
Institut für Softwaretechnologie

Abteilung Software Engineering II

Universität Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Bachelorarbeit Nr. 14

Analyse des Wartungsaufwandes
von aktiven Produkten

Rick Krüger

Studiengang: Informatik

Prüfer: Prof. Dr. rer. nat. Stefan Wagner

Betreuer: Dipl.-Inf. Jan-Peter Ostberg

begonnen am: 04. Juni 2012

beendet am: 04. Dezember 2012

CR-Klassifikation: D.2.7, D.2.8

Kurzfassung

In dieser Arbeit werden Metriken zur Analyse von Software-Wartungsaufwänden vor-
gestellt und mithilfe von Daten aus der aktiven Wartung angewandt. Des Weiteren
werden Metriken über die Datenqualität von Systemen zur Wartungsaufwandserfassung
aufgezeigt und ebenfalls bei den vorhandenen Realdaten eingesetzt. Dabei wird ein
realistisches Bild der Wartungsaufwände fern der statischen Codeanalyse gezeichnet.

2

INHALTSVERZEICHNIS

1. Einleitung 6

2. Grundlagen 8
2.1. Software . 8

2.2. Dokumentation . 8

2.3. Fehler . 9

2.4. Software-Wartung . 10

2.5. Wartbarkeit von Software . 11

2.6. Wartungsaufwand . 12

2.7. Wartungsfall . 12

2.8. Ticket / Issue . 12

2.9. Aktive Produkte . 13

2.10. Anmerkungen . 13

3. Über die zu analysierenden Daten 14

4. Metriken 16
4.1. Goal-Question-Metric-Ansatz . 17

4.2. Metriken basierend auf JIRA . 18

4.3. Metriken basierend auf OTRS . 18

5. Schaffung der technischen Grundlagen 19
5.1. BIRT . 19

5.2. JIRA . 20

5.3. OTRS . 21

5.4. Weitere Möglichkeiten des Datenimports 21

6. Analyse der Wartungsaufwände 22
6.1. Gesamtübersicht . 22

6.1.1. Tickets ohne eine Verknüpfung zu einem Issue 23

6.1.2. Tickets mit einer Verknüpfung zu einem Issue 26

6.2. Analysen der Wartungsaufwände mithilfe der Metriken 27

6.2.1. Time per Version . 28

6.2.2. Time per Issue per Version . 28

6.2.3. Issues per Version . 30

3

6.3. Zusammenfassung der Ergebnisse . 31

7. Analyse und Verbesserungsvorschläge der Datenqualität 33
7.1. Datenqualität im OTRS . 33

7.2. Datenqualität in JIRA . 34

8. Zusammenfassung und Ausblick 38
8.0.1. Volltext-Analysen . 39

8.0.2. Formalisierung des Wartungsaufwandes 39

8.0.3. Analyse der Entwicklung neuer Funktionen zur Kundenakquise . 39

8.0.4. Einzelfallanalyse der perfektiven Wartung 40

A. Anhang 41

Literaturverzeichnis 49

4

Abbildungsverzeichnis

3.1. Workflow Wartungsprozess . 15

6.1. Anteil der Tickets mit einer Verknüpfung im 1st - Level - Support 23

6.2. Nachrichtenversand im 1st-Level (keine Verknüpfung) 24

6.3. Anteil der Tickets mit einer Verknüpfung im 2nd - Level - Support 24

6.4. Wartezeiten für Tickets im 2nd - Level - Support mit einer Verknüpfung
zu einem Issue . 26

6.5. Nachrichtenversand im 2nd-Level . 27

6.6. Zeit pro Version aufgeteilt in einzelne Wartungstypen 29

6.7. Anzahl an Issues pro Version aufgeteilt in einzelne Wartungstypen 32

7.1. Zeit pro Version aufgeteilt in einzelne Wartungstypen 2011 36

7.2. Eintragende Benutzer pro Monat 2011 . 37

A.1. Durchschnittliche Zeit für ein Issue (adaptive Wartung) 42

A.2. Median der Zeit für ein Issue (adaptive Wartung) 43

A.3. Durchschnittliche Zeit für ein Issue (korrektive Wartung) 44

A.4. Median der Zeit für ein Issue (korrektive Wartung) 45

A.5. Durchschnittliche Zeit für ein Issue (perfektionierende Wartung) 46

A.6. Median der Zeit für ein Issue (perfektionierende Wartung) 47

A.7. Verlauf der Verknüpfung zwischen OTRS und JIRA im 1st-Level-Support 48

5

KAPITEL 1

EINLEITUNG

Jedes Softwareprojekt, das eine gewisse Größe überschreitet und sich über längere Zeit
in einem aktiven Nutzungs- und Wartungsprozess befindet, wird früher oder später
Wartungsaufwände erzeugen, da es weder Code gibt, der zu 100 Prozent frei von Fehlern
ist, noch davon auszugehen ist, dass sich die Anforderungen an eine Software nicht
verändern.

Den Wartungsaufwand einer Software abschätzen zu können, ist dabei nicht nur von
theoretischem Interesse. So kann ein hoher Wartungsaufwand (gerade im korrektiven
Bereich) die Entwicklung anderer, neuer Produkte oder auch die Weiterentwicklung, also
die adaptive Wartung, des Produktes zum Erliegen bringen. Oftmals fällt es schwer, den
genauen Ort und die Menge der anfallenden Wartungsaufwände abzuschätzen. Gerade
in einer laufenden Softwareentwicklung, die nicht von Beginn an mit den Grundsätze
des Software Engineerings durchgeführt wurde, ist dies ein Problem, da es häufig keine
konsequente Analyse der Softwarequalität gibt. Das Ziel dieser Arbeit soll nun sein, den
Wartungsaufwand eines aktiven Produktes zu analysieren und somit die Möglichkeit der
präzisen Optimierung des Softwareentwicklungsprozesses zu geben.

Im Gegensatz zu Analysen mithilfe von geänderten Zeilen (LOC) oder vergleichbaren Me-
triken, die die Analyse über den Programmquelltext durchführen und dementsprechend
Analysen über die Wartbarkeit, ergo einer theoretische Größe, durchführen, ist in dieser
Arbeit die Verwertung der Angaben aus dem aktiven Wartungsprozess vorgesehen und
es wird somit eine Analyse der expliziten Wartungszeiten durchgeführt. Dabei werden
Realdaten verwendet, welche aus jeweils einer Installation des Issue-System JIRA und
dem Ticket-System OTRS entnommen werden, um Metriken zu entwickeln, die sich für
die Analyse dieser Daten eignen. Dies stellt somit eine Ergänzung zu den bisherigen
statischen Code-Analysen dar und soll so detailliertere Ergebnisse über die Wartung
innerhalb eines Unternehmens geben.

Es soll im Folgenden auch gezeigt werden, inwieweit Aussagen über den Wartungsauf-
wand eines Produktes, welches sich im aktiven Nutzungsprozess befindet, mit diesen
gemacht werden können, also inwiefern sich der Wartungsaufwand anhand dieser
Metriken möglich ist. Da die Analyse anhand von real angefallenen Wartungsdaten
durchgeführt wird, sind auch Vorschläge zur Optimierung der Datenqualität Teil der
Arbeit.

6

1. Einleitung

Gliederung

Die Arbeit ist in folgender Weise gegliedert:

Kapitel 2 – Grundlagen: Hier werden werden die Grundlagen dieser Arbeit beschrieben
und definiert.

Kapitel 3 – Über die zu analysierenden Daten stellt den Industriepartner und dessen
Wartungsprozesse vor.

Kapitel 4 – Metriken: Hier werden die verwendeten Metriken und die dahinterliegenden
Fragestellungen erläutert.

Kapitel 5 – Schaffung der technischen Grundlagen beschreibt, wie auf die Daten zuge-
griffen wurde und dieser verarbeitet wurden.

Kapitel 6 – Analyse der Wartungsaufwände enthält die Analysen anhand der vorher er-
arbeiteten Metriken

Kapitel 7 – Analyse und Verbesserungsvorschläge der Datenqualität zeigt Möglichkei-
ten auf, wie die Qualität der analysierten Daten zu bewerten ist

Kapitel 8 – Zusammenfassung und Ausblick fasst die Ergebnisse der Arbeit zusammen
und stellt Anknüpfungspunkte vor.

7

KAPITEL 2

GRUNDLAGEN

Für das Verständnis der Arbeit sind einige Begriffe vonnöten, die hier im Folgenden er-
läutert werden sollen. Im Allgemeinen werden die von Ludewig und Lichter in Software-
Engineering [Lud10] verwendeten Definitionen übernommen. Für weitere Informationen
zu einzelnen Stichpunkten ist auf dieses Werk verwiesen. Dennoch sollen hier die Defini-
tionen der Vollständigkeit halber hier noch einmal dargelegt werden.

2.1. Software

Das IEEE hat folgende Definition von Software:

Software - Computer programs, procedures, and possibly associated docu-
mentation and data pertaining to the operation of a computer system.

(IEEE Std 610.12 (1990) [IEE90])

Hervorzuheben ist an dieser Definition, dass explizit auch die Dokumentation erwähnt
wird, womit sich Wartungsaufwände auch auf eine Verbesserung der Dokumentation
beziehen können. Explizit soll der Begriff Dokumentation erläutert werden

2.2. Dokumentation

Die Dokumentation ist ein fester Bestandteil einer Software und kann nicht von dieser
getrennt gedacht sein. Dabei ist im Allgemeinen zwischen zwei Arten der Dokumentation
zu unterscheiden:

• Integrierte Dokumentation – Dies bezeichnet alle im Quelltext vorhandenen Kom-
mentare bzw. Hinweise auf die Funktionsweise des Programms. Dabei seien auch
Variablenbezeichner gemeint, die ein besseres Verständnis erlauben.

• Separate Dokumentation – Die separate Dokumentation sind die nicht im Quell-
text enthaltenen Dokumente, die ein Verständnis der Software erlauben sollen.

