 (quot.)
R1 (remainder)

RETURN

STATUS
CODING

d
i
v
i
d
e
n
d

d
i
v
i
s
o
r

S
T
A
T
U
S

q
u
o
t
i
e
n
t

r
e
m
a
i
n
d
e
r

 L
o
b
o

ot
+

[
+
d
i
o
t
+

00
40

 co +
t
o
t
+

 i
i
t
+

Complement R1

(remainder)

RETURN

Complement (DVDN, DVDN+ 1)
(quotient)

RETURN

14

FIGURE 6-3 Flowchart for Signed Division

2 Bytes; Divisor & Remainder: 1 Byte)

(Dividend & Quotient:

SIGNETICS BINARY ARITHMETIC ROUTINES @ AS53

99 + PD768641
bg PAPAREPLESAPEPAREDEEE EEREESE EESPEEAEEREEEEEEEEREEEEEHT
6! 4 STGNED DIVISION
b2 FAREPARRESTRREEEEEREEEREEEREEEETEESEEEEPEEEEEEEEEE
3 +

64 # NEGATIVE DIVIDEND AND OR DIVISOR ARE COMPLEMENTED
69 # PRIOR TO EXECUTION OF DIVISION
66 4
6] + SIGNS ARE CODED IN STATUS:
68 4 STATUS CODING:DVDN BVSR STAT QUOT RADR
49 4 + + #6 + +
76 i + - 4 - +

7h + - + 66 - -
TZ + - - (+ -

73 + DIVIDEND MUST BE UNEQUAL H’O@8B’ (NO CORRECT OVF)
74 + NEGATIVE SIGN OF DIVISOR 15 LOST AFTER EXECUTION.
7) 82D 8520 77 8D BIVS PPSL WC+OVE+0 ARITH ROTATE WITH CARRY ETC
76 89ZF 26 EORZ Re
77? #36 8 STRZ Ri CLEAR RI
78 8931 BE #6 82 LODArRZ DVSR FETCH DIVISOR IN RZ
79 $934 14 RETCr2 RETURN WITH OVF SET IF DVSR= @
88 8535 19 #6 BCTRrP DIV BRANCH IF DIVISOR >8
81 8537 Az | SUBZ RZ TAKE 2S COMPLEMENT OF DVSR
G2 8538 CO 86 82 STRArRB DYSR RESTORE DIVISOR
83 8938 §) 48 LODIyR1 =H? 48? LOAD STATUS IN Ri
84 @53D $530 gE 84 88 DIVE LODArR2 DVDN FETCH MS BYTE OF DIVIDEND
8) 8548 TA 84 BCFRIN DIV BRANCH IF DIVIDEND NOT<B
86 9542 3B 18 BSTReUN CPL TAKE 2S COMPLEMENT OF DIVIDEND
87 #44 8) 88 ADDIyRi =H? BB? UPDATE STATUS
86 #946 8546 CD 86 83 BIVI STRArRL STAT SAVE STATUS
BF 8549 SF BD) @6 BSTArUN DIVU CALL UNSIGNED DIVISION
96 #54C GF 86 83 LODArRS STAT LOAD STATUS IN R3
91 G4F 14 RETCr2 RETURN IF BOTH DVDN AND DVSR ROT<8
92 $908 19 87 BCTR+P BI V2 BRANCH IF DVDN WAS NOT <8 AND DVSRX8
93 8392 77 @t PPSL C CLEAR BORROW
74 8994 28 EORZ Re CLEAR RB
99 8959 Al UBZ Ri TAKE 2 5 COMPLEMENT OF REMAINDER
76 356 Ci STRZ Ri RESTORE REMAINBER IN Ri
97 6597 D3 RRL+R3 SHIFT R3 LEFT
98 #998 16 RETC +N RETURN IF BOTH DVDNrDVSR<6
79 83959 8999 3B #1 DIVZ BSTRrUN CNPL TAKES 25 COMPL. OF QUOTIENT
168 G58 1? RETC1UN RETURN TO MAINPROGRAM
161 +
182 +
183 + SUBROUTINE TO TAKE 2S COMPL
184 + OF (DVDN» DVDN+1)
185 4
166 890 #99 77 $1 CHPL PPSL C CLEAR BORRGW
167 #5E 97 82 LODIvR3 2 LOAD INDEX REG
198 95468 8568 26 CHPS EORZ RO CLR RB
169 #541 AF 46 68 SUBArR@ DVDNyR3+- COMPLEMENT BYTE
118 9564 CF 66 88 STRArR@ DVDNYR3 RESTORE RESULT
1t1 9547 5) BRNRrR3 CHPS BRANCH IF NOT DONE
112 85469 17 RETC + UN
113 ORG H? 688?
114 9688 DVDN RES 2 DIVIDEND AND QUOTIENT
11) $682 DVSR RES I DIVISOR
116 9683 STAT RES i STATUS REG
117

FIGURE 6-4

15

Signetics 2650 Microprocessor application memos currently available:

AS50

AS51

AS52

AS54 —

SP50

SP51

SP52

SP53

SP54

SS50

$$51

MP51

MP52

Serial Input/Output

Bit and Byte Testing Procedures

General Delay Routines

Conversion Routines

2650 Evaluation Printed Circuit Board Level System (PC1001)

- 2650 DemoSystems

Support Software for use with the NCSS Timesharing System

Simulator, Version 1.2 | ee

Support. Software for use with the General Electric Mark I!! Timesharing

System

PIPBUG

Absolute Object Format (Revision 1)

2650 Initialization

Low Cost Clock Generator Circuits

© N.V. Philips’ Gloeilampentabrieken

This information is furnished for guidance, and with no guaranteesasto its accuracy or completeness; its publication conveys no licence under any patent or other right, nor

does the publisher assumeliability for any consequence of its use: specifications and availability of goods mentionedin it are subject to change without notice. it is not to be
reproduced in any way, in whole or in part. without the written consent of the publisher.

4-76 9399 509 53861

CONVERSION ROUTINES.AS54

Siqnotics CONVERSION ROUTINES AS54

INTRODUCTION

Conversion routines like binary to BCD, BCD to binary, and

BCD to ASCII are often used in microprocessor based

systems. This applications memo describes routines for

converting:

@® Ejight-bit unsigned binary to BCD.

@ Sixteen-bit signed binary to BCD.

@ Signed BCD to binary conversion 1 (using an addition

method).

@ Signed BCD to binary conversion 2 (using a multi-

plication method).

Signed BCD to ASCII

ASCII to BCD

Hexadecimal to ASCII

ASCII to Hexadecimal

1. EIGHT-BIT UNSIGNED BINARY-TO-BCD
CONVERSION

FUNCTION:

Converts an unsigned binary number to a BCD number

— (3 digits).
(BINN) Conversion >RO,R1

A multiplication methodis used.

PARAMETERS:

Input: BINN contains the binary number (8 bits

unsigned.

Output: Registers RO, R1 contain the BCD result

(3 BCD digits).

RO is the most-significant byte.

The maximum BCDresult is 256 decimal.

Refer to figures 1.1 and 1.2 for flowchart and program

listing.

HARDWARE AFFECTED

RO R1 R2 R3 R1’ R2’ R3'
REGISTERS

X Xx

F I SP
PSU

CC ipc; RS wc OVF| COM; C
PSL

X X X X X

2650 MICROPROCESSOR

APPLICATIONS MEMO

@ Logical compare
® Clear carry

RAM REQUIRED(BYTES): 1

ROM REQUIRED (BYTES):28

EXECUTION TIME:____——s—Variable

MAXIMUM SUBROUTINE
NESTING LEVELS:| 0 __

ASSEMBLER/COMPILER USED:PIPHASMsy

Enter CONV Subroutine

, Operation:

Initialize PSL: BINNanRO, R1

® Operations with carry (Binary) (BCD)

i

(BINN) binary number —-—> RO

| (RO0)——R1

L

|

Clear MS 4 bits of R1

1
Decimal Adjust (R1)

f
Clear LS 4 bits of RO

MS 4 bits —
— (RO) zero

No

|

|tro) Binary Number-H'10'—=Ro|

| (R1) + BCD 16——*R1 |

| Decimal Adjust R1 |

| Add Carry from R171 to RO

L __
FIGURE 1-1 Flowchart for Eight-Bit Unsigned Binary-to-BCD

Conversion (Multiplication Method)

SIGNETICS CONVERSION ROUTINES # AS54

i 4 PD760856
? BEFEFFFESEPEDEFFESSSESESESEESEEEESSEtd444944444

3 + 8 BIT UNSIGNED BINARY TO BCD CONVERSION
4 SHEFFEESSSEEEEEEEESSEEEEEEESetheedteases

5 3

b 4THIS ROUTINE CONVERTS AN 8 BIT UNSIGNED BINARY

7 4NUMBER INTO AN UNSIGNED BCD NUMBER.

8 +

9 +BINARY NUMBER IS IN BINN.

18 4BCD NUMBER (AFTER CONVERSION) IS IN ROrR1.

it : + HUNDREDS IN Ré |

12 + TENSUNITS IN RI,

13 +

14 +DEFINITIONS OF SYMBOLS:

15 +

14 8686 , R6 EQU 6 PROCESSOR-REGISTERS

17 $861 Ri EQU 1

18 8688 WO EQU H? #8! PSL: L=WITHe B=WITHOUT CARRY

19 $682 COM EQU H' 82! L=LOGICy S=ARITH. COMPARE

28 9681 C =U HOt? CARRY : BORROW

zi 8993 UN EQU § 3 BRANCH COND.: UNCONDITIONAL

22 $682 LT EaU Z LESS THAN

23 + .

24 4

29 ORG a

24 4

a 6496 BINN RES 1 BINARY NUMBER.

28 | | 4

29 ORG H?588? START ADDRESS OF ROUTINE,

34 + |

31 + INITIALISATION:

32 6508 8588 77 GA CONV PPSL WC4+COR WITH CARRY LOGICAL COMPARE

33 6942 79 61 CPSL OC CLEAR CARRY FLAG IN PSL.

34 «6584 aC 64 86 LODA»R® BINN 8 BIT BIN.NUMBER -> R@,

35 85487 C1 STRZ RIAL (RB) -> Ri.

36 «68508 45 OF ANDI +R1 HBF? CLEAR MS.4 BITS BIN. NUMBER

37) B58A 85 66 ADDI +Ri H?66? PREPARE Ri FOR DECIMAL ADJUST.

38 #580 +) DARRi

39 3

49 8560 44 FG ANDI +R@ HFS? CLEAR LS 4 BITS.

4) 3

42 @56F @56F E4 18 LOOP COMI»+R# H'18!

~643°~«C€S 1A 89 BCTR+LT EXIT IF MS 4 BITS ZERO THEN RETRUN.

44 6513 A4 OF SUBI>RB H!18'-1 SUBTRACT t FROM MS 4 BITS

45 #515 85 7B ADDI »Ri H'16°+H'66'-1 ADD BCD 1& AND PREPARE

46 $517 5 DARRi FOR DECIMAL ADJUST.

47 8518 84 86 ADDI+RB 6 ADD CARRY TO MS BCD DIGIT

48 #5iA iB 73 BCTR:UN LOOP BRANCH AGAIN

49 +

08 85iC BIC 48 EXIT HALT END OF CONVERSION.

31 END

FIGURE 1-2 Program Listing for Eight-Bit Unsigned Binary-to-BCD Conversion

SIGNETICS CONVERSION ROUTINES # AS54

2. SIXTEEN-BIT SIGNED BINARY-TO-BCD
CONVERSION

FUNCTION:

Converts a signed 16-bit binary number to a signed BCD

number.

Subtraction of base numbersis used.

PARAMETERS:

Input:

Output:

BINN, BINN+1 contain the signed binary

number.

BINN is the most-significant byte.

Binary number is destroyed after conversion.

BCDD, BCDD+1, BCDD+2 contain the BCD

result.

BCDD contains the sign and the most-significant

BCD digit.

The minimum BCDresult is -32768 decimal.

The maximum BCDresult is +32767 decimal.

Refer to figures 2.1 and 2.2 for flowchart and program

Enter BBCD Routine

Y

Initialize PSL:

® Operations with carry
@ Clear borrow

}

 Clear BCDD, BCDD+1, BCDD+2
~10—*» R11 (index base register)

Two's complement binary number

{
H’09’ negative sign)—»BCDD+2

Operation:
BINN, BINN+1——» BCOD, BCDD+1, BCDD+2

(Binary)

 aly

 LOOP|

Shift BCD register left 4 bits
for loading next BCD digit

Le
Y

 Subtract current base number

from Binary number

Binary number

negative

No

(BCD)

Add current base number to

Binary number

L
 Set pointer to next base

number: (R171) +2——~R1

listing.

HARDWARE AFFECTED

RO R1 R2 RB RI’ R2’ RB’
REGISTERS

Xx X Xx Xx

F ll SP
PSU

cc ipc| RS WC OVF|COM| c
PSL

x xX Xx xX xX

RAM REQUIRED (BYTES): O97

ROM REQUIRED (BYTES):106—

EXECUTION TIME: Variable

MAXIMUM SUBROUTINE
NESTING LEVELS:_—=——_—Q_

-ASSEMBLER/COMPILER USED:_ PIPHASM

 Conversion
ready:
(R1)=0

| (BCDD+2) +1——» BCDD+2 | [Po

 FIGURE2-1

Flowchart for Signed Binary-to-BCD Conversion

SIGNETICS CONVERSION ROUTINES #® AS54

i + PD766651
2 FLELEEEFSATLSESSE944$444494600494449444444444044404
3 # BINARY TO BCD CONVERSION +
4 ELESEEETSESEEESEEEEESEEEEESSEEEEEEEHEEHEEEEEES
3 4

6 STHIS ROUTINE CONVERTS A SIGNED BINARY NUMBER
7 #(16 BITS) INTO A SIGNED BCD NUMBER
8 #(24 BITS: SIGN + 5 BOD DIGITS).
9 +

18 #THE BINARY NUMBER IS IN BINN®BINN+L,
il STHE BCD NUMBER IS IN BCDD+BCDD+1,BCDD+2.
12 +BINM AND BCDD ARE MOST SIGHIFICANT BYTES.
13 #MS WIBBLE OF BCDD=8 FOR POSITIVE BINARY NUMBERS.
is #45 NIBBLE OF BCDD=9 FOR NEGATIVE BINARY NUMBERS,

,

- SSUBTRAHENDS ARE PLACED IN REGISTER BASE (18 BYTES)
3 ’

18 SDEFINITION OF SYMBOLS:
19 +

28 6686 R@ EQU § PROCESSOR-RECISTERS
21 6661 Ri =EQU 1
22 6082 RZ EQU 2
23 $463 R3— EQU 3

24 6698 WC OEQU H'98! PSL? 1=WITH) S=WITHOUT CARRY
25 6601 C ED H?@1? CARRY+BORROW
2b 6862 N EQU z BRANCH COND.: NEGATIVE

27 $663 UN EAU 3 UNCONDITIOWALY
28 +
29 +

38 ORG W666! START ADDRESS
31 %

32 6486 BINN RES 2 BINARY NUMBER MEMORY LOCATION
33 8682 BCDD RES 3 BCD REGISTER
34 9685 6685 27 18 BASE BATA -H27118' 1 8888
35 8687 #3 £8 DATA HO3E8’) 1888
36 «6689 68 64 DATA =—ssH G14? 188
37 «(Ob 66 GA DATA =H B8 BA’ 18
38 «8680 64 6 DATA =HBL? ot
39 §60A LEN EQU $-BASE LENGTH BASE RECISTER

4} ORG Hee! START ADDR. OF PROGRAM
42 #
43 8560 8508 77 $9 BBCD PPSL) WCC ARITHMETICAROTATE WETH CARRY:
44 + CLEAR BORROW.

45 8562 26 EORZ RG INETIALISATION: CLEAR RE.
4 8583 87 83 LODI»R3 3
47 #6) 9805 CF 44 82 LOCS STRAR@ BCDDR3:- CLEAR 3 BYTES OF BCD RECISTER.
48 9568 3B 7B BRNR»R3 LOCS
49 $504 6 Fé LODI»Ri -LEN LENGTH OF BASE RECISTER.
56 4

31 §50C GE 66 86 LODArRZ BINM MS & BITS BINARY NUMBER.
32 850F 9A 18 BCFRyN LOOP IF POS. GO TO LOOP
53 @5i1 #511 8 82 COMP LODI»RZ 2 LOAD INDEX REGISTER.
34 6513 «8513 «26 LOCi EORZ R68 TWO’S COMPLEMENT BY
39 (6514 AE 46 88 SUBArR® BINWYRZ2:- SUBTRACTING FROM ZERO.
36 «69517 CE 66 Of STRAR@® BINN RZ
37. O@5iA dA 7? BRNRYRZ LOCI RETURN IF NOT READY.
38 iC #4 99 LODI»R& HS?! NEGATIVE SIGN INDICATION.
39 (GSIE CC #6 64 STRARO BCBDZ SIGH IN LSB OF BCD RECISTER.
66 + SHIFT BCD REG. LEFT 4 TIMES.
61 8521 8521 75 61 LOOP CPSL) OE CLEAR CARRY FOR ROTATE.
62 $523 84 $4 LODI+R2 4 BIT COUNT.
63 6525 9525 67 #3 LP2 LODI+R3 3 INDEX BYTE SHIFT.
64 6527 8527 &F 46 82 LPi LODArR@ BCDD»+R31- BCD DIGIT INTO RE.

