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Kurzfassung

Man kommt in der Computergrafik immer wieder mit komplexen Simulationen in Be-
rithrung. Ohne eine realistische Simulation von Wasser oder anderen Fluiden wéren viele
3D-Cartoons oder Spezialeffekte in grofien Filmproduktionen kaum mdoglich. Viele der
bis heute verwendeten Methoden basieren auf dem Eulerschen gitterbasierenden Ansatz
oder dem partikelbasierten Ansatz von Lagrange. Die Smoothed Particle Hydrodynamics
(SPH)-Methode ist ein Lagrange-Ansatz, der aus der Astronomie stammt und heutzutage oft
Anwendung in Fluidsimulationen findet. Auf der SPH-Simulation basieren die beiden, in
dieser Arbeit vorgestellten Methoden zur Rekonstruktion der Oberfliche von Fluiden.

Die erste Methode, von Miiller et al., berechnet aus den Attributen der Partikel aus der
SPH-Simulation ein Skalarfeld und verwendet eine Isoflache im Skalarfeld als Oberfldche.
Die zweite Methode, von Yu und Turk, ist neuer und optimiert den Ansatz von Miiller,
indem anisotrope Kerne die umliegenden Partikel in die Berechnung des Skalarfeldes mitein-
beziehen. Das soll dazu dienen, die Oberfldche glatter zu gestalten. Beide Verfahren werden
in dieser Arbeit verglichen und auf ihre optischen Eigenschaften untersucht. Desweiteren
werden Leistungsoptimierungen angewandt und Benchmarkergebnisse analysiert.
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1 Einleitung

1.1 Motivation

| & A

Abbildung 1.1: Mit der Methode von Miiller et al. berechnete Dam Break-Simulation.

In vielen Bereichen, wie Industrie oder Medienbranche werden heute Fluidsimulationen
und ihre Darstellung benotigt. Es gibt viele Arbeiten zu diesem Themenfeld und dement-
sprechend gibt es viele verschiedene Ausfiihrungen. Im Gegensatz zu gitterbasierenden
Eulerschen Ansitzen, baut Smoothed Particle Hydrodynamics (SPH) auf dem partikelba-
sierten Ansatz von Lagrange auf. SPH stammt urspriinglich aus der Astronomie [Lucyy],
wo asymmetrische Gebilde, wie z.B. Weltraumnebel damit simuliert wurden, wurde jedoch
von Gingold und Monaghan [GM77][Mongz] in der Fluidsimulation verwendet. Die beiden
in dieser Arbeit vorgestellten Methoden [MCGo3][YT10] berechnen aus den Attributen der
Partikel aus der SPH-Simulation ein Skalarfeld, in dem eine Isofldche fiir die Oberfldache
verwendet wird.

Das neuere der beiden Verfahren optimiert die optischen Ergebnisse mit der gewichtetten
Hauptkomponentenanalyse und der Singuldarwertzerlegung und liefert letztlich eine glatte-
re Oberfldche. Wieviel Leistung diese Optimierung kostet, inwiefern die neuere Methode
optisch bessere Ergebnisse liefert und wie genau sie funktionieren, wird in den folgenden
Kapiteln geklart.

1.2 Ziele dieser Arbeit

In dieser Arbeit werden zwei Verfahren zur Oberflichenrekonstruktion fiir partikelbasierte
Fluidsimulationen implementiert. Beide Verfahren werden von Grund auf erklart und vergli-
chen. Die optischen Ergebnisse werden gegeniibergestellt und der Rechenaufwand beider
Verfahren wird mit Messungen analysiert.



1 Einleitung

Gliederung

Zu Beginn dieser Bachelorarbeit werden verwandte Arbeiten aufgezihlt und somit ein Uber-
blick tiber existierende SPH-basierte Verfahren zur Oberflichenrekonstruktion geschaffen.
Im nédchsten Kapitel werden notige Grundlagen erkladrt, damit im darauffolgenden Kapitel
das notige grundlegende Wissen gegeben ist, um die beiden vorgestellten Rekonstrukti-
onsmethoden nachvollziehen zu kénnen. Danach wird mehr iiber die Implementierung
des begleitenden Programmes erzihlt, bevor im néachsten Kapitel die Ergebnisse der Arbeit
verglichen und ausgewertet werden. Zuletzt wird die Arbeit zusammengefasst und ein
Ausblick tiber weitere, mogliche Forschungsbereiche gegeben.

Kapitel 2 — Verwandte Arbeiten: Verwandte oder weiterfithrende Arbeiten.

Kapitel 3 — Grundlagen: Grundlagen, die fiir das Verstandnis benotigt werden.

Kapitel 4 — Rekonstruktionsmethoden: Vorstellung und Erlduterung der beiden Methoden.
Kapitel 5 — Implementierung: Das implementierte Programm mitsamt Optimierungen.
Kapitel 6 — Vergleiche: Vergleich und Auswertung der Ergebnisse dieser Arbeit.

Kapitel 7 — Zusammenfassung und Ausblick Fazit dieser Arbeit und kurzer Ausblick.



2 Verwandte Arbeiten

Um den Einstieg in die Thematik zu erleichtern, werden in dieser Arbeit zu Beginn weitere
verwandte Arbeiten vorgestellt, die mit der SPH-basierten Fluidsimulation in der Com-
putergrafik zu tun haben. Nachdem ein gewisser Uberblick iiber die Entwicklungen der
letzten Jahrzehnte geschaffen wurde werden einige weiterfithrende Arbeiten sowie anders
ansetzende Methoden erwihnt.

2.1 Partikelbasierte Fluidsimulation mit der SPH Methode

1977 wurde SPH in der Astrophysik vorgestellt [Lucyy] und diente zum berechnen asym-
metrischer Phanomene im Weltall. Gingold und Monaghan verwendeten SPH im selben
Jahr fiir partikelbasierte Fluidsimulation [GM77] und legten damit den Grundstein fiir unter
anderem diese Arbeit. Es war eines der ersten nicht gitterbasierten Verfahren.