8

2.3. Fehler

Dabei kann die separate Dokumentation in Einzelfällen, wie beispielsweise der Dokumen-
tation einer Schnittstelle direkt aus den im Quelltext enthaltenen Kommentaren generiert
sein. Während bei der integrierten Dokumentation der Fokus auf der Wartbarkeit der
Software liegt, ist dieser bei der separaten Dokumentation mehr auf ein Verständnis der
Bedienung gelegt. Daher wird im weiteren Verlauf dieser Arbeit keine Analyse über die
integrierte Dokumentation stattfinden.

2.3. Fehler

Ein Fehler in einer Software ist im Allgemeinen als eine nicht der Spezifikation der
Software entsprechende Funktionsweise eines Programms. Das IEEE führt dies in [IEE10]
wie folgt aus:

defect: An imperfection or deficiency in a work product where that work
product does not meet its requirements or specifications and needs to be
either repaired or replaced. (adapted from the Project Management Institute)

NOTE—Examples include such things as 1) omissions and imperfections
found during early life cycle phases and 2) faults contained in software
sufficiently mature for test or operation.

error: A human action that produces an incorrect result. (adapted from
ISO/IEC 24765:2009)

failure: (A) Termination of the ability of a product to perform a required
function or its inability to perform within previously specified limits. (adapted
from ISO/IEC 25000:2005) (B) An event in which a system or system compo-
nent does not perform a required function within specified limits. (adapted
from ISO/IEC 24765:2009)

NOTE—A failure may be produced when a fault is encountered.

fault: A manifestation of an error in software. (adapted from ISO/IEC
24765:2009) problem: (A) Difficulty or uncertainty experienced by one or
more persons, resulting from an unsatisfactory encounter with a system in
use. (B) A negative situation to overcome. (adapted from ISO/IEC 24765:2009)

(IEEE Std 1044-2009)

Dabei ist explizit festgelegt, dass ein Fehler (error) ein falsches Ergebnis aufgrund
einer Eingabe durch den Benutzer bezeichnet, während der klassische Bug ein Defekt
(failure) ist. Diese Definition soll auch im Folgenden gelten, das heißt, dass ein Fehler
im Allgemeinen zu einem Wartungsfall führt, allerdings ein Fehler nicht unbedingt zu
der Behebung eines Defekts führen muss, da für das Auftreten eines Fehlers kein Defekt
vorliegen muss.

9

2.4. Software-Wartung

2.4. Software-Wartung

Software kann, wie von Ludewig und Lichter angemerkt (Seite 566), nicht altern, daher
ist unter der Wartung von Software im Allgemeinen eher von einer Optimierung zu
sprechen, sei es, um Fehler zu entfernen oder die Software an veränderte Gegebenheiten
anzupassen. Bei der Definition für Software-Wartung schließen wir uns der Definition
durch Ludewig und Lichter an, die wie folgt lautet:

Software-Wartung ist jede Arbeit an einem bestehenden Softwaresystem, die
nicht von Beginn der Entwicklung geplant war oder hätte geplant werden
können und die unmittelbare Auswirkungen auf den Benutzer der Software
hat.

Dabei gehen wir im Folgenden aufgrund der Lebensdauer der betrachteten Produkte
davon aus, dass die Arbeit, die an den Softwaresystemen durchgeführt wird, nicht von
Anfang an geplant wurde und es sich demnach bei allen Daten die betrachtet werden
sollen um Wartungsdaten handelt.

Das IEEE unterscheidet die folgenden Wartungstypen bei der Software-Wartung:

adaptive maintenance – Software maintenance performed to make a compu-
ter program usable in a changed environment.

corrective maintenance – Maintenance performed to correct faults in Softwa-
re.

perfective maintenance – Software maintenance performed to improve the
performace, maintainability, or other attributes of a computer program.

preventive maintenance – Maintenance performed for the purpose of preven-
ting problems before they occur. (IEEE Std 610.12 (1990) [IEE10])

Über die letzten beiden Punkte und ihren Sinn wurde bereits in dem Buch von Ludewig
und Lichter[Lud10, Seite 567 ff.]

Im Folgenden sollen auch die vom Industriepartner verwendeten Begriffe verwendet
werden. Dabei gibt es folgende zwei Definitionen für Fehlerbehebung:

• Bug – Ein Defekt, der reproduzierbar ein nicht erwünschtes Verhalten produziert,
wird behoben

• Incomplete Specification Implementation – Das Nachrüsten von Funktionalitäten,
die aus Kundensicht unzureichend implementiert waren. Ein Beispiel dafür ist
die Erkennung von Barcodes. Die vorliegende Software kann einen Großteil der
weltweit verwendeten Barcodes lesen, es kann aber sein, dass ein Kunde einen
nicht implementierten Barcode verwenden will. In diesem Fall ist die Fähigkeit in
Grundsätzen vorhanden, aber unzureichend implementiert

• Improvement – Die Erweiterung oder Verbesserung einer bestehenden Funktiona-
lität

• New Feature – Die Einführung einer neuen Funktionalität

10

2.5. Wartbarkeit von Software

• Wish – Die Einführung einer neuen Funktionalität auf Kunden- oder internen
Wunsch

• Documentation – Arbeiten an der Dokumentation, in diesem Fall der separaten
Dokumentation

• Task / Sub-Task – Dienen zur Strukturierung von Funktionalitätseinführungen

Während die erste Variante für Fehler direkt mit der corrective maintenance korreliert,
sind die zweite und dritte Variante problematisch, da sie Ähnlichkeiten mit der perfective
maintenance, die von Ludewig und Lichter zu Recht kritisiert wurde, besitzen. Denn
entweder wurde ein ungenügendes Produkt an den Kunden ausgeliefert, wodurch es
sich um einen Defekt handelt, oder, falls die Spezifikation ein Feature nicht vorausge-
setzt hat, es sich um ein neues Feature handelt, was dementsprechend der adaptiven
Wartung entspräche. Da es diese Klassifizierungen allerdings innerhalb der Daten gibt
und eine Einteilung der betroffenen Wartungsfälle den Rahmen der Analyse übersteigt,
müssen diese Klassen als solche akzeptiert werden. Es ist allerdings angeregt worden,
die Definition für Wartungsfälle den von Ludewig und Lichter als sinnvoll erachteten
Kategorien anzupassen, um so zukünftig nach Maßstäben des Software-Engineerings
korrekte Analysen zu ermöglichen.

New Feature, wobei Task und Sub-Task hinzugezählt werden, und Wish sind in die
Klasse der adaptive maintenance einzuordnen, da bei beiden das Anforderungsprofil der
Software geändert wurde.

Bei der Wartungsarbeit Documentation handelt es sich, wie bereits angemerkt um die
Arbeiten an der separaten Dokumentation und ist daher als Wartungsfall nicht in die
Definitionen einzuordnen, sondern ist den jeweiligen Wartungsfällen zuzuordnen, die
eine Veränderung der Dokumentation geführt haben.

Die Einsortierung von Wartungstypen nach dem IEEE ist in der Realität des Öfteren ein
Problem, in den vorliegenden Daten sind diese nahe den Standards, allerdings wurde
in [Opf04] darauf hingewiesen, dass Wartungsfälle oft nur nach geschätzter Länge und
nicht nach Typ einsortiert werden.

2.5. Wartbarkeit von Software

Auch wenn auf die Wartbarkeit der betrachteten Produkte in dieser Arbeit nicht weiter
eingegangen werden soll, so soll sie doch zur Abgrenzung zum Terminus des Wartungs-
aufwandes definiert sein.

Die Wartbarkeit einer Software ist eine theoretische Größe die Aussagen darüber treffen
soll, wie einfach und zeitintensiv die Wartung einer Software vonstatten geht, falls eine
Wartung notwendig wird. Dabei werden verschiedene Metriken zur Komplexitäts- und
Übersichtlichkeitsanalyse (Lesbarkeit) des Quelltextes verwendet, wie beispielsweise
Lines-of-Code (LOC) oder der Halstead-Metrik.

Die Wartbarkeit ist erst in dem Moment für die Wartung relevant, in dem ein Wartungs-
fall eintritt. In diesem Fall kann eine schlechte Wartbarkeit den Prozess der Wartung
verlangsamen. Durch die Tatsache, dass es sich um eine theoretische Größe handelt, kann

11

2.6. Wartungsaufwand

im Vergleich zur Analyse über die real anfallenden Wartungsvorgänge nur teilweise eine
Aussage über die Software-Wartung getroffen werden, während natürlich eine Analyse
der Wartungsaufwände nur teilweise Rückschlüsse auf die Wartbarkeit zulässt.

2.6. Wartungsaufwand

Mit Wartungsaufwand soll im Folgenden die real anfallende Zeit bezeichnet werden,
die für Wartung verwendet wird. Dabei soll eine Unterscheidung in die zwei folgenden
Kategorien für Wartungsaufwände getroffen werden (nicht mit den Kategorien für
Wartungsfälle zu verwechseln):

• Firmenrelevanter Wartungsaufwand – dies bezeichnet sämtliche Aufwände, die
in Support, Entwicklung und Dokumentation anfallen

• Softwarerelevanter Wartungsaufwand – umfasst nur den Teil des firmenrelevanten
Wartungsaufwandes, der zu einer konkreten Änderung an der Software nach der
Definition von Software-Wartung führt

Diese Unterteilung erlaubt die Klassifizierung der anfallenden Zeiten, die für eine
Bearbeitung von Support-Fällen aufgewendet wird und soll im Folgenden auch Hinweise
auf eventuell notwendige Überarbeitungen der Dokumentation liefern.

2.7. Wartungsfall

Ein Wartungsfall ist definiert als ein in sich abgeschlossener Vorgang, der mit der Kontak-
tierung des Supports durch einen Kunden begonnen wird, danach im Support bearbeitet
wird, bei Bedarf die Korrektur eines potentiellen Fehlers umfasst und schlussendlich mit
der Nachbearbeitung durch den Support endet.