65 652A De RRL+RS CARRY (PREVIOUS MS BIT)-> LSB
66 8528 CF 46 92 STRA RS BCDD»R3 AND MS BIT -> CARRY.
67 852E SB 77 BRNRrR3 LPI
68 8536 FA 73 BDRR+RZ LP2
69 t

78 9532 8532 85 82 SUBL ADDI»R1 2 RESTORE BASE INDEX.
71 6534 86 62 LODI+RZ 2 INDEX RECISTER
72 «6534 77 6 PPSL) =6C CLEAR BORROW
73 $538 6538 GE 46 O86 LOCZ LODArR® BINN+RZ2+- LOAD BINN AND SUBTRACT
74 =6538 AD 45 OF SUBArRG BASE-256+LEN Rin- CORRESPONDING
73 #3 CE 66 88 STRArR@ BINWR2 BASE DIGIT
76 9541 75 BRNR RZ LOCZ
77) 6§4&3 1A 69 BCTReN CORR IF BINN NEG. THEN CORRECTION,
78 9545 a 96 84 LODArRO BCDD+2
79 «9548 82 ADDZ R? ADD 1 TO LSB OF BCD NUMBER
86 6549 CC 06 64 STRAR@ BCDD+2 C=1 IN PSL AND (R2}=6
81 #4 1B 64 BCTRrUN SUBL
82 +
83 O54E B54E 84 82 CORR LODI+R2 2 INDEX COUNT
84 8558 8558 GE 44 86 LOC3 LODA:R@ BINN»RZ2,- ADD CORRESPONDING BASE BYTE 10
85 8553 8D 45 fi ADDArR@ BASE-254+LEN+2>R1r- BINARY NUMBER,
86 8554 CE 66 68 STRARG BINNYR2Z
87 9559 SA 75 BRNRYRZ LOC3 RETURN IF NOT READTY
88 §55B 85 83 ADDIORi 3 UPDATE BASE POINTER:C=1IN PSL
89 #855D 5? 42 BRNRRi LOOP RETURN TF CONVERSION NOT READY
99 OS5F G55F 4 EXIT HALT END OF CONVERSION
94 END

FIGURE 2-2 Program Listing for Signed Binary-to-BCD Conversion

SIGNETICS CONVERSION ROUTINES ® AS54

3. SIGNED BCD-TO-BINARY CONVERSION 1

FUNCTION:

Converts a five-digit signed BCD number to a sixteen-bit

signed binary number.

Addition of base numbersis used.

PARAMETERS:

Input: BCDD, BCDD+1, BCDD+2 contain the BCD

number.

BCDD contains the sign plus the most-significant

BCD digit.

The range of BCD numbers is: ~32768<BCD

Number<+32767.

BCDD is destroyed after the conversion.

Output: BINN, BINN+1 contain the signed binary

number.

BINN is the most-significant byte.

Refer to figures 3.1 and 3.2 for flowchart and program

listing.

HARDWARE AFFECTED

RO R1 R2 R3] RI’ R2’ RB’
REGISTERS

x x x x

F iT SP
PSU

cc IDC} RS wc OVF|COM| c
PSL

x x x x x

RAM REQUIRED (BYTES):sso

ROM REQUIRED (BYTES):86.

EXECUTION TIME: Variable
MAXIMUM SUBROUTINE
NESTING LEVELS:_ ____0 _

ASSEMBLER/COMPILER USED:PIPHASM|

Enter BBIN Routine

. Operation:
BCDD, BCDD+1, BCDD+2—BINN, BINN+1

Initialize PSL: (BCD) (Binary)
®@ Operations with carry

i
0——» Binaryregister
10——» R11 (numberof base digits)

_|
| LOOPY

Clear carry (o—™c in PSL) |

!
LS BCD digit>R3

BCD digit
zero; (R3) =0

No

Add current base number

to binary number
(R3) - 1——» R3

Yes (Next BCD digit)

 BCD digit
zero; (R3} = 0

Shift BCD register right 4 bits
to point to next BCD digit

1
Set pointer to next base
number: (R1) -2——»R1

 Conversion

ready; (R1)=0

Sign

BCD number
negative

|Two's complement binary number

EXIT C exit)

 FIGURE 3-1: Flowchart for signed BCD-to-Binary Conversion

SIGNETICS CONVERSION ROUTINES # AS54

i + PD7468852
2 ELFEFEFAFESEASEEFSSESEEESEEESE+EESSh444444464

3 + BCD TO BINARY CONVERSION
4 ELFEFSDEASSATETTEEESSESEESEEF4dd4444444444444
5 i

b # THIS FOUTINE CONVERTS A SIGNED BCD NUMBER

7 # (24 BITS: SIGN+5 BCD DIGITS) INTO A SIGNED

8 + BINARY NUMBER (16 BITS).

9 # -32768 (BCD NUMBER <+32767

18 # BCB NUMBER IS LOST AFTER CONVERSION.
ii t

12 # THE BINARY NUMBER IS IN BINN®BINNGI.

13 # THE BCD NUMBER IS IN BCDDyBCDD+1+BCDD+2 (AB-A4),

14 + THE BASE NUMBERS ARE IN BASEr- -:BASE+9 (R@)R4),

15 + BINW AND BCDD ARE MOST SIGNIFICANT BYTES.
16 +

17 # PRINCIPLE OF CONVERSION IS:

18 + BINN = AS.RO+ AL.RI4+ AZ.RZ2+ AS.R3+ AGRA

19 # As -A4 = NUMBER OF DICITS OF BCD NUMBER.

28 + RB -R4 = BASE NUMBERS FOR CONVERSION,
Zi 4

22 + DEFINITIONS OF SYMBOLS:

23 6988 R@ EQU 6 PROCESSOR-REGISTERS

24 6061 Ri EU 1

2 6682 R2 EQU 2

26 6663 R3 EQU 3

27 6698 WoO EQU «OH 88? PSL: L=WITH: @=WITHOUT CARRY

28 6061 C EQU H's? CARRY: BORROW

29 #808 Z EW 6 BRANCH COND: ZERO

38 9688 ON 86EQU 6 ALL BITS ARE 1

3t 9oe8 SIGN EQU H'88? TO TEST BCD. NUMBER

32 O8GA LEN EQU 16 INDEX NUMBER (LENGTH BASE REG)
33 a

34 ORG H' 688?

35 z

3 0668 BINN RES 2 BINARY NUMBER

37 6682 BCDD RES 3 BCD NUMBER

38 6685 6685 27 18 BASE DATA H°27118' 18008

39 «(6687 63 £8 DATA H'#3,E8’ 1898

46 9689 8 44 DATA H*PH1G4' 1 OF

41 6608 #8 6A DATA HGO:BA’ 18

42 9660 4 61 DATA H'68:81’ 1
44 ORG W456! START OF PROGRAM

45 6456 8456 77 98 BBIN PPSL WE ARITHMETIC+ROTATE WITH CARRY

46 $452 29 EORZ RB CLEAR R

47) 9453 CC 66 #8 STRArR@ BINN CLEAR BINARY REGISTERS

48 6454 CC #6 $1 STRArR@ BINN+I

49 9459 85 6A LODI+R1 LEN INDEX FOR BASE DICITS

58 6458 8458 75 ft LOOP CPSL OC CLEAR CARRY

31 6450 oF 84 64 LODAR3 BCDD+2 LOAB LS BCD DIGIT IN R3

32 9468 4] OF ANDI»R3 HOF? CLEAR MS 4 BITS

33-6462 13 it BCTRyZ WEXT IF ZERO GO TO NEXT

34 6464 6464 86 82 LOC! LODI»R2 2 LOAD INDEX

3D 8466 6466 BE 44 68 LOC2 LODArR@ BINN+R2Z:-

36 6469 8D 46 65 ADBArR@ BASE Rtr- ADD BASE DIGIT TO BIN. NUMBER

37 «6460 CE 66 Of STRArR@ BINNRZ

38 646F WA 75 BRNRYRZ LOCZ

39 «B47 85 82 ADDIOR1 2 RESTORE BASE POINTER

68 8473 FB OF BDRR»R3 LOC! IF NOT READY RETURN TO LOCI

bi +

62 6475 6475 84 64 NEXT LODIyR2 4 BIT COUNT

63 6477 @477 $7 FD LP2 LODI»R3 -3 INDEX FOR BYTE COUNT

64 6479 6479 OF 45 85 LP1 LODA»R@ BCDD-254+3,R3 BCD DICIT INTO RE

65 #47 4 RRR RO CARRY (PREVIOUS LS BIT) -> NSB

66 47D CF 465 65 STRArR® BCDD-256+35R3 AND LS BIT -> CARRY.

67 6486 DB 77 BIRRRS LPI NEXT BCDD BYTE

68 8482 7) #1 cPSsLCé

6? 8484 FA 71 BORRrRZ LPZ NEXT SHIFT OF BCD REG. BIT

78 «$484 Fo 88 BORRR1i $42 UPDATE BASE POINTER WITHOUT

7i $488 F? 51 BBRRrR1 LOOP AFFECTING C FLAG IN PSL AND

72 + GO TO LOOP IF NOT READY

73 848A F4 88 THT eR® SIGN

74 6480 98 8D BCFRrON EXIT IF SIGN POS. THEN READY.

75 «@48E G48E 77 81 COMP PPSL) =O CLEAR BORROW

76 «8496 #5 $2 LODIE»RZ 2 NUMBER OF DIGITS

77 «$492 «8492 «28 LP3 EORZ 8 TWO'S COMPLEMENT BY

78 ($493 AE 44 88 SUBArRO BINN+RZ:- SUBTRACTION FROM ZERO

79 8494 CE 466 88 STRArR® BINNRZ

88 8499 34 77 BRNR+R2 LPS

81 +

82 6498 GASB 46 EXIT HALT END OF CONVERSION

83 END

FIGURE 3-2 Program Listing for Signed BCD-to-Binary Conversion

SIGNETICS CONVERSION ROUTINES #® AS54

4. SIGNED BCD-TO-BINARY CONVERSION 2

FUNCTION:

Converts a five-digit signed BCD number to a sixteen-bit

signed binary number.

A multiplication method is used.

PARAMETERS:

Input:

Output:

BCDD, BCDD+1 contain the BCD number.

BCDD contains the sign plus the most-significant

BCD digit.

The range of BCD numbers is: -32768<BCD

Number<+32767

BINN, BINN+1 contain the signed binary

number.

BINN is the most-significant byte.

Refer to figures 4.1 and 4.2 for flowchart and program

listing.

HARDWARE AFFECTED

RO R1 R2 RB] RV RZ’ RD’
REGISTERS

xX x x xX

F i SP
PSU

cc 1ipc}] RS WC OVF/COM| Cc
PSL |

Xx Xx Xx x xX

RAM REQUIRED (BYTES): 6.

ROM REQUIRED (BYTES):=87—

EXECUTION TIME: _ Variable

MAXIMUM SUBROUTINE
NESTING LEVELS: 0

 ASSEMBLER/COMPILER USED:

 eeee ee eee ee

PIPHASM
ee ee ee ee meeeee en ee ee Se ee ce eee

Enter BCDC Routine

) Operation:
BCDD, BCDD+1, BCDD+2——+ Binn, Binn+1

Initialize PSL: (BCD) (Binary)
@ Operations with carry

!
0——+>BINN, BINN+1
5 —»A3 (BCD digit count)

| Save sign of BCD number

A {

| Clear carry |

~

BINN, BINN+1—— R1, R2

(Binary number}

| Rotate (R1, R2) Left twice

f ‘ Multiplication: binary number x 10

fir, R2)+(BINN, BINN+1)—> R11, R2|

| Rotate (R1, R2) Left once

| a

(R1, R2) + MS BCD digit——»R1, R2
(R1, R2)——» BINN,BINN+1

t
Shift BCD register left 4 bits
to point to next BCD digit

!
(R3) -1—»R3
(Digit count)

Sign

negative

| Two’s complement binary number

EXIT (EXIT)

FIGURE 4-1: Flowchart for signed BCD-to-Binary Conversion

(Multiplication Method).

SIGNETICS CONVERSION ROUTINES #® AS54

1

2
3
4

5

b
7

8
9

19
11

12
13
14

15

16

17

18
19
28
21

22 9666

23 6641
24 9992
25 9983

26 6698
27 6081
28 9982
29 #665
36
31

32
33 6688
34 $482

35 $685
36

38

39

4g

41 6450 6458 77 68
42 9452 29

43 6453 CC 9b 08
44 9456 CC 06 #1

45 6459 87 65
44

47 6458 96 82
48 9456 CC #6 85

49
56
Si 8461 64461 75 #1
3Z $463 OD #6 88

53 464 GE 8S 81
54 6449 D2

39 «844A Di

36 «#468 D2

57 844C D1
38 9440 BE 84 #1

3? «6479 8D 66 68
68 8473 D2
61 8474 Di

62
63
64 $475 BC 86 82
65 $473 44 OF
66 G47A 82

67 §478 85 66

68 47D CD 84 88
69 9408 CC 86 #1
78

71
72 «9483 #3 84
73 6485 8485 64 63

74 $487 8487 GE 46 82

73 §48A be
76 G48 CE 66 82
77 (48E SA 77
78 9490 F? 73

79 $492 FB 4D
88

81 $494 oC 86 85
82 8497 9A OD

83 8499 77 #A
84 8498 84 82

85 849) 8490 728

86 B49E AE 46 68

87 «B4Al Cl 86 88
86 B4A4 SA 77
89

98 «6G4A6 «B4AG 49

91

a PD768853
ELDEETETETTTEETESSEEEEEESETHEETETEete
+ BCD TO BINARY CONVERSION +
BLPESETTESTESTEETEEESESEEttEOEETETEES
3

THIS ROUTINE CONVERTS A SIGNED BCD NUMBER
(24 BITS: SIGN + 5 BCD DIGITS) INTO A STCNED
BINARY NUMBER (16 BITS).
4 ©-32768 < BCD NUMBER < 432767

BCD NUMBER IS LOST AFTER CONVERSION%

4

+ PRINCIPLE:
BINS C((((C(AHLO) +B) #18) +0) #16) 4D) 218) +E
ABCDE BCD NUMBER
i

MULTIPLICATION BY 1@ 15 DONE BY:

LOAD R2rRi WITH BIN. NUMBER, SHIFT LEFT TWICE)

+ ADD BIW. NUMBER TO R2>Rir SHIFT LEFT ONCE?

STORE R2:Ri IN BINN®BINN+1 AS RESULT+

+
+ DEFINITION OF SYMBOLS:
RO

Ri
R2
R3

Ww
C
N

NUM
:

+

BINN
BCDD
SIGN
#
4

?
BCDC

+

+

LOOP

LP2

LP4

LP3

EXIT

EQU §

Eau 1

EQU 2
EQU 3

EQU H' 88!
EQU Hat?
EQU 2
EQU 9

ORG H' 668!

RES 2
RES 3

RES 1

ORG HT 456!

PPSL WE
EORZ RB
STRAR® BINN
STRArR@ BINN+1

LODI+R3 NUM

LODA+R@ BCDD
STRArR@ SION

CPSL CE,
LODArR1 BINN

LODA»R2 BINN+1
RRL RZ

RRL Ri

RRL RZ

RRL RI
ADDArRZ BINN+1

ADDArR1 BINN
RRL+R2
RRL rR1

LODArR® BCDD

ANDI RO HGF?
ADDZ R2

ADDI+R1 8
STRArR1 BINN
STRADR® BINN+I

LODIoRi 4
LODI+R2 3

LODArR® BCDD»R2y-
RRL RB

STRArR® BCDDRZ
BRNRrR2Z LPt
BDRR+R1 LP2

BDRR»R3 LOOP

LODArR® SIN
BCFRiN EXIT

PPSL CC
LODE+R2 2

EORZ ~=—sRB
SUBA +R BINNYRZ
STRAR® BINN
BRNRYR2Z LPS

HALT

END

PROCESSOR-RECISTERS

PSL: 1=WITHy B=WITHOUT CARRY

CARRY: BORROW
COND: NEGATIVE
INDEX FOR NUMBER OF BCD DIGITS

BINARY NUMBER
BCD NUMBER AND SICN

SAVE SIGN DIGIT

START OF PROGRAM

ARITH. :ROTATE WITH CARRY
CLEAR RO

CLEAR BINARY NUMBERS

BCD INDEX REGISTER

SAVE SIGN OF BCD NUMBER IN
MEMORY LOC. SIGN

MULTIPLY BINARY NUMBER BY 18
CLEAR CARRY
LOAD BIN. NUMBER IN RirR2Z

ROTATE REGISTERS RisR2 LEFT 2

ADD BIN. NUMBER TO RirR2

SHIFT RirR2 LEFT ONCE

LOAD MS BCD DIGIT IN RS
CLEAR WS 4 BITS
ADD BCD TO BINARY NUMBER

ADD CARRY TO MS BYTE

STORE RESULT IN BINN?BINN#!

ROTATE BCD NUMBER 4 TIMES LEFT
TO POINT TO NEXT BCD DIGIT

BIT COUNT
INDEX FOR BYTE COUNT

SHIFT BCD BYTE LEFT

NEXT BYTE OF BCD RECISTER
NEXT BIT SHIFT

TO LOOP IF MULTIPLY NOT REABY

IF SIGN POS. THEN READY

CLEAR CARRY

INDEX LOADING
TWO'S COMPLEMENT BY

SUBTRACTING FROM CFP"

END OF CONVERSION

FIGURE 4-2 Program Listing for Signed BCD-to-Binary Conversion

SIGNETICS CONVERSION ROUTINES #® AS54

5. SIGNED BCD-TO-ASCII CONVERSION

FUNCTION:

Converts n BCD digits plus sign to n + 1 ASCII characters

— (sign included).

PARAMETERS:

Input:

Output:

BCDD, BCDD+1, ------ ‘BCDD+ (numb -— 1)

BCDD contains the sign plus the most-significant

digit (2 BCD digits/byte).

Numb, is the number of BCD bytes.

ASCI, ASCI+1, ------,ASCI+(num — 1) contains

the signed result.

ASCI contains the sign.

ASCI+1 contains the most-significant byte.

Refer to figures 5.1 and 5.2 for flowchart and program

listing.

