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Kurzfassung

Diese Bachelorarbeit préasentiert einen Ansatz um elastische Materialien punktbasiert zu
animieren. Um dies zu erreichen, kommt die SPH-Methode zum Einsatz. Wahrend andere
Methoden weitaus zeitraubendere Verfahren wie etwa Moving Least Squares verwenden,
konnen mit diesem Ansatz sehr gute Rechenzeiten erzielt werden. Vor allem besticht das Ver-
fahren durch seine Erweiterbarkeit, insbesondere im Hinblick auf die Interaktion mit Stoffen,
die sich in anderen Aggregatzustdnden befinden. Dies alles ist durch eine Neuformulierung
der Ruhelage eines elastischen Objekts moglich, bei der statt der Startposition des Objekts
nur lokale Partikel-Nachbarschaften im Speicher gehalten werden. Diese Arbeit beschreibt
die Umsetzung und Evaluation dieses Verfahrens, insbesondere im Hinblick auf dessen
Robustheit und Effizienz. Diese Eigenschaften werden in einigen Experimenten, welche
verschiedenste Parameter variieren, bestatigt.
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1 Einleitung

Die Simulation und Animation von Materialien aller Art und deren Interaktionen unterein-
ander hat in den vergangenen Jahren immer mehr an Bedeutung gewonnen. Kaum jemand
wird die starke Zunahme von zumindest zum Teil animierten Filmen und Werbespots im
Fernsehen nicht bemerkt haben. Der Anspruch besteht darin, Photorealismus zu erzeugen,
wo keine echte Kamera verwendet werden kann oder soll. Bei Einzelbildern stellt dies ein
eher geringes Problem dar. Soll jedoch eine Abfolge von Bildern, also eben ein Film etc.,
erzeugt werden, miissen auch die Ubergénge zwischen diesen Bildern realistisch erscheinen.
Wasser soll physikalisch korrekt flieflen, ein Blatt soll, verlangsamt durch den Luftwiderstand,
vom Baum fallen. Betrachtet man Einzelbilder dieser Szenen, kann jedes fiir sich genommen
real aussehen, die zeitliche Abfolge mehrerer Bilder muss dies aber nicht. Es muss also
gewihrleistet werden, dass im Zeitverlauf physikalische Korrektheit gewahrt bleibt.

Physikalisch korrekte Simulationsmethoden von Materialien aller Art sind schon seit Jahr-
zehnten sowohl in der Industrie als auch in der Forschung in Verwendung. Mit deren Hilfe
kann auch bei einer Computeranimation der Realitdtseindruck gewahrt bleiben, indem
man das korrekte Verhalten aller in der Szene vorhandenen Gegenstidnde simuliert. Die
Computergrafik hat jedoch spezielle Anforderungen an diese Simulationsmethoden. Die
dort verwendeten Verfahren miissen vor allem schnell sein. Insbesondere fiir interaktive
Anwendungen wie etwa Computerspiele ist dies von Relevanz. Hier miissen mindestens
25 Einzelbilder pro Sekunde erreicht werden. Eine Methode welche das nédchste Bild nach
5 Minuten berechnet hat, ist in diesem Anwendungsbereich also unniitz. Dabei werden
gerne auch Kompromisse im Bezug auf den physikalische Korrektheit eingegangen, solange
das Ergebnis nur korrekt aussieht. Rein rechnerisch muss es dies aber nicht unbedingt
sein. Gesucht sind also Simulationsmethoden, die schnell sind und ein gewisses Mafs an
realistischem Eindruck wahren.

Viele in der Computergrafik verwendeten Simulationsmethoden sind partikelbasiert. Das
heifit, dass zu simulierende Objekte in kleine Partikel aufgeteilt werden, die dann untereinan-
der, je nach Modell unterschiedlich, miteinander interagieren konnen. Eine dieser Methoden,
die insbesondere bei Gasen zu guten Ergebnissen fiihrt ist Smoothed Particle Hydrodyna-
mics (SPH). SPH wurde urspriinglich entwickelt, um die Simulation von Gasdynamik in
Weltraumnebeln zu vereinfachen, deren Berechnung mit Hilfe der damals existierenden
Methoden, wie beispielsweise der Finite-Elemente-Methode (FEM), recht zeitintensiv waren.
Einige Jahre nach dessen Veréffentlichung wurden auch zunehmend Verfahren entwickelt,
welche SPH in der Fluidsimulation zur Anwendung bringen. Fluide konnen mit dieser
Methode weitaus zeiteffizienter als bisher simuliert und animiert werden, was nattirlich
fiir Branchen wie die Animationsfilmindustrie recht interessant ist. Vor der Simulation von
Feststoffen mittels SPH wurde bis vor kurzem jedoch zuriickgeschreckt. Wahrend bei Gasen



1 Einleitung

und Fliissigkeiten die Partikel nicht fest untereinander verbunden sind, erfordern Feststoffe
meist eine bestimmtere Partikelanordnung. Diese ist weitaus schwerer zu modellieren als
beispielsweise die recht freie Bewegung von Gaspartikeln im Vakuuum. Besonders elastische
Materialien verursachen grofie Schwierigkeiten, da hier die Partikel innerhalb eines Objekts
ihre Position dndern kénnen, ohne dass das Objekt seinen Zusammenhalt verlieren darf.

Trotz all dieser Schwierigkeiten gelang es in den letzten Jahren, Verfahren zu entwickeln,
welche elastische Feststoffe mit sehr zufriedenstellenden Ergebnissen modellieren und die
den speziellen Anforderungen der Computergrafik gentigen. In dieser Arbeit wird daher
ein Verfahren présentiert, welches in der Lage ist, elastische Materialien unter Verwendung
von Smoothed Particle Hydrodynamics zu simulieren und zu animieren. Das physikalische
Verhalten der simulierten Objekte muss dabei, wie schon erwéhnt, nicht perfekt sein, jedoch
muss es dsthetischen Anspriichen gentigen. Es sollen so gut wie alle elastischen Materialien
vom Radiergummi bis hin zu Wackelpudding animiert werden konnen. Wie bereits ausge-
fiihrt, soll dieses Verfahren sowohl schneller als bereits existierende Methoden, als auch leicht
erweiterbar sein. Dabei bedient es sich dem Elastizititsmodell der Kontinuumsmechanik.
Die genauere Zielsetzung dieser Arbeit soll nun im nédchsten Abschnitt erldutert werden.

1.1 Zielsetzung

Das Ziel dieser Bachelorarbeit ist es, ein Verfahren zur Simulation deformierbarer Objekte
umzusetzen und zu analysieren. Dieses soll auf einer Methode basieren, welch im Jahre 2007
von Solenthaler und Kollegen veroffentlicht wurde. Sie beschreiben in ihrer Arbeit ,, A Unified
Particle Model for Fluid-Solid Interactions” [SSPo7] ein Modell, welches die Interaktion
zwischen Feststoffen und Fliissigkeiten auf sehr einfache Weise umsetzt. Insbesondere gehen
sie auf die elastischen Materialien ein und zeigen ein Verfahren auf, wie diese Mittels SPH
simuliert werden konnen. Auf genau dieses Verfahren stiitzt sich diese Bachelorarbeit.

Nach der Implementierung des Grundverfahrens fiir elastische Korper soll dieses auf seine
Robustheit und seine Effizienz gegeniiber anderen Verfahren untersucht werden. Es soll
auch die physikalische Plausibilitdt der Simulation evaluiert werden.

1.2 Uberblick liber die Arbeit

Im Polgenden soll nun ein kurzer Uberblick iiber die Arbeit gegeben werden. Kapitel 2
prasentiert einige verwandte Arbeiten mit dhnlichem Themengebiet. Themengebiet, die
fiir diese Arbeit relevant sind. In Kapitel 3 soll dann zunéchst auf einige fiir diese Arbeit
wichtigen Grundlagen eingegangen werden. So behandelt Abschnitt 3.1 die Grundziige der
punktbasierten Simulation. Eine Methode, die dazu dient in einer Punktbasierten Simulation
einige notige Werte zu bestimmen, namentlich Smoothed Particle Hydrodynamics, wird
dann in Abschnitt 3.2 eingefiihrt. Abschnitt 3.3 behandelt dann die Elastizitatstheorie der
Kontinuumsmechanik, soweit sie fiir diese Arbeit von Belang ist.
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1.2 Uberblick Gber die Arbeit

Kapitel 4 fiihrt daraufhin das Simulationsmodell fiir elastische Korper ein, welches in [SSPo7]
prasentiert wird. Insbesondere wird auch auf die Anwendung von Smoothed Particle Hydro-
dynamics in diesem Falle eingegangen. In Kapitel 5 werden einige Implementierungsdetails
erlautert.

Kapitel 6 préasentiert einige der Ergebnisse, die bei Anwendung dieser Simulationsmethode
im Laufe dieser Arbeit erreicht worden sind. Die Abschnitte 6.2 und 6.1 zeigen die Resultate
auf, die bei Variation von Parametern fiir die Elastizitdt auftreten. Zu Details zu diesen
Materialeigenschaften sei auf Abschnitt 3.3.4 verwiesen. In Abschnitt 6.3 wird auf die
verschiedenen SPH-Grundparameter eingegangen, beziehungsweise auf die Effekte ihrer
Veranderung (siehe auch Abschnitt 3.2).

Die Diskussion der aufgezeigten Ergebnisse findet dann in Kapitel 7 statt. Eingangs wird
dort die Plausibilitdt der Ergebnisse fiir bestimmte elastische Parameter diskutiert. Daraufhin
wird dann noch auf die Vor- und Nachteile der Methode eingegangen und abschliefiend ihre
Erweiterbarkeit aufgezeigt. Kapitel 8 fasst diese Arbeit dann schlussendlich zusammen und
gibt einen kurzen Ausblick auf mogliche kiinftige Weiterentwicklungen.
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2 Verwandte Arbeiten

Die Forschung in den Bereichen der Simulation von Elastizitdt hat im Laufe der Jahre eine
Vielzahl von Arbeiten und Modellen hervorgebracht. Die Elastizitdtstheorie selbst ist sehr
weit ausgearbeitet. Zusammenfassungen, insbesondere mit Fokus auf die Anwendbarkeit
in der Computergraphik, sind beispielsweise [TPBF87], [GMg7] oder [NMK™*06]. Welche
Arbeiten noch von Relevanz sind, soll in den folgenden beiden Abschnitten gezeigt werden.

Bei den prisentierten Arbeiten kann zwischen den sogenannten gitterbasierten und den
gitterlosen Methoden unterschieden werden. Wahrend bei ersteren zwischen den simulierten
Objekten ein gewisser raumlicher Zusammenhang, also ein Gitter, besteht, konnen sie sich
bei letzteren weitesgehend frei bewegen, ohne durch eine Gitterstruktur eingeschrankt zu
sein.

2.1 Gitterlose Methoden

Bei den meisten gitterlosen Methoden handelt es sich um Partikelsysteme. Deren urspriingli-
che Grundlagen liegen in der newtonschen Punktmechanik, die schon im 17. Jahrhundert
von Isaac Newton ausgearbeitet wurde [New87]. In der Computergraphik kam diese Art
der Modellierung jedoch erst recht spat an. 1983 wurde in [Ree83] ein Verfahren présen-
tiert, das etwa Feuer mittels Partikelsystemen anschaulich visualisieren kann. [LW85] fiihrt
Punkte als Bildschirmprimitive ein und ermdoglicht somit, dass Simulationsergebnisse von
punktbasierten Methoden anschaulich prasentiert werden konnen. Auf dem Gebiet der
Simulation hat sich vor allem Smoothed Particle Hydrodynamics hervorgetan. Diese Me-
thode wurde in [GM77] und [Lucyy] erstmals préasentiert. Reviews der Methode stammen
vor allem von Monaghan ([Mongz2], [Monosa], [Monosb]). In [SM9g3] wird versucht mittels
einer eigenen Implementierung die Grenzen von SPH aufzuzeigen. In den folgenden Jahren
kam diese Methode immer mehr in der Computergrafik an. So prasentierten Desbrun und
Kollegen ([DCg6]) eine Methode, welche in der Lage ist verschiedenste einfache Materialien
Zu animieren.

Infolgedessen erschien eine Vielzahl von Arbeiten mit unterschiedlichen Schwerpunkten.
In [MCGo3] wird eine Methode prasentiert, mit der Fluide mittels SPH simuliert werden
konnen. Die Simulation elastischer Koérper wird etwa in [MKN*o04] oder [SSPo7] thematisiert.
Waéhrend sich erstere Arbeit auf feste, elastische und schmelzende Korper konzentriert,
versucht letztere, ein universales Partikelmodell zu entwickeln, um die Interaktion von
Objekten verschiedener Aggregatszustinde zu vereinfachen. Erstere verwendet dazu Moving
Least Squares, was recht zeitintensiv sein kann, bei dem universalen Partikelmodell kommt
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2 Verwandte Arbeiten

das SPH-Modell zum Einsatz. Wie schon erwéhnt, basiert das in dieser Arbeit prasentierte
Verfahren auf der Arbeit von Solenthaler und Kollegen.

Ebenfalls relevant ist [KAGTo5], welche ein dhnliches Verfahren présentiert, das jedoch
mehr auf Zustandsiibergénge zwischen fest und fliissig fokussiert ist. Elastizitat ist dort
nur ein Nebenprodukt. Das Elastizitdtsmodell von [SSPo7] wird in [BITog] erweitert, um
Rotationsinvarianz bei elastischen Kérpern zu ermoglichen. In [GBBog] konzentriert man
sich, ebenfalls basierend auf [SSPo7], ausschlieSlich auf elastische Materialien und es wird
keine initiale Referenzkonfiguration von Objekten verwendet, wie es bei vorhergehenden
Modellen der Fall war. Ein wichtiger Aspekt der Simulation elastischer Materialien, das
Kontaktverhalten mehrerer Objekte, wird in [KMHTo4] thematisiert. Zusétzlich zu den
Methoden zur Simulation sind auch Methoden zur Oberflachenrekonstruktion von Relevanz.
In [BGB11] wird z. B. eine solche Methode présentiert.

2.2 Gitterbasierte Methoden

Neben den gitterlosen Methoden sind die gitterbasierten von hoher Relevanz. Vor allem in
der Industrie sind letztere beliebter bzw. weiter verbreitet, da dort eher auf Korrektheit denn
auf Schnelligkeit Wert gelegt wird. Das soll jedoch nicht heifsen, dass gitterbasierte Methoden
zwangslaufig korrekter sind als gitterlose. Zu ihnen gehoren etwa die Finite-Elemente-
Methode (FEM) oder Masse-Feder-Systeme. Eine Einfithrung in die FEM wird beispielsweise
in [Brao3] vorgenommen. Dank der natiirlichen elastischen Eigenschaften von Federn, werden
Masse-Feder-Systeme vor allem zur Simulation von elastischen Materialien oder Stoffen
verwendet. Masse-Feder-Systeme sind jedoch zur Simulation einiger Eigenschaften von
elastischen Objekten ungeeignet. In [CZKMg8] wird ein solches System zur Animation
fallender Gegenstinde verwendet. Speziell mit den Eigenschaften von elastoplastischen
Materialien beschéftigen sich zwei Arbeiten von O’Brian, welche die FEM verwenden. In
[OHgg] werden vor allem sprode Materialien thematisiert, [OBHoz2] prasentiert ein Verfahren
fiir dehnbare Objekte. In beiden Arbeiten wird speziell auf das Bruchverhalten unter grofien
Kraften eingegangen. Ein Verfahren, dass sich vor allem fiir sehr starke Deformationen
eignet, wird in [WTo8] préasentiert. Da insbesondere FEM im Gegensatz zu vielen gitterlosen
Methoden recht zeitintensiv ist, findet es in der Computergrafik seltener Anwendung.