Monaghan erlduterte daraufhin die einzelnen Aspekte des SPH-Verfahrens [Mong2] und
zeigte damit, dass das Verfahren nicht immer die genauesten Ergebnisse liefert, deren
Fehler aber im Toleranzbereich liegt und das Verfahren schneller ist als andere vergleichbare
Verfahren.

Spater stellten Desbrun und Gascuel die geglatteten Partikel vor [DGg6], die die bisherige
SPH-Methode erweiterten. Ein Partikel steht in dieser Methode stellvertretend fiir den ihn
umgebenden Abschnitt eines deformierbaren Objektes, wie z.B. eines Fluids. Die in dieser
Arbeit vorgestellte Methode dient zur Simulation deformierbarer Objekte.

Miiller et al. [MCGo3] verwendeten ein SPH-basierendes Verfahren fiir interaktive Anwen-
dungen und arbeiteten vor allem die Viskositdt und Oberflaichenspannung von Fluiden
heraus. Zudem wandten sie duflere Krifte, wie Schwerkraft auf die Partikel direkt an. Somit
konnten realistische Einfliisse auf das Verhalten simuliert werden. Die erste, in dieser Bache-
lorarbeit verwendete Oberflichenrekonstruktion stammt ebenfalls aus der Arbeit von Miiller
et al.

Clavet et al. stellten 2005 ein SPH-basierendes Verfahren fiir die Berechnung viskoelastischer,
also zdhfliissiger, Fluide vor [CBPos]. Das wird mit einer doppelten Dichteberechnung
ermoglicht.

Becker und Teschner beschiftigten sich mit der Kompressibilitdt von Fluiden [BToy]. Ihre
Weakly Compressible SPH verhindert unerwiinschtes Verhalten, wie Verwirbelungen durch
leichte Kompressibilitat.



2 Verwandte Arbeiten

Solenthaler und Pajarola entwickelten ein weiteres Verfahren [SPog], das die Simulation
von inkompressiblen Fluiden mit einem reinen, einfacheren Lagrange-basiertem Ansatz
ermoglicht. Ihr Ansatz verspricht geringeren Rechenaufwand pro Berechnungsschritt, als
Verfahren, die Inkompressibilitdt durch Losen der Poissongleichung erreichen. Das erlaubt
grofiere Zeitintervalle fiir die Berechungsschritte, ohne langere Rechenzeiten in Kauf zu
nehmen.

Da alle diese Algorithmen trotz Optimierungen relativ lange brauchen, um eine grofie Anzahl
an Partikeln zu simulieren, gab es auch eine Reihe von Arbeiten, die die SPH-Simulation auf
Grafikkarten ausgelagert haben. Da Grafikkarten hohes Paralellisierungspotenzial haben,
lassen sich vor allem Simulation mit sehr vielen Partikeln sehr gut auf ihnen durchfiihren,
solange der Grafikspeicher fiir die Partikel ausreicht. 2005 implementierten Kolb et al. die
spater vorgestellte SPH-Methode von Miiller et al. [MCGo3] auf einer Grafikkarte [KCos].
Diese Arbeit diente als Proof-of-Concept, also ein Beweis des Machbaren.

Harada et al. erreichten 2007 auf einer einzelnen GPU eine bis zu 28-fache Beschleunigung
der SPH gegeniiber der CPU-Berechnung auf einer Grafikkarte [HKKo7y].

2010 verdffentlichten Hérault et al. eine Arbeit, bei der sie SPH auf einer GPU {iber die
CUDA-Schnittstelle berechnen lieflen [HBD10]. Das benutzte Verfahren skaliert je nach
Rechenschritt verschieden aber dennoch deutlich gut. Die Anzahl der einzelnen Prozessoren
der Grafikeinheit beschleunigt die Rechenzeit proportional.

Rustico et al. beschiftigten sich mit der Arbeit mehrerer GPU-Einheiten im Verbund, unter
anderem am Beispiel der SPH-Berechnung [RBG ™ 12]. Sie erreichten mit vier Grafikkarten
weitere, erhebliche Beschleunigung gegeniiber einer.

2.2 Verfahren mit impliziter Oberflache

Blinn stellte 1982 mit Blobby Surface ein Verfahren vor [Bli82], das den in dieser Arbeit
gezeigten Verfahren dhnelt, jedoch nicht auf der SPH-Methode basiert. Er definierte impli-
ziten Skalarfelder durch Partikel und ihre Radien. Diese konnten zu Isoflichen berechnet
werden. Lagen so mehrere Objekte nebeneinander, verschmolzen sie. Die Blobby Surfaces
funktionierten sehr gut fiir Darstellungen des Atomteilchenmodells, weil einzelne Punkte
anfangen zu verschmelzen, wenn sie sich einander ndhern, ganz so, wie man es sich bei
Elektronenwolken von Atomen vorstellt. Jedoch hatte das Verfahren die Nachteile, immer
nur runde Formen zu erzeugen und zu Beulen anzuwachsen, sobald sich mehrere Objekte
iiberschnitten.

Zhu und Bridson kniipfen mit ihrer Arbeit [ZBos], bei der Sand wie ein Fluid simuliert
wird, am Verfahren von Blinn an und optimieren es, indem sie gewichtete Mittelwerte aus
Positionen und Radien anwendeten bevor sie mithilfe eines Gitters die Isofldche berechne-
ten. Dadurch wirkt das Ergebnis nicht mehr so beulenhaft sondern schmiegt sich an die
bestehenden Partikel an und wirkt realistischer.
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2.2 Verfahren mit impliziter Oberflache

2007 stellen Adams et al. eine weitere Verbesserung vor [APKGoy]. Dieses Verfahren re-
duziert, mit Hinblick auf die Rechenzeit, die Partikeldichte in Bereichen in denen der
Detailgrad nicht von Noten ist, wie z.B. tief innerhalb des Fluids. Dazu werden Partikel-zu-
Oberfldche-Distanzen berechnet und in jedem Frame neuberechnet. Die finale Rekonstruktion
funktioniert nach der Methode von Zhu und Bridson, generiert aber glatte Oberfldchen fiir

feste und adaptive Partikelradien.
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3 Grundlagen

Um die spéter vorgestellten Methoden besser verstehen zu konnen, werden in diesem Kapitel
einige verwendete Grundlagen erldutert.