HARDWARE AFFECTED

ro R1 R2 RB R11 RZ’ RB
REGISTERS

x x x Xx

F |u| SP
PSU

cc ioc} rs wc ovelcom| c
PSL

Xx Xx x Xx xX

RAM REQUIRED (BYTES): __\ Numb, N Num+1_

ROM REQUIRED (BYTES):9S

EXECUTION TiME:____ssVariable
MAXIMUM SUBROUTINE
NESTING LEVELS:O80

ASSEMBLER/COMPILER USED:PIPHASM>

10

Enter BASC Routine

. Operation:
oe BCD digit + H ‘30'——ASCII

Initialize PSL:. . (Conversion)
®@ Operations with carry
@ Clear carry

{
| Number of BCD digits ——*R3

A . _LOOP

LS BCD-Byte —-> RO

!
Clear MS 4 bits of RO

| (RO) + H ‘30’——» RO

!
(RO)—— ASCI indexed (R3)

SHET|

Shift BCD register right 4 bits
to point to next digit. .

t
(R3) -1—-* R3
(index counter)

 Yes

Positive Negative

A ‘t’-—-®ASCI A‘-' —*ASCI

EXIT EXIT
FIGURE 5-1 Flowchart for BCD-to-ASCI! Conversion (signed)

SIGNETICS CONVERSION ROUTINES #® AS54

o
s

O
o

C
N

a
w
&

P
O

w
e

2

42 8560
4&3 8582

46 9984
47 9589
AG 8508
49 6580

5i #519
§2 9512
53 9514
54 9517
55 9518
56 #518
57 #510
58 aSiF
59 9521

61 $523

62 8526
63 9928
64 852A

63 #920
66 @52F
67 #931

69 8534

6601
6862
8683
6998

8061
9983

8968

6883

90985

$4£8
BAES

8508

9586

#518
9512

8514

8923

#528

#92F

B34

77 8
7D oi
87 $5

aC 94 EZ
44 OF
84 38
CF 64 £3

8) 64
#6 FD

BE 63 E3
4
CE 63 £3
DA 77
7D @i-
F? 74
FB 43

OC #4 E2
18 97
#4 2D

CC #4 £3

1B 8)
$4 2B
CC 84 E3

ig

t

+ =PD768854
BHFTTHTESEEHETHtEttt ee teteeettttttttttetttte

+ BCD TO ASCII CONVERSION +
BLELTETESETEFTET TEEETEEEEETESTEtetedeetdttt
%

THIS ROUTINE CONVERTS A SIGNED BCD NUMBER
INTO ASCIT CHARACTERS (SIGN INCLUDED).
BCD FORMAT: SIGN + BCD DIGITS (TWO DIGITS: BYTES)
+ THE NUMBER OF BCD DIGITS -> R3 = NOR
+ THE NUMBER OF BCD BYTES -> R2 = NUMB
+ BCD NUMBER IS IN BCDDrBCDD+i»---»BCDD+(N-1)
ASCIT CHARACTERS ARE IN ASCIIT:ASCII+1:---sASCII+NUM
+ (SIGN) (BCD DIGITS)
+

+ DEFINITIONS OF SYMBOLS:
+

R@ EQU f
Ri E@U 1

RZ EQU 2
R3 EU 3
Wo EGU H' 88! PSL? L=WITHs B=WITHOUT CARRY

{ £v Hei! CARRY: BORROW
UN EQU 3 COND: UNCONDITIONAL
Zz EQU 8 ZERO
?

4 IN THIS EXAMPLE THE CONVERSION OF 5 BCD DIGITS
+ IS PERFORMED,
i

NUMB EQU 3 NUMBER OF BCD BYTES

NUM EQU 2 NUMBER OF BCD DIGITS
i

+

ORG H'4E9?
#

BCDD RES NUAB RESERVE FOR BCD NUMBER
ASC] RES NUM+ 1 RESERVE FOR SIGNASCII DIGITS
:

ORG HY 388! PROGRAM START HERE
+

BASC PPSL WE ARITHMETIC:ROTATE WITH CARRY
CPSL CLEAR CARRY
LODI»R3 NUM INDEX REGISTER

3

LOOP LODArR® BCDD+NUMB-1 LOAD LS BCD DIGIT IN R
ANDI+R® H'SF? CLEAR AS 4 BITS
ADDI yR@ H'38! ASCIT CHARACTER
STRArR@ ASCIVR3 STORE ASCII CHARACTER

+

SHFT LODIrRi 4 BIT COUNT
LP2 LOBI+R2 -NUNB INDEX FOR BYTE SHIFT

LPi LODA+R@ BCDD-256+NUMBrRZ
RRR rRB CARRY (PREVIOUS LS BIT) -> MSB
STRAR@ BEDD-256+NUMBrR2 AND LS BIT ->CARRY
BIRR+RZ LPI
CPSL CLEAR CARRY
BDRR+R1 LPZ
BDRR»R3 LOOP IF NOT READY GO TO LOOP

i

SIGN LODAsR@ BCDD+NUMB-1 SIGN -)> RE
BCTR»2 POS

NEG LODI>R@ A’-'
STRArR® ASC!

BCTRrUN EXIT

POS LODI RO A's!
STRArR@ ASC!

+

EXIT HALT END OF CORVERSION

END

FIGURE 5-2 Program Listing for BCD-to-ASCII Conversion (Signed)

11

SIGNETICS CONVERSION ROUTINES #® AS54

6. ASCII-TO-BCD CONVERSION

FUNCTION:

Converts n ASCII digits to n BCD digits.

ASCI|——->BCD

PARAMETERS:

Input: ADIG, ADIG+1, ----, ADIG+(n — 1) contain

ASCII! digits.

Output:

The most-significant digit is in ADIG

(byte/digit).

BCDD, BCDD+1, ----- BCDD + (n—1) contains

BCDdigits. |

The most-significant digit is in BCDD

(2 digits/byte).

Refer to figures 6.1 and 6.2 for flowchart and program

listing.

HARDWARE AFFECTED

RO R1 R2 R3 Ri’ R2’ R3’

REGISTERS
xX Xx xX x

F i SP

PSU

CC IDC; RS WC OVF;|COM/] C
PSL

X x x xX

RAM REQUIRED (BYTES):

ROM REQUIRED (BYTES):387

/ EXECUTION TIME: _ Variable
MAXIMUM SUBROUTINE
NESTING LEVELS:_ 0 8

ASSEMBLER/COMPILER USED: PIPHASM

nADIG + nBCDD

CONV

Enter ASBC Routine

START

Initialize PSL:
@ Operations without carry
@ Clear carry

4} Add R1

BCD —~» RO

Count

—>R2 {

\ Save RO
in-———

ASCII BCDD(R2)
Count

—>R3 |

; Add +1
LOOP to BCD

Move ASCII Count (R2)
(R3) digit
—» RO

{ Yes

Subtract |

H ‘30° -
RO No

Save

RO—+R1

Save RO
in-——

BCDD (R2)

Move ASCII

(R3) digit
—» RO

t

Shift RO
left 4 bits

12

FIGURE 6-1 Flowchart for ASCII-to-BCD Conversion

SIGNETICS CONVERSION ROUTINES #® AS54

36 #562 96 83
37 8564 87 85
38 9506 OF 67 4F
39 8509 At 38
46 8588 C1 STRZ
41 @50C CE 67 34
42 OS8F FB 83
43 @3i1 iF 85 25
449514 GF 67 4F
43 B517 A& 38
46 6519 Dé RRL» RB
47 @51A Dé RRLRS
48 O51B DB RRL RB
49 #510 DB RRL» RB
28 B51 41 TORZ
JL @SiE CE 67 54
d2 #521 FA 88
93 8923 FB 41
04 8525 46 BYE HALT
J END

i + PD768855
2 PELEEFSEFFTETESFEFassshgeesetsetsesteeeteeas

3 # ASCII TO BCD CONVERSION | +

4 ELEFAFELEEEFFTESSEEFEEEESSSEdEbEttttteststte

9 %

b # THIS ROUTINE CONVERTS A STRING OF ASCII

7 + DIGITS TO A STRING OF BCD DIGITS.

8 3

9 + ADIG IS MS DIGIT ASCII

18 # BCDD 16 MS DIGIT BEB

11 4

12 * DEFINITIONS OF SYHBOLS:

13 9606 R@ Ev § PROCESSOR-REGISTERS

14 8081 Ri EQU 1

13 8682 RZ EU 2

16 6663 R3 FRU 3

17 $688 Wo OEQU H? #8! PSL? 1-WITH) 8-WITHOUT

18 6661 € EQU H 61) CARRY: BORROW

19 6683 UN EU 3 BR.COND: ALWAYS

28 #

21 4 IN THIS EXAMPLE THE CONVERSION OF 5

22 # ASCII] CHARACTERS IS PERFORMED.
23 3

24 $885 NUM EQU 9

2) $683 NUML EQu 3

26 +

28 ORG H? 798? RAM DEFINITIONS

29 8758 ADIG RES NUM ASCII BYTES RESERVED

38 8885 ACNT EQU $-ADIG ASCII DIGIT COUNT

31 8755 BCDD RES NUML BED BYTES RESERVED

32 9683 BUNT EQU $-BCDD BCD BYTE COUNT

33 +

34 ORG H) 566! START OF SUBROUTINE

39 8568 75 89 CONV CPSL WEE ARITH.WITHOUT:NO CARRY

LODI RZ BCNT
LODI+R3 ACNT

LOOP LODArR@ ADIG-1eR3 RB HAS ASCIT DIGIT
— SUBIYRB 4°38?

STRArR@ BCDD-irR2 SAVE 1 BCD DIGIT
BDRR+R3 NEXT
BCTArUN BYE

NEXT LODArR® ADIG-12R3 NEXT ASCIT DIGIT
SUBI»R® HSB?

STRArRB BCDD-i+R2 STORE 2 BCD DIGITS
BDRReR2 $42
BDRR»R3 LOOP

BED COUNT -> R2
ASCIT COUNT ->R3

MAKE IT BCD
Rt R@ - Rt

DECREMEMT -NON ZERO BR
CONVERSION COMPLETE

MAKE IT BCD
SHIFT LEFT 4 BITS

Rt INCLUSIVE OR LOW ORDER

DECREMENT BCD COUNT
DECREMENT-NON ZERO BR.
END OF ASCII -) BCD

FIGURE 6-2 Program Listing for ASCII-to-BCD Conversion

13

SIGNETICS CONVERSION ROUTINES = AS54

7. HEXADECIMAL-TO-ASCII CONVERSION

FUNCTION:

Converts a string of hexadecimal digits to a string of ASCII

digits.

PARAMETERS:

Input: HEX, HEX+1, ----, HEX + (n — 1)

HEX is the most-significant digit (2 Hex.

digit/byte).

Output: ASCI, ASCI+1, ----, ASCI + (n — 1)

ASCI is the most-significant digit.

Refer to figures 7.1 and 7.2 for flowchart and program

listing.

HARDWARE AFFECTED

ro R1 R2 RB RV RQ’ RB’
REGISTERS

X Xx Xx Xx

F i SP
PSU

cc ioc] Rs we oveE|com| c
PSL

Xx Xx xX xX x

RAM REQUIRED (BYTES): nHEX + nASCl

ROM REQUIRED (BYTES): _ 09 _

EXECUTION Time: Variable

MAXIMUM SUBROUTINE

NESTING LEVELS:

14

Enter HASC Routine

START

CONV

Initialize PSL:
@ Operations with carry
®@ Set carry

t
ASCII
Length
—eR3

HEX
Length

—rR2

ib}

Move HEX

Digits (R2)
—»RO

t
RO—» R1

:
Clear MS

4 Bits R1

|!
Get ASCII
Equal (R1)
—»RO

!
Save ASCII

Character

NEXT}

Move HEX

digits (R2)
—»RO

1

RO—»R1

!

Shift
right 4
bits R1
 =

Clear MS

4 bits R1

t

Get ASCli
Equal (R1)
—»RO

Save

ASCII
Character

!
 (R2)-1—» R2

<<

Yes

FIGURE 7-1 Flowchart for Hexadecimal-to-ASCI! Conversion

SIGNETICS CONVERSION ROUTINES #® AS54

C
O
s

o
O

G
O

m
w

O
O
P
O

13 9866
14 6881
13 6882
16 8883
17 9688
18 6681
19 6883
26
2}
22
23 8682
24 $883
2

2?
28 8688

29 6882
38 9682
31 8883
32
33
34 8588 77 69
39 9582 87 83
36 8584 66 82
37 8586 BE 65 FF
38 8589 C1
39 OBA 45 OF
46 $59C @D 65 2C
41 @50F CF 46 81
42 8512 FB 83
43 O514 1F 85 28
44 9517 GE 45 FF

4) O51A Ci
46 6518 Si
47 $910 51
48 O51D 31
49 @3iE 31
08 @51F 45 OF
Jt 8521 9D 65 2C

02 8924 CF 66 St
03 9527 FA 868

34 8529 FB SB

d
D6 O32B 48
7
98 8520 38 31 32 33

34 35 36 37
38 39 41 42

43 4445 44
29
68

* PD768856
FLFF4TAFEEETSESATESSESEEESSEEeetestes
4 HEXIDECIMAL TO ASCII CONVERSION +
FLEETSTEFESEAFDESTSSFEShheedtetote
t

THIS ROUTINE CONVERTS A STRING OF ASCII
+ DIGITS TO A STRING OF HEX BICITS.
%

ASC] 15 MS DIGIT ASCII.
+ HEX IS MS DIGIT HEXIDECIMAL.
4

+ DEFINITION OF SYRBOLS:
R@ EQU 8
Ri EQU i
R2 «EU Z
R3-EQU 3
Wo EQU H' 8B?
C -ERU Hiét?
UN =EQU 3
+

PROCESSOR-REGISTER

ARITHMETIC CARRY
CARRY: BORROW
UNCOND. BRANCH

IN THIS EXAMPLE 3 HEXIDECIMAL
4 CHARACTERS ARE CONVERTED.
NUR EQU d
NUML EQU 3
+

ORG H' 68e?
HEX RES NUM
HLEN EQU $-HEX
ASCI RES NUM
ALEN EQU $-ASCI
$

ORG H9588?
CONV PPSL «ssa

LODI+R3 ALEN
LODI»R2 HLEN

CHEX LODARB HEX-17R2
STRZ~—s Rt
ANDIyR1 HOF?
LODArR® ANSI Rt
STRARB ASCI-1y»R3
BORR»R3 NEXT
BCTALUN BYE

NEXT LODAsR® HEX-19R2

STRZ RL
RRRRI

RRR RI
RRR RI

RRRR1
ANDIeRi HGF!
LODArR® ANSI ORI

STRArR® ASCI-1>R3
BDRRrR2 $42

BDRR»R3 CHEX
+
BYE HALT
+

HEX BYTE COUNT
ASCIT BYTE COUNT

RAM DEFINITIONS
RESERVES HEX BYTES
LENGTH OF HEX
RESERVES ASCII BYTES
LENGTH OF ASCII

START OF ROUTINE
ARITH.WITH: SET CARRY
R3= ASCIT LENGTH
R2= HEX LENGTH
GET HEX DIGITS
RB - RI
CLEAR MS 4 BITS
LOAB ASCIY CORRESPOND!
SAVE IT
R3-i+ R3X> BRANCH
END OF CONVERSION
GET HEX DIGITS

RB -> Rt
SHIFT RIGHT 4 BITS

CLEAR MS 4 BITS
LOAD ASCII CORRESPOND!

SAVE IT
R2 - 1 CONT.

R3-1y R3<> BRANCH

END OF CONVERSION

ANS] DATA APB1Z3454789ABCDEF?

END
FIGURE 7-2 Program Listing for Hexadecimal-to-ASCII Conversion

15

SIGNETICS CONVERSION ROUTINES ® AS54

8. ASCII-TO-HEXADECIMAL CONVERSION

FUNCTION:

Converts a string of ASCII digits to a string of hexadecimal

digits. The conversion is done by table look-up. Non-

numeric ASCII halts this routine. It may be changed to

report non-numeric.

PARAMETERS:

ASCI, ASCI+1, ----, ASCI + (n - 1)

ASCI is the most-significant digit.

HEX, HEX+1, ----, HEX + (n - 1)

HEX is the most-significant digit (2 Hex.

Input:

Output:

digits/byte)

Refer to figures 8.1 and 8.2 for flowchart and program

Enter ASHC Routine

- NEXT |

listing.

HARDWARE AFFECTED

RO R1 R2 R3 R1’ R2’ R3’
REGISTERS

x x Xx x

F i SP

cc Ipc; RS WC OVF|COM| Cc

x x x Xx

RAM REQUIRED (BYTES): nASCl + nHEX

ROM REQUIRED (BYTES): 68 _

EXECUTION TIME: Variable

MAXIMUM SUBROUTINE

NESTING LEVELS:

ASSEMBLER/COMPILER USED:PIPHASM

16

HEX (R2) away

START

ASCII digit (R3)
—»RO

CONV

Initialization

PSL=WC+C

Table look-up
| RO—>RI1

Compare

R3 = ASCII Length RO——>
R2 = HEX Length Table (R1)

ACON if

ASCII digit (R3)
Yes

—» RO Shift left S
4 bits RO .

