
Institut für Visualisierung und Interaktive Systeme
Abteilung Mensch-Computer-Interaktion

Universität Stuttgart
Pfaffenwaldring 5a
D–70569 Stuttgart

Bachelorarbeit Nr. 12

Belastung als eine
Eingabemodalität zur Interaktion

mit graphischen
Benutzungsoberflächen

Marius Kleiner

Studiengang: Informatik

Prüfer: Prof. Dr. Albrecht Schmidt

Betreuer: Dipl.-Inf. Bastian Pfleging
Dr. Niels Henze

begonnen am: 21. Mai 2012

beendet am: 12. November 2012

CR-Klassifikation: H.1.2, H.5.2, J.4, D.2, D.3

Kurzfassung

Viele der heutigen Computerprogramme sind für eine große Zielgruppe ausgelegt. Vom
unerfahrenen Heimanwender bis hin zum Experten in einem Unternehmen werden zum
Teil dieselben Programme genutzt. Der knifflige Trade-Off zwischen einfacher Erreichbarkeit
und guter Übersichtlichkeit erschwert es die Programmoberflächen für jeden Anwender
so zu gestalten, dass die Bedienung ausreichend intuitiv und effizient funktioniert. Eine
faszinierende Lösung für diese Problematik könnte eine sich selbst an die Bedürfnisse des
Nutzers anpassende grafische Nutzeroberfläche bieten. Die Cognitive Load Theory von John
Sweller beschreibt ein Konzept der kognitiven Belastung. Durch das kontinuierliche Messen
der kognitiven Last kann ermittelt werden, ob der Nutzer beim Arbeiten mit dem Programm
über- oder gar unterfordert ist. Um korrekte Anpassungen vornehmen zu können müssen
zuverlässige Werte für die kognitive Belastung eines Nutzers vorliegen. Es gibt verschiedene
Möglichkeiten den Grad der Anstrengung und den Stresslevel von Personen zu messen.
Da einige Körperfunktionen vom Menschen nicht bewusst beeinflusst werden können und
sie auf Stress reagieren, können diese zur Messung der Arbeitslast genutzt werden. Unter
anderem eignen sich EKG, EEG, Hautleitwert, Transpiration und Hauttemperatur um die
Arbeitslast zu bestimmen. Leider ist es häufig nötig, Messinstrumente anzulegen (z.B. EKG
oder EEG). Mit einer Infrarotwärmebildkamera ist es jedoch möglich, die Hauttemperatur
kontaktlos zu messen. In dieser Arbeit liegt der Fokus auf der Bestimmung der kognitiven
Last mit Hilfe einer Infrarotwärmebildkamera. Mittels Gesichtserkennung auf den Bilddaten
einer visuellen Kamera werden Gesichtsbereiche bestimmt. Durch das Vergleichen der
Temperaturen verschiedener Gesichtsbereiche kann auf die Arbeitsbelastung eines Nutzers
geschlossen werden. Im Rahmen dieser Arbeit entstand ein Programm, welches die Bild-
und Temperaturdaten einer visuellen Kamera und einer Infrarotwärmebildkamera ermittelt
und verarbeitet. Verschiedene Gesichtsbereiche werden im visuellen Bild bestimmt und die
zugehörigen Temperaturwerte des Wärmebilds zugeordnet. Das hier entstandene Tool kann
folglich die Temperaturen verschiedener Gesichtsbereiche ermitteln und als Grundlage für
eine automatische Bestimmung der kognitiven Last eines Computernutzers dienen.

3

Abstract

Many of today’s computer programs are designed for a large user group. Both, less experi-
enced home-users and professionals sometimes use the same programs. The tricky trade-off
between accessibility and clearness additionally complicates to create a graphical user inter-
face, that makes handling of a program sufficent intuitive and efficient. A fascinating solution
for this problem could be a graphical user interface that automatically adapts to the users
needs. The Cognitive Load Theory by John Sweller describes a concept of cognitive load that
is used in cognitive psychology. By continuously measuring the cognitive load it is possible
to determine if the user is overextended or even underchallenged while using a computer
program. In order to make proper adjustments it is necessary to have reliable information
about the cognitive load of a user. There are several ways to measure the degree of effort and
the stress level of people. Because some bodily functions can not be influenced consciously
and as they react to stress, they can be used to measure the workload. Among other things,
ECG, EEG, skin conductance, transpiration and determination of skin temperature suit for
measuring workload. Unfortunately, it is often necessary to wear measurement devices (e.g.
ECG, EEG). By using an infrared thermal imaging camera, it is possible to measure the
skin temperature contactless. In this work the focus is on the determination of cognitive
load using an infrared thermal imaging camera. Face regions are beeing determined by
conducting facial recognition on the image data of a visual camera. The users workload can
be determined by comparing the temperatures of different areas of the face. As part of this
work a program which determines and processes the image and temperature data of a visual
camera and an infrared thermal imaging camera. Different facial areas are determined in the
visual image and assigned to the corresponding temperature values of the thermal image.
The tool that has been developed here can thus determine the temperatures of different
areas of the face and serve as a basis for automatic determination of the cognitive load of a
computer user.

5

Inhaltsverzeichnis

1 Einleitung 11
1.1 Lösungsansatz . 12

1.2 Aufgabenstellung . 13

1.3 Gliederung der Arbeit . 14

2 Hintergrund 15
2.1 Temperaturmessung mit Hilfe einer Infrarotwärmebildkamera 15

2.1.1 Entdeckung und Eigenschaften der Infrarotstrahlung 15

2.1.2 Funktion einer Infrarot-Digital-Wärmebildkamera 16

2.2 Cognitive Load Theory . 17

2.2.1 Die Struktur des menschlichen Gedächtnis 17

2.2.1.1 Das Arbeitsgedächtnis . 17

2.2.1.2 Das Langzeitgedächtnis . 19

2.2.2 Entwicklung kognitiver Schemata . 19

2.3 Ein kleiner Exkurs in C++ . 20

2.3.1 Was ist C++ . 20

2.3.1.1 Der Editor: Microsoft Visual Studio 2010 Ultimate 21

2.3.1.2 Grundlagen & Hello World . 22

2.4 Open Source Computer Vision Library . 30

2.4.1 Was ist openCV? . 32

2.4.2 Von openCV bereitgestellte Funktionen 33

2.4.2.1 Video Capturing . 34

2.4.2.2 Bildbearbeitung und Zeichnen auf Bildern 34

2.4.2.3 Face Detection . 35

3 Verwandte Arbeiten 39
3.1 Arbeiten zur Cognitive Load Theory . 39

3.2 Messmethoden zur Bestimmung der kognitiven Last 40

3.2.1 Hauttemperaturmessung zur Stressbestimmung 41

3.3 User Studies und Testaufbau zur Evaluierung der Messmethoden 43

4 Das Konzept 47
4.1 Die Sensoren, Datenerhebung . 47

4.2 Möglichkeiten das visuelle Bild und das Wärmebild anzugleichen 48

4.3 Datensammlung und -Verarbeitung . 48

4.3.1 Gesichtserkennung . 48

4.3.2 Bestimmung der kognitiven Last . 49

7

4.4 Tests und Prüfung der Konstruktion . 49

4.5 Anwendungszenarien . 49

4.6 Planung einer Nutzerstudie . 50

4.7 Mögliche Erweiterungen . 51

5 Umsetzung und Implementierung 53
5.1 Die Hardware . 53

5.2 Umsetzung in C++ . 55

5.2.0.1 Zusammenhang zwischen ImagerIPC.dll und Imager.exe . . . 56

5.2.1 IPC VisCam als Basis . 56

5.2.1.1 Datenrepräsentation des Wärmebilds 59

5.2.2 Bildwiederholfrequenz . 60

5.2.3 Die Rolle von openCV . 61

5.2.3.1 Kameraanbindung mit openCV 61

5.2.3.2 FaceDetection mit openCV . 61

5.2.3.3 Visualisierung der Gesichtsbereiche 64

5.2.4 Das Programm und seine Funktionalität 66

5.2.5 Angleichung des visuellen Bilds und des Wärmebilds 66

6 Fazit und Ausblick 71
6.1 Zusammenfassung . 71

6.2 Fazit . 71

6.3 Ausblick . 72

Literaturverzeichnis 75

8

Abbildungsverzeichnis

2.1 Einordnung des Wellenbereichs des Infrarotlichts 16

2.2 Aufbau/Funktion des Arbeitsgedächtnis nach Alan Baddeley 18

2.3 IntelliSense Funktion im Microsoft Visual Studio 21

2.4 Ergebnis der Ausführung des Programms von Listing 2.15 34

2.5 Ergebnis der Ausführung des Programms von Listing 2.18 36

3.1 Diagramm des Mechanismus der Veränderung der Hauttemperatur 42

3.2 Temperaturänderung der Nase während des Versuchs 42

3.3 Aufbau der visuellen Kamera und der Infrarotwärmebildkamera 43

3.4 Skizze der Raumaufteilung für Experimentdurchführung 44

3.5 Skizze des Ablaufs der Testprozedur . 45

5.1 Maße der optris PI160 Wärmebildkamera von oben 54

5.2 Maße der optris PI160 Wärmebildkamera in der Frontansicht 54

5.3 Logitech QuickCam Pro 9000 . 55

5.4 Screenshot des Imager.exe Programms zum Auslesen der Wärmebilddaten . . 57

5.5 Verbindung für den Austausch der Wärmebilddaten zwischen dem Imager.exe
Programm und der IPC VisCam Beispielanwendung 57

5.6 IPC VisCam Beispielprogramm von optris . 58

5.7 Visuelles Bild mit und ohne eingezeichnete Gesichtsbereiche 65

5.8 Bildbereiche zweier nebeneinander positionierter Kameras als Skizze von oben 67

5.9 Bildbereiche zweier nebeneinander positionierter Kameras von vorn 67

5.10 Kalibrierungsmarkierungen in Bildbereichen zweier nebeneinander positio-
nierter Kameras (Links: Kleiner Bildbereich, Rechts: Großer Bildbereich 67

5.11 Screenshot des Programms . 68

Tabellenverzeichnis

2.1 Datentyptabelle der Datentypen in C++ . 26

5.1 Umrechnung der Daten in Temperaturwerte . 60

9

1 Einleitung

Wer kennt es nicht? Der Computer scheint zu machen was er will und jeder Versuch, den
Rechner dazu zu bewegen, die gewünschte Aktion auszuführen, bringt am Ende doch ein
anderes Ergebnis. Unzählige Menüs und Bestätigungsdialoge stapeln sich und scheinen um
den raren Platz auf dem Bildschirm zu kämpfen. Die Oberfläche und der Programmaufbau
mögen für so manchen Computernutzer unsinnig und überfordernd wirken. Die Vielzahl
der Buttons und Bediensymbole fordern einem Gelegenheitsnutzer alles ab. Bestimmt hat
beinahe jeder Anwender eines Computers schon einmal entnervt aufgegeben und ohne
getane Arbeit den Rechner abgeschaltet. Das Problem wird dann zuweilen der grafischen
Benutzeroberfläche (GUI - engl. Graphical User Interface) zugeschrieben. Die Benutzerober-
fläche besteht aus der Gesamtheit der Symbole, Menüs und Buttons. Die GUI stellt dabei die
Schnittstelle zwischen einem Computerbenutzer und dem eigentlichen Programm dar und
bietet dem Nutzer die Möglichkeit Eingaben zu tätigen oder dem Programm zu sagen, was
zu tun ist.
Doch die Anordnung und Funktionalität der GUI wirkt auf den ersten Blick oft nicht
einleuchtend und bedarf einiger Einarbeitung oder Schulung. Ein Begriff, der in diesem Zu-
sammenhang in den letzten Jahren immer häufiger genannt wird, ist „Intuitivität“. Obwohl
es dieser Begriff noch nicht in den Duden geschafft hat dürfte seine Bedeutung im Bereich
Computer den meisten klar sein: „Der Aufwand der benötigt wird, um sich die Bedienung ei-
nes Programms anzueignen. Je einfacher dies ist, desto intuitiver ist die Bedienung.“ [(Us09]
Obwohl in diesem Bereich viel geforscht wird und viele Erkenntnisse gesammelt werden,
gibt es noch immer GUI’s, deren Funktionalität nicht für jeden sofort ersichtlich ist. Selbst,
oder vielleicht sogar speziell, viele Programme der namhaften Hersteller wie Microsoft
oder Adobe bringen viele Nutzer bis an den Rand der Verzweiflung. Dabei müssten doch
gerade von einer breiten Masse genutzte Programme besonders intuitiv bedienbar sein.
Beim Betrachten der Nutzer-Zielgruppen der gängigsten Textverarbeitungsprogramme, kann
festgestellt werden, dass sowohl einfache Heim-Nutzer, welche im Schnitt 1 mal pro Monat
einen Brief tippen, als auch professionelle Anwender in einem großen Betrieb, welche zum
Beispiel Kettenbriefe mit automatisch ausgefüllten Textelementen an hunderte Empfänger
verschicken, die selben Programme nutzen. Die grafische Benutzeroberfläche muss also so-
wohl dem ungeübten Benutzer einen einfachen Einstieg bieten, als auch dem Profi-Anwender
komplexe Funktionen einfach erreichbar zur Verfügung stellen. Das Problem ist, dass durch
die Voraussetzung, dass viele Funktionen einfach erreichbar sind, die Übersichtlichkeit stark
einschränkt wird. Je mehr Elemente sich in einer Button-Leiste oder in einem Menü befinden,
die ein Normalanwender eventuell gar nicht benötigt, umso schneller fühlt sich ein Nutzer
überfordert.
Doch wie viele Elemente pro Menü sind sinnvoll? Bekannte Forschungsarbeiten zur „ma-
gischen Sieben“ von Simon & Miller [Mil56] legen nahe, dass das menschliche Gehirn

11

1 Einleitung

im Schnitt eine Menge von sieben gleichen Elementen am besten verarbeiten kann. Wenn
die Anzahl der Elemente in einem Menü auf sieben beschränkt wird, entstehen zahllose
Untermenüs und die hohe Schachtelung führt zur umständlichen Erreichbarkeit mancher
Funktionen. Die Zahl Sieben muss hier nicht als festgelegter Richtwert aufgefasst werden.
Es gibt Gegenthesen die besagen, dass ein Programmnutzer sich die Menüelemente nicht
merken muss, sondern diese ständig auf der Benutzeroberfläche sehen kann. [Gó] George
Miller selbst sagt, dass die „magische Sieben “ nichts mit der Fähigkeit von Personen zu tun
hat, Text zu erkennen, zu ordnen und zu verstehen. Bei einer Umsetzung auf dieser Basis
bedarf es ausreichen Recherchen und Tests.
Dennoch wäre eine Möglichkeit interessant, die Benutzeroberfläche für jeden Benutzer anzu-
passen. Viele Programme bieten solche Möglichkeiten. Shortcut-Leisten können bearbeitet
und Buttons können nach Belieben hinzugefügt und entfernt werden. Fenstergrößen lassen
sich anpassen und sogar als Layout abspeichern. Doch welcher Nutzer macht das schon?
Viele der normalen Nutzer erwarten, dass die grafische Benutzeroberfläche von vornherein
optimal auf ihn abgestimmt ist. Eine faszinierende Lösung wäre eine sich automatisch an
die Bedürfnisse des Benutzers anpassende grafische Benutzeroberfläche. Der Benutzer sollte
niemals unter- oder überfordert sein.
In diesem Zusammenhang stellen sich folgende Fragen. Wie wäre so eine Umsetzung mög-
lich? Wie kann der Grad der Belastung des Nutzers bestimmt werden? Ist es überhaupt,
zumindest mit ausreichender Präzision, möglich? Die dazu benötigten Grundlagen werden
in dieser Bachelorarbeit herausgestellt. Dazu soll diese Idee genauer behandelt werden,
wobei der Fokus auf den Sensoren und der Ermittlung der kognitiven Belastung liegt.

1.1 Lösungsansatz

Eine sich automatisch an die Bedürfnisse des Benutzers anpassende grafische Benutzerober-
fläche könnte die Lösung, oder zumindest eine Teillösung, für das Problem des Trade-offs
zwischen Übersichtlichkeit und Erreichbarkeit der Bedienelemente sein. Zunächst benötigt
der Computer Informationen darüber, wie leicht dem Benutzer die Bedienung fällt. Die
einfachste Methode wäre den Benutzer direkt zu Fragen oder ihm ein entsprechendes Einga-
befenster anzubieten. Dieses Vorgehen würde aber sehr subjektive Daten liefern. Wie bereits
festgestellt wurde sind die meisten Menschen im Bezug auf den Umgang mit dem PC eher
faul und erwarten, dass Anpassungen von allein einstellen. Einen besseren Ansatz bietet
vermutlich das Messen der vegetativen Körperfunktionen. Das sind Funktionen, welche der
Mensch nicht bewusst steuern kann. Dazu zählen zum Beispiel Herzschlag, Blutdruck, Haut-
temperatur oder Transpiration. Da diese Körperfunktionen unbewusst durch das vegetative
Nervensystem gesteuert werden und eine Person selbst keinen Einfluss darauf hat, bietet es
sich an, diese Daten für eine objektive Bewertung des Anstrengungs- oder Stressgrades zu
verwenden.
Das Messen von EKG1, EEG2, Hautleitwert, Transpiration und Hauttemperatur erfordert

1Elektrokardiogramm
2Elektroenzephalografie: Dient zur Messung der elektrischen Aktivität des Gehirns.

12

1.2 Aufgabenstellung

häufig das Anlegen von Messinstrumenten wie zum Beispiel ein EKG Messgerät. Das in den
Alltag zu integrieren stellt eine Herausforderung dar. Der Benutzer soll von der Messung im
Optimalfall gar nichts mitbekommen. Eine Möglichkeit, dies zu erreichen, ist die Verwen-
dung von Wärmebildkameras. Diese können berührungslos und somit ohne das Anlegen
eines Messgerätes die Hauttemperatur ermitteln. Der Fokus dieser Arbeit liegt daher auf
der Messung der Hauttemperatur mit Hilfe einer Wärmebildkamera zur Ermittlung der
kognitiven Belastung. Es gibt bereits Ansätze die kognitive Belastung mit Hilfe der Hauttem-
peratur an verschiedener Körperstellen zu ermitteln. In dieser Arbeit wird speziell ein Ansatz
verfolgt, welcher auf die Auswertung der Temperaturen der verschiedenen Gesichtsbereiche
aufbaut.
Benötigt wird eine Wärmebildkamera und eine visuelle Kamera zum Bestimmen der Ge-
sichtsregionen. Der Computer wertet die gesammelten Daten aus und könnte eine sich
automatisch anpassende grafische Benutzeroberfläche auf die Bedürfnisse des Nutzers ab-
stimmen. Ist der Benutzer überfordert so könnte beispielsweise die GUI vereinfacht und
die Anzahl der Menüelemente reduziert. Das würde nicht nur die GUI auf potentielle
verschiedene Benutzer automatisch abstimmen, sondern auch die aktuelle Verfassung, zum
Beispiel nach einem zehnstündigen Arbeitstag, berücksichtigen.