2.8. Ticket / Issue

Im Rahmen dieser Arbeit ist häufig von den zwei Begriffen Ticket und Issue die Rede.
Dabei bezeichnet ein Ticket eine durch den Support abgelegte Kundenanfrage im Trouble-
Ticket-System, während ein Issue einen Eintrag im Issue-Tracking-System einer Firma
bezeichnet. Dieser kann, muss aber keine Verbindung zu einem Ticket besitzen und
kann in verschiedene Unterarten aufgeteilt werden beispielsweise einem Bug, aber auch
einem neuen Feature und erlaubt so eine bessere Unterscheidung als im klassischen
Bug-Tracking.

12

2.9. Aktive Produkte

2.9. Aktive Produkte

Ein aktives Produkt ist eine Software oder eine Softwareversion, welche sich im firmenin-
ternen oder -externen Gebrauch befindet und zu dem es im letzteren Fall bestehende
Wartungsverträge gibt. Ein aktives Produkt kann mehrere aktive Versionen beinhalten,
wobei auch in diesem Fall nur in Benutzung befindliche Versionen mit Wartungsverträgen
über die jeweilige Versionen als aktiv gelten.

2.10. Anmerkungen

Es werden im Folgenden nur abgeschlossene Wartungsfälle zur Analyse herangezogen,
da bei noch nicht abgeschlossenen Vorgängen keine Aussage über endgültige Zeiten
getroffen werden kann. Allerdings ist anzumerken, dass auch bereits geschlossene War-
tungsfälle in Einzelfällen durch Wiederauftauchen eines Fehlers erneut geöffnet werden
können und somit die erfassten Zeiten dennoch nicht den endgültigen auf den gesamten
Prozess angefallenen Zeiten entsprechen müssen.

Alle Aussagen, die im Laufe der Arbeit getroffen werden, sind in Relation zu der Größe
der Software zu sehen, das bedeutet, alle absoluten Zahlen in Verhältnis zu der Anzahl der
Codezeilen zu sehen sind. Dies erlaubt einen Vergleich verschiedener Wartungsaufwände
verschiedener Firmen und verschiedener Produkte. Für die interne Analyse, wie sie in
diesem Fall durchgeführt wurde, ist eine Darstellung der absoluten Zahlen sinnvoller.

13

KAPITEL 3

ÜBER DIE ZU ANALYSIERENDEN
DATEN

Die Analyse des Wartungsaufwände findet an Realdaten statt, die bei der Wartung
einer Software entstanden sind, die sich bereits mehr als 10 Jahre in einem aktiven
Entwicklungs- und Verwendungsprozess befindet. Die Software wird dabei für verschie-
dene Plattformen entwickelt und enthält ca. 5 Mio. Zeilen C-Code.

Die Software als solche ist auch durch die mit der Zeit gewachsenen Strukturen innerhalb
der Firma interessant, da diese im Laufe des Entwicklungsprozesses regelmäßig geändert
wurden und somit auch auf die Wartungsprozesse als solche Einfluss genommen haben.

Durch diese Faktoren ist die Software prädestiniert für eine Analyse.

Von derselben Firma werden auch Produkte ausgeliefert, die in Java entwickelt werden,
allerdings befinden sich diese noch nicht lange in einem aktiven Wartungsprozess, sprich
kürzer als ein Jahr, wodurch eine Analyse von dieser Software keinen großen Nutzen
hätte, da die Ergebnisse nicht einfach einzuordnen wären und noch in einem zu großen
Maße schwanken.

Bevor mit der eigentlichen Analyse begonnen werden kann, muss der Wartungsprozess
innerhalb der Firma als solches dargelegt werden. Dafür dient das Diagramm 6.7.

Wie ersichtlich ist, existiert ein zweigliedriger Support, bei dem der 1st-Level-Support
versucht, simple Probleme direkt zu lösen und in komplexeren Fällen das Problem
möglichst gut zu reproduzieren, während der 2nd-Level-Support Rücksprache mit der
Entwicklungsabteilung halten kann und so auch komplexere Probleme zu einer Lösung
bringen kann. Dabei versucht der 2nd-Level-Support auch, das Problem möglichst zu
reduzieren, das bedeutet, dass bei einer größeren Datei, die durch die Software ver-
arbeitet werden soll, die betreffende Stelle wenn möglich isoliert werden soll, um die
Übersichtlichkeit des Problems für die Entwicklungsabteilung zu steigern.

Der Support verwendet für die Verwaltung der Supportanfragen das Ticket-System OTRS
[AG], während in der Entwicklungs- und der Dokumentationsabteilung hingegen wird
JIRA [Atlb], ein Issue-System, verwendet, um die anfallenden Zeiten zu erfassen. Diese
beiden Systeme werden im Kapitel 5 – Schaffung der technischen Grundlagen näher
erläutert und der Zugriff auf diese geschildert.

14

3. Über die zu analysierenden Daten

Abbildung 3.1.: Workflow Wartungsprozess

15

KAPITEL 4

METRIKEN

Das Ziel dieser Arbeit soll nicht nur die Analyse von Wartungsdaten einer Firma sein,
sondern auch auf die Wartungsprozesse anderer Firmen verallgemeinert werden können.
Zu diesem Zwecke ist es wichtig, die gemessenen Daten mithilfe von Metriken zu
standardisieren. Eine Metrik definiert sich dabei nach dem IEEE wie folgt:

metric – A quantitative measure of the degree to which a system, component,
or proccess possesses a given attribute

See also: quality metric

quality metric – (1) A quantitative measure of the degree to which an item
possesses a given quality attribute.

(2) A function whose inputs are software data and whose output is a single
numerical value that can be interpreted as the degree to which the software
possesses a given quality attribute.

(IEEE Std 610.12 (1990) [IEE10])

Damit ist festgelegt, dass bei einer Metrik quanitativ die Qualität eines Merkmals einge-
stuft werden soll.

Im Folgenden sollen nun Metriken vorgestellt werden, die zur Analyse des Wartungsauf-
wandes bei aktiven Produkten anhand vorhandener Daten aus Ticket-Systemen verwen-
det werden können.

Dabei werden einzelne Metriken zur Darstellung von verschiedenen qualitativen und
quantitativen Faktoren der Software-Wartung definiert, die zusammen ein Gesamtbild
der Wartung ergeben. Es bleibt abzuwägen, ob eine Gesamtmetrik, welche die einzelnen
Faktoren bündelt, sinnvoll ist, oder ob zur Gesamtanalyse nicht die Bewertung der
einzelnen Punkte auf jeweils getrennten Skalen sinnvoll ist, wie sie auch in dieser Arbeit
durchgeführt wird.

Die Metriken dienen einerseits zur Erfassung aktueller Wartungsdaten, können aber
auch dazu dienen, den Aufwand von zukünftigen Versionen abzuschätzen, falls am
Entwicklungsprozess keine grundsätzlichen Änderungen vorgenommen wurden, also
von einer vergleichbaren Softwarequalität mit ähnlichem Wartungsaufwand auszugehen

16

4.1. Goal-Question-Metric-Ansatz

ist oder es kann auch teilweise der Erfolg von neuen Maßnahmen abgeschätzt werden,
nachdem diese für eine längere Zeit im Entwicklungsprozess eingesetzt wurden.

4.1. Goal-Question-Metric-Ansatz

Um die zu verwendenden Metriken auszuwählen, wurde nach dem Goal-Question-
Metric-Ansatz (GQM) vorgegangen. Bei diesem werden im ersten Schritt die elementaren,
abstrakten Fragen definiert, im nächsten Schritt die daraus resultierenden, konkreten Fra-
gestellungen erarbeitet, die sich schlussendlich im letzten Schritt in Metriken ausdrücken
lassen. Weiterführende Informationen zu GQM sind in [Bas92] zu finden.

Vorabbemerkungen:

• Falls ein Issue mehrere Versionen anbetrifft, wird die Zeit grundsätzlich der ersten
betroffenen Version angerechnet. Im vereinfachten Modell nehmen wir an, dass
ein Bugfix für eine Version sich auch in geringer Zeit auf eine spätere Version
anwenden lässt. Da eben dieser Aufwand bisher nicht erfassbar ist, rechnen wir
den Aufwand grundsätzlich der ersten betroffenen Version an.

• Fragestellungen, die den Code der untersuchten Software und dessen Qualität an-
betreffen, sind im Folgenden ausgeklammert, da dies in den Bereich der statischen
Codeanalyse fällt, welche allerdings, wie bereits angemerkt, nicht Teil dieser Arbeit
sein soll.

Unser Ziel ist, den Wartungsaufwand eines Produktes zu erfassen, welches sich im
Produktiveinsatz befindet.

Aus diesem Ziel lassen sich die folgenden Fragen ableiten:

1. Wie hoch ist der aktuelle Wartungsaufwand?

2. Warum fällt dieser Wartungsaufwand an?

Aus der 1. abstrakten Frage lassen sich mehrere konkrete Fragestellungen ableiten:

1. Gesamtzeit, die für eine Version an Wartungszeit aufgewendet wird

2. Durchschnittliche Zeit pro Wartungsvorgang (pro Version)

3. Anzahl an Tickets zu einer Version (zeitliche Verteilung)

4. Anzahl an Nachrichten zu einem Ticket

Die 2. Fragestellung ist ebenfalls abstrakt und lässt folgende detaillierteren Fragestellun-
gen zu:

1. Wie ist die Verteilung auf die einzelnen Wartungsarten?

2. Gibt es Tickets im Support, die durch eine bessere Dokumentation verhindert
werden können? (diese Fragestellung soll indirekt benötigten Wartungsaufwand
aufzeigen, näheres weiter unten)

17

4.2. Metriken basierend auf JIRA

4.2. Metriken basierend auf JIRA

1. Time per Version: Zeit, die für alle Issues zu einer Version aufgewendet wurde.

2. Time per Issue per Version: Diese Metrik gibt eine Aussage über den Median oder
Durchschnittswert der Bearbeitungszeit für ein Issue innerhalb einer Version. Dabei
kann in die einzelnen Wartungstypen unterschieden werden

3. Issues per Version: Diese Metrik gibt eine statistische Zusammenfassung über die
zu einer Version erstellten Tickets dar. Sie gibt noch keine genauen Daten über den
Wartungsaufwand, da keine qualitative Aussagen über die Tickets getroffen werden
und soll nur als Hilfsmetrik dienen. Eine Spezifizierung dieser Metrik erlaubt die
Angabe der Issue-Art, sei es ein Bugfix oder eine Neuentwicklung, um detailliertere
Statistiken über die Wartungsart zu geben.

