
Institut für Architektur von Anwendungssystemen

Universität Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Bachelorarbeit Nr. 8

Verteiltes Modellrepository für
TOSCA

Kai Mindermann

Studiengang: Informatik

Prüfer/in: Prof. Dr. Frank Leymann
Betreuer/in: Dipl.-Inf. Oliver Kopp

Beginn am: 1. Juni 2012
Beendet am: 1. Dezember 2012

CR-Nummer: H.3.2, H.3.4, H.3.5, H.5.2

3

Verteiltes Modellrepository für TOSCA
Kai Mindermann

Zusammenfassung—In dieser Bachelorarbeit untersuche ich die Möglichkeit, existierende Back-End Systeme, wie zum Beispiel
Datenbank Systeme (DBS), durch verteilte Versionsverwaltungssysteme (VVS) zu ersetzen. Dabei gehe ich auf die Anforderungen ein,
die bei verteilter Arbeit wichtig sind und vergleiche verschiedene VVS miteinander. Im Weiteren stelle ich 3 unterschiedliche Ansätze, wie
ein Back-End so mit einem VVS implementiert werden könnte, vor. Als konkrete Implementierung zeige ich dabei eine auf git aufbauende
Zwischenschicht GitWorkingTreeWatcher, die einfach in vorhandene Anwendungen integriert werden kann. Diese ermöglicht es die in
einem Ordner gespeicherten Dateien, automatisch mit git zu versionieren. Zusätzlich entwickle ich ein beispielhaftes Konzept wie ein
versioniertes Repository im Visual Editor for TOSCA (VALESCA) dargestellt werden könnte und gehe darauf ein, wie die Architektur zur
Integration eines versionierten Repositories, geändert werden sollte.

F

1 EINFÜHRUNG

Aufgrund der aktuell zu beobachtenden Entwicklungen
ist es ist leicht vorherzusagen, dass auch in Zukunft
immer mehr IT-Projekte auf Cloud-Technologien basieren
werden. Um den kompletten Prozess der Entwicklung
und besonders der Auslieferung zu vereinfachen und zu
standardisieren, wurde Topology and Orchestration Spe-
cification for Cloud Applications (TOSCA) [1] entwickelt.
Mit TOSCA lassen sich Cloud-Anwendungen modellie-
ren und mithilfe eines TOSCA-Containers automatisch
ausliefern und installieren. Zur Modellierung kann zur
Zeit eine Weboberfläche, VALESCA [2], benutzt werden.
Da es hierfür oft wichtig ist, dass mehrere Personen, auch
gleichzeitig, modellieren können, muss das zugrunde
liegende Datenmodell, auf dem die Weboberfläche basiert,
dies unterstützen. Zur Zeit kommt zur Datenhaltung ein
dateibasiertes Repository zum Einsatz. Dies erfordert,
dass die Personen eine Verbindung zu diesem Repository
haben, um arbeiten zu können. Wünschenswert ist ein
Programm, bei dem man lokal Änderungen, auch offline,
vornehmen kann, und sobald man zufrieden mit diesen
Änderungen ist, sie erst dann zentral speichert. Um
so ein Vorgehen zu Unterstützen gibt es verschiedene
Möglichkeiten.

In dieser Arbeit wird dazu im Folgenden untersucht,
wie man durch Nutzen verteilter Versionsverwaltungssys-
teme (VVS) die Datenhaltung so umsetzen kann, dass so-
wohl lokal, als auch auf einem zentralen Objekt gearbeitet
werden kann. Als Erstes stelle ich relevante verwandte
Arbeiten in Abschnitt 2 vor. Darauf folgend gehe ich
in Abschnitt 3 zunächst auf verschiedene Grundlagen
ein und erläutere die notwendigen Begrifflichkeiten die
später benutzt werden. In Abschnitt 4 behandle ich VVS
als Back-Ends. Hiernach gehe ich in Abschnitt 5 auf
die Anforderungen an ein Back-End für VALESCA ein.
Die vom Repository zu behandelnden Konflikte werden
in Abschnitt 6 behandelt. In Abschnitt 7 untersuche
ich verschiedene VVS. Nach der Evaluation folgt in
Abschnitt 8 der Entwurf für die im darauffolgenden
Abschnitt 9 beschriebene Implementierung mit git [3]. Im

Abschnitt 10 werden die Ergebnisse zusammengefasst.

2 VERWANDTE ARBEITEN

Tammo van Lessen [4] hat ein Repository für Ge-
schäftsprozesse entwickelt. Er hatte ähnliche Anforde-
rungen an sein Repository wie ich (siehe Abschnitt 5),
verwendet als Back-End jedoch eine relationale Daten-
bank.

Craig Roberts [5] beschreibt eine Implementierung
eines mit git versionierten Dateisystems in ownCloud [6].
Es wird darauf eingegangen wie mit PHP ein Dateisystem
auf Basis von git erstellt werden kann. In der Einleitung
wird auch das Problem der Behandlung von großen
binären Dateien in VVS beschrieben, aber nicht näher
darauf eingegangen. Eine nähere Diskussion wie mit
Konflikten umgegangen wird, wird auf eine Mailingliste
ausgelagert und somit nicht definiert.

Reilly Grant [7] stellt eine Dateisystemschnittstelle figfs
zu git vor. Diese verwendet das Kernel-Modul Filesystem
in Userspace (FUSE) um Zugriffe auf ein git-Repository
als konkretes Dateisystem nahe der Betriebssystemebene
anzubieten. Während die Arbeit zu figfs noch nicht
abgeschlossen ist, kann man damit schon grundlegende
Dateisystemoperationen durchführen. Interessant ist eine
Verbesserung im Vergleich zu herkömmlichen Dateisys-
temen: Bei häufigen Zugriffen wird dort eine einfache
„string lookup hash table“ vorgeschlagen, da git Objekte
mit einem Secure Hash Algorithm (SHA)-1 Hash identifi-
ziert. Dies kann schneller sein als, wenn bei Pfadzugriffen
alle Elternordner auf Zugriff überprüft werden müssen.

Eine auf konkreten Fragestellungen basierende Evalu-
ierung von vielen VVS findet man unter [8]. Dort werden
verschiedene Fragen gestellt und diese für jedes unter-
suchte VVS in Stichworten oder 1-2 Sätzen beantwortet.

In Bezug auf die Behandlung von Konflikten durch
gleichzeitiges Bearbeiten stellt Tancred Lindholm [9]
einen Algorithmus 3DM inkl. Beispiel-Implementierung
vor. In seiner Masterarbeit geht er auf verschiedene
Strategien, eXtended Markup Language (XML) Bäume
zu vereinen, ein. Besonders hilfreich ist die Logging

4

Funktion, bei nicht lösbaren Konflikten bei der anhand
des Logs die Entstehung der Konflikte klar wird. In
Abschnitt 6 gehe ich näher auf seine Ergebnisse und
Untersuchungen ein.

3 GRUNDLAGEN

Dieser Abschnitt erläutert wichtige Grundlagen, die in
den folgenden Kapiteln der Ausarbeitung benötigt wer-
den. Diejenigen die sich in den entsprechenden Bereichen
schon auskennen können diese überspringen. Dennoch
gehe ich hier speziell auf die Teilbereiche ein, welche für
die nachfolgenden Abschnitte wichtig sind.

3.1 Cloud-Computing
Unter Cloud-Computing, auch nur Cloud (engl. Wolke),
versteht man eine grobe Struktur verteilter Rechner die
für unterschiedliche Dienstleistungen benutzt werden
können. Nach einem Standard des National Institute of
Standards and Technology (NIST) ist Cloud-Computing
so definiert:

Cloud Computing ist ein Modell, das es er-
laubt bei Bedarf, jederzeit und überall bequem
über ein Netz auf einen geteilten Pool von
konfigurierbaren Rechnerressourcen (z.B. Netze,
Server, Speichersysteme, Anwendungen und
Dienste) zuzugreifen, die schnell und mit mi-
nimalen Managementaufwand oder geringer
Serviceprovider-Interaktion zur Verfügung ge-
stellt werden können. [10]

Der Begriff der Wolke kommt daher, dass für den Kunden
einer Cloud-Diensleistung die dahinter liegenden techni-
schen Infrastrukturen in einer Wolke verschwinden. Die
Dienstleistungen reichen von bereitgestellten Netzwerken
über Infrastruktur as a Service (IaaS), wie Rechenleistung
und Speicherplatz, bis hin zu Platform as a Service
(PaaS) und Software as a Service (SaaS) die in der Cloud
betrieben wird. Mehr dazu [11].

3.2 Topology and Orchestration Specification for
Cloud Applications (TOSCA)
TOSCA ist ein Standard für automatisierte Verwaltung
von Cloud-Anwendungen. In dieser Arbeit beziehe ich
mich auf Version WD13 der TOSCA-Spezifikation [1].
Beschrieben wird der Standard dort wie folgt:

IT services (or just services in what follows) are
the main asset within IT environments in gene-
ral, and in cloud environments in particular. The
advent of cloud computing suggests the utility
of standards that enable the (semi-) automatic
creation and management of services (a.k.a.
service automation). These standards describe a
service and how to manage it independent of the
supplier creating the service and independent
of any particular cloud provider and the techno-
logy hosting the service. Making service topolo-
gies (i.e. the individual components of a service

and their relations) and their orchestration plans
(i.e. the management procedures to create and
modify a service) interoperable artifacts, enables
their exchange between different environments.
This specification explains how to define services
in a portable and interoperable manner in a
Service Template document. ([1])

Mit TOSCA sollen folgende Ziele erreicht werden [12]:
• Einfache und unabhängige Installation bei kompati-

blen Clouds
• Einfachere Migration existierender Anwendungen in

die Cloud
• Flexible Lastspitzenskalierung (engl. bursting)
• Dynamische Anwendungen, welche viele Cloud-

Plattformen unterstützen
Die vom Standard spezifizierten zu erzeugenden Do-

kumente stelle ich in den folgenden Abschnitten vor. Als
Dateiformat kommt XML zum Einsatz.

3.2.1 Definitions
Das zentrale Dokument Definitions enthält benötigte
Informationen, um ein ServiceTemplate definieren zu
können. Dafür enthält es neben dem ServiceTemplate selbst,
folgende Elemente: NodeType, NodeTypeImplementation
RequirementType, Capability Type, Relationship Type, Rela-
tionshipTypeImplementation ArtifactType, ArtifactTemplate,
PolicyType und PolicyTemplate.

3.2.2 Service Template
Im ServiceTemplate wird nun die Cloud-Anwendung selbst
spezifiziert. In diesem Element können alle im Definitions-
Dokument definierten Typen verwendet werden. Ein
vollständiges imperatives TOSCA ServiceTemplate besteht
selbst aus TopologyTemplate und Plänen. Diese Elemente
können genau wie im Definitions-Dokument direkt im
ServiceTemplate definiert, aber auch per import-Angaben
aus weiteren separat abgelegten XML-Dokumenten im-
portiert werden.

Das Topology Template beschreibt die Topologie ei-
ner modellierten Cloud-Anwendung. Die Topologie be-
steht aus den NodeTemplate-Elementen, welche die ver-
wendeten Knoten, basierend auf entsprechenden No-
deType-Elementen, definieren, und den RelationshipType-
Elementen, welche die Beziehungen zwischen Knoten
definieren. Das RequirementType-Element legt Anforde-
rungen fest. Im Gegensatz dazu definiert CapabilityType
welche Fähigkeiten oder Funktionalität bereitgestellt wer-
den kann. ArtifactType definiert Typen für auslieferbare
Artefakte, konkrete Ausprägungen werden durch Artifact
Template definiert. Im Element Plans werden verschie-
dene mögliche Pläne definiert. Ein Plan kombiniert
Operationsaufrufe zu einer höherwertigen Operation.
Beispielsweise könnte es die Pläne start und stop geben,
welche festlegen was beim Starten und beim Beenden
der Clound-Anwendung gemacht werden muss.

Um die XML-Dateien nicht direkt bearbeiten zu müs-
sen, wird VALESCA entwickelt.

5

Abbildung 1. Topologie Ansicht in VALESCA. Beispiel für
einen Webshop.

3.3 Visual Editor for TOSCA (VALESCA)
Um die XML-Dateien zu spezifizieren, ist es möglich
einen Editor mit graphischer Benutzungsoberfläche zu
verwenden. Dieser wird eigens für TOSCA entwickelt.
Dort kann die Topologie in einer Graph-Repräsentation
bearbeitet werden.

3.3.1 Graphical User Interface (GUI)
VALESCA ist eine in Java und JavaScript geschriebene
Webanwendung die über einen Browser bedient wird.
In Abbildung 1 ist ein Webshop als Beispiel für die
Topologie-Ansicht zu sehen. Eine nähere Beschreibung
des GUI der Weboberfläche ist in Unterabschnitt 8.4 zu
finden.

3.3.2 Dateirepräsentation des Service-Templates
Das Service-Template wird, wie in Abbildung 2 darge-
stellt, in Dateien unterhalb von servicetemplate gespeichert.
Im Anhang ist in Abbildung 16 ein größeres Beispiel
dargestellt.

Als Dateiformat werden Java properties-Dateien und
die JavaScript Object Notation (JSON) [13] verwendet.
Zusätzlich wird auch die grafische Repräsentation der
Graphen in einer Scalable Vector Graphics (SVG)-Datei
gespeichert, um eine Vorschau zu ermöglichen, ohne
die Editor-Komponente laden zu müssen. Des Weiteren
können noch beliebige andere Dateien, die in der Spezifi-
kation verwendet oder benötigt werden, existieren. Dies
sind häufig Binärdateien bei denen zwischen verschiede-
nen Versionen die Änderungen nicht einfach festgestellt
werden können bzw. diese nicht so platzsparend wie bei
Textdateien gespeichert werden können. Das ist später
bei der Versionierung wichtig.