Zuerst wird die Funktion der SPH-Methode nédher erkldrt. SPH bietet die Basis fiir diese
Arbeit, da mit SPH das Fluid simuliert wird, aus dessen Partikelattributen die in dieser
Arbeit vorgestellten Methoden die Oberfldache rekonstruieren.

Danach folgt die Hauptkomponentenanalyse und ihre modifizierte Variante, die gewichtete
Hauptkomponentenanalyse. Dieses Verfahren ermoglicht es, in den Berechnungen Partikel,
die weiter entfernt sind und in der Berechnung des Skalarfeldes weniger Einfluss haben
sollten als sich nidher befindende Partikel, geringer zu gewichten.

Die letzte, ndher erkldrte Grundlage ist die Singuldrwertzerlegung, die fiir die zweite
vorgestellte Methode nétig ist. Sie ermdglicht den anisotropen Glattungskern, ist also das
Werkzeug, mithilfe dessen die Partikel sich anhand ihrer Nachbarpartikel ausrichten und so
eine glattere Oberfldche erzeugen.

3.1 Smoothed Particle Hydrodynamics

Abbildung 3.1: Alle Bilder aus dem Simulationsprogramm. Sie veranschaulichen die SPH-
Simulation.

Smoothed Particle Hydrodynamics (dt. geglittete Teilchen-Hydrodynamik) ist, wie eingangs
erwdhnt, ein empirisches Verfahren, das fiir die Berechnung nicht achsensymmetrischer
Phianomene der Astrophysik entwickelt wurde [Lucy7] [GM77].

SPH ist ein auf einer Lagrange-Interpolation aufbauendes, partikelbasierendes Verfahren, also
ein Verfahren, das im Gegensatz zu gitterbasierten Verfahren, bewegliche Teilchen besitzt.
Positionen und wirkende Kréfte dieser Teilchen werden durch Differentialgleichungen

13



3 Grundlagen

bestimmt. Diese basieren auf Gleichungen, die aus physikalischen Gesetzen resultieren,
wie etwa der Berechnung fiir Impuls oder Energie. Somit finden sich Krifte zwischen
einzelnen Partikeln in der Gesamtleichung wieder und dieser Wirkungsgrad kann intuitiv
in der Formel angepasst werden. Wegen dieser intuitiven Herangehensweise ist SPH in
vielen Bereichen der Physik vertreten. Obwohl es prazisere Verfahren gibt, rechtfertigen die
Unterschiede der Ergebnisse den Mehraufwand anderer Verfahren oft nicht.

Mit der Dirac-Funktion é(x), die fiir lim,_,o immer hoher wird, deren Integral aber immer 1
ist, beschreibt eine Integralinterpolation ein kontinuiertliches Skalarfeld:

61) F(X) = [ FX)30x=x)

Die Dirac-Funktion wird durch einen Glattungskern W ersetzt:

(3-2) f(x /f W(x —x, h)dx’

Der Glattungskern verfiigt iiber folgende Eigenschaften:

(3.3) /W(x —x,h)dx' =1
und

(3.4) im W (x —x',h) = §(x — '),
h—0

wobei sich die Kerninterpolation auf einzelne Integrale bezieht [Nat61].

Hat man unendlich viele Partikel von unendlich kleiner GrofSe, also lim;,_,, so gleicht die
Summe der Kerne dem Integral. In der numerischen Integralinterpolation hat man nur
endlich viele Partikel, ndhert aber das Ergebnis mithilfe einer Summe an

(3-5) f(x Zm]f]W —xj,h),

wobei der Summenindex j sich auf Werte des Partikels j bezieht und die Summe somit alle
Partikel durchlduft. Partikel j hat also Masse m;, Position x;, Dichte p; und Geschwindigkeit
v;. Der Wert einer Grofie A an der Stelle x; wird als A; ausgedriickt.

In der Urspriinglichen Berechnung [GM77] wurde ein Gaufskern verwendet. Eindimensional:

1 2 2
e v )
(3.6) W(x,h) h\/ﬁe ,

Dieser Gaufikern imitiert eine Deltafunktion mit limj,_,o. In den Rechnungen dieser Arbeit
werden andere, an die Aufgaben angepasste Kerne verwendet.

14



3.2 Gewichtete Hauptkomponentenanalyse (WPCA)

==}
o
T

o
[=]
T

-~
(£,
T

weighted

y-coordinate

-] -] ~

=] o =]
T T

44
(4,
T

[
[=]
T

PCA

50 55 60 65 70 75 80 a5 a0
x-coordinate

Abbildung 3.2: Gewichtete Hauptkomponentenanalyse. Man erkennt deutlich, dass die PCA
zwel Cluster nicht als solche erkennt, wiarhend die WPCA diese Cluster
durch die distanzabhingige Gewichtung trennt [KCo3].

3.2 Gewichtete Hauptkomponentenanalyse (WPCA)

Beim zweiten, spéter vorgestellten Verfahren will man erreichen, dass die Partikel sich
umliegenden Partikeln angleichen, damit das Ergebnis der Oberflaichenrekonstruktion glatter
wirkt. Das soll ein anisotroper Glattungskern ermoglichen. Um ihn zu berechnen, werden Ab-
standsvektoren zwischen einem Partikel i und allen anderen Partikeln j,j = 1, ..., n gewichtet
in einer Matrix A verrechnet. Fiir diesen Schritt wird die gewichtete Hauptkomponenten-
analyse (engl: weighted principal component analysis, WPCA) benutzt. Dabei handelt es
sich um ein Verfahren, das grofie Datensdtze veranschaulichend zusammenfassen kann. Die
gewichtete Version der Hauptkomponentenanalyse verhindert, dass Ausreifier das Ergebnis
verfélschen. Dabei sind in dieser Arbeit die Datensitze die Positionen aller Partikel und ihre
Abstandsvektoren untereinander.

Sei x mit den Elementen x;,j = 1, ..., n ein stochastischer Vektor mit der Wahrscheinlichkeits-
verteilung P(x) und sei {x*|a =1, ..., m} ein Ausschnitt aus P(x).

