Institut fiir Architektur von Anwendungssystemen

Universitdt Stuttgart
Universitatsstrafie 38
D-70569 Stuttgart

Bachelorarbeit Nr. 8

Verteiltes Modellrepository fiir
TOSCA

Kai Mindermann

Studiengang;: Informatik

Priifer/in: Prof. Dr. Frank Leymann
Betreuer/in: Dipl.-Inf. Oliver Kopp
Beginn am: 1. Juni 2012

Beendet am: 1. Dezember 2012

CR-Nummer: H.3.2,H.34,H.35,H.5.2

Verteiltes Modellrepository fur TOSCA

Kai Mindermann

Zusammenfassung—In dieser Bachelorarbeit untersuche ich die Méglichkeit, existierende Back-End Systeme, wie zum Beispiel
Datenbank Systeme (DBS), durch verteilte Versionsverwaltungssysteme (VVS) zu ersetzen. Dabei gehe ich auf die Anforderungen ein,
die bei verteilter Arbeit wichtig sind und vergleiche verschiedene VVS miteinander. Im Weiteren stelle ich 3 unterschiedliche Ansatze, wie
ein Back-End so mit einem VVS implementiert werden kénnte, vor. Als konkrete Implementierung zeige ich dabei eine auf git aufbauende
Zwischenschicht GitWorking TreeWatcher, die einfach in vorhandene Anwendungen integriert werden kann. Diese ermdéglicht es die in
einem Ordner gespeicherten Dateien, automatisch mit git zu versionieren. Zusatzlich entwickle ich ein beispielhaftes Konzept wie ein
versioniertes Repository im Visual Editor for TOSCA (VALESCA) dargestellt werden kénnte und gehe darauf ein, wie die Architektur zur
Integration eines versionierten Repositories, gedndert werden sollte.

1 EINFUHRUNG

Aufgrund der aktuell zu beobachtenden Entwicklungen
ist es ist leicht vorherzusagen, dass auch in Zukunft
immer mehr IT-Projekte auf Cloud-Technologien basieren
werden. Um den kompletten Prozess der Entwicklung
und besonders der Auslieferung zu vereinfachen und zu
standardisieren, wurde Topology and Orchestration Spe-
cification for Cloud Applications (TOSCA) [1] entwickelt.
Mit TOSCA lassen sich Cloud-Anwendungen modellie-
ren und mithilfe eines TOSCA-Containers automatisch
ausliefern und installieren. Zur Modellierung kann zur
Zeit eine Weboberfliche, VALESCA [2], benutzt werden.
Da es hierfiir oft wichtig ist, dass mehrere Personen, auch
gleichzeitig, modellieren konnen, muss das zugrunde
liegende Datenmodell, auf dem die Weboberflache basiert,
dies unterstiitzen. Zur Zeit kommt zur Datenhaltung ein
dateibasiertes Repository zum Einsatz. Dies erfordert,
dass die Personen eine Verbindung zu diesem Repository
haben, um arbeiten zu konnen. Wiinschenswert ist ein
Programm, bei dem man lokal Anderungen, auch offline,
vornehmen kann, und sobald man zufrieden mit diesen
Anderungen ist, sie erst dann zentral speichert. Um
so ein Vorgehen zu Unterstiitzen gibt es verschiedene
Moglichkeiten.

In dieser Arbeit wird dazu im Folgenden untersucht,
wie man durch Nutzen verteilter Versionsverwaltungssys-
teme (VVS) die Datenhaltung so umsetzen kann, dass so-
wohl lokal, als auch auf einem zentralen Objekt gearbeitet
werden kann. Als Erstes stelle ich relevante verwandte
Arbeiten in Abschnitt 2 vor. Darauf folgend gehe ich
in Abschnitt 3 zundchst auf verschiedene Grundlagen
ein und erldutere die notwendigen Begrifflichkeiten die
spdter benutzt werden. In Abschnitt 4 behandle ich VVS
als Back-Ends. Hiernach gehe ich in Abschnitt 5 auf
die Anforderungen an ein Back-End fiir VALESCA ein.
Die vom Repository zu behandelnden Konflikte werden
in Abschnitt 6 behandelt. In Abschnitt 7 untersuche
ich verschiedene VVS. Nach der Evaluation folgt in
Abschnitt 8 der Entwurf fiir die im darauffolgenden
Abschnitt 9 beschriebene Implementierung mit git [3]. Im

Abschnitt 10 werden die Ergebnisse zusammengefasst.

2 VERWANDTE ARBEITEN

Tammo van Lessen [4] hat ein Repository fiir Ge-
schéftsprozesse entwickelt. Er hatte dhnliche Anforde-
rungen an sein Repository wie ich (siehe Abschnitt 5),
verwendet als Back-End jedoch eine relationale Daten-
bank.

Craig Roberts [5] beschreibt eine Implementierung
eines mit git versionierten Dateisystems in ownCloud [6].
Es wird darauf eingegangen wie mit PHP ein Dateisystem
auf Basis von git erstellt werden kann. In der Einleitung
wird auch das Problem der Behandlung von grofien
bindren Dateien in VVS beschrieben, aber nicht niher
darauf eingegangen. Eine nidhere Diskussion wie mit
Konflikten umgegangen wird, wird auf eine Mailingliste
ausgelagert und somit nicht definiert.

Reilly Grant [7] stellt eine Dateisystemschnittstelle figfs
zu git vor. Diese verwendet das Kernel-Modul Filesystem
in Userspace (FUSE) um Zugriffe auf ein git-Repository
als konkretes Dateisystem nahe der Betriebssystemebene
anzubieten. Wahrend die Arbeit zu figfs noch nicht
abgeschlossen ist, kann man damit schon grundlegende
Dateisystemoperationen durchfiihren. Interessant ist eine
Verbesserung im Vergleich zu herkémmlichen Dateisys-
temen: Bei hédufigen Zugriffen wird dort eine einfache
wstring lookup hash table” vorgeschlagen, da git Objekte
mit einem Secure Hash Algorithm (SHA)-1 Hash identifi-
ziert. Dies kann schneller sein als, wenn bei Pfadzugriffen
alle Elternordner auf Zugriff tiberpriift werden miissen.

Eine auf konkreten Fragestellungen basierende Evalu-
ierung von vielen VVS findet man unter [8]. Dort werden
verschiedene Fragen gestellt und diese fiir jedes unter-
suchte VVS in Stichworten oder 1-2 Siatzen beantwortet.

In Bezug auf die Behandlung von Konflikten durch
gleichzeitiges Bearbeiten stellt Tancred Lindholm [9]
einen Algorithmus 3DM inkl. Beispiel-Implementierung
vor. In seiner Masterarbeit geht er auf verschiedene
Strategien, eXtended Markup Language (XML) Baume
zu vereinen, ein. Besonders hilfreich ist die Logging

Funktion, bei nicht losbaren Konflikten bei der anhand
des Logs die Entstehung der Konflikte klar wird. In
Abschnitt 6 gehe ich ndher auf seine Ergebnisse und
Untersuchungen ein.

3 GRUNDLAGEN

Dieser Abschnitt erlautert wichtige Grundlagen, die in
den folgenden Kapiteln der Ausarbeitung benotigt wer-
den. Diejenigen die sich in den entsprechenden Bereichen
schon auskennen konnen diese tiberspringen. Dennoch
gehe ich hier speziell auf die Teilbereiche ein, welche fiir
die nachfolgenden Abschnitte wichtig sind.

3.1 Cloud-Computing

Unter Cloud-Computing, auch nur Cloud (engl. Wolke),
versteht man eine grobe Struktur verteilter Rechner die
fiir unterschiedliche Dienstleistungen benutzt werden
koénnen. Nach einem Standard des National Institute of
Standards and Technology (NIST) ist Cloud-Computing
so definiert:
Cloud Computing ist ein Modell, das es er-
laubt bei Bedarf, jederzeit und iiberall bequem
iiber ein Netz auf einen geteilten Pool von
konfigurierbaren Rechnerressourcen (z.B. Netze,
Server, Speichersysteme, Anwendungen und
Dienste) zuzugreifen, die schnell und mit mi-
nimalen Managementaufwand oder geringer
Serviceprovider-Interaktion zur Verfiigung ge-
stellt werden konnen. [10]
Der Begriff der Wolke kommt daher, dass fiir den Kunden
einer Cloud-Diensleistung die dahinter liegenden techni-
schen Infrastrukturen in einer Wolke verschwinden. Die
Dienstleistungen reichen von bereitgestellten Netzwerken
tiber Infrastruktur as a Service (IaaS), wie Rechenleistung
und Speicherplatz, bis hin zu Platform as a Service
(PaaS) und Software as a Service (SaaS) die in der Cloud
betrieben wird. Mehr dazu [11].

3.2 Topology and Orchestration Specification for
Cloud Applications (TOSCA)

TOSCA ist ein Standard fiir automatisierte Verwaltung
von Cloud-Anwendungen. In dieser Arbeit beziehe ich
mich auf Version WD13 der TOSCA-Spezifikation [1].
Beschrieben wird der Standard dort wie folgt:
IT services (or just services in what follows) are
the main asset within IT environments in gene-
ral, and in cloud environments in particular. The
advent of cloud computing suggests the utility
of standards that enable the (semi-) automatic
creation and management of services (a.k.a.
service automation). These standards describe a
service and how to manage it independent of the
supplier creating the service and independent
of any particular cloud provider and the techno-
logy hosting the service. Making service topolo-
gies (i.e. the individual components of a service

and their relations) and their orchestration plans
(i.e. the management procedures to create and
modify a service) interoperable artifacts, enables
their exchange between different environments.
This specification explains how to define services
in a portable and interoperable manner in a
Service Template document. ([1])

Mit TOSCA sollen folgende Ziele erreicht werden [12]:

« Einfache und unabhingige Installation bei kompati-
blen Clouds

o Einfachere Migration existierender Anwendungen in
die Cloud

« Flexible Lastspitzenskalierung (engl. bursting)

o Dynamische Anwendungen, welche viele Cloud-
Plattformen unterstiitzen

Die vom Standard spezifizierten zu erzeugenden Do-
kumente stelle ich in den folgenden Abschnitten vor. Als
Dateiformat kommt XML zum Einsatz.

3.2.1 Definitions

Das zentrale Dokument Definitions enthdlt benétigte
Informationen, um ein Servicelemplate definieren zu
konnen. Dafiir enthélt es neben dem ServiceTemplate selbst,
folgende Elemente: NodeType, Nodelypelmplementation
RequirementType, Capability Type, Relationship Type, Rela-
tionshipTypelmplementation ArtifactType, ArtifactTemplate,
PolicyType und PolicyTemplate.

3.2.2 Service Template

Im ServiceTemplate wird nun die Cloud-Anwendung selbst
spezifiziert. In diesem Element kénnen alle im Definitions-
Dokument definierten Typen verwendet werden. Ein
vollstandiges imperatives TOSCA Servicelemplate besteht
selbst aus TopologyTemplate und Plinen. Diese Elemente
konnen genau wie im Definitions-Dokument direkt im
ServiceTemplate definiert, aber auch per import-Angaben
aus weiteren separat abgelegten XML-Dokumenten im-
portiert werden.

Das Topology Template beschreibt die Topologie ei-
ner modellierten Cloud-Anwendung. Die Topologie be-
steht aus den NodeTemplate-Elementen, welche die ver-
wendeten Knoten, basierend auf entsprechenden No-
deType-Elementen, definieren, und den RelationshipType-
Elementen, welche die Beziehungen zwischen Knoten
definieren. Das RequirementType-Element legt Anforde-
rungen fest. Im Gegensatz dazu definiert CapabilityType
welche Fahigkeiten oder Funktionalitdt bereitgestellt wer-
den kann. ArtifactType definiert Typen fiir auslieferbare
Artefakte, konkrete Auspragungen werden durch Artifact
Template definiert. Im Element Plans werden verschie-
dene mogliche Pldne definiert. Ein Plan kombiniert
Operationsaufrufe zu einer hoherwertigen Operation.
Beispielsweise konnte es die Pldne start und stop geben,
welche festlegen was beim Starten und beim Beenden
der Clound-Anwendung gemacht werden muss.

Um die XML-Dateien nicht direkt bearbeiten zu miis-
sen, wird VALESCA entwickelt.

Management Component

Web Shop Database Connection Database Connection Management

(PHP Application)

ServletContainer

N
1

1

1

1

1

1

1

1

I

1

1

PHP Interpreter "
(Tomcat) I
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

(PHP Module)

‘OperatingSystem
(Linux)

Webserver
(Apache Webserver)

It

Database
(MysaL)

VirtualServer

OperatingSystem
(AWS EC2 Server)

(Linux)

i

’

Server
(1BM Server)

-~

» (hostedOn)

Abbildung 1. Topologie Ansicht in VALESCA. Beispiel fir
einen Webshop.

3.3 Visual Editor for TOSCA (VALESCA)

Um die XML-Dateien zu spezifizieren, ist es moglich
einen Editor mit graphischer Benutzungsoberfliche zu
verwenden. Dieser wird eigens fiir TOSCA entwickelt.
Dort kann die Topologie in einer Graph-Repréasentation
bearbeitet werden.

3.3.1 Graphical User Interface (GUI)

VALESCA ist eine in Java und JavaScript geschriebene
Webanwendung die iiber einen Browser bedient wird.
In Abbildung 1 ist ein Webshop als Beispiel fiir die
Topologie-Ansicht zu sehen. Eine ndhere Beschreibung
des GUI der Weboberfliche ist in Unterabschnitt 8.4 zu
finden.

3.3.2 Dateireprdsentation des Service-Templates

Das Service-Template wird, wie in Abbildung 2 darge-
stellt, in Dateien unterhalb von servicetemplate gespeichert.
Im Anhang ist in Abbildung 16 ein grofieres Beispiel
dargestellt.

Als Dateiformat werden Java properties-Dateien und
die JavaScript Object Notation (JSON) [13] verwendet.
Zusétzlich wird auch die grafische Représentation der
Graphen in einer Scalable Vector Graphics (SVG)-Datei
gespeichert, um eine Vorschau zu ermoglichen, ohne
die Editor-Komponente laden zu miissen. Des Weiteren
konnen noch beliebige andere Dateien, die in der Spezifi-
kation verwendet oder benotigt werden, existieren. Dies
sind héufig Bindrdateien bei denen zwischen verschiede-
nen Versionen die Anderungen nicht einfach festgestellt
werden konnen bzw. diese nicht so platzsparend wie bei
Textdateien gespeichert werden konnen. Das ist spéter
bei der Versionierung wichtig.