14



3 Grundlagen

Dieses Kapitel beschéftigt sich mit den nétigen Grundlagen, die zum Verstdndnis der Simula-
tionsmethode dieser Arbeit vonnéten sind. Abschnitt 3.1 fithrt den Begriff der Punktbasierten
Simulation ein. Abschnitt 3.2 fithrt dies dann weiter und erldutert die Funktionsweise von
Smoothed Particle Hydrodynamics, welches eine Methode darstellt, die bestimmte bendtigte
Groflen in einer Punktbasierten Simulation berechnen kann. Abschlieflend wird noch auf die
Elastizitdtstheorie der Kontinuumsmechanik eingegangen, welche in vielen Simulationsmo-
dellen Anwendung findet (Abschnitt 3.3).

3.1 Punktbasierte Simulation

Seit jeher ist es das Ziel von Physikern und anderen Wissenschaftlern das Verhalten von allen
Dingen zu 100% genau vorhersagen zu konnen. Die kontinuierliche Natur des Universums
ist hierbei jedoch hochst hinderlich. Hat man genaue Aussagen iiber zwei Punkte im Raum
getroffen, heifst dies nicht zwangsldufig, dass man daraus das dazwischen liegende einfach
folgern kann. Auch fiir Computer-Simulationen ist dies sehr hinderlich, da Rechner nur
mit einer endlichen Datenmenge umgehen konnen. Somit ist also eine Vereinfachung der
allgemeinen Modelle notwendig, um effizient Vorhersagen treffen zu konnen. Dies kann
getan werden, indem man nur die Werte von endlich vielen Messstellen berticksichtigt.
Hierfiir gibt es zwei grundlegend unterschiedliche Taktiken.

Es scheint naheliegend, dass man den Raum einfach aufteilen kann, wenn man beispielsweise
jeden Millimeter einen Messpunkt anbringt. So kann ein Wiirfelformiger Raum mit 10cm
Kantenldnge mit Hilfe von 1000000 Messpunkten beschrieben werden. Der Unterschied der
beiden erwdhnten Taktiken besteht nun darin, wie man diese Messpunkte behandelt. Will
man in diesem Wiirfel etwa die Bewegung von Wasser simulieren, kann man die Mess-
punkte an ihrer Ursprungsposition belassen und etwa die Druckverteilung zwischen diesen
Messpunkten simulieren. Die Punkte sind, wie beschrieben, in einem Gitter angeordnet
[NMK*06].

Die zweite Moglichkeit besteht darin, jeden Punkt als Bestandteil des zu simulierenden
Gegenstands zu betrachten (hier: als Wasserteilchen). Bewegt sich das Wasser im Wiirfel,
bewegen sich die das Wasser reprasentierenden Teilchen ebenfalls, gleichférmig mit dem Was-
ser. So besteht die Moglichkeit, dass bestimmte Teile des Raums nicht betrachtet werden (jene
ohne Wasser darinnen), andere jedoch schon. Jeder Punkt, bzw. jedes Partikel reprasentiert
einen Teil der Eigenschaften des gesamten Wassers im simulierten Raum [NMK™ 06].
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Abbildung 3.1: Vergleich zwischen Eulerschen (links) und Lagrange-Methoden (rechts).

Hier ist also leicht der Unterschied zwischen beiden Herangehensweisen sichtbar. Bei dem
ersten sogenannten Eulerschen Ansatz wird der Raum diskretisiert. Bei letzterem, dem
Lagrange-Ansatz diskretisiert man das zu simulierende Material [NMK™06]. Dies sei an
Abbildung 3.1 verdeutlicht.

Wihrend links beim Eulerschen Verfahren bei vielen Messpunkten kein Wasser vorhanden
ist, ist dies rechts beim Lagrange-Ansatz nicht der Fall. Somit wird vermieden, leeren Raum
simulieren zu miissen, was Rechenleistung spart. Im Gegenzug ist natiirlich in einem Raum
mit hoherer Partikeldichte entsprechend mehr Leistung erforderlich. Eine komplett gefiillte
Doméne wird gegeniiber dem Eulerschen Ansatz eventuell sogar im Nachteil sein, was die
reine Rechendauer angeht, da somit der Vorteil des Lagrange-Ansatzes verloren geht.

Um dem Lagrange-Ansatz gerecht zu werden kann man das zu simulierende Medium belie-
big unterteilen. Die einfachste Moglichkeit dazu besteht darin, dies mittels einer endlichen
Menge von Punkten zu tun. Bei der weiteren Verfahrensweise hat man nun wiederum zwei
Moglichkeiten. Entweder diirfen die Punkte sich frei im Raum bewegen, oder sie werden
gitterartig untereinander verbunden. Bei ersteren handelt es sich um die punktbasierten, bei
letzteren um die gitterbasierten Methoden.

Die punktbasierten Systeme wurden im Jahre 1983 von William T. Reeves in [Ree83] einge-
fithrt. Damals dienten sie jedoch eher zur eher dsthetisch motivierten Animation denn zur
Simulation von physikalischen Phianomenen. Mit ihnen wurde im Film ,Star Trek II: Der
Zorn des Khan” die Ausbreitung einer Schockwelle eines Bombeneinschlags dargestellt.
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3.1 Punktbasierte Simulation

Fiur beide Ansdtze existieren die unterschiedlichsten Verfahren die auf ihnen basieren.
Wihrend beispielsweise die Finite-Elemente-Methode (FEM) [Brao3] zu den gitterbasierten
Methoden gezahlt wird, gehoren beispielsweise Smoothed Particle Hydrodynamics (siehe
Abschnitt 3.2) oder eben die von Reeves beschriebenen , Loosely coupled particle systems”
[Ree83] zu den punktbasierten Methoden.

Im Folgenden sollen nun die grundlegenden Methodiken und Annahmen erldutert werden,
die fiir eine punktbasierte physikalisch motivierte Simulation notwendig sind.

3.1.1 Partikel

In punktbasierten Systemen sind, wie zu erwarten, die Punkte bzw. die Partikel die wichtigs-
ten Bestandteile. Sie repriasentieren die zu simulierenden Materialien. Die Beschreibung eines
Objekts in einem solchen System wird also durch die Beschreibung all seiner zugehorigen
Partikel ersetzt. Um dies leisten zu konnen, werden jedem Partikel diverse Eigenschaften
mitgegeben [Ree83]. Diese Eigenschaften konnen variieren, je nachdem zu welcher Aufgabe
das System in der Lage sein soll. Die gebrauchlichsten sind hierbei:

Position x: Wird im Normalfall im dreidimensionalen Raum angegeben, also x € R3. Sie
beschreibt den genauen Punkt im gegebenen Koordinatensystem, in dem sich das
Partikel aktuell befindet. Natiirlich auch zweidimensional méoglich (x € R?).

Geschwindigkeit v: Im dreidimensionalen Raum gilt, analog zur Position, v € R3. Die
Richtung des Vektors beschreibt die aktuelle Bewegungsrichtung des Partikels, die
Léange beschreibt den Betrag der momentanen Geschwindigkeit.

Zu diesen sehr grundlegenden Eigenschaften konnen noch einige hinzukommen, die speziell
fiir physikalische Simulationen von Belang sind:

Masse m: Wird als Skalar m € R angegeben. Beschreibt die Masse des Raumteils, fiir den
das Partikel zustdndig ist. Summiert man die Masse aller Partikel eines Objekts, erhalt
man die Objektmasse.

Volumen v: Beschreibt die Grofse des Raumteils, fiir den das Partikel zustdndig ist. Das
Volumen ist besonders in [SSPoy] von Relevanz. Im Gegensatz zur Geschwindigkeit
handelt es sich hierbei nicht um einen Vektor sondern um ein Skalar, trotz desselben
Symbols.

Temperatur T: Reprdsentiert die aktuelle Temperatur an der Partikelposition.

Da Partikelsysteme nicht nur fiir physikalisch motivierte Simulationen von Belang sind sind,
sondern auch im Bereich der Visualisierung eine grofse Rolle spielen, konnen noch folgende
Eigenschaften Anwendung finden:
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3 Grundlagen

Farbe: Typischerweise als RGB-Farbwert angegeben. Ist vor allem bei der Visualisierung von
Relevanz. Kann sich im Zeitverlauf andern um beispielsweise Temperaturdnderungen
visuell zu verdeutlichen.

Transparenz: Ist gewissermaflen der a-Kanal zu der Farbe des Partikels. Bei der Fliissigkeits-
visualisierung kann ein Partikel evtl. leicht durchsichtig sein. Diese Durchsichtigkeit
wird im Transparenzwert festgelegt.

Form: Auch meist fiir die Visualisierung von Relevanz, beschreibt das dufiere Erscheinungs-
bild eines Partikels.

Aus allen Eigenschaften, die die Partikel eines Systems besitzen, konnen dann die neue
Position bzw. die neuen Eigenschaften errechnet werden, die ein Partikel zu einem spéteren
Zeitpunkt innehat. So gut wie alle punktbasierten Methoden gehen nach diesem Schema
vor. Der Unterschied zwischen ihnen besteht zumeist darin, wie diese Eigenschaften be-
rechnet werden. Im Regelfall wird dazu eine Interpolationsmethode verwendet, da eine
endliche Anzahl von Stiitzstellen (die Partikel) existieren, auf deren Basis die Berechnung
durchgefiihrt werden kann. Aufgrund der hohen Anzahl unterschiedlicher existierender
Interpolationsalgorithmen ist die Anzahl der Moglichkeiten fiir solche Simulationen sehr
hoch. Zu den bekanntesten und verbreitetsten zdhlen unter anderem SPH oder Moving Least
Squares (MLS). Diese nehmen die Eigenschaften benachbarter Partikel als Eingabewerte, um
daraus andere Eigenschaften des betrachteten Partikels zu berechnen.

3.1.2 Newtonsche Gesetze

Die Diskretisierung mittels Partikeln kann in unterschiedlichen Grofienordnungen durchge-
fithrt werden. Je nach Anwendungsfall kann man etwa einen 1m?-Gummiwiirfel mit einem
oder einer Milliarde Partikeln darstellen. Punktbasierte Simulationen verwenden haufig
ein makroskopisches Modell. Das heifit, dass unter anderem Effekte auf atomarer Ebene
vernachlédssigt werden. Natiirlich konnten diese auf irgendeine Weise ebenfalls modelliert
werden, jedoch wird in diesem Zusammenhang auf die Beschreibung dieser Falle verzich-
tet, da sie fiir diese Arbeit nicht relevant sind. Zudem spielen auch relativistische Effekte
meist keine Rolle. Das immer noch beliebteste Modell fiir diese Fille ist die Newtonsche
oder Klassische Mechanik, die zu grofien Teilen noch aus dem 17. Jahrhundert stammt.
Insbesondere die Berechnung der Partikelpositionen und -geschwindigkeiten geschieht mit
Hilfe von Gleichungen aus der klassischen Mechanik. Im Regelfall wird in den meisten
Arbeiten nur eine Berechnungsformel fiir die auftretenden Kréafte zwischen den Partikeln
gegeben. Die Umrechnung der Kréfte in resultierende Partikelgeschwindigkeiten und neue
Positionen im Zeitverlauf geschieht, fast schon selbstverstdandlich, durch die eben erwdhnten
Gleichungen.

Angenommen man versucht, Wasserbewegungen zu simulieren. In einer solchen Simulation
werden die einzelnen Wasserteilchen (nicht zu verwechseln mit H,O-Molekiilen, da es sich
um ein makroskopisches Modell handelt) untereinander mittels der auftretenden Kréfte
wechselwirken. Sammeln sich viele Teilchen nahe beieinander, kann dies als erhohter Druck
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3.1 Punktbasierte Simulation

bzw. erhohte Dichte an dieser Stelle interpretiert werden. Da Wasser fiir die meisten Berech-
nungen als inkompressibles Fluid angesehen werden kann, wird das System nun versuchen,
die erhohte Dichte auszugleichen. Dies wird modelliert, indem man Krifte einfiihrt, die
von einem Partikel auf andere, sich zu nahe befindende, Partikel wirken. Die Kraft wird zu
nahe Partikel von dem Partikel, von dem sie ausgeht, wegschieben, um den erhohten Druck
auszugleichen.

Seien alle Partikel von 1 bis n € IN durchnummeriert. Dann steht P; fiir das erste Partikel
und P; fiir das i-te, wobei 1 < i < n und i € IN. Die Kraft, die von Partikel Pj auf P; wirkt,
wird dann als F;; bezeichnet. Zusitzlich zu den Kriften zwischen den Partikeln kénnen noch
externe Kréfte auftreten, wie beispielsweise die Gravitation, die meist als konstante, nach
unten wirkende Kraft modelliert wird. Diese seien als F; ,,; bezeichnet. Die Summe aller
Kréfte, die auf P; wirken, ist F;. Als Anmerkung sei gesagt, dass es sich bei der Kraft um eine
vektorielle Groe handelt, der Vektorpfeil wird jedoch der Ubersicht halber weggelassen und
durch fetten Druck ersetzt. Mit Hilfe der drei Newtonschen Gesetze [New87] konnen dann
aus den Kriften und den schon bekannten Positionen und Geschwindigkeiten die neuen
Positionen und Geschwindigkeiten der Partikel berechnet werden. Das zweite dieser drei
Gesetze (das so genannte Aktionsprinzip), wobei m; die Masse des i-ten Partikels angibt und
x; dessen Position, lautet:

Fi = m; x % (3.1)

Umgeformt nach der Position x; kann nun mit Hilfe dieses Gesetzes die neue Position des
Partikels im Raum berechnet werden. Der Wert x; = v; wird gemeinhin als Geschwindigkeit
von P; bezeichnet. Des weiteren wird X; = v; = a; als dessen Beschleunigung bezeichnet.

Bevor jedoch die neuen Positionen bestimmt werden konnen, kann es von Vorteil sein
sicherzustellen, dass das erste und das dritte Newtonsche Gesetz erfiillt ist. Das erste ist
das der Tragheit. Es besagt, dass ein Partikel, auf das keine Kréfte wirken, seine aktuelle
Geschwindigkeit bzw. seinen aktuellen Impuls beibehilt. Das dritte Gesetz ist das von actio
und reactio. Es besagt, dass Krdfte immer in Paaren auftreten, die sich gegenseitig ausloschen.

Ubt P; auf P; eine Kraft F; aus, so gilt:
F; = —Fj (3-2)

Somit wirkt von P; auf P; eine betragsmifsig gleich grofie Gegenkraft. Final bleibt nur noch
die Losung einiger Differentialgleichung tibrig, um aus der umgeformten Gleichung 3.1 die
neue Geschwindigkeit und Position zu errechnen. Dieses Verfahren wird auch Zeitintegration
genannt, wobei der Zustand des Systems nach endlichen, jeweils gleich grofien Zeitschritten
bestimmt wird.