3.4 Repository
In einem Repository (engl. Lager), werden Daten ver-
waltet und gespeichert. Repository ist dabei nur eine

<namespace>
\--<name>

| ServiceTemplate.properties
|
\--topologytemplate

| parents.json
| TopologyTemplate.json
| TopologyTemplate.svg
|
+--grouptemplates
| grouptemplates.json
|
+--nodetemplates
| nodetemplates.json
|
\--relationshiptemplates

realtionshiptemplates.json

Abbildung 2. Dateirepräsentation des Service-Templates
im Ordner servicetemplate

Bezeichnung für den Ort an dem die jeweils von einem
Programm zu speichernden Daten zu finden sind. Repo-
sitories können verschiedene Zwecke haben und auch
unterschiedlich implementiert sein [14].

Beispielsweise spricht man im Rahmen der Versionsver-
waltung (siehe Unterabschnitt 3.6) von einem Repository
in dem die Versionen verwaltet und gespeichert werden.
Genauso werden in Linux-Systemen häufig Repositories
als Quelle für Software angegeben. Diese enthalten dann
Daten, die zur Installation von der jeweiligen Software
benötigt werden.

Ich verwende den Begriff Repository hier sowohl in
den Grundlagen bei VVS, als auch später im Sinne von
Speicher für die von VALESCA verwalteten Modelle.

3.5 Datenbank System (DBS)
Viele Programme müssen eine große Menge an Daten
verarbeiten. Dabei soll es möglich sein, die Daten lesen
sowie bearbeiten zu können. Da viele Programme ähnli-
che Anforderungen an die Verwaltung von Daten haben,
wurden Datenbank Systeme (DBS) entwickelt. Diese
bieten jeweils einheitliche Schnittstellen und Formate für
das grundsätzliche Speichern und Verwalten der Daten.
Programme greifen auf diese Schnittstellen zu, überlassen
die Verwaltung aber dem DBS. Mit einem DBS ist es also
möglich ein Repository, wie gerade in Unterabschnitt 3.4
definiert, zu implementieren.

3.5.1 Architektur
Ein DBS besteht aus einer Datenbank und einer Verwal-
tungskomponente, dem Datenbank Management System
(DBMS). DBS können nur lokal, bzw. zentral auf einem
einzigen Rechner laufen. Viele DBS sind aber auch dafür
ausgelegt, auf mehreren Rechnern verteilt eingesetzt zu
werden. Verteilt bedeutet hier aber nur, dass das DBS
selbst verteilt arbeitet, um zum Beispiel mehr Festplatten

6

nutzen zu können die nicht in einen einzelnen Rechner
passen würden oder auch für Replikation der Daten. Es
ist aber nicht möglich, wie bei den in Unterabschnitt 3.6
beschriebenen, verteilten VVS, unterschiedliche Versionen
der Daten vom DBS verwalten zu lassen. Als Speicherort
für versionierte Objekte können DBS sehr gut dienen.

3.5.2 Ablagemöglichkeiten

Es gibt verschiedene Möglichkeiten die Daten in der
Datenbank abzulegen [15]. Am häufigsten wird dazu
ein relationales Datenbankmodell verwendet. Die Daten
werden dabei in Tabellen gespeichert, welche in nahezu
beliebigen Beziehungen zueinander stehen können. Po-
pulärer werden die Dokumentorientierten Datenbanken.
Bei diesen werden komplette Dokumente, welche selber
Daten in beliebigen Formen enthalten, in der Datenbank
direkt gespeichert. Diese können auch zu den Not only
SQL (NoSQL)-Datenbanken gezählt werden, welche ich
hier aber nicht betrachte. Eine weniger populäre, aber
trotzdem genutzte, Variante, ist die objektorientierte
Datenbank. In diesen werden Objekte, im Sinne der
Objektorientierung [16] inklusive ihrer Eigenschaften
gespeichert. Die Datenbank verwaltet hier selbst die
Objekteigenschaften wie Vererbungshierarchie und Iden-
titäten.

3.5.3 Anforderungen

Datenbank Systeme (DBS) sollten Atomicity, Consistency,
Isolation and Durability (ACID) vollständig unterstützen
[17]:

• Atomarität: Zusammengehörende Operationen wer-
den atomar ausgeführt. Das bedeutet entweder
werden sie ganz oder, falls Teile der Operation nicht
ausgeführt werden können oder ausgeführt werden
konnten, gar nicht ausgeführt.

• Konsistenz: Jede ausgeführte Operation transfor-
miert die verwalteten Daten von einem konsistenten
wieder in einen konsistenten Zustand

• Isolation: Falls nebenläufig stattfindende Opera-
tionen erlaubt sind, beeinflussen diese sich nicht
gegenseitig.

• Haltbarkeit: Nach einer erfolgreichen Operation sind
die veränderten Daten sicher gespeichert. Sicher be-
deuted, dass die Daten auch bei einem Systemausfall
nicht mehr verloren gehen können, sich also in nicht
flüchtigem Speicher befinden.

In diesem Zusammenhang möchte ich das von Eric
Brewer aufgestellte CAP-Theorem [18] nennen. Dieses
besagt, dass ein verteiltes System nicht in der Lage ist alle
drei der folgenden Eigenschaften gleichzeitig zu erfüllen:

• Konsistenz (Consitency): Im Unterschied zu der
Konsistenz von ACID ist hier Konsistenz auf alle am
verteilten System beteiligten Knoten und die darauf
gespeicherten Informationen bezogen. Diese müssen
zu jedem Zeitpunkt, aus der Sicht jedes Knotens,
gleich sein.

• Verfügbarkeit (Availability): Jede an das verteilte
System gestellte Anfrage wird auch beantwortet.

• Partitionstoleranz (Partition tolerance): Das verteilte
System funktioniert bei partiellen Ausfällen weiter.

Beispielsweise ist es für Cloud-Anwendungen oft
ausreichend nach dem Basically Available, Soft State,
Eventual consistency (BASE)-Prinzip zu arbeiten. Für
diese sind Hochverfügbarkeit und Partitionstoleranz
sehr wichtig, wohingegen es toleriert wird, wenn die
gelieferten Daten inkonsistent bzw. noch nicht auf jedem
beteiligten Knoten aktuell sind, dies aber nach möglichst
kurzer Zeit wieder sind.

3.6 Versionsverwaltungssystem (VVS)

Bei der Entwicklung von Software ist es nötig, die erzeug-
ten Daten, die oft hauptsächlich aus Quelltext und seiner
Dokumentation bestehen, zu verwalten. Diese Verwal-
tung wird im großen Stil mittels Software Configuration
Management (SCM) [19] Systemen realisiert. Der für
diese Arbeit wichtigere Teil der Versionsverwaltung, wird
von in SCM verwendeten VVS abgedeckt. Ich verwende
in dieser Arbeit bewusst nicht den englischen Begriff
Revision Control System (RCS) und Distributed Revision
Control System (DRCS) weil ich den Leser durch die
Verwendung des deutschen Begriffs darauf aufmerksam
machen möchte, dass es um Versionsverwaltung geht.

VVS erfüllen folgende grundsätzliche Anforderun-
gen:

• Änderungsgeschichte: Änderungen von verschiede-
nen Autoren an Daten werden protokolliert und sind
für alle Beteiligten einsehbar.

• Wiederherstellen: Änderungen können rückgängig
gemacht werden. Es kann zu früheren Entwicklungs-
ständen zurückgekehrt werden.

• Gleichzeitiges Bearbeiten: Es wird dafür gesorgt,
dass vorhergehende Änderungen, bei gleichzeitigem
Bearbeiten eines versionierten Objekts, nicht verloren
gehen.

Diese grundsätzlichen Anforderungen werden von vielen
VVS durch zahlreiche zusätzliche Funktionen ergänzt.
Unterschieden werden kann noch zwischen lokalen und
zentralen VVS. Dabei findet bei der lokalen Versionsver-
waltung die Versionierung oft in der Datei selbst statt. Die
Änderungen werden im Dokument selber protokolliert
und verwaltet. Bei der zentralen Versionsverwaltung
muss es nicht zwangsläufig sein, dass das Repository
auf dem lokalen Rechner liegt, es ist auch häufig so, dass
es auf einem zentralen Server erreichbar ist.

3.6.1 Strategien für gleichzeitiges Bearbeiten
Um gleichzeitiges Bearbeiten von versionierten Daten zu
gestatten, gibt es zwei verschiedene Ansätze [20] [21].

1) Sperren: Eine Möglichkeit ist es, die Dateien oder
Daten ausschließlich für den Benutzer zu reser-
vieren der eine Änderung vornehmen möchte.
Dies bedeutet für andere Benutzer, dass wenn sie

7

dieselben Daten bearbeiten möchten, müssen sie
warten bis der zur Zeit Änderungen durchführende
Benutzer, seine Reservierung aufhebt bzw. vom
VVS aufheben lässt. Dies ist häufig ein großer
Nachteil, denn es kommt oft vor, dass an einer Datei
mehrere Personen gleichzeitig arbeiten möchten
und sollen. Zusätzlich kann es vorkommen, dass
ein Benutzer vergisst, dass er bestimmte Daten
für andere blockiert, wenn er anderen Aufgaben
nachkommt. Diese Strategie wird auch als pessi-
mistische Versionsverwaltung bezeichnet.

2) Zusammenführen: Die zweite Möglichkeit umgeht
die durch das Sperren verursachten Probleme. Die
Strategie besteht hier darin, dass jeder alle Daten
editieren kann, wann er möchte. Aber sobald er die
Änderungen dem VVS übergeben will, überprüft
dieses ob zwischenzeitlich andere Änderungen ge-
macht wurden und versucht diese zu verschmelzen,
falls das automatisch möglich ist und vom VVS
unterstützt wird, oder fordert den Benutzer auf,
seine Änderungen auf Basis der zwischenzeitlich ge-
machten Änderungen zu erneuern. Diese Strategie
wird auch als optimistische Versionsverwaltung
bezeichnet. Beim Zusammenführen gibt es zwei
verschiedene Ansätze die im nächsten Unterunter-
abschnitt behandelt werden.

3.6.2 Zusammenführungsstrategien
Es existieren zwei verschiedenen Strategien dafür, wie
man eine Zusammenführung durchführen kann (siehe
Abbildung 3). Falls beim Zusammenführen nur die
Unterschiede zwischen zwei Bäumen beachtet werden
wird dies als 2-way merge bezeichnet. Falls beim Zusam-
menführen auch die Informationen über den ursprünglich
von beiden Änderungen veränderten Baum herangezogen
werden, wird dies als 3-way merge bezeichnet und wird
von Tancred Lindholm wie folgt definiert:

Assume T1 and T2 are ordered trees derived
from the tree TB . The 3-way merge of the trees
T1, TB and T2 is an ordered tree TM , where
the changes between TB and T1, as well as the
changes between TB and T2 are incorporated.
The tree TB is called the base and the trees T1

and T2 are branches. ([9])

3.6.3 Probleme zentraler VVS
Die zentrale Herangehensweise, mit einem einzigen
Repository, hat unter anderem aber folgende Probleme:

• Ohne Verbindung, zum Server bzw. dem zentralen
Repository, ist es nicht möglich Änderungen zu
protokollieren bzw. protokollieren zu lassen.

• Es gibt keine Möglichkeit, ohne ein zweites, mit
zusätzlichem Synchronisationsaufwand verbunde-
nen, Repository, Änderungen zu verwalten, wel-
che nicht im Repository auftauchen sollen. (Dazu
könnten beispielsweise Änderungen zählen, welche
nicht kompiliert werden können oder unzureichend
getestet sind.)

Abbildung 3. 3-way und 2-way Zusammenführungsstrate-
gien

3.6.4 Verteilte VVS

Eine wichtige Entwicklung war es nun, die nur zen-
tralisiert stattfindende Versionsverwaltung zu verteilen.
Alte, aber in großen Firmen und Projekten immer noch
eingesetzte, VVS, sehen es vor, die Datenhaltung an
einer Stelle zu konzentrieren. An sich ist dieses Vorgehen
auch gewünscht. Es soll nachvollziehbar sein, welche
Änderungen stattgefunden haben. Es soll eben keine
unterschiedlichen Versionen geben, die wegen fehlendem
Wissen über andere Versionen, gleichzeitig und anschei-
nend gleichberechtigt, existieren und damit eindeutige
Versionen und Entwicklungsstände verhindern.

Diesem Unwissen über andere existierende Versionen
wird mit verteilten VVS entgegengetreten. Hier ist es
gewollt, dass es mehrere Stellen gibt an denen die
Versionierung stattfindet. Der Unterschied ist aber, dass
dies nun koordiniert abläuft und das Wissen auf, an der
Versionsverwaltung teilnehmenden Stellen, verteilt wird.
So ist es möglich, dass Teilnehmer lokal andere Ände-
rungen haben als andere Teilnehmer. Die Koordination
der verteilten Entwicklung ist nun entscheidend. Norma-

8

lerweise wird eine Stelle zur zentralen, für andere als
Ausgangs- und Zielpunkt dienende, Versionsverwaltungs-
stelle erklärt. Zu dieser werden gemachte Änderungen
gegeben und von dort geholt. Eventuelle Fehlschritte die
Entwickler in ihren lokalen Repositories gemacht haben,
müssen nicht in der zentralen Entwicklungsgeschichte
protokolliert und gespeichert werden. Verteilte VVS
wurden kommerziell bereits in den Jahren vor 2000
entwickelt. Das erste Projekt für ein freie verteiltes VVS
wurde 2001 mit GNU arch [22] ins Leben gerufen.

Im Vergleich zu lokalen und zentralen, nicht verteilten,
VVS haben die Verteilten folgende zusätzliche Eigen-
schaften die auch als Vorteile gesehen werden können:

• Mehrere Repositories: Es gibt nicht nur eine zen-
trale/lokale Stelle an der die Änderungsgeschichte
verwaltet wird.

• Polyhierarchie: Die Änderungsgeschichte entspricht
keiner linearen Kette bzw. einem Baum mehr, son-
dern einem azyklischen und gerichteten Graph.