3.4 Repository

In einem Repository (engl. Lager), werden Daten ver-
waltet und gespeichert. Repository ist dabei nur eine

<namespace>
\——<name>
| ServiceTemplate.properties
|
\-—-topologytemplate
| parents.json
| TopologyTemplate. json
| TopologyTemplate.svg
|
+-—grouptemplates
| grouptemplates. json
|
+-—-nodetemplates
| nodetemplates. json
|
\--relationshiptemplates
realtionshiptemplates. json

Abbildung 2. Dateireprasentation des Service-Templates
im Ordner servicetemplate

Bezeichnung fiir den Ort an dem die jeweils von einem
Programm zu speichernden Daten zu finden sind. Repo-
sitories konnen verschiedene Zwecke haben und auch
unterschiedlich implementiert sein [14].

Beispielsweise spricht man im Rahmen der Versionsver-
waltung (siehe Unterabschnitt 3.6) von einem Repository
in dem die Versionen verwaltet und gespeichert werden.
Genauso werden in Linux-Systemen héufig Repositories
als Quelle fiir Software angegeben. Diese enthalten dann
Daten, die zur Installation von der jeweiligen Software
benotigt werden.

Ich verwende den Begriff Repository hier sowohl in
den Grundlagen bei VVS, als auch spéter im Sinne von
Speicher fiir die von VALESCA verwalteten Modelle.

3.5 Datenbank System (DBS)

Viele Programme miissen eine grofie Menge an Daten
verarbeiten. Dabei soll es moglich sein, die Daten lesen
sowie bearbeiten zu konnen. Da viele Programme dhnli-
che Anforderungen an die Verwaltung von Daten haben,
wurden Datenbank Systeme (DBS) entwickelt. Diese
bieten jeweils einheitliche Schnittstellen und Formate fiir
das grundsatzliche Speichern und Verwalten der Daten.
Programme greifen auf diese Schnittstellen zu, tiberlassen
die Verwaltung aber dem DBS. Mit einem DBS ist es also
moglich ein Repository, wie gerade in Unterabschnitt 3.4
definiert, zu implementieren.

3.5.1 Architektur

Ein DBS besteht aus einer Datenbank und einer Verwal-
tungskomponente, dem Datenbank Management System
(DBMS). DBS konnen nur lokal, bzw. zentral auf einem
einzigen Rechner laufen. Viele DBS sind aber auch dafiir
ausgelegt, auf mehreren Rechnern verteilt eingesetzt zu
werden. Verteilt bedeutet hier aber nur, dass das DBS
selbst verteilt arbeitet, um zum Beispiel mehr Festplatten

nutzen zu konnen die nicht in einen einzelnen Rechner
passen wiirden oder auch fiir Replikation der Daten. Es
ist aber nicht moglich, wie bei den in Unterabschnitt 3.6
beschriebenen, verteilten VVS, unterschiedliche Versionen
der Daten vom DBS verwalten zu lassen. Als Speicherort
fiir versionierte Objekte konnen DBS sehr gut dienen.

3.5.2 Ablageméglichkeiten

Es gibt verschiedene Moglichkeiten die Daten in der
Datenbank abzulegen [15]. Am haufigsten wird dazu
ein relationales Datenbankmodell verwendet. Die Daten
werden dabei in Tabellen gespeichert, welche in nahezu
beliebigen Beziehungen zueinander stehen koénnen. Po-
puldrer werden die Dokumentorientierten Datenbanken.
Bei diesen werden komplette Dokumente, welche selber
Daten in beliebigen Formen enthalten, in der Datenbank
direkt gespeichert. Diese konnen auch zu den Not only
SQL (NoSQL)-Datenbanken gezihlt werden, welche ich
hier aber nicht betrachte. Eine weniger populdre, aber
trotzdem genutzte, Variante, ist die objektorientierte
Datenbank. In diesen werden Objekte, im Sinne der
Objektorientierung [16] inklusive ihrer Eigenschaften
gespeichert. Die Datenbank verwaltet hier selbst die
Objekteigenschaften wie Vererbungshierarchie und Iden-
titdten.

3.5.3 Anforderungen

Datenbank Systeme (DBS) sollten Atomicity, Consistency,
Isolation and Durability (ACID) vollstindig unterstiitzen
[17]:

o Atomaritit: Zusammengehorende Operationen wer-
den atomar ausgefiihrt. Das bedeutet entweder
werden sie ganz oder, falls Teile der Operation nicht
ausgefiihrt werden konnen oder ausgefiihrt werden
konnten, gar nicht ausgefiihrt.

o Konsistenz: Jede ausgefiihrte Operation transfor-
miert die verwalteten Daten von einem konsistenten
wieder in einen konsistenten Zustand

o Isolation: Falls nebenldufig stattfindende Opera-
tionen erlaubt sind, beeinflussen diese sich nicht
gegenseitig.

» Haltbarkeit: Nach einer erfolgreichen Operation sind
die verdnderten Daten sicher gespeichert. Sicher be-
deuted, dass die Daten auch bei einem Systemausfall
nicht mehr verloren gehen konnen, sich also in nicht
fliichtigem Speicher befinden.

In diesem Zusammenhang mochte ich das von Eric
Brewer aufgestellte CAP-Theorem [18] nennen. Dieses
besagt, dass ein verteiltes System nicht in der Lage ist alle
drei der folgenden Eigenschaften gleichzeitig zu erfiillen:

o Konsistenz (Consitency): Im Unterschied zu der
Konsistenz von ACID ist hier Konsistenz auf alle am
verteilten System beteiligten Knoten und die darauf
gespeicherten Informationen bezogen. Diese miissen
zu jedem Zeitpunkt, aus der Sicht jedes Knotens,
gleich sein.

o Verfiigbarkeit (Availability): Jede an das verteilte
System gestellte Anfrage wird auch beantwortet.

« Partitionstoleranz (Partition tolerance): Das verteilte
System funktioniert bei partiellen Ausféllen weiter.

Beispielsweise ist es fiir Cloud-Anwendungen oft
ausreichend nach dem Basically Available, Soft State,
Eventual consistency (BASE)-Prinzip zu arbeiten. Fiir
diese sind Hochverfiigbarkeit und Partitionstoleranz
sehr wichtig, wohingegen es toleriert wird, wenn die
gelieferten Daten inkonsistent bzw. noch nicht auf jedem
beteiligten Knoten aktuell sind, dies aber nach moglichst
kurzer Zeit wieder sind.

3.6 Versionsverwaltungssystem (VVS)

Bei der Entwicklung von Software ist es notig, die erzeug-
ten Daten, die oft hauptsachlich aus Quelltext und seiner
Dokumentation bestehen, zu verwalten. Diese Verwal-
tung wird im groflen Stil mittels Software Configuration
Management (SCM) [19] Systemen realisiert. Der fiir
diese Arbeit wichtigere Teil der Versionsverwaltung, wird
von in SCM verwendeten VVS abgedeckt. Ich verwende
in dieser Arbeit bewusst nicht den englischen Begriff

Revision Control System (RCS) und Distributed Revision
Control System (DRCS) weil ich den Leser durch die
Verwendung des deutschen Begriffs darauf aufmerksam
machen mochte, dass es um Versionsverwaltung geht.

VVS erfiillen folgende grundsitzliche Anforderun-

gen:

o Anderungsgeschichte: Anderungen von verschiede-
nen Autoren an Daten werden protokolliert und sind
fur alle Beteiligten einsehbar.

« Wiederherstellen: Anderungen kénnen riickgangig
gemacht werden. Es kann zu fritheren Entwicklungs-
stdanden zuriickgekehrt werden.

o Gleichzeitiges Bearbeiten: Es wird dafiir gesorgt,
dass vorhergehende Anderungen, bei gleichzeitigem
Bearbeiten eines versionierten Objekts, nicht verloren
gehen.

Diese grundsitzlichen Anforderungen werden von vielen
VVS durch zahlreiche zusitzliche Funktionen erganzt.
Unterschieden werden kann noch zwischen lokalen und
zentralen VVS. Dabei findet bei der lokalen Versionsver-
waltung die Versionierung oft in der Datei selbst statt. Die
Anderungen werden im Dokument selber protokolliert
und verwaltet. Bei der zentralen Versionsverwaltung
muss es nicht zwangslaufig sein, dass das Repository
auf dem lokalen Rechner liegt, es ist auch haufig so, dass
es auf einem zentralen Server erreichbar ist.

3.6.1

Um gleichzeitiges Bearbeiten von versionierten Daten zu
gestatten, gibt es zwei verschiedene Ansitze [20] [21].

Strategien fir gleichzeitiges Bearbeiten

1) Sperren: Eine Moglichkeit ist es, die Dateien oder
Daten ausschliefilich fiir den Benutzer zu reser-
vieren der eine Anderung vornehmen méchte.
Dies bedeutet fiir andere Benutzer, dass wenn sie

dieselben Daten bearbeiten mdchten, miissen sie
warten bis der zur Zeit Anderungen durchfiihrende
Benutzer, seine Reservierung aufhebt bzw. vom
VVS aufheben ldsst. Dies ist hdufig ein grofer
Nachteil, denn es kommt oft vor, dass an einer Datei
mehrere Personen gleichzeitig arbeiten mochten
und sollen. Zusitzlich kann es vorkommen, dass
ein Benutzer vergisst, dass er bestimmte Daten
fir andere blockiert, wenn er anderen Aufgaben
nachkommt. Diese Strategie wird auch als pessi-
mistische Versionsverwaltung bezeichnet.

2) Zusammenfiihren: Die zweite Moglichkeit umgeht
die durch das Sperren verursachten Probleme. Die
Strategie besteht hier darin, dass jeder alle Daten
editieren kann, wann er mochte. Aber sobald er die
Anderungen dem VVS iibergeben will, {iberpriift
dieses ob zwischenzeitlich andere Anderungen ge-
macht wurden und versucht diese zu verschmelzen,
falls das automatisch moglich ist und vom VVS
unterstiitzt wird, oder fordert den Benutzer auf,
seine Anderungen auf Basis der zwischenzeitlich ge-
machten Anderungen zu erneuern. Diese Strategie
wird auch als optimistische Versionsverwaltung
bezeichnet. Beim Zusammenfiihren gibt es zwei
verschiedene Ansitze die im ndchsten Unterunter-
abschnitt behandelt werden.

3.6.2 Zusammenfiihrungsstrategien
Es existieren zwei verschiedenen Strategien dafiir, wie
man eine Zusammenfiihrung durchfiihren kann (siehe
Abbildung 3). Falls beim Zusammenfiihren nur die
Unterschiede zwischen zwei Baumen beachtet werden
wird dies als 2-way merge bezeichnet. Falls beim Zusam-
menfiihren auch die Informationen tiber den urspriinglich
von beiden Anderungen verdnderten Baum herangezogen
werden, wird dies als 3-way merge bezeichnet und wird
von Tancred Lindholm wie folgt definiert:
Assume T; and T, are ordered trees derived
from the tree Ts. The 3-way merge of the trees
Ty, T and T5 is an ordered tree T);, where
the changes between T and T}, as well as the
changes between T and T5 are incorporated.
The tree T's is called the base and the trees T}
and T5 are branches. ([9])

3.6.3 Probleme zentraler VVS

Die zentrale Herangehensweise, mit einem einzigen
Repository, hat unter anderem aber folgende Probleme:
o Ohne Verbindung, zum Server bzw. dem zentralen
Repository, ist es nicht moéglich Anderungen zu
protokollieren bzw. protokollieren zu lassen.

o Es gibt keine Moglichkeit, ohne ein zweites, mit
zusidtzlichem Synchronisationsaufwand verbunde-
nen, Repository, Anderungen zu verwalten, wel-
che nicht im Repository auftauchen sollen. (Dazu
konnten beispielsweise Anderungen zahlen, welche
nicht kompiliert werden kénnen oder unzureichend
getestet sind.)

R 2-way merge|
|

New Tree 1 New Tree 2

\

2-way merged tree

T 3-way merge|
|

Base Tree
/ A \

New Tree 1

New Tree 2

3-way merged tree

based on

Abbildung 3. 3-way und 2-way Zusammenfihrungsstrate-
gien

3.6.4 \Verteilte VVS

Eine wichtige Entwicklung war es nun, die nur zen-
tralisiert stattfindende Versionsverwaltung zu verteilen.
Alte, aber in grofien Firmen und Projekten immer noch
eingesetzte, VVS, sehen es vor, die Datenhaltung an
einer Stelle zu konzentrieren. An sich ist dieses Vorgehen
auch gewtinscht. Es soll nachvollziehbar sein, welche
Anderungen stattgefunden haben. Es soll eben keine
unterschiedlichen Versionen geben, die wegen fehlendem
Wissen tiber andere Versionen, gleichzeitig und anschei-
nend gleichberechtigt, existieren und damit eindeutige
Versionen und Entwicklungsstdnde verhindern.

Diesem Unwissen iiber andere existierende Versionen
wird mit verteilten VVS entgegengetreten. Hier ist es
gewollt, dass es mehrere Stellen gibt an denen die
Versionierung stattfindet. Der Unterschied ist aber, dass
dies nun koordiniert ablduft und das Wissen auf, an der
Versionsverwaltung teilnehmenden Stellen, verteilt wird.
So ist es moglich, dass Teilnehmer lokal andere Ande-
rungen haben als andere Teilnehmer. Die Koordination
der verteilten Entwicklung ist nun entscheidend. Norma-

lerweise wird eine Stelle zur zentralen, fiir andere als
Ausgangs- und Zielpunkt dienende, Versionsverwaltungs-
stelle erklart. Zu dieser werden gemachte Anderungen
gegeben und von dort geholt. Eventuelle Fehlschritte die
Entwickler in ihren lokalen Repositories gemacht haben,
miissen nicht in der zentralen Entwicklungsgeschichte
protokolliert und gespeichert werden. Verteilte VVS
wurden kommerziell bereits in den Jahren vor 2000
entwickelt. Das erste Projekt fiir ein freie verteiltes VVS
wurde 2001 mit GNU arch [22] ins Leben gerufen.

Im Vergleich zu lokalen und zentralen, nicht verteilten,
VVS haben die Verteilten folgende zusitzliche Eigen-
schaften die auch als Vorteile gesehen werden koénnen:

o Mehrere Repositories: Es gibt nicht nur eine zen-
trale/lokale Stelle an der die Anderungsgeschichte
verwaltet wird.

« Polyhierarchie: Die Anderungsgeschichte entspricht
keiner linearen Kette bzw. einem Baum mehr, son-
dern einem azyklischen und gerichteten Graph.

« Offline Versionierung: Es ist moglich Anderungen
lokal zu Versionieren ohne zum zentralen oder
anderen Repositories verbunden zu sein.

Diese Eigenschaften der verteilten VVS mochte man sich
nun, bei der Verwendung als Back-End, zu Nutze machen.