1.2 Aufgabenstellung

Im Rahmen dieser Bachelorarbeit soll untersucht werden, ob durch eine geeignete Kombina-
tion von Sensoren die Auswirkung verschieden komplexer Darstellungen und Oberflächen
auf den Anwender ermittelt werden kann. Es soll die Frage beantwortet werden, durch
welche Sensoren (z.B. EKG, EEG, BVP, Hautleitwert, Eye-Tracking, Brain-Computer-Interface,
Wärmebildkamera) ermittelt werden kann, wie stark ein Anwender bei der Verwendung
einer bestimmten Benutzeroberfläche oder beim Betrachten einer bestimmten Visualisierung
belastet wird. Kernstück dieser Arbeit ist ein Framework3, an welches verschiedene Sensoren
angebunden werden können. Diese erlauben das Sammeln verschiedener Daten, wie zum
Beispiel physiologische Signale. Dieses Framework verfolgt das Ziel einen Zusammenhang
zwischen Sensordaten und Belastung, Stress und kognitiver Last des Nutzers festzustellen.
Im Falle einer schnell gelingenden Anbindung der Sensoren soll zur Auswertung der Daten
eine Nutzerstudie erarbeitet werden, sodass die zuverlässige Bestimmung des Stresslevels
eines Nutzers evaluiert werden kann.
Bei raschem Fortschritt kann optional eine Testumgebung entwickelt werden, welche ei-
nerseits eine variable Arbeitsbelastung (Stress) vorgibt und andererseits eine Adaption der
Benutzerschnittstelle ermöglicht. Das Ziel wäre ein Prototyp, der die visuelle Darstellung (z.B.
Detailierung einer Darstellung, Hilfsinformationen) adaptiv an die Belastungssituation des
Anwenders anpassen kann. Ob sich dieses Ziel im Rahmen dieser Bachelorarbeit erreichen
lässt wird sich während der Bearbeitung zeigen.

3Ein Framework (englisch für Rahmenstruktur) ist ein Programmgrundgerüst, welches als Basis für Software
benutzt werden kann. Es kann in diesem Zusammenhang auch als Ordnungsrahmen bezeichnet werden.

13

1 Einleitung

Zunächst werden solche Etappenziele verfolgt, welche zum fertigen und nutzbaren Frame-
work führen. Dazu zählen das Erarbeiten der relevanten Literatur, die Suche nach verwandten
Arbeiten und die Anbindung einer Wärmebildkamera. Dabei soll das Framework die Ver-
arbeitung des Bildes zur Erfassung der Reaktion des Anwenders beherrschen, sodass alle
Informationen zur Berechnung des Stresslevels vorhanden sind. Anschließend kann je nach
Ergebnis der vorherigen Arbeit die Durchführung und Evaluierung von Nutzerstudien zur
Untersuchung des Zusammenhangs zwischen Sensordaten und Stress/kognitiver Last des
Nutzers erfolgen. Nach einer erfolgreichen Auswertung kann der Entwurf eines Konzepts
für ein System entstehen, das verschiedene Visualisierungen und graphische Benutzeroberflä-
chen darstellen kann und die Reaktion des Anwenders auf diese Darstellungen aufzeichnen
und auswerten kann. Dieses Konzept kann dann als funktionaler Prototyp implementiert wer-
den, der die Adaption einer Benutzerschnittstelle durchführen kann oder die Visualisierung
bei einer bekannten Gesamtbelastung beispielhaft zeigt.

1.3 Gliederung der Arbeit

Zunächst werden in Kapitel 2 – Hintergrund die Grundlagen der Arbeit erläutert. In groben
Umrissen wird die Funktion einer Infrarotwärmebildkamera geschildert. Um das Konzept
der kognitiven Belastung verständlicher zu machen wird auf die Cognitive Load Theory ein-
gegangen. Da die Implementierung in C++ umgesetzt wurde, wird eine kleine Einführung
in C++ vorgestellt. Ein kleiner Einblick in die für C++ verfügbare Open Source Computer
Vision Library (openCV) zeigt, was die openCV genau ist und was sie bietet.
Nach dem Erarbeiten von ausreichendem Grundwissen kann das eigentliche Thema ange-
gangen werden. Einige wissenschaftliche Arbeiten zu diesem Thema können einen Überblick
verschaffen. Im Kapitel 3 – Verwandte Arbeiten werden einige Publikationen behandelt
und wichtige Ansatzpunkte und Informationen herausgearbeitet.
Anschließend sollte das erarbeitete Grundwissen ausreichen um die Idee von der Senso-
ranbindung über die Datensammlung und -Auswertung bis hin zum geplanten Ergebnis
durchzugehen. Das Kapitel 4 – Das Konzept beschreibt, was im Optimalfall erreicht werden
könnte. Was genau im Rahmen dieser Arbeit entstehen wird muss nicht unbedingt dem
Konzept entsprechen.
Im Kapitel 5 – Umsetzung und Implementierung wird die Umsetzung des geplanten Kon-
zepts erläutert. Zuerst erfolgt eine Bestandsaufnahme der vorhandenen Hardware. Die in
C++ geschriebene Applikation, welche die Wärmebildkamera und eine visuelle Kamera
anbindet und dessen Programmaufbau werden in diesem Kapitel beschrieben. Auf einige
wichtige Programmteile wird hier genauer eingegangen.
Das Kapitel 6 – Fazit und Ausblick fasst die Arbeit zusammen, reflektiert die Ergebnisse
der Arbeit und vergleicht diese mit den Zielen. Es wird geprüft, an welcher Stelle die Ziele
auf Grund der Erkenntnisse, welche bei der Arbeit gesammelt wurden, angepasst werden
mussten. Abschließend zeigt ein Zukunftsausblick mögliche Entwicklungen in diesem Gebiet
und auch speziell zu dieser Arbeit auf.

14

2 Hintergrund

Ein fundiertes Hintergrundwissen und ausreichende Grundlagen helfen dabei diese Arbeit
besser zu verstehen. In diesem Kapitel werden die notwendigen Hintergrundinformationen
vermittelt, die das Verständnis dieser Arbeit erleichtern. Zunächst wird die Funktionsweise
einer Infrarotwärmebildkamera und die Infrarotstrahlung an sich betrachtet werden. Da der
Stresslevel berührungslos und ohne das Anlegen von Messinstrumenten bestimmt werden
soll liegt der Fokus auf dem Arbeiten mit einer Infrarotwärmebildkamera.
Die Cognitive Load Theory ist ein wichtiger Bezugspunkt für diese Arbeit. Sie erklärt das
Konzept der kognitiven Belastung und ist die Grundlage der möglichen Auswertungen.
Darauf folgt eine Einführung in C++ und die dazugehörigen Windows Forms, mit welchen
die Oberfläche des Programms umgesetzt wurde. Die Open Source Computer Vision Library
bringt wichtige Funktionen für Bildbearbeitung, Gesichtserkennung und Video-Capturing1

mit.

2.1 Temperaturmessung mit Hilfe einer Infrarotwärmebildkamera

Es gibt eine Reihe mechanischer und elektrischer Verfahren zur Temperaturmessung. Viele
der mechanischen Verfahren basieren auf der wärmebedingten Ausdehnung von Flüssigkei-
ten oder Festkörpern. Um diese Eigenschaft entsprechender Materialien nutzen zu können
ist jedoch meist die direkte Berührung mit dem Messobjekt nötig. Diese Verfahren gehören
zur Kontaktthermometrie. Das Ziel dieser Arbeit ist hingegen eine berührungslose Tem-
peraturmessung. Die Strahlungsthermometrie ermöglicht es die Temperatur von Objekten
berührungslos zu messen. Eine Möglichkeit ist die Verwendung einer Infrarotwärmebild-
kamera. Die Wärmemessung in dieser Arbeit wird ausschließlich über eine solche Kamera
stattfinden.

2.1.1 Entdeckung und Eigenschaften der Infrarotstrahlung

Friedrich Wilhelm Herschel (1738 bis 1822) entdeckte im Jahre 1800 durch einen Zufall die
Infrarotstrahlung, welche damals Ultrarotstrahlung genannt wurde. Auf der Suche nach
neuen optischen Materialien lenkte er Sonnenlicht durch ein Prisma. Er erkannte, dass die
Wärme vom violetten bis hin zum roten Bildbereich kontinuierlich zunahm. Auf der Suche

1Als Video-Capturing wird der Prozess der Umwandlung des analogen Videosignals in ein digitales Videosignal
bezeichnet. Es wird auch als Synonym für das deutsche Wort Bildaufnahme verwendet.

15

2 Hintergrund

Abbildung 2.1: Einordnung des Wellenbereichs des Infrarotlichts

nach dem Punkt der maximalen Erwärmung fand er diesen weit hinter dem roten Sichtbaren
Bereich. Es muss eine energiereiche Strahlung jenseits des Wellenlängenbereichs des für den
Menschen sichtbaren roten Lichtbereichs liegen [Hol09].
Infrarotstrahlen sind elektromagnetische Wellen im Spektralbereich2 mit einer Wellenlänge
von 780 nm bis zu 1 mm. Die Abbildung 2.1 illustriert die Einordnung des Infrarotlichts.
Die Infrarotstrahlung kann in nahes, mittleres und fernes Infrarot eingeteilt werden. Na-
hes Infrarot deckt einen Wellenlängenbereich von 780 nm bis zu 3000 nm ab. Bei einer
Wellenlänge von 3000 nm bis zu 0,5 mm spricht man von mittlerem Infrarot. Strahlen im
Wellenlängenbereich zwischen 0,5 mm und 1 mm werden dem fernen Infrarot zugeordnet.
Da jeder Körper abhängig von seiner Temperatur eine bestimmte Menge infraroter Strahlung
aussendet, können diese genutzt werden, um Oberflächentemperaturmessungen vorzuneh-
men.

2.1.2 Funktion einer Infrarot-Digital-Wärmebildkamera

Eine Infrarotwärmebildkamera ist ein optoelektronischer Sensor. Die Optoelektronik beschäf-
tigt sich mit der Umwandlung von elektronisch erzeugten Daten in Lichtemissionen und
umgekehrt, wobei auch Licht im Spektralbereich gemeint ist. Bei einer Infrarotwärmebildka-
mera handelt es sich somit im Prinzip um einen optoelektronischen Detektor. Dabei werden
Sensoren benutzt, welche einen elektrischen Widerstand abhängig von den eingefangenen
Lichtstrahlen zeigt. Eine Kamera, welche einen optoelektronischen Sensor nutzt, hat die
gleiche Funktionsweise wie eine visuelle, bildgebende (Digital-)Kamera. Mit verschiedenen
Objektiven und Einstellungen lassen sich zum Beispiel Brennweite und Weitwinkel variieren.
Anstatt das Bild auf einen Film abzulichten, befindet sich bei einer Digitalkamera ein Raster

2Lichtwellenbereich

16

2.2 Cognitive Load Theory

aus Sensoren hinter dem Kameraobjektiv. Die Sensorsignale werden mit Hilfe eines Analog-
Digital-Wandlers in digitale Daten umgewandelt, welche dann abgespeichert oder mit einem
Rechner weiterverarbeitet werden können.

2.2 Cognitive Load Theory

Die Aufgabe dieser Arbeit besteht darin, die kognitive Belastung eines Computerbenutzers
durch eine Kombination verschiedener Sensoren zu messen. Bevor jedoch darüber nach-
gedacht werden kann, wie eine Messung durchgeführt werden soll, muss zunächst der
zugehörigen Hintergrund verstanden werden. Um die Zusammenhänge zwischen geistiger
Anstrengung, Stress und den Reaktionen des Körpers darauf richtig verstehen und deuten
zu können, wird hier zuerst mit einer Theorie zur Erfassung der kognitiven Last begonnen.
Ein Modell, welches dabei hilft geistige Anstrengung zu verstehen, wird in der Cognitive
Load Theory [SMP98] beschrieben.
Die Cognitive Load Theory (kurz CLT) ist ein Modell, welches zur Beschreibung von kognitiver
Last beim Lernen dient. Es weist Parallelen zur „Cognitive Theory of Multimedia Learning“
von Richard E. Mayer [May01] auf. Eigentlich ist für diese Arbeit geplant die kognitive
Belastung beim Arbeiten mit dem PC zu messen. Die CLT bietet einige für diese Arbeit
gut anzuwendende Aspekte. Sie umfasst ein ausgedehntes Wissensgebiet, weshalb hier
nur die für das Verständnis dieser Arbeit wichtigen Aspekte dargestellt werden. Weitere
Informationen können der Ausarbeitung „Cognitive Load and Instructional Design“ von
John Sweller [SMP98] oder weiteren zur Erarbeitung von Grundlagen geeigneten Arbeiten
[SAK11] [Kir02] [SG73] entnommen werden.

2.2.1 Die Struktur des menschlichen Gedächtnis

Die CLT teilt das menschliche Gedächtnis in verschiedene Bereiche ein, das Arbeitsgedächtnis
(engl. Working Memory) und das Langzeitgedächtnis (engl. Long-Term Memory). Die
einzelnen Bereiche werden in den folgenden Abschnitten erläutert.

2.2.1.1 Das Arbeitsgedächtnis

Nach J. Sweller kann das Arbeitsgedächtnis mit dem Bewusstsein gleichgestellt werden. Wir
sind uns nur solchen Dingen wirklich bewusst, welche sich in unserem Arbeitsgedächtnis
befinden. Alle Informationen und Denkschemata, welche sich in unserem Langzeitgedächtnis
befinden, können nur abgerufen werden, wenn sie davor in das Arbeitsgedächtnis verlagert
werden. Das Arbeitsgedächtnis hält die Informationen, welche es zu verarbeiten gilt. Dabei
beschränkt sich die Arbeitsaktivität nicht nur auf das kurzzeitige Merken von Informationen.
Schwierigere Aufgaben erfordern mehr Kapazität des Arbeitsgedächtnisses. Müssen Infor-
mationen nicht nur im Gedächtnis behalten, sondern auch miteinander verknüpft werden,
erhöht das die kognitive Last. George A. Miller führte 1956 in diesem Zusammenhang die

17

2 Hintergrund

Abbildung 2.2: Aufbau/Funktion des Arbeitsgedächtnis nach Alan Baddeley [Bad10]

„magische Nummer Sieben“ ein. Er erkannte, dass ein normaler Erwachsener sich durch-
schnittlich sieben verschiedene Dinge merken kann, unabhängig davon, ob es Zahlen, Wörter,
Buchstaben oder andere Einheiten sind. Erwähnenswert dabei ist auch, dass der Mensch sich
mehr Dinge gleichzeitig merken kann, wenn diese logisch zusammenhängen. Wenn aber
zum Beispiel Zahlen nicht nur im Gedächtnis behalten sondern auch miteinander verglichen
werden sollen, fällt die Zahl der Dinge, die gleichzeitig verarbeitet werden können. Das
Vergleichen selbst kostet zusätzlich „Platz“ im Arbeitsgedächtnis. Alan Baddeley beschreibt
im Artikel „Working Memory: Theories, Models, and Controversies“ [Bad10] eine etwas
genauere Einteilung des Arbeitsgedächtnisses. Wie in Abbildung 2.2 zu sehen besteht diese
aus drei Komponenten. Die zentrale Exekutive entspricht einer Recheneinheit. Hier werden
Informationen verarbeitet, oder, wie eben angesprochen, Zahlen verglichen. Die beiden ande-
ren Komponenten, „Phonologische Schleife“ und „Visuell-Räumlicher Notizblock“, kann mit
zwei Speichereinheiten verglichen werden. Dort werden akustische und visuelle Informatio-
nen gespeichert. Die Annahme, dass nur eine Operationsart zu einem Zeitpunkt ausgeführt
werden kann, gilt hier nicht. Mehrere verschiedene Operationen können ausgeführt werden,
sofern sie Ressourcen von verschiedenen Komponenten beanspruchen. Mehrere Operationen
des gleichen Typs können dagegen nur schwer oder gar nicht gleichzeitig durchgeführt
werden. Später (November 2000) wurde dieses Modell um die weitere Komponente „der
episodische Puffer“ erweitert. Diese Komponente wird benötigt um zu erklären, aus welchem
Grund der Mensch sich mehr Informationseinheiten merken kann, wenn diese in einem
logischen Zusammenhang stehen.

18

2.2 Cognitive Load Theory

2.2.1.2 Das Langzeitgedächtnis

Das Langzeitgedächtnis kann mit der Festplatte eines Computers verglichen werden. Es
speichert Daten und gibt diese bei Bedarf wieder. Es gibt aber einen gravierenden Unter-
schied. Im Gegensatz zu einer PC-Festplatte ist ein Mensch sich nicht bewusst welche Daten
sich genau im Langzeitgedächtnis befinden. Erst dann, wenn die Daten mit dem Arbeitsge-
dächtnis verarbeitet werden, ist eine Person sich des Wissens wirklich bewusst. In diesem
Zusammenhang publizierten Herbert A. Simon und Kevin Gilmartin 1973 den Artikel „A
simulation of memory for chess positions“ [SG73]. In verschiedenen Versuchen wurden
langjährig erfahrene und gelegentlich spielende Schachspieler getestet. Die verschiedenen
Probanden sollten versuchen einen Spielstand aus einem realen Schachspiel nachzuvollzie-
hen und zu ermitteln, wie diese Konstellation zustande kam. Die erfahrenen Schachspieler
konnten eine Vielzahl dieser Probleme lösen, während die Gelegenheitsspieler nur für ein
paar der Konstellationen eine Lösung fanden. Es kann auch davon ausgegangen werden,
dass das Arbeitsgedächtnis der erfahreneren Schachspieler nur besser für diese Aufgabe
trainiert ist. Bei einem weiteren Test sollten zufällig erstellte Konstellationen ausgewertet
werden. Hier zeigte sich, dass die erfahrenen Spieler keinen Vorteil mehr hatten. Der Vorteil
beschränkte sich auf reale Schachspiele. Daraus folgerten Simon und Gilmartin, dass die
Überlegenheit bei den realen Situationen mit einem angehäuften Wissen möglicher Schachfi-
gurenkonstellationen zu erklären ist. Auf Nachfrage konnte jedoch keiner der erfahrenen
Schachspielern erklären, warum er bei einer Aufgabe weniger Probleme hatte. Keinem war
bewusst, welche Spielzüge und -Abläufe er sich genau gemerkt hatte.

2.2.2 Entwicklung kognitiver Schemata

Die Schemaentwicklung wird hier nur sehr kurz behandelt. Nach der Schema-Theorie
[Mar95] werden Informationen im Langzeitgedächtnis als Schemata abgespeichert. Sich
ähnelnde Erfahrungen und Informationen werden in Schemata gespeichert. Ein Schema
ist ein verallgemeinertes Konzept oder ein konzeptionelles System um etwas verstehen zu
können. Dadurch können der Erfahrungsschatz und das vorhandene Wissen einfacher und
schneller abgerufen werden. Ein häufig auftauchendes Beispiel um diesen Sachverhalt zu
erklären, ist das Schema eines Hundes. Eine Person hat eine allgemeine Vorstellung davon
was ein Hund ist. Er kann Bellen, hat vier Beine, Zähne, Haare und einen Schwanz. Zusätzlich
hat diese Person unter Umständen vielleicht Informationen über verschiedene Hundearten
oder einzelne bekannte Hunde aus dem Umfeld. Merkt sie sich jetzt den Namen und das
Aussehen eines bisher unbekannten Hundes oder lernt eine neue Hunderasse kennen, werden
diese Informationen zu diesem Schema hinzugefügt und können so einfacher gemerkt und
später auch einfacher wieder abgerufen werden, da die Informationen mit dem Schema
„Hund“ verknüpft sind.

19

2 Hintergrund

2.3 Ein kleiner Exkurs in C++

An dieser Stelle vermittelt ein kleiner Exkurs in die Programmiersprache C++ einige Grund-
kenntnisse. Hier werden einige Grundlagen über die C++ Programmierung gezeigt. Diese
werden später dabei helfen, den Aufbau des während dieser Bachelorarbeit entstandenen
Programms, zu verstehen. Weniger an der Programmierung interessierte Leser können diesen
Teil überspringen.