[\ ~
Clear LS Cémpare

Table look-up , R1=1
RO—>R1 4 bits RO

Place low Y

order HEX es
in RO

Store low | No

order HEX (R2)
Store 2

Halt at table end;
may be changed
to report non-

numeric

FIGURE8-1 Flowchart for ASCII-to-Hexadecimal Conversion

SIGNETICS CONVERSION ROUTINES #® AS54

o
o
N
S

C
T

e
e

O
D

P
O

e
e

18 8888
19 8861
28 9863
21 8882
22 6608

39 6568 77 89
46 9562 97 83
41 8584 66 82
42 8586 OF 65 FF
43 8509 3B 88
44 8568 91
45 @50C CE 46 82
44 O50F FB iD
47 OS11 1B 31
48
49 8513 65 16
38 8515 ED 45 i
OL 518 14
32 8519 ES Gt
93 @51B 9A 78
34 8510 49
‘55
36 P51E 38 31 32 33

34 35 36 37
38 39 41 42
43 4445 46

a7
38 852E OF 65 FF
99 #531 3B 68
66 8533 91
61 9534 D8
62 8535 D#
63 9536 D8
64 9537 D8
65 8538 44 Fé
66 O53A 4 66 82
67 #53D CE 66 82
68 8548 FA 86
69 8542 FB 42
76
71 6544 46
72

+ ==PD768857
BESE4EETEEESEFTETEEFEETTESEESteedttet
ASCIT TO HEX CONVERSION +
ES+AFEESEFSEATETTEETEETEEteHat teed
+
+ THIS ROUTINE CONVERTS A STRING OF ASCII
4 DIGITS TO A STRING OF HEXIDECIMAL DIGITS
ASE] IS MS DIGIT ASCII
+ HEX IS MS DIGIT HEXIDECTMAL
+ CONVERSION DONE BY TABLE LOOKUP
+ NON NUMERIC ASCII HALT ROUTINE
t
+ DEFINITION OF SYMBOLS:
R@ EQU § REGISTER-PROCESSOR
Ri EQU i
R2 EQU 2
R33 EQU 3
Wl EGU H' 88? ARITHMETIC CARRY
C QU H'@t? CARRY: BORROW
UN EU 3 BRANCH UNCOND.
LT EQU Z LESS THAN
EQ Eau § EQUAL

+ IN THIS EXAMPLE 3 ASCII DIGITS
ARE CONVERTED TO HEXIDECIMAL
$
NUM EQU 3 ASCII BYTE COUNT
NUML EQU 2 HEX BYTE COUNT
+
:

ORG H' 666? RAM DEFINITIONS
ASC] RES NUM RESERVED ASCII BYTES
ALEN EQU $-ASCI LENGTH OF ASCII
HEX RES NUMI RESERVED HEX BYTES
HLEN EQU $-HEX LENGTH OF HEX
+

ORG H S86? START OF ROUTINE
CONV PPSL WE+ ARITH.WITH + CARRY SET

LODI+R3 ALEN R3 = ASCII LENGTH
LODI»R2 WLEN R2 = HEX LENGTH

ACON LODArR® ASCI-i+R3 GET ASCII] DIGIT
BSTR»UN LKUP LOOKUP SUBROUTINE
LODZ =o Ri -> R#
STRArRB HEX-19RZ2 SAVE HEX CORRESPONDING
BDRR»RS NEXT (R3-1}> R3 <> BRANCH
BCTReUN BYE END OF CONVERSION

+
LKUP LODIeRi 16 LOOP CONSTANT
ALKU COMADRB ANSIWRi»- COMPARE TO TABLE

RETCrEQ™ RETURN - MATCH FOUND
CONTRI 1 TEST END OF TABLE
BCFReLT ALKU NO- LOOK AGAIN
HALT ERROR - NON NUMERIC HE

+
ANS] DATA APB1Z3456789ABCDEF’

+
NEXT LODAPR® ASCI-12R3 GET NEXT ASCII DIGIT

BSTR»UN LKUP LOOK UP SUBROUTINE
LODZ =e Ri -> RE

RRL RO SHIFT LEFT & BITS
RRLRB

RRLRS

RRL RB

ANDI RO HFS! CLEAR LS & BITS
TORArR# HEX-ieRZ2 COMBINE LOW ORDER
STRArR® WEX-teR2 SAVE 2 HEX DIGITS
BDRR»R2 $42 (R2-1} CONTIUNE
BDRR+RS ACON (R3-1)y R3 <> BRANCH

+

BYE HALT END OF CONVERSION
END

FIGURE 8-2 Program Listing for ASCII-to-Hexadecimal Conversion

17

NOTES

18

NOTES

19

Signetics 2650 Microprocessor application memoscurrently available: |

AS50
AS51
AS52
AS53
AS54
SP50
SP51
SP52
SP53
SP54

SS50

9S51

MP51

MP52

MP53

Serial Input/Output

Bit and Byte Testing Procedures

General Delay Routines

Binary Arithmetic Routines

‘Conversion Routines

2650 Evaluation Printed Circuit Board Level System (PC1001)

2650 Demo Systems |

Support Software for use with NCSS Timesharing System

Simulator, Version 1.2 _

Support Software for use with the General Electric Mark II! Timesharing

System

PIPBUG | |

Absolute Object Format (Revision 1)

2650 Initialization

Low Cost Clock Generator Circuits

Address and Data Bus Interfacing Techniques

© NV. Philips’ Gloeilampentabrieken

This information is furnished for guidance. and with no guaranteesas to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor

does the publisher assumeliability for any consequence of its use: specifications and availability of goods mentionedin it are subject to change withoutnotice:it is not to be
reproduced in any way, in whole or in part. without the written consent of the publisher.

4-76 9399 509 53961

2650 DEMO

SYSTEM

SP51

Siqnttics 2650 DEMO SYSTEM SP51

GENERAL

The Demo System (DS) is a hardware base for use with the

2650 CPU printed circuit board (PC1001). The DS provides

the user of the 2650 with a convenient “‘lab bench”set-up

for exercising the PC1001 CPU board. The user may

expand memory, implement I/O functions, and step through

program instructions one at a time using the DS. When the

DS is combined with a CPU board (PC 1001) and a keyboard

terminal, the user is equipped with everything he needs to

exercise any of the software or hardware features of the

2650. There are two versions of the DS, the DS1000 and

the DS2000. The two Demo Systems are the same except

that the DS2000 has a built-in power supply and therefore

does not have the powersupply binding posts.

FEATURES

The DS provides several connectors to aid the userin exer-

cising the PC1001 CPU board including one for the CPU

2650 MICROPROCESSOR

APPLICATIONS MEMO
board itself, one for a memory expansion board, four for

[/O ports, and two for communicating with the user’s

terminal. There are four sets of LED lamps that display the

information on the address bus, the data bus, and the two

non-extended I/O ports. Two control switches (RUN/

PAUSE, and STEP) allow the user to place the 2650 in the

WAIT mode and step through program execution one

instruction at a time. A reset button is provided on the DS.

The DS1000 version has five-way binding posts for

connection to external power supplies. The DS2000 has

built-in power supplies and does not have the five-way

binding posts.

CONNECTORS:

2650 CPU Board Edge Connector (J8). The CPU board

connector is an Amphenol dual 50-pin connector (series

225) with 0.125-inch contact centers. The 2650 CPU

board (PC1001) is inserted into J8 to complete the Demo

CPU BOARD AND USER BOARD CONNECTORS

*J7 has no connections to these pins.

**NC = No Connection

FUNCTION FUNCTION FUNCTION FUNCTION
PIN#Z (J7&J8) PIN# (J8 ONLY)* PIN#| (J7&J8) PIN# (J8 ONLY)*

1 GND A GND 26 INTREO d OPC 3
2 GND B GND 27 PAUSE e OPC 4
3 NC** C NC 28 NC f OPC 5
4 DBUSO D OPD 0 29 NC g OPC 6
5 DBUS1 E OPD 1 30 NC h OPC 7
6 DBUS2 F OPD 2 31 |NC EIPC
7 DBUS3 H OPD 3 32 NC k IPD O
8 DBUS4 J OPD 4 33 ABUS 11 m IPD 1
9 DBUS5 K OPD 5 34 ABUS 13 n IPD 2

10 DBUS6 L OPD 6 35 ABUS 12 p IPD 3
11. DBUS7 M OPD 7 36 ABUS 14 r IPD 4
12* EIPD N COPD 37. ABUS 9 s IPD 5
13 D/C P TTY SERIAL IN + 38 ABUS 10 t IPD 6
14 DMA R TTY SERIAL IN - 39 ABUS8 u IPD 7
15 E/NE S TTY SERIAL OUT + 40 ABUS7 V IPC O
16 INTACK T TTY SERIAL OUT - 41 ABUSG6 Ww IPC 1
17. R/wW U RS232 GROUND 42 ABUS 5 x IPC 2
18 WRP V RS232 OUTPUT 43 ABUS3 y IPC 3
19 RUN/WAIT] WwW TTY TAPE READER OUT - 44 ABUSO Zz IPC 4
20 OPREO xX TTY TAPE READER OUT + 45 ABUS 1 a IPC 5
21 M/IO Y RS232 INPUT 46 ABUS 4 b IPC 6
22 OPACK Z COPC 47 ABUS 2 c IPC 7
23 CLOCK a OPC 0 4g +12V d +12V
24 OPEX b OPC 1 49 -12V e -12V
25 RESET c OPC 2 50 +5V 5 +5V

TABLE1

SIGNETICS 2650 DEMO SYSTEM = SP51

DEMO SYSTEM LAYOUT

J2

Co)

+5V
J1

+5V
J7

GND

Q
o
©

h
O
-

5
|_____ output port2 C)

MODE|

NOTE:
THE POWER SUPPLY BINDING POSTS ARE ONLY ON THE DS1Q00, NOT ON THE DS2000. THE BINDING POSTS ARE SHOWN ON THIS DRAWING AND MARKED+5V, +12V, -12V, AND GND.

FIGURE 1
CONNECTORS (Continued)

System. The correlation between signal names and pin

numbers for J8 is given in Table 1. The location of J8 on

the DS is shown in Figure1.

User Printed Circuit Board Edge Connector (J7). The user

‘board connector is the same type of connector as J8 (the

CPU board connector), and makes address, data and control

lines available for user-defined interface functions. As

shown in Table 1, the numbered pins of J7 and J8 have the

same signals on them (except pin 12), while the lettered

4

pins of J7 (pins A through g) are not used. The J7 con-

nector is typically used for memory expansion. The location

of J7 on the DS is shownin Figure 1.

Extended Input/Output DIP Sockets (J5 & J6). The

extended I/O DIP sockets make the signals shown in

Table 2 available to the user of the DS system. With the

signals available on J5 and J6, any type of I/O interface to

the 2650 may be implemented. The user of these sockets

must supply the cable between his system and the DS, as

well as the two 18-pin DIP plugs. The location of J5 and J6

is shown in Figure 1.

SIGNETICS 2650 DEMO SYSTEM @ SP51

EXTENDED INPUT/OUTPUT DIP SOCKETS

RS232 Interface Connector (J2). The RS232 interface

connector is a TRW 25-pin connector (part #DB25S) for

communicating with RS232-compatible input/output

devices. The pins used on this connector are shown in

Table 4 along with the corresponding signal names. The

RS232 driver and receiver are on the PC1001 circuit

board and are wired to J2 through the DScircuit board.

The location of J2 on the DS board is shown in Figure 1.

RS232 INTERFACE CONNECTOR(J2)

PIN # FUNCTION — J2

FUNCTION

PIN # J5 J6

1 DBUS 0 ABUS 0
2 DBUS1 ABUS1
3 DBUS2 ABUS 2

4 DBUS3 ABUS3
5 DBUS 4 ABUS 4
6 DBUS5 ABUS 5
7 DBUS6 ABUS 6
8 DBUS 7 ABUS7
9 OPACK ABUS8
10 M/1O ABUS 9
11 OPREO ABUS10
12 RUN/WAIT ABUS11
13 WRP ABUS12
14 R/W ABUS 13
15 INTACK ABUS 14
16 E/NE PAUSE
17 DMA INTREO
18 D/C CLOCK

TABLE2

Non-Extended Input/Output DIP Sockets (J3 & J4). Each

non-extended 1/O DIP socket (J3 and J4) makes the signals

shown in Table 3 available to the user of the DS system.

These sockets may be used for data or command transfer

between the 2650 CPU and a user-defined function, but

transfers via these channels are initiated by the CPU only.

The user of these sockets must supply the cable between

his system and the DS, as well as the 18-pin DIP plugs. The

location of J3 and J4 is shown in Figure 1.

NON-EXTENDED INPUT/OUTPUT DIP SOCKETS

RS232 GROUND

RS232 INPUT

RS232 OUTPUT

JUMPER

JUMPER

RS232 GROUND

JUMPER

20 JUMPER

C
O
N

O
D
O
W
N

=

TTY INTERFACE DIP SOCKET(J1)

PIN # FUNCTION —J1

TTY SERIAL IN +

TTY SERIAL IN -

TTY TAPE READER OUT -

TTY TAPE READER OUT +

TTL SERIAL OUT —-

TTL SERIAL OUT + P
B
P
W
O
W
A
N

FUNCTION

PIN # J3 J4

1 OPC 0 OPD 0

2 OPC 1 OPD1

3 OPC 2 OPD 2

4 OPC 3 OPD 3

5 OPC 4 OPD 4

6 OPC 5 OPD 5

7 OPC 6 OPD 6

8 OPC 7 OPD 7

9 COPC COPD

10 EIPC EIPD

11 IPC 7 IPD 7

12 IPC 6 IPD 6

13 IPC 5 IPD 5

14 IPC 4 IPD 4

15 IPC 3 IPD 3

16 IPC 2 IPD 2

17 IPC 1 IPD 1

18 IPC O IPD O

TABLE 3

TABLE 4

TTY Interface DIP Socket (J1). The TTY interface socket

is a 14-pin DIP socket and is used for communicating with

a current loop serial interface. The pins used on this con-

nector are shown in Table 4 along with the corresponding

signal names. The current loop driver and receiver circuits

are on the PC1001 board and are wired to J1 through the

DS circuit board. The location of J1 on the DS boardis

shown in Figure 1.

DISPLAYS:

Address Display LEDs. The address display LEDs reflect

the information on the address bus (ABUS 0-ABUS 14)

when the PC1001 board is plugged into J8. The logic

circuits on the DS board loads the information from the

address bus into D-type latches on the occurrence of every

Operation Request (OPREQ) pulse. Open collector inverters

at the output of the D-type latches drive the LED’s in a

common anode configuration.

Data Bus Display LEDs. The data bus display LEDs

reflect the information on the data bus (DBUS 0-DBUS7)

when the PC1001 board is plugged into J8. The informa-

tion on the data bus ts stored into D-type latches on every

OPREQ pulse. The LEDs are driven directly from the

D-type latches in acommon anode configuration.

SIGNETICS 2650 DEMO SYSTEM = SP51

DISPLAYS(Continued)

Non-Extended Input/Output Channel LEDs. The non-

extended I/O channel LEDs are driven by open collector

inverters in a common anode configuration. The inverters

are driven by the output latches of the two non-extended

I/O ports on the PC1001 printed circuit board. Output

Port 1 (2), bit O corresponds to DBUS 0 and Output Port 1

(2), bit 7 corresponds to DBUS 7. A logic ‘‘1’’ output from

the 2650 turns on the LEDs, and a logic ‘0’ turns off the

LED.

+5V LED and RUN LED. The +5V LED will glow when a

+5 volt power supply is connected to the Demo System.

The DS1000 requires an external power supply, but the

DS2000 has the +5 volt power supply built into the base.

The RUN LED will glow when the RUN/WAIT line from

the 2650 is in the ‘“high”’ logic state. The location of these

LED’s is shownin Figure 1.

CONTROLS:

RESET Button. The reset button is a momentary switch

that is tied directly to the Reset input on J8 (pin 25), and

pulls that pin “‘low’’ when the button is pushed. This button

clears the program counter in the 2650 to zero. The loca-

tion of the reset button is shown in Figure1.

PAUSE Switch and STEP Button. The pause switch and

the step button are used together to cause the 2650

microprocessor to execute one instruction at a time. When

the pause switch is in the RUN position, the step button

does not affect the operation of the microprocessor.

When the pause switch is placed into the PAUSEposition,

the PAUSE line on the 2650 is pulled “‘low’’. When the

execution of the current instruction is completed, the

2650 will enter the WAIT mode and the RUN/WAIT line

will go “‘low’’. If the step button is pressed, the PAUSE

line to the 2650 will be pulled “‘high’’ until the RUN/

WAIT line goes “‘high’’, indicating that the 2650 is in the

RUN mode. As soon as the RUN/WAIT line goes “high”,

the DS will again pull the PAUSE line “‘low’’. The step

button will allow one instruction to be executed each

time it is pushed as long as the pause switch is in the

PAUSE position. When the pause switch is placed back

onto the RUN position, the PAUSE line will be pulled

“high’’ and the 2650 will execute instructions in a con-

tinuous manner. The address and data displayed on the

DS LEDs in the WAIT modereflect the address and the

first byte of the next instruction to be executed. The

location of the pause and step switches on the DS base is

shown in Figure 1.

LOGIC CIRCUITS

The logic circuits on the DS base are shown in Figure 2.

The logic circuits consist of address bus (ABUS) and data

bus (DBUS) latches, the pause and step logic, LED drivers,

6

and a reset switch. The address and data bus are loaded into

latches on the DS during every OPREQ. The displays for

the address and data bus will flicker while the run LED is

“lighted”, and will display the address and first byte of the

next instruction to be executed whenin the step mode (run

LED off). The pause and step logic allows one instruction

to be executed at a time by pushing the step button when

the run/pause switch is in the PAUSE position. The non-

extended output ports are displayed on the DS, and the

reset button provides complete system reset by pushing

the button.

ADDRESSBUS:

The address bus latches are 74174 Hex D-type flip-flops

(1C1, IC2, 1C3). Open collector inverters (1C5, I1C6, IC7)

invert the “positive true’ levels from the ABUS latches

and drive the address bus LEDs (L1-L15) in a common

anode configuration. A logic ONE on the address bus

“lights’’ the corresponding LED, and ABUS 0 corresponds

to the ADDRESS bit 0 LED. The ABUSlatch is clocked

by the STRB signal which is generated by 4 inverters (IC7,

1C10). The inverters provide the logic function STRB =

OPREO » CLOCK. The ABUSlatches are reset by RESET.

