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Kurzfassung

Man kommt in der Computergrafik immer wieder mit komplexen Simulationen in Be-
rührung. Ohne eine realistische Simulation von Wasser oder anderen Fluiden wären viele
3D-Cartoons oder Spezialeffekte in großen Filmproduktionen kaum möglich. Viele der
bis heute verwendeten Methoden basieren auf dem Eulerschen gitterbasierenden Ansatz
oder dem partikelbasierten Ansatz von Lagrange. Die Smoothed Particle Hydrodynamics
(SPH)-Methode ist ein Lagrange-Ansatz, der aus der Astronomie stammt und heutzutage oft
Anwendung in Fluidsimulationen findet. Auf der SPH-Simulation basieren die beiden, in
dieser Arbeit vorgestellten Methoden zur Rekonstruktion der Oberfläche von Fluiden.
Die erste Methode, von Müller et al., berechnet aus den Attributen der Partikel aus der
SPH-Simulation ein Skalarfeld und verwendet eine Isofläche im Skalarfeld als Oberfläche.
Die zweite Methode, von Yu und Turk, ist neuer und optimiert den Ansatz von Müller,
indem anisotrope Kerne die umliegenden Partikel in die Berechnung des Skalarfeldes mitein-
beziehen. Das soll dazu dienen, die Oberfläche glatter zu gestalten. Beide Verfahren werden
in dieser Arbeit verglichen und auf ihre optischen Eigenschaften untersucht. Desweiteren
werden Leistungsoptimierungen angewandt und Benchmarkergebnisse analysiert.
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1 Einleitung

1.1 Motivation

Abbildung 1.1: Mit der Methode von Müller et al. berechnete Dam Break-Simulation.

In vielen Bereichen, wie Industrie oder Medienbranche werden heute Fluidsimulationen
und ihre Darstellung benötigt. Es gibt viele Arbeiten zu diesem Themenfeld und dement-
sprechend gibt es viele verschiedene Ausführungen. Im Gegensatz zu gitterbasierenden
Eulerschen Ansätzen, baut Smoothed Particle Hydrodynamics (SPH) auf dem partikelba-
sierten Ansatz von Lagrange auf. SPH stammt ursprünglich aus der Astronomie [Luc77],
wo asymmetrische Gebilde, wie z.B. Weltraumnebel damit simuliert wurden, wurde jedoch
von Gingold und Monaghan [GM77][Mon92] in der Fluidsimulation verwendet. Die beiden
in dieser Arbeit vorgestellten Methoden [MCG03][YT10] berechnen aus den Attributen der
Partikel aus der SPH-Simulation ein Skalarfeld, in dem eine Isofläche für die Oberfläche
verwendet wird.
Das neuere der beiden Verfahren optimiert die optischen Ergebnisse mit der gewichtetten
Hauptkomponentenanalyse und der Singulärwertzerlegung und liefert letztlich eine glatte-
re Oberfläche. Wieviel Leistung diese Optimierung kostet, inwiefern die neuere Methode
optisch bessere Ergebnisse liefert und wie genau sie funktionieren, wird in den folgenden
Kapiteln geklärt.

1.2 Ziele dieser Arbeit

In dieser Arbeit werden zwei Verfahren zur Oberflächenrekonstruktion für partikelbasierte
Fluidsimulationen implementiert. Beide Verfahren werden von Grund auf erklärt und vergli-
chen. Die optischen Ergebnisse werden gegenübergestellt und der Rechenaufwand beider
Verfahren wird mit Messungen analysiert.
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1 Einleitung

Gliederung

Zu Beginn dieser Bachelorarbeit werden verwandte Arbeiten aufgezählt und somit ein Über-
blick über existierende SPH-basierte Verfahren zur Oberflächenrekonstruktion geschaffen.
Im nächsten Kapitel werden nötige Grundlagen erklärt, damit im darauffolgenden Kapitel
das nötige grundlegende Wissen gegeben ist, um die beiden vorgestellten Rekonstrukti-
onsmethoden nachvollziehen zu können. Danach wird mehr über die Implementierung
des begleitenden Programmes erzählt, bevor im nächsten Kapitel die Ergebnisse der Arbeit
verglichen und ausgewertet werden. Zuletzt wird die Arbeit zusammengefasst und ein
Ausblick über weitere, mögliche Forschungsbereiche gegeben.

Kapitel 2 – Verwandte Arbeiten: Verwandte oder weiterführende Arbeiten.

Kapitel 3 – Grundlagen: Grundlagen, die für das Verständnis benötigt werden.

Kapitel 4 – Rekonstruktionsmethoden: Vorstellung und Erläuterung der beiden Methoden.

Kapitel 5 – Implementierung: Das implementierte Programm mitsamt Optimierungen.

Kapitel 6 – Vergleiche: Vergleich und Auswertung der Ergebnisse dieser Arbeit.

Kapitel 7 – Zusammenfassung und Ausblick Fazit dieser Arbeit und kurzer Ausblick.

8



2 Verwandte Arbeiten

Um den Einstieg in die Thematik zu erleichtern, werden in dieser Arbeit zu Beginn weitere
verwandte Arbeiten vorgestellt, die mit der SPH-basierten Fluidsimulation in der Com-
putergrafik zu tun haben. Nachdem ein gewisser Überblick über die Entwicklungen der
letzten Jahrzehnte geschaffen wurde werden einige weiterführende Arbeiten sowie anders
ansetzende Methoden erwähnt.

2.1 Partikelbasierte Fluidsimulation mit der SPH Methode

1977 wurde SPH in der Astrophysik vorgestellt [Luc77] und diente zum berechnen asym-
metrischer Phänomene im Weltall. Gingold und Monaghan verwendeten SPH im selben
Jahr für partikelbasierte Fluidsimulation [GM77] und legten damit den Grundstein für unter
anderem diese Arbeit. Es war eines der ersten nicht gitterbasierten Verfahren.

Monaghan erläuterte daraufhin die einzelnen Aspekte des SPH-Verfahrens [Mon92] und
zeigte damit, dass das Verfahren nicht immer die genauesten Ergebnisse liefert, deren
Fehler aber im Toleranzbereich liegt und das Verfahren schneller ist als andere vergleichbare
Verfahren.

