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Kurzfassung

Diese Bachelorarbeit präsentiert einen Ansatz um elastische Materialien punktbasiert zu
animieren. Um dies zu erreichen, kommt die SPH-Methode zum Einsatz. Während andere
Methoden weitaus zeitraubendere Verfahren wie etwa Moving Least Squares verwenden,
können mit diesem Ansatz sehr gute Rechenzeiten erzielt werden. Vor allem besticht das Ver-
fahren durch seine Erweiterbarkeit, insbesondere im Hinblick auf die Interaktion mit Stoffen,
die sich in anderen Aggregatzuständen befinden. Dies alles ist durch eine Neuformulierung
der Ruhelage eines elastischen Objekts möglich, bei der statt der Startposition des Objekts
nur lokale Partikel-Nachbarschaften im Speicher gehalten werden. Diese Arbeit beschreibt
die Umsetzung und Evaluation dieses Verfahrens, insbesondere im Hinblick auf dessen
Robustheit und Effizienz. Diese Eigenschaften werden in einigen Experimenten, welche
verschiedenste Parameter variieren, bestätigt.
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1 Einleitung

Die Simulation und Animation von Materialien aller Art und deren Interaktionen unterein-
ander hat in den vergangenen Jahren immer mehr an Bedeutung gewonnen. Kaum jemand
wird die starke Zunahme von zumindest zum Teil animierten Filmen und Werbespots im
Fernsehen nicht bemerkt haben. Der Anspruch besteht darin, Photorealismus zu erzeugen,
wo keine echte Kamera verwendet werden kann oder soll. Bei Einzelbildern stellt dies ein
eher geringes Problem dar. Soll jedoch eine Abfolge von Bildern, also eben ein Film etc.,
erzeugt werden, müssen auch die Übergänge zwischen diesen Bildern realistisch erscheinen.
Wasser soll physikalisch korrekt fließen, ein Blatt soll, verlangsamt durch den Luftwiderstand,
vom Baum fallen. Betrachtet man Einzelbilder dieser Szenen, kann jedes für sich genommen
real aussehen, die zeitliche Abfolge mehrerer Bilder muss dies aber nicht. Es muss also
gewährleistet werden, dass im Zeitverlauf physikalische Korrektheit gewahrt bleibt.

Physikalisch korrekte Simulationsmethoden von Materialien aller Art sind schon seit Jahr-
zehnten sowohl in der Industrie als auch in der Forschung in Verwendung. Mit deren Hilfe
kann auch bei einer Computeranimation der Realitätseindruck gewahrt bleiben, indem
man das korrekte Verhalten aller in der Szene vorhandenen Gegenstände simuliert. Die
Computergrafik hat jedoch spezielle Anforderungen an diese Simulationsmethoden. Die
dort verwendeten Verfahren müssen vor allem schnell sein. Insbesondere für interaktive
Anwendungen wie etwa Computerspiele ist dies von Relevanz. Hier müssen mindestens
25 Einzelbilder pro Sekunde erreicht werden. Eine Methode welche das nächste Bild nach
5 Minuten berechnet hat, ist in diesem Anwendungsbereich also unnütz. Dabei werden
gerne auch Kompromisse im Bezug auf den physikalische Korrektheit eingegangen, solange
das Ergebnis nur korrekt aussieht. Rein rechnerisch muss es dies aber nicht unbedingt
sein. Gesucht sind also Simulationsmethoden, die schnell sind und ein gewisses Maß an
realistischem Eindruck wahren.

Viele in der Computergrafik verwendeten Simulationsmethoden sind partikelbasiert. Das
heißt, dass zu simulierende Objekte in kleine Partikel aufgeteilt werden, die dann untereinan-
der, je nach Modell unterschiedlich, miteinander interagieren können. Eine dieser Methoden,
die insbesondere bei Gasen zu guten Ergebnissen führt ist Smoothed Particle Hydrodyna-
mics (SPH). SPH wurde ursprünglich entwickelt, um die Simulation von Gasdynamik in
Weltraumnebeln zu vereinfachen, deren Berechnung mit Hilfe der damals existierenden
Methoden, wie beispielsweise der Finite-Elemente-Methode (FEM), recht zeitintensiv waren.
Einige Jahre nach dessen Veröffentlichung wurden auch zunehmend Verfahren entwickelt,
welche SPH in der Fluidsimulation zur Anwendung bringen. Fluide können mit dieser
Methode weitaus zeiteffizienter als bisher simuliert und animiert werden, was natürlich
für Branchen wie die Animationsfilmindustrie recht interessant ist. Vor der Simulation von
Feststoffen mittels SPH wurde bis vor kurzem jedoch zurückgeschreckt. Während bei Gasen
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1 Einleitung

und Flüssigkeiten die Partikel nicht fest untereinander verbunden sind, erfordern Feststoffe
meist eine bestimmtere Partikelanordnung. Diese ist weitaus schwerer zu modellieren als
beispielsweise die recht freie Bewegung von Gaspartikeln im Vakuuum. Besonders elastische
Materialien verursachen große Schwierigkeiten, da hier die Partikel innerhalb eines Objekts
ihre Position ändern können, ohne dass das Objekt seinen Zusammenhalt verlieren darf.

Trotz all dieser Schwierigkeiten gelang es in den letzten Jahren, Verfahren zu entwickeln,
welche elastische Feststoffe mit sehr zufriedenstellenden Ergebnissen modellieren und die
den speziellen Anforderungen der Computergrafik genügen. In dieser Arbeit wird daher
ein Verfahren präsentiert, welches in der Lage ist, elastische Materialien unter Verwendung
von Smoothed Particle Hydrodynamics zu simulieren und zu animieren. Das physikalische
Verhalten der simulierten Objekte muss dabei, wie schon erwähnt, nicht perfekt sein, jedoch
muss es ästhetischen Ansprüchen genügen. Es sollen so gut wie alle elastischen Materialien
vom Radiergummi bis hin zu Wackelpudding animiert werden können. Wie bereits ausge-
führt, soll dieses Verfahren sowohl schneller als bereits existierende Methoden, als auch leicht
erweiterbar sein. Dabei bedient es sich dem Elastizitätsmodell der Kontinuumsmechanik.
Die genauere Zielsetzung dieser Arbeit soll nun im nächsten Abschnitt erläutert werden.

1.1 Zielsetzung

Das Ziel dieser Bachelorarbeit ist es, ein Verfahren zur Simulation deformierbarer Objekte
umzusetzen und zu analysieren. Dieses soll auf einer Methode basieren, welch im Jahre 2007

von Solenthaler und Kollegen veröffentlicht wurde. Sie beschreiben in ihrer Arbeit „A Unified
Particle Model for Fluid-Solid Interactions“ [SSP07] ein Modell, welches die Interaktion
zwischen Feststoffen und Flüssigkeiten auf sehr einfache Weise umsetzt. Insbesondere gehen
sie auf die elastischen Materialien ein und zeigen ein Verfahren auf, wie diese Mittels SPH
simuliert werden können. Auf genau dieses Verfahren stützt sich diese Bachelorarbeit.

Nach der Implementierung des Grundverfahrens für elastische Körper soll dieses auf seine
Robustheit und seine Effizienz gegenüber anderen Verfahren untersucht werden. Es soll
auch die physikalische Plausibilität der Simulation evaluiert werden.

1.2 Überblick über die Arbeit

Im Folgenden soll nun ein kurzer Überblick über die Arbeit gegeben werden. Kapitel 2

präsentiert einige verwandte Arbeiten mit ähnlichem Themengebiet. Themengebiet, die
für diese Arbeit relevant sind. In Kapitel 3 soll dann zunächst auf einige für diese Arbeit
wichtigen Grundlagen eingegangen werden. So behandelt Abschnitt 3.1 die Grundzüge der
punktbasierten Simulation. Eine Methode, die dazu dient in einer Punktbasierten Simulation
einige nötige Werte zu bestimmen, namentlich Smoothed Particle Hydrodynamics, wird
dann in Abschnitt 3.2 eingeführt. Abschnitt 3.3 behandelt dann die Elastizitätstheorie der
Kontinuumsmechanik, soweit sie für diese Arbeit von Belang ist.
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1.2 Überblick über die Arbeit

Kapitel 4 führt daraufhin das Simulationsmodell für elastische Körper ein, welches in [SSP07]
präsentiert wird. Insbesondere wird auch auf die Anwendung von Smoothed Particle Hydro-
dynamics in diesem Falle eingegangen. In Kapitel 5 werden einige Implementierungsdetails
erläutert.

Kapitel 6 präsentiert einige der Ergebnisse, die bei Anwendung dieser Simulationsmethode
im Laufe dieser Arbeit erreicht worden sind. Die Abschnitte 6.2 und 6.1 zeigen die Resultate
auf, die bei Variation von Parametern für die Elastizität auftreten. Zu Details zu diesen
Materialeigenschaften sei auf Abschnitt 3.3.4 verwiesen. In Abschnitt 6.3 wird auf die
verschiedenen SPH-Grundparameter eingegangen, beziehungsweise auf die Effekte ihrer
Veränderung (siehe auch Abschnitt 3.2).

Die Diskussion der aufgezeigten Ergebnisse findet dann in Kapitel 7 statt. Eingangs wird
dort die Plausibilität der Ergebnisse für bestimmte elastische Parameter diskutiert. Daraufhin
wird dann noch auf die Vor- und Nachteile der Methode eingegangen und abschließend ihre
Erweiterbarkeit aufgezeigt. Kapitel 8 fasst diese Arbeit dann schlussendlich zusammen und
gibt einen kurzen Ausblick auf mögliche künftige Weiterentwicklungen.

11





2 Verwandte Arbeiten

Die Forschung in den Bereichen der Simulation von Elastizität hat im Laufe der Jahre eine
Vielzahl von Arbeiten und Modellen hervorgebracht. Die Elastizitätstheorie selbst ist sehr
weit ausgearbeitet. Zusammenfassungen, insbesondere mit Fokus auf die Anwendbarkeit
in der Computergraphik, sind beispielsweise [TPBF87], [GM97] oder [NMK+

06]. Welche
Arbeiten noch von Relevanz sind, soll in den folgenden beiden Abschnitten gezeigt werden.

Bei den präsentierten Arbeiten kann zwischen den sogenannten gitterbasierten und den
gitterlosen Methoden unterschieden werden. Während bei ersteren zwischen den simulierten
Objekten ein gewisser räumlicher Zusammenhang, also ein Gitter, besteht, können sie sich
bei letzteren weitesgehend frei bewegen, ohne durch eine Gitterstruktur eingeschränkt zu
sein.

2.1 Gitterlose Methoden

Bei den meisten gitterlosen Methoden handelt es sich um Partikelsysteme. Deren ursprüngli-
che Grundlagen liegen in der newtonschen Punktmechanik, die schon im 17. Jahrhundert
von Isaac Newton ausgearbeitet wurde [New87]. In der Computergraphik kam diese Art
der Modellierung jedoch erst recht spät an. 1983 wurde in [Ree83] ein Verfahren präsen-
tiert, das etwa Feuer mittels Partikelsystemen anschaulich visualisieren kann. [LW85] führt
Punkte als Bildschirmprimitive ein und ermöglicht somit, dass Simulationsergebnisse von
punktbasierten Methoden anschaulich präsentiert werden können. Auf dem Gebiet der
Simulation hat sich vor allem Smoothed Particle Hydrodynamics hervorgetan. Diese Me-
thode wurde in [GM77] und [Luc77] erstmals präsentiert. Reviews der Methode stammen
vor allem von Monaghan ([Mon92], [Mon05a], [Mon05b]). In [SM93] wird versucht mittels
einer eigenen Implementierung die Grenzen von SPH aufzuzeigen. In den folgenden Jahren
kam diese Methode immer mehr in der Computergrafik an. So präsentierten Desbrun und
Kollegen ([DC96]) eine Methode, welche in der Lage ist verschiedenste einfache Materialien
zu animieren.

Infolgedessen erschien eine Vielzahl von Arbeiten mit unterschiedlichen Schwerpunkten.
In [MCG03] wird eine Methode präsentiert, mit der Fluide mittels SPH simuliert werden
können. Die Simulation elastischer Körper wird etwa in [MKN+

04] oder [SSP07] thematisiert.
Während sich erstere Arbeit auf feste, elastische und schmelzende Körper konzentriert,
versucht letztere, ein universales Partikelmodell zu entwickeln, um die Interaktion von
Objekten verschiedener Aggregatszustände zu vereinfachen. Erstere verwendet dazu Moving
Least Squares, was recht zeitintensiv sein kann, bei dem universalen Partikelmodell kommt

13



2 Verwandte Arbeiten

das SPH-Modell zum Einsatz. Wie schon erwähnt, basiert das in dieser Arbeit präsentierte
Verfahren auf der Arbeit von Solenthaler und Kollegen.

Ebenfalls relevant ist [KAG+
05], welche ein ähnliches Verfahren präsentiert, das jedoch

mehr auf Zustandsübergänge zwischen fest und flüssig fokussiert ist. Elastizität ist dort
nur ein Nebenprodukt. Das Elastizitätsmodell von [SSP07] wird in [BIT09] erweitert, um
Rotationsinvarianz bei elastischen Körpern zu ermöglichen. In [GBB09] konzentriert man
sich, ebenfalls basierend auf [SSP07], ausschließlich auf elastische Materialien und es wird
keine initiale Referenzkonfiguration von Objekten verwendet, wie es bei vorhergehenden
Modellen der Fall war. Ein wichtiger Aspekt der Simulation elastischer Materialien, das
Kontaktverhalten mehrerer Objekte, wird in [KMH+

04] thematisiert. Zusätzlich zu den
Methoden zur Simulation sind auch Methoden zur Oberflächenrekonstruktion von Relevanz.
In [BGB11] wird z. B. eine solche Methode präsentiert.

2.2 Gitterbasierte Methoden

Neben den gitterlosen Methoden sind die gitterbasierten von hoher Relevanz. Vor allem in
der Industrie sind letztere beliebter bzw. weiter verbreitet, da dort eher auf Korrektheit denn
auf Schnelligkeit Wert gelegt wird. Das soll jedoch nicht heißen, dass gitterbasierte Methoden
zwangsläufig korrekter sind als gitterlose. Zu ihnen gehören etwa die Finite-Elemente-
Methode (FEM) oder Masse-Feder-Systeme. Eine Einführung in die FEM wird beispielsweise
in [Bra03] vorgenommen. Dank der natürlichen elastischen Eigenschaften von Federn, werden
Masse-Feder-Systeme vor allem zur Simulation von elastischen Materialien oder Stoffen
verwendet. Masse-Feder-Systeme sind jedoch zur Simulation einiger Eigenschaften von
elastischen Objekten ungeeignet. In [CZKM98] wird ein solches System zur Animation
fallender Gegenstände verwendet. Speziell mit den Eigenschaften von elastoplastischen
Materialien beschäftigen sich zwei Arbeiten von O’Brian, welche die FEM verwenden. In
[OH99] werden vor allem spröde Materialien thematisiert, [OBH02] präsentiert ein Verfahren
für dehnbare Objekte. In beiden Arbeiten wird speziell auf das Bruchverhalten unter großen
Kräften eingegangen. Ein Verfahren, dass sich vor allem für sehr starke Deformationen
eignet, wird in [WT08] präsentiert. Da insbesondere FEM im Gegensatz zu vielen gitterlosen
Methoden recht zeitintensiv ist, findet es in der Computergrafik seltener Anwendung.
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3 Grundlagen

Dieses Kapitel beschäftigt sich mit den nötigen Grundlagen, die zum Verständnis der Simula-
tionsmethode dieser Arbeit vonnöten sind. Abschnitt 3.1 führt den Begriff der Punktbasierten
Simulation ein. Abschnitt 3.2 führt dies dann weiter und erläutert die Funktionsweise von
Smoothed Particle Hydrodynamics, welches eine Methode darstellt, die bestimmte benötigte
Größen in einer Punktbasierten Simulation berechnen kann. Abschließend wird noch auf die
Elastizitätstheorie der Kontinuumsmechanik eingegangen, welche in vielen Simulationsmo-
dellen Anwendung findet (Abschnitt 3.3).