DATA BUS:

The data bus latches are also 74174 Hex D-typeflip-flops

(1C3, 1C4). Since the DBUS leaves the PC1001 with ‘‘nega-

tive true’ logic levels, the DBUS latches drive the LEDs

directly in a common anode configuration. A logic ONE in

the DBUS latches is a low voltage level and “‘lights’’ the

corresponding LED. The DBUS bit 0 LED corresponds to

DBUS 0. The DBUS latch is also clocked by the signal

STRB, and reset by RESET.

PAUSE AND STEP:

The pause and step switches are de-bounced with S/R

latches. The step switch uses two NAND gates (IC11),

while the pause switch uses a D-type latch (1C12) to accom-

plish the de-bounce function. When the pause switch is in

the RUN position, SPAUSE is a logic ZERO and the

PAUSEline is held at logic ZERO (de-activated).

When the pause switch is set to the PAUSE position,

SPAUSEis a logic ONE and PAUSE will switch to a logic

ONE. When the PAUSE line switches to a logic ONE, the

2650 will finish executing the current instruction, fetch

the first byte of the next instruction from memory, and

enter the wait state. The RUN/WAIT line goes to a logic

ZERO when the 2650 enters the wait state. If the step

switch is pushed, LSTEP clocks a logic ONE into the

CLSTEPlatch (1C12) which sets PAUSE to a logic ZERO.
The 2650 then returns to the run mode, and the RUN/

WAIT line goes to a logic ONE. When the RUN/WAIT

line switches to a logic ONE, the CLSTEP latch is reset and

SIGNETICS 2650 DEMO SYSTEM = SP51

DS1000 LOGIC DIAGRAM

L
|

2
|

E
l

S
|

9
1

<
|

8
~
4
0
7
L
H
S
O
o

Q
a
A
d
v

A
S
S
V
i
x
3
N

A
3
Y

O
N
9
M

S
I
W
2
S
]
3
z
1
5
]

O
N
S

r
Z
z
a
y
o
!

3
H
O

}
J

cal
L
n

(
u
h
m
)
O
-

A
S
I
—

.
W
a
o
v
V
I
Q

D
I
D
5
C
Q
7

S
C
S
C
O
I
s
d

|
N
A
A
Q

ONY
Toe

x
N
A
S
B

Y
O

a
1
v
0

S
S
Y
N
L
Y
N
I
I
S

a
y
a
a 3
a

e
a
r
e
n
e

G
i
n
g
)

Q
n
>

C
a
n
e
)

C
y
-

C
N
S

O
I
B
>
y
-
2
B
O
G

‘
A
H

B
a
y

s
B
a
G
g

‘ES

J
O
N
I
M
v
e
o
3
1
V
O
S
L
O
N
O
G

S
s
O
N
v
u
s

wi
N

a
y
n

N
O
g
a
M
D

Liven
BY

S
I
V
I
H
S
L
Y
W

3
0

1
S
I
7

|
(
a
a
a
)

A
G
+

C
a
3
e
)

C
)
-

A
S
I
+

w
a
e

S
a
y

S
t
a

p
9
c
o
a
n
l

by
2

W
a
t

Nonsisossa
W
a
i

[
o
n

seve
8
]

S,OOvL
B
A
Y

S
Y
S
L
I
A
A
N
I
T
W

‘T

I
N
O
V
L
S
A
N
N
O
D

O
N
=
O
N

B
L
S

a
d
a
4
0
1

b
r

Q
9
d
9
9

1
3
5
3
8

2
Gd)
4

e
r
-

L
d
O

9
—
2
i

L
t

9
GNe

p
e

Ss
—
e
l

B
r
—

G

g
>

—
vl

S
r

6?
°

>
QNnacyD

2
E
T
S
Y

i
E

H
S
I

g
e

og
b
SO8v

—
7

9!
b
P

@
Shan

2
o
2

2
—
}
9
)

c
h
e

3
O11

—
4

it
@
t
—

2

B
a
d
w
o
e

S
—

o
n

—
ii
2

a
1

5
2

“
O
N
y
e

t
—

O
N

©
ddl

al
i-K—

2
G
d
o

_
[

l
n
g
i
n
e

z2ezsy
—
l
¢

L
—

>
N

7
8

«|
7
7

o
p
~

LaSay
Logs!

7ez8Sy—42
I—

oN
+f

A
e
c
s

«=OO
S

i
Is

=
)

SBLS
;

e
t

t—-
f
e

Q
n
o
e
s
s

Z
E
z
e
t

{
O
N

S
g
u
i
n
l

—
4
Z
i

7
o
e

3
W
D
e
T
>
—
e
!

\
F
-

0
§
O
G
¥

2
L

o
a
)
—
4
o
l

b
D400

o
f

L
Od)

—
G
u

6
o
d
o

F
i
n
o
S
S
O
V
S
Y

S
d
y
l
l
i
l
—
l
@

L
h
e

O
N

5
—

Zl
g

QD
H
N
O
B
A
W
A
Y

A
d
v
i
A
L
L
—
b

2
b
—

O
N

5
—
€
!

%
S

sIpo0tD
I
N
m
e

s
t
e

O
N

+
—

+1
e
s

I
N
t
t
+

D
n

&
S
I

y
r

b
a
N

—
4
a
i

e
b

D
N

2
q
n

e
t
—

2
8

—
A
n
©

J
W
r
y
a
S

A
L
L
S
l

2
e
—
N
i

T
A
N
S
a
S

A
L
L

a
l
l

2
-
-

|
ZL

+
1
9
0

W
r
a
a
s
h
i
t

‘
P
o

FONT
F
y
t
H
S
S
A
L
L

©
dd)

—
4
8
I

I
r
—

9
D
d
O

2S
if

c
L

®€Zz
~

\
O
N

8
o
s
h
—

A
S

+
A
s
t

—{8&
osft—

A
G
+

}
2

b
o
b

A
T
I
-

A
t
I
-
—
1
2

b
e
+
—

A
v
I
\
-

J
E

a
e
p
—

A
T
I
4

A
t
i
+
—
4
P

94+ —
A
t
H

s
e

L
y
p
—

Z
S
e
a
y

2
O
d
t
4
2

L
e
j
—

2
S
e
y

4
5

2
4
}
—

+
©

—
1

H
E

+
2

S
h

s
Y
R

g
y
t
-

O2ad0
—
l
e

v
y
}

°
+

—
e

y
t

°
—
h

e
y
p
—

€
€

—
6

ee
b-—

€
s
y

{
y
h

S
2

s
k

2
p

$
2

S
o

1
+

3
\

<
a

l
b

g
e

7
0

z
s
k

O
y
h
—

L
O
o

D
a
l
i
4
a

o
¥
v
}
—

Z
b@2)

=
—
w

b
e
-
—

3
4

G
a
l
—
j
w

b
e
-
—

8
B

a
l

—
3

a
t
-
—

a
°

—
+

ae
b-—

oO
e
e
)

s
4
7

L
&
}
—

6
Ss

—
$

Lgh-—
6

b
S
a

o
f

og
¥

4
.
x

41
=

O
N

—
t
d

o
t
e

2
)

€
—
i
d

S
e
}

z
i

e
h

“
>

—
u

b
e
h

€1
2

—
l
u

p
e
e

<!
5

—
w

E
b

\L
SOBY

\
j
u

E
P

Wu
S
o
e

A
we

<
I

|
v
a
s
e

—
2
t
h

O
N

oO
Q
d
i
—

4»
2
E
-
—

“
O
r
N

!
—
4
f

1
g

D
N

v
a
l
a
s
o
e

ie
-
—

‘
O
I
N

&
a
e

0
ot

©
0
d
O

—
6

O
F
—

D
N

L
D
A
D
—

cl
O
F
t
—

“
D
O
I
N

$
e
)

~
—

2
+
—

O
N

°
—

b
a
r

‘OTN
re

—
J

32/-—
O
N

S
+
5

a
z

S
E
N

\
5

n
2
O40

l
s

it
—

B
R
O
W

»
—
1
>

2
b

asaya
e
7

S
Ast

—
i
P

2
7
,-—

O
s
v
i
n
)

€
—
1

P
2

O
s
a
n
!

>
7

o
t

1
D
d
O

—
o

S27}
14330

2
—
o

$
z
h
—

a
s
s
y

eel
Y

&
—
i
4

>
2
-
—

4
3
d
0

\
—

4
v
2
b
—

Y
a
d
©

b
O
0
d
O

4
0

<2zh—
DITO

2
2
0
-
4

2
}

W
I
T

“
P
N

S
A
s
a

—
t

Z
2
e
r
—

w
o
r
d
s

D
d
0
D

2
2
b

w
W
o
v
d
o

ee)
bl

—
4
\

1
2

O
T
f
w

A
n
N
d
N
l

Z
E
S
Y

A
2
h

o
r
/
n

S
E
I
S
T
O
L
S
Y

—
y

O
z
h

S
a
y
d
o
O

+
1
0
0

y
B
s
O
W
S
Y

a
g
¥
L

A
L
L
7

x
o
z
}
-
—

o
a
w
d
o

=
<

—
s

b
i
t

LINEA
/
N
O

—
i
n
o
Y
S
e
e
S
3

a
d
d
e

A
L
L

~
b
l

h
i
v
e
/
N
a
d

L
d
e
o

—
j
k

F
i
}

3
a
m

i
n
d
l
a
o
m

Z2Ze233
—
j
A

i
/-—

d
a
m

—
4
0

d
i
k
-
—

M
/
%

I
N
a
e
y
D

Z
e
z
S
u
y
—
i
n

£
i
-
—

M
/
Y

s
i

Di
-
—

R
O
W
L
N
!

—~
i
n
c

w
r
e
a
s

l
l
i
H
L

>
|
}

W
H
O
L
!

9
Q
d
O

—
l
s

S
I
R
E
a
7

+
1
9
0
W
e
s

A
L
L

—
4
5
$

S
i
h

a
N
/
a
3

—
4

+
I

a
N
d

—
N
L
p
y
e
a
s

A
L
L
H
a

+i
f;-—

Y
w
a

—
d

E
l
b
e

2
/
d

+
Ni

F
I
e
a
s
S

A
L
L
—

4
a

2
7
9

S
a
d
o

—
N

2
\
-
—

°
O
'
N

a4d0°9
—
4
N

2
b

O
a
l
\
3

—
4
W

W
p

L
§ox8G

2
0
4
9
0
—
4
W

h
e
e

L
s
o
e
a

P
I
d
O

—
4
7

O
l
-
—

a
9
7

o
l
-
—

9
H
Y

b
e

S
%

—
>

b
e
e

$
—
e
c

e
h
—

y
+

—
l
f
r
—

¥
6
9
4
4
0

—
4

L
b
—

€
€

—
4

i
f

¢
—
3

o
p
—

2
z

—
1
4

+
—

2
2
9
¢
0

—
3

S
t
F

|
\

—
2

s
-
—

'
a

+
h
—

°o
s
c
a
g
d

9
O
4
0
—
4

o
o

9
s
r
a
g

q
=

o
C
r

O
N

D
N

t
k

SoON
V
Q
d
O

—
{
¢
2

A
N
S

a
n
y
—

a
Z
R
—
A
N
S

o
N

—
4
¥

]
G
N
9

a
n
e
—

1
b
—
Q
n
5

O
d
d
o

L
f

e
f

a
i
v
o

|
a
n
a
v

|
N
O
!
i
d
l
n
o
s
s
o

f
i
t

S
N
O
I
S
I
A
Z

poten
3
4

|
H
L
O

T
L

|
Se

Ee
S

=)
Z

8

FIGURE 2

SIGNETICS 2650 DEMO SYSTEM = SP51

PAUSE returns to a logic ONE. This process is repeated

once each time the step button is pushed. When the pause

switch is returned to the RUN position, the PAUSEline is

set to a logic ZERO and the 2650 will return to the run

mode. The step/pause function is implemented with IC11
(NAND gate) and 1C12 (D-type latch).

OUTPUT CHANNEL DISPLAYS:

The two non-extended output channels implemented on the

PC1001 board are displayed on the DS. The outputbits,

(OPD O - OPC 7) are received by open collector inverters

which in turn drive the LEDs. A logic ONE outputto port 1

(WRTD instruction) will ‘‘light’’ the corresponding OPD

LED, while a logic ONE to port 2 (WRTCinstruction) will

“light” the corresponding OPC LED. Signal OPD 0 cor-

responds to Output Port 1 bit 0, and OPC O corresponds to

Output Port2 bit 0.

RUN AND +5V DISPLAYS:

When the 2650 is in the run mode, the run LED will be

“lighted’’. When +5 volts is applied across the red and

black terminals of the DS1000, the +5V LED will be

“lighted."’ When a.c. power is applied to the DS2000

(internal power supply), the +5V LED will be “‘lighted’’.

RESET:

The reset switch (S5) pulls the RESET line to a logic ONE

when pushed. The RESETline is tied to the corresponding

pin on the PC1001 board (pin 25) as well as the ABUS and

DBUSlatches on the DS.

DEMO SYSTEM PARTSLIST

Item # Description ID# Mfg. and Part #

1. Base Box —_ —

2. Printed Circuit Board — —

3. 100-Pin Connector J7, J8 Amphenol, series 225

4. J3, J4 Cambion

18-Pin Dip Socket J6, J6 703-3787-01-04-16

5. 14-Pin Dip Socket J1 Cambion

703-4000-01-04-16

6. SPDT Push Button $4, $5 Alco, MSP105F

Switch

7. SPDT Toggle Switch S3 Alco, MTA106D

8. LED L1-L41 H.-P.

5082-4870450

9, 5-Way Binding Post H.H. Smith

10. RS232 Connector J2 TRW Cinch DB25S

11. Carbon Composition R1-R29 Allan Bradley

Resistors — 2K22 RCO5GF202J

12. Aluminum Standoff H.H. Smith 8352

13. Tinnerman Speed Nuts Tinnerman

C8093-632

POWER SUPPLY SPECIFICATIONS

(DS1000 Only, Power Supply Included With DS2000)

5 Volt Power Supply

+12 Volt Power Supply

© N.V. Philips’ Gloeilampenfabrieken

Line Regulation 0.1%

Load Regulation 0.1%

Ripple 10m Volts (maximum)

Response Time 30 usec

(maximum)

Output Current 4 amps

(To supply PC 1001 only)

Overvoltage Protection

Current Overload Protection

Line Regulation 0.1%

Load Regulation 0.1%

Ripple 10m Volts (maximum)

Response Time 30 usec

(maximum)

Output Current 50 milliamps

(To supply PC 1001 only)

Overvoltage Protection

Current Overload Protection

This information is furnished for guidance, and with no guaranteesasto its accuracy or completeness; its publication conveys no licence under any patent or other right, nor

does the publisher assumeliability for any consequenceof its use; specifications and availability of goods mentionedin it are subject to change without notice; it is not to be

reproduced in any way, in whole or in part, without the written consent of the publisher.

4-76 9399 509 54061

SUPPORT SOFTWARE

FOR USE WITH THE

NCSS TIMESHARING

SYSTEM.SP52

Siqnttics SUPPORT SOFTWARE FOR USE SP52
WITH THE NCSS TIMESHARING SYSTEM| so

1. INTRODUCTION

A series of programs is described that provide the micro-

processor application’s design engineer with on-line support

for the development of programs to be run on the Signetics

2650 microprocessor. These programs include a cross-

assembler, a cross-simulator, and two utility programs that

convert the object file produced by the assembler into

either one of two tape formats — one suitable for loading

into the 2650 microprocessor and the other suitable for

burning PROMs. The programsare accessed through a com-

munications terminal connected to a National CSS Data

Center via standard telephonelines.

The first few sections describe the available programs and

provide detailed instructions for using them. All available

usage options are included as reference information.A final

section, called ‘‘Operating Instructions,’’ provides the user

with step-by-step procedures for generating, editing, assem-

bling, punching, and simulating Signetics 2650 programs.

These procedures explain some of the more commonly used

features of both the NCSS and the Signetics facilities and

demonstrate how to use them. |

2. USAGE OVERVIEW

The user creates the source file for his assembly language

program by using the EDIT facility available on the NCSS

system, or he may have his program punched onto cards

and read into the system at.a NCSS Data Center. Once the

source file resides on the system, the user executes the

assembler, which translates symbolic source statements

into machine language instructions, and generates both an

assembled listing of the source file and an object file. If

the assembler reports any errors in the source file, the

EDIT facility may again be invoked to correct the source

file. The corrected source file is then resubmitted to the

assembler. Once the assembler reports no errors, the user

~~ may input the object file to the simulator which then

simulates execution of the program. The simulator provides

the following capabilities:

1) Establishes initial program conditions.

2) Monitors execution sequences.

3) Modifies the program until it operates as desired.

Once the program operates correctly, the user may repeat

- the entire cycle: correct his source file; reassemble; and test

the new program using the simulator. When the program

is fully tested and debugged, it may be punched onto tape.

2650 MICROPROCESSOR

APPLICATIONS MEMO
3. EXECUTING 2650 SUPPORT PROGRAMS

A. GENERAL

To execute any of the 2650 support programs, the follow-

ing command must be entered:

ATTACH P2650

This causes the P2650 ‘‘PROTECT” Exec to execute. It

prints:

P2650 Attached as XXX, (Y) RUN? >

P2650 - Version ‘“‘No."’ - “Date”

Run on “DATE” |

ENTER COMMAND (e.g., HELP) >

At this point the user may enter any one of the following

commands:

HELP Print CommandList

HELP ‘NAME’ Print Command in Detail

QUIT Exit P2650 (Return to VP/CSS)

NEW Print New Features |

-PIPHASM Assemble 2650 Program

PIPSIM Simulate 2650 Program

PIPHTAP Punch PIPBUG Tape

PIPSTAP Punch PROM Burning Tape |

No other CSS command may be executed while under

control of the P2650 “PROTECT” Exec; e.g., you cannot

edit your file until you exit P2650 by typing “QUIT”:

ENTER COMMAND> QUIT

B. HELP — AN ON-LINE INFORMATION RESOURCE —
FACILITY

To determine what commandsare currently available on

P2650, type: |

HELP

To obtain information on how to enter any command

except HELP or QUIT, type HELP followed by the name

of the desired command; e.g., |

HELP PIPHASM

A description of the command and its format will be

printed.