Außerdem wird versucht, Aussagen über die Dokumentationsqualität / Handbuchqua-
lität und dem nötigen Aufwand, diese zu verbessern, zu treffen. Dies ist relevant, da
der zeitliche Aufwand, der auf den Support von mangelhaft dokumentierter Features
abfällt, den Gesamtprozess lähmt. Einem hohen Supportaufwand in diesen Fällen kann
und sollte durch eine bessere Dokumentation entgegengewirkt werden. Um Aussagen
über diese Qualität und schlussendlich auch auf den nötigen Wartungsaufwand treffen
zu können werden die Tickets betrachtet, die keine Verknüpfung zu einem JIRA-Issue
besitzen und als „resolved“, sprich gelöst, gelistet sind. Dies bietet nur eine erste An-
näherung, da wie bei der Analyse der Daten aus JIRA keine Analyse der eigentlichen
Software, bzw. in diesem Fall der Dokumentation, vorgenommen wird. Des Weiteren ist
natürlich anzumerken, dass es ebenso wie es nicht den perfekten Code einer Software
geben kann, auch keine perfekte Dokumentation geben kann.

4.3. Metriken basierend auf OTRS

1. Percentage of Tickets without Issues (per month): Bei dieser Metrik wird die
Anzahl der Tickets, die keine Verknüpfung zu einem JIRA – Issue besitzen durch
die gesamt auf ein Produkt innerhalb entfallenen Tickets geteilt. Dies kann zur
statistischen Erfassung auch monatsweise geschehen.

2. Messages per Ticket: Bei dieser Metrik wird die durchschnittliche Anzahl an Nach-
richten (bzw. der Median) dargestellt, die bei einem Ticket hin- und hergesendet
werden. Dabei soll unterschieden werden in Tickets, die eine Verknüpfung zu einem
Issue besitzen und, falls dies der Fall ist, in die einzelnen Phasen der Ticketbear-
beitung aufgeteilt (Erstbearbeitung durch Support, Bearbeitung in Entwicklung,
Nachbearbeitung im Support)

Des Weiteren soll im weiteren Verlauf versucht werden, den Gesamtprozess zu veran-
schaulichen.

Dabei soll der Gesamtfluss eines Tickets, das softwarerelevanten Wartungsaufwand er-
zeugt, dargelegt werden und mit den durchschnittlichen Verweildauern in den jeweiligen
Abteilungen / Systemen verknüpft werden.

18

KAPITEL 5

SCHAFFUNG DER TECHNISCHEN
GRUNDLAGEN

Nachdem nun im vorherigen Kapitel die benötigten Metriken entwickelt wurden, soll
nun der erste Teil der praktischen Arbeit vorgenommen werden. Um für die Analyse
Daten zu erlangen, müssen diese aus den verwendeten Systemen abgerufen werden.
Um dies zu tun werden im Folgenden zwei verschiedene Varianten verwendet, für die
eigentliche Auswertung und die Aufbereitung der Daten Eclipse-BIRT, welches beide
Varianten unterstützt.

Die beiden Zugriffsvarianten sind auch für eine Verallgemeinerung der in dieser Arbeit
vorgestellten Prozesse zur Analyse interessant, da sie bereits zwei der Möglichkeiten
abdecken, wie auf benötigte Daten zugegriffen werden kann.

Abschließend soll in diesem Kapitel auch auf weitere Möglichkeiten eingegangen werden,
wie benötigte Daten in BIRT zur Analyse eingepflegt werden können.

5.1. BIRT

Für die Analysen die im Rahmen dieser Arbeit durchgeführt wurden, wurde Eclipse BIRT
(Business Intelligence and Reporting Tools) eingesetzt. BIRT erlaubt, unter anderem, die
Einbindung verschiedener Datenquellen wie XML – Dateien, verschiedene Datenbanken
per JDBC, Web Services und anderer Quellen via eigener JAVA – Klassen, um diese zu
Reports zu verbinden.

BIRT ist ein Plugin für Eclipse und wurde von der Firma Actuate initiiert. Diese bietet
auch Erweiterungen für BIRT an, die die Arbeit an Reports erleichtern sollen. BIRT bietet
viele vorgefertigte Diagrammtypen, die durch simples Drag&Drop mit den zu verwenden
Daten befüllt werden können und so den Arbeitsaufwand zur Erstellung eines Reports
stark vereinfacht.

Die Arbeit mit den Daten ist dabei vielfältig möglich. Falls beispielsweise mehrere
Datenquellen in einem SQL-ähnlichen, zeilenbasierten Rückgabeformat vorliegen können
diese, wie für Datenbankabfragen üblich, per Join verbunden werden, etc. Auf der
anderen Seite bietet BIRT, wie auch später verwendet, die Möglichkeiten, den gesamten

19

5.2. JIRA

Zugriff in Eigenarbeit zu lösen und damit eine Vielzahl an komplexen Funktionalitäten
bereitzustellen. Dieser Zugriff basiert auf Javascript zusammen mit Mozilla Rhino, das in
diesem Fall erlaubt, JAVA-Objekte in Javascript anzusprechen.

5.2. JIRA

Nachdem JIRA bereits als das Issue-System vorgestellt wurde, soll hier näher auf die
technischen Eigenschaften und die Installation innerhalb der Firma eingegangen wer-
den.

JIRA ist eine JAVA-Applikation[Atlc] und wird zum Zeitpunkt dieser Arbeit in der
Version 5 mit einer PostgreSQL-Datenbank eingesetzt. Der Zugriff auf die Daten des
Issue-Systems soll über die bereitgestellte REST-API hergestellt werden, damit eine
zukünftige Weiterverwendung der Reports bei einem Versionswechsel erleichtert wird.

Um die Daten aus JIRA zu verwerten, müssen Anfragen über die API in der JIRA Query
Language (JQL)[Atla] gestellt werden. Für die API existiert eine Beispiel - JAVA-Client –
Implementierung (JRJC[Atld]), die auch im Folgenden erweitert und verwendet wurde.
JQL ist eine Sprache, die eng mit SQL verwandt ist. Allerdings wird auf Konstrukte für
die Auswahl von Tabellen, Spalten und damit zusammenhängenden Funktionen wie
JOINS verzichtet. Die Konzentration liegt auf den WHERE und ORDER BY – Klauseln.

Um die Verbindung zu dem System herzustellen, musste als erstes die gegebene Imple-
mentierung erweitert werden, um beispielsweise bei einer Anfrage sämtliche Datensätze
und nicht nur die durch das System standardmäßig auf 1000 begrenzte Anzahl zu ver-
wenden. Dafür wurden eigene abgeleitete Klassen angelegt, die im Falle, dass weniger
Datensätze als die geforderte Anzahl zurückgeliefert wurden, eine weitere Anfrage,
beginnend nach dem letzten Element der ersten, beginnt und diese Datensätze mit den
vorher erhaltenen zu einer Menge verbindet.

Als nächstes wurde ein DAO (Data-Access-Object) geschaffen, das von BIRT zur Abfrage
der Daten verwendet werden soll. Dieses stellt einzelne Methoden bereit, die zur Gewin-
nung der benötigten Daten dienen und bereitet diese auch schon nach den gegebenen
Vorgaben auf, so dass bereits Gruppierungen nach Versionsnummer oder Wartungsart
vorgenommen werden können.

Bei der Abfrage der einzelnen Issues aus dem System ist ein Nachteil des API-Zugriffs
sichtbar geworden, und zwar erlaubt diese zwar, wie vorher genannt, die Abfrage von
mehreren Datensätzen über eine JQL-Anfrage, allerdings sind die Issues, die zurückgege-
ben werden, unvollständig. Gerade Daten wie die eingetragenen Zeiten sind in diesen
Antworten unvollständig und können leider nicht detaillierter angefragt werden. Daher
ist es für diese Zwecke notwendig, jedes einzelne Issue anzufragen, um die benötigten
Daten zu ermitteln. Dies führt zu einem großen zeitlichen Aufwand, der sich verringern
ließe, wenn das System die direkte Angabe der benötigten Felder schon in einer JQL -
Anfrage erlauben würde.

20

5.3. OTRS

5.3. OTRS

Um die Daten aus dem OTRS zu verwerten, wurde der direkte Weg über die Datenbank
des Systems gewählt. Dies ist zwar aus Gründen der einfachen Weiterverwendung nicht
optimal, da aber die API der aktuell verwendeten Version (3.0.9) schlecht dokumentiert
ist und das System in Zukunft durch ein CRM ersetzt werden soll, wurde aus Gründen
der kürzeren Einarbeitungszeit der Weg über die Datenbank gewählt.

Als erstes wurde für die Verwertung ein Extrakt der Datenbank durch den Industriepart-
ner bereitgestellt, welcher in einer virtuellen Maschine eingepflegt wurde, um somit eine
Gefährdung der Daten des aktiven Systems zu verhindern.

Daraufhin wurden für die Extraktion der Daten Sichten angelegt, die eine Abstraktion der
Tabellendaten erlauben und somit eine Vorverarbeitung der analysierten Daten mithilfe
der Datenbanksoftware erlauben. Dies ist teilweise notwendig, da nicht die gesamte
Komplexität der SQL - Abfragen durch BIRT unterstützt werden.

Abschließend wurde die Verbindung zu der in der virtuellen Maschine befindlichen
Datenbank hergestellt und die Daten konnten in BIRT verwendet werden.

5.4. Weitere Möglichkeiten des Datenimports

Neben den bereits vorgestellten Varianten, Daten zu importieren, erlaubt BIRT auch
beispielsweise XML-Dateien, Tabellendokumente und verschiedene andere Dateiformate
als Datenquelle, wodurch auch eine Analyse von Daten die weder über eine bereitgestellte
API, noch durch den Direktzugriff auf eine Datenbank in das System gelangen können,
möglich wird. Diese können in der Praxis gleichberechtigt neben den vorgestellten
Möglichkeiten verwendet werden.