Später stellten Desbrun und Gascuel die geglätteten Partikel vor [DG96], die die bisherige
SPH-Methode erweiterten. Ein Partikel steht in dieser Methode stellvertretend für den ihn
umgebenden Abschnitt eines deformierbaren Objektes, wie z.B. eines Fluids. Die in dieser
Arbeit vorgestellte Methode dient zur Simulation deformierbarer Objekte.

Müller et al. [MCG03] verwendeten ein SPH-basierendes Verfahren für interaktive Anwen-
dungen und arbeiteten vor allem die Viskosität und Oberflächenspannung von Fluiden
heraus. Zudem wandten sie äußere Kräfte, wie Schwerkraft auf die Partikel direkt an. Somit
konnten realistische Einflüsse auf das Verhalten simuliert werden. Die erste, in dieser Bache-
lorarbeit verwendete Oberflächenrekonstruktion stammt ebenfalls aus der Arbeit von Müller
et al.

Clavet et al. stellten 2005 ein SPH-basierendes Verfahren für die Berechnung viskoelastischer,
also zähflüssiger, Fluide vor [CBP05]. Das wird mit einer doppelten Dichteberechnung
ermöglicht.

Becker und Teschner beschäftigten sich mit der Kompressibilität von Fluiden [BT07]. Ihre
Weakly Compressible SPH verhindert unerwünschtes Verhalten, wie Verwirbelungen durch
leichte Kompressibilität.
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2 Verwandte Arbeiten

Solenthaler und Pajarola entwickelten ein weiteres Verfahren [SP09], das die Simulation
von inkompressiblen Fluiden mit einem reinen, einfacheren Lagrange-basiertem Ansatz
ermöglicht. Ihr Ansatz verspricht geringeren Rechenaufwand pro Berechnungsschritt, als
Verfahren, die Inkompressibilität durch Lösen der Poissongleichung erreichen. Das erlaubt
größere Zeitintervalle für die Berechungsschritte, ohne längere Rechenzeiten in Kauf zu
nehmen.

Da alle diese Algorithmen trotz Optimierungen relativ lange brauchen, um eine große Anzahl
an Partikeln zu simulieren, gab es auch eine Reihe von Arbeiten, die die SPH-Simulation auf
Grafikkarten ausgelagert haben. Da Grafikkarten hohes Paralellisierungspotenzial haben,
lassen sich vor allem Simulation mit sehr vielen Partikeln sehr gut auf ihnen durchführen,
solange der Grafikspeicher für die Partikel ausreicht. 2005 implementierten Kolb et al. die
später vorgestellte SPH-Methode von Müller et al. [MCG03] auf einer Grafikkarte [KC05].
Diese Arbeit diente als Proof-of-Concept, also ein Beweis des Machbaren.

Harada et al. erreichten 2007 auf einer einzelnen GPU eine bis zu 28-fache Beschleunigung
der SPH gegenüber der CPU-Berechnung auf einer Grafikkarte [HKK07].

2010 veröffentlichten Hérault et al. eine Arbeit, bei der sie SPH auf einer GPU über die
CUDA-Schnittstelle berechnen ließen [HBD10]. Das benutzte Verfahren skaliert je nach
Rechenschritt verschieden aber dennoch deutlich gut. Die Anzahl der einzelnen Prozessoren
der Grafikeinheit beschleunigt die Rechenzeit proportional.

Rustico et al. beschäftigten sich mit der Arbeit mehrerer GPU-Einheiten im Verbund, unter
anderem am Beispiel der SPH-Berechnung [RBG+

12]. Sie erreichten mit vier Grafikkarten
weitere, erhebliche Beschleunigung gegenüber einer.

2.2 Verfahren mit impliziter Oberfläche

Blinn stellte 1982 mit Blobby Surface ein Verfahren vor [Bli82], das den in dieser Arbeit
gezeigten Verfahren ähnelt, jedoch nicht auf der SPH-Methode basiert. Er definierte impli-
ziten Skalarfelder durch Partikel und ihre Radien. Diese konnten zu Isoflächen berechnet
werden. Lagen so mehrere Objekte nebeneinander, verschmolzen sie. Die Blobby Surfaces
funktionierten sehr gut für Darstellungen des Atomteilchenmodells, weil einzelne Punkte
anfangen zu verschmelzen, wenn sie sich einander nähern, ganz so, wie man es sich bei
Elektronenwolken von Atomen vorstellt. Jedoch hatte das Verfahren die Nachteile, immer
nur runde Formen zu erzeugen und zu Beulen anzuwachsen, sobald sich mehrere Objekte
überschnitten.

Zhu und Bridson knüpfen mit ihrer Arbeit [ZB05], bei der Sand wie ein Fluid simuliert
wird, am Verfahren von Blinn an und optimieren es, indem sie gewichtete Mittelwerte aus
Positionen und Radien anwendeten bevor sie mithilfe eines Gitters die Isofläche berechne-
ten. Dadurch wirkt das Ergebnis nicht mehr so beulenhaft sondern schmiegt sich an die
bestehenden Partikel an und wirkt realistischer.
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2.2 Verfahren mit impliziter Oberfläche

2007 stellen Adams et al. eine weitere Verbesserung vor [APKG07]. Dieses Verfahren re-
duziert, mit Hinblick auf die Rechenzeit, die Partikeldichte in Bereichen in denen der
Detailgrad nicht von Nöten ist, wie z.B. tief innerhalb des Fluids. Dazu werden Partikel-zu-
Oberfläche-Distanzen berechnet und in jedem Frame neuberechnet. Die finale Rekonstruktion
funktioniert nach der Methode von Zhu und Bridson, generiert aber glatte Oberflächen für
feste und adaptive Partikelradien.
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3 Grundlagen

Um die später vorgestellten Methoden besser verstehen zu können, werden in diesem Kapitel
einige verwendete Grundlagen erläutert.
Zuerst wird die Funktion der SPH-Methode näher erklärt. SPH bietet die Basis für diese
Arbeit, da mit SPH das Fluid simuliert wird, aus dessen Partikelattributen die in dieser
Arbeit vorgestellten Methoden die Oberfläche rekonstruieren.
Danach folgt die Hauptkomponentenanalyse und ihre modifizierte Variante, die gewichtete
Hauptkomponentenanalyse. Dieses Verfahren ermöglicht es, in den Berechnungen Partikel,
die weiter entfernt sind und in der Berechnung des Skalarfeldes weniger Einfluss haben
sollten als sich näher befindende Partikel, geringer zu gewichten.
Die letzte, näher erklärte Grundlage ist die Singulärwertzerlegung, die für die zweite
vorgestellte Methode nötig ist. Sie ermöglicht den anisotropen Glättungskern, ist also das
Werkzeug, mithilfe dessen die Partikel sich anhand ihrer Nachbarpartikel ausrichten und so
eine glattere Oberfläche erzeugen.