4. PROGRAM DESCRIPTIONS

A. PIPHASM - SIGNETICS 2650 PIP ASSEMBLER

SIGNETICS SUPPORT SOFTWAREFOR USE WITH THE NCSS TIMESHARING SYSTEM @ SP52

PIPHASM supports the 2650 assembler languages as speci-

fied in the basic manual set (2650 BM 1000). It outputs a

hexadecimal object module in a format acceptable to the

two tape-punching programs, PIPHTAP and PIPSTAP, and

to the simulator, PIPSIM.

Following is the format of the command for executing the

assembler:

PIPHASM SOURCE (DISPLAY) (WIDTH)*

where

PIPHASM causes the assembler to execute.

SOURCEis the name of the user’s source file. This

file has a type of “SYSIN”.

DISPLAY is an optional parameter specifying that

the listing is to be printed either on the user’s console

(CON) or on the off-line printer (PTR). If this para-

meter is missing, CON is assumed.

WIDTH is an optional parameter specifying the line

width of the user’s console in characters per line—

either 80 characters (1) or 120 characters (0). If no

parameter is specified, 120 characters per line is

assumed. This parameter may be specified only if

CON has been specified by DISPLAY.

The object file:produced by the assembler will have the

same file name as the input file with “.OBJ” concatenated

at the end; it will have a filetype of ‘““DATA”.

B. SIGNETICS 2650 SIMULATOR

The 2650 simulator, a program written in FORTRANIV,

simulates the execution of a program without using the

2650 processor. The simulator executes a 2650 program by

maintaining its own internal FORTRAN storage registers

to describe the program, the microprocessor registers, the

ROM/RAM memoryconfiguration, and the input data to

be read dynamically from I/O devices. The user may

request traces of the processor status, dumps of the mem-

ory contents, and program timing statistics. Multiple

simulations of the same program with different parameters

may be executed during one simulation run.

The simulator requires as input both the program object

module produced by the 2650 assembler and a file of user

commands. It produces a listing of user commands, exe-

cutes the program, and prints (‘‘displays’’) both static and

dynamic information as requested by the user commands.

The user may direct the input of the simulator either to a

terminal or to a line printer.

PIPSIM SOURCE COMMAND (DISPLAY)

where

PIPSIM causes the simulator to execute.

*Parenthesis indicate an optional parameter with a default value.

4

SOURCE is the name of the source file originally

submitted to the assembler. The simulator concate-

nates .OBJ onto the name of the source file and uses

the designator, SOURCE.O,to find the file containing

the object module of the program to be executed.

File names are limited to eight characters. This object

module is ordinarily produced by the assembler and

has a filetype of ‘““DATA.”

COMMANDis the name of a file containing the user’s

commands. This file has a filetype of ““DATA.”

DISPLAY is an optional parameter specifying the

destination of all printed output either to the user’s

console (CON) or to the off-line printer (PRT). If no

parameter is specified, the user’s console is assumed.

C. PAPER TAPE UTILITIES

1) PIPHTAP

PIPHTAP punches the “‘hex’’ object file onto tape in a

format acceptable as input to the 2650 Prototyping Card

(2650 PC 1000). See Signetics Applications Memo SS$51

for the tape format specification.

The command format for PIPHTAPis:

PIPHTAP SOURCE

where

SOURCE is the name of the source file originally

submitted to the assembler.

When “EXECUTION:”is printed, turn the punch on.

2) PIPSTAP

PIPSTAP punches the “‘hex’’ object file onto tape in a

form suitable for burning PROMsin SMS format. PIPSTAP

uses the same command format as PIPHTAP; i.e.,

PIPSTAP SOURCE

where

SOURCEis the name of the source file originally

submitted to the assembler.

PIPSTAP responds with a request for the following infor-

mation:

@ The name of your objectfile.

@ The value (two hexadecimal digits) representing

the unburned state of your PROM.

@ The byte size (four decimal digits) of the PROMs

to be burned.

@ Up to eight pairs of START/END addresses (four

hexadecimal digits). Each address pair identifies an

area of code in the object module.

SIGNETICS SUPPORT SOFTWARE FOR USE WITH THE NCSS TIMESHARING SYSTEM ® SP52

NOTE: All numbers entered must contain leading zeros;

e.g., when entering the size of a PROM as 256, you must

enter 0256.

A START address larger than 7FFF, e.g., 8000, terminates

the input mode. Once the input mode is terminated, the

punch must be turned on. PIPSTAP punches and prints a

record for each PROM specified.

START/END addresses are rounded down/up to the limits

of the affected PROM. Thusif:

INITIAL PROM VALUE = FF,

PROM SIZE = 0256,

START ADDR = 0040,

and

END ADDR = 0240,

PIPSTAP punches three records: 0000 — OOFF, 0100 —

O1FF, and 0200 — O2FF. Each of the records is preceded

by its initial address (0000, 0100, and 0200). This initial

address is punched into the tape so that it is visible. This

enables the tape to be separated into individual strips for

each PROM. The areas 0000 - OO3F and 0241 - O2FF are

filled with FFs.

Each record is punched in exactly the order that its

START/END address was entered so that multiple records

may be punched for the same PROM. When PIPSTAP

stops punching, turn the punchoff.

5. OPERATING INSTRUCTIONS FOR USING

THE NCSS TIMESHARING SERVICE

A. GENERAL

1. The computer requests the user to type information by

printing a > character at the start of a line.

2. The user terminates each line typed with a carriage

return.

3. The user deletes (tells the computer to ignore) char-

acters that were erroneously typed by typing the @

character. The computer deletes one preceding char-

acter for each @ character typed: e.g., the message

LANE@@@INE corrects the word LANE to LINE. The

[character deletes all characters previously typed on

the line.

4. In all of the following examples, lines typed by the

user are underlined to distinguish them from lines

printed by the computer.

B. LOGGING IN TO CSS

1. Set the terminal to ‘““LINE”’mode.

2. Select the half-duplex mode using the HALF/FULL

duplex switch on your terminal (not required on some

terminals).

3. Dial the NCSS-supplied telephone number.

4. When youhear a high-pitched tone (indicating that you

have established communication with the computer),

place the telephone receiver in the modem coupler.

5. Log on by typing an ‘S’ or a ‘O’ followed by a carriage

return; [.e.,

S carriage return (when using a 10 cps terminal)

O carriage return (when using a 30 cps terminal)

In response, the system types

CSS ONLINE — XXXX

to signal that you have reached an NCSS monitor. XXXX

is the name of the NCSS system with which you have

established a connection. The system also types the prompt

character >, indicating that it is ready to accept additional

input from your terminal. In response, you should type:

> LWEST XXXXXX

where XXXXXX is your user 1D number.

The system will respond with

PASSWORD

BSBRKKRK

providing a blocked-out area in which you enter your

password. Type the password on top of the blocked-out

area and press the carriage return.

When the system responds with

A/C INFO:

press the carriage return. (You may optionally enter some

accounting information if you desire.).

Messages from the NCSS system are printed here.

CSS.211 data

time>

C. USING THE EDITOR TO CREATE A NEW SOURCE

FILE AND/OR TO EDIT AN EXISTING SOURCE

FILE |

1) Creating a New Program Source File

a. On NCSS every file has a file name (FN) and file

type (FT). A file name is the unique name to be

assigned to your program. Assign your program file

name of 1-to-4 alphanumeric characters beginning

with an alphabetic character. The file type of your

source program is ‘““SYSIN.’ The object file created

5

SIGNETICS SUPPORT SOFTWARE FOR USE WITH THE NCSS TIMESHARING SYSTEM @ SP52

by the assembler is your unique file name plus the

.OBJ appendage. The file type of object files is

“DATA.”

The timesharing computer stores all source and

object files on disk. The user may obtain a directory

of the files stored in his user area by typing the

| letter, L, e.g.,

time > L

FILENAME FILETYPE MODE ITEMS

PROG SYSIN Pp 40

PROG.OBJ DATA P 5

To create a new program source file, the user calls

the editor program with an indication of the file

name and file type to be created. The editor recog-

nizes that the file name specified is not in the direc-

tory and creates a newfile.

time > E filename SYSIN

NEW FILe.

INPUT:

Type your program here. If you make mistakes, use

the @ key or finish typing your program and make

corrections as specified in step d below. Type an

additional carriage return after the last line to exit

the new file input mode. The system responds with:

EDIT:

If you wish to edit your program (i.e., correct any

typing errors. or omissions), proceed to step 2b

below. If you do not wish to edit your program at

this time, type ‘“‘FILE”’ to exit the editor.

2) Editing a Program Source File

da. The edit mode can be entered directly when the

editor is called by specifying a filename-filetype

already on disk; e.g., if PROG SYSIN already exists

on disk, enter:

time > E PROG SYSIN

EDIT:

Enter edit commands.

The system's editing capabilities are based on the

pointer concept; t.e., any line ina file can be located

by an imaginary pointer. This pointer can be moved

up or down, positioned at the beginning or end of

the file, or positioned at a specific line. The position

of the pointer determines where the next edit

request takes place. The position of the pointeris

referred to as the ‘‘current line.”

Following is a list of some of the most frequently

used editing commands: (NOTE: Whenever “n” is

indicated in a command, it represents a decimal

number. If “n” is left off the command, the number

7 is assumed.} |

>T Moves the pointer to the first line of

the file.

>DOn Moves the pointer down n lines and
prints the new currentline.

> UP n Moves the pointer up n lines and

prints the new current line.

> L/string/ Moves the pointer to the next line

which contains the character string

specified between the slash delimiters.

It then prints that line. It does not

search the current line for the string.

If the character string contains a/,

then some other character, such as the

$, may be used as the delimiter.

>Pn Print n lines starting with the current

line. Also move the pointer to thelast

line printed. if n = 1 or is absent, the

current line is printed and the pointer

is not moved.

>DEn Delete n lines starting with the current

line.

>R text Replace the entire line following the

pointer with the text on the R line.

The text is separated from the R by

only 1 blank. Any additional spaces

are considered part of the text.

>C /string 1/ Replace character string 1 in the cur-

string 2/ rent line with character string 2. If

the / character appears in either of the

strings, use some other character, such

as the $, as the string delimiter.

>| An | followed by a carriage return

INPUT: puts the editor into input mode. This

>a request is issued to insert lines after

> the current line. After the ““INPUT:”

EDIT: message is printed, the user types one

or more lines to be inserted into the

program. The last line typed should

be followed by two carriage returns to

return to EDIT mode. The pointer is

moved to point to the last line in-

serted.

d. Error Messages

Editor error messages are as follows:

? Invalid edit request.

SIGNETICS SUPPORT SOFTWARE FOR USE WITH THE NCSS TIMESHARING SYSTEM #® SP52

EOF: The end offile is reached by an edit

request. The request is terminated,

and the pointer is positioned after

the last line of the file.

TRUNCATED The following line was truncated as

shown. Only 72 character lines are

permitted.

e. Exiting the Editor

To exit the editor and save your newfile, type:

> FILE

To exit the editor without changing your original

file, type:

>QUIT

D. ASSEMBLING THE PROGRAM SOURCE FILE TO

CREATE A HEXADECIMAL FORMAT OBJECT

FILE FOR PROGRAM SIMULATION AND FOR

PROGRAM DEBUGGING ON THE PROTOTYPING

SYSTEM :

time > ATTACH P2650

P2650 ATTACHEDAS192,(T)

P2650 - Version 2.0 - 1/5/76

RUN ON ‘DATE’

P2650 COMMAND (e.g., HELP) > PIPHASM filename

P2650 ASSEMBLER...

RUN... (YES OR NO)? > YES
EXECUTION:

(Your assembly listing will be printed here. Be patient—

there may be a short delay before printing starts.)

TOTAL ASSEMBLER ERRORS = X

E. LOGGING OFF NCSS

Exit P2650, log off the NCSS system, and review your

program for logical and syntactical errors.

ENTER COMMAND > QUIT

time > LOGOUT

XXXX VPU’S,XX CONNECT HRS,XX 1/O

LOGGED OFF ATtime ON date

F. CHECKING OUT YOUR PROGRAM USING THE

SIMULATOR

1. Log on the system as described in step B.

2. Using the editor program, create a file containing the

simulator commands. This file is of tyoe DATA. Thefile

name may be the same as the source file name but with

a.TST appendage:

time > E filename.TST DATA

NEW FILE

INPUT:

NOTE: The directions for using the editor described in

steps C.71 and C.2 apply here also.

Enter commands here.

EDIT:

> FILE

3. Request a simulator run.

time > ATTACH P2650

P2650 ATTACHED AS192, (T)

P2650 - Version 2.0 - 1/5/76

RUN ON ‘DATE’

P2650 COMMAND; e.g., ‘HELP’ > PIPSIM filename

filename. TST

P2650 SIMULATOR...

RUN...(YESOR NO) ?>YES

EXECUTION:

The simulator listing is printed here.

G. LOGGING OFF

Exit P2650, log off the NCSS system, and review the

simulator listing to determine program correctness.

P2650 COMMAND > OUIT

time > LOGOUT

XXXX VPU’S XX CONNECT HRS, XX 1/O

LOGGED OFF ATtime ON date.

H. PUNCHING A PAPER TAPE FOR DEBUGGING ON

THE PROTOTYPE CARD SYSTEM

Check to ensure that the punch is off. After the ‘“EXECU-

TION:”’ message is printed by the computer, turn the

punch on. Turn the punch off after it stops punching.

P2650 COMMAND > PIPHTAPfilename

(NOTE: Do not use the .OBJ extension on the filename.

The punch program assumes this is the .OBJ file and auto-

matically adds this extension.)

EXECUTION:

OBJ file will be listed here.

P2650 COMMAND > QUIT

Log off the system as in step G above.

1. PUNCHING A PAPER TAPE FOR BURNING PROMS

Check to see that the punch is off, and log into the system

using the procedures outlined in step B.

Execute PIPSTAP:

P2650 COMMAND (e.g., HELP) > PIPSTAP filename

P2650 PIPSTAP...

RUN...(YES OR NO)? > YES

SIGNETICS SUPPORT SOFTWARE FOR USE WITH THE NCSS TIMESHARING SYSTEM SP52

PIPSTAP responds with a request for the unburnedstate of

your PROM. Since PIPSTAP punches data into each loca-

tion of the PROM,if your object module does not fill the

entire PROM, PIPSTAP requires a value that can be used

for the other locations. This value must be entered as two

hexadecimal digits:

INITIAL PROM VALUE? 00

PIPSTAP then asks for the size (in bytes) of your PROM,

which must be entered in four decimal digits. The maximum

allowable size is 1024.

PROM SIZE? 0256

PIPSTAP requests both a START and an END addressfor

the code to be punched. Use four hexadecimal digits for

each address as shown below. Don't forget the leading

zeros.

START ADDR? Q000

END ADDR? 000A

PIPSTAP will request up to eight pairs of START/END

addresses. Enter a number larger than 7FFF, e.g., 8000,

_ when you have completely described the object module:

START ADDR? 8000

When you press

Carriage Return

PIPSTAP punches 50 frames of leader followed by the

PROM record specified by your START and END addresses.

The START address of your PROM, 0000,is punched into

the tape so that it is visible.

When punching is complete, turn the punch off and log off

the system. |

6. REFERENCE DOCUMENTS

For additional information, consult the following manuals:

@® Signetics 2650 Microprocessor Manual (2650BM 1000)

e@ VP/CSS Reference Manual (Form 106-3, available

from NCSS)

@e \VP/CSS Edit Command (Form 108-4, available from

. NCSS)

© N.V. Philips’ Gloeilampentabrieken

This information is furnished for guidance. and with no guarantees as to its accuracy or completeness,its publication conveys no licence under any patent or other right, nor
does the publisher assumeliability for any consequenceof its use: specifications and availability of goods mentioned in it are subject to change withoutnotice:it is not to be
reproduced in any way, in whole or in part. without the written consent of the publisher

4-76 9399 509 54161

SUPPORT SOFTWARE

FOR USE WITH GE’S

MARKIll TIMESHARING

SYSTEM...... SP54

Siqnoties SUPPORT SOFTWARE FOR USE WITH GE’s SP54
MARKIll TIMESHARING SYSTEM

1. SUMMARY

A series of programs is described that provide the micro-

processor application’s design engineer with on-line support

for the development of programs to be run on the Signetics

2650 microprocessor. These programs include a cross-

assembler, a cross-simulator, and two tape utility programs

that convert the object file produced by the assembler into

either a ‘‘hex’’ format, suitable for loading into system

memory by “PIPBUG,” or into a format suitable for

burning PROMs. The programs are accessed through a

communications terminal connected to General Electric's

Mark Ill Timesharing System via standard telephone lines.

2. USAGE OVERVIEW

The user creates the source file for his assembly language

program by using the editing facility or his program may be

punched onto cards and read into the system. Once the

source file resides in the system, the user executes the

assembler, which translates symbolic source statements into

machine language instructions, and generates both an

assembled listing of the source file and an object file. If the

assembler reports any errors in the source file, the user may

again invoke the editing facility to correct the errors. The

corrected source file is then resubmitted to the assembler.

Once the assembler reports no errors, the user may input

the object file to the simulator which simulates execution

of the program.

The simulator provides the following capabilities:

1) Establishes initial program conditions.

2) Monitors execution sequences.

3) Modifies the program until it operates as desired.

Once the program operates correctly, the user may repeat

the entire cycle: correct his source file, reassemble, and test

the new program using the simulator. When the program is

fully tested and debugged, it may be punched onto tapein

a format for loading into system memory and/or for

burning PROMs.