4 VERSIONSVERWALTUNGSSYSTEME
BACK-END

Die Idee, ein VVS als Back-End zum Verwalten bestimm-
ter Daten zu verwenden, ist nicht neu, sondern wurde
beispielsweise von JacobM aufgebracht [23]. Aktueller
ist es , dafiir ein verteiltes Versionsverwaltungssystem
(VVS) einzusetzen. Verteilte VVS sind, wie in Unterun-
terabschnitt 3.6.4 beschrieben, spéter entwickelt worden
und damit noch nicht so lange fiir alternative Einsatz-
moglichkeiten verfiigbar.

ALS

4.1 Front-End und Back-End

Oft nimmt man eine Unterteilung bei Software in be-
stimmte Zustdndigkeitsbereiche vor [24]. In Client-Server
Systemen kommen hdufig die Begriffe Front-End und
Back-End zum Einsatz. Ich beziehe den Begriff Back-End
in dieser Arbeit auf den Datenverarbeitenden sowie
Speichernden Teil einer Software, der getrennt von der
Daten Ein- und Ausgabe ist.

4.2 Nutzen eines versionierten Back-Ends

Herkommliche, im Back-End eingesetzte, Arten von Re-
positories sehen es nicht vor, verschiedene Versionen der
abgelegten Daten vorzuhalten bzw. eine Anderungesge-
schichte oder dhnliche von VVS gebotene Funktionalitét
bereitzustellen. Dabei ist es aus meiner Sicht niitzlich,
auch auf frithere Versionen zurtickgreifen zu konnen oder
verschiedene Versionen gleichzeitig der Daten vorhalten
zu konnen.

4.3 Anforderungen an ein Back-End

Die an ein Back-End gestellten Anforderungen kénnen
unterschiedlich sein. Deshalb gibt es auch unterschied-
liche Herangehensweisen, ein Back-End auf Basis eines
VVS zu entwickeln. Grundsitzlich geht es darum, Daten
speichern und bearbeiten zu kénnen. Diesem Speichern
und Bearbeiten konnen erweiterte Anforderungen wie
gleichzeitiges oder verteiltes Bearbeiten hinzugefiigt
werden. Zusitzlich dazu miissen die Daten noch in
unterschiedlichem MafSe verwaltet werden. Im Folgenden
gehe ich dazu auf hdufige Anforderungen ein:

o Speichern: Manchmal ist es bereits ausreichend,
ausschliefllich Dateien auf der Festplatte schreiben
und lesen zu konnen. Diese Anforderung zu erfiillen
reicht aber haufig nicht aus.

o Gleichzeitiges Bearbeiten: Oft soll das gleichzeitige
Bearbeiten der Dokumente bzw. verwenden eines
Dienstes von mehreren Personen oder anderen Rech-
nern unterstiitzt werden. Dies ist eine fundamentale
Anforderung an ein Back-End. Falls ein Back-End
diese erfiillen soll, gilt es unter anderem das Ver-
lorengegangene Anderungen/lost update-Problem
[25], bei dem eine Anderung verloren geht, weil sie
durch eine andere Anderung, welche von anderen
Anderungen nichts weif3, iiberschrieben wird, zu
verhindern.

o Verteiltes Bearbeiten: Gerade Anwendungen und
Dienste die auf der Cloud ausgefiihrt werden, sollen
verteiltes Bearbeiten unterstiitzen. Verteilt bedeutet
hier, dass Anderungen an verschiedenen Eintritts-
punkten der Cloud-Anwendung auftreten kénnen,
und dann als gespeichert gelten, aber die gemach-
ten Anderungen nicht sofort fiir andere Knoten,
an denen ebenfalls moglicherweise konkurrierende
Anderungen gemacht werden, sichtbar sind. Auch
dies ist eine Anforderung, die aufwéndigere Imple-
mentierungen des Back-Ends erfordert.

5 ANFORDERUNGEN AN EIN BACK-END UND
REPOSITORY FUR VALESCA

Folgende Anforderungen sollen vom Back-End fiir
VALESCA umgesetzt werden:

1) Benutzer sollen offline arbeiten konnen

2) Gespeicherte Anderungen sollen riickgingig ge-
macht werden koénnen

3) Benutzer sollen ein neues Service-Template erstellen
und speichern konnen.

4) Benutzer sollen Anderungen an einem Service-
Template speichern kénnen.

5) Benutzer sollen Service-Templates an einer zentralen
Stelle speichern kénnen

6) Benutzer sollen unabhingig voneinander parallel
an einem Service-Template arbeiten konnen (Kon-
fliktmanagement)

7) Benutzer sollen so gleichzeitig an einem Service-
Template arbeiten konnen, dass Anderungen einer

bearbeitenden Person nahezu ohne Verzogerung
bei allen anderen bearbeitenden Personen im Editor
angezeigt wird (Live Editing).

6 KONFLIKTE IN VALESCA

Konflikte treten immer dann auf, wenn mindestens
zwei Personen gleichzeitig Anderungen im Repository
speichern wollen. Im Folgenden beschreibe ich, wie die
daraus resultierende Konflikte in VALESCA aussehen
und wie diese gelost werden konnen.

6.1 Problem

Fiir gleichzeitiges Bearbeiten ist es erforderlich, dass
sobald mehrere Anderungen in einem Repository ein-
getragen werden sollen, diese zusammengefiihrt werden
miissen. Hierbei kann es vorkommen, dass die Ande-
rungen sich nicht automatisch vom Repository bzw. im
weiteren einem VVS vereinigen lassen und es Konflikte
gibt, aber auch, dass es Anderungen gibt, die von ihrer
Semantik her in Konflikt stehen und nicht vereint werden
diirfen. Der erste Fall kann zum Beispiel auftreten, wenn
an einer Datei zwei unterschiedliche Anderungen durch-
gefiihrt wurden, die sich auf eine bestimmte Zeile oder
ein Element dieser Datei beziehen. Der zweite Fall tritt
auf, wenn zum Beispiel in VALESCA zwei Anderungen
an Typen durchgefiihrt wurden, die sich auf Dateibasis
zwar vereinen lassen wiirden, aber von ihrer Bedeutung
her widerspriichlich sind. Zur Anschaulichkeit fithre ich
zundchst ein kleines Beispiel ein.

6.2 Beispielszenarien

Alice und Bob [26] modellieren eine Cloud-Anwendung.
Sie haben die Topologie, welche in Abbildung 10 dar-
gestellt ist, ihrer Anwendung bereits gemeinsam erstellt
und sind fiir heute fertig mit ihrer Arbeit. Am néichsten
Arbeitstag hat sich Bob dazu entschieden von zu Hause
zu arbeiten. Morgens 6ffnen beide VALESCA und fiihren,
ohne sich auszutauschen, eines der folgenden Szenarien
aus:

o Alice fiigt einen neuen Knoten fiir einen Load-
Balancer hinzu. Bob fiigt einen neuen Knoten fiir
einen seperaten Datenbank-Cache-Server hinzu.

o Alice mochte als Webserver nginx verwenden und
Bob lighttpd. Beide Andern den Knoten entspre-
chend ab.

o Alice und Bob fiihren die gleiche Anderung aus.
Beide mochten Node.js als Webserver verwenden
und dndern den Knoten entsprechend.

Alice speichert ihre Anderungen im Repository als
Erste. Als kurz darauf Bob seine Anderungen an der
Topologie auch im Repository speichern mochte, kommt
es zu einem Fehler, da seine Anderungen die von Alice
iiberschreiben wiirden.

6.3 Unterschiedliche Behandlung von Konflikten

Die gerade beschriebenen drei Beispielabldufe miissen
unterschiedlich behandelt werden. Der erste Ablauf
erfordert, dass Bob den neuen Knoten von Alice in
seine Topologie tibernimmt und darauf aufbauend seinen
eigenen neuen Knoten in diese einbaut. Der zweite Ablauf
erfordert, dass entschieden werden muss, was fiir ein
Webserver denn jetzt wirklich verwendet werden soll
Der dritte Ablauf ist offensichtlich kein Konflikt, das
muss erkannt werden.

6.4 Automatische Konfliktlésung

Um solche Konflikte im Repository moglichst automa-
tisch behandeln zu kénnen, ist es im Allgemeinen hierfiir
erforderlich alle Informationen tiber den Inhalt der im
Repository gespeicherten Daten diesem zur Verfiigung
zu stellen und das Repository dazu zu befdhigen, diese
Informationen verarbeiten und beurteilen zu konnen.
Einem Computer dies beizubringen, ist sehr schwierig.
Die Forschungen zur kiinstlichen Intelligenz, die fiir
eine solche automatische Behandlung und das Treffen
von Entscheidungen erforderlich sind, werden meines
Wissens noch nicht erforscht.

6.5 Semi-Automatische Konfliktlésung

Es ist auch moglich ohne Wissen iiber die Semantik,
der im Repository verwalteten Dateien, diese mit gu-
ten Ergebnissen zusammenfiihren zu konnen. Tancred
Lindholm [9] hat in seiner Masterarbeit diese Problemstel-
lung sehr genau untersucht. Seine Arbeit behandelt das
Vereinen von allgemeinen Baumstrukturen ohne weitere
Informationen wie deren Entstehungsgeschichte oder
andere Meta-Informationen. Diese Informationen werden
automatisch vom Algorithmus aus den Eingabedaten
abgeleitet. Als Eingabedaten der Implementierung, ge-
nannt 3-way merging, Differencing and Matching (3DM),
werden XML-Daten erwartet. Diese werden zunéchst zu
internen Baumstrukturen umgewandelt (geparst). Fiir
die Java properties- und JSON-Dateien aus VALESCA
miisste entweder ein J[SON-zu-XML Konverter benutzt
werden oder eine neue Parser-Komponente fiir 3DM
hinzugefiigt werden. Das den Algorithmus implementie-
rende Programm enthilt eine grafische Oberfliche (siehe
Abbildung 4) in der das Ergebnis des Zusammenfiih-
rens als auch nicht losbare Konflikte betrachtet werden
konnen. Im Folgenden erkldre ich wie der Algorithmus
funktioniert.

6.5.1 3DM Algorithmus

Der grobe Ablauf des Algorithmus ist in Abbildung 5
dargestellt. Zunidchst werden die XML-Dateien mit einem
Parser zu einer internen Baumstruktur verarbeitet. Im
nédchsten Schritt wird vom Tree matcher aufgrund der
Anzahl der Eingabedaten entschieden, ob ein 3-way merge
oder eine einfache Berechnung der Unterschiede (2-way
merge) erfolgen muss. Falls ein 3-way merge durchgefiihrt

10

File Help

|
3

=shonpinolist=
<itern=
=name#

=ierm=
=names
Wheat toast
=nuantitez
2 nackets
=ntices

Emmentaler Cheese
<guantity=
4000
=nrice=
<ghon=
sitern=
=name=
Wheattoast
=auantifv=
1 nacket
<ntice=
=shog=
<itern=
=name=
Stnoked salmon
<ruantity=
2400
<0rices
<shon=
=itern=
<names
Annlas
_ <E ii“ -

<nrices [

=shon=

=ltem=
=name=
Stoked salmon

=nuantity
2400
=nrices

=shon>

=itern=
=names
Anples
-, >
5
=nticas —

=ghog=
=itarn=
=name=
Calvin & Hobbes Comic ifor Kalle's ¥mas natvl) =
|

<shop=
=Iern=
=names

Calin £ Hahhas Camic for loallale Ymae narhl
4 > «

In=ert { path=i1 S200 orginTree=hranch orlginNode=/0612/0} -
insert { path=i0/1/3/0 ariginTree=branch ariginMode=i00r3/0}
insert{ path=/012/0/1 originTree=hranch1 originkode=/0i2r0M}

ranch originhode=)|
insert{ path=/0)4/2/0 originTree=hranch1 originhode=/0idr20}
ingart { path=/0/5/0 originTree=branch1 originMode=//5/0}
insert{ path=/0)5/1 originTree=hranch1 originbode=/ai}
ingert { path=/0/5/2 originTree=hranchi otiginMode="w5/2} j

Abbildung 4. Von Tancred Lindholm [9] entwickelter
Prototyp 3DM fiir 3-way-merge von XML Dateien.

Parser
3DM tree object model
3-way merge |« Tree Matcher » Differencing
| /
Conflict logging 3| Tree Encoder
- -
Merge logging |- ’

Abbildung 5. Architektur von 3DM aus [9]

wird, merkt sich der Algorithmus Konflikte und die
durchgefiihrten Vereinigungsoperationen. Im abschliefSen-
den Schritt werden die Daten vom Tree encoder verarbeitet
und die Ausgabe-Dateien erzeugt.

6.6 Manuelle Konfliktlésung in der GUI

Da der Umfang dieser Bachelorarbeit es nicht gestattet,
entweder eine intelligente vollautomatische oder semi-
automatische Konflitklosung in das Repository zu in-
tegrieren, soll das Konfliktmanagement zundchst auf

den Benutzer ausgelagert werden. Dies bedeutet, dass
der Benutzer auftretende Konflikte manuell 16sen muss.
Um diese Konflikte trotzdem im gleichen Kontext, in
der Weboberfliche, 16sen zu konnen, kann eine Ober-
fliche wie zum Beispiel PrettyDiff [27] oder mergely
[28] verwendet werden. Diese beiden Anwendungen
bieten, basierend auf JavaScript, die Moglichkeit im
Browser zwei Dokumente zu vergleichen und im Falle
von mergely, diese auch direkt zusammenzufiihren. Eine
weitere Moglichkeit ist, das vorgestellte 3DM-Programm
zu verwenden.

7 EVALUATION UND AUSWAHL VVS

In diesem Abschnitt untersuche ich verschiedene verfiig-
bare VVS die zur Implementierung eines Back-Ends fiir
VALESCA in Frage kommen. Zu Beginn erldutere ich die
verwendete Terminologie. Als ndchstes gehe ich noch
einmal kurz auf die Anforderungen ein, welche von den
VVS erfiillt werden sollten. Danach stelle ich diejenigen
VVS, welche den Anforderungen stand halten konnten,
vor und tberpriife genauer, warum oder warum sie nicht
fur eine mogliche Implementierung geeignet sind.

7.1 Terminologie

Um verschiedene Programme vergleichen zu kénnen,
wird eine einheitliche Terminologie benétigt. Die zu
vergleichenden Programme benutzen fiir gleichwertige
Operationen unterschiedliche Begriffe bzw. Befehle. Aus
diesem Grund definiere ich hier, welche Operationen im
weiteren wie bezeichnet werden. Bei der Evaluation der
Programme werde ich die entsprechenden Befehle den
von mir verwendeten Begriffen zuweisen, um Vergleiche
der Operationen fiir den Leser so transparent wie moglich
zu machen.