3.1 Punktbasierte Simulation

Seit jeher ist es das Ziel von Physikern und anderen Wissenschaftlern das Verhalten von allen
Dingen zu 100% genau vorhersagen zu können. Die kontinuierliche Natur des Universums
ist hierbei jedoch höchst hinderlich. Hat man genaue Aussagen über zwei Punkte im Raum
getroffen, heißt dies nicht zwangsläufig, dass man daraus das dazwischen liegende einfach
folgern kann. Auch für Computer-Simulationen ist dies sehr hinderlich, da Rechner nur
mit einer endlichen Datenmenge umgehen können. Somit ist also eine Vereinfachung der
allgemeinen Modelle notwendig, um effizient Vorhersagen treffen zu können. Dies kann
getan werden, indem man nur die Werte von endlich vielen Messstellen berücksichtigt.
Hierfür gibt es zwei grundlegend unterschiedliche Taktiken.

Es scheint naheliegend, dass man den Raum einfach aufteilen kann, wenn man beispielsweise
jeden Millimeter einen Messpunkt anbringt. So kann ein Würfelförmiger Raum mit 10cm
Kantenlänge mit Hilfe von 1000000 Messpunkten beschrieben werden. Der Unterschied der
beiden erwähnten Taktiken besteht nun darin, wie man diese Messpunkte behandelt. Will
man in diesem Würfel etwa die Bewegung von Wasser simulieren, kann man die Mess-
punkte an ihrer Ursprungsposition belassen und etwa die Druckverteilung zwischen diesen
Messpunkten simulieren. Die Punkte sind, wie beschrieben, in einem Gitter angeordnet
[NMK+

06].

Die zweite Möglichkeit besteht darin, jeden Punkt als Bestandteil des zu simulierenden
Gegenstands zu betrachten (hier: als Wasserteilchen). Bewegt sich das Wasser im Würfel,
bewegen sich die das Wasser repräsentierenden Teilchen ebenfalls, gleichförmig mit dem Was-
ser. So besteht die Möglichkeit, dass bestimmte Teile des Raums nicht betrachtet werden (jene
ohne Wasser darinnen), andere jedoch schon. Jeder Punkt, bzw. jedes Partikel repräsentiert
einen Teil der Eigenschaften des gesamten Wassers im simulierten Raum [NMK+

06].
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3 Grundlagen

Abbildung 3.1: Vergleich zwischen Eulerschen (links) und Lagrange-Methoden (rechts).

Hier ist also leicht der Unterschied zwischen beiden Herangehensweisen sichtbar. Bei dem
ersten sogenannten Eulerschen Ansatz wird der Raum diskretisiert. Bei letzterem, dem
Lagrange-Ansatz diskretisiert man das zu simulierende Material [NMK+

06]. Dies sei an
Abbildung 3.1 verdeutlicht.

Während links beim Eulerschen Verfahren bei vielen Messpunkten kein Wasser vorhanden
ist, ist dies rechts beim Lagrange-Ansatz nicht der Fall. Somit wird vermieden, leeren Raum
simulieren zu müssen, was Rechenleistung spart. Im Gegenzug ist natürlich in einem Raum
mit höherer Partikeldichte entsprechend mehr Leistung erforderlich. Eine komplett gefüllte
Domäne wird gegenüber dem Eulerschen Ansatz eventuell sogar im Nachteil sein, was die
reine Rechendauer angeht, da somit der Vorteil des Lagrange-Ansatzes verloren geht.

Um dem Lagrange-Ansatz gerecht zu werden kann man das zu simulierende Medium belie-
big unterteilen. Die einfachste Möglichkeit dazu besteht darin, dies mittels einer endlichen
Menge von Punkten zu tun. Bei der weiteren Verfahrensweise hat man nun wiederum zwei
Möglichkeiten. Entweder dürfen die Punkte sich frei im Raum bewegen, oder sie werden
gitterartig untereinander verbunden. Bei ersteren handelt es sich um die punktbasierten, bei
letzteren um die gitterbasierten Methoden.

Die punktbasierten Systeme wurden im Jahre 1983 von William T. Reeves in [Ree83] einge-
führt. Damals dienten sie jedoch eher zur eher ästhetisch motivierten Animation denn zur
Simulation von physikalischen Phänomenen. Mit ihnen wurde im Film „Star Trek II: Der
Zorn des Khan“ die Ausbreitung einer Schockwelle eines Bombeneinschlags dargestellt.
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3.1 Punktbasierte Simulation

Für beide Ansätze existieren die unterschiedlichsten Verfahren die auf ihnen basieren.
Während beispielsweise die Finite-Elemente-Methode (FEM) [Bra03] zu den gitterbasierten
Methoden gezählt wird, gehören beispielsweise Smoothed Particle Hydrodynamics (siehe
Abschnitt 3.2) oder eben die von Reeves beschriebenen „Loosely coupled particle systems“
[Ree83] zu den punktbasierten Methoden.

Im Folgenden sollen nun die grundlegenden Methodiken und Annahmen erläutert werden,
die für eine punktbasierte physikalisch motivierte Simulation notwendig sind.

3.1.1 Partikel

In punktbasierten Systemen sind, wie zu erwarten, die Punkte bzw. die Partikel die wichtigs-
ten Bestandteile. Sie repräsentieren die zu simulierenden Materialien. Die Beschreibung eines
Objekts in einem solchen System wird also durch die Beschreibung all seiner zugehörigen
Partikel ersetzt. Um dies leisten zu können, werden jedem Partikel diverse Eigenschaften
mitgegeben [Ree83]. Diese Eigenschaften können variieren, je nachdem zu welcher Aufgabe
das System in der Lage sein soll. Die gebräuchlichsten sind hierbei:

Position x: Wird im Normalfall im dreidimensionalen Raum angegeben, also x ∈ R3. Sie
beschreibt den genauen Punkt im gegebenen Koordinatensystem, in dem sich das
Partikel aktuell befindet. Natürlich auch zweidimensional möglich (x ∈ R2).

Geschwindigkeit v: Im dreidimensionalen Raum gilt, analog zur Position, v ∈ R3. Die
Richtung des Vektors beschreibt die aktuelle Bewegungsrichtung des Partikels, die
Länge beschreibt den Betrag der momentanen Geschwindigkeit.

Zu diesen sehr grundlegenden Eigenschaften können noch einige hinzukommen, die speziell
für physikalische Simulationen von Belang sind:

Masse m: Wird als Skalar m ∈ R angegeben. Beschreibt die Masse des Raumteils, für den
das Partikel zuständig ist. Summiert man die Masse aller Partikel eines Objekts, erhält
man die Objektmasse.

Volumen v: Beschreibt die Größe des Raumteils, für den das Partikel zuständig ist. Das
Volumen ist besonders in [SSP07] von Relevanz. Im Gegensatz zur Geschwindigkeit
handelt es sich hierbei nicht um einen Vektor sondern um ein Skalar, trotz desselben
Symbols.

Temperatur T: Repräsentiert die aktuelle Temperatur an der Partikelposition.

Da Partikelsysteme nicht nur für physikalisch motivierte Simulationen von Belang sind sind,
sondern auch im Bereich der Visualisierung eine große Rolle spielen, können noch folgende
Eigenschaften Anwendung finden:
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3 Grundlagen

Farbe: Typischerweise als RGB-Farbwert angegeben. Ist vor allem bei der Visualisierung von
Relevanz. Kann sich im Zeitverlauf ändern um beispielsweise Temperaturänderungen
visuell zu verdeutlichen.

Transparenz: Ist gewissermaßen der α-Kanal zu der Farbe des Partikels. Bei der Flüssigkeits-
visualisierung kann ein Partikel evtl. leicht durchsichtig sein. Diese Durchsichtigkeit
wird im Transparenzwert festgelegt.

Form: Auch meist für die Visualisierung von Relevanz, beschreibt das äußere Erscheinungs-
bild eines Partikels.

Aus allen Eigenschaften, die die Partikel eines Systems besitzen, können dann die neue
Position bzw. die neuen Eigenschaften errechnet werden, die ein Partikel zu einem späteren
Zeitpunkt innehat. So gut wie alle punktbasierten Methoden gehen nach diesem Schema
vor. Der Unterschied zwischen ihnen besteht zumeist darin, wie diese Eigenschaften be-
rechnet werden. Im Regelfall wird dazu eine Interpolationsmethode verwendet, da eine
endliche Anzahl von Stützstellen (die Partikel) existieren, auf deren Basis die Berechnung
durchgeführt werden kann. Aufgrund der hohen Anzahl unterschiedlicher existierender
Interpolationsalgorithmen ist die Anzahl der Möglichkeiten für solche Simulationen sehr
hoch. Zu den bekanntesten und verbreitetsten zählen unter anderem SPH oder Moving Least
Squares (MLS). Diese nehmen die Eigenschaften benachbarter Partikel als Eingabewerte, um
daraus andere Eigenschaften des betrachteten Partikels zu berechnen.

3.1.2 Newtonsche Gesetze

Die Diskretisierung mittels Partikeln kann in unterschiedlichen Größenordnungen durchge-
führt werden. Je nach Anwendungsfall kann man etwa einen 1m2-Gummiwürfel mit einem
oder einer Milliarde Partikeln darstellen. Punktbasierte Simulationen verwenden häufig
ein makroskopisches Modell. Das heißt, dass unter anderem Effekte auf atomarer Ebene
vernachlässigt werden. Natürlich könnten diese auf irgendeine Weise ebenfalls modelliert
werden, jedoch wird in diesem Zusammenhang auf die Beschreibung dieser Fälle verzich-
tet, da sie für diese Arbeit nicht relevant sind. Zudem spielen auch relativistische Effekte
meist keine Rolle. Das immer noch beliebteste Modell für diese Fälle ist die Newtonsche
oder Klassische Mechanik, die zu großen Teilen noch aus dem 17. Jahrhundert stammt.
Insbesondere die Berechnung der Partikelpositionen und -geschwindigkeiten geschieht mit
Hilfe von Gleichungen aus der klassischen Mechanik. Im Regelfall wird in den meisten
Arbeiten nur eine Berechnungsformel für die auftretenden Kräfte zwischen den Partikeln
gegeben. Die Umrechnung der Kräfte in resultierende Partikelgeschwindigkeiten und neue
Positionen im Zeitverlauf geschieht, fast schon selbstverständlich, durch die eben erwähnten
Gleichungen.

Angenommen man versucht, Wasserbewegungen zu simulieren. In einer solchen Simulation
werden die einzelnen Wasserteilchen (nicht zu verwechseln mit H2O-Molekülen, da es sich
um ein makroskopisches Modell handelt) untereinander mittels der auftretenden Kräfte
wechselwirken. Sammeln sich viele Teilchen nahe beieinander, kann dies als erhöhter Druck
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3.1 Punktbasierte Simulation

bzw. erhöhte Dichte an dieser Stelle interpretiert werden. Da Wasser für die meisten Berech-
nungen als inkompressibles Fluid angesehen werden kann, wird das System nun versuchen,
die erhöhte Dichte auszugleichen. Dies wird modelliert, indem man Kräfte einführt, die
von einem Partikel auf andere, sich zu nahe befindende, Partikel wirken. Die Kraft wird zu
nahe Partikel von dem Partikel, von dem sie ausgeht, wegschieben, um den erhöhten Druck
auszugleichen.

Seien alle Partikel von 1 bis n ∈ N durchnummeriert. Dann steht P1 für das erste Partikel
und Pi für das i-te, wobei 1 ≤ i ≤ n und i ∈ N. Die Kraft, die von Partikel Pj auf Pi wirkt,
wird dann als Fij bezeichnet. Zusätzlich zu den Kräften zwischen den Partikeln können noch
externe Kräfte auftreten, wie beispielsweise die Gravitation, die meist als konstante, nach
unten wirkende Kraft modelliert wird. Diese seien als Fi_ext bezeichnet. Die Summe aller
Kräfte, die auf Pi wirken, ist Fi. Als Anmerkung sei gesagt, dass es sich bei der Kraft um eine
vektorielle Größe handelt, der Vektorpfeil wird jedoch der Übersicht halber weggelassen und
durch fetten Druck ersetzt. Mit Hilfe der drei Newtonschen Gesetze [New87] können dann
aus den Kräften und den schon bekannten Positionen und Geschwindigkeiten die neuen
Positionen und Geschwindigkeiten der Partikel berechnet werden. Das zweite dieser drei
Gesetze (das so genannte Aktionsprinzip), wobei mi die Masse des i-ten Partikels angibt und
xi dessen Position, lautet:

Fi = mi ∗ ẍi (3.1)

Umgeformt nach der Position xi kann nun mit Hilfe dieses Gesetzes die neue Position des
Partikels im Raum berechnet werden. Der Wert ẋi = vi wird gemeinhin als Geschwindigkeit
von Pi bezeichnet. Des weiteren wird ẍi = v̇i = ai als dessen Beschleunigung bezeichnet.

Bevor jedoch die neuen Positionen bestimmt werden können, kann es von Vorteil sein
sicherzustellen, dass das erste und das dritte Newtonsche Gesetz erfüllt ist. Das erste ist
das der Trägheit. Es besagt, dass ein Partikel, auf das keine Kräfte wirken, seine aktuelle
Geschwindigkeit bzw. seinen aktuellen Impuls beibehält. Das dritte Gesetz ist das von actio
und reactio. Es besagt, dass Kräfte immer in Paaren auftreten, die sich gegenseitig auslöschen.
Übt Pj auf Pi eine Kraft Fij aus, so gilt:

Fij = −Fji (3.2)

Somit wirkt von Pi auf Pj eine betragsmäßig gleich große Gegenkraft. Final bleibt nur noch
die Lösung einiger Differentialgleichung übrig, um aus der umgeformten Gleichung 3.1 die
neue Geschwindigkeit und Position zu errechnen. Dieses Verfahren wird auch Zeitintegration
genannt, wobei der Zustand des Systems nach endlichen, jeweils gleich großen Zeitschritten
bestimmt wird.