Als weitere Möglichkeit erlaubt BIRT auch die direkte Ansprache einer SOAP-API,
vorausgesetzt, es gibt zu dieser die benötigten Beschreibungsgdaten. Dies wäre auch für
das OTRS denkbar gewesen, aufgrund der nicht vorhandenen Beschreibungsdaten und
der im Allgemeinen geringen Dokumentation der API der verwendeten Version wurde
allerdings von dieser Möglichkeit abgesehen.

21

KAPITEL 6

ANALYSE DER
WARTUNGSAUFWÄNDE

Im Folgenden soll zur Analyse der Wartungsaufwände eine allgemeine Übersicht über
den Wartungsprozess gegeben werden und danach anhand der vorher definierten Metri-
ken die Prozesse analysiert werden. Die Analysen sind Top-down, also beginnend im
1st-Level-Support und endend in der Entwicklung.

Im Allgemeinen ist zwischen zwei Ticket-Arten zu unterscheiden:

1. Tickets ohne eine Verknüpfung zu einem Issue: Diese Tickets erzeugen keine
softwarerelevanten Wartungsaufwände, sind allerdings für die firmenrelevanten
Wartungsaufwände relevant, da sie zum einen dafür sorgen, dass Kosten für die
Firma entstehen und zum anderen die Bearbeitung von Tickets der ersten Klasse
verzögern können. Daher ist zu analysieren, aus welchen Gründen es Tickets dieser
Art gibt.

2. Tickets mit einer Verknüpfung zu einem Issue: Diese Tickets erzeugen software-
relevante Wartungsaufwände, da sie einen Prozess in der Entwicklung führen.

Wie bereits vorher angemerkt, werden nur geschlossene Tickets betrachtet.

6.1. Gesamtübersicht

Die Gesamtübersicht kann nur getrennt für beide Ticketarten gegeben werden, da eine ge-
meinsame Statistik aufgrund der unterschiedlichen Abläufe keine schlüssige Darstellung
erlaubt.

Dementsprechend folgt nun eine Darlegung des Prozesses anhand der beiden Ticketar-
ten.

Zur Analyse dieser Tickets werden die Metriken Percentage of Tickets without Issues
(per month) und Messages per Ticket implizit verwendet.

22

6.1. Gesamtübersicht

6.1.1. Tickets ohne eine Verknüpfung zu einem Issue

Als erstes betrachten wir die Tickets, die keine Verbindung zu einem Issue haben. Diese
Analyse ist unterteilt in den 1st- und den 2nd-Level - Support, da im 1st-Level-Support
aufgrund des strukturellen Aufbaus der Wartung grundsätzlich keine Verknüpfung zu
der Entwicklung herrschen sollte und diese Tickets daher gesondert betrachtet werden
sollen.

Abbildung 6.1.: Anteil der Tickets mit einer Verknüpfung im 1st - Level - Support

Beginnend mit dem 1st-Level-Support ergibt sich, dass 80% der Tickets in diesem keine
Verknüpfung zu einem Issue besitzen. Allerdings hat sich dieser Anteil auf bis zu 95%
erhöht (siehe auch Anteilsverlaufsgrafik im Anhang A.7), das heißt es widersprechen
nur noch ein geringer Teil der Tickets der firmentinternen Prozesse. Es ist daher davon
auszugehen, dass es sich, auch durch die gewachsenen Strukturen der Firma, die keine
vollständige Personaltrennung zwischen den beiden Supportschichten umschließt, inzwi-
schen nur noch um nicht vorgenommene Einsortierungen handelt, die zwar optimiert
werden sollten, um die statistische Analyse zu verbessern, aber im weiteren Verlauf kei-
nen Einfluss auf die Wartungsqualität und auf die entsprechenende Wartungsaufwände
haben. Diese Tickets können allerdings nicht in weitere Analysen einfließen, da sie nicht
produktspezifisch sind, also nicht unterschieden werden kann, zu welchem Produkt aus
der Firma die entsprechenden Anfragen gehören.

Eine weiterführende Analyse dieser Tickets zeigt, dass diese durchschnittlich 415 Stunden
im Support verweilen, was einer ungefähren Verweildauer von 17 Tagen und 7 Stun-
den entspricht. In dieser Zeit werden im Durchschnitt 1,965 Nachrichten durch einen
Supportmitarbeiter und 2,466 Nachrichten durch den Kunden versandt.

Als nächstes sollen die Tickets des 2nd-Level-Supports auf die gleichen Merkmale über-
prüft werden.

In der produktspezifischen Support-Queue des 2nd-Levels besitzen 44,46% der Tickets
keine Verknüpfung mit einem entsprechenden Issue im Issue-Tracker. Dies ist nicht in

23

6.1. Gesamtübersicht

Abbildung 6.2.: Nachrichtenversand im 1st-Level (keine Verknüpfung)

Abbildung 6.3.: Anteil der Tickets mit einer Verknüpfung im 2nd - Level - Support

24

6.1. Gesamtübersicht

erster Linie problematisch, da es auch Anfragen durch Kunden geben kann, die nicht
durch das Wissen des 1st-Level-Supports gelöst werden können. Diese Tickets sind
durchschnittlich 956 Stunden im Support, dies entspricht einer ungefähren Verweildauer
von 39 Tagen und 20 Stunden entspricht. Während dieser Zeit werden durch den Support
3,552 Mails und durch den Kunden 4,102 Mails im Durchschnitt versandt.

Zu betrachten ist, warum diese Tickets keine Verknüpfung zu einem entsprechenden
Issue besitzen, also ob ein etwaiges Problem bereits im 1st-Level-Support hätte gelöst
werden können. Dazu soll eine Stichprobe genommen werden und auf die jeweiligen
Lösungen hin analysiert werden. Eine entsprechende Volltext-Analyse wird unter zu-
künftige Erweiterungen näher erläutert werden.

Stichprobenbeschreibung

Zeitraum: 2011

Gesamtanzahl: 406 Tickets

Stichprobengröße / Abdeckung: 20 Tickets / 5%

Diese Tickets wurden mithilfe der zufälligen Sortierung, die von der MySQL-Datenbank
bereitgestellt wird (ORDER BY RAND()), ermittelt.

Folgende Informationen lassen sich aus diesen Tickets ermitteln:

• 16 Tickets entsprechen den Einsortierungsrichtlinien, das heißt es sind Probleme,
die nur mit entsprechenden Fachwissen oder Entwicklerrückfragen (die wiederum
kein Issue mit sich bringen) lösbar sind. Innerhalb dieser Gruppe gibt es allerdings
2 Tickets, die auf Konfigurationsfehler zurückzuführen sind. Dies kann bedeuten,
dass eine etwaige Optimierung der Dokumentation dem Support die Last abneh-
men könnte. Ein weiterer Fall wurde in einer neueren Version gelöst, es könnte
dementsprechend eine Verknüpfung zu dem entsprechenden Issue vorgenommen
werden, allerdings ist diese Nichtverknüpfung kein gravierendes Problem.

• 2 Tickets sind als erfolgreich geschlossen deklariert worden, nachdem lange keine
Antwort durch den Kunden erhalten wurde. Eventuell ist über einen weiteren Status
für Tickets, die aufgrund einer lang ausgebliebenen Antwort nach Problemlösung
geschlossen wurden, nachzudenken.

• 1 Ticket wurde aufgrund eines Fehlers mit Hardware-Relation erstellt (mit Konfigu-
ration lösbar), eventuell durch 1st-Level-Support lösbar.

• 1 Ticket stellt eine Frage zu der Einstellung, die die Lösung im vorher genannten
Ticket war. Es konnte kein Zusammenhang zwischen den Tickets. Dadurch sollte
über eine Verbesserung der Dokumentation überlegt werden, damit eine solche
Fragestellung in der Zukunft verhindert werden kann.

Die Stichprobenuntersuchung zeigt, dass 3 / 4 der Tickets richtig behandelt wurden,
also nicht durch den 1st - Level - Support gelöst werden konnten, aber keinen Defekt als
solchen in der Software beschreiben.

25

6.1. Gesamtübersicht

6.1.2. Tickets mit einer Verknüpfung zu einem Issue

Das folgende Diagramm gibt die durchschnittlichen Stunden an, die ein Ticket in den
einzelnen Stadien des Prozesses verbringt.

Wie vorher angemerkt sind hierbei Tickets aus dem 1st-Level-Support nicht mit einbezo-
gen, da diese keinem spezifischen Produkt zugeordnet werden können.

Abbildung 6.4.: Wartezeiten für Tickets im 2nd - Level - Support mit einer Verknüpfung
zu einem Issue

Als erstes zeigt die Gesamtübersicht, dass ein Ticket mit Verknüpfung in die Entwicklung
durchschnittlich 7 1/2 Tage im Support bearbeitet werden, bevor daraufhin 44 1/2 Tage
auf die Lösung des Problems durch die Entwicklung gewartet wird und schlussendlich
noch weitere 43 Tage in der Nachbearbeitung sind.

Allerdings ist anzumerken, dass die Nachbearbeitungszeit primär von der Zeit abhängt,
die auf Kundenseite vorhanden ist, um die Änderungen einzupflegen, des Weiteren
kommt es vor, dass Kunden nach erfolgreicher Änderung nicht in dem entsprechenden
Ticket antworten, dass der Fehler behoben wurde, wodurch teilweise Tickets nicht direkt
geschlossen werden können. Näheres zu diesem Problem ist in dem Kapitel über die
Datenqualität zu finden.

Während dieser Zeiten wurden im Durchschnitt die in 6.5 angegebenen Anzahlen an
Nachrichten versandt, dabei sind die einzelnen Phasen, also die Erstbearbeitung durch
den Support, Entwicklung, Nachbearbeitung durch Support einzeln aufgezeigt.