2.3.1 Was ist C++

In den frühen 1970ern entwickelte Dennis Ritchie eine Portierung und Erweiterung der Pro-
grammiersprache B, welche später C genannt wurde. Mit C++ (1985) gelang die Erweiterung
von C um das Konzept der objektorientierten Programmierung. Zuvor wurde es als „C mit
Klassen“ bezeichnet. Bei der Entwicklung wurde auf die Kompatibilität mit C großen Wert
gelegt und die objektorientierte Erweiterung machte es möglich, das Klassen-Konzept zu
nutzen. [Lou08].
C++ ist eine objektorientierte, low-level3, ANSI4 und ISO5 standardisierte Programmierspra-
che. Als low-level Programmiersprache eignet sich C++ sehr gut um schnelle und effiziente
Programme zu schreiben. Nicht umsonst ist es eine der beliebtesten und meist genutzten
Programmiersprachen für alle Arten und Größen von Programmen. C++ wird sowohl zur
Anwendungsprogrammierung als auch zur Systemprogrammierung, wozu auch Betriebssys-
teme, eingebettete Systeme, virtuelle Maschinen und Treiber zählen, eingesetzt [Dav04].
Die Vorteile und Eigenschaften von C++ liegen auf der Hand. Einige davon sind:

• schnelle und effiziente Programme (da low-level)

• viele Features von high-level Programmiersprachen

• objektorientiert

• unterstützt dynamische Speicherverwaltung

• gut standardisiert

• Aufbau basiert auf ANSI-C

• es gibt Compiler für alle bedeutenden Betriebssysteme

• Nachfolger von, und somit im Aufbau ähnlich wie, C

3Eine low-level Programmiersprache arbeitet mit Befehlen, welche sehr nahe an den Architekturbefehlssatz
angelehnt sind.

4American National Standards Institute
5Internationale Organisation für Normung

20

2.3 Ein kleiner Exkurs in C++

Abbildung 2.3: IntelliSense Funktion im Microsoft Visual Studio [Mic12b]

2.3.1.1 Der Editor: Microsoft Visual Studio 2010 Ultimate

Für die Entwicklung des Programms zur Sensoranbindung und zur Ermittlung der ge-
wünschten Daten wurde Microsoft Visual Studio 2010 Ultimate v10.0.40219.1 SP1 Rel benutzt.
Microsoft Visual Studio ist eine integrierte Entwicklungsumgebung für verschiedene Hoch-
sprachen: C++, C++/CLI, C# , F# , C, Visual Basic .NET.
Visual Studio vereinfacht Softwareentwicklung durch eine Reihe von unterstützenden Funk-
tionen. Neben der Multi-Monitor-Unterstützung, einem 64-Bit Compiler und Autovervoll-
ständigung bietet es auch die IntelliSense Funktion. Abbildung 2.3 zeigt ein Beispiel dazu.
Microsoft beschreibt die Funktion folgendermaßen:

„IntelliSense unterstützt eine Reihe von Features, die die Sprachreferenzen sehr
benutzerfreundlich gestalten. Bei der Codierung müssen Sie das Code-Editor-
oder Unmittelbarer Modus-Befehlsfenster nicht verlassen, um Sprachelemente zu
suchen. Die gewünschten Informationen können im aktuellen Kontext gesucht,
Sprachelemente direkt in den Code eingefügt und mithilfe von IntelliSense sogar
Eingaben vervollständigt werden “ [Mic12a].

Der Editor gilt als komfortabel und stellt noch weit mehr den Programmierer unterstützende
Funktionen bereit.
Des Weiteren bietet Visual Studio einen Rückblick-Debugger. So ist es möglich während des
Debuggens auch Laufzeitinformationen von Code vor dem Haltepunkt anzeigen zu lassen.

21

2 Hintergrund

2.3.1.2 Grundlagen & Hello World

Nachdem der Editor betrachtet wurde folgt ein Kapitel über die C++ Programmierung selbst.
Bevor damit begonnen wird wirklich Programmcode zu produzieren wird zunächst ein Blick
auf einige Begrifflichkeiten geworfen. Dazu sind einige frei übersetzte Erklärungen aus „C++
for Dummies“[Dav04] zu Semantik und Syntax hilfreich.

Semantik: Ein Vokabular an Befehlen, welches für Menschen verständlich ist und
ausreichend einfach in Maschinencode übersetzt werden kann.

Syntax: Eine Programmstruktur (oder Grammatik), welche es Menschen erlaubt,
C++ Befehle so zu kombinieren, dass ein (möglicherweise) sinnvolles Pro-
gramm entsteht.

Programm: Eine Textdatei, welche eine Sequenz von C++ Befehlen enthält, welche
die C++ Syntax befolgend angeordnet sind. Die Textdatei wird auch Quell-
datei (engl. Source File) genannt und hat die Dateiendung .cpp. Durch C++
Programmierung wird eine Sequenz von C++ Befehlen geschrieben, welche
in Maschinencode übersetzt werden können.

Diese Erklärungen für Syntax und Semantik sind etwas schwer zu greifen. Vermutlich
einfacher und intuitiver greifbar, aber unkonkret können diese Begriffe so beschrieben
werden:

Semantik: Der Sinn der hinter dem Getippten steht.

Syntax: Syntax ist was getippt wird (die Syntaxregeln befolgend).

Das Betrachten eines ersten Programms hilft dabei diese Begrifflichkeiten zu verdeutlichen.
Nach einer Konvention ist das erste Programm eines Tutorials (oder in diesem Fall einer
kleinen Einführung) ein „Hello World!“-Programm. Dieses tut nichts anderes als auf der
Konsole „Hello World!“ auszugeben.
Folgendes Codebeispiel zeigt ein solches Programm in C++:

1 // C++ Hello World

2

3 #include <iostream>

4

5 int main()

6 {

7

8 std::cout << "Hello World!";

9

10 return(0);

11

12 }

Listing 2.1: C++ Codebeispiel: Hello World!

22

2.3 Ein kleiner Exkurs in C++

Die einzelnen Bestandteile dieses Programms werden durch das Aufteilen in seine einzelnen
Codezeilen verständlich.
Bei der ersten Zeile handelt es sich um eine Kommentarzeile:

// C++ Hello World

Hier steht ein beschreibender Text, welcher mehr über das Programm oder den entsprechen-
den Programmteil aussagt. Kommentare werden später noch einmal genauer behandelt.
Die nächste Anweisung ist eine so genannte Präprozessor-Direktive.

#include <iostream>

Präprozessor-Direktiven sind Anweisungen, welche vom Compiler ausgeführt werden und
beginnen immer mit einem # -Zeichen. Der Compiler ist dafür zuständig den C++ Code in
Maschinencode umzuschreiben, sodass ein Computer damit arbeiten bzw. das Programm
ausführen kann. Diese Anweisung fügt den Code welcher in dem Package iostream enthalten
ist an dieser Stelle ein. Das wird benötigt um später Funktionen nutzen zu können, welche
in iostream definiert wurden. Am Beginn jeder C++-Code-Datei stehen an oberster Stelle (mit
Ausnahme von Kommentaren) einige Präprozessor-Direktiven.
Anschließend werden die verschiedenen Funktionen deklariert. Eine Funktion, die in jedem
C++ Programm vorhanden sein muss, ist die main-Funktion.

int main()

{

std::cout << "Hello World!";

return(0);

}

Eine Funktion kann einen Rückgabewerttyp und Parameter besitzen. Der Typ des Rückgabe-
wertes steht vor dem Funktionsnamen (hier main()). Der Rückgabewert der main-Funktion
ist ein Integer, ein einfacher Datentyp welcher ganze Zahlen repräsentiert. Das wird mit
dem Schlüsselwort int gekennzeichnet. Die main-Funktion gibt immer einen Integer zurück.
Andere Funktionen können aber auch keinen Wert zurückgeben. Das beschreibt das Schlüs-
selwort void.
Da der Rückgabewert als Integer gekennzeichnet wurde muss auch einen Wert mit diesem
Typ zurückgegeben werden. Der return-Befehl beendet die Ausführung der Funktion an
dieser Stelle und gibt den als Parameter angegebenen Wert zurück.

return(0);

23

2 Hintergrund

Welcher Wert hier zurückgegeben wird, ist hier nicht weiter von Belang.
Vor dem return-Befehl kann eine Reihe von Befehlen stehen.

std::cout << "Hello World!";

Diese Befehlszeile bewirkt, dass bei Ausführung des Programms auf der Konsole „Hello
World!“ ausgegeben wird. Das Schlüsselwort, das die Ausgabe auf der Konsole bewirkt, ist
cout. Die Zeichenkette std:: beschreibt den sogenannten Namespace der cout-Funktion. Eine
mögliche Erklärung was Namespaces sind ist folgende:

„Namespaces allow to group entities like classes, objects and functions under a
name. This way the global scope can be divided in „sub-scopes“, each one with
its own name. “[cpl12]

Verschiedene Funktionen, Objekte und Klassen werden demnach durch Namespaces in
kleinere Bereiche unterteilt. Die cout-Funktion wird dem std-Namespace zugeordnet.
Die Ausführung des Programms liefert folgendes Ergebnis:

Hello World!

Listing 2.2: Ergebnis der Ausführung des „Hello World!“ Programms.

Header- und Quelldateien Ein typisches C++ Programm enthält Header- und Quelldateien.
In Headerdateien werden für gewöhnlich Datentypen, Variablen und Funktionen deklariert.
Das bedeutet, dass an dieser Stelle dem Compiler der Datentyp, die Funktion oder die
Variable bekannt gemacht wird.
In Quelldateien werden die Funktionen implementiert die in der zugehörigen Headerdatei
deklariert wurden.
Ein Beispiel dazu:

1 class FooClass

2 {

3 FooClass();

4 ~FooClass();

5 void doFoo();

6 };

Listing 2.3: C++ Headerdatei Beispiel foo.h

In der Headerdatei wird eine neue Klasse namens FooClass deklariert. In dieser Klasse wird
neben dem Konstruktor (FooClass()) und dem Destruktor (∼ FooClass()) die Funktion dooFoo()
deklariert. Was diese Funktion macht, kann ohne Kommentare an dieser Stelle noch nicht
erkannt werden. Konstruktoren und Destruktoren werden später behandelt.

24

2.3 Ein kleiner Exkurs in C++

1 #include "foo.h"

2 #include <iostream>

3

4 FooClass::FooClass()

5 {

6 }

7

8 FooClass::~FooClass()

9 {

10 }

11

12 void FooClass::doFoo()

13 {

14

15 std::cout << "foobar";

16

17 }

Listing 2.4: C++ Quelldatei Beispiel foo.cpp

Die zugehörige Quelldatei bindet zuerst die Headerdatei foo.h ein und definiert dann die
Funktion doFoo() der Klasse FooClass. Die Zeichenkette FooClass:: vor dem Funktionsnamen
zeigt an, zu welcher Klasse die hier definierte Funktion gehört.

Kommentare Kommentare sind insbesondere bei größeren Softwareprojekten sehr wichtig.
Die Funktion eines Programms ist nicht immer direkt aus dem Quellcode ersichtlich. Daher
sollte der Code mit ausreichend Kommentaren versehen werden.
Bei C++ gibt es zwei Möglichkeiten Kommentare einzufügen. Die wohl einfachere Art ist
der einzeilige Kommentar.

1 // Hier steht ein Kommentar

2 std::cout << "Das ist eine Codezeile nach einem Kommentar";

Listing 2.5: C++ einzeiliger Kommentar

Alle Zeichen einer Zeile, die nach der Zeichenfolge // stehen, werden vom Compiler ignoriert.
Soll eine mehrzeiliger Kommentar mit dieser Kommentierungsart eingefügt werden, muss
jede Zeile wieder erneut die Zeichen // enthalten.

1 // Hier steht ein mehrzeiliger Kommentar

2 // Das ist die zweite Zeile des Kommentars

3 std::cout << "Das ist eine Codezeile nach einem Kommentar";

Listing 2.6: C++ mehrzeiliger Kommentar

25

2 Hintergrund

Mehrzeilige Kommentare können auch als Blockkommentar realisiert werden.

1 /**

2 * Hier steht ein Blockkommentar

3 * Das ist die zweite Zeile des Blockkommentars

4 */

5 std::cout << "Das ist eine Codezeile nach einem Kommentar";

Listing 2.7: C++ Blockkommentar

Die Zeichenfolge /** startet einen Blockkommentar. Alle nachfolgenden Zeichen werden auch
über die entsprechende Zeile hinaus ignoriert, bis der Blockkommentar mit den Zeichen */
beendet wird.
Gute Kommentare sind wichtig um sich schnell im Quellcode zurechtfinden zu können.
Für gewöhnlich stehen die Kommentare zu einer Codezeile, welche einen Kommentar
benötigt, in der Zeile davor. Zu viele Kommentare sollten jedoch auch vermieden werden.
Auf unnötige Kommentare zu selbsterklärenden Codeteilen sollte verzichtet werden.
Jede Datei sollte mit einem Blockkommentar beginnen. Darin wird der in dieser Datei enthal-
tenen Code beschrieben und Informationen etwa über Autor, Version und Änderungsdatum
hinzugefügt.
Auch Funktionen sollten direkt vor der Deklaration so kommentiert werden, dass deutlich
wird, wie diese Funktion arbeitet und wie sie aufzurufen ist. Rückgabewert und Parameter
aufzulisten und zu erklären kann dabei helfen. Listing 2.8 zeigt ein Beispiel dazu.

Datentyp Wertebereich

bool true/false
(signed) char -128 - 127

unsigned char 0 - 255

enum -2.147.483.648 - 2.147.483.647

(signed) int -2.147.483.648 - 2.147.483.647

unsigned int 0 - 4.294.967.295

short int -32.768 - 32.767

(signed) long -2.147.483.648 - 2.147.483.647

unsigned long 0 - 4.294.967.295

float 3,4×10−38 − 3, 4 × 1038

double 1,7×10−308 − 1, 7 × 1038

long double 3,4×10−4932 − 3, 4 × 104932

Tabelle 2.1: Datentypen in C++

26

2.3 Ein kleiner Exkurs in C++

1 /**

2 * Dies ist eine Headerdatei, welche die Klasse "FooClass" deklariert.

3 * Diese Klasse tut nichts besonderes, da sie nur als Beispiel

4 * entwickelt wurde.

5 *

6 * \file foo.h

7 * \author Max Mustermann

8 * \date 01-07-2012

9 * \version 1.0a

10 */

11 class FooClass

12 {

13

14 /**

15 * Konstruktor

16 */

17 FooClass();

18

19 /**

20 * Destruktor

21 */

22 ~FooClass();

23

24 /**

25 * Diese Funktion gibt mehrfach "Foobar" auf der Konsole aus

26 * Die Anzahl der Ausgaben wird vom Parameter <anzahl> bestimmt.

27 *

28 * \return void

29 * \param anzahl Integer, welcher bestimmt wie oft

30 * "Foobar" ausgegeben wird

31 */

32 void doFoo(int anzahl);

33

34 };

Listing 2.8: C++ Headerdatei Beispiel foo.h mit Kommentaren

Datentypen und String-Klassen Tabelle 2.1 zeigt einige Datentypen in C++. Variablen vom
Typ bool speichern Wahrheitswerte, true oder false bzw. wahr oder falsch. Für Zahlenwerte gibt
es eine Reihe von Datentypen mit verschiedenen Vor- und Nachteilen. Eine char-Variable
besteht aus 8 Bit und repräsentiert ein darstellbares Zeichen.

Klassen, welche mehr Funktionalität bereitstellen als diese Standarddatentypen, sind letztend-
lich immer eine Kombination dieser Datentypen. Ein gutes Beispiel dafür ist die String-Klasse.
Ein String ist im Prinzip einfach ein Array aus Variablen des Typs char. Doch die String-
Klasse stellt noch weitere Funktionen bereit. Hinzu kommt, dass es in C++ verschiedene
String-Klassen gibt, welche jeweils unterschiedliche Eigenschaften und Funktionen haben.
Um einen String einer Klasse in einen String einer anderen String-Klasse zu konvertieren,
kann die Marshal-Funktion von C++ benutzt werden (siehe Listing 2.9).

27

2 Hintergrund

1 // Deklariere Variablen verschiedener String-Klassen

2 System::String^ string1;

3 std::string string2;

4 // Konvertiere string1 und weise dessen Wert der Variable string2 zu

5 string1 = "foobar";

6 string2 = msclr::interop::marshal_as<std::string>(string1);

Listing 2.9: C++ Marshal-Stringkonvertierung Beispiel

Ein System::Stringˆ wurde hier in ein std::string konvertiert. Würde der std::string nicht mit
Hilfe der marshal_as-Funktion konvertiert werden, würde der C++ Compiler an dieser Stelle
einen Fehler werfen.

Klassen und Instanzen Bei objektorientierten Programmiersprachen gibt es Klassen und
Objekte. Die Klasse ist die zentrale Datenstruktur in C++ und kapselt die Funktionen und
Daten einer Klasse vom Rest des Programms ab. Eine Klasse ist eine Vorlage, aus der
sogenannte Instanzen zur Programmlaufzeit erzeugt werden können. Eine Instanz einer
Klasse ist ein Objekt mit den Funktionen, Daten und Eigenschaften, die für diese Klasse
definiert wurden.
Listing 2.3 und Listing 2.4 deklarieren und implementieren die Klasse FooClass. Um eine
Instanz von dieser Klasse zu erstellen muss dessen sogenannten Konstruktor aufgerufen
werden. Das ist eine Funktion, die den selben Namen hat wie die Klasse selbst. Im Falle
unseres Beispiels FooClass(). Der Code im Konstruktor wird beim Erstellen einer Instanz
der Klasse ausgeführt. Der Destruktor ist das Gegenstück dazu und unterscheidet sich im
Namen nur durch eine Tilde am Anfang. Der Destruktor wird aufgerufen, wenn die Instanz
zerstört werden soll. Listing 2.10 zeigt die Erstellung einer Instanz der FooClass-Klasse.

FooClass fooClassInstance = new FooClass();

Listing 2.10: C++ Instanz einer Klasse

Referenzen und Pointer Ein Variablenzugriff kann durch den direkten Aufruf einer Varia-
ble, aber auch einfacher durch Verwenden einer weiteren Variable, geschehen.

Die weitere Variable enthält die Speicheradresse der Variable, auf welche zugegriffen werden
will. Das nennt man eine Zeigervariable, oder einfach Zeiger (engl. Pointer). Listing 2.11

zeigt ein Beispiel einer Zeigervariable. Beim Deklarieren einer Zeigervariable wird ein * vor
den Namen der Variable eingefügt.

int *zeiger_auf_a;

Beim Zuweisen einer Speicheradresse zu einem Zeiger setzt wird ein & vor den Variablenna-
men gesetzt. Das bedeutet, dass nicht der Inhalt, sondern die Adresse der entsprechenden

28

2.3 Ein kleiner Exkurs in C++

1 // Deklariere normale und Zeiger int Variablen

2 int a;

3 int *zeiger_auf_a;

4 // Flle a mit Wert und lasse den Zeiger auf a zeigen

5 a = 42;

6 zeiger_auf_a = &a;

7 std::cout << a << std::endl;

8 std::cout << *zeiger_auf_a << std::endl;

9 std::cout << zeiger_auf_a << std::endl;

10 // Schreibe einen neuen Wert in a mit Verwendung des Zeigers

11 *zeiger_auf_a = 12;

12 std::cout << a << std::endl;

Listing 2.11: C++ Zeigervariable Beispiel

Variable übergeben wird.
Das Ausführen des Programmcodes aus Listing 2.11 führt zu einer Konsolenausgabe wie in
in Listing 2.12.

42

42

0x1234

12

Listing 2.12: Ergebnis der Ausführung des Programms von Listing 2.12

Sowohl über den Gebrauch der Variable a direkt, als auch über den Zeiger zeiger_auf_a
kann der Inhalt von a ausgegeben werden. Diese Codezeile greift über die Adresse, die in
zeiger_auf_a gespeichert ist, auf den Inhalt von a zu:

std::cout << *zeiger_auf_a << std::endl;

Um das zu tun muss die Variable zeiger_auf_a dereferenziert werden. Das bedeutet, dass
auf den Inhalt und nicht auf die Adresse selbst zugegriffen wird. Mit einem * vor dem
Variablennamen wird eine solche Zeigervariable dereferenziert. Ohne das Dereferenzieren
würde eine Speicheradresse ausgegeben, wie in der dritten Zeile der Ausgabe von Listing
2.11 zu sehen.