• Offline Versionierung: Es ist möglich Änderungen
lokal zu Versionieren ohne zum zentralen oder
anderen Repositories verbunden zu sein.

Diese Eigenschaften der verteilten VVS möchte man sich
nun, bei der Verwendung als Back-End, zu Nutze machen.

4 VERSIONSVERWALTUNGSSYSTEME ALS
BACK-END

Die Idee, ein VVS als Back-End zum Verwalten bestimm-
ter Daten zu verwenden, ist nicht neu, sondern wurde
beispielsweise von JacobM aufgebracht [23]. Aktueller
ist es , dafür ein verteiltes Versionsverwaltungssystem
(VVS) einzusetzen. Verteilte VVS sind, wie in Unterun-
terabschnitt 3.6.4 beschrieben, später entwickelt worden
und damit noch nicht so lange für alternative Einsatz-
möglichkeiten verfügbar.

4.1 Front-End und Back-End

Oft nimmt man eine Unterteilung bei Software in be-
stimmte Zuständigkeitsbereiche vor [24]. In Client-Server
Systemen kommen häufig die Begriffe Front-End und
Back-End zum Einsatz. Ich beziehe den Begriff Back-End
in dieser Arbeit auf den Datenverarbeitenden sowie
Speichernden Teil einer Software, der getrennt von der
Daten Ein- und Ausgabe ist.

4.2 Nutzen eines versionierten Back-Ends

Herkömmliche, im Back-End eingesetzte, Arten von Re-
positories sehen es nicht vor, verschiedene Versionen der
abgelegten Daten vorzuhalten bzw. eine Änderungesge-
schichte oder ähnliche von VVS gebotene Funktionalität
bereitzustellen. Dabei ist es aus meiner Sicht nützlich,
auch auf frühere Versionen zurückgreifen zu können oder
verschiedene Versionen gleichzeitig der Daten vorhalten
zu können.

4.3 Anforderungen an ein Back-End

Die an ein Back-End gestellten Anforderungen können
unterschiedlich sein. Deshalb gibt es auch unterschied-
liche Herangehensweisen, ein Back-End auf Basis eines
VVS zu entwickeln. Grundsätzlich geht es darum, Daten
speichern und bearbeiten zu können. Diesem Speichern
und Bearbeiten können erweiterte Anforderungen wie
gleichzeitiges oder verteiltes Bearbeiten hinzugefügt
werden. Zusätzlich dazu müssen die Daten noch in
unterschiedlichem Maße verwaltet werden. Im Folgenden
gehe ich dazu auf häufige Anforderungen ein:

• Speichern: Manchmal ist es bereits ausreichend,
ausschließlich Dateien auf der Festplatte schreiben
und lesen zu können. Diese Anforderung zu erfüllen
reicht aber häufig nicht aus.

• Gleichzeitiges Bearbeiten: Oft soll das gleichzeitige
Bearbeiten der Dokumente bzw. verwenden eines
Dienstes von mehreren Personen oder anderen Rech-
nern unterstützt werden. Dies ist eine fundamentale
Anforderung an ein Back-End. Falls ein Back-End
diese erfüllen soll, gilt es unter anderem das Ver-
lorengegangene Änderungen/lost update-Problem
[25], bei dem eine Änderung verloren geht, weil sie
durch eine andere Änderung, welche von anderen
Änderungen nichts weiß, überschrieben wird, zu
verhindern.

• Verteiltes Bearbeiten: Gerade Anwendungen und
Dienste die auf der Cloud ausgeführt werden, sollen
verteiltes Bearbeiten unterstützen. Verteilt bedeutet
hier, dass Änderungen an verschiedenen Eintritts-
punkten der Cloud-Anwendung auftreten können,
und dann als gespeichert gelten, aber die gemach-
ten Änderungen nicht sofort für andere Knoten,
an denen ebenfalls möglicherweise konkurrierende
Änderungen gemacht werden, sichtbar sind. Auch
dies ist eine Anforderung, die aufwändigere Imple-
mentierungen des Back-Ends erfordert.

5 ANFORDERUNGEN AN EIN BACK-END UND
REPOSITORY FÜR VALESCA
Folgende Anforderungen sollen vom Back-End für
VALESCA umgesetzt werden:

1) Benutzer sollen offline arbeiten können
2) Gespeicherte Änderungen sollen rückgängig ge-

macht werden können
3) Benutzer sollen ein neues Service-Template erstellen

und speichern können.
4) Benutzer sollen Änderungen an einem Service-

Template speichern können.
5) Benutzer sollen Service-Templates an einer zentralen

Stelle speichern können
6) Benutzer sollen unabhängig voneinander parallel

an einem Service-Template arbeiten können (Kon-
fliktmanagement)

7) Benutzer sollen so gleichzeitig an einem Service-
Template arbeiten können, dass Änderungen einer

9

bearbeitenden Person nahezu ohne Verzögerung
bei allen anderen bearbeitenden Personen im Editor
angezeigt wird (Live Editing).

6 KONFLIKTE IN VALESCA

Konflikte treten immer dann auf, wenn mindestens
zwei Personen gleichzeitig Änderungen im Repository
speichern wollen. Im Folgenden beschreibe ich, wie die
daraus resultierende Konflikte in VALESCA aussehen
und wie diese gelöst werden können.

6.1 Problem

Für gleichzeitiges Bearbeiten ist es erforderlich, dass
sobald mehrere Änderungen in einem Repository ein-
getragen werden sollen, diese zusammengeführt werden
müssen. Hierbei kann es vorkommen, dass die Ände-
rungen sich nicht automatisch vom Repository bzw. im
weiteren einem VVS vereinigen lassen und es Konflikte
gibt, aber auch, dass es Änderungen gibt, die von ihrer
Semantik her in Konflikt stehen und nicht vereint werden
dürfen. Der erste Fall kann zum Beispiel auftreten, wenn
an einer Datei zwei unterschiedliche Änderungen durch-
geführt wurden, die sich auf eine bestimmte Zeile oder
ein Element dieser Datei beziehen. Der zweite Fall tritt
auf, wenn zum Beispiel in VALESCA zwei Änderungen
an Typen durchgeführt wurden, die sich auf Dateibasis
zwar vereinen lassen würden, aber von ihrer Bedeutung
her widersprüchlich sind. Zur Anschaulichkeit führe ich
zunächst ein kleines Beispiel ein.

6.2 Beispielszenarien

Alice und Bob [26] modellieren eine Cloud-Anwendung.
Sie haben die Topologie, welche in Abbildung 10 dar-
gestellt ist, ihrer Anwendung bereits gemeinsam erstellt
und sind für heute fertig mit ihrer Arbeit. Am nächsten
Arbeitstag hat sich Bob dazu entschieden von zu Hause
zu arbeiten. Morgens öffnen beide VALESCA und führen,
ohne sich auszutauschen, eines der folgenden Szenarien
aus:

• Alice fügt einen neuen Knoten für einen Load-
Balancer hinzu. Bob fügt einen neuen Knoten für
einen seperaten Datenbank-Cache-Server hinzu.

• Alice möchte als Webserver nginx verwenden und
Bob lighttpd. Beide Ändern den Knoten entspre-
chend ab.

• Alice und Bob führen die gleiche Änderung aus.
Beide möchten Node.js als Webserver verwenden
und ändern den Knoten entsprechend.

Alice speichert ihre Änderungen im Repository als
Erste. Als kurz darauf Bob seine Änderungen an der
Topologie auch im Repository speichern möchte, kommt
es zu einem Fehler, da seine Änderungen die von Alice
überschreiben würden.

6.3 Unterschiedliche Behandlung von Konflikten
Die gerade beschriebenen drei Beispielabläufe müssen
unterschiedlich behandelt werden. Der erste Ablauf
erfordert, dass Bob den neuen Knoten von Alice in
seine Topologie übernimmt und darauf aufbauend seinen
eigenen neuen Knoten in diese einbaut. Der zweite Ablauf
erfordert, dass entschieden werden muss, was für ein
Webserver denn jetzt wirklich verwendet werden soll.
Der dritte Ablauf ist offensichtlich kein Konflikt, das
muss erkannt werden.

6.4 Automatische Konfliktlösung
Um solche Konflikte im Repository möglichst automa-
tisch behandeln zu können, ist es im Allgemeinen hierfür
erforderlich alle Informationen über den Inhalt der im
Repository gespeicherten Daten diesem zur Verfügung
zu stellen und das Repository dazu zu befähigen, diese
Informationen verarbeiten und beurteilen zu können.
Einem Computer dies beizubringen, ist sehr schwierig.
Die Forschungen zur künstlichen Intelligenz, die für
eine solche automatische Behandlung und das Treffen
von Entscheidungen erforderlich sind, werden meines
Wissens noch nicht erforscht.

6.5 Semi-Automatische Konfliktlösung
Es ist auch möglich ohne Wissen über die Semantik,
der im Repository verwalteten Dateien, diese mit gu-
ten Ergebnissen zusammenführen zu können. Tancred
Lindholm [9] hat in seiner Masterarbeit diese Problemstel-
lung sehr genau untersucht. Seine Arbeit behandelt das
Vereinen von allgemeinen Baumstrukturen ohne weitere
Informationen wie deren Entstehungsgeschichte oder
andere Meta-Informationen. Diese Informationen werden
automatisch vom Algorithmus aus den Eingabedaten
abgeleitet. Als Eingabedaten der Implementierung, ge-
nannt 3-way merging, Differencing and Matching (3DM),
werden XML-Daten erwartet. Diese werden zunächst zu
internen Baumstrukturen umgewandelt (geparst). Für
die Java properties- und JSON-Dateien aus VALESCA
müsste entweder ein JSON-zu-XML Konverter benutzt
werden oder eine neue Parser-Komponente für 3DM
hinzugefügt werden. Das den Algorithmus implementie-
rende Programm enthält eine grafische Oberfläche (siehe
Abbildung 4) in der das Ergebnis des Zusammenfüh-
rens als auch nicht lösbare Konflikte betrachtet werden
können. Im Folgenden erkläre ich wie der Algorithmus
funktioniert.

6.5.1 3DM Algorithmus
Der grobe Ablauf des Algorithmus ist in Abbildung 5
dargestellt. Zunächst werden die XML-Dateien mit einem
Parser zu einer internen Baumstruktur verarbeitet. Im
nächsten Schritt wird vom Tree matcher aufgrund der
Anzahl der Eingabedaten entschieden, ob ein 3-way merge
oder eine einfache Berechnung der Unterschiede (2-way
merge) erfolgen muss. Falls ein 3-way merge durchgeführt

10

Abbildung 4. Von Tancred Lindholm [9] entwickelter
Prototyp 3DM für 3-way-merge von XML Dateien.

Abbildung 5. Architektur von 3DM aus [9]

wird, merkt sich der Algorithmus Konflikte und die
durchgeführten Vereinigungsoperationen. Im abschließen-
den Schritt werden die Daten vom Tree encoder verarbeitet
und die Ausgabe-Dateien erzeugt.

6.6 Manuelle Konfliktlösung in der GUI

Da der Umfang dieser Bachelorarbeit es nicht gestattet,
entweder eine intelligente vollautomatische oder semi-
automatische Konflitklösung in das Repository zu in-
tegrieren, soll das Konfliktmanagement zunächst auf

den Benutzer ausgelagert werden. Dies bedeutet, dass
der Benutzer auftretende Konflikte manuell lösen muss.
Um diese Konflikte trotzdem im gleichen Kontext, in
der Weboberfläche, lösen zu können, kann eine Ober-
fläche wie zum Beispiel PrettyDiff [27] oder mergely
[28] verwendet werden. Diese beiden Anwendungen
bieten, basierend auf JavaScript, die Möglichkeit im
Browser zwei Dokumente zu vergleichen und im Falle
von mergely, diese auch direkt zusammenzuführen. Eine
weitere Möglichkeit ist, das vorgestellte 3DM-Programm
zu verwenden.

7 EVALUATION UND AUSWAHL VVS
In diesem Abschnitt untersuche ich verschiedene verfüg-
bare VVS die zur Implementierung eines Back-Ends für
VALESCA in Frage kommen. Zu Beginn erläutere ich die
verwendete Terminologie. Als nächstes gehe ich noch
einmal kurz auf die Anforderungen ein, welche von den
VVS erfüllt werden sollten. Danach stelle ich diejenigen
VVS, welche den Anforderungen stand halten konnten,
vor und überprüfe genauer, warum oder warum sie nicht
für eine mögliche Implementierung geeignet sind.

7.1 Terminologie
Um verschiedene Programme vergleichen zu können,
wird eine einheitliche Terminologie benötigt. Die zu
vergleichenden Programme benutzen für gleichwertige
Operationen unterschiedliche Begriffe bzw. Befehle. Aus
diesem Grund definiere ich hier, welche Operationen im
weiteren wie bezeichnet werden. Bei der Evaluation der
Programme werde ich die entsprechenden Befehle den
von mir verwendeten Begriffen zuweisen, um Vergleiche
der Operationen für den Leser so transparent wie möglich
zu machen.

Benötigte Operationen eines verteilten VVS für ein
VALESCA-Back-End:

• Initialisieren eines Repositories heißt, die erforder-
lichen Datei- und Ordnerstrukturen des jeweiligen
VVS zu erstellen um Eintragungen machen zu kön-
nen.

• Hinzufügen von Dateien die eingetragen werden
sollen.

• Eintragen einer Änderung bedeutet, gemachte Ände-
rungen wie hinzugefügte, geänderte sowie gelöschte
Dateien der Versionsverwaltung bekannt zu machen.
Nur durch Hinzufügen ausgewählte Änderungen,
werden eingetragen. Sobald Änderungen eingetragen
wurden, sind diese fest in der Versionsgeschichte
vorhanden und ergeben eine neue Version.

• Rückgängig machen ermöglicht es, eingetragene Än-
derungen ungeschehen zu machen. Abhängig vom
VVS kann dies einerseits bedeuten, die rückgängig
zu machenden Änderungen als neue Eintragung
einzutragen oder die Eintragung aus dem Repository
zu entfernen.