3.1 Smoothed Particle Hydrodynamics

Abbildung 3.1: Alle Bilder aus dem Simulationsprogramm. Sie veranschaulichen die SPH-
Simulation.

Smoothed Particle Hydrodynamics (dt. geglättete Teilchen-Hydrodynamik) ist, wie eingangs
erwähnt, ein empirisches Verfahren, das für die Berechnung nicht achsensymmetrischer
Phänomene der Astrophysik entwickelt wurde [Luc77] [GM77].

SPH ist ein auf einer Lagrange-Interpolation aufbauendes, partikelbasierendes Verfahren, also
ein Verfahren, das im Gegensatz zu gitterbasierten Verfahren, bewegliche Teilchen besitzt.
Positionen und wirkende Kräfte dieser Teilchen werden durch Differentialgleichungen
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3 Grundlagen

bestimmt. Diese basieren auf Gleichungen, die aus physikalischen Gesetzen resultieren,
wie etwa der Berechnung für Impuls oder Energie. Somit finden sich Kräfte zwischen
einzelnen Partikeln in der Gesamtleichung wieder und dieser Wirkungsgrad kann intuitiv
in der Formel angepasst werden. Wegen dieser intuitiven Herangehensweise ist SPH in
vielen Bereichen der Physik vertreten. Obwohl es präzisere Verfahren gibt, rechtfertigen die
Unterschiede der Ergebnisse den Mehraufwand anderer Verfahren oft nicht.

Mit der Dirac-Funktion δ(x), die für lima→0 immer höher wird, deren Integral aber immer 1
ist, beschreibt eine Integralinterpolation ein kontinuiertliches Skalarfeld:

(3.1) f (x′) =
∫

f (x′)δ(x− x′)dx

Die Dirac-Funktion wird durch einen Glättungskern W ersetzt:

(3.2) f (x) =
∫

f (x′)W(x− x′, h)dx′.

Der Glättungskern verfügt über folgende Eigenschaften:

(3.3)
∫

W(x− x′, h)dx′ = 1

und

(3.4) lim
h→0

W(x− x′, h) = δ(x− x′),

wobei sich die Kerninterpolation auf einzelne Integrale bezieht [Nat61].

Hat man unendlich viele Partikel von unendlich kleiner Größe, also limh→0, so gleicht die
Summe der Kerne dem Integral. In der numerischen Integralinterpolation hat man nur
endlich viele Partikel, nähert aber das Ergebnis mithilfe einer Summe an

(3.5) f (x) = ∑
j

mj
f j

ρj
W(x− xj, h),

wobei der Summenindex j sich auf Werte des Partikels j bezieht und die Summe somit alle
Partikel durchläuft. Partikel j hat also Masse mj, Position xj, Dichte ρj und Geschwindigkeit
vj. Der Wert einer Größe A an der Stelle xj wird als Aj ausgedrückt.

In der Ursprünglichen Berechnung [GM77] wurde ein Gaußkern verwendet. Eindimensional:

(3.6) W(x, h) =
1

h
√

π
e−(x2/h2),

Dieser Gaußkern imitiert eine Deltafunktion mit limh→0. In den Rechnungen dieser Arbeit
werden andere, an die Aufgaben angepasste Kerne verwendet.
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3.2 Gewichtete Hauptkomponentenanalyse (WPCA)

Abbildung 3.2: Gewichtete Hauptkomponentenanalyse. Man erkennt deutlich, dass die PCA
zwei Cluster nicht als solche erkennt, wärhend die WPCA diese Cluster
durch die distanzabhängige Gewichtung trennt [KC03].

3.2 Gewichtete Hauptkomponentenanalyse (WPCA)

Beim zweiten, später vorgestellten Verfahren will man erreichen, dass die Partikel sich
umliegenden Partikeln angleichen, damit das Ergebnis der Oberflächenrekonstruktion glatter
wirkt. Das soll ein anisotroper Glättungskern ermöglichen. Um ihn zu berechnen, werden Ab-
standsvektoren zwischen einem Partikel i und allen anderen Partikeln j, j = 1, ..., n gewichtet
in einer Matrix A verrechnet. Für diesen Schritt wird die gewichtete Hauptkomponenten-
analyse (engl: weighted principal component analysis, WPCA) benutzt. Dabei handelt es
sich um ein Verfahren, das große Datensätze veranschaulichend zusammenfassen kann. Die
gewichtete Version der Hauptkomponentenanalyse verhindert, dass Ausreißer das Ergebnis
verfälschen. Dabei sind in dieser Arbeit die Datensätze die Positionen aller Partikel und ihre
Abstandsvektoren untereinander.

Sei x mit den Elementen xj, j = 1, ..., n ein stochastischer Vektor mit der Wahrscheinlichkeits-
verteilung P(x) und sei {xα|α = 1, ..., m} ein Ausschnitt aus P(x).
Sei X nun eine Datenmatrix mit den Elementen Xj,α = xα

j . Die (ungewichtete) Hauptkompo-
nentenanalyse (PCA) basiert auf den ersten beiden empirischen Momenten der Datenmatrix:
Der Vektor des Mittels

(3.7) 〈x〉 ≡ 1
m

m

∑
α=1

xα

15



3 Grundlagen

und der empirischen Kovarianzmatrix

(3.8) C ≡ 1
m

m

∑
α=1

(xα − 〈x〉)(xα − 〈x〉)T,

die sich auch durch entfernen des Mittels der Daten in Matrizenschreibweise ausdrücken
lässt

(3.9) C ≡ 1
m

XXT,

Bei der Hauptkomponentanalyse gilt es die Eigenvektoren mit den größten Eigenvektoren
der Kovarianzmatrix zu finden und die Daten in diese Richtung zu projezieren.