0x1234

Eine weitere Alternative, auf Variablen zuzugreifen, sind Referenzen. Diese unterscheiden
sich von der Art der Verwendung nur wenig von Zeigern.
Beim Erstellen einer normalen Variable wird im Speicher Platz für den Inhalt dieser Variable
reserviert. Für einen Zeiger wird nur Platz für das Speichern der Adresse reserviert. Eine
Referenz zeigt ebenfalls auf ein Objekt, gibt bei direktem Aufruf aber nicht die Adresse des

29

2 Hintergrund

Objekts, sondern das Objekt selbst, zurück. Das Beispiel in Listing 2.14 sollte das deutlicher
machen.
Das Programm erzeugt folgende Ausgabe:

a=3 / b=9 / x=3

a=4 / b=9 / x=4

a=9 / b=9 / x=9

a=10 / b=9 / x=10

Listing 2.13: Ergebnis der Ausführung des Programms von Listing 2.14

a und b sind zwei normale Variablen für die im Speicher ein entsprechendes Integer-Objekt
liegt, auf das sie zeigen. Die Referenzvariable x zeigt auf das selbe Objekt wie a. Daher ist
bei der Ausgabe der Wert von a mit dem von x in dieser Ausgabe immer identisch.

int& x = a;

Eine Referenz muss beim Erstellen direkt zu einem bereits bestehenden Objekt zugewiesen
werden.

Daher würde folgende Zeile an dieser Stelle einen Fehler werfen:

int& x;

2.4 Open Source Computer Vision Library

Während dieser Bachelorarbeit entstand ein Computerprogramm, welches die verschiede-
nen Sensoren (in diesem Fall eine visuelle und eine Infrarot-Wärmebildkamera) anbindet,
um anschließend die Bilddaten auszuwerten. Dabei wurde die Programmiersprache C++
verwendet. Das automatisierte Arbeiten mit Bilddaten am Computer ist schwierig, da für
eine Maschine ein Bild nur eine Liste oder ein Raster verschiedener Farbwerte ist.
Für Menschen ist es ganz natürlich in einem Bild nach bekannten Mustern zu suchen und
diese verschiedenen Schemata zuzuordnen. Wir erkennen sofort, wenn ein Mensch vor
uns steht und wir sehen sogar, ob es sich um eine reale Person oder um das Bild eines
Menschen handelt. Das alles passiert unterbewusst. Wir Menschen müssen uns im Regelfall
nicht speziell anstrengen um etwas auf einem Bild zu erkennen. Was ein Mensch ist und
wie er erkannt werden kann, lernen wir Menschen im Laufe unserer ersten Lebensjahre.
Während unseres Lebens sehen wir immer mehr Objekte und Dinge, welche wir immer
schneller und besser zu erkennen und einzuordnen lernen, da wir auf einen immer größeren
Erfahrungsschatz zurückgreifen können.
Maschinen beizubringen, ebenfalls Objekte auf einem Bild zu erkennen und diese dann einer
bestimmten Art oder Gruppe zuzuordnen, ist ein schwieriges Unterfangen. Im Gegensatz zu

30

2.4 Open Source Computer Vision Library

1 #include <stdio.h>

2 #include <conio.h>

3 #include <iostream>

4

5 int main()

6 {

7 // Deklariere zwei normale Variablen und eine Referenzvariable

8 int a = 3;

9 int b = 9;

10 int& x = a;

11 // Ausgabe der drei Variablen

12 std::cout << a << "/" << b << "/" << x << std::endl;

13 // Inkrementiere x

14 x++;

15 // Ausgabe der drei Variablen

16 std::cout << a << "/" << b << "/" << x << std::endl;

17 // Inkrementiere x

18 x = b;

19 // Ausgabe der drei Variablen

20 std::cout << a << "/" << b << "/" << x << std::endl;

21 // Inkrementiere x

22 x++;

23 // Ausgabe der drei Variablen

24 std::cout << a << "/" << b << "/" << x << std::endl;

25 getch();

26 return 0;

27 }

Listing 2.14: C++ Referenz Beispiel

Menschen lernen Computer für gewöhnlich nicht von alleine das Erkennen verschiedener
Objekte. Es gibt bereits Versuche Computern das Lernen beizubringen. Die Google X Ge-
hirnsimulation [Plu12] ist ein gutes Beispiel dafür. Dabei wurde versucht einem aus 1.000

Computern simulierten Gehirn verschiedene Bilder vorzulegen, auf welchen die Simulation
Objekte erkennen und kategorisieren sollte. Das funktionierte mit einer erstaunlich hohen
Trefferquote. Dennoch werden gerade Bilderkennungsalgorithmen noch von Menschen für
den Computer geschrieben. Dem Computer muss ganz genau gesagt werden worauf geachtet
werden muss, wenn zum Beispiel ein Gesicht erkannt werden soll. Das ist schwierig, da
dem Computer dies mit Hilfe von Größenverhältnissen, geometrischen Eigenschaften und
weiteren Merkmalen geschehen muss. Mit einer Beschreibung wie „Ein Kopf hat eine ovale
Form“ kann ein Computer nur wenig bis gar nichts anfangen. Für einen Computer stellt sich
das Problem anders dar. Eine ovale Form muss aus einem Haufen an Farbwerten erkannt
werden.
Diese Aufgabe übernimmt glücklicherweise die Open Source Computer Vision Library.

31

2 Hintergrund

1 #include <opencv2/opencv.hpp>

2 #include <opencv/highgui.h>

3 #include <conio.h>

4 #include "stdio.h"

5

6 int main(array<System::String ^> ^args){

7

8 // Erstelle ein openCV VideoCapture Objekt und

9 // baue eine Verbindung zum Video Device auf

10 int device_num = 0;

11 cv::VideoCapture* cap = new cv::VideoCapture(device_num);

12 // Deklariere ein cv::Mat Bild zum Speichern

13 // eines Bildframes

14 cv::Mat gatherimg;

15

16 // Mache nur weiter, wenn eine Verbindung zu einem

17 // Video Device hergestellt werden konnte

18 if (!cap->isOpened())

19 return 0;

20

21 // Benutze das VideoCapture Objekt um einen

22 // Frame aus dem VideoDevice zu laden

23 *cap >> gatherimg;

24

25 // Zeige das Bild in einem Fenster mit Hilfe

26 // einer openCV Funktion aus dem highgui Modul

27 // an

28 cv::imshow("WebCam Snapshot", gatherimg);

29

30 // Warte bis eine beliebige Taste gedrckt wurde

31 cvWaitKey(0);

32

33 // Zerstre das Fenster und baue die Verbindung

34 // zum Video Device ab

35 cap->release();

36 cvDestroyWindow("WebCam Snapshot");

37

38 return 0;

39 }

Listing 2.15: C++ openCV Video Capturing Beispiel

2.4.1 Was ist openCV?

Die Open Source Computer Vision Library ist eine freie Programmierbibliothek. Sie stellt unter
anderem solche Algorithmen zur Bildverarbeitung bereit, wie sie für diese Bachelorarbeit
benötigt werden. Open Source bedeutet, dass der Quellcode dieser Library öffentlich ist und
von jedem eingesehen werden kann. Eine Library (zu Deutsch Prorammbibliothek) ist eine
Sammlung von Klassen, Methoden, Konstanten und Unterprogrammen. Computer Vision
bedeutet auf Deutsch in etwa maschinelles Sehen.

32

2.4 Open Source Computer Vision Library

2.4.2 Von openCV bereitgestellte Funktionen

Für openCV sind einige Module verfügbar, welche jeweils Algorithmen für andere Teilgebiete
der Bildverarbeitung bereitstellen. Auf der openCV-Website [tea12a] werden unter anderem
folgende Module vorgestellt.

core Dieses kompakte Modul beinhaltet Basisdatenstrukturen wie zum Beispiel die cv::Mat
Klasse welche Bilder repräsentiert.

imgproc Ein Bildbearbeitungsmodul für lineare und nicht-lineare Bildfilterung, geometri-
sche Bildtransformation, Histogramme und mehr.

video Ein Videoanalysierungstool für Trackingalgorithmen, Hintergrundentfernung und
optische Flusserkennung.

calib3d Ein Modul für Kamerakalibrierung, 3D Rekonstruktion, Bildsynchronisierung und
mehrdimensionale Geometriealgorithmen.

highgui Ein einfach zu benutzendes Interface für Bildaufnahme, Bild- und Video-Codecs
und einfache Funktionen für UI-Umsetzung.

objdetect Bietet Objekterkennung für Gesichter, Augen, Mund, Nase, Personen, Autos und
mehr.

GPU Enthält GPU Beschleunigungsalgorithmen für verschiedene andere Module.

Weitere Module Es gibt noch weitere Module, zu denen auch einige Helfer-Module gehören.
OpenCV wird vor allem für seine Geschwindigkeit, seine modulare Struktur und die große
Menge der Algorithmen aus neusten Forschungsergebnissen geschätzt.

33

2 Hintergrund

Abbildung 2.4: Ergebnis der Ausführung des Programms von Listing 2.15

2.4.2.1 Video Capturing

Mit openCV ist die Bildaufnahme (engl. Video Capturing) mit einem Bildaufnahmegerät wie
zum Beispiel einer Webcam für einen Programmierer, der die Open Source Computer Vision
Library verwendet, sehr einfach.
Listing 2.15 zeigt ein kleines Codebeispiel dazu. Das Programm erzeugt ein Fenster, welches
ein Bild der Webcam anzeigt (siehe Abbildung 2.4).

Offensichtlich ist es sehr einfach mit openCV das Bild einer Webcam anzeigen zu lassen.
Wenige Codezeilen waren bereits ausreichend.

*cap >> gatherimg;

Um den Videostream einer Webcam anzeigen zu lassen muss regelmäßig (abhängig von der
Framerate) das neuste Bild des cv::VideoCapture-Objekts eingelesen werden.

2.4.2.2 Bildbearbeitung und Zeichnen auf Bildern

Mit openCV ist das Bearbeiten von Bildern mit nur wenigen Programmzeilen zu bewerkstel-
ligen. Viele Funktionen für Transformationen und Filterung sorgen für eine einfache und
schnelle Möglichkeit Bilder zu bearbeiten. Auch das Zeichnen einfacher Formen auf ein Bild
ist mit openCV möglich. Für diese Arbeit werden nur wenige Funktionen benötigt werden.

34

2.4 Open Source Computer Vision Library

cv::resize Eine der eben erwähnten Funktionen ist die cv::resize() Funktion. Sie ermöglicht
ein Bild in der Größe zu verändern. Dazu wieder ein einfaches Codebeispiel:

1 // Benutze das VideoCapture Objekt um einen

2 // Frame aus dem VideoDevice zu laden

3 *cap >> gatherimg;

4

5 // Erzeuge ein neues cv::Mat Objekt mit einer anderen Gre

6 cv::Mat* resized_img = new cv::Mat(120, 160, gatherimg.type());

7

8 // Benutze die cv::resize Methode um

9 cv::resize(gatherimg, resized_img, out_img->size(), 1, 1, 1);

Listing 2.16: C++ openCV cv::resize()-Funktion Beispiel

Das Codebeispiel aus Listing 2.16 zeigt, wie ein Bild in der Größe auf 160 mal 120 Pixel
skaliert und in einem anderen Bildobjekt gespeichert wird. Die ersten zwei Parameter der
cv::resize()-Funktion sind das Input- und das Output-Bild. Der dritte Parameter gibt die
Größe des Output-Bildes an. Die folgenden zwei Parameter geben den Skalierungsfaktor
in die x- und y-Richtung an. Diese Parameter sind nicht von Belang, wenn der Dritte
Parameter ungleich 0 ist. Der Letzte Parameter gibt die Art der Interpolation an, die bei der
Größenveränderung angewandt wird.
Hier gibt es folgende Interpolationsvarianten (Auszug aus der openCV Dokumentation
[tea12b] auf Englisch):

• INTER _ NEAREST nearest-neighbor interpolation

• INTER _ LINEAR bilinear interpolation (used by default)

• INTER _ AREA resampling using pixel area relation

• INTER _ CUBIC bicubic interpolation over 4x4 pixel neighborhood

• INTER _ LANCZOS4 Lanczos interpolation over 8x8 pixel neighborhood

cvRectangle und cvCircle Um ein Viereck (engl. rectangle) oder einen Kreis auf ein Bild
zu zeichnen, bedarf es ebenfalls nur jeweils einer Funktion. Wie diese beiden Funktionen
zu benutzen sind sollte aus dem Beispiel in Listing 2.18 ersichtlich sein. Das Ergebnis sieht
dann so aus wie in Abbildung 2.5.

2.4.2.3 Face Detection

Auch für das Erkennen von Gesichtern bietet openCV geeignete Tools. Listing 2.17 zeigt einen
Codeausschnitt in dem mit openCV eine Gesichtserkennung durchgeführt wird.

35

2 Hintergrund

Abbildung 2.5: Ergebnis der Ausführung des Programms von Listing 2.18

1 // Benutze das VideoCapture Objekt um einen

2 // Frame aus dem VideoDevice zu laden

3 *cap >> gatherimg;

4

5 // Erstelle eine cv::CascadeClassifier Objekt,

6 mFaceDetector = new cv::CascadeClassifier();

7 // Lade eine Cascade-XML Datei

8 mFaceDetector->load("cascades/frontalface.xml");

9

10 // Erstelle ein vector-Objekt, welcher cv::Rect Objekte

11 // halten kann. Dort werden die gefundenen Gesichter

12 // als Viereck abgespeicehrt

13 std::vector< cv::Rect > faceVec;

14

15 // Suche Gesichter auf dem Bild gatherimg

16 mFaceDetector->detectMultiScale(gatherimg, faceVec, 1.0);

Listing 2.17: C++ openCV Gesichtserkennung Beispiel

Es gibt verschiedene „Haar-Classifier-Cascades “. Diese XML6 Dateien beinhalten die Informa-
tion, die ein cv::CascadeClassifier Objekt benötigt, um verschiedene Objekte auf einem Bild
zu erkennen. Im Falle unseres Beispiels enthält es Gesichtserkennungsinformationen. Diese
Codezeile lädt die Datei mit dem Namen und dem Pfad, der im Parameter als String steht:

mFaceDetector->load("cascades/frontalface.xml");

6Extensible Markup Language: Eine Dokumentformat beschreibende Sprache, welche zur Darstellung hierar-
chisch strukturierter Daten genutzt wird.

36

2.4 Open Source Computer Vision Library

Die Funktion detectMultiScale sucht auf dem Bild, welches als erster Parameter übergeben
wird, nach Objekten, die dem Muster in der zuvor geladenen XML Datei entsprechen. Die
Funde werden als cv::Rect (als Viereck) in einem vector gespeichert. Dieses vector-Objekt wird
als zweiter Parameter übergeben. Der dritte Parameter gibt an wie stark das Bild verkleinert
wird bevor die Suche durchgeführt wird. Ein höherer Wert erhöht die Geschwindigkeit,
verringert aber die Genauigkeit. Ergebnisse zur Gesichtserkennung können im Kapitel 5 –
Umsetzung und Implementierung betrachtet werden.

1 // Erstelle cv::Mat Objekt

2 cv::Mat * image;

3

4 // Flle Bild mit schwarzem Inhalt

5 ...

6

7 // Zeichnet ein Rechteck. Die linke obere Ecke

8 // ist an der Koordinate (15,16), die rechte

9 // untere Ecke ist an der Koordinate (35,36).

10 // Die Farbe ist wei RGB(255,255,255)

11 cv::Scalar color(255,0,255);

12 cv::Point p1(15,16);

13 cv::Point p2(35,36);

14 cvRectangle(image, p1, p2, color);

15

16 // Zeichne einen Kreis an der Koordinate (50,51)

17 // mit dem Radius 10 und ebenfalls der Fabe wei.

18 cv::Point p3(50,51);

19 cvRectangle(image, p3, color);

Listing 2.18: C++ Beispiel zu den openCV cvRectangle()- und openCV
cvCircle()-Funktionen

Zusammenfassung

In diesem Kapitel wurden wichtige Hintergrundinformationen für diese Arbeit erläutert.
Die Funktionsweise der Infrarotwärmemessung erklärt, wie die berührungslose Bestimmung
von Gegenständen bewerkstelligt werden kann. Die Cognitive Load Theory teilt die Struktur
des menschlichen Gedächtnis in verschiedene Teile ein und kann dabei helfen Vorgänge im
menschlichen Gehirn zu verstehen. Sie ermöglicht es verschiedene Interaktionen des Men-
schen mit Lernmaterialien und Nutzeroberflächen besser zu verstehen. Mit der Einführung
in C++ und in die openCV Bibliothek erklärte dieses Kapitel auch einige Grundlagen für die
Programmierung und Umsetzung.

37

3 Verwandte Arbeiten

In diesem Kapitel werden für dieses Thema relevante Arbeiten zu verwandten Themen
vorgestellt. Diese können dabei helfen sich einen Überblick zu verschaffen. Die verschiedenen
Arbeiten zu diesem Thema haben jeweils unterschiedliche Schwerpunkte, von welchen nicht
alle ausführlich vorgestellt werden.

Einige dieser Arbeiten beschäftigen sich ebenfalls mit der Messung und Auswertung von
Stressfaktoren, haben ihren Fokus aber auf anderen Sensoren und Messverfahren. Den-
noch kann daraus wichtiges Wissen gewonnen werden. Zunächst werden zur Einarbeitung
Arbeiten zu den Grundlagen behandelt.

3.1 Arbeiten zur Cognitive Load Theory

Wie bereits im Kapitel 2 – Hintergrund erwähnt wurde, haben J. Sweller et al. verschiedene
Bücher und Artikel zur Cognitive Load Theory veröffentlicht. Ein guter Einstieg in das Thema
bietet das Buch „Cognitive Load Theory“, welches unter anderem von John Sweller, einem
Mitbegründer der Cognitive Load Theory, geschrieben wurde [SAK11]. Es bietet einen ausführ-
licheren Einblick und weiterführende Informationen zu dem im Abschnitt 2.2 – Cognitive
Load Theory eingeführten Thema. Die Aufteilung der kognitiven Last in extrinsische, in-
trinsische und lernbezogene Belastung, die in diesem Buch beschrieben wird, kann dabei
hilfreich sein, die CLT besser bei der Erstellung einer Studie anzuwenden. Die intrinsische,
kognitive Belastung wird durch die Schwierigkeit und Komplexität des zu lernenden Stoffs
bestimmt. Unter extrinsischer, kognitiver Belastung versteht man die Belastung, die von der
Darstellung des Lernmaterials herrührt. Dieser Teil der Belastung ist bei der Anwendung
auf Graphical User Interfaces besonders interessant. Auch die lernbezogene Belastung, wel-
che sich auf die Anstrengung der Entwicklung von Denkschemata bezieht, kann hier von
Bedeutung sein. Abhängig davon, ob ein Nutzer im Allgemeinen viel mit entsprechenden
Programmen arbeitet, erhöht sich die Belastung beim Arbeiten mit der Benutzeroberfläche.
Auf verschiedene Methoden zur Bestimmung der kognitiven Last wird in dem Buch „Cogni-
tive Architecture and Instructional Design“ eingegangen [SMP98]. Die einfachste Möglichkeit
Stress zu messen ist subjektive Faktoren zu verwenden. Die eigene Wahrnehmung zum
Beispiel ist ein subjektiver Faktor. Subjektive Faktoren eignen sich auf Grund ihrer inter-
und intraindividuellen Unterschiede nicht gut um kontinuierliche und verlässliche Messun-
gen durchzuführen. Objektive Daten können durch Geschwindikeit und Fehlerrate beim
Auführen einer Aufgabe bestimmt werden. Diese Daten so zu interpretieren, dass sich ein ver-
lässlicher Wert für den Stresslevel bestimmen lässt, funktioniert für verschiedene Aufgaben
unterschiedlich gut. Eine dritte Möglichkeit sind physiologische Merkmale. Beim Arbeiten

39

3 Verwandte Arbeiten

mit der Cognitive Load Theory spielen Effekte, die Einfluss auf Wahrnehmung, Konzentration
und Vorgehenweise bei Problemlösungen nehmen, eine Rolle. Beide der eben genannten
Bücher gehen auf einige dieser Effekte ein.
Aufbauend auf der Cognitive Load Theory gab es weitere Arbeiten [Kir02, SG73], auf welche
bereits im Kapitel 2 – Hintergrund eingegangen wurde.