• Herausholen bestimmter Änderungen bezeichnet
das Verfügbarmachen eines bestimmten Standes der

11

versionierten Daten. Zum Beispiel der letzten einge-
tragenen Änderungen, aus der Versionsgeschichte.
Verfügbarmachen kann hier bedeuten, dass noch
nicht gemachte Änderungen im aktuellen Verzeichnis
mit den Dateien zu einem bestimmten Änderungs-
stand ersetzt werden, oder dass diese an einer
anderen Stelle verfügbar gemacht werden.

• Versenden bestimmter Änderungen ist bei verteilten
VVS das Aktualisieren eines entfernten Repositories
mit bestimmten oder allen Änderungen die im
lokalen Repository gespeichert sind.

• Herunterladen bestimmter Änderungen bedeutet
umgekehrt, Änderungen aus einem entfernten Repo-
sitory in das lokale Repository zu übertragen.

Für diese Operationen ist am Ende in Tabelle 2 für jedes
untersuchte VVS der entsprechende Befehl aufgeführt.

7.2 Anforderungen
Ausgehend von einer Liste verfügbarer VVS bei Wiki-
pedia [29], untersuche ich davon nur diejenigen VVS,
welche folgenden grundsätzlichen Anforderungen genü-
gen:

• Aktive Entwicklung
• Verteiltes Repository Modell
• Lockfreie Unterstützung gleichzeitiger Bearbeitung
• Open-Source Lizenz und kostenfreie Nutzung

7.3 Ausgewählte VVS
Folgende Versionsverwaltungssysteme (VVS) erfüllen die
gerade gestellten Anforderungen:

• Bazaar [30]
• darcs [31]
• Fossil [32]
• git [3]
• Mercurial [33]
• Monotone [34]
• Veracity [35]

7.4 Gemeinsamkeiten
Alle hier untersuchten VVS sind dafür optimiert,
Quellcode-Dateien, d.h. Text-Dateien in ihrem Repository
zu verwalten. Es können auch binäre Dateien gespeichert
werden, hier ist es schwieriger Unterschiede zwischen
zwei Versionen zu erkennen. Jedes der VVS speichert im
Grunde Dateien ab und bietet dafür eine Schnittstelle
an, die es ermöglicht verschiedene Stände einer Datei
wiederherzustellen.

7.4.1 Behandlung großer Binärdateien
Eine schwierige Aufgabe mit dem alle VVS umgehen
müssen, ist die Behandlung, im Vergleich zu den Text-
dateien großen, Binärdateien. Das Problem ist, dass
wenn Änderungen an diesen im Repository gespeichert
werden müssen, sollten möglichst nicht die komplette
neue Version der Datei gespeichert werden, sondern nur
das was geändert wurde. Dies kann bei Binärdateien
nicht so einfach und effizient wie bei Textdateien gemacht
werden.

7.4.2 Befehlsumfang
Die untersuchten VVS haben, für die hier nach der
Terminologie relevanten Funktionen, einen gleich großen
Befehlsumfang. Die Befehle unterscheiden sich hauptsäch-
lich nur in den übergebenen Parametern und teilweise
im Namen. Im Anhang ist in Tabelle 2 ist eine Tabelle
aufgeführt in der äquivalente Befehle der VVS aufgelistet
sind.

Abgesehen davon gibt es je nach Umsetzung nun
kleinere Unterschiede in Bezug auf die genannten Ei-
genschaften.

7.5 Evaluation
Des Weiteren untersuche ich diese nun auf Erfüllung der
in Abschnitt 5 gestellten Anforderungen im Bezug auf
VALESCA. Dazu gehe ich in den folgenden Abschnitten
genauer auf die ausgewählten VVS ein. Dabei stelle ich
teilweise auch die interne Funktionsweise der Programme
vor und vergleiche diese miteinander. Insbesondere
betrachte ich folgende Eigenschaften der VVS:

• Datenverwaltung und Vorgehen: Hier untersuche
ich wie das VVS die Dateien intern verwaltet und
versioniert.

• Geschwindigkeit und Skalierbarkeit: Bei der Ge-
schwindigkeit betrachte ich sowohl das Eintragen
im lokalen Repository als auch die Übertragung
von und zu einem entfernten Repository. Diese Be-
trachtung folgt nach der allgemeinen Untersuchung
in Form von Vergleichen zwischen den VVS in
Unterabschnitt 7.13.

• Besonderheiten und Einschränkungen: In diesem
Teil hebe ich Stärken eines VVS hervor und zeige Ein-
schränkungen auf, die bei der Verwendung beachtet
werden müssen.

• Java Anbindung: Da es für VALESCA erforderlich
ist, dass das Back-End über Java verfügbar ist,
untersuche ich ob und wie diese möglich ist.

7.6 git
Git [3] wurde von Linus Torvalds, dem Schöpfer des
Linux Kernels, 2005 entwickelt, nachdem der Entwick-
lungsgemeinschaft des Linux Kernels die Nutzungsrechte
für das dort verwendete proprietäre BitKeeper [36] entzo-
gen wurden. Bei der darauf folgenden Entwicklung eines
neuen DRCS hat Linus besonderen Wert auf Geschwin-
digkeit, Einfachheit und nicht-lineare Zweige gelegt. Dies
und mehr sind Stärken von git. Bei den Nachfolgenden
Untersuchungen beziehe ich mich auf git in der Version
1.8.0 die am 21.10.2012 veröffentlicht wurde. Die hier
komprimiert dargestellten Informationen können in der
git Dokumentation [37] nachgelesen werden.

7.6.1 Datenverwaltung
Das Repository in dem git alle zu versionierenden Daten
und die Verwaltungsinformationen dazu speichert, ist das
.git-Verzeichnis. Parallel dazu existiert normalerweise der

12

sogenannte working tree, in dem sich die Daten befinden
die herausgeholt wurden und bearbeitet werden können.
Abbildung 6 zeigt die Struktur des .git-Verzeichnisses
nach der Initialisierung.

In objects legt git alle Datenobjekte ab. Dabei gibt
es neben den Binary Large Objects (BLOBs) noch 2
weitere Typen. Dazu gehören einmal die tree-Objekte.
Diese speichern Meta-Informationen, wie Dateiname und
Typ zu einem oder mehreren BLOBs. Der Dritte Typ
sind commit-Objekte. In diesen werden Informationen
zu einem tree, wie Datum und Autor, gespeichert.
Im refs-Verzeichnis werden Zeiger auf commit-Objekte
gespeichert. Zeiger auf heads zeigen auf die letzte
Eintragung eines Zweigs und Zeiger im tags-Verzeichnis
zeigen auf bestimmte Eintragungen um diese mit einem
Alias bezeichnen zu können. In index werden Infor-
mationen zur staging area gespeichert. HEAD zeigt auf
den Zweig der aktuell bearbeitet wird. Die restlichen
erstellten Einträge im .git-Verzeichnis sind hier nicht
weiter relevant.

Beim Speichern von großen Dateien wird im Grunde
für jede Änderung die komplette Datei gespeichert. Dies
ist erst einmal auch so gewollt um verschiedene Versionen
wiederherstellen zu können. Bei einer Dateigröße von
n Byte wird das Repository, bei jeder eingetragenen
Änderungen an dieser Datei, um O(n) größer. Bei k
Eintragungen also um O(kn). Diesem Wachstum wird
in git durch die verlustfreie Komprimierung mit Deflate
[38] und speichern im gzip-Format [39] entgegnet. Dabei
verwendet es noch eine idx-Datei um über Offsets auf
die in einer komprimierten pack-Datei gespeicherten
Datenobjekte schneller zugreifen zu können. Genaueres
ist unter [37] nachzulesen.

7.6.2 Vorgehen
Beim Hinzufügen und Eintragen geht git wie im Aktivitä-
tendiagramm in Abbildung 7 vor. Teure Operationen sind
dabei einmal das Erzeugen eines SHA-1 Hashes der Datei,
bei der diese komplett eingelesen werden muss und das
Speichern an sich, bei dem sie komplett geschrieben
werden muss. Beim Hinzufügen und Eintragen einer
Datei der Größe n liegt der Zeitaufwand also in O(2n) =
O(n). Somit steigt dieser linear mit der Datengröße. Der
Zeitaufwand für das Hashen kann vernachlässigt werden,
da dieses um mehrere Größenordnungen schneller geht
als das eigentliche Lesen bzw. beim Lesen stattfindet und
dieses unwesentlich verlangsamt.

Beim Übertragen von und zu einem entfernten Reposi-
tory gibt es in git grundsätzlich zwei Möglichkeiten. Die
eine verwendet zur Übertragung das Hypertext Transfer
Protocol (HTTP). Dafür muss beim entfernten Repository
nur ein HTTP-Server laufen. Der große Nachteil dieser
Übertragungsart ist, keine Informationen zu git ausgewer-
tet werden oder git direkt benutzt wird. Es werden viele
verschiedene kleine Anfragen geschickt und viele Daten
übertragen. Die andere Möglichkeit ist die Verwendung
der intelligenteren Übertragungsarten. Genutzt werden
dafür, neben dem direkten Zugriff auf Dateien über

.git
|-- branches
|-- config
|-- description
|-- HEAD
|-- hooks
| |-- applypatch-msg.sample
| |-- commit-msg.sample
| |-- post-update.sample
| |-- pre-applypatch.sample
| |-- pre-commit.sample
| |-- prepare-commit-msg.sample
| |-- pre-rebase.sample
| ‘-- update.sample
|-- info
| ‘-- exclude
|-- objects
| |-- info
| ‘-- pack
‘-- refs

|-- heads
‘-- tags

Abbildung 6. .git-Verzeichnis Inhalt nach der Initialisierung
mit git init

file://, hauptsächlich git eigenes Protokoll git://
und dieses Protokoll getunnelt über andere Protokolle
wie Secure Shell (SSH). Der Vorteil bei der Benutzung
des git://-Protokolls ist, dass nur die Informationen
übertragen werden müssen die benötigt werden. Dafür
muss beim entfernten Repository receive-pack und
upload-pack von git installiert sein. Diese Programme
kümmern sich um das Senden und Empfangen. Es ist
also geboten, bei Repositories die große Datenobjekte
enthalten, nicht das HTTP-Protokoll sondern git eigenes
zu benutzen.

7.6.3 Besonderheiten und Einschränkungen
Der git add-Befehl markiert, im Gegensatz zu den
anderen VVS, nicht nur Dateien dafür, dass sie einge-
tragen werden sollen. Er erstellt und fügt auch schon die
Objektdaten wie BLOB und Hash zum Index hinzu. Der
git commit-Befehl muss danach nur noch den Baum
aktualisieren und Commit-Objekte erstellen und diese
verknüpfen.

7.6.4 Java Anbindung
Für Java gibt es verschiedene Bibliotheken die den Zugriff
von Java auf git anbieten. Dazu gehören JGit [40] und
JavaGit [41]. Dies unterscheiden sich dadurch, dass JGit
selbst eine Implementierung von git ist, wohingegen
JavaGit ein Wrapper für die originale Implementierung
von git ist. Aus Optimierungs- und Geschwindigkeits-
sicht ist es klar, dass die C-Implementierung von git
besser optimiert werden kann und ist, da der C-Code
maschinennäher ist [42]. Dies liegt im Weiteren auch

13

Abbildung 7. Aktivitätendiagramm für git add; git
commit

daran, dass C eine zu kompilierende Sprache, Java aber
eine interpretierte ist. Trotzdem kann es zum Beispiel,
wenn die Ausführung nur in Java stattfindet, durch nicht
auszuführende Kontextwechsel zur C-Implementierung,
passieren, dass Zeit im Vergleich zur Nutzung der C-
Implementierung gespart wird. Dies wirkt sich aber nur
bei sehr kleinen Eintragungen aus. Zusätzlich ist die
reine Java-Implementierung nicht mehr abhängig davon,
dass eine git Installation vorhanden ist, sondern ist diese
selbst.

7.7 Mercurial
Mercurial [33] funktioniert fast genauso wie git, deshalb
verweise ich hier nur auf die Unterschiede, die Dustin
Sallings [43] ermittelt hat.

7.8 Bazaar
Auch Bazaar [30] funktioniert ähnlich wie git. Es ver-
wendet zum Beispiel statt SHA einfache Nummern um

Versionen zu identifizieren und ist mehr dafür gedacht
mit der integrierten GUI benutzt zu werden. Es ist auf
eine einfache Benutzbarkeit mittels GUI ausgelegt.

7.9 darcs

Darcs advanced revision control system (Darcs) [31] ist
ein von David Roundy entwickeltes verteiltes VVS, geht
aber ein wenig anders als die hier vorgestellten VVS vor.
Eintragungen sind Patches aber in beliebiger Reihenfolge.
Es gibt keine hierarchischen Beziehungen zwischen Ver-
einigungen zweier Eintragungen. Genau diese fehlenden
Beziehungen machen es schwierig konkrete Versionen
zu bestimmen. Versionen beziehen sich immer auf den
aktuellen Zustand des Repositories.

7.10 Fossil

Fossil [32] verwendet so wie git auch SHA-1 Hashes
um Objekte im Repository zu identifizieren. Fossil ver-
wendet SQLite-Datenbanken um die zu verwaltenden
Repositories zu speichern. In diesen werden die Daten,
auch mit Deflate [44] im zlib-Format [45], komprimiert
gespeichert. Eine Besonderheit von Fossil ist, dass mehr
als eine herausgeholte Kopie des Repositories unterstützt
wird.

7.11 Monotone

Monotone [34] existierte vor git und wurde von Linus
Torvalds als „die am meisten brauchbare Alternative“
[46] bezeichnet und auch von ihm ausgiebig untersucht.
Deshalb verlasse ich mich auf seine Entscheidung, ein
neues VVS zu entwickeln und belasse die Untersuchung
mit dem Ergebnis, dass git fortgeschrittener als monotone
ist.