3.1.3 Zeitintegration
Die Zeitintegration ist ein Faktor fiir die Stabilitdt bzw. Robustheit einer Simulation. Wird

der Zeitschritt zu grofs gewdhlt, oder das falsche Verfahren angewandt, kann die Simulation
unter Umstdnden nicht beabsichtigte Ergebnisse liefern.
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3 Grundlagen

Formt man nun die Gleichung F; = m; * a nach der Beschleunigung a um, erhilt man
eine Differentialgleichung zweiter Ordnung. Hierbei handelt es sich wirklich um eine
Differentialgleichung, da F; von der aktuellen Position x; abhdngig ist:

. F;

w=a= ! (3
Dies ist ein Spezialfall einer Differentialgleichung, ein sogenanntes Anfangswertproblem,
da die Position x?, die Geschwindigkeit x? und die Beschleunigung X? zum Zeitpunkt ¢ = 0
gegeben sind. Diese konnen ndmlich zum Start der Simulation frei gewdhlt werden, je
nachdem wie das zu simulierende Objekt aussehen soll und welche Bewegung es zum Start
auszufiihren hat. Allgemein soll der Wert x! die Position des Partikels P; zum Zeitpunkt ¢
bezeichnen.

Dieses Anfangswertproblem konnte beispielsweise mit dem expliziten Euler-Verfahren (siehe
u.a. [APg8], [WBog7]) gelost werden. Neben dem Expliziten Euler-Verfahren existiert eine
ganze Reihe von anderen Verfahren, die ebenfalls in der Lage sind, lineare Differentialglei-
chungen numerisch zu 16sen. Das Explizite Euler-Verfahren z&hlt darunter noch zu den
einfachen. Da seine Anwendung die physikalischen Beziehungen fast 1 : 1 wiedergibt, wird
es sehr gerne der Anschaulichkeit halber verwendet, auch wenn zur eigentlich Integration
dann ein anderes Verfahren zum Zuge kommt. Zu anderen Losern fiir Differentialgleichun-
gen kann ebenfalls [AP98] zu Rate gezogen werden. Unter Verwendung des Euler-Verfahrens
ergeben sich dann folgende Beziehungen, welche leicht gelost werden konnen, da alle Werte
bekannt sind:

X0 = x4 %t ot

X0t = xt 4 x4 ot

(3-4)

Mit diesen Gleichungen kann die neue Position eines Partikels P;, bezeichnet mit xf”t aus

dessen alter Position xf berechnet werden. Der Wert 6t bezeichnet den zeitlichen Abstand, mit
dem das System abgetastet werden soll. Die Wahl der Grofse dieses Zeitschritts ist essentiell
fiir die Stabilitdt des Systems. In den meisten physikalischen Simulationen wird ein zu grofies
0t zu Instabilitat fithren. Wird es sehr klein gewéahlt, wirkt sich dies auf die Rechendauer
aus, da dann fiir die selbe Simulationsdauer mehr Zeitschritte absolviert werden miissen. Es
existiert auch die Moglichkeit, die Lange des Zeitschritts adaptiv zu bestimmen, indem man
eine Stabilitdtsbedingung formuliert, die vom System eingehalten werden muss. Dann kann
ot gerade klein genug gewidhlt werden, dass das System nicht instabil wird. Somit kdénnte
dann jeden Zeitschritt ein anderes ¢ verwendet werden.

Das endgiiltige Schema fiir eine Punktbasierte Simulation lautet schliefilich:

1. Berechnung der Kréfte F!

2. Berechnung der neuen Geschwindigkeiten vf*‘”
t+ot

3. Berechnung der neuen Positionen x;
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3.2 Smoothed Particle Hydrodynamics

Dieses Schema kann so oft wiederholt werden, wie notig. Will man z.B. eine Simulation von
1s Lange ausfiihren, sind 1s/Jt Wiederholungen notwendig. So gut wie jede physikalisch
basierte Simulation folgt einem Schema dieser Art. Je nach Differentialgleichungsloser
kann jedoch die Schrittreihenfolge variieren. Im folgenden Kapitel soll nun ein Verfahren
vorgestellt werden, welches bestimmte benotigte Werte in einer punktbasierten Simulation
diskret anndhern kann: Smoothed Particle Hydrodynamics.

3.2 Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics wurde urspriinglich von L. Lucy ([Lucy7]), R. A. Gingold
und J. J. Monaghan ([GM77]) entwickelt, um die Gasdynamik in Sternensystemen zu simu-
lieren. Die beide Arbeiten, in denen diese Systematik zuerst publiziert wurde, entstanden
unabhéngig voneinander, auch wenn Gingold und Monaghan in [GM77] klarstellen, dass
die Grundidee von Lucy in einer seiner Vorlesungen in Cambridge 1976 bereits erwidhnt
wurde und sie diese nur weitergefiihrt hatten. Gemeinhin wird jedoch meist Monaghan als
., Vater” von SPH dargestellt, da zum einen der Begriff SPH in [GM77] gepragt wurde und er
zum anderen viele weitere Forschungen in dem Gebiet angestellt hat.

Im Laufe der Jahre hat sich herausgestellt, dass das urspriingliche Verfahren allgemein und
simpel genug gehalten war, um einfach fiir andere Probleme adaptiert werden zu kénnen.
Beispielsweise wird von Desbrun und Kollegen in [DCg6] die Simulation unterschiedlichster
Stoffe mit stark variierenden Parametern prasentiert. Darunter befinden sich sowohl Fliis-
sigkeiten als auch Feststoffe. Von Miiller und Kollegen werden in [MCGo3] optisch sehr
ansprechende Ergebnisse mit Fluiden erzielt.

Wie genau SPH funktioniert, soll im Folgenden geklart werden.

3.2.1 Grundidee

Smoothed Particle Hydrodynamics basiert auf einem Interpolationsverfahren, mit dem
man einen skalaren Wert mit Hilfe eines Integrals interpoliert. Die Herleitung der SPH-
Grundgleichung beginnt bei der folgenden Identitét:

A(x) = [ ARS(x - x)dx (3.5)
(@)

Hier bezeichnet é(x) die so genannte Diracsche Delta-Funktion, welche unter anderem wie
folgt definiert werden kann [Walg4]:

5(x) = (3.6)

o ,wennx =20
0 ,wennx#0
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3 Grundlagen

Zusétzlich gilt noch die Bedingung;:

/ O(x)dx =1 (3.7)

—o0

Somit ist offensichtlich, dass die Identitit 3.5 Giiltigkeit besitzen muss, denn é(r — x) nimmt
nur einen Wert # 0 an, wenn r gleich x ist. A(r) kann als eine Grofle angesehen werden, die
wir approximieren wollen, sie konnte beispielsweise fiir die Dichte bei einem bestimmten
Partikel im Partikelsystem stehen. Um nun aus Gleichung 3.5 eine diskretisierbare Interpola-
tionsformel zu erhalten, ersetzt man §(x) durch W(x, ), die so genannte Kernel-Funktion.
Zu ndheren Details zur Kernel-Funktion, siehe auch Abschnitt 3.2.3. Sie sollte fiir giiltige
Ergebnisse folgende Eigenschaften besitzen:

lim W(r, h) = (r)
h—0

/W(r,h)dx —1

Zudem sollte sie symmetrisch zur y-Achse sein und in einem endlichen Bereich um x = 0
ungleich 0 sein. Der Wert h ist die so genannte Glattungsldange (engl. Smoothing Length).
Ihre Grofsenordnung spielt eine wichtige Rolle bei der Genauigkeit der nun aus Gleichung
3.5 erstellten Interpolationsformel, bei der 6(r) durch W(r, h) ersetzt wird:

A(r) ~ As(r) = / AX)W(r — x, h)dx (3.9)

Anhand der Definition von W(r, 1) kann man erkennen, dass die Genauigkeit der Interpola-
tion zunimmt, je kleiner die Glattungslange h ist, denn dann wird die Delta-Funktion besser
approximiert. Diese Interpolationsformel muss jedoch noch diskretisiert werden, da wir eine
diskrete Zahl von Partikeln besitzen, deren Werte wir approximieren wollen.

(3-8)

3.2.2 Diskretisierung der Interpolation

Wie Gleichung 3.9 diskretisiert wird, variiert je nach den Anforderungen, die gestellt werden.
In der Literatur wird dies gerne exemplarisch fiir den Anwendungsfall eines Fluids getan
[Monosb]. Dies soll hier nun auch geschehen. Ein Fluid wird in eine Menge kleiner Volu-
menelemente unterteilt. Wie schon in Abschnitt 3.1 dargelegt, kann man diese Elemente als
Partikel ansehen. Ein Partikel P, habe dabei Masse m,, Dichte p, und Position r,. Mit Hilfe
dieser Werte kann das Interpolationsintegral wie folgt geschrieben werden [Monosb]:

A(rY
/ pér/;p(r')dr’ (3.10)
Mit der Zusatzinformation, dass die Masse eines Volumens dem Integral tiber die Dichte des
Volumens entspricht, kann Gleichung 3.9 mit einer Summe {iiber die Massen approximiert
werden. Die finale, diskretisierte SPH-Gleichung lautet also:

Ag(r) = ZmbﬂW(r—rb,h) (3.11)
b Pb
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3.2 Smoothed Particle Hydrodynamics

Abbildung 3.2: Spiky-Kernel (spitz) und Poly 6-Kernel (flach) fiir & = 1.

Fiir A kann hier so gut wie jede benétigte Partikeleigenschaft eingesetzt werden, sei es die
Dichte oder sonstige Eigenschaften die fiir jeweilig verwendete Modell notig sind. Aufgrund
dessen gilt SPH als sehr flexibel und vielseitig anwendbar, da so gut wie alle zu berechnenden
Werte mit Hilfe der Formeln approximiert werden konnen. Sei einer dieser benttigten Werte
die Dichte. In diesem Fall kiirzt sich Gleichung 3.11 zu folgendem:

p(r) =Y myW(|r — 1|, 1) (3.12)
b

Somit wird die Dichte bei einem bestimmten Partikel allein aus den Massen und den
Abstanden zu den umliegenden Partikeln berechnet (h wird als gegeben angenommen).
Abschlieend bleibt nur noch zu kldren, welchen Einfluss die Kernel-Funktion W(r, h)
besitzt.

3.2.3 Kernel-Funktion

Wie schon angefiihrt, besitzt die Kernel-Funktion W(r, &) und einer ihrer Eingabeparame-
ter, die Glattungsldnge /, einen enormen Einfluss auf die Giite und die Performance der
Approximation. Man rufe sich noch mal die Eigenschaften der Funktion aus Gleichung3.8
in Erinnerung. Der Zweck der Kernel-Funktion ist es, eine Gewichtung aufgrund eines
gegebenen Partikelabstandes r bereitzustellen, abhdngig von der Glattungslange h. Da sie
die Diracsche Delta-Funktion anndhern soll, befindet sich ihr Maximum bei W(0, h). Das
Maximum der Delta-Funktion ist ebenfalls bei 6(0). Es sei noch angemerkt, dass der Ein-
gabeparameter r eher als |r| zu verstehen ist, da man einzig und allein am Abstand zweier
Partikel interessiert ist, nicht an deren Relativposition. Dennoch ist auch eine Abhédngigkeit
von der Relativposition denkbar. Diese Schreibweise hat sich jedoch so eingebiirgert.

In der Praxis wihlt man fiir W(r, 1) eine Funktion, die von ihrem Maximum bei x = 0 nach
aufsen hin abfallt und symmetrisch zur y-Achse ist. Um die Performance der Approximation
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Abbildung 3.3: Verhalten von SPH.

zu verbessern, sind diese Funktionen so designt, dass sie bei Werten von |r| > 2h konstant 0
sind [Mongz2]. In den Anfangszeiten nahm man dazu meist eine abgeschnittene Gauss-Kurve.
Jedoch stellte sich schon bald heraus, dass eine Gauss-Kurve nicht immer den geeignetsten
Kernel darstellt. Daher ging man dazu {iber, fiir jeden zu approximierenden Wert eigene
Funktionen zu entwickeln. So entwickelten etwa Desbrun und Kollegen folgende Kernel-
Funktion, den so genannten Spiky-Kernel [DCg6]:

W(jel h) = -

Th®

15 {(h —[r)> ;0< || <h (3.13)

0 ; sonst

Der Graph fiir diese Funktion ist in Abbildung 3.2 gegeben, wobei es sich um die spitz zu-
laufende Funktion handelt. Bei der flacheren Funktion handelt es sich um den Poly 6-Kernel
von Miiller und Kollegen [MCGo3]. Wahrend ersterer speziell fiir die Berechnung der Dichte
entwickelt wurde, handelt es sich bei letzterem um einen Kernel, der in multiplen Gebieten
zum Einsatz kommt. Wie an den beiden Graphen erkennbar ist, sinken die Funktionswerte
schon bei |r| > h auf 0 und nicht erst bei |r| > 2h. Dieses Verhalten wurde erst in neueren
Arbeiten eingefiihrt ([DCg6], [MCGo3], etc.). Man wollte wohl direktere Kontrolle haben, ab
welchem Abstand zum betrachteten Partikel die Werte der anderen Partikel an Relevanz
verlieren.

Das Gesamtverhalten von SPH sei auch an Abbildung 3.3 verdeutlicht. Angenommen, man
will die Dichte an der Position des mittleren Partikels (rot, grofs) berechnen. In diesem
Fall sind nur alle Partikel von Relevanz, die sich innerhalb der Glidttungsldnge i um das
betrachtete Partikel befinden (schwarz). Bei allen anderen (weif3) betragt der Riickgabewert
der Kernel-Funktion 0 und sie sind somit nicht relevant. Je ndher sich ein Partikel an
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dem betrachteten befindet, desto relevanter ist es fiir die Dichte an dessen Position. Es sei
angemerkt, dass das Partikel, fiir das die Berechnung durchgefiihrt wird, selbst auch noch
mit einfliefdt. Insgesamt sdhe dann ein kompletter SPH Simulations-Zeitschritt so aus:

1. Berechnung der Nachbarschaften aller Partikel (alles mit Abstand > h soll nicht
betrachtet werden)

2. Berechnung aller relevanten Werte fiir die Partikel (also z.B. Dichte, ...)
3. Daraus: Berechnung der wirkenden Krifte (z.B. Druckkraft, ...)

4. Zeitintegration

Der SPH-Formalismus wird in diesem Schema nur in Punkt 2 und evtl. in Punkt 3 zum
Einsatz kommen, um aus den Materialeigenschaften resultierende Werte zu approximieren.
Alles andere wird mit anderen Verfahren berechnet.

3.3 Elastizitatstheorie

Da es das Ziel dieser Arbeit ist, elastische Materialien zu modellieren, werden noch einige
Anleihen aus der Elastizitdtstheorie der Kontinuumsmechanik benétigt. Die Frage die man
sich stellen muss, ist: Welche Prozesse finden innerhalb eines elastischen Korpers statt und
wie kann man diese modellieren? Da es sich hierbei, wie gesagt, um ein Teilgebiet der
Kontinuumsmechanik handelt, sind alle Aussagen, die getroffen werden, fiir das Kontinuum
relevant. Dies konnen wir uns fiir die Punktbasierte Simulation zu Nutze machen, indem wir
die bestehenden Kontinuumsgleichungen, bei denen es sich meist um Differentialgleichungen
handelt, diskretisieren. Dies kann durch Unterteilung des Raums auf mehrere Partikel
geschehen.

Wihrend man sich bei der Simulation von Starrkérpern um deren Deformation weniger
Gedanken machen muss, stofst man bei elastischen Korpern durch die vielschichtigen
internen Prozesse auf grofiere Schwierigkeiten. Zieht man beispielsweise einen Gummiblock
in einer Richtung auseinander, wird er sich in der Regel in Richtung der beiden anderen
Raumdimensionen zusammenziehen. Dies ist nur eines der Phianomene, die modelliert
werden miissen. Die fiir diese Arbeit relevanten Verhaltensweisen elastischer Korper sollen
nun im Folgenden geklart werden.