Wie Koren und Carmel zeigten [KC03] berechnet PCA die p-dimensionale Projektion, die
die Summe aller quadrierten paarweisen Distanzen der Elemente maximiert:

(3.10) ∑
i<j

(distp
ij)

2,

Diese PCA-Variante führt dazu, dass wir ungewichtete quadrierte Distanzen aufsummieren.
In manchen Anwendungen ist es jedoch erwünscht, dass die Distanzen gewichtet werden. In
der partikelbasierten Simulation heißt das, dass einzelne, abgelegene Partikel weniger auf die
gesamte Menge der Partikel wirken als Partikel, die sich unmittelbar nebeneinander, also in
großen Ansammlungen, befinden (zur Veranschaulichung, siehe Abb. 3.2). Darum schlagen
Koren und Carmel die gewichtete Hauptkomponentenanalyse vor, bei der die maximierte
Summe gewichtete Distanzen beinhaltet:

(3.11) ∑
i<j

dij(distp
ij)

2,

wobei dij kleiner wird, je größer die Distanz der Elemente ist, also:

(3.12) dij =
1

distij
.

Diese Gewichtung führt dazu, dass Ausreißer oder Messfehler weniger wirken und das
Ergebnis nicht wesentlich verändern oder gar verfälschen.

Nach Anwendung der WPCA erhält man die Kovarianzmatrix C. Sie beinhaltet für jeden
Partikel i Informationen, in welchen Richtungen die größten Vorkommen naheliegender
Partkiel sind und bildet die Basis des anisotropen Glättungskerns.

3.3 Singulärwertzerlegung (SVD)

Auf die aus der WPCA resultierende Kovarianzmatrix wird im nächsten Schritt die Sin-
gulärwertzerlegung angewendet. Bei der SVD wird eine Matrix C in ein Produkt aus drei
Matrizen zerlegt. Eine dieser Matrizen ist eine Diagonalmatrix, auf deren Diagonalen sich
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3.3 Singulärwertzerlegung (SVD)

die Eigenwerte von C befinden. Diese Eigenwerte lassen sich anpassen, um das Ergebnis
zu beeinflussen, bevor man das Matrizenprodukt berechnet und so eine nach Bedürfnissen
modifizierte Version, also C̃ erhält.

Um die Singulärwertzerlegung (engl: singular value decomposition) [MHW04] besser zu
verstehen, sollte man einige Definitionen kennen:

Singulärwerte einer Matrix C sind die Quadratwurzeln der Eigenwerte von CTC.

• Die Kondition einer Matrix ist der Faktor zwischen dem größten und kleinsten Singu-
lärwert.

• Eine schlecht konditionierte Matrix ist eine Matrix mit zu großer Kondition. Ab wann
die Kondition zu schlechter Konditionierung führt, hängt von der Genauigkeit des
verwendeten Rechenverfahrens bzw. Rechners ab.

• Eine Matrix ist singulär, wenn ihre Kondition unendlich ist. Die Determinante einer
solchen Matrix ist 0.

• Der Rang einer Matrix ist die Dimension der linearen Hülle. Er hängt von der An-
zahl nicht-singulärer Werte der Matrix ab, also der Anzahl der linear unabhängiger
Zeilenvektoren der Matrix.

Als Singulärwertzerlegung bezeichnet man die Aufteilung einer realen n×m Matrix C mit
n ≥ m in ein Produkt aus 3 Matrizen:

(3.13) C = UΣV

U ist eine n×m Matrix mit orthogonalen Spaltenvektoren. Für sie gilt also, dass UTU = I,
wobei I die Identitätsmatrix ist. V ist eine orthonormale m×m Matrix, also gilt VTV = I. Σ
ist eine m×m Diagonalmatrix mit Werten, die positiv oder gleich 0 sind und Singulärwerte
heißen.

C lässt sich in folgende positiv definite symmetrische Matrizen zerlegen:

(3.14) CCT = UΣVTVΣUT = UΣ2UT

(3.15) CTC = VΣ2V

Wenn C eine m×m Matrix ist, wird schnell deutlich, dass

(3.16) CCT = CTC = RΣ2RT

Mit diesen Gleichungen lassen sich Eigenvektoren und Eigenwerte von CTC als Spaltenvek-
toren von R bzw. Werte auf der Hauptdiagonalen von Σ identifizieren.
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4 Rekonstruktionsmethoden

Die im vorherigen Kapitel erklärten Grundlagen werden hier angewandt. Es wird näher
beleuchtet, welche Methoden zur Rekonstruktion von Oberflächen aus partikelbasierten
Fluidsimulation in dieser Bachelorarbeit benutzt werden, was sie bewirken sollen und wie sie
funktionieren. Dabei wird davon ausgegangen, dass eine SPH-Simulation bereits zugrunde
liegt und die Partikel mit ihren physikalischen Werten, wie Masse und Dichte, zur Verfügung
stehen. Nach der Simulation setzen die Oberflächenrekonstruktionen ein.

4.1 Rekonstruktion der Fluidoberfläche mit dem Massendichtefeld

Abbildung 4.1: Szene 2, die Methode von Müller et al. (links) mit dem Wasser-Material
und (rechts) mit dem matten, grauen Material. Man erkennt die ausgebeulte
Oberfläche im Mittleren Bereich.