Sei X nun eine Datenmatrix mit den Elementen X;, = x;‘. Die (ungewichtete) Hauptkompo-
nentenanalyse (PCA) basiert auf den ersten beiden empirischen Momenten der Datenmatrix:
Der Vektor des Mittels

m

1
(3.7) (x) = p” x*
a=1

15



3 Grundlagen

und der empirischen Kovarianzmatrix

m

(6:8) €= 3 (¢ — () — ()7,

a=1

die sich auch durch entfernen des Mittels der Daten in Matrizenschreibweise ausdriicken
lasst

1
. = —xxT
(39) C XX,

Bei der Hauptkomponentanalyse gilt es die Eigenvektoren mit den grofiten Eigenvektoren
der Kovarianzmatrix zu finden und die Daten in diese Richtung zu projezieren.

Wie Koren und Carmel zeigten [KCo3] berechnet PCA die p-dimensionale Projektion, die
die Summe aller quadrierten paarweisen Distanzen der Elemente maximiert:

(3.10) Z dlStp

i<j

Diese PCA-Variante fiihrt dazu, dass wir ungewichtete quadrierte Distanzen aufsummieren.
In manchen Anwendungen ist es jedoch erwiinscht, dass die Distanzen gewichtet werden. In
der partikelbasierten Simulation heifst das, dass einzelne, abgelegene Partikel weniger auf die
gesamte Menge der Partikel wirken als Partikel, die sich unmittelbar nebeneinander, also in
grofien Ansammlungen, befinden (zur Veranschaulichung, siehe Abb. 3.2). Darum schlagen
Koren und Carmel die gewichtete Hauptkomponentenanalyse vor, bei der die maximierte
Summe gewichtete Distanzen beinhaltet:

(3.11) Zdl} dlstp

i<j
wobei dl-]- kleiner wird, je grofier die Distanz der Elemente ist, also:

1

(3.12) dl] = E
1

Diese Gewichtung fiihrt dazu, dass Ausreifier oder Messfehler weniger wirken und das
Ergebnis nicht wesentlich verdndern oder gar verfalschen.

Nach Anwendung der WPCA erhilt man die Kovarianzmatrix C. Sie beinhaltet fiir jeden
Partikel i Informationen, in welchen Richtungen die grofiten Vorkommen naheliegender
Partkiel sind und bildet die Basis des anisotropen Glattungskerns.

3.3 Singularwertzerlegung (SVD)

Auf die aus der WPCA resultierende Kovarianzmatrix wird im néchsten Schritt die Sin-
guldrwertzerlegung angewendet. Bei der SVD wird eine Matrix C in ein Produkt aus drei
Matrizen zerlegt. Eine dieser Matrizen ist eine Diagonalmatrix, auf deren Diagonalen sich

16



3.3 Singularwertzerlegung (SVD)

die Eigenwerte von C befinden. Diese Eigenwerte lassen sich anpassen, um das Ergebnis
zu beeinflussen, bevor man das Matrizenprodukt berechnet und so eine nach Bediirfnissen
modifizierte Version, also C erhilt.

Um die Singuldrwertzerlegung (engl: singular value decomposition) [MHWo4] besser zu
verstehen, sollte man einige Definitionen kennen:

Singularwerte einer Matrix C sind die Quadratwurzeln der Eigenwerte von CTC.

e Die Kondition einer Matrix ist der Faktor zwischen dem grofiten und kleinsten Singu-
larwert.

e Eine schlecht konditionierte Matrix ist eine Matrix mit zu grofler Kondition. Ab wann
die Kondition zu schlechter Konditionierung fiihrt, hangt von der Genauigkeit des
verwendeten Rechenverfahrens bzw. Rechners ab.

e Eine Matrix ist singuldr, wenn ihre Kondition unendlich ist. Die Determinante einer
solchen Matrix ist 0.

e Der Rang einer Matrix ist die Dimension der linearen Hiille. Er hdangt von der An-
zahl nicht-singuldrer Werte der Matrix ab, also der Anzahl der linear unabhangiger
Zeilenvektoren der Matrix.

Als Singuldrwertzerlegung bezeichnet man die Aufteilung einer realen n x m Matrix C mit
n > m in ein Produkt aus 3 Matrizen:

(3.13) C=ULV

U ist eine nn x m Matrix mit orthogonalen Spaltenvektoren. Fiir sie gilt also, dass UTU =11,
wobei I die Identititsmatrix ist. V ist eine orthonormale m x m Matrix, also gilt VIV = 1. £
ist eine m x m Diagonalmatrix mit Werten, die positiv oder gleich 0 sind und Singularwerte
heifsen.

C lasst sich in folgende positiv definite symmetrische Matrizen zerlegen:

(3.14) cC! = vuzvlvzu! = uz?u?

(3.15) CTC = vz?v
Wenn C eine m x m Matrix ist, wird schnell deutlich, dass
(3.16) CCT = CTC = RE?RT

Mit diesen Gleichungen lassen sich Eigenvektoren und Eigenwerte von C’C als Spaltenvek-
toren von R bzw. Werte auf der Hauptdiagonalen von X identifizieren.

17






4 Rekonstruktionsmethoden

Die im vorherigen Kapitel erkldrten Grundlagen werden hier angewandt. Es wird ndher
beleuchtet, welche Methoden zur Rekonstruktion von Oberflachen aus partikelbasierten
Fluidsimulation in dieser Bachelorarbeit benutzt werden, was sie bewirken sollen und wie sie
funktionieren. Dabei wird davon ausgegangen, dass eine SPH-Simulation bereits zugrunde
liegt und die Partikel mit ihren physikalischen Werten, wie Masse und Dichte, zur Verfiigung
stehen. Nach der Simulation setzen die Oberflichenrekonstruktionen ein.

4.1 Rekonstruktion der Fluidoberflache mit dem Massendichtefeld

Abbildung 4.1: Szene 2, die Methode von Miiller et al. (links) mit dem Wasser-Material
und (rechts) mit dem matten, grauen Material. Man erkennt die ausgebeulte
Oberflache im Mittleren Bereich.