3.1.3 Zeitintegration

Die Zeitintegration ist ein Faktor für die Stabilität bzw. Robustheit einer Simulation. Wird
der Zeitschritt zu groß gewählt, oder das falsche Verfahren angewandt, kann die Simulation
unter Umständen nicht beabsichtigte Ergebnisse liefern.
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3 Grundlagen

Formt man nun die Gleichung Fi = mi ∗ a nach der Beschleunigung a um, erhält man
eine Differentialgleichung zweiter Ordnung. Hierbei handelt es sich wirklich um eine
Differentialgleichung, da Fi von der aktuellen Position xi abhängig ist:

ẍi = a =
Fi

mi
(3.3)

Dies ist ein Spezialfall einer Differentialgleichung, ein sogenanntes Anfangswertproblem,
da die Position x0

i , die Geschwindigkeit ẋ0
i und die Beschleunigung ẍ0

i zum Zeitpunkt t = 0
gegeben sind. Diese können nämlich zum Start der Simulation frei gewählt werden, je
nachdem wie das zu simulierende Objekt aussehen soll und welche Bewegung es zum Start
auszuführen hat. Allgemein soll der Wert xt

i die Position des Partikels Pi zum Zeitpunkt t
bezeichnen.

Dieses Anfangswertproblem könnte beispielsweise mit dem expliziten Euler-Verfahren (siehe
u.a. [AP98], [WB97]) gelöst werden. Neben dem Expliziten Euler-Verfahren existiert eine
ganze Reihe von anderen Verfahren, die ebenfalls in der Lage sind, lineare Differentialglei-
chungen numerisch zu lösen. Das Explizite Euler-Verfahren zählt darunter noch zu den
einfachen. Da seine Anwendung die physikalischen Beziehungen fast 1 : 1 wiedergibt, wird
es sehr gerne der Anschaulichkeit halber verwendet, auch wenn zur eigentlich Integration
dann ein anderes Verfahren zum Zuge kommt. Zu anderen Lösern für Differentialgleichun-
gen kann ebenfalls [AP98] zu Rate gezogen werden. Unter Verwendung des Euler-Verfahrens
ergeben sich dann folgende Beziehungen, welche leicht gelöst werden können, da alle Werte
bekannt sind:

ẋt+δt
i = ẋt

i + ẍt
i ∗ δt

xt+δt
i = xt

i + ẋt+δt
i ∗ δt

(3.4)

Mit diesen Gleichungen kann die neue Position eines Partikels Pi, bezeichnet mit xt+δt
i aus

dessen alter Position xt
i berechnet werden. Der Wert δt bezeichnet den zeitlichen Abstand, mit

dem das System abgetastet werden soll. Die Wahl der Größe dieses Zeitschritts ist essentiell
für die Stabilität des Systems. In den meisten physikalischen Simulationen wird ein zu großes
δt zu Instabilität führen. Wird es sehr klein gewählt, wirkt sich dies auf die Rechendauer
aus, da dann für die selbe Simulationsdauer mehr Zeitschritte absolviert werden müssen. Es
existiert auch die Möglichkeit, die Länge des Zeitschritts adaptiv zu bestimmen, indem man
eine Stabilitätsbedingung formuliert, die vom System eingehalten werden muss. Dann kann
δt gerade klein genug gewählt werden, dass das System nicht instabil wird. Somit könnte
dann jeden Zeitschritt ein anderes δt verwendet werden.

Das endgültige Schema für eine Punktbasierte Simulation lautet schließlich:

1. Berechnung der Kräfte Ft
i

2. Berechnung der neuen Geschwindigkeiten vt+δt
i

3. Berechnung der neuen Positionen xt+δt
i
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Dieses Schema kann so oft wiederholt werden, wie nötig. Will man z.B. eine Simulation von
1s Länge ausführen, sind 1s/δt Wiederholungen notwendig. So gut wie jede physikalisch
basierte Simulation folgt einem Schema dieser Art. Je nach Differentialgleichungslöser
kann jedoch die Schrittreihenfolge variieren. Im folgenden Kapitel soll nun ein Verfahren
vorgestellt werden, welches bestimmte benötigte Werte in einer punktbasierten Simulation
diskret annähern kann: Smoothed Particle Hydrodynamics.

3.2 Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics wurde ursprünglich von L. Lucy ([Luc77]), R. A. Gingold
und J. J. Monaghan ([GM77]) entwickelt, um die Gasdynamik in Sternensystemen zu simu-
lieren. Die beide Arbeiten, in denen diese Systematik zuerst publiziert wurde, entstanden
unabhängig voneinander, auch wenn Gingold und Monaghan in [GM77] klarstellen, dass
die Grundidee von Lucy in einer seiner Vorlesungen in Cambridge 1976 bereits erwähnt
wurde und sie diese nur weitergeführt hatten. Gemeinhin wird jedoch meist Monaghan als
„Vater“ von SPH dargestellt, da zum einen der Begriff SPH in [GM77] geprägt wurde und er
zum anderen viele weitere Forschungen in dem Gebiet angestellt hat.

Im Laufe der Jahre hat sich herausgestellt, dass das ursprüngliche Verfahren allgemein und
simpel genug gehalten war, um einfach für andere Probleme adaptiert werden zu können.
Beispielsweise wird von Desbrun und Kollegen in [DC96] die Simulation unterschiedlichster
Stoffe mit stark variierenden Parametern präsentiert. Darunter befinden sich sowohl Flüs-
sigkeiten als auch Feststoffe. Von Müller und Kollegen werden in [MCG03] optisch sehr
ansprechende Ergebnisse mit Fluiden erzielt.

Wie genau SPH funktioniert, soll im Folgenden geklärt werden.

3.2.1 Grundidee

Smoothed Particle Hydrodynamics basiert auf einem Interpolationsverfahren, mit dem
man einen skalaren Wert mit Hilfe eines Integrals interpoliert. Die Herleitung der SPH-
Grundgleichung beginnt bei der folgenden Identität:

A(r) =
∫
Ω

A(x)δ(r− x)dx (3.5)

Hier bezeichnet δ(x) die so genannte Diracsche Delta-Funktion, welche unter anderem wie
folgt definiert werden kann [Wal94]:

δ(x) =

{
∞ , wenn x = 0

0 , wenn x 6= 0
(3.6)
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Zusätzlich gilt noch die Bedingung:
∞∫
−∞

δ(x)dx = 1 (3.7)

Somit ist offensichtlich, dass die Identität 3.5 Gültigkeit besitzen muss, denn δ(r− x) nimmt
nur einen Wert 6= 0 an, wenn r gleich x ist. A(r) kann als eine Größe angesehen werden, die
wir approximieren wollen, sie könnte beispielsweise für die Dichte bei einem bestimmten
Partikel im Partikelsystem stehen. Um nun aus Gleichung 3.5 eine diskretisierbare Interpola-
tionsformel zu erhalten, ersetzt man δ(x) durch W(x, h), die so genannte Kernel-Funktion.
Zu näheren Details zur Kernel-Funktion, siehe auch Abschnitt 3.2.3. Sie sollte für gültige
Ergebnisse folgende Eigenschaften besitzen:

lim
h→0

W(r, h) = δ(r)∫
W(r, h)dx = 1

(3.8)

Zudem sollte sie symmetrisch zur y-Achse sein und in einem endlichen Bereich um x = 0
ungleich 0 sein. Der Wert h ist die so genannte Glättungslänge (engl. Smoothing Length).
Ihre Größenordnung spielt eine wichtige Rolle bei der Genauigkeit der nun aus Gleichung
3.5 erstellten Interpolationsformel, bei der δ(r) durch W(r, h) ersetzt wird:

A(r) ≈ AI(r) =
∫

A(x)W(r− x, h)dx (3.9)

Anhand der Definition von W(r, h) kann man erkennen, dass die Genauigkeit der Interpola-
tion zunimmt, je kleiner die Glättungslänge h ist, denn dann wird die Delta-Funktion besser
approximiert. Diese Interpolationsformel muss jedoch noch diskretisiert werden, da wir eine
diskrete Zahl von Partikeln besitzen, deren Werte wir approximieren wollen.

3.2.2 Diskretisierung der Interpolation

Wie Gleichung 3.9 diskretisiert wird, variiert je nach den Anforderungen, die gestellt werden.
In der Literatur wird dies gerne exemplarisch für den Anwendungsfall eines Fluids getan
[Mon05b]. Dies soll hier nun auch geschehen. Ein Fluid wird in eine Menge kleiner Volu-
menelemente unterteilt. Wie schon in Abschnitt 3.1 dargelegt, kann man diese Elemente als
Partikel ansehen. Ein Partikel Px habe dabei Masse mx, Dichte ρx und Position rx. Mit Hilfe
dieser Werte kann das Interpolationsintegral wie folgt geschrieben werden [Mon05b]:∫ A(r′)

ρ(r′)
ρ(r′)dr′ (3.10)

Mit der Zusatzinformation, dass die Masse eines Volumens dem Integral über die Dichte des
Volumens entspricht, kann Gleichung 3.9 mit einer Summe über die Massen approximiert
werden. Die finale, diskretisierte SPH-Gleichung lautet also:

AS(r) = ∑
b

mb
Ab

ρb
W(r− rb, h) (3.11)
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Abbildung 3.2: Spiky-Kernel (spitz) und Poly 6-Kernel (flach) für h = 1.

Für A kann hier so gut wie jede benötigte Partikeleigenschaft eingesetzt werden, sei es die
Dichte oder sonstige Eigenschaften die für jeweilig verwendete Modell nötig sind. Aufgrund
dessen gilt SPH als sehr flexibel und vielseitig anwendbar, da so gut wie alle zu berechnenden
Werte mit Hilfe der Formeln approximiert werden können. Sei einer dieser benötigten Werte
die Dichte. In diesem Fall kürzt sich Gleichung 3.11 zu folgendem:

ρ(r) = ∑
b

mbW(|r− rb| , h) (3.12)

Somit wird die Dichte bei einem bestimmten Partikel allein aus den Massen und den
Abständen zu den umliegenden Partikeln berechnet (h wird als gegeben angenommen).
Abschließend bleibt nur noch zu klären, welchen Einfluss die Kernel-Funktion W(r, h)
besitzt.

3.2.3 Kernel-Funktion

Wie schon angeführt, besitzt die Kernel-Funktion W(r, h) und einer ihrer Eingabeparame-
ter, die Glättungslänge h, einen enormen Einfluss auf die Güte und die Performance der
Approximation. Man rufe sich noch mal die Eigenschaften der Funktion aus Gleichung3.8
in Erinnerung. Der Zweck der Kernel-Funktion ist es, eine Gewichtung aufgrund eines
gegebenen Partikelabstandes r bereitzustellen, abhängig von der Glättungslänge h. Da sie
die Diracsche Delta-Funktion annähern soll, befindet sich ihr Maximum bei W(0, h). Das
Maximum der Delta-Funktion ist ebenfalls bei δ(0). Es sei noch angemerkt, dass der Ein-
gabeparameter r eher als |r| zu verstehen ist, da man einzig und allein am Abstand zweier
Partikel interessiert ist, nicht an deren Relativposition. Dennoch ist auch eine Abhängigkeit
von der Relativposition denkbar. Diese Schreibweise hat sich jedoch so eingebürgert.

In der Praxis wählt man für W(r, h) eine Funktion, die von ihrem Maximum bei x = 0 nach
außen hin abfällt und symmetrisch zur y-Achse ist. Um die Performance der Approximation
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Abbildung 3.3: Verhalten von SPH.

zu verbessern, sind diese Funktionen so designt, dass sie bei Werten von |r| ≥ 2h konstant 0
sind [Mon92]. In den Anfangszeiten nahm man dazu meist eine abgeschnittene Gauss-Kurve.
Jedoch stellte sich schon bald heraus, dass eine Gauss-Kurve nicht immer den geeignetsten
Kernel darstellt. Daher ging man dazu über, für jeden zu approximierenden Wert eigene
Funktionen zu entwickeln. So entwickelten etwa Desbrun und Kollegen folgende Kernel-
Funktion, den so genannten Spiky-Kernel [DC96]:

W(|r| , h) =
15

πh6

{
(h− |r|)3 ; 0 ≤ |r| ≤ h

0 ; sonst
(3.13)

Der Graph für diese Funktion ist in Abbildung 3.2 gegeben, wobei es sich um die spitz zu-
laufende Funktion handelt. Bei der flacheren Funktion handelt es sich um den Poly 6-Kernel
von Müller und Kollegen [MCG03]. Während ersterer speziell für die Berechnung der Dichte
entwickelt wurde, handelt es sich bei letzterem um einen Kernel, der in multiplen Gebieten
zum Einsatz kommt. Wie an den beiden Graphen erkennbar ist, sinken die Funktionswerte
schon bei |r| ≥ h auf 0 und nicht erst bei |r| ≥ 2h. Dieses Verhalten wurde erst in neueren
Arbeiten eingeführt ([DC96], [MCG03], etc.). Man wollte wohl direktere Kontrolle haben, ab
welchem Abstand zum betrachteten Partikel die Werte der anderen Partikel an Relevanz
verlieren.

Das Gesamtverhalten von SPH sei auch an Abbildung 3.3 verdeutlicht. Angenommen, man
will die Dichte an der Position des mittleren Partikels (rot, groß) berechnen. In diesem
Fall sind nur alle Partikel von Relevanz, die sich innerhalb der Glättungslänge h um das
betrachtete Partikel befinden (schwarz). Bei allen anderen (weiß) beträgt der Rückgabewert
der Kernel-Funktion 0 und sie sind somit nicht relevant. Je näher sich ein Partikel an
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dem betrachteten befindet, desto relevanter ist es für die Dichte an dessen Position. Es sei
angemerkt, dass das Partikel, für das die Berechnung durchgeführt wird, selbst auch noch
mit einfließt. Insgesamt sähe dann ein kompletter SPH Simulations-Zeitschritt so aus:

1. Berechnung der Nachbarschaften aller Partikel (alles mit Abstand > h soll nicht
betrachtet werden)

2. Berechnung aller relevanten Werte für die Partikel (also z.B. Dichte, ...)

3. Daraus: Berechnung der wirkenden Kräfte (z.B. Druckkraft, ...)

4. Zeitintegration

Der SPH-Formalismus wird in diesem Schema nur in Punkt 2 und evtl. in Punkt 3 zum
Einsatz kommen, um aus den Materialeigenschaften resultierende Werte zu approximieren.
Alles andere wird mit anderen Verfahren berechnet.

3.3 Elastizitätstheorie

Da es das Ziel dieser Arbeit ist, elastische Materialien zu modellieren, werden noch einige
Anleihen aus der Elastizitätstheorie der Kontinuumsmechanik benötigt. Die Frage die man
sich stellen muss, ist: Welche Prozesse finden innerhalb eines elastischen Körpers statt und
wie kann man diese modellieren? Da es sich hierbei, wie gesagt, um ein Teilgebiet der
Kontinuumsmechanik handelt, sind alle Aussagen, die getroffen werden, für das Kontinuum
relevant. Dies können wir uns für die Punktbasierte Simulation zu Nutze machen, indem wir
die bestehenden Kontinuumsgleichungen, bei denen es sich meist um Differentialgleichungen
handelt, diskretisieren. Dies kann durch Unterteilung des Raums auf mehrere Partikel
geschehen.

Während man sich bei der Simulation von Starrkörpern um deren Deformation weniger
Gedanken machen muss, stößt man bei elastischen Körpern durch die vielschichtigen
internen Prozesse auf größere Schwierigkeiten. Zieht man beispielsweise einen Gummiblock
in einer Richtung auseinander, wird er sich in der Regel in Richtung der beiden anderen
Raumdimensionen zusammenziehen. Dies ist nur eines der Phänomene, die modelliert
werden müssen. Die für diese Arbeit relevanten Verhaltensweisen elastischer Körper sollen
nun im Folgenden geklärt werden.