4.1.1 Grundlegende Idee

Die Methode von Müller et al. [MCG03] basiert darauf, mit einer Funktion aus den Partikeln,
die man nach der SPH-Methode erhalten hat, ein Skalarfeld zu erzeugen. Dieses wird anhand
der Massendichte der Partikel errechnet. Danach definiert man eine Schranke, ab welcher
Dichte man nicht mehr innerhalb des Fluids ist. Eine Isofläche entlang dieser Schranke
entspricht somit der Oberfläche des Fluids und kann mit Point Splatting, Marching Cubes
oder anderen Verfahren bestimmt werden.
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4 Rekonstruktionsmethoden

4.1.2 Funktion und Berechnung der Methode

Für die Rekonstruktion braucht man eine Funktion, die für einen beliebigen Punkt x über
alle Partikel j iteriert wird. Diese berechnet das sogenannte geglättete Dichtefeld, das die
Massendichte im gesuchten Punkt angibt.

(4.1) cS(r) = ∑
j

mj
1
ρj

W(r− rj, h),

wobei W(r, h) der Glättungskern ist, der bestimmt, wie die Funktion für verschiedene
Distanzwerte reagiert. In der Implementierung wurde der Poky6-Kern [MCG03] verwendet:

(4.2) Poly6-Kern : Wpoly6
(r, h) =

315
64πh9 =

{
(h2 − r2)3 wenn 0 ≤ r ≤ h
0 sonst,

Die Funktion des Glättungskerns wurde schon in den Grundlagen erläutert. Er ermöglicht
es, den Wirkungsgrad der einzelnen Partikel einzugrenzen, indem nähere Partikel höher,
weiter entfernte Partikel weniger gewichtet werden. Das hat den Vorteil, dass unerwünschte
Effekte über große Distanzen hin nicht mehr auftreten. Außerdem kann man gerade in der
Computergrafik viel Performance einsparen, da der Kern nur über eine bestimmte Distanz
hinweg wirkt, also nur eine begrenzte Anzahl an Nachbarpartikeln betrachtet werden
muss.

Nachdem die Formel für die Berechnung des Glättungskerns in die Berechnung des Dich-
tefeldes eingesetzt wird, summiert man für jeden gewählten Punkt x die durch den Kern
gewichtete Massendichte von allen relevanten Partikeln. Die so entstehenden Werte entspre-
chen einzelnen Punkten des Skalarfeldes und mit ihnen lässt sich die Isofläche berechnen,
die der gesuchten Fluidoberfläche entspricht.

4.2 Oberflächenrekonstruktion mit einem anisotropen Kern

4.2.1 Grundlegende Idee

Die Methode von Müller et al. führt unweigerlich zu einer welligen, gar ausgebeulten
Oberfläche. Der isotrope Glättungskern führt zur Beulenbildung an der Oberfläche, da
jedes Partikel einen festen Radius hat. Außerdem sind Stellen an denen die Partikeldichte
dünner wird oft von mehr Beulen und Löchern gesäumt, eben weil die Partikel nach der
Rekonstruktion von Müller et al. ihren bestimmten Radius einnehmen. Diese Schwächen
wollten Yu und Turk mit ihrer Methode [YT10] ausgleichen.

Zum einen positionieren sie jedes Partikel für die Rekonstruktion neu. Die Partikel richten
sich nach ihren Nachbarpartikeln. Somit ordnen sich Partikel automatisch gleichmäßiger
an.
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4.2 Oberflächenrekonstruktion mit einem anisotropen Kern

Abbildung 4.2: Szene 2, die Methode von Yu und Turk. (links) mit dem Wasser-Material
und (rechts) mit dem matten, grauen Material, um die Formen besser zu
erkennen.

Zum anderen entwickelten sie einen anisotropen Glättungskern (siehe Abb. 4.3), der einzelne
Partikel in Richtung anderer Partikel streckt. In Randbereichen des Fluids, wo es keine
Nachbarpartikel gibt, werden die einzelnen Partikel in Tangentialrichtung, also an der Kante
entlang, gestreckt und in Normalenrichtung gestaucht. Das Ergebnis führt dazu, dass die
Isoflächen einzelner Partikel im Skalarfeld Ellipsoide erzeugen, statt Kugeln, wie beim ersten
vorgestellten Verfahren.

4.2.2 Funktion und Berechnung der Methode

Der erste Schritt ist die Neuberechnung der Positionen der Partikel. Dabei ist zu beachten,
dass die neuen Positionen nur der Oberflächenrekonstruktion dienen und nicht die Posi-
tionen der Partikel für die SPH-Methode verändern, da sonst die Simulation beeinflusst
wird.

Die neuen Positionen der Partikel xi werden wie folgt berechnet:

(4.3) x̄i = (1− λ) + λ ∑
j

wijxj/ ∑
j

wij,

wobei λ eine Konstante mit 0 < λ < 1 ist und in dieser Arbeit als λ = 0.9 festgesetzt
wird. w ist eine passende Gewichtungsfunktion. Ich verwende, die weiter unten stehende
Gewichtungsfunktion (siehe Gleichung 4.6) auch an dieser Stelle. Dieser Schritt ist eine
Art dreidimensionale Laplace’sche Glättung und führt unweigerlich zu leicht reduziertem
Volumen, da alle Partikel zueinander und somit zur Mitte des Fluids angezogen werden.

Als nächstes berechnet man die Kovarianzmatrizen, also die Matrix mit den anisotropischen
Informationen über naheliegende Partikel. Dafür verwendet man für jeden Partikel i die
gewichtete Hauptkomponentenanalyse (WPCA), (siehe Kapitel 3.2). Die Kovariantmatrix
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4 Rekonstruktionsmethoden

Ci wird benötigt, um zu ermitteln, in welchen Richtungen von Partikel i die meisten Nach-
barpartikel vorkommen. Der aus der Isofläche des Partikels entstandene Ellipsoid soll sich
letztendlich in diese Richtungen auswölben.

Ci wird wie folgt definiert:

(4.4) Ci = ∑
j

wij(xj − xw
i )(xj − xw

i )
T/ ∑

j
wij,

wobei x das gewichtete Mittel ist, das auch in Gleichung 5.5 verwendet wird. Es ist wie folgt
definiert:

(4.5) xw
i = ∑

j
wijxj/ ∑

j
wij.