3.2 Messmethoden zur Bestimmung der kognitiven Last

Siyuan Chen, Julien Epps und Fang Chen veröffentlichten mit „A Comparison of Four
Methods for Cognitive Load Measurement“ [CEC11] eine Arbeit über den Vergleich von
vier Methoden um geistige Anstrengung zu messen. Das könnte dazu genutzt werden die
Schwierigkeit einer Aufgabe am PC anzupassen, oder die Oberfläche einer GUI bezüglich
ihrer Einfachheit zu beurteilen. Aufbau und Durchführung der Tests werden weiter unten
beschrieben. Eine kleine Gruppe von 20 Testteilnehmern, von welchen fünf auf Grund einer
Brille oder zu heller Augenfarbe aussortiert werden mussten, nahmen an einem Experiment
teil. Während die Testkandidaten die ihnen gestellten Aufgaben bearbeiteten, wurde versucht,
die geistige Anstrengung mit Hilfe der Messdaten der Zeit für das Beenden der Aufgabe, die
Korrektheit der Antworten, den Pupillendurchmesser und die Häufigkeit des Blinzelns zu
messen. Die Korrektheit der Antworten auszuwerten erwies sich als nur wenig geeignet. Die
benötigte Zeit, der Pupillendurchmesser und die Häufigkeit des Blinzelns waren dagegen
eher geeignet um die geistige Last zu berechnen. Am ehesten brauchbar waren die Augen-
messdaten, da diese ohne Unterbrechung und während der Ausführung der Arbeit erfasst
werden konnten. Dazu wurde ein FaceLAB 4-Eyetracker mit 60 Hz Taktung verwendet. Das
Blinzeln der Augen wurde mit Hilfe einer Webcam und einem MATLAB1-Skript bestimmt.
Diese Bachelorarbeit beschäftigt sich zwar mit anderen Sensoren, hat aber im Prinzip dassel-
be Ziel. Auch hier wird versucht die geistige Last nach dem Vorbild der Cognitive Load Theory
mit Hilfe verschiedener Sensoren zu messen. Einen weiteren, interessanten Ansatz zum
Messen von mentalem Stress schildern Jacqueline Wijsman et al. in der Arbeit „Trapezius
Muscle EMG as Predictor of Mental Stress“ [WGPH10]. Mit Hilfe von EMG Messungen
am Trapezmuskel wurde versucht den mentalen Stresslevel zu bestimmen. Da Stress das
sympathische Nervensystem2 anregt müsste sich auch der Muskeltonus erhöhen. Daraus
lässt sich folgern, dass sich der Stresslevel durch Messungen der Trapezmuskel-Anspannung
bestimmen lässt. Für alle Tests wurden EMG Messwerte des oberen Trapezmuskels benutzt.
In „Psycho-Physiological Measures for Assessing Cognitive Load“ [HKFD10] verwenden Eija
Haapalanien et al. vier verschiedene psycho-physiologische Sensoren. Einer dieser Sensoren
war ein kontaktloses Eye-Tracker System, welches aus zwei Kameras und zwei Infrarotblit-
zern bestand. Nach einer Kalibrierungsphase wurde die Änderungen der Pupillengröße
während der Versuche gemessen. Ein EKG-Armband wurde im Bereich des Trizeps des
linken Armes angebracht um verschiedene EKG Messwerte zu bestimmen. Desweiteren

1MATLAB ist eine Software zum Lösen mathematischer Probleme.
2Einer der drei Teile des vegetativen Nervensystems.

40

3.2 Messmethoden zur Bestimmung der kognitiven Last

wurde ein kabelloses EEG-Headset und ein kabelloser Herzfrequenzmesser eingesetzt. Die
besten Ergebnisse wurden mit der Herzfrequenz und mit dem EKG erzielt.

3.2.1 Hauttemperaturmessung zur Stressbestimmung

Die Arbeit von H. Kataoka et al. [KKY+
98] beschreibt einen Versuch Stress und Anspannung

beim Arbeiten an einem PC mit Hilfe einer Infrarot-Wärmebildkamera zu ermitteln.
In der Einleitung wird das Problem beschrieben, dass Gefühle und Gemütszustände wie
Müdigkeit oder Stress nicht direkt messbar sind. Es ist jedoch möglich physikalische Größen
zu messen, welche sich mit Gemütszuständen ändern. Das geht, da einige Auswirkungen
des Körpers nicht bewusst steuerbar sind, sondern unbewusst vom sympathischen Nerven-
system gesteuert werden. Für Stress oder geistige Anstrengung kommt unter anderem die
Hauttemperatur in Frage. Die Hauttemperatur eignet sich sogar besonders gut, da mit einer
Infrarotkamera diese „non-contact“, also ohne das Anlegen von Sensoren, ermittelt werden
kann. H. Katoka et al. zählen einige Vorteile auf, die eine „non-contact “-Messung bietet.
Eine eingeschränkte Bewegungsfreiheit der Testkandidaten erschwert das Durchführen der
Versuche. Es wird kein zusätzlicher Stress oder Unbequemlichkeit durch anliegende Sensoren
verursacht, welche das Testergebnis beeinflussen könnten.
Um das Vorgehen der Datenerhebung und die Berechnung des Stresslevels zu verstehen,
muss man wissen, dass im Allgemeinen das Gesicht bei Aufregung heiß und die Finger-
spitzen bei Anspannung relativ kalt werden. Anspannung führt zu weniger Durchblutung
wovon besonders die Extremitäten betroffen sind. Weniger Durchblutung bedeutet kältere
Hauttemperatur. Da die Nase weniger durchblutet ist als das Gesicht wirkt sich die Tempera-
turveränderung stärker auf die Nase aus als auf den Rest des Gesichts. Der Stresslevel wird
also durch den Temperaturunterschied zwischen Nase und Stirn berechnet. Abbildung 3.1
wurde aus dieser Ausarbeitung übernommen um den Mechanismus der für die Veränderung
der Hauttemperatur in diesem Zusammenhang zuständig ist deutlicher zu machen.

Der Versuch Die Testkandidaten sollten versuchen einem Ziel auf dem Bildschirm mit Hilfe
eines Trackballs zu folgen. Nach 10 Minuten sollte mit geschlossenen Augen 5 Minuten ausge-
ruht werden. Durch eine Alarmanzeige welche nur durch Eingabe eines Passworts verlassen
werden konnte wurde zusätzlicher Stress erzeugt. Abbildung 3.2 zeigt die Veränderung der
Nasentemperatur während des Versuchsablaufs.

Es ist deutlich zu sehen, dass die Nase während der Ruhephasen wärmer und bei Stress
kälter wird. Besonders deutlich wird das bei dem Knick, den die Kurve nach unten macht,
wenn die „emergent condition“, also die zusätzlich stresserzeugende Situation, auftritt.

Gesichtsbestimmung Um die Temperatur an Nase und Stirn messen zu können, müssen
mit einer visuellen Kamera die Stirn und die Nase erkannt werden. Wenn die visuelle Kamera
und die Infrarotwärmebildkamera im gleichen Winkel zur Testperson stehen, vereinfacht das
die Bildverarbeitung enorm. Daher benutzten H. Kataoka et al. einen Spiegel, welcher Licht
im Infrarotbereich durchlässt, visuelles Licht aber spiegelt. (Siehe dazu Abbildung 3.3)

41

3 Verwandte Arbeiten

Abbildung 3.1: Diagramm des Mechanismus der Veränderung der Hauttemperatur
[KKY+

98]

Abbildung 3.2: Temperaturänderung der Nase während des Versuchs [KKY+
98]

Die Gesichtsbestimmung funktionierte dann so, dass zunächst das Wärmebild binarisiert
wurde, sodass die gesamte Person in einer Farbe und den Hintergrund in einer anderen
Farbe auf dem Bild zu sehen. Um die Gesichtsbestimmung einfach zu halten wurde innerhalb
des aus dem binarisierten Bild bekannten Gesichtsbereich nach Augenbrauen und Lippen
gesucht. Die restlichen Gesichtsbereiche wurden abhängig von den Gesichtsgrenzen und
der drei ermittelten Punkte bestimmt. Das Auslesen der Temperatur ist dann sehr einfach,
da das visuelle Bild und das Wärmebild auf Grund des Aufbaus direkt übereinandergelegt
werden können.

42

3.3 User Studies und Testaufbau zur Evaluierung der Messmethoden

Abbildung 3.3: Aufbau der visuellen Kamera und der Infrarotwärmebildkamera [KKY+
98]

Errechnung des Stressfaktors Der Stressfaktor wurde aus dem Temperaturunterschied
zwischen Stirn (Th) und Nase (Tn) errechnet. Der Maximale Temperaturunterschied betrug
höchstens ca. 2.98 Grad. Eine Formel, welche den Stressfaktor (S) auf einer Skala von 0 bis
100 anzeigt, ist die folgende:

S = 33.59 ∗ (Th − Tn)

Folgerung Hier entstand ein interessanter Versuchsaufbau, mit welchem es möglich ist
den Stresslevel auf einer Skala von 0 bis 100 zu berechnen. Dabei musste keiner Person ein
Sensor angelegt werden. Natürlich handelt es sich hier nur um einen Prototyp. Genauigkeit
und Einfachheit der Anwendung müssen weiter verbessert werden. Jedoch zeigt es, dass
die Stressmessung mit Hilfe einer Infrarotwärmebildkamera ein vielversprechender Ansatz
ist.

3.3 User Studies und Testaufbau zur Evaluierung der
Messmethoden

Siyuan Chen, Julien Epps und Fang Chen setzten in ihrer Arbeit „A Comparison of Four
Methods for Cognitive Load Measurement“ [CEC11] auf eine Testumgebung, bei welcher
die Teilnehmer mathematische Aufgaben zu lösen hatten. Dabei mussten sie vier nach-
einander erscheinende Zahlen aufsummieren und die richtige Antwort mit der Maus aus
zehn möglichen, angebotenen Antworten auswählen. Anschließend musste die subjektiv
wahrgenommene Schwierigkeit der eben gelösten Aufgabe angegeben werden. Nach einem
kurzen Training musste jeder Testteilnehmer sieben Aufgabensätze durchführen, jeweils mit
einer kurzen Pausenunterbrechung. Jeder dieser Sätze bestand aus zehn Aufgaben, wobei
jeweils zwei Aufgaben aus jeder Schwierigkeitsstufe (1-5) in zufälliger Reihenfolge enthalten

43

3 Verwandte Arbeiten

Abbildung 3.4: Skizze der Raumaufteilung für Experimentdurchführung [WGPH10]

waren. Der Schwierigkeitsgrad richtete sich dabei nach der Anzahl der Ziffern und der
Überträge.

Ein Ziel der Arbeit „Trapezius Muscle EMG as Predictor of Mental Stress“ [WGPH10] war
ein neues Protokoll zur Stressinduktion vorzuschlagen und zu validieren. 30 Testprobanden
wurden für dieses Experiment rekrutiert, wobei davon 25 Männer und 5 Frauen waren.
Personen mit Muskel- oder Herzleiden wurden ausgeschlossen. Die Testpersonen waren
zwischen 19 und 53 Jahre alt. Wichtig war auch, dass alle Probanden Rechtshänder waren,
da, um nur den linken Trapezmuskel messen zu müssen, während der Experimente die
rechte Hand zur Durchführung benutzt werden sollte. Der Test wurde in einem ruhigen
Raum an einem PC durchgeführt. Abbildung 3.4 zeigt eine Skizze der Raumaufteilung. Als
Eingabegeräte wurden eine Maus und eine Tastatur zur Verfügung gestellt. Töne wurden
durch einen Kopfhörer abgespielt und eine im Raum installierte Videokamera suggerierte,
dass die gesamte Prozedur aufgenommen würde. Zum Ablauf des experimentellen Pro-
tokolls wurde zunächst der „Perceived Stress Scale“ (kurz PSS) ermittelt und es wurden
ein paar allgemeine Fragen gestellt. Der PSS gibt an, wie stark jemand Stress wahrnimmt,
oder als wie stark jemand den Stress einer Situation bezeichnen würde. Nachdem durch
ein paar Tests Stress-Referenzwerte ermittelt wurden, sollten die Probanden anschließend
drei verschiedene Tests durchlaufen. Die Reihenfolge der Tests wurde zufällig gewählt, um
die Beeinflussungen durch den Übergang zwischen verschiedenen Tests zu minimieren.
Abwechselnd mit den Stress-Phasen jedes Tests wurden Ruhephasen eingeplant. Jeweils
nach einer Stress- oder Ruhe-Phase sollten die Testpersonen ihren subjektiven Stressgrad
und ihre Stimmung durch einen auf Fragen basierten Self-Report angeben. Abbildung 3.5

44

3.3 User Studies und Testaufbau zur Evaluierung der Messmethoden

Abbildung 3.5: Skizze des Ablaufs der Testprozedur [WGPH10]

zeigt den schematischen Aufbau dieser Prozedur. Beim ersten Test handelte es sich um den
„Norinder Test“3[LHB82]. Dabei handelt es sich um einen auf Berechnungen basierenden Test.
In 2:30 Minuten mussten 27 Berechnungen durchgeführt werden. Ein roter Bildschirm und
ein Buzzer-Sound wiesen auf Fehler hin, um noch mehr Stress zu verursachen. Der zweite
Test wurde erstellt um mentalen Stress zu verursachen. Er bestand aus 5 verschiedenen
mental anstrengenden Aufgaben, wie zum Beispiel logische Puzzles. Der letzte Test dagegen
sollte psychologischen und mentalen Stress verursachen. Nach dem zweiten Test wurde
dem Testteilnehmer gesagt, er könne etwas gewinnen, wenn er diesen Test schnell genug
abschließe. Nach besagtem Test wurde ihm mitgeteilt, dass er den Test ausreichend schnell
abgeschlossen habe, er diesen Gewinn aber im Falle einer schlechten Leistung beim dritten
Test wieder verlieren könne. Das erzeugte zusätzlichen Stress. Die Auswertung der 30 Test-
datensätze, von welchen 8 im Voraus aussortiert werden mussten, ergab, dass die Amplitude
des EMG Signals in Stresssituationen deutlich höher war. Das lässt darauf schließen, dass
die EMG Signale tatsächlich von der Aktivität des sympathischen Nervensystem und somit
auch von der Höhe des Stresslevels abhängen.
Eija Haapalanien et al. versuchten in dieser Arbeit [HKFD10] mit Hilfe verschiedener Senso-
ren und Messmethoden die kognitive Last zu ermitteln. Dabei entstand ein Testprotokoll
mit verschiedenen Aufgaben für Testpersonen. Eija Haapalainen et al. beschäftigten sich
ausführlich mit der Cognitive Load Theory und passten den Aufbau der Versuche gut auf
deren Erkenntnisse an. Diese verschiedenen Versuchsarten können beim Entwickeln eines
Konzepts für einen guten Versuchsaufbau helfen. Sechs verschiedene Aufgaben galt es zu
lösen. Für jeden Test wurden maximal drei Minuten Zeit gewährt. Diese sechs Tests decken
verschiedene Denkmuster und -Arten des Gehirns ab.

3

45

3 Verwandte Arbeiten

Gestalt Completion Test Bei diesem Test müssen unfertig gezeichnete Objekte oder Muster
erkannt werden. Es darum schnell Zusammenhänge festzustellen, zu kombinieren und
Informationen zu ordnen.

Hidden Pattern Test Hier muss aus einer Reihe von Bildern und Formen das zuvor gezeigte
Bild oder die Form wiedererkannt werden oder es ist festzustellen, dass das gesuchte Objekt
nicht vorhanden ist.

Finding A’s Test Hier geht es um die Wahrnehmungsgeschwindigkeit. Die Häufigkeit des
Auftretens des Buchstaben „A“ musste in verschiedenen Wörtern gefunden werden. Die
Länge der Wörter bestimmt dabei den Schwierigkeitsgrad der Aufgabe.

Number Comparison Test Die Wahrnehmungsgeschwindigkeit wird bei diesem Test daran
gemessen wie schnell die Testperson die Größe zweier Zahlen vergleicht.

Pursuit Test Mehrere Linien führen von jeweils einer Nummer auf der linken Seite des
Bildschirms zu einem Buchstaben auf der rechten Seite. Jede Nummer musste einem Buch-
staben zugeordnet werden. Die Schwierigkeit dabei war, dass sich diese Linien mehrfach
überschneiden.

Scattered X’s Test Auf dem Bildschirm verteilen sich viele Buchstaben. Die Aufgabe war
es die Anzahl der Xe zu zählen.

Zusammenfassung

In diesem Kapitel wurden verschiedene für diese Ausarbeitung relevante Arbeiten vorge-
stellt. Ähnliche Anwendungen der Cognitive Load Theory sowie das Arbeiten mit Infrarot-
wärmebildkameras zur Hauttemperaturbestimmung werden gezeigt. Zur Erstellung einer
Nutzerstudie im Zusammenhang mit der Bestimmung der kognitiven Last beim Arbeiten
mit dem Computer wurden ebenfalls Arbeiten behandelt.

46

4 Das Konzept

Vor der Beschreibung der Umsetzung wird in diesem Kapitel das zugehörige Konzept
vorgestellt. Ein gutes Konzept ist eine Notwendigkeit und Voraussetzung für eine erfolgreiche
und zufriedenstellende Umsetzung

Erklärt wird hier die Planung und die Beschreibung der Idee von der Sensoranbindung über
die Datensammlung und -Auswertung bis hin zum fertigen Ergebnis. Zusätzlich werden
Ansätze einer Nutzerstudie, welche zur Evaluierung dienen kann, entworfen. Es geht darum
ein Programm zu entwickeln, welches die gewünschten Sensoren anbindet und auswertet.
Der Stresslevel einer Person soll mit Hilfe dieser Sensoren ermittelt und angezeigt werden
können. Dieser Wert kann dann dazu genutzt werden Anpassungen an dem momentan
genutzten Programm durchzuführen.

4.1 Die Sensoren, Datenerhebung

In dieser Arbeit liegt der Fokus darauf die kognitive Last eines Nutzers per Wärmebildkame-
ra zu ermitteln. Die Gründe dafür liegen auf der Hand. Es müssen keine Messinstrumente
angelegt werden und die ermittelten Daten sind objektiv, da die Hauttemperatur nicht
bewusst beeinflusst werden kann. Bei genaueren Überlegungen stellt sich die Frage, wie
genau ein Computer die Informationen der Hauttemperatur zu einem Wert, welcher den
Stresslevel angibt, umrechnen kann. Ein Versuchsaufbau könnte die Hauttemperatur von
Testpersonen, welche durch bestimmte Aufgabenstellungen kognitiver Last ausgesetzt wer-
den, messen. Diese Daten können dann im Bezug auf Muster und Gesetzmäßigkeiten der
Hauttemperatur im Zusammenhang mit der kognitiven Last analysiert werden. Andererseits
bestehen bereits Ansätze, wie mit Hilfe der Hauttemperatur des Gesichts auf die kognitive
Belastung geschlossen werden kann. Im Kapitel 3 – Verwandte Arbeiten wurde bereits
erwähnt, dass der Vergleich von Nasen- und Strintemperatur gute Ergebnisse erzielt. Dieser
Berechnungsansatz kann als Referenz dienen um bei einem Versuch weitere vielversprechen-
de Berechnungsmöglichkeiten zu ermitteln.
Beim Weiterverfolgen dieses Ansatzes wird zusätzlich eine visuelle Kamera benötigt um
die verschiedenen Gesichtsbereiche bestimmen zu können. Das erste Ziel wird es sein die
beiden Kameras an den Computer anzubinden, sodass jeweils auf die Daten zugegriffen
werden kann.