4.1.1 Grundlegende Idee

Die Methode von Miiller et al. [MCGo3] basiert darauf, mit einer Funktion aus den Partikeln,
die man nach der SPH-Methode erhalten hat, ein Skalarfeld zu erzeugen. Dieses wird anhand
der Massendichte der Partikel errechnet. Danach definiert man eine Schranke, ab welcher
Dichte man nicht mehr innerhalb des Fluids ist. Eine Isofldche entlang dieser Schranke
entspricht somit der Oberfldche des Fluids und kann mit Point Splatting, Marching Cubes
oder anderen Verfahren bestimmt werden.
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4 Rekonstruktionsmethoden

4.1.2 Funktion und Berechnung der Methode
Fiir die Rekonstruktion braucht man eine Funktion, die fiir einen beliebigen Punkt x tiber

alle Partikel j iteriert wird. Diese berechnet das sogenannte geglittete Dichtefeld, das die
Massendichte im gesuchten Punkt angibt.

(41) cs(x) = Ym—W(x -1, ),
i P

wobei W(r, h) der Glattungskern ist, der bestimmt, wie die Funktion fiir verschiedene
Distanzwerte reagiert. In der Implementierung wurde der Poky6-Kern [MCGo3] verwendet:

. - : h = -
(4.2) Poly6-Kern Wpolyé(rl ) 6477H0 0 sonst,

315 { (h* —1*)® wenn 0<r<h

Die Funktion des Glattungskerns wurde schon in den Grundlagen erldutert. Er ermoglicht
es, den Wirkungsgrad der einzelnen Partikel einzugrenzen, indem nihere Partikel hoher,
weiter entfernte Partikel weniger gewichtet werden. Das hat den Vorteil, dass unerwiinschte
Effekte tiber grofie Distanzen hin nicht mehr auftreten. Aufierdem kann man gerade in der
Computergrafik viel Performance einsparen, da der Kern nur iiber eine bestimmte Distanz
hinweg wirkt, also nur eine begrenzte Anzahl an Nachbarpartikeln betrachtet werden
muss.

Nachdem die Formel fiir die Berechnung des Glattungskerns in die Berechnung des Dich-
tefeldes eingesetzt wird, summiert man fiir jeden gewdhlten Punkt x die durch den Kern
gewichtete Massendichte von allen relevanten Partikeln. Die so entstehenden Werte entspre-
chen einzelnen Punkten des Skalarfeldes und mit ihnen lédsst sich die Isofliche berechnen,
die der gesuchten Fluidoberfldche entspricht.

4.2 Oberflachenrekonstruktion mit einem anisotropen Kern

4.2.1 Grundlegende Idee

Die Methode von Miiller et al. fithrt unweigerlich zu einer welligen, gar ausgebeulten
Oberflache. Der isotrope Gléattungskern fiihrt zur Beulenbildung an der Oberfldche, da
jedes Partikel einen festen Radius hat. Aufierdem sind Stellen an denen die Partikeldichte
diinner wird oft von mehr Beulen und Lochern gesaumt, eben weil die Partikel nach der
Rekonstruktion von Miiller et al. ihren bestimmten Radius einnehmen. Diese Schwachen
wollten Yu und Turk mit ihrer Methode [YT10] ausgleichen.

Zum einen positionieren sie jedes Partikel fiir die Rekonstruktion neu. Die Partikel richten
sich nach ihren Nachbarpartikeln. Somit ordnen sich Partikel automatisch gleichméfiiger
an.
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4.2 Oberflachenrekonstruktion mit einem anisotropen Kern

Abbildung 4.2: Szene 2, die Methode von Yu und Turk. (links) mit dem Wasser-Material
und (rechts) mit dem matten, grauen Material, um die Formen besser zu
erkennen.

Zum anderen entwickelten sie einen anisotropen Glattungskern (siehe Abb. 4.3), der einzelne
Partikel in Richtung anderer Partikel streckt. In Randbereichen des Fluids, wo es keine
Nachbarpartikel gibt, werden die einzelnen Partikel in Tangentialrichtung, also an der Kante
entlang, gestreckt und in Normalenrichtung gestaucht. Das Ergebnis fiihrt dazu, dass die
Isoflachen einzelner Partikel im Skalarfeld Ellipsoide erzeugen, statt Kugeln, wie beim ersten
vorgestellten Verfahren.

4.2.2 Funktion und Berechnung der Methode

Der erste Schritt ist die Neuberechnung der Positionen der Partikel. Dabei ist zu beachten,
dass die neuen Positionen nur der Oberflachenrekonstruktion dienen und nicht die Posi-
tionen der Partikel fiir die SPH-Methode verdandern, da sonst die Simulation beeinflusst
wird.

Die neuen Positionen der Partikel x; werden wie folgt berechnet:
4-3) % = (1= A)+ A Y wijx;/ Y wi,
j j

wobei A eine Konstante mit 0 < A < 1 ist und in dieser Arbeit als A = 0.9 festgesetzt
wird. w ist eine passende Gewichtungsfunktion. Ich verwende, die weiter unten stehende
Gewichtungsfunktion (siehe Gleichung 4.6) auch an dieser Stelle. Dieser Schritt ist eine
Art dreidimensionale Laplace’sche Glattung und fithrt unweigerlich zu leicht reduziertem
Volumen, da alle Partikel zueinander und somit zur Mitte des Fluids angezogen werden.

Als nédchstes berechnet man die Kovarianzmatrizen, also die Matrix mit den anisotropischen
Informationen iiber naheliegende Partikel. Dafiir verwendet man fiir jeden Partikel i die
gewichtete Hauptkomponentenanalyse (WPCA), (siehe Kapitel 3.2). Die Kovariantmatrix
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4 Rekonstruktionsmethoden

C; wird benétigt, um zu ermitteln, in welchen Richtungen von Partikel i die meisten Nach-
barpartikel vorkommen. Der aus der Isofldche des Partikels entstandene Ellipsoid soll sich
letztendlich in diese Richtungen auswolben.