7.12 Veracity

Veracity [35] ist ein junges, Ende 2010 veröffentlichtes,
VVS. Es bietet einen integrierten Bug-Tracker und im
Unterschied zu allen anderen hier vorgestellten VVS ist
es möglich verwaltete Dateien sperren zu lassen [47].

7.13 Geschwindigkeits- und Skalierbarkeitsver-
gleich

In [48] wurden verschiedene Vergleiche zwischen VVS in
Bezug auf ihre Geschwindigkeit durchgeführt. Es werden
nicht alle hier erwähnten VVS direkt verglichen. Dort
wurde angegeben, dass git zwar nicht das schnellste, aber
im Bezug auf Speichereffizienz das beste VVS ist.

Die Schwierigkeit diese Aussagen zu verallgemeinern
liegt darin, dass es für jedes Projekt sowohl andere Daten
gibt die im Repository gespeichert werden, als auch,
dass sich die Entwicklungsgeschichte dieser erheblich
unterscheiden kann. Somit kann hier keine grundlegende
Entscheidung getroffen werden, welches VVS sich am
besten eignet.

14

7.14 Auswahl
Wegen der guten Anbindung durch JGit in Java und der
Popularität verwende ich im folgenden git als VVS das
für das Back-End verwendet werden soll.

8 ENTWURF EINES REPOSITORIES MIT GIT

Dieser Abschnitt geht auf den Entwurf ein. Es wird
zunächst dargelegt, was unter Live Editing zu verstehen
ist und wie es umgesetzt werden kann. Darauf folgen
andere Design Entscheidungen und ein Konzept wie git
in die GUI integriert werden könnte.

8.1 Live Editing
Live Editing, wie in den Anforderungen unter Punkt 7
beschrieben, wird vom verwendeten Editor selbst nicht
unterstützt. Es wäre durch folgenden Ablauf möglich,
das durch das Repository zu unterstützen:

Sobald eine Änderung im Editor gemacht wird, wird
diese Änderung eingetragen und im zentralen Reposi-
tory bekannt gemacht. Gleichzeitig wird entweder ein
aktives Polling durchgeführt um eingetragene Änderun-
gen im zentralen Repository zu registrieren und diese
Änderungen dann zu holen, oder dies geschieht durch
verschiedene git-hooks welche ausgeführt werden sobald
im zentralen Repository eine Änderung eingetragen wird.
Active Polling ist grundsätzlich eine schlechte Strategie
und erzeugt unnötigen Overhead. Andererseits ist die Va-
riante mit git-hooks auch aufwändig zu implementieren.
Ein weiteres Problem ist die Anzahl der Eintragungen.
Es würde für jede gemachte Änderung, auch jede noch
so kleine Anpassung im Editor, eine Eintragung erzeugt
werden. Weiterhin kommt es noch zu Problemen, wenn
mehrere Personen gleichzeitig Änderungen vornehmen,
die nicht durch automatisches Verschmelzen von git
gelöst werden können.

Aufgrund der genannten Probleme sehe ich davon ab
diese Funktionalität mit dem Repository zu unterstützen.
Es wäre sinnvoller dies im Editor zu implementieren,
da hier die Ursache der Probleme liegt und somit die
erste Stelle, an der die Probleme behandelt werden
sollten. Bei Übereinstimmung der beteiligten Personen
abgeschlossene Änderungen können danach gespeichert
bzw. im Repository eingetragen werden.

8.2 Speichern entspricht Commit ohne Push
Das Drücken des Speichern-Knopfs im Editor bewirkt
eine Eintragung in das lokale Repository. Um die Ände-
rungen für andere im zentralen Repository bereitzustellen,
gibt es einen separaten Knopf.

8.3 Architektur von VALESCA mit git
Um offline und gleichzeitiges Arbeiten in VALESCA
zu unterstützen, soll dieses auf die in Abbildung 8
dargestellte Architektur portiert werden. Dabei muss
zum einen die Anbindung an git entworfen bzw. ent-
schieden werden, wie ein auf git basierendes Back-End

Abbildung 8. VALESCA Architektur mit git Back-End.
Bei * sind die Änderungen für ein auf git basierendes
Repository nötig, bei ** die Umsetzung der Kommunikation
und Verwaltung mit einem zentralen Repository.

in VALESCA integriert werden kann. Im zweiten Schritt
muss entschieden werden wie ein zentrales Repository
aus Sicht von VALESCA verwaltet wird.

8.4 GUI Konzept für Versionierung
In diesem Abschnitt beschreibe ich, wie ein versionier-
tes Repository im Front-End von VALESCA umgesetzt
werden könnte.

8.4.1 Bisherige Oberfläche
In VALESCA gibt es zwei grundsätzliche Layouts. Die
Oberfläche zur Verwaltung von allgemeinen Komponen-
ten (Abbildung 9) für TOSCA und die Ansicht des Editors
(Abbildung 10) für die Bearbeitung dieser Komponenten.

8.4.2 Oberfläche mit Integration von Versionskontrolle
Für ein versioniertes Repository sollten in der Oberfläche
mindestens folgende Interaktionen und Informationen
über das Repository für den Benutzer einfach zugänglich
sein:

• Aktuelle Version (Bezeichnung einer Eintragung)
• Aktueller Zweig
• Wie viele Eintragungen noch nicht versendet wurden

und wie viele noch nicht heruntergeladen wurden
• Anzeige welche Dateien bei der Eintragung hinzu-

gefügt/geändert/gelöscht werden.
• Eintragen inklusive Autorinformationen und Be-

schreibungstext
• Versenden
• Herunterladen
• Rückgängig machen
• Versionsgeschichte ansehen
Eine auch für andere Webanwendungen geeignete

Implementierung könnte so aussehen: Im oberen Bereich

15

Abbildung 9. VALESCA Weboberfläche

Abbildung 10. VALESCA Editor

der GUI wird eine absolut positionierte Leiste wie in
Abbildung 11 eingefügt auf der die genannten Infor-
mationen immer sichtbar platziert und die Interaktions-
möglichkeiten durch Knöpfe abrufbar sind. Dazu gehört
eine Anzeige wie viele Dateien sich geändert haben, aber
noch nicht eingetragen sind und eine Anzeige wie viele
Eintragungen noch nicht in ein entferntes Repository
übertragen wurden.

Der Quellcode für die hier skizzierte GitBar ist in
Abbildung 17 dargestellt.

9 IMPLEMENTIERUNG EINES REPOSITORIES
MIT GIT

Bei der Implementierung des Repositories setze ich auf
einen agilen Ansatz [49]. Ich iteriere durch aufeinander
aufbauende Implementierungsphasen/Iterationsschritte.
In jeder dieser Phasen werden bestimmte neue Funk-
tionalitäten ergänzt und die in vorhergehenden Phasen
implementierten Dinge korrigiert und verbessert. So
entsteht nach und nach die komplette Implementierung
des Repositories.

16

Abbildung 11. GitBar mit Knöpfen

1 FileRepositoryBuilder builder = new FileRepositoryBuilder();
2 Repository repository = builder.setGitDir(new File("/my/git/directory/.git")).

readEnvironment().findGitDir().build();
3 Git git = new Git(repository);
4
5 // add changes to staging area
6 AddCommand add = git.add();
7 add.addFilepattern(".").call();
8
9 // commit staged changes

10 CommitCommand commit = git.commit();
11 commit.setMessage("commitmessage").call();

Abbildung 12. JGit API Beispiel mit existierendem git-Repository

9.1 JGit
Um vorhandenen Quelltext wiederzuverwenden, entwick-
le ich keine eigene Anbindung an git, sondern verwende
die vorhandene Bibliothek JGit [40], welche eine git-
Schnittstelle aus Java-Sicht zur Verfügung stellt. JGit bietet
dazu einerseits verschiedene Application Programmable
Interface (API)-Methoden zum direkten Aufruf von ent-
sprechenden git-Befehlen, als auch andererseits einige
zusammenfassende und abstrahierende Methoden zur
effizienten Nutzung von git an.

Um die API benutzen zu können kann man wie in
Abbildung 12 vorgehen. Beispielsweise kann man nun
mit RevTree und RevWalk einen Baum von Revisionen
objekt-orientiert verarbeiten.

9.2 Iteration 1: Basis git Anbindung
In der ersten Iteration ändere ich jeden vorhandenen
Aufruf in VALESCA, bei dem ein Service-Template er-
stellt oder geändert wird. Ich füge die nötigen git-Befehle
hinzu, damit die vorhandene Versionierung der Dateien
von VALESCA automatisiert wird.

Da für diesen Iterationsschritt bereits ein git-Repository
von Hand erstellt wurde, ist es noch nicht erforderlich,
dass dieses erstellt und eingerichtet wurde. Zur Tren-
nung von Verantwortlichkeiten [16] gibt es die Klasse
valesca.filesystem.FileHandling. In dieser werden Zugriffe
auf Dateien gekapselt. Dort erweitere ich die Methode
writeStringToFile um Aufrufe zum Hinzufügen der Ände-
rungen und zum Eintragen dieser Änderungen.

9.3 Iteration 2: Generalisierung des Dateizugriffs

Um dem Ziel der Speicherung direkt im git-Repository
näher zu kommen, ist der nächste Schritt, statt Zugriffe
auf das Dateisystem direkt zu verwenden, diese als
Zugriffe auf das git-Repository zu kapseln. Diese Kap-
selung sollte möglichst generell strukturiert sein, um
spätere Änderungen am Quelltext so gering wie möglich
zu halten. Deshalb erweitere ich VALESCA um die in
Abbildung 13 dargestellte Klassenhierarchie.

Ab jetzt wird gefordert, dass die Schnittstelle
IResourceRepository von allen Klassen, welche die
Ressourcen verwalten, implementiert werden muss.
Somit ist für den Aufrufenden Code sichergestellt, dass
dieser unabhängig von der Implementierung funktioniert.
Ressourcen sind in diesem Fall unter anderem die
JSON- und SVG-Dateien die von VALESCA erzeugt
werden. Dies ist in der bisherigen Implementierung
von FileHandling anzupassen. Für versionierte
Repositories gibt es ab jetzt die Möglichkeit die abstrakte
Klasse AbstractVersionedResourceRepository
zu konkretisieren. Diese implementiert auch
IResurceRepository. Für Aufrufe wird eine neue
Klasse ResourceRepository hinzugefügt. Diese neue
Klasse weiß, definiert über eine Konfigurationsoption
in VALESCA, welche Ausprägung der Schnittstelle
IFileHandling verwendet werden soll, und führt
die Aufrufe auf dieser Instanz aus. Alle Klassen
sind nach dem Singleton-Entwurfsmuster aufgebaut.
Dieses definiert, dass von einer solchen Klasse nur

17

Abbildung 13. Neue Klassenhierarchie für die Dateiver-
waltung

eine Instanz existieren darf. Da alle hier verwendeten
Implementierungen auf Dateien und Ordnern arbeiten,
gibt es die Klasse AbstractFileBasedRepository.

9.4 Iteration 3: Einbinden der neuen Klassenhierar-
chie in VALESCA

Einige Zugriffe auf Dateien, welche im Repository abe-
legt werden sollen, finden nicht über Methoden in
FileHandling statt, sondern es gibt auch Stellen die
direkt Dateizugriffe ausführen oder eine weitere Klasse
filesystem.Utils verwenden. In dieser Iteration gilt
es alle relevanten Zugriffe auf Dateien so umzuleiten,
dass die Zugriffe über das Repository laufen, um in
späteren Iterationen diese nach und nach verallgemeinern
zu können.

9.5 Iteration 4: Repository Schnittstellenmethoden
definieren

In dieser Iteration geht es darum die Methoden des Java-
Interfaces IResourceRepository zu definieren. Auch
mit Blick auf die in Abschnitt 5 gestellten Anforderungen,
werden nun jeweils entsprechende Methoden, die von
jedem in VALESCA verwendeten Repository unterstützt
werden müssen, erstellt. In Abbildung 14 sind diese
dargestellt.

• initRepository: Erstellt die benötigten Dateien
und Ordner für die Verwaltung dieses Repositories

• addRessources: Markiert Ressourcen zum Eintra-
gen.

Abbildung 14. Klassendiagramm mit Methoden und
Attributen

• addRemoteRepositoryDependency: Fügt eine
optionale Abhängigkeit von einem entfernten Re-
pository hinzu.

• commitResources: Trägt eingetragene Änderun-
gen im Repository ein

• getAddedResources: Listet zur Eintragung hinzu-
gefügte Ressourcen auf

• getResource: Gibt eine bestimmte Ressource zu-
rück

• saveResources: Kombination von
addResources und commitResources

• updateRemote: Lokale Eintragungen an ein entfern-
tes Repository übertragen

• updateFromRemote: Eintragungen aus einem ent-
fernten Repository holen.

9.6 Iteration 5: GitFileSystem / WatchService
Um Datei-Änderungen in einem Git-Repository zu
speichern gibt es zwei Möglichkeiten. Entweder ich
entwickle ein mit git versioniertes Dateisystem
(class GitFileSystemProvider extends
FileSystemProvider) oder ich verwende einen
WatchService um das Repository-Verzeichnis
zu überwachen und bei Änderungen diese in git
einzutragen. Es soll folgende Möglichkeiten geben, wann
eine Eintragung für geänderte Dateien ausgeführt wird:

• Nicht automatisch, nur manuell eintragen

18

• Nach dem Ändern einer Datei

9.6.1 GitWorkingTreeWatcher
Bei dieser Implementierung lasse ich von einem
WatchService jedes Verzeichnis im Repository über-
wachen. Die zu überwachenden Ereignisse sind da-
bei die StandardWatchEventKinds ENTRY_CREATE,
ENTRY_DELETE und ENTRY_MODIFY. In meiner Imple-
mentierung füge ich die, bei einem dieser Ereignisse
geänderten, Dateien zum Index hinzu (git add) und
trage die Änderungen, falls so konfiguriert, im Repository
ein (git commit). Um den GitWorkingTreeWatcher zu
verwenden, muss man diesen Instantiieren und ihm dabei
den Pfad zu dem Verzeichnis, welches versioniert werden
soll, übergeben.