3.3.1 Spannung

Wirkt man auf einen elastischen Körper von außen her eine Kraft aus, wird diese zum
Teil in das innere des Körpers abgeleitet und führt zu internen Spannungen. Zieht man
etwa an einem Kaugummi, wird durch die wirkenden Kräfte nicht nur die Fläche, an der
gezogen wird, ihre Position ändern, sondern auch Teile des Kaugummis, welche nicht in
direktem Kontakt mit dieser Kraft stehen. Anhand von Abbildung 3.4 sei eine dieser Kräfte,
die Normalkraft visualisiert.
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3 Grundlagen

Abbildung 3.4: Kraft, welche in Richtung der Normale auf einen Zylinderschnitt wirkt (nach
[Sla02]).

Der Zylinder wird mit Hilfe der Kräfte F und F′ an den Grundflächen auseinander gezogen.
Ein Teil dieser Kraft überträgt sich auch ins innere des Zylinders auf die Fläche A. Wiederum
ein Teil dieser Kraft, namentlich ∆F überträgt sich auf eine Teilfläche von A, also ∆A. Die
Normalenspannung σ an einem Punkt ist dann wie folgt definiert [Sla02]:

σ = lim
∆A→0

∆F
∆A

(3.14)

Gewissermaßen kann also die Normalenspannung als Gegenteil des physikalischen Drucks
gesehen werden, nur die Kraft wirkt in die entgegengesetzte Richtung. Sie wird offensichtli-
cherweise Normalenspannung genannt, weil die Kraft, über die sie definiert ist, in Richtung
der Ebenennormalen wirkt. Aus den Normalenspannungen aller Punkte in Fläche A kann
dann noch die durchschnittliche Spannung für den Zylinderschnitt A berechnet werden
[Sla02]:

σavg =
1
A

∫
A

σdA =
|F|
A

(3.15)

Neben der Normalenspannung existiert jedoch noch eine andere Art von Spannung, die
so genannte Schubspannung. Sie wirkt nicht entlang der Normalen, sondern entlang der
Ebenentangenten. So etwas ist auch bei dem Beispiel des Kaugummis beobachtbar. Zieht man
ihn entlang einer Raumachse auseinander, wird er sich entlang der anderen Raumachsen
zusammenziehen. Die Spannungen, die für dieses Zusammenziehen verantwortlich sind,
sind die Schubspannungen. Sie sind analog zu der Normalenspannung definiert. Sei Fx die
Normalenkraft in Richtung der x-Achse an einem Punkt, dann bezeichnet Fxy die Kraft, die
sich, verursacht durch die Materialeigenschaften, von der x-Achse auf die y-Achse überträgt.
Aus diesen Kräften Fx, Fxy und Fxz lassen sich dann die Normalenspannung σx und die
Schubspannungen τxy und τxz berechnen:

σx = lim
∆A→0

∆Fx

∆A
, τxy = lim

∆A→0

∆Fxy

∆A
, τxz = lim

∆A→0

∆Fxz

∆A
(3.16)
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3.3 Elastizitätstheorie

Abbildung 3.5: Longitudinale Verzerrung eines Quaders (nach [Sla02]).

Insgesamt existieren im dreidimensionalen Raum pro Raumpunkt drei unterschiedliche
Normalenspannungen und sechs unterschiedliche Schubspannungen. Diese Spannungen
können im Spannungstensor, der genau für einen Punkt im Kontinuum Gültigkeit besitzt,
angeordnet werden: [

σ
]
=

 σx τxy τxz

τyx σy τyz

τzx τzy σz

 (3.17)

In diesem sind alle möglichen Spannungen in den drei Raumdimensionen abgetragen.

3.3.2 Verzerrung

Neben den Spannungen existiert eine weitere wichtige Größe im Bezug auf elastische Körper.
Diese ist die so genannte Verzerrung ε. Sie entsteht durch die in der Größe der Spannung
σ enthaltenen Kräfte. Diese Kräfte ziehen an einem bestimmten Punkt im Objekt und
verursachen somit, dass sich seine Position ändert. Abbildung 3.5 zeigt die Verzerrung eines
Quaders (die dritte Dimension wird nicht abgetragen). Vor der Auswirkung der Kraft F
besitzt es Länge L, danach Länge L + δ. Betrachtet man nun einen Teilabschnitt der Länge
∆x, besitzt dieser nach der Auswirkung der Kraft die Länge ∆x + ∆u. Dieser Teilabschnitt
hat sich also durch die Auswirkungen der Kraft um ∆u gedehnt. Mit Hilfe dieser Größen
kann jetzt die Definition der Verzerrung ε geschehen [Sla02]:

ε = lim
∆x→0

∆u
∆x

=
du
dx

(3.18)

Der Wert ε bezeichnet dann die Verzerrung an einem bestimmten Punkt Q. Ähnlich zur
Spannung σ kann auch hier eine Übertragung der Verzerrung in andere Raumrichtungen
stattfinden, je nachdem wie das Material beschaffen ist.
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3 Grundlagen

Abbildung 3.6: Orthogonale Verzerrung eines Quaders (nach [Sla02]).

Betrachten wir Abbildung 3.6. Der Winkel ∠BAC beträgt initial 90◦ = 0, 5π. Nach einer
Verformung durch eine Schubspannung τ ändert sich dieser Winkel. Anders als die longitu-
dinale Verzerrung ε wird die orthogonale Verzerrung γ mit Hilfe dieses Winkels bestimmt:

γ =
π

2
−∠B′A′C′ (3.19)

Ebenfalls analog zur Spannung können auch die Verzerrungen als Tensor geschrieben
werden: [

ε
]
=

 εx γxy γxz

γyx εy γyz

γzx γzy εz

 (3.20)

Diese Tensorschreibweisen werden später noch wichtig werden, um das allgemeine Hooke-
sche Gesetz zu formulieren (siehe Abschnitt 3.3.5).

3.3.3 Hookesches Gesetz

Aufgrund der Definitionen von Spannung und Verzerrung erscheint es logisch, dass zwischen
diesen beiden Größen irgendeine Beziehung bestehen muss. Besteht eine Spannung an einem
Punkt des Objekts, versucht dieses, diese durch Deformation, also Verzerrung, abzubauen.
Aufgrund der Bewegungs- und Kraftgesetze, die teilweise auch in Abschnitt 3.1.3 beschrieben
werden, erscheint ein linearer Zusammenhang korrekt. Dieser konnte auch experimentell
bestätigt werden. Also kann man eine Gesetzmäßigkeit formulieren [Sla02]:

σ = Eε (3.21)

Dieses Gesetz ist als das Hookesche Gesetz bekannt. Diese Beziehung gilt ausschließlich
zwischen der Normalenspannung und der longitudinalen Verzerrung. E ist ein Proportio-
nalitätsfaktor. Unter zu großen Kräften jedoch kann selbst ein elastisches Material dieses
Gesetz nicht mehr erfüllen, da jedes Material irgendwann reißt oder ausleiert.
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3.3 Elastizitätstheorie

3.3.4 Elastizitätsmodul und Poissonzahl

Nach der Formulierung der allgemeinen Gesetzmäßigkeiten bleibt noch die Frage offen,
worin sich verschiedene Materialien in ihrem Elastizitätsverhalten unterscheiden. Wir sind
also auf der Suche nach Materialkonstanten, die für jeden Werkstoff spezifisch sind. Eine rele-
vante ist der im Hookeschen Gesetz (Gleichung 3.21) vorkommende Proportionalitätsfaktor E.
Dieser ist auch als Elastizitätsmodul oder Youngsches Modul bekannt. Das Elastizitätsmodul
ist ein Maß für die Steifigkeit eines Materials, wenn auch nicht der einzige Faktor, der diese
bestimmt. Je steifer ein Material ist, desto höher fällt E aus. Die Einheit des Elastizitätsmoduls
ist Pascal. Beispielsweise hat Gummi ein Elastizitätsmodul von ca. 0, 01− 0, 1GPa, je nach
genauer Zusammensetzung [The12].

Zusätzlich zum Elastizitätsmodul existiert noch eine weitere grundlegende Größe. Weiter
oben wurde schon erwähnt, dass sich Spannungen und Verzerrungen in einer Richtung in
andere Raumrichtungen fortpflanzen können. In welcher Stärke sie das tun, ist abhängig vom
spezifischen Material. Daher definiert man die so genannte Poissonzahl ν (engl. Poisson’s
ratio). Sie ist gegeben als Verhältnis von axialer εx zu dazu orthogonaler (lateraler) Verzerrung
εy = εz [Sla02].

ν =

∣∣∣∣ laterale Verzerrung
axiale Verzerrung

∣∣∣∣ = − εy

εx
= − εz

εx
(3.22)

Für Materialien mit ν 6= 0 gilt also, dass sich Verzerrungen ein einer Raumdimension gleich-
mäßig in andere Raumdimensionen fortpflanzen. Wie weiter oben schon beschrieben wird
sich also ein Gummiblock, der auseinandergezogen wird, in den anderen Raumrichtungen
zusammenziehen. Dieser hat folglich eine Poissonzahl ν > 0. Bei den meisten Materialien
sind für ν Werte zwischen 0 und 0, 5 bestimmt worden. Ein Wert von ν = 0, 5 bedeutet
hierbei, dass sich eine Verzerrung voll in die anderen beiden Raumdimensionen überträgt.
Bei ν = 0 findet keinerlei Übertragung statt. Materialien mit ν > 0, 5 existieren auch, jedoch
zählen diese nicht zu den elastischen Stoffen. Auch wenn dies etwas kontraintuitiv wirken
mag: Es sind auch Materialien mit −1 ≤ ν < 0 bekannt. Werden sie in einer Dimensi-
on zusammengedrückt, ziehen sie sich in den anderen Dimensionen ebenfalls zusammen
[Köl04].

3.3.5 Verallgemeinerung des Hookeschen Gesetzes

Mit der Kenntnis der unterschiedlichen Materialeigenschaften fällt bald auf, dass das Hooke-
sche Gesetz σ = Eε (siehe auch Abschnitt 3.3.3) längst nicht immer Gültigkeit besitzt. Es ist
nur bei Materialien mit ν = 0 anwendbar. Daher wurde eine Gesetzmäßigkeit formuliert, die
als verallgemeinertes Hookesches Gesetz bekannt ist [Sla02]. Es lautet:[

σ
]
=
[
C
] [

ε
]

(3.23)

Der Unterschied zum einfachen Hookeschen Gesetz besteht darin, dass es sich bei den
Werten für Verzerrung und Spannung um die kompletten Tensoren handelt und nicht nur
um einzelne Werte. Zusätzlich wird das Elastizitätsmodul E durch den Steifigkeitstensor C
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3 Grundlagen

ersetzt. Bei σ und ε handelt es sich um Tensoren zweiter Stufe, also um normale Matrizen.
Bei C handelt es sich um einen Tensor vierter Stufe. Mit einsteinscher Summenkonvention
kann die Gleichung also auch als σij = Cijklεkl geschrieben werden. Das sieht auf den ersten
Blick sehr schwer handhabbar aus, da allein C 81 Komponenten besitzt.

Für die Zwecke dieser Arbeit können wir uns auf die so genannten isotropen Materialien
beschränken, was die Gleichung vereinfacht. Isotrope Materialien sind Stoffe die ein dre-
hungsinvariantes Verhalten aufweisen [Sla02]. Stoffe wie Holz sind das beispielsweise nicht,
weil die Fasern in eine bestimmte Richtung laufen und dies somit verhindern. Dadurch, dass
sich Stoffe gedreht gleich Verhalten, gilt für σ also:

τxy = τyx, τxz = τzx, τyz = τzy (3.24)

Entsprechend hat auch ε ebenfalls nur noch sechs unabhängige Komponenten. C vereinfacht
sich durch die Symmetrie auf 36 unabhängige Komponenten. Nun macht man sich die so
genannte Voigtsche Notation für Tensoren zu Nutze, mit der man symmetrische Tensoren
als Tensoren niedrigerer Ordnung als ihrer ursprünglichen auffassen kann [Voi10]. Somit
werden aus σ und ε Vektoren der Länge 6, aus C wird eine 6x6-Matrix. Mit Voigtscher
Notation sieht die Gleichung wie folgt aus:

σx

σy

σz

τyz

τxz

τxy


=



C11 C12 C13 C14 C15 C16

C21 C22 C23 C24 C25 C26

C31 C32 C33 C34 C35 C36

C41 C42 C43 C44 C45 C46

C51 C52 C53 C54 C55 C56

C61 C62 C63 C64 C65 C66


∗



εx

εy

εz

γyz

γxz

γxy


(3.25)

Setzt man dann die Bedingungen für Isotrope Materialien ein, erhält C bestimmte Koeffizi-
enten und die Gleichung erhält folgende Gestalt:

σx

σy

σz

τyz

τxz

τxy


=

E
(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0
ν 1− ν ν 0 0 0
ν ν 1− ν 0 0 0
0 0 0 (1−2ν)

2 0 0
0 0 0 0 (1−2ν)

2 0
0 0 0 0 0 (1−2ν)

2


∗



εx

εy

εz

2γyz

2γxz

2γxy


(3.26)

Der Vorfaktor von 2 bei den γ-Werten sorgt dafür, dass das Skalarprodukt aus Spannung und
Verzerrung gleich dem inneren Tensorprodukt ist. Dies ist nötig, damit die Kräfteberechnung
für die in σ verborgenen Kräfte korrekt verläuft. Man beachte, dass wenn man für ν den
Wert 0 einsetzt, sich C auf die Identitätsmatrix mit dem Elastizitätsmodul E als Vorfaktor
vereinfacht. Somit fällt die Gleichung auf die aus Abschnitt 3.3.3 bekannte Formel σ = Eε
zurück. Speziell Gleichung 3.26 wird in späteren Kapiteln noch von großer Wichtigkeit
sein, da unter anderem mit ihrer Hilfe die wirkenden elastischen Kräfte bestimmt werden
können.
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3.3 Elastizitätstheorie

Dies waren soweit die für diese Arbeit nötigen Grundlagen der Elastizitätstheorie. Diese
kann hier natürlich nicht vollständig behandelt werden. Der interessierte Leser sei daher
auf „The Linearized Theory of Elasticity“ von William S. Slaughter verwiesen, welches weite
Teile des Themengebiets abdeckt [Sla02].
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4 Modell

Da nun die nötigen Grundlagen geklärt wurden, wollen wir klären, wie wir das elastische
Verhalten von Materialien mit Hilfe einer punktbasierten Simulation modellieren können,
bei der dann bestimmte Werte mit der SPH-Methode approximiert werden. Um das alles zu
beschreiben, werden in Abschnitt 4.1 zunächst die Annahmen geklärt, die gemacht werden
müssen, um ein Modell zu erhalten, das einfach genug ist, um es effizient berechnen zu
können. Abschnitt 4.2 klärt, wie SPH in unserem Modell verwendet wird, um bestimmte
nötige Werte zu berechnen. In den Abschnitten 4.3 und 4.4 wird dann herausgestellt, wie die
Verzerrungen und Spannungen berechnet werden und aus diesen und den anderen Werten
dann die elastische Kraft bestimmt werden kann, die zwischen objektinternen Partikeln
wirkt. In Sektion 4.5 wird abschließend noch das verwendete Zeitintegrationsverfahren
beschrieben.