3. PROGRAM DESCRIPTIONS

The next few sections describe the available programs and

provide detailed instructions for using them. All available

usage options are includedas reference information.A final

section, called ‘Operating Instructions,’ provides step-

1

2650 MICROPROCESSOR

APPLICATIONS MEMO
by-step procedures for generating, editing, assembling,

simulating, and punching Signetics 2650 programs. These

procedures explain some of the more commonly used

features of both the General Electric Timesharing System

and the Signetics facilities and demonstrate how to use

them.

A. PIPHASM — SIGNETICS 2650 PIP ASSEMBLER (HEX

TAPE FORMAT)

PIPHASM supports the 2650 assembler language as speci-

fied in the basic manual set (2650 BM 1000). It outputs a

hexadecimal object module in a format acceptable to the

two tape-punching programs, PIPHTAP and PIPSTAP, and

to the simulator, PIPSIM.

To execute the assembler, enter the command:

/PIPHASM

The assembler will start executing and will request the

following information:

@ The name of the input (source) file.

@ The name assigned to the assembler-produced object

file. It is suggested that some naming convention be

adopted; e.g., always name the object file with the

first four letters from the name of the sourcefile

followed by ‘“.OBJ”.

@ The width of your terminal carriage. Enter ‘’0” if

your terminal carriage has 120 characters; otherwise,

enter “17.

To assemble your program, the assembler creates a scratch

file on your user ID. If the assembly runs to completion,

this file will be purged. But if the assembly is aborted, the

file may remain on your user ID. You may collect up to ten

of these scratch files before the assembler will be unable to

assemble because it cannot find a scratch file name. The

scratch file names that must be purged are referred to as:

A....00,A....01,...,A....09.

B. SIGNETICS 2650 SIMULATOR

The 2650 simulator, a program written in FORTRANIV,

simulates the execution of a 2650 program without using

the 2650 processor. The simulator executes a 2650 program

by maintaining its own internal FORTRANstorage registers

to describe the 2650 program, the microprocessorregisters,

the ROM/RAM memoryconfiguration, and the input. data

to be read dynamically from 1/O devices. The user may

SIGNETICS SUPPORT SOFTWARE FOR USE WITH THE GE TIME SHARING SYSTEM @® SP54

request traces of the processor status, dumps of the con-

tents of memory, and program timing statistics. Multiple

simulations of the same program with different parameters

may be executed during one simulation run.

The simulator requires as input both the program object

module produced by the 2650 assembler and a file of user

commands. It produces a listing of the user’s commands,

executes the program, and prints (‘‘displays’’) both static

and dynamic information as requested by the user’s com-

mands.

The Signetics Basic Manual Set (2650 BM 1000) contains

a description of the user commands and the general opera-

tion of the simulator.

To execute the simulator, enter the command:

/PIPSIM

The simulator starts executing and requests the following

information:

@ The name of the object module produced by the

assembler for your program.

@® The name of the file of simulator commands.

C. PAPER TAPE UTILITIES

The two paper tape utility programs, PIPHTAP and

PIPSTAP, complete the series of programs discussed in this

memo.

1) PIPHTAP

PIPHTAP punches the “‘hex’”’ object file onto tape in a

format acceptable as input to the 2650 Prototyping Card

(2650 PC 1001). Refer to Signetics Applications Memo

SS51 for the tape format specifications.

To execute PIPHTAP, enter the command:

/PIPHTAP

PIPHTAP responds with a request for the name of your

object (input) file; it then requests that the punch be

turned on and that the carriage return key be depressed.

PIPHTAP punches about 50 frames of leader before it

punches the object module. When the system responds

with “READY,”turn the punchoff.

2) PIPSTAP

PIPSTAP punches the “‘hex”’ object file onto tape in a form

suitable for burning a PROM. To execute PIPSTAP, enter

the following command:

/PIPSTAP

PIPSTAP responds with a request for the following infor-

mation:

@® The nameof the objectfile.

@ The value (two hexadecimal digits) representing the

unburned state of your PROM.

@ The size in bytes (four decimal digits) of the PROMs

to be burned.

@ Up to eight pairs of START/END addresses (four

hexadecimal digits). Each address pair identifies an

area of code in the object module.

NOTE: All numbers entered must contain leading zeros;

e.g., when entering the size of a PROM as 256, you must

enter 0256.

A START address larger than 7FFF, e.g., 8000, terminates

the input mode.

Once the input mode is terminated, PIPSTAP requests

that the punch be turned on. It then punches and prints

a record for each PROM specified.

START/END addresses are rounded down/upto the limits

of the affected PROM. Thus if:

INITIAL PROM VALUE = FF,

PROM SIZE = 0256,

START ADDR = 0040

and

END ADDR = 0240,

PIPSTAP punches three records: 0000 - OOFF, 0100 -

O1FF, and 0200 — O2FF. Each of the records is preceded

by its initial address (0000, 0100, 0200) punched into the

tape so that it is visible. This enables the tape to be

separated into individual strips for each PROM. The areas

0000 - OO3F and 0241 - O2FF are filled with FFs.

Each record is punched in exactly the order in whichits

START/END address was entered so that multiple records

may be punched for the same PROM. When the system

types “READY,”turn the punchoff.

4. OPERATING INSTRUCTIONS

This section provides a synopsis of operating instructions

for using the GE Mark III Timesharing Service to generate,

edit, assemble, simulate, and punch Signetics 2650 pro-

grams. For more detailed information on the capabilities of

the GE Mark II| Timesharing Service, refer to the following

manuals available from General Electric’s Information

Services Business Division:

1) Command System — Mark Ill Foreground Reference

Manual No. 3501.01J.

2) Editing Commands — Mark II| Foreground Reference

Manual No. 3400.01F.

When using high-speed terminals (120 cps and up) or in

the event of any difficulty, contact your local General

2

SIGNETICS SUPPORT SOFTWARE FOR USE WITH THE GE TIME SHARING SYSTEM @ SP54

Electric Sales Office. A list of General Electric Sales

Offices is provided at the end of this document.

A. LOGGING IN

@ Set the terminal to “LINE” mode.

@ Select the half-duplex mode, using the HALF/FULL

duplex switch (if necessary).

@ When you hear the high-pitched tone (indicating that

you have established communication with the com-

puter), place the telephone receiver in the modem

coupler.

NOTE: In the following examples cata typed by the user is

underlined to distinguish it from data printed by the com-

puter.

Log in as follows.

H carriage return

Depressing the carriage return key terminates all input lines.

Some General Electric personnel recommend that four Hs,

HHHH, be entered instead of one. The timesharing system

determines the speed of your terminal from the speed at

which these characters are received

The computer will respond to your H carriage return entry

with:

U#=

At this point enter your user ID (3 alphabetic characters

and 5 numeric characters) and press the carriage return:

U#= AAANNNNN

The system responds

PASSWORD

RRKRKRKK

providing a blocked-out area in which you may enter your

password. Type the password on top of the blocked-out

area and press the carriage return. At this point the system

may send an informative message to your terminal. Some

user IDs are equipped with a short log-on sequence. If this

is true, the system responds with

READY

If this is not true, the system responds with

ID:

This is a request for accounting information. If you do not

wish to enter any accounting information, simply press the

carriage return:

|D: carriage return

The computer will respond with:

SYSTEM:

Specify FORTRAN IV

SYSTEM: FIV

since both the assembler and the simulator are written in

FORTRAN IV. The system will respond with:

NEW OR OLD

This is the same as the READY message. The system is

now ready to perform any task you request.

B. ERROR RECOVERY

Prior to issuing any commands, it is essential to Know how

to delete an unwanted command.

© Character Delete: To delete the last character typed,

hold down the shift key and depress zero (0) (ASCII

decimal code 95). The ASCII decimal code is

included since the actual key used may differ from

terminal to terminal.

@ Line Delete. To abort a line before the carriage

return key is depressed, hold down the control key

and depress ‘X’’ (ASCII decimal code 24).

@ Break. To abort a command while it ts being exe-

cuted (e.g., stop printing a long file), depress the

BREAK or interrupt key twice.

C. CREATING AND/OR EDITING A SOURCEFILE

Both the assembler and the simulator expect you to iden-

tify a source file that you have created. The assembler

expects the 2650 program source file and the simulator

expects the user’s command source file. To create the

source file, the name of the file must be specified:

NEW FILENAME

This command assigns the name, FILENAME, to the

temporary working file. At this point, the file is empty.

Notice that the file name, FILENAME,is eight characters

long. We recommend that the first four characters be

meaningful. Acceptable file names are 1-to-8 characters

long using only the letters A through Z, numerals 0 through

Q, and the period (.).

At this point enter each line of the source file into the

temporary buffer:

100 *PROCESSOR SYMBOLS

110 RO EQU 0

120 R3 EQU 3

130 *PROGRAM VARIABLE STORAGE

140 ORG H‘100'
150 TLEN EQU 3 TABLE LENGTH

160 TBLA RES TLEN TABLE A

170 TBLB- RES TLEN TABLE B

180 “MOVE DATA IN TBLA TO TBLB. TLEN MUST

185 “BE LESS THAN 256 BYTES

4
e
y

2
=
e

a

SIGNETICS SUPPORT SOFTWARE FOR USEWITH THE GE TIME SHARING SYSTEM ® SP54

190 ORG 0

200 LODI,R3 TLEN

210 LOOP LODA,RO TBA-1,R3

220 STRA,RO TBB-1,R3

226 NOP

228 NOP

230 HALT

240 END

Note that each line starts with a line number followed by a

space and then the source dataitself. Lines may be entered

out of order, since the system will sort the source lines by

line number. Once the data is entered, this temporary file

must be saved in permanent storage using the following

command:

SAVE

The system responds with a READY message, and the

temporary file remains intact.

To list the contents of your temporary file, type:

LIST

The system responds by printing your file.

Should you want to change your source file, bear in mind

that the only file that can be modified (or edited) is the

temporary working file. At this point your source program

still resides in the working file; however, if your source

program resided in a permanent rather than a workingfile,

enter the following command:

OLD FILENAME

The OLD command reads the contents of the permanent

file, named FILENAME,into the temporary file and assigns

— the name, FILENAME,to the temporaryfile.

The source file is now ready for editing.

To add a line, simply type the line with a new line number:

225 BDRR,R1 LOOP

To change a line, retype the line using the same line num-

_ ber:

225 BDRR,R3 LOOP

To change all occurrences of the letters “TB” to “TBL”

from lines 210 through line 220, enter the following

command:

CHAVC 210/TB/TBL/220

This command changes the following two source lines:

210 LODA,RO TBLA-1,R3

220 STRA,RO TBLB-1,R3

READY

Lines 226 and 228 may be deleted with either one of the

following two commands: :

EDI DEL 226-228

or

EDI DEL 226,228

The first command deletes lines 226 through 228, while

the second commanddeletes lines 226 and 228.

List your temporaryfile and verify all changes:

LIST

The system prints yourfile here and then prints:

READY

Save your file in the permanent file that was created with

the SAVE command:

REPLACE

READY

The SAVE command creates a permanent file with the

same name as the one assigned to the temporary file. The

REPLACE commandtakes the content of the temporary

file and stores it in the already existing permanentfile that

has the samefile name.

NOTE: Most system commands may be shortened to the

first three letters; e.g., REPLACE = REP.

D. ASSEMBLING THE PROGRAM TO CREATE AN

OBJECT MODULE

The editing facility assumes that each line of your source

program has a line number at the beginning. Since neither

the assembler nor the simulator will accept these line num-

bers, the following command must be executed to remove

them:

EDI DES FILENAME

READY

The assembler is now ready to be executed. Enter the

command:

/PIPHASM

The assembler responds with a request for the name of your

source program:

INPUT FILENAME? FILENAME

The assembler then requests the name of your object module:

OBJECT FILENAME? FILE.OBJ

This is a file that the assembler generates. Your file must

be assigned a name. One useful technique is to use the

first four letters of the name of the source program with

.OBJ concatenated onto the end.

4

SIGNETICS SUPPORT SOFTWARE FOR USE WITH THE GE TIME SHARING SYSTEM @ SP54

The computerprints:

TYPE ‘0’ FOR WIDE CARRIAGEor

TYPE ‘1’FOR NARROW CARRIAGE 1.

If your terminal prints: 120 characters per line, type ‘0’.

If your terminal prints less than 120 characters per line,

type ‘1’.

The assembler responds by printing your listing. When the

listing is complete, the system prints:

READY

Now that your listing is complete, you mayrestore the line

numbers to your file by entering the following command.

This is only necessary if you plan to edit your file.

EDI RES FILENAME

E. LOGGING OFF

Log off the GE Timesharing System and review your pro-

gram for logical and syntactical errors.

BYE

00024.11 CRU 0000.41 TCH 0009.74 KC

OFF AT 16:20PDT 10/15/75

F. USING THE SIMULATOR TO TEST AND DEBUG

YOUR PROGRAM

1. Log onto the system using the procedures outlined in

step A.

2. Create a file containing the simulator commands. As

with the object module, you could name this file by

concatenating .TST onto the first four letters of FILE-

NAME.

NEW FILE.TST

READY

100 PATCH 100,01 101,02 103,03

120 DUMP A, 100 — 105

130 FEND

SAVE

3. Request a simulator run.

First, you must remove the line numbers from the

commandfile:

EDI DES FILE.TST.
READY
REP
READY

Then execute the simulator by entering the following

command:

/PIPSIM

The simulator responds with a request for the following

information:

OBJECT MODULE NAME? FILE.OBJ

Enter the name of the object module generated by the

assembler.

COMMAND FILE NAME? FILE.TST

Enter the name of the simulator command file.

The simulator prints its output at this time.

Log off the General Electric Timesharing system and

review the simulator listing to determine if any program

correctionsare required.

BYE

G. PUNCHING A PAPER TAPE FOR DEBUGGING ON

THE PROTOTYPE CARD SYSTEM

Check to see that the punchis off, and log onto the system

using the procedures outlined in step A.

When the system responds with

READY

enter the command:

/PIPHTAP

PIPHTAP responds with a request for the name of your

input file:

ENTER INPUT FILE NAME? FILE.OBJ

When the input file name is entered, PIPHTAP prints the

following instructional message:

TURN ON PUNCH AND HIT CARRIAGE RETURN.

Whenthe carriage return key is depressed, PIPHTAP punches

50 frames of leader and then punches your object module.

The object module is also printed.

When punching is complete, the system responds with

READY

Turn the punch off, and log off the system.

H. PUNCHING A PAPER TAPE FOR BURNING PROMS

Check to see that the punchis off, and log onto the system

using the procedures outlined in step A.

When the system responds with

READY

enter the command:

/PIPSTAP

SIGNETICS SUPPORT SOFTWARE FOR USE WITH THE GE TIME SHARING SYSTEM @® SP54

PIPSTAP responds with a request for the name of your

input file:

ENTER OBJECT FILE NAME? FILE.OBJ

PIPSTAP then requests that you enter the unburned state

of your PROM. (Since PIPSTAP punches data into each

location of the PROM, PIPSTAPrequires a value that can

be used for the other locations):

INITIAL PROM VALUE? 00

This value must be entered as two hexadecimal digits.

PIPSTAP then asks for the size of your PROM (in bytes)

which must be entered in four decimal digits. The maximum

allowable size is 1024.

PROM SIZE? 0256

PIPSTAP requests both a START and an END address for

the code you want punched. Use four hexadecimal digits

for each address as shown below. Don’t forget the leading

zeros.

PIPSTAP will request up to eight pairs of START/END

addresses. Enter a number larger than 7FFF, e.g., 8000,

when you have completely described the object module:

START ADDR? 8000

PIPSTAP prints the following message:

TURN ON PUNCH AND HIT CARRIAGE RETURN

When you press

Carriage Return

PIPSTAP punches 50 frames of leader followed by the

PROM record specified by yourSTART and END addresses.

The START address of your PROM, OOOO,is punched into

the tape so that it visible. Part of the object module will

be printed.

When punching is complete, the system responds with:

READY
START ADDR? 0000

END ADDR? OO0A Turn the punch off, and log off the system.

5. GENERAL ELECTRIC SALES OFFICES

CHICAGO

233 South Wacker Drive

Chicago, Illinois 60666

(312) 781-7840

DETROIT

22150 Greenfield Road

Oak Park, Michigan 48237

(313) 968-8100

MINNEAPOLIS

1500 Lilac Drive, South

Minneapolis, Minnesota 55416

(612) 546-0990

MILWAUKEE

615 East Michigan Street

Milwaukee, Wisconsin 53202

(414) 271-7900

CINCINNATI

580 Walnut Street

Cincinnati, Ohio 45202

(513) 559-3660

LOUISVILLE

Citizens Plaza

Louisville, Kentucky 40202

(502) 452-4211

INDIANAPOLIS

Castleview Building

8000 Knue Road

Indianapolis, Indiana 46250

(317) 842-0100

FT. WAYNE

Lakeside |! Building

2250 Lake Avenue

Ft. Wayne, Indiana 46805

(219) 423-1406

CLEVELAND

1000 Lakeside Avenue, N.E.

Cleveland, Ohio 44114

(216) 523-6251

COLUMBUS

Harrington Building

90 E. Wilson Bridge Road

Worthington, Ohio 43085

(614) 438-2170

PITTSBURGH

Two Gateway Center

Pittsburgh, Pennsylvania 15222

(412) 566-4330

NEW YORK FINANCIAL

Mc-Graw Hill Building

1221 Avenue of the Americas

New York, New York 10020

(212) 997-0317

NEW YORK INDUSTRIAL

Mc-Graw Hill Building

1221 Avenue of the Americas

New York, New York 10020

(212) 997-0351

LONG ISLAND

1 Huntington Quadrangle

Huntington Station

L. 1. New York 11746

(516) 694-7636

EAST ORANGE TELEPHONE BRANCH

33 Evergreen Place

East Orange, New Jersey 07018

(201) 672-0700

PHILADELPHIA

1700 Market Street

Philadelphia, Pennsylvania 19103

(215) 864-7474

HARRISBURG

3800 Market Street

Camp Hill, Pennsylvania 17011

(717) 761-1481

SCHENECTADY

650 Granklin Street, 3rd Floor

Schenectady, New York 12305

(518) 372-6436 ©

PITTSFIELD

395 Main Street

Dalton, Massachusetts

(413) 494-4308

BOSTON

98 Galen Street

Watertown, Massachusetts 02172

(617) 926-2911

BUFFALO

3980 Sheridan Drive

Buffalo, New York 14226

(716) 839-5222

SYRACUSE

202 Twin Oaks Drive

Syracuse, New York 13206

(315) 456-1995

ROCHESTER

One Marine Midland Plaza

Rochester, New York 14604

(716) 232-6523

STAMFORD

2777 Summer Street

Stamford, Connecticut 05905

(203) 359-2985

HARTFORD

111 Founders Plaza

East Hartford, Ct. 06108

(203) 289-7941

LOS ANGELES NORTH

3550 Wilshire Blvd. |

Los Angeles, California 90010

(213) 388-9626

SAN FRANCISCO TELCO BRANCH
One Embarcadero Center
San Francisco, California 94111
(415) 781-1155 ,

SEATTLE |

1218 Bank of California Center

Seattle, Washington 98164
(206) 575-2990

PORTLAND

2154 N. E. Broadway
Portland, Oregon 97232

(503) 288-6916

SAN FRANCISCO

One Embarcadero Center

San Francisco, California 94111

(415) 989-1100.
AL.