47

4 Das Konzept

4.2 Möglichkeiten das visuelle Bild und das Wärmebild
anzugleichen

Mit Hilfe des visuellen Bildes sollen die Position der Stirn, Nase und weitere Gesichts-
bereiche einer Person bestimmt werden. Anschließend können aus den Wärmedaten die
Temperaturen der beiden Gesichtsbereiche ermittelt und angezeigt werden. Aus diesen
Daten kann die kognitive Last berechnet und als Wert auf einer Skala von 0 bis 100 angezeigt
werden. Voraussetzung für diese Berechnungen ist, dass aus Positionsdaten des visuellen
Bildes auf Positionierungen des Wärmebildes geschlossen werden kann. Wie in der Arbeit
„Development of a skin temperature measuring system for non-contact stress evaluation“
[KKY+

98] zu sehen war (vgl. Abbildung 3.3), vereinfacht es das Arbeiten mit dem visuellen
Bild und dem Wärmebild ungemein, wenn die Kameras im selbem Winkel zueinander
aufgebaut sind und an der theoretisch selben Stelle stehen (evtl. abgelenkt durch Spiegel).
Möglich wäre auch eine Verschiebung der Kameras herauszurechnen. Dafür müssten aber
Informationen über die Platzierung beider Kameras vorhanden sein. Die relative Position der
Kameras könnte durch eine Konstruktion fixiert werden. Diese Lösung wäre jedoch wenig
flexibel und würde die Nutzbarkeit des Programms auf diese eine Kamerakombination
beschränken.
Es gibt noch eine weitere, sehr aufwändige Methode. Es ist möglich ein visuelles Bild und
ein Wärmebild so zu „matchen“, dass sie passend übereinander gelegt werden können. Aber
auch das wäre mit einem unverhältnismäßig hohen Aufwand verbunden und vermutlich
schwieriger umzusetzen als eine eventuelle Gesichtserkennung direkt im Wärmebild.

4.3 Datensammlung und -Verarbeitung

Als nächstes gilt es die Frage zu klären, welche Bildwiederholrate benötigt wird. Wie oft
der Stresslevel pro Zeiteinheit berechnet werden soll spielt hierbei eine Rolle. Bei zu hohen
Frequenzen steigt jedoch die Rechenlast enorm, da für jedes Bild die Kameraverschiebung
berücksichtigt und die Gesichtsbereiche bestimmt werden müssen. Ist die Bildwiederholrate
dagegen zu niedrig sind vermutlich nicht genügend Werte pro Zeiteinheit vorhanden und
das „Video“ läuft für das menschliche Auge nicht mehr flüssig.
Um keine Informationen auf Grund zu klein gewählter Datentypen zu verlieren sollte
darüber nachgedacht werden, wie die ermittelten Informationen und Bilder der Kameras als
Daten repräsentiert werden. Die Repräsentation des Wärmebilds und der Wärmeinformation
hängt von den Daten ab, welche die Wärmebildkamera liefert. Vermutlich ist es nötig eine
eigene Klasse dafür zu schreiben, vielleicht reicht aber auch ein RGB-Bild aus.

4.3.1 Gesichtserkennung

Sind die beiden Bilder eingelesen und die nötigen Berechnungen durchgeführt, müssen die
Positionen der Gesichtsbereiche ermittelt werden. Um das Rad hier nicht neu erfinden zu

48

4.4 Tests und Prüfung der Konstruktion

müssen bietet es sich an eine Bibliothek zu verwenden, welche bereits Tools für die Gesichts-
erkennung bereitstellt. Im Kapitel 2 – Hintergrund wurde bereits eine solche Bibliothek
angesprochen. Die Gesichtserkennung wird auf dem visuellen Bild ausgeführt. Anschließend
kann der Wert eines entsprechenden Pixels des Wärmebilds ausgelesen werden.

4.3.2 Bestimmung der kognitiven Last

Wie H. Kataoka et al. die geistige Last berechnen wurde bereits im Kapitel 3 – Verwandte
Arbeiten beim Betrachten der Arbeit „Development of a skin temperature measuring system
for non-contact stress evaluation“ [KKY+

98] gezeigt. Um einen Wert für die kognitive Last,
vorzugsweise als Wert von 0 bis 100, zu erhalten müssten nur die Temperaturen zweier
(oder mehrerer) Gesichtsbereiche verglichen werden. Der Prototyp einer solchen Formel ist
schnell erstellt. Doch einige Tests müssten zeigen, wie zuverlässig der errechnete Wert ist.
Durch genügend Test- und Formelmodifikationsiterationen könnte eine ausreichend gute
Genauigkeit erzielt werden.

4.4 Tests und Prüfung der Konstruktion

Die gesamte Arbeit bis zu diesem Zeitpunkt muss detailiert geprüft und getestet werden.
Zuverlässigkeit, Genauigkeit und Einfachheit in der Handhabung sollten oberstes Ziel
sein. Wie eben schon erwähnt hängt die Genauigkeit des Stresslevels von der Formel und
Berechnungsart ab. Aber auch die Genauigkeit der Sensordaten der Bildangleichung spielen
hier eine Rolle. Es stellt sich die Frage, ob hier einige Selbsttests ausreichen oder ob mehrere
Testpersonen benötigt werden. Diese könnten durch das Bearbeiten bestimmter Aufgaben
künstlich Stress ausgesetzt werden. Die dabei ermittelten Daten können helfen verschiedene
Faktoren der Genauigkeit zu verbessern.
Die Einfachheit der Handhabung zu verbessern ist sinnvoll. Zu bedenken ist hier aber,
dass kein Produkt für eine Heimanwendung entstehen soll, sondern ein Testmodul für
akademische Zwecke. Eine gewisse Einarbeitungszeit und Grundverständnis können hier
vorausgesetzt werden. Dennoch sollte die GUI intuitiv bedienbar und einfach erlernbar sein.
Nach einigen Iterationszyklen sollte die Konstruktion eine zufriedenstellende Qualität
bezüglich der angesprochenen Anforderungen aufweisen.

4.5 Anwendungszenarien

Für die automatische Stresslevelermittlung gibt es viele Anwendungsmöglichkeiten. Bei den
folgenden Szenarien ist die Nutzung des Stresswerstes an eine bestimmte Applikation oder
an ein Gerät gebunden. Der Grund dafür ist, dass die beiden Kameras fest montiert sind
und nur den Stresslevel von Personen in einem fixen Bildbereich messen können.

49

4 Das Konzept

Automatische Anpassung der GUI Man stelle sich eine Applikation mit vielen Menüs
und Shortcuts für den Computer vor. Ein Amateuranwender, der bisher noch nicht mit
diesem Programm in Berührung gekommen ist, beginne damit seine Arbeit zu tätigen. Das
Programm sei eher für Profianwender ausgelegt. Mit Hilfe der automatischen Bestimmung
des Cognitive Workloads könnte festgestellt werden, dass das Programm wenig für den Nutzer
geeignet ist und als Reaktion darauf die grafische Benutzeroberfläche anpassen. Auf einer
Menüebene werden weniger Elemente dargestellt und gegebenenfalls dafür die Schachtelung
erhöht. Zusätzliche Hilfetexte, ein angebotener Programmguide und ausführlichere Mouse-
Hover-Nachrichten können die Bedienung weiter vereinfachen.

Lernanwendung Eine weitere Anwendungsmöglichkeit wäre der Einsatz bei einer Lernan-
wendung. Der aktuelle Lernfortschritt könnte anhand des Workloads bestimmt und so
entschieden werden, ob mit einer schwierigeren Übung fortgesetzt werden kann.

Anpassung einer Computer-KI Theoretisch könnte diese Technologie auch bei Computer-
spielen Anwendung finden. Die Stärke der KI-Gegner könnte sich so besser automatisch an
das Niveau des Spielers anpassen.

Leseunterstützung Ein Programm zur Textanzeige könnte bei hoher Last des Lesers zum
aktuellen Artikel zusätzlich Informationen oder Definitionen und Erklärungen anbieten.

4.6 Planung einer Nutzerstudie

Eine Nutzerstudie könnte zeigen wie groß der Nutzen ist, der aus einer solchen Umset-
zung gezogen werden kann. Für eine solche Studie sollten mindestens 20 Testpersonen
verschiedenen Geschlechts herangezogen werden. Einige mathematische Aufgaben nach den
Mustern des Experiments aus „Psycho-physiological measures for assessing cognitive load“
[HKFD10] könnten einem Testteilnehmer beliebig schwere Aufgaben verschiedenster Art
stellen. So könnte die kognitive Last durch Variation des Aufgabenlevels konstant auf ca.
50 gehalten werden. Als Vergleichswerte würden die Bearbeitungszeit der Aufgaben und
die Selbsteinschätzung der Testpersonen dienen. Da die Variation des Schwierigkeitsgrades
durch Modifikation des Aufgabenlevels geschieht sollte auch bei diesem Versuch der Großteil
der Belastung durch die Bearbeitung der Aufgaben und nicht durch die Bedienung des Com-
puters oder anderen Störquellen hervorgerufen werden. Deshalb sollten alle Testpersonen
erfahrene Computerbenutzer sein. Die Fähigkeit mathematische Aufgaben zu lösen sollte
jedoch unterschiedlich ausgeprägt sein um die Aussagekraft der Studie zu wahren.

50

4.7 Mögliche Erweiterungen

4.7 Mögliche Erweiterungen

Möglich wäre es ein Konzept für ein System zu entwickeln, welches verschiedene Visuali-
sierungen und GUIs darstellen kann. Die Reaktionen des Anwenders auf die GUI können
gemessen und basierend darauf Anpassungen vorgenommen werden. Das kann jedoch erst
nach Auswertung der Nutzerstudie geschehen. Auch die Implementierung eines funktionalen
Prototyps mit automatischer Adaption an der Nutzer benötigt die Daten der ausgewerteten
Studie.

Zusammenfassung

In diesem Kapitel wurden die Sensoren vorgestellt, welche nach dem entwickelten Konzept
voraussichtlich verwendet werden. Mögliche Probleme, die beim Angleichen des visuellen
Bilds und des Wärmebilds auftreten können, wurden diskutiert. Der geplante Prozess der
Datensammlung und -Verarbeitung, die Gesichtserkennung eingeschlossen, wurden erläutert.
Dieses Kapitel zeigte auch verschiedene Anwendungsszenarien auf und erklärte die Planung
einer Nutzerstudie.

51

5 Umsetzung und Implementierung

Nachdem das Konzept der Umsetzungsplanung behandelt wurde folgt die Ausführung der
Umsetzung. Wie schon erwähnt stellt das Konzept nur den Optimalfall dar. Das Endresultat
hängt von vielen Faktoren ab. Beispielsweise könnte während der Implementierung fest-
gestellt werden, dass eine Umsetzung, wie sie im Konzept geplant wurde, technisch nicht
möglich ist oder unverhältnismäßig viel Zeit in Anspruch nimmt.

Die benutzte Hardware wird hier vorgestellt und die Wahl genutzter Programmiersprachen
und Bibliotheken erklärt. Einzelne Codeausschnitte verdeutlichen die Grundfunktionen des
bei dieser Arbeit entstandenen Programms.

5.1 Die Hardware

Zuerst wird die Hardware, die hier zum Einsatz kommt, untersucht. Die Eigenschaften der
Hardware haben einen sehr großen Einfluss auf das zu entwickelnde Computerprogramm,
die Sensoranbindung, das Sammeln der Daten und die Auswertung. Verschiedene Hardware
liefert verschiedene Daten oder entsprechende Daten in unterschiedlichen Formaten.

Wärmebildkamera Als Wärmebildkamera wurde eine Infrarotkamera von c©optris GmbH
verwendet: optris PI160. Diese Kamera wird auf der Website der optris GmbH [Gmb12] als
Einsteigermodell der optris Online-Infrarotkameras bezeichnet.
Die Kamera ist dank ihrer geringen Größe (siehe Abbildung 5.1 und Abbildung 5.2) sehr
Mobil und kann einfach per USB an den Computer angeschlossen werden.

Auch für eine stationäre Anwendung eignet sich diese Kamera, da eine Halterung zur festen
Montage und Justierung als Zubehör für Kameras dieser Baureihe erworben werden kann.
Für diese Arbeit war jedoch nur das standardmäßig mitgelieferte Standbein vorhanden. Die
verschiedenen Objektive machen es möglich den Bildausschnitt auf Objekte in verschiedenen
Entfernungen anzupassen. Leider konnte nur mit dem Standardobjektiv (23◦C x 17◦C)
gearbeitet werden, da keine weiteren zur Verfügung standen. Da aber alle Objektive einen
anderen Bildwinkel als die zur Aufnahme der visuellen Bilder genutzten Kamera haben
wäre der zusätzliche Nutzen eines anderen Objektivs eher gering.

53

5 Umsetzung und Implementierung

Abbildung 5.1: Maße der optris PI160 Wärmebildkamera von oben

Abbildung 5.2: Maße der optris PI160 Wärmebildkamera in der Frontansicht

Die wichtigsten Informationen und Merkmale aus dem Datenblatt:

• Optische Auflösung: 160x120 Pixel

• Temperaturbereich von −20◦C bis 900◦C

• Spektralbereich 7,5 bis 13 µm

• 120Hz Bildwiederholfrequenz

Mit diesen Spezifikationen ist diese Infrarotwärmebildkamera (laut optris) hervorragend für
„viele Anwendungen in der Prozessautomation, an Teststationen sowie in der F&E geeignet.“

54

5.2 Umsetzung in C++

Abbildung 5.3: Logitech QuickCam Pro 9000

Wie gut sich diese Kamera in diesem Fall einsetzen lässt, müssen Tests nach Fertigstellung
der Testapplikation zeigen.

Die visuelle Kamera Eine Logitech OEM QuickCam Pro 9000 wurde als visuelle Kamera
bereitgestellt. Diese Webcam wird über USB an den Computer angeschlossen und hat eine
Videoauflösung von 1600x1200 Pixeln. Damit hat sie eine 10-fach höhere Auflösung als
die Wärmebildkamera. Bei einer Bildwiederholrate von 30Hz liefert sie zwar nicht so viele
Bilder pro Sekunde wie die Wärmebildkamera, für die vorliegende Aufgabe jedoch genug.
Abbildung 5.3 zeigt die QuickCam Pro 9000.

Die QuickCam Pro 9000 verfügt über einige Eigenschaften für die Heim- und InstantMessaging-
Anwendung [Log12]. Relevant sind für diese Arbeit hauptsächlich folgende Eigenschaften:

• Autofokus

• 2-Megapixe-HD-Sensor

Die Kamera eignet sich also gut für die Aufnahme von Gesichtern aus naher Distanz.
Auf die Autofokus-Funktion muss leider verzichtet werden, da diese nur mit Hilfe des
entsprechenden Treibers und der mitgelieferten Software genutzt werden kann. Durch das
Auslesen der Daten mit openCV entfällt also die Möglichkeit den Autofokus zu nutzen.

Der Computer Als Rechner wurde ein Acer Aspire 7750G-2434G50Mnkk verwendet. Ein
Intel R© CoreTM i5-2430M mit 2x2,4GHz, 4GB DDR3 RAM und eine AMD RadeonTM HD
6850M sollten genügend Rechenleistung für diese Aufgabe aufbringen können.

5.2 Umsetzung in C++

Nachdem ein erster Versuch die Kameras mit einem Java-Programm auszulesen fehl schlug,
lag die Entscheidung, das Problem mit C++ zu lösen nicht fern. Auf der mitgelieferten CD

55

5 Umsetzung und Implementierung

der optris PI160 befinden sich einige Beispielprogramme, die in C++ geschrieben wurden.
Diese Programme zeigen den Stream der Wärmebildkamera an. Eines dieser Programme
bietet eine gute Basis um die Entwicklung einer entsprechenden Software zu beginnen.
Folgende C++ Beispielprogramme befanden sich auf der CD:

• IPC2

• IPC2 VisCam

• MultiIPC2

Das Programm IPC2 zeigt den Videostream der optris Infrarotwärmebildkamera und einige
weitere Daten. IPC2 VisCam kann sowohl den Wärmebildvideostream als auch einen visuellen
Videobildstream anzeigen. Dazu wird jedoch eine optris PI200 benötigt. Die optris PI160
hingegen besitzt keine integrierte visuelle Kamera. Ein integriertes visuelles Kamerabild
wie es die PI200 liefert würde, die Arbeit extrem vereinfachen, da die visuelle Kamera der
PI200 exakt den gleichen Bildbereich abbildet wie die Wärmebildkamera. Dabei würde
jede Anstrengung, die verschiedenen Kamerabilder aufeinander abzustimmen, entfallen.
Auch die Anbindung wäre bedeutend einfacher, da das IPC2 VisCam Programm alle nötigen
Funktionen zum Auslesen beider Kamerainformationen unterstützt. MultiIPC2 bietet die
Möglichkeit mehrere optris Wärmebildkameras parallel auszulesen und den Videostream
anzeigen zu lassen.

5.2.0.1 Zusammenhang zwischen ImagerIPC.dll und Imager.exe

Neben den Beispielprogrammen liegt der Kamera auch das Hauptprogramm bei: Imager.exe.
Abbildung 5.4 zeigt einen Screenshot des Imager.exe Programms.

Es zeigt das Wärmebild, Temperaturwerte und einige weitere Informationen und zeigt diese
in verschiedenen Diagrammen an.
Für diese Wärmebildkamera gibt es keine Dokumentation, die das direkte Auslesen der Daten
beschreibt. Die optris Beispielprogramme greifen alle auf die ImagerIPC.dll zu um auf den
Kamerastream zuzugreifen. ImagerIPC.dll ist eine Dynamic Link Library von optris. Sie stellt
verschiedene Funktionen zur Inter Process Communication (IPC) mit dem Imager.exe Programm
bereit. Also muss das Programm zusätzlich ausgeführt werden und eine Verbindung mit der
Wärmebildkamera muss bestehen, sodass mit Hilfe der DLL der Kamerastream abgerufen
werden kann (Siehe Abbildung 5.5). Für den direkten Zugriff auf die Kamera ist diese DLL
nicht geeignet und optris stellt dafür auch keine bereit.

5.2.1 IPC VisCam als Basis

Als Basis für das Computerprogramm wurde das IPC2 VisCam Beispielprogramm von optris
verwendet. Auf Abbildung 5.6 ist die Programmoberfläche zu sehen. Links wird das Bild der
Wärmebildkamera angezeigt. Auf der rechten Seite würde bei der Verwendung der optris

56

5.2 Umsetzung in C++

Abbildung 5.4: Screenshot des Imager.exe Programms zum Auslesen der Wärmebilddaten

Abbildung 5.5: Verbindung für den Austausch der Wärmebilddaten zwischen dem
Imager.exe Programm und der IPC VisCam Beispielanwendung

57

5 Umsetzung und Implementierung

Abbildung 5.6: IPC VisCam Beispielprogramm von optris

1

2 InitVis(int frameWidth, int frameHeight, int frameDepth);

3

4 OnFrameVisInit(int frameWidth, int frameHeight, int frameDepth);

5

6 OnNewFrameVis(void * pBuffer, FrameMetadata *pMetadata);

7

8 FileOpen(void)

Listing 5.1: Entfernte Methoden der IPC VisCam Basisprogramms

PI200 das visuelle Kamerabild angezeigt. Da hier jedoch nur die PI160 zum Einsatz kam
wird dieses Fenster schwarz bleiben.