3.3.1 Spannung

Wirkt man auf einen elastischen Korper von aufien her eine Kraft aus, wird diese zum
Teil in das innere des Korpers abgeleitet und fithrt zu internen Spannungen. Zieht man
etwa an einem Kaugummi, wird durch die wirkenden Kréfte nicht nur die Fldche, an der
gezogen wird, ihre Position d&ndern, sondern auch Teile des Kaugummis, welche nicht in
direktem Kontakt mit dieser Kraft stehen. Anhand von Abbildung 3.4 sei eine dieser Krifte,
die Normalkraft visualisiert.
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Abbildung 3.4: Kraft, welche in Richtung der Normale auf einen Zylinderschnitt wirkt (nach
[Slaoz2]).

Der Zylinder wird mit Hilfe der Krifte F und F' an den Grundfldchen auseinander gezogen.
Ein Teil dieser Kraft iibertrdgt sich auch ins innere des Zylinders auf die Flache A. Wiederum
ein Teil dieser Kraft, namentlich AF {iibertrédgt sich auf eine Teilfldiche von A, also AA. Die
Normalenspannung ¢ an einem Punkt ist dann wie folgt definiert [Slaoz]:

AF
c= lim — (3.14)

Gewissermafien kann also die Normalenspannung als Gegenteil des physikalischen Drucks
gesehen werden, nur die Kraft wirkt in die entgegengesetzte Richtung. Sie wird offensichtli-
cherweise Normalenspannung genannt, weil die Kraft, iiber die sie definiert ist, in Richtung
der Ebenennormalen wirkt. Aus den Normalenspannungen aller Punkte in Flache A kann
dann noch die durchschnittliche Spannung fiir den Zylinderschnitt A berechnet werden

[Slaoz]:
_1 _ |F|
U'uvg - AA/U'dA - A (315)

Neben der Normalenspannung existiert jedoch noch eine andere Art von Spannung, die
so genannte Schubspannung. Sie wirkt nicht entlang der Normalen, sondern entlang der
Ebenentangenten. So etwas ist auch bei dem Beispiel des Kaugummis beobachtbar. Zieht man
ihn entlang einer Raumachse auseinander, wird er sich entlang der anderen Raumachsen
zusammenziehen. Die Spannungen, die fiir dieses Zusammenziehen verantwortlich sind,
sind die Schubspannungen. Sie sind analog zu der Normalenspannung definiert. Sei F, die
Normalenkraft in Richtung der x-Achse an einem Punkt, dann bezeichnet F,, die Kraft, die
sich, verursacht durch die Materialeigenschaften, von der x-Achse auf die y-Achse tibertragt.
Aus diesen Kriften Fy, Fy, und F,; lassen sich dann die Normalenspannung oy und die
Schubspannungen 7, und Ty, berechnen:

AF, AFsy . = lim 2Fe
Xz —
AA—0 AA

oy = lim (3.16)

— Ty = lim —Z
rM—0 AAT Y T AAS0 AA
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3.3 Elastizitatstheorie

B L+46 .
+ F
Q >
= X+U - >
Ax+Au

Abbildung 3.5: Longitudinale Verzerrung eines Quaders (nach [Slaoz]).

Insgesamt existieren im dreidimensionalen Raum pro Raumpunkt drei unterschiedliche
Normalenspannungen und sechs unterschiedliche Schubspannungen. Diese Spannungen
konnen im Spannungstensor, der genau fiir einen Punkt im Kontinuum Giltigkeit besitzt,
angeordnet werden:

O-X Txy TXZ
[a} = |[Tyx 0y Ty (3.17)
TZJC sz U.Z

In diesem sind alle méglichen Spannungen in den drei Raumdimensionen abgetragen.

3.3.2 Verzerrung

Neben den Spannungen existiert eine weitere wichtige Grofie im Bezug auf elastische Korper.
Diese ist die so genannte Verzerrung €. Sie entsteht durch die in der Grofse der Spannung
o enthaltenen Kréfte. Diese Kréfte ziehen an einem bestimmten Punkt im Objekt und
verursachen somit, dass sich seine Position dndert. Abbildung 3.5 zeigt die Verzerrung eines
Quaders (die dritte Dimension wird nicht abgetragen). Vor der Auswirkung der Kraft F
besitzt es Lange L, danach Lange L + J. Betrachtet man nun einen Teilabschnitt der Lange
Ax, besitzt dieser nach der Auswirkung der Kraft die Lange Ax + Au. Dieser Teilabschnitt
hat sich also durch die Auswirkungen der Kraft um Au gedehnt. Mit Hilfe dieser Grofien
kann jetzt die Definition der Verzerrung e geschehen [Slaoz]:
Au  du

€= lim —

Ax—0 Ax  dx (3.18)

Der Wert € bezeichnet dann die Verzerrung an einem bestimmten Punkt Q. Ahnlich zur
Spannung ¢ kann auch hier eine Ubertragung der Verzerrung in andere Raumrichtungen
stattfinden, je nachdem wie das Material beschaffen ist.
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3 Grundlagen

A

Abbildung 3.6: Orthogonale Verzerrung eines Quaders (nach [Slaoz]).

Betrachten wir Abbildung 3.6. Der Winkel ZBAC betrdgt initial 90° = 0,57. Nach einer
Verformung durch eine Schubspannung 7 dndert sich dieser Winkel. Anders als die longitu-
dinale Verzerrung e wird die orthogonale Verzerrung -y mit Hilfe dieses Winkels bestimmt:

y= g — /B'A'C (3.19)
Ebenfalls analog zur Spannung konnen auch die Verzerrungen als Tensor geschrieben
werden:
€x Ty Taz
[6} = |Tyx €y  Tyz (3-20)
Yzx  Yzy €z

Diese Tensorschreibweisen werden spater noch wichtig werden, um das allgemeine Hooke-
sche Gesetz zu formulieren (siehe Abschnitt 3.3.5).

3.3.3 Hookesches Gesetz

Aufgrund der Definitionen von Spannung und Verzerrung erscheint es logisch, dass zwischen
diesen beiden Grofsen irgendeine Beziehung bestehen muss. Besteht eine Spannung an einem
Punkt des Objekts, versucht dieses, diese durch Deformation, also Verzerrung, abzubauen.
Aufgrund der Bewegungs- und Kraftgesetze, die teilweise auch in Abschnitt 3.1.3 beschrieben
werden, erscheint ein linearer Zusammenhang korrekt. Dieser konnte auch experimentell
bestatigt werden. Also kann man eine GesetzmafSigkeit formulieren [Slaoz]:

o= Ee (3.21)

Dieses Gesetz ist als das Hookesche Gesetz bekannt. Diese Beziehung gilt ausschliefilich
zwischen der Normalenspannung und der longitudinalen Verzerrung. E ist ein Proportio-
nalitatsfaktor. Unter zu grofien Kraften jedoch kann selbst ein elastisches Material dieses
Gesetz nicht mehr erfiillen, da jedes Material irgendwann reifst oder ausleiert.
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3.3 Elastizitatstheorie

3.3.4 Elastizitatsmodul und Poissonzahl

Nach der Formulierung der allgemeinen Gesetzmaéfiigkeiten bleibt noch die Frage offen,
worin sich verschiedene Materialien in ihrem Elastizitatsverhalten unterscheiden. Wir sind
also auf der Suche nach Materialkonstanten, die fiir jeden Werkstoff spezifisch sind. Eine rele-
vante ist der im Hookeschen Gesetz (Gleichung 3.21) vorkommende Proportionalitatsfaktor E.
Dieser ist auch als Elastizititsmodul oder Youngsches Modul bekannt. Das Elastizitatsmodul
ist ein Mafs fiir die Steifigkeit eines Materials, wenn auch nicht der einzige Faktor, der diese
bestimmt. Je steifer ein Material ist, desto hoher fillt E aus. Die Einheit des Elastizitatsmoduls
ist Pascal. Beispielsweise hat Gummi ein Elastizititsmodul von ca. 0,01 — 0,1GPa4, je nach
genauer Zusammensetzung [The12].

Zusatzlich zum Elastizitatsmodul existiert noch eine weitere grundlegende Grofie. Weiter
oben wurde schon erwihnt, dass sich Spannungen und Verzerrungen in einer Richtung in
andere Raumrichtungen fortpflanzen kénnen. In welcher Stirke sie das tun, ist abhéngig vom
spezifischen Material. Daher definiert man die so genannte Poissonzahl v (engl. Poisson’s
ratio). Sie ist gegeben als Verhiltnis von axialer €, zu dazu orthogonaler (lateraler) Verzerrung
€y = € [Slaoz].

_|laterale Verzerrung| €y €;

. =—— .22
axiale Verzerrung €y €x (5-22)

Fiir Materialien mit v # 0 gilt also, dass sich Verzerrungen ein einer Raumdimension gleich-
méflig in andere Raumdimensionen fortpflanzen. Wie weiter oben schon beschrieben wird
sich also ein Gummiblock, der auseinandergezogen wird, in den anderen Raumrichtungen
zusammenziehen. Dieser hat folglich eine Poissonzahl v > 0. Bei den meisten Materialien
sind fiir v Werte zwischen 0 und 0,5 bestimmt worden. Ein Wert von v = 0,5 bedeutet
hierbei, dass sich eine Verzerrung voll in die anderen beiden Raumdimensionen {iibertragt.
Bei v = 0 findet keinerlei Ubertragung statt. Materialien mit v > 0,5 existieren auch, jedoch
zéhlen diese nicht zu den elastischen Stoffen. Auch wenn dies etwas kontraintuitiv wirken
mag: Es sind auch Materialien mit —1 < v < 0 bekannt. Werden sie in einer Dimensi-
on zusammengedriickt, ziehen sie sich in den anderen Dimensionen ebenfalls zusammen
[Kolog].

3.3.5 Verallgemeinerung des Hookeschen Gesetzes

Mit der Kenntnis der unterschiedlichen Materialeigenschaften fillt bald auf, dass das Hooke-
sche Gesetz o = Ee (siehe auch Abschnitt 3.3.3) langst nicht immer Giiltigkeit besitzt. Es ist
nur bei Materialien mit v = 0 anwendbar. Daher wurde eine Gesetzmafsigkeit formuliert, die
als verallgemeinertes Hookesches Gesetz bekannt ist [Slaoz]. Es lautet:

o] =[d] [ 629

Der Unterschied zum einfachen Hookeschen Gesetz besteht darin, dass es sich bei den
Werten fiir Verzerrung und Spannung um die kompletten Tensoren handelt und nicht nur
um einzelne Werte. Zusétzlich wird das Elastizititsmodul E durch den Steifigkeitstensor C
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3 Grundlagen

ersetzt. Bei 0 und € handelt es sich um Tensoren zweiter Stufe, also um normale Matrizen.
Bei C handelt es sich um einen Tensor vierter Stufe. Mit einsteinscher Summenkonvention
kann die Gleichung also auch als 0;; = Cjjx€x; geschrieben werden. Das sieht auf den ersten
Blick sehr schwer handhabbar aus, da allein C 81 Komponenten besitzt.

Fiir die Zwecke dieser Arbeit konnen wir uns auf die so genannten isotropen Materialien
beschranken, was die Gleichung vereinfacht. Isotrope Materialien sind Stoffe die ein dre-
hungsinvariantes Verhalten aufweisen [Slaoz]. Stoffe wie Holz sind das beispielsweise nicht,
weil die Fasern in eine bestimmte Richtung laufen und dies somit verhindern. Dadurch, dass
sich Stoffe gedreht gleich Verhalten, gilt fiir ¢ also:

Ty = Tyx,  Taz = Tax,  Tyz = Tzy (3-24)

Entsprechend hat auch e ebenfalls nur noch sechs unabhingige Komponenten. C vereinfacht
sich durch die Symmetrie auf 36 unabhidngige Komponenten. Nun macht man sich die so
genannte Voigtsche Notation fiir Tensoren zu Nutze, mit der man symmetrische Tensoren
als Tensoren niedrigerer Ordnung als ihrer urspriinglichen auffassen kann [Voi1o]. Somit
werden aus ¢ und € Vektoren der Lange 6, aus C wird eine 6x6-Matrix. Mit Voigtscher
Notation sieht die Gleichung wie folgt aus:

Ox Ci1 Cip Ci3 Ciy G5 Cys €x
oy G Cn Cp Cy G5 Gy €y
0| _ |G G Gz Gau Gos Coe| , | € (3.25)
Tyz Cu Crpp Cgg Cu Cis Cy Yyz
Txz Cs1 Cs2 Cs3 Csy Css Cse Yz
| Ty | [Ce1 Co2 Cos Coa Cos Coes|  [Vxyl

Setzt man dann die Bedingungen fiir Isotrope Materialien ein, erhélt C bestimmte Koeffizi-
enten und die Gleichung erhilt folgende Gestalt:

[0 | 1-v v v 0 0 0] e ]
Oy v 1—v v 0 0 0 ey
0z E v v 1—v 0 0 0 e,
- - 26
Tyz 1+v)(1—-2v) | O 0 0o 2 o | * 27y (3.26)
Txz 0 0 0 0 (1_22V) 0 Z'sz
[Ty | 0 0 0 0 A2 | [ 2]

Der Vorfaktor von 2 bei den y-Werten sorgt dafiir, dass das Skalarprodukt aus Spannung und
Verzerrung gleich dem inneren Tensorprodukt ist. Dies ist notig, damit die Kréfteberechnung
tir die in o verborgenen Kréfte korrekt verlduft. Man beachte, dass wenn man fiir v den
Wert 0 einsetzt, sich C auf die Identititsmatrix mit dem Elastizitatsmodul E als Vorfaktor
vereinfacht. Somit fallt die Gleichung auf die aus Abschnitt 3.3.3 bekannte Formel ¢ = Ee
zuriick. Speziell Gleichung 3.26 wird in spdteren Kapiteln noch von grofser Wichtigkeit
sein, da unter anderem mit ihrer Hilfe die wirkenden elastischen Krifte bestimmt werden
konnen.
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3.3 Elastizitatstheorie

Dies waren soweit die fiir diese Arbeit notigen Grundlagen der Elastizitdtstheorie. Diese
kann hier natiirlich nicht vollstindig behandelt werden. Der interessierte Leser sei daher
auf ,The Linearized Theory of Elasticity” von William S. Slaughter verwiesen, welches weite
Teile des Themengebiets abdeckt [Slaoz].

31






4 Modell

Da nun die nétigen Grundlagen gekldrt wurden, wollen wir kldren, wie wir das elastische
Verhalten von Materialien mit Hilfe einer punktbasierten Simulation modellieren kénnen,
bei der dann bestimmte Werte mit der SPH-Methode approximiert werden. Um das alles zu
beschreiben, werden in Abschnitt 4.1 zundchst die Annahmen geklart, die gemacht werden
miissen, um ein Modell zu erhalten, das einfach genug ist, um es effizient berechnen zu
konnen. Abschnitt 4.2 klart, wie SPH in unserem Modell verwendet wird, um bestimmte
notige Werte zu berechnen. In den Abschnitten 4.3 und 4.4 wird dann herausgestellt, wie die
Verzerrungen und Spannungen berechnet werden und aus diesen und den anderen Werten
dann die elastische Kraft bestimmt werden kann, die zwischen objektinternen Partikeln
wirkt. In Sektion 4.5 wird abschlieffend noch das verwendete Zeitintegrationsverfahren
beschrieben.