Wie hier erkennbar ist, werden innerhalb der Erstbearbeitung, welche den geringsten zeit-
lichen Anteil hat, die meisten Nachrichten versandt, während in der erheblich längeren
Nachbearbeitungszeit im Durchschnitt eine Nachricht weniger versendet wird, was wie-
derum auf die Tatsache hinweist, dass diese Zeit nur aufgrund von Nicht-Beantwortung
durch den Kunden in dieser Länge vorhanden ist.

26

6.2. Analysen der Wartungsaufwände mithilfe der Metriken

Abbildung 6.5.: Nachrichtenversand im 2nd-Level

6.2. Analysen der Wartungsaufwände mithilfe der Metriken

Als nächstes sollen die Wartungsdaten mithilfe der Metriken analysiert werden.

Dabei sind die Metriken, die im vorherigen Abschnitt bereits angewendet wurden nicht
noch ein weiteres Mal explizit aufgeführt.

Vorab sind folgende Dinge festzustellen:

• Es wurde keine Version 201108 veröffentlicht, sondern diese mit der Version 201109

zusammen veröffentlicht. Dabei ist ein erhöhter Anteil an neuen Features zu sehen,
welcher bei näherer Analyse auf eine einzelne Erweiterung zurückzuführen ist. Da-
bei ist anzumerken, dass diese Version dennoch über dem statistischen Durchschnitt
liegt, selbst wenn man die Zeiten für diese Version auf zwei Versionen aufteilen
würde. Auf Nachfrage ergab sich, dass diese Versionszusammenführung aufgrund
eines veränderten Releasezyklus’ durchgeführt wurde, bei dem der Zeitpunkt der
monatlichen Veröffentlichung geändert wurde.

• alle Versionen nach 201204 sind in der Statistik nicht als endgültig zu betrachten,
da der Stand der Daten dem von Anfang Juni 2012 entspricht. Des Weiteren
werden, wie vorher angemerkt, Wartungszeiten der ersten betroffenen Version
angerechnet, was in diesem Fall auch das Ergebnis von früheren Versionen noch
nach Veröffentlichung dieser Statistik verändern kann. Auch bei vorigen Versionen
können sich, aufgrund der aktiven Wartung, noch Veränderungen ergeben.

• die Versionen vor 200903 weisen eine hohe Unstetigkeit auf, was durch die Einfüh-
rung von JIRA zu diesem Zeitpunkt zurückzuführen ist, dementsprechend sind
auch diese nicht weiter zu betrachten, da sie etwaige Schlüsse verfälschen würden.
Auch der folgende Jahreszeitraum ist von vergleichsweise geringen Zeiten geprägt,
was auf die kontinuierliche Einführung des Systems hinweist.

27

6.2. Analysen der Wartungsaufwände mithilfe der Metriken

• nicht die gesamte Zeit, die für eine Version aufgewendet wird, muss in dem der
Version vorangehenden Monat geleistet werden. So sind gerade Zeiten für Bugs
nach dem Erscheinen einer Version und neue Features vor dem Erscheinen einer
Version anzusiedeln.

6.2.1. Time per Version

Als erste Metrik soll Time per Version betrachtet werden, die Statistik ist in der Abbil-
dung 7.1 zu finden.

Die Analyse der Zeit pro Version ergibt eine durchschnittliche Zeit von ca. 586 Stunden ,
wobei im Durchschnitt 190 Stunden auf Bugfixing und weitere 51 Stunden für Incomplete
Specification Implementation aufgewendet werden. Laut Entwicklungsabteilung sind 40%
der Arbeitszeit eines Mitarbeiters auf Bugfixing eingeplant, allerdings wird dies nicht
strikt kontrolliert. Dennoch ist eine gewisse Korrelation von den realen und geplanten
Zeiten vorzufinden.

Die Zeit, die für die Issue-Art Wish aufgewendet wird, ist sehr niedrig und taucht nur
in zwei Version auf, nämlich 201009 und 201105. Da sich bei beiden die Zeit in einem
Bereich von 5 Stunden befindet, ist anzunehmen, dass viele Kundenwünsche nicht als
solche klassifiziert werden, sondern als neues Feature, wobei auch diese Einsortierung
keineswegs falsch ist, allerdings ist abzuwägen, ob eine Unterteilung in die beiden
Arten sinnvoll ist oder ob es im Allgemeinen reicht, beide Wartungsarten in einer
zusammenzufassen, da beide nach den klassischen Wartungskategorien in dieselbe
fallen.

Im Allgemeinen haben die Zeiten eine hohe Varianz, so wurden beispielsweise für die
Versionen 201011, 201103, 201106, 201111 und 201201 jeweils ca. 350 Stunden aufgewendet,
für die Version 201203 sogar weniger als 200 Stunden, während auf der anderen Seite
für Versionen wie 201010, 201105, 201107 und 201204 mehr als 800 Stunden aufgewendet
wurden.

6.2.2. Time per Issue per Version

Die Analyse über diese Metrik soll zur genaueren Darlegung in die einzelnen War-
tungstypen aufgeteilt betrachtet werden; dabei wurden die innerhalb des Unternehmens
verwendeten Issue-Klassifikationen anhand der in 2.4 definierten Zuordnung zusammen-
gefasst.

Die jeweiligen Diagramme sind der Übersichtlichkeit halber im Anhang zu finden.

Des Weiteren sind alle Statistiken sowohl für den Median als auch für den Durchschnitt
aufgestellt.

28

6.2. Analysen der Wartungsaufwände mithilfe der Metriken

Abbildung 6.6.: Zeit pro Version aufgeteilt in einzelne Wartungstypen 29

6.2. Analysen der Wartungsaufwände mithilfe der Metriken

Adaptive Wartung

Bei der adaptiven Wartung ergibt sich eine durchschnittliche Zeit von 10,472 Stunden,
um in Issue zu bearbeiten.

Der Median (berechnet durch den Median der Mediane) für die Zeit, um ein Issue zu
bearbeiten beträgt 4 Stunden.

Korrektive Wartung

Bei der korrektiven Wartung ergibt sich eine durchschnittliche Zeit von 5,6146 Stunden,
um in Issue zu bearbeiten.

Der Median (berechnet durch den Median der Mediane) für die Zeit, um ein Issue zu
bearbeiten beträgt 2 Stunden.

Perfektionierende Wartung

Bei der perfektionierenden Wartung ergibt sich eine durchschnittliche Zeit von 13,453

Stunden, um in Issue zu bearbeiten.

Der Median (berechnet durch den Median der Mediane) für die Zeit, um ein Issue zu
bearbeiten beträgt 7.792 Stunden.

Zusammenfassung

Laut Statistik sind Issues, die einen Defekt behandeln die Issues, die am schnellste
geschlossen werden können, wobei der Median 2 Stunden beträgt, während für die
perfektionierende Wartung im Median 7,792 Stunden aufgewendet werden müssen, also
nahezu einen gesamten Entwicklertag. Die durchschnittlichen Zahlen sind jeweils höher,
was sich durch einzelne, sehr zeitintensive Issues erklären lässt.

Da die perfektionierende Wartung im Verhältnis zu anderen Wartungsarten teils erheblich
länger dauert ist im Einzelfall abzuwägen, ob eine Implementierung der vollen Funktio-
nalität von vorneherein sinnvoller ist, da auch grundsätzlich aus der Theorie und Praxis
bekannt ist, dass das nachträgliche Einfügen oder die Optimierung von Funktionalitäten
zeitintensiver ist als eine Entwicklung, die dies von Anfang an mit einschließt.

6.2.3. Issues per Version

In der Abbildung 6.7 ist der zeitliche Verlauf der Ticketanzahlen pro Wartungstyp
ersichtlich.

Auch für diese Statistik gelten die bei der Metrik Time per Version genannten Einschrän-
kungen, was die zu betrachtenden Version betrifft. Allerdings fällt auf, dass die Version
201109 nicht wie bei der zeitlichen Ansicht aus der statistischen Varianz herausfällt,
sondern

30

6.3. Zusammenfassung der Ergebnisse

Wie in der Abbildung erkennbar ist, beträgt die durchschnittliche Gesamtanzahl der
Tickets beträgt 63. Dabei sind pro Version eine durchschnittliche Anzahl von 36 Bug-
Issues bearbeitet worden, während ca. 19 Issues zu neuen Funktionen (einschließlich
Task und Sub-Task) bearbeitet werden. Auf die Wartungsart Incomplete Specification
Implementation entfallen weitere 4 Issues. 9 Issues beschäftigen sich mit der Verbesserung
der Funktionen der Software.

Auch bei der Anzahl an Issues, die für eine Version anfallen gibt es eine gewisse Varianz,
die bei der Analyse der Zeit pro Version angemerkten Version bilden auch hier die
Varianz, allerdings gibt es ein paar weitere Versionen, die statistisch markant sind, bei-
spielsweise die Version 201101. Die Version 201203, die mit einer geringen Stundenanzahl
aufgefallen war, ist statistisch nicht auffällig, was die Anzahl an Issues angeht.

6.3. Zusammenfassung der Ergebnisse

Zusammenfassend lässt sich aussagen, dass es einen großen Anteil an Arbeit zulasten der
Behebung von Defekten gibt, wobei groß in diesem Zusammenhang ohne Wertung zu
betrachten ist. Es zeigt sich, dass mehr als 40 % der Zeit für diese Arbeiten aufgebracht
werden müssen, wobei der Anteil an Issues höher ist als die Zeit, die aufgewendet wird.

Des Weiteren ist sichtbar geworden, dass es eine große Anzahl an Tickets gibt, die sich
lange in der Nachbearbeitung befinden, obwohl in dieser Zeit nur wenige Nachrichte
versandt werden. Hier kann überprüft werden, ob eine schnellere Schließung eins Tickets
oder ein weiterer Status für unter Vorbehalt geschlossene Tickets der Übersichtlichkeit
zuträglich wären, da dann Tickets, die keinen akuten Eingriff benötigen, nicht mehr in
den entsprechenden Listen auftauchen würden.