Benotigte Operationen eines verteilten VVS fiir ein

VALESCA-Back-End:

o Initialisieren eines Repositories heifst, die erforder-
lichen Datei- und Ordnerstrukturen des jeweiligen
VVS zu erstellen um Eintragungen machen zu kon-
nen.

o Hinzufiigen von Dateien die eingetragen werden
sollen.

« Eintragen einer Anderung bedeutet, gemachte Ande-
rungen wie hinzugefiigte, gednderte sowie geloschte
Dateien der Versionsverwaltung bekannt zu machen.
Nur durch Hinzufiigen ausgewihlte Anderungen,
werden eingetragen. Sobald Anderungen eingetragen
wurden, sind diese fest in der Versionsgeschichte
vorhanden und ergeben eine neue Version.

« Riickgingig machen ermoglicht es, eingetragene An-
derungen ungeschehen zu machen. Abhingig vom
VVS kann dies einerseits bedeuten, die riickgangig
zu machenden Anderungen als neue Eintragung
einzutragen oder die Eintragung aus dem Repository
zu entfernen.

« Herausholen bestimmter Anderungen bezeichnet
das Verfiigbarmachen eines bestimmten Standes der

versionierten Daten. Zum Beispiel der letzten einge-
tragenen Anderungen, aus der Versionsgeschichte.
Verftigbarmachen kann hier bedeuten, dass noch
nicht gemachte Anderungen im aktuellen Verzeichnis
mit den Dateien zu einem bestimmten Anderungs-
stand ersetzt werden, oder dass diese an einer
anderen Stelle verfiigbar gemacht werden.

« Versenden bestimmter Anderungen ist bei verteilten
VVS das Aktualisieren eines entfernten Repositories
mit bestimmten oder allen Anderungen die im
lokalen Repository gespeichert sind.

« Herunterladen bestimmter Anderungen bedeutet
umgekehrt, Anderungen aus einem entfernten Repo-
sitory in das lokale Repository zu tibertragen.

Fiir diese Operationen ist am Ende in Tabelle 2 fiir jedes
untersuchte VVS der entsprechende Befehl aufgefiihrt.

7.2 Anforderungen

Ausgehend von einer Liste verfiigbarer VVS bei Wiki-
pedia [29], untersuche ich davon nur diejenigen VVS,
welche folgenden grundséatzlichen Anforderungen genii-
gen:

o Aktive Entwicklung

o Verteiltes Repository Modell

o Lockfreie Unterstiitzung gleichzeitiger Bearbeitung

o Open-Source Lizenz und kostenfreie Nutzung

7.3 Ausgewihlte VVS

Folgende Versionsverwaltungssysteme (VVS) erfiillen die
gerade gestellten Anforderungen:

o Bazaar [30]

o darcs [31]

o Fossil [32]

e Mercurial [33]

o Monotone [34]

e Veracity [35]

7.4 Gemeinsamkeiten

Alle hier untersuchten VVS sind dafiir optimiert,
Quellcode-Dateien, d.h. Text-Dateien in ihrem Repository
zu verwalten. Es konnen auch bindre Dateien gespeichert
werden, hier ist es schwieriger Unterschiede zwischen
zwei Versionen zu erkennen. Jedes der VVS speichert im
Grunde Dateien ab und bietet dafiir eine Schnittstelle
an, die es ermoglicht verschiedene Stinde einer Datei
wiederherzustellen.

7.4.1 Behandlung groBer Bindrdateien

Eine schwierige Aufgabe mit dem alle VVS umgehen
miissen, ist die Behandlung, im Vergleich zu den Text-
dateien grofien, Bindrdateien. Das Problem ist, dass
wenn Anderungen an diesen im Repository gespeichert
werden miissen, sollten moglichst nicht die komplette
neue Version der Datei gespeichert werden, sondern nur
das was gedndert wurde. Dies kann bei Binidrdateien
nicht so einfach und effizient wie bei Textdateien gemacht
werden.

11

7.4.2 Befehlsumfang

Die untersuchten VVS haben, fiir die hier nach der
Terminologie relevanten Funktionen, einen gleich grofien
Befehlsumfang. Die Befehle unterscheiden sich hauptséch-
lich nur in den tibergebenen Parametern und teilweise
im Namen. Im Anhang ist in Tabelle 2 ist eine Tabelle
aufgefiihrt in der dquivalente Befehle der VVS aufgelistet
sind.

Abgesehen davon gibt es je nach Umsetzung nun
kleinere Unterschiede in Bezug auf die genannten Ei-
genschaften.

7.5 Evaluation

Des Weiteren untersuche ich diese nun auf Erfiillung der
in Abschnitt 5 gestellten Anforderungen im Bezug auf
VALESCA. Dazu gehe ich in den folgenden Abschnitten
genauer auf die ausgewdhlten VVS ein. Dabei stelle ich
teilweise auch die interne Funktionsweise der Programme
vor und vergleiche diese miteinander. Insbesondere
betrachte ich folgende Eigenschaften der VVS:

o Datenverwaltung und Vorgehen: Hier untersuche
ich wie das VVS die Dateien intern verwaltet und
versioniert.

o Geschwindigkeit und Skalierbarkeit: Bei der Ge-
schwindigkeit betrachte ich sowohl das Eintragen
im lokalen Repository als auch die Ubertragung
von und zu einem entfernten Repository. Diese Be-
trachtung folgt nach der allgemeinen Untersuchung
in Form von Vergleichen zwischen den VVS in
Unterabschnitt 7.13.

o Besonderheiten und Einschrinkungen: In diesem
Teil hebe ich Stidrken eines VVS hervor und zeige Ein-
schrankungen auf, die bei der Verwendung beachtet
werden miissen.

« Java Anbindung: Da es fiir VALESCA erforderlich
ist, dass das Back-End {iber Java verfligbar ist,
untersuche ich ob und wie diese moglich ist.

7.6 git

Git [3] wurde von Linus Torvalds, dem Schopfer des
Linux Kernels, 2005 entwickelt, nachdem der Entwick-
lungsgemeinschaft des Linux Kernels die Nutzungsrechte
fur das dort verwendete proprietdre BitKeeper [36] entzo-
gen wurden. Bei der darauf folgenden Entwicklung eines
neuen DRCS hat Linus besonderen Wert auf Geschwin-
digkeit, Einfachheit und nicht-lineare Zweige gelegt. Dies
und mehr sind Stdrken von git. Bei den Nachfolgenden
Untersuchungen beziehe ich mich auf git in der Version
1.8.0 die am 21.10.2012 veroffentlicht wurde. Die hier
komprimiert dargestellten Informationen kénnen in der
git Dokumentation [37] nachgelesen werden.

7.6.1 Datenverwaltung

Das Repository in dem git alle zu versionierenden Daten
und die Verwaltungsinformationen dazu speichert, ist das
.git-Verzeichnis. Parallel dazu existiert normalerweise der

12

sogenannte working tree, in dem sich die Daten befinden
die herausgeholt wurden und bearbeitet werden koénnen.
Abbildung 6 zeigt die Struktur des .git-Verzeichnisses
nach der Initialisierung.

In objects legt git alle Datenobjekte ab. Dabei gibt
es neben den Binary Large Objects (BLOBs) noch 2
weitere Typen. Dazu gehoren einmal die tree-Objekte.
Diese speichern Meta-Informationen, wie Dateiname und
Typ zu einem oder mehreren BLOBs. Der Dritte Typ
sind commit-Objekte. In diesen werden Informationen
zu einem tree, wie Datum und Autor, gespeichert.
Im refs-Verzeichnis werden Zeiger auf commit-Objekte
gespeichert. Zeiger auf heads zeigen auf die letzte
Eintragung eines Zweigs und Zeiger im tags-Verzeichnis
zeigen auf bestimmte Eintragungen um diese mit einem
Alias bezeichnen zu konnen. In index werden Infor-
mationen zur staging area gespeichert. HEAD zeigt auf
den Zweig der aktuell bearbeitet wird. Die restlichen
erstellten Eintrdge im .git-Verzeichnis sind hier nicht
weiter relevant.

Beim Speichern von grofien Dateien wird im Grunde
fiir jede Anderung die komplette Datei gespeichert. Dies
ist erst einmal auch so gewollt um verschiedene Versionen
wiederherstellen zu konnen. Bei einer Dateigrofie von
n Byte wird das Repository, bei jeder eingetragenen
Anderungen an dieser Datei, um O(n) grofer. Bei k
Eintragungen also um O(kn). Diesem Wachstum wird
in git durch die verlustfreie Komprimierung mit Deflate
[38] und speichern im gzip-Format [39] entgegnet. Dabei
verwendet es noch eine idx-Datei um tiber Offsets auf
die in einer komprimierten pack-Datei gespeicherten
Datenobjekte schneller zugreifen zu konnen. Genaueres
ist unter [37] nachzulesen.

7.6.2 \Vorgehen

Beim Hinzufiigen und Eintragen geht git wie im Aktivita-
tendiagramm in Abbildung 7 vor. Teure Operationen sind
dabei einmal das Erzeugen eines SHA-1 Hashes der Datei,
bei der diese komplett eingelesen werden muss und das
Speichern an sich, bei dem sie komplett geschrieben
werden muss. Beim Hinzufiigen und Eintragen einer
Datei der Grofle n liegt der Zeitaufwand also in O(2n) =
O(n). Somit steigt dieser linear mit der Datengrofe. Der
Zeitaufwand fiir das Hashen kann vernachléssigt werden,
da dieses um mehrere Groflenordnungen schneller geht
als das eigentliche Lesen bzw. beim Lesen stattfindet und
dieses unwesentlich verlangsamt.

Beim Ubertragen von und zu einem entfernten Reposi-
tory gibt es in git grundsitzlich zwei Moglichkeiten. Die
eine verwendet zur Ubertragung das Hypertext Transfer
Protocol (HTTP). Dafiir muss beim entfernten Repository
nur ein HTTP-Server laufen. Der grofse Nachteil dieser
Ubertragungsart ist, keine Informationen zu git ausgewer-
tet werden oder git direkt benutzt wird. Es werden viele
verschiedene kleine Anfragen geschickt und viele Daten
iibertragen. Die andere Moglichkeit ist die Verwendung
der intelligenteren Ubertragungsarten. Genutzt werden
dafiir, neben dem direkten Zugriff auf Dateien tiiber

.git
| —— branches
config
description
HEAD
hooks
\ |-—— applypatch-msg.sample
commit-msg.sample
post-update.sample
pre—applypatch.sample
pre—-commit.sample
prepare—-commit-msg.sample
pre—-rebase.sample
update.sample
info
‘—— exclude
objects
|-— info
‘—-— pack
‘—-— refs

| —— heads

‘-— tags

Abbildung 6. .git-Verzeichnis Inhalt nach der Initialisierung
mit git init

file://, hauptsdchlich git eigenes Protokoll git://
und dieses Protokoll getunnelt iiber andere Protokolle
wie Secure Shell (SSH). Der Vorteil bei der Benutzung
des git://-Protokolls ist, dass nur die Informationen
tibertragen werden miissen die benotigt werden. Dafiir
muss beim entfernten Repository receive-pack und
upload-pack von git installiert sein. Diese Programme
kiimmern sich um das Senden und Empfangen. Es ist
also geboten, bei Repositories die grofle Datenobjekte
enthalten, nicht das HTTP-Protokoll sondern git eigenes
zu benutzen.

7.6.3 Besonderheiten und Einschrdnkungen

Der git add-Befehl markiert, im Gegensatz zu den
anderen VVS, nicht nur Dateien dafiir, dass sie einge-
tragen werden sollen. Er erstellt und fiigt auch schon die
Objektdaten wie BLOB und Hash zum Index hinzu. Der
git commit-Befehl muss danach nur noch den Baum
aktualisieren und Commit-Objekte erstellen und diese
verkntipfen.

7.6.4 Java Anbindung

Fiir Java gibt es verschiedene Bibliotheken die den Zugriff
von Java auf git anbieten. Dazu gehoren JGit [40] und
JavaGit [41]. Dies unterscheiden sich dadurch, dass JGit
selbst eine Implementierung von git ist, wohingegen
JavaGit ein Wrapper fiir die originale Implementierung
von git ist. Aus Optimierungs- und Geschwindigkeits-
sicht ist es klar, dass die C-Implementierung von git
besser optimiert werden kann und ist, da der C-Code
maschinenndher ist [42]. Dies liegt im Weiteren auch

git add; git commit

[store file under .git/obects/$hash(2)/$hash(2-40)]

$file $file

AV

store object and return SHA-1 hash /
git hash-object -w $file

$hash filename($file)

update index adding information about this new object /
git update-index --add --cacheinfo 100644 $hash $filename

[create tree object / git write-tree]
$treehash
[commit the tree / git commit-tree $treehash]7>©
$commithash

Abbildung 7. Aktivitatendiagramm fir git add; git
commit

daran, dass C eine zu kompilierende Sprache, Java aber
eine interpretierte ist. Trotzdem kann es zum Beispiel,
wenn die Ausfiihrung nur in Java stattfindet, durch nicht
auszufithrende Kontextwechsel zur C-Implementierung,
passieren, dass Zeit im Vergleich zur Nutzung der C-
Implementierung gespart wird. Dies wirkt sich aber nur
bei sehr kleinen Eintragungen aus. Zusatzlich ist die
reine Java-Implementierung nicht mehr abhingig davon,
dass eine git Installation vorhanden ist, sondern ist diese
selbst.

7.7 Mercurial

Mercurial [33] funktioniert fast genauso wie git, deshalb
verweise ich hier nur auf die Unterschiede, die Dustin
Sallings [43] ermittelt hat.

7.8 Bazaar

Auch Bazaar [30] funktioniert dhnlich wie git. Es ver-
wendet zum Beispiel statt SHA einfache Nummern um

13

Versionen zu identifizieren und ist mehr dafiir gedacht
mit der integrierten GUI benutzt zu werden. Es ist auf
eine einfache Benutzbarkeit mittels GUI ausgelegt.

7.9 darcs

Darcs advanced revision control system (Darcs) [31] ist
ein von David Roundy entwickeltes verteiltes VVS, geht
aber ein wenig anders als die hier vorgestellten VVS vor.
Eintragungen sind Patches aber in beliebiger Reihenfolge.
Es gibt keine hierarchischen Beziehungen zwischen Ver-
einigungen zweier Eintragungen. Genau diese fehlenden
Beziehungen machen es schwierig konkrete Versionen
zu bestimmen. Versionen beziehen sich immer auf den
aktuellen Zustand des Repositories.