Das Modell stammt zum Hauptteil aus der Arbeit von Solenthaler und Kollegen, die schon
weiter oben erwdhnt wurde ([SSPo7]). Jedoch werden auch Anleihen bei der Arbeit von

Becker und Kollegen gemacht, die die eben genannte Arbeit um bestimmte Aspekte erweitern
([BITog]).

4.1 Grundannahmen

Wie bei jedem Modell ist es notwendig, im Voraus bestimmte Annahmen zu treffen. So
wollen wir uns auf isotrope Materialien beschrdanken, um die Berechnung von Spannung
bzw. Verzerrung zu vereinfachen, wie in 3.3.5 beschrieben. Natiirlich wére es moglich, die
Spannungsberechnung mit dem vollbesetzten Steifigkeitstensor C durchzufiihren, jedoch
sehr aufwiandig.

4.1.1 Lokale Undeformiertheit

Eine weitere, sehr wichtige Annahme ist die der lokalen Undeformiertheit. In Arbeiten wie
beispielsweise [KAG'o5] wird zur Berechnung der Verzerrung in einem Kérper mit einem
globalen Referenzobjekt gearbeitet. Dieses Referenzobjekt reprasentiert die undeformierte
Variante des zu simulierenden Korpers. Bei der Verzerrungsberechnung wird dann der
aktuelle Zustand des Objekts mit dem Referenzobjekt verglichen, um die aktuelle Verzerrung
zu bestimmen. Im Kontrast dazu wird hier ein anderes Modell verwendet. Dies ist notig,
weil es auch dazu entwickelt wurde, Aggregatszustandsiibergédnge abzubilden. Dies ist mit
einem globalen Referenzobjekt sehr schwer umsetzbar [SSPoy].
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4 Modell

Daher speichert jedes Partikel initial einen Distanzvektor zu seinen Nachbarn. Seine Nach-
barschaft ist definiert als alle Partikel, die sich im Radius # um das zu betrachtende Partikel
befinden. Der Wert / ist die Glattungslange, die auch fiir die SPH-Berechnungen verwendet
wird. Da alle Partikel auflerhalb der Glidttungslénge keinen Einfluss auf das betrachtete
Partikel haben, erscheint diese Einschrankung der gespeicherten Vektoren plausibel [SSPoy].
Wihrend der Simulation kann dann der aktuelle Distanzvektor bestimmt werden. Weicht
dieser vom gespeicherten Distanzvektor ab, ist eine Verzerrung aufgetreten. Die Position, die
ein Partikel beim Start der Simulation einnimmt und die fiir die Berechnung der Nachbar-
schaften herangezogen wird, wird als die Referenzposition x’ bezeichnet. Fiir Partikel P; ist
die Referenzposition entsprechend x.

4.2 Verwendung von SPH im Elastizitatsmodell

Im Folgenden soll gekldart werden, bei der Berechnung welcher Grofien im Modell SPH
verwendet wird. Wie beispielsweise die Spannung in einem Objekt berechnet werden kann
wurde schon im Grundlagen-Kapitel geklart, SPH wére hier von keinem grofsen Nutzen.
Es sind aber noch einige Werte {ibrig, die fiir die Berechnung der elastischen Kraft relevant
sind.

4.2.1 Partikelvolumen

Wie in den meisten punktbasierten Modellen besitzt auch hier jedes Partikel eine Masse.
Diese ist vor allem fiir die Beschleunigungsberechnung mit Hilfe der Formel F = m xa
vonnoten. Genauso wie ein Partikel einen Teil der Masse eines Objekts reprasentieren kann,
kann es auch einen Teil des Volumens repréasentieren. Um dieses zu berechnen, greift man
zundchst auf die einfache Formel v = % zuriick. Volumen entspricht Masse geteilt durch
Dichte. Wie die Dichte mittels SPH berechnet werden kann, wurde schon in Abschnitt 3.2.2
gezeigt. Die Gleichung, um das Volumen eines Partikels P; zu berechnen lautet wie folgt:
mi mi

Ui =0(x;) = — = (4.1)
l o ) ij(’x? — x|, h)

Da sich Deformationen von Objekten hdufig auch in Volumendnderungen niederschlagen, ist
ein bekanntes Partikelvolumen fiir die Berechnung einiger Groflen von Vorteil. Es sei noch
angemerkt, dass die P; iiber welche summiert wird, alle Teil desselben Objekts sind, wie P;.
Der Wert 7; ist fiir die Berechnung der elastischen Kraft von Relevanz und diese tritt nur
innerhalb eines Objektes auf.

4.2.2 Verschiebungsfeld

Um spéter Verzerrungen und Spannungen errechnen zu kénnen, benttigt man ein Maf,
inwieweit das Objekt von seiner urspriinglichen Form abweicht. Diese Abweichung wird
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4.2 Verwendung von SPH im Elastizitdtsmodell

auch Verschiebung (engl. displacement) genannt. Die Gesamtverschiebung ist jedoch nicht
wirklich niitzlich um den aktuellen Zustand im Objekt, also auch die aktuell wirkenden
Kréfte zu berechnen. Wichtiger ist, inwieweit sich die Verschiebung im Moment dndert.
Gefragt ist also der Gradient der Verschiebung von etwa Partikel P;, welcher mit Vu;
bezeichnet wird. Um Vu; zu berechnen, wird wieder einmal die SPH-Methode verwendet
[SSPo7]:

Vui = ZEJVW({X] — X ,h)(uji)T (42)
)

Ebenso wie beim Partikelvolumen wird hier nur tiber die Partikel desselben Objekts sum-
miert. Der Vektor uj; wird der Verschiebungsdifferenzvektor (engl. displacement difference
vector) genannt. Er ist wie folgt definiert:

uji =X —X; — (x? ) (4-3)

Er bezeichnet, wie auch der Name suggeriert, die Differenz der Verschiebungen der Partikel
P; und P;. Dies sei an Abbildung 4.1 gezeigt.

Abbildung 4.1: Beispiel fiir einen Verschiebungsdifferenzvektor

Links ist die Startkonfiguration zum Zeitpunkt t = 0 abgetragen. Der Vektor zwischen den
beiden Partikeln ist somit einer der initial berechneten Distanzvektoren, die weiter oben
beschrieben wurden. Nach einigen Zeitschritten befindet sich P; an einer anderen Position
relativ zu P;. Der gesuchte Verschiebungsdifferenzvektor ist dann der Vektor, welcher sich
von der Position, an der sich P; laut der Bedingung fiir die lokale Undeformiertheit befinden
miisste, zu der eigentlichen Position von P; aufspannt.

Die Gleichung fiir Vu; macht sich zusatzliche eine spezielle Eigenschaft von SPH zu Nutze.
Der Gradient einer bestimmten Grofse kann mittels SPH bestimmt werden, indem man zu-
néchst die Gleichung fiir die Grofle selbst aufstellt. Dann kann einfach die Kernel-Funktion
durch ihren Gradienten ersetzt werden und schon erhilt man die Gleichung fiir den Gradi-
enten der gewollten Grofse [Monosb].
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348

248F

Abbildung 4.2: Elastizitdtskernel (niedrige Kurve) und sein Gradient (hohe Kurve) fiir 1 = 1.

Der Gradient des Verschiebungsfeldes Vu; enthilt alle partiellen Ableitungen fiir die Ver-
schiebung des Punktes P;. Bei ihm handelt es sich um eine 3x3-Matrix.

4.2.3 Kernel-Funktion

Bis jetzt wurde noch nicht gekldrt, von welcher Gestalt die Kernel-Funktion sein soll, um ein
moglich realistisches elastisches Verhalten zu gewihrleisten. Solenthaler und Kollegen entwi-
ckelten speziell fiir elastische Objekte den so genannten Elastizitdtskernel (engl. elasticity
kernel). Dieser ist wie folgt definiert [SSPo7]:

2h (r+h)m 2h
c=tcos(~—5—)+¢c ,wenn 0 <r<h
{ ) (4-4)

0 ,ansonsten

Um die Bedingung zu gewihrleisten, dass die Flache unter der Kurve gleich 1 ist, ist ¢ so

bestimmt:
T

S(E -5+ 1
Der Graph des Kernels und seines Gradienten fiir Glattungsldnge h = 1 ist in Abbildung 4.2

abgetragen. Er ist nicht ganz so spitz wie beispielsweise der Spiky-Kernel [DCg6]. Das heifst,
dass Partikel, die sich weiter weg befinden, stiarker gewichtet werden.

c (4-5)

4.3 Verzerrung und Spannung

Um letztendlich die elastischen Kréfte berechnen zu konnen, miissen erst die Spannungen
und Verzerrungen innerhalb eines Objekts bekannt sein. Wie Spannungen und Verzerrungen
zueinander in Verhiltnis stehen wurde bereits in Abschnitt 3.3 erldutert. Jedoch ist noch
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nicht klar, wie man an eine der beiden Grofien kommt, um mit ihr die andere zu berechnen.
Dabei trifft es sich gut, dass aus dem Gradient des Verschiebungsfeldes Vu; sehr leicht der
Verzerrungstensor € berechnen ldsst. Dazu existiert jedoch mehr als eine Moglichkeit. Hier
wird der so genannte Green-Saint-Venant Verzerrungstensor verwendet. Dieser ist so definiert
[NMK ™ 06]:

€= %(Vu +Vul +VuTVu) (4.6)

In der Arbeit [BITog] wird auch demonstriert, wie sich das Verfahren verhilt, wenn man einen
anderen Verzerrungstensor wie den Cauchy-Green Tensor verwendet. Bei diesem handelt
es sich um einen linearen Verzerrungstensor. Bei starken Deformationen kénnen lineare
Verzerrungstensoren ungenaue Ergebnisse liefern, daher wird ein nichtlinearer gewéhlt. Die
Definition des Green-Saint-Venant Tensors variiert an einigen Punkten. So wird in [MKN*o04]
der Faktor  weggelassen. Wir jedoch legen uns auf obige Definition fest.

Da € nun bekannt ist, kann die Berechnung der Spannung wie in Abschnitt 3.3.5 erfolgen.
Insbesondere kann Gleichung 3.26 verwendet werden, da wir uns auf isotrope Materialien
beschranken.

4.4 Elastische Kraft

Die Berechnung der Krifte erfolgt {iber die Verzerrungsenergiedichte (engl. strain energy
density) U. Es gilt:

_1
u; = vii(ei * 07}) (4.7)

An einem bestimmten Punkt P; entspricht die wirkende Kraft dem negativen Gradienten der
Verzerrungsenergiedichte. Hierbei wird noch die Verschiebung des Punktes beriicksichtigt
[MKN*o04]. Folglich kann auch die elastische Kraft berechnet werden, die ein Partikel P; auf
Pj auswirkt. Diese Kraft sei mit F]‘ff”sm bezeichnet.

F]gllastic = —Vujuz- = —251'(1[ + VMZ-T)O'Z'C]Z']' (48)

Hierbei ist I die Identitdtsmatrix, bei d;; handelt es sich um den nach der Verschiebung des
j-ten Partikels abgeleiteten Gradienten des Verschiebungsfeldes Vu;. Dieser ist wie folgt
definiert. Diese Definition gilt jedoch nur fiir i #

di]' = EJVW(‘X? - X(-)

1

Jh) (4.9)

Anders als bei anderen Modellen tiblich, wird hier nicht die Kraft vom j-ten auf das i-te
Partikel angegeben, sondern umgekehrt.
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4.5 Zeitintegration

Um letzten Endes die neuen Partikelpositionen fiir den aktuellen Zeitschritt berechnen zu
konnen, benotigt man ein Zeitintegrationsverfahren. Hier wird jedoch nicht, wie in Abschnitt
3.1.3 beschrieben, das explizite Euler-Verfahren verwendet. Es kommt das so genannte
Leapfrog-Verfahren zur Anwendung [APg8]. Hierbei handelt es sich um ein Verfahren
zweiter Ordnung, welche im Allgemeinen genauer sind als Verfahren erster Ordnung. Beim
Leapfrog-Verfahren wird dies dadurch erreicht, dass Geschwindigkeiten und Positionen
zeitversetzt berechnet werden. Sei 0t die Lange eines Zeitschritts und x; die Position eines
Partikels zum Zeitschritt i (entsprechend fiir die Geschwindigkeit v und Kraft F).

X541 :xn+5t*vn+%

(4.10)
Vi3 :vn+%—|—5t*Fn+1 4

Man sieht, dass die Geschwindigkeiten gewissermafsen in einem ,Zwischenzeitschritt”
berechnet werden. Der einzige Wert, der auf diese Weise nicht berechnet werden kann,
ist v 1 dav_ 1 nicht existiert, weil es zu Simulationsstart schon in der Vergangenheit liegt.
Man behilft sich hier, indem man initial einen halben Zeitschritt mit Hilfe des Expliziten
Euler-Verfahrens bestimmt.
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Dieses Kapitel soll Details zur Implementierung des Modells aus [SSPoy] erldutern. In
Abschnitt 5.1 wird die Simulationsumgebung préasentiert, in die dieses Verfahren im Rahmen
dieser Arbeit integriert wurde. Abschnitt 5.2 erldutert den Ablauf der Simulation selbst,
insbesondere den eines einzelnen Zeitschritts. Abschnitt 5.3 schlussendlich zeigt einige
Details bei der Implementierung auf. Es werden Teile des Modells erldutert, bei der die
tatsachliche Implementierung von den in Kapitel 4 aufgestellten Gleichungen abweichen.

5.1 Umgebung

Das Verfahren von Solenthaler und Kollegen wurde im Rahmen dieser Arbeit in eine schon
bestehende Simulationsumgebung integriert bzw. diese erweitert. Diese ist in C++ imple-
mentiert und verwendet Qf zur Darstellung der Benutzeroberfliche. Zur Visualisierung
der Simulation selbst ist ein OpenGL-Fenster in die Oberfliche integriert. Abbildung 5.1

VolMin 0,000(] 0,000 0,000%

VolMax 10002 1,000[2] 1,000/

eeeeee

9,81 [%
(o~
e [RssoEHAR v)
Kernel K_ELASTIC -
0,1100[%

Abbildung 5.1: Simulationsumgebung, in die das Verfahren integriert wurde
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Beschreibung \ Symbol \ Typische Werte
Gravitationskonstante g 9,81

Lange eines Zeitschritts ot 0,001
Simulationsdauer Fax 2,00
Glattungslange h 0,01 -0,1
Partikelmasse m 0,00001
Elastizitdtsmodul E 50 — 10000
Poissonzahl v 0,0—-0,5
Objektabmessungen u. Position Xin, Xmax beliebig, solange im Raum
Partikelabstand ox 0.025

Grofse des zu simulierenden Raums | Vi, Viuax | beliebig, meist Einheitswiirfel

Tabelle 5.1: Simulationsparameter

zeigt die Oberflache der Simulationsumgebung. Links ist das OpenGL-Fenster zu erkennen.
Rechts die einstellbaren Simulationsparameter. Welche genau dies sind, sei in Abschnitt 5.2.1
geklart. Bei dem griinen Wiirfel im OpenGL-Fenster handelt es sich um den zu simulieren-
den Partikelsatz. Zusatzlich zu der Benutzeroberfldache besitzt die Umgebung auch noch
eine Konsolenausgabe, die genauere Details der Simulation ausgibt, wie z.B. berechnete
Zwischenergebnisse oder den aktuellen Zeitschritt. Zusdtzlich zu der eigentlichen Simulation
wurde in die Anwendung noch ein Oberflichenrekonstruktionsverfahren integriert, um
aus den berechneten Punktdaten eine Polygongraphik extrahieren zu kdnnen. Bei diesem
Verfahren handelt es sich um das von Bhatacharya und Kollegen ([BGB11]). Dieses wurde
jedoch nicht von Hand implementiert, es wurde lediglich der von den Entwicklern der
Methode bereitgestellte Code in die Umgebung integriert.