Die hier verwendete Funktion wij ist eine isotropische Gewichtungsfunktion über alle Partikel
j, bezüglich des Partikels i:

(4.6) wij =

{
1− (

∥∥xi − xj
∥∥ /ri)

3 wenn
∥∥xi − xj

∥∥ < Ri,
0 sonst.

Durch den Wirkungsradius ri, der hier auf 2hi, also den doppelten Radius des Partikels
i gesetzt wurde, wird gewährleistet, dass einerseits nur Nachbarpartikel in unmittelbarer
Nähe gewichtet werden, andererseits genug Partikel zusammenkommen, um eine sinnvolle
Ausbeute anisotropischer Informationen zu gewährleisten.

Damit man die Kovarianzmatrix im Glättungskern verwenden kann, wird die Singulärwert-
zerlegung (siehe Kapitel 3.3) angewendet. Dabei werden zwei Rotationsmatrizen von der
eigentlichen Diagonalmatrix, die die Dehnung bzw. Stauchung verursacht getrennt

(4.7) C = RΣRT

(4.8) Σ = diag(σ1, ..., σd),

wobei R eine oben erwähnte Rotationsmatrix mit Hauptachsen als Spaltenvektoren ist und Σ

eine Diagonalmatrix mit Eigenwerten σ1 ≥ ... ≥ σd auf der Hauptdiagonalen ist. Um dieses
Größenverhältnis der einzelnen Eigenwerte zu gewährleisten, wird geprüft, ob σ1 ≥ krσd,
wobei kr > 1 eine positive Konstante ist. Wie in der Arbeit von Yu und Turk ist hier kr = 4.
Ist die obige Bedingung erfüllt, so ist gewährleistet, dass die größte Varianz in einer Haupt-
achse wesentlich kleiner ausfällt als die kleinste Varianz einer anderen Hauptachse.
Wenn die Partikeldichte gering ausfällt, verliert das Ergebnis die sphärische Form. Deshalb
wird die Anzahl der Nachbarpartikel mitgezählt. Sollte ein Partikel zu wenig Nachbarpartikel
haben, in diesem Fall weniger als Nε = 25, wird anstatt der Diagonalmatrix aus Eigenwerten
Σ̃ = knI gesetzt, wobei kn = 0.5 und I die Identitätsmatrix ist, also eine Diagonalmatrix
mit 0.5 auf der Hauptdiagonalen gefüllt. Außerdem wird die Matrix C im Falle einer gut
gefüllten Nachbarschaft mit ks = 1400 multipliziert, einem Faktor, der ‖ksC ≈ 1‖ erfüllt.
Damit wird der Raum innerhalb des Fluids besser ausgefüllt.
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4.2 Oberflächenrekonstruktion mit einem anisotropen Kern

Nach all diesen Modifikationen erhält man folgende Matrix

(4.9) C̃ = RΣ̃RT

(4.10) Σ̃ =

{
ksdiag(σ1, σ̃2, ..., σ̃d) wenn N > Nε,
knI sonst.

wobei σk = max(σk, σ1/kr), und N die Anzahl der Nachbarpartikel ist.

Abbildung 4.3: Vergleich zwischen isotropem und anisotropem Kern. Man sieht, dass die
einzelnen Partikelrepräsentationen sich rechts mehr an die Form des Würfels
anschmiegen [YT10].

Um im Glättungskern aus der Differenz der Raumkoordinaten eines Gitterpunktes und eines
momentan betrachteten Partikels Rückschlüsse auf den Abstand zur Hülle des Ellipsoiden
ziehen zu können, muss C̃i invertiert und mit 1

hi
skaliert werden. Das Ergebnis wird als Gi

bezeichnet:

(4.11) Gi =
1
hi

RΣ̃−1RT

Die symmetrische Matrix Gi kann nun mit dem Abstandsvektor zwischen einem Gitterpunkt
der Rekonstruktionsmethode und dem momentan betrachteten Partikel multipliziert werden.
Der Abstandsvektor wird abhängig von seiner Richtung im selben Maße verzerrt, wie der
Ellipsoid. Somit kann die Länge des Ergebnisvektors nun mit einer gewünschten Wirkungs-
distanz verglichen oder verrechnet werden, um zu erfahren, ob dieses Partikel nahe genug
ist, um auf das Dichtefeld des zu Anfang definierten Punktes zu wirken. Für diesen Schritt
gibt es einen Glättungskern, der sich vom Kern der ersten Methode unterscheidet. Yu und
Turk stützen sich auf einige Paper von Becker und Teschner [BT07], der Kern wird aber auch
in [Bec09] ausführlich erklärt:

(4.12) W(x′, h) = W(q) =


1

4πh3 [(2− q)3 − 4(1− q)3] wenn 0 ≤ q < 1
1

4πh3 (2− q)3 wenn 1 ≤ q < 2
0 wenn q ≥ 2,

23



4 Rekonstruktionsmethoden

wobei x′ eine Position ist, h die Kernlänge und q = |x′|
h . Im Verfahren von Yu und Turk ist

also x′ = x− x̄i, h = ‖Gx′‖ und q = |x−x̄i |
‖Gx′‖ .

Zusammengefasst ergibt sich das neue geglättete Feld mit anisotropem Kern

(4.13) φnew(x) = ∑
j

mj

ρj
W(x− x̄j,

∥∥Gj(x− x̄i)
∥∥).

Mit den Gleichungen 4.1 und 4.13 erhält man also jeweils eine Funktion, die für einen
beliebigen Punkt x im Skalarfeld einen Massendichte-wert berechnet. Um eine möglichst
genaue Isofläche zu erhalten, braucht man nun ein Verfahren, das genug solcher Punkte xi
liefert.
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5 Implementierung

Nachdem alle Partikelpositionen mit dem SPH-Verfahren berechnet wurden und mit einer
Rekonstruktionsmethode eine Funktion zur Berechnung des Skalarfeldes aufgestellt wurde,
muss die Oberfläche berechnet werden. In der Arbeit von Müller et al. werden dafür zwei
Methoden vorgeschlagen: Point Splatting [MSHC99][Wes91] und Marching Cubes [LC87]. Es
wären noch weitere Möglichkeiten denkbar, eine Isofläche aus dem Skalarfeld zu berechnen.
In dieser Arbeit wird jedoch nur auf den in der Arbeit implementierten Marching Cubes-
Algorithmus näher eingegangen.