Das Modell stammt zum Hauptteil aus der Arbeit von Solenthaler und Kollegen, die schon
weiter oben erwähnt wurde ([SSP07]). Jedoch werden auch Anleihen bei der Arbeit von
Becker und Kollegen gemacht, die die eben genannte Arbeit um bestimmte Aspekte erweitern
([BIT09]).

4.1 Grundannahmen

Wie bei jedem Modell ist es notwendig, im Voraus bestimmte Annahmen zu treffen. So
wollen wir uns auf isotrope Materialien beschränken, um die Berechnung von Spannung
bzw. Verzerrung zu vereinfachen, wie in 3.3.5 beschrieben. Natürlich wäre es möglich, die
Spannungsberechnung mit dem vollbesetzten Steifigkeitstensor C durchzuführen, jedoch
sehr aufwändig.

4.1.1 Lokale Undeformiertheit

Eine weitere, sehr wichtige Annahme ist die der lokalen Undeformiertheit. In Arbeiten wie
beispielsweise [KAG+

05] wird zur Berechnung der Verzerrung in einem Körper mit einem
globalen Referenzobjekt gearbeitet. Dieses Referenzobjekt repräsentiert die undeformierte
Variante des zu simulierenden Körpers. Bei der Verzerrungsberechnung wird dann der
aktuelle Zustand des Objekts mit dem Referenzobjekt verglichen, um die aktuelle Verzerrung
zu bestimmen. Im Kontrast dazu wird hier ein anderes Modell verwendet. Dies ist nötig,
weil es auch dazu entwickelt wurde, Aggregatszustandsübergänge abzubilden. Dies ist mit
einem globalen Referenzobjekt sehr schwer umsetzbar [SSP07].
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4 Modell

Daher speichert jedes Partikel initial einen Distanzvektor zu seinen Nachbarn. Seine Nach-
barschaft ist definiert als alle Partikel, die sich im Radius h um das zu betrachtende Partikel
befinden. Der Wert h ist die Glättungslänge, die auch für die SPH-Berechnungen verwendet
wird. Da alle Partikel außerhalb der Glättungslänge keinen Einfluss auf das betrachtete
Partikel haben, erscheint diese Einschränkung der gespeicherten Vektoren plausibel [SSP07].
Während der Simulation kann dann der aktuelle Distanzvektor bestimmt werden. Weicht
dieser vom gespeicherten Distanzvektor ab, ist eine Verzerrung aufgetreten. Die Position, die
ein Partikel beim Start der Simulation einnimmt und die für die Berechnung der Nachbar-
schaften herangezogen wird, wird als die Referenzposition x0 bezeichnet. Für Partikel Pi ist
die Referenzposition entsprechend x0

i .

4.2 Verwendung von SPH im Elastizitätsmodell

Im Folgenden soll geklärt werden, bei der Berechnung welcher Größen im Modell SPH
verwendet wird. Wie beispielsweise die Spannung in einem Objekt berechnet werden kann
wurde schon im Grundlagen-Kapitel geklärt, SPH wäre hier von keinem großen Nutzen.
Es sind aber noch einige Werte übrig, die für die Berechnung der elastischen Kraft relevant
sind.

4.2.1 Partikelvolumen

Wie in den meisten punktbasierten Modellen besitzt auch hier jedes Partikel eine Masse.
Diese ist vor allem für die Beschleunigungsberechnung mit Hilfe der Formel F = m ∗ a
vonnöten. Genauso wie ein Partikel einen Teil der Masse eines Objekts repräsentieren kann,
kann es auch einen Teil des Volumens repräsentieren. Um dieses zu berechnen, greift man
zunächst auf die einfache Formel v = m

ρ zurück. Volumen entspricht Masse geteilt durch
Dichte. Wie die Dichte mittels SPH berechnet werden kann, wurde schon in Abschnitt 3.2.2
gezeigt. Die Gleichung, um das Volumen eines Partikels Pi zu berechnen lautet wie folgt:

vi = v(xi) =
mi

ρi
=

mi

∑j mjW(
∣∣∣x0

j − x0
i

∣∣∣ , h)
(4.1)

Da sich Deformationen von Objekten häufig auch in Volumenänderungen niederschlagen, ist
ein bekanntes Partikelvolumen für die Berechnung einiger Größen von Vorteil. Es sei noch
angemerkt, dass die Pj über welche summiert wird, alle Teil desselben Objekts sind, wie Pi.
Der Wert vi ist für die Berechnung der elastischen Kraft von Relevanz und diese tritt nur
innerhalb eines Objektes auf.

4.2.2 Verschiebungsfeld

Um später Verzerrungen und Spannungen errechnen zu können, benötigt man ein Maß,
inwieweit das Objekt von seiner ursprünglichen Form abweicht. Diese Abweichung wird
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4.2 Verwendung von SPH im Elastizitätsmodell

auch Verschiebung (engl. displacement) genannt. Die Gesamtverschiebung ist jedoch nicht
wirklich nützlich um den aktuellen Zustand im Objekt, also auch die aktuell wirkenden
Kräfte zu berechnen. Wichtiger ist, inwieweit sich die Verschiebung im Moment ändert.
Gefragt ist also der Gradient der Verschiebung von etwa Partikel Pi, welcher mit ∇ui
bezeichnet wird. Um ∇ui zu berechnen, wird wieder einmal die SPH-Methode verwendet
[SSP07]:

∇ui = ∑
j

vj∇W(
∣∣xj − xi

∣∣ , h)(uji)
T (4.2)

Ebenso wie beim Partikelvolumen wird hier nur über die Partikel desselben Objekts sum-
miert. Der Vektor uji wird der Verschiebungsdifferenzvektor (engl. displacement difference
vector) genannt. Er ist wie folgt definiert:

uji = xj − xi − (x0
j − x0

i ) (4.3)

Er bezeichnet, wie auch der Name suggeriert, die Differenz der Verschiebungen der Partikel
Pi und Pj. Dies sei an Abbildung 4.1 gezeigt.

Abbildung 4.1: Beispiel für einen Verschiebungsdifferenzvektor

Links ist die Startkonfiguration zum Zeitpunkt t = 0 abgetragen. Der Vektor zwischen den
beiden Partikeln ist somit einer der initial berechneten Distanzvektoren, die weiter oben
beschrieben wurden. Nach einigen Zeitschritten befindet sich Pj an einer anderen Position
relativ zu Pi. Der gesuchte Verschiebungsdifferenzvektor ist dann der Vektor, welcher sich
von der Position, an der sich Pj laut der Bedingung für die lokale Undeformiertheit befinden
müsste, zu der eigentlichen Position von Pj aufspannt.

Die Gleichung für ∇ui macht sich zusätzliche eine spezielle Eigenschaft von SPH zu Nutze.
Der Gradient einer bestimmten Größe kann mittels SPH bestimmt werden, indem man zu-
nächst die Gleichung für die Größe selbst aufstellt. Dann kann einfach die Kernel-Funktion
durch ihren Gradienten ersetzt werden und schon erhält man die Gleichung für den Gradi-
enten der gewollten Größe [Mon05b].
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4 Modell

Abbildung 4.2: Elastizitätskernel (niedrige Kurve) und sein Gradient (hohe Kurve) für h = 1.

Der Gradient des Verschiebungsfeldes ∇ui enthält alle partiellen Ableitungen für die Ver-
schiebung des Punktes Pi. Bei ihm handelt es sich um eine 3x3-Matrix.

4.2.3 Kernel-Funktion

Bis jetzt wurde noch nicht geklärt, von welcher Gestalt die Kernel-Funktion sein soll, um ein
möglich realistisches elastisches Verhalten zu gewährleisten. Solenthaler und Kollegen entwi-
ckelten speziell für elastische Objekte den so genannten Elastizitätskernel (engl. elasticity
kernel). Dieser ist wie folgt definiert [SSP07]:

W(r, h) =

{
c 2h

π cos( (r+h)π
2h ) + c 2h

π , wenn 0 ≤ r ≤ h

0 , ansonsten
(4.4)

Um die Bedingung zu gewährleisten, dass die Fläche unter der Kurve gleich 1 ist, ist c so
bestimmt:

c =
π

8h4(π
3 −

8
π + 16

π2 )
(4.5)

Der Graph des Kernels und seines Gradienten für Glättungslänge h = 1 ist in Abbildung 4.2
abgetragen. Er ist nicht ganz so spitz wie beispielsweise der Spiky-Kernel [DC96]. Das heißt,
dass Partikel, die sich weiter weg befinden, stärker gewichtet werden.

4.3 Verzerrung und Spannung

Um letztendlich die elastischen Kräfte berechnen zu können, müssen erst die Spannungen
und Verzerrungen innerhalb eines Objekts bekannt sein. Wie Spannungen und Verzerrungen
zueinander in Verhältnis stehen wurde bereits in Abschnitt 3.3 erläutert. Jedoch ist noch

36



4.4 Elastische Kraft

nicht klar, wie man an eine der beiden Größen kommt, um mit ihr die andere zu berechnen.
Dabei trifft es sich gut, dass aus dem Gradient des Verschiebungsfeldes ∇ui sehr leicht der
Verzerrungstensor ε berechnen lässt. Dazu existiert jedoch mehr als eine Möglichkeit. Hier
wird der so genannte Green-Saint-Venant Verzerrungstensor verwendet. Dieser ist so definiert
[NMK+

06]:

ε =
1
2
(∇u +∇uT +∇uT∇u) (4.6)

In der Arbeit [BIT09] wird auch demonstriert, wie sich das Verfahren verhält, wenn man einen
anderen Verzerrungstensor wie den Cauchy-Green Tensor verwendet. Bei diesem handelt
es sich um einen linearen Verzerrungstensor. Bei starken Deformationen können lineare
Verzerrungstensoren ungenaue Ergebnisse liefern, daher wird ein nichtlinearer gewählt. Die
Definition des Green-Saint-Venant Tensors variiert an einigen Punkten. So wird in [MKN+

04]
der Faktor 1

2 weggelassen. Wir jedoch legen uns auf obige Definition fest.

Da ε nun bekannt ist, kann die Berechnung der Spannung wie in Abschnitt 3.3.5 erfolgen.
Insbesondere kann Gleichung 3.26 verwendet werden, da wir uns auf isotrope Materialien
beschränken.

4.4 Elastische Kraft

Die Berechnung der Kräfte erfolgt über die Verzerrungsenergiedichte (engl. strain energy
density) U. Es gilt:

Ui = vi
1
2
(εi ∗ σi) (4.7)

An einem bestimmten Punkt Pi entspricht die wirkende Kraft dem negativen Gradienten der
Verzerrungsenergiedichte. Hierbei wird noch die Verschiebung des Punktes berücksichtigt
[MKN+

04]. Folglich kann auch die elastische Kraft berechnet werden, die ein Partikel Pi auf
Pj auswirkt. Diese Kraft sei mit Felastic

ji bezeichnet.

Felastic
ji = −∇ujUi = −2vi(I +∇uT

i )σidij (4.8)

Hierbei ist I die Identitätsmatrix, bei dij handelt es sich um den nach der Verschiebung des
j-ten Partikels abgeleiteten Gradienten des Verschiebungsfeldes ∇ui. Dieser ist wie folgt
definiert. Diese Definition gilt jedoch nur für i 6= j:

dij = vj∇W(
∣∣∣x0

j − x0
i

∣∣∣ , h) (4.9)

Anders als bei anderen Modellen üblich, wird hier nicht die Kraft vom j-ten auf das i-te
Partikel angegeben, sondern umgekehrt.

37



4 Modell

4.5 Zeitintegration

Um letzten Endes die neuen Partikelpositionen für den aktuellen Zeitschritt berechnen zu
können, benötigt man ein Zeitintegrationsverfahren. Hier wird jedoch nicht, wie in Abschnitt
3.1.3 beschrieben, das explizite Euler-Verfahren verwendet. Es kommt das so genannte
Leapfrog-Verfahren zur Anwendung [AP98]. Hierbei handelt es sich um ein Verfahren
zweiter Ordnung, welche im Allgemeinen genauer sind als Verfahren erster Ordnung. Beim
Leapfrog-Verfahren wird dies dadurch erreicht, dass Geschwindigkeiten und Positionen
zeitversetzt berechnet werden. Sei δt die Länge eines Zeitschritts und xi die Position eines
Partikels zum Zeitschritt i (entsprechend für die Geschwindigkeit v und Kraft F).

xn+1 = xn + δt ∗ vn+ 1
2

vn+ 3
2
= vn+ 1

2
+ δt ∗ Fn+1

(4.10)

Man sieht, dass die Geschwindigkeiten gewissermaßen in einem „Zwischenzeitschritt“
berechnet werden. Der einzige Wert, der auf diese Weise nicht berechnet werden kann,
ist v 1

2
, da v− 1

2
nicht existiert, weil es zu Simulationsstart schon in der Vergangenheit liegt.

Man behilft sich hier, indem man initial einen halben Zeitschritt mit Hilfe des Expliziten
Euler-Verfahrens bestimmt.
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5 Implementierung

Dieses Kapitel soll Details zur Implementierung des Modells aus [SSP07] erläutern. In
Abschnitt 5.1 wird die Simulationsumgebung präsentiert, in die dieses Verfahren im Rahmen
dieser Arbeit integriert wurde. Abschnitt 5.2 erläutert den Ablauf der Simulation selbst,
insbesondere den eines einzelnen Zeitschritts. Abschnitt 5.3 schlussendlich zeigt einige
Details bei der Implementierung auf. Es werden Teile des Modells erläutert, bei der die
tatsächliche Implementierung von den in Kapitel 4 aufgestellten Gleichungen abweichen.

5.1 Umgebung

Das Verfahren von Solenthaler und Kollegen wurde im Rahmen dieser Arbeit in eine schon
bestehende Simulationsumgebung integriert bzw. diese erweitert. Diese ist in C++ imple-
mentiert und verwendet Qt zur Darstellung der Benutzeroberfläche. Zur Visualisierung
der Simulation selbst ist ein OpenGL-Fenster in die Oberfläche integriert. Abbildung 5.1

Abbildung 5.1: Simulationsumgebung, in die das Verfahren integriert wurde

39



5 Implementierung

Beschreibung Symbol Typische Werte

Gravitationskonstante g 9, 81
Länge eines Zeitschritts δt 0, 001
Simulationsdauer tmax 2, 00
Glättungslänge h 0, 01− 0, 1
Partikelmasse m 0, 00001
Elastizitätsmodul E 50− 10000
Poissonzahl ν 0, 0− 0, 5
Objektabmessungen u. Position xmin, xmax beliebig, solange im Raum
Partikelabstand δx 0.025
Größe des zu simulierenden Raums Vmin, Vmax beliebig, meist Einheitswürfel

Tabelle 5.1: Simulationsparameter

zeigt die Oberfläche der Simulationsumgebung. Links ist das OpenGL-Fenster zu erkennen.
Rechts die einstellbaren Simulationsparameter. Welche genau dies sind, sei in Abschnitt 5.2.1
geklärt. Bei dem grünen Würfel im OpenGL-Fenster handelt es sich um den zu simulieren-
den Partikelsatz. Zusätzlich zu der Benutzeroberfläche besitzt die Umgebung auch noch
eine Konsolenausgabe, die genauere Details der Simulation ausgibt, wie z.B. berechnete
Zwischenergebnisse oder den aktuellen Zeitschritt. Zusätzlich zu der eigentlichen Simulation
wurde in die Anwendung noch ein Oberflächenrekonstruktionsverfahren integriert, um
aus den berechneten Punktdaten eine Polygongraphik extrahieren zu können. Bei diesem
Verfahren handelt es sich um das von Bhatacharya und Kollegen ([BGB11]). Dieses wurde
jedoch nicht von Hand implementiert, es wurde lediglich der von den Entwicklern der
Methode bereitgestellte Code in die Umgebung integriert.