5.2 Simulationsablauf

Dieser Abschnitt soll den Ablauf der Simulation erldutern. In 5.2.1 wird zunéchst auf die
Initialisierung der Simulation eingegangen um dann mit dem eigentlichen Ablauf eines
Zeitschritts in 5.2.2 fortzufahren.

5.2.1 Initialisierung

Zur Durchfiihrung einer Simulation sind natiirlich einige Simulationsparameter notwendig,
die im Vorhinein bestimmt werden miissen. Die wichtigsten sind in Tabelle 5.1 aufgefiihrt.

Hierbei konnen einige Werte wie die Partikelmasse, die Poissonzahl usw. mehrfach vorhan-
den sein, fiir den Fall, dass man mehrere Objekte mit unterschiedlichen Materialparametern
zu simulieren wiinscht. Die Objektabmessungen und die Raumgrofie werden als je ein
paar von Vektoren angegeben. Somit kann man zwischen den beiden Vektoren ein Quader
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Algorithmus 5.1 Initialisierung der Simulation

procedure INITALIZE
READPARAMETERS
INSERTPARTICLES(, X011, Xinax, 0X)
ComrUTEKERNELVALUES(h)
COMPUTEREFERENCEDISTANCES
ComMPUTEVOLUMES(11)
ComruTEFORCES
INITVELOCITIES

end procedure

aufspannen. Die Kanten befinden sich dann parallel zu den Raumachsen. Nattirlich ist
die Objektgrofie nur relevant, wenn man ein quaderféormiges Objekt wiinscht. Andernfalls
muss die Geometrie alternativ in die Umgebung geladen werden. Die Raumgrofie ist vor
allem fiir Aufprallsimulationen relevant, wenn ein Objekt auf den Boden treffen soll. Der
Partikelabstand bestimmt den Abstand der Partikel innerhalb des gegebenen Quaders.

Der komplette Initialisierungsvorgang sei in Algorithmus 5.1 gegeben. Welche Parameter
eingelesen werden und wie die Partikel eingefiigt werden sollen, wurde schon geklart. Als
néachster Schritt wird die Konstante ¢ der Kernel-Funktion (siehe Abschnitt 4.2.3) vorberech-
net. Genauso wie die spéter folgende Berechnung der Partikelvolumen o; (siehe Abschnitt
4.2.1) kann dies getan werden, weil sich diese Werte im Verlauf der Simulation nicht &ndern.
Passt man die Partikelvolumen immer dem aktuellen Zustand des Objekts an, wirken {tiber-
haupt keine elastischen Krifte mehr, da dann davon ausgegangen wird, dass sich das Objekt
im Ruhezustand befindet.

Zwischen der Berechnung des c’s und der der Volumen miissen noch die Referenzdistanzen
zwischen den Partikeln bestimmt werden, also jene, die fiir die Annahme der lokalen
Undeformiertheit vonnoten sind (sieh auch Abschnitt 4.1.1). Zuséatzlich wird die lokale
Nachbarschaft fiir jedes Partikel berechnet. Um, besonders bei grofsen Objekten bzw. grofsem
h, Speicherplatz zu sparen, wird anstatt der Referenzdistanz selbst nur die initiale Position
eines jeden Partikels abgespeichert. Aus diesen kann dann, falls benétigt, die Referenzdistanz
berechnet werden. Anstatt also bei jedem Partikel fiir jeden Nachbarn einen Distanzvektor
zu speichern, was bei ungiinstigen Parametern schnell den Arbeitsspeicher sprengen kann,
wird nur ein einzelner Vektor pro Partikel im Speicher gehalten.

Die folgenden beiden Schritte, die Kraft- und Geschwindigkeitsberechnung, sind dem
Leapfrog-Schema geschuldet, das zur Zeitintegration verwendet wird. Da sich das Objekt
zu diesem Zeitpunkt noch in seiner Ursprungslage befindet, wirken nur externe Kréfte wie
die Gravitation. Mit diesen Kréften wird dann die Geschwindigkeit zum Zeitpunkt t = 34t
mittels dem Euler-Verfahren berechnet. Damit ist dann die Initialisierung abgeschlossen.
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Algorithmus 5.2 Einzelner Zeitschritt der Simulation

procedure TIMESTEP
CoMPUTENEWPARTICLEPOSITIONS
CoMPUTEPARTICLENEIGHBORHOODS
CoMPUTEDISPLACEMENTFIELDGRADIENTS
COMPUTESTRAINS
COMPUTESTRESSES
ComruTEFORCES
COMPUTEVELOCITIES

end procedure

5.2.2 Ablauf eines Zeitschritts

Nachdem alle relevanten Werte initialisiert wurden, kann die vorher eingestellte Anzahl
an Zeitschritten berechnet werden. Ein kompletter Zeitschritt ist in Algorithmus 5.2 ge-
geben. Die Berechnung der neuen Partikelpositionen erfolgt gleich zu Beginn, um dem
Leapfrog-Schema gerecht zu werden. Nachdem dies geschehen ist, konnen die aktuellen
Nachbarschaften der Partikel errechnet werden. Dies kann entweder einmal pro Zeitschritt
geschehen oder aber implizit durch die Anwendung der Kernel-Funktion getan werden.
Letztere Moglichkeit wiirde jedoch dazu fiihren, dass die Nachbarschaften ofter als einmal
pro Zeitschritt errechnet wiirden. Nachdem all dies getan wurde, kann man beginnen, die
notwendigen Werte fiir die elastischen Kréfte zu berechnen.

Zunichst wird fiir jedes Partikel der Gradient des Verschiebungsfeldes bestimmt. Daraus
kann dann, wie in den Abschnitten 4.3 und 3.3.5 beschrieben, seine Verzerrung und Spannung
errechnet werden. Zu Details der Bestimmung des Gradienten des Verschiebungsfeldes sei
auf den folgenden Abschnitt verwiesen, da sich hierbei einige Schwierigkeiten ergeben.
Nachdem alle nétigen Grofien feststehen, konnen die wirkenden Kréfte errechnet werden.
Zu Details hierzu sei ebenfalls auf den ndchsten Abschnitt verwiesen. Schlussendlich werden
dann aus den Kréften noch die Geschwindigkeiten bestimmt. Einfacher dargestellt werden
kann ein Zeitschritt auch durch dieses Schema:

xf—>Vut—>et—>(7t—>Ff—>vt+%5t (51)

Nachdem dies ausgefiihrt wurde, kann ein neuer Zeitschritt, beginnend mit der Berechnung
von X; 45 durchgefiihrt werden.

5.3 Besondere Details

Dieser Abschnitt soll auf besondere Problematiken der Implementierung und deren Losung
eingehen, insbesondere auf solche, die nicht direkt aus dem Modell ersichtlich sind.
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5.3 Besondere Details

5.3.1 Gradient des Verschiebungsfeldes

Um den Gradienten des Verschiebungsfeldes Vu korrekt berechnen zu kénnen, benottigt
man zunichst einmal den Gradienten der Kernel-Funktion. Der Ubersichtlichkeit halber sei
die Berechnungsvorschrift noch einmal erwéhnt:

Vul- = ZEJVWQX] — Xj
i

Jh) (u) T (5-2)

Da d;; = @VW(!xj —x;|,h) gilt, ist dies auch fiir die Berechnung der elastischen Kréfte
relevant. Da es sich bei der Gladttungsldnge i quasi um eine Konstante handelt, gentigt es,
zur Berechnung des Gradienten des Kernels W(|r|,h) partiell nach r abzuleiten und das
Ergebnis mit dem normalisierten r zu multiplizieren. Leitet man W(|r|, ) partiell nach r ab,
erhélt man folgende Formel:

c*sin((ﬂgz)”) ,wenn 0<r<h

VW(|t|, h) = { (5:3)

0 ,ansonsten

Wie beschrieben muss der Riickgabewert dieser Funktion noch mit ﬁ multipliziert werden,

um den eigentlichen Gradienten zu erhalten. Es sei aufferdem angemerkt, dass die obige
Formel eigentlich mit —1 multipliziert werden miisste, um korrekt zu sein, jedoch wére die
Gradientenfunktion dann nicht mehr positiv, was jedoch fiir unsere Zwecke benétigt wird.
Wendet man all diese Modifikationen an, erhdlt man denselben Funktionsgraphen wie in
Abbildung 4.2. Dieses Ergebnis stimmt mit dem Graphen aus [SSPoy] {iberein.

5.3.2 Anrechnung der Krafte

Berechnet man mit Hilfe der oben genannten Formeln alle elastischen Krafte, fillt auf,
dass Felostic £ _Felastic Dies widerspricht dem in Abschnitt 3.1.2 angefiihrten dritten new-
tonschen Gesetz. Der Grund dafiir ist, dass bei der Berechnung des dz-]- welches in der
Berechnungsformel fiir die elastische Kraft auftritt, bei Kraft und Gegenkraft nicht von der-
selben Nachbarschaft ausgegangen werden kann. Partikel P; besitzt in der Regel eine andere
Nachbarschaft als P;. Man behilft sich hier, indem man zwischen Kraft und Gegenkraft
mittelt und das Ergebnis dann den Partikeln als eigentliche elastische Kraft anrechnet. Wie
die Kréfte insgesamt berechnet werden sei in Algorithmus 5.3 gegeben.

Es wird vermutet, dass der Faktor 2 in Gleichung 4.8, der Berechnung der elastischen Kraft,
deshalb eingefiihrt wurde, um den Faktor % in Algorithmus 5.3 auszuldschen. In spéteren
Arbeiten wie [BITog] wurde er in der Formulierung der elastischen Kraft weggelassen. Es ist
zu erkennen, dass die elastische Kraft nicht fiir das aktuelle Partikel berechnet wird, sondern
fiir dessen aktuellen Nachbarn. Dies ist der Formulierung der Formel fiir F¢! geschuldet.
Es wiirde eventuell mehr Aufwand bedeuten, die Kréfte jeweils fiir das aktuelle Partikel zu
berechnen.

Die Gravitationskraft kann natiirlich auch weggelassen werden. Dies kann auch implizit
erreicht werden, indem man als Eingabeparameter die Gravitationskonstante auf 0 setzt. Das
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Algorithmus 5.3 Berechnung der Kréfte

procedure COMPUTEFORCES
for all Particles i do
P;.Force < 0 // Reset Forces
end for
for all Particles i do
for all Neighbors j of Particle i do

P;.Force « Pj.Force + 3 (F§®1 — Fgj#tc) // Elastic Forces
end for
0
P;.Force < P;.Force + | —m;* g // Gravity Force
0
end for

end procedure

Zuriicksetzen der Krifte zu Beginn ist aber in jedem Fall erforderlich, da sonst die Krifte
des letzten Zeitschritts mit einberechnet wiirden.

5.3.3 Grenzbehandlung

Da die Grenzbehandlung weder im Modell in Abschnitt 4 thematisiert wird, noch in [SSPo7]
erwdahnt wird, wurde hierzu ein simples Verfahren entwickelt, damit Objekte nicht aus
dem selbst bestimmten Simulationsraum austreten konnen. Das ist vor allem fiir Aufprallsi-
mulationen von Relevanz. Das Verfahren wird in die Prozedur zur Errechnung der neuen
Partikelpositionen x; integriert. Zunichst werden dort die neuen Partikelpositionen berechnet.
Stellt sich dann heraus, dass sich das aktuell betrachtete Partikel aufierhalb des Simulations-
raums befindet, wird es so lange auf der Raumachse verschoben, auf der es ausgetreten war,
bis es sich wieder im Raum befindet. Jedoch wird es nicht genau auf der Grenze platziert,
um eventuelle Fehler durch die Verwendung von Fliefkommazahlen zu vermeiden. Es wird
dann ca. 0.00001 von der Stelle platziert, an der es die Raumgrenze durchdrungen hat. Dieser
Wert kann natiirlich je nach Raumgrofie variiert werden. Er sollte so klein gewéahlt werden,
dass er das Partikel nicht zu weit verschiebt.

Zusétzlich zur Riickverschiebung des betrachteten Partikels in den Raum hinein muss seine
Geschwindigkeit in der Raumrichtung, in der er die Raumgrenze durchdrungen hat, auf
0 gesetzt werden. Geschieht dies nicht, kann das Partikel regelrecht an der Raumgrenze
,kleben”. Dies ist vor allem bei elastischen Materialien wichtig, welche beispielsweise auf den
Boden fallen und dann durch die elastischen Kréfte wieder in die Luft geschleudert werden.
Werden die nach unten gerichteten Geschwindigkeiten der auf den Boden aufprallenden
Partikel nicht zurtickgesetzt, springt das Objekt nicht nach oben, obwohl es das eigentlich
muiisste.
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6 Ergebnisse

In diesem Kapitel sollen einige Experimente vorgestellt werden, die mit der eigenen Im-
plementierung der Methode von Solenthaler und Kollegen [SSPoy] durchgefiihrt wurden.
Vor allem soll dabei ihre Stabilitdt und Korrektheit tiberpriift werden. Zunéachst wird dabei
die Variation der Parameter fiir elastische Materialien untersucht (Abschnitte 6.1 und 6.2).
Danach folgt die Untersuchung der Variation von anderen Simulationsparametern (Abschnitt
6.3) und eine Untersuchung der Laufzeiten der Implementierung (Abschnitt 6.4). Wie die
Ergebnisse der Untersuchungen genau zu interpretieren sind, folgt spéater in Kapitel 7.

6.1 Variation des Elastizitatsmoduls

Die erste der beiden grundlegenden materialabhidngigen Variablen isotroper elastischer
Korper ist das Elastizititsmodul E. Wie in Abschnitt 3.3.4 schon beschrieben, ist es ein Maf3
fir die Steifigkeit eines Objekts. Je hoher das Elastizitatsmodul, desto schwerer deformierbar
ist ein Korper. Ob dies vom prasentierten Modell ebenso abgebildet wird, soll folgender
Versuchsaufbau klaren.