5.1 Marching Cubes

Abbildung 5.1: Die 256 Fälle lassen sich in (links) 15 Untergruppen aufteilen. Die anderen
Fälle ergeben sich durch (rechts) Drehungen und Spiegelungen. [LC87].

Es wird ein dreidimensionales Gitter über den gesamten zu prüfenden Raum gespannt.
Die einzelnen Knoten des Gitters werden in die Berechnung des Skalarfeldes eingesetzt.
Das gewährleistet eine regelmäßige Abtastung der Isofläche. Somit erhält man für jeden
Gitterpunkt vklm die Distanzen zu allen Partikeln xj:

(5.1) cS(vklm) = ∑
j

mj
1
ρj

W(vklm − xj, h).

Danach wird eine Schranke definiert, in meinem Fall t = 0.4. Überschreitet der Dichtewert in
einem Knoten die Schranke, ist der Knoten innerhalb des Fluides. Ist der Dichtewert darunter,
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5 Implementierung

liegt der Knoten außerhalb. Zwischen Knotenpunkte, die innerhalb des Fluides liegen und
ihren direkten Nachbarn, die außerhalb liegen muss also die Oberfläche verlaufen.

Nun werden je acht Knotenpunkte, die sozusagen einen Würfel umfassen, betrachtet, al-
so für jeden Knoten vlmn werden zusätzlich noch v(l+1)m,n, vl(m+1)n, v(l+1)(m+1)n, vlm(n+1),
v(l+1)m(n+1), vl(m+1)(n+1) und v(l+1)(m+1)(n+1) betrachtet.
Es gibt 256 verschiedene Konstellationen (siehe Abb. 5.1), welche dieser Knoten inner-
halb und welche außerhalb des Fluids liegen. Jeder Konstellation wurde ein bestimmtes
Oberflächenfragment zugeordnet. Somit ist es möglich, wenn man alle Knoten und ihre
Nachbarn innerhalb des Würfels prüft eine abgeschlossene Oberfläche zu berechnen und
darzustellen.

5.2 Optimierungen

Es gibt einige relevante Beschleunigungen, die die Rechenzeit deutlich verringern können.

Zu Beginn der Marching Cubes-Berechnung ließe sich Rechenzeit einsparen. Der Algorithmus
berechnet in einem bestimmten dreidimensionalen Gitter Distanzen zu allen Partikeln. Wenn
man von vornherein die Maxima und Minima der Partikelpositionen errechnet, lässt sich ein
kleineres dreidimensionales Gitter mit weniger Zellen anlegen, das weniger Berechnungen
benötigt.

Außerdem kann man, bevor man mit einer Rekonstruktionsmethode begonnen hat, ein
mal über alle Partikel iterieren und sie räumlich in dreidimensionale Gitterzellen einteilen.
Für jeden Marching Cubes-Knoten müsste man also nicht mehr alle Partikel anschauen,
sondern nur die Partikel in den Zellen rund um diesen Knoten prüfen. Die Komplexität der
Berechnung wird dadurch gesenkt.
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6 Vergleiche

Dieses Kapitel beschäftigt sich mit den Ergebnissen der Arbeit. Bilder der Ergebnisse und
Algorithmen beider Verfahren werden verglichen und durch Benchmarks ergänzt.

Abbildung 6.1: Szene 3, (links) ein Screenshot aus der Simulation, (mittig) die Methode von
Müller et al. und (rechts) die Methode von Yu und Turk. Mit Wasser-Material
gerendert.

6.1 Qualität

Vergleicht man die Ergebnisse aus Abb. 6.1 sieht man, dass die neuere Methode generell
eine glattere Oberfläche erzeugt. Außerdem sieht man sehr gut, dass die Neupositionierung
und die Streckung der anisotropen Kerne in Richtung der Masse besonders in Bereichen mit
niedriger Partikeldichte gut funktioniert. Wie in dieser Darstellung vorne zu erkennen ist,
wird eine klarere Kante erzeugt, die aussieht, als wäre sie von der Oberflächenspannung des
Fluids erzeugt.

In Abb. 6.2 ist ein schwer zu rekonstruierendes Szenario mit weiträumig sehr niedriger
Partikeldichte zu sehen. Die Methode von Yu und Turk verbindet viele Partikel zu gemeinsa-
men Gebilden. Das sieht man ganz vorne, wo einzelne voneinander getrennte Partikel zu
schlauchartigen Fragmenten verbunden werden, sowie an mehreren Stellen in der Mitte der
Szene.
Dabei ist zu beachten, dass in meinen Ergebnissen die Formen nicht mehr gestimmt haben,
wenn beide Verfahren mit derselben Schranke für die Isofläche berechnet wurden. Die
erst Methode blieb bei der Schranke t = 0, 4, während die zweite Methode eine niedrige-
re, t = 0, 1 für ansehnliche Ergebnisse benötigte. Dennoch sind die Ergebnisse durchaus
Aussagekräftig.
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6 Vergleiche

Abbildung 6.2: Szene 4, (links) ein Screenshot aus dem Simulationsprogramm, (mittig) die
Methode von Müller et al. und (rechts) die Methode von Yu und Turk, um
die Flächen besser zu erkennen, in mattem Grau gerendert.

6.2 Rechenaufwand

Ohne Optimierungen muss beim ersten Verfahren jeder Marching Cubes-Gitterpunkt Di-
stanzen zu allen Partikeln berechnen. Das braucht viel Rechenzeit, die sich einsparen ließe.
Mit der im vorherigen Kapitel vorgeschlagenen Optimierung, bei der die Partikel räumlich
eingeordnet werden, muss jede Gitterzelle nur noch eine sehr kleine Zahl an naheliegenden
Partikeln prüfen, die als konstant angesehen werden kann. Das reduziert die Programmlauf-
zeit wesentlich.