C; wird wie folgt definiert:
(4-4) Ci =Y wij(x; —x)(; —x{")/ Y _wyj,
j j

wobei x das gewichtete Mittel ist, das auch in Gleichung 5.5 verwendet wird. Es ist wie folgt
definiert:

(4-5) X' = Y wix;/ Y wy.
j j

Die hier verwendete Funktion w;; ist eine isotropische Gewichtungsfunktion tiber alle Partikel
j, beziiglich des Partikels i:

1—(Hxi—XjH/7’i)3 wenn Hxi—xjH < R;,

(4.6) wij = { 0

sonst.

Durch den Wirkungsradius r;, der hier auf 2h;, also den doppelten Radius des Partikels
i gesetzt wurde, wird gewihrleistet, dass einerseits nur Nachbarpartikel in unmittelbarer
Nihe gewichtet werden, andererseits genug Partikel zusammenkommen, um eine sinnvolle
Ausbeute anisotropischer Informationen zu gewéhrleisten.

Damit man die Kovarianzmatrix im Glattungskern verwenden kann, wird die Singularwert-
zerlegung (siehe Kapitel 3.3) angewendet. Dabei werden zwei Rotationsmatrizen von der
eigentlichen Diagonalmatrix, die die Dehnung bzw. Stauchung verursacht getrennt

(47) C=RZRT

(48) Y= diag(crl, ceey O'd),

wobei R eine oben erwdhnte Rotationsmatrix mit Hauptachsen als Spaltenvektoren ist und X
eine Diagonalmatrix mit Eigenwerten oy > ... > 0, auf der Hauptdiagonalen ist. Um dieses
Grofsenverhiltnis der einzelnen Eigenwerte zu gewdhrleisten, wird gepriift, ob o7 > k0,
wobei k, > 1 eine positive Konstante ist. Wie in der Arbeit von Yu und Turk ist hier k, = 4.
Ist die obige Bedingung erfiillt, so ist gewahrleistet, dass die grofite Varianz in einer Haupt-
achse wesentlich kleiner ausféllt als die kleinste Varianz einer anderen Hauptachse.

Wenn die Partikeldichte gering ausfallt, verliert das Ergebnis die sphédrische Form. Deshalb
wird die Anzahl der Nachbarpartikel mitgezéhlt. Sollte ein Partikel zu wenig Nachbarpartikel
haben, in diesem Fall weniger als N. = 25, wird anstatt der Diagonalmatrix aus Eigenwerten
T =kl gesetzt, wobei k, = 0.5 und I die Identitdtsmatrix ist, also eine Diagonalmatrix
mit 0.5 auf der Hauptdiagonalen gefiillt. AuSerdem wird die Matrix C im Falle einer gut
gefiillten Nachbarschaft mit k; = 1400 multipliziert, einem Faktor, der ||ksC ~ 1|| erfiillt.
Damit wird der Raum innerhalb des Fluids besser ausgefiillt.
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4.2 Oberflachenrekonstruktion mit einem anisotropen Kern

Nach all diesen Modifikationen erhélt man folgende Matrix

(4.9) C = RERT

- ksdiag(cy,02,...,04) wenn N > N,
. r =
(4.10) { k1 sonst.

wobei 0y = max(o, 01/k,), und N die Anzahl der Nachbarpartikel ist.

Abbildung 4.3: Vergleich zwischen isotropem und anisotropem Kern. Man sieht, dass die
einzelnen Partikelreprasentationen sich rechts mehr an die Form des Wiirfels
anschmiegen [YT1o0].

Um im Glattungskern aus der Differenz der Raumkoordinaten eines Gitterpunktes und eines
momentan betrachteten Partikels Riickschliisse auf den Abstand zur Hiille des Ellipsoiden
ziehen zu konnen, muss C; invertiert und mit hl, skaliert werden. Das Ergebnis wird als G;
bezeichnet:

(4.11) G; = %RfﬁlRT
1

Die symmetrische Matrix G; kann nun mit dem Abstandsvektor zwischen einem Gitterpunkt
der Rekonstruktionsmethode und dem momentan betrachteten Partikel multipliziert werden.
Der Abstandsvektor wird abhédngig von seiner Richtung im selben Mafie verzerrt, wie der
Ellipsoid. Somit kann die Lange des Ergebnisvektors nun mit einer gewiinschten Wirkungs-
distanz verglichen oder verrechnet werden, um zu erfahren, ob dieses Partikel nahe genug
ist, um auf das Dichtefeld des zu Anfang definierten Punktes zu wirken. Fiir diesen Schritt
gibt es einen Glattungskern, der sich vom Kern der ersten Methode unterscheidet. Yu und
Turk stiitzen sich auf einige Paper von Becker und Teschner [BTo7], der Kern wird aber auch
in [Becog] ausfiihrlich erklart:

L ((2-9)°—4(1-¢)% wenmn 0<g<1

47h3
(412) WX, h) =W(9) = § 2m(2—9)° wenn 1<g<2
wenn g > 2,

(e]
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4 Rekonstruktionsmethoden

wobei x” eine Position ist, /1 die Kernldnge und q = "% Im Verfahren von Yu und Turk ist

|Xx—%]
GX "

alsox’ =x—%x;, h = ||GX'|| und g =

Zusammengefasst ergibt sich das neue geglittete Feld mit anisotropem Kern

(4-13) Prew(x) = ZZJW(X —X;, Gj(x —X;) H)
]

Mit den Gleichungen 4.1 und 4.13 erhdlt man also jeweils eine Funktion, die fiir einen
beliebigen Punkt x im Skalarfeld einen Massendichte-wert berechnet. Um eine moglichst
genaue Isofliche zu erhalten, braucht man nun ein Verfahren, das genug solcher Punkte x;
liefert.
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5 Implementierung

Nachdem alle Partikelpositionen mit dem SPH-Verfahren berechnet wurden und mit einer
Rekonstruktionsmethode eine Funktion zur Berechnung des Skalarfeldes aufgestellt wurde,
muss die Oberflache berechnet werden. In der Arbeit von Miiller et al. werden dafiir zwei
Methoden vorgeschlagen: Point Splatting [MSHCgg][Wesg1] und Marching Cubes [LC87]. Es
widren noch weitere Moglichkeiten denkbar, eine Isofldche aus dem Skalarfeld zu berechnen.
In dieser Arbeit wird jedoch nur auf den in der Arbeit implementierten Marching Cubes-
Algorithmus nédher eingegangen.