5.2 Simulationsablauf

Dieser Abschnitt soll den Ablauf der Simulation erläutern. In 5.2.1 wird zunächst auf die
Initialisierung der Simulation eingegangen um dann mit dem eigentlichen Ablauf eines
Zeitschritts in 5.2.2 fortzufahren.

5.2.1 Initialisierung

Zur Durchführung einer Simulation sind natürlich einige Simulationsparameter notwendig,
die im Vorhinein bestimmt werden müssen. Die wichtigsten sind in Tabelle 5.1 aufgeführt.
Hierbei können einige Werte wie die Partikelmasse, die Poissonzahl usw. mehrfach vorhan-
den sein, für den Fall, dass man mehrere Objekte mit unterschiedlichen Materialparametern
zu simulieren wünscht. Die Objektabmessungen und die Raumgröße werden als je ein
paar von Vektoren angegeben. Somit kann man zwischen den beiden Vektoren ein Quader
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5.2 Simulationsablauf

Algorithmus 5.1 Initialisierung der Simulation
procedure Initalize

ReadParameters

InsertParticles(m, xmin, xmax, δx)
ComputeKernelValues(h)
ComputeReferenceDistances

ComputeVolumes(m)
ComputeForces

InitVelocities

end procedure

aufspannen. Die Kanten befinden sich dann parallel zu den Raumachsen. Natürlich ist
die Objektgröße nur relevant, wenn man ein quaderförmiges Objekt wünscht. Andernfalls
muss die Geometrie alternativ in die Umgebung geladen werden. Die Raumgröße ist vor
allem für Aufprallsimulationen relevant, wenn ein Objekt auf den Boden treffen soll. Der
Partikelabstand bestimmt den Abstand der Partikel innerhalb des gegebenen Quaders.

Der komplette Initialisierungsvorgang sei in Algorithmus 5.1 gegeben. Welche Parameter
eingelesen werden und wie die Partikel eingefügt werden sollen, wurde schon geklärt. Als
nächster Schritt wird die Konstante c der Kernel-Funktion (siehe Abschnitt 4.2.3) vorberech-
net. Genauso wie die später folgende Berechnung der Partikelvolumen vi (siehe Abschnitt
4.2.1) kann dies getan werden, weil sich diese Werte im Verlauf der Simulation nicht ändern.
Passt man die Partikelvolumen immer dem aktuellen Zustand des Objekts an, wirken über-
haupt keine elastischen Kräfte mehr, da dann davon ausgegangen wird, dass sich das Objekt
im Ruhezustand befindet.

Zwischen der Berechnung des c’s und der der Volumen müssen noch die Referenzdistanzen
zwischen den Partikeln bestimmt werden, also jene, die für die Annahme der lokalen
Undeformiertheit vonnöten sind (sieh auch Abschnitt 4.1.1). Zusätzlich wird die lokale
Nachbarschaft für jedes Partikel berechnet. Um, besonders bei großen Objekten bzw. großem
h, Speicherplatz zu sparen, wird anstatt der Referenzdistanz selbst nur die initiale Position
eines jeden Partikels abgespeichert. Aus diesen kann dann, falls benötigt, die Referenzdistanz
berechnet werden. Anstatt also bei jedem Partikel für jeden Nachbarn einen Distanzvektor
zu speichern, was bei ungünstigen Parametern schnell den Arbeitsspeicher sprengen kann,
wird nur ein einzelner Vektor pro Partikel im Speicher gehalten.

Die folgenden beiden Schritte, die Kraft- und Geschwindigkeitsberechnung, sind dem
Leapfrog-Schema geschuldet, das zur Zeitintegration verwendet wird. Da sich das Objekt
zu diesem Zeitpunkt noch in seiner Ursprungslage befindet, wirken nur externe Kräfte wie
die Gravitation. Mit diesen Kräften wird dann die Geschwindigkeit zum Zeitpunkt t = 1

2 δt
mittels dem Euler-Verfahren berechnet. Damit ist dann die Initialisierung abgeschlossen.
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5 Implementierung

Algorithmus 5.2 Einzelner Zeitschritt der Simulation
procedure Timestep

ComputeNewParticlePositions

ComputeParticleNeighborhoods

ComputeDisplacementFieldGradients

ComputeStrains

ComputeStresses

ComputeForces

ComputeVelocities

end procedure

5.2.2 Ablauf eines Zeitschritts

Nachdem alle relevanten Werte initialisiert wurden, kann die vorher eingestellte Anzahl
an Zeitschritten berechnet werden. Ein kompletter Zeitschritt ist in Algorithmus 5.2 ge-
geben. Die Berechnung der neuen Partikelpositionen erfolgt gleich zu Beginn, um dem
Leapfrog-Schema gerecht zu werden. Nachdem dies geschehen ist, können die aktuellen
Nachbarschaften der Partikel errechnet werden. Dies kann entweder einmal pro Zeitschritt
geschehen oder aber implizit durch die Anwendung der Kernel-Funktion getan werden.
Letztere Möglichkeit würde jedoch dazu führen, dass die Nachbarschaften öfter als einmal
pro Zeitschritt errechnet würden. Nachdem all dies getan wurde, kann man beginnen, die
notwendigen Werte für die elastischen Kräfte zu berechnen.

Zunächst wird für jedes Partikel der Gradient des Verschiebungsfeldes bestimmt. Daraus
kann dann, wie in den Abschnitten 4.3 und 3.3.5 beschrieben, seine Verzerrung und Spannung
errechnet werden. Zu Details der Bestimmung des Gradienten des Verschiebungsfeldes sei
auf den folgenden Abschnitt verwiesen, da sich hierbei einige Schwierigkeiten ergeben.
Nachdem alle nötigen Größen feststehen, können die wirkenden Kräfte errechnet werden.
Zu Details hierzu sei ebenfalls auf den nächsten Abschnitt verwiesen. Schlussendlich werden
dann aus den Kräften noch die Geschwindigkeiten bestimmt. Einfacher dargestellt werden
kann ein Zeitschritt auch durch dieses Schema:

xt → ∇ut → εt → σt → Ft → vt+ 1
2 δt (5.1)

Nachdem dies ausgeführt wurde, kann ein neuer Zeitschritt, beginnend mit der Berechnung
von xt+δt durchgeführt werden.

5.3 Besondere Details

Dieser Abschnitt soll auf besondere Problematiken der Implementierung und deren Lösung
eingehen, insbesondere auf solche, die nicht direkt aus dem Modell ersichtlich sind.
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5.3 Besondere Details

5.3.1 Gradient des Verschiebungsfeldes

Um den Gradienten des Verschiebungsfeldes ∇u korrekt berechnen zu können, benötigt
man zunächst einmal den Gradienten der Kernel-Funktion. Der Übersichtlichkeit halber sei
die Berechnungsvorschrift noch einmal erwähnt:

∇ui = ∑
j

vj∇W(
∣∣xj − xi

∣∣ , h)(uji)
T (5.2)

Da dij = vj∇W(
∣∣xj − xi

∣∣ , h) gilt, ist dies auch für die Berechnung der elastischen Kräfte
relevant. Da es sich bei der Glättungslänge h quasi um eine Konstante handelt, genügt es,
zur Berechnung des Gradienten des Kernels W(|r| , h) partiell nach r abzuleiten und das
Ergebnis mit dem normalisierten r zu multiplizieren. Leitet man W(|r| , h) partiell nach r ab,
erhält man folgende Formel:

∇W(|r| , h) =

{
c ∗ sin( (r+h)π

2h ) , wenn 0 ≤ r ≤ h

0 , ansonsten
(5.3)

Wie beschrieben muss der Rückgabewert dieser Funktion noch mit r
|r| multipliziert werden,

um den eigentlichen Gradienten zu erhalten. Es sei außerdem angemerkt, dass die obige
Formel eigentlich mit −1 multipliziert werden müsste, um korrekt zu sein, jedoch wäre die
Gradientenfunktion dann nicht mehr positiv, was jedoch für unsere Zwecke benötigt wird.
Wendet man all diese Modifikationen an, erhält man denselben Funktionsgraphen wie in
Abbildung 4.2. Dieses Ergebnis stimmt mit dem Graphen aus [SSP07] überein.

5.3.2 Anrechnung der Kräfte

Berechnet man mit Hilfe der oben genannten Formeln alle elastischen Kräfte, fällt auf,
dass Felastic

ji 6= −Felastic
ij . Dies widerspricht dem in Abschnitt 3.1.2 angeführten dritten new-

tonschen Gesetz. Der Grund dafür ist, dass bei der Berechnung des dij welches in der
Berechnungsformel für die elastische Kraft auftritt, bei Kraft und Gegenkraft nicht von der-
selben Nachbarschaft ausgegangen werden kann. Partikel Pi besitzt in der Regel eine andere
Nachbarschaft als Pj. Man behilft sich hier, indem man zwischen Kraft und Gegenkraft
mittelt und das Ergebnis dann den Partikeln als eigentliche elastische Kraft anrechnet. Wie
die Kräfte insgesamt berechnet werden sei in Algorithmus 5.3 gegeben.

Es wird vermutet, dass der Faktor 2 in Gleichung 4.8, der Berechnung der elastischen Kraft,
deshalb eingeführt wurde, um den Faktor 1

2 in Algorithmus 5.3 auszulöschen. In späteren
Arbeiten wie [BIT09] wurde er in der Formulierung der elastischen Kraft weggelassen. Es ist
zu erkennen, dass die elastische Kraft nicht für das aktuelle Partikel berechnet wird, sondern
für dessen aktuellen Nachbarn. Dies ist der Formulierung der Formel für Felastic

ji geschuldet.
Es würde eventuell mehr Aufwand bedeuten, die Kräfte jeweils für das aktuelle Partikel zu
berechnen.

Die Gravitationskraft kann natürlich auch weggelassen werden. Dies kann auch implizit
erreicht werden, indem man als Eingabeparameter die Gravitationskonstante auf 0 setzt. Das
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5 Implementierung

Algorithmus 5.3 Berechnung der Kräfte
procedure ComputeForces

for all Particles i do
Pi.Force← 0 // Reset Forces

end for
for all Particles i do

for all Neighbors j of Particle i do
Pj.Force← Pj.Force + 1

2 (F
elastic
ji − Felastic

ij ) // Elastic Forces
end for

Pi.Force← Pi.Force +

 0
−mi ∗ g

0

 // Gravity Force

end for
end procedure

Zurücksetzen der Kräfte zu Beginn ist aber in jedem Fall erforderlich, da sonst die Kräfte
des letzten Zeitschritts mit einberechnet würden.

5.3.3 Grenzbehandlung

Da die Grenzbehandlung weder im Modell in Abschnitt 4 thematisiert wird, noch in [SSP07]
erwähnt wird, wurde hierzu ein simples Verfahren entwickelt, damit Objekte nicht aus
dem selbst bestimmten Simulationsraum austreten können. Das ist vor allem für Aufprallsi-
mulationen von Relevanz. Das Verfahren wird in die Prozedur zur Errechnung der neuen
Partikelpositionen xi integriert. Zunächst werden dort die neuen Partikelpositionen berechnet.
Stellt sich dann heraus, dass sich das aktuell betrachtete Partikel außerhalb des Simulations-
raums befindet, wird es so lange auf der Raumachse verschoben, auf der es ausgetreten war,
bis es sich wieder im Raum befindet. Jedoch wird es nicht genau auf der Grenze platziert,
um eventuelle Fehler durch die Verwendung von Fließkommazahlen zu vermeiden. Es wird
dann ca. 0.00001 von der Stelle platziert, an der es die Raumgrenze durchdrungen hat. Dieser
Wert kann natürlich je nach Raumgröße variiert werden. Er sollte so klein gewählt werden,
dass er das Partikel nicht zu weit verschiebt.

Zusätzlich zur Rückverschiebung des betrachteten Partikels in den Raum hinein muss seine
Geschwindigkeit in der Raumrichtung, in der er die Raumgrenze durchdrungen hat, auf
0 gesetzt werden. Geschieht dies nicht, kann das Partikel regelrecht an der Raumgrenze
„kleben“. Dies ist vor allem bei elastischen Materialien wichtig, welche beispielsweise auf den
Boden fallen und dann durch die elastischen Kräfte wieder in die Luft geschleudert werden.
Werden die nach unten gerichteten Geschwindigkeiten der auf den Boden aufprallenden
Partikel nicht zurückgesetzt, springt das Objekt nicht nach oben, obwohl es das eigentlich
müsste.
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6 Ergebnisse

In diesem Kapitel sollen einige Experimente vorgestellt werden, die mit der eigenen Im-
plementierung der Methode von Solenthaler und Kollegen [SSP07] durchgeführt wurden.
Vor allem soll dabei ihre Stabilität und Korrektheit überprüft werden. Zunächst wird dabei
die Variation der Parameter für elastische Materialien untersucht (Abschnitte 6.1 und 6.2).
Danach folgt die Untersuchung der Variation von anderen Simulationsparametern (Abschnitt
6.3) und eine Untersuchung der Laufzeiten der Implementierung (Abschnitt 6.4). Wie die
Ergebnisse der Untersuchungen genau zu interpretieren sind, folgt später in Kapitel 7.

6.1 Variation des Elastizitätsmoduls

Die erste der beiden grundlegenden materialabhängigen Variablen isotroper elastischer
Körper ist das Elastizitätsmodul E. Wie in Abschnitt 3.3.4 schon beschrieben, ist es ein Maß
für die Steifigkeit eines Objekts. Je höher das Elastizitätsmodul, desto schwerer deformierbar
ist ein Körper. Ob dies vom präsentierten Modell ebenso abgebildet wird, soll folgender
Versuchsaufbau klären.