Das zweite Verfahren kann man in mehrere aufwändige Arbeitsschritte aufteilen: Die Neu-
positionierung der Partikel, die gewichtete Hauptkomponentenanalyse und die Isoflächen-
berechnung. Die Neupositionierung berechnet die Distanzen aller Partikel zueinander, die
gewichtete Hauptkomponentenanalyse gewichtet im nicht optimierten Fall ebenfalls alle
Distanzen. Die Isoflächenberechnung berechnet, wie beim ersten Verfahren, für jeden Gitter-
punkt Distanzen zu allen Pertikeln.
Für alle wichtigen Rechenschritte wäre es eine Hilfreiche Optimierung, die Partikelnach-
barschaften zu kennen. Eine Aufteilung in dreidimensionale Gitterzellen ist also auch hier
sehr nützlich. Die Gewichtungsfunktion (siehe Gleichung 4.6) berücksichtigt ohnehin nur
die Partikel, deren Distanz kleiner ist als der doppelte Partikelradius. Da diese Gewich-
tungsfunktion bei der Neupositionierung und bei der Hauptkomponentenanalyse verwendet
wird und die Isoflächenberechnung eine noch kleinere Distanz vorsieht, läuft man nicht
Gefahr, zu wenige Partikel zu berücksichtigen, wenn man den Radius für die Bestimmung
Nachbarpartikel passend gewählt hat.

Das Marching Cubes Verfahren ist für die Brechnung der Laufzeit vernachlässigbar, da je
nach Implementierung nur eine bestimmte konstante Anzahl an Rechenschritten notwendig
ist, um den richtigen der 256 Fälle zu bestimmen und die Vertices und Polygone zu erzeugen
oder zu speichern.
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6.3 Benchmarks

6.3 Benchmarks

Es wurde ein Phenom II X4 955 mit einem Takt von 3,78GHz für die Rechnungen verwendet.
Die Methode von Müller et al. wurde unoptimiert gerechnet, da Caching der Nachbarpartikel
in meinem Programm zu Fehlern führte. Die Methode von Yu und Turk prüft zu Beginn
für jeden Partikel, welche der anderen Partikel in seiner potenziellen Reichweite sind. Nur
diese werden von da an für die Neupositionierung sowie Gewichtung gewertet. Somit ist
der neuere Algorithmus zwar auch nicht optimal aber mehr optimiert, als der ältere. Die

Abbildung 6.3: Szene 1, (links) ein Screenshot aus dem Simulationsprogramm und (rechts)
die Methode von Müller et al. Gut zu sehen, der kompakte Quader, zu
Beginn der Simulation.

gerenderte Szene enthält 3757 Partikel. Gemessen wurde nur die Zeit, die von Anbeginn
der Rekonstruktion, bis zum Ende des Marchung Cubes-Algorithmus benötigt wurde.
Weitere Ladezeiten, die danach beim Übertragen der Vertexpositionen und zeichnen der
Polygone entstehen, wurden nicht mehr gemessen, da sie nicht relevant für die eigentliche

Oberflächenrekonstruktion sind.

Nummer der Szene (Frame) Methode 1 Methode 2

1 (1) 50 131

2 (145) 195 182

3 (294) 195 275

4 (527) 314 360

5 (665) 585 605

6 (839) 678 654

Alle Messergebnisse in Sekunden.

Die erste Szene ist kompakt (siehe Abb. 6.3), da die Partikel zu einem Quader geformt sind
und das Gitter des Marching Cubes-Algorithmus nicht viele unnötige Zellen auf naheliegen-
de Partikel prüfen muss. Dadurch ist die Zeit zu Beginn wesentlich kürzer als bei späteren
Szenen. Die Gesamthöhe der Partikel nimmt nicht so schnell ab, wie deren Gesamtfläche
durch von oben nachrückende Partikel zunimmt. Es sind also bei späteren Frames viel mehr
Gitterzellen zu berechnen, die die Laufzeit in die Höhe treiben.
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6 Vergleiche

Man sieht auch, dass beim letzten Frame die neue Methode durch das Cachen der Nachbar-
partikel schneller ist als die ältere. Das ist ein gutes Beispiel für den Sinn und Erfolg von
Optimierungen.
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7 Zusammenfassung und Ausblick

7.1 Fazit

Zusammenfassend lässt sich sagen, dass die Methode von Müller et al. sich schneller
berechnen lässt. Das ließ sich auch durch die Messungen meistens bestätigen, obwohl die
Methode von Yu und Turk ein wenig beschleunigt wurde. Betrachtet man die Algorithmen
und die einzelnen Rechenschritte, so ist klar, dass die erste Methode das größere Potenzial
hat, schneller zu sein, da komplexe Rechnungen mit Matrizen ausbleiben.

Optisch liefert die Methode von Müller et al. ein ausgebeultes Fluid, das seine Schwächen
deutlich an den Rändern und an Stellen mit dünner Partikeldichte zeigt. Die Methode von
Yu und Turk glättet das Ergebnis und erschafft damit, wie im in Kapitel 6 beschrieben,
Strukturen, die realistischer wirken.

7.2 Ausblick

Wie eingangs erwähnt (siehe Kapitel 2), ist es möglich diese Berechnungen an modernere
Rechnerarchitekturen anzupassen. Man kann Berechnungen der SPH und Marching Cubes
multithreaded auf alle Prozessorkerne und ihre Threads aufteilen oder gar auf der GPU
rechnen, da GPUs noch mehr Parallelisierung bieten. Die Verkürzung der Rechenzeit würde
immens ausfallen.
Auch denkbar wäre es, eine große Simulation auf mehreren Rechnern zu parallelisieren. Je
nach Größe des Projektes kann das den Rechenvorgang erneut beschelunigen.

Interessant für die Simulation von Fluiden sind noch viele weitere Aspekte, wie Ober-
flächenspannung oder Kollision mit Objekten, die wiederum verschiedene Eigenschaften
haben und sich vielleicht von dem Fluid verformen oder bewegen lassen. Andere physika-
lische Eigenschaften, wie die temperaturabhängige Ausdehnung oder sogar verschiedene
Aggregatzustände wären ebenfalls interessant.
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