Beschreibung ‘ Symbol ‘ Gewdhlter Wert
Gravitationskonstante g 9,81
Léange eines Zeitschritts ot 0,001s
Simulationsdauer tiax 0,3
Glattungsldange h 0,055
Partikelmasse m 0,00001
Elastizitatsmodul E variabel
Poissonzahl v 0,0
Partikelabstand ox 0,025
Anzahl der Partikel N 2106

Abbildung 6.1: Startkonfiguration und Versuchsparameter Versuch 1

Simuliert wird ein quaderférmiges Objekt mit den Abmessungen von 0,2 * 0, 2 * 0, 6 Raumein-
heiten, welches aus ca 2100 Partikeln besteht. Dieses wird an einem der beiden quadratischen
Enden 0,1 Einheiten tiber dem ,,Boden” des Simulationsraums fixiert. Der initiale Aufbau
soll anhand von Abbildung 6.1 verdeutlicht werden. Das linke Ende des Objekts ist hier
fixiert. Nach dem Start der Simulation wird das Objekt von der Gravitation nach unten
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6 Ergebnisse

@) E =50 (b) E = 100 (c) E = 300

Abbildung 6.2: Ergebnisse Versuch 1 bei E € [50,300]

gezogen werden. Da die linke Seite fixiert ist, wird dies grofseren Effekt auf die rechte Seite
haben. Nach einigen Zeitschritten wird das rechte Ende des Quaders auf den Boden des
Simulationsraums treffen. Daraufhin beginnt das Objekt, sich in der Mitte durchzubiegen.
Wie stark es dies tut, soll ein Maf fiir die jeweilige Steifheit sein. Ein steifes Material wird
den Boden kaum beriihren und danach streben, die Ursprungskonfiguration moglichst
beizubehalten. Weniger steife Materialien werden eine groflere Auflageflache besitzen, da die
geringere Steifigkeit des Objekts eine grofiere Deformation erlaubt. Die Poissonzahl v wird
in diesem Versuch konstant bei 0 belassen, um den Versuch nicht durch den Einfluss eines
weiteren, fiir die Elastizitit relevanten, Parameters zu verfilschen. Das Elastizitiatsmodul E
wird in einem Bereich von 50 (sehr weich) bis 1000 (hart) variiert.

Die Ergebnisse dieses Aufbaus zeigen die Abbildungen 6.2 und 6.3. Sie geben den aktuellen
Zustand des Systems nach 200 Zeitschritten wieder. Wie erwartet sind Objekte mit hoherem
Elastizititsmodul steifer. Bei E = 50 liegen anndhernd 80% der Grundfldache des Objekts auf
dem Boden auf. Zudem wird es, im Gegensatz zu den Objekten mit hoherem Elastizitéts-
modul, vertikal stark gestaucht. Dies ist ebenfalls der geringen Steifigkeit geschuldet. Das
genaue Gegenteil bildet das Objekt mit E = 1000. Es wird so gut wie gar nicht gestaucht

(a) E = 500 (b) E = 750 (c) E = 1000

Abbildung 6.3: Ergebnisse Versuch 1 bei E € [500,1000]
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und liegt nur mit der Kante auf dem Boden auf. Die anderen gewdhlten Werte zeigen
Zwischenstufen dieser beiden Extreme. So liegen bei E = 300 ca. 30% der Grundfldche auf
dem Boden auf, bei E = 100 sind es schon 60%.

Objekte mit hoherem Elastizititsmodul E erlauben also weniger absolute Deformation. Sie
tendieren eher dazu, an jeder Stelle leichte Deformationen zuzulassen, als an einigen wenigen
grofie. Bei kleinem Modul ist das Gegenteil der Fall. Hier sind grofse lokale Deformationen
moglich. Der Rest des Objekts bleibt dabei moglichst undeformiert. Es soll noch kurz auf
ein kleines Phanomen eingegangen werden, welches in Abbildung 6.2(b) zu erkennen ist.
Die Hohe des rechten Endes des Objekts ist dort grofier, als bei Objekten mit hoherem E,
was eigentlich nicht sein diirfte. Dies ist dem Aufprallverhalten des Materials geschuldet.
Trifft es mit einer gewissen Geschwindigkeit auf den Boden auf, so prallt es von dort ab und
schnellt leicht nach oben. Zum 200. Zeitschritt war das Objekt aus Abbildung 6.2(b) gerade
am hochsten Punkt einer solchen Bewegung. Bei allen anderen Objekten war dies nicht der
Fall, was deren geringere Hohe erklart.

Weitere Beobachtungen zur Variation des Elastizitdtsmoduls, insbesondere solche mit Blick
auf die Stabilitat, sollen in Kapitel 7 erldutert werden.

6.2 Variation der Poissonzahl

Der zweite wichtige Materialparameter fiir isotrope Materialien neben dem Elastizitdts-
modul ist die Poissonzahl v. Sie ist ein Mafs dafiir, wie stark sich Verformungen in einer
Raumrichtung in die anderen Raumrichtungen fortpflanzen. Um den Effekt dieser Grofse zu
visualisieren wird folgender Versuchsaufbau angewandt:

’ Beschreibung ‘ Symbol ‘ Gewdhlter Wert
Gravitationskonstante g 0
Léange eines Zeitschritts ot 0,001s
Simulationsdauer tiax 0,3
Glattungsldange h 0,055
Partikelmasse m 0,00001
Elastizitatsmodul E 300
Poissonzahl v variabel
Partikelabstand ox 0,025
Anzahl der Partikel N 357

Abbildung 6.4: Startkonfiguration und Versuchsparameter Versuch 2
Die Startkonfiguration besteht aus einem Quader mit den Mafien 0,2 x 0,1 * 0,5, welches

aus ca. 350 Partikeln aufgebaut ist. Eine der beiden Flachen mit den MafSen 0,2 0,1 ist
fixiert. Die gegeniiberliegende Flache wird dann mit 0,7 Raumeinheiten pro Sekunde auf
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VOO @

(@) v=0,0 (b) v=0,15 (¢c) v=20,30 (d) v=0,45

Abbildung 6.5: Ergebnisse Versuch 2

die fixierte Fliche zubewegt. Das Objekt wird also in einer Raumrichtung gestaucht. Dies
wird mehrmals mit variierender Poissonzahl v durchgefiihrt. Diese bewegt sich in einem
Bereich von 0 bis 0,45. Ein Wert von 0,5, welcher in der Realitidt auch auftreten kann, wird
jedoch nicht tiberpriift, da dieser mit den Formeln fiir isotrope Materialien nicht vereinbar
ist. Setzt man in Gleichung 3.26 den Wert v = 0,5 ein, wiirde man durch 0 teilen, was nicht
erlaubt ist.

Abbildung 6.5 zeigt die Ergebnisse dieses Experiments nach 200 Zeitschritten. Die Abbildung
der Initialkonfiguration zeigt den selben Bildausschnitt wie die Abbildungen der Ergebnisse.
Es ist also zu erkennen, dass das Objekt wirklich gestaucht wurde. Das Maf3, in dem es sich
orthogonal zur Stauchrichtung verbreitert, variiert je nach Poissonzahl. Bei v = 0 verbreitert
sich der Korper iiberhaupt nicht, was eben so zu erwarten ist. Je hoher die Poissonzahl
gewahlt wird, desto hoher bzw. breiter wird das Objekt, wenn es in Langsrichtung zusam-
mengedriickt wird. Dies entspricht der Definition der Poissonzahl und war somit so zu
erwarten.

Zusétzlich sei noch auf ein weiteres Phanomen hingewiesen, welches durch diese Simulati-
onsmethode abgedeckt wird. Dieses ist jedoch in Render-Szenen sehr schwer zu erkennen,
deshalb muss eine schriftliche Beschreibung geniigen. Wird die Stauchung des Objektes
bei hoher Poissonzahl ruckartig genug ausgefiihrt, verbreitert sich das Objekt zunédchst nur
an dem Ende, von dem aus die Stauchung ausgefiihrt wurde. Diese Verbreiterung pflanzt
sich dann schneller als die Stauchung bis hin zum anderen Ende des Objekts fort. Dieses
Verhalten dhnelt beispielsweise dem von Wackelpudding. Es ist aber nur zu beobachten,
wenn der Zeitschritt nicht zu klein gewdhlt wurde, da sonst die auftretenden Kréfte zu
gering sind, bzw. sich diese besser iiber das Objekt verteilen.

6.3 Variation von SPH-Grundparametern

AufSer den grundlegenden Parametern fiir elastoplastische Objekte sind auch noch andere
Werte interessant. So interessiert beispielsweise, wie sich die Wahl der Lange des Zeitschritts
auf die Simulation auswirkt. Weitere interessante Parameter sind die Partikelmasse und die
Glattungslange. Zundchst sei auf die Glattungsliange eingegangen. In vielen Arbeiten, welche
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sich auf Smoothed Particle Hydrodynamics stiitzen, wird die Glattungslange so gewdhlt, dass
sie in etwa dem doppelten initialen Partikelabstand entspricht [NMK™*06]. Dies konnte auch
hier bestatigt werden. Je grofler die Glattungslange ist, desto mehr Nachbarn besitzt jedes
Partikel. Da fiir jeden Nachbarn Rechenoperationen ausgefiihrt werden miissen, fithren grofie
Nachbarschaften zu hoher Rechenzeit. In Versuchen zeigt sich auch hier, dass die Stabilitat
der Simulation ab einer Gldttungsldnge von ca. dem doppelten initialen Partikelabstand
nicht mehr wirklich zunimmt. Bei kleineren Gladttungsldangen wirken entweder gar keine
Krifte oder sie wirken einseitig in eine Richtung, so dass das simulierte Objekt regelrecht
explodiert. Die Empfehlung von Solenthaler und Kollegen ist, die Glattungsldnge so zu
wihlen, dass jedes Partikel im Schnitt 40 Nachbarn besitzt [SSPoy]. Dies ist in etwa beim
doppelten Initialabstand der Fall.

Variiert man die Partikelmasse m stellen sich ganzlich andere Effekte ein. Wird sie erhoht,
wird das Objekt weicher. Erniedrigt man sie, wird das simulierte Objekt steifer. Sie scheint
also den inversen Effekt des Elastizititsmoduls zu besitzen. Betrachtet man die Formeln
der Modelle fiir die Elastizitdat aus Abschnitt 3.3 fallt schnell auf, dass zwischen Masse m
und Elastizitditsmodul E ein Zusammenhang besteht. Per Definition ist das Elastizitdatsmodul
proportional zu der Kraft, die im Innern eines elastischen Korpers wirkt. Je starker diese
Kraft ist, desto steifer ist das Objekt. Lasst man jedoch diese Kraft gleich und erhoht die
Partikelmassen, muss plotzlich dieselbe Kraft mehr Masse bewegen. Dies kann nicht so leicht
gelingen, deshalb wird hier ein Korper bei Erhohung der Partikelmassen weniger steif. Bei
Verringerung der Partikelmassen ist natiirlich das Gegenteil der Fall.

Der letzte interessante Parameter ist die Lange eines Zeitschritts. Dessen Einfluss auf die
Stabilitdt scheint jedoch kaum von anderen Werten abzuhidngen. Egal wie andere Werte
gewdhlt waren, bei allen Zeitschrittlingen tiber 0,001s tendiert die Simulation zur Instabilitat.
Kleinere Langen scheinen sie jedoch nicht stabiler zu machen, was den Beobachtungen von
Solenthaler und Kollegen widerspricht [SSPoy]. Vor allem kdnnen zu kleine Zeitschritte
bestimmte Details der Simulation verwischen, wie in Abschnitt 6.2 ausgefiihrt. Aufgrund
dessen wurde in so gut wie jedem Versuch 5t = 0,001s gewdhlt.

6.4 Laufzeiten

Insbesondere fiir Anwendungen in der Computergraphik sind die Laufzeiten der Simu-
lation interessant. Es wird immer danach gestrebt, moglichst interaktive Anwendungen
zu entwickeln, d.h. es soll dem Nutzer moglich sein, bestimmte Parameter wiahrend der
Laufzeit zu &ndern und diese Anderungen sofort in der Ausgabe zu beobachten. Fiir diese
ist zumeist erforderlich, dass die Berechnung eines Zeitschritts nur so lange dauert, dass
mindestens 25 Zeitschritte pro Sekunde berechnet werden konnen. Inwiefern dies mit dieser
Implementierung moglich ist, soll im Folgenden geklart werden.

Die Laufzeitmessungen wurden auf einer Testmaschine mit einem Intel Core i7-2600K bei
4GHz Taktfrequenz durchgefiihrt, welche 16GB Arbeitsspeicher besitzt. Als Grafikkarte
ist eine GeForce GT X580 verbaut. In der Simulation wird 200 Zeitschritte lang das Fallen
eines Wiirfels simuliert. Dieser besitzt die Partikelmasse m = 0.00001, das Elastizitatsmodul
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6 Ergebnisse

N h #n | Dauer
729 | 0,055 | 42 | 10,36s
729 | 0,075 | 81 | 20,44s

2197 | 0,055 | 46 | 40,62s
2197 | 0,075 | 93 | 78,47s
4913 | 0,055 | 49 | 126,4s
4913 | 0,075 | 99 | 221,4s

Tabelle 6.1: Laufzeitmessungen Total fiir 200 Zeitschritte

E = 500 und Poissonzahl v = 0, 4. Die Partikelanzahl des Wiirfels und die Glattungslange
werden variiert. Durch die Anderung der Glattungslinge veréndert sich natiirlich auch die
durchschnittliche Anzahl an Nachbarn, die die Partikel besitzen. Diese ist ausschlaggebend
fir die Laufzeit, da viele Berechnungen fiir alle Nachbarn eines Partikels erfolgen. Die
Laufzeitmessungen fiir variierende Partikelanzahl N und Glattungsldange # ist in Tabelle
6.1 gegeben, die genauere Aufschliisselung nach einzelnen Berechnungsschritten in Tabelle
6.2. Hierbei bezeichnet #n die durchschnittliche Anzahl an Nachbarn und comp n die
Berechnungszeit, die benttigt wird, um die Nachbarschaften der Partikel zu bestimmen. Die
Messwerte geben die gesamt bendtigte Zeit fiir 200 Zeitschritte an.

Es ist zu erkennen, dass die Erhohung der Glittungslange um ca. 35% bereits zu einer
Verdoppelung der Laufzeit fithren kann, ohne dass die Qualitdt der Simulation zunimmt.
Der grofiten Anteil an der Rechendauer fillt auf die letztendliche Kraftberechnung und
auf die Berechnung der Nachbarschaften ab. Die Bestimmung von Verzerrung, Spannung
Geschwindigkeit und neuer Position ist nicht von der Gldttungsldnge abhédngig. Dem zufolge
andert sich die benotigte Zeit kaum, wenn h variiert wird. Da diese Werte nur linear von der
Partikelanzahl abhdngen, ist ihr Einfluss auf die Gesamtlaufzeit sehr gering. Die Berechnung
der Nachbarschaften verhilt sich schon per Definition quadratisch zur Anzahl der Partikel.
Da die Kraftberechnung und die der Verschiebungsgradienten im Normalfall nicht fiir alle
anderen Partikel erfolgen sondern nur fiir die eigenen Nachbarn, steigt deren Laufzeit nicht
so stark mit der Anzahl der Partikel. Jedoch sind diese von der durchschnittlichen Zahl der
Nachbarn abhéngig.