Beschreibung Symbol Gewählter Wert

Gravitationskonstante g 9, 81
Länge eines Zeitschritts δt 0, 001s
Simulationsdauer tmax 0, 3
Glättungslänge h 0, 055
Partikelmasse m 0, 00001
Elastizitätsmodul E variabel
Poissonzahl ν 0, 0
Partikelabstand δx 0, 025
Anzahl der Partikel N 2106

Abbildung 6.1: Startkonfiguration und Versuchsparameter Versuch 1

Simuliert wird ein quaderförmiges Objekt mit den Abmessungen von 0, 2 ∗ 0, 2 ∗ 0, 6 Raumein-
heiten, welches aus ca 2100 Partikeln besteht. Dieses wird an einem der beiden quadratischen
Enden 0, 1 Einheiten über dem „Boden“ des Simulationsraums fixiert. Der initiale Aufbau
soll anhand von Abbildung 6.1 verdeutlicht werden. Das linke Ende des Objekts ist hier
fixiert. Nach dem Start der Simulation wird das Objekt von der Gravitation nach unten
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6 Ergebnisse

(a) E = 50 (b) E = 100 (c) E = 300

Abbildung 6.2: Ergebnisse Versuch 1 bei E ∈ [50, 300]

gezogen werden. Da die linke Seite fixiert ist, wird dies größeren Effekt auf die rechte Seite
haben. Nach einigen Zeitschritten wird das rechte Ende des Quaders auf den Boden des
Simulationsraums treffen. Daraufhin beginnt das Objekt, sich in der Mitte durchzubiegen.
Wie stark es dies tut, soll ein Maß für die jeweilige Steifheit sein. Ein steifes Material wird
den Boden kaum berühren und danach streben, die Ursprungskonfiguration möglichst
beizubehalten. Weniger steife Materialien werden eine größere Auflagefläche besitzen, da die
geringere Steifigkeit des Objekts eine größere Deformation erlaubt. Die Poissonzahl ν wird
in diesem Versuch konstant bei 0 belassen, um den Versuch nicht durch den Einfluss eines
weiteren, für die Elastizität relevanten, Parameters zu verfälschen. Das Elastizitätsmodul E
wird in einem Bereich von 50 (sehr weich) bis 1000 (hart) variiert.

Die Ergebnisse dieses Aufbaus zeigen die Abbildungen 6.2 und 6.3. Sie geben den aktuellen
Zustand des Systems nach 200 Zeitschritten wieder. Wie erwartet sind Objekte mit höherem
Elastizitätsmodul steifer. Bei E = 50 liegen annähernd 80% der Grundfläche des Objekts auf
dem Boden auf. Zudem wird es, im Gegensatz zu den Objekten mit höherem Elastizitäts-
modul, vertikal stark gestaucht. Dies ist ebenfalls der geringen Steifigkeit geschuldet. Das
genaue Gegenteil bildet das Objekt mit E = 1000. Es wird so gut wie gar nicht gestaucht

(a) E = 500 (b) E = 750 (c) E = 1000

Abbildung 6.3: Ergebnisse Versuch 1 bei E ∈ [500, 1000]
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6.2 Variation der Poissonzahl

und liegt nur mit der Kante auf dem Boden auf. Die anderen gewählten Werte zeigen
Zwischenstufen dieser beiden Extreme. So liegen bei E = 300 ca. 30% der Grundfläche auf
dem Boden auf, bei E = 100 sind es schon 60%.

Objekte mit höherem Elastizitätsmodul E erlauben also weniger absolute Deformation. Sie
tendieren eher dazu, an jeder Stelle leichte Deformationen zuzulassen, als an einigen wenigen
große. Bei kleinem Modul ist das Gegenteil der Fall. Hier sind große lokale Deformationen
möglich. Der Rest des Objekts bleibt dabei möglichst undeformiert. Es soll noch kurz auf
ein kleines Phänomen eingegangen werden, welches in Abbildung 6.2(b) zu erkennen ist.
Die Höhe des rechten Endes des Objekts ist dort größer, als bei Objekten mit höherem E,
was eigentlich nicht sein dürfte. Dies ist dem Aufprallverhalten des Materials geschuldet.
Trifft es mit einer gewissen Geschwindigkeit auf den Boden auf, so prallt es von dort ab und
schnellt leicht nach oben. Zum 200. Zeitschritt war das Objekt aus Abbildung 6.2(b) gerade
am höchsten Punkt einer solchen Bewegung. Bei allen anderen Objekten war dies nicht der
Fall, was deren geringere Höhe erklärt.

Weitere Beobachtungen zur Variation des Elastizitätsmoduls, insbesondere solche mit Blick
auf die Stabilität, sollen in Kapitel 7 erläutert werden.

6.2 Variation der Poissonzahl

Der zweite wichtige Materialparameter für isotrope Materialien neben dem Elastizitäts-
modul ist die Poissonzahl ν. Sie ist ein Maß dafür, wie stark sich Verformungen in einer
Raumrichtung in die anderen Raumrichtungen fortpflanzen. Um den Effekt dieser Größe zu
visualisieren wird folgender Versuchsaufbau angewandt:

Beschreibung Symbol Gewählter Wert

Gravitationskonstante g 0
Länge eines Zeitschritts δt 0, 001s
Simulationsdauer tmax 0, 3
Glättungslänge h 0, 055
Partikelmasse m 0, 00001
Elastizitätsmodul E 300
Poissonzahl ν variabel
Partikelabstand δx 0, 025
Anzahl der Partikel N 357

Abbildung 6.4: Startkonfiguration und Versuchsparameter Versuch 2

Die Startkonfiguration besteht aus einem Quader mit den Maßen 0, 2 ∗ 0, 1 ∗ 0, 5, welches
aus ca. 350 Partikeln aufgebaut ist. Eine der beiden Flächen mit den Maßen 0, 2 ∗ 0, 1 ist
fixiert. Die gegenüberliegende Fläche wird dann mit 0, 7 Raumeinheiten pro Sekunde auf
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6 Ergebnisse

(a) ν = 0, 0 (b) ν = 0, 15 (c) ν = 0, 30 (d) ν = 0, 45

Abbildung 6.5: Ergebnisse Versuch 2

die fixierte Fläche zubewegt. Das Objekt wird also in einer Raumrichtung gestaucht. Dies
wird mehrmals mit variierender Poissonzahl ν durchgeführt. Diese bewegt sich in einem
Bereich von 0 bis 0, 45. Ein Wert von 0, 5, welcher in der Realität auch auftreten kann, wird
jedoch nicht überprüft, da dieser mit den Formeln für isotrope Materialien nicht vereinbar
ist. Setzt man in Gleichung 3.26 den Wert ν = 0, 5 ein, würde man durch 0 teilen, was nicht
erlaubt ist.

Abbildung 6.5 zeigt die Ergebnisse dieses Experiments nach 200 Zeitschritten. Die Abbildung
der Initialkonfiguration zeigt den selben Bildausschnitt wie die Abbildungen der Ergebnisse.
Es ist also zu erkennen, dass das Objekt wirklich gestaucht wurde. Das Maß, in dem es sich
orthogonal zur Stauchrichtung verbreitert, variiert je nach Poissonzahl. Bei ν = 0 verbreitert
sich der Körper überhaupt nicht, was eben so zu erwarten ist. Je höher die Poissonzahl
gewählt wird, desto höher bzw. breiter wird das Objekt, wenn es in Längsrichtung zusam-
mengedrückt wird. Dies entspricht der Definition der Poissonzahl und war somit so zu
erwarten.

Zusätzlich sei noch auf ein weiteres Phänomen hingewiesen, welches durch diese Simulati-
onsmethode abgedeckt wird. Dieses ist jedoch in Render-Szenen sehr schwer zu erkennen,
deshalb muss eine schriftliche Beschreibung genügen. Wird die Stauchung des Objektes
bei hoher Poissonzahl ruckartig genug ausgeführt, verbreitert sich das Objekt zunächst nur
an dem Ende, von dem aus die Stauchung ausgeführt wurde. Diese Verbreiterung pflanzt
sich dann schneller als die Stauchung bis hin zum anderen Ende des Objekts fort. Dieses
Verhalten ähnelt beispielsweise dem von Wackelpudding. Es ist aber nur zu beobachten,
wenn der Zeitschritt nicht zu klein gewählt wurde, da sonst die auftretenden Kräfte zu
gering sind, bzw. sich diese besser über das Objekt verteilen.

6.3 Variation von SPH-Grundparametern

Außer den grundlegenden Parametern für elastoplastische Objekte sind auch noch andere
Werte interessant. So interessiert beispielsweise, wie sich die Wahl der Länge des Zeitschritts
auf die Simulation auswirkt. Weitere interessante Parameter sind die Partikelmasse und die
Glättungslänge. Zunächst sei auf die Glättungslänge eingegangen. In vielen Arbeiten, welche
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6.4 Laufzeiten

sich auf Smoothed Particle Hydrodynamics stützen, wird die Glättungslänge so gewählt, dass
sie in etwa dem doppelten initialen Partikelabstand entspricht [NMK+

06]. Dies konnte auch
hier bestätigt werden. Je größer die Glättungslänge ist, desto mehr Nachbarn besitzt jedes
Partikel. Da für jeden Nachbarn Rechenoperationen ausgeführt werden müssen, führen große
Nachbarschaften zu hoher Rechenzeit. In Versuchen zeigt sich auch hier, dass die Stabilität
der Simulation ab einer Glättungslänge von ca. dem doppelten initialen Partikelabstand
nicht mehr wirklich zunimmt. Bei kleineren Glättungslängen wirken entweder gar keine
Kräfte oder sie wirken einseitig in eine Richtung, so dass das simulierte Objekt regelrecht
explodiert. Die Empfehlung von Solenthaler und Kollegen ist, die Glättungslänge so zu
wählen, dass jedes Partikel im Schnitt 40 Nachbarn besitzt [SSP07]. Dies ist in etwa beim
doppelten Initialabstand der Fall.

Variiert man die Partikelmasse m stellen sich gänzlich andere Effekte ein. Wird sie erhöht,
wird das Objekt weicher. Erniedrigt man sie, wird das simulierte Objekt steifer. Sie scheint
also den inversen Effekt des Elastizitätsmoduls zu besitzen. Betrachtet man die Formeln
der Modelle für die Elastizität aus Abschnitt 3.3 fällt schnell auf, dass zwischen Masse m
und Elastizitätsmodul E ein Zusammenhang besteht. Per Definition ist das Elastizitätsmodul
proportional zu der Kraft, die im Innern eines elastischen Körpers wirkt. Je stärker diese
Kraft ist, desto steifer ist das Objekt. Lässt man jedoch diese Kraft gleich und erhöht die
Partikelmassen, muss plötzlich dieselbe Kraft mehr Masse bewegen. Dies kann nicht so leicht
gelingen, deshalb wird hier ein Körper bei Erhöhung der Partikelmassen weniger steif. Bei
Verringerung der Partikelmassen ist natürlich das Gegenteil der Fall.

Der letzte interessante Parameter ist die Länge eines Zeitschritts. Dessen Einfluss auf die
Stabilität scheint jedoch kaum von anderen Werten abzuhängen. Egal wie andere Werte
gewählt waren, bei allen Zeitschrittlängen über 0, 001s tendiert die Simulation zur Instabilität.
Kleinere Längen scheinen sie jedoch nicht stabiler zu machen, was den Beobachtungen von
Solenthaler und Kollegen widerspricht [SSP07]. Vor allem können zu kleine Zeitschritte
bestimmte Details der Simulation verwischen, wie in Abschnitt 6.2 ausgeführt. Aufgrund
dessen wurde in so gut wie jedem Versuch δt = 0, 001s gewählt.

6.4 Laufzeiten

Insbesondere für Anwendungen in der Computergraphik sind die Laufzeiten der Simu-
lation interessant. Es wird immer danach gestrebt, möglichst interaktive Anwendungen
zu entwickeln, d.h. es soll dem Nutzer möglich sein, bestimmte Parameter während der
Laufzeit zu ändern und diese Änderungen sofort in der Ausgabe zu beobachten. Für diese
ist zumeist erforderlich, dass die Berechnung eines Zeitschritts nur so lange dauert, dass
mindestens 25 Zeitschritte pro Sekunde berechnet werden können. Inwiefern dies mit dieser
Implementierung möglich ist, soll im Folgenden geklärt werden.

Die Laufzeitmessungen wurden auf einer Testmaschine mit einem Intel Core i7-2600K bei
4GHz Taktfrequenz durchgeführt, welche 16GB Arbeitsspeicher besitzt. Als Grafikkarte
ist eine GeForce GTX580 verbaut. In der Simulation wird 200 Zeitschritte lang das Fallen
eines Würfels simuliert. Dieser besitzt die Partikelmasse m = 0.00001, das Elastizitätsmodul
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6 Ergebnisse

N h #n Dauer
729 0, 055 42 10, 36s
729 0, 075 81 20, 44s

2197 0, 055 46 40, 62s
2197 0, 075 93 78, 47s
4913 0, 055 49 126, 4s
4913 0, 075 99 221, 4s

Tabelle 6.1: Laufzeitmessungen Total für 200 Zeitschritte

E = 500 und Poissonzahl ν = 0, 4. Die Partikelanzahl des Würfels und die Glättungslänge
werden variiert. Durch die Änderung der Glättungslänge verändert sich natürlich auch die
durchschnittliche Anzahl an Nachbarn, die die Partikel besitzen. Diese ist ausschlaggebend
für die Laufzeit, da viele Berechnungen für alle Nachbarn eines Partikels erfolgen. Die
Laufzeitmessungen für variierende Partikelanzahl N und Glättungslänge h ist in Tabelle
6.1 gegeben, die genauere Aufschlüsselung nach einzelnen Berechnungsschritten in Tabelle
6.2. Hierbei bezeichnet #n die durchschnittliche Anzahl an Nachbarn und comp n die
Berechnungszeit, die benötigt wird, um die Nachbarschaften der Partikel zu bestimmen. Die
Messwerte geben die gesamt benötigte Zeit für 200 Zeitschritte an.

Es ist zu erkennen, dass die Erhöhung der Glättungslänge um ca. 35% bereits zu einer
Verdoppelung der Laufzeit führen kann, ohne dass die Qualität der Simulation zunimmt.
Der größten Anteil an der Rechendauer fällt auf die letztendliche Kraftberechnung und
auf die Berechnung der Nachbarschaften ab. Die Bestimmung von Verzerrung, Spannung
Geschwindigkeit und neuer Position ist nicht von der Glättungslänge abhängig. Dem zufolge
ändert sich die benötigte Zeit kaum, wenn h variiert wird. Da diese Werte nur linear von der
Partikelanzahl abhängen, ist ihr Einfluss auf die Gesamtlaufzeit sehr gering. Die Berechnung
der Nachbarschaften verhält sich schon per Definition quadratisch zur Anzahl der Partikel.
Da die Kraftberechnung und die der Verschiebungsgradienten im Normalfall nicht für alle
anderen Partikel erfolgen sondern nur für die eigenen Nachbarn, steigt deren Laufzeit nicht
so stark mit der Anzahl der Partikel. Jedoch sind diese von der durchschnittlichen Zahl der
Nachbarn abhängig.