7.10 Fossil

Fossil [32] verwendet so wie git auch SHA-1 Hashes
um Objekte im Repository zu identifizieren. Fossil ver-
wendet SQLite-Datenbanken um die zu verwaltenden
Repositories zu speichern. In diesen werden die Daten,
auch mit Deflate [44] im zlib-Format [45], komprimiert
gespeichert. Eine Besonderheit von Fossil ist, dass mehr
als eine herausgeholte Kopie des Repositories unterstiitzt
wird.

7.11

Monotone [34] existierte vor git und wurde von Linus
Torvalds als , die am meisten brauchbare Alternative”
[46] bezeichnet und auch von ihm ausgiebig untersucht.
Deshalb verlasse ich mich auf seine Entscheidung, ein
neues VVS zu entwickeln und belasse die Untersuchung
mit dem Ergebnis, dass git fortgeschrittener als monotone
ist.

Monotone

7.12 Veracity

Veracity [35] ist ein junges, Ende 2010 veroffentlichtes,
VVS. Es bietet einen integrierten Bug-Tracker und im
Unterschied zu allen anderen hier vorgestellten VVS ist
es moglich verwaltete Dateien sperren zu lassen [47].

7.13 Geschwindigkeits- und Skalierbarkeitsver-

gleich

In [48] wurden verschiedene Vergleiche zwischen VVS in
Bezug auf ihre Geschwindigkeit durchgefiihrt. Es werden
nicht alle hier erwdhnten VVS direkt verglichen. Dort
wurde angegeben, dass git zwar nicht das schnellste, aber
im Bezug auf Speichereffizienz das beste VVS ist.

Die Schwierigkeit diese Aussagen zu verallgemeinern
liegt darin, dass es fiir jedes Projekt sowohl andere Daten
gibt die im Repository gespeichert werden, als auch,
dass sich die Entwicklungsgeschichte dieser erheblich
unterscheiden kann. Somit kann hier keine grundlegende
Entscheidung getroffen werden, welches VVS sich am
besten eignet.

14

7.14 Auswahl

Wegen der guten Anbindung durch JGit in Java und der
Popularitit verwende ich im folgenden git als VVS das
fiir das Back-End verwendet werden soll.

8 ENTWURF EINES REPOSITORIES MIT GIT

Dieser Abschnitt geht auf den Entwurf ein. Es wird
zunéchst dargelegt, was unter Live Editing zu verstehen
ist und wie es umgesetzt werden kann. Darauf folgen
andere Design Entscheidungen und ein Konzept wie git
in die GUI integriert werden konnte.

8.1 Live Editing

Live Editing, wie in den Anforderungen unter Punkt 7
beschrieben, wird vom verwendeten Editor selbst nicht
unterstiitzt. Es wire durch folgenden Ablauf moglich,
das durch das Repository zu unterstiitzen:

Sobald eine Anderung im Editor gemacht wird, wird
diese Anderung eingetragen und im zentralen Reposi-
tory bekannt gemacht. Gleichzeitig wird entweder ein
aktives Polling durchgefithrt um eingetragene Anderun-
gen im zentralen Repository zu registrieren und diese
Anderungen dann zu holen, oder dies geschieht durch
verschiedene git-hooks welche ausgefiihrt werden sobald
im zentralen Repository eine Anderung eingetragen wird.
Active Polling ist grundsétzlich eine schlechte Strategie
und erzeugt unnotigen Overhead. Andererseits ist die Va-
riante mit git-hooks auch aufwindig zu implementieren.
Ein weiteres Problem ist die Anzahl der Eintragungen.
Es wiirde fiir jede gemachte Anderung, auch jede noch
so kleine Anpassung im Editor, eine Eintragung erzeugt
werden. Weiterhin kommt es noch zu Problemen, wenn
mehrere Personen gleichzeitig Anderungen vornehmen,
die nicht durch automatisches Verschmelzen von git
gelost werden konnen.

Aufgrund der genannten Probleme sehe ich davon ab
diese Funktionalitdt mit dem Repository zu unterstiitzen.
Es wire sinnvoller dies im Editor zu implementieren,
da hier die Ursache der Probleme liegt und somit die
erste Stelle, an der die Probleme behandelt werden
sollten. Bei Ubereinstimmung der beteiligten Personen
abgeschlossene Anderungen konnen danach gespeichert
bzw. im Repository eingetragen werden.

8.2 Speichern entspricht Commit ohne Push

Das Driicken des Speichern-Knopfs im Editor bewirkt
eine Eintragung in das lokale Repository. Um die Ande-
rungen fiir andere im zentralen Repository bereitzustellen,
gibt es einen separaten Knopf.

8.3 Architektur von VALESCA mit git

Um offline und gleichzeitiges Arbeiten in VALESCA
zu unterstiitzen, soll dieses auf die in Abbildung 8
dargestellte Architektur portiert werden. Dabei muss
zum einen die Anbindung an git entworfen bzw. ent-
schieden werden, wie ein auf git basierendes Back-End

git
dlient local VALESCA server local git repository
|| I o
- =
m—] — |
I o
W s J central

:-- -JI- git repository
-
| N |
>

client local VALESCA server : local git repository 1

\)

Abbildung 8. VALESCA Architektur mit git Back-End.
Bei * sind die Anderungen fiir ein auf git basierendes
Repository nétig, bei ** die Umsetzung der Kommunikation
und Verwaltung mit einem zentralen Repository.

in VALESCA integriert werden kann. Im zweiten Schritt
muss entschieden werden wie ein zentrales Repository
aus Sicht von VALESCA verwaltet wird.

8.4 GUI Konzept fiir Versionierung

In diesem Abschnitt beschreibe ich, wie ein versionier-
tes Repository im Front-End von VALESCA umgesetzt
werden konnte.

8.4.1 Bisherige Oberfldche

In VALESCA gibt es zwei grundsitzliche Layouts. Die
Oberfldache zur Verwaltung von allgemeinen Komponen-
ten (Abbildung 9) fiir TOSCA und die Ansicht des Editors
(Abbildung 10) fir die Bearbeitung dieser Komponenten.

8.4.2 Oberfldche mit Integration von Versionskontrolle

Fiir ein versioniertes Repository sollten in der Oberfldche
mindestens folgende Interaktionen und Informationen
tiber das Repository fiir den Benutzer einfach zuganglich
sein:
o Aktuelle Version (Bezeichnung einer Eintragung)
o Aktueller Zweig
o Wie viele Eintragungen noch nicht versendet wurden
und wie viele noch nicht heruntergeladen wurden
o Anzeige welche Dateien bei der Eintragung hinzu-
gefiigt/gedndert/geloscht werden.
« Eintragen inklusive Autorinformationen und Be-
schreibungstext
o Versenden
o Herunterladen
o Riickgédngig machen
o Versionsgeschichte ansehen
FEine auch fiir andere Webanwendungen geeignete
Implementierung kénnte so aussehen: Im oberen Bereich

15

Service Templates | Node Types Relationship Types Artifact Types Administration About
I; Add new)
.f/ SugarCRM) | [£ import TOSCA)
\ hitp:/fwww.example.com/demo * ﬂ d "
.]

(®F import THOR J

Abbildung 9. VALESCA Weboberflache

valescar - ¥ Wot lbgged on
BE sODOX 1 2 @& 14646 REEE 4
B3 properties (SugarchH b) 7]
= T0SCA Toploay Tempiate / vales
4 Grouping Yy s Name: Value

O Group Template (SugarCRM

o (PHP Meodule) _ i

_ Application)
71 wisual Group

4 Node Types
£ Apache Web Server

MysaL

A Operating System

@ PHP Module Apachg(Apache Web Server)

B1 Virtual Machine h ’ -

Mgl SugarCRI Appication

%, SugarCRM DB

4 Relationship Types ()

Depends on ‘ Q (Operating System)
Connects to e
Depends on
Hosted on '

e -
Connects t |]
onnects o -
| = |

Hosted on

(Virtual Machine) ‘
L J

Hosted on

= Main attributes

Identifier

Hame

Node Type

Property Defauls
Property Constraits.
Deployment Artifacts
Artfacts

SugarCrm_2

{nttp: v w_example.com/.

W

" n
w (MysQL) = My ttribute
| [B More attributes

Minimum Instances 1
Maximum instances
Policies

- Environment Constrai...

— <1 I

Abbildung 10. VALESCA Editor

der GUI wird eine absolut positionierte Leiste wie in
Abbildung 11 eingefiigt auf der die genannten Infor-
mationen immer sichtbar platziert und die Interaktions-
moglichkeiten durch Knopfe abrufbar sind. Dazu gehort
eine Anzeige wie viele Dateien sich gedndert haben, aber
noch nicht eingetragen sind und eine Anzeige wie viele
Eintragungen noch nicht in ein entferntes Repository
tibertragen wurden.

Der Quellcode fiir die hier skizzierte GitBar ist in
Abbildung 17 dargestellt.

9 IMPLEMENTIERUNG EINES REPOSITORIES
MIT GIT

Bei der Implementierung des Repositories setze ich auf
einen agilen Ansatz [49]. Ich iteriere durch aufeinander
aufbauende Implementierungsphasen/Iterationsschritte.
In jeder dieser Phasen werden bestimmte neue Funk-
tionalitdten ergdnzt und die in vorhergehenden Phasen
implementierten Dinge korrigiert und verbessert. So
entsteht nach und nach die komplette Implementierung
des Repositories.

16

fkﬁewiﬂﬂmrv-lﬂEEﬂzl

GitBar -

= Commit BRCRESEFE Revert WARETE Y AR TR Histnrv-m

GitBar - | =i f

4 Commit Revert

Push / Pull / View History - @

Abbildung 11. GitBar mit Kndpfen

1 FileRepositoryBuilder builder =
Repository repository =

N

new FileRepositoryBuilder () ;
builder.setGitDir (new File ("/my/git/directory/.git")).

readEnvironment () . £indGitDir () .build() ;

Git git = new Git (repository);
// add changes to staging area
AddCommand add = git.add();

add.addFilepattern(".").call();

// commit staged changes
CommitCommand commit = git.commit ();

— O 0 00N ONO W

JEg—

commit.setMessage ("commitmessage") .call();

Abbildung 12. JGit API Beispiel mit existierendem git-Repository

9.1 JGit

Um vorhandenen Quelltext wiederzuverwenden, entwick-
le ich keine eigene Anbindung an git, sondern verwende
die vorhandene Bibliothek JGit [40], welche eine git-
Schnittstelle aus Java-Sicht zur Verfiigung stellt. JGit bietet
dazu einerseits verschiedene Application Programmable
Interface (API)-Methoden zum direkten Aufruf von ent-
sprechenden git-Befehlen, als auch andererseits einige
zusammenfassende und abstrahierende Methoden zur
effizienten Nutzung von git an.

Um die API benutzen zu konnen kann man wie in
Abbildung 12 vorgehen. Beispielsweise kann man nun
mit RevTree und Revilalk einen Baum von Revisionen
objekt-orientiert verarbeiten.

9.2

In der ersten Iteration &ndere ich jeden vorhandenen
Aufruf in VALESCA, bei dem ein Service-Template er-
stellt oder gedndert wird. Ich fiige die nétigen git-Befehle
hinzu, damit die vorhandene Versionierung der Dateien
von VALESCA automatisiert wird.

Da fiir diesen Iterationsschritt bereits ein git-Repository
von Hand erstellt wurde, ist es noch nicht erforderlich,
dass dieses erstellt und eingerichtet wurde. Zur Tren-
nung von Verantwortlichkeiten [16] gibt es die Klasse
valesca filesystem.FileHandling. In dieser werden Zugriffe
auf Dateien gekapselt. Dort erweitere ich die Methode
writeStringToFile um Aufrufe zum Hinzufiigen der Ande-
rungen und zum Eintragen dieser Anderungen.

Iteration 1: Basis git Anbindung

9.3 lteration 2: Generalisierung des Dateizugriffs
Um dem Ziel der Speicherung direkt im git-Repository
ndher zu kommen, ist der nichste Schritt, statt Zugriffe
auf das Dateisystem direkt zu verwenden, diese als
Zugriffe auf das git-Repository zu kapseln. Diese Kap-
selung sollte moglichst generell strukturiert sein, um
spatere Anderungen am Quelltext so gering wie moglich
zu halten. Deshalb erweitere ich VALESCA um die in
Abbildung 13 dargestellte Klassenhierarchie.

Ab jetzt wird gefordert, dass die Schnittstelle
IResourceRepository von allen Klassen, welche die
Ressourcen verwalten, implementiert werden muss.
Somit ist fiir den Aufrufenden Code sichergestellt, dass
dieser unabhéngig von der Implementierung funktioniert.
Ressourcen sind in diesem Fall unter anderem die
JSON- und SVG-Dateien die von VALESCA erzeugt
werden. Dies ist in der bisherigen Implementierung
von FileHandling anzupassen. Fiir versionierte
Repositories gibt es ab jetzt die Moglichkeit die abstrakte
Klasse AbstractVersionedResourceRepository
zu konkretisieren. Diese implementiert auch
IResurceRepository. Fiur Aufrufe wird eine neue
Klasse ResourceRepository hinzugefiigt. Diese neue
Klasse weif3, definiert tiber eine Konfigurationsoption
in VALESCA, welche Ausprigung der Schnittstelle
IFileHandling verwendet werden soll, und fiihrt
die Aufrufe auf dieser Instanz aus. Alle Klassen
sind nach dem Singleton-Entwurfsmuster aufgebaut.
Dieses definiert, dass von einer solchen Klasse nur

all classes are singletons Il‘

<<interface>>
IResourceRepository

A

AbstractFiIeBasedRepository ‘

AbstractVers|onedResourceRepOS|tory ‘

/d

GitRepository ‘ OtherRepository ‘ FileHandling
= A 24

N 4
N <<yse>> Vi
N, s’

N
\\
<<use>> _

AN B

I

|

N |
\\<<use>> : e

|

I

|

ResourceRepository

Abbildung 13. Neue Klassenhierarchie flr die Dateiver-
waltung

eine Instanz existieren darf. Da alle hier verwendeten
Implementierungen auf Dateien und Ordnern arbeiten,
gibt es die Klasse AbstractFileBasedRepository.

9.4 Ilteration 3: Einbinden der neuen Klassenhierar-
chie in VALESCA

Einige Zugriffe auf Dateien, welche im Repository abe-
legt werden sollen, finden nicht tiber Methoden in
FileHandling statt, sondern es gibt auch Stellen die
direkt Dateizugriffe ausfithren oder eine weitere Klasse
filesystem.Utils verwenden. In dieser Iteration gilt
es alle relevanten Zugriffe auf Dateien so umzuleiten,
dass die Zugriffe tiber das Repository laufen, um in
spéteren Iterationen diese nach und nach verallgemeinern
zu koénnen.