PALO ALTO BRANCH

1120 San Antonio Road |

Palo Alto, California 94303

(415) 969-3772

LOS ANGELES SOUTH

3550 Wilshire Boulevard

Los Angeles, California 90010

(213) 385-9411

ATLANTA

2200 Century Parkway, N. E.

Atlanta, Georgia 30345

(404) 325-9889

BIRMINGHAM

300 Office Park Drive

Birmingham, Alabama 35223

(205) 879-1298

NASHVILLE
~ 293 Plus Park Boulevard

Nashville, Tennessee 37217

(615) 259-4570

CHARLOTTE

301 S. McDowel Street

Charlotte, North Carolina 28204

(704) 374-1783

GREENSBORO

604 Green Valley Road

Greensboro, N. C. 27408

(919) 292-7230

GREENVILLE

252 South Pleasantburg Drive

Greenville, S. C. 29607

(803) 233-5335

MIAMI

8410 N.W. 53rd Terrace

Miami, Florida 33166

(305) 592-7610

TAMPA

5420 Bay Center Drive

Tampa, Florida 33609

(813) 877-8294

BETHESDA

4720 Montgomery Lane

Bethesda, Maryland 20014

(301) 654-7061

BALTIMORE |

25 South Charles Street

Baltimore, Maryland 21201

(301) 539-6770

© NV. Philips’ Gloeilampenfabrieken

RICHMOND

Willow Oaks Office Building

6767 Forest Hill Avenue

Richmond, Virginia 23235

(804) 320-0192

WASHINGTON

777 - 14th Street, N.W.

Washington, D.C. 20005

(202) 628-4000

ST. LOUIS

1015 Locust Street

St. Louis, Missouri 63101

(314) 342-7780

KANSASCITY

911 Commerce Tower

Kansas City, Missouri 64199

(816) 842-9745

DALLAS

1341 West Mockingbird Lane

917 East Tower

Dallas, Texas 75247

(214) 631-0910

SHREVEPORT

208-A Beck Building

Shreveport, Louisiana 71102

(318) 425-2476

HOUSTON

601 Jefferson

Houston, Texas 77002

(713) 224-8294

DENVER
‘201 University Boulevard

Denver, Colorado 80206

(303) 320-3174

PHOENIX

3225 North Central Avenue

Phoenix, Arizona 85004

(602) 264-7881

TULSA

1900 Fourth National Bank Building

Tulsa, Oklahoma 74119

(918) 582-0800

OKLAHOMACITY

5700 North Portland

Oklahoma City, Oklahoma 73112

(405) 947-2376

This intormation is furnished for guidance, and with no guaranteesasto its accuracy or completeness, its publication conveys no licence under any patent or other right, nor

does the publisher assume liability for any consequenceof its use: specifications and availability of goods mentionedin it are subject to change without notice: it is not to be

reproduced in anyway. in whole or in part, without the written consent of the publisher

4-76 9399 509 54261

ABSOLUTE

OBJECT

FORMAT

9551

(REVISION NO. 1)

SiqnOties ABSOLUTE OBJECT FORMAT SsHT

REVISION NO.1

INTRODUCTION

The format for absolute code produced for the 2650 is

described in this application note.

The absolute object code is formatted into blocks. The

first character of every block is a colon. Inside of a block,

all the characters are hexadecimal, i.e., 0 to 9 or A to F,

inclusive. Only non-printing ASCII control characters may

occur within an interblock gap. These are the charactersin

the first two columns (columns O and 1) of the ASCII

standard code table. A CR/LF is used within the interblock

gap to reset the TTY or terminal after each block.

Each block is independent. For example, paper tape can be

positioned prior to any block and a load started. The

loading of absolute object code will be halted by:

A BCCerror on the address + countfields
A BCC error on the datafield

Anincorrect block length

A non-hex character within the block

The block length field contains the number of bytes of

actual data which is half the number of hex characters in

the data field. While the size of the data field can range from

2 to 510 characters, a standard size of. 60 characters has

been established so that the tape may be easily generated

and read on a variety of terminals and systems. A block

length of zero indicaces an End of File (EOF) block. The

address field of an EOFblock contains the start address of

the loaded program.

The Block Control Character is 8 bits formed from the

actual bytes and not from the ASCII characters. The bytes

EXAMPLE OF OBJECT FORMAT

2650 MICROPROCESSOR

APPLICATIONS MEMO

are in turn exclusive or’ed to the BCC byte, and then the

BCC byte is left rotated one bit. It appears as two hex

characters. Both the address and countfields and the data

field are followed by a BCC character pair. The BCC

prevents storing data at an invalid memory address or

storing bad data into memory.

EXAMPLE: An object tape that loads ten bytes starting

at location 500

:05000A3C0455B024F FF01F05040030
:000000

FORMAT

1. Interblock gap of any non-printing characters including

Spaces

2. Start of block character;

a colon

3. Addressfield;

four hex characters

4. Countfield;

two hex characters in range 0 to 1E

5. BCC for address and countfields;

two hex characters

6. Data field;

twice the value in the count field which is the number

of memory locations loaded by the current block

7. BCC for the datafield:

two hex characters

:05000A3C0455B024FFF01F05040030

2 — Start of block character (colon)

3 — Starting address for block (H'0500’)

4 — Numberof bytes in block (H'OA’ = 10)
5 — BCC bytefor fields 3 and 4 (H'3C’)
6 — Data, two characters per byte

7 — BCC byteforfield 6 (H'30’)
© N.V. Philips’ Gloeilampentabrieken

This information is furnished for guidance. and with no guaranteesas to its accuracy or completeness; its publication conveys no licence under any patent or other right, nor

does the publisher assumeliability for any consequenceof its use; specifications and availability of goods mentioned in it are subject to change without notice; it is not to be
reproduced in any way, in whole or in part, without the written consent of the publisher

4-76 9399 509 54361

LOW COST CLOCK GENERATOR CIRCUITS MP52

w
s

Siqnoties LOW COST CLOCK GENERATOR CIRCUITS MP52

GENERAL

The clock circuit requirements for microprocessors range

from tightly specified, two-phase, non-overlapping types

to simple single-phase, TTL compatible types. To lower

system cost, the Signetics 2650 Microprocessor was

designed to operate with a single-phase, TTL-level clock

without any special clock driver circuitry. The clock input

specifications for the 2650 are summarized in TableI.

This Applications Memo describes several clock generator

circuits that may be used with the 2650. These circuits

use standard TTL logic elements (7400 series). They

include RC, LC, and crystal oscillator type circuits.

The stability required by the user’s application will deter-

mine the type of clock generator that should be used.

Tables showing the measured frequencies at several temper-

atures and supply voltages are presented.

RC OSCILLATOR

A circuit diagram of an RC oscillator is given in Figure 1.

2650 MICROPROCESSOR

APPLICATIONS MEMO
The first inverter is biased into its linear region by resis-

tor R. The positive feedback capacitor (C) from node (B)

to node (A) causes the circuit to oscillate. The third inverter

acts as a buffer to drive the clock input of the 2650. The

oscillation period is approximately equal to 3 RC. Measure-

ments taken on this circuit showed a 10 ns rise time and a

7 ns fall time.

Table I] shows how the frequency of the RC oscillator is

affected by variations in Vee and ambient temperature.

1.6 nF (1.5 nF parallel with 0.1 nF)

dt

R CLOCK OUTPUT
f= 1MHz

(Peetpe
(Standard 7400 Inverters)

FIGURE 1. RC Clock Generator

TABLE|

2650.CLOCK INPUT SPECIFICATIONS

LIMITS
SYMBOL PARAMETER TEST CONDITIONS MIN. MAX. UNIT

1 Input Load Current Vj xy = 0 to 5.25V 10 pA

VIL Input Low Voltage -0.6 0.8

Ving Input High Voltage 2.2 Voc V

Cin Input Capacitance Vin = OV 10 pr

tcy Clock High Phase 400 10,000 nsec

te. Clock Low Phase 400 ee nsec

tcp Clock Period 800 oo nsec

t, Clock Rise Time 20 nsec

tr Clock Fall Time 20 nsec

Timing Reference = 1.5V
Oo Oo

aN 0 to70 C

Veg = SVE 5%

SIGNETICS 2650 CLOCK GENERATOR CIRCUITS # MP52

TABLEIl

RC OSCILLATOR STABILITY

Ambient Temperature (Ty)

6 5 70°C StabilityT*

oc 25C (Vee = constant)
1

Veco = 4.75V 1044.50 KHz 1028.95 KHz 998.50 KHz +1.51%, -2.96% .

|
Veco = 5.0V 1043.20 KHz 1023.65 KHz 990.45 KHz +1.91%, -3.24%

Veco = 5.25V 1038.80 KHz 1013.63 KHz 979.65 KHz +2.48%, -3.35%

Stability ** +0.12% +0.52% +0.20%

(Tq = constant) —-0.42% —0.98% -1.1%

*Stabilityy with respect to Ta =25°C

**Stabilityy, with respect to Ve, = 5.0V

A second type of RC oscillator uses a monostable multi- where:

vibrator circuit (N74123) as illustrated in Figure 2. The

pulse width of each monostable is determined by ‘the tw1 !s the pulse width of the first monostable, and

external resistor and capacitor: twis the pulse width of the second monostable.

ty = (0.28) (Rext} (Coxt} (4 0.7 Measurements on frequency stability with a load of one

Rext TTL input are presented in Table III.

where

Rext is in K&2 |

Cext Rext Cext Rext

Vec cc

Coyz is in pF, rt | | | .

and ext ext Cext pet Rext = 12K

O ot Cext = 120 pF

ty is in ns. Vo. - 5
O a eo

In this circuit, the oscillation is caused by the triggering of CLR CLR

each monostable by the other one. The oscillation fre- N741230%) J 4 N741231%) |

quency can be derived from the following equation:

1
fosc =a

tw tw2, FIGURE 2. RC Clock Generator with Monostable Circuit N74123
TABLE III

MONOSTABLE MULTIVIBRATOR OSCILLATOR

STABILITY

Ambient Temperature (T,)

° ° 0 Stability7*
7

o¢ 25. ¢ o¢ (Vee = constant)

Voc = 4.75V 1063.65 KHz 1046.72 KHz 1041.16 KHz +1.62%, -0.53%

Vee = 5.0V 1063.80 KHz 1042.83 KHz 1032.63 KHz +2.01%, -0.98%

Vee = 9.25V 1063.80 KHz 1039.95 KHz 1024.02 KHz +2.29%, -1.53%

Stabilityy** +0.00% +0.276% +0.826%

(Ta = constant) —0.014% —0.373% -0.833%

*Stability+ with respect to Ta = 25°C

* *Stabilityy, with respect to Ve, = 5.0V

SIGNETICS 2650 CLOCK GENERATOR CIRCUITS = MP52

The observed rise and fall times at the output of this

circuit were 10 ns and 8ns, respectively. The stability of

this circuit reflected a slight improvement over the stability

of the RC oscillator shown in Figure 1.

LC OSCILLATOR

Figure 3 shows an LCoscillator circuit using standard TTL

inverters.

CLOCK OUTPUT

f = 1MHz

 (Standard 7400 Inverters)

3 nF
1 2.7 nF parallel with 0.27 nF

FIGURE 3. LC Clock Generator

The first inverter combined with the passive components

forms a Colpitts oscillator. The resistor provides a feedback

path for the first inverter and forcesit into its linear region.

The second inverter ‘‘squares’’ the oscillator signal and

provides an output buffer. The oscillator frequency can be

derived from the following equation:

1
fosc =

anv ate (C1) + (C2)
(C1) + (C2)

Measurements from the circuit in Figure 3 showed a 10 ns

rise time and a /nsfall time. Measurements on frequency

Stability are provided in Table IV.

CRYSTAL OSCILLATORS

In 2650 Microprocessor applications requiring a highly

stable clock, a crystal oscillator may be required. Some

examples of crystal oscillator circuits are shown in Figures

4 and 5. The circuit shown in Figure 4 uses a 1.025 MHz

crystal while the circuit shown in Figure 5 uses a low cost

4.433618 MHz crystal commonly found in European

manufactured color TV sets. The output of the oscillator

is divided by four to obtain a clock frequency of 1.1 MHz.

1.025 MHz Crystal

!

CLOCK OUTPUT
10 nF f = 1.025 MHz

(7404 Inverters)

T pF

FIGURE 4. Clock Generator Using a Non-TV Standard Crystal

4.433618 MHz Crystal

220 CLOCK
OUTPUT
f= 1.108 MHz

D Q D Q —2

: |_|.

(7404 Inverters) T

|

“”N7474 %2N7474
FIGURE 5. Low Cost Color TV Crystal Clock Generator

TABLE IV

LC OSCILLATOR STABILITY

Ambient Temperature (Tq)

ite x
o°c 25°C 70°C Stability

(Vee = constant)

Veg = 4.75V 1027.14 KHz 1017.75 KHz 1004.46 KHz +0.92%, -1.31%

Vee = 5.0V 1026.62 KHz 1016.99 KHz 1004.11 KHz +0.95%, -1.26%

Voge = 5.25V 1025.82 KHz 1016.30 KHz 1003.73 KHz +0.94%, -1.24%

Stability ** +0.05% +0.07% +0.03%

(T = constant) -0.08% -0.07% -0.04%
*Stability+ with respect to LN =25°C

* *Stabilityy with respect to Vec = 5.0V

SIGNETICS 2650 CLOCK GENERATOR CIRCUITS # MP52

The circuit of Figure 5 can also be used with a 3.5795 MHz

United States color TV crystal to provide an output fre-

quency of 895 KHz.

The stability of the crystal oscillator circuits is mainly

determined by the stability of the crystal used. The circuits

shown in Figures 4 and 5 had a stability of 0.003% over the

O°C to 70°C temperature range and 0.002% overa variation

of power supply voltage from 4.75V to 5.25V.

SUMMARY

Table V is a summary of the stability measurements made

for the oscillator circuits described in this application note.

As the table shows, the crystal circuits exhibit great sta-

bility relative to the RC and LCoscillators, but they suffer

the added expense of the crystal. Any of the oscillator

circuits shownin this application note can be used to drive

the 2650 microprocessor clock input.

TABLE V

SUMMARYOF OSCILLATOR STABILITY

STABILITY

CIRCUIT (4.75V to 5.25V) (0°C to 70°C)
TYPE 0 3 3

o°c 25°C 70°C 4.75V 5.0V 5.25V

RC +0.12% +0.52% +0.2% +1.51% +1.91% +2.48%
-0.42% -0.98% -1.1% -2.96% -3.24% -3.35%

RC MONO- +0.00% +0.276% +0.826% +1.62% +2.01% +2.29%
STABLE -0.014% -0.373% -0.833% -0.53% -0.98% -1.53%

LC +0.05% +0.07% +0.03% +0.92% +0.95% +0.94%
-0.08% -0.07% -0.04% -1.31% -1.26% ~1.24%

CRYSTAL +0.0003% -0.0001% +0.0002% +0.001% +0.0001% +0.0004%

AS50

AS51

AS52

AS53
AS54

SP50.

SP51

SP53
SP54

SS50

$S51

MP51

MP52
SP52.

Signetics 2650 Microprocessor application memos currently available:

Serial Input/Output

Bit and Byte Testing Procedures

General Delay Routines

Binary Arithmetic Routines

Conversion Routines

2650 Evaluation Printed Circuit Board Level System

(PC1001)

2650 Demo Systems

Support Software for use with the NCSS Timesharing

System

Simulator, Version 1.2

Support Software for use with the General Electric Mark III

Timesharing System

PIPBUG

Absolute Object Format (Revision 1)
2650 Initialization

Low Cost Clock Generator Circuits

© N.V. Philips’ Gloeilampentabrieken

This information is furnished for guidance. and with no guaranteesasto its accuracy or completeness; its publication conveys no licence under any patent or other right, nor
does the publisher assumeliability for any consequenceof its use: specifications and availability of goods mentionedin it are subject to change without notice; it is not to be
reproduced in any way, in whole orin part. without the written consent of the publisher.

4-76 9399 509 54461

	System Application Notes
	SP51 - 2650 Demo System
	SP52 - Support Software for use with the NCSS Timesharing System
	SP54 - Support Software for use with GE's Mark III Timesharing System
	SS51 - Absolute Object Format
	MP52 - Low Cost Clock Generator Circuits