N h x compn | Vu € o F v
729 | 0,055 | 0,003457s | 1,34s | 2,017s | 0,01551s | 0,01013s | 6,228s | 0,00277s
729 10,075 | 0,003319s | 1,398s | 3,963s | 0,01536s | 0,01007s | 14,49s | 0,00261s
2197 | 0,055 | 0,01205s | 11,88s | 6,764s | 0,04664s | 0,03049s | 20,72s | 0,00807s
2197 | 0,075 | 0,01295s | 12,12s | 13,63s | 0,04698s | 0,0305s | 51,78s | 0,008699s
4913 | 0,055 | 0,03651s | 59,47s | 15,71s | 0,1086s | 0,07143s | 49,235 | 0,02138s
4913 | 0,075 | 0,03704s | 59,63s | 32,77s | 0,1064s | 0,06852s | 127,75 | 0,02662s

Tabelle 6.2: Laufzeitmessungen aufgeschliisselt fiir 200 Zeitschritte
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6.4 Laufzeiten

Bei einer Partikelanzahl von ca. 730 benétigt ein Zeitschritt in etwa 0,05s, was nur das
50-fache der Zeitschrittdauer ist. Da diese Implementierung nicht auf Parallelitdt ausgelegt
ist, wédre mit ausreichender Parallelisierung, insbesondere auf Grafikprozessoren, eine inter-
aktive Anwendung moglich. Je grofler die Partikelanzahl ist, desto weniger wahrscheinlich
ist, das die Dauer eines Zeitschritts so gedriickt werden kann, das dies moglich ist. Insgesamt
ist dies wohl bei Zahlen unter 1000 realistisch. Was fiir Parallelisierungsraten mit den neues-
ten Grafikkartengenerationen wirklich erreicht werden konnen, konnte hier nur geschitzt
werden, deshalb wollen wir uns eher auf diesen eher konservativen Wert festlegen.
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7 Diskussion

Wie jede Simulationsmethode besitzt auch die hier prasentierte Vor- und Nachteile. Je nach
Eigenschaften des Modells konnen nur bestimmte Eigenschaften von wirklichen Materialien
abgebildet werden. Welche genau mit dem vorliegenden Modell simuliert werden kéonnen
und was fiir weiter Vor- und Nachteile die Methode besitzt, soll im Folgenden erortert
werden.

7.1 Wahl von Elastizitatsmodul und Poissonzahl

Eine der wichtigen Einschrankungen des Modells ist die auf isotrope Materialien. Deren
elastische Materialeigenschaften kénnen nur abhingig von Elastizitditsmodul und Poissonzahl
beschrieben werden. Die Problematik an dem bestehenden Ansatz besteht nun darin, dass
einige Werte fiir die beiden Groflen schon rein mathematisch auszuschliefien sind, solange
man sich auf die Formeln fiir isotrope Materialien beschrankt. So ist, wie in Abschnitt 6.2
erldutert, eine Poissonzahl von 0,5 oder nahe 0,5 gar nicht oder kaum moglich. Dasselbe
Problem besteht fiir, zugegeben exotische, Materialien mit v = —1. Da viele Gummisorten
eine Poissonzahl nahe 0, 5 besitzen, schliefit das eine grofie Klasse von Materialien aus.

Zu den isotropen Materialien gehoren unter anderem auch Metalle. Viele Metalle sind sehr
starr und kaum deformierbar, besitzen also ein recht hohes Elastizititsmodul. In den Versu-
chen hat sich gezeigt, dass die prasentierte Methode mit steigendem E tendenziell immer
instabiler wird, da die auftretenden Kréafte mit dieser Grofie ebenfalls steigen. Die weiter
oben durchgefiihrten Experimente wurden nur fiir zumindest leicht elastische Materialien
vorgenommen. Es ist anzunehmen, dass die Methode sehr instabil werden wiirde, wenn
man versucht das Modell auf eher starre Stoffe wie etwa Aluminium anzuwenden. Diese
Problematik ist jedoch als eher nicht kritisch zu betrachten, da Solenthaler und Kollegen
ebenfalls in [SSPoy] einen Ansatz prédsentiert haben, um starre Stoffe zu simulieren. Nattirlich
konnte man auch in die Richtung argumentieren, dass es der Zweck, des Modells ist, fiir
Laien auf den ersten Blick elastisch erscheinende Stoffe (z.B. Gummi) zu simulieren und
nicht solche, deren elastische Eigenschaften nur unter Laborbedingungen gezeigt werden
konnen (wie etwa Platin).

Es ist des weiteren anzumerken, dass generell eine Erhchung der Poissonzahl die Stabilitat
zu erhohen scheint. Da diese generell gefdhrdet ist, wenn zu grofie Krifte auftreten, scheint
dies plausibel. Eine Kraft, die in eine bestimmte Richtung auftritt, wird durch eine hohe
Poissonzahl in andere Richtungen abgelenkt bzw. verteilt. Somit nimmt der Betrag der Kraft
in der initialen Raumrichtung ab, was forderlich fiir die Stabilitat sein kann.
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7 Diskussion

7.2 Vor- und Nachteile beziglich anderer Methoden

Wie schon erwédhnt besitzt auch diese Methode bestimmte Vor- und Nachteile. Da der
prasentierte Ansatz primér auf Smoothed Particle Hydrodynamics fufit, wird er sowohl
positive als auch negative Eigenschaften des Grundverfahrens iibernommen haben. SPH
wird gern als schnelle Methode angesehen, jedoch kann diese Behauptung laut [SM9g3] nicht
wirklich gehalten werden. Wenn hohe Genauigkeit, also hohe Partikelzahlen gefordert sind,
steigt die Rechendauer auf dhnliche Werte wie z.B. die der Finite-Elemente-Methode. Seit
Steinmetz und Kollegen diese Arbeit veroffentlichten hat sich einiges getan. Vor allem im
Bereich des parallelen Rechnens gab es enorme Fortschritte. Da sehr viele Operationen bei
einer SPH-Methode gleichformig fiir alle Partikel ausgefithrt werden miissen und diese
sich nicht unbedingt gegenseitig bedingen, ist Smoothed Particle Hydrodynamics geradezu
pradestiniert fiir Parallelisierung. In [HKKo7] wurde eine SPH-Implementierung fiir Fluide
prasentiert, welche noch bei etwa 60000 Partikeln interaktive Applikationen zulésst, was weit
mebhr ist, als die hier geschatzten 1000. Es muss jedoch beachtet werden, dass die elastischen
Berechnungen eventuell komplexer sein konnten als solche fiir Fluide.

Wihrend die potentielle Schnelligkeit einen Vorteil darstellt, ist die Genauigkeit eher ein
Nachteil von SPH im Allgemeinen und von diesem Modell im Speziellen. Begeht man bei
einer FEM einen Fehler in der Implementierung, tendieren diese meist dazu, sehr schnell
instabil zu werden. Bei SPH ist dies oft nicht der Fall ([SMog3]). Es werden dann eher
physikalisch unkorrekte Ergebnisse geliefert, die aber eventuell nicht als solche zu erkennen
sind. Da fiir diese Arbeit keine genauen Materialdaten sondern nur maximal die Dichte,
das Elastizititsmodul und die Poissonzahl vorlagen, ist sehr schwer zu sagen, inwieweit
die Implementierung oder das Modell physikalisch korrekt sind. Es konnte nur beobachtet
werden, dass es das Verhalten von weicheren elastischen Materialien sehr gut imitiert, wenn
nicht gar wiedergibt.

Das prasentierte Modell hat anderen Methoden gegeniiber, was die physikalischen Eigen-
schaften betrifft, auch Vorteile. So konnen mit einem Masse-Feder-System keine Materialien
mit v = 0 modelliert werden. Dort verhindern die fiir die Modellierung essentiellen Struk-
turfedern eine verschwindende Poissonzahl. Mit den Finitite-Elemente-Methoden kann wohl
im Allgemeinen eine grofiere Bandbreite an Eigenschaften simuliert werden, als hier mog-
lich, jedoch sind viele Verfahren so spezialisiert, dass die wirklichen Anwendungsbereiche
einzelner darunter dhnliche Einschrankungen besitzen diirften.

Der Grofte Vorteil dieser Methode besteht in der hohen Erweiterbarkeit. Bei SPH handelt
es sich nach allgemeiner Meinung ([NMK™"06]) um eine sehr leicht wart- und erweiterbare
Methode. Fiir neue Eigenschaften, die modelliert werden sollen, konnen einfach neue Parti-
keleigenschaften definiert werden, die dann ebenfalls eventuell mittels SPH approximierbar
sind. Speziell das vorgestellte Modell wurde schon um einige Eigenschaften erweitert, zu
Details hierzu sei auf den nichsten Abschnitt verwiesen.

Als Fazit lasst sich also sagen, dass die vorliegende Methode, mangels genauerer Untersu-
chungen, noch nicht als wirklich physikalisch korrekt angesehen werden kann. Sollten diese
aber zeigen, dass Korrektheit gegeben ist, ist diese Behauptung nattirlich nichtig. Aufgrund
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7.3 Erweiterbarkeit

dessen und auch vor allem aufgrund der hohen Parallelisierbarkeit von SPH-Methoden im
Allgemeinen ist diese Methode wohl eher zur Animation in der Computergrafik denn zur
physikalischen Simulation geeignet. Wahrend bei der Simulation physikalische Korrektheit
das Hauptaugenmerk darstellt, ist es bei der Animation zum einen der Anschein der physi-
kalischen Korrektheit (welche aber nicht wirklich gegeben sein muss) und zum anderen die
Schnelligkeit. Beides erfiillt diese Methode.

7.3 Erweiterbarkeit

Wie schon erwihnt, besticht das préasentierte Modell durch seine Erweiterbarkeit, nicht zu-
letzt, weil es fast primaér fiir diesen Zweck entwickelt wurde. In [SSPoy] wurde ein Verfahren
entwickelt, welches die Interaktionen von Objekten, die mittels dieses Modells simuliert wer-
den, mit Fluissigkeiten und starren Objekten ermoglicht. Es wurden auch Zustandsiibergange
vom elastischen Objekt zur Fliissigkeit, verursacht durch Temperaturerhhung, moglich
gemacht.

Die fiir diese Arbeit vorgenommene Implementierung besitzt, wie schon gesagt, noch hohes
Potential fiir Parallelisierung. Insbesondere die Berechnung der Nachbarschaften und der
elastischen Krifte konnte dadurch signifikant beschleunigt werden. Um dies zu ermoglichen
miisste jedoch die Formulierung der elastischen Kraft angepasst werden, damit weniger Syn-
chronisation bei der parallelen Berechnung notig ist. Bei der aktuellen Formulierung konnte
es vorkommen, dass mehrere Kraftberechnungen gleichzeitig versuchen, schreibend auf
dieselbe Variable zuzugreifen, wenn diese fiir verschiedene Partikel gleichzeitig ausgefiihrt
wird. Die Bestimmung der Nachbarschaften konnte jedoch nicht nur mit Parallelisierungen
beschleunigt werden. So genannte Hash Grids wéren hier ebenfalls eine Moglichkeit um
schnellere Nachbarschaftssuche zu gewihrleisten.

In ihrer Arbeit ,,Corotated SPH for deformable solids” [BITog] decken Becker und Kollegen
eine Problematik in der Formulierung der Bedingung fiir lokale Undeformiertheit auf. Diese
fiihrt bei reiner Rotation eines Korpers, die jedoch keine Deformation beinhaltet, trotzdem zu
elastischen Kriften die ungleich 0 sind. Anders formuliert: Das préasentierte Modell ist nicht
rotationsinvariant. Becker und Kollegen erweitern das préasentierte Modell, um dieser Pro-
blematik Herr zu werden. Dazu wird in jedem Zeitschritt mittels SPH eine Rotationsmatrix
berechnet, die auf die Partikelpositionen in Ruhelage angewandt wird. Dadurch kann die
Rotationsinvarianz hergestellt werden. Das in deren Arbeit beschriebenen Verhalten konnte
auch hier teils reproduziert werden. Liefs man die in Abschnitt 6.1 beschriebene Simulation
weiter laufen, als beschrieben, traten nach einigen Hundert Zeitschritten bei Partikeln von
rotierten Objektteilen plotzlich sehr starke Kréfte in Richtung ihrer urspriinglichen Position
auf. Bei nicht rotierten Objektteilen war dies nicht der Fall. Auf jeden Fall ist das Problem
bekannt und es ist ebenfalls bekannt, wie ihm mittels einer Erweiterung beizukommen ist.

Nicht zuletzt wére auch eine Erweiterung des Modells fiir andere elastische Materialien
aufier den isotropen moglich. Dazu wére nur eine andere Berechnungsvorschrift fiir den
Spannungstensor notwendig. Dies kann jedoch bei bestimmten Materialparametern zu
erhohter Rechendauer fiithren, da man dann evtl. die Tensorschreibweise der Formel (siehe
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7 Diskussion

Abschnitt 3.3.5) nicht mittels Voigtscher Notation vereinfachen kann und man deshalb
plotzlich mit Tensoren vierter Stufe zurechtkommen muss. Dies ware aber nur bei sehr
exotischen Materialien der Fall. Fiir die meisten Arten von Stoffen existieren einfachere
Berechnungsvorschriften (siehe u.a. [Slaoz]).

Alles in allem lasst sich feststellen, das das préasentierte Modell durch seine Erweiterbarkeit
besticht und auch schon diverse Erweiterungen daran durchgefiihrt wurden. Die Moglichkei-
ten wurden jedoch bei weitem nicht ausgeschopft, vor allem in Hinblick auf die Schnelligkeit
der Simulation und der Abdeckung verschiedenster Materialien.
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8 Zusammenfassung und Ausblick

Im Rahmen dieser Arbeit wurde ein Verfahren zur punktbasierten Animation von elastischen
Korpern implementiert und evaluiert, welches durch seine hohen Erweiterungsmoglichkeiten
besticht. Diese Verfahren basiert auf der Smoothed Particle Hydrodynamics-Methode. Bei
dieser werden bestimmte Eigenschaften der Partikel errechnet, indem {iber Partikeleigen-
schaften der Nachbarpartikel geglittet wird. So kann etwa der Druck an einer bestimmten
Stelle errechnet werden, wenn man die Massen der Nachbarschaft gewichtet aufsummiert.
Zundchst wurden in dieser Arbeit die Grundlagen der punktbasierten Simulation, der
SPH-Methode und der Elastizititstheorie besprochen. Daraufhin wurde das Modell von
Solenthaler und Kollegen eingefiihrt, welches die Simulation von elastischen Materialien
ermoglicht. Es dndert die gidngige Formulierung der Ruhelage von elastischen Objekten,
um einfachere Erweiterbarkeit zu ermoglichen bzw. um Vereinigungen mit anderen Objek-
ten oder Spaltungen zu vereinfachen. Daraufhin folgte eine Beschreibung von bestimmten
Implementierungsdetails, wie etwa die Krifte auf die verschiedenen Partikel angerechnet
werden. Im Folgenden wurde dann die implementierte Simulationsmethode in Hinblick
auf Korrektheit und Leistungsfahigkeit evaluiert. Dabei stellte sich heraus, dass sie grofdes
Potential besitzt, durch Parallelisierung und andere Erweiterungen verbessert zu werden. In
einer abschlieflenden Diskussion wurden weiter Vor- und Nachteile erortert. Insbesondere
im Hinblick auf physikalische Korrektheit bestehen noch Verbesserungsmoglichkeiten.

Ausblick

Die Simulation und Animation verschiedenster Materialien hat in den letzten Jahren grofse
Fortschritte gemacht. Jedoch haben beide Bereiche unterschiedliche Anforderungen. Die
prasentierte Methode erfiillt nur die eines Bereichs. Die zukiinftige Entwicklung wird
wohl auf die Kombination beider Richtungen hinauslaufen. Wahrend es fiir Entwickler
von Simulationsmethoden wichtig ist, ihre Ergebnisse ansprechend zu prasentieren, ist
es fiir solche von Animationsmethoden ebenfalls wichtig, physikalische Korrektheit zu
wahren. Insbesondere durch den raschen Fortschritt der Parallelisierungstechniken wird
es moglich sein, kompliziertere Simulationsverfahren auch in der Animation zur Anwen-
dung zu bringen, ohne dass der zeitliche Aufwand explodiert. Inwieweit dabei gitterba-
sierte Verfahren zur Anwendung kommen konnen, bleibt abzuwarten, da punktbasierte,
wie das préasentierte, fiir die Zwecke der Animation bessere Grundvoraussetzungen lie-
fern.
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