Ein weiterer Punkt, der sichtbar wird, ist, dass es sowohl im Durchschnitt als auch im
Median halb solange dauert, einen Fehler zu beheben, wie es für die Schaffung einer
neuen Funktion oder der Optimierung einer alten benötigt. Am höchsten fällt allerdings
die Dauer für die perfektionierende Wartung aus, diese ist im Median beinahe doppelt
so hoch wie die für die adaptive Wartung.

31

6.3. Zusammenfassung der Ergebnisse

Abbildung 6.7.: Anzahl an Issues pro Version aufgeteilt in einzelne Wartungstypen 32

KAPITEL 7

ANALYSE UND
VERBESSERUNGSVORSCHLÄGE
DER DATENQUALITÄT

Um eine Analyse der Daten in ihrer Richtigkeit bewerten zu können, müssen Aussagen
über die Qualität der analysierten Daten gegeben werden. Dabei gibt es verschiedene
Faktoren, die die Qualität beeinflussen, darunter:

• Genauigkeit der Daten: Wie detailliert sind einzelne Zeiteinträge im Rahmen eines
Issue-Trackers? Wie gut ist die Abdeckung der wöchentlichen Arbeitszeit?

• Aufbereitung der Daten: Wie leicht sind die Daten aufbereitbar / statistisch ver-
wertbar? Welche Hindernisse gibt es?

Die Analyse der Datenqualität soll für jedes System individuell betrachtet werden, da
für beide Systeme unterschiedliche Maßstäbe für Qualität anzulegen sind. Während
beispielsweise die Genauigkeit der Daten für einen Issue-Tracker eine Rolle spielt, ist
die genaue Zeit, die an einem Problem innerhalb des Supports gearbeitet wird, nicht
sonderlich relevant.

7.1. Datenqualität im OTRS

Bei den aus dem OTRS bzw. im Allgemeinen aus einem Ticketsystem zu erlangenden
Daten ist eine Erfassung der zeitlichen Dauer eines einzelnen Vorgangs nicht relevant,
das heißt es ist für die Messung der Aufwände, die im Support entstehen, nebensächlich,
wie lange an einer Antwort gearbeitet wurde. In diesem Fall sind Parameter wie die
Anzahl der Wartungsfälle oder die Anzahl an versandten Nachrichten für eine Analyse
relevant. Diese Faktoren können aber immer exakt aus einem solchen System entnommen
werden und sind nicht manuell manipulierbar, wie es in einem Issue-Tracking-System,
aufgrund der Eingabe der Daten durch einen Benutzer, möglich ist.

Diese Angaben wurden bereits mithilfe der Metriken analysiert und sind daher nicht Teil
der Diskussion über die Datenqualität.

33

7.2. Datenqualität in JIRA

Ein anderer Punkt, der bereits bei der Analyse der Wartungsaufwände aufgetaucht ist,
ist die Tatsache, dass eine Einordnung der Tickets in die richtige Queue nicht immer
vorgenommen wird, da es beispielsweise Mitarbeiter gibt, die sowohl im 1st- als auch
2nd-Level-Support tätig sind. Dieser Punkt besitzt zwar aufgrund der bei den analy-
sierten Daten inzwischen geringen Häufigkeit eine geringe Relevanz, darf aber nicht
unterschlagen werden, wenn über die Qualität der Daten diskutiert wird.

Problematisch sind solche Fehler in der Einsortierung insbesondere dadurch, dass diese
Tickets für Analysen der Wartungsaufwände nicht zur Verfügung stehen, außer es wird in
Kleinstarbeit ein nachträgliche Sortierung vorgenommen und somit der Mangel behoben.
Dies ist allerdings eine mühsame Arbeit, da für diese Zwecke, ähnlich der im vorherigen
Kapitel angewandten Stichprobenuntersuchung, eine Analyse jedes Tickets auf dessen
Inhalt durchgeführt werden muss. Es ist daher im Allgemeinen sinnvoller, die älteren
Daten als solche zu akzeptieren und dafür zu sorgen, dass zukünftig Einsortierungsricht-
linien beachtet werden und dies mithilfe der vorgestellten Metrik zu analysieren und
wenn notwendig zu verschieben.

Des Weiteren sollte angedacht werden die statistische Verwertung zu erleichtern, indem
ein kurzer Abschlussfragebogen zu jedem Ticket abgegeben werden kann, in dem kurz
erläutert wird, was der Fehler war, wie das eigene Gefühl zur Länge des Wartungsfalls ist
und wie die Kommunikation mit dem Kunden sowie mit der Entwicklung, so sie denn
involviert ist, zu bewerten ist. Dies wäre leicht in einem Formular mit drei Auswahlfeldern
(mit der zusätzlichen Freitextmöglichkeit) lösbar und wäre somit auch in den Arbeitsfluss
leicht zu integrieren, würde aber die Analyse der Wartungsaufwände vereinfachen, da
detailliertere Informationen vorliegen würden.

7.2. Datenqualität in JIRA

JIRA hat, wie jedes System, das durch den Entwickler selbst gepflegt wird, den Nachteil,
dass Arbeitsstunden direkt durch den Entwickler in das System eingetragen werden. Dies
führt dazu, dass bei der Datenqualität im Allgemeinen eine gewisse Skepsis angebracht
ist. Es ist in der Realität eine schwierige Gratwanderung wie notwendig eine exakte
Protokollierung der Arbeitsleistung durch einen Mitarbeiter ist und inwieweit dies
seine eigentliche Arbeit, der Erstellung der Software, behindert. Für die Analyse der
Datenqualität innerhalb von JIRA soll betrachtet werden, wie viele Arbeitsstunden täglich
durch Eintragungen im System gedeckt sind. Dafür betrachten wir den Zeitraum 2011.

Dabei sind folgende Punkte zu beachten:

• eine durchschnittliche Arbeitswoche umfasst 40 Stunden

• es findet keine explizite Arbeitszeitkontrolle statt

• die Zeit, die für Planungen, interne Meetings, u.ä. aufgewendet wird, wird nicht
im System erfasst

• die monatlich verfügbare Arbeitskraft schwankt aus verschiedenen Gründen, bspw.
zusätzliche Praktikanten, Neueinstellungen, Urlaub oder Entlassungen, dement-
sprechend soll zum Vergleich für die folgenden Diagramme noch jeweils das

34

7.2. Datenqualität in JIRA

Vollzeitäquivalent angegeben werden, also wie viele Arbeitskräfte theoretisch in
den jeeiligen Monaten zur Verfügung standen.

• es werden alle Projekte erfasst, an denen in der C-Abteilung des Unternehmens ge-
arbeitet wird, da ansonsten nicht ersichtlich ist, wie gut die monatliche Abdeckung
wirklich ist.

Arbeitszeitäquivalenzen

Januar Februar März April Mai Juni
16,7 16,7 15,7 15,7 15,7 15,7

Juli August September Oktober November Dezember
15,7 16,2 14,9 15,0 15,7 16,0

Wie in den Abbildungen 7.1 und 7.2 erkennbar ist, sind 2011 insgesamt 12.668 Stunden
eingetragen worden.

Anhand der Arbeitszeitäquivalenzen berechnen wir folgende maximale Stundenanzahl:

Summe der Arbeitszeitäquivalenzen: 189,7

Durchschnitt: 15,81

Gesamtarbeitstage: 251 (9 gesetzliche Feiertage)

Ergibt folgende Berechnung:

15,81*8*251 = 31743,13 Stunden, was einer Abdeckung von 39,9 % ergibt

Dies ist allerdings wie bereits angemerkt die maximal mögliche Anzahl an Stunden, die
in das System eingepflegt werden könnte. Eine realistische (durch Befragung aufgenom-
mene) Anzahl an Stunden, die für Meetings aufgewendet werden, ist 5 pro Woche, also
eine Stunde pro Tag. Darüber hinaus sind verschiedene Pausen der Bildschirmarbeit
gängig und auch sinnvoll, welche mit 5 Minuten pro Stunde veranschlagt werden. Mit
einer nicht näher geregelten Mittagspause, die aufgrund der nicht explizit geregelten
Arbeitszeit auch von dieser entnommen werden kann ist von einer maximalen Stunden-
anzahl von 6 Stunden pro Tag auszugehen (bei einer ca. 30 Minuten Mittagspause). Dies
enstpricht der maximalen Zeit, die für das Schreiben von Quelltext veranschlagt wird,
dabei sind Denkpausen, kurze Besprechungen mit Kollegen bezüglich einem Problem
und verschiedene andere Faktoren nicht näher betrachtet.

Alle Zeiten, die angegeben wurden sind Mindestschätzungen und können in der Realität
auch zu niedrig angesetzt sein. Mit diesen Zahlen ergibt sich allerdings eine maximale
Stundenanzahl von 23809,86 mit einer Abdeckung von 53 % ergibt.

35

7.2. Datenqualität in JIRA

Abbildung 7.1.: Zeit pro Version aufgeteilt in einzelne Wartungstypen 2011

36

7.2. Datenqualität in JIRA

Abbildung 7.2.: Eintragende Benutzer pro Monat 2011

37

KAPITEL 8

ZUSAMMENFASSUNG UND
AUSBLICK

In dieser Arbeit wurden verschiedene Metriken eingeführt, die zu einer besseren Erfas-
sung und Bewertung von anfallenden Wartungsaufwänden verwendet werden können.
Im weiteren Verlauf haben wir diese auf Realdaten anwenden können. Es liegt in der
Natur der Sache, dass die Analyse von Wartungsdaten eines einzigen Produktes einer
einzigen Firma nur ein Tatsachenbericht ohne Vergleichsmöglichkeiten ist. Dementspre-
chend knapp sind auch die Analysen in dieser Arbeit ausgefallen. So umfassen sie zwar
die Details der einzelnen Statistiken, doch können sie kaum eine Bewertung darstellen,
da kein endgültiger Schluss darüber gezogen wird, ob der Wartungsaufwand nun hoch
oder niedrig ist. Auch gerade unter diesen Aspekten ist die Plausibilität der vorgestell-
ten Metriken natürlich nicht nachweisbar, weshalb zu hoffen bleibt, dass sich weitere
Firmen für bereit erklären, Wartungsdaten für Analysen bereitzustellen, um in diesem
Forschungsfeld weitere Erkenntnisse zu ermöglichen.