Im Folgenden soll das Hauptaugenmerk auf dem Teil dieses Programms liegen, der für das
Wärmebild zuständig ist.
Zunächst mussten alle unnötigen Codeelemente, die nicht mehr gebraucht wurden, entfernt
werden. Das betrifft alle Teile des Programms, die das visuelle Kamerabild der PI200 auslesen
und anzeigen. Einige Methoden wurden dadurch unbrauchbar und konnten entfernt werden,
da sie überhaupt nicht mehr aufgerufen wurden. Siehe dazu Listing 5.1.

58

5.2 Umsetzung in C++

Da die Funktion Bilder und Videos zu öffnen nicht benötigt wurde konnte auch die FileOpen()
Methode entfernt werden.
Übrig blieb ein Programm das nur den Wärmebildstream auslesen und anzeigen kann.

5.2.1.1 Datenrepräsentation des Wärmebilds

Die Repräsentation des Wärmebilds und der Wärmeinformation hängt von den Daten ab,
welche die Wärmebildkamera liefert. Es gibt verschiedene Modi für den Datenexport:

• Farben

• Temperaturen

• ADUs (Analog-Digital-Umwandler)

Es ist möglich die Wärmebildinformation als RGB-Bild auszulesen, wobei jedem Farbwert ein
Temperaturwert zugeordnet werden kann. Die Wärmebildkamera zeigt Temperaturen von ca.
−100 bis 900 Grad Celsius an. Die Temperaturspanne (Ts) umfasst 1000 Grad. Bei 8 Bit pro
RGB Wert sind das (82)3 = 2563 verschiedene Werte (W). Dann wäre der Temperaturabstand
(Ta) der mit einem RGB-Bild dargestellt werden könnte folgender:

Ta = TS/W = 1000/2563 = 1000/16777216 = 5, 96 ∗ 10−5Grad

Ein RGB-Bild wäre also mehr als ausreichend um die Temperatur genau darzustellen. Die
Umrechnung von den RGB-Werten auf einen Temperaturwert sollte einfach zu bewerkstelli-
gen sein, sofern Informationen darüber vorhanden sind wie die Temperatur in den RGB-Wert
umgerechnet wird.
Für diese Implementierung wurde der Datenimport per Temperaturinformation gewählt.
Die Daten können nach dem Import zu einem 160x120 Pixel RGB-Bild konvertiert werden.
Dafür ist die Methode GetBitmap() zuständig. Im Falle des Temperaturwertimports liefert
GetBitmap() leider nur ein Graustufenbild. Um dafürzusätzlich die Temperaturwerte direkt
auslesen zu können, wird eine weitere Funktion der ImagerIPC.dll benötigt. Die in Listing
5.2 zu sehende Methode liest den Temperaturwert einer Koordinate aus.

Es gibt zwei Temperaturmodi, welche in der Dokumentation genauer beschrieben werden.
Die Variable ValuesIR ist ein short-Array. Dort sind die Temperaturwerte der Zeilen eines
160x120 Rasters aufgereiht. Aus diesem Grund berechnet sich der Index folgendermaßen:

int index = (y * 160) + x;

Der Wert muss anschließend je nach Temperaturmodus umgerechnet werden um die Tem-
peratur zu erhalten. Eine Tabelle aus der Dokumentation der ImagerIPC.dll zeigt wie die
Werte umzurechnen sind (siehe Tabelle 5.1).

59

5 Umsetzung und Implementierung

1 /**

2 * Gather temperature value of pixel(x,y).

3 * The gcnew array<short>() ValuesIR contains the temperature data.

4 *

5 * \param x X-Coordinate

6 * \param y Y-Coordinate

7 *

8 * \return Temperature of pixel(x,y) as float

9 */

10 float FormMain::getPixelTemp(int x, int y) {

11 // Calculate index of temperature data for pixel(x,y)

12 // The temperature matrix is always 160x120 sized

13 int index = (y * 160) + x;

14 int value = ValuesIR[index];

15 int mode = ((int) ipc->GetTempRangeDecimal(0,false));

16 float valueFloat;

17 // Convert to float (depending on decimal mode)

18 if (mode == 0) { /** 1 decimal place */

19 valueFloat = ((float)(value - 1000) / (float)10);

20 }else { /** if (mode == 1) // 2 decimal places */

21 valueFloat = ((float)value / (float)100);

22 }

23 return valueFloat;

24 }

Listing 5.2: getPixelTemp() Methode zum Ermitteln der Temperatur eines
Pixels

Dezimalstellen Formel für Temperaturberechnung Beispiel

1 T[◦C] = (value − 1000)/10 value = 1235 -> T = 23.5◦C
2 T[◦C] = value/100 value = 2357 -> T = 23.57◦C

Tabelle 5.1: Umrechnung der short-Werte zu Temperaturwerten

5.2.2 Bildwiederholfrequenz

Es zeigte sich, dass bei einer Bildwiederholrate von 25Hz die Rechenkapazität der CPU
ausreichend war. Bei dieser Frequenz werden Bildsequenzen im Allgemeinen als flüssig
laufend empfunden. Stressmessungen im Bereich von über 25 Berechnungen pro Sekunde
sollten nicht nötig sein. Folglich muss alle 40ms für jede Kamera ein Bild ausgelesen
werden.

60

5.2 Umsetzung in C++

1 /**

2 * Constructor

3 */

4 OcvCamImg::OcvCamImg(int device_num)

5 {

6 // Connect to Device

7 cap = new cv::VideoCapture(device_num);

8

9 ...

10

11 // Define Images (gather size and type)

12 cv::Mat gatherimg;

13 *cap >> gatherimg;

14

15 ...

16

17 }

Listing 5.3: Ausschnitt des Konstruktors der OcvCamImg Klasse

5.2.3 Die Rolle von openCV

Die Anbindung der visuellen Kamera muss für das Programm komplett neu geschrieben
werden, da die vorhandene Funktionalität für die visuelle Kamera nur mit der optris PI200
nutzbar ist. Dafür und auch für die Gesichtserkennung wird openCV zum Einsatz kommen.

5.2.3.1 Kameraanbindung mit openCV

Wie mit openCV eine Webcam ausgelesen werden kann, wurde bereits im Kapitel 2 – Hinter-
grund behandelt. Beim Starten des Programms wird zunächst eine Instanz der OcvCamImg
Klasse erstellt. Diese Klasse wurde erstellt um in diesem Projekt die visuelle Kamera auszu-
lesen und die Gesichtserkennung durchzuführen. Im Konstruktor dieser Klasse wird eine
cv::VideoCapture Instanz erstellt (siehe Listing 5.3).

Im Konstruktor wird ebenfalls direkt ein erstes Bild ausgelesen. Ein Timer ruft alle 40ms
die Methode handleWebCamFrame() in der Klasse FormMain auf. Diese ruft wiederum die
OcvCamImg::nextFrame()-Funktion auf, in welcher dann das aktuelle visuelle Kamerabild
ausgelesen wird (siehe Listing 5.4).

5.2.3.2 FaceDetection mit openCV

Für die Gesichtserkennung wird im Konstruktor (siehe Listing 5.5) der OcvCamImg Klasse
für jeden Gesichtsbereich, der hier bestimmt werden soll, eine eigene cv::CascadeClassifier
Instanz erstellt und das entsprechende XML-Profil geladen, dessen Pfad in einer Konstanten
gespeichert ist.

61

5 Umsetzung und Implementierung

1 /**

2 * Get next frame from Video Capture Device and store it in

3 * cv::Mat img Class Variable

4 */

5 void OcvCamImg::nextFrame(){

6 // Only capture image if device is connected

7 if (cap->isOpened()) {

8 *cap >> *img;

9 };

10 }

Listing 5.4: OcvCamImg::nextFrame() Methode

1 /**

2 * Constructor

3 */

4 OcvCamImg::OcvCamImg(int device_num)

5 {

6 // Connect to Device

7 cap = new cv::VideoCapture(device_num);

8 // Create Face Detector

9 mFaceDetector = new cv::CascadeClassifier();

10 mFaceDetector->load(CASCADE_FACE);

11 // Create Eye Detector

12 mEyeDetector = new cv::CascadeClassifier();

13 mEyeDetector->load(CASCADE_EYE);

14 // Create Eye Detector

15 mNoseDetector = new cv::CascadeClassifier();

16 mNoseDetector->load(CASCADE_NOSE);

17 // Create Eye Detector

18 mMouthDetector = new cv::CascadeClassifier();

19 mMouthDetector->load(CASCADE_MOUTH);

20 // Define Images (gather size and type)

21 cv::Mat gatherimg;

22 *cap >> gatherimg;

23 img = new cv::Mat(gatherimg.size(), gatherimg.type());

24 out_img = new cv::Mat(OUTPUTHEIGHT, OUTPUTWIDTH, gatherimg.type());

25 out_area_img = new cv::Mat(OUTPUTHEIGHT, OUTPUTWIDTH,

gatherimg.type());

26 // Create Array and Vector

27 area_rects = new std::vector< cv::Rect >();

28 *area_available = new bool[4];

29 }

Listing 5.5: Konstruktor der OcvCamImg Klasse (komplett)

62

5.2 Umsetzung in C++

1 // Rectangle Vector containing (face_rect, eye_rect, mouth_rect, nose_rect)

2 std::vector< cv::Rect >* area_rects;

3

4 // Array that returns if [face,eye,mouth,nose] has been found this frame

5 bool* area_available[4];

Listing 5.6: Ausschnitt aus OcvCamImg Header

Der Aufruf der Methode OcvCamImg::detectAreas(bool face, bool eye, bool mouth, bool nose)
startet die Gesichtserkennung. Durch den Aufruf der Methode in Listing 5.7 wird per
openCV ein Viereck gesucht, welches die Grenzen des Gesichts absteckt. Für die restlichen
Gesichtsbereiche existieren analoge Methoden.

Die gefundenen Vierecke werden dann in den Variablen gespeichert, welche in Listing 5.6
gezeigt werden.

In area_rects werden die Vierecke selbst als cv::Rect gespeichert und area_available gibt an,
welche der Gesichtsbereiche gefunden wurden.

1 /**

2 * Detect Faces in the parameter image using the face detector

3 * which loaded the xml-face-haar-file

4 */

5 std::vector< cv::Rect > OcvCamImg::detectFace(cv::Mat mOrigImage){

6 std::vector< cv::Rect > faceVec;

7 mFaceDetector->detectMultiScale(mOrigImage, faceVec, SCALE_FACTOR_FACE

);

8 return faceVec;

9 }

Listing 5.7: OcvCamImg::detectFace() Methode

1 /**

2 * Get pointer to the captured image in output size. This is

3 * stored in cv::Mat out_img Class Variable.

4 */

5 cv::Mat * OcvCamImg::captureCamMatImg() {

6 // Create return-image

7 cv::resize(*img,*out_img, out_img->size(),1,1,1);

8 return out_img;

9 }

Listing 5.8: OcvCamImg::captureCamMatImg() Methode

63

5 Umsetzung und Implementierung

1 /**

2 * Returns the calculated front measure points. These are the points

3 * that are used to gather front temperature information.

4 */

5 std::vector< cv::Point > OcvCamImg::frontTempPoints(void) {

6 // Create return Vector

7 std::vector< cv::Point > returnVector;

8 // Check if face rect is available

9 if ((*area_available)[0]) {

10 cv::Rect face_rect = area_rects->at(0);

11 // Calculate values

12 int x = face_rect.x;

13 int y = face_rect.y;

14 int x1 = x + (3 * face_rect.width / 8);

15 int x2 = x + (face_rect.width / 2);

16 int x3 = x + (5 * (face_rect.width / 8));

17 int y1 = y + (face_rect.height / 8);

18 // Create points

19 cv::Point p1(x1,y1);

20 returnVector.push_back(p1);

21 cv::Point p2(x2,y1);

22 returnVector.push_back(p2);

23 cv::Point p3(x3,y1);

24 returnVector.push_back(p3);

25 }

26 frontPoints = returnVector;

27 return returnVector;

28 }

Listing 5.9: OcvCamImg::frontTempPoints) Methode

5.2.3.3 Visualisierung der Gesichtsbereiche

Zusätzlich zu dem visuellen Bild können auch die Gesichtsbereiche angezeigt und einge-
zeichnet werden. Das einfache visuelle Bild des aktuellen Frames der Webcam kann mit der
in Listing 5.8 gezeigten Methode abgerufen werden.

Um zusätzlich die Gesichtsbereiche einzeichnen zu lassen wurde die Methode OcvCa-
mImg::captureCamMatImgDetect() geschrieben (siehe Listing 5.10).

Die zuvor in area_rects gespeicherten Vierecke werden hier eingezeichnet. Die Farbe des
Vierecks hängt davon ab welcher Gesichtsbereich damit dargestellt werden soll.
Um auch die Punkte anzeigen zu lassen, die benutzt werden um die Temperatur auszulesen,
wurde die Methode OcvCamImg::captureCamMatImgPoints() erstellt. Diese zeichnet die Punkte
mit Hilfe der openCV Methoden ein. Die Koordinaten der Punkte werden abhängig von den
Vierecken bestimmt. Wie genau das umgesetzt wurde sollte am Beispiel der Bestimmung
Stirn-Temperatur-Punkte in Listing 5.9 klar werden.

Abbildung 5.7 zeigt wie die verschiedenen Anzeigemöglichkeiten aussehen.

64

5.2 Umsetzung in C++

Abbildung 5.7: Visuelles Bild ohne eingezeichnete Gesichtsbereiche (links), mit Vierecken
als Gesichtsbereichgrenzen (mitte) und mit Vierecken und Temperaturmess-
punkten (rechts)

1 /**

2 * Get pointer to the captured image with painted face areas rect-

3 * angles in output size. This is stored in out_img Class Variable.

4 */

5 cv::Mat * OcvCamImg::captureCamMatImgDetect() {

6 // Set out_area_img image to resized copy of actual Frame Image

7 cv::resize(*img, *out_area_img, out_area_img->size(), 1, 1, 1);

8 // Loop -> draw any available rectangle in it's preset color

9 if (area_rects->size() > 0) {

10 int vector_index = 0;

11 for (int i = 0; i < 4; i++) {

12 if ((*area_available)[i]) {

13 cv::rectangle(*out_area_img,

area_rects->at(vector_index),

RECT_COLORS[i]);

14 vector_index++;

15 };

16 };

17 }; // Detect points only without drawing

18 if ((*area_available)[0])

19 frontPoints = frontTempPoints();

20 if ((*area_available)[0])

21 facePoints = faceTempPoints();

22 if ((*area_available)[1])

23 eyePoints = eyeTempPoints();

24 if ((*area_available)[2])

25 mouthPoints = mouthTempPoints();

26 if ((*area_available)[3])

27 nosePoints = noseTempPoints();

28 return out_area_img;

29 }

Listing 5.10: OcvCamImg::captureCamMatImgDetect() Methode

65

5 Umsetzung und Implementierung

5.2.4 Das Programm und seine Funktionalität

Abbildung 5.11 zeigt einen Screenshot des fertigen Programms. Zunächst werden verschie-
denen Funktionen betrachtet. Der Bildbereich 1 zeigt das Wärmebild. Im Bildbereich 2 ist
das visuelle Bild der Webcam mit eingezeichneten Gesichtsbereichen zu sehen. Mit den
Auswahlboxen unter dem Bild kann gewählt werden, ob die Vierecke, welche die Gesichts-
grenzen anzeigen und Temperaturmesspunkte eingezeichnet werden sollen. Mit Hilfe der
Steuerelemente im Bildbereich 3 kann eine andere Webcam ausgewählt und eine Verbindung
damit hergestellt werden. Das Programm zeigt zwei Bilder eines vorher aufgenommenen
Logs. Dass sich das Programm im Log-Abspielmodus befindet, kann daran gesehen werden,
dass im Bildbereich 4 der zweite Button von links aktiviert ist. Der Log mit dem Namen im
Feld „Log Name“ wurde erfolgreich geladen und angezeigt. Wird dieser Modus deaktiviert,
wird der Videostream der Wärmebildkamera und der visuellen Kamera angezeigt. Um
einen Log aufzunehmen gibt man den gewünschten Log Namen in das Feld „Log Name“
ein und drückt den ersten Button von links um die Log-Aufnahme zu starten. Wie die
Logging-Funktion im Detail arbeitet sollte für diese Ausarbeitung nicht von Belang sein.
Im Bildbereich 5 sind verschiedene Auswahlboxen. Sie ermöglichen es anzugeben, welche
Gesichtsbereiche im Bild gesucht werden sollen. Für die gefundenen Gesichtsbereiche wird
dieTemperatur an den entsprechenden Punkten ermittelt und angezeigt. Um das visuelle
Bild und das Wärmebild anzugleichen gibt es die Kalibrierungsfunktion (Bildbereich 6).
Diese wird im folgenden Abschnitt beschrieben.

5.2.5 Angleichung des visuellen Bilds und des Wärmebilds

Ein großes Problem war, dass der Bildbereich der visuellen Kamera bedeutend größer war
als der Bildbereich der Wärmebildkamera. Was das genau bedeutet sollte Abbildung 5.8
zeigen.

Die beiden Kameras in unseren Beispiel sind direkt nebeneinander aufgestellt. Kamera #1 hat
einen kleineren Bildbereich (blau). Sie zeigt einen kleineren Bildausschnitt. Kamera #2 hat
einen erkennbar größeren Bildbereich (rot). Abbildung 5.9 zeigt links das Bild von Kamera
#1 und recht das Bild von Kamera #2.

Kamera #2 fängt auch einen größeren Umgebungsausschnitt ein. Zusätzlich ist das Bild im
Vergleich zu dem von Kamera #1 leicht verschoben. Es werden jedoch zwei Bilder mit dem
selben Bildbereich benötigt. Dazu gibt es die Kalibrierungsfunktion.
Manuell wählt man zwei markante Bildpunkte im ersten Bild. Dasselbe wiederholt man
für das zweite Bild, wobei man die selben markanten Stellen des Bilds auswählt (siehe
Abbildung 5.10. Dadurch kann der Ausschnitt der Kamera mit dem größeren Bildbereich
berechnet werden, der den selben Inhalt zeigt wie der gesamte Bildbereich der anderen
Kamera.

66

5.2 Umsetzung in C++

Abbildung 5.8: Bildbereiche zweier nebeneinander positionierter Kameras als Skizze von
oben (Blau = Kleiner Bildbereich, Rot = Großer Bildbereich

Abbildung 5.9: Bildbereiche zweier nebeneinander positionierter Kameras von vorn (Links:
Kleiner Bildbereich, Rechts: Großer Bildbereich

Abbildung 5.10: Kalibrierungsmarkierungen in Bildbereichen zweier nebeneinander positio-
nierter Kameras (Links: Kleiner Bildbereich, Rechts: Großer Bildbereich

67

5 Umsetzung und Implementierung

Abbildung 5.11: Screenshot des Programms

68

5.2 Umsetzung in C++

Zusammenfassung

Zuerst wurde in diesem Kapitel die genutzte Hardware begutachtet. Die Lösungen der
im Konzept vorgestellten Probleme wurden erläutert. Grundlegende Teile des Programms,
welche für die Sensoranbindung und die Datenerhebung, -Repräsentation und -Verarbeitung
verantwortlich sind, wurden genauer erklärt und die Funktionalität des bei dieser Arbeit
entstandenen Programms wurde erläutert.

69

6 Fazit und Ausblick

Bevor das Fazit gezogen wird folgt hier noch einmal eine kurze Zusammenfassung der
Ziele dieser Arbeit. Nach dem Fazit zeigt ein Zukunftsausblick mögliche Änderungen und
Verbesserungen für diese Arbeit.