9.6.2 GitFileSystem(-Provider)
In Java 7 gibt es erweiterte Möglichkeiten ein benutzerde-
finiertes Dateisystem anzubieten. Hierfür muss man einen
FileSystemProvider erstellen der ein FileSystem
anbietet. Auf dieses neue Dateisystem kann aus Java
heraus mit der Angabe des für das neue Dateisystem
verwendeten Schemas zugegriffen werden. Per Voreinstel-
lung benutzt Java bei Dateizugriffen das der Laufzeitum-
gebung bereitgestellte Dateisystem des Hosts. Dieses wird
über das Schema file:/// adressiert. Beispielsweise
könnte man ein auf git basiertes versioniertes Dateisystem
wie folgt erstellen:

Zunächst leitet man GitFileSystemProivder von
FileSystemProvier ab und implementiert die ab-
strakten Methoden. Dazu newFileChannel welches
ein FileChannel-Objekt zurückgibt über das auf eine
Datei zugegriffen werden kann. Abhängig vom Pfad
der benutzt wird muss der FileSystemProvider ent-
scheiden, welches FileSystem benutzt wird. Dies ist
zum Beispiel nützlich, weil nicht ein globales versio-
niertes Dateisystem implementiert werden soll, son-
dern eines welches für bestimmte Verzeichnisse git-
Repositories implementiert. Das von FileSystem abge-
leitete GitFileSystem bietet in jeder Instanz ein neues
Dateisystem an. Das Wurzelverzeichnis bezieht sich auf
dieses und nicht auf ein eventuelles anderes Dateisystem
auf dem es basiert.

9.7 Vergleich der möglichen Ansätze
Die drei von mir beschriebenen Ansätze setzen je-
weils auf einer anderen Ebene an. Sehr abstrahiert
von der Anwendung selbst, kann durch ableiten von
FileSystemProvider und FileSystem in Java 7 ein
neues Dateisystem erstellt werden. Die zweite Möglich-
keit ist es, in der Anwendung selbst ein Repository zu
erstellen was die anfallenden Zugriffe selbst verwalten
und entsprechend versionieren kann. Dies erfordert in der
Anwendung eine starke Konzentration der Dateizugriffe
um diese koordiniert verarbeiten zu können. Dieser
Ansatz ist eine Einzelfalllösung die im Allgemeinen
nicht auf andere Anwendungen übertragen werden kann.

Somit muss für diesen Ansatz bei jeder Anwendung
neu entwickelt werden. Die dritte Möglichkeit ist ei-
ne Zwischenschicht. Diese verwendet das vorhandene
Dateisystem, das in der Anwendung benutzt wird, und
beobachtet Zugriffe. Bei bestimmten Ereignissen werden
Methoden aus dieser Zwischenschicht aufgerufen um auf
die Ereignisse entsprechend zu reagieren. Dieser Ansatz
ermöglicht es, ihn völlig unabhängig von der Anwendung
in diese zu integrieren. Allerdings ist dieser Ansatz
abhängig von dem in der Anwendung verwendetem
Dateisystem und der dafür bereitgestellten Bibliotheken
um auf Ereignisse zu reagieren. In Tabelle 1 sind diese
Untersuchungen tabellarisch dargestellt. Es wird deutlich,
dass die Verwendung des WatchServices eine relativ
einfache Implementierung ermöglicht, bei der vorhande-
ner Quelltext wenig modifiziert werden muss, da einfach
nur ein Verzeichnis überwacht werden muss. Schwieriger
wird es, wenn sich die zu versionierenden Daten nicht in
einem gemeinsamen Verzeichnis befinden. Dies behandle
ich nicht.

10 ZUSAMMENFASSUNG UND AUSBLICK

In dieser Bachelorarbeit habe ich in Abschnitt 9 gezeigt,
welche Möglichkeiten es für die Implementierung ei-
nes verteilten Back-Ends gibt. Dabei habe ich zunächst
verschiedene Anforderungen (Abschnitt 5), welche an
ein Back-End gestellt werden sollten, erklärt und bin
darauf eingegangen wie diese von verschiedenen ver-
teilten VVS erfüllt werden. Das Ergebnis dieser Arbeit
ist eine Zwischenschicht, GitWorkingTreeWatcher (Unter-
unterabschnitt 9.6.1), zwischen dem Dateisystem und
einer Anwendung, welche beliebige Daten in einem
Ordner ablegt. Diese abgelegten Daten werden von mei-
ner Zwischenschicht automatisch versioniert. Weiterhin
habe ich dargestellt, wie es möglich ist, entweder auf
Dateisystemebene oder in der Anwendung ein versio-
niertes Repository umzusetzen. Für die Integration in
die GUI von VALESCA habe ich eine Leiste (GitBar in
Unterunterabschnitt 8.4.2), welche Informationen zum
aktuellen Stand des Repositories anzeigt, vorgeschlagen.
Diese ist nur ein Konzept und müsste zur Integration
mit Funktionalität versorgt werden. Des Weiteren war es
in der mir zur Verfügung stehenden Zeit nicht möglich,
die vorgeschlagenen Änderungen für eine einheitliche
Schnittstelle zum Repository (IResourceInterface) in
VALESCA zu integrieren. Dies ist mit größeren Aufwand
verbunden, wie auch schon in Tabelle 1 beschrieben.

LITERATUR 19

GitFileSystemProvier GitWorkingTreeWatcher GitRepository

Implementierung extend FileSystemProvider und
extend FileSystem

benutzt WatchService eigene Implementierung

Dateisytemnähe Sehr nah, eigenes Dateisystem zwischen Dateisystem und An-
wendung.

Nicht nah

Abhängigkeit von Dateisystem Kann unabhängig sein, da es
ein eigenes Dateisystem ist. Ich
würde in einer ersten Implemen-
tierung zunächst auf das vor-
handene Dateisystem file:///
zurückgreifen.

Abhängig von auf Dateien ba-
siertem Dateisystem. Kann auf
Änderungen in diesem bestimte
Reaktionen ausführen.

Unabhängig von einem Dateisys-
tem.

Umfang Sehr umfangreich, da ein kom-
plettes Dateisystem erstellt wird.

Kleiner Umfang Umfang abhängig von benötig-
ten Operationen im Repository
und der Anforderungen der An-
wendung.

Integration Aufwändig, siehe Umfang. Einfache Integration möglich, da
ein Ordner nur überwacht wer-
den muss

Kann aufwändig sein, je nach
existierender Konzentration von
Zugriffen auf Dateisystem/ an-
deres Speichersystem

Tabelle 1
Vergleich möglicher Implementierungen in Java für ein versioniertes Repository

LITERATUR

[1] TOSCA TC Mitglieder, Topology and Orchestration
Specification for Cloud Applications (TOSCA), English,
Working Draft 13, OASIS Technical Commitee, Okt.
2012. Adresse: https : / / www. oasis - open . org /
committees/tc_home.php?wg_abbrev=tosca (siehe
S. 3, 4).

[2] IAAS, Universität Stuttgart. (Juli 2012). Visual Edi-
tor for TOSCA, Adresse: http://www.cloudcycle.
org/valesca/ (besucht am 07. 07. 2012) (siehe S. 3).

[3] Git Mitwirkende. (Juli 2012). Git, Adresse: http :
//git- scm.com/ (besucht am 07. 07. 2012) (siehe
S. 3, 11).

[4] T. van Lessen, „Konzipierung und Entwicklung
eines Repository für Geschäftsprozesse“, Diplom-
arbeit, Universität Stuttgart, 2006 (siehe S. 3).

[5] C. Roberts, „Integrating version control into
ownCloud“, Prifysgol Aberystwyth University,
Progressreport, Nov. 2011. Adresse: http : / /
craig0990 . files . wordpress . com / 2011 / 11 / cgr9 _
progressreport_v1.pdf (siehe S. 3).

[6] ownCloud Community. (6. Nov. 2012). ownCloud.
English, Adresse: http://owncloud.org/ (besucht
am 06. 11. 2012) (siehe S. 3).

[7] R. Grant, „Filesystem Interface for the Git Version
Control System Final Report“, PENN ENGINEE-
RING, University of Pennsylvania, Report, Apr.
2009. Adresse: http : / / www. seas . upenn . edu /
~cse400/CSE400_2008_2009/websites/grant/final.
pdf (siehe S. 3).

[8] S. Fish. (7. Nov. 2012). Better SCM Initiative :
Comparison, Adresse: http://better-scm.shlomifish.
org/comparison/comparison.html (besucht am
25. 08. 2012) (siehe S. 3).

[9] T. Lindholm, „A 3-way Merging Algorithm for
Synchronizing Ordered Trees — the 3DM merging
and differencing tool for XML“, Master’s thesis,
Helsinki University of Technology, Dept. of Com-
puter Science, Sep. 2001. Adresse: http : / / tdm .
berlios.de/3dm/doc/thesis.pdf (siehe S. 3, 7, 9,
10).

[10] P. Mell und T. Grance, The NIST Definition of
Cloud Computing, English, Special Publication, U.S.
Department of Commerce, Sep. 2011. Adresse: http:
//csrc.nist.gov./publications/nistpubs/800-145/
SP800-145.pdf (siehe S. 4).

[11] Wikipedia. (6. Nov. 2012). Cloud-Computing —
Wikipedia, Die freie Enzyklopädie, Adresse: http:
/ / de . wikipedia . org / w / index . php ? title =
Cloud-Computing&oldid=110166147 (besucht am
06. 11. 2012) (siehe S. 4).

[12] OASIS TOSCA Committee. (Aug. 2012). Tosca
overview, Adresse: https : / / www. oasis - open .
org/committees/tc_home.php?wg_abbrev=tosca
(besucht am 08. 08. 2012) (siehe S. 4).

[13] D. Crockford, The application/json Media Type for
JavaScript Object Notation (JSON), RFC 4627 (In-
formational), Internet Engineering Task Force, Juli
2006. Adresse: http://www.ietf.org/rfc/rfc4627.txt
(siehe S. 5).

[14] H.-J. Habermann und F. Leymann, Repository. Ei-
ne Einführung. München: Oldenbourg, 1993, ISBN:
9783486222005 (siehe S. 5).

[15] R. Elmasri und S. Navathe, Grundlagen von Da-
tenbanksystemen, Ser. Paerson Studium. Pearson
Studium, 2009 (siehe S. 6).

[16] B. Lahres und G. Raỳman, Praxisbuch Objektorientie-
rung: Von den Grundlagen zur Umsetzung, Ser. Galileo
computing. Galileo Press, 2006 (siehe S. 6, 16).

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
http://www.cloudcycle.org/valesca/
http://www.cloudcycle.org/valesca/
http://git-scm.com/
http://git-scm.com/
http://craig0990.files.wordpress.com/2011/11/cgr9_progressreport_v1.pdf
http://craig0990.files.wordpress.com/2011/11/cgr9_progressreport_v1.pdf
http://craig0990.files.wordpress.com/2011/11/cgr9_progressreport_v1.pdf
http://owncloud.org/
http://www.seas.upenn.edu/~cse400/CSE400_2008_2009/websites/grant/final.pdf
http://www.seas.upenn.edu/~cse400/CSE400_2008_2009/websites/grant/final.pdf
http://www.seas.upenn.edu/~cse400/CSE400_2008_2009/websites/grant/final.pdf
http://better-scm.shlomifish.org/comparison/comparison.html
http://better-scm.shlomifish.org/comparison/comparison.html
http://tdm.berlios.de/3dm/doc/thesis.pdf
http://tdm.berlios.de/3dm/doc/thesis.pdf
http://csrc.nist.gov./publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov./publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov./publications/nistpubs/800-145/SP800-145.pdf
http://de.wikipedia.org/w/index.php?title=Cloud-Computing&oldid=110166147
http://de.wikipedia.org/w/index.php?title=Cloud-Computing&oldid=110166147
http://de.wikipedia.org/w/index.php?title=Cloud-Computing&oldid=110166147
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=tosca
http://www.ietf.org/rfc/rfc4627.txt

20 LITERATUR

[17] P. O’Neil und E. O’Neil, Database–principles, Pro-
gramming, and Performance, Ser. The Morgan Kauf-
mann Series in Data Management Systems. Morgan
Kaufmann Publishers, 2001 (siehe S. 6).

[18] E. A. Brewer, „Towards robust distributed systems
(abstract)“, in Proceedings of the nineteenth annual
ACM symposium on Principles of distributed compu-
ting, Ser. PODC ’00, Portland, Oregon, United States:
ACM, 2000, S. 7–, ISBN: 1-58113-183-6. DOI: 10.1145/
343477.343502. Adresse: http://doi.acm.org/10.
1145/343477.343502 (siehe S. 6).

[19] W. F. Tichy, „Tools for Software Configuration
Management“, in SCM, J. F. Winkler, Hrsg., Ser.
Berichte des German Chapter of the ACM, Bd. 30,
Teubner, 1988, S. 1–20 (siehe S. 6).

[20] G. Hohpe und B. Woolf, Enterprise Integration
Patterns: Designing, Building and Deploying Messa-
ging Solutions. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2003 (siehe S. 6).

[21] M. Fowler, Patterns of Enterprise Application Archi-
tecture, Ser. The Addison-Wesley Signature Series.
Prentice Hall, 2003, ISBN: 9780321127426 (siehe S. 6).

[22] T. Lord. (21. Mai 2008). GNU arch, Adresse: http:
//www.gnu.org/software/gnu-arch/ (besucht am
28. 11. 2012) (siehe S. 8).

[23] JacobM. (März 2010). Using a version control
system as a data backend, Adresse: http : / /
stackoverflow.com/questions/2519252/using-a-
version-control-system-as-a-data-backend (besucht
am 03. 08. 2012) (siehe S. 8).