Im Verlauf der Arbeit wurde auch gezeigt, welche Fallstricke sich in der Analyse der
Wartungsvorgänge verbergen und welche Anforderungen an verwendete Systeme zur
Erfassung von Wartungsvorgängen gestellt werden sollten, um eine gute Verwertbarkeit
von gesammelten Daten zu gewährleisten. Auf der anderen Seite sind nicht zuletzt
datenschutzrechtliche Aspekte im Auge zu behalten, da eine Vollerfassung sämtlicher
Arbeitsschritte eines Mitarbeiters auch eine Überwachung der Tätigkeit bis hin zu einer
vollen Tageserfassung bedeuten kann.

Ausblick und mögliche Erweiterungen

Wie bereits im Verlaufe der Arbeit angemerkt wurde, gibt es verschiedene Möglichkeiten,
die hier beschriebenen Analysen weiter auszubauen, diese sollen im Folgenden kurz
erläutert werden:

38

8. Zusammenfassung und Ausblick

8.0.1. Volltext-Analysen

Die Analyse von einzelnen Tickets auf ihren Inhalt ist eine mühsame Tätigkeit, da
häufig der gesamte Verlauf betrachtet werden muss, um Fehlerquelle und auch den
Wartungsverlauf zu ermitteln. Abgesehen von der Möglichkeit der Klassifizierung der
einzelnen Tickets durch den Support anhand von verschiedenen Parametern, wie es in
unter der Analyse der Datenqualität angesprochen wurde, kann auch eine automatisierte
Volltextanalyse zielführend werden. Diese hätte den Vorteil, dass der Support keine
weitere Arbeit durchführen muss und somit keine Veränderung im Arbeitsfluss vonnöten
sind, allerdings ist für die Analyse mehr Aufwand und neue Metriken vonnöten.

Vorrausetzungen für eine solche Analyse sind zum einen ein Wörterbuch für nicht
aufzunehmende Wörter (Artikel, Konjunktionen, o.ä.), um bei der Analyse nicht von
irrelevanten Wörtern abgelenkt zu werden.

Des Weiteren ist es vonnöten, dass eine genügend große Anzahl an Tickets in einer
ersten Analyse statistisch in verschiedene Klassen einsortiert werden, die jeweils über
charakteristische Wortkombinationen erkannt werden können.

8.0.2. Formalisierung des Wartungsaufwandes

Die in dieser Arbeit vorgestellten Metriken erlauben es, Wartungsaufwände in verschie-
denen Zahlen zu messen. Allerdings sind all diese Metriken im Ergebnis Absolutzahlen,
die auch in Relation zum Softwareumfang und der Entwicklungsteamgröße stehen.

Idealerweise sollte eine Formalisierung der Metriken in Hinblick auf diese Faktoren
vorgenommen werden, allerdings ist es im Rahmen der Analyse von Wartungsaufwänden
einer Firma nicht einfach abzuwägen, welche Faktoren in welchem Maße in eine Metrik
einfließen sollen. Daher ist eine Formalisierung im aktuellen Stadium der Forschung
nicht zielführend.

8.0.3. Analyse der Entwicklung neuer Funktionen zur Kundenakquise

Es kommt in der laufenden Softwareentwicklung des öfteren vor, dass für die Akquise
eines neuen Kundens ein von diesem gewünschtes Feature in die Software eingebaut
wird. Die Analyse dieser Entwicklungen kann eine Abschätzung liefern, inwiefern sich
solche Funktionaitätserweiterungen finanziell rentieren.

Aufgrund der Tatsache, dass diese Erweiterungen bisher nicht speziell klassifiziert
werden ist eine solche Analyse anhand der hier analysierten Daten nicht möglich, aber
als zukünftige Erweiterung denkbar.

39

8. Zusammenfassung und Ausblick

8.0.4. Einzelfallanalyse der perfektiven Wartung

Wie im Laufe dieser Arbeit festgestellt wurde macht in den vorliegenden Daten die
perfektionierende Wartung einen konstanten Anteil an den Wartungsvorgängen aus. Es
ist nun interessant, inwiefern sich der Gesamtwardungsaufwand, speziell im korrektiven
Bereich, zu dem wir den perfektiven Wartungsaufwand mindestens teilweise hinzubezie-
hen müssen, verringern ließe, falls Funktionen grundsätzlich vollständig implementiert
würden.

40

ANHANG A

ANHANG

Im Anhang befinden sich die Diagramme für die einzelnen Durchschnittszeiten und
Mediane für die Metrik time per Issue. Des weiteren findet sich die Statistik über den
Verlauf der Verknüpfungen von OTRS und JIRA.

41

A. Anhang

Abbildung A.1.: Durchschnittliche Zeit für ein Issue (adaptive Wartung)

42

A. Anhang

Abbildung A.2.: Median der Zeit für ein Issue (adaptive Wartung)

43

A. Anhang

Abbildung A.3.: Durchschnittliche Zeit für ein Issue (korrektive Wartung)

44

A. Anhang

Abbildung A.4.: Median der Zeit für ein Issue (korrektive Wartung)

45

A. Anhang

Abbildung A.5.: Durchschnittliche Zeit für ein Issue (perfektionierende Wartung)

46

A. Anhang

Abbildung A.6.: Median der Zeit für ein Issue (perfektionierende Wartung)

47

A. Anhang

Abbildung A.7.: Verlauf der Verknüpfung zwischen OTRS und JIRA im 1st-Level-
Support

48

LITERATURVERZEICHNIS

[AG] O. AG. OTRS. Website. Available online at http://www.otrs.com/de/;. (Zitiert
auf Seite 14)

[Atla] Atlassian. Advanced Searching for JIRA. Website. Available online at https://
confluence.atlassian.com/display/JIRA/Advanced+Searching;. (Zitiert auf
Seite 20)

[Atlb] Atlassian. JIRA. Website. Available online at http://atlassian.com/software/
jira/overview;. (Zitiert auf Seite 14)

[Atlc] Atlassian. JIRA. Website. Available online at https://confluence.atlassian.
com/display/JIRA/Supported+Platforms;. (Zitiert auf Seite 20)

[Atld] Atlassian. JIRA REST Java Client. Website. Available online at https://studio.
atlassian.com/wiki/display/JRJC/Home;. (Zitiert auf Seite 20)

[Bas92] V. R. Basili. Software modeling and measurement: the Goal/Question/Metric
paradigm. Technischer Bericht, Institute for Advanced Computer Studies De-
partment of Computer Science University of Mayland, College Park, MD, USA,
1992. (Zitiert auf Seite 17)

[IEE90] IEEE. IEEE Standard Glossary of Software Engineering Terminology. IEEE Std
610.12-1990, S. 1, 1990. doi:10.1109/IEEESTD.1990.101064. (Zitiert auf Seite 8)

[IEE10] IEEE. IEEE Standard Classification for Software Anomalies. IEEE Std 1044-2009
(Revision of IEEE Std 1044-1993), -:C1 –15, 2010. doi:10.1109/IEEESTD.2010.
5399061. (Zitiert auf den Seiten 9, 10 und 16)

[Lud10] H. L. Ludewig, J. Software Engineering – Grundlagen, Menschen, Prozesse, Techniken.
2. Aufl. dpunkt.verlag Heidelberg, 2010. (Zitiert auf den Seiten 8 und 10)

[Opf04] S. Opferkuch. Software-Wartungsprozesse - ein Einblick in die Industrie. Fach-
bericht Informatik, Nr. 11/2004, 2004. (Zitiert auf Seite 11)

Alle URLs wurden zuletzt am 29. 11. 2012 geprüft.

49

http://www.otrs.com/de/
https://confluence.atlassian.com/display/JIRA/Advanced+Searching
https://confluence.atlassian.com/display/JIRA/Advanced+Searching
http://atlassian.com/software/jira/overview
http://atlassian.com/software/jira/overview
https://confluence.atlassian.com/display/JIRA/Supported+Platforms
https://confluence.atlassian.com/display/JIRA/Supported+Platforms
https://studio.atlassian.com/wiki/display/JRJC/Home
https://studio.atlassian.com/wiki/display/JRJC/Home

Erklärung

Hiermit versichere ich, diese Arbeit selbständig
verfasst und nur die angegebenen Quellen
benutzt zu haben.

(Rick Krüger)

	1 Einleitung
	2 Grundlagen
	2.1 Software
	2.2 Dokumentation
	2.3 Fehler
	2.4 Software-Wartung
	2.5 Wartbarkeit von Software
	2.6 Wartungsaufwand
	2.7 Wartungsfall
	2.8 Ticket / Issue
	2.9 Aktive Produkte
	2.10 Anmerkungen

	3 Über die zu analysierenden Daten
	4 Metriken
	4.1 Goal-Question-Metric-Ansatz
	4.2 Metriken basierend auf JIRA
	4.3 Metriken basierend auf OTRS

	5 Schaffung der technischen Grundlagen
	5.1 BIRT
	5.2 JIRA
	5.3 OTRS
	5.4 Weitere Möglichkeiten des Datenimports

	6 Analyse der Wartungsaufwände
	6.1 Gesamtübersicht
	6.1.1 Tickets ohne eine Verknüpfung zu einem Issue
	6.1.2 Tickets mit einer Verknüpfung zu einem Issue

	6.2 Analysen der Wartungsaufwände mithilfe der Metriken
	6.2.1 Time per Version
	6.2.2 Time per Issue per Version
	6.2.3 Issues per Version

	6.3 Zusammenfassung der Ergebnisse

	7 Analyse und Verbesserungsvorschläge der Datenqualität
	7.1 Datenqualität im OTRS
	7.2 Datenqualität in JIRA

	8 Zusammenfassung und Ausblick
	8.0.1 Volltext-Analysen
	8.0.2 Formalisierung des Wartungsaufwandes
	8.0.3 Analyse der Entwicklung neuer Funktionen zur Kundenakquise
	8.0.4 Einzelfallanalyse der perfektiven Wartung

	A Anhang
	Literaturverzeichnis