6.1 Zusammenfassung

Das erste Etappenziel war es die Sensoren, in diesem Fall eine visuelle Kamera und eine
Wärmebildkamera, anzubinden. Die Daten beider Kameras sollten dann ausgelesen und
verarbeitet werden können. Eine der Möglichkeiten ist es die visuellen Bilder und die
Wärmebilder so zu „matchen“, dass je ein Bildpunkt des visuellen Bildes einem Punkt
des Wärmebildes zugewiesen werden kann. Nach der Gesichtsbestimmung müssen den
verschiedenen Gesichtsbereichen Temperaturwerte aus dem Wärmebild zugewiesen werden.
Die Temperaturwerte der verschiedenen Gesichtsbereiche sollen anschließend zu einem
Stresswert verrechnet werden. Optional kann eine Nutzerstudie Aufschluss über Genauigkeit
und Nutzbarkeit der entstandenen Konstruktion geben.

6.2 Fazit

Ein Programm welches sowohl das Wärmebild, als auch das visuelle Bild einlesen und
anzeigen kann ist entstanden. Leider war es nicht möglich die Wärmebildkamera direkt
auszulesen. Nur über die Inter-Prozess-Kommunikation mit optris Imager.exe kann die Wär-
mebildinformation ausgelesen werden. Das Ziel beide Kameras direkt auszulesen wurde
nicht erreicht, doch die so entstandene Lösung sollte dennoch akzeptabel sein. Das Wär-
mebild steht nach der Konvertierung wie geplant als RGB-Bild zur Verfügung. Doch dieses
liefert nicht die Temperaturinformationen. Die Temperaturwerte stehen in einem Array und
werden als short repräsentiert, müssen aber vor Gebrauch umgerechnet werden.
Eine Forderung war eine Bildwiederholfrequenz von 25Hz. Alle 40ms wird ein weiteres Bild
der Webcam geladen. Doch die Berechnungen für die Gesichtserkennung verlangen dem
Rechner einiges ab und bremsen die Performance. Wirkliche 25Hz liefert das Programm
leider nicht. Besonders deutlich wird das, wenn ein Log abspielt wird. Dieser wirkt beim
Abspielen deutlich schneller als bei der Aufnahme.
Im visuellen Bild wird mit Hilfe von openCV nach Gesichtsbereichen gesucht und damit
werden die Koordinaten der Temperaturmesspunkte berechnet. Dazu können das visuelle
Bild und das Wärmebild mit Hilfe der Kalibrierungsfunktion so eingestellt werden, dass sie

71

6 Fazit und Ausblick

denselben Bildbereich zeigen.
Diese Koordinaten werden benutzt um die Temperatur der Stirn, Nase und anderer Ge-
sichtsbereiche zu bestimmen. Die Cognitive Workload wird nicht direkt angegeben. Das
nachzuholen wäre kein großer Aufwand, da lediglich die erhobenen Temperaturdaten mit
der bereits erwähnte Formel umgerechnet und angezeigt werden müssten. Es wurde jedoch
zu diesem Zeitpunkt bewusst weggelassen, da die Korrektheit des Wertes noch nicht geprüft
wurde. Das könnte zu irreführenden Missverständnissen führen. Die Nutzerstudie musste
aus Zeitgründen aufgegeben werden.

6.3 Ausblick

Zunächst könnte die Einfachheit der Handhabung und die Genauigkeit der Anwendung
verbessert werden. Eine Wärmebildkamera mit höherer Pixelauflösung und eine visuelle
Kamera deren Bildbereich mit dem der Wärmebildkamera übereinstimmt könnte die Genau-
igkeit der Anwendung verbessern und eine Kalibrierung überflüssig machen.
Auch die Performance könnte noch verbessert werden. Durch effizientere Gesichtsfindungs-
algorithmen, Feinabstimmungen und durch das Anwenden verschiedener Filter könnte das
erreicht werden.
Anschließend könnte eine Nutzerstudie geplant und durchgeführt werden um herauszufin-
den wie zuverlässig die Messung des Cognitive Workloads mit dieser Methode funktioniert.
Dazu sollten der errechnete Workload mit Vergleichswerten durch Selbstbeobachtung und
Workloadberechnungen unter Verwendung anderer Sensoren verglichen werden. In einem
nächsten Schritt könnte eine Testapplikation entstehen, welche die Schwierigkeit der zu
bearbeitenden Aufgabe je nach Arbeitslast des Nutzers anpasst. An diesem Punkt könnte be-
urteilt werden, wie gut sich die Workloadmessung per Wärmebildkamera für die Anpassung
der Benutzeroberfläche eines Programms eignet.

72

Danksagung

An dieser Stelle möchte ich allen Leuten herzlich danken, die mir bei der Gestaltung und
Ausarbeitung dieser Bachelorarbeit geholfen und mich unterstützt haben.
Besonderer Dank gilt meinen Eltern die mich mit Geduld, Motivation und Vertrauen, aber
auch finanziell, unterstützt haben.
Meinem Kommilitonen Kai Mindermann danke ich für die Hilfe mit LaTeX und für die
ständige Verfügbarkeit für Formulierungs- und Formatierungsfragen, aber auch für die
Unterstützung die er mir in C++ Angelegenheiten entgegen brachte.
Auch bei Florian Straßer, einem weiteren Kommilitonen, möchte ich mich für die gute
Zusammenarbeit bedanken.
Mein weiterer Dank gilt Bastian Pfleging, Niels Henze und Prof. Albrecht Schmidt für die
Überlassung dieses Themas und die Hilfe bei der Programmierung.
Auch vielen namentlich nicht genannten Freunden und Bekannten möchte ich für die Hilfe,
Beratung, Anregung und auch gelegentliche (notwendige) Ablenkung danken.

73

Literaturverzeichnis

[Bad10] A. Baddeley. Working Memory: Theories, Models, and Controversies. Band 20, S.
R136 – R140. York YO10 5DD, UK, 2010. doi:10.1016/j.cub.2009.12.014. URL http:

//www.sciencedirect.com/science/article/pii/S0960982209021332. (Zitiert
auf Seite 18)

[CEC11] S. Chen, J. Epps, F. Chen. A comparison of four methods for cognitive load
measurement. In Proceedings of the 23rd Australian Computer-Human Interaction
Conference, OzCHI ’11, S. 76–79. ACM, New York, NY, USA, 2011. doi:10.1145/
2071536.2071547. URL http://doi.acm.org/10.1145/2071536.2071547. (Zitiert
auf den Seiten 40 und 43)

[cpl12] cplusplus.com. C++ Dokumentation, 2012. URL http://www.cplusplus.com/

doc/tutorial/namespaces/. (Zitiert auf Seite 24)

[Dav04] S. Davis. C++ For Dummies. Wiley Pub., 2004. URL http://books.google.de/

books?id=QuluB-uwHkEC. (Zitiert auf den Seiten 20 und 22)

[Gó] Z. Gócza. Myth 23: Choices should always be limi-
ted to 7+/-2. URL http://uxmyths.com/post/931925744/

myth-23-choices-should-always-be-limited-to-seven. (Zitiert auf Sei-
te 12)

[Gmb12] optris GmbH. www.optris.de, 2012. URL http://www.optris.de/

infrarotkamera-pi160. (Zitiert auf Seite 53)

[HKFD10] E. Haapalainen, S. Kim, J. F. Forlizzi, A. K. Dey. Psycho-physiological measures
for assessing cognitive load. In Proceedings of the 12th ACM international confe-
rence on Ubiquitous computing, Ubicomp ’10, S. 301–310. ACM, New York, NY,
USA, 2010. doi:10.1145/1864349.1864395. URL http://doi.acm.org/10.1145/

1864349.1864395. (Zitiert auf den Seiten 40, 45 und 50)

[Hol09] J. Hollandt. Welt der Physik - Infrarotstrahlung, 2009. URL
http://www.weltderphysik.de/gebiete/atome/forschung-mit-licht/

elektromagnetisches-spektrum/infrarotstrahlung/. (Zitiert auf Seite 16)

[Kir02] P. A. Kirschner. Cognitive load theory: implications of cognitive load theory
on the design of learning. Learning and Instruction, 12(1):1 – 10, 2002. doi:10.
1016/S0959-4752(01)00014-7. URL http://www.sciencedirect.com/science/

article/pii/S0959475201000147. (Zitiert auf den Seiten 17 und 40)

75

http://www.sciencedirect.com/science/article/pii/S0960982209021332
http://www.sciencedirect.com/science/article/pii/S0960982209021332
http://doi.acm.org/10.1145/2071536.2071547
http://www.cplusplus.com/doc/tutorial/namespaces/
http://www.cplusplus.com/doc/tutorial/namespaces/
http://books.google.de/books?id=QuluB-uwHkEC
http://books.google.de/books?id=QuluB-uwHkEC
http://uxmyths.com/post/931925744/myth-23-choices-should-always-be-limited-to-seven
http://uxmyths.com/post/931925744/myth-23-choices-should-always-be-limited-to-seven
http://www.optris.de/infrarotkamera-pi160
http://www.optris.de/infrarotkamera-pi160
http://doi.acm.org/10.1145/1864349.1864395
http://doi.acm.org/10.1145/1864349.1864395
http://www.weltderphysik.de/gebiete/atome/forschung-mit-licht/elektromagnetisches-spektrum/infrarotstrahlung/
http://www.weltderphysik.de/gebiete/atome/forschung-mit-licht/elektromagnetisches-spektrum/infrarotstrahlung/
http://www.sciencedirect.com/science/article/pii/S0959475201000147
http://www.sciencedirect.com/science/article/pii/S0959475201000147

Literaturverzeichnis

[KKY+
98] H. Kataoka, H. Kano, H. Yoshida, A. Saijo, M. Yasuda, M. Osumi. Development

of a skin temperature measuring system for non-contact stress evaluation. In
Proceedings of the 20th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, 1998, Band 2, S. 940 –943 vol.2. 1998. doi:10.1109/
IEMBS.1998.745598. (Zitiert auf den Seiten 41, 42, 43, 48 und 49)

[LHB82] M. Loeb, D. H. Holding, M. A. Baker. Noise stress and circadian arousal in
self-paced computation. Band 6, S. 43–48. Springer Netherlands, 1982. URL
http://dx.doi.org/10.1007/BF00992136. 10.1007/BF00992136. (Zitiert auf
Seite 45)

[Log12] Logitech. http://www.logitech.com, 2012. URL http://www.logitech.com/

de-de/webcam-communications/webcams/quickcam-vision-pro-9000-mac.
(Zitiert auf Seite 55)

[Lou08] D. Louis. C, C++: Das komplette Programmierwissen für Studium und Job. Markt +
Technik, 2008. URL http://books.google.de/books?id=XPdOBeqXeZMC. (Zitiert
auf Seite 20)

[Mar95] S. Marshall. Schemas in Problem Solving. Cambridge University Press, 1995. URL
http://books.google.de/books?id=iKSYrsXe6f0C. (Zitiert auf Seite 19)

[May01] R. Mayer. Multimédia Learning. Cambridge University Press, 2001. URL http:

//books.google.de/books?id=ymJ9o-w_6WEC. (Zitiert auf Seite 17)

[Mic12a] Microsoft. Microsoft MSDN DE Library IntelliSense, 2012. URL http://msdn.

microsoft.com/de-de/library/hcw1s69b.aspx. (Zitiert auf Seite 21)

[Mic12b] D. P. Microsoft. Microsoft Visual Studio 2010 IntelliSense Screens-
hot, 2012. URL http://blogs.msdn.com/b/dparys/archive/2010/01/29/

visual-studio-2010-intellisense-quick-hit.aspx. (Zitiert auf Seite 21)

[Mil56] G. Miller. The magicalnumberseven, plus or minus two: Some limits on our
capacity for processing information. Psychological Review, S. "81–97, 1956. (Zitiert
auf Seite 11)

[Plu12] W. Pluta. Google X simuliert Gehirn mit 16.000 Pro-
zessorkernen, 2012. URL http://www.golem.de/news/

maschinenlernen-google-x-simuliert-gehirn-mit-16-000-prozessorkernen-1206-92793.

html. (Zitiert auf Seite 31)

[SAK11] J. Sweller, P. Ayres, S. Kalyuga. Cognitive Load Theory. Explorations in the Lear-
ning Sciences, Instructional Systems and Performance Technologies. Springer,
2011. URL http://books.google.de/books?id=sSAwbd8qOAAC. (Zitiert auf den
Seiten 17 und 39)

[SG73] H. A. Simon, K. Gilmartin. A simulation of memory for chess positions. Cognitive
Psychology, 5(1):29 – 46, 1973. doi:10.1016/0010-0285(73)90024-8. URL http:

//www.sciencedirect.com/science/article/pii/0010028573900248. (Zitiert
auf den Seiten 17, 19 und 40)

76

http://dx.doi.org/10.1007/BF00992136
http://www.logitech.com/de-de/webcam-communications/webcams/quickcam-vision-pro-9000-mac
http://www.logitech.com/de-de/webcam-communications/webcams/quickcam-vision-pro-9000-mac
http://books.google.de/books?id=XPdOBeqXeZMC
http://books.google.de/books?id=iKSYrsXe6f0C
http://books.google.de/books?id=ymJ9o-w_6WEC
http://books.google.de/books?id=ymJ9o-w_6WEC
http://msdn.microsoft.com/de-de/library/hcw1s69b.aspx
http://msdn.microsoft.com/de-de/library/hcw1s69b.aspx
http://blogs.msdn.com/b/dparys/archive/2010/01/29/visual-studio-2010-intellisense-quick-hit.aspx
http://blogs.msdn.com/b/dparys/archive/2010/01/29/visual-studio-2010-intellisense-quick-hit.aspx
http://www.golem.de/news/maschinenlernen-google-x-simuliert-gehirn-mit-16-000-prozessorkernen-1206-92793.html
http://www.golem.de/news/maschinenlernen-google-x-simuliert-gehirn-mit-16-000-prozessorkernen-1206-92793.html
http://www.golem.de/news/maschinenlernen-google-x-simuliert-gehirn-mit-16-000-prozessorkernen-1206-92793.html
http://books.google.de/books?id=sSAwbd8qOAAC
http://www.sciencedirect.com/science/article/pii/0010028573900248
http://www.sciencedirect.com/science/article/pii/0010028573900248

Literaturverzeichnis

[SMP98] J. Sweller, J. van Merrienboer, F. Paas. Cognitive Architecture and Instructio-
nal Design. Educational Psychology Review, 10(3):251–296, 1998. doi:10.1023/A:
1022193728205. URL http://dx.doi.org/10.1023/A:1022193728205. (Zitiert
auf den Seiten 17 und 39)

[tea12a] openCV dev. team. openCV Website Introduction, 2012. URL http://docs.

opencv.org/modules/core/doc/intro.html. (Zitiert auf Seite 33)

[tea12b] openCV dev. team. openCV Website Transformation Dokumentation,
2012. URL http://opencv.willowgarage.com/documentation/cpp/geometric_

image_transformations.html. (Zitiert auf Seite 35)

[(Us09] A. (User). www.gutefrage.net Diskussion Intuition, 2009. URL http://www.

gutefrage.net/frage/intuitivitaet-oder-intuition. (Zitiert auf Seite 11)

[WGPH10] J. Wijsman, B. Grundlehner, J. Penders, H. Hermens. Trapezius muscle EMG
as predictor of mental stress. In Wireless Health 2010, WH ’10, S. 155–163.
ACM, New York, NY, USA, 2010. doi:10.1145/1921081.1921100. URL http:

//doi.acm.org/10.1145/1921081.1921100. (Zitiert auf den Seiten 40, 44 und 45)

Alle URLs wurden zuletzt am 14.10.2012 geprüft.

77

http://dx.doi.org/10.1023/A:1022193728205
http://docs.opencv.org/modules/core/doc/intro.html
http://docs.opencv.org/modules/core/doc/intro.html
http://opencv.willowgarage.com/documentation/cpp/geometric_image_transformations.html
http://opencv.willowgarage.com/documentation/cpp/geometric_image_transformations.html
http://www.gutefrage.net/frage/intuitivitaet-oder-intuition
http://www.gutefrage.net/frage/intuitivitaet-oder-intuition
http://doi.acm.org/10.1145/1921081.1921100
http://doi.acm.org/10.1145/1921081.1921100

Erklärung

Ich versichere, diese Arbeit selbstständig
verfasst zu haben. Ich habe keine anderen als
die angegebenen Quellen benutzt und alle
wörtlich oder sinngemäß aus anderen Werken
übernommene Aussagen als solche
gekennzeichnet. Weder diese Arbeit noch
wesentliche Teile daraus waren bisher
Gegenstand eines anderen Prüfungsverfahrens.
Ich habe diese Arbeit bisher weder teilweise
noch vollständig veröffentlicht. Das
elektronische Exemplar stimmt mit allen
eingereichten Exemplaren überein.

(Ort, Datum, Unterschrift)

	1 Einleitung
	1.1 Lösungsansatz
	1.2 Aufgabenstellung
	1.3 Gliederung der Arbeit

	2 Hintergrund
	2.1 Temperaturmessung mit Hilfe einer Infrarotwärmebildkamera
	2.1.1 Entdeckung und Eigenschaften der Infrarotstrahlung
	2.1.2 Funktion einer Infrarot-Digital-Wärmebildkamera

	2.2 Cognitive Load Theory
	2.2.1 Die Struktur des menschlichen Gedächtnis
	2.2.1.1 Das Arbeitsgedächtnis
	2.2.1.2 Das Langzeitgedächtnis

	2.2.2 Entwicklung kognitiver Schemata

	2.3 Ein kleiner Exkurs in C++
	2.3.1 Was ist C++
	2.3.1.1 Der Editor: Microsoft Visual Studio 2010 Ultimate
	2.3.1.2 Grundlagen & Hello World

	2.4 Open Source Computer Vision Library
	2.4.1 Was ist openCV?
	2.4.2 Von openCV bereitgestellte Funktionen
	2.4.2.1 Video Capturing
	2.4.2.2 Bildbearbeitung und Zeichnen auf Bildern
	2.4.2.3 Face Detection

	3 Verwandte Arbeiten
	3.1 Arbeiten zur Cognitive Load Theory
	3.2 Messmethoden zur Bestimmung der kognitiven Last
	3.2.1 Hauttemperaturmessung zur Stressbestimmung

	3.3 User Studies und Testaufbau zur Evaluierung der Messmethoden

	4 Das Konzept
	4.1 Die Sensoren, Datenerhebung
	4.2 Möglichkeiten das visuelle Bild und das Wärmebild anzugleichen
	4.3 Datensammlung und -Verarbeitung
	4.3.1 Gesichtserkennung
	4.3.2 Bestimmung der kognitiven Last

	4.4 Tests und Prüfung der Konstruktion
	4.5 Anwendungszenarien
	4.6 Planung einer Nutzerstudie
	4.7 Mögliche Erweiterungen

	5 Umsetzung und Implementierung
	5.1 Die Hardware
	5.2 Umsetzung in C++
	5.2.0.1 Zusammenhang zwischen ImagerIPC.dll und Imager.exe
	5.2.1 IPC VisCam als Basis
	5.2.1.1 Datenrepräsentation des Wärmebilds

	5.2.2 Bildwiederholfrequenz
	5.2.3 Die Rolle von openCV
	5.2.3.1 Kameraanbindung mit openCV
	5.2.3.2 FaceDetection mit openCV
	5.2.3.3 Visualisierung der Gesichtsbereiche

	5.2.4 Das Programm und seine Funktionalität
	5.2.5 Angleichung des visuellen Bilds und des Wärmebilds

	6 Fazit und Ausblick
	6.1 Zusammenfassung
	6.2 Fazit
	6.3 Ausblick

	Literaturverzeichnis