[24] J. Dunkel, A. Eberhart, S. Fischer, C. Kleiner
und A. Koschel, Systemarchitekturen für Verteilte
Anwendungen: Client-Server, Multi-Tier, SOA, Event
Driven Architectures, P2P, Grid, Web 2.0. Hanser
Fachbuchverlag, 2008 (siehe S. 8).

[25] M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin,
K. P. Eswaran, J. N. Gray, P. P. Griffiths, W. F. King,
R. A. Lorie, P. R. McJones, J. W. Mehl, G. R. Putzolu,
I. L. Traiger, B. W. Wade und V. Watson, „System
r: relational approach to database management“,
ACM Trans. Database Syst., Bd. 1, Nr. 2, S. 97–137,
Juni 1976, ISSN: 0362-5915. DOI: 10.1145/320455.
320457. Adresse: http://doi .acm.org/10.1145/
320455.320457 (siehe S. 8).

[26] R. L. Rivest, A. Shamir und L. Adleman, „A
method for obtaining digital signatures and public-
key cryptosystems“, Commun. ACM, Bd. 21, Nr. 2,
S. 120–126, Feb. 1978, ISSN: 0001-0782. DOI: 10.1145/
359340.359342. Adresse: http://doi.acm.org/10.
1145/359340.359342 (siehe S. 9).

[27] A. Cheney. (3. März 2009). Pretty Diff - The dif-
ference tool, Adresse: http : / / prettydiff . com/
(besucht am 08. 11. 2012) (siehe S. 10).

[28] J. Peabody. (3. Nov. 2012). mergely - Diff and merge
offonline, Adresse: http : / / www. mergely. com/
(besucht am 08. 11. 2012) (siehe S. 10).

[29] Wikipedia. (Aug. 2012). Comparison of revision
control software — Wikipedia(,) The Free Ency-

clopedia, Adresse: http://en.wikipedia.org/w/
index.php?title=Comparison_of_revision_control_
software&oldid=505233869 (besucht am 03. 08. 2012)
(siehe S. 11).

[30] Canonical. (Aug. 2012). Bazaar, Adresse: http://
bazaar. canonical . com/ (besucht am 03. 08. 2012)
(siehe S. 11, 13).

[31] DarcsTeam. (Aug. 2012). Darcs, Adresse: http://
darcs.net (besucht am 03. 08. 2012) (siehe S. 11, 13).

[32] Fossil. (Aug. 2012). Fossil, Adresse: http://www.
fossil-scm.org (besucht am 03. 08. 2012) (siehe S. 11,
13).

[33] M. Community. (Aug. 2012). Mercurial, Adres-
se: http : / / mercurial . selenic . com (besucht am
03. 08. 2012) (siehe S. 11, 13).

[34] monotone. (Aug. 2012). Monotone, Adresse: http://
www.monotone.ca (besucht am 03. 08. 2012) (siehe
S. 11, 13).

[35] SourceGear. (Okt. 2012). Veracity - The Next Step in
DVCS, Adresse: http://veracity-scm.com/ (besucht
am 23. 10. 2012) (siehe S. 11, 13).

[36] BitMover, Inc. (26. Okt. 2012). Bitkeeper, Adres-
se: http : / / www. bitkeeper . com/ (besucht am
26. 10. 2012) (siehe S. 11).

[37] S. Chacon. (26. Okt. 2012). git Book, Adresse: http:
//git-scm.com/book/en (besucht am 26. 10. 2012)
(siehe S. 11, 12).

[38] P. Deutsch, GZIP file format specification version 4.3,
RFC 1952 (Informational), Internet Engineering
Task Force, Mai 1996. Adresse: http://www.ietf.
org/rfc/rfc1952.txt (siehe S. 12).

[39] J. loup Gailly und M. Adler. (27. Juli 2003). The
gzip home page, Adresse: http://www.gzip.org
(besucht am 31. 10. 2012) (siehe S. 12).

[40] The Eclipse Foundation. (Sep. 2012). Jgit, Adresse:
http : / / www . eclipse . org / jgit/ (besucht am
15. 10. 2012) (siehe S. 12, 16).

[41] J. Project. (). Javagit. English, Adresse: http : / /
javagit.sourceforge.net/ (besucht am 29. 10. 2012)
(siehe S. 12).

[42] S. O. Pearce. (30. Apr. 2009). Why Git is so fast,
Was: re: eric sinks blog - notes on git, Adresse: http:
//marc.info/?l=git&m=124111702609723&w=2
(besucht am 29. 10. 2012) (siehe S. 12).

[43] D. Sallings. (6. Apr. 2008). The Differences Bet-
ween Mercurial and Git, Adresse: http://www.
rockstarprogrammer. org / post / 2008 / apr / 06 /
differences-between-mercurial-and-git/ (besucht
am 26. 11. 2012) (siehe S. 13).

[44] P. Deutsch, DEFLATE Compressed Data Format Specifi-
cation version 1.3, RFC 1951 (Informational), Internet
Engineering Task Force, Mai 1996. Adresse: http:
//www.ietf.org/rfc/rfc1951.txt (siehe S. 13).

[45] P. Deutsch und J.-L. Gailly, ZLIB Compressed Data
Format Specification version 3.3, RFC 1950 (Informa-
tional), Internet Engineering Task Force, Mai 1996.
Adresse: http://www.ietf.org/rfc/rfc1950.txt (siehe
S. 13).

http://dx.doi.org/10.1145/343477.343502
http://dx.doi.org/10.1145/343477.343502
http://doi.acm.org/10.1145/343477.343502
http://doi.acm.org/10.1145/343477.343502
http://www.gnu.org/software/gnu-arch/
http://www.gnu.org/software/gnu-arch/
http://stackoverflow.com/questions/2519252/using-a-version-control-system-as-a-data-backend
http://stackoverflow.com/questions/2519252/using-a-version-control-system-as-a-data-backend
http://stackoverflow.com/questions/2519252/using-a-version-control-system-as-a-data-backend
http://dx.doi.org/10.1145/320455.320457
http://dx.doi.org/10.1145/320455.320457
http://doi.acm.org/10.1145/320455.320457
http://doi.acm.org/10.1145/320455.320457
http://dx.doi.org/10.1145/359340.359342
http://dx.doi.org/10.1145/359340.359342
http://doi.acm.org/10.1145/359340.359342
http://doi.acm.org/10.1145/359340.359342
http://prettydiff.com/
http://www.mergely.com/
http://en.wikipedia.org/w/index.php?title=Comparison_of_revision_control_software&oldid=505233869
http://en.wikipedia.org/w/index.php?title=Comparison_of_revision_control_software&oldid=505233869
http://en.wikipedia.org/w/index.php?title=Comparison_of_revision_control_software&oldid=505233869
http://bazaar.canonical.com/
http://bazaar.canonical.com/
http://darcs.net
http://darcs.net
http://www.fossil-scm.org
http://www.fossil-scm.org
http://mercurial.selenic.com
http://www.monotone.ca
http://www.monotone.ca
http://veracity-scm.com/
http://www.bitkeeper.com/
http://git-scm.com/book/en
http://git-scm.com/book/en
http://www.ietf.org/rfc/rfc1952.txt
http://www.ietf.org/rfc/rfc1952.txt
http://www.gzip.org
http://www.eclipse.org/jgit/
http://javagit.sourceforge.net/
http://javagit.sourceforge.net/
http://marc.info/?l=git&m=124111702609723&w=2
http://marc.info/?l=git&m=124111702609723&w=2
http://www.rockstarprogrammer.org/post/2008/apr/06/differences-between-mercurial-and-git/
http://www.rockstarprogrammer.org/post/2008/apr/06/differences-between-mercurial-and-git/
http://www.rockstarprogrammer.org/post/2008/apr/06/differences-between-mercurial-and-git/
http://www.ietf.org/rfc/rfc1951.txt
http://www.ietf.org/rfc/rfc1951.txt
http://www.ietf.org/rfc/rfc1950.txt

21

[46] L. Torvalds. (6. Apr. 2005). Lkml, Adresse: http:
//lkml .org/lkml/2005/4/6/121 (besucht am
26. 11. 2012) (siehe S. 13).

[47] SourceGear. (2. Juli 2012). How do file locks work?,
Adresse: http://veracity-scm.com/qa/questions/
1105 / how - do - file - locks - work (besucht am
26. 11. 2012) (siehe S. 13).

[48] Git Community. (2. Feb. 2010). GitBenchmarks - Git
SCM Wiki, Adresse: https://git.wiki.kernel.org/
index.php/GitBenchmarks&oldid=8548 (besucht
am 29. 10. 2012) (siehe S. 13).

[49] J. Ludewig und H. Lichter, Software Enginee-
ring - Grundlagen, Menschen, Prozesse, Techniken.
dpunkt.verlag, 2007, S. I–XXI, 1618–, ISBN: 978-3-
89864-268-2 (siehe S. 15).

[50] M. Shell. (März 2007). Manuscript Templates for
Conference Proceedings, Adresse: http://www.
ctan . org / tex - archive / macoros / latex / contrib /
IEEEtran/ (besucht am 10. 08. 2012) (siehe S. 21).

[51] B. van der Zander und F. T. Authors. (22. Nov. 2012).
TeXstudio. Version 2.5, Adresse: http://texstudio.
sourceforge.net/ (besucht am 27. 11. 2012) (siehe
S. 21).

[52] JabRef Authors. (18. Nov. 2012). JabRef reference
manager. Version 2.9 beta 1, Adresse: http://jabref.
sourceforge . net (besucht am 27. 11. 2012) (siehe
S. 21).

[53] yWorks. (Okt. 2012). yEd Graph Editor, Adresse:
http ://www.yworks . com/de/products_yed_
about.html (besucht am 24. 10. 2012) (siehe S. 23).

ACKNOWLEDGMENTS

Als Erstes möchte ich meiner Familie für Ihre Unter-
stützung während der gesamten Arbeitszeit danken.
Es ist wichtig in Zeiten großer Erschöpfung von Ver-
wandten sowie auch Freunden motiviert zu werden.
Deshalb gebührt hier ein weiterer Dank meinen Freunden
und Kommilitonen Daniel Maurer, Marius Kleiner und
Florian Straßer, welche mir wichtige Anregungen zur
Gestaltung sowie zum Inhalt gaben und auch für die
nötige Ablenkung und Abwechslung abseits dieser Arbeit
sorgten. Abschließend möchte ich natürlich noch meinem
Betreuer, Dipl.-Inf. Oliver Kopp, für seine Geduld und
Unterstützung danken.

ANHANG A
ABKÜRZUNGSVERZEICHNIS

3DM 3-way merging, Differencing and Matching
ACID Atomicity, Consistency, Isolation and

Durability
API Application Programmable Interface
BASE Basically Available, Soft State, Eventual

consistency
BLOB Binary Large Object
Darcs Darcs advanced revision control system
DBS Datenbank SystemDatenbank Systeme

DBMS Datenbank Management System
DRCS Distributed Revision Control System
FUSE Filesystem in Userspace
GUI Graphical User Interface
HTTP Hypertext Transfer Protocol
IaaS Infrastruktur as a Service
IEEE Institute of Electrical and Electronics

Engineers
JSON JavaScript Object Notation
NIST National Institute of Standards and

Technology
NoSQL Not only SQL
PaaS Platform as a Service
RCS Revision Control System
SCM Software Configuration Management
SaaS Software as a Service
SHA Secure Hash Algorithm
SSH Secure Shell
SVG Scalable Vector Graphics
TOSCA Topology and Orchestration Specification for

Cloud Applications
VALESCA Visual Editor for TOSCA
VVS Versionsverwaltungssystem
XML eXtended Markup Language

ANHANG B
LATEX VORLAGE

Die für diese Arbeit verwendete Vorlage basiert auf
der vom Institute of Electrical and Electronics Engineers
(IEEE) veröffentlichten LATEX-Vorlage IEEEtran [50]. Diese
habe ich noch um die in Abbildung 15 dargestellten An-
gaben direkt nach der documentclass Definition ergänzt
(http://www.michaelshell.org/tex/ieeetran/).

Da die mitgelieferten Literatur-Styles nur für BibTex
sind, wurde das Paket biblatex-ieee durch die Opti-
on style=ieee geladen.

ANHANG C
VERWENDETE SOFTWARE

C.1 Ordner und Dateibaumstrukturen

Die Darstellung der in einen Ordner enthaltenen
Dateien und Ordner habe ich unter Linux mit
dem Befehl tree folder -charset=ASCII >
asciitreeoffolder.txt erstellt. Der Parameter
-charset=ASCII ist notwendig damit die erzeugte
Ausgabedatei nur die vom listings-Paket verwendbaren
Zeichen (ASCII) enthält. Will man die dargestellte
Tiefe ändern, verwendet man den Parameter -T x,
dabei bezeichnet x die Tiefe. In LATEXwerden die
erzeugten Textdateien mit dem Befehl verbatiminput
eingebunden.