5.1 Marching Cubes

| |
5 T
| |
| |
E |
5 6 7 s 9 L [ N

symmetric case:

reverse case:

i 4 N E
571 (14 S

Abbildung 5.1: Die 256 Fille lassen sich in (links) 15 Untergruppen aufteilen. Die anderen
Falle ergeben sich durch (rechts) Drehungen und Spiegelungen. [LC87].

Es wird ein dreidimensionales Gitter iiber den gesamten zu priifenden Raum gespannt.
Die einzelnen Knoten des Gitters werden in die Berechnung des Skalarfeldes eingesetzt.

Das gewihrleistet eine regelmifliige Abtastung der Isofliche. Somit erhdlt man fiir jeden
Gitterpunkt vy, die Distanzen zu allen Partikeln x;:

1
(5.1) cs(Vim) = ijEW(szm —x;, h).
P

Danach wird eine Schranke definiert, in meinem Fall + = 0.4. Uberschreitet der Dichtewert in
einem Knoten die Schranke, ist der Knoten innerhalb des Fluides. Ist der Dichtewert darunter,
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5 Implementierung

liegt der Knoten aufSerhalb. Zwischen Knotenpunkte, die innerhalb des Fluides liegen und
ihren direkten Nachbarn, die aufierhalb liegen muss also die Oberfldche verlaufen.

Nun werden je acht Knotenpunkte, die sozusagen einen Wiirfel umfassen, betrachtet, al-
so fiir jeden Knoten vy, werden zusétzlich noch v(; 1)1, Vi(m+1)nr Q141)(mt1)nr Vlm(n+1)s
V(14 1)m(n+1)7 Vl(m+1)(n+1) 0D 014 1) (m11)(ns1) Detrachtet.

Es gibt 256 verschiedene Konstellationen (siehe Abb. 5.1), welche dieser Knoten inner-
halb und welche aufierhalb des Fluids liegen. Jeder Konstellation wurde ein bestimmtes
Oberflachenfragment zugeordnet. Somit ist es moglich, wenn man alle Knoten und ihre
Nachbarn innerhalb des Wiirfels priift eine abgeschlossene Oberflache zu berechnen und
darzustellen.

5.2 Optimierungen

Es gibt einige relevante Beschleunigungen, die die Rechenzeit deutlich verringern konnen.

Zu Beginn der Marching Cubes-Berechnung liefSe sich Rechenzeit einsparen. Der Algorithmus
berechnet in einem bestimmten dreidimensionalen Gitter Distanzen zu allen Partikeln. Wenn
man von vornherein die Maxima und Minima der Partikelpositionen errechnet, ldsst sich ein
kleineres dreidimensionales Gitter mit weniger Zellen anlegen, das weniger Berechnungen
benotigt.

AufSerdem kann man, bevor man mit einer Rekonstruktionsmethode begonnen hat, ein
mal iber alle Partikel iterieren und sie raumlich in dreidimensionale Gitterzellen einteilen.
Fiir jeden Marching Cubes-Knoten miisste man also nicht mehr alle Partikel anschauen,
sondern nur die Partikel in den Zellen rund um diesen Knoten priifen. Die Komplexitit der
Berechnung wird dadurch gesenkt.
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6 Vergleiche

Dieses Kapitel beschiftigt sich mit den Ergebnissen der Arbeit. Bilder der Ergebnisse und
Algorithmen beider Verfahren werden verglichen und durch Benchmarks erganzt.

Abbildung 6.1: Szene 3, (links) ein Screenshot aus der Simulation, (mittig) die Methode von
Miiller et al. und (rechts) die Methode von Yu und Turk. Mit Wasser-Material
gerendert.

6.1 Qualitat

Vergleicht man die Ergebnisse aus Abb. 6.1 sieht man, dass die neuere Methode generell
eine glattere Oberfldche erzeugt. Auflerdem sieht man sehr gut, dass die Neupositionierung
und die Streckung der anisotropen Kerne in Richtung der Masse besonders in Bereichen mit
niedriger Partikeldichte gut funktioniert. Wie in dieser Darstellung vorne zu erkennen ist,
wird eine klarere Kante erzeugt, die aussieht, als wire sie von der Oberflichenspannung des
Fluids erzeugt.

In Abb. 6.2 ist ein schwer zu rekonstruierendes Szenario mit weitrdumig sehr niedriger
Partikeldichte zu sehen. Die Methode von Yu und Turk verbindet viele Partikel zu gemeinsa-
men Gebilden. Das sieht man ganz vorne, wo einzelne voneinander getrennte Partikel zu
schlauchartigen Fragmenten verbunden werden, sowie an mehreren Stellen in der Mitte der
Szene.

Dabei ist zu beachten, dass in meinen Ergebnissen die Formen nicht mehr gestimmt haben,
wenn beide Verfahren mit derselben Schranke fiir die Isofldche berechnet wurden. Die
erst Methode blieb bei der Schranke t = 0,4, wiahrend die zweite Methode eine niedrige-
re, t = 0,1 fiir ansehnliche Ergebnisse benétigte. Dennoch sind die Ergebnisse durchaus
Aussagekréftig.
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6 Vergleiche

Abbildung 6.2: Szene 4, (links) ein Screenshot aus dem Simulationsprogramm, (mittig) die
Methode von Miiller et al. und (rechts) die Methode von Yu und Turk, um
die Flachen besser zu erkennen, in mattem Grau gerendert.

6.2 Rechenaufwand

Ohne Optimierungen muss beim ersten Verfahren jeder Marching Cubes-Gitterpunkt Di-
stanzen zu allen Partikeln berechnen. Das braucht viel Rechenzeit, die sich einsparen lief3e.
Mit der im vorherigen Kapitel vorgeschlagenen Optimierung, bei der die Partikel raumlich
eingeordnet werden, muss jede Gitterzelle nur noch eine sehr kleine Zahl an naheliegenden
Partikeln priifen, die als konstant angesehen werden kann. Das reduziert die Programmlauf-
zeit wesentlich.