9.5 Iteration 4: Repository Schnittstellenmethoden
definieren

In dieser Iteration geht es darum die Methoden des Java-
Interfaces IResourceRepository zu definieren. Auch
mit Blick auf die in Abschnitt 5 gestellten Anforderungen,
werden nun jeweils entsprechende Methoden, die von
jedem in VALESCA verwendeten Repository unterstiitzt
werden miissen, erstellt. In Abbildung 14 sind diese
dargestellt.
e initRepository: Erstellt die bendtigten Dateien
und Ordner fiir die Verwaltung dieses Repositories
o addRessources: Markiert Ressourcen zum Eintra-
gen.

17

<<interface>>
IResourceRepository

initRepository

addResources
addRemoteRepositoryDependency
commitResources
getAddedResources

getResource

saveResources

updateRemote
updateFromRemote

A

1
AbstractVersionedResourceRepository

CommitldType

checkout
getCommitldType
revert

Abbildung 14.
Attributen

Klassendiagramm mit Methoden und

e addRemoteRepositoryDependency: Fligt eine
optionale Abhingigkeit von einem entfernten Re-
pository hinzu.

« commitResources: Trdgt eingetragene Anderun-
gen im Repository ein

o getAddedResources: Listet zur Eintragung hinzu-
gefiigte Ressourcen auf

e getResource: Gibt eine bestimmte Ressource zu-
riick

e saveResources: Kombination
addResources und commitResources

o updateRemote: Lokale Eintragungen an ein entfern-
tes Repository {ibertragen

e updateFromRemote: Eintragungen aus einem ent-
fernten Repository holen.

von

9.6 Iteration 5: GitFileSystem / WatchService

Um Datei-Anderungen in einem Git-Repository zu
speichern gibt es zwei Moglichkeiten. Entweder ich
entwickle ein mit git versioniertes Dateisystem
(class GitFileSystemProvider extends
FileSystemProvider) oder ich verwende einen
WatchService um das Repository-Verzeichnis
zu iberwachen und bei Anderungen diese in git
einzutragen. Es soll folgende Moglichkeiten geben, wann
eine Eintragung fiir gednderte Dateien ausgefiihrt wird:
o Nicht automatisch, nur manuell eintragen

18

« Nach dem Andern einer Datei

9.6.1 GitWorking TreeWatcher

Bei dieser Implementierung lasse ich von einem
WatchService jedes Verzeichnis im Repository {iiber-
wachen. Die zu iiberwachenden Ereignisse sind da-
bei die StandardWatchEventKinds ENTRY_CREATE,
ENTRY_DELETE und ENTRY_MODIFY. In meiner Imple-
mentierung fiige ich die, bei einem dieser Ereignisse
gednderten, Dateien zum Index hinzu (git add) und
trage die Anderungen, falls so konfiguriert, im Repository
ein (git commit). Um den GitWorkingTreeWatcher zu
verwenden, muss man diesen Instantiieren und ihm dabei
den Pfad zu dem Verzeichnis, welches versioniert werden
soll, tibergeben.

9.6.2 GitFileSystem(-Provider)

In Java 7 gibt es erweiterte Moglichkeiten ein benutzerde-
finiertes Dateisystem anzubieten. Hierfiir muss man einen
FileSystemProvider erstellen der ein FileSystem
anbietet. Auf dieses neue Dateisystem kann aus Java
heraus mit der Angabe des fiir das neue Dateisystem
verwendeten Schemas zugegriffen werden. Per Voreinstel-
lung benutzt Java bei Dateizugriffen das der Laufzeitum-
gebung bereitgestellte Dateisystem des Hosts. Dieses wird
tiber das Schema file:/// adressiert. Beispielsweise
konnte man ein auf git basiertes versioniertes Dateisystem
wie folgt erstellen:

Zunichst leitet man GitFileSystemProivder von
FileSystemProvier ab und implementiert die ab-
strakten Methoden. Dazu newFileChannel welches
ein FileChannel-Objekt zurtickgibt tiber das auf eine
Datei zugegriffen werden kann. Abhédngig vom Pfad
der benutzt wird muss der FileSystemProvider ent-
scheiden, welches FileSystem benutzt wird. Dies ist
zum Beispiel niitzlich, weil nicht ein globales versio-
niertes Dateisystem implementiert werden soll, son-
dern eines welches fiir bestimmte Verzeichnisse git-
Repositories implementiert. Das von FileSystem abge-
leitete GitFileSystem bietet in jeder Instanz ein neues
Dateisystem an. Das Wurzelverzeichnis bezieht sich auf
dieses und nicht auf ein eventuelles anderes Dateisystem
auf dem es basiert.

9.7 Vergleich der méglichen Anséatze

Die drei von mir beschriebenen Ansdtze setzen je-
weils auf einer anderen Ebene an. Sehr abstrahiert
von der Anwendung selbst, kann durch ableiten von
FileSystemProvider und FileSystem in Java 7 ein
neues Dateisystem erstellt werden. Die zweite Moglich-
keit ist es, in der Anwendung selbst ein Repository zu
erstellen was die anfallenden Zugriffe selbst verwalten
und entsprechend versionieren kann. Dies erfordert in der
Anwendung eine starke Konzentration der Dateizugriffe
um diese koordiniert verarbeiten zu koénnen. Dieser
Ansatz ist eine Einzelfalllosung die im Allgemeinen
nicht auf andere Anwendungen {ibertragen werden kann.

Somit muss fiir diesen Ansatz bei jeder Anwendung
neu entwickelt werden. Die dritte Moglichkeit ist ei-
ne Zwischenschicht. Diese verwendet das vorhandene
Dateisystem, das in der Anwendung benutzt wird, und
beobachtet Zugriffe. Bei bestimmten Ereignissen werden
Methoden aus dieser Zwischenschicht aufgerufen um auf
die Ereignisse entsprechend zu reagieren. Dieser Ansatz
ermoglicht es, ihn v6llig unabhéngig von der Anwendung
in diese zu integrieren. Allerdings ist dieser Ansatz
abhédngig von dem in der Anwendung verwendetem
Dateisystem und der dafiir bereitgestellten Bibliotheken
um auf Ereignisse zu reagieren. In Tabelle 1 sind diese
Untersuchungen tabellarisch dargestellt. Es wird deutlich,
dass die Verwendung des WatchServices eine relativ
einfache Implementierung ermoglicht, bei der vorhande-
ner Quelltext wenig modifiziert werden muss, da einfach
nur ein Verzeichnis tiberwacht werden muss. Schwieriger
wird es, wenn sich die zu versionierenden Daten nicht in
einem gemeinsamen Verzeichnis befinden. Dies behandle
ich nicht.

10 ZUSAMMENFASSUNG UND AUSBLICK

In dieser Bachelorarbeit habe ich in Abschnitt 9 gezeigt,
welche Moglichkeiten es fiir die Implementierung ei-
nes verteilten Back-Ends gibt. Dabei habe ich zunéchst
verschiedene Anforderungen (Abschnitt 5), welche an
ein Back-End gestellt werden sollten, erkldrt und bin
darauf eingegangen wie diese von verschiedenen ver-
teilten VVS erfiillt werden. Das Ergebnis dieser Arbeit
ist eine Zwischenschicht, GitWorkingTreeWatcher (Unter-
unterabschnitt 9.6.1), zwischen dem Dateisystem und
einer Anwendung, welche beliebige Daten in einem
Ordner ablegt. Diese abgelegten Daten werden von mei-
ner Zwischenschicht automatisch versioniert. Weiterhin
habe ich dargestellt, wie es moglich ist, entweder auf
Dateisystemebene oder in der Anwendung ein versio-
niertes Repository umzusetzen. Fiir die Integration in
die GUI von VALESCA habe ich eine Leiste (GitBar in
Unterunterabschnitt 8.4.2), welche Informationen zum
aktuellen Stand des Repositories anzeigt, vorgeschlagen.
Diese ist nur ein Konzept und miisste zur Integration
mit Funktionalitit versorgt werden. Des Weiteren war es
in der mir zur Verfiigung stehenden Zeit nicht moglich,
die vorgeschlagenen Anderungen fiir eine einheitliche
Schnittstelle zum Repository (IResourceInterface)in
VALESCA zu integrieren. Dies ist mit grofieren Aufwand
verbunden, wie auch schon in Tabelle 1 beschrieben.

LITERATUR

19

GitFileSystemProvier

GitWorkingTreeWatcher

GitRepository

Implementierung
Dateisytemnihe

Abhiéngigkeit von Dateisystem

extend FileSystemProvider und
extend FileSystem

Sehr nah, eigenes Dateisystem

Kann unabhingig sein, da es
ein eigenes Dateisystem ist. Ich
wiirde in einer ersten Implemen-
tierung zunachst auf das vor-
handene Dateisystem file:///
zuriickgreifen.

benutzt WatchService

zwischen Dateisystem und An-
wendung.

Abhiéngig von auf Dateien ba-
siertem Dateisystem. Kann auf
Anderungen in diesem bestimte
Reaktionen ausfiihren.

eigene Implementierung
Nicht nah

Unabhiéngig von einem Dateisys-
tem.

Umfang Sehr umfangreich, da ein kom- | Kleiner Umfang Umfang abhéngig von benotig-
plettes Dateisystem erstellt wird. ten Operationen im Repository
und der Anforderungen der An-

wendung.

Integration Aufwindig, siehe Umfang. Einfache Integration moglich, da | Kann aufwandig sein, je nach
ein Ordner nur iiberwacht wer- | existierender Konzentration von
den muss Zugriffen auf Dateisystem/ an-

deres Speichersystem
Tabelle 1
Vergleich mdglicher Implementierungen in Java fir ein versioniertes Repository
LITERATUR [9] T. Lindholm, , A 3-way Merging Algorithm for

[1] TOSCA TC Mitglieder, Topology and Orchestration
Specification for Cloud Applications (TOSCA), English,
Working Draft 13, OASIS Technical Commitee, Okt.
2012. Adresse: https:/ / www.oasis-open.org /
committees/tc_home.php?wg_abbrev=tosca (siehe

S. 3, 4).

[2] IAAS, Universitdt Stuttgart. (Juli 2012). Visual Edi-
tor for TOSCA, Adresse: http://www.cloudcycle.
org/valesca/ (besucht am 07.07.2012) (siehe S. 3).

[3] Git Mitwirkende. (Juli 2012). Git, Adresse: http:
/ / git-scm.com/ (besucht am 07.07.2012) (siehe

S. 3, 11).

[4] T. van Lessen, ,Konzipierung und Entwicklung
eines Repository fiir Geschiftsprozesse”, Diplom-
arbeit, Universitdt Stuttgart, 2006 (siehe S. 3).

[5] C. Roberts, ,Integrating version control into
ownCloud”, Prifysgol Aberystwyth University,
Progressreport, Nov. 2011. Adresse: http : / /
craig0990. files . wordpress.com /2011 /11 / cgr9 _
progressreport_v1.pdf (siehe S. 3).

[6] ownCloud Community. (6. Nov. 2012). ownCloud.
English, Adresse: http://owncloud.org/ (besucht
am 06.11.2012) (siehe S. 3).

[7] R. Grant, ,Filesystem Interface for the Git Version
Control System Final Report”, PENN ENGINEE-
RING, University of Pennsylvania, Report, Apr.
2009. Adresse: http:/ / www.seas.upenn.edu /
~cse400/CSE400_2008_2009 / websites/ grant/final.

pdf (siehe S. 3).

[8] S. Fish. (7. Nov. 2012). Better SCM Initiative :
Comparison, Adresse: http:/ /better-scm.shlomifish.
org / comparison / comparison.html (besucht am

25.08.2012) (siehe S. 3).

Synchronizing Ordered Trees — the 3DM merging
and differencing tool for XML”, Master’s thesis,
Helsinki University of Technology, Dept. of Com-
puter Science, Sep. 2001. Adresse: http:/ /tdm.
berlios.de/3dm /doc/thesis.pdf (siehe S. 3, 7, 9,
10).

P. Mell und T. Grance, The NIST Definition of
Cloud Computing, English, Special Publication, U.S.
Department of Commerce, Sep. 2011. Adresse: http:
/ / csrc.nist.gov. /publications /nistpubs /800-145/

Wikipedia. (6. Nov. 2012). Cloud-Computing —
Wikipedia, Die freie Enzyklopédie, Adresse: http:
/ / de . wikipedia . org / w / index . php ? title =
Cloud-Computing&oldid=110166147 (besucht am

OASIS TOSCA Committee. (Aug. 2012). Tosca
overview, Adresse: https:/ / www. oasis - open.
org/committees /tc_home.php?wg_abbrev=tosca

D. Crockford, The application/json Media Type for
JavaScript Object Notation (JSON), REC 4627 (In-
formational), Internet Engineering Task Force, Juli
2006. Adresse: http:/ /www.ietf.org/rfc/rfc4627.txt

H.-]. Habermann und E. Leymann, Repository. Ei-
ne Einfiihrung. Miinchen: Oldenbourg, 1993, ISBN:

R. Elmasri und S. Navathe, Grundlagen von Da-
tenbanksystemen, Ser. Paerson Studium. Pearson

[10]

SP800-145.pdf (siehe S. 4).
[11]

06.11.2012) (siehe S. 4).
[12]

(besucht am 08.08.2012) (siehe S. 4).
[13]

(siehe S. 5).
[14]

9783486222005 (siehe S. 5).
[15]

Studium, 2009 (siehe S. 6).
[16]

B. Lahres und G. Rayman, Praxisbuch Objektorientie-
rung: Von den Grundlagen zur Umsetzung, Ser. Galileo
computing. Galileo Press, 2006 (siehe S. 6, 16).

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
http://www.cloudcycle.org/valesca/
http://www.cloudcycle.org/valesca/
http://git-scm.com/
http://git-scm.com/
http://craig0990.files.wordpress.com/2011/11/cgr9_progressreport_v1.pdf
http://craig0990.files.wordpress.com/2011/11/cgr9_progressreport_v1.pdf
http://craig0990.files.wordpress.com/2011/11/cgr9_progressreport_v1.pdf
http://owncloud.org/
http://www.seas.upenn.edu/~cse400/CSE400_2008_2009/websites/grant/final.pdf
http://www.seas.upenn.edu/~cse400/CSE400_2008_2009/websites/grant/final.pdf
http://www.seas.upenn.edu/~cse400/CSE400_2008_2009/websites/grant/final.pdf
http://better-scm.shlomifish.org/comparison/comparison.html
http://better-scm.shlomifish.org/comparison/comparison.html
http://tdm.berlios.de/3dm/doc/thesis.pdf
http://tdm.berlios.de/3dm/doc/thesis.pdf
http://csrc.nist.gov./publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov./publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov./publications/nistpubs/800-145/SP800-145.pdf
http://de.wikipedia.org/w/index.php?title=Cloud-Computing&oldid=110166147
http://de.wikipedia.org/w/index.php?title=Cloud-Computing&oldid=110166147
http://de.wikipedia.org/w/index.php?title=Cloud-Computing&oldid=110166147
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
http://www.ietf.org/rfc/rfc4627.txt

20

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

P. O’'Neil und E. O’'Neil, Database—principles, Pro-
gramming, and Performance, Ser. The Morgan Kauf-
mann Series in Data Management Systems. Morgan
Kaufmann Publishers, 2001 (siehe S. 6).

E. A. Brewer, , Towards robust distributed systems
(abstract)”, in Proceedings of the nineteenth annual
ACM symposium on Principles of distributed compu-
ting, Ser. PODC ‘00, Portland, Oregon, United States:
ACM, 2000, S. 7-, ISBN: 1-58113-183-6. DOI: 10.1145/
343477.343502. Adresse: http://doi.acm.org/10.
1145/343477.343502 (siehe S. 6).

W. E Tichy, ,Tools for Software Configuration
Management”, in SCM, J. E. Winkler, Hrsg., Ser.
Berichte des German Chapter of the ACM, Bd. 30,
Teubner, 1988, S. 1-20 (siehe S. 6).

G. Hohpe und B. Woolf, Enterprise Integration
Patterns: Designing, Building and Deploying Messa-
ging Solutions. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2003 (siehe S. 6).
M. Fowler, Patterns of Enterprise Application Archi-
tecture, Ser. The Addison-Wesley Signature Series.
Prentice Hall, 2003, 1SBN: 9780321127426 (siehe S. 6).
T. Lord. (21. Mai 2008). GNU arch, Adresse: http:
/ /www.gnu.org/software/gnu-arch/ (besucht am
28.11.2012) (siehe S. 8).

JacobM. (Marz 2010). Using a version control
system as a data backend, Adresse: http:/ /
stackoverflow.com / questions / 2519252 / using-a-
version-control-system-as-a-data-backend (besucht
am 03.08.2012) (siehe S. 8).

J. Dunkel, A. Eberhart, S. Fischer, C. Kleiner
und A. Koschel, Systemarchitekturen fiir Verteilte
Anwendungen: Client-Server, Multi-Tier, SOA, Event
Driven Architectures, P2P, Grid, Web 2.0. Hanser
Fachbuchverlag, 2008 (siehe S. 8).

M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin,
K. P. Eswaran, J. N. Gray, P. P. Griffiths, W. F. King,
R. A. Lorie, P. R. McJones, J. W. Mehl, G. R. Putzoluy,
I. L. Traiger, B. W. Wade und V. Watson, ,System
r: relational approach to database management”,
ACM Trans. Database Syst., Bd. 1, Nr. 2, S. 97-137,
Juni 1976, 1sSN: 0362-5915. DOI: 10.1145/320455.
320457. Adresse: http:/ /doi.acm.org/10.1145/
320455.320457 (siehe S. 8).

R. L. Rivest, A. Shamir und L. Adleman, , A
method for obtaining digital signatures and public-
key cryptosystems”, Commun. ACM, Bd. 21, Nr. 2,
S. 120-126, Feb. 1978, 1ssN: 0001-0782. DOI: 10.1145/
359340.359342. Adresse: http://doi.acm.org/10.
1145/359340.359342 (siehe S. 9).

A. Cheney. (3. Miarz 2009). Pretty Diff - The dif-
ference tool, Adresse: http:/ / prettydiff . com/
(besucht am 08.11.2012) (siehe S. 10).

J. Peabody. (3. Nov. 2012). mergely - Diff and merge
offonline, Adresse: http:/ / www.mergely.com/
(besucht am 08.11.2012) (siehe S. 10).

Wikipedia. (Aug. 2012). Comparison of revision
control software — Wikipedia(,) The Free Ency-

(30]

(31]

(32]

(33]

[34]

(35]

(36]

(371

(38]

(39]

[40]

[41]

[42]

(43]

(44]

[45]

LITERATUR

clopedia, Adresse: http:/ /en.wikipedia.org/w/
index.php?title=Comparison_of_revision_control
software&oldid=505233869 (besucht am 03. 08.2012)
(siehe S. 11).

Canonical. (Aug. 2012). Bazaar, Adresse: http://
bazaar.canonical.com/ (besucht am 03.08.2012)
(siehe S. 11, 13).

DarcsTeam. (Aug. 2012). Darcs, Adresse: http://
darcs.net (besucht am 03. 08.2012) (siehe S. 11, 13).
Fossil. (Aug. 2012). Fossil, Adresse: http://www.
fossil-scm.org (besucht am 03.08.2012) (siehe S. 11,
13).

M. Community. (Aug. 2012). Mercurial, Adres-
se: http:/ / mercurial . selenic.com (besucht am
03.08.2012) (siehe S. 11, 13).

monotone. (Aug. 2012). Monotone, Adresse: http://
www.monotone.ca (besucht am 03.08.2012) (siehe
S. 11, 13).

SourceGear. (Okt. 2012). Veracity - The Next Step in
DVCS, Adresse: http:/ /veracity-scm.com/ (besucht
am 23.10.2012) (siehe S. 11, 13).

BitMover, Inc. (26. Okt. 2012). Bitkeeper, Adres-
se: http:/ / www.Dbitkeeper.com/ (besucht am
26.10.2012) (siehe S. 11).

S. Chacon. (26. Okt. 2012). git Book, Adresse: http:
/ /git-scm.com/book/en (besucht am 26.10.2012)
(siehe S. 11, 12).

P. Deutsch, GZIP file format specification version 4.3,
RFC 1952 (Informational), Internet Engineering
Task Force, Mai 1996. Adresse: http:/ /www.ietf.
org/rfc/rfc1952.txt (siehe S. 12).

J. loup Gailly und M. Adler. (27. Juli 2003). The
gzip home page, Adresse: http://www.gzip.org
(besucht am 31.10.2012) (siehe S. 12).

The Eclipse Foundation. (Sep. 2012). Jgit, Adresse:
http: / / www . eclipse . org / jgit/ (besucht am
15.10.2012) (siehe S. 12, 16).

J. Project. (). Javagit. English, Adresse: http:/ /
javagit.sourceforge.net/ (besucht am 29.10.2012)
(siehe S. 12).

S. O. Pearce. (30. Apr. 2009). Why Git is so fast,
Was: re: eric sinks blog - notes on git, Adresse: http:
/ /marc.info / ?1=git&m=124111702609723 &w =2
(besucht am 29.10.2012) (siehe S. 12).

D. Sallings. (6. Apr. 2008). The Differences Bet-
ween Mercurial and Git, Adresse: http:/ /www.
rockstarprogrammer. org / post / 2008 / apr / 06 /
differences-between-mercurial-and-git/ (besucht
am 26.11.2012) (siehe S. 13).

P. Deutsch, DEFLATE Compressed Data Format Specifi-
cation version 1.3, REC 1951 (Informational), Internet
Engineering Task Force, Mai 1996. Adresse: http:
/ /www.ietf.org/rfc/rfc1951.txt (siehe S. 13).

P. Deutsch und J.-L. Gailly, ZLIB Compressed Data
Format Specification version 3.3, RFC 1950 (Informa-
tional), Internet Engineering Task Force, Mai 1996.
Adresse: http:/ /www.ietf.org/rfc/rfc1950.txt (siehe
S. 13).

http://dx.doi.org/10.1145/343477.343502
http://dx.doi.org/10.1145/343477.343502
http://doi.acm.org/10.1145/343477.343502
http://doi.acm.org/10.1145/343477.343502
http://www.gnu.org/software/gnu-arch/
http://www.gnu.org/software/gnu-arch/
http://stackoverflow.com/questions/2519252/using-a-version-control-system-as-a-data-backend
http://stackoverflow.com/questions/2519252/using-a-version-control-system-as-a-data-backend
http://stackoverflow.com/questions/2519252/using-a-version-control-system-as-a-data-backend
http://dx.doi.org/10.1145/320455.320457
http://dx.doi.org/10.1145/320455.320457
http://doi.acm.org/10.1145/320455.320457
http://doi.acm.org/10.1145/320455.320457
http://dx.doi.org/10.1145/359340.359342
http://dx.doi.org/10.1145/359340.359342
http://doi.acm.org/10.1145/359340.359342
http://doi.acm.org/10.1145/359340.359342
http://prettydiff.com/
http://www.mergely.com/
http://en.wikipedia.org/w/index.php?title=Comparison_of_revision_control_software&oldid=505233869
http://en.wikipedia.org/w/index.php?title=Comparison_of_revision_control_software&oldid=505233869
http://en.wikipedia.org/w/index.php?title=Comparison_of_revision_control_software&oldid=505233869
http://bazaar.canonical.com/
http://bazaar.canonical.com/
http://darcs.net
http://darcs.net
http://www.fossil-scm.org
http://www.fossil-scm.org
http://mercurial.selenic.com
http://www.monotone.ca
http://www.monotone.ca
http://veracity-scm.com/
http://www.bitkeeper.com/
http://git-scm.com/book/en
http://git-scm.com/book/en
http://www.ietf.org/rfc/rfc1952.txt
http://www.ietf.org/rfc/rfc1952.txt
http://www.gzip.org
http://www.eclipse.org/jgit/
http://javagit.sourceforge.net/
http://javagit.sourceforge.net/
http://marc.info/?l=git&m=124111702609723&w=2
http://marc.info/?l=git&m=124111702609723&w=2
http://www.rockstarprogrammer.org/post/2008/apr/06/differences-between-mercurial-and-git/
http://www.rockstarprogrammer.org/post/2008/apr/06/differences-between-mercurial-and-git/
http://www.rockstarprogrammer.org/post/2008/apr/06/differences-between-mercurial-and-git/
http://www.ietf.org/rfc/rfc1951.txt
http://www.ietf.org/rfc/rfc1951.txt
http://www.ietf.org/rfc/rfc1950.txt

[46] L. Torvalds. (6. Apr. 2005). Lkml, Adresse: http:
/ /lkml.org /lkml/2005/4/6 /121 (besucht am
26.11.2012) (siehe S. 13).

SourceGear. (2. Juli 2012). How do file locks work?,
Adpresse: http:/ /veracity-scm.com/qa/questions/
1105 / how - do - file - locks - work (besucht am
26.11.2012) (siehe S. 13).

Git Community. (2. Feb. 2010). GitBenchmarks - Git
SCM Wiki, Adresse: https:/ / git.wiki.kernel.org/
index.php /GitBenchmarks&oldid=8548 (besucht
am 29.10.2012) (siehe S. 13).

J. Ludewig und H. Lichter, Software Enginee-
ring - Grundlagen, Menschen, Prozesse, Techniken.
dpunkt.verlag, 2007, S. I-XXI, 1618-, ISBN: 978-3-
89864-268-2 (siehe S. 15).

M. Shell. (Médrz 2007). Manuscript Templates for
Conference Proceedings, Adresse: http:/ /www.
ctan.org / tex-archive / macoros / latex / contrib /
IEEEtran/ (besucht am 10.08.2012) (siehe S. 21).
B. van der Zander und E. T. Authors. (22. Nov. 2012).
TeXstudio. Version 2.5, Adresse: http:/ /texstudio.
sourceforge.net/ (besucht am 27.11.2012) (siehe
S. 21).

JabRef Authors. (18. Nov. 2012). JabRef reference
manager. Version 2.9 beta 1, Adresse: http://jabref.
sourceforge . net (besucht am 27.11.2012) (siehe
S. 21).

yWorks. (Okt. 2012). yEd Graph Editor, Adresse:
http:/ / www.yworks.com / de / products_yed _
about.html (besucht am 24.10.2012) (siehe S. 23).

(47]

(48]

(49]

(50]

(51]

(52]

(53]

ACKNOWLEDGMENTS

Als Erstes mochte ich meiner Familie fiir Thre Unter-
stiitzung wiahrend der gesamten Arbeitszeit danken.
Es ist wichtig in Zeiten grofier Erschopfung von Ver-
wandten sowie auch Freunden motiviert zu werden.
Deshalb gebiihrt hier ein weiterer Dank meinen Freunden
und Kommilitonen Daniel Maurer, Marius Kleiner und
Florian Strafier, welche mir wichtige Anregungen zur
Gestaltung sowie zum Inhalt gaben und auch fiir die
notige Ablenkung und Abwechslung abseits dieser Arbeit
sorgten. Abschlielend mochte ich nattirlich noch meinem
Betreuer, Dipl.-Inf. Oliver Kopp, fiir seine Geduld und
Unterstiitzung danken.

ANHANG A

ABKURZUNGSVERZEICHNIS

3DM 3-way merging, Differencing and Matching

ACID Atomicity, Consistency, Isolation and
Durability

API Application Programmable Interface

BASE Basically Available, Soft State, Eventual
consistency

BLOB Binary Large Object

Darcs Darcs advanced revision control system

DBS Datenbank SystemDatenbank Systeme

21

DBMS Datenbank Management System

DRCS Distributed Revision Control System

FUSE Filesystem in Userspace

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

laaS Infrastruktur as a Service

IEEE Institute of Electrical and Electronics
Engineers

JSON JavaScript Object Notation

NIST National Institute of Standards and
Technology

NoSQL Not only SQL

PaaS Platform as a Service

RCS Revision Control System

SCM Software Configuration Management

SaaS Software as a Service

SHA Secure Hash Algorithm

SSH Secure Shell

SVG Scalable Vector Graphics

TOSCA Topology and Orchestration Specification for
Cloud Applications

VALESCA Visual Editor for TOSCA

VVS Versionsverwaltungssystem

XML eXtended Markup Language

ANHANG B

LATEX VORLAGE

Die fiir diese Arbeit verwendete Vorlage basiert auf
der vom Institute of Electrical and Electronics Engineers
(IEEE) veroffentlichten ETgX-Vorlage IEEEtran [50]. Diese
habe ich noch um die in Abbildung 15 dargestellten An-
gaben direkt nach der documentclass Definition ergianzt
(http:/ /www.michaelshell.org/tex/ieeetran/).

Da die mitgelieferten Literatur-Styles nur fiir BibTex
sind, wurde das Paket biblatex-ieee durch die Opti-
on style=ieee geladen.

ANHANG C
VERWENDETE SOFTWARE

C.1 Ordner und Dateibaumstrukturen

Die Darstellung der in einen Ordner enthaltenen
Dateien und Ordner habe ich unter Linux mit
dem Befehl tree folder -charset=ASCII >
asciitreeoffolder.txt erstellt. Der Parameter
—charset=ASCII ist notwendig damit die erzeugte
Ausgabedatei nur die vom listings-Paket verwendbaren
Zeichen (ASCII) enthdlt. Will man die dargestellte
Tiefe dndern, verwendet man den Parameter -T x,
dabei bezeichnet x die Tiefe. In ETpXwerden die
erzeugten Textdateien mit dem Befehl verbatiminput
eingebunden.

C.2 IATEX

Zur Bearbeitung der IXTEX-Dateien kam TeXstudio [51]
und JabRef [52] zum Einsatz.

http://lkml.org/lkml/2005/4/6/121
http://lkml.org/lkml/2005/4/6/121
http://veracity-scm.com/qa/questions/1105/how-do-file-locks-work
http://veracity-scm.com/qa/questions/1105/how-do-file-locks-work
https://git.wiki.kernel.org/index.php/GitBenchmarks&oldid=8548
https://git.wiki.kernel.org/index.php/GitBenchmarks&oldid=8548
http://www.ctan.org/tex-archive/macoros/latex/contrib/IEEEtran/
http://www.ctan.org/tex-archive/macoros/latex/contrib/IEEEtran/
http://www.ctan.org/tex-archive/macoros/latex/contrib/IEEEtran/
http://texstudio.sourceforge.net/
http://texstudio.sourceforge.net/
http://jabref.sourceforge.net
http://jabref.sourceforge.net
http://www.yworks.com/de/products_yed_about.html
http://www.yworks.com/de/products_yed_about.html

22

OO UT s WN -

\documentclass[10pt, journal, compsoc, adpaper, twoside] {IEEEtran}
% 'I.I.I.I./j

% NEEEDED FOR ngerman and babel to work!!!
e 1rrrrr

g 111
\makeatletter

\def\markboth#1#2{\def\leftmark{\@QIEEEcompsoconly{\sffamily}\MakeUppercase{\protect#1}}$%

\def\rightmark{\QIEEEcompsoconly{\sffamily}\MakeUppercase{\protect#2}}}
\makeatother
\usepackage [utf8] {inputenc}
\usepackage [T1l] {fontenc}
\usepackage [ngerman] {babel}
\usepackage{microtype}
\usepackage{listings}
for index in pdf (highlights and linkifies links aswell in pdf)
hidelinks removes coloured boxes around links in pdf, links stay clickable
\usepackage [hidelinks] {hyperref}
\usepackage[] {acronym}
\usepackage[] {csquotes}
\usepackage{verbatim}
\usepackage{tabularx}
\usepackage [style=ieee, backref=true, backend=bibtex8] {biblatex}
\bibliography{literatur}
$colors
\usepackage [usernames, dvipsnames, table] {xcolor}
\definecolor{lightlight-gray}{gray}{0.95}
\definecolor{light-gray}{gray}{0.8}
\usepackage{datetime}
\usepackage [
title={Verteiltes Modellrepository fuer TOSCA},
author={Kai Mindermann},
type=bachelor,
institute=iaas,
number=8,
course=cs,
examiner={Prof.\ Dr.\ Frank Leymann},
supervisor={Dipl.-Inf.\ Oliver Kopp},
startdate={1.~Juni~2012},
enddate={1.~Dezember~2012},

oo oo

crk={
H.3.2, % H.3.2 Information Storage File organization
H.3.4, % H.3.4 Systems and Software Distributed systems (new)
H.3.5, % H.3.5 Online Information Services Web-based services
H.5.2 % H.5.2 User Interfaces

s
language=german
] {uni-stuttgart-cs-cover/uni-stuttgart-cs-cover}
\usepackage [pdftex] {graphicx}
\usepackage{epstopdf}
%define settings for listings
\lstset({
basicstyle=\ttfamily,
stepnumber=1,
xleftmargin=2emn,
numbers=left,
breaklines=true, % sets automatic line breaking
breakatwhitespace=false,
showstringspaces=false,
}
\pdfinfo{
/CreationDate (D:20121125155000)
/ModDate (D:\pdfdate)
}
\hypersetup{pdfinfo={
Title={Verteiltes Modellrepository fuer TOSCA},
Author={Kai Mindermann}

I8

Abbildung 15. Erganzungungen der IKTgX-Vorlage

(new)

C.3 Graphen

Fiir die Modellierung der Graphen habe ich den yEd [53]
von yWorks verwendet.

ANHANG D
GROSSE ABBILDUNGEN

In diesem Abschnitt werden Abbildungen und Tabellen
dargestellt.

D.1

Abbildung 16 zeigt ein Beispiel der Datei- und Ordner-
struktur Représentation in VALESCA.

D.2

Tabelle 2 mit der Terminologie entsprechenden Befehle
der untersuchten VVS.

D.3

Abbildung 17 zeigt den Quelltext der als Konzept vorge-
stellten GitBar als git-Integration in VALESCA.

Kai Mindermann hat im Jahr 2008 sein Abitur
abgeschlossen. Direkt im Anschluss leistete er
Wehrdienst bei der Bundeswehr und erhielt dort
das Abzeichen fiir Leistungen im Truppendienst
der Stufe 3. Im Oktober 2009 begann er sein
Informatikstudium an der Universitat Stuttgart.
Neben den obligatorischen Grundlagen erlangte
er dort unter anderem Kenntnisse im Bereich
eingebetteter als auch verteilter Systeme sowie
in vertieften Grundlagen der Rechnernetze. Mit
Abschluss dieser Arbeit erreicht er mit 23 Jahren
den Hochschulabschluss, Bachelor of Science. Gleichzeitig ist er bereits
jetzt dabei, sich auf den nachsten Abschluss, Master of Science,
vorzubereiten.

23

24

O XTI U WN =

Abbildung 16. Beispiel der Datei- und Ordnerstruktur Reprasentation in VALESCA eines kompletten Servicetemplates

[
[
\
\
[
\
\
[
[
[
[
\
[
[
[
[
[
\
\
\
\
[
\
[
[
\
[
\
\
[
\
\
[
[
[
[
\
[
[
[
[
[
\
[
\
\
[
\
[
[
\
\
[
\
[
\
\
[
[
[
[
[
[
[
[
[
[
\

—-— artifacttemplates
—— http%3A%2F%2Fwww.example.com%2Fdemo

\
\
|

\

\

| I

imports
‘-— http%$3A%2F%2Fschemas.xmlsoap.org%$2Fwsdl%$2F
http%3A%2F%2Fec2linux.aws.la.opentosca.org

\

\

—— http%$3A%2F%2Fwww.example.com%$2FToscaComponents$2FSugarCrmTypes

\

EC2ControlArtifact

|-— artifacttemplate.properties
‘-— EC2-VM-Service.war
linuxControlArtifact

|-— artifacttemplate.properties
‘-— EC2-Linux-Service.war

artifacttypes
—-— http%$3A%2F%$2Fexample.com$2FToscaTypes

WAR
‘-— artifacttype.properties

\

—-— EC2LinuxIAService.wsdl

http%$3A%2F%2Fec2vm.aws.ia.opentosca.org

‘-— EC2VMIAService.wsdl

namespaces.properties
nodetypes
| -— http%3A%2F%2Fexample.com%2FToscalypes

ApacheWebServerType

| -— NodeType.properties
‘-— scc-data

MySqglType

| -— NodeType.properties
‘-— scc-data
OperatingSystemType

|-— interfaces

| -— NodeType.properties
‘-— scc-data
PhpModulType

|-— NodeType.properties
‘-— scc-data
VirtualMachineType

|-— interfaces

| -— NodeType.properties
‘-— scc-data

SugarCrmApplicationType
| -— NodeType.properties
‘-— scc-data
SugarCrmDbType

| -— NodeType.properties
‘-— scc-data

—-— relationshiptypes

\

—— http%3A%2F%2Fexample.com%$2FToscaTypes

AppDependsOnPhpRuntimeType

|-— RelationshipType.properties
‘-— scc-data

ConnectsToType

|-— RelationshipType.properties
‘-— scc-data

DependsOnType

|-— RelationshipType.properties
‘-— scc-data

HostedOnType

|-— RelationshipType.properties
‘-— scc-data
MySqglDbConnectionType

|-— RelationshipType.properties
‘-— scc-data
MySglDbHostedOnMySqglType

|-— RelationshipType.properties
‘-— scc-data
PluginHostedOnContainerType

|-— RelationshipType.properties
‘-— scc-data

—— servicetemplates
‘—— http%$3A%2F%2Fwww.example.com%$2Fdemo

\

sugarCrm
|-— ServiceTemplate.properties
‘-— topologytemplate

(SugarCRM aufgelistet nur bis Tiefe 4)

OO UT = WN =

25

Bazaar darcs ‘ Fossil ‘ git Mercurial | Monotone | Veracity
Initialisieren init initialize | init init init setup init
Hinzuftigen add add add add add add add
Eintragen commit record commit | commit commit commit commit
Riickgangig machen | revert revert revert revert revert revert revert
Herausholen checkout | apply open checkout | update checkout checkout
Versenden push push push push push sync push
Herunterladen pull pull pull pull incoming | sync pull

Tabelle 2

Der Terminologie entsprechende Befehle der untersuchten VVS

<!DOCTYPE html><html><head>

<link href="bootstrap/css/bootstrap.min.css" rel="stylesheet" media="screen">
<style type="text/css">

.gitbar {padding-bottom:30px; /* need so much space for this bar verticallyx/}
.gitbarcontent {

font-family: Verdana, sans-serif; font-size: 0.8em;

background-color: #92D6FF;

position:fixed;

padding:5px 8px 5S5px 28px;

top:0px;

right:0px;

left:0px;

border-width:1px Opx lpx Opx;

border-style:solid;

border-color: #2F7AA6; }

</style>

</head>

<body>

<div class="gitbar"><div class="gitbarcontent">

GitBar -

<button class="btn btn-primary btn-mini disabled" type="button">Commit</button> |
<button class="btn btn-warning btn-mini" type="button">Reset</button> /
<button class="btn btn-danger btn-mini" type="button">Revert</button> /
<button class="btn btn-default btn-mini disabled" type="button">Push</button> /
<button class="btn btn-default btn-mini" type="button">Pull</button> /

View History - master

</div></div>

<div class="gitbar"><div class="gitbarcontent" style="top:50px;">

GitBar -

4 → <button class="btn btn-primary btn-mini" type="button"
>Commit</button> |

<button class="btn btn-warning btn-mini" type="button">Reset</button> /

<button class="btn btn-danger btn-mini" type="button">Revert</button> /

<button class="btn btn-default btn-mini" type="button">Push</button> /

<button class="btn btn-default btn-mini" type="button">Pull</button> /

View History - master

</div></div>

<div class="gitbar"><div class="gitbarcontent" style="top:100px;">

GitBar -

1 → <button class="btn btn-primary btn-mini" type="button"
>Commit</button> |

<button class="btn btn-warning btn-mini" type="button">Reset</button> /

<button class="btn btn-danger btn-mini" type="button">Revert</button> /

<button class="btn btn-default btn-mini" type="button">13 Push<
/button> /

<button class="btn btn-default btn-mini" type="button">Pull</button> /

View History - master

</div></div>

<script src="jquery.min.js"></script><script src="bootstrap/js/bootstrap.min.js"></script>

</body></html>

Abbildung 17. Quelltext der als Konzept vorgestellten GitBar als git-Integration in VALESCA

26

Erklarung

Ich versichere, diese Arbeit selbststindig verfasst zu haben. Ich
habe keine anderen als die angegebenen Quellen benutzt und
alle wortlich oder sinngeméf; aus anderen Werken tibernommene
Aussagen als solche gekennzeichnet. Weder diese Arbeit noch
wesentliche Teile daraus waren bisher Gegenstand eines anderen
Priifungsverfahrens. Ich habe diese Arbeit bisher weder teilweise
noch vollstindig veroffentlicht. Das elektronische Exemplar
stimmt mit allen eingereichten Exemplaren tiberein.

Ort, Datum, Unterschrift

27

	Einführung
	Verwandte Arbeiten
	Grundlagen
	Cloud-Computing
	Topology and Orchestration Specification for Cloud Applications (TOSCA)
	Definitions
	Service Template

	Visual Editor for TOSCA (VALESCA)
	GUI
	Dateirepräsentation des Service-Templates

	Repository
	Datenbank System (DBS)
	Architektur
	Ablagemöglichkeiten
	Anforderungen

	Versionsverwaltungssystem (VVS)
	Strategien für gleichzeitiges Bearbeiten
	Zusammenführungsstrategien
	Probleme zentraler VVS
	Verteilte VVS

	Versionsverwaltungssysteme als Back-End
	Front-End und Back-End
	Nutzen eines versionierten Back-Ends
	Anforderungen an ein Back-End

	Anforderungen an ein Back-End und Repository für VALESCA
	Konflikte in VALESCA
	Problem
	Beispielszenarien
	Unterschiedliche Behandlung von Konflikten
	Automatische Konfliktlösung
	Semi-Automatische Konfliktlösung
	3DM Algorithmus

	Manuelle Konfliktlösung in der GUI

	Evaluation und Auswahl VVS
	Terminologie
	Anforderungen
	Ausgewählte VVS
	Gemeinsamkeiten
	Behandlung großer Binärdateien
	Befehlsumfang

	Evaluation
	git
	Datenverwaltung
	Vorgehen
	Besonderheiten und Einschränkungen
	Java Anbindung

	Mercurial
	Bazaar
	darcs
	Fossil
	Monotone
	Veracity
	Geschwindigkeits- und Skalierbarkeitsvergleich
	Auswahl

	Entwurf eines Repositories mit git
	Live Editing
	Speichern entspricht Commit ohne Push
	Architektur von VALESCA mit git
	GUI Konzept für Versionierung
	Bisherige Oberfläche
	Oberfläche mit Integration von Versionskontrolle

	Implementierung eines Repositories mit git
	JGit
	Iteration 1: Basis git Anbindung
	Iteration 2: Generalisierung des Dateizugriffs
	Iteration 3: Einbinden der neuen Klassenhierarchie in VALESCA
	Iteration 4: Repository Schnittstellenmethoden definieren
	Iteration 5: GitFileSystem / WatchService
	GitWorkingTreeWatcher
	GitFileSystem(-Provider)

	Vergleich der möglichen Ansätze

	Zusammenfassung und Ausblick
	Anhang A: Abkürzungsverzeichnis
	Anhang B: Latex Vorlage
	Anhang C: Verwendete Software
	Ordner und Dateibaumstrukturen
	LaTeX
	Graphen

	Anhang D: Große Abbildungen
	
	
	

	Biographies
	Kai Mindermann