C.2 LATEX

Zur Bearbeitung der LATEX-Dateien kam TeXstudio [51]
und JabRef [52] zum Einsatz.

http://lkml.org/lkml/2005/4/6/121
http://lkml.org/lkml/2005/4/6/121
http://veracity-scm.com/qa/questions/1105/how-do-file-locks-work
http://veracity-scm.com/qa/questions/1105/how-do-file-locks-work
https://git.wiki.kernel.org/index.php/GitBenchmarks&oldid=8548
https://git.wiki.kernel.org/index.php/GitBenchmarks&oldid=8548
http://www.ctan.org/tex-archive/macoros/latex/contrib/IEEEtran/
http://www.ctan.org/tex-archive/macoros/latex/contrib/IEEEtran/
http://www.ctan.org/tex-archive/macoros/latex/contrib/IEEEtran/
http://texstudio.sourceforge.net/
http://texstudio.sourceforge.net/
http://jabref.sourceforge.net
http://jabref.sourceforge.net
http://www.yworks.com/de/products_yed_about.html
http://www.yworks.com/de/products_yed_about.html

22

1 \documentclass[10pt,journal,compsoc,a4paper,twoside]{IEEEtran}
2 % !!!!!!
3 % NEEEDED FOR ngerman and babel to work!!!
4 % !!!!!!
5 \makeatletter
6 \def\markboth#1#2{\def\leftmark{\@IEEEcompsoconly{\sffamily}\MakeUppercase{\protect#1}}%
7 \def\rightmark{\@IEEEcompsoconly{\sffamily}\MakeUppercase{\protect#2}}}
8 \makeatother
9 \usepackage[utf8]{inputenc}

10 \usepackage[T1]{fontenc}
11 \usepackage[ngerman]{babel}
12 \usepackage{microtype}
13 \usepackage{listings}
14 % for index in pdf (highlights and linkifies links aswell in pdf)
15 % hidelinks removes coloured boxes around links in pdf, links stay clickable
16 \usepackage[hidelinks]{hyperref}
17 \usepackage[]{acronym}
18 \usepackage[]{csquotes}
19 \usepackage{verbatim}
20 \usepackage{tabularx}
21 \usepackage[style=ieee,backref=true,backend=bibtex8]{biblatex}
22 \bibliography{literatur}
23 %colors
24 \usepackage[usernames,dvipsnames,table]{xcolor}
25 \definecolor{lightlight-gray}{gray}{0.95}
26 \definecolor{light-gray}{gray}{0.8}
27 \usepackage{datetime}
28 \usepackage[
29 title={Verteiltes Modellrepository fuer TOSCA},
30 author={Kai Mindermann},
31 type=bachelor,
32 institute=iaas,
33 number=8,
34 course=cs,
35 examiner={Prof.\ Dr.\ Frank Leymann},
36 supervisor={Dipl.-Inf.\ Oliver Kopp},
37 startdate={1.~Juni~2012},
38 enddate={1.~Dezember~2012},
39 crk={
40 H.3.2, % H.3.2 Information Storage File organization
41 H.3.4, % H.3.4 Systems and Software Distributed systems (new)
42 H.3.5, % H.3.5 Online Information Services Web-based services (new)
43 H.5.2 % H.5.2 User Interfaces
44 },
45 language=german
46]{uni-stuttgart-cs-cover/uni-stuttgart-cs-cover}
47 \usepackage[pdftex]{graphicx}
48 \usepackage{epstopdf}
49 %define settings for listings
50 \lstset{
51 basicstyle=\ttfamily,
52 stepnumber=1,
53 xleftmargin=2em,
54 numbers=left,
55 breaklines=true, % sets automatic line breaking
56 breakatwhitespace=false,
57 showstringspaces=false,
58 }
59 \pdfinfo{
60 /CreationDate (D:20121125155000)
61 /ModDate (D:\pdfdate)
62 }
63 \hypersetup{pdfinfo={
64 Title={Verteiltes Modellrepository fuer TOSCA},
65 Author={Kai Mindermann}
66 }}

Abbildung 15. Ergänzungungen der LATEX-Vorlage

23

C.3 Graphen
Für die Modellierung der Graphen habe ich den yEd [53]
von yWorks verwendet.

ANHANG D
GROSSE ABBILDUNGEN

In diesem Abschnitt werden Abbildungen und Tabellen
dargestellt.

D.1
Abbildung 16 zeigt ein Beispiel der Datei- und Ordner-
struktur Repräsentation in VALESCA.

D.2
Tabelle 2 mit der Terminologie entsprechenden Befehle
der untersuchten VVS.

D.3
Abbildung 17 zeigt den Quelltext der als Konzept vorge-
stellten GitBar als git-Integration in VALESCA.

Kai Mindermann hat im Jahr 2008 sein Abitur
abgeschlossen. Direkt im Anschluss leistete er
Wehrdienst bei der Bundeswehr und erhielt dort
das Abzeichen für Leistungen im Truppendienst
der Stufe 3. Im Oktober 2009 begann er sein
Informatikstudium an der Universität Stuttgart.
Neben den obligatorischen Grundlagen erlangte
er dort unter anderem Kenntnisse im Bereich
eingebetteter als auch verteilter Systeme sowie
in vertieften Grundlagen der Rechnernetze. Mit
Abschluss dieser Arbeit erreicht er mit 23 Jahren

den Hochschulabschluss, Bachelor of Science. Gleichzeitig ist er bereits
jetzt dabei, sich auf den nächsten Abschluss, Master of Science,
vorzubereiten.

24

1 .
2 |-- artifacttemplates
3 | ‘-- http%3A%2F%2Fwww.example.com%2Fdemo
4 | |-- EC2ControlArtifact
5 | | |-- artifacttemplate.properties
6 | | ‘-- EC2-VM-Service.war
7 | ‘-- linuxControlArtifact
8 | |-- artifacttemplate.properties
9 | ‘-- EC2-Linux-Service.war

10 |-- artifacttypes
11 | ‘-- http%3A%2F%2Fexample.com%2FToscaTypes
12 | ‘-- WAR
13 | ‘-- artifacttype.properties
14 |-- imports
15 | ‘-- http%3A%2F%2Fschemas.xmlsoap.org%2Fwsdl%2F
16 | |-- http%3A%2F%2Fec2linux.aws.ia.opentosca.org
17 | | ‘-- EC2LinuxIAService.wsdl
18 | ‘-- http%3A%2F%2Fec2vm.aws.ia.opentosca.org
19 | ‘-- EC2VMIAService.wsdl
20 |-- namespaces.properties
21 |-- nodetypes
22 | |-- http%3A%2F%2Fexample.com%2FToscaTypes
23 | | |-- ApacheWebServerType
24 | | | |-- NodeType.properties
25 | | | ‘-- scc-data
26 | | |-- MySqlType
27 | | | |-- NodeType.properties
28 | | | ‘-- scc-data
29 | | |-- OperatingSystemType
30 | | | |-- interfaces
31 | | | |-- NodeType.properties
32 | | | ‘-- scc-data
33 | | |-- PhpModulType
34 | | | |-- NodeType.properties
35 | | | ‘-- scc-data
36 | | ‘-- VirtualMachineType
37 | | |-- interfaces
38 | | |-- NodeType.properties
39 | | ‘-- scc-data
40 | ‘-- http%3A%2F%2Fwww.example.com%2FToscaComponents%2FSugarCrmTypes
41 | |-- SugarCrmApplicationType
42 | | |-- NodeType.properties
43 | | ‘-- scc-data
44 | ‘-- SugarCrmDbType
45 | |-- NodeType.properties
46 | ‘-- scc-data
47 |-- relationshiptypes
48 | ‘-- http%3A%2F%2Fexample.com%2FToscaTypes
49 | |-- AppDependsOnPhpRuntimeType
50 | | |-- RelationshipType.properties
51 | | ‘-- scc-data
52 | |-- ConnectsToType
53 | | |-- RelationshipType.properties
54 | | ‘-- scc-data
55 | |-- DependsOnType
56 | | |-- RelationshipType.properties
57 | | ‘-- scc-data
58 | |-- HostedOnType
59 | | |-- RelationshipType.properties
60 | | ‘-- scc-data
61 | |-- MySqlDbConnectionType
62 | | |-- RelationshipType.properties
63 | | ‘-- scc-data
64 | |-- MySqlDbHostedOnMySqlType
65 | | |-- RelationshipType.properties
66 | | ‘-- scc-data
67 | ‘-- PluginHostedOnContainerType
68 | |-- RelationshipType.properties
69 | ‘-- scc-data
70 ‘-- servicetemplates
71 ‘-- http%3A%2F%2Fwww.example.com%2Fdemo
72 ‘-- sugarCrm
73 |-- ServiceTemplate.properties
74 ‘-- topologytemplate

Abbildung 16. Beispiel der Datei- und Ordnerstruktur Repräsentation in VALESCA eines kompletten Servicetemplates
(SugarCRM aufgelistet nur bis Tiefe 4)

25

Bazaar darcs Fossil git Mercurial Monotone Veracity

Initialisieren init initialize init init init setup init

Hinzufügen add add add add add add add

Eintragen commit record commit commit commit commit commit

Rückgängig machen revert revert revert revert revert revert revert

Herausholen checkout apply open checkout update checkout checkout

Versenden push push push push push sync push

Herunterladen pull pull pull pull incoming sync pull

Tabelle 2
Der Terminologie entsprechende Befehle der untersuchten VVS

1 <!DOCTYPE html><html><head>
2 <link href="bootstrap/css/bootstrap.min.css" rel="stylesheet" media="screen">
3 <style type="text/css">
4 .gitbar {padding-bottom:30px; /* need so much space for this bar vertically*/}
5 .gitbarcontent {
6 font-family: Verdana,sans-serif;font-size: 0.8em;
7 background-color:#92D6FF;
8 position:fixed;
9 padding:5px 8px 5px 28px;

10 top:0px;
11 right:0px;
12 left:0px;
13 border-width:1px 0px 1px 0px;
14 border-style:solid;
15 border-color:#2F7AA6;}
16 </style>
17 </head>
18 <body>
19 <div class="gitbar"><div class="gitbarcontent">
20 GitBar -
21 <button class="btn btn-primary btn-mini disabled" type="button">Commit</button> |
22 <button class="btn btn-warning btn-mini" type="button">Reset</button> /
23 <button class="btn btn-danger btn-mini" type="button">Revert</button> /
24 <button class="btn btn-default btn-mini disabled" type="button">Push</button> /
25 <button class="btn btn-default btn-mini" type="button">Pull</button> /
26 View History - master
27 </div></div>
28
29 <div class="gitbar"><div class="gitbarcontent" style="top:50px;">
30 GitBar -
31 4 → <button class="btn btn-primary btn-mini" type="button"

>Commit</button> |
32 <button class="btn btn-warning btn-mini" type="button">Reset</button> /
33 <button class="btn btn-danger btn-mini" type="button">Revert</button> /
34 <button class="btn btn-default btn-mini" type="button">Push</button> /
35 <button class="btn btn-default btn-mini" type="button">Pull</button> /
36 View History - master
37 </div></div>
38
39 <div class="gitbar"><div class="gitbarcontent" style="top:100px;">
40 GitBar -
41 1 → <button class="btn btn-primary btn-mini" type="button"

>Commit</button> |
42 <button class="btn btn-warning btn-mini" type="button">Reset</button> /
43 <button class="btn btn-danger btn-mini" type="button">Revert</button> /
44 <button class="btn btn-default btn-mini" type="button">13 Push<

/button> /
45 <button class="btn btn-default btn-mini" type="button">Pull</button> /
46 View History - master
47 </div></div>
48 <script src="jquery.min.js"></script><script src="bootstrap/js/bootstrap.min.js"></script>
49 </body></html>

Abbildung 17. Quelltext der als Konzept vorgestellten GitBar als git-Integration in VALESCA

26

27

Erklärung

Ich versichere, diese Arbeit selbstständig verfasst zu haben. Ich
habe keine anderen als die angegebenen Quellen benutzt und
alle wörtlich oder sinngemäß aus anderen Werken übernommene
Aussagen als solche gekennzeichnet. Weder diese Arbeit noch
wesentliche Teile daraus waren bisher Gegenstand eines anderen
Prüfungsverfahrens. Ich habe diese Arbeit bisher weder teilweise
noch vollständig veröffentlicht. Das elektronische Exemplar
stimmt mit allen eingereichten Exemplaren überein.

Ort, Datum, Unterschrift

	Einführung
	Verwandte Arbeiten
	Grundlagen
	Cloud-Computing
	Topology and Orchestration Specification for Cloud Applications (TOSCA)
	Definitions
	Service Template

	Visual Editor for TOSCA (VALESCA)
	GUI
	Dateirepräsentation des Service-Templates

	Repository
	Datenbank System (DBS)
	Architektur
	Ablagemöglichkeiten
	Anforderungen

	Versionsverwaltungssystem (VVS)
	Strategien für gleichzeitiges Bearbeiten
	Zusammenführungsstrategien
	Probleme zentraler VVS
	Verteilte VVS

	Versionsverwaltungssysteme als Back-End
	Front-End und Back-End
	Nutzen eines versionierten Back-Ends
	Anforderungen an ein Back-End

	Anforderungen an ein Back-End und Repository für VALESCA
	Konflikte in VALESCA
	Problem
	Beispielszenarien
	Unterschiedliche Behandlung von Konflikten
	Automatische Konfliktlösung
	Semi-Automatische Konfliktlösung
	3DM Algorithmus

	Manuelle Konfliktlösung in der GUI

	Evaluation und Auswahl VVS
	Terminologie
	Anforderungen
	Ausgewählte VVS
	Gemeinsamkeiten
	Behandlung großer Binärdateien
	Befehlsumfang

	Evaluation
	git
	Datenverwaltung
	Vorgehen
	Besonderheiten und Einschränkungen
	Java Anbindung

	Mercurial
	Bazaar
	darcs
	Fossil
	Monotone
	Veracity
	Geschwindigkeits- und Skalierbarkeitsvergleich
	Auswahl

	Entwurf eines Repositories mit git
	Live Editing
	Speichern entspricht Commit ohne Push
	Architektur von VALESCA mit git
	GUI Konzept für Versionierung
	Bisherige Oberfläche
	Oberfläche mit Integration von Versionskontrolle

	Implementierung eines Repositories mit git
	JGit
	Iteration 1: Basis git Anbindung
	Iteration 2: Generalisierung des Dateizugriffs
	Iteration 3: Einbinden der neuen Klassenhierarchie in VALESCA
	Iteration 4: Repository Schnittstellenmethoden definieren
	Iteration 5: GitFileSystem / WatchService
	GitWorkingTreeWatcher
	GitFileSystem(-Provider)

	Vergleich der möglichen Ansätze

	Zusammenfassung und Ausblick
	Anhang A: Abkürzungsverzeichnis
	Anhang B: Latex Vorlage
	Anhang C: Verwendete Software
	Ordner und Dateibaumstrukturen
	LaTeX
	Graphen

	Anhang D: Große Abbildungen
	
	
	

	Biographies
	Kai Mindermann