N h x comp n ∇u ε σ F v
729 0, 055 0, 003457s 1, 34s 2, 017s 0, 01551s 0, 01013s 6, 228s 0, 00277s
729 0, 075 0, 003319s 1, 398s 3, 963s 0, 01536s 0, 01007s 14, 49s 0, 00261s
2197 0, 055 0, 01205s 11, 88s 6, 764s 0, 04664s 0, 03049s 20, 72s 0, 00807s
2197 0, 075 0, 01295s 12, 12s 13, 63s 0, 04698s 0, 0305s 51, 78s 0, 008699s
4913 0, 055 0, 03651s 59, 47s 15, 71s 0, 1086s 0, 07143s 49, 23s 0, 02138s
4913 0, 075 0, 03704s 59, 63s 32, 77s 0, 1064s 0, 06852s 127, 7s 0, 02662s

Tabelle 6.2: Laufzeitmessungen aufgeschlüsselt für 200 Zeitschritte
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6.4 Laufzeiten

Bei einer Partikelanzahl von ca. 730 benötigt ein Zeitschritt in etwa 0, 05s, was nur das
50-fache der Zeitschrittdauer ist. Da diese Implementierung nicht auf Parallelität ausgelegt
ist, wäre mit ausreichender Parallelisierung, insbesondere auf Grafikprozessoren, eine inter-
aktive Anwendung möglich. Je größer die Partikelanzahl ist, desto weniger wahrscheinlich
ist, das die Dauer eines Zeitschritts so gedrückt werden kann, das dies möglich ist. Insgesamt
ist dies wohl bei Zahlen unter 1000 realistisch. Was für Parallelisierungsraten mit den neues-
ten Grafikkartengenerationen wirklich erreicht werden können, könnte hier nur geschätzt
werden, deshalb wollen wir uns eher auf diesen eher konservativen Wert festlegen.
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7 Diskussion

Wie jede Simulationsmethode besitzt auch die hier präsentierte Vor- und Nachteile. Je nach
Eigenschaften des Modells können nur bestimmte Eigenschaften von wirklichen Materialien
abgebildet werden. Welche genau mit dem vorliegenden Modell simuliert werden können
und was für weiter Vor- und Nachteile die Methode besitzt, soll im Folgenden erörtert
werden.

7.1 Wahl von Elastizitätsmodul und Poissonzahl

Eine der wichtigen Einschränkungen des Modells ist die auf isotrope Materialien. Deren
elastische Materialeigenschaften können nur abhängig von Elastizitätsmodul und Poissonzahl
beschrieben werden. Die Problematik an dem bestehenden Ansatz besteht nun darin, dass
einige Werte für die beiden Größen schon rein mathematisch auszuschließen sind, solange
man sich auf die Formeln für isotrope Materialien beschränkt. So ist, wie in Abschnitt 6.2
erläutert, eine Poissonzahl von 0, 5 oder nahe 0, 5 gar nicht oder kaum möglich. Dasselbe
Problem besteht für, zugegeben exotische, Materialien mit v = −1. Da viele Gummisorten
eine Poissonzahl nahe 0, 5 besitzen, schließt das eine große Klasse von Materialien aus.

Zu den isotropen Materialien gehören unter anderem auch Metalle. Viele Metalle sind sehr
starr und kaum deformierbar, besitzen also ein recht hohes Elastizitätsmodul. In den Versu-
chen hat sich gezeigt, dass die präsentierte Methode mit steigendem E tendenziell immer
instabiler wird, da die auftretenden Kräfte mit dieser Größe ebenfalls steigen. Die weiter
oben durchgeführten Experimente wurden nur für zumindest leicht elastische Materialien
vorgenommen. Es ist anzunehmen, dass die Methode sehr instabil werden würde, wenn
man versucht das Modell auf eher starre Stoffe wie etwa Aluminium anzuwenden. Diese
Problematik ist jedoch als eher nicht kritisch zu betrachten, da Solenthaler und Kollegen
ebenfalls in [SSP07] einen Ansatz präsentiert haben, um starre Stoffe zu simulieren. Natürlich
könnte man auch in die Richtung argumentieren, dass es der Zweck, des Modells ist, für
Laien auf den ersten Blick elastisch erscheinende Stoffe (z.B. Gummi) zu simulieren und
nicht solche, deren elastische Eigenschaften nur unter Laborbedingungen gezeigt werden
können (wie etwa Platin).

Es ist des weiteren anzumerken, dass generell eine Erhöhung der Poissonzahl die Stabilität
zu erhöhen scheint. Da diese generell gefährdet ist, wenn zu große Kräfte auftreten, scheint
dies plausibel. Eine Kraft, die in eine bestimmte Richtung auftritt, wird durch eine hohe
Poissonzahl in andere Richtungen abgelenkt bzw. verteilt. Somit nimmt der Betrag der Kraft
in der initialen Raumrichtung ab, was förderlich für die Stabilität sein kann.
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7 Diskussion

7.2 Vor- und Nachteile bezüglich anderer Methoden

Wie schon erwähnt besitzt auch diese Methode bestimmte Vor- und Nachteile. Da der
präsentierte Ansatz primär auf Smoothed Particle Hydrodynamics fußt, wird er sowohl
positive als auch negative Eigenschaften des Grundverfahrens übernommen haben. SPH
wird gern als schnelle Methode angesehen, jedoch kann diese Behauptung laut [SM93] nicht
wirklich gehalten werden. Wenn hohe Genauigkeit, also hohe Partikelzahlen gefordert sind,
steigt die Rechendauer auf ähnliche Werte wie z.B. die der Finite-Elemente-Methode. Seit
Steinmetz und Kollegen diese Arbeit veröffentlichten hat sich einiges getan. Vor allem im
Bereich des parallelen Rechnens gab es enorme Fortschritte. Da sehr viele Operationen bei
einer SPH-Methode gleichförmig für alle Partikel ausgeführt werden müssen und diese
sich nicht unbedingt gegenseitig bedingen, ist Smoothed Particle Hydrodynamics geradezu
prädestiniert für Parallelisierung. In [HKK07] wurde eine SPH-Implementierung für Fluide
präsentiert, welche noch bei etwa 60000 Partikeln interaktive Applikationen zulässt, was weit
mehr ist, als die hier geschätzten 1000. Es muss jedoch beachtet werden, dass die elastischen
Berechnungen eventuell komplexer sein könnten als solche für Fluide.

Während die potentielle Schnelligkeit einen Vorteil darstellt, ist die Genauigkeit eher ein
Nachteil von SPH im Allgemeinen und von diesem Modell im Speziellen. Begeht man bei
einer FEM einen Fehler in der Implementierung, tendieren diese meist dazu, sehr schnell
instabil zu werden. Bei SPH ist dies oft nicht der Fall ([SM93]). Es werden dann eher
physikalisch unkorrekte Ergebnisse geliefert, die aber eventuell nicht als solche zu erkennen
sind. Da für diese Arbeit keine genauen Materialdaten sondern nur maximal die Dichte,
das Elastizitätsmodul und die Poissonzahl vorlagen, ist sehr schwer zu sagen, inwieweit
die Implementierung oder das Modell physikalisch korrekt sind. Es konnte nur beobachtet
werden, dass es das Verhalten von weicheren elastischen Materialien sehr gut imitiert, wenn
nicht gar wiedergibt.

Das präsentierte Modell hat anderen Methoden gegenüber, was die physikalischen Eigen-
schaften betrifft, auch Vorteile. So können mit einem Masse-Feder-System keine Materialien
mit ν = 0 modelliert werden. Dort verhindern die für die Modellierung essentiellen Struk-
turfedern eine verschwindende Poissonzahl. Mit den Finitite-Elemente-Methoden kann wohl
im Allgemeinen eine größere Bandbreite an Eigenschaften simuliert werden, als hier mög-
lich, jedoch sind viele Verfahren so spezialisiert, dass die wirklichen Anwendungsbereiche
einzelner darunter ähnliche Einschränkungen besitzen dürften.

Der Größte Vorteil dieser Methode besteht in der hohen Erweiterbarkeit. Bei SPH handelt
es sich nach allgemeiner Meinung ([NMK+

06]) um eine sehr leicht wart- und erweiterbare
Methode. Für neue Eigenschaften, die modelliert werden sollen, können einfach neue Parti-
keleigenschaften definiert werden, die dann ebenfalls eventuell mittels SPH approximierbar
sind. Speziell das vorgestellte Modell wurde schon um einige Eigenschaften erweitert, zu
Details hierzu sei auf den nächsten Abschnitt verwiesen.

Als Fazit lässt sich also sagen, dass die vorliegende Methode, mangels genauerer Untersu-
chungen, noch nicht als wirklich physikalisch korrekt angesehen werden kann. Sollten diese
aber zeigen, dass Korrektheit gegeben ist, ist diese Behauptung natürlich nichtig. Aufgrund
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7.3 Erweiterbarkeit

dessen und auch vor allem aufgrund der hohen Parallelisierbarkeit von SPH-Methoden im
Allgemeinen ist diese Methode wohl eher zur Animation in der Computergrafik denn zur
physikalischen Simulation geeignet. Während bei der Simulation physikalische Korrektheit
das Hauptaugenmerk darstellt, ist es bei der Animation zum einen der Anschein der physi-
kalischen Korrektheit (welche aber nicht wirklich gegeben sein muss) und zum anderen die
Schnelligkeit. Beides erfüllt diese Methode.

7.3 Erweiterbarkeit

Wie schon erwähnt, besticht das präsentierte Modell durch seine Erweiterbarkeit, nicht zu-
letzt, weil es fast primär für diesen Zweck entwickelt wurde. In [SSP07] wurde ein Verfahren
entwickelt, welches die Interaktionen von Objekten, die mittels dieses Modells simuliert wer-
den, mit Flüssigkeiten und starren Objekten ermöglicht. Es wurden auch Zustandsübergänge
vom elastischen Objekt zur Flüssigkeit, verursacht durch Temperaturerhöhung, möglich
gemacht.

Die für diese Arbeit vorgenommene Implementierung besitzt, wie schon gesagt, noch hohes
Potential für Parallelisierung. Insbesondere die Berechnung der Nachbarschaften und der
elastischen Kräfte könnte dadurch signifikant beschleunigt werden. Um dies zu ermöglichen
müsste jedoch die Formulierung der elastischen Kraft angepasst werden, damit weniger Syn-
chronisation bei der parallelen Berechnung nötig ist. Bei der aktuellen Formulierung könnte
es vorkommen, dass mehrere Kraftberechnungen gleichzeitig versuchen, schreibend auf
dieselbe Variable zuzugreifen, wenn diese für verschiedene Partikel gleichzeitig ausgeführt
wird. Die Bestimmung der Nachbarschaften könnte jedoch nicht nur mit Parallelisierungen
beschleunigt werden. So genannte Hash Grids wären hier ebenfalls eine Möglichkeit um
schnellere Nachbarschaftssuche zu gewährleisten.

In ihrer Arbeit „Corotated SPH for deformable solids“ [BIT09] decken Becker und Kollegen
eine Problematik in der Formulierung der Bedingung für lokale Undeformiertheit auf. Diese
führt bei reiner Rotation eines Körpers, die jedoch keine Deformation beinhaltet, trotzdem zu
elastischen Kräften die ungleich 0 sind. Anders formuliert: Das präsentierte Modell ist nicht
rotationsinvariant. Becker und Kollegen erweitern das präsentierte Modell, um dieser Pro-
blematik Herr zu werden. Dazu wird in jedem Zeitschritt mittels SPH eine Rotationsmatrix
berechnet, die auf die Partikelpositionen in Ruhelage angewandt wird. Dadurch kann die
Rotationsinvarianz hergestellt werden. Das in deren Arbeit beschriebenen Verhalten konnte
auch hier teils reproduziert werden. Ließ man die in Abschnitt 6.1 beschriebene Simulation
weiter laufen, als beschrieben, traten nach einigen Hundert Zeitschritten bei Partikeln von
rotierten Objektteilen plötzlich sehr starke Kräfte in Richtung ihrer ursprünglichen Position
auf. Bei nicht rotierten Objektteilen war dies nicht der Fall. Auf jeden Fall ist das Problem
bekannt und es ist ebenfalls bekannt, wie ihm mittels einer Erweiterung beizukommen ist.

Nicht zuletzt wäre auch eine Erweiterung des Modells für andere elastische Materialien
außer den isotropen möglich. Dazu wäre nur eine andere Berechnungsvorschrift für den
Spannungstensor notwendig. Dies kann jedoch bei bestimmten Materialparametern zu
erhöhter Rechendauer führen, da man dann evtl. die Tensorschreibweise der Formel (siehe
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7 Diskussion

Abschnitt 3.3.5) nicht mittels Voigtscher Notation vereinfachen kann und man deshalb
plötzlich mit Tensoren vierter Stufe zurechtkommen muss. Dies wäre aber nur bei sehr
exotischen Materialien der Fall. Für die meisten Arten von Stoffen existieren einfachere
Berechnungsvorschriften (siehe u.a. [Sla02]).

Alles in allem lässt sich feststellen, das das präsentierte Modell durch seine Erweiterbarkeit
besticht und auch schon diverse Erweiterungen daran durchgeführt wurden. Die Möglichkei-
ten wurden jedoch bei weitem nicht ausgeschöpft, vor allem in Hinblick auf die Schnelligkeit
der Simulation und der Abdeckung verschiedenster Materialien.
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8 Zusammenfassung und Ausblick

Im Rahmen dieser Arbeit wurde ein Verfahren zur punktbasierten Animation von elastischen
Körpern implementiert und evaluiert, welches durch seine hohen Erweiterungsmöglichkeiten
besticht. Diese Verfahren basiert auf der Smoothed Particle Hydrodynamics-Methode. Bei
dieser werden bestimmte Eigenschaften der Partikel errechnet, indem über Partikeleigen-
schaften der Nachbarpartikel geglättet wird. So kann etwa der Druck an einer bestimmten
Stelle errechnet werden, wenn man die Massen der Nachbarschaft gewichtet aufsummiert.
Zunächst wurden in dieser Arbeit die Grundlagen der punktbasierten Simulation, der
SPH-Methode und der Elastizitätstheorie besprochen. Daraufhin wurde das Modell von
Solenthaler und Kollegen eingeführt, welches die Simulation von elastischen Materialien
ermöglicht. Es ändert die gängige Formulierung der Ruhelage von elastischen Objekten,
um einfachere Erweiterbarkeit zu ermöglichen bzw. um Vereinigungen mit anderen Objek-
ten oder Spaltungen zu vereinfachen. Daraufhin folgte eine Beschreibung von bestimmten
Implementierungsdetails, wie etwa die Kräfte auf die verschiedenen Partikel angerechnet
werden. Im Folgenden wurde dann die implementierte Simulationsmethode in Hinblick
auf Korrektheit und Leistungsfähigkeit evaluiert. Dabei stellte sich heraus, dass sie großes
Potential besitzt, durch Parallelisierung und andere Erweiterungen verbessert zu werden. In
einer abschließenden Diskussion wurden weiter Vor- und Nachteile erörtert. Insbesondere
im Hinblick auf physikalische Korrektheit bestehen noch Verbesserungsmöglichkeiten.

Ausblick

Die Simulation und Animation verschiedenster Materialien hat in den letzten Jahren große
Fortschritte gemacht. Jedoch haben beide Bereiche unterschiedliche Anforderungen. Die
präsentierte Methode erfüllt nur die eines Bereichs. Die zukünftige Entwicklung wird
wohl auf die Kombination beider Richtungen hinauslaufen. Während es für Entwickler
von Simulationsmethoden wichtig ist, ihre Ergebnisse ansprechend zu präsentieren, ist
es für solche von Animationsmethoden ebenfalls wichtig, physikalische Korrektheit zu
wahren. Insbesondere durch den raschen Fortschritt der Parallelisierungstechniken wird
es möglich sein, kompliziertere Simulationsverfahren auch in der Animation zur Anwen-
dung zu bringen, ohne dass der zeitliche Aufwand explodiert. Inwieweit dabei gitterba-
sierte Verfahren zur Anwendung kommen können, bleibt abzuwarten, da punktbasierte,
wie das präsentierte, für die Zwecke der Animation bessere Grundvoraussetzungen lie-
fern.
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