Das zweite Verfahren kann man in mehrere aufwéndige Arbeitsschritte aufteilen: Die Neu-
positionierung der Partikel, die gewichtete Hauptkomponentenanalyse und die Isoflachen-
berechnung. Die Neupositionierung berechnet die Distanzen aller Partikel zueinander, die
gewichtete Hauptkomponentenanalyse gewichtet im nicht optimierten Fall ebenfalls alle
Distanzen. Die Isofldachenberechnung berechnet, wie beim ersten Verfahren, fiir jeden Gitter-
punkt Distanzen zu allen Pertikeln.

Fiir alle wichtigen Rechenschritte wére es eine Hilfreiche Optimierung, die Partikelnach-
barschaften zu kennen. Eine Aufteilung in dreidimensionale Gitterzellen ist also auch hier
sehr niitzlich. Die Gewichtungsfunktion (siehe Gleichung 4.6) berticksichtigt ohnehin nur
die Partikel, deren Distanz kleiner ist als der doppelte Partikelradius. Da diese Gewich-
tungsfunktion bei der Neupositionierung und bei der Hauptkomponentenanalyse verwendet
wird und die Isoflichenberechnung eine noch kleinere Distanz vorsieht, lauft man nicht
Gefahr, zu wenige Partikel zu berticksichtigen, wenn man den Radius fiir die Bestimmung
Nachbarpartikel passend gewéhlt hat.

Das Marching Cubes Verfahren ist fiir die Brechnung der Laufzeit vernachlédssigbar, da je
nach Implementierung nur eine bestimmte konstante Anzahl an Rechenschritten notwendig
ist, um den richtigen der 256 Fille zu bestimmen und die Vertices und Polygone zu erzeugen
oder zu speichern.
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6.3 Benchmarks

6.3 Benchmarks

Es wurde ein Phenom II X4 955 mit einem Takt von 3,78GHz fiir die Rechnungen verwendet.
Die Methode von Miiller et al. wurde unoptimiert gerechnet, da Caching der Nachbarpartikel
in meinem Programm zu Fehlern fiihrte. Die Methode von Yu und Turk priift zu Beginn
fir jeden Partikel, welche der anderen Partikel in seiner potenziellen Reichweite sind. Nur
diese werden von da an fiir die Neupositionierung sowie Gewichtung gewertet. Somit ist
der neuere Algorithmus zwar auch nicht optimal aber mehr optimiert, als der &ltere. Die

Abbildung 6.3: Szene 1, (links) ein Screenshot aus dem Simulationsprogramm und (rechts)
die Methode von Miiller et al. Gut zu sehen, der kompakte Quader, zu
Beginn der Simulation.

gerenderte Szene enthilt 3757 Partikel. Gemessen wurde nur die Zeit, die von Anbeginn
der Rekonstruktion, bis zum Ende des Marchung Cubes-Algorithmus benétigt wurde.
Weitere Ladezeiten, die danach beim Ubertragen der Vertexpositionen und zeichnen der
Polygone entstehen, wurden nicht mehr gemessen, da sie nicht relevant fiir die eigentliche
Nummer der Szene (Frame) Methode 1  Methode 2

1 (1) 50 131
2 (145) 195 182
Oberflachenrekonstruktion sind. 3 (294) 195 275
4 (527) 314 360
5 (665) 585 605
6 (839) 678 654

Alle Messergebnisse in Sekunden.

Die erste Szene ist kompakt (siehe Abb. 6.3), da die Partikel zu einem Quader geformt sind
und das Gitter des Marching Cubes-Algorithmus nicht viele unnétige Zellen auf naheliegen-
de Partikel priifen muss. Dadurch ist die Zeit zu Beginn wesentlich kiirzer als bei spdteren
Szenen. Die Gesamthohe der Partikel nimmt nicht so schnell ab, wie deren Gesamtflache
durch von oben nachriickende Partikel zunimmt. Es sind also bei spdteren Frames viel mehr
Gitterzellen zu berechnen, die die Laufzeit in die Hohe treiben.
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6 Vergleiche

Man sieht auch, dass beim letzten Frame die neue Methode durch das Cachen der Nachbar-
partikel schneller ist als die &ltere. Das ist ein gutes Beispiel fiir den Sinn und Erfolg von
Optimierungen.
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7 Zusammenfassung und Ausblick

7.1 Fazit

Zusammenfassend ldsst sich sagen, dass die Methode von Miiller et al. sich schneller
berechnen lédsst. Das liefs sich auch durch die Messungen meistens bestédtigen, obwohl die
Methode von Yu und Turk ein wenig beschleunigt wurde. Betrachtet man die Algorithmen
und die einzelnen Rechenschritte, so ist klar, dass die erste Methode das grofsere Potenzial
hat, schneller zu sein, da komplexe Rechnungen mit Matrizen ausbleiben.

Optisch liefert die Methode von Miiller et al. ein ausgebeultes Fluid, das seine Schwéchen
deutlich an den Randern und an Stellen mit diinner Partikeldichte zeigt. Die Methode von
Yu und Turk gldttet das Ergebnis und erschafft damit, wie im in Kapitel 6 beschrieben,
Strukturen, die realistischer wirken.

7.2 Ausblick

Wie eingangs erwahnt (siehe Kapitel 2), ist es moglich diese Berechnungen an modernere
Rechnerarchitekturen anzupassen. Man kann Berechnungen der SPH und Marching Cubes
multithreaded auf alle Prozessorkerne und ihre Threads aufteilen oder gar auf der GPU
rechnen, da GPUs noch mehr Parallelisierung bieten. Die Verkiirzung der Rechenzeit wiirde
immens ausfallen.

Auch denkbar wiére es, eine grofie Simulation auf mehreren Rechnern zu parallelisieren. Je
nach GrofSe des Projektes kann das den Rechenvorgang erneut beschelunigen.

Interessant fiir die Simulation von Fluiden sind noch viele weitere Aspekte, wie Ober-
flachenspannung oder Kollision mit Objekten, die wiederum verschiedene Eigenschaften
haben und sich vielleicht von dem Fluid verformen oder bewegen lassen. Andere physika-
lische Eigenschaften, wie die temperaturabhidngige Ausdehnung oder sogar verschiedene
Aggregatzustiande waren ebenfalls interessant